(D et

Software Internal Design

Specification Volume I

For the HP-71

Hewlett-Packard

Corvallis, Oregon

Portable Computer Division

TR T T TIT TNV N VT Vo Vo VoTe Ta To o To Vot To 1o 1o Vo Vo Fo o o Vo Vo Vo Yo To
% pA
% HP-71 Software %
A %
% Internal Design Specification %
% %
% %
% VOLUME I A
% %
% Detailed Design Description %
./ z

iXX%X%%%Z%%%XZZ%ZX%%ZZ%Z%ZZZZ%Z%Z%X%%ZZX

PYYASASAA
VNN ANA

YA
A4
yaA
wh
/42
Lk
%k
A

RALLALLT
WARDLRLL

i
*h

%%
wk

X% AR

XL
%

VAYAANA YA YA
WLLILIIALLA e

Nl YAAA
%k %
%W YA
YA wh
A pAA
(YA Py
%k yAA
AA LAY

RLRLLKRILLL LT
RRLARLAL LTI

AA%L %%

A A% %%

% % %%

x% X% %%
AAA% AAXRLL

December 1983

xAL%
XA

HP Part No. 00071-90068

YA
YAANAYAAA
Whe YA

A
YA A
YYAYAAA
NARALY
nAAh
%
P YAA A%
AALLALLL
*AL%

RARARE
*%
%
%%

RAAALL

(ci Copyright Hewlett-Packard Company 1983

HP-71 Software IDS - Detailed Design Description

xR XX NO’IICE 3%

Hewlett-Packard Company makes no expresse¢ or implied warranty with
regard to the documentation and program material offered or to the
fitness of such material for any particular purpose. The
documentation and program material is made available solely on an
"as 1is" basis, and the entire risk as to its quality and
performance is with the user Should the documentation and pr.s:am
material prove defective, the user (and not Hewlett-Packard Comnany
or any other party) shall bear the entire cost of all necessarv
correctior and all | incidental or consequential damages

Hewlett-Fi_kard Company shall not be liatle for any incidenta. :
consequential damages in connection with i arising out of *
furnishing, use, or performance of the dor.imentation and prograr
material.

Hewlett-Packard -- Portable Computer Division

KALAK
YYYANA
A%
yya
i
%%
i
%%
4%
%%
KALLL
LALLL

%%
“X

Research and Development Laboratory

Corvallis, Oregon

ARRARAIRKKARKIRRLRARRRARARERRIRRRARRRA Ll

%
%
%
%
%
A

%
%
3
%

HP-71 Software ;
Internal Design Specification é
"

VOLUME I ?
Detailed Design Description 2

REARRRARRKARRLARRRALRRARRARRR AR LA AU AIRL

AA%
Y¥4 4

A%
AA%

*%
*%

A% KK

A%
%

KAXARAL A%
YV VYT Y YA
%4 AL
a4 %k
%% A
*% YAA
wh wh
x% x4
%% “h
a3 A%
RAARRRRAALLL
RALAKLLLRLL
RALK *%
*K XX s
% % s
*E X% %K

RALK KRLKEA

ROM Release 1BBBB --

WAL
RRARRLIE
ya¥A Y44

¥
(Y42
AARRLA
RRARRR
¥
%4
¥4 A%
RARLALL %
RALL

RRRLAR

*%

X

RA% *%4
yyy RAULAL

December 1983

(c) Copyright Hewlett-Packard Company 1983

HP-71 Software IDS - Detailed Design Description

k% NQTICE %

Hewlett-Packard Company makes no express or implied warranty with
regard to the documentation and program material offered or to the
fitness of such material for any particular purpose. The
documentation and program material is made available solely on an
"as 1is" Dbasis, and the entire risk as to its quality and
performance is with the user. Should the documentation and program
material prove defective, the user (and not Hewlett-Packard Company
or any other party) shall bear the entire cost of all necessary
correction and all incidental or consequential damages.
Hewlett-Packard Company shall not be liable for any incidental or
consequential damages in connection with or arising out of the
furnishing, use, or performance of the documentation and program
material.

HP-71 Software IDS - Detailed Design Description
Table of Contents

Table of Contents

1 OVERVIEU

1.1 Structure of the HP-71 Software IDS 1-1
1.1.1 Volume I: Detailed Design Description 1-2
1.1.2 Volume II: Entry Point and Poll Interfaces . . 1-4
1.1.3 Volume III: Operating System Source Listings . 1-5

1.2 Operating System Overview B £
1.2.1 Memory Layout e e e e e e .. 17
1.2.2 FileSystem ¢« v v v o . . e+« . 1-8

1.3 CPU Overview e e e e e e e e e e . . 1-8
1.3.1 Registers e e e e e e e e e . . 1-8
1.3.1.1 Field Selectlon C e e e e e e e e e e . 1-9

1.3.2 Pointer Registers v v ¢ v v o 1-9
1.3.3 Input, Output, and Program Counter Registers -10
1.3.4 Status and Carry Bits« .. 1-10

1.4 HP Support For HP-71 Softuare Development -11

EM STARTUP AND MEMORY CONFIGURATION

Entering Deep Sleep v + v v v o

Startup/Configuration Sequence
Configuration Routine -- DETAIL
2.4.1 CHIPID. e e e e e e

iii

SYST
2.1 System Configuration Overview Including RAM and ROM .
2.2
2.3
2.4

3
. o e - . .

U

1

2-1

2-2

2-2

2-3

. . 2-4

2.4.1.1 Examples c e e e e 2-6

2.5 Configuration Buffer Format . ., « o e .. 2T

2.6 Special Role of High Tuo Pages in Memory 2-8

2.6.1 Producing a Hard-Configured ROM at E0000 . . . 2-8

2.6.2 Dangers of Hard-Configuring ROMS , 2-8

2.6.2.1 Bus Contention ., . ..,Z28

2.6.2.2 Invisible Plug-ins e o . 29

2.7 Location of Future System ROMs. e e e e e e . 29

2.7.1 Soft-Configured ROM 29

2.7.2 Fifth ROM at F8000. . . . v ¢ v o o « o & . . 2-9

2.8 Configuration "Garbage Dump" 2-10
3 MEMORY STRUCTURE

3.1 Operating System ROM . . . P 12 |

3.2 Memory Mapped 1/0 and Dlsplay RAM O 12

3.2.1 Display Driver Addresses « . . . 3-2

3.3 System RAM e . 3-4

3.3.1 Interrupt RAM (INTR4 - VECTOR DISINT) 3-9

3.3.2 Keyboard Buffer/Flags (ATNDIS - KEYSAV) . 3-10

3.3.3 Pseudo-Device Display Driver (WINDST - DSPMSK) 3-10

3.3.4 User Memory Pointers (MAINST - RAMEND) 3-12

3.3.5 Parameter Chain Pointer (PRMPTR) 3-14

3.3.6 Variable Chain Pointer List (CHNLST) ., . . . 3-14

3.3.7 Statement/Program Execute RAM (DSPCHX-TMRIN3) 3-15

3.3.8 Miscellaneous BASIC RAM (STSAVE - INADDR) . . 3-15

HP-71 Software IDS - Detailed Design Description
Table of Contents

ww
(S, B)

o

QUUUU(‘)U.(JU
(NG RSN N NG NGRS N

w
(&)

9 System and User Flags (SYSFLG - FLGREG) .
10 Traps (INXNIB - IVINIB)
.11 Random Number Seed (RNSEED)
12 Alarm Clock System RAM (NXTIRQ - TIMAF)
13 "IS" Table Assignments (IS-TBL)
14 HP-IL RAM (MBOX,LOOPST,DSPSET)
15 STAT Array (STATAR), TRACE Mode (TRACEM) . .
16 LOCK Password (LOCKWD) « . . .
17 Result Register (RESREG)
18 Error Number (ERRN) . ,
19 Current Line (CURRL) v + ¢« + « &
.20 Error Line Number (ERRL#)
.21 Snapshot Buffer (SNAPBF)
22 Return Stack Save (RSTKBp,RSTKBF)
.23 Multi-Line Function Flag (MLFFLG)
.24 Statement, Function Scratch (STMIRO - FUNCD1)
.25 TRANSFORM Scratch RAM (TRFMBE)
.26 Scratch RAM (SCRICH) v v o o «
27 Scratch Math Stack (SCRSTO - SCREXx)
.28 DISP/PRINT RAM (SCROLT - EOLSTR)
.29 CALL Parameter Count (PRMCNT) .,
30 Key Definition Info (DEFADR)
.31 Channel Number Save (CHN#SV)
32 Number of Command Stack Entries (HAXCMD) .
.33 Clock Speed (CSPEED) e e
34 HP-1L Special RAM (ERRLCH - HPSCRH) .
35 Reserved RAM (RESRV)
.36 System RAM Avallabxllty ot e e e e e e e
onflguratlon Buffer e e e e e e e e e e
ser Memory i v e e e e e e e e e e e
1 MAIN File Chain« e e e e
2 Program Scope ¢ v 4 e e v e 4 o . e
3 System Buffers ¢ v e ...
3.5.3.1 Format i v v it e e e e e
3.5.3.2 Update Addresses 1n System Buffers
3.5.3.3 Automatic Deletion of System Buffers .
3.5.3.4 Permanent Buffers
3.5.3.5 Scratch Buffers
3.5.3.6 System Buffers Used by the Halnframe
.4 CALC Mode Pointers v v v o « o
.5 Command Stack v v v v v e e e e e e
.6 Available Memory e e e e e e e
.7 Math Stack o e
.8 Save Stack 0 .. « e e .
.9 FOR/NEXT Stack e e e e
.10 GOSUB Stack e e e 4 e e e
.11 Variable Storage . . . v e e e e .
.12 User-Defined Function Env1ronment Stacklng .
3.5.12.1 Enviromment Save Block
3.5.12.2 Extended Parameter Storage
.13 Subprogram CALL Environment Stacking . . .

iv

HP-71 Software IDS - Detailed Design Description
Table of Contents

4 SYST
4.1
4.2

4.3

4.4

4.5

U'U'!UIU\U\;!
NnbdbWNH-M

5.6

3.5.13.1 Envirorment Save Area

Plug-in ROM and Independent RAM
3.6.1 Standard Configuration
3.6.2 Stand AloneModule ID . ., « .
3.6.3 FileChainlayout
3.6.4 Take Over ROM « v v v v v o o

3.6.4.1 Hard-Configured Takeover ROM .
3.6.4.2 Soft-Configured Takeover ROM .

Available Memory Management

Handling Memory Movement . e . .
3.8.1 In Configuration Buffer Area
3.8,.2 InaFileChain. « v v « . . . e e
3.8.3 In System Buffer Area . . . e o« o e
EM CONTROL

Main Loop Flow Diagram e

Algorithm ., o a e o o e e e e s

4,2.1 Cold Start
4

.2.2 Main Loop, Uakeup, Power Off Deep Sleep . o0

Interrupt Handling
4.3.1 Causes of Interrupte e e e e e

U

4-2

4-3

4-3

4-3

4-6

. 4-6

4,3.1.1 Keyboard Interrupts e 4-6
4.3.1.2 ON-Key Interrupt 4-6
4,3.1.3 Module Pulled Interrupts . . 4-6
4.3.1.4 Other Interrupts« o« o 4-6
4.3.2 Interrupt Handling Algorithm « ¢ 4 s 4 o . 46
Statement Parse ¢ ¢ ¢ ¢ . o o . . . 4-7
4.4,1 Initiation . . . o e e e e e 4-7
4,4,1.1 External Invoklng of Parse . . . 4-8
4.4.2 Statement Parse Algorithm . . , . . . 4-8
4.4.3 Errorsand Restart « v ¢ ¢« « . 4-12
4.4.4 Restart Algorithm 4-12
4.4.5 Parse Routines . . . 4-13
Statement Decompile . . . 4-13
4,5.1 Initiation e 4-13
4,5.1.1 External Invokxng of Decompile « . . 4-13
4,5,2 Algorithm , e e e e e e e e e e 4-13
4,5.3 Decompile Routines 4-14
Program Edit e e e e e e . 4-14
.6.1 Global Assumptions« . . . 4-15
6 2 Program Edit Algorithm . 4-15

BASIC INTERPRETER
BASIC Interpreter « . .

Entering the BASIC Interpreter

Reentering the BASIC Interpreter . . ,
Exiting the BASIC Interpreter
Exception Handling

5.5.1 Servicing Clock Syétem Exceptlons :
5.5.2 Algorithm

Immediate Mode v

L] .
mmm(.'nmmmm
DD PLPWN ==

HP-71 Software IDS - Detailed Design Description
Table of Contents

5.6.1 Statement Buffer

Program Execution

5.7
5.8 TRACE Mode .
5.9 Global Assumptions
6 LANGUAGE EXTENSION AND BINARY FILES
6.1 LEX File Structure
6.1.1 Hou it All Uorks
1.1.1 Parsing . e e e
.1.1.2 Decompiling
1.1.3 Execution .
.Hou to Create a LEX F11e
1.2.1 HP-71 Assembler
Symbolic Referencing
.3.1 Mainframe Tokens

Ds and Entry s
LEX ID Allocation . .
Range of Entry Numbers .
Merglng LEX Files .

o oo

o O
H
n

MGOSUB Utility .
Referencing Addresses in a LEX Flle .
External Lexical Analysis .

Entry and Display of External Keywords
Short Keyuwords

DO OOOHO
e o o o o
OO,

6.9.1 References Uithin an "Interrupt"
6.10 Polling .
6.10.1 Fast Poll .
6.10.1.1 Fast Poll Example
6.10.2 Slow Poll ., . .
6.10.2.1 Slou Poll Example

6.10.2.2 Save Stack Slow Poll Information .

6.10.10.1 Pointer and Buffer "Clean-Up" .

6.11 BIN Main Progranms

6.11.1 Ending a Binary Program
6.12 BIN Subprograms .« e e
6.13 BIN Error Exit , . .
6.14 Invoking BASIC from Blnary

vi

lO’)O’O’&O’??"O\O)O\O)

|
WWWWWWWLWWWWWNRNOLNDNODNODMNONDMPOLDOLDPDNDODNODNOLODNDODDODND N =

1 e .

1.3.2 Other Mainframe Symbollcs . .

.1.3 3 Bu11d1ng Symbollc Tokens For a LEX Fxle
ic e e e e
I

LEX Files and Memory Movement . .

Line Number References Ulthln a Statement . ..
Statement .

6.10.3 POLL Subroutine Level Usage
6.10.4 Hou to Answer a Poll . .
6.10.5 Responding to a Poll from Blnary
6.10.6 Take-over Poll . .

6.10.7 Polling during Parse or Decompxle
6.10.8 Polling from a LEX File in RAM .
6.10.9 Summary of Poll Function Codes .
6.10.10 Special Mainframe Polls .

mmmmmmmosmmmmcncnowo:cnmcpmo»mmmonoaowowo:mmmcnosmos

[I |

L e L R I e e e A B | I R B |

WOV PR PP PRPOOCOCCOVLOTOINNOOTOLULWWNNILRPFOOOCOVDONDODOONNNNOK

HP-71 Software IDS - Detajled Design Description
Table of Contents

6.14.1 Responding to POLL and Invoking BASIC . . .

6-33

7 STATEMENT PARSE, DECOMPILE, AND EXECUTION
7.1 Uriting a Parse Routine 00 e . e . .11
7.1.1 Statement Tokenization« o 7-1
7.1.1.1 Program Line , « o o711
7.1.1.2 Program Line with Comment 7-2
7.1.1.3 Program Line Containing Labels 7-2
7.1.1.4 Multi-statement Line with Label , , , . . 7-3
7.1.2 Statements with Special Tokenization 7-3
7.1.2.1 IF...THEN...ELSE 7-3
7.1.2.2 CALL ¢ v o.. . . 7-5
7.1.2.3 SUB . . . v v i e e e e e e e e e e e 7-7
7.1.2.4 IMAGE ¢+ . ¢ . e . . 1-8
7.1.3 Global Assunptlons e v . . T-9
7.1.4 Entry Conditions from Line Parse Drxver e . . 1-10
7.1.5 Exit Conditions 7-10
7.1.6 ParseErrors o . . 7-11
7.1.6.1 Relinquishing Error Handling T-11
7.1.7 Expression Tokenization T-12
7.1.7.1 Constants v ¢ v ¢ v ¢« o o o & 7-12
7.1.7.2 Variables 7-12
7.1.7.3 0perators « v « ¢ v o « .« o« . T1-13
7.1.7.4 Functions T-13
7.1.8 Funny Function Parse e « . T-13
7.1.8.1 Funny Function Tokenization 7-15
7.1.9 Polling during Parse 7-15
7.2 Uriting a Decompile Routine v« e« o . 1-16
7.2.1 Global Assumptions e « o o 1-16
7.2.2 Entry Conditions from Line Decomplle e « o« . 1-16
7.2.3 Decompile Utilities 7-16
7.2.4 Exit Conditions T-17
7.2.5 Existing Multi-use Decompile Routines 7-17
7.2.6 Funny Function Decompile e« « o . T-18
7.2.7 Polling during Decompile 7-18
7.3 Statement Execution e e e .. T1-19
7.3.1 Entry Conditions« .. T-19
7.3.2 Global Assumptions « v ¢ + . . . T-19
7.3.3 Exit Conditions 7-19
7.3.4 Error Exits through MFERR/BSERR « v .. T-20
7.3.5 Use of Available Memory by Statemente e o e . T-20
7.3.6 Statement Execution Utilities 7-20
7.4 Expression Execution v v v ¢ v o o . 7-21
7.4.1 Entry Conditions to Expression Execute . ., ., 7-21
7.4.2 Math Stack Usage and Format 7-21
7.4.3 Data Typeson the Stack 7-21
7.4.4 Expression Execution Utilities 7-23
7.4.5 FunctionReturns« . ¢« .« .. 7-24
7.5 Implementation of Function Execution 7-24
7.5.1 EntryPoint e 7-24
7.5.2 Entry Conditions 7-25

vii

HP-71 Softuare IDS - Detailed Design Description
Table of Contents

7.5.3 Exit Conditions , . , e e e e e e . 7-25
7.5.4 Error Exits through HYERR/BSERR 7-25
7.5.5 “"Funny" Functions e e e e . 7-26
BASIC FILE CONSIDERATIONS
8.1 ROM Generation e e . 8-1
8.1.1 Chaining a BASIC F11e e 8-1
8.1.2 Compiling Line Number References 8-1
8.2 BASIC Application Standards 8-2
8.2.1 Preserving The Main Envirorment 8-2
8.3 BASIC Packing Techniques « « +. « . . 8-2
8.4 Version Number 8-3
UTILITIES
9.1 Decompile Utilities e e e e s 9-1
9,2 Display and Keyboard Control Ut111t1es e e e e . 9-2
9.2.1 Display Control 9-2
9.2.1.1 Carriage Return and L1ne Feed . . 9-2
9.2.1.2 Display Escape Code Sequences 9-3
9.2.1.3 Scrolling The Display 9-3
9.2.1.4 Setting The Bit Pattern In The Dlsplay . 9-4
9.2.2 Keyboard Interface « v v v v « . 9-4
9.2.3 Summary 9-4
9.3 Expression Executlon Ut111t1es . . 9-4
9,3.1 Utilities for Pushing Items Onto Math Stack . 9-5
9.3.2 Utilities for Popping Items Off Math Stack . 9-5
9.4 File I/0 Utilities 9-6
9.5 Flag Utilities e e e e e e e e e e e 9-7
9.6 Math Utilities e e e e e 9-7
9.6.1 Numeric Comparison 9-7
9.6.2 TrigRoutines v + ¢ + . . . 9-8
9,6.3 Inverse Trig Routines 9-8
9.6.4 Arithmetic & Square Root 9-8
9.6.5 Integer-Fraction Functions 9-9
9.6.6 Logarithmic Functions « 9-9
9.6.7 Exponential & Involution 9-9
9,6.8 Conversion Betueen 15-forms and 12- forms e . . 99
9.6.9 Pop, Test, Prepare 1 Argument 9-10
9.6.10 Scratch Math Stack . . . e e e 9-10
9.6,11 Factorial v v 9-10
9.6.12 Statistical Utilities 9-10
9.6.13 Miscellaneous Math Utilities 9-11
9.7 Parse Utilities e e e e e e e e 9-12
9.7.1 Parse Input Utilities 9-12
9.7.2 Parse/Decompile Qutput Ut111t1e8 9-13
9.7.3 Parse General Utilities 9-14
9.8 Statement Execution Utilities 9-15
9.8.1 Utilities for PRINT class statements 9-15
9.9 System Buffer Utilities 9-16
9.10 Variable Storage Utilities 9-17
9.10.1 Summary o e 6 e e e o o o 9-18

viii

HP-71 Software IDS - Detailed Design Description
Table of Contents

10
10.1

10.
10.
10.
10.

10.2

10.

10.

10.

10.

10.3

10.
10.

10.4

10.
.4.2

10

MESSAGE HANDLING

BASIC Keywords Involving Messages . .

1.1
1.2
1.3
1.4

ERRN ,

ERRMS

MSG$ Function

. . .

ERRL . . .

Message Handling .

2.1
10.
10.
10.
10.
10.
10.
10.

2.2
10.
10.
10.
10.
10.

2.3
10.2.
10.2.
10.2.
10.2.

2.4
10.2.
10.2.

POV

[ASIACI V) PO

3.1
10.3.

3.2
10.3.

4.1

10.4,

10.4.

10.5

10.
10.
10.

1.1

1
1.
1.
1,
1,
1.
E
2.
2,
2.
2.
2.
u
3.
3.
3.
3.
S
4,

Message Types .
Effects of Error Messages ..
Effects of Memory Error Messages . . .
Effects of Warning Messages
Effects of System Messages
Text Insertion

r

4.2

1.1

oooooooooooooooo

MEMERR Handling

2.1

Message Formats
Message Prefix

Message Construction

ix

. .

Examples . . .
Entry Point MFERsp
arning Message Handling
Entry Conditions for MFURN
MFURN DELAY Option
Multiple Text Insertions .
Indirect Message Calling .
ystem Messages
Entry Conditions for Systenm Messages
Adding Prefixes to System Messages . .
Insufficient Memory Error
Reporting MEMERR
Calling MEMER*

MEMERR Poll
Foreign Language Translators
BASIC Error Trapping
LEX File Number Sharing
.1 LEX File #00 (Mainframe) Translation .
.2 Other LEX File Translation
.3 HPIL Message Range . ., . .
oll Handlers for Translators

.1 Poll Handler for LEX ID #01
.2

)

A

.2

oooooo

ERRN and ERRL Considerations

ooooooo

2

3

4

5

6

7

r

1

2 Entry Conditions for MFERR*
3 Parse Errors
4

5

r

1

2

3

4

8

1

oooooooo

oooooo

Messages During Running Programs . . .
or Message Handling .
Entry Points

......

oooooo

. ¢ o o e o o

Poll Handler for Other LEX Files . . .
Types of Language Translators
One-shot Translator

Selectable Translator

oooooo

oooooo

HP-71 Software IDS - Detailed Design Description

Table of Contents

11

12

10.5.3.1 Message Range . . .

10.5.3.2 Message Blocks

10.5.3.3 ROM Savings Uith Bu11d1ng Blocks . .

10.5.3.4 Example . . e e e e e e e
FILE SYSTEM

11.1 File Chain Structure
11.1.1 File Header
11.1.2 Implementation Fleld
11.1.3 File Subheader .

11.1.4 File Header Structure by Copy Code .

11.2 File Types . . . e e e e e .

11.2.1 File Protectlon

11.,2.2 BASIC
11,2.2.1 Subheader . . .
11.2.2.2 Subprogram Chain
11.2.2.3 Label/User-Defined Functlon Chaln
11.2.2.4 Statement Tokenization .

11.2.3 BIN .,
11.2.3.1 Subheader . .
11.2.3.2 Subprogram Chain .

11.2.4 DATA
11.2.4.1 Implementation Field .
11.2.4.2 File Structure .

11.2.5 KEY
11.2.5.1 File Structure .

11,2.6 LEX
11.2.6.1 File Structure . .

11.2.7 SDATA
11.,2.7.1 File Structure . .

11.2.8 TEXT

11.2.8.1 File Structure . . .
11.3 Copying a File
11.3.1 Copying to/from Card

11.3.2 Copying to/from External Medla :
11.3.3 Copying to/from Other Memory Devices .

11.4 Opening a File
11.5 File Searching
11,6 File Creation .

TABLE FORMATS

12,1 ASSIGN Buffer . . .,

12.2 Card Reader Buffer

12,3 Character Sets ., . . .
12.3.1 Standard Character Set .

12,3.2 Alternate Character Set Bﬁffe; :

12.4 External Command Buffer

12.5 File Information Buffer . . .
12.5.1 Open Files and Protectlon

12.6 File Type Table

12.7 Keycode Table

. 10-30
. 10-31
. 10-35
. 10-37

11-1
11-3
11-4
11-5
11-5
11-7
11-7
11-8
11-8
11-9
11-9
11-9

. 11-10
. 11-10
. 11-11
. 11-11
. 11-11
. 11-12
. 11-16
. 11-17
. 11-17
. 11-17
. 11-17
. 11-18
. 11-18
. 11-18
. 11-19
. 11-19
. 11-20
. 11-20
. 11-20
.. 11-21
. 11-22

12-1
12-1
12-2
12-2
12-2
12-3
12-3
12-6
12-6
12-8

HP-71 Software IDS - Detailed Design Description

Table of Contents

13

14

15

12.8 Language Tables . . e o o s o & o s s 0 e s e 12-9
12.8.1 MAINT and XROHOI e e e e e s e e s e e s s 12-10
12.8.2 Message Table e o0 . 12-10
12.8.3 Lexrical Type Table 12-10
12.8.4 FGTable ¢« ¢« ¢« v ¢ ¢« v v o o o . 12-11

12,9 LEX Entry Buffer ¢ v v v o o o« & 12-12
12.9.1 Search Order of LEX Files 12-12
12.9.2 Usage ¢ v v v v v v v e u . . . 12-13

12.10 Startup and Immediate Execute Key Buffers . ., . . 12-13

12.11 Statistic Buffer v v v e . . 12-13

12,12 System F1lags ¢« v ¢ v v v v v o v o . . 12-13
12.12.1 Display Format Information o« . 12-15

12,13 Traps . v v v ¢ o o ¢ ¢t o o v v e e e e e e 12-15

INTERNAL DATA REPRESENTATION

13.1 DataTypes o e o e e e o e o o o 13-1

13.2 Registers e e e e e e e .. 131
13.2.1 Numbers in CPU Registers 13-1
13.2.2 Strings in CPU Registers 13-3

13.3 variables e e e e e e e e s 13-3
13.3.1 variableChains« 13-3
13.3.2 Variable Internal Representatlon e e e e o o 13-5

13.3.2.1 Scalar Numeric Variables 13-5
13.3.2.2 Numeric Arrays 13-6
13.3.2.3 Statistical (STAT) Array 13-9
13.3.2.4 String Variables 13-10
13.3.3 Indirect Variables 13-12
13.3.4 Accessing Variables from Binary Programs . . 13-13
13.3.4.1 Finding the Address of a Variable . 13-13
13.3.4.2 Recalling a.Variable . . ., 13-13
13.3.4.3 Storing into a Variable « ¢ e« . . 13-13
13.3.4.4 Creating Variables and Arrays 13-14
13.3.4.5 Destroying Variables and Arrays . . 13-14

13.4 Mathematical Operands 13-15

13.4.1 Packed Representation (12-form) 13-15
13.4,1.1 Normal Values 13-15
13.4.1,2 Extended Values 13-16

13.4.2 Unpacked representation (15-form) 13-17

NUMERIC COMPUTATION ALGORITHMS

14,1 Standard Math Inputs and Gutputs . . ., . . . e o . 14-1

14,2 Statistical Algorithms 14-2
14.2.1 Summary Statistics 14-2

14.2.1.1 ADD operator 14-4
14,2.1.2 DROP Operator « v ¢ v « « . 14-5

14.2.2 Simple Linear Regression 14-5

CLOCK SYSTEM

15.1 Theory of Operation e e 15-1
15.1.1 Clock System Hardware 15-1
15,1.2 Clock System Softuware « & o o o « 15-1

xi

HP-71 Software IDS - Detailed Design Description
Table of Contents

16

15.2
5.3
5.4

e o

15,
15,
15,

15.5

15,
15,
15,
15.

15.6

HP-71
16.1

16.

16.
16.
16.
16.
16.

16.2

1.
1.
1.
1.
1.
I
16.2.
16.2.
2.
2.
E
3.
I
4,
4,
q,
4.

16

16.

16.3

16.

16.4

16.
16.
16.
16.

16.
16.

16,
16.
16.
16.
16.
16,
16.
16.
16.

Software Timebase Correction
Format of Time Information
Scheduling External Alarms ., +v « & o + « &
4.1 Schedullng Code . . . ¢« e e e e e e
4,2 Priority of External Alarms

4.3 UWUhen Alarms Come Due . .. o .
Developing Clock Systenm Appllcatlons . .

5.1 Taking Control .

5.2 Insuring That the Alarm 1s Processed .
5.3 Disrupting the Mainframe .

5.4 Maintaining Your Own Alarm Llst

Clock System Ram Usage

ASSEMBLER INSTRUCTION SET

CPU Overvieuw . . . o e e e e e
1.1 Uorking and Scratch Reglsters e e e e e e e
16.1.1.1 Field Selection « . .

2 Pointer Registers
3 Input, Cutput, and Progran Counter Regxsters
4 Carry and Status Bits
5 Loading Data from Memory
6 Storing Data inMemory
nstruction Syntax . . e e e e e e e e e e e
1 Labels and Symbols
2 Comments . e e
3 Expressions e e e e e e e e e e e
4 Sample LineImage
¥planation of Symbols
1 Field Select Table .
nstruction Set Overvieu . e e e e e
1 GOTO Instructions .,
2 GOSUB Instructions . e e e e e e
3 Subroutine Returns e e e e
4 Test Instructions ., + . ..
16.4.4.1 Register Tests « o « « «
16.4.4.2 P Pointer Tests .
16.4.4.3 Harduare Status Bit Tests .
16.4.4.4 Program Status Bit Tests . . .
4,5 P Pointer Instructions
4.6 Status Instructions
16.4.6.1 Program Status .,
16.4.6.2 Harduware Status
4,7 System Control . .
4.8 Keyscan Instructions .
4,9 Register Swaps .
4,10 Data Manipulation . e e e e e e
4,11 DataTransfer v v v v v o o o o
4,12 Load Constants ., v ¢ v o o « &
4,13 Shift Instructions
4,14 Logical Operations
4,15 Arithmetics

Xii

HP-71 Software IDS - Detailed Design Description
Table of Contents

16.4,15.1 General Usage « « 16-17
16.4.15.2 Restricted Usage 16-17

16.4.16 No-Op Instructions 16-17
16.4.17 Pseudo-0Ops ¢« v v ¢« v o o o 16-17
16.4.17.1 Data Storage Allocation . , 16-17
16.4.17.2 Conditional Assembly 16-18
16.4.17.3 Listing Formatting , 16-18
16.4,17.4 Symbol Definition 16-18
16.4.17.5 Assembly Mode « « . 16-18

16.5 Mnemonic Dictionary e« e« + e« + . . 16-18

17 HP-71 CODE EXAMPLES

17.1 Machine Code Packing Techniques 1741
17.2 Mainframe File Type Table « v « . . 17-2

17.3 LEX File Implementing Statements and Functions , . 17-3
17.4 LEX File Showing Use of Speed Table 17-62
17.5 Foreign Language Translation of Messages 17-66
17.5.1 One-shot Mainframe Translator 17-66
17.5.2 One-shot HPIL Translator 17-93
17.5.3 Selectable Translator 17-105

18 HP-71 RESOURCE ALLOCATION

18.1 Device Types, Classes and Codes 18-1
18.1.1 DeviceTypes « . . . e v e s o . 18-2
18.1.2 DeviceClass ., e e e e e e e e . 18-2
18.1.3 Device Codes v v v v v v v o ¢« o o . 18-2

18.2 File Types e+ e e e s o o 18-3

18.3 Funny Physical Key Code Allocatlons C e e e e e 18-3

18.4 LEX IDs & ¢ v v v v v e e e e e 18-4
18.4.1 LEX ID 52 Hex - Flrst User’s Library ID . . 18-6
18.4.2 LEX ID 53 Hex - Second User’s Library ID . . 18-6

18.5 Poll Process Number Allocations 18-7

18.6 Reserved RAM Allocations v v o o o o o 18-9

18.7 System Buffer ID Allocations 18-9

18.8 GOSUB Stack Item Type Allocations (RETURN Types) . 18-10

18.9 System Flag Allocations 18-10

A GLOSSARY

xiii

HP-71 Softuare IDS - Detailed Design Description

G W . - " "> = - s o - -

|
| OVERVIEU
l

+ ——
3
m
= o]
—

P mmama e m e - - - - -

The HP-71 is an advanced portable BASIC handheld computer with
built-in calculator capabilities. The proprietary CPU, which has a
512KB address space, is optimized for high-precision BCD math and
very low power consumption. The proprietary 64KB BASIC operating
system automatically incorporates plug-in softuare and memory
modules, allous optional device interfaces such as HPIL or card,
‘maintains a memory file system that may contain an arbitrary number
of files, and has been designed so that independent softuare
vendors may conveniently extend or customize the functionality of
the machine. HP-71 softuare may be programmed in BASIC, FORTH, or
assembly language.

The internal design of the HP-71 operating system is documented in
three volumes, of which this is the first:

¥ HP-71 Softuare Internal Design Specification
Volume I: Detailed Design Description
Volume I1I: Entry Point and Poll Interfaces
Volume III; Operating System Source Listings

A brief overview of these three volumes, which are knoun
collectively as the HP-71 Software IDS, is given belou. Related
documents which may also be of interest are:
* HP-71 Harduare Specification
* HP-71 HP-IL Module Internal Design Specification
Volume I: Detailed Design and Entry Point Description
Volume II: Source Listings
* HP-71 FORTH/Assembler ROM Ouner’s Manual
For information on how to order any of these documents, please

contact Systems Engineering Support in the HP Portable Computer
Division Product Support Group at (503) 757-2000.

1,1 Structure of the HP-71 Softuare IDS
This three-volume document discusses the internal design of the

HP-71 Operating System in sufficient detail to allow applications
goftware programmed in BASIC, FORTH or assembly language to use the

1-1

HP-71 Software IDS - Detailed Design Description
Overvieu

various resources of the Operating System.

1.1.1 Volume I: Detailed Design Description

This volume, which you are currently reading, documents the
operating system memory structure, table formats, configuration,
operation, interrupt handling, BASIC tokenization, file systen,
numerical algorithms, and the interfaces to Language Extension
(LEX) files. A summary of important system utilities is also
provided. Here is a brief description of the remaining chapters in
this volume:

Chapter 2 - System Startup and Memory Configuration
This chapter describes hou the HP-71 configures memory at pouer
on, memory reset, or after FREE PORT or CLAIM PORT commands.

Chapter 3 - Memory Structure
This chapter describes how memory is initialized after startup
configuration. The meanings of various system pointers and
locations in system RAM are also discussed, along with certain
memory data structures such as system buffers and the various
system stacks.,

Chapter 4 - System Control

The master control loop (Main Loop) of the operating system is
described in this chapter, as well as the system’s handling of
interrupts.

Chapter 5 - The BASIC Interpreter

- - - --

An overvieuw of the structure and operation of the HP-71 BASIC
Interpreter is provided in this chapter.

Chapter 6 - Language Extension and Binary Files

- -—---

This chapter describes the structure and use of LEX and BIN file
types. Polling of LEX files by the operating system is also
covered.

Chapter 7 - BASIC File Considerations

This chapter discusses sgpecifics of BASIC file applications
sof tuare,

Chapter 8 - Statement Parse, Decompile, and Execution

- o ——-

[
U
n

HP-71 Software IDS - Detailed Design Description
Overvieu

This chapter describes the procedures for writing code to support
LEX file keywords. Keywords have routines to tokenize (parse)
them, list (decompile) them, and to execute them. This chapter
also gives a detailed description of the BASIC 1language
tokenization used by the HP-71 BASIC Interpreter.

Chapter 9 - Utilities
This chapter summarizes various groups of operating system entry
points which applications software may call to perform system
operations.

Chapter 10 - Message Handling
This chapter describes how the HP-71 issues error and warning
messages, and how LEX files may interface with this process.

Chapter 11 - File Systenm
This chapter describes the HP-71 file system structure and the
various file types which the HP-71 supports.

Chapter 12 - Table Formats
This chapter describes the format of various operating system
data structures, such as file information buffers, alternative
character set buffers, file type tables, and so forth.

Chapter 13 - Internal Data Representation

This chapter describes how data and operands are internally
represented in registers, variables, and arrays.

Chapter 14 - Numeric Computation Algorithms

This chapter describes the overall algorithms and procedures used
by the HP-71 in mathematical statistical calculations.

Chapter 15 - Clock Systenm

This chapter describes the internal workings of the HP-71 clock
system and related considerations for developing clock system
applications softuare.

Chapter 16 - HP-71 Asgembler Instruction Set

This chapter describes the HP-71 assembler instruction set and
gives the instruction opcodes and execution cycle times.

Chapter 17 - HP-71 Code Examples

- - -

HP-71 Software IDS - Detailed Design Description
Overvieu

This chapter gives examples of how to perform various operations
in HP-71 machine language.

Chapter 18 - HP-71 Resource Allocation
This chapter 1lists the current allocations of HP-71 Operating
System resources such as system buffer ID’s, LEX file ID’s, poll
process numbers, file types, reserved RAM, and so forth, It also
describes the procedures by which additional resources may be
allocated.

1.1.2 Volume II: Entry Point and Poll Interfaces

This volume documents the entry and exit conditions of the 25
categories of supported system entry points that are available to
the assembly language programmer, as uwell as the interfaces to
operating system polls of LEX files. Supported entry point
categories include keyboard and display interface utilities, math,
parse, decompile, and file utilities, and so forth. An index of
entry point names and global symbol values is also included.

HP-71 SUPPORTED ENTRY POINT CATEGORIES
1. Address Calculation Utilities
2. 1/0 Buffer Utilities
3. System Configuration Utiltities
4, Conversion Utilities
5. Display Utilities
6. Decompile Utilities
7. Execute Utilities
8. File Utilities

9. Function Execute Utilities

10. General Purpose Utilities

11. Keyboard Utilities

12. System Math Functions

13. Math Stack Utilities

14. System Level Math Utilities

15, Parse Utilities

16. Poll Interface Descriptions

17. Pointer Utilities

18, Save Stack Utilities

19. Save Utilities

20, Statement Decompile Utilities

21, Statement Execute Utilities

22, Statement Parse Utilities

23. System Level Major Entry Points

24, Time And Date Utilities

25. Variable Management Utilities

1-4

HP-71 Software IDS - Detailed Design Description
Overvieu

1.1.3 Volume III: Operating System Source Listings

This hefty volume contains the full assembly listings of the 76
modules which comprise the HP-71 operating system. All parts of
the operating system are listed, including the mainframe token
table, BASIC interpreter, math routines, and supported entry
points, The supported entry point interface documentation in
Volume Il is programmatically extracted, categorized, and indexed
from comment blocks in these source modules. Therefore Volume II
information reappears in scattered form throughout Volume III,

1.2 Operating System Overvieu

The HP-71 contains a 64KB operating system kernel which resides at
address 0. The Kkernel performs various control functions, and
contains the BASIC interpreter. An internal clock system supports
time-dependent applications. External softuware may be added to the
machine in the form of files which are interpreted or executed
directly by the Kkernel. These files may be directly added to the
computer through plug-in memory modulest or copied into the
computer from external media such as magnetlc cards or tape.

There are three types of software files which can be interpreted or
executed by the HP-71 standard configuration: BASIC, BIN (Binary),
and LEX (Language Extension). A FORTH file type may also be
invoked when the HP-71 FORTH/Assembler ROM is present in the
machine,

BASIC files may be developed on the HP-71 using the built-in BASIC
interpreter. BIN, LEX, and FORTH files may be developed on the
HP-71 using the FORTH/Assembler ROM.

HP-71 Software IDS - Detailed Design Description

Overvieu
Method of
Type Format Invocation Mode of Execution
BASIC Tokenized BASIC RUN, CHAIN, or Interpretation
statements CALL command
BIN Machine language RUN, CHAIN, or Direct execution
(binary) CALL command
LEX Language extension Through its Direct execution
file; adds BASIC added BASIC
keywords, messages, keywords and
and functional by polls from
extensions; written operating
in machine language systenm
FORTH FORTH vocabulary Through FORTH Threaded Inter-

interpreter pretation

A BASIC or BIN file can be executed as a program or as a
subprogram. Houwever, the great flexibility of the HP-71 operating
system is due to the manner in which it automatically incorporates
LEX files into the operation of the machine.

A LEX file may contain a BASIC keyword token table which is similar
in format to the built-in token tables used by the HP-71 BASIC
interpreter. Uhenever a LEX file is added to the machine, it is
automatically "registered" with the operating system. The BASIC
command interpreter then references the LEX file’s keywords during
lexical analysis, making them automatically a part of the HP-71
command language available to the computer’s user.

In addition, a LEX file may contain a message table in order to add
its oun error/warning messages to the machine, or to override the
built-in HP-71 error messages for foreign language localization,
(An example of such a LEX file is given in the "HP-71 Code
Examples" chapter)

Furthermore, the operating system contains outward hooks, called
“polls”, by which a LEX file may intercept the operation of the
machine at a strategic point to extend or customize that operation.
At over 80 points in the operating system code when the system is
prepared to perform a special task, such as parsing a device name
or terminating execution of a program, it "polls" each LEX file
present in the machine to find if one wishes to intercept the task.

The polling mechanism is as follows. The operating system jumps to
the LEX file’s poll handling code, passing a unique code called a
“poll process number” that identifies the task to be done. The LEX
file may choose to intercede by honoring the documented interface
for that poll process number, In this way very sophisticated and

1-6

HP-71 Software IDS - Detailed Deegign Description
Overvieu

detailed customization of the machine’s functionality is possible.
Polling is described in detail ©below. The individual poll
interfaces are described in Volume II of this document.

Since there is no logical separation of address space betuween an
application program and the HP-71 operating system, a code in a BIN
or LEX file may directly access certain system entry points to
perform operations ranging from BCD math to file I/0. Over 1700
such entry points are supported by the HP-71 in such a manner that
the absolute addresses of these entry points will remain fixed
throughout subsequent releases of the operating system ROMs. The
interfaces to these entry points are described in Volume II of this
document.

1.2.1 Memory Layout

The general 1layout of the HP-71 physical address space 1is shoun
below. Sections marked with an asterisk indicate RAM areas which
may be used by applications software for data storage according to
the procedures described in this document.

| Memory-Mapped 1/0 |
| and Display RAM |

ettt +
| System RAM |
D +
| *Reserved RAM |
Pommcc e e e e e +
| *MAIN File Chain |
e - +
| *System Buffers |
R +
| Command Stack |
D e Tt +
| CALC Mode Buffers |
D L +
| *Available Memory |
dmmmm e e +
| ¥Enviromment Stacks |
e +

| Independent RAM, |
| ROM Modules

HP-71 Software IDS - Detailed Design Description
Overvieu

1.2.2 File Systenm

The HP-71 has a memory-based file system which has no central
directory. The main file system is a chain of files, each with its
oun identifying file header, in Main RAM,

In general, a plug-in ROM module contains its oun file chain in the
same format as the main file chain. Similarly, a plug-in RAM
module can be maintained as an Independent RAM (IRAM) with its own
file chain, or it can be pooled with the Main RAM. The operating
system’s file operations automatically incorporate all file chains
present in memory.

1.3 CPU Overvieuw

The HP-71 CPU is a proprietary CPU optimized for high-accuracy BCD
math and low power consumption. The data path is 4 bits wide.
Memory is accessed in 4-bit quantities called "nibbles" or “nibs".
Addresses are 20 bits, yielding a physical address space of 512K
bytes.

There are four working 64-bit registers, five scratch 64-bit
registers, two 20-bit data pointer registers, one 4-bit pointer
register, a 20-bit program counter, a 16-bit lnput register, and a
12-bit output register. Return addresses are stored on an
eight-level harduare return stack that accepts 20-bit addresses.
In addition, there 4 hardvare status bits, a carry bit, and 16
program status bits. The lower 12 program status bits can be
manipulated as a 12-bit register.

For a more detailed overview of the HP-71 CPU, please see the
"HP-71 Assembler Instruction Set" chapter.

1.3.1 Registers

The working registers are used for data manipulation. Registers A
and C are also used for memory access. The scratch registers are
used to temporarily hold the contents of working registers,

In addition, the lower 20 bits of R4 are used during interrupt

processing and therefore are not normally available for data
storage.

1-8

HP-71 Software IDS - Detailed Design Description

Overvieu
WORKING REGISTERS SCRATCH REGISTERS
Name Size Name Size
D e et + R b s +
A | 64 bits | RO | 64 bits l
LR e et + L +
L L L LT + L etk +
B | 64 bits | R1 | 64 bits |
Y itttk + D et +
L Lt L et L + L e e T T +
c | 64 bits | R2 | 64 bits !
D et et + e Rt e P +
L e + D R ittt R +
D | 64 bits | R3 | 64 bits |
L e + L e +

R4 | 64 bits¥* |

* Note: the lower 20 bits of R4 are modified
whenever an interrupt occurs, and are
generally unavailable for storage

1.3.1.1 Field Selection

Subfields of the working registers may be manipulated by the use of
field selection. The possible field selections range from the
entire register to any single nibble of the register. Certain
subfields are designed for use in BCD calculations. Others are
used for data access or general data manipulation. See the “HP-71
Assembler Instruction Set" chapter for a description of the
selectable fields.

1.3.2 Pointer Registers
The Data Pointer registers, DO and D1, are used to contain
addresses during memory access, and are used in conjunction with

the working registers.

The P Pointer register is used in Field Selection operations with
the working registers.

HP-71 Software IDS - Detailed Design Description

Overvieu
DATA POINTER REGISTERS
A e e L + L b LD +
Do | 20 bits | D1 | 20 bits |
L e Ll ol ettt + L e e +

1.3.3 Input, Output, and Program Counter Registers

The input/output registers are used to communicate with the HP-71
bus. The program counter points to the next instruction to bne

executed by the CPU,
INPUT AND OUTPUT REGISTERS

1.3.4 Status and Carry Bits

The operating system uses 4 of the program status bits to indicate
the state of the operating system. The remaining 12 program status
bits are generally available to applications softuare.

CARRY: 1 bit
PROGRAM STATUS: 16 bits (lower 12 act as the ST register)
HARDUARE STATUS: 4 dbits

1-10

HP-71 Softuware IDS - Detailed Design Description
Overvieu

1.4 HP Support For HP-71 Software Development

HP encourages independent software vendors to develop software for
the HP-71. There are a number of system resources, such as unique
LEX file ID numbers and system buffer numbers, which may need to be
allocated to a particular vendor’s software. The procedures for
allocating these resources is described in the "HP-71 Resource
Allocations" chapter.

Any requests for further information should be directed to Systems

Engineering Support in the HP Portable Computer Division Product
Support Group at (503) 757-2000.

1-11

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

P o e e e — e e - - -

+

I I

: SYSTEM STARTUP AND MEMORY CONFIGURATION | CHAPTER 2 |
I
+

P r r c r r r r - ——— - - - = - - - -

2.1 System Configuration Overview Including RAM and ROM

| Memory Mapped 1/0 |
| and Display RAM |

2F400 4-=-m-mmmmmmmeemmmeeee T
| System RAM | .

2F986 #--mm=mmmmmmmecmcemeeae . [
| Reserved RAM | |

CONEST #===-=m=memmmmmmommmeee . |
| Configuration Buffer | Display ?river RAM
e c e +
I I I
| User | |
| | v

30000 + - - - - 4. emeemeemccmccccc—ee-ee-
| | a
| Memory I |
| | Soft Configured and
| | Plug-in RAM
| | |
| | v

RAMEND #+--=m=-=mmmmmmmmemeeme + e
| |
| Plug-In ROMs I
| and |
| Independent RAMs :
|

FECO0 #====mm-mmmmmcmcmeeeeee .
| Config Reserve Area | Unusable

333 3 + HIGH

For a further breakdoun of User lMemory, see the "“Memory Stiucture"
chapter.

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

2.2 Entering Deep Sleep

WUhen the computer is turned off, the state of the machine is
preserved, All variables, pointers and stacks are preserved. A
system configuration is performed upon wakeup from deep sleep.

2.3 Startup/Configuration Sequence

System configuration is performed at coldstart, power-on, and FREE
and CLAIM execution. Performing configuration consists of
determining what chips are resident on the system bus and assigning
an address to each chip., UWhile all chips are on the bus "in
parallel”, an electrical scheme known as “daisy chaining"
determines an order in which the chips are found by the CPU when it
is performing configuration,

In a daisy chain, each chip has two special lines: daisy-in (DI)
and daisy-out (DOS. By creating a chain in which daisy-out of one
chip is connected to daisy-in of the next chip, you establish an
order. Daisy-in to the first chip is (in most cases) a
softuare-suitchable electrical line from the CPU (the one exception
is port #0, the internal daisy chain, in which daisy-in to the
first chip 1s wired high).

system bus

Uhen a chip is unconfigured, it does not occupy address space and
its daisy-out is held low. If its daisy-in is low, it will not
respond to any CPU instructions. If its daisy-in is high, it will
respond to two instructions: C=ID, which returns the chip ID to the
CPU (see CHIP 1D, belouw), and CONFIG, which assigns an address to
the chip and configures it.

Vhen a chip is configured, it does occupy address space and its
daisy-out equals its daisy-in. In this state, the chip will NOT
respond to C=ID and CONFIG. So once a chip has been configured,
the next chip on the daisy chain 1is able to identify itself and be

2-2

HP-71 Softuare IDS - Detailed Design Description
System Startup and Memory Configuration

configured,

The configuration routine examines the daisy chains corresponding
to ports #0 through #5 (see PORT#, below) and configures each chip
on each daisy chain. A plug-in device may contain more than one
chip and may even contain chips of different types (e.g., ROMs and
RAMs). The routine builds lists in the configuration buffer area
identifying what is plugged in and where it is configured.

2.4 Configuration Routine -- DETAIL

The configuration code assigns addresses to all soft-configurable
devices on the system Bus. The code builds three tables in the
configuration buffers: system RAM, other memory (ROM, EEPRONM,
independent RAM, etc.), memory-mapped 1/0. The one-byte
configuration buffer IDs for the above configuration tables are,
respectively, FF, FE, FD. The exact format of the information in
the tables is explained in "Table Formats" chapter.

Follouing is the pre-configuration memory layout:

00000-1FFFF: Operating systen

2C000-2C01F: Card reader

2E100-2E3FF: Display RAM

2F400-2FFFF: Display Driver RAM

(FECOO-FFFFF: Reserved for configuration garbage dump)

Addresses are assigned to devices as follous:
Memory-mapped 1/0 is configured in the space 20000-2C000,
System RAM is configured contiguously upuward from 30000,

To achieve this contiguous mapping, system RAM is configured in
reverse size order. That is, the largest RAM chips are
configured first, then successively smaller chips. This assures
that 64 Knib RAMS are configured on 64 Knib boundaries, 32 Knib
RAMS on 32 Knib boundaries, etc.

Other memory (ROM, independent RAM, EEPROM, etc.) is put in the
space betuween the end of RAM and FFC0O0.

The scheme of where each memory device is configured is fairly
complex. The configuration code assures that memory devices are
configured on legal boundaries and that consecutive chips within
a single plug-in are configured contiguously in the order in
which they are encountered on the daisy chain. A bit within the
chip ID (explained below) is used to identify the physical
boundaries of the plug-in memory.

2-3

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

To explain configuration, the following terms are used belou:

PORT#; Physical port location (1-5) whose daisy chain is addressed
by a bit (0-4) in output register. Port #0 is the internal
daisy chain; it includes all built-in devices and the HPIL
port. Ports #1-4 are the ports in the front of the machine
(#1 is the leftmost port, etc.). Port #5 is the card reader
slot,

DEV#; Position of a plug-in (0-15) in a daisy chain. Unless there
is a port extender, all plug-ins will be device #0.

SEQUENCE: Consecutive chips in a module to be used as a single
entity (e.g., a quad RAM which appears as one plug-in to
the user).

DEVICE TYPE: Type of memory (RAM, ROM, etc., or memory-mapped 1/0).

DEVICE CLASS: Identifies exact type of memory-mapped I/0 device,

2.4,1 CHIP ID
The CHIP ID is a (usually) mask-programmed 20-bit identifier which
is read by the CPU on an ID poll (C=ID instruction). A chip
responds to the ID pol! if two conditions are met:

1) The chip is unconfigured,

2) Daisy-in is high on the chip.
By examining the daisy chains one at a time and configuring each

chip as it is found, the software can locate and identify all
soft-configurable chips on the bus,

The chip-id contains the following information:

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

NIBBLE 0: 15-Log2(size).

Memory Size Nib 0 MM I/0 space
1 knib F 1 vord (16 nibs)
2 E 2
4 D 4
8 () 8
16 B 16
32 A 32
64 (max RAM) 9 64
128 8 128
256 (max memory) 7 256
6 512
5 1024

NIBBLE 1: (Reserved for future use)

This nibble from the first chip in a sequence is stored in the
configuration table for all sequences.

NIBBLE 2: Device type:

0: RAM
1: ROM (includes EPROM, which cannot be written to)
2: EEPROM :
3-6: (unassigned)
7-E: Unusable due to COPY command requirements
F: Memory-mapped 1/0

NIBBLE 3: For memory:
(Not used)

For memory-mapped 1/0, contains device class:

0: HPIL mailbox
1-15: (Unassigned)

(Note: Card reader is hard configured at 2C000-2C01F)

NIBBLE 4:
bits 0-1; (unassigned)
bit 2: Last chip in sequence (see note (*) below). Aluays

assumed high for MM I/0 devices, meaning all such
devices have their oun entry in the Memory-mapped 1/0

2-5

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

table.

bit 3: Last chip in module. On a ROM, in general, this bit,
like the rest of the ID, is mask-programmed. On RAMs,
this chip is typically pad-programmed so the same
parts can be used for all chips in a multi-chip RAM
module.

The top two bits (bits 2-3 of nibble 4) are used to determine what
chips are in what physical plug-ins. Every sequence of chips
(e.g.! four identical RAMS in a RAM plug-in, an applications pack
containing two ROMS, etc.) results in one entry in the
configuration tables.

(*) End of sequence (but not module) is identified in one of tuo
ways: 1) next chip returns ID with different value in nibs 0-3, or
2) last chip of sequence has bit 18 set. The second approach is
necessary if consecutive, identical chips are to be considered as
different sequences, and will probably NEVER be used in the entire
lifetime of the machine. But it can be done.

2.4.1.1 Exanmples

A module containing four 8-Kbit RAMS might return the following
sequence of IDs:

0000E 0000E 0000E 8000E

The resulting table entry would identify the chip size, chip count,
device type, physical location, and configuration address of the
device.

A module containing two 128-Kbit ROMS, a memory-mapped 1/0
interface using 2 words of address space, and four 16-Kbit RAMS
might present the following sequence of IDs:

0010A First ROM \ one ROM table entry
0010A End of ROM sequence /

O1FOE MM I/O devclass 1 - one MM 1/0 table entry
0000D Start of RAMS \

0000D | one RAM table entry
0000D I

8000D End of module /

Restrictions: 16 chips/sequence
16 sequences/device
16 devices/port

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

2.5 Configuration Buffer Format

Configuration buffers contain a list of what devices are configured
vhere. The buffers are treated and maintained similarly to system
buffers (see chapter on

1) Their ID’s are only two nibbles long, and

2) They exist before program memory, while system buffers exist
after program memory. This insures that these tables will
reside in built-in display driver RAM, rather than some memory
which may be removed.

The configuration buffer area is the beginning of non-fixed memory.
That is, while its starting location is fixed (first buffer starts
at address CONFST), its ending location is not. Configuration
buffers are maintained as a linked list wuwhose end is identified
vith a zero byte. Each buffer has a 5-nibble header consisting of:

Buffer ID First 2 nibbles
Size field 3 nibbles
This is the size of the data field only.

CONEST => #==m-mmm=mm- .
| Buffer ID | 2 nibbles
------------ +-+
| Size Field | 3 nibbles

D I et +
| | Data |
| | I
T I T ——— -+
| Buffer ID |
D T TR, -+
| Size Field |
I +
| | Data |
[| |
| temmmm———————— +
|
|
|
| =4
+-> 00|
+--+

The header is folloued by the data field whose size has been
specified in the size field above. Immediately following the data
field is either the next buffer ID or a zero-byte identifying the

2-7

HP-71 Softuare IDS - Detailed Design Description
System Startup and Memory Configuration

end of the buffer chain.

The contents of the buffers are discussed in the "Configuration
Buffer” section in the "Memory Structure" chapter.

2.6 Special Role of High Tuo Pages in Memory

Provision has been made for allowing devices to be hard-configured
in address space uwithout fear that the configuration code will
soft-configure something over them. At configuration time, the
code examines addresses E0000-E000F. If any of those eight bytes
is non-zero, the configuration code will NOT configure anything at
or above address E0000. So if a hard-configured device resides
there, the space from E0000-FFFFF is reserved and is not available
for soft-configured devices. The only time that space may be used
is DURING the execution of the configuration code, when it may be
needed temporarily for "garbage dump".

2.6.1 Producing a Hard-Configured ROM at E0000

In certain cases it is desirable to produce a ROM which is
configured to a fixed location in the HP-71 address space.
Hard-configuration is a mask-programmed option which is selected at
mask-generation time for the ROM chip. This is because some
applications simply cannot be soft-configured. For example, the
Debugger ROM must be hard-configured so it will be immune to the
configuration code.

Any application which must be hard-configured should either reside
at E0000 or reside above E0000 and have something else plugged in
vhich resides at E0000. The presence of some device at E0000 is
necessary to insure that the space above E0000 will not be
configured over.

2.6.2 Dangers of Hard-Configuring ROMS

There are certain disadvantages to hard-configuring a ROM or other
device.

2.6.2.1 Bus Contention

Tuo devices hard-configured to the same address cannot be plugged
in at the same time. Otherwise they will both respond to a READ
request at the same time, each contending for use of the bus. This
may be electrically harmful to the computer. It will certainly
produce useless data, since the results from a bus-contention
situation cannot be predicted.

2-8

HP-71 Software IDS - Detailed Design Description
System Startup and Memory Configuration

2.6.2.2 Invisible Plug-ins

Aside from noticing that a hard-configured device is there, the
operating system will not do anything with the devic:. Because the
device is not soft-configured and therefore has no ID, the
operating system has no way of knowing what type of device it is,
its size, etc. Its address and its existence will not be recorded
in any tables, To use it, there must be some LEXfile around (in a
soft-configured device or in main memory) uwhich expects it to be
around and knows houw to use it.

If, for example, an alternate operating system is uritten and
resides in a ROM hard-configured to E0000, there must also be some
LEXfile around which will provide the keyword to give control to
that operating systen,

2.7 Location of Future System ROMs.

Tuo possible schemes nmay be used if the operating system needs to
be expanded.

2.7.1 Soft-Configured ROM

Operating system enhancements might be contained in a
soft-configured ROM, possibly in a LEXfile. This method would be
appropriate for many conceivable enhancements. The disadvantages
are that the hard-configured part of the operating system would
have to expend some effort to locate the soft-configured part, and
there 1is no guarantee that the soft-configured part will be
configured if many devicesg are plugged in.

2.7.2 Fifth ROM at F8000.

The address space from F8000 to FFFFF might be used to contain a
fifth operating system ROM., This would make it unavailable to
hard-configured ROMs at E0000 and would require some change to the
configuration code. This space is temporarily used during
configuration as a “garbage dump" area, but nothing is left
configured in the garbage dump area after configuration 1is done.
This means that the configuration code itself certainly could not
reside in this fifth ROM.

HP-71 Softuware IDS - Detailed Design Description
System Startup and Memory Configuration

2.8 Configuration "Garbage Dump"

A definition for a term used in this section: Garbage Dump. During
the execution of the configuration code, some plug-ins may be found
for which there is no room to configure. Because of the operation
of the daisy-chain (a device must be configured before the
following device can be configured), it is sometimes necessary to
configure such a device "out of the uway" so devices after it on the
daisy chain can be configured. Such ‘"garbage" devices are
configured to end at FFFFF, and to start at whatever location ends
them at FFFFF. In other words, a "garbage" 16-kByte ROM would be
‘temporarily configured at F8000. All such devices are unconfigured
before the termination of the configuration code. This is referred
to throughout this section as "Garbage Dump."

2-10

HP-71 Software IDS - Detailed Design Description

Memory Structure

P o e e > 2 > e e o - -

| MEMORY STRUCTURE

P e e = = " - -~ - - = - > e = - . - - -

3.1

Operating System ROM

The operating

systemn is

contained in four 16K-byte ROMs
hard-configured in the address range 00000-1FFFF. Volume III of

this document provides a source code listing of all the operating
system modules that fill this address space.

3.2

2E100
2E101
2E102
2E104
2E160
2E1F8
2ELFF
2E200

2E260
2E2F8
2E2FF
2E300
2E34C
2E34C
2E34E
2E350

2E3F8
2E3FE
2E3FF

Memory Size

Memory Mapped 1/0 and Display RAM

Comment

* * * Display driver addresses
*

ANNAD1
ANN1.5
ANNAD2
DD3ST

DD3END
TIMER3
DD3CTL
DD2ST

DD2END
TIMER2
DD2CTL
DD1ST

DD1END
ANNAD3
ANNAD4
ROUDVR

TIMERL
DCONTR
DD1CTL

1
1
2
#2E160-*
#2E1F8-*
#2E1FF-*
1
#2E260-*

#2E2FB-*
#2E2FF-*
1

#2E34C-*

2
2
#2E3F8-*

#2E3FE-*
#2E3FF-*
#2F400-%

Annunciator column 1

Annunciator column 2

Start of display driver 3
End of display driver 3
Timer 3

Display driver 3 control nib
Start of display drive

End of display driver 2
Timer 2

Display driver 2 control nib
Start of display driver

End of display driver 1
Annunciator column 3
Annunciator column 4

Rou Drivers

Timer 1
Display contrast nibble
Display driver 1 control nib

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.2.1 Display Driver Addresses

The HP-71 display contains two columns of annunciators on the left
followued by 132 <columns of dots and two more columns of
annunciators.

The columns are addressed as follous:

A FHIHKIHHIH 3 KA A H NI I I HHHHHI X

HAHH SLAVE DISPLAY DRIVER II bl
FK X HHH IR I HFHH I F I K H IR T HIFHIHH %R

Leftmost column of annunciators

ANNAD1 (2E100) -- Bits 0-2 not connected
<--- -- Bit 3
ANN1.5 (2E101) AC -- Bit 4
USER -- Bit 5
RAD -- Bit 6
-- Bit 7 not connected

Adjacent column of annunciators

ANNAD2 (2E102) -- Bits 0-1 not connected
f -- Bit 2
g -- Bit 3
BAT -- Bit 4

-- Bits 5-7 not connected

DD3ST (2E104) Columns 0-45 (46 Columns)
DD3END (2E15F)

TIMER3 (2E1F8) Timer (least sig. nib (LSB) at lowest address)
(6 nibbles)

DD3CTL (2E1FF) Status Nibble:

URITE READ
LSB 0 -- RAM RAM
1 -- RAM RAM

2 --
MSB 3 -- Enable Timer

3-2

HP-71 Software IDS - Detailed Design Description
Memory Structure

F3 3 I KO K X33O

e SLAVE DISPLAY DRIVER I okl
JHHHHEHHHEEEHOHEHHHRHRHOHEHHHHHHHRHEREERHOHOO

DD2ST (2E200) Columns 46-93 (48 Columns)
DD2END (2E260)

TIMER2 (2E2F8) Timer (least sig. nib at lowest address)
(6 nibbles)

DD2CTL (2E2FF) Status Nibble:

URITE READ
LSB 0 -- RAM RAM
1 -- RAM RAM

2 --
MSB 3 -- Enable Timer

FFIE 36 FHHHHEHIHHIEI I I HEI I I I K3 3323

bl MASTER DISPLAY DRIVER ookl
R aa s

DD1ST (2E300) Columns 94-131 (38 Columns)
DD1END (2E34C)

ANNAD3 (2E34C) Right column of annunciators
-- Bits 0-2 not connected
-- Bit 3
-- Bit 4

Bit 5

-- Bit.6

-- Bit 7

L OO
]
]

ANNAD4 (2E34E) Rightmost column of anmunciators
-- Bits 0-2 not connected

((*)) -- Bit 3
—-=> -- Bit 4
PR@® -- Bit 5
SUSP -- Bit 6
CALC -- Bit 7

ROUDVR (2E350) Row Lines (16 Nibbles). Should be set
by softuare as follows: 800140(220041008

TIMER1 (2E3F8) Timer (least sig. nib at lowest address)
: . (6 nibbles)
Deentr. QE3BFE] cunTrasr Nibsje
DDICTL (2E3FF) Display Control Nibble:
WRITE READ
LSB 0 -- Display On Same
1 -- Display Blink Same

3-3

HP-71 Softuware IDS - Detailed Design Description
Memory Structure

‘2 -- Display Test Very Low Bat
MSB 3 -- Enable Timer Lou Bat

Addr Name Memory Size Comment

- - - - - e - - - - - = - - - - o= - - -

* ¥ ¥ gtart of interrupt RAM
*

2F400 INTR4 16 (R4 and DO)
2F410 INTA 16 (A reg)
2F420 INTB 16 (B reg)
2F430 INTM 8 (Misc stuff)
*
* INTM is mode-Pointer-Carry-Return stack
*
*¥ ¥ ¥ End of interrupt RAM
*
CMOSTV EQU #168F Value for CMOS test word
2F438 CMOSTU 4 CMOS test word
2F43C VECTOR 5 Interrupt vector
2F441 ATNDIS 1 Attention disable flag

2F442 OFFFLG

2F442 ATNFLG 1 Attention key hit flag
2F443 KEYPTR 1 Key buffer pointer
2F444 KEYBUF 15%2 Key buffer

2F462 KEYSAV (LSB = Bottom Rouw)
2F462 KCOLD 1 14th column keymap
2F463 KCOLC 1 13th

2F464 KCOLR 1 12th

2F465 KCOLA 1 11th

2F466 KCOL9 1 10th

2F467 KCOL8 1 gth

2F468 KCOL7 1 8th

2F469 KCOL6 1 7th

2F46A KCOL5 1 6th

2F46B KCOL4 1 5th

2F46C KCOL3 1 4th

2F46D KCOLZ2 1 3rd

2F46E KCOL1 1 2nd

2F46F KCOLO 1 1st

2F470 DISINT

[

Interrupt ignore flag

used in keyscan
*

* Pseudo-device Display Driver Memory

3-4

HP-71 Software IDS - Detailed Design Description
Memory Structure

2F471
2F473
2F475
2F478B
2F47C
2F47E
2F480
2F540
2F540

2F558
2F55D
2F55D
2F562
2F567
2F56C
2F571
2F571
2F576
2F576
2F578B
2F580
2F585

2F58A

2F58F

2F594
2F599

2F599
2F599
2F599

2F59E
2F50E
2F59E
2F5A3
2F5A3
2F5A8
2F5AD
2F5B2

*

WINDST 2 Window start

WINDLN 2 Windouw len

DSPSTA 6 User status save, Dsp status
ESCSTA 1 Escape status

FIRSTC 2 Buffer position of 1st char
CURSOR 2 Buffer position of cur
DSPBFS 2*96 96 char buffer (2 nibs/char)
DSPBFE

DSPMSK 96/4 96 bits (4 bits/nib)

*

: System Pointer Allocations

MAINST 5 Main Program Memory Start
UPD1ST Start of Update Addresses #1
CURRST 5 Current File Start

PRGQMST 5 Current Program Start

PRGMEN 5 Current Program End

CURREN 5 Current File End

I0BEST Start of System buffers
MAINEN 5 Main Program Memory End
IOBFEN End of System buffers

CLCBER 5 Calc Mode Pointers

RENBER 5

RAUBER 5

CLCSTK 5 Calc Stack token stream start
* SYSEN, OUTBS,AVMEMS collapsed
* here at end of CALC mode
SYSEN 5 End of RAM used by System

* - OUTBS and AVMEMS collapsed
* here at end of Parse,

* Decompile, TRANSFORM

OUTBS 5 Output Buffer Start

* Output Start for Parse/Decomp
AVMEMS 5 Available Memory Start
EPDlEN End of Update Addresses #1
TASTK

MTHSTK Arithmetic Stack

AVMEME 5 End of Available Memory

* (AVMEME collapsed to SAVST
* after statement ex
SAVSTK Save Area Stack Pointer
TFORN

FORSTK 5 FOR/NEXT Stack

TGSBS

GSBSTK 5 GOSUB Stack

ACTIVE 5 Active Variable Space
CALSTK 5 CALL Stack

EAMEND 5 End of Memory

HP-71 Softwére IDS - Detailed Design Description
Memory Strugture

2F5B7
2F5BE
2F5BE

2F674
2F674
2F679
2F67E
2F683
2ress
2F68D
2F692
2F697
2F69C
2F6A1
2F6A6

2F6A6
2F6AE
2F6B6

2F6BE
2F6C1
2r6C6
2F6CB
2F6CF
2F6D4
2F6D4

2F6D9
2F6E9
2F6F9
2F6F9
2F6FA
2F6FB
2F6FC
2F6FD

* Vvariable List Pointers

*

PRMPTR 7
CHNLST
26%7

* %k %k X k Xx

*

UPD2ST
DSPCHX
PCADDR
CNTADR
ERRSUB
ERRADR
ONINTR
DATPTR
TMRAD1
TMRAD2
TMRAD3
UPD2EN
*

OO OO OO ,m

Parameter Chain Pointer
Variable Chain Pointer List
26 Chains (7 nibs/chain)

The following pointers are position dependent

PCADDR through TMADR3 adjusted by RFADJ+
PCADDR through DATPTR saved by CALL
CNTADR through TMADR3 zeroed by CLRSTK/CLPSTK

Start of Update Addresses #2
Pointer to external display
Program Counter Stmt Length
Continue Address

ON ERROR-GOSUB Return Address
ON ERROR Statement Address
ON INTRPT Statement Address
DATA Statement Pointer

ON TIMER#1 Statement Address
ON TIMER#2 Statement Address
ON TIMER#3 Statement Address
End of Update Addresses #2

* The following Timer Intervals are position dependent

* with TMRAD1 - TMRAD3

*

TMRIN1
TMRINZ
TMRIN3
*

o ™ o

STSAVE
LDCSPC
INBS
AUTINC
LEXPTR
CMDPTR
INADDR 5
*

PO w

SYSFLG 16
FLGREG 16
TRPREG
INXNIB
UNENIB
OVENIB
DVZNIB
iVLNIB

o e e

*¥ Random Number Seed
*

3-6

TIMER#1 Interval
TIMER#2 Interval
TIMER#3 Interval

Status saved during Expr Exec
Addr of space after line #
Input buffer start

Increment value for AUTO
Temporary storage for RESPTR
Command Stack pointer

Stmt Len ptr: Parse/Decomp

System flags

User flags

IEEE exception traps
Inexact result trap
Underflouw trap
Overflouw trap

Divide by zero trap
Invalid result trap

HP-T1 Software IDS - Detailed Design Description
Memory Structure

2F6FE

2F70D
2F719
2F725
2F731
2F73D
2F749
2F755
2F761

2F763
2F76F
2F77B
2F787

2F78D
2F78D
2F794
2F79B
2F7A2

2F7A9
2F7AC
2F7AD
2F7B0
2F7B1

2F7B2

2F7C2

2F7E4
2F7E8
2F7EC

2F7F0
2F81F
2F820

2F870

RNSEED 15

*

¥ Alarm Clock System RAM

»

NXTIRQ 12 Time of next SREQ

ALRM1 12 ON TIMER #1

ALRM2 12 ON TIMER #2

ALRM3 12 ON TIMER #3

ALRM4 12 Time of timeout

ALRMS 12 Time of WAIT expiration
ALRM6 12 Time external alarm expires
PNDALM 2 Bitmap of pending alarms
*

* Storage needed for accuracy factor stufs

*

TIMOES 12 Time error offset

TIMLST 12 Time last set

TIMLAF 12 Time of last AF correction
TIMAF 6 Accuracy factor

*

IS-TBL Table of "IS" assignments
1S-DSP 7 Licple o 15

IS-PRT 7 Prirtie

IS"INP 7 K £y (’;b‘h]

[S-PLT 7 ey

*

MBOX™ 3 HP-IL Mailbox pointer
LOOPST 1 HP-1IL loop status

STATAR 3 STATISITICAL ARRAY NAME
TRACEM 1 TRACE MODE (0,2,4,6)
DSPSET 1 Display device set up on HPIL
%

LOCKUD g*2 Passuord

*

RESREG 34 Result register

#*

*

* ERR# through ERRL# are position dependent
*

ERR# 4 Execution Error Number
CURRL 4 Current Line# Referenced
ERRL# 4 Execution Error Line#

*

* Snapshot Buffer and Return Stack Save Buffer

*

SNAPBF 16+16+5+5+5 Snapshot Buffer

RSTKBp 1 Return Stack Save Buffer Ptr
RSTKBF 16¥%5 Return Stack Save Buffer
*

MLFFLG 1 Multi-Line Function FlLag
*

HP-71 Software IDS - Detailed Design Description

Memory Structure

2F871
2F871
2F876
2F87B
2F880

2rgsl1
2rgsi1
2r886
2F88B
2F890

2F891
2F896

2F89B
2r8ss
2F8A0
2F8AS
2F8AA

2F8BAB
2F8AB
2F8B0
2F8B5
2F8BA

2F8BB
2F8C0

2F8C5

2F901
2F901
2F941
2F946
2F948
2F94A
2F94B
2F94D
2F94F
2F951
2F956
2F958
2F95A
2F95B
2F961
2F966

[l SN S S,] P OO, o o, [l S NS S

(S8

* TRANSFORM Scratch RAM
*

TREMBF
*

*

SCRICH
SCRSTO
SCREXO0
SCROLT
DELAYT
NEEDSC
PRMCNT
DPOS

DUIDTH
SCREX1
PPOS

PUIDTH
EOLLEN
EOLSTR
SCREX2
SCRPTR

60

H
b 3
—
(4]

HW[XPNNU\NNNHNNU\

w

Statement scratch RAM

Function scratch RAM

Used by TRANSFORM command

Scratch RAM

Scratch stack (Mantissas & s
Scratch stack exponent
Character scroll timer
Display timeout value
Scroll mode needed

CALL parameter count
Current DISP column

DISP width

Scratch stack exponent 1
Current PRINT column

PRINT width

Length of ENDLINE stri
ENDLINE string (3 chars max
Scratch stack exponent 2
Scratch stack pointer

HP-71 Software IDS - Detailed Design Description
Memory Structure

2F967 DEFADR 8 Key definition info

2F96F CHN#SV 2 Channel # save

2F971 SCREX3 5 Scratch stack exponent 3
#*

2F976 MAXCMD 1 # of Command Stack entries
*

2F977 CSPEED 5 Clock speed (Hz/16)
*

* The following 10 nibbles are used by HP-IL ROM
*

2F97C ERRLCH 1 Error latch
2F97D TERCHR 2 Terminating char for ENTER
2F97F HPSCRH 7 HP-1L Reserved.

* (INTPND, ICAUSE, IMASK, LSTDDC)

2F986 RESERV 48%2 Reserved Memory.
*

R4 2
< ¢ L © s
. [}
c ! f> 7
,/A,r_r o\, Mo ",

* Configuration table start
*

2F9E6 CONEST

3.3.1 Interrupt RAM (INTR4 - VECTOR,DISINT)

The interrupt routine uses 56 nibbles of RAM (INTR4, INTA, INTB,
INTM) to save the contents of A(U), B(u), Cc(u), Do, P, Carry,
Hex/Dec Mode.

The interrupt routine checks the RAM address VECIOR to see if an
alternate interrupt handler has been enabled. Before processing
any interrupt, four nibbles at CMOSTU (CMOS test word) are checked
to verify that RAM is likely not corrupt. (The CMOS test vord is
immediately next to the VECTOR address since it 1is unlikely to
accidentally change one address without changing the other.)

If the 5 nibble value at VECTOR is zero then normal interrupt
processing is performed.

The nibble at DISINT is used to cause exactly one interrupt to be
ignored. If the interrupt routine sees this nibble set to a
non-zero value it will return immediately without any processing
except to check for a "Module Pulled" interrupt and to zero this
nibble. This 1is used during keyscan to side-step the interrupt
that may result when the output register has been used to check
individual key columns while doing synchronous (i.e., not from
interrupt routine) keyscans.

)i Com /o,

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.3.2 Keyboard Buffer/Flags (AINDIS - KEYSAV)

The keyboard system has a fifteen key buffer which is preceeded by
a nibble indicating how many keys are in the buffer. This buffer
is treated as a FIFO where the oldest key in the buffer is at the
lowest address in the buffer (ie. pointed to by KEYBUF). The
pointer nibble is named KEYPIR.

In addition to the key buffer, a "bit map" of which keys were doun
during the latest keyscan 1is maintained in the fourteen nibbles
starting at KEYSAV. There are 4 rous of keys on the keyboard and
each nibble of the KEYSAV buffer holds 4 bits representing the
gtate of a particular key column. The least sig. bit of each
nibble represents the key in the bottom row of that column and the
most sig. bit represents the key in the top row of that colunmn.
The 14th key column is pointed to by KEYSAV. KEYSAV+13 points to
the 1lst key column.

The nibble at ATNFLG is decremented each time the keyscan routine
finds the attention key down. It will not houever be decremented
from 1 to 0 since this would hide the fact that the key was ever
pressed. The intention is that this flag can be used both as a
flag that the attention key has been pressed and as a convienient
wvay to tell if it has been pressed more than once.

The nibble at ATNDIS is a special location that if non-zero will
cause the Kkeyscan routine to treat the attention Key as it would
any other key. The attention key normally causes the key buffer to
be flushed and the AINFLG flag to be set, as well as setting the
Except (S12) global status bit,

3.3.3 Pseudo-Device Display Driver (WINDST - DSPMSK)

The display driver uses a buffer of 96 consecutive bytes to hold
the display buffer (DSPBFS). Each of these bytes holds one display
character.

The display routines use several additional bytes to describe hou
the LCD should look. The byte at WINDST is the first LCD character
position that should be used to display the contents of the buffer.
The next byte (UWINDLN) says how many LCD character positions
(starting at UWINDST) to use to represent the buffer. The first
character of the buffer that should be put into the display is held
in the byte at FIRSTC. The position of the cursor in the display
is held in the byte at CURSOR. All of these bytes are represented
base 0 (i.e. value 0 is the lowest possible value).

3-10

HP-71 Software IDS - Detailed Design Description
Memory Structure

In addition to these bytes, another six nibbles are used to save
status bits. The first three nibbles at DSPSTA are used to store
the calling routines status bits while in the various display
routines, The next three nibbles are used to hold status bits
relevant to the display routines. See the display routines’
documentation for a more complete description of these bits.

One nibble (ESCSTA) is used to keep track of the escape status of
the display routines, This nibble indicates if the routines are in
the middle of an escape sequence.

Following the display buffer is an address called DSPMSK. The 24
nibbles at this address contain 24*%4 (96) bits, one of which
corresponds to each of the bytes in the display buffer. The louwest
address nibble maps to the highest addressed 4 bytes in the buffer
and the nibble at DSPMSK+23 corresponds to the first 4 bytes in the
display buffer. The most sig. bit of each nibble corresponds to
the lowest addressed byte of the group of 4. These bits determine
vhether a particular character in the buffer is a protected,
unreadable character. As characters are sent to the display this
bit will be set for the character if the cursor is off. This makes
the character unreadable and protects it so that the cursor cannot
be positioned over it.

3-11

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.3.4 User Memory Pointers (MAINST - RAMEND)

USER MEMORY POINTERS

<Louw> At L L L it T +
| System RAM I
bttt T L PP RPN +
I Reserved RAM I
CONFST ® #=-=--==m=mmmmemmmeee +
| Configuration Buffer |
MAINST --> #==--ommmm e e oo + <- MAIN File Chain
I | Start
I File |
| |
e e ettt +
| . e I
CURRST =-> #----c--ommmmmomemeoo + <- Current File St
PRGMST --> | | <~ Current Program
| Current File | Start
PRRMEN --> | | <- Current Program
| | End
CURREN --)> #-=-----ommcccmcmeeeee + <~ Current File End
| |
| File |
| |
B T T T T +
| ... |
MAINEN = IOBFST --)> +4---------eemcmeeceeeme + <- System Buffer
| System Buffers | Start
IOBFEN = CLCBEFR --> #-----------ceommmommmo + «- System Buffer
| Command Stack | End
[--=-=-=-=-=-=--- |
| CALC Refined Buffer |
RENBER ==> #-=--=----=-=mmemeemmo .
| CALC Left Raw Buffer |
RAUBFR --> #--------mmemcmmmee e +
| CALC Right Raw Buffer|
CLCSTK ==> #mmmmmmmmmmmmecmmmmeeee .
| CALC Token Streanm |
SYSEN --) #4---ceemmmmccc e e +
| Temp Input Buffer |
OUTBS -=> +-------ooomommmmmoo o + ¢- Output Buffer
| Output Buffer | Start
AVMEMS --> +----—--ommmmmmmmee + <- Available Memory
| Available Memory | | Start
| v |
| |

<High»

3-12

HP-71 Software IDS - Detailed Design Description
Memory Structure

<Low> | . |
| . ~
| Available Memory | |

MIHSTK ® AVMEME -=) #===---c--ceccccecnaanx + ¢- Available Memory
| ~ End
| Math Stack | |
FORSTK --> #---c-cccmmccoomcaaaao + ==+
| FOR/NEXT Stack | |
GSBSTK -=> #===cmmmmccmcccmmceeeee + | Current
| GOSUB Stack | -->Enviromment
ACTIVE --) #=--cmmcmmmccccc e + |
| Active Variables | |
CALSTK --> #---cccrocccmcccncaas + o=+
| Envirornment I
| Information Blocks | |
Dt T T T TSP + |
| FOR/NEXT Stack | | Prior
#mmmmmm e eaee + -->Environment
| GOSUB Stack I
T e + |
| Variables |
<High> RAMEND --> #--====-c--cocccceooano + --e

From Low to High Memory:

MAINST - MAIN File Chain Start = Configuration Buffere End
Points to the first file header in the MAIN file chain

CURRST - Current File Start
Points to the first nibble of the current file header

PRG&MST - Current Program or Subprogram Start
Points to first nibble of current program or subprogram

PRGMEN - Current Program or Subprogram End
Points past last nibble of current program or subprogram

CURREN - Current File End
Points past last nibble of current file

MAINEN - MAIN File Chain End = System Buffer Start (IOBFST)
Points past 00 byte at end of MAIN file chain

CLCBEFR - CALC Mode Buffer Start s System Buffer End (IOBFEN)
RENBFR - CALC Mode Refined Buffer

RAUBER - CALC Mode Rauw Buffer

3-13

HP-71 Softuware IDS - Detailed Design Description
Memory Structure

CLCSTK

CALC Mode Token Stack
SYSEN - System RAM End
OUTBS

Output Buffer Start

AVMEMS - Available Memory Start = Qutput Buffer End

AVMEME - Available Memory End = Top of Math Stack (MTHSTK)
FORSTK - Top FOR/NEXT Stack = Top of Save Stack (SAVSTK)
GSBSTK - Top GOSUB Stack = Bottom of FOR/NEXT Stack

ACTIVE - Active Variable Pointer = Bottom of GOSUB Stack
CALSTK - CALL Stack = Bottom of Active Variables

RAMEND - User RAM End = Bottom of CALL Stack

3.3.5 Parameter Chain Pointer (PRMPIR)

The parameters of a user-defined function are pointed to by PRMPIR.
The first two nibbles of PRMPTR is the parameter count:
Parameter count Meaning

B R —— - > "= > " = - - - = - ..

00 Currently is not executing an user-defined
function
01-0F Currently is executing an user-defined

function, the number of the parameters of
the user-defined function = count -1

The next five nibbles of the PRMPTR is the pointer to the chain of
parameters. The parameters of the user-defined function are stored
in a fashion similar to the program variables, except all
parameters are stored in the same chain, regardless of the starting
letter of the parameter name.

3.3.6 Variable Chain Pointer List (CHNLST)

Beginning at CHNLST are 26 seven-nibble chain pointers; each
pointer is associated with a 1list of currently-existing variables.
A variable is put into a particular list according to the letter of
the alphabet which its name contains. For example, variables R,
R7, R$, and R3$ are all in the same list. See the section on
variables for details on variable 1list construction. A chain
pointer has two parts: a variable count and an address. The

3-14

HP-71 Software IDS - Detailed Design Description
Memory Structure

variable count is a two-nibble quantity telling how many variables
exist in the chain at that time. The address field gives the
absolute address of the start of the variable chain.

3.3.7 Statement/Program Execute RAM (DSPCHX-TMRIN3)

The following addresses (DSPCHX through TMRAD3) are updated
vhenever memory moves within system or user RAM., The symbolic
names: UPD2ST and UPD2EN indicate this range.

DSPCHX Zero if no external character display device is active.
Otherwise, the contents are used as an address for an
external display handler for each character sent via
DSPCHA routine.

PCADDR Pointer to statement length byte of statement currently
executing.

CNTADR Continue Address of currently halted progranm,

ERRSUB Return address of ON ERROR GOSUB statement. Prevents
infinite loop if error within ON ERROR GOSUB execute

ERRADR Address within ON ERROR statement pointing at GOTO or
GOSUB. Remainder of statement is executed when an error
occurs within a progran,

ONINTR Address within ON INTERUPT (HP-IL) statement pointing at
GOTO or GOSUB. Remainder of statement is executed when an
interrupt occurs.

DATPTR DATA statement READ pointer.

TMRAD1 - ON TIMER statement addresses for Timer#1-3, respectively.
TMRAD3 Points at GOTO or GOSUB within ON TIMER statement. Uhen
timer expires, remainder of statement is executed.

3.3.8 Miscellaneous BASIC RAM (STSAVE - INADDR)

TMRIN1 - ON TIMER statement timer interval for Timer#1-3,

TMRIN3 respectively. Timer is reactivated for the corresponding
timer interval when an ON TIMER...GOTO expires, or on
return from an ON TIMER...GOSUB.

STISAVE Saved status bits during Expression Execute (EXPEXC).

LDCSPC Cursor position for decompile of BASIC program lines and
user-defined keys.

3-15

HP-71 Softuware IDS - Detailed Design Description
Memory Structure

INBS Input Buffer Start. A floating pointer indicating the
start of the input buffer being parsed. Set at the
beginning of Line Parse. May point to the Command Stack,
Start-up Buffer, TRANSFORM Input Buffer or Direct Execute
Key Buffer,

AUTINC AUTO increment value for AUTO command. This RAM location
doubles as the AUTO mode flag: If zero, then not in AUTO
mode.

LEXPTR Position of Input pointer prior to last NTOKEN call. Used
in statement parse.

CMDPTR

INADDR Pointer to statement length byte for statement currently
being parsed or decompiled. (Also used for Command Stack
pointer - CMDPTR)

3.3.9 System and User Flags (SYSFLG - FLGREG)

There are 64 user flags (numbered 0-63) and 64 system flags
(numbered -64 to -1). UWithin each nibble, the lowest numbered flag
is in the least significant bit. These flags are stored in 128
consecutive bits starting at address SYSFLG:

<Low»> tm————— +
SYSFLG --> | -1 | System Flags
tm———— +
| -2 |
o———— +
tm————— +
| -64 |
tm———— +
FLGREG --> | 0 | User Flags
- +
I 1 |
t————— +
tm———— +
| 63 |
<High» S +

The user can set and clear all wuser flags and those system flags
numbered -1 to -32. The user may test the status of all user and

3-16

HP-71 Softuare IDS - Detailed Design Description

Memory Structure

system flags.

Refer to the "Table Formats” chapter for a summary of flag
assignments.

3.3.10 Traps (INXNIB - IVLNIB)

There are 5 math exception traps stored in 5 consecutive nibbles
starting at address TRPREG:

<Louw> - +
TRPREG = INXNIB --> | INX |

to———— +

UNFNIB --> | UNF |

tm————— +

OVENIB --> | OVF |

to———— +

DVZNIB --> | DVZ |

to———— +

IVINIB --> | IVL |

<High» +oomem +

Refer to the “Table Formats" chapter for details on trap settings.

3.3.11 Random Number Seed (RNSEED)

The current random number seed (updated by RANDOMIZE and used by
RND) 1is stored in 15 consecutive nibbles starting at address
RNSEED.

3.3.12 Alarm Clock System RAM (NXTIRQ - TIMAF)

The following RAM is used by the internal clock systen:

Label Size(nibs) Function

NXTIRQ 12 Time of next clock service request
ALRM1 12 Time of next timer#l request
ALRM2 12 Time of next timer#2 request
ALRM3 12 Time of next timer#3 request
ALRM4 12 Time of 10-minute timeout
ALRMS 12 Time of end of pause

ALRM6 12 Time of external alarm
PNDALM 2 Bitmap of pending alarms
TIMOFS 12 Time error offset

TIMLST 12 Time of last EXACT

TIMLAF 12 Time of last AF correction
TIMAE 6 Accuracy factor

3-17

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.3.13 “IS" Table Assigmments (IS-TBL)

This table holds information defining the current state of DISPLAY
IS, PRINTER IS, KEYBOARD IS and PLOTTER IS. The destination of
each of these assignments can theoretically be any HP-IL device or
the LCD display; however there are some combinations that don’t
make sense and should not be allowed. There is a 7 nibble table
entry for each of these devices. Each entry has the follouing
format and definition:

Nib 3
bit 3 Dbits 2-0
X 0 Address specified
Nibs 2-0: Address, loop#
or FFF if not knoun
Nibs 6-4: Address, loop#

X 1 Type specified (loop 0)
X 2 " " (loop 1)
X 3 " " (loop 2)

Nibs 2-0: Address, loop#
or FFF if not knoun
Nib 6: Sequence #
Nibs 5-4: Accessory id
X 4 10 buffer for device ID/Volume label
Nibs 2-0: Address, loop#
or FFF if not knoun
Nibs 6-4: Buffer #
X 5 Multiple assign buffer
Nibs 2-0: FFF
Nibs 6-4: Buffer #
X 6 Device ID specified
Nibs 2-0: Address, loop#
Nibs 6-4: Buffer #
1 7 Unassigned or not HPIL
Nibs 2-0: FFF if not assigned or
Fxx if not HPIL (where xx
is not FF)
Nibs 6-4: FFF if not assigned but
not defined if not HPIL

<

= 1 if device OFFed, 0 otheruise

3.3.14 HP-IL RAM (MBOX,LOOPST,DSPSET)

MBOX" Used by HPIL ROM as a pointer to its mailbox. Three
nibbles are multiplied by 16 and added to 20000 to get

3-18

HP-71 Software IDS - Detailed Design Description
Memory Structure

mailbox address.

LOOPST Used by HPIL ROM to keep track of loop status.
Bit 3: Device "OFFed".
Bit 2: Last call to START found HPIL mailbox
in device mode.
Bit 1: (Reserved)
Bit 0: (Reserved)

DSPSET Used by HPIL ROM to indicate status of display device.
Bit 3: Display device is set up
* Following ONLY valid if Bit 3 is TRUE!!
Bit 2: Display is a HP82163 video interface
(Retransmit line if insert or delete).
Bit 1: Display device is line output only (printer)
Bit 0: Display code vas "OFFed" if 0.

3.3.15 STAT Array (STATAR), TRACE Mode (TRACEM)

STATAR Name of the currently selected STAT array
TRACEM Indicates current TRACE Mode:

0 = No TRACE

2 = TRACE FLOU

4 = TRACE VARS

6 = TRACE FLOU, TRACE VARS

3.3.16 LOCK Password (LOCKUD)

The lockword supplied by the user in the lock command is stored in
the 16 nibbles starting at LOCKUD. If there is no lockword, these
16 nibbles are all zeroes. The lockword is not encrypted.

3.3.17 Result Register (RESREG)

The result register holds the value of the most recently executed
numeric expression. This value is updated whenever a numeric value
is DISPlayed, PRINTed, or stored into a variable.

3.3.18 Error Number (ERRN)

The number of the most recent error (ERRN) is stored in RAM
location ERRé, This location is set to =zero at cold start, and
changed only in the message driver (MFERR*). The message number is
encoded in four nibbles: abcd, where

ab = LEX ID# in hex

cd = message number in hex.

3-19

HP-71 Softuare IDS - Detailed Design Description
Memory Structure

3.3.19 Current Line (CURRL)

The current line number is stored in CURRL, as a four digit decimal
number, At coldstart, CURRL is set to zero. Editing the current
BASIC file updates CURRL to the line number being inserted,
replaced or deleted. Recalling a BASIC program line to the display
changes the current line. The FEICH statment, Cursor Up, Cursor
Doun, Cursor Top, and Cursor Bottom recall a program line.
Executing an EDIT statement changes the current line to the first
line of the specified Edit file. A GOTO from the keyboard sets the
current line to the specified line number or line number containing
the specified label.

During program execution, CURRL is not updated until the program is
halted. If program execution halts due to a PAUSE, STOP, or END
statement, the line containing the statement becomes the current
line. If the program halts due to an implicit END (the last line
of the program is reached), CURRL becomes the last line of the
program. If program execution halts because the ATIN is hit, the
line contalning the next statement to be executed becomes the
current line.

3.3.20 Error Line Number (ERRL#)

The line number of the most recent execution error (ERRL) is stored
in RAM location ERRL#. This location is set to zero at cold start,
and changed only in the message driver (MFERR*). CURRL is updated
to the new current 1line and is also placed in ERRL#; it is a four
digit decimal number.

3.3.21 Snapshot Buffer (SNAPBF)

This area of RAM is used to temporarily hold a snapshot of CPU
registers A, D, DO, D1, and C(A). It is 47 nibbles in size. For
details on saving and restoring CPU snapshots, see routines SNAPSV
and SNAPRS.

3.3.22 Return Stack Save (RSTKBp,RSTKBF)

This area of fixked RAM holds up to 16 stack levels from the
harduare stack. It is administered as a LIFO (last in, first out)
circular stack by the routines R<RSTK (saves stack levels) and
RSTK<R (restores stack levels). The one-nibble pointer, RSTKBp,
contains an index (0 thru 15) of the next 5-nibble slot available
for storing a stack level.

3-20

HP-71 Software IDS - Detailed Design Description
Memory Structure

Uhen a stack level is stored, the pointer is bumped, and it wraps
around to zero uwhen it passes 15. Conversely, the pointer is
decremented when a sgtack level is removed, and the pointer wraps
around to 15 when it passes 0. Therefore, if 16 levels have been
stored on the stack, storing a 17th level will overurite the oldest
level on the stack.

Note that these saved stack levels are NOT updated when memory
moves. Also, these saved stack levels will not necessarily remain
intact when EXPEXC is called.

3.3.23 Multi-Line Function Flag (MLFFLG)

MLFFLG is the multi-Line function flag., ENDDEF statement sets it
to nonzero. This allows statements to determine if a multi-line
user-defined function was invoked during expression execute. They
can then know whether memory could have changed. This flag may
also be set by other functions that may have changed memory.

To know uwhether anything could have happened to “remory" during
expression execution, this nibble should be cleared before calling
expression execute. If it is set upon return, either a user
defined function or some other “harsh" function has been invoked
during the expression evaluation.

3.3.24 Statement, Function Scratch (SIMIRO - FUNCD1)

Some RAM is maintained specifically to be used as scratch space
during statement and function execution. The 42 nibbles starting
at STMIRO are referred to as the statement scratch area, and the 42
nibbles immediately following (starting at FUNCRO) constitute the
function scratch area.

The latter 42 nibbles are available during function execution, and
all 84 nibbles are available during statement execution.
Naturally, the function scratch area will probably be used during
expression execution,

Of great importance to users of these scratch areas is the fact
that this RAM 1is Untouched by utility routines, including display
routines, message routines and the clock system. Thus, these
scratch areas are often used for storing things while calling
particularly disruptive utilities.

The exact 1layout of the statement and function scratch RAM is as
follous (broken down into fields and subfields):

LABEL #nibbles comment

3-21

HP-71 Software 1
Memory Structure

DS - Detailed Design Description

Start of statement scratch

STMIRO 16 | 16-nibble field
S-RO-0 | 5 5-nibble subfield
S-RO-1 | 5 5-nibble subfield
S-R0-2 | 5 5-nibble subfield
S-R0O-3 | 1 1-nibble subfield
STMIR1 16 | 16-nibble field
S-R1-0 | 5 5-nibble subfield
S-R1-1 | 5 5-nibble subfield
S-R1-2 | 5 5-nibble subfield
S-R1-3 | 1 1-nibble subfield
STMIDO 51 5 5-nibble field
STMID1 51 5 5-nibble field
(total) 42 | 42 End of statement scratch
Start of function scratch
FUNCRO 16 | 16-nibble field
F-R0-0 | 5 5-nibble subfield
F-RO-1 | 5 5-nibble subfield
F-R0O-2 | 5 5-nibble subfield
F-RO-3 | 1 1-nibble subfield
FUNCR1 16 | 16-nibble field
F-R1-0 | 5 5-nibble subfield
F-R1-1 | 5 5-nibble subfield
F-R1-2 | 5 5-nibble subfield
F-R1-3 | 1 1-nibble subfield
FUNCDO 51 5 5-nibble field
FUNCD1 51 5 5-nibble field
(total) 42 | 42 End of function scratch
3.3.25 TRANSFORM Scratch RAM (TRFMBF)

This area of RAM is used during execution of the TRANSFORM command
and is OFF LIMITS to any parse, decompile, or transformation
related routine. It is 60 nibs in size.

3.3.26 Scratch RAM (SCRTCH)

The area used for the scratch math stack (below) is also used as a
general purpose, highly volatile scratch RAM area, labeled SCRTCH.
This is to be distinguished from Statement and Function Scratch
(above), which is 1less volatile. The ALMSRV routine uses part of
SCRTICH RAM to avoid destroying CPU scratch registers. The display
routines also use it during <CR> and <LF> processing by virtue of
their calling ALMSRV. Routines which use this space should
document their exact usage; this is the only fixed-address general

3-22

HP-T1 Software IDS - Detailed Design Description
Memory Structure

purpose scratch space available for utility routines.

Specifically, the scratch RAM area consists exactly of the area
used as the scratch math stack:; 69 consecutive nibbles and three
5-nibble chunks punctuated by 11-nibble chunks which are
UNAVAILABLE for use as scratch RAM:

SCRSTO: 69 nibbles (includes SCREXO0)
(unavailable): 11 nibbles
SCREX1: 5 nibbles
(unavailable): 11 nibbles
SCREX2: 5 nibbles
(unavailable): 11 nibbles
SCREX3: 5 nibbles

3.3.27 Scratch Math Stack (SCRSTO - SCREXx)

The scratch math stack is a four-high stack for split (21-nibble)
numerical values. The 21-nibble form consists of a sign nibble, a
15-nibble mantissa, and a five-nibble exponent. The signs and
mantissas are stored consecutively in 64 nibbles starting at
SCRSTO. SCRSTO must reside betuween XXX00 and XXXOF in the RAM Map.
Each exponent is stored 64 nibbles higher in memory than its
corresponding mantissa:

SCRSTO

(Low)
R ks D R D e e D e +
+--|S] Mantissa |S| Mantissa |S| Mantissa |S| Mantissa |
| +-4-mmmemeee - OO p— tobommmm e +

|

D +

|

PO tom———— tm————- tm———- bm————— to———- tm————— tm———- + |

I | Exp | | Exp | | Exp | | Exp |¢-+
tm—————— tm———— tomm————— tm———- tm————— tm————— tm————— tm————— +
(High) | I | |

SCREX3 SCREX2 SCREX1 SCREXO0

A pointer having possible values 0, 1, 2, or 3 points to the
current top of the scratch math stack. This pointer is stored in
the nibble with address SCRPTR.

3-23

HP-71 Softuare IDS - Detailed Design Description
Memory Structure

3.3.28 DISP/PRINT RAM (SCROLT - EOLSTR)

SCROLT Number of 1/328 of a second to delay betuween scrolling
characters in the display. Infinity is represented by
FEF. Initialized to 4.

DELAYT Number of 1/32s of a second to delay betueen scrolling
lines in the display, Infinity is represented by FF.
Initialized to 16 (10 hex).

NEEDSC 0 if no characters have been sent to display since last
ENDLINE key, F otherwise. This keeps track of whether
the display needs to be scrolled by calling SCRLLR.

DPOS DISPlay position. Used in DISP statements to keep track
of current position in line. 0 means position 1.

DWIDTH DISPlay width. Used to limit number of characters output
on any DISPlay line. Infinity 18 represented by 0,
Initialized to 96 (60 hex).

PPOS PRINT position. Used in PRINT statement to Keep track of
the current position in the line. 0 means position 1,

PUIDTH PRINT width. Used to limit the number of characters
output on any PRINT line, Infinity is represented by 0.
Initialized to 96 (60 hex).

EOLLEN ENDLINE string length. Number of nibbles in the ENDLINE
string. Should be 0,2,4,6. Initialized to 4.

EOLSTR ENDLINE string. Holds up to three characters uwhich are
sent to PRINTER IS device wuwhenever an end-of-line is
needed. Initialized to CR/LF.

3.3.29 CALL Parameter Count (PRMCNT)

PRMCNT is temporary scratch used by CALL execute to count the

number of parameters.

3.3.30 Key Definition Info (DEFADR)

Eight nibbles of RAM used by the KEYRD subroutine for returning a

pointer to a key definition. This ram is set by the key read

routine (KEYRD). The «contents DEFADR have the following
definition:

3-24

HP-71 Software IDS - Detailed Design Description
Memory Structure

(DEFADR): Length of definition string in bytes (2 nibbles).

(DEFADR+2): Key type: (1 nibble)

0 = Single ASCII character. Includes characters 0-31, which

result from hitting special keys (ENDLN, UP-ARROU, etc.).

1 = ASCII control character. Must subtract 64 from the
one-byte definition uwe are pointing to. These characters
should be inverpreted as text, and should not cause any
special action in the editor.

User-defined key--terminating.

2 ™

4 = User-defined key--ncn-terminating.

6 = User-defined key--immedjate execute,

8-F = Typing aid, with lower 3 bits as follous:

Bit 0: Parenthesis ("(") needs to be added to string.

Bit 1: Trailing space needs to be added to string.

Bit 2: Leading space needs to be added to string.

(Spaces and parenthesis not incluaed in string length

field or in definition proper. For exampie, the f shifted
4 key returns a definition which points to a 3 character
string containing "SIN" and has the bit set which indicates
that a parenthesis needs to be added to get the actual key
definition (“SIN(").)

(DEFADR+3): Address of definition text. (5 nibbles)

3.3.31 Channel Number Save (CHN#SV)

The CHN#SV is used to hold the channel number currently being
accessed. Refer to the section on the assign bufier in the "Table
Formats" chapter for details.

3.3.32 Number of Command Stack Entries (MAXCMD)

MAXCMD holds the number of Command Stack entries.

3.3.33 Clock Speed (CSPEED)

Each time the system is reconfigured, the clock speed is recomputed
and stored in CSPEED. The value is the clock speed divided by 16
(decimal) and stored in Hexadecimal (Hz).

3.3.34 HP-IL Special RAM (ERRLCH - HPSCRH)

ERRLCH Used by error routines; set when error occurs.

TERCHR Terminating character for ENTER and ENTER USING.

HPSCRH 7 nibbles reserved for HP-IL scratch.

3-25

HP-71 Softuware IDS - Detailed Design Description
Memory Structure

3.3.35 Reserved RAM (RESRV)

96 nibbles (48 bytes) are reserved for future use. This memory
will be allocated conservatively and through offical channels.
Refer to the "HP-71 Resource Allocations" chapter for details on
use of this RAM.

3.3.36 System RAM Availability

The follouwing table summarizes which RAM locations may be used by
the various routines of built-in and external (LEX file) keywords:

nibbles stmt, Stmt, Stmt.** Func.

avail. Parse Decomp Exec. Exec.
SNAPBF 47 Yes Yes Yes Yes
SCRTCH 64+4*5 Yes Yes Yes Yes
Statement Scratch 42 No Yes Yes No
Function Scratch 42 Yes Yes Yes Yes
TRFMBF 60 No No Yes Yes
LDCSPC 5 Yes No Yes Yes
STSAVE 3 Yes Yes Yes No
LEXPTR 5 No Yes Yes Yes
RSTKBF Save Buffer 16*5 Yes Yes Yes* Yes
RESERV Resreved RAM *** ek e xx% Ll

* A statement cannot store anything in the RSTKBF area, call
Expression Execution (EXPEXC), and expect what was saved to
be intact.

** In general, any statement execution may use any memory
available to function execution.

¥% Reserved RAM may be used only after such usage has been
registered and authorized by HP., See the chapter on
"HP-71 Resource Allocation” for further information.

3.4 Configuration Buffer

The configuration buffers contain three tables, identifying what
memory and I/0 devices are configured where, The three tables
contain information on System RAM (configuration table ID = FF),
Other Memory (IRAM, ROM, EEPROM, etc.; configuration table ID = FE
(bROMIB)), and Memory-Mapped 1/0 (HPIL mailbox, etc.; configuration
table ID = FD),.

3-26

HP-71 Softuware IDS - Detailed Design Description
Memory Structure

Each table has a five nibble header. The first byte is the table
ID (FF, FE or ED); the next three nibbles contain the table length,
not including the header. The configuration buffer is terminated
by a zero byte.

A configuration table entry is created in one of the three tables
for every "sequence", A sequence consists of either:

1) A single memory-mapped 1/0 chip, or

2) One or more consecutive chips with identical ID’s (bits 15-0 of
1D) on a daisy chain.

A sequence is ended with:

1) Chip with different ID (which will be the start of a neu
sequence, obviously).

2) Chip with bit 18 of ID set (marks end of this sequence).

3) Chip with bit 19 of ID set (marks end of physical plug-in
module).

A table entry conveys the following information:

Seq Position: Position of this sequence within the module. Since
most modules have only one sequence, this is usually zero,

Device #: Position of this module within a consecutive series of
modules (i.e., modules on same daisy chain). In the absence of
a port extender, this will be zero. (The RAMs on the internal
daisy chain may be grouped into logical modules.)

Port #: Identifies which daisy chain contains sequence. Port #0
is internal daisy chain (daisy-in on first chip thereof is tied
high). Port #n is the daisy chain activated by output register
bit #(n-1).

Size: Since size is aluays a power of two, the size is
represented internally and on the chip ID as the one’s
complement of log2(size). Size refers to K-nibbles for memory
devices and to words (hunks of 16 nibbles) for memory-mapped
1/0.

Address: For memory devices, the upper 3 nibbles of the
configuration address are given (the lower 2 are always zero).
For memory-mapped 1/0, the middle 3 nibbles are given (upper
nibble is always 1, lower nibble is aluays 0).

Device type: Identifies type of memory device or if this is
memory-mapped 1/0 device., The possible values are explained in

3-27

HP-71 Softuare IDS - Detailed Design Description

Memory Structure

the system configuration overvieu.

Device class; If sequence
vhich type of memory-mapped
device class for memory devices.

Chips in sequence: Identifies how many chips comprise
in the table as (#chips

sequence. Kept
memory-mapped 1/0, since it is
results in its oun table entry).

Reserved nibble: Nibble #1 from the Chip

nibble is currently not defined.

is memory-mapped 1/0
1/0 device

this identifies

this. There is no

this
- 1). Not kept for
always zero (each MM I/0 chip

ID is saved here. That

‘Following is the exact format of the configuration buffer table
entries:
System RAM Other Memory
(cnftable ID FF) (cnftable ID FE)
NIB 0 Seq position Seq position
NIB 1 Device % Device #
NIB 2 Port # Port #
NIB 3 15-Log2(size) ** 15-Log2(size)
NIB 4 / /
NIB 5 | Address (kbit) | Address (kbit)
NIB 6 \ \
NIB7 0 Device type
NIB 8 #chips/seq - 1 #chips/seq - 1
NIB 9 Nibble 1 from ID Nibble 1 from ID
Memory-mapped 1/0
(cnftable 1D FD)
NIB 0 Sequence position in dev
NIB 1 Device #
NIB 2 Port #
NIB 3 15-Log2(size)
NIB 4 /
NIB 5 | Address (words rel to 10000)
NIB 6 \
NIB 7 Device type (alwvays F)
NIB 8 Device class
NIB 9 Nibble 1 from ID

** FREEPORT routine may set this to zero to
RAM has been removed intentionally,

indicate that the
This affects operation of

this code in the spot where the old and neu tables are compared
to determine which RAMs are neuw and which are missing.

3-28

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.5 User Memory

User Memory consists of that portion of Main RAM which follouws the
Configuration Buffer. It contains the MAIN file chain, systen
buffers, CALC mode buffers, the command stack, the output buffer,
available memory, and the various stacks maintained by the
operating systen,

3.5.1 MAIN File Chain

Files are stored in a linked list called a file chain. Each file
in the chain is immediately preceded by a file header which
contains identifying information about the file as well as a
pointer to the file header of the next file in the chain. See the
“"File System" chapter for further information on the contents of a
file header.

The start of the MAIN file chain is pointed to by MAINST. The
pointer MAINEN, also knoun as IOBFST, points past the end of the
chain, which is marked by a zero byte.

3-29

HP-71 Software IDS - Detailed Design Descriptlon
Memory Structure

. Configuration .
. Buffers .

<Low> MAINST ------ >| File Header |

+---| Offset to Next |

| Fomm o +

| | |

| | File Contents |

| I |

| $o—dommm—mm e +

+-->|00] (00 byte indicates
o=t end of file chain)

<High> MAINEN ------ >,

. System Buffers :

3.5.2 Program Scope

The scope or bounds of the current program are defined by the
program start and end p01nters PRGMST and PRGMEN, respectively.
Program scope may delimit a main program or a subprogram which may
be part of a larger file. Thr program end (PRGMEN) and current
file end (CURREN) pointers are equal only when the current file
contains a main program and no subprogranms.

3-30

HP-71 Software IDS - Detailed Design Description
Memory Structure

Note that the program scope pointers may delimit a program in a
file that resides in the MAIN file chain, in a ROM, or in an
Independent RAM, and therefore have no fixed relationship to the
MAIN file chain pointers MAINST and MAINEN,

3.5.3 System Buffers

System buffers are used as general purpose buffers and as 1/0
buffers. They are maintained immediately following the end of the
file chain. They are used for storage or working data and in some
respects are more convenient than files for machine language
applications., Each buffer is identified by a unique ID. ID’s
vithin a certain range are permanently reserved for use by specific
applications and LEX files. Permanent ID reservations are assigned
to software developers according to the procedures described in the
"HP-71 Resource Allocation" chapter in this document. A certain
range of ID's are also used and allocated on a temporary or scratch
basis by the operating system, and are useful for applications
vhere the temporary ID number can be saved.

There are several useful utilities related to system buffers, which
are summarized in the "Utilities" chapter.

3.5.3.1 Format

Each buffer consists of a seven nibble header, followed by the
buffer itself, The first nibble indicates if there are any address
references in the beginning of the buffer that need to be updated
by RFADJ (Reference Adjust); in most cases this nibble will be
zero., '

The next three nibbles are the buffer ID. The following three
nibbles are the buffer length, that is the length of the buffer NOT
including the buffer header (an empty buffer has 000 in this
field).

The buffer chain is terminated by 0000.

The statement buffer (bSTMI) is always present and must be the
first buffer in the buffer chain. This ensures that when executing
statements from the statement buffer, PCADDR is not affected by
buffer modifications.

Assuming the statement buffer (ID 801) is empty, the buiter chain
is as follous:

3-31

HP-71 Softuware IDS - Detailed Design Description
Memory Structure

SYSTEM BUFFER CHAIN

fmmmm e + tmmmmm— e —————— +

| | | |

| v l v
T R S ol Lok (L oo Ly SRRy sty gy P v e S S QY
10/108]000| #|ID|Len| buffer | ... |#|ID|Len| buffer | ... |10000]|
Bl tabah Sk Dt UL SO Ly g e LV PG QS
| |
I0BFST IOBFEN
MAINEN CLCBER
<Louw> <High»

'3.5.3.2 Update Addresses in System Buffers

If a buffer needs to have address references updated to reflect
memory movement, then the first nibble of the buffer header is
used. This nibble indicates the number of addresses to update (up
to 15). The addresses must immediately follow the buffer header.

At the time a buffer is first created, this nibble is aluays
initialized to zero. All of the System buffer utilities dealing
with expanding and contracting existing buffers preserve this
nibble. The buffer user is responsible for setting the nibble.

3.5.3.3 Automatic Deletion of System Buffers

Buffers are, by nature, temporary storage areas, Part of the
system’s maintenance process for buffers is deleting those which
are no longer needed.

Uhenever the configuration code is executed, all buffers are marked
for deletion. The high bit of their buffer ID’s is cleared; that
is why all buffer ID’s are »>= 800H). Certain buffers are
immediately reclaimed (the statement buffer, the FIB, etc.). Then
the configuration poll is performed. All buffers which have not
been reclaimed (high bit set) following this poll will then be
deleted.

Anyone keeping buffers must reclaim them at every configuration
poll (pCONF) or the buffers will go away. This can be done with
the I/ORES wutility which, given a buffer ID, will find the
unreclaimed buffer and reclaim it by setting the high bit of the
ID.

3.5.3.4 Permanent Buffers
Permanent buffers ID are allocated through official channels and

are dedicated buffer to a particular application. Refer to the
chapter on “HP-71 Resource Allocation".

3-32

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.5.3.5 Scratch Buffers

The system buffer ID range EO0 to FFF is used for scratch buffers,

which may be requested by calling IOFSCR, which allocates the next
available scratch buffer and returns its ID. Scratch buffers are

useful for temporary storage when the buffer ID can be easily saved

by the user,

3.5.3.6 System Buffers Used by the Mainframe
The follouwing is a list of system buffers used by the mainframe:

Alternate Character (bCHARS)
Assign (DASSGN)

Card Reader (bCARD)

External Command (bECOMD)
File Information (bFIB)
Immediate Execute Key(bIEXKY)
LEX Entry (bLEX)

Statement (bSTMT)

Statistics (DSTAT)

Startup (bSTART)

The index indicates where more information can be found about these
buffers.

3.5.4 CALC Mode Pointers

WVhen CALC mode is in effect, the pointers AVMEMS and AVMEME, which
control available memory, are given unusual meani.gs. They act in
coordination with the other CALC mode pointers as described in this
section.

The CALC mode pointers define several volatile areas between CLCBFR
(vhich 1is the beginning of the Command Stack) and FORSIK.
Characters accepted by CALC mode are inserted at RAUBFR (which
stands for raw input buffer), while the parsing process operates at
and advances RENBFR (refined input buffer).

Anticipated right delimiters, such as commas and right parentheses,
are inserted by the parser to the right of RAUBFR. Tokens compiled
by CALC mode are appended to the buffer between CLCSTK and SYSEN.
The intermediate parse stack resides between AVMEMS and MTHSIK, and
intermediate operands reside between MTHSTK and FORSTK.

During most of the parsing operation, system free space is actually
between SYSEN and AVMEMS, as shoun:

3-33

HP-71 Software IDS - Detailed Design Description
Memory Structure

<Low> | System Buffers |
CLCBER == #==cm oo e e N

RENBER ==)> #=mm=mmmmmmmmmmmommmme .
| CALC Left Raw Buffer |

RAUBFR ==)> #====mmmmmmmmmmmeem oo .

| CALC Right Raw Buffer |

CLCSTK =-=> #-----c-ooommmmmmomeee +

| CALC Token Streanm |

SYSEN = OUTBS =--> #=======-mmcmmmommmmcmee "

| Available Mem |

| | I

v |

Y e — +

| Intermediate |

| Parse Stack |

MIHSTK =~> ¢----cccmcmmmcmccccce e +

| Intermediate |

| Operands |

FORSTK -=> +--------omccmcmccmaeao +

| FOR/NEXT Stack |

<High» L e b S L e L LT et +

WUhen the tokens are to be executed, the parse stack is moved to the
end of the compiled token streanm, so that the top of the Math Stack
is free and AVMEMS can assume 1ts normal meaning. Uhen a CALC mode
statement is complete, it is already within the Command Stack.

3.5.5 Command Stack

The Command Stack is a doubly 1linked list of buffers betuween the
CLCBFR and RFNBFR. Outside of CALC mode, SYSEN, CLCSTK, and RAUBFR
are equal to RENBEFR.,

The Command Stack is initialized to have 5 entries, each containing
only a carriage return (ASCII 13). Each entry con31sts of a3
nibble length field, command text and a 3 nibble backwards chaining
length field,

The first length field is the number of nibbles in the actual text
of the command, including the carriage return at the end of the
text. The command text is aluays terminated with a carriage
return., The second length field is three nibbles greater that the
length of the text to allow chaining backwards through the Command
Stack.

The number of entries in the Command Stack is kept in the RAM

3-34

HP-71 Software IDS - Detailed Design Description
Memory Structure

nibble called MAXCMD. This nibble must correspond to the actual
number of entries in the stack To change the number of entries in
the Command Stack : SENGEETENS . '

e 94 3¢ -) v " . The
MAXCMD nlbble is the number of entries minus one; hus the Command
Stack can be altered to have from 1 to 16 entrles No mechanism in
the mainframe is provided to do this.

3-35

HP-71 Software IDS - Detailed Design Description
Memory Structure

COMMAND STACK

<Louw>
| |
CLCBFR ------- +==) 4 eeemesmceeeccoeo—oo +
| | Len(5) | —==-+
| g + |
| | | |
| | Text of | I
| | Command 5 | |
| | | |
| | CR (ASCII 13) | |
| $mmm e o + (===3
+m== | Len(5)+3 |
+=-=) ittt L +
| | Len(4) | ===+
i T T T + |
| | | |
I | Text of | |
| I Command 4 l |
| | | |
| | CR (ASCII 13) | |
] B T + (===
o | Len(4)+3 |
R T +
| Len(3) |
D et +
| |
| |
| |
| |
R I et +
I [Len(1) [===-+
| ittt T S AP Ep R - + |
| | | |
| l Text of | I
| | Command 1 I |
[| | I
RENBER | I CR (ASCII 13) I |
« RAUBER | TR + (mmms
= CLCSTK toeee | Len(1)+3 |
) P —— T T +
| |
<High> | I

3-36

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.5.6 Available Memory

The SYSEN pointer separates the CALC Mode token stream from the
temporary input buffer area for BASIC. SYSEN is used by TRANSFORM
to mark the beginning of memory available for its input and output
buffers.

OUTBS points to the start of the output buffer, used to compile
BASIC tokens during statement parse and to regenerate text for
statement decompile.

AVMEMS marks the end of the output buffer and the start of
available memory. This delimiter is necessary before moving the
output buffer to the statement buffer, a program file or to the
display buffer.

After statement parse or decompile, the main loop collapses
available memory start (AVMEMS), the output buffer (OUTBS) and the
system RAM end pointer (SYSEN) to the end of the Command Stack
(CLCSTK=RENBER).

During statement execution, available memory start is at the end of
the Command Stack.

3.5.7 Math Stack

The Math Stack exists between MIHSTK and FORSTK; it is wused for
intermediate storage of operands during expression execution. Four
types of objects are recognized on the Math Stack: real numbers,
complex numbers, strings, and array dope vectors. The stack grous
from high addresses to low. The pointer, MIHSTK, points to the top
of the Math Stack.

Refer to the "Statement Parse, Decompile, and Execution" chapter
for details on expression execution and the Math Stack.

3.5.8 Save Stack

The Save Stack is an area of user memory for saving special system
information. It resides between the Math Stack and FOR/NEXT Stack,
as shouwn belou.

Any neu Save Stack allocation is inserted between the current Save
Stack contents and the FOR/NEXT Stack. Therefore, unlike the Math
Stack or FOR/NEXT stack, the top of the Save Stack is at a higher
address than its bottom. The SAVSTK pointer is always positioned
past the highest-addressed nibble of the most recently allocated

3-37

HP-71 Software IDS - Detailed Design Description
Memory Structure

section of Save Stack memory, and is therefore identical to the
FORSTK pointer (for which SAVSTK is merely another name). Note
that there is no pointer which explicitly marks the bounds betueen
the Math Stack and the Save Stack:

<Low> | |
| Available Memory |
| |
AVMEME --> 4---------m-ooomomeeao +
= MTHSTK | | Newest Math Stack Entry
| Math Stack |
| | Oldest Math Stack Entry
B +
| i Oldest Save Stack Entry
| Save Stack |
| | Newest Save Stack Entry
SAVSTK ==)> #--ccocmcmcmmccmccaeee +
= FORSTK | | Newest FOR/NEXT Entry
| FOR/NEXT Stack |
_ | Oldest FOR/NEXT Entry
<High> e +

The routine SALLOC will expand the Save Stack by the requested
nunber of nibbles. The memory between available memory end and the
end of the Save Stack (betueen system pointers AVMEME and SAVSTK)
is moved down into available memory by the required number of
nibbles, and AVMEME is updated accordingly. Since this process
preserves all memory between AVMEME and SAVSTK but overurites the
memory immediately before AVMEME, AVMEME must be set to the true
top of the Math Stack in order for the Math Stack to be preserved.

Routines which allocate memory recursively on the Save Stack are
responsible for removing that memory. The routine "SRLEAS" deletes
the requested number of nibbles from the Save Stack and adjusts
pointers.

At the end of every statement execution, the available memory end
pointer AVMEME is reset to the top of the FOR/NEXT Stack, thereby
collapsing the Math Stack and the Save Stack.

The Save Stack is used by POLL to save polling information. It is
also used by COPY, TRANSFORM and RUN to save source and destination
file information.

3.5.9 FOR/NEXT Stack

At the time a FOR statement executes, information is pushed on the

FOR/NEXT Stack. This stack is referenced and/or altered any time a
FOR or NEXT statement is encountered.

3-38

HP-71 Software IDS - Detailed Design Description
Memory Structure

<Louw> A e L LT LT +
| Return Address | 5 nibbles
D D el L L P +
| Step Value | 16 nibbles
D e +
| Limit | 16 nibbles
D D e +
| Encoding of Var Name | 4 nibbles
<High» Lt +

The encoding of the variable name depends on uwhether the variable
is alpha-digit or not. In the case of an alpha variable, the lou
byte is the ASCII letter and the following byte is zeroes; for
alpha-digit variables, the low byte is the alpha-digit token and
the follouwing byte is the ASCII letter. The alpha-digit token has
6 in the high nibble, and the digit in the low nibble.

3.5.10 GOSUB Stack

The GOSUB Stack resides between the FOR/NEXT Stack and the active
variable space. The pointer GSBSTK points to the top of the GOSUB
Stack. The GOSUB Stack is typically used to save return addresses,
such as the return address of a call to a subroutine, but may also
be used to store other addresses and indicators,

Associated with each address on the GOSUB Stack is a return type
nibble.

<Low> L et DL D +
| Return Type | 1 nibble
D e D T +
| Return Address | 5 nibbles
<High» R et L L L L L et +

The return type encoding is:

Return to Progranm

Return to Keyboard

ON TIMER#1 ... GOSUB

ON TIMER#2 ... GOSUB

ON TIMER#3 ... GOSUB

Machine Code Return
-E Special Return Types: Future statement extensions

Update Address (Nonzero) or

Boundary Address (Zero)

Return to program is the standard GOSUB from within a BASIC
progranm.

mMwOwoodWNHH=O

Return to Kkeyboard is a GOSUB initiated from the keyboard, The

3-39

HP-71 Software IDS - Detailed Design Description
Memory Structure

statement buffer is collapsed before returning to the keyboard.

Return from an ON TIMER, return type 2-4, reactivates the
appropriate timer before returning to the statement following the
GOSUB within a progran.

Machine code return is a return to a binary program that called a
BASIC program, The routine "PSHMCR" pushes the passed return
address on the GOSUB Stack and tags it as a machine code return.
The routine "POPGSB" pops an address and return type off the GOSUB
Stack.

Special return types: 9-E are available for future statements or
statement extensions needing special processing on return from a
GOSUB. An example is ON TIMER...GOSUB needing to reactivate the
timer before returning. The RETURN statement polls on special
return type (pRINTp) if within the range of 9-E.

A nonzero address of return type "F" indicates an update address.
The system will not return control to an update address, but will
update the address whenever memory moves. This is a convenient
place to store pointers to segments of memory which may move. The
routine "PSHUPD" pushes the passed address onto the GOSUB Stack and
tags it as an update address. The routine "POPUPD" pops an address
and return type off the GOSUB Stack. If an update address is
encountered during RETURN execution, it is not popped off and the
error "RIN w/o0 GOSUB" is generated.

A zero address of return type "F" indicates an environment
boundary, houever. Such an address marks the end of the
environment for a user-defined function. If a RETURN statement is
encountered and the end of an environment is reached, the error
“RIN u/o GOSUB" is generated. The boundary mark is not popped off
the GOSUB Stack.

3.5.11 Variable Storage

Variables are kept in memory immediately above (higher address) the
GOSUB Stack. Currently active variables exist betueen the pointers
ACTIVE and CALSTK. A complete description of this area is in the
“Internal Data Representation" chapter.

3.5.12 User-Defined Function Environment Stacking
Uhen a user-defined function is called, a portion of the 1local
environment is saved in an Environment Save Block which is placed

on the CALL stack in much the same manner as the local environment
is saved when the CALL statement is executed.

3-40

HP-71 Softuware IDS - Detajled Design Description
Memory Structure

The following diagram shows the structure of memory immediately
after a user-defined function has been called:

<Louw>

| | ¢<== New MTHSTK \
| | ¢<== New FORSTK +-Same value
#mmm e cceeccc e + <== New GSBSTK / initially
| F00000 GOSUB Stack Boundary |
ittt bbb + <== Neuw CALSTK
| User-Defined Function |
| Environment Save Block |
e +
| Extended Parameter |
| Storage |
D ittt S ettt + <== PRMPTR
| Last Parameter of Function |
R e T D AR S, +
| |
| |
I |
R Rt LD L R +
| First Parameter of Function |
D R et +

1 Function Value |
e e b Lt + <== 01ld MIHSIK (value before
| | the user-defined
| | function is called)
l |
S + ¢== 01d FORSTK
| |
T T + ¢== 01d GSBSTK
| |
#mm e mm e cm———————— + ¢== ACTIVE
| |

<High»

3.5.12.1 Environment Save Block
The User-defined Function Enviromment Save Block is located after

the end of the GOSUB Stack (which is marked by F00000)., It
contains the following data:

3-41

HP-71 Software IDS - Detailed Design Description
Memory Structure

ENVIRONMENT SAVE AREA

USER-DEFINED FUNCTION SAVE BLOCK FORMAT

Return address 5 nibbles -+ These pointers
PCADDR saved 5 | are adjusted
STMIDO saved 5 | when memory
3 harduare return addresses 15 -+ moves,

STMID1 saved 5

STMIRO saved 16

STMIR1 saved

Offset to previous MIHSTK
Offset to previous FORSTK
Offset to previous GSBSTK
Previous parameter count
Offset to previous PRMPTR+2
STISAVE saved

CHN#SV

Return type

[y
[SIS NS B OSG INS T,)

Return address - Continue execution address uwhen ENDDEF is
executed.

PCADDR,STMIDO - Updated when memory moves.

Harduware return stack addresses - Three addresses will be popped
off the hardware return stack and saved. This means if an
assembly routine calls the expression execution routine,
only the last three return addresses in the harduware
return stack will be preserved,

SIMID1 - This saved pointer will be adjusted when a new variable is
created while executing a user-defined function.

SIMIRO - This is the same as S-R0-0 ... S-R0-3. If the first five
nibbles of STMIRO(S-R0-0) contain a memory address (>10000
Hex) and the first harduare return address saved is
=STORE, S-R0-0 will be adjusted when a new variable is
created,

SIMIR1 - This is the same as S-R1-0 ... S-R1-3.
Offset to previous MIHSTK,.. PRMPTR+2 - These pointers are saved

as relative addresses. Adding the offset to uwhere it is
saved points to the previous pointer.

3-42

HP-71 Software IDS - Detailed Design Description
Memory Structure

Return type - 0 : User-defined function is called from a
program statement.

1 : User-defined function is called from a
keyboard expression,
8 : User-defined function is called by a

Binary routine.
3.5.12.2 Extended Parameter Storage

The value of string or complex parameters is stored in this area.
The extended value is pointed to by the parameter value.

3.5.13 Subprogram CALL Envirorment Stacking

Uhen a subprogram is called, a new local envirorment must be
created. Before this can happen, the old calling environment must
be saved by “pushing" it onto the CALL Stack. The process is
performed in three steps.

First, an area is opened immediately before the current FOR/NEXT
Stack to hold information blocks which contain pointers and other
data about the current environment. The operating system urites
one save block and then issues a poll to allow any LEX files
present to add other blocks. This area is called the Enviromment
Save Area, and is described below. It is also referred to as the
Subprogram Save Stack.

Next, the current environment is "pushed" onto the CALL Stack by
adjusting the pointer CALSTK to the start of the newly created
Envirorment Save Area.

Finally, the new local environment is created and the pointers
ACTIVE, GSBSTK, FORSTK, and MTHSTK are adjusted as shoun belou.
The initial active variables are the parameters passed to the
subprogran,

3-43

HP-71 Software IDS - Detailed Design Description
Memory Structure

<Low> | |
| | <== New MTHSTK \
I ittt + <== New FORSTK \ Initially
Neuw | | | <== New GSBSTK / same value
Local | | = == === - | <== New ACTIVE /
Environment| | (parameters) |
+-- tmmm e + <== New CALSTK
| | Environment |
| | Save |
Stacked | | Area |
Environmentl $m—mmmmmm e T <== 01d FORSTK
|
: : CALLing | <== 01d GSBSTK
|
| | Enviromnment | <== 0ld ACTIVE
| | |
#m= b + <== 01d CALSTK
<High» I |

Each CALL statement adds a level to the CALL Stack by saving the
current environment and each END SUB removes a level from the CALL
Stack by restoring the previous environment.

The CALL Stack is bounded by the CALSTK and RAMEND pointers (when
CALSTK equals RAMEND there are no saved environments).

3.5.13.1 Enviromment Save Area

The execution of CALL stacks more than just the GOSUB Stack, the
FOR/NEXT Stack and the local variables. It creates an area belou
(in lower memory) the FOR/NEXT Stack to hold information about the
environment which is being suspended. This area is called the
Environment Save Area or the Subprogram Save Stack.

It is filled by a linked 1list of information blocks called
Envirorment Save Blocks. Each block may contain a 1list of
addresses to be updated when memory moves, as well as other data.
The block begins with a 2 nibble ID followed by a 5 nibble link
field which points to the next block in the list. This is followed
by a 1 nibble field specifying a number (0 to 15) of 5 nibble
update addresses (which will be updated when memory moves), and
then that number of update addresses. Any remaining area in the
block may be used for arbitrary data and is not updated.

The first save block is created by the mainframe CALL statement.
Its ID is 00, and marks the end of the linked list. This block is
aluays 89 nibbles in total length,

At CALLing time, after the mainframe creates its save block, it
polls (pCALSV) to give LEX files a chance to add a save block to

3-44

HP-71 Software IDS - Detailed Design Description
Memory Structure

this area, Each poll handler that has anything to save is expected
to create another block (growing into available memory) in the same
format,

The save block created by the mainframe has the following contents:

ENVIRONMENT SAVE AREA
MAINFRAME SAVE BLOCK FORMAT

<Low>
LEX ID (00)
Entry length (04F)
Number of addresses to update (A)
+-- CURRST saved

nibbles

-—

| PRGMST saved
PRG®MEN saved
Addresses | CURREN saved
updated | PCADDR saved
when memory | CNTADR saved
moves |
| ERRADR saved 84 nibs
| ONINIR saved = 04F hex

+-- DATPTR saved

+-- Offset to previous FORSTK

| Offset to previous GSBSTK

Misc. | Offset to previous ACTIVE

Info | Offset to previous CALSTK

| Parameter count saved

| Offset to previous PRMPTR+2

+-- Return type
<High>

2
3
1
5
5
5
5
5
5
ERRSUB saved 5
5
5
5
5
5
5
5
2
5
1

G e s — i — ———— —— — ———

LEX ID

For the block created by the mainframe this field is 00.
This indicates the end of the linked 1list and that the
suspended FOR/STACK, GOSUB Stack and variables follow
immediately, For blocks created by lex files, this field
should be filled in with the LEX ID of the file creating
it. It serves ag a tag field to identify the block later
wvhen the return from subprogram causes the Restore CALLing
Enviromment poll (pCALRS).

Entry Length
This field is aluays 84 (04F hex) for the block created by
the mainframe. This number includes everything in the
block starting from the next nibble (the update address
count nibble) to the end of the block (the return type
nibble). This length does not include the LEX ID field or

3-45

HP-71 Software IDS - Detailed Design Deecrxpt1on
Memory Structure

the entry length field itself,

Number of Addresses to Update

For the mainframe, this nibble is aluays 10 (A hex),
reflecting the number of following pointers that requxre
updating when memory moves. Blocks created by LEX files
may have from 0 to 15 addresses updated.

Addresses to be Updated

The previous field specifies how many 5 nibble addresses
are included here. The 10 address fields in the mainframe
block are used to save the following memory pointers for
restoration later: CURRST, PRGMST, PRGMEN, CURREN, PCADDR,
CNTADR, ERRSUB, ERRADR, ERRSUB, ERRADR, ONINTR and DATPIR.
Whenever program memory moves, these addresses stored here
will be wupdated to reflect the new address of the thing
they point to.

Miscellaneous Information

3.6

After the addresses to be updated described above, the
remainder of the block has a format specified 1nd1v1dua11y
for that type of block. The block created by the
mainframe has the following fields;

Offset to prevdous FORSTK ... CALSTK
These pointers of the calling program environment are
saved as relative addresses. Adding the offset to
vhere it is saved points to the previous pointer.

Parameter Count
One byte field. If zero then currently not in a
user-defined function; if nonzero, then represents
parameter count - 1 of the user-defined function.

PRMPTR
This is a 5 nibble pointer to the first parameter in
the user-defined function’s parameter chain.

Return type
If =0, CALL is from a BASIC progran.
If =1, CALL is from a Binary progran,

Plug-in ROM and Independent RAM

The format of a plug-in ROM module is the same as for a RAM module
configured as an Independent RAM, with the exception of the first
eight nibbles of the module whlch contain the Stand Alone Module

I1D.

Either form of plug-in memory module contains a file chain,

3-46

HP-71 Software 1DS - Detailed Design Description
Memory Structure

gstarting in the ninth nibble, that is identical in format to the
MAIN file chain.

Throughout the following discussion, the term ROM will be used as a
general name for a stand alone memory module, whether it be a
plug-in ROM module or an Independent RAM.

3.6.1 Standard Configuration

The general format of every stand alone memory module is as
follous:

tommmsssemeseeesecceooeono + <--- Module Start

| Stand Alone Module ID |
#omooemeeme—cecmcecee o + <--- Module Start + 8
| |

| |

| File Chain I

| |

I |

4 = = = $mccccccccccccca—— +

|00 bytel . <¢=-- 00 byte ends chain
Pmer———— +

.......... ® 0 0 000 00000600 000 <-_- End of Module

3.6.2 Stand Alone Module ID

The Stand Alone Module ID field is used to distinguish an
Independent RAM from other forms of memory modules. For
Independent RAMs, this field has the hex value B3DDDDDE (the B is
in the 1lowest-addressed nibble of the module). For ROMs and all
other forms of memory modules, this field may have any value except
the IRAM value,

3.6.3 File Chain Layout

Each file entry in the chain begins with a file header uwhich
contains the file name and other identifying information about the
file., The format of the file header is the same as that used in
the MAIN file chain, and is described in the "File System" chapter.
As in the MAIN file chain, a stand alone module file chain is
terminated by a zero byte in the first character of a file header

3-47

HP-71 Software IDS - Detailed Design Description
Memory Structure

name field.

$ommmmmsem oo + <(--- Module Start
| Stand Alone |
| Module ID |
$ommmmm e + <--- Start of File Chain
| File Header | (Module Start + 8)
| |
| - =-=-==-=-=-- |
+---| Offset to Next |
| T T —— +
| I |
| | File Contents |
| | |
| $mmm e +
+-->| File Header |

+---| Offset to Next |
| i +
	File Contents
TR T TT e +	
+==>]00] (==m==mcmmmmmmeeo 00 byte ends chain
t=—=+

3.6.4 Take Over ROM

Take-over ROMs come in two flavors: soft-configured and hard-
configured.,

3.6.4.1 Hard-Configured Takeover ROM

A hard-configured take-over ROM must be plugged into port 1, uhere,
by virtue of shorting certain lines together, it will dlsable the
system ROMS. This ROM should be hard- conflgured in the address
space occupied by the HP-71 systenm ROMs, as it is replacing thenm.

A problem occurs when installing such a ROM: where is the CPU’s
program counter? This is a problen when 1) the takeover ROM is
plugged in, and must resume execution from the HP-71 ROM, and 2)
the takeover ROM is unplugged, and HP-71 must resume executlon It
is virtually impossible for HP 71 to guarantee the position of the
PC, except durlng deep sleep During deep sleep, the PC spends
most of its time pointing just past the SHUIDN in the deep sleep
routine, However, the processor does occasionally wake up to

3-48

HP-71 Software IDS - Detailed Design Description
Memory Structure

process clock system requests and whatever else may request
service,

If the hard-configured takeover ROM uses memory in such a way that
it is incompatible with the HP-71 operating system, the ROM should
perform its own version of cold start when it is plugged in and
unplugging it should force the HP-71’s built in operating system to
perform a coldstart,

A feuw simple rules will facilitate this:

1) HP-71 should be turned off when plugging in a hard-configured
takeover ROM.

2) The takeover ROM should expect control to be passed to it at
the address just past HP-T1’s deepsleep SHUIDN (address =
5E2). This is where the PC is most likely to be.

3) The takeover ROM should be at a shutdouwn when unplugging it.

4) The takeover ROM shutdoun should position the PC at the HP-71
coldstart code (label CLDST1).

5) The takeover ROM should use a different CMOS testword from
HP-71, this will cause the built in operating system to
coldstart as soon as it is reenabled (at time of next
interrupt). In general, the CMOS test word should be unique
for each take over ROM and should be used to determine if
memory is "okay" for that particular hard configured take over
ROM.

It is conceivable that a hard configured takeover ROM might be made
compatible with the built-in operating system so that is may be
plugged in or removed without loss of memory contents. In this
case, the ROM should use the same CMOS test word as the built in
operating system,

3.6.4.2 Soft-Configured Takeover ROM

A soft-configured takeover ROM avoids many of the problems of a
hard-configured ROM. It is useful for adding subsystems to the
HP-71, such as a pocket secretary. It can simply grab control of
the machine at an appropriate time, such as Wake-up poll or
Pouwerdoun poll. This is essentially a mode, not a new machine.

In general, a soft-configured takeover ROM should not mess with

HP-71 operating system RAM. It is an extension of HP-71, and more
than likely is interacting with HP-71 code in the system ROMs.

3-49

HP-71 Softuware IDS - Detailed Design Description
Memory Structure

A major limitation of soft-configured take-over ROMs is that it is
very difficult for them to change the system’s configuration.
Doing a bus reset (unconfigure all chips) will unconfigure itself,
making it impossible to execute any more code from the ROM. A
soft-configured ROM, barring some very clever programming, will
have to live with the HP-71 system configuration,

3.7 Available Memory Management

The term "available memory" refers to the area of RAM betuween the
boundaries pointed to by AVMEMS (available memory start) and AVMEME
(available memory "end). This region supplies the memory for neu
allocations on the various system stacks, which cause AVMEME to
grou toward AVMEMS. This region also supplies the memory for the
system’s output buffer, which is used to hold the tokens output by
the parsing process and for various other system functions which
cause AVMEMS to grow toward AVMEME,

In addition, activities which increase the size of the main RAM
file chain (such ag creating or enlarging a file in the chain), the
size of the system buffer area (creating or enlarging a system
buffer), or the size of the Command Stack, will also cause AVMEMS
to grow toward AVMEME.

A minimum amount of available memory is therefore necessary for the
operating system to function. This minimum amount is 106 bytes
and is referred of as LEEWAY, which is a globally defined symbol in
the operating system equate flle (see file TI&EQU in Volume III of
this document).

Vhenever an operation system activity must consume available
memory, a check 1is performed according to the following
conventions:

* If the memory allocation is permanent (that is, after the
activity is completed, the memory will remain allocated) then
available memory must not d1p below LEEUAY. Examples of
permanent allocations are creating a system buffer, creating a
variable, adding to the GOSUB Stack, FOR/NEXT Stack or the CALL
Stack.

* If the memory allocation is temporary (that is, after the
activity is completed, the memory will be released) then
available memory may d1p below LEEUAY. Examples of temporary
allocations are: parsing or decompiling into the output buffer,
expression evaluation using the Math Stack, preparing messages
for display, or issuing a poll (which saves 31 bytes on the
SAVSTK).

3-50

HP-71 Software IDS - Detailed Design Description
Memory Structure

Uhen an insufficient memory condition has been detected and
reported, the user must be able to perform certain commands, such
as CAT, PURGE, COPY or END, in order to release memory in a safe
manner so that the system is again usable.

To allow these activies to occur during lou memory, the following
special cases of LEEUAY checking have been implemented:

* Uhen a command is added to the Command Stack that causes a dip
below LEEUAY, previous commands will be crushed to mull,
starting vith the oldest, until LEEUAY is reached or only 1
command remains.

¥ Uhen the statement buffer is expanded to accept the tokenized
statement, LEEUAY is not checked.

* Leeway in not checked when COPY saves its file info on the Save
Stack.

¥ The poll routine does not check LEEUAY when saving poll info on
the Save Stack.

The value of of LEEUAY has been set to allow a file to be copied to
an external device. This requires the following amount of memory:

Command Stack to enter COPY command 25 bytes

To move tokenized COPY statement into 25 bytes
statement buffer

Save COPY file info on the Save Stack 25 bytes

Issue COPY poll to external device 31 bytes

LEEUAY . 106 bytes

If a LEX file or other user-supplied code causes the memory
available to the operating system to shrink below this minimun,
catastrophic failure may occur. For example, if available memory
has shrunk so far below LEEUWAY that the error message handling
routines do not have enough room to build the "Insufficient Memory"
error message, the system will loop infinitely attempting to
process the message.

See the "Message Handling" chapter for a discussion of the chapter
discusses the MEMCKL utility which checks available memory with or
without LEEUAY.

3.8 Handling Memory Movement

Uhenever file memory is moved due to adding data to or deleting
data from the MAIN file chain or an IRAM file chain, the various
system pointers uhich reference the file system and neighboring
areas of memory may need to be adjusted. RFADJ is the utility
called after such a memory move, to examine these pointers and make

3-51

HP-71 Software IDS - Detailed Design Description
Memory Structure

the necessary adjustments. There are two major routines which make
up RFADJ: RFADJ- (used uhen memory moves to lower addresses, as
with a PURGE of a file [MOVEMU called] and RFADJ+ (used when memory
moves to higher addresses [MOVEMD called]).

Entry conditions parallel requirements for calling MOVEUx and
MOVEDx (move memory routines): Begin Source, Begin Destination, and
End Source, are referred to in this context. Note that the End
Source address 1is the address of the nibble that immediately
follous the last nibble in the source block. Therefore, the source
block is null when Begin Source equals End Source.

B(A) is assumed to be an offset: Begin source - Begin destination.

Algorithms:
RFADJ- : Save begin source in RO
RFAD-- : Position D1 at AVMEMS ram location

The following entry point can be used by memory movement on
plug-ing. It assumes D1 1is positioned at a ram location which
contains ’AVMEMS’ of that plug-in, i.e., the address after the last
file in the chain.

RFAD-1 : Save begin destination in R1 (R0O+B)

D(S) <«-- 1 (flags which way mem is moving)
Call RFADS8 (Updates addresses on FOR and

GOSUB Stacks)
Call RFAD97 (Updates addresses in RAM locations

PCADDR-->TMRAD3 - zeroes out those

referencing purged address space)
Goto PCUPD+

RFADJ+ : Save begin source in RO
RFAD++ : Position D1 at AVMEMS ram location

RFAD+I : D(S) <-- 0 (flags which uvay mem is moving)
Call RFAD58 (Updates addresses on FOR and
GOSUB Stacks)
Call RFAD86 (Updates addresses in RAM locations

PCADDR-->TMRAD3)
PCUPD+ : Updates CURRST-->AVMEMS

PCUPDT :

Address updating:

3-52

HP-71 Software IDS - Detailed Design Description
Memory Structure

If address < End Source
THEN If address »>= Begin Source
THEN update (add offset).

Address zeroing: (Done only if D(S)#0)
If address < Begin Source
THEN If address >= Begin Destination

THEN zero it.

The following references are NEVER zeroed:
1) Addresses on FOR/NEXT Stack
2) CURRST-->AVMEMS

3.8.1 In Configuration Buffer Area

Configuration buffers are only manipulated during execution of the
configuration code. Following is a summary of the effects of
configuration buffer manipulation on various system pointers.

3-53

HP-71 Softuare IDS - Detailed Design Description
Memory Structure

HP-71 REFERENCE ADJUSTMENTS -- CONFIGURATION BUFFERS

B ::= Updated only if Begin Source <= address < Begin Dest

A ;::= Updated only if Begin Source < address < Begin Dest
U ::= Unconditionally updated (offset always added to pointer)
Z ::® Address set to 0 if Begin Dest <= address < Begin Source
* ::= Not updated
D +
Actions: | ACTION ON |
CONFIGURATION
Create ::= [tem created | BUFFERS |
tm——bmm b+
Expand ::= Buffer expands CIE|CI
rl x| ol
Contract ::= Buffer shrinks el pl n|
alalt]|
tln|r]|
el dl| a|
c |
t |

- - - - - - ———— - —————— - ———— - —— - -

+

System Pointers:

| ClE|

l r | x|

| | |

|l al al

| t | n|

l el d|

[

[R

+ + +

| I

| I

| I
MAINST - MAIN File Chain Start lUululu|
CURRST - Current File Start | Bl B| B |
PRGMST - Current Program Start | Bl B| B |
PRGMEN - Current Program End | Bl BI| B
CURREN - Current File End | Bl BI| B |
MAINEN - MAIN File Chain End | Bl BI| B|
CLCBFR - CALC Mode Buffer Start | Bl B B|
RFNBFR - CALC Mode Refined Buffer | B | B | B |
RAUBFR - CALC Mode Raw Buffer | Bl BI| B
CLCSTK - CALC Mode Token Stack | B BI| B |
SYSEN - System RAM End | Bl BI| B|
OUTBS - Output Buffer Start | Bl B| B
AVMEMS - Available Memory Start | B : B l B |

| |
AVMEME - Top Math Stack | * | * | * |
FORSTK - Top FOR/NEXT Stack | * | * | * |
GSBSTK - Top GOSUB Stack | * | * | x|
ACTIVE - Active Variable Pointer | * | * | * |
CALSTK - CALL Stack | * | * | * |
RAMEND - User RAM End L * | *] *|

3-54

HP-71 Software IDS - Detailed Design Description
Memory Structure

¢
¢ —

|
-- TR
)) [R
Pointers in System Buffers : I T
| I
LEX BUFFER Pointers | B| B| B |
FIB: File Begin Field | B| B| B |
FIB: Data Start Field | B| B| B
[T
------------------------------------ T L L Ty
))) | R R
Pointers Within Enviromments: R T
R I
FOR/NEXT Stack Addresses | B| B| B
GOSUB Stack Update Addresses | Bl B B
[R B
------------------------------------ tm—mtmm
I R
Miscellaneous Pointers: | | | |
I I I
PCADDR - Program Ctr at Stmt len | B| B | B |
CNTADR - Continue Address | Bl B| B |
ERRSUB - ON ERROR-GOSUB Rtn Addr | Bl B| B |
ERRADR - ON ERROR Statement Addr | Bl B| B |
ONINTR - ON INTRPT Statement Addr | B | B | B |
DATPTR - DATA Statement Pointer | Bl B| B|
TMRAD1 - ON TIMER#1 Statement Addr | B | B | B |
TMRAD2 - ON TIMER#2 Statement Addr | B | B | B |
TMRAD3 - ON TIMER#3 Statement Addr | B | B | B |
b
------------------------------------ D e b TS
[TR
Note that these are NEVER UPDATED: | | | |
I R I
INBS - Input buffer start | *] * | *|
SNAPBF - Snapshot Buffer Addresses | * | * | * |
RSTKBF - Rtn Stack Save Buf Addrs | * | * | * |
[N R
------------------------------------ Rt et 4

3.8.2 In a File Chain

Uhen file memory moves, system pointers such as CURRST may need to
be adjusted. In this case the routine RFADJ (Reference Adjust)
must be called to handle the updating of all of these pointers.
This routine examines each pointer to determine whether or not it
wvas affected by the memory move; all affected pointers are updated.

RFADJ examines pointers DSPCHX through TMRAD3, CURRST through
AVMEMS, all pointers in FIB’s, and pointers on the FOR/NEXT Stack,

3-55

HP-71 Software IDS - Detailed Design Description
Memory Structure

GOSUB Stack, and CALL Stack. Pointers which reference purged
address space are zeroed out (this does not include any pointer
vhich pointed at the begin destination of the memory move - For
example, if the file following the current file was purged, CURREN
would NOT be zeroed out).

Uhen files move to a lower address (as when a file is purged),
RFADJ- is called; if files are on a plug-in, RFAD-I is the entry
point to use. Uhen files move to a higher address (as when a file

expands), RFADJ+ is called; if files are on a plug-in, RFAD+I is
the entry point to use,

HP-71 REFERENCE ADJUSTMENTS -- FILE MEMORY MOVES

B ::= Updated only if Begin Source <= address < Begin Dest
A ::= Updated only if Begin Source < address < Begin Dest

::= Unconditionally updated (offset always added to pointer)

N C
]

Address set to 0 if Begin Dest <= address ¢ Begin Source

* .:= Not updated

Actions: $ommmmooeseeooo—o tommmmmmme————e— .
| ACTION ON FILE= ACTION ON FILE|

Create ::= Item created | IN MAINFRAME = IN IRAM I
R e il it TtTor TP Y

Purge ::= Item purged lClIPlAlU=ClIPlAIlV]
lrlul tli=rlult]i]

At end ::= Movement at end lelr| |l t=elrl| | t]
lalglelh=ajgleln|

Uithin ::= Item grouws/shrinks | t | e | n| i=t|e | nn| i]
in the middle lel Idlin=el|l |dl|n|

I N I I R e
--------------------------------- R it Dttt Dbt Dl Tl Tuare
[I I D D

System Pointers: | : [T B R
| (T e

MAINST - MAIN File Chain Start | * | % | % | # « % | % | % | # |
CURRST - Current File Start | * | B|B|B=%|B|B| B |
PRAMST - Current Program Start | * | B| B| B=* | B| B | b |
PRGMEN - Current Program End | * | B|B|B=% | B|B| B|
CURREN - Current File End | * | B|B|B=%|B| B| B |
MAINEN - MAIN File Chain End J UL UL U] U=*| % | % | % |
CLCBFR - CALC Mode Buffer Start | U | U | U | U = % | * | % | % |
RENBFR - CALC Mode Refined Buff | U | U | U | U = % | * | % | % |
RAUBFR - CALC Mode Raw Buffer UL U U | Us=*| % | % | %

3-56

HP-71 Software IDS - Detailed Design Description

Memory Structure

x Xk *k X *x Xk %k Xk Xk X mm< m m mmaommmMmMmmMm * Xk Xk

x Xk X% X * Kk Xk Kk Xk mm < mm maammMmmmMm@Mmaonm *x Xk X

R T L R N

x X X X * k Xk Kk Xk X% mom < mm moommMmmMmmMmmMmm@m *x Kk Xk

x X x X *x %k %k Xk X X mmm m m mommmmm@omam *x Xk ok
4 8 B B B B N O 8 U W N s 8 8 v =" | D B RN B R () W % N B B N 4 H N U N ou N "N U NN s M

SDDDODD Xk Xk k %k Xk X mm < m m mommmMmmMmMmMmmMmmMm *x Xk kK

DODDD %k %k k ¥ Xk X mom << m m mOomm@Om@mmaMmam x Xk Xk
T T T T T T T RN TV T T T TRy T T T NN NN NN NN T T T T

maomMmmmon@mam
DDODDODD % x %k %k % X mom < mm omomMm@mmoOooaom x K X

- =] [M s
-) () o 1 .. 0 o
5 u prt — < Q o b a o
m (=4 < o = T OO 73] o <C
- o ot .e - T ST T T = o
- N X fo) .o o = covo AT << & O e
(7] L] M Q. - - et =] Q r.A‘W
i) (] = 0 0 oe << Qu & & 2 a. (1]
S 0) o) o ® 0 - cce =) -
[T~ o XU O~) m) P MU SYEE 0o
X C s~ E [3] Qo - ° o n o .o arannttt o - >
ow o o aﬂ.ta o - — o~ o] 0n o)] o m...ESSS [bo &+ @
=~ - 3 - w0 -~ c nw v ~ QW - rdmw 0 e W emnu.S
o) nw ~ [M et ot eed ~ [+ V] - <L w0 VD= NM had
L)) I3 ZmMm O [O 79 7% m o v - (&)] Wur.ﬁ_ﬂ * = G ~
@ —~ h/WVa E Q T o Qs ® o e I~ 0
2 oo - J oo W <o o mmOORtEﬁm w 8 Qm™
£~ OO VW - £ e by o o cxcHH0NIT =] s &
ew.l. O > n 4 DO @ [l v a=d Q. o (GO0 —— —t < < nn
L et ot 3 he > O Q & et Q 0 & Ll) T H = H 3
- 0~ (o W« W= PO IHEC Y n aawn = o = o oc = 3 m.an
Av..mv OQ oL = o .Ou ~O0OZZZIZZZ (%] =it
(SR 7o) < HHEH<<OD S Moo - w0 OO0 aOOoO0o W =
o Ll —~ & =S v} Wu..
I T B | I T I I I | ® wuﬂu% @ ﬂ.ﬂ m (R T T T T TR Y T | LI B |
-] [V /L V- — > b m~~ — [o e e We e W TN Vi ep) ' Bas Fau
RBlE mummvmum O @ ¥ =Z=m — DDWDMWODD 1 @ m
o] — - .o - S)] Q< < AMA 0N A X
SEEE £5863% | 5 mES | £ 8B | § g8gEcggdé | ow 2:2p
. — .
CmeA < B O x N — Bad fae % Fm m a, EEODmmm M IWR

B e e R e et D it bt STy SR
3-57

HP-71 Software IDS - Detailed Design Description
Memory Structure

3.8.3 In System Buffer Area

Uhen an buffer is created or deallocated, or when an existing
buffer is expanded or contracted, pointers are updated to reflect
this, All pointers in the RAM map between IOBEFEN and AVMEMS,
inclusive, are updated by a call to PTRAD2 from within the Systenm
buffer code.

HP-71 REFERENCE ADJUSTMENTS -- BUFFERS

B ::= Updated only if Begin Source <= address < Begin Dest
A ::= Updated only if Begin Source < address < Begin Dest
U ::= Unconditionally updated (offset always added to pointer)
Z ::= Address set to 0 if Begin Dest <= address < Begin Source

* ::= Not updated

Actions: e +
| ACTION ON 1/0 |

Create ::= Item created I BUFFERS l
e e e

Purge ::= Item purged IClPlAluU|
frlul t] i]

At end ::= Movement at end l el r| It |
lalglelnl|

Uithin ::= Item grous/shrinks | t | e |l n | i |
in the middle lel | dlnl

[I
------------------------------------ R it et S 3
([I |

System Pointers: : : | : |
| |

MAINST - MAIN File Chain Start | * | * | * | %]
CURRST - Current File Start | *] * | % | % |
PRGMST - Current Program Start | * | * | * | % |
PRGMEN - Current Program End | * | * | * | % |
CURREN - Current File End | ¥ | % | * | *|
MAINEN - MAIN File Chain End | * | * | * | * |
CLCBFR - CALC Mode Buffer Start fujlululu|
RENBFR - CALC Mode Refined Buffer | U | U | U | U |
RAUBFR - CALC Mode Raw Buffer fulululul
CLCSTK - CALC Mode Token Stack fulujulul
SYSEN - System RAM End fvjlululul
OUTBS - Output Buffer Start lujululul

3-58

HP-71 Software IDS - Detailed Design Description
Memory Structure

AVMEMS - Available Memory Start fulujlulu
| |
AVMEME - Top Math Stack | * | * | * | *
FORSTK - Top FOR/NEXT Stack | * | * | * | *
GSBSTK - Top GOSUB Stack | * | * * *
ACTIVE - Active Variable Pointer | * | * | * | ¥
CALSTK - CALL Stack | * | * * *
RAMEND - User RAM End | *¥ | * | ¥ | *
| I
.................................... A T TR P
) . | |
Pointers in System Buffers : I
| |
LEX BUFFER Pointers | * | * | * | *
FIB: File Begin Field | * | ® | ® | *
FIB; Data Start Field | * | * | * | *
| |
------------------------------------ R A ol Dt
Pointers Uithin Enviromments:
FOR/NEXT Stack Addresses * | * | X | X
*

GOSUB/RETURN Addresses

P L T el ottt et S St

Miscellaneous Pointers:

PCADDR - Program Ctr at Stmt len Lo T B
CNTADR - Continue Address Lo L I I
ERRSUB - ON ERROR-GOSUB Rtn Addr - | * | * | * | ¥
ERRADR - ON ERROR Statement Addr Lol I B B
| o* | x|
DATPTR - DATA Statement Pointer *)% || *
TMRAD1 - ON TIMER#1 Statement Addr | * | * | * | *
TMRAD2 - ON TIMER#2 Statement Addr | * | * | * | *
TMRAD3 - ON TIMER#3 Statement Addr | * LA I
Note that these are NEVER UPDATED:
INBS - Input buffer start LA A
SNAPBF - Snapshot Buffer Addresses | * | ¥ | * | ¥
X || x| %

RSTKBF - Rtn Stack Save Buf Addrs

— — ——— ——

— — — — — —

+

|
|
|
|
|
|
+
|
|
|
|
|
I
|
ONINTR - ON INTRPT Statement Addr |
|
|
|
I
|
+
|
|
|
|
|
I
|
+

3-59

$ e e e e 4 . ——— — . — ——— — } —— i —— —

HP-71 Software IDS - Detailed Design Description
System Control

P mrm e e e e o e - - - - - - . = e e e -

I
| SYSTEM CONTROL
I

=
o

P e - .- - - - = = = = o = -

This chapter describes the fundamental algorithms which control the
behavior of the operating system. The over-all process by which
the system repeatedly waits for and then processes the next
command, is generally referred to as the “maln loop."

The following diagrams and detailed algorithms describe the main
"loop and its related processes.

4-1

HP-71 Software IDS - Detailed Design Description
Syster Control

4.1 Main Loop Flow Diagram

D D +
|Cold Start |
|Initialization|
Pm—————— to—————— +
|
e Y e T T +
| v |
| frmmmm e ————— + |
	Collapse	
	Statement	
	Buffer	
. tommmm—— +		
[
I v		
dmmmmm e +		
	Character	
	Editor	
T —— P —— +		
v		
. +		
	Edit Line	
	Into Command	
	Stack -	I
tom————— - +		
l v I		
fommm e c————en +		
tm————— tmm————— + i		
Execute		Parse Line
Statement		
Buffer	to—omeo o +	
R +	l	
"	I	
v		
"		
- bmm————— + / \ bom———— bom————— +
| Expand | no / \ yes | Edit into |
| Statement | ¢=mmmmmmm / Program \--------- »| Current |
| Buffer - \ Line? / | Progranm |
i + \ / T +
\ /
v

4-2

HP-71 Software IDS - Detailed Design Description
System Control

4.2 Algorithm

4,2.1 Cold Start

Enables interrupt system
Initialize CMOS test word
Initialize system RAM to zeroes
Reset display

Turn display on

Set display row drivers

Set display contrast nibble
Initialize DELAY parameters
Perform ColdStart configure
Create Statement Buffer
Initialize clock systenm

Check for low battery

Initialize flags and traps

Zero RAM betueen AVMEMS and RAMEND
Clear AUTO mode

Clear program running flag

Clear don’t continue flag
Initialize IS-TBL table
Initialize PRINT and DISP position and width
Initialize ENDLINE string

Put Coldstart message in display
Create Uorkfile

Create file information buffer
Initialize random number seed
Perform coldstart fast poll

4.2.2 Main Loop, Uakeup, Power Off, Deep Sleep

MAINLP; If MakeOff (f1MKOF) is set then
Set TurnOff (f1TINOF)
Clear MakeOff (f1MKOF)
Go to PUROFF
If TurnOff (f1TINOF) is set then
Go to PWROFF
If CALC mode (f1CALC) is set then
Give control back to CALC mode w/error
Fast Poll (pMNLP)
If in AUTO mode then
Display Line; goto Wakeup
MAINOS: If CALC mode (f1CALC) is set then

4-3

HP-71 Software IDS - Detailed Design Description
System Control

VAKEUP:

ATININ:

Give control back to CALC mode u/error
Clear program annunciator & status bit
Set Dormant flag (f1DORM)

If ATIN key has been pressed then

Go to ATININ
If Don’t Prompt flag (fINOPR) is set then

Go to WAKEUP
If scrolling needed (NEEDSC) then

Allow user to scroll
If ATIN key has been pressed then

Go to ATININ
Send prompt string consisting of

Cursor off, prompt character("»>"),

Cursor on
If ATIN key has been pressed then

Go to ATININ
Clear Don’t Continue flag (NoCont)
Collapse math stack
Collapse AVMEMS,OUTBS,SYSEN to CLCSIK
Clear Don’t Prompt flag (f1NOPR)
Collapse statement buffer (bSTMT)

Delete Immediate Execute Key buffer (bIEXKY)
Set "Dormant" flag (f1DORM)

Call Character Editor

If Immediate Execute Key then

Go to IEXKEY
If its not a cursor up or down Key then

Turn off command stack mode (f1CMDS)
Clear "Dormant" flag (f1DORM)

Clear Attention Flag so HPIL won’t abort
Move cursor to far right of display
Go to appropriate place to process key

Endline (LINEP)
Attention (ATTNIN)
RUN key (RUNK)
CONT key (CONTK)
SST key (SST)
Cursor Up (CURSUj)
Cursor Douwn (CURSD])
Cursor Top (CURST))

Cursor Bottom (CURSBj)
G-Attention (ATTNIN)
CALC Mode key (CALC)

Off key (PUROFF)
Command Stack (CMDSTK)

Flush key buffer

If line feed (LF) wasn’t last character sent to display
then Call FINLIN to terminate previous display line

Clear "need to scroll" flag (NOSCRL)

4-4

HP-71 Software IDS - Detailed Design Description
System Control

PUROFE:

DSLEEP:

DPS010:

DPS030
DPS035:

DPS040:

DPS200:

Clear AUTO mode
Go to MAINLP

Set f1PUDN

Call DPS010 to go to DSLEEP

If there is an external command buffer
Go to LINEP+ to process it

If there is an STARTUP buffer
Go to LINEP+ to process it

Go to MAINLP

Clear =f1PUDN flag (indicate that we were not
called from PUROEFF).

(Entry point for PUROFF),

If ON key doun
Set ATIN flag and goto DSP040

If display-clear flag clear then gotc DPS030
Send <cursor on>/CR/LF.

Send <cursor off>

Perform pouwer-douwn poll,

Set TURNOFF (f1TNOF) flag.

Clear MAKEOFF (f1MKOF) flag.

Turn off display.

Clear f-g shift status bits,

Clear ATNFLG and ATNDIS.

Turn off timer #3 (Louw battery check).

Activate KB row with ATIN key.

SHUTDN.

Configure.

Deallocate external command buffer (to give poll
handlers a chance to create one if uwe uere
called by PUROFEF).

Check clock system

If ATIN key woke us up, goto DPS200.

If program running and ON TIMER pending

Clear =f1TINOF; goto DPS200.

Perform pDSUNK poll (who woke us up?!?).

If turnoff flag set and ATNFLG clear then

goto DSP0O35

Flush key buffer.

Clear f1ALRM flag.

=pDSUKY poll

Passuord processing (does not require password if
password=null or =f1TNOF is clear).

If failed to unlock machine (password required but
not correctly given), goto DPS035.

AC/BAT check

RETURN

HP-71 Software IDS - Detailed Design Description
System Control

4.3 Interrupt Handling

The HP-71 CPU has a limited interrupt structure.

4.3.1 Causes of Interrupts

4,3.1.1 Keyboard Interrupts

An interrupt occurs whenever there have been no keys doun and a key
goes down. If there is already a key down then another Key going
down will not cause another interrupt. This type of interrupt is
maskable. Only key rous activated by the 1louer 4 bits of the
output register cause this type of interrupt. The ON-key does not
cause this type of interrupt.

4.3.1.2 ON-Key Interrupt

This type of interrupt occurs when the ON (Attention) key is
pressed. This interrupt is non-maskable. The ON-key receives
special treatement by the harduare and is scanned during each
instruction to check whether this key is doun. The content of the
output register is unimportant.

4.3.1.3 Module Pulled Interrupts

As a module is being plugged in or pulled out it will briefly
complete a connection which signals the CPU that this is happening.
The CPU latchs a status bit the indicates that a module has been
pulled. This type of interrupt is non-maskable.

4,3.1.4 Other Interrupts

The CPU input register bit 14 is available to all ports. An
interrupt occurs if some module pulls on this line. This type of
interrupt is closely related to keyboard interrupts. The systenm
interrupt routine has no provisions for processing this type of
interrupt except to allow interrupts to be vectored to a specified
address. This type of interrupt is maskable.

4,3.2 Interrupt Handling Algorithm
The system interrupt routine starts at address 0000F. The
interrupt routine saves the A,B,C,D0,Carry,Hex/Dec Mode and P

registers. It then checks for a module pulled interrupt. It then
checks if the CMOS test word is intact and performs a COLDSTART if

4-6

HP-71 Software IDS - Detailed Design Description
System Control

not, If the interrupt vector address is non-zero it jumps to it.
Otheruise it waits approximately 16 milliseconds to debounce the
keyboard and performs a keyscan. Uhen the keyscan is completed,
all the registers are restored and a return from interrupt is done.

Save C(U) in R4
Save R4(5-15) and DO in INTR4
Save A(U) in INTA
Save B(W) in INTB
Save 1 stack level, Pointerl Carry, and Mode in INTM
If this is a module pulled interrupt
goto MPI
If Interrupt Ignore Flag is set
Clear it and goto RESTORE
If CMOS test word is invalid
Perform Cold start
If VECTOR is non-zero
Jump to that address
Wait 8/512ths second to debounce keyboard
Call KEYSCN
RESTORE:
Restore Mode, Carry, Pointer and 1 Stack level
Restore B(U)
Restore A(U)
Restore DO
Restore C and R4
Return from interrupt

4.4 Statement Parse

4.4,1 Initiation
Statement parse is initiated in one of four uways.

Statement parse usually begins uwhen endline is entered from the
keyboard. The display buffer moves to the command stack, which
becomes the input buffer for parse (i.e., (INBS) is set to point to
the entry in the command stack).

Statement parse also begins when the computer turns on and an
external command buffer or a startup buffer exists; (INBS) is set
to point into that buffer,

Statement parse is also initiated when a direct execute key is

pressed; (INBS) is set to point at the key definition in the keys
file,

HP-71 Software IDS - Detailed Design Description
System Control

TRANSFORM also initiates statement parse.

In all cases, the output buffer 1is the destination of the internal
token stream as it is generated,

If the input line is a legal program line, the contents of the
output buffer is edited into the current program. Memory
associated with the output buffer is released.

If the input line is a Calculator BASIC statement (including
implied DISP) and computer is not performing a TRANSFORM, the
compiled line is moved into the statement buffer and executed. If
the computer is performing a TRANSFORM, an input line without a
line number will cause a transform failure.

4,4,1,1 External Invoking of Parse

The entry point, LNPEXT, allows pargse to be called externally and
have control returned to the caller. This entry point will set a
flag, f1RIN, to indicate external entry. Line parse will alter
status bits SO thru S11 and S13; these status bits should be saved
by the caller 1if necessary. The pointer INBS should point at the
start of the line to parse, and OUTBS should point to the start of
the output line. The input line must be terminated by a CR (ASCII
13) and be preceded by a 3 nibble line length (similar to buffer
format).

If the parser takes an abnormal exit, due to a parse error or
insufficient memory, control returns to the caller, with the error
in C(A) and the carry set. If the parse was successful, carry is
clear.

On return, f1RIN should be cleared by the caller. See the LINEP
routine for further information.

4.4,2 Statement Parse Algorithm

Algorithm:

Entry point for externally invoking parse (LNPEXT)
saves the caller’s return stack level in S-R0-2
and sets the system flag f1RIN., f1RIN flags that
all error exits (including MEMERR) will return tqQ
the caller with carry set and the error number in
C(A). Goto A.

NOTE: Anyone using LNPEXT entry point MUST clear
f1RIN as soon as it returns to thenm!

4-8

HP-71 Softuare IDS - Detailed Design Description
System Control

LINEP: (normal statement parse entry point)

Copy Display Buffer to Command Stack (MAKEBF)
Set INBS to start of input line in command stack
Send Carriage Return & Line Feed (CRLFOF)

(so next character will clear display buffer)

Set OUTBS to AVMEMS (Collapses Output buffer)

Point D1 to start of input line, using INBS

Clear S0-S11, S13

Set D(A) = End of Available Memory, using AVMEME
DO = OUTBS (Output buffer start)

Call Block 1

Retokenize lexeme
If line#
Set S5; Decrement DO (delete statement
length byte at buffer start); Output line#
Call Block 2
If tEOL
If externally invoked (f1RTN set)
THEN error
ELSE clear AUTO flag; delete line
Decrement DO
Call Block 1.
Retokenize.

If Begin BASIC command (S3=1)
THEN goto 1.
ELSE If System Command (S3=0,S0=1)
THEN error
If !
THEN parse remark; goto M
ELSE error,
If externally invoked (f1RIN set)
THEN error;
Clear AUTIO flag
If tEOL (rmull line)
THEN exit parse
ELSE goto F.

BLOCK 1:
Save DO (statement length byte) in INADDR;
Increment DO; Clear RESTART flag (S-R1-3);
Clear Err# (S-R1-0); Call NTOKEN;
Set RESTART flag if XWORD or XFN &
save RESTART address (S-R1-2).
Save contents of LEXPTR (position of D1
before NTOKEN call) in STMIDO - will be
needed to restore input pointer for RESTART.
Clear Middle of IF flag (S9).

4-9

HP-71 Software 1DS - Detailed Design Description
Systea Control

Entry point for variable or tEN after THEN/ELSE:

E: If variable or EN:
set implied LET error flag.
If no line# on line
Clear AUTO flag
F: If implied LET errors (S10 set)
Restore D1,D0 from R3; Clear S10
If not in Middle of IF (S9=0=>try Implied DISP)
THEN try implied DISP
ELSE Decrement DO 4 nibbles (tEXTIF & stmt len byte);
Recover old INADDR from S-R0-0; Call GOSUBP;
Goto K
If looking at first lexeme on line
If line# followed by !
set S5; output line#; save DO (location of
statement length byte) in INADDR; increment
DO; Parse remark; goto M
If not a terminator (eg not tEOL,@,!,tELSE)
If legal implied DISP statement followed by
a terminator
If no line number on line
Clear AUTO flag; goto K:
Restore D1,D0; return
END OF BLOCK 1

*¥%Block 2 only returns if a label is not found***

BLOCK 2:

Save DO (position of statement length byte) in
INADDR; increment DO
If quote

Set appropriate flag(s);

Step over it; Call FILEP+

If legal

THEN If matching closing quote
G: THEN if colon follous
THEN LEGAL LABEL;
Output tLBLST & label
If tEOL follous
THEN goto N
ELSE goto L (parse as @)
ELSE RESPTR; Return
ELSE RESPTR; Return
ELSE RESPTR; Return

If 1st character is letter

RESPIR; GNXTCR; FILEP1; Goto G

END OF BLOCK 2

4-10

HP-71 Software IDS - Detailed Design Description
System Control

H: If not Calculator BASIC (S0=0)
THEN If begin BASIC (S3=1)
THEN error
ELSE goto D.
I: If in IF statement (S-R0-3 nonzero)
J: If not legal after THEN/ELSE (S2=0)
THEN error
If pending THEN (S6=1)
If token is IF token
THEN error

If XUORD
THEN Output 3-byte token
ELSE Output 1-byte token
Calculate Parse address
Clear flags (S0,S8)
Gosub to .Parse routine (CRGIMP)
If Middle of IF return (Carry Set)
THEN Extended IF token already output;
INADDR points to following byte;
DO is pointing past that byte
S9 is set (middle of IF flag)
S-R0-3 is nonzero (IF in progress)
If S5=1
THEN goto C
ELSE goto H

K: Normal stmt return (carry clr)
Get Next Token
If ELSE
If no pending THEN (S6=0)
THEN error
ELSE Clear S6; Decr DO; Output t@;
Call STMILN, UPDIN+; COutput tELSE
Call ELSEP; goto K
Check legal stmt terminators (@,!,EOL)
Clear S7
If @ (Multi-statement line)
L: THEN Set S7, Output t@
ELSE If ! (Remark)
THEN Output t!, Remark; goto M
ELSE If EOL
M: THEN Output tEOL
ELSE Error Exit --> Excessive Chars
N: Output terminator
Clear S10 (Implied LET error flag)
Calculate & urite out statement length
If multi-statement line
If S5-1
THEN Call Block 2; Goto B
ELSE Call Block 1; Goto H

4-11

HP-T1 Software 1DS - Detajled Design Description
Systen Control

Set AVMEMS to DO
If line# found (S5=1)
If externally invoked (f1RIN set)
THEN exit with carry clear
ELSE Edit line into program memory (PEDIT)
Return to Main Loop

Calculate output buffer length, move to I/0 buffer
area; call SYCOLL (Resets AVMEMS,OUTBS to SYSEN)
Execute calculator BASIC Stmt (RUNK+)

See the portion of the algorithm handled in IFP
in JP&PR3

NOTES: Line parse only special checks for external invoking
in 4 distinct places.
1) eol, 2) line# followed by eol, 3) parse error,
4) correctly parsed line about to be edited into
program memory. :

Implied DISP is not legal immediately after THEN/ELSE.
Implied DISP is not legal during TRANSFORM.

4.4.3 Errors and Restart

Of ten when a keyword parse fails, it is because the keyword was not
initially recognized. For example: Assume there is a FORM keyword
on a plug-in LEX file; FORM takes a single string expression as a
mandatory parameter. Further assume the user types in: >10 FORM=1
TO 5

FORM parse fails; a mechanism exists wherein the lexical analyzer
is restarted to find FOR parse. This capability is set up in the
main parse driver, and implemented in the parse error handler.

4.,4,4 Restart Algorithm

Algorithnm:
If 54=0
THEN RESPTR
If RESTART flag (S-R1-3) set
THEN goto RESTAR;
ELSE If previously restarted (S-R1-0 [err#] #0)
THEN Restore D1 to original error position
using S-R1-1; Set DO from S-R1-0;
If Implied LET error (S10=1)
Restore D1,D0 from R3; Clear S10;
If not in middle of IF (S9=0)

4-12

HP-71 Software IDS - Detailed Design Description
System Control

THEN try implied DISP
ELSE Decrement DO 4 nibbles
(over tEXTIF & stmt length byte);
Recover old INADDR from S-R0-0;
Call GOSUBP;
Handle as error.

4.4,5 Parse Routines

For further details on parse routines and uwriting parse routines
see the

4,5 Statement Decompile

4.5.1 Initiation

Statement decompile is called as a subroutine by DCPLIN uhenever a
BASIC program line is to be displayed for editing. DCPLIN is
called by AUTO, FEICH, cursor up, cursor doun, cursor top and
cursor bottom, LIST and single step (SST) invoke statement
decompile directly. The two "standard” entry points are: 1)
LDCOMP, which updates CURRL (Current Line) and decompiles the
entire line, and 2) LDCM10 (used by LIST), which decompiles the
entire 1line without updating CURRL. The "single step" entry
(LDSST1/LDSST2) decompiles only one statement,

4.5.1.1 External Invoking of Decompile

Decompile can be externally invoked, using the LDCEXT entry. This
entry sets the f1RIN flag, so control returns to the caller in all
cases, even if an error occurs. if this error occured. The flag,

f1RIN, MUST be cleared by the caller on return,

TRANSFORM utilizes this entry point.

4.5,2 Algorithm

LDCEXT entry: (external invoking of decompile - used by TRANSFORM)
Saves caller’s return address in S-R0-2; Sets f1RIN so in case
of MEMERR will still return. Goto LDCM10.

LDCOMP entry: (cursor up/cursor douwn)

Update Current Line;
LDCM10 entry: (LIST)

4-13

HP-71 Software IDS - Detailed Design Description
Systen Control

Clear SST (S1) flag;

LIST/SST entry:
D(A)<--AVMEME; DO<--OUTBS; Decompile Line#;
Save desired cursor position in LDCSPC (pointed to
by DO);

A: Save address of line length byte (pointed to by D1)
in INADDR;

SST entry for multi-statement line:
Step D1 over statement length byte; Clear S8, S9;
If label declaration (tLBLST)
Step D1 over tLBLST and 5 nibble chain length;
Output quote; Call ASCICK; Output quote & colon;
If at tEOL
THEN goto OUTEOL;
ELSE goto A.
If variable (<6Aa)
THEN goto LETDC.
If user defined function (tEN)
THEN goto ENDC,
If remark (t!)
THEN goto !DC.
Call GTEXTI;
If text not found
THEN output 'XWORD’, followed by ID#;
Use INADDR to get to end of statement;
Goto OUTELA;
Output text; Read in 1st 6 nibbles of tokenized
line into A; Copy A into C; Jump to decompile address.

4.5.3 Decompile Routines

For further details on decompile routines and writing decompile
routines, see the "Statement Parse, Decompile, and Execute"
chapter.

4.6 Program Edit

At edit time, all program execution stacks are collapsed. The
FOR/NEXT and GOSUB/RETURN stacks are collapsed. The CALL stack is
also collapsed. Only one set of variables exists.

4-14

HP-71 Software IDS - Detailed Design Description
System Control

LOuU D ettt +
| Systen |
| RAM |
e — e - +
| Variable Pointers |
D ettt +
| Display Buffer l
P +
| Configuration |

MAINST=-> #======--m=mmmmmmmmmmme .
| Files |
CURRST--> #----=-o-mommommccno I
|
PRQMST--> : :
PRGMEN--> | |
CURREN--> e — !
|
(I0BFST) | v |
MAINEN--> +-c-c-ccccomcmcm e +
| Buffer List |
INBS ===) #=mmmm==mmmmmcmoemmmmen .
| Input Buffer I
OUTBS ==> #====--m-m=mmommommmmen "
| Output Buffer |
CLCBER--)> #=m==m==momommmmcmmmee .
| Command Stack |
CLCSTK--> | |
AVMEMS--> #===mm===mmmmommmmmoeme ‘
| Available Memory | |
| v |
| |
AVMEME | |
ACTIVE--)> #==m-mmmocmmoomommeen v
| Variables l
RAMEND--> ¢----coooooomcmmoeaeo +
HIGH

4,6.1 Global Assumptions

If PEDITD entry, S8 set indicates the 1line to PEDIT is mnull, i.e
the line number followed by EOL.

°

4,6.2 Program Edit Algorithm
PEDIT: Clear null line flag (S8);

PEDITD: 1If current file not BASIC or if protected
THEN error;

4-15

HP-71 Software IDS - Detailed Design Description
System Control

PEDITM: Zero out all GOTO/GOSUB links;
Update current line;
Collapse stacks;
If null line
THEN collapse output buffer;
If line exists
THEN set R3 to line length
ELSE set R3 to 0;
Call RPLLIN

4-16

HP-71 Software IDS - Detailed Design Description
The BASIC Interpreter

o e e e e . = o - = ———

|
| THE BASIC INTERPRETER

o - - -~ = - - -~ -

=
o

5.1 BASIC Interpreter

5.2 Entering the BASIC Interpreter

The BASIC interpreter is entered through two entry points: BSCEXC
and BSCEX2. The first entry point is used when executing from the
Keyboard, The second entry point allows the "Don’t Continue"
(NoCont) flag to be set, indicating that execution will halt after
the next statement 1is executed. This entry point is used for
Single Step execution, RUN, CONT and CHAIN.

The global flag, PgmRun (S13), is set before entry if a progranm is
executing,

A Fast Poll (pBSCEN) is sent out when entering the BASIC
interpreter.

The BASIC interpreter executes a statement at a time, not an entire
line. The current BASIC program counter (PCADDR) is updated to the
statement length byte of the statement to be executed. Status
(S0-11) are cleared. If the begin token of the statement is a
BASIC statement token, the execution address is computed and jumped
to. Otheruwise, the statement is assumed to be an Implied LET
statement and Assignment Execute is called as a subroutine.

5.3 Reentering the BASIC Interpreter

Most statements return to the BASIC Interpreter through a direct
jump to NXTSIM. This routine computes the address of the next
statement, using the current program counter address (PCADDR) and
the corresponding statement length. NXTSTM jumps directly to back
into the BASIC Loop (at RUNRIN), with the data pointer (DO)
positioned at the next statement to execute. This mechanism uas
developed to allow execution routines an additional subroutine

5-1

HP-71 Software IDS - Detailed Design Description
The BASIC Interpreter

level, rather than using a hardware return stack level to jump to
each routine and having them do a machine code ’RIN’.

Statements that change program flow, such as GOTO, GOSUB, CALL, END
SuB, and FN, jump directly back to the BASIC Loop Ulth the data
poxnter (DO) set at the appropriate "next statement" address.

Error Exits from BASIC (through MFERR or BSERR) return to RUNRT1
vith the data pointer (DO) at the statement in error

RUNRT1 explicitly clears sENDx, a status to indicate an END
statement execute, allowing execution routines to use this status
internally. NXTSIM explicitly clears this flag.

The Math Stack is collapsed at the end of every statement execute,

Since ExpreSSLOn Execute (EXPEXC) does not collapse the Math Stack,

this clean up is necessary between statements and eliminates the
need for individual execution routines to do it.

Exceptions are checked at the end of every statement., See the
section below on Exception Handling.

5.4 Exiting the BASIC Interpreter

A global flag, NoCont (S14), indicates if program or statement
execution is Not to Contimue. This flag is set several ways:
Single Step sets NoCont before the “"continue" statement is
executed; PAUSE, Ending or Stopping a Program, Error Exit, hitting
the ATIN Key, GOIO from the keyboard, also set NoCont.
RETURN ,END,ENDSUB,ENDDEF executed from the keyboard and returning
to program execution set NoCont.

The ERROR exit flag (sERROR) is set when the error message handler
jumps to ERRRIN. In all other returns, this flag is cleared.

If execution is to continue, the BASIC Interpreter continues by
executing the next statement. If execution is to stop several
things are done. The program anrunciator is cleared. The filetype
of the current file 1is checked. If the file is non BASIC or a
program is not running, all open file buffers are flushed, unless
an error ocurred (sERROR). The Fast Poll: pBSCex is issued.

Non BASIC file execution that is interrupted due to an error exit
are not "“SUSPended" like a BASIC program. Responding to the pBSCex
poll can change this.

If the current program is BASIC and the current statement is not an
END or STOP statement (sENDx=0), the continue address (CNTADR) is

5-2

HP-71 Software IDS - Detailed Design Description
The BASIC Interpreter

set at the current DO and the SUSP annunciator is 1lit,

The current DO is the "next statement” to execute if execution is
continued. In the case of Errors, the "next statement” is the
statement generating the error, IF/THEN execution could pause with
the "next statement" at the ELSE clause, If the next statement
execution token is "ELSE", a statement skip is done to position the
next statement execution past the ELSE clause. For END statement
execution, there is no next statement to execute. The continue
address has been zeroed and must not be updated.

The current 1line is computed and updated, to reflect where the
program halted.

Statement execution (from the keyboard/statement buffer) halts when
End of Line is reached. UWhen beginning to execute the "next
statement” of a program, if the next statement address is past the
current program end, an END statement is executed,

Except for errors, all exits from the BASIC Interpreter flush open
file buffers. This can not be done for an error because an error
generated from attempting to flush file buffers would cause an
infinite loop. All exits from the BASIC Interpreter issue a Fast
Poll (pBSCex) when exiting the BASIC Interpreter and clear the
NoCont flag. Control jumps to the Main Loop.

5.5 Exception Handling

Except in the case of an error, execution exceptions are checked at
the end of every statement. Exception checking is skipped for
errors so timer expiration execution will not continue after an
error message is generated.

A global status flag, Except (S12), indicates an exception has
occurred. This flag can be set at various times during statement
execution, to indicate an exception has occured and service may be
required at the end of statement execution.

An exception is a softuware interrupt--a condition which will be
serviced after execution of the current statement. An exception is
ALUAYS set by software, although the software may be setting it
because of a harduare condition. The computer’s procedure for
checking exceptions is as follous:

If no exceptions have occured (Except is clear), a harduare
service request 1is 1issued (SREQ?). If no harduare service
request results, timers are checked for expiration. If no timers
expired, there are no exceptions to service.

5-3

HP-71 Software IDS - Detailed Design Description
The BASIC Interpreter

If an exception (Except is set) or harduare service request
occurs, CKSREQ is called. This routine, explained elseuwhere,
checks for harduare service requests which can be handled by the
mainframe: expiration of any of the three countdoun timers,
Then, if a harduare service request is still pending OR the
sof tuare exception flag (Except--S12) is set, a pSREQ poll is
issued. This is the opportunity for other device-handling
sof tuare (HPIL, for example) to do whatever it needs to do. This
is also an important spot for any external clock system (pocket
secretary, instrument controller, etc.) to schedule alarms.

After CKSREQ, if the exception flag is set, it is cleared and a
PEXCPT poll 1s issued. Unlike pSREQ, which may occur betueen or
during statements, pEXCPT occurs at a well-defined spot, and
therefore allous more latitude in what can be done during poll
handling. See the poll documentation header for more
information. The ATIN/ON Key is checked after this poll.
If a program is running when exceptions are checked, Pending Alarm
RAM is checked by calling ALMSRV to see if one of the three BASIC
timers has expired. If a timer has expired and the associated ON
TIMER address 1is within the current program scope, the ON TIMER
code is executed. Control returns to the BASIC Loop through normal
statement execution return at RUNRIN/RUNRT1.

5.5.1 Servicing Clock System Exceptions

Exception handling is one of the prime times to service the clock
systen. The system provides an external alarm "slot" for use by
all applications which need to schedule alarmg. The pSREQ and
PEXCPT polls provide an opportunity to schedule alarms and to SET
UP to process alarms. Although alarms cannot actually be processed
during these polls (except for non-disruptive events, like
beeping), it is possible to set up a command buffer or some such
mechanism for later processing.

See the "Clock System" chapter for details about the clock systen.
5.5.2 Algorithm

BSCEXC: Clear No Continue of Program flag (":oCont)
BSCEX2: Place current DO into RO
Fast poll on entering BASIC interpreter (pBSCen)
If not running (not PgmRun)
goto BSCX+
BSCXLP: Read & Move past EOL |
If EOL and not running
go exit BASIC (goto BSCEXT)

5-4

HP-71 Softuware IDS - Detailed Design Description
The BASIC Interpreter

BSCX+:

If (multi-statement line)

go Update PC address

If End of current program
go execute END statement

Skip line

Save addr statement length byte

Skip statement length byte

Clear status (S0-S11)

Read Begin BASIC token

If not Begin BASIC token range
Call Assignment Execute
Skip to next statement

else
Move past BASIC token
Calculate Execution addr
Jump to Execution routine

(goto BSCX+)

(PCADDR)

(BASICs)

(NXTSTM)

(EXCADR)

Statement Execute Return: (from NXTSTM or directly)

RUNRT1:
RUNRTN:
ERRRTN:

4;

Clear END execute flag (sENDx)
Clear Error flag (sERROR)
Collaspe Math Stack
If ERROR
Skip exception checking (goto 6)
If no exceptions (Except=0)
If no harduare service request
If any pending alarm set (PNDALM)
Save DO on stack
go Process ‘timers (goto 3)
go continue (goto 6)
Save D0 on stack
Check Service requests (CKSREQ)
If no exceptions (Except=0)
go Restore DO and continue (goto 5)
Clear Exception Flag (Except)
Fast Poll on Exception (pExcpt)
Restore low status from DSPSTA (USRSTA)
If ATIN Key hit (CKON)
Set NoCont flag (S14)

If Program running
Load mask to check Timer bits
Read Pending Alarm field
If Timer expired (Bit 0]1]2 of PNDALM)
Get Timer Address
If non-zero Timer address
Verify address in prgm scope
If within scope
Clear timer bit in PNDALM
Enable another Timer to be serviced
C <-- ON TIMER address
Set ONTIMER statement flag

(SCOPCK)

5-5

HP-71 Softuware IDS - Detailed Design Description
The BASIC Interpreter

go process ON TIMER statement
go Check if any other Timers off (goto 4)
5: Restore DO from RO

Clear Error occured flag (SERROR)
6: If Continue
g0 process next of statement (BSCXLP)
else
BSCEXT: Clear PRGM annunciator (Sf1gCp)
Read filetype (RDCHD+)
If non-BASIC file (BASCHK)
go exit BASIC (goto BSCEX+)
If not running
go exit BASIC (goto BSCEX+)
else
If not END/STOP execute (8ENDx)
If ELSE

Skip to End of Line
Update Continue Address
Set SUSP Annunc/Flag
Compute & update current line
BSCEX+:
If not an error
Flush all open files

Fast Poll on Exiting BASIC interp (pBSCex)
Clear Don’t Continue flag
golong MAIN Loop (MAINLP)

5.6 Immediate Mode

Uhenever a line without a 1line number preceding it is legally
parsed, that line is executed immediately.

The BASIC Interpreter is entered at BSCEXC. The program running
flag (PgmRun) is clear.

5.6.1 Statement Buffer

An immediate execute line is moved from the output buffer into the
statement buffer before being executed. The statement buffer is
aluays the first buffer in the Buffer chain, ensuing that only
movement of mainframe files affects the value of the BASIC program
counter,

HP-71 Softuare IDS - Detailed Design Description
The BASIC Interpreter

5.7 Program Execution

Program Execution begins through the RUN Key, RUN statement, CHAIN
statement, CONT Key, CONT statement and the SST Key.

Before running a program, several things are done. If a filename
is specified in the RUN statement, the Current File pointers are
changed to point to the file. In the case of CHAIN, the current
file is purged,

If the filetype is neither BASIC nor binary, a poll is issued
(pRUNft) allowing a Lex File to take over the RUN/CONT/CHAIN
statement,

Except for contimuing or single stepping at a valid continue
address, program scope is recomputed and reset. All 1labels and
user defined functions are chained. In case any of the direct
execute keys (RUN, CONT, SST) were hit within Auto Mode, AUTO Mode
is cleared.

If the progran file is empty, control returns to the Main Loop.

In the case of RUN or CHAIN, all BASIC stacks are collapsed. For
RUN, the Assign Table and all FIB entries are deleted.

For CONT and SST, if the continue address (CNTADR) is non-zero,
execution is continued at this address. Othervise, CONT and SST
begin execution at the first statement of the program, after
collapsing stacks, deleting the Assign Table, and deleting all FIB
entries (acts as a RUN). A CONT execution collapses the Statement
Buffer to prevent a subsequent "Return to Keyboard" in a paused
program from returning incorrectly to the Statement Buffer
containing “CONT".

The suspend annunciator is cleared, the program running flag is
set, along with the PRGM annunciator.

If a binary program is to be run, a poll is issued (pRUNnB),
indicating beginning execution of a non-BASIC file. The binary
file type is passed. On return from the poll, the binary code is
branched to by pushing its address on the hardware return stack and
doing a machine code ’RTIN’, The binary program exits by branching
to the EXITRN entry point in the RUN statement code; this clears
flags and exits through BASIC,.

If a BASIC program is to be run, the BASIC interpreter is entered
at BSCEX2.

HP-71 Software IDS - Detailed Design Description
The BASIC Interpreter

5.8 TRACE Mode

TRACE mode can be used to help to debug a program and is entered
and exited by executing the TRACE statement.

The nibble TRACEM in the system RAM indicates the trace mode:
TRACEM Meaning

0 Not in trace mode at all.

2 Only in trace flow mode

4 Trace all variable assigmmemts

6 In both trace flow and trace variables

The status bit 15 is used as trace flag. Uhen TRACEM = 0, S15= 0.
When TRACEM # 0, S15= 1. Trace mode is a global status.

Variable assignment will be traced when run through the STORE entry
point at the assigmment routine. S-R1-2 in statement scratch RAM
must contain the address of variable token in the assigmment
statement. If the the content of the S-R1-2 is zero, the
agsignment ¥ill not be traced.

5.9 Global Assumptions

Several flags have global meaning during BASIC Interpreter
execution:

Except (S12) Exception has occured
PgmRun (S13) Program Running

NoCont (S14) No Continue of execution
Trace (S15) TRACE Mode active

On entering the BASIC Interpreter: PgmRun (S13) is set if program
execution is to begin, NoCont (S14) is set if execution is to halt
after the next statement is executed.

On reentering the BASIC Interpreter: NoCont (S14) is set if
execution is to halt, DO points at "next statement” to execute (at
the EOL or @ of the statement just executed), SENDx is clear,
unless an END or SIOP statement. NXISTM and RUNRT1 will clear this
flag.

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

e —r e
|

| LANGUAGE EXTENSION AND BINARY FILES

I

Pt e e, e —————————— - -

2
.

This chapter discusses the Language Extension (LEX) and Binary
(BIN) file types, which are useful in writing and distributing
software for the HP-71.

The LEX file type is the more powerful of the two, for it extends
the HP-71 BASIC 1language. The operating systenm automatically
incorporates each LEX file in memory into the lexical scanning
process of the interpreter. In this way the LEX file may add
statements, functions, and other keywords to the HP-71 operating
system. A LEX file may also implement sophisticated capabilities
by responding to the various polls issued by the operating system.

The BIN file type may contain a main program written in HP-71
assembly language. A binary main program can be invoked directly
through the RUN and CALL statements.

The BIN file type may contain one or more subprograms in machine
language, as opposed to subprograms stored in a BASIC file, which
are stored in tokenized form and are interpreted rather than
executed directly by the CPU. BIN file subprograms can be CALLed
from BASIC in the same manner as BASIC subprograms, and are used
when the higher speed of assembly language is needed, or special

access to system resources is required and not accessible through
BASIC.

6.1 LEX File Structure

6-1

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Flles

After the file header is the follouing information:
LEX ID 1 byte

Louwest Token # 1 byte

Highest Token # 1 byte

Next LEX Table Link 5 nibbles

Speed Table Exists? 1 nibble \

Optional Speed Table 78 nibbles > 1 nibble if no

Speed Table Exists? 1 nibble / SPEED table

TEXT Table Offset 4 nibbles

Message Table Offset 4 nibbles

POLL Handler Offset 5 nibbles

MAIN Table 9 * # keywords (nibbles)

TEXT Table 3 * # keywords + 2 * total # chars + 3

(nibbles)

Message Table

Poll Handler Code
Execution Code

Optional Next LEX Table

LEX ID: 1 byte This identifies the LEX file. An XEN (external
function) or XUORD (any other external keyword) is completely
specified by the LEX ID and the TOKEN#; these two bytes are
included in the tokenization of an XWORD or XFN, LEX IDs are
assigned according to a procedure outlined in the "HP-71 Resource

Allocation" chapter.
LOUVEST TOKEN#: 1 byte Lowest token number in this LEX table.
HIGHEST TOKEN#: 1 byte Highest token mumber in this LEX table.

NEXT LEXTABLE LINK: 5 nibbles Offset to another LEX table, allowing
tables to be linked together within one file for easy
distribution. 00000 if no link.

SPEED TABLE: 1 nibble or 80 nibbles Ina LEX file with many
keywords, a speed table is used to speed up searching of the text
table; for each letter, A-Z, is an offset into the text table,
pointing to the keywords beginning with that letter.

In a LEX file with feu keywords, the speed table is omitted to
save space. If the speed table is to be omitted, the single
nibble "F" is placed here.

If the speed table is to be included, the format is as follous
(shown here in HP-71 Assembler input format):

HP-71 Softuare IDS - Detailed Design Description
Language Extension and Binary Files

NIBHEX O

CON(3) <aaa>
CON(3) <bbb>
CON(3) <ccec»
CON(3) «<ddd»
CON(3) <eee>
CON(3) <fff>
CON(3) <«ggg>
CON(3) <nhhh>
CON(3) «iii»
CON(3) <ijji>
CON(3) <kkk>
CON(3) <111»
CON(3) <mmm>
CON(3) <nnn>
CON(3) <oo00>
CON(3) <ppp>
CON(3) <qqq>
CON(3) «<rrr»
CON(3) <sss»
CON(3) <ttt>
CON(3) <uuuw>
CON(3) <vvv>
CON(3) <uwuuw>
CON(3) <xxx>
CON(3) «<yyy»>
CON(3) <zzz>
NIBHEX 0

The 0-nibble at either end serves to identify the presence of the
speed table uwhether the code is 1looking for it from above or
below. (Similarly, the single F-nibble identifies the absence of
the speed table whether the code is 1looking for it from above or
belou.)

The quantities <aaa>, <bbb>, <ccc>, et cetera are offsets into
the text table., The text table is maintained in approximately
alphabetized form (see TEXT TABLE below for more detail), and the
3-nibble quantities in the speed table identify the posxtlon of
each alphabetic-character’s first entry RELATIVE to the start of
the text table.

EXAMPLE;
If the first entry starting with the letter "P" is at address
126 (de01mal) relative to the start of the text table, the line

appearing as "CON(3) <ppp>" above would actually be "CON(3)
126",

If there are no keyuwords beginning with a partlcular letter, the
3-nibble offset for that letter should be the size of the entlre

6-3

HP-71 Software IDS - Detalled Design Description
Language Extension and Binary Files

text table.

EXAMPLE: If the text table is 459 (decimal) nibbles long and
there are no keywords beginning with Q, the line appearing as
“"CON(3) <qqq>" above would actually be "CON(3) 459".

TEXT TABLE OFFSET: 4 nibbles Offset from current location to the
second nibble of the text table (start of first text string). If
the beginning of the text table is labeled "TxIbSt", an
assembly-language psuedo-op to properly fill this location would
be:

CON(4) (T®TbBSt)+1-(*)

MESSAGE TABLE OFFSET: 4 nibbles Offset from current location to the
beginning of the message tables. The message table must be
structured to work with the message-handling system described in
the "Message Handling" chapter. If there is no message table,
the value should be zero.

POLL HANDLER OFFSET: 5 nibbles Offset from current location to the
poll handler for this LEX file. If there is no poll handler,
this should point to an RINSXM instruction. Since the RINSXM
instruction is a "00", setting this field to "00000" will point
it at itself, which will conveniently turn out to be an RINSXM
instruction.

MAIN TABLE: 9 * (# of keywords) nibbles The Main Table contains
information needed to run or to decompile every token in the LEX
file. The entries are in token : number order. The first table
entry corresponds to the louwest token # in the LEX file, the
second table entry corresponds to the next token #, et cetera.

Each main table entry takes 9 nibbles and is formatted as
follous:

TEXT TABLE OFFSET: 3 nibbles This is the position of the
corresponding text in the text table for this keyword,
relative to the start of the text table. This points at the
START of the text table entry--the nibble count, which is one
nibble before the start of the actual text (see description
of TEXT table belou).

EXECUTION ADDRESS: 5 nibbles Offset relative to current
location of start of execution code for this keyword. The
corrsponding parse address for the token is 5 nibbles above
the start of the execution code. The corresponding decompile
address for the token is 10 nibbles above the start of the
execution code,

CHARACTERIZATION NIBBLE: 1 nibble The characterization nibble

6-4

HP-71 Software IDS ~ Detailed Design Description
Language Extension and Binary Files

categorizes a token during statement parse. If the keyuword
is a function (string or numeric), this nibble is aluways a
hex "F". Otheruise, the four bits of this nibble mean the
follouwing:

bit 0: Calculator BASIC (Legal from the keyboard)
bit 1: 0 (unused)

bit 2: Legal after THEN/ELSE

bit 3: Begin BASIC (Programmable)

Some examples follou:

For keywords uwhich are programmable, legal after THEN/ELSE,
and legally executed from the keyboard, the characterization
nibble is "D"; an example is the DISP keyword.

For keywords which are used strictly as intermediate keywords
(such as PORT in the mainframe), the characterization nibble
is "0".

Non-programmable commands (like FREE and EDIT) which are
legal after THEN/ELSE should have a characterization nibble
of "5"; note that a keyword which is Calculator BASIC, but
not Begin BASIC, is interpreted as non-programmable.

On the other hand, a keyword which is Begin BASIC but not
Calculator BASIC, is not executable from the Kkeyboard, but
only makes sense within the context of a program; the DATA
keyword, which has a characterization of "8", is an example
of such a keyuord.

In all cases, bit 1 of the characterization is unused.

TEXT TABLE: 3*(# of keywords) +2 * (total # chars) + 3 nibbles
Strictly speaking, the text table does not have to reside
immediately after the main table. It can reside anywhere since
its address is specified in the header., The text table contains
the text representation of all keywords in the LEX file, and is
used by the parse and the decompile drivers.

Entries in the Text Table are in alphabetical order with one
important difference: a shorter keyword which comprises the first
part of a longer keyword, occurg AFTER the longer keyword. In
other words, the Kkeyword "ABC" must appear after the keyuword
“ABCD". If this is not done, the parse driver (which scans the
text table linearly from beginning to end) will never find the
keyword “ABCD" because it will match on the keyword "ABC" first.
(Equivalently, for purposes of sorting the keyword list, the
keywor?s can be considered to be padded with "FF's out to eight
bytes.

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

The entry for each keyuord in the text table has the following
format:

(SIZE OF TEXT - 1) IN NIBS: 1 nibble If the text is 2 chars (4
nibs), this field = “3", If the text is 3 chars (6 nibs),
this field = "5". And so on, Needless to say, the maximum
value for this field is "F", implying that the maximum length
of a keyword is 8 characters.

TEXT: 2-8 bytes (as specified above) Text of keyword in ASCII,
Note that keywords must be at least tuo characters long,
since one character keyuwords would conflict with variable
names,

TOKEN #: 1 byte
Token # of this keyuword.

The Text Table is terminated with the nibbles “1FF".

EVERYTHING ELSE: This ends the list of required components of a LEX
file. All that is needed nov is the following:

1) MESSAGE TABLE If there is a message table for this LEX file,
its address is specified in the header. The message table
must conform to the standard message table format; the first
byte contains the lowest message#, and the second byte
contains the highest message#.

Unen calling the mainframe message routines (BSERR and
MFURN), a message within thig table is specified by the LEX
ID# in C[3-2] and the message number in C[B].

See the "Message Handling" chapter for further details.

2) POLL HANDLER Offset to the poll handler’s address is
gpecified in the header. See the section on polling for
further details.

3) STATEMENT/COMMAND/FUNCTION EXECUTION CODE The execution code
of the statement, command, or function, Statement execution
entry points are preceded by decompile and parse addresses;
non-programmble statement execution entry points are preceded
by a parse address only; function erecution eutry points are
preceded by a parameter count and description.

6.1.1 How it All Uorks
The SPEED Table, MAIN table and TEXT table are the tools with which

the BASIC language is extended. The mainframe keeps a directory of
all the LEX files in the machine, and refers to this directory at

6-6

HP-71 Softuare IDS - Detailed Design Description
Language Extension and Binary Files

parse, decompile, and execution time, See the LEX Entry Buffer
section under the "Table Formats" chapter for details,

6.1,1.1 Parsing

Uhen the lexical analyzer (NTOKEN) is trying to tokenize text, it
searches the LEX file text tables for a matching string. If there
are a lot of keywords in the LEX file, the presence of an optional
speed table speeds this searching,

Once a matching string has been found, the lexical analyzer reads
the token number associated with the keyword. This token number
serves as an index into the main table. The main table provides
the execution address.

For a statement, the code at the execution address is immediately
preceded by a 5 nibble offset to the corresponding parse routine,
so that the parse driver is able to find the parse routine for a
particular statement,

For a function, the execution code is immediately preceded by the
parameter count and parameter descriptors; these are used by the
expression parser to parse the function,

6.1.1.2 Decompiling

WUhen decompiling, the decompile driver has a token number and a LEX
ID number. The LEX ID number and token number locate the proper
LEX file; the relative token number serves as an index into the
main table, From the main table the decompile driver fetches the
following:

1) The 1location of the text table entry for the text of the
keyword, and

2) The execution address. For a statement, ten nibbles prior to
the execution address is the five nibble offset to the
corresponding decompile routine; this is used by the decompile
driver to invoke the decompile routine for a particular
statement.

For a function, the expression decompiler uses the parameter
count and parameter descriptors which immediately precede the
execution address to decompile the function.

6.1.1.3 Execution
Uhen executing an external statement or function, the LEX ID and
token number are used to locate the proper LEX file. The relative

token numbers serves as an index 1into the Main table. The
execution address is calculated and jumped to, beginning execution

6-7

HP-71 Software 1DS - Detalled Design Description
Language Extension and Binary Files

of the keyword.,

6.1.2 Houw to Create a LEX File

The HP-71 provides no mechanism to create a LEX file other than to
copy it from an external device or to POKE it into a file chain. A
number of tools have been used by the HP-71 softuare development team
to assist in creating LEX files. They are described belou.

6.1.2.1 HP-71 Assembler

An assembler 1is obviously the most important tool., The HP-71
assenbler is available both in the HP-71 Assembler/FORTH ROM, as well
as in a special set of programs which run on the HP200 series
machines,

Note that assembly language examples given in this section are in the
proper format for the assembler which was used by the HP-71 mainframe
software development teanm,

6.1.3 Symbolic Referencing

Following are copies of the mainframe and built-in XWORD tables which
comprise every keyword token in the mainframe; these files were used
to generate all the necessary tables. Note that in the first table
all the token names are given as starting with ’t’, indicating
one-byte tokens. In the second table (as with all LEX files), all
the token names begin with ’x’, indicating these are not complete
tokens, but only the first byte of a three-byte token. Ue discuss
later how to build the symbolic for the complete three-byte token.

6.1.3.1 Mainframe Tokens

6-8

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

RTNSXM MAINTS 00
HHEHEEE JHOHEEE 0000 J0EH0HE 10000 HH00E 1%

* A A ~ ~ ~ ~ ~

* TFile Msg Poll EOF TblNam TblLnk ROM#
*

*

A FHEHHKHEEEE I IHEOEEE 0 IR0
HH HKHHHHHHE KA IR A 33 HHHHI I KK KK IR

*A ~ AANAAN

b

~ ~

*T T BLSC E T C

*o e eeya X o) o

¥k X ggsl e k n

*e t iatc c e n

*n nle u n e

x nB t n

* BA A i n t

* AfCS o a

* Stml n n

* IedC e

* Cr A

* d

* d

* r

*

*

00 EN FN-GO FN (lex only)

00 GO GO (lex only)

01 TRMNTR Dummy Fill

02 BLDNUM tINT12 12-Digit Integer
03 BLDNUM tINT11 11-Digit Integer
04 BLDNUM tINT10 10-Digit Integer
05 BLDNUM tINT9 9-Digit Integer
06 BLDNUM tINT8 8-Digit Integer
07 BLDNUM tINT7 7-Digit Integer
08 BLDNUM tINT6 6-Digit Integer
09 BLDNUM tINTS 5-Digit Integer
0A BLDNUM tINT4 4-Digit Integer
0B BLDNUM tINT3 3-Digit Integer
oc BLDNUM tINT2 2-Digit Integer
oD TRMNTR (Unused]

OE TRMNTR tLBLRF Label Reference
OF TRMNTR tLINE Line Number

10 TRMNTR tBIG Constant Too Big
11 TRMNTR tSMALL Constant Too Small
12 BLDNUM tFLT12 12-Digit Float
13 BLDNUM tFLT11 11-Digit Float
14 BLDNUM tFLT10 10-Digit Float
15 BLDNUM tFLT9 9-Digit Float

16 BLDNUM tFLT8 8-Digit Float

17 BLDNUM tFLT7 7-Digit Float

18 BLDNUM tFLT6 6-Digit Float

6-9

19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
34
3B
3c
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
aA
4B

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

BLDNUM tFLIS
BLDNUM tFLT4
BLDNUM tFLI3
BLDNUM tFLT2
BLDNUM tFLT1
TRMNTR
TRMNTR
TRMNTR
TRMNIR
STRLIT
TRMNTR
TRMNIR
TRMNTR
TRMNIR
STRLIT
TRMNTR
TRMNTR
TRMNIR
TRMNIR
TRMNTR
STRING tSVAR
TRMNIR a.

TRMNTR
ONEDGT
ONEDGT
ONEDGT
ONEDGT
ONEDGT
ONEDGT
ONEDGT
ONEDGT
ONEDGT
ONEDGT
TRMNIR
TRMNTR
TRMNIR
TRMNTR
TRMNTR
TRMNTR
TRMNTR
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC

5-Digit Float
4-Digit Float
3-Digit Float
2-Digit Float
1-Digit Float

(Unused]
[Unused]
[Unused]
(1)
(")
(%)
($)
(%)
(&

(”)

*

N i <+
— o M — — —

(Digit)
(Digit)
(Digit)
(Digit)
(Digit)
(Digit)
(Digit)
(Digit)
(Digit)
(Digit)

C MODE

N St T e S

e VvV D> Awe oo

(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static

6-10

ing Variable

(String Delimiter)

(String Delimiter)

(-)

ASNMNT OPRTR

Variable)
Variable)
Variable)
Variable)
variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)

4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
54
5B
5C
5D
5E
SF
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
TA
7B
7C
7D
7E

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

IP

FP
MAXREAL
RMD
RAD
DEG
INF
EPS
CEIL
KEY$
MOD
ERRL
ERRN
DATE
DATE$
PI

TIME

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
TRMNTR
TRMNTR
TRMNTR
TRMNTR
TRMNTR
DYNAMC
DYNAMC
DYNAMC
DYNAMC
DYNAMC
DYNAMC
DYNAMC
DYNAMC
DYNAMC
DYNAMC
IP

FP
MAXRL
RMD
RAD
DEG
INF
EPS
CEIL
KEY$
MOD
ERRL
ERRN
DATE
DATE$
PI
CMPLX
TIME
EN
ARRAY

tZ

tADIGO
tADIG1
tADIG2
tADIG3
tADIG4
tADIGS
tADIG6
tADIG7
tADIG8
tADIGS
tIP
LEP
tMAXRL
tRMD
tRAD
tDEG
tINF
tEPS
tCEIL
tKEY$
tMOD
tERRL
tERRN
tDATE
tDATES
tPI
tCMPLX
tTIME
tEN
tARRAY

(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static
(Static

——— N xXxE<CHWnNDO VO ZXt

Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)
Variable)

DATE
DATE$
PI
CMPLX
TIME
FN
ARRAY

Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

DMARRY tDMYAR Dummy array

6-11

CO~NOOMMPWNH O

HP-71 Software IDS - Detajiled Design Description
Language Extension and Binary Files

7F RES

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
AO
Al
A2
A3
A4
AS
Ab
A7
A8
AS
AA
AB
AC
AD
AE
AF
BO
Bl

NOT

DIV

AND
EXOR
OR

LOG

SQR
LOG10
EXP
TIMES
SIN
cos
TAN
ASIN
ACOS
ATAN
INT
MEAN
SLEV
PREDV
RND
SGN
ABS
NUM
CHR$
VAL
STR$

FACT
LEN

UPRC$
MIN
MAX
IVL
OVF
UNF
DvzZ

1111
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

RES
INVLUT
NOT
MINUS
MULTPY
DIVIDE
PERCNT
DIV
PLUS

CONCAT
COMPAR
AND
EXOR
OR
EXPR
EXPR
LOG
LOG
SQR
LCG10
EXP
TIME$
SIN
CoS
TAN
ASIN
ACOS
ATAN
INT
MEAN
SDEV
PREDV
RND
SGN
ABS
NUM
CHR$
VAL
STR$
SUB$
FACT
LEN
LPRP
UPRC$
MIN
MAX
IVL
OVF
UNF
DvVZ

tRES
th
tNOT
t-
t*
t/
t%
tDIV
i+

t&
tRELOP
tAND
tEXOR
tOR

tLOG
tIN
tSQR
tL0G10
tEXP
tTIMES
tSIN
tCos
tTAN
tASIN
tACOS
tATAN
tINT
tMEAN
tSDEV
tPREDV
tRND
tSGN
tABS
tNUM
tCHR$
tVAL
tSTR$
t1SUB$
tFACT
tLEN
tLPRP
tUPRC$
tMIN
tMAX
tIVL
tOVE
tUNF
tDVZ

RES

“ (INVOLUTION)
NOT

- (Unary)

*

/
%
DIV

+
(Unused)
& (CONCATENATE)
Relational operators
AND

EXOR

OR
[Unused]
[Unused])
LOG

LN

SQR
LOG10
EXP
TIMES$
SIN

Ccos

TAN

ASIN
ACOS
ATAN

INT
MEAN
SDEV
PREDV
RND

SGN

ABS

NUM
CHR$
VAL

STR$ (formerly VALS$)
SuB$ (implied)
FACT

LEN
LPRP ()
UPRC$
MIN

MAX

IVL

OVF

UNF

DvZ

6-12

B2
B3
B4
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
Co
C1
c2
C3
Ca
Ca
C5
C6
c7
C8
C9
CA
CB
cC
CD
CE
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DE
DF
EO
EO

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

INX 1111

1111

1111
CopY 1101
LR 1101
DELETE 0111
EDIT 0111
DEF 1101

0000
LIST 1101
REAL 1101
NAME 1101
DESTROY 1101
LINPUT 1101
LET 1101
SUB 1000

0000
FOR 1001
NEXT 1001
DISP 1101
DATA 1000
READ 1101
FETCH 0111
INPUT 1101
INTEGER 1101
SHORT 1101
DIM 1101
PRINT 1101
STAT 1101
KEYS 0000
CARD 0000
PORT 0000
MAIN 0000
DEGREES 1101
RADIANS 1101
ADD 1101
DELAY 1101
PAUSE 1100
UAIT 1101
STOP 1101
END 1101
RETURN 1101
GOSuB 1101
GOTO 1101
RESTORE 1101
IF 1101
ON 1101

INX
XFN
XEN

CcoprY
LR
D’LTE
EDIT
DEF
ENDDEF
LIST
REAL
NAME
DSTROY
LINPUT
LET
SuB
ENDSUB
FOR
NEXT

DISP
DATA
READ
FETCH
INPUT
INTEGR
SHORT
DIM
PRINT
STAT

DEGREE
RADIAN
ADD
DELAY
PAUSE
WAIT
STOP
END
RETURN
GOSUB
GOTO
RESTOR

IF
ON

tINX
tXEN
tFEN
LASTEN
tCOPY
tLR
tDELET
tEDIT
tDEF
tENDDF
tLIST
tREAL
tNAME
tDSTRY
tLINPT
tLET
tSUB
tENDSB
tFOR
tNEXT
tLITRL
tDISP
tDATA
tREAD
tFETCH
tINPUT
LINTEG
tSHORT
tDIM
tPRINT
tSTAT
tKEYS
tCARD
tPORT
tMAIN
tDEGRE
tRDIAN
tADD
tDELAY
tPAUSE
tUAIT
tSTOP
tEND
tRETRN
tGOSUB
tGOTO
tRESTR
tRFILE
tIF
tON
tCREF

INX

XEN

Funny Function
Last Function
COPY

LR

DELETE

EDIT

DEF

END DEF (parsed by ENDP)
LIST

REAL

NAME

DESTROY

LINPUT

LET

SuB

END SUB (parsed by ENDP)
FOR

NEXT

LITERAL (Literal label or file name)
DISP

DATA

READ

FETCH

INPUT

INTEGER

SHORT

DIM

PRINT

STAT

KEYS

CARD

PORT

MAIN

DEGREES
RADIANS

ADD

DELAY

PAUSE

WAIT

STOP

END

RETURN

GOSUB

GOTO

RESTORE

Run file specified in RUNP
IF

ON

Call by reference separator

6-13

El
El
E2
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
FO
Fl
F2
F2
F3
F3
F4
F4
F4
F5
F6
F6
F7
F8
F8
F9
FA
FB
FC
FD
FE
FF

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

OFF
USER

ERROR
TIMER
KEY
REM
IS
BEEP
BASE
TRACE
PURGE
CAT
OPTION
AUTO

TO

THEN

ELSE
STEP

TAB
ALL

CALL
CFLAG
SFLAG

USING
RUN
IMAGE

1101

1101

0000

0000
1101
1101

0000

1101

1101
1101
1101
1101

0111

1101

0000
0000

0000

0000

0000

0000
0000

0000
0000

1101
1101
1101

0000
1101
1000

OFF
USER

NXTSTM
NXTSTM
KEY
REM
NXTSTM
BEEP
NXTSTM
TRACE
PURGE
CAT
OPTION
AUTO
XUORD
TRMNIR
TRMNIR
TRMNTIR

TRMNTR

ELSE
LABEL

NXTSTM
NXTSTM

CALL
CFLAG
SFLAG
BANG
NXTSTM
RUN
IMAGE

tOFF
tCVAL
tUSER
tCOLON
tERROR
tTIMER
tKEY
tREM
tIS
tBEEP
tBASE
tTRACE
tPURGE
tCAT
tOPT’N
tAUTO
tXWORD
tEOL
tCOMMA
tSEMIC
tIN
tTO
tPRMST
tTHEN
tEXTIF
t
tELSE
tSTEP
tLBLST
tTAB
tALL
tPRMEN
tCALL
tCFLAG
tSFLAG
t!
tUSING
tRUN
tIMAGE

OFF

Call by value separator

USER

HPIL colon token

ERROR
TIMER
KEY
REM
IS
BEEP
BASE
TRACE
PURGE
CAT
OPTION
AUTO
XWORD
<eol>
coMMA

SEMICOLON

tIN
TO0
PRMST
THEN

(for CALL)

(Start of Parm list-SUB,CALL)

Extended If
(Continuation)

ELSE
STEP

Label Statement

TAB
ALL
PRMEN
CALL
CFLAG
SFLAG
Comment
USING
RUN
IMAGE

(End of Parm 1ist-SUB)

The following is the "built-in XUORD" table (LEX ID 01):

RTNSXM

KrmOls MAINTS 01

XN K IR KR IEHK IR X KA FEHHR Xk

*
*
*
*

RN AKX R

~

File Msg

~

Poll

~

EOF

~

~ -~

TblNam TblLnk ROM#

A HIHHHHH HH IR K 1 XK
AR HHXRHHA KR IHRXIOE FOOEHE 33 HHH HHHHK I KA HHE 0%

6-14

HP-71 Softuare IDS - Detailed Design Description
Language Extension and Binary Files

%k

>

X 0 =

ACS
ADDR$
ADJABS
ADJUST
AF
ANGLE
ASN
ASSIGN
ATN

BYE
CAT$
STD

FIX

SCI

ENG
CHARSET
CHAIN
CHARSET$
CLAIM
CLASS
CLOCK
CLSTAT
CONTRAST
CONT
CORR
PLIST
CREATE
ZERO
DEFAULT
DROP
DTH$
ENDLINE
ERRM$
VER$

AAAA

BLSC
eeya
gesl
iatc
nle
mB
BA A
AfCS
Stml
IedC
Cr

1111
1111
1101
1101
1111
1111
1111
1101
1111
1101
1111
1101
1101
1101
1101
1101
1101
1111
0111
1111
0000
1101
1101
0111
1111
1101
1101
0000
1101
1101
1111
1101
1111
1111

>

SO et C OO XM

Lo B =N = - -2

ACOS
ADDR$
ADJAAA
ADJINNN
AF
ANGLE
ASIN
ASSIGN
ATAN
BYE
CAT$
STD
DSPF
DSPF
DSPF
CHARST
CHAIN
CHRST$
NASSAU
CLASS

CLSTAT
CNIRST
CONT
CORR
PLIST
CREATE

DEFALT
DROP
HEX$
ENDLIN
ERRM$
VER$

>

S0 X0

©o 303

RANGLE

XKCLOCK

XKZERO

303300

ACS
ADDR$
ADJABS
ADJUST
AT
ANGLE (function and middle word)
ASN
ASSIGN
ATN

BYE

CATS$

STD

FIX

SCI

ENG
CHARSET
CHAIN
CHARSETS$
CLAIM (PORT)
CLASS
(RESET) CLOCK
CLSTAT
CONTRAST
CONT
CORR
PLIST
CREATE
ZERO
DEFAULT
DROP
DTH$
ENDLINE
ERRM$
VER$

6-15

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

23 EXACT 1101 EXACIT EXACT
24 EXPM1 1111 EXPM1 EXPM1

25 EXPONENT 1111 EXPON EXPONENT

26 EXTEND 0000 KEXTND EXTEND

27 FLAG 1111 FLAG FLAG

28 FLOOR 1111 INT FLOOR (Same as INT)
29 FLOU 0000 XKFLOU (TRACE) FLOU
2A FREE 0111 FRPORT FREE (PORT)
2B GDISP 1101 GDISP GDISP

2C GDISP$ 1111 GDISP$ GDISP$

2D HID 1111 HXDEC HID

2E INTO 0000 RINTO INTO

2F KEYDEF$ 1111 KEYDEF KEYDEF$

30 KEYDOUN 1111 KEYDUN KEYDOUN

31 LC 1101 FLIP LC

32 LGT 1111 LOG10 LGT

33 LOCK 1101 LOCK LOCK

34 10GP1 1111 LOGP1 LOGP1

35 WIDTH 1101 UIDTH WIDTH

36 MATH 0000 KMATH MATH

37 MEAN 1111 MEAN MEAN (Duplicate of Built-in)
38 MEM 1111 MEM MEM

39 MERGE 1101 MERGE MERGE

3A MINREAL 1111 MINRL MINREAL

3B NAN 1111 NAN NAN

3C NEAR 0000 KNEAR NEAR

3D NEG 0000 XNEG NEG

3E PCRD 0000 XKPCRD PCRD

3F PEEK$ 1111 PEEKS$ PEEK$

40 POKE 1101 POKE POKE

41 POP 1101 POP POP

42 POS 1111 POS XPOS POS

43 PRIVATE 1101 PRIVAT PRIVATE

44 PROTECT 1101 PROTCT PROTECT

45 PUT 1101 PUT PUT

46 PUIDTH 1101 PUIDTX PUIDTH

47 RANDOMIZ 1101 RANDOM RANDOMIZ(E)
48 RED 1111 RED RED

49 RENAME 1101 RENAME RENAME

4A RENUMBER 1101 RENUM RENUMBER

4B RESET 1101 RESET RESET [CLOCK]
4C ROUND 0000 KROUND ROUND

4D SDEV 1111 SDEV SDEV (Duplicate of Built-in)
4E UINDOU 1101 WINDOU WINDOU

4F SECURE 1101 SECURE SECURE

50 DISP$ 1111 DSP$ DISP$

51 SETDATE 1101 SETDAT SETDATE

52 SETTIME 1101 SETTIM SETTIME

53 SHOU 0111 SHOU SHOU (PORT)
54 SQRT 1111 SQR SQRT

55 STARTUP 1101 STRTUP STARTUP

6-16

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

56 TOTAL 1111 TOTAL TOTAL

57 TRANSFOR 1101 TRSFMX TRANSFORM

58 TRAP 1111 TRAP TRAP

59 UNPROTEC 1101 UNPROT UNPROTEC(T)
5A UNSECURE 1101 UNSECR UNSECURE

5B VARS 0000 KVARS (TRACE) VARS

6.1.3.2 Other Mainframe Symbolics

Existing symbolics for all the mainframe operators are defined as
follous:

t% EQU #85
t& EQU #89

t* EQU #83
t+ EQU #87
t- EQU #82
t/ EQU #84

tAND EQU #8B
tDIV EQU #86
tEXOR EQU #8C
tNOT EQU #81
tOR EQU #8D
t” EQU #80

There are no existing symbolics for the relational operators, which
are 3 nibbles long. However, each relational operator has for its
first byte tRELOP (8A). The third nibble is a bit map:

Relop Bit#

v A
L WN =

Symbolics could be defined as follous:

t< EQU (#1)~ (tRELOP)
t= EQU (#2)~ (tRELOP)
t> EQU (#4)~ (tRELOP)
t? EQU (#8)~ (tRELOP)

t<= EQU (#3)~ (tRELOP)
tr= EQU (#6)~ (tRELOP)
t# EQU (#5)~ (tRELOP)

The following symbolics are available for loading up single
characters of ascii. Symbolics for ascii are certainly not
necessary, since:

6-17

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

LC(2) =al is equivalent to Lcasc \!\

But here they are anyuway:

a! EQU #21
a" EQU #22
a$ EQU #24
a’ EQU #27
a EQU #2E

a0 EQU %30
al EQU #31
a2 EQU #32
a3 EQU #33
a4 EQU #34
a5 EQU %35
a6 EQU #36
a7 EQU #37
as EQU #38
a9 EQU #39

Note that if a symbolic is defined to be N nibbles long, and N+X
nibbles are referenced, then the upper X nibbles are zeroes. For

example:
LC(5) =t¢
is equivalent to: LCHEX 0018A

6.1.3.3 Building Symbolic Tokens For a LEX File

Given a one-byte token, XIOKEN, in a LEX whose ID# is FE, you could
do the following to build the symbolic representation for the
complete three-byte token:

tTOKEN EQU (XTOKEN)~ (#FE)~ (tXUORD)

This builds tTOKEN by concatenating three bytes of information. The
lou byte is the XUORD token, the middle byte is the LEX ID, and the
high byte is the token number in the table.

If XTOKEN were a function name, you would replace tXUORD above with
tXFN. Analogously, if XTOKEN were a funny function, you would use
tFEN.

6.2 Lexical Analysis, Parse, Execute
A language extension file contains tables used by the parse,

decompile, and execution routines to recognize and execute external
statements and functions. The TEXT table holds the ASCII string and

6-18

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

associated token for each new or extended keyword. The optional
SPEED table allows rapid searching of the TEXT table when a large
number of Keywords exists within the LEX file.

The message table within a language extension file contains messages
related to routines and functions within the file. These messages
may be error, warning, or system messages. See the ‘'Message
Handling" chapter for details.

The parse decompilez and execution routines for external keywords
and functions reside in the language extension file.

Uhen searching for Xkeyuords, LEX files are searched first. This
allows a BASIC statement to be extended beyond its definition in the
mainframe. Correspondingly, LEX file functions can override main
machine functions. Neu statements and functions can also be added in
a LEX file.

As long as it contains all the necessary elements in the header, a
LEX file may omit certain tables described here if its purpose does
not require them. In particular, a LEX file may omit the message
table if it’s not needed. Or, as in the case of a foreign language
translator, it may consist entirely of a message table which
overrides mainframe messages (together with a poll handler uwhich
intercepts the pERR poll to do this). For details of foreign
language message tables, see the chapter on "Message Handling."

6.3 LEX IDs and Entry #s

The token associated with an external keyword indicates that the
keyword 1is either an XUORD (external BASIC keyword) or an XEN
(external function). The lexical analyzer returns this token, along
ulth the LEX ID (0-255) and the Entry # (0-255).

The LEX ID and entry# are stored in HEX. The LEX ID is used to
locate the LEX file independently of what port it is plugged into.
The entry# is the keyword# or function# used as the offset into the
LEX file’s main table and text table. For an external statement, the
offset into the main table is used to obtain the parse, decompxle

and execution addresses for the keyuword; for an external function,

the offset is used to obtain the number and type of parameters and
the execution address. The relative offset into the text table is
used tp obtain the ASCII text associated with the statement or
function stored in the text table; this text is used to decompile the
external keyword.

254 external LEX 1IDs are allowed. LEX ID 0 and 1 are reserved for

the mainframe. 255 internal keywords and functions are allowed per
LEX file. If a language extension requires more than 255 keywords,

6-19

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

then more than one language extension file must be used.

6.3.1 LEX ID Allocation

LEX IDs and entry# ranges are allocated by Hewlett-Packard. See the
chapter "HP-71 Resource Allocation" for information on current
resource allocations and the procedure for getting a token range
officially allocated.

LEX IDs 92, 93 and 94 have been allocated as temporary/scratch IDs
that can be used by LEX file developers who want a safe ID to
experiment with without fear of interfering with LEX files written
and distributed by Hewlett-Packard or other software developers.

6.3.2 Range of Entry Numbers

A LEX file may contain a contiguous range of entry numbers, allowing
libraries of keyuords to be distributed in logical groups. The
format of the LEX file allous the range of entry numbers to be
specified during creation,

6.3.3 Merging LEX Files

LEX files may be merged together for single file distribution of
several LEX files. An internal LEX file chain exists within the LEX
file structure,

6.4 Referencing Mainframe Entry Points

If HP’s internally developed HP-71 linker is to be used after a file
is assembled, entry points which are referenced external to the LEX
file must always be preceded by °’=’., For example, GOSBVL =OUTBYT.
Note that this is not true when using the FORTH/Assembler ROM, which
does not use a linker.

In either case, all references to mainframe entry points must be
absolute (GOVLNG or GOSBVL or LC(5)) since a LEX file may move in
memory, thus prohibiting relative references.

In the interest of saving code, if a mainframe entry point is to be
referenced several times from a LEX file, it is shorter to have only
one external reference in the module to that entry point, with
shorter relative jumps within the module to the point of external
reference:

6-20

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

GOSUB outbyt

GOéUB outﬁyt

GO%O outﬁyt

(] .

outbyt GOVING =OUTBYT

6.4.1 LEX Files and Memory Movement

Any LEX file which is likely to reside in RAM (system or IRAM) faces
a problem when invoking certain mainframe utilities which can cause
files to move. For example, the utility to purge a file (PRGFMF)
causes all subgequent files in a file chain to move to a louer
address. In general, utilities which cause files to move are those
which call some entry p01nt in either the MOVEDM or MOVEUM routines;

the other entry points in these routines are MOVEDO, MOVEDA, MOVEDl

MOVED2, MOVED3, MOVEDD, MOVEUO, MOVEUA, MOVEU1, MOVEU2 MOVEU3 and
MOVEU4. Therefore, a given utility can be xdentxfled as one whlch
causes memory to move by 1looking at its documentation header in
Volume II of the IDS, and examining which routines it calls.

The danger of executing code in RAM, such as in a LEX file, is that
it may invoke a system utility uhlch moves the code, 1nva11dating the
return address on the CPU return stack and sendlng the machine to
never-never land. To remedy the problem, a system utility has been
created to allouw calling mainframe utilities from movable code. The
utlllty, MGOSUB, places the return address on the system GOSUB stack,
vhere it will be updated if memory moves.

Because any unprotected LEX file in ROM can be copied to RAM, the
above also applies to LEX files in ROM. However, if a LEX flle in
ROM is protected against being copied to RAHM, then it does not need
to be concerned with memory movement. There are two ways to guard
against this: 1) Make the file Private, or 2) Give the LEX file a
name with at least one lower case character. Of these tuwo options,
the first is probably preferrable.

6.4.2 MGOSUB Utility

This utility allows movable code (code running in RAM) to call
utilities which may move it (such as the utility to purge a file).
Rather than leaving the return address of the calling code on the CPU
return stack, it places the return address on the BASIC GOSUB stack,
where it is updated wvhenever memory is moved.

6-21

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

The MGOSUB utility is invoked as follous:

GOSBVL =MGOSUB
CON(5) <addr of target subroutine>
.. <code continues here> .

The call to MGOSUB is transparent uwith regard to all registers,
carry, SB, XM, and status bits. That is, entry conditions will be
faithfully transmitted from caller to subroutine, and £xit conditions
will be faithfully transmitted from subroutine to caller. There is a
price for this, houever: the MGOSUB code uses SCRTCH RAM for
temporary storage before and after the call to the target subroutine.
This means that SCRICH is not a safe place to keep things during the
MGOSUB call, and that it cannot be used to pass data to or from the
subroutine. Obviously, subroutines called via MGOSUB also pay an
overhead in execution time.

6.5 Referencing Addresses in a LEX File

All references within a LEX file must be relative. If a table
contained in a LEX file must be referenced, a way to get the current
absolute address of the table is as follous:

GOSUB GTADDR Push address of table onto stack
TABLE NIBASC \HELLO\

NIBHEX FF _
GTADDR C=RSTK Recall address of table

Code continues

6.6 External Lexical Analysis

Entry #0 in the Main Table of a LEX file contains the execution
address of an external lexical analyzer or a system override.

An external lexical analyzer can be used to handle cases that cannot
be handled by standard mainframe scanning techniques. If the token
associated with a text item in the TEXT table is #00, an external
lexical analyzer will be invoked. The external lexical analyzer will
interpret the text using non-standard techniques and return a
non-zero token to the mainframe iexical analyzer. Care must be taken
to jump back to an appropriate reentry in the mainfranme.

6-22

HP-71 Softuware IDS - Detailed Design Description
Language Extension and Binary Files

6.7 Entry and Display of External Keywords

WUhen an external keyword is keyed in, the LEX file containing the
keyword should exist. If the LEX file 1is in the machine during
decompilel then upon decompiling the keyword the corresponding ASCII
name is displayed. If the LEX file is not present during decompile,
then one of the following is displayed:

XUORD 1lleee
XFN1llleee

XEN indicates an external function; XWORD indicates some other
external keyword. The first 3 digits (111) are the LEX ID in
decimal. Leading zeroes are suppressed. The last 3 digits (eee) are
the keyword entry # in decimal. Three digits are aluways displayed.
The LEX ID and entry# are stored in hexadecimal and displayed in
decimal. The decimal display of LEX IDs corresponds to those
displayed in error messages.

Uhen an external statement is decompiled without the corresponding
LEX file plugged in, only the XUORD text itself is decompiled; any
text which would normally follow the XUWORD 19 not displayed. An
expression with an XEN from a missing LEX file is displayed normally,
except that the ASCII function name 1is replaced with the XFNllleee
notation; all parameters are displayed normally. Funny functions are
an exception to this rule; their parameters are not displayed.

Uhen a missing LEX file has added a neuw device type, the device type
is decompiled as "external"

Note that in all cases, once the missing LEX file is plugged back in,
decompiling resumes normally

6.8 Short Keywords

If a short keyword in a LEX file is wholly contained within the first
characters of a longer keyword in the same LEX file, special
attention is requ1red The longer keyword should aluays precede the
shorter keyword in the table, otherwise the longer keyword will NEVER
be found.

Also, if a keyword exists in a LEX file that is wholly contained in
the first characters of a longer keyword in the main machine or
another LEX file, then the longer Xeyword will not be found unless
the parse of the shorter keyword fails. To illustrate the two points
made above:

6-23

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

FORM in LEX File
FO in LEX File
FOR in Main

If FO had preceded FORM in the LEX file above, then the FORM keyword
would never be found.

Also note that only if FO parse fails, will the machine ever-try FOR
parse; this capability to try another parse routine once the parse of
an external statement fails is provided through the RESTART
mechanism.

Finally, assume the user types in the following:

>10 FORM=1 TO 5

Assume that FORM parse requires a string expression. FORM parse will
fail; through the RESTART mechanism the FOR keyword in the mainframe
table will be found next, and that parse will be successful. The
Restart portion of line parse continues searching for a keyword if a
LEX file returns an error condition from one of its parse routines.
This ensures that longer keywords in other LEX files and in the
mainframe are found.

The 1last example above illustrates that the RESTART mechanism
conitinues the search in another LEX file, or if there aren’t any
more, into the mainframe. RESTART does not continue in the same
table; this is why it’s so important to put a longer keyword (FORM)
prior to a shorter keyword (FO) when they occur in the same LEX file.

Parse routines that look for a particular keyword may have trouble
using the lexical analyzer (NTOKEN) if a LEX file is present
containing a shorter keyword than the one being searched for. For
example, if a given parse routine requires the FOR keyword as an
intermediate keyword, but FO is present in a LEX file, then NTOKEN
will return tFO, not tFOR.

Using the UWRDSCN utility gets you around this problem., UWRDSCN was
designed especially for searching all possible LEX files until a
keyword that YOU specify is found. UWRDSCN calls NTOKEN to find a
lexeme. UWhen NTOKEN returns a lexeme, then URDSCN checks if it is
one of the keywords that you have designated. If it is, UWRDSCN
returns that keyword; otheruise, it restarts the lexical analyzer, so
that NTOKEN continues searching LEX files. Ultimately, WRDSCN either
returns one of the keywords you have designated or indicates that the
ascii pointed to by D1 does not contain any of the keywords you have
specified (as indicated by LEX files present in the machine). See
IDS Volume II for further details of WRDSCN.

6-24

HP-71 Softuare IDS - Detailed Design Description
Language Extension and Binary Files

6.9 Line Number References Uithin a Statement

Any statement which controls program flow using 1line number
references, has a 5 nibble relative address field following tLINE#,
so that the address can be compiled; note that commands such as LIST
wvhich may contain line number references would not have such
relative offset fields, since LIST has nothlng to do with controlling
program flou. External statements containing line number references
must exercise care when executing a line number reference.

A program can be edited or rernumbered without a LEX file being
present. But, if the LEX file is missing at the time the program is
modified, any compiled addresses in the XUORD statements of that LEX
file will not be cleared. Subsequent execution of such XWORD
statements using this compiled address could result in an invalid
branch.

There 1is an external entry in the Mainframe GOTO/GOSUB execution
code. If the sXUORD status is set, the compiled line number address
will be ignored and the line number will always be searched for,
guaranteelng correct statement branching. See the GOTO documentatlon
in Volume II of the IDS for details,

6.9.1 References Uithin an "Interrupt" Statement

A statement that branches to a line number due to an interrupt must
execute special code to handle TRACE FLOU. Examples of interrupt
statements are ON TIMER, ON ERROR and ON INIR.

Since the “TRACE FROM" address is not the preceding statement in
sequential statement execution, the ONTIMR code must be duplicated to
compute and trace the FROM address. The sXWORD flag must be set
prior to the GOTO+ jump to guarantee all line number references are
recomputed.

See the ONTMR documentation in Volume II of the IDS for details.

6.10 Polling

Polling is performed from many places in the HP-71 operating system
to allow a LEX file to perform special processing when appropriate.
During a poll, a one byte process number is passed to each LEX file;
this 1dent1f1es the reason the system is performing a poll.

Each LEX file has an opportunity to respond to a poll., The location

6-25

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

of the poll handling code is identified by an offset-to-poll-handler
which exists in each LEX file header. Uhen a LEX file poll handler
is polled (given control) it determines if it wants to respond to tne
process based on the process number, Response comes in several
flavors:

1 - LEX file "handles" poll. The LEX file performs some processing
and then returns with XM=0 and carry clear, indicating that the
polling process should terminate,

2 - LEX file detects error (Slow Poll ONLY). The LEX file detects
an error condition and returns with carry set, which termlnates
pelling. An error identification is passed back in the
C-register.

3 - None of the above. Many polls are NOT looking for a specific
“handler”, but are simply offering an opportunity for a LEX
file to do some processing. For example, the pSREQ poll should
never be "handled"”, but it allows an opportunity for a LEX file
to handle whatever service requests it knous how to handle.

There are two kinds of polling: Fast and Slow. Their entry points
are FPOLL and POLL, respectively. In both cases, the process number
must immediately follow the call.

GOSBVL =FPOLL GOSBVL =POLL
CON(2) =pPOLL# or CON(2) =pPOLL#

For both types of polling, XM can be set by the respondlng LEX file
to indicate whether or not the poll was ’handled’. This is desirable
if only one LEX file can respond to a partlcular poll; XM=0 on return
to the system terminates the polling operation. In some cases it
vill be desirable for multiple LEX files to respond to a single poll;
in this case responding LEX files should NOT set XM to 0.

The return requirements for a poll are indicated in the documentation
for each separate poll, and can be found in the IDS Volume II under
the individual poll name - pXXXXX.

6.10.1 TFast Poll

A fast poll is relatively fast and uses no extra memory. It is used
when:

1) Execution speed is important, and/or

2) Little information is to be passed to the handler, and/or

3) There 1is little available memory or the memory may be in a
strange state (e.g., pointers not valid).

The carry is set at entry to the LEX file poll handler, so fast polls

6-26

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

are easy to detect. Typically, fast polls are used for lou-level
system polls, indicating a state within the machine, with no specific
information to pass.

The process number is passed in B(A). D(A) should not be destroyed
by a LEX file, since it is used as a pointer into the LEX file entry
buffer during the polling process. However, if a LEX file is going
to handle the process and exit with XM=0 (ensuring polling will
stop), it is acceptable to destroy D(A). The poll handler is
executing two stack levels deeper than the calling code.

Fast poll does nothing with RO-R4 and the status bits., Depending on
the application, any or all of the above may be used to pass data to
or from the handler. Information cannot be passed to or from poll
handlers in A-D, DO, D1 or P. For specifics on register usage and
availability, see the individual poll documention.

6.10.1.1 Fast Poll Example
A typical fast poll may look like the following:

GOSBVL =FPOLL
CON(2) =pPOLL# Process #

Often, wvhen a fast poll is issued, no distinction is made as to
vhether or not the poll was handled; in such cases it is not
necessary to check XM.

6.10.2 Slow Poll

A slou poll allows passing of more information to poll handlers then
does a fast poll. In addition, it saves stack levels and the
contents of some registers in RAM, allowing recursive polling (a poll
handler may perform a poll).

The advantages of slow poll over fast poll are:

1) Allous pagsing data to poll handlers in A,D,DO and D1.
2) Handler can perform an error exit which will terminate the poll.
3) Stack levels are saved in RAM, so handler can
a) Use more stack levels, and
b) Call POLL itself.
4) Address of caller 1is saved on the GOSUB stack where it will be
updated if memory moves.

The disadvantages of slow poll compared to fast poll are:

1) It’s slouer.

6-27

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

2) It requires enough memory and valid pointers to establish a save
area in RAM,

As with fast poll, slow poll does nothing with R0O-R4 and the status
bits. Unlike fast poll, A, D, DO and D1 can be used to pass data to
the handlers. The contents of these registers are restored to their
original entry values upon entry to each poll handler.

If a LEX file responds by “handling" the poll or performing an error
return, most of the registers are returned to the caller as they uere
left by the handler. If no LEX file handles the poll, A,D,D0 and D1
are restored to their entry values upon return to the calling code.
6.10.2.1 Slouw Poll Example

A typical slou poll may look like the following:

GOSBVL =POLL

CON(2) =pPOLL# Process#
GOC Err Error occured during handling?
XM=0
GOYES OKAY Process handled without error?
* Process not handled at all
LC(4) =eXXYY Load up appropriate err#
Err GOVLNG =BSERR Error# loaded up

OKAY

6.10.2.2 Save Stack Slow Poll Information

The save stack resides betuween the math stack and the FOR-NEXT stack.
The SAVSTK pointer (same as FORSTK) points to the bottom of the save
stack area. The following information is kept on the save stack
during a slou poll:

Register A 16 nibbles Low Memory
Register D 16

Data Pointer D1 5

Data Pointer DO 5

Poll# 5

Return Level 2 5

Return Level 3 5

Rel Pos in LEX Buffer 5 High

SAVSTK--»

In addition to this save information, the calling return address is
pushed on the BASIC GOSUB stack. This adds 6 nibbles to the stack
pointed to by GSBSTK.

The total memory used by POLL is 68 nibbles (44 hex).

6-28

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

If a responder to a slow poll "takes-over" the poll and does not
return to the caller, the POLL save information must be deleted. The
math stack pointer should be collapsed to the FOR stack pointer. The
mainframe routine =COLLAP will do this.

6.10.3 POLL Subroutine Level Usage

A handler for a fast poll is tuwo subroutine levels deeper than the
caller of the poll,.

Because of subroutine level saving, a handler for a slow poll is one
level shallouwer than the caller.

6.10.4 Houw to Answer a Poll

Each LEX file determines which poll process numbers it will respond
to. As mentioned earlier, response may consist of handling, not
handling, or returning an error. In each case, the availability of
registers is clearly spelled out in the documentation for the
individual poll.

The type of response is indicated by the poll handler in the state of
the carry and the XM bit:

Handled: XM=0, carry clear.
Not handled: XM=1 (RINSXM instruction), carry clear.
Error exit: (meaningful for POLL only, FPOLL ignores this):

Carry set.

Error number in C(3-0).
Each poll issued from the mainframe is documented to indicate entry
and exit conditions for the poll. It is important that a responding
LEX file follow the conventions indicated by the documentation.

6.10.5 Responding to a Poll from Binary

If a binary routine responds to a slow poll and does both of the
following:

1. Indicates "no response" (XM=1) so the poll information
is restored

2. Calls a BASIC subprogram during the poll

then the poll information and poll return address must be preserved
during the CALL to BASIC. The return address to poll must be saved

6-29

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

on the GOSUB stack, and the FORSTK pointer must be set over the poll
save area. See the subsection on "Responding to POLL and Invoking
BASIC" below for code examples.

6.10.6 Take-over Poll

If the handler of a slow poll "takes-over" by not returning to the
operating system POLL routine, it should collapse the math stack to
the FOR Stack to delete the saved poll information., The mainframe
routine COLLAP will do this. In addition, the mainframe routine
POPUPD should be called to pop the poll issuer’s return address off
the GOSUB stack,

6.10.7 Polling during Parse or Decompile

Any LEX file issuing a slow poll during parse or decompile must use
the POLLD+ entry point. This entry adjusts the end of available
memory value in D(A) to reflect the memory used by POLL.

AVMEMS (available memory start) must be set to the value in DO to
save data already uritten to the output buffer; this can be
accomplished by calling AVS=DO. On return from poll, D(A) must be
reset to the neuw available memory end. The routine D=AVME will do
this.

Sample code:
GOSBVL =AVS=D0O Set AVMEMS DO
GOSBVL =POLLD+ Issue Poll
CON(2) =pPOLL
GOSBVL =Ds=AVME Set D = AVMEME

6.10.8 Polling from a LEX File in RAM

Polling from code which is executing in RAM can be tricky, since a
poll handler may cause memory to move. If a poll handler can cause
memory to move, a slow poll must be performed. Slou poll saves the
address of the caller in a place where it will be updated if memory
moves. Fast poll does not.

Poll (slow or fast) must be invoked DIRECTLY from a LEX file. The
utility, MGOSUB cannot be used.

6-30

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

6.10.9 Summary of Poll Function Codes

The list of process numbers (poll function codes) and their meanings
is maintained in the "HP-71 Resource Allocation" chapter. All polls
issued by the mainframe are grouped within common categories (e.g.,
filetype polls, parse polls, card reader polls, etc.). System polls
(those which identify a state of the system, such as going-to-sleep,
vaking-up, etc.) are assigned numbers in the upper range of possible
process numbers (from 255 douwnward). Other polls are assigned
process numbers upward from zero. As new process numbers are added
for non-mainframe use, they will be assigned sequentially from the
highest existing assigned process number,

It is this process number which is passed in the B-register to poll
handlers in all LEX files.

See the "HP-71 Resource Allocation" chapter for a one 1line
description of all system polls. See the POLL category in Volume II
of the IDS for detailed information about individual polls.

6.10.10 Special Mainframe Polls

6.10.10.1 Pointer and Buffer "Clean-Up"

Uhenever execution stacks are collapsed, the mainframe issues a fast
poll, referred to as the zero program poll (pZERPG), to collapse any
buffers and zero any pointers associated with program information.
This happens whenever RUN, EDIT, or END are executed, or whenever the
current file is modified or purged (any time the mainframe entry
points CLRSTK, CLPSTK, or ZERPGM are called, this poll goes out).

A LEX file which uses a system buffer for a given application may
vant to answer the poll so that it can collapse or deallocate its
buffer. The Math ROM, for example, keeps a copy of the math stack in
its system buffer, so when the Zero Program poll (pZERPG) goes out,
it responds by deallocating the buffer since the math stack no longer
exists,

6.11 BIN Main Programs

A binary main program is a program wuritten in HP-71 assembler
language and invoked through the RUN statement., A binary main
program can also be CALLed as a subprogram with no parameters,

Execution begins two nibbles past "20" (the equivalent to the EOL

6-31

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

byte preceding the first statement of a BASIC program). Since common
statements and utilities are used for both BASIC and BIN files, this
"20" guarantees the same "start of file" length for both file types.

6.11.1 Ending a Binary Progranm

Uhen execution of a binary program is complete, the code should
GOVLNG =ENDBIN. This mainframe system entry point will “"END" a
binary program invoked through RUN/CALL. This entry point is part of
the BASIC END statement execution. Stacks are collapsed, all open
files are closed, the program running flag (PgnRun), the PRGM
annunciator, and the status bits 0-11 are cleared, and pBSCex poll is
issued. Control returns to the calling program or, to MAINLP if the
binary program was invoked from the keyboard.

6.12 BIN Subprograms

A BIN subprogram is a subprogram written in HP-71 assembly code, with
the tokenized BASIC SUB statement at the start of the code. The SUB
statement is tokenized exactly like it 1is in a BASIC statement,
except no line number Is required. This tokenization allows binary
subprograms to be CALLed just like BASIC subprograms,

Binary subprograms are used instead of BASIC subprograms to gain
execution speed or system access not available to BASIC.

A BIN file containing only subprograms must have as its first command
(preceding the first SUB statement): GOVLNG =ENDBIN. This guarantees
standard handling of invoking RUN on a file containing nothing but
subprograms - a NOP occurs.

For information on chaining of subprograms in a BIN file, see section
on BIN files in the "File System" chapter.

See the section on SUB tokenization in the "Statement Parse,
Decompile, and Execution" chapter.

6.13 BIN Error Exit

Invoking some mainframe routines from binary may result in a
non-returning error exit through the mainframe message handler. The
message driver jumps directly to ERRRIN at the end of the BASIC
interpreter loop.

6-32

HP-71 Software IDS - Detailed Design Description
Language Extension and Binary Files

Uhen an error occurs, BASIC program execution suspends If the
current program file type is not BASIC, the program is halted, but
not suspended (the SUSP annunciator is not on so the progranm cannot
be continued). The assumption made for suspending a BASIC program is
that from the current DO setting, the error line# can be found. For
an error exit within a binary program, the DO setting is meanlngless

this is why the line# reported on an error within a BIN file is "“~™"

If you want to cause a binary program or subprogram to suspend,
respond to the pBSCex poll, which goes out each time the BASIC
interpreter is exited; If the current file type is BIN and an error
occurred (sERROR set), then you may want to set the SUSP annunciator
and update CNTADR to point to the binary code to CONTinue at. See
the pBSCex and PRUNnB poll documentation for further information.

6.14 Invoking BASIC from Binary

Binary programs and subprograms can be invoked through the RUN and
CALL statements of BASIC. Provided the binary program or subprogram
is formatted properly, invoking it is transparent to the user.

Likewise, it is possible to invoke BASIC from HP-71 assembly code.
The entry point CALBIN is called. The PgmRun (S13) must be set
before the call. Following the GOSBVL =CALBIN is the tokenized form
of the BASIC CALL statement to the subprogram, The line 1length of
the CALL statement starts the tokenization. See the section on CALL
tokenization in the "Statement Parse, Decompile, and Execution"
chapter.

Following the tokenized CALL statement is the next assembler
instruction to be executed after the subprogram is ended.
6.14.1 Responding to POLL and Invoking BASIC

If a binary routine responds to a slouw poll and does both the
follouwing:

1, Indicates "no response" (XM-l), 80 the poll information
is restored and the poll continues

2, Calls a BASIC subprogram from within the poll handler

then the POLL information and poll return address must be preserved
during the CALL to BASIC. The return address to POLL must be saved
on the GOSUB stack, the FORSTK pointer must be set over the poll save
area.

C=RSIK

6-33

HP-71 Softuare IDS - Detailed Design Description
Language Extension and Binary Files

A=C A

GOSBVL =PSHUPD Push return address on GOSUB stack
C=0 A

LC(2) =1POLSV Length of POLL Save area

D1=(5) =FORSTK

A=DAT1 A Current FORSTK position

A=A-C A Move FORSTK over Poll save area
DAT1=A A

ST=1 PgmRun Set prog running flag

GOSBVL =CALBIN CALL BASIC

On return from the BASIC subprogram, FORSTK must be readjusted and
the POLL return address restored:

C=0 A
LC(2) =1POLSV
D1=(5) =FORSTK

A=DAT1 A Current FORSTK value

A=A+C A Adjust back

DAT1=A A

GOSBVL =POPUPD Pop return address off stack
C=D A

RSTK=C Restore to stack

C=-C-1 A Clear carry

RTNSXM Return "not handled"

6-34

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

LR R R R R ke ek Lk R Ut p——

l
| STATEMENT PARSE, DECOMPILE, AND EXECUTION

o e e e e o s e e o e e e = o = = = = - -

3
s
X

7.1 Uriting a Parse Routine

7.1.1 Statement Tokenization

Statement tokenization involves the calling of parse utilities to
interpret the incoming ASCI1 stream as BASIC, and to convert and
output it as a token stream. A BASIC program line begins with a line
rumber and terminates with an End of Line token (tEOL). A program
line may contain multiple statements. Subsequent statements in a
nulti-statement line are preceded by an @ (t@) token. Following each
line number or @ token is a statement length byte. This statement
length is a relative offset to the next terminating token (tEOL or
t@). Statements within a BASIC file are chained together using these
relative offsets.

In the following examples, assume that low memory is on the left and
higher memory on the right,

7.1.1.1 Program Line

o + b +
l l l |
I v | v
tm———— el Dk D o dmm - -+
|line#|StLen| Stmt |4F|StLen| Stmt |0F|
tm————- b pm————— tm—tm————— e ettt +-—+
line# = Line number of program line

4 nibble BCD encoding
StLlen = Statement length
1 byte offset to the end of the statement
Adding the address of the byte to the contents of the
byte yields a pointer to @ (4F) or Endline (OF)
Stmt = Tokenized statement

Note that encoding of immediate execute lines is exactly as above,

7-1

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

EXCEPT no line number is tokenized.
7.1.1.2 Program Line with Comment

Tokenization of a comment following a statement, using !, is
included within the tokenization of the last statement. Therefore,
the Statement Length byte preceding that last statement is an offset
to Endline (OF):

O + D D +
| | | [
| '} | v
D et e ettt Stk el St it ettt Tt et ¥
|line#|StLen|Stmt|4F|StLen|Stmt| t!|Comment|DO|OF]|
m————— pm———— bmmmm D e t-—t-=¢

Note that ! is tokenized as CF, and that the comment itself is
aluays followed by DO, then OF (tEOL).

The tokenization for a comment at the beginning of a line (using REM
or !) is analogous to that shoun above; the comment is aluays
immediately followed by DO. REM is tokenized as follous:

bmmmm e ———— +
| |
I v
b———— tm———— D et S T T t——t--+
|line#|StLen| tREM|Comment |DO|OF|
tm————— tm———— D ek bt -t
The tokenization for ! at the beginning of a line is the same as

above, only substitute t{ for tREM.
7.1.1.3 Program Line Containing Labels

Label identifiers are alloved within ©program lines. A 1label
identifier is tokenized as a separate statement within the line. The
Statement Length byte is an offset past the label tokenization,
pointing to either @ (4F) or Endline (OF). A 1label is up to 8
characters of uppercase letters and digits, starting with a letter.
A label token (tLBLST = 6F) precedes the ASCII label name.

7-2

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

For example, the follouing is the tokenization of a single
statement 11ne with two preceding labels:

100 "ABC":’TEST1’; GOSUB 525

P ——— + R ittt + L +

| i | | | |

| v | v | '
tm———— - tmm—pmem - ek kb - tm—pm———— bt
|line#|StLen| 6F|label |4F|StLen|6F|label |4F|StLen|Stmt|OF]|
to———- tm———— tm—pmm———— b $mm b tm————— tm———tr -+t

7.1.1.4 Multi-statement Line uwith Label

Tokenization of a multi-statement line, with a single label name
following the first statement:

225 A=FNB(X) @ "ASSIGNA": KEY "A", A$;

m—m—————— + R + o ————— +

| | | | | |

l v | \ | v
tm————— to———- T e LT Ty T tm—pm———— bm———t ¢
| line#|StLen|Stmt|4F|StLen| 6F|label|4F|StLen|Stmt|OF]|
o t————- tm——p—mpmm o ———— et ——— tm———t——+

7.1.2 Statements with Special Tokenization

7.1.2.1 IF,..THEN,..ELSE

Statements which immediately follow THEN or ELSE are in one of two
categories: 1) Implied GOTIO and 2) Extended IF. An implied GOTO does
not contain *GOT0’, just the label or line number, as in:
IF A THEN 100 ELSE LABEL1

Any statement immediately following THEN or ELSE which is not an
implied GOTO is classified as an Extended IF Statement. There is a
difference in the way these tuo classes of statements are tokenized.
Note that the Extended IF token (tEXTIF) is simply the
mnulti-statement token (1@ - 4F); the label reference token (tLBLRF)
is EO; the line# token (tLINE#) is FO.

IF <expr> THEN PURGE

R + bmm——————— +

| I | [

I v | v
te———— i Rt +—————- tm——— to———t——s
|StLen| tIF| expr ItTHENItEXTlFIStLenIStmtIOFI
bm———— D Ly bm———— o tm————— b bt

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

IF <expr> THEN 100

L el +

| I

I v
t———— L L TP tmm———— tem———— T T
|StLen| tIF| expr |tTHEN|tLINE#|0010|0F|
t————- b tm———— tm————— tm—mmt——t

IF <expr> THEN <string expression»

R e e et D L T et +
| |
| V
to———— e S D o L ettt ke +
IStLenItIFI expr | tTHEN|tLBLRF|string exprIOFI
te———- B it tatater tom———— tom————— P —— +—=1+
IF <expr> THEN PURGE ELSE "ABC"
e mr e ———— + tom——m - +
| | I |
| v | v
re———- D R Dl TR T bpm————— tom———— R R atat J
|StLen| t1F|expr| tTHEN| tEXTIF|StLeniStnt|4F| (contirued below)
to———- R e T ST T $om———— o L S
D ettt +
| |
l v
tm———— e e tomm——- tomm————— +--+
|StLen| tELSE| tLBLRF|strg expr|OF|
ro———- tm———— tmm———— tmmmm— e m +-—4

So far only 1label references which are string expressions have been
shoun; also legal are ’literal’ label references. They are tokenized
with a tLITRL (4C) preceding them.

IF <expr> THEN ABC

.. +

i I

| v
tm————— tPoemm b ——— tPm————— tmm———— LR L L ettt t-=+
|StLen| tIF|expr| tTHEN| tLBLRF| tLITRL|ascii label|OF]|
- PR L D L tmm————- e —— L +=—=e

- HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

IF <expr> THEN A=B @ RETURN ELSE 10

L e L + temmm——— + R +
| I | | | |
I v | v | v
tm———— LR Tl e T b to———— L e el T L R
|StLen| tIF|expr| tTHEN| tEXTIF|StLen|Stmt|4F|StLen|Stmt|4F, .
to———— L e e o ———— tm———— L L tmm———pm——
R ke L T T +
| |
| '
----- D el TP
...StLen| tELSE| tLINE#|0100|OF|
----- L e R £

7.1.2.2 CALL

The simplified tokenization of CALL is as follous:
tCALL [<name> [tPRMST<parm list>] tPRMEN [tIN<file name>]]

The simplest form of the CALL statement takes no parameters.

nulti-statement line:
CALL @ CALL <subprogram name>

would be tokenized as follous:

tm——————— + L e ket +
| | | |
| v | v
tem b m——— e P ——— D ek e +
|40|tCALLI4FIStLenItCALLlnameItPRMENIOFl
temtm———— bt m———— to———— tommet =+

The

Note that the statement length of the first statement is only 4

nibbles.

Next, look at the tokenization of the CALL statement with parameter

passing.

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

CALL <name>(PV,PR,#5)

would be tokenized as follous (assuming PV is a pass by value &
PR represents a variable which will be passed by reference):

B e s g S Uy +
I |
I v
$m———- tm———- T b T o=t b TR TR TP tm————— +-—-+
IStLen| tCALL| name| tPRMST|PV| tCVAL|PR| tCREF| t#] 53| tCREF| tPRMEN|OF|
tm———— t————- D b DR T bt - bbb - +-—-+

Note in this example that each parameter is followed by a 1-byte
token, indicating whether it is a pass by value (tCVAL) or a pass by
reference (tCREF). Channel numbers are encoded someuhat
non-intuitively as a pass by reference. Any parameter list of a CALL
statement is preceded by tPRMST (Parameter Start); the 1list is
terminated by tPRMEN (Parameter End). Every CALL statement (except

the one with no subprogram name or parameters given) is terminated by
tPRMEN.

This example illustrates the tokenization of a CALL which specifies a
file.

CALL <name> IN <file name> @ CALL <name>(PV) IN file name>

D et D e T +

| |

| v
R el T temme e ——— e B ke D &
IStLenItCALLlnameItPRMENItINIf11e namel|4F| .
tmm——- tm——— bmmmm b — tmempm e ———— t-——

T et et +

| |

| v
to————- Y b ——— $mm—pm———- R i bttt +-—-4+
|StLen| tCALL| name| tPRMST|PV| tCVAL| tPRMEN| tIN| file name|OF|
t=———- tm———— tommm e —— b ———— tm———— tem——tmmmm————— ‘-

WUhen the subprogram name is specified as a string variable or quoted
string, it is tokenized either as the variable or in ascii (quotes
included). Houever, uwhen the subprogram name is given as an
unquoted string it 19 tokenized with a preceding byte: tLITRL. For
example:

HP-71 Softuare IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

CALL "AB" @ CALL AB

L D et R e + LR D Lt et L T +
| | | |
| v | v
tem——— ¢t m—— LR D il S T bt to—m——— L Py +
|StLen| tCALL| 22142422| tPRMEN | 4F|StLen| tCALL| tLITRL| 1424 | tPRMEN l OF|
tem——— tm———— o ——— tom————— e m———— tom——— tmm———— e L t-—=¢
7.1.2.3 SUB

The tokenization of the SUB statement is similar in many ways to
that of CALL; however, CALL does not output comma tokens betuween
parameters, uhereas SUB does. Also, the SUB statement has two
5-nibble fields wuwhich are used for chaining. The first field
immediately follows tSUB, and the second field immediately precedes
either t@ or tEOL (depending on which token follows the SUB
statement).

If the SUB statement is followed by !, then the second field
immediately FOLLOUS the tokenization of the comment.

The tokenization is as follous:
tSUB<XXKxX><name> [tPRMST <parm list>] tPRMEN [t! comment] <XXXxx>

Note that in all cases, the subprogram name in a SUB statement is

preceded by tLITRL. Following are some examples of the tokenization
of SUB.

T-7

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

SUB <name>» ! comment

e e c e e r e c e r e e — e r e — e — e m———————————— +

| |

| v
tm————- to——mpm———— tm—————— D it il b ———— TRl Dl Dbt +-=+
|StLen| tSUB| xxxxx| tLITRL| name| tPRMEN| t! | comment | DO} OF | xXxxxx|OF|
tm———- b ST tm————— bt tm—tmmm———— tm—tmmpm———— +-=-4

SUB <name> (PV,#5) @ BEEP

R it T T PP EP R PR >
|
|
m———- bt tmm————— T R L R bt ————— e bt Detatetetat +
|StLen| tSUB| xxxxx| tLITRL| name| tPRMST|PV| tCOMMA| t#| 53| tPRMEN] . ..
$oo——- R e tm————- IR ST tm—pm———— ot +
——— D ke +
I |
v | v
D bt R +t-—-+
... |xxxxx|4F|StLen| tBEEP|OF]|
tm———— bt - tm———- +—=+

7.1.2.4 IMAGE

Parsing of an image string is performed at the time the USING
statement is executed.

There are no special considerations for parsing the IMAGE keyword, on
the level of the BASIC interpreter. An IMAGE statement is tokenized
as follous:

L sttt L L +

I |

| v
t————— to———— tm————— L LTy ==
|line#|StLen| tIMAGE| image string|DO|OF]|
- e tomm——— P et te—t=—e

Similarly, a USING statement (for example, DISP USING “<image
string>", or DISP USING <line#>), is tokenized with the image string
as an expression, or a tLINE# token to reference the IMAGE statement.

Parsing of the image string must be performed at the time the USING
statement is executed, since the image string expression can be

7-8

HP-71 Softuare IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

changed during execution (consider DISP USING S$; <output 1list>),

IMAGE syntax is of a pecullar design -- that is, its rules are not
governed by the BASIC interpreter. In addition, image parsing is
inextricably 1linked to its execution. For these reasons, image

parsing is entirely separate from BASIC interpreting. For a detailed
description of the tokenization of image strings, see IDS Volume III,
module MB&IMG.

7.1.3 Global Assumptions
Status bits:

S4 - No Restore of Input Pointer
Used by error handler to determine if RESPTR should be called
for correct cursor position.

S5 - Line Number on Line
Program line, as opposed to immediate execute line,

S6 - Pending THEN
Uithin the scope of an IF-THEN clause, and ELSE has not yet
been encountered (ELSE is a legal terminator at this point; IF
is not legal).

S10 - Implied LET Error
Used by error handler to determine if statement parsed uas
being interpreted as an Implied LET (If S9 is set, then attempt
to parse as label, else attempt to parse as implied DISP).

f1RIN- System flag indicating that parse is externally invoked.

Registers
D(A) End of Available Memory; used to check against when
outputting tokens.

Statement Scratch Ram;

S-R0-2 Uhen f1RIN is set (indicates parse is externally invoked),
this RAM location contains the address to return to.

S-R0-3 IF Statement in progress. All statements following THEN
and preceding Endline are in this realm. Set if nonzero.

STMIDO RESTART Input Pointer
Uhen the RESTART flag is set, the position of D1 prior to
the call to the lexrical analyzer (contents of LEXPTR) is
saved. D1 is restored from this ram location prior to
restarting the lexical analyzer.

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

S-R1-0 Original Error Number
If a keyword is to be restarted and has not been previously
restarted, then this is where the error number is saved.
Uhen a keyword has not been restarted previously, this
location is zero,

S-R1-1 Original Error Position
At the same time Original Error Number is saved, the error
position address is saved.

S-R1-2 RESTART Address
Each time the 1lexical analyzer is called to evaluate a
lexeme at the beginning of a statement (or immediately
after THEN or ELSE), its restart address is saved. If the
RESTART flag is set, then the error handl:r restarts the
lexical analyzer with this address.

S-R1-3 RESTART Flag
If the lexeme at the beginning of a statement is an XUORD
or XEN, this flag is set; otheruise it is cleared. Set if
nonzero.

7.1.4 Entry Conditions from Line Parse Driver

D1 points to the first character following the Keyword. DO points
into the output buffer, past the statement length byte and the
keyword token. Status bits 0, 8, 9, and 10 are clear.

7.1.5 Exit Conditions

All parse routines which do not error exit, must return with carry
clear. Carry set is reserved for ’middle of IF’ return.

D1 should be pointing past the last legal character or Kkeyword
accepted as part of the legal parse, but no farther. In many cases
this requires a RESPTR to be done before returning - this can be
accomplished by ending a parse routine with: GOVLNG =RESPTR. For
example, if an optional Keyword is searched for with NTOKEN but not
found, D1 must be backed up. Note that if GNXTCR had been called
instead of NTOKEN, this wouldn’t be necessary since GNXICR does not
move D1 past any non-blank character.

D(A) should still hold the End of Available Memory.

Whenever information 1is output to the Output Buffer (at the DO
pointer) through the OUTxxx utilities, available memory is checked
to make sure there is enough memory to write out the information.
If there is not enough memory, an "Insufficient Memory" error is
generated.

7-10

HP-71 Software 1DS - Detailed Design Description
Statement Parse, Decompile, and Execution

If the Parser was invoked externally, the Message Driver returns to
the caller, instead of taking a harduired exit.

7.1.6 Parse Errors

The following entry points already exist for parse errors. If
S4=1, D1 is expected to be pointing at the input in error;
otheruise RESPTR will be called to position D1 at the previous
input, assumed to be the error.

SYNTXe Syntax

1VEXPe Invalid Expression
IVPARe Invalid Parameter *
MSPARe Missing Parameter ¥
IVVARe Invalid Variable
ILCNTe Illegal Context
EXCHRe Excess Characters
QUOEXe Quote Expected

PRNEXe) Expected

FSPECe Invalid Filespec

* If IVPARe is used, and there is no remaining input in statement
(after optional RESPIR, D1 points at @, !, ELSE, or EOL), then
MSPARe is issued.

If it is necessary to generate a parse error other than one listed
above, load the low 4 nibbles of DO with the error number and
GOVLNG =PARERR.

NOTE: For MOST parse error exits, S10 should be clear; S10 is the
Implied LET error flag.

If more details are needed to generate specific parse errors, see
the chapter, "Message Handling", or the header for the MFERR*
routine,

7.1.6.1 Relinquishing Error Handling

In some cases it 1is desirable for a LEX file parse routine to not
report its error message and position, but to give control BACK to
the mainframe and let the mainframe report the error. An example
of such a case is as follous:

Consider the mainframe routine ON TIMER; further consider what
happens when the user has HPIL plugged in, and incorrect syntax
is used with this statement. For example:

ON TIMER #1,1 GOSUB 50
Here’s the scenario: ON INTR (an HPIL statement) errors out in
the normal way (causing its error information to be saved); the

7-11

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

parse is restarted, ON TIMER also errors, and the error
information generated by HPIL is restored and reported to the
user, resulting in some obscure message like

HPIL ERR: Invalid Parm,
with the cursor flashing on TIMER. Obviously, this is less than
desirable,

By using the REST* entry point, the LEX file error is forever
forgotten, and the mainframe-generated error is the one reported
(or any parse error previously or subsequently reported in the
‘normal’ uay).

In short, this entry point enables language extensions to suppress
their particular error nmessage/error position, providing it is
KNOUN that a parse routine exists in the mainframe which will gain
control when the parse is restarted and which has the capability of
giving a more coherent error message.

To use this feature when a parse error is detected, simply do a
GOVLNG =REST*.

7.1.7 Expression Tokenization

Expressions specified in statements are converted to RPN (postfix
notation) by the expression parser and are stored in this format.
In this form, the expression is a series of tokens, The tokens are
described next.

7.1.7.1 Constants

Single-digit constants are tokenized as the ASCII character code
for that digit. ("0" thru "9")

Integer constants (2-12 digits) are tokenized by a byte uwhich
identifies the number of digits in the constant followed by a
nibble for each of the digits. The digits are stored least
significant digit first.

Floating point constants (1-12 digits) are tokenized by a byte
which identifies the number of digits in the mantissa of the
constant followed by a nibble for each of the digits. The
digits are stored least significant digit first. Following this
is a 3 nibble 9’s complement exponent.

String constants (single or double quoted strings) are tokenized
as the opening quote with the enclosed characters following and
are terminated with a matching closing quote.

7.1.7.2 Variables
Variables are tokenized in one to three bytes as follous:

(t$) [tADIGx]) Alpha
Uhere the t$ token is present if its a string variable, the

7-12

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

tADIGX token is present if the variable has a digit character
after the letter and alpha is aluways present and encoded as the
ASCII code for that 1letter., There are ten possible tADIGx
tokens (tADIGO - tADIGY9) corresponding to the ten possible
digits,

7.1.7.3 Operators

Operators (monadic and dyadic) are tokenized with a sgingle byte
except for the relational operators vuwhich have a nibble
following the first byte to identify the specific relation.

7.1.7.4 Functions

Functions are divided into four groups:
Mainframe functions -- These are tokenized as a single byte.

XEN’s -- These are tokenized as an tXEN token followed by a
byte identifying the LEX ID and another byte specifying the
entry number within that ID. Following these three bytes is a
nibble which says hou many parameters this function reference
actually has.

Arrays -- The tokenization of arrays is a hybrid of variable
and XEN tokenization. A tARRAY token 1is followed by one to
three bytes that describe the name of the array (same as for
variables) and this is followed by a nibble describing the
number of subscripts.

Funny Functions -- This type is used for functions which defy
normal rules for parse or execution. The tokenization is
described in the next section.

Following any parameterless function a tLPRP token may be
present to preserve a " ()" which followed the function.

Any token other than those above signals the end of the expression.

7.1.8 Funny Function Parse

The lexical analyzer (NTOKEN) finds the keyword corresponding to
the FFN in a lex table. It detects that its token number is 00.
It jumps to the ‘"execution address" of token 00. This routine
figures out what token should be returned by looking at the letters
of the text (or maybe some pointer the lexical analyzer passes to
it) and leaves that in A(5-0) in the form:

B e T T ——— R e Dt ey

A: | |Fn# | Id |tFEN|

7-13

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

Prrrcn e e m-- fPrmcmp =y

It also loads B(A) with the address of a routine (in that lex file)
which knous houw to parse that FEN, This will be called by the
expression parser if indeed the expression parser was the one who
called NTOKEN, It should set status Dbits to look 1like a
parameterless function (S0-S3 clear).

It then returns. This is actually the return from NTOKEN.

If it wvasn’t the expression parser who called NTOKEN then the entry
returned simply 1looks like a function and the parse routine can
give the same parse error that it would give if any other function
was found. CALC node has a specific trap for the tFEN token and
disallous it.

The expression parser eventually sees the tFFN token and jumps to
the address returned in B(A). Before jumping, it compiles the 8
nibbles in A(7-0). This 1leaves room for the 1length byte to be
filled in. DO (the output pointer) points past these eight
nibbles, ready for the FFN parse to take over. D1 (the input
pointers points uwherever it uwas left by the lexical analyzer
override routine described above. D(A) points to tle parse stack.
This stack must be preserved. It extends from D(A) to AVMEME. The
FFN parse routine must respect the register usage of the expression
parser.

If the expression parser must be reentered to parse an expression
within the FEN, AVMEME must be moved up to "protect” the parse
stack. This implies that the stack length must be saved so that
AVMEME can be set back to its original value. In order to be able
to fill in the FEN length when it 'is done parsing it, DO should be
saved also. One subroutine level should also be saved to prevent
overflowing the stack. If these three items (parse stack length,
DO pointing past the length byte and one return stack level) are
saved on the parse stack before moving AVMEME to protect the stack,
then unlimited nesting of FFENs is possible.

The net effect of the FFN parser is to parse a "parameterless"
function. This implies that no parameters precede the function in
the RPN stream of tokens. Once the FIN has been completely parsed,
control should passed back to the expression parser in the state
where an operand has just been found (P1-10). It should return to
SE1-10 if the FIN returns a string result. This pushes a "Primary"
on the parse stack and scans for another token. In either case it
should do a RINSXM to indicate that this is a value expression,
The expression parser continues, trying to work this primary into
the expression,

The CALL statement expects the expression parser to set the RAM
nibble at PRMCNT to a non-zero value if the expression contains any

7-14

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

function that can possibly cause another call statement to be
executed. In the mainframe, only user-defined functions can cause
this to happen. It is conceivable that a funny function could
perform a CALL on its own. In this case, the PRMCNT nibble should
be set to prevent a problem with call, There is no problem if the
expression parser is used recursively since if the expression which
is a parameter to the funny function contains a user-defined
function, that "copy" of the expression parser will set the PRMCNT
nibble and it will remain set for the duration.

The only acceptable error exit in the process described above is
the case of insufficient memory to continue normally; the routines
must return in all other cases.

7.1.8.1 Funny Function Tokenization

The "Funny Function" token (FEN) lies just within the range of
built-in functions. This token (tFFN) is encoded as follous:

e B i it P - +

|tFEN| Id |En# |Len | Funny code |

P e m e - = - - - -—— +

First comes the tFFN token followed by the Lex Id and the function
number, just as in XEN, Following this, there is a length byte.
This byte, when added to its own address points to the first nibble
of code not contained in the FEN,

7.1.9 Polling during Parse

A statement issuing a poll (slow poll) during parse must use the
POLLD+ entry point, This adjusts the end of available memory value
in D(A) to reflect the save area and GOSUB stack level used by
poll.

AVMEMS (available memory start) must be set to the value in DO in
order to preserve data already written to the output buffer; this
can be done by calling AVS=D0. On return from the poll, the
calling routine must reset D(A) to available memory end. The
routine D=AVME does this.

Sample code:

GOSBVL =AVS=D0 Set AVMEMS DO
GOSBVL =POLLD+
CON(2) =pPOLL# Issue poll

GOSBVL =D=AVME Set D(A) = AVMEME

7-15

HP-71 Softuare IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

7.2 Uriting a Decompile Routine

7.2.1 Global Assumptions

INADDR - Contains pointer to statement length byte of statement
currently being decompiled.

LDCSPC - Contains pointer to desired cursor position in decompiled
line (immediately following line number).

sSSTdc - SST Flag (S1) - Set ONLY by Single Step to decompile only
a statement not the entire line.

S12-S15 - Global System Flags - Except (S12), PgmRun (S13), NoCont
(S14), Trace (S15)

f1IRTN - System flag which indicates that decompile was externally
invoked.

S-R0-2 - Uhen f1RIN is set, this RAM location contains the address
to return to.

R3 Used by LIST; not available to decompile routines

7.2.2 Entry Conditions from Line Decompile

D1 points into the token streanm. Di is past the keyword token; A
and C contain the next token.

DO points into the output buffer, past the decompiled line number,
keyword, and a blank.

D(4) contains the End of Available memory; used to check against by

the output routines. This value should remain untouched.

7.2.3 Decompile Utilities

For output utilities, see "How To Urite a Parse Routine."

GTEXT1 - Given a token, outputs the corresponding text. Includes
numeroug entry conditions and entry points which provides

for outputting leading and/or trailing blanks.

EOLDC - Checks for statement terminators: t@, t!, tEOL

7-16

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

EOLXC* - Calls EOLDC above; if statement terminator found, does not
return - handles rest of statement by going to OUTELA, If
no statement terminator found, returns to caller with
carry clear.

VARDC - Decompiles variables

LIN#DC - Decompiles and outputs a line number, suppressing leading
zeros,

ASCICK - Copies ascii characters from input stream to output
buffer, until encountering a non-ascii character.

EXPRDC - Decompiles expression pointed to by D1.

FILDC - Decompiles file specifier

ARYDC - Decompiles array which was compiled by ARRYCK.

LABLDC - Assumes D1 is at tLBLRF (label reference token), steps
over tLBLRF. If label is a 1literal, outputs it within
quotes; otheruise, the string expression is decompiled.
Returns with carry clear.

SKIPDC - Useful if an unrecognized XUORD is encountered; skips D1

to the end of the statement and goes to OUTELA (see
belou).

7.2.4 Exit Conditions
Uhen the token stream has been exhausted, exit through either

OUTEL1 (D1 points to statement terminator) or OUTELA (D1 points to
statement terminator and A(B) contains it).

D(A) points to the end of available memory.

7.2.5 Existing Multi-use Decompile Routines

Any keywords which have no parse to speak of (STOP and RETURN are
good examples), can use OUTELA as their decompile routine.

Any keywords which have an optional expression list, delimited with
compiled commas and/or semi-colons may use DROPDC as their
decompile routine. Note that this can be used even if no
delimiters are compiled betueen expressions: the expression list is
still output with comma delimiters.

Any keywords which have a mandatory expression list may use FIXDC

7-17

HP-T1 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

as their decompile routine. Again, delimiters need not be compiled
between expressions; comma and semi-colon delimiters are acceptable
and will be decompiled.

7.2.6 Funny Function Decompile

Uhen expression decompile sees a tFFN token, it outputs a nullop
and it looks up the execution address of the FFN. If the FFN can’t
be found (ie the lex file is missing) it pretends the token is a
tXEN and outputs XFN1llleee, where 111 is the LEX ID (leading zeroes
suppressed), and eee is the entry#. It skips over the FFN by
adding the FEN length. No attempt is made to decompile the FFNs
parameters.

The decompile handler for this FFN is pointed to by a relative
address immediately above the execution address. The FFN decompile
handler should decompile the FIN as only it knows hou. This
decompile cannot leave unquoted characters greater than 127 in the
buffer since this would mess up the decompiler when it is resumed.

If the FEN contains an expression, it will have to preserve some
information to be able to call expression decompile; it will have
to steal some available memory at AVMEME to preserve the pointers
vhich are critical to the expression decompile which 1is in
progress. It will also have to save one stack level,

Once the entire FIN has been decompiled, control should be passed
back to the main expression decompile 1loop (via a GOVLNG =EXDCLP).
The expression decompile should continue normally looking at the
rest of the expression. The text that has been generated will be
treated as a parameterless function with a very long nanme.

7.2.7 Polling during Decompile

A statement issuing a poll (slow poll) during decompile must use
the POLLD+ entry point. This adjusts the end of available memory
value in D(A) to reflect the save area and GOSUB stack level used
by poll.

AVMEMS (available memory start) must be set to the value in DO in
order to preserve data already uritten to the output buffer; this
can be done by calling AVS=DO, On return from the poll, the
calling routine must reset D(A) to the current val.ie of available
memory end. The routine D=AVME will do this.

Sample code:
GOSBVL =AVS=D0 Set AVMEM at DO
GOSBVL =POLLD+ Issue poll
CON(2) =pPOLL#

7-18

HP-71 Softuare IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

GOSBVL =D=AVME Set D AVMEM

7.3 Statement Execution

7.3.1 Entry Conditions

The program counter (D0) is positioned past the begin BASIC token.
PCADDR has been updated and points at the statement length byte for
the statement,

7.3.2 Global Assumptions
Several flags have global meaning during statement execution:

Except (s12) Exception has occured
PgmRun (S13) Program Running

NoCont (S14) No Continue of execution
Trace (S15) TRACE Mode active

PgmRun (S13) is set if a program is executing. NoCont (S14) is set
if execution is to halt after the next statement is executed.
Single step execution sets this flag.

7.3.3 Exit Conditions

Uhen the execution associated with a given statement is complete,

control must be turned over to the run loop. This 1is done by

exiting through NXTSTM or RUNRIN.

NXTSTM - Skips over statement preceded by current PCADDR. The
statement follouing will be the next one to execute.

NXIST2 - DO points to statement length byte of statement to skip
over.

RUNRIN - DO points to statement terminator (t@,tEOL, tELSE)
preceding next statement to execute, Be sure sENDx (S1)
is clear.

RUNRT1 - DO points to statement terminator (t@,tEOL,tELSE)

preceding the next sgtatement to execute, sENDx is
explicitly cleared.

7-19

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

7.3.4 Error Exits through MFERR/BSERR

Error exits from statements and functions require only four things:

1) S13 is set when appropriate (indicates program running)

2) PCADDR is accurate

3) The error number is loaded in C.

4) P is set appropriately to select options (set ERRN, display
error prefix, etc.). See MFERR* documentation or the "Message
Handling" chapter for details.

Entry points MFERR and BSERR are used for processing errors
generated in the BASIC operating system. MFERR requires that the
error number is loaded in C(B); this error exit can be used for
mainframe generated errors (LEX file #00). However, BSERR requires
that the error number is loaded in C(3-0), specifying both the LEX
ID number and the message number. It is acceptable to use BSERR
for mainframe- generated errors, as long as C(3-2) is filled with
zeros.

7.3.5 Use of Available Memory by Statements

The execution of statements often requires the usurping of
available memory. There are some restrictions on how much of
available memory may be allocated and for how long. Refer to the
section Available Memory Management in the “Memory Structure"
chapter for details.

7.3.6 Statement Execution Utilities

FSPECx

Evaluates file specifiérs; will poll for any not
recognized by mainfranme.

FILXQ"

Evaluates mainframe file specifiers and dedicated device
specifiers. Currently accepted device names are PORT,
MAIN, CARD, and PCRD.

EXPEXC

Evaluates expression pointed to by DO. Evaluated
expression on stack. See EXPEXC documentation for
details.

FINDF

Given a file specifier returned from FSPECx or FILXQ",
searches for the given file. Indicates upon exit, whether
or not file found. 1If file found, provides information on
where. Numerous entry points,

EOLXCK

Given a token in A(B), returns with carry set if it is a
statement terminator: tEOL, t@, t!, tELSE.

7-20

HP-71 Software IDS -~ Detailed Design Description
Statement Parse, Decompile, and Execution

7.4 Expression Execution

7.4.1 Entry Conditions to Expression Execute

DO is the 1nterpreter 8 program counter; it must p01nt to the first
token of the expre951on when expre391on execution is called. D1 is
the active stack pointer for the operand stack during execution.

Several entry points are available:
EXPEX- collapses the math stack, but leaves status bits alone.

EXPEX+ saves the caller’s status bltS and reads MIHSIK to
position the stack pointer.

EXPEXC leaves status bits alone, and reads MIHSTK to position the
stack pointer. EXPEX1 is another name for this entry
point,

EXPR assumes the stack pointer is already positioned.

7.4.2 Math Stack Usage and Format

The math stack grous from high addresses to low. The stack item at
the louest address is said to be on top of the math stack. MTHSTK
is updated only upon termination of expression execution, or for
special cases such as user-defined function execution.

7.4.3 Data Types on the Stack

There are four kinds of objects that exist on the math stack under
normal circumstances:

Real numbers

Complex numbers

Strings

Array descriptors

Real numbers exist on the math stack in standard floating-point
form. They can be identified by a 1legal BCD digit on top of the
stack.

7-21

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

Real number on stack
L b=t
High |S| Mantissa |Expl Lou
mem t-t-----me-e- +---+ men
1 12 3

Complex numbers consist of an E-digit on top of the stack, with a
zero-digit just below it. This is the complex stack signature.
Below the stack signature are two standard floating-point numbers:
the imaginary part on top of the real part.

Complex number on stack

Real part . Imaginary part
ot mm e D R R LT R P Rt]
High |S| Mantissa |Exp|S| Mantissa |Exp|OE| Low
mem totmmmm bl BT LT T +--=+--+ men

Strings have an FO0 stack signature. Belouw the signature is a
five-nibble field giving the length of the string in nibbles. Then
come nine nibbles which can normally be ignored; they contain
destination information for string assignment if they contain
anything useful at all. This information includes the maximum
string length and the address of the destination. Hence, a string
stack header consists of 16 nibbles; the ASCII text of the string
lies under the header, with the first character of the string
touard the bottom of the stack, and the last character next to the
header.

STRING on stack
R e L tm———— bm——————- tm————— e
High |String ... IMaxLn|Address|Length|0F| Lou
MeMm +--c-ceceeo———- tom—— S tom———e +--+ nen
4 5 5 2

A string may have another representation on the stack if it was
created by pushing an element of a nonexistant string array. In
this case, the tag is a F8 instead of FO. The 1length field will
indicate a null string. The name of the variable referenced and
the element number will be filled in. This is treated as a mull
string by system routines. This item is 16 nibbles in length with
the following format:

7-22

HP-71 Softuare IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

Nonexistent string array element on stack
t-———— =t e e +--+
High |Ele# |00|Name|Length|8F| Lou
mnem to———— R R Rttt +--+ nen
4 2 3 5 2

Any other object on the stack must be an array descriptor, with its
offset field changed to the absolute address of the array’s data
area,

Array descriptor on stack
------- L ettt T TR P
High IAddreselDLm lengths|bl#|t| Low
mem D D R il +-+-+-+ Men
5 8 111

b=Option base , t=Type

7.4.4 Expression Execution Utilities

Utilities exist for popping and type-checking arguments, along with
reentry points for pushing results,

POPIN and POP2N are used for popping numeric arguments, Attempting
to pop a string or an array descriptor with these routines causes
an error to occur, If the carry is set upon return from these
routines, the arguments are complex.

MPOPIN and MPOP2N establish the math modes, pop arguments, and test
for exceptional inputs before returning. These utilities all leave
the stack pointer (D1) positioned for placing a standard
floating-point number back on the stack.

POP1S tests for a string on the stack. Attempting to pop a number
or array descriptor with this routine causes an error to occur.
Upon return, the string length is left in the lower 5 nibbles of
the A-register, with the stack pointer (D1) at the topmost
character of the string text.

REVPOP has the same exit conditions as POP1S, but the strlng is

reversed before returning. REV$ is a etrlng reversal routine,
vhich returns with the stack pointer unaltered.

7-23

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

7.4.5 Function Returns

Reentry points are called function returns. The mainframe code has
established function returns for real numbers only. FNRIN1 assumes
the PC is still in DO, and the result is in C. FNRIN2 assumes the
PC has been moved to A, with the result in C. These two function
returns are for p1301ng nev items, such as constants, on the stack;

a stack collision check is performed These returns are generally
NOT used for functions which have arguments, since the stack
pointer 1is usually already vhere it needs to be upon return.
FNRIN3 assumes the PC is in A, and the result is in C., FNRIN4
assumes the PC is back in DO, and the result is in C., A typlcal
numeric function will be 1mp1emented with a call to a POP routlne,
calls to appropriate math routines, and a jump to an appropriate
ENRIN (usually ENRIN4). If a functlon places 1its result on the
stack itself (as do most strlng functions), EXPR is the appropriate
return; this begins processing of the next token,

7.5 Implementation of Function Execution

7.5.1 Entry Point

The execution address should be marked as an entry point to allou
the loader to fill in lex tables. Immediately above the entry
point is the range of valid argument counts,

Above this is a string of nibbles describing each parameter. Each
nibble should have the 8’s bit set if a numeric parameter is
alloued. The 4’s Dbit should be set if a string parameter is
alloued. The 2’s bit should be set if an array parameter is
required. The 1’s bit 1is not defined but should be zero. One
nibble is required for each possible parameter.

The minimum argument count (0-F) is specified first, followed by
the maximum argument count (0-F).

For example:

NIBHEX 8 3rd parameter numeric (if present)

NIBHEX 8 2nd parameter numeric

NIBHEX 4 1st parameter string

NIBHEX 23 Argument count range (min=2,max=3)
=SUBST$ P=C 15 Load actual number of parms in P

7P= 2 Check if only 2 parms

GOYES SUBSTZ2

7-24

HP-71 Software IDS - Detailed Design Description
Statement Parse, Decompile, and Execution

wvhere 2 is the minimum argument count and 3 is the maximum argument
count, All XINs have a 7 nibble tokenization, the 1last nibble of
wvhich is the actual number of parameters passed to the function.
If the function has a variable number of parameters, the execution
code for the function can find the actual number of parameters by
looking at the sign field of the C register. If a function has a
fixed number of parameters, it may assume that the proper number of
parameters are on the stack.

Four hardware stack levels are available for function execution. A
complete list of RAM that is available to and restricted from
function execute is in the "Memory Structure" chapter.

7.5.2 Entry Conditions

The current program counter 1location is contained in DO and has
been updated past the tokens that specify the function. The ’B’
field of the B register contains the table entry number to the
function execution code.

The arithmetic stack expands from the end of available memory
(AVMEME) toward lover memory making use of available memory. At
the time of the function call, D1 points to the "top" of the stack.

If the stack grous as a result of the function call, a check should
be made to prevent the stack from exceeding available memory, by
comparing the stack pointer with AVMEMS. No LEEUAY need be
maintained during expression execution, ie. all of available
memory is truely available.

7.5.3 Exit Conditions

The program counter is stored in DO. The stack pointer is stored
in D1. Other than these data pointers, the function need not
preserve any CPU registers (working, scratch, or status). See the
section on function returns under expression execution for
information on hou to resume the expression interpreter once the
function’s execution has completed.

7.5.4 Error Exits through MFERR/BSERR

Error exits from statements and functions require only four things:
1) S13 is set when appropriate (indicates program running)
2) PCADDR is accurate
3) The error number is loaded in C.
4) P is set appropriately to select options (set ERRN, display
error prefix, etc.). See MFERR* documentation or the "Message

7-25

HP-71 Software 1DS - Detailed Design Description
Statement Parse, Decompile, and Execution

Handling" chapter for details.

Entry points MFERR and BSERR are used for processing errors
generated in the BASIC operating system. MFERR requires that the
error number is loaded in C(B); this error exit can be wused for
mainframe generated errors (LEX file #00). However, BSERR requires
that the error number is loaded in C(3-0), specifying both the LEX
ID number and the message number. It is acceptable to use BSERR
for mainframe- generated errors, as long as C(3-2) is filled with
zeros,

7.5.5 "Funny" Functions

The execution address of tFFN is exactly the same as tXFN. This
will cause the execution address of that particular FEN to be
called. One peculiar side effect of wusing XFN execute to get to
the execution address is that the program counter (DO) will have
been moved to point past the first nibble of the length byte. The
first nibble of the length byte will have been read into C(S) since
XEN thought it was reading a parameter count., The FFN execute
should merely move DO one nibble farther to finish skipping the
length byte,

The FIN should do what it has to in order to leave exactly one item
on the stack. It should not alter what was already on the
stack--this is the nature of parameterless functions.

Once it has its value pushed on the stack, it should jump to EXPR,
or use any of the normal entry points.

7-26

HP-71 Software IDS - Detailed Design Description
BASIC File Considerations

o e - = = e e e = = = > = -

I
| BASIC FILE CONSIDERATIONS

2
o
@

o e e e e e e e e e e = e - = -

Uhen extending system capability through BASIC, there are several
items to keep in mind.

8.1 ROM Generation

Before a BASIC file is RUN, the system chains together all its
labels, subprograms, and user-defined functions. Also, any line
number references are compiled as they are encountered in the
running program., If a file in ROM is not already chained or does
not have its line number references compiled, then at the time it’s
invoked an error will result as the system attempts to urite to
ROM. There are several ways to avoid this unpleasant situation.

8.1.1 Chaining a BASIC File
There are three ways to chain a file;
1) COPY it. The destination file will be chained.
2) RUN it.
3) TRANSFORM it into TEXT, and then back into BASIC.
Keep in mind that any time a file is modified, it is no longer
chained,

8.1.2 Compiling Line Number References

To compile all line number references in the current file, simply
execute:

RENUMBER 1,1,1,1

This statement acts as a NOP, except for the fact that it compiles
line number references (No line numbers are changed),

HP-71 Software IDS - Detailed Design Description
BASIC File Considerations

8.2 BASIC Application Standards

8.2.1 Preserving The Mair Environment

Uhen the user runs a BASIC file to perform a given application,
every effort should be made to preserve as much of the user’s
environment as possible. This includes variables, user flags,
display format, etc. To further this end, wve suggest that any
BASIC application program which may destroy or use BASIC variables,
should save the user environment via a CALL statement,

For example, say there is an application program, PLOT, which by
necessity must use BASIC variables. If the first line of PLOT is
as follows, then the user’s variables will remain intact:

10 CALL PLOT @ SUB PLOT

Now the user can safely invoke PLOT by simply saying:
> RUN PLOT

8.3 BASIC Packing Techniques

Uith some forethoughtl you can use features of the HP-71 BASIC
interpreter to minimize the amount of memory that your BASIC
programs require. Listed below are our suggestions, along with the
actual memory savings.

1) Don’t use GOTO immediately after THEN or ELSE:
Change:
10 IF FLAG(X) THEN GOTO 100
To:
10 IF FLAG(X) THEN 100
This saves three bytes.

2) Check for a mull string using the LEN function:
Change:
10 IF A$#"" THEN
To:
20 IF LEN(A$) THEN
This saves three bytes,

3) Instead of using THEN and ELSE to make one of two assignments

8-2

HP-71 Softuware IDS - Detailed Design Description
BASIC File Considerations

to a variable, do one assignment followed by a conditional to
determine if the other assigrment should be done:

Change:

10 IF X THEN K=L ELSE K=P

To:

10 K=P @ IF X THEN K=L

This saves three bytes.

4) Instead of testing a flag to determine if a variable
(or value) should be incremented, just add the flag value:
Change:
10 IF FLAG(X) THEN K=K+1
To:
10 K=K+FLAG(X)
This saves five bytes.

Change:
20 IF NOT FLAG(X) THEN K=K+1
To:
20 K=K+NOT FLAG(X)
This also saves five bytes

5) Use single character alpha variables, instead of alpha-digit
variables. There is a one byte savings for each occurence.

6) Concatenate a statement to the previous one, instead of using
a neuw line number, There is a two byte savings for each
concatenated statement.

8.4 Version Number

It is strongly recommended that each BASIC software application
respond to the VER$ poll to indicate the version of the softuare.

This requires a LEX file to be included with no Keywords, but the
appropriate code to indicate the proper VER$. The last LEX ID for
Custom Products - Special (244) is used as the LEX ID for VER$
response of BASIC applications. This LEX ID may be used for words
by a particular custom application, without conflict,

The VER$ string should indicate the application name, using 3 or
less characters, followed by a colon and a single letter. The .
single letter 1ndicates the specific version number. The letter
“A" is the first released version.

The following examples show VER$ strings for three HP71 BASIC
applications:

VER$ String Application Pac

8-3

HP-71 Software IDS - Detailed Design Description
BASIC File Considerations

CIR:A HP71 Circuit Analysis Pac - Version A
FIN:A HP71 Finance Pac - Version A
SUR:A HP71 Surveying Pac - Version A

The LEX file containing the VER$ should be the first file in the
ROM and have a name representing the application. It is suggested
that the file be protected from being copied., This can be
accomplished either by designating the file as Private, or by
ensuring that the file name has some lower case characters. The

latter can be done by poking into the file name field of the file
header:

10 DIM F$,N$,A$(5) INTEGER N

20 DISP "Set name to lower case"
30 INPUT “01d filename:";F$

40 INPUT “New name:",F$;N$

50 A$=ADDRS$ (F$)

60 N$=(N$&" “)[1,8]

70 FOR I=1 TO 8

80 N=NUM(N$[1])

90 POKE A$,DTHS$ (N) (5]&DTH$ (N) [4,4)
100 A$=DTH$ (HTD(A$)+2)

110 NEXT 1

120 DISP "Done with name change"

The follouing examples shouw the names of the LEX files containing
the VER$ for three BASIC application pacs:

VER$ LEX File Name Application Pac
Circuit HP71 Circuit Analysis
Finance HP71 Finance
SurveyV HP71 Surveying

HP-71 Software IDS - Detailed Design Description

Utilities

F Q-

| UTILITIES

P -

- e > - - - - - o= > - - - - - - .- -

=
o

This chapter provides a brief overvieu of some operating system
entry points which are useful for external software development.

9.1 Decompile Utilities

EOLDC
EOLXC*

VARDC

LIN#DC

ASCICK

EXPRDC
FILDC*
ARYDC

LABLDC

SKIPDC

Description
Given a token, outputs the corresponding text.
Includes numerous entry conditions and entry points
vhich provides for outputting leading and/or trailing
blanks.
Checks for statement terminators: t@, t!, tEOL.
Calls EOLDC above; if statement terminator found, does
not return, but handles rest of statement by going to

OUTELA. If no statement terminator found, returns to
caller with carry clear.

Decompiles variables.

Decompiles and outputs a line number, suppressing
leading zeros.

Copies characters from input stream to output buffer,
until encountering a character with high bit set.

Decompiles expression pointed to by D1,

Decompiles file specifier.

Decompiles array which was compiled by ARRYCK.

Assuming D1 is at tLBLRF (label reference token), steps
over tLBLRF. If label is a literal, outputs it within
quotes; otherwise decompiles strlng expression.

Returns with carry clear.

Useful if an unrecognized XUORD is encountered; skips

D1 to the end of the statement and goes to OUTELA (see
belou).

HP-71 Software IDS - Detailed Design Description
Utilities

9.2 Display and Keyboard Control Utilities

9.2.1 Display Control

The LCD display and all associated HP-IL "DISPLAY IS" devices may
be controlled by sending characters to the DSPCHA/DSPCHC routine.
In general, these characters are processed as if they are being
passed on to some external display device but the processing is
actually performed by the HP-71 CPU. This includes insert mode,
processing escape sequences and in general all necessary
maintenence of the display buffer and status information.

The display buffer is controlled by sending characters as described
above but the actual LCD is generally not affected by these
characters. It is only updated when the BLDDSP routine is called.
At that time the display buffer and status information is used to
decide which bits of the LCD should be on. It also controls the
left and right arrows that indicate whether the buffer extends past
either end of the windou.

9.2.1.1 Carriage Return and Line Feed

Uhen a carriage return is sent to the display (via DSPCHA) it will
cause BLDDSP to be called automatically. If the display needs to
be updated to reflect the current display then BLDDSP must be
called explicitly, In general calling BLDDSP doesn’t take long if
the LCD already reflects the display buffer since a status bit
(Exact) is cleared whenever anything is done to the display buffer
that might alter the LCD bit pattern that would be built. BLDDSP
returns immediately if that bit indicates that the display is
already built correctly,

Uhen a carriage return is sent to the display, the cursor iand
FIRSTIC) should be reset to zero. UWhat actually happens 1is that a
flag is set so that when the next character is sent to the display
these values will be reset before the character is ~.rocessed. This
allous the information needed to properly build and scroll the
display to be preserved until it is no longer needed.

The character scroll rate is checked when a carriage return is
received. If it is zero, then the first character in the display
is moved s0 that the last character in the buffer will fit in the
display. If the scroll rate is infinite, then the display is built
starting at the first character in the buffer (pointed to by
FIRSTIC). In all other cases, the display is built starting where

9-2

HP-71 Softuare IDS - Detailed Design Description
Utilities

FIRSTC points (usually zero) and then the character scroll delay is
performed, then the FIRSIC is incremented and the display rebuilt.
This is repeated until all characters in the display buffer have
been vieued.

Uhen a 1line feed is sent to the display, the buffer should be
cleared. Uhat actually happens is that a flag is set so that when
the next character is sent to the display the buffer is cleared
before then character is processed. This allous the characters in
the display buffer to be scrolled through the display even though
the display has technically been cleared.

The display delay is triggered whenever a line feed character is
sent to the display unless the cursor is on (CurOff clear) or the
delay suppress bit (XDelay) is set.

9.2.1.2 Display Escape Code Sequences

The HP-71 display accepts the following escape sequences:

Esc Q -- Insert cursor

Esc N -- Insert cursor (with wrap)

Esc R -- Replace cursor

Esc C -- Cursor right

Esc D -- Cursor left

Esc H -- Home cursor

Esc J -- Clear Display (Treated same as ESC K)
Esc K -- Delete through end of line

Esc » -- Cursor on

Esc < -- Cursor off

Esc E -- Reset display

Esc P -- Delete char

Esc 0 -- Delete char (with wrap)

Esc % <col> <rouw> -- Set cursor position absolute

Esc Ctrl-C -- Cursor far right
Esc Ctrl-D -- Cursor far left

9.2.1.3 Scrolling The Display

Once characters have been sent to the display buffer it is
frequently necessary to allow the user to scroll the contents of
the buffer using the cursor keys. The SCRLLR routine does this.
It will watch the keyboard and cause the display to scroll whenever
one of the scrolling keys 1is hit. It will return when the user
presses a key other than a scrolling key. It will also time out
after ten minutes if no key has been pressed.

HP-71 Software IDS - Detailed Design Description
Utilities

9.2.1.4 Setting The Bit Pattern In The Display
The actual bit pattern in the display is normally set by BLDDSP to
reflect the display buffer., However, at a lower level, the BLDBIT
routine may be used to set the bit pattern according to some other
buffer. This is used to implement the "VIEU" and "ERRM" keys.
9.2.2 Keyboard Interface
Keyboard scanning is performed by KEYSCN. This routine is called
by the interrupt routine but may be called from anywvhere. If it is
called too often key bouncing may result. To prevent this, the
entry point DEBNCE can be used to cause a specified wait before
performing the keyscan,
Uhen KEYSCN finds keys neuwly doun it adds to the queue of keys in
the keyboard buffer. This buffer holds up to 15 keys. If the
buffer is full then the neu keys are discarded.
The POPBUF routine should be used to remove keys from the buffer.
This routine sets up the buffer so that repeating keys can work.
9.2.3 Summary

Entry Description

BLDDSP Build LCD pattern from display buffer.

BLDBIT Build LCD from specified buffer.

DEBNCE Debounce key before keyscan.

DSPCHA Send character in A(B) to display buffer.

DSPCHC Send character in C(B) to display buffer.

DSPRST Reset display.

KEYSCN Keyboard scanning.

POPBUF Remove keys from buffer,

9.3 Expression Execution Utilities

HP-71 Softuware IDS - Detailed Design Description

Utilities

9.3.1 Utilities for Pushing Items Onto Math Stack

EXPEXC

FNRTN1

BF2STK

STKCHR

ADHEAD

Description

‘The normal entry point for expression execution.
Evaluates an expression by processing the tokenized
stream. The value(s) are left on the stack when done.

Resumes expression execution after pushing a value onto
the stack. Related entry points are FNRIN2, FNRIN3,
and ENRIN4, Further described in the "Statement Parse,
Decompile, and Execution" chapter,

Adds a string to the stack from a string of characters
in memory.

Creates a string on the stack one character at a time.
It works with ADHEAD to build a proper stack itenm.

Adds the proper string header to a string that has been
placed on the the stack by STKCHR.

9.3.2 Utilities for Popping Items Off Math Stack

The following utilities are used for popping numeric or string
arguments oft the MATH Stack, and for checking their type.

POP2N

MPOPIN

MPOP2N

Description

Pops a numeric argument. If item is a string or a dope
vector, a fatal error occurs. If the carry is set upon
return, the argument is complex.

Pops two numeric arguments. If either item is a string
or a dope vector, a fatal error occurs, If the carry
is set upon return, the arguments are complex (coerced
to match each other if necessary).

Similar to POPIN, but establishes the math modes, pops
an argument, and tests for an exceptional value before
returning. Leaves the stack pointer (D1) positioned
for placing a standard floating-point number back on
the stack.

Similar to POP2N, but establishes the math modes, pops
arguments, and tests for an exceptional values before
returning. Leaves the stack pointer (D1) positioned
for placing a gtandard floating-point number back on

9-5

HP-71 Software IDS - Detalled Design Description
Utilities

the stack,

POP1S Tests for a string on the stack. Attempting to pop a
number or dope vector with this routine results in a
fatal error. Upon return, the string length is left in
the CPU, with the stack pointer at the topmost (lowest
addresgs) character of the string text,

REVPOP Has the same exit conditions as POP1S, but the string
is reversed before returning.

REV$ Reverses character order of a string on the stack.
Returns with the MATH Stack pointer unaltered.

POPMIH Moves the stack pointer past one item on the stack.
This item may be string, real, complex, etc.

9.4 File I/0 Utilities

The following utilities are used to create files, open files, read
or urite arbitrary data to or from files, and to close files. For
further information on file access, see the "File System" chapter
in this volume and the "“File Utilities" chapter in Volume 1II of
this document.

Entry Description

CLOSEF Close an open file.

CRTF Create a file of arbitrary type, in mainframe or on
mass medium, Does not open file, ‘

FIBADR Fetches the address of an open file’s FIB into register
DO.

FINDE Find a file in memory given 1its name and memory device
type.

FSPECx Evalute (execute) a tokenized file specification to
determine the file name and device type.

MVMEM+ Expand or contract the contents of a file in memory.
May be used to delete a file from the file chain.

OPENF Open a file given its name and device type.

PRGFMF Purge a file in memory,

9-6

HP-71 Softuware IDS - Detailed Design Description

Utilities

PURGEF

RDBYTA

READNB

RPLLIN

URBYTC

WRITNB

Purge a file in memory or on mass mediunm,

Read a byte from an opened byte-oriented file. See
also WRBYTC,

Read an arbitrary number of nibbles from an opened file
of any file type. See alse URITNB.

Replace, delete, or insert a line or stretch of any
number of nibs in a memory file.

Urite a byte to an opened byte-oriented file. See also
RDBYTA.

Urite an arbitrary number of nibbles to a an opened
file of any type.

9.5 Flag Utilities

Description

o - = - - ——— > = > = ——— - - - - - - — = - > = -

- Update annunciators according to user and system flags.

Clear a system flag and update annunciators.
Set a system flag and update annunciators.
Test a system flag.

Toggle a system flag.

Pop, round, convert real argument to hex integer.

9.6 Math Utilities

Uhat follous is a brief description of some built-in HP-71 math

routines
category.

that may prove useful., The routines are grouped by

9.6.1 Numeric Comparison

Entry

- e -

Description

R e R et e e R U ——

HP-71 Software IDS - Detailed Design Description
Utilities

89.6.2 Trig Routines
Entry Description

ARGIS Compute angle of pair (x,y) of 15-digit arguents.
SIN15 Sine of a 15-Digit argument,
C0S15 Cosine of a 15-Digit argument.

TAN15S Tangent of a 15-Digit argument.

9.6.3 Inverse Trig Routines
Entry Description

ASINI5 Arcsine of a 15-digit argument.
ACOS15 Arccosine of a 15-digit argument,

ATAN1S Arctangent of a 15-digit argument.

9.6.4 Arithmetic & Square Root
Entry Description

ADDONE Add ome (x+1) to a 15-digit argument.
SUBONE Subtract one (x-1) from a 15-digit argument.
1/X15 Invert (1/x) a 15-digit argument.
AD2-15 Add two 15-digit arguments.
AD15S Add two 15-digit arguments, preserving SB & XM.
SB<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>