
[cacinro

Software Internal Design

Specification Volume I
For the HP-71 '

Hewlett-Packard --

7
%

%

%
%
%
%
%

Corvallis, Oregon

HP-71 Software

Portable Computer Division

VOLUME 1

Internal Design Specification

Detailed Design Description

LIlTTeTaToeToo1oYeTe 1oToTo1oTooTo1o oofofo/o fo Fo 1o fo1oFo

Y
T

T
Y
S
T
S
T
L
e

AAA]

ATVtfeVe
WRALTIAL
h
o
%
W
%%
%%
%k
%

KLLLALLY
PAAARALS

w
"

4
wA

X% A%
xX%%
%

(ci Copyright Hewlett-Packard Company

WALRALAIISLe
WLIAIARALLAATe

Yoo
%
%
W
W
A

%%
%%

A%
Wk
hte
W
PAA
A%
%
LAY

KLILLATSLLLA
WARIKAALLLT

WAL
*h A%
% %
X% X%
RAAX

December 1983

%%
%%
%%
%%
RAAALAL

X2%
*A%

HP Part No. 00071-90068

hhte
RARRLAILTe

YAAA WAL
i
WAL
WhARKL

NARALL
"AA
%%

RA% WhA
AALLALLL

"ALL

RARLLRE
A%
A%
%%

RAALAX

1983

HP-71 Software IDS - Detailed Design Description

xXXX NU’IICE %%

Hewlett--Packard Company makes no expressec¢ or implied warranty with
regard to the documentation and program material offered or to the
fitness of such material for any particular purpose. The
documentation and program material is made available solely o1 an
"as 1s" basis, and the entire risk as to its quality 1and
performance is with the user Should the documentation and pr.yram
material prove defective, the user (and not Hewlett-Packard Comnany
or any other party) shall bear the entire cost of all necesszarv
correctior and all | incidental or consequential damages
Hewlett-F.:_kard Company shall not be liatle for any incidenta.
consequential damages in connection with i arising out of *
furnishing, use, or performance of the doc.mentation and prog:ar
material.

Hewlett-Packard -- Portable Computer Division

Research and Development Laboratory

Corvallis, Oregon

ARARKRAARKARARIRIRARARRIRARARRRIARARARALL%
% %
% HP-71 Softuware %
% %
% Internal Design Specification %
% %
% %
% VOLUME I %
% %
% Detailed Design Description %
% %
RARXRRARARAARRLARRRRARARARARARRRLARRAARAL

UALLAARL KAXAKRRLAY %AX%
RALALALL KAARALIAAUY RAARALIL

A4 AA AL L% ALA
w4 %A %A %%
%% %4 %A %AK

*A %% A% RAARAL
*h *h w4 YAYYAYA
%% %% A4 Yy
%4 %4 %A %%
%% %% K44 %A% KL%

KRALLLLLE LARALAAKRULL RARLLALYL

LALLLLLE RUAALLLLLLL YANYA

%% x4 RALA ry4 RAKAAKR
AKX ZX AR A% P94 %%

A% XA % % A4 *X%

XA% wE KK %A KAX X%

% AALAL RAALRE AAL AALLAL

ROM Release 1BBBB -- December 1983

(c) Copyright Hewlett-Packard Company 1983

HP-71 Softuware IDS - Detailed Design Description

Ok NOTICE %%

Hewlett-Packard Company makes no express or implied warranty uwith
regard to the documentation and program material offered or to the
fitness of such material for any particular purpose. The
documentation and program material is made available solely on an
"as 1s" basis, and the entire risk as to its quality and
performance is with the user. Should the documentation and program
material prove defective, the user (and not Heuwlett-Packard Company
or any other party) shall bear the entire cost of all necessary

correction and all incidental or consequential damages.
Hewlett-Packard Company shall not be liable for any incidental or
consequential damages in connection with or arising out of the
furnishing, use, or performance of the documentation and progran
material.

HP-71 Software IDS - Detailed Design Description
Table of Contents

Table of Contents

1 OVERVIEU

1.1 Structure of the HP-71 Software IDS
1.1.1 Volume I: Detailed Design Description
1.1.2 Volume II: Entry Point and Poll Interfaces . .
1.1.3 Volume IlI: Operating System Source Listings

1.2 Operating System Overview e e e e e
1.2.1 Memory Layout e e e e e e e
1.2.2 File System v v v v v o o o o o o o W

1.3 CPU Overview e e e e e e e e e e e e
1.3.1 Registers« v v v v v v v v e e e

1,3.1.1 Field Selection ¢« v v ¢ « « o & .
1.3.2 Pointer Registers v v ¢ v « « .
1.3.3 Input, Output, and Program Counter Registers
1.3.4 Status and Carry Bits

1.4 HP Support For HP-71 Softuare Development —
e
l
e
l

el
el
i
l
e

'
-
=

!
P
O
O
V
L
D

E
D
N

2 SYSTEM STARTUP AND MEMORY CONFIGURATION

2.1 System Configuration Overvieuw Including RAM and ROM . 2-1
2.2 Entering Deep Sleep & v v v v 4 e 0 . w W . . 2-2
2.3 Startup/Configuration Sequence ¢« v ¢ o« « o o 2-2
2.4 Configuration Routine -- DETAIL « + o 2-3

2.4.1 CHIP ID . . . ¢ & ¢ v i i e e e e v e e e e v 2-4
2.4.1.1 Examples e s o e . o 26

2.5 Configuration Buffer Format ¢« ¢« « v o +« . 2-7
2.6 Special Role of High Tuo Pages in Memory 2-8

2.6.1 Producing a Hard-Configured ROM at E0000 . 2-8
2.6.2 Dangers of Hard-Configuring ROMS , 2-8

2.6.2.1 Bus Contention ¢« v « « ¢ o o 2-8
2.6.2.2 Invisible Plug-ins« 2-9

2.7 Location of Future System ROMs., e+ . 29

2.7.1 Soft-Configured ROM e o0 . 2-9
2.7.2 Fifth ROM at F8000., . . . v ¢ v v ¢ « & o « « . 2-9

2.8 Configuration "Garbage Dump" 2-10

3 MEMORY STRUCTURE

3.1 Operating System ROMI2
3.2 Memory Mapped 1/0 and Display RAM ., e e 0. . 31

3.2.1 Display Driver Addresses « « o« o . 3-2
3.3 System RAM ¢ ¢ ¢ e e 0 e o « o . . 3-4

3.3.1 Interrupt RAM (INTR4 - VECTOR DISINT)..... 3-9
3.3.2 Keyboard Buffer/Flags (ATNDIS - KEYSAV) . . 3-10
3.3.3 Pseudo-Device Display Driver (WINDST - DSPMSK) 3-10
3.3.4 User Memory Pointers (MAINST - RAMEND) 3-12
3.3.5 Parameter Chain Pointer (PRMPTR) 3-14
3.3.6 Variable Chain Pointer List (CHNLST) 3-14
3.3.7 Statement/Program Execute RAM (DSPCHX-TMRIN3) 3-15
3.3.8 Miscellaneous BASIC RAM (STSAVE - INADDR) . . 3-15

iii

HP-71 Software IDS - Detailed Design Description
Table of Contents

onflguratlon Buffer e e
ser Memory . . . c e e e e e e e .« e o

3.5.1 MAIN File Chain e e e e e e e e e e
3.5.2 Program Scope ¢ v v v 4 v e 0w s

3.5.3 System Buffers . ., e
3.5.3.1 Fformat

3.5.3.2 Update Addresses 1n Systenm Buffers
3.5.3.3 Automatic Deletion of System Buffers

3.5.3.4 Permanent Buffers
3.5.3.5 Scratch Buffers . . .
3.5.3.6 System Buffers Used by the Malnframe

3.5.4 CALC Mode Pointers « ¢« v v .
3.5.5 Command Stack . . . « v v ¢ ¢ o o o
3.5.6 Available Memory e e e e e e
3.5.7 Math Stack e e e e e e e e

3.5.8 Save Stack v v e e e e e
3.5.9 FOR/NEXT Stack e e e e
3.5.10 GOSuUB Stack e e e e e e
3.5.11 Variable Storage . . e e e e e e
3.5.12 User-Defined Function Envxronment Stackxng

3.5.12.1 Enviromment Save Block

3.5.12.2 Extended Parameter Storage
3.5.13 Subprogram CALL Environment Stacking . .

System and User Flags (SYSFLG - FLGREG) .
Traps (INXNIB - IVLNIB)
Random Number Seed (RNSEED) . . .
Alarm Clock System RAM (NXTIRQ - TIMAF)
“1S" Table Assignments (IS-TBL)
HP-IL RAM (MBOX,LOOPST,DSPSET)
STAT Array (STATAR), TRACE Mode (TRACEM)
LOCK Password (LOCKWD) . . .
Result Register (RESREG) . . .
Error Number (ERRN)
Current Line (CURRL)
Error Line Number (ERRL#%)
Snapshot Buffer (SNAPBF)
Return Stack Save (RSTKBp,RSTKBF) . . .
Multi-Line Function Flag (MLFFLG) « .

*
*

°
*

.

*
®

.
*

®

.
.

e
e

o

Statement, Function Scratch (SIMTRO - FUNCDI)
TRANSFORM Scratch RAM (TREMBE) . .
Scratch RAM (SCRICH) . . .
Scratch Math Stack (SCRSTO - SCREXx) .
DISP/PRINT RAM (SCROLT - EOLSTR) . .

CALL Parameter Count (PRMCNT)

*
.

°
°

°

Key Definition Info (DEFADR)
Channel Number Save (CHN#SV) . . .
Number of Command Stack Entries (MAXCHD)
Clock Speed (CSPEED)
HP-1L Special RAM (ERRLCH - HPSCRH)
Reserved RAM (RESRV) . . .
System RAM Avallabxllty . .

iv

o

o . e

3-16
3-17
3-17
3-17
3-18
3-18
3-19
3-19
3-19
3-19
3-20
3-20
3-20
3-20
3-21
3-21
3-22
3-22
3-23
3-24
3-24
3-24
3-25
3-25
3-25
3-25
3-26
3-26
3-26
3-29
3-29
3-30
3-31
3-31
3-32
3-32
3-32
3-33
3-33
3-33
3-34
3-37
3-37
3-37
3-38
3-39
3-40
3-40
3-41
3-43
3-43

HP-71 Software IDS - Detailed Design Description
Table of Contents

3.7
3.8

4.1
4.2

4.3

4.4

4.5

m
m
m
m
w
g

b
W
M

5.6

Plug-in ROM and Independent RAM . e e e e e

3.6.1 Standard Configuration e e e e
3.6.2 Stand Alone Module ID ,
3.6.3 FileChain Layout « « + & o &
3.6.4 Take Over ROM . e e e e e e e e

3.6.4.1 Hard-Conflgured Takeover ROM .
3.6.4.2 Soft-Configured Takeover ROM .

Available Memory Management

Handling Memory Movement . .
3.8.1 In Configuration Buffer Area

3.8.2 In a File Chain . e e e e e e e e .

3.8.3 In System Buffer Area

D
D

S
D
b

L
D

3.5.13.1 Enviromment Save Area

SYSTEM CONTROL
Main Loop Flow Diagram v ¢ v ¢ & « .
Algorithm v v v v v o e e e e e
.2.1 Cold Start . . .
.2.2 Main Loop, Uakeup, Power Off Deep Sleep

Interrupt Handling e e e

1.1

.1.2 ON-Key Interrupt . . e e e e s

.1.3 Module Pulled Interrupts o o o e

.1.4 Other InterruptsI
3. Interrupt Handling Algorithm ., . . .
Statement Parse v v ¢ 4 ¢ o o
4, Initiation . . . o o e

4.

4.
4.
4.

2
a

1

4,4,1.1 External Invoklng of Parse .

.2 Statement Parse Algorithm

.3 Errors and Restart

.4 Restart Algorithm

.5 Parse Routines v ¢ ¢« v o & .
tatement Decompile+ . . « v . .

.1 Initiation
4,5.1.1 External Invokxng of Decompile . .
.2 Algorithm ., . . e v e e e e e e e e e

.3 Decompile Routlnes c e s e o s o » o« o o

ogram Edit e e e e e e . e e e

.1 Global Assumptions . . e

.2 Program Edit Algorithm

BASIC INTERPRETER
BASIC Interpreter . . . e e e e e e

Entering the BASIC Interpreter c o o s s o

Reentering the BASIC Interpreter

Exiting the BASIC Interpreter
Exception Handling

5.5.1 Servicing Clock System Exceptlons e e o e
5.5.2 Algorithm

Immediate Mode

°
°

e
.

°

.3.1 Causes of Interrupte . e e s b e s e e e e
Keyboard Interrupts

*
°

e
e

o
o

o
°

00000000000

ooooooooooooo

l
b
b
b
&
b
&
&
f
h
b
b
b
&
&
&

&
-
h
-
b
-
b
-
h
-
'
b
-
b
-
b
-
h
b
-
b

— W

U
!
U
'
I
U
'
I
U
'
I
'
.
.
’
I
U
D
U
T
U
'
I

O
O

N
E
E
D
L

L
,
L
,
I
D

O
C
N
W
F
E
F
O
O
L
V
O
O
N
I
N
I
N
O
S

|
o

M
L

O
O
N
N
O
O
O
D
O
O
D
O
O

O
O
D
O
O
H
T
W
W
W
A
N

=
=
b

1
D
D

P
W
N
P

HP-71 Softuware IDS - Detailed Design Description
Table of Contents

5.6.1 Statement Buffer .,
5.7 Program Execution .
5.8 TRACE Mode .
5.9 Global Assumptions

6 LANGUAGE EXTENSION AND BINARY FILES

6.1 LEX File Structure « « « .« .

6.1.1 How it A1l Uorks + v v v v v o & &
6.1.1.1 Parsing v v v v e e e e e
6.1.1.2 Decompiling
6.1.1.3 Execution .

6.1.2 _Houw to Create a LEX Fxle
6.1.2.1 HP-71 Assembler

6.1.3 Symbolic Referencing
6.1.3.1 Mainframe Tokens
6.1.3.2 Other Mainframe Symbollcs .
6.1.3.3 Building Symbolic Tokens For a LEX Flle

6.2 Lexical Analysis, Parse, Execute e e e e
6.3 LEX IDs and Entry #s0 00 0.

6.3.1 LEX ID Allocation . . .
6.3.2 Range of Entry Numbers

6.3.3 Merging LEX Files
6.4 Referencing Mainframe Entry P01nts .

6.4.1 LEX Files and Memory Movement .

6.4.2 MGOSUB Utility e e e

6.5 Referencing Addresses in a LEX Flle e e
6.6 External Lexical Analysis .
6.7 Entry and Display of External Keywords
6.8 Short Keyuwords .

6.9 Line Number References Ulthxn a Statement . .
6.9.1 References Within an "Interrupt” Statement

6.10 Polling

6.10.1 Fast Poll . .
6.10.1.1 Fast Poll Example

6.10.2 Slow Poll ., . .
6.10.2.1 Slou Poll Example . .
6.10.2.2 Save Stack Slouw Poll Informatlon .

6.10.3 POLL Subroutine Level Usage

6.10.4 Hou to Answer a Poll . e .

6.10.5 Responding to a Poll from Blnary .
6.10.6 Take-over Poll . .
6.10.7 Polling during Parse or Decomplle

6.10.8 Polling from a LEX File in RAM .

6.10.9 Summary of Poll Function Codes .

6.10.10 Special Mainframe Polls

6.10.10.1 Pointer and Buffer 'Clean-Up" .
6.11 BIN Main Programs . . . e e e e e

6.11.1 Ending a Binary Program © e e e e e
6.12 BIN Subprograms & . .
6.13 BIN Error Exit , . . e e e e e e

6.14 Invoking BASIC from Binary

vi

0
0
5
0
1
0
1
0
1
0
'
5
0
3
0
)
0
0
5

W
W
W
L
W
W
L
W
W
W
W
L
W
W
W
W
W
L
W
M
N
R
L
M
N
D
N
D
N
L
D
N
D
M
O
P
D
P
O
D
O
D
P
D
P
D
O
D
N
O
L
D
O
L
D
N
D
D
D
N
D
D
P
=

e
L
o
y

L
N
V

P
R
P
P
R
P
P
R
P
O
O
C
O
C
O
V
O
X
T
O
N
N
O
O
O
L
L
V
N
W
L
W
W
M
N
H
L
N
I
L
R
E
P
F
P
F
O
O
O
C
O
V
D
I
O
N
D
O
D
O
O
D
N
N
I
N
O
P

HP-71 Software IDS - Detajled Design Description
Table of Contents

7

6.14.1 Responding to POLL and Invoking BASIC

STATEMENT PARSE, DECOMPILE, AND EXECUTION

Uriting a Parse Routine C e e e e e e e e e7.1

7.2

7.3

7.4

7.5

.

7.1.1 Statement Tokenization
7.1.1.1 Program Line
7.1.1.2 Program Line with Comment
7.1.1.3 Program Line Containing Labels .
7.1.1.4 Multi-statement Line with Label .

7.1.2 Statements with Special Tokenization .
1.2.1 IF.. , THEN...ELSE .,
1.2.2 CALL
1.2.3 SUB. v v ..
1.2.4 IMAGE e o e o o e .« .
Global Assumptions e
Entry Conditions from L1ne Parse Drlver

Exit Conditions
Parse Errors

1.6.1 Relinquishing Error Handling . .
7.1 Expression Tokenization

1.7.1 Constants ¢ e e e e . .
1.7.2 Variables
1.7.3 Operators ,

1.7.4 Functions e .

Funny Function Parse

.1.8.1 Funny Function Iokenlzatlon . e o
Polling during Parse

riting a Decompile Routine
7. Global Assumptions
7. Entry Conditions from Line Decompxle .
7. Decompile Utilities

7. Exit Conditions
7. Existing Multi-use Decompile Routines . .
7. Funny Function Decompile e e e
7. Polling during Decompile e e e e e

t

<N
=N p
—

W
D
V
O
B
W
N
F
R
R
O
N
O
N
N
N
T
N
N
O
N
E
W
S

N
N
N
N
N
N

'
é
o
n
.
n
-
b

Q
N
N

n

V
N

&
b
b
b

b
d
b
m
M
m
L
u
O
Q
W
W
W
O
L
W
W
L
M
I
N
M
D
N
O
N
V
D
N
O
D
D
N
D
N
D
E
-

'
r
o
r
»
'
o
N
D
2
W
N
-

<
N

tement Execution

ression Execution

Entry Conditions
Global Assumptions . .
Exit Conditions . . D e

Error Exits through MFERR/BSERR ..

°
®

°
e

*

Use of Available Memory by Statements . .
Statement Execution Utilities

00000000

Entry Conditions to Expre391on Execute
Math Stack Usage and Format . . .
Data Types on the Stack
Expression Execution Utilities .
Function Returns

lementation of Function Execution . .
Entry Point
Entry Conditions

vii

*
*

*
°

°
.

*

®
.

°
*

®
°

®
*

*
L4

*
°

®
e

6-33

'
t

O
O
J
N
W
W
W
M
N
H
N
=
=

N
N
N
N
R
I
N
I
N
N
I
N
S

HP-71 Softuware IDS - Detailed Design Description
Table of Contents

7.5.3 Exit Conditions , . .
7.5.4 Error Exits through HFERR/BSERR .
7.5.5 “"Funny" Functions

8 BASIC FILE CONSIDERATIONS
8.1 ROM Generation . . e e e e e e

8.1.1 Chaining a BASIC Flle . . .
8.1.2 Compiling Line Number References

8.2 BASIC Appllcatlon Standards . . .
8.2.1 Preserving The Main Envxronment .

8.3 BASIC Packing Technlques e e .
8.4 Version Number . . . e e e e e e

9 UTILITIES

9.1 Decompile Utilities . . .
9,2 Display and Keyboard Control Ut111t1es

9.2.1 Display Control

o .

g.2.1.1 Carriage Return and Llne Feed
9.2.1.2 Display Escape Code Sequences

9.2.1.3 Scrolling The Display . . .
g.2.1.4 Setting The Bit Pattern In The Dlsplay

9.2.2 Keyboard Interface v ¢« « o .

9.2.3 Summary

9.3 Expression Executlon Ut111t1es

9,3.1 Utilities for Pushing Items Onto Math Stack .
9.3.2 Utilities for Popping Items Off Math Stack

9.4 File I/0 Utilities e e e e e
9.5 Flag Utilities e e e e e C e
9,6 Math Utilities e e e e e e e e

9.6.1 Numeric Comparison + v v ¢« o« o o
9.6.2 Trig Routines . , . . . e e e e e

9,6.3 Inverse Trig Routlnes e e e e e e
9.6.4 Arithmetic & Square Root

9.6.5 Integer-Fraction Functions . .
9.6.6 Logarithmic Functions . . .
9.6,7 Exponential & Involution
9,6.8 Conversion Betuween 15-forms and 12 forms

9.6.9 Pop, Test, Prepare 1 Argument
9.6.10 Scratch Math Stack o e e e e e
9,6,11 Factorial . . . e e e e e

9.6.12 Statistical Ut111t1ee o e e e .

9.6.13 Miscellaneous Math Utilities
9.7 Parse Utilities « o e

9.7.1 Parse Input Utllltles . . « o .
9,7.2 Parse/Decompile Cutput Ut111t1e8 o
9.7.3 Parse General Utilities

9.8 Statement Execution Utilities
9.8.1 Utilities for PRINT class statements .

9.9 System Buffer Utilities e e e e e
9,10 Variable Storage Utilities

9.10.1 Summary o e o

viii

o . .

'
t
D
t
D
L
O
(
O
t
O
\
D
L
O
(
D
(
O
(
D
(
D
L
P
(
D
(
D
(
O
Q
O
(
D
(
O
&
O
(
O
(
O
(
D
(
D

=
b

e
e
e

e
e
B
e

|
O
N
O
O
U
N
D
P
D
L
U
O
N
M
N
N
M
M
N
F
R
P
O
O
O
O
D
O
L
V
O
L
V
L
V
O
W
O
W
O
D
O
N
N
T
O
O
0
O
M
P
D
P
E
r
,
P
L
P
D
W
W
L
O
W
M
N
L
M
N
L
N
D
E

HP-71 Software IDS - Detailed Design Description
Table of Contents

10 MESSAGE HANDLING
10.1 BASIC Keyuwords Involv1ng Messages 10-1

10.1.1 ERRN , ., e e e s e e« . . 101
10.1.2 ERRL ¢ ¢ ¢ ¢ ¢ v ¢ v v o o o o« . 10-1
10.1.3 ERRM$ 10-2
10.1.4 MSG$ Function ., « « + « . . . 10-2

10.2 Message Handling . e e e e e e e e e e e e . 10-3
10.2.1 Message Types . e « « «-e o 10-3

10.2.1.1 Effects of Error Messages e e e e . . 10-4

10.2.1.2 Effects of Memory Error Messages . . . 10-4

10.2.1.3 Effects of Warning Messages 10-5
10.2.1.4 Effects of System Messages 10-5
10.2.1,5 Text Insertion« « . 10-5
10.2.1.6 ERRN and ERRL Considerations 10-6
10.2.1.7 Messages During Running Programs . . . 10-7

10.2.2 Error Message Handling 10-7
10.2.2.1 Entry Points . . . e e e o o 10-7
10.2.2.2 Entry Conditions for HFERR* c e e 10-8
10.2.2.3 Parse Errors v v v « 4 . 10-9

10.2.2.4 Examples . . . e e e e e e e e . 10-10
10.2.2.5 Entry Point MFERsp e « « . o 10-10

10.2.3 Uarning Message Handling 10-11
10.2.3.1 Entry Conditions for MFURN 10-11
10.2.3.2 MFURN DELAY Option 10-13
10.2.3.3 Multiple Text Insertions 10-13
10.2.3.4 Indirect Message Calling 10-14

10.2.4 System Messages b v e e v e e e . 10-14
10.2.4.1 Entry Conditions for System Messages . 10-14

10.2.4.2 Adding Prefixes to System Messages . . 10-15
10.3 Insufficient Memory Error « ¢ ¢ « « « . 10-17

10.3.1 Reporting MEMERR « « . . 10-17
10.3.1.1 Calling MEMER*« « . . 10-18

10.3.2 MEMERR Handling+ . ¢« ¢« « . . 10-19
10.3.2.1 MEMERR Poll 10-19

10.4 Foreign Language Translators 10-21
10.4.1 BASIC Error Trapping e e 10-21
10.4,2 LEX File Number Sharing . . . 10-22

10.4.2.1 LEX File #00 (Malnframe) Translatlon . 10-22
10.4.2.2 Other LEX File Translation 10-23
10.4.2.3 HPIL Message Range 10-24

10.4.3 Poll Handlers for Translators 10-24
10.4.3.1 Poll Handler for LEX ID #01 , 10-25

10.4,3.2 Poll Handler for Other LEX Files . . . 10-25
10.4.4 Tuwo Types of Language Translators 10-26

10.4.4.1 One-shot Translator 10-26

10.4.4,2 Selectable Translator 10-26

10.5 Message Table Construction « . 10-29
10.5.1 Message Formats e e e v e o o o e 10-29
10.5.2 Message Prefix 10-29
10.5.3 Message Construction « « .+ .« . 10-29

ix

HP-71 Software IDS - Detailed Design Description
Table of Contents

11

12

10.5,3.1 Message Range 10-30
10.5.3.2 Message Blocks 10-31

10.5.3.3 ROM Savings With Bu11d1ng Blocks . . . 10-35
10.5.3.4 Example . . e e e e e e e . . 10-37

FILE SYSTEM
11.1 File Chain Structure +. « v « ¢ &+ &« « « . 11-1

11,1.1 File Header . . . « v v v v v v v v v v . 11-3
11.1.2 Implementation Field 11-4
11.1.3 File Subheader « e o o o 11-5

11.1.4 File Header Structure by Copy Code . e o e 11-5

11.2 File Types . . . e e e e e e e e e e 11-7
11.2.1 File Protectlon e e e o e o e e e e . 11-7
11,2.2 BASIC 11-8

11.2.2.1 Subheader . . e e e e e e e e 11-8
11.2.2.2 Subprogram Chain 11-9
11.2.2.3 Label/User-Defined Functlon Chaln 11-9

11.2.2.4 Statement Tokenization . . 11-9
11.2.3 BIN s e e e e e e e e . 11-10

11.2.3.1 Subheader . . 11-10

11.2.3.2 Subprogram Chain . .11-11
11.2.4 DATA 11-11

11.2.4.1 Implementation Field . . . 11-11
11.2.4.2 File Structure . . 11-12

11.2.5 KEY 11-16
11.,2.5.1 File Structure . . 11-17

11.2.6 LEX v et e e e e e e e e . 11-17
11.2.6.1 File Structure 11-17

11,2.7 SDATA v v v v v v e e e . 11-17
11.,2.7.1 File Structure 11-18

11,2.8 TEXT 11-18
11.2.8.1 File Structure . . . 11-18

11.3 Copying a File . . . e e e e e e e . 11-19
11.3.1 Copying to/from Card e e . . 11-19
11.3.2 Copying to/from External Medla . . 11-20
11.3.3 Copying to/from Other Memory Devices . . 11-20

11.4 Openinga File v v v v . . 11-20
11.5 File Searching « v v v v v v v . . . 11-21
11,6 FileCreation v v ¢« v v v v v v v . . 11-22

TABLE FORMATS

12.1 ASSIGN Buffer« . v ¢« v v v « . 12-1
12.2 Card Reader Buffer ¢« . v ¢ ¢« o o . 12-1

12.3 Character Sets , . . . e e e e e e e e e 12-2
12.3.1 Standard Character Set e e e e e e e e e 12-2

12.3.2 Alternate Character Set Buffer 12-2

12.4 External Command Buffer 12-3
12.5 File Information Buffer . . . e e e e e 12-3

12.5.1 Open Files and Protectlon . . 12-6
12.6 File Type Table « v « . « . . 12-6
12,7 Keycode Table ., v« . 12-8

HP-71 Software IDS - Detailed Design Description
Table of Contents

13

14

15

12,8 Language Tables ¢« ¢ ¢ ¢ ¢ o o« ¢« o o «» 12-9

12,8.1 MAINT and XROMO1 . ., . . . ¢« ¢« ¢« ¢« ¢« ¢« « « o« 12-10
12.8.2 Message Table e o o o 12-10

12.8.3 Lerical Type Table « . « » « « 12-10
12.8.4 FGTable v v v v ¢« ¢« v v v o« o « o 12-11

12.9 LEX Entry Buffer e o . . 12-12
12.9.1 Search Order of LEX Flles e e e e e e e . . 12-12

12.9.2 Usage e e e e e e e s 12-13
12.10 Startup and Immediate Execute Key Buffers 12-13

12.11 Statistic Buffer e e e 4 e e e . . 12-13
12.12 System Flags e e e e e e e . 12-13

12.12.1 Display Format Infornatlon o . 12-15
12,13 Traps . . v v v ¢ v v v o o o o o o o 4 e e e . 12-15

INTERNAL DATA REPRESENTATION
13.1 DataTypes e e o o s e o o o 13-1

13.2 Registers T K1
13.2.1 Numbers 1n CPU Reglstera e e e e o s e o o 13-1
13.2.2 Strings in CPU Registers 13-3

13.3 Variables e o o o o o o o o 13-3
13.3.1 Variable Chains « « « o 13-3
13.3.2 Variable Internal Representatlon e o e o « o 13-5

13.3.2.1 Scalar Numeric Variables 13-5
13.3.2.2 Numeric Arrays e o« « . o 13-6
13.3.2.3 Statistical (STAT) Array 13-9
13.3.2.4 String Variables« - . . 13-10

13.3.3 Indirect Variables « . . 13-12

13.3.4 Accessing Variables from Blnary Programs . . 13-13
13.3.4.1 Finding the Address of a Variable . . 13-13

13.3.4.2 Recalling a.Variable 13-13
13.3.4.3 Storing into a Variable 13-13
13.3.4.4 Creating Variables and Arrays 13-14
13.3.4.5 Destroying Variables and Arrays . . . 13-14

13.4 Mathematical Operands e v e o o . 13-15
13.4.1 Packed Representation (12-form) 13-15

13.4.1.1 Normal Values . ., e o o o . 13-15
13.4.1.2 Extended Values e+« + . 13-16

13.4.2 Unpacked representation (15-form) 13-17

NUMERIC COMPUTATION ALGORITHMS
14,1 Standard Math Inputs and Outputs . . , ., . . e o . 14-1

14,2 Statistical Algorithms 14-2
14.2.1 Summary Statistics 14-2

14.2.1.1 ADD operator o . . 14-4
14.2,1.2 DROP Operator « v « o o« « & 14-5

14.2.2 Simple Linear Regression 14-5

CLOCK SYSTEM
15.1 Theory of Operation . . . e o e e 6 o s e o e . 15-1

15.1.1 Clock Systenm HardwareS L|

15.1.2 Clock System Software« e e .

Xi

HP-71 Software IDS - Detailed Design Description
Table of Contents

16

15.2 Software Timebase Correction 15-2
15.3 Format of Time Information 15-2
15.4 Scheduling External Alarms ., 15-3

15.4.1 Scheduling Code « e e e 15-3

15.4.2 Priority of External Alarms . e e e . 15-3

15,4.3 Uhen Alarms Come Due « . . 15-4
15.5 Developing Clock System Appllcatlons 15-4

15.5.1 Taking Control . . . 15-4
15.5.,2 Insuring That the Alarm 1s Processed . 15-5

15.5.3 Dlsruptlng the Mainframe . . . 15-5
15.5.4 Maintaining Your Oun Alarm Llst . 15-5

15,6 Clock System Ram Usage 15-6

HP-71 ASSEMBLER INSTRUCTION SET
16,1 CPUOverview v v o« « . e e e e e+« 16-1

16.1.1 Uorking and Scratch Reglsters . e e e . . 16-1

16.1.1.1 Field Selection 16-2
16.1.2 Pointer Registers . . . o e e 16-3
16.1.3 Input, Output, and Progran Counter Regleters 16-4

16.1.4 Carry and Status Bits . . e e e e e 16-4
16.1.5 Loading Data from Memory 16-5
16.1.6 Storing Data inMemory 16-6

16.2 Instruction Syntax v v v ¢« v o o o o o o . 16-6
16.2.1 Labels and Symbols e ¢« o o+ 16-6
16.2.2 CoOmMments v v 4 o 4 o o o o o o o 16-7

16.2.3 Expressions e e e e e e e . 16-7
16.2.4 Sample Line Image 16-8

16.3 Explanation of Symbols e e e e 16-8
16.3.1 Field Select Table 16-10

16.4 Instruction Set Overview ¢ v v &« o & « . 16-11
16.4.1 GOTO Instructions « « « . 16-11
16.4.2 GOSUB Instructions e e e e e 16-11
16.4,3 Subroutine Returns «. . « « « « . o 16-11
16.4.4 Test Instructions « . +» .« . 16-12

16.4.4.1 Register Tests ., . . . « ¢« &« « « « . . 16-12
16.4.4.2 P Pointer Tests e e . . . 16-12

16.4.4.3 Harduware Status Bit Tests o« o . 16-12

16.4.4.4 Program Status Bit Tests 16-12
16.4.5 P Pointer Instructions 16-13
16.4.6 Status Instructions 16-13

16.4.6.1 Program Status 16-13
16.4.6.2 Hardware Status . . . « ¢« ¢ « . . 16-13

16,47 System Control+« .+ .+« .. . 16-14

16.4.8 Keyscan Instructions 16-14
16.4.9 Register SWapPs . . v v v v v 4 e 4 0 e . . 16-14
16.4.10 Data Manipulation « « « . . 16-14
16.4.11 Data Transfer e e e e e e 16-15
16.4.12 Load Constants ., . . . « . « « . . . 16-16
16.4.13 Shift Instructions 16-16

16.4.14 Logical Operations 16-16
16.4.15 Arithmetics o 16-16

Xil

HP-71 Software IDS - Detalled Design Description
Table of Contents

17

18

16.4,15.1 General Usage . ., «. . . . « 16-17

16.4.15.2 Restricted Usage 16-17
16.4.16 No-Op Instructions 16-17
16.4.17 Pseudo-Ops 16-17

16.4.17.1 Data Storage Allocation . . ., 16-17

16.4.17.2 Conditional Assembly 16-18
16.4.17,3 Listing Formatting 16-18
16.4,17.4 Symbol Definition e « « « . 16-18
16.4,17.5 Assembly Mode 16-18

16.5 Mnemonic Dictionary 16-18

HP-71 CODE EXAMPLES
17.1 Machine Code Packing Techniques 17-1
17.2 Mainframe File Type Table 17-2
17.3 LEX File Implementing Statements and Functxons . . 17-3
17.4 LEX File Shouwing Use of Speed Table . . . 17-62

17.5 Foreign Language Translation of Messages 17-66
17.5.1 One-shot Mainframe Translator 17-66
17.5.2 One-shot HPIL Translator 17-93

17.5.3 Selectable Translator 17-105

HP-71 RESOURCE ALLOCATION
18.1 Device Types, Classes and Codes e e e e .. 18-1

18.1.1 Device Types v v v v « + o o o« &« o o 18-2
18.1.2 DeviceClass ., e e e e e . . 18-2
18.1.3 DeviceCodeB . . . v v v ¢ v v ¢ s o « o o o 18-2

18.2 File Types . . . e ¢ o ¢ « o o . 18-3
18.3 Funny Physical Key Code Allocatlons e+ e+ o « . . 18-3
18.4 LEX IDs v v v e e e e e e . . . 18-4

18.4.1 LEX ID 52 Hex - Flret User’s Library ID . . 18-6

18.4.2 LEX ID 53 Hex - Second User’s Library ID . . 18-6

18.5 Poll Process Number Allocations, . . 18-7
18.6 Reserved RAM Allocations e« . « . 18-9
18.7 System Buffer ID Allocations 18-9
18.8 GOSUB Stack Item Type Allocations (RETURN Iypes) . 18-10
18.9 System Flag Allocations 18-10

GLOSSARY

Kiii

HP-71 Software IDS - Detailed Design Description

GWsWee-.Ene=SD eE Wese - .-- -

|
| OVERVIEU
I

= s

Pmmomaram e moowoooooooee--

The HP-71 is an advanced portable BASIC handheld computer wuwith
built-in calculator capabilities. The proprietary CPU, which has a
512KB address space, 1is optimized for high-precision BCD math and
very lou power consumption. The proprietary 64KB BASIC operating
system automatically incorporates plug-in softuare and memory
modules, allows optional device interfaces such as HPIL or card,
‘maintains a memory file system that may contain an arbitrary number
of files, and has been designed so that independent softuare
vendors may conveniently extend or customize the functionality of
the machine. HP-71 softuware may be programmed in BASIC, FORTH, or
assembly language.

The internal design of the HP-71 operating system is documented in
three volumes, of which this is the first:

¥ HP-71 Softuware Internal Design Specification
Volume I: Detailed Design Description
Volume II: Entry Point and Poll Interfaces
Volume III: Operating System Source Listings

A brief overview of these three volumes, wuwhich are knoun
collectively as the HP-71 Software IDS, is given below. Related
documents which may also be of interest are:

* HP-71 Harduware Specification

* HP-71 HP-IL Module Internal Design Specification
Volume I: Detailed Design and Entry Point Description
Volume [I: Source Listings

* HP-71 FORTH/Assembler ROM Ouner’s Manual

For information on hou to order any of these documents, please
contact Systems Engineering Support in the HP Portable Computer
Division Product Support Group at (503) 757-2000.

1,1 Structure of the HP-71 Software IDS

This three-volume document discusses the internal design of the
HP-71 Operating System in sufficient detail to allow applications
software programmed in BASIC, FORTH or assembly language to use the

1-1

HP-71 Software IDS - Detailed Design Description
Overvieu

various resources of the Operating Systen.

1.1.1 Volume I: Detailed Design Description

This volume, which you are currently reading, documents the
operating system memory structure, table formats, configuration,

operation, interrupt handling, BASIC tokenization, file systen,
numerical algorithms, and the interfaces to Language Extension
(LEX) files. A summary of important system utilities is also
provided. Here is a brief description of the remaining chapters in
this volume;

Chapter 2 - System Startup and Memory Configuration

This chapter describes how the HP-71 configures memory at pouer
on, memory reset, or after FREE PORT or CLAIM PORT commands.

Chapter 3 - Memory Structure

This chapter describes how memory is initialized after startup
configuration. The meanings of various system pointers and
locations in system RAM are also discussed, along with certain
memory data structures such as system buffers and the various
system stacks.

Chapter 4 - System Control

The master control loop (Main Loop) of the operating system is
described in this chapter, as well as the system’s handling of
interrupts.

Chapter 5 - The BASIC Interpreter

An overview of the structure and operation of the HP-71 BASIC
Interpreter is provided in this chapter.

Chapter 6 - Language Extension and Binary Files

This chapter describes the structure and use of LEX and BIN file

types. Polling of LEX files by the operating system is also
covered,

Chapter 7 - BASIC File Considerations

This chapter discusses sgpecifics of BASIC file applications
sof tuare,

Chapter 8 - Statement Parse, Decompile, and Execution

HP-71 Software IDS - Detailed Design Description
Overvieu

This chapter describes the procedures for writing code to support
LEX file keywords. Keywords have routines to tokenize (parse)
them, list (decompile) them, and to execute them. This chapter
also gives a detailed description of the BASIC language
tokenization used by the HP-71 BASIC Interpreter.

Chapter 9 - Utilities

This chapter summarizes various groups of operating system entry
points which applications software may call to perform systen
operations.

Chapter 10 - Message Handling

This chapter describes hou the HP-71 issues error and warning
messages, and how LEX files may interface with this process.

Chapter 11 - File System

This chapter describes the HP-71 file system structure and the
various file types which the HP-71 supports.

Chapter 12 - Table Formats

This chapter describes the format of various operating system
data structures, such as file information buffers, alternative
character set buffers, file type tables, and so forth.

Chapter 13 - Internal Data Representation

This chapter describes hou data and operands are internally
represented in registers, variables, and arrays.

Chapter 14 - Numeric Computation Algorithms

This chapter describes the overall algorithms and procedures used
by the HP-71 in mathematical statistical calculations.

Chapter 15 - Clock Systenm

This chapter describes the internal workings of the HP-71 clock
gystem and related considerations for developing clock systenm
applications softuare.

Chapter 16 - HP-71 Assembler Instruction Set

This chapter describes the HP-71 assembler instruction set and
gives the instruction opcodes and execution cycle times.

Chapter 17 - HP-71 Code Examples

HP-71 Software IDS - Detailed Design Description
Overvieu

This chapter gives examples of how to perform various operations
in HP-71 machine language.

Chapter 18 - HP-71 Resource Allocation

This chapter 1lists the current allocations of HP-71 Operating
System resources such as system buffer ID’s, LEX file ID’s, poll
process numbers, file types, reserved RAM, and so forth, It also
describes the procedures by which additional resources may be
allocated.

1.1.2 Volume II: Entry Point and Poll Interfaces

This volume documents the entry and exit conditions of the 25
categories of supported system entry points that are available to
the assembly language programmer, as uwell as the interfaces to
operating system polls of LEX files. Supported entry point
categories include keyboard and display interface utilities, math,
parse, decompile, and file utilities, and so forth. An index of
entry point names and global symbol values is also included.

HP-71 SUPPORTED ENTRY POINT CATEGORIES

1. Address Calculation Utilities
2. 1/0 Buffer Utilities
3. System Configuration Utiltities
4, Conversion Utilities
5. Display Utilities
6. Decompile Utilities
7. Execute Utilities
8. File Utilities
9. Function Execute Utilities

10. General Purpose Utilities
11. Keyboard Utilities
12. System Math Functions
13. Math Stack Utilities
14. System Level Math Utlilities
15. Parse Utilities
16. Poll Interface Descriptions
17. Pointer Utilities
18, Save Stack Utilities
19. Save Utilities
20, Statement Decompile Utilities
21, Statement Execute Utilities
22. Statement Parse Utilities
23. System Level Major Entry Points
24, Time And Date Utilities
25, Variable Management Utilities

1-4

HP-71 Software IDS - Detailed Design Description
Overvieu

1.1.3 Volume III: Operating System Source Listings

This hefty volume contains the full assembly 1listings of the 76
modules which comprise the HP-71 operating system. All parts of
the operating system are listed, including the mainframe token
table, BASIC interpreter, math routines, and supported entry

points, The supported entry point interface documentation in
Volume Il is programmatically extracted, categorized, and indexed
from comment blocks 1n these source modules, Therefore Volume II

information reappears in scattered form throughout Volume III.

1.2 Operating System Overvieu

The HP-71 contains a 64KB operating system kernel which resides at
address 0. The kernel performs various control functions, and
contains the BASIC interpreter. An internal clock system supports
time-dependent applications. External software may be added to the
machine in the form of files uwhich are interpreted or executed
directly by the kernel. These files may be directly added to the
computer through plug-in memory modules, or copied into the
computer from external media such as magnetic cards or tape.

There are three types of softuare files which can be interpreted or
executed by the HP-71 standard configuration: BASIC, BIN (Binary),
and LEX (Language Extension). A FORTH file type may also be
invoked wuwhen the HP-71 FORTH/Assembler ROM 1is present in the
machine,

BASIC files may be developed on the HP-71 using the built-in BASIC
interpreter. BIN, LEX, and FORTH files may be developed on the
HP-71 using the FORTH/Assembler ROM.

HP-71 Software IDS - Detailed Design Description
Overvieu

Method of
Type Format Invocation Mode of Execution

BASIC Tokenized BASIC RUN, CHAIN, or Interpretation
statements CALL command

BIN Machine language RUN, CHAIN, or Direct execution
(binary) CALL command

LEX Language extension Through its Direct execution
file; adds BASIC added BASIC
keywords, messages, keyuwords and

and functional by polls from
extensions; written operating
in machine language systenm

FORTH FORTH vocabulary Through FORTH Threaded Inter-
interpreter pretation

A BASIC or BIN file can be executed as a program oOor as a
subprogram., Houwever, the great flexibility of the HP-71 operating
system is due to the manner in which it automatically incorporates
LEX files into the operation of the machine.

A LEX file may contain a BASIC keyword token table which is similar
in format to the built-in token tables used by the HP-71 BASIC
interpreter. UWhenever a LEX file is added to the machine, it is
automatically "registered" with the operating system. The BASIC
command interpreter then references the LEX file’s keywords during
lexical analysis, making them automatically a part of the HP-71
command language available to the computer’s user,

In addition, a LEX file may contain a message table in order to add
its oun error/uarning messages to the machine, or to override the
built-in HP-71 error messages for foreign language localization.
(An example of such a LEX file is given in the "HP-71 Code
Examples" chapter)

Furthermore, the operating system contains outuard hooks, called
“polls”, by which a LEX file may intercept the operation of the
rachine at a strategic point to extend or customize that operation.
At over 80 points in the operating system code when the system is
prepared to perform a special task, such as parsing a device name
or terminating execution of a program, it "polls" each LEX file
present in the machine to find if one wishes to intercept the task.

The polling mechanism is as follows. The operating system jumps to
the LEX file’s poll handling code, passing a unique code called a
“poll process rumber" that identifies the task to be done. The LEX
file may choose to intercede by honoring the documented interface
for that poll process number., In this way very sophisticated and

1-6

HP-71 Software IDS - Detailed Degign Description
Overvieu

detailed customization of the machine’s functionality is possible.
Polling is described in detail ©below. The individual poll
interfaces are described in Volume II of this document,

Since there 1is no logical separation of address space betueen an
application program and the HP-71 operating system, a code in a BIN
or LEX file may directly access certain system entry points to
perform operations ranging from BCD math to file I/0. Over 1700
such entry points are supported by the HP-71 in such a manner that

the absolute addresses of these entry points will remain fixed
throughout subsequent releases of the operating system ROMs. The
interfaces to these entry points are described in Volume II of this
document.

1.2.1 Memory Layout

The general layout of the HP-71 physical address space 1is shoun
below. Sections marked with an asterisk indicate RAM areas which
may be used by applications software for data storage according to
the procedures described in this document.

| Operating System |
$mme+

| Memory-Mapped 1/0 |
| and Display RAM |
ee==+

| System RAM |
e———-+

| *Reserved RAM |
$mmmmrc-+

| *MAIN File Chain l
e+

| *System Buffers |
$mmmee+

| Command Stack |
Pceece——-+

| CALC Mode Buffers |
Permmcmc e e e een—-+

| *Available Memory |
dmmmee+

| ¥Enviromment Stacks |
oe+

| Independent RAM, |
| ROM Modules I
P—cee-—-—-- +

HP-71 Software IDS - Detailed Design Description
Overvieu

1.2.2 File Systen

The HP-71 has a memory-based file system which has no central
directory. The main file system is a chain of files, each with its
own identifying file header, in Main RAM.

In general, a plug-in ROM module contains its own file chain in the
same format as the main file chain. Similarly, a plug-in RAM
module can be maintained as an Independent RAM (IRAM) with its oun
file chain, or it can be pooled with the Main RAM. The operating
system’s file operations automatically incorporate all file chains
present in memory.

1.3 CPU Overvieu

The HP-71 CPU is a proprietary CPU optimized for high-accuracy BCD
math and low pouwer consumption. The data path is 4 bits uide.
Memory is accessed in 4-bit quantities called "nibbles" or "nibs".
Addresses are 20 bits, yielding a physical address space of 512K
bytes.

There are four working 64-bit registers, five scratch 64-bit
registers, two 20-bit data pointer registers, one 4-bit pointer
register, a 20-bit program counter, a 16-bit input register, and a
12-bit output register. Return addresses are stored on an

eight-level harduare return stack that accepts 20-bit addresses.
In addition, there 4 hardware status bits, a carry bit, and 16
program status bits. The lower 12 program status bits can be
manipulated as a 12-bit register.

For a more detailed overview of the HP-71 CPU, please see the
“"HP-71 Assembler Instruction Set" chapter.

1.3.1 Registers

The working registers are used for data manipulation. Registers A
and C are also used for memory access. The scratch registers are

used to temporarily hold the contents of working registers.

In addition, the lower 20 bits of R4 are used during interrupt
processing and therefore are not normally available for data
storage.

1-8

HP-71 Software IDS - Detailed Design Description
Overvieu

WORKING REGISTERS SCRATCH REGISTERS

Name Size Name Slze

e+ e+

A | 64 bits | RO | 64 bits |
Pmcere+ ¢eceee—-+

Prmce+ ere+

B | 64 bits | R1 | 64 bits I
Pee-+ o=+

Littt+ De+

c | 64 bits | R2 | 64 bits |
eree+ Peee+

termree+ Pe=+

D | 64 bits | R3 | 64 bits |
Pe-+ tomree+

R4 | 64 bits¥* l

* Note: the louer 20 bits of R4 are modified
wvhenever an interrupt occurs, and are
generally unavailable for storage

1.3.1.1 Field Selection

Subfields of the working registers may be manipulated by the use of
field selection. The possible field selections range from the
entire register to any single nibble of the register. Certain
subfields are designed for use in BCD calculations. Others are
used for data access or general data manipulation. See the "HP-71
Assembler Instruction Set" chapter for a description of the
selectable fields.

1.3.2 Pointer Registers

The Data Pointer registers, DO and D1, are used to contain
addresses during memory access, and are used in conjunction with
the working registers.

The P Pointer register is used in Field Selection operations with
the working registers.

HP-71 Software IDS - Detailed Design Description
Overvieu

DATA POINTER REGISTERS

Preee-+ tererrcee—-—-+

DO | 20 bits | D1 | 20 bits |
Peee—-+ Pee—e—————+

1.3.3 Input, Output, and Program Counter Registers

The input/output registers are used to communicate with the HP-71
bus. The program counter points to the next instruction to bne
executed by the CPU,

INPUT AND OUTPUT REGISTERS

........... ++

IN | 16 bits | OUT | 12 bits |
trecmcrmcmrcme= + P+

PROGRAM COUNTER REGISTER

* +

PC | 20 bits |
be——+

1.3.4 Status and Carry Bits

The operating system uses 4 of the program status bits to indicate
the state of the operating system. The remaining 12 program status
bits are generally available to applications softuare,

CARRY: 1 bit

PROGRAM STATUS: 16 bits (lower 12 act as the ST register)

HARDUARE STATUS: 4 bits

1-10

HP-71 Software IDS - Detailed Design Description
Overvieu

1.4 HP Support For HP-71 Softuware Development

HP encourages independent software vendors to develop softuware for
the HP-71. There are a number of system resources, such as unique
LEX file ID numbers and system buffer numbers, which may need to be
allocated to a particular vendor’s software. The procedures for

allocating these resources is described in the "HP-71 Resource
Allocations" chapter,

Any requests for further information should be directed to Systenms
Engineering Support in the HP Portable Computer Division Product
Support Group at (503) 757-2000.

1-11

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

Boeo eoeoe">---S=-------- -

I
: SYSTEM STARTUP AND MEMORY CONFIGURATION = o

Prrrrao.-------.=-----

2.1 System Configuration Overview Including RAM and ROM

00000 +4-=c-ccccmcmmcccccnnaas+ LOU

| Operating System ROM |
20000 4----cemmmcecmceeeaao.

| Memory Mapped 1/0 |
l and Display RAM |

2F400 +4-ccccccccee

| System RAM | ~
2F986 #--cccccccccccccaceao+ |

l Reserved RAM | |
CONFST ¢--c--ccccccccccccccca + |

| Configuration Buffer | Display ?river RAM
eeece+

| | |
I User | |
l | v

30000 + - = = = 4. =eeeemmmmmmccmeeee-
l l "
| Memory i |
l I Soft Configured and
| l Plug-in RAM
I l I
I I v

RAMEND +--------cc-oeccccnan-- + msseeemeceoo—eeeee--
l |
I Plug-In ROMs |
| and I
| Independent RAMs :
|

FFCO0 #====m=-smccmoccmmeeen.
| Config Reserve Area | Unusable

FFFFF +----ccmmmcccmccccceee+ HIGH

For a further breakdoun of User Memory, see the "Memory Stiucture"
chapter.

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

2.2 Entering Deep Sleep

WVhen the computer is turned off, the state of the machine is
preserved., All variables, pointers and stacks are preserved. A
gystem configuration is performed upon wakeup from deep sleep.

2.3 Startup/Configuration Sequence

System configuration is performed at coldstart, pouer-on, and FREE
and CLAIM execution. Performing configuration consists of
determining what chips are resident on the system bus and assigning
an address to each chip. UWhile all chips are on the bus "in
parallel”, an electrical scheme knoun as ‘“daisy chaining"
determines an order in which the chips are found by the CPU when it
is performing configuration,

In a daisy chain, each chip has two special lines: daisy-in (DI)
and daisy-out (005. By creating a chain in which daisy-out of one
chip is connected to daisy-in of the next chip, you establish an
order. Daisy-in to the first chip is (in most cases) a
softuare-switchable electrical line from the CPU (the one exception
is port #0, the internal daisy chain, in which daisy-in to the
first chip 1s uwired high).

B EE B ES S ESSEENIEEEEECSEIISEZESEESEESESSEEESSSESEESE

system bus

Uhen a chip is unconfigured, it does not occupy address space and
its daisy-out is held low. If its daisy-in is low, it will not
respond to any CPU instructions. If its daisy-in is high, it will
respond to two instructions: C=ID, which returns the chip ID to the
CPU (see CHIP ID, below), and CONFIG, which assigns an address to
the chip and configures it.

WVhen a chip is configured, it does occupy address space and its
daisy-out equals its daisy-in. In this state, the chip will NOT
respond to C=ID and CONFIG. So once a chip has been configured,
the next chip on the daisy chain is able to identify itself and be

2-2

HP-71 Softuare IDS - Detailed Design Description
System Startup and Memory Configuration

configured.

The configuration routine examines the daisy chains corresponding
to ports #0 through #5 (see PORT#, below) and conflgures each chip
on each daisy chain, A plug-in dev1ce may contain more than one
chip and may even contain chips of different types (e.g. , ROMs and
RAMs). The routine builds lists in the conflguratlon buffer area

identifying what is plugged in and where it is configured.

2.4 Configuration Routine -- DETAIL

The configuration code assigns addresses to all soft-configurable
devices on ihe system Bus. The code builds three tables in the
configuration buffers: system RAM, other memory (ROM, EEPROM,
independent RAM, etc.), memory-mapped 1/0. The one-byte
configuration buffer IDs for the above configuration tables are,
respectively, FF, FE, FD. The exact format of the information 1n
the tables is explained in "Table Formats" chapter,

Following is the pre-configuration memory layout:

00000-1FFFF; Operating systen
2C000-2C01F: Card reader

2E100-2E3FF: Display RAM

2F400-2FFFF: Display Driver RAM
(FEECOO-FFFFF: Reserved for configuration garbage dump)

Addresses are assigned to devices as follous:

Memory-mapped 1/0 is configured in the space 20000-2C000,

System RAM is configured contiguously upuard from 30000,

To achieve this contiguous napplng, system RAM is configured in
reverse size order. That is, the largest RAM chips are
configured first, then successively smaller chips. This assures

that 64 Knib RAMS are configured on 64 Knib boundaries, 32 Knib
RAMS on 32 Knib boundaries, etc.

Other memory (ROM, independent RAM, EEPROM, etc.) 1is put in the
space betuween the end of RAM and FFCO0O0.

The scheme of where each memory device is configured is fairly
complex. The configuration code assures that memory devices are
configured on legal boundaries and that consecutive chips within
a single plug-in are configured contiguously in the order 1in
wvhich they are encountered on the daisy chain. A bit within the
chip ID (explained below) is used to identify the physical
boundaries of the plug-in memory.

2-3

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

To explain configuration, the following terms are used belou:

PORT#: Physical port location (1-5) whose daisy chain is addressed
by a bit (0-4) in output register. Port #0 is the internal
daisy chain; it includes all built-in devices and the HPIL
port. Ports #1-4 are the ports 1in the front of the machine

(#1 is the leftmost port, etc.). Port #5 is the card reader
slot,

DEV#: Position of a plug-in (0-15) in a daisy chain. Unless there
is a port extender, all plug-ins will be device #%0.

SEQUENCE: Consecutive chips in a module to be used as a single
entity (e.g., a quad RAM which appears as one plug-in to
the user).

DEVICE TYPE: Type of memory (RAM, ROM, etc., or memory-mapped I1/0).

DEVICE CLASS: Identifies exact type of memory-mapped 1/0 device,

2.4,1 CHIP ID

The CHIP ID is a (usually) mask-programmed 20-bit identifier which
is read by the CPU on an ID poll (C=ID instruction). A chip
responds to the ID pol! if two conditions are met:

1) The chip is unconfigured,

2) Daisy-in is high on the chip.

By examining the daisy chains one at a time and configuring each
chip as it is found, the software can locate and identify all
soft-configurable chips on the bus,

The chip-id contains the following information:

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

NIBBLE 0: 15-Log2(size).

Memory Size Nib 0 MM 1/0 space

1 knib F 1 vord (16 nibs)
2 E 2
4 D 4
8 C 8

16 B 16
32 A 32
64 (max RAM) 9 64
128 8 128
256 (max memory) 7 256

6 512

5 1024

NIBBLE 1: (Reserved for future use)

This nibble from the first chip in a sequence is stored in the
configur

NIBBLE 2: Dev

0
1
2

3-6
7-E

F

.

°

°
°

.

°

°

°

.
e

NIBBLE 3: For

For

0:
1-15:

(Note:

NIBBLE 4:

bits 0-1;

bit 2:

ation table for all sequences.

ice type:

RAM
ROM (includes EPROM, which cannot be uwritten to)
EEPROM :
(unassigned)
Unusable due to COPY command requirements
Memory-mapped I1/0

memory:
(Not used)

memory-mapped 1/0, contains device class:

HPIL mailbox
(Unassigned)

Card reader is hard configured at 2C000-2CO1F)

(unassigned)

below). Aluays
meaning all such

in the Memory-mapped 1/0

Last chip in sequence (see note (¥)
assumed high for MM I/0 devices,
devices have their oun entry

2-5

HP-71 Softuware IDS - Detailed Design Description
System Startup and Memory Configuration

table.

bit 3: Last chip in module. On a ROM, in general, this bit,
like the rest of the ID, is mask-programmed. On RAMs,
this chip is typically pad-programmed so the same
parts can be used for all chips in a multi-chip RAM
module.

The top two bits (bits 2-3 of nibble 4) are used to determine what
chips are in what physical plug-ins. Every sequence of chips
(e.g.2 four identical RAMS in a RAM plug-in, an applications pack
contalning two ROMS, etc.) results in one entry in the
configuration tables.

(*) End of sequence (but not module) is identified in one of two
ways: 1) next chip returns ID with different value in nibs 0-3, or
2) last chip of sequence has bit 18 set. The second approach is
necessary if consecutive, identical chips are to be considered as
different sequences, and will probably NEVER be used in the entire
lifetime of the machine. But it can be done.

2.4.1.1 Examples

A module containing four 8-Kbit RAMS might return the follouing
sequence of IDs:

0000E O0OOOE 0O0O0OE 8000E

The resulting table entry would identify the chip size, chip count,
device type, physical location, and configuration address of the
device.

A module containing two 128-Kbit ROMS, a memory-mapped 1/0
interface using 2 words of address space, and four 16-Kbit RAMS
might present the following sequence of IDs:

0010A First ROM \ one ROM table entry
0010A End of ROM sequence /
O1FOE MM I/0 devclass 1 - one MM 1/0 table entry
0000D Start of RAMS \

0000D | one RAM table entry
0000D |
8000D End of module /

Restrictions: 16 chips/sequence
16 sequences/device
16 devices/port

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

2.5 Configuration Buffer Format

Configuration buffers contain a list of what devices are configured
vhere. The buffers are treated and maintained similarly to systenm
buffers (see chapter on

1) Their ID’s are only two nibbles long, and

2) They exist before program memory, while system buffers exist
after program memory. This insures that these tables will
reside in built-in display driver RAM, rather than some memory
wvhich may be removed.

The configuration buffer area is the beginning of non-fixed memory.
That is, while its gtarting location is fixed (first buffer starts
at address CONFST), its ending 1location is not. Configuration
buffers are maintained as a linked list uwhose end is identified
with a zero byte. Each buffer has a 5-nibble header consisting of:

Buffer ID First 2 nibbles
Size field 3 nibbles

This is the size of the data field only.

CONFSI -) Prmmcceccc——e- +

| Buffer ID I
------------ +-4+

| Size Field | 3 nibbles

2 nibbles

== tmcccccmcccce- +

==+

loo|
+=-=+

¢
e

e
-

—
—
e

—
—

| v

The header is followed by the data field whose size has been
specified in the size field above. Immediately following the data
field is either the next buffer ID or a zero-byte identifying the

2-7

HP-71 Softuare IDS - Detailed Design Description
System Startup and Memory Configuration

end of the buffer chain.

The contents of the buffers are discussed in the "Configuration
Buffer” section in the "Memory Structure" chapter.

2.6 Special Role of High Tuo Pages in Memory

Provision has been made for allowing devices to be hard-configured
in address space without fear that the configuration code will
soft-configure something over them. At configuration time, the
code examines addresses E0000-E000F. If any of those eight bytes
is non-zero, the configuration code will NOT configure anything at
or above address E0000, So if a hard-configured device resides
there, the space from E0000-FFFFF is reserved and is not available
for soft-configured devices. The only time that space may be used
is DURING the execution of the configuration code, when it may be
needed temporarily for "garbage dump".

2.6.1 Producing a Hard-Configured ROM at E0000

In certain cases it 1is desirable to produce a ROM which is
configured to a fixked 1location in the HP-71 address space.
Hard-configuration is a mask-programmed option which is selected at
mask-generation time for the ROM chip. This is because some
applications simply cannot be soft-configured. For example, the
Debugger ROM must be hard-configured so it will be immune to the
configuration code.

Any application which must be hard-configured should either reside
at E0000 or reside above E0000 and have something else plugged in
vhich resides at E0000. The presence of some device at E0000 is
necessary to 1insure that the space above E0000 will not be
configured over.

2.6.2 Dangers of Hard-Configuring ROMS

There are certain disadvantages to hard-configuring a ROM or other
device,

2.6.2.1 Bus Contention

Tuo devices hard-configured to the same address cannot be plugged
in at the same time. Otherwise they will both respond to a READ
request at the same time, each contending for use of the bus. This
may be electrically harmful to the computer. It will certainly
produce useless data, since the results from a bus-contention
situation cannot be predicted.

2-8

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

2.6.2.2 Invisible Plug-ins

Aside from noticing that a hard-configured device is there, the
operating system will not do anything with the devic:. Because the
device is not soft-configured and therefore has no ID, the
operating system has no way of knowing what type of device it is,
its size, etc. Its address and its existence will not be recorded
in any tables, To use it, there must be some LEXfile around (in a
soft-configured device or in main memory) uwhich expects it to be
around and knows hou to use it.

If, for example, an alternate operating system 1is uritten and
resides in a ROM hard-configured to E0000, there must also be some
LEXfile around which will provide the keyword to give control to
that operating systenm.

2.7 Location of Future System ROMs.

Tuo possible schemes nmay be used if the operating system needs to
be expanded.

2.7.1 Soft-Configured ROM

Operating system enhancements might ©be contained in a
sof t-configured ROM, possibly in a LEXfile. This method would be
appropriate for many conceivable enhancements. The disadvantages
are that the hard-configured part of the operating system would
have to expend some effort to locate the soft-configured part, and

there 18 no guarantee that the soft-configured part will be
configured if many devices are plugged in.

2.7.2 Fifth ROM at F8000.

The address space from F8000 to FFFFF might be used to contain a
fifth operating system ROM. This would make it unavailable to
hard-configured ROMs at E0000 and would require some change to the
configuration code. This space 1is temporarily used during
configuration as a “"garbage dump" area, but nothing is left
configured in the garbage dump area after configuration is done.
This means that the configuration code itself certainly could not
reside in this fifth ROM.

2-9

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

2.8 Configuration "Garbage Dump"

A definition for a term used in this section: Garbage Dump. During
the execution of the configuration code, some plug-ins may be found
for which there is no room to configure. Because of the operation
of the daisy-chain (a device must be configured before the
following device can be configured), it is sometimes necessary to
configure such a device "out of the way" so devices after it on the
daisy chain can be configured. Such ‘"garbage" devices are
configured to end at FFFFF, and to start at whatever location ends
them at FFFFF. In other words, a "garbage" 16-kByte ROM would be

‘temporarily configured at F8000. All such devices are unconfigured
before the termination of the configuration code. This is referred
to throughout this section as "Garbage Dump."

2-10

HP-71 Software IDS - Detailed Design Description
Memory Structure

P oeecme eeo-oe---=----+

l
| MEMORY STRUCTURE |

l
+Peee=— — w-.v --- we =

3.1 Operating System ROM

The operating system is contained in four 16K-byte ROMs
hard-configured in the address range 00000-1FFFF. Volume 1III of

this document provides a source code listing of all the operating
system modules that fill this address space.

3.2 Memory Mapped 1/0 and Display RAM

CommentMemory Size

* ® * Display driver addresses
*

2E100 ANNAD1 1 Annunciator column 1
2E101 ANN1.5 1

2E102 ANNAD2 2 Anmunciator column 2
2E104 DD3ST #2E160-* Start of display driver 3
2E160 DD3END #2E1F8-¥ End of display driver 3
2E1F8 TIMERS3 #2E1FF-* Timer 3

2E1FF DD3CTL 1 Display driver 3 control nib
2E200 DD2ST #2E260-* Start of display drive

2E260 DD2END #2E2F8-* End of display driver 2
2E2F8 TIMER2 #2E2FF-* Timer 2

2E2FF DD2CTL 1 Display driver 2 control nib
2E300 DD1ST #2E34C-* Start of display driver
2E34C DDI1END End of display driver 1
2E34C ANNAD3 2 Annunciator column 3
2E34E ANNAD4 2 Annunciator column 4
2E350 ROUDVR #2E3F8-* Rou Drivers

2E3F8 TIMER1 #2E3FE-* Timer 1

2E3FE DCONTR #2E3FF-* Display contrast nibble
2E3FF DDICTL #2F400-% Display driver 1 control nib

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.2.1 Display Driver Addresses

The HP-71 display contains two columns of annunciators on the left

followued by 132 columns of dots and two more columns of
annunciators.

The columns are addressed as follous:

FEHEHIHIKHFEHIKKIHHHFHIHIEHHHHHHNIIHHH

*HX% SLAVE DISPLAY DRIVER II e
FHKRIHEEREHHHEOOREREEOOOO

Leftmost column of annunciators

ANNAD1 (2E100) -- Bits 0-2 not connected
(--- -- Bit 3

ANN1.5 (2E101) AC -- Bit 4

USER -- Bit 5

RAD -- Bit 6
-- Bit 7 not connected

Adjacent column of annunciators

ANNAD2 (2E102) -- Bits 0-1 not connected
f -- Bit 2
g -~ Bit 3

BAT -- Bit 4

-- Bits 5-7 not connected

DD3ST (2E104) Columns 0-45 (46 Columns)
DD3END (2E15F)

TIMER3 (2E1F8) Timer (least sig. nib (LSB) at lowest address)
(6 nibbles)

DD3CTL (2E1FF) Status Nibble:

URITE READ

LSB 0 -- RAM RAM

1 -- RAM RAM
2--

MSB 3 -- Enable Timer

3-2

HP-71 Software IDS - Detailed Design Description
Memory Structure

F3FEHIEHIEIEIEFEIEIEKIEIEHIEEK2K33RO

HE SLAVE DISPLAY DRIVER 1 *HEx
3HHHHEHHEEREOHEEHEEHEHEHEHHEHEHHEREROEOHEOOOO

DD2ST (2E200) Columns 46-93 (48 Columns)
DD2END (2E260)

TIMER2 (2E2F8) Timer (least sig. nib at louest address)
(6 nibbles)

DD2CTL (2E2FF) Status Nibble:

WURITE READ

LSB 0 -- RAM RAM

1 -- RAM RAM
2 --

MSB 3 -- Enable Timer

I33HHHIRI336IIII6I333333636336

ok MASTER DISPLAY DRIVER N
3ROHEEEHEEHOHOOHO

DD1ST (2E300) Columns 94-131 (38 Columns)
DD1END (2E34C)

ANNAD3 (2E34C) Right column of annunciators
-- Bits 0-2 not connected
-- Bit 3
-- Bit 4

Bit 5

-- Bit.6
-- Bit 7O

V
O

' '

ANNAD4 (2E34E) Rightmost column of anmunciators
-- Bits 0-2 not connected

((*)) -- Bit 3
---> -- Bit 4
PR@® -- Bit 5

SUSP -- Bit 6

CALC -- Bit 7

ROUDVR (2E350) Row Lines (16 Nibbles). Should be set
by softuware as follows: 800140(220041008

TIMER1 (2E3F8) Timer (least sig. nib at lowest address)
. : (6 nibbles)

Deontr. QRE3FE) cuntrasr Nibsje
DDICTL (2E3FF) Display Control Nibble:

WRITE READ

LSB 0 -- Display On Same
1 -- Display Blink Same

3-3

HP-71 Softuare IDS - Detailed Design Description
Memory Structure

2F400
2F410
2F420
2F430

2F438
2F43C
2F441
2F442
2F442
2F443
2F444
2F462
2F462
2F463
2F464
2F465
2F466
2F467
2F468
2F469
2F46A
2F46B
2F46C
2F46D
2F46E
2F46F

2F470

‘2 -- Display Test Very Louw Bat
MSB 3 -- Enable Timer Low Bat

Name Memory Size Comment

* % ¥ gtart of interrupt RAM
%*

INTR4 16 (R4 and DO)
INTA 16 (A reg)
INTB 16 (B reg)
INTM 8 (Misc stuff)
*

¥ INTM is mode-Pointer-Carry-Return stack
*

*¥ ¥ ¥ End of interrupt RAM
*

CMOSTV EQU #168F Value for CMOS test word

CMOSTU 4 CMOS test word
VECTOR 5 Interrupt vector

ATNDIS 1 Attention disable flag
OFFFLG
ATNFLG 1 Attention key hit flag

KEYPTR 1 Key buffer pointer
KEYBUF 15%2 Key buffer

KEYSAV (LSB = Bottom Row)
KCOLD 1 14th column keymap
KCOLC 1 13th

KCOLR 1 12th

KCOLA 1 11th
KCOL9 1 10th

KCOL8 1 gth

KCOL7 1 8th

KCOL6 1 7th
KCOL5 1 6th
KCOL4 1 5th
KCOL3 1 4th

KCOL2 1 3rd

KCOL1 1 2nd

KCOLO 1 1st

DISINT 1 Interrupt ignore flag
. used in keyscan

* Pseudo-device Display Driver Memory

3-4

HP-71 Software IDS - Detailed Design Description
Memory Structure

2F471
2F473
2F475
2F478B
2F47C
2F47E
2F480
2F540
2F540

2F558
2F55D
2F55D
2F562
2F567
2F56C
2F571
2F571
2F576
2F576
2F578
2F580
2F585

2F58A

2F58F

2F594
2F599

2F599
2F599
2F599

2F59E
2F59E
2F59E
2F5A3
2F5A3
2F5A8
2F5AD
2F5B2

*

WVINDST
WINDLN
DSPSTA
ESCSTA
FIRSTC
CURSOR
DSPBFS
DSPBFE
DSPMSK
*

* GSystem Pointer Allocations
*

MAINST
UPD1ST
CURRST
PRGMST
PRGMEN
CURREN
I10BFST
MAINEN
IOBFEN
CLCBER
RENBFR
RAUBFR
ELCSTK

*

SYSEN
*
*

*

OUTBS
*

AVMEMS
UPD1EN
*

TASTK
MIHSTK
AVMEME
*
*

SAVSTK
TFORN
FORSTK
TGSBS
GSBSTK
ACTIVE
CALSTK
RAMEND
*

M
O

N

2*96

96/4

5

o
o
o
,

A
N

O
o
T
O

o
o
o
,

Uindow start
Windouw len
User status save, Dsp status
Escape status

Buffer position of 1st char
Buffer position of cur
96 char buffer (2 nibs/char)

96 bits (4 bits/nib)

Main Program Memory Start
Start of Update Addresses #1

Current File Start
Current Program Start
Current Program End
Current File End
Start of System buffers
Main Program Memory End
End of System buffers
Calc Mode Pointers

Calc Stack token stream start
SYSEN,OUTBS,AVMEMS collapsed
here at end of CALC mode
End of RAM used by System

OUTBS and AVMEMS collapsed
here at end of Parse,
Decompile, TRANSFORM

Output Buffer Start

Output Start for Parse/Decomp
Available Memory Start
End of Update Addresses #1

Arithmetic Stack
End of Available Memory

(AVMEME collapsed to SAVST
after statement ex

Save Area Stack Pointer

FOR/NEXT Stack

GOSUB Stack
Active Variable Space
CALL Stack
End of Memory

HP-71 Software IDS - Detailed Design Description
Memory Strugture

2F5B7
2F5BE
2F5BE

2F674
2F674
2F679
2F67E
2r683
2re8s
2F68D
2F692
2F697
2F69C
2F6A1
2F6A6

2F6Ab
2F6AE
2F6B6

2F6BE
2F6C1
2F6C6
2FeCB
2F6CF
2F6D4
2F6D4

2F6D9
2F6E9
2F6F9
2F6F9
2F6FA
2F6FB
2F6FC
2F6FD

* variable List Pointers
*

PRMPTR
CHNLST

X
Xk

%k
%k

k
X%

%k

UPD2ST
DSPCHX
PCADDR
CNTADR
ERRSUB
ERRADR
ONINTR
DATPTR
TMRAD1
TMRAD2
TMRAD3
UPD2EN
*

7

26%7

O
O
O
O
,

Parameter Chain Pointer
Variable Chain Pointer List

26 Chains (7 nibs/chain)

The following pointers are position dependent

PCADDR through TMADR3 adjusted by RFADJ+

PCADDR through DATPTR saved by CALL

CNTADR through TMADR3 zeroed by CLRSTK/CLPSTK

Start of Update Addresses #2
Pointer to external display
Program Counter Stmt Length
Continue Address

ON ERROR-GOSUB Return Address
ON ERROR Statement Address
ON INTRPT Statement Address

DATA Statement Pointer
ON TIMER#1 Statement Address
ON TIMER#2 Statement Address
ON TIMER#3 Statement Address

End of Update Addresses #2

* The following Timer Intervals are position dependent
*

*

TMRIN1
TMRINZ2
TMRINS
*

STSAVE
LDCSPC
INBS
AUTINC
LEXPTR
CMDPTR
INADDR
*

SYSFLG
FLGREG
TRPREG
INXNIB
UNENIB
OVENIB
DVZNIB
iVLNIB

¥ Random Number Seed
*

P
O
,

W
w

@
O

(&
)

=
e
e

with TMRAD1 - TMRAD3

3-6

TIMER#1 Interval
TIMER#2 Interval

TIMER#3 Interval

Status saved during Expr Exec
Addr of space after line #
Input buffer start

Increment value for AUTO
Temporary storage for RESPTR
Command Stack pointer
Stmt Len ptr: Parse/Decomp

System flags
User flags

IEEE exception traps
Inexact result trap
Underflow trap

Overflow trap

Divide by zero trap
Invalid result trap

HP-71 Software IDS - Detafled Design Description
Memory Structure

2F6FE RNSEED 15
*

¥ Alarm Clock System RAM
*

2F70D NXTIRQ 12 Time of next SREQ
2F719 ALRM1 12 ON TIMER #1
2F725 ALRM2 12 ON TIMER #2
2F731 ALRM3 12 ON TIMER #3
2F73D ALRM4 12 Time of timeout
2F749 ALRMS 12 Time of UAIT expiration
2F755 ALRM6 12 Time external alarm expires
2F761 PNDALM 2 Bitmap of pending alarms

*

* Storage needed for accuracy factor stufs
*

2F763 TIMOES 12 Time error offset
2F76F TIMLST 12 Time last set
2F77B TIMLAF 12 Time of last AF correction
2F787 TIMAF 6 Accuracy factor

*

2F78D 1S-TBL Table of "IS" assignments
2F78D 1S-DSP 7 Uicple £
2F794 IS-PRT 7 Prriie
2E79B IS-INP 7 Keo beo,

7 /2F7A2 1S-PLT
*

2F749 MBOX" 3 HP-IL Mailbox pointer
2F7AC LOOPST 1 HP-1IL loop status

2F7AD STATAR 3 STATISITICAL ARRAY NAME

2F7B0 TRACEM 1 TRACE MODE (0,2,4,6)
2F7B1 DSPSET 1 Display device set up on HPIL

*

2F7B2 LOCKUD g*2 Passuord
*

2F7C2 RESREG 34 Result register
#*

*

* ERR# through ERRL# are position dependent
*

2F7E4 ERR# 4 Execution Error Number
2F7E8 CURRL 4 Current Line# Referenced
2F7EC ERRL#% 4 Execution Error Line#

*

* Snapshot Buffer and Return Stack Save Buffer
*

2F7F0 SNAPBF 16+16+5+5+5 Snapshot Buffer

2F81F RSTKBp 1 Return Stack Save Buffer Ptr
2F820 RSTKBF 16%5 Return Stack Save Buffer

*

2F870 MLFFLG 1 Multi-Line Function FLag
*

HP-71 Software IDS - Detailed Design Description
Memory Structure

2F871
2F871
2F876
2F87B
2F880

2rgg1
2r8s1
2F886
2F88B
2F830

2F891
2F896

2F89B
2rggB
2F8A0
2F8AS5
2F8AA

2F8AB
2F8AB
2F8B0
2F8B5
2F8BA

2F8BB
2F8CO

2F8C5

2F901
2F901
2F941
2F946
2F948
2F94A
2F948B
2F94D
2F94F
2F951
2F956
2F958
2F95A
2F95B
2F961
2F966

o
o

m
=
0
0
,

U
1
N

-
0
o
o

=
0
o
M

o
o

* TRANSFORM Scratch RAM
*

TRFMBF
*

*

SCRTCH
SCRSTO
SCREXO0
SCROLT
DELAYT
NEEDSC
PRMCNT
DPOS
DUIDTH
SCREX1
PPOS
PUIDTH
EOLLEN
EOLSTR
SCREX2
SCRPTR

60

H
%k
— o

H
&
Q
H
N
N
U
’
!
N
N
I
\
)
H
N
N
U
\

w

Statement scratch RAM

Function scratch RAM

Used by TRANSFORM command

Scratch RAM

Scratch stack (Mantissas & s
Scratch stack exponent

Character scroll timer
Display timeout value
Scroll mode needed

CALL parameter count
Current DISP column
DISP width

Scratch stack exponent 1
Current PRINT column
PRINT width

Length of ENDLINE stri
ENDLINE string (3 chars max
Scratch stack exponent 2
Scratch stack pointer

HP-71 Software IDS - Detailed Design Description
Memory Structure

2F967 DEFADR 8 Key definition info
2F96F CHN#SV 2 Channel # save
2F971 SCREX3 5 Scratch stack exponent 3

*

2F976 MAXCMD 1 # of Command Stack entries
*

2F977 CSPEED 5 Clock speed (Hz/16)
*

* The following 10 nibbles are used by HP-IL ROM
*

2F97C ERRLCH 1 Error latch

2F97D TERCHR 2 Terminating char for ENTER
2F97F HPSCRH 7 HP-IL Reserved.

* (INTPND, ICAUSE, IMASK, LSTDDC)
#*

2F986 RESERV 48%2 Reserved Memory. 37 b Con/'«
* , l

Jse d by My/4

* Configuration table start
*

2FSE6 CONEST

3.3.1 Interrupt RAM (INTR4 - VECTOR,DISINT)

The interrupt routine uses 56 nibbles of RAM (INTR4, INTA, INIB,
INTM) to save the contents of A(U), B(u), Cc(u), DO, P, Carry,
Hex/Dec Mode.

The interrupt routine checks the RAM address VECIOR to see if an
alternate interrupt handler has been enabled. Before processing
any interrupt, four nibbles at CMOSTU (CMOS test word) are checked
to verify that RAM is likely not corrupt. (The CMOS test word is
immediately next to the VECTOR address since it 1is unlikely to
accldentally change one address uwithout changing the other.)

If the 5 nibble value at VECTOR is zero then normal interrupt
processing is performed.

The nibble at DISINT is used to cause exactly one interrupt to be
ignored. If the interrupt routine sees this nibble set to a
non-zero value it will return immediately without any processing
except to check for a "Module Pulled" interrupt and to =zero this

nibble. This 1is used during keyscan to side-step the interrupt
that may result when the output register has been used to check
individual key columns while doing synchronous (i.e., not from
interrupt routine) keyscans.

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.3.2 Keyboard Buffer/Flags (ATNDIS - KEYSAV)

The keyboard system has a fifteen Kkey buffer which is preceeded by
a nibble indicating how many keys are in the buffer. This buffer
is treated as a FIFO where the oldest key in the buffer is at the

lowest address in the buffer (ie. pointed to by KEYBUF). The
pointer nibble is named KEYPIR.

In addition to the key buffer, a "bit map" of which keys were doun
during the latest keyscan is maintained in the fourteen nibbles
starting at KEYSAV. There are 4 rous of keys on the keyboard and

each nibble of the KEYSAV buffer holds 4 bits representing the
gtate of a particular key column. The least sig. bit of each
nibble represents the key in the bottom row of that column and the

most sig. bit represents the key in the top row of that colunmn.
The 14th key column is pointed to by KEYSAV. KEYSAV+13 points to
the 1st key colunmn.

The nibble at AINFLG is decremented each time the keyscan routine
finds the attention key down. It will not houever be decremented
from 1 to 0 since this would hide the fact that the key was ever
pressed. The intention is that this flag can be used both as a
flag that the attention key has been pressed and as a convienient
vay to tell if it has been pressed more than once.

The nibble at ATNDIS is a special location that if non-zero will
cause the Keyscan routine to treat the attention key as it would
any other key. The attention key normally causes the key buffer to
be flushed and the ATNFLG flag to be set, as well as setting the
Except (S12) global status bit,

3.3.3 Pseudo-Device Display Driver (WINDST - DSPMSK)

The display driver uses a buffer of 96 consecutive bytes to hold
the display buffer (DSPBFS). Each of these bytes holds one display
character,

The display routines use several additional bytes to describe hou
the LCD should look. The byte at WINDST is the first LCD character
position that should be used to display the contents of the buffer.
The next byte (UINDLN) says how many LCD character positions
(starting at UWINDST) to use to represent the buffer. The first
character of the buffer that should be put into the display is held
in the byte at FIRSIC. The position of the cursor in the display
is held in the byte at CURSOR. All of these bytes are represented
base 0 (i.e. wvalue 0 is the lowest possible value).

3-10

HP-71 Software IDS - Detailed Design Description
Memory Structure

In addition to these bytes, another six nibbles are used to save
status bits., The first three nibbles at DSPSTA are used to store
the calling routines status bits while in the various display
routines, The next three nibbles are used to hold status bits
relevant to the display routines., See the display routines’
documentation for a more complete description of these bits,

One nibble (ESCSTA) is wused to keep track of the escape status of
the display routines, This nibble indicates if the routines are in
the middle of an escape sequence.

Following the display buffer is an address called DSPMSK. The 24
nibbles at this address contain 24*4 (96) bits, one of which
corresponds to each of the bytes in the display buffer. The louest
address nibble maps to the highest addressed 4 bytes in the buffer
and the nibble at DSPMSK+23 corresponds to the first 4 bytes in the
display buffer. The most sig. bit of each nibble corresponds to
the lowest addressed byte of the group of 4. These bits determine
wvhether a particular character in the buffer is a protected,
unreadable character. As characters are sent to the display this
bit will be set for the character if the cursor 18 off. This makes
the character unreadable and protects it so that the cursor cannot

be positioned over it.

3-11

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.3.4

<Louw>

MAINEN =

IOBFEN =

<High»

CONFST

MAINST

CURRST
PRGMST

PRGMEN

CURREN

IOBEST

CLCBER

RENBER

RAUBFR

CLCSTK

SYSEN

OUTBS

AVMEMS

USER MEMORY POINTERS

Prmrreee+

I System RAM l
e+

l Reserved RAM |
e+

| Configuration Buffer |
e+

| I
| File |

I l
tmrme-+

I I
om—ee+

frmme+

l |
| File |
I l
e+

| |
dmme+

I System Buffers l
e+

l Command Stack I
|- = = = = === - - - l
| CALC Refined Buffer |
emee+

| CALC Left Raw Buffer |
T+

| CALC Right Raw Buffer|

$mmmceeeeeeeee+

| CALC Token Streanm l
bmrme me+

| Temp Input Buffer |
e+

| Output Buffer l
e-+

| Available Memory | |
| . v |
| . |

3-12

User Memory Pointers (MAINST - RAMEND)

MAIN File Chain
Start

Current File St
Current Program
Start

Current Program
End

Current File End

(-

(-

System Buffer
Start

System Buffer
End

<- Output Buffer
Start

<- Available Memory
Start

HP-71 Softuare IDS - Detajiled Design Description
Memory Structure

<Low>

MIHSTK = AVMEME -->

<High»

Available Memory |
tomeemmmmc—ecce—eaaa + <- Available Memory
| A End
l Math Stack | |

FORSTK ==> #==m==mmmmmmmee+ -t
| FOR/NEXT Stack | |

GSBSTK =-=> #===cmmcccmmccccme+ | Current
| GOSUB Stack | -->Enviromment

ACTIVE ==)> #mmmcmmmmoov
| Active Variables | I

CALSTK ==)> #cccccmrmccce+ ==+
| Enviromment | |
| Information Blocks | |
T.+ |

l FOR/NEXT Stack | | Prior
#mmmmmmecccce+ -->Environment
| GOSUB Stack | |
$ommmcmeee+ |

| Variables I
RAMEND --)> ¢-------ccmccmcccccceee + -+

From Low to High Memory:

PRGMST

PRQMEN

CURREN

MAINEN

CLCBER

RENBER

RAUBER

MAIN File Chain Start = Configuration Buffere End
Points to the first file header in the MAIN file chain

Current File Start

Points to the first nibble of the current file header

Current Program or Subprogram Start

Points to first nibble of current program or subprogram

Current Program or Subprogram End

Points past last nibble of current program or subprogram

Current File End
Points past last nibble of current file

MAIN File Chain End = System Buffer Start (IOBEST)
Points past 00 byte at end of MAIN file chain

CALC Mode Buffer Start = System Buffer End (IOBEEN)

CALC Mode Refined Buffer

CALC Mode Rau Buffer

3-13

HP-71 Software IDS - Detailed Design Description
Memory Structure

CLCSTK - CALC Mode Token Stack

SYSEN - System RAM End

OUTBS - Output Buffer Start

AVMEMS - Available Memory Start = Qutput Buffer End

AVMEME - Available Memory End = Top of Math Stack (MIHSTK)

FORSTK - Top FOR/NEXT Stack Top of Save Stack (SAVSTK)

GSBSTK - Top GOSUB Stack Bottom of FOR/NEXT Stack

ACTIVE - Active Variable Pointer = Bottom of GOSUB Stack

CALSTK - CALL Stack Bottom of Active Variables

RAMEND - User RAM End Bottom of CALL Stack

3.3.5 Parameter Chain Pointer (PRMPTIR)

The parameters of a user-defined function are pointed to by PRMPIR.
The first two nibbles of PRMPTR is the parameter count:

Parameter count Meaning

00 Currently is not executing an user-defined
function

01-0F Currently is executing an user-defined
function, the number of the parameters of
the user-defined function = count -1

The next five nibbles of the PRMPTR 1is the pointer to the chain of
parameters. The parameters of the user-defined function are stored
in a fashion similar to the program variables, except all
parameters are stored in the same chain, regardless of the starting
letter of the parameter name.

3.3.6 Variable Chain Pointer List (CHNLST)

Beginning at CHNLST are 26 seven-nibble chain pointers; each
pointer is associated with a 1list of currently-existing variables.
A variable is put into a particular list according to the letter of
the alphabet which its name contains. For example, variables R,
R7, R§, and R3$ are all in the same list. See the section on
variables for details on variable 1list construction. A chain
pointer has two parts: a variable count and an address. The

3-14

HP-71 Software IDS - Detailed Design Description
Memory Structure

variable count is a two-nibble quantity telling how many variables
exist in the chain at that time, The address field gives the
absolute address of the gtart of the variable chain.

3.3.7

The following addresses

Statement/Program Execute RAM (DSPCHX-TMRIN3)

(DSPCHX through TMRAD3) are updated
wvhenever memory moves within system or user RAM. The symbolic
names: UPD2ST and UPD2EN indicate this range.

DSPCHX

PCADDR

CNTADR

ERRSUB

ERRADR

ONINTR

DATPTR

TMRAD1
TMRAD3

3.3.8

TMRIN1
TMRINS

STSAVE

LDCSPC

Zero if no external character display device is active.
Othervise, the contents are used as an address for an
external display handler for each character sent via
DSPCHA routine,

Pointer to statement length byte of statement currently
executing.

Continue Address of currently halted progran.

Return address of ON ERROR GOSUB statement. Prevents
infinite loop if error within ON ERROR GOSUB execute

Address within ON ERROR statement pointing at GOTO or
GOSUB. Remainder of statement is executed when an error
occurs within a progranm,

Address within ON INTERUPT (HP-IL) statement pointing at
GOTO or GOSUB. Remainder of statement is executed vhen an

interrupt occurs.

DATA statement READ pointer.

ON TIMER statement addresses for Timer#1-3, respectively,
Points at GOTO or GOSUB within ON TIMER statement. Uhen
timer expires, remainder of statement is executed.

Miscellaneous BASIC RAM (STSAVE - INADDR)

- ON TIMER statement timer interval for Timer#1-3,
respectively. Timer is reactivated for the corresponding
timer interval when an ON TIMER...GOIO expires, or on
return from an ON TIMER...GOSUB.

Saved status bits during Expression Execute (EXPEXC).

Cursor position for decompile of BASIC program 1lines and
user-defined keys.

3-15

HP-71 Softuare IDS - Detailed Design Description
Memory Structure

INBS Input Buffer Start. A floating pointer indicating the
start of the input buffer being parsed. Set at the
beginning of Line Parse. May point to the Command Stack,
Start-up Buffer, TRANSFORM Input Buffer or Direct Execute
Key Buffer,

AUTINC AUTO increment value for AUTO command. This RAM location
doubles as the AUTO mode flag: If zero, then not in AUTO
mode.

LEXPTR Position of Input pointer prior to last NTOKEN call. Used
in statement parse.

CMDPTR

INADDR Pointer to statement length byte for statement currently
being parsed or decompiled. (Also used for Command Stack
pointer - CMDPIR)

3.3.9 System and User Flags (SYSFLG - FLGREG)

There are 64 user flags (numbered 0-63) and 64 system flags
(numbered -64 to -1). UWithin each nibble, the lowest numbered flag
is in the least significant bit., These flags are stored in 128
consecutive bits starting at address SYSFLG:

<Low> tm———- +

SYSFLG --> | -1 | System Flags
tm———— +

| -2 |
tmm———— +

$m———— +

| -64 |
tm————— +

FLGREG --> | 0 | User Flags
tm———— +

I 1 |
t————- +

+--;--+

| 63 |
<High> 4o+

The user can set and clear all user flags and those system flags
numbered -1 to -32. The user may test the status of all user and

3-16

HP-71 Softuare IDS - Detailed Design Description
Memory Structure

system flags,

Refer to the "Table Formats” chapter for a summary of flag
assignments.

3.3.10 Traps (INXNIB - IVLNIB)

There are 5 math exception traps stored in 5 consecutive nibbles
starting at address TRPREG:

<Low» -+

TRPREG = INXNIB --> | INX |
tm———— +

UNFNIB --> | UNF |
tm———- +

OVENIB --> | OVF |
to————+

DVZNIB --> | DVZ |
tm——— +

IVINIB --> | IVL |
<High> -+

Refer to the “Table Formats" chapter for details on trap settings.

3.3.11 Random Number Seed (RNSEED)

The current random number seed (updated by RANDOMIZE and used by
RND) 1is stored in 15 consecutive nibbles starting at address
RNSEED.

3.3.12 Alarm Clock System RAM (NXTIRQ - TIMAF)

The following RAM is used by the internal clock systenm:

Label Size(nibs) Function

NXTIRQ 12 Time of next clock service request
ALRM1 12 Time of next timer#l request
ALRM2 12 Time of next timer#2 request
ALRM3 12 Time of next timer#3 request
ALRM4 12 Time of 10-minute timeout
ALRMS 12 Time of end of pause
ALRM6 12 Time of external alarm
PNDALM 2 Bitmap of pending alarms
TIMOFS 12 Time error offset
TIMLST 12 Time of last EXACT
TIMLAF 12 Time of last AF correction
TIMAF 6 Accuracy factor

3-17

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.3.13 “IS" Table Assigmments (IS-TBL)

This table holds information defining the current state of DISPLAY
IS, PRINTER IS, KEYBOARD IS and PLOTTER IS. The destination of
each of these assignments can theoretically be any HP-IL device or
the LCD display; however there are some combinations that don’t
make sense and should not be allowed. There is a 7 nibble table
entry for each of these devices. Each entry has the follouing
format and definition:

Nib 3
bit 3 bits 2-0

X 0 Address specified
Nibs 2-0: Address, loop#

or FFF if not knoun
Nibs 6-4: Address, loop#

X 1 Type specified (loop 0)
X 2 " " (loop 1)
X 3 " " (loop 2)

Nibs 2-0: Address, loop#
or FFF if not knouwn

Nib 6: Sequence #
Nibs 5-4: Accessory id

X 4 I0 buffer for device ID/Volume label
Nibs 2-0: Address, loop#

or FFF if not knoun
Nibs 6-4: Buffer #

X 5 Multiple assign buffer
Nibs 2-0: FFF

Nibs 6-4: Buffer #
X 6 Device ID specified

Nibs 2-0: Address, loop#
Nibs 6-4: Buffer #

1 7 Unassigned or not HPIL
Nibs 2-0: FFF if not assigned or

Fxx if not HPIL (where xx
is not FF)

Nibs 6-4: FFF if not assigned but
not defined if not HPIL

X = 1 if device OFFed, 0 otheruise

3.3.14 HP-IL RAM (MBOX,LOOPST,DSPSET)

MBOX" Used by HPIL ROM as a pointer to its mailbox. Three
nibbles are multiplied by 16 and added to 20000 to get

3-18

HP-71 Software IDS - Detailed Design Description
Memory Structure

mailbox address.

LOOPST Used by HPIL ROM to keep track of loop status.
Bit 3: Device "OFFed".
Bit 2: Last call to START found HPIL mailbox

in device mode.
Bit 1: (Reserved)
Bit 0: (Reserved)

DSPSET Used by HPIL ROM to indicate status of display device,
Bit 3: Display device is set up

* Following ONLY valid if Bit 3 is TRUE!!
Bit 2: Display is a HP82163 video interface

(Retransmit line if insert or delete),
Bit 1: Display device is line output only (printer)
Bit 0: Display code uas "OFFed" if 0.

3.3.15 STAT Array (STATAR), TRACE Mode (TRACEM)

STATAR Name of the currently selected STAT array

TRACEM Indicates current TRACE Mode:
0 = No TRACE
2 = TRACE FLOU
4 = TRACE VARS
6 = TRACE FLOU, TRACE VARS

3.3.16 LOCK Password (LOCKUD)

The lockword supplied by the user in the lock command is stored in
the 16 nibbles starting at LOCKUD. If there is no lockword, these
16 nibbles are all zeroes. The lockword is not encrypted.

3.3.17 Result Register (RESREG)

The result register holds the value of the most recently executed

numer ic expression. This value is updated whenever a numeric value
is DISPlayed, PRINTed, or stored into a variable.

3.3.18 Error Number (ERRN)

The number of the most recent error (ERRN) is stored in RAM
location ERR¥. This location is set to zero at cold start, and
changed only in the message driver (MFERR*). The message number is
encoded in four nibbles: abcd, where

ab = LEX ID# in hex
cd = message number in hex,

3-19

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.3.19 Current Line (CURRL)

The current line number is stored in CURRL, as a four digit decimal
number., At coldstart, CURRL is set to zero. Editing the current
BASIC file updates CURRL to the 1line number being inserted,
replaced or deleted. Recalling a BASIC program line to the display
changes the current line. The FEICH statment, Cursor Up, Cursor

Doun, Cursor Top, and Cursor Bottom recall a program line.
Executing an EDIT sgtatement changes the current line to the first
line of the specified Edit file. A GOTO from the keyboard sets the
current line to the specified line number or line number containing
the specified label.

During program execution, CURRL is not updated until the program is
halted. If program execution halts due to a PAUSE, STOP, or END
statement, the line containing the statement becomes the current
line. If the program halts due to an implicit END (the last line
of the program is reached), CURRL becomes the last line of the
program. If program execution halts because the ATIN is hit, the

line contalning the next statement to be executed becomes the
current line.

3.3.20 Error Line Number (ERRL#)

The line number of the most recent execution error (ERRL) is stored
in RAM location ERRL#. This location is set to zero at cold start,
and changed only in the message driver (MFERR*). CURRL is updated
to the new current line and is also placed in ERRL#; it is a four
digit decimal number.

3.3.21 Snapshot Buffer (SNAPBF)

This area of RAM is used to temporarily hold a snapshot of CPU
registers A, D, DO, D1, and C(A). It is 47 nibbles in size. For
details on saving and restoring CPU snapshots, see routines SNAPSV
and SNAPRS.

3.3.22 Return Stack Save (RSTKBp,RSTKBF)

This area of fixked RAM holds up to 16 stack levels from the
harduare stack. It is administered as a LIFO (last in, first out)
circular stack by the routines R<RSTK (saves stack levels) and
RSTK<R (restores stack levels). The one-nibble pointer, RSTKBp,
contains an index (0 thru 15) of the next 5-nibble slot available
for storing a stack level.

3-20

HP-71 Software IDS - Detailed Design Description
Memory Structure

Uhen a stack level is stored, the pointer is bumped, and it wraps
around to zero uwhen it passes 15. Conversely, the pointer is
decremented when a stack level is removed, and the pointer vraps
around to 15 when it passes 0. Therefore, if 16 levels have been
stored on the stack, storing a 17th level will overurite the oldest
level on the stack.

Note that these saved stack levels are NOT updated when memory
moves. Also, these saved stack levels will not necessarily remain
intact when EXPEXC is called.

3.3.23 Multi-Line Function Flag (MLFFLG)

MLEFFLG is the multi-Line function flag. ENDDEF statement sets it
to nonzero. This allows statements to determine if a multi-line
user-defined function was invoked during expression execute. They
can then know whether memory could have changed. This flag may
also be set by other functions that may have changed memory.

To know wuwhether anything could have happened to “memory" during
expression execution, this nibble should be cleared before calling
expression execute. If it is set wupon return, either a user
defined function or some other "harsh" function has been invoked
during the expression evaluation.

3.3.24 Statement, Function Scratch (SITMIRO - FUNCD1)

Some RAM is maintained specifically to be used as scratch space
during statement and function execution. The 42 nibbles starting
at SIMIRO are referred to as the statement scratch area, and the 42
nibbles immediately following (starting at FUNCRO) constitute the
function scratch area.

The latter 42 nibbles are available during function execution, and
all 84 nibbles are available during statement execution.
Naturally, the function scratch area will probably be used during
expression execution,

Of great 1importance to users of these scratch areas is the fact
that this RAM 1is Untouched by utility routines, including display
routines, message routines and the clock system. Thus, these
scratch areas are often used for storing things while calling
particularly disruptive utilities.

The exact layout of the statement and function scratch RAM is as
follous (broken down into fields and subfields):

LABEL #nibbles comment

3-21

HP-71 Software IDS
Memory Structure

- Detailed Design Description

Start of statement scratch

STMIRO 16 | 16-nibble field

S-RO-0 | 5 5-nibble subfield

S-R0O-1 | 5 5-nibble subfield
S-R0-2 | 5 5-nibble subfield
S-R0-3 | 1 1-nibble subfield

STMTR1 16 | 16-nibble field
S-R1-0 | 5 5-nibble subfield
S-R1-1 | 5 5-nibble subfield
S-R1-2 | 5 5-nibble subfield

S-R1-3 | 1 1-nibble subfield
STMIDO 51 5 5-nibble field

STMID1 51 5 5-nibble field

(total) 42 | 42 End of statement scratch

Start of function scratch
FUNCRO 16 | 16-nibble field

F-R0O-0 | 5 5-nibble subfield
F-R0O-1 | 5 5-nibble subfield
F-RO-2 | 5 5-nibble subfield

F-RO-3 | 1 1-nibble subfield
FUNCR1 16 | 16-nibble field

F-R1-0 | 5 5-nibble subfield
F-R1-1 | 5 5-nibble subfield

F-R1-2 | 5 5-nibble subfield
F-R1-3 | 1 1-nibble subfield

FUNCDO 51 5 5-nibble field
FUNCD1 51 5 5-nibble field

(total) 42 | 42 End of function scratch

3.3.25 TRANSFORM Scratch RAM (TRFMBF)

This area of RAM is used during execution of the TRANSFORM command
and is OFF LIMITS to any parse, decompile, or transformation
related routine. It is 60 nibs in size.

3.3.26 Scratch RAM (SCRTCH)

The area used for the scratch math stack (belou) is also used as a
general purpose, highly volatile scratch RAM area, labeled SCRTCH.
This is to be distinguished from Statement and Function Scratch
(above), which is less volatile. The ALMSRV routine uses part of
SCRTCH RAM to avoid destroying CPU scratch registers. The display
routines also use it during <CR> and <LF> processing by virtue of
their calling ALMSRV. Routines which wuse this space should
document their exact usage; this is the only fixed-address general

3-22

HP-71 Software IDS - Detailed Design Description
Memory Structure

purpose scratch space available for utility routines.

Specifically, the scratch RAM area consists exactly of the area
used as the scratch math stack; 69 consecutive nibbles and three

5-nibble chunks punctuated by 11-nibble chunks which are
UNAVAILABLE for use as scratch RAM:

SCRSTO: 69 nibbles (includes SCREXO0)
(unavailable): 11 nibbles
SCREX1: 5 nibbles
(unavailable): 11 nibbles
SCREXZ2: 5 nibbles

(unavailable): 11 nibbles
SCREX3: 5 nibbles

3.3.27 Scratch Math Stack (SCRSTO - SCREXx)

The scratch math stack is a four-high stack for split (21-nibble)
numerical values. The 21-nibble form consists of a sign nibble, a
15-nibble mantissa, and a five-nibble exponent. The signs and
mantissas are stored consecutively in 64 nibbles starting at
SCRSTO. SCRSTO must reside between XXX00 and XXXOF in the RAM Map.
Each exponent is stored 64 nibbles higher in memory than its
corresponding mantissa:

SCRSTO

(Lou)

btetmpmmm—etmbmme—————.+

+--|S| Mantissa |S| Mantissa |S| Mantissa |S| Mantissa |
I eTPOtmtemme———tobmmmmmm—c—— +

I
dmmmemecceeccemcrcecceccce+

I
tomm———-— t-———- tm————-$m————tm————— $o———-tm————tm———- + |

I | Exp | | Exp | | Exp | | Exp |<-+
t—————— t————- tem———— tm———- tm—————— tm————tm————— tm———— +

(High) | l I |

SCREX3 SCREX2 SCREX1 SCREXO0

A pointer having possible values 0, 1, 2, or 3 points to the
current top of the scratch math stack. This pointer is stored in
the nibble with address SCRPIR.

3-23

HP-71 Softuware IDS - Detailed Design Description
Memory Structure

3.3.28 DISP/PRINT RAM (SCROLT - EOLSTR)

SCROLT Number of 1/32s of a second to delay between scrolling
characters in the display. Infinity is represented by
FE. Initialized to 4.

DELAYT Number of 1/328 of a second to delay betueen scrolling

lines in the display. Infinity is represented by FF.
Initialized to 16 (10 hex).

NEEDSC 0 if no characters have been sent to display since last
ENDLINE key, F otherwise. This keeps track of whether
the display needs to be scrolled by calling SCRLLR.

DPOS DISPlay position. Used in DISP statements to Keep track
of current position in line. 0 means position 1.

DUIDTH DISPlay width. Used to limit number of characters output
on any DISPlay 1line. Infinity 18 represented by 0.
Initialized to 96 (60 hex).

PPOS PRINT position. Used in PRINT statement to keep track of
the current position in the line. 0 means position 1.

PUIDTH PRINT width. Used to limit the number of characters
output on any PRINT line, Infinity is represented by 0.
Initialized to 96 (60 hex).

EOLLEN ENDLINE string length. Number of nibbles in the ENDLINE
string. Should be 0,2,4,6. Initialized to 4.

EOLSTR ENDLINE string. Holds up to three characters uwhich are

sent to PRINTER IS device uwhenever an end-of-line 1is
needed. Initialized to CR/LF.

3.3.29 CALL Parameter Count (PRMCNT)

PRMCNT 1is temporary scratch used by CALL execute to count the
number of parameters.

3.3.30 Key Definition Info (DEFADR)

Eight nibbles of RAM used by the KEYRD subroutine for returning a
pointer to a key definition. This ram is set by the key read
routine (KEYRD). The contents DEFADR have the follouing
definition:

3-24

HP-71 Software IDS - Detailed Design Description
Memory Structure

(DEFADR): Length of definition string in bytes (2 nibbles).
(DEFADR+2): Key type: (1 nibble)
0 = Single ASCII character., Includes characters 0-31, which

result from hitting special keys (ENDLN, UP-ARROU, etc.).
1 = ASCII control character. Must subtract 64 from the

one-byte definition wue are pointing to. These characters
should be inverpreted as text, and should not cause any

special action in the editor.
= User-defined key--terminating.
= User-defined key--ncn-terminating.
= User-defined key--immedjate execute.

-F = Typing aid, with lower 3 bits as follous:
Bit 0: Parenthesis ("(") needs to be added to string.
Bit 1: Trailing space needs to be added to string.
Bit 2: Leading space needs to be added to string.
(Spaces and parenthesis not included in string 1length
field or in definition proper. For exampie, the f shifted

4 key returns a definition which points to a 3 character
string containing “SIN" and has the bit set which indicates
that a parenthesis needs to be added to get the actual key

definition ("SIN(").)
(DEFADR+3): Address of definition text. (5 nibbles)

o
L

N

3.3.31 Channel Number Save (CHN#SV)

The CHN#SV is used to hold the channel number currently being
accessed. Refer to the section on the assign buf.er in the "Table
Formats" chapter for details.

3.3.32 Number of Command Stack Entries (MAXCMD)

MAXCMD holds the number of Command Stack entries.

3.3.33 Clock Speed (CSPEED)

Each time the system is reconfigured, the clock speed is recomputed
and stored in CSPEED. The value is the clock speed divided by 16
(decimal) and stored in Hexadecimal (Hz).

3.3.34 HP-1IL Special RAM (ERRLCH - HPSCRH)

ERRLCH Used by error routines; set when error occurs,

TERCHR Terminating character for ENTER and ENTER USING.

HPSCRH 7 nibbles reserved for HP-IL scratch.

3-25

HP-71 Softuare IDS - Detailed Design Description
Memory Structure

3.3.35 Reserved RAM (RESRV)

96 nibbles (48 bytes) are reserved for future use. This memory

will be allocated conservatively and through offical channels.
Refer to the "HP-71 Resource Allocations" chapter for details on
use of this RAM,

3.3.36 System RAM Availability

The following table summarizes which RAM locations may be used by
the various routines of built-in and external (LEX file) keywords:

nibbles Stmt. Stmt, Stmt.** Func.
avail. Parse Decomp Exec. Exec,

SNAPBF 47 Yes Yes Yes Yes

SCRTCH 64+4%5 Yes Yes Yes Yes

Statement Scratch 42 No Yes Yes No
Function Scratch 42 Yes Yes Yes Yes
TRFMBF 60 No No Yes Yes
LDCSPC 5 Yes No Yes Yes

STSAVE 3 Yes Yes Yes No

LEXPTR 5 No Yes Yes Yes
RSTKBF Save Buffer 16*5 Yes Yes Yes* Yes
RESERV Resreved RAM ¥*** e e kil e

¥ A statement cannot store anything in the RSTKBF area, call
Expression Execution (EXPEXC), and expect what was saved to
be intact.

¥ In general, any statement execution may use any memory
available to function execution.

¥% Reserved RAM may be used only after such usage has been
registered and authorized by HP, See the chapter on
"HP-71 Resource Allocation" for further information.

3.4 Configuration Buffer

The configuration buffers contain three tables, identifying what
memory and I/0 devices are configured where. The three tables
contain information on System RAM (configuration table ID = FF),
Other Memory (IRAM, ROM, EEPROM, etc.; configuration table ID = FE
(bROMIB)), and Memory-Mapped 1/0 (HPIL mailbox, etc.; configuration
table ID = FD).

3-26

HP-71 Softuare IDS - Detailed Design Description
Memory Structure

Each table has a five nibble header. The first byte is the table
ID (FF, FE or ED); the next three nibbles contain the table length,
not including the header. The configuration buffer is terminated
by a zero byte.

A configuration table entry is created in one of the three tables
for every "sequence", A sequence consists of either:

1) A single memory-mapped 1/0 chip, or

2) One or more consecutive chips with identical ID’s (bits 15-0 of
ID) on a daisy chain.

A sequence is ended with:

1) Chip vith different ID (vhich will be the start of a neuw
sequence, obviously).

2) Chip with bit 18 of ID set (marks end of this sequence).

3) Chip with bit 19 of ID set (marks end of physical plug-in
module).

A table entry conveys the following information:

Seq Position: Position of this sequence within the module. Since
most modules have only one sequence, this is usually zero,

Device #: Position of this module within a consecutive series of
modules (i.e., modules on same daisy chain). In the absence of
a port extender, this will be zero. (The RAMs on the internal
daisy chain may be grouped into logical modules.)

Port #: Identifies which daisy chain contains sequence. Port #0
is internal daisy chain (daisy-in on first chip thereof is tied
high). Port #n is the daisy chain activated by output register
bit #(n-1).

Size: Since size is aluays a power of two, the size is
represented internally and on the chip ID as the one’s
complement of log2(size). Size refers to K-nibbles for memory
devices and to words (hunks of 16 nibbles) for memory-mapped
1/0.

Address: For memory devices, the upper 3 nibbles of the

configuration address are given (the lower 2 are aluays zero).
For memory-mapped 1/0, the middle 3 nibbles are given (upper
nibble is always 1, lower nibble is aluays 0).

Device type: ldentifies type of memory device or if this is
memory-mapped 1/0 device. The possible values are explained in

3-27

HP-71 Softuare IDS - Detailed Design Description
Memory Structure

the system configuration overvieu.

Device class: If sequence
which

is memory-mapped 1/0, this identifies
type of memory-mapped 1/0 device this. There is no

device class for memory devices.

Chips in sequence: Identifies how many chips comprise this
sequence. Kept in the table as (#chips - 1). Not kept for
memory-mapped 1/0, since it is always zero (each MM I/0 chip
results in its oun table entry).

Reserved nibble: Nibble #1 from the Chip ID is saved here. That
nibble is currently not defined.

‘Follouwing is the exact format of the configuration buffer table
entries:

NIB
NIB
NIB
NIB
NIB
NIB
NIB
NIB
NIB
NIB

NIB
NIB
NIB
NIB
NIB
NIB
NIB
NIB
NIB
NIB

O
C
A
O
N
o
O
o
O
N
M
b
d
W
N
H
O

0
1
2
3
4

5
6
7
8
9

/
l
\

/

System RAM
(cnftable ID FF)

Seq position
Device #
Port #

15-Log2(size) **

Address (kbit)

0

#chips/seq - 1
Nibble 1 from ID

Memory-mapped 1/0
(cnftable 1D FD)

Sequence position
Device #
Port #

15-Log2(size)

Other Memory

(cnftable ID FE)

Seq position
Device #
Port #
15-Log2(size)

/
| Address (kbit)
\

Device type
#chips/seq - 1
Nibble 1 from ID

in dev

| Address (uvords rel to 10000)
\

Device type (aluways F)
Device class

Nibble 1 from ID

¥* FREEPORT routine may set this to zero to indicate that the
RAM has been removed intentionally. This affects operation of
this code in the spot where the old and neu tables are compared
to determine which RAMs are new and which are missing.

3-28

HP-T1 Software IDS - Detailed Design Description
Memory Structure

3.5 User Memory

User Memory consists of that portion of Main RAM which follows the
Configuration Buffer. It contains the MAIN file chain, systen
buffers, CALC mode buffers, the command stack, the output buffer,
available memory, and the various stacks maintained by the
operating systen,

3.5.1 MAIN File Chain

Files are stored in a linked 1ist called a file chain. Each file
in the chain is immediately preceded by a file header uwhich
contains identifying information about the file as well as a
pointer to the file header of the next file in the chain. See the
“File System" chapter for further information on the contents of a

file header.

The start of the MAIN file chain is pointed to by MAINST. The
pointer MAINEN, also known as IOBFST, points past the end of the

chain, which is marked by a zero byte.

3-29

HP-71 Software IDS - Detailed Design Deecriptxon
Memory Structure

. Configuration .

. Buffers

Pmeeccea—- +

<Low> MAINST ------ >| File Header |

+---| Offset to Next |
| R+

| | |
| | File Contents |
I I |
i g+

+-->]00] (00 byte indicates
P end of file chain)

High> MAINEN ------).
. System Buffers :

3.5.2 Program Scope

The scope or bounds of the current program are defined by the
program start and end p01nters PRGMST and PRGMEN, respectively.
Program scope may delimit a main program or a subprogram which may
be part of a larger file. Thr program end (PRGMEN) and current
file end (CURREN) pointers are equal only when the current file
contains a main program and no subprograns.

3-30

HP-71 Software IDS - Detailed Design Description
Memory Structure

Note that the program scope pointers may delimit a program in a
file that resides in the MAIN file chain, in a ROM, or in an
Independent RAM, and therefore have no fixed relationship to the
MAIN file chain pointers MAINST and MAINEN.

3.5.3 System Buffers

System buffers are used as general purpose buffers and as 1/0
buffers. They are maintained immediately following the end of the
file chain. They are used for storage or working data and in some
respects are more convenient than files for machine language
applications. Each buffer is identified by a unique ID. ID’s
vithin a certain range are permanently reserved for use by specific
applications and LEX files. Permanent ID reservations are assigned
to software developers according to the procedures described in the
"HP-71 Resource Allocation" chapter in this document., A certain
range of ID’s are also used and allocated on a temporary or scratch
basis by the operating system, and are useful for applications
where the temporary ID number can be saved.

There are several useful utilities related to system buffers, which
are summarized in the "Utilities" chapter.

3.5.3.1 Format

Each buffer consists of a seven nibble header, followed by the
buffer itself, The first nibble indicates if there are any address
references in the beginning of the buffer that need to be updated
by RFADJ (Reference Adjust); in most cases this nibble will be
zero, |

The next three nibbles are the buffer ID. The following three
nibbles are the buffer length, that is the length of the buffer NOT
including the buffer header (an empty buffer has 000 in this
field).

The buffer chain is terminated by 0000.

The statement buffer (bSTMI) is always present and must be the

first buffer in the buffer chain. This ensures that when executing
statements from the statement buffer, PCADDR is not affected by
buffer modifications.

Assuming the statement buffer (ID 801) is empty, the bufter chain
is as follous:

3-31

HP-71 Software IDS - Detailed Design Description
Memory Structure

SYSTEM BUFFER CHAIN

frmmm——ce————+ tmrmm-e+

l I | |
I v | v

b=tttbmmbtmmccefeecbbbemc—em————p————

101108/000| #|ID|Len| buffer | ... |#|ID|Len| buffer | ... 10000}
totmmmtmmmpmbmcbmmbme mcefecetedeeeem—e——¢

| |
I0OBFST IOBFEN

MAINEN CLCBER

<Lou> <High»

'3.5.3.2 Update Addresses in System Buffers

If a buffer needs to have address references updated to reflect
memory movement, then the first nibble of the buffer header is
used. This nibble indicates the number of addresses to update (up
to 15). The addresses must immediately follou the buffer header.

At the time a buffer is first created, this nibble is aluays
initialized to zero. All of the System buffer wutilities dealing
with expanding and contracting existing buffers preserve this
nibble. The buffer user is responsible for setting the nibble.

3.5.3.3 Automatic Deletion of System Buffers

Buffers are, by nature, temporary storage areas. Part of the
system’s maintenance process for buffers is deleting those which
are no longer needed.

Uhenever the configuration code is executed, all buffers are marked
for deletion. The high bit of their buffer ID’s is cleared; that
is why all buffer ID’s are »>= 800H). Certain buffers are

immediately reclaimed (the statement buffer, the FIB, etc.). Then
the configuration poll is performed. All buffers which have not
been reclaimed (high bit set) following this poll will then be
deleted.

Anyone keeping buffers must reclaim them at every configuration
poll (pCONF) or the buffers will go away. This can be done with
the I/ORES wutility uwhich, given a buffer ID, will find the
unreclaimed buffer and reclaim it by setting the high bit of the
ID.

3.5.3.4 Permanent Buffers

Permanent buffers ID are allocated through official channels and
are dedicated buffer to a particular application. Refer to the
chapter on "“HP-71 Resource Allocation”.

3-32

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.5.3.5 Scratch Buffers

The system buffer ID range EO0 to FFF is used for scratch buffers,
which may be requested by calling IOFSCR, which allocates the next .
available scratch buffer and returns its ID. Scratch buffers are

useful for temporary storage when the buffer ID can be easily saved
by the user,

3.5.3.6 System Buffers Used by the Mainframe

The following is a list of system buffers used by the mainframe:

Alternate Character (bCHARS)
Assign (bASSGN)
Card Reader (bCARD)
External Command (bECOMD)
File Information (bFIB)
Immediate Execute Key(bIEXKY)
LEX Entry (bLEX)
Statement (bSTMT)
Statistics (DSTAT)
Startup (bSTART)

The index indicates where more information can be found about these
buffers.

3.5.4 CALC Mode Pointers

WVhen CALC mode is in effect, the pointers AVMEMS and AVMEME, which
control available memory, are given unusual meani.gs. They act in
coordination with the other CALC mode pointers as described in this
section.

The CALC mode pointers define several volatile areas between CLCBER
(which is the beginning of the Command Stack) and FORSIK.
Characters accepted by CALC mode are inserted at RAUBFR (which
stands for raw input buffer), while the parsing process operates at
and advances RENBFR (refined input buffer).

Anticipated right delimiters, such as commas and right parentheses,
are inserted by the parser to the right of RAUBFR. Tokens compiled
by CALC mode are appended to the buffer between CLCSTK and SYSEN.
The intermediate parse stack resides between AVMEMS and MIHSTK, and
intermediate operands reside betueen MIHSTK and FORSTK.

During most of the parsing operation, system free space is actually
between SYSEN and AVMEMS, as shoun:

3-33

HP-71 Software IDS - Detailed Design Description
Memory Structure

Pmre———————-+

<Low> | System Buffers |
CLCBER -=> #--=mmmmmmmmmmmmmmmmmmem .

| Command Stack |

RENBFR ==> #=----=-=—ommmommmmmeee.
| CALC Left Raw Buffer |

RAUBFR =-) #==-==-===mmmmmmemeeeee +
| CALC Right Raw Buffer |

CLCSTK =-> #=-=-=====mmmmmmmeeeo+
| CALC Token Streanm |

SYSEN = QUIBS =--> #====-=-=m-ccmmmommomeen +
| Available Mem |
| l l
| v I

AVMEMS ==) #====mmmmmme.
I Intermediate l
I Parse Stack |

MIHSTK ==) ¢+---ccccmcmcccme+

l Intermediate l
| Operands l

FORSTK --> #====-=-=-=o.
l FOR/NEXT Stack I

<High» Fome+

Uhen the tokens are to be executed, the parse stack is moved to the
end of the compiled token streanm, so that the top of the Math Stack
is free and AVMEMS can assume 1ts normal meaning. When a CALC mode
statement is complete, it is already within the Command Stack.

3.5.5 Command Stack

The Command Stack is a doubly 1linked list of buffers between the
CLCBFR and RFNBFR. Outside of CALC mode, SYSEN, CLCSTK, and RAUBER
are equal to RENBER.

The Command Stack is initialized to have 5 entries, each containing
only a carriage return (ASCII 13). Each entry consists of a 3
nibble length field, command text and a 3 nibble backwards chaining
length field.

The first length field is the number of nibbles in the actual text
of the command, including the carriage return at the end of the
text. The command text 1is aluays terminated with a carriage
return. The second length field is three nibbles greater that the
length of the text to allow chaining backuards through the Command
Stack.

The number of entries in the Command Stack is kept in the RAM

3-34

HP-71 Software IDS - Detailed Design Description
Memory Structure

nibble called MAXCMD. This nibble must correspond to the actual
number of entries in the etack To change the number of entrxes in
the Command Stack e ~ RETENE '

 PR e 2 s J g ; Salis . The

MAXCMD nlbble is the number of entries minus one; thus the Command

Stack can be altered to have from 1 to 16 entrles No mechanism in

the mainframe is provided to do this.

3-35

HP-71 Software IDS - Detailed Design Description
Memory Structure

COMMAND STACK

<Low>

l |
CLCBER -------$mm>e.

| I Len(5) | ~===+
| temmmeee+ |

| | | |
l | Text of | |
| I Command 5 | |
| l l |
| | CR (ASCII 13) I I
| tmmme+ (-==+

+=-- | Len(5)+3 |
+==) Pme+

| I Len(4) | ===+
i gy+ |

l | I |
I | Text of | |
l I Command 4 I I
| | | |
| l CR (ASCII 13) | |
; $mmmmoo. (mme
tmm————- | Len(4)+3 |
e--+

l Len(3) I
D+

| I
| I

| I
I |

$===)ecce+

| l Len(1) | ----+
| tme+ |

| | I I
| l Text of | I
| l Command 1 | |
I I | I

RENBFR | | CR (ASCII 13) I I
« RAUBER | oe+ (mmms
= CLCSTK === | Len(1)+3 |

= SYSEN --cvcceecea-) temmeee+

I |
<High> I I

3-36

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.5.6 Available Memory

The SYSEN pointer separates the CALC Mode token stream from the
temporary input buffer area for BASIC. SYSEN is used by TRANSFORM
to mark the beginning of memory available for its input and output
buffers.

OUTBS points to the start of the output buffer, used to compile
BASIC tokens during statement parse and to regenerate text for
statement decompile.

AVMEMS marks the end of the output buffer and the start of
available memory. This delimiter is necessary before moving the
output buffer to the statement buffer, a program file or to the
display buffer,

After statement parse or decompile, the main loop collapses

available memory start (AVMEMS), the output buffer (OUTBS) and the
system RAM end pointer (SYSEN) to the end of the Command Stack

(CLCSTK=RENBER).

During statement execution, available memory start is at the end of
the Command Stack.

3.5.7 Math Stack

The Math Stack exists between MIHSTIK and FORSTK; it is wused for
intermediate storage of operands during expression execution. Four
types of objects are recognized on the Math Stack: real numbers,
complex numbers, strings, and array dope vectors., The stack grous

from high addresses to low. The pointer, MIHSTK, points to the top
of the Math Stack.

Refer to the “Statement Parse, Decompile, and Execution" chapter
for details on expression execution and the Math Stack,

3.5.8 Save Stack

The Save Stack is an area of user memory for saving special system

information. It resides between the Math Stack and FOR/NEXT Stack,
as shoun belou.

Any neu Save Stack allocation is inserted between the current Save
Stack contents and the FOR/NEXT Stack. Therefore, unlike the Math
Stack or FOR/NEXT stack, the top of the Save Stack is at a higher
address than its bottom., The SAVSTK pointer is always positioned
past the highest-addressed nibble of the most recently allocated

3-37

HP-71 Software IDS - Detailed Design Description
Memory Structure

section of Save Stack memory, and is therefore identical to the
FORSTK pointer (for which SAVSTK is merely another name). Note
that there is no pointer which explicitly marks the bounds betueen
the Math Stack and the Save Stack:

<Low> | |
| Available Memory |

| l
AVMEME --)> #=--=====ommmmmmmmeeo+

= MTHSTK I | Newest Math Stack Entry
| Math Stack I
| | Oldest Math Stack Entry
e+

| | Oldest Save Stack Entry
| Save Stack |
| | Newest Save Stack Entry

SAVSTK --> 4---commmmmccce+
= FORSTK | | Newest FOR/NEXT Entry

I FOR/NEXT Stack |
| | Oldest FOR/NEXT Entry

<High» $omme+

The routine SALLOC will expand the Save Stack by the requested

number of nibbles. The memory between available memory end and the
end of the Save Stack (betueen system pointers AVMEME and SAVSTK)
is moved down into available memory by the required number of
nibbles, and AVMEME is updated accordingly. Since this process
preserves all memory between AVMEME and SAVSTK but overurites the
memory immediately before AVMEME, AVMEME must be set to the true
top of the Math Stack in order for the Math Stack to be preserved.

Routines which allocate memory recursively on the Save Stack are
responsible for removing that memory. The routine "SRLEAS" deletes
the requested number of nibbles from the Save Stack and adjusts
pointers,

At the end of every statement execution, the available memory end
pointer AVMEME is reset to the top of the FOR/NEXT Stack, thereby
collapsing the Math Stack and the Save Stack.

The Save Stack is used by POLL to save polling information. It is
also used by COPY, TRANSFORM and RUN to save source and destination
file information.

3.5.9 FOR/NEXT Stack

At the time a FOR statement executes, information is pushed on the
FOR/NEXT Stack. This stack is referenced and/or altered any time a
FOR or NEXT statement is encountered.

3-38

HP-71 Software IDS - Detajiled Design Description
Memory Structure

<Low> temrmeecre+

| Return Address | 5 nibbles
temmmrmcceece+

| Step Value | 16 nibbles
bmeeee-+

| Limit | 16 nibbles
trr e ceecc e e ee+

| Encoding of Var Name | 4 nibbles
High» $e+

The encoding of the variable name depends on uwhether the variable
is alpha-digit or not. In the case of an alpha variable, the lou
byte is the ASCII 1letter and the following byte is zeroes; for
alpha-digit variables, the lou byte 1is the alpha-digit token and
the follouwing byte is the ASCII letter., The alpha-digit token has
6 in the high nibble, and the digit in the low nibble,

3.5.10 GOSUB Stack

The GOSUB Stack resides between the FOR/NEXT Stack and the active
variable space. The pointer GSBSTK points to the top of the GOSUB
Stack. The GOSUB Stack is typically used to save return addresses,
such as the return address of a call to a subroutine, but may also
be used to store other addresses and indicators,

Associated with each address on the GOSUB Stack is a return type
nibble.

Low> $ommm e—em——m+

| Return Type | 1 nibble
e————R+

| Return Address I 5 nibbles
<High» $me+

The return type encoding is:

Return to Progranm
Return to Keyboard
ON TIMER#1 ... GOSUB
ON TIMER#2 ... GOSUB
ON TIMER#3 ... GOSUB

Machine Code Return
-E Special Return Types: Future statement extensions

Update Address (Nonzero) or
Boundary Address (Zero)

Return to program is the standard GOSUB from within a BASIC
progran.

M
O

O
O
b
H
W
N
H
N
=
O

Return to keyboard is a GOSUB initiated from the keyboard. The

3-39

HP-71 Software IDS - Detailed Design Description
Memory Structure

gtatement buffer is collapsed before returning to the keyboard.

Return from an ON TIMER, return type 2-4, reactivates the
appropriate timer before returning to the statement follouing the
GOSUB within a progran.

Machine code return is a return to a binary program that called a
BASIC program, The routine "PSHMCR" pushes the passed return
address on the GOSUB Stack and tags it as a machine code return.
The routine "POPGSB" pops an address and return type off the GOSUB
Stack.

Special return types: 9-E are available for future statements or
statement extensions needing special processing on return from a
'GOSUB. An example is ON TIMER...GOSUB needing to reactivate the
timer before returning. The RETURN statement polls on special
return type (pRINTp) if within the range of 9-E.

A nonzero address of return type “F" indicates an update address.
The system will not return control to an update address, but will
update the address whenever memory moves. This 1s a convenient
place to store pointers to segments of memory which may move. The
routine "PSHUPD" pushes the passed address onto the GOSUB Stack and
tags it as an update address. The routine "POPUPD" pops an address

and return type off the GOSUB Stack. If an update address 1is

encountered during RETURN execution, it is not popped off and the
error "RIN w/o GOSUB" is generated.

A zero address of return type “F" 1indicates an environment
boundary, houever. Such an address marks the end of the
environment for a user-defined function. If a RETURN statement 1is
encountered and the end of an environment is reached, the error
“"RIN w/o GOSUB" is generated. The boundary mark is not popped off
the GOSUB Stack.

3.5.11 Variable Storage

Variables are kept in memory immediately above (higher address) the
GOSUB Stack. Currently active variables exist betueen the pointers
ACTIVE and CALSTK. A complete description of this area 1is in the
“Internal Data Representation" chapter.

3.5.12 User-Defined Function Environment Stacking

Uhen a user-defined function is called, a portion of the local
environment is saved in an Environment Save Block which is placed
on the CALL stack in much the same manner as the local environment
is saved when the CALL statement is executed,

3-40

HP-71 Softvare IDS - Detafled Design Description
Memory Structure

The following diagram shows the structure of memory immediately
after a user-defined function has been called:

<Louw»

| | <==s New MIHSTK \

l | ¢<== New FORSTK +-Same value
#e+ <== New GSBSTK / initially
| F00000 GOSUB Stack Boundary |
Peee—e—sce—acsoeo+ <=s New CALSTK
l User-Defined Function l
| Environment Save Block l
demreerere+

| Extended Parameter l
I Storage |
Peete—————+ <¢a= PRMPTR

| Last Parameter of Function |
Prercemeec———— +

I |
I |
| |
tmmeeececce+

| First Parameter of Function |
Peeeeece—c———— +

| Function Value |
$omrmeemcccccccccccccre+ <== 0ld MIHSTK (value before
I I the user-defined
I I function 1is called)
I l
oe+ ¢== 01d FORSTK
I l
bee+ <= 01d GSBSTK
| I
temmrcroccccaccccccecm—ee—————+ ¢== ACTIVE

I |
<High»

3.5.12.1 Environment Save Block

The User-defined Function Enviromment Save Block is located after
the end of the GOSUB Stack (which is marked by F00000). It
contains the follouwing data:

3-41

HP-71 Software IDS - Detailed Design Description
Memory Structure

ENVIRONMENT SAVE AREA

USER-DEFINED FUNCTION SAVE BLOCK FORMAT

Return address 5 nibbles -+ These pointers
PCADDR saved 5 | are adjusted
STMIDO saved 5 | when memory

3 harduare return addresses 15 -+ moves,
STMID1 saved 5
STMIRO saved 16
SITMIR1 saved 16

Offset to previous MTHSTK
Offset to previous FORSTK
Offset to previous GSBSTK
Previous parameter count

Offset to previous PRMPTR+2
STSAVE saved

CHN#SV

Return type D
O
T
,

Return address - Continue execution address uwhen ENDDEF is
executed.

PCADDR,STMIDO - Updated when memory moves,

Harduare return stack addresses - Three addresses will be popped

off the hardware return stack and saved. This means if an
assembly routine calls the expression execution routine,
only the last three return addresses in the harduware
return stack will be preserved.

STMID1 - This saved pointer will be adjusted when a new variable is
created while executing a user-defined function.

SIMIRO - This is the same as S-R0-0 ... S-R0-3. If the first five
nibbles of SIMIRO(S-R0-0) contain a memory address (>10000
Hex) and the first harduare return address saved is

=STORE, S-R0-0 will be adjusted when a new variable is
created,

SIMIR1 - This is the same as S-R1-0 ... S-R1-3.

Offset to previous MIHSTK,.. PRMPTR+2 - These pointers are saved
as relative addresses. Adding the offset to uhere it is
saved points to the previous pointer.

3-42

HP-71 Software IDS - Detailed Design Description
Memory Structure

Return type - 0 : User-defined function is called from a
program statement.

1 : User-defined function is called from a
keyboard expression,

8 : User-defined function is called by a
Binary routine.

3.5.12.2 Extended Parameter Storage

The value of string or complex parameters is stored in this area.
The extended value is pointed to by the parameter value.

3.5.13 Subprogram CALL Enviromment Stacking

Uhen a subprogram 1is called, a new local environment must be
created. Before this can happen, the old calling environment must
be saved by "pushing" it onto the CALL Stack. The process is
performed in three steps.

First, an area is opened immediately before the current FOR/NEXT
Stack to hold information blocks which contain pointers and other
data about the current environment. The operating system uwrites
one save block and then 1issues a poll to allow any LEX files
present to add other blocks. This area is called the Enviromment

Save Area, and is described below. It is also referred to as the
Subprogram Save Stack.

Next, the current environment is “pushed" onto the CALL Stack by
adjusting the pointer CALSTK to the start of the newly created
Environment Save Area.

Finally, the new 1local environment is created and the pointers
ACTIVE, GSBSTK, FORSTK, and MIHSTK are adjusted as shoun belou.
The initial active variables are the parameters passed to the
subprogranm,

3-43

HP-71 Softuare IDS - Detailed Design Description
Memory Structure

<Louw> I l
| | <== New MTHSTK \

o= mmmmemmeeeeeo+ <== New FORSTK \ Initially
Neuw | | | <== New GSBSTK / same value
Local | | = = = = = - - | <== New ACTIVE /
Environment| | (parameters) |

+-- tomme+ <=s New CALSTK

| | Environment |
| | Save |

Stacked | I Area I
Environment: T --------------- I <== 0ld FORSTK

| | CALLing | <== 01d GSBSTK

I l |
| | Enviromnment | <== 01d ACTIVE
l l l
$mm Ammmmmmmeeeeeo+ <s= 01d CALSTK

<High» | |

Each CALL statement adds a level to the CALL Stack by saving the

current environment and each END SUB removes a level from the CALL

Stack by restoring the previous environment.

The CALL Stack is bounded by the CALSTK and RAMEND pointers (uhen
CALSTK equals RAMEND there are no saved environments).

3.5.13.1 Enviromment Save Area

The execution of CALL stacks more than just the GOSUB Stack, the
FOR/NEXT Stack and the local variables. It creates an area belou

(in lower memory) the FOR/NEXT Stack to hold information about the
environment which is being suspended. This area is called the
Environment Save Area or the Subprogram Save Stack.

It is filled by a linked list of information blocks called
Envirorment Save Blocks. Each block may contain a 1list of
addresses to be updated when memory moves, as well as other data.
The block begins with a 2 nibble ID followed by a 5 nibble link
field which points to the next block in the list. This is folloued
by a 1 nibble field specifying a number (0 to 15) of 5 nibble
update addresses (which will be updated when memory moves), and
then that number of update addresses. Any remaining area in the
block may be used for arbitrary data and is not updated.

The first save block is created by the mainframe CALL statement.
Its ID is 00, and marks the end of the linked list, This block is
aluays 89 nibbles in total length,

At CALLing time, after the mainframe creates its save block, it
polls (pCALSV) to give LEX files a chance to add a save block to

3-44

HP-71 Software 1DS - Detailed Design Description
Memory Structure

this area. Each poll handler that has anything to save is expected
to create another block (growing into available memory) in the same
format.

The save block created by the mainframe has the following contents:

<Low>»

Number of addresses to update (A)

| PRGMST saved
| PRGMEN saved

Addresses | CURREN saved
updated | PCADDR saved

when memory = CNTADR saved

|

+-- Offset to previous FORSTK
I

Misc. |
Info |

|
I
+-- Return type

<High»

LEX ID

ENVIRONMENT SAVE AREA

MAINFRAME SAVE BLOCK FORMAT

LEX ID (00)
Entry length (04F)

nibbles

-4

+-~- CURRST saved

2
3
1

5

5
5
5

5

5
moves ERRSUB saved 5

ERRADR saved 5 84 nibs
l ONINTR saved 5 = 04F hex

5

5
5

5
5
2
5
1

+-- DATPTR saved

Of fset to previous GSBSTK
Offset to previous ACTIVE
Offset to previous CALSTK

Parameter count saved
Offset to previous PRMPTR+2

o
s
.
—
—
—
—
—
—
—
—
—
—
—
—

—
—

For the block created by the mainframe this field is 00.
This indicates the end of the linked 1list and that the
suspended FOR/STACK, GOSUB Stack and variables follow
immediately, For blocks created by lex files, this field
should be filled in with the LEX ID of the flle creating
it. It serves as a tag field to identify the block later
when the return from subprogram causes the Restore CALLing
Enviromnment poll (pCALRS).

Entry Length

This field is aluays 84 (04F hex) for the block created by
the mainframe. This number includes everything in the
block starting from the next nibble (the update address

count nibble) to the end of the block (the return type
nibble). This length does not include the LEX ID field or

3-45

HP-71 Software IDS - Detailed Design Deecrlptlon
Memory Structure

the entry length field itself,

Number of Addresses to Update

For the mainframe, this nibble is always 10 (A hex),
reflecting the number of following pointers that require
updating when memory moves., Blocks created by LEX files
may have from 0 to 15 addresses updated.

Addresses to be Updated

The previous field specifies how many 5 nibble addresses
are included here. The 10 address fields in the mainframe
block are used to save the following memory pointers for
restoration later: CURRST, PRGMST, PRGEN, CURREN, PCADDR,
CNTADR, ERRSUB, ERRADR, ERRSUB, ERRADR, ONINTR and DATPIR.
Whenever program memory moves, these addresses stored here

will be updated to reflect the new address of the thing
they point to.

Miscellaneous Information

3.6

After the addresses to be updated described above, the

remainder of the block has a format specified 1nd1v1dua11y
for that type of Dblock. The block created by the
mainframe has the following fields;

Offset to previous FORSTK ... CALSTK
These pointers of the calling program environment are
saved as relative addresses. Adding the offset to
where it is saved points to the previous pointer.

Parameter Count
One byte field. If zero then currently not in a
user-defined function; if nonzero, then represents
parameter count - 1 of the user-defined function.

PRMPTR .
This is a 5 nibble pointer to the first parameter in
the user-defined function’s parameter chain.

Return type

If =0, CALL is from a BASIC progran.
If =1, CALL is from a Binary progran.

Plug-in ROM and Independent RAM

The format of a plug-in ROM module is the same as for a RAM module
configured as an Independent RAM, with the exception of the first
eight nibbles of the module whlch contain the Stand Alone Module
ID. Either form of plug-in memory module contains a file chain,

3-46

HP-71 Software 1DS - Detajled Design Description
Memory Structure

gtarting in the ninth nibble, that is identical in format to the
MAIN file chain.

Throughout the following discussion, the term ROM will be used as a
general name for a stand alone memory module, whether it be a
plug-in ROM module or an Independent RAM.

3.6.1 Standard Configuration

The general format of every stand alone memory module 1is as
follous:

Fommmeomemeeoo+ <--- Module Start
| Stand Alone Module ID |
#omo-emmem—c—emeeeoo+ <«--- Module Start + 8
I l
| |
| File Chain I
I l
l |
4+ = = = frcccccccccccc————+

|00 bytel . <¢=--- 00 byte ends chain
Pom——m——+

cecccenes ceesecessscsscssecs <=—- End of Module

3.6.2 Stand Alone Module ID

The Stand Alone Module ID field is used to distinguish an
Independent RAM from other forms of memory modules. For
Independent RAMs, this field has the hex value B3DDDDDE (the B is
in the lowest-addressed nibble of the module). For ROMs and all
other forms of memory modules, this field may have any value except
the IRAM value,

3.6.3 File Chain Layout

Each file entry in the chain begins with a file header which
contains the file name and other identifying information about the
file. The format of the file header 1is the same as that used in
the MAIN file chain, and is described in the "File System" chapter.
As in the MAIN file chain, a stand alone module file chain is
terminated by a zero byte in the first character of a file header

3-47

HP-71 Software IDS - Detailed Design Description
Memory Structure

name field,

$mmomee+ <«=-- Module Start
| Stand Alone |
| Module ID |
$ommme+ <«--- Start of File Chain
| File Header | (Module Start + 8)
| I
| === === - - I

+---| Offset to Next |
| $mmmem+

| | I
| | File Contents |
l | I
| et+

+-->| File Header |
| I
[- - - === - - I

+---| Offset to Next |
| $mme+

	File Contents
$mmbommme+	

+==>[00] (====--mm—mmmmeeeee 00 byte ends chain
==+

3.6.4 Take Over ROM

Take-over ROMs come in two flavors: soft-configured and hard-
configured,

3.6.4.1 Hard-Configured Takeover ROM

A hard-configured take-over ROM must be plugged into port 1, uwhere,
by virtue of shorting certain lines together, it will dlsable the
system ROMS. This ROM should be hard-conflgured in the address
space occupied by the HP-71 system ROMs, as it is replacing then.

A problem occurs when installing such a ROM: where is the CPU’s
program counter? This is a problem when 1) the takeover ROM is
plugged in, and must resume execution from the HP-71 ROM, and 2)
the takeover ROM is unplugged, and HP-71 must resume executlon It
is virtually impossible for HP71 to guarantee the position of the
PC, except durlng deep sleep During deep sleep, the PC spends
most of its time pointing just past the SHUIDN in the deep sleep
routine, However, the processor does occasionally wake up to

3-48

HP-71 Software IDS - Detailed Design Description
Memory Structure

process clock system requests and whatever else may request
service,

If the hard-configured takeover ROM uses memory in such a way that
it is incompatible with the HP-71 operating system, the ROM should
perform its ouwn version of cold start when it is plugged 1in and
unplugging it should force the HP-71’s built in operating system to
perform a coldstart,

A few simple rules will facilitate this:

1) HP-71 should be turned off when plugging in a hard-configured
takeover ROM.

2) The takeover ROM should expect control to be passed to it at
the address just past HP-71’s deepsleep SHUIDN (address =
5E2). This is where the PC is most likely to be.

3) The takeover ROM should be at a shutdoun when unplugging it.

4) The takeover ROM shutdoun should position the PC at the HP-71
coldstart code (label CLDST1).

5) The takeover ROM should use a different CMOS testuord from
HP-71, this will cause the built in operating system to
coldstart as soon as it is reenabled (at time of next
interrupt). In general, the CMOS test word should be unique
for each take over ROM and should be used to determine if
memory is "“okay" for that particular hard configured take over

ROM,

It is conceivable that a hard configured takeover ROM might be made
compatible with the built-in operating system so that is may be
plugged in or removed without loss of memory contents. In this
case, the ROM should use the same CMOS test word as the built in
operating systen,

3.6.4.2 Soft-Configured Takeover ROM

A soft-configured takeover ROM avoids many of the problems of a

hard-configured ROM. It is useful for adding subsystems to the
HP-71, such as a pocket secretary. It can simply grab control of

the machine at an appropriate time, such as Wake-up poll or
Powerdown poll. This is essentially a mode, not a new machine,

In general, a soft-configured takeover ROM should not mess with
HP-71 operating system RAM. It is an extension of HP-71, and more
than likely is interacting with HP-71 code in the system ROMs.

3-49

HP-71 Softuware IDS - Detailed Design Description
Memory Structure

A major limitation of soft-configured take-over ROMs is that it is
very difficult for them to change the system’s configuration.
Doing a bus reset (unconfigure all chips) will unconfigure itself,
making it impossible to execute any more code from the ROM. A
soft-configured ROM, barring some very clever programming, will
have to live with the HP-71 system configuration.

3.7 Available Memory Management

The term "available memory" refers to the area of RAM betueen the
boundaries pointed to by AVMEMS (available memory start) and AVMEME
(available memory "end). This region supplies the memory for neu
allocations on the various system stacks, which cause AVMEME to
grouw toward AVMEMS, This region also supplies the memory for the

system’s output buffer, which is used to hold the tokens output by
the parsing process and for various other system functions which
cause AVMEMS to grow toward AVMEME.

In addition, activities which increase the size of the main RAM
file chain (such as creating or enlarging a file in the chain), the
size of the system buffer area (creating or enlarging a eystem
buffer), or the size of the Command Stack, will also cause AVMEMS
to grow toward AVMEME.

A minimum amount of available memory is therefore necessary for the
operating system to function., This minimum amount is 106 bytes,
and is referred of as LEEUAY, which is a globally defined symbol in
the operating system equate f11e (see file TI&EQU in Volume III of
this document),

Vhenever an operation system activity must consume available
memory, a check is performed according to the following

conventions;

* If the memory allocation is permanent (that is, after the
activity is completed, the memory will remain allocated) then
available memory must not d1p below LEEUAY. Examples of
permanent allocations are creating a systenm buffer, creating a
variable, adding to the GOSUB Stack, FOR/NEXT Stack or the CALL
Stack.

¥ If the memory allocation is temporary (that is, after the
activity is completed, the memory will be released) then
available memory may d1p below LEEUAY. Examples of temporary
allocations are; parsing or decompiling into the output buffer,
expression evaluation using the Math Stack, preparing messages

for display, or issuing a poll (which saves 31 bytes on the
SAVSTK) .

3-50

HP-71 Software IDS - Detailed Design Description
Memory Structure

Uhen an insufficient memory condition has been detected and
reported, the user nust be able to perform certain commands, such
as CAT, PURGE, COPY or END, in order to release memory in a safe
manner so that the system is again usable,.

To allouw these activies to occur during lou memory, the following
special cases of LEEUAY checking have been implemented:

* UWhen a command is added to the Command Stack that causes a dip
below LEEUAY, previous commands will be crushed to mull,
starting with the oldest, wuntil LEEUAY is reached or only 1
command remains.

¥ Uhen the statement buffer is expanded to accept the tokenized
statement, LEEUAY is not checked.

* Leeway in not checked when COPY saves its file info on the Save
Stack.

* The poll routine does not check LEEUAY when saving poll info on
the Save Stack.

The value of of LEEUAY has been set to allou a file to be copied to

an external device. This requires the following amount of memory:

Command Stack to enter COPY command 25 bytes
To move tokenized COPY statement into 25 bytes

statement buffer

Save COPY file info on the Save Stack 25 bytes
Igsue COPY poll to external device 31 bytes

LEEUAY =« 106 bytes

If a LEX file or other user-supplied code causes the memory
available to the operating system to shrink below this minimum,
catastrophic failure may occur. For example, if available memory

has shrunk so far below LEEWAY that the error message handling

routines do not have enough room to build the "Insufficient Memory"
error message, the system will 1loop infinitely attempting to
process the message.

See the "Message Handling" chapter for a discussion of the chapter
discusses the MEMCKL utility which checks available memory with or
without LEEUAY.

3.8 Handling Memory Movement

Uhenever file memory is moved due to adding data to or deleting
data from the MAIN file chain or an IRAM file chain, the various
system pointers uwhich reference the file system and neighboring
areas of memory may need to be adjusted. RFADJ is the utility
called after such a memory move, to examine these pointers and make

3-51

HP-71 Softuware IDS - Detailed Design Description
Memory Structure

the necessary adjustments. There are two major routines which make
up RFADJ: RFADJ- (used when memory moves to lover addresses, as

with a PURGE of a file [MOVEMU called] and RFADJ+ (used when memory
moves to higher addresses [MOVEMD called]).

Entry conditions parallel requirements for calling MOVEUx and
MOVEDx (move memory routines): Begin Source, Begin Destination, and
End Source, are referred to in this context. Note that the End
Source address is the address of the nibble that immediately
follous the last nibble in the source block. Therefore, the source
block is null when Begin Source equals End Source.

B(A) is assumed to be an offset: Begin source - Begin destination.

Algorithms:

RFADJ- : Save begin source in RO
RFAD-- : Position D1 at AVMEMS ram location

The following entry point can be used by memory movement on
plug-ins. It assumes D1 1is positioned at a ram location which
contains 'AVMEMS’ of that plug-in, i.e., the address after the last
file in the chain.

RFAD-1 : Save begin destination in R1 (RO+B)
D(S) <-- 1 (flags which way mem is moving)
Call RFADS58 (Updates addresses on FOR and

GOSUB Stacks)
Call RFAD97 (Updates addresses in RAM locations

PCADDR-->TMRAD3 - zeroes out those

referencing purged address space)
Goto PCUPD+

RFADJ+ : Save begin source in RO
RFAD++ : Position D1 at AVMEMS ram location

READ+I : D(S) <-- 0 (flags which vay mem is moving)
Call RFADS8 (Updates addresses on FOR and

GOSUB Stacks)
Call RFAD86 (Updates addresses in RAM locations

PCADDR-->TMRAD3)
PCUPD+ : Updates CURRST-->AVMEMS

PCUPDT : .

Address updating:

3-52

HP-71 Software IDS - Detailed Design Description
Memory Structure

If address < End Source
THEN If address »>= Begin Source

THEN update (add offset).

Address zeroing: (Done only if D(S)#0)
If address < Begin Source

THEN If address >= Begin Destination
THEN zero it.

The following references are NEVER zeroed:
1) Addresses on FOR/NEXT Stack
2) CURRST-->AVMEMS

3.8.1 In Configuration Buffer Area

Configuration buffers are only manipulated during execution of the
configuration code., Following is a summary of the effects of
configuration buffer manipulation on various system pointers.

3-53

HP-71 Software IDS - Detailed Design Description
Memory Structure

HP-71 REFERENCE ADJUSTMENTS CONFIGURATION BUFFERS

3-54

B ::= Updated only if Begin Source <= address < Begin Dest

A ::= Updated only if Begin Source < address < Begin Dest

U ::= Unconditionally updated (offset aluays added to pointer)

Z :.:s Address set to 0 if Begin Dest <= address < Begin Source

¥ .:x= Not updated

P+

Actions: | ACTION ON |
CONFIGURATION

Create ::= Item created | BUFFERS |
temm—t———b———

Expand ::= Buffer expands | CI1E| CI
Il rl x| ol

Contract ::= Buffer shrinks el pl n|
| alal t]
l tlnl|r|
l el dl a]l
I 1 | cl
I]t

------------------------------------tem—pmmmp—mm

| | | l
System Pointers;: : : | |

| |
MAINST MAIN File Chain Start Ul Ul U |

CURRST Current File Start | B| B | B |

PRGMST Current Program Start | B| B | B |
PRGMEN Current Program End | Bl B | B |
CURREN Current File End | B| B| B |
MAINEN MAIN File Chain End | Bl Bl B |
CLCBFR CALC Mode Buffer Start | Bl B 1| B |

RENBER CALC Mode Refined Buffer | B | B | B |
RAUBFR CALC Mode Raw Buffer | B| B| B |
CLCSTK CALC Mode Token Stack | Bl B| B|
SYSEN System RAM End | B|1 B B |
OUTBS Output Buffer Start | Bl B | B |
AVMEMS Available Memory Start | B : B : B :

|
AVMEME Top Math Stack | * | * | * |
FORSTK Top FOR/NEXT Stack | * | * | * |
GSBSTK Top GOSUB Stack | * | * | * |
ACTIVE Active Variable Pointer | * | ¥ | ¥ |
CALSTK CALL Stack | * | * | * |
RAMEND

-

User RAM End | * 1 * | *|

HP-71 Softuware IDS - Detailed Design Description
Memory Structure

| I |
------------------------------------bbbt

. | | I |
Pointers in System Buffers : b

I | | I
LEX BUFFER Pointers | B| B | B |
FIB: File Begin Field | Bl BI| B |
FIB: Data Start Field | B| B | B |

I | I I
------------------------------------Pt

. ‘ . | | | I
Pointers WUithin Enviromments: | | | |

I | I |
FOR/NEXT Stack Addresses | B| B| B |
GOSUB Stack Update Addresses | Bl B| B |

I I | |
------------------------------------ tm———te———ot

I I | |
Miscellaneous Pointers: | I | I

| I I I
PCADDR - Program Ctr at Stmt len | B| B | B |
CNTADR - Contimue Address | B| B| B |
ERRSUB - ON ERROR-GOSUB Rtn Addr | B| B | B |
ERRADR - ON ERROR Statement Addr | B | B | B |
ONINTR - ON INTRPT Statement Addr | B | B | B |
DATPTR - DATA Statement Pointer | B| B | B |
TMRAD1 - ON TIMER#1 Statement Addr | B | B | B |
TMRAD2 - ON TIMER#2 Statement Addr | B | B | B |
TMRAD3 - ON TIMER#3 Statement Addr | B | B | B |

- | I I
------------------------------------bt———t

I I I I
Note that these are NEVER UPDATED: | | | |

| I | I
INBS - Input buffer start | * | * | * |
SNAPBF - Snapshot Buffer Addresses | * | * | * |
RSTKBF - Rtn Stack Save Buf Addrs | * | * | * |

I I I I
------------------------------------ $mmm—tme==t

3.8.2 In a File Chain

Uhen file memory moves, system pointers such as CURRST may need to
be adjusted. In this case the routine RFADJ (Reference Adjust)
must be called to handle the updating of all of these pointers.
This routine examines each pointer to determine whether or not it
vas affected by the memory move; all affected pointers are updated.

RFADJ examines pointers DSPCHX through TMRAD3, CURRST through
AVMEMS, all pointers in FIB’s, and pointers on the FOR/NEXT Stack,

3-55

HP-71 Softuare IDS - Detailed Design Description
Memory Structure

GOSUB Stack, and CALL Stack. Pointers which reference purged
address space are zeroed out (this does not include any pointer
wvhich pointed at the begin destination of the memory move - For
exanple, if the file following the current file was purged, CURREN
would NOT be zeroed out).

UVhen files move to a lower address (as when a file is purged),
RFADJ- is called; if files are on a plug-in, RFAD-1 is the entry
point to use, UWhen files move to a higher address (as when a file
expands), RFADJ+ is called; if files are on a plug-in, RFAD+I is
the entry point to use,

HP-71 REFERENCE ADJUSTMENIS -- FILE MEMORY MOVES

B ::= Updated only if Begin Source <= address < Begin Dest

A ::= Updated only if Begin Source < address < Begin Dest

::= Unconditionally updated (offset aluways added to pointer)

N
C

" Address set to 0 if Begin Dest <= address < Begin Source

* .:s Not updated

Actions; tommmmePme+
| ACTION ON FILE= ACTION ON FILE|

Create ::= Item created | IN MAINFRAME = IN IRAM I
toemmbbbeb

Purge ::= Item purged lClPlAlU=ClIP|A]lU]
lrlul tli=s=rlult]i]

At end ::= Movement at end l el r | | t=e | r| | t |
lalglelh=algleln]|

Uithin ::;= Item grous/shrinks | t | e | n|l i=t| e | n| i]|
in the middle lel ldln=e| |d]| n|

I l | I = | | I |
---------------------------------Pemmtbe—em—m

I | | l = | | | I
System Pointers: s

| | I I o= I | |
MAINST - MAIN File Chain Start | % | * | % | % « % | % | # | * |
CURRST - Current File Start | * | B|B|B=*|B|B | B |
PR@ST - Current Program Start | * | B| B| B=* | B| B | b |
PRGMEN - Current Program End | * | B| B| B=%)| B| B| B |
CURREN - Current File End | * | Bl B| B=%*| B|B| B |
MAINEN - MAIN File Chain End J UL U | U | U=* | % | * | % |

CLCBFR - CALC Mode Buffer Start | U | U | U | U = ¥ | ® | * | % |

RENBFR - CALC Mode Refined Buff | U | U | U | U = % | * | * | % |

RAUBFR - CALC Mode Rauw Buffer Ul UJU|U=*®| ¥ | % | % |

3-56

HP-71 Software IDS - Detailed Design Description
Memory Structure

+
+

!
'

|
'

x
Xk

X
k

X
k

X
Xk

X
k

Xk
¥k

X
"

M
m
o
o

<
€

“
|
|

“
M
m
o
o
m
M
m
a
m
m

“
ax"

Xk
X

x
Xk
X

X
x
*

ok
A
k

Ak
o
k
X

“
M

<
“

|
m
o

"
a
o
m
M
M
m
M
m
a
M
m
m
o
a
m
a
o
m
m

“
x*

Xk
Xk

'
N
N
N

|
|

|
*x

Xk
Xk

X
*

k
Xk

Kk
Xk

¥x
“

0
m
<

"
|
|

“
a
a
a
o
a
o
m
o
M
m
M
m
o
a
o
m
a
M
m
m
a
m
m

"
*

X
k

Xk

*
x

x
x

*x
Xk

X
k

Xk
Xk

X
”

M
m
a
o
a
m
m

i
m
m

“
a
o
a
M
m
a
o
a
a
o
o
a
a
o
m
o
a
m

“
*x

Xk
Xk

'
l
l
l
l
l
t
z
t
.
l
:
=
+
l
l
:
8
8
.
8
#
8
:
:
8
:
:
&
-
:
8
.
l
l
t
:
:
.
-
:
:
:
:
#
l
8
:
8
.
.
.
8

)
'

i
'

S
D
D
O
D
D
O
D
D

x
Xk

K
Xk

Xx
X

"
m
o
m
<

!
m
o

|
o
M
o

m
M
|
m

“
*

Xk
X

'
)

'
S
D
D
O
D
D

X
Xk

X
¥

Xx
X

“
[eo
e
-

'
m
o
m

"
a
o
m
M
m
M
m
M
m
a
m
a
m
o
a
a
o
m

“
X
K

Kk
Xk

'

T
T
T
T
T
T
T
T
y
T
T
T
R
N
T
T
l
T
T
T
T
T
t
T
T
N
N
N
N
G
G
N
N

Y
y
T
T
T
—
—

'
D
D
O
D
D
O
D
D

*x
Xk

Xk
Xk

Xk
X

"
Q
m
m
<

“
m
m

'
m
a
o
M
m
M
m
M
m
M
m
M
m
o
a
a
o
m
m
m

“
*x

x
Xk

'

'
|

\
o
D
D
O
D
D
O
D

kx
kK

Xk
K

Xk
Xk

“
M
m
o
o

<
€

1
|
m

|
a
o
o
o
m
o
m
o
a
o
o
a
o
o
o
a
o
m

“
x

Xk
X

1
1

S
1

'
i

=
S

|
M

S
-

e
'

)
'

v
o

S
'

.o
0V
o

-
~

u
-

'
'

)
—

o
Q
S

o
S

)
a

Q
O

M
<

\
|

|
<

&~
T
T
O

|
£

o
<
C

)
-

e
o

!
o
o

'
m

!
=

C
O
T
V
T
A
T

!
<
<

=
O
e

»
n

o
&

a
.

'
'

-
|

-
~»w
o
<

O
'

a
r
.
A
.
W

=
O

'
0

'
o

'
N
V
T

O
4
&
&

'
a
.

«
S

0
N
&

1
St

'
Q

o
0

0
-

c
C
c
e

i
>

=
b

L
o

o
X
N
O
~

'
v

i
m

Q
1

»
M

P
S

e
e

!
m
o
a
o
v

X
O

W~
E

Q
g
O

|
o

o
o

\
n
o

?
.
o

[}
r
m
w
S
E
S
W

'
x

-
D>

o
w

o
w

a
m
u
e
l

o
0

-
—
—

'
o

n
o

|
m

©
E
+
~
0
N
N
W
V

)
)

b
e

@
=

-
X
3

o
w
n
-
~

<
I

m
Q
Y

|
S

U
W

1
-

r
d
m
t
S
m

!
W
.

e
m
S

b
n
W

-
~
X
)

{
U
Q
o
t

o
r
d

1
o
d

-
0

)
v

&
~

<
L

[dp]
D
=
I
M

|
-

Q
)

Z
m

d
O

'
S

baq
P
2

'
W

o
QO

'
-

L
1

W
u
f
.
&
f
fi
u
fi

1
=
z

G
4

@
—
~

h
u
/
/
m
w
u
v
.
a

'
£

Q
!

T
!

=
Q

(1o
JeA
o

Als
'

I
+

0
2
&

-
|

@
o

o
o
e

'
)

<
O

'
e
t

m
m
.
U
A
U
h
H
.
q
u
w
w
m
w

0
)

8
0
™

E
~
Y

0
8
O
O
V
W

\
-

gI
O

'
o

!
Q

Q
"
Q
u
m
e
u
M
u

'
o
«

o
e

v
W
H
l
R
O

>
!

0
o

D
O
@

'
<

X
o
<

\
Q
.

o
=
0
G

—
—
—

'
<
<

«
N

Q
&

Q
-

oot
o
l
S

'
>

O
Q

&~
1

o
t

Q
'

0
0
«

(
]

(2]
—
<
=

'
3

S
D
0

Q
A
Q
Q
e
a
0

'
N

c
a
o
w
®
n

'
£

o
=

'
m

O
c

~
}

w
g
g
s

A
y
m
v
u
v

O
0
O
0
0
O
W

)
1

-
-
~
0

!
w

o
O
Z
Z
Z
2
Z
2
C
Z
Z
Z

1
&
)
-

O
wn

<
H
H
E
A
H
<
<
O
D

|
s

x
o

o
'

oed
0

|
Q
L
O
O
O
O
0
O
a
O
0
O
O
0
O
0

'
)

—
0

o
S

'
]

]
r—t

&
1

hac-
m

1
Q

'
m

L
m
e
e
e

b
om

HEZ8
]

@
RE
5
L
t
t
t

L
'

'
a
Q

X
M

L
)
l
O

1
'

D
1

S
3
~

'
—
t

c
E
c
a
o
E
E
E
E
m
—
~
N
N
M

'
'

Cas
Fae

fl
m
s

.
fl
fl
V
fl
m

1
Q

o
'

Q
=
m

|
—

D
D
W
D
M
H
D
D
D

)
'

@
m

A
a

—
'

-
.o

'
-

/
N
w

\
Q

Q
<

<
A
M
A

'
w
0
A
L

S
n
o
s

S
S
B
5
E
E

1
05

FEES
1

S5
8B

1
3
S
E
E
S
Z
E
E
E
E
B

2328
.

(
S
o

.

o
h
3
z

3
2
8
2
3
&

|
¢

Hmzm
|

3
B8

|
&

L
A
E
E
Z
S
E
E
E

|
§

Z
6
d

'
'

'

eeececeeeeem e retetebemeebpm——t

3-57

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.8.3 In System Buffer Area

Uhen an buffer is created or deallocated, or uwhen an existing
buffer ig expanded or contracted, pointers are updated to reflect
this, All pointers in the RAM map between IOBFEN and AVMEMS,
inclusive, are updated by a call to PTRAD2 from within the Systenm
buffer code.

HP-71 REFERENCE ADJUSTMENIS -- BUFFERS

B ::= Updated only if Begin Source <= address < Begin Dest

::= Updated only if Begin Source < address < Begin Dest

Unconditionally updated (offset aluays added to pointer)

N
S

>

n

::= Address set to 0 if Begin Dest <= address < Begin Source

* ..z Not updated

Actions; P+
| ACTION ON I/0 |

Create ::= Item created l BUFFERS l
to——t¢t

Purge ::= Item purged | CI Pl Al U]
l rlul t] i]

At end ::= Movement at end l el r| | t |
lalglelni

Uithin ::= Item grous/shrinks | t | e | n| i |
in the middle l el | dl| n|

l | l | |
------------------------------------Pmmmbbm——

I | | I |
System Pointers: } | | | |

| | l |
MAINST - MAIN File Chain Start | * | * | % | *|
CURRST - Current File Start | * | * | * | * |
PRGMST - Current Program Start | * | * | * | * |
PRGMEN - Current Program End | * | * | * | * |
CURREN - Current File End | * | * | ¥ | % |
MAINEN - MAIN File Chain End | * | * | ¥ | * |
CLCBFR - CALC Mode Buffer Start Ul uUului|ul

RENBFR - CALC Mode Refined Buffer | U | U | U | U |
RAUBFR - CALC Mode Raw Buffer lujlululul
CLCSTK - CALC Mode Token Stack lulujlulu|
SYSEN - System RAM End lvjluljulu|
OUTBS -~ Output Buffer Start fuUjlulul|ul

3-58

HP-71 Software IDS - Detailed Design Description
Memory Structure

AVMEMS -

AVMEME
FORSTK
GSBSTK
ACTIVE
CALSTK
RAMEND -

Available Memory Start

Top Math Stack
Top FOR/NEXT Stack
Top GOSUB Stack
Active Variable Pointer
CALL Stack
User RAM End

Pointers in System Buffers :

LEX BUFFER Pointers
FIB: File Begin Field
FIB: Data Start Field

Pointers Uithin Enviromments:

FOR/NEXT Stack Addresses
GOSUB/RETURN Addresses

Miscellaneous Pointers:

PCADDR -
CNTADR -
ERRSUB -
ERRADR -
ONINIR -
DATPIR -
TMRAD1 -
TMRAD2 -
TMRAD3 -

Note that

INBS -
SNAPBF -
RSTKBF -

Program Ctr at Stmt len

Continue Address
ON ERROR-GOSUB Rtn Addr -

ON ERROR Statement Addr

ON INTRPT Statement Addr

DATA Statement Pointer
ON TIMER#1 Statement Addr

ON TIMER#2 Statement Addr
ON TIMER#3 Statement Addr

these are NEVER UPDATED:

Input buffer start
Snapshot Buffer Addresses

Rtn Stack Save Buf Addrs

3-59

¢
e
e
e
e
e

—
—
—
.

—
—
—

G
e

—
—
—
—
.
—

—
—
—
—
—
—
—
—
—
—
—
—

|
—
—
e
o
e
s

c
*

%k
3k

k
xk

%

¢
e

e
e

e
e
e

—
—
—
—
—
—
—

%
%k

%
%k

X
Xk

X
X

X

¢
e
e
e
e
4
.

—
—
.
—
—

—
—
—
—
—
—
—

—
—
e
—
—
—

=
=

¥
%

Xk
X

¥k
*k

*
3k

Kk
Xk

Xk
Xk

%k
Xk

X

o
=

X
&

Xk
3k

3k
Xk

%
%k

Xk
%k

Kk
Kk

Kk
¥k

X

c
*

¥k
k

¥k
Xk

ik

—
—
—
e
—
—
—
—
—

¢
+

+

¥
%k

*k
Xk

Kk
Kk

Xk
Xk
X

|
*

| !
—
—
—

—
—
—
—
—
—

1 ! | +

HP-71 Softuware IDS - Detailed Design Description
System Control

oeoo02 o =>=-=—————————

I
| SYSTEM CONTROL
I

= =

eeceeGee, — ——— —-—-—————— - - -—————————-—-

This chapter describes the fundamental algorithms which control the
behavior of the operating system. The over-all process by which
the system repeatedly waits for and then processes the next

command, is generally referred to as the "main loop."

The following diagrams and detailed algorithms describe the main
"loop and its related processes.

4-1

HP-71 Software IDS - Detalled Design Description
Syster Control

4.1 Main Loop Flow Diagram

tmmmccmc-+

|Cold Start |
|Initialization|
tm—————— temm———— +

I
temmmeccecce—e————— Y| (rmmmee+

| v I
| T—+ |

| | Collapse | l
| | Statement I I
I | Buffer | |
| tomm——e Pommma—— + |

l I I
I I I
| v I
| R+ |

| | Character I |
| | Editor | I
| -$ommmm+ |

I I |
I I |
I v |
| R+ |

| | Edit Line | I
I | Into Command | l
| | Stack - | I
| to—————tomm————+ |

I I I
| | |
I v I
| R+ |

tm————— trmmcm——+ i | |

| Execute I | Parse Line | I
| Statement | | | I
| Buffer | eeit+ |
e+ | |

” I I
I v I
I " I

tm—————— tmm———+ / \ btom——mm +

Expand	no / \ yes	Edit into
Statement	(mmmmmme/ Program \--------- >	Current
Buffer	\ Line? /	Progranm
b—————+ \ / P——————+

\ /
vV

4-2

HP-71 Softuware IDS - Detailed Design Description
System Control

4,2 Algorithm

4,2.1 Cold Start

Enables interrupt system
Initialize CMOS test word
Initialize system RAM to zeroes
Reset display
Turn display on
Set display row drivers
Set display contrast nibble
Initialize DELAY parameters
Perform ColdStart configure
Create Statement Buffer

Initialize clock systenm
Check for low battery
Initialize flags and traps
Zero RAM between AVMEMS and RAMEND
Clear AUTO mode

Clear program running flag
Clear don’t continue flag
Initialize IS-TBL table
Initialize PRINT and DISP position and width
Initialize ENDLINE string
Put Coldstart message in display
Create Uorkfile
Create file information buffer
Initialize random number seed
Perform coldstart fast poll

4.2.2 Main Loop, Uakeup, Pover Off, Deep Sleep

MAINLP:; 1If MakeOff (f1MKOF) is set then
Set TurnOff (f1TNOF)
Clear MakeOff (f1MKOF)
Go to PUROFF

If TurnOff (f1TNOF) is set then
Go to PUROFF

I1f CALC mode (f1CALC) is set then
Give control back to CALC mode w/error

Fast Poll (pMNLP)
If in AUTO mode then

Display Line; goto Wakeup
MAINOS: If CALC mode (f1CALC) is set then

4-3

HP-71 Software IDS - Detailed Design Description
System Control

Give control back to CALC mode uw/error
Clear program annunciator & status bit
Set Dormant flag(f1DORM)
If ATIN key has been pressed then

Go to ATININ

I1f Don’t Prompt flag (fINOPR) is set then
Go to WAKEUP

If scrolling needed (NEEDSC) then
Allow user to scroll

If ATIN key has been pressed then
Go to ATININ

Send prompt string consisting of
Cursor off, prompt character("»>"),
Cursor on

UAKEUP: If ATIN Kkey has been pressed then
Go to ATININ

Clear Don’t Continue flag (NoCont)
Collapse math stack
Collapse AVMEMS,OUTBS,SYSEN to CLCSTK

Clear Don’t Prompt flag (f1NOPR)
Collapse statement buffer (bSTMT)
Delete Immediate Execute Key buffer (bIEXKY)
Set "Dormant" flag (f1DORM)
Call Character Editor
If Immediate Execute Key then

Go to IEXKEY
If its not a cursor up or doun key then

Turn off command stack mode (f1CMDS)
Clear "Dormant" flag (f1DORM)
Clear Attention Flag so HPIL won’t abort
Move cursor to far right of display
Go to appropriate place to process key

Endline (LINEP)
Attention (ATTNTN)
RUN key (RUNK)
CONT key (CONTK)

SST key (SST)
Cursor Up (CURSUj)
Cursor Doun (CURSDj)
Cursor Top (CURSTj)
Cursor Bottom (CURSBj)
G-Attention (ATINTIN)
CALC Mode key (CALC)
Off key (PUROFF)
Command Stack (CMDSTK)

ATININ: Flush key buffer
If line feed (LF) wasn’t last character sent to display

then Call FINLIN to terminate previous display line
Clear "need to scroll" flag (NOSCRL)

4-4

HP-71 Software IDS - Detailed Design Description
System Control

PUROFFE:

DSLEEP:

DPS010:

DPS030
DPS035:

DPS040:

DPS200:

Clear AUTO mode
Go to MAINLP

Set f1PUDN

Call DPS010 to go to DSLEEP
If there is an external command buffer

Go to LINEP+ to process it
If there is an STARTUP buffer

Go to LINEP+ to process it
Go to MAINLP

Clear =f1PUDN flag (indicate that we were not
called from PUROFF).

(Entry point for PWROFF),
If ON key doun

Set ATIN flag and goto DSP040
If display-clear flag clear then gotoc DPS030

Send <cursor on>/CR/LF.
Send <cursor off>

Perform power-doun poll,

Set TURNOFF (f1INOF) flag.
Clear MAKEOFF (f1MKOF) flag.
Turn off display.
Clear f-g shift status bits,
Clear ATNFLG and ATNDIS.
Turn off timer #3 (Louw battery check).
Activate KB row with ATIN key.
SHUTDN.,

Configure.
Deallocate external command buffer (to give poll

handlers a chance to create one if we uere

called by PUROFF).
Check clock systenm
If ATIN key woke us up, goto DPS200.
If program running and ON TIMER pending

Clear =f1TNOF; goto DPS200.

Perform pDSUNK poll (who woke us up?!?).
If turnoff flag set and ATNFLG clear then

goto DSPO35
Flush key buffer.

Clear f1lALRM flag.
=pDSUKY poll

Passuord processing (does not require passuword if
password=null or =f1INOF is clear).

If falled to unlock machine (password required but
not correctly given), goto DPS035,

AC/BAT check
RETURN

4-5

HP-71 Software IDS - Detailed Design Description
System Control

4.3 Interrupt Handling

The HP-71 CPU has a limited interrupt structure.

4.3.1 Causes of Interrupts

4,3.1.1 Keyboard Interrupts

An interrupt occurs whenever there have been no keys down and a key
goes down. If there 1is already a key down then another key going
doun will not cause another interrupt. This type of interrupt is
maskable. Only key rouws activated by the 1lower 4 bits of the
output register cause this type of interrupt. The ON-key does not
cause this type of interrupt.

4.3.1.2 ON-Key Interrupt

This type of interrupt occurs when the ON (Attention) key is
pressed. This interrupt 1is non-maskable. The ON-key receives
special treatement by the harduare and 1is scanned during each
instruction to check whether this key 1is doun. The content of the
output register is unimportant.

4.3.1.3 Module Pulled Interrupts

As @ module is being plugged 1in or pulled out it will briefly
complete a connection which signals the CPU that this is happening.
The CPU latchs a status bit the indicates that a module has been

pulled. This type of interrupt is non-maskable.

4,.3.1.4 Other Interrupts

The CPU input register bit 14 is available to all ports. An
interrupt occurs if some module pulls on this line. This type of
interrupt is closely related to keyboard interrupts. The system

interrupt routine has no provisions for processing this type of
interrupt except to allov interrupts to be vectored to a specified
address. This type of interrupt is maskable,

4.3.2 Interrupt Handling Algorithm

The system interrupt routine starts at address 0000F. The
interrupt routine saves the A,B,C,D0,Carry,Hex/Dec Mode and P
registers., It then checks for a module pulled interrupt. It then
checks if the CMOS test word is intact and performs a COLDSTART if

4-6

HP-71 Software IDS - Detailed Design Description
System Control

not, If the interrupt vector address is non-zero it jumps to it,
Otheruise it waits approximately 16 milliseconds to debounce the
keyboard and performs a keyscan, When the keyscan is completed,
all the registers are restored and a return from interrupt is done.

Save C(U) in R4
Save R4(5-15) and DO in INTR4
Save A(U) in INTA
Save B(U) in INTB
Save 1 stack level, Pointer, Carry, and Mode in INTM
If this is a module pulled interrupt

goto MPI

If Interrupt Ignore Flag is set
Clear it and goto RESTORE

If CMOS test word is invalid
Perform Cold start

If VECIOR is non-zero
Jump to that address

Wait 8/512ths second to debounce keyboard
Call KEYSCN

RESTORE:
Restore Mode, Carry, Pointer and 1 Stack level
Restore B(U)
Restore A(U)
Restore DO

Restore C and R4
Return from interrupt

4.4 Statement Parse

4.4,1 1Initiation

Statement parse is initiated in one of four uays.

Statement parse usually begins uwhen endline 1is entered from the

keyboard. The display buffer moves to the command stack, which
becomes the input buffer for parse (i.e., (INBS) is set to point to
the entry in the command stack).

Statement parse also begins when the computer turns on and an
external command buffer or a startup buffer exists; (INBS) is set
to point into that buffer,

Statement parse 1is also initiated when a direct execute key is
pressed; (INBS) is set to point at the key definition in the keys
file.

HP-71 Software IDS - Detailed Design Description
System Control

TRANSFORM also initiates statement parse.

In all cases, the output buffer is the destination of the internal
token stream as it is generated,

If the input line is a legal program line, the contents of the
output buffer is edited into the current program. Memory
associated with the output buffer is released.

If the input line is a Calculator BASIC statement (including
implied DISP) and computer 1is not performing a TRANSFORM, the
compiled line is moved into the statement buffer and executed. If
the computer is performing a TRANSFORM, an input line without a
line number will cause a transform failure,

4.4,1.1 External Invoking of Parse

The entry point, LNPEXT, allows parse to be called externally and
have control returned to the caller. This entry point will set a
flag, f1RIN, to indicate external entry. Line parse will alter
status bits SO thru Si1 and S13; these status bits should be saved
by the caller 1if necessary. The pointer INBS should point at the

start of the line to parse, and OUTBS should point to the start of
the output line. The input line must be terminated by a CR (ASCII
13) and be preceded by a 3 nibble line length (similar to buffer
format).

If the parser takes an abnormal exit, due to a parse error or
insufficient memory, control returns to the caller, with the error
in C(A) and the carry set. If the parse was successful, carry is
clear.

On return, f1RIN should be cleared by the caller. See the LINEP

routine for further information.

4.4,2 Statement Parse Algorithm

Algorithm;

Entry point for externally invoking parse (LNPEXT)
saves the caller’s return stack level in S-R0-2

and sets the system flag f1RIN., f1RITN flags that
all error exits (including MEMERR) will return tq
the caller with carry set and the error number in

C(A). Goto A.

NOTE: Anyone using LNPEXT entry point MUST clear
f1RIN as soon as it returns to thenm!

4-8

HP-71 Softuware IDS - Detailed Design Description
System Control

LINEP: (normal statement parse entry point)
Copy Display Buffer to Command Stack (MAKEBF)
Set INBS to start of input line in command stack
Send Carriage Return & Line Feed (CRLFOF)
(so next character will clear display buffer)

A: Set OUTBS to AVMEMS (Collapses Output buffer)
Point D1 to start of input line, using INBS
Clear S0-S11, S13
Set D(A) = End of Available Memory, using AVMEME

DO = OUTBS (Output buffer start)
Call Block 1

Retokenize lexeme
If line#
Set S5; Decrement DO (delete statement
length byte at buffer start); Output line#
Call Block 2
If tEOL

If externally invoked (f1RIN set)
THEN error

ELSE clear AUTIO flag; delete line
B: Decrement DO

Call Block 1.
Retokenize.

C: If Begin BASIC command (S3=1)
THEN goto I.
ELSE If System Command (S3=0,S0=1)

THEN error

D: If !
THEN parse remark; goto M
ELSE error.

If externally invoked (f1RIN set)
THEN error;

Clear AUTO flag

If tEOL (rmull line)
THEN exit parse
ELSE goto F.

BLOCK 1:

Save DO (statement length byte) in INADDR;
Increment DO; Clear RESTART flag (S-R1-3);
Clear Err# (S5-R1-0); Call NTOKEN;
Set RESTART flag if XUORD or XFN &
save RESTART address (S-R1-2).
Save contents of LEXPTR (position of D1
before NTOKEN call) in STMIDO - will be
needed to restore input pointer for RESTART.
Clear Middle of IF flag (S9).

4-9

HP-71 Software 1DS - Detailed Design Description
Systea Control

Entry point for variable or tEIN after THEN/ELSE:

E: If variable or EN:
set implied LET error flag.
If no line# on line
Clear AUTO flag

F: If implied LET errors (S10 set)
Restore D1,D0 from R3; Clear S10
If not in Middle of IF (S9=0=>try Implied DISP)
THEN try implied DISP
ELSE Decrement DO 4 nibbles (tEXTIF & stmt len byte);

Recover old INADDR from S-R0-0; Call GOSUBP;
Goto K

If looking at first lexeme on line
If line# followed by !
set S5; output line#; save DO (location of
statement length byte) in INADDR; increment
DO, Parse remark; goto M

If not a terminator (eg not tEOL,@,!, tELSE)
If legal implied DISP statement follouwed by
a terminator

If no line number on line
Clear AUTO flag; goto K:

Restore D1,D0; return
END OF BLOCK 1

%*Block 2 only returns if a label is not found*

BLOCK 2:

Save DO (position of statement length byte) in
INADDR; increment DO
If quote

Set appropriate flag(s);
Step over it; Call FILEP+
If legal
THEN If matching closing quote

G: THEN if colon follous
THEN LEGAL LABEL;

Output tLBLST & label
If tEOL follous

THEN goto N

ELSE goto L (parse as @)
ELSE RESPTR; Return

ELSE RESPTR; Return
ELSE RESPIR; Return

If 18t character is letter
RESPTR; GNXTCR; FILEP1; Goto G

END OF BLOCK 2

4-10

HP-71 Software IDS - Detailed Design Description
System Control

H: If not Calculator BASIC (S0=0)
THEN If begin BASIC (S3=1)

THEN error
ELSE goto D.

I: If in IF statement (S-R0-3 nonzero)
J: If not legal after THEN/ELSE (S2=0)

THEN error

If pending THEN (S6=1)
If token is IF token
THEN error

If XUORD
THEN Output 3-byte token
ELSE Output 1-byte token

Calculate Parse address
Clear flags (S0,S8)
Gosub to .Parse routine (CRGJMP)
If Middle of IF return (Carry Set)
THEN Extended IF token already output;

INADDR points to following byte;
DO is pointing past that byte
S9 is set (middle of IF flag)
S-R0-3 is nonzero (IF in progress)
If S5=1

THEN goto C
ELSE goto H

K: Normal stmt return (carry clr)
Get Next Token
If ELSE

If no pending THEN (S6=0)
THEN error

ELSE Clear S6; Decr DO; Output t@;
Call SIMILN, UPDIN+; Output tELSE

Call ELSEP; goto K
Check legal stmt terminators (@,!,EOL)
Clear S7

If @ (Multi-statement line)
L: THEN Set S7, COutput 1@

ELSE If ! (Remark)
THEN Output t!, Remark; goto M
ELSE If EOL

M: THEN Output tEOL
ELSE Error Exit --> Excessive Chars

N: Output terminator
Clear S10 (Implied LET error flag)
Calculate & urite out statement length
If multi-statement line

If S5-1

THEN Call Block 2; Goto B

ELSE Call Block 1; Goto H

4-11

HP-71 Software 1DS - Detajled Design Description
Systen Control

Set AVMEMS to DO

If line# found (S5=1)

If externally invoked (f1RIN set)
THEN exit with carry clear
ELSE Edit line into program memory (PEDIT)

Return to Main Loop
Calculate output buffer length, move to I/0 buffer
area; call SYCOLL (Resets AVMEMS,OUTBS to SYSEN)
Execute calculator BASIC Stmt (RUNX+)

See the portion of the algorithm handled in IFP
in JP&PR3

NOTES: Line parse only special checks for external invoking
in 4 distinct places.
1) eol, 2) line# followed by eol, 3) parse error,
4) correctly parsed line about to be edited into

progranm memory. :

Implied DISP is not legal immediately after THEN/ELSE.
Implied DISP is not legal during TRANSFORM.

4.4.3 Errors and Restart

Often when a keyword parse fails, it i3 because the keyword was not
initially recognized. For example: Assume there is a FORM keyuword
on a plug-in LEX file; FORM takes a single string expression as a
mandatory parameter. Further assume the user types in: >10 FORM=1
TO 5

FORM parse fails; a mechanism exists wherein the lexical analyzer
is restarted to find FOR parse. This capability is set wup in the
main parse driver, and implemented in the parse error handler.

4.4,4 Restart Algorithm

Algorithnm:
If 54=0
THEN RESPTR

If RESTART flag (S-R1-3) set

THEN goto RESTAR;
ELSE If previously restarted (S-R1-0 [err#] #0)

THEN Restore D1 to original error position
using S-R1-1; Set DO from S-R1-0;

If Implied LET error (S10=1)
Restore D1,D0 from R3; Clear S10;
If not in middle of IF (S9=0)

4-12

HP-71 Softuware IDS - Detailed Design Description
System Control

THEN try implied DISP
ELSE Decrement DO 4 nibbles

(over tEXTIF & stmt length byte);
Recover old INADDR from S-R0-0;
Call GOSUBP,

Handle as error.

4.4,5 Parse Routines

For further details on parse routines and uriting parse routines
see the

4,5 Statement Decompile

4.5.1 Initiation

Statement decompile is called as a subroutine by DCPLIN uhenever a
BASIC program line 1is to be displayed for editing. DCPLIN is
called by AUTO, FETCH, cursor up, cursor down, cursor top and
cursor bottom. LIST and single step (SST) invoke statement
decompile directly. The two "standard” entry points are; 1)
LDCOMP, which updates CURRL (Current Line) and decompiles the
entire line, and 2) LDCM10 (used by LIST), which decompiles the
entire 1line without updating CURRL. The "single step" entry
(LDSST1/LDSST2) decompiles only one statement.

4.5.1.1 External Invoking of Decompile

Decompile can be externally invoked, using the LDCEXT entry. This
entry sets the f1RIN flag, so control returns to the caller in all
cases, even if an error occurs. if this error occured. The flag,
f1RIN, MUST be cleared by the caller on return.

TRANSFORM utilizes this entry point.

4,5,2 Algorithm

LDCEXT entry: (external invoking of decompile - used by TRANSFORM)
Saves caller’s return address in S-R0-2; Sets f1RIN so in case
of MEMERR will still return. Goto LDCM10.

LDCOMP entry: (cursor up/cursor douwn)
Update Current Line;

LDCM10 entry: (LIST)

4-13

HP-71 Software IDS - Detalled Design Description
System Control

Clear SST (S1) flag;
LIST/SST entry:

D(A)<--AVMEME; DO<--OUTBS; Decompile Line#;
Save desired cursor position in LDCSPC (pointed to
by DO);

A: Save address of line length byte (pointed to by D1)
in INADDR;

SST entry for multi-gtatement line:
Step D1 over statement length byte; Clear S8, S9;
If label declaration (tLBLST)
Step D1 over tLBLST and 5 nibble chain length;
Output quote; Call ASCICK; Output quote & colon;
[f at tEOL
THEN goto OUTEOL;
ELSE goto A.

If variable (<6A)
THEN goto LETDC.

If user defined function (tEN)
THEN goto ENDC,

If remark (t!)
THEN goto !DC.

Call GTEXTI;
If text not found

THEN output ’XWORD’, followed by ID#;

Use INADDR to get to end of statement;
Goto OUTELA;

Output text; Read in 1st 6 nibbles of tokenized
line into A; Copy A into C; Jump to decompile address.

4,5.3 Decompile Routines

For further details on decompile routines and writing decompile
routines, see the "Statement Parse, Decompile, and Execute"
chapter.

4,6 Program Edit

At edit time, all program execution stacks are collapsed. The

FOR/NEXT and GOSUB/RETURN stacks are collapsed. The CALL stack is
also collapsed. Only one set of variables exists.

4-14

HP-71 Software IDS - Detailed Design Description
System Control

LOU eet+

I Systen |
I RAM I
P,——————— +

| Variable Pointers |
e+

I Display Buffer I
P+

I Configuration |
MAINST-=> #---co--ooomcmccoaee +

I Files |
CURRST--> peommemmenseneseesI

PRGMST--> : :

PRGMEN--> | |
CURREN--> 4----c-cooomccccnccaaao +

I I I
(I0BFST) | v |
MAINEN--> #==mmmmmmooeeeeee+

I Buffer List I
(11:1JETS+

I Input Buffer I
OUTBS --)> +----------mmmmmmoo+

I Output Buffer I
CLCBER--)> #=m=mm=mmmmommmmcmmeee .

| Command Stack I
CLCSTK--> | l
AVMEMS--> 4-------oommmme+

| Available Memory | |
I v |
I I

AVMEME I |
ACTIVE--> #=m=m=mmmoomcmmemcameen +

I Variables |
RAMEND--> 4----co-oomooocmcneao+

HIGH

4,6.1 Global Assumptions

If PEDITD entry, S8 set indicates the line to PEDIT is null, i.e
the line number followed by EOL.

*?

4,6.2 Program Edit Algorithnm

PEDIT: Clear null line flag (S8);
PEDITD: If current file not BASIC or if protected

THEN error;

4-15

HP-71 Software IDS - Detailed Design Description
System Control

PEDITM: Zero out all GOTO/GOSUB links;
Update current line;
Collapse stacks;
If null line
THEN collapse output buffer;

If line exists
THEN set R3 to line length
ELSE set R3 to 0;

Call RPLLIN

4-16

HP-71 Softuware IDS - Detailed Design Description
The BASIC Interpreter

oe----

|
| THE BASIC INTERPRETER = o

G0w0DDDDDDDTW=-TS TSP WD D WP WT W W >e

5.1 BASIC Interpreter

5.2 Entering the BASIC Interpreter

The BASIC interpreter is entered through two entry points; BSCEXC
and BSCEX2. The first entry point is used when executing from the
Keyboard. The second entry point allous the "Don’t Continue"
(NoCont) flag to be set, indicating that execution will halt after
the next statement 1s executed. This entry point 1is used for
Single Step execution, RUN, CONT and CHAIN.

The global flag, PgmRun (S13), is set before entry if a program is
executing.

A TFast Poll (pBSCEN) is sent out wuwhen entering the BASIC
interpreter.

The BASIC interpreter executes a statement at a time, not an entire
line. The current BASIC program counter (PCADDR) is updated to the
statement length byte of the statement to be executed. Status
(S0-11) are cleared. If the begin token of the statement is a
BASIC statement token, the execution address is computed and jumped
to. Otherwise, the statement is assumed to be an Implied LET
statement and Assignment Execute is called as a subroutine,

5.3 Reentering the BASIC Interpreter

Most statements return to the BASIC Interpreter through a direct
jump to NXTSIM. This routine computes the address of the next
statement, using the current program counter address (PCADDR) and

the corresponding statement length. NXTSTM jumps directly to back
into the BASIC Loop (at RUNRIN), with the data pointer (DO)
positioned at the next statement to execute. This mechanism uas
developed to allow execution routines an additional subroutine

5-1

HP-71 Software IDS - Detajiled Design Description
The BASIC Interpreter

level, rather than using a harduware return stack level to jump to
each routine and having them do a machine code ’RIN’.

Statements that change program flow, such as GOTO, GOSUB, CALL, END
SUB, and IN, jump directly back to the BASIC Loop wlth the data
poznter (DO) set at the appropriate "next statement" address.

Error Exits from BASIC (through MFERR or BSERR) return to RUNRT1
with the data pointer (DO) at the statement in error

RUNRT1 explicitly clears sENDx, a status to indicate an END
statement execute, allowing execution routines to use this status
internally. NXTSTM explicitly clears this flag.

The Math Stack is collapsed at the end of every statement execute.

Since ExpreSSLOn Execute (EXPEXC) does not collapse the Math Stack,

this clean up is necessary between statements and eliminates the
need for individual execution routines to do it.

Exceptions are checked at the end of every statement. See the
section below on Exception Handling.

5.4 Exiting the BASIC Interpreter

A global flag, NoCont (S14), indicates if program or statement
execution is Not to Contimue. This flag is set several wuays:
Single Step sets NoCont before the "continue" statement is
executed; PAUSE, Ending or Stopping a Program, Error Exit, hitting
the ATIN Key, GOTO from the Kkeyboard, also set NoCont.
RETURN, END,ENDSUB, ENDDEF executed f{rom the keyboard and returning
to program executlon set NoCont.

The ERROR exit flag (sERROR) is set when the error message handler
jumps to ERRRIN. In all other returns, this flag is cleared.

If execution is to continue, the BASIC Interpreter continues by
executing the next statement. If execution is to stop several
things are done., The program anmunciator is cleared. The filetype
of the current file 1is checked. If the file is non BASIC or a
program is not running, all open file buffers are flushed, unless

an error ocurred (stERROR). The Fast Poll: pBSCex is issued.

Non BASIC file execution that is interrupted due to an error exit
are not "SUSPended" like a BASIC program., Responding to the pBSCex
poll can change this.

If the current program is BASIC and the current statement is not an
END or STOP statement (sENDx=0), the continue address (CNTADR) is

5-2

HP-71 Software IDS - Detailed Design Description
The BASIC Interpreter

set at the current DO and the SUSP annunciator is 1it,

The current DO is the "next statement” to execute if execution is
continued. In the case of Errors, the "next statement" is the
statement generating the error. IF/THEN execution could pause with
the "next statement" at the ELSE clause, If the next statement
execution token is "ELSE", a statement skip is done to position the
next statement execution past the ELSE clause. For END statement
execution, there 1is no next statement to execute., The continue
address has been zeroed and must not be updated.

The current 1line is computed and updated, to reflect where the
program halted.

Statement execution (from the keyboard/statement buffer) halts when
End of Line is reached. UWhen beginning to execute the "next
statement” of a program, if the next statement address is past the
current program end, an END statement is executed,

Except for errors, all exits from the BASIC Interpreter flush open
file buffers. This can not be done for an error because an error
generated from attempting to flush file buffers would cause an
infinite loop. All exits from the BASIC Interpreter issue a Fast
Poll (pBSCex) when exiting the BASIC Interpreter and clear the
NoCont flag. Control jumps to the Main Loop.

5.5 Exception Handling

Except in the case of an error, execution exceptions are checked at
the end of every statement. Exception checking is skipped for
errors so timer expiration execution will not continue after an
error message is generated.

A global status flag, Except (S12), indicates an exception has
occurred. This flag can be set at various times during statement
execution, to indicate an exception has occured and service may be
required at the end of statement execution.

An exception is a softuare interrupt--a condition which will be
serviced after execution of the current statement. An exception is

ALUAYS set Dby softuware, although the softuware may be setting it

because of a hardware condition. The computer’s procedure for
checking exceptions is as follous:

If no exceptions have occured (Except is clear), a harduare
service request 1s issued (SREQ?). If no harduare service
request results, timers are checked for expiration. If no timers
expired, there are no exceptions to service.

5-3

HP-71 Software IDS - Detailed Design Description
The BASIC Interpreter

If an exception (Except is set) or harduare service request
occurs, CKSREQ is called. This routine, explained elseuwhere,
checks for harduare service requests which can be handled by the

mainframe: expiration of any of the three countdoun timers.
Then, if a harduare service request is still pending OR the
sof tuare exception flag (Except--S12) is set, a pSREQ poll is
issued. This is the opportunity for other device-handling
sof tuare (HPIL, for example) to do whatever it needs to do. This
is also an important spot for any external clock system (pocket
secretary, instrument controller, etc.) to schedule alarms.

After CKSREQ, if the exception flag is set, it is cleared and a
PEXCPT poll is issued. Unlike pSREQ, which may occur betueen or
during statements, pEXCPT occurs at a well-defined spot, and
therefore allous more latitude in what can be done during poll
handling. See the poll documentation header for more
information. The ATIN/ON Key is checked after this poll.

If a program is running when exceptions are checked, Pending Alarm
RAM is checked by calling ALMSRV to see if one of the three BASIC
timers has expired. If a timer has expired and the associated ON
TIMER address is within the current program scope, the ON TIMER
code is executed. Control returns to the BASIC Loop through normal
statement execution return at RUNRIN/RUNRT1.

5.5.1 Servicing Clock System Exceptions

Exception handling is one of the prime times to service the clock
system. The system provides an external alarm "slot" for use by

all applications which need to schedule alarms. The pSREQ and
pPEXCPT polls provide an opportunity to schedule alarms and to SET
UP to process alarms. Although alarms cannot actually be processed

during these polls (except for non-disruptive events, like
beeping), it is possible to set up a command buffer or some such
mechanism for later processing.

See the “Clock System" chapter for details about the clock systenm.

5.5.2 Algorithm

BSCEXC: Clear No Continue of Program flag (*toCont)
BSCEX2: Place current DO into RO

Fast poll on entering BASIC interpreter (pBSCen)
If not running (not PgmRun)

goto BSCX+
BSCXLP: Read & Move past EOL |

If EOL and not running
go exit BASIC (goto BSCEXT)

5-4

HP-71 Software IDS - Detailed Design Description
The BASIC Interpreter

If (multi-statement line)
go Update PC address

If End of current program
g0 execute END statement

Skip line
BSCX+: Save addr statement length byte

Skip statement length byte
Clear status (S0-S11)
Read Begin BASIC token
If not Begin BASIC token range

Call Assignment Execute
Skip to next statement

else
Move past BASIC token
Calculate Execution addr
Jump to Execution routine

(goto BSCX+)

(PCADDR)

(BASICs)

(NXTSTM)

(EXCADR)

Statement Execute Return: (from NXTSTM or directly)

RUNRT1: Clear END execute flag (sENDx)
RUNRTN: Clear Error flag (sERROR)
ERRRIN: Collaspe Math Stack

If ERROR

Skip exception checking (goto 6)
If no exceptions (Except=0)

If no harduare service request
I[f any pending alarm set (PNDALM)

Save D0 on stack

go Process ‘timers (goto 3)
go continue (goto 6)

Save DO on stack
Check Service requests (CKSREQ)
If no exceptions (Except=0)

go Restore DO and continue (goto 5)
Clear Exception Flag (Except)
Fast Poll on Exception (pExcpt)
Restore louw status from DSPSTA (USRSTA)

3: If ATIN Key hit (CKON)
Set NoCont flag (S14)

If Program running
Load mask to check Timer bits
Read Pending Alarm field

4; If Timer expired
Get Timer Address
If non-zero Timer address

Verify address in prgm scope
If within scope

(Bit 0]1]2 of PNDALM)

(SCOPCK)

Clear timer bit in PNDALM
Enable another Timer to be serviced
C <-- ON TIMER address

Set ONTIMER statement flag

5-5

HP-71 Software IDS - Detailed Design Description
The BASIC Interpreter

go process ON TIMER statement
go Check if any other Timers off (goto 4)

5: Restore DO from RO
Clear Error occured flag (SERROR)

6: If Continue
g0 process next of statement (BSCXLP)

else

BSCEXT: Clear PRGM annunciator (Sf1gCp)
Read filetype (RDCHD+)

If non-BASIC file (BASCHK)
go exit BASIC (goto BSCEX+)

If not running
go exit BASIC (goto BSCEX+)

else

If not END/STOP execute (SENDx)
If ELSE

Skip to End of Line
Update Continue Address
Set SUSP Annunc/Flag

Compute & update current line
BSCEX+:

If not an error
Flush all open files

Fast Poll on Exiting BASIC interp (pBSCex)
Clear Don’t Continue flag
golong MAIN Loop (MAINLP)

5.6 Immediate Mode

WUhenever a line without a line number preceding it is 1legally
parsed, that line is executed immediately.

The BASIC Interpreter is entered at BSCEXC. The program running

flag (PgmRun) is clear.

5.6.1 Statement Buffer

An immediate execute line is moved from the output buffer into the
statement buffer before being executed. The statement buffer is
alvuays the first buffer in the Buffer chain, ensuing that only
movement of mainframe files affects the value of the BASIC program
counter,

HP-71 Software IDS - Detailed Design Description
The BASIC Interpreter

5.7 Program Execution

Program Execution begins through the RUN Key, RUN statement, CHAIN
statement, CONT Key, CONT statement and the SST Key,

Before running a program, several things are done. If a filename
is specified in the RUN statement, the Current File pointers are
changed to point to the file. In the case of CHAIN, the current
file is purged.

If the filetype is neither BASIC nor binary, a poll is issued
(pRUNft) allowing a Lex File to take over the RUN/CONT/CHAIN
statement,

Except for contimuing or single stepping at a valid continue
address, program scope is recomputed and reset. All 1labels and

user defined functions are chained. In case any of the direct

execute keys (RUN, CONT, SST) were hit within Auto Mode, AUTO Mode
is cleared.

If the program file is empty, control returns to the Main Loop.

In the case of RUN or CHAIN, all BASIC stacks are collapsed. For
RUN, the Assign Tableand all FIB entries are deleted.

For CONT and SST, if the continue address (CNTADR) is non-zero,
execution is continued at this address. Otherwise, CONT and SSI
begin execution at the first statement of the program after

collap91ng stacks, deleting the Assign Table, and deleting all FIB

entries (acts as a RUN). A CONT execution collapsee the Statement

Buffer to prevent a subsequent "Return to Keyboard" in a paused

program from returning incorrectly to the Statement Buffer
containing "CONT".

The suspend anmunciator is cleared, the program running flag is
set, along with the PRGM annunc1ator

If a binary program is to be run, a poll is issued (pRUNnB),
indicating beginning execution of a non-BASIC file. The binary
file type is passed. On return from the poll, the binary code is
branched to by pushing its address on the hardware return stack and
doing a machine code RIN’, The binary program exits by branching
to the EXIIRN entry point in the RUN statement code; this clears
flags and exits through BASIC.

If a BASIC program 1is to be run, the BASIC interpreter is entered
at BSCEX2,

HP-71 Software IDS - Detailed Design Description
The BASIC Interpreter

5.8 TRACE Mode

TRACE mode can be used to help to debug a program and is entered
and exited by executing the TRACE statement.

The nibble TRACEM in the system RAM indicates the trace mode:
TRACEM Meaning
-—-—— TGeSWsS—" T -———-—-- w_— >——"eoP-

0 Not in trace mode at all.
2 Only in trace flow mode
4 Trace all variable assigmmenmts
6 In both trace flow and trace variables

The status bit 15 is used as trace flag. UWhen TRACEM = 0, S15= 0.
When TRACEM # 0, S15= 1. Trace mode is a global status.

Variable assignment will be traced when run through the STORE entry
point at the assignment routine. S-R1-2 in statement scratch RAM
must contain the address of variable token in the assigmment
statement. If the the content of the S-R1-2 is zero, the
assignment ¥ill not be traced.

5.9 Global Assumptions

Several flags have global meaning during BASIC Interpreter
execution:

Except (S12) Exception has occured
PgmRun (S13) Program Running
NoCont (S14}) No Continue of execution
Trace (S15) TRACE Mode active

On entering the BASIC Interpreter: PgmRun (S13) is set if program
executlon is to begin, NoCont (S14) is set if execution is to halt
after the next statement is executed.

On reentering the BASIC Interpreter: NoCont (S14) is set if
execution is to halt, DO points at "next statement” to execute (at

the EOL or @ of the statement just executed), sENDX is clear,
unless an END or STOP statement. NXISTM and RUNRT1 will clear this
flag.

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

oee

|
| LANGUAGE EXTENSION AND BINARY FILES
I
Beeee eeeeeo=~——— — . — ==v—— 4

—
—
—

o tr
l
0 o

This chapter discusses the lLanguage Extension (LEX) and Binary
(BIN) file types, which are useful in writing and distributing
software for the HP-71.

The LEX file type 1is the more powerful of the two, for it extends
the HP-71 BASIC language. The operatlng system automatlcally
incorporates each LEX file in memory into the lexical scanning
process of the interpreter. In this way the LEX file may add
statements, functions, and other keywords to the HP-71 operating
system. A LEX file may also implement sophisticated capabilities
by responding to the various polls issued by the operating systenm.

The BIN file type may contain a main program written in HP-71
assembly language. A binary main program can be invoked directly
through the RUN and CALL statements.

The BIN file type may contain one or more subprograms in machine
language, as opposed to subprograms stored in a BASIC file, which
are stored 1in tokenized form and are interpreted rather than
executed directly by the CPU. BIN file subprograms can be CALLed
from BASIC in the same manner as BASIC subprograms and are used
when the higher speed of assembly language 1s needed or special
access to system resources 1s required and not acce551ble through
BASIC.

6.1 LEX File Structure

6-1

HP-71 Software I1DS - Detailed Design Description
Language Extension and Binary Flles

After the file header is the following information;

LEX ID 1 byte
Louest Token # 1 byte

Highest Token # 1 byte
Next LEX Table Link 5 nibbles
Speed Table Exists? 1 nibble \
Optional Speed Table 78 nibbles > 1 nibble if no
Speed Table Exists? 1 nibble / SPEED table
TEXT Table Offset 4 nibbles
Message Table Offset 4 nibbles
POLL Handler Offset 5 nibbles
MAIN Table 9 * 4 keywords (nibbles)
TEXT Table 3 * & keywords + 2 * total # chars + 3

(nibbles)

Message Table
Poll Handler Code
Execution Code
Optional Next LEX Table

LEX ID: 1 byte This identifies the LEX file. An XEN (external
function) or XUORD (any other external keyword) is completely
specified by the LEX ID and the TOKEN#; these tuo bytes are
included in the tokenization of an XWORD or XFN. LEX IDs are
assigned according to a procedure outlined in the "HP-71 Resource
Allocation" chapter.

LOUEST TOKEN#: 1 byte Louest token rumber in this LEX table.

HIGHEST TOKEN#: 1 byte Highest token number in this LEX table,

NEXT LEXTABLE LINK: 5 nibbles Offset to another LEX table, allowing
tables to be 1linked together within one file for easy
distribution. 00000 if no link.

SPEED TABLE: 1 nibble or 80 nibbles Ina LEX file with many
keywords, a speed table is used to speed up searching of the text
table; for each letter, A-Z, is an offset into the text table,
pointing to the keywords beginning with that letter.

In a LEX file with feu keywords, the speed table is omitted to
save space. If the speed table is to be omitted, the single
nibble "F" 1is placed here.

If the speed table is to be included, the format is as follous
(shoun here in HP-71 Assembler input format):

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

NIBHEX O

CON(3) <aaa>
CON(3) <bbb>

CON(3) <ccec»
CON(3) <ddd»

CON(3) <eee>
CON(3) <«fff>

CON(3) <ggg>
CON(3) <hhh>
CON(3) «iii»
CON(3) <jjj»
CON(3) <kkk>
CON(3) <111»

CON(3) <mmm>
CON(3) <nnn>
CON(3) <o000>
CON(3) <ppp>
CON(3) <qqq>
CON(3) <rrr»
CON(3) <sss>
CON(3) <ttt>
CON(3) <uuuw>
CON(3) <vvv>

CON(3) <www>
CON(3) <xXxx>
CON(3) <yyy»
CON(3) <zzz»
NIBHEX 0

The 0-nibble at either end serves to identify the presence of the
speed table uwhether the code is looking for it from above or
below. (Similarly, the single F-nibble identifies the absence of
the speed table whether the code is 1looking for it from above or
belou.)

The quantities <aaa>, <bbb>, <ccc>, et cetera are offsets into
the text table. The text table is maintained in approximately
alphabetized form (see TEXT TABLE belouw for more detail), and the
3-nibble quantities in the speed table identify the p031t10n of

each alphabetic-character’s first entry RELATIVE to the start of
the text table,

EXAMPLE:

If the first entry starting with the letter "P" is at address
126 (decxmal) relative to the start of the text table, the line
appearing as "CON(3) «<ppp>" above would actually be "CON(3)
126",

If there are no keywords beginning with a partlcular letter, the

3-nibble offset for that letter should be the size of the entlre

6-3

HP-71 Softuare IDS - Detalled Design Description
Language Extension and Binary Files

text table.

EXAMPLE: If the text table is 459 (decimal) nibbles long and
there are no keywords beginning with Q, the 1line appearing as

“"CON(3) <¢qqq>" above would actually be "CON(3) 459".

TEXT TABLE OFFSET: 4 nibbles Offset from current location to the
second nibble of the text table (start of first text string). If
the beginning of the text table is labeled "TxIbSt", an
assembly-language psuedo-op to properly fill this location would
be:

CON(4) (THTDSt)+1-(*)

MESSAGE TABLE OFFSET: 4 nibbles Offset from current location to the
beginning of the message tables. The message table must be
structured to work with the message-handling system described in
the "Message Handling" chapter. If there is no message table,
the value should be zero.

POLL HANDLER OFFSET: 5 nibbles Offset from current location to the
poll handler for this LEX file. If there is no poll handler,
this should point to an RINSXM instruction. Since the RINSXM
instruction is a "00", setting this field to "00000" will point
it at itself, which will conveniently turn out to be an RINSXM
instruction,

MAIN TABLE: 9 ¥* (# of keywords) nibbles The Main Table contains
information needed to run or to decompile every token in the LEX
file. The entries are in token ' number order. The first table
entry corresponds to the 1louwest token # in the LEX file, the
second table entry corresponds to the next token #, et cetera,

Each main table entry takes 9 nibbles and is formatted as
follous:

TEXT TABLE OFFSET: 3 nibbles This is the position of the
corresponding text in the text table for this Kkeyword,
relative to the start of the text table. This points at the
START of the text table entry--the nibble count, which is one
nibble before the start of the actual text (see description

of TEXT table belou).

EXECUTION ADDRESS: 5 nibbles Offset relative to current
location of start of execution code for this keyword. The
corrsponding parse address for the token is 5 nibbles above
the start of the execution code. The corresponding decompile
address for the token is 10 nibbles above the start of the
execution code.

CHARACTERIZATION NIBBLE: 1 nibble The characterization nibble

6-4

HP-71 Softuare IDS - Detailed Design Description
Language Extension and Binary Files

categorizes a token during statement parse. If the keyuword

is a function (string or numeric), this nibble is aluays a
hex "F"., Otheruise, the four bits of this nibble mean the
following:

bit 0: Calculator BASIC (Legal from the Kkeyboard)
bit 1: 0 (unused)
bit 2;: Legal after THEN/ELSE
bit 3: Begin BASIC (Programmable)

Some examples follou:

For keywords uwhich are programmable, legal after THEN/ELSE,
and legally executed from the keyboard, the characterization
nibble is "D"; an example is the DISP keyword.

For keywords which are used strictly as intermediate keywords
(such as PORT in the mainframe), the characterization nibble
is "0".

Non-programmable commands (like FREE and EDIT) which are
legal after THEN/ELSE should have a characterization nibble
of “5"; note that a keyword which is Calculator BASIC, but
not Begin BASIC, is interpreted as non-programmable.

On the other hand, a keyword which is Begin BASIC but not
Calculator BASIC, is not executable from the keyboard, but
only makes sense within the context of a program; the DATA
keyword, which has a characterization of "8", is an example
of such a keyuword.

In all cases, bit 1 of the characterization is urused.

TEXT TABLE: 3*(# of keywords) +2 * (total # chars) + 3 nibbles
Strictly speaking, the text table does not have to reside
immediately after the main table. It can reside anywhere since
its address is specified in the header., The text table contains
the text representation of all keywords in the LEX file, and is
used by the parse and the decompile drivers.

Entries in the Text Table are in alphabetical order with one
important difference: a shorter keyword which comprises the first
part of a longer keyword, occurs AFTER the longer keyword. In

other words, the Kkeyword "ABC" must appear after the keyuword
“ABCD"., If this is not done, the parse driver (which scans the
text table linearly from beginning to end) will never find the
keyword "ABCD" because it will match on the keyword "ABC" first.
(Equivalently, for purposes of sorting the keyword list, the
keywor?s can be considered to be padded with "“FF“s out to eight
bytes.

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

The entry for each keyword in the text table has the following
format:

(SIZE OF TEXT - 1) IN NIBS: 1 nibble If the text is 2 chars (4
nibs), this field = "3", If the text is 3 chars (6 nibs),
this field = "5". And so on. Needless to say, the maximum
value for this field is "F", implying that the maximum length
of a keyword is 8 characters.

TEXT: 2-8 bytes (as specified above) Text of keyword in ASCII,
Note that keywords must be at least two characters 1long,
since one character keyuwords would conflict with variable
names,

TOKEN #: 1 byte

Token # of this keyuword.

The Text Table is terminated with the nibbles "1FF".

EVERYTHING ELSE: This ends the list of required components of a LEX
file. All that is needed nou is the follouwing:

1) MESSAGE TABLE If there is a message table for this LEX file,
its address 1is specified in the header. The message table
must conform to the standard message table format; the first
byte contains the louest message#, and the second byte
contains the highest message#.

Unen calling the mainframe message routines (BSERR and
MFURN), a message within thig table is specified by the LEX
ID# in C[3-2] and the message number in C[B].

See the "Message Handling" chapter for further details.

2) POLL HANDLER Offset to the poll handler’s address is
gpecified in the header. See the section on polling for
further details.

3) STATEMENT/COMMAND/FUNCTION EXECUTION CODE The execution code
of the gtatement, command, or function. Statement execution
entry points are preceded by decompile and parse addresses;

non-programmble statement execution entry points are preceded
by a parse address only; function execution enutry points are
preceded by a parameter count and description, |

6.1.1 How it All Uorks

The SPEED Table, MAIN table and TEXT table are the tools with which
the BASIC language is extended. The mainframe keeps a directory of
all the LEX files 1in the machine, and refers to this directory at

6-6

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

parse, decompile, and execution time. See the LEX Entry Buffer
gection under the "Table Formats" chapter for details,

6.1.1.1 Parsing

Uhen the lexical analyzer (NTOKEN) is trying to tokenize text, it
searches the LEX file text tables for a matching string. If there
are a lot of keywords in the LEX file, the presence of an optional
speed table speeds this searching.

Once a matching string has been found, the lexical analyzer reads
the token number associated with the keyword. This token number
serves as an index into the main table. The main table provides
the execution address,

For a statement, the code at the execution address is immediately
preceded by a 5 nibble offset to the corresponding parse routine,
s0 that the parse driver is able to find the parse routine for a
particular statement.

For a function, the execution code is immediately preceded by the
parameter count and parameter descriptors; these are used by the
expression parser to parse the function.

6.1.1.2 Decompiling

WVhen decompiling, the decompile driver has a token number and a LEX
ID number. The LEX ID number and token number locate the proper
LEX file; the relative token number serves as an index into the
main table, From the main table the decompile driver fetches the
following:

1) The 1location of the text table entry for the text of the
keyword, and

2) The execution address. For a statement, ten nibbles prior to
the execution address is the five nibble offset to the
corresponding decompile routine; this is used by the decompile
driver to invoke the decompile routine for a particular
statement.

For a function, the expression decompiler uses the parameter
count and parameter descriptors which immediately precede the
execution address to decompile the function.

6.1.1.3 Execution

Uhen executing an external statement or function, the LEX ID and
token number are used to locate the proper LEX file. The relative
token numbers serves as an index 1into the Main table. The
execution address is calculated and jumped to, beginning execution

6-7

HP-71 Software 1DS - Detailed Design Description
Language Extension and Binary Files

of the keyword.

6.1.2 Hou to Create a LEX File

The HP-71 provides no mechanism to create a LEX file other than to
copy it from an external device or to POKE it into a file chain. A
number of tools have been used by the HP-71 softuare development teanm

to assist in creating LEX files. They are described belou.

6.1.2.1 HP-71 Assembler

An assembler is obviously the most important tool. The HP-71
assenbler is available both in the HP-71 Assembler/FORTH ROM, as well
as in a special set of programs which run on the HP200 series
machines.

Note that assembly language examples given in this section are in the
proper format for the assembler which was used by the HP-71 mainframe
software development teanm,

6.1.3 Symbolic Referencing

Follouwing are copies of the mainframe and built-in XWORD tables which
comprise every keyword token in the mainframe; these files were used
to generate all the necessary tables. Note that in the first table
all the token names are given as starting with ’t’, indicating
one-byte tokens. In the second table (as with all LEX files), all
the token names begin with ’x’, indicating these are not complete
tokens, but only the first byte of a three-byte token. Ue discuss

later how to build the symbolic for the complete three-byte token.

6.1.3.1 Mainframe Tokens

6-8

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

MAINTS 00
HHFIEEHHA HHHEE XXX IO HOEEE IHEHEEE XX

RTNSXM

* A A ~

* TFile Msg Poll
*
*

. FHEEEOEEE IR H0HEEIIR

HH FHEEEEOEE XXX R FHHRN 3IRHTIHIHHHHHHIHH
*A A AANAAN ~

*T T BLSC E

*o e eeya X
¥k X ggsl e
%a t iatc c
*n nle u
x mB t
* BA A i
* AfCS o
* Stml n
* IedC
* Cr A
* d
* d
* r
*

*

00 EN EN-GO
00 GO

01 TRMNTR
02 BLDNUM
03 BLDNUM

04 BLDNUM

05 BLDNUM
06 BLDNUM
07 BLDNUM

08 BLDNUM
09 BLDNUM

0A BLDNUM

0B BLDNUM

0oC BLDNUM

oD TRMNTR

OE TRMNTR

OF TRMNTR
10 TRMNTR

11 TRMNTR
12 BLDNUM

13 BLDNUM

14 BLDNUM

15 BLDNUM

16 BLDNUM
17 BLDNUM
18 BLDNUM

~

EOF

A

S
O
X
0

o
3
>

tINT12
tINT11
tINT10
tINTS
tINTS8
tINT7
tINT6
tINTS
tINT4
tINT3
tINT2

tLBLRF
tLINE
tBIG
tSMALL
tFLT12
tFLT11
tFLT10
tFLT9
tFLT8
tELT7
tFLTo6

~

A~

+
3
0

3
3
0
0

A A

TblNam TblLnk ROM#

FN (lex only)
GO (lex only)
Dummy Fill
12-Digit Integer
11-Digit Integer

10-Digit Integer
9-Digit
8-Digit
7-Digit
6-Digit
5-Digit
4-Digit
3-Digit
2-Digit
(Unused]

Integer

Integer
Integer

Integer

Integer

Integer

Integer

Integer

Label Reference

Line Number
Constant Too Big
Constant Too Small
12-Digit Float
11-Digit Float
10-Digit Float
9-Digit Float
8-Digit Float
7-Digit Float
6-Digit Float

6-9

19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
b
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B

BLDNUM
BLDNUM
BLDNUM
BLDNUM
BLDNUM
TRMNTR
TRMNTR
TRMNTR
TRMNTR
STRLIT
TRMNTR
TRMNTR
TRMNTR
TRMNTR
STRLIT
TRMNTR
TRMNTR
TRMNIR
TRMNIR
TRMNIR
STRING
TRMNTR
TRMNIR
ONEDGT
ONEDGT
ONEDGT
ONEDGT
ONEDGT
ONEDGT
ONEDGT
ONEDGT
ONEDGT
ONEDGT
TRMNTR
TRMNTR
TRMNTR
TRMNTR
TRMNTR
TRMNTR
TRMNTR
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC

tFLIS
tFLT4
tFLT3
tFLT2
tFLT1

tSVAR

al

al

a3
a4

a5
ab
a7

as

ag

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

5-Digit Float
4-Digit Float
3-Digit Float
2-Digit Float
1-Digit Float
[Unused])
[Unused])
%U?used]

|

(") (String Delimiter)
(%)
($)
(%)
(&
() (String Delimiter)

(,)
String Variable
(.)
(/)

(Digit)
(Digit)
(Digit)
(Digit)
(Digit)
(Digit)
(Digit)
(Digit)
(Digit)
(Digit)

:)
)

)
%c MODE

)

b
l
\
o

d
V
v

—

(Static
(Static

(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static
(StaticR

G
U
—
=
T
I
T
O
M
M
O
O
D
P
—
~
—
~
—
~
Q
—
~
—
—
~
O
O
0
N
O
O
N
I
d
B
W
M
N
H
P
F
L
O

6-10

(-)

ASNMNT OPRIR

Variable)
Variable)

Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

4c
ap
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
A
7B
7C
7D
7E

IP
FP
MAXREAL
RMD
RAD
DEG
INF
EPS
CEIL
KEY$
MOD
ERRL
ERRN
DATE
DATE$
PI

TIME

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
TRMNTR
TRMNTR
TRMNTR
TRMNTR
TRMNTR
DYNAMC
DYNAMC
DYNAMC
DYNAMC
DYNAMC
DYNAMC
DYNAMC
DYNAMC
DYNAMC
DYNAMC
IP
FP
MAXRL
RMD
RAD
DEG
INF
EPS
CEIL
KEY$
MOD
ERRL
ERRN
DATE
DATE$
PI
CMPLX
TIME
FN
ARRAY

tZ

tADIGO
tADIG1
tADIG2
tADIG3
tADIG4

tADIGS
tADIG6
tADIG7
tADIG8
tADIGY
tIP

tEP
tMAXRL
tRMD
tRAD
tDEG
tINF
tEPS
tCEIL
tKEY$
tMOD
tERRL
tERRN
tDATE
tDATES$
tPI
tCMPLX
tTIME
tEN
tARRAY

(Static
(Static
(Static
(Static
(Static
(Static

(Static
(Static
(Static
(Static
(Static
(Static

(Static
(Static
(Static

—
~
e
m
~
e
~
~
~
N
K
x
X
E
<
C
H
W
N
P
O
T
D
V
O
Z
I
t

[
\
]
)

Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
IP

FP

MAXREAL

RMD

RAD

DEG
INF
EPS

CEIL

KEY$

MOD

ERRL

ERRN

DATE

DATE$
PI
CMPLX
TIME

FN

ARRAY

vVariable
Variable
Variable

Variable
Variable
Variable
Variable
Variable
variable
variable

Variable)
Variable)
Variable)
Variable)
Variable)

Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)

C
O
~
N
O
O
N
M
N
P
W
N
H
E
=
O

DMARRY tDMYAR Dummy array

6-11

HP-T1 Software IDS - Detalled Design Description
Language Extension and Binary Files

7F RES
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
85
96
97
98
39
9A
9B
9C
9D
9E
9F
A0
Al
A2
A3
A4
AS
A6
A7
A8
AS
AA
AB
AC
AD
AE
AF
BO
Bl

NOT

DIV

AND
EXOR
OR

LOG

SQR
LOG10
EXP
TIME$
SIN
COS
TAN
ASIN
ACOS
ATAN
INT
MEAN
SDEV
PREDV
RND
SGN
ABS
NUM
CHR$
VAL
STR$

FACT
LEN

UPRCS$
MIN
MAX
IVL
OVF
UNF
DvZ

1111 RES
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

INVLUT
NOT
MINUS
MULTPY
DIVIDE
PERCNT
DIV
PLUS

CONCAT
COMPAR
AND
EXOR
OR
EXPR
EXPR
LOG

LOG

SQR
LCG10
EXP
TIME$
SIN
CoS
TAN
ASIN
ACOS
ATAN

INT
MEAN

SDEV
PREDV
RND
SGN
ABS
NUM
CHR$
VAL
STR$
SUB$
FACT
LEN
LPRP
UPRC$
MIN
MAX
IVL
OVF
UNF
DVZ

tRES
tA

tNOT
t-

t*

t/
t%
tDIV
i+

t&
tRELOP
tAND
tEXOR
tOR

tLOG
tLN
tSQR
tL0G10
tEXP

tTIMES
tSIN

tCOS

tTAN
tASIN

tACOS
tATAN
tINT
tMEAN
tSDEV

tPREDV
tRND
tSGN

tABS
tNUM
tCHR$
tVAL
tSTR$
t1SUBS

tFACT

tLEN
tLPRP

tUPRC$
tMIN
tMAX
tIVL

tOVF
tUNF
tDVZ

RES
“ (INVOLUTION)
NOT
- (Unary)
*

/
%
DIV
+

[Unused])
& (CONCATENATE)
Relational operators
AND
EXOR

OR

(Urused]
[Unused]
LOG

LN

SQR

LOG10

EXP

TIMES
SIN

COS
TAN

ASIN

ACOS

ATAN

INT

MEAN

SDEV

PREDV

RND

SGN

ABS

NUM

CHR$
VAL

STR$ (formerly VALS$)
SUB$ (implied)
FACT

LEN

LPRP ()

UPRC$
MIN

MAX

IVL

OVE

UNF

DvZ

6-12

B2
B3
B4
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
Co
C1
c2
C3
Ca
Ca
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DE
DF
EO
EO

INX

COPY
LR
DELETE
EDIT
DEF

LIST
REAL
NAME
DESTROY
LINPUT
LET
SUB

FOR
NEXT

DISP
DATA
READ
FETCH
INPUT
INTEGER
SHORT
DIM
PRINT
STAT
KEYS
CARD
PORT
MAIN
DEGREES
RADIANS
ADD
DELAY
PAUSE
UAIT
STOP
END
RETURN
GOSuUB
GOTO
RESTORE

IF
ON

1111
1111
1111

1101
1101
0111
0111
1101
0000
1101
1101
1101
1101
1101
1101
1000
0000
1001
1001

1101
1000
1101
0111
1101
1101
1101
1101
1101
1101
0000
0000
0000
0000
1101
1101
1101
1101
1100
1101
1101
1101
1101
1101
1101
1101

1101
1101

INX
XEN
XEN

copy
LR
D’LTE
EDIT
DEF
ENDDEF
LIST
REAL
NAME
DSTROY
LINPUT
LET
SUB
ENDSUB
FOR
NEXT

DISP
DATA
READ
FETCH
INPUT
INTEGR
SHORT
DIM
PRINT
STAT

DEGREE
RADIAN
ADD
DELAY
PAUSE
UAIT
STOP
END
RETURN
GOSUB
GOTO
RESTOR

IF
ON

tINX
tXEN
tFEN
LASTEN
tCOPY
tLR
tDELET
tEDIT
tDEF

tENDDF

tLIST

tREAL
tNAME
tDSTRY
tLINPT
tLET
tSUB
tENDSB
tFOR

tNEXT

tLITRL
tDISP
tDATA
tREAD
tFETCH
tINPUT
tINTEG
tSHORT
tDIM
tPRINT
tSTAT
tKEYS
tCARD

tPORT
tMAIN

tDEGRE
tRDIAN
tADD

tDELAY
tPAUSE
tUAIT
tSTOP
tEND

tRETRN
tGOSUB
tGOTO
tRESTR

tRFILE
tiF
tON

tCREF

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

INX
XEN

Funny Function
Last Function
CcorPY
LR
DELETE
EDIT
DEF

END DEF (parsed by ENDP)
LIST
REAL
NAME
DESTROY

LINPUT
LET
SuUB

END SUB (parsed by ENDP)
FOR

NEXT

LITERAL (Literal label or file name)
DISP
DATA
READ
FETCH
INPUT
INTEGER
SHORT

DIM

PRINT
STAT

KEYS
CARD

PORT
MAIN
DEGREES
RADIANS
ADD

DELAY

PAUSE
UAIT

STOP
END

RETURN
GOSUB

GOTO

RESTORE

Run file specified in RUNP
IF
ON

Call by reference separator

6-13

El OFF
El
E2
E2
EJ
E4
ES
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
FO
Fl
Fe
F2
F3
F3
F4
F4
F4
F5
Fb
F6
F7
I8
F8
F9
FA
FB
FC
FD
[E
FF

USER

ERROR
TIMER
KEY
REM
IS
BEEP
BASE
TRACE
PURGE
CAT
OPTION
AUTO

TO

THEN

ELSE
STEP

TAB
ALL

CALL
CFLAG
SFLAG

USING
RUN
IMAGE

1101

1101

0000
0000
1101
1101
0000
1101

1101
1101
1101
1101
0111
1101
0000
0000
0000

0000

0000

0000
0000

0000
0000

1101
1101
1101

0000
1101
1000

OFF

USER

NXTSTM
NXTSTM
KEY
REM
NXTSTM
BEEP
NXTSTM
TRACE
PURGE
CAT
OPTION
AUTO
XUORD
TRMNIR
TRMNIR
TRMNTR

TRMNTR

ELSE
LABEL

NXTSTM
NXTSTM

CALL
CELAG
SFLAG
BANG
NXTSTM
RUN
IMAGE

140)34
tCVAL
tUSER
tCOLON
tERROR
tTIMER
tKEY
tREM
tIS
tBEEP
tBASE
tTRACE
tPURGE
tCAT
tOPT’N
tAUTO
tXWORD
tEOL
tCOMMA
tSEMIC
tIN
tTO
tPRMST
tTHEN
tEXTIE
t
tELSE
tSTEP
tLBLST
tTAB
tALL
tPRMEN
tCALL
tCFLAG
tSFLAG
t!
tUSING
tRUN
tIMAGE

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

OFF
Call by value separator
USER

HPIL colon token
ERROR

TIMER
KEY
REM
IS
BEEP
BASE
TRACE
PURGE
CAT

OPTION
AUTO

XWORD
<eol>

coMMA

SEMICOLON

tIN (for CALL)
TO

PRMST
THEN

Extended If

(Continuation)
ELSE
STEP
Label Statement
TAB
ALL
PRMEN
CALL

CFLAG

SFLAG

Comment
USING
RUN

IMAGE

(Start of Parm list-SUB,CALL)

(End of Parm list-SUB)

The following is the "built-in XWORD" table (LEX ID 01):

RTNSXM ¥rm01s MAINTS 01
AN HHHIIHE KRHHXHX IR HHHKR HHHHR KK

*

*

*

*

A HHHIHIIN AK FKHH%

AR IHFAIHE K#

A

File Msg

A~

Poll

A

EOF

~ A A

TblNam TblLnk ROM#

I HIHIKKKIHHHHHH%

AR FAFIHE IHHHHFHHIHIHIIHIHKIXH

6-14

HP-71 Softuare IDS - Detailed Design Description

3

>
-

X
0
=

ACS
ADDR$
ADJABS
ADJUST
AF
ANGLE
ASN
ASSIGN
ATN
BYE
CAT$
STD
FIX
SCI
ENG
CHARSET
CHAIN
CHARSET$
CLAIM
CLASS
CLOCK
CLSTAT
CONTRAST
CONT
CORR
PLIST
CREATE
ZERO
DEFAULT
DROP
DTH$
ENDLINE
ERRM$
VER$

AAAAN

BLSC
eeya

gesl
iatc
nle

mB

BA A
AfCS
Stml
ITedC
Cr

1111
1111
1101
1101
1111
1111
1111
1101
1111
1101
1111
1101
1101
1101
1101
1101
1101
1111
0111
1111
0000
1101
1101
0111
1111
1101
1101
0000
1101
1101
1111
1101
1111
1111

>
S
O
e
t

O
D

X
M

S
Q
Q
>

ACOS
ADDR$
ADJAAA
ADJNNN
AF
ANGLE
ASIN
ASSIGN
ATAN
BYE
CAT$
STD
DSPF
DSPF
DSPF
CHARST
CHAIN
CHRST$
NASSAU
CLASS

CLSTAT
CNTRST
CONT
CORR
PLIST
CREATE

DEFALT
DROP
HEX$
ENDLIN
ERRM$
VER$

)
S
0
X
X
O
H

3
3

XANGLE

XCLOCK

XZERO

Language Extension and Binary Files

)
3
0
3
3
0
0

ACS
ADDR$
ADJABS
ADJUST
AF
ANGLE
ASN
ASSIGN
ATN
BYE
CATS
STD
FIX
SCI
ENG
CHARSET
CHAIN
CHARSET$
CLAIM (PORT)
CLASS
(RESET) CLOCK
CLSTAT
CONTRAST
CONT
CORR
PLIST
CREATE
ZERO
DEFAULT
DROP
DTH$
ENDLINE
ERRM$
VER$

(function and middle word)

6-15

23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
an
4B
ac
4D
4E
aF
50
51
52
53
54
55

EXACT
EXPM1
EXPONENT
EXTEND
FLAG
FLOOR
FLOU
FREE
GDISP
GDISP$
HID
INTO
KEYDEF$
KEYDOUN
LC
LGT
LOCK
1.OGP1
WIDTH
MATH
MEAN
MEM
MERGE
MINREAL
NAN
NEAR
NEG
PCRD
PEEK$
POKE
POP
POS
PRIVATE
PROTECT
PUT
PUIDTH
RANDOMIZ
RED
RENAME
RENUMBER
RESET
ROUND
SDEV

WINDOU
SECURE

DISP$
SETDATE

SETTIME
SHOU
SQRT
STARTUP

1101
1111
1111
0000
1111
1111
0000
0111
1101
1111
1111
0000
1111
1111
1101
1111
1101
1111
1101
0000
1111
1111
1101
1111
1111
0000
0000
0000
1111
1101
1101
1111
1101
1101
1101
1101
1101
1111
1101
1101
1101
0000
1111
1101
1101
1111
1101
1101
0111
1111
1101

EXACTT
EXPM1
EXPON

FLAG
INT

FRPORT
GDISP
GDISP$
HXDEC

KEYDEF
KEYDUN
FLIP
LOG10
LOCK
LOGP1
UIDTH

MEAN
MEM
MERGE
MINRL
NAN

PEEKS
POKE
POP
POS
PRIVAT
PROTCT
PUT
PUIDTX
RANDOM
RED
RENAME
RENUM
RESET

SDEV
WINDOU
SECURE
DSP$
SETDAT
SETTIM
SHOU
SQR
STRTUP

XEXIND

XFLOU

XINTO

XMATH

KNEAR

XNEG

XPCRD

xPOS

XROUND

HP-71 Software IDS - Detajled Design Description
Language Extension and Binary Files

EXACT

EXPM1

EXPONENT
EXTEND
FLAG

FLOOR (Same as INT)
(TRACE) FLOU

FREE (PORT)
GDISP

GDISP$

HTD

INTO
KEYDEF$
KEYDOUN

LC

LGT
LOCK

LOGP1

WIDTH

MATH

MEAN (Duplicate of Built-in)
MEM

MERGE

MINREAL

NAN

NEAR

NEG

PCRD

PEEK$

POKE

POP

POS

PRIVATE

PROTECT
PUT

PUIDTH

RANDOMIZ (E)
RED

RENAME

RENUMBER

RESET [CLOCK]

ROUND

SDEV (Duplicate of Built-in)
WINDOU

SECURE

DISP$

SETDATE

SETTIME

SHOW (PORT)
SQRT

STARTUP

6-16

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

56 TOTAL 1111 TOTAL TOTAL
57 TRANSFOR 1101 TRSFMX TRANSFORM
58 TRAP 1111 TRAP TRAP
59 UNPROTEC 1101 UNPROT UNPROTEC(T)
5A UNSECURE 1101 UNSECR UNSECURE
5B VARS 0000 XKVARS (TRACE) VARS

6.1.3.2 Other Mainframe Symbolics

Existing symbolics for all the mainframe operators are defined as
follous:

tx EQU 485
t& EQU #89
t* EQU #83
t+ EQU #87

t- EQU #82
t/ EQU #84
tAND EQU #8B
tDIV EQU 486
tEXOR EQU #8C
tNOT EQU 481
toOR EQU #8D
t° EQU #80

There are no existing symbolics for the relational operators, which
are 3 nibbles long. However, each relational operator has for its
first byte tRELOP (8A). The third nibble is a bit map:

Relop Bit#

V
v
V

B
A

L
W
N
=

Symbolics could be defined as follous;

t< EQU (#1)~ (tRELOP)
t= EQU (#2)~ (tRELOP)
t EQU (#4)~ (tRELOP)
t? EQU (#8)~ (tRELOP)
t¢a EQU (#3)~ (tRELOP)
tr= EQU (#6)~ (tRELOP)
t# EQU (#5)~ (tRELOP)

The following symbolics are available for 1loading wup single
characters of ascii. Symbolics for ascii are certainly not
necessary, since:

6-17

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

LC(2) =al fs equivalent to LCASC \!\

But here they are anyway:

al EQU #21
a" EQU #22
a$ EQU #24
a’ EQU #27

EQU #2Ea.

a0 EQU %30
al EQU #31
a2 EQU #32
a3 EQU #33
a4 EQU #34
ab EQU #35
a6 EQU %36
a7 EQU #37
ag EQU %38
ag EQU #39

Note that if a symbolic is defined to be N nibbles long, and N+X
nibbles are referenced, then the upper X nibbles are zeroes. For
example:

LC(5) =t«
is equivalent to: LCHEX 0018A

6.1.3.3 Building Symbolic Tokens For a LEX File

Given a one-byte token, XTOKEN, in a LEX whose ID# is FE, you could
do the following to build the symbolic representation for the
complete three-byte token:

tTOKEN EQU (XTOKEN)™ (#FE)~(tXUORD)

This builds tTOKEN by concatenating three bytes of information. The
lou byte is the XWORD token, the middle byte is the LEX ID, and the
high byte is the token number in the table.

If xTOKEN were a function name, you would replace tXUORD above with
tXEN. Analogously, if xTOKEN were a funny function, you would use

tFEN.

6.2 Lexical Analysis, Parse, Execute

A language extension file contains tables used by the parse,
decompile, and execution routines to recognize and execute external
statements and functions. The TEXT table holds the ASCII string and

6-18

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

associated token for each new or extended keyword. The optional
SPEED table allows rapid searching of the TEXT table when a large
number of keywords exists within the LEX file.

The message table within a language extension file contains messages
related to routines and functions within the file. These messages
may be error, uwarning, or system messages, See the ‘'"Message

Handling" chapter for details.

The parse, decompile, and execution routines for external keywords
and functions reside in the language extension file.

Uhen searching for Xkeywords, LEX files are searched first. This
allous a BASIC statement to be extended beyond its definition in the
mainframe. Correspondingly, LEX file functions can override main
machine functions. Neu statements and functions can also be added in
a LEX file,

As long as it contains all the necessary elements in the header, a
LEX file may onmit certain tables described here if its purpose does
not require them. In particular, a LEX file may omit the message
table if it’s not needed. Or, as in the case of a foreign language
translator, it may consist entirely of a message table uwhich
overrides mainframe messages (together with a poll handler wuwhich
intercepts the pERR poll to do this). For details of foreign
language message tables, see the chapter on "Message Handling."

6.3 LEX IDs and Entry #s

The token associated with an external keyword indicates that the
keyword is either an XUWORD (external BASIC keyword) or an XEN
(external function). The lexical analyzer returns this token, along
Ulth the LEX ID (0-255) and the Entry # (0-255).

The LEX ID and entry# are stored in HEX. The LEX ID is used to
locate the LEX file independently of what port it is plugged into.
The entry# is the keyword# or function# used as the offset into the
LEX file’s main table and text table. For an external statement, the

offset into the main table is wused to obtain the parse, decomplle

and execution addresses for the keyword; for an external function,

the offset is used to obtain the number and type of parameters and

the execution address. The relative offset into the text table is
used tp obtain the ASCII text associated with the statement or
function stored in the text table; this text is used to decompile the
external keyuword.

254 external LEX 1IDs are allowed. LEX ID 0 and 1 are reserved for
the mainframe, 255 internal keywords and functions are allowed per
LEX file. If a language extension requires more than 255 keywords,

6-19

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

then more than one language extension file must be used.

6.3.1 LEX ID Allocation

LEX IDs and entry# ranges are allocated by Hewlett-Packard. See the
chapter "HP-71 Resource Allocation"” for information on current

resource allocations and the procedure for getting a token range
officially allocated.

LEX IDs 92, 93 and 94 have been allocated as temporary/scratch IDs
that can be used by LEX file developers who wuwant a safe ID to
experiment with without fear of interfering with LEX files uritten
and distributed by Hewlett-Packard or other software developers,

6.3.2 Range of Entry Numbers

A LEX file may contain a contiguous range of entry numbers, allowing
libraries of keywords to be distributed in logical groups. The
format of the LEX file allous the range of entry numbers to be
specified during creation.

6.3.3 Merging LEX Files

LEX files may be merged together for single file distribution of
several LEX files. An internal LEX file chain exists within the LEX
file structure.

6.4 Referencing Mainframe Entry Points

If HP’s internally developed HP-71 linker is to be used after a file
is assembled, entry points which are referenced external to the LEX
file must always be preceded by ’=’, For example, GOSBVL =OUTBYT.

Note that this is not true when using the FORTH/Assembler ROM, which
does not use a linker.

In either case, all references to mainframe entry points must be
absolute (GOVLNG or GOSBVL or LC(5)) since a LEX file may move in
memory, thus prohibiting relative references.

In the interest of saving code, if a mainframe entry point is to be
referenced several times from a LEX file, it is shorter to have only
one external reference in the module to that entry point, wuwith
ghorter relative jumps within the module to the point of external
reference:

6-20

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

GOSUB outbyt

GOSUB outbyt

GOTO outbyt

outbyt GOVING =OUTBYT

6.4.1 LEX Files and Memory Movement

Any LEX file which is likely to reside in RAM (system or IRAM) faces
a problem when invoking certain mainframe utilities which can cause
files to move. For example, the utility to purge a file (PRGEMF)
causes all subgsequent files in a file chain to move to a louer
address. In general, utilities which cause files to move are those
which call some entry p01nt in either the MOVEDM or MOVEUM routines;

the other entry points in these routines are MOVEDO, MOVEDA, MOVEDl

MOVED2, MOVED3, MOVEDD, MOVEUO, MOVEUA, MOVEU1, MOVEU2 MOVEU3 and
MOVEU4. Therefore, a given utility can be xdentxfled as one Uthh
causes memory to move by looking at its documentation header in
Volume II of the IDS, and examining which routines it calls.

The danger of executing code in RAM, such as in a LEX file, is that
it may invoke a system utility thChmoves the code, 1nva11dating the
return address on the CPU return stack and sendlng the machine to

never-never land. To remedy the problem, a system utility has been

created to allou calling mainframe utilities from movable code. The
utlllty, MGOSUB, places the return address on the system GOSUB stack,
vhere it will be updated if memory moves.

Because any unprotected LEX file in ROM can be copied to RAM, the
above also applies to LEX files in ROM. However, if a LEX flle in

ROM is protected against being copied to RAM, then it does not need

to be concerned with memory movement. There are two ways to guard

against this; 1) Make the file Private, or 2) Give the LEX file a
name with at least one louer case character. Of these tuo options,
the first is probably preferrable.

6.4.2 MGOSUB Utility

This utility allows movable code (code running in RAM) to call
utilities which may move it (such as the utility to purge a file).
Rather than leaving the return address of the calling code on the CPU
return stack, it places the return address on the BASIC GOSUB stack,
where it is updated whenever memory is moved,

6-21

HP-71 Softuware IDS - Detailed Design Description
Language Extension and Binary Files

The MGOSUB utility is invoked as follous:

GOSBVL =MGOSUB

CON(5) ¢addr of target subroutine»
. <code continues here> ..

The call to MGOSUB is transparent with regard to all registers,
carry, SB, XM, and status bits. That is, entry conditions will be
faithfully transmitted from caller to subroutine, and £xit conditions
will be faithfully transmitted from subroutine to caller. There is a
price for this, however: the MGOSUB code uses SCRICH RAM for
temporary storage before and after the call to the target subroutine.

This means that SCRICH is not a safe place to keep things during the
MGOSUB call, and that it cannot be used to pass data to or from the
subroutine. Obviously, subroutines called via MGOSUB also pay an
overhead in execution time.

6.5 Referencing Addresses in a LEX File

All references within a LEX file must be relative. If a table
contained in a LEX file must be referenced, a way to get the current
absolute address of the table is as follous:

GOSUB GTADDR Push address of table onto stack

TABLE NIBASC \HELLO\
NIBHEX FF _

GTADDR C=RSTK Recall address of table
Code continues

6.6 External Lexical Analysis

Entry #0 in the Main Table of a LEX file contains the execution
address of an external lexical analyzer or a system override,

An external lexical analyzer can be used to handle cases that cannot

be handled by standard mainframe scanning techniques. If the token
associated with a text item in the TEXT table is #00, an external
lexical analyzer will be invoked. The external lexical analyzer will
interpret the text using non-standard techniques and return a
non-zero token to the mainframe iexical analyzer., Care must be taken
to jump back to an appropriate reentry in the mainframe.

6-22

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

6.7 Entry and Display of External Keyuords

WUhen an external keyword is keyed in, the LEX file containing the
keyword should exist. If the LEX file is in the machine during
decompilel then upon decompiling the Kkeyword the corresponding ASCII
name is displayed. If the LEX file is not present during decompile,
then one of the following is displayed:

XUORD 1llleee
XFN1llleee

XEN indicates an external function; XUORD indicates some other
external keyword., The first 3 digits (111) are the LEX ID in
decimal. Leading zeroes are suppressed. The last 3 digits (eee) are
the keyword entry # in decimal. Three digits are aluays displayed.
The LEX ID and entry# are stored in hexadecimal and displayed in
decimal. The decimal display of LEX IDs corresponds to those
displayed in error messages.

Uhen an external statement is decompiled without the corresponding
LEX file plugged in, only the XUORD text itself is decompiled; any
text which would normally follow the XUWORD 1s not displayed. An

expression with an XFN from a missing LEX file is displayed normally,

except that the ASCII function name 1is replaced with the XFNllleee

notation; all parameters are displayed normally. Funny functions are
an exception to this rule; their parameters are not displayed.

Uhen a missing LEX file has added a new device type, the device type
is decompiled as "external".

Note that in all cases, once the missing LEX file is plugged back in,
decomplllng resumes normally

6.8 Short Keywords

If a short keyword in a LEX file is wholly contained within the first
characters of a 1longer keyword in the same LEX file, special

attention is requ1red The longer keyword should aluays precede the

shorter keyword in the table, otherwise the longer keyword will NEVER
be found.

Also, if a keyword exists in a LEX file that is wholly contained in
the first characters of a 1longer keyword in the main machine or
another LEX file, then the longer Xeyword will not be found unless
the pargse of the shorter keyword fails. To illustrate the two points
made above:

6-23

HP-71 Software IDS - Detalled Design Description
Language Extension and Binary Files

FORM in LEX File

FO in LEX File

FOR in Main

If FO had preceded FORM in the LEX file above, then the FORM keyuord
would never be found.

Also note that only if FO parse fails, will the machine ever-try FOR
parse; this capability to try another parse routine once the parse of
an external statement fails is provided through the RESTART
mechanisn.

Finally, assume the user types in the following:
>10 FORM=1 TO 5

Assume that FORM parse requires a string expression. FORM parse will
fail; through the RESTART mechanism the FOR keyword in the mainframe
table will be found next, and that parse will be successful. The
Restart portion of line parse continues searching for a keyword if a
LEX file returns an error condition from one of its parse routines.
This ensures that longer keywords 1in other LEX files and in the
mainframe are found.

The 1last example above illustrates that the RESTART mechanism
continues the search in another LEX file, or if there aren’t any
more, into the mainframe. RESTART does not continue in the same
table; this is why it’s so important to put a longer keyword (FORM)
prior to a shorter keyword (FO) when they occur in the same LEX file.

Parse routines that look for a particular keyword may have trouble
using the lexical analyzer (NTOKEN) if a LEX file is present
containing a shorter keyword than the one being searched for. For
example, if a given parse routine requires the FOR keyword as an
intermediate keyword, but FO is present in a LEX file, then NTOKEN
will return tFO, not tFOR.

Using the URDSCN utility gets you around this problem, URDSCN was
designed especially for searching all possible LEX files until a
keyword that YOU specify is found. WRDSCN calls NTOKEN to find a
lexeme. Uhen NIOKEN returns a lexeme, then WRDSCN checks if it is
one of the keywords that you have designated. If it is, UWRDSCN
returns that keyword; otheruise, it restarts the lexical analyzer, so
that NTOKEN continues searching LEX files. Ultimately, WRDSCN either
returns one of the keywords you have designated or indicates that the
ascii pointed to by D1 does not contain any of the keywords you have
specified (as indicated by LEX files present in the machine). See
IDS Volume II for further details of WRDSCN.

6-24

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

6.9 Line Number References Uithin a Statement

Any statement which controls program flow using 1line number
references, has a 5 nibble relative address field following tLINE#,

so that the address can be compiled; note that commands such as LIST

vhich may contain line number references would not have such

relative offset fields, since LIST has nothlng to do with controlling
program flou. External statements containing line number references

must exercise care when executing a line number reference.

A program can be edited or renumbered without a LEX file being
present. But, if the LEX file is missing at the time the program is
modified, any compiled addresses in the XUWORD statements of that LEX
file will not be cleared. Subsequent execution of such XUWORD
statements using this compiled address could result in an invalid
branch.

There 18 an external entry in the Mainframe GOTO/GOSUB execution
code. If the sXUORD status is set, the compiled line number address
will be 1gnored and the line number will always be searched for,
guaranteelng correct statement branching. See the GOTO documentatlon
in Volume II of the IDS for details,

6.9.1 References Within an "Interrupt" Statement

A statement that branches to a line number due to an interrupt must
execute special code to handle TRACE FLOUW. Examples of interrupt
statements are ON TIMER, ON ERROR and ON INTR.

Since the "“TRACE FROM" address is not the preceding statement in
sequential statement execution, the ONTIMR code must be duplicated to
compute and trace the FROM address. The sXUORD flag must be set

prior to the GOTO+ jump to guarantee all line number references are
recomputed,

See the ONTMR documentation in Volume II of the IDS for details.

6.10 Polling

Polling is performed from many places in the HP-71 operating system
to allow a LEX file to perform special processing when appropriate.
During a poll, a one byte process humber is passed to each LEX file;
this 1dent1f1es the reason the system is performing a poll.

Each LEX file has an opportunity to respond to a poll. The location

6-25

HP-71 Software IDS - Detafled Design Description
Language Extension and Binary Files

of the poll handling code is identified by an offset-to-poll-handler
which exists in each LEX file header. Uhen a LEX file poll handler
is polled (given control) it determines if it wants to respond to the
process based on the process number. Response comes in several

flavors:

1 - LEX file "handles" poll. The LEX file performs some processing
and then returns with XM=0 and carry clear, indicating that the
polling process should terminate,

2 - LEX file detects error (Slow Poll ONLY). The LEX file detects
an error condition and returns with carry set, which termlnates
pelling. An error identification is passed back in the
C-register.

3 - None of the above. Many polls are NOT looking for a specific
“"handler”, but are simply offering an opportunity for a LEX
file to do some processing. For example, the pSREQ poll should
never be "handled”, but it allous an opportunity for a LEX file

to handle whatever service requests it knows how to handle.

There are two kinds of polling: Fast and Slow, Their entry points
are FPOLL and POLL, respectively. In both cases, the process number
must immediately follow the call.

GOSBVL =FPOLL GOSBVL =POLL
CON(2) =pPOLL# or CON(2) =pPOLL#

For both types of polling, XM can be set by the respondlng LEX file
to indicate whether or not the poll uwas 'handled’. This is desirable
if only one LEX file can respond to 3 partlcular poll; XM=0 on return
to the system terminates the polling operation. In some cases it

will be desirable for multiple LEX files to respond to a single poll;

in this case responding LEX files should NOT set XM to 0.

The return requirements for a poll are indicated in the documentation
for each separate poll, and can be found in the IDS Volume II under
the individual poll name - pXXXXX.

6.10.1 Fast Poll

A fast poll is relatively fast and uses no extra memory. It is used
vhen:

1) Execution speed is important, and/or
2) Little information is to be passed to the handler, and/or
3) There 1is little available memory or the memory may be in a

strange state (e.g., pointers not valid).

The carry is set at entry to the LEX file poll handler, so fast polls

6-26

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

are easy to detect. Typically, fast polls are used for lou-level
system polls, indicating a state within the machine, with no specific
information to pass.

The process number is passed in B(A). D(A) should not be destroyed
by a LEX file, since it is used as a pointer into the LEX file entry
buffer during the polling process. Houwever, if a LEX file is going
to handle the process and exit with XM=0 (ensuring polling will
gtop), it is acceptable to destroy D(A). The poll handler is
executing two stack levels deeper than the calling code.

Fast poll does nothing with RO-R4 and the status bits, Depending on
the application, any or all of the above may be used to pass data to
or from the handler. Information cannot be passed to or from poll
handlers in A-D, DO, D1 or P. For specifics on register usage and
availability, see the individual poll documention.

6.10.1.1 Fast Poll Example

A typical fast poll may look like the following:

GOSBVL =FPOLL

CON(2) =pPOLL# Process #

Often, when a fast poll is issued, no distinction is made as to
wvhether or not the poll was handled; in such cases it is not
necessary to check XM.

6.10.2 Slouw Poll

A slou poll allous passing of more information to poll handlers then
does a fast poll. In addition, it saves stack levels and the
contents of some registers in RAM, allowing recursive polling (a poll
handler may perform a poll).

The advantages of slow poll over fast poll are:

1) Allous passing data to poll handlers in A,D,DO and D1.
2) Handler can perform an error exit which will terminate the poll.
3) Stack levels are saved in RAM, so handler can

a) Use more stack levels, and
b) Call POLL itself.

4) Address of caller 1is saved on the GOSUB stack where it will be
updated if memory moves.

The disadvantages of slow poll compared to fast poll are:

1) It’s slower.

6-27

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

2) It requires enough memory and valid pointers to establish a save
area in RAM.

As with fast poll, slouw poll does nothing with RO-R4 and the status
bits. Unlike fast poll, A, D, DO and D1 can be used to pass data to
the handlers. The contents of these registers are restored to their

original entry values upon entry to each poll handler.

If a LEX file responds by "handling" the poll or performing an error
return, most of the registers are returned to the caller as they uere
left by the handler. If no LEX file handles the poll, A,D,D0 and D1
are restored to their entry values upon return to the calling code.

6.10.2.1 Slou Poll Example

A typical slou poll may look like the following:

GOSBVL =POLL
CON(2) =pPOLL# Process#
GOC Err Error occured during handling?
7XM=0
GOYES OKAY Process handled without error?

* Process not handled at all
LC(4) =eXXYY Load up appropriate err#

Err GOVLNG =BSERR Error#% loaded up
OKAY

6.10.2.2 Save Stack Slow Poll Information

The save stack resides between the math stack and the FOR-NEXT stack.
The SAVSTK pointer (same as FORSTIK) points to the bottom of the save
stack area. The following information is kept on the save stack
during a slouw poll:

Register A 16 nibbles Low Memory
Register D 16
Data Pointer D1 5
Data Pointer DO 5

Poll# 5
Return Level 2 5

Return Level 3 5

Rel Pos in LEX Buffer 5 High
SAVSTK-->
In addition to this save information, the calling return address is
pushed on the BASIC GOSUB stack. This adds 6 nibbles to the stack
pointed to by GSBSTK.

The total memory used by POLL is 68 nibbles (44 hex).

6-28

HP-71 Softuare IDS - Detailed Design Description
Language Extension and Binary Files

If a responder to a slou poll "takes-over" the poll and does not
return to the caller, the POLL save information must be deleted. The
math stack pointer should be collapsed to the FOR stack pointer. The
mainframe routine =COLLAP will do this,

6.10.3 POLL Subroutine Level Usage

A handler for a fast poll is tuo subroutine levels deeper than the
caller of the poll,

Because of subroutine level saving, a handler for a slow poll is one
level shallouwer than the caller.

6.10.4 How to Ansuwer a Poll

Each LEX file determines which poll process numbers it will respond
to. As mentioned earlier, response may consist of handling, not
handling, or returning an error. In each case, the availability of
registers 18 clearly spelled out in the documentation for the
individual poll.

The type of response is indicated by the poll handler in the state of
the carry and the XM bit:

Handled: XM=0, carry clear.

Not handled: XM=1 (RINSXM instruction), carry clear.

Error exit: (meaningful for POLL only, FPOLL ignores this):
Carry set,
Error number in C(3-0).

Each poll issued from the mainframe is documented to indicate entry
and exit conditions for the poll. It is important that a responding
LEX file follow the conventions indicated by the documentation.

6.10.5 Responding to a Poll from Binary

If a binary routine responds to a slow poll and does both of the
following:

1. Indicates "no response" (XM=1) so the poll information
is restored

2. Calls a BASIC subprogram during the poll

then the poll information and poll return address must be preserved
during the CALL to BASIC. The return address to poll must be saved

6-29

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

on the GOSUB stack, and the FORSTK pointer must be set over the poll
save area. See the subsection on "Responding to POLL and Invoking
BASIC” below for code examples.

6.10.6 Take-over Poll

If the handler of a slow poll "takes-over" by not returning to the
operating system POLL routine, it should collapse the math stack to
the FOR Stack to delete the saved poll information. The mainframe
routine COLLAP will do this. In addition, the mainframe routine
POPUPD should be called to pop the poll issuer’s return address off
the GOSUB stack,

6.10.7 Polling during Parse or Decompile

Any LEX file issuing a slow poll during parse or decompile must use
the POLLD+ entry point. This entry adjusts the end of available

memory value in D(A) to reflect the memory used by POLL.

AVMEMS (available memory start) must be set to the value in DO to

save data already wuritten to the output buffer; this can be
accomplished by calling AVS=DO. On returin from poll, D(A) must be
reset to the neuw available memory end. The routine D=AVME will do
this,

Sample code:

GOSBVL =AVS=D0 Set AVMEMS DO
GOSBVL =POLLD+ Issue Poll
CON(2) =pPOLL

GOSBVL =D=AVME Set D s AVMEME

6.10.8 Polling from a LEX File in RAM

Polling from code which is executing in RAM can be tricky, since a
poll handler may cause memory to move. If a poll handler can cause
memory to move, a slow poll must be performed. Slow poll saves the
address of the caller 1in a place where it will be updated if memory
moves. Fast poll does not.

Poll (slow or fast) must be invoked DIRECTLY from a LEX file. The
utility, MGOSUB cannot be used.

6-30

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

6.10.9 Summary of Poll Function Codes

The list of process numbers (poll function codes) and their meanings
is maintained in the "HP-71 Resource Allocation" chapter. All polls
issued by the mainframe are grouped within common categories (e.g.,
filetype polls, parse polls, card reader polls, etc.). System polls
(those which identify a state of the system, such as going-to-sleep,
wvaking-up, etc.) are assigned numbers in the upper range of possible
process numbers (from 255 downward). Other polls are assigned
process numbers upward from zero. As neuw process numbers are added
for non-mainframe use, they will be assigned sequentially from the
highest existing assigned process number,

It is this process number which is passed in the B-register to poll
handlers in all LEX files.

See the "HP-71 Resource Allocation" chapter for a one 1line
description of all system polls. See the POLL category in Volume II
of the IDS for detailed information about individual polls.

6.10.10 Special Mainframe Polls

6.10.10.1 Pointer and Buffer “Clean-Up"

Uhenever execution stacks are collapsed, the mainframe issues a fast
poll, referred to as the zero program poll (pZERPG), to collapse any
buffers and =zero any pointers associated with program information.
This happens whenever RUN, EDIT, or END are executed, or whenever the
current file is modified or purged (any time the mainframe entry
points CLRSTK, CLPSIK, or ZERPGM are called, this poll goes out).

A LEX file which uses a system buffer for a given application may
vant to answer the poll so that it can collapse or deallocate its
buffer. The Math ROM, for example, keeps a copy of the math stack in
its system buffer, so when the Zero Program poll (pZERPG) goes out,
it responds by deallocating the buffer since the math stack no longer
exists,

6.11 BIN Main Programs

A binary main program is a program wvuritten in HP-71 assembler
language and invoked through the RUN statement. A binary main
program can also be CALLed as a subprogram with no parameters.

Execution begins tuwo nibbles past "20" (the equivalent to the EOL

6-31

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

byte preceding the first statement of a BASIC program). Since common
statements and utilities are used for both BASIC and BIN files, this
"20" guarantees the same "start of file" length for both file types.

6.11.1 Ending a Binary Program

Uhen execution of a binary program is complete, the code should
GOVLNG =ENDBIN. This mainframe system entry point will “END" a

binary program invoked through RUN/CALL. This entry point is part of
the BASIC END statement execution. Stacks are collapsed, all open
files are closed, the program running flag (PgmRun), the PRGM
annunciator, and the status bits 0-11 are cleared, and pBSCex poll is

issued. Control returns to the calling program or to MAINLP if the
blnary program was invoked from the keyboard.

6.12 BIN Subprograms

A BIN subprogram is a subprogram written in HP-71 assembly code, with
the tokenized BASIC SUB statement at the start of the code. The SUB
statement is tokenized exactly like it is in a BASIC statement,
except no line number is required. This tokenization allows binary
subprograms to be CALLed just like BASIC subprograms,

Binary subprograms are used instead of BASIC subprograms to gain
execution speed or system access not available to BASIC.

A BIN file containing only subprograms must have as its first command
(preceding the first SUB statement): GOVLNG =ENDBIN. This guarantees
standard handling of invoking RUN on a file containing nothing but
subprograms - a NOP occurs.

For information on chaining of subprograms in a BIN file, see section
on BIN files in the “File System" chapter.

See the section on SUB tokenization in the "Statement Parse,
Decompile, and Execution" chapter.

6.13 BIN Error Exit

Invoking some mainframe routines from binary may result in a
non-returning error exit through the mainframe message handler. The
message driver jumps directly to ERRRIN at the end of the BASIC
interpreter loop.

6-32

HP-71 Softuware IDS - Detailed Design Description
Language Extension and Binary Files

Uhen an error occurs, BASIC program exrecution suspends. If the
current program file type is not BASIC, the program is halted, but
not suspended (the SUSP annunciator is not on so the program cannot
be continued). The assumption made for suspending a BASIC program is
that from the current D0 setting, the error line# can be found. For

an error exit within a binary program, the DO setting is meaningless;
this is why the line# reported on an error uwithin a BIN file is "™,

If you want to cause a binary program or subprogram to suspend,
respond to the pBSCex poll, which goes out each time the BASIC
interpreter is exited; If the current file type is BIN and an error
occurred (sERROR set), then you may want to set the SUSP annunciator
and update CNTADR to point to the binary code to CONTinue at. See
the pBSCex and PRUNnB poll documentation for further information.

6.14 Invoking BASIC from Binary

Binary programs and subprograms can be invoked through the RUN and
CALL statements of BASIC. Provided the binary program or subprogranm
is formatted properly, invoking it is transparent to the user.

Likeuise, it is possible to invoke BASIC from HP-71 assembly code.
The entry point CALBIN is called. The PgmRun (S13) must be set
before the call. Follouwing the GOSBVL =CALBIN is the tokenized form
of the BASIC CALL statement to the subprogram, The line length of

the CALL statement starts the tokenization. See the section on CALL
tokenization in the "Statement Parse, Decompile, and Execution"
chapter.

Following the tokenized CALL statement 1is the next assembler
instruction to be executed after the subprogram is ended.

6.14.1 Responding to POLL and Invoking BASIC

If a binary routine responds to a slou poll and does both the
following:

1, Indicates "no response" (XM=1), so the poll information
is restored and the poll continues

2. Calls a BASIC subprogram from within the poll handler

then the POLL information and poll return address must be preserved

during the CALL to BASIC. The return address to POLL must be saved

on the GOSUB stack, the FORSTK pointer must be set over the poll save
area,

C=RSTK

6-33

A=C A
GOSBVL =PSHUPD
C=0 A
LC(2) =1POLSV

D1=(5) =FORSTK

A=DAT1 A

A=A-C A

DAT1=A A
ST=1 PgmRun
GOSBVL =CALBIN

ooooo

C=0 A

LC(2) =1POLSV
D1=(5) =FORSTK
A=DAT1 A

A=A+C A
DAT1=A A

GOSBVL =POPUPD
C=D A
RSTK=C

C=-C-1 A

RTNSXM

HP-71 Softuare IDS - Detailed Design Description
Language Extension and Binary Files

Push return address on GOSUB stack

Length of POLL Save area

Current FORSTK position
Move FORSTK over Poll save area

Set prog running flag
CALL BASIC

On return from the BASIC subprogram, FORSTK must be readjusted and
the POLL return address restored:

Current FORSTK value

Adjust back

Pop return address off stack

Restore to stack
Clear carry

Return "not handled”

6-34

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

Poee.----->=P-w-

l
I STATEMENT PARSE, DECOMPILE, AND EXECUTION

Geewr wr w ar n w w n w w w E— —" — w —— —— = >-—--- - => --

2 s ~

7.1 Uriting a Parse Routine

7.1.1 Statement Tokenization

Statement tokenization involves the calling of parse utilities to
interpret the incoming ASCI1 stream as BASIC, and to convert and
output it as a token stream. A BASIC program line begins with a line
rumber and terminates with an End of Line token (tEOL). A program
line may contain multiple statements., Subsequent statements in a
multi-statement line are preceded by an @ (t@) token. Following each
line number or @ token is a statement length byte. This statement
length is a relative offset to the next terminating token (tEOL or
t@). Statements within a BASIC file are chained together using these
relative offsets.

In the following examples, assume that low memory is on the left and
higher memory on the right,

7.1.1.1 Program Line

o+ P+

| | | l
| v I v

tm————e$m—pm————tmmm——————-t

|line#|StLen| Stmt |4F|StLen| Stmt |OF|
tm—————t—et———tm——pm————-D+--+

line# = Line number of program line
4 nibble BCD encoding

StLen = Statement length

1 byte offset to the end of the statement
Adding the address of the byte to the contents of the
byte yields a pointer to @ (4F) or Endline (OF)

Stmt = Tokenized statement

Note that encoding of immediate execute lines is exactly as above,

7-1

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

EXCEPT no line number is tokenized.

7.1.1.2 Program Line with Comment

Tokenization of a comment following a statement, using !, is
included within the tokenization of the last statement. Therefore,
the Statement Length byte preceding that last statement is an offset
to Endline (OF):

T+ tormmm—ee——-+

| | | l
| v | v

$ommmmtbbbmembbb=

|line#|StLen|Stmt|4F|StLen|Stmt| t!|Comment|DO|OF|
oo-bmmmmpmmpmmetmmmmb——b=t

Note that ! is tokenized as CF, and that the comment itself is
aluays followed by DO, then OF (tEOL).

The tokenization for a comment at the beginning of a line (using REM
or !) is analogous to that shoun above; the comment is aluways
immediately followed by DO. REM is tokenized as follous;:

Prrrmec e — e me,——-+

| |
| Vv

tm————tm————=t——t-—¢

| 1ine#|StLen| tREM|Comment | DO|OF|
$m————- tomm————tem—m=-t

The tokenization for ! at the beginning of a line is the same as
above, only substitute t! for tREM,

7.1.1.3 Program Line Containing Labels

Label identifiers are allovued within program 1lines. A 1label
identifier is tokenized as a separate statement within the line. The
Statement Length byte 1is an offset past the label tokenization,
pointing to either @ (4F) or Endline (OF). A 1label is up to 8
characters of uppercase letters and digits, starting wuwith a letter.
A label token (tLBLST = 6F) precedes the ASCII label name.

7-2

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

For example, the follouwing is the tokenization of a single
statement llne with tuo preceding labels:

100 "ABC":’TEST1’: GOSUB 525

o—————— + e+ $mmm————— +

I | l | | I
l v | v | Vv

tm————tm———--t—————ott——b—————tmm—m=t

|line#|StLen| 6F|1abel |4F|StLlen|6F|label |4F|StLen|Stmt|OF]|
te———tm————- t——tm————— t——tm————-btm—————— tm————t-t

7.1.1.4 Multi-statement Line with Label

Tokenization of a multi-statement line, with a single label name
following the first statement:

225 A=FNB(X) @ "ASSIGNA": KEY “A", A$;

tm——m—————— + tmme+ o+

| I l I | |
| v l v | Y

tm—————tm————bttm——pm———- tm—tm————bt

| line#|StLen|Stmt|4F|StLen| 6F| label|4F|StLen|Stmt|OF|
t——————$m————tmmmp—m—pmmm-tm—tm————tm—pm————tm———t——+

7.1.2 Statements uwith Special Tokenization

7.1.2.1 IF,..THEN,..ELSE

Statements which immediately follow THEN or ELSE are in one of tuo
categories: 1) Implied GOTO and 2) Extended IF. An implied GOTO does
not contain ’GOTO’, just the label or line number, as in:

IF A THEN 100 ELSE LABEL1
Any statement immediately following THEN or ELSE which is not an
implied GOTO is classified as an Extended IF Statement. There is a
difference in the way these tuo classes of statements are tokenized.
Note that the Extended IF token (tEXTIF) 1is simply the
multi-statement token (t@ - 4F); the label reference token (tLBLRF)
is EO; the line# token (tLINE#) is FO.

IF <expr> THEN PURGE
o+ e—+

I l I I
I v | v

to————bmmmetm————— tm————— tm———p——

|StLen| tIF| expr ltTHENItEXTlFIStLenIStmtIOFI
tm————tm——mm————tm————Rtm————b——+t

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

IF <expr> THEN 100
R+

I |
I v

tm——— temctomncntm———— bom—m——$ommmp——y

IStLen| tIF| expr |tTHEN|tLINE#|0010|0F]|
tm———-et————-tm—————et

IF <expr> THEN <string expression»
ecercrcereereee=+

I l
| V
-tm—mpmmet————-trm————b—a -+

IStLenItIFl expr | tTHEN| tLBLRF|string exprlOFI
te————-ette———— te—————R==+

IF <expr> THEN PURGE ELSE "ABC"
tmmmrmer e ce———+ T+

| l | |
I Vv | Vv

tom————tmmmem————tm—————to———-o=t

|StLen| t1F|expr| tTHEN| tEXTIF|StLen|Stnt| 4F| (contlnued below)
t————-btte—————to————te————t——¢

er—e—————+

I l
| v

tm————tom———Rto—mm—————+--+

|StLen| tELSE| tLBLRF|strg expr|OF|
to————to———— tmm————e+-—+

So far only 1label references which are string expressions have been
shoun; also legal are ’'literal’ label references. They are tokenized

with a tLITRL (4C) preceding them.

IF <expr> THEN ABC
.. +

i |
| Vv

t—————temmb=tmm————tem—————Pe+-=4+

|StLen| tIF|expr| tTHEN| tLBLRF| tLITRL|ascii label|OF|
Ptrmm————e———trre+——4

- HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

IF <expr> THEN A=B @ RETURN ELSE 10
temmmme+ tm——————— + o———+

I l | I | |
l v | v | v

to————bRotommmtom——e

|StLen| tIF|expr| tTHEN| tEXTIF|StLen|Stmt|4F|StLen|Stmt|4F, .
tm————tommetm————-tm———-eetom——-

toemme+

I |
I v

-----tormmb=t

...StLen| tELSE| tLINE#|0100|OF|
-----tommcety==¢

7.1.2.2 CALL

The simplified tokenization of CALL is as follous:
tCALL [<name> [tPRMST<parm list>] tPRMEN [tIN<file name>]]

The simplest form of the CALL statement takes no parameters. The
multi-statement line;:

CALL @ CALL <subprogram name>

would be tokenized as follous:

P———+ P,e+

| I | |
I v | v
etmm——etto————ety+

l40ltCALLl4F|StLen|tCALLInameItPRMENIOFI
temtm————bt————— tm———— tommcb+-=+

Note that the statement length of the first statement is only 4
nibbles.

Next, look at the tokenization of the CALL statement with parameter
passing.

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

CALL <name>(PV,PR,#5)

would be tokenized as follows (assuming PV is a pass by value &
PR represents a variable which will be passed by reference):

4memececccemeeececcccccmceeer ec e e c e e ee——+

I l
I v

$m———- te———— tomm—btm—pm———- tm—pm————bttt$mmm————T

|StLen| tCALL| name| tPRMST|PV| tCVAL|PR| tCREF| t#] 53| tCREF| tPRMEN| OF|
tmm———— tm———— tommm—btmmbmm———-tmmtmmpmm—$mm———-+-=4+

Note in this example that each parameter is followed by a 1-byte
token, indicating whether it is a pass by value (tCVAL) or a pass by
reference (tCREF). Channel numbers are encoded someuwhat
non-intuitively as a pass by reference. Any parameter list of a CALL
statement is preceded by tPRMST (Parameter Start); the 1list is
terminated by tPRMEN (Parameter End). Every CALL statement (except
the one with no subprogram name or parameters given) is terminated by
tPRMEN.

This example illustrates the tokenization of a CALL which specifies a
file.

CALL <name> IN <file name> @ CALL <name>(PV) IN file name>

tmmmmrmeeceecee+

| |
| v

bo————- to————tmmme-et-=+

|StLen| tCALL|name| tPRMEN| tIN| file namel4F]...
tm———- tm———— tmmmcb—-e————t-—+

$rmeeeeemeececereeeeecee——————+

| |
l v

t————-$m———- tmmmmb$m—bm———— tom————et+-=+

|StLen| tCALL| name) tPRMST|PV| tCVAL| tPRMEN| tIN| file name|OF)
tm———- tm———— tmmmmpmm e ——— t——p————— tm—————RRe

WUhen the subprogram name is specified as a string variable or quoted
string, it is tokenized either as the variable or in ascii (quotes
included). However, uwhen the subprogram name is given as an
unquoted string it is tokenized with a preceding byte: tLITRL. For
example:

7-6

HP-71 Softuare IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

CALL "AB" @ CALL AB

Pccee+ Prrrccrrcrece+

| | l |
| v | Vv

tr———-tm—m——e—b=tom—m—— tm—————empmm=t=——<

|StLen| tCALL| 22142422| tPRMEN|4F|StLen| tCALL| tLITRL| 1424 | tPRMEN | OF|
te————tm———— tommm————tom————Ppm———— to————tmrm——— temmm—pmm=t-—=¢

7.1.2.3 SUB

The tokenization of the SUB statement is similar in many ways to
that of CALL; however, CALL does not output comma tokens between
parameters, uwhereas SUB does. Also, the SUB statement has two
5-nibble fields wuwhich are used for chaining. The first field
immediately follows tSUB, and the second field immediately precedes
either t@ or tEOL (depending on which token followus the SUB
statement).

If the SUB statement is followed by !, then the second field

immediately FOLLOUS the tokenization of the comment.

The tokenization is as follous:
tSUB<xxxxx><name> [tPRMST <parm list>] tPRMEN [t! comment] <XXXXX>

Note that in all cases, the subprogram name in a SUB statement is
preceded by tLITRL. Following are some examples of the tokenization
of SUB.

7-7

HP-71 Softuware IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

SUB <name> ! comment

eeeeee,eeeeee===e-+

| |
| v

t———— te———mpm—-tm——————bommcpmmbt————bt+-=-4+

|StLen| tSUB| ¥xxxx| tLITRL| name| tPRMEN| t! | comment | DO} OF | xxxxx|OF]
tm———-P—tmcm———Dbtm—————tm—tmmpmm——— +--+

SUB <name> (PV,#5) @ BEEP

* --- >O..

|
I

tm———-etom————ebt———b+

|StLen| tSUB| xxxxx| tLITRL| name| tPRMST|PV| tCOMMA| t#| 53] tPRMEN] . ..
tem——-ettm————-tmmmmtm—tm—————- tm—pmmpmm———— +

VL mm——+ tmm—mmem—e+

l | l
v | Vv

tm————— tmmpm————tm———- t--+

... xxxxx|4F|StLen| tBEEP|OF|
tm—————tembmmm—— tm———- +t——+

7.1.2.4 IMAGE

Parsing of an image string 1is performed at the time the USING
statement is executed,

There are no special considerations for parsing the IMAGE keyword, on
the level of the BASIC interpreter. An IMAGE statement is tokenized

as follous:

$ommmrc eceetee—e—————— +

I I
l v

Pm————otm—————Sb

| line#|StLen| tIMAGE| image string|DO|OF]|
tmm——- to———— tmm————dermcetm—pm——t

Similarly, a USING statement (for example, DISP USING "<image
string>", or DISP USING <line#>), is tokenized with the image string
as an expression, or a tLINE# token to reference the IMAGE statement.

Parsing of the image string must be performed at the time the USING
statement is executed, since the image string expression can be

7-8

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

changed during execution (consider DISP USING S$; <output 1list>).
IMAGE syntax is of a peculiar design -- that is, its rules are not
governed by the BASIC interpreter. In addltlon image par51ng is
inextricably linked to its execution. For these reasons, image
parsing is entirely separate from BASIC interpreting. For a detailed
description of the tokenization of image strings, see IDS Volume III,
module MB&IMG.

7.1.3 Global Assumptions

Status bits:

S4 - No Restore of Input Pointer
Used by error handler to determine if RESPTR should be called

for correct cursor position.

S5 - Line Number on Line
Program line, as opposed to immediate execute line.

S6 - Pending THEN
Uithin the scope of an IF-THEN clause, and ELSE has not yet
been encountered (ELSE is a legal terminator at this point; IF
is not legal).

S10 - Implied LET Error
Used by error handler to determine if statement parsed uas
being interpreted as an Implied LET (If S9 is set, then attempt
to parse as label, else attempt to parse as implied DISP).

f1RIN- System flag indicating that parse is externally invoked.

Registers |
D(A) End of Available Memory; used to check against when

outputting tokens.

Statement Scratch Ram:

S-R0-2 Uhen f1RIN is set (indicates parse is externally invoked),
this RAM location contains the address to return to.

S-R0-3 IF Statement in progress. All statements following THEN
and preceding Endline are in this realm. Set if nonzero.

STMIDO RESTART Input Pointer
Uhen the RESTART flag is set, the position of D1 prior to
the call to the lexical analyzer (contents of LEXPTR) is
saved. D1 is restored from this ram location prior to
restarting the lexical analyzer.

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decomplile, and Execution

S-R1-0 Original Error Number
If a keyword is to be restarted and has not been previously

restarted, then this is where the error number is saved.
Uhen a keyword has not been restarted previously, this
location is zero.

S-R1-1 Original Error Position
At the same time Original Error Number is saved, the error
position address is saved.

S-R1-2 RESTART Address

Each time the lexical analyzer is called to evaluate a
lexeme at the beginning of a statement (or immediately
after THEN or ELSE), its restart address is saved. If the
RESTART flag 1is set, then the error handl:r restarts the
lexical analyzer with this address.

S-R1-3 RESTART Flag

If the lexeme at the beginning of a statement 1is an XUORD
or XEN, this flag is set; otherwise it is cleared. Set if
nonzero.

7.1.4 Entry Conditions from Line Parse Driver

D1 points to the first character following the keyword. DO points
into the output buffer, past the statement length byte and the
keyword token. Status bits 0, 8, 9, and 10 are clear.

7.1.5 Exit Conditions

All parse routines which do not error exit, must return with carry
clear. Carry set is reserved for 'middle of IF’ return,

D1 should be pointing past the last legal character or Kkeyword
accepted as part of the legal parse, but no farther. In many cases

this requires a RESPTR to be done before returning - this can be
accomplished by ending a parse routine with: GOVLNG =RESPTR. For
example, if an optional keyword is searched for with NTOKEN but not
found, D1 must be backed up. Note that if GNXICR had been called
instead of NTOKEN, this wouldn’t be necessary since GNXICR does not
move D1 past any non-blank character.

D(A) should still hold the End of Available Memory.

Uhenever information is output to the Output Buffer (at the DO
pointer) through the OUTxxx utilities, available memory is checked
to make sure there is enough memory to urite out the information.
If there is not enough memory, an "Insufficient Memory" error is
generated.

7-10

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

If the Parser was invoked externally, the Message Driver returns to
the caller, instead of taking a harduired exit.

7.1.6 Parse Errors

The following entry points already exist for parse errors. If
S4=1, D1 1is expected to be pointing at the input in error;
otheruise RESPTR will be called to position D1 at the previous
input, assumed to be the error,

SYNTXe Syntax
IVEXPe Invalid Expression
IVPARe Invalid Parameter ¥
MSPARe Missing Parameter ¥
IVVARe Invalid Variable
ILCNTe Illegal Context
EXCHRe Excess Characters
QUOEXe Quote Expected
PRNEXe) Expected
FSPECe Invalid Filespec

* If IVPARe is used, and there 1is no remaining input in statement
(after optional RESPTR, D1 points at @, !, ELSE, or EOL), then
MSPARe is 1issued.

If it is necessary to generate a parse error other than one listed
above, load the low 4 nibbles of DO with the error number and
GOVLNG =PARERR.

NOTE: For MOST parse error exits, S10 should be clear; S10 is the
Implied LET error flag.

If more details are needed to generate specific parse errors, see

the chapter, "Message Handling“, or the header for the MFERR*
routine,

7.1.6.1 Relinquishing Error Handling

In some cases it 1is desirable for a LEX file parse routine to not
report its error message and position, but to give control BACK to
the mainframe and let the mainframe report the error. An example

- of such a case is as follous:

Consider the mainframe routine ON TIMER; further consider what
happens when the user has HPIL plugged in, and incorrect syntax
is used with this statement. For example:

ON TIMER #%1,1 GOSUB 50

Here’s the scenario: ON INTIR (an HPIL statement) errors out in
the normal way (causing its error information to be saved); the

7-11

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

parse is restarted, ON TIMER also errors, and the error
information generated by HPIL is restored and reported to the
user, resulting in some obscure message like

HPIL ERR: Invalid Parm,
with the cursor flashing on TIMER. Obviously, this is less than
desirable,

By using the REST* entry point, the LEX file error is forever
forgotten, and the mainframe-generated error is the one reported

(or any parse error previously or subsequently reported in the
‘normal’ way).

In short, this entry point enables language extensions to suppress
their particular error nmessage/error position, providing it is
KNOUN that a parse routine exists in the mainframe which will gain
control when the parse is restarted and which has the capability of
giving a more coherent error message.

To use this feature when a parse error is detected, simply do a
GOVLNG =REST™,

7.1.7 Expression Tokenization

Expressions specified in statements are converted to RPN (postfix
notation) by the expression parser and are stored in this format.
In this form, the expression is a series of tokens. The tokens are
described next.

7.1,7.1 Constants

Single-digit constants are tokenized as the ASCII character code
for that digit. ("0" thru "9")

Integer constants (2-12 digits) are tokenized by a byte uwhich
identifies the number of digits in the constant followed by a
nibble for each of the digits. The digits are stored least
significant digit first.

Floating point constants (1-12 digits) are tokenized by a byte
vhich identifies the number of digits in the mantissa of the
constant follouwed by a nibble for each of the digits. The
digits are stored least significant digit first. Following this
is a 3 nibble 9’s complement exponent.
String constants (single or double quoted strings) are tokenized
as the opening quote with the enclosed characters following and
are terminated with a matching closing quote.

7.1.7.2 Variables

Variables are tokenized in one to three bytes as follous:
[t$] [tADIGx] Alpha

Vhere the t$ token 1is present if its a string variable, the

7-12

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

tADIGx token 1is present if the variable has a digit character
after the letter and alpha is always present and encoded as the
ASCII code for that 1letter., There are ten possible tADIGx
tokens (tADIGO - tADIG9) corresponding to the ten possible
digits.

7.1.7.3 Operators

Operators (monadic and dyadic) are tokenized with a single byte
except for the relational operators which have a nibble
following the first byte to identify the specific relation.

7.1.7.4 Functions

Functions are divided into four groups:
Mainframe functions -- These are tokenized as a single byte.

XEN’s -- These are tokenized as an tXEN token followed by a
byte identifying the LEX ID and another byte specifying the
entry number within that ID. Following these three bytes is a
nibble which says hou many parameters this function reference
actually has,

Arrays -- The tokenization of arrays is a hybrid of variable
and XFN tokenization. A tARRAY token is followued by one to
three bytes that describe the name of the array (same as for
variables) and this is followed by a nibble describing the
number of subscripts.

Funny Functions -- This type is used for functions uwhich defy
normal rules for parse or execution. The tokenization is
described in the next section.

Following any parameterless function a tLPRP token may be

present to preserve a " ()" which followed the function.

Any token other than those above signals the end of the expression.

7.1.8 Funny Function Parse

The lexical analyzer (NTOKEN) finds the keyword corresponding to
the FEN in a lex table., It detects that its token number is 00.
It jumps to the ‘'execution address" of token 00. This routine
figures out what token should be returned by looking at the letters
of the text (or maybe some pointer the lexical analyzer passes to
it) and leaves that in A(5-0) in the form:

brrrmrrcce——-tmmee=}

A | |[Fn# | Id | tFEN|

7-13

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

Seo=y

It also loads B(A) with the address of a routine (in that lex file)
vhich knous how to parse that FFN, This will be called by the
expression parser if indeed the expression parser was the one who

called NTOKEN, It should set status bits to look 1like a
parameterless function (S0-S3 clear).

It then returns. This is actually the return from NTOKEN.

If it wvasn’t the expression parser who called NTOKEN then the entry
returned simply looks like a function and the parse routine can
give the same parse error that it would give if any other function
was found., CALC node has a specific trap for the tFFN token and

disallous it.

The expression parser eventually sees the tFEN token and jumps to
the address returned in B(A). Before jumping, it compiles the 8
nibbles in A(7-0). This 1leaves room for the length byte to be
filled in. DO (the output pointer) points past these eight
nibbles, ready for the FFN parse to take over. D1 (the 1input
pointers points wuwherever it wuas left by the lexical analyzer
override routine described above. D(A) points to tle parse stack.
This stack must be preserved. It extends from D(A) to AVMEME. The
FFN parse routine must respect the register usage of the expression
parser.

If the expression parser must be reentered to parse an expression
within the FFN, AVMEME must be moved up to "protect” the parse
stack. This implies that the stack length must be saved so that

AVMEME can be set back to its original value. In order to be able
to fill in the FEN length when it ‘'is done parsing it, DO should be
saved also. One subroutine level should also be saved to prevent
overflowing the stack. If these three items (parse stack length,
DO pointing past the length byte and one return stack 1level) are
saved on the parse stack before moving AVMEME to protect the stack,

then unlimited nesting of FFNs is possible,

The net effect of the FFN parser is to parse a '"parameterless"
function. This implies that no parameters precede the function in
the RPN stream of tokens. Once the FEN has been completely parsed,
control should passed back to the expression parser in the state
where an operand has just been found (P1-10). It should return to
SE1-10 if the FIN returns a string result. This pushes a "Primary"
on the parse stack and scans for another token. In either case it

should do a RINSXM to indicate that this is a value expression,
The expression parser continues, trying to work this primary into
the expression.

The CALL statement expects the expression parser to set the RAM
nibble at PRMCNT to a non-zero value if the expression contains any

7-14

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

function that can possibly cause another call statement to be
executed, In the mainframe, only user-defined functions can cause
this to happen. It is conceivable that a funny function could
perform a CALL on its own. In this case, the PRMCNT nibble should
be set to prevent a problem with call. There is no problem if the
expression parser is used recursively since if the expression which
is a parameter to the funny function contains a user-defined
function, that "copy" of the expression parser will set the PRMCNT
nibble and it will remain set for the duration.

The only acceptable error exit in the process described above is
the case of insufficient memory to continue normally; the routines
must return in all other cases.

7.1.8.1 Funny Function Tokenization

The "Funny Function" token (FFN) lies just within the range of
built-in functions. This token (tFEN) is encoded as follous;

embetpeee+

| tFEN| Id |Fn# |Len | Funny code |
BRSRyggyggMggS+

First comes the tFFN token followed by the Lex Id and the function
number, just as in XEN, Following this, there is a length byte.
This byte, when added to its oun address points to the first nibble
of code not contained in the FFN,

7.1.9 Polling during Parse

A statement issuing a poll (slow poll) during parse must use the
POLLD+ entry point, This adjusts the end of available memory value
in D(A) to reflect the save area and GOSUB stack level used by
poll.

AVMEMS (available memory start) must be set to the value in DO in
order to preserve data already written to the output buffer; this
can be done by calling AVS=DO0, On return from the poll, the
calling routine must reset D(A) to available memory end. The
routine DsAVME does this.

Sample code:

GOSBVL =AVS=D0 Set AVMEMS DO

GOSBVL =POLLD+

CON(2) =pPOLL# Issue poll
GOSBVL =D=AVME Set D(A) = AVMEME

7-15

HP-71 Softuware IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

7.2 Uriting a Decompile Routine

7.2.1 Global Assumptions

INADDR - Contains pointer to statement length byte of statement

currently being decompiled.

LDCSPC - Contains pointer to desired cursor position in decompiled
line (immediately following line number).

e§SSTdc - SST Flag (S1) - Set ONLY by Single Step to decompile only
a statement not the entire line.

S12-515 - Global System Flags - Except (S12), PgmRun (S13), NoCont
(S14), Trace (S15)

f1IRTN - System flag which indicates that decompile was externally
invoked.

S-R0-2 - Uhen f1RIN is set, this RAM location contains the address
to return to.

R3 Used by LIST; not available to decompile routines

7.2.2 Entry Conditions from Line Decompile

D1 points into the token strean. D1 is past the keyword token; A
and C contain the next token.

DO points into the output buffer, past the decompiled line number,
keyword, and a blank.

D(A) contains the End of Available memory; used to check against by
the output routines. This value should remain untouched,

7.2.3 Decompile Utilities

For output utilities, see "Houw To Urite a Parse Routine."
GTEXT1 - Given a token, outputs the corresponding text. Includes

numerous entry conditions and entry points which provides
for outputting leading and/or trailing blanks.

EOLDC - Checks for statement terminators: t@, t!, tEOL

7-16

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

EOLXC* - Calls EOLDC above; if statement terminator found, does not
return - handles rest of statement by going to OUTELA. If
no statement terminator found, returns to caller wuith
carry clear.

VARDC - Decompiles variables

LIN#DC - Decompiles and outputs a 1line number, suppressing leading
zeros,

ASCICK - Copies ascii characters from input stream to output
buffer, until encountering a non-ascii character.

EXPRDC - Decompiles expression pointed to by D1.

FILDC - Decompiles file specifier

ARYDC - Decompiles array which was compiled by ARRYCK.

LABLDC - Assumes D1 is at tLBLRF (label reference token), steps
over tLBLRF. If label 1is a 1literal, outputs it within
quotes; otherwise, the string expression is decompiled.
Returns with carry clear.

SKIPDC - Useful if an unrecognized XUORD is encountered; skips D1
to the end of the statement and goes to OUTELA (see
belou).

7.2.4 Exit Conditions

Uhen the token stream has been exhausted, exit through either
OUTEL1 (D1 points to statement terminator) or OUTELA (D1 points to
statement terminator and A(B) contains it).

D(A) points to the end of available memory.

7.2.5 Existing Multi-use Decompile Routines

Any keywords which have no parse to speak of (STOP and RETURN are
good examples), can use OUTELA as their decompile routine.

Any keywords which have an optional expression list, delimited with
compiled commas and/or semi-colons may use DROPDC as their
decompile routine. Note that this can be used even if no
delimiters are compiled betueen expressions: the expression list is
still output with comma delimiters,

Any keywords which have a mandatory expression list may use FIXDC

7-17

HP-71 Softuare IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

as their decompile routine. Again, delimiters need not be compiled
betueen expressions; comma and semi-colon delimiters are acceptable
and will be decompiled.

7.2.6 Funny Function Decompile

Uhen expression decompile sees a tFFN token, it outputs a nullop
and it looks up the execution address of the FEN. If the FFN can’t
be found (ie the lex file is missing) it pretends the token is a
tXEN and outputs XFNllleee, where 111 is the LEX ID (leading zeroes
suppressed), and eee is the entry#., It skips over the FFN by
adding the FEN length. No attempt 1is made to decompile the FFNs
parameters. -

The decompile handler for this FEN is pointed to by a relative
address immediately above the execution address. The FFN decompile
handler should decompile the FIN as only it knows how. This
decompile cannot leave unquoted characters greater than 127 in the
buffer since this would mess up the decompiler when it is resumed.

If the FEN contains an expression, it will have to preserve some
information to be able to call expression decompile; it will have
to steal some available memory at AVMEME to preserve the pointers

vhich are critical to the expression decompile which is in
progress, It will also have to save one stack level.

Once the entire FEN has been decompiled, control should be passed
back to the main expression decompile 1loop (via a GOVLNG =EXDCLP).
The expression decompile should continue normally looking at the
rest of the expression. The text that has been generated will be
treated as a parameterless function with a very long name.

7.2.7 Polling during Decompile

A statement 1issuing a poll (slow poll) during decompile must use
the POLLD+ entry point. This adjusts the end of available memory
value in D(A) to reflect the save area and GOSUB stack level used
by poll.

AVMEMS (available memory start) must be set to the value in DO in
order to preserve data already uwritten to the output buffer; this

can be done by calling AVS=D0. On return from the poll, the
calling routine must reset D(A) to the current val.ie of avallable
memory end. The routine D=AVME will do this,

Sample code:
GOSBVL =AVS=D0 Set AVMEM at DO
GOSBVL =POLLD+ Issue poll
CON(2) =pPOLL#%

7-18

HP-71 Softuware IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

GOSBVL =D=AVME Set D AVMEM

7.3 Statement Execution

7.3.1 Entry Conditions

The program counter (DO) is positioned past the begin BASIC token.
PCADDR has been updated and points at the statement length byte for
the statement.

7.3.2 Global Assumptions

Several flags have global meaning during statement execution:

Except (S12) Exception has occured
PgmRun (S13) Program Running
NoCont (S14) No Continue of execution
Trace (S15) TRACE Mode active

PgmRun (S13) is set if a program is executing. NoCont (S14) is set
if execution is to halt after the next statement is executed.
Single step execution sets this flag.

7.3.3 Exit Conditions

Uhen the execution associated with a given statement is complete,
control must be turned over to the run loop. This 1is done by
exiting through NXTSTM or RUNRIN.
NXTSTM - Skips over statement preceded by current PCADDR. The

statement following will be the next one to execute.

NXTST2 - DO points to statement length byte of statement to skip
over,

RUNRIN - DO points to statement terminator (t@,tEOL, tELSE)
preceding next statement to execute, Be sure sENDx (S1)
is clear.

RUNRT1 - DO points to statement terminator (t@,tEOL,tELSE)
preceding the next statement to execute, sENDx is
explicitly cleared.

7-19

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

7.3.4 Error Exits through MFERR/BSERR

Error exits from statements and functions require only four things:
1) S13 is set when appropriate (indicates program running)
2) PCADDR is accurate
3) The error number is loaded in C.
4) P is set appropriately to select options (set ERRN, display

error prefix, etc.,). See MFERR* documentation or the "Message
Handling" chapter for details.

Entry points MFERR and BSERR are used for processing errors
generated in the BASIC operating system. MFERR requires that the
error number is loaded in C(B); this error exit can be used for
mainframe generated errors (LEX file #00). However, BSERR requires
that the error number is loaded in C(3-0), specifying both the LEX
ID number and the message number. It is acceptable to use BSERR
for mainframe- generated errors, as long as C(3-2) 1is filled with
zeros.

7.3.5 Use of Available Memory by Statements

The execution of statements often requires the usurping of
available memory. There are some restrictions on houw much of
available memory may be allocated and for how long. Refer to the
section Available Memory Management in the “"Memory Structure"

chapter for details.

7.3.6 Statement Execution Utilities

FSPECx Evaluates file specifiérs; will poll for any not
recognized by mainframe.

FILXQ" Evaluates mainframe file specifiers and dedicated device
specifiers. Currently accepted device names are PORT,
MAIN, CARD, and PCRD.

EXPEXC Evaluates expression pointed to by DO. Evaluated

expression on stack. See EXPEXC documentation for
details.

FINDF Given a file specifier returned from FSPECx or FILXQ",
searches for the given file. Indicates upon exit, whether
or not file found. If file found, provides information on
where. Numerous entry points,

EOLXCK Given a token in A(B), returns with carry set if it is a
statement terminator: tEOL, t@, t!, tELSE.

7-20

HP-71 Software 1DS - Detailed Design Description
Statement Parse, Decompile, and Execution

7.4 Expression Execution

7.4.1 Entry Conditions to Expression Execute

DO is the lnterpreter 8 program counter; it must p01nt to the first
token of the expre951on when expre931on execution is called. D1 is
the active stack pointer for the operand stack during execution.

Several entry points are available:

EXPEX- collapses the math stack, but leaves status bits alone.

EXPEX+ saves the caller’s status bltS and reads MIHSTK to
position the stack pointer.

EXPEXC leaves status bits alone, and reads MIHSTK to position the
stack pointer. EXPEX1 is another name for this entry
point,

EXPR assumes the stack pointer is already positioned.

7.4.2 Math Stack Usage and Format

The math stack grous from high addresses to low. The stack item at
the lowest address is said to be on top of the math stack. MTHSTK
is updated only upon termination of expression execution, or for
special cases such as user-defined function execution.

7.4.3 Data Types on the Stack

There are four kinds of objects that exist on the math stack under
normal circumstances:

Real numbers

Complex numbers
Strings
Array descriptors

Real numbers exist on the math stack in standard floating-point
formn. They can be identified by a legal BCD digit on top of the
stack.

7-21

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

Real number on stack
topmmcmreb=t

High |S| Mantissa |Exp| Lou
mem 4-t-----e----+--~+ men

1 12 3

Complex numbers consist of an E-digit on top of the stack, with a
zero-digit just below it. This is the complex stack signature.
Below the stack signature are two standard floating-point numbers:
the imaginary part on top of the real part.

Complex number on stack
Real part . Imaginary part

totmmmeetemmbmmet-———t—=t

High |S| Mantissa |Exp|S| Mantissa |Esp|OE| Louw
mem totmmmme——Ptmmme+-—-=+--4+ men

Strings have an F0 stack signature, Below the signature is a
five-nibble field giving the length of the string in nibbles. Then
come nine nibbles which can normally be ignored; they contain
destination information for string assignment if they contain
anything useful at all. This information includes the maximum
string length and the address of the destination. Hence, a string
stack header consists of 16 nibbles; the ASCII text of the string
lies under the header, with the first character of the . string
toward the bottom of the stack, and the last character next to the
header.

STRING on stack
eetm————etm—————+——+

High |String ... IMaxLnl|Address|Length|0F| Lou
mem tmmmme—t————— pmm—————— tm—————- +--+ men

4 5 5 2

A string may have another representation on the stack if it was
created by pushing an element of a nonexistant string array. In
this case, the tag is a F8 instead of FO. The length field will
indicate a null string. The name of the variable referenced and
the element rumber will be filled in. This is treated as a mull
string by system routines. This item is 16 nibbles in length with
the following format:

7-22

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

Nonexistent string array element on stack
t-————te—te+--+

High |Ele# |00|Name|Length|8F| Lou
mem +----- tombmme+--+ Rnen

4 2 3 5 2

Any other object on the stack must be an array descriptor, with its

offset field changed to the absolute address of the array’s data
area,

Array descriptor on stack
tm—m—————e———-+t-+-+-+

High |Address|Dim lengths|b|#|t| Low
mem pom—————e+-+-+-+ mMen

5 8 111

b=Option base , t=Type

7.4.4 Expression Execution Utilities

Utilities erist for popping and type-checking arguments, along with
reentry points for pushing results.

POPIN and POP2N are used for popping numeric arguments. Attempting
to pop a string or an array descriptor with these routines causes
an error to occur, If the carry is set upon return from these
routines, the arguments are complex.

MPOPIN and MPOP2N establish the math modes, pop arguments, and test
for exceptional inputs before returning. These utilities all leave
the stack pointer (D1) positioned for placing a standard
floating-point number back on the stack.

POP1S tests for a string on the stack. Attempting to pop a number
or array descriptor with this routine causes an error to occur.
Upon return, the string length is left 1in the lower 5 nibbles of
the A-register, with the stack pointer (D1) at the topmost
character of the string text.

REVPOP has the same exit conditions as POP1S, but the strlng is
reversed before returning. REV$ is a strlng reversal routine,
vhich returns with the stack pointer unaltered.

7-23

HP-71 Softuare IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

7.4.5 Function Returns

Reentry points are called function returns. The mainframe code has
established function returns for real numbers only. FNRIN1 assumes
the PC is still in DO, and the result is in C. FNRIN2 assumes the
PC has been moved to A, with the result in C. These two function
returns are for p1301ng nev items, such as constants, on the stack;

a stack collision check is performed These returns are generally
NOT used for functions wuwhich have arguments, since the stack

pointer 1is usually already wvhere it needs to be upon return.
FNRIN3 assumes the PC is in A, and the result is in C, FNRIN4
assumeg the PC is back in DO, and the result is in C. A typlcal

numeric function will be lmplemented with a call to a POP routine,

calls to appropriate math routines, and a jump to an approprlate

ENRIN (usually ENRIN4). If a function places 1its result on the
stack itself (as do most string functions), EXPR is the appropriate
return; this begins processing of the next token,

7.5 Implementation of Function Execution

7.5.1 Entry Point

The execution address should be marked as an entry point to allou
the loader to fill in lex tables. Immediately above the entry
point is the range of valid argument counts,

Above this is a string of nibbles describing each parameter. Each
nibble should have the 8’s bit set if a numeric parameter is
alloued. The 4’s Dbit should be set if a string parameter is
alloued. The 2’s bit should be set if an array parameter is
required. The 1’s bit 1is not defined but should be zero. One
nibble is required for each possible parameter.

The minimum argument count (0-F) is specified first, folloued by
the maximum argument count (0-F).

For exanmple:

NIBHEX 8 3rd parameter numeric (if present)
NIBHEX 8 2nd parameter numeric
NIBHEX 4 1st parameter string
NIBHEX 23 Argument count range (min=2,max=3)

=SUBST$ P=C 15 Load actual number of parms in P
7P= 2 Check if only 2 parms
GOYES SUBST?2

7-24

HP-71 Softuware IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

wvhere 2 is the minimum argument count and 3 is the maximum argument
count. All XINs have a 7 nibble tokenization, the 1last nibble of
which is the actual number of parameters passed to the function.
If the function has a variable number of parameters, the execution
code for the function can find the actual number of parameters by

looking at the sign field of the C register. If a function has a
fixed number of parameters, it may assume that the proper number of
parameters are on the stack.

Four hardware stack levels are available for function execution. A
complete list of RAM that is available to and restricted from
function execute is in the "Memory Structure" chapter.

7.5.2 Entry Conditions

The current program counter 1location is contained in DO and has
been updated past the tokens that specify the function. The ’B’
field of the B register contains the table entry number to the
function execution code.

The arithmetic stack expands from the end of available memory
(AVMEME) toward lower memory making use of available memory. At
the time of the function call, D1 points to the "top" of the stack.

If the stack grous as a result of the function call, a check should
be made to prevent the stack from exceeding available memory, by
comparing the stack pointer with AVMEMS. No LEEUAY need be
maintained during expression execution, ie., all of available
memory is truely available.

7.5.3 Exit Conditions

The program counter 1is stored in DO, The stack pointer is stored
in Dl1. Other than these data pointers, the function need not
preserve any CPU registers (working, scratch, or status). See the
section on function returns under expression exrecution for
information on houw to resume the expression interpreter once the
function’s execution has completed.

7.5.4 Error Exits through MFERR/BSERR

Error exits from statements and functions require only four things:
1) S13 is set when appropriate (indicates program running)
2) PCADDR 1is accurate
3) The error number is loaded in C.
4) P is set appropriately to select options (set ERRN, display

error prefix, etc.). See MFERR* documentation or the "Message

7-25

HP-71 Softuware IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

Handling" chapter for details.
Entry points MFERR and BSERR are used for processing errors
generated in the BASIC operating system. MFERR requires that the
error number is loaded in C(B); this error exit can be wused for
mainframe generated errors (LEX file #00). However, BSERR requires
that the error number is loaded in C(3-0), specifying both the LEX
ID number and the message number, It is acceptable to use BSERR
for mainframe- generated errors, as long as C(3-2) 1is filled with
zeros,

7.5.5 "Funny” Functions

The execution address of tFFN is exactly the same as tXFN. This
will cause the execution address of that particular FIN to be
called. One peculiar side effect of using XFN execute to get to
the execution address is that the program counter (D0) will have
been moved to point past the first nibble of the length byte. The
first nibble of the length byte uwill have been read into C(S) since
XFN thought it was reading a parameter count, The FFN execute

should merely move DO one nibble farther to finish skipping the
length byte,

The FEN should do what it has to in order to leave exactly one item
on the stack. It should not alter what was already on the

stack--this is the nature of parameterless functions.

Once it has its value pushed on the stack, it should jump to EXPR,
or use any of the normal entry points,

7-26

HP-71Software IDS - Detailed Design Description
BASIC File Considerations

oeeeeeee--== =-=---

|
| BASIC FILE CONSIDERATIONS = . o

)

+ --

Uhen extending system capability through BASIC, there are several
items to keep in mind.

8.1 ROM Generation

Before a BASIC file is RUN, the system chains together all its
labels, subprograms, and user-defined functions. Also, any line
number references are compiled as they are encountered in the

running program. If a file in ROM is not already chained or does
not have its line number references compiled, then at the time it’s
invoked an error will result as the system attempts to urite to
ROM. There are several ways to avoid this unpleasant situation.

8.1.1 Chaining a BASIC File

There are three ways to chain a file;

1) COPY it. The destination file will be chained.
2) RUN 1it.

3) TRANSFORM it into TEXT, and then back into BASIC.

Keep in mind that any time a file is modified, it is no longer
chained.

8.1.2 Compiling Line Number References

To compile all line number references in the current file, simply
execute:

RENUMBER 1,1,1,1

This statement acts as a NOP, except for the fact that it compiles
line number references (No line numbers are changed).

HP-71 Software IDS - Detailed Design Description
BASIC File Considerations

8.2 BASIC Application Standards

8.2.1 Preserving The Mair Environment

Uhen the user runs a BASIC file to perform a given application,
every effort should be made 1to preserve as much of the user’s
environment as possible. This includes variables, user flags,
display format, etc. To further this end, we suggest that any
BASIC application program which may destroy or use BASIC variables,
should save the user enviromment via a CALL statement,

For example, say there is an application program, PLOT, which by
necessity must use BASIC variables. If the first line of PLOT is

as follows, then the user’s variables will remain intact:

10 CALL PLOT @ SUB PLOT

Now the user can safely invoke PLOT by simply saying:
> RUN PLOT

8.3 BASIC Packing Techniques

Uith some forethoughtl you can use features of the HP-71 BASIC

interpreter to minimlze the amount of memory that your BASIC
programs require., Listed below are our suggestions, along with the
actual memory savings.

1) Don’t use GOTO immediately after THEN or ELSE:
Change:

10 IF FLAG(X) THEN GOTO 100
To:

10 IF FLAG(X) THEN 100

This saves three bytes.

2) Check for a mull string using the LEN function:
Change:

10 IF A$#"" THEN
To:
20 IF LEN(A$) THEN
This saves three bytes,

3) Instead of using THEN and ELSE to make one of two assignments

8-2

HP-71 Software IDS - Detailed Design Description
BASIC File Considerations

to a variable, do one assignment followed by a conditional to
determine if the other assigrmment should be done:

Change:
10 IF X THEN K=L ELSE K=P
To:

10 K=P @ IF X THEN K=L

This saves three bytes,

4) Instead of testing a flag to determine if a variable
(or value) should be incremented, just add the flag value:
Change:

10 IF FLAG(X) THEN K=K+1
To:
10 K=K+FLAG(X)
This saves five bytes.

Change:
20 IF NOT FLAG(X) THEN K=K+1
To:

20 K=K+NOT FLAG(X)
This also saves five bytes

5) Use single character alpha variables, instead of alpha-digit
variables. There is a one byte savings for each occurence.

6) Concatenate a statement to the previous one, instead of using
a new line number. There is a two byte savings for each
concatenated statement.

8.4 Version Number

It is strongly recommended that each BASIC software application
respond to the VER$ poll to indicate the version of the softuare.

This requires a LEX file to be included with no Keywords, but the
appropriate code to indicate the proper VER$. The last LEX ID for
Custom Products - Special (244) is used as the LEX ID for VER$
response of BASIC applications. This LEX ID may be used for words
by a particular custom application, without conflict.

The VER$ string should indicate the application name, using 3 or
less characters, followed by a colon and a single letter. The .

single letter 1ndicates the specific version number. The letter
“A" 1s the first released version,

The following examples show VER$ strings for three HP71 BASIC
applications:

VER$ String Application Pac

8-3

HP-71 Softuware IDS - Detailed Design Description
BASIC File Considerations

CIR:A HP71 Circuit Analysis Pac - Version A
FIN:A HP71 Finance Pac - Version A
SUR: A HP71 Surveying Pac - Version A

The LEX file containing the VER$ should be the first file in the
ROM and have a name representing the application. It is suggested
that the file be protected from being copied. This can be
accomplished either by designating the file as Private, or by
ensuring that the file name has some lower case characters. The
latter can be done by poking into the file name field of the file
header:

10 DIM F$,N$,A$(5) INTEGER N
20 DISP "Set name to lower case"

30 INPUT "0ld filename:";F$
40 INPUT “New name:",F$;N$
50 A$=ADDR$ (F$)
60 N$=(N$&" “)[1,8]
70 FOR I=1 TO 8
80 N=NUM(N$([1])
90 POKE A$,DTH$ (N) (5]&DTH$ (N) [4,4]
100 A$=DTH$ (HTD(A$)+2)
110 NEXT I
120 DISP "Done with name change"

The follouing examples show the names of the LEX files containing
the VER$ for three BASIC application pacs:

VER$ LEX File Name Application Pac

Circuit HP71 Circuit Analysis
Finance HP71 Finance
SurveyV HP71 Surveying

8-4

HP-71 Software IDS - Detailed Design Description
Utilities

Boeeeeee ee eoeeee"------

oeee>---"----=--

UTILITIES 2 o

This chapter provides a brief overvieu of some operating system
entry points which are useful for external softuare development.

EOLDC

EOLXC*

VARDC

LIN#DC

ASCICK

EXPRDC

FILDC*

ARYDC

LABLDC

SKIPDC

Decompile Utilities

Description

Given a token, outputs the corresponding text.
Includes numerous entry conditions and entry points
which provides for outputting leading and/or trailing
blanks.

Checks for statement terminators: t@, t!, tEOL.

Calls EOLDC above; if statement terminator found, does
not return, but handles rest of statement by going to
OUTELA., If no statement terminator found, returns to
caller with carry clear,

Decompiles variables.

Decompiles and outputs a line number, suppressing
leading zeros.

Copies characters from input stream to output buffer,
until encountering a character with high bit set.

Decompiles expression pointed to by D1.

Decompiles file specifier.

Decompiles array which was compiled by ARRYCK.

Assuming D1 is at tLBLRF (label reference token),
over tLBLRF. If label is a literal, outputs it within
quotes; otheruise decompiles strlng expression.
Returns with carry clear.

steps

Useful if an unrecognized XUORD is encountered; skips
D1 to the end of the statement and goes to OUTELA (see
belou).

HP-71 Software IDS - Detailed Design Description
Utilities

9.2 Display and Keyboard Control Utilities

9.2.1 Display Control

The LCD display and all associated HP-IL "DISPLAY 1IS" devices may
be controlled by sending characters to the DSPCHA/DSPCHC routine.
In general, these characters are processed as if they are being
passed on to some external display device but the processing is
actually performed by the HP-71 CPU. This includes insert mode,
processing escape sequences and in general all necessary
maintenence of the display buffer and status information.

The display buffer is controlled by sending characters as described
above but the actual LCD is generally not affected by these

characters. It is only updated when the BLDDSP routine is called.
At that time the display buffer and status information 1is used to
decide which bits of the LCD should be on. It also controls the

left and right arrows that indicate whether the buffer extends past
either end of the windou.

9.2.1.1 Carriage Return and Line Feed

Uhen a carriage return is sent to the display (via DSPCHA) it will
cause BLDDSP to be called automatically. If the display needs to
be updated to reflect the current display then BLDDSP must be

called explicitly. In general calling BLDDSP doesn’t take long if
the LCD already reflects the display buffer since a status bit
(Exact) is cleared whenever anything is done to the display buffer
that might alter the LCD bit pattern that would be built. BLDDSP
returns immediately if that bit indicates that the display is
already built correctly.

Uhen a carriage return is sent to the display, the cursor {and
FIRSIC) should be reset to zero. Uhat actually happens 1is that a
flag is set so that when the next character is sent to the display
these values will be reset before the character is -.rocessed. This
allous the information needed to properly build and scroll the
display to be preserved until it is no longer needed.

The character scroll rate is checked when a carriage return is
received. If it is zero, then the first character in the display
is moved so that the last character in the buffer will fit in the
display. If the scroll rate is infinite, then the display is built
starting at the first character in the buffer (pointed to by
FIRSIC). In all other cases, the display is built starting where

9-2

HP-71 Softuware IDS - Detailed Design Description
Utilities

FIRSIC points (usually zero) and then the character scroll delay is
performed, then the FIRSIC is incremented and the display rebuilt.
This is repeated until all characters in the display buffer have
been vieued.

Vhen a 1line feed is sent to the display, the buffer should be
cleared. Uhat actually happens is that a flag is set so that when

the next character is sent to the display the buffer is cleared
before then character is processed. This allouws the characters in
the display buffer to be scrolled through the display even though
the display has technically been cleared.

The display delay is triggered whenever a line feed character is
sent to the display unless the cursor is on (CurOff clear) or the
delay suppress bit (XDelay) is set.

9.2.1.2 Display Escape Code Sequences

The HP-71 display accepts the follouing escape sequences:

Esc Q -- Insert cursor
Esc N -- Insert cursor (uith wrap)
Esc R -- Replace cursor

Esc C -- Cursor right
Esc D -- Cursor left

Esc H -- Home cursor

Esc J -- Clear Display (Treated same as ESC K)

Esc K -- Delete through end of line
Esc » -- Cursor on
Esc < -- Cursor off
Esc E -- Reset display
Esc P -- Delete char

Esc O -- Delete char (with wrap)
Esc X <col> <rouw> -- Set cursor position absolute

Esc Ctrl-C -- Cursor far right
Esc Ctrl-D -- Cursor far left

9.2.1.3 Scrolling The Display

Once characters have been sent to the display buffer it is
frequently necessary to allow the user to scroll the contents of

the buffer using the cursor keys. The SCRLLR routine does this.
It will watch the keyboard and cause the display to scroll whenever

one of the scrolling keys 1is hit., It will return when the user
presses a key other than a scrolling key. It will also time out
after ten minutes if no key has been pressed.

HP-71 Softuware IDS - Detailed Design Description
Utilities

9.2.1.4 Setting The Bit Pattern In The Display

The actual bit pattern in the display is normally set by BLDDSP to
reflect the display buffer. However, at a lower level, the BLDBIT
routine may be used to set the bit pattern according to some other
buffer. This is used to implement the "VIEU" and "ERRM" keys.

9.2.2 Keyboard Interface

Keyboard scanning is performed by KEYSCN. This routine is called
by the interrupt routine but may be called from anywhere. If it is
called too often key bouncing may result. To prevent this, the
entry point DEBNCE can be used to cause a specified wait before
performing the keyscan.

Uhen KEYSCN finds keys newly doun it adds to the queue of keys in
the keyboard buffer. This buffer holds up to 15 keys. If the
buffer is full then the neu keys are discarded.

The POPBUF routine should be used to remove keys from the buffer.
This routine sets up the buffer so that repeating keys can uork.

9.2.3 Sunmmary

Entry Description

BLDDSP Build LCD pattern from display buffer.

BLDBIT Build LCD from specifiedbuffer.

DEBNCE Debounce key before keyscan.

DSPCHA Send character in A(B) to display buffer.

DSPCHC Send character in C(B) to display buffer,

DSPRST Reset display.

KEYSCN Keyboard scanning.

POPBUF Remove keys from buffer,

9.3 Expression Execution Utilities

HP-71 Softuare IDS - Detailed Design Description
Utilities

9.3.1 Utilities for Pushing Items Onto Math Stack

EXPEXC

FNRTN1

BF2STK

STKCHR

ADHEAD

Description

The normal entry point for expression execution.
"Evaluates an expression by processing the tokenized
stream. The value(s) are left on the stack when done.

Resumes expression execution after pushing a value onto
the stack., Related entry points are ENRIN2, FNRIN3,
and FNRIN4, Further described in the "Statement Parse,
Decompile, and Execution" chapter.

Adds a string to the stack from a string of characters
in memory.

Creates a string on the stack one character at a time.

It works with ADHEAD to build a proper stack item.

Adds the proper string header to a string that has been
placed on the the stack by STKCHR.

9,3.2 Utilities for Popping Items Off Math Stack

The following utilities are used for popping numeric or string
arguments off the MATH Stack, and for checking their type.

POP2N

MPOPIN

MPOP2N

Description

Pops a numeric argument. If item is a string or a dope
vector, a fatal error occurs. If the carry is set upon

return, the argument is complex.

Pops two numeric arguments, If either item is a string
or a dope vector, a fatal error occurg. If the carry
is set upon return, the arguments are complex (coerced
to match each other if necessary).

Similar to POPIN, but establishes the math modes, pops
an argument, and tests for an exceptional value before

returning. Leaves the stack pointer (D1) positioned
for placing a standard floating-point number back on
the stack.

Similar to POP2N, but establishes the math modes, pops
arguments, and tests for an exceptional values before
returning. Leaves the stack pointer (D1) positioned
for placing a standard floating-point number back on

9-5

HP-71 Software IDS - Detalled Design Description
Utilities

the stack.

POP1S Tests for a string on the stack. Attempting to pop a

number or dope vector with this routine results in a
fatal error. Upon return, the string length is left in
the CPU, with the stack pointer at the topmost (lowest
address) character of the string text.

REVPOP Has the same exit conditions as POP1S, but the string
is reversed before returning.

REV$ Reverses character order of a string on the stack.
Returns with the MATH Stack pointer unaltered.

POPMTH Moves the stack pointer past one item on the stack.
This item may be string, real, complex, etc.

9.4 File I1/0 Utilities

The following utilities are used to create files, open files, read
or urite arbitrary data to or from files, and to close files. For
further information on file access, see the "File System" chapter
in this volume and the "File Utilities" chapter in Volume 1I of
this document.

Entry Description

CLOSEF Close an open file.

CRTF Create a file of arbitrary type, in mainframe or on
mass medium, Does not open file. '

FIBADR Fetches the address of an open file’s FIB into register
DO.

FINDF Find a file in memory given its name and memory device
type.

FSPECx Evalute (execute) a tokenized file specification to
determine the file name and device type.

MVMEM+ Expand or contract the contents of a file in memory.
May be used to delete a file from the file chain.

OPENF Open a file given its name and device type.

PRGFMF Purge a file in memory,

9-6

HP-71 Softuware IDS - Detailed Design Description
Utilities

PURGEF Purge a file in memory or on mass mediunm,

RDBYTA Read a byte from an opened byte-oriented file. See

also URBYIC,

READNB Read an arbitrary number of nibbles from an opened file
of any file type. See alse WRITNB.

RPLLIN Replace, delete, or insert a line or stretch of any
number of nibs in a memory file.

WRBYTC Urite a byte to an opened byte-oriented file. See also
RDBYTA.

WRITNB Urite an arbitrary number of nibbles to a an opened
file of any type.

9.5 Flag Utilities

Entry Description

"UPDANN Updateanmunciatorsaccordingtouserandsystemflags.
SFLAGC Clear a system flag and update annunciators.

SFLAGS Set a system flag and update annunciators,

SFLAG? Test a system flag.

SFLAGT Toggle a system flag.

RNDAHX Pop, round, convert real argument to hex integer.

9.6 Math Utilities

Uhat follows is a brief description of some built-in HP-71 math
routines that may prove useful, The routines are grouped by
category.

9.6.1 Numeric Comparison

Entry Description

HP-71 Softuware IDS - Detailed Design Description
Utilities

9.6.2 Trig Routines

Entry Description

ARGIS Computeangleofpair(x,y)of15-digitargunents.
SIN15 Sine of a 15-Digit argument,

COS15 Cosine of a 15-Digit argument.

TAN1S Tangent of a 15-Digit argument.

9.6.3 Inverse Trig Routines

Entry Description

ASINIS Arcsineofa15-digitargument.
ACOS15 Arccosine of a 15-digit argument.

ATAN15 Arctangent of a 15-digit argument.

9.6.4 Arithmetic & Square Root

Entry Description

ADDONE Addone(x+1)toa15-digitargument.
SUBONE Subtract one (x-1) from a 15-digit argument,

1/X15 Invert (1/x%) a 15-digit argument,

AD2-15 Add two 15-digit arguments.

AD15S Add tuo 15-digit arguments, preserving SB & XM.

SB15S Subtract two 15-digit arguments, preserving SB & XM.

MP2-15 Multiply two 15-digit arguments.

Dve-15 Divide two 15-digit arguments.

SQR15 Square Root of a 15-digit argument.

SQRSAV Square Root of a 15-digit argument, preserving SB & XM.

9-8

HP-71 Softuare IDS - Detailed Design Description
Utilities

9,6.5 Integer-Fraction Functions

CLRFRC

INFR15

Description
D D WS G G I M D W W WS S T D G S S S RD WD W GO WD GO CP WP CO D D WD CD D WS C® CWP AP GO G WS WP WS CD WS GO GV WD > e W WD D GP G GO

Clear the fractional part.

Locate decimal point.

9.6.6 Logarithmic Functions

Description
SGSRG = ---PR DR G D WD WD S GD CD CD D GD > WD G D G > D D>. D D TP D W D . =D>- -.

Natural Logarithm (1n(x)) of a 15-digit argument.

In(1+x8) of a 15-digit argument (LOGP1 in HP-71 BASIC).

Log base 10 of a 15-digit argument (LOG10 in HP-71
BASIC).

9,6.7 Exponential & Involution

Description

e"x of a 15-digit argument (EXP(x) in HP-71 BASIC).

[e"® - 1] of a 15-digit argument (EXPM1(x) in HP-71
BASIC).

Involution of a 15-digit argument (power function y"x
in HP-71 BASIC).

Exponent value of a 15-digit argument (EXPONENT (2x) in
HP-71 BASIC).

9.6.8 Conversion Betuween 15-forms and 12-forms

- on s e @ > - o

SPLITA

SPLITC

SPLTAC

SPLTAX

Description

‘split(unpack)12-forminAinto(a,B).
Split (unpack) 12-form in C into (C,D).

Split 12-forms in A & C into (A,B) & (C,D).

Split 12-form in A, replace signaling NaN, and set XM.

HP-71 Software IDS - Detailed Design Description
Utilities

uRES12

uRESD1

uRND>P

Pack 15-form math result into a 12-form, consulting
rounding modes & TRAP values,

Variation of uRES12 preserving D1.

Round 15-form to p digit 15 form,

9.6.9 Pop, Test, Prepare 1 Argument

ARGPR+

ARGPRP

ARGSTA

ARGST-

POP1R

9.6.10

RCLU3

RCL*

STSCR

9.6.11

Entry

FCSTRT

g9.6.12

Description

‘Readusermodes,fallintoARGPRP.
Pop real, detect nonfiniteness, split & normalize.

Read user modes, fall into AGRST-.

Pop real, error for NaN, detect nonfiniteness.

Pop real, error for complex.

Scratch Math Stack

Description

‘Pop15-digitvalueinto(C,D)fromtopofstack.
Recall 15-digit value into (A,B) from top of stack.

Recall 15-digit value from 1 below top of stack,

Recall 15-digit value from 2 belou top of stack.

Recall 15-digit value from P below top of stack.

Push 15-digit value in A/B onto top of stack.

Factorial

Description
W o GW S S D O G WS CD P WP WD R D TS TP GO GH TP A GO . WP GO D WS WD WD WP S WD WO WS We We WS W G W WD WD TV > > WS SO > W TS GV We

Factorial for finite 15-digit nonnegative integer.

Statistical Utilities

Description

HP-71 Software IDS - Detailed Design Description
Utilities

GETSA

VARNBR

VARNB-

BIASC+

CLASSA

DBLSUB

DBLPI4

EX15M

FINITA

FINITC

FLIP8

FLIP10

FLIP11

GETCON

GETVAL

HNDLFL

HTRAP

INVNaN

MAKE1

Get starting address of current STAT array, test number
of variables and length of array.

Pop 1 real argument and fall into VARNB-,

Convert, round to hex integer, create NaN for invalid
variable number,

Miscellaneous Math Utilities

Description

Bias (or unbias) the exponent of a 15-digit argument
into (A,B).

Bias (or Unbias) the exponent of 15-digit argument into
(C’D) .

Classify argument into one of 12 pigeonholes.

Double precision fixked-point subtract: (A,C), (B,D).

Create 31-digit (double precision) PI/4 in (B,D).

Fetch exponent of a 15-digit argument.

Test for a finite rumber.

Test for a finite number.

Toggle status bit S8,

Toggle status bit S10,

Toggle status bit S11.

Fetch constant from Numeric Constant Table 1located at
TRC90,

tableFetch constant from constant

address.

at arbitrary

Set exception flags.

Consult TRAP values.

Exit code for an IVL operation.

Create 12-dig value ’1’ in C and compare with B.

9-11

HP-71 Software IDS - Detailed Design Description
Utilities

MESSG

MSN15

ORGSB

ORXM

ORSB

PI1/2

SAVGSB

SAVEXM

SAVESB

SHELAC

SHERAC

SHERBD

TUo*

XYEX

Send out warning messages.

Select most significant NaN in 2-Argumnent function,

Set Sticky Bit (SB) if s5=1,

Set External Module Missing bit (XM) if s9s=1,

Set Sticky Bit (SB) if s7=1.

Create 15-digit PI/2 in (C,D).

Save Sticky Bit (SB) in sb5.

Save External Module Missing bit (XM) in 89, and Sticky
Bit (SB) in s7.

Save Sticky Bit (SB) in s7.

Double precision left shift (A,C).

Double precision right shift (A,C).

Double precision right shift (B,D).

Double precision doubler.

Exchange (A,B) with (C,D).

9.7 Parse Utilities

9.7.1 Parse Input Utilities

NTOKEN

RESPTR

Description
DGn e - PWR S S W WS T G D P D S W TP D S EE CE TS R GO WS W WD WD WD G D S SSP WP WS WS W WD WS U G WD M G - - - - -

Skips over any blanks, returns the first non-blank
character in A(B); leaves D1 at the first non-blank
character. In the case where D1 already points at a

non-blank character at the time GNXICR is called, D1 is
not moved.

Skips over any blanks, and returns the tokenization of
what follows 1in register A. D1 1is past what was
tokenized. LEXPTR contains the value of D1 (past any
blanks) prior to the call.

Restores D1 from the value saved in LEXPTR by NTOKEN.

g9-12

HP-71 Softuare IDS - Detailed Design Description
Utilities

WRDSCN Parses current input characters into a token and checks

for a match with one of a given table of tokens. If a
match 1is found, the token 1is output and control is
passed to the corresponding address specified 1in the
table. This 1is an appropriate routine to use if the
presence of any number of keywords is legitimate at
this point in the input stream. For example, OPTION
parse, uwhich allows only BASE, ROUND, or ANGLE as
follouing keyuwords:

GOSUB WRDSCN

CON(2) =tBASE .
REL(3) =FIXP Goto FIXP if tBASE found
CON(2) =tANGLE
REL(3) OPTP10 Goto OPTP10 if tANGLE found
CON(2) =tROUND

REL(3) OPTP20 Goto OPTP20 if tROUND found

CON(2) 0 Terminates table
*

GONC OPTP30 Returns here with carry clr if
nothing in table found

This utility should be used to guarantee a specific
keyword is found by the lexical analyzer. Since WRDSCN
automatically restarts the lexical analyzer, this
prevents a shorter keyword in another LEX file from
being returned instead.

9.,7.2 Parse/Decompile Output Utilities

Often it 18 necessary to output characters or tokens to the output
buffer, or just to skip DO (output pointer) over a certain number
of nibbles wuwhile checking for sufficient memory. There are
numerous utilities to do this. In addition to the entry point
names given below, each utility (except OUINIB) has additional
entry points to output from register C instead of A.

Entry Description

OUTNIB Outputs a single nibble from the low nib of C.

OUT1TK Outputs a byte from A(B). Alternate entry point OUTBYT
outputs a byte from C(B).

OUT2TK Outputs two bytes from the louwer 4 nibbles of A.
Alternate entry point OUT2TC outputs from C.

OUT3TK Outputs three bytes from the 1lower 6 nibbles of A.
Alternate entry point OUT3TC outputs from C.

9-13

HP-71 Software IDS - Detalled Design Description
Utilities

OUTNBS Outputs n nibbles from the lower n nibbles of A. P
must be set to n-1, Alternate entry point OUINBC
outputs from C,

9.7.3 Parse General Utilities

Entry Description

FSPECp Parses and outputs valid file specifier.

FILEP Parses valid file name. If it is a string expression,
then it is tokenized and written to output buffer. If
it is a literal, the file name is returned in A with
C(S) set for WP (word through pointer) urite of the
file name characters.

EXPPAR Parses expression; returns information on uwhether
expression was valid and whether it was string or
numeric, If it was wvalid, calls NTOKEN on whatever
folloued the expression and returns.

NUMCK Parses valid numeric expression; has numerous entry
points.

STRGCK Parses valid string expression.

CATCHR Categorizes character in A(B) (or character pointed to
by D1) as (a) digit, (b) letter, (c) special character
(*,+,-,.,7, ,], or (d) other.

CNVUUC Converts next 8 characters in input Dbuffer to

uppercase. There are multiple entry points, including
one to skip over preceding blanks.

COMCK Sees if next token is tCOMMA,

LBLINP Parses line number or label.

EOLCK Checks for statement terminator: t@, t!, tEOL.

ARRYCK Verifies array subscripts; allows one or two
subscripts., Number of subscripts returned in B(A).

SPLVRP Parses and outputs simple variable, or error exits.

NXTP Parses and outputs simple numeric variable, or error
exits,

OUTVAR Given a variable token in A, outputs the variable,

9-14

HP-71 Software IDS - Detailed Design Description
Utilities

9.8 Statement Execution Utilities

Entry Description

FSPECx Evaluates file specifiers; will POLL for any not
recognized by mainframe,

FILXQ" Evaluates mainframe file gpecifiers and dedicated
device specifiers; devices currently accepted are PORT,
MAIN, CARD, PCRD.

EXPEXC Evaluates expression pointed to by DO. Upon exit,
evaluated expression is on the stack. See EXPEXC
documentation for details.

FINDF Given a file specifier returned from FSPECx or FILXQ",
searches for the given file. Indicates upon exit,
whether or not file found. If file found, provides
information on where, Numerous entry points.

EOLXCK Given a token in A(B), returns with carry set if it is
a statement terminator: tEOL, t@, t!, tELSE.

9.8.1 Utilities for PRINT class statements

PRINT and DISP statements are very similar, The mainframe may be
extended to allow other statements of the same class, such as
OUTPUT. UWhat these statements have in common is that they take an

expression list and output ASCII strings to a device. The way the
system works is that a nibble of RAM (SIMIRO(0)) is set to a digit
that identifies the type of the statement. This nibble is used to
determine the current information on how to output to the proper
device.

The CKINFO routine looks at this nibble and sets up in statement
scratch RAM all the information required. For DISP and PRINT this
information includes the address of a handler routine for that
device, a pointer to the relevant position/width counters, and the
endline string. Other parts of statement scratch may be used to

hold other information necessary for the handler. The handler is a
routine that is capable of sending a block of characters to the
output device. Immediately above the handler code is a 5 nibble
relative offset to a routine that should be called once the entire
statement has been finished--this allous for necessary cleanup,
ect,

Thus, execution of statements of the PRINT class is divided into

9-15

HP-71 Software IDS - Detailed Design Description
Utilities

three parts:

PART1: Set SIMIRO(0) to the statment type and call CKINFO to
get up for parts 2 and 3.

PART2: This is the handler that knows how to send a block of
characters to a device.

PART3: This is the clean up routine that is called at the end
of the entire statement,

The at SIMIRO nibble is preserved throughout the execution of the
statement. Even if the user changes the PRINTER IS assignment in
the middle of a PRINT statement (via a multi-line user-defined
function) this nibble will still say that it is a PRINT statement.
If a multi-line user-defined function 1is referenced within an
expression to be output, CKINFO will recalculate all the
information pertinent to the current statement., This insures that
the output aluays get sent to the right place in the right format.

To implement a new statement of the PRINT class, it is necessary to
be allocated a unique statement type to be filled in STMTRO(0).
The CKINFO routine polls (pPRICL) to find a routine to fill in
statement scratch area with the appropriate information. This poll
must be handled. The PRINT statement causes a different poll
(pPRTIS) which determines the PRINTER IS device if any.

9.9 System Buffer Utilities

Entry Description

"I/OEND GivenabufferID,returnspointertothatbuffer.
I/0ALL Given a buffer ID and desired buffer length, either

eXpands or contracts exlsting buffer or creates buffer

of the specified length and ID.

1/0EXP Expands buffer by a specified number of nibbles,

1/0CON Shrinks buffer by a specified mumber of nibbles.

1/0COL Shrinks buffer to length zero,

1/0DAL Deletes (deallocates) specified buffer.

1/0RES Sets high bit of buffer ID to preserve buffer during
pCONE.

I10FSCR Finds available scratch buffer ID.

9-16

HP-71 Software IDS - Detailed Design Description
Utilities

9,10 Variable Storage Utilities

To process an assignment statement, expression execute (routine
EXPEXC) is called to evaluate the destination variable to the left
of the equal sign. If the destination 1is legal, certain
information must be saved away such that it can be retrieved after
exXpression execute has been called to evaluate the expression to

the right of the equal sign. The utility DEST saves this
information away in Statement Scratch RAM so that when EXPEXC is
called it will be preserved and updated if memory moves (see
description of DEST belouw).

Following expression execute, the B register looks like:

Pttm——————— +

B: |tl2nd Index|1st Index|Address|
Pt-tm———————+

t = type (= C minus actual type)

-- Integer
-- Short
-- Real
-- Complex short

Complex
-- String
-- Nonexistent numeric array
-- Nonexistent string arrayQ

O
O

M
m
M
m
M
m
O
o
=
N

' !

2nd Index = Second index of substring function (string only)

1st Index First index of substring function (string only)

Address Variable address if variable exists (high nibble
will be nonzero).

= Variable name if variable does not exist (3-digit
format with 00 in nibbles 3 and 4).

= 00000 if an out-of-bound array element has been
specified.

Other destination information resides in function scratch follouing
expression execute, F-R1-0 contains the element number computed by
the array reference. This is used by TRACE. F-R1-3 contains the
subscript count used in a reference to a nonexistent array. This
is used vhen an implicit array declaration is recognized.

Since strings may be stored directly into substrings, the stack
header for the actual strings must sometimes carry destination

9-17

HP-71 Software IDS - Detailed Design Description
Utilities

information. The substring function maintains the destination
information kept in the B-register and in function scratch with
this stack header information. See the section on “Data Types" in
the "Internal Data Representation" chapter.

9.10.1 Summary

Entry Description

DEST Stores destination wvariable information in the
follouing areas of Statement Scratch RAM;:

Variable address or name
First substring parameter
Second substring parameter
Variable type
Array element rumber

Maximum string length
Subscript countU

)
U
J
U
)
(
.
D
U
)
U
J
C
D

R
R
R
2
3
3
3

Q
H
O
(
:
)
N
H
O

8
%

8
8

st
u

=

STORE Takes information placed in statement scratch and uses
it to store a value from the top of the math stack into

a variable, It will create the variable if necessary.

ADDRSS Very louw level routine that scans a variable chain to
find the address of a variable. Alternative entry
point is ADRS40.

9-18

HP-71 Software IDS - Detailed Design Description
Message Handling

PrmcmeceoCeooooeee.--

|
| MESSAGE HANDLING

¢
—
_
—
—

S m =0 - o

BRe oWsDTSeDGAPGSS We > Gn > @ W -

This chapter describes, in five sections:

1) BASIC keywords involving messages

2) Details on using the message handling routine to
generate errors, warnings or system messages.

3) Insufficient Memory Error.

4) Conventions for Foreign Language message translation.

5) Construction of message tables, as found in LEX files.

Except for tuwo subsections ("BASIC Keywords Involving Messages",
and “BASIC Error Trapping", belou), the discussion in this chapter
is from the viewpoint of assembly language. The options discussed
are ones an assembly language routine may select uwhen calling the
message handling routines. Subsection "BASIC error trapping"
discusses error trapping at the BASIC language level.

10.1 BASIC Keywords Involving Messages

10.1.1 ERRN

The function ERRN returns the number of the last error or uwarning
detected by the computer., Assembly language routines which call
the message handler determine if ERRN is set or not.

10.1.2 ERRL

The function ERRL returns the number of the last line in which an
error or warning occurred; if it occurred in a non-BASIC progran,
ERRL returns zero. Assembly 1language routines which call the
message handler determine if ERRL is set or not.

10-1

HP-71 Software IDS - Detalled Design Description
Message Handling

10.1.3 ERRM§

The function ERRM$ returns the last error or warning message, as a
string. ERRM$ is derived from the value of ERRN.

If ERRN is an error number from a LEX file, and that LEX file is
removed from the computer, ERRM$ will return the null string (until
ERRN is again changed); this is because the ERRM$ searches the LEX
file message table for the message.

The keystroke [g] [ERRM] displays the 1last error or warning message
as long as a key 18 held doun. The message is built 1in the same
manner as ERRM$.

10.1.4 MSG$ Function

The BASIC keyword MSG$ has been implemented in LEX file #82 of the
User’s Library. Its usage 1is similar to ERRM$, except that it
accepts an argument (a decimal message number). E.g., MSG$(255131)
returns message number 131 from LEX file 255. Its purpose 1is
twofold:

1) Uhereas ERRM$ returns the last error or warning message, MSG$
returns any standard message from any message table.

2) Through the use of the pTRANS poll ("translate"), it
substitutes a foreign language translation of the desired
message, if a language translator LEX file is present in the
computer,

MSG$ allows a BASIC user to build custom messages from any message
tables. In addition, the translation capability provides a
powerful tool for BASIC application packs which accept commands in
any language. An excellent example is the HP-71 Text Editor, a
BASIC program uwhich stores all its commands and responses, along
with its help catalog, in a message table. User input (commands
and responses) are compared to entries in the message table, using
MSG$, allowing a language translator LEX file to drive the Text
Editor in any language.

MSG$ uses the message building utility TBMSG$ in the message
handler. Uhen constructing message tables, take into consideration
the use of MSG$ to display each message. More details are provided
in the sections “Foreign Language Translators", and "Message Table
Construction",

10-2

HP-71 Software IDS - Detailed Design Description
Message Handling

10.2 Message Handling

The message handling routine displays any standard message,
including errors, warnings and system messages. Standard messages
are found in tables and identified by a four digit hex number -- a

two-digit LEX ID and a two-digit message ID number. In this
chapter, the term ‘'message number" usually refers to the complete

four-digit constant; "message ID number" refers to the tuwo-digit
constant identifying the message within the LEX table.

The mainframe contains one message table, Each external LEX file
‘may contain an associated message table.

The message handler is designed as a utility for any application,

vhether a LEX file used to extend the BASIC library, or a take-over
subsystem (such as FORTH) with a distinct message style.

In its most pouwerful form, the message handling routine can be used
as an error or warnlne Utlllty, performing certain housekeeping
functions such as:

-- updating ERRN and ERRL
-- checking if ON ERROR is in effect (errors only)
-- sounding a beep
-- re-displaying a parse error with the cursor

positioned at the error

In its simplest form, the message handling routine can be used to
build any message from "building block" words. These building
blocks can be found in any LEX file, including the mainframe (LEX
#00), the local LEX file, or a different LEX file entirely.
Through the use of these bu11d1ng blocks, a message may be made to

look like an error or warning, even if not treated that way by the
message routines, See the section entitled "Foreign Language
Translators", for details.

10.2.1 Message Types

The message handler allous several options, including message type,
text insertion, storage of ERRN and ERRL, display delay, checklng
ON ERROR, and beep

The four message types:

1) an error message

10-3

HP-71 Softuware IDS - Detailed Design Description
Message Handling

2) a memory error (“Insufficient Memory")
3) a warning message

or 4) a system message (text only).

The calling routine determines the message type by selecting the
proper entry point and entry conditions into the handling routine.
The calling routine 1is responsible for distinguishing betueen
errors and warnings, such as in the case of DEFAULT OFF.

The distinguishing features of each type are as follous. Entry
points are discussed in the next subsection.

10.2.1.1 Effects of Error Messages

Handling the message as an error has these effects (in this
order):

Sends out a pERROR poll
If eMEM message, process Memory Error
Sets ERRN and ERRL if option selected
If ON ERROR in effect, branch to ONERR
Displays prefix "ERR:" if option selected
Disallouws text insertion when sending message (*)
Sounds beep

If parse error, re-displays input line

.

O
N
o
O
o
O
n
L
W
N
H
=

Because of steps 4, 6 and 7, selecting the error message

type is most useful for BASIC operating system errors. That
is, a system such as FORTH may want to avoid those effects,

*Note: a special entry point allous text insertion in error
messages, 1if necessary. See subsection “Entry point
MFERsp", below.

10.2.1.2 Effects of Memory Error Messages

Memory error messages are a subset of error messages, but

because of their insidious nature (i.e., a MEMERR can occur
during any 1lou-level utility), they have separate
processing:

1. Sends out pMEM poll
2. Recovers available memory (at least LFTUAY)
3. Sets ERRN and ERRL if option selected
4, If ON ERROR in effect, branch to ONERR
5. Displays prefix "ERR:" if option selected
6. Disallouws text insertion when sending message
7. Sounds beep

10-4

HP-71 Software IDS - Detailed Design Description
Message Handling

See section entitled "Insufficient Memory Error" for more
details on memory errors.

10,2.1.3 Effects of Uarning Messages

Handling messages as warnings has these effects (in this
order):

Sends out pUARN poll

Checks Quiet (flag -1), if selected, exits if set
I1f eMEM message, process Memory Error
Sets ERRN and ERRL if option selected
Does NOT check ON ERROR!

. Displays prefix "URN:" if option selected
Displays msg, with text insertions if appropriate
Observes display delay, if option selected

. Sounds beep, if option selectedO
C
O
N
O
o
O
O
N
N
P
W
U
N

10.2.1.4 Effects of System Messages

The term "“system message" refers to any message which is
displayed without an "ERR:" or “URN:" prefix, and doesn’t
branch to ON ERROR. The system message facility allous
building and displaying messages for the user’s information
without invoking the housekeeping functions of the error
routines, A system message may be built to look 1like an
error or warning, if desired. To display a system message,
the message handling routine is used as if a warning vere
being displayed, with the appropriate options selected:

Sends out pUARN poll
Checks Quiet (flag -1), if selected, exits if set
If eMEM message, processes Memory Error
Sets ERRN and ERRL if option selected
Does NOT check ON ERROR!

Does NOT display "URN:" prefix (by definition)
Displays msg, with text insertions if appropriate
Observes display delay, if option selected
Sounds beep, if option selected

°

C
O
N
O
O
O
N
N
P
L
W
N
-

10.2.1.5 Text Insertion

One option that warnings and system messages have is to insert text
at certain points in certain messages. Normally, this option is
not allowed for error messages, as explained in subsection "ERRN
and ERRL Considerations".

10-5

HP-71 Software IDS - Detailed Design Description
Message Handling

Text insertion points are fixed; only certain messages allou then,
and these are known by the calling routine. That is, you cannot
insert text except at specific pointse in knoun messages. See
section "Message Table Construction” for details on constructing a
message to allou text insertion,

Text insertions are in the form of digits or ASCII characters,
allowing dynamic message building. Consider the case of mainframe
message number 88, used by TRANSFORM execution. The message in the

table looks like:

TFM URN L{6}:{5) |
where {6) and {5} indicate tuo types of insertion points;

{6) specifies digits or ASCII as passed by the
calling routine (with no trailing space).

{5) specifies insertion of an entire message from
a LEX table, whose number is passed by the
calling routine,

Uhen the TRANSFORM execution routine calls the message handler to
display this message, it might pass, say, line number 145 for the
first insertion, and message number 0051 (LEX ID #00, message
rmumber 81 in decimal) for the second insertion. Uhen displayed,
the message would look like this:

TFM URN L145:Invalid Parm

10.2.1.6 ERRN and ERRL Considerations

Selecting to update ERRN will simultaneously cause ERRL to be
updated, if indeed a program is running. This action is determined
by S13 (CPU status bit 13): S13=1 implies a running progran.

In addition, updating ERRN has an effect on two other functions:
ERRM$ and the [g)(ERRM] keystroke. Both are constructed from the
value stored in ERRN (RAM location ERR#, hex address 27FE4.)

Any message uwhich specifies text insertion will be reconstructed
for ERRM$ and (g] (ERRM] without text in that position! (It is
infeasible to store the inserted text for later recall of ERRM$ or
(g] (ERRM].) For this reason, normal processing of error messages
never allows text insertion; the restriction requires error
messages t0 be succinctly contained in the tables (*). Uhen
deciding whether to select the ERRN storage option, consider the
effects of missing text insertions.

*Note: calling the message routines at entry point MFERsp allous
an error message to employ text insertion, if necessary. See

10-6

HP-71 Software IDS - Detailed Design Description
Message Handling

subsection "Entry point MFERsp", belou,

10.2.1.7 Messages During Running Programs

Any use of the message handling routines -- whether uwithin the
BASIC operating system or not -- must consider the effects of S13
(CPU status bit 13). S13=1 implies a running program, and will
have the follouwing effects:

For errors (including MEMERR):
-- CURRL and PCADDR will be updated (if the running

program is not BASIC, CURRL is set to zero).
If ERRN update is selected, ERRL will be updated.
ON ERROR will be checked.

-- If "ERR:" prefix is selected, "ERR L<#>:" will be
displayed, with the line number (if the running
program is not BASIC, "ERR™™" is displayed).

-- The execution pointer (D0O) is left at a @ token,
or at the line number.

For warnings and system messages:
-- CURRL and PCADDR will be updated (if the running

program is not BASIC, CURRL is set to zero).
-- If ERRN update is selected, ERRL will be updated.
-- If "URN:" prefix is selected, "URN L<#>:" will be

displayed, with the line number (if the running
program is not BASIC, "URN™™" is displayed).

10.2.2 Error Message Handling

The main processing routine for error messages is MFERR*., Any
message processed by this entry point will sound a beep.

10.2.2.1 Entry Points

MFERR* -- This is the main error handler, a subroutine which
processes errors, then returns. MFERR* requires
entry uwith the entire message number (LEX ID and
message ID) specified, MFERR* is the preferred
routine to use for a non-BASIC system, say, uwhich
vants to regain control after the message is
displayed. MFERR* should be called as a subroutine.

MFERR -- ("Mainframe Error") aluays sets LEX ID=00, specifying

10-7

HP-71 Software IDS - Detailed Design Description
Message Handling

a message in the mainframe table., Exits to BASIC
main loop., MFERR should be called with a GOVLNG (not
a subroutine).

BSERR -- ("BASIC System Error") allows entry with the LEX ID
of the message number specified. BSERR can be called
for a mainframe error, of course, if LEX 1ID=00 is
specified. This entry point is used to process most
BASIC errors, since it always exits to the BASIC main
loop. A non- BASIC system, of course, might want to
use this entry point if it doesn’t care that
processing exits to the main loop (CALC mode, for
instance, allouws errors to go through BSERR, but
picks up processing through a branch at the main
loop). BSERR should be called with a GOVLNG (not a
subroutine).

MEMER* -- This is the main Memory Error handler, a subroutine
which processes Memory Errors, then returns, MEMER*
requires entry with the entire message number (LEX ID
and message ID) specified. Normally eMEM (0018hex)
is used, but a Memory Error message from any LEX file
can be specified. MEMER* is the preferred routined
to use for a non-BASIC system, say which wants to

regain control after the Memory Error is displayed.
MEMER* should be called as a subroutine.

MEMERR -- ("Memory Error") sets P=0 which selects certain
options as explained below, then falls into MEMERX.
MEMERR should be called with a GOVING (not a
subroutine).

MEMERX -- Allous any value of P (which determines which options
are selected), selects the mainframe message
“Insufficient Memory” (number 0018hex), processes the
error and exits to the BASIC main 1loop. MEMERX
should be called with a GOVLNG (not a subroutine).

10.2.2.2 Entry Conditions for MFERR*

To display standard error messages, call the message handler

(MEERR*, MFERR, BSERR or MEMER*) with:

P= 1xxx “This is a Parse error" (i.e., re-display
input line w/cursor backup)

1

| P set as follous:
l
I
| NOT ALLOUED for a Memory Error!

10-8

HP-71 Software IDS - Detailed Design Description
Message Handling

P= x1xx Do not store error number (Else store ERRN)

P> xx1lx Display message only
(Else display "ERR:" & ERRL)

Bit0 of P not used at present, (¥*)

2

| C(3-2) = LEX ID¥ (Hex) in uhose table the message
| is found (LEX ID#= 00 for mainframe)
|
I C(B) = Message 1D number (Hex)

3
| If parse error, then
| Input pointer (D1) points to character in
| input buffer where error occurred.
| INBS points to beglnning of 1nput buffer.
| A(A)= addr prompt string for input re-display;
I = 0 if BASIC prompt string desired.
: Else D1, INBS, and A(A) not used.

l

(**) Bit0 of the P register is reserved for future applications,
as a way for the LEX file which generated the error to
communicate with other LEX files. The meaning of this bit is
not yet decided. In the meantime, bit0 must=0,

10.2.2.3 Parse Errors

As described above, a parse error is identified by setting bit3 in
the P register before calling MFERR*, Houever, several entry
points already exist for specific parse errors. They all set the
necessary registers for entry into the message handler, report the

error, re-display the line and exit to the BASIC main loop. See
the chapter entitled “Statement Parse, Decompile and Execution”

under the heading "Urltlng a Parse Routxne -- Parse Errors", for
detalls on these entry points.

10-9

HP-71 Software IDS - Detajiled Design Description
Message Handling

10.2.2.4 Examples

Pl

Normal BASIC execution error 0
(Store ERRN & ERRL; display "ERR L<#>:")

Normal BASIC Parse error 8

(Re-display input line, store ERRN,
display "ERR:")

------ A(A)=0
------ Dl=error location within

input buffer

External system (Text Editor, FORTH 14
interpreter, etc,) Parse error

(Don’t store ERRN; display message text
only; use given prompt string)

------ A(A)= prompt string address
------ Dl=error location within

input buffer

10.2.2.5 Entry Point MFERsp

In spite of the inability of text insertion to be reconstructed for
ERRM$, it has been determined that several applications desire to
display error messages with text insertion. Calling a special
entry point in the MFERR* routine will allow this. This entry
point, MFERsp, occurs after the pERROR poll of MFERR¥, so some
processing must be performed before calling MFERsp. This routine,
like MFERR*, is a subroutine; processing does not jump to the BASIC
main loop.

Entry conditions for megsages using text insertion are given belou,
in condition (3) under "Entry Conditions for MFURN". Instead of
the P register being used for options, C(S) is used. Otheruise,
entry conditions for MFERsp are as specified for MFERR¥,

Calling MFERsp must be done in the following manner:

<get R2 according to text insertion options»
¢<set C(14-13) according to text insert options»
<set C(S) bits according to MFERR* options>
<set C(3-0)=message number>
RO=C Store options, msg# in RO
SETHEX

GOSBVL =POLL PERROR poll,
CON(2) =pERROR ‘

CPEX 15 In case poll error, options,

10-10

HP-71 Software IDS - Detailed Design Description
Message Handling

P= 12 P value for "error",

LCHEX OOF In case poll error...
GOC LABEL1 CRY=poll error.

7XM=0 Poll handled?
GOYES LABEL3 Yeg! Abort message,
C=R0

LCHEX F C(12)=F for "error" flag.
LABEL1 GOSBVL =MFERsp

LABEL3 P= 0 (if necessary from ?XM=0
ceene jump, above....)

10.2.3 Uarning Message Handling

The entry points for Warnings are MFURN or MFURNQ,

Most warnings are to be suppressed if the Quiet option (flag -1) is
set, The entry point for these messages is MFURNQ ; entry
conditions are the same as for MFURN, but a check is first
performed on the Quiet option (the Quiet check is performed after
PUARN poll). If Quiet is set, processing returns to the calling
routine immediately.

The two warning handler entry points are aluays called as
subroutines; warnings, since they do not halt processing, return to
the calling routine.

The warning handler provides much the same options as the Error
handler. Tuo notable exceptions are these:

-- warnings never branch to ON ERROR
-- warnings allow text insertion in designated messages.

10.2.3.1 Entry Conditions for MFURN

To display standard messages, call the MFURN (or MFURNQ) routine
with:

(1)-------
| P set as follous:
| P= 1xxx Sound Beep.

P= X1xx Do not store warning number (Else store ERRN)

P= xxlx Display message only
(Else display "URN:" & ERRL)

P= xxx1 Display message without observing DELAY.
(See “MFURN DELAY Option", belou)

10-11

HP-71 Software IDS - Detailed Design Description
Message Handling

2

| C(3-2) = LEX ID# (Hex) in whose table the message
| is found (LEX ID#= 00 for mainframe)
I
l C(B) = Message ID number (Hex)

N

1 ! | | ! | |

If desired message has text insertion points:
R2 register: source of text insertion.
C(14): type of insertion.
C(13): houw many characters in insertion.

= actual output characters if C(14)= 1xxx
= address of output characters if C(14)= Oxxx
= additionally, if C(14)= 0000, upper byte

of R2 contains control nibbles.,

1xxx use contents of R2 register as output

Oxxx use address in R2 register to find output

K000 Output is already in ASCII form

Digit output (digits can be Hex or Dec):
X001 Digit output-- replace leading 0’s with blanks
#010 Digit output-- don’t suppress leading 0°’s
x011 Digit output-- suppress leading 0’s

Hex-to-Dec conversions aluays generate

decimal numbers with 7 digits:
X100 Hex-to-Dec: suppress up to 3 leading 0’s
#101 Hexn-to-Dec: suppress up to 4 leading 0’s
X110 Hex-to-Dec: suppress up to 5 leading 0’s
X111 Hex-to-Dec: suppress up to 6 leading 0’s

For C(14)= 1000 ("ASCII output is in R2")
C(13)= nibbles-1 to be output. Hence the

nibs MUST be even!!; C(13) odd. E.g.,
if 5 chars for output, C(13)=9,

For C(14)= x0xx (hex or dec digit output)

10-12

HP-71 Softuware IDS - Detailed Design Description
Message Handling

C(13)= digits-1 to be output, hence
no more than 16,

For C(14)= x1xx (hex-to-dec conversion)
C(13)= digits-1 in number to be converted

Max hex value for conversion is FFFFF
(1048575 dec), hence C(13) must be 4
or less,

C(13)= 0: no output
1: Send out specified rumber of

character; R2(15-14)= chars-1.
2: Send out chars until ASCII termin-

ator is found. ASCII terminator
is passed in R2(15-14) (usually
an FF terminator, but any byte

I
l
|
I
|
|
|

|
I For C(14)= 0000 ("ASCII output from DAT1")
|
l
|
|
I
|
|
I value can be used).
I

10.2.3.2 MFURN DELAY Option

Uarning messages (and system message, uwhich use the same entry
point) have the option of observing DELAY. Most warnings observe
DELAY, so that the message remains in the display for the
user-specified delay time before execution resumes.

Selecting to observe DELAY means that the HP-71 will leave the
message in the display until 1) the DELAY time expires, or 2) a key
is pressed, uwhichever occurs first. Program execution halts
(processing remains in a display utility which counts dowun the
delay time), although this is transparent to the user; progran
execution resumes when the delay time expires.

Selecting to not observe DELAY means that the HP-71 continues
execution immediately; the assembly language routines have control
over how long the message remains in the display. For instance,
the card reader system messages (such as "Pull Card") do not

observe the DELAY setting. The card reader routine continues
processing immediately; if the user starts pulling the card, the
card reader routine will be able to detect it.

10.2.3.3 Multiple Text Insertions

Zero, one or two text insertions in any one message (including its
building blocks) are allowed. If a message calls for =zero
insertions, R2 1is not used by the message building routines. 1If
one text insertion is used, as much of R2 as desired can be used to

10-13

HP-71 Software IDS - Detailed Design Description
Message Handling

pass the number, characters or address (as appropriate); upper C
indicates how much of R2 to use for the insertion.

Uhen two text insertions are used in a message, the following must
be observed:

-- The two text insertions must be of the same type (i.e., the
codes in C(14-13) are used for both),

-- R2(A) must contain the entire number, characters or address
(as appropriate) for the first insertion.

-- R2(9-5) must contain the entire number, characters or
address (as appropriate) for the second insertion.

10.2.3.4 Indirect Message Calling

A special type of text insertion is that of an entire message.
This is different from a building block in that the calling routine
passes the message number (four digit hex, including LEX ID and
megsage ID) in R2, as it would pass any other text insertion,
Houever, uwhereas other types of insertions allow the option of
using R2 to point to the insertion, R2 must contain the NUMBER of
the desired message (in R2(A) or R2(9-5), or both, as appropriate),
not a pointer to the number.

For an indirect message call, C(14-13) must be nonzero. The value
in these two nibbles is unimportant, unless a second text insertion
requires a meaningful nonzero value; in this case, using that value
is sufficient (see entry conditions, above).

10.2.4 System Messages

The term "system message" refers to any message uwhich selects the
following options;

1) displays message text only (no "URN:" or "ERR:" prefix)
2) does not branch to ON ERROR.

This implies that a system message must enter through the MFURN or
MFURNQ entry points (depending on whether it wants to observe the
Quiet option, flag -1). In addition, a system message may elect to
store ERRN (and ERRL), to sound the beeper, or to display the
message without delay setting.

10.2.4.1 Entry Conditions for System Messages

Entering MFURN or MFURNQ with P set to the appropriate value will
display system messages. For example:

P= 1110 (=14)

1 Beep.

10-14

HP-71 Software IDS - Detailed Design Description
Message Handling

1 Do not store msg number as ERRN (or ERRL, either),
1 Display message text only.
0 Observe display delay.

or,
P= 0111 (=7)

0 No beep.
1 Do not store msg number as ERRN (or ERRL, either).
1 Display message text only.

1 Do not observe display delay,

The options and codes regarding text insertion are as specified
above in "Uarning Message Handling". Processing returns to the
calling routine after system messages are displayed (MFURN and
MFURNQ are called as subroutines).

10.2.4.2 Adding Prefixes to System Messages

System messages can be made to 1look like errors or warnings by
displaying the appropriate prefix (“ERR:" or "URN:") as part of the
message.

For example, message number 88 in the mainframe looks like this in
the table:

TEM WURN L{6}:{5)}

wvhere ({6} and {5} indicate two types of insertion points (see
subsection “Text insertion”, above). The message is displayed by
TRANSFORM execution by calling MFURNQ with the option to suppress
the standard warning prefix, "URN:" Thus, the message itself
contains the URN prefix, and looke slmllar to other warnings.

The same thing can be done by a subsystem which wants to generate
its oun error prefix -- “Error.“, for example -- for the messages
in its table, Each message in the table might include this
"prefix" as part of its text. Then, by displaying them as systenm
messages, they will look like other errors. (Multiple occurrences
of this "prefix" can be handled efficiently by building blocks.
See section “Message Table Construction" for details on building
blocks.)

A foreign language message translator could use this feature to
substitute a forelgn prefix when intercepting the pMEM, PERROR or
PUARN polls. For instance, a Spanish translator might suppress the
standard “URN:" prefix, and include as part of each warning the
prefisg “CDO:" (for ’cuidado’). Again, a building block 1in each
message would make this easy.

Be auare that the ideas presented here are feasible with the
message handler options. Houever, there are some problems to be
overcome by the poll handlers uwhich make implementation slightly
more difficult than it may seem. Namely:

10-15

HP-71 Software IDS - Detailed Design Description
Message Handling

1) The new prefix should have the option of including a line

2)

number for a running progran, E.g., using the example from
above,

CDO: for a keyboard warning
CDO L<#>; for a warning from a running progranm

This could be effected by the poll handler which builds the
appropriate text for a type {6} insertion before calling
MEFURN.

If making a system message look like an error, remember that
ON ERROR is not checked for system messages. In this case,
ON ERROR should be checked locally in the poll handler, with
a subroutine as follous:

DO=(5) =ERRSUB Check if error in ON ERROR GOSUB...
C=DATO A

2CHO0 A Error in ON ERROR GOSUB... ?
RINYES Yes. Report error.
DO=D0+ 5 Check if ON ERROR in effect.
C=DATO A

2C=0 A ON ERROR in effect?
RINYES No. Report error.

RTNCC Yes. Don’t report error.
If ON ERROR is in effect, it would probably be best to call
MFERR* and let it jump to ON ERROR, since it also sets ERRN
and does other housekeeping.

10-16

HP-71 Software IDS ~ Detailed Design Description
Message Handling

10.3 Insufficient Memory Error

NOTE: The message handling routine checks ALL mesgsages (error,

warning and system) for the eMEM constant (value 0018 hex, or 24
decimal). If the message number is eMEM, an “Insuff1c1ent
Memory" error is automatically generated, This is explained
belou. If for any reason an assembly language routine wants to

generate "Insufficient Memory” as a NON-error message, it must
be set up as a separate message in a LEX file.

10.3.1 Reporting MEMERR

An "Insufficient Memory" error can be generated during eXxecution of
any routine which uses available memory, which is to say, during
execution of almost any statement or command. Any routine which
uses available memory (either claiming it for ‘“permanent" storage
or for use as a temporary buffer) must ensure that AVMEMS

(Available Memory Start) and AVMEME (Available Memory End) are not
exceeded. In addition, a routine which claims “permanent” menory

MUST insure that the LEEUAY (available memory safety factor) is not
violated. For rules involving correct memory management, see the
"Memory Structure" chapter, under the section "Avallable Memory
Management. "

If for some reason LEEUAY has been violated (permanent memory
allocation has left less than LEEUAY available), the computer will
enter an infinite 1loop when it finds there is not enough room to
build the "Insufficient Memory" message.

If RAM usage reaches AVMEMS or AVMEME, an “Insufficient Memory"
error should be generated in one of two uays:

1) Jump directly to MEMERR (BASIC system), or the subroutine
MEMER* (non-BASIC system).

2) If found in a lou-level ut111ty, the convention is to return
with carry set for ANY error, with C(3-0)=error number. The
ca111ng routine is respon91b1e for checking carry and
jumping to BSERR for any error.

A Memory Error is an 1insidious condition; it can crop up at the
point, say, when a routine is trying to report a less severe error,
In fact the message routine itself requires available memory to
build a message, which might easily cause any message to Dbe
converted into a Memory Error. Some of the problems which require
special handling for MEMERR are:

10-17

HP-71 Software IDS - Detailed Design Description
Message Handling

-~ Some low 1level routines exit with carry set to indicate an
error, with C(3-0)= error number. A MEMERR is treated
like any other error in these instances, and it might pass
right through to the standard error entry point BSERR. At
this point, the message handler must intercept all
MEMERRs, to make sure they are handled properly.

-- A MEMERR may occur several 1levels deep in a lou-level
utility; returning to the caller may be infeasible because
execution was not completed (this is what would happen if
the message handler ran out of building space).

-- A LEX file may need to be alerted immediately that an
operation failed, so that it can recover without
corrupting memory (such as encountering MEMERR halfuay
through a file manipulation).

A Memory Error should never be generated while handling a slouw
poll, if the poll is intended to continue. Since available memory
is recovered, the crucial poll storage area is lost. Calling the

entry point MEMERR is permissible, since it exits to the BASIC main
loop (thereby aborting the poll).

As a precaution to fast poll handlers, generating a Memory Error
may exceed the subroutine stack limit, since a pMEM poll is issued.
Therefore, it is inadvisable to generate a Memory Error while
handling a fast poll, if the poll is intended to continue.

10.3.1.1 Calling MEMER*

MEMER* is a subroutine which processes Memory Errors. It requires
the calling routine to load a message constant into C(3-0).
Normally eMEM (0018 hex) is used, but a message constant from any
LEX file can be used. This would allouw a subsystem to report, say,
“Out of Scratch Area", process the Memory Error in the standard
manner, then recover control after the message.

For LEX files operating within the BASIC system (including foreign
language files), a Memory Error could be generated by calling

MEMER* with the desired message constant. But the preferred vay is
to call MEMERR (i.e., use the mainframe eMEM constant), intercept
the pMEM poll and substitute the alternate message constant at that

time.

A subsystem which generates its oun Memory Error message may desire
to construct one with text insertion, (such as “Urite
Limit:<filename»>"). The appropriate way to do this is to set up
the text insertion in R2, call MEMER* (a subroutine) with the
appropriate message number, and adjust C(14-13) as text insertion
controls during the pMEM poll handling. Text insertion 1is
described completely under "Warning Message Handling."

10-18

HP-71 Software IDS - Detailed Design Description
Message Handling

See subsection "Error Message Handling" for details on calling
MEMER¥.

10.3.2 MEMERR Handling

A Memory Error (“Insufficient Memory") allous the same options as
any other error (store ERRN & ERRL, display message text only).
However, a Memory Error should never be called as a parse error.
For details of these options when calling MEMERR (or MEMER*) see
subsections "Message Handling Options", and "Error Message
Handling", above,

To prevent the message handler from running out of memory (a
building area for the message) during a MEMERR and thus causing an
infinite loop, available memory is first recovered, using routines
COLLAP and CLCOLL. COLLAP sets the pointer in AVMEME to the value
of the pointer in FORSTK (recovers AvMemEnd), and CLCOLL sets the
pointers in AVMEMS, OUTBS and SYSEN to the value of the pointer in
CLCSTK (recovers AvMenmSt).

This frees an area of memory at least as large as LEEUAY (212

nibbles). Correct memory management is imperative (as it always
ig) because at this point if LEEUAY is not available, someone has
really screwed up! Guaranteeing an area of RAM at least as large

as LEEUAY means that any "Insufficient Memory" message (whether
re-worded or translated into a foreign language) cannot exceed 106
characters (including prefix), or about 80 characters (excluding a
long prefix). However, no one should ever consider any message
longer than 30 characters anyuay.

10.3.2.1 MEMERR Poll

A separate poll is sent out when a Memory Error is encountered. Be
aware that if a Memory Error enters through BSERR (that is, a
routine calls BSERR with eMEM constant), two polls will be issued
-- one for PERROR, and then when the eMEM constant is intercepted,
another one for pMEM. The same would happen if eMEM were issued as
a varning -- first pUARN, then pMEM.

The main purposes of the pMEM poll are:
-- To allou the poll handler to substitute another message

constant for eMEM. If this is done, the message will
still be handled as a memory error,

-- To allou the poll handler to load its own return address to

capture processing after the memory error is reported.
(For instance, if the FORTH system calls a mainframe
utility which in turn generates a MEMERR, FORTH can
recover control after the message is displayed.) If this
is not done, then processing returns to the BASIC main

10-19

HP-71 Softuware IDS - Detailed Design Description
Message Handling

loop.
-- To allow a LEX file to clean up pending operations which

might have been interrupted by the Memory Error.
-- To allow a LEX file to generate a custom Memory Error

message with text insertion, by adjusting the values in
C(14-13).

10-20

HP-71 Software 1DS - Detailed Design Description
Message Handling

10.4 Foreign Language Translators

A Foreign Language Translator is a LEX file whose sole purpose is

to translate HP-71 messages from the resident English to a foreign
language, It 1is a simple LEX file which contains nothing but a
message table and a poll handler which intercepts the pMEM, pERROR,
PUARN and pTRANS polls to substitute alternate message numbers,

10.4.1 BASIC Error Trapping

Using ON ERROR in a BASIC program allouws error trapping for
applications. In the message handler, the sequence of steps when
processing an error is:

1) send out pERROR poll
2) set ERRN (and ERRL)
3) jump to ON ERROR if in effect

A language translator will intercept the pERROR poll and substitute
an alternate message number before the ON ERROR jump. Thus, a

check of ERRN in the ON ERROR routine must allow for foreign
language message numbers.

The following convention has been set up to facilitate error
trapping with language translators.

For mainframe messages:
translated message number= ERRN+1000

For other LEX files:
translated message number= ERRN+128

For example, mainframe error 57 is "“File Not Found". If an
ON ERROR routine 1is trapping for this error and must allou for
foreign language messages, the appropriate statement is:

IF ERRN=57 OR ERRN=1057 THEN

The HPIL error 255031 is "Directory Full". If an ON ERROR routine
is trapping for this error and must allow for foreign language
messages, the appropriate statement is:

IF ERRN=255031 OR ERRN=255159 THEN

This extended error trapping can be shortened with the user-defined
function;

10-21

HP-71 Software 1DS - Detailed Design Description
Message Handling

10 DEF FNE(X)= (X=ERRN) OR (X=ERRN+128+(X<1000)*872)

and the two examples above can be compressed to

IF ENE(S7) THEN ...
IF FNE(255031) THEN ...

The following subsections describe how this convention {is
implemented.

10.4.2 LEX File Number Sharing

The LEX ID of a language translator is based on the ID of the LEX
file whose messages are to be translated. All language translator
LEX files which have the same LEX ID will share the same numbering
scheme. That is, related language translators will share the SAME
four-digit (hexadecimal) message numbers, including LEX ID number
and message ID number. This implies that only one language
translator will be active in the computer at one time (the first
one in the file search order).

Language translator LEX files should not, in general, have any
extended BASIC statements or functions, decompile or execution
routines, since the proliferation of similar LEX numbers would be
confusing for a user trying to determine their source.

10.4.2.1 LEX File #00 (Mainframe) Translation

A Foreign Language Translator for LEX file #00 (mainframe)
messages will have LEX #01. Its message table will contain a
one-to-one correspondence betueen mainframe messages and the

translated messages. This means that each message in LEX file
#01 will have the same meaning as the correspondingly numbered
message in the mainframe,

For example, message number 0039 hex (57 decimal, as expressed
by ERREN) in the mainframe 1is "File Not Found". The
corresponding message 0139 (1057 as expressed by ERRN) in LEX
file #01 must be the foreign language equivalent of “File Not
Found”,

This one-to-one correspondence of mainframe messages applies to
message 1 through 97, and message 229. Message #229 is "(trk
#%% of ###)", and 1is referenced by the card reader execution
routines; it must also have a translated equivalent,

The building blocks in the mainframe table numbered 230 through
248 are simply frequently-used words, They are NOT messages,

10-22

HP-71 Softuare IDS - Detailed Design Description
Message Handling

per se, since they are never referenced as message constants by
a routine calling the message handler. Because of this, a
language translator need not contain the same building blocks;
even if it does, it need not number them the same. In addition,
the language translator may use any building blocks it desires
to construct messages, and may number them in any manner that
does not conflict with messages 0 through 97 and 229. Building
blocks used for this purpose are simply means of saving ROM, and
are not subject to the one-to-one correspondence.

Note that the mainframe contains a partial LEX file (all but a
file header) numbered 01. This partial LEX file does not
contain a message table; therefore, no conflict will arise
because of this convention,

10.4.2.2 Other LEX File Translation

For LEX files other than #00 (mainframe), a language translator
will have the same LEX number, and its message table will be
offset by 128 decimal from the master LEX file table. There
will be a one-to-one correspondence betueen the messages in the
tuo tables, with message number n in the master table being
equivalent to message number n+128 in the translated table.

(It has been determined that it is unlikely that any LEX file
will need more than 127 messages, allouing message ID numbers
128 through 255 to be reserved for the translators. ¥¥)

For example, the HPIL ROM has LEX ID=FF (255 decimal). The HPIL
message number FF1F (255031 in decimal, as expressed by ERRN) is
“Directory Full". A language translator for HPIL messages would

also have LEX ID=FF, and the corresponding message FFOF (255159

as expressed by ERRN) would be the foreign language equivalent
to "Directory Full."

Building blocks used solely to save ROM (those never referenced
as messages by routines calling the message handler) are not
“true" messages; they need not have a one-to-one correspondence

vith building blocks in the translator. Such building blocks
need not be duplicated in the translator LEX file, and if they
are, they may be numbered in any manner which does not conflict
with the numbering of the "true" messages in that LEX file.

#* NOTE: The split in the message tables into blocks of size 128
requires that the master LEX file be restricted to messages 1
through 127, and the translator be restricted to messages 128
through 255, Message number 00 (the LEX file name -- see
subsection “Message Construction", below) is used by the message
handler as a prefix for errors and warnings; if the master LEX file
includes it, then the translator file should include it, too

10-23

HP-71 Software IDS - Detailed Design Description
Message Handling

(perhaps in a translated form). That is, EVERY message table
(including language translators) should have a message 00, unless
they do not want a prefix for errors and warnings.

If a LEX file requires more than 127 messages, and its author knous
for certain that it will never be subject to language translation,
it can use the full range of messages from 0 to 255. Using
messages in the range 128-255 will prevent the use of standard

message translation and error trapping for future applications.

If a LEX file requires more than 127 messages and its author wants
to preserve the capability of standard error trapping with language
translation, use of a second LEX ID number is necessary; using a
second LEX table will provide 127 more messages.

For details on message range and numbering, see section “Message
Table Construction", under “Message Range".

(This restriction to blocks of 128 does not apply to LEX file #01,
the translator for the mainframe. This is describved in the
previous subsection.)

10.4.2.3 HPIL Message Range

Because of a bug in the first version of the HPIL ROM, any
translator for this ROM will have to reside in RAM in order to be
implemented. The message range was inadvertently left as 00-255;
this means that uhen the message handler goes to 100K for message
255159, say, it will search this ROM’s table, since the range
covers this message., In order for a translator to be implemented,
it must occur before the HPIL ROM in the file search order, so that
its message table will be found first. The easiest way to do this
is for the user to copy the HPIL translator into RAM so that it
will be found first,

10.4.3 Poll Handlers for Iranslators

Besides the VER$ poll, a language translator requires a poll
handler to intercept pMEM, pERROR, pUARN and pTRANS polls. Upon

intercepting these polls, an alternate message number is
substituted for the original, providing the message came from the
translator’s master table. That is, a translator only translates
messages from one specific LEX file,

Poll handlers for pMEM, pERROR and pUARN should not set XM=0 (i.e.,
do not indicate "handled"), s8ince this causes the message to be
suppressed. Poll handlers for pTRANS should set XM=0 to indicate
that message number has been adjusted to generate a translated

10-24

HP-71 Softuare IDS - Detailed Design Description
Message Handling

message,

The algorithm is described for the two classes of translators:

10.4.3.1 Poll Handler for LEX ID #01

Translators for the mainframe messages (LEX ID #00) have LEX ID
#01. The poll handler for pMEM, pERROR, pUARN and pTRANS polls
should perform the follouing:

1) Fetch message number from RO.
2) If LEX ID. of message is not 00, then go to 5).

Else, set LEX ID of message =01 and replace
message number in RO.

3) If pTRANS poll, exit with carry clear, XM=0.
4) If message ID number is not 88, then go to 5).

Else, a separate (nested) poll is required to
translate the insertion message (message #88

is "TFM URN L<#>: <insertion message>"):

3a) Shift number of insertion message to R2(A).
Suap RO and R2. Poll with pTRANS constant.

3b) When returned from nested poll, swap RO and
R2. Shift message number to 82(8 5).

5) Return from poll (carry clear, XM=1),

An example in the "HP-71 Code Examples" chapter, "Foreign Language
Translation of Messages", demonstrates the assembly language
necessary to implement thls

10.4.3.2 Poll Handler for Other LEX Files

Translators for other LEX files (LEX ID’s above 00) have the same
number as the master LEX file. The poll handler for pMEM, pERROR,
PUARN and pTRANS should perform the following:

1) Fetch message number from RO.
2) If the message number does not have the right LEX ID,

go to 5),
Else, add 128 to the message number, replace in RO.

3) If pTRANS poll, exit with carry clear XM=0.
4) If the message allous type {5) 1nsert10n (see section

entitled “Nessage Table Construction"), a separate
nested poll is required to translate the insertion
message.

5) Return from poll (carry clear, XM=1).

An example in the "HP-71 Code Examples" chapter, under "Foreign
Language Translation of Messages", demonstrates the assembly

10-25

HP-71 Software IDS - Detailed Design Description
Message Handling

language necesgsary to implement this,

10.4.4 Tvo Types of Language Translators

An HP-71 design team has come up with two types of language
translators: one-shot translators, and selectable translators,

One-shot translators provide a fixed translation capability, in one
language only. Selectable translators allow the user to select the

language (including English -- "no translation").

10.4.4.1 One-shot Translator

A one-shot language translator is a LEX file which, as 1long as it
is present in the computer, ALUAYS translates messages. Such a LEX

file serves only one language, would most likely be RAM based, and
would probably ©be available on a card. Several one-shot

translators might be in memory, one each for the mainframe, HPIL,
the MATH ROM, etc.

It’s possible that one-shot translators for several different
languages might reside in memory at the same time (e.g., Spanish,
German, French, etc.). In this case, the one that occurs first in
the file search order will be the one which is in effect. To
switch languages, the file chain must be manipulated by the user
(wuith COPY, PURGE, etc.), so that the new language translator is
"selected" by being first in the file search order.

On the other hand, as long as a one-shot translator resides in
memory, the resident English language messages cannot be accessed.
Only by purging all such translators can the user regain English
messages,

Ekamples of two one-shot translators (one for the mainframe, one
for HPIL) are in the "HP-71 Code Examples" chapter, under "Foreign
Language Translation of Messages."

10.4.4.2 Selectable Translator

A selectable language translator consists of a “controlling" LEX
file, and additional "satellite" LEX files which contain message
tables for several different languages. The controlling LEX file
provides a keyword to select which language to implement (including
the resident English). Such a scheme may be implemented in a ROM,
and distributed either separately as a "Translator ROM for Spanish,
German, French, ...", or as an integral part of an application pack
(such as the Text Editor).

10-26

HP-71 Softuare IDS - Detailed Design Description
Message Handling

(The selecting keyword and the selecting syntakx have not been
decided upon.)

The selectable translator scheme offers several advantages over
one-shot translators:

1) It allous selecting a particular language for all messages,
or suppressing translation entirely.

2) The equivalent collection of one-shot translators would
increase the number of LEX files many times over, which
would make the the HP-71’s processing relatively slouer.

The collection of LEX files for a selectable translator would look
like this:

Controlling LEX file
-- contains selecting keyuord.
-- contains VER$ poll handler for the entire entourage.
-- contains code for implementing the language selection.

First satellite LEX file
-- gervices mainframe message translation.
-- contains pMEM, PERROR, pUARN and pTRANS poll handlers.
-- contains truncated LEX file and table for mainframe

Spanish translation.
-- contains truncated LEX file and table for mainframe

German translation.
-- contains truncated LEX file and table for mainframe

French translation.
-- etc. (other languages)

Second satellite LEX file
-- services HPIL translation (for example).
-- contains pMEM, pERROR, pWARN and pTRANS poll handlers.
-- contains truncated LEX file and table for HPIL

Spanish translation.
-- etc. (other languages)

Third satellite LEX file

-- gervices MATH ROM translation (for example).
-- contains pMEM, pERROR, pUARN and pTRANS poll handlers.
-- etc. (truncated LEX files and tables)

... As many satellite LEX files as desired.

The term “truncated LEX file" refers to a file which 1looks
identical to a LEX file, except that the file header is omitted.
That is, the following fields are left out:

File Name
File Type
Flags
Time

10-27

HP-71 Software IDS - Detailed Design Description
Message Handling

Date
File Length (offset to next file)

The file, then, starts at the Id field., Each truncated LEX file
would be identical to a one-shot translator, except for the missing
header.

The controlling LEX file has some important housekeeping to
perform:

1) Uhen a language is selected, it must open a system buffer
(if it doesn’t already existi to store the language name (or
a code). This systen buffer has ID# "DTRANS",

2) It must go into the LEX system buffer and adjust the
addresses of each of the satellite LEX files so that they
point to the truncated header of the appropriate languages.

3) At the time of each configuration (pCONEG poll), step 2 must
be repeated, using the stored language in the system buffer
for reference.

An example of a selectable translator can be found in the “HP-71
Code Examples"” chapter, under “Foreign Language Message

Translation."

10-28

HP-71 Software IDS - Detailed Design Description
Message Handling

10.5 Message Table Construction

A Message Table contains a 1list of standard messages; standard
messages are those messages which can be displayed by the message

handling routines, The table may include error messages, warnings
and system messages, One message table serves the malnframe but

each LEX table may have an associated message table to support the
parse and execute routines for its Kkeyuwords.

Messages are identified within a LEX file table by a two-digit hex
number. Message number 00 is reserved to be the LEX file name; it
is used in the prefix of a message to identify the source of the

message. For instance, the HPIL ROM (LEX ID=FF), has message
number 00 (and its LEX file name) "HPIL " SO that any error
generated by this LEX file will display "HPIL ERR:" If a LEX file
does not desire a name on the error prefix, it can leave message 00
out of the tables entirely.

10.5.1 Message Formats

It is recommended that standard messages be kept short, since more
than 22 characters in the display will cause scrolllng Scrolling
is especially undesirable for an error message.

10.5.2 MHessage Prefix

The standard error message prefix for mainframe messages is "ERR: "5
for warnings, the prefix is "URN:" This leaves 18 characters for
the message before scrolling starts For a run-time error, the
standard message prefix is "ERR L111:", where 111 is the line
number (1 to 4 digits). This leaves (16-i) characters, wuhere i
is the number of digits in the line number.

Most LEX files will provide an LEX file name to identify a message,
such as "HPIL ERR:". Thus, for a LEX file error, ecrolllng starts
at (18-k) characters for a parse or keyboard executlon error, and
at (16-i-k) characters for run-time errors, where k 1is the number
of characters in the LEX file name, and i is the number of digits
in the line number,

10.5.3 Message Construction

10-29

HP-71 Software IDS - Detalled Design Description
Message Handling

10.5.3.1 Message Range

The firet entry in a message table is the listed range of messages
found In the table., The first byte of the range is the louest
numbered message; the second byte is the highest numbered message.

Uhen the message handler searches the LEX files for a message, it

will not find the specified message unless its number is within the
listed range of the table. A message table can contain messages

outside the listed range; they can be used as local building
blocks, but will not be found by the message handler. Such
messages cannot be generated as errors or uwarnings by assembly

language routines, and they can’t be accessed by MSG$.

Message number 00 is taken to be the LEX file name (for error
displaying purposes). Even if a LEX file has message numbers from
6F to E3, for instance, it may include a message number 00 for its
LEX file name; message number 00 need not be included in the listed
range. Even if message 00 is not included in the listed range, it
will be found and used for the error prefix. Houwever, not
including it 1in the listed range will prevent its access by the
MSG$ function. For a specific application of this feature, see
section entitled "Foreign Language Translators."

The ability to fragment LEX files (have different files with the
same LEX ID#, Dbut different message ranges) requires some
coordination. Although each of the fragments would include the
same message 00 (if they want an error prefix), one of the LEX
files will need to include message 00 1in its range. This would
reasonably be done by the fragment with the lowest range, Again,
this is suggested so that l4SG$ can access message 00 in the LEX
file.

The function MSG$ (in LEX file #82) should be able to access all
“true” messages ("true" messages are those which are referenced as

errors or warnings, and do not include local building blocks).

Foreign language translation puts restrictions upon the rumbering
of messages in LEX files with ID# greater than 01, See section
“Foreign Language Translators" for details.

Message range

-- The master LEX file message range (as listed in the range
field of the table) must be within the interval 00-127
decimal.

-- The translator LEX file message range (as 1listed in the
range field of the table) must be within the interval
128-255 decimal.

10-30

HP-71 Software IDS - Detailed Design Description
Message Handling

message number 00

-- To be used by BOTH master and translator (if a prefix for
errors and warnings is desired) or to be used by NEITHER (if
no prefix desired).

messages numbered 01 through 127
-- The master LEX file’s true messages (those referenced by

routines calling the message handler) MUST be in this range.
Any other numbers in this range can be used as building

blocks by the master LEX file (such building blocks can be
accessed by MSG$).

The translator file can use local building blocks in this
range, providing that they are NOT included in its listed
range! (Such building blocks cannot be accessed by MSGS$.)
These building blocks can only be referenced by other
messages in the same table,

message number 128

For a language translator, this message MUST be identical to
message 00 1in the same table (easy to do with a building
block). The reason is that, for example, MSG$(125000)
because of the pTRANS poll, w111 fetch message 125128, (If
message 00 is not used, message 128 need not be in the table
either,)

The master LEX file can use message 128 as a local building
block, providing that it is NOT included in the message

range! (This message will not be accessed by MSG$.) It can
only be referenced by other messages in the same table.

messages numbered 129 through 255
- o The translator LEX file’s true messages (those referenced by

routines calling the message handler) MUST be in this range.
Any other numbers in this range can be used as building
blocks by the translator LEX file (such building blocks can
be accessed by MSG$).

The master LEX file can use local building blocks in this
range, providing that they are NOT included in its message
range! (Such building blocks cannot be accessed by MSG$.)
These building blocks can only be referenced by other
messages in the same table,

10.5.3.2 Message Blocks

The term ‘“"message block" refers to a complete message entry in a
message table, including total length, message number and message
cells,

10-31

HP-71 Software IDS - Detailed Design Description
Message Handling

All entries which follou the listed range are standard messages in
message blocks. They can be in any numerical order (even message
number 00 need not be first), although they can be arranged for

more efficient table search: messages near the beginning of the
table will be found first.

tmmmccce————+

| Min Range Number | 2 nibbles (hex value)
e+

| Max Range Number | 2 nibbles (hex value)
Pmm—e=te=4

| Message Block | (see belou)
etttk+

| Message Block |
Pe+

| Message Block |
ece+

——
| ¥F | Table Terminator
t=————t

The first nibble follouing the range field MUST be a 0 . This
means that the FIRST MESSAGE IN THE TABLE MUST HAVE A TOTAL LENGIH
OF 16 (or a multiple of 16). Since the table can be arranged in
any numerical order, it is easy to move a qualifying message to
this 1location. If there is no message uwhich meets this
requirement, construct a dummy message (one whose number is not
needed) of 5 blanks, or anything that gives a total length of 16.

A message block length of FF terminates a message table.

Message number 00, the LEX file name, should, if it is included,
contain a trailing space.

Each message block consists of several parts:

tommm—-+

| Length of Block | 2 nibbles (hex value)
temmme————-+

| Message 1D number | 2 nibbles (hex value)
etmmmm—— e—— +

| Cell #1 | (see below)
tmm———————+

| Cell #2 |
e————— +

o+

| Cell #n |

10-32

HP-71 Software IDS - Detailed Design Description
Message Handling

"C" nibble, terminates block

Message cells are of seven types:

1) Text cell.

Text cells are preceded by a length field:
one nibble if length <= 11 characters,

CON(1) 6

NIBASC \7 chars\

or "B" followed by length nib if length » 11.

CON(1) 11

CON(1) 12

NIBASC \13 chara\
NIBASC \cters\

2) Mainframe Building Block cell.

Identified by an "E" nibble,
This type of cell fetches an entire message from
the mainframe table (some building blocks are simply
frequently-used words).

For exanmple,

CON(1) 14 identifies mainframe bld block
CON(2) =eFILE fetches “File" building block

3) Local LEX file Building Block cell.

Identified by a "D" nibble.
Similar to a Mainframe Building Block cell, this
fetches an entire message from the local LEX file.
The local building block need not be included in
the table’s listed range.
For exanmple,

CON(1) 13 identifies local building block
CON(2) =eARRAY fetches “"Array" building block

4) Different LEX file Building Block cell,

10-33

HP-71 Software IDS - Detajled Design Description
Message Handling

Identified by an “F0" byte ("F" means "special cell").
This fetches an entire message from a different LEX
file. Similar to above building blocks, except that
this terminates the current message. The calling
routine must knouw that the second LEX file is present!
The referenced message must be included in the
listed range of the second LEX file.

For exanmple,

NIBHEX FO identifies diff LEX bld block.

CON(4) =eXIRR transfers to "XIRR" messige in
another LEX file. The 4-nibble
constant contains the LEX#
and message# of the message.

5) Indirect message cell,

Identified by an "F1" byte ("F" means "special cell").
This cell identifies a transfer to another message
text; the message number is passed to the message
handler by the calling routine. The indirect
message number can call any message in any LEX table,
provided the message is included in the listed range
of the second LEX file. (The 4-digit message number
is passed in R2 to the message handler MFURN -- see

subsection "Entry Conditions for MFURN", above.)
(A type {5} insertion requires special handling in
foreign language translators -- see the section which
describes their implementation. Consider this over-
head when using type {5} insertions.)

For exanmple,

NIBHEX F1 identifies indirect msg cell

6) Insert Text cell: no trailing space.

Identified by an "F2" byte ("F" means "“special cell”).
This cell identifies the fixed location where the
message allous the calling routine to insert text,
The text is inserted without a trailing space.
(The text is passed to MFURN through codes in R2 --
see subsection "Entry Conditions for MFURN", above.)

For example,

NIBHEX F2 identifies insertion point,
no trailing space.

7) Insert Text cell: with trailing space.

10-34

HP-71 Software IDS - Detailed Design Description
Message Handling

Identified by an "EF3" byte (“F" means "special cell").
This cell identifies the fixed location where the
message allows the calling routine to insert text.
The text is inserted WITH a trailing space.
(The text is passed to MFURN through codes in R2 --
see subsection "Entry Conditions for MFURN", above.)

For exanmple,

NIBHEX F3 identifies insertion point,
with trailing space.

A message terminates with a "C" nibble.

There are two levels of building block “subroutines" available;
that is, a building block itself may reference one other building
block.

Message mumbers need not be entered sequentially in a message
table. In particular, message numbers may be missing entirely.
This permits reserving a block of numbers for a certain type of
message (such as 80 through 90 for errors concerning matrix
dimensions).

10.5.3.3 ROM Savings Uith Building Blocks

Building blocks (either local -- type {3}, or mainframe -- type
{2}) can save many bytes of ROM. Here’s the formula for deciding
whether you will save ROM by making a string a local building
block:

Let n= #characters in string (2n= #nibbles)
Let j= #times the string is used.

Then k= #times necessary to guarantee savings with bldg block
k’=#times necessary to guarantee loss with bldg block

i.e., 1f j> k, guaranteed savings by using bldg block
if j<k’ , guaranteed loss
if k’¢j<=k , check individually (%)

In table form:

n k? k|l n | occurrences
eas === === || (chars)|1 2 3 4 5 6 7 8 910 11...
1 inf inf || -::::::::l=:an::::s:::uxua::-x:.clltl:alssz:s

2 6 11 || 2 |- - = = = 72727 72 7 7 +
3 4 5 | 3 | = = = 2 @+ + 4+ 4+ + + + =+

4 3 3 | 4 | = = + + + + + ¢+ + + + 4

10-35

HP-71 Software IDS - Detailed Design Description
Message Handling

5 B | = = + + o+ o+ o+ o+ o+t o+ e
6 6 | = 2 + + + 4+ + + + + + ¢
7 7 | = + + + + + + + + + + 4

8 8 | - + + + + + + + + + + +

-= logs (or breakeven) if bld block is used
+= gavings if bld block is used
?s check individually (*)

P
O
W

P
O
V
W
W

*Note: In the cases where you must check individually to verify a
savings, the factor which affects this is the possible breaking up
of a type {1} cell into tuo type {1}’s and a building block. For
exanple, consider the following type {1} message cells:

CON(1) 9 (Length of NIBASC=10)
NIBASC \No Matches\

and
CON(1) 9 (Length of NIBASC=10)

NIBASC \Good Match\

Each cell takes 21 nibbles. If you wanted to make " Match” a local

building block, these cells would nouw look like this:

CON(1) 1 (Length of NIBASC=2)
NIBASC \No\
CON(1) 13 (Indicator for type {3})
CON(2) eMATCH (Symbol for building block)
CON(1) 1 (Length of NIBASC=2)
NIBASC \es\

and
CON(1) 3 (Length of NIBASC=4)
NIBASC \Good\

CON(1) 13 (Indicator for type {3})
CON(2) eMATCH (Symbol for building block)

UVhereas the cells originally took 21 nibbles each, the first case
now uses 13 nibbles and the second uses 12. The difference is that
the first needs another length nibble for the "\es\" cell. This
neu type {1} fragment is the factor which requires some cases to be
determined individually.

The building block for " Match™ would take 6 nibbles for overhead

(message length, number and terminator nibble), plus 12 nibbles for
the characters " Match". The entire building block would add up to
18 nibbles, whereas the savings from the above cells was only 17,

Formula: Use a building block if

the number of nibbles required for the building block
2* (#characters in bld block)
+ overhead for bld block (6 nibs, if under 11 chars)

10-36

HP-71 Software IDS - Detailed Design Description
Message Handling

+ 3 nibbles for each bld block reference (3j)
+ extra length nibbles for fragmented cells

is less than the total number of nibbles it would
take to leave in the characters without bld blocks

2* (#characters in bld block)*j

i.e.,

2n+6+3j+x <

where

2nj

use a building block if

n= #characters in building block
j= number of references to building block
X* number of new type{l} fragments

10.5.3.4

An example of a message table:

CON(2)
CON(2)

! XMSG49 is

XMSG49 CON(2)
CON(2)
CON(1)
CON(2)
N1BHEX
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

LEXNAM CON(2)
CON(2)
CON(1)
NIBASC
CON(1)

XMSG43 CON(2)
CON(2)
CON(1)
NIBASC
CON(1)

*

XMSG48 CON(2)

Example

43
50

minimum msg number
maximum msg number

Range:
Range:

placed first because it has a total length of 16.
nibble following the range field MUST be a 0 !!
in subsection entitled "Message Range", above.)

(LEXNAM)-*
49
14
=eFILE
F3
13
=eXMSG1
0
\A
12

(XMSG43)-*
0
3
\XRM \
12

(XMSG48) -*
43

6

\Private\
12

(XMSG50) -*

Length to next msg.
Message number.
Mainframe building block.
Use "File" from m/f.
To insert file name here u/space.
Local building block.
Use “Private" building block.

Msg terminator,

Length to next msg.
Msg 00 reserved for LEX file name.
Length-1 of NIBASC,

LEX file nane.

Message terminator.

Length to next msg.

Message number,

Text.
Message terminator.

Length to next msg.

10-37

HP-71 Software IDS - Detailed Design Description
Message Handling

CON(2) 48 Message rumber.
CON(1) 14 Mainframe building block.
CON(2) =elLPAR Use "Illegal Param" from m/f.
CON(1) 12 Message terminator,

*

XMSG50 CON(2) (XMSGf)-* Length to next msg,
CON(2) 50 Message number.
CON(1) 13 Local building block.
CON(2) =LEXNAM Use "“XRM " building block.
CON(1) 7

NIBASC \Catalog:\ Text,
. CON(1) 12 Msg terminator.

XMSGf NIBHEX FF Table terminator.

The "HP-71 Code Examples" chapter contains more examj.les of message

tables, under "Foreign Language Message Translators."

10-38

HP-71 Software IDS - Detailed Design Description
File System

Pemmrmeemeceee-—----eon-.-

l
| FILE SYSTEM
I
P ODSTS wenDDG G DGR G ey WG>W

.................. <+

l
CHAPTER 11 |

¢
—
—
e

.................. +

11.1 File Chain Structure

The HP-71 maintains a file area in main RAM which is comprleed of a
linked list, or chain, of file entries. Each file entry 1in the
chain beglns with a file header, which contains identifying
information about the file along uxth the 1link to the next file
entry in the chain. This link is referred to as the "“File Chain
Length field." The end of the file chain is marked by a zero byte.
Each plug-in ROM module and 1ndependent RAM also contains its oun
file chain. A later section in this chapter describes the order in
vhich the various file chains are searched for a given file.

Certain file types require special information betuween the file
header and the file’s data. The Implementation Field, when present
after the file header, corresponds to the Implementatlon Field of
the file’s dlrectory entry wvhen it is copied to or from mass media,
such as magnetic tape, which use the HP Logical Interface Format
(LIF). The Implementatlon Field is aluays present after the file
header for files of copy codes 1 (e.g. DATA) and 8 (user-defined),
and otheruise 1is never present after the file header. The DATA
file type, for example, requires that its Implementation Field be
present to indicate the number and length of records in the file,

Furthermore, some file types require a subheader immediately
follouing the file header or Implementation Field. The BASIC file
type, for example, requires a 6-byte subheader which contains two
pointers into the data (program) portion of the file (see the
description of the BASIC file type later in this chapter). The
subheader presence, length, and format depends upon the file type.
Uhen a file containing a subheader is copied to external media, the
subheader is not stored in the file’s directory entry llke the
Implementatlon Field, but is stored at the beglnnlng of the data
portion of the file. In this way the subheader is restored to its
correct position after the file header when the file is copied back
into memory.

The following diagram shous the general structure of the file
chain, showing one file without Implementation Field or subheader,
one f11e with Implementation Field, and one file with a subheader

11-1

HP-71 Software IDS - Detailed Design Description
File Systenm

FILE CHAIN STRUCTURE

tmmmee+

| |
l FILE HEADER I
I I
|= = = = e e e = - .- - - |
| File Chain Length field |-------- +
$emmmmmme ememece—-+ |

I I I
I I l
I File Data | |
I I I
| I I
tmmmmmcemecee——+ |

I | ¢==mmemm +
: FILE HEADER |

I
|- = = = = == = = - - - - - I
| File Chain Length field |--------I
trmrmcceeeee—-+

| Implementation Field | I
$mmmmm-+ |

| | |
I I I
| File Data I |
I | I
I | I
Prmmmcecse-+ |

I | ¢=mmmmme +

l |-+
trrmeeceeeeee———— + |

I | ¢===en- +
} FILE HEADER :

|= = = = = e - - .- - - I
| File Chain Length field |--------+
$mmreccm—ce—-+ |

| File Subheader | |
trmeeree+ |

I I |
I I I
I File Data I |
| I I
I I I
$mmmeeecee————+ |

| 00 byte (ends chain) | ¢ommmma+
temmmme—+

11-2

HP-71 Softuware IDS - Detailed Design Description
File Systen

11.1.,1 File Header

The format of the file header is described belou.

FILE HEADER

eeeereerece~+

| File Name | 16 nibbles
Pere ecre—————+

| File Type l 4 nibbles
e+

| Flags l 1 nibble
tmm—————-+t

| Copy Code l 1 nibble
ee -+

| Creation Ilme | 4 nibbles
ee+

| Creation Date | 6 nibbles
Dettataar t=-=—-—2

| File Chain Length | 5 nibbles
ee+

Each file has a file header. The file header contains the 8
character file name in ASCII, blank filled on the right (high
memory) .

The 4 nibble file type field contains the file’s 16-bit signed
integer file type, ranging from -32768 to 32767. HP-71 file types
are explained in the File Types section.

Next are 4 system flags. The two bits in the lou end of the flag

field indicate file protectlon Uhen set, the lower of the two
bits 1indicates a file is SECURE; the hlgher of the two bits
indicates a file is PRIVATE. The following two bits of the flag
nibble are unused.

File Header Flags

bbb——t

Lou i I | | | Hignh
bbbt

A A

|
| +---- PRIVATE
+--- SECURE

The next file header field is the Copy Code nibble. This nibble
indicates the file attributes neccessary for external copying. The

11-3

HP-71 Software IDS - Detafled Design Description
File Systenm

specific encoding of Copy Code is explained under File Type Table
in the “Table Formats" chapter.

The creation time and date are set when the file is created.
Creation date and time are stored in BCD. The time field contains
4 nibbles; the minutes are in the low byte and the hour is in the
high byte. The date field contains 6 nibbles; the day is
represented in the lou byte, the month in the next byte, and the

year in the high byte. For example: The internal representation of
3:45 12/16/81 would be as follous:

Time Date
Pttt=ttt—t

I5141310|6]1112]1]11]8]|
t=t=mt=t=t=tmt=t=t=t+—-+

The next entry is the File Chain Length field. This is the offset
to the next file (header) in memory.

11.1.2 Implementation Field

The HP-71 HP-IL Interface Module maintaing external file systems on
tape or other mass memory devices according to the HP Logical
Interface Format standard. This format defines an 4 byte field in
each file’s directory entry, called the Implementation Field, which
may contain arbitrary information according to the file type.

For certain file types, this 8 nibble Implementation Field must
immediately follow the file header when the file 1is present 1in
memory. UWhether or not the Implementation Field 1s present is
determined by the file’s copy code, uwhich is taken from the File
Type Table entry for that file type (the copy code is stored in the
file header). Copy codes 1 and 8 aluays have the Implementation
Field present after the file header; all other copy codes have no

Implementation Field present after the file header,

Uhen a file is copied to external mass media, the Implementation
Field uwritten to the new file’s directory entry is either generated
by the operating system according, or is copied directly from the
Implementation Field present after the file’s header. See the
section below on “File Header Structure by Copy Code" for further

information,

ecccccee-+

| Implementation Field | 8 nibbles
trmmrere=+

11-4

HP-71 Software IDS - Detailed Design Description
File Systenm

11.1.3 File Subheader

Aside from the file header format and Implementation Field given
above, for certain file types additional information may accompany
the file header in the form of a subheader, which immediately
follous the file header or Implementation Field. Subheaders must

be an even number of nibbles in length and must be no more than 250

nibbles long. The format of a subheader is determined by the file
type.

The presence of a subheader after the file header or Implementation
Field is determined indirectly by the Offset to Data field in the
File Type Table entry for that file type. This field gives the
offset from the start of the File Chain Length field in the file
header, to the actual start of data, skipping over the
Implementation Field and/or the subheader, if either are present.
The presence and length of the subheader can therefore be
determined using the Offset to Data field and the copy code (which
determines whether the Implementation Field is present) according
to the chart belou. Refer to the following section for further

details concerning copy codes.

Data
Offset Applicable Copy Codes

File Header Structure in Nibs 0 1 2 4 8
------------------------------- $om—bemmbm——

* No subheader, 5 X X X
No Implementation Field

* No subheader, 13 X X
Implementation Field

* Subheader of n nibs, 5+n X X
No Implementation Field

* Subheader of n nibs, 13+n X
Implementation Field

11.1.4 File Header Structure by Copy Code

The presence of the Implementation Field after the file header is
determined by the file’s copy code, as outlined in the chart belowu,
The copy code originates in the File Type Table entry for that file
type, and is stored in the file header,

11-5

HP-71 Software IDS - Detailed Design Description
File System

FILE HEADER STRUCTURE BY COPY CODE

Copy code: 0 1 2 4 8
* ---

l
Exemplary | BASIC,KEY, DATA SDATA TEXT User-
file type | LEX, etc defined

+

Imp. Field |
after file | No Yes No No Yes
header? |

+

Imp. Field |
contents on| Format A Format B Format C Zero User-

ext media | defined
+

May have | Yes No No Yes Yes
subheader? |

oee-=e=-"-=- -----=== ----

N1b Contents

Format A: 7 -2 Length of file in nibbles

1-0 Unused (zero)

Format B: 7 -4 Unsigned integer specifying number of
records in file, byte reversed

3-0 Unsigned integer specifying number of
bytes in record, byte reversed

Format C: 7-6 Protection; if set to 08 hex, file may
not be purged, renamed, or uritten to;
otherwise should be set to 0

5 -2 Signed integer specifying number of
registers (8-byte records) in file

1-0 Unused (zero)

11-6

HP-71 Softuare IDS - Detailed Design Description
File Systenm

11.2 File Types

The following file types are directly supported by the HP-71
mainframe. OEM software developers may support other file types by
first reserving the file type with HP (see the "HP-71 Resource
Allocation" chapter)‘ and then by 1nclud1ng the appropriate poll
handlers in a LEX file. Each file type is identified by a 16-bit
value which conforms to HP’s Logical Interchange Format for Mass
Media,

Uhen HP-71 files are stored on external media, file security and
prlvacy are encoded, if applicable, in the numerlc file type as
shoun in the chart below Uhen flles are stored in memory, privacy
and security are encoded in the flags field of the file header, and
the file type stored in the file header is ALUAYS the normal file
type.

Hex Numeric Value

Type Description Security**: Normal S P E

BASIC Tokenized BASIC program E214 E215 E216 E217
BIN HP-71 Microcode E204 E205 E206 E207
DATA Fixed Data EOFO EOF1 n/a n/a
KEY Key Assignment E20C E20D n/a n/a
LEX Language Extension E208 E209 E20A E20B
SDATA Stream Data EOD0O n/a n/a n/a
TEXT ASCII text, in LIF Type 1 format 0001 EOD5 n/a n/a

** Meaning of the Security Symbols:

Symbol Meaning

Normal File is not protected
S File is SECURE
P File is PRIVATE
E File is SECURE and PRIVATE

11.2.1 File Protection

The default protection for a file is no protection. A file with no
protection can be edited, purged and executed. File protection is
specified through the SECURE and PRIVATE commands.

File protection is detected by two bits in the flag field of the

11-7

HP-71 Softuare IDS - Detailed Design Description
File System

file header. Uhen set, the lowest bit of the field indicates the
file is SECURE; the next bit (bit 1) indicates the file is PRIVATE.

11.2.2 BASIC

A BASIC file contains tokenized BASIC programs or subprogramsg, and

is created by the HP-71 BASIC editor. A BASIC file has a copy code
of 0, a 12-nibble subheader, and no Implementation Field present
after the file header,

A main program, if present, must start immediately after the
subheader, Any subprograms present are chained sequentially
thereafter. The file’s Subprogram chain is headed by a link in the
subheader.

11.2.2.1 Subheader

The BASIC file subheader contains 3 fields. The Subprogram Chain
Head contains the first pointer of the Subprogram chain in the
file. Similarly, the Label/User-Defined Function Chain Head
contains the starting pointer of the chain of labels and
user-defined functions within the main program. A permanent EOL
(hex FO) always precedes the start of data (start of the first
line) for a BASIC program file. This causes every program line to
conform to the same format.

BASIC Subheader

$mmmme————-+

I Subpragran | 5 nibbles
| Chain Head |
trmmreee—+

| Label/User-Defined | 5 nibbles
I Function |
| Chain Head |
Ttm————t

| FO | 2 nibbles
tm———+

The chain head and links have the following values and meanings:

Chain head or
chain link Meaning

00000 Chain is not yet established (head only)
nnnnn Offset to next link
FFFEY End of chain

11-8

HP-71 Software IDS - Detailed Design Description
File Systenm

11.2.2.2 Subprogram Chain

The purpose of the Subprogram chain and Label/User-Defined Function
chain is to speed up searching for subprograms, labels, and
user-defined functions.

Subprograms are only chained within a file, The Subprogram chain
head contains the offset in nibbles to the next chain 1link in the
file., The only two BASIC statements in this chain list are SUB and
ENDSUB. A five-nibble relative address is tokenized in association
vith these statements, which is used to hold the link to the next
entry in the chain,

11,2.2.3 Label/User-Defined Function Chain

The Label/User-Defined Function chain is similar to the Subprogranm
chain, except 1label declaration and user-defined function
deflnltions are chained within a program or subprogram. If a file
contains one main program and several subprograms the maln progran
and subprograms will each have their ouwn Label/User Def ined
Function chain.

Statements and other constructs linked in this chain are:

Label declarations
DEF EN

ENDDEF

A five-nibble relative address is tokenized in association with
these constructs, which is used to hold the link to the next entry
in the chain.

11.2.2.4 Statement Tokenization

A BASIC program line begins with a line number and terminates with
an End of Line (EOL) token. A progranm line may contain multiple
statements. A multi-statement 1line is preceded by an @ token.
Following each line number or @ token is a statement length byte.
This statement length is a relative offset to the next termlnatlng
token. Statements within a BASIC file are linked together using
these relative offsets.

See the subsection on Statement Tokenization in the “Statement
Parse, Decompile, and Execution" chapter for examples of statement
tokenization.

11-9

HP-71 Software IDS - Detailed Design Description
File Systenm

11.2.3 BIN

A BIN file is a binary or machine language file which is executed
directly by the operating system. A BIN file is created using an
assembler such as the FORTH/Assembler ROM. It has a copy code of

0, a 12-nibble subheader, and no Implementation Field is present
after the file header.

Each BIN file may contain one or more subpgrograms, which are
linked in a manner similar to BASIC files. However, each BIN
program MUST have a main program, since a BIN file may be executed
directly by a RUN statement. This main program should end with the

statement:

GOSBVL =ENDBIN

in order to end execution of the main program and return control to
the operating system., If no useful main program is appropriate to
a BIN file, the "main program” should consist only of the above

statement,

A binary file’s main program can be invoked by RUN or CHAIN. It
may also be called as a subprogram by the CALL statement. (In this
case no parameters will be passed, and the subprogram will have the
caller’s local environment.)

11.2.3.1 Subheader

The subheader of a BIN file is the same length as that of a BASIC
file, and has a similar format. Its Subprogram chain field is used
to chain subprograms within the binary file. The
Label/User-Defined Function chain field is always FFFFF (empty)
gince there are no labels and user-defined functions within the
context of a birary program. The "20" code at the end of the
subheader is a filler to make the BIN subheader size equal to that
of the BASIC file subheader to facilitate use of common access

routines.

BIN Subheader

bcmeeeeecma——- +

I Subprogranm I 5 nibbles
l Chain head |
$mrmmmm eeece+

| FFFFF I 5 nibbles
tommmm——eete——9

| 20 | 2 nibbles
tm————t

11-10

HP-71 Software IDS - Detailed Design Description
File Systenm

11,2.3.2 Subprogram Chain

The purpose of the Subprogram chain is to enable a BASIC program to

CALL a binary subprogram and pass parameters to it, just like to
CALL a BASIC subprogran.

If there are binary subprograms in the BIN file, each binary
subprogram must start with a tokenized SUB statement, which is
tokenized exactly as in a BASIC statement, except that a line
number is not required. The SUB tokenization starts with the
2-nibble line length field, then the tSUB token, then the 5-nibble
Subprogram chain 1link field, then the rest of the SUB statement.
The tokenization ends in a format that parallels the last 7 nibs of
the BIN file subheader: a 5-nibble Label/User-Defined Function
field set to FFFFF hex (meaning a mnull chain) followed by the
terminating code "20". The first machine language instruction of
the binary subprogram then follows immediately. See the section on
"SUB Tokenization” in the "Statement Parse, Decompile, and
Execution" chapter.

The mechanism for chaining subprograms in a BASIC file is the CHAIN
routine., However, this routine will not work for a binary file.
The chaining of the subprograms in a binary file has to be done by
the assembler programmer. At execution time, if a BIN file’s
Subprogram chain has not been established, the binary subprograms
in this file will not be found.

11.2.4 DATA

A DATA file is created by the CREATE statement. It has a copy code
of 1, no subheader, and its file header is followed by an
Implementation Field,

11.2.4.1 Implementation Field

The DATA file Implementation Field is aluays present after the file
header. It contains two 16-bit unsigned integers which give the
number and length of records in the file. These integers are
stored in byte-reversed format when the file is written to external
media (that is, the lou-order byte is uritten first) so that, when
the file is in memory, these fields may be conveniently read (using
an instruction such as A=DAT1 4).

11-11

HP-71 Software IDS - Detailed Design Description
File System

DATA Implementation Field

$rrrreee+

| Number of records | 4 nibbles
| (byte-reversed) l
emmce+

| Record length in bytes | 4 nibbles
| (byte-reversed) I
temmcccc eeeee+

11.2.4.2 File Structure

A DATA file 1is a series of records with fixed record 1length,
Vithin a record, numeric and string data is stored in sequentially
contiguous segments. If a string data item overflows the bounds of

a record in sequential access, it is broken into smaller segments.

If one or more bytes remains in the current record but this is not
enough to write the next data segment, an End-of-record byte (see

below) is written and the file is positioned to the next record in
order to write the data segment.

The first byte of a data segment indicates the type of the data,
and is called the determiner byte:

Data Segment Data

Determiner Segment
Byte Meaning Length

2 BCD digits Floating point number 16 nibs
FF he End of file 2 "
EF * End of data in this record 2
DF * Entire string falls in this record 6+n "
CF " Start of string is in this record 6+n
7F Middle of string is in this record 6+n "
6F *“ End of string is in this record 6+n "

vhere n is the length of the data portion of the string data
gegment, determined by a 16-bit unsigned byte count uwhich
immediately follous the determiner byte of the data segment. For
Start-of-string (CF) and Middle-of-string (7F) determiners, this
byte count is NOT the length of the data segment, but 18 the
remaining string length in bytes. In this case the end of, the data
segment is determined by the end of the current record, with which
it must coincide. For instance, if the byte count for a
Start-of-string (CF) segment 1is 0032 hex, it means the entire
string is 50 bytes long but not all of the 50 bytes is in this
record. So the beginning of next record must be a Middle-of-string

11-12

HP-71 Software IDS - Detailed Design Description
File System

(7F) or End-of-string (6F) data itenm.

STRING DATA FORMAT

In the cage of string data, the two bytes lmmedlately following the
determiner byte contain a16bit unsigned integer uwhich specifies

the total remaining 1length in bytes of the string data. The

determiner byte and the tuo-byte length count are NOT part of the

data itself (and are not included in the length count).

Uhen stored on mass media, the length count field is byte-reversed,
as in the HP-85, wuith the lou order byte wuritten first. For
example 01AB hex is written "“ABO1". This is so that, when the
file is in memory, this field may be conveniently read as a normal
4-nibble number (using an instruction such as A=DAT1 4).

If a string data item is written sequentially to a DATA file and
the string is too long to fit into one logical record, it will be
stored in consecutive 1oglca1 records. The first portlon of the
strlng, which must contain at least one character, will be prefixed
with a Start-of-string determiner (CF hex). The logical record
with the end of the string will contain the End-of--string
determiner, the remalnlng length of the string (at least 1), and
the remainder of the string data. All other records which contaln
part of the strlng will contain the Middle-of-string determiner (7F
hex), the remaining length of the string, and a section of the
strlng

Each byte of a string may have a value betueen 0 and 255 decimal.

STRING DATA SEGMENT FORMAT

e+

| String Data Segment | 1 byte
| Determiner Byte |
ee+

l . I
| Remaining Data Length | 2 bytes
| (byte-reversed) |
| |
torcrrrrcccrrcscecece-+

I l
| String data I n bytes
| |
Re+

NUMERIC DATA FORMAT

11-13

HP-71 Softuware IDS - Detailed Design Description
File Systenm

Each numeric value is represented as an 8-byte register, All
values uritten to this file type are normalized, except in the case
of IEEE exceptional values explained below. The register is
divided into 3 BCD fields:

NUMERIC DATA ITEM FORMAT

Size 1in
Field Digits Description

Mantissa sign 1 Symbol is MS.
0 - Positive
9 - Negative

Manitssa 12 Digits are referred to as M0 through
M11, with MO the most significant
digit. MO is nonzero for normal-
ized nonzero numbers,

Exponent 3 Digits are referred to as E0 through
E2, with E0O the most significant
digit., EO may be non-BCD for ex-
ceptional values described belou.
For normalized values, if the
exponent is:

0 to 499 it is
represented as 0 to 499;

-1 to -499 it is
put in 10’s complement and
represented as 999 to 501,

The register is uritten to the file as follous:

DGEGGA GF R D RGPD WD S PGP WP WD ED D D WS D D D G G W D D D D WS R WS WS P WO AP CP WS S D S GE @ W D WD W O GD G wd G

D ES W G eGGED D G D WD WD WD W CD ED W GO W WP G EP W WD G W WD G D P TS A5 TP D > E O GO Wh Gh We D GP GO WS GO WS WP TP W @D @

first byte last byte

MS : Mantissa sign
MO : Most significant digit of mantissa
M11: Least significant digit of mantissa
EO : Most significant digit of exponent
E2 : Least significant digit of exponent

-123

For example, the value 3.14159265359 * 10

11-14

HP-71 Software IDS - Detailed Design Description
File Systenm

would be uritten as

Normalized:

Nonzero ——--@-=== g ---n---

Zero 0O 0 0 =8 0 0

0 1 5 =8 n 0
Denormalized ----d----

Positive Infinity 0 0 F 0 n n

Negative Infinity 0 0 F 9 n R

Not-a-Number (NaN) --c-- F s —--t-~-

Uhere

F = Fifteen
c = Class of NaN (non-zero BCD integer, 1-99).
e = 10’s complement exponent; any BCD integer

except 500

Denormalized exponent 501, which is -499
in 10’s complement

Meaningless

Non-zero BCD integer
Sign (0 or 9)
Tag identifying origin or type of NaN
if class other than 99, else meaningless

Q
. "

~
n
N
n

=S
3

Normalized Values

11-15

HP-71 Software 1DS - Detailed Design Description
File Systenm

Generally, a BCD number is normalized and within the range of
-1.00000000000 E -499 to -9.99999999993 E 499 if negative and
+1,00000000000 E -499 to +9.99999999999 E 499 if positive. A
number is considered normalized if MO is nonzero, or if MO is zero
and M1 through M11 are also zero.

Exceptional Values

Houever, certain mathematical operations may result in an
exceptional value that may not be normalized, as in the case of
underflow, or may not even be a real number, as 1in the case of
Infinity or Not-a-Number (NaN), These values are encoded in the
following manner:

a. If EO = F, the number is either Infinity or Not-a-Number (NaN)
and if E1&E2 = 00 - the number is Inf (infinity)
and if E1&E2 # 00 - the number is NaN (E1&E2 are the

class number of the NaN)

The I1EEE standard states that in the case of NaN, the sign of
the mantissa and the mantissa may contain system specific
information regarding the origin of the NaN. For exanmple,
there may be information in the mantissa stating the line
where the NaN occurred, the error rnumber generated, and the
origin of the NaN, such as 0 divided by 0 or square root of a
negative number,

The format by which any extra information has been encoded in
the mantissa 18 1identified by a ’class number’ which is
contained in nibbles E1 and E2 of the exponent. The class
number is a BCD numoter in the range 1 to 99. Currently the
only class number defined is 99, which means no useful
information is contained in the mantissa. To reserve a class
number, contact the PCD LIF coordinator,

b. If EO # F and MO = 0, the number is either 0 or denormalized
and if exponent = 0 - the number is zero
and if exponent % 0 - the number is denormalized

e.g. 0.00012E501.

11.2.5 KEY

If no system file ’keys’ exists, then if a key is redefined using
the DEF KEY statement or if a MERGE is done using a KEY file, a new
KEY file ‘’keys’ is created. This is the only way in which KEY
files are created. |

11-16

HP-71 Softuware IDS - Detailed Design Description
File Systenm

The KEY file type has a copy code of 0, no subheader, and no
Implementation Field is present after the file header.

11.2.5.1 File Structure

Each entry in a KEY file is a key assignment. Entries are encoded
as follous: ,

oTLPeccce—-Pmecrcrmrece- +

| Keycode | Entry length | Assigmnment Type | String constant |
term—————-beocemL+

Keycode : 1 byte hexadecimal key number;
Keys are numbered in row major order

Entry

Length : 1 byte representation of the entry length;

Length from keycode to next entry or end of file
Assignment
Type : 1 nibble assignment type

0 = Automatically sends End Line
1 = No End Line sent (specified by ; in DEF KEY)
2 = Direct Execute (specified by : in DEF KEY)

11.2.6 LEX

Language Extension (LEX) files are the most powerful type of
softwuare file used by the HP-71 operating systen. They are
typically created by an assembler such as the FORTH/Assembler ROM.

The LEX file type has a copy code of 0, no subheader, and no
Implementation Field is present after the flle header.

11.,2.6.1 File Structure

The structure, creation, and use of this file type is described in
detail in the “Language Extension and Binary Files" chapter.

11.2.7 SDATA

The SDATA file type is the data file format used by the HP Series
40 calculators (41C, 41CV, 41CX) under the catalog name of DA. The
HP-71 can read string or numeric data from this file using READ#.
However, the HP-71 can urite only numeric data to this file type,
using the PRINT# command. An SDATA file is created by the CREAIE
statement,

The SDATA file type has copy code of 2, no subheader, and no
Implementation Field is present after the flle header.

11-17

HP-71 Software 1DS - Detailed Design Description
File System

11.2.7.1 File Structure

The SDATA file is a collection of registers. A register is aluays
8 bytes in length and can contain a BCD floating point number or a
string data item of up to 6 characters.

The format of a number is the same as that used in the HP-71 DATA
file (see the description of DATA file structure earlier in this
chapter). If the register contains string data, the sign field S
will be equal to 1. The characters are stored in nibbles M1 to
M10, right justified with leading zeros.

11.2.8 TEXT

A TEXT file is created by the CREATE statement. The TEXT file type
has a copy code of 4, no subheader, and no Implementation Field is
present after the file header.

11.2.8.1 File Structure

The format of the TEXT file is determined by the HP Logical
Interface Format (LIF) standard for the ASCII Interchange file tvpe
(LIF file type 1). A TEXT file 1is a series of contiguous variable
length records. Each record starts with a tuo-byte data length
count (in bytes). A data length count of FFFF hex m~rks the end of
the file (houever, the end-of-file marker is not required to be
present). If the data length count is FFFF hex, there is no data
in the record.

Otheruise, if the data length count is odd, a pad byte of arbitrary
content is appended to the end of the record so that the total

record length will be an even number of bytes. Therefore, if the

data length is an even number, the total length of the record (in
bytes) is the data length plus 2. If the data length is an odd

number, the total length of the record is the data length plus 3.

Note that when a TEXT file is stored on external media, the data
length count field is NOT byte-reversed, in accordance with the HP
Logical Interface Format standard mentioned above. This means that
wvhen this field is read into a register using an instruction such
as A=DAT1 4 the two bytes must then be reversed before the value

can be properly interpreted as a number. The routine SUPBYT is
used for this purpose.

11-18

HP-71 Softuware IDS - Detailed Design Description
File Systenm

TEXT FILE RECORD FORMAT

2 bytes (FFFF hex marks
Data Length end-of-file)

| l
| l
| (NOT byte-reversed) |
| I

n bytes (where n is

+

l I
| Data : data length)
I
| l
| |
I |
temmme+

. Pad Byte . 1 byte (only present if
Ceereteeceennnnnnns cens odd data length)

11.3 Copying a File

11.3.1 Copying to/from Card

The FILCRD and CRDFIL subroutines provide for data transfer
between memory and cards.

FILCRD copies a file to cards. Input conditions call for
providing the address of the file to be copied out, the
new name to be used on the card, and a flag indicating
privacy. Files may be copied out from any memory device
to cards.

Routine CRDFIL copies a file in from cards. Input conditions
call for providing the name of the file on card (if
gpecified) and the name to be used in RAM (if specified).
Files may be copied in to main RAM only.

Both routines prompt the user and handle the complete copy
operation. They return if the copy was successful, and
take error exits if the copy errors out or is aborted.

The CARD reader buffer is used to hold a copy of the
card header during card reader operations., During
CAT CARD or CAT$(1,":CARD"), a somewhat larger buffer holds

11-19

HP-71 Softuare IDS - Detailed Design Description
File Systen

not only the card header, but a dummy file header used
by the catalog entry formatting routines.

11.3.2 Copying to/from External Media

If other devices are specified in the copy command, such
as "COPY A:TAPE" or "COPY ’A:TAPE’", the filespec parse poll
and filespec execute poll give lexfiles the opportunity
to recognize and act on the commands. See the poll interface
descriptions for more details.

11.3.3 Copying to/from Other Memory Devices

The HP-71 mainframe code does not support copying to or
from memory devices other than RAM. Houwever, hooks exist
in the COPY code to handle future devices, such as EEPROMs,
EPROMs, PROMs, or whatever else may come along.

When COPY is asked to copy to an external memory device, it
examines the configuration table to determine the memory
type. If it is not RAM, it will poll for a copy handler.
Failure to find a copy handler will result in an "Illegal
File Spec" error.

Details on the polling conditions can be found in the
documentation on the pCOPYx poll.

11.4 Opening a File

A file can be opened by executing the ASSIGN # statement or by call??
routine OPENF internally. The information required to access the fi??
be uritten to an entry in the File Information Buffer (FIB), which 7?
system buffer maintained by the operating systenm.
Up to 64 files can be opened at the same time since there is room f?2?
this many entries in the FIB.

All access to an opened file is controlled by its entry in the FIB,
which is identified internally by an FIB entry number. This number,
also referred to as the file’s entry in the FIB,
is not to be confused with a channel number which may (or may not)
be associated with the FIB entry through the ASSIGN buffer.
Uhen discussing a particular opened file, the file’s entry in the
FIB is also loosely referred to as “the FIB" for brevity,

Whenever an opened file
is accessed, the file pointer in the file’s FIB entry should be upd??
Uhen the file is closed, as with the CLOSEF utility, its FIB entry ??

11-20

HP-71 Softuare IDS - Detailed Design Description
File Systenm

removed.

The format of the FIB entry is given in the "Table Formats" chapter??

11.5 File Searching

Uhen presented with the name of a file to find in memory,
the operating system automatically searches the various file chains??
according to the algorithm described here. The operating system do??
automatically search for a file on external devices,

If no device is specified for the search, file searching starts wit??
RAM and continues onto the ports, in port specifier order (only ROM??
Independent RAM ports are searched). If the Main
RAM file chain is specified (:MAIN), only that chain is seached. §7?
the file chain on a particular port may be specified with :PORT(n).
Or, a file seach may be restricted to only the port file chains
if :PORT is used without a particular port specified.

The routine used in internal file searching is FINDF. A detailed
description_of its algorithm 1s given belou.

FINDF File Search Algorithnm

Clear Single File Chain Flag (S8);
If there is no file chain specified
THEN goto B;

If :MAIN 1s specified
THEN goto A;

Save file name in R2;
If :PORT is specified (search all ports)
THEN goto F;

Set Single File Chain Flag (S8);
Call ROMF-1; goto G

A: Set Single File Chain Flag (S8);
B: Set up to search Main RAM;

Clear S6 (Initial Port Search not Done)
C: Search file chain,

If file found in this chain
THEN exit with carry clear;

If S8 is set
THEN load up error; exit with carry set;

If S6 is clr (Initial Port Search not done)
THEN Save file name in R2;

Call ROMCHK;
Restore file name; Set S6;
If no (more) plug-ins

Q
™

11-21

HP-71 Softuware IDS - Detailed Design Description
File Systenm

THEN load error; exit with carry set;
ELSE goto C;

Call ROMEND; goto G.

11.6 File Creation

Mainframe files are created by the routine CREATF, and be created
in either Main RAM or on an Independent RAM (IRAM) port. Depending
on entry conditions, a file may be created in Main RAM, on a
specified port, or on the first port found to have enough room for
the file. Unlike the entry conditions for FINDF, if no particular
device is specified, Main RAM is assumed.

Routine CRTF is a general-purpose utility to create a file either
in the mainframe or on an external device. CRIF performs
rudimentary initialization of a file depending on its file type,
and makes use of CREATF or the HP-IL Module (via polls) depending
on the specified device.

The CREATF algorithm for creating a mainframe file 1is described
belouw.

CREATF Algorithm for Creatung a Mainframe File

Save desired file size in RO;
If MAIN or no file chain specified

If not enough memory with LEEWAY check
1: Load error; return with carry set;

Open up memory; Urite time/date in header;
Urite File Chain Length field;
Goto RFADJ+;

If no particular port specified
Call ROMCHK:
If no (morei plug-ins

A: Load error; return with carry set;
Call B;
If create done sucessfully on that plug-in

Return with carry clear;
Call ROMEND; goto A

Call ROMF-1;

If plug-in not found
THEN goto A;

B: If plug-in is not RAM
THEN load error; return with carry set

Calculate amount of available memory on

plug-in (LSTADR-EOFLCH);
If not enough room

11-22

HP-71 Softuare IDS - Detailed Design Description
File Systen

THEN goto 1,
Urite creation date/time; write file chain length
Return with carry clear.

11-23

HP-71 Software IDS - Detailed Design Description
Table Formats

..................+

|
CHAPTER 12 |

|
..................+

Goee=------

I
| TABLE FORMATS

¢
—
—
—
e

Poe--">-----=-=~=-

12.1 ASSIGN Buffer

The ASSIGN buffer (bASSIGN) saves all the open channel #’s. Every
entry in the buffer takes 5 nibbles. The information contained is:

Channel # (Device #) 2 nibbles
Code Nibble 1 nibble
FIB# or Indirect Channel # 2 nibbles

Every entry occupies 5 nibbles. The maximum ASSIGN buffer size is
4095 nibbles, so a maximum of 819 channels and stack markers will
fit in the ASSIGN buffer.

If the channel # is zero, then the remaining high 3 nibbles are a
count of subroutine levels without any channels on that level. The

magimum count of SUB 1levels in the stack marker is 4096 (0-FFF
hex).

The assign table 18 aluays searched from the end of the buffer to
the start of the buffer or a stack marker, whichever occurs first,
This implies that all new entries are appended to the buffer.

If the code nibble is non-zero, the search routine should search in
the previous stack 1level for the indirect channel #. These links
continue back until either a FIB# is found or an entry uwith an FIB#
of zero is found. A zero FIB# means this channel is no longer
open,

12.2 Card Reader Buffer

This is a buffer (bCARD) used by the card reader subsystem for
building a copy of the card header being wuwritten out or ‘read in
to/from card. The format of the information is as follous (all
numbers shown in bytes):

12-1

HP-71 Software IDS - Detailed Design Description
Table Formats

0: sub-format (1): 00 for LIF1 file (HP-75 subformat)
01 for HP-71 files (HP-71 subformat)

1: track# (1)
2: # of tracks in set (1)
3: # bytes in this track (2)
5: # bytes in file (2)
7: file type (2): Kangaroo filetype (HP-75 subformat)

LIF filetype number (HP-71 subformat)
creation date (4): hex seconds since start of

century.

o

13: file name (8)
21: password (4): blanks for LIF1 filetype (HP-75 sbfmt)

implementation (4): (HP-71 subformat)
25: marker (2): checksum of entire file, including

file header.
27: partial statement status (1)
28: sl--partial statement size information (2)
30: s2--partial statement size information (2)
32: data checksum (2): 2-byte checksum of data field.
34: header checksum (1): 2-byte sum of header field,

folded to one byte without
, wraparound carry.
35: (reserved) (1)

WVhen a CAT CARD is performed, some additional space is created at
the end of the buffer for building a dummy file header. This dummy
header is used by the CAT formatting routines to create a catalog
entry listing.

12.3 Character Sets

12.3.1 Standard Character Set

The standard character set consists of ASCII characters 0 through
127.

12.3.2 Alternate Character Set Buffer

The alternate character set buffer (bCHARS) has two possible
formats. If the alternate set is contained in the buffer itself,
the buffer will have an even number of nibbles. If the buffer is
merely a pointer to a character set stored elseuhere, then the
buffer will have an odd number of nibbles.

In the case of an even length buffer, the contents of the buffer

12-2

HP-71 Software IDS - Detailed Design Description
Table Formats

consist of n groups of 6 bytes (vhere 1 <= n <= 127), Each byte
describes one column of one character. Each group of bytes defines
one character pattern. The least significant bit of each byte
corresponds the top row of the display.

In the case of an odd length buffer the contents of the buffer
consist of a 5 nibble absolute address of the actual character set

table followed by a byte which uniquely identifies which character
set 1s being pointed to. This byte is used during the configuse
poll (pCONEG) to help individual ROMs determine if they are
responsible for this buffer. The table pointed to should consist
of a three nibble length field folloued immediately ny a table in
the same format as would be in the buffer. As long as the buffer
contents remain an odd length the buffer may be extended as
desired, since it will be ignored when the character set is
referenced (ie. it might be used to preserve a previously active
character set to be restored later).

This buffer’s update count field should contain a 1 if it is an odd
length buffer so that the address pointing to the character set
table will be updated when memory moves,

Uhen the auto-delete of I/0 buffers is performed during
CONFiguration, this buffer will be deleted only if it is odd in
length and no ROM responds to the poll (pCONFG) by marking the
buffer and updating the address pointing to the actual character
set table.

12.4 External Command Buffer

The External Command Buffer (bECOMD) may be created by a LEX file
during the pDSUNK or pDSUKY poll. It contains BASIC ASCII text in
the same format as in the Startup Buffer. The text will be
executed on return from Deep Sleep IF Deep Sleep was called from

the Pouer Down routine. A system flag, f1PUDN, identifies if
deepsleep was called from powerdoun, which is useful during the
powerup polls.

12.5 File Information Buffer

The FIB is a system buufer maintained by the operating system which
contains an entry for each open file. All access to an opened file
is controlled by its entry in the FIB, which is identified
internally by its entry number. See the "File System" chapter for
further information on file access. The format of each FIB entry
1s as follous.

12-3

HP-71 Software IDS - Detailed Design Description
Table Formats

FILE INFORMATION BUFEER (FIB) ENTRY FORMAT
D L D D G R Gh - A P B W P W GO D WS WP G GD T e S WS G N D P Gh D GP WS G G G° e > = W G G =

1. FIB entry number (2 nibs) - If 00, end of FIB

2, File 1/0 Buffer numver (3 nibs) -
If the file is on external device, it has a 256-byte system
buffer associated with it to hold the current sector. If
this field is not 000, it is the ID of this associated
File I/0 buffer.

3. File type (4 nibs) - File type number of the file

4, File protection nibble (1 nibs) - This is the same nibble
in the file header

5. File copy code (1 nib) - This is the same value as in the
File Type Table entry for this file type

6. Access code (1 nib) -
This nibble is only useful for files on external devices.
It is set to 1 when the current contents of the file 1/0
buffer has been altered. It is set to zero when a new record
has been read into the file I1/0 buffer.

7. Device type(l nib) - This nibble indicates where the file
is located :

0 - Mainframe 1 - Independent RAM
2 - ROM 8 - HP-IL device

8. File begin (6 nibs) -
For file in RAM/ROM ;

Nibs Field

4-0 Abs address of file header start
5 Unused

For file in mass memory device :
Nibs Field

0 Nth entry in the directory record
4-1 Record number in the directory area

9. Subheader length (2 nibs)
This length is the number of bytes of the subheader. It is
computed as follous:

Subtract 5 nibbles from the Offset to Data field of the File
Type Table entry for that file type. If the copy code is 1
(e.g. DATA) or 8 (user-defined), subtract another 8 nibbles
for the Implementation Field, which is present after the
file header. Then divide by 2 to convert into bytes:

12-4

HP-71 Software IDS - Detailed Design Description
Table Formats

Copy code 1 or 8: (Offset to Data - 13) / 2

Copy code 0, 2, or 4: (Offset to Data - 5) / 2

10. File data start (11 nibs) -
This is the absolute address of the start of data of the
file.

For file in RAM/ROM:

Nibs Field

4-0 Abs addr of data start (skip over the subheader)
6-5 Hex FO
8-7 Port address: Port #, Extender #
10-9 Unused

For file on an external (HP-IL) device:

Nibs Field

3-0 Record addr of the first record of the file.
If the file has subheader, the subheader starts
from byte 00 of this record.

4 Device address
-7 Assign code
0 Assign type-

O
O

11, File length(4 nibs) -
For fixed record length file, this is the file length
in number of records.

12, Record length(4 nibs) -
For fixed record length file, this is the record length
in number of bytes.

13, Current position(6 nibs) -
This is the current file pointer. It is the offset from the
file data start.

Nibs Field

5-0 Offset from file data start in nibbles.

14, File data length(6 nibs) -
This is the file data length not including the subheader.

Nibs Field

5-0 File data length in nibbles,

15, Remaining length in current record(5 nibs) -
This field is used by PRINT# and READ# to keep track of

12-5

HP-71 Softuware IDS - Detailed Design Description
Table Formats

hou many bytes to the end of current record.

16. Device size (6 nibs)
This field is only useful for file in an external mass
memory device(HP-IL)

Nibs Field
- en wn we o= D Cn P S - D G WS WD S D D ED CP D D RD P) ED D GO D G W WD D > > D - G TP D WS G W W WD ED WD GO WD > > G

5-0 "Number of sectors allocated to this file.

12.5.1 Open Files and Protection

Uhatever a file’s protectlon is at the time it is opened, 1is the
access capability that 1is stored in the FIB. Therefore all
subsequent commands uwhich reference the FIB for their operation
will be subject to the access capablllty of the file AT THE TIME IT
WAS OPENED. The implication here is that the user may choose to

open a file, SECURE it, proceed to do a series of PRINTs to that
file, and then close the file. Until the file’s protection is
changed, all that transpired while the file was open is protected.

12.6 File Type Table

A File Type Table defines the attributes of one or more types of
file. Each type of file contains one entry in the table. See the
"HP-71 Code Examples” chapter for a listing of the File Type Table
that defines the file types recognized by the HP-71 mainframe.

The entry defines the name, file type numbers, and types of
protection which are assocxated with that type of f11e The entry
also defines the create code and copy code for the file, which
describes in a very general way the structure of the file. These
codes determine the presence or absence of an implementation field
following the file header when the file is in memory, and determine
vhether the mainframe can copy the file into or out of the HP-71
without the aid of a LEX file.

The File Type Table terminates with an FF byte.

FILE TYPE TABLE FORMAT

Size

Field (nibs) Meaning

Create code 1 0: Normal mainframe file structure

(BASIC, BIN, LEX, KEY, etc)
File length measured 1in n1bs
arbitrary format, subheaders

12-6

HP-71 Softuare IDS - Detailed Design Description
Table Formats

Copy code

alloued

: DATA file structure; up *to 65535
fixed length records of up to
65535 bytes each; subheaders not
alloved; file is initialized to
FE’s

: SDATA file structure; records are
fixed length, 8 bytes each; file
initialized to zeros; subheaders
not allowed

: TEXT file structure; records are
variable number of bytes; file
initialized to FF’s; subheaders
are not alloued

: Special handler routine required
to create this file; system will
issue pCRT=8 poll

: Normal mainframe file structure;
File can be copied into or out of
HP-71 without aid from LEX file;
Implementation Field contains
file length on external copy,
but is not present after file
header uwhen file is in memory

: DATA file structure; file can be
copied into or out of HP-71 with
no aid from LEX file; on external
copy, the Implementation Field
contains mumber of records and
record length, and it is present
immediately after file header
when file is in memory

: SDATA file structure; file can be
copied into or out of HP-71 with
no aid from LEX file; on external
copy, the Implementation Field
contains number of records, but
is not present after file header
wvhen file is in memory

: TEXT file structure; file can be
copied into or out of HP-71 with
no aid from LEX file; on external
copy, the Implementation Field is
zero, and it 1is not present after
file header when file is in
memory

: Special copy routine is required
to copy file to or from HP-71;
system will issue pWCRD8 poll;
Implementation Field is present

12-7

HP-71 Software IDS - Detailed Design Description
Table Formats

after file header when file is
in memory

Execution code 1 1: File is executable (can be run)
0: File is not executable

Offset to Data 2 Offset in nibs from start of file

chain length field (in file header)
to start of file data, skipping the
Implementation Field, if present
after file header (see Copy code,
above), and also skipping the
subheader (if any); this value is
used to calculate the subheader

length, when present

File type name 10 5 character ASCII name of the file
type as displayed by CAT; padded
with trailing blanks

Number of types 1 Number of file type rnumbers used
by this type of file to indicate
SECURE or PRIVATE states, if

allowed; up to four type numbers

may be used:

Type

Number Protection Indicated

First No protection
Second SECURE
Third PRIVATE

Fourth SECURE and PRIVATE

LIF type numbers 4 4 nibbles for each LIF type number
indicated by the previous field

12.7 Keycode Table

The mainframe contains a table (KEYCOD) which specifies the default
meaning of each key on the keyboard. This table is arranged as
three sets of 56 bytes. The first set describes the unshifted
function of the keys. The second set describes the f-shifted
function of the keys. The third set describes the g-shifted
function of the keys. Uithin each set, the keys are in the order
QUERTY ... O0.,+ which is the same order as used in DEF KEY,

The byte in the table specifies the meaning of the key as follous:

12-8

HP-T1 Softuware IDS - Detailed Design Description
Table Formats

0 -

32 - 127
128 - 255

31 Special code
ASCII letter with same code
Typing aid key of keyword with same code

The codes in range 0 - 31 are for keys that do not have a simple
ASCII letter or a typing aid associated with them. Such keys
require special processing.

Code

O
L
C
O
N
O
M
N
M
P
d
W
N
H
-
O

Symbol

kc-CHR

kcLC

kcl/R
kcUSER
kc-LIN
kCcFELET

kcERT
kcBKSP

KCLFT
kcRT

kcCTRL

kcVIEU
kcUSEX

kcEOL
KcATIN
kcRUN

kcCONT

kcSST
kcUP

kcDOUN

kcTOP
kcBOT
kcGON
kcCALC
kcOFF

kcLAST
kcLERR

Function

Delete char

Lowercase toggle

Insert/Replace toggle
User mode toggle
Delete through EOL
Cursor far left

Cursor far right
Backspace

Cursor left
Cursor right
CTRL prefix
VIEU prefix
1USER

Endline
ATIN

RUN

CONT

SST

Up
Doun

Top
Bottom
g-ON
CALC
OFF
Command stack
Last error message
Reserved
Reserved

Reserved

Reserved

Reserved

12.8 Language Tables

12-9

HP-71 Software IDS - Detailed Design Description
Table Formats

12.8.1 MAINT and XROMO1

Several mainframe tables are used by the lexical analyzer, parse,
execution and decompile drivers. These tables are used to identify
BASIC keywords, functions and system commands and assign a unique
internal token number. These tables comprise a mainframe LEX file,
follouwing the format of LEX files, as explained under LEX files in
the "“Language Extension and Binary Files" chapter. This table is
called: MAINT.

Due to the large number of built-in keywords, one internal LEX
“"file" is not large enough. A second internal LEX File: XROMO1
with LEX ID #01, holds the overflow of built-in keywords. Both LEX
“files" contain a SPEED table, main table, and text table. The
internal LEX "files" reside within system ROM and are not part of
the RAM file chain.

Keywords contained in XROMO1 are less frequently used keywords or

keywords that are not programmable. The tokenized length of XROMO1
keyuwords is 2 bytes longer than keywords contained in MAINT.

12.8.2 Message Table

Details on message table construction are found in the "Message
Handling"” chapter.

12.8.3 Lexical Type Table

The 1lexical type table (LXTYPT) describes a character type and
ASCII or internal representation (token) for each character.

For each character in the ASCII range, 20-7E, is an entry:

TYPE - Categorize character
0 - Miscellaneous
1 - Digit, Decimal Point
2 - Letter A - Z
3 - Relational Character < = > ?

1 nibble

CHARACTER - ASCII representation or internal token or character
2 nibbles, backuards

This table resides in mainframe ONLY.

12-10

HP-71 Softuare IDS - Detailed Design Description
Table Formats

12.8.4 IG Table

The “FG Table" defines a state machine for processing f and g

shifts. The state machine has 7 input bits and 4 output bits. The
seven input bits are as follous:

Bit 6 F key currently doun
Bit 5 G key currently doun
Bit 4 Some non-FG key neuwly down (X)
Bit 3 g annunciator on
Bit 2 f annunciator on
Bit 1 Ghost bit (¥*)
Bit 0 F or G key was doun during last key scan (h)

The ghost bit is used to indicate that an f or g shift has been
performed but the annunciator was left on because the corresponding
key was still doun.

The lover 4 Dbits are stored betueen key scans in the display RAM
nibble that contains the f and g anmunciators.
do not affect the display since
LCD to correspond to these bits.

stored back into display memory.

there are no annunciators
The louer tuwo bits

in the

These 7 bits form an offset into
the table which gives the neu "state" of the state machine and is

If bit 4 is set but bits 5 and 6
are clear then all bits should be cleared following putting the f
or g modified key codes in the buffer.

gf*n gf*h gf*h gf*n gf*h gf*h gf*nh gf*nh gf*h gf*h gf*h gf*h gf*h
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100

ggg 0000 0000 0100 0100 0000 0000 1000 1000 0000 0000 .

001 0000 0000 0100 0100 0100 0100 1000 1000 1000 1000 ...

010 1001 0OO1 1001 1001 1001 1001 0001 1001 1011 1011

011 1011 1011 ..., 1011 1011 1011 1011 1011 1011 1011 1011

100 0101 0001 0001 0101 0111 0111 0101 0101 0101 0101

101 oO111 0111 ..., 0111 0111 0111 0111 0111 0111 0111 0111

110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

111 0000 0000 0000 0000 0000 0000 0000 0000 00Q0 0000

12-11

HP-71 Software IDS - Detailed Design Description
Table Formats

12.9 LEX Entry Buffer

The LEX entry buffer (bLEX) resides in the main system RAM
following the statement buffer, It is a 1list of pointers to
language extension files in RAM and ROM and to the 2 built-in
language “files" within the mainframe. Associated with each LEX
file is the range of entry numbers within the LEX file.

For each LEX file entry;

eee—-ecccere+

| ID# | Low Entry# | High Entry# | LEX File MAIN Table Start |
toemem——- tmmmm—m——————P——temcree+

2 2 2 5 nibs

The range of LEX IDs is 0 to 255, The range of entry numbers
within a LEX file is 0 to 255. Several LEX files may have the same
LEX ID, but different ranges of entry numbers. There is a separate
entry for each separate LEX file.

The LEX entry buffer is recreated every time the configuration of
the machine may change or a LEX file is added or removed. This
includes coldstart, warmstart, power on, module pulled, CLAIM,
COPY, FREE and PURGE.

12.9.1 Search Order of LEX Files

First, main memory is searched for LEX type files. The standard
file header is skipped and the LEX ID# and entry# range is read.
The main table address is calculated, based on the presence or
absence of the optional speed table. The LEX ID#, entry# range and
main table start address are added to the LEX entry buffer. LEX
files may be chained together internally. All LEX files within one
system file are added to the table.

ROMs and independent RAMs are searched next. For each configured
ROM/IRAM, the entire file chain is searched. Each language
extension file within the ROMs file chain is added to the LEX entry
buffer,

Plug-ins are searched in port-device order; i.e. Port 0 through
Port 5, with internal devices within each port searched in order.

The tuo final buffer entries are the built-in XROM and the
mainframe main table. The built-in XROM LEX ID¥ is 01, with a
token range of 0 to 95. The mainframe LEX ID#¥ is 00, with a token
range of 0 to 255, LEX ID#00 is useful for detecting the end of

12-12

HP-71 Software IDS - Detailed Design Description
Table Formats

the buffer when searching for a particular external keyword or
function.

12.9.2 Usage

The LEX entry buffer is used by the lexical analyzer uwhen scanning
for valid keywords, functions and commands. This allous the BASIC
language and system command set to be extended and overridden.

This buffer is also used determine addresses to decompile and
execute external keywords and functions, and display external error
messages,

12.10 Startup and Immediate Execute Key Buffers

These two buffers are used to hold a string of characters which

will later be parsed and executed. The STARTUP buffer (bSTART) is
set up by the STARTUP command and is parsed and executed when the

user turns the machine on with the ON/Attention key. The immediate
execute key buffer (bIEXKY) is created whenever a colon-type key
definition is executed. This buffer is automatically deleted at
MAINLP since it no longer has meaning at that point.

The string stored in these buffers is aluays terminated with a CR
(ASCII 13). This is required since the buffers will be parsed.

12.11 Statistic Buffer

The Statistic Buffer is a scratch buffer used during summary
statistics accumulation in ADD and DROP.

12.12 System Flags

A flag is a variable that can have one of only two possible states,
set and clear, The numeric values 1 and 0 are assigned to these

states, respectively, Flags are generally used to control the flow
of a program and to record the status of certain modes, Flags are

global variables; flag settings remain in effect before, during,
and after subprogam execution.

There are 64 system flags (numbered -64 to -1) and 64 user flags
(numbered 0 to 63). These flags are stored in 128 consecutive bits
starting at address SYSFLG. (See the diagram in the Memory

12-13

HP-71 Software IDS - Detailed Design Description
Table Formats

Structure description.)

The following table summarizes the system flag assigmments, from
low to high memory.

Set/Clear Cold-start
Flag Name Flag # by user? Status

Quiet Mode -1 Yes Clear
Beep On -2 Yes Clear
Continuous On -3 Yes Clear
Inexact Result -4 Yes Clear
Underflow -5 Yes Clear
Overflou -6 Yes Clear
Divide-by-Zero -7 Yes Clear
Invalid Operation -8 Yes Clear
User Mode -9 - Yes Clear

RAD trig Mode -10 Yes Clear
Rounding Mode (POS/NEG) -11 Yes Clear
Rounding Mode (ZERO/NEG) -12 Yes Clear
Display Mode (FIX/ENG) -13 Yes Clear
Display Mode (SCI/ENG) -14 Yes Clear
Lower Case -15 Yes Clear

Base Option -16 Yes Clear
Display digit -17 to -20 Yes Clear
Reserved for HPIL -21 to -24 Yes Clear
BEEP loud -25 Yes Clear
Don’t prompt -26 Yes Clear

Unagsigned -27 to -32 VYes Clear

Unassigned -33 to -42 No Clear
Machine is dormant -43 No Clear
Always return from MEMERR -44 No Clear
Clock Mode (1 sec update) -45 No Clear
EXACT flag -46 No Clear
Command Stack Active -47 No Clear
Control Key Hit -48 No Clear
DSLEEP from PUR doun -49 No Clear

Req set TRNOF in MAINLP -50 No Clear
Turnoff at MAINLP -51 No Clear

VIEU key pressed -52 No Clear
Reserved for HPIL -53 to =56 No Clear

AC Annunciator -57 No N/A
User Mode Susp -58 No Clear
Key repeated -59 No Clear

Alarm Annunciator -60 No Clear
Low Battery Anmnunciator -61 No N/A
Program Annunciator -62 No Clear
Suspend Annunciator -63 No Clear
CALC Mode Annunciator -64 No Clear

12-14

HP-71 Software IDS - Detailed Design Description
Table Formats

User flags 0-63 Yes Clear

12.12.1 Display Format Information

Display format information is contained in the system flags.
System flags -13,-14 indicate the current display mode:

0 = STD 2 = SCI
1= FIX 3 = ENG

System flags -17 through -20 contain the number of digits in
hexadecimal for the current display setting, i.e. “n" in FIX n,
SCI n, ENG n.

12.13 Traps

As used here, a trap is a one-nibble rumeric code (0 to F in hex)
which determines what action, out of a menu of possible actions, is
to be taken when a corresponding flag is set by the systenm (1.e.
by other than an SFLAG statement or FLAG function).

Traps are implemented only for the arithmetic exception flags
(inexact, underflow, overflow, divide-by-zero, invalid operation).
Associated with each of these five exceptions is an action (or
trap) to be taken whenever that exception occurg. There are, at
present, three categories of trap actions and they are denoted by
trap values Oz 1 and 2. The trap values and their associated trap
actions are given belou:

TRAP MENU

Trap Value Trap Action

0 Halts and displays an error message

1 Returns the traditional finite default values

2 Returns the default values specified by the
IEEE Standard (see the Default Values Table)

12-15

HP-71 Softuare IDS - Detailed Design Description
Table Formats

DEFAULT VALUES TABLE

EXCEPTION TRAP VALUE

1 2

INX rounded 12 digit result rounded 12 digit result

UNEF 0 denormalized result

OVF +-maxreal +-infinity
(9.99999999999e499)

DVZ +-maxreal +-infinity

IVL 070=1, else halt 070=1,else NaN

If present, an ON ERROR statement overrides the trap values for all
exceptions except INX. OFF ERROR will return control back to the
trap action settings. The DEFAULT statement sets the traps as
follous:

OFF trap values for UNF,OVF,DVZ,IVL set to 0
trap value for INX set to 1 (same as 2)

ON trap values for INX,UNF,OVF,DVZ,IVL set to 1

EXTEND trap values for INX,UNF,OVF,DVZ set to 2
trap value for IVL set to 1

12-16

HP-71 Software IDS - Detailed Design Description
Internal Data Representation

ggggS

l
| INTERNAL DATA REPRESENTATION

.................. +

I
CHAPTER 13 |

.................. +*
—
—
e

P e e e eeeo-=>----v-o=-os-

This chapter discusses the format in which the HP-71 represents
rnumeric or string data in memory or in the CPU registers.

13.1 Data Types

The HP-71 supports seven data types, The data type ofa variable
is identified by looking at the variable register (explained in the
section on variable chains, below). Real scalar numbers are stored
directly into the variable register, and can be identified by the
lou-order nibble, which falls in the range 0-9 (and is interpreted
as the low-order nibble of the exponent field). If the louw-order
nibble of a variable register is anything else, the register is
serving as a pointer to one of the other six data types:

A Integer (simple or array)
B Real short (simple or array)
C Real array

D Complex Short (simple or array)
E Complex (simple or array)
F String (simple or array)

13.2 Registers

The following section will discuss the representation of variables
in memory. This section contains an introduction to the
representation of numbers in the CPU; that topic is treated more
thoroughly in the section on mathematical operands in this chapter.

13.2.1 Numbers in CPU Registers

Uhen a number is brought into a CPU register, the process of
recalling it (finding it in memory and bringing it into tie CPU by
wvay of the mathstack) will convert it into one (for real data
types) or two (for complex data types) nmumbers in a standard
representation as follous:

13-1

HP-71 Softuware IDS - Detailed Design Description
Internal Data Representation

15 0

ote-+

ISI Mantissa | Exp |
totmmmeceecetm————+

1 | 12 3 16 nibbles

with the 1low-order digits in the low-order nibbles of the
register:

15 0
brrmmeeee——Pm————— +

Isl M2, .,M |E2..EO|
eee—etm————— +

1 12 3 16 nibbles

The mantissa is unsigned with a separate field (the S-field)
representing the sign (0 = +, 9 = -), The Exponent is represented
in 10’s complement form. This representation is the normal entry

condition for all routines which expect a floating-point
argument(s) in the 12-digit form.

Many of the computation algorithms work with a 15-digit form so
that intermediate results can be computed and retained with greater
accuracy. Typically, when implementing a function, you will take
the parameters (which are in 12-digit form), expand them into the
15-digit form, call whatever computation routines are necessary,
and round the 15-digit result back into 12 digits.

The 15-digit form occupies tuo registers as follous:

15 0
otee—e~+

| | Mantissa |
Pteece+

1 15 16 nibbles

15 | 0
PteePm+

IS| | Exp |
tebceeceetrmmee———+

1 10 5 16 nibbles

where the exponent has been extended (including sign-extend if
negative) to five digits.

The published entry and exit conditions for various numerical
algorithms state what registers are expected to contain which parts
of the argument(s).

13-2

HP-71 Software IDS - Detailed Design Description
Internal Data Representation

13.2.2 Strings in CPU Registers

Unlike numbers, the actual values of setrings are not usually

recalled into CPU registers - they generally don’t fit, The
procedure for accessing a string is to place the string on the
mathstack by evaluating an expression and then to ‘“pop" its
descriptor (mainframe POP1S routine), which provides a pointer and
a character count,

13.3 Variables

Every variable has a corresponding variable register in which the
value is stored (for simple variable types) or a reference to the
value is stored (for complex, arrays and strings). Variables
(i.e., their corresponding registers) <can be created either
explicitly (DIM, INTEGER, REAL statements) or implicitly (by
storing into a non-existent variable or array element) and will
continue to exist until wiped out by a DESTROY <var name> or
DESTROY ALL.

For speed of reference, each variable register is contained in one
of 26 lists ("chains"s; the alphabetic part of the variable name
determines which chain., Operating system RAM contains a 1list of
pointers to the various chains, the format of which is described
belou,

13.3.1 Variable Chains

There are 26 reserved pointers to the variable chains A-Z. This
list of 7 nibble pointers begins at 2F5BE. The first 2 nibbles
indicate the number of variables in the variable chain. The next 5
nibbles (Chain Head Pointer) give the absolute address of the first
variable in the chain.

13-3

HP-71 Softuware IDS - Detailed Design Description
Internal Data Representation

[2F5BE)
Reserved Pointers A-Variable Chain

2 5 3 16
oo+ LsLRtttk+

A | # | addr to 18t |----=---=-- >| label | Var register |
dermee-+ tm——————trme-+

B | # | addr to 1st | i I |
o+ tom—————e+

(o | # | addr to 1st | | l l
e+ tm—————— tem—e———+

. | l |

. | | |

. | v I
temme+

Z | # | addr to 1st |
temee+

The A-variable chain will contain the variable registers for all
variables whose names begin with A (A, A7, A$, AS5$, etc.).
Variables in each chain are listed in the order in uhlch they were
created; the chain is not sorted in any way.

A particular variable chain contains a 19 nibble entry for each
variable beginning with that letter. The first 3 nibbles are the
variable label, and the next 16 are the variable register.

The first two nibbles of the label field are the ASCII code for the
letter associated with the variable. An uppercase letter indicates
a rnumeric variable, lowercase a string variable. That is, an AND
of the ASCII code and the constant 20H will produce 0 for a numeric
variable and nonzero for a string variable. The third nibble is
the digit+l of an alpha-digit variable, 0 for alpha variables.

The data space for variables is allocated, as required, between the
RAM pointers ACTIVE and CALSTK.

In the discussion belou it is important to keep in mind that when
memory is read into a reglster the CPU places the lowest addressed
nibble in the least 61gn1flcant nibble of the register. Thus, in
the diagrams below, the nibbles lowest in memory are shouwn on the
right side of the register. The nibbles in the register are
rumbered from 15 to 0 going most to least significant.

If a recall is attempted on a non-exlstent varlable a value of
zero 1is returned if the wvariable is numeric and null if the
variable is string. The variable is not created at this time.

13-4

HP-71 Softuware IDS - Detajiled Design Description
Internal Data Representation

13.3.2 Variable Internal Representation

Nibble O of the variable register is the Data Type nibble and
containg the data type code, except for indirect variables (see
below). The following information is encoded in nibble 0:

0-9 Real scalar (default)
A Integer (simple or array)
B Real short (simple or array)
C Real array
D Complex Short (simple or array)
E Complex (simple or array)
F String (simple or array)

If the variable is default type (Real scalar), the variable
register contains the actual value of the variable, and nibble 0 is
the 1louw-order digit of the exponent. In all other cases, the
nibbles in the variable register mean the following:

Nibble 1 indicates the dimension. If the variable is a scalar, its
dimension is 0. If the variable 1is an array, the dimension is
either 1 or 2. The dimension of string arrays must be 1. A value
of F or E in this nibble identifies an indirect variable, explained
belou.

The meaning of the remaining nibbles depends on uwhether the
variable is scalar (that is, a simple variable), array or string.

13.3.2.1 Scalar Numeric Variables

A scalar variable is a simple variable, as opposed to an array.
For scalar variables of type integer and real short, the value of
the variable is contained in part of the variable register. For
scalar complex variables, nibbles 11-15 are a relative pointer to
the data. The exact representation is illustrated graphically
below.

15 210
totemcmmcre———tm———— +

Real ISl Mantissa | Exp |
ttmmmmeeeec———tm————— +

1 12 3

15 10 7 210
Real btemmpm—=tobmmmmme+t=4-+

Short |///] Exp |S| Mantissa |0|BI
e——bt—t-+-+

5 3 1 5 11

13-5

HP-71 Softuare IDS - Detailed Design Description
Internal Data Representation

15 7 210
-------otce—ed=+

Integer l///////ISI Mantissa |0lAl
-------toteme—et=t

8 1 5 11

S field of Integer is packed:

Bits 0-2 Exponent if less than 6.
Value of 6 means Inf.

Value of 7 means NaN.
Bits 3 Sign.

15 11 210
--------------------- t=—+-+

Complex *--lPoxnterl//////////////IOIEI
| 4=tt-t—+

totmrrmmeIO+ |

IS| Real Pt Mantissa | Exp |<-+
b=trm—e—- +

|IS| Imag Pt Mantissa | Exp |
PPecee—--+

1 12 3

15 11 210

Complex trcememcprmmee———t—t

Short +-IP01nterl//////////////IOIDI
|¢t-+

| Exp |S| Real Mant |<-+
t————dete+

| Exp IS| Imag Mant |
t—————Ptmm—mcee+

3 1 5

13.3.2.2 Numeric Arrays

For arrays, the information contained in the variable register is
referred to as the "dope vector".

Nibble 2 of the variable register indicates the Base Option of 0 or
1. If this variable is the current STAT array, the high bit of

13-6

HP-71 Software IDS - Detailed Design Description
Internal Data Representation

nibble 2 is set. A STAT array aluays has Base 0 and a different
format for the remaining information in the variable register (see
STAT array discussion belou),

The next 8 nibbles give the limits of each dimension, where the
first 4 are the second dimension (meaningless if one-dimensional)
and the next 4 are the first dimension, The limit in each
dimension is 65535,

Nibbles 11-15 are a relative pointer to the start of the array
data. To calculate the actual data address subtract the relative
pointer value from the address of the relative pointer. The
subroutine RECADR is useful for this calculation.

15 11 210
Real o$oemme+-t-+-+

Array +-|Pointer| Dim Limits |bl#|C|
| 4==meeee$ommmmett=—t=t

I 5 8 111
4mceeeemcrre————+

|
tdmrmmmmee-+ |

|S| Mantissa | Exp |<-+
etmmcce—-tm————— +

|S| Mantissa | Exp |
RRt—————+

IS] Mantissa | Exp |
$-tommemcetom———- +

1 12 . 3

15 11 210
tommm——— bomcmcce———ottt

Real +-|Pointer| Dim Limits |bl#|B|
Short | +=cemeea pocmmccccm———bttt

Array I 5 8 111
|
$mmccccce+

|
to———-ot+ |

| Exp IS| Mantissa |<-+
tm————t—tmme+

| Exp |S| Mantissa |
tm————- $otmme+

| Exp |S| Mantissa |
te———-totmmme+

3 1 . 5

13-7

HP-71 Softuare 1DS - Detailed Design Description
Internal Data Representation

15 11 210
Integer Fomem—e—smmmeecetotot-s
Array +-|Pointer| Dim Limits |b|#|A|

|4=t—t—t-+

I 5 8 111

tobmee+ |

|S| Mantissa |<-+
Ptme+

|S| Mantissa |
RR+

|S| Mantissa |
-te+

)

15 11 210
Complex tomm———-R-ttt

Short +~|Pointer| Dim Limits |b|#|D|
Array | ¢-mceee-$ommmmmmeottt

13-8

HP-71 Softuare IDS - Detailed Design Description
Internal Data Representation

15 11 210
Complex tmmm————tommeeet=t-t-4+
Array +--|Pointer| Dim Limits |b|#|E|

| 4-eeeee-$emmcccet=t=t=+

: 5 8 111

Pccccececeree—e———- +

|
tebmmmmceme$o————+ |

|S| Real Pt Mantissa | Exp |<-+
toprrmceeeto———— +

|IS| Imag Pt Mantissa | Exp |
Ptmcmee———tm———— +

|S| Real Pt Mantissa | Exp |
Ptceetm————-+

IS| Imag Pt Mantissa | Exp |
topmretm————+

|S| Real Pt Mantissa | Exp |
Dtm————— +

|S| Imag Pt Mantissa | Exp |
Ptmmrmemte—————+

1 12 . 3

13.3.2.3 Statistical (STAT) Array

A statistical array is a specialized one-dimensional real array
used to accumulate and store summary statistics for a data set. It
is set up by the STAT statement. The chapter on “Numeric
Computation Algorithms" discusses the elements of a statistical
array and their meaning.

A statistical array has base option 0 and the high bit of nibble 2
is set, Nibble 2 therefore has the value 8.

Nipble 3 gives the number of variables in the data set represented
by the statistical array. If a linear regression model has been
specified by the LR statement, nibbles 4 and 5 give, respectively,
the independent and dependent variable numbers, Otherwise, these
nibbles have value zero. The maximum value for each of nibbles 3-5
is 15,

Nibble 6 is not used,

The next 4 nibbles give the dimension limit of the statistical
array. The maximum value is 65535, although the STAT statement
will not dimension a statistical array to a dimension greater than
135.

13-9

HP-71 Software IDS - Detailed Design Description
Internal Data Representation

Nibbles 11-15 are a relative pointer to the start of the array
data,

15 1110 76543210
Statistical tomrmetettt=4

Array +-|Pointer|Dim Lm| |DlI|VI8|1IC]|
| otttot

| 5 4 1111111
ocmcecee+

l
tmtmmmetomm———+ |

|S| Mantissa | Exp |<-+
tmbmmrmeetm————+

IS| Mantissa | Exp |
topmmrmm=S+

K Mantissa | Exp |
t-tmmmmecetmm——— +

1 12 . 3

13.3.2.4 String Variables

String variables are allocated when dimensioned or assigned during
program execution. The data type is F. The variable register
aluays contains a pointer to the string contents. A value of
"null” is returned wvhenever a_ nonexistent string variable is
referenced.

The value of nibble 1 in the variable register indicates whether
the string variable is scalar (value 0) or an array (value 1).
Note that string arrays can have only one dimension.

As with numeric arrays, nibble 2 indicates the base option for a
string array. This number is meaningless for scalar strings (where
nibble 1 is 0).

Nibbles 3-6 contain the maximum string length. Maximum value is
65535,

Nibbles 7-10 contain the string dimension limit (meaningless if not
an array). Maximum value is 65535,

Nibbles 11-15 are a relative pointer to the start of the string (or
string array) data.

13-10

HP-71 Softuare IDS - Detailed Design Description
Internal Data Representation

15 11 7 210
tm——————- tm———— tm————— +—t-+-+

String +-|Pointer|/////|Maxlen|/|0|F|
| 4o=mmem--tom———— tmt—t=t

: 5 4 4 111

o+

|
b+ |

| S |¢--+

It |
I
| 1 |
| n |
-
tom——— +

15 11 7 210
String tom—————tm————tmm————tmt=—t-+

Array +-|Pointer| Dim |Maxlen|b|1|F]|
tm—————— te————- tmm————— t=t=—t-+

: 5 4 4 111

temceecee+

l
-+ |

I S |<'f*

I
S
I 1 |
| n |
| g |
tm———— +

| s |
| t |
| r |
I i |
| n |
| g |
to———— +

| s |
| t |
.
| i |
| n |
| g |
tm————- +

13-11

HP-71 Software IDS - Detailed Design Description
Internal Data Representation

13.3.3 Indirect Variables

Indirect variables are used for parameter passing in subprograms,
The data register for the variable is used as an indirect address
to the actual variable. Note that if a variable which has been
passed to a subprogram is itself an indirect variable, the neu
pointer will not be 1linked indirectly through that varlable but
will point to the originally allocated variable register.

G|
15 7 6 | 210 v

l/////////////l address | E|x| | Data |
-----------------------+-+-+ tmmmeceey

9 5 11

If nibble 1 is F, it indicates that nibbles 2-6 are an absolute
pointer to the data of the variable. Nibble 0 is the data type:

A -- Integer

B -- Real Short
C -- Real

D -- Complex Short
E -- Complex

F -- String

For a string variable, nibble 0 is F and nibble 1 is F. The
address field is the absolute address of the string. The maximum
length of the string is kept in nibbles 7-10.

eee+

I l
15 10 76 l 210 v
tm———— tmm——————e+-+-+ $mme+

| IMax Len| Address |F|F| | String l
te————o———e+-+-+ Pmmmcee+

4 5 11

For an array, nibble 1 is E and nibbles 2-6 hold an absolute
pointer to the descriptor for the array. Nibble 0 is meaningless.
To find the type of the array, it 1is necessary to follow the
pointer to the variable register and look at the type specified
there.

13-12

HP-71 Software IDS - Detailed Design Description
Internal Data Representation

$rmmece—————+

l |
15 76 | 210 v
-----------------------r-t-+ $rmmmmme——ey

l/////////////l Address |E|?]| | Variable register|
-----------------------t=t-+ $mmmmmcmcey

9 5 11

13.3.4 Accessing Variables from Binary Programs

13.3.4.1 Finding the Address of a Variable

The ADDRSS (and ADRS40) utility is useful for seaching through a
variable chain to find the address of a variable. This is a low
level utility that does not handle special cases such as indirect
variables. If the variable is not found it merely indicates that
condition.

13.3.4.2 Recalling a Variable

The following procedure can be employed to recall variables by
name:

Have in memory a stream in the form of a tokenized
variable followed by a comma or EOL token.

Point DO at this streanm.
Call EXPEXC to evaluate this expression.
Pop the value off the math stack.

This procedure will return a value of zero for non-existent numeric
variables and null string for non-existent string variables.

13.3.4.3 Storing into a Variable

The following procedure can be employed to store into variables by
name: Have in memory a stream in the form of a tokenized variable
followed by a comma or EOL token. For example: A$ EOL is tokenized
D2 14 OF and 09(1,2) EOL is tokenized 13 23 D7 96 15 2 OF. Point
DO at this stream. Call EXPEXC to evaluate this expression. Call
DEST to save the address to store into in statement scratch. Get
the value to be stored on the math stack by evaluating an

expression or by other means. Call STORE to store this value into

the wvariable. This will create the variable if necessary. If
calling STORE from a binary program, be sure to zero S-R1-2 to
prevent tracing.

13-13

HP-71 Software IDS - Detailed Design Description
Internal Data Representation

13.3.4.4 Creating Variables and Arrays

The methods described above are a way of accessing variables
vithout dealing with any messy problems such as what if the
variable you are recalling or storing into doesn’t exist. The
drawback of these methods 1is that no control is possible in
selecting nondefault attributes for the variables/arrays when they
are created -- strings are 32 characters, arrays have an upper
bound of 10 in any dimension and numerlc variables are of type
real, If sizes or types other than these defaults are required,

the assembly programmer must explicitly create them., The followlng
procedure will do this.

Set S-R1-3 to the data type (not necessary if string)

Integer

Real Short
Real
Complex Short

Complexm
o
O
o
>

"
@

8
0
w

Point DO at a token stream in the format of a DIM
gtatement. The following are examples:

Description Tokenization

A EOL 14 OF
A(2) EOL D7 14 23 OF

B8(3,4) EOL D7 86 24 33 43 OF

A$(6) EOL D7 D2 14 63 OF
B$[80] EOL D2 24 2F C008 OF

C$(6)[80] EOL D7 D2 34 63 2F C008 OF

GOSBVL =PREP
GOSBVL =DPVCIR
R1=C

* Iff creating a COMPLEX or COMPLEX SHORT variable
* then set status bit 0 (ST=1 0).

GOSBVL =SPACE
GOSBVL =DMNSN

13.3.4.5 Destroying Variables and Arrays

The following method can be used by the assembly language
programmer to destroy variables and arrays:

Point DO at the tokenized stream for the desired
variable.

Call DSTRY* to destroy that variable.

13-14

HP-71 Software IDS - Detailed Design Description
Internal Data Representation

13.4 Mathematical Operands

Floating point arguments sent to the math routines from the systen
generally come off the stack. They are the 12-digit numbers that
are visible to the external world and are referred to synonymously
in the documentation as 12-forms or packed numbers. This is to
distinguish them from the 15-digit numbers used internally in the
math routines.

In order to deliver accurate final results to the system the math
routines do intermediate calculations with 15-digit mantissas and
5-digit exponents. These internal values are referred to as
15-forms or unpacked numbers.

A typical procedure for a math operation is to pop the 12-form
argument from the stack into CPU register A, then call SPLITA to
unpack the number into registers A and B. Now the math routine
will wuse this 15-form input to obtain a 15-form result, This
accurate 15-form result can then serve as an input to another math

routine, or as a final result to be packed by uRES12 into an
external 12-form for the systenm.

13.4.1 Packed Representation (12-form)

13.4.1.1 Normal Values

Let x stand for a floating point value with sign S, 12-digit
mantissa MMM...M, and 3-digit exponent EEE . Then x is represented

as
1 12 3
-tb=t

|ISivn ... M|EEE|
tebmrmmemmn- t———+

wvhere

/ 0 fO!‘ u*u

S = < ,
\ 9 fOl' "_on

MM...M = the 12-digit BCD mantissa with implied
decimal point after the leading digit,
(i.e. 1¢<= mant <10)

13-15

HP-71 Software IDS - Detailed Design Description
Internal Data Representation

and

EEE =

Examples

13.4,1.2

the 3-digit BCD exponent in 10’s complement
notation.
exponent of 0)

Pt—e+-———2

101100000000000001|
b===

Pee-P

191210000000000| 999]|
Ptcceccne-oy

Ptccacccaa-ooy

|1 91000000000000]000|
e-+--=-4+

Extended Values

(+0 and -0 are represented with an

The values Inf and NaN are distinguished by the hexadecimal digit F
in the XS field of the register.
allowed, but must have an exponent of -499,.

Examples

Denormalized 12-forms are

1)

2)

3)

0.0051E-499 --»

-Inf -=>

NaN -=>

a) HP-71 Quiet NaN

bmrmrmccmeccece-o=y

101000510000000|501|
t-tmmmme—me+-=--<

btrrme =+

| 9| unspe01f1edIF00|
t—tmmmet-——-—+

Ptmme+o——2e

[S12222222272227 | E#4|
bteccac—-t———

--)>

wvhere ## 18 non-zero.

Retttt-———

| S| mmmm00000000) FO1]|
bmcc-=

where m=msgk

13-16

HP-71 Software I1DS - Detailed Design Description
Internal Data Representation

Ptmccccepm—— +

b) HP-71 Sig. NaN --> lsloooooooooooolrozl
Ptce——m——y

13.4.2 Unpacked representation (15-form)

For greater precision during calculations, 12-digit numeric
parameter values (called "12-forms") are expanded or ‘"unpacked"

into a form that has a 15-digit mantissa and a 5-digit exponent
field. This form is called a "15-form."

A 15-digit form is represented in the CPU as a register pair (A,B)
or (C,D). For example, the pair (A,B) has the following format:

tetbrr--+

A = |S]2272272222772?| EEEEE|
LRdaarto———- +

B = |?|MOMMMMMMMDRRIMI
etrecame—- +

wvhere E is a 5-digit 10’s complement exponent and B contains a
15-digit mantissa.

The HP-71 math routines assume that unpacked numbers are normalized
(denormalized 12-forms are normalized by routine SPLITA). The
exceptional values Inf and NaN are indicated by the exponent field
alone. Ordinarily, all five digits in the exponent field are BCD.
Houever, if nibble 2 (the XS field) is F, then the rumber is Inf or
NaN; nlbbles 0 and 1 then distinguish between Inf and the two types
of NaNs (signaling and quiet).

13-17

HP-71 Softuare IDS - Detailed Design Description
Numeric Computation Algorithms

Poteeoeoe>----——>=-W=--

I
| NUMERIC COMPUTATION ALGORITHMS
|
eeeerae—----———————-~--—

.................. +

l
CHAPTER 14 l

*
—
—
—
e

.................. +

14,1 Standard Math Inputs and Outputs

The HP-71 standard internal math routines accept 15-forms as inputs
and deliver 15-forms as outputs (see sec on Mathematical Operands
in chapter on “Internal Data Representation"). The routine names
usually end with “15", For example, SQR15, LN15, TAN15, AD2-15,
etc,

For single argument functions (e.g. SQR15, IN15) the argument X is
a 15-form in the CPU registers A and B (denoted here as the
register pair (A,B)). Tuo argument functions (e.g. AD2-15,
MP2-15) have their 15- form arguments in (A,B) and (C,D), with the
first argument generally in (C,D). That is, x/y calls DV2-15 with
(A,B)=y and (C,D)=x. The only other standard input is that DEC
MODE Aust be set before entering a math routine.

The standard math output is a 15-form TRUNCATED (as opposed to
ROUNDED) result in (A,B) along with other information in the
harduare status bits SB (sticky bit) and XM (external module
missing). Uhenever SB=0 on exit, that implies that the 15-form
result in (A,B) represents the mathematical function result
EXACTLY. For example 1/2 is 0.5 and that is precisely the result
delivered by Dve-15, whlle 1/3 can not be represented exactly in 15
digits so it must have SB=1 on exit.

In wrltlng mathematical routines, keep in mind that in some cases
it is not practical to detect exactness and in these cases SB
should be set to 1. Uith the function y~x for example, it would
be hopeless to try to detect all exact values (e.g. 39, 0625 ~ .25
= 2.5 exactly) and so in these cases SB should be set to 1.
Therefore, whenever SB=0 the result is expected to be exact, while
if SB=1 on exit then this indicates that the result COULD be
inexact.

The XM bit is used to indicate an exceptional calculation. Uhen
XM=1 on exit , that indicates that a Divide-by-Zero (DVZ), Invalid
Operatlon (IVL) or a 070 type exceptlon has occured. In this case
the pointer P identifies the exception:

14-1

HP-71 Software IDS - Detailed Design Description
Numeric Computation Algorithms

P Exception

3 Divide by zero
4 Invalid Operation

14 0°0

EXAMPLES:

1) 2/0 -- Output: (A,B)=Inf,SB=0,XM=1 & P=3

2) IN15(0) -- (A,B)=-Inf,SB=0,XM=1 & P=3

3) SQR15(-1) -- (A,B)=NaN,SB=0,XM=1 & P=4

4) 0°0 -- (A,B)=1,SB=0,XM=1 & P=14

§) EXP15(1E-20) -- (A,B)=1,SB=1,XN=0.

The HP-71 follous the proposed IEEE standard for exceptional math

calculations. See the HP-71 reference marual for details.

The Standard Math Output is the input to uRES12. This routine
packs a 15-form into a 12-form for delivery to the system and its
documentation (in volume II) is worth reading at this point.
Notice that all math routines deliver IEEE default values and thus
avoid loss of control to error exits. These default values may be

altered by uRES12 if the TRAP settings demand it. For anyone
coding or using math routines, understanding inputs to uRES12 is an
good place to start,

There is a Math Scratch Stack available to math routines. Its
utility routines (STSCR,RCSCR,etc) save and restore the 15-forms in
(A,B) and (C,D). It holds 4 15-forms.

Another restriction on math routines is that they do not alter CPU
data pointers DO & D1 since expression execution routines require
that information on return from the math routine,

14.2 Statistical Algorithms

14.2.1 Summary Statistics

A sample is a collection of observations of a random variable. A
matched sample consists of one or more samples uhere each
observation in a sample is matched with an observation 1in each of
the other samples. Each sample has the same number of elements,

14-2

HP-71 Softuware IDS - Detailed Design Description
Numeric Computation Algorithms

vhich we will denote by N. NVAR will denote the number of
variables (samples).

A matched sample data set can then be visualized as a table with N
rous and NVAR columns:

var; x(1) x(2) ... x(j) ... x(x) ... =x(NVAR)

1 x(1,1) x(1,2) ... x(1,]) ... =x(1,k) ... ®(1,NVAR)

2 x(2,1) x(2,2) ... x(2,)) ... ®(2,k) ... x(2,NVAR)

e ® e ° ° .

[° o L] o *

i x(i,1) x(i,2) ... =x(i,j) ... x(i,x) ... x(i,NVAR)

o o o . °

® ° o . *

° o

N x(N,1) x(N,2) ... x(N,j) ... x(N,k) ... x(N,NVAR)

Each row of this table represents a point in NVAR-dimensional space
and will be called a data point. A data point could be considered
an observation or realization of a NVAR-dimensional random
variable, and we would have N such realizations,

Regardless of how such a data set is thought of (whether as a
matched sample or as a sample of a vector-valued random varlable)
it may be useful to perform various statistical operations on it.

For the purposes of performing the HP-71 mainframe statistical
operations and functions, wuwe do not need to store the entire data
set. Instead, we reduce, or summarizez the data 1in the follouing
way. Let x(1j) represent the entry in row i and column j for
i=1,2,...N and j=1,2,...,NVAR. The summary statistics are then:

N
NVAR

T(j) = E x(ij) i*1,2,...,NVAR
1

S(jk) = E [x(ij)-T(j)N][x(ik)-T(k)/N] j,k=1,2,...,NVAR
1

Here E represents the summation symbol and we have deleted the

14-3

HP-71 Software IDS - Detailed Design Description
Numeric Computation Algorithms

commas between subscripts to save space. The T(j) represent the
column totals and the S(jk) represent the mean-adjusted sums of
squares and cross-products of the mean-adjusted varisvles,

Previous HP calculators accumulated the unadjusted sums of squares

and sums of cross-products of the unadjusted variables:

E x(i)x(ik)
1

rather than the S(jk). Three advantages to using the S(jk) are:

(1) They reduce the potential for 1loss of significance errors when
the variables have zero means.

(2) Calculations based on them are faster than those based on the
unad justed ones.

(3) It is easier to use sample means, variances, and correlations
in place of the original data.

The STAT statement reserves space for these summary statistics by
dimensioning a statistical array. This array has one dimension and
has length (NVAR+1)(NVAR+2)/2. NVAR is saved in nibble 3 of the
statistical array’s dope wvector. (See "Internal Data
Representation" chapter for more information about the statistical
array dope vector,) The other statistics will be stored as

(N,T(1),8(11),T(2),5(12),5(22),...,S(NVAR,NVAR)).

Multiple matched samples can be stored simultaneously and analyzed

in any order by using more than one statistical array.

A data point V = (V(1),...,V(NVAR)) is "added" to or "dropped" from
the cugrent data set using the ADD and DROP statements,

respectively.

14.2.1.1 ADD operator

ADD updates the summary statistics according to:

If N<O then print “Invalid Stat Array" and stop

For k=0 to NVAR

For j=1 to k (skip if k=0)

If N=0 then S(jk):=0

else S(jk):=S(jk)+(N*V(j)-T(J)) (N*V(k)-T(x))/[N(N+1)]

Next)

14-4

HP-71 Softuware IDS - Deta@led Design Description
Numeric Computation Algorithms

T(k):=T(k)+V(k)

Next k

N:=N+1

14.2.1.2 DROP Operator

DROP updates the summary statistics according to:

If N<O or 0<N<1 then print "Invalid Stat Array" and stop

If N=0 then print "Invalid Stat Operator" and stop

For k=0 to NVAR

For j=1 to k (skip if k=0)

If N=1 then S(jk):=0

else S(jk):=S(jk)-(N*V(j)-T(j))(N*V(k)-T(k))/[N(N-1)]

Next j

T(k):=T(k)-V(k)

Next k

N:=N-1

14.2.2 Simple Linear Regression

The simple linear regression model is:

X(j)= a + D*X(k) + e

vhere X(j) is the dependent variable, X(k) is the independent
variable, a and b are constants to be determined (estimated), and e
represents random errors (uncorrelated with zero mean and unknoun
but constant variance). The constants a and b are determined by
the method of least squares. That is, they are chosen to minimize
the residual sum of squares:

2
E'[X(ij) - a - b*X(ik)]
1

The solution is:

14-5

HP-71 Software IDS - Detailed Design Description
Numeric Computation Algorithms

b = S(jk)/S(kk), and

a = [T(j) - b*T(k}IN.

The LR statement specifies the current regression by specifying the
dependent and lndependent variable numbers. These numbers are
stored respectively in nibbles 5 and 4 of the current statistical
array’s dope vector.

Note that a (constant) random variable equal to one and having the
coefficient a is 1mp1101t1y present in the regression model. This
interpretation can be quite useful when adding variables to or
dropping variables from multiple linear regression models.

The mean-adjusted sum of squares for this constant variable and any
mean-adjusted sum of cross-products involving this variable are
zZero. The total for this variable is N, Therefore, no additional
summary statistics need be accumulated in order to implicitly
include this variable in the data set.

For these reasons, this random varlable rumbered 0, will always be
considered present in a data set and 0 wlll be con51dered a valid
variable number for all statistical statements and functions,
except where explicitly stated otheruise.

14-6

HP-71 Software IDS - Detailed Design Description
Clock Systen

B oeeee=~-——————-— ——-—————

l
| CLOCK SYSTEM
l
Boeee>e=ee===o—

__________________ +

|
CHAPTER 15 |

.................. +$
o
—
—
—

The built-in clock system is an event scheduler for use in all
time-keeping applications internal and external to the BASIC
operating system. The clock system is built around one of the
24-bit countdown timers in the display driver chips.

15.1 Theory of Operation

15.1.1 Clock System Hardware

The harduware part of the clock system --the timer at address
#2E2F8-- 1s a read/writeable 24-bit countdown timer which runs at
512 hz and which exerts a service request whenever the hlgh bit is
set. Ireatlng this timer as a two’s complement quantity, its range
of values is 8388607 to -8388608 counts, where a count is 1/512th
second. This 1s a range of about 4.55 to -4.,55 hours.

15.1.2 Clock System Softuware

The software part of the clock system uses this timer to schedule
the various events --ON TIMERs, 10-minute timeout, wait and
external alarms-- that must be processed. It does so by setting
the timer to go negatlve (exertlng a service request) at the
desired (“"target”) time, and maintaining a RAM location to keep
track of the target time The current time may be computed by
subtracting the current timer value from the target time.

The clock system maintains several alarm slots for the various
alarms which may be scheduled. One of these, the external alarm
slot, is used for all external appllcatlons whlch need to schedule
an alarm. The protocol for its use is explained belou.

Whenever the clock systenm 1s accessed, 1t examines these slots and
schedules whichever alarm is next due WUhen the alarm comes due,
the timer exerts a service request. The CKSREQ
(check-service-request) routine calls ALMSRV (alarm-serve}, which
will then schedule the next alarm. If an external alarm 1is due,
the clock system will force an exception condition, which wlll
cause a poll which will allow external alarm proce391ng More on

15-1

HP-71 Software IDS - Detailed Design Description
Clock Systenm

that later.

If, when the clock system is accessed, there is no alarm due within
4 hours, the system will schedule a "clock system update”. This is
necessary simply to keep time because of the limited range of the
harduare countdouwn timer.

15.2 Softuare Timebase Correction

Because of the finite accuracy of the timebase in the timer
(estimated +-50 ppm), the clock system incorporates a softuare
timebase correction scheme. The "Adjustment Factor" (or "AF") is a
24-bit 2’s complement quantity which expresses a correction to be
applied to the timebase, An adjustment factor of 0 indicates no
correction. A non-zero adjustment factor indicates the number of
counts to vait before adding (if AF is positive) or subtracting (if
AF is negative) a count. In other words, it is the inverse of the
inaccuracy. UWhenever the clock system is accessed, it adds or
subtracts the appropriate number of counts to keep the proper time.

The adjustment factor may be set by the user either directly (the
AF(<arg>) function) or indirectly (the SEITIME, ADJUST and EXACT
commands) .

Several quantities are maintained in RAM to implement the
adjustment factor scheme; TIMOFS (accumulated error), TIMLST (time
of last EXACT), TIMLAF (time of last AF correction) and TIMAF
(adjustment factor). Gory detail about 1its operation can be
obtained from the documentation headers for CLKUPD and COMPAF.

15.3 Format of Time Information

Defining 1 Jan 0000 as the beginning of time and a “count" as 1/512
second, time in the clock system is maintained as number of counts
since the beginning of time. The current time may be read by
calling CMPT and easily converted to seconds by shifting right 9
bits.

Utilities exist to extract more useful quantities from the time.
Here is a list, using the following terms: TIME = number of seconds
since beginning of time; TIME-OF-DAY = number of seconds since
midnight; DAY# = number of days since 1 Jan 0000,

TODT: Convert from TIME to TIME-OF-DAY and DAY#.

FROMDT: Inverse of TODT.

15-2

HP-71 Software IDS - Detailed Design Description
Clock Systenm

SECHMS: Convert from TIME-OF-DAY to hours/minutes/seconds.

HMSSEC: Inverse of SECHMS.

YMDDAY: Convert from year/month/day to DAY#.

DAYYMD: Inverse of YMDDAY.

JD2DAY: Convert from “Julian Date" (year and day-of-year) to
DAY#%.

DAY2JD: Inverse of JD2DAY.

15.4 Scheduling External Alarms

This section and the next contain the necessary information for
interfacing with the clock system to schedule events.

Time is kept internally in 512ths of a second since 1 Jan 0000,
vhich takes 48 bits. All time quantities, including alarms, are
kept in these units. Scheduling an external alarm is simple: store
the alarm time in RAM location ALRM6 and call CMPT. Uhen the alarm
comes due, the alarm can be processed and the next alarm can be
scheduled. Certain rules must be followed 1in order to assure that
alarms are not lost and the machine is not disrupted,

15.4.1 Scheduling Code

The SETALM subroutine sets an alarm given the absolute time at
vhich the alarm is to come due. The SETALR subroutine sets an
alarm relative to the current time. The routines are called with
the time in A[11-0] and with C[0]=5. See the documentation headers
for more information,

15.4.,2 Priority of External Alarms

There is only one external alarm slot. If an application schedules
an alarm through it, it must do so in such a way as not to destroy
alarms which may have been scheduled by other applications. This
simple protocol will insure that;

1) If alarm in ALRM6 is past due (i.e., current time > ALRM6),
you can schedule your alarm.

2) If alarm in ALRM6 is not past due, you can schedule your alarm
ONLY IF a) your alarm is not past due, AND b) your alarm
occurs BEFORE the current alarm in ALRM6.

15-3

HP-71 Softuare IDS - Detailed Design Description
Clock Systenm

This is an important rule. If it is broken, external alarms can be
lost,

15.4.3 UWUhen Alarms Come Due

Uhen an alarm comes due, a gervice request will be exerted. This
will lead to a pSREQ poll when the mainframe gets around to it and,
if a program is running, a pEXCPT poll.

The pEXCPT poll will probably not be very useful for most time
applications, except for those which should affect running program
execution (such as ON-TIMER type statements). The pSREQ poll is
useful, but it is not a time to disrupt the machine. It is,
rather, a good time to schedule your next alarm (obeying the
protocol, above) and to set up to process this alarnm. See the

Considerations section, belou.

Accessing the clock system is fairly disruptive in terms of
register usage and subroutine level usage. The RAM availability
during the pSREQ poll does allow saving of RO, R1 and enough
subroutine levels in scratch RAM to call the clock system safely,

Since pSREQ can occur in any of many different states (during UAIT,
during DISP, between statements, when machine is dormant, etc.), it
is NOT a time to take over the machine. Performing a beep here

would not be harmful; running a BASIC program would be harmful.
The section below should provide some useful information in making
the system work for you,

15.5 Developing Clock System Applications

15.5.1 Taking Control

The problem of taking control of the computer in a reasonable

(i.e., not overly disruptive) way is an overriding consideration in
development of a clock application. A good example of hou to
handle the problem is the processing of commands through HPIL in
remote mode and device mode. That code would be gcod reading for

somebody developing a clock system application,

For demonstration purposes, consider the HP-75C clock system. If
an alarm comes due while the machine 1is turned off, the machine
will wake up and process the alarm. If the machine is on, it will
simply beep when the alarm comes due and process the alarm when the
machine is turned off. This would be fairly simple to implement on
the HP-71 by intercepting the following polls and doing the
following:

15-4

HP-71 Softuare IDS - Detailed Design Description
Clock Systenm

PSREQ: Note past-due alarms, Beep if an alarm has become past
due. Schedule new alarms.

PPUROF: Note machine entering sleep state. Schedule immediate
wvakeup through external alarm if you need to process an alarm.

pDSUNK: Uake machine. Put command in external command buffer to
process alarm.

Developing an application which would process an alarm while the
machine is awake would be more difficult. Recommended reading for
this is the aforementioned HPIL code.

15.5.2 Insuring That the Alarm is Processed

Another consideration in 1light of the previous example; If the
External Command Buffer is used to deliver a command which will
process an alarm, there is no guarantee that the buffer will not be
overuritten by another lexfile. Consider this scenario:

A pocket secretary application will execute a certain command when
the alarm comes due. The alarm comes due, the machine wakes up and
the pocket secretary puts the command in the external command
buffer. The external command buffer is overuritten and the pocket
secretary has no way to knou if its command was ever executed.

A recommended solution would be for the pocket secretary to define
a keyword (such as "PROCALRM") which is an instruction to process
pending alarms (or to process the oldest alarm) and to delete them.
This command may be executed from the Kkeyboard by the user or it
may be placed in the external command buffer. This way, if the
external command buffer is overuritten, the alarm will not be
deleted. The pocket secretary will know when its alarms have been
processed,

15.5.3 Disrupting the Mainframe

A good, non-disruptive way to implement a program alarm would be to
CALL the desired progran.

15.5.4 Maintaining Your Oun Alarm List

The clock system doesn’t care how you maintain your own alarm
list... it only cares that you schedule alarms in its time format:
counts since 1 Jan 0000. And that you follouw the scheduling
protocol. No recommendation is expressed or implied as to whether
you should keep your alarm list in an I1/0 buffer or a file,

15-5

HP-71 Softuare IDS - Detailed Design Description
Clock Systenm

15.6 Clock System Ram Usage

The following system memory is used in the internal clock systen:

Name

NXTIRQ

ALRM1

ALRM2
ALRM3
ALRM4

ALRMS5
ALRM6

PNDALM
TIMOES
TIMLST
TIMLAF
TIMAF

Size(nibs)

6

Function

time of next sreq
on timer 1
on timer 2
on timer 3
timeout
pause
external alarm
(set by pocket sec’y or
controller)

bitmap of pending alarms
time error offset for AF use
time of last exact
time of last AF correction
accuracy factor

15-6

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

Pte=ee-=-"> > n.-

|
| HP-71 ASSEMBLER INSTRUCTION SET
|)

gggyggggggSS

.................. +

|
CHAPTER 16 |

.................. +¢
—
—
—

This chapter describes the HP-71 assembler instruction set. The
instruction mnemonics shouwn are those provided by the assembler
used by the HP-71 software development team (which is available by
special arrangement with HP). Almost all the mnemonics shoun are
also supported by the HP-71 FORTH/Assembler ROM.

16.1 CPU Overvieu

The HP-71 CPU is a proprietary CPU optimized for high-accuracy BCD
math and low power consumption. The data path 1s 4 bits wide.
Memory is accessed in 4-bit quantities called "nibbles" or "nibs".
Addresses are 20 bits, yielding a physical address space of 512K
bytes,

There are four working 64-bit registers, five scratch 64-bit
registers, two 20-bit data pointer registers, one 4-bit pointer
register, a 20-bit program counter, a 16-bit input register, and a
12-bit output register, Return addresses are stored on an
eight-level harduware return stack that accepts 20-bit addresses.
In addition, there 4 Hardware Status bits, a Carry bit, and 16
Program Status bits. The lower 12 Program Status bits can be
manipulated as a 12-bit register.

16.1.1 UWorking and Scratch Registers

The working registers are used for data manipulation. UWorking
registers A and C are also used for memory access,

The scratch registers are used to temporarily hold the contents of

working registers. In addition, the lower 20 bits of scratch
register R4 are used for interrupt processing by the operating
system, and therefore are not normally available for data storage.

16-1

HP-71 Softuare IDS - Detailed Design Description
HP-71 Assembler Instruction Set

WORKING REGISTERS SCRATCH REGISTERS

Name Size Name Size

Retet+ tPrrrmcre—e-+

A | 64 bits | RO | 64 bilts

be+ tmmmm—eee—-+

Peee+ Pmeec-+

B | 64 bits | R1 | 64 bits
trmmrccce————+ T+

Pcee———+ Pmerce+

c | 64 bits | R2 | 64 bits
temmm eceeeee—-+ trmmccceececee——- +

eceee+ ee+

D | 64 bits | R3 | 64 bits
4mmmmr—ee+ Rettt+

trmmmceece——+

R4 | 64 bitg*
trmmmmr_ee——————+

* Note: the louer 20 bits of R4 are modified
whenever an interrupt occurs, and are
normally unavailable for storage

16.1.1.1 Field Selection

Subfields of the working registers may be manipulated by the use of
field selection. The possible field selections range from the
entire register to any single nibble of the register,
subfields are designed for wuse in BCD calculations.
used for data access or general data manipulation.

16-2

Others are

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

FIELD SELECTION FIELDS

P Digit pointed to by P register
up Digit 0 through digit pointed at by P
XS Digit 2 - Exponent sign
X Digits 0-2 - Exponent and exponent sign
S Digit 15 - Mantissa sign
M Digits 3-14 - Mantissa
B Digits 0-1 - Exponent or byte field
u Digits 0-15 - Whole word
A Digits 0-4 - Address field

Nibbles of Register

S XS|<-B->|
J¢-=-~- A ----- > |

| ¢mmmme vBeL<= X =>|
| ¢mmmommeeee U —emmmmmcmmeeeeeee > |

16.1.2 Pointer Registers

The Data Pointer registers, D0 and D1, are used to contain
addresses during memory accesg, and are used in conjunction with
the working registers.

The P Pointer register is used in Field Selection operations with
the working registers.

DATA POINTER REGISTERS

16-3

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

16.1.3 Input, Output, and Program Counter Registers

The input/output registers are used to communicate with the systenm
bus. The program counter points to the next instruction to be
executed by the CPU.

INPUT AND OUTPUT REGISTERS

Prommomwcmcnmo<+ Pmmmemoo+

IN | 16 bits | OUT | 12 bits |
.+ Y+

PROGRAM COUNTER REGISTER

Pre———+

PC | 20 bits |
trmccrce——+

16.1.4 Carry and Status Bits

The Carry bit is adjusted when a calculation or logical test is
performed. During a calculation such as incrementing or
decrementing a register, it is set 1f the calculation overflous or
borrous; otherwise it 18 cleared. During a logical test, such as
comparing two registers for equality, it is set if the test is
true; otheruwise it is cleared.

The operating system uses the upper 4 Program Status bits to
indicate the state of the operating system. The remaining 12
Program Status bits are generally available to applications
software, and may be manipulated collectively as the ST register,

The four Harduware Status bits are set (but not cleared) by
harduare-related events, and must therefore be cleared beforehand
in order to detect a particular occurrence. They are individually
accessible by name. The Module Pulled bit (MP) is set when a
module is pulled from or added to the machine. The Sticky Bit (SB)
is set when a "one" bit shifts off the right end of a working
register as the result of a shift instruction. The Service Request
(SR) bit is set as a result of the SREQ? instruction if any
harduare service request is pending. The external Module Missing
bit is set by execution of a zero opcode (RINSXM instruction).

16-4

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

CARRY: 1 bit

PROGRAM STATUS: 16 bits

15 thru 12 Indicate state of operating system
11 thru 0 Available to programs, may be

manipulated as the ST register

HARDUARE STATUS: 4 bits

Bit Symbol Name

3 MP Module Pulled
2 SR Service Request
1 SB Sticky Bit
0 XM External Module Missing

16.1.5 Loading Data from Memory

Uhen data is read from memory into a register, the CPU places the
lovest addressed nibble in the least significant nibble of the
register., Thus the data appears to be loaded backwards in the
register.

For example, if the data shouwn belcw in memory is read into the C
register using the C=DAT1 4 instruction, the data in the
register will be arranged as shoun.

Memory

Location Value C Register
------------- e—cey

1000 0 || I 312111 0]
1001 1 oeee+

1002 2 15 3 2 1 0

1003 3

This principle applies also to loading constants into a CPU
register such as C, DO,or D1, since the CPU must read the constant
from the instruction opcode in memory. For example, the
instruction LCHEX 0123 procuces the opcode 333210 and the C
register is loaded as shown above.

Note that the apparent reversal of data read from memory is

16-5

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

compensated for by a gimilar reversal procedure when the data is
uritten to memory from the CPU, which restores the data to its
original orientation. (See belou.)

16.1.6 Storing Data in Memory

Uhen data is written to memory from a register, the CPU places the
least significant nibble of the register in the lowest nibble of
the addressed memory location. Thus, the data appears to be
uritten in reverse order.

For example, if the data shown above in the C register is uritten
to memory using the DAT1=C 4 instruction, the data will be
uritten to memory as shoun,

Note that the apparent reversal of data wuwritten to memory is
compensated for by a similar reversal procedure when the data is
read from memory by the CPU, which restores the data to its
original orientation.

16.2 Instruction Syntax

16.2.1 Labels and Symbols

A label is a symbolic name for a numeric value. A label acquires
its value by appearing in the 1label field of certain statements,
The vord "symbol" is a general term for a label, and the two are

used interchangeably.

Labels are one to six alphanumberic characters with the following
restrictions: the characters comma (,), space () and right
parenthesis are prohibited and the first character cannot be equal
sign (=), sharp (#), single quote ('), 1left parenthesis, or the
digits 0 through 9.

A label may be immediately preceded by an equal sign which declares
the label to be an external symbol. An external symbol defined in
one nmodule may be referenced as an external symbol by another

module. Such references are resolved when the modules are linked
together. Certain HP-71 assemblers, such as the FORTH/A9SEMBLER
ROM, have no associated 1linker and therefore do not support
external symbols. In this case, any leading equal sign is ignored.

Uhen a label is used as part of an expression, parentheses are
required to delineate it. That is, AD1-10 is a label but (AD1)-10

16-6

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

is a computed expression.

16.2.2 Comments

A comment line begins with an asterisk (*) in column one, and may
occur anywhere. An in-line comment may begin with any non-blank
character and must follow the modifier field of an instruction (or
the opcode if no modifier is required).

16.2.3 Expressions

Uherever an expression may appear in the modifier field of an
instruction, it is represented by the symbol "expr" in the
instruction descriptions below. Expressions consist of:

EXPRESSION COMPONENTS

Item Examples
eeGek eee@ e eP @ G We - W A D DD W W DS S Ch AGs =D e AP G D G GG o G S e G>

decimal constants 23434

hexadecimal constants #1FF0 (less than #100000)

ascii constants \AB\ (3 or less characters)
'AB? (3 or less characters)

addition
subtraction
*256+
multiplication
integer division
exponentiate
and

or

operators

P
N
X
N

1
+

-
g

* Current assembly program counter

label Symbol defined in the label field
of an instruction

(expression) Parenthesized expression

Tuo classes of instructions require a modifier field which contains
a constant of a specific type that does not conform to the above
rules, These are:

16-7

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

a) String constant which can exceed 3 characters

LCASC 'ascii’ or
LCASC \ascii\

NIBASC Yasclii? or

NIBASC \ascii\

b) Unconditional Hex constant

LCHEX 4FFEFF
NIBHEX 4FFFFF

16.2.4 Sample Line Image

The format belouw is the recommended column alignment; however, the
assembler is "free format" and only a space 18 required to delimit
the different fields. A label, if present, must start by column 2.

1 8 15 31 80
v v v v v

label opcode modifier comments

16.3 Explanation of Symbols

In the following descriptions of the HP-71 assembler mnemonics,
these symbols have the following meanings unless specified
otherwise., In particular, note the symbols used to indicate the
various values encoded within the assembled opcodes.

a The hex digit used to encode the field selection in
the assembled opcode of an instruction. See the
Field Select Table in the next section :(or details,

b The hex digit used to encode the field selection in
the assembled opcode of an instruction. See jhe
Field Select Table in the next section for details,

d The number of digits represented by a field selection
field. Used in calculating the execution cycle time
of some instructions. See the Field Select Table

16-8

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

expr

fs

fsd

hhhhh

label

nnnn

in the next section for details. UWhen used in an
extended field selection fsd, represents an expression
which indicates the number of nibbles of the register
that will be affected by the instruction, proceeding
from the low-order nibble to higher-order nibbles.

An expression that evaluates to an absolute or

relocatable value, usually less than or equal
to 5 nibbles in length,

Field selection symbol. See the Field Select Table
in the next section for details.

Extended field selection symbol. Represents either
a normal field selection symbol fs, or an expression
that gives the number of digits d of the register
that will be affected by the instruction, proceeding
from the lou-order nibble to higher-order nibbles.

Tuo-digit hex constant, such as 08 or F2. Uithin an
opcode represents the hex digits used to store the
value of the expression in the opcode in reverse
order (see "Loading Data From Memory").

Four-digit hex constant, such as 38FE. Within an
opcode, represents the hex digits used to store the
value of the expression in the opcode in reverse
order (see "Loading Data From Memory").

Five-digit hex constant, such as 308FE. Within an
opcode, represents the hex digits used to store the

value of the expression in the opcode in reverse
order (see "Loading Data From Memory").

A symbol defined in the label field of an instruction.

A one-digit decimal integer constant.

Represents an expression that evaluates to a 1-nibble
value, unless specified otherwise. UWithin an opcode,
represents the hex digit used to store the assembled
value of the expression in the opcode.

Represents an expression that evaluates to a 2-nibble
value, unless specified otherwise. Within an opcode,
represents the hex digits used to store the assembled
value of the expression in the opcode,

Represents an expression that evaluates to a 4-nibble
value, unless specified otherwise. Within an opcode,
represents the hex digits used to store the assembled

16-9

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

value of the expression in the opcode.

nnnnn Represents an expression that evaluates to a 5-nibble
value, unless specified otheruise. UWithin an opcode,
represents the hex digits used to store the assembled
value of the expression in the opcode.

16.3.1 Field Select Table

The follouwing symbols are used in the instruction descriptions to
denote the various possible field selections.

There are two ways in which field selection is encoded in the
opcode of an instruction. These two patterns are shoun in the
table below, and are designated by the letter ’a’ or ’b’ 1in the
opcode value given in the mnemonic descriptions below.

FIELD SELECT TABLE

Opcode Number

Representation of Digits
Field Name and Description (a) (b) (d)

P Pointer Field. Digit specified 0 8 1
by P pointer register.

up Uord-through-Pointer Field. 1 9 (P)
Digits 0 through (P).

XS Exponent Sign Field. Digit 2. 2 A 1

X Exponent Field. Digits 0 - 2, 3 B 3

S Sign Field. Digit 15, 4 C 1

M Mantissa Field. Digits 3 - 14, 5§ D 12

B Byte Field, Digits 0 - 1. 6 E 2

U Word Field. All digits. 7 F 16

16-10

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

16.4

The following pages briefly summarize the HP-71

Instruction Set Overvieu

instruction set.
For further details please refer to the Mnemonic Dictionary which
follous this summary.

16.4.1

16.4.2

16.4.3

GOTO Instructions

1 = Statement Label

GOTO 1label Short unconditional branch
GOC label Short branch if Carry

~GONC 1label Short branch if no Carry
GOLONG 1label Long GOTO

GOVLNG label Very long GOTO

GOYES 1label Short branch if test true (must
follow a Test Instruction)

GOSUB Instructions

GOSUB 1label Short transfer to subroutine
GOSUBL 1label Long GOSUB

GOSBVL 1label Very long GOSUB

Subroutine Returns

RIN Unconditional return
RINSC Return and set Carry
RTNCC Return and clear Carry

RINSXM Return and set XM bit (Module Missing)
RT1 Return and enable interupts
RINC Return if Carry set
RTNNC Return if no Carry set
RINYES Return 1if test true (must follou a

| Test Instruction)

16-11

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

16.4.4 Test Instructions

All test instructions must be followed with a GOYES or a RINYES
instruction. Although they appear to be two staterents, in fact
they combine to be one. Each test adjusts the Carry bit uwhen
performed.

16.4.4.1 Register Tests

r,s = A,B,C or (r,s) = (C,D),(D,C)
fs = Fleld Select

?r=8 fs8 Equal
r#s fs Not equal
2r=0 fs Equal to zero

7r40 fs Not equal to zero
?r>s fs Greater than
r<s s Less than
=8 {8 Greater than or equal
r¢sg f{s Less than'or equal

16.4.4.2 P Pointer Tests

0 <= n <= 15

7P= n Is P Pointer equal to n?
7P# n P Pointer not equal to n?

16.4.4.3 Harduare Status Bit Tests

7XM=0 Module Missing bit equal to zero?
?SB=0 Sticky Bit equal to zero?
7SR=0 Service Request bit equal to zero?
MP=0 Module Pulled bit equal to zero?

16.4.4.4 Program Status Bit Tests

0 <= n <= 15

?2ST=1 n Status n equal to 1?
?2ST=0 n Status n equal to 07

16-12

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

?2ST#1 n Status not equal to 1?
?ST#0 n Status not equal to 0?

16.4.5 P Pointer Instructions

- o> e «p

0 <= n <= 15

P= n Set P Pointer to n
P=P+1 Increment P Pointer, adjust Carry
P=P-1 Decrement P Pointer, adjust Carry
C+P+1 Add P Pointer plus one to A-field of C
CPEX n Exchange P Pointer with nibble n of C
P=C n Copy nibble n of C inte P Pointer
C=P n Copy P Pointer into nibble n of C

16.4.6 Status Instructions

16.4.6.1 Program Status

0 <= n <= 15

ST=1 n Set Status n to 1
ST=0 n Set Status n to 0

CSTEX Exchange X field of C with Status 0-11
C=ST Copy Status 0-11 into X field of C
ST=C Copy X field of C into Status 0-11
CLRST Clear Status 0-11

16.4.6.2 Harduare Status

SB=0 Clear Sticky Bit
SR=0 Clear Service Request bit (see SREQ?)
MP=0 Clear Module-Pulled bit
XM=0 Clear External Module Missing bit
CLRHST Clear all 4 Harduware Status bits

16-13

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

16.4.7

16.4.8

16.4.9

16.4.10

System Control

SETHEX
SETDEC
SREQ?

C=RSTK
RSTK=C
CONFIG
UNCNEG
RESET
BUSCC
SHUTDN
C=ID
INTOFF

INTON

Set arithmetic mode to hexadecimal
Set arithmetic mode to decimal
Sets Service Request bit if service has
has been requested. C(0) shouws what
bit(s) are pulled high (if any)

Pop return stack into A-field of C
Push A-field of C onto return stack
Configure
Unconfigure
Send Reset command to system bus
Send Bus command C onto system bus
Stop CPU here (sleeps until wake-up)
Request chip ID into A-field of C
Disable interrupts (doesn’t affect ON-key

or module-pulled interrupts)
Enable interrupts

Keyscan Instructions

oUT=C
OUT=CS
A=IN
C=IN

Register Suaps

8

AsEX
CsEX
A=8

C=s

g=A

82C

Copy X field of C to OUTput register
Copy nibble 0 of C to OUTput register
Copy INput register to lower 4 nibbles of A
Copy INput register to lower 4 nibbles of C

RO,R1,R2,R3,R4

Exchange register A uith s
Exchange register C uith s
Copy s to register A
Copy s to register C
Copy register A to s
Copy register C to s

Data Manipulation

d = DO,D1

16-14

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

1 <=n«<= 16

eXpr <= 5 nibbles

AJEX
CdEX
AdXS

CdXS

d=A
d=C
d=AS

d=CS

d=d+
d=d-

d=HEX
d=HEX
d=HEX

d=(2)

d=(4)

d=(5)

16.4.11 Data Transfer

fsd =

A=DATO

C=DATO

A=DAT1

C=DAT1

DATO=A

DATO=C

DAT1=A

DAT1=C

g
s
p
g
e

Exchange Data ptr d with A-field of A
Exchange Data ptr d with A-field of C
Exchange lower 4 nibs of Data ptr d with

lowver 4 nibs of A
Exchange lower 4 nibs of Data ptr d with

lover 4 nibs of C
Copy A-field of A to Data pointer d
Copy A-field of C to Data pointer d
Copy louer 4 nibs of A to lower 4 nibs

of Data pointer d
Copy lower 4 nibs of C to lower 4 nibs

of Data pointer d
Increment Data pointer d by n
Decrement Data pointer d by n
Load hh into lower 2 nibs of Data ptr d
Load hhhh into lower 4 nibs of Data ptr d
Load hhhhh into lower 5 nibs of Data ptr d
Load nn into lower 2 nibs of Data ptr d

(any overflow is ignored)
Load nnnn into lower 4 nibs of Data ptr d

(any overflow is ignored)
Load nnnnn into lower 5 nibs of Data ptr d

(any overflow is ignored)

Field select fs, or d (# of digits)

fsd

fsd

fsed

fsd

fsd

fsd

fsd

fsd

Copy data from memory addressed by DO into
A, field selected

Copy data from memory addressed by DO into
C, field selected

Copy data from memory addressed by D1 into
A, field selected

Copy data from memory addressed by D1 into
C, field selected

Copy data from A into memory addressed by
DO, field selected

Copy data from C into memory addressed by
DO, field selected

Copy data from A into memory addressed by
D1, field selected

Copy data from C into memory addressed by

16-15

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

D1, field selected

16.4.12 Load Constants

LCHEX hhhhhhhh Load hex constant into C
LC(m) expr Load the m-nibble constant into C
LCASC ‘’ascii’ Load up to 8 ASCII characters into C
LCASC \ascii\ Load up to 8 ASCII characters into C

16.4.13 Shift Instructions

r = A,B,C,D
fs = Field Select

rSL fs Shift register r fs field Left 1 nibble
rSR fs Shift register r fs field Right 1 nibble
rSLC Shift register r Left Circular 1 nibble
rSRC Shift register r Right Circular 1 nibble
rSRB Shift register r Right 1 bit

16.4.14 Logical Operations

r,s = A,B,C or (r,s) = (C,D),(D,C)
fs = Field Select

r=r&s fs r AND s into r, field selected
rer's fs r OR s into r, field selected

16.4.15 Arithmetics

The two groups of arithmetics differ in the range of registers
available. In the first group (General usage) almost all
combinations of the four working registers are possible; however,
in the second group (Restricted usage) only a feu select
combinations are possible.

16-16

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

16.4.15.1 General Usage

,6 = AB,C or (r,s) = (C,D),(D,C)
fs = Field Select

r=0 fe Set r to zero
rsr+r fs Double r, adjust Carry
r=r+l1 fs Increment r by 1, adjust Carry
r=r-1 fs Decrement r by 1, adjust Carry
r=-r fs 10’S complement or 2’S complement, Carry

set if r#0 and in HEX mode, else clear
r=-r-1 fs 9’S complement or 1’S complement

Carry aluays cleared
r=r+s fs Sum r and s into r, adjust Carry
s=*r+s fs Sum r and s into s, adjust Carry
r=sg fs Copy 8 into r
g8=r fs Copy r into s
rstX fs Exchange r and s

16.4.15.2 Restricted Usage

(r,s) = (a,B),(B,C),(C,A),(D,C)

r=r-s fs Difference of r and s into r, adjust Carry
rss-r fs Difference of s and r into r, adjust Carry
s=*s8-r fs Difference of 8 and r into s, adjust Carry

16.4.16 No-Op Instructions

NOP3 Three nibble No-Op
NOP4 Four nibble No-Op
NOP5S Five nibble No-Op

16.,4.17 Pseudo-Ops

16.4.17.1 Data Storage Allocation

1 (s n«=8

16-17

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

BSS nnnnn Allocate nnnnn number of zero nibs

CON(m) expr Generate m-nibble constant
REL(m) expr Generate m-nibble relative constant

NIBASC ’ascii’ Generate ascii characters, byte reversed
NIBASC \ascii\ Generate ascii characters, byte reversed
NIBHEX hhhh Generate hexadecimal digits hhhh

16.4.17.2 Conditional Assembly

name IF expr Start conditional assembly until ELSE or
ENDIF if flag expr was set on invocation
of assembler (optional use of name allous
nesting of IF’s)

name ELSE Conditional assembly if IF test was false
name ENDIF Ends conditional assembly started by IF

16.4.17.3 Listing Formatting

EJECT Force new page in the assembly listing
STITLE text Force new page, set subtitle value to text
TITLE text Set title value to text

16.4.17.4 Symbol Definition

label EQU nnnnn Defines label to have the value expr

16.4.17.5 Assembly Mode

ABS nnnnn Specify absolute assembly at adress given
END Marks end of the assembly source

16.5 Mnemonic Dictionary

This section contains a description of each HP-71 assembler
instruction or pseudo-op. The description shows the binary opcode
generated by the mnemonic, if any, as well as the execution cycle
time required if the mnemonic is an executable instruction.

The symbols used in these descriptions are explained in the
“"Explanation of Symbols" section earlier in this chapter,

16-18

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

FHFERIEHIRHHIHEIRKAHHHHIIINIHIIEIXN

* MNEMONICS *
IHHHHHIENHHHHIKRHRRNO

2440 fs - Test for A not equal to 0

fs = A opcode: 8ACyy

cycles: 13 + 4 (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9aCyy
cycles; 13 + d (GO/RTNYES)

6 + d (NO)

Test whether the fs field of A is not equal to 0., Must be follouwed

by a GOYES or RINYES mnemonic. yy is determined by the following
RINYES or GOYES. Adjusts Carry.

72a4B fs - Test for A not equal to B

fs = A opcode: 8A4yy

cycles; 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9adyy
cycles; 13 + d (GO/RTNYES)

6 + d (NO)

Test whether the fs field of A is not equal to the fs field of B.
Mugt be followed by a GOYES or RINYES mnemonic. yy is determined
by the following RINYES or GOYES. Adjusts Carry.

16-19

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

2AC fs - Test for A not equal to C

fs = A opcode: BAbyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9abyy
cycles; 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of A is not equal to the fs field of C.
Must be followed by a GOYES or RINYES mnemonic. yy is determined
by the following RINYES or GOYES. Adjusts Carry.

?2a<=B fg - Test for A less than or equal to B

fs = A opcode: 8BCyy

cycles: 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9bCyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of A is 1less than or equal to the fs
field of B. Must be followed by a GOYES or RINYES mnemonic. yy is
determined by the following RINYES or GOYES. Adjusts Carry.

?2A<B fs - Test for A less than B

fg = A opcode: 8Bbyy

cycles: 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: Sbbyy
cycles: 13 + d (GO/RTINYES)

6 + d (NO)

Test whether the fs field of A is 1less than the fs field of B.
Must be followed by a GOYES or RINYES mnemonic. yy is determined
by the following RINYES or GOYES. Adjusts Carry.

16-20

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

7A=0 fs - Test for A equal to 0

fs = A opcode:

cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode:
cycles:

Test whether the fs field of A is equal to 0.
a GOYES or RINYES mnemonic,
RINYES or GOYES. Adjusts Carry.

?2A=B fs - Test for A equal to B

fs = A opcode:

cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode:
cycles:

Test whether the fs field of A is equal to the fs field of B.
be folloued by a GOYES or RINYES mnemonic.

Adjusts Carry.following RINYES or GOYES.

?2A=C fs - Test for A equal to C

fs = A opcode:
cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode:
cycles:

16-21

8A8yy
13 + d (GO/RINYES)
6 + 4 (NO)

9a8yy
13 + d (GO/RINYES)
6 + d (NO)

Must be followed by
yy 1is determined by the following

8A0yy

13 + 4 (GO/RINYES)
6 + d (NO)

9alyy

13 + d (GO/RTINYES)
6 + d (NO)

Must
yy is determined by the

8A2yy

13 + d (GO/RINYES)
6 + d (NO)

9alyy
13 + d (GO/RINYES)

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

6 + d (NO)

Test whether the fe field of A is equal to the fs field of C, Must
be followed by a GOYES or RINYES mnemonic., yy is determined by the
following RINYES or GOYES, Adjusts Carry.

?24>=B fs - Test for A greater than or equal to B

fs = A opcode: 8B8yy
cycles: 13 + d (GO/RTINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9b8yy
cycles: 13 + 4 (GO/RINYES)

6 + d (NO)

Test vhether the fg field of A is greater than or equal to the fs
field of B. Must be followed by a GOYES or RINYES mnemonic, vyy is
determined by the following RINYES or GOYES., Adjusts Carry.

74>B fs - Test for A greater than B

fs = A opcode: 8BOyy

cycles: 13 + d (GO/RTINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9b0yy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fe field of A is greater than the fs field of B.
Must be followed by a GOYES or RINYES mnemonic. yy is determined
by the following RINYES or GOYES. Adjusts Carry.

16-22

HP-71 Softuare IDS - Detailed Design Description
HP-71 Assembler Instruction Set

7B#0 fs - Test for B not equal to 0

fg = A opcode: B8ADyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9aDyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of B is not equal to 0. Must be follouwed
by a GOYES or RINYES mnemonic. yy is determined by the following
RINYES or GOYES. Adjusts Carry.

7B#A fs - Test for B not equal to A

fs = A opcode: 8A4yy
cycles: 13 + 4 (GO/RINYES)

6 + a4 (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9adyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of B is not equal to the fs field of A.
Must be folloued by a GOYES or RINYES mnemonic. yy is determined

by the following RINYES or GOYES. Adjusts Carry.

7B#C fs - Test for B not equal to C

fe = A opcode: 8Abyy

cycles: 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9aSyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test wuhether the fs field of B is not equal to the fs field of C.
Must be followed by a GOYES or RINYES mnemonic. yy is determined
by the following RINYES or GOYES. Adjusts Carry.

16-23

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

7B<sC fs - Test for B less than or equal to C

fs = A opcode: 8BDyy
cycles: 13 + 4 (GO/RINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9bDyy
cycles: 13 + d (GO/RTNYES)

6 + d (NO)

Test whether the fs field of B is 1less than or equal to the fs
field of C. Must be followed by a GOYES or RINYES mnemonic, yy is
determined by the following RINYES or GOYES. Adjusts Carry.

7B<C fs - Test for B less than C

fs = A opcode: 8BSyy

cycles: 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9bbSyy
cycles:. 13 + d (GO/RTNYES)

6 + d (NO)

Test whether the fs field of B is 1less than the fs field of C.
Must be followed by a GOYES or RINYES mnemonic. yy is determined
by the following RINYES or CGOYES. Adjusts Carry.

?B=0 fs - Test for B equal to 0

fs = A opcode: 8A9yy
cycles: 13 + 4 (GO/RINYES)

6 + 4 (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9adyy
cycles: 13 + d (GO/RTINYES)

16-24

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

6 + d (NO)

Test whether the fs field of B is equal to 0. Must be folloued by
a GOYES or RINYES mnemonic. yy 1is determined by the following
RINYES or GOYES. Adjusts Carry.

7B=A fs - Test for B equal to A

fs = A opcode: B8AO0yy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9alyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of B is equal to the fg field of A. Must
be followed by a GOYES or RINYES mnemonic. yy is determined by the
following RINYES or GOYES. Adjusts Carry.

7B=C fs - Test for B equal to C

fg = A » opcode: B8Alyy

cycles; 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9alyy
cycles: 13 + 4 (GO/RTINYES)

6 + d (NO)

Test whether the fs field of B is equal to the fs field of C. Must
be followed by a GOYES or RINYES mnemonic. yy is determined by the
following RINYES or GOYES. Adjusts Carry.

16-25

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

?B>=C fs - Test for B greater than or equal to C

fs = A opcode: 8BYyy
cycles: 13 + d (GO/RINYES)

6 + 4 (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode; 9b9yy
cycles; 13 + d (GO/RTINYES)

6 + d (NO)

Test whether the fs field of B is greater than or equal to the fs
field of C. Must be followed by a GOYES or RINYES mnemonic. yy is
determined by the following RINYES or GOYES. Adjusts Carry.

?B>C fs - Test for B greater than C

fs = A opcode: 8Blyy
cycles; 13 + d (GO/RINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9blyy
cycles: 13 + d (GO/RTNYES)

6 + d (NO)

Test whether the fs field of B is greater than the fs field of C,
Must be followued by a GOYES or RINYES mnemonic. yy is determined
by the following RINYES or GOYES., Adjusts Carry, -

2C#0 fs - Test for C not equal to 0

fs = A opcode: BAEyy
cycles: 13 + d (GO/RTINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9aEyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of C is not equal to 0, Must be folloued
by a GOYES or RINYES mnemonic. yy is determined by the following
RINYES or GOYES. Adjusts Carry.

16-26

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

2C#A fs - Test for C not equal to A

fs = A opcode: 8Abyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9abyy
cycles; 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of C is not equal to the fs field of A.
Must be followed by a GOYES or RINYES mnemonic. yy is determined
by the following RINYES or GOYES. Adjusts Carry.

4B fs - Test for C not equal to B

fe = A opcode: B8AbSyy

cycles: 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9abyy
cycles: 13 + 4 (GO/RINYES)

6 + d (NO)

Test whether the fs field of C is not equal to the fs field of B.
Must be followed by a GOYES or RINYES mnemonic.

Adjusts Carry.by the following RINYES or GOYES.
yy is determined

2C4D fs - Test for C not equal to D

fs = A opcode: B8ATyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9a7yy
cycles: 13 + d (GO/RINYES)

16-27

HP-71 Softuare IDS - Detailed Design Description
HP-71 Assembler Instruction Set

6 + d (NO)

Test whether the fs field of C is not equal to the fs field of D.
Must be followed by a GOYES or RINYES mnemonic., yy is determined
by the following RINYES or GOYES, Adjusts Carry,

72C<sA fs - Test for C less than or equal to A

fs = A opcode: 8BEyy
cycles: 13 + d (GO/RTNYES)

6 + d (NO)

fs = (P,UP,Xs,X,s,M,B,U) opcode: 9bEyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of C is less than or equal to the fs
field of A. Must be folloued by a GOYES or RINYES mnemonic. yy is
determined by the following RINYES or GOYES. Adjusts Carry.

7C<A fs - Test for C less than A

fs = A opcode: 8Bbyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9bbyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of C is 1less than the fs field of A.
Must be followed by a GOYES or RINYES mnemonic. yy is determined

by the following RINYES or GOYES. Adjusts Carry,

16-28

HP-71 Softuare IDS - Detailed Design Description
HP-71 Assembler Instruction Set

7C=0 fs - Test for C equal to 0

fs = A opcode: B8AAyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9aAyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of C is equal to 0. Must be followed by
a GOYES or RINYES mnemonic. yy is determined by the following
RINYES or GOYES. Adjusts Carry.

7C=A fs - Test for C equal to A

fs = A opcode; 8A2yy

cycles: 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9alyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of C is equal to the fs field of A. Must
be followed by a GOYES or RINYES mnemonic. yy is determined by the
following RINYES or GOYES. Adjusts Carry.

72C=B fs - Test for C equal to B

fs = A opcode: 8Alyy

cycles: 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9Yalyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of C is equal to the fs field of B. Must
be followed by a GOYES or RINYES mnemonic. yy is determined by the
following RINYES or GOYES. Adjusts Carry.

16-29

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

72CsD fg - Test for C equal to D

fs = A opcode:

cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode:
cycles:

Test whether the fs field of C is equal to the fs field of D.
be followed by a GOYES or RINYES mnemonic.

Adjusts Carry.following RINYES or GOYES.

8A3yy

13 + d (GO/RINYES)
6 + d (NO)

9alyy

13 + d (GO/RINYES)
6 + d (NO)

. Must
yy is determined by the

C>=A fs - Test for C greater than or equal to A

fs = A opcode: 8BCyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9bCyy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fe field of C is greater than or equal to the fs
field of A. Must be followed by a GOYES or RINYES mnemonic.
determined by the following RINYES or GOYES.

yy is
Adjusts Carry.

7C>)A fs - Test for C greater than A

fs = A opcode: 8B2yy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9blyy
cycles: 13 + d (GO/RTNYES)

16-30

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

6 + d (NO)

Test whether the fs field of C is greater than the fs field of A.
Must be followued by a GOYES or RINYES mnemonic. yy is determined
by the following RINYES or GOYES. Adjusts Carry.

D#0 fs - Test for D not equal to O

fe = A opcode: B8AFyy

cycles; 13 + d (GO/RINYES)
6 + d (NO)

fe = (P,UP,XS,X,S,M,B,U) opcode: 9aFyy
cycles; 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of D is not equal to 0. Must be followed
by a GOYES or RINYES mnemonic. yy is determined by the following
RINYES or GOYES, Adjusts Carry.

D4C s - Test for D not equal to C
- ep en w» an e» ay e -

fs = A opcode: B8AT7yy

cycles; 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9a7yy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of D is not equal to the fs field of C.
Must be followed by a GOYES or RINYES mnemonic. yy is determined
by the following RINYES or GOYES. Adjusts Carry.

16-31

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

72D¢<=C fe - Test for D less than or equal to C

fs = A opcode: B8BFyy

cycles: 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9bFyy
cycles: 13 + d (GO/RTNYES)

6 + d (NO)

Test whether the fs field of D is less than or equal to the fs
field of C. Must be followed by a GOYES or RINYES mnemonic. vyy is
determined by the following RINYES or GOYES. Adjusts Carry.

?D<C fe - Test for D less than to C

fs = A opcodei 8B7yy

cycles: 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,Xs,X,s,M,B,U) opcode: 9b7yy
cycles;: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of D is 1less than the fs field of C.
Must be followed by a GOYES or RINYES mnemonic. yy is determined
by the following RINYES or GOYES. Adjusts Carry.

?D=0 fs - Test for D equal to 0

fs = A opcode: 8AByy

cycles: 13 + 4 (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9aByy
cycles: 13 + d (GO/RTNYES)

6 + d (NO)

Test vhether the fs field of D is equal to 0. Must be folloued by
a GOYES or RINYES mnemonic. yy 1is determined by the following
RINYES or GOYES. Adjusts Carry.

16-32

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

=C fs - Test for D equal to C

fa = A opcode: BATyy

cycles: 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9a7yy
cycles: 13 + d (GO/RINYES)

6 + d (NO)

Test whether the fs field of D is equal to the fs field of C. Must
be followed by a GOYES or RINYES mnemonic. yy is determined by the
following RINYES or GOYES. Adjusts Carry,

D>=C fs - Test for D greater than or equal to C

fs = A opcode: 8BByy
cycles; 13 + d (GO/RINYES)

6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9bByy
cycles: 13 + d (GO/RINYES)

6 + 4 (NO)

Test whether the fs field of D is greater than or equal to the fs
field of C. Must be followed by a GOYES or RINYES mnemonic. vyy is
determined by the following RINYES or GOYES. Adjusts Carry.

720>C fs - Test for D greater than C

fs = A opcode: 8B3yy

cycles: 13 + d (GO/RINYES)
6 + d (NO)

fs = (P,UP,XS,X,S,M,B,U) opcode: 9b3yy
cycles: 13 + d (GO/RINYES)

16-33

HP-71 Software IDS - Detailed Design Description
HP-T1 Assenmbler Instruction Set

6 + 4 (NO)

Test whether the fe field of D is greater than the fs field of C.
Must be followed by a GOYES or RINYES mnemonic. yy is determined
by the following RINYES or GOYES., Adjusts Carry,

7MP3=Q - Test Module Pulled bit (MP)

opcode: 838yy

cycles: 13 (GO/RINYES)
6 (NO)

Test whether the Module Pulled bit (MP) 1is zero. This harduare
status bit is set whenever a module-pulled interrupt occurs, and
nust be explictly cleared by the MP=0 instruction. See the "HP-71
Hardware Specification" for more information. Mus: be followed by
a RINYES or GOYES mnemonic. yy 1is determined bLYy the follouwing
RINYES or GOYES. Adjusts Carry.

P4 n - Test if P pointer not equal to n

opcode: 88nyy

cycles: 13 (GO/RTINYES)
6 (NO)

Test whether the P pointer is not equal to n. Must be followed by
a RINYES or GOYES mnemonic. yy 1is determined by the following
RINYES or GOYES. Adjusts Carry.,

7P= n - Test if P pointer is equal to n

opcode: 89nyy
cycles: 13 (GO/RINYES)

6 (NO)

Test whether the P pointer is equal to n. Must be folloued by a
RTNYES or GOYES mnemonic. yy is determined by the following RINYES

16-34

HP-71 Softuare IDS - Detailed Design Description
HP-71 Assembler Instruction Set

or GOYES, Adjusts Carry.

?SB=0 - Test Sticky Bit (SB)

opcode: 832yy

cycles: 13 (GO/RINYES)
6 (NO)

Test whether the Sticky Bit (SB) is zero. The Sticky Bit is set on
right shifts by a non-zero nibble or bit being shifted off the end
of the field. The sticky bit must be cleared explicitly. Must be
follovued by a Must be followed by a RINYES or GOYES mnemonic. yy
is determined by the following RINYES or GOYES. Adjusts Carry,

7SR=0 - Test Service Request bit (SR) for zero

opcode: 834yy

cycles: 13 (GO/RTINYES)
6 (NO)

Test whether the Service Request bit (SR) is zero. This harduare
status bit is set by the SREQ? instruction, and must be cleared
explicitly by the SR=0 instruciton. Must be followed by a RINYES
or GOYES mnemonic. yy is determined by the following RINYES or
GOYES, Adjusts Carry.

7ST#0 n - Test gtatus bit n not equal to 0

opcode: 87nyy

cycles: 14 (GO/RINYES)
7 (NO)

Test whether Program Status bit n is set. Must be follouwed by a
RINYES or GOYES mnemonic. yy is determined by the following RINYES
or GOYES. Adjusts Carry.

16-35

HP-71 Software IDS - Detailed Design Description
HP-T71 Assembler Instruction Set

7ST#1 n - Test status bit n not equal to 1

opcode: 86nyy

cycles; 14 (GO/RINYES)
7 (NO)

Test whether Program Status bit n is clear. Must be folloued by a
RINYES or GOYES mnemonic. yy is determined by the following RINYES
or GOYES. Adjusts Carry,

?ST=0 n - Test status bit n equal to 0

opcode: 86nyy

cycles: 14 (GO/RINYES)
7 (NO)

Test whether Program Status bit n is clear. Must be followed by a

RINYES or GOYES mnemonic. yy is determined by the following RINYES
or GOYES. Adjusts Carry,

?7ST=1 n - Test status bit n equal to 1

opcode: 87nyy

cycles: 14 (GO/RTNYES)
7 (NO)

Test whether Program Status bit n is set. Must be followed by a
RINYES or GOYES mnemonic. yy is determined by the following RINYES
or GOYES. Adjusts Carry.

16-36

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

7¥M=0 - Test External Module Missing bit (XM)

opcode: 83nyy
cycles: 13 (GO/RINYES)

6 (NO)

Test the uwhether the External Module Missing bit (XM) is =zero.
This harduare status bit is set by the RINSXM instruction, and must
be explicitly cleared by the XM=0 instruction. Must be followed by
a RINYES or GOYES mnemonic. yy 1is determined by the follouwing
RTNYES or GOYES. Adjusts Carry.

A=-A fs - Tuo’s complement of A into A

fs = A opcode: F8

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Bb8
cycles: 3 +«d

Complement the specified fs field of A. Complement is tuwo’s
complement if in HEX mode, ten’s complement if in DEC mode., Carry
is set if the field is not zero, else Carry is cleared.

A=-A-1 fs - One’s complement of A into A

fs = A opcode: [IC
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BbC
cycles: 3+ d

Perform a one’s complement on the specified fs field of A. Carry
is always cleared.

16-37

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

A=0 fs - Set A equal to 0

fs = A opcode: DO
cycles: 7

fs =~ (P,UP,XS,X,S,M,B,U) opcode: AbO
cycles: 3+ d

Set the specified fs field of A to zero. Carry is not affected,

A*A!'B fs - A OR B into A

fs = A opcode: OEF8
cycles: 4 + 4

fs = (P,UP,XS,X,S,M,B,U) opcode: OEa8
cycles: 4 + d

Set the fs field of register A to its logical OR with the
corresponding field of register B, Carry is not affected.

A=A!C fe - AORC into A

fs = A opcode: OEFE

cycles: 4 + d

fs = (P,UP,XS,X,S,M,B,U) opcode: OEaE
cycles: 4 + d

Set the fs field of register A to 1its logical OR with the
corresponding field of register C. Carry is not affected.

16-38

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

AsA&B fs - A AND B into A

fo = A opcode: OEF0

cycles: 4 + d

fs = (P,UP,XS,X,S,M,B,U) opcode: OEa0
cycles: 4 + d

Set the fs field of register A to its 1logical AND with the
corresponding field of register B, Carry is not affected.

A=A&C fs - A AND C into A

fs = A opcode: OEF6
cycles: 4 + d

fg = (P,UP;XS,X,S,H,B,U) opcode: OEab

cycles: 4 + d

Set the fs field of register A to its logical AND with the
corresponding field of register C. Carry is not affected.

A=A+1 fs -~ Increment A

fs = A opcode: E4

cycles: T

fs = (P,UP,Xs,X,S,M,B,U) opcode: Ba4

cycles: J+d

Increment the specified fs field of register A by one. Adjusts
Carry.

16-39

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

A=A+A fs - Sum of A and A into A

fs = A opcode: C4

cycles: T

fs = (P,UP,XS,X,S,M,B,U) opcode: Aa4
cycles: 3+d

Double the specified fs field of register A, Adjusts Carry.

A=A+B fs - Sum of A and B into A

fs = A opcode: CO
cycles; 7

fe = (P,UP,XS,X,S,M,B,U) opcode: Aal
cycles: 3+ d

Set the specified fs field of register A to the sum of itself and
the corresponding field of register B. Adjusts Carry.

A*A+C fs - Sum of A and C into A

fs = A opcode: CA

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: AaA
cycles: 3+ d

Set the specified fs field of register A to the sum of itself and
the corresponding field of register C., Adjusts Carry.

16-40

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

A=A-1 fs - Decrement A

fs = A opcode: CC
cycles: 7

fe = (P,UP,XS,X,S,M,B,U) opcode: AaC
| cycles: J+ d

Decrement the specified fs field of register A by one. Adjusts
Carry.

A=A-B fs - A minus B into A

fs = A opcode: EO

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Ba0
cycles: 3 +d

Set the specified fs field of register A to the difference betueen
itself and the corresponding field of register B, Adjusts Carry.

AsA-C fg - A minus C into A

fs = A | opcode: EA

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BaA
cycles: 3 +d

Set the specified fs field of register A to the difference betueen
itself and the corresponding field of register C. Adjusts Carry.

16-41

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

A=B fs - Copy B to A

fs = A opcode: D4
CyCles: 7

fs = (P,uUP,Xs,X,s,M,B,u) opcode: Ab4
cycles: 3 +d

Copy the fs field of register B into the corresponding field of
register A. Carry is not affected,

A=B-A fs - B minus A into A

fe = A opcode: EC

cycles: T

fs = (P,UP,XS,X,S,M,B,U) opcode;: BaC
cycles: 3 +d

Set the specified fs field of register A to the inverse difference
between itself and the corresponding field of register B. Adjusts
Carry.

A=C fs - Copy C to A

fs = A opcode: DC

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: AbLC
cycles: J+d

Copy the fs field of register C into the corresponding field of
register A. Carry is not affected.

16-42

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

A=DATO0 fsd - Load A from memory

fg = A opcode: 142

cycles: 18

fs = B opcode: 14A

cycles:; 15

fs = (P,UP,XS,X,S,M,U) opcode: 152a

cycles: 17 + d

fs = d opcode: 15AX (x=d-1)
cycles: 16 + d

The amount of data (d nibbles) specified by fsd will be transferred
from the memory address pointed to by DO into the specified field
of register A. The 1louwest-addressed nibble will be transferred
into the lowest-order nibble of the register field, proceeding
toward the higher-order nibbles. If fs = d, d nibbles are
transferred into the register starting at nibble 0. See the
section on "Loading Data From Memory" earlier in this chapter.

A=DAT1 fsd - Load A from memory

fs = A opcode: 143

cycles: 18

fe = B | opcode: 14B

cycles: = 15

fs = (P,UP,XS,X,s,M,U) opcode: 153a
cycles: 17 + 4

fs = d opcode: 15Bx (x=d-1)
cycles: 16 « d

The amount of data (d nibbles) specified by fsd will be transferred
from the memory address pointed to by D1 into the specified field
of register A. The louest-addressed nibble will be transferred
into the louest-order nibble of the register field, proceeding
tovard the higher-order nibbles. If fs = d, d nibbles are
transferred into the register starting at nibble 0. See the
gection on "Loading Data From Memory" earlier in this chapter.

16-43

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

A=IN - Load A with IN

opcode: 802
cycles: 7

Load the low-order 4 nibbles of the A register with the contents of
the Input register.

A=R0 - Copy RO to A

opcode: 110
cycles: 19

The contents of the scratch register RO is copied to the working
register A.

A=R1 - Copy R1 to A

opcode: 111
cycles: 19

The contents of the scratch register Rlis copied to the working
register A.

A=R2 - Copy R2 to A

opcode: 112

cycles: 19

The contents of the scratch register R2 is copied to the working
register A,

16-44

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

A=R3 - Copy R3 to A

opcode: 113
cycles: 19

The contents of the scratch register R3 is copied to the working
register A.

A=R4 - Copy R4 to A

opcode: 114

cycles; 19

The contents of the scratch register R4 is copied to the working
register A.

ABEX fs - Exchange Registers A and B

fs = A opcode: DC
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: AbC
cycles: 3+d

Exchange the fs fields of registers of A and B, Carry is not
affected.

ACEX fs - Exchange Registers A and C

fs = A opcode: DE

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: ADbE
cycles: 3 +d

Exchange the fs fields of registers of A and C. Carry is not

16-45

HP-71 Softuare IDS - Detailed Design Description
HP-71 Assembler Instruction Set

affected.

ADOEX - Exchange A and D0 (nibs 0-4)

opcode: 132
cycles: 8

Exchange the A field of register A with Data pointer D0. Carry is
not affected.

ADOXS - Exchange A and DO short (nibs 0-3)

opcode: 13A
cycles: 7

Exchange the lower 4 nibbles of A with the louer 4 nibbles of Data
pointer DO. Carry is not affected.

AD1EX - Exchange A and D1 (nibs 0-4)

opcode: 133

cycles: 8

Exchange the A field of register A wuwith Data pointer D1. Carry is
not affected.

16-46

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

AD1XS - Exchange A and D1 short (nibs 0-3)

opcode: 13B
cycles: 7

Exchange the lower 4 nibbles of A with the louwer 4 nibbles of Data
pointer D1. Carry is not affected.

AROEX - Exchange A and RO

opcode: 120

cycles: 19

Exchange the contents of the working register A and the scratch
register RO.

AR1EX - Exchange A and R1

opcode: 121
cycles: 19

Exchange the contents of the working register A and the scratch
register R1,.

ARZ2EX - Exchange A and R2

opcode: 122

cycles: 19

Exchange the contents of the working register A and the scratch
register R2.

16-47

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

AR3EX - Exchange A and R3

opcode: 123
cycles: 19

Exchange the contents of the working register A and the scratch
register R3.

AR4EX - Exchange A and R4

opcode: 124

cycles: 19

Exchange the contents of the working register A and the scratch

register R4.

ASL fs - A Shift Left

fs = A opcode: FO
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BbO
cycles: 3+ d

Shift the contents of the specified fs field of register A left one
nibble, without affecting the rest of the register., The nibble
shifted off the left end of the field is lost. The new lou-order
nibble of the field is zero. The Sticky Bit (SB) is not affected.

16-48

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

ASLC - A Shift Left Circular

opcode: 810
cycles: 21

Circular shift register A left one nibble, Operates on all 16
digits. The Sticky Bit (SB) is not affected.

ASR fs - A Shift Right

fs = A opcode: F4
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Bb4
cycles: 3+« d

Shift the contents of the specified fs field of register A right
one nibble, without affecting the rest of the register. The nibble
shifted off the right end of the field is lost, but the Sticky Bit
(SB) is set if the nibble was non-zero. The new high-order nibble
of the field is zero.

ASRB - A Shift Right Bit

opcode: 81C

cycles: 20

Shift register A right one bit. Operates on all 16 digits. The
bit shifted off the end is lost, but the Sticky Bit (SB) is set if
it vas non-zero. The neuw high-order bit of the register is zero.

16-49

HP-71 Software IDS - Detailed Design Description
HP-T1 Assembler Instruction Set

ASRC - A Shift Right Circular

opcode: 814

cycles: 21

Circular shift register A right one nibble., Operates on all16
digits. The Sticky Bit (SB) is set if the nibble shifted from
low-order around to high-order position was non-zero.

B=-B fs - Two’s complement of B into B

fs = A opcode: F9

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BbY
cycles: J+ d

Complement the specified fs field of B. Complement 1is two’s
complement if in HEX mode, ten’s complement if in DEC mode. Carry
is set if the field is not zero, else Carry is cleared.

B=-B-1 fs - One’s complement of B into B

fs = A opcode: ¥D
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BbD
cycles: 3 +d

Perform a one’s complement on the specified fs field of B. Carry
is alvays cleared.

16-50

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

B=0 fs - Set A equal to 0

fe = A opcode: D1

cycles: 7

fg = (P,UP,XS,X,S,M,B,U) opcode: Abl

cycles: 3 +d

Set the specified fs field of B to zero. Carry is not affected.

B=A fe - Copy A to B

fs = A opcode: D8
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: ADS
cycles: 3+ d

Copy the fs field of register A into the corresponding field of
register B. Carry is not affected.

B=B!A fs - B OR A into B

fe = A opcode: OEFC
cycles: 4 « d

fs = (P,UP,XS,X,S,M,B,U) opcode: 0OEaC
cycles: 4 + d

Set the fs field of register B to its logical OR with the
corresponding field of register A. Carry is not affected.

16-51

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

B=B!C fs - BORC into B

fs s A opcode:

cycles:

fs = (P,UP,XS,X,S,N,B,U) opcode:
cycles:

Set

corresponding field of register C.

B=B&A fs - B AND A into B

fe = A opcode:

cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode:
cycles:

Set the fs field of register B
corresponding field of register A,

BsB&C fs - B AND C into B

fs = A opcode:

cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode:

cycles:

Set

corresponding field of register C.

16-52

the fs field of register B to
Carry is not affected.

OEF9
4 + d

OEag
4 + 4

its logical OR with the

OEF4
4 + d

0Ea4
4 + d

its logical AND with the
Carry is not affected.

OEF1
4 + d

OEal
4 + d

the fs field of register B to its 1logical AND with the
Carry is not affected.

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

B=B+1 fs - Increment B

fs = A opcode: Eb
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Ba5
~ cycles: 3+ d

Increment the specified fs field of register B by one. Adjusts
Carry.

B=sB+tA fs - Sum of B and A into B

fs = A opcode: C8

cycles: 7

fg = (P,UP,XS,X,S,H,B,U) opcode: Aa8

cycles: 3+d

Set the specified fs field of register B to the sum of itself and
the corresponding field of register A. Adjusts Carry.

B=B+B fs -~ Sum of B and B into B

fs = A opcode: C5

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Aa5
cycles: 3 +d

Double the specified fs field of register B. Adjusts Carry.

16-53

HP-T1 Software IDS - Detailed Design Description
HP-71 Assenbler Instruction Set

B*B+C fs - Sun of B and C into B

fs = A opcode: Cl

CcycCles: 7

fs = (P,UP,XS,X,5,M,B,U) opcode: Aal
cycles: 3+ d

Set the specified fs field of register B to the sum of itself and
the corresponding field of register C, Adjusts Carry.

B=B-1 fs - Decrement B

fs = A opcode: CD

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: AaD
cycles: 3+ d

Decrement the specified fs field of register B by one. Adjusts
Carry.

B=B-A fs - B minus A into B

fs = A opcode: E8
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Ba8
cycles: J+d

Set the specified fs field of register B to the difference between
itself and the corresponding field of register A. Adjusts Carry.

16-54

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

B=B-C fs - B mimus C into B

fe = A opcode: E1

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Bal
cycles; 3 +d

Set the gpecified fs field of register B to the difference betueen
itself and the corresponding field of register C. Adjusts Carry.

B=C fs - Copy C to B

fs = A opcode: D5

cycles: 7

fgs = (P,UP,XS,X,S,M,B,U) opcode: ADbS

cycles: 3 +d

Copy the fs field of register C into the corresponding field of
register B. Carry is not affected.

B=C-B fs - C minus B into B

fs = A opcode: ED
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BaD
cycles: J+d

Set the specified fs field of register B to the inverse difference
between itself and the corresponding field of register C. Adjusts
Carry.

16-55

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

BAEX fs - Exchange Registers B and A

fs = A opcode: DC
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: AbC
cycles: 3 +d

Exchange the fs fields of registers of B and A, Carry is not
affected,

BCEX fs - Exchange Registers B and C

fs = A opcode: DD
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: AbD
cycles: 3+ d

Exchange the fs fields of registers of B and C. Carry is not
affected.

BSL fs -~ B Shift Left

fs = A opcode: F1
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Bbl
cycles: 3+d

Shift the contents of the specified fs field of register B left one
nibble, without affecting the rest of the register. The nibble
shifted off the left end of the field is lost. The new low-order
nibble of the field is zero. The Sticky Bit (SB) is not affected.

16-56

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

BSLC - B Shift Left Circular

opcode: 811
cycles: 21

Circular shift register B 1left one nibble. Operates on all 16
digite. The Sticky Bit (SB) is not affected.

BSR fs - B Shift Right

fs = A opcode: F5
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BbS
cycles: 3 +d

Shift the contents of the specified fs field of register B right
one nibble, without affecting the rest of the register. The nibble
shifted off the right end of the field is lost, but the Sticky Bit
(SB) is set if the nibble was non-zero. The new high-order nibble
of the field is zero.

BSRB - B Shift Right Bit

opcode: 81D
cycles: 20

Shift register B right one bit. Operates on all 16 digits. The
bit shifted off the end is lost, but the Sticky Bit (SB) is set if
it was non-zero. The neu high-order bit of the register is zero.

16-57

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

BSRC - B Shift Right Circular

opcode: 815
cycles: 21

Circular shift register B right one nibble, Operates on all 16
digits, The Sticky Bit (SB) is set if the nibble shifted from
lou-order around to high-order position was non-zero,

BUSCC - Bus Command "C"

opcode: 80B
cycles: 6

Enters the HP-71 bus command “C" onto the system bus (this command
is reserved for later use). No other operation is performed. See
the “HP-71 Harduare Specification” for more information.

C+P+1 - Increment C by One Plus P Pointer

opcode: 809

cycles: 8

The A field of the C register 1is incremented by one plus the value
of the P pointer, Arithmetic is aluays in hex mode. Adjusts
Carry.

C=-C fs - Tuo'’s complement of C into C

fs = A opcode: FA
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BDA
cycles: 3+ d

Complement the specified fs field of C. Complement is tuo’s

16-58

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

complement if in HEX mode, ten’s complement if in DEC mode., Carry
is set if the field is not zero, else Carry is cleared,

Cs-C-1 fs - One’s complement of C into C

fs = A opcode: FE

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BbE
cycles: 3 +d

Perform a one’s complement on the specified fs field of C. Carry
is aluays cleared.

C=0 fs - Set C equal to 0

fs = A opcode:

cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode:
cycles:

Set the specified fs field of C to zero.

Copy A to C

fs = (P,UP,XS,X,S,M,B,U)

Copy the fs8 field of register A
Carry is not affected.register C,

opcode:

cycles:

opcode:

cycles:

16-59

D2
7

Ab2
3+ d

Carry is not affected.

D6
7

Ab6
3 +d

into the corresponding field of

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

C*A-C fs - A mimus C into C

fs = A opcode: EE
cycCles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BaE
cycles: 3+d

Set the specified fs field of register C to the inverse difference
between itself and the corresponding field of register A. Adjusts
Carry.

C=B fs - Copy B toC

fs = A opcode: D9
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Ab9
cycles: 3+ d

Copy the fs field of register B into the corresponding field of
register C. Carry is not affected.

C=C!'A fs - CORA into C

fs = A opcode: OEFE
cycles: 4 + d

fg = (P,UP,XS,X,S,M,B,U) opcode: OEaE
cycles: 4 + d

Set the fs field of register C to its logical OR with the
corresponding field of register A. Carry is not affected.

16-60

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

C=C!B fs - CORB into C

fs = A opcode: OEFD

cycles: 4 + d

fs = (P,UP,Xs,X,s,M,B,U) opcode: OEaD
cycles: 4 + 4

Set the fs field of register C to its logical OR with the
corresponding field of register B. Carry is not affected.

C=C!D fs - CORD intoC

fs = A opcode: OEFF

cycles: 4 + d

fs = (P,UP,XS,X,S,M,B,U) opcode: OEaf
cycles: 4 « d

Set the fs field of register C to its logical OR with the
corresponding field of register D, Carry is not affected.

C=C8A fs - C AND A into A

fe = A opcode: OEF2

cycles: 4 + d

fs = (P,UP,XS,X,S,M,B,u) opcode: OEa2
cycles: 4 + d

Set the fs field of register C to its 1logical AND with the
corresponding field of register A. Carry is not affected.

16-61

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

C=C&B fs - C AND B into C

fs = A opcode:

cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode:
cycles:

Set the fs field of register C
corresponding field of register B,

C:C&D fs - C AND D into C

fs = A opcode:

cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode;
cycles:

Set the fs field of register C
corresponding field of register D.

C=C+1 fs - Increment C

fs = A opcode:

cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode:
cycles:

Increment the specified fs
Carry.

16-62

OEF5
4 + d

OEab5
4 + d

to its 1logical AND with the
Carry is not affected.

OEF7
4 + d

OEa7
4 + d

to its 1logical AND wuwith the
Carry is not affected.

E6
7

Bab

J+d

field of register C by one. Adjusts

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

C=C+A fs - Sum of C and A into C

fs = A opcode: C2

cycles: 7

fg = (P,UP,XS,X,S,M,B,U) opcode: Aa2

cycles: 3+ d

Set the specified fs field of register C to the sum of itself and
the corresponding field of register A. Adjusts Carry.

C=C+B fs - Sum of C and B into C

fs = A opcode: (9

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode; Aa9
cycles: J+d

Set the specified fs field of register C to the sum of itself and
the corresponding field of register B. Adjusts Carry.

C=C+C fs - Sum of C and C into C

fs = A opcode: C6

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Aab
cycles: J+d

Double the specified fs field of register C. Adjusts Carry.

16-63

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

CsC+D fs - Sum of C and D into C

fs = A opcode: CB
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: AaB
cycles: 3+ d

Set the specified fs field of register C to the sum of itself and
the corresponding field of register D. Adjusts Carry.

C=C-1 fs - Decrement C

fs = A opcode: CE
cycCles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: AaE
cycles: 3+d

Decrement the specified fs field of register C by one. Adjusts
Carry.

C=C-A fs - C minus A into C

fs = A opcode: E2
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Ba2
cycles: 3+d

Set the specified fs field of register C to the difference between
itself and the corresponding field of register A. Adjusts Carry.

16-64

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

CsC-B fs - C mirus B into C

fs = A opcode: E9
cycles: 7_

fs = (P,UP,XS,X,S,M,B,U) opcode: Ba9g
cycles: 3+ d

Set the specified fs field of register C to the difference betuween
itself and the corresponding field of register B, Adjusts Carry.

C=C-D fs - C mimus D into C

fs = A opcode: EB
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BaB
cycles: 3 +d

Set the specified fs field of register C to the difference betuween
itself and the corresponding field of register D. Adjusts Carry.

C=D fs - Copy D to C

fe = A opcode: DB
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: ADbB
cycles: 3+ d

Copy the fs field of register D into the corresponding field of
register C, Carry is not affected.

16-65

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

C=DATO fsd - Load C from memory

fs = A opcode: 146

cycles: ‘18

fs = B opcode: 14E
cycles: 15

fs = (P,UP,XS,X,S,M,U) opcode; 156a
cycles: 17 + 4

fs = d opcode: 15Ex (x=d-1)
cycles: 16 + 4

The amount of data (d nibbles) specified by fsd will be transferred
from the memory address pointed to by DO into the specified field
of register C. The 1louest-addressed nibble will be transferred
into the louest-order nibble of the register field, proceeding
tovard the higher-order nibbles. If fs = d, d nibbles are
transferred into the register starting at nibble 0, See the
section on "Loading Data From Memory" earlier in this chapter.

C=DAT1 fsd - Load C from memory

fs = A opcode: 147
cycles:. 18

fs = B opcode: 14F
cycles: 15

fs = (P,UP,XS,X,S,M,U) opcode: 157a
cycles: 17 + d

fs = d opcode: 15Fx (x=d-1)
cycles: 16 «+ d

The amount of data (d nibbles) specified by fsd will be transferred
from the memory address pointed to by D1 into the specified field
of register C. The louest-addressed nibble will be transferred
into the lowest-order nibble of the register field, proceeding
tovard the higher-order nibbles. If fs = d, d nibbles are
transferred into the register starting at nibble 0. See the
section on "Loading Data From Memory" earlier in this chapter.

16-66

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

C=ID - Request chip ID

opcode: 806

cycles: 11

The chip which has its DAISY-IN line high and 1its configuration
flag low will send its 5 nibble ID register to the system bus which
will be 1loaded into the low-order 5 nibbles (A field) of the C
register, See the “HP-71 Harduware Specification" for more
information.

C=IN - Load C with IN

opcode: 803

cycles: 7

Load the low-order 4 nibbles of the C register with the contents of
the Input register. See the "HP-71 Harduware Specification” for
more information.

C=P n - Copy P Pointer into Nibble n of C

opcode: 80CN
cycles: 6

Copy P pointer into C register at digit position specified by n,

C=RO - Copy RO to C

opcode: 118
cycles: 19

The contents of the scratch register RO is copied to the working
register C.

16-67

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

C=R1 - Copy R1 to C

opcode: 119
cycles: 19

The contents of the scratch register Rl is copied to the working
register C.

C=R2 - Copy RR to C

opcode: 11A

cycles: 19

The contents of the scratch register R2 is copied to the working
register C.

C=R3 - Copy R3 to C

opcode: 11B

cycles: 19

The contents of the scratch register R3 is copied to the working
register C.

C=R4 - Copy R4 to C

opcode: 11C
cycles: 19

The contents of the scratch register R4 is copied to the working
register C.

16-68

HP-71 Softuare IDS - Detailed Design Description
HP-71 Assembler Instruction Set

C=RSTK - Pop stack to C

opcode: 07
cycles: 8

Pop the top-most address off of the hardware return stack, placing
the address in the lower 5 nibbles (A field) of register C. The
high-order nibbles of C are unchanged. As the address 1s popped

from the return stack, a zero address 1is inserted at the bottom of
the stack. Compare with the RIN instruction.

C=ST - Status to C

opcode: 09

cycles: 6

Copy the 1louw-order 12 bits of the status register into the
low-order 12 bits (X field) of the C register.

CAEX fs - Exchange Registers C and A

fs = A opcode: DE
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: ADE
cycles: 3 +d

Exchange the fs fields of registers of C and A. Carry is not
affected.

16-69

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

CBEX (s - Exchange Registers C and B

fs = A opcode: DD
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: AbD
cycles: 3+d

Exchange the {8 fields of registers of C and B. Carry is not
affected,

CDOEX - Exchange C and DO (nibs 0-4)

opcode: 136

cycles: 8

Exchange the A field of register C with Data pointer DO. Carry is
not affected.

CDOXS - Exchange C and DO short (nibs 0-3)

opcode: 13E
cycles: 7

Exchange the louwer 4 nibbles of C with the louer 4 nibbles of Data
pointer DO. Carry is not affected.

CD1EX - Exchange C and D1 (nibs 0-4)
-e a> w» @ > w -

opcode: 137
cycles: 8

Exchange the A field of register C with Data pointer D1. Carry is
not affected.

16-70

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

CD1XS - Exchange C and D1 short (nibs 0-3)

opcode: 13F

cycles: 7

Exchange the lower 4 nibbles of C with the lower 4 nibbles of Data
pointer D1. Carry is not affected.

CDEX fs - Exchange Registers C and D

fe = A opcode: DF
cycles: T

fs = (P,UP,XS,X,S,M,B,U) opcode: AbF
cycles: J+d

Exchange the fs fields of registers of C and D. Carry is not
affected.

CLRHST - Clear Harduare Status bits

opcode: 82F

cycles: 3

Clears the 4 Harduvare Status bits XM, SB, SR and MP., Note that the
opcode is actually 82x, where x is merely a mask for which Harduware
Status bits to clear, as follous:

bit 0 - External Module Missing bit (see XM=0 mnemonic) bit 1 -
Sticky Bit (see SB=0 mnemonic) bit 2 - Service Request bit (see
SR=0 mnemonic) bit 3 - Module Pulled bit (see MP=0 mnemonic)

For example opcode 829 clears XM and MP. Although there 1is no
mnemonic for this, the opcode can be inserted into the code by
using, for example, NIBHEX 829.

16-71

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

CLRST - Clear Program Status
-ewe a» @» e» w>

opcode: 08

cycles: 6

Clear the low-order 12 bits (S0 through S11) of the Program Status
register ST.

CONFIG - Configure

opcode: 805

cycles: 11

Copy the lou-order 5 nibbles (A field) of the C register into the
Configuration register of the chip which has its DAISY-IN line high
and 1ts configuration flag 1low. See the "HP-71 Harduare
Specification" for information.

CPEX n - Exchange Nibble n of C Uith P Pointer

opcode: 80FN
cycles: 6

Exchange the P pointer with digit n of the C register.

CROEX - Exchange C and RO

opcode: 128
cycles: 19

Exchange the contents of the working register C and the scratch
register RO,

16-72

HP-71 Softuare IDS - Detailed Design Description
HP-71 Assembler Instruction Set

CR1EX - Exchange C and

Exchange the contents of
register R1,

'CR2EX - Exchange C and

Exchange the contents of

register R2..

CR3EX - Exchange C and

Exchange the contents of
register R3.

CR4EX - Exchange C and

Exchange the contents of
register R4,

R1

opcode: 129

cycles: 19

the working register C and the scratch

R2

opcode: 12A
cycles: 19

the working register C and the scratch

R3

opcoade: 1¢B

cycles: 19

the working register C and the scratch

R4

opcode: 12C
cycles: 19

the working register C and the scratch

16-73

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

CSL fs - C Shift Left

fs = A opcode: F2
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Bb2
cycles: 3+ d

Shift the contents of the specified fs field of register C left one
nibble, without affecting the rest of the register. The nibble
shifted off the left end of the field is lost. The new lou-order
nibble of the field is zero. The Sticky Bit (SB) is not affected.

CSLC - C Shift Left Circular

opcode: 812
cycles: 21

Circular shift register C 1left one nibble. Operates on all 16
digits. The Sticky Bit (SB) is not affected.

CSR fs8 - C Shift Right

fs = A opcode: F6

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Bb6
cycles: J+d

Shift the contents of the specified fs field of register C right
one nibble, without affecting the rest of the register. The nibble
shifted off the right end of the field is lost, but the Sticky Bit
(SB) is set if the nibble was non-zero., The new high-order nibble
of the field is zero.

16-74

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

CSRB - C Shift Right Bit

opcode: B81E

cycles: 20

Shift register C right one bit. Operates on all 16 digits. The
bit shifted off the end is lost, but the Sticky Bit (SB) is set if
it was non-zero. The new high-order bit of the register is zero.

CSRC - C Shift Right Circular

opcode: 816

cycles: 21

Circular shift register C right one nibble. Operates on all 16
digits. The Sticky Bit (SB) is set if the nibble shifted from
lou-order around to high-order position was non-zero.

CSTEX - Exchange Status

opcode: OB

cycles: 6

Exchange the lou-order 12 bits (SO through S11) of the Program
Status register ST with the lou-order 12 bits of the C register.

D0=(2) nn - Load 2 Nibbles Into DO

opcode: 19nn
cycles: 4

Load the louw-order two nibbles of DO with nn. The upper nibbles of
DO remain unchanged. Any overflow 1is ignored. The assembled
digits of nn are stored in the opcode in reverse order so that when

16-75

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

the instruction is executed the data will be 1loaded into the
register with the intended orientation. See the section on
“Loading Data From Memory" earlier in this chapter.

D0=(4) nnnn - Load 4 Nibbles Into DO

opcode: lAnnnn
cycles: 6

Load the low-order four nibbles of DO with nnnn. The upper nibble
of DO remains unchanged. Any overflow is ignored. The assembled
digits of nnnn are stored in the opcode in reverse order so that
when the instruction 1is executed the data will be 1loaded into the
register with the intended orientation. See the section on
“"Loading Data From Memory" earlier in this chapter.

opcode: 1Bnnnnn
cycles: 7

Load all five nibbles of DO with nnnnn. Any overflow is ignored.
The assembled digits of nnnnn are stored in the opcode in reverse
order so that when the instruction is executed the data will be
loaded into the register with the intended orienta:ion. See the
section on "Loading Data From Memory" earlier in this chapter.

DO=A - Copy A to DO (nibs 0-4)

opcode; 130

cycles: 8

The A field of register A is copied into Data pointer register DO.
Carry is not affected.

16-76

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

D0O=AS - Copy A to DO short (nibs 0-3)

opcode: 138
cycles: 7

The lower 4 nibbles of A are copied into the lower 4 nibbles of
Data pointer register DO, Carry is not affected.

Do=C - Copy C to DO (nibs 0-4)

opcode: 134
cycles: 8

The A field of register C is copied into Data pointer register DO.
Carry is not affected.

DO=CS - Copy C to DO short (nibs 0-3)

opcode: 13C
cycles: 7

The louer 4 nibbles of C are copied into the lower 4 nibbles of
Data pointer register DO. Carry is not affected.

DO=D0+ n - Add n to DO (1<=n<=16)

opcode; 16X (x=n-1)
cycles: 7

Increment DO by n. Adjusts Carry.

16-77

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

DO=D0- n - Subtract n from DO (1<=n<¢=16)

opcode: 18% (x=n-1)
cycles: 7

Decrement DO by n, Adjusts Carry.

DO-HEX hh - Load DO with hex constant hh

opcode: 19hh
cycles: 4

Load the low-order two nibbles of DO with the hex constant hh. The
upper nibbles of DO remain unchanged, The digits of hh are stored
in the opcode in reverse order so that wuwhen the instruction is
executed the data will be 1loaded into the register with the
intended orientation. See the section on "“Loading Data From
Memory" earlier in this chapter.

DO=HEX hhhh -~ Load DO with hex constant hhhh

opcode: 1Ahhhh
cycles: 6

Load the louw-order four nibbles of DO with the hex constant hhhh.
The upper nibble of DO remains unchanged. The digits of hhhh are
stored in the opcode in reverse order so that when the instruction
is executed the data will be loaded into the register with the
intended orientation. See the section on "Loading Data From
Memory" earlier in this chapter.

16-78

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

DO=HEX hhhhh - Load DO with hex constant hhhhh

opcode: 1Bhhhhh
cycles: 7

Load all five nibbles of DO with the hex constant hhhhh. The
digits of hhhhh are stored in the opcode in reverse order so that
when the instruction is executed the data will be 1loaded into the
register with the intended orientation. See the section on
“"Loading Data From Memory" earlier in this chapter.

D1=(2) nn - Load 2 Nibbles Into D1

opcode: 1Dnn
cycles: 4

Load the low-order two nibbles of D1 with nn. The upper nibbles of
D1 remain unchanged. Any overflow is ignored. The assembled
digits of nn are stored in the opcode in reverse order so that when
the instruction is executed the data will be loaded into the
register with the intended orientation. See the section on
“Loading Data From Memory" earlier in this chapter.

D1=(4) nnnn - Load 4 Nibbles Into D1

opcode: 1Ennnn
cycles: 6

Load the louw-order four nibbles of D1 with nnnn. The upper nibble
of D1 remains unchanged. Any overflow is ignored. The assembled
digits of nnnn are stored in the opcode in reverse order 8o that
wvhen the instruction 1is executed the data will be 1loaded into the
register with the intended orientation. See the section on
“Loading Data From Memory" earlier in this chapter.

16-79

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

D1=(5) nnnnn - Load 5 Nibbles Into D1

opcode: 1Fnnnnn
cycles: 7

Load all five nibbles of D1 with nnnnn. Any overflow is ignored.
The assembled digits of nnnnn are stored in the opcode in reverse
order so that when the instruction is executed the data will be
loaded into the register with the intended orientation. See the
section on "Loading Data From Memory" earlier in this chapter.

D1=A - Copy A to D1 (nibs 0-4)

opcode: 131
cycles: 8

The A field of register A is copied into Data pointer register D1,
Carry is not affected.

D1=AS - Copy A to D1 short (nibs 0-3)

opcode: 139
cycles: 7

The lower 4 nibbles of A are copied into the lower 4 nibbles of
Data pointer register D1, Carry is not affected.

D1=C - Copy C to D1 (nibs 0-4)

opcode: 135
cycles: 8

The A field of register C is copied into Data pointer register D1.
Carry is not affected.

16-80

HP-71 Softuare IDS - Detailed Design Description
HP-71 Assembler Instruction Set

D1=CS - Copy C to D1 short (nibs 0-3)

opcode: 13D
cycles: 7

The lower 4 nibbles of C are copied into the lower 4 nibbles of
Data pointer register D1, Carry is not affected.

D1=D1+ n - Add n to D1 (1<=n<=16)

opcode: 17x (x=n-1)
cycles: 7

Increment D1 by n. Adjusts Carry.

D1=D1- n - Subtract n from D1 (1<=n<=16)

opcode: 1CX (X=n-1)
cycles: 7

Decrement D1 by n. Adjusts Carry.

D1=HEX hh - Load D1 with hex constant hh

opcode: 1Dhh
cycles: 4

Load the lou-order two nibbles of D1 with the hex constant hh. The
upper nibbles of D1 remain unchanged. The digits of hh are stored
in the opcode in reverse order so that when the instruction is
executed the data will be 1loaded into the register with the
intended orientation. See the section on "Loading Data From
Memory" earlier in this chapter.

16-81

HP-71 Softuare IDS - Detailed Design Description
HP-71 Assembler Instruction Set

D1=HEX hhhh - Load D1 with hex constant hhhh

opcode: 1Ehhhh
cycles: 6

Load the lou-order four nibbles of D1 with the hex constant hhhh.
The upper nibble of D1 remains unchanged. The digits of hhhh are
stored in the opcode in reverse order so that when the instruction
is executed the data will be 1loaded into the register with the
intended orientation. See the section on “Loading Data From
Memory" earlier in this chapter.

D1=HEX hhhhh - Load D1 with hex constant hhhhh

opcode: 1Fhhhhh
cycles: 7

Load all five nibbles of D1 with the hex constant hhhhh. The
digits of hhhhh are stored in the opcode in reverse order so that
wvhen the instruction is executed the data will be loaded into the
register with the intended orientation. See the section on
“Loading Data From Memory" earlier in this chapter,

D=-D fs - Tuo’s complement of D into D

fs = A opcode: FB
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BbB
cycles: 3+ d

Complement the specified fs field of D. Complement is two’s
complement if in HEX mode, ten’s complement if in DEC mode. Carry
is set if the field is not zero, else Carry is cleared.

16-82

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

D=-D-1 fs - One’s complement of D into D

fs = A opcode: FF

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BbF
cycCles: 3+ d

Perform a one’s complement on the specified fs field of D. Carry
is aluways cleared.

D=0 fs - Set D equal to 0
- e o w ap ey e oo«

fs = A opcode: D3

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: ADb3

cycles: 3+ d

Set the specified fs field of D to zero. Carry is not affected.

D=C fs - Copy C to D

fe = A opcode: D7

cycles: 7

fs = (P,UP,Xs,X,S,M,B,U) opcode: Ab7
cycles: 3+d

Copy the fs field of register C into the corresponding field of
register D, Carry is not affected,

16-83

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

DsC-D fs - C mimus D into D

fs = A opcode: ED
cycles: 7

fg » (P,UP,XS,X,S,M,B,U) opcode: BaD
cycles: J+d

Set the specified fs field of register D to the inverse difference
betueen itself and the corresponding field of register C. Adjusts
Carry.

D=D!C fs - DORC intoD

fs = A opcode: OEFF
cycles: 4 + d

fs = (P,UP,XS,X,S,M,B,U) opcode: OEaF
cycles: 4 + d

Set the fs field of register D to {ts logical OR with the
corresponding field of register C. Carry is not affected.

D=D&C fs - D AND C into D

fs = A opcode;: OEF7
cycles: 4 + 4

fs = (P,UP,XS,X,S,M,B,U) opcode: OEa7
cycles: 4 + d

Set the fs field of register D to its 1logical AND with the
corresponding field of register C. Carry is not affected.

16-84

HP-71 Software IDS - Detailed Design
HP-71 Assembler Instruction Set

D=D+1 fg8 - Increment D

fs = A opcode:
cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode:
cycles:

Increment the specified fs
Carry.

D=D+C fs - Sum of D and C into D

fs = A opcode:
cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode:
cycles:

field of register D by one.

Description

E7
7

Ba7

3+ d

Ad justs

C3
7

Aa3

3+4d

Set the specified fs field of register D to the sum of itself and
the corresponding field of register C.

D=D+D fs - Sum of D and D into D

fs = A opcode:
cycles:

fs = (P,UP,XS,X,S,M,B,U) opcode:
cycles:

Double the specified fe field of register D.

16-85

Adjusts Carry.

C7
7

Aa7

3+ d

Adjusts Carry.

HP-71 Software IDS - Detalled Design Description
HP-71 Assembler Instruction Set

D=D-1 fs - Decrement D

fs = A opcode: CF
cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: AaF
cycles: 3+d

Decrement the specified fs field of register D by one. Adjusts
Carry.

D=D-C fs - D minus C into D

fs = A opcode: E3

cycles: T

fs = (P,UP,XS,X,S,M,B,U) opcode: Ba3d
cycles: 3+ d

Set the specified fs field of register D to the difference betueen
itself and the corresponding field of register C. Adjusts Carry.

DATO=A fsd - Load memory from A

fs = A opcode: 146
cycles: 17

fs = B opcode: 14E
cycles: 14

fs = (P,UP,XS,X,S,M,U) opcode: 156a
cycles: 16 + d

fs = d opcode: 15Ex (x=d-1)
cycles: 15 + d

The amcunt of data (d nibbles) specified by fsd will be written to
the memory address pointed to by DO from the specified field of
register A. The louest-order nibble of the register field will be
wuritten to the lowest-addressed nibble of memory, proceeding toward
the higher-order nibbles. If fs = d, d nibbles are uritten to

16-86

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

memory starting from nibble 0 of the register. See the section on
"Storing Data Into Memory" earlier in this chapter,

DAT0=C fsd - Store into memory from C

fs = A opcode: 144
. cycles: 17

fs = B opcode: 14A

cycles: 14

fs = (P,UP,XS,X,S,M,U) opcode: 154a
cycles: 16 «+ d

fs = d opcode: 15AK (x=d-1)
cycles: 15 « d

The amount of data (d nibbles) specified by fsd will be written to
the memory address pointed to by DO from the specified field of
register C. The lowest-order nibble of the register field will be
uritten to the lowest-addressed nibble of memory, proceeding toward
the higher-order nibbles. If fs = d, d nibbles are wuritten to
memory starting from nibble 0 of the register. See the section on
“Storing Data Into Memory" earlier in this chapter.

DAT1=A fs -~ Store into memory from A

fs = A opcode: 141

cycles: 17

fs = B opcode: 149

cycles: 14

fse = (P,UP,XS,X,S,M,U) - opcode: 151a
cycles: 16 + d

fg = d opcode: 159x (x=d-1)
cycles: 15 +« d

The amount of data (d nibbles) specified by fsd will be uwritten to
the memory address pointed to by D1 from the specified field of

16-87

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

register A. The lowest-order nibble of the register field will be
written to the lowest-addressed nibble of memory, proceeding toward
the higher-order nibbles. If fs = d, d nibbles are wuritten to
memory starting from nibble 0 of the register. See the section on
“Storing Data Into Memory" earlier in this chapter.

DAT1-C fsd - Store into memory from C
- e an on e wr @ as >

fs = A opcode: 145

cycles: 17

fs = B opcode: 14D

cycles: 14

fs = (P,UP,XS,X,S,M,U) opcode: 155a
cycles: 16 + d

fg = d opcode: 15Dx (x=d-1)
cycles: 15 + d

The amount of data (d nibbles) specified by fsd will be written to
the memory address pointed to by D1 from the specified field of
register C, The lowest-order nibble of the register field will be
written to the lowest-addressed nibble of memory, proceeding toward
the higher-order nibbles. If fs8 = d, d nibbles are wuritten to
memory starting from nibble 0 of the register. See the section on
“Storing Data Into Memory" earlier in this chapter.

DCEX fs - Exchange Registers D and C

fs = A opcode: DF

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: ADF
cycles: 3+ d

Exchange the fs fields of registers of D and C. Carry is not
affected.

16-88

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

DSL fe - D Shift Left
- > ow @ @O e wpo

fs = A opcode: F3

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: BbL3

cycles: 3+ d

Shift the contents of the specified fs field of register D left one
nibble, without affecting the rest of the register. The nibble
shifted off the left end of the field is lost. The neuw low-order
nibble of the field is zero. The Sticky Bit (SB) is not affected.

DSLC - D Shift Left Circular

opcode: 813
cycles: 21

-Circular shift register D left one nibble. Operates on all 16
digits. The Sticky Bit (SB) is not affected.

DSR fs - D Shift Right

fg = A opcode: F7

cycles: 7

fs = (P,UP,XS,X,S,M,B,U) opcode: Bb7

cycles: J+d

Shift the contents of the specified fs field of register D right
one nibble, without affecting the rest of the register. The nibble
shifted off the right end of the field is lost, but the Sticky Bit
(SB) is set if the nibble was non-zero. The neu high-order nibble
of the field is zero.

16-89

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

DSRB - D Sshift Right Bit

opcode: 81F
cycCles: 20

Shift register D right one bit. Operates on all 16 digits. The
bit shifted off the end is lost, but the Sticky Bit (SB) is set if
it wvas non-zero. The nevw high-order bit of the register is zero.

DSRC - D Shift Right Circular

opcode: 817
cycles: 21

Circular shift register D right one nibble. Operates on all 16
digits. The Sticky Bit (SB) is set if the nibble shifted from
low-order around to high-order position was non-zero.

GOC label - Go relative on carry

opcode: 4aa (Carry=0)
cycles: 10 (GO)

3 (NO)

Short relative jump to label if Carry is set. 1label must be in the
range:

addr - 128 <= 1label <= addr + 127

where addr is the address of the second nibble of the opcode. The

address offset aa is in two’s complement form and is relative to
addr.

16-90

HP-71 Software IDS - Detailed Design Deecriptlon
HP-71 Assembler Instruction Set

GOLONG label - Go Long

opcode: 8Caaaa
cycles: 14

Long relative jump to label unconditionally, 1label must be in the
range:

addr - 32768 <= 1label <= addr + 32767

wvhere addr is the address of the third nibble of the opcode. The
address offset aaaa is in two’s complement form and is relative to
addr,

GONC label - Go relative on no carry

opcode; 5aa (Carry=1)
cycles: 10 (GO)

3 (NO)

Short relative jump to 1label if Carry is clear. 1label must be in
the range:

addr - 128 <= 1label <= addr + 127

wvhere addr is the address of the second nibble of the opcode. The
address offset aa is in tuo’s complement form and is relative to
addr,

GOSBVL label - Gosub very long to label

opcode: 8Faaaaa

cycles: 15

Absolute subroutine jump to aaaaa, which is the absolute address of
label. See the GOSUB mnemonic.

16-91

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

GOSUB 1label - Gosub to label

opcode: 7aaa
cycles: 12

Relative subroutine jump to label. 1label must be in the range:

addr - 2048 <= label <= addr + 2047

where addr is the starting address of the next instruction. The
address offset aaa is in two’s complement form and is relative to
addr.

As with all subroutine jumps, the address (addr) of ftlie instruction
following the gosub opcode 1is pushed onto the hirduare return
stack, so that when a corresponding return is executed, control
resumes with the instruction at address addr.

As the return address is pushed onto the return stack, the
bottom-most address on the stack is discarded. Therefore, the
return stack aluays contains 8 addresses, and if pushes exceed pops
by 8 levels, the bottom-most return addresses are lost. Since the
interrupt system requires one level to process interrupts, only 7
levels of the return stack can be used by code which must execute
when interrupts are enabled. See the RIN mnemonic for further
information,

GOSUBL label - Gosub long to label

opcode: B8Eaaaa

cycles: 15

Long relative subroutine Jjump to 1label. 1label must be in the
range:

addr - 32768 <= label <= addr + 32767

where addr 1is the starting address of the next instruction. The
address offset aaaa is in tuo’s complement form and is relative to
addr. See the GOSUB mnemonic.

16-92

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

GOTO label - Jump relative

opcode: 6aaa
cycles: 11

Relative jump to 1label unconditionally. 1label must be in the
range:

addr - 2048 <= label <= addr + 2047

vhere addr is the address of the second nibble of the opcode. The
address offset aaa 1is in two’s complement form and 1is relative to
addr.

GOVLNG label - Jump very long

opcode: 8Daaaaa
cycles: 14

Unconditional jump to aaaaa, which is the absolute address of
label.

GOYES 1label - Jump if Test is True

opcode:

cycles: included in the accompaning
Test mnemonic cycle time.

GOYES is a mnemonic to specify part of a CPU test opcode. GOYES
must aluays follow a test mnemonic. If the condition of the test
is met, a jump is performed to label with Carry set. label must be
in the range

addr - 128 <= label <= addr + 127

where addr is the starting address of the jump offset yy. If the
test condition is not met, Carry is cleared and control passes to
the next instruction. Compare with RINYES.

16-93

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

INTOEF - Interrupt Off

opcode: 808F

cycles: 5

Disable the keyboard interrupt systen.

INTON - Interrupt On

opcode: 8080

cycles: 5

Enable the keyboard interrupt systenm. See the "HP-71 Harduare
Specification" for more information.

opcode: 3xn..n (x=m-1)
cycles: 3+m

Load m digits of the expression n..n to the C register beginning at
the P pointer position, and proceeding toward higher-order nibbles,
with the ability to wrap around the register. See the section on
“"Loading Data From Memory" earlier in this chapter,.

LCASC \A..A\ - Load C with ASCII constant

opcode: 3mc..C

(m = 2%(# of chars)-1;
c..c = ASCII codds)

cycles: 3+2*(# of chars)

Load up to 8 ASCII characters to the C register beginning at the P
pointer position, and proceeding toward higher-order nibbles, with
the ability to wrap around the register. Each A represents an

16-94

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

ASCII character. The ASCII characters are stored in the opcode in
reverse order so that wuwhen the instruction is executed the data
will be 1loaded into the register with the intended orientation,
See the section on “Loading Data From Memory" earlier in this
chapter.

LCHEX h..h - Load C with hex constant

opcode: 3nh..h (n=# of digits-1)
cycles: 4+n

Load up to 16 hex digits into the C register beginning at the P
pointer position, and proceeding toward higher-order nibbles, with
the ability to wrap around the register. The hex digits are stored
in the opcode in reverse order so that when the instruction is
executed the data will be 1loaded into the register with the
intended orientation. See the section on “Loading Data From
Memory" earlier in this chapter,.

MP=0 - Clear Module Pulled bit (MP)

opcode: 828

cycles: 3

Clears the Module Pulled bit (MP) and pulls the Module Pulled
Interrupt line low. See CLRHST mnemonic.

NOP3 - Three nibble No-op

opcode: 420

cycles: 10 (GO/RTINYES)
3 (NO)

This mnemonic generates a GOC or a GONC to the next instruction,
effectively skiping three nibbles.

16-95

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

NOP4 - Four nibble No-op

opcode: 6300
cycles: 11

This mnemonic generates a GOTO to the next instruction, efectively
skiping four nibbles.

NOPS - Five nibble No-op

opcode: 64000

cycles: 11

This mnemonic generates a relative GOTO to +4 nibbles. The fifth
nibble in the opcode is a place holder and is jumped over. The
mnemonic effectively skips five nibbles.

OUT=C - Load 3 nibbles of OR

opcode: 801

cycles: 6

All nibbles of the Output register are loaded with the lou-order

three nibbles of C (X field).

16-96

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

OUT=CS - Load 1 nibble of OR

opcode: 800
cycles: 4

The least significant nibble of the Output register is loaded with
the least significant nibble of the C register.

P=C n - Copy P pointer into C at Nibble n

opcode: 80DN
cycles: 6

Copy nibble n of register C into the P pointer.

PsP+1 - Increment P Pointer

opcode: O0C

cycCles: 3

Increment the P pointer. If P is incremented past F it will
automatically wrap around to 0, Adjusts Carry.

P=P-1 - Decrement P Pointer
- an e g S0 @ o> a» o>

opcode: 0D

cycles: 3

Decrement the P pointer. If P is decremented past 0 it
automatically wraps around to F. Adjusts Carry.

16-97

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

P= n - Set P Pointer to n

opcode: 2n
cycles: 2

Set the P pointer to n.

RO=A - Copy A to register RO

opcode: 100

cycles: 19

The contents of the working register A 1is copied to the scratch
register RO,

RO=C - Copy C to register RO
-Ay wn @ > o o =

opcode: 108
cycles: 19

The contents of the working register C 1is copied to the scratch
register RO,

R1=A - Copy A to register R1

opcode: 101

cycles: 19

The contents of the working register A 1s copied to the scratch
register R1.

16-98

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

R1=C - Copy C to register R1

opcode: 109
cycles: 19

The contents of the working register C is copied to the scratch
register R1,

R2=A - Copy A to register R2

opcode: 102

cycles: 19

The contents of the working register A is copied to the scratch
register R2.

R2=C - Copy C to register R2

opcode: 10A
cycles: 19

The contents of the working register C is copied to the scratch
register R2.

R3=A - Copy A to register R3

opcode: 103

cycles: 19

The contents of the working register A is copied to the scratch
register R3,

16-99

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

R3-C - Copy C to register R3

opcode: 10B

cycles: 19

The contents of the working register C 1is copied to the scratch
register R3.

R4=A - Copy A to register R4

opcode: 104

cycles: 19

The contents of the working register A is copied to the scratch
register R4,

R4=C - Copy C to register R4

opcode: 10C
cycles: 19

The contents of the working register C 1is copied to the scratch
register R4.

RESET - Systen reset

opcode: 80A
cycles: 6

The System Reset Bus Command is issued with all chips performing a
local reset., The reset function will vary according to the chip
type. See the "HP-71 Harduware Specification" for more information.

16-100

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

RSTK=C - Push C to Return Stack

opcode: 06
cycles: 8

Push the louw-order 5 nibbles (A field) of the C register onto the
Return Stack. See the GOSUB mnemonic.

RTI - Return from interrupt

opcode: OF
cycles: 9

Return and re-enable the interrupt system. See the RIN mnemonic.

RTN - Return

opcode: 01
cycles: 9

Return control to the top address on the harduare return stack.
The top address on the harduare return stack 1is popped off and
placed in the program counter PC. As the address is popped off the
stack, a zero address is inserted at the bottom of the stack.

Therefore the the harduare return stack always contains 8
addresses, and if more pops (returns) than pushes (gosubs) are
performed, zeros will be read off the stack. Such an attempt to
“return” to address 0 results in a memory reset, since the memory
reset code of the operating system resides at address 0.

16-101

HP-71 Softuware IDS - Detailed Design Description
HP-71 Assembler Instruction Set

RINC -Return on carry

opcode: 400

cycles: 10 (RIN)
3 (NO)

Return if Carry is set. See RIN mnemonic.

RINCC - Return, clear carry

opcode: 03

cycles: 9

Return and set Carry. See RIN mnemonic.

RINNC - Return on no carry

opcode: 500 (Carry=1)
cycles: 10 (RIN)

3 (NO)

Return if Carry is not set. See RIN mnemonic.

RTNSC - Return, set carry

opcode: 02

cycles: 9

Return and set Carry. See RIN mnemonic.

16-102

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

RINSXM - Return, set External Module Missing bit (XM)

opcode: 00
cycles: 9

Return and set the External Module Missing bit (XM). See the RIN
instruction.

RINYES - Return if Test is True

opcode: 00

cycles: included in the accompaning
mnemonic cycle time.

If the test condition is not met, Carry is cleared and control
passes to the next instruction. Compare with RINYES. RINYES is a
mnemonic to specify part of a CPU test opcode. RINYES must aluays
follow a test mnemonic. If the test condition is met, Carry is set
and a return is executed. If the test condition is not nmet,
control passes to the instruction following the RINYES. Compare
with the RTN and GOYES mnemonics.

SB=0 - Clear Sticky Bit (SB)

opcode: 822

cycles: 3

Clear the Sticky Bit (SB). See CLRHST mnemonic.

16-103

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

SETDEC - Set decimal

opcode: 05
cycles: 3

Set CPU arithmetic mode to decimal.

SETHEX - Set hexadecimal mode

opcode: 04

cycles: 3

Set CPU arithmetic mode to hexadecimal.

SHUTDN - System Shutdoun

opcode: 807
cycles: 5

Uhen this instruction is executed the CPU sends out the Shutdoun
Bus Command and stops 1its ~clock. See the "HP-71 Harduare
Specification" for more information.

SR*0 - Clear Service Request bit (SR)

opcode: 824

cycles: 3

Clear the Service Request bit (SR). See the CLRHST instruction.

16-104

HP-71 Softuare IDS - Detailed Design Description
HP-71 Assembler Instruction Set

SREQ? - Service Request

opcode: 80E
cycles: 7

This instruction sets the Service Request bit (SR) if any chip on
the system bus requests service, When this instruction is
executed, a Service Request Bus Command is issued on the system bus
to poll all chips for a Service Request. If any chip requests
service, a bus line will be pulled high during the next strobe
following the Service Request Bus Command. This value of the bus
will Dbe 1latched into the least significant nibble of the C
register. The bus line pulled high determines the device type
(Timer, HPIL, et cetera). If any bus line is high, the Service
‘Request bit (SR} will Dbe set, See the "HP-71 Harduare
Specification” for more information. See also the 7?SREQ and SR=0
mnemonics,

ST=0 n - Clear Program Status bit n

opcode: 84n

cycles: 4

Clear the Program Status bit selected by n.

ST=1 n - Set Program Status bit n

opcode: 85n

cycles: 4

Set the Program Status bit selected by n.

16-105

HP-71 Software IDS - Detailed Design Description
HP-71 Assembler Instruction Set

ST=C - C to Status

opcode: O0A
cycles: 6

Copy the 1louw-order 12 bits of the Status register (X field) into
the low-order 12 bits of the C register.

UNCNEG - Unconfigure

opcode: 804

cycles: 12

Load the louw-order 5 nibbles (A field) of the C register into each
Data pointer with the device addressed by the Data pointer
unconfiguring.

XM=0 - Clear External Module Missing bit (XM)

opcode: 821
cycles: 3

Clear the External Module Missing bit (XM). This bit is set by the
RINSXM instruction. See the CLRHST instruction.

16-106

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

Poeeeeeee==-----.--=)->- - -

|
| HP-71 CODE EXAMPLES
|
Peeeeeeoeo-——---~- o~ -- +

—
—
—

2 > S m o p
—
~

17.1 Machine Code Packing Techniques

1. Take full advantage of existing subroutines,
or create beneficial new ones (even short ones).

2. Use A field instead of B field when possible and
when speed doesn’t matter.

3. Remove unnecessary P=0 instructions. (Most routines
exit with pointer set to 0.)

4a. If two subroutines have common ending, then end
one of them with a GOTO to the common ending.

4b. If common code precedes subroutine calls, move
that common code to the front end of the subroutine.

5. A RIN should generally not follow a GOSUB instruction.

6. Shorten error messages or delete redundant ones.

7. Remove unnecessary long branches within modules,

8. Code for optimum space, not speed, if speed loss
is not significant,

9. Centralize the loading of C with the same Error
Number,

10. Setting a data pointer to the same 5 nibble value
can be shortened using a GOSUB to set it.

11. Using an LC(5) to load a 1 or 2 nibble constant into
C(A) can be shortened uwith:

C=0 A

LC(2) =symbol

12, Using load listing, search for routines that are

17-1

HP-71 Software IDS - Detajiled Design Description
HP-71 Code Examples

never referenced, or only referenced once.

13. Using load listing as an aid, search for common
sequences of subroutine calls.

14, If the state of the carry is predictably the same for
all paths through a section of code, any GOTO instruction
to a nearby label can be replaced by a GOC or GONC

instruction depending on whether the carry is knoun to
be set or clear, respectively. This type of branch saves

1 nibble, and is referred to as a "Branch Every Time,"
often abbreviated as “BET" or "B.E.T." in the comment field
of the instruction. Such branches should be used with
caution and should be clearly commented.

17.2 Mainframe File Type Table

The mainframe file type table is as follous. For an explanation of
the format of this table, see the "Table Formats" chapter,

=FTYPE
**% DATA FILE (Interchange DATA File)

NIBHEX 110
CON(2) =oDAsod

NIBASC \DATA \
CON(1) 2

CON(4) =fDATA

CON(4) (=fDATA)+1 Secure DATA file
% BASIC FILE

NIBHEX 001

CON(2) =o0BSsod
NIBASC \BASIC\
CON(1) 4
CON(4) =fBASIC
CON(4) (=fBASIC)+1 Secure BASIC
CON(4) (=fBASIC)+2 Private BASIC
CON(4) (=fBASIC)+3 Secure, private BASIC

**% KEY FILE

NIBHEX 000

CON(2) =oKYsod

NIBASC \KEY \
CON(1) 2
CON(4) =fKEY
CON(4) (=fKEY)+1 Secure KEYS

**% TEXT FILE
NIBHEX 440

CON(2) =0oTXsod
NIBASC \TEXT \

17-2

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

CON(1) 2

CON(4) 1

CON(4) #EOD1 Secure TEXT
¥*¥* LIF1 FILE (same as TEXT)

NIBHEX 440

CON(2) =oTXsod
NIBASC \LIF1 \
CON(1) 1

CON(4) 1

¥%% SDATA FILE (Series 40 Data File)
NIBHEX 220

CON(2) =o041sod
NIBASC \SDATA\

CON(1) 1

CON(4) #EODO

¥%% BIN FILE (Binary File)
NIBHEX 001

CON(2) =oBNsod

NIBASC \BIN \

CON(1) 4

- CON(4) =fBIN

CON(4) (=fBIN)+1 Secure BIN
CON(4) (=fBIN)+2 Private BIN
CON(4) (=fBIN)+3 Secure, private BIN

%% LEX FILE (Langauge Extension File)
NIBHEX 001

CON(2) =oLXsod
NIBASC \LEX \

CON(1) 4
CON(4) =fLEX

CON(4) (=fLEX)+1 Secure LEX
CON(4) (=fLEX)+2 Private LEX
CON(4) (=fLEX)+3 Secure, private LEX

HHHR
*

NIBHEX FF Terminates Table
*

END

17.3 LEX File Implementing Statements and Functions

This LEX file is taken from the HP-71 Editor ROM. It implements
the statements INSERT#, REPLACE#, and DELETE# for TEXT files, and
extends the LIST and PLIST statements to include TEXT files. In
addition, a number of functions are also implemented to examine and
search TEXT files, to detect the pressing of scroll keys, and to
aid the parsing of Editor commands.

17-3

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

%
%k

%
%k

¥k
%k

3k
3k

X%
TITLE Titan EDITOR Lexfile <840101.1823>
REL #8

I &
& &
& &
&

&
&

I && & EEEEE P
i
h
i
h
i
h
i
b
i
h
i
g
i

DDDD

336333233336K333K3333JE3EHHE3333313K3¢

* Set assembler flagl = 0 to assemble the complete
* Text Editor, with Formatter.
*

*
% Set assembler flagl = 1 to assemble the short

Text Editor, without Formatter.
**************‘***

*

¥ Main
=xromfFO0
*

RDSYMB SBARANM
RDSYMB TI%EQU
NIBASC
CON(4)
NIBHEX
NIBHEX
NIBHEX
REL(5)

NIBHEX
CON(2)
CON(2)
REL(5)

NIBHEX

CON(4)
REL(4)

REL(5)
STITLE
Table

CON(3)
REL(5)
NIBHEX

CON(3)
REL(5)
NIBHEX

CON(3)
REL(5)

\EDLEX
=fLEX
00
1441
412138
FILEND

OF
1
7

SCRLEX

F
(TxTbSt) +1-(¥)
MSGTBL
POLHND
Main

DELETE

34
EDTEXT
D

49
FILSZR

File Name
File Type
Flags
Time
Date

File Length

Id
Lowest Token
Highest Token
End of lex table chain

Speed table omitted
Offset to text table

Of fset to message table

Offset to poll handler
Table

01 DELETE#

02 EDTIEXT

03 FILESZR

17-4

HP-71 Software IDS - Detailed Design Descrlptlon
HP-71 Code Examples

NIBHEX F

CON(3) 66 04 INSERT#
REL(5) INSERT
NIBHEX D

CON(3) 81 05 REPLACE#
REL(5) REPLCE
NIBHEX D

CON(3) 98 06 SEARCH
REL(5) SEARCH
NIBHEX F

CON(3) 15 07 EDPARSE$
REL(5) EDPARS

NIBHEX F

STITLEText Table
* Text Table

TxTbSt
*

TXTbEn

Text table start

NIBHEX B DELETE#
NIBASC \DELETE\
NIBHEX 10

NIBHEX F EDPARSE$
NIBASC \EDPARSE$\
NIBHEX 70

NIBHEX B EDTEXT
NIBASC \EDTEXT\
NIBHEX 20

NIBHEX D FILESZR
NIBASC \FILESZR\
NIBHEX 30

NIBHEX B INSERT#
NIBASC \INSERT\
NIBHEX 40

NIBHEX D REPLACE#
NIBASC \REPLACE\
NIBHEX 50

NIBHEX B SEARCH
NIBASC \SEARCH\
NIBHEX 60

NIBHEX 1FF Text termination

STITLE Editor messages

17-5

HP-71 Softuware 1DS - Detailed
HP-71 Code Examples

Design Description

*

MSGTBL

frmt- IF 1 Short msg table w/o formatter

R- merge MB&EDS here ----------------
FLOOLLLLE RIeeiy
®¥11111111) Message number 5 is placed first because of the
*11011i11) requirement to have a 0 nibble following the
¥1100001)! range field, If message number 5 changes,
*Li111tl you must select another message to put in the
¥Lirinit) first slot! (any message with a length which
*100piill is a multiple of 16)

CON(2) 1 Min message #
CON(2) 11 Max message #

*

=eLINE EQU 5 Line
CON(2) 16
CON(2) 5 Message number 5
CON(1) 4
NIBASC \Line \
CON(1) 12

RLPLLLRLL LRe R e Ree
*

seEQOF EQU 1 Eof

CON(2) 12

CON(2) 1 Message number 1
CON(1) 2

NIBASC \Eof\
CON(1) 12

*

secnds EQU 2 CDEFHILMPRST
CON(2) 31

CON(2) 2 Message number 2
CON(1) 11
CON(1) 11
NIBASC \CDEFHILM\
NIBASC \PRST\
CON(1) 12

*

=gUNKNU EQU 3 ? Cmd:
CON(2) 13

CON(2) 3 Message number 3
CON(1) 1

NIBASC \? \

CON(1) 13
CON(2) =eCMD
CON(1) 12

*

=eFLNM EQU 4 Filenanme:
CON(2) 19

17-6

e
o
m
m

S
a
r

o
m
s

G
e
r

o
e
n

O
m
m

-
f
e
-

o
a
r

S
u
r

G
u
=

Ow
w
O

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*

CON(2) 4 Message number 4
CON(1) 14

CON(2) =eFILE
CON(1) 4
NIBASC \name:\
CON(1) 12

* Message number 5 is found at the top of the table.
*

*

=eCMD

*

=e0OKDLT

=eYNQ

=eINVCM

=elRKG

EQU 6 Cmd;
CON(2) 14
CON(2) 6 Message number 6
CON(1) 3
NIBASC \Cmd:\
CON(1) 12

EQU 7 OK to Delete? Y/N:
CON(2) 43

CON(2) 7 Message number 7
CON(1) 10

NIBASC \OK to De\
NIBASC \let\
CON(1) 6

NIBASC \e? Y/N:\
CON(1) 12

EQU 8 YNQ
CON(2) 12
CON(2) 8 Message number 8
CON(1) 2
NIBASC \YNQ\
CON(1) 12

EQU 9 Invalid Cmd Strg
CON(2) 25
CON(2) 9 Message number 9
CON(1) 14

CON(2) =eINVLD
CON(1) 7

NIBASC \Cmd Strg\

CON(1) 12

EQU 10 Working...

CON(2) 26
CON(2) 10 Message mumber 10
CON(1) 9

NIBASC \Working.\
NIBASC \..\
CON(1) 12

17-7

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

e
Q
o
m

G
w
n

G
u
m

S
u
v

G
u
m
o
G

P
o
n
o
=

S
a
n

O
S
u
m

O
e
m

S
u
w

S
u
m

=eDONE EQU 11 Done
CON(2) 14

CON(2) 11 Message number 11
CON(1) 3

NIBASC \Done\
CON(1) 12

*
*

NIBHEX FF Table terminator

frmt- ELSE Short msg table w/o0 formatter

¥eeeee merge MB&EDM here -------------
Lopprrnnney
®i1)114ll) Message number 5 is placed first because of th
#1111t requirement to have a 0 nibble following the
¥11000011) range field., If message number 5 changes,
*11111111! you must select another message to put in the
®*pprntt firet slot! (any message with a length which
¥1101011111 jg a multiple of 16)

CON(2) 1 Min message #
CON(2) 53 Max message #

#*

seLINE EQU 5 Line
CON(2) 16
CON(2) 5 Message number 5
CON(1) 4

NIBASC \Line \
CON(1) 12

roppprrereenrnrennerrrerrrrrrirrrprrrarreniety
*

seEOF EQU 1 Eof

CON(2) 12
CON(2) 1 Message number 1
CON(1) 2

NIBASC \Eof\
CON(1) 12

#*

=ecmds EQU 2 CDEFHILMPRST

CON(2) 31
CON(2) 2 Message mumber 2
CON(1) 11
CON(1) 11

NIBASC \CDEFHILM\
NIBASC \PRST\
CON(1) 12

*

=eUNKNU EQU 3 ? Cnmd:

CON(2) 13
CON(2) 3 Message number 3
CON(1) i

17-8

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

seFLNM

*

NIBASC \? \
CON(1) 13
CON(2) =eCMD
CON(1) 12

EQU 4
CON(2) 19
CON(2) 4
CON(1) 14
CON(2) =eFILE
CON(1) 4
NIBASC \name:\
CON(1) 12

Filename:

Message number 4

* Message number 5 is found at the top of the table.
*

*

=eCMD

*

=e0KDLT

seYNQ

seINVCM

*

EQU 6
CON(2) 14
CON(2) 6
CON(1) 3
NIBASC \Cmd:\
CON(1) 12

EQU 7
CON(2) 43
CON(2) 7
CON(1) 10
NIBASC \OK to De\
NIBASC \let\
CON(1) 6
NIBASC \e? Y/N:\
CON(1) 12

EQU 8
CON(2) 12
CON(2) 8
CON(1) 2
NIBASC \YNQ\
CON(1) 12

EQU 9
CON(2) 25
CON(2) 9
CON(1) 14
CON(2) =eINVLD
CON(1) 7
NIBASC \Cmd Strg\
CON(1) 12

=eURKG EQU 10

Cmd:

Message number 6

OK to Delete? Y/N:

Message number 7

YNQ

Message number 8

Invalid Cmd Strg

Message number 9

Working...

17-9

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

seDONE

sefrmt

=e2!MFL

seMULT

=ePLSIN

CON(2) 26
CON(2) 10
CON(1) 9
NIBASC \UWorking.\
NIBASC \..\
CON(1) 12

EQU 11

CON(2) 14
CON(2) 11

CON(1) 3

NIBASC \Done\
CON(1) 12

EQU 12
CON(2) 68
CON(2) 12
CON(1) 10
NIBASC \ESPNPASP\
NIBASC \ADF\
CON(1) 10
NIBASC \ICOCEJUM\
NIBASC \ASK\
CON(1) 7
NIBASC \TADLPLME\
CON(1) 12

EQU 13
CON(2) 32
CON(2) 13
CON(1) 9
NIBASC \Merge > \
NIBASC \5 \
CON(1) 14
CON(2) =eFILE
CON(1) O
NIBASC \s\
CON(1) 12

EQU 14
CON(2) 41
CON(2) 14
CON(1) 10
NIBASC \Mult Dis\
NIBASC \tr \
CON(1) 5
NIBASC \Lists:\
CON(1) 12

EQU 15
CON(2) 35

Message number 10

Done

Message number 11

Message number 12

Merge > 5 Files

Message mumber 13

Multiple Distribution Lists

Message number 14

Insert Page..,

17-10

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

CON(2) 15 Message number 15
CON(1) 11

CON(1) 13

NIBASC \Insert P\
NIBASC \age...\
CON(1) 12

HHHHHHEE HELP 1igt #HHEHEHEEEREEHHHOHHHEHH

* Copy: [vle]l] C [<file>)

=eCOPY EQU 16
CON(2) 17

CON(2) 16 Message number 16
CON(1) 13

CON(2) =ebes
CON(1) 0

NIBASC \C\
CON(1) 13

CON(2) =ecfile
CON(1) 0
NIBASC \]\
CON(1) 12

* Delete: [b(e]] D [<file>[+]]

=eDELT EQU 17
CON(2) 23

CON(2) 17 Message number 17
CON(1) 13

CON(2) =ebes

CON(1) 0

NIBASC \D\
CON(1) 13

CON(2) =ec<file
CON(1) 3

NIBASC \[+]]\
CON(1) 12

* Exit: E

=eEXIT EQU 18
CON(2) 8

CON(2) 18 Message number 18
CON(1) o
NIBASC \E\

CON(1) 12

* Format: F [n](G$]

=eFORMI EQU 19
CON(2) 24
CON(2) 19 Message number 19
CON(1) 8

17-11

HP-71 Software 1DS - Detailed Design Description
HP-71 Code Examples

=eHELP

=@NSRT

=eLIST

=eMOVE

=ePRINT

NIBASC \F (n)[G$\
NIBASC \]\
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)

12

20
8

20
0

\H\
12

21
16
21
4 .

\(1] I\
12

22
14

22
13

zebes
0

\L\
13

=enN

12

23

17

23

13

=sebes

0

\M\
13

secfile
0

NIBASC \]\
CON(1)

EQU
CON(2)
CON(2)
CON(1)

12

24
14
24
13

Help: H

Message number 20

Insert; [1] I

Message number 21

List: [b[e]] L [n](N]

Message number 22

Move: [blel]l M [<file>]

Message number 23

Print: [ble]l] P [n]([N]

Message number 24

17-12

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

CON(2) =ebes
CON(1) 0

NIBASC \P\

CON(1) 13

CON(2) =enN

CON(1) 12

* Replace: [ble]](?) R/stri/str2(/)
*

=eREPLC EQU 25

CON(2) 38

CON(2) 25 Message number 25
CON(1) 13

CON(2) s=ebe?
CON(1) 11
CON(1) 13
NIBASC \R/stri1/s\
NIBASC \tr2(/]\
CON(1) 12

* Search: [b(e]]l([?] S/str(/]

=eSEARC EQU 26
CON(2) 25
CON(2) 26 Message number 26
CON(1) 13

CON(2) =ebe°
CON(1)
NIBASC \S/str[/]\
CON(1) 12

* Text: [1] T

=eTEXT EQU 27
CON(2) 16
CON(2) 27 Message number 27
CON(1)

NIBASC \[1] T\
CON(1) 12

* “ad: advance page
FHEHEHEOEEEHEEEHHHOEEEHHEEEEHEEOHEEOO0OO

¥ Building blocks

* [ble]]
*

=ebes EQU 50

CON(2) 20
CON(2) 50 Message number 50
CON(1) 6

NIBASC \[b[e]] \
CON(1) 12

* [<file>
*

=e<file EQU 51
CON(2) 22

17-13

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

CON(2) 51 Message number 51
CON(1) 7

NIBASC \ [<file>\
CON(1) 12

* [ble]] (7]

sgbe? EQU 52
CON(2) 26
CON(2) 52 Message number 52
CON(1) 9
NIBASC \[b[e]][?\
NIBASC \] \

CON(1) 12

* [n] [N)

senN EQU 53
CON(2) 20

CON(2) 53 Message number 53
CON(1) 6

NIBASC \ [n][N]\
CON(1) 12

NIBHEX FF Table terminator

frmt- ENDIF Short msg table w/o formatter,

* Poll handler goes here. Handler for VER$ poll is
* provided
#*

POLHND ?B=0 B VER$ poll?
GOYES hVER$0 Yes.
GONC hVER$2 No. To hVER$2 w/carry clear.

hVER$0 C=R3
D1=C
A=R2

D1=D1- (VER$en)-(VER$st)-2
CD1EX

?20>C A

GOYES hVER$1

D1=C

R3=C
*

¥%11 LCASC text to be returned for VER$ here

¥ Include a leading blank!!
#*

VER$st LCASC \ EDT:A\
VER$en DAT1=C (VER$en)-(VER$st)-2
hVER$1 RTNSXM

»*

¥*11 Continue poll handler here: Carry is clear, VER$ poll
* has been handled.

17-14

HP-71 Software IDS - Detailed Design Description
HP-

*

71 Code Examples

hVER$2 LC(2) =pLIST2
7B=C B
GOYES LISTO00
RINSXM

LISTO0 LC(5) =fTEXT
7A=C A
GOYES 1ist01
RTNSXM

list01 GOTO LISTO1

*
:
*

!! LEXFILE code goes here

STITLE EDTEXT Keyword Execute
NHHIEIHHHIE33I33333HHIHIHFH

FFHHHIIHHHHEIHHHIHTIIFHHHHHHH

F
E
E
E
X
E
E
E
I
R
R
E
E
E
R
X
E
E
E

*
x
x

F
I
I
E
L
E

Name: EDTEXT - EDTEXT Keyword Execute

Category: STEXEC

Purpose:
Executes EDTEXT keyword

Entry:
P = 0

DO past tEDTEXT (at tLITRL)

Exit:
P = 0

Calls: . See CALL statement execute

Uses.......
See CALL statement execute

Stk 1lvls: See CALL

History:

Date Programmer Modification

09/28/83 S.U. Added documentation

fi%fl%*%mmmmm**mm

FHHIEERIEHRAHATIHIHHIEHI3IHHHHIOHN

*

REL(5) EDTXTd Offset to EDTEXT decompile
REL(5) EDTXTp Offset to EDTEXT parse

EDTEXT GOVLNG =CALL

17-15

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*

STITLE FILESZR Function Execute
I3363333333FHW33HIEIEI336HHHEEE

3FEIEIEEI33331KHEHEHIEHI09HHIFE3K3-73KX6

Name: FILSZR - FILSZR Function Execute

Category: FNEXEC

Purpose:
FILSZR locates the specified TEXT file in and returns
the number of records in the file. The syntax is:

FILSZR (<file specifier string>)

The returned value is;

If >= 0 Number of records in TEXT file
If < 0 Negative of the error number. Possible

errors are:
Invalid File Spec
File Not Found
Invalid File Type
File Protect
Illegal Access

Entry:

String specifying file is on stack
P = 0

Exit:
P = 0

Calls: FILXQ$, FINDE+, POSTXT HDELT, DIMSTK, PSHSTK, ENRIN1

Uses......
Exclusive: A,B(A),B(S),C,D,R0,R1,D0,D1,sPRBLY, SEOF,5BADRC
Inclusive: A-D,R0-R3,D0,D1,S11-S0,STMIR1,STMID1,Function

Scratch

Stk 1vls; 6 (FILXQ$)

R
I
R
I
E
r
E
E
E
I
I
E
I
E
I
E
I
I
I
E
I
I
E
I
N
Y
E
E
R
E
Y
I
I
I
N
I
I
C
L

History:

Date Programmer Modification

** 09/29/83 FH Designed and coded
*%

FIHATIIFEIRHHHHIHIEHEFAFIK33XHIRIRK¢

PII3K3KHIEHIKTHHIHIIHK33IX%

sPRBLM EQU 4

17-16

HP-71 Software IDS -~ Detailed Design Description
HP-71 Code Examples

FILSZR

FILSer

FILS10

FILS20

FILS30

expr

DELETE

NIBHEX
CDOEX

RSTK=C
GOSBVL

GOSuUB

GOSBVL
GOC
GOSUB
GOSBVL
CD1EX
C=C+A

D1=C
GOSUB
LC(4)

ST=1

CSL
CSR
A=C
GOTO
GOSUB
GOSBVL
GOC

A=0

AzA-1

R1=A
AD1EX

GOSUB
ST=0
2C#0
GOYES
A=RO

A=A+1

GOSUB

GOSBVL
78T=0

GOYES
A=-A-1
SETHEX
D1=D1-
DAT1=A
GOSBVL
C=RSTK

CDOEX
GOVLNG

STITLE

REL(5)
REL(5)
ST=0

411

sR<RSTK

ave=d1

=FILXQ$
FILS10
dimstk
=POP1S

A

ave=dl

=eFSPEC

sPRBLM

A
A
A

FILS20
ave=d1
=FINDF+
FILSer

A
A

POSTXT
sPRBLM
A
FILSer

A

dimstk
=HDFLT
sPRBLM
FILS30
S

16
u

=RSTK<R

=EXPR

Parameter descriptor: One string
Save DO in RSTKBF

Save string start in AVMEME
Pop file name into A
Branch if valid file name
Restore poor old D1
Move D1 past string header
Move D1 past string contents

Save D1 in AVMEME
Load error code
Set error flag

Isolate error code in A

Go return negative error code
Save D1 in AVMEME (string popped)
Find file
Error if not found
Search for unreachable record

. Which is -1

A.= File header addr
Position file, always error return

Real error, not just EOF?

Compute # records in file

Restore D1

Convert to decimal
No error?

Make number negative
Return to hex mode

Urite number to stack

Restore DO

Return

DELETE# Keyword Execute

DELETd
DELETDp
sINS

Off set to DELETE# decompile
Off set to DELETE# parse
Set up DELETE# status

17-17

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

ST=1 sDEL
GOTO REPL10

STITLE INSERT# Keyword Execute

REL(5) INSRTd Offset to INSERT# decompile
REL(5) INSRTp Offset to INSERT# parse

INSERT ST=1 sINS Set up INSERT# status
ST=0 sDEL
GOTO REPL10

STITLE REPLACE# Keyuword Esxecute
FHHEIEIIIIIRI32III3IK33IKNI

IHEHIEKX32IIENHIEM-II3K33333K

R
P
R
R
N

A
I
I
I
E
E
E
E
E
E
R
E
E
E
R
L
I
E
L
E
R
E
E

Name: REPLCE - REPLACE# Statement Execute

Category: STEXEC

Purpose:

Execute REPLACE# statement for the HP-71 EDITOR ROM.

Entry:
P = 0

DO @ After starting token

Exit;
P = 0
To NXTSTM

Calls: OBCOLL,STATSV,GETCH#,MGOSUB, EXPEX- , DIMSTK, POP1R,
FLTDH, STATRS, REVPOP, SUPBYT ,MOVEUO, POSFIL, BSERR,

7PREI+,RPLLIN, FIBADR,NXTSTM

Uses...... .
Exclusive: A-D,R1,R3,8INS,sDEL,STMIR1,STMID1, CHN#SV
Inclusive: A-D,R0-R4,S11-S0,Statement and Function scratch,

CHN4SV

Stk 1lvls: 6 (GETCH#)

Detail:
Status usage: 8INS sDEL

REPLACE# 0 0

INSERT# 1 0

DELETE#% 1 1

Statement Scratch usage:

STMTRO (15-14) Channel number

17-18

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

A
E
L
R
R
I
E
I
E
L
E
R
I
R
T
R
R
E
R
E
R
E
R
E
T
I
E
L
E
Y
I
X STMTRO (9-5) Record number

Algorithnm:
Set up respective status bits (see detail above)
Collapse output buffer
Evaluate channel number, exit if error
Skip comma token
Evalute record number, exit if error
Save record number in STMIRO
If not DELETE#, then
Skip ;" token
Evaluate string expression

Move string from MTHSTK to Output Buffer
If file is not in RAM, or is secure or private then error
If file is not TEXT copy code, then error
Space file out to <record number> giving START of line
If INSERT# then
Set LENGIH to 0

Else

Compute line length giving LENGTH
Call RPLLIN to edit file
Update FIB end-of-data field
Collapse output buffer
Go to NXTSIM

History:

Date Programmer Modification

09/12/83 F.Hall Designedandcoded
IAKXKIII33329FFHHHHHHHIIIAK¢

FFEFHIHIFHAIEHIIKIHHHAIIIRKX

T

* Status Symbols
*

sINS EQU 11
sDEL EQU 9

sBADRC EQU 8

*s1/0BF EQU 10 External symbol
*

ave=d1 GOVLNG =AVE=D1

dimstk GOVLNG =D1MSTK

supbyt GOVLNG =SUPBYT
mgosub GOVLNG =MGOSUB

*

invarg LC(4) =elVARG
GOTO bserr

17-19

HP-71 Softuware 1DS - Detailed Design Description
HP-71 Code Examples

REPLCE

*

*#

*¢

*
I
i

REPL10

*r
rI
EC

REL(5) REPLCd
REL(5) REPLCp
ST=0 s8INS
ST=0 sDEL

Offset 'to REPLACE# decompile
Offset to REPLACE# paree
Set up REPLACE# status

Collapse output buffer

Evaluate channel number, exit if error
Skip comma token
Evalute record number, exit if error

GOSBVL =0BCOLL Collapse output buffer
D1=(5) =S-R0-1 Save status in S-R0O-1
GOSBVL =STATSV .
GOSUB mgosub Get channel #, save in CHN#SV
CON(5) =GEICH# .
DO=D0+ 2 Skip comma
GOSUB mgosub Get record number
CON(5) =EXPEX- .
GOSUB dilmstk . (D1 not valid after MGOSUB here)
GOSUB poplr .
GOSUB fltdh .
GONC invarg Branch if out of range

If not DELETE#, then
Skip "3 token
Evaluate string expression
Move string from MITHSTK to Output Buffer

D1=(5) =S-RO-1 Restore status momentarily
GOSBVL =STATRS .

?ST=1 sDEL DELETE# ?
GOYES REPL20 .

D1=D1- 5 Store record # in S-R0-0
DAT1=A A .
DO=DO0+ 2 Skip over ;
GOSUB mgosub Evaluate string expression
CON(5) =EXPEX-
GOSUB dlmstk D1 @ Av mem end

GOSBVL =REVPOP Pop record string (must be reversed)
B=0 U B = # bytes of data

B=A A

BSRB .

CD1EX C = stg start

D1=(5) =AVMEME Move AVMEME beyond end of string
A=A+C A .
DAT1=A A .
DO=C DO @ Line header = SOURCE START

DO=DO- 4 .
A=B A Urite line header
GOSUB supbyt

17-20

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*
E
E
E

REPL20

REPL25

REPL30

bserr

REPL40

F
E
E
E
L
I
E
X
”

DATO=A 4
B=B+1 A
BSRB

B=B+1 A

B=B+B A
B=B+B A

D1=D1- (
A=DAT1 A
A=A+B A

DAT1=A A
A=A-B A
D1=A
GOSBVL =MOVEUO
D1=(5) =S-R0-0

A=DAT1 A
D1sD1+ 5

GOSBVL =STATIRS

Round up to even bytes for LIF std

Add 2 bytes for line header
Convert to nibs

(B = BLOCK LENGTH)
AVMEME) - (AVMEMS) Update AVMEMS to new end

D1 = DEST START

Move string doun to output buffer
Recall record rumber

Restore status

Space file out to <record number> giving START of line
If file is not in RAM, or is secure or private then error
If file is not TEXT copy code, then error

R1=A

D1=(5) =CHN#SV
A=DAT1 B

GOSUB POSFIL
GONC REPL30

7C#0 A
GOYES Dbserr
LC(4) =eEOFIL
GONC bserr

A=B S

GOSBVL =7?PRFI+

GOC bserr

D=D-1 S
GOC REPL40
D=D-1 S
GOC REPL40
LC(4) =eFACCS
GOVLNG =BSERR

?ST=1 s8BADRC

GOYES REPL25

If INSERT# then
Set LENGIH to 0

Else

Store record number

Recall channel #

Pésition file to requested record
Branch if no error
Problem not simply EOF?

Efror out "End of File"
. (BET)

Check if file secure

File in MAIN?

File in IRAM?

"Invalid Access"

Refuse to edit bad record

Compute line length giving LENGTH
Call RPLLIN to edit file
Update FIB end-of-data field
Collapse output buffer

Go to NXTSTM

17-21

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

REPL50

REPL60

LIST

¥%

¥

*%

*%

*

%

*

*%

*

Name:

CD1EX
RSTK=C
ADOEX
?ST=0
GOYES
A=C
C=A-C
R3=C
D1=(5)

sINS
REPL50
A
A

=STMID1
C=DAT1 A
D1=C
D1=D1+
C=DAT1

GOSUB

CON(5)
GONC

B=C
C=RSTK

C=B

GOTO

D1=(5)
A=DAT1
GOSBVL

D1=D1l+
D1=D1+

A=DAT1
C=RSTK
C=C-A
D1=D1+

D1=D1l+
DAT1=C
D1=D1+
C=DAT1
A=R3
A=A+C

DAT1=A
GOSBVL

GOLONG

STITLE

Category:

Purpose:

oFBEGD
A
mgosub
=RPLLIN

REPL60
A

A

bserr

sCHN#SV

A
=FIBADR
16

C,RSTK = Start of line

A = Start of NEXT line
Not INSERT# ?

Preset LENGTH = 0
R3 = LENGTH of previous line

Sét C = File header address

Réplace line

Branch if no error
Pop stack, protecting error code

Update FIB’s current position

(oDBEGD)-16
A

A
16

A

*

. recall abs address of line start

. make relative to data start

(oCPOSb) - (oDBEGb) -16

(oDLEND) - (oCPOSb) Update data length
A

A
A
=0BCOLL
ngtstm

. C = data length

. A = offset

Collapse output buffer

Exit to next statement
LIST Statement Execute

383HHTT233602696236336M63636HH2IM2%0I

2633633313333033IRHIEIER363036363I333%IIEEERHRHR

LISTTX

STEXEC

- LIST of TEXT files

Handles POLL to LIST a TEXT file

Entry:

17-22

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

Exit:

Uses.

F
E
F
E
E
I
E
I
E
E
E
E
L
E
I
E
E
L
I
E
E
L
E

09/14/83

P
B(B) contains poll#

= 0

A(A) contains file type#
D1 points to file header
DO past file specifier

P

Calls:

00000 °

Stk lvls:

History:

= 0

DECHEX, FRCRDn, RCDSKP, FILSKP, PRPSND, POPUPD

6

S.u.

Exclusive: A-D, D1,D0, RO-R3, S-R1-1, OUTBS

Modification
D G W D I G WS WS WD WD WD-PWWD WS DA G W D W S " > D ES > --

Urote routine

FA33FFIIEIIHH3I3FHFHHIEKKHHHH3%

F3FHHEHIEHIIIKI3333IFHFIHIHHIHHIKRR%

*

LISTO1

LISTO05

C=0
A=0
C=C+1
R1=C
LCHEX
R3=C
A=DATO

LC(2)
7A4%C
GOYES
DO=D0+
A=DATO
ASR

DO=DO+

R1=A

A=DATO

LC(2)
244C

GOYES

DO=DO+

A=DATO
R3=A
C=R1
2C<=A
GOYES

u
u
A

1048575

B
= tCOMMA
B
LISTO07

N
>

LISTO7

Biggest# = 5 hex digits

No parms specified?

Urite over default parm

No 2nd parm specified?

parmlc¢=parm2 ?

17-23

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

LC(4) =elVARG

RINSC
#*

LIST06 A=R1

R3=A

% BCD line#s in R1 & R3
* D1 positioned to start of file
* Convert R1 & R3 to HEX
LISTO7 A=R1

GOSBVL =DECHEX A(A) contains HEX
R1=A

A=R3

GOSBVL =DECHEX
R3=A

AD1EX

GOSBVL =FILSK+
* D1 at file length field
* C(A) at end of file

D=C A File end
*

D1=D1+ 5 Step over file length field
CD1EX

R2=C Ptr to SOD (Start of Data)
#*

A=R1

GOSUB FRCRDn Find 1st record to list
. GONC LIST30 Record found?

XM=0
RINCC

* D1 pointing to 1st record to list
LIST30 D1=D1+ 4 Point to data

AD1EX

AR3EX A(A)=end rec#;R3=1list start
C=R2 SOD

GOSUB FRCRDn
CD1EX ‘

D1=C Copy D1 into C(A)
GOC LIST40 C(A) at EOF or EOD

* Pogition past last record to list
GOSUB RCDSKP

LIST40 DO=(5) =S-R1-1 Urite out for PRPSND
DAT0=C A Save ptr past last recrd to list
C=D A Save ptr to EOF
RSTK=C

* Pop update address off GOSUB stack which was put there by POLL
GOSBVL =POPUPD

* R3 contains list start/ S-R1-1 contains list end
C=R3 Ptr to data start

LIST50 D1=(5) =OUTBS

17-24

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

DAT1=C A Start of buffer for PRPSND
D1=C
C=RSTK

D=C A Restore ptr to EOF
GOSUB RCDSK+

% List B bytes, starting at D1; C(A) contains ptr to next record
RO=C

C=D A

RSTK=C Save ptr to end of file
GOSBVL =PRPSND

¥ C(A)=Ptr to next record
GOSBVL =CK"ON" Allow ATIN to interrupt LIST
D1=C
D1=D1+ 4 Step over 2 bytes at record start
CD1EX
GONC LIST50 (B.E.T.)

%k

STITLE EDTEXT Keyword Parse
FHRHHII30HEIJHIII3THIMI3MHIM3%
FHAARIRIIIFHIHHHHHHHI

Nanme: EDTXTp - EDTEXT parse

Category: STPARS

**%
¥

¥
*

*%

¥ Purpose:
*¥ Parses EDTEXT statement
*
** Entry:
* P = 0
* D1 past tEDIT
*

* Exit:
*% P = 0
¥

** Calls: FSPECp, COMCKO, EOLCK, RESPTR, OUTBYT, EXPPAR,
*x R3=D10, D1C=R3, GNXTCR, COMCK, CLRPRM
#*x

** Uges: A-C, D(15-5), D1,D0, RO-R3, S0-S3, S7, S10, XM
** FUNCDO, F-R0-0, F-RO-1
*k
** Datail: EDTEXT <filename> [,<command string>]
¥
** Algorithm:
*x This statement is tokenized as a CALL:
** tEDTEXT tLITRL EDIEXT tPRMST <string> tCVAL ...
** . ¢string> tCVAL tPRMEN
*%
** Stk 1lvls: 6
**

17-25

HP-T1 Software IDS - Detajled Design Description
HP-71 Code Examples

%

** Higtory:
*x%

** Date Programmer Modification
S

** 09/12/83 S.U, Urote routine
** 10/26/83 S.U, Added check to disallow U.D.F.’s
** 11/16/83 S.U. Added code to disallow imbedded
ol quotes in a command stream that is
* not a string expression,
*%
FHEHIEHII3333IHEHHIEIK323IIIIXI33K

IHKIRIKHHIHIEKHHHIEHHH-HHKHIHHINI#

*

*

*

fspece GOVLNG =FSPECe
#*

EDTXTp LCHEX F3545845544445C4

GOSBVL =0UTC15 tLITRL EDTEXT tPRMST

* Call FSPECP
* Save D1/D0 in safe place - (R3 not reliable)

CDOEX
DO=(5) =FUNCRO

DATO=C A
DO=D0+ 5
AD1EX
DATO=A A

DO=C

D1i=A

GOSBVL =FSPECp

GOC fspece Invalid file specifier?
* Legal file specifier - ensure it’s followed by stmt end or comma

GOSBVL =EOLCK
GOC EDTp05 Stmt end found ?
GOSUB comck+ Error exit if no comma

* Restore D1/DO
EBTp05 DO=(5) =FUNCRO

C=DATO A

DO=D0+ 5
A=DATO A
DO=C

D1=A
*

GOSUB EDTpSB
* Optional ,<string expr»

GOSBVL =COMCK

GONC EDIp55 Comma not found?
ST=1 9
GOSUB EDTpSB

17-26

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

EDTp55
EDTp57

EDTp60

CVAL

EDTpSB

* vValid

GONC

GOSUB
LC(2)
GOTO

GOSUB
GOSUB
GOSUB
LC(2)
GOTO

GOSBVL
GOSBVL

GOSBVL

78T=1
GOYES
string

EDTp57 (B.E.T.)

EDTp60
= tPRMEN

outbyt

Output another rull & tCVAL

resptr
"out

"out

s tCVAL

outbyt

Output rnull string

=R3=D10

=CLRPRM

=EXPPAR

3 Not a Legal string expr?
EDTp15
expression found & output

Clear PRMCNT nibble

* Now check for & disallouw user-defined functions
¥ D1 no

cval

EDTp15

EDTp20

longer

D1=(5)
A=DAT1

2A#0
GOYES
GOSuUB
GONC

GOSBVL
DO=C

GOSuB
GOSBVL
LCHEX
?4=C
GOYES

LCASC
?A=C
GOYES
LC(1)
724=C
GOYES

GOSBVL
A=DAT1
LCHEX
?A=C
GOYES
78T=1
GOYES

needed - either restored from R3 or LEXPTR
=PRMCNT '
1

P User-defined function found?
EDTpl5

resptr
CVAL (B.E.T.)

=D1C=R3 Restore D1/D0O

"out

sGNXTCR
oD
B

nsgprm

\"\
B
mSgprm
\2\
B
mSgprm

Output leading "

Don’t allow imbedded quotes

=QUT1T+
B
oD

B
EDTp25
9 Command string parse?
EDTp20

* File specifier parse

17-27

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

EDTp25

"out

outbyt
*

resptr
*

numck

errxl

syntxe

RSEpPIn

comck+

LCASC
?2A=C
GOYES
LCASC
2A4C
GOYES
GOSUB
GONC

LCASC
GOVLNG

GOVLNG

GOVLNG

ST=1
GOVLNG

ST=1
GOVLNG

GOSBVL
RINC
GONC
STITLE

\ A\
B
EDTp25

\\
B

EDTp20

"out

cval

\"\
=QUTBYT

(B.E.T.)

Output trailing *

=RESPTR

=NUMCK

4
=SYNTXe Syntax error

4

=]VPARe Invalid Parnm

=COMCK+

syntxe (B.E.T.)
REPLACE# Keyword Parse

FEHHERREE3630133303633636269615303030363636336363630336EE0H0EEOOEIXOEO0EHHOOHE

AFEH33363063330336306363056200336003300t306336363006t

F
E
E
I
I
E
E
E
E
S
L
L
L
E
L
I
E
T
E
R
E
E
R
E
S

Name:

Exit:

Uses:

Category:

Purpose:

Parses

Entry:
P

REPLCp - REPLACE#, DELETE#, INSERT# Parse

STPARS

REPLACE#, DELETE#, and INSERT# statements

= 0
D1 past tREPLC, tINSRT, or tDELET

P

Calls:

Detail:

- 0

#CK, NUMCK, COMCKO, OUT1TK, STRGCK

A-C, D1,D0, S0-S3,S7,S8, R3

REPLACE# <channel#>, <record#»>;<string expr>
INSERT# has same syntax as REPLACE#

DELETE# <channel#>,<record#>»

17-28

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

F
E
X
I
E
E
L
L
I
L
E
Z

DELETp
*

INSRTp
REPLCP

Stk 1lvis:

History:

09/12/83

ST=1

GOSBVL
GOC
D1=D1+
GOSUB
GOSUB
GOSUB
7ST=1
GOYES
LC(2)
2404C
GOYES
GOSBVL

5

S.u.

=#CK

errxl
2
numck
comck+
mumck
8
resptr
s tSEMIC
B
syntxe
=0UT1TK

GOVLNG =STRNGP

Modification

No # ?
Step over #

Parse channel no.

Output tCOMMA; error if not found
Parse records#

DELETE# parse?

Output tSEMIC

STITLE EDTEXT Keyword Decompile

Decompiles EDTEXT statement

D(A) contains end of available memory (AVMEME)

¥

** Name: EDTXTd
*%

** Category: STDCMP
¥

** Purpose:
*%

*%

* Entry:
** P = 0

** D1 past tEDTEXT
¥

*%

** Exit:
*3 P = 0

** via OUTEL1
¥

¥* Calls; OUTBYT, EXPRDC

17-29

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*%

" Uges: A-C, RO-R2, D1,D0, SO,S3,S8,S10,S11
*#

H Stk 1lvls: 5
#*%

** History:
**

** Date Programmer Modification

» 09/12/83 S.U, Urote routine.
*
FA3TIIKRNIII3HHI033I3HHHHHEEE-

D1=D1+ 16 Step tLITRL, \EDTEXT\, tPRMST
GOSBVL =EXPRDC
D1=D1+ 2 ' Step over tCVAL
LCASC \,\
GOSUB outbyt

GOSBVL =EXPRDC
D1=D1+ 4 Step over tCVAL, tPRMEN

. GOVLNG =0UTEL1

STITLE REPLACE# Keyword Decompile
363RTKAMMNIRRTTNNINNR
FFEHHHEIIE333336333M-III3IIHHHHHHEIIR

Name: REPLCA - REPLACE#, INSERT#, DELETE# decompile

Category: STDCMP

Purpose:
Decompiles REPLACE#, INSERT#, DELETE# statements

Entry:
P = 0
D1 past tREPLC, tINSRT, or tDELET

D(A) contains end of available memory (AVMEME)

Exit:
P = 0
via FIXDC

Calls: OUTBYT, EXPRDC

Uses: A-C, D1,D0, RO-R2, S0,S3,58,510,511

F
E
E
E
R
I
T
E
L
I
L
R
E
R
T
E
L
I
R
I
R
E
R
I
X

** Stk 1lvls: 5
%

¥* Higtory:

17-30

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

%

** Date Programmer Modification
KR oee

x* 09/12/83 S.U, Urote routine
i
KHHHIEIIKNII3333336336633IKIHIEKI3333X

RNKRNFHIHHHIEHETIHHIFHHHHHIHHIHTEHIHIRHH

*

DELETd

INSRTd

REPLCA LCASC \#\

GOSUB outbyt
SCRLLd GOVLNG =FIXDC

*

ARIIIIIIFKHHHHIIIKRKNI

IHHHHHIHIEHIHITHHII3HAIFHIHIHHHHHHHI3%%

**

¥* Name: POSFIL, POSIXT - Position Memory Text File to Record
**

*¥% Category: FILUTL
**%

¥* Purpose:
** Position memory text file to given record. File is
*% indicated by channel number (POSFIL), or file header
o (POSTXT).
*x

** Entry:
** A(B) = Channel number (POSFIL only)
** A(A) = File header address (POSTXT only)
** R1(A) = Desired line number (first line = line 0)
*x P - 0
*%

** Exit:
** HARD ERROR EXIT if Channel # not open (“File Not Found')
% ELSE:
e sBADRC = Set if D1 is positioned at a bad record
x* R1 = Entry condition,
* P = 0

% Carry clear: Desired record found
** D1 @ Abs address of start of line
** DO @ Abs address of start of NEXT line
il RO = Record number of last record in file
*% B(S) = File protection nib from FIB
** D(A) = Abs address of EOF
** D(S) = Device code of file (POSFIL only)
** SIMID1 = Fib address (POSFIL only)
** Carry set: Desired record NOT found
% sEOF = Set if D1 is positioned at EOF as defined
% by file chain
*x C(A) = Error code;
*% File is not in memory (POSFIL only)

17-31

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

P
I
E
E
R
I
T
I
I
I
E
E
L
L
E
E
R
E
R
I
E
E
I
I
T
L
E
L
L
I
E
S
:

*%

Uses.
Inclusive: A, B, C, D, RO, DO, D1, sEOF, sI/OBF, sBADRC

File is private
File is not TEXT file
Channel number not found
Premature EOF ("End of File")

= 0 if requested line is not in file, D1 is
positioned at EOD or EOF. D1, D, and Rl
exit conditions are valid.

Calls: LOCFIL, FILSK+, FRCRDr

e & 0o 5 0 o

STMID1 (POSFIL only)

Stk 1lvls: 3

Algorithm:
Locate file FIB, return error if channel # not found
Verify that file is in memory
Fetch file header
Verify that file type is TEXT
Verify that file is not private
Compute file start, EOF
Call FRCRDn to locate record
Set up exit conditions

History:

Date Programmer Modification

09/16/83 F. Hall Designed and coded

FHFEFHIHIE333HHIR16333K366X

F3KIII3HHHHIHHFHIEIHHHHTHHK3IAXA

s1/0BF
*
**

**

*R

*%

%%

*%

**

*

*

POSFIL

EQU 10

Locate file FIB, return error if channel # not found
Verify that file is in memory
Fetch file header
Verify that file type is TEXT
Verify that file is not private
Compute file start, EOF
Call FRCRDn to locate record
Set up exit conditions

GOSBVL =FIBADR Find FIB address (or error out)
D1=D1+ =0PROTD Read protection nib
A=DAT1 S . into B(S)
B=A S .

GOSBVL =7PRFIL Private file?

17-32

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

POSTXT

POSF40

POSF60

RTINC
D1=D1+

C=DAT1
D=C
CaC+C
GOC
D1=D1+

A=DAT1
D1=A
D1=D1l+
C=0

C=DAT1
C=C-1

7C#0
GOYES

D1=D1+

GOSBVL
D=C
D1=D1+
CD1EX
A=R1
GOSUB
RTNNC
C=0
?ST=0

RTINYES
LC(2)
RTNSC

LC(4)
RTINSC
LC(4)
RTNSC

. RINYES
(oDEVCDL) - (oPROTb) Read device code
S .

S .

S Error out if external file
POSF40 .

(oFBEGb) - (oDEVCb) Read file address
A

Check file type
oFTYPh .
A
4

A .
A - Not TEXT file?
POSF60

(oFLAGh)- (oFTYPh) Read protection nib
=FILSK+ Compute EOF into D

g Cémpute data start into C

Récql} desired record #
FRCRDr Position to desired record

Return if record found

QBADRC Was the problem EOF or EOD?

=eEOFIL "End of file"

=eFACCS "Invalid access"

=eFTYPE “Invalid File Type"

FHEHHHIHHEHHEHIEIHIKHI3KIRKOO0

KAHAHAHHIKKKHHTOHFHIIHIHHIHIARAAR

%

¥ Name: FRCRDn, FRCRDr - Find Given TEXT Record
*%

¥ Category: FILUTL
*%

** Purpose:
** Given TEXT file record #n (n>0), or #r (r»>=0), it locates
** that record.
**

** Entry:
*% A(A) = Desired record number. First record is
** 1 for FRCRDn, 0 for FRCRDr.
** C(A) = Abs address of file start of data
** D(A) = Abs address of EOF according to file chain
*% P s 0

*%

17-33

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

* Exit:
F
E
I

I
I
R
I
R
R
E
I
E
E
L
I
R
L
E
I
I
E
R
I
I
T
I
R
E
R
R
E
I
I
R
Y
I
Z
R
S
I
C
Z

sEOF

sBADRC

RO = Record number we are positioned at (FFFEF if
no records in file; end of data mark is not
counted as a record)

Desired record number (>=0)
Number of bytes of data in line according to

line length header (FFFEF if incomplete
header in corrupt record)line

Set iff D1 is positioned at EOF according to
file chain

Set if current record extends beyond EOF,
This indicates file is corrupt, can occur
for two reasons:
a) Only 1 byte left in file (line header

requires 2 bytes)
b) Line header present but record length

extends beyond EOF

R1
B(A)

P = 0
Carry clr: Desired record found

Carry set:

Calls:

Uses:

D1 @ Start of desired record
DO @ Start of NEXT record

Desired record NOT found
@ EOF or EOD mark, or start of last record in

file if sBADRC set
D1

PRSREC

A, B(A), C, RO, R1, DO, D1, sEOF

Stk lvls: 2

Algorithnm:

1.0

Save current record = -1

Save current record address

Clear stEOF, sBADRC

Parse record header, return "Not found" if no record
Increment current record #

If current record # = desired record number, then
Return "Found"

If sBADRC is clear, then
Go to 1.0

Else

Return “Not found"

History:

Date Programmer Modificatior.

09/14/83 S.U. Urote routine.

23636333330330333IMR36AKX

17-34

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

FHFERIEHIIEHHIHIHHIHEIHHHHIEHIH

*

FRCRDn A=A-1 A

FRCRDr R1=A

A=0 v

A=A-1 A
RO=A
ST=0 sEQF

ST=0 s8BADRC

FRCR10 GOSUB PRSREC

RTNC
D0=C
A=R0O
A=A+1 A
RO=A
C=R1

?2A=C A
GOYES rtncc

7?ST=1 8BADRC
RINYES
CDOEX
GONC FRCR10

Convert line # to record #
Save desired record number
Save current record number = -1

Clear status

Parse record

Return if no guch record
DO = gtart of next line
Increment current record number

Are we at desired record number?

. return "Found" if so
Return “Not found" if bad record

C = start of next line
Loop again (BET)

TI3HHHIHHHHIFHIHFHIHTHIEX3HH%K¢

FHHHHIHHITRHHIHHHHHHHHHIHHIHHHH

F
E
I
E
R
E
E
R
E
R
L
E
L
E
E
E
R
Y
L
L
L
E
X
E
E

Name: PRSREC

Category: FILUTL

Purpose:

- Parse Text Record Header

Examine the line length header of a TEXT file record to
determine line length for normal record, or presence of

end-of-data (EOD) mark, or presenceof end-of-file (EOF),
or absence of complete line header (corrupt file),

Entry:

c(a) =
D(A) =
P = 0

Exit;
D1 @
D(A) =
P = 0

Carry clear:

Carry set:

B(A) =
C(a) =
sBADRC =

Starting address of record
EOF from file chain

Starting address of record
EOF from file chain

Record exists

Number of bytes of data in record
Starting address of next record
Set if line goes beyond EOF, else unchanged
No record present (at EOF, EOD, or no header)

17-35

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

B(A) = 0 if at EOF or EOD
» -1 if no line length header present

8BADRC = Set if no header present, else unchanged
sEOF = Set if at EOF, else unchanged

Calls: SUPBYT

Uses...... .
Inclusive: A, B(A), C, D1, sEOF, sBADRC

Stk lvls: 1

Algorithm:
Set #Bytes = 0
If current position = EOF then
Set sEOF
Return "Not found”

If line header is incomplete, then
Set sBADRC
Set #Bytes = -1
Return "Not found"

If line header = EOD mark (FFFF), then
Return "Not found"

Compute #Bytes in line
Compute start of next line
If start of next line > EOF, then
Set sBADRC

Return "Found”

A
I
I
I
E
I
I
E
R
L
C
R
E
S
E
E
R
L
L
E
S
E
I
E
R
E
L
L
I
L
S

History:

** Date Programmer Modification
TR ee eecme mmme eoo=o-. --.== --- -- ---- --

** 09/19/83 FH Adapted from code by SU
*#

F3333336336FHHIEEIOHHEIEEEIIOE393K3K3033333EEEREEHHE

F3FHI323333663FHIEHHKHFHFINIIIIEHHIH3KKIKK

PRSREC B=0 A Preset #Bytes = 0
D1=C D1 = start of line
2C>=D A At EOE?
GOYES PRSR10
D1:=D1+ 4 Check if line header present
CD1EX .

2C>D A Line header missing?
GOYES PRSR20 .
A=DAT1 4 Read line header
GOSUB swpbyt Compute B = #Bytes of data
P= 3 .
B=A up .
C=B A Test for EOF, compute #Bytes
B=B+1 UWP

17-36

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

PI

RINC
BCEX

CSRB

C=C+1

C=C+C

C=C+C

AD1EX
D1=A
C=A+C
?2C<=D
GOYES
ST=1

rtncc RINCC
*

PRSR10 ST=1

PRSR20 B=B-1

X
E
I
E
E
R
E
L
E
X
E
R
R
E
L
S

%*
*

*
x
I
x

Name:

Category:

Purpose:

rtncc
sBADRC

sEOF

A
sBADRC

RCDSKP

FILUTL

Return "Not found" if EOD
Restore B = #Bytes, C = #Bytes+1l

Round to even #bytes (LIF stndrd)
Compute total # nibs in record

. #bytes + 2 for header

. #nibs + 4 for header
Compute C = start of next line

.

NOT corrupt record?

Set "Bad record"
Return "Found"

Set EOF flag

Return "Not found"

Set #bytes = -1
Set "Bad record”

Return "Not found"

Record Skip

Skips over a TEXT file record.

Entry:

D1

D(A)
P

Exit:
P

@ Record start (prior to 2 byte length field)
= EOF from file chain
= 0

= 0
Carry clr =»

@ Current record first character (after
2 byte length field)

= Number of bytes of data in record
= Address of next record

D1

B(A)
C(A)
sEOF = 0
SsBADRC = Set iff current record extends beyond EOF

Carry set => No record to skip
= Entry condition, which points either at EOF,

end of data (FFFF), or at an incomplete
line header

= Set iff D1 points to EOF

D1

sEQF

17-37

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

" 6BADRC = Set iff header incomplete, else 0
*

* Calls: PRSREC
%* %*

** Usges: A, B(A), C(A), D1
#*%

» Stk lvls: 2
¥

** History:
%

o Date Programmer Modification
I oe ccmmemceen e-=-~=====- o ==-==-

¥ 09/14/83 SU Urote routine.
** 09/19/83 FH Adapted for FILESZR.
¥*%

NII33FIREEEEEEEHEEEHEEEEHOEHE

AHH3HIII3IIHEIEHHEIIIED2F6IEHHIEI0IIIHIEHIE22320333IEHIEHIIHKK

=RCDSK+ D1=D1- 4 Point to start of record
sRCDSKP CD1EX C = gstart of line

Sr=0 sEOF Preset status

ST=0 sBADRC .

GOSUB PRSREC Parse record

RTNC Return if no record to skip
D1=D1+ 4 Move to first character of record
RTNCC

STITLE SEARCH# Function Execute
%10 CALL SC @ END
*20 SUB SC
*30 DIM S9$(96],5$(96],T$(96],T1$(96)
*¥40 DATA \".@$
*50 DATA ABC
*¥60 R=0
*70 READ S9% @ DISF "Pattern: ";S9%
%¥80 ON ERROR GOTO 270
¥90 READ T$ @ DISP "Target: ";T$
%100 IF S9$[LEN(S9$)]="\" AND S9$[LEN(S9%)-1]#"\\" THEN
* S9-59(1,LEN(S9$)-1]
%110 S$-S9% @ C$-S$(1,1] @ I=1 @ A0=0 @ R=0
¥120 IF C$="" THEN 270
%125 IF C$<>"\" THEN 190
%127 IF S$(2)#"$" THEN 140
%128 IF A0 AND T$<>"" THEN 270 ELSE I=LEN(T$)+1 @ T1$="" @ GOTO 280
#130 IF C$¢>"\" THEN 190
%140 IF S$[2,2)="\" THEN 240
*150 s$=5$(2] @ C$=5$(1,1]
%160 R=NOT R
%170 IF C$=""" AND R AND NOT AO THEN
* AO=1 @ S$=S$([2) @ C$=S$(1,1] @ GOTO 130
%*190 IF R AND (C$="." OR C$="@" OR C$="$") OR C$="\" THEN 240
%¥200 IF C$="" THEN T1$="" @ GOTO 280
%210 FOR I=I TO LEN(T$) @ IF C$=T$[I,I1] THEN 240

17-38

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

%220
%230
*240
*250
¥260
*270
*280
%290
*300
*310
%320
*330
*¥340
*350
%360
*370
*380
%390
*400
*405
*410
%420
*430
%440
%450
*

*460
*470
%475
*¥480
%485
*490
*500
*510
%520
*530
*¥540
*550
*560
¥570
*580
%590
*600
*610
%620
*630
*¥640
*650

IF A0 THEN 90
NEXT I @ GOTO 90
T1$=T$(I] @ CALL SCN(S$,T1$, (R),M)
IF M THEN 280
I=1+1 @ IF NOT A0 AND I<sLEN(T$) THEN 190
DISP “not found" @ GOTO 300
DISP “found: ";T1$
DISP "Start:";I;" Length:";LEN(T1$)
END SUB
SUB SCN(S$,T$,R,M)
DISP S$;" “;T$;R
DIM S1$[96],T1$([96]
S1=1 @ T1=1 @ S3=LEN(S$) @ T3=LEN(T$)
C$=S$[S1,51)
IF C$="" THEN T$="" @ GOTO 640
IF C$#"\" THEN 405
S1=S1+1 @ C$-S$(S1,51)
IF C$="" THEN T1=T1-1 @ GOTO ’EXIT’
IF C$#"\" THEN R=NOT R
IF NOT R THEN 440
IF C$="." THEN 475
IF C$="@" THEN S1=S1+1 @ GOTO 530
IF S$[S1)="$" THEN 510
IF C$4T$[T1,T1] THEN 500
S1=S1+1 @ IF S1>S3 THEN

BEEP 0 @ ’EXIT’: T$-T$[1,T1] @ GOTO 640
T1=T1+1 @ IF T1>T3 THEN 480
GOTO 350
IF T1>T3 THEN 500 ELSE 450
IF R AND S${S1,S1)="@" THEN S1=S1+1 @ GOTO 480
IF R AND S$(S1)="$" THEN 640
IF NOT R AND S$[S1)="\" THEN R=1 @ S1=S1+1 @ GOTO 480
M=0 @ GOTO 650
IF T1>T3 THEN ’EXIT’ ELSE 500
T1=T1+1 @ S1=S1+1 @ IF T1>T3 THEN 500
IF S1>S3 THEN 640
IF NOT R THEN 580
IF S$(S1,S1)="@" THEN S1=S1+1 @ GOTO 530
IF S$(S1,S1]="." THEN 520
IF s$(s1i="$" THEN 640
IF s$[s1,S1)="\" THEN 610
IF s$(S1,S1]=T$(T3,T3] THEN 610
T3=T3-1 @ IF T3<T1 THEN 500 ELSE 580
S1$=5$(S1] @ T1$=T$ (T3]
CALL SCN(S1$,T1$,(R),M) @ IF NOT M THEN 600
T$=T$[1,T3-1]4T1
M=1
END SUB

EJECT
RegExp EQU 0
TopLvl EQU 7

17-39

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

Short
Match
First
Anchor

BackSl

2r89s

2F8A0

2F8AS
2F8AA

2F8AF
2F8B4

2F8B9
2F8C0

pophex

*
X

X
%k

k
%

*
%

%

fltdh
*

SEARCH

SEAROS

SEAR10

EQU
EQU
EQU
EQU
EQU

FUNCRO --
FUNCRO+5 --
FUNCRO+10 --
FUNCRO+15 --
FUNCRO+20 --
FUNCR1+25 --
FUNCDO-2 --
FUNCD1

GOSuB

D1=D1+

GOVLNG

NIBHEX
NIBHEX
NIBHEX
NIBHEX
NIBHEX
NIBHEX
CDOEX

DO=(5)
DATO=C

GOSUB
RO=A
GOSUB

DO=(2)
DATO=A

GOSuUB
DO=D0O+

DATO=A
R1=A

GOSUB

A=A-1
GONC
A=0

ST=0

DO=DO+

DATO=A

A=A-1
GOC

ST=1
CD1EX
R2=C
DO=DO+

D1=(5)

o
O

O
=
M

N
=

-- PC
poplr
16

=FLTDH

0
L
O
O

5

=FUNCD1
A
pophex

pophex

(=FUNCROQ) +5
A

pophex
5

A

pophex
A
SEAROS
A

First
5

A

A

SEAR10
First

5
=STMTD1

C=DAT1 A

Backslash character

Start of pattern

End line #
Start line # (Current Line #)
Start column # - 1

Temp save of STMID1, End of File
Current record pointer
Start of target

5th parm numeric -- channel #
4th parm numeric -- end line
3rd parm numeric -- start line
2nd parm numeric -- start column
1st parm string -- search string
Requires 5 parameters

Save DO in FUNCDO

R0O=Channel #

(FUNCRO+5)=end line #

(FUNCRO+10)=start line#
Save start line# in R1 for POSFIL

Is column = zero?
No, then okay
Yes, then treat it like 1

(FUNCRO+15)=gtart column-1
Is column = one?
No, then don’t set First flag
Yes, then enable anchoring ¢

R2=gtack pointer

17-40

HP-71 Software 1DS - Detailed Design Description
HP-71 Code Examples

b

*

*

*

nferr

adrec

err?

nomtch

poplr

loop

DATO=C
A=RO
GOSUB
GOC
DO=(5)
C=DATO
DO=(2)
DATO=C
C=D
DO=(2)
DATO=C
C=R2
CD1EX
DO=D0+
DATO=C
GOSUB
GOC
DO=(5)
C=DATO
GONC

GOTO
7C#0
GOYES
C=R2
D1=C
GOSBVL
AD1EX
ST=0
R2=A
C=0
GOTO

GOVLNG

A

POSFIL
err?

(=FUNCRO)+20
A

STMID1

>
>

(=FUNCRO) +20
A

5
A

SCNPRP

nomtch

(=FUNCRO) +10
A
loop

bserr

A

mferr

=POPMIH

Short

u
return

=POP1R

(FUNCRO+20) =STMTD1
Recall channel #

Find start line #

Recall value for STMID1

Restore STMID1

(FUNCRO+20)=End of file
Recall stack pointer
Dl=stack pointer

(FUNCR0O+25) =Current record pointer
Prepare to SCAN

Point to FUNCRO+10
Read Current record #

(B.E.T.) Start loop

Recall stack pointer

Discard pattern string from stack
A(A)=Stack pointer

Return result = 0

C(A)=Current record number, DO=FUNCRO+10
D0=D0-
A=DATO

?24<C
GOYES
DO=D0+

C=DATO

D=C

D0O=D0+

C=DATO
GOSUB
GOC
7ST=1
GOYES
DATO=C
D1=D1l+

5
A

A
nomtch

15

A

A

5

A
PRSREC
nomtch
sBADRC
badrec

A
4

Point to FUNCRO+5
Read End record #

Past last record to be searched?
Yes, then report no match
Point to FUNCR0+20
Read end of file
D=End of file
Point to FUNCRO+25
Read current record pointer
Parse record length
If EOF then report no match
Pointing at a bad record
Yes, then error out
Update current record pointer to nxt 2?
Point past record length

17-41

HP-71 Software IDS - Detalled Design Description
HP-71 Code Examples

SEAR30

nxtrec

CD1EX
DO=D0O+

DATO0=C
D=C

CsC+B

C=C+B
R3«C
D0=DO-
?2ST=0
GOYES

C=DATO

?B<=C
GOYES
D=D+C

D=D+C

D0=D0-

C=DATO
D1=C
B=C

GOSUB

GONC
ST=0

D0=(5)
C=DATO

C=C+1

DATO0=C

GOTO

S
>
>
0
,

15
First
SEAR30

A

A

nxtrec
A

A

15
A

A

SCAN
fndmtc

First
(=FUNCRO)+10
A

A
A
loop

FIIIEHIIEIE33K-

fndmntc DO=(5)
C=0
C=DATO
GOSUB
SETHEX
R3=C
D0=(2)
C=0
C=DATO
CDEX
A=R1
D=C-D
C=A-C
CSRB
GOSUB
SETHEX
CDEX

CSRB
C=C+1

(=FUNCRO) +10
u

A
hxdcuw

(=FUNCRO) +30
u

A

A

A
A

hxdcu

A

A

CsStart of target

Point to FUNCRO+30
Remember start of target

D points to start of target

Point past end of data in record
R3 points to end of target
Point to FUNCRO+15
Is this the first record?
No, then don’t skip any columns
Read start column - 1

Start column > last column?
Yes, then skip to nex'. record

Point to starting column in target
Point to FUNCRO
Read pointer to start of pattern
Free space gstarts here
B(A)=Pointer to start of pattern
Scan for pattern in target
If found, then return result
No longer First
Point to FUNCRO+10
Read current record number

Increment current record number
Update current record number

Loop back to check another record

Point to FUNCRO+10

Read current record number

Convert to decimal

Save record number

Point to FUNCRO+30

Read start of target

C(A)=Start of match,D(A)=Start of tar??

D(A)=First char of match
C(U)=Length of match
C(W)=Length of match in bytes
Convert to decimal

D(A)=Length of match in decimal,
C(A)=First char of match in hex nibs
C(U)=First char of match in bytes
Convert to option base 1

17-42

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

%k
%k

%k
Xk

3k
Xk

3k
Xk

Xk
*k

3k
3k

¥k

GOSUB hxdcu Convert to decimal
C=R3 Recall record number
CSL U
CSL U
CSL U Make room for start col
C=A X Copy in start col
CSL u
CSL u

CSL U Make room for match length

LCHEX 008 Initial exponent before normalization
CDEX X Copy in match length, D(X)=Exponent
P= 14

NRMOO CSL u Shift one digit
D=D-1 X Decrement exponent

?2C=0 P Is number normalized?
GOYES NRMO0O No, then keep shifting
C=D X Yes, then copy exponent back
SETHEX

return A=R2
7?ST=0 Short
GOYES retrnl
A=A+1 A

A=A+1 A
retrnl D1=A

D1=D1- 16

DAT1=C U
DO=(5) =FUNCD1
A=DATO A
DO=A

GOLONG expr

SCNPRP -- Pops the pattern string off stack (D1 points to string??
Exit: R2 points to end of string

Short set iff R2 has been adjusted because
of a trailing backslash

RO is (AVMEMS)+21
D1 and (FUNCRO) = Start of pattern
Carry set iff pattern was “" or "\"

Uses: A(A),C(A),DO,R2,ST(Short)

SCNPRP ST=0 Short

GOSBVL =REVPOP Reverses string and pops it
CD1EX
D1=C
DO=(5) =FUNCRO

DATO=C A FUNCRO=Start of pattern
C=C+A A

R2=C R2=End of pattern

17-43

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

SCNP10

W
3%

3k
3k

%k
%k

>k
Kk

k
Kk

¥k
k

3k
3%

%k
¥k

Xk
7240 A
RINYES

D0=C

DO=DO- 2

A=DATO B

LC(2) BackSl
244C B

GOYES SCNP10

D0=D0- 2
AD1EX

D1=A
CDOEX

24>=C A
RINYES
D0O=C

A=DATO B

LC(2) BackSl
?2A=C B
GOYES SCNP10

C=R2

Is pattern the null string?
Yes, then no match found

Read last char of pattern

Is the last char a backslash?
No, then skip
Back up to next to last char

A=Start of pattern
Cs=End of pattern - 4

Is the string at least 2 chars?
No, then no match found ("\” is illeg??
Point to penultimate char
Read perultimate char

Is it a backslash?
Yes, then leave pattern alone
No, then delete trailing backslash

Shorten pattern to eliminate
backslash

Remember that it was shortened

Calculate (AVMEMS)+21 for
available memory checks later
Save this in RO

SCAN is the search driver, it will try to find the pattern strin??
in the specified target string

Entry:

Exit:

B(A) = Start of pattern
R2 = End of pattern

D(A) = Start of target
R3 = End of target

D1 = stack pointer (high end of available memory)
RO = (AVMEMS)+21
First should be set only if anchor should cause

no match (ie first line of search and not first
column in target line)

No match found:
Match found:

D(A) =

Carry set
Carry clear and

Start of match

Rl = End of match

17-44

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

SCAN

L125.1

*

L125.2

MATCH+

L130

L190)

L140

L150

L160
L170

ST=0

ST=0
GOSUB
LC(2)
74#C
GOYES

DO=D0+

A=DATO

LCASC
744C
GOYES
DO=DO0+
ADOEX
C=R2
7A4C
GOYES
C=R3

75T=0
GOYES
7CH#D
RINYES
D=C

R1=C
RTNCC

GOSUB

LC(2)
744C

GOYES

A=B

DO=A
DO=DO+

A=DATO

LC(2)
?24=C

GOYES

B=B+1

B=B+1
GOSUB
?2ST=0
GOYES
7ST=1

GOYES
GOSUB
LCASC

Anchor

RegExp
PATCHR

BackS1

B

L190]

2

B

\$\

L140

L140

Anchor

L125.2

A

A

PATCH+

BackS1
B

L190

A

2

B

BackS1

B

L240})

A

A
RETOGL
RegExp

L190.2
Anchor

L190

PATCHR

A\

Not anchored to start of line
Regular expressions off
Get first pattern character

Is it a backslash?
No, then skip
Point to second character
Read second character

There must be a second character

since SCNPRP would not have alloued
just backslash.

Is second character a $?
No, then continue

Is second character the last?
No, then okay
Yes, then "\$" returns .LLLO0O
where LLL is the target string
length plus 1.
Are wve anchored?
No, then match eol
Is start = end?
No, then \"$ doesn’t match
Start of match = Past end of string
End is same
Point D1 to end of string
Return indicating success
Move to next char and read it

Is it a backslash?
No, then skip checking special chars

Point to next char (temporarily)
Read next char

Is it a second backslash?
Yes, then call SCANSB
Move to next character

Toggle regular expressions flag
Are regular expressions active?
No, then skip looking for special cha??
Has anchor been specified already?
Yes, then treat = like any other char
Get current pattern char
No, then check for ~

17-45

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

L1390

L190.1

L240)

L190.2

L200

L210

L240

7A4C
GOYES
2ST=1
RINYES
ST=0

ST=1
GOTO
?2ST=0
GOYES
GOSUB
LCASC
24=C
GOYES
LC(1)
724=C
GOYES
LC(2)
724:C
GOYES
GOSUB
LC(2)
7A=C
GOYES
C=R2
7B<C
GOYES
C=D
GOTO
C=R3
2C<=D
RTNYES
C=D
DO=C
C=DATO
7A=C
GOYES
7ST=1
RTNYES
D=D+1

D=D+1
GOTO
ST=1
GOSUB
GOC
7ST=1
RTINYES
D=D+1
D=D+1
C=R3
2C<¢=D

B

L190.1

First

RegExp

Anchor

L125.,1
RegExp

L190.2

PATCHR

\A\
B
L240

\$\
B
L240

\@\
B
L240

PATCHR

BackS1

B
L240

A
L210
A
MATCH+

A

A

B
B
L240
Anchor

A
A
L210
ToplLvl

SCANSB

RTNCC
Anchor

A
A

A

Is it an *?
No, then check for other special char??
Is anchoring alloued?
No, then return indicating no match
Clear regular expression flag, it wil??
be turned back on later
Now anchored

Loop back to start

Are regular expressions active?
No, then skip checking for spec. char??
Get current pattern string

Is current char a .?
Yes, then call SCANSB

Is it a $7?
Yes, then call SCANSB

Is it an @?
Yes, then call SCANSB
Read current pattern char

Is it a backslash?
Yeg, then call SCANSB
Recall ptr to end of pattern
At end of pattern?

No, then continue looking
Yes, then match up to this point

Recall ptr to end of target
At end of target?
Yes, then return indicating no match

Point to target character
Read target character
Does pattern match target char?
Yes, then call SCANSB
No, then is pattern anchored?
Yes, then return indicating no match
No, then move to next target characte??

See if this target char matches patte??
Calling SCANSB from top level

Return if match found

Is anchor set?
Yes, then return indicating no match

No, then move to next target characte??
Recall ptr to end of target string
At end of target?

17-46

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

RINCC

E

S
Sm

m
m
m
M
m
m
M
m
i
m

w

Exit:

Uses:

B
o

dk
k

Ak
ok

3k
k

k
%k

3k
%k

Kk
3k

3k
%k

3k
%

3k
Xk

3k
kK

3k
Xk

3k
Xk

%k
Xk

Xk

memerr
SCANSB

RINYES
GONC
RTNCC

L1930

Register usage:

Yes, then return indicating no match
(B.E.T.) No, then see if next char ma??

SCANSB 1s a recursive subroutine,

ST(TopLvl) = Set if called at top level
RO = (AVMEMS)+21

Pointer past end of matched string. (TI3)
Pointer past end of search string.
Pointer past end of target string.
Current position in search string. (S1)
Current position in target string.

D1 = Stack pointer.
RSTK = Return address

R1
R2
R3
B
D (T1+T2)

RegExp = Set iff regular expressions are active

In the table above, lines with an E are entry conditions
and lines with an S are stacked for each recursion

Match(S9) and Carry set iff match found
R1 = Points past match string (if matched)

Not changed if no match found
ST(TopLvl) clear

A,C,R1,D0,50,S7,59,510,S11,available memory

GOVLNG

CD1EX
D1=C
A=RO
?A>C
GOYES

D1=D1-
C=R1
DAT1=C
D1=D1-

C=B

DAT1-=C
D1=D1-
C=D
DAT1=C
75T=1
GOYES

C=R1

=MEMERR

mnemerr

>
P
>

>
0
P
>

TopLvl
SCNSB1

Report insufficient memory

Copy stack pointer to C
Recall limit of avail mem
Enough memory?
No, then error

1 <- R1

2 <- B(A)

3 <- D(A)

17-47

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

SCNSB1

L340

L350
L360

PATCH+

PATCHR

*

GOYES
C=D
R1=C
GOTO

B=B+1
B=B+1
A=B
DO=A
A=DATO
RTNCC

oplLvl

I
H
>
D
>

D
>

-
2

L370

L640

>
>
>

B

D(A)=Ptr to start of target for sub

4 <- RSTK

5 <- RegExp (S0)

Copy end of target to end of match

Recall end of pattern

At end of pattern string?
No, then continue
Yes, then target up to this point..,
...has been matched
Return and indicate success

Increment pattern pointer

Copy pattern pointer to A
Then to DO
Read the pattern character
Return

* RETOGL Toggles regular expressions on/off
RETOGL 7ST=1 RegExp

RETOGO

L370

L380
L3390

L400

GOYES
ST=1
RIN
ST=0
RINCC

GOSUB

LC(2)
284C

GOYES

GOSUB

C=Re

2C>B
GOYES

D=D-1

D=D-1
GOTO

LC(2)
?24=C

RETOGO
RegExp

RegExp

PATCHR
BackS1

B

L405

PATCH+

A
L400
A
A
EXIT

BackS1

B

Is the RegExp bit set now?
Yes, then clear it
No, then set it
Return

Clear RegExp bit
Return

Get the current pattern char

Is it a backslash?
No, then continue
Skip backslash and read next char
Recall end of pattern

At end of pattern?
No, then continue
Yes, then have matched
not counting current target char
Return indicating match

Is it a second backslash?

17-48

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

L405

L410

L475

L420

L430

L440

L500

L450

EXIT

L640

L460

GOYES
GOSUB
?25T=0
GOYES

LCASC

204C
GOYES
C=R1
?D<C

GOYES
GOTO

LCASC
7A4C
GOYES
GOTO
LCASC
7A4C
GOYES
C=R1
7D<C
GOYES
GOTO

C=D
DC=C
C=DATO
7A=C
GOYES

ST=0
GOTO

B=B+1

B=B+1

C=R2
7B<C
GOYES
C=D

C=C+1

C=C+1

R1=C

ST=1

GOTO

D=D+1
D=D+1
C=R1
?D>=C
GOYES

L405
RETOGL
RegExp
L440

\A\
B
L420

A

L450
L500

\@\
B
L430
L550.1
\$\
B
L440

A
L500
EXIT

A

B
B
L450

Match

SCNRTN

L460

>
>
>

Match
SCNRIN

L480

Yes, then don’t toggle RegExp
No, then toggle RegExp

Are regular expressions active?
No, then skip looking for
special characters

Is it a .?
No, then continue
Yes, then recall end of target
Is there a character to skip?
Yes, then okay
No, then indicate match not found

Is it an @7
No, then continue
Yes, then process it

Is it a $?
No, then continue
Recall end of target
At end of target string?
No, then report failure
Yes, then report success

Copy target string pointer to C
then to DO

Read current target char
Does this match pattern char?
Yes, then advance to next
No, then report failure
Indicate match not found

Return

Advance pattern ptr to next char

Recall end of pattern
Past end of pattern?
No, then continue
Copy current char ptr to C

Move past current char

Set this as end of match
Indicate match found
Return

Advance target pointer

Recall end of target
Past end of target?

Yes, then check for end of pattern

17-49

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

L480

L480.2

L430NR

L520

L550.1

L530

L540

L550

L560

GOTO

GOSuUB

BsB+1

B=B+1

7ST=0
GOYES

LCASC

2A4C
GOYES

C=R2

7B>=C
GOYES
GONC

LCASC
2404C

GOYES
C=R2
?B:=C

GOYES

GONC

LC(2)
2A04C
GOYES
ST=1
GONC

D=D+1
D=D+1
C=R1
?2D>=C

GOYES

B=B+1

B=B+1
C=Re

7B»>aC

GOYES

?ST=0

GOYES
GOsSuB

LCASC

2A4C
GOYES
GONC

LCASC
?A=C

L350

PATCHR
A
A
RegExp

L490NR
\e\
B
L480.2

A
L640
L480

\$\
B
L500

A
L640

L500

BackS1
B
L500
RegExp
L480

No, then continue processing pattern

Recall current pattern character

Increment to next pattern char

Are regular expressions active?
No, then check for \

Is it an @?
No, then look for $
Recall ptr to start of pattern

At end of pattern?
Yes, then report success
(B.E.T.) No, then loop back to
check for more @’s or §
Yeg, then check for §
Is it a $?
No, then no match found
Yes, then check if its the end of pat??
At end of pattern?

Yes, then report success
target string matchs
(B.E.T.) No, then no match found

Check first for backslash
Is it a backslash?
No, then report no match found
Yes, then turn on regular expressions
(B.E.T.) Now check if @ or $§ follous

Increment target ptr to next char

Recall end of target
Past end of target?

Yes, then no match found
Increment pattern ptr to next char

Recall end of pattern

Past end of pattern?
Yes, then report match
Are regular expressions active?
No, then skip checking for special ch??
Recall current pattern character

Is it an @?
No, then contirue
Yeg, then ignore it
(Two @’8 in a row are same as one).

Is it a .?

17-50

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

L570

*

L580
L580.1

L590

L600

L500]
*

L610
L620

SCNRTN

GOYES
LCASC
704C
GOYES
C=R2
C=C-1
C=C-1
7B<C
GOYES
GOTO

GOSUB
LC(2)
?2A=C
GOYES
C=R1
D0=C
DO=DO-
C=DATO
?2A=C
GOYES
C=R1
C=C-1
C=C-1
R1=C
7D<C
GOYES

GOTO

GOSuB
GONC
GOTO

CaST

C=DAT1

ST=C

D1=D1+

C=DAT1

RSTK=C
D1=D1+

C=DAT1
D=C
D1=D1+

C=DAT1
B=C
D1=D1+
C=DAT1
D1=D1+

L520
\$\
B
L580.1

A
A
A
1L580.1
L640.

PATCHR
BackS1
B

L610

N610

>
>

A
L580

L500

SCANSB
L600
L640

>
-

N
>

P
P
D
>
D
A
D
>
I
>
O
M

Yes, then skip a target char

Is it a $?
No, then continue
Yes, then recall end of pattern
Calculate addr of last char in patter??

Is this the last char in pattern?
No, then continue
Yes, then report match found

Recall current pattern character

Is it a backslash?
Yes, then do recursion
Recall end of target
Point past end of target
Back up to last char in target
Read last char in target
Does this match the first pattern cha??
Yes, then do recursion
Recall end of target

Move it back one character
Save this as new end of target
Is the target pointer past end?
No, then keep looking for a match
with this shorter @ match field
Yes, then no match found

Ready for recursion
Make recursive call
Resume search
Report success

5 -> RegExp (S0)

4 -> RSTK

3 -> D(A)

2 -> B(A)

17-51

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*
¥

%
%k

3k
%k

Kk
2k

k
¥k

¥k
Xk

Xk
Xk

7ST=1 Match Was a match found?
RTINYES Yes, then skip restoring Rl

Note: R1 was left pointing at end
of match by subroutine

R1=C 1 -> R1
RTNCC

hxdcw GOVLNG =HXDCU

EJECT

The string returned is in the follouwing format on the stack??

21 20 1918 1312 76 1
b-bbbto—————pmm———— +

l P6 | (p5|p4l P3 | P2 | P1 |
temrmceaetomtmmprmenm$mm————tommmmm— +

|
| Command
| Option char
Error code

Comma EQU 11
NEXT ST=0 Comma

NEXT+ B=0 A
NEXT00 CD1EX

D1=C
72C<=D A At eol?
RINYES Yes, then char type=0
D1=D1- 2 Point to next char
A=DAT1 B Read next char

Lc(2) \ \
?24=C B Is it a blank?
GOYES NEXTO00 Yes, then ignore it
?ST=1 Comma Already had a comma
GOYES NEXTO05 Yes, then don’t allou another
LC(1) \,\
ST=1 Comma Nou have a comma or don’t care anymor??
?2a=C B Is it a comma?
GOYES NEXT00 Yes, then ignore it

NEXTO05 B=B+1 A Char type=1?
GOSBVL =DRANGE Is it a digit?
GONC NEXTDG Yes, then char type=1
R=B+1 A Char type=2?
Lc(2) \.\
72A=C B Is it a .?
RTNYES Yes, then char type=2
LC(1) \#\
7A=C B Is it a #?
RTNYES Yes, then char type=2

17-52

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

B=B+1 A Char type=3?

LC(1) \+\
7A=C B Is it a +?
RTINYES Yes, then char type=3
B=B+1 A Char type=47?

LC(2) \?\
?24=C B Is it a "7"?
RINYES Yes, then char type=4

NEXT10 B=B+1 A Char type=5
RINSC

NEXTDG GOSUB ZEROS
ZerPrm EQU 10

ST=0 ZerPrm
C=A B
B=C u

NEXTD1 CD1EX

D1=C
72C<=D A
GOYES NXTD3.

D1=D1- 2

A=DAT1 B

GOSBVL =DRANGE
GOC NEXTD3
BSLC

BSLC

?7B=0 P
GOYES NEXTD2
GOSUB NINES
B=C U
A=B A

NEXTD2 B=A B

GOC NEXTD1 (B.E.T.)
NINES LCASC \999999\

RTNSC

NEXTD3 D1=D1+ 2 Reinclude this character
NXTD3. GOSUB ZEROS

A=B u

284C U
GOYES NEXTD4

ST=1 ZerPrm

NEXTD4 GOSUB NINES

24¢=C U

GOYES NEXTDS

A=C u

NEXTD5 B=0 A
GOTO NEXT10

ZEROS LCASC \00000000\
RTNCC

17-53

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

EDPARS

STATE1

NIBHEX
CDOEX
DO=(5)
DATO=C
CD1EX
R3sC
LC(4)
RO=C
GOSBVL
CON(2)
DO=(5)
C=RO
GOSBVL
C=R3
D1=C
GOSBVL
CD1EX
DO=C
C=A
GOSBVL
D1=(4)
DAT1=A
D1=D1+
DAT1=A
D1=A
GOSBVL
CDOEX
DO=(5)
DATO=C

GOSUB
R1=C
R2=C
R3=C
C=0
LCASC
RO=C
GOSBVL
CLRST
ST=1
GOSUB
7ST=1
GOYES
GOSUB
REL(3)
REL(3)
REL(3)
REL(3)
REL(3)
REL(3)

411

(=FUNCDO) -5
A

#F0%ecmds

=FPOLL
=pTRANS
=SCRTCH

=TBMSG$

=POP1S

A
A
=D1@AVS
=FUNCDO
A
5
A

=MOVEU3

=AVMEME
A

ZEROS

S
A

«D=AVMS

Comma
NEXT+

ZerPrn
ZEROP1

TYPIMP
EDPERR

SV1IN-2
Sv1.-2
EDPERR
SV5-5
SV4-4

One string parameter

Save PC

Save stack pointer in R3
Message mumber of cmd letters

Poll will change RO to some other
message mumber if translation occurs
Put cmd letters in SCRTCH memory

Initialize SCRTCH to cmd letters

Restore stack pointer
Get string from stack

DO=Start of source

C(A)=Length
A= (AVMEMS)

Initialize FUNCDO as end of option st??

Initialize FUNCD1 as start of opt str??
D1=Start of dest

Update (AVMEME) to stack pointer
(Parameter has been popped off)

Initialize parameters P1,P2,P3

Initialize parameters P4,P5,Error

Clear status bits

Eol
Digit
. Or #
+

?
®

Letter

17-54

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*

ZEROP3
ZEROP2
ZEROP1

SV1, ' N

SVIN-2

STATE2

SV3-6

STATEG

Sv5-8

STATES

STAT9]
*

EDPERR

EDPER?

GOSUB
REL(3)
REL(3)
REL(3)
REL(3)
REL(3)
REL(3)

75T=1
GOYES
R3=A
ST=1
GOSUB
?B=0
GOYES
LCHEX
7B#C
GOYES
75T=1
GOYES
GOSUB
GOSUB
7B#0
GOYES
GOTO

C=RO
P'

LCHEX
RO=C
P=

GOTO

15
EDPER?

ZEROS
B
U

0
NEXT
ZerPrm

ZEROPZ2
TYPIMP
STATE9
SV2N-3

Sv2.-3
EDPERR
SV6-5
Sv4-4

ZerPrm
ZEROP3

2
NEXT
P
STAT9)
5
P
EDPERR
4

EDPERR
SV5
NEXT
P
EDPERR
STATES

First parameter found

Eol
Digit
. or #
+

2

Letter

Is parameter zero?
Yes, then error

Third parameter found

Option already specified?
Yes, then error

Is it an Eol?
No, then error

17-55

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*

#*

*

* Translate from
*

SV5

SVeN-3

STATE3

GOYES
7B<C
GOYES

A

NEXT
4

P
SV5-5
P
EDPERR

Fall into Sv4-4

Sv4-4 GOSBVL =CONVUC

SV4-41

SV5-5
STATES

DO=(5)
B=A
LC(2)
Pa

A=DATO
7A=B
GOYES
C=C+1
DO=D0+
P=P-1
GONC
C=RO
C=B
Pt

LCHEX
GOTO

GOSUB
GOSUB
LCHEX
?B=C
GOYES

*SCRTCH
A
M\
11

15
4

EDPER?

SV5
NEXT
5
P
SV4-4

Fifth parameter found

Second parameter found

CDEFHILMPRST to
ABCDEFGHIJKL

Loop back fur next possible cmd

Return invalid command letter

Error in parameter 4 (command)

17-56

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*

#*

*

*

* Do we need to indicate that this parm has been found????

SETP6S

SV4-43

SV4-42

STATEA4

SV6-7

SV6-71

GOTO

CD1EX
D1=C
DO=(5) =FUNCD1
DATO=C
ST=1
RIN

GOSuUB
D0=DO-
C=DATO
D1=C
ST=1

GOTO
A=RO
A=C
RO=A
P:

LCASC
74=C
GOYES
C=C+1
?24=C
GOYES
GOSUB
GOSUB
REL(3)
REL(3)
REL(3)
REL(3)
REL(3)
REL(3)

D1=D1+
A=RO
LCASC

7A4C
GOYES

GOSuUB

D1=D1-
CD1EX
D1=C
72C<D

GOYES
A=DAT1
LC(2)

EDPERR

A
5

SETP6S
5
A

5

STATES

B

0
\I\
B
SV4-43
A
B
SV4-43
NEXT
TYPJMP
STATES
SV3-6
EDPERR
EDPERR
EDPERR
SVe-T7

\B\

SV4-43
SETP6S

A
STATE7
B
\ A

Parameter 6 found

Set start of P6 to (D1)
Point at FUNCDO
Read end of 6th parameter
This is new current loc
Sixth parameter found

Is it a replace command?

Is it a search command?

Eol

Digit
or #

e
+

-

Include this char in parm 6

Is it a delete command?

No, then P6 is rest of line
Set start of P6 to (D1)

17-57

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

*
%

%
%

X

*

SVe-72

STATE?7

STAT71

STATE9

?2A=C
GOYES

LC(1)
72A=C
GOYES

LC(1)
2A4C
GOYES

D1=D1+

CD1EX

D1=C

DO=D0-

DATO=C
GOSuB
LCHEX

7B#C
GOYES

GOTO
7B=0
GOYES

GOTO

GOSUB

B
SV6-T72
\+\
B
SV6-72
\,\
B
SV6-T1
2

5
A
NEXT
3
P
STAT71
Sv5-8
P
STATES
EDPERR

PARMIB

Don’t include ",", "+", or " " in P6

Point to FUNCDO
P6 ends here

A bit set in the following table indicates that the
corresponding parameter may not be specified

PARMIB

NIBHEX
NIBHEX
NIBHEX
NIBHEX
NIBHEX
NIBHEX
NIBHEX
NIBHEX
NIBHEX
NIBHEX
NIBHEX
NIBHEX
NIBHEX
C=RSTK
A=RO

Parameter #

63
41
40
73
30
30
63
00
40
00
40
40
63

123456
011011
001010
0010Q0
111011
110000
110000
011011
000000
001010
000000
001000
001000
011011

blank (Goto)
Copy
Delete
Exit
Format
Help

Insert
List
Move

Print
Replace
Search

Text

Note that LSD of ASCII blank is 0.
B=0

B=A

B=B+B
C=B+C
DO=C
A=DATO
C=ST

A
P
A
A

B

17-58

H
R
Q
=
T

Q
O
T
M
M
m
M
m
O
O
W
>

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

EDP70

3

EDP80

*

A=ALC
?4=0
GOYES
C=0
SB=0

B
B
EDP80
A

C=C+1 A
ASRB
?5B=0
GOYES
A=RO
CSRC
A=C
RO=A

Now its time to build

GOSBVL
CR1EX
D1=D1-
DAT1=C
C=R2
D1=D1-
DAT1=C
C=R3
D1=D1-
DAT1=C
C=R0
D1=D1-
DAT1<C
CSR
CSR
D1=D1-
DAT1=C
LCHEX
CSLC
D1=D1-
DAT1=C
DO=(5)
C=DATO

DO=D0+
A=DATO

GOSBVL
DO=(5)
C=DATO
DO=C
ST=0
GOVLNG

TYPJMP C=B

EDP70

S

=D1=AVE

12
12

12
12

12
12

W
o
m
h
H
P
>
P
>
T
N

o
N

=FUNCDO
A

5
A

=MOVED2
(=FUNCDO) -5
A

0
=ADHEAD

A

stack entry.

D1&C(A) = (AVMEME)
R1=Start of stack item

Urite out P1

Urite out P2

Urite out P3
Recall P4,P5

Urite out P4

Urite out PS5

Urite out error code

Read end of last parameter
C(A)=Start of source

Read start of last parameter
A(A)=End of source
Move final string onto stack

Restore PC

Don’t return from ADHEAD

17-59

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

MSG$

MSG$07
MSG$09

MSG$15

SCRLEX

GOVLNG

EJECT
NIBHEX
GOSUBL
GOSUBL
GONC
7XM=0
GOYES

A=0

RO=A

SETHEX
D1=D1l+
GOSBVL

GOSBVL

CON(2)

GOSBVL
C=RO
GOSBVL
GOVLNG

GOSBVL
LCHEX
78>=C
GOYES
RO=A
ASR
ASR

ASR

24>=C

GOYES

GOSBVL

C=R0O
C=0

A=A+C
GOSBVL
GOC

EJECT
NIBHEX
CON(2)
CON(2)
NIBHEX

NIBHEX
CON(4)
CON(4)
CON(5)

«TBLJMC

811

poplr

fltdh
MSG$07

MSG$15

A

16
=R3=D10
=FPOLL
=pTRANS

=D0=AVS

=TBMSG$
sERRM$ f

one argument: numeric,
Pop; error if cplx or string.
De-normalize, round.
NC= neg real; null message.

Real>1E6, NaN or Inf?
No.

Yes. Null message.
Null message.
Store msg# in RO,
(DEC mode from MSG$%1i5.)
D1 past stack iten.

Poll for translation.

Set DO= AvMemSt,

Fetch message number.
Build msg in avail men.,
Put it on stack, exit,

------- EXIT

=HEXDEC
00256
X
MSG$07

00000

F
(L2TbSt) +1- (*)
0
0

Arg back to decimal.

Msg number>2567
Yes. Null msg.
Save msg number,
LEX ID# to A(X).

LES ID# > 2567
Yes. Null msg.

Multiply LEX ID# by 256.
Fetch msg number.

C(A)= msgh.

e.g., converts 17025 to 1119,

(BET}

Id

Louwest Token
Highest Token
End of lex table chain

Speed table omitted
Offset to text table

No message table
No poll handler

17-60

HP-71 Softuware IDS - Detailed Design Description
HP-71 Code Examples

STITLEMa in
* Main Table
*

* Text
L2TbSt

L2TbEn
*

SCRLLp
*

SCROLL

SCRL10

SCRL20
SCRL30

CON(3)
REL(5)
NIBHEX

CON(3)
REL(5)
NIBHEX
STITLE
Table

NIBHEX
NIBASC
NIBHEX

NIBHEX
NIBASC
NIBHEX
NIBHEX

GOVLNG

REL(5)
REL(5)
GOSUBL
CON(5)
GOSBVL
A=DAT1
GOSUBL
A=A-1
GONC
A=0
B=0
B=A
DO=(5)
A=DATO
C=0
LC(2)
C=C-A
7B>C
GOYES
C=B
A=C
LC(5)
C=C+A

C=C+A
DO=C
C=DATO

11
SCROLL
D

0
MSG$
F
Text

7

\MSG$\
30

B
\SCROLL\
20
1FF

=FIXP

SCRLLd
SCRLLp

mgosub
=EXPEXC
=D1=AVE
A

pophex

A

SCRL10

A

A

B
WINDLN

o

CRL20

DSPBFS

S
>
>
W
P
D
O

B

Table

02 SCROLL

03 MSG$

Table

Text table start

MSG$

SCROLL

Text termination

Evaluate expression

Pop hex number off stack

Convert to option base 0
If non-zero then skip
Use zero

Copy to B(A)

Read windouw length

C(B)=Start of last windou
Is specified start>last start?
No, then okay
Yes, then just use last start

Calculate address of character

Point to this character
Read character at this spot

17-61

HP-71 Softuare IDS - Detalled Design Description
HP-71 Code Examples

2C40 B Is it a null?
GOYES SCRL40 No, then okay
AzA-1 A Yes, then look one char
GONC SCRL30 If not at start of buf, then loop bac??
A=0 A Otheruise, just use 0

SCRL40 DO=(4) =FIRSTC
DATO=A B Urite out calculated FJRSIC
DO=DO- (FIRSTC)-((DSPSTA)+3)
C=DATO A
CSTEX

BitsOk EQU 1
ST=0 BitsOk
CSTEX
DATO=C A
GOSBVL =SCRLLR

nxtstm GOVLNG =NXTSTM
*
#*

* End of LEXFILE
*

FILEND
END

17.4 LEX File Showing Use of Speed Table

Following is a small sample LEX file with a speed table. This
example is simply for illustration, since speed tables are
appropriate for len files with a very large number of tokens, which
ve have omitted here for space congiderations.

This LEX file defines the following tokens:

Token LEX File
Number Token Token Symbol Description

1 FUNCT FUNCx A function
2 BAT BATx A statement

3 BATTER BATRx A longer statement
4 TOKEN XTOKEN An arbitrary token
5 QUIT QUITH A non-programmable

command

This LEX file includes the necessary external references to the
poll handler address, the various execution addresses, and the
end-of-file. This example contains a SPEED table which for so feu
keywords is wasteful and probably wouldn’t be used if this uere a
real LEX file,

TITLE Lexical Analyzer Tables--1D=FE
* This file was generated on Ued Dec 15, 1982 2:58 pm
* TFile Header

17-62

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

NIBASC \TESTFILE\ File Name

CON(4) =fLEX File Type
NIBHEX 00 Flags
NIBHEX 8541 Time

NIBHEX 512128 Date

REL(5) =FILEND File Length
*

NIBHEX EF Id

CON(2) 1 Louest Token
CON(2) 5 Highest Token
NIBHEX 00000 End of lex table chain

*

* Speed Table
NIBHEX 0 Speed table exists
CON(3) (TXTbEn)-(TxTbSt) A
CON(3) 0 B
CON(3) (THTDEn)-(TxTbSt) C
CON(3) (TXTbEn)-(TxTbSt) D
CON(3) (TXTbEn)-(TxTbSt) E

CON(3) 24 F

CON(3) (TxTbEn)-(TxTbSt) G
CON(3) (TxTbEn)-(TxTbSt) H
CON(3) (TXTbEn)-(TxTbSt) 1
CON(3) (TxTbEn)-(TxTbSt) J
CON(3) (TxTbEn)-(TxTbSt) K

CON(3) (TxTOEn)-(TxTbSt) L

CON(3) (TXTbEn)-(TxTbSt) M

CON(3) (TxTbEn)-(TxTbSt) N
CON(3) (TXTbEn)-(TxTbSt) O

CON(3) (TXTbBEn)-(TxTbSt) P
CON(3) 37 Q

CON(3) (TxTbEn)-(TxTbSt) R
CON(3) (TXTbEn)-(TxTbSt) S
CON(3) 48 T
CON(3) (TxTbEn)-(TxTbSt) U
CON(3) (TXTbBEn)-(TxTbSt) V

CON(3) (TXTbEn)-(TxTbSt) U

CON(3) (TXTBEn)-(TxTbSt) X

CON(3) (TxTbEn)-(TxTbSt) Y
CON(3) (TxTbEn)-(TxTbSt) Z
NIBHEX 0 Speed table exists
CON(4) (TxTbSt)+1-(*) Offset to text table
CON(4) O No message table
REL(5) =POLHND Offset to poll handler
STITLEMain Table

* Main Table
=XromFE
*

CON(3) 24 01 A function
REL(5) =FUNCx
NIBHEX F

17-63

HP-71 Software IDS - Detailed
HP-71 Code Examples

CON(3) 15
REL(5) =BATx
NIBHEX D

CON(3) 0
REL(5) =BATRx
NIBHEX D

=xTOKEN EQU %04
CON(3) 48
NIBHEX 00000
NIBHEX 0

CON(3) 37

REL(5) =QUITx
NIBHEX 1
STITLET e x t

* Texnt Table

TxTbSt
*

NIBHEX B
NIBASC \BATTER\
NIBHEX 30

NIBHEX 5
NIBASC \BAT\
NIBHEX 20

NIBHEX 9
NIBASC \FUNCT\
NIBHEX 10

NIBHEX 7
NIBASC \QUIT\
NIBHEX 50

NIBHEX 9
NIBASC \TOKEN\
NIBHEX 40
NIBHEX 1FF
END

TXTbEn

Design Description

02 A statement

03 A longer statement

04 A token

05 A non-programmable command

Table

Text table start

A longer statement

A statement

A function

A non-programmable ¢

A token

Text termination

17-64

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

17-65

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

17.5 Foreign Language Translation of Messages

See the chapter titled "Message Handling" for a complete descriptio??
of the construction and implementation of message tables. Language
translators are LEX files with one purpose: to translate messages
from master LEX files, These messages are displayed for errors,

warnings, and system messages, for the ERRM$ and MSG$ (MSG$ is foun??
in LEX file #82), and for the g-1ERRM keystroke,

17.5.1 One-shot Mainframe Translator

This Spanish translator for mainframe messages would ALUAYS
produce Spanish translations, as long as it is present in memory;
hence the term "one-shot”. To disable the translation, it must
be purged from memory.

TITLE LEXFILE<840101.1823>
*

* This file was generated on Ued Oct 19, 1983 9:46 am
* TFile Header

NIBASC \ESP001 \ File Name (for lack of better one...)
CON(4) =fLEX File Type

NIBHEX 00 Flags

NIBHEX 6490 Time

NIBHEX 910138 Date

REL(5) FILEND File Length
*

NIBHEX 10 Id

CON(2) 255 Louest Token
CON(2) O Highest Token
NIBHEX 00000 End of lex table chain

*

NIBHEX F Speed table omitted
CON(4) (TxToSt)+1-(*) Offset to text table
REL(4) MSGTBL Of fset to message table
REL(5) POLHND Offset to poll handler
STITLEMain Table

¥ Main Table
sxrom01

STITLEText Table

* Text Table
TXTbSt Text table start

TxTbEn NIBHEX 1FF Text termination
. STITLE Mainframe Messages: Espanol

17-66

HP-71 Softuware IDS - Detailed Design Description
HP-71 Code Examples

NOTE ! NOTE ! NOTE ! NOTE ! NOTE ! NOTE ! NOTE ! NOTE ! NOTE
oe+

| The following Spanish messages are not meant to be |
| the official translations of the mainframe messages. |
| Please excuse the attempt at translation -- this is |
| only meant to be an example of a complete translator |
| LEX file, I
P oeeeeeeeeee-e-—o===--—--- +

¥
3k

%k
3k

X%
3k

3k
Xk

3k

MSGTBL

CON(2) 1 Min message #
CON(2) 249 Max message #

-- Note that message 00 need not be included because
message 00 from the mainframe is a null message.
I.e., MSG$(0) does not have to be translated.

%
%k

%k
X%

Xk
%k -------------------- Math messages -------------—ccccommcmua_—o

FLOLLLLLALELReyo 6 0 0 o

Message number 8 is placed first because the first¥k

'
i

* nibble past the range field MUST be 0 !! Message !!
* number 8 has a total length of 16; if this is N
* changed, another message with length=16 (or a Il
* multiple of 16) MUST be placed first. I
* /Zero '!
=gZRDIV EQU 8 /Cero '

CON(2) 16 i
CON(2) 8 Message number 8 1
CON(1) 4 I

NIBASC \/Cero\ by
CON(1) 12 I

EPLLLEi
* Underflouw
*

sgUNFLU EQU 1 Valor Menudo
CON(2) 23

CON(2) 1 Message rumber 1
CON(1) 13

CON(2) =sVALOR
CON(1) 6
NIBASC \ Menudo\
CON(1) 12

* Overflou
*

=sOVFLU EQU 2 Valor Rebosado
CON(2) 11

CON(2) 2 Message number 2
CON(1) 13
CON(2) =sVALOR

CON(1) 13

CON(2) =sREBOS

17-67

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

CON(1) 12

* EXPONENT (0)
#*

=gEXP0 EQU 3 EXPONENT (0)
CON(2) 8

CON(2) 3 Message number 3
CON(1) 14
CON(2) =eEXP0
CON(1) 12

* TAN=Inf
*

. =ssININF EQU 4 TAN=Inf
CON(2) 8

CON(2) 4 Message number 4
CON(1) 14

CON(2) =eININF
CON(1) 12 _

* 0"neg
*

=g50"NEG EQU 5 0" neg
CON(2) 8
CON(2) 5 Message number 5
CON(1) 14

CON(2) =e0"NEG
CON(1) 12 .

* 070
*

=500 EQU 6 070
CON(2) 8
CON(2) 6 Message number 6
CON(1) 14

CON(2) =e0”0

CON(1) 12

* 0/0
*

=sZRO/0 EQU 7 0/0
CON(2) 8
CON(2) 7 Message number 7
CON(1) 14

CON(2) =eZRO/0

CON(1) 12
*

* message number 8 is found at the top of the table
*

* Neg“Non-int
*

=sNEG™X EQU g Neg” (Nro ni Entero)
CON(2) 45

CON(2) 9 Message number 9
CON(1) 10

NIBASC \Neg” (Nro\

17-68

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

NIBASC \ ni\
CON(1)
NIBASC \ Entero)\

CON(1)

=gSQR- EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

*

*

*sIVARG EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
CON(2)
CON(1)

7

12

10

8
10

14
seSQR-

12

11
14

11
13

=sOPERA

13
s=gPROHI

0
NIBASC \a\

CON(1)

=gLN0 EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

=gL0G- EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

*

*

=gIF/IF EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

*

*

=gIF-1F EQU

12

12
- 8
12
14

=eLNO

12

13
8

13
14

=eL0G-

12

14

8
14
14

=e]F/IF
12

15

SQR(neg)

SQR(neg)

Message number 10

Invalid Arg

Operacion Prohibida

Message number 11

LOG(0)

LOG(0)

Message number 12

LOG(neg)

LOG(neg)

Message rumber 13

Inf/Inf

Inf/Inf

Message number 14

Inf-Inf

Inf-Inf

17-69

HP-T1 Software IDS - Detailed Design Description
HP-71 Code Examples

sg] F*ZR

=g1” INF

=gINF~0

=gSIGOP

ssUNORC

CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)

8
15
14

se[F-IF

12

16
8

16
14

se] F*ZR
12

17
8

17

14

=e1”INF
12

18
8

18
14

=eINF"0
12

19
22
19
13

=sOPERA
13

sgDE
4

\Senal\
12

20
24
20
8

\Sin Orde\
\n\
12

Message number 15

Inf*0

Inf*0

Message number 16

17 Inf

1°Inf

Message number 17

Inf~0

Inf~0

Message number 18

Signaled Op

Operacion de Senal

Message number 19

Unordered

Sin Orden

Message mumber 20

Inexact

17-70

HP-71 Softuware IDS - Detailed Design Description
HP-71 Code Examples

=gINX EQU 21 Inexacto
CON(2) 11
CON(2) 21 Message number 21
CON(1) 14
CON(2) =eINX
CON(1) 0

NIBASC \o\
CON(1) 12

*
*

Aeeee System Errorgs =--------cecccccccocconoo-
* Lou Battery
*

=gsLOBAT EQU 22 Pilas Descargadas
CON(2) 41
CON(2) 22 Message number 22
CON(1) 10

NIBASC \Pilas De\
NIBASC \sca\

CON(1) 5

NIBASC \rgadas\
CON(1) 12

* System Error

ssSYSER EQU 23 Error de Sistema
CON(2) 34

CON(2) 23 Message number 23
CON(1) 4

NIBASC \Error\
CON(1) 13

CON(2) =sDE
CON(1) 6

NIBASC \Sistema\
CON(1) 12

* Insufficient Memory

*gsMEM EQU 24 Memoria Insuficiente
CON(2) 47
CON(2) 24 Message number 24
CON(1) 10

NIBASC \Memoria \
NIBASC \Ins\
CON(1) 8

NIBASC \uficient\
NIBASC \e\

CON(1) 12

* Module Pulled

=gMP] EQU 25 Enchufe Arrancado
CON(2) 41

17-71

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

=52MROM

sgAF

#*

*

=gRECOR

CON(2) 25

CON(1) 10
NIBASC \Enchufe \
NIBASC \Arr\
CON(1) 5
NIBASC \ancado\
CON(1) 12

EQU 26
CON(2) 33

CON(2) 26
CON(1) 11
CON(1) 12

NIBASC \Configur\
NIBASC \acion\
CON(1) 12

EQU 27
CON(2) 13
CON(2) 27
CON(1) 1
NIBASC \AF\
CON(1) 13
CON(2) =sINV-0
CON(1) 12

EQU 28

CON(2) 24

CON(2) 28
CON(1) 8

NIBASC \Suscript\
NIBASC \o\
CON(1) 12

EQU 29

CON(2) 25

CON(2) 29
CON(1) 7
NIBASC \Registro\
CON(1) 13
CON(2) =sREBOS
CON(1) 12

Program Errors

Message number 25

Configuration

Configuracion

Message mumber 26

Invalid AF

AF Invalido

Message number 27

Subscript

Suscripto

Message number 28

Record Ovfl

Registro Rebosado

Message number 29

Stmt Not Found

17-72

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

sgSTMNF

agDATTY

=sNODAT

=gFNNtF

agXFNNF

=gXWORD

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC \Planteo\
CON(1)

EQU
CON(2)
CON(2)
CON(1)

30
23
30

13

=gFALTA

6

12

31
17
31
3

NIBASC \Data\
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

13

sgINV-A
12

32
17
32
13

=sFALTA
3

NIBASC \Dato\
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

12

33
13
33
13

=sFALTA
1

NIBASC \EN\
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

12

34

15
34
13

=sFALTA
2

NIBASC \XEN\
CON(1)

EQU

12

35

Se Falta Planteo

Message number

Data Type

Data Invalida

Message number

No Data

Se Falta Dato

Message number

FN Not Found

Se Falta EN

Message number

XFN Not Found

Se Falta XFN

Message number

XWORD Not Found

Se Falta XWORD

17-73

30

32

33

34

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

=sPRMIS

=sSTROV

=gNUMIN

=gTOOM]

CON(2) 19
CON(2) 35
CON(1) 13
CON(2) =sFALTA
CON(1) 4
NIBASC \XUORD\
CON(1) 12

EQU 36
CON(2) 31
CON(2) 36
CON(1) 13
CON(2) =sVALOR
CON(1) 1
NIBASC \es\
CON(1) 13
CON(2) =sSIN
CON(1) 6
NIBASC \Parejos\
CON(1) 12

EQU 37
CON(2) 23
CON(2) 37
CON(1) 6
NIBASC \Letrero\
CON(1) 13
CON(2) =sREBOS
CON(1) 12

EQU 38
CON(2) 27
CON(2) 38
CON(1) 13
CON(2) =sASIEN
CON(1) 8
NIBASC \ Numeric\
NIBASC \o\
CON(1) 12

EQU 39
CON(2) 21
CON(2) 39
CON(1) 13
CON(2) =sASIEN
CON(1) 1
NIBASC \s \

Message number 35

Parameter Mismatch

Valores Sin Parejos

Message mumber 36

String Ovfl

Letrero Rebosado

Message mnumber 37

Numeric Input

Asiento Numerico

Message number 38

Too Many Inputs

Asientos Demasiados

Message number 39

17-74

HP-71 Software IDS - Detailed
HP-71 Code Examples

*

*

=gTOOFI

=sCHNL#

*

*

zagFwoNX

*

*

=sNXwoF

CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC \s Tan Po\
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC \Asignaci\
NIBASC
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)

13

=sDEMAS

1
\os\
12

40

31
40

13

ssASIEN
10

\cos\
12

41
40

41
9

\on\
13

ssDE
4

\Canal\
12

42
24

42

2

\FOR\
13

=g3[N
3

\NEXT\
12

43
24
43
3

\NEXT\
13

sgSIN

2

Design Description

Too Feuw Inputs

Asientos Tan Pocos

Message number 40

Chnl# Not Found

Asignacion de Canal

Message number 41

FOR w/o NEXT

FOR Sin NEXT

Message number 42

NEXT w/o EOR

NEXT Sin FOR

Message number 43

17-75

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*8RwoGS

=gINVIM

=sINVUS

=5MGOV

=sIVITAB

NIBASC \FOR\
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON (2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC

12

44
26
44
2

\RTN\
13

=sSIN
4

\GOSUB\
12

45
19
45
4

\IMAGE\
13

=sINV-0
12

46
19
46
4

\USING\
13

sgINV-0
12

47
19
47
4

\IMAGE\
13

»sREBOS
12

48
15
48
2

\TAB\

RIN w/0 GOSUB

RTN Sin GOSUB

Message number

Invalid IMAGE

IMAGE Invalido

Message number

Invalid USING

USING Invalido

Message number

IMAGE Ovfl

IMAGE Rebosado

Message number

Invalid TAB

TAB Invalido

Message number

17-76

44

45

46

47

48

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

=gSPGNF

=gVCNTX

*

*

=gIVSAR

=g]VSTA

*

*

=gVSOP

CON(1) 13
CON(2) =sINV-0
CON(1) 12

EQU 49
CON(2) 31
CON(2) 49
CON(1) 13
CON(2) =sFALTA
CON(1) 10
NIBASC \Subprogr\
NIBASC \ama\
CON(1) 12

EQU 50
CON(2) 25
CON(2) 50
CON(1) 7
NIBASC \Contexto\
CON(1) 13
CON(2) =sINV-0
CON(1) 12

EQU 51
CON(2) 21
CON(2) 51
CON(1) 5
NIBASC \Matriz\
CON(1) 13
CON(2) =sDESTA
CON(1) 12

EQU 52
CON(2) 14
CON(2) 52
CON(1) 13
CON(2) =sESTAD
CON(1) O
NIBASC \a\
CON(1) 13
CON(2) =sINV-A
CON(1) 12

EQU 53
CON(2) 11
CON(2) 53

Sub Not Found

Se Falta Subprograma

Message number 49

Var Context

Contexto Invalido

Message number 50

Invalid Stat Array

Matriz de Estadisticos

Message number 51

Invalid Statistic

- Estadistica Invalida

Message number 52

Invalid Stat Op

Operacion de Estadisticos

Message mumber 53

17-77

HP-71 Software IDS - Detailed Design Description
HP-71 Code Exanmples

*

*

=sEQFIL

=s]LTFM

*

*

=sTFFLD

CON(1)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)

13

ssOPERA

13
ssDESTA

12

54
18
54
2

NIBASC \Fin\
CON(1)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

13

=sDE
13

=sARCHI
12

55
11
55
14

seTFM
13

sgINV-A
12

56
18
56
13

=sFALLO
2

NIBASC \la \
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
CON(2) =sDESCO

14

seTFM

i2

57
14

57

13
ssARCHI
13

File and Device Errors

End of File

Fin de Archivo

Message number 54

Invalid Transform

Transform Invalida

Message nmnumber 55

Transform Failed

Se Fallo la Transform

Message number 56

File Not Found

Archivo Desconocido

Message number 57

17-78

HP-71 Softuware IDS - Detailed Design Description
HP-71 Code Examples

*

*

=sFSPEC

*

*

=gFEXST

#*

*

=gFACCS

=gFPROT

*

*

=gFOPEN

CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
CON(1)
NIBASC \ Especif\

\icacion\NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)

EQU

0

\o\
12

58
40
58

13

ssARCHI

11

14

12

59
23
59
13

=sARCHI
6

\ Existe\
12

60
24
60
5

\Acceso\
13

=sPROHI
0

\o\
12

61
29

61

13

=sARCHI
9

\ Protegi\
\do\
12

62

Invalid Filespec

Archivo Especificacion

Message number 58

File Exists

Archivo Existe

Message number 59

Illegal Access

Acceso Prohibido

Message number 60

File Protect

Archivo Protegido

Message number 61

File Open

Archivo Abierto

17-79

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

=gFTYPE

=gDVCNF

=5L2LNG

=sPROTD

CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
COM(1)
NIBASC
CON(1)
CON(2)
CON(1)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)
CON(2)
CON(1)

EQU

25
62
13

=gARCHI

7
\ Abierto\
12

63
23
63
3

\Tipo\
13

+sINV-0

13
=gDE
13

ssARCHI

12

64
30
64
8

\ccesori\
\o\
13

agDESCO

0
\o\
12

65
27
65
8

\Enunciad\
\o\
13

agREBOS
12

66

Card Reader

Message number 62

Invalid File Type

Tipo Invalido de Archivo

Message number 63

Device Not Found

Accesorio Desconocido

Message mumber 64

Line Too Long

Ernunciado Rebosado

Message number 65

Errors

Urite Protected

Prot Contra Escribir

17-80

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

=sNOTIN

=gVFYER

=gUNKCD

*

*

=sRUERR

CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)

47

66

10

\Prot Con\
\tra\

8

\ Escribi\
\r\
12

67

31
67

13

sSARCHI

10

\ Equivoc\
\ado\

12

68
40

68

13
ssFALLO

11
14

\1a Verif\
\icacion\
12

69

22

69
4

\Carta\
13

=sDESCO

0

\a\
12

70
31

70

13

=sFALLO

Message number 66

Not This File

Archivo Equivocado

Message number 67

Verify Fail

Se Fallo la Verificacion

Message number 68

Unknown Card

Carta Desconocida

Message number 69

R/U Error

Se Fallo el Traslado

Message number 70

17-81

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

CON(1) 10
NIBASC \el Trasl\
NIBASC \ado\
CON(1) 12

* Too Fast

=gTUFAS EQU 71 Demasiado Rapido
CON(2) 25
CON(2) T Message number 71
CON(1) 13

CON(2) =sDEMAS
CON(1) 7

NIBASC \o Rapido\
CON(1) 12

* Too Slou

=sTUSLO EQU 72 Demasiado Despacio
CON(2) 29

CON(2) 72 Message number 72
CON(1) 13

CON(2) =sDEMAS
CON(1) 9
NIBASC \o Despac\
NIBASC \io\
CON(1) 12

* Urong Name

=gURGNM EQU 73 Nombre Desconocido
CON(2) 24

CON(2) 73 Message number 73
CON(1) 5 ‘

NIBASC \Nombre\
CON(1) 13

CON(2) =sDESCO
CON(1) O
NIBASC \o\
CON(1) 12

* File Too Big

=sF2BIG EQU 74 Archivo Rebosado
CON(2) 11
CON(2) 74 Message number 74
CON(1) 13

CON(2) =sARCHI

CON(1) 13

CON(2) =sREBOS

CON(1) 12

Aeeee Syntax Errorg -------e-c-c-coccmceecoeocano—-77
* Syntax

17-82

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*

=gSYNTX

=sPRNEX

=5QUOEX

=sEXCHR

=g LONT

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)

- NIBASC

CON(1)
CON(2)
CON(1)
NIBASC

75
22
75
7

\Sintaxis\
12

76

29
76
13

=sgFALTA
9

\Parentes\
\is\
12

77

25

77
13

=gFALTA
7

\Comillas\
12

78
28
78
6

\Letras \
13

=sgDEMAS
1

\as\
12

79
28
79
7

\Contexto\
13

=sPROHI
0

\o\

Sintaxis

Message number 75

) Expected

Se Falta Parentesis

Message number 76

Quote Expected

Se Falta Comillas

Message number 77

Excess Chars

Letras Demasiadas

Message number 78

Illegal Context

Contexto Prohibido

Message number 79

17-83

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*

*

=g LEXP

*

*

=g] LPAR

n
%

X

sMSPAR

*

#*

=g LVAR

*

*

=gPRCER

CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
CON(2)
CON(1)

EQU

CON(2)
CON(2)

CON(1)
NIBASC
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)

12

80
27
80
8

\Expresio\
\n\
13

ssINV-A
12

81
11
81
13

=sVALOR

13
=sINV-0

12

82

11
82

13
ssFALTA
13

ssVALOR
12

83
25
83
7

\Variable\
13

sgINV-A

12

84
28
84
10

\Preceden\
\cia\
12

Invalid Expr

Expresion Invalida

Message number 80

Invalid Parm

Valor Invalido

Message number 81

Missing Parm

Se Falta Valor

Message number 82

Invalid Var

Variable Invalida

Message number 83

Precedence

Precedencia

Message number 84

17-84

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

=g LKEY

=SROURN

=sR1URN

=gTFURN

KCard Reader Messages

=gPLLC#

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(2)
CON(1)
NIBASC
CON(2)
CON(1)

EQU
CON(2)
CON(2)

85

19

85
4

\Tecla\
13

=sINV-A

12

86
25
86

13

=sFALTA
7

\Operando\
12

87

25
87

13
=sFALTA

7

\Operario\
12

88
31
88
8

\TFM URN \
\L\
47
0

\:\
31

12

89
11
89

Invalid Key

Tecla Invalida

Message number 85

Operand Expected

Se Falta Operando

Message number 86

Operator Expected

Se Falta Operario

Message number 87

TFM WRN L###%: <msg>

TEM URN L###: <msg>

Message number 88

Pull ### of ###

Saque ### de ###

Message number 89

17-85

GO D Eh TS G S W G D WS) D G WD G P> WP G Wn W =>

HP-71 Software IDS - Detailed
HP-71 Code Examples

ssPLLC

sglWALGN

sgVALGN

=gRALGN

=gsPALGN

CON(1)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)

13
=sSAQU

13
sskde#

12

90
21
g0
13

=sSAQU

5
\ Carta\
12

91

15

91

2

\Esc\
13

ssALGN

12

92

15

g2

2

\Ver\
13

=sALGN
12

93
17

93
3

\Leer\
13

=SALGN

12

94
17
94
3

Design Description

Pull Card

Saque Carta

Message number 90

Urt: Align then ENDLN

Esc: Alinee y ENDLN

Message number 91

Vfy: Align then ENDLN

Ver: Alinee y ENDLN

Message number 92

Read: Align then ENDLN

Leer: Alinee y ENDLN

Message number 93

Prot: Align then ENDLN

Prot: Alinee y ENDLN

Message rmumber 94

17-86

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

=gUALGN

=sCALGN

*

*

=STRKDN

*

NIBASC \Prot\
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)

13
=sALGN
12

g5
21
95
5

NIBASC \Dsprot\
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)

13
=sALGN

12

96
15
96
2

NIBASC \Cat\
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)

13
=sALGN
12

97
35
97
5

NIBASC \Pista \
CON(2)
CON(1)
NIBASC \Acabado\

CON(1)

63
6

12

Unpr: Align then ENDLN

Dsprot: Alinee y ENDLN

Message number 95

Cat: Align then ENDLN

Cat: Alinee y ENDIN

Message number 96

Trk ### Done

Pista ### Acabado

Message number 97

IIH3HHHHHIIHI33IKKIKK%K

KN3HHEHHIKII33IKIHIKKKI

*

*%¥% Building Block words for messages.
*

*

*

=sTRKOF EQU
CON(2)

229
26

CON(2) 229
- CON(1)
NIBASC \ (pista\
CON(1)

§)

13
CON(2) =s#de#
CON(1) 0

(trk ##4 Of ##4)

(pista ### de ###%)

Message number 229

17-87

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*

*

=sVALOR

*

*

=SREBOS

"
X

X%

SPROHI

=SOPERA

=gESTAD

=gARCHI

NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)

VA
12

230

16

230
4

\valor\
12

231
24

231

8

\ Rebosad\
\o\
12

232

24

232

8

\ Prohibi\
\d\
12

233

24

233

8

\Operacio\
\n\
12

234

26

234

9

\Estadist\
\ic\
12

235
20

235

Valor

Message number

Rebosado

Message number

Prohibid

Message number

Operacion

Message number

Estadistic

Message number

Archivo

Message number

17-88

230

231

232

233

234

235

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

CON(1) 6
NIBASC \Archivo\
CON(1) 12

*

*

sgFALTA EQU 236 Se Falta
CON(2) 24

CON(2) 236 Message number 236
CON(1) 8

NIBASC \Se Falta\
NIBASC \ \
CON(1) 12

=gINVAL EQU 237 Invalid

CON(2) 22

CON(2) 237 Message number 237
CON(1) 7

NIBASC \ Invalid\

CON(1) 12

=gINV-0 EQU 238 Invalido
CON(2) 11
CON(2) 238 Message number 238
CON(1) 13
CON(2) =sINVAL

CON(1) 0
NIBASC \o\

CON(1) 12

=gINV-A EQU 239 Invalida
CON(2) 11

CON(2) 239 Message rumber 239
CON(1) 13

CON(2) =sINVAL
CON(1) 0

NIBASC \a\
CON(1) 12

=sDE EQU 240 de

CON(2) 14

CON(2) 240 Message number 240
CON(1) 3

NIBASC \ de \
CON(1) 12

*

*

=gDESTA EQU 241 de Estadisticos

17-89

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

sgSIN

=sDEMAS

=sASIEN

#*

*

=gDESCO

=gSAQU

CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON{1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC \Saque\
CON(1)

16
241

13
ssDE

13
ssESTAD

1
\os\
12

242
16

242
4

\ Sin \
12

243
22

243
7

\Demasiad\
12

244
20

244
6

\Asiento\
12

245
28

245
10

\ Descono\
\cid\
12

246
16

246
4

12

Message number 241

' 8in

Message number 242

Demasiad

Message mumber 243

Asiento

Message number 244

Desconocid

Message number 245

Saque

Message number 246

17-90

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

*

zgided

’-sALGN

*

*

=gFALLO

*

*

*

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(2)
CON(1)
CON(2)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC

 CON(1)

NIBHEX

* Poll handler
* provided
%*

POLHND 7B=0

hVER$0

*

GOYES

GONC
C=R3

D1=C

A=R2

D1=D1-

CD1EX

?24>C
GOYES

D1=C

R3=C

247

15
247

0

\ A\
47

13

=sDE
47

12

#4#4 de ##¥

Message number 247

248

39
248

11

15

\: Alinee\
\ y ENDLN\
12

: Alinee y ENDLN

Message number 248

249

24
249

8
\Se Fallo\

\ A\
12

Se Fallo

Message number 249

FF Table terminator

goes here. Handler for VER$ poll is

B VER$ poll?

hVER$0 Yes,

hVER$2 No. To hVER$2 uw/carry clear.

(VER$en)- (VER$st)-2

A
hVER$1

*¥%|| LCASC text to be returned for VER$ here

17-91

HP-71 Softuware IDS - Detailed Design Description
HP-71 Code Examples

* Include a leading blank!!
*

VER$st LCASC \ ESP001\ For lack of any better name....
VER$en DAT1=C (VER$en)-(VER$st)-2
hVER$1 RTNSXM

*

**11 Continue poll handler here: Carry is clear, VER$ poll
* has been handled.
#*

hVER$2

7B=0 P Eliminate pTEST poll, which
GOYES EXIT is in the following range.
A=B A Poll number to A (for RANGE),

#*

NIBHEX 33 This is a LC(4)...
CON(2) =pTRANS pTRANS in C(B)

. CON(2) =pUARN PUARN in C(3-2)

GOSBVL =RANGE Poll number in range?
GOC EXIT No.

MSGhnd A=RO Fetch msg number in A(3-0).
A=0 B :
ASL A

7040 A If n/f message, A(A)=0.
GOYES EXIT

A=RO M/f message. Change LEX#
A=A+1 XS to 01,
RO=A

» One message in the mainframe (message #88)
* has a type{5} insertion (indirect msg number).
* This indirect msg number must also be translated,
* wuith a nested pTRANS poll. But only if the
* present poll is pMEM, pERROR or pUARN,
* At this point, if the present poll is pTRANS,
* exit with XM=0 ("handled").
*

LC(2) =eTFURN (hex 58) “TFM URN Lnnn:"
?8>C P Don’t poll for pTRANS poll.
GOYES HANDLD PTRANS poll! (pTRANS=EF)

7A4C B Message #887 (58 hex)
GOYES EXIT No. Exit poll,
C=R2 Yes. C(8-5)= insert msg number,
GOSBVL =CSRCS Shift msg rumber to C(A).
CROEX Put in RO.

R2=C Store RO in R2 during poll.
GOSBVL =POLL Poll to translate insertion
CON(2) =pTRANS message. (Slow poll because

* nested.)
RINC Carry set= error from poll.

C=RO Transltd msg to C(A).
GOSBVL =CSLC5 Shift transltd msg to C(8-5).

17-92

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

CR2EX Store back in R2.
RO=C Original RO back to RO.

EXIT C=-C-1 A Clear carry.
RTNSXM

*

HANDLD XM=0 “"Handled" for pTRANS poll,
RINCC

*

* End of LEXFILE
*

FILEND
END

17.5.2 One-shot HPIL Translator

This Spanish translator for HPIL messages would ALUAYS provide
Spanish translation, as long as it was present in memory. (Due to
a late-discovered bug in HPIL, for any HPIL message translator to
vork it must be positioned in the file chain search order before
the HPIL ROM. The easiest way to do this is for the user to copy
the translator into system RAM; this causes it to come before the
HPIL ROM in the file chain search. Subsequent releases of the HPIL
ROM will correct this problem.) To disable the translation, the
translator file must be purged from RAM.

In order for this particular example to work properly, the
mainframe translator shown in the previous example must also be in
memory. (This is not true in general; this example was constructed
in conjunction with the previous translator.)

TITLE LEXFILE<840101.1823»
*

¥ This file uvas generated on Wed Oct 19, 1983 9:47 anm
* File Header

NIBASC \ESP255 \ File Name (for lack of better one...)
CON(4) =fLEX File Type
NIBHEX 00 Flags
NIBHEX 7490 Time

NIBHEX 910138 Date

REL(5) FILEND File Length
*

NIBHEX FF Id

CON(2) 255 Lowest Token
CON(2) O Highest Token
NIBHEX 00000 End of lex table chain

*

NIBHEX F Speed table omitted
CON(4) (TxTbSt)+1-(*) Offset to text table
REL(4) MSGIBL Offset to message table

17-93

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

REL(5) PCLHND Offset to poll handler
STITLEMain Table

* Main Table
sxromFF

STITLEText Table
¥ Text Table
TxTbSt Text table start
TxTbEn NIBHEX 1FF Text termination

STITLE HPIL Message Table: Espanol
MSGTBL

* HPIL error messages (Espanol) <840101.1823>
*
*

‘:NOTE ! NOTE ! NOTE ! NOTE ! NOTE ! NOTE ! NOTE ! NOTE ! NOTE
$mcmeecccmcceremecemeececem e c e m—=+

* | The following Spanish messages are not meant to be I
* | the official translations of the HPIL ROM messages. |
* | Please excuse the attempt at translation -- this is |
* | only meant to be an example of a complete translator |

* | LEX file. I
* I
* | The translation of message 00 is shoun as an example. |
* | Since "HPIL" is a copyurited and widely accepted tern, |
* | it is not recommended that it be changed. It is I
* | done here to demonstrate the implementation of a |
* | translated message prefix. Any error or warning |
* | taken from this table will have the "“HPCC" prefix I
* | displayed. E.g., "HPCC ERR:Se Falta Medio". I
Lgyggygg+
*
Keeeeeeem

* The following equates define the message numbers for
* building blocks from the “01" table -- the Spanish
* translated mainframe messages.
* E.g., sEXCHR=4E, so 1EXCHR=104E (hex).
#

*

1EXCHR EQU 256+ (=sEXCHR) Letras Demasiadas
1IMSPAR EQU 256+ (=sMSPAR) Se Falta Valor
1ILPAR EQU 256+ (=sILPAR) Valor Prohibido
1ILEXP EQU 256+ (=sILEXP) Expresion Invalida
1SYNTX EQU 256+ (=sSYNTX) Sintaxis
1FPROT EQU 256+ (=sFPROT) Archivo Protegido
1FnFND EQU 256+ (=sFnEND) Archivo Desconocido
1FEXST EQU 256+ (=sFEXST) Archio Existe
1DVCNF EQU 256+ (=sDVCNF) Se Falta Accesorio
1INV-0 EQU 256+ (=sINV-0) Estado Invalido
1SYSER EQU 256+ (=sSYSER) Error de Sistema
1DATTY EQU 256+ (=sDATTY) Data Invalida
1IVARG EQU 256+ (=sIVARG) Valor Invalido
1IMEM EQU 256+ (=sMEM) Memoria Insuficiente

17-94

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

Bee eeeeeeem
*

CON(2) 128 Min message #
CON(2) 193 Max message #

*

FLLLLELER Liei)
* Message mumber 00 can be placed first because its !!
* total length is 16 nibbles. The first nibble past !!
* the range field MUST be a 0 !!! If message 00 is !!
* changed, another message with length=16 (or a 1!
* multiple of 16) MUST be placed first!! !
*00 HPIL H
=sHPIL EQU 00 HPCC (HP Circuito de Canjear)

CON(2) 16 ¥
CON(2) 00 Message number 00 I
CON(1) 4 '
NIBASC \HPCC \ ¥
CON(1) 12 ¥

FULLLELNLiy
*

* Message mumber 128 is a duplicate
* of message 00, so that MSG$(255000)
* will provide a translation.
*

=sHPIL* EQU 128
CON(2) 8

CON(2) 128 Message number 128
CON(1) 13

CON(2) =sHPIL
CON(1) 12

*01 ASSIGN 10 Needed
*

=sNOASN EQU 129 Se Necesita ASSIGN IO
CON(2) 27

CON(2) 129 Message number 129
CON(1) 13
CON(2) =sNECES
CON(1) 8
NIBASC \ASSIGN I\
NIBASC \O\

CON(1) 12

*03 Excess Chars
*

=gXCESS EQU 131 Letras Demasiadas
CON(2) 11

CON(2) 131 Message number 131
CON(2) 15

CON(4) =1EXCHR
CON(1) 12

*04 Missing Parm
*

17-95

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*sMSPAr EQU - 132 Se Falta Valor
CON(2) 11

CON(2) 132 Message rnumber 132
CON(2) 15
CON(4) =1MSPAR

CON(1) 12

*05 Illegal Parm
*

ssILPAr EQU 133 Valor Prohibido
CON(2) 11
CON(2) 133 Message number 133
CON(2) 15
CON(4) =1ILPAR

CON(1) 12
*06 Illegal Expr
*

=s] LEXp EQU 134 Expresion Invalida
CON(2) 11
CON(2) 134 Message number 134
CON(2) 15

CON(4) =1I1LEXP
CON(1) 12

*07 Syntax
*

=sSYNTx EQU 135 Sintaxis
CON(2) 11
CON(2) 135 Message number 135
CON(2) 15
CON(4) =1SYNTX
CON(1) 12

*

* Errors 16-31 are tape errors
*

*16 File Protect
#*

=gfPROT EQU 144 Archivo Protegido
CON(2) 11
CON{2) 144 Message number 144
CON(2) 15

CON(4) =1FPROT
CON(1) 12

*17 End of Mediunm

=sEQTAP EQU 145 Fin de Medio
CON(2) 23
CON(2) 145 Message number 145
CON(1) 6

NIBASC \Fin de \

CON(1) 13
CON(2) =sMEDIO
CON(1) 12

17-96

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

%18
*

=gSTALL

*19
*

=sNOLIF

*20

=sNOTAP

*22
*

sgNFILE

*23

sgNEUTA

*24

=gBLANK

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(2)
CON(4)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC \Se Falta\

146
14

146

13

=sMEDIO
15

=1INV-0
12

147

8

147

13

=gSTALL
12

148
27
148

8

NIBASC \ \
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(2)
CON(4)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)

13

=sMEDIO
12

150
11

150
15

=1FnEND
12

151

151
13

=gSTALL
12

152

152
13

Tape stall-Invalid Medium

Medio Invalido

Message number 146

Not LIF-Invalid Medium

Medio Invalido

Message number 147

No Medium

Se Falta Medio

Message number 148

File Not Found

Archivo Desconocido

Message number 150

Neu medium-Invalid Medium

Medio Invalido

Message number 151

No data -Invalid Mediunm

Medio Invalido

Message number 152

17-97

HP-71 Softuare IDS - Detailed Design Description
HP-71 Code Examples

CON(2)
CON(1)

%25
#*

«sRECRD EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

%26
*

=gCHSUM EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

*28
#*

=gTSIZE EQU
CON(2)
CON(2)
CON(1)
CON(1)

=gSTALL

12

Record #-Invalid Medium

153 | Medio Invalido
8

153 Message number 153
13

=gSTALL
12

Checksum-Invalid Medium

154 Medio Invalido
8

154 Message number 154
13

=gSTALL

12

Size of File

156 Archivo Tamano
35

156 Message number 156
11
13

NIBASC \rchivo \
NIBASC \Tamano\

CON(1)
*30
*

=sEFILE EQU
CON(2)
CON(2)
CON(2)
CON(4)
CON(1)

*31
*

=gDIRFL EQU
CON(2)
CON(2)
CON(1)

12

File Exists

158 Archjo Existe
11

158 Message number 158

15
=1FEXST
12

Directory Full

159 Directorio Esta Lleno
49

159 Message number 159
10

NIBASC \Director\
NIBASC
CON(1)
NIBASC
NIBASC
CON(1)

*

* Errors 32-47
*

\io \
9

\Esta Lle\
\no\
12

are HPIL Errors

17-98

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*32
*

=gTERM

*34
*

=sNORDY

%35
*

=gLTIMO

*36
*
=sFLOST

*37

=sOVRUN

EQU
CON(2)
CON(2)
CON(2)
CON(4)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

160
11

160
15

=1DVCNF
12

162

38
162

13

=sACCES

11

13

\ No Esta\
\ Listo\
12

163
49

163
10

\Circuito\
\ In\

9

\terrumpi\
\do\
12

164

27
164

8

\Error de\
\\
13

=sMARCO
12

165
8

165

13
=gFLOST
12

Device Not Found

Se Falta Accesorio

Message number 160

Device Not Ready

Accesorio No Esta Listo

Message number 162

Loop Broken

Circuito Interrumpido

Message number 163

Frame Error- Message Error

Error de Marco

Message number 164

Frame Overrun- Message Error

Error de Marco

Message number 165

17-99

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*38
*

=gLPERR EQU

*39

sgsUNEXP

*40
*

=sXXXXX

*4]

=gBADMD

42

sgFRTOI

*43

=sFRTOL

CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
CON(1)
NIBASC \ Descono\

166
8

166

13

=gFLOST

12

167
34

167

13
=sMARCO

11

11

NIBASC \cido\
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(2)
CON(4)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)

12

168
8

168
13

=sFLOST

12

169
24
169

\Estado\
15

=1INV-0

170

170

13

=sLTIMO

12

171

171

Frame Changed- Message Error

Error de Marco

Message number 166

Unexpected Message

Marco Desconocido

Message number 167

Frame Lost- Message Error

Error de Marco

Message mumber 168

Invalid Mode

Estado Invalido

Message number 169

Frame Timeout (SCI)- Loop Broken

Circuito Interrumpido

Message number 170

Frame Timeout (Loop)- Loop Broken

Circuito Interrumpido

Message number 171

17-100

HP-71 Software IDS - Detailed Design Description
HP-71 Code Exanmples

CON(1)
CON(2)
CON(1)

*44

sgSYSer EQU

CON(2)
CON(2)
CON(2)
CON(4)

CON(1)
*45

sgTESTF EQU
CON(2)
CON(2)
CON(1)
NIBASC \Falta Ve\

13
=gLTIMO
12

172
11

172
15

=1SYSER
12

173
41
173
10

NIBASC \rif\
CON(1)
NIBASC \icarse\
CON(1)

*47

=gDTYPE EQU
CON(2)
CON(2)
CON(1)
NIBASC \Tipo de \
CON(1)
CON(2)
CON(1)

*52

=sABORT EQU
CON(2)
CON(2)
CON(1)
CON(1)
NIBASC \Se Ha Ab\

NIBASC \ortado\
CON(1)

¥53
*

=sDSPEC EQU
CON(2)
CON(2)
CON(1)
CON(1)
NIBASC \Especifi\

5

12

175
25
175

7

13
=sACCES
12

180
35
180
11
13

12

181
40
181
11
14

System Error (Bad cur addr)

Error de Sistema

Message number 172

Self-test failed

Falta Verificarse

Message number 173

Device Type

Tipo de Accesorio

Message number 175

Aborted

Se Ha Abortado

Message mumber 180

Invalid Device Spec

Especific’n de Accesorio

Message mumber 181

17-101

HP-71 Software IDS - Detalled Design Description
HP-71 Code Examples

*54

=gNNUMR

¥56

=sRANGE

*57

=gNMBOX

*59

=sNORAM

*60
*

=gOFFED

NIBASC \c’n de \
CON(1)
CON(2)
CON(1)

EQU
CON(2)
CON(2)
CON(2)
CON(4)
CON(1)

EQU
CON(2)
CON(2)
CON(2)
CON(4)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(2)
CON(4)
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)

13
=sACCES
12

182
1

182
15

= 1DATTY
12

184
11

184
15

=1IVARG
12

185
41
185
10

\Se Falta\
\ Ci\

5
\rcuito\
12

187
11

187
15

= 1MEM
12

188
29
188
13

ssNECES

9
\RESTORE \
\10\
12

Not numeric- Data Type

Message number 182

Invalid Arg

Valor Invalido

Message number 184

No Loop

Se Falta Circuito

Message number 185

Insufficient memory

Memoria Insuficiente

Message number 187

RESTORE I0 Needed

Se Necesita RESTORE 10

Message number 188

17-102

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

*

¥ Error messages 64-end are building blocks
*
*

ssMARCO

*

=sACCES

=gMEDIO

*

=sNECES

*

*

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
NIBASC
CON(1)

EQU
CON(2)
CON(2)
CON(1)
CON(1)
NIBASC
NIBASC
CON(1)

NIBHEX

* Poll handler
* provided
*

POLHND

hVER$0

?B=0
GOYES
GONC
C=R3
D1=C
A=R2
D1=D1-
CD1EX
?2A>C
GOYES
D1=C

190
16

190
4

\Marco\
12

Marco

Message mumber 190

191
24

191

8

\Accesori\
\o\
12

Accesorio

Message number 191

192 Medio

16

192
4

\Medio\
12

Message number 192

193

31

193

11

11

\Se Neces\
\ita \
12

Se Necesita

Message number 193

FF Table terminator

goes here, Handler for VER$ poll is

B VER$ poll?
hVER$0 Yes,
hVER$2 No. To hVER$2 w/carry clear.

(VER$en)- (VER$st)-2

A
hVER$1

17-103

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

R3=C
»*

#%11 LCASC text to be returned for VER$} here
* Include a leading blank!!
*

VER$st LCASC \ ESP255\ For lack of a better nanme....
VER$en DAT1=C (VER$en)-(VER$st)-2
hVER$1 RTNSXM

*

**11 Continue poll handler here: Carry is clear, VER$ poll
* has been handled.
*

hVER$2
?B=0 P Eliminate pTEST poll, which
GOYES EXIT is in the following range.

. A=B A Poll number to A (for RANGE).

NIBHEX 33 This is a LC(4)...
CON(2) =pTRANS pTRANS in C(B)

. CON(2) =pUARN PUARN in C(3-2)

GOSBVL =RANGE Poll number in range?
GOC EXIT - No.

MSGhnd C=R0O Msg number to C(3-0).
A=C A Copy msg num to A.
P= 2

* Now load ID # of LEX file.
LCHEX FF | HPIL LEX#.
P= 0
204C A Right LEX file?
GOYES EXIT No. Don’t translate,
CSTEX Yes. Set bit7 (adds
ST=1 7 128 to message number,
CSTEX | | unless this bit already
RO=C set -- just in case.)
B=B+1 P ~ PTRANS poll?
GOC HANDLD Yes. Exit "handled".

*

* ! At this point, any message which has a type {5}
* ! insertion must be checked. These messages are
* ! known at the time the msg table is constructed.
* ! If we are handling such a message, a separate
* ! (nested) pTRANS poll might have to be issued to
* I translate the inserted message; but only issue
* ! the nested poll if you are currently handling a
* ! a pMEM, pERROR or pUARN poll (pTRANS has already
* ! exiteds. To issue the nested poll, fetch the
* ! indirect msg number from R2, put it in C(A), then
* ! CROEX Put it in RO(A).
* ! R22C Store RO in R2 during poll.
* | GOSBVL =POLL Issue pTRANS poll.

17-104

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

* ! CON(2) =pTIRANS

* ! RINC Carry set if error in poll.
* ! C=R2

* ! CROEX Original RO back to RO.
* ! And restore insert message number back in R2.
* NOTE: HPIL ROM does not have any type {5} insertions.
*

EXIT C=-C-1A Clear carry.
RTNSXM

*

HANDLD XM=0 PTRANS poll "Handled".
RTNCC

*
*

* End of LEXFILE
*

FILEND
END

17.5.3 Selectable Translator

The chapter entitled "Message Handling" describes the scheme behing
a selectable translator. This example is built from the two in the
previous subsections; it could be easily extended to include many
more languages,

The structure of the controlling LEX file is described below,
followed by example satellite LEX files.

CONTROLLING LEX FILE:

1) Provides keyuord to select a language (Keyword and
syntax has not been decided upon).

2) Uhen language is selected, it searches the LEX systenm
buffer for the entries for SATELLITE LEX FILE #1,
SATELLITE LEX FILE #2, and so on. In each entry
it replaces the address with one which will point
to the appropriate language table in that satellite
file, |

3) Also when a language is selected, it opens a systenm
buffer (number defined by bTRANS symbol) to store
the current language. If the buffer exists, it
simply modifies it.

4) Provides Poll handler for pCONEG which repeats step 2,
using the language stored in the system buffer bTRANS
as a reference.

17-105

HP-71 Softuware IDS - Detailed Design Description
HP-71 Code Examples

5) Provides Poll handler for VER$ for the entire entourage
of LEX files, supplying a string such as "TRANS:ESP"
(indicating the language in effect; e.g., ESP = ESPANOL).

SATELLITE LEX FILE #1:

*x
%k

File

* Main
=xrom01

* Text
TxTbSt

TxTbEn
*

*

POLHND

MSGhnd

TITLE LEXFILE<840101.1823>

This file was generated on Ued Oct 19, 1983
Header

NIBASC
CON(4)
NIBHEX
NIBHEX

NIBHEX
REL(5)

NIBHEX
CON(2)
CON(2)
N1BHEX

NIBHEX
CON(4)
CON(4)
REL(5)
STITLE
Table

STITLE
Table

NIBHEX

?B=0
GOYES
A=B

NIBHEX
CON(2)
CON(2)

GOSBVL
GOC
A=RO
A=0

9:46 am

\TRANSO1 \ File Name (for lack of better one...??
=fLEX File Type
00 Flags
6490 Time
910138 Date

FILEND File Length

10 Id
255 Louest Token

0 Highest Token
00000 End of lex table chain

F Speed table omitted
(TxTbSt)+1-(*) Offset to text table
0000 No message table,

rtnsxm No poll handler,

Main Table

Text Table

Text table start
1FF Text termination

Poll handler for all translators

in this satellite file.
P Eliminate pTEST poll, which
EXIT is in the follouwing range.
A Poll number to A (for RANGE).

33 This is a LC(4)...
=pTRANS pPTRANS in C(B)
=pUARN PUARN in C(3-2)

=RANGE Poll number in range?
EXIT No.

Fetch msg number in A(3-0).
B

17-106

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

ASL A

7040 A If m/f message, A(A)=0.
GOYES EXIT

A=RO M/f message. Change LEX#
A=A+1 XS to 01,
RO=A

* One message in the mainframe (message #88)
* has a type{5} insertion (indirect msg number).
* This indirect msg number must also be translated,
* with a nested pTRANS poll. But only if the
* present poll is pMEM, pERROR or pUARN,
* At this point, if the present poll is pTRANS,
* exit with XM=0 ("handled").
*

LC(2) =eTFURN (hex 58) “TFM WURN Lnnn:"

?B>C P Don’t poll for pTRANS poll.
GOYES HANDLD PTRANS poll! (pTRANS=EF)
7A%#C B Message #887 (58 hex)
GOYES EXIT No. Exit poll.

C=R2 Yes. C(8-5)= insert msg number.
GOSBVL =CSRC5 Shift msg number to C(A).
CROEX Put 1in RO.

R2=C Store RO in R2 during poll.
GOSBVL =POLL Poll to translate insertion
CON(2) =pTRANS message. (Slou poll because

* nested.)
RTINC Carry set= error from poll.
C=RO Transltd msg to C(A).
GOSBVL =CSLC5 Shift transltd msg to C(8-5).
CR2EX Store back in R2.
RO=C Original RO back to RO.

EXIT C=-C-1 A Clear carry.
*rtnsxm RTNSXM

HANDLD XM=0 "Handled" for pTRANS poll.
RTNCC

*
*

STITLE Spanish table
Bee eeeeeee

¥ -- Truncated LEX file for Spanish translation --
* (identical to a LEX file, but no file header)
*

NIBHEX 10 Id

CON(2) 255 Lowest Token
CON(2) O
NIBHEX 00000

NIBHEX F

CON(4) (TxTbSt)+1-(*)
REL(4) SPANms

Highest Token
End of lex table chain

Speed table omitted
Offset to text table

Offset to message table

17-107

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

REL(5) POLHND Offset to poll handler
* Main Table
* Vhen Spanish is selected, the entry in
* LEX system buffer should point to the
* label SPANtD,
sSPANtD

* Text Table
TxTbSt Text table start

THXTObEn NIBHEX 1FF Text termination
*

*

* Message Table (Spanish)
*

SPANms
CON(2) 1 Min message #
CON(2) 249 Max message #

*

=sZRDIV EQU 8 | /Cera
CON(2) 16
CON(2) 8 Message number 8

"... entiremessage table asshouninprevious example
L,eceeeas C e e eetttCeeeees ceenen

NIBHEX FF Message table terminator.
#*

*

*

STITLE German table

* __ Truncated LEX file for German translation --
* (identical to a LEX file, but no file header)

NIBHEX 10 Id

CON(2) 255 Lowest Token
CON(2) O Highest Token

. NIBHEX 00000 End of lex table chain

NIBHEX F Speed table omitted
CON(4) (TxTbSt)+1-(*) Offset to text table
REL(4) GERMms Offset to message table
REL(5) POLHND Of fset to poll handler

* Main Table
* WVhen German is selected, the entry in
* the LEX system buffer should point to
* the label GERMtb.
sGERMtDb
¥ Text Table
TxTbSt Text table start
TXTbEn NIBHEX 1FF Text termination

* Message Table (German)

17-108

HP-71 Software IDS - Detailed Design Description
HP-71 Code Examples

»*

GERMms

CON(2) 1 Min message #
CON(2) 249 Max message #

*

. ::. entlée fieseaée.iéfile aé translated lnto Gérmén .
* @ O @ © © 0 ¢ 0 ¢ &6 0 0 0 0 0 0 ® 6 © 6 9 ¢ ¢ 0 ¢ 0 o ® © 0 0 0 0 0 0 ¢ 0 ¢ 0 0 0 o © 0 0 0 0 0 0 o ¢ 06 0 0 0 0 0 0 o

NIBHEX FF Message table terminator.

....... MOre language tables as desired

¥ End of LEXFILE
%*

FILEND
END

SATELLITE LEX FILE #2:

This would be constructed the same as satellite LEX file *1,
except that it would contain translators for the HPIL ROM, for
example. The poll handler for pTRANS, pMEM, pERROR and pUARN

would be the same as that found in the example for the one-shot
HPIL translator.

ADDITIONAL SATELLITE LEX FILES:

An additional LEX files would be constructed for each
translation of a master LEX file. E.g, one satellite file for
the Text Editor, one for the MATH ROM, etc. Each satellite
file would contain several message tables, one for each
language.

17-109

HP-71 Software IDS - Detailed Design Description
HP-71 Resource Allocation

GoeeeeTTNTDRDTTCnTe.GWW an > e

I
: HP-71 RESOURCE ALLOCATION

.................. +

I
CHAPTER 18 |

.................. +¢
—
—
—

POeeeWWee TRTD TP EE S ED D WSG eGP R e an W Ob D TP D D P e W @

There are several logical and physical resources in the operating
system, such as ID numbers or fixed RAM locations, which will from
time to time need to be allocated to OEMs or HP application
projects. This chapter lists the current allocations for those
system resources, such as LEX IDs, system buffer numbers, or poll
rnumbers, that may be reserved out of a range of possible values.

HP-71 Operating system resources will be allocated in a
conservative manner by arrangement with HP. If you wish to market
software which requires that you reserve certain of these
allocations for your exclusive use, please contact Systenms
Engineering Support in the HP Portable Computer Division Product
Support Group at (503) 757-2000 for further information.

18.1 Device Types, Classes and Codes

A brief attempt to explain the very different functions of these
similar-sounding terms:

A device type 18 a nibble which resides in a plug-in device’s
configuration ID., A value of 0-5 identifies a memory-type device.
A value of F identifies a memory-mapped 1/0 device (such as HPIL
mailbox). Because of the restrictions on Device Codes, device
types of 6-E are not alloued.

A device class is a nibble which resides in a plug-in device’s
configuration ID. It is meaningful only for memory-mapped 1/0
devices, and identifies what sort of memory-mapped device it is,
Uhile the device type was used to inform the configuration code
that the device should be configured in memory-mapped 1/0 space,
the device class actually identifies what it 1is, so the support
code (HPIL ROM, or whatever) can find it. This nibble becomes part
of the configuration table entry.

The device code has nothing to do with the system configuration,
It is used within the COPY command to identify memory OR non-memory
devices to uwhich the mainframe does NOT know how to copy. For
example, EEPROM is a memory device to which the mainframe does not
knou houw to copy; ":TAPE" is a non-memory device to which the
mainframe does not know how to copy. Here 1is an example of hou
they are used:

18-1

HP-71 Software IDS - Detailed Design Description
HP-71 Resource Allocation

MEMORY: If a "COPY TO :PORT(1)" is executed and the mainframe
code sees something other than a RAM in PORT(1), it will issue a
pCOPY poll seeking some handler which can copy to said device.
The device is identified with a device code, which is, in this
case, the device type + 1 (as determined from looking at the
configuration tables). If, for example, PORT(1) contains an
EEPROM (device type = 2), this poll will seek a handler which can
copy to something with a device code of 3. Legal device codes
are 0-6, although COPY will not poll if the destination has a
device code of 0 or 1.

NON-MEMORY: If a "COPY ’:TAPE’" is executed, a pFILXQ poll will
allow HPIL to recognize ’:TAPE’, and handle the poll by saying
that ’:TAPE’ has a device code of 8. A subsequent pCOPY poll
will look for a handler for a device type of 8. The HPIL ROM
will respond and handle the copy. All HPIL-recognized devices
have a device code of 8; more specific identification is possible
through the “internal coding" fields on the pFILXQ and pCOPYx
polls.

Device code 7 is the card reader.

This number goes by several names, among them "Device ID" (in
PFILXQ documentation) and “"Device Type" (in pCOPYx documentation).

Here are the current allocations of device types, classes and
codes:

18.1.1 Device Types

1 = ROM

2 = EEPROM
3 = (unassigned)
4 = (unassigned)
5 = (unassigned)
F = Memory-mapped 1/0

18.1.2 Device Class

0 = HPIL mailbox

1-F = (unassigned)

18.1.3 Device Codes

0 = System RAM

1 = Independent RAM
2-6 = Device type + 1

18-2

HP-71 Software IDS - Detailed Design Description
HP-71 Resource Allocation

7 = Card reader
8 = HPIL
9-F = (unassigned)

18.2 File Types

The following file types are currently allocated for the HP-71

product:

MAINFRAME FILE TYPES

Hex Numeric Value

Type Description Security; Normal S* p* E¥

BASIC Tokenized BASIC program E214 E215 E216 E217
BIN HP-71 Microcode E204 E205 E206 E207

DATA Fixed Data EOF0O EOF1 n/a n/a
LEX Language Extension E208 E209 E20A E20B

KEY Key Assignment E20C E20D n/a n/a
SDATA Stream Data EOD0O n/a n/a n/a
TEXT ASCII text, in LIF Type 1 format 0001 EOD5 n/a n/a

APPLICATIONS FILE TYPES
Hex Numeric Value

Type Description Security: Normal S* p* E¥

FORTH Forth vocabulary file E218 E219 E21A E21B

* 5 indicates secure, P indicates Private, E indicates executable

18.3 Funny Physical Key Code Allocations

A lexfile may wish to “push" keys by grabbing the key definition
poll. In order to force a key definition poll, the lexfile may put
a funny physical keycode (PKC) into the keybuffer (possibly during
the SREQ poll) which it will recognize as its oun and not as a real

key. To avoid conflict, lexfiles need to be assigned a unique PKC
for this purpose. Refer to the chapter on "HP-71 Resource

Allocation" for information on assigmment of unique PKC’s.

18-3

HP-71 Softuware IDS - Detailed Design Description
HP-71 Resource Allocation

18.4 LEX IDs

There are 256 LEX IDs within the HP-71, numbered 00 to FF (Hex).
They are allocated as described in this section. The first two
(IDs 00 and 01) are used by the mainframe. One hundred and fifty
LEX IDs are reserved for external or custom products,

An important feature of HP-71 LEX IDs is the ability to allocate
portions of a LEX ID. Each LEX ID controls a set of keyword tokens
and message numbers which are allocated individually or on a range
basis. A particular application may use only a portion of the 255
keywords or 255 message numbers within one LEX ID. Another
application can be allocated the next partition of entries within
the same LEX ID, and so on. This allouws full utilization of LEX
IDs.

A summary of the current allocation of LEX IDs is provided belou.
A further breakdoun of the token/message range allocations within
the LEX IDs is provided following the summary.

18-4

HP-71 Software IDS - Detailed Design Description
HP-71 Resource Allocation

LEX ID ALLOCATION SUMMARY

CATEGORY TOKENS MESSAGES

02
03

2F

34

APPLICATIONS

MATHEMATICS
Math
Curve Fit

ENGINEERING

BUSINESS

INFORMATION MANAGEMENT

LANGUAGES

FORTH/Assembler

TOOLS
Debugger

GENERAL PURPOSE

Editor

MISCELLANEOUS .

All
All

All

All

All
All

All

All

All

USER’S LIBRARY
First LEX ID
Second LEX ID

EXTERNAL PRODUCTS
(3rd Party, ISvVs...)

LEX ID RANGE

(Hex)

00 01

02 51

02 10

11 1F

20 29

2A 2E

2F 33

34 38

39 4C

4D 51

52 5B

5C 5E

5F AE

AF EO

El F4

FS FF

F5
133

PIL and 1/0
Wand

HPIL

18-5

HP-71 Softuare IDS - Detailed Design Description
HP-71 Resource Allocation

Some detailed information:

All BASIC ROM applications sold by HP will respond to the VER$ poll
to indicate the appropriate version of the software. This requires
all BASIC ROM applications to include a LEX file containing no
keywords, but the appropriate code to indicate the proper VERS.
The last LEX ID for Custom Products - Special (244) will be used as
the LEX ID to VERY response of BASIC applications. This LEX ID may
also be used for Kkeywords by a particular custom application,

without conflict.

The Temporary/Scratch LEX IDs allow users to generate their oun
temporary and personal LEX files without the intervention of HP
needed. This guarantees that usage of this ID does not conflict
with an HP supported or custom ROM.

The User’s Library LEX files are collections of keywcrds and
functions collected from HP-71 users. As additional keywords are
received, the User’s Library will release updated versions of these
LEX files.

A further breakdoun of certain LEX ID allocations is given belou.

18.4.1 LEX ID 52 Hex - First User’s Library ID

KEYUORD/FUNCTION TOKEN ALLOCATIONS

01 KEYUAITS
Hold machine in lou-pouwer state until a key is placed in
the key buffer,

02 SCROLL
Display a scrolled line.

03 MSG$
Returns translated error message by polling 1language

translator LEX files,

18.4.2 LEX ID 53 Hex - Second User’s Library ID

KEYUORD/FUNCTION TOKEN ALLOCATIONS

HP-71 Softuare IDS - Detailed Design Description
HP-71 Resource Allocation

01

01

18.5

DEBUG
Accesses Hard-configured Debugger ROM

MESSAGE NUMBER ALLOCATIONS

Debugger Not Found

Poll Process Number Allocations

Following is a list of poll numbers defined for the mainframe.

Symbolic
Name

Process #

(HEX) Brief Description

VER$ poll
Device Parse
File Spec Decompile
File Execute - allows dedicated dvc
File Spec Parse
File Spec Execute
CAT on non-mainframe device -
CAT$ of non-mainframe file
COPY execute: unknown Device| »>8
Create file' in external device
Device ID store in RAM @ D1
SECURE/UNSECURE/PRIVATE

LIST of non-mainframe file
MERGE file dealing w/ funny device
Print class
Printer IS
PURGE on non-mainframe device
RENAME on non-mainframe device
Enter data from HP-IL
Regserved for HPIL

Reserved for HPIL

Reserved for HPIL

Reserved for HPIL

Find file
Read current record to file buffer
Urite buffer out & read next record
Urite file buffer to current record
Build key defn in KEYRD
Waiting for key in KEYRD

18-7

HP-71 Software 1DS - Detailed Design Description
HP-71 Resource Allocation

pIMXQT
pIMCHR
pIMXCH
pIMbck
pIMcpi
pIMcpu
pPCRT=8

pUCRD8
PEOFIL
PPRIN#
PREAD#

PSREC#
PCURSR

pDATLN

PEDIT

PFASCH

pFIYPE
pLIST2
PMRGEZ2

PRUNft
PRUNNB
PPRGPR
PCRDAB

PRCRD
PUCRD

PCALRS
pCALSV

pCMPLX
PREN

PRINTp
PTIMR#
PTRFMx
PENIN

PENOUT

PTRANS
pTEST

pMMEM
PERROR
PUARN
pPPARSE
pBSCen

pBSCex

PZERPG

pExcpt
PSREQ
pMNLP
PCONEG
pPUROF

pDSUKY

pDSUNK

1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E

EF
FO
F1
F2
F3
F4
F5
F6
FE7
I8
F9
FA
FB
FC
FD
FE

IMAGE execution starts
Unrecognized IMAGE char in parse.
Unrecognized IMAGE symbol in execution.
IMAGE: bckwd search processing
IMAGE: cmplx field initialization
IMAGE: work on complex number
Create non-HP-71 type file
Urite card, copycode=8
End of file reached in READ #/PRINT #
PRINT # on non-HP-71 type file
READ # on non-HP-71 type file
RESTORE # on non-HP-71 type file
Cursor Up/Doun non-BASIC file type
Return file data length on non-HP-71 file
EDIT with non-BASIC file type
Search for filetype by mnemonic
File type
LIST non-BASIC/non-KEY file
MERGE non-BASIC/non-KEY file
RUN with unknoun File Type
RUN non-BASIC file
PURGE of non-RAM file
Abort card read poll

Read card poll
Urite card poll
To restore information from CALL stack
To save information on CALL stack
Complex math
Renumber a XWORD stmt with line #
Return Type unknoun

Timer # > 3 in ON TIMER/OFF TIMER stmts
Supply Transform Handler Address
Entering user-defined function
Exiting user-defined function

Poll to Translate a Message
Test poll for timing POLLs.
Insufficient Memory
Error message about to go out,
Uarning msg about to go out,
Parse take-over poll - FAST Poll
Entering BASIC interpreter
Exiting BASIC interpreter
Zero addresses/RAM associated w/ Progranm
Exception check after statement
Service request (if SREQ<»>0)
Main Loop
Configuration
Pouer off

Deep Sleep Wakeup -- key or not

Deep Sleep Wakeup -- no key down

18-8

HP-71 Software IDS - Detailed Design Description
HP-71 Resource Allocation

pCLDST FF Cold start

18.6 Reserved RAM Allocations

Reserved RAM is a section of fixed address RAM provided by the
operating system for use by application software on an allocation
basis. No Reserved RAM has been allocated yet,

2F986

Bit 0 Math ROM (Complex image status bit)
Bit 1
Bit 2
Bit 3

2F987

2F9ES

18.7 System Buffer ID Allocations

Buffer Range in Hex
Name Description Start Stop

bSTMI Statement buffer 801

bIEXKY Immediate execute key 802
bFIB File information 803
bASSGN ASSIGN# information 804
bFILE Temp for file manipulation 805
bSTAT Statistics 806

bCARD Card reader 807
bSTART STARTUP command 808

bECOMD External command 809

Available 80A 80D

bKBDIS KEYBOARD IS key defs 80E

bPILSV HPIL save area 80F
bPILAI ASSIGNIO names 810

bSTMXQ HPIL statement execution 811

bMATH Math ROM 812

bSOLVE SOLVE (Math ROM) 813

bINTEG INTEGRAL (Math ROM) 814

bDMATIO Matrix I0 (Math ROM) 815

18-9

HP-71 Software IDS - Detailed Design Description
HP-71 Resource Allocation

Available 816
bCFIT (Curve Fitting ROM) 817

bCHISQ Chi Sq (Curve Fitting ROM) 818
bGRAD Gradient (Curve Fit ROM) 819
bUAND UWand Status/Cksum Info 81A

bTRANS Message Translator BFA
bCHARS Alternate Character Set BFB

bLEX LEX file addresses BFC

Unused BED

bROMITB ROM Configuration Table BFE

bSCRTC Scratch buffers EO0 FFF

18.8 GOSUB Stack Item Type Allocations (RETURN Types)

Return to progranm
Return to keyboard
ON TIMER 1 ,.. GOSUB
ON TIMER 2 ... GOSUB
ON TIMER 3 ... GOSUB

Return to assembly language code
Special (to be allocated)

10 Special (to be allocated)
11 Special (to be allocated)
12 Special (to be allocated)
13 Special (to be allocated)
14 Special (to be allocated)
15 Boundary Address

If address = 0
Environment boundary

else

Update address

O
C
O
N
O
O
N
P
D
W
N
O

18.9 System Flag Allocations

Flag # Mnemonic Function

X%

*¥¥ TEST AND MODIFY FLAGS
*%

-1 f1QIET Quiet Mode
-2 f1BEEP Beep On

18-10

HP-71 Software IDS - Detailed Design Description
HP-71 Resource Allocation

** TEST ONLY FLAGS
H

-42
-43
-44
-45
-46
-47
-48
-49
-50
-51
-52
-53
-54
-55
-56
-57
-58
-59
-60
-61
-62
-63
-64

f1CTON
f1INX
f1UNF
f10VE
f1DvZ
f1IVL
f1USER
f1RAD
f1INFR
f INEGR
f1FXEN
f 1SCEN
f1LC
f1BASE
f1DGO
f1DG1
f1DG2
f1DG3
f1PDUN
f1EXTD
f1ECT
f INZ4
f1BPLD
f INOPR

f1MPI
f 1D0RM
f1RIN
f1CLOC
f1EXAC
f1CMDS
f1CTRL
f1PUDN
f1MKOF
f1TNOF
f1VIEU

f1AC
f 1USRX
f1RPID
f1ALRM
f1BAT
f1PRGM
f1SUSp
f1CALC

Contimuous On
Inexact result
Underflou
Overflou

Divide by Zero
Invalid operation
User Mode set

RAD trig mode
Round to Infinity
Negative Round
FIX/ENG flag
SCI/ENG flag
Lover Case enabled

Base Option (high bit!)
Display digit bit 0
Display digit bit 1
Display digit bit 2
Display digit bit 3
Don’t pur loop doun autom.
Use extended addressing
Entry terminated by EOT

Beep LOUD

Don’t Prompt

Alternate message language

Module pulled

Machine is dormant
Aluays Return from MEMERR
Clock mode (1. sec update)
EXACT flag

Command Stack Active
Control key hit
DSLEEP called from PUR doun
Req set TRNOF in MAINLP
Turnoff at MAINLP
VIEU key pressed

Reserved for Future Use
Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

AC Annunciator
User Mode suspend

Key repeated

Alarm Annunciator
Low Battery Annunciator
Program Annunciator
Suspend Annunciator
Calc Mode Annunciator

18-11

HP-71 Software IDS - Detailed Design Description
Glossary

GoeDe>>on>e>-en - D e T --ew>e-

oeeeeee=->-= = ===-----

GLOSSARY

+
—
—

> a
" o o Qu

en
ed

S >

Absolute address

An address which is equal to the exact physical address
of the location it designates.

BET
Abbreviation for "Branch Every Time." Refers to a GOC or
GONC machine instruction uwhich is knoun to aluays be
equivalent to a GOTO because the state of the carry is
predicatably set or clear, respectively. This is a
packing technique which saves 1 nibble (GOTO takes 4
nibbles while GOC and GONC take only 3) but should be
used with caution and should always be clearly labeled as
a BET.

CALL stack

The CALL stack is used to store the local environment of
a program or subprogram which has called a subprogram or
user-defined function.

File chain
The data structure by which the HP-71 file system stores
multiple files in main RAM or in independent RAM.

General purpose buffer
Alternate name for a system buffer.

Independent RAM
A plug-in RAM memory module which has been declared as an
independent file system by the FREE PORT command.

IRAM

Abbreviation for Independent RAM.

1/0 buffer
Alternate name for a system buffer.

Main loop
The outermost 1loop of the HP-71 operating system; the
control 1loop. See the "System Control" chapter for
further information.

HP-71 Softuware IDS - Detalled Design Description
Glossary

PC
Abbreviation for “Program Counter." The CPU program
counter register is referred to as the PC register, and
contains the address of the next instruction the CPU will
execute. When the operating system is interpreting a
BASIC file, the address of the next token to be
interpreted is also loosely referred to as the "PC" of
the interpreter, and it is stored in register DO.

RAM

Abbreviation for random access memory.

Relative address
An offset address; usually used to describe the contents
of a field which contains an absolute address from which
the absolute address of the field start has been

subtracted, generating a positive or negative offset,

ROM

Abbreviation for read-only memory.

Saturn

The HP internal code name for the CPU and bus
architecture used in the HP-71.

System buffer
An operating system resource in main RAM which can be
created by a LEX file for data storage. Sometimes
referred to as an I/0 buffer or a general purpose buffer.

Titan
The HP internal code name for the HP-71 computer.

A-2

HP-71 Softuware IDS - Detailed Design Description
Table of Contents

Version 79.10.13 of RUNIT’s INDEX program

Index-

HP-71 Software IDS Volume I Index

1/X15, 9-8
12-Form Mathematical operand, 13-15, 13-17
15-Form Mathematical operand, 13-15, 13-17

A

ACOS15, 9-8
ACTIVE, 3-14
AD15S, 9-8
AD2-15, 9-8
ADD, 14-4
ADD1.5, 3-2
ADDONE, 9-8
Address updating

In system buffers, 3-32
On GOSUB Stack, 3-40
System RAM pointers, 3-13, 3-15

Address zeroing, 3-53
ADDRSS, 9-18
ADHEAD, 9-5
Adjustment Factor, 15-2
ADRS40, 9-18
Alarms Scheduling, 15-3
ALMSRV, 5-4
ALRM1, 3-17
ALRM2, 3-17
ALRM3, 3-17
ALRM4, 3-17
ALRMS, 3-17
ALRM6, 3-17
Alternate Character Set Buffer, 12-2
ANNAD1, 3-2
ANNAD2, 3-2
ANNAD3, 3-3
ANNAD4, 3-3
Annunciators, 3-3
ARG15, 9-8
ARGPR+, 9-10
ARGPRP, 9-10
ARGST-, 9-10
ARGSTA, 9-10
Array

Creation, 13-14
Destroying, 13-14
Dope Vector, 13-6
Tokenization, 7-13

ARRYCK, 9-14

INDEX

Index?l

INDEX

ARYDC, 7-17, 9-1
ASCICK, 7-17, 9-1
ASIN15, 9-8
Assembler Instruction Set, 16-1
ASSIGN Buffer, 11-20, 12-1
ASSIGN#, 11-20
ATAN15, 9-8
ATNDIS, 3-10
ATNELG, 3-10
ATIN key processing, 4-4
AUTINC, '3-16
Available Memory

End, 3-38, 3-50
Management, 3-50
Start, 3-37, 3-50

AVMEME, 3-14, 3-37, 3-38
AVMEMS, 3-14, 3-34, 3-37, 3-55

BASIC
Application standards, 8-2
File type, 11-8
Interpreter, 5-1

BASIC file

HP-71 Software IDS Volume I Index

Application standards preserving the main environment, 8-2
Application version number, 8-3
Chaining, 8-1
Compiling line number references, 8-1
Extending system capability, 8-1
Packing techniques, 8-2
Program line, 7-1
ROM generation, 8-1
Statement chaining, 7-1
Type, 11-8
VER$, 8-3

BF2STK, 9-5
BIASA+, 9-11
BIASC+, 9-11
BIN File, 11-10
Binary Error Exit, 6-32
Binary Program, 6-31

Ending, 6-32
BLDDSP, 9-2
BSERR, 10-7
Buffer

Alternate Character buffer, 12-2
ASSIGN buffer, 11-20, 12-1
Card buffer, 11-19, 12-1
Configuration buffer, 2-7, 3-26
External Command buffer, 12-3

Index-2

HP-

Bus

CAL

CAL
Car
Car

CAT

CAT

CHA
Cha

Cha

Cha
Chi
CHN
CHN

71 Software IDS Volume I Index INDEX

File 1/0 buffers, 12-4
File Information Buffer, 11-20, 12-3
Immediate Execute buffer, 12-13
LEX Entry buffer, 12-12
Startup buffer, 12-13
Statement buffer, 3-31, 5-6
Statistic buffer, 12-13
System buffer, 3-31, 3-33
System buffer (permanent), 3-32
System buffer (scratch), 3-33
System buffer address updating, 3-32
System buffer automatic deletion, 3-32
System buffer format, 3-31
System buffer ID allocation, 18-9
System buffer utilities, 9-16

C bus command, 16-58
Service Request bus command, 16-105
Shutdoun bus command, 16-104
System Reset bus command, 16-100

C

L, 3-55, 11-10
Binary to BASIC During Poll Response, 6-29, 6-33
Environment Save Area, 3-43, 3-45
Environment Save Block, 3-40, 3-43, 3-45
Funny functions in parameter list, 7-14
Local environment, 3-43
Parameter count, 3-24, 3-46
PRMPIR, 3-46
Stack, 3-44
Subprogram Save Stack, 3-43
STK, 3-14, 3-43, 3-44
d Reader Buffer, 12-1
riage return, 9-2
CARD, 12-2

CHR, 9-14
IN, 11-10
nnel Number Save RAM, 3-25
racter Set, 12-2
Alternate, 12-2
Standard, 12-2
racterization Nibble, 6-4
p ID, 2-4
#SV, 3-25
LST, 3-14

CKSREG, 5-3
CLASSA, 9-11
CLCBER, 3-13, 3-34
CLCOLL, 10-19

Index-3

INDEX HP-71 Software IDS Volume I Index

CLCSTK, 3-14, 3-34, 3-37
Clock Speed, 3-25

Clock System, 15-1
Considerations, 15-4
Servicing, 5-4
Timer, 15-1

CLOSEF, 9-6, 11-20
CLRERC, 9-9
CMDPTR, 3-16
CMOS test word, 3-49
CMOSTU, 3-9
CNTADR, 3-15, 3-46
CNVUUC, 9-14
COLLAP, 6-30, 10-19
COMCK, 9-14
Command Stack, 3-34

Altering number of stack levels, 3-34
Complex, 13-5

Array internal representation, 13-9
Internal representation, 13-6
Short, 13-5
Short array internal representation, 13-8
Short internal representation, 13-6

Configuration
At E0000 and F0000, 2-8
Buffer, 2-7, 3-26
Chip ID, 2-4
Device class, 2-4
Device number, 2-4
Device type, 2-4
Garbage dump, 2-10
IRAM, 3-47
Port number, 2-4
Routine, 2-3
Sequence, 2-4
Startup, 2-2

Constant, 7-12
CoPY

Card to file, 11-19
File copy code, 11-1, 11-5, 12-4, 12-5
File to card, 11-19
Save Stack usage, 3-38
To/from card, 11-19
To/from external media, 11-20
To/from other memory devices, 11-20

C0S15, 9-8
CPU Instruction Set, 16-1
CRDFIL, 11-19
CREATF, 11-22
CRIF, 9-6
CSPEED, 3-25
CURREN, 3-30, 3-46, 3-56

Index-4

HP-71 Software IDS Volume I Index

Current line, 3-20
CURRL, 3-20
CURRST, 3-13, 3-30, 3-46, 3-55
CURSOR, 3-10

D

Daisy chain, 2-2
DATA File, 11-11
Data Types, 13-1
DATPTR, 3-15, 3-46
DBLPI4, 9-11
DBLSUB, 9-11
DDICTL, 3-3
DD1END, 3-3
DD1ST, 3-3
DD2CTL, 3-3
DD2END, 3-3
DD2ST, 3-3
DD3CTL, 3-2
DD3END, 3-2
DD3ST, 3-2
Decompile, 4-13

Algorithm, 4-13
Array, 7-17, 9-1
Entry conditions, 7-16
Exit conditions, 7-17
Expression, 7-17, 9-1
External invoking, 4-13
File specifier, 7-17, 9-1
Funny function, 7-18
Get text of token, 7-16, 9-1
Global assumptions, 7-16
Initiation, 4-13
Multi-use routines, 7-17
Output utilities, 9-13
Poll, 7-18
RAM usage, 7-16
Register usage, 7-16
Statement terminators, 7-16, 9-1
Status flag usage, 7-16
Utilities, 7-16, 9-1
Variable, 7-17, 9-1
Uriting a decompile routine, 7-16

Deep sleep Algorithm, 4-5
DEFADR, 3-24
DEFAULT

EXTEND, 12-16
OFF, 12-16
ON, 12-16

INDEX

Index-5

INDEX

Delay, 9-3
Vith Uarning Messages, 10-13

DELAYT, 3-24
DEST, 9-17, 9-18, 13-13
Device Type, 12-4
Device class, 18-1
Device code, 18-1
Device type, 18-1

Allocation, 18-2
DISINT, 3-9
DISP statement, 9-15
Display

Control, 9-2
Driver, 3-10
Format, 12-15

DISPLAY IS, 3-18, 9-2
DMNSN, 13-14
Dope Vector, 13-6, 14-4, 14-6
Dormant flag, 4-4
DPOS, 3-24
DPVCTR, 13-14
DROP, 14-4, 14-5
DSLEEP Algorithm, 4-5
DSPBRS, 3-10
DSPCHA, 9-2
DSPCHX, 3-15, 3-55
DSPMSK, 3-11
DSPSET, 3-19
DSPSTA, 3-10
DSTRY*, 13-14
DV2-15, 9-8
DUIDTH, 3-24

E

eMEM, 10-8, 10-17
ENDBIN, 11-10
Environment

Save Area, 3-43, 3-44
Save Block, 3-43, 3-44

EOLCK, 9-14
EOLDC, 7-16, 9-1
EOLLEN, 3-24
EOLSTR, 3-24
EOLXC, 7-16, 9-1
EOLXCK, 7-20, 9-15
ERRADR, 3-15, 3-46
ERRL, 10-1, 10-6
ERRL#, 3-20
ERRLCH, 3-25
ERRM$, 10-1, 10-6

Index-6

HP-71 Software IDS Volume I Index

HP-71 Software IDS Volume I Index

ERRN, 3-19, 10-1, 10-6
Error

Function execution, 7-25
Insufficient Memory, 10-17
Message handling, 10-1
Parse, 7-11, 10-9
Relinquishing error handling, 7-11
Statement execution, 7-20

Error message, 10-4, 10-7
Last error message ((g] (ERRM]), 10-2, 10-6
Line number, 3-20
Message number, 3-19
Prefix, 10-30

ERRSUB, 3-15, 3-46
ESCSTA, 3-11
EX-115, 9-9
EX15, 9-9
EX15M, 9-11
Exactness, 14-1
Exceptions

Attention key, 3-10
Handling software interrupts, 5-3

Execution
Expression, 7-21
Function, 7-24
Function entry conditions, 7-25
Function entry point, 7-24
Function exit conditions, 7-25
Funny function, 7-26
Immediate mode, 5-6
Program, 5-7

Statement, 7-19
EXP15, 9-9
EXPEXC, 7-20, 9-5, 9-15, 13-13
EXPPAR, 9-14
EXPRDC, 7-17, 9-1
Expression

Decompile, 7-17, 9-1
Parse, 9-14

Expression execution, 7-21
Entry conditions, 7-21
Function returns, 7-24
Pop numbers and test exceptions, 7-23, 9-5
Pop numbers off math stack, 7-23, 9-5
Pop string and reverse, 7-23, 9-6
Pop string off math stack, 7-23, 9-6
Subroutine, 7-20, 9-15
Utilities, 7-23, 9-4

External Command Buffer, 12-3
External Module Missing Hardware status bit, 16-5, 16-37

INDEX

Index-7

INDEX | HP-71 Softuware IDS Volume I Index

F

Fast Poll, 6-26
Issuing and Checking Response, 6-27

FCSTRT, 9-10
FIB

See File Information Buffer, 11-20
Update pointers, 3-55

FIBADR, 9-6
Field selection, 16-10
FILCRD, 11-19
FILDC, 7-17
FILDC*, 9-1
File

BASIC, 11-8
BASIC subheader, 11-8
BASIC tokenization, 7-1
BIN, 11-10
BIN subheader, 11-10
Chain, 3-29, 11-1
Copy code, 11-1, 11-5, 12-5
Copying, 11-19
Creation, 11-22
DATA, 11-11
File chain in memory module, 3-47
File Chain Length field, 11-1, 11-5
File Information Buffer, 11-20, 12-3
Header, 11-3
Implementation Field, 11-1, 11-4, 11-6
KEY, 11-16
LEX, 11-17
Name, 11-3
Opening, 11-20
Protection and open files, 12-4, 12-6
Protection encoding in file type, 11-7
SDATA, 11-17
Searching, 11-21
Subheader, 11-1, 11-5, 12-4
TEXT, 11-18
Type, 11-3, 11-7, 12-4
Type Table, 11-5, 12-6, 17-2

File Header, 11-3
Copy code, 11-3

Creation date, 11-4
Creation time, 11-4
File Chain Length field, 11-1
File type, 11-3
Filename, 11-3
Flags, 11-3
Implementation Field, 11-1, 11-4, 11-6

Index-8

HP-71 Software IDS Volume I Index

Subheader, 11-1, 11-5
File 1/0 buffers, 12-4
File type, 11-3, 11-7

BASIC, 11-8
BIN, 11-10
DATA, 11-11
Encoding of file protection, 11-7
File Type Table, 11-5, 17-2
KEY, 11-16
LEX, 11-17
SDATA, 11-17
TEXT, 11-18

FILEP, 9-14
FILXQ", 7-20, 9-15
FINDF, 7-20, 9-6, 9-15, 11-21
FINITA, 9-11
FINITC, 9-11
FIRSIC, 3-10
Flags

File Header, 11-3
System, 3-16, 12-13
System assigmnment, 12-14
User, 3-16

FLGREG, 3-16
FLIP10, 9-11
FLIP11, 9-11
FLIPS, 9-11
FNRIN1, 9-5
ENRIN2, 9-5
ENRIN3, 9-5
FNRING, 9-5
FNRINX, 7-24
FOR/NEXT Stack, 3-38
Foreign Language, 6-19

Messages, 10-1, 10-15, 10-18
Translators, 10-2, 10-21, 10-30

FORSTK, 3-14, 3-34, 3-37
FSPECp, 9-14
FSPECk, 7-20, 9-6, 9-15
FUNCDO, 3-22
FUNCD1, 3-22
FUNCRO, 3-22
FUNCR1, 3-22
Function Execution, 7-24

Entry conditions, 7-25
Entry point, 7-24
Error exrits, 7-25
Exit conditions, 7-25
Funny functions, 7-26

Function Tokenization, 7-13
Funny function, 7-15

INDEX

Index-9

INDEX HP-71 Software IDS Volume I Index

Funny function
Decompile, 7-18
Display of, 6-23
Execution, 7-26
Parse, 7-13
Tokenization, 7-15

G

GETCON, 9-11
GETSA, 9-10
GETVAL, 9-11
GNXTCR, 9-12
GOSUB, 3-39
GOSUB Stack, 3-39
GSBSTK, 3-14, 3-39
GIEXT1, 7-16, 9-1

Handling
Interrupt, 4-6
Interrupt algorithm, 4-7

Hard-configured ROMs, 2-8
Harduware

Return stack, 16-69, 16-92, 16-101
Status bit MP, 16-4
Status bit SB, 16-4
Status bit SR, 16-4
Status bit XM, 16-4
Status bits, 16-4, 16-5

HNDLFL, 9-11
HP Logical Interface Format, 11-1, 11-4, 11-18
HPIL Mailbox, 3-18
HPSCRH, 3-25
HTRAP, 9-11

I

I1/0ALL, 9-16
I/0COL, 9-16
1/0CON, 9-16
1/0DAL, 9-16
1/0EXP, 9-16
1/OFND, 9-16
I/ORES, 3-32, 9-16
IMAGE, 7-8
Immediate Erecute Buffer, 12-13
Immediate mode, 5-6

Index-10

HP-71 Softuware IDS Volume I Index

Implementation Field, 11-1, 11-4, 11-6
DATA, 11-11

INADDR, 3-16
INBS, 3-15
Independent RAM, 1-8
Inf Exception, 13-16, 13-17
INFR15, 9-9
Insufficient Memory

Error, 10-17
Poll, 10-19

INTA, 3-9
INTB, 3-9
Integer, 13-5

Array internal Representation, 13-8
Internal Representation, 13-6
Packed sign, 13-6

Interpreter
Algorithm, 5-4
Entering, 5-1
Exiting, 5-2
Global assumptions, 5-8
Reentering, 5-1

Interrupt
Handling, 4-6
Handling algorithm, 4-7
Keyboard, 4-6
Module pulled, 4-6
ON-key, 4-6
Other, 4-6
Sof tware, 5-3

INTM, 3-9
INTR4, 3-9
INVNaN, 9-11
INXNIB, 3-17
IOBFEN, 3-13
IOBFST, 3-13, 3-29
IOFSCR, 9-16
IRAM, 1-8

Conflguratlon 3-47
File chain, 3-47

I1S-DSpP, 3-18
IS-INP, 3-18
IS-PLT, 3-18
IS-PRT, 3-18
IS-Table, 3-18
IS-TBL, 3-18
IVINIB, 3-17

INDEX

Index-11

INDEX HP-71 Software IDS Volume I Index

K

KCOLx, 3-10
Key definition Pointer, 3-24
KEY File, 11-16

Entry, 11-17
KEYBFR, 3-10
Keyboard

Buffer, 3-10, 9-4
Flags, 3-10
Scanning, 9-4

KEYBOARD IS, 3-18

'KEYPTR, 3-10
KEYSAV, 3-10
KEYSCN, 9-4

L

Labels, 16-6
LABLDC, 7-17, 9-1
Language Tables, 12-9
LBLINP, 9-14
LDCSPC, 3-15, 3-26, 7-16
LEEUAY, 3-50, 3-51, 10-4, 10-17, 10-19
LEX

Entry Number Range, 6-20
ID, 6-2, 6-19
ID allocation, 6-20

LEX Entry Buffer, 12-12
Usage, 12-13

LEX File, 6-1, 10-21, 11-17
Ansuering poll to "clean up" RAM, 6-31
Creation, 6-8
Decompiling, 6-7
Display of external keywords, 6-23
Entry numbers, 6-19
Execution code, 6-6
External lexical analysis, 6-22
File structure, 6-1
GOTO or GOSUB, 6-25
ID, 6-19
LEX Entry Buffer, 12-12
Line number references, 6-25
Main Table, 6-4
Memory movement (using MGOSUB), 6-21
Merging, 6-20
Message Table, 6-6, 6-19
Message Table offset, 6-4
Name, 10-29

Index-12

HP-71 Softuware IDS Volume I Index INDEX

Next LEX Table link, 6-2
Parsing, 6-7
Poll handler, 6-6
Poll handler offset, 6-4
Polling, 6-30
Polling during parse or decompile, 6-30
Range of entry numbers, 6-2, 6-20

Referencing mainframe entry points, 6-20
Sample, 17-62
Search order, 12-12
Short keywords, 6-23
Speed Table, 6-2
Statement Execution, 6-7
TEXT Table, 6-5
TEXT Table entry, 6-6
TEXT Table offset, 6-4

Lexical Analyzer
Overriding mainframe lexical analyzer, 6-22
Restarting, 6-24
Use of, 6-24

Lexical Type Table, 12-10
LEXPTR, 3-16, 3-26, 9-12
LGT15, 9-9
LIF, 11-1, 11-18

HP Logical Interface Format, 11-4
LIN#DC, 7-17, 9-1
Line feed, 9-3
IN1+15, 9-9
IN15, 9-9
LOCK Password, 3-19
LOCKUD, 3-19
Logical Interface Format, 11-1, 11-4, 11-18
LOOPST, 3-19
LR, 14-5

M

Machine Code Packing techniques, 17-1
Main Loop Algorithm, 4-3
Main Table

Characterization Nibble, 6-4
Entry, 6-4
Execution Address, 6-4
Mainframe, 12-10
TEXT Table offset, 6-4

MAINEN, 3-13, 3-29, 3-31
MAINST, 3-13, 3-29, 3-31
MAINT, 12-10
MAKE1, 9-11 |
Math Standard inputs and outputs, 14-1

Index-13

INDEX HP-71 Software IDS Volume I Index

Math Stack, 3-34, 3-37
Data representation, 13-2
Data types, 7-21
Format, 7-21
Scratch math stack, 3-23
Usage, 7-21

Mathematical Operands, 13-15
12-digit form, 13-15
15-digit form, 13-17
Extended values, 13-16
Packed representation, 13-15
Unpacked representation, 13-17

MBOX~, 3-18
MEMERR, 10-4, 10-7, 10-17

Entry points, 10-8
Memory

Error, 10-4, 10-19
Layout, 3-12
Management, 10-17

Movement, 3-51
Message

Error, 10-7
Foreign language, 6-19
Formats, 10-29
Handling, 10-1
Multiple text insertions, 10-13
Numbers, 10-3
Prefix, 10-29
System, 10-14
Table, 10-1
Text Insertion, 10-5
Type, 10-3
Varning, 10-11

Message handling, 10-1
Entry points, 10-7

" Indirect Calling, 10-14
Options, 10-3

Message Table, 6-6, 6-19, 12-10
Construction, 10-29
Examples, 10-37
Message cells, 10-33
Offset, 6-4
Range, 10-30

MESSG, 9-11
MFERR, 10-7
MFERR* Entry Conditions, 10-8
MFERsp, 10-10
MFURN, 10-11

Entry Conditions, 10-11
MFURNQ, 10-11
MGOSUB, 6-21
MLFFLG, 3-21

Index-14

HP-71 Software IDS Volume I Index

Module Pulled Hardware status bit, 16-5, 16-34
MP Hardware status bit, 16-4, 16-5, 16-34
MP2-15, 9-8
MPOPIN, 7-23, 9-5
MPOP2N, 7-23, 9-5
MSG$, 10-2, 10-30
MSN15, 9-12
MTHSTK, 3-14, 3-34, 3-37
MVMEM+, 9-6

N

NaN Exception, 13-16, 13-17
NEEDSC, 3-24
NTOKEN, 6-24, 9-12
NUMCK, 9-14
NXTIRQ, 3-17
NXTP, 9-14
NXTSTM, 7-19

0

ON ERROR System messages, 10-16
ON TIMER

Addresses, 3-15
Intervals, 3-15
Servicing, 5-4

ONINTR, 3-15, 3-46
OPENF, 9-6, 11-20
Operands Mathematical, 13-15
Operator Tokenization, 7-13
ORGSB, 9-12
ORSB, 9-12
ORXM, 9-12
OUT1TK, 9-13
OUT2IC, 9-13
OUT2TK, 9-13
OUT3TC, 9-13
OUT3TK, 9-13
OUTBS, 3-14, 3-34, 3-37
OUTBYT, 9-13
OUTELA, 9-1
OUTNBC, 9-13
OUTNBS, 9-13
OUTNIB, $-13
OUTVAR, 9-14
OVENIB, 3-17

INDEX

Index-15

INDEX

P

Packing Techniques
BASIC, 8-2
Machine code, 17-1

Parse, 4-7
Algorithm, 4-8
Array, 9-14
Categorize character, 9-14
Convert to uppercase, 9-14
Entry conditions, 7-10
Errors, 4-12, 7-11, 10-9
Exit conditions, 7-10
Expression, 9-14
External invoking, 4-8
File name, 9-14
File specifier, 9-14
Funny function, 7-13
Get next character, 9-12
Get next token, 9-12
Global assumptions, 7-9
Initiation, 4-7
Input utilities, 9-12
Line number or label, 9-14
Numeric expression, 9-14
Output a nibble, 9-13
Output byte or token, 9-13
Output three bytes, 9-13
Output two bytes, 9-13
Output utilities, 9-13
Output variable, 9-14
Polling, 7-15
Register usage, 7-9
Restart, 4-12
Restart algorithm, 4-12
Restore input pointer, 9-12
Scan for tokens, 9-13
Simple numeric variable, 9-14
Simple variable, 9-14
Statement scratch usage, 7-9
Statement terminator, 9-14
Status flag usage, 7-9

String expression, 9-14
Utilities, 9-14
Word scan, 9-13
Uriting a parse routine, 7-1

HP-71 Software IDS Volume I Index

PC Program Counter Register, 16-4, 16-101
PCADDR, 3-15, 3-46
P1/2, 9-12
PLOTTER IS, 3-18

Index-16

HP-71 Software IDS Volume I Index

PNDALM, 3-17
Pointers CALC mode, 3-33
Poll, 6-25

Algorithm, 6-25
Configuration, 12-3
COPY to external device, 11-20
Deep Sleep Uakeup, 12-3

During decompile, 7-18
During parse, 7-15
During Parse or Decompile, 6-30
Entering BASIC interpreter, 5-1
Exception, 5-4
Exiting BASIC interpreter, 5-3
Fast, 6-26
File specifier execution, 11-20
File specifier parse, 11-20
From a LEX File in RAM, 6-30
Handler Offset, 6-4
Insufficient Memory, 10-19
LEX File Handler, 6-6
Numbers, 18-7
Powerdoun, 3-49
Process numbers, 6-31, 18-7
Responding to, 6-25, 6-29
Restore CALL enviromment, 3-45
RUN an unknown file type, 5-7
RUN non-BASIC file, 5-7
Save CALL environment, 3-45
Save Stack, 3-38, 6-28
Saved information, 6-28
Service request, 5-4
Slouw, 6-27
Special return type, 3-40
Subroutine Level Usage, 6-29
VER$, 8-3
WUakeup, 3-49
Zero Program, 6-31

POPIN, 7-23, 9-5
POP1R, 9-10
POP1S, 7-23, 9-6
POP2N, 7-23, 9-5
POPBUF, 9-4
POPMTH, 9-6
Pouer off Algorithm, 4-5
PPOS, 3-24
PREP, 13-14
PRGFME, 9-6
PRGMEN, 3-13, 3-30, 3-46
PRGMST, 3-13, 3-30, 3-46
PRINT statement, 9-15
PRINTER IS, 3-18
PRMCNT, 3-24

INDEX

Index-17

INDEX HP-71 Software IDS Volume I Index

PRMPTR, 3-14, 3-46
Process numbers, 18-7

See Poll process rnumbers, 6-31
Program

Binary, 6-31
Execution, 5-7
Line with comment, 7-2
Line with labels, 7-2
Scope, 3-30
Suspending, 5-2

Program edit, 4-14
Algorithm, 4-15
Global assumptions, 4-15

PURGEF, 9-6
PUIDTH, 3-24
PUROFF Algorithm, 4-5

Q

Quiet option, 10-11

RAM
Availability, 3-26
Independent, 3-31, 3-47

RAMEND, 3-14, 3-44
Random number seed, 3-17
RAUBFR, 3-13, 3-34
RCL¥*, 9-10
RCLU1, 9-10
RCLU2, 9-10
RCLU3, 9-10
RCSCR, 9-10
RDBYTA, 9-7
READNB, 9-7
Real, 13-5

Array Internal representation, 13-7
Internal Representation, 13-5
Short, 13-5
Short array internal representation, 13-7

REAL SHORT Internal representation, 13-5
Reference adjustl 3-51

Address updating, 3-52
Address zeroing, 3-53
Buffers, 3-58
Configuration buffer, 3-53
File chain, 3-55

Index-18

HP-71 Software IDS Volume I Index

Referencing Addresses
In a LEX File, 6-22
In the Mainframe, 6-20

Register Program counter, 16-101
Registers

CPU, 13-1
Data Pointers, 16-1, 16-3
Field selection, 16-10
Input, 16-1, 16-4
Output, 16-1, 16-4
P Pointer, 16-1, 16-3
Program counter, 16-4
Scratch, 16-1, 16-2
ST, 16-1, 16-4, 16-5, 16-13
Vorking, 16-1, 16-2

Representation
Numeric Array, 13-6
Scalar Variable, 13-5

RESERV, 3-26
RESPTR, 9-12
RESREG, 3-19
Restart, 4-12

REST* entry point, 7-11
Restarting Lexical Analyzer, 6-24
Result register, 3-19
RETURN, 3-39

To machine code, 3-39
Types, 3-39

Return stack, 16-69, 16-92, 16-101
REV$, 7-23, 9-6
REVPOP, 7-23, 9-6
RFADJ, 3-51
RENBFR, 3-13, 3-34, 3-37
RNDAHX, 9-7
RNSEED, 3-17
ROM

File chain, 3-47
Plug-in, 3-47
Take-over, 3-48
Take-over hard configured, 3-48
Take-over soft configured, 3-49

Rounding, 14-1
ROUDVR, 3-3
RPLLIN, 9-7
RSTKBE, 3-20, 3-26

RSTKp, 3-20
RUN, 11-10

Save Stack usage, 3-38
RUNRT1, 7-19
RUNRTN, 7-19

INDEX

Index-19

INDEX HP-71 Software IDS Volume I Index

S

Save Stack, 3-37, 6-28
SAVESB, 9-12
SAVEXM, 9-12
SAVGSB, 9-12
SAVSTK, 3-14, 3-37
SB Harduware status bit, 16-4, 16-5, 16-35
SB15S, 9-8
Scratch

(See Scratch RAM), 3-21
Function, 3-26
Math Stack, 3-23
SCRTCH, 3-26
Statement, 3-26
TRANSFORM Scratch RAM, 3-26

Scratch RAM
Function, 3-21, 3-26
SCRICH, 3-22, 3-26
Statement, 3-21, 3-26
TRANSFORM, 3-22, 3-26

SCREX0, 3-21, 3-23
SCREX1, 3-23
SCREX2, 3-23
SCREX3, 3-23
Scrolling, 9-2
SCROLT, 3-24
SCRPTR, 3-23
SCRSTO, 3-21, 3-23
SCRICH, 3-21
SDATA file, 11-17
Searching LEX Files, 12-12
SECURE, 12-6
Service Request

Bus command, 16-105
Checking, 5-4, 16-105
Harduare status bit, 16-5, 16-35, 16-105

SFLAG?, 9-7
SFLAGC, 9-7
SFLAGS, 9-7
SFLAGT, 9-7
SHFLAC, 9-12
SHERAC, 9-12
SHERBD, 9-12
SIN15, 9-8
SKIPDC, 7-17, 9-1
Slou Poll, 6-27

Issuing and Checking Response, 6-28
SNAPBF, 3-20, 3-26
SPACE, 13-14

Index-20

HP-71 Software IDS Volume I Index INDEX

Speed Table, 6-2
SPLITA, 9-9
SPLITC, 9-9
SPLTAC, 9-9
SPLTAX, 9-9
SQR15, 9-8
SQRSAV, 9-8
SR Hardware status bit, 16-4, 16-5, 16-35, 16-105
sSSTdc, 7-16
ST Register, 16-4, 16-5, 16-13
Stack

CALL Stack, 3-44
Command, 3-34
FOR/NEXT, 3-38, 3-55
GOSUB, 3-39, 3-55
Math, 3-34, 3-37, 7-21
Return stack, 16-69, 16-92, 16-101
Return stack save buffer, 3-26
Save, 3-37, 6-28
Save Slou Poll information, 6-28
Scratch math stack, 3-23

Standard Math Inputs and outputs, 14-1
Startup Buffer, 12-13
Stastistics STAT Array internal representation, 13-10
STAT, 14-4
STAT Array Internal representation, 13-10
STATAR, 3-19
Statement

Execution, 7-19
Tokenization, 11-9

Statement Buffer, 5-6
Statement decompile, 4-13
Statement execution

Entry conditions, 7-19
Error exits, 7-20
Exit conditions, 7-19
File name, 7-20, 9-15
File specifier, 7-20, 9-15
Find a file, 7-20, 9-15
Global assumptions, 7-19
LEX File, 6-7
Skip to next statement, 7-19
Statement terminator, 7-20, 9-15
Utilities, 7-20, 9-15

Statement Label Chain within BASIC file, 11-8, 11-9
Statement parse, 4-7
Statistic Buffer, 12-13
Statistical Array, 13-9
Statistics

Algorithms, 14-2
Array, 3-19
Linear Regression, 14-5

Index-21

INDEX HP-71 Software IDS Volume ! Index

Statistical Array, 13-9
Summary, 14-2
Utilities, 9-10

Status Settlngs S13: Program Running, 7-20, 7-25, 10- 6, 10-7
Sticky Bit Harduware status bit, 16- 5, 16-35
STKCHR, 9-5
S’I‘tfl“Do, 3-21
SmID1, 3-21
STMIRO, 3-21
SIMIR1, 3-21
STORE, 9-18, 13-13
STRGCK, 9-14
String, 13-5

Array Internal representatlon 13-11
Internal representation, 13- 11

String Variables, 13-10

Internal representatlon 13-10
Strings CPU Representatlon, 13-3
STSAVE, 3-15, 3-26
STSCR, 9-10
Subheader

BASIC, 11-8
BIN, 11-10
File header, 11-1, 11-5
Length, 12-4

SUBONE, 9-8
Subprogran

Chain in BASIC file, 11-8, 11-9, 11-11
Chain in BIN file, 11 11
Chain within BASIC file, 11-8
Chain within BIN file, 11 10
Local env1ronment 3-43
Parameter count, 324
Save Stack, 3-43 3-44

Variables, 1312
SUPBYT, 11-18
Symbollc References, 6-8
Symbolics

Ascii, 6-17

Mainframe Keywords, 6-8
Mainframe Operators, 6-17
Mainframe Relational Operators, 6-17

Symbols, 16-6
SYSEN, 3-14, 3-34, 3-37
SYSFLG, 3-16, 12-13
System buffer, 3-31, 3-33

Address updating, 3-32
Automatic deletion, 3-32
Format, 3-31
ID allocation, 18-9
Permanent buffer, 3-32
Scratch buffer, 3-33

Index-22

HP-71 Software IDS Volume 1 Index

System Flags, 12-13
System Message, 10-14
System RAM

Alarm clock, 3-17
Availability, 3-26
CPU snapshot, 3-20
Decompile usage, 7-16
DISP/PRINT, 3-24
HP-IL, 3-18, 3-25
Interrupt, 3-§S
Parse usage, 7-9
Reserved, 3-26
Return Stack save, 3-20
Update addresses, 3-15

T

TAN1S, 9-8
TERCHR, 3-25
TEXT File, 11-23
TEXT Table, 6-5

Entry, 6-6
Cffset, 5-4
Size of text, 6-6
Token#, 6-6

TIMAF, 3-17
Time Format Internal, 15-2
TIMERL, 3-3
TIMERZ2, 3-3
TIMER3, 3-2
TIMLAF, 3-17
TIMLST, 3-17

TIMOFS, 3-17
IMRAD1, 3-15

TMRAD2, 3-15
TMRAD3, 3-15, 3-55

TMRIN1, 3-15

TMRIN2, 3-15
TMRIN3, 3-15
Token

Characterization Nibble, 6-4
Execution Address, 6-4
Main Table Entry, 6-4
TEXT Table offset, 6-4

TOKEN#, 6-6
Tokenization

Array, 7-13
CALL, 7-5
Comment (,REM), 7-2
Constant, 7-12
Function, 7-13

INDEX

Index-23

INDEX HP-71 Software IDS Volume I Index

Funny function, 7-15
IF..THEN. .ELSE, 7-3
Label declaration, 7-2
Operators, 7-13
Program line, 7-1
Statement, 7-1, 11-9
SUB, 7-7
Variables, 7-12
XEN, 7-13

Tokens
Building Symbolic Tokens, 6-18
Complete List of Mainframe Keyword Tokens, 6-8
Symbolic Referencing, 6-8

TRACE, 5-8
Mode, 3-19

TRACEM, 3-19
Tracing

Program flow, 5-8
Variable assigmment, 5-8

TRANSFORM Save Stack usage, 3-38
Trap Memu, 12-14
Traps, 3-17, 12-14
TREMBE, 3-22, 3-26
TRPREG, 3-17
Truncation, 14-1
IST15, 9-7
TWo*, 9-12

U

UNFNIB, 3-17
UPDANN, 9-7
Update addresses

GOSUB Stack, 3-40
Reference adjust, 3-52
System RAM, 3-13, 3-15

uRES12, 9-9
uRESD1, 9-10
uRND>P, 9-10
User’s Library LEX files, 10-2
User-Defined Function

Chain within BASIC file, 11-8, 11-9
Envirorment Save Block, 3-40, 3-41
Multi-line flag, 3-21
Parameter count, 3-14
Parameter pointer, 3-14

Utilities
Arithmetic & square root, 9-8
Decompile, 7-16, 9-1
Decompile output, 9-13
Execution statement terminator, 7-20, 9-15

Index-24

HP-71 Software IDS Volume I Index INDEX

Exponential & involution, 9-9
Expression execute, 7-20
Expression execution, 9-10, 9-15
Factorial, 9-10
File 1/0, 9-6
Find a file, 7-20, 9-15
Flag, 9-7
Integer-fraction functions, 9-9
Inverse trig, 9-8
Invoking mainframe routines from LEX file, 6-21
Logarithmic, 9-9
Math, 9-7
Miscellaneous math, 9-11
Numeric comparison, 9-7
Output, 9-13
Parse general, 9-14
Parse input, 9-12
Parse output, 9-13
Pop, test, prepare one argument, 9-10
Scratch math stack, 9-10
Statement execution, 7-20, 9-15
Statistical, $-10
System Buffer, 9-16
Trig, 9-8
Variable storage, 9-17

v

VARDC, 7-17, 9-1
Variables, 13-3

Chain pointer, 3-14
Chains, 13-3
Creation, 13-14
Decompile, 7-17, 9-1
Destroying, 13-14
Indirect, 13-12
Internal representation, 13-3, 13-5
Management utilities, 9-17
Parse, 9-14

Recalling, 13-13
Storage, 9-17, 13-13
Tokenization, 7-12

VARNB-, 9-11
VARNBR, 9-11
VECTOR, 3-9
VER$ poll, 8-3

Index-25

INDEX

u

Wakeup algorithm, 4-4
Warning messages, 10-5, 10-11

Entry Conditions, 10-11
Quiet option, 10-11

WINDLN, 3-10
WINDST, 3-10
WRBYIC, 8-7
WRDSCN, 6-24, 9-13
WRITNB, 9-7

XEN

Display of, 6-23
Tokenization, 7-13

HP-71 Software IDS Volume I Index

XM Hardware status bit, 16-4, 16-5, 16-37
XROMO1, 12-10
XWORD Display of, 6-23
XYEX, 9-12

Y

YX2-15, 9-9

Index-26

HP-71 Software IDS Volume I Index INDEX

European Headquarters
150, Route Du Nant-D’Avril
P.O. Box, CH-1217 Meyrin 2

Geneva-Switzeriand

00071-00068 English

[fifi HEWLETT
PACKARD

Portable Computer Division
1000 N.E. Circle Bivd., Corvallis, OR 97330, U.S.A.

HP-United Kingdom
(Pinewood)

GB-Nine Mile Ride, Wokingham

Berkshire RG11 3LL

Printed in U.S.A. 2/84

	Cover
	Table of Contents
	Chapter 1 - Overview
	1.1 Structure of the HP-71 Software IDS
	1.2 Operating System Overview
	1.3 CPU Overview
	1.4 HP Support For HP-71 Software Development

	Chapter 2 - System Startup and Memory Configuration
	2.1 System Configuration Overview Including RAM and ROM
	2.2 Entering Deep Sleep
	2.3 Startup/Configuration Sequence
	2.4 Configuration Routine -- Detail
	2.5 Configuration Buffer Format
	2.6 Special Role of the High Two Pages in Memory
	2.7 Location of Future System ROMs
	2.8 Configuration "Garbage Dump"

	Chapter 3 - Memory Structure
	3.1 Operating System ROM
	3.2 Memory Mapped I/O and Display RAM
	3.3 System RAM
	3.4 Configuration Buffer
	3.5 User Memory
	3.6 Plug-in ROM and Independent RAM
	3.7 Available Memory Management
	3.8 Handing Memory Movement

	Chapter 4 - System Control
	4.1 Main Loop Flow Diagram
	4.2 Algorithm
	4.3 Interrupt Handling
	4.4 Statement Parse
	4.5 Statement Decompile
	4.6 Program Edit

	Chapter 5 - The BASIC Interpreter
	5.1 BASIC Interpreter
	5.2 Entering the BASIC Interpreter
	5.3 Reentering the BASIC Interpreter
	5.4 Exiting the BASIC Interpreter
	5.5 Exception Handling
	5.6 Immediate Mode
	5.7 Program Execution
	5.8 TRACE Mode
	5.9 Global Assumptions

	Chapter 6 - Language Extension and Binary Files
	6.1 LEX File Structure
	6.2 Lexical Analysis, Parse, Execute
	6.3 LEX IDs and Entry #s
	6.4 Referencing Mainframe Entry Points
	6.5 Referencing Addresses in a LEX Flle
	6.6 External Lexical Analysis
	6.7 Entry and Display of External Keywords
	6.8 Short Keyuwords
	6.9 Line Number References Within a Statement
	6.10 Polling
	6.11 BIN Main Programs
	6.12 BIN Subprograms
	6.13 BIN Error Exit
	6.14 Invoking BASIC from Binary

	Chapter 7 - Statement Parse, Decompile, and Execution
	7.1 Writing a Parse Routine
	7.2 Writing a Decompile Routine
	7.3 Statement Execution
	7.4 Expression Execution
	7.5 Implementation of Function Execution

	Chapter 8 - BASIC File Considerations
	8.1 ROM Operation
	8.2 BASIC Application Standards
	8.3 BASIC Packing Techniques
	8.4 Version Number

	Chapter 9 - Utilities
	9.1 Decompile Utilities
	9.2 Display and Keyboard Control Utilities
	9.3 Expression Execution Utilities
	9.4 File I/O Utilities
	9.5 Flag Utilities
	9.6 Math Utilities
	9.7 Parse Utilties
	9.8 Statement Execution Utilities
	9.9 System Buffer Utilities
	9.10 Variable Storage Utilities

	Chapter 10 - Message Handling
	10.1 BASIC Keywords Involving Messages
	10.2 Message Handling
	10.3 Insufficient Memory Error
	10.4 Foreign Language Translators
	10.5 Message Table Construction

	Chapter 11 - File System
	11.1 File Chain Structure
	11.2 File Types
	11.3 Copying a File
	11.4 Opening a File
	11.5 File Searching
	11.6 File Creation

	Chapter 12 - Table Formats
	12.1 ASSIGN Buffer
	12.2 Card Reader Buffer
	12.3 Character Sets
	12.4 External Command Buffer
	12.5 File Information Buffer
	12.6 File Type Table
	12.7 Keycode Table
	12.8 Language Tables
	12.9 LEX Entry Buffer
	12.10 Startup and Immediate Execute Key Buffers
	12.11 Statistic Buffer
	12.12 System Flags
	12.13 Traps

	Chapter 13 - Internal Data Representation
	13.1 Data Types
	13.2 Registers
	13.3 Variables
	13.4 Mathematical Operands

	Chapter 14 - Numeric Computation Algorithms
	14.1 Standard Math Inputs and Outputs
	14.2 Statistical Algorithms

	Chapter 15 - Clock System
	15.1 Theory of Operation
	15.2 Software Timebase Correction
	15.3 Format of Time Information
	15.4 Scheduling External Alarms
	15.5 Developing Clock System Appllcatlons
	15.6 Clock System Ram Usage

	Chapter 16 - HP-71 Assembler Instruction Set
	16.1 CPU Overview
	16.2 Instruction Syntax
	16.3 Explanation of Symbols
	16.4 Instruction Set Overview
	16.5 Mnemonic Dictionary

	Chapter 17 - HP-71 Code Examples
	17.1 Machine Code Packing Techniques
	17.2 Mainframe File Type Table
	17.3 LEX File Implementing Statements and Functions
	17.4 LEX File Showing Use of Speed Table
	17.5 Foreign Language Translation of Messages

	Chapter 18 - HP-71 Resource Allocation
	18.1 Device Types, Classes and Codes
	18.2 File Types
	18.3 Funny Physical Key Code Allocatlons
	18.4 LEX IDs
	18.5 Poll Process Number Allocations
	18.6 Reserved RAM Allocations
	18.7 System Buffer ID Allocations
	18.8 GOSUB Stack Item Type Allocations (RETURN Iypes)
	18.9 System Flag Allocations

	Appendix A - Glossary
	Index

