PPC Paris

JPC Rom

Owner’s Manual

April 1988
Revision D

FOREWORD

This manual is a reference tool for JPC Rom users. It is assumed that the users are already familiar
with HP-71 operation and Basic language programming,

JPC Rom combines over 100 keywords into a single 25K Lex file. This brings together some of the
most useful HP-71 enhancements and improves the overall performance of the machine. The source
material was contributed by members of the international user community, most of whom are
members of PPC Paris.

All contributions have been made in the same spirit of benevolent, cooperative, mutual assistance.

The manual itself was an enormous task. Any remarks or comments about its contents are welcome.
It was carried out by Pierre David, Jean-Jacques Dhénin and Janick Taillandier. Special thanks are
due to Michael Markov for his help during the translation of this manual and for his support of our
work.

It is also worth noting that the printing was done with an HP-71 and a LaserJet printer.

We hope you will appreciate the result. Don’t hesitate to give us your feelings :

PPC Paris

B.P. 604

75028 Paris Cedex 01
France

Distributed by:
Corvallis Microtechnology
895 NW Grant Ave

Corvallis, OR 97330
TRET.: (503)752-5456

PPC Paris makes no express or implied warranty with regard to the keystroke procedures and program material offered or
their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made
available solely on an "as is" basis, and the entire risk as to their quality and performance is with the user. Should the
keystroke procedures or program material prove defective, the user (and not PPC Paris nor any other party) shall bear the
entire cost of all necessary correction and all incidental or consequential damages. PPC Paris shall not be liable for any
incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke

procedures or program material.

MAIN DIFFERENCES
BETWEEN VERSION A AND VERSION B

The differences between version A00 and version B00 (sce VERS in Other JPC Rom features) result from some
bug fixes, modifications and improvements. The main differcnces are listed below :

Bug fixes

MARGIN parameter is now limited to 96.

Under certain circumstances FIND could find matching lines which should not have been. (see JPC 45). Janick
Taillandier has corrected this problem.

COMB and ARR have been rewritten by Guy Toublanc to use a multiplication based algorithm instead of
factorials.

COMB was modified to return a valid result when executing S=S+COMB (n, 0).

The FINPUT version published in JPC exited when pressing the [f]1 [CONT] key. This was wrong.

New keywords and features
The DATESTRS function has becn added to convert from and to the new date format.

New structured programming statements have been added to this version.

Modifications and improvements
Date functions have been modified to use the new JPC Rom date format as well as the standard format.

The keyword KSPEED has been removed. The cursor speed-up is still present, but repetition speed is maximum
and delay after the key is pressed and before repeat begins is not tunable.

POST has been modified to admit numeric as well as string parameters.

The escape sequence sent to the printer by BOLD has been modified to be compatible with all PCL printers,
especially the ThinkJet and LaserJet.

FF has been renamed to PFF, LF to PLF, PL to PAGELEN, CR to PCR. FPRM has been renamed to
FPRIM and NPRM to NPRIM. HMS+ has been renamed to HMSADD and HMS - to HMSSUB.

Note

All these improvements and corrections have been realized preserving program compatibility with previous
versions of JPC Rom. So your programs written with previous versions are totally compatible with the new
JPC Rom.

MAIN DIFFERENCES
BETWEEN VERSION B AND VERSION C

The differences between version B0O and version C00 (see VERS in Other JPC Rom features) result from some
bug fixes, modifications and improvements. The main differences are listed below :

Bug fixes

Structured programming statements didn’t work properly if followed by a comment after the beginning of the loop,
as for example :

10 WHILE 1 !

20 END WHILE
Same problem with SELECT, CASE, etc. Notified by Henri Kudelski from Switzerland and Gérard Kossman in
France.

Functions STARTUPS and ENDUPS didn’t returned their result properly, this could produce a Data type
error when the following program was executed :

10 DESTROY ALL

20 DIM S$

30 DIM S$[LEN(STARTUPS)]
Same problem with ENDUPS. Notified by Tapani Tarvainen from Finland.

The (f1(BACK] key acts as usual in the Command Stack under CALC mode, this allows freely editing expressions in
the command line. Notified by Michael Markov in the United States and Tapani Tarvainen in Finland.

After a configuration (for example, COPY of a Lex file to Ram, LEX ON/OFF), assembler tabs were enabled
when using EDTEXT.

The keyword STACK has been replaced by a new version from Henri Kudelski in Switzerland to avoid bad
problems during the ML program.
New keywords and features

The keywords SYSEDIT, OPCODES and NEXTOPS have been added. OPCODES and NEXTOPS were
written by Jean-Jacques Dhénin. SYSEDIT was written by Pierre David and Janick Taillandier.

The FILESIZE function by Henri Kudelski has been added.

The address directory manager KA and its related programmable functions (ADCREATE, ADDELETE,
ADFIND, ADGET, ADPUT and ADSIZE) have been added. These keywords have been written by Pierre
David.

The KEYWATITS function by Hewlett-Packard has been added. Its Id and token numbers have not been modified
versus the Users’ Library version.

The keyword ROMAN was added to allow using the Roman character set. This keyword was written by Pierre
David and Janick Taillandier.

Now, JPC Rom recognizes non standard file types, such as HP-41 or HP-75 ones, during a CAT, as well as non
standard HP-71 types. This was writtcn by Jan Buitenhuis in The Netherlands and Janick Taillandier in France.

Modifications and improvements

JPC Rom was previously called JPCLEX.

BLIST has been renamed to DBLIST, because of a conflict with the BREAK Lex from the Users’ Library.
SWAP has been renamed to VARSWAP.

The INVS$ function has been removed, its functionalities are now part of INVERSE.

Syntax of INVERSE and PAINT have been extended to provide more flexibility.

Syntax of SPACES has been extend to allow repeating any string.

ENABLE and DISABLE have been renamed to LEX ON/OFF because of a conflict with ENABLE in the
HP-IL module.

Functions REPLACES and RPLC$ have been merged in a new REPLACES. With three parameters or if the
fourth one is numeric, functionalities are similar to the old RPLCS. If the fourth parameter is a string it is the
wild-card character used in the old REPLACES.

DBLIST and PBLIST were rewritten to allow indentation of structure and redirection into a file.

Removed keywords are listed as obsolete when they are present in a program. If these programs are
executed, they produce the error JPC ERR:Removed Keyword (message number 16).

Note

All these improvements and corrections have been realized preserving program compatibility with previous

versions of JPC Rom. So your programs written with previous versions are totally compatible with the new
JPC Rom.

MAIN DIFFERENCES
BETWEEN VERSION C AND VERSION D

The differences between version C and version D (see VERS in Other JPC Rom features) result from some bug
fixes, modifications and improvements. The main differences are listed below :

Bug fixes

The extended character set Roman disappeared at power on.
The Assembler Tabs mode was regularly enabled (during power on, for example).

The POSI function returned an incorrect value (1) when used as POSI ("" ,x), with x<6. This bug was
mentioned by Joe Horn in the United States.

The new DBLIST version did not recognize the following syntax : DBLIST 1000 INDENT 4.

The FIND keyword did not work properly. Notified by Henri Kudelski from Switzerland and Claudio Benski from
France.

Date calculation functions (such as DOW for example) did not accept February 29 of leap years, when the last year
digit was not a multiple of 4. Notified with details by Laurent Istria from France.

From browse mode in KA, the keystroke [f1(EDIT], then (ENDLINE] entered edit mode, then exited it. Notified by
Henri Kudelski from Switzerland.
New keywords and features

The DDIR and PDIR keywords have been added.

Modifications and improvements

Disassembling with OPCODES$ and SYSEDIT swapped Rs! and Pc=(A) mnemonics. This appeared when we
disassembled the HP-28C Rom.

Note

All these improvements and corrections have been realized preserving program compatibility with previous

versions of JPC Rom. So your programs written with previous versions are totally compatible with the new JPC
Rom.

1

ADBUF$

ADBUFS (buffer address) returns the address of the buffer specified by its identification number.

O Statement B Keyboard Execution

B Function O CALC Mode

O Operator B IF..THEN..ELSE

B Device Operation

ADBUFS (bufferid)
Example
AS$=ADBUFS ("BFC") Stores the "lex buffer” address in AS$.
Input Parameter

Item Description Restrictions
buffer identifier String expression containing hexadecimal digits. 3 upper or lower case digits.

Operation
Buffers :
HP-71 buffers are used to store volatile (more so than in files) or data used only by the operating system.

They are used by assembly language applications or by the system. The following table lists various buffers used by
the system :

Id Description

808 Hold a string of characters used by STARTUP
83D MARGIN setting
83E Hold a string of characters used by ENDUP
BFB Character set defined by CHARSET

BFC Address of Lex files

Buffers consist of a 7 nibble header followed by the the data area itself. The header has the following structure :

1 nibble : number of addresses in the beginning of the the buffer that necd to be updated when memory moves,
3 nibbles : the buffer ID,
3 nibbles : buffer length in nibbles (data part only).

Buffer are mobile areas. Their address change often, especially when :
- a file is created, deleted or when its size is changed,
- another buffer is created, deleted or when its size is changed.

2
ADB U F$ (continued)

The ADBUF$ function :
ADBUFS returns the address of the buffer whosce 1D is given. If it can’t be found a null string is returned. The

address returned by the function is the address of the bufler header. Information stored in a buffer is located 7
nibbles further.

References

JPC 22 (page 35) first version of ADBUF'$ by Michel Martinet et Pierre David.

JPC 23 (page 30) HP-71 buffers, by Pierre David. Introductory article and various Basic utilities.
JPC 27 (page 34) second version by Michel Martinet.

Internal Design Specification Volume I, Chapter 3.5.3.

Related Keywords

DTHS, HTD, PEEKS, POKE, ADDRS

Authors

Pierre David and Michel Martinet.

The ADCREATE keyword create an empty address file.

1
ADCREATE

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF..THEN..ELSE
B Device Operation
ADCREATE file
ADCREATE file , password
Examples
ADCREATE ESSAI Creates an address file, without password, whose name is
ESSAIL
ADCREATE A$,"passe" Creates an address file and sets the password to «passe».
Input Parameters
Item Description Restrictions
file String expression or unquoted string. Filename with optional device
specifier.
password String expression. 8 first characters only are used.
Default : No password
Operation
Address files

KA puts you in an address directory interactive mode. KA allows you to store addresses in a file whose filetype is
ADRS. Since KA has been designed to be used only in interactive mode, JPC Rom provides an additional set of
functions (ADCREATE, ADGET, ADPUT, ADDELETE, ADSIZE and ADFIND) to access stored addresses

from a program.

Address files can be considered as a set of index cards, each one containing an address. For example :

2

ADCREATE (continued)
| Name |
AR |
................... |
| Name |-+
oo 111
------------------- ||
| Name |---1 2|
oo |11
| Phone |---| 3 |
o |2]|
| Line 1 |---] 4 |
|oemns e 131
| Line2 |---] |
oo | 411
| Line3 |---| |
o R
| Line 4 |---|
R |
| Note |---
oo |
| Index |

In this example, the file contains three cards. Let us examine the card contents.

The cards

Each card is made up of 8 lines, organized as follows :

- name and first name, separated by a /,

- phone number,

- 4 lines to store the address,

- a line to store general informations or comments, and

- a line to store an index to be used by your own programs.

The first line contains the name and first name, separated by a slash (/). The address directory functions will add it
for you if you forget to enter the slash.

Address directory management functions

You have 6 functions :

- ADCREATE creates a file with the ADRS filetype ; this function may optionaly specify a password on the file,
- ADGET reads an address (a card) from the file and stores it into a string array,

- ADPUT stores a card into the address file,

- ADDELETE removes a card from the file given its sequence number,

- ADSIZE returns the number of cards in the file,

3
ADCREATE (continued)

- and ADFIND looks for a card in the file and returns its sequence number.

It is possible to specify a password with all these functions. If a password has been defined for the file, you must
specify it with all functions. If the password is not defined, the parameter is optional and is not used.

ADCREATE keyword
ADCREATE creates an empty address file (with type ADRS) and may optionaly specify a password.
ADCREATE cannot create the file if it already exists ; then it returns : JPC ERR:File Exists.

The memory requirements for the address directory can be computed by the following formula :
30,5 bytes + size of all cards

The size of a card can be computed by the following formula :
10 bytes + number of characters in the card

References

Program AGENDA for the HP-75 by Picrre David.

Related Keywords

ADDELETE, ADFIND, ADGET, ADPUT, ADSIZE, KA

Author

Pierre David

ADDELETE removes a card from an address file.

1
ADDELETE

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF..THEN..ELSE
B Device Operation
ADDELETE file , number
ADDELETE file , number , password
Examples
ADDELETE ESSAT,5 Removes the fifth card in the file ESSAI, without password.
ADDELETE AS$,I+1,P$ Removes card number I+1 from the address file specified by
variable A$ with password specified by PS$.
Input Parameters
Item Description Restrictions
file String expression or unquoted string. The file must be in Ram.
number Numeric expression rounded to an integer. Must be between 1 and the number
of cards in the file.
password String expression. 8 first characters only are used.
Default : No password.

Operation

The keyword ADDELETE removes from the address file the card whose sequence number is specified.

ADDELETE cannot delete the card if :
- the file is not in Ram,
- the filetype is not ADRS,

- the file contains a password and the password specified by the keyword is invalid,

- the card number is invalid.

Please refer to keyword ADCREATE for more information about address files.

References

Program AGENDA for the HP-75 by Pierre David.

2
ADD ELETE (continued)

Related Keywords

ADCREATE, ADFIND, ADGET, ADPUT, ADSIZE, KA

Author

Pierre David

The ADFIND function looks for a name in an address file.

1
ADFIND

O Statement B Keyboard Execution
B Function O CALC Mode
O Operator N IF..THEN..ELSE
B Device Operation
ADFIND (file , string)
ADFIND (file , string , password)
Examples
A=ADFIND (ESSAI, "Dupond", P$) Returns the card corresponding to the name "Dupond" in file
ESSAI with password P$.
ADDELETE AS$,ADFIND(AS,"Dup.") Removes the card corresponding to the the first name
beginning with "Dup" in the address file AS.
Input Parameters
Item Description Restrictions
file String expression or unquoted string. The file must be in Ram.
string String expression. None.
password String expression. 8 first characters only are used.
Default : No password.
Operation

The ADFIND function returns the number of the card corresponding to the name provided as parameter string.

This card number can then be used with ADGET and ADDELETE functions to copy a card in a string array or

delete it from the file.

The string parameter follows the same rules as the search mode of KA :

- Name only : search only on the name. the first matching name is returned whatever may be the first name.

- Name and first name (separated by a /) : search on the name and the first name.

- string terminated by a dot : the search is generic. Names do not need to be input completely. The card returned is
the first one after the matched string, There is no error if the string is not exactly found.

The search is not case sensitive : upper case and lower case characters are identical.

2
ADFIND (continued)

See KA for more information about the search.

If ADFIND fails for any reason, a negative number is returned whose absolute value is the error number who
causes the failure.

Please refer to the ADCREATE keyword for more informations about address files.

References

Program AGENDA for the HP-75 by Pierre David.

Related Keywords

ADCREATE, ADDELETE, ADGET, ADPUT, ADSIZE, KA

Author

Pierre David

ADGET

The ADGET keyword reads a card and stores it into a string array.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF.. THEN..ELSE
B Device Operation
ADGET file , array , number
ADGET file , array , number , password
Examples
ADGET ESSAI,TS$,5 Reads card number S in file ESSAI and stores it into the
string array variable T$.
ADGET AS$,TS$,I+1,P$S Reads card number I+1 in address file identified by variable
AS with password PS$.
Input Parameters
Item Description Restrictions
file String expression or unquoted string. The file must be in Ram.
array String array name. Must have exactly 8 elements.
number Numeric expression rounded to an integer. Must be between 1 and the number
of cards in the file.
password String expression. 8 first characters only are used.
Default : No password.

Operation

The ADGET keyword reads the specified card from the address file and stores it into a string array, to be

processed by a user program.

Warning : array must have exactly 8 elements. Each element must be long enough to store the data. A line holds at

most 91 characters.

Sample program using ADGET to print the addresses in the ADRS file :

2
ADGET (continued)

100 F$="ADRS"

110 OPTION BASE 1
120 DIM T$(8)[91]
130 FOR I=1 TO ADSIZE(FS$S)
140 ADGET F$,TS,I

o—

file name

150 PRINT T$(1) ! name

160 PRINT T$(3) ! address 1
170 PRINT T$(4) ! address 2
180 PRINT T$(5) ! address 3
190 PRINT TS$(6) ! address 4

200 NEXT I

ADGET cannot read the card if ;

- the file is not in Ram,

- the file type is not ADRS,

- the file contains a password and the password provided is not valid,
- the card number is not valid,

- the array has not enough elements,

- one of the card fields is too long to be stored in an array element.

Please refer to the ADCREATE keyword for more informations about address files.

References

Program AGENDA for the HP-75 by Pierre David.

Related Keywords

ADCREATE, ADDELETE, ADFIND, ADPUT, ADSIZE, KA

Author

Pierre David

ADPUT

The ADPUT keyword write a card into an address file.

B Statement
O Function

Keyboard Execution
CALC Mode
IF..THEN...ELSE
Device Operation

O Operator

EEON

ADPUT file , array
ADPUT file , array , password

Examples
ADPUT ESSAI,TS Writes the card stored in TS$ into file ESSAIL
ADPUT AS,TS,PS Writes the card T$ into the address file specified by A$ whose

password is in P$.

Input Parameters

Item Description Restrictions
file String expression or unquoted string. The file must be in Ram.
array String array name. Must have exactly 8 elements.
password String expression. 8 first characters only are used.
Default : No password.

Operation
The ADPUT statement writes a card into the address file specified by file.
The card is stored automatically in alphabetical order.

Warning : array must have exactly 8 elements. Each element must be long enough to store the data. A line holds at
most 91 characters.

ADPUT cannot store the card if :

- the file is not in Ram,

- file type is not ADRS,

- the file contains a password and the password provided is not valid,
- the array has not enough elements,

- one of the card fields is too long to be stored in an array element.

- there is not enough memory.

Please refer to the ADCREATE keyword for more informations about address files.

2
ADPUT (continued)

References

Program AGENDA for the HP-75 by Pierre David.

Related Keywords

ADCREATE, ADDELETE, ADFIND, ADGET, ADSIZE, KA

Author

Pierre David

1
ADSIZE

The ADSIZE function returns the number of cards in an address filc.

O Statement M Kcyboard Fxccution
B Function O CALC Mode
O Operator B IF.THEN..ELSE
M Device Opcration
ADSIZE (file)
ADSIZE (file , password)
Examples
N=ADSIZE ("ESSAI") Stores into the variable N the number of cards in file ESSAI,
without password.
FOR I=1 TO ADSIZE(AS$,PS) Loops on all cards in file A$, whose password is in P§.
Input Parameters
Item Description Restrictions
file String expression or unquoted string. The file must be in Ram.
password String expression. 8 first characters only are used.
Default : No password.
Operation

The ADSIZE function returns the number of cards found in the specified address file.

If ADSIZE fails for any reason, a negative number is returned whose absolute value is the error number who
causes the failure.

ADSIZE cannot return the number of cards if :

- the file is not in Ram,

- the file type is not ADRS,
- the file contains a password and the password provided is not valid,

Please refer to the ADCREATE keyword [or more informations about address files.

References

Program AGENDA for the HP-75 by Pierre David.

2
ADSIZE (continued)

Related Keywords

ADCREATE, ADDELETE, ADFIND, ADGET, ADPUT, KA

Author

Pierre David

ARR

ARR (Arrangements) computes the number of possible different arrangements (permutations) of n items taken p

at a time.
O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF..THEN..ELSE
B Device Operation
ARR (n , p)
Example
A=ARR (4, 3) Stores 24 in variable A.
Input Parameters
Item Description Restrictions
n Numeric expression. Integer between 0 and 10121,
P Numeric expression. Integer between 0 and n.
Operation

ARR (n,p) = AP = n! / (n-p)!

ARR (n, p) compute the number of possible different arrangements (permutations) of n items taken p at a

time. This function is very useful in probability and statistics.

In order to increase the range of valid parameters, and to improve accuracy, ARR uses a multiplication based
algorithm instead of factorials. This results in long execution times for large numbers.

References

JPC 25 (page 50) first version by Laurent Istria.

JPC 41 (page 32) second version by Guy Toublanc.

Related Keywords

COMB, FACT

2
ARR (continued)

Authors

Laurent Istria and Guy Toublanc.

ASCS$ (ASCII string) returns a string stripped of all non-displayable ASCII characters.

ASC$

O Statement B Keyboard Execution

B Function O CALC Mode

O Operator B IF..THEN..ELSE

B Device Operation

ASCS$ (string)
Example
DISP ASCS ("ADLC"&CHRS (27)) Displays the string "AbC.". The period takes the place of the

Escape character (27).
Input Parameter
Item Description Restrictions
string String expression. None.

Operation

The ASCII character set :

The ASCII (American Standard Code for Information Interchange) code is a character set widely used by

computers.

In this standard, the numerical value of displayable characters are in the range from 32 to 126. Values between 0
and 31 as well as 127 are used to control data transmission and can not be displayed. Finally, characters above 128

are undefined in the standard ASCII character set.

The ASCS$ function :

ASCS returns its input argument, with all non displayable characters replaced by a period (".").

References
JPC 22 (page 31) first version by Michel Martinet.

JPC 27 (page 34) second version by Michel Martinet.

2
ASC$ (continued)

Related Keywords

ATHS, HTAS

Authors

Pierre David and Michel Martinet.

ATHS (Ascii To Hexadecimal) returns the hexadecimal string corresponding to the parameter string.

ATH$

O Statement B Kcyboard Execution
B Function O CALC Mode
O Operator B IF..THEN..ELSE
B Device Operation
ATHS (string)
ATHS (string , mode)
Examples
AS$S=ATHS ("ABCDE") Stores the hexadecimal equivalent "1424344454" in AS.
AS$=ATHS ("ABCDE", 1) Stores the standard hexadecimal equivalent "4142434445" in
AS.
Input Parameters
Item Description Restrictions
string String expression. None.
mode Numeric expression. None.
Default : 0
Operation

ATHS returns a string of hexadecimal digits corresponding to its argument.

This hexadecimal string can have two different formats according to /mode :

If mode = 0, logical value falsc (default), the order of the two hexadecimal digits that represent an ASCII character
is reversed. For example, character "A" (hexadccimal code 41) will be translated into "14". This representation is
similar to the internal data format in the HP-71.

If mode is different from 0, logical value true, a standard representation is used. Character "A" (hexadecimal code
41) will be translated into "41".

References

JPC 22 (page 31) first version by Michel Martinet.

JPC 27 (page 34) second version by Michel Martinet.

2
ATH$ (continued)

To be published : third version by Pierre David.

Related Keywords

HTAS,ASCS

Authors

Picrre David and Michel Martinet.

ATTN
ATTN (ATTeNtion) enables or disables the action of the [ATTN] key to stop program execution.
B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF..THEN..ELSE
B Device Operation
ATTN ON
ATTN OFF
Examples
10 ATTN OFF Defines a loop to display all keys pressed until the user
20 REPEAT presses [ATTN].
30 K$=KEYWAITS
40 DISP K$
50 UNTIL K$="#43"
60 ATTN ON
ATTN OFF @ BEEP INF,INF Don'’t try this example ! The only way to stop it is INIT 1.
Operation

The [ATTN] key :

Generally, the [ATTN] key stops program exccution. You have to press [ATTN] twice to stop the execution of some
functions found in the HP-IL, Math or JPC Rom modules.

The ATTN command :

ATTN OFF deactivates the action of the (ATTN] key. This means that you will not be able to stop program or
function execution with the [ATTN] key. While you are in this mode, pressing [ATTN] loads keycode "#43" into the
key buffer and the keycode is processed as any other standard keycode.

However, during data or command input, the [(ATTN] key clears the input line even if ATTN OFF has been
executed. ATTN OFF only inhibits program break with the [ATTN] key.

Caution : the only way to stop a program while in the ATTN OFF mode is to execute a level one initialization
INIT 1. This also restores the main environment and variables.

ATTN OFF disables the action of (ATTN], however this has no effect on INPUT or LINPUT. To mask the
effect of this key, it must be redefined to a null string. This is done as follows :

10 DEF KEY "#43", "";

20 INPUT AS

and setting the HP-71 to USER mode. Then, the [ATTN] key has no effect.

An other way is to use the statement FINPUT.

2
ATTN (continued)

ATTN ON re-activates the normal operation of the [ATTN] key.

References

JPC 23 (page 38) by Pierre David and Michel Martinet.

Related Keywords

USER, DEF KEY, FINPUT

Authors

Pierre David and Michel Martinet.

BELL

BELL causes the printer’s beeper to sound if possible.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF..THEN..ELSE
O Device Operation
BELL
Example

IF DEVADDR("HP82905B")>0 THEN BELL If there is an HP8290SB printer on the loop, then it will beep.

Operation

BELL causes the peripheral specified by the last PRINTER IS command to beep, if it is able to do so.
The ThinkJet has no beeper.

Codes sent to the printer :

Character code 7.

References
JPC 26 (page 39) first version by Pierre David.
JPC 40 (page 16) second version by Pierre David.

Also consult your printer reference manual.

Related Keywords

BOLD, MODE, PAGELEN, PCR, PFF, PLF, UNDERLINE, WRAP

Author

Pierre David

BOLD

BOLD enables or disables the bold mode of the printer.

B Statement B Keyboard Execution

O Function O CALC Mode

O Operator B IF..THEN..ELSE

O Device Operation

BOLD ON

BOLD OFF
Examples
BOLD ON @ PRINT "JPC" Enables bold print and prints "JPC".
BOLD OFF @ PRINT "JPC" Disables bold print and prints "JPC".
Operation

BOLD ON enables bold print on the peripheral designated by PRINTER IS. BOLD OFF returns to normal
print. The action of this statement depends on the peripheral used. It is intended for peripherals using the
Hewlett-Packard Printer Command Language (PCL).

Codes sent to the printer :

BOLD ON :ESC (s
BOLD OFF:ESC (s

1B

0 B
References

JPC 26 (page 39) first version by Picrre David.

JPC 40 (page 16) second version by Picrre David.

Also consult your printer reference manual.

Related Keywords

BELL, MODE, PAGELEN, PCR, PFF, PLF, PRINT, PRINTER IS, UNDERLINE, WRAP

Author

Pierre David

CASE

CASE is part of SELECT ... CASE ... END SELECT structure.

B Statement
O Function
O Operator

EEOR

Keyboard Execution
CALC Mode
IF..THEN...ELSE
Device Operation

CASE clement
CASE relational operator element , ...
CASE clement TO element , ..
CASE ELSE

raR

Examples

CASE 8,5 TO 7,<0,>=10

CASE >"Z","A" TO "BCD“,"O" TO "9"

Input Parameters

Selects this case if expression in SELECT is equal to 8, if it is
between S and 7 or negative or greater or equal to 10.

Selects this case if expression in SELECT is greater than "Z" or
is between "A" and "BCD" or between "0" and "9".

Item

Description

Restrictions

element

relational operator

Numeric or alphanumeric expression.

<, =,>,<=,>=,<> #and?

All expressions must have the same

type.
None.

Operation

CASE is one of the components of the choice structure SELECT ... END SELECT.

CASE offers a choice of expressions. If the sclected expression matches a CASE choice, execution will resume at
the statement following the sclected CASE.

References

JPC 52 : first version by Pierre David and Janick Taillandier.

HP 9000 series 200/300 Basic 4.0

2
CASE (continued)

Related Keywords

SELECT .. END SELECT

Authors

Pierre David and Janick Taillandier.

1

CENTERS adds spaces at the beginning of the string specified in parameter in order to center it.
O Statement B Keyboard Execution
B Function O CALC Mode
O Operator B IF. THEN..ELSE
B Device Operation
CENTERS (string , width)
Example
AS$=CENTERS ("Centered string", 22) Stores into A$ 3 spaces followed by the string specified in
parameter.
Input Parameters
Item Description Restrictions
string Alphanumeric expression. None.
width Numeric expression rounded to an integer. 1 through 524287.

Operation
CENTERS adds spaces before the string specified, so that this string is at the center of a width characters string.

Leading and lagging spaces are first removed from the parameter string (see REDUCES).

References
JPC 21 (page 34) first version of the Basic text formatter by Pierre David.

JPC 26 (page 50) second version of the Basic text formatter with assembly language functions by Pierre David and
Michel Martinet.

Related Keywords

CESURE, FORMATS, REDS, REDUCES, SPACES

Authors

Pierre David and Michel Martinct.

1
CESURE

CESURE returns the position of the first place in the string where a word-break can occur.

O Statement B Keyboard Execution
B Function O CALC Mode
O Operator B IF..THEN..ELSE
M Device Operation
CESURE (string , width)
Example
A=CESURE ("PPC Paris",7) Stores 3 in variable A : word break can occur at the third
character.
Input Parameters
Item Description Restrictions
string Alphanumeric expression. None.
width Numeric expression rounded to an integer. 1 through 524287.

Operation

CESURE scans the string from the character specified by width back to the beginning of the string, looking for a
place where a word-break can occur.

CESURE handles standard punctuation marks : question mark, exclamation mark, semicolon, colon, period and
opening bracket. The algorithm is devised so that the string will not be cut in front of one of these marks.

References
JPC 21 (page 34) first version of the Basic text formatter by Pierre David.

JPC 26 (page 50) second version of the Basic text formatter with assembly language functions by Pierre David and
Michel Martinet.

Related Keywords

CENTERS, FORMATS, REDS, REDUCES, SPACES

2
CESURE (continued)

Authors

Pierre David and Michel Martinet.

COMB

COMB (combinations) computes the number of possible different sets of n items taken p at a time.

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B [F..THEN..ELSE
B Device Operation
COMB (n , p)
Example
A=COMB (4, 3) Stores 4 into variable A.
Input Parameters
Item Description Restrictions
n Numeric expression. Integer between 0 and 10121,
P Numeric expression. Integer between 0 and n.
Operation

COMB(n,p) = C,P = n! / (p! * (n-p)})

COMB computes the number of possible different sets (combinations) of n items taken p at a time, not counting

re-arrangements.

In order to increase the range of valid parameters, and to improve accuracy, ARR uses a multiplication based
algorithm instead of factorials. This results in long execution times for large numbers.

References

JPC 25 (page 50) first version by Laurent Istria.

JPC 41 (page 32) second version by Guy Toublanc.

Related Keywords

ARR, FACT

2
COM B (continued)

Authors

Laurent Istria and Guy Toublanc.

1

CONTRAST

CONTRAST returns the current contrast sctting,

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF..THEN..ELSE
B Device Operation

CONTRAST

Example

A=CONTRAST

Operation

CONTRAST without a parameter returns the current contrast setting. This value can be changed by the statement
CONTRAST followed by an expression whose value falls between 0 and 15.

References
JPC 22 (page 42) first version by Laurent Istria.
JPC 24 (page 41) second version by Jean-Jacques Moreau.

Forth / Assembler Owner’s Manual (page 52). A sample Forth primitive returning the current contrast setting.

Related Keywords

CONTRAST

Authors

Laurent Istria and Jean-Jacques Moreau.

1
DATEADD

DATEADD (DATE ADDition) computes the date corresponding to the specified date incremented by the

specified number of days.

O Statement M Keyboard Exccution
B Function B CALC Mode
O Operator B IF.THEN..ELSE
B Device Opceration
DATEADD (date , days)
Examples
A=DATEADD (7.041776, 73048) Stores 7.041976 (July 4th, 1976) in variable A, in DMY mode
(default mode).
DATEADD (DATES , —1) Returns yesterday date.
A=DATEADD (1.011986, 364) Stores 31.121986 (December 31, 1986) in variable A, in DMY
mode.
Input Parameters
Item Description Restrictions
date Numeric expression interpreted according to current format, or From October 15, 1582 through
alphanumeric expression. December 31, 9999.
days Numeric expression rounded to an integer. negative or positive.

Operation

DATEADD computes the date corresponding to the specified date incremented by the specified number of days.

For a complete description of date formats see DATESTRS.

References
JPC 28 (page 40) first version by Laurent Istria.

JPC 28 (page 35) second version by Frangois Le Grand.

JPC 49 (page 24) third version by Picrrc David ct Janick Taillandicr.

HP-41 Time Module Owner’s Manual.

2
DATEADD (continued)

The keyword for DATEADD was previously DATE+.

Related Keywords

DATES, DATESTRS, DDAYS, DMY, MDY

Authors

Pierre David, Laurent Istria, Frangois Le Grand and Janick Taillandicr.

1
DATESTRS

DATESTRS (DATE to STRing) converts a date to the HP-71 string format for date : "yyyy/mm/dd".

O Statement B Keyboard Execution

B Function O CALC Mode

O Operator B IF..THEN..ELSE

B Device Operation

DATESTRS (date)
Example
AS$S=DATESTRS (14.071789) Stores "1789/07/14" in variable AS.
Input Parameter

Item Description Restrictions
date Numeric expression interpreted according to current format, or From October 15, 1582 through
alphanumeric expression. December 31, 9999.

Operation

Date formats :

The basic HP-71 supports two date formats :

String format :

Dates expressed in this format are alphanumeric strings with two or four digits for the year, two digits for the
month and two digits for the day. They can be represented by : ywwv/mm/dd or yy/mm/dd.

For example, 1987/05/15 or 87/05/15 are valid date specification (May 15, 1987).

If the year is coded on two digits, it will be interpreted as 19yy if yy> =60, or as 20yy if yy <60.

Date functions in JPC Rom support both string formats.

Standard numeric format :

Dates are expressed as a number of the form : yyddd, where yy represents the year and ddd the day in year.

For example, May 15, 1987 is represented by 87135. Year is 1987 and May 15 is the 135th day in this year.

This format is hard to use. It is primarily used, on the "basic" HP-71, for date computations.

2
DATESTR$ (continued)

JPC Rom provides a more convenient alternative that uses the same format as the HP-41 Time Module.

JPC Rom numeric format :

This format allows date input using European or American format. You can choose either mode with the DMY and
MDY keywords.

In DMY (Day Month Year) mode, during inputs, dates are interpreted as dd.mmyyyy. So, May 15, 1987 is
represented as : 15.051987.

In MDY (Month Day Year) mode, dates are interpreted as mm.ddyyyy. So, May 15, 1987 is represented as :
5.151987.

The choice between both modes is reflected by the system flag -53. This flag is clear in MDY mode (default mode)
and set in DMY mode.

Supported formats :
Date functions in JPC Rom support two date formats :
- dates in string format ("yyyy/mm/dd" or "yy/mm/dd"), or

- dates in numeric format (dd.mmyyyy in DMY mode, or mm.ddyyvy in MDY mode).

The DATESTRS function :

DATESTRS converts a date from JPC Rom numcric format (dd.mmyyyy or mm.dddyyy) to string format
(yoyy/mm/dd").

It can be used with other date functions to easily isolate a date component.

References

JPC 49 (page 24) third version of DATELEX including DATESTRS by Pierre David and Janick Taillandier.

Related Keywords

DATES, DMY, MDY, SETDATE

Authors

Pierre David and Janick Taillandier.

DBLIST (Display Basic LIST) produces a structured listing of a Basic program.

1
DBLIST

B Statement
O Function
O Operator

Keyboard Execution
CALC Mode
IF..THEN...ELSE
Device Operation

EEOR

DBLIST [INDENT indentation][TO target]
DBLIST file [INDENT indentation][TO target)
DBLIST file , startline [INDENT indentation 1[TO target]

DBLIST file , startline , finalline [INDENT indentation][TO target]

Examples

DBLIST MYSUB INDENT 3

DBLIST MYSUB, 10

structures by 3 spaces.

List program MYSUB, from the first to the last line, indenting

List line 10 of program MYSUB, without structure indenting.

DBLIST MYSUB,10,100 INDENT 2 TO LISTE List program MYSUB, from line 10 to line 100, indenting
structures by 2 spaces. The output is sent to file LISTE.

Input Parameters

Item Description Restrictions

file String expression or unquoted string. File name with optional device
Default : current file. specifier.

start line Integer constant identifying a program line. 1 through 9999.
Default : First program line.

end line Integer constant identifying a program line. Start line through 9999.
Default : Start line, if specified ; otherwise, last program line in

file.

indentation Numeric expression rounded to an integer. 0 through 255.
Default : 0

target String expression or unquoted string. File name with optional device
Default : Listing is output on current DISPLAY IS device. specifier.

Operation

DBLIST produce a "structured" listing of a Basic file on the current DISPLAY IS device or on the LCD
display if no device has been specified.

Basic line numbers are justified, with a space to the left, to be 4 characters long. So all lines are aligned, no matter

their line number.

2
DBLI ST (continued)

DBLIST does not output line numbers for lines containing only comments (beginning with !, but not with REM).
A dash (=) is output to mark the first comment line in a series. The statement RENUMREM is intended to ease
the renumbering of comment lines. With this special processing, comment lines are no longer considered as
standard Basic lines.

DBLIST skips a line before a function definition (DEF FN), a DATA block or a label. A line is also skipped
after function definitions and DATA blocs. So, the various building blocs that make-up your program are well
separated.

DBLIST skips a line, draws a line and skips another line before a sub-program (SUB). This emphasizes
independent program blocs.

Finaly, DBLIST allows indenting of logical structures. The body of logical structures, whether a standard
(FOR..NEXT) or a JPC Rom (WHILE..END WHILE loop or tests or SELECT) is shifted to the right by the
number of spaces specified in the indentation value of INDENT, Default value is 0, i.e. structures are not
indented.

Structure indenting can help identify invalid structures in programs. This is a very useful complement to the
structured programming statements provide by JPC Rom.

The TO option allows you to direct the output to a text file of your choice. Incidentally, this option is used to
prepare HP-71 Basic program listings published in the Journal of PPC Paris. The file is created, then filled. If the
file already exists, the error JPC ERR:File Exists is generated.

The current DELAY setting determines how long each line will be displayed. The WIDTH setting determines the
width of the displayed line.

To halt a listing and display the cursor, simply press [ATTN].

References

JPC 18 (page 25) first version of Basic program JPCLISTE by Pierre David and Michel Martinet.
JPC 38 (page 24) first version of BLIST by Jcan-Pierre Bondu.

To be published : second version of DBLIST by Picrre David and Janick Taillandier.

DBLIST was called BLIST.

Related Keywords

DELAY, LIST, PBLIST, PLIST, WIDTH, all structured programming keywords

Authors

Jean-Pierre Bondu, Pierre David and Janick Taillandier.

DDAYS (Delta DAYS) compute the number of days between (wo dalcs.

DDAYS

O Statcment B Kcyboard Execution
B Function B CALC Mode
O Operator B IF..THEN..ELSE
B Device Operation
DDAYS (datel , date2)
Examples
A=DDAYS(7.141789,7.041776) Stores 4758 days between July 14th, 1789 and July 4th, 1776,
using MDY mode.
A=DDAYS(1.011986,31.121986) Stores 364 days in variable A, using DMY mode.
DISP DDAYS (DATES$,7.041776) Computes and displays the number of days between July 4th,
1776 and today.
Input Parameters
Item Description Restrictions
datel, date2 Numeric expressions interpreted according to current format, or From October 15, 1582 through
alphanumeric expressions. December 31, 9999.
Operation

DDAYS compute the number of days between datel and date2. If datel comes after date2, the result will be

positive.

For a complete description of date formats, sce DATESTRS.

References

JPC 28 (page 40) first version by Laurent Istria.

JPC 49 (page 24) third version by Picrre David ct Janick Taillandicr.

HP-41 Time Module Owner’s Manual.

2
DDAYS (continued)

Related Keywords

DATEADD, DATESTRS, DMY, MDY

Authors

Pierre David, Laurent Istria and Janick Taillandicr.

DDIR (Display DIRectory) lists directory of the specified device.

DDIR

M Statement B Keyboard Execution
O Function O CALC Mode
O Operator B [IF..THEN..ELSE
O Device Operation
DDIR [TO target]
DDIR file specifier [TO target |
DDIR ALL [TO target]
Examples
DDIR :TAPE Lists directory of mass storage unit : TAPE.
DDIR :PORT(0) TO LISTE List directory of port number 0 into file LISTE.
DDIR ALL Lists all files in HP-71.
DDIR ESSAI:TAPE(2) TO AS Lists all files after file ESSAI on mass storage unit :TAP(2)
into the file whose name is specified by A$.
Input Parameters
Item Description Restrictions
file specifier String expression or unquoted string. Device specifier or file specifier with
Default : :MAIN optional device specifier.
target String expression or unquoted string. File specifier with optional device
Default : Listing on DISPLAY IS device. specifier.
Operation

The keyword DDIR lists the directory of the specified unit on the display device. The list is similar to the one

produced by the standard keyword CAT.

The current DELAY setting determines how long the HP-71 displays each line. We recommand you to use a
DELAY x, 8 which eases the LCD display reading.

File specification

The DDIR syntax allows to choose a peripheral or a part of a directory.

2
DDIR (continued)

Device specifier only

If you provide a the device name alone, only the directory of this unit will be listed. For example :
-DDIR :PORT (0.01) lists the directory of the port number 0.01,

- DDIR :TAPE lists the directory of the HP-IL mass storage device,

- DDIR :PORT lists the contents of all HP-71 ports,

-DDIR :MAIN lists only ine contents of main memory.

Both file and device specifiers

If you specify both a file and a device, the listing will begin starting from this file until the last file in the device. For
example :

- DDIR ESSAT:MAIN lists the directory of main memory after file ESSAI included,

-DDIR ESSAI:TAPE lists the directory of mass storage unit after file ESSAI included,

-DDIR ESSAI:PORT(0.01) lists the dircctory of port number 0.01 after file ESSAI included,

-DDIR ESSAT: PORT looks for the file in all ports, and lists the dircctory of the founded port.

Special cases

DDIR ALL lists the directory of all files in the HP-71.

DDIR lists only the directory of the main memory.

DDIR followed by a file specifier, without a device specifier, looks for the file in all memory, then lists the
remaining files in the corresponding unit (port or main memory).

Output redirection

When DDIR is followed by TO, then by a file sp“eciﬂer, the listing is stored into this file. Nothing is displayed.
When output redirection is required, DDIR and PDIR are equivalent.

If the file already exists, the error ERR: File Exists isreported.

Data stored into this file share the same format as those resulting from CATS. Please, refer to this function for
more details.

This feature is similar to the onc provided by statcments PDIR, DBLIST and PBLIST.

Example of use

Redirection is useful because it allows you to execute an action on all files of a given device. For example :

3
DDIR (continued)

100 DIM P$[8],F$[43],T$[8],A

110 TS$="TMP" ! temporary file
120 FINPUT P$,"Device: :MAIN","8PU",A

130 IF NOT A THEN END

140 SFLAG -1 @ PURGE TS @ CFLAG -1

150 DDIR ":"&P$ TO TS

160 ASSIGN #1 TO TS

170 LOOP

180 READ #1;F$

190 F$S[POS(Fs,"™ ") ="" ! removes unused characters
- what you want to do

200 SECURE FS$&":"&PS$! for example...
- done...

210 END LOOP

This simple example execute an action on line 200 for all files in the specified device. By changing this action, you
can easily copy files from orc port to another, purge files, rename them, etc.

References

To be published : first version by Jean-Jacques Dhénin.

Related Keywords

CATS, CAT, DBLIST, PBLIST, PDIR

Author

Jean-Jacques Dhénin

DMY

DMY (Day Month Year) enable date input in numeric format dd.mmyyyy.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF..THEN..ELSE
B Dcvice Operation

DMY

Example

DMY

Operation

In the mode selected by DMY, numeric date parameters used by JPC Rom date functions must use the dd.mmyyyy
numeric format.

Keep in mind that string format is independent of the DMY / MDY modes. It can always be used. For example, to
compute the day corresponding to July 4, 1789, you can use cither of the following expressions in DMY mode :

DOWS (4.071776) or DOWS ("1776/07/04")

For a complete description of datc formats, scc DATESTRS.

References
JPC 28 (page 40) first version by Laurent Istria.
JPC 49 (page 24) third version by Pierre David et Janick Taillandier.

HP-41 Time Module Owner’s Manual.

Related Keywords

DATEADD, DATESTRS, DDAYS, DOW, DOWS$, MDY

Authors

Pierre David, Laurent Istria and Janick Taillandier.

DOW

DOW (Day Of Week) returns the day of week corresponding to the specified date parameter.

DOW (date)

O Statement B Keyboard Execution

B Function B CALC Mode

O Operator B IF..THEN..ELSE
B Device Operation

DOW

Examples

A=DOW(1.011986)
A=DOW (DATES)
DISP DOW

Input Parameter

Stores in A the day number in the week corresponding to
January 1, 1986.

Returns the day number corresponding to today. This give the
same result as DOW alone.

Display day number for today.

Item Description

Restrictions

alphanumeric expression.
Default : today

date Numeric expression interpreted according to current format, or From October 15, 1582 through

December 31, 9999.

Operation

DOW return the day of week for a given date as a number. So, you can easily use this value in your programs. For a

complete description of date formats, see DATESTRS.

For example, to display French day names :

2
DOW (continued)

100 SELECT DOW
110 CASE O

120 AS="Dimanche"
130 CASE 1

140 AS="Lundi"
150 CASE 2

160 AS$="Mardi"
170 CASE 3

180 AS$="Mercredi"
190 CASE 4

200 AS$="Jeudi"
210 CASE 5

220 AS$S="Vendredi"
230 CASE 6

240 AS$="Samedi"

250 END SELECT
260 DISP DATES;" : ";AS

0 corresponds to Sunday, 1 to Monday... and 6 to Saturday.

References

JPC 17 (page 25) day of week computation in Basic by Pierre David.
JPC 28 (page 40) first version by Laurent Istria.

JPC 49 (page 24) third version by Pierre David et Janick Taillandier.

HP-41 Time Module Owner’s Manual.

Related Keywords

DATES, DATESTRS, DMY, DOW$, MDY, SETDATE

Authors

Pierre David, Laurent Istria and Janick Taillandier.

DOWS

DOWS$ (Day Of Week) returns the name of the day corresponding to the specified date or today.

O Statement M Keyboard Execution

B Function O CALC Mode

O Operator W IF.TTHENCGELSE
B Decvice Operation

DOWS$S

DOWS (date)

Examples
A$=DOWS$ (1.011986) Stores the string Wednesday in variable AS$.
DISP DOW $ Display current day name.

Input Parameter

Item Description Restrictions
date Numeric expression interpreted according to current format, or From October 15, 1582 through
alphanumeric expression. December 31, 9999.

Default : today

Operation

DOWS$ returns the day corresponding to the specified date.

If no date is specified, DOW$ returns the day corresponding to current date.

Day names are expressed in English. These names correspond to messages included in JPC Rom. You can used the
function MSG$ (in Forth/Assembler module or Text Editor or available through the User’s Library) to get all

days in a week.

Sunday corresponds to message 225008+0, Monday to message 225008+1, and so on to Saturday message
225008 +6.

As day names are stored in a message table, it is possible to use a translator Lex to translate the names.

References

JPC 17 (page 25) day of week computation in Basic by Picrrc David.

2
DOW$ (continued)

JPC 28 (page 40) first version by Laurent Istria.
JPC 49 (page 24) third version by Pierre David et Janick Taillandier.

HP-41 Time Module Owner’s Manual.

Related Keywords

DATES, DATESTRS, DMY, DOW, MDY, SETDATE

Authors

Pierre David, Laurcnt Istria and Janick Taillandicr.

EDIT

EDIT allows merging of Lex files, or editing files on external peripherals. EDIT is nonprogrammable.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator O IF..THEN..ELSE
O Device Operation
EDIT
EDIT filel
EDIT filel TO file2
Examples
EDIT AREUH:TAPE File AREUH is copied from :TAPE to main memory, and
becomes current file.
EDIT AREUH:TAPE TO TOTO:PORT (0) File AREUH is copied from :TAPE to :PORT(0), changes its
namc and becomes current file.
EDIT STRINGLEX Edit Lex file STRINGLEX.
Input Parameters
Item Description Restrictions
filel String expression or unquoted string. File name with optional external
Default : System workfile device specifier.
file2 String expression or unquoted string. The device specifier must be in
Default : File with same name in main Ram. Ram.
Operation

Copying and editing files :

If the first file specifier indicates an external mass memory device, the file is first copied into the HP-71.

If a second file specifier is provided, the first file is copied into it. Then the file is made the current workfile.

So EDIT on external files is similar to COPY followed by a standard EDIT on this file.

If the type of the copied file is invalid (i.e. different from Basic, Keys or Lex), the copy is done and
ERR:Invalid Filetype isreported.

Chaining Lex files :

2
EDIT (continued)

The edited file can be a Lex file. This is the first step in linking Lex files. See MERGE for further details.

Caution !

When you edit a Lex file, it becomes the current workfile. If you execute a PURGE command on this file, the
workfile is not changed to the standard work £ i1le, this yields to strange results.

To prevent this be sure to do an EDIT to edit the system workfile after you finish merging (linking) Lex files.

References
JPC 31 (page 54) editing files on external peripherals by Jean-Pierre Bondu.
JPC 23 (page 47) Basic program to merge Lex files by Michel Martinet.

JPC 37 (page 22) assembly language merging of Lex files by Pierre David and Michel Martinet.

Related Keywords

COPY, EDIT, MERGE

Authors

Jean-Pierre Bondu, Pierre David and Michel Martinet.

ENDUP defines a command string to be executed when the HP-71 turns olff.

ENDUP

B Statement
O Function
O Operator

EERON

Keyboard Iixecution
CALC Mode

IF.. THEN..ELSE
Device Operation

ENDUP command string

Example

ENDUP "BEEP@'Bye...'"

Input Parameter

The HP-71 will beep and display "Bye..." each time it turns off.

Item

Description

Restrictions

command string

String expression.

0 through 95 characters.

Operation

The ENDUP command string can include any instruction you wish, provided that it can be executed from the

keyboard.

When you execute ENDUP, the command string is stored without checking for syntactical errors. The computer
may have only one ENDUP string at any given time. When you turn the HP-71 off, the ENDUP string is executed
if it is error free. Otherwise, an error is reported and the computer is left in a state such that you have only to push

on [ATTN] to turn it off.

The specified string is kept in a buffer. See ADBUF'$ for more informations on buffers and their use.

Note : the string specified by ENDUP is not executed when the HP-71 is turned off in CALC mode or within KA.

References

JPC 25 (page 43) [irst version by Jean-Jacques Morcau.

JPC 31 (page 29) sccond version by Jean-Jacques Morcau.

Related Keywords

ADBUFS, ENDUPS, STARTUPS, STARTUP

2
ENDUP (continued)

Author

Jean-Jacques Moreau

1

ENDUPS$

ENDUPS returns the command string specified in ENDUP,

O Statement B Keyboard Execution
B Function O CALC Mode
O Operator B IF..THEN..ELSE
B Device Operation
ENDUPS$
Example
A$=ENDUPS Stores into A$ the command string to be exccuted when the
IP-71 is powered off.
Operation

ENDUPS returns the command string to be executed when the HP-71 is powered off. The length of this string
cannot be greater than 95 characters.

If no command has been specified by ENDUP, ENDUPS returns a null string.

References
JPC 25 (page 43) first version by Jean-Jacques Moreau.

JPC 31 (page 29) second version by Jean-Jacques Moreau.

Related Keywords

ENDUP, STARTUP, STARTUPS

Author

Jean-Jacques Moreau

1
ENTRYS$

ENTRYS (entry point) returns the entry point address for the spccified keyword.

O Statement B Keyboard Execution
W Function O CALC Mode
O Operator B IF..THEN..ELSE
B Device Operation
ENTRYS (keyword)
ENTRYS$ (keyword , sequence)
Examples
AS=ENTRYS ("ENTRYS") Stores execution address of ENTRY$ in variable AS$.
DISP ENTRYS ("EDIT", 2) Returns the address of the second EDIT, i.e. system EDIT. Lex
fles are scarched before standard functions.
Input Parameters
Item Description Restrictions
keyword String expression. The keyword must exist.
sequence Numeric expression rounded to an integer. The keyword must exist.
Default : 1

Operation

ENTRYS returns the entry point address of the specified function or statement. This address is equivalent to the
start address of the run-time execution code.

ENTRYS is specially useful when used with the Debugger (HP-82178A) to easily locate entry points.
Caution : files in HP-71 main memory are frequently moved. For example, if a file is purged or its size changed and
if it is located before the Lex file containing the function, the entry point address will change. You can avoid these

problems by keeping code under study in independent Ram.

The entry point is the address of the execution code, or the address specified by the ENTRY pseudo-op used by
the HP-71 Forth / Assembler Rom.

If a second parameter is provided, ENTRYS looks for the function in all available Lex files. This includes all
functions provided by the built-in operating system.

If the keyword does not exist or if the sequence number is greater than the number of times the keyword occurs in
your HP-71, ENTRY$ will return the ERR: Invalid Arg error.

2
ENTRY$ (continued)

For keywords of more than 8 characters in Iength, special processing is required from the system. So, keywords like
UNDERLINE or RANDOMIZE arc rccognized as UNDERLIN or RANDOMIZ. The final "E" is processed by
the function itsell. ENTRY$ cannot process these extra characters. ENTRY recognize UNDERLIN and don’t
take care of the "E". So, ENTRYS$ ("RANDOMIZE") and ENTRYS ("RANDOMIZ~----") ignore extra
characters and return the same address.

The keyword found is the longest keyword corresponding to the characters specified, others are ignored. So,
ENTRYS ("MEMORY") returns the entry point address of function MEM.

References

JPC 31 (page 22) first version by Jean-Jacques Moreau.
Forth/Assembler Rom Owner’s Manual (page 63).

Internal Design Specification, Volume 1.

Related Keywords

ADDRS, LEX, PEEKS, TOKEN

Author

Jean-Jacques Moreau

ESC$

ESCS$ (ESCape) returns the string with a leading "escape” character.

O Statement M Kcyboird Exccution
B Function O CALC Mode
O Operator W IF.THENCGELSE
B Device Operation
ESCS$
ESCS$ (string)
Examples
PRINT ESCS$S("Y") Puts a printer such as the ThinkJet into monitor mode : all
characters received will be printed.
PRINT ESCS ("*b80OW") &GS Sends a graphic line to a ThinkJet or LaserJet.
DISP ESC$&"j "e Enables the Roman8 character set on an HP92198B video
interface.
Input Parameter
Item Description Restrictions

string Alphanumeric expression.
Default : Null string.

None.

Operation

Escape sequences :

Escape sequences are used by most computers to control peripherals. For example, the HP-71 uses escape
sequences to control the internal LCD display and with HP-IL peripherals.

An escape sequence is prefixed by a character "escape” or ESC (code 27). It is recognized by the peripheral as the

beginning of a command and not as normal data.

The ESC code is followed by a string coding thc command. If the peripheral recognizes it, it will respond

accordingly.

For example, with a ThinkJct, if you exccute
PRINT "THE HP-71";

the printer will print "THE HP-71". Now, if you try :
PRINT CHR$(27) &"&dD";

2
ESC$ (continued)

the printer will interpret the 4 characters as a command to enter underline mode, the characters will not be
printed. This is an escape sequence.

You don’t have to remember the most frequently used escape sequences for the ThinkJet. You can use statements
like BOLD, PAGELEN, UNDERLINE or WRAP.

The ESCS$ function :

The ESCS$ function adds an escape character before the specified string. If no string is specified, ESCS$ is
equivalent to CHRS (27).

References
JPC 26 (page 39) first version by Picrre David.
JPC 40 (page 16) second version by Pierre David.

Consult the reference manuals of your peripherals...

Related Keywords

BOLD, CHRS, PAGELEN, UNDERLINE, WRAP

Author

Pierre David

1

EXECUTE
EXECUTE executes the specilicd command string and stops program exccution,
B Statement B Keyboard Lxecution
O Function O CALC Mode
O Operator O IF..THEN..ELSE
B Device Operation
EXECUTE command string
Example
10 EXECUTE "FREEPORT (0)@RUN, 'A'" Switches port 0 to independent Ram and resumes execution at
20 'A': label 'A’.
Input Parameter
Item Description Restrictions
command string Alphanumeric expression. 0 through 95 characters.

Operation
EXECUTE executes the command string and stops program execution.
This allows "programming" of some non-programmable functions.

EXECUTE should never be used in a subprogram or loop and choice structures such as LOOP, IF or
SELECT : it destroys calling environments.

The programme is considered as executing until the whole string has been executed. This allows using CONT to
resume programme execution.

References

JPC 31 (page 29) second version of ENDUPLEX by Jcan-Jacques Morcau.

Related Keywords

ENDUP, STARTUP

2
EXECUTE (continued)

Author

Jean-Jacques Moreau

EXIT
EXIT exit a FOR ... NEXT loop.
B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF..THEN..ELSE
B Device Operation
EXIT loop variable
Example
10 FOR I=1 TO INF Exits the FOR ... NEXT loop and resumes execution at the
20 IF FNC(I) THEN EXIT I instruction that follows NEXT I (BEEP) if FNC(I) is different
30 NEXT I @ BEEP from 0.

Input Parameter

Item Description Restrictions

loop variable Simple numeric variable. None.

Operation
EXTIT exits conveniently from a FOR ... NEXT loop. Informations necessary to control the loop are cleared.
Normal loop exit is through statement NEXT when the loop counter exceeds the final value specified.

On some occasions it is useful to exit a loop prematurely, whenever special conditions are met. EXIT provides an
elegant solution for handling such situations. For example the following programs compute 10 squared roots,
unless an argument is negative :

10 DATA 1,2,3,4,5,-6,7,8,9,10
20 FOR I=1 TO 10

30 READ X

40 IF X<0 THEN EXIT I

50 DISP SQRT(X)

60 NEXT I

70 DISP 'Ended’

References

JPC 30 (page 49) first version by Janick Taillandier.

2
EXIT (continued)

Related Keywords

FOR ... NEXT, LEAVE

Author

Janick Taillandier

1

FILESIZE
FILESIZE returns the size of the specified keyword.
O Statement B Keyboard Execution
B Function O CALC Mode
O Operator B IF..THEN..ELSE
O Device Operation
FILESIZE (file)
Example
A=FILESIZE("ESSAI") Returns the size of file ESSAI if found, 0 otherwise.
Input Parameter
Item Description Restrictions
file String expression. Filename with optional device
specifier.

Operation

FILESIZE returns the file size in bytes, or 0 il the file cannot be found in memory or on the specified mass
media.

This allows easily testing if a file exists, whether it is in Ram or on an external device. We have to write something
like :

1000 IF FILESIZE(F$&":TAPE") THEN

1010 COPY :TAPE TO F$

1020 END IF

The size returned is the tofal file size. It includes the file header size. This header contains the file name, type,
creation date and time as well as other informations used by the system. So, this size is different from the size

returned by CAT or CATS.

It is interesting to use this size because it coresponds to the available room as returned by MEM. To copy a file
from mass storage to an Independent Ram, you have only to write something like :

IF MEM(0)>=FILESIZE ("TOTO:TAPE") THEN COPY ..

References

JPC 23 (page 36) keyword FILE?

2
FILESIZE (continued)

To be published : FILESIZE by Henri Kudelski.

Related Keywords

ADDRS, CAT

Author

Henri Kudelski

FIND finds a character string in a Basic program. FIND is nonprogrammable.

FIND

B Statement B Keyboard Execution

O Function O CALC Mode

O Operator O IF..THEN..ELSE

B Device Operation

FIND string
Example
FIND "OSUB 1210" Looks for the first occurrence of string "OSUB 1210" after the

current line and sets the cursor to that line.
Input Parameter
Item Description Restrictions
string String expression. None.

Operation

FIND looks for a string in the current Basic file, after the current line.

If FIND finds the string, the line is displayed and the cursor is moved to the first character of the found string.

If the string cannot be found, the error : JPC ERR:Not Found is reported.

The first line of a program is not searched unless the program has just been edited with EDIT.

References

JPC 31 (page 25) first version by Jean-Jacques Morcau.

JPC 45 (page 19) second version by Janick Taillandicr.

The HP-75 FETCH command.

Related Keywords

FETCH

2
FIND (continued)

Authors

Jean-Jacques Moreau and Janick Taillandier.

1
FINPUT

FINPUT (Formatted INPUT) creates an input mask and waits for data input from the user.

B Statement |
O Function o
O Operator]

]

Keyboard Execution
CALC Mode
IF..THEN...ELSE
Device Operation

FINPUT input , prompt , atin
FINPUT input , prompt , format , atin

Example
10 DIM I$[8]

20 FINPUT IS$,"File: ",A
30 IF A=0 THEN ..

Input Parameters

The user enters a filename (8 characters maximum), and
FINPUT stores it in A$. If the user press [ATTN], variable A is
set to 0.

Item Description Restrictions

input Existing string variable or array. The variable or array must be
created before you use FINPUT.

prompt String expression or string array. Contains only displayable
characters.

format String expression or string array. Non null string exclusively

Default : STR$(LEN(prompt))&"PU" composed of characters "U" and "P"

or digits specifying a format.

attn Numeric variable or numeric array name. None.

Operation

Protected fields :

Briefly, protected fields may be used with INPUT or LINPUT to prevent

prompts.

For example, to enter a date, the display will look like :
Date: Dy/Mo/Yr

accidental erasure of important

The user has to replace only characters Dy (Day), Mo (Month) and Yr (Year) by their values. Others must not

change. Here is a program to do that :

2

FINPUT (continued)

100 E$=ESCS$ ("<") ! Cursor off
110 AS$S=ESCS(">") ! Cursor on
120 D$=AS&"Jr"&ES"/"&AS&"MO"&ES&" /"&AS&" YY"

130 DISP ES&"Date: "&DS&ES:; ! Display
140 INPUT "";IS ! Date input

First, the program is not legible in spite of the comments.

Second, the mask display is slow.

Third, if a date is entered, and the (ATTN] key is pressed, the month is cleared and cursor goes to the beginning.
Press [ATTN] again nothing happens. The [ATTN] key is not enabled, you cannot stop the program. The only solution

is to press [ENDLINE]. This validates the input, but that is obviously not what you wished.

Fourth, after entering the date, nothing prevents the uscr from keying-in additional characters. How to prevent
this ?

The problem is that no character is protected to the right of the date. The HP-71 has no reason to lock the
remainder of the display. So we have to display the mask and then add enough protected characters : here, 96 - 14
(length of the mask) blank characters. We add the following lines o the program :

121 DIM S$[82]

122 sg=""

123 s$[82]=" "

Then replace line 130 by :

129 WIDTH INF
130 DISP ES$&"Date: "&DS&ES&SS:;

When running the program, there is an unpleasant display blinking before you see the mask but, at last, you cannot
enter any character past the date.

A new problem appears : press [->] after the year, the display disappears at the left of the LCD. Worst, pressing
[g] [->] gives you an empty screen after some time.

Using FINPUT :

Single line FINPUT :

In its simplest form, FINPUT is an extension of the LINPUT statement that facilitates the use of protected
fields.

Our Basic example can now be written :

100 DIM IS$[6]

110 FINPUT IS$,"Date: Dy/Mo/Yr","6P2UP2UP2UP", A
In this example, it is worth noting that :

- I8 is the target string. It must be created before using FINPUT.

3
FINPUT (continued)

- prompt contains what will appear on the display. All characters, protected or not, are displayed.

- the next parameter is the format string. Let us look at the content of this expression : 6P means that the 6 first
characters are Protected. 2U specifies that the next 2 characters arc Unprotected. The P indicates that the next
character is protected, and so on... The final P means that the remainder of the display is protected. It is not
necessary to specify 8 2P to finish the line.

- the last parameter, attn, will contain 0 if the [ATTN] key was used to exit FINPUT.

It is easy to understand that the use of protected fields is greatly simplified. FINPUT has many other features,
among them :

- simplifying protection specification : describing protected ficlds is really easy.

- handling of the (ATTN] key : during FINPUT, the [(ATTN] key, pressed once restores the default display specified
by the prompt string. [ATTN] pressed a second time exits FINPUT and stores O into attn. The program is not
interrupted and it is easy to handle the [(ATTN] key using a simple test suchas: IF NOT A THEN ..

- handling of t->] and (g) [->] : these keys no longer cause the unpleasant effect described above.

- handling of "short variables" : in the previous example, il the declaration of I$ had specified less than 6 characters,
for example 3, it would not have been possible (o enter more than 3 characters. FINPUT adds a new security.
Programs will no longer stop with the "String Overflow" crror!

FINPUT without format string :

In many occasions, you don’t need such a sophisticated display management. For example, to enter a file name with
INPUT, you write :

100 INPUT "File: ";F$

As a file name, in Ram, cannot have more than 8 characters, with FINPUT the program becomes :

100 DIM F$([8]

110 FINPUT F$,"File: ",A

120 IF NOT A THEN END

Now, it is impossible to enter more than 8 characters, and if the user changes its mind and presses the [ATTN] key,
the program handles it simply.

The format string is optional. If it is not present, FINPUT wuses the following defaults
STR$(LEN(prompt))&"PU". All characters in the prompt string are protected, the remainder is unprotected up to
the maximum length of the result string.

Multiple line FINPUT :

The most important characteristic of FINPUT is that it can process multiple input lines. It is somewhat like a
complete screen mask.

If a program needs date and time input data, it can be obtained by :

4
FINPUT (continued)

100 DIM D$[6],HS$[6]

110 FINPUT D$,"Date: Dy/Mo/Yr","6P2UP2UP2UP",A
120 IF NOT A THEN END

130 ! Date processing

200 FINPUT HS$,"Time: Hr:Mn:Sc","6P2UP2UP2UP",A
210 IF NOT A THEN END
220 ! Time processing

But there is another solution :

100 OPTION BASE 1 ! array will begin by 1
110 DIM I$(2)[6],M$(2),PS(2)

120 DATA Date: Dy/Mo/Yr,Time: Hr:Mn:Sc

130 DATA 6P2UP2UP2UP, 6P2UP2UP2UP

160 READ M$! read both prompts

170 READ P$! read both format strings
180 FINPUT I$,MS$,PS$,A

190 IF NOT A THEN END

200 ! Date processing (I$(1))

210 ! Time processing (IS$(2))

This last solution is more elegant than the first one when you need to input large amounts of data. All data input is
done in a single operation.

Cursor keys are used to skip from one line to another. (ENDLINE] is used to validate each line.
Important notice : there are two ways to exit FINPUT and validatc the input :
- pressing (RUN] which validates the current line, and

- pressing [ENDLINE] twice when the cursor is in the last line.

The attn variable contains the line number on which FINPUT was cxited. The 0 value indicates an exit via the
ATTN] key.

Using FINPUT this way allows you to fill out an entire form in a singlc operation. The programmer no longer
needs to be concerned with movements inside the form. FINPUT handles them !

Summary :

The variable input must be created before executing FINPUT.

The prompt string must contain only displayable characters. It may not include 0 (NULL), 27 (ESC), 13 (CR), 10
(LF) or 8 (BS) codes.

The format specification can contain letters "U" and "P" (uppercase or lowercase) preceded by an optional
repetition factor to specify protected and unprotected characters. The string must not be null and the resulting

format must not specify a string with more than 96 characters. So, 9 6P is correct, but 97P or 95P2U are not.

Simple variables are considered as arrays with only one element.

Usage :

While you enter data with FINPUT, selected keys have been assigned the functions :

5
FINPUT (continued)

[ATTN]
If characters have been keyed in, the display is restored according to prompt.
A second time : exit from FINPUT.

[f] [OFF]
Direct exit from FINPUT.

[ENDLINE]
Validates the current line and skips to next line. If single line, exits from FINPUT. Pressing [ENDLINE] twice on the

last line and validates the input.

[RUN]
Validates the current line and exits from FINPUT. If single line, (RUN] is the same as [ENDLINE].

[*1, v, [91 ("1 and [g] V]

Change line without validation of the current linc. If single line, restore the default display.
Variable contents on exit :
prompt and format variables are never modified.

After a normal exit (via [ENDLINE] or [RUN]), the variable attn contains the line number on which exit occurred. This
number is between 1 and the array size.

The destination variable contains the data you entered.

When you exit by way of [ATTN]1 or [f][OFF1, the variable attn contains 0. The destination variable remains
unchanged.

References

JPC 43 (page 16) FINPUT by Pierre David and Janick Taillandicr.

Related Keywords

INPUT, LINPUT, DISP

Authors

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>