
[/ caciaro

 

HP-71
 

Owner’'s Manual
 

 



 

 

Notice

Hewlett-Packard Company makes no express or implied warranty with regard to the pro-

gram material offered or the merchantability or the fitness of the program material for any

particular purpose. The program material is made available solely on an “as is’’ basis, and

the entire risk as to its quality and performance is with the user. Should the program ma-

terial prove defective, the user (and not Hewlett-Packard Company nor any other party)

shall bear the entire cost of all necessary correction and all incidental or consequential

damages. Hewlett-Packard Company shall not be liable for any incidental or consequential

damages in connection with or arising out of the furnishing, use, or performance of the

program material.

  



Printed in U.S.A.

(fi'” HEWLETT
PACKARD

HP-71

Owner’s Manual

February 1985

Reorder Number

00071-90001 Rev. D

© Hewlett-Packard Company 1983





Introducing the HP-71

Congratulations! You have purchased the HP-71, an advanced computational tool that works as easy as

a calculator but is as powerful as a computer. The rugged design and high performance of the HP-71

can substantially increase your productivity.

The HP-71 offers you the following features:

e Small sized and battery powered for maximum portability.

e A special calculator mode for performing sophisticated computations while viewing intermediate

results.

o A powerful set of BASIC functions, statements, and operators—over 230 in all. Many larger

computers don’t have a set of BASIC instructions this complete.

e Advanced statistics functions that enable you to perform computations on up to 15 independent

variables.

¢ Recursive subprograms and user-defined functions, which are usually found in other programming

languages, now extend the power of BASIC in the HP-71.

e An advanced internal file system for storing your programs and data. The HP-71 has continuous

memory. When you turn the computer off, it retains programs and data.

e A keyboard that can be easily customized for your specific applications.

Optional extensions for your HP-71 include application modules containing prerecorded, ready-to-run

programs, a magnetic card reader for low-cost storage and retrieval, and an HP-IL interface that en-

ables you to add printers, a digital cassette drive, a video interface, a modem, and other devices to your

portable computing system.



Contents

How to Use This Manual ............ . . . . . . . . . . . ...

Part I: Basic Operation

Section 1: Getting Started ...... ... ... . ... ... .....

* Overview ¢ Keyboard Operation

* Memory Reset, BASIC Mode, and the BASIC Prompt « The Display Window

« Setting the Time and Date « Keyboard Calculations

* Entering and Running Prewritten Programs < Redefining the Keyboard

* Display Contrast and Viewing Angle * Status Annunciators

* Recalling Commands—The Command Stack * Producing Tones

* What's Ahead « Syntax Guidelines

Section 2: Calculating with the HP-71

* Overview ¢ Using CALC Mode -+ Arithmetic Operators « Numeric Functions

* Number Formatting « Numeric Precision ¢ Precision of Numeric Variables

» Math Exceptions « Range of Numbers * Relational Operators

* Logical Operators * Precedence of Operators

Section 3: Variables: Simple and Array

* Overview - Features of Variables and Arrays

* Numeric Variables: Simple and Array * Strings

Section 4: Statistical Functions

* Overview « Declaring Statistical Arrays * Using the Statistical Operations

* Fitting Sample Values to Other Curves

Section 5: Clock and Calendar

* Overview * The HP-71 Calendar * The HP-71 Clock

Section 6: File Operations ... ........ ... . . . . . . . . . ...

* Overview ¢ The Current File * Thevk 1 1 &

* Introduction to File Operations « Structure of HP-71 Memory - File Names

* Device Names - Copying Files < Renaming Files - Purging Files

» Merging Files « File Security * File Catalogs

.. 98



Contents

Section 7: Customizing the HP-71 ... ... ... ... ... . . .. . .. .. ... . ... .. ... 120

- Overview - Redefining the Keyboard - Program/Keyboard Interactions

- Alternate Characters - Protected Display Fields

- Reading Characters From the Display - Display Graphics

« Restricting HP-71 Use « Automatic Command Execution

- Controlling the Display

Part II: Programming the HP-71

Section 8: Writing and Running Programs ........................... 142

- Overview - Entering a New Program < Running a Program

- Interrupting a Program - Editing a Program - Using BIN and LEX Files

« Transforming Files

Section 9: Error Conditions ........... ... .. ... ... ... .. ... . ... 162

« Overview - Types of Errors « Error Messages « Debugging Operations

» Program Control of Errors - Warnings  Math Exceptions In Programs

Section 10: Branching, Looping, and Conditional Execution .......... 178

» Overview « Unconditional Branching < Multiple Branching - Timer Branching

- Looping - Conditional Execution

Section 11: Flags . ... ... . . ..190

- Overview - Introduction to Flags - Testing Flags - Setting and Clearing Flags

» User Flags - System Flags

Section 12: Subprograms and User-Defined Functions ................ 202

- Overview « Subprograms - User-Defined Functions

Section 13: Printer and Display Formatting .......................... 224

« Overview - Simple Formatting < Advanced Formatting

- Controlling the Display and Printer

Section 14: Storing and Retrieving Data ............................. 240

- Overview « Keyboard Data Entry - Program Data

- Data Files - Storing and Retrieving Data Sequentially

- Storing and Retrieving Data Randomly - Storing and Retrieving Arrays

- Passing Channel Numbers to a Subprogram

Appendixes and Indexes

Appendix A: Owner’s Information ......... ... .. .. .. ... ... .. ... ... 266

Appendix B: Accessories Included With the HP-71 ... ... .......... ... 282

Appendix C: Using the HP 82400A Magnetic Card Reader ........... 284

Subject INndex .. ......294

Keyword Index ......... ... .. .. .. .. ... ... ... .. Inside Back Cover

5



How to Use This Manual

The HP-71 is an advanced computational tool with more functions, statements, and operators than

many larger computers. The extensive documentation will enable you to use the HP-71 as the solution

to your scientific and business applications.

Included with the HP-71 are the following documents:

* HP-71 Owner’s Manual.

This manual describes how to use the HP-71. It is written for the user who has an introductory

level of programming experience. All users should read some portions of this manual, particularly

section 1, “Getting Started.”

e HP-71 Reference Manual.

The reference manual contains complete descriptions of the syntax of every statement, operator,

and function in the HP-71. After you have learned how to use the HP-71, the reference manual

will become your main source of information about individual keywords.

e HP-71 Quick Reference Guide.

This portable reference guide slips into the computer’s case. It contains memory-jogging informa-

tion to help you out when the owner’s manual or reference manual are not handy.

The HP-71 owner’s documentation assumes you have written BASIC programs using:

e Variables and arrays.

e Subroutines.

Branches, loops, and conditional execution statements.

e [IHTH statements.

» Printers.

e IHFIIT statements.

e Comments in program lines.

If you have never programmed in BASIC, but intend to program the HP-71, you might need to first

gain some experience in elementary BASIC programming. If you don’t intend to program the HP-71

yourself, then you don’t need to learn how to program to be able to use the HP-71. The computer is

designed so that if you wish, you can simply perform calculations and run prewritten programs. The

owner’s manual shows you how you can do this.



How to Use This Manual 7/8

All users should read section 1, “Getting Started” to become familiar with the computer’s operation.

Other sections are optional, depending on what you want to learn about the computer’s operation. The

following table indicates what you will need to read in order to learn particular skills on the HP-71.

 

If you want to learn how to... Read sections...
 
 

Run a prerecorded program.

Perform keyboard calculations. ,
1, 6, 8"
1, 2

Perform statistical analysis. 1, 2
1

1
1

4

Use the internal clock and calendar. , 5
Customize the HP-71. , 7
Write and run programs. , 2,3,6, 8,9, 10, 11
Use advanced programming structures. 12, 13, 14
Use the HP 82400A Magnetic Card Reader. Appendix C
 

* Section 8 describes how to write and run programs. If you are interested in simply run-

ning programs, you need read only the parts of section 8 that show how to run a

program.   
 

In the back of the manual you’ll find a subject index followed by a keyword index on the inside back

cover for your reference.





Part 1
Basic Operation



Section 1

Getting Started

Contents

OVeIrVIEW.11

Keyboard Operation . ........ .. ... . ... . ...11

Keys That Execute Immediately . ...... ... ... . ... . . ... ... . ... ... ... ..... 12

Typing Aids ....12

Conventions for Representing Keystrokes . ........ ... ... ... ... . ... ... ... 13

Power On and Off ((ON], (fJ(OFF]) ...... ... ... ... .. .. ... . . .. . . .. . . ...... 13
The Keyo13

Memory Reset, BASIC Mode, and the BASIC Prompt . ........................ 13

The Display Window ... ......14

Moving the Display Window ((«], > ], (9)(«], (9)™]) .. ... ... ... ... ... ..... 15
Clearing the Display ([ATTN]) . ... .....16
Correcting Typing Errors ([ATIN], (f]J(BACK]) . ....... ... ... ........... 16

Setting the Time and Date ............ ... .. ... . . . . . ... ... ... ... ... 17

Keyboard Calculations . .......... .. . ... . .. ...18

BASIC Mode Calculation ......... ... ... ... ..... 19

CALC Mode Calculation ... ... ... ... . ..19

Entering and Running Prewritten Programs .. ...... ... ... ... .. .. ... ... ..... 21

Displaying Any Program Line ([A], [v], (9)(X]}, (9)(X]) ... .-o. 21
Editing Any Line ([f][BACK], [f]J(=CHAR], [fJ(I/R], (fJ(=LINE]) ................. 21
  

r—r-,--q—
Naming a Program File (2111 7T)

Entering, Editing, and Running the ii%#t

Controlling Program Display Speed (i

Saving the UV ERFLGProgram (ED DT, |

 

Running Any Program in Memory . ...... 27

Redefining the Keyboard ([f]{USER],@M ............................. 28
Display Contrast and Viewing Angle (COHTERST) ooo... 29

Status Annunciators . ......30

Recalling Commands—The Command Stack ([9]J(CMDS]) ...................... 31
Producing Tones (EEEEF) ... ..32

What's Ahead ... ..... .. .. ..33

10



Section 1: Getting Started 11

Overview

This section introduces:

The keyboard.

The display.

Clearing memory.

The HP-71 clock.

Keyboard calculations.

Entering and running a program.

Editing a program.

Creating user-defined keys.

Using previously entered commands.

Using direct-action keys.

The beeper.

The rest of this manual.

Keyboard Operation

Most keys on your HP-71 perform one primary and two alternate, shifted operations. The primary

operation of any key is indicated by the white or black character(s) on the top face of the key. The

alternate operations are indicated by the gold characters printed above the keys and the blue char-

acters on the lower faces of the keys.

To select the character or operation printed on the top face of a key, press

only that key. For example: [s].

 

To select the alternate character or operation printed in gold or blue,

press the like-colored prefix key ([f] or [9]) and the operation key. For

example: [f](CALC], [9](>]. You can release the prefix key before pressing
the operation key, or you can keep the prefix key pressed as you press the

operation Kkey.

To select uppercase letters, press the letter key. (If letter keys produce lowercase letters, first press

(f)(LC], then press the letter key).

To select lowercase letters, press (9] followed by the letter key.



12 Section 1: Getting Started

Keys That Execute Immediately

Most HP-71 keys only display characters when pressed. However, most bottom-row keys are immedi-

ate-execute keys—they perform an operation when pressed. For instance, pressing followed by

executes the operation, which erases a character in the display. This operation allows you to

easily correct typing errors. All shifted and unshifted keys are listed in this manual’s index.

Typing Aids

All (f]-shifted keys in the top three rows are typing aids. A typing aid is a key that produces in the

d1splay an often-used group of characters. These characters can be displayed by pressmg only the typ-

ing aid key instead of all the individual character keys. For instance, to display &% U Ewith a trailing

space, you can either press (f] followed by (S], or press the (G] (0] [S] [u] (B][SPC] keys. The gold
printing above each key indicates the characters each typing aid displays. The diagram below shows

how these aids are grouped logically to make them easier to use.

   

TYPING AIDS

FORE.HE=T loops

 

 

 

 

 

User defined

”i—ifleL “E keys Statistics

THEN ELSE FOR TO NEXT DEF KEY ADD PREDV MEAN SDEV SQAQR

Prngam GALL GOSUB RETURN GOTO INPUT PRINT DISP DIM BEEP FACT SIN c0os TAN EXP

branching> () IOte)i o
EDIT CAT NAME PURGE FETCH LIST DELETE AUTO COPY RES ASIN ACOS ATAN LOG

LIyt o 1110
|mmed|ate OFF SST BACK -CHAR I/R LC -LINE USER VIEW CALC CONT

 «ecuion” (] J U0 0O0OO0OOUOOCOOO

File manipulation Program line Calculations

manipulation

Other typing aids

GROUPING OF SHIFTED KEYS



Section 1: Getting Started 13

Conventions for Representing Keystrokes

Except for a few cases where keys we ask you to press are indicated in narrative style, this manual

represents keystrokes in four ways:

1. Unshifted or shifted keystrokes that display characters are indicated by those characters. For

example, # means “Press the [x] key” and # means “Press the (9] and keys.”

2. Unshifted keystrokes that do not display characters are represented by keys printed with the keys’

top-face symbols. For example, means “Press the left-arrow key.”

3. Keystrokes shifted with that do not display characters are indicated by followed by the keys’

gold symbols. For example, means “Press the key, then the key.”

4. Keys shifted with [g] that do not display characters are indicated by (9] followed by the keys blue

symbols. For example, (][] means “Press the [9] key, then the key.”

Power On and Off ([ON], (f)(OFF])

Pressing turns your HP-71 on, while pressing turns it off. To preserve battery life, the

computer turns off automatically after 10 minutes of inactivity.

The Key
The key acts in a manner similar to that of the RETURN key found on many computers.

When you press LINE], one or more of the following happens:

o The statement or calculation you've just typed is executed.

e The characters you've just typed are stored in memory. For example, when you enter a program

into memory, you press after you type each program line into the display.

e The HP-71 may detect an error. In that case, the computer beeps and displays an error or warning

message.

Memory Reset, BASIC Mode, and the BASIC Prompt

The HP-71 has continuous memory, which means memory contents are not lost when the HP-71 is

turned off. You can clear and reset memory, however, and it’s important to do so now to ensure that

examples throughout this section produce the results as shown. There are three kinds of resetting avail-

able to you, IHIT: 1, IHIT: Z,and IHIT: 3. The last one (IHIT: Z) is the one you’ll use

now, since it clears main user memory, also called main RAM (random access memory). (Descriptions

of the other two resetting operations appear in the “Owner’s Information” appendix, page 273.) The

following example shows you how to clear memory.



14 Section 1: Getting Started

Note: The format of the procedure below will be used often throughout this manual to detail a

series of keystrokes and resulting displays. The keystrokes follow the conventions descrlbed on

page 13. The displays that are the result of your commands and entries are shown as: poloEg

characters inside a “display box.”

 

   

 

   

Input/Result

Press and release these two keys at the same time.

IHIT: 1§ Your display shows the command for the first

type of reset. All the keys are now inactive ex-

cept for (1], 2], (3], and LINE].
Selects a type = reset, a memory reset.

s The computer indicates memory is now clear.

Clears the display.

 

   

The > symbol is the BASIC prompt, showing that you’re in BASIC mode. You’ll probably do most of

your work, such as entering and running programs, in BASIC mode. You can operate your HP-71 in one

other mode, CALC mode, which we’ll introduce in a few pages. The flashing # symbol is the Replace

cursor, showing where the next typed character will replace either a blank or another character.

The Display Window

The 22-character display is a window through which you view the 96-character line. The following

keystrokes demonstrate the length of this line and show you the characters and spaces displayed by
some of the typing aids.



Section 1: Getting Started 15

Input/Result

Press (f], and while holding down, press in or-

der (@], (W], (E], and [R].
 

Elok FORE B The BASIC prompt, =, occupies the first position
of the 96-character line.   

Press and hold (f], then press the rest of the top
row keys, left to right, followed by the second row
keys (L to R) ending with [J]. That is, press and
hold (f], then press (7], (Y], (U], (1], (0], (P], (7],

(8], (), (4], (&), (8], (0], (], (6], (H], and [J].

-

 

RIMNE Pressing produced a beep, indicating the 96-
character line is full. Therefore, pressing did
not change the display. The left arrow at the far
left edge of the window indicates part of the line
is out of the display window to the left. The
cursor is now located at position 96.

   

Why is the 96th character position blank in the display shown above? What happened to the 7 of

FEI1HT? When more than 96 characters are entered into one line, the 97th and succeeding characters

appear in the 96th character position—repeatedly overwriting that position as long as new characters

are entered. In this case, the last character is the final space of {1 I%F | the typing aid produced by

(D]

Moving the Display Window ([<], [>], [9](«], [9])>))

The and keys allow you to scroll the display window back and forth along the line. Here is a
summary of their actions:

o moves the cursor left one space at a time along the line without erasing characters. If held

down for longer than about one-half second, this key action repeats.

. moves the cursor to the right. Otherwise, and act the same.

» (9)(«] moves the cursor immediately to the first character of the line.

e (9][»] moves the cursor immediately to one space beyond the last character of the line, or to char-

acter number 96 if the line contains 96 characters.

Input/Result

Moves the cursor four positions to the left.
 

-

   
   



16 Section 1: Getting Started

Note: When any character (other than a space) occupies the same location as the Replace cursor,

this manual will indicate it as shown above.

(9)(«] Moves the cursor to the first character of the line.
 

The arrow at the far right edge of the display
indicates the line continues to the right.   

(9)D] Moves the cursor to the right end of the line.
 

  
   

Clearing the Display ([ATTN])

When your HP-71 is on, the key becomes the (attention) key. This key performs two
actions:

e When a program is not running, clears the display.

e When a program is running, halts (suspends) the program, and the SUSP annunciator turns
on.

Input/Result

Clears the display.
 

   
When the display is clear, or when the cursor is not displayed, you can always type a statement, a

calculation, or program line, and then enter it into the HP-71 (by pressing LINE]). If the display

contains characters but no cursor, the first key pressed clears the display and performs that key’s ac-

tion. (This is true except for («], [»], (9])(k], and [9])(»], which produce no action in this situation.)
We’ll demonstrate these actions as we progress through this section.

Correcting Typing Errors ([ATTN], (f]J(BACK])

Two editing tools make it easy to recover from any errors you might make as you proceed:

o clears the display when no program is running.

o backspaces the cursor one space and erases the character in that space.



Section 1: Getting Started 17

Setting the Time and Date

The HP-71 contains an accurate quartz-crystal clock and a calendar covering several thousand years.

This clock runs whether the HP-71 is on or off, and begins running as soon as batteries are installed.

We’ll show you how to set this clock to the correct date and time.

The example below assumes the date is May 20, 1984, and the time when the clock setting process

begins is 4:13 PM and 10 seconds. Read through this example to learn how to set your clock to the

correct time and date.

The HP-71 requires a year/month/day (YY/MM/DD) format for the date, and six digits must always

be entered, including leading zeros.

Example: Set the date for May 20, 1984.

 

 

   

 

 

Input/Result

Ergd.G520" Sets the date.

" o £ i %

Enters the date.

DRTES Displays the date.
 

   
We’ll describe a technique to set the clock with an accuracy of 1 second or better. Read the following

description, then set your clock.

Key in a time about 30 seconds ahead of the actual time and press when the actual time
catches up with the keyed-in time.

You don’t need to clear the display before pressing the next group of keys. When the cursor is not

displayed, the next keystroke clears the screen and enters that key’s character into the display.



18 Section 1: Getting Started

Input/Result

SETTIME® 16 14 @@y This statement sets the time. The HP-71 clock
uses the 24-hour format, and six digits must al-
ways be entered, including leading zeros. The two
zeros following the second colon are the seconds.

 

  
 

Suppose the typing of this ZETTIME command is finished at 16:13:30. Now look at a watch that

shows seconds, and get in the rhythm of counting in half seconds. At one-half second before 16:14:00,

press LINE], and the HP-71 clock is set with an accuracy of a few tenths of a second. Page 92 in
Section 5 describes how to adjust the clock’s setting, and page 94 describes how to adjust the clock’s

speed.

The 7 IME# function returns the current time. To display a changing clock, a simple program is re-

quired, such as the iik program on page 131 in section 7.

Suppose you execute T I[E# exactly one minute after executing =k T 7T IHE:

Input/Result

TIMES Displays the time as a string, not a numeric value.

 

 

 

This is the time you executed 7It

  
 

Keyboard Calculations

You can perform calculations on the HP-71 in two different modes:

e In BASIC mode, keyboard calculations are performed as they are on most BASIC language

computers. You first key in the entire expression, then press to obtain the result.

e In CALC mode, you key in the entire expression as you do in BASIC mode, but whenever the

portion of the expression already keyed in can be evaluated, the HP-71 automatically displays the

intermediate result. You then press to obtain the final result.

The ability to monitor the progress of a calculation by viewing intermediate results provides important

advantages compared to viewing only the final result:

¢ You can see if the calculation is progressing as you expect, allowing you to catch errors that other-

wise might remain hidden.

e You can understand more easily and completely how an expression behaves, which is often more

useful than the final result.



Section 1: Getting Started 19

The expression we’ll evaluate is:

7+ 4 —9 x (15 — 7/3).

To ensure that the results of calculations you display on your HP-71 look like those in this manual,

execute the following statement.

 

Input/Result

B The HP-71 will now display results rounded to
two decimal places.   

BASIC Mode Calculation.

Example: Evaluate the expression in BASIC mode as follows.

 

  
 

Input/Result

""" i o c B The expression is keyed in, ready for evaluation.

Evaluates the expression.
 

-1 EE, a8 The result.

  
 

CALC Mode Calculation.

Example: Evaluate the same expression in CALC mode.

First, set the HP-71 to CALC mode. If you make an error as you enter the expression, press

enough times to erase the mistake, then complete the expression correctly.

Input/Result

 

# The annunciator tells you you’re in CALC mode,
CALC and the flashing Insert cursor (page 21) says that

characters will be inserted into the display from
the right edge.

  
 



20 Section 1: Getting Started

 

CALC   

 

CALC   

 

CALC   
This display shows two CALC mode features:

As soon as you key in an operator in CALC
mode, the HP-71 accepts the most recently typed
operand and displays it in the same format as a
result.

When you key in —, the HP-71 not only enters
the <, but evaluates and displays the intermediate
result.

e The HP-71 does not evaluate 11 .&~% Gsince to do so would violate operator precedence

(section 2, page 64).

e The Insert cursor shares its position with a right parenthesis, reminding you that the expression

requires a matching right parenthesis.

 

   

 

Input/Result

A G SLoET
CALC

END LINE

CALC   

When you key in the closing parenthesis, the
flashing * reminder disappears. If an expression
includes several nested pairs of parentheses, the
closing parenthesis reminder remains until the fi-
nal pair is closed.

Evaluates and displays the final result.

Now set the HP-71 back to BASIC mode by pressing [f]J(CALC]. (The keystroke is a toggle.
Pressing it switches back and forth between CALC mode and BASIC mode.)



Section 1: Getting Started 21

Entering and Running Prewritten Programs

The next few pages show you how to convert a program listing on paper into a program in memory, and

then how to execute that program. Since you might make an error as you enter program lines into the

HP-71, we’ll first describe some error-correcting tools that allow you to display and edit program lines.

Displaying Any Program Line ([4], [v], (9)(x], (9](¥))

When you’re entering or running a program, these four keys allow any program line to be displayed for

viewing or editing. Any line brought to the display using these keys becomes the current line. Shortly,

actions of these keys will be demonstrated when you enter a program.

o brings the line preceding the current line to the display, ready to edit. If held down for longer

than about one-half second, its action repeats.

» brings the line following the current line to the display, ready to edit. If held down for longer

than about one-half second, its action repeats.

e [9](X] brings the lowest numbered line to the display, ready to edit.

e (9])(x] brings the highest numbered line to the display, ready to edit.

Editing Any Line ([f)(BACK], [f](-CHAR], (f]{I/R], [f)(-LINE])
These four keys, when used in BASIC mode, allow you to change any displayed line:

® backspaces the cursor one position and erases the character at that position. If held down
longer than about one-half second, its action repeats.

® erases the character at the cursor and moves characters left one space to fill in the gap.
If held down longer than about one-half second, its action repeats.

o switches between the Replace cursor (#) and the Insert cursor (#). A character typed when

the Replace cursor is showing replaces the character or space at the cursor. A character typed when

the Insert cursor is showing is inserted where the Insert cursor points; that is, between the char-

acter at the cursor and the character immediately to its left.

o erases all characters starting from the character at the cursor through the right end of

the line (which might include more characters than those immediately visible in the display).

Naming a Program File (EL11T)

Note: To help you find typing aids more easily, the keystroke sequences on the next few pages will

show key symbols above the characters displayed by the typing aids. For instance, 011 T will be

shown as:

(0@

  



22 Section 1: Getting Started

The HP-71 can hold many programs. Each program is stored in a location called a file, which you must

identify by a file name. A file name can be up to eight characters long. The first character must be a

letter, and the remaining characters may be letters or digits.

You’ll soon enter a program into memory. First, create and name the file that will contain this program

 

using the EI1 1T statement.

Input/Result

(W)

  

 

   The {4 EET | file’s catalog entry is dis-
played andthefileis now ready for the {i%iE
i ! program.

 

 

 
 

The right arrow in the display shows that the catalog entry continues to the right. This display in-

dicates the DEFRFL Ofile is an empty BASIC file. File catalogs are covered in section 6 starting on

page 117.

Entering, Editing, and Running the ik1{4 Program

As you enter a program into memory, any errors you might make can be of two types:

1. Errors you catch before pressing [END LINE], or errors the HP-71 recognizes as soon as you press

LINE].
2. Errors neither you nor the HP-71 recognizes until you run the program.

You might make both kinds of errors as you enter this and other programs. To help you recover from

such errors, we’ll deliberately introduce one error of each type and show you how to correct each one.

(Errors and error recovery are covered in more detail in section 9).

Following this listing of the [\ ERF L il program, we’ll show you how to enter each line (including the

two deliberate errors). Note that program lines that start with | are comments, which are ignored by

the computer when the program is run. However, the HP-71 does reproduce such comments in program

listings. The & symbol joins (concatenates) statements on a single line.

10! OVERFLOW PROGRAM

20 REAL X,Y @ STD

30FOR X=1 TO 20

40 Y=(X"2)(X"2) @

DISP Y @ IF Y=MAXREAL THEN 60

50 NEXT X

60 “The largest finite positive number the

HP-71 can display is”;Y



Section 1: Getting Started 23

In the following keystroke sequence, type the spelling errors as shown. We’ll correct them shortly.

Input/Result

 

 

B

 

 

 

 

Press 11 times.
 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

  
 

 

  
 

We’ll correct the line to read

 

The Insert cursor points to the position where the
next typed character will be inserted.

Enters line 10 into your program file. The
key acts with either the Insert or the

Replace cursor displayed at any position.

The HP-71 is ready for the next program line.

REAL #.Y (page 57) declares variables = and '
to be full precision, and =TI (page 55) sets a
display format that shows numbers with full
precision.



24 Section 1: Getting Started

 

BR) (@O

 

  
 

 

  
 

 

  
 

 

  
 

 

 

= { S m Y

Sy; ;lj : g

((HQ)) ((Hw]
IF Y=MHASREARL THEH &8

-

"""" =PiHEREEAL THEM 08

(™))
=5 T H

B

  
 

 

 

i — L i i
+

sod
ery

Jo
ee

d
o

i

 
 

The variable ' at the end of the program line (fol-
lowing the & symbol) is an implied {11 =F state-
ment. It means the same thing to the computer as
DIZF %, Implied I %F statements are ex-
plained further on page 67. (The HP-71 also al-
lows implied |.ET statements).

Note the spaces given by the typing aids.
1l 1s the HP-71 name for the largest

finite positive number it can represent.
  

The left arrow annunciator indicates the rest of

this line is to the left of the displayed portion.

switches between the two letter cases. It
sets upper- or lowercase letters as the standard
for the unshifted letter keys. In either situation, a
(9]-shifted letter key produces the opposite let-
ter case.



Section 1: Getting Started 25

ta opoEitive number th Continues line 50.

 

   
When typing the next part of line 60, use the (9] shift key to type HF. (We’ll explain how to correct the
17 error after we run the program.)

 

 

 

   

Input/Result

.......... = b oo 1

* = .

i | sy 1B

o ' switches back to uppercase.

-

T oran displaw iz vHE

Enters line 60 into your '/ ERFLL file. The
complete program is now entered.

 

   
Press to execute this program.

The PRGM annunciator on the right edge of the display appears, and a series of increasingly large

numbers is displayed, one after the other, including 1 . EZ %, The E means “exponent,” so this num-

ber represents 1 x 10290, Just after you see 1 .Z1SGSES159%FE44% a warning message,
BEM L48: Ower f 1ow is displayed. This means the next number in the series is larger than the

HP-71 can represent Slnce this difficulty results in just a warning and not an error, the program

continues, and substitutes for the next number in the series the largest number the computer can
represent, & . SHHSEEHEELDEELEEE 4R,

As line 60 displays its message, you realize the model number of your computer is “71,” not “17.” Here’s

how you enter the correction into the program after the program stops.



26 Section 1: Getting Started

 

   

 

Input/Result

(D))
FETOH &8 Brings line 60 to the display.

-

PEEBDIDE YThe larasst Fetching a program line positions the cursor im-
mediately after the line number to facilitate
editing. The right arrow annunciator shows the
line continues to the right.

(9)™] Moves the cursor to the right end of the line.

-

   
Press 20 times. Or hold down until the
cursor is close to or at the 1. Then use or
as needed to correctly position the cursor.

 

   

 

   

-

i _j = B i 1

71 The program is corrected.

Controlling Program Display Speed (iifi. M%)

 

LELHY line rate [, character rate]
   

You have control over how many seconds a line is displayed before being replaced by the next line (line

rate), and also how fast a displayed line containing more than 22 characters scrolls from the right (the

optional character rate). You can choose a line rate and a character rate from 0 up to 8 seconds. A rate

equal to or over 8 seconds is considered infinite—no line replacement or scrolling occurs. These two

parameters are independent of each other.



Section 1: Getting Started 27

Saving the iRik Program (B17, MAME)

Suppose sometime later you wanted to enter a new program, and forgot to create the new file using the

11T statement before keying in the programs lines. Where would those newhnesgo" They would go

into the same file the {1\ ERFL{1program’s lines went: into the file named IV EREF {. The lines of

your new program would overwrite the lines of the {it/ERFL{14 program, corruptmg both programs.

 

One way to guard against such an accident is to create a new program file before keying in any lines, as

 

you did when you executed EL I T OUVERFLM. A second way is to make available a scratch file named

ok §1 1=, which will accept any new program lines you enter. To make the i+ i ¥ i 1= available,

E I without specifying a file name.

Input/Result

 

   
This is the first part of the catalog entry for your new file, showing that the file is an empty BASIC

file. File catalogs are covered in section 6 starting on page 117.

Ifa werk §11e exists (even if it’s empty), EDI T positions you at thatex1st1ng bile,
not atanewly created wior k¥ i 1=, The HP-71 can contain only onevk § i 1,

You can create a new, empty wiork fils (using EDIT[ENDLINE]) if you first name the existing
sork §1le using HAME filename. See section 6, pages 100-102 for further information about

work file and HAME,

To summarize, when you key a program into your HP-71, it is good practice to:
o

1. Create a new file by executing £I T file name.

2. Enter the program lines, test the program, and edit the program as necessary.

3. Select the wizr k¥ i1lby executing EDIT.

Running Any Program in Memory

There are two ways to execute a program:

o Execute Fiiti file name. This works for any program.

¢ Press (or execute FLiH). This works only for a program located in the current file, explained

below.



28 Section 1: Getting Started

Running the Program in the Current File. At the moment, ok § i 1= is the current file. The

HP-71 always contains one and only one current file. When you enter a program from the keyboard, it

is automatically entered into the current file, and you can run it by pressing or executing ik,

You can edit the program in the current file from the keyboard, as you edited ' E R F 1L (i,

Running Other Programs. You can run any program by executing FLItfile name. A program that is

not located in the current file must by executed in this way. When you execute such a program,it

becomes the current file, so you can edit it, and you can use the key to repeat its execution.

Redefining the Keyboard ([f]J(USER], [9](1USER])

The HP-71 includes two complete and separate keyboards that share the same physical keys. The Nor-

mal keyboard, the one you’ve been using, performs the actions indicated by the symbols printed on and

above the keys. The User keyboard performs those same actions except where a key’s operation has

been redefined—that is, user defined. There are two ways to switch between these two keyboards:

- switches from one keyboard to the other. To switch back to the earlier keyboard, press

again.
e (9])(1USER] switches from one keyboard to the other for only one shifted or unshifted keystroke,
then the HP-71 automatically switches back to the earlier keyboard.

You can redefine the shifted and unshifted action of all but two keys. The two keys you cannot redefine

are the two shift keys themselves, and (g9]. Key actions can be redefined to display a typing aid of

your choice, or to execute any statement, or combination of statements, concatenated with &, that are

executable from the keyboard. User defined keys can also be used to assist data entry in response to

program input requests. You can use the entire 96-character line length for your key definition. The

beginning of section 7 discusses user defined keys in more detail. We’ll now lead you through creating

and using a simple key assignment.

Enter the following key definition:

Input/Result

)K

 

FLUTIMES" Redefines [9](<] to display the current time when-
ever (9](<] is pressed from the User keyboard.

 

   



Section 1: Getting Started 29

We’ll show two ways the user-defined key [9])(<] can be used.

 

   

 

   

 

Input/Result

Activates the User keyboard.

user - B The USER annunciator tells you the User key-
board is active.

[(9)<]

user LD DR 3R This display represents a time of 4:59:39 PM.

B The USER annunciator is off, and once again the

  Normal keyboard is active. 

Here’s another way to use the same redefined key:

 

   

Input/Result

(9)(1user] [9])(<] Simply press and hold down (9], then press in or-
der the (0] and [-] keys.

Ivyegies Notice that the USER annunciator is not on. The
(9](1USER] keystroke activates the User key-
board only for the next shifted or unshifted key-
stroke. After that next keystroke, the Normal
keyboard is automatically active again.

Display Contrast and Viewing Angle (i iiT EHZT)

 

COMTERST contrast value
   

The COHTEAREZT statement allows choices for contrast value, from & to 1%, which control display

intensity and optimum viewing angle. ZOHTEAST & gives the least contrast and shallowest viewing

angle, and COHTERASZT 15 gives the sharpest contrast and steepest viewing angle. COHTEARZT 15

also makes all the annunciators easily visible. After memory reset, contrast value is set to = (the defaul

value). You can adjust contrast value to suit your personal preference.



30 Section 1: Getting Started

Input/Result

TR
P4 0F b T 1% [ENDLINE

 

 

0 () =

3 FAaM If you look directly down on the keyboard, you’ll
see the BASIC prompt and cursor displayed with  
strong contrast. If you now tilt your HP-71 away
from you, you’ll see all the dots used to make
characters plus all the annunciators.

Status Annunciators

Here are brief descriptions of the HP-71 annunciators.

 

Annunicator Meaning
 

AC

BAT

USER

RAD

W
N

=
O

4

(o))

-

PRGM

SUSP

CALC  

The line extends to the left of the display.

(9] has been pressed, but not the second key required to complete the key

sequence.

has been pressed, but not the second key required to complete the key

sequence.

Reserved for future use.

Low battery.

The User keyboard is active.

The angular setting is Radians.

Flag O is set.”

Flag 1 is set.

Flag 2 is set.

Flag 3 is set.

Flag 4 is set.

Reserved for future use.

The line extends to the right of the display.

A program is running.

A program is suspended.

The HP-71 is in CALC mode.
  * Flags are covered in section 11.  
 



Section 1: Getting Started 31

Now return your display to normal contrast. Execute:

COMTRAST

Recalling Commands—The Command Stack ([9])[CMDS])

A list of the five most recent commands is maintained in a separate part of memory called the Com-

mand Stack. “Commands” refer to operations that have been executed by pressing LINE], such as
evaluated expressions and entered program lines, statements, and functions. Any command in the

Command Stack can be displayed and executed again (by pressing LINE), or edited, then executed.

The Command Stack is especially useful when repeatedly executing a series of commands, all of which

are identical or contain only minor differences.

If any of the last five commands are identical, the Command Stack maintains only the one most re-

cently implemented.

Here’s how you activate and deactivate the Command Stack:

o Activate the Command Stack by pressing [g]{CMDS].

o Deactivate the Command Stack by pressing (9](CMDS] again or pressing [ATTN].

e Deactivate the Command Stack and execute the displayed command by pressing LINE].

We’ll show you how to display a few of the commands you’ve just entered.

 

Input/Result

(9](cmbDs Activates the Command Stack.

SCORTEAST 9 The display shows your most recently executed
command, together with the Replace cursor. The   
~. symbol is the Command Stack prompt. All
cursor-moving and editing keys are active.

Use the and keys to move through the
Command Stack. You display progressively older
commands by pressing repeatedly, and more
recent commands by pressing [v].

 

SDOHTEARZT L5 This is your older command.

   
END LINE You can execute (by pressing (END LINE]) any

expression or statement displayed by the Com-
mand Stack, or enter any program line displayed
by the Command Stack.



32 Section 1: Getting Started

 

  
 

 

  
 

 

  
 

L L 9 (@) =+

o ;o
RAD 4 CALC

(9)(cmDs

DyL 0 (@) =
ACBAT -COMTREAST 15 3 FACM
RAD 4 CALC

< of 0 (@) =

AN - COMTEAST 2 2 FACM
RAD i CALC

END LINE

 

 

  
 

Producing Tones (&

 

Pressingmexecutes the displayed com-
mand (- 1E) and deactivates the
Command Stack M 1% 1s now your
most recently executed command

  

Reactivates the Command Stack and displays
your most recently executed command.

Displays the older command.

Executes the displayed command and deactivates
the Command Stack.

The BASIC prompt shows that you have deacti-
vated the Command Stack.

The EEEF statement produces an audible signal whose frequency and duration you can control. You

can also turn off this signal, and choose between two levels of loudness. The main application of the

beeper is to provide audible warnings.

There are five forms of this statement:

 

T
m

frequency in hertz

frequency in hertz . duration in seconds

i

OFF

H
O
T
H
T

T
AT

T
R
E
O
I
o
o

s

T
m

T T  
 



Section 1: Getting Started 33

Here are facts about EE EF:

e When you execute EEEF without specifying frequency or duration, a 500 Hz signal sounds for .25

second.

e You can specify frequency up to a maximum of about 4900 Hz. Frequencies as low as 150 Hz

produce recognizable tones.

¢ You can specify duration as long as 1000 seconds.

* You can specify both frequency and duration as numeric expressions. The HP-71 evaluates these

expressions when EEEF is executed.

1+ enables the beeper.

o BEEF FF disables the beeper.

o After memory reset, EEEF [{ii is active.

¢ You increase the intensity of the tone by executing ZF Lfz—Z%5(set flag number —25). (Flags are

covered in section 11.)

* You decrease intensity to the memory reset level by executing FL FHiz~Z% (clear flag number

—25).

What’s Ahead

You’ve sampled the HP-71 in this section. There’s much more information ahead, but you don’t have to

read it all. If you’re primarily interested in using prewritten programs, you need read only sections 6

and 8 to become familiar with the HP-71 file structure and to learn details on running programs. Read

section 2 if keyboard calculations are important to you. If you plan to solve statistical problems with-

out using prewritten programs, read sections 2 and 4.

For programming help, look at sections 2, 3, 6, and 8 through 14. You might also wish to read section 5

(clock) and section 7 (User keyboard).

Check the appendixes and the reference manual to see what’s there. For example, the reference manual

contains a glossary that defines many of the terms used in this manual.



34/35 Section 1: Getting Started

Syntax Guidelines

Syntax is the way that instructions must be typed so they can be understood by the computer. The

following conventions are used throughout this manual.

ToRg TR LT T
P P

italics type

[]

stacked items

Words in dot matrix (like ZEF K E%) can be entered in lowercase or upper-

case letters. The examples in this manual show statements, functions, and

operators entered in LUFFERCHSE,

Items in italics are the parameters you supply, such as the file name in the

HAME file name statement.

Character strings can be enclosed with single or double quotes and can be

entered in lowercase or uppercase letters. (The examples use double quotes.)

In general, file names can be quoted (single or double quotes) or unquoted.

When quoted, the left quote must match the right quote. (The examples use

unquoted file names.) The HP-71 converts file names to uppercase.

Square brackets enclose optional items; for instance, IELHY line rate

. [character rate].

When items are placed one above the other, one and only one must be

chosen.

An ellipsis indicates that the optional items within the brackets can be re-

peated; for instance, AL [coordinate value 1 [ . coordinate value 2 [ .. .[. co-

ordinate value 15] .. .1]]

The descriptions for keywords (statements, functions, operators) that appear in this manual allow you

to use them effectively. However, these descriptions often do not include all details. Syntax descriptions

that omit some detail are labelled “simplified syntax.” For a complete and detailed definition of each

keyword, refer to the “Keyword Dictionary” in the reference manual.





Section 2

Calculating with the HP-71

Contents

OVEeIVIBW.37

Using CALC Mode . ... ... . ...37

CALC Mode Features .. ......... . .. .. ....38

Correcting Typing Errors ... .. ... ...45

Unsupported Operations . ........... ... . ... . . . . .... 46

Warning Messages in CALC Mode ....................................... 46

Arithmetic Operators (+, —, #, «, =, ULV, =) ..47

Numeric Functions .. ... ... . ...47

Number-Alteration Functions (HE=, IF, FF, IHT, FLOOKE, CETL) ... .. 48

Decimal and Hexadecimal Conversions (LI TH®, HTL) ... .. ... ... .. ... .. 48

General Functions (F I, SGE, FACT, MAX, MIH, HOD, BEMD
FE r; RE 'E', Skg)

Logarithmic Functions (L.7T, LG, ExF, EXFOMENT, LOGFL, E=SFML) .. 50

Angular Settings (FHD T HMS, OE! REES)o50

Trigonometric Functlons( H, Clm, THRM, ASIH, OO, ATAN

DEG, BAD,AMGLE) 51
Random Numbers (RO, BEAMDOMIZE)

Number Formatting . ........ ... .. . . . ..54

Exponential Notation (E) .......... ... ... . .. . ....54

Standard Display Format (=T ......55

Fixed-Decimal Display Format (F 1) ... .. .. ... . .. . . . . .. 55

Scientific Display Format (=0 1) ......55

Engineering Display Format (EMi:) ... ..... 56

Numeric Precision (iLiFT IO REOUMDN) o0000 56

Precision of Numeric Variables (FE AL, SHOET, THTEGER) ... .. .. . ... .. .. 57

Math Exceptions (I %L, DV, OFF ) LIRE) THE) oo057

Recovering From Math Exceptions (LiEFHLIL T Ok,

DEFAULT OFF, DEFAULT E=TEMD)Y oo 0o. 58

The IEEE Proposal for Handling Math Exceptions

(FIrmd, —Imd, THF, MAHM, Had, TERF, D) oo. 59

Categories of Numbers (L HZZ)oo60

36



Section 2: Calculating with the HP-71 37

£Range of Numbers (MIMHEERL, EFS MAKEEAL

Relational Operators (Combinations of -,

Logical Operators (FHi, (iR, BlMO

Precedence of Operators .. ......... .. . . .. . .. ......

 

Overview

This section covers:

* A new way to calculate with a computer: CALC mode.

o All math operators: arithmetic, relational, and logical.

e All math functions.

¢ Random numbers and how to use them.

o Three ways to format a displayed number.

» The precision of displayed and stored numbers.

» The math exceptions: invalid operation, division by zero, overflow, underflow, inexact result.

o The three responses to each math exception.

o The IEEE Proposal for handling math exceptions.

Using CALC Mode
You can evaluate a numeric expression with the HP-71 within two different frameworks. Each uses the

normal algebraic precedence of operators (page 64). (For instance, terms within parentheses are evalu-

ated first.)

o BASIC mode, which is the familiar framework shared by most BASIC computers. You key in the

entire expression before any evaluation occurs, then you press to evaluate the expression
and display the result.

¢ CALC mode facilitates evaluation in many ways not available to BASIC mode, including the dis-

play of intermediate results while the expression is being keyed in.

 

CAUTION

Do not insert or remove a module while CALC mode is on. Doing so will cause a memory reset (loss

of memory). Refer to section 6 for more information about the use of plug-in modules. 
 

 



38 Section 2: Calculating with the HP-71

CALC Mode Features

The following list of features, some illustrated with examples, shows how you can use CALC mode to

your advantage to evaluate numeric expressions.

Complete Numeric Function Set. All HP-71 numeric functions and operators can be used in CALC

mode, including the single-line user-defined numeric functions in the current file.

Common Variable Set. CALC mode and BASIC mode share the same set of variables. A variable

assigned a value in BASIC mode retains that value in CALC mode, and vice versa.

User-Key Assignments. You can use User keyboard key assignments in CALC mode, except for ex-

ecute-only (colon) key definitions. (Key definitions are covered in section 7.)

Unbounded Complexity in Expressions. Any numeric expression that can be keyed in and evalu-

ated in BASIC mode can also be evaluated in CALC mode.

Twelve Digit Math. Intermediate results are carried with 12 decimal digits of precision.

Assignment Statements. Variables can be assigned values and used in expressions, as the following

example shows.

Note: For this and the other examples that illustrate some of these CALC mode features, you

should be in F I& display format so your displays will look like those in this manual. You cannot

execute 1 & while CALC mode is on, so make sure you're in BASIC mode. (If the CALC

annunciator is displayed at the right edge of the display window, press to set BASIC

mode.) You should see the BASIC prompt () at the left end of your display window. If your display

is not clear, press [ATTN].

 

Input/Result

 

Entered numbers and results will be displayed
rounded to two decimal places.

Sets CALC mode.

   

 

  CALC
 



Section 2: Calculating with the HP-71 39

HmE o E Starts the assignment statement example.

 

F=d L adoS 4 So far, no partial evaluation has occured.
CALC  
 

- You evaluate a partial result as soon as you

press (- ].
 

  
 

 

  
 

 

   

 

 

   

 

Gz, SE T
CALC

END LINE Terminates the expression and assigns its value
to H.

CALC

Use ¥ in an expression to confirm that it now

CALC | represents —= . &,

As soon as an operator (%) is keyed in, ¥ is re-
CALC placed by its value.

END LINE Displays the answer.

CALC    
Automatic Parenthesis Matching. For every left parenthesis you enter, the HP-71 automatically

supplies a right parenthesis. So you need not key in closing parentheses at the end of a line. However,if

you do type closing parentheses, the HP-71 accepts the correct number, and no more than the correct

number.



40 Section 2: Calculating with the HP-71

 

   

 

Input/Result

S IHCEE
CALC

END LINE

CALC   

The typing aid above the key supplies =I
and the left parenthesis.

The flashing right parenthesis sharing the
cursor’s position represents a number of right
parentheses equal to the number of open left
parentheses you’ve keyed into the expression so
far. In this case, that number is one.

You did not have to press either or to
evaluate this expression.

Implied Result (: ). A pair of empty parentheses keyed in as part of the current expression repre-

sents the value of the last evaluated expression. The current expression then uses this current value.

The empty parentheses pair can either represent a separate term in the expression or the argument of a

function.

Input/Result

T
HER RS

 

 

   

 

   

 

HzIHO
CALC

END LINE

28,88
CALC

Fi= [END LINE

b
CALC   

Pressing enters the closing parenthesis,
supplies the previous result represented by the
pair of empty parentheses, and evaluates

.e TR b
Hmb o, Dk

This demonstrates another important use of im-
plied result.

The previous result, #& . 15 is now assigned to
the variable #.

Comma Reminder for Argument Lists. For those functions and arrays requiring two or more ar-

guments, the display indicates the minimum number of commas required in the argument field.



 

   

 

   

 

Input/Result

CALC

CALC

END LINE

CALC  
 

Section 2: Calculating with the HP-71 41

Key in the first argument of a # ifunction.

The comma sharing the cursor’s position in-
dicates at least one more argument is required.

Key in the comma and the second argument.
Since the character following the # could be a
comma, or a continuation of the first expression
(such as another numeral), you must supply the
comma from the keyboard.

The flashing parenthesis tells you no more ar-
guments are required.

Again, you did not need to key in the closing
parenthesis before terminating the expression.

Viewing Each Step Separately ([f][SST] or [RUN]). When you key in an expression with CALC
mode active, there are times when several terms will appear to be evaluated simultaneously. In these

situations, you can view each intermediate result separately without violating the order in which oper-

ators should act (order of precedence).

Example: Suppose you wish to evaluate log(11) + 332 — 4, and you also wish to see the intermediate

result given by 33-2. (Note the typing aid for i.

Input/Result

LOGoila+3n2 02

 

SodE+E, naTE 24

 CALC   
RUN

 

CALC  
 

1z 7 and that (9])(~] displays ™).

Since you're 1nterestedin the value of =3 .2, do
notkeyin -4 yet. If you did,
OG0l 1 +E72 2 would be evaluated as soon
asyoukeyedin -and you would not see the
result given by =% .alone.

  

and perform the same action with
CALC mode active.

Single-step displays the value of =



42 Section 2: Calculating with the HP-71

 

The final answer.
CALC  
 

Example: CALC mode will not allow you to violate the proper order of operator precedence when you

single step through an expression. To illustrate this, use the expression & +3Z#:,

Input/Result

=z +7Z [RUN Displays the intermediate result.

 

CALC  
 

(] Now you try to key in #, but multiplication is not
performed. Instead you see:

 

You're told multiplication should have been per-
CALC |formed before addition.
 

 

DLoEE 4 The earlier display soon replaces the warning
CALC message.  
 

We’ll soon show you how you can easily recover from this error by activating the Command Stack.

Recovering the Complete Expression ([A]). When you press (A], you activate the Command

Stack. (Pressing activates the Command Stack only when CALC mode is set.) The resulting display

can be of two types:

e The display shows all terms of the last evaluated expression plus the symbol, :, indicat-
ing an expression has just been evaluated.

e The display shows all terms of the expression being keyed in whose final result has not yet been

evaluated. This Command Stack display recovers the individual operands and operators you

originally keyed into the HP-71.

In either case, you can edit the displayed expression using the Command Stack’s movable cursor.

Different actions are performed by (Command Stack active) depending on the presence or
absence of i in the display. Here are those actions:

e : not displayed: deactivates the Command Stack and displays the partially evaluated
expression, including the effects of any Command Stack editing.

e < symbol displayed: evaluates the displayed expression (including the results of any
editing), deactivates the Command Stack, and displays the final result.



Input/Result

 

   

 

  

 

CALC

#4

=R ER 8

CALC

|
CALC   

Suppose you wish to evaluate the expression 6 — 37, and key in & +3

Section 2: Calculating with the HP-71 43

Activates the Command Stack and recalls the
original form of your expression so you can cor-
rect your operator precedence error.

The cursor is ready for editing use.

Completes the expression and deactivates the
Command Stack.

In this case, displays the same
unevaluated expression.

Displays the result.

7, then evaluate it before you

realize your error (+ instead of —). As this example demonstrates, you need not reenter the complete

expression. You can activate the Command Stack, edit your expression, and reevaluate it.

 

   

 

Input/Result

’ - CALC

CALC   

Displays an incorrect result.

You now realize you should have keyed in -,
not +.

Activates the Command Stack.

The symbol () indicates that you
pressed just before you activated the
Command Stack.



44 Section 2: Calculating with the HP-71

 

CALC   

 

L i

CALC   

Corrects the expression.

Evaluates the correct expression.

When the Command Stack expression displays
<!, pressing reevaluates the expression.

Backward Execution ([f][BACK]). Before an expression is completed by pressing LINE ], terms
that had already been combined to display a partial result can be restored to their original form using

(1)[EACK).
Example: To demonstrate the use of backward execution, suppose you key in an expression (. %%3),
and before evaluating it, you realize you keyed in a wrong number (8 instead of 9). You then use back-

ward execution to erase elements of the expression back to and including the wrong number (8). After

keying in the correct number (9), you complete the expression and evaluate it.

 

 

   
 

 

 

   

 

iSRS 4
CALC

(f][BACK] [f](BACK] [f][BACK]

L, GE .4
CALC

BE

"

CALC   

Enters the incorrect expression.

The HP-71 displays the partially evaluated
result.

Erases operands and operators back to and
including the incorrect operand (%) you entered.

You’re now ready to complete the correct

expression.

Completes and evaluates the correct expression.



Section 2: Calculating with the HP-71 45

Correcting Typing Errors

If you try to complete a function after you misspell its name, the HP-71 will issue a warning. After

such a warning, erase all characters of the misspelled function name using backward execution, even if

the display suggests this in unnecessary. Then type the name in correctly and complete the expression.

This example shows why this is necessary.

Example: Suppose you wished to evaluate an expression which includes fi! B4 (arc tangent

of 4.-—% in the proper quadrant), and you make a typing error as you key in ¥

  

Input/Result

PHDOE CAMGLE You inadvertently press [M] instead of [N].
 

RO+DOECHMGLE D You don’t notice your error, so you continue.
CALC  
 

Generates a warning message.

 

L@rator Bapscisd We’ll discuss the meaning of this message
CALC shortly. This message is soon replaced by:
 

 

  
 

 

 

 

 

  
 

EEh L EETOE IR You're determined to spell it right this time, so
CALC you key in:

and see:

rlperator BEexpected replaced quickly once again by:
CALC

SOBOE IS What’s happening?
CALC

When you typed ##:1LE ©, the HP-71 searched for a function with that spelling. When it couldn’t find

 

one, it searchedfor a variable name instead, and found #. After a variable name, the HP-71 expectsan

operator, which #:i E is not. So all characters after the ~ were discarded. Whenyou typed

thedLsplay looked fine, but the HP-71, still looking for an operator, rejected I ~ just as1t had

w21 E. To recover from this situation, use backward execution ({f][BACK]) to erase #, then key in the

correct characters:

  
   

  



46 Section 2: Calculating with the HP-71

 

 

   

 

Input/Result

CALC

5o Corrects your typing error and evaluates the
expression.

CALC   

Unsupported Operations

Since CALC mode is a powerful, friendly, and intelligent environment for keyboard calculations, rather

than a replacement for BASIC mode, we want you to know what operations cannot be performed in

CALC mode. CALC mode does not support:

e Strings.

® The decimal and hexadecimal conversion functions I TH# and7T,

e Multi-lined, user-defined functions.

* Statements, except assignment statements.

* Program lines.

Warning Messages in CALC Mode

In the following CALC mode cases, check the contents of the Command Stack before proceeding.

* You are evaluating an expression in the Command Stack and get a warning message (any kind).

* You are performing backward execution ([f]J(BACK]) and get a warning message.

* You press a user-defined key on the User keyboard and get a warning in response.

Note that characters coming after those that generated the warning may not have been accepted.



Section 2: Calculating with the HP-71 47

Arithmetic Operators (+, —, &, .-, ™, 114, &)

The HP-71 adds * to the usual set of BASIC arithmetic operators. This table shows how these oper-

ators are used. To reproduce the results shown in this and the following tables, execute7T
in BASIC mode to set =TI display format (discussed on page 55.)

Arithmetic Operators
 

Operator Operation Example with Result
 

Addition

----- Subtraction

Multiplication

Division

Exponentiation

 

Integer Division (no remainder)

The operation x*y returns

x percent of y.

 

    
 

Numeric Functions

Numeric functions are built-in routines that take numeric or string information and return single val-

ues. The information acted on by a function is called the argument of the function. An HP-71 function

can operate on zero or more arguments. An argument can itself be a variable, another function, or an

entire expression, so long as it reduces to a single value at the time it’s evaluated.

To execute any HP-71 function from the keyboard:

1. Type the function name.

2. Type the argument, if the function requires one, enclosed within parentheses. If the function re-

quires multiple arguments, separate them with commas.

3. Press to compute the result.

The following topics group the HP-71 numeric functions according to their use.



48 Section 2: Calculating with the HP-71

Number-Alteration Functions (rif=, IF, FF, THT, FLOOE, TEIL)

The table below shows the value returned by each function from a numeric express1on x. For instance,

the example for #F % x> shows that =% is returned when x reduces to

 

Number Alteration Functions
 

 

  

  

Function and Meaning Example with Result
Argument

Absolute value of x. -

IFix: Integer part of x—that portion of x to the left of the decimal IF < 1&. 25

point. =

""" FOX Fractional part of x—that portion of the number to the right of FF« 1.3 5
the decimal point (including the decimal point and sign). C RAREEEEEEEE

Tax: The greatest integer less than or equal to x. IMTO-7 230

Fi Greatest integer less than or equal to x. (Same as IHTxr.) FLOGECT, 235

Ploix: Smallest integer greater than or equal to x. CEILCY . 230   
 

Notice the dlfi'erencebetween the IF, FLLOORE(or IHT), and F

gument, ¥ and FLIOOE

identical values.

 

1. functions. Given a positive ar-

return identical values; given a negatlve argument I and CEIL return

 

Decimal and Hexadecimal Conversions (ii7H%, HTLI)

These two functions cannot be executed in CALC mode. To use the result of M7in CALC mode,

switch into BASIC mode ([f](CALC]), execute the function to get the result, switch back to CALC
mode, then type * : to automatically display the same result. This result can then be used in further

calculations.

Decimal and Hexadecimal Conversions
 

Function and

Argument Meaning Example with Result

 

 

Converts a positive decimal number no larger than 16° — 1

(=1048575) to a string that represents its five digit

hexadecimal value.

 

Converts a one to five digit hexadecimal value to a decimal

number. The hexadecimal value must be entered as a string.  
 

  
 

 



Section 2: Calculating with the HP-71 49

General Functions (F1, S0R, FACT, MAX, MIH,
SGH)

 

These general functions are described in the following table, together with examples showing results

produced when these functions are executed.

General Functions
 

Function and

Argument
Meaning Example(s) with Result(s)

 

i T

11
7

R OX0

  

Twelve-digit approximation of .

Positive square root of x.

Factorial of the positive integer x.

Maximum of two values.

Minimum of two values.

x reduced modulo y, that is x—y¥ IHT ix-y:.

.......

Reduction of x by y, that is x—y#n, where n is the

nearest integer to x.-y.

Value of most recently executed expression.

Sign of x. Returns 1 if the argument is positive, 0 if it is
0, and —1 if it is negative.    
 



50 Section 2: Calculating with the HP-71

    Logarithmic Functions (L7, L., EXF =1, EXFML)
These logarithmic functions are described in the following table, together with examples showing re-

sults produced when these functions are executed.

Logarithmic Functions
 

Function and

Argument Meaning Example with Result

 

logo x. The common logarithm of a positive x L.G7T ¢ 1EEE:
TEoxs (base 10). 2

In x. The natural logarithm of a positive x (base e).

 

BX eX. The natural antilogarithm.

T o - x The exponent of normalized x.

LOGRL x> INn(1+x)  (LOE0 1 +x).

Useful for accurate evaluation of ii< x* for x

very close to 1.

  

EwFMLOxs e¥—1 (EXFixs-1). Useful for accurate evalu- E=FMI{ @&

ation of £F< xfor x very close to 0. L.ggonionelia?yE-4     
Hyperbolic functions, inverse hyperbolic functions, and certain financial calculations involve the

expressions In(1 + x) and (e*) — 1 for arguments near zero. To allow greater accuracy in such calcula-

tions, LGF1 and EXFM1 evaluate these expressions directly.

=)

After memory reset, the HP-71 assumes angles are measured in degrees. If you wish radlans to be the

un1t of measure for expressmg angles, execute in BASIC mode F#H = (or

i - ; =). If you wish degrees to be the unit of measure, execute == (or

OFTION AMNG : ‘EEE). Note that these statements do not convert arguments from one unit of

measureto the other Such a conversion is done by the functions [1E: and F#{i, described below.

 Angular Settings (FFADIFAMHE, DEGR

TRl

     

 



Section 2: Calculating with the HP-71 51

Trigonometric Functions (5 IH, CiE, TAH,S 1M, ACOS, ATAM, DEG, RAD
ARGLE)
The HP-71 provides 9 predefined trigonometric functions. It’s important to keep in mind the range of

values that the inverse functions (arc sine, arc cosine, and arc tangent) return, which lie in Quadrants I

through IV. Assuming radians is the angular setting, the HP-71 represents angles as follows:

 

y —axis

m
2

Quadrant i Quadrant |

T T
?<9<7r O<0<2

,, ™
Quadrant il Quadrant IV

O x-axis

T T
<< > 2<l9<0 

N
3



52 Section 2: Calculating with the HP-71

Trigonometric Functions
 

 

 

Function and Meanin Example with Result

Argument 9 (Radians Setting)

SIMOxD Sine of x. SIMORFI20
1

elX Cosine of x. OISO E

i

THH X Tangent of x. THHOFT 45
i

Ham THOXx: Arc sine of x, where —1 < x < 1. In Quadrant | or IV.
or Hzk X

SHREECRY & Arc cosine of x, where —1 < x < 1. In Quadrant | or II.

HTHMOX Arc tangent of x. In Quadrant | or IV.
or HTHIX

DEGOX: Radians to degrees conversion.

REDOX: Degrees to radians conversion.

iHGLEOX, y3 Arc tangent of y/x, in “proper” quadrant; that is, the angle  

 

between (x,y) and the positive x-axis.    
There is an important difference between the FHZLE and A T#HH functions. #HGLF takes two ar-

guments to find the arc tangent of their quotient in the proper quadrant. &7 ## returns the principal

Value of the arctangent—that 1is, the value inQuadrant I or IV—of a smgle argument. For example

: LEC-3, -0 returns ~14a, 202332474 degrees (in Quadrant III), whereas o
g

returns EE LSRR8 TEZE degrees (m Quadrant I).

MIZE)

The F#H1 function (which takes no argument) generates the next number R in a sequence of pseudo-

random numbers such that 0 < R < 1. Each time E!I! is evaluated, it returns a new randomnumber

The starting number of a random number sequence determines the sequence of values that & will

return.

   

 

    

  Random Numbers (-

 

 

    
k. [numeric expression]

   



Section 2: Calculating with the HP-71 53

To set the starting number for the random number generator, either:

o Execute FAHIOMIZE alone, which causes the HP-71 to generate the starting number, based on

the current HP-71 clock reading.

¢ Specify any constant or expression within the range of the HP-71 in a FHHIOMIZE statement,

which causes the HP-71 to start the sequence based on the value of that expression. (Specifying a

numeric expression of zero causes a constant sequence of zeros).

 

  

    

For instance, executing FHHIOMIZE 4273 then executing F 4 D,returns CEEEER =. After a

memory reset, if you repeatedly execute F[ before executing OOMIZE theHP71 will generate a

specific sequence of numbers, starting with . 5251 323588373,So if you want a different series of

numbers, execute FHMHOOMIZE before FHI.

such that & < i; < i., where &Use the following formula to generate random integers, iy, iy, . .., I ;s o e

and L. represent any two real numbers.

= IFCiL+1-51¥RHD+5]

Example: To illustrate the rule given above, enter a Fi expression that will return a random num-

ber in the range 1 to 100 inclusive.

Input/Result

T ofe
fes i

 

= This is the first number returned after a memory
reset, and before F fIZE has been ex-
ecuted. (After a memory reset the HP-71 is in

BASIC mode).

  

 

 

Good statistical properties can be expected from the random number generator if a statistically signifi-

cant sample size is considered.*

 
* The HP-71 random number generator passes the Spectral Test. Donald E. Knuth, The Art of Computer Programming (Massachu-

setts, 1969),vol.2,section 3.4.



54 Section 2: Calculating with the HP-71

Number Formatting

Numbers are always stored in the HP-71 to 12 digits, but you can display numbers in any one of four

formats: =T, Flnd, S0 Id, and EHGd. The parameter d specifies the number of fractional digits

(F I#d) or one less than the number of significant digits (%1d, EHizd). The results of 1&&.-Z dis-

played in each format are:

 

Each of these number formats is described in more detail below, following the discussion of exponential

notation.

Exponential Notation (i)

Exponential, or scientific, notation is a short-hand system to express numbers too large or too small to

fit the display normally—that is, numbers that can’t be expressed adequately with 12 digits. The

number

—.00000000000123456789012

expressed in exponential notation is:

Single digit

to the left

of decimal point.

[N
Negative sigr/

(If numberis

less than 0).

 

Decimal

point.

FromOto 11

digits to the

right of decimal

point.

indicating a

The symbol i,

Two or three

digits for the

exponent

/

Negative sign

(if number is

a fraction).

power of 10.

Exponential representations have two parts: the base part, which consists of significant digits, and the

exponent, which consists of an integer power of ten.

You can enter numbers in any form. However, the HP-71 will display a number in exponential notation

only when it’s required by the number format in use, as the following examples show.



Section 2: Calculating with the HP-71 55

Example: Execute F Iin BASIC mode.

Input/Result

TELZ~-1G0¢

 

   

 

HEEWUELREEEnn, In F 1% format, this number is displayed with-
out exponential notation, since it’s less than 1012.

le+lmad

.ggels Numbers whose magnitude exceeds 1 x 102 — 1
are always displayed in exponential notation.   

Standard Display Format (= 71})

 

  
 

In standard display format, numbers are displayed with the smallest number of digits consistent with

presentlng maximum accuracy. The result of 1.is displayed as . %, while 1.3 is displayed as

CEEREEEZEEEZEEE. Numbers too large or too small to be viewed with maximum accuracy without

exponents are dlsplayedin exponential notation.

Fixed-Decimal Display Format (- i )

 

. # digits
  
 

In fixed-decimal display format, numbers are displayed rounded to the specified number of digits

(# digits) past the decimal point. The range of values for # digits is £ through ! 1. Numbers too large

or too small to be viewed in the current fixed format are displayed in scientific format. In F I &
-

display format, the result of i .3
—

is displayed as & . ZE.

Scientific Display Format (=i:1)

 

=i 1 # digits

  
 

In scientific display format, numbers are displayed with an exponent. The base part shows the speci-

fied number of digits (# digits) past the decimal point, while theexponent shows as few digits as the

number permits. The range of values for # digits is & through 1 1. In I display format, the result

of i7% is displayed as & . ZZE~1.

 



56 Section 2: Calculating with the HP-71

Engineering Display Format (:iiix)

 

EHG # digits
   

In engineering display format, numbers are displayed as they are in scientific format, except exponents

are shown in multiples of three, and the specified number of digits (# digits) refers to the number of

digits to the right of the leading digit. The range of values for # digits is &through 1 1. In EHGZ
-

display format, the result of 1. % is displayed as #7373 . E~3.

Numeric Precision (ZFT I+ FL)
The HP-71 performs calculations internally using 15 significant digits. The results of these calcula-

tions are then rounded to 12 digits for storing and display. This rounding can be done in any of four

round-off settings given by CF T IRO

o GFTIOH ROUMD HEAE rounds to the 12-digit value nearest to the 15-digit internal result of the

calculation, and in case of a tie, it rounds to the wvalue with the even last digit.

OFTION EOUMD HEAR is in effect after a memory reset. Entered = E L. numbers (page 57) over

12 digits long always round according to TFTIOH ROUHD HEAE, regardless of the round-off

setting in effect. For example, when the 13 digit number 1.234567890125 is entered, the display

shows 1.2345578%812, The number is not rounded up to show # as a final digit; rather,

ORFTIOW EOUMD HEAR causes rounding to the value with the even last digit (&).

o OFTION REOUMD ZERD rounds towards zero.

o IFTION ROUMD FO% rounds up.

o OFTIOHN ROUMD HEG rounds down.

Calculation results stored in variables whose types are ZH1F T and FEfL are rounded according to the

current round-off setting. Results stored in I HTEZEFRtype variables are rounded to the nearest digit,

with ties always rounding up in absolute value. FERL, SHIET, and [ HTEGEFRprecision variables are

introduced on the next page and also discussed under “Declaring Arrays” in section 3.

If the current display format causes less than 12 digits to be displayed, the displayed result of a cal-

culation is always rounded to the nearest displayable value, with ties always rounding up in absolute

value.



Section 2: Calculating with the HP-71 57

Precision of Numeric Variables (i i, SHOET, THTEDER)

Besides declaring the name and value of a numeric variable (section 3), you can declare its precision—

that is, the number of digits used by the HP-71 to store its value. In arrays, the fewerdlglts used the

less memory is used to store variable values. Three types of precision are offered: !

ITHTEGER.

", and

 

e FEFL variable values are stored with the full precision of the HP-71. They cover the range of

values from ~FF“REEAL through MAXEEML. Numbers with FEFL precision are represented in-

ternally by 12 digits and a three-digit exponent.

e SH{ET variable values cover a slightly narrower range, —9.9999 x 10499 through 9.9999 x 1049,
Accordingly, ZH{FE T numbers are represented internally by five digits and a three-digit exponent.

o IMTEGEFRvariable values lie between —99999 and +99999. I HTEZER numbers are stored with

five digits and no exponent.

Math Exceptions (%L, i, DA LikE) DR )

During a calculation, various operations can result in unusual results, depending on the values of the

terms involved. Such exceptions include the square root of a negative number, division by zero, results

too large or too small for the HP-71 to represent, and results that cannot be represented exactly in a

12-digit, floating-point format. Associated with each math exception is a flag that is set by the HP-71

whenever an exception is encountered. These flags remain set until you clear them. Each of these flags

can be accessed by its number or by its name. You can clear and set the math exception flags in the

same way as any flag, except that flag names can be used as well as flag numbers.

For more information on flags, refer to section 11. And for information on when math exception flags

are set, refer to “IEEE Proposal For Handling Math Exceptions” in the reference manual.

The following table summarizes these five math exceptions, and subsequent topics in this section dis-

cuss how you can control the HP-71 responses to such exceptions.

Math Exceptions
 

Flag
Exception Examples

Name Number

 

 

Invalid operation 1%L -

 

Division by zero AT -

Overflow O -

Underflow LIHF -5 EepPo-11455 1 R

Inexact result THH — i} TorZ, T+lE-50     
 



58 Section 2: Calculating with the HP-71

Recovering From Math Exceptions (LikFHULT Lk,
DEFAULT EXTEHD)

The HP-71 provides three ways to recover from math exceptions:

   

4LT Ois active after a memory reset. With DEFAULT OH active, the occurrence of a

d1v151on by zero, overflow, or underflow exception results in a warning message, and the calculation

continues using default values. The occurrence of an invalid exception causes the calculation to

stop.

o With DEFHULT OFF active, when any math exception occurs, except inexact result, an error

results and the calculation stops. In this case, the iti EFRFE{iFstatement (page 172) can be used to

recover from math exceptions.

o With DEFHULT EXTEMD active, the HP-71 supplies a special set of default values for math

exceptions, which is described beginning on the next page.

Regardless of the DIEFALIL T setting, an inexact result is always rounded according to the round-off

setting in effect (page 56).

Assuming a DEGREEES setting, the DEFHULT M warning conditions and default values are:

Default Values Supplied in Response to Math Exceptions

(DEFARULT O Active)
 

Warning Number Default Value

 

FEER) and Warning Condition .
(Excep)tion 9 (Degrees Setting)

i, LIMF Underflow; that is, a nonzero result between £

-EFS and +EFS.

o TV Overflow:
— g,

e For IHMTEGEFRvariables.

e For “HIIET variables.

e For FEHL. variables.

EnFUOMEMT OB  4, DR THH is infinite, caused by an argument equal to

an odd multiple of 90°.

= Zero raised to a negative power.  

Zero raised to a power of zero.* LHoE =5, 2Ri, RE L. i RE    
 

Iw# 78 do not set a math exception flag, but they do halt a calculation with an error if
FF is active.

 

  
 



Section 2: Calculating with the HP-71 59

The IEEE Proposal for Handling Math Exceptions (+ =Dt DHEF, MHH

’ ,:_,)

At the time the design of the HP-71 was completed, the IEEE Computer Society was in the process of

defining a standard for floating-point arithmetic. The two main aspects of the IEEE proposal that

pertain to decimal arithmetic are accuracy of arithmetic results and exception handling. The HP-71

meets the specifications of the IEEE Radix Independent Floating-Point Proposal, as it existed when

this design was fixed.

 

kib "E“i"' ....i:...

Associated with each math exception flag is a trap that “traps” a particular exception and specifies a

particular action to be taken, as summarized in this table.

Actions Corresponding to Math Exception Trap Values
 

 
Trap Value Trap Action

i Suspend execution with an error message.

i For LiMF, OWF, and DV E, supply default
values shown in the table above. For 1%/i.,

suspend execution with an error message.

For I, supply rounded result.

Supply IEEE default values.    
THAF is a function that either returns the current trap value or sets a new trap value for a specified

math exception flag.

 

   

 

TEEE.exception flag # [. new trap value]

“exception name

Examples:

TEAFCDVE 85 Causes the HP-71 to suspend execution with an
error message in response to the division-by-zero
exception.

TEAFPODVE, 13 Causes the HP71 to supply the default value
P I%% 1n response to the

d1v1s10nbyzero exception.

TEAPIDVE, 23 Causes the HP-71 to supply the IEEE default
value I+ ¥ or —Ir:¥ 1n response to the

division-by-zero exception.



60 Section 2: Calculating with the HP-71

.. T choices for each of the five math

 

This table shows the trap values set by each of the three [ii

exceptions.

T Choices
 

 

 

       
 

  The spe01al responses to trap values of = include + I+ ¢ (infinity) and = (not a number). I# ¥ i

FEaF 2 valuesupphed for an overflow exception (...x /i) or a division by zero exception (i F

Hzbo1s the TREAF 2 value supplied for an invalid operation exception (I%i.). IHF is a no-argument

functlon thatreturns Irif, which behaves like mathematical infinity in subsequent calculations. #iH

i1s a no-argument function that returns a signaling=zH, which can be used to initialize any

uninitialized data so that the Ii/i flag will be set whenever this data enters into a calculation. The

“IEEE Proposal For Handling Math Exceptions” section in the reference manual covers the I and

4 functions and these TH#F = math exception responses, and also includes a further discussion of

how the HP-71 meets the provisions of the IEEE Proposal.

    

   

In addition, the reference manual discusses the relational operator #, which returns i (true) when one

or both of the expressions being compared are unordered; that is, one or both are i zH

5 )

The inclusion of TERF = default values for math exceptions extends the normal range and type of

numbers ThlS extended range is divided into six classes. Class 3 includes normalized numbers from

R MAHEREAL 1nclus1ve The other five classes cover zero, denormalized numbers (between zero

and EF ), 1nfin1ty, and M=zl (quiet and signaling). The i f%% function returns a 81gned number

showing the class and sign of the argument Program control is the main application for ¢ . The

HP-71 Reference Manual discusses 1.7 %% in more detail.

  

Categories of Numbers (. #

   



Section 2: Calculating with the HP-71 61

Range of Numbers (i IHERMHL ) EFZ) MRAEEEAL)

The following diagram shows the range of values that can be entered and stored (the shaded areas

indicate values that can’t be represented on the HP-71.):

  ~MAHREAL —0.00000000001E—499  0.00000000001E—499 MAXREAL
—9.99999999999E499 9.99999999999E499

—1.E—499 1.E—499

o bl o) i
 

         

Denormalized

Numbers

All numeric operands are represented by a sign, a 12-digit base part, and an exponent ranging from

-443% through 4%% inclusive. Most numbers have a nonzero leading dlglt These are called

normalzzed numbers. For example, the number —1234.56 is displayed in %I 11 format as

----- 1, 834580000008E 2, The smallest normahzed numberis called e b),

The largest normahzednumberis called ¥ AL (=, @ F),

The HP-71 displays very small numbers, whose normal exponents are less than —499, as denormalized

numbers, with one or more leading zeros. For instance, with the trap value (page 59) for the underflow

fiag (page 57)set to & (TREAEFPOUNF,23), EFZ-1888 1s displayed in %111 format as

- The smallest positive denormalized number is called

144), Smaller values generally underflow to zero.

 

  

   

  

Entered numbers or results smaller than the smallest positive normalized number the HP-71 can re-

present (EF=) may produce an underflow condition. Numbers or results larger than the maximum

positive finite number the HP-71 can represent (IF i) produce an overflow condition. These

conditions either suspend a calculation w1th error messages or continue the calculation with various

default values (such as values between EF= -1 as explained above). These errors and

default values are discussed on pages 57-60 beglnmng w1th the topic “Math Exceptions.”

 



62 Section 2: Calculating with the HP-71

Relational Operators (Combinations of -, =, >, #, )

Relational operators compare the values of two expressions and return a 1 if the comparison is true,

and a £ if the comparison is false. That is, the relational operators operate on numeric and string

values to return Boolean values. (Strings are covered in section 3, “Variables: Simple and Array”.) The

new * relational operator is described in the HP-71 Reference Manual in the section “IEEE Proposal

For Handling Math Exceptions.”

Examples of Relational Operators
 

 

 

?;:ti:t';?l Meaning Example(s) with Result(s)

Greater than? i -1

Fo= Greater than or equal to? = P=]

Less than? = PadaFl

o Less than or equal to? *E-R

Less than or greater than? 2EOE fifi ey

R i

# Not equal to? #' SH
4 |

h:xx

Unordered? < ;el

 

    
 

The equal sign (=) is used in both variable assignment statements and in relational expressions. When-

ever an entry can be interpreted either way, the HP-71 assumes the entry is a variable assignment.

Logical Operators (i, fiF, Bk, HiT)

The four logical operators operate on Boolean values to return Boolean values. The logical operators

interpret all nonzero numeric operands as 1, or true, and operands equal to zero as 0, or false. F#[1,

1k, and EX{1F return a value of 1 if the relationship between operands is true and a value of 0 if the

relationship is false. {17, a unary operator, returns the opposite value (0 or 1) of a single operand.



Section 2: Calculating with the HP-71 63

Logical Operators
 

Logical
Operator Evaluation Examples with Results

 

 

HE Both expressions true (that is, nonzero)?

 

Either expression true?

 

EAOE One or the other expressnon true—but not both’7 ThIS |sthe

equivalent of «# HRHD MOT B OFE OB HMHD MOT =L,

 

Is the expression false (that is, zero)?

  

    
 

Relatlonal and logical operators may be used to compare numeric constants (# [iF £), variables

(7 #HD B), functions (SIHcCH: AHD C0%0#3), and larger expressions.

Example: If # = 0 and E = 20, then:

Input/Result

ROT A OAMD CBE<SG-ED ENDLINE Enters an expression with logical, relational, and
arithmetic operators.

 

The expression evaluates “true.”

   



64/65 Section 2: Calculating with the HP-71

Precedence of Operators

The list below shows HP-71 operators in their order of precedence, from highest to lowest.

The operations with higher precedence are performed first. Expressions are evaluated from left to right

for operators at the same level.

1. Expressions within parentheses. Nested parentheses are evaluated from the inside out.

Functions, such as ZIH, LG, and FAOT.

L
l

Unary —, logical HiiT. The minus sign in ~# is the unary — operator, which changes the sign of #,

whether  is positive or negative.

Relational operators: Combinations of <, =, », #, and 7.

Logical ##II.

S
A

Logical iF, E=R,





Section 3

Variables: Simple and Array

Contents

OVEIVIBW .o66

Features of Variables and Arrays .......... . ... . . . . ...... 67

Sharing Variables Between Keyboard and Programs . ....................... 67

Reclaiming Memory (LiE=ZTEDY)oo67

Numeric Variables: Simple and Array ....... ... . ... . ... ... .....

Setting the Lower Bound of Arrays (LiF

Declaring Arrays (L IF, REHAL, SHOET, IHNTEGEER

StINGS ..71

Quoted Strings ......

String Variables: Simple and Array (L3 IF, OFT Ik

String Concatenation (&)

  

SUbStINGS ....

String Functions (L& M, Fiim, VWHL, STEE, MM,

Overview

This section covers:

e Special features of the HP-71 BASIC language relating to quoted strings, string functions, and

variables, both numeric and string.

e Simple variables, numeric and string.

e Array variables, numeric and string.

e Manipulation of strings.

66



Section 3: Variables: Simple and Array 67

Features of Variables and Arrays

The HP-71 BASIC language includes some features that may not be familiar to those who have worked

with other versions of BASIC. The more important of these are listed here, and page references are

given for those features discussed later in more detail.

Array and string dimension limits can be expressions.

YAL and TR ¥ evaluate numeric expressions and return the result as a numeric value or a string

(page 76).

Variables are shared between keyboard use and programs (see below).

Default variable values (& or " ") are automatically returned without warning when an unassigned

variable is used from the keyboard or in a program (page 68).

Variables can be destroyed and the memory they use reclaimed (page 67).

A simple and an array variable cannot share the same name (page 68).

The & symbol concatenates statements in one line (page 146).

Multiple assignment statements (such as i, E, 0=1#£) are not allowed. However, one program

line can assign values to several variables wusing concatenation (for example,
A=188 B B=108 B C=10Gg @& [DO=325

[.ET can be omitted from assignment statements.

 

£ (page 226).

Both | and " can be used in D I%F and FRIMT statements.

Sharing Variables Between Keyboard and Programs

When you run a program, the variables used by that program may contain values assigned to them

from the keyboard or from a previously run program.

If you don’t want your program’s variables to have previously assigned values, you can cancel your

variables’ assignments using DEZTRor, for simple variables only, dimension your variables using

OIM, REAL, SHORT, or IMTEGER. You can use these keywords in your program or from the

keyboard. To ensure your array variables do not have previously assigned values, you must use

ODESTEDY or assign each element a new value.

Reclaiming Memory (IiE = TEDY)

The -T
sDESTEDOY statement allows you to recover the memory allocated to a variable, to several

variables, or to all variables.

 

   
i variable [ . variable...]

  



68 Section 3: Variables: Simple and Array

Examples:

CadE WL RS The variables 4 %, i, and ¥no longer exist, the

user memory previously devoted to them is re-
leased, and the variable names are available for

other uses.

  

IESTROY ALL All variables are destroyed, and all memory pre-

viously allocated to them can now be used for
other purposes.

Numeric Variables: Simple and Array

A variable or array can be named with a letter alone or a letter followed by a single numeral, 0 through

9. Some examples are: A, 12, F7. Simple numeric variables and arrays share the same name choices.

For instance, if a variable Fi is assigned a value, say =, the letter F cannot be used as the name of an

array.

A nonexistent variable is one that has neither been assigned a value nor declared to have IHTEGER,

SHOET, or REFAL precision, either in a program or from the keyboard. If an attempt is made to recall

the value of a nonexistent numeric variable, a zero is returned without a warning or error message or

beep. However, the variable still does not exist.

If you attempt to recall an element of a nonexistent array, whose row and column numbers (subscripts)

are within the BASIC default dimensions (10), a zero is returned without a warning or error message or

beep.

If an array reference has a row or column number larger than that given by the array’s dimensions,

either a Zuk=or it error is given and the program halts (TREAF IV, &3 or TRAFC IVL , 13

active), or a Sub=or ipt warning is given, MHal is returned and the program continues

(TEAFCIVL, 2+ active).

Setting the Lower Bound of Arrays ([iF T I0H EHEZE)

All HP-71 array subscripts begin at 0 or 1, depending on whether [iFTIIH ERZE & or

OFTION EAZE 1 is active at the time the array is created.

 

 

   



Section 3: Variables: Simple and Array 69

Once an IFTIOH EASZE statement is executed from the keyboard or in a program, it stays active

until another GFTIOH EAZE statement is executed or until a memory reset occurs. Memory reset

sets OFTION EAZE ©. The argument for the COFTIOH EFRZE statement can be any numeric

expression that evaluates to either 0 or 1, but the most common forms for 1F T I{iH EFAZE are those

shown above.

Example: The following program segment illustrates the action of {iF T IEFSE

10 OPTION BASE 0 Any array declared after this statement is
executed will have 0 (or 0,0) as the lowest

numbered subscript.

20 DIM A(5,5) Since array A has 6 rows and 6 columns, it has a
total of 36 elements.

30 OPTION BASE 1 Any array declared after this statement is
executed will have 1 (or 1,1) as the lowest
numbered subscript.

40 DIM B(5,5) Since array B has 5 rows and 5 columns, it has a
total of 25 elements.

The execution of line 30 does not affect the lower bound of array . It still has 36 elements.

Declaring Arrays (L1 Ii, EEARL, SHOET, ITHTEGEER)

An array declaration not only defines the highest numbered subscript(s) of the array, but it also defines

the precision of the array’s elements. If the array did not previously exist, an array declaration also

initializes all elements to zero. [ Iand FEFL both declare FEFi. precision numeric variables. How-

ever, only [1 11 can declare string variables, as described on page 72.

— simplified syntax 

110 variable list

 

— simplified syntax 

EEML variable list  
 



70 Section 3: Variables: Simple and Array

— simplified syntax 

 

=HORET variable list

 

— simplified syntax 

 

EGER variable list  
 

Examples: These examples assume the arrays do not already exist.

 

S 15 Both arrays have real precision. Assuming
OFTION BEASE L is active, array # has five

elements, and array = has 225 elements. All
elements in each array are initialized to zero.

  Assuming OFTION BERZE @ is active, array 3
has IHTEZEFRprecision and 88 elements, all
initialized to zero. The lowest numbered element
is (0,0).

Default Array Dimensions: (10) or (10,10). The HP-71 assigns dimensions (10) or (10,10) to a

nonexistent array when an assignment statement stores a value into a nonexistent element. If one

index of this element is beyond 10, an error occurs. All other elements are assigned the value zero. Each

element has real precision.

Examples: The array in each of the following examples has not been dimensioned.

   
Since neither of the indices © ¥, %is greater
than 10, the array is dimensioned (10,10) and is

given 121 elements. Element 7, 7 is assigned the
real value %/, and all other elements are assigned
the value zero.

G Since the array element in this assignment state-
ment has an index greater than 10, no array is
created, and no value is stored.

Changing Array Dimensions Under Program Control. The HP-71 can redimension an array

during program execution. This allows you to design a program whose arrays automatically change size

to accomodate changing amounts of data. Redimensioning is done with any of the same four statements

that declare initial dimensions: DI, FEAL, SHORT and IHTEGER.

Note: When redimensioning an array, declare the same precision that the array currently has.

Otherwise, all array values will be lost.



Section 3: Variables: Simple and Array 7

If an array’s dimensions are reduced, some elements will of course be lost. Otherwise, existing elements

remain intact, although they will probably appear to have been rearranged. Array element values are

stored row-by-row. That is, the first row, last column value is followed by the second row, first column

value. If an array’s dimensions are expanded, all new elements are initialized to zero.

 

 

 

    
 

Example: Array # is declared as i1 7%, %, and contains values i through % arranged as shown.

Array A

Column Column Column
1 2 3

Row 1 1 2 3

Row 2 4 5 6

Row 3 7 8 9

After ii# #¢, 53 is executed, the array’s values are rearranged as shown:

Column Column

 

 

 

 

 

1 2

Row 1 1 2

Row 2 3 4

Row 3 5 6

Row 4 7 8

Row 5 9 0   
 

The additional element A(5,2) is assigned the value zero.

Strings

A string can be a quoted collection of characters, or a variable or expression representing such a collec-

tion of characters. The HP-71 supports one-dimensional string arrays and offers a powerful set of

string functions. These are all discussed below.



72 Section 3: Variables: Simple and Array

Quoted Strings

Quoted strings can be enclosed by a pair of single or double quotation marks, as shown in the following

example. A quoted item must be enclosed by a pair of single or double quotes; the quote symbols cannot

be intermixed.

FRIMT 'HPF fi= LostY was written by Jobn Milton, !] Li

-

i T

When a file name is used as a parameter in a BASIC statement, quotes can be omitted.

String Variables: Simple and Array (011, 0FTIOH ERSE)
String variable names consist of a letter, an optional numeral, and a dollar sign. Some examples: ¥,

4% and 17 #. A simple string variable and a string array cannot share the same name.

Default Value—The Null String (" "). The null string, represented by " " or ' ', is the value re-

turned for a reference to a nonexistent string variable. It is also the value given to a string variable

when it is first created. The null string contains no characters, and can’t be printed or displayed.

Declaring Dimensions (DI, OFTION EAZE). The 011 statement is used to declare, in square

brackets, the greatest number of characters (including spaces) a string variable can represent. [ Iis

also used to declare, in parentheses, the highest numbered element in a string array. [ I 1 initializes all

string variables to the null string, except for previously dimensioned string arrays.

OFTIOH EFASE not only sets the lower bound of numeric arrays, but of string arrays as well.

Only one-dimensional string arrays are allowed.

simplified syntax

li LIt variable list

 

 
 

Examples:

DIM oREsCz2E] Dimensions a simple string variable to have a
maximum length of 25 characters.

DIM CEOLSa040] Assuming OFTION EFASE 1 is active, declares
a string array to have 15 elements, each with a
40 character maximum length. Each element is
assigned the null string.



Section 3: Variables: Simple and Array 73

Default Dimensions. If a string variable’s length is not declared with i I, the HP-71 sets its maxi-

mum length to 32 characters. &7T I0H EFZE has no effect on string length or position.

If a string array’s dimension is not declared with [i Ibefore its use in an assignment statement, the

array’s dimension is automatically set to 10. The number of elements in such an automatlcally

 

   

 

dlmenswned stnng array will be 10 or 11, corresponding to [iFTIiiH or

Example: &F 7T I i is set when this statement is executed.

""""""" SE String array %% has 5 elements, and the maxi-
mum length ofeach element is 32 characters.

Changing Array Dimensions Under Program Control. I can also be used to change the

dimensions of an existing string array. For the original string values to remain unaltered, the maximum

string length for each element must remain unchanged. If the string length dimension of the

redimensioned array is changed, all elements become null strings. If the redimensioned array has fewer

elements, some string values will be lost. If the redimensioned array has more elements, the additional

elements will be initialized to the null string.

Example: Assume JFTIOH EAZE & is in effect.

DIM WEORED This statement changes the dimension of arrary
k¥ to the current value of the variable &. Since
no string length is specified, the maximum string
length becomes 32 characters.

String Concatenation (::)

Two or more string variables or quoted strings, in any combination, can be joined together to form a

new single string using the concatenation operator :..

Substrings

A substring is a portion of a quoted string or string variable made up of one or more adjacent char-

acters. The null string can also be a substring.

Specifying Substrings. A substring is specified by a subscript or subscripts enclosed within square

brackets following the string.

Examples:

HE="ALARMY [E] Assigns to Fi# the substring from the third
through the last character.

BE=TELS, 3] Assigns to E# the fourth through the ninth char-
acters of T#.



74 Section 3: Variables: Simple and Array

Assigning Values to Substrings. You can assign any string expression directly to a substring of a

variable.

Examples:
+ Assigns % #to the fifth element of array i1 #start-

ing at position seven. Any characters that pre-
viously existed, starting at position seven, are

deleted from 1%« % 3. If this 1% element
originally had fewer than seven characters, say
four, three blanks would be inserted between the
original fifth element and the start of &i#.

VEDD =Y reaoup® This statement expands or contracts the part of
Y% from positions numbered I through .i so
that ¥ t==zcup® will fit into it exactly. Any char-
acters that previously existed from I through !
are deleted, including the characters at positions
I and .1

String Functions (LEH, FO5, WAL, STRE, HUM, CHREE, UFROE)
The HP-71 BASIC language includes a flexible set of string functions that allows you to create, analyze

and manipulate strings. The following four numeric functions analyze strings, returning a numeric

result:

Numeric Functions
 

 

Function Action

LEMString Returns the number of characters in a string.

Fiiostring 1, string 2 Returns the position of string 2 in string 1. The optional numeric expres-

[ . numeric expression]: sion specifies the search start position.

VL Ostring ¢ Evaluates the string as if it were a numeric expression and returns the

value of that expression.

RCstring Returns the character code of the first character in the string.    



Section 3: Variables: Simple and Array 75

The following three string functions return a string result:

String Functions
 

Function Action
 

= TE¥ Cnumeric expression: |Evaluates the numeric expression and returns the result as a string.

 

:¥ < numeric expression: Returns the character whose character code equals the value of
numeric expression.

HFRELDECString & Converts all lowercase letters in the string to uppercase letters.    
 

Substring Position (F1%). This two- or three-argument function returns the position of a substring

within a string. The first argument specifies the string being searched, while the substring is specified

by the second argument. An optional third argument specifies the character position where the search

is to begin.

If the second string is not contained within the first string, the value returned by the function is zero.

Without the optional third argument, only the first occurrence of the substring is given by Fii%

 

  

   

Input/Result

FOSOTOHIOAGDY, "GO0 s [END LINE Returns #, the starting position of *{:{1" within

FOSOPOHIORGOT, "STOFY S (END LINE Returns #, since the substring does not occur in
the string being searched.

EE="RIL"

 

Ei# 3 (ENDLINE] Returns z, showmgthat " begins at posi-

tion two in " .A I

"TEHHESSEE", "E", 33 Returns %, the first E whose position numberis =
or higher.

The first E is ignored, since its position number is lower than . The function begins its character-by-

character comparison with the character (1) located at position . This comparison continues to posi-

tion five, where a match is found. The function then returns 7, the position of the first £ whose

position number is three or higher.



76 Section 3: Variables: Simple and Array

String-to-Numeric Conversion (‘‘fi.). This function converts a string expression containing a

valid numeric expression into a numeric value. The numeric expression can include variables, functions,

and operators. Note that /#il evaluates a string expression as though it were a numeric expression.

In summary, i#L evaluates the following as though they were numeric expressions:

¢ Quoted strings of characters, such as “4 73" or "MEz3Z",

e The characters represented by string expressions, such as A% or B&& " & " L0 F,

Any characters following the first valid numeric expression are ignored. If the first character in the

string cannot be interpreted as part of a numeric expression, an error results.

Input/Result

CE="FACTOEZ )@, 5" @F 142 (ENDLINE

Fi.o % [ENDLINE Returns & . £ 1E4 7. Since # represents a valid
numeric expression, Y HL « I#  evaluates the
expression and returns its result.

Example: An example of the /il function’s power is the following program to compute the integral,

us1ng the trapezoidal rule, of an arbitrary function you enter from the keyboard. (Execute

i [ TEAFPIHMT to open a file for this program, then enter it and try it out.)

 

10 ! Trapezoidal rule integration

20 DIM F$[90],L,U,X,T,S,I

30 INTEGER N

40 INPUT “f(X)=";F$ The expression you enter here must use i as the
variable of integration.

50 INPUT “Lower limit=";L

60 INPUT “Upper limit=";U

70 INPUT “Number of trapezoids=";N

80 X=L @ T=VAL(F$)/2 Evaluate at lower limit.

90 S=(U-L)/N
100 FOR I=1 TO N—1

110 X=L+I1%kS @ T=T+ VAL(F$) Evaluate at points in middle.

120 NEXT |

130 X=U @ T=T+VAL(F$)/2 Evaluate at end point.

140 I=T%S

150 DISP “Integral:”;l

When you run this program, lines 80, 110 and 130 evaluate the function that you entered at line 40.



Section 3: Variables: Simple and Array 77

After keying in this programexecute FI# 2, then press [RUN]. When the ¢= display prompts

you for your function, enter : .. Note that your function must use  as the 1ndependent variable.

Next respond to the other promptsby entering 1 as the lower limit, & as the upper limit, and i £ as the

number of trapezoids the program will use to approximate the integral. You will then see

 

Imtegral: S3.44 This approximates the true integral of 53Vs.

  
 

As you increase the number of trapezoids, the integral will become more accurate, but calculation time

will increase.

Numeric-to-String Conversions (= TFE#). This function evaluates a numeric expression and con-

verts the result into a string, according to the current display format.

Input/Result

STRECZ+E.-7 0
 

= TE# first evaluated = -+-7, then converted it
to a string (shown in F [ #& dlsplay format).
The string = . &cannot be used in calculations.

1
0

i
y

  

  
 

Converting a Character to Its Character Code (ii!1). Your HP-71 uses a set of 256 characters.

The factory defined set is shown in your reference manual. Each character has a different character

code (0 through 255) associated with it. Ninety-five characters (character codes 32 through 126) are

standard printable characters as defined by the American Standard Code for Information Interchange

(ASCII). Hiitt returns the character code as a numeric value (not a string) for the first character of its

string argument.

Converting a Character Code to Its Character (ZHF#). This is the inverse function of Hiifi. It

converts the character code (0 through 255) to the corresponding character. ZHE# accepts any

arithmetic expression as its argument, and, if necessary, it subtracts from or adds to the rounded result

a multiple of 256 to obtain a number in the range 0 through 255. It then converts that number to the

correspondmg ASCII character. For instance, CHFE& C & 66returns i, because MU¢ &, S5

turns =, the character code for .

    



Section 4

Statistical Functions

Contents

OVEeIVIBW .o78

Declaring Statistical Arrays (=7THT, CLETHT) ooo78

Using The Statistical Operations .. ......... ... ... . . ... ... . . .. ... ... ... ..., 79

 

Summing Data Points (TLITHL).82

Calculating Means (FiEHE)o

Calculating Standard Deviations (=L%

      

Calculating Sample Correlations (i.-L

Fitting a Linear Regression Model(.

Calculating Predicted Values (FEELDIN) ...85

Fitting Sample Values to Other Curves .. ...... .. .. ... .. ... .. ... .. ........... 86

Overview

This section covers:

¢ The use of the HP-71 statistical statements and functions in a linear regression example.

» How data can be fit to a straight line model.

e The use of these statements and functions, together with suitable transformations, in exponential,

logarithmic and power curve examples.

Declaring Statistical Arrays (=7 H7T, CLETHT)

A special one-dimensional array is used to store the data (the point coordinates) to be used for statisti-

cal calculations. =TT creates and dimensions this array, and L. % THT clears the data previously

stored in a statistical array.

78



Section 4: Statistical Functions 79

 

. THT array name [« # variables :]
  
 

This statement dimensions a one-dimensional statistical array to the appropriate size for a specified

number of up to 15 variables. The array name can be any standard numeric variable name. = 7T#7T can

also select a previously dimensioned statistical array to be the current statistical array. The # variables

is optional only if ZTHT selects a previously dimensioned statistical array. The array dimensioned by

=“THT has base option zero regardless of the TFTIIH EFMZE currently in force. All numbers are

stored with FEFL precision.

 

  
 

This statement clears (sets to zero) all elements of the currently specified statistical array.

Using the Statistical Operations

Example: The following table lists the consumer price index change (CPI), the producer price index

change (PPI), and the unemployment rate (UR), all in percentages, for the United States over a 12-

year period.

The goal is to enter the CPI, PPI and UR data into the HP-71 and to calculate some simple statistics.

To get the results in the form shown in the following pages, use ¥Idisplay format.

Data for Statistical Example
 

Year CPI PPl UR
 

1968 4.2 2.5 3.6

1969 54 39 35

1970 59 3.7 4.9

1971 4.3 3.3 |59

1972 3.3 45 56

1973 6.2  13.1 49

1974 11.0 189 5.6

1975 9.1 92 85

1976 5.8 46 7.7

1977 6.5 6.1 7.0

1978 7.6 7.8 6.0

1979 11.5 19.3 5.8      



80 Section 4: Statistical Functions

Your first step is to declare a statistical array in which to accumulate the data’s summary statistics.

Note that this one-dimensional array will not store the entered data, but only the summary statistics

that are updated each time data is added or dropped. Since you wish to accumulate summary statistics

for three variables (CPI, PPI and Ul):

Input/Result

STHT S033 Creates and dimensions a statistical array = for 3
variables.

CLETAT Clears array =.

If another array = already existed, “THT =< Z: would only redimension array %, and the array

elements could contain unexpected data. To be safe, clear an array (with ZL.ZTHT) after declaring it,

unless you wish to use the previous array’s data.

Adding Data Points to Arrays (i)

 

Hiill [coordinate value 1 [, coordinate value 2 [...[ . coordinate value 15]...1]]
  
 

This statement adds a data point, consisting of up to 15 matched coordinate values—numbered from 7

to 15 (one for each variable)—to the current data set represented by the current statistical array.

Example (continued): On a two-dimensional plot, a point is often defined in terms of its x, y coordi-

nates. Similarly, the data point for 1968 is defined in terms of the three coordinates of that data point,

CPI, PPI, and UR. You will accumulate in your array the summary statistics for the 12 data points,

corresponding to the 12 years 1968 through 1979. You enter the first nine data points as follows:

  
Input/Result

4.2,.2.5,3.8 Data point for 1968.

B4, E.08,3.085 Data point for 1969.

BoRLELF 408 Data point for 1970.

4.3,5.3,8.8 Data point for 1971.

F0E.04.5,85.68 Data point for 1972.

fLZ.13010,4.3 Data point for 1973.

T, 18,9, 5.6 Data point for 1974.

Lol2e85 Data point for 1975.

HODD SoE 408,77 Data point for 1976.

Here you realize you made a mistake; the 4 . & should have been # . &. To correct the error, use [iF{iF,

 



Section 4: Statistical Functions 81

The [iFF statement is used to delete data points from the array. You’ll see how to execute this state-

ment, and, alternatively, how the HP-71 Command Stack can be employed to make the correction even

easier.

Note: Use only one of the following two methods for correcting data points when working through

this example. Otherwise, your results won’t match those shown in the example.

Method One: Using [EF to Delete Data Points.

 

[IEOF [coordinate value 1 [ . coordinate value 2 [...[ . coordinate value 15]...1]]
   

This statement deletes (drops) a data point, consisting of up to 15 matched coordinate values, numbered

1 to 15, from the summary statistics maintained in the current statistical array.

Example (continued): You proceed as follows to correct your error:

Input/Result

OROF 5.82,4.8,7.7 Removes the incorrect data point from the sum-
mary statistics.

DD 5. 8,468,707 Enters correct data point for 1976.

Method Two: Using the Command Stack to Change Data Points. Alternatively, by editing an

A0 statement with the Command Stack active, an incorrect data point can be removed from the

current statistical array and the correct data point can be added.

Example (continued): Here’s the procedure for correcting your error using the Command Stack.

 

   

 

Input/Result

(9](cmbs Activates the Command Stack.

~EOD S o2.04.8,7.0F The Command Stack displays the most recent
command,* ready for editing.

LR Replaces A0 with DFOF,

GREOFS 2,4, 7.7

   
 
* This keystroke sequence assumes the error has not been corrected.



82 Section 4: Statistical Functions

 

  
   

 

   

 

 

   

Deletes the incorrect data point from the array
and deactivates the Command Stack.

(9)(cmDS Activates the Command Stack again.

- [ s m L, F LT The Command Stack displays your [ifiiF
statement.

Display the earlier command.

Press 10 times. Positions the Replace cursor at the incorrect
numeral.

& Corrects the error.

Now enter the rest of your data points:

L7 Data point for 1977. 

  EL.F L EVE Data point for 1978.

SLlE L EL 5.8 Data point for 1979.

Summing Data Points (7{7 i)

 

The 71T+function sums one coordinate’s values (one variable’s values) for all data points. ForIn-

stance,1f each of your data points had two coordinates (variables), say x and y, you would use 77 #i

to sum all the x values and then use TZT#i again to sum all the y values.

 

 

 

1L[<variable #]
  
 

This function returns the total of the coordinate or variable values for the specified variable # in the

current statistical array. If the optional variable # is omitted, the funct1onreturns the total of the

values for the first variable (or “variable #1”). If &is specified for variable #, 41, returns the num-

ber of data points in the array.

 



Section 4: Statistical Functions 83

Example (continued): Using TT#L, display the sample totals for variable #1 (CPI), variable #2

(PPI), and variable #3 (UR).

Input/Result

TOTHLG Displays i. £, the total number of samples.

TOTHLOL Displays &. #68) the total of the CPI values.

TOTHLLE Displays ## . =&, the total of the PPI values.

TOTHLS Displays % . ¢ the total of the UR values.

   

Calculating Means (iik i)

 

MEFiH[<variable # ]
  
 

This function returns the mean of the values for the specified variable # in the current statistical array.

The default value for variable # is 1.

Example (continued): You use &in this example as follows:

Input/Result

Pl Displays #. 7%, the mean of the CPI values.

Displays &
L Displays & . ¥, the mean of the UR values.

  
&, the mean of the PPI values.

 

Calculating Standard Deviations (=L%)

 

=R [<variable # 3]
  

This function returns the sample standard deviation of the coordinate or variable values for the speci-

fied variable # in the current statistical array. The default value for variable # is variable #1.

 



84 Section 4: Statistical Functions

Example (continued): Use =[iEY to calculate your sample standard deviations.

Input/Result

SOEVOL D Displays = . &1, the standard deviation of the CPI
values.

SOEWCZ S Displays & . %%, the standard deviation of the PPI
values.

SDEVOED Displays 1 . <, the standard deviation of the UR
values.

Calculating Sample Correlations (i)

 

iEF Cvariable #1 . variable #2

  
 

This function returns the sample correlation of the values for the two specified variables (variable #1

and variable #2) in the current statistical array.

A correlation involving a constant is undefined. If you tried CEE C &, 1 *, for instance, you’d hear a

beep and see Itiwalicd Stat Op.

Example (continued): Determine the three sample correlations among CPI, PPI, and UR.

Input/Result

CORECL, 2 Displays & . &%, the correlation between CPI and
PPI values.

CORRECL,ES Displays & . %%, the correlation between CPI and
UR values.

CORRCZ,E2 Displays & . 1, the correlation between PPI and
UR values.

 

L.E variable #1 . variable #2 . variable . variable]]
  
 

This statement specifies the current linear regression model. You specify the dependent variable as

variable #1 and the independent variable as variable #2. The L.F statement then computes the inter-

cept and slope for that model. If you supply the first optional variable (any valid variable name is

acceptable), the HP-71 stores the intercept in that variable. If you supply the second optional variable,

the HP-71 stores the slope in that variable.



Section 4: Statistical Functions 85

The calculation of predicted values (using FEEY, explained below) does not use these two optional

variables. Their use simplifies the recovery of the model’s slope and intercept. If these optional

variables are not used, slope and intercept can be recovered as follows, since F = E[i\ recalculates slope

and intercept each time it’s executed.

"
T
H
O
T
H

I‘l
”l
m‘REDVCE s returns the intercept, a.

F. Dualr - FPREDVCE: returns the slope, b.

You can fit a straight line by the method of least squares to any pair of variables by using the L F

statement. The only restriction is that the independent variable not have a sample standard deviation

of zero.

Example (continued): Suppose you wish to fit a straight line between the consumer price index

change (variable #1) and the producer price index change (variable #2), where the CPI is the dependent

variable and the PPI is the independent variable. That is, you wish to fit the line

CPI =a + b+ PPI

to the data, determining values for the parameters a (intercept) and b (slope). Since the independent

variable, PPI, does not have a standard deviation of zero (you determined above that

SOEWCZ: = 5, 35), you can use the LF statement. Use two optional variables, ¥ and E, as ar-

guments three and four, which will hold the values for the parameters a and b.

Input/Result

LR 1,2.A.E Determines the best-fit straight line for the 12
(PPI,CPI) points, and stores the intercept in #
and the slope in E.

A Displays the intercept . &1.

E Displays the slope & . 3.

  

Calculating Predicted Values (-

 

 
FREDY Cargument »
 

 

This function returns the predicted value of the dependent variable based on the current linear regres-

sion model and the value of the independent variable specified as the argument. You must execute L.F to

specify the dependent and independent variables before executing FFE1/,



86 Section 4: Statistical Functions

Example (continued): Now predict CPI values for PPI values of 4, 5, 6 and 7.

Input/Result

    

(T

Displays & . 1#, the predicted CPI value for
PPI = 4.

Displays & . %4, the predicted CPI value for
PPI = 5.

Displays & . %%, the predicted CPI value for
PPI = 6.

Displays # . ZZ, the predicted CPI value for
PPI = 7.

Fitting Sample Values to Other Curves

Using suitable transformations, exponential, logarithmic, and power curves can be fitted to data in the

standard linear regression form

y = a + bx.

The following table gives these transformations.

Transformations to Linear Regression Form
 

 

      

Name of Untransformed For y, For a, For x, Transformed

Curve Equation Use: Use: Use: Equation

Linear y=a+b Xxx y a X y=a+bXxx

Exponential y = a x eb*x) In(y) In(a) X In(y) = In@) + b x x
(@>0)

Logarithmic y = a + b X In(x) y a Inx) y=a+ b x In(x)

Power y =a x xb In(y) In(a) In(x) In(y) = In@@) + b x In(x)
(@> 0
 

Example: Suppose the following values for x and y, obtained during an experiment, have been given to

you for analysis. You plan to determine how well each of the four curves-linear, exponential, logarith-

mic, or power—fit the data.

Data for Transformation Example
 

X A 1.3 4.7 9.0 17.9 24.4
 

y 16.69  13.51 7.498 3.662 7170 3271   

 



Section 4: Statistical Functions 87

To facilitate entering data into a statistical array, arrange it in the following table, with each sample

column labeled by name and number.

Rearranged Data for Transformation Example
 

Variable #

1 2 3 4
 

Variable

X In(x) y In(y)
 

Observation Variable Value

1 -2.303 16.69 2.815
1.3 .2624 13.51 2.603
4.7 1.548 7.498 2.015
9.0 2197 3.662 1.298

17.9 2.885 7170 —.3327
24.4 3.195 3271 —1.117O

O
~
W
N

=

   
 

Now create and dimension your statistical array and enter your data:

Input/Result

B Dimensions a new array. (This statement would
select and dimension array £ if it already
existed).

This would clear array Eif it already existed.
While this step is not necessary in many cases,
it’s a good habit to develop to ensure against new
data being intermingled with old data in the
same array.

O L1, -2 EBEAE L LE L en 2 mlE Enters the first observation.

END LINE

ADD 1.3, 2824 Enters the second observation.

END LINE

G4 T L B4R T odeRn 2815 Enters the third observation.

|
G2, 187 R 882, 1,295 (END LINE Enters the fourth observation.

L EBEEs, VIV, - 3327 Enters the fifth observation.

|

ix
l . H

i i |

AL 3 ies,  EETL.-101007 Enters the sixth observation.



88 Section 4: Statistical Functions

Determine the appropriate correlations to see if any of the models can be excluded from further consid-

eration. Execute the correlation functions shown below and see the indicated results. The arguments of

the correlation functions are the variable numbers from the table immediately above. The transforma-

tion table on page 86 shows what variables to correlate for each type of curve.

For instance, the transformation to fit a logarithmic curve in linear regression form uses (from the

table on page 86) In(x) for x and y for y. The next table (page 87) shows In(x) is variable 2 and y is

variable 3. So the appropriate correlation function in this example for a logarithmic curve in linear

regression (straight line) form is CORERECZ, 30,

For the exponential, logarithmic, and power curves, you're checking to see how well the transformed

data fits a straight line. If one or more of these curves has a reasonably high correlation, you might

then use the FEELDY function to predict dependent variable values (y or In(y)), given independent

variable values (x or In(x)). The last step would then be to transform In(y) values back to y values using

the E:F function.

Correlations Resulting From Transformation Example
 

 

Correlation
Type of Curve Function Result

Linear

Exponential

Logarithmic

Power        
None of the correlations is very low. Note that all the transformed curves (straight lines) have negative

slopes, as shown by their negative correlations.

You decide to model the data with the curve having the highest correlation, the exponential curve.

You'll first use the .statement to specify the linear regression model (“best fit” straight line) cor-

responding to the transformed exponential curve data. Once that model is established, you’ll be able to

use the FEEY function to predict some additional In(y) values, as well as to check on several In(y)

values transformed from the original data.

Input/Result

4,1, A, B Specifies a linear regression model with In(y)
(variable #4) as the dependent variable and x

(variable #1) as the independent variable. The
intercept will be stored in # and the slope in E.

Displays the intercept = . &,

Displays the slope —&i . 17

;o
i gt

 



Section 4: Statistical Functions 89

Now you’re ready to predict some values. You want to predict In(y) values for the following x-values:

—10, —5, 0, 20, and 30. For x = 0, the predicted In(y) value should equal the intercept ~. Finally, you’ll

transform In(y) values back to y-values. As a check, you also want to use some x-values equal to the

data values you were given, and see how close the predicted y-values come to the corresponding data y-

values.

Input/Result

FREDWV.-180

ERFORES D

 

  
 

Displays # . 4%, the predicted In(y) value for

x = —1#,

Displays the result of e*4°, where 4.45 is the pre-
dicted In(y) value just obtained.

This is the predicted y-value given by y = a xe®*x)
for an x-value of — 1 i, where a and b have the val-

ues Ex=F O H and E. (You calculated H and

above with the L.F function).

Predict the other y-values in the same way and display the following results.

Predicted Values Resulting From Transformation Example

 

 

        

-5 0 4.7 9 20 244 30

Predicted In(y) 3.63 280 202  1.31 -0.51 -1.24 -2.17
Predicted y 37.53 16.40 7.53 3.70 0.60 0.29 0.11
 

The In(y) value for x = &iis & .=1, which is equal (as it should be) to the intercept #i. Also, the predicted y

values above corresponding to the data x-values 4 . ¥, %, and =< . 4 are reasonably close to the actual data

y-values shown in the table on page 86.

 



Section 5

Clock and Calendar

Contents

OVIVIBW ..90

The HP-71 Calendar (ZETORTE, DRTE, DHRTEE) ..L. 90

The HP-71 ClocK ... ....91

Setting the Clock (=ETTIME, ADJHED) ..oo92

Reading the Time (T IFE, TIMEE) .....94

Adjusting Clock Speed (ZETTIME, ADJLZT, HEF,

EAACT BESET CLOTE)o94

Overview

This section covers:

e Setting and reading the calendar.

e Setting and reading the clock.

o Improving the accuracy of the clock.

The HP-71 Calendar (SETLOATE, DATE, DARTE$)
Dates from January 1, 0000 to December 31, 9999 are accepted by the HP-71, but dates before October

15, 1582—before January 1, 1752 for English speaking countries—do not relate directly to our current

Gregorian calendar.

 

o
- ATE numeric date

=ETLHTE date string

 

  
 

This statement sets the date on the HP-71 clock as either an integer or a string. The numeric date is

entered as YYDDD or YYYYDDD, where YY or YYYY = year and DDD = the day number in that year. The

day number ranges from 001 through 365 (or 366 for leap years), and is always entered as three digits

including leading zeros as necessary. The form of the date string is “YY/MM/DD” or “YYYY/MM/DD,”

and includes zeros as necessary to create an eight- or ten-character string.

90



Section 5: Clock and Calendar 91

The actions of DA TE and DATE# (explained below) are unaffected by the way you enter the date. The

two methods (numeric date or date string) are provided to make it easier for you to enter the date.

Examples: Both these statements set the date to March 7, 1985. Note the leading zero in the three-

digit numeric day number, and the leading zeros in both the month and day characters in the date

string.

 

 

 

  
 

This function returns the date as a number in the form YYDDD, where YY = the last two digits of the

year and DDD = the day number in that year.

Example: Assume the date is March 7, 1985.

 

Input/Result

ORTE Returns #56&, showing that March 7, 1985, is
the 66th day of the year.

T

   

This function returns the date in the form “YY/MM/DD”, where YY = year, MM = month, and

DD = day.

Input/Result

Returns &%.8387, the same date (March 7,
1985) presented as a string.

The HP-71 Clock

The HP-71 provides you with a versatile set of statements and functions to set and adjust your quartz-

controlled clock and to change its speed. Once you learn how to use each of these keywords, you’ll find

it easy to change your clock’s setting in response to time zone and other time changes, and to maintain

your clock’s accuracy to within a few seconds over weeks or months.

There is one statement, FI.iFES (adjust absolute), that adjusts the clock without introducing any

speed correction factor. Two statements, “ETTIME and #.Ji%T, set or adjust the clock and in-

troduce speed correction factors. These factors are accumulated between two executions of the E:HT

statement, and are used when the second ET statement is executed. Finally, one function, AF

(adjustment factor), both introduces and executes speed correction factors. However, when #F is ex-

ecuted, the clock setting remains unchanged.



92 Section 5: Clock and Calendar

This table gives an overview of these statements, and following the table, each keyword is discussed

more fully.

Keywords to Adjust and Correct Clock
 

 

      

Clock Clock Setting Speed Correction Speed Correction
Setting and Speed-Error Based on Error Based on
Only Accumulation Accumulation Argument

HOLIARES SETTIME EsACT HEF
ADUET

Setting the Clock (=E T TIME, HOHER)

When you first use your HP-71 clock, or after a memory reset, you should use ZETTIME to set the

clock, but don’t use ZETTIME thereafter unless you also want to accumulate a speed correction factor.

AIAES sets the clock without accumulating a speed correction factor. Its argument is a time incre-

ment, like 1% seconds or "~—1:&&:&6E" (adjust the clock back one hour). #li.IFES is useful for

operations like time zone changes.

Initial Setting (SETTIME).,

 

I 1ME seconds since midnight

I ME time string

 

   
The HP-71 clock can be set using a numeric expression (seconds since midnight) whose value ranges

from 0 through 86399. The system clock can also be set using a time string of the form “HH:MM:SS,”

where HH is hours in the 24 hour format, MM is minutes and SS is seconds. Leading zeros must be

included as necessary to maintain an eight character string.

A technique you can follow to set your HP-71 clock is given in section 1 under the topic “Setting the

Time and Date,” page 17.

 

After memory reset, if “ETTIME is executed before E=H{T is executed, no part of the &I

adjustment is accumulated for speed correction; the adjustment is used only to set the clock. Once

EXACT is executed, however, the entire adjustment is still used to set the clock, but any part of the

adjustment other than full hours and half hours is also accumulated as a speed correction factor.* The

next time E =MT is executed, this factor is used to change the clock’s speed.

 
* Therefore, if you want to adjust time for time zone change, you can use ZET T IME. If you reset for an even hour, no error will be

accumulated. But if you reset the time by one hour and three minutes, the three minutes will be accumulated for error correction.



Section 5: Clock and Calendar 93

In summary:

o After memory reset, execute “ETT I ME before EXHIT to set your clock initially.

o After EXHTT is executed, use ZETTIME to simultaneously:

1. Reset the clock because it’s running fast or slow, and

2. Accumulate a speed correction factor that will be converted to a speed change by the next

execution of E=ALCT.

Examples: The following statements are executed following a memory reset, but before &1 has

been executed.

SETTIME S43Z6004+154%60 Sets the clock to 8:15 AM, the number of seconds
for 8 hours plus the number of seconds for 15
minutes.

SETTIME "o 15660 Also sets the clock to 8:15 AM.

SETTIME "ilg.@g.ast Sets the clock to five seconds past 6:08 PM.

 

. adjustment in seconds

. adjustment string    
The adjustment in seconds can be any numeric expression including one or more variables. Both a

positive and a negative change is accepted. The adjustment string is in the form “HH:MM:SS” or

“ _HH:MM:SS.” Leading zeros must be included as necessary to maintain an eight or nine character

string. The entire adjustment is treated like a time zone change; no part is accumulated as a speed

correction factor.

Example: Suppose you discover that the watch you used to initially set your HP-71 clock was 43

seconds slow. You execute this statement to add 43 seconds to the HP-71 clock:

AOJHES 43

You’re flying from New York to Chicago. You execute this statement to change your clock to Central

Standard Time:

ADIARBRS ~Z800 Sets time back 3600 seconds (1 hour).

You continue your journey from Chicago to Denver. To change your clock to Mountain Standard Time,

you execute this statement:

ADARES -l @gagn Sets time back 1 hour.



94 Section 5: Clock and Calendar

Reading the Time (7 I i1k,

 

 

  
 

This function returns the time as a number expressed as seconds since midnight. It can be used in

numeric expressions as can any numeric function.

Example: Suppose you construct a program to time the durations of a series of experiments, all start-

ing at the same time. The following statement assigns to 7 the starting time (seconds since midnight)

of this series.

SEE T=TIME

Line 780 in your program (below) is triggered by the completion of your first experiment. It assigns to

&1 the duration of the first experiment in seconds. Suppose your experiments began at 9:00 AM

(32,400 seconds since midnight), and the completion of your first experiment occured at 10:30 AM

(37,800 seconds since midnight). £ 1 would be assigned the value 5400 (seconds), the duration of your

first experiment.

 

  
 

This function returns the time of day as a string with the form “HH:MM:SS,” expressed in the 24-hour

format.

AdjustlngClockSpeed (BETTIME, HDUUST, AF, BEEACT,

The circumstances under which each of these keywords can be used most effectively are explained

below.

Speed Correction. Normally, each of these keywords is used in the following situations:

o ZETTIME: except for setting your clock after memory reset use “ETTIME if you want its entire

argumentto change the clock’s setting, and any “minor” portlonof its argument—the portion

other than full hours and half hours—to be accumulated as a speed correction factor

 

7. use ADLIET if you want its entire argument to be added to or subtracted from the

clocks current setting, and the “minor” portion of its argument—the portion other than full hours

and half hours—to be accumulated as a speed correction factor.

e #F:use HF only if you do not want to change the clock’s setting, but do want the entire argument

to change the clock’s speed without waiting for the next execution of &: *

 



Section 5: Clock and Calendar 95

The syntax for SETTIHME is shown and explained on page 92.

 

=T seconds

I adjustment string

 

  
 

This statement allows you to reset your computer’s clock for different time zones, for daylight savings

time, etc., while at the same time accumulating a small amount of time (no larger than +15 minutes)

for a later speed correction. This speed correction is made the next time E:FIT is executed. The

argument can be seconds, expressed as a numeric expression that, when evaluated can range between

—360,000 and 360,000 seconds (100 hours). The argument can also be an adjustment string in the form

“HH:MM:SS” or “—HH:MM:SS,” where zeros are used to maintain an eight or nine character string.

 

Example: You're about to cross from Central to Eastern time. You know your clock has lost one

minute since you set it accurately 4 months ago. You now wish to:

1. Set your clock ahead one hour.

2. Accumulate a speed correction factor to compensate for the clock’s slowness.

3. Reset your clock to compensate for the lost minute.

To perform all three operations at once, you execute the following:

HET "ol:81:88"% ([ENDLINET

 

 
HF < new adjustment factor:

 
 

The adjustment factor changes the clock’s speed. It is the number of seconds that pass before the clock

adds (positive) or subtracts (negative) one second to or from its reading. The #F function always re-

turns the current value of the adjustment factor. If #F is executed with a new adjustment factor, the new

value replaces the current adjustment factor. #F with its optional argument sets an adjustment factor

directly (as opposed to All.!llZTand ZETTIME), and does not require the execution of FxHIT.

Example: The new adjustment factor changes the clock’s speed in the following way. (For this example,

assume the current adjustment factor is 24000.)

Input/Result

FFO-DEs0an Displays ##£, the current adjustment factor,
and sets a new adjustment factor (—28800).

 

After a period about 56 seconds long (28,800/512) has passed following the execution of this function, a

small fraction of a second (1/512) will be subtracted from the clock’s reading.



96/97 Section 5: Clock and Calendar

Correcting Accumulated Speed Errors.

 

EamlT
   

This statement is used to improve the accuracy of the clock’s speed. The first execution of ExHIT

following a memory reset defines the beginning of an adjustment period. Each subsequent execution of

E#ACT defines the end of the current adjustment period and the beginning of the next adjustment

period. All clock speed corrections accumulated by the execution of ZETTIHME and #1115 T during

the current adjustment period (normally weeks or months long) are used to define a new adjustment

factor when E=T is executed. (Remember that ZETTIME and AiX.i%7T do not define an adjust-

ment factor; that is, they do not change the clock’s speed. They only accumulate speed corrections.)

The new adjustment factor defined when E=T is executed is used by the HP-71 as described in the

MF discussion directly above.

Since E#HT is used to improve the accuracy of the clock’s speed, you should execute it only when you

are sure the clock’s reading is correct.

Cancelling the Speed Adjustment Factor .

 

REobET CLOCH
   

This statement clears the adjustment factor and resets the clock’s speed to that in effect after a mem-

ory reset. No seconds will be added to or subtracted from the clock’s reading as a speed correction until

ME or EXACT is executed again.





Section 6

File Operations

Contents

OVEIVIEW.98

The CurrentFlle ........................................................ 100

The war k£ 4L&100

Introductlon to Flle Operations . .......... . . ...... 101

Structure of HP-71 Memory .. ... ... .....103

Two Types of Memory: RAM and ROM .. ... ... . ... .. ... .. .. ... ......... 103

Main RAM and Independent RAM

Declaring Independent RAM (i

Reclaiming Independent RAM (i.

Obtaining Memory Information (!

File Names

 

  

 

  

 

  

  

Device Names . ... .....

Characteristics of Device Names

Default Devices . ......

Copying Files (i!

Renaming Files

Purging Files (

Merging Files (¥

File Security ..................

Protecting a File’s Contents (= E

Controlling F|Ie Access (F

Using Both =k E

File Catalogs ( ,

Overview

The HP-71 retains programs and data in memory in the form of files. The computer can contain sev-

eral files at one time, each with its own name. This section discusses how to manage files. It does not

cover the specifics of creating and adding information to files. (That is covered in other sections as

noted.)

98



Section 6: File Operations 99

This section describes the operations that are common to all HP-71 files. More specifically it describes:

The current file.

The wor b £1 1 e,

How HP-71 memory is structured.

Copying files.

Renaming files.

Purging files from memory.

Protecting files.

Finding out which files exist in memory.

If you are simply going to run programs from plug-in modules, you don’t need to read this section. But,

if you are going to use programs or information stored on magnetic cards, or plan to use HP-IL devices,

you should read this section.

If you want to create, add information to, or use the following types of files, refer to the indicated

sections:

BASIC Files.

This type of file contains a BASIC program. These are described in section 8, “Writing and Run-

ning Programs.”

BIN and LEX Files.

Files of both types are written in HP-71 machine language. A BIN file can be executed as a

subprogram. A LEX file can add BASIC keywords to the computer. These file types are described

in section 8, “Writing and Running Programs.”

DATA Files.

DATA files contain numeric and string data and are used by programs for data storage. DATA files

are described in section 14, “Storing and Retrieving Data.”

TEXT Files.

This is a special type of data file which is used for transferring information between the HP-71 and

other computers. BASIC files can be transformed into TEXT files so that they can be transferred

to other computers. Similarly, TEXT files can be transformed into BASIC files. TEXT files are

described in section 14, “Storing and Retrieving Data.”

KEY Files.

KEY files contain the key redefinitions that you create. Several KEY files can reside in the

computer’s memory at the same time, however, only one can be active at any given time. These are

described in section 7, “Customizing the HP-71.”

SDATA Files.

SDATA files are data files that can be sent to and received from an HP-41 Handheld Computer.

These are discussed in section 14, “Storing and Retrieving Data.”



100 Section 6: File Operations

The Current File

More than one file can reside in the HP-71. At any time, one file is designated the current file. A file

can be edited only when it is the current file. Also, the current file is the default file (the file used when

one isn’t specified) on which the computer performs many file operations.

The following functions and statements change the current file designation:

  

FUREGE (only when the current file is purged).

* Inserting or removing a RAM or ROM module from a port.

o TEAMZFIEM (only when the current file is transformed into a non-BASIC file).

Thei §1 1

The HP-71 maintains a program file called ok i 1=, which is a scratch file. The work ¢4 1w

becomes the current file when you:

* First install batteries.

¢ Reset the HP-71 (IHIT: 3).

e Purge the current file.

¢ Execute 011 T without specifying a file name.

¢ Transform the current file into a non-BASIC file.

¢ Insert or remove a RAM or ROM module from a port.

e Execute FREE FOET or TLAIM FORT.

For more information about using the work §1i1s, refer to section 8, “Writing and Running

Programs.”



Section 6: File Operations 101

Introduction to File Operations

As need arises, you will probably want to create and make copies of files, rename them, and purge them

from memory. To give you a feel for how these operations can be performed, some examples are given

here demonstrating file operations at the most elementary levels. The details of how the statements

shown in the following examples work are given later in the section and in the HP-71 Reference

Manual.

If you write a program in ok i 12 and want to give it a name, you can use the HFME statement:

 

   

  

     

Input/Result

EDIT Designates ok # i 1% as the current file.

sk f i le EHZIC k1 Displays the file name (¢ b+ 1 1) and file
type (EHZI0).

LT 1 Enters a line into the file.

TEST Names the file TE#

 

END LINE Creates a new ok §1 1,

 

   
Rather than using the ok 1 12, you can simply create a file with a name and enter program lines

into it:

 

 

Input/Result

EDIT TESTH Creates a new file named TEZ T1. It is the cur-
rent file.

ESTH BHSIC £ Shows that T57T 1 was created and that its file
type is BASIC.   

 

To avoid confusing a file with other files having similar names, you can rename a file using #E

Input/Result

  HizE 1 [ENDLINE Renames TEZT

 



102 Section 6: File Operations

If you are going to make changes to a file, you might want a backup copy of the file in case you decide

later that you don’t want to incorporate the changes. You can copy a file, giving the duplicate a new

name using COFY:

Input/Result

CORYOVOLTRAGED TO VOLTESTH Creates a copy of ' {iL. THZE 1 and names it
WOLTESTL. Both files now reside in memory.

After creating several files, you might occasionally want to know which ones you have in memory. You

can instruct the computer to display a list of the files in memory using CHT HLL:

 

 

 

 

 

 

   
 

 

  
 

 

Input/Result

CRT ALL Instructs the computer to display a list of thefiles
in memory.

JTEME = TYFE LEH

ORTE TIME FOET Displays headings for catalog information.

TEST BERSIC 11 Shows that the oldest file is TE=T.

Displays the next file name.

sk ile EHSIC 5 The next oldest file is wieisb § 1 1,

THGE EASIC Dlsplfysan .Eentry in the catalog for the file

B ERSIC Displays an entry for &LTEZT
Pressing v] again displays the same file name,  

 

indicating that this is the last file in the catalog.

Returns the BASIC prompt to the display.



Section 6: File Operations 103

When you no longer need a file, you might want to purge it (erase the file) to free up memory for other

uses. You can do this using FLEGE:

Input/Result

FURGE VOLTESTL PurgesLTEST 1 from memory.

The quick demonstration of file operations above shows how you can create, name, rename, catalog,

and purge the files in memory. The HP-71 gives you greater flexibility than shown here in how you can

manipulate files. But before you can understand the details of the file operations available to you, you

need to understand something of how memory is organized on the HP-71.

Structure of HP-71 Memory

The HP-71 gives you great flexibility in specifying where files are stored in memory. The HP-71 mem-

ory can be divided into smaller sections, called ports (described below), in which programs and data can

be stored. Storing information in a specific port enables the HP-71 to find it fast since, if you specify

the port where your information is located, the HP-71 searches only that port rather than all of mem-

ory. This can increase the speed of programs that use files.

Two Types of Memory: RAM and ROM

The HP-71 contains two kinds of memory:

¢ Read-Only Memory (ROM). This memory can’t be altered.

¢ Random-Access Memory (RAM). You can store and delete information in this type of memory.

Read-Only Memory (ROM). The HP-71 contains 64 kilobytes (64K) of ROM.* The ROM contains

the operating system and all the functions of the HP-71. You can’t write information to this memory,

but you can increase the capabilities of the HP-71 by adding ROM modules to any of the four front

ports (as described below). Also, you can run programs contained in ROM modules and read informa-

tion from them.

Random-Access Memory (RAM). The HP-71 contains 17.5K bytes of RAM, all of which is avail-

able to the user. (However, the HP-71 uses about 1K of RAM for its operations.) You can add up to four

RAM modules to the HP-71 to increase the amount of RAM.

This section deals primarily with manipulating files in RAM. It also describes how to copy files from

plug-in memory.

 

* A kilobyte equals 1024 (21°) bytes.



104 Section 6: File Operations

Main RAM and Independent RAM

The HP-71 contains four external ports in addition to the HP-IL and Card Reader ports. These ports

are numbered 1 through 4, from left to right. You can plug applications modules (ROM) or memory

modules (RAM) into any of these ports in any order.

 
The HP-71 contains an additional port, port 0, which is internal—you can’t add any modules to it.

This internal port contains 16K bytes of RAM which can be set aside from the rest of the internal

RAM.

The HP-71 RAM can exist in two forms:

e Main RAM.

¢ Independent RAM.



Section 6: File Operations 105

Main RAM. The HP-71 is initially equipped with a certain amount of RAM (described above), some

of which is contained in port 0. This RAM, and RAM added to any ports, is called main RAM. The

HP-71 uses main RAM for its operations, keeping files, and storing variables.

Independent RAM. Independent RAM is memory that is internally set aside from main RAM. In-

dependent RAM is not used by the HP-71 for its operations but contains only the information that you

store in it. Independent RAM is useful for:

e Protecting files from a memory reset condition caused by an [+ I7T: % reset.

¢ Enabling the computer to locate files quickly, since the search for a file can be limited to one

portion of RAM.

¢ Enabling you to remove a memory module from a port without disturbing the information in the

remainder of RAM.

If memory modules were plugged into all four ports (assuming that they are not set aside as indepen-

dent RAM), main RAM would consist of the internal RAM plus the plug-in memory, as shown in the

following illustration:

 

  

  

Port O

. Internal
Main RAM! RAM

Plug-in

Port 1 Port 2 Port 3 Port 4 Memory
 

Main RAM, independent RAM, and plug-in ROM are all called memory devices. For example, when

main RAM consists of all internal RAM and all plug-in RAM (as shown in the above illustration),

there is one memory device—main RAM. Any portion of RAM that is designated independent RAM

becomes a separate memory device. Also, a ROM is always a separate memory device.

Declaring Independent RAM (¥}

 

The RAM within a port can be set aside as independent RAM by executing ¥

 

 

P}
FLET Cport number

   



106 Section 6: File Operations

Example: Change the RAM in port 0 to independent RAM:

Input/Result

BOTC0 Port 0 becomes independent RAM, and is set off
from all other RAM.

 

If you don’t have a RAM module plugged into any of the ports, the memory in your HP-71 can be

represented by the following diagram, which shows the memory in port 0 having a boundary between it

and main RAM as a result of executing the above statement.

 

 
 

  

Port O

Main RAM Internal

RAM

Plug-in

Port 1 Port 2 Port 3 Port 4 Memory

Note: When you remove a memory module, first free the module’s port. If you don’t first free the

port, main RAM will be cleared when you remove the module.

If the computer doesn’t have enough unused memory in main RAM to free a port, you will need to

purge some files from main RAM to make enough memory available. (Refer to “Purging Files,” page

115.)

The HP-71 contains 16K bytes of RAM in port 0 which is subdivided into four 4K units. You can free

each of these units separately by specifying them in the FEEE FOET statement as 0, 0.01, 0.02, and

0.03. (The leading zero can be dropped.) For example:

 

sets aside one 4K portion of port 0 as independent RAM.



Section 6: File Operations 107

Reclaiming Independent RAM (LF1FOET)

 

To incorporate an independent RAM back into main RAM, execute i#1

 

CLHEIM FOET (port number:
  
 

The port number can be a number from 0 to 5. (Port 5 is the card reader port.)

Example: Claim the memory in port 0 as part of main RAM.

Input/Result

CLAIM FORTOG:

The memory in port 0 is now part of main RAM, as illustrated below.

 

  

 

Port O
' Internal

Main RAM RAM

Plug-in

Port 1 Port 2 Port3 Port 4 RAM

Note: When you claim an independent RAM, its memory is cleared by the HP-71. Therefore, you

might want to copy files from the independent RAM to main RAM, another port, or a mass storage

device before you claim that independent RAM.

 

Obtaining Memory Information (i1

When creating, storing, or copying files you might need to know the storage capacity of a RAM module

and how much of that capacity is unused. This information is especially useful if you need to determine

how much memory to make available so you can create an independent RAM (as described above).

Determining the Amount of Unused Memory. You can determine the amount of unused memory

in main RAM or an independent RAM by executing £ ¥

 

 

 

[«port number ]
  
 



108 Section 6: File Operations

The integer returned indicates the number of bytes of memory that are unused.

Examples:

Returns amount of unused memory in main

RAM.

Returns the amount of memory available in the
port indicated by A.

 

Returns the amount of unused memory in port 1.

Determining Memory Capacity. You can determine the size (in bytes) and type of memory in a port

using the ZH{i FOET statement.

 

 

  
 

When you execute this statement, the HP-71 shows you the port number, the memory capacity in

bytes, and the type of memory for each ROM and independent RAM, starting with the lowest-num-

bered port. A memory type of “1” indicates independent RAM. A memory type of “2” indicates a ROM.

Example: Set aside port 0 as an independent RAM, then find out the size and type of memory in that
port.

Input/Result

Determine if there is enough memory in main
RAM to set aside port 0 as an independent
RAM. (As you shall see, port 0 contains 4096
bytes of RAM.)

 

 

Displays the number of unused bytes in main
RAM. If the number in your display is at least
4096, this example will work. If you don’t have at
least this much memory, you will need to purge
some files to free up some memory if you want to

complete this example.

  
 

 

BT Sets aside port 0 as independent RAM.

Shows the type and size of port 0.
 

 

Displays port information. Port 0 contains 4096
bytes of independent RAM.  

 



Section 6: File Operations 109

File Names

Each file you create in memory has a name. When you perform operations on a file, you refer to the file

by name. Before you start creating files, you should become familiar with the rules governing file

names.

Characteristics of File Names

File names can be a combination of up to eight letters or digits, but the first character must be a letter.

Characters other than letters or digits are not allowed. You can use upper- or lowercase letters, but

they will all be converted to uppercase.

Examples of Invalid and Valid File Names
 

Invalid Reason Valid
 

TAHGEMTIAL Too long.
dFLE® Can’t begin with a number.
Teszt:12¥ Can’t use a colon or a dollar sign.

 

    
 

A file name can be an unquoted string or a string expression.* Of course, a string expression must

evaluate to a valid file name (as described above).

Examples:

COPY TRARGETES Uses an unquoted string to specify a file.

COPyY OU"TREGETST Uses a quoted string to specify the same file.

CORY RE Uses a string variable which evaluates to a file
name.

COPY RE oL BE Uses a string expression which evaluates to a file
name.

Files with the same name can exist in different memory devices (for example, in port 0 and in main

RAM). However, an error results if you try to store a file in a port or in main RAM when a file by that

name already exists there. For example, the following is a valid statement:

  

 

 

* A quoted string is the simplest form of a string expression. Therefore, when this manual refers to a string expression, it means

that a quoted string is also valid.



110 Section 6: File Operations

However, this is not valid:

 

since the file name already exists in the port.

Default Files

For statements that operate on files, you can optionally specify a file. When you don’t specify a file,

some statements automatically use a default file (usually the current file) for their operation.

You can determine the default files that a statement uses by referring to the statement’s keyword dic-

tionary entry in the HP-71 Reference Manual. Where a statement is introduced in this manual, the

default files it uses are described.

Reserved Words

The HP-71 attaches special significance to certain words used in statements that operate on files.

These words are:

HP-71 Reserved Words
 

Word Description
 

HLL Used in some statements to refer to all allowed options.

Refers to the magnetic card reader.

 

Used as part of the T 1 statement.

 

Refers to the file of current key definitions (i =wi=).

Used as an mtermedlate word in statements such as

COFY and

 

    
You cannot use these words as file names unless they are included in string expressions. To avoid am-

biguity, it is better not to use them as file names at all.

Device Names

For file operations, you can also specify the location of a file in addition to its name. This speeds up the

search for the specified file, and can prevent ambiguity when files of the same name reside in dxfferent

memory devices. For this discussion, a device name is the name of a memory device, such as !

 



Section 6: File Operations 111

Characteristics of Device Names

Device names differ from file names in that device names can’t be created by the user. The HP-71 only

recognizes certain device names—attempting to use a device name other than one the computer recog-

nizes generates an error. The following table shows valid device names on the HP-71:

Valid Device Names

 

 

   
 

 

Device Name Description

FORET Specifies all ports beginning with port 0.

FOETOn: Specifies a particular port (where n is a number from

0 through 5)

PMAIH Specifies main RAM.

CHED Specifies the magnetic card reader.

FORED Specifies a private file on the magnetic card reader.

To specify a device in statements such as Zi1F*%and #if i, precede the device name by a colon. This

distinguishes it from a file name. For example

COFY file name T FUORT (G2

copies a file to port 0.

If you want to specify both a file and its location, use

file name : device name

For example,

stores a copy of FIL E1 in port O.

Default Devices

In many cases the HP-71 uses a default device when one isn’t specified. Generally, the following rules

apply:

When a device is not specified:

¢ If a file name is specified, the computer searches for it beginning in main RAM, then in succes-

sively higher-numbered ports beginning with port 0.

« If a file name is not specified, the device in which the current file resides is the default device.

If a device isn’t specified for a destination file in a ©:{iF¥ operation, the default device is main RAM.



112 Section 6: File Operations

File Search Order

When the HP-71 needs to locate a file in memory (when a device isn’t specified for a file), it first

searches main RAM, then searches the memory in each successive port, beginning with port 0.

If #1ET is the specified device but no port number is given, then all ports are searched, from the

lowest-numbered port to the highest. If a specific port is specified, then only that port is searched.

Also, if ¥IH is the specified device, then only main RAM is searched.

Copying Files (i71F)
The 201 statement enables you to store and retrieve files from main RAM, independent RAM, mag-

netic cards, and to retrieve files from plug-in ROM. This statement duplicates a file that you specify.

simplified syntax

rCIFY source file Tt destination file

Two files are specified in the statement:

 

  

e The source file (the one to be copied).

e The destination file (the one to contain the duplicate).

When you execute ©:1F%, the HP-71 creates the destination file and stores a copy of the source file in

it. The destination file cannot already exist.

The source file or destination file can be specified by a file name, a device name, or both. Also, you can

execute - {iF% without explicitly specifying a file or a device. That is, you can specify a file in one of the

following forms:

e file name

e :device name

e file name : device name

e no file name or device name.

When you omit a file name, device name, or both, the HP-71 uses defaults (as previously described).

The following table summarizes the effects of :{iF*%given the different combinations of specified file

names and device names and their defaults.



Section 6: File Operations 113

Effects of% Given Various Parameters
 

Source* Destination*
 Computer’s Response and Example

Name Device Name Device     
Copies current file, if in an independent RAM or a ROM, to main

RAM. The destination file has the same name as the current file.
CORYy

X Copies current file to specified device. The destination file has the

same name as the current file.

COPY TO PORTOZ:

X Copies current file to main RAM. The destination file has specified
file name.
COPY TO HEMI

X X Copies current file to specified device. The destination file has the

specified file name.

CORY TO MEWLIPORTOZ:

X Copies file from CHED or FLED to main RAM. No other device
can be specified. Destination file has same name as card file.

COPY T PCED

X X Valid only if CHED or FIED is source file's device and A IH is
destination file’s device. Copies a card file to specified main RAM.
Destination file has card file’s name.t

CORY CARRED TO rMAIH

X X If specified device is CHED or FIFED, copies card file to main

RAM. If a different device is specified, copies a file from specified

device to main RAM. The HP-71 searches for a source file with
the same name as the specified destination file.t

CORY RORETOB TO HAMEL

X X X If source file’s device is C"HED or FI:E, then destination file’s

device must be H IH; copies file from magnetic card to main
RAM. If source file’s device is any other, searches for a source file
with the same name as the specified destination file and copies it

to specified file in the specified device.t Destination file has speci-

fied file name.

CORY CARD TO
CORY MAIH TO

 

  * An X indicates that the parameter is specified.

T When only a device is specified for the source file (other than TAF Lor FI1), a name must be specified for the destination file.

} Files from the magnetic card reader can only be copied into main RAM. Therefore, if you specify ZFF D or FCEas the source file’s

device, you can specify only 1A IH as the destination file's device. (For more information about using the magnetic card reader,

refer to appendix C, “Using the HP 82400A Magnetic Card Reader.”)   



114 Section 6: File Operations

Effects of _{i1FGiven Various Parameters (continued)
 

 

    

Computer’s Response and Example

 

Copies specified file to main RAM. Destination file has same name

as source file.

CORY OLDd

Copies specified file to specified device. Destination file has same

name as source file.

CoRyooLDl To

 

Copies specified file to main RAM. Destination file has specified

name.
CoRy oDl TO MHEWI

Copies specified file to specified device. Destination file has

specified name.

COFY OLDL TO HEWLIPROETOL:

Copies specified file in specified device to main RAM. Destination

file hassame name as source file.
OO L RFORTOES

 

Copies specified file in specifed device to specified destination de-

vice. Destlnatnon file has same name as source file.

CORY QLD PORTOE: TO (PORETOLS

Copies specified file in specified device to main RAM. Destination

file has specified name.
CORY OLDLPORETOEY TO

 

i

 

Copies specified file in specified device to specified destination

dewce Destination file has SpeCIerd name.
TR OLDOT FORTCEY TO b q DR T £ 4

  
  

Source* Destination*

Name Device Name Device

X

X X

X X

X X X

X X

X X X

X X X

X X X X

* An X indicates that the parameter is specified.
 

 



Renaming Files (=& HiFME)

Files can be renamed with FEMAME,

Section 6: File Operations 115

 simplified syntax

EEMEME old file name Tnew file name

 
 

An old file name can be expressed as:

e File name.

e File name : device name.

e Blank. (Defaults to current file.)

A new file name can be expressed as:

e File name.

e File name : device name.

There is no default for a new file name—you must always specify it. The file’s device can be specified

with either the old file name or the new file name.

Examples:

REMAME TO FILEZ

REMAME FILEL TO FILESZ

REMAME FILELFORETOG: TO FILEZ

EEMAME FILED TO FILEZ:FPORETOS:

Purging Files (FLiki:Ek)

To purge a file from RAM, use FlUFEGE,

Renames current file to F I L EZ.

Renames FILE1 to FILE®.

Renames FIL.E1 in port 0 to FILEZ.

Renames FIL.E1 in port 0 to FILEZ.

 

    =E [file name[ : device]]
  
 

The default file for this statement is the current file. If you specify a device, you must also specify a file

name.



116 Section 6: File Operations

Examples:

FURGE LOGICH Searches for a file named L5101 and if found,

purges it.

O MATH Purges a file named FEZT0H from main RAM.

 

Purges the current file.

You can purge all unsecure files in main RAM by executing FUREGE HLL.

 

FURGE ALL
 
 

Executing FLIEGE AL L doesn’t affect files stored in independent RAM.

Merging Files (Mti:E)

You can use the MEFRGE keyword to integrate a BASIC file into the current file or a KEY file into the

system k== file. Merging BASIC files is discussed here; merging a KEY typefile is discussed on page

128.

 simplified syntax

      = source file [ ., start line or key number [ . final line or key number ]]

 

 

 

The source file is the file you wish to merge into the current file. The default values for start llne and

final line are the first line and the last line in the source file. The source file is not changed by a £R GE

operation.

 

All line numbers are correctly inserted into the current file. If the same line number exists in the

source and current files, the line in the source file replaces the line in the current file. To ensure that

all lines in the current file are preserved, you can FEMLUFMEEFReither the source or the current file.
 

 

Examples:

  Merges all of BASIC file ¥ Ii.E 1 in port 1 into
the current file.

TEL,1EE Merges lines 70 through 150 of BASIC file
4151 into the current file.

  

 

Merges file ¥ i£into the current file starting
at line 100.

 



Section 6: File Operations 117

File Security

The HP-71 enables you to perform many operations on files, such as viewing, modifying, and copying.

However, in some situations you might want to prevent these operations from being performed on a

file. For instance, you might not want a program to be viewed or modified by others. The HP-71 en-

ables you to control the access to files and protect them from being modified, purged, or viewed.

Protecting a File’s Contents (=L CLiEE, LMZEDLEER)

You can protect a file from being modified or purged using ZE1LIFEE. The effects of this statement can

be reversed by the statement IHZECURE.

 

SECURE [file name [: devicel]]

 

 

UH=ECUREE [file name [: devicel]]  
 

You can secure any type of file. A secure file can’t be altered or purged. However, you can execute it (if

it is a program file), view its contents, read from it, or copy it.

Controlling File Access (Fi IV HTE)

You can prevent your file from being viewed, copied, or modified using FFE I WHTE,

 

FEIVATEfile name [: device]
   

The FEIUHATE statement is permanent—you can’t reverse its effects.

Since this statement has such lasting effects, you must explicitly specify a file for the statement. This

ensures that you don’t accidentally make the current file a private file.

Examples:

FEIVATE BEHEIMNG

FEIVATE AZIMUTH FORT (G

e T T

i
t operates on program files only. You can execute or purge a private file in memory, but no

one (including you) can view, copy, or modify it. (You can copy private files from magnetic cards to

memory, but you can’t copy them to other parts of memory or back to magnetic cards.)



118 Section 6: File Operations

Using Both =LUiEE and FEIVATE

A program file can be both private and secure. The table below summarizes the type of operations that

can be performed on a file that has been protected with FEIUATE, SECLEE, or both.

Operations Permitted on Protected Files
 

 

     

UHSECURE o) er
(defaUIt) e B L PRI

Not Private (default) Execute Execute
View/Copy View/Copy
Modify/Purge

FREIVATE Execute Execute

Purge

If a file is both ZECUEE and FEIWATE, the file can only be executed. If you execute LiHZECUIREEon

such a file, you can execute it and purge it, but because it is a private file, you can’t modify it.

File Catalogs
bl

When you need information about files in memory, you can use

ory files.

Fi.L to obtain a catalog of mem-

A catalog gives you the following information about a file:

¢ File name.

¢ Type of security.

File type.

Size of file (in bytes).

Date file was created.

e Time file was created.

e Port (if any) in which the file is located.

Catalog information is always returned in the same format. Catalog information returned for more

than one file is preceded by a catalog header. For example, when you execute Z#7Ti, the HP-71

first displays:

HAME = TYFE LEH OATE TIME FORET

To obtain a catalog of all files in main RAM, independent RAM, and plug-in ROMs (these are

collectively called memory devices), execute "HT FHLL.



Section 6: File Operations 119

 

   

This statement displays the catalog information for the files in each memory device, starting with

main RAM. By pressing and (A], you can display the catalog entries for each file in a memory

device. To view the first and last catalog entries for a memory device, press (9](X] and (9](Y]
respectively.

When you want to display the catalog information for the next memory device, press [f][-LINE]. For

example, if you are viewing the catalog entries for main RAM, pressing enables you to view
the entries for port 0 (provided that port 0 has been set aside as independent RAM). By pressing

again, you can view the entries for the memory device in the next higher-numbered port and

so on. Before displaying the catalog for the next port, the computer displays the catalog header again.

The following table summarizes the keystrokes that enable you to view catalog entries when you ex-

ecute a catalog function.

Catalog Viewing Keystokes
 

  

  

Keystrokes Computer’s Response

Displays the next catalog entry in a memory device.

Displays the previous catalog entry in a memory device.

(9)(Y] Displays the last catalog entry in a memory device.

(9)(X] Displays the first catalog entry in a memory device.

Enables you to view the entries for the next memory
device. After viewing entries for last memory device,
returns the computer to the BASIC prompt.
 

Sometimes you might want catalog information for a specific file or all the files in a specific memory

device. You can get a catalog for:

All files in main RAM, independent RAM, and plug-in ROMs. (ZAT ALL.)

All files in main RAM only. (58T : M&IH.)

All files in all ports. (CHT : FORET.)

All files in a specific port. (CAT  FORTCE )

A file specified by name. (ZFRT FILEL)

A file specified by the order in which it is stored in a memory device. This is the order it appears in

the catalog for the memory device. (ZFT# 0 E 1))

If you want catalog information for specific files and ports, refer to the keyword dictionary entries for

AT and CAT# in the HP-71 Reference Manual .



Section 7

Customizing the HP-71

Contents

OVeIVIEW.121

Redefining the Keyboard (LEF KEY) ... ..121

Specifying Key Name .. ... ... ... . ...... 122

Types of Key Definitions .. ..... ... ... . . . . . . ...... 124

Viewing and Editing Key Definitions (FETCH KEY, KEYDOEF#E, [fJ(VIEW]) .. 125

Activating the User Keyboard (L!ZEF, (fJ(USER], (9J(1USER]) ............... 126
KEY Files (zECURE, UMSECURE, CAT, CORY, FEEHAME,

FURGE, LIST, MERGE)o127

Cancelling Key Definitions . ....... ... .. .. .. .. ... .. ..... 128

Program/Keyboard Interactions .......... ... ... .. . ... . ... . ... .. ... ... 129

Testing for a Pressed Key (KEYDG ooo129

Determining Which Key Is Pressed (K- EY¥) ... ... ... ... ... ... ... ...... 130

Causing a Program to “Press” a Key (FLIT) ... ... .. ... ... ... .. ... ...... 131

Alternate Characters .. ......... .. . . . .... 132

Defining Alternate Characters (CHHESET, CHHEZETE) .o .. ... ... ... 132

Preserving and Destroying Alternate Characters .......................... 135

Protected Display Fields (W IHDC) oo oo135

Reading Characters From the the Display (DI =F%) ... ... .. ... ... ... ... 136

Display GraphiCs ... .....137

Reading Individual Columns of Dots From the Display (=001 %FF) ... ... ... 137

Displaying Graphics (DI SF)o137

Restricting HP-71 Use (L.DHZE)o139

Automatic Command Execution (= THETLUF) .. . . . . ..L 139

Controlling the Display (L) . .....140

120



Section 7: Customizing the HP-71 121

Overview

This section covers:

e The power of user-defined keys.

e Saving several sets of key definitions.

e Using an active keyboard during program execution.

e Creating and using your own set of characters.

o Protecting portions of the display from character entry.

e Using already displayed characters in a program or key definition.

o Controlling each of the 132 columns of dots in the display.

o Locking your HP-71 against unauthorized use.

e Four ways you can control how your HP-71 displays information.

Redefining the Keyboard (IiEF HE¥)
You can redefine every key on the keyboard except the two shift keys, and (9], to act as typing aids

or to execute one or more commands. Not only can you redefine the primary functions of keys, but also

each of the two shifted functions as well (accessed with and [9]). Key definitions are automatically

placed in a special system file, & ==, discussed later in this section (page 127).

 

[BEF] EEY key name [ .assigned string [assignment type]]
 
  

 

[TEFis optional. The key name can be specified two ways, by the keycap symbol (alone or with ¥ or %)

or by the identifying key number. If the assigned string (and assignment type) is omitted, the statement

cancels any user definition for that key, and the key reverts to its Normal keyboard definition.

The assigned string specifies the typing aid or the one or more commands assigned to the key by the

TEF EEY statement. The assignment type specifies which of three different types of key definitions

the statement specifies: typing aid, display and execute, or execute only. If the assignment type is omit-

ted, the key definition is a display and execute type.

The key name and assigned string can be specified using any valid string expression, including quoted

strings.



122 Section 7: Customizing the HP-71

Specifying Key Name

By Character. Often the simplest way to specify the key is to use, within quotation marks, either one

or two characters to represent the unshifted or shifted key. For all keys—except letter keys—that dis-

play characters, the following applies:

For an unshifted key, use the character displayed when the key is pressed.

For an [f]-shifted key, use the unshifted character preceded by the letter ¥ (or ¥).

For a [9]-shifted key, use the unshifted character preceded by the letter = (or ).

For letter keys, we’ll illustrate the general rule using [a] and [A]. as examples Anyoneofthe followmg

character key names refers to the keystroke(s) that displays =: "g =", "af® FEAY and s9 o 9

The only character key name that refers to the keystroke(s) that displays # is

 

When lowercase is set and is pressed on the User keyboard, any string assigned to [a] is displayed

and/or executed. When lowercase is set and (a] is pressed, any string assigned to is displayed and/or

executed.

Examples of i+Y Key Names
 

Key Name Represents on the Normal Keyboard
 

The [f]-shifted key.
The [9]-shifted (-] key.
The keystroke(s) that produces lowercase “g.”

The keystroke(s) that produces uppercase “Q.”

The [9]-shifted key.
The keystroke(s) that produces lowercase “b.”

The keystroke(s) that produces lowercase “d.”

  

   
 

By Key Number. There are some keys, like [ON], that cannot be redefined using a key character,

since they do not display a character when pressed. Any such keys, and any other unshifted or shifted

key (except the shift keys and (9]) can be represented by a system-assigned key number preceded by

the # symbol, all enclosed in quotes. As shown in the following diagrams, unshifted keys are numbered 1

through 56, [f]-shifted keys are numbered 57 through 112, and [9]-shifted keys are numbered 113

through 168.

The table below indicates the relations between key number, the displayed character represented by

that number, the keystroke(s) represented by that number, and letter case setting.

Key Number Examples
 

Uppercase Set Lowercase Set
 

Key Number 15 Represents # and 7 and [9](A]
Key Number 127 Represents = and [9](A] = and    
 



Section 7: Customizing the HP-71 123

Notice that key number 15 always represents uppercase #, but the keystroke(s) represented by number

15 depends on which letter case is active when the key definition is used (from the User keyboard).

As the following diagrams show, nine numbers are not used—44, 45, 52, 100, 101, 108, 156, 157,and 164.

These are the numbers that would identify (f], (9], and the lower half of the key. These
numbers assume uppercase is set. Numbers for and (9] are not useable.

Key ldentification Numbers

Unshifted Keys
 

 

 

  

Key Code 1 2 3 4 5 6 7 8 9 10 1 12 13 14

Key Q w E R T Y U I 0 P 7 8 9 /

Key Code 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Key A S D F G H J K L = 4 5 6 X

Key Code 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Key Z X C v B N M ( ) END 1 2 3 -
L

Key Code 43 46 47 48 49 50 51 ’11 53 54 55 56

Key ON f g RUN <« > SPC A v E 0 . , +                
Shifted Keys

Key Code 57 58 59 60 61 62 63 64 65 66 67 68 69 70
Key IF THEN ELSE FOR TO NEXT DEF KEY ADD LR PREDV MEAN SDEV SQR

Key Code A 72 73 74 75 76 77 78 79 80 81 82 83 84
Key CALL |GOSUB |RETURN| GOTO INPUT PRINT DISP DIM BEEP FACT SIN COS TAN EXP

Key Code 85 86 87 88 89 90 91 92 93 94 95 96 97 98
Key EDIT CAT NAME PURGE FETCH LIST |DELETE AUTO COPY RES ASIN ACOS ATAN LOG

Key Code 99 102 103 104 105 106 107 109 110 11 112
Key OFF SST BACK |-CHAR| IR LC —LINE USER VIEW CALC CONT

 

 

 

                  
(9] Shifted Keys
 

 

 

                 

Key Code 113 114 115 116 117 118 119 120 121 122 123 124 125 126
Key q w e r t y u i 0 p ! | | A

Key Code 127 128 129 130 131 132 133 134 135 136 137 138 139 140

Key a s d f g h i k | ; $ % & :

Key Code 141 142 143 144 145 146 147 148 149 150 151 152 153 154
Key z X c v b n m [ ] CMDS ! ! # @

Key Code 155 158 159 160 161 162 163 165 166 167 168
Key CTRL ¢ » ERRM A Y 1 USER < > ?
 



124 Section 7: Customizing the HP-71

Example:

This represents (f](RES].

Types of Key Definitions

Typing Aids (:). If a semi-colon follows the assigned string in a key definition, the string is displayed

but not executed when the specified key is pressed on the User keyboard.

Immediate Execution. If no symbol follows the assigned string, the string is first displayed, then

executed when the key is pressed on the User keyboard. The assigned string is displayed at the current

cursor position, and the HP-71 attempts to execute the entire line, including any characters already in

the display when the defined key is pressed. This type of key definition can be useful as a typing aid to

supply the last part of a command or input line.

Direct Execution (:). If a colon follows the assigned string, the string is executed directly without

being displayed. Any characters in the display are ignored when an execute-only key is pressed. One

way this type of key definition can be used is to provide a response to an IHFLIT statement.

Examples: The following examples assume the uppercase letter set is active.

PEmiib MQe
£ ot Bt bB

Assume a program named L 0CE is in memory. When you press (9])(C] on the User keyboard after
executing this key definition, the iik program runs. The quotes around i:i.{iiikare optional.

 

When you press [f)[RES] on the User keyboard after executing this key definition, the HP-71 displays

the1nteger division operator, .. Notice that ZHE® %2+ is not enclosed in quotes. If quotes enclosed

: * in this key definltlon you would display the characters CHE# ¢ %2 when you pressed

 

% function.

 

Neither a semi-colon nor a colon ends this key definition, so pressing displays, then executes
the assignment statement.



Section 7: Customizing the HP-71 125

Viewing and Editing Key Definitions (FT 0H REY, KEYDEFE, (f)vIiEW])

The FETCH KEY statement returns the specified DEF FEY statement into the display for viewing

and editing. The K EY¥EF# function returns the assigned string portion of the [iEF KEY statement

(the typing aid or command assigned to the key) for viewing only.

 

FETCH HKEY key name
   

Both FETIH KEY and DEF KEY use the same key name specification.

Examples: These show FETIH EEY used to display two of the key definitions made above.

Input/Result

ETCH KEY "ob Displays the key definition assigned to lowercase
&« ”»
C.

 

EEY ot TEUM OYOLO This key definition is displayed in the same form
as it was entered (the optional quotes around
L.are displayed). You can edit and reenter
the definition.

FETOH KEEY "#%4" ([ENDLINE You must use the key number for [f]J[RES], since
the HP-71 does not recognize #E = as a symbol

for (f](RES].

 

   

 

  
 

KEYDIEFE Jkey name:   

TheKEYDEF#£ function uses the same key name specification as is used by DEF KEY and



126 Section 7: Customizing the HP-71

Examples: These show kEvIEF# used to display the other two key definitions made above.

Input/Result

 

The string assigned to is displayed, preceded
by :, showing that this definition is a typing   

 

 

aid.

KEYDEF$C"F3"

FE=T4 85 The blank space preceding this statement identi-
fies the key definition as the type that displays,  
then executes.

Pressing enables the next key pressed to display, while held down, its assignment string, pre-

ceded by a semicolon, blank, or colon to identify the assignment type. If the key has no user definition,

it displays Liriaz=igned. For example, pressing [fJ(VIEW], then [9](C] (uppercase active) displays,
while is held down, :RLIH "CLOCE ", (This is the definition assigned to on page 124).

F, (fJ(USER], [9])[1USER])
Whenever the User keyboard is active, the USER annunciator is visible in the display.

 

Activating the User Keyboard (.i=

   
  The ii%ZER statement has three forms:

 

 

   
SER switches the User keyboard from its current state to the opposite state (from active to inactive

or from inactive to active). Pressing is the keyboard equivalent of executing iiZER. It ac-
tivates and inactivates the User keyboard.

 

LIEER (K switches the User keyboard from inactive to active (unless the User keyboard is already

active).

(1FF switches the User keyboard from active to inactive (unless the User keyboard is already

).

Pressing (9])(1USER] activates or inactivates the User keyboard for only the next shifted or unshifted

keystroke. This is especially useful if you want your User keyboard to be inactive for all keystrokes

except when you’re pressing a particular user-defined key.

 



Section 7: Customizing the HP-71 127

KEYF||es(-

 

When you make your first key definition, a special file named

that and subsequent key definitions are stored. You can i.1 %7

URE, and FURGE the k=wu= file, and you can d1sp1ay1ts catalog w1th

 

18automatlcally createdin Wthh

  

 

"5'21. ,

% and
  
File of Current Key Definitions. All current key definitions are stored in the system k =wu=z file.

When the User keyboard is active, all key definitions in the &= fileare active. While the k =w= file

cannot be made private, it can be made secure with the ZE LI EZ K E'YS statement, and unsecureW1th

the LUHSECURE KEYS statement. (Refer to page 116 for a discussion of file security.)

 

  
  

Creating Several Files of Key Definitions. You can create other KEY files in addition to the

== file. While only the key definitions in the k== file are current, you can exchange any of your

KEY files with the k =wu= file, thereby designating any of your key definition files as current. Such a

file exchange also saves the key definitions previously in k== for future use. You can use the follow-

ing statements to exchange files between k== and another KEY file:

o HEMHAME EEYSZ T0O file name,

o DIIFY EEYZ TO file name,

o DIIFY file name T KEY ’

Mo EEHFAME file name T K

file in

EEY

Listing the i =wu= File. Executing L1577 KEYEZdisplays each key definition in the k&u=

key-number order, defined in the diagrams on page 123. Each definition is displayed in

format, and remains in the display for a period defined by [1EL&% (described on page 26). You can list

a portion of the k =w= file (one or more definitions) by specifying a key number or key number range.

  

Examples:

LIsT KEYS, 1,14 Lists all key definitions assigned to the unshifted
top row keys.

Lists the key definition assigned to the [=] key.T

i

i

I



128 Section 7: Customizing the HP-71

Merging a KEY File To i =w=. You can merge a KEY file you have created into the system i==

file.

 

 

=& file name [ : device] [ . start key number [ . end key number]]
  
 

The file name, with optional device name, specifies the KEY file you wish to merge into the &== file.

Key definitions in any KEY file are orderedby key number, lowest key number first. If no key numbers

are given, the entire file is merged into & =w=. Ifonly the start key number is specified, only the defini-

tion with that key number is merged 1nto E—:: =yz, If both start key number and end key number are

spec1fied all key definitions with key numbers inthat range are merged into & &=, Any definition in

., whose key number is the same as a key number being merged, is deleted and the key definition

inthe file being merged replaces it. The file belng merged is not altered. After ¥ %E1s executed, the

    

  

 

specified file exists unchanged; only the &== file is altered.

Examples:

E REYSL, 1,14 Merges any key definitions assigned to the
unshifted top-row keys from &% %1 into k& ws
Any unshifted top-row key defimtlons prev1ously
in keus are replaced by the definitions being
merged. ¥ E% %1 remains unaltered.

HEYEZ AT Merges the key definition in ¥E%%3 assigned to
the [f]-shifted key into

FMATHEEY SR Merges the entire file ¥

 

The key definitions in |

the definitions in ks
both files will have the

 

Anykeys defined in
FHEEY S definition.

 

Cancelling Key Definitions

Executing a DEF KEY that includes the key name but no assigned string cancels any key definition

assigned to that key and removes the definition from the & =w= file.

Example:

 

Cancels the key definition assigned to (9]ON].

To cancel all current key definitions, execute FiiFEGE HEY %, Or, if you want a copy of your key defini-

tions preserved, execute FEMAME HEYEZ Tfile name.



Section 7: Customizing the HP-71 129

Program/Keyboard Interactions

There may be situations where it’s useful to respond directly to a running program rather than re-

sponding to an IMHFILIT statement. The HP-71 provides three types of direct response. A running pro-

gram can:

o Test if any key or a specified key is pressed.

¢ Determine which keys have been pressed.

o “Press” a key.

Testing for a Pressed Key (iE vL)

 

KEY DIR H
  
 

This form of the K E*DM function returns a 1 if any key, including or (9], is down at the moment

HEYDOMH 1s executed, and a & otherwise.

 

HEYDOWM Ckey name:
  
 

This form of KELM returns a 1 only if the specified unshifted key is pressed. Otherwise, a £ is

returned. The key name can be specified by symbol or by key number in the same way key name is

specified for DEF FEY, except that shifted keys are not accepted.

Examples:

BEYDOWNHYT If the key is down when this statement is ex-
ecuted, the statement assigns 1 to &; otherwise &

is assigned 0.

A=REYOOWHOCHREF CET 0 0 If the key is down when this statement is ex-
ecuted, the statement assigns 1 to :i; otherwise

is assigned 0.

Bd=REYDOMHO#LE" If the (P] key is down when this statement is ex-
ecuted, the statement assigns 1 to i<; otherwise
K< is assigned 0.



130 Section 7: Customizing the HP-71

Determining Which Key Has Been Pressed (:E'%)
Up to 15 keystrokes can be stored by the HP-71 in a special storage area called the key buffer. Or-

dinarily, when you press a key, the keystroke is momentarily stored in the key buffer, then removed, and

the key’s action appears to occur immediately. However, if you press a key while a program is running,

the keystroke is stored in this key buffer.

Note: If a &I =F statement sends an end-of-line message to the display, and the DiELHY is not

zero, the key buffer is reset (no keystrokes remain in the buffer).

 

H”
I g

  
 

This simple function removes the oldest key in the key buffer and returns its name in the same format

as DEF EEY, KEYDOMH, and KEYDEF £ expect.

Example: This program turns your HP-71 into a two channel counter. It could be used, for instance,

to keep track of the numbers of children and adults attending a fund-raising function. Suppose you

were positioned at the ticket table. You press for each adult and (-] for each child that passes. The

display shows a running total of each, adults on the left of the display, children on the right. To reset

both channels, press R].

Execute EDNIT THWOCOUMT and enter this program.

10 ! TWOCOUNT

20 STD @ DIM A$,1,J Display shows no decimal point.

30 DELAY 0,0 Allows maximum counting speed.

40 1=0 @ J=0
50 DISP I:TAB(10):J
60 A$=KEY$

70 IF A$=“"THEN I=1+1 @ GOTO 50 Pressing (-] increments left counter.

80 IF A$=“+"THEN J=J+1 @ GOTO 50 Pressing increments right counter.

90 IF A$=“R"THEN 40 ELSE 60 Pressing [R] resets both counters.

If no keys are pressed while this program is running, the program loop, lines 60 through 90, executes

repeatedly. If (-] is pressed, I is incremented by one, if is pressed, -! is incremented by one, and if [R]

is pressed, both counters are reset to zero.

The key to the program is line 60. Each time the HP-71 executes ##=FE¥, the name of the first key

pressed since the last execution of line 60 is assigned to Fi¥.



Section 7: Customizing the HP-71 131

If more than one key is pressed between consecutive executions of line 60, the name of the first key

pressed is assigned to ##. If more than one key, on the average, is pressed between consecutive execu-

tions of line 60, the key buffer will become filled. Each time the HP-71 executes the program loop, the

name of the oldest key in the buffer will be assigned to ##, but more than one key will be added to the

buffer. After 15 keys become loaded into the buffer in this way, some pressed keys will be lost.

In practice, it is very difficult to press more than one key between consecutive executions of line 60, so

it is very unlikely that a user of the THI T ILIHT program would fill the key buffer. However, if the time

period between executions of &£# in another program is long enough, a user of that program might

fill the key buffer. This could cause some pressed keys to be lost, which in turn might cause the pro-

gram to operate in an unpredictable manner. So when you use ¥ E%# in a program, keep the time

between executions of kE# short.

When you run THICDLHT, to ensure that the program does not miss keystrokes, be sure to release

one key before pressing another.

To stop the program, press to pause the program, then execute EHii.

Causing a Program to “Press” a Key (i 7)

 

P}
FLIT key name

   

The key name is specified in the same form as used for IEF KEY. When FLiT is executed in a running

program, its effect is generally the same as if the key specified by key name were pressed on the

keyboard.

Example: This CL0CE program displays a running clock, both time and date, and avoids the

unchanging displays given by TIME# and [IF TE #alone. This also shows how a program can be con-

densed using concatenation. (Create a file by executing EII T CLICE, then enter the program.)

10 DELAY 0 @ FOR X=1 TO 30 @ DISP Place three spaces between the quotes.
TIME$& “  "&DATE$ @ NEXT X @
DELAY 1 @ PUT “#43”

As the diagram on page 123 shows, key number 43 is the key. Pressing (that is, pressing

(ATIN]) clears the display, then displays the BASIC prompt and the flashing cursor. When

FIUIT "#473" executes, a running program is not suspended; the SUSP annunciator is not turned on.

FUT "#432" puts the key in the buffer, but does not stop the program. The program stops

following the execution of the last statement (which in this case happens to be Fi!T "#473Z"). When

the program stops, leaves the buffer, and the display clears.



132 Section 7: Customizing the HP-71

The effect of FiiT "43Z", when executed by this program, is the same as pressing after the

program is finished running. To check this, modify your L1k program by adding an ! just before

@ FLUT "#437" converting the FUT instruction into a remark. Now run your L {1k program.

When the program completes its execution (when the PRGM annunciator turns off), you’ll see that your

display retains the last time (and date) displayed by your program. Press and see the display

clear and the BASIC prompt and cursor appear.

Now remove the !, reactivating your F LI T statement, run LEagain, and see the same prompt plus

cursor display occur under program control.

Since you assigned ELii "CLOCE™ to (9])(C] above, you can display the time and date at any time

even with the Normal keyboard active by pressing and holding down [g], then pressing the [0] and
keys. (Remember that [9](1USER] activates the User keyboard only for the next unshifted or shifted
keystroke.)

Alternate Characters

Characters with ASCII character codes from 128 through 255 normally represent the same characters

as those with codes 0 through 127. This is shown by the “HP-71 Character Set and Character Codes”

section in your reference manual. However, you can define every one of the 128 characters in the range

128 through 255 to be anything you want, provided you can represent each character by a dot pattern

six dots wide by eight dots high.

Defining Alternate Characters (:HHEZET, UHARZETE)

The character code assigned to each of your alternate characters is automatically supplied by the

HP-71. The first character you define is assigned code 128, the second 129, and so on. When you define

your first alternate character, you use only ZHFEZET. For every character after the first, it often helps

to use both CHARZET# and CHARSET.

 

LHHEZET charset string

 

 

 

  
 



Section 7: Customizing the HP-71 133

The charset string represents the dot pattern of all existing alternate characters, as explained by the

example below. CHAREZET# is a function that returns this charset string. When creating your first

character (ZHE$¢ 125 3), you execute a CHAREZET statement that specifies the six columns of dots

making up that character. When creating your second character (ZHFE< 123 3), you must specify all

12 columns of dots that define both of your alternate characters. The first six columns can be repre-

sented by the CHAFEZET# function, so you need only specify individually the next six columns of dots

that make up your second character. If you were creating your ninth character, you'd use CHAREZET#

to represent all eight of the existing alternate characters, so you again would have to specify addition-

ally only the next six columns of dots that define the character you're adding to the set.

Defining the First New Character. With the help of the diagram on the next page, we’ll define as

CHE#{ 122 an “integrate” symbol. Here are the steps to follow.

1. Draw a 6x8 dot pattern, and indicate which dots should be turned on to display the desired picture.

2. Each column represents one byte of the six-byte character definition. Each row in a particular

column represents one of the eight bits (dots) in the byte represented by that column. To help

assign values to each turned-on dot or bit, write the decimal value of each bit on the right next to

each bit row.

3. Now add up the values of the dots in each column to get each byte value. In our example, all dots in

the sixth column are off, giving a byte value of zero. It’s good practice to keep this sixth column

blank to separate adjacent characters.

4. Now you’re ready to write your CHFAREZET statement as follows:

Example: When you execute this statement, you’ll have a new U HFE# < 1 2%, an integrate symbol.

CHARSET CHESF o4R0HESFI 28 8 0HES OIS b B0HES Ol DR UHESFCZ S ROHEE (B2

Execute this statement, then execute CHFE# {1 2%to display your integrate symbol.

The :+HFE# function is used with CHAEZET only as a vehicle to dehver the byte Values of your new

character to the HP-71. The character represented, for instance, by [ HFE# < &4 the & symbol, has no

significance here except as a special way to represent the number 64.

 



134 Section 7: Customizing the HP-71

Alternate Character: Integrate Symbol

Bit values

of rows

DOm0 n 1

OJOMO MO 2

OOmMOOO 4

DOm0 8

OJOmOOO 16

DOm0 32

HOROO0] 64

OmMOoon 128
64128 2 1 2 0

4

8

16

32

64

64 128126 1 2 0 Byte values of columns

  

Defining Additional New Characters (i F#, CHAESET). The first alternate character you

create replaces existing character CHEF ¢ 128, the second replaces ex1st1ng character CHEF ¢ 125

and so on. If you have previously defined alternate character CHE£C125, and now wish toadd an-

other alternate character you must combine the HFE =&charset strlng with the dot pattern of

your new i HEF {123 character to form a new charset string.

 

<y

   

If the number of bytes (dot columns) defined by a ZHFEZET statement does not consist of a multiple

of six bytes, the last byte or bytes of the last character definition are assigned zero values (blank col-

umns). So the final HFE# <& could have been omitted in this example.

  However, if your DHAEZET statement defines more than one character without using .

more than six CHE# functions are used in your

separating blank column, you must specify i

character other than the last. Otherwise, since iH

HESETE f

“E T statement), and you want a character—

as a character-separating sixth column for any

ZET counts off six bytes for each character,

=T will take what you intend as the first column of the next character and make it the last

column of the previous character.

 

    

  

  

You cannot define more than 128 alternate characters in one set. Character codes above 255 specify the

existing 0 through 255 set of characters (modulo 256), including any existing alternate characters.



Section 7: Customizing the HP-71 135

Preserving and Destroying Alternate Characters

Since the THHEZET# function returns the active alternate character set, you can preserve an al-

ternate character set by assigning the value of CHAFEZET# to a properly dimensioned string variable. A

string variable with its default dimension of 32 can hold up to five alternate characters. Each column of

dots is defined by one character, so one alternate character (six columns of dots) requires six char-

acters, and five alternate characters can be stored in a string variable whose length is 30 characters. To

store more than five alternate characters in a string variable, you must dimension the variable before

you assign CHAREZET# to it.

To destroy all alternate characters, execute "HAEZET ™,

Protected Display Fields (i1 HIiiik)
You can protect part of your visible display so that the characters in that part are unaffected by most

operations. If characters at the left of the display window are protected, the BASIC prompt and flash-

ing cursor are positioned just to the right of the protected portion, and define the left boundary of the

active display. This active display section is where most normal display actions occur, such as keyboard
Tentry, scrolling, display of [ I &Fstatements, display of program listings, etc.

 

WIHDOW first column [ . last column]
  
 

The portion of the display window defined by this statement is the part that remains active. The part

or parts of the window lying outside this defined portion are protected. The first column can be any

numeric expression rounded to an integer in the range 1-22. The /ast column can be any numeric

expression rounded to an integer in the range first column through 22. If /ast column is omitted, the

value is assumed to be 22.

Examples:

5.0 The characters in the display window’s first four

character positions are protected by this state-
ment. The display’s active portion consists of
positions 5 through 22.

 

PO 7 This statement protects column 1 through 6, leav-
ing columns 7 through 22 still active.

S Both ends of the display window are protected by
this statement. The left end is protected from
column 1 through 5, while columns 19 through 22
inclusive are protected on the right end. The ac-
tive part consists of character positions 6 through
18.

 



136 Section 7: Customizing the HP-71

The protected portion of the display window will remain unchanged until one of the following occurs:

e Another i IHOOstatement is executed that defines a different protected field. For instance, ex-

ecuting W IHOOH 1 would make the entire window active.

e A L0 I5F statement (described below on page 137) is executed that changes the dot pattern in the

protected area of the display. The locations of the active and protected portions of the window are

unchanged by =I=F. The new dot pattern in the protected area becomes protected immediately.

e An IMIT: 1, IMIT: 2,0or IMIT: 32reset ((ON]J[/]) is executed (section 1, page 13).

¢ A memory reset occurs due to power loss or other reason.

Reading Characters From the Display (iii @)

The i I%F# function returns a string of length zero to 96 characters, containing all readable char-

acters in the display. Readable characters are those sent to the display while the cursor is on. {11 ZF #

allows a number (‘#iL <1 %F# 3) or string keyed into the display to be used directly by a user-defined

key or a subsequently run program.

 

  
 

All characters sent to the display while the cursor is on are considered readable. All characters sent

with the cursor off are considered non-readable and will not be returned by this function. If the display

Examples: The following two key definitions allow easy conversion between Fahrenheit and Celsius

degrees. These examples assume uppercase is set ([C] displays ), the Normal keyboard is active, and

the display format is F I

 

Input/Result

SRORIERE This execute-only key definition assigns the
o Fahrenheit-to-Celsius conversion formula to

1% [9])(1USER]

 

% (9)(1USER]

uppercase “C.”

Displays 16, £, the Celsius equivalent of
212°F.

This execute-only key definition assigns the
Celsius-to-Fahrenheit conversion formula to
uppercase “F.”

oy

Displays =z . &, the Fahrenheit equivalent to
zero degrees Celsius.



Section 7: Customizing the HP-71 137

Display Graphics

You have control over each of the 132 columns of dots in your display window. You can display any dot

pattern you wish, and you can store any dot pattern you wish. Two important keywords used for display

graphics as well as alternate characters are CHFHEZET and CHARSET#. We'll describe here two more

keywords primarily used for display graphics. Following that we’ll show you a graphics program.

Reading Individual Columns of Dots From the Display (i:iiI &F %)

 

COISRE®
   

This function always returns a 132 character string, where each character represents the dot pattern of

one of the 132 columns of dots in the display. The first character of this string corresponds to the first

dot column of the display window, while the 132nd character corresponds to the last column. GI SF#

treats each dot column as a byte, just as CHAEZET and CHARZET# do. The least significant bit (the

one’s bit) of each of these bytes corresponds to the top row (top dot) of that display column. The most

significant bit (the 128’s bit) corresponds to the bottom row of dots of that display column.

Once a display is captured by L' I ZF #, each of the 132 dot-columns that make up that display can be

handled individually, as you will see later. Bear in mind that the one-column “characters” returned by

L IZF# are not the same as the characters normally represented by string variables. Each of those

“normal” characters, when displayed by a [1 I &F statement, requires six columns of dots, and these six

columns cannot be individually controlled.

3R

After a dot pattern has been created with CZHFFEZET or captured with =11 %F#, it can be displayed

with &I 5F. The characters displayed by =1 I%F are only one dot column wide, so =ISF allows

more display flexibility than ' I ZF, which displays characters that are six columns wide.

 

Displaying Graphics (L]

 

OISF [bit pattern]
  
 

The bit pattern is the pattern of dots expressed as a string such as those that have been created with

CHARSETH or captured by I I ZF#. This bit pattern string is always 132 characters long, where each

character represents the bit pattern in one column of dots. If the string is other than 132 characters

(columns) wide, it is truncated or null-filled to 132 characters. Here, “null” refers to :HE# ¢ £ ) which

represents one column of blank dots. It does not refer to the null string.

0 I5F establishes a specified dot pattern in the display, but it does not affect the display buffer, the

storage area that holds the 96-character display line. This buffer holds the same 96-character line after

=0 I%F is executed as it did before.



138 Section 7: Customizing the HP-71

The dot pattern displayed by =i I ZFremains in the display until the display is altered from a running

program or from the keyboard. Among the actions that will remove a =I%F dot pattern are the

following:

o A character (including a space) is sent to the display.

e One of the arrow keys is pressed ([«] v)).

A special feature of [ I ZF is its ability to display a dot pattern in a protected section of the display.

Once displayed, that dot pattern is immediately protected.

Example: To see Z[ I =ZF# and G0 I ZF perform, enter and run the following1%/ I E program. When

prompted for a string, enter any string no longer than 22 characters. Then watch. (Remember to ex-

ecute EDIT MOV IE before entering program lines.)

10 DISP “The MOVIE Program”
20 DIM D$[132],N$[132],X,S$
30 N$=CHR$(0)
40 FOR X=1 TO 131
50 N$=N$ & CHR$(0)
60 NEXT X
70 INPUT “ENTER STRING: ”;S$
80 DELAY 0,8

90 CONTRAST 0

100 DISP S$

110 D$=GDISP$

120 DISP

130 CONTRAST 9

140 FOR X=1 TO 132

150 GDISP N$[X,132]&D$
160 NEXT X
170 FOR X=1 TO 132

180 GDISP D$[X,132]
190 NEXT X
200 DELAY .5,.125
210 DISP TAB(8);"The End” @

END

The null character, not the null string.

N$ now contains 132 columns of blank dots.

These two lines make the action of line 100 less

visible.

Sets up display for GDISP$’s action.

Captures dot pattern entered at line 70.

Clears display to enhance effect.

Makes the show visible.

This loop causes the message to scroll onto the
display, one dot column at a time.

This loop causes the message to scroll off the left
edge of the display, one dot column at a time.

Establishes standard delay.



Section 7: Customizing the HP-71 139

The first time the loop comprising lines 140 to 160 runs, the 132 blank columns of dots stored in H#

are displayed by the GO IZF statement in line 150. The second time line 150 runs, H# is displayed

minus the left-most column of blank dots. Sincei I ZF displays the specified portion of i# combined

with [1#, the first column of dots in [I# now appears at the right edge of the display window. This is

possible since ['# represents the 132 individual columns of dots captured by =I%F# in line 110. As

the program continues to execute the loop, more and more of [i# appears. Since i represents the

input string, the message entered at line 70 scrolls across the display, one dot-column after another.

The loop comprising lines 170 to 190 eats up ['#, just as +H# was in lines 140 to 160. As the loop

continues, blank columns proceed to fill the display.

Restricting HP-71 Use (i.{i1iK)

You can use LIEto define a password, without which your HP-71 cannot be used.

 

LOCKE password
   

The password can be any string expression that evaluates to no more than eight characters. It cannot

be an unquoted string. This password must be entered exactly, without quotes, by anyone wishing to use

your computer. Without the password, it will remain locked.

You can execute L1k anytime. Its execution does not turn off the HP-71 or affect its operation in

any other way until the next time it’s turned on. When it is turned on, the display will prompt with

paszzword?. Unless the password is entered correctly, without quotes, the HP-71 will turn off

automatically.

Once a password is assigned, the HP-71 cannot be turned on and used without it, unless the effect of

LOCE is cancelled by entering the null string as a password, or unless you reset the memory.

Automatic Command Execution ( )

Any valid command or group of commands entered after this statement will be executed whenever the

HP-71 is turned on.

 

  
ZTAETLUF command string
 

The command string can be any command or group of commands connected together with & that can be

executed from the keyboard. The difference is that when used with this statement, the command or

commands must be enclosed in single or double quotes.



140 Section 7: Customizing the HP-71

When & THETLIF Is executed, the command string is not checked for correct syntax. This check does

not occur until the HP-71 is turned on.

To cancel such a command string, use = THETLF with the null string or enter a new command string
with STRETLIF, 

Controlling the Display (i.L)

You can control from the keyboard or from an executing program:

e Scrolling speed, both horizontal and vertical.

« Viewing angle giving best contrast.

o Length of each displayed line, up to 96 characters.

» Case of displayed letters, either uppercase or lowercase.

Scrolling speed is controlled with D'EL A%, described in section 1 (page 26). Viewing angle is controlled

with COHTREAST, also described in section 1 (page 29). Control of line length with i ITH is described

in section 13 (pages 232-233), and control of letter case is explained below.

The L.statement not only performs the toggle function of the key ([f]J(LC]), but it can also
expressly specify uppercase or lowercase.

 

 

  
 

The Lstatement switches the current uppercase/lowercase state of the letter keys. No other keys are

affected by L . If the unshifted keys display uppercase letters (and [9]-shifted keys display lowercase)

before this statement is executed, unshifted keys will display lowercase (and shifted keys uppercase)

after this statement is executed, and vice versa.

After the L.(it statement is executed, the unshifted letter keys will display lowercase letters and [9]-

shifted letter keys will display uppercase.

After the LI IFF statement is executed, the unshifted letter keys will display uppercase letters and

(9]-shifted letter keys will display lowercase.



Part 11
Programming the HP-71



Section 8

Writing and Running Programs

Contents

OVeIVIBW.143

Entering a New Program . ... .. . .. . ..143

Creating a New Program File (ELIIT) ... ..143

Using workfile (MAME).o144

Keying In a Program Line ... ... .. .. . . . . . ..... 145

Keying In Additional Lines (HLUITL) ..o.149

Running a Program .. ... .....149

Executing the Program in the Current File (LM, GOSUE) oo 0 0 .. 149

Executing a Specific Program (F LM, CHLL, CHAIM) ... .. .. ... ... .. .. 150

Interrupting @ Program .. ......152

Halting Execution From the Keyboard ......... ... ... ... ... ... .......... 153

Halting Execution From Within a Program (FHUZE, WHIT, STOF, EMDO) ... 154

Resuming Program Execution ([f]J(CONT], COHT) ... .. .. ... .. ... ... .. 155
Editing a Program ... ....156

Viewing Program Lines (FETCH, LIST, FLIST, GOTO) ... .. .. ... ... 156

Adding a Line . ......158

Editing Existing Lines . ... ....158

Deleting Lines (MELETE)...158

Renumbering Lines (REMUMEEER) .....159

Using BIN and LEX Files ... ... ... ... . ... . ..160

Binary Programs ... ......160

Language Extension Files . ..... ... ... ... . ... ...... 160

Transforming Files (TEHMZFOREM) ooo160

142



Section 8: Writing and Running Programs 143

Overview

Previous sections used short programs to illustrate some of the features of the HP-71. If you keyed in

some of those programs, you might have developed a feel for how to program the computer. This section

covers more about writing and running programs on the HP-71. More specifically, it describes how to:

¢ Create a program file.

e Enter program lines into a program file.

o Execute a program using the key or the BASIC statements, FiiH, GO=iiE, CHLL, and

CHATH.

¢ Edit a program.

¢ Locate errors in a program.

¢ Interrupt a running program.

Entering a New Program

Entering a new program into the HP-71 from the keyboard requires two steps:

1. Creating a new program file.

2. Keying program lines into the file.

A program can also be loaded from magnetic cards using the CIF"%statement, as described in

appendix C.

Creating a New Program File (011 7T)

Before keying program lines into the HP-71, set the computer to BASIC mode (you can’t enter pro-

gram lines when the HP-71 is set to CALC mode). Then, using £I T, create a new BASIC program

file into which the lines you enter will be stored.

 

EDIT file name
   

The file name is the name of the file you create. It becomes the current file and is stored in main RAM.

If the file already exists, the HP-71 simply makes it the current file. (Refer to section 6, “File Oper-

ations,” for more information about file names.)



144 Section 8: Writing and Running Programs

For example, ELIT 0L WVE creates a file named =1L /E and makes it the current file. Program lines

keyed into the HP-71 are then stored in the program file =1 VE.

When creating a BASIC file, you do not need to specify the file size. BASIC files automatically expand

to accomodate new lines keyed in. File size is limited only by the amount of available RAM.

You can also specify which memory device you want the newly created file to be in. You simply specify

the device with the file name (as described in section 6). If a device isn’t specified, the HP-71 creates

the file in main RAM.

 

Examples:

EDIT RADARL Creates a BASIC file in main RAM.

EOIT HUCLEUS  FORTCG@: Creates a BASIC file in port 0.

Using work 1 1e (HAME)

As an alternative to creating a named program file, you can use wor ik §i1e as a scratch file for

entering program lines. To do this, make =+ & § i 1 = the current file. Also, you might want to ensure

that work+ils is empty. (Refer to section 6, “File Operations,” for more information on

wor ke F 1 le)

To make wor ik 1 1= the current file, type EL I T without specifying a file name.

 

Input/Result

EDIT Default file name is wor bk § 1 1,

wor bk F i le BERHZI0 nn Displays wic:r i ¥ 1 1catalog information. If nn
is 0, then work ¥ 1 1& is empty. The  

 

i bk F 1 12 1s now the current file.

If nn in the above result is not 0, then =+ k i 1= has program lines in it. Before entering a new

program into ik f i 1=, you might want to save any information currently in the wor bk§i 1,

You can save the information in the wor ki i 1& In two ways:

1. Name the work i1,

2. Copy the work i1,



Section 8: Writing and Running Programs 145

Naming the wor k112, You can give the wmr ki 1 12 a name using HAME.

simplified syntax

F&HHE new file name

The following example shows how to save the information in wor b § i 12 using HAME. After naming

work £1le, it no longer exists as work 112, You can create a new wor ki 1= and make it the

current file using EDIT.

 

 
 

Input/Result

HAME FREOFPELL Names the work i1,

EDIT Creates a new work f 1 1e and designates it the
current file.

Copying the wori file. To copy the work f11=, ensure that it is the current file then execute

COFY  TO destination file without specifying a source file. (The CIiF'Y statement is described in section

6 under “Copying Files,” page 112.) After copying the work i 1=, you might also want to clear it

before entering new program lines. To do this, execute DELETE HL L.

Example:

Input/Result

EDIT Designates the wior b § 1 1= as the current file.

COFY OTO FILEL Copies the wior b i 1e to a file named FILE!
in main RAM.

ODELETE ALL Deletes all lines in the ok1 1.

Keying In a Program Line

Program Line Format. A BASIC program line always starts with a line number and consists of one

or more BASIC statements. A line number is an integer constant in the range 1 to 9999 that defines

the position of a line in a program. The HP-71 keeps program lines sorted by line number; therefore,

you can enter program lines in any order.



146 Section 8: Writing and Running Programs

Concatenating Statements With #. Often it is desirable to have more than one statement on a

program line, particularly in an IF..THEHM..ELSE statement (which is descibed in section 10,

“Branching, Looping, and Conditional Execution”). Several statements can be included in a program

line by joining (concatenating) them with the & symbol. For example, the statements

18 A/ =
2R OB = A

R

can be written as:

itHE A = B oBE OB =

Because the two statements are on a single line, two bytes of RAM are saved. A program line with more

than one statement is called a multistatement line. The HP-71 executes the statements in a

multistatement line from left to right.

Labels. Each statement in a program line can be identified by a label. Labels can be referenced in

branching statements such as Z0%UE and GOTO (described on page 179) so that program execution

can branch to any statement in a program line. For example, in the program line:

FEA CIHVERT': H=A & A=E @ B=X

the label IHWERT identifies the statement *=# in the same way that the line number % identifies

the program line.

Labels are useful for identifying a subroutine with a meaningful name, thus helping you to remember

what the subroutine does. As you write a program, you might want to include a branching statement

that transfers execution to a subroutine that you haven’t written yet. Since you might not know what

the line number of the start of the subroutine will be, you can plan to start it with a label later but

include that label in a branching statement now. For example:

COSUR "RETEST!W

causes a branch to the label FE TE=T. This statement is said to reference the label FETE=T because it

causes execution to branch to the statement it identifies. Including a label in lieu of a line number

frees you from guessing at what the subroutine’s beginning line number will be. Later, when you start

to write the subroutine, you can label its first statement using FETE = T. For example:

1

1
1
7

Ty IF HA=B OF C=0 THEH A=Dit



Section 8: Writing and Running Programs 147

When using labels, remember the following rules:

¢ A label can contain up to eight letters or digits and must begin with a letter. You aren’t required to

enclose a label in single quotation marks, but the computer always adds them to labels. This makes

it easier to distinguish labels.

118 '"SarTi2'y FOR I=1 TO 148 ZRET1 2 identifies this statement.

o Where a label identifies a statement, a colon must be placed after the last character. Where a label

references a statement no colon is used.

S "EETEZT': IF H=E THEH E=D FETESZT identifies this statement.

48 GOTO "RETE:ST! FETESZT references the statement identified by

EETEST.

¢ A label can be on a line by itself.

128 'BLASTERS': "ELASTERSZ ' @ identifies a line.

o A label can be placed in a multistatement line after .

I3 IF A=B THEH E"!"' [ PCOMPLERED ' identifies the statement

"COMPLESL 'y A=H.- H=f oo

25 H=SIHeH: @ 'GUADH' 'GUADH' : and ' SIGHH': identify different
F=REDCS IS, 3682 @ '"SIGHH' statements on the same line.

S=STGHOSIO

o More than one label can be on a line and more than one label can identify a statement.

Sof COHECE ' TCHECEZ ' "CHECE ' and ' CHECEZ ' ¢ both identify the

IF =#8 THEH Y=1 same statement. This occurs, for example, when

you consolidate two or more subroutines, but

don’t want to change all label references to those

subroutines.

o If you have identical labels that identify different statements in a main program or subprogram,

the HP-71 recognizes only the first one. You can never branch to identical labels that follow the

first one.

FETHRET Y DESTREOY ALBELC This line has the label ' ZTHET ' ;.

ZEOCETART Y DIM SOZE This line also contains the label ' ZTHET ' ;. But

since the label already identifies a statement on

line 10, it won’t 1dent1fy the statement on line 20.

The label '=7THET': on line 20 can never be

branched to.

 



148 Section 8: Writing and Running Programs

Entering a Line. To key in a program line, type a line number then one or more BASIC statements.

The line becomes part of the program file when you press LINE]. (If a syntax error occurs, the line
will not be incorporated into the program. Syntax errors are described on page 163.)

The HP-71 interprets a line in the display as a program line when it is preceded by a line number. For

example,

o sA = E:§4

is interpreted as a program line, whereas

F=E

is immediately executed.

Error Checking. After you type a program line and press LINE], the HP-71 checks the line for
syntax errors. Syntax errors include incorrect spelling, incorrect parameters, and improper use of a

keyword.

If the HP-71 does not detect a syntax error, it:

¢ Enters that line as part of the program.

e Designates that line as the current line. (The current line is described under “Viewing Program

Lines,” page 156.)

e Clears the display.

If the HP-71 detects a syntax error it:

¢ Does not enter the line as part of the program.

¢ Beeps.

¢ Displays an error message for the duration of the CIEL A" setting.

¢ Displays the line.

e Sets the cursor to the position in the line where the error was detected.

If an error is detected, correct the syntax in the program line and enter it again. (Refer to “Debugging

Operations,” page 165.)



Section 8: Writing and Running Programs 149

Keying In Additional Lines (iiT 1)

As you key in additional program lines, the size of the file expands to accommodate them. If you use up

all available memory when entering program, the computer warns you with a message indicating that

there is insufficient memory.

When entering a program,it is often convenient to use the LI 7statement to automatically display a

new line number for each line you key in. You can specify both the starting line number and the

increment to use.

Examples:

HUTO Starts auto line numbering beginning with line

10, using increments of 10.

AUTO 1ae, 28 Starts auto line numbering beginning with line

100, using increments of 20.

Running a Program

Executing the Current File (FLiH, G5 LIE)

You can execute the current file by pressing [RUN]. This runs the program beginning with the lowest-

numbered line.

You can also run the current file by executing the Fiiti statement from the keyboard.

simplified syntax    

 

FLIM [line number]

FUH [, label]

  
The line number or label represents the line or statement at which you want execution to begin. If you

don’t specify a line number or label, execution begins at the lowest-numbered line. (If the line that you

specify doesn’t exist, execution begins with the next highest line number. If the label that you specify

doesn’t exist, an error results.)

Examples:

RUH 128 Executes the current file beginning with line 120.

RUM CDREIVEL Executes the current file beginning with the label

ODRIVEL,



150 Section 8: Writing and Running Programs

i executed from a program causes that program to start running at the specified line or label. Only

the variables and arrays in the main environment remain unchanged when F iis executed. (The main

environment is described in section 12, “Subprograms and User-Defined Functions.”)

Using the1% 1IE statement from the keyboard, you can execute the current file starting at any line

number or label.

 simplified syntax

 

LOzUE line number

 
 

LOmUE label

Examples:

Cosle z248 Executes the program in the current file begin-

ning at line 240.

COSUR CTERM! Executes the program in the current file begin-

ning at the label TEFRM.

If you execute Z1ZIE from the keyboard, the program halts when FHUSZE, STOF, EMD, or RETUREH

are encountered. But any statements concatenated with == 11E are executed only if the program ends

with RETURHM. (Executing GUZLIE from a running program is described under “Branching, Looping,

and Conditional Execution.”) Since FETUIFH ends a subroutine , you can execute a specific subroutine

from the keyboard without running an entire program.

Executing A Specific Program (FLiH, CALL, THAIH)
You can execute a specific program in memory (or on a mass storage medium) from the keyboard or

from within a program. A file does not have to be the current file to execute it. However, the HP-71

designates the program file as the current file before executing it.

Running a Program. Using the FLIl statement, you can execute any program file beginning at a line

number or label that you specify. The following examples show how F i can be used.

 simplified syntax

F LM file name [. line number]

R LM file name [ . label]

  



Section 8: Writing and Running Programs 151

Examples:

FUH PREOGL Executes the file # =11 1 beginning with the first

line.

FUM TESTEZ:FPORTOL, 3588 Executes the file TEZTZE beginning with line

3500. The file is in port 1.

FUM FPEOCGZ,ACCOUMNT Executes the file ¥ =12 beginning with the label

HODOLINT,

Calling a Program As a Subprogram. [l L. executes a program in much the same way as FLil.

However, when ZHL L is executed, the current environment is saved and a new environment is created

for the called program. The HP-71 treats the called program as a subprogram. (Environments and

subprograms are described in section 12, “Subprograms and User-Defined Functions.”)

 

CALL file name [: device]
   

Examples:

CHLL OREBIT Executes the program fileFEEIT.

CRLL AFPOGEEFPORTCG: Executes the program file #FZEE in port 0.

CRLL Executes the current file.

AlthoughLL typically executes a subprogram, it can be used as shown to execute a program if there

aren’t any subprograms in memory with the same name as that program. When you executei1, the

HP-71 first searches for a subprogram with the specified name. If it doesn’t find a subprogram, then it

searches memory for a program file with the specified name. If you attempt to execute a program using

ZrL Land the HP-71 finds a subprogram with the specified name, that subprogram is executed rather

than the program file you intended.

Running Chained Programs. The CHFA Istatement loads a program into main RAM from mag-

netic cards, a mass storage device, or the computer’s memory and executes it. Before the new file is

copied into main RAM, the current file (the one that executed ZHF IH) is purged from RAM.

 

CHAIH file name [: device]
   

CHAIH i1s useful when you want to execute a program that is too large to fit into memory. With

ZHAIH, you can divide a program into smaller units and execute those units one at a time. Each unit

executes CHHAIHM as its last statement, which loads the next program and runs it.



152 Section 8: Writing and Running Programs

For example, suppose you had a large program but had only enough memory to execute a third of the

program at a time. Simply rewrite the program so that it can be executed in three sections, then store

those sections separately on magnetic cards or on a mass storage device.

   

  

FREOG FROGE FROGZ

CHAIH PREOGE CHAIH PREOGE ERD
       

As shown above, each section is stored in a separate program file. Thus if the files are called FR1,

FEOGEZ, and FEOGE, the last statement of FEOGL 1s CHAIM FREOGE, and the last statement of

FROGZ s CHAIM FEOGE. When FEOG 1 finishes, it is purged from memory and FF{IGE is loaded

into main RAM and executed. When FF 1z 2is finished, it is purged and FEG3E is copied into main

RAM and executed.

While ZH#TH is used primarily for executing a succession of files on magnetic cards or a mass storage

device, it can be used to execute programs stored in the HP-71 memory. (For more information about

using " HF I H with files on magnetic cards, refer to appendix C.)

Interrupting a Program

When a program has finished its task, it normally stops running. A program can also stop running for

other reasons. For example, when the HP-71 detects an error in a running program (that is, the HP-71

can’t perform some operation), it stops the program and reports the error.

You can also halt a program before it is finished. You can do this from the keyboard or include an

instruction in the program which causes it to halt.

You might want to halt a program when it doesn’t seem to be operating properly or you might want to

view the values of some variables. You might also halt a program when you are locating and correcting

its errors (debugging).



Section 8: Writing and Running Programs 153

A halted program can assume one of two states:

o Suspended. The SUSP annunciator is on, indicating that the program can be continued from where

it halted. All program control information remains intact.

e Ended. The SUSP annunciator does not come on, indicating that all program control information

is erased. The program cannot be continued.

A program becomes suspended when you press [ATTN], it executes F#iIZE, or an error occurs.

Halting Execution From the Keyboard

Suspending a Program. To halt a running program from the keyboard so that it maintains a sus-

pended state, press [ATIN]. When you do this, the HP-71 displays the SUSP annunciator, indicating

that the program can be continued from where it halted. (The statement at which execution can con-

tinue is called the suspend statement.)

The HP-71 retains the environments existing at the time a program is suspended. (Environments are

described in section 12, “Subprograms and User-Defined Functions.”) While a program is suspended,

you can perform the following operations on the HP-71 without affecting the program’s suspended

state:

e Display and alter variables.

o Perform keyboard calculations in BASIC or CALC mode.

¢ View the contents of the current file.

¢ Copy files.

¢ Obtain catalog listings.

e Turn the HP-71 off and on.

Generally, operations that don’t alter the current file or designate another file as the current file don’t

affect the suspended state of a program. Operations that affect the suspended state of a program are

described below under “Ending a Program.”

When you want to continue executing a suspended program, either press or execute L iHT.

Execution will resume at the suspend statement, which is the statement following the last statement

executed. If you want to view the suspend statement, execute FE T+ from the keyboard.

In some situations, a running program might not halt when you press [ATTN]. If this occurs (the

chances are remote that it will), press simultaneously, then select level 1. (This process is
described in appendix A under “Verifying Proper Operation,” page 273.) When you interrupt the HP-71

using (7], the HP-71 ends the program and might perform a memory reset. You should therefore

avoid using this unless you haven’t been able gain control of the HP-71.



154 Section 8: Writing and Running Programs

Ending a Program. The following statements and operations end a program, clearing its suspended

state:

o ELNIT.

o EMIN EMD ALL, STOPX

o HELETE.

o MERGE (a BASIC file).

o FURGE (the current file).

o FREEE FORET, CLAIM FOET.

o TEHMFOREM (the current file).

o RN, CHATIH.

e Altering a program line.

After ending a program, there is no way to restore its suspended state.

Halting Execution From Within a Program (FHUSE, WA I T, ST0F, ERHD)

I
i

] T c w
n @ wn = o ° jo¥
]
- o 3Suspending a Program. A program suspends itself when it executes FHUIZE, FAL

eters, so it appears simply as

 

FRUDE
  
 

When a program executes this statement, it halts as if were pressed. The current line is the line
containing the statement following FHLIZE. If you want program execution to continue, press
or execute ZHT (described below under “Resuming Program Execution”).

 

To enable a user to view intermediate results that a program might produce, you can use 41 7.

 

HHIT seconds

  
 

bF 1T causes a program to do nothing for the spemfiednumber of seconds. Any information in the

display remains there while the statement is executing. i+ 17T does not suspend a program.

 

 

  * However, if the program was suspended while executing a subprogram, then executing or =7 ends the subprogram only,

and the program remains in a suspended state. Erii #i 1. ends all levels of subprograms and the main program. (For more

information about subprograms, refer to section 12, “Subprograms and User-Defined Functions.”)



Section 8: Writing and Running Programs 155

Ending a Program. You can end program execution with the Z7{iF and EM[ statements.*

 

ei i,'ZI*

11
7

 

 

REE
i    

Both statements end a program and clear all memory associated with program control. Athough they

are often the last statements in a program, =Tand ERHD can be anywhere in a program.

Resuming Program Execution ([f][CONT], i T)

Whenever the SUSP annunciator is on, you know that the program in the current file has been sus-

pended. You can resume execution by pressing [f]J[CONT] or by executing {1+ T. Execution resumes at
the suspend statement.

Pressing [f)(CONT]. Program execution can be resumed from where it was suspended (the suspend
statement) by pressing [f](CONT], but only if the SUSP annunciator is on. If the SUSP annunciator is
off, pressing executes the current file beginning with the lowest-numbered line. (This is equiv-
alent to pressing [RUN].)

Note: You can’t resume program execution by pressing or executing FLi. FLik clears the
program control information and restarts the program.

Executing 11T, The TT statement gives you more flexibility with how you resume program ex-

ecution. With © 1T you can specify the line number or label at which program execution resumes.

 

  
 

Resumes program execution at line 100.

 

 

B Resumes program execution at the label

FHEZE T

You can execute ©:iHT from the keyboard only. T+ T is not programmable.

*If a program is executing a subprogram, then executing =7{F or EHII ends the subprogram only. To end a program from a

subprogram, execute EHI! #L L. However, since this decreases the usefulness of a subprogram, using £+#L 1in a subprogram

is not recommended. (For more information about subprograms, refer to section 12, “Subprograms and User-Defined

Functions.”)



156 Section 8: Writing and Running Programs

If a line number or a label is not specified, program execution resumes at the suspend statement. If you

execute1M T for a program that isn’t suspended, the program in the current file will be run as if & LI}

were executed.

Editing a Program

Editing a program file usually consists of a combination of the following operations:

* Viewing selected program lines.

¢ Adding lines.

¢ Changing existing lines.

e Deleting lines.

¢ Renumbering program lines.

Before attempting to edit a file, be sure the computer is set to BASIC mode and the file you want to

edit is the current file.

To edit a program file that is not the current file, use:

 

ELIT [file name]
   

If you don’t specify a file name, the HP-71 designates the i+ k i 1% as the current file.

Viewing Program Lines (FETCH, LIST, FLIST, GaT0)

Scrolling Through a Program. You can use the [A], [¥], [9](X]), and [g](¥] keys to display the

program lines in a BASIC file.

Since you can view only one line at a time on the HP-71, the HP-71 designates that line as the current

line. You can view the current line by executing FE T+ (as described below).

To display the line previous to the current line, press [A]. To display the line following the current line,

press ¥]. The new line displayed becomes the current line. You can use these keys to scroll through a

file one line at a time. Pressing or continuously causes program lines to be momentarily dis-

played in ascending or descending order.

To view the first line of the program file, press (9](X]. To view the last line of the program file, press

(9}



Section 8: Writing and Running Programs 157

Fetching a Line. You can view a specific program line using F £ 7i:H. It has the general form:

 

FETIH [line number]

FETIH [label]
   

   
You can specify either a line number or a label. If a label is specified, it can be quoted or unquoted. You

can display the current line by not specifying either.

Examples:

Displays the current line.

Displays line 100.

Displays the line containing the label  
Displays the line containing the label &

 

Displays the line containing the label indicated
by Fi#.

Listing a File. A program file can be listed using the L. I %7 and FL I =T statements. If the HP-71 is

connected to a printer, FL I =T lists the specified program on the printer, otherwise it lists lines on the

HP-71 display.*

 — simplified syntax

L.I=T [start line number] [. end line number]

L. I1=T file name [, start line number [. end line number]]

 

 — simplified syntax

FL.I=T [start line number] [. end line number]

FLIZT file name [ . start line number [, end line number]]    
.I5T and FL I=T list program lines in ascending order.

Executing L. I =T without specifying parameters lists the current file from the first to the last line. If

the file you specify isn’t found, the HP-71 responds with the error message:

 

ERRE: File Mot Found

   

 

* The HP 82401A HP-IL Interface is required to connect a printer to the HP-71.



158 Section 8: Writing and Running Programs

Changing the Current Line Designation. Using the =1 T{i statement from the keyboard, you can

designate a line as the current line without displaying it.

 

G070 line number

SOTO label  
 

When you execute =0T you can specify either a line number or a label. A label can be quoted or

unquoted.

Examples:

SOTO 1o Designates line 100 as the current line.

COTO VALEHCE Designates the line containing the label
YALEMCE as the current line.

GOTO "RESETH Designates the line containing the label FEZET
as the current line.

Adding a Line

A line can be added to a program by typing a program line containing one or more statements, then

pressing LINE ]. This is no different from keying in the original program. If you add a program line

that has the same line number as a program line already in the file, the new line replaces the old one.

Two program lines cannot have the same line number.

Editing Existing Lines

To edit an existing program line, first call that line to the display (using FETIH, (A], [v], (9)[(A], or

(9](¥] as described above), change it as you wish and press LINE]. Remember that after editing a
line, you must press to enter that edited line into the program. (Pressing (A], [v], (9]J(A], or
(9])(v] after editing a line will not enter that changed line into the program.)

Deleting Lines (UELETE)

One or more program lines can be erased from the current file using DEL E TE. To use this statement to

delete:

¢ A single line, type:
 

OELETE line number

 

¢ A block of lines, type:
 

OELETE first line number , last line number  
 



Section 8: Writing and Running Programs 159

e All lines in the file, type:
 

ODELETE HLL
  
 

If you execute DELETE HLL, the file will still be in memory, but it will be empty. If you would rather

purge the current file from memory, execute FLIFZGE.

You can also delete a single program line by typing the line number you want to delete and pressing

END LINE]. For example,

% & (END LINE

deletes line 50 from the current file.

Renumbering Lines (FEHUIMERE)

Often after adding, deleting, and changing program lines, the intervals between program line numbers

can be too small to allow much additional editing of the program. For example, you cannot add a line

between lines 10 and 11 in a BASIC program. To remedy this inconvenience, you would have to renum-

ber one or more program lines to make room for a new line. But, when you change a line number, you

need to ensure that you change all references to that line (such as o7, COESUE) and

FEIMNT USIHG statements). If you are changing many program line numbers, this task can become

large.

The HP-71’s REHUMEER statement can do all this for you. It renumbers the current file using param-

eters that you can specify.

 

REMHUMEEER [new start line [. increment [. old start line [. old end line]]]]
  
 

In the syntax description above, new start line is the new starting line number, increment is the desired

increment value between successive line numbers, o/d start line is the number of the line that you want

renumbering to begin at, and o/d end line is the last line that you want renumbered.

Examples:

FEHUMBER Renumbers the current file so that its first line

number is 10 and all succeeding lines are num-
bered in increments of 10 (default).

FEHUMEBER 180,20 Renumbers the current file so that its first line

number is 100 and succeeding lines are num-
bered in increments of 20.

FEHUMBER 180,168,288, 388 Renumbers lines 200 through 300 so that line 200
becomes line 100 and succeeding lines are num-
bered in increments of 10.



160 Section 8: Writing and Running Programs

Using BIN and LEX Files

The HP-71 has a large number of statements, functions, and operators which you can use. Also, you

can write and run your own BASIC programs. In addition to this, you can extend the capabilities of the

HP-71 by using BIN and LEX files. These files are specially coded files. BIN programs run faster than

comparable BASIC programs and LEX files add keywords to the computer.

Binary Programs

Binary programs are specially coded program files which can be executed like BASIC programs. Typi-

cally, you obtain a BIN file by copying it from the card reader or a mass storage device. Or, it can be

contained in a plug-in ROM module.

You execute a BIN file in the same way you would a BASIC file; that is, using HEIH, or CHLL.

BIN files don’t have line numbers or labels, so you can’t execute one with &{i%iiE,

 

Since BIN files are specially coded programs; they can’t be edited. You can only execute them.

Language Extension Files

Language Extension Files (LEX) are special binary files which add BASIC keywords to the HP-71.

They are typically found in application pacs and plug-in extensions or modules. You can’t execute or

edit a LEX file. A LEX file doesn’t have to be the current file to be used. When the file is in the

computer’s memory (RAM or ROM), you can use its keywords.

You can use the BASIC keywords in a LEX file as you would any other keyword. The documentation

supplied with a LEX file explains the proper syntax and usage of the file’s keywords.

When you execute a BASIC program containing LEX file keywords, that LEX file must be present in

memory.

Transforming Files (7=i)

The TEAMHZFIEM statement can be used to change a BASIC program into a TEXT file so that it can

be transferred to another Hewlett-Packard computer.

 

 

simplified syntax

""WHHZFOEM [[file name]: device]l 1HTfile type [file name [: devicel]]

 

i1 can also change a TEXT file into a BASIC program file A TEXT file transformed from

aBASIC file has one record for each program line. (The TFE#HZF 1Rstatement is described in more

detail in the HP-71 Reference Manual.)

 



Section 8: Writing and Running Programs 161

Examples:

 

ORM OPEOGL OIMTO TEHET Transforms the BASIC program file
LrFORTOE into the TEXT file 7 i 1n port 0.

P TRPROGLFORTCG Transforms the TEXT file 7
I into a BASIC file.

  
  

 

i 1n port O

This statement is particularly useful when you want to use programs on the HP-71 that were written

for the HP-75. It enables you to translate programs from the HP-75 to the HP-71.

The HP-71 TEXTfile uses the Hewlett-Packard Logical Interchange Format, type 1 (LIF1). The LIF1

format is common to several HP computers and is therefore used for interchanging information be-

tween computers. HP-75 files that are of type LIF1 can be loaded into the HP-71 using the optional

HP 82400A Magnetic Card Reader. (The operation of the card reader is described in appendix C.) A

BASIC program file can be transformed into a TEXT (LIF1) file on one computer, stored on a mag-

netic card, then loaded into the other computer, where it can be transformed back into a BASIC file.

Example: Transform a BASIC file on the HP-75 into a LIF1 file, record it on a magnetic card, then

transfer it to the HP-71:

On the HP-75:

' sfarm 'progl’ into 1141 Transforms a BASIC file on the HP-75 into a

LIF1 file.

proglt to ooard Copies the transformed file onto a magnetic card
using the HP-75 built-in card reader.

On the HP-71:

ei ¥

 

B Copies the card into the TEXT file 1

21 into a BASIC program file.

 

     HE 10 Transforms #F

Note: A TEXT file can be transformed into a BASIC file only if each record (line) begins with a valid

BASIC line number. While the HP-75 accepts the line number 0, the HP-71 does not. If the HP-71

attempts to transform a file containing a line number 0, it will generate an error and will not com-

plete the transformation. You should therefore ensure that any HP-75 program file that you intend

to transform not contain the line number 0.

When you transform a TEXT file that was written on a card by the HP-75, the HP-71 changes any

program line it can’t interpret into a remark. That is, after the line number a ! % is inserted in a line

which could not be properly interpreted. You then need to rewrite the line to conform to HP-71 BASIC.



Section 9

Error Conditions

Contents

OVEIVIEW . .o162

Types of Errors . ....163

Error Messages . ............163

Messages for Syntax Errors ......... ... ... ..... 163

Messages for Run-Time Errors ([9)(ERRM]) . ......... ... ... .............. 164
Debugging Operations .. ........... ... ...... 165

Tracing Execution (TEHIZE FLOM) .o.166

Tracing Variable Assignments (TREACE WHES) .. . . . . ... .. .. .. ... 167

Cancelling Trace Operations (TEHRIZE COFF) .o... 168

Single-Step Execution ((f]J(SST]) ....... ...... 168
Program Control of Errors .. ... . ... .... 171

Branching on an Error (1M EREEOE, OFF EEREOE) ... ... ... .. ... .... 172

Determining an Error Message Number (EFEFEM) ... .. .. .. ... ... .. ... ... 173

Recalling an Error Message ((9)(ERRM], EREREME) ... ... .. ... .. ... ...... 175
Locating an Error (EFFL) ....175

Warnings . ......175

Math Exceptions In Programs . .......... . ... .. ...... 176

Exceptions as Errors .. ... .....176

Exceptions as Warnings ............ ... ...... 177

Overview

This section covers the following topics:

e Types of errors.

How the HP-71 notifies you of errors.

How to respond to error and warning messages.

How to locate and correct errors.

How a program can handle its own errors.

162



Section 9: Error Conditions 163

Types of Errors

When writing a program, performing keyboard operations, or running a program, you might encounter

error messages or warning messages. An error message indicates that an operation can’t be performed

until you correct an error. A warning message indicates that either the computer used a default value as

the result of an operation or that a certain condition requires your attention.

You can encounter three types of errors on the HP-71:

e Syntax

¢ Run-time

¢ Logical

A syntax error is an error in a statement’s construction. This includes such errors as misspellings and

improper parameters. The HP-71 checks for syntax errors as statements are entered from the key-

board.

A run-time error is an error that is detected when a statement is being executed. Run-time errors occur

for events such as invalid arguments supplied for functions and branches to nonexistent lines. A logical

error is an error in a program’s design. This type of error occurs when a program fails to produce the

correct results. The HP-71 doesn’t detect logical errors; however, it does have functions that enable you

to trace such errors.

Error Messages

The HP-71 displays an error message when it can’t correctly perform an operation. It also suspends its

operations (either keyboard or program operations). An error message indicates the nature of an error

and, in the case of a running program, the line in which the error was detected.

Messages for Syntax Errors

When the HP-71 detects a syntax error, it:

* Rejects the line just entered.

e Sets ERFM (described on page 173).

* Beeps and momentarily displays an error message (according to [lELFi'Y setting).

¢ Displays the line just entered.

e Sets the cursor to the point in the line where it detected the error.



164 Section 9: Error Conditions

A syntax error message has the form:

 

 

'+ 1 message

  
 

Example:

 

slicd Expr Indicates that an expression was keyed in
incorrectly.

If, after the HP-71 reports an error, you find that the message doesn’t aid you in determining why the

error occurred, refer to “Errors, Warnings, and System Messages” in the HP-71 Reference Manual. The

reference manual lists the most common reasons why each error occurs.

Messages for Run-Time Errors ([9)(ERRM))

When a run-time error occurs, the computer:

e Halts execution (if detected in a running program, it suspends the program).

e Sets EREFL and EFEHM (described under “Program Control of Errors,” page 171).

¢ Beeps and displays a message.

A run-time error message has the general forms:

 

 

‘1 message For a statement executed from the keyboard.

 

 

 

i.n: message For a statement executed from a running program.  
 

 

where £ & indicates that this is an error message, L..n indicates the line number, n, at which the error

was detected and message indicates what caused the error.

Example:

 

 

Indicates that a statement on line 30 of a program
attempted to assign a string to a string variable
that didn’t have a large enough dimension.

  
 

You can view the last reported error or warning message by pressing (9)(ERRM] or executing &
For an example, key in the following:

 



Input/Result

 

  
 

(9])(ERRM] (hold down)
 

  
 

 

 

  
 

Debugging Operations

Section 9: Error Conditions 165

Dimensions the string variable, ##, to five
characters.

Attempts to assign a seven-character string to ##.

The computer beeps, then displays a message in-
dicating that the string assigned to # is too
large.

Displays most recent message.

Displays & EEi# which returns the most recent
message.

Error messages are very concise and usually easy to interpret. If you need more information about an

error, refer to “Errors, Warnings, and System Messages” in the HP-71 Reference Manual. That section

contains a list of HP-71 error messages and the most common error conditions associated with them.

You may also want to refer to “HP-71 Keyword Dictionary” in the reference manual for more informa-

tion about the proper syntax and use of HP-71 keywords.

If you can’t determine the cause of an error after referring to the reference manual, you can use

 

12 and [SST] to trace program execution.



166 Section 9: Error Conditions

Tracing Execution (T EHUE FLL)

A useful method of locating errors is to trace program branching using TEHZE FLO, To trace pro-

gram flow, execute TREHLZE FL Ifrom the keyboard, then execute the program. (This statement can

also be executed by a program, but it can’t be executed from the keyboard while a program is running.)

 

 

  
 

When you trace program execution, the HP-71 displays a message showing you each branch that oc-

curs. (Refer to the next section, “Branching, Looping, and Conditional Execution” for more informa-

tion about branching.)

This message has the form:

""" raoe  1ins line number 1o line number

If the order of program execution were to proceed sequentially from the lowest-numbered line to the

highest, trace messages wouldn’t be displayed. But when a branch occurs (including a subprogram call),

the HP-71 displays both the line number where the branch occurs and the line number to which execu-

tion branches.

Example:

 

  
 

A branch to a subprogram is reported in the form:

Lire line number CHi.L. subprogram name

and a return from a subprogram is reported in the form:

Lirme line number EHIZUE

Example: A program has a call on line 100 to the subprogram TE=T 1. The subprogram begins at line

400 and ends at line 450.

  



Section 9: Error Conditions 167

As the computer executes these lines, it displays:

 

Trace limse 188 CALL TESTI Reports the branch to the subprogram TEZT 1.

 

 

Pirme 4350 EMDLSUER Reports the return back to the calling program.  
 

Tracing Variable Assignments (7T EHCE VHEDR)

The TEHACE WHEE statement enables you to trace the value changes of variables in a running pro-

gram. It can be in effect concurrently with TEHCE FL O,

 

  
 

When a program assigns a value to a variable, the HP-71 displays a trace message indicating the line

number where the assignment took place and:

¢ The name and assigned value of a simple numeric variable.
 

  
 

 

  
 

 

  
 

 

  
 

  



168 Section 9: Error Conditions

Cancelling Trace Operations (7T =HiE FF)

e, goene
{Trace operations are cancelled by executing TEHIE OF

 

 

   

This will cancel a TEACE YHAES and a TEACZE FLOW condition. It can be executed from the key-

board or by a program. It can’t be executed from the keyboard while a program is running.

Single-Step Execution ([f](SsST))

The function enables you to execute a program one line at a time and view the result of each
operation. You can evaluate each step of a program to determine where and why logical and run-time

errors Occur.

performs two functions:

e It displays the next statement to be executed when you press [f](SST].

It executes the statement when you release [SST].

Example: Key in a program that displays the letters of the alphabet one at a time, then single-step

through it. (Before using [SST], ensure that the program you want to debug is the current file and that
the HP-71 is in BASIC mode.) As you single-step through the program, view some intermediate results

to verify that they are correct.

  
 

Input/Result

Y OFOR I=65 TO 96 Beginning of loop.
I Displays a character.

End of loop.

(hold)

FOR I=85 TO 36 Displaysfirst line as long as you hold [SST]. (You
don’t need to hold the key.)   



 

   

 

   

 

   

 

  

 

   
 

   

(release)

B SusP

(hold)

28 DISPF CHE®OI: susp

(release)

H susp

I

=5 SUSP

[H)(ssT]

28 HEHET I SuSP

(hold)

“E DISP CHE$CI SUSP

(release)

 

 
SUSP

  

Section 9: Error Conditions 169

Executes the line.

Displays cursor and SUSP annunciator.

Displays the line.

Executes the line.

Displays character 65.

What is value of increment counter? (While sin-
gle-stepping through a file, you can perform key-
board operations.)

I equals 65 (the character code for ).

Displays and executes next line.

Because this is a loop, execution jumps back to
line 20.

Displays next character.



170 Section 9: Error Conditions

I [END LINE What is value of increment counter?

 

suse Character code for E.

   
Completes program execution.

You can continue single-stepping through the program until it ends. As an alternative, you can press

(shown above) to execute the remainder of the program.

When you single-step through a program, the HP-71 displays and executes one statement at a time. If

you execute a multi-statement line using [f](SST], each statement is shown with its bounding concat-
enation symbols (i#), and then executed.

Example: Change line 20 of the program from the example above to display the character code, its

uppercase equivalent, then the lowercase counterpart. Then, single-step through the program.

 

   

 

   

Input/Result

e T B CHESID) & CHESCOI+IZ: Changes line 20 (from previous example).

(hold) Displays first line.

..... AR T=SE TO S

(release) Executes statement and suspends program. Com-
puter displays SUSP annunciator.

(hold) Displays next statement.

S0 DIsp I @ suse The i indicates that there is another statement
on the same line.

(release) Executes the statement.

 

£ SuSP Displays the value of I.   



Section 9: Error Conditions 171

 

 

(hold) Displays next statement on the line.

saE DISP CHE$£IX @ suse The first & indicates that a statement precedes
the one displayed and the second  indicates that 

 

another statement follows on the same line.

 

  
 

 

  
 

 

  
 

(release) Executes the statement.

H susp Displays a character.

(hold) Displays last statement in line.

e ISP CHESFOI+3E: susP

(release) Executes the statement.

SUSP

Continues program execution.

For longer programs, you might want to single-step through a few lines only. You can set the HP-71 to

the line or label that you want to begin single-stepping at by executing {7 from the keyboard. The

line you specify or the line containing the label you specify becomes the current line.

 

 

You can also single-step through a suspended program. Pressing and releasing executes the

suspend statement. This is useful when you want to execute a program, but single-step through a por-

tion of it. To do this, include a FFHLIZE statement at the beginning of the portion of the program that

you want to single-step through, then run the program. When the program executes the Frii%E state-

ment, the HP-71 suspends the program. You can single-step through the program at that point.

 

The TEHCE YFARES and TEACE FLOM conditions can be active during single-step execution through

a program.

Program Control of Errors

Normally when a run-time error occurs, the HP-71 halts program execution and displays a message.

However, you might not want a program to halt for certain errors if you anticipate them. Rather, it

might be better if you could write a recovery routine that would process anticipated errors. When an

error occurs, program execution would branch to your recovery routine and continue to run uninter-

rupted. The HP-71 has several statements that enable you to write and use error recovery routines.



172 Section 9: Error Conditions

Branching on an Error (il EREEREOE,

 

{0R)

The 01 EREDR statement causes a branch to a specified program line when an error occurs. This can

be used to implement an error recovery routine.

The two forms of i ERREIE are:

 — simplified syntax

   ‘R GOT0 line number

GOTO label

 

 

 

  
 

eT4 R 0Tcauses a branch to another statement. (i1EREDRE GO%UE causes a branch to a

subroutme When the subroutine is completed, execution returnsto the statement following the one in

which the error occurred.

 

When it EREDE is executed, an i EREDFE condition is created which exists until it is explicitly

turned off, changed, or the program ends.* To change an il EFREDIE condition, simply execute

 

To turn off an iH EREDIE condition, execute

 

 

  
 

No error branching will occur unless i EFREFEis again executed.

 

* The it ERFDOE condition is not global. If it is set in a main program, it will not exist for any subprograms. If it is set in a

subprogram, it won’t exist for the main program or any other subprogram. Refer to section 11, “Subroutines, Subprograms, and

User-Defined Functions.”



Section 9: Error Conditions 173

 

Each HP-71 error message has a unique identification number. (The identification numbers for error

messages are listed under “Error, Warning, and System Messages” in the HP-71 Reference Manual.)

Error messages are grouped so that numbers for similar types of messages fall within a range. For

example, the identification numbers for the math error messages range from 1 to 21.

In some applications, a program might need to determine the type of error most recently committed. It

can do this using EFFH.

 

   

EFREHM returns the identification number of the most recent error message.

Example: Generate an error, then determine the message number.

 

   

 

Input/Result

DEFAULT OFF Treats math exceptions as errors.

OG-S0 Executes a function using an invalid argument to
generate an error.

EREELOGOReg 2 The HP-71 displays the error message.

EREH Gets the number of the message.

13 Displays the number of the most recent message.

   
If you know beforehand which errors you want to process in an error recovery routine, you can test for

their identification numbers to determine which operations to perform.

Example: Write a program that displays the square of the natural log of a number which is input

from the keyboard. Include in this program an error recovery routine which processes a negative or zero

input.



174 Section 9: Error Conditions

10 DEFAULT OFF @ DESTROY N Treats all error conditions as errors.

20 INPUT “SQUARE LOG OF ?”; N Inputs a number.

30 ON ERROR GOSUB 70 Branches to line 70 on an error.

40 DISP LOG(N)~2 Calculates and displays the square of the log of n.

50 OFF ERROR Turns off the it EREFEIE condition.

60 GOTO 20 Loops back to input another number.

70 IF ERRN=12 THEN DISP “CAN'T TAKE 0” Displays message if error number is 12.

80 IF ERRN=13 THEN DISP “CAN'T TAKE Displays message if error number is 13.

NEG”

90 RETURN

  
E M also indicates the type of device, plug-in ROM, or LEX file which generated the error message.*

Message numbers are of the general format

uimmm

where i1 is a three digit LEX identification number and mmm is a message identification number. Any

leading zeros in this number are suppressed. For example, E= returns only a message ID number for

errors generated by the computer because it has a LEX ID of zero.

The LEX ID number identifies the device or LEX file that generated an error. The owner’s manual for

each plug-in device or ROM indicates its LEX ID number.

For example, the HP 82401A HP-IL Interface has a LEX ID of 255 and can generate its own error

messages. If you are using the HP-IL interface and commit error number 7 according to this module,

iR FEH will return the value 255007. The three leading digits (255) indicate that the device is the HP-IL

interface. The three trailing digits indicate that the message number is 7.

 
* A LEX file is a Language Extension File, which is a binary program that adds keywords to the HP-71. LEX files can be in user

memory or a plug-in extension. For more information about LEX files, refer to section 8, “Writing and Running Programs.”



Section 9: Error Conditions 175

 

Recalling an Error Message ([9])(ERRM], ERi)

Some applications require that an error message be saved, or combined with other messages and dis-

played. To save or manipulate a message, you need to recall it. You can recall the HP-71’s error mes-

sages 1n two ways:

* Press and hold [(9](ERRM]. This displays the most recent error message.

e Execute EFFEM#. This returns an error message in a string expression.

 

 

  
 

   1% 1s useful for customizing error recovery routines. For example, program execution can branch

on an error to a routine that assigns the error message to a string variable, adds to the variable, then

displays it as a custom error message.

Locating an Error (EFEL)

You can determine the program line at which the most recent error occurred (if it occurred in a running

program) by executing EFFL. This function always returns a line number. For example, if an error

occurred at line 50 of your program, the statement

 

would display

 

  
 

Warnings

Warning messages indicate conditions which are not significant enough to halt program execution, but

can be accommodated automatically by the HP-71. These include warnings about the condition of the

batteries, card reader information, file information, and warnings about math overflows and

underflows (these are described under “Math Exceptions In Programs” below).



176 Section 9: Error Conditions

When a warning occurs, the HP-71:

1. Sets ERFEH to the number of the warning message. If the warning occurred during a running pro-

gram, EFEL 1s also set.

2. Displays the line number (if a running program) and message accompanied by a beep. For example:

 

WEH L8 Inwalid THE

  
 

The message remains in the display for a length of time specified by the IELA% setting.

3. Substitutes a default value and resumes execution. (You can select which default values are used

for some expressions. Refer to “Math Exceptions,” below.)

The display of warnings is not affected by an {i{ EFRFEFE condition. That is, (iEFEZF branching

can’t occur for a warning condition.

You can suppress the display of warning messages by setting flag —1. (Refer to section 10, “Flags,” for

information on setting and clearing flags.) When this flag is set, the computer supplies a default value

for an expression that causes a warning. The HP-71 will not display a warning message or set EFFLor

iR FEH, so you will have no indication that a warning has occurred. This is useful when you don’t want

a warning to interrupt program execution.

 

Math Exceptions In Programs

Exceptions as Errors

Math exceptions are error conditions which can be treated as either errors or warnings. (Math excep-

tions are also described in section 2.) Math exceptions are associated with the five math exception

flags. When a math exception flag has a corresponding trap value of 0, the exception associated with

that flag will be treated as an error. When the exception occurs:

o Execution halts and the computer displays an error message, or

o If OH EFREOFE was executed, program execution will branch to the line specified in the

M EFEOE statement.



Section 9: Error Conditions 177

Exceptions as Warnings

If an exception has a trap value of 1 or 2, it generally will be treated as a warning (as described above

under “Warnings”), and a default value will be provided in the expression that caused the exception.*

The default value supplied depends on the trap value.

In many applications, you might choose to have math exceptions treated as warnings. If so, expressions

that generate math exceptions will assume the default values that you select. Since you would antici-

pate this, you might not want warning messages displayed. To suppress the display of most warning

messages (including those for math exceptions), execute

“FLAG —1

Most warning messages won’t be displayed until you execute

CFLAG -1

(For more information about these statements, refer to section 11 “Flags.”)

 

* An exception to this is the I''L exception flag. When the trap value for I'/L is 1, then an I'/L exception will be treated as an

error. For more information about math exceptions, refer to “Math Exceptions” in section 2.



Section 10

Branching, Looping, and Conditional Execution

Contents

OVeIVIEW ..178

Unconditional Branching . ............ . . ..179

Branching to a Line or Label ( GO T0, Gomlie, BEETURM, FOF) o000 ... 179

Branching to a Subprogram (CUHLL).180

Branching to Another Program (ZHFEIHM) ...180

Multiple Branching (F .. GOTO, OH 00 GOSUHE) oo0 181

Timer Branching .. .....182

Timer Branching With =070 (OH TIMERE # 000 GOTO) oo 00 ... 182

Timer Branching With GOSUE (O TIMERE # .0 GOSUE) o 0. ... 183

More About Timers ... ... ... ...183

Deactivating a Timer (UFF TIFMERE #) ... ... ... .. ... .. . ... ... .. 184

LoOPINg ...185

Simple Loops (F Uk ... HE=T)oo185

Nested LOOPS . ... ...186

Conditional Execution (IF ... THEHM, IF .. THEM .. ELZE) ... ... .. .. 187

Conditional Branching .. .......... . .. .. . . . . ... 187

Optional E L =k.188

Overview

The HP-71 has several branching and looping statements that allow you to control the order in which

program statements are executed.

More specifically, this section describes:

¢ Unconditional branching.

¢ Multiple branching.

¢ Timer branching.

¢ Looping.

¢ Conditional execution.

Another type of branching—error branching—is discussed in section 9, “Error Conditions.”

178



Section 10: Branching, Looping, and Conditional Execution 179

Unconditional Branching

Branching to a Program Line or Label (G070, GOEUE, RETURN, FOF)
The =1T( statement causes program execution to branch to a specified line or a label.

 

 simplified syntax

 

  
Branching with &7 is unconditional because the branch occurs every time the statement is ex-

ecuted. Z{1T{1 can’t cause a branch to a user-defined function or a subprogram. (Branching to

subprograms and user-defined functions is described in section 12.)

  

 

The iE: statement causes an unconditional branch to a subroutine. The HP-71 saves the location

of each ikt statement it executes so that when a subroutine ends (with #E TiiE ), execution re-

turns to the statement following the 1% i that called it.

simplified syntax   
  

  

As with G071the S0 % UE statement can’t cause a branch to a subprogram or a user-defined function.

The FETLUEM statement marks the end of a subroutine and directs the HP-71 to resume execution

with thestatement following the last :{1ZiiE executed.

 

 

   

 

A subroutine can contain a ! * which causes a branch to another subroutine. When a | JER 1S

encountered, execution branchesback to the statement following the i : in the first subroutlne

When another FETLUIEHM is encountered, execution returns to the statement following the original

(1% 1E, Thus, subroutines can cause branches to other subroutines. When this occurs, the subroutines

are said to be nested. The amount of nesting that can occur is limited only by the size of main RAM.

  

 

Nested subroutines typically end in the reverse of the order in which they were branched to. That is,

the last subroutine branched to is the first one to end when a =& Tii=H statement is executed.

For some special applications, the order in which nested subroutines end can be changed by FiiF



180 Section 10: Branching, Looping, and Conditional Execution

 

  
 

  
Whenever a branch to a subroutine occurs, the HP-71 saves the location of the {11!E statement that

caused the branching. If you execute F{iF, the location of the last1% !1iEthat caused a branch is no

longer saved. In this way, the return to a subroutine level can be bypassed.

Branching to a Subprogram (:i.1.)

With the #i L. statement, program execution can branch to a subprogram (or another program) and,

upon completion, return to the statement following the calling statement.

 simplified syntax

I‘ #L.L. subprogram name [parameters :]

 
 

This statement is similar to%L Ein that execution returns to the statement following theLL

when the subprogram has ended. The difference between the two statements is that :{i%i!E causes a

branch to a subroutine while CFil L. causes a branch to a subprogram. Also,.1 can transfer execu-

tion to a subprogram located in a file other than the current file.

Writing and using subprograms is described in section 12, “Subprograms and User-Defined Functions.”

Branching to Another Program (ihiH1)

You can unconditionally branch to another program file using thei Istatement.

simplified syntax

l- HEIH file name

The :HF IH statement purges the current file from RAM, copies the chained file into main RAM, then

executes it. The chained file becomes the current file. The program to be chained can be located in the

computer’s memory or, more commonly, in an external device such as the magnetic card reader or a

digital cassette drive.

 

 
 

Note: Since ZHF IH purges the program that executes it, don’t use your only copy of a program

to execute this statement!

Using ©HA IH, a program which is too large to fit in HP-71 memory can be divided into smaller pro-

grams and stored on a mass storage medium as separate files. After completing execution, each smaller

program chains the next one.



Section 10: Branching, Looping, and Conditional Execution 181

IHFMI Hpreserves the status of all variables, modes, traps, flags, and open data files from one program

to the next. However, it releases all local environments and program control information. (Program

environments are described in the section 12, “Subprograms and User-Defined Functions.”) When a

program is chained, it begins running at its lowest-numbered line.

 

Examples:

CHAIH MAILIST Chains a program, [1# 1L I %7, starting execution
with the lowest-numbered11ne

CHAIH MARILIST:CAED Chains MA II%7Tfrom the magnetic card reader.

Mu|t|p|eBranchmg (2 SRRVUL L L)

The CH ... GOSUE and OH ... GOTO statements provide multiple branching capability based on the

value of a numeric expression.

 

 

 

— simplified syntax

4 expression ={17T{i line number, line number...

label label

— simplified syntax

Tk expression GiizUE line number, line number...

label label    
When either of these statements is encountered in a program, the computer evaluates the numeric

expression and rounds the value to an integer. That integer points to one of the line numbers or labels

following the =T or ii%ilE, If the expression evaluates to 1, program execution branches to the

statement mdlcated by the first line number or label listed after the &7 or Zir%UIE. If the expres-

sion evaluates to 2, execution branches to the statement indicated by the second line number or label

in the list, and so on.

Example: The following statement causes program execution to branch on the value of the expression

(T=Za 4RSI+

OR oT=Z20+0rA=20+1 GOTO FIRST, Zga, LAzt

If «T=Z»+{A=71+1 evaluates to 1, then execution branches to the label ¥ I &% T, If the expression

evaluates to 2, then execution branches to line 200. If it evaluates to 3, a branch to the label L. 7% T

occurs.



182 Section 10: Branching, Looping, and Conditional Execution

Timer Branching

The HP-71 has three program timers which can be set to interrupt a program and cause execution to

branch to another line or label. A common application of program timers is to run entire routines at

specified intervals. With the & TIMER # ... GOSUE and © PIMER # ... G070 statements,

synchronized branches to a subroutme or simply another part ofthe program can be accomplished.

The i+ TIMER # ... G0OTO statement transfers execution to a program line or label when the

spemfied timer comes due and the statement that is currently being executed is completed.

 

Timer Branching With L7 6 (LiH

 simplified syntax

FIMER # timer number . seconds =TI line number

label

 

 

 

The timer number is a numeric expression that must evaluate to a rounded value of 1, 2, or 3. This

specifies which of the three timers to set. The number of seconds is also a numeric expression. It sets

the number of seconds between the time the timer is set and the time it will expire. Timers can be set

to a precision of 1/10 second. The range for seconds is 0.1 through 134,217,727.0 seconds, a little over

four years. If you specify a value smaller than 0.1 second, the computer sets the timer to 0.1 second. If

you specify a value greater than the maximum, the HP-71 uses the maximum value.

Once set, timers remain active until the program ends or until they are deactivated (described below

under “Deactivating a Timer”). Timers remain active if a program is suspended, but they don’t execute

the specified branching until program execution resumes.

Example:

10 ON TIMER # 1, 10 GOTO 50 The interrupt transfers execution to line 50.

20 GOTO 20

50 DISP “TEN SECONDS”

60 BEEP 100

70 DISP “CONTINUE” Execution continues as it does after any other
unconditional branch.

When a timer set by T TIMER # ... G070 expires, the HP-71 automatically resets it using the

specified interval. That is, a timer set to an interval of 30 seconds will expire every 30 seconds, causing

a branch to occur.



Section 10: Branching, Looping, and Conditional Execution 183

 

 

 

 

Timer Branching With 0z liE (O TIMER # ... GUSUE)

The o+ TIMER # ... GOZUE statement causes a branch to a subroutine when the specified timer

expires.

simplified syntax

TIMEE # timer number. seconds :(i%LiE line number

label

With &iH TIMER # ... GOZUE, program execution branches to the specified subroutine when the

timer expires. When the HP-71 encounters a FETLIFEH statement, it resets the timer and branches

back to the statement following the one that was being executed when the timer expired.

Example:

10 ON TIMER #2, 15 GOSUB 100 Sets a subroutine branch to line 100 at 15-second
intervals.

20 DISP “WAIT FOR TIMER”

30 GOTO 20

100 DISP “TIMER EXPIRED” Execution transfers to this line when the timer
expires.

110 RETURN Causes a branch back to the statement following
the one that was being executed when the timer
expired.

More About Timers

Timers Within Subprograms. Timers are global in that the three timers which can be set in a main

program can also be set in a subprogram. However, the effects of timers are local in that they can cause

a branch only to a line or label within the main program or subprogram in which they are set. Also,

they can cause a branch only when the main program or subprogram in which they are set is currently

running.

If a timer is set and then a subprogram is called, the timer can’t cause a branch until the subprogram

ends. Similarly, if a timer is set in a subprogram and the subprogram ends, the timer remains active,

but won’t cause a branch until the subprogram is called again.



184 Section 10: Branching, Looping, and Conditional Execution

When the Computer is Off. If a program activates a timer and then executes' F or {iFF, the timer

remains active. When it expires, the computer turns itself on and begins executing the program at the

line or label specified in the CiH TIMER # statement. This technique is commonly used when the

HP-71is required to take a reading from an external device (such as a voltmeter) at specified intervals,

but is not otherwise required to be on. Thus, it can set a timer, turn itself off, then repeatedly turn

back on when the timer expires, take a reading, and turn itself off again.

Example: The following program sets a timer, executes EEEF, and turns off the HP-71. Then, at 3

second intervals, the HP-71 turns itself on, executes EEFEF, then turns itself off.

Lines 40 through 80 are executed each time the timer comes due. When the HP-71 has beeped 10

times, the program deactivates the timer (described below under “Deactivating the Timer”).

10 DESTROY| Ensures that I is available for use as a simple
numeric variable.

20 1=1 Sets the initial value of 1.

30 ON TIMER # 1,3 GOTO 40 Sets timer 1 to expire every 3 seconds.

40 DISP | Displays the value of I.

50 BEEP Beeps.

60 I=1+1 Increments 1.

70 IF 1>10 THEN OFF TIMER # 1 Deactivates the timer if it has beeped 10 times, as
indicated by the value of 1.

80 BYE Turns the HP-71 off.

Deactivating a Timer (Z2FF TIMER #)

 

UFF TIMEERE # timer number
   

For example, the statement IFF TIMEFR #7Z deactivates timer 3.

All three timers are simultaneously deactivated when a program ends. (For more information about

ending a program, refer to “Ending a Program,” page 155.)



Section 10: Branching, Looping, and Conditional Execution 185

Looping

Repeatedly executing a sequence of statements is called looping. A simple loop begins with a F{iF

statement, which initializes the loop, and ends with a FHE T statement. Simple loops can be located

within other loops to form nested loops. Nested loops are commonly used to process arrays and to

manage data files.

 

Simple Loops (F[iF ... HE®T)

The combination of the F{IF and HET statements enclose a sequence of statements which are to be

executed a specified number of times.

 

FiiF loop counter=initial value TiI final value [ZTEF step size]
 

 

cuT /OOP counter   
The Fii& statement defines the beginning of the loop and initializes a variable, called the loop counter,

that determines the number of times the loop is to be executed. The loop counter must be a simple

numeric variable. The initial value, final value, and step size are numeric expressions. They define the

initial and final value of the loop counter and the increment between successive values. If the step size

isn’t specified (the = TEF part of the statement is optional), the HP-71 sets it to 1.

Examples:

  
4 EFED

 



186 Section 10: Branching, Looping, and Conditional Execution

The FiF statement performs four operations:

» It sets the loop counter to the specified initial value.

« It stores the final value for the loop counter. The final value determines when to stop looping.

« It stores the step size.

o It marks the start of the loop.

The HET statement performs three operations:

o It defines the end of the loop.

» It increments the loop counter according to the value of the step size.

o It tests to see if the loop counter has been incremented beyond the final value. If so, the program

exits the loop and executes the statement following the HE =T statement. If the final value has not

been exceeded, the program branches to the first statement following the F¥ statement.

There are two rules governing the branching into and out of FIiE . .. HE®T loops:   

 

o Execution of a FIiF ... ME®T loop should always begin with the F{iF statement. Branching into

the middle of a loop produces an error if the HE =T statement is executed before the program

executes the corresponding F1F statement.

» It is permissible to branch out of a loop without completing it. After exiting a loop, the loop counter

retains its value for possible use later in the program.

Nested Loops

The HP-71 allows nesting of F{iF . .. HE®T loops. Nesting occurs when one or more loops are

contained (nested) in another loop. Nested loops can’t overlap—each loop (except the first one) must

be wholly contained in another loop. Nesting is limited only by the amount of available RAM.

Example: The following program fragment, shown without line numbers, illustrates how nested loops

can be useful in an application such as multiplying matrices. The matrix # is multiplied by F to obtain

the result matrix i.

GFTION BASE 1

FMl=ZEMN=d@3F=2

DI AOM MY BOHP COM, P

FORE I=1 TO H

FOR J=1 To F
D=

FOR E=1 TO H

S=D 4RO L EYERECK, U0

FEST F

T, da=s



Section 10: Branching, Looping, and Conditional Execution 187

The HP-71 offers flexibility in how FE ... HEXT loops are used. However, when using nested loops,

you should follow these guidelines:

o Every F{iF statement should have a matching HE T statement—that is, after each FiiF state-

ment, there should be a HET statement which uses the same /loop counter variable.

« Nested loops can’t use the same /oop counter variable.

o Loops should not overlap.

Conditional Execution (I F... THEH, IF ... THEN ... ELEE)
The IF ... THEH statement enables a program to execute one or more statements based on the value

of a numeric expression.

 simplified syntax

|‘ F numeric expression THEM statements

 
 

If the expression between IF and THEH evaluates to 0 (false), program execution skips to the next line.

If the expression evaluates to a value other than 0, statements after THE! are executed.

One or more statements can follow THEHM providing they are concatenated with the & symbol. How-

ever, some statements aren’t valid in an IF ... THEHM statement. The keyword dictionary in the refer-

ence manual shows for each keyword whether it can be included in an IF ... THEH statement.

For example, another I+ ... THEH statement is not allowed after THEH, though it is allowed after

Conditional Branching

Often the IF ... THEHMstatement is used for conditional branching. Usingi 71 (1%UE in the

statement causes program execution to branch depending on the outcome ofacondltlonal test.

 

— simplified syntax 

IF expression THEHM [Z0TO] line number

IF expression THEM [GTO] label

 

— simplified syntax 

  
 



188 Section 10: Branching, Looping, and Conditional Execution

Notice that the keywordi 7! isn’t required immediately after THEH. If a line number or label appears

immediately after THE, the computer recognizes this as an impliedi 71i. For example,

causes program execution to branch to line 100 if P1 equals Q1.

 

However, if you want conditional branching to a subroutine, you must use the :{i=ii& keyword. For

example, the statement

F 1 GOEUE HEMFORM

  

causes program execution to conditionally branch to a subroutine beginning at the label

{.ZE is an optional keyword which can be used in the IF THEHMstatement. It provides for execu-

tion of statements when the expression between IF and THEHMevaluates to 0.
  

 

 

 

simplified syntax

|> expression THEM statements L. =k statements

 

When the expression between IF and THEHM evaluates to a nonzero number (true), the statements

between THEM and EL %E are executed. When the expression evaluates to 0 (false), only the statements

Fi.%E are executed, then execution continues to the next line.

 

Examples:

   
=R+ B f=l ELSE H=d-Y B =i
THEM M#='0Owverflow' ELSE ME='Ho Error’

 

In the same manner as described above, Gi5UE and =T can be used after i %E to provide con-

ditional branching.



Section 10: Branching, Looping, and Conditional Execution 189

Examples:

IF L THEM 'E=IT' ELSE If L. is not equal to zero, then execution
COSUR "REFORMAT! branches to E: I 7T(an implied G07T0). If L

equals zero, then execution branches to
FEFORMAT.

IF =&Y THEH 1808 If ==% is true, execution branches to line 100

(implied).

IF Ti=f% THEH 245 ELSE FEMI If T#=H% is true, execution branches to line 245

(implied) otherwise it branches to FE 11

(implied).

If HOT % THEH H=T @ If H3T % is true, the value of T is assigned to
COSUERE S8 ELSE 158 and execution branches to the subroutine begin-

ning at line 50, otherwise execution branches to
line 150 (implied).



Section 11

Flags

Contents

OVEIVIBW ..190

Introduction to Flags . ... ... ...191

Testing Flags (F LLH )..191

Setting and Clearing Flags . ........... . . ..192

Setting Flags (S F LHE).192

Clearing Flags (CFLHG, RESET).o192

User Flags .. ....193

System Flags ......196

Warning Message Flag (—1) . ... ....196

Beeper Flags (—2, —25) ... ....197

Continuous-On Flag (—3) . ....197

Math Exception Flags (—4 through —8) .......... ... . ... .. ... ... . ....... 197

User Keyboard Flag (—9) . ... .. ..197

Angular Setting Flag (—10) . ... . . ..197

Round-Off Setting Flags (—11, —12) ... .. ... .. .. . .. . . . . . . . . .. 198

Display Format Flags (—13, —14) . ... ... ... .. .. . . .. 198

Lowercase Flag (—15) . ... ..199

Base Option Flag (—16) ....... .. ... . . . . ..199

Number of Digits Flags (—17 through —20) ........... ... ... ... ... ... .... 199

BASIC Prompt Flag (—26) ............ .. . . ..200

ERAHCT Flag (—46) ...oo200

Annunciator Flags (—57, —60 through —64) ....... ... ... . ... ... ........ 201

Overview

The HP-71 has 128 flags, all of which can be tested and 96 of which you can set and clear. This section

covers:

e Types of flags.

e Testing flags.

e Setting flags.

¢ Clearing flags.

190



Section 11: Flags 191

Introduction to Flags

The previous section describes conditional-execution statements, which are statements that direct pro-

gram flow based on the outcome of conditional tests. A type of conditional test that can be used in

programming is the flag test. A flag is a status indicator that is either set (meaning true) or clear

(meaning false). A flag test is a function that indicates the state of a specified flag, either set or clear.

Flags numbered —64 through —1 are system flags. System flags are used by the computer operating

system to indicate the status of the computer. System flags that are useful from the keyboard and in

BASIC programs are described below under “System Flags.”

Flags numbered 0 through 63 are user flags. These flags have no special meaning to the computer. Their

meanings can be arbitrarily defined within a program. You can use them in a program to indicate a

condition that isn’t represented by the system flags. (An example of programming with user flags is

given below under “User Flags.”)

All flags can be tested with the FLAZ function.

 

FLAGC flag number
  
 

This function returns a value of 1 if the specified flag is set and 0 if the flag is clear.

You can test any flag with this function. The flag number can be in the range —64 through 63. If you

specify a non-integer, it will be rounded to an integer before the flag is tested. You can use the math

exception flag mnemonics, such as I''L and [''/Z, in place of flag number to test flags —4 through —8.

Examples:

FLAGOS Tests flag 5.

FLAGCIWL Tests the invalid flag.

FLAGO Tests the flag indicated by .

IF FLAGY-15%2 THEH 184 Branches to line 100 if flag —15 is set.

A=FLAGC12 %5 Sets A=5 if flag 12 is set and A=0 if flag 12 is
clear.



192 Section 11: Flags

Setting and Clearing Flags

Flags can be set and cleared by ZFiL A5G, DFLAG, and FLAG,

Setting Flags (=F L ALZ)

With ZFLA you can specify that all user flags be set, that all the math exception flags be set, or that

selected individual flags be set. System flags —32 through 63 can be set with =F1 Fi:.

 

iz flag number, flag number...
HL

MHTH    
 

Examples:

=5, OWF Sets flags 4, 5, 25, and the ii/F flag.

Sets the flags indicated by I, .i, and k.

Sets flags 0 through 63.

 

Sets the five math exception flags.

You can also set a flag at the time you test it using FLFi:.

 

LA flag number . new value:
  
 

When using Fi.F: to set a flag, flag number must be in the range —32 through 63. The new value can

be any number, including Inf and NaN. If new value is 0, the flag is cleared; if it is not 0, the flag is set.

You can set only one flag at a time with this function.

Example:

FLAGOE, 1o Tests flag 5 then sets it to 1.

Clearing Flags (CFL.AG, EEZET)

You can clear flags with TFLFAG or FLAL.

 

41z flag number, flag number...

L

MATH

  

  
 



Section 11: Flags 193

The same parameter restrictions apply to ZFL. Aas apply to SFLHAG.

Examples:

CFLAG 2,5, UHF Clears flags 3, 5, and the underflow flag.

CFLAG L, Ixd Clears the flags indicated by the numeric
expressions.

You can clear flags with FLAZ in the same way that you set them.

Example:

FLAGCS, @ Tests flag 5 and clearsit.

FLAGCS, o Tests flag 5 then sets it if J#0 and clears it if
J=0.

FLAGOCS , FLAGCS »~1 1, Tests flag 5 and switches its state (from clear to
set or set to clear).

Flags —32 through 63 can be collectively cleared by executing FEZET or performing a memory reset

(IMIT:3).

 

RESET
   

User Flags

User flags are those numbered 0 through 63. These flags can all be set, tested, and cleared by the user.

These flags are not used by the computer and have no meanings except those attributed to them by the

user.

Flags 0 through 4 have annunciators in the display. When any of these flags are set, the corresponding

annunciator (0, 1, 2, 3, 4) comes on.

Example: When measuring distances on a map, you might be measuring in inches (the English sys-

tem) or in centimeters (the metric system). Distances measured on a map must be converted to actual

distances on the ground to be meaningful. You might want to know actual distances on the ground in

terms of miles or kilometers. Using flags you can write a program that accepts map measurements in

inches or centimeters and converts them according to the map’s stated scale into actual distances, in

either miles or kilometers. One flag can indicate the units you are measuring in and another flag can

indicate the units in which actual distances are represented.



194 Section 11: Flags

Suppose you are planning a hike in the Cascade Range in Oregon and you want to know the straight-

line distance between Mt. Jefferson and Grizzly Peak. You have a topographic map which has a scale

(representative fraction) of 1:62500. (That is, one inch on the map represents 62,500 inches on the

ground.) The distance on the map between the peaks is 8.8 centimeters. How many miles separate the

two peaks?

The formulas for converting inches and centimeters to miles and kilometers are:

miles = s X (inches / 63360)

miles = s X (centimeters / 160934.4)

kilometers = s X (inches) X (.0000254)

kilometers s X (centimeters) X (.00001)

where s is the denominator of the representative fraction. (In this example, s is 62500.)

The following program allows you to select the type of input, inches or centimeters, and the type of

result, miles or kilometers. The program uses flags 1 and 2 to indicate to the program which units are

being used.

In the program, flag 1 indicates which units you are using to measure distances on the map. Flag 1 set

indicates inches and flag 1 clear indicates centimeters. Flag 2 indicates the units used to express the

actual distances. Flag 2 set indicates miles and flag 2 clear indicates kilometers.

Flag 1 is set or cleared in line 60 and flag 2 is set or cleared in line 90. There are four possible combina-

tions of flags 1 and 2 being set and clear. The state of each flag is tested in lines 120 through 150 to

indicate to the computer which conversion formula to use. For example, if you are measuring in centi-

meters and displaying results in miles, flag 1 will be clear and flag 2 will be set. The conversion formula

in line 130 is then used and the result displayed.

10 SETUP': DELAY 1,1 @ FIX 2

20 DESTROY S,M$,R$,M,R Initializes the variables to be used in the program.

30 INPUT “MAP SCALE?”"; S Inputs map scale.

40 DISP “MEASUREMENTS”

50 INPUT “in OR cm (I/C)?”; M$ Inputs type of measurements.

60 IF UPRC$(M$)=“" THEN SFLAG 1 ELSE Sets flag 1 to indicate inches or clears flag 1 to
IF UPRC$(M$)=“C” THEN CFLAG 1 indicate centimeters.

ELSE 40

70 DISP "RESULTS”

80 INPUT “ mi OR km (M/K)?"; R$ Inputs type of results.

90 IF UPRC$(R$)=“M" THEN SFLAG 2 Sets flag 2 if results are in miles and clears flag 2
ELSE IF UPRC$(R$) = “K” THEN if results are in kilometers.
CFLAG 2 ELSE 70

100 ‘CONVERT’: DELAY 4



Section 11: Flags 195

110 INPUT “MEASUREMENT? ; M @ IF Inputs a measurement and branches to the end
M<=0 THEN 170 of the program if the measurement is less than or

equal to zero.

120 IF FLAG(1) AND FLAG(2) Converts inches to miles if flags 1 and 2 are set.
THEN R=S%M/63360 @ DISP R; “ mi”

130 IF NOT FLAG(1) AND FLAG(2) Converts centimeters to miles if flag 1 is clear
THEN R=S%M/160934.4 @ and flag 2 is set.

DISPR: " mi’

140 IF FLAG(1) AND NOT FLAG(2) Converts inches to miles if flag 1 is set and flag
THEN R=S8%Mx*.0000254 @ 2 is clear.
DISP R; “ km’

150 IF NOT FLAG(1) AND NOT FLAG(2) Converts centimeters to kilometers if flags 1 and
THEN R=S%Mx*.00001 @ DISP R; “ km” 2 are both clear.

160 GOTO ‘CONVERT’ Directs program execution to the label i1t

 

(in line 100).

170 END

Now run the program to find the distance between the two peaks.

 

  
 

Input/Result

RUN

THF SOHLE 7 Prompts you to enter the denominator of the re-
presentative fraction.

EEEED You key in the scale.

 

MEASUREMENTS

 

 

  
 

 

 

 

OFE om Lo Prompts you to indicate the units you’ll use to
measure distances on the map.

o Key in © for centimeters.

FESULTE

mi OF km Pkl Prompts you to indicate the units you want re-
sults displayed in.  

 



196 Section 11: Flags

 

   

 

 

 

   

Key in 1 for miles.

MEASUREMENTY 2 Prompts you for a measurement.

o3 Key in the distance on the map (in centimeters)
from Mt. Jefferson to Grizzly Peak.

2042 mi 2 Displays the actual distance in miles.

MEADUREEMEMT? 2 Prompts for another measurement.

& Ends the program.

The program continues to prompt for measurements until you enter a measurement of 0. If you want to

use different units of measurement, simply run the program again.

System Flags

The HP-71 flags are divided into two groups—system flags, whose meanings are predefined by the

HP-71, and user flags, whose meanings can be defined by the user.

All flags are global—they can all be used by subprograms (even those in other files) and user-defined

functions. No flags are local to program files or subprograms.

System flags indicate the state of the HP-71. Flags —32 through —1 can be set, cleared, and tested by

the user. Flags —64 through —33 can only be tested.

The flags that you can use are described here. Flags not described are used by the HP-71 for its

operation.

Warning Message Flag (—1)

By setting the warning message flag you can suppress the display of most warning messages. System

messages, error messages, and certain warning messages can’t be suppressed. (For a list of which warn-

ing messages can be suppressed, refer to “Errors, Warnings, and System Messages,” in the HP-71 Ref-

erence Manual.)



Section 11: Flags 197

Beeper Flags (—2, —25)

When flag —2 is set, the beeper will not sound when EEEF is executed. When flag —2 is clear, the

beeper operates normally.

The beeper has two volumes which can be selected by setting or clearing flag —25. When this flag is

set, the beeper volume is loud. When the flag is clear, the volume is soft.

Continuous-On Flag (—3)

To save battery power the HP-71 automatically shuts itself off after 10 minutes of inactivity. There are

times when you might want to leave the HP-71 on continuously. You can set the HP-71 to continuous

on by setting flag —3. Clearing flag —3 restores the automatic shut-off feature.

Math Exception Flags (—4 through —8)

One or more of these flags are set whenever a math exception occurs. (For more information about

math exceptions, refer to “Math Exceptions,” page 57.)

Once set, the math exception flags can be cleared individually by using CFL, or cleared collectively

by executing CFLHAG MATH.

User Keyboard Flag (—9)

When set, flag —9 indicates that the User keyboard is active. Setting the flag activates the User key-

board. (This is equivalent to executing ii=EFR iH.) Clearing the flag deactivates the User keyboard

(equivalent to executing !ZEFR FF). This flag can be useful in a program when you are using a KEY

file and want to ensure that the User keyboard is active.

Angular Setting Flag (—10)

This flag, when set, indicates that the arguments and results of trigonometric functions are expressed

in radians. When clear, it indicates that arguments and results are expressed in degrees.

Example: The following routine computes the arcsine of an input value and displays the result in

degrees or radians, depending on the status of flag —10.

10 INPUT X
20 IF FLAG(-10) THEN DISP ASIN(X);* RADIANS” Include a space after the two leading quotation

ELSE DISP ASIN(X); DEGREES” marks.

When flag —10 is set, the RAD annunciator comes on in the display. Radians and degrees can also be

set on the HP-71 using the FADIAMS or DELZEEES statements.



198 Section 11: Flags

Round-Off Setting Flags (—11, —12)

Flags —11 and —12 indicate the current round-off setting, according to the following table:

Round-Off Setting Flags
 

 

   

Type of Rounding Flag —11 Flag —12

Near clear clear

Zero clear set

Positive set clear

Negative set set
 

Example:

10 A = FLAG(—12) + 2 % FLAG(—11)
20 IF A = 0 THEN R$ = “NEAR’
30 IFA 1 THEN R$ = “ZERO’
40 IF A = 2 THEN R$ = “POSITIVE”
50 IF A = 3 THEN R$ = “NEGATIVE’
60 DISP “ROUND-OFF: ”; R$

You can select the round-off setting by setting or clearing the appropriate flags or by using the
rill statement.

 

Display Format Flags (—13, —14)

Flags —13 and —14 indicate the current display format according to the following table:

The following routine displays the current round-off setting.

Display Format Flags
 

 

 

   

Display Format Flag —13 Flag —14

clear clear

set clear

clear set

set set
 

These flags are useful for numeric routines that need to know how numbers are displayed.

 

 



Section 11: Flags 199

Example: The following routine displays the current display format.

10 A = FLAG(—13) + 2 % FLAG(—14)
20 IFA 0 THEN R$ = “STD’
30 IFA 1 THEN R$ = “FIX’
40 IF A = 2 THEN R$ = “SCI’
50 IF A 3 THEN R$ = “ENG’
60 DISP “FORMAT:"; R$

I
I

The display format can also be set using =TI, FIx,I, and EHG.

Lowercase Flag (—15)

Flag —15, when set, indicates that the keyboard is set to lowercase. That is, pressing letter keys dis-

plays the lowercase characters. When clear, the keyboard is set to uppercase.

Pressing the (9] key before a letter key displays the opposite case of that letter. For example, when flag

—15 is clear, pressing [9](D] displays . But when flag —15 is set, pressing [9)(D] displays .

This flag is useful in a program when you want to ensure that the keyboard is set to one case. The

keyboard can be set to lowercase or uppercase using L. it and L OFF,

Base Option Flag (—16)

When set, flag —16 indicates that the current base option for dimensioning arrays is 1.When clear the

flag indicates that the base option is zero. The base option can also be set using the :

statement.

 

Number of Digits Flags (—17 through —20)

Flags —17 through —20 indicate the number of significant digits currently displayed if the display

format is F I, S0 1, or EHG. The following table indicates what the combinations of these four flags

indicate:



200 Section 11: Flags

Number of Digits Displayed
 

 

Number of Digits Flag —17 Flag —18 Flag —19 Flag —20

0 clear clear clear clear

1 set clear clear clear

2 clear set clear clear

3 set set clear clear

4 clear clear set clear

5 set clear set clear

6 clear set set clear

7 set set set clear

8 clear clear clear set

9 set clear clear set

10 clear set clear set

11 set set clear set      
 

These flags are useful when a program needs to determine the number of significant digits currently

displayed. (You can display up to 11 digits to the right of the radix mark.)

Example: The following statement shows the current number of significant digits displayed.

FLAGO =173 +2%FLAG- 18 +d%FLAG~ 193 +8RFLAG -2

The number of digits displayed can be set using F I, S0 1, or EREG.

BASIC Prompt Flag (—26)

When flag —26 is set, the HP-71 suppresses the display of the BASIC prompt. The flag is cleared when

you press LINE].

EHACT Flag (—46)

When set, flag —46 indicates that E<FT has been executed. This flag is cleared when the clock is

reset or a memory reset occurs. You can only test this flag.



Section 11: Flags 201

Annunciator Flags (—57, —60 through —64)

The annunciator flags each indicate the status of a display annunciator. When set, a flag indicates that

its corresponding annunciator is on. Flags and their corresponding annunciators are shown in the fol-

lowing table.

Annunciator Flags
 

Annunciator Flag
 

AC —57

Alarm ((e)) —60
BAT —61

PRGM —62

SUSP —63
CALC —64    



Section 12

Subprograms and User-Defined Functions

Contents

OVEIVIBW ..202

SUbpProOgrams ....203

Form of a Subprogram (=B, ERD SUE) oo0204

Calling a Subprogram (ZHLL).o205

Subprogram Environments ... ... .....210

Recursive Subprograms . ... ......214

User-Defined Functions ... ... ... . . . . . ..218

Forms of a User-Defined Function (it F  FHR, BRI DEF) oo 000000 L. 218

Referencing a User-Defined Function ........... ... .. ... ... . ... ... ..... 220

Environment of a User-Defined Function ........ ... .. ... ... ... ... ....... 220

Recursive User-Defined Functions . ....... ... .. ... .. ... ... ... ... .. .. ... 222

Overview

The complexity of a program can often be reduced by using loops and subroutines that perform certain

tasks repeatedly. However, a program must often branch around subroutines and loops when they

shouldn’t be executed. Also, routines that operate on different sets of variables often use their own sets

of variables to contain intermediate values. For a large program, operations on numerous variables can

become difficult to trace and control.

Subprograms and user-defined functions, which can be used repeatedly, overcome some of the disadvan-

tages of subroutines and loops. These are independent programming structures that are executed only

when explicitly referenced. Unlike a subroutine or a loop, you don’t need to branch around a

subprogram or a user-defined function when you don’t want it executed.

Subprograms and user-defined functions can contain their own sets of variables. When you write a

subprogram, you don’t need to remember which variable names are used by another program or

subprogram. A variable name in a subprogram can be the same as one in a program or another

subprogram, yet the computer regards the duplicates as separate variables.

202



Section 12: Subprograms and User-Defined Functions 203

Subprograms and user-defined functions are structured so that you can readily trace how values are

input and output by them. They offer the following advantages:

e They have names by which they are referenced.

e They enable you to reduce large programs to a series of smaller, simpler, independent units.

e They are executed only by a specific reference to them.

e The names of variables within a subprogram or a user-defined function can be duplicates of vari-

able names in a program or another subprogram.

This section describes how to incorporate subprograms and user-defined functions into your programs.

More specifically, this section covers:

e How to write, store, and use a subprogram.

e How to write and execute a user-defined function.

e How to use recursion.

e How the HP-71 maintains different “environments” for subprograms and user-defined functions.

Subprograms

To simplify a sizable program, a programmer often reduces it to a collection of routines, each of which

performs one of the tasks of the program. Rather than creating a single, large program, the program-

mer reduces the amount of work by creating a series of smaller, simpler program units. Traditionally,

the program units available on a BASIC computer have been subroutines and user-defined functions.

The HP-71 offers a third type of program unit—the subprogram.

A subprogram is a distinct group of program lines that can reside in a BASIC file separately from the

main program. Subprograms can be called by a main program (or another subprogram) in a manner

similar to executing a subroutine. Subprograms reside in a program file following the main program, as

shown in the following illustration:

 

Main Program

 

Subprogram
 

Subprogram    



204 Section 12: Subprograms and User-Defined Functions

goe,  geeee

Form of a Subprogram (:=LiE, EMHD ZLIE)

Subprograms are independent parts of a program that are essentially small but complete programs.

Subprograms are delimited by a header statement, which contains the subprogram name, and a termi-

nating statement. A subprogram is executed when it is called using theil1. statement (described

below).

Form of a Subprogram

Starts with the =LiE keyword

 

i Name Formal parameters

f-H r > N A N\

Header statement —— SiiE ITMTEGEALOH, BHOL, DF

: } Program lines

Terminating statement ——» EMD ZLHE

The =iLiE Statement. The Z!!E statement is the first statement of a subprogram. It identifies the

subprogram and declares its parameters.

 simplified syntax

I’E: 1B subprogram name [formal parameter list:]

 
 

As with file names, a subprogram name can contain up to eight letters or digits, the first of which must

be a letter. The name is followed by an optional formal parameter list, which is a list of variable and

array names, called parameters, that will contain information passed to the subprogram by a calling

program.

The Formal Parameter List. A subprogram obtains values from a calling program through the for-

mal parameter list. Values can also be passed back to the calling program through this list. The formal

parameter list is enclosed in parentheses, and parameters are separated by commas.

Example:

SUE SOLVECA,EB,.CL The subprogram’s name is =L 'E and its formal
parameters are H, E, and 1.

Ending a Subprogram. A subprogram ends with an EHDO Z1IE statement.

 

EHD SUE

  
 



Section 12: Subprograms and User-Defined Functions 205

The function of EML ESUE is similar to FETUREHM in that it returns execution back to the calling

program. It also clears the memory used to execute the subprogram, making it available for other uses.

(Refer to “Subprogram Environments” below.)

As an alternative to using EHI ZLIE, you can use EHI. Actually, you aren’t required to use EH[I SLIE

or EMH[Ito end a subprogram. A subprogram will end when the computer encounters the next =UIF

statement or the end of the file.

Storing a Subprogram. Subprograms can be in a program file either with a main program or by

themselves. A file can contain more than one subprogram; however, all subprograms must be listed

after the main program (if one exists) and should have no program lines between them. (Any program

lines between subprograms will never be executed.)

 

 

 

  
 

Main Program

EHD

SUE

EHD SUE —«— The EMD ZLUIE statement clearly marks the

end of the subprogram.
SUE

-«— The end of the file (or another = LiE statement)

can also mark the end of a subprogram.

Calling a Subprogram (i-Fi.i.)

Thei L. Statement. TheilL. statement executes a subprogram.

 

 

simplified syntax

’—Z FL L. subprogram name [+ actual parameter list:] [I} program file]

 

This statement’s elements correspond to the Z1iE statement. The subprogram name is the name of the

subprogram to be executed. The actual parameter list is a set of expressions and variables that are

passed to a subprogram. The program file indicates the file in which the called subprogram is located.

Cri L 1s like ZEUIE in that it transfers program execution to asubprogram until the subprogram is

finished, then execution returns to the statement followingi1

 



206 Section 12: Subprograms and User-Defined Functions

Actual Parameters. Many different ZHL 1 statements can invoke the same subprogram so long as

their actual parameter lists match the Zi/Estatement’s formal parameter list item for item, type for

type.

The following illustration show the correspondence between a C#i | and a ZLiE statement.

 

SUBPROGICA, 25, CF The AL Lstatement invokes the

subprogram and passes information to it.

Corresponding

Types

SURFROGLICS, T, Vs

SR Returns execution to the statement after =i L.

 

In this illustration, the formal parameters = and T are numeric variables and /# is a string variable.

Any #LLstatement that calls SUEFEZZ 1 must have numeric values or expressions as its first two

parameters and a string value or expression as its last parameter.

Types of Actual Parameters. In some applications, a program needs information passed back to it

from a subprogram. This can be accomplished by passing a variable as a parameter to a subprogram

which, in turn, alters the value of that variable.

A Fi L statement can pass three forms of parameters to a subprogram:

e Value parameters, which can’t be changed by a subprogram. In the actual parameter list, these are

variables that are individually enclosed in parentheses, and numeric or string expressions.

e Reference parameters, which can be changed by a subprogram so that values can be passed back to

the calling program or subprogram. In the actual parameter list, these are variable names which

aren’t enclosed in parentheses. Reference parameters can be variables only. Also, arrays can be

reference parameters only.

e Channel numbers, which are numbers associated with data files. A special type of value parameter,

they are preceded by a # in a formal parameter list. (The use of data files is described in section

14, “Storing and Retrieving Data.”)



Section 12: Subprograms and User-Defined Functions 207

Example: A program calls a subprogram that computes the octal equivalent of a decimal number. The

program passes value parameter T, which contains the decimal number, and a reference parameter E #,

which is assigned an octal equivalent by the subprogram.

IMFUT T T contains the decimal number; it is a value

parameter.

CHLL OCTARLOOCT:, E$ E# is the reference parameter; it contains the

octal representation when the subprogram is com-

pleted.

SUE OCTALOA, EBF: M contains the value passed in T.
"y g

Changes to E# result in equal changes to £ #.

Ef = octal equivalent The subprogram assigns the octal representation

to E#. Since E#is the corresponding reference

parameter, it is also assigned the octal representa-

tion.
EHD =UE

When CFHL L is executed, the values of the value parameters are assigned to the corresponding formal

parameters in the =!!E statement. Reference parameters become linked with their corresponding for-

mal parameters in such a way that changes to the formal parameters result in equivalent changes to

the reference parameters. In this way values are passed back to the calling program or subprogram.



208 Section 12: Subprograms and User-Defined Functions

All variables declared within a subprogram are local to that subprogram. That is, they are not shared by

the calling program. This means that a variable used in a subprogram can have the same name as one

in the calling program, yet the HP-71 treats them as different variables. Also, a reference parameter

need not have the same variable name as its corresponding formal parameter. The subprogram operates

within its own local environment. (Local environments are described below under “Subprogram

Environments.”)

Parameters can be any type of variable—they can be simple numeric, array, string, or string array

variables. Value parameters can be numeric or string expressions, but the expressions can’t contain any

references to user-defined functions. Reference parameters must be variables.

Channel numbers, which are associated with data files, can also be passed as actual parameters to a

subprogram. A channel number in a subprogram’s formal parameter list becomes associated with the

same file as the corresponding actual parameter.

If a subprogram opens a data file using a channel number that is not in the formal parameter list, that

channel number is local to the subprogram, and its data file will be closed when the subprogram ends.

If a subprogram doesn’t have a formal parameter list, any channel numberit uses is global. The chan-

nel number’s corresponding data file remains open after the subprogram ends. (For more information

about channel numbers, refer to “Data Files,” page 247.)

Examples:

L SOLVECZEHE+Z+EHE-12, 81 The first parameter is a value parameter. The sec-
ond, # 1, is a reference parameter.

CRLL EDITORCDISPSE, LELTE, (800 All parameters are value parameters.

An Example Subprogram. Now that some of the elements of a subprogram have been described,

let’s look at a complete subprogram to see how it works.

Example: The Fibonacci series is a mathematical series in which each term is the sum of the two

preceding terms. The values of the first and second terms in the series are defined as 1. The third term

is the sum of these two, 2. The fourth term is the sum of the second and third, 1 + 2 = 3, and so on.

The following program, F I ECIHAL, uses a subprogram to compute the nth term of the Fibonacci series

for 0<n<61. It prompts you to enter a value from the keyboard, calls a subprogram to determine the

corresponding Fibonacci number, and displays the result. The values returned are exact (no round-off

errors).

To key in this example program, type ECIT FIEOHAL and enter the following program

lines.



Section 12: Subprograms and User-Defined Functions 209

10 DESTROY N, A @ STD

20 INPUT “TERM? ;N

30 CALL FIBO (N,A)
40 DISP "TERM ":N:" IS ";:A

50 SUB FIBO(B,C) E: corresponds to M, and i corresponds to F in
line 30 above.

60 IF FP(B) OR B<?1 OR B>?60 THEN C=0 Checks for an input error.
@ GOTO 160

70 IF B=1 OR B=2 THEN C=1 @ GOTO 160 Assigns 1 to I for the simple cases. Since i is a
reference parameter,it is assigned the value of .

80 X=1

90 Y=1 % and ¥ are two consecutive terms.

100 FOR I=3 TO B Finds the value of the Eth (FHth) term.

110 Z=X

120 X=X+Y # assumes the value of the next term and *
assumes the value of .

130 Y=Z £ is a temporary variable to store .

140 NEXT |

150 C=X # contains the value of the Eth term.

160 END SUB

F IEis the name of the subprogram. The number input from the keyboard, which must be an integer

greater than 0 (the program returns 0 for an improper input), is assigned to i, which is then passed as

a reference parameter to the subprogram. The subprogram assigns the hth term of the series to the

reference parameter, .

To use the program, press and at the prompt enter an integer, n, then press LINE]. The
program will compute and display the value of the nth term in the Fibonacci series.

 

Input/Result

RUN Executes F I EOIHAD (assuming it’s the current
file).

Prompts you for the number of a term in the
series.   



210 Section 12: Subprograms and User-Defined Functions

Selects the 6th term.

 

T
i

ee
ve

de

Ty fo
oo
ef

i
i
i

i
1
t Displays the value of the 6th term.

   
Calling a Subprogram In Another File. You can call a subprogram in another file by specifying the

file in the ZFHL L statement.

Examples:

cumy,Tr I Calls FIEZL in the file MATHZET in port 2.
CROETOZ

IM DATES Calls DATE 1 in the file DATES.

 

The HP-71 can locate a subprogram in another file even if you don’t specify the file. Therefore, it isn’t

necessary to include a reference to the subprogram’s file in the FlL L statement unless another

subprogram of the same name resides in memory.

You can also call a program as a subprogram, but you can’t pass it any parameters.

simplified syntax

l*—h L. [file name]

When calling a program, the HP-71 first searches the files in memory for a subprogram by the speci-

fied name. If a subprogram isn’t found, then the HP-71 searches for a program file by that name and

executes it as a subprogram.

 

 
 

Examples:

Calls the current file as a subprogram.

CHLL FIRSPEED Calls A IFEZFEED. The computer first searches
for a subprogram by this name. If it doesn’t find
one, it searches for a program and executes it.

 

Subprogram Environments

When you perform operations from the keyboard, you have access to variables, flags, files, the Com-

mand Stack, and other HP-71 operating features. A program also has access to these features. Some of

these features are available to all programs and subprograms. Other features are available only to the

program or subprogram in which they are defined. These features collectively form an environment for

a program or subprogram.



Section 12: Subprograms and User-Defined Functions 211

Those features that are always accessible to any program or subprogram comprise the global environ-

ment. Those features that are defined or declared within a program or subprogram comprise the local

environment for that program or subprogram. From the keyboard, you have access to the global envi-

ronment and, at any time, one local environment.

When you execute i, the program uses the same local environment as that used by the keyboard.

This environment is the main environment. It can be considered the default local environment for the

computer.

The following illustration shows the relationship between the main environment and the global envi-

ronment. A running program has access to the elements listed under Main Environment plus the

elements listed under Global Environment.

Main and Global Environments
 

 

Global Environment Main Environment

file names variables

Command Stack arrays
flags user-defined functions
trap values channel numbers

timers statement labels

subroutines

FORE L HESET loops      
Saved Environments. When a subprogram is called (either by a program or from the keyboard), the

main environment is saved and a new local environment is created for the subprogram. The

subprogram has access to the elements of its local environment plus the elements of the global environ-

ment. It doesn’t have access to the saved environment. The new local environment exists as long as its

corresponding subprogram is in effect. When the subprogram ends, the local environment is erased and

the main environment is restored.

When a local environment is active, it is the active environment. If a subprogram becomes suspended,

only the features of its local environment plus the global environment can be accessed from the

keyboard.



212 Section 12: Subprograms and User-Defined Functions

Program and Subprogram Environments
 

 

Global Environment Main Environment

(saved)

file names variables

Command Stack arrays
flags user-defined functions
trap values channel numbers

timers statement labels

subroutines

FORE ...HE=®T loops
 

 

Subprogram
Environment

(active)

variables

arrays

user-defined functions

channel numbers

statement labels

subroutines

FOR ... HE®T loops     
 

Elements that are within a local environment can’t be accessed by another environment. For example, a

user-defined function that is in a subprogram can’t be used by a main program or another subprogram.

But features that are part of the global environment can be accessed by any environment.

A program can call a subprogram, a subprogram can call another subprogram, and that subprogram can

call even another subprogram. There is no predefined limit to the number of levels of subprogram calls

that can occur. But each call results in an environment being saved and another one being created,

using up more of main RAM. Thus, the amount of main RAM limits the number of levels of

subprogram calls.

Restoring Environments. When a subprogram ends, execution returns to the calling subprogram or

program. Also, the subprogram’s environment is erased and the calling environment, the environment

of the calling program or subprogram, is restored.

For example, a program, FF 11, calls a subprogram, ZUEFEDG 1, The local environment for FEOG L

(the main environment) is saved and the computer creates a new environment for ZUEFEDG L, This

subprogram calls another subprogram, =iiEFE{ZZ. The environment for ZUEFEDG L is saved and

one is created for SLIEFREOGE,



Section 12: Subprograms and User-Defined Functions

Program and Subprogram Environments
 

Global Environment

file names

Command Stack

flags

trap values

timers

 

 

Main Environment

(saved)

variables

arrays

user-defined functions

channel numbers

statement labels

subroutines

FOR .. .HE®T loops
 

 

SUHBFPREOGT

Environment

(saved)

variables

arrays

user-defined functions

channel numbers

statement labels

subroutines

FORE ... HE®T loops
 

 

 
SUBRPROGCE

Environment

(active)

variables

arrays

user-defined functions

channel numbers

statement labels

subroutines

FORE ... HE®T loops     

213

While ZUEFREOGE is running, its environment is the active environment. Its calling environment is

that of Zi!EFREIG 1, and the calling environment of SlLiEFE!{151 1s the main environment. Whenever

program execution is suspended, the environment that is active at that time is the one that can be

accessed from the keyboard. To access a saved environment, you must end one or more subprograms

until the environment you want becomes the active environment. You can do this from the keyboard

using E R,



214 Section 12: Subprograms and User-Defined Functions

Ending a Subprogram Environment. When EHII or EMHD Z1IE is executed within a subprogram,

the subprogram ends and execution returns to the calling program or subprogram. The calling environ-

ment is restored as the active environment.

More specifically, when either EMHII or EHI ZiIE is executed from within a subprogram, the HP-71

does the following:

e Returns execution to the calling program or subprogram.

e Closes all files associated with local channels.

o Clears memory associated with the subprogram’s local environment.

e Clears any i ERFEF condition set in the subprogram.

e Restores any i ERFEOE condition set in the calling environment.

¢ Restores the [1F TH pointer.

Alternatively, you can end a program and clear the active and all saved environments using EHD AL L.

This statement ends program execution, but does not affect the variables declared within the main

environment.

If you execute EMI or EHD =UE from the keyboard while a program is suspended during a

subprogram, the statement following the CFi L statement that invoked the subprogram becomes the

suspend statement.

Recursive Subprograms

What Is Recursion? A subprogram can call other subprograms the same way a main program can call

a subprogram. A subprogram can also call itself as a subprogram. A subprogram that calls itself is a

recursive subprogram. Each time a recursive subprogram calls itself, the HP-71 creates a new local

environment, as it does for any other subprogram (as illustrated below).



Section 12: Subprograms and User-Defined Functions

Program and Subprogram Environments
 

Global Environment

file names

Command Stack

flags

trap values

timers

 

 

Main Environment

(saved)

variables

arrays

user-defined functions

channel numbers

statement labels

subroutines

FOE ...HEXT loops
 

 

SUBFPROGT

Environment

(saved)

variables

arrays

user-defined functions

channel numbers

statement labels

subroutines

FOR ...HE®T loops
 

 

 
SUHEBRPROGH

Environment

(active)

variables

arrays

user-defined functions

channel numbers

statement labels

subroutines

FOE ... HEXT loops     

215

Recursive subprogram calls are useful in sorting and searching operations. Typically, recursive

subprograms are used for more advanced programming applications; however, some smaller programs

can be simplified if recursion is used. For example, instead of using the iterative algorithm in the

Fibonacci program above, you could simply define the value of the nth term of the Fibonacci series as

the value of the (n — 1)th plus the value of the (n — 2)th terms. The subprogram could then passn — 1

and n — 2 as parameters to itself to determine their values.



216 Section 12: Subprograms and User-Defined Functions

Example: The following Fibonacci program, which is a revision of the previous one, uses a recursive

subprogram. Key in this program and run it as you would the previous program.

EDIT FIEBOMACZ (ENDLINE].)

10 DESTROY N,A
20 INPUT “TERM? ”;N

30 CALL FIBO(N,A)
40 DISP “TERM ”;N;IS ";A

50 SUB FIBO(B,C)

60 IF FP(B) OR B<?1 OR B>?60 THEN C=0
@ GOTO 110

70 IF B=1 ORB=2 THEN C=1 @ GOTO 110

80 CALL FIBO(B-1,9)

90 CALL FIBO(B—2,T)

100 C=S+1

(Type

Returns 0 if an input error is detected.

Returns 1 for the simple cases.

Finds the value of (E — 1)th term and assigns it
to =.

Finds the value of (E — 2)th term and assigns it

to T.

Assigns the value of the Eth term, = 4+ T, to L.

110 END SuUB

The difference between this algorithm and the iterative algorithm in the previous example is that the

iterative approach started with the value for the simplest term and worked up to the nth term while the

recursive algorithm starts with the nth term and works its way to the simple term.

Example: Execute the recursive Fibonacci program.

Input/Result

RUM FIBOHACE Executes the recursive Fibonacci program.

 

 

B Prompts for an integer.

  
 

Finds the value of the fifth term.

 

Displays the fifth term.

  
 

Using the recursive algorithm, the subprogram determines the value of a given term by successively

calling itself for each preceding term. To avoid calling itself endlessly, the subprogram returns a dis-

crete value for the first and second terms. For any other term the subprogram calls itself until it

returns the value of the second or first term. The different levels of subprogram calls end after comput-

ing the values for their respective terms.



Section 12: Subprograms and User-Defined Functions 217

The subprogram found the value of a term by recursively finding the value of the two preceding terms,

as shown by the following illustration:

CHLL FIBD 4, H1y + ORLL FIBD O3, H2

CHLL FIBO CEZ, MY 4+ CHLL FIBOD o, WY UFLL FIBO OZ.Hy o+ ODFLL FIED O, /A

CHLL FIBO o2,m: + 0RLL FIBD O, H2

The illustration shows the different levels of subprogram calls necessary to determine the value of the

fifth term in the Fibonacci sequence. Different levels of the subprogram are called until it returns a

value for a simple case. Then, the pending subprogram calls are evaluated in turn up to the first level.

Using numbers in place of subprogram calls, the diagram becomes:

5

You may have also noticed that the recursive algorithm ran much slower than the iterative one. That is

because in this case, the recursive algorithm computes many of the intermediate values more than once,

thus requiring more time than the iterative algorithm to reach the same solution.



218 Section 12: Subprograms and User-Defined Functions

For many programming problems, the iterative algorithm is the more efficient solution, but this is not

always the case. Recursive subprograms can be much easier to write and might run faster. However,

recursive subprograms use a larger amount of memory to store all the variables for each call of the

subprogram. The above example, while not demonstrating the efficiency of recursion, simply illustrates

how to write a recursive subprogram.

User-Defined Functions

The HP-71 has a sizable set of built-in functions. Although they will meet many of your programming

needs, you might at times find it necessary to create your own functions. The HP-71 enables you to

create user-defined functions and use them as you use the computer’s built-in functions.

A user-defined function can appear anywhere in a program or subprogram. But it can only be used by

the program or subprogram in which it’s defined. If the computer encounters a user-defined function

definition when executing a sequence of statements, it skips over the definition. A function can be

executed only when it is referenced in a numeric or string expression, either in a program or from the

keyboard.

   Forms of a User-Defined Function (iiiF M, E )

Functions that you create can be simple or very complex. On the HP-71 you can create simple func-

tions using a single statement, or more complex functions which require more than one statement to

define.

Single-Statement Functions. Single-statement functions begin with the [iEF F i keywords and in-

clude an expression that assigns a value to the function.

 simplified syntax

|/ EF  FHMfunction name [formal parameter list:]= expression

 
 

A function name is a single letter, or a letter and a digit, for a numeric function. For a string function, a

# must follow the letter or letter-digit combination. The variables appearing in the formal parameter

list are variable names which can be the same as variable names in any other environment. The formal

parameters can be used in the expression to assign a value to the function.

A DEF FH statement can contain up to 14 parameters in its formal parameter list. These formal

parameters can be simple numeric or string variables only.

Examples:

4 T

i

“r
y

g i £

 



Section 12: Subprograms and User-Defined Functions 219

Multistatement Functions. A multistatement function is delimited by a beginning and an end

statement.

 — simplified syntax

- function name [+ formal parameter list :]

 

 

 

  
 

A multistatement, user-defined function has the following general form:

Frix« formal parameter list A beginning line.

 

Program lines.

FHx = expression An assignment statement.

Program lines.

An ending statement.

Examples:

100 DEF FNT(A,B) Defines a function named7.

110 A=A+B

120 B=A+B

130 FNT=A+B Assigns a value to the function.

140 END DEF Ends the function.

100 DEF FNAS$(R$,T$,US) Defines a function named FHF#.

110 FOR | = 1 TO LEN(R$)
120 US[I,I+1]1=R$[I,1] & US$[LI]
130 NEXT |

140 FNA$ = U$ Assigns a value to FHFA¥.

150 END DEF Ends the function.



220 Section 12: Subprograms and User-Defined Functions

Referencing a User-Defined Function

When you use a function in an expression, you are referencing it. To reference a user-defined function,

include it in an expression as you would one of the HP-71 functions. You can reference a user-defined

function from the keyboard only if it is defined in the current file. (The program in the current file

need not be in a suspended state.)

Examples:

FHTEOR, B

THFHJICT S P

  

FHAZCFHM R, ¥ +FHE

The parameters in the function reference are similar to the actual parameters in a subprogram call.

They must match the function’s formal parameters in the order in which they are listed, type for type,

numeric or string. Numeric or string expressions can be used as actual parameters and, unlike the

actual parameters in theL L. statement, the expressions can contain references to user-defined func-

tions. All actual parameters are passed as value parameters. A user-defined function doesn’t return

values through the actual parameters.

Environment of a User-Defined Function

User-defined functions are accessible only to the program unit in which they are defined. That is, a

main program or a subprogram can’t reference functions which are defined in another program or

subprogram.

A user-defined function can access the variables and channel numbers of the environment in which it is

defined. The exception to this is that variables declared in the function’s formal parameter list are local

to that function. Because of this, a user-defined function can’t access a variable of the local environ-

ment in which it’s defined if it has a variable of the same name in its formal parameter list.

The following illustration shows that a user-defined function has its own environment consisting of its

formal parameters, subroutines, and FiiF ... HE =T loops. The elements of the user-defined function’s

environment aren’t accessible to the program or subprogram, but the elements of the program’s or

subprogram’s local environment, as well as the elements of the global environment, are accessible to

the user-defined function.



Program and User-Defined Function Environments

Section 12: Subprograms and User-Defined Functions

 

Global Environment

 

Local Environment

221

file names variables

Command Stack arrays

flags channel numbers
trap values statement labels

timers subroutines

FOR...OHEST loops

 

User-Defined

Function

Environment

formal parameters

subroutines

FOE ... HE®T loops        
 

Normally, a multistatement, user-defined function ends with EHII [IEF or alternatively, with EHI.

When either of these statements ends a user-defined function, the computer:

¢ Returns execution to the calling expression.

e Clears the memory associated with the function’s environment.

A user-defined function also ends when ZiUIE, EHD SUE, or the end of a file is encountered.

When debugging a user-defined function, a programmer often includes a F1!%E in the function defini-

tion then references the function from the keyboard. The function becomes suspended when it executes

the FHLIZE, enabling the programmer to view the values variables, flags, and other aspects of the local

and global environments. To continue executing the function, the user presses [f][CONT]. If a function

is referenced in a keyboard expression and then suspended, only the function will be completed when

execution resumes; the portion of the expression to the right of the function reference isn’t evaluated. If

you end a suspended function that was referenced from the keyboard, it does not return a value.

If you end a suspended function that was referenced from a program and a value was not assigned to

the function, the function returns to the expression a value of zero if it is a numeric function or a null

string if it is a string function.



222/223 Section 12: Subprograms and User-Defined Functions

Recursive User-Defined Functions

Like subprograms, user-defined functions can be recursive. For example, the Fibonacci program can be

written using a recursive, user-defined function.

Example: Key in the following program and execute it as you did the other Fibonacci programs.

The main part of the program is line 50 in the user-defined function, FNF. In this function, a discrete

value is returned for the simplest cases (inputs of 1 or 2), while the function calls itself recursively for

inputs greater than 2. Line 50 simply states that the value of the function is 1 if the input is 1 or 2. If

the input is greater than 2, the value of the function is the sum of the Fibonacci values for the two

preceding terms in the series.

Line 40 of the program tests for inputs that are either less than 1 or noninteger. If such an input is

detected, the function displays a message then ends without being assigned a value. When a numeric

function ends without being assigned a value, it returns a value of 0.

10 INPUT “TERM? ;N

20 DISP “TERM ”;N;“ IS ";FNF(N)

30 DEF FNF(B)

40 IF FP(B) OR B<?1 OR B>?60 THEN 60

50 IF B=1 OR B=2 THEN FNF=1 ELSE
FNF=FNF(B-1) + FNF(B-2)

60 END DEF

Prompts you to enter a term.

Invokes the user-defined function and displays its
value.

Defines the beginning of the user-defined
function.

Checks for an input error. Since the line that
assigns a value to the function is skipped, the
function returns 0.

Assigns a value to the function.

Ends the function definition.

The algorithm for this program is similar to that used earlier when a subprogram was called

recursively; however, this function is shorter and easier to follow.





Section 13

Printer and Display Formatting

Contents

OVEIVIBW.224

Simple Formatting . .....225

Displaying and Printing Information (I I =F, FEIMNT) ... ... .. ... ... ... 225

Implied LlF226

Spacing Output (THE) ....226

Advanced Formatting . ....... ......228

What is a Format String? . ... ......229

Using a Format String (I MFAGE, DISF USIHG, FEINT USIHMG) ... 230
Controlling the Display and Printer . ... ... .. ... . .. . .. . .. . ... 232

Line Width (M IDTH, FHIDTH).232

Changing the End-Of-Line Sequence (EMIIL IME) .. .o ooo.. 234

Cursor and Display Control . ......... ... ... . . ..234

Overview

When you write BASIC programs, you might need to control how information is displayed or printed.

You can use a few simple techniques or, if you are an advanced user, some advanced techniques. This

section describes printer and display formatting on the simple to the advanced levels. More specifically

this section covers:

¢ Sending information to a display and a printer.

¢ Encoding information to be displayed or printed with formatting instructions.

e Using format strings and IMAGE statements to format output.

Controlling the line width of the display and printer.

Controlling the end-of-line sequence used by the display and printer.

Controlling the display and the printer using control codes and escape sequences.

How to create and use protected fields in the display.

224



Section 13: Printer and Display Formatting 225

Simple Formatting

Displaying and Printing Information (i =F, FEINT)

You can use the DI =5F and FEIMT statements to display information on the HP-71. If you have a

printer connected, the FFIMT statement sends information to it. Information that is displayed or

printed is collectively referred to as output. Also, output can mean to send information to the display or

a printer.

— simplified syntax 

L IzF display list

 

— simplified syntax 

FEIMT print list  
 

The display list and print list are of the same format and each contains a list of items to be output. List

items can be:

® Variables and array elements.

* Numeric expressions.

¢ String expressions.

The items in either list are evaluated and displayed on the same line (if possible) according to the order

in which they are listed.

Examples:

OISk A:; B Cl1F: CZ2F

OISk STV LFLMHEF

Numbers which are displayed using O I ZF or FEIMT are formatted according to the current display

format. (Numeric display formats are described under “Number Formatting,” page 54.)



226 Section 13: Printer and Display Formatting

Implied [i I &F

In most cases, the display list does not need to be preceded by i I %, For example, typing ##

is equivalent to typing [ I %F ## LINE]. This can save you keystrokes when keying in a program.
For example, the program line

 

FECHREECSD L R RS

would be interpreted and displayed by the HP-71 as

BEOETe Ty bt BE g Tl BB e o0 T T oy an B L i
115

7

T (
1- :

........ L. i

The implied [ I %F doesn’t apply after THEHM or ELZE inan IF ... THEH or IF ... THEHM...ELSE

statement. Since an implied T can be used in this case (refer to “Conditional Branching,” page

187) the computer interprets a string expression following THEHM or ELZE as a label to which execu-

tion should branch. Therefore, you must key in [ I ZF after THEHM or ELZE when you want it executed

in a conditional execution statement.

You should be careful when entering an expression from the keyboard in such a way that it can be

interpreted as a program line. If a line keyed into the display begins with a number, the computer trys

to evaluate it as an expression. If the computer is unsuccessful, it then tries to evaluate the information

as a program line. For example, i E 1 is evaluated as 1 & while 1 E i is interpreted as the program line
YT i I

Spacing Output (7 HE)

Spacing between items in a display list or print list can be controlled by the punctuation used between

items in the list and by T#HE.

 

THE Ccolumn number :

   

THE operates much like a tab key on a typewriter. It simply spaces over to a specified column before

displaying or printing information. For example, TAE < 15 moves the cursor to column 15 before

writing the next piece of information.

If the column number supplied to T#E is greater than the current HIDTH or Fi ITH setting, the

HP-71 repeatedly subtracts the current width from the column number until the column number is less

than the width. For example, if the current i I [1TH setting is 96 (default),

 

is interpreted by the computer as

 



Section 13: Printer and Display Formatting 227

Example:

Input/Result

T e P
Pi

 

HEC DEF Displays the first item, tabs to column 8, then
displays the second item.   

Spacing can also be controlled by including punctuation between items in the display list or print list.

The following punctuation marks perform the indicated spacing:

e Semicolon (:) Allows no spaces between items.

e Comma () Fills the remainder of the display zone (described below) with spaces.

A display zone is a 21-character portion of a display line. The display can accommodate a partial

display zone when its width won’t allow a complete one. Thus, the display with its default width of 96

characters has five display zones—four of 21 characters and one of 12 characters. If two items are

separated in a display list or print list by a comma, the first is printed, and if it doesn’t fill its display

zone, the computer fills the rest of the zone with spaces before displaying or printing the next item.

 

Examples:

Input/Result

DISFE "RBOTVDEFT

HECDEF Displays the two items with no spacing.

   

 

Displays the first item beginning at column 1 and
the second item beginning at column 22.

i = i

 

 

DEF Scrolls to the left to display the second item.   



228 Section 13: Printer and Display Formatting

Advanced Formatting

Using the comma and semicolon as described, you can format output adequately for many applications.

However, there are some applications for which you won’t be able to control the lengths of strings or

the magnitudes of numbers to be printed. These uncertainties can make it difficult to print or display

information in a consistent format.

The HP-71 enables you to precisely control the manner in which information is displayed or printed.

Detailed formats can be specified using format strings (described below).

Example: The following two programs illustrate how formatted output allows you to round values to a

specified number of decimal places and to position numbers and text for greater readability.

Formatting with commas, semicolons, and THE:

10 OPTION BASE 1
20 DESTROY A1,B1,1,A,B
30 FOR I=1TO 4
40 READ A(l),B(l)
50 DISP A(l);TAB(25);B(l)
60 A1=A1+A() @ B1=B1+B()
70 NEXT |
80 DISE"TAB(25);“--=nmmmmnemmmmv¢
90 DISP “TOTAL=";A1;TAB(25);“TOTAL=",B1
100 DATA 5.8052,7,.3737,8.6,4.322,9,679.4646,.8

Output:

i
y

O
o
n

 



Section 13: Printer and Display Formatting

Formatting with DI ZF LS IHG and IMAGE (described below):

10 OPTION BASE 1
20 DESTROY A1,B1,l,A,B
30 FOR 1=1 TO 4
40 READ A(l),B())
50 DISP USING 100; A(l),B())
60 A1=A1+A(l) @ B1=B1+B()
70 NEXT |
80 DISP USING 110;"TOTAL=",A1,“TOTAL=",B1
90 DATA 5.8052,7,.3737,8.6,4.322,9,679.4646,.8
100 IMAGE 10X,4D.DD,10X,4D.DD

110 IMAGE 3X,14“—",3X, 14“—"/2(3X,7A,4D.DD)

Output:

i

]
e

L Ju
oo
e
}

D
0

i
y
i

What is a Format String?
B
l

i
t

i
l
j
—
;

P
i

B
y

.
.

P
E
R
L
T eed

s’
se

ed
e’

229

A format string is a string of characters which represents an output format. A format string consists of

one or more field specifiers that are separated by delimiters, which are usually commas. Each data item

is formatted by a field specifier. Field specifiers are constructed of characters called image symbols that

define what information appears in each character position, and multipliers that specify how many

times an image symbol is repeated. Multipliers can also specify how many times a field specifier (or

group of field specifiers) is repeated.

Field Specifier

—
40,00, 7, 50, 00
. ~/

Y

Format String



230 Section 13: Printer and Display Formatting

A format string can be a string expression:

° Included in a DIZF USIHG or FREIMT S IHG statement:

ISP USIHG 40,00, 7=, 50.00%; AL.BL

* Assigned to a string variable and referenced by that variable name:

0, 7R, S0, 000
MG B%: A1, Bl

 

A format string can also be an unquoted string included in an IMAGE statement and referenced by

DISP USIMG and FREIMT USIH

 

.{‘f

TImage symbols are listed and described in the HP-71 Reference Manual under 1

dictionary.

MAGE in the keyword

Using a Format String (I MAGE, DISF USIHG, FRINT USIHG)
Format strings are used by DI ZF S IHE and FEINT USIHG to format output.

 — simplified syntax

FUZIHG format string : display list

=k Uz IMG line number : display list

 

— simplified syntax 

FEIMT Uz IMG format string : print list

FEIMT Uz IMNG line number : print list   
Each item in the display list or print list uses a field specifier in the format string. If there are more data

items than field specifiers, the format string is reused until all items in the display list or print list have

been formatted. This is useful when, for instance, you want to display a dozen numeric values with the

same format; your format string can be a single numeric field specifier. Each field specifier must be able

to accommodate the type of its corresponding data item in the display list or print list. For example, a

numeric field specifier can correspond only to a numeric data item. If a numeric field specifier’s cor-

responding data item is a string, an error results.

As shown above, format strings can be included in DISF USIHG and FRIHT LS IHG statements or

assigned to a string variable. Also, formats can appear on a separate program line using the IMFAGE

statement.



Section 13: Printer and Display Formatting 231

 simplified syntax

|: MHAZE unquoted format string

 
 

Example: Using the information on format strings in the HP-71 Reference Manual (listed under the

keyword IMHAGE), build a format string for a list of items to be printed. The items to be output are

eight six-digit numbers representing the number of apples and prunes produced in four regions of the

northern Yukon, and two column headings. Print the column headings with four numbers under each

heading and eight spaces between columns.

10 OPTION BASE 1

20 PRINT USING 100; “Apples”,“Prunes”

30 FOR I=1TO 4

40 READ A(1),B(l)

50 PRINT USING 110; A(l),B(l)
60 NEXT |
100 IMAGE 2(8X,6A)/
110 IMAGE 2(8X,6D)
120 DATA 14857,233649,122990,333125
130 DATA 759982,1243,233219,416627

Sets the base option to 1.

Prints the column headings.

Begins loop.

Assigns values from the [iFiTH
array elements.

statement to the

Prints the values.

End of loop.

Format string for the headings.

Format string for the values.

To determine which field specifiers to use in the format string, you need to first lay out the information

to determine the formats you want. For this example the desired output should appear as:

8 Blanks 8 Blanks

 

6 Digits

 



232 Section 13: Printer and Display Formatting

The format string for the heading requires eight spaces, six character positions, eight more spaces,

another six character positions, and an end-of-line symbol for a blank line. The symbol for a space is

#, the symbol for a character position is #, and the symbol for end-of-line is .-. Using these characters

for the format, statement 100 becomes:

Each set of image symbols is called a field specifier. A field specifier defines how an item from the print

list is formatted, or defines the spacing between printed items. The eight X’s above specify a field of

eight blanks. The six A’s specify a field of six characters. Field specifiers are usually separated by

commas.

You can shorten the format string by using multipliers. A multiplier that precedes a field specifier

indicates that the specifier should be repeated that number of times. Thus the I[1F:E statement above

becomes:

 

ITMAGE o, or, 88, 68

or more simply,

  

The format string for the numeric data requires eight blanks, six digits, eight more blanks, and another

six digits. The statement becomes:

ke eaem e e e ens e
P18 ITHMAGE Zoms, eln

Controlling the Display and Printer

Line Width (M IDTH, FHIDTH)

The WifiTH and FHIDTH statements set the maximum line length for information output to the

display and a printer, respectively.

 

HILTH line length
 

 

FLILTH line length   



Section 13: Printer and Display Formatting 233

The line length can be a numeric expression that evaluates to a number between 0 and 96. These state-

ments don’t affect how many characters you can type in the display. They determine the line length of

information displayed by the following statements:

 

@ 5

Example:

Input/Result

1TH 1% [ENDLINE

4TY THREE CHARACTERS" (ENDLINE]  
 

 

 

 

 

THEMTY THE The HP-71 displays the first 10 characters.

EE CHAREARCT The HP-71 displays the second 10 characters.

B The HP-71 displays the last characters.  
 

The HP-71’s display is the printer device if there isn’t a printer connected. With no printer connected,

information can be displayed by both 1I%ZF and FFEIMT statements. In this case, if you execute

FHIDTH, it will only affect the line length of information sent by FF IT. Similarly, if you execute

HIDTH, the line length that is set will only affect information displayed with &I &F,



234 Section 13: Printer and Display Formatting

Changing the End-Of-Line Sequence (ERLil. IHE)

When the HP-71 sends a line of information to a printer (or the display) using FEIHMT, it sends a

following end-of-line sequence, which is a string of up to three characters that tells the printer what to

do after receiving the line. The default end-of-line sequence has two characters—carriage return (CR)

and line feed (LF). This default sequence causes a printer to advance one line and position the print

head to the first column. On the HP-71, this default sequence causes a new line to be displayed.

You can change the end-of-line sequence to any characters you choose using the EHL I HE statement.

simplified syntax

|;I RHOL IHE string

The string is a string expression that evaluates to at most three characters.

 

  

Example

EMOLIMNE CHREFO1IZ2LRCHREFO1IO R Sets the end-of-line sequence to CR, LF, LF,
CHE£.1G2 causing a double linefeed.

These two characters, CHFE#: 183 and CHFE#$¢ 12 are two of 32 ASCII control characters. Control

characters are those ASCII characters (codes are 0 through 31) that are used by computers to control

peripheral devices.* Many devices respond differently to control characters, or do not respond at all.

Before using control characters, you should refer to the owner’s manual for the device you are using to

determine how it responds to these characters.

Cursor and Display Control

The HP-71 enables you to control the display using certain characters. If you aren’t an advanced user,

you might not need this information.

Control Characters and Escape Sequences. You can further control how the HP-71 displays in-

formation by sending it control characters and escape sequences. Athough some of the effects of control

characters and escape sequences can be accomplished with some of the HP-71 functions and state-

ments (such as WILTH and EHOL IHE), you can develop some advanced techniques for controlling the

display using these special characters.

 
* Character codes are listed under “HP-71 Character Set and Character Codes” on page 322 of the HP-71 Reference Manual.



Section 13: Printer and Display Formatting 235

Control characters (which can be generated by special keystrokes, shown below) control how informa-

tion is displayed. These characters are commonly used by computer systems to control communications

between them. Control characters aren’t displayed. Rather, the HP-71 recognizes them as instructions.

To access these characters, you need to first press (9] and another key. The following table lists
the control characters the HP-71 recognizes, and the keystrokes required to access these characters.

Display Control Characters
 

 

Ch‘::(:er Keystrokes Description

CHEES (9](CcTRL] Backspace (BS). Moves cursor left one space.

CHEFC18Y none Linefeed (LF). Displays a new line without moving the cursor.

CHE$C1Z [9)(cTRL] (M) Carriage return (CR). Moves cursor to first column. The HP-71 at-
tempts to evaluate the display line as if you pressed LINE].

CHE#CZV» (9)(cTRL] (9](I]) Escape (ESC). Indicates the start of an escape sequence.    
 

An escape sequence is a string, beginning with the escape character (ASCII character code 27), that

represents one or more instructions for a device such as a display or a printer. (The escape character is

represented in this manual as ESC.) The HP-71’s display responds to several escape sequences. Escape

sequences that it doesn’t recognize are ignored. Escape characters can be generated in two ways:

1. As keystrokes which are executed directly from the keyboard.

2. As character strings which are executed when “displayed.”

The following table lists the escape sequences that control the display. To execute an escape sequence

directly from the keyboard, press [9](CTRL](9]([] then the keys shown in the table below to complete the
sequence. To store an escape sequence as a character string, use CHFE$ ¢ 27to generate the escape

character and concatenate one of the characters represented by the keys in the table to complete the

sequence.



236 Section 13: Printer and Display Formatting

HP-71 Escape Sequences
 

 

Escape keystrokes

or character Description

followed by:

Moves the cursor to the right one space (same as [>)).

(D] Moves the cursor to the left one space (same as [<)).

(E] Clears the display, including the BASIC prompt.

Moves the cursor to the first column, superimposing it on the BASIC prompt.

or Clears the display from the cursor position to the end of the line. (Accomplishes
the same thing as [f][-LINE].)

(0] Deletes the character under the cursor and shifts all characters to the right of the
cursor one position to the left (same as [fJ(-CHAR].)

(N] Sets Insert cursor (same as [f](1/R]).

(R) Sets Replace cursor (same as [f][I/R]).

(9)(<] Turns the cursor off.

(9)(>] Turns the cursor on.

mn Sets the cursor to the column represented by the character code for an ASCII

character m. The character code for n is used by video display devices for row
positioning. Although it has no effect on the HP-71 display, it must be present to
complete the escape sequence.    

Example: Switch to the Insert cursor then back to the Replace cursor.

Input/Result

(9])(cTrL] (9]0 [N] Switches to the Insert cursor (flashing left arrow).

(9)(cTrL] (9](1] (R] Switches to the Replace cursor (flashing
rectangle).

Positioning the Cursor. To set the cursor to a particular column, press

[9)CeTRL] (9)(0) (9)(%)

then key in the character whose character code represents the number of the column which you want to

move the cursor to. (This sequence is referred to in this manual as the ESC% instruction.)



Section 13: Printer and Display Formatting 237

Example: Move the cursor to column 65.

Input/Result

(9])(cTrL] (9](1] (9](%] Positions the cursor at column 65.

The character code for an uppercase A is 65.* Therefore the cursor moves to column 65. (This sequence

requires a second character after the * because it is used by other devices to specify a row to move the

cursor to. Remember that although the HP-71 doesn’t use the second parameter for its display, it

requires you to include it.) If a multi-line display device is used, this instruction causes the cursor to go

to the specified row and column.

Rather than using the keystrokes to execute escape sequences, you can store those sequences in char-

acter strings and use them under program control (or assign a sequence to a key).

Example: Assign an ESC% instruction to the variable ## so that when executed it moves the cursor

to column 11 before displaying information.

Input/Result

e ot P B R 8o ob P e
FE=CHEESTV PR S ROHESL L sarmy Assigns an ESC% instruction to ##.

HHP-TL Evaluates the display line.

  

 

HE-T1 Displays H# -7 1 beginning at column 11.

   
Creating Protected Fields. A particular use of the ESC< (cursor off) and ESC> (cursor on)

instructions in programs is to write information in the display so that it can’t be overwritten. Portions

of the display that can’t be overwritten are called protected fields. Information is placed in a protected

field when it is written to the display while the cursor is off. Information written to the display while

the cursor is on can be overwritten.

Executing ESC< turns the cursor off so that information written to the display is protected from

being overwritten. (ESC> turns the cursor back on.) Information in a protected field can be erased by

pressing or LINE], but it can’t be written over and the cursor can’t be set to any character in
the protected field (except by using the ESC% instruction). (Protected fields created using the i1k~

1014 statement, described in section 7, can’t be overwritten in any way.) Also, the HP-71 can’t read

information that is in a protected field.

 

* HP-71 characters and their corresponding character codes are listed on page 322 in the HP-71 Reference Manual.



238 Section 13: Printer and Display Formatting

Example: The following program prompts a user to input a hyphenated identification number. Using

the ESC< (cursor off) and ESC> (cursor on) instructions, the prompt appears as:

 

   
When the user enters the number, the cursor automatically skips over the hyphens. (The computer

recognizes the hyphenated number as one number without any punctuation.) The following program

displays the input prompt in a protected field:

10 DIM P$[40],F$[2],N$[2],51 Dimensions four variables.

20 F$=CHR$(27)&“<” Assigns the ESC < instruction to F#.

30 N$=CHR$(27)&“>" Assigns the ESC> instruction to H#.

40 H$=F$&“—"&N$ Assigns a write-protected hyphen to Hi¥.

50 P$=“ "&H$&“ "&H$&“ "&F$&".” Assigns the default string to F#. It contains three
spaces, a hyphen, two spaces, a hyphen, and 4
spaces.

60 INPUT “ID?",P$;S1 Prompts the user to enter an identification
number. (IHFIIT is described under “Entering
One or More Items,” page 241.)

In this routine,

* ¥ contains the escape sequence which turns the cursor off.

* i#¥ contains the sequence which turns the cursor on.

* H# contains a write-protected hyphen.

* % contains the default string for the IHFLIT statement.

The information to be displayed in a protected field is preceded by F# to turn the cursor off. The

spaces (which are to be written over) are preceded by # to turn the cursor on. The IHFIIT statement

in line 60 displays the input prompt and waits for a numeric input.

To use the routine, key it into a new program file (refer to page 143 if you have forgotten how to do

this), and execute it.



 

  
 

 

  
 

 

   

Input/Result

ST

RUN

og - -

4445

IDrddd-58-

09444 -52-3345 B

(ENDLINE]

%1 (ENDLINE]
 

444522345

  
 

Section 13: Printer and Display Formatting 239

Sets the numeric display format to standard
format.

Prompts you for a number. Notice the cursor just
to the right of the question mark.

Notice how the cursor skipped over the hyphen.

The program accepts the input.

Checks the value you just entered.

The hyphens weren’t read as part of the input.

A protected field can be created on either side of the display using the i Il statement.

Example: Create a display window enclosed by HF on the left and 7 i on the right.

Input/Result

HMIDTHZZEYHP" ) TRECZ 1071E
WIMDOWE, 28

 

 

 

HF 71

(ENDLINE]

HF = B 71  
 

Displays HF and 7 1.

Places the BASIC prompt at column 3 of the dis-
play. The HF and 71 now reside in protected
fields.



Section 14

Storing and Retrieving Data

Contents

OVeIVIEW .o240

Keyboard Data Entry . ... ... .. .. . . ..241

Entering One or More Items (I HFLT) .o..241

Entering a Display Line (L. IMFLUT) ....244

Program Data . ......... .. ....245

Storing Data In a Program (LIRTH) ... ...245

Retrieving Program Data (FEMLD) ... .. ... ... ..246

Resetting the Data Pointer (FE=TOREE) ... ..L. 246

Data Files . ... ....247

Types of Data Files . ......... ... . . . . . . ... .... 247

Creating a Data File (CREEHTE) ....248

Opening a Data File (=% IGH #)oo248

Closing a Data File . ....... .. .. .. . . . . .. . . . ..249

Accessing Data Files ... ... ... .. ...... 249

Storing and Retrieving Data Sequentially .. .......... ... .. .. .. ... ... ... .. ... 250

Storing Data Sequentially (FFEIMT #) ... .. ... ... .. . .. ... 250

The File Pointer and Sequential Access . ......... ... ... ... . ... ... ...... 252

Recalling Data Sequentially (FE=TOREE #, EEAD #) ... ... ... ... .. 254

Storing and Retrieving Data Randomly . ......... ... ... . ... ... .. ... ... ...... 256

File Records ... ... ...256

Moving the File Pointer (RE=TLEE #) ... .. . . .. .. . ...L. 258

Storing Data Randomly (FEIMT #) ... . . . . . ... ... ... ... 258

Recalling Data Randomly (FEHD #) ... . .. . .... 260

Storing and Retrieving Arrays . ......261

Passing Channel Numbers to a Subprogram . .......... ... ... ... ............ 263

Overview

Computer programs operate on data. Programs can obtain data from different sources. These sources

are:

e The keyboard. A user can key data into the computer when prompted to by a program.

240



Section 14: Storing and Retrieving Data 241

e A program. A program can contain data stored within its lines.

¢ A file. Information can be stored in data files.

This section describes how the HP-71 gets information from these sources. More specifically, this sec-

tion describes:

e How a program accepts data items from the keyboard.

e How to store and retrieve data in a program.

e How to create data files, how to store data in them, and how to retrieve that data.

Keyboard Data Entry

Entering One or More Items (I HFLiT)

Using the IHFLIT statement a program can assign values entered from the keyboard to variables. The

IHFUT statement prompts the user to enter information from the keyboard, then assigns that in-

formation to specified variables.

 

TITHFUT [prompt message [. default string ]:] input list
   

The IHFLT statement contains four parts—the IHFLUT keyword followed by a prompt message, a

default string, and the input list. The prompt message and the default string are optional, but there must

be an input list.

The prompt message must be a quoted string. The default string can be any valid string expression. The

input list is a list of one or more variable names (numeric, array elements, string, or substring) separated

by commas.

The following diagram illustrates the components of an IHFLIT statement.

Default Input

Prompt Message String List
 

r = K_H

IHFUT "EHTER MEME,AGE: ", "BRUCE,Z27";

Keying in Values. When the computer executes IHFLIT, it expects the user to key in some data. If

you are to key in more than one item of data, items must be separated by commas. The order in which

variables appear in the input list is the order in which the computer expects information to be keyed in.

For example, if the input list contains a string variable and a numeric variable, you must key in either a

string expression or an unquoted string (you aren’t required to enclose string information in quotes in

response to an I HFLIT prompt), then either a numeric value or a numeric expression.



242 Section 14: Storing and Retrieving Data

Example: The following IHFLIT statement requires the user to key in a numeric value, a comma,

another numeric value, another comma, and either an unquoted string or string expression:

 

   

Input/Result

DESTROY ALL
IHFUT ALEB.CEF Instructs the HP-71 to prompt for some values.

The HP-71 will accept two numeric values and a

string.

T B The HP-71 prompts you for the data.

5.3REBC You key in two values and a string (the string
need not be quoted).

If you had keyed in, for example,

HED ., 5,3

the computer would have generated an error since it tried to input the string FEinto the variable i,

which is a numeric variable.

If you had keyed in

L T
y

the computer would not have generated an error. The reason is that the <%can be assigned to either a

string variable or a numeric variable. Since, in this example, the 4%is assigned to a string variable, it

is treated as a string and not a number.

Keying in Expressions. In response to an IHF{!T prompt, one can also enter numeric or string

expressions. However, each expression must evaluate to the same data type as the corresponding

variables in the IHFUIT wvariable list. For example:

 

   

Input/Result

IMFUT A.E.C# Instructs the computer to prompt for two numeric
values and a string.

YR Prompts for the information.

SESHE, DI+3IHODZy, SFLTH You key in two numeric expressions and a string
expression.



Section 14: Storing and Retrieving Data 243

Input Prompts. If you use an IHFLT statement with only an input list, you will see the * prompt in

the display when the statement is executed. However, you can write your own special prompt to be

displayed instead of . After typing the I HFLIT keyword, type in a prompt message (it can be a quoted

string only), then a semicolon and the input list.

For example, if you want to prompt with EHTER #, the IHFUT statement would be:

IHFUT EHTER #'H

When the I+HFLIT statement is executed, the computer displays the prompt message with the cursor to

the right of it. The prompt message cannot be overwritten (except by using special escape sequences,

described in section 13) when the user responds to it.

 

Example:

Input/Result

IMFUT TEHTERE #':H Instructs the computer to prompt for data.

EHTER #8 Displays the prompt message.

  
 

5 Enters a value.

Default Strings. In some applications you might want an input variable to assume a default value

when a user doesn’t key one in. You can specify a default string in an [ HFILIT statement to supply values

to variables when a user doesn’t key them in. A default string is often used when a programmer antici-

pates a common response to an input prompt.

A default string appears in the IHFLUT statement as a string expression following the prompt message.

It is separated from the prompt message by a comma, and is separated from the variable list by a

semicolon.

 

  
 

Example:

Input/Result

ITHRFUT Y"EMTER #","45" i H Prompts for an input.

EMTER #4535 Cursor is set to the first character of the default
string.

The input variable, H, is assigned the value of the
default string.



244 Section 14: Storing and Retrieving Data

Alternatively, you can edit the default string rather than merely pressing LINE]. You can key in
your own response and even use the command stack to locate and enter a previous expression.

Input Conditions. While the HP-71 displays a prompt, the following conditions are active:

e The Command Stack is active, enabling you to use Command Stack lines for input.

e The and [9](ERRM keys are active, enabling you to view key assignments and the last error
message.

e Pressing [ATTN] clears the input line. Pressing [ATTN] again suspends program execution.

e Pressing continues program execution without changing the values of the variables in the
input list.

o Pressing [RUN]J, [f](SST], or [f]J(CALC] has the same effect as pressing LINE].

e You can type ahead of anticipated input prompts. The keystrokes will be stored in the keyboard

buffer then accepted as input when the prompt appears. The keyboard buffer holds up to 15 shifted

and unshifted keystrokes.

e An it TIMER # condition that expires won’t cause a branch until the input is completed.

e If an M EREDE condition is active, a branch will occur for an input error.

o If the wrong type of item is keyed in, the HP-71 reprompts for the correct type of data if an

M EREOFE condition isn’t in effect. If the HP-71 encounters an error condition when evaluating

input items, it suspends the program and displays an error message. If it encounters a warning

condition, it substitutes a default value and continues to execute the program.

Entering a Display Line (L. IHFLIT)

The L IHFUT statement is similar to the IHFLT statement, except that L IiHFiLIT assigns the in-

formation in the display to a single string variable.

 

L IMFUT [prompt message [ . default string]:] input variable
  
 

 

HFLT statement can have a user-specified prompt message and default stringin the same way

FHFLUT, but its variable list contains only one variable name, the input variable. +Fi!T assigns the

entire 1nput to the specified input variable, which must be a string variable. Thuscommas, which nor-

mally separate items in the input list, can be accepted as part of the input.

 



Section 14: Storing and Retrieving Data 245

Example:

Input/Result

LIMPUT "TEHT:": AF

 

TE=T B Prompts for an input line.

  
 

Key in AEL, DEF , GHI for the input line.

Displays line just entered.

 

 

HED, DEF, GHI Shows that the commas were accepted as part of
the input string.  

 

Program Data

Often a program requires data which should not change each time the program is executed. Rather

than require a user to key in the data, it can be stored directly in program lines.

Storing Data In a Program (LiF T H)

You can store data in a program using [fTH.

simplified syntax

|—':T*~? data items

The data items are numeric expressions, string expressions, and unquoted strings. They can appear in

any order, but as in an input list, they must be separated by commas. A [Tstatement isn’t executed

by a program. It simply holds data.

 

 
 

Examples:

ORTH 25 .4, 75 FEVENUE, INTEREEST

DATA TOTAL, FRICE, CAL+BL+C10 -5, SF01808 " LOK

 

A DA TH statement in a program or a subprogram can’t be used by another program or subprogram.



246 Section 14: Storing and Retrieving Data

Retrieving Program Data (FEHL!)

A program accesses items in [IATH statements by assigning them to variables using the FEFR[I state-

ment.

simplified syntax

FD variable list

The HP-71 maintains a data pointer which points to the next item in a [IR TH statement to be read.

When a FER[ statement assigns a data item to a variable, the data pointer is advanced one item.

When the HP-71 executes a program, the data pointer points to the first item in the first (IR TH state-

ment. Successive FEFA operations advance the pointer to successive items in the [IFTF statement.

 

 
 

When the last item in a A TFH statement is read, the data pointer jumps to the first item in the next

DR TH statement. Successive FEFoperations continue to advance the pointer to successive items and

successive [1FTFH statements. When the last item in the last IFiTH statement in a program or

subprogram is read, a subsequent FEF[ causes an error. It might be helpful to think of the IR TH

statements in a local environment collectively as a large table of data items. (Local environments are

described in section 12, “Subprograms and User-Defined Functions.”)

Resetting the Data Pointer (k= TIEE)

You can reset the data pointer within a local environment to the first data item in a [1A TH statement

using FESTORE.

 

FE=TUORE [statement identifier]
  
 

Examples:

FESTORE Sets the data pointer to the first data item of the
first 1A TH statement in the program or
subprogram.

FESTORE 1008 Sets the data pointer to the first data item of the
DA TH statement on line 1000.

FESTORE ELECDATH Sets the data pointer to the first data item of the
I TH statement on the line identified by the la-
bel, ELECOATH.



Section 14: Storing and Retrieving Data 247

FEZTORE can set the data pointer only within a local environment. If a [IF TH statement isn’t on a

line specified by FEZTIREE, then the HP-71 searches through the higher-numbered lines for a DiF TH

statement and restores the pointer to the first item in the [IA TH statement. If a [IF TH statement isn’t

found, the FEZTORE statement isn’t executed and program execution continues.

Data Files

Many programs generate large amounts of data. This data needs to be stored in a logical format so that

it can be easily retrieved, added to, changed, or sent to other computers. The HP-71 enables you to do

this using data files.

Types of Data Files

The HP-71 enables you to create three types of data files:

o DATA files, which can contain numeric and string data.

o TEXT files, which are formatted to be read by other Hewlett-Packard computers, such as the

HP-75.

e SDATAfiles, which have the same format as data files created by the HP-41 Handheld Computer.

Although the formats of these files are different, many of the operations on them are similar. There-

fore, data file operations will be described in general and differences in operations among file types will

be noted.

There are several operations involving data files:

e Creating a file.

¢ Opening a file.

e Closing a file.

e Storing information in a file.

¢ Retrieving information from a file.



248 Section 14: Storing and Retrieving Data

 

You can create a data file using CRERTE.

 simplified syntax

|7 HEHTE file type file name [ : device]

 
 

The file type must be DATA, SDATA, or TEXT. The file name can be any valid file name and the device

can be main RAM (default) or an independent RAM.

You can optionally specify file size, and for DATA files, the record size. (Specifying the record size and

file size is described under “File Records,” page 256.) When you store information sequentially in a

data file located in HP-71 memory, the size of the file expands to accommodate the information. There-

fore, specifying file size is not necessary when creating data files in memory for sequential operations.

When creating a data file that you will access randomly, you must specify file size. The file size will not

expand when you store data randomly; the records you specify in random access operations must al-

ready exist. (When creating a data file on a mass storage device, you must specify the record size and

file size. Using data files located in mass storage devices is described in the HP 82401A HP-IL Interface

Owner’s Manual.)

Examples:

CEEATE ORTH TREEESTART Creates a DATA file named TEEESTHT.

CEEATE TESAT LABHOTES Creates a TEXT file named . AEMHOTES,

CEEATE SOATH LIHMEFIT Creates an SDATA file named L IHEFIT.

Opening a Data File (Fi=5% IR #)

To access a data file, you must first open it using &S I GH #,

 simplified syntax

lT == I1GH # channel number T1ii data file

 
 

This statement assigns a symbolic channel number to the specified data file, opening the file. A channel

is a memory area created by A= % I GH  # that contains file control information to facilitate the flow of

data between the keyboard or a program and the file with which the channel is associated. A channel

number must be in the range 1 through 255 and can be assigned to only one file. You can assign up to

64 channel numbers at a time, but each file can be associated with at most one channel at a time.

If the file you specify can’t be found in memory and no device was specified, the HP-71 creates a DATA

file in main RAM and assigns the specified channel number to it.



Section 14: Storing and Retrieving Data 249

Examples:

AESIGH # 1 TO STOCE  PORTO4: Opens the file =Tk in port 4 and assigns chan-
nel 1 to it.

HESICGH # 221 OTO AE Opens the file indicated by ## and assigns chan-
nel 221 to it.

Aoz IGH # BEY TO VOLTHGES Opens the file /L THEGES and assigns the chan-
nel indicated by E#7 to it.

Closing a Data File

You should always close a file when you finish using it. Closing a file releases the memory (34 bytes)

associated with a channel. All data files opened by a program or a subprogram are automatically closed

when that program or subprogram executes EH[I or EHI ZLE. When you close a file, you are simply

breaking the association between a channel and a file.

Data files are closed by the A== Iz # statement when the file name in the statement is one of the

following:

it
®

® i i i

o ¥

Examples:

# 1 Too¢we

# 5 TO "k

# 12 TOOk

 

Accessing Data Files

You can store and retrieve data from a data file either sequentially or randomly. When you store data

sequentially, the HP-71 places items in the file one after another. Items are kept in the file in the order

that you store them. Therefore, they can be read from the file in the same order. When storing data

randomly, items are stored in an arbitrary order. The order in which they exist in the file is not nec-

essarily the order in which they were stored. When you store data items randomly, you specify where in

the file you want them stored.

The HP-71 uses a mechanism called a file pointer to keep track of where the next data item will be

stored or retrieved in a file. When you store data or retrieve data sequentially, the HP-71 automatically

moves the file pointer. When you store and retrieve data randomly, you specify the position of the file

pointer.



250 Section 14: Storing and Retrieving Data

If you have never used data files before, you might want to read “Storing and Retrieving Data Sequen-

tially” before you read “Storing and Retrieving Data Randomly.” For beginners it is usually easier to

learn how to store and retrieve data sequentially before learning how to store and retrieve data ran-

domly. This is because sequential file access doesn’t require you to keep track of the file pointer—the

HP-71 automatically does this for you. You only need to remember to reset the file pointer to the

beginning of the file after storing all your data. (This will be descibed shortly.)

Storing and Retrieving Data Sequentially

A list of checks written, or an array consisting of temperature measurements, are examples of items

arranged in a sequence. If you are going to store data items in a sequence and then recall them in the

same order, you need to use sequential file access.

Sequential file access has the following advantages:

e It is simpler to use than random data access.

e The computer automatically keeps track of the file pointer.

* You can store a list of items in a data file regardless of the file’s record size.

  

 

Data items are stored in a file using FEIHT #. To remember this, think of FEIHT # as “printing”

Storing Data Sequentially (F & IHT #)

Once a file has been created and opened, you can store information in it sequentially using F& I HT #.

 simplified syntax

|‘r EIMT # channel number : data item list

 
 

The data item list is a list of one or more data items separated by commas. Data items can be numeric

and string expressions or arrays. (Although you can retrieve numeric and string data from an SDATA

file, you can store only numeric data in such a file.) Data items are stored in the order in which they

appear in the list.

Note: When you store numeric information in a DATA file, the file’s record size must be at least

eight bytes. If you attempt to store numeric data in a file with a record size smaller than eight

bytes, an error results.



Section 14: Storing and Retrieving Data 251

Example: The following program turns the HP-71 into a checkbook register. It sequentially stores the

amount of a check and who it was paid to in a DATA file. The program prompts you for information

about each check written and then stores that information. (Another example will use the data file

created by this program, so you might want to save the data file.) The program stores 1nformat10n for

as many checks as you want. When you don’t want to enter any further information, type CIZHE | & in

responseto the prompt and the program will end. Key in the following program (first type

EOILT [ENDLINE]) and execute it.

    

 

  
 

10 CREATE DATA CHECKS Creates the DATA file ©HE DR S,

20 ASSIGN #1 TO CHECKS Opens the file by associating it with channel 1.

30 DESTROY N$,A Ensures that N$ and A are unused.

40 INPUT “PAID TO,AMT:":N$,A Prompts for checkbook information.

50 IF N$=“DONE” THEN ‘DONE’ Ends program if you type [ifiHE.

60 PRINT #1;N$,A Stores checkbook information.

70 GOTO 30 Prompts for another input.

80 ‘DONE’: PRINT #1;N$ Stores [I{iME to mark the last entry.

90 ASSIGN #1 TO * Closes the file by dissociating it from channel 1.

Input/Result

FUMN CHECE Executes the HEE program.

FRID OTO,HMT (B Prompts you to enter who you wrote a check to
and the amount of the check.

AEC MIRIHG, 1856,75 You enter paid to and amount.
 

 

Prompts you for another check.

  
 

A o
t

™
~

(
.

e

i

L L m Z O C Z m

 

  
 



252 Section 14: Storing and Retrieving Data

AEC GRAFHICS, 137 .65
 

FAID TO,AMT: @

   
FHOTO CEHTER,Z4.5
 

FAID TO,AMT: B

   
OOHE , & You signal the computer that you don’t want to

enter any further checkbook information.

In the example above, you can see that you can store a mix of data types in the same file. The program

stored each piece of check information after the preceding one, keeping them in the order in which

they were stored.

The File Pointer and Sequential Access

The HP-71 uses the file pointer to point to where the next data item will be stored or read in a data

file. After the HP-71 stores an item, it moves the file pointer to the place in the file where it will store

the next piece of information. Similarly, the HP-71 moves the file pointer to the next data item after

retrieving data from a file.

When a file is opened, the HP-71 places the file pointer at the beginning of the file. When you store

data sequentially, the computer places the items in the file in the order in which they appear in the data

item list. When the entire list has been stored, the pointer remains at the end of the recorded data, and

the end-of-file marker is written after the position of the last item. The HP-71 always writes an end-of-

file marker after the last data item when data is stored sequentially.

End-of-File Marker

item item ... item item

T
File Pointer

 

Data

File    



Section 14: Storing and Retrieving Data 253

Execution of a subsequent FFEIMHT # statement on the same file records data items after the pre-

viously recorded data and moves the end-of-file marker to the end of the newly recorded data. The file

size automatically expands, if necessary, to accommodate the new data.

FREIMT # 1 @ dtem, 1item, ..., 1tenmn

End-of-File Marker

‘.
 

Data
File item item ... item item item item ... item

   
—_—

T File Pointer T

The pointer continues to move sequentially through the file as items are added. The sequence contin-

ues until the file is closed or the pointer is relocated using FE = Ti{iFE # (described below under “Re-

calling Data Sequentially”).

Note: When storing data sequentially, you should always storeall your information in a file before

relocating the file pointer or closing the file. The movement of the file pointer and end-of-file

marker influence the way in which sequential files are updated. If you close a file then reopen it, or
position the file pointer to the beginning of the file using FEZTORE #, then store information in

the file using FEIMT #, the new data will overwrite the old data, and all of the old data will be

lost. Also, since the computer places an end-of-file marker after the sequential FEIHT #, any

previously stored data now beyond the end-of-file marker will also be lost.

The following diagram illustrates how the information from the above example is stored in the data

file. The position of the file pointer is shown before the file is closed.

DATA File For the iZHEk. Program

End-Of-File Marker

 

156, 7S COMPUGRILL 18,35 .. 34.58 DOME
L

/7 T

File Pointer

1 i e Je
ee
ee

e
t

N . e vel
es

es

]

         



254 Section 14: Storing and Retrieving Data

  Recalling Data Sequentially (FE=7 0EE

Sequential data is recalled in the order in which it is stored. If you store information in a data file and

don’t close it, then you will need to move the file pointer to the beginning of the file before you retrieve

information from it. You can do this using FEZTORE #,

simplified syntax

l‘ EzmTUOREE # channel number

 

  
Examples:

ESTORE # 14 Moves the file pointer to the beginning of the file
associated with channel 14.

RESTORE # A+B Moves the file pointer to the beginning of the file
associated with the channel indicated by the
expression i+,

If a file has just been opened the file pointer is positioned at the beginning of the file. In this case, you

don’t need to use FEZTIIREE # before reading information from the file.

Information is recalled from a data file and assigned to one or more variables using FE# #,.

 simplified syntax

F&M # channel number : variables

  
In this statement, channel number is a valid channel number and variables is a list of one or more

variables or arrays, separated by commas, that will be assigned values from items in the data file asso-

ciated with the channel number.

This statement retrieves a data item for each varlable listed. Each data item must match the type of

-1 # reads

successive data items from the file, assigning them to Vanables (The contents of the filearen’t affected

by this statement.)

 

 

Attempting to retrieve information beyond the end-of-file marker using 5[ # results in an error.

Example: The following program retrieves the checkbook information from the data file ZHEk (cre-

ated in the example on page 251) and displays it one line at a time. To display the check information,

key in the program and execute it (first type ELIT GETOHECE (ENDLINE)).



Section 14: Storing and Retrieving Data 255

10 DESTROY N$,A,S Ensures that N$, A, and S are clear.

20 ASSIGN #1 TO CHECKS Opens the DATA file.

30 READ # 1;N$ Reads a paid to name.

40 IF N$=“DONE” THEN DONE Tests for the last entry.

50 READ # 1;A Reads a check value.

60 DISP USING 100;N$,A Displays paid to and amount.

70 S=S+A Accumulates check totals.

80 GOTO 30 Loops back and reads another check.

90 DONE: DISP USING 110; S Displays the total.

100 IMAGE 12A,X,“$",5D.DD Specifies the image format for displaying
checkbook information.

110 IMAGE “TOTAL=",7X,“$",5D.DD Specifies the image format for displaying total.

120 ASSIGN # 1 TO * Closes the data file.

Input/Result

EUM GETOHECE Executes GE TOHE D

 

 

1
3
A Reads checks from the data file &HEDE = and

displays them.

  eoWoEW Computes and displays the total.   
o L E TR eBP el T

Numeric data in a file need not agree in precision (FEFL, IHTEGER, SHIET) with the variables to

which they are assigned. Numbers retrieved from data files are converted to the precision of the

variables to which they are assigned. If a RE# # variable has a lower precision than the data item

being read, the data item is rounded to the precision of the variable. If a EE1 # variable has a higher

precision, then its magnitude is not changed, but is simply considered a value of the higher precision.



256 Section 14: Storing and Retrieving Data

Storing and Retrieving Data Randomly

Random access enables you to print to, read from, or update a portion of a data file by accessing its

individual records in any order. Storing and retrieving data randomly is a bit more complex than

sequential operations. If your applications require only sequential access, you don’t need to read this

information on random access of files.

The advantages of using random file access are:

* You can move the file pointer to any record. This enables you to store and retrieve data in any

order.

* An end-of-file marker is not placed in the file after you store a data item in it.

There are two restrictions that apply to random access of data files:

* You can store and retrieve data from only one record at a time from a DATA file. (But you can store

more than one data item in a record.)

® You can’t randomly store information in a TEXT file.

File Records

Each data file is divided into smaller units called records. Using random operations, you can store one

or more data items in a single, specified record within a DATA file. (In sequential access, data items are

stored in a DATA file without regard to record boundaries. It is important to keep track of DATA file

records only when you are using random access.)

You can store only one data item in an SDATA record. (Remember, you can store only numeric data in

this type of file.) However, unlike DATA files, you can store information from more than one SDATA

record with a single FEIMHT # statement. Also, you can retrieve information from more than one

SDATA record with a single FERL # statement.

You can retrieve information from a TEXT file using random access or sequential access, but you can

store information in a TEXT file using sequential access only. The size of a TEXT file record is deter-

mined by the computer at the time a data item is stored. Each record is just large enough to contain the

data item it holds.



Section 14: Storing and Retrieving Data 257

The following table shows the operations that can be performed on each type of data file (indicated by

an Xx):

Allowed Data File Operations
 

   
Operation DATA SDATA TEXT

Random FEIHMT # X

Random FERD # X X

Single Record Access
More Than One Item Per Record X

X
X

X

    
The record sizes for the different data files are shown in the following table:

Data File Record Sizes
 

 

File Type Record Size

DATA 256 bytes (default). Can be set by user.

SDATA 8 bytes (fixed).

TEXT Set by the computer to the size of the
data item it contains.    

When you create a DATA file, you can specify the record size and the number of records in the file.

 

 

simplified syntax

FZ FERTE file type file name [: device][. file size[. record length]]

 

In this statement,file size refers to the number of records for DATA and SDATA files, and the number

of bytes for TEXT files. The record length refers to the number of bytes per record, which you can

specify for DATA files only. When you create an SDATA file, you can specify the number of records in

the file, but the record size you specify is ignored. (The record size is fixed at eight bytes.) The com-

puter ignores the record size you might specify for a TEXT file.

The DATA file is the most versatile file for random access operations. You can specify its file size and

record length, and can store any type of data in it.



258 Section 14: Storing and Retrieving Data

Moving the File Pointer (RESTORE  #)
If you want to move the file pointer to a specific record in a data file, execute FEZTORE #.

 

  
= T{EE  # channel number, [record number]
 

Example:

 

B 1,25 Moves file pointer to the beginning of record 25.

The ability to move the file pointer is useful when you want to store or retrieve data beginning at a

specific record To do this, you can simply position the pointer to the desired record using

RESTORE #, then read from or store to that file. Using REZTIREE # to position the file pointer is

necessary ifyou want to store or retrieve data sequentially begmmng at a specified record.* But for

random stonng and retrieving operations, it is not necessary to first position the file pointer using
 

 

When you don’t specify a record number the computer sets the file pointer to the first record (0).

Storing Data Randomly (FEIHT #)

You can store information in a specific record by specifying a record number in the FFIHT # state-

ment. (This is allowed for DATA and SDATA files only.)

 

 

simplified syntax

|7 T # channel number, record number; data item list

  

Note: When you store numeric information in a DATA file, the file’s record size must be at least

eight bytes. If you attempt to store numeric data in a file with smaller records, an error results.

Examples:

FEIMNT # 1.0:A% Stores A$ in record 0.

# 1. A+ETHFLGE Stores a string in the record indicated by A + B.

- . T H

The following example illustrates the movement of the file pointer as a result of random storage oper-

ations. This example uses a DATA file, which is created with a record length of eight bytes.

 
* Sequentially stored data items are often stored in consecutive records when there is not enough room in a single record to

contain them. For example, part of a string can lie in one record and be continued in the next record. You should keep this in

mind when moving the file pointer so that data in a file doesn’t become inadvertently altered or lost.



Section 14: Storing and Retrieving Data 259

Example: Create a DATA file and into it store numeric information relating to the number of foggy

days recorded by a freighter during four crossings of the Pacific Ocean.

Input/Result

CEEATE DRTH FOGOATH, S, i

 

     

 

     

 

     

 

He=IGH # 1 TO

IT 0 1 3 4 ‘J

File Pointer

FEIMT # 1,218

FEIWMT # 1,3:18

0 1 3 4 4

File Pointer

FEIMT # 1.48:5

EIMT # 1.,1:3

L 5 3 10 J
0 1 3 4

File Pointer

FRIMT # 1.4:"F

L 5 3 10 FOGJ

0 1 3 4     

File Pointer

Creates a DATA file with five 8-byte records.

Opens the file FOGOATA,

The file is empty, having just been created.

Stores # in record 2.

Stores iin record 3.

The file pointer moves to the beginning of record
4.

Stores two more data items. Unlike a sequential
store, the computer doesn’t place an end-of-file
marker in the file following a random store.

The file pointer is positioned after the last item
stored.

Stores the string " F1" in record 4.

The file pointer moves to record 4 where the
string F{ii: 1s written.



260 Section 14: Storing and Retrieving Data

After the last operation, the file pointer is positioned inside record 4. If you now attempt to do a

random store, you could not fill the remainder of record 4, you could only overwrite the information in

it. However, you can fill the remainder of the record by storing sequential information. This is because

a sequential store operation places information in the file starting from the current position of the file

pointer. But, except for highly specialized applications, you should avoid mixing random and sequential

operations.

 

Recalling Data Randomly (=& H

In the same way that you specify a record number for storing data, you specify the record from which

you want to retrieve information. A random read operation can retrieve information from one record

only.

 simplified syntax

’—it # channel number . record number : variables

  
You can store and retrieve more than one item in a record in a DATA file. All items to be stored in a

single record must be listed together in the FFEIHT # statement. Storing several items in a single

record is useful when you store different items in sets and retrieve them with a single RERI # state-

ment. For example, if you wrote a program to store a list of telephone numbers, the first name, last

name, and phone number can be stored as separate items in a single record, provided the record size

can accommodate the information. The three items can then be retrieved with a single statement such

as EEAD # 1.4 :FF,LF, HE

 

Examples:

EEAD O# Z.5:A.BE Retrieves two items from record 5.

# 9, ZEB-1 0 HE Retrieves a string from the record indicated by
SFE-1.

Attempting to read past the end of the file or past a record boundary generates an error.

A record in a TEXT or SDATA file can contain only one item. But, unlike reading information from a

DATA file, you can read data from more than one TEXT or SDATA record at a time.



Section 14: Storing and Retrieving Data 261

Storing and Retrieving Arrays

An entire numeric or string array can be stored in a data file using a single 7= I7T # statement. You

can use parentheses as shown below to indicate an array in the data item list. You don’t need to specify

the dimensions of an array (arrays are one- or two-dimensional) when you store it in a data file. The

HP-71 automatically accommodates an array of any dimension, provided there is enough RAM to store

all its elements.

Examples:

FREINT # 4; A3 Stores the one-dimensional array, ~ in the data
file associated with channel 4.

EIMT # 2 T44, Stores the two-dimensional array, T+ in the data
file associated with channel 2. (The comma be-

tween the parentheses is required when indicating
a two-dimensional array:.)

FREIMT # 1; E Stores the array & in the data file associated with
channel 1. The array’s dimensions don’t have to
be indicated.

An array is stored as a sequence of data items. Nothing in the file indicates that the data items form an

array. To avoid confusion,it is often best to dedicate a single data file to an array, then store the array

sequentially with a single R IHT # statement and retrieve it with a single £~ # statement. How-

ever, there are some applications in which you might wish to recall a sequence of array elements in an

order different than they were stored.

When you store an array, the first element in the first row becomes the first data item in the file. Each

element in the row is stored in order. Elements are stored row by row.

For example, the following matrix is stored in a data file (assuming the file has been associated with

channel 1) in the sequence A(1,1), A(1,2), A(1,3)...A(3,4), as shown:

AO) =15 6 7 8

9 10 11 12

 

Fle=11]12 (3|4 |5([6 |7 ]|8]([9 |10]11 (12
             
 



262 Section 14: Storing and Retrieving Data

Since array elements are stored linearly, they may be retrieved with or without an array format. For the

array in the example above, the following statements could access those array elements (assuming the

file is assigned to channel 1 and the base option is 1):

RESTORE # 1
DIM BoZ, 4 @ RERD # 1 Bo, 2

RESTORE # 1
DIM Cod, 30

C() =

10

 

ESTORE #

e fm
l

Assigns the file’s data to the array £, which has
three rows and four columns. This array is identi-
cal to A in the example above.

Assigns the file’s data to the array i, which has
four rows and three columns.

2 3

5 6

8 9

11 12

Assigns the file data to the array T 1, which has
two rows and six columns.

4 5 6

10 11 12

Assigns the file data to the array :, which has

twelve elements.

 

      
6 (7 18[9 [10]11 |12

       
 

Alternatively, the values in the data file can be read into a list of simple variables, or a subset of them

could be read into a smaller array.

EESTORE # 1
EEAD O 1) DLEF.GH,I

D=1E =2F =3,

Assigns the first six items in the file to the
variables [I, E, F, 5, H, and I.

=4, H=5,1=26



Section 14: Storing and Retrieving Data 263

Passing Channel Numbers to a Subprogram.

Often when peforming the same set of operations on more than one data file, it is convenient to write a

subprogram which will perform those operations. For such a subprogram, all the calling program needs

to do is open each data file using A== I GH #, then pass the symbolic channel number as a parameter

to a subprogram which performs some operations on the file.

Data file channel numbers are passed as parameters to subprograms somewhat differently than

variables or constants. A channel number in a subprogram’s formal parameter list must be an integer

constant from 1 to 255 and preceded by a " #" symbol. For example,

B MAMELC#IDL

declares channel 5 as a local channel number. This channel number will point to the same file as the

corresponding channel number in the UFL | statement’s actual parameter list. (Subprograms, param-

eter passing, local environments, and calling environments are described in section 12, “Subprograms

and User-Defined Functions.”)

The channel number in the actual parameter list can be a numeric expression—however, it must be

preceded by a # character.

Examples: The followingFHL L statements pass a channel number to the %LIE statement above:

CHLL MAMELCHZEH?

CHLL MAMELCHD

The second " FiL L statement above passes channel 8 to HFME 1. The data file which is associated with

channel 8 in the calling program becomes associated with channel 5 in the subprogram. All operations

performed on channel 5 in the subprogram are performed on the file associated with channel 8 in the

calling program. If the calling program also has a channel 5, it is unaffected by the channel numbers

used in the subprogram. Like variable names, a subprogram can duplicate the channel numbers used in

a main program or another subprogram.

If no channel numbers appear in the subprogram’s formal parameter list, then channel numbers estab-

lished by the subprogram are local to that subprogram. If a subprogram doesn’t have a formal param-

eter list, then any channel numbers it uses are those of the calling program or subprogram.



264 Section 14: Storing and Retrieving Data

The following table summarizes the extent to which a subprogram shares channel numbers with a

calling environment.

Scope of Channel Numbers
 

Form of =ZiiE statement Scope
 

=ilstatement with no formal parameter list. Channel numbers are those of the calling program.

=ilstatement with a formal parameter list Channel numbers are local to the subprogram.

that has no channel number.

=ilstatement with parameter list that in- Channel numbers are local to the subprogram. Channel
cludes channel numbers. numbers in the formal parameter list become asso-

ciated with the same files as the corresponding chan-
nel numbers in a CHL L statement’s actual parameter

list.    



Appendixes and Indexes



Appendix A

Owner’s Information

Contents

Serial Number and Operating System Version (WYEFEF) ... ... ... ... ... ... ... 267

Environmental Limits . ... ... ....267

Operating Precautions . ........... ... . . . . . . . ..267

ClOCK ACCUIaCY ......e268

Conformance of BASIC Interpreter to ANSI Standards ....................... 268

HP-71 Extensions to Minimal BASIC . ..... ... ... ... .. .. .. .. ... ... ... 268

HP-71 Deviations From Minimal BASIC .. ..... ... ... ... ... . ... ......... 269

Power Supply Information . ........ ... ... . . . .....271

Power Consumption . ....... ... . .. . . ..271

Low-Battery Safeguards ........... ... ... ... ..... 271

Replacing the Batteries ... ...... .. .. .. .. . . .. ..... 272

General Cleaning Information . ......... ... ... ... ... ... . ...... 272

Plug-In Modules . ... ... ...273

Verifying Proper Operation . ......... ... . . . . . . . . . . ..273

Limited One-Year Warranty ... ........ .. .. .. . . . . . ..274

What We WIill DO .. .....274

What Is Not Covered . ....... ... . . . . . . . . . ..274

Warranty for Consumer Transactions in the United Kingdom ................ 275

Obligation to Make Changes ........... ... .. ... . . .. . . .. 275

Warranty Information . ........ ....275

SBIVICE ..276

Obtaining Repair Service in the United States ............................ 276

Obtaining Repair Service in Europe ............ .. .. ... ... ... ... 276

International Service Information .......... ... ... ... ... .. ... ... ... ... 277

Service Repair Charge ........ .. .. .. . . . .... 278

Service Warranty .. ......278

Shipping Instructions . ........ ... ....278

Battery Damage .....279

Further Information .. ....... ... . . . . . .. . .... 279

Potential for Radio/Television Interference (For U.S.A. Only) ................... 279

When You Need Help .. ... ....280

266



Appendix A: Owner’s Information 267

Serial Number and Operating System Version (/& = #)

Each HP-71 has a serial number stamped on its underside. You should keep a record of this number. If

your HP-71 is lost or stolen, the serial number can be useful for tracing and recovery, as well as for

insurance claims. Hewlett-Packard does not maintain a record of individual owners’ names and com-

puter serial numbers.

The “'EF# function returns a ten-character string* that indicates which version of the operating sys-

tem your comptuer is using. Type YEF % to determine the operating system version of your

unit. This information is helpful when corresponding with Hewlett-Packard concerning technical

assistance.

Environmental Limits

In order to maintain product reliability, you should observe the following temperature and humidity

limits of the HP-71.

o Operating Temperature: 0° to 45°C (32° to 113°F).

o Storage Temperature: —40° to 55°C (—40° to 131°F).

o Operating and Storage Humidity: 0 to 95 percent relative humidity.

Your computer should not be operated or stored outside of the specified range. Operating or storing the

computer outside the ranges can decrease its reliability. Maximum reliablity is obtained at normal

room temperatures.

Operating Precautions

Certain electronic circuits in the HP-71 function continuously. Improper operation can either disrupt

performance in unexpected ways or damage the electronics. Disruption or damage can be caused by:

« Removing the batteries while the ac adapter is not plugged in (may cause loss of memory contents).

 Removing plug-in modules while the HP-71 is turned on.

o Allowing electrostatic discharge to reach the HP-71.

¢ Placing the HP-71 in strong magnetic fields.

o Connecting the HP-71 to equipment that is not supported by Hewlett-Packard for use with the

HP-71.

 

*If one or more extension ROMs are installed, this string may be longer than ten characters.



268 Appendix A: Owner’s Information

Observe the precautions listed below.

 

CAUTION

Hold or touch the computer while preparing to install batteries or a plug-in module to neutralize any

electrostatic charge. This is particularly important for the HP-IL module and card reader ports.

Do not place fingers, tools, or other foreign objects into any of the plug-in ports.

Turn off the unit before installing or removing batteries, unless the ac adapter is plugged in.

Turn off the unit before installing or removing a plug-in module.  
 

Clock Accuracy

The system clock is regulated by a quartz crystal accurate to within 3 minutes per month for worst-case

operating temperatures. A more typical accuracy is 1¥2 minutes per month. The adjustment procedure

makes possible accuracies of better than 15 seconds per month. The accuracy of the clock crystal is

affected by temperature, physical shock, humidity, and aging. Optimum accuracy is maintained at

25°C = 5° (77°F = 9°). When an extreme change in environmental conditions occurs, the clock may

require readjustment, as described in section 5, page 94.

Conformance of BASIC Interpreter to ANSI Standards

The HP-71 BASIC language interpreter conforms to the American National Standards Institute

(ANSI) definition for Minimal BASIC, except as indicated below. Conformance to the standard was

verified by the application of the National Bureau of Standards (NBS) test suite to the HP-71

interpreter. This test suite is available as NBS Special Publications 500-70/1 and 500-70/2 from the

National Bureau of Standards, U.S. Department of Commerce, Washington, D.C., 20234.

HP-71 Extensions to Minimal BASIC

The HP-71 extends Minimal BASIC on the following items (numbers in parentheses refer to the pro-

gram number in the test suite):

e Variables and strings are initialized to zero and null string, respectively; reference to them before

assignment returns default values of 0 for numeric variables and " " (null string) for string

variables. (#23)

e The character set has been expanded to include any of ASCII code 0 through 255 (decimal) as valid

character responses. (#93.1, #102, #112)



Appendix A: Owner’s Information 269

e The HP-71 accepts double and single quotes as input characters in an unquoted string if they are

not the first character in the response. (#109)

* On program input, the HP-71 accepts blanks at the beginning of a line, and accepts a lack of
blanks between keywords. After a line has been entered, the interpreter removes extraneous blanks

and inserts blanks where required for readability. (#187, #190, #191)

e In an assignment statement, the keyword £ 7 is optional. (#185)

 

e The interpreter provides an invisible £ statement at the physical end of a BASIC file, so the

user need not supply an EI statement in a program if flow will naturally go to the last line. In

addition, the interpreter permits more than one EH{i statement in a BASIC program. (#3, #4)

e User-defined functions are not restricted to having lower line numbers than the line where they are

referenced. (#157, #159, #162)

 

e The HP-71 permits null data items in {i#T# statements. (#105)

e BEMD and [ HFUT statements allow expressions instead of just constants. (#112)

e The system will not generate an error if the program ends before a ¥ {i¥ statement has found a

matching HE T, (#50)

HP-71 Deviations From Minimal BASIC

The HP-71 does not comply with Minimal BASIC on the following items:

e The HP-71 assigns the F ik variables from left to right during the initial entry into the loop.

Example: The following loop is executed once by the HP-71 (ANSI requires it to be executed six

times):

150 J= 2

160 FOR J=9 TO J STEP J

170 NEXT J

ANSIrequires that the limit and step be evaluated once upon entering the loop. The HP-71 does this,

but after setting the initial value. (#48)

e The HP-71 response to input errors and the ANSI requirements are tabulated below. (For

DEFAULT E=TEHD responses, refer to the keyword dictionary entry for HEF#LIL T in the HP-71

Reference Manual.)

 



 

 

 

 

  
 

 

270 Appendix A: Owner’s Information

Responses to Input Errors—HP-71 Versus ANSI

HP-71 ANSI

Input DEFARULT OH DEFAULT OFF

Numeric underflow. Warning: system supplies Error: user must No warning or error.
zero. reenter value. System supplies zero.

Numeric overflow. Warning: system supplies Error: user must Error: user must
its largest signed value. reenter value. reenter value.

String overflow. Trappable; otherwise fatal. Allows reenter.

Variable assignment error. Checked after each item verified. Checked after all
items verified.

Execution error. Trappable; otherwise fatal. User must reenter

input line.     
If a Minimal BASIC program contains the following statement:

ITHFUT T, HoOI >,

and the user response is:

1.2, habo!

then the ' akc ' is invalid input and ANSI requires that I and A« I * not be assigned until all

input is correct. The HP-71 will request the user to reinput his data, but I and A< Iwill have

the current values of 1 and 2 respectively. If the user now inputs =. 7Z. < then A< 1 has the

value 2, and A+ =+ has the value 3. ANSI requires that A1is yet to be defined and Fi= »=3.

(#108.3)

Minimal BASIC requires &.- to provide a warning and to return an overflow value. The HP-71

gives an error for & .-, (#28)

A Minimal BASIC program assumes JFTIOH EASE © unless OFTION EAZE 1 is executed

as a program statement before any array is declared. An HP-71 program assumes the

OFTION EASE setting already in continuous memory when the program starts. To avoid uncer-

tain program performance, an HP-71 program using arrays should include an OFTIOH EARSE

statement (page 68). (#56)

A Minimal BASIC program assumes radians setting unless EGREES is executed as a program

statement. An HP-71 program assumes the angular setting already in continuous memory when

the program starts. To avoid uncertain program performance, an HP-71 program requiring an an-

gular setting should include either a FADIAMS or a DEGREES statement (page 50). (#120)



Appendix A: Owner’s Information 271

e A Minimal BASIC program uses the same random number sequence each time it’s run, unless a

FAMDOOMI ZE statement is executed as a program statement. An HP-71 program uses a different

random number sequence each time it’s run. However, an HP-71 program will use the same random

number sequence each time it’s run when a EAHIIM I ZE numeric expression statement (page 52)

is executed as a program statement. The result of the numeric expression determines what random

number sequence is used each time the program runs. (#130)

e A Minimal BASIC program declares variables as specified by the program’s [IIf{ statement

whether or not program control flows through that ' 111 statement. The HP-71 requires program

control to flow through a program’s [ I [1 statement, otherwise that statement’s variable declara-

tions will not occur. (#62)

Power Supply Information

Power Consumption

The HP-71 consumes the least power when the display is turned off (after &F F, &Y E, [f]J[OFF], or the

10-minute timeout period elapses). More power is consumed while the HP-71 is turned on, and more

yet while a program is running or the beeper is sounding.

While the HP-71 is turned off, it draws a current of about 0.03 mA. While the HP-71 is on, but not

running, it draws 0.75 mA of current. With a typical program running or the beeper sounding, the

computer draws 10 mA. New batteries will operate an HP-71 equipped with four memory modules for

at least 60 hours of continuous operation (running typical programs) at room temperature (approxi-

mately 25°C or 77°F) before the BAT (low battery) annunciator first turns on. If a card reader or HP-IL

interface is installed, battery life is shortened by an amount determined by module use.

Turn the HP-71 off before connecting the unit to a power outlet. This will prevent unexpected voltage

“spikes” from disturbing the contents of memory. When connected to a power outlet, the HP-71 uses

the batteries as a backup power supply and normally doesn’t draw any power from them. You won’t

damage the HP-71 by using the computer without batteries, but you may lose everything in memory

should there be a power outage or an intermittent connection to the voltage source.

Low-Battery Safeguards

The HP-71 has low-power safeguards to protect the contents of memory. After the first indication of

low power, replace the batteries as soon as you can.

¢ When the battery voltage drops below the minimum operating level, the BAT annunciator will turn

on. This indicates that the computer can run a program for 5 minutes to 2 hours more, depending

on the condition of the batteries.

e The computer will continue to operate after the BAT annunciator comes on. Continued operation,

however, may result in a memory reset if the batteries run too low.



272 Appendix A: Owner’s Information

e The card reader may not function properly in a low-battery condition. Although card reader oper-

ations might not be aborted, the HP-71 will display the message

='—':... .._... £ .. 3

BEM: Low Hatt i F o

if card reader operations are performed during a low-battery condition.

Replacing the Batteries

The HP-71 uses four size AAA alkaline batteries. When you remove the batteries, you have at least 30

seconds to replace them, provided you do not press any keys, before the contents of the computer’s

memory are lost. If you press any keys while batteries are removed, memory contents are immediately

lost. If you have an ac adapter connected to the HP-71, you do not have to worry about possible mem-

ory loss when changing the batteries. If you are going to change the batteries without the ac adapter

being connected, you may first want to copy your files onto magnetic cards or a mass storage medium

to prevent them from being lost should a memory loss occur.

To install batteries in the HP-71:

1. Turn off the HP-71. Press or type [IFF LINE].

2. Turn the computer upside down and set it on a soft, flat

surface.

3. Using your thumb press down on the battery compartment

door (the door to the center compartment), and slide it toward

the rear of the computer. When you press down on the

compartment door, the catch will snap as it unlatches from the

computer.

 

4. Remove the four batteries, and insert four fresh ones, being careful to align them according to the

indicators in the compartment.

5. Lay the compartment door in position and slide it toward the front of computer until the catch

snaps.

General Cleaning Information

The HP-71 can be cleaned with a soft cloth dampened either in clean water or in water containing a

mild detergent. Don’t use an excessively wet cloth or allow water inside the computer. Avoid abrasive

cleaners, especially on the display window.



Appendix A: Owner’s Information 273

Plug-In Modules

Your HP-71 has four external ports for RAM and ROM modules, one port for a card reader module,

and one port for an HP-IL interface. Before shipping, each of these ports is fitted with a removable,

blank module to protect the underlying circuits. These ports should be kept covered when not in use to

prevent foreign matter from entering the HP-71.

Instructions for installing and using optional memory modules, preprogrammed modules, and the

HP-IL module are included with each of those modules. Instructions for the card reader module are

located in Appendix C in this manual, page 284.

Verifying Proper Operation

If you suspect that your HP-71 is not operating properly and may require service, you can do the

following self-test in the specified order:

1. Turn the computer off. (Press or execute iFF.)

2. Plug an ac adapter into a power outlet then connect it to the computer.

3. Turn the computer back on. (Press [ON].)

4 . Execute the F I function. Type F I [ENDLINE]. The result = 1 #% should be displayed,
which indicates that approximately 60% or more of the computers circuits are operating properly.

  

5. If the computer repeatedly fails to perform a particular operation, such as copylng a file to a mag-

netic card, or repeatedly displays an error message, such as E:xoszs Ohar s, then carefully

reread the instructions in this manual regarding that operation; you may be spe(:1fy1ng the oper-

ation improperly.

 

6. If the computer still does not operate properly, press and simultaneously , then press

to execute a level one initialization. The display should now display the Replace cursor
(BASIC mode) or Insert cursor (CALC mode).

  

7. Press [ON] (/] (simultaneously) then (2] LINE], to execute a level 2 initialization (IHIT: 2).
The computer will do a self-test of its circuitry. The computer will display ¥ i i as it

begins to test the circuits. When the first portion of the test verifies the properoperatlon of the

circuits, the computer will display

TR T i
01 o el 4053 il

indicating that it is continuing the test. When the test is completed, the computer will display

 

if the test revealed no faulty circuits. If faulty circuits are detected, at least one of the numbers will

be followed bya B instead of a G. Thus,



274 Appendix A: Owner’s Information

would indicate that the computer has a faulty ROM. If your computer indicates a faulty ROM

after an IHIT: I test, it requires service.

8. If the display remains blank when is pressed, or if characters remain “frozen” in the display,

then reset the memory:

Unplug the ac adapter.

Remove all modules.

Remove the batteries.

Press and hold down for about 30 seconds to discharge the circuits.

Install batteries or connect the ac adapter, then press to turn the computer on. The

message [fl=mor g Lost should now be in the display. Pressing any key should display the

BASIC prompt and Replace cursor.

e
T
P

If you cannot determine the cause of difficulty, write or telephone Hewlett-Packard at an address or

phone number listed under Service, starting on page 276.

Limited One-Year Warranty

What We Will Do

The HP-71 (except the batteries and damage caused by the batteries) is warranted by Hewlett-Packard

against defects in materials and workmanship affecting electronic and mechanical performance for one

year from the date of original purchase. If you sell your unit or give it as a gift, the warranty is trans-

ferred to the new owner and remains in effect for the original one-year period. During the warranty

period, we will repair or, at our option, replace at no charge a product that proves to be defective,

provided you return the product, shipping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

The batteries or damage caused by the batteries are not covered by this warranty. However, certain battery

manufacturers may arrange for the repair of the HP-71 if it is damaged by the batteries. Contact the

battery manufacturer first if your HP-71 has been damaged by the batteries.

This warranty does not apply if the product has been damaged by accident or misuse or as the result of

service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.

ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED

TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces,

or countries do not allow limitations on how long an implied warranty lasts, so the above limitation

may not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE

FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclu-

sion or limitation of incidental or consequential damages, so the above limitation or exclusion may not

apply to you.



Appendix A: Owner’s Information 275

This warranty gives you specific legal rights, and you may also have other rights which vary from state

to state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a

consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be

determined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard

shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard

dealer or a Hewlett-Packard sales and service office. Should you be unable to contact them, please

contact Hewlett-Packard at one of the three locations listed below.

Note: Do not send units for repair to any of the three addresses listed below. Repair center ad-

dresses are listed under the next topic.

¢ In the United States:

Hewlett-Packard Company

Personal Computer Division

Customer Support

11000 Wolfe Road

Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

¢ In Europe:

Hewlett-Packard S.A.

150, route du Nant-d’Avril

P.O. Box CH-1217 Meyrin 2

Geneva

Switzerland

Telephone: (022) 83 81 11



276 Appendix A: Owner’s Information

e In other countries:

Hewlett-Packard Intercontinental

3495 Deer Creek Rd.

Palo Alto, California 94304

U.S.A.

Telephone: (415) 857-1501

Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may

have your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit

is under warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt

at any service center. This is an average time and could vary depending upon the time of year and the

work load at the service center. The total time you are without your unit will depend largely on the

shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is lo-

cated in Corvallis, Oregon:

Hewlett-Packard Company

Service Department

P.O. Box 999

Corvallis, Oregon 97339, U.S.A.

or

1030 N.E. Circle Blvd.

Corvallis, Oregon 97330, U.S.A.

Telephone: (503) 757-2000

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer

where you purchased your unit.

AUSTRIA BELGIUM DENMARK

HEWLETT-PACKARD Ges.m.b.H. HEWLETT-PACKARD BELGIUM SA/NV HEWLETT-PACKARD A/S

Kleinrechner-Service Woluwedal 100 Datavej 52

Wagramerstrasse-Lieblgasse1 B-1200 Brussels DK-3460 Birkerod (Copenhagen)

A-1220 Wien (Vienna) Telephone: (02) 762 32 00 Telephone: (02) 81 66 40

Telephone: (0222) 23 65 11



EASTERN EUROPE

Refer to the address listed under Austria.

FINLAND

HEWLETT-PACKARD QY

Revontulentie 7

SF-02100 Espoo 10 (Helsinki)

Telephone: (90) 455 02 11

FRANCE

HEWLETT-PACKARD FRANCE

Division Informatique Personnelle

S.A.V. Calculateurs de Poche

F-91947 Les Ulis Cedex

Telephone: (6) 907 78 25

GERMANY

HEWLETT-PACKARD GmbH

Kleinrechner-Service

Vertriebszentrale

Berner Strasse 117

Postfach 560 140

D-6000 Frankfurt 56

Telephone: (611) 50041

Appendix A: Owner’s Information 277

ITALY

HEWLETT-PACKARD ITALIANA S.P.A.

Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

1-20063 Cernusco Sul Naviglio (Milan)

Telephone: (2) 90 36 91

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V.

Van Heuven Goedhartlaan 121

NL-1181 KK Amstelveen (Amsterdam)

P.O. Box 667

Telephone: (020) 472021

NORWAY

HEWLETT-PACKARD NORGE A/S

P.O. Box 34

Oesterndalen 18

N-1345 Oesteraas (Oslo)

Telephone: (2) 17 11 80

International Service Information

SPAIN

HEWLETT-PACKARD ESPANOLA S.A.

Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

SWEDEN

HEWLETT-PACKARD SVERIGE AB

Skalholtsgatan 9, Kista

Box 19

S-163 93 Spanga (Stockholm)

Telephone: (08) 750 2000

SWITZERLAND

HEWLETT-PACKARD (SCHWEIZ) AG

Kleinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057) 31 21 11

UNITED KINGDOM

HEWLETT-PACKARD Ltd

King Street Lane

GB-Winnersh, Wokingham

Berkshire RG11 5AR

Telephone: (0734) 784 774

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you

bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is avail-

able in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local

Hewlett-Packard service center to see if service is available for it. If service is unavailable, please ship

the unit to the address listed above under “Obtaining Repair Service in the United States.” A list of

service centers for other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.



278 Appendix A: Owner’s Information

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repai1 charges include all labor and

materials. In the United States, the full charge is subject to the customer’s local sales tax. In European

countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable.

All such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered by the fixed repair charges. In these

situations, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period

of 90 days from date of service.

Shipping Instructions

Do not return any batteries in or with the computer. Please refer to Battery Damage on page 279.

Should your unit require service, return it with the following items:

¢ A completed Service Card, including a description of the problem.

o A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of pur-

chase date should be packaged in adequate protective packaging to prevent in-transit damage. Such

damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the

shipment to the service center. The packaged unit should be shipped to the nearest Hewlett-Packard

designated collection point or service center. Contact your dealer for assistance. (If you are not in the

country where you originally purchased the unit, refer to “International Service Information,” above.)

Whether the unit is under warranty or not,it is your responsibility to pay shipping charges for delivery

to the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-

of-warranty repairs in the United States and some other countries, the unit is returned C.0.D. (cover-

ing shipping costs and the service charge).



Appendix A: Owner’s Information 279

Battery Damage

Do not return any batteries in or with the computer. The batteries or damage caused by the batteries

are not covered by the one-year limited warranty.

If your HP-71 is damaged by battery leakage, you should first contact the battery manufacturer for

warranty information. Some battery manufacturers may repair the computer if it has been damaged by

leaking batteries. If the battery manufacturer warrants against battery damage, you should deal directly

with that manufacturer for repairs. If the battery manufacturer does not warrant against battery dam-

age, you should send the computer to Hewlett-Packard for repair. Whether the computer is under war-

ranty or not, there will be a charge for repairs made by Hewlett-Packard when the computer has been

damaged by the batteries. To avoid this charge, contact the battery manufacturer first when your com-

puter has been damaged by the batteries.

Further Information

Service contracts are not available. Circuitry and designs are proprietary to Hewlett-Packard, and ser-

vice manuals are not available to customers. Should other problems or questions arise regarding re-

pairs, please call your nearest Hewlett-Packard service center.

Potential for Radio/Television Interference (For U.S.A. Only)

The HP-71 generates and uses radio frequency energy and, if not installed and used properly—thatis,

in strict accordance with the instructions in this manual—may cause interference with radio and tele-

vision reception. It has been tested and found to comply with the limits for a Class B computing device

in accordance with the specifications in Subpart J of Part 15 of FCC rules, which are designed to

provide reasonable protection against such interference in a residential installation. However, there is

no guarantee that interference will not occur in a particular installation. In the unlikely event that

your HP-71 does cause interference to radio or television reception (which can be determined by

removing all power to the HP-71 and then reconnecting the power and turning it on) you are encour-

aged to try to correct the interference by one or more of the following measures:

¢ Reorient the receiving antenna.

¢ Relocate the HP-71 with respect to the receiver.

* Move the HP-71 away from the receiver.

* Plug the ac adapter into a different ac outlet so that the HP-71 and the receiver are on different

branch circuits.

If necessary, you should consult your dealer or an experienced radio/television technician for additional

suggestions. You may find the following booklet, prepared by the Federal Communications Commis-

sion, helpful: How to Identify and Resolve Radio-T'V Interference Problems. This booklet is available

from the U.S. Government Printing Office, Washington, D.C. 20402, Stock Number 004-000-00345-4.



280/281 Appendix A: Owner’s Information

When You Need Help

Hewlett-Packard is committed to providing after-sale support of its customers. To this end, our cus-

tomer support department has established phone numbers that you can call if you have questions about

this product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call:

(800) FOR-HPPC

(800 367-4772)

or write

Hewlett-Packard

Personal Computer Group

Customer Communications

11000 Wolfe Road

Cupertino, CA 95014

Technical Assistance. For technical assistance with your product, call the number below:

(503) 757-2004

or write

Hewlett-Packard

Portable Computer Division

Customer Technical Support

1000 N.E. Circle Blvd.

Corvallis, OR 97330





Appendix B

Accessories Included With the HP-71

Your HP-71 comes with each of the following:

e HP-71 Owner’s Manual.

e HP-71 Reference Manual.

e HP-71 Quick Reference Guide.

e One case for the computer.

e One keyboard overlay.

e Four AAA alkaline batteries.

e Accessory brochure.

e Service Card.

The accessory brochure describes optional accessories for your HP-71. For more information, see a

Hewlett-Packard dealer. If you are outside the U.S., please contact the Hewlett-Packard Sales Office

nearest you.

Availability of all accessories, standard or optional, is subject to change without notice.

282/283





Appendix C

Using the HP 82400A Magnetic Card Reader

Contents

OVeIVIEW ..284

Installing the Card Reader ....... ... .. . . . . . . . .. . . . .... 285

Removing the Card Reader ....... ... ... .. . . . . .. . ... 285

Caring For the Card Reader and Cards ............. .. ... ... ... ... .. ... 286

Cleaning Magnetic Cards . ........... . .. .. ..286

Cleaning the Card Reader Head ............ ... ... ... ... ... . ... ... ...... 286

Marking Magnetic Cards .. ........ .. .. ..... 286

A Look At a Magnetic Card ........... . .. .... 287

Pulling Cards Through the Card Reader ......... ... ... ... ... ... ... ... ...... 287

Card Reader Operations ............. ... . . .. ..289

Copying a Card File to a File in Memory ....... ... ... ... ... ... .......... 291

Copying a File in Memory toa Card File ......... ... ... ... ............ 291

Protecting a Card (FEOTELCT, UMFREOTECT) ... . .. . ... ... 292

Using Private Cards (: FLELD)o292

Catalog of a Card File ("HT CHELD) oo.293

Overview

This section is for those who have obtained the optional HP 82400A Magnetic Card Reader. It de-

scribes how to install and operate the card reader.

You might want to first become familiar with the file operations described in section 6. The informa-

tion in that section is helpful for understanding how to copy files from one device to another.

This appendix covers:

e How to install and test the card reader.

e Caring for the card reader and magnetic cards.

Copying files to and from magnetic cards.

Obtaining file information from the card reader.

284



Appendix C: Using the HP 82400A Magnetic Card Reader 285

Installing the Card Reader

Turn off the HP-71 (press [f]J(OFF)).

The card reader fits in the port which is to the right of the display and above the numeric keys.

Turn the HP-71 over and remove the door to the card reader port, by pressing down on the door

and sliding it to the rear of the HP-71.

Turn the HP-71 right side up. With your thumb, push

on the plastic insert that is in the port until it drops

out. You may want to save this insert in case you re-

move the card reader.

S—
T

Turn the HP-71 over again. Orient the card reader

with its label facing into the port and its pin socket

aligned with the pin connectors. Press on the card

reader near the pin socket until it snaps into place.

 

Note: The pin socket might fit tightly over the pin connectors, requiring you to push hard on the

card reader when installing it. Although the card readerfits snugly into the port, you should ensure

that you don’t force it into the port if it isn’t properly aligned over the contacts.

Replace the door to the port.

Removing the Card Reader

To remove the card reader:

1.

2.

3.

4

5

Turn off the HP-71 (press (fJ(OFF)).

Remove the cover to the card reader port.

Push with your thumb on the labeled side of the card reader until it drops out of the port.

Replace the plastic insert.

Replace the port cover.



286 Appendix C: Using the HP 82400A Magnetic Card Reader

Caring for the Card Reader and Cards

Cleaning Magnetic Cards

Clean cards are necessary for optimum card reader performance. Card surfaces are susceptible to dust

and oil accumulation, which interferes with the transfer of information to and from the HP-71. A

common source of dirt and oil is your fingers. Handle cards by their edges only. You can clean cards

with a soft, clean, lint-free cloth moistened with isopropyl alcohol.

Place the card on a smooth, clean surface, then wipe the

cleaning cloth firmly across the magnetic surface (the

unlabeled side) of the card.

Creasing, bending, or scratching a card can damage it be-

yond repair. As a protective measure, you could duplicate

your important card files and place the duplicates in a

card holder in a secure location. If one of your working

cards should be damaged, you’ll have a back-up copy

available.

 

Cleaning the Card Reader Head

The card reader head is similar to an audio recording head. As such, dirt or foreign matter collected on

the head can impair the contact between the head and magnetic cards. Dirty cards passed through the

card reader will impair the quality of its operations. You can clean the head by pulling the abrasive

head cleaning card (supplied with the card reader) through the card reader in the direction of the arrow

one or two times. It’s unnecessary to execute any statements before passing the head cleaning card

through the card reader.

 

CAUTION

Use of the abrasive card should be necessary no more than a few times during the life of the card

reader. Frequent use of the abrasive card can cause excessive head wear.  
 

Marking Magnetic Cards

You can label the face of a card using any writing implement that doesn’t emboss the card. Permanent

ink felt-tip pens (such pens usually have the words permanent, waterproof, or smearproof on them—

don’t use water-based overhead projector pens or ordinary felt-tip writing pens), capillary or technical

drawing pens using permanent ink, and pencils work well for marking cards. Most inks must be al-

lowed to dry for a few seconds. Pencil can smear, but is erasable.



Appendix C: Using the HP 82400A Magnetic Card Reader 287

A Look at a Magnetic Card

Each magnetic card has two data tracks, both of which record the following information:

e The catalog entry of the file recorded on the track.

e The total number of tracks in the file.

¢ The identification number of this track, a number from 1 to the total number of tracks.

e The write-protection status of the track; that is, whether the track is protected against recording.

¢ Up to 650 bytes of the file itself. One track can contain information from one file only. One card

can contain information from one or two files.

Alignment marks for the beginning of the track. —1-1

= . a2 )
Space to label the card. J The direction of movement _/

through the card reader.

 

    
 

When passing either track of a card through the card reader, always have the printed face of the card

up. The order in which you read the tracks doesn’t matter.

Note: Keep magnetic cards clean and free of oil, grease, and dirt, and handle cards by their edges

only. Dirt and fingerprints degrade the performance of the card reader, cause warning messages to

occur, and decrease the lifespan of cards. Cards can be cleaned with isopropyl alcohol and a soft

cloth. Keep cards away from sources of strong magnetic fields, such as permanent magnets, wires

carrying heavy currents, power transformers, and degaussers (magnetic erasers); magnetism can

permanently damage the cards.

Pulling Cards Through the Card Reader

The HP-71 displays a variety of messages to guide you through card reader operations. All card reader

operations involve the following steps:

1. Type a card reader statement in BASIC mode (such as ©0iFy T DFED),

2. Press to initiate the operation. The HP-71 responds with the appropriate message and
waits.

A typical message you’ll encounter is:
 

Phvery ERDLH The HP-71 waits for your response. You can press
ATTN to cancel the operation.   



288 Appendix C: Using the HP 82400A Magnetic Card Reader

3. With the card oriented in the forward direction of the desired track, insert the card so that the

rightmost alignment mark is just beneath the entry slot; the card should protrude past the exit slot

so that the arrow and box show. Then press a second time. The HP-71 responds:
 

   
4. Pull the card through the card reader. The HP-71 allows about 7 seconds for you to start pulling

the card. A longer time causes the HP-71 to beep, display a warning—F- E+ o —and prompt

you totry again. If you decide not to pull the card, wait until the HP-71 againprompts you to

Mlign then EHDLH (about 7 seconds), then press instead.

5. After you've pulled a card through the reader, several HP-71 responses are possible:

e If you’re copying a file in memory to a card, the HP-71 will prompt you for a second pass of the

same track:
 

 
Hlign thern EMDLH

  

 

This time though, the accuracy of the information copied to the track will be verified. If the

information isn’t verified on the second pass, the HP-71 will display a warning—

WMer ify Fail—and require two more passes of the same track through the card reader,

once to copy and once to verify. (If the track still fails to be verified, then clean the card or use

a new card.)

e The HP-71 will signal you when you are done with each track:
 

 

o If the file fills more than one track, the HP-71 prompts you for the next track:
 

Brt: Hligrn thern EMHDLH

 

   
The computer is ready for you to turn the card around and read the second track or to insert

another card.



Appendix C: Using the HP 82400A Magnetic Card Reader 289

o Ifyou pull a card too fast or too slowly, the HP-71 displays a warning—7o Fast—or—

z % 1ow—and prompts you for another pull. If you pull a card very slowly, the computer

mlght respond as if no card had been pulled.

* The HP-71 continues prompting for as many passes as needed. When the operation is com-

pleted, the BASIC prompt and the cursor will reappear in the display.

Card Reader Operations

The following statements operate on magnetic cards using the card reader:

Displays the catalog information of a card file.

 

o DOFY file T CHELD Copies a file in memory to a magnetic card. A file
can be a file name and a device name.

o DOFY CHRED Tfile Copies a card file to a file in main RAM. You
can’t copy a card file to an independent RAM.

Protects a track from being overwritten.

Removes the write-protection from a track.

 

Loads a program from magnetic cards, designates
it as the current file, then executes it.

o T i Ex
]

i Purges the current file, loads a program from
magnetic cards, designates it as the current file,
then executes it.

    

 

All card reader statements are programmable. Only &iif

and CHAIH FORED change the current file designation.
   

A magnetic card can be specified in an operation by the device names : ZFED and : FORED (FORED

from independent RAM.

To specify a file on a card, you can use one of the following forms.

     
)

0

e file name : CiHELD

 

e file name : FiEL



290 Appendix C: Using the HP 82400A Magnetic Card Reader

The following is an example of a typical operation using the card reader. This example assumes the file

resides on three card tracks.

CORY CARD TO RCRES
 

Fead: Alian thern EMDOLH

   
(align card)

 

 

 

L1l Card

T dorne

 

 

   
(align the card)

 

   

 

 

 

Fead: Hliganm thern EMHDOLH   
(align the card)

 

b +

   
(pull the card)

Copies a card file to AZFES in main RAM.

Prompts you to align the card.

Indicates that you are ready to pass the card
through the card reader.

Prompts you to pull the card through.

Indicates that the HP-71 successfully read the
card.

Prompts you to pull another card through.

Indicates that you are about to pull a card.

Prompts you to pull the card.

Indicates that the computer successfully read
track 2.

Prompts you to pull another card through.

Indicates that you are about to pull a card.

Prompts you to pull the card.

After reading the last track, the file is stored in
memory and the BASIC prompt appears.



Appendix C: Using the HP 82400A Magnetic Card Reader 291

After the HP-71 reads the last track, it no longer prompts for cards.

The example above shows that when you execute a statement involving magnetic cards, the computer

first responds with a message such as Fead: Aligrn then EMDLH, then prompts you for more

cards if they are required.

Copying a Card File to a File in Memory

When a file that you want to copy is on a card, you must specify the card reader as the source file’s

device in the C(iF"%statement. Executing a form of ZF' file name without specifying the card reader

as the source device causes the computer to search for the file in RAM and ROM. Files from magnetic

cards can be copied only into main RAM from the card reader. Once in main RAM, they can be copied

to another memory device. (You can’t copy a file directly from card to card.)

Examples:

CORY OCARD TO EOTHTE Copies the file from the card to a file named
EOTHTE.

CORY cCARED TO TEIAMGLE You can use either CFFED or : CREDL

COPY CARED Copies the card file to a file of the same name in
main RAM.

CORyY LATERAL:CARD Copies the card file LATERAL to main RAM.

COPY GEAPHICS:CAED TO IMAGES Copies the card file GERFHICE to IMAGES In
main RAM.

Copying a File in Memory to a Card File

You can copy any RAM or ROM file to magnetic cards.

Examples:

CORY ROTARATEFOETCEY TO CHED Copies FilTHTE from port O to a card.

CORY OTREIAMGLE:MAIMN TO CARD Copies TEIAHGLE from main RAM to a card.

CORY TO CRED Copies current file to a card.

CORY ITMAGES FORETOE Copies IMAGES from port 0 to GEAFHIDE on

TOOGRAPHICS: CARD a card.



292 Appendix C: Using the HP 82400A Magnetic Card Reader

{FROTECT)Protecting a Card (FROTELT, UHFREL

For some applications you might want to protect a card from being overwritten so that you don’t ac-

cidentally alter or lose a file. You can protect cards using FEOTEDT.

 

T o

  
 

When you execute this statement, the HP-71 prompts you to pull a card through the card reader. When

you pull the card through, the HP-71 will encode a write-protect mark on the track. If you want to

protect the other track, you must execute PRTET again and pull the second track through.

You can remove the file protection from a card by executing HFEOT
o
Bli i

 

 

  
 

When you execute LIHFEITELT, the HP-71 prompts you to pull a card through the card reader. When

you pull a card through, the HP-71 removes the file protect mark from the track.

Using Private Cards (: FiFL)

A file copied to magnetic cards can be encoded as a private file using : FFE[ instead of : CFF[I as the

device for the new file. A program on a private card can be copied and executed only, and not viewed or

edited. As with files in RAM, the private encoding of a card file can’t be reversed. (Private files in RAM

are described in section 6 under “Controlling File Access,” page 116.)

Copying a File to a Private Card. You can make a card file a private file only at the time you copy

the file from RAM or ROM to the card reader. To do this, type:

 simplified syntax

[‘ FY [file name] [: device] Tii [file name] : FiZELD

 
 

 

Examples:

T¥FEZET MARIN TO (FOED Copies TFEZET in main RAM to a private card.

TO ELECTREOM:FORED Copies the current file to EL ECTECH on a pri-
vate card.

g o

CORYOTO PORD Copies the current file to a private card.



Appendix C: Using the HP 82400A Magnetic Card Reader 293

Copylng a Private Card to a File. You can copy a private card to a file by specifying FFor

: FUED as the source device in the CiiFY statement. You aren’t required to specify a private card as a

source device when copying a file from a private card. When the HP-71 copies a file from a private card,

that file resides in main RAM as a private file.

 

Examples:

T TYFESET Copies the file on a card to the file T%F

 

   CTREOMFORED Copies ELECTEDH from a card to main RAM.

 

CORY CARD Copies the file from a card to main RAM.

Catalog of a Card File ("1 HEL)

The &7 {AFED statement enables you to view the catalog information for any card file.

 

   

 

Example: Display the catalog information for a card file named ¥

 

   

 

thrar EHIOLH Prompts you to align a card then press LINE].

(Align card) You have about 7 seconds to pull the card
through.

(Pull card)

nnn <:f nnn Displays the track just passed through.

 

 

BIO Displays catalog information.

 

   
When you try to obtain a catalog of a card that was written on by another computer or a card with an

unused track, the HP-71 indicates that its file type is zero.



Subject Index

Page numbers in bold type indicate primary references; page numbers in standard type indicate second-

ary references. In addition to the references in this subject index, a complete index to the HP-71

instruction set grouped by category is located inside the back cover of the owner’s manual. Other lists

of alphabetized information are in the HP-71 Reference Manual; in particular, the sections titled “Glos-

sary,” “Keyword Dictionary,” and “Errors, Warnings, and System Messages.”

A

HES function, 48
Absolute value (FE=), 48

AC status annunciator, 30
Accessing data files, 249-263. See also retrieving

program data
Accessories included with HP-71, 282
Accuracy of clock, 268

function, 52
A0function, 52
Actlve environment, 211
<1111 statement, 80-82, 87
Addmg data points to statistical array (#

 

  

   

  

1), 80-
82, 87

Adding lines to program, 116, 158
Addition (+) operator, 47

statement, 92-93

I statement, 94-95
Ad]ustlng clock speed (ZETTIME, ROJIUST, AF,

,FEESET CLOCE), 94-96

AdJustment factor for clock, 95-96
HF statement, 94-95
Alternate characters, defining, (CHAREZET,

EZET# keywords), 132-135 °

Ampersand (%operator), 73

! loglcal operator, 62-63
£ function, 52

Angular setting flag (-10), 197
Annunciator flags (-57, -60 through -64), 201
Annunciators, 15-16, 20, 22, 30

ANSI standards, conformance of BASIC inter-
preter to, 268271

Arc cosine
Arc sine (F=IH

Arc tangent (FiT#H or FTH), 52

Arc tangent in proper quadrant (FHEGLE), 52

  

 
294

Arithmetic
hierarchy, 64
operators, 47, 64

Arrays, numeric, 68-71
Changing dimensions under program control, 70-

71
Declaration of, (&I, BEEAL,

IMTEGER), 69-70, 271

Default dimensions of, 70
Recalling (retrieving) (FESTORE #, READ #),

261-263
Setting lower bound of, (1F T I{iH

69, 70, 270
Storing (FEIHMT #), 261

Arrays, statistical, 78-89
Adding data points to, (Fiili), 80-82, 87
Calculating means using, (MEFH), 83
Calculating predicted values using, (FFEEIY), 85-

86, 89
Calculating sample correlations using, (ZOFEE

84
Calculating standard deviations using, (ZIEL),

83-84
Clearing elements of, (ZL.=THT), 78-80, 87
Declaring (%7#7T), 78-80, 87
Deleting data points from, (LiF1F), 81-82
Fitting linear regression model using, (L&), 84-

"i"".”"

 

85, 88
Recalling (retrlevmg) from data files

(F E #, FEARD #), 261-263

  

Storing (¥ . fl) 261

Summing data points in, (TTHL), 82-83



Arrays, string, 71-73
Changing dimensions of, under program control,

73
Declaring (i 111), 72-73, 271
Default dimensions of, 73
Setting lower bound of, (IFTI0H ERZE), 72-

73. See also same entry under arrays, numeric
Arrow keys

Left/right ([«J, >]) keys, 15-16
Up/down ([A], [¥]) keys, 21, 31, 156, 158

Arrow status annunciators (+, = symbols), 15-16,
22, 30

Arrow () symbol ([ENDLINE] symbol in CALC
mode), 42-44

4% 1 Hfunction, 52
functlon 52

ki # statement, 248-249

Assignment (L.ET) statement, 67, 269
in CALC mode, 38-39
Multiple, 67, 146
Substring, 74

As31stance technical, 280
#H function, 52

A function, 52

m(ATTN] key, 16, 31, 153
111711 statement, 149
Automatlc
command execution (5THETLF), 139-140
parenthesis matching in CALC mode, 39-40

  

    

 

B

Subject Index 295

Beeper
flags (-2, -25), 33, 197
loudness, controlling, 32-33

BIN (binary) files, 99, 160
Boolean values, 62
Branching, program. See program, branching,

conditional/unconditional

C 

 

key, 12, 16, 21, 44
Backward execution, in CALC mode, 44-45
Base option flag (-16), 199
BASIC
conformance to ANSI standards, 268-271
Extensions to minimal, 268-269
files, 99, 143-144

Merging files, 116
Minimal, deviations from, 269-271
Minimal, extensions to, 268-269

mode, 13-14, 19,37
mode calculations, 19, 37
prompt (), 13-14
prompt flag (-26), 200

BAT status annunciator, 30, 271

Battery, 13, 30, 271-272
damage, 279
power consumption, 271
replacement, 272

{iFF statement, 32-33

it} statement, 32-33

statement 32-33

 

  

 

CALC mode, 18-20, 37-46, 48
Arrow () symbol ([(ENDLINE] symbol in Com-

mand Stack), 42-44
Assignment statements in, 38-39
Backward execution in, 44-45
comma () reminder for argument lists, 40-41
Command Stack in, 42-44
Complete expression recovery in, 42-44
Error recovery in, 42-46
Features of, 38-44
Implied result in, 38, 40
Operations unsupported in, 46, 48
Precedence of operators in, 41-42
Single-step execution in ((f](SST]), 41,42
Unsupported operations in, 46, 48
USER keyboard in, 38
Warning messages in, 46

CALC status annunciator, 19, 30
Calculating means using statistical array (IME#fH),

83
Calculating predicted values using statistical array

(FEEDV), 85-86, 89

Calculating sample correlations using statistical ar-
ray (L.F), 84-85, 88

Calculating standard deviations using statistical ar-
ray (=[EY), 83-84

Calculations, 18-20, 36-64, 78-89
Calendar, 17, 90-91

Setting, 17, 90-91
Years covered by, 90

i-#i. L. statement

calling subprogram in another file, 210
executed from keyboard, 150-151,
executed in program, 180, 205-210
parameters, 206-209

Cancelling
key definitions (DiEF KEY), 128
trace operations (TEHCE 0FF), 168

write-protection of magnetic card
(UHFEOTECT), 289, 292

CEED keyword 289
Card magnetic. See magnetic card

 



296 Subject Index

Card reader 284-293
atement, 289, 293

[t statement, 289

statement, 289, 292-293
statement, 289, 291

statement, 289, 291
[1 statement, 289, 292

  

  

  
head cleaning, 286
Installing, 285
opera 'ons 289-293

I statement, 289, 292
Pullmg cards through, 287-289

285

 

   statement, 289, 292
keyword 289
i.i. statement, 102, 118-119

i statement, 289, 293
statement. Refer to HP-71 Reference Manual

Catalog of file(s). See file, catalog
Categories of numbers (L. #5%), 60

. function, 48
statement, 192-193

statement

executed from keyboard, 151-152
executedin program, 180-181

CHED statement, 289
Chamed programs 151152
Channel number (#% [ #), 248-249

Channel number (& ), 206, 263-264

key, 21
Character

code, 74-75, 77, 132-135, 268
Control, 234-239
display scrolling rate, 26
set, 132-135, 268

[ statement, 132-135

# function, 132-135
functlon 75, 77

1T statement, 107

: functron 60
Cleamng 1nformatxon 272
Clearing

display ([ATTN]), 16
memory, 13-14

Clock
accuracy, 268

Setting (=& 71

92-93
Speed correction factor, 92-96

Closmg data file (FZZIGH #), 248-249
CL=THT statement, 78-80, 87

  

  

  

  

  

  

 

   

  

 

1E), 17-18, 92-95; (AL

  

(Command Stack) key, 31-32
Code, character, 74-75, 77, 132-135, 268
Comma (.) reminder for argument lists in CALC

mode, 40-41
Comma (. ) used for output spacing, 227

Command execution (automatlc) when HP-71 is

turned on (& =), 139-140
Command Stack, 31-32

in CALC mode4244
Common log (L7 or LG 1), 50
Complete express1on recovery in CALC mode, 42-

44
Concatenation, statement (i), 22, 67, 146
Concatenation, string (%), 73

Conditional
execution of program lines. See program, line(s),

conditional execution of
program branching. See program, branching,

conditional
Conformance of BASIC interpreter to ANSI stan-

dards, 268-271
m key, 153, 155
| [ statement, 155

Contlnuouson flag (-3), 197

- T statement, 29-30

Control characters, 234-239
Controlling

cursor, 135-136, 234-239

display, 135- 140232239
file access (%E -

117-118
line width (4107 H,
printer, 232-234

Conventrons used in manual, 14, 16, 21, 34
: AED Tstatement, 289 291

statement 102, 112-114, 127
"""" statement, 289 291

statement 84

Correctlng errors. See also error recovery
by clearing display, 16
in CALC mode4246
using TF i and TE

171
with editing keys, 23-26

functlon 52

 

 

  

  

 

TH), 232-233

  

 

  

  ol "";’ 166-

, 259
' £), 248 257, 259

  

Creatmg data file (i
Current

file, 27-28, 100
line, 154, 158



Cursor
control, 135-136, 234-239
Insert, 19-20, 23
Moving, 15-16
Replace, 14, 16

Curve fitting, 86-89

Customizing the HP-71, 120-140

D

 

  

  

 
Damage to batteries, 279
DATA files, 99, 247-264
Data. See also file, data

entry, (In ), 241-244, 269
entry into statistical array, (#{il1), 80-82, 87
file, accessing, 249-263. See also data, recall
file, closing (#: ), 248-249
file, creation of £), 248
file, opening ( #), 248-249
file pointer, 252-253, 258
file, random data recall from (FE#HD #), 254-

257, 260
file, random data storage into (FE E #

SIHT #s), 256-263
file records 256-260
file, seq ntlal data recall from (¥

=f:z:) 254-263

  

   

 

  

   

3

 

T #) 250-253, 256-263
filestypes 247
pointer, resettmg (F
Program ([if7

269
recall from data file. See data file, random data

recall and data file, sequential data recall
recall (retrieval) from program (FEFL), 246, 269

storage in data file. See data file, random data

storage and data file, sequential data storage
storage in program ([iFiT#), 245

A TH statement, 245, 269

 

  

 

£), 246247
IREE), 245-247,

 

  

Date

 

     

 

Displaying 90-91; (¥
Setting (%E -), 17, 90-91

  

statement, 90-91

# function, 17, 90-91

Debugglng errors, 16, 23, 25-26, 43-46, 165-171
Decimal to hexademmal convers10n('“THE), 48

Declarmg arrays (I1if, FEAL, SH
&), 57, 69-71

statement 218-219

Y statement, 28, 121-124
Default array dimensions, 70
Default device, 111
Default files, 110

  

   

  

Subject Index 297

i1 statements, 58,  

 

Default string (It
function, 52

- statement, 50, 270

to radians (¥ ) 52

't statement, 158-159

Deletmg data from statistical array ([iF
1% statement, 67-68

Dev1at10ns from minimal BASIC, 269-271
Device

Default, 111

names, 110-114

(111 statement, 69,72-73, 271

Dimensions, array, 69-73
1ostatement, 225-227

Implied, 24, 67, 226
Quotatlonmarksin, 67

! ii: statement, 230-232

function, 136

117), 243-244

      

Display
catalog of file. See file, catalog
control, 26, 29-30, 135-140 232-239
fields, protected (1 i), 135-136
fields, protected using escape sequences, 237-239
file catalog. See file, catalog
format flags (-13, -14), 198-199
format statements 55-56
graphics (&1 EF) 137139

key defimtlons(ETOH
(VIEW]), 125-126

line, entering (.

 

=

   

  

     

  

1), 244-245

  

 

list, 230
program lines (FE =T, G ), (&), (),

21, 156-158
Protected, fields. See dLsplay fields protected
reading charactersfrom DrsrE), 136-139

 

7)), 26

zone, 227
Display window, 14-16

Clearing, 16
line length, 14-15
Moving, 15-16
viewing angle (i { imT), 29-30

Displayed number roundlng, 56
Displaying information, 24, 67, 224-239. See also

display, display window
(114 operator, 47

Division by zero, 57-60, 270
Division operator (.7), 47

Double quotation marks, 67
# function, 48

= flag, 57-60, 270

 

  



298 Subject Index

 

Iffififi symbol, 54-56
— 1 (ExFM1), 50

%EEE' 117 statement, 21, 22, 27, 143-144, 156

Editing
key definitions (FETOH KEY), 125
keys, 15-16, 21
program, 22-26, 156-159

keyword, 188-189
F statement, 219

LINE] key, 13, 31, 42, 158
End-of line sequence (EHIL IHE), 234

statement, 155, 269
statement, 204-205

I statement, 234
statement, 56

Englneenng display format (Eri), 56
Entering

data and expressions (IHF1LIT), 241-244
data into statistical array (~0il), 80-82, 87
display line, (L IHFLUT), 244-245
program lines, 22-25, 145-149, 269

Environment
Active, 211
Global, 211
Local, 211
Main, 211
Program and subprogram, 153, 210-215
User-defined function, 220-221

Environmental limits of HP-71, 267
Environments, subprogram, 210-215

Ending, 214
Restoring, 212-213
Saved, 211-212

Equal-to (=) operator, 62

£ % function, 61

L. function, 175-176
key, 164-165
¥ function, 164-165

function, 173-174, 176
Error recovery
by clearing display, 16
in CALC mode 4246

Ik E FiLOW and 71

 

  

     

  

 

  

 

  

 

fET 166-

 

with editing keys, 23, 25-26

Error(s)

Checking, 148
conditions, 162-177
Control of. See error(s), program control of
Math exception, 57-60, 176, 269-270
messages, 13, 68, 163-165

messages, recalling ([9)(ERRM], ERFE¥), 164-
165, 175

Program, control of, (ZH ERRECOE, ERFEH,
ERREL), 171-175

Run-time, 163-165

Syntax, 163-164
types, 163

Escape sequences, 234-239
Evaluation order, 64

T flag (-46), 200
I statement, 96

Exception, math. See math exception
Execute key ([ENDLINE]), 13, 31, 42, 158
Execute magnetlc card program (FUH :CHELD,

CHAITH OARED), 289
Executmgprogram. See program, execute.

logical operator 62-63
x: — 1 (E<FHM1) function, 50

* function, 50
1 functlon 50

T function, 50
Exponentlal notation (E), 54, 56
Exponentiation operator (™), 47

Exponentiation operator order of precedence, 64
Expression entry (IHFLIT), 242, 269
Expression recovery in CALC mode, 42-44

  

 

     

  

F
 

key, 11
f status annunciator, 30

"""""""" function, 49

Factorlal (FrRIT), 49

£y statement, 125

statement 26, 156-157

Flbonacm program, 216-218

 

  
    

 



File. See also BIN, LEX, BASIC, DATA, TEXT,
KEY, SDATA, data, file

Catalog of card (i
Catalog of every (i:#

Catalog of specified (TET.
erence Manual

Closing data (s £)
Controlling, access, (¥
Copy card, to main RAM (Copy

289, 291
Copy (iziiFv), 102, 112-114 127
Copy, to magnetlc card (CoRy TO

289, 291
Data, accessing, 249-263. See also retrieving pro-

gram data
Data, creation (iF £), 248, 257, 259

Data, pointer, 252253, 258
Data, random data recall from (&

257, 260
Data, random data storage into (!

PR #), 256-263
Data recall See file data, random data recall and

file data, sequential data recall

  

     

), 289, 293
.), 102, 118-119

Refer to HP-71 Ref-

  

 

   248-249 
     

  

-

   

  .T.

  

  

  

Data quentlal data recall from (EE=
[ #), 254-263

Data sequentlal data storage 1nto
(REST EO# FREINT #), 250-253,
256-261

Data, storage. See file data, random data storage
and file data, sequential data storage

Data, types, 247
Default, 110
names, 22, 109-110
names, reserved words for, 110
Naming BASIC (& ), 21-22, 143-144
naming workfile ), 27, 101, 145
Opening data (# [o#), 248-249
operations, 98-118

pointer, 252-253, 258
Program, 27 143-144
Purge (FlUEGE), 115-116, 127

records, 256-260
Renaming (F

search ord
security (GECLIRE) L

117-118, 127
Specify magnetic card (¥

289-293
transform between BASIC and TEXT

F11), 160-161
Fitting data to curves, 86-89
14 statement, 55

Fixed-decimal display format (¥ I:), 55

  

    

HME), 101, 115, 127
 

    112

  

 

Subject Index 299

 

im0 statement, 191-193

Flag(s), 30, 57-60, 68, 190-201. See also system
flags

Clearing, (CFLAG, B 1) 192-193
Math exceptlon5760 68 176-177, 197

  

 

Setting, (ZFLAG), 192
System, 196-201
Testing, (FL#i), 191-193

 

User 193-196

& function, 48

<7 statement, 185-187, 269

Form of subprogram (ZiLE, E
Form of user-defined function (I

, 218-219

     

), 204-205

  

  

 

Format strmg ( L
’ *x) 228232

Formattmg, printer and display, 224-239
Formatting numbers, 54-56
4 status annunciator, 30

~ function, 48
Fractlonal part (F#), 48

FOET statement, 105-106
Functlons
Numeric, 47-53
Statistical, 78-89
String, 74-77
User-defined, 218-222, 269

 

  

G

(9] key, 11
g tatus annunciator, 30

{11 %P statement, 137-139
Generatlng random integers, 53
Global environment, 211

i statement

executed from keyboard, 150
executedin program, 179

11111 statement

executed from keyboard, 158
executed in program, 179

Graphics, display, 137-139

 

   

   
   

 

Graphics, displaying (01 5F), 137-139
Greater-than (), 62

Greatest integer (IH7Tor FLIIE), 48

H

Halt program execution, 153
Head, card reader, cleaning, 286
Hexadecimal to decimal conversion (H71), 48

T function, 48

 



300 Subject Index

I—J
 

IEEE proposal for handling math exceptions, 59-
60, 62

 

  
I statement,188-189

statement, 187-188
- statement, 229-232

Imphed11 EF statement, 24, 67, 226
Implied resultin CALC mode 38, 40
Independent RAM104108

  

      
 Declare (F EOFORET), 105-106

incorporate, 1nto main RAM (CL#IM FORET),
107

Index of keywords inside back cover
Inexact result (i), 57-60

& values 59-60
IHF functlon 60
Infinity (+Ird, — 1 i¥), 59-60
Informatxondealer and product 280

dlsplay, 13-14, 193, 273-274
Initializing the HP-71 (IHIT), 13-14, 153, 193,

273274
IT statement, 241-244, 269-270

Insert cursor, 19-20, 23
Installing card reader, 285
I#HT function, 48

  

 

Interference, radio/television, potential for, (U.S.A.
only), 279

Integer division (riw), 47
Integer part (IF), 48
I statement 57, 69-70
Integers generating random, 53
Integration, trapezoidal rule, program, 76
Interrupting program 152-155
Invalld operation (i), 57-60, 68

# flag, 57-60
I# function, 48
m key, 21
1L flag, 57-60, 68

 

    

  

 

Key definitions (I1EF kEY), 28, 121-124

Cancelling, 128
Types of, 124
Viewing and editing, (FETOH BEY

(f)lviEW]), 125-126
KEY files, 99, 127-128
Key name, 121-124
by character, 122-123
by number, 122-124
Specifying, 122-124

Key pressed, identity of, (: £+ %), 130-131

 

Key pressing
Causing programto simulate, (F17), 131-132
Test for, (k! k), 129

Keyboard, 11-12
calculations, 18-20, 36-46

entry of data and expressions (I}
244, 269-270

Normal, 28-29, 121

operation, 11-12
Shifted operations on, 11
User, 28-29, 122-124, 126

Keyboard/program interactions, 129-132
: function, 125-126

functlon 130-131
i 4+ function, 129
Keys 11- 13 15-16, 21. See also individual key

symbol.
alternate operations, 11
Immediate execute, 12
Letter, lowercase, 11

Letter, uppercase, 11

primary operations, 11
Typing aid, 12
User defined, 28-29, 121-124

Keystroke presentation conventions, 13
Keyword index, inside back cover

L

  

 

   

  

 

Labels, statement, 146-147
(o) key, 11, 140
eft arrow key ((«]), 15
i.&# function, 74
Lessthan (<), 6

.ET statement, 67 269
Letter case control. See lowercase/uppercase control.
LEX files, 99, 160, 174
.i:7 function, 50
Line

display scrolling rate, 26
length, 14
Program. See program line.
width control (WIDITH, FUIDT

key, 21
Lin egresswn (L.F), 84-85, 88

I statement, 244-245
statement, 127, 156-157

unction, 50
Load and execut magnetlc card program

(RLH o G DHARIH DARRED), 289, 291
Local env1ronment 211
.11k statement, 139
Log, natural. See natural log.
i.01: function, 50

  

H), 232-233

 

  

 

  

 

  



Loglcal operators, 62-64
function, 50

i function, 50
Loops program. See program, loops
Low battery indication (BAT), 30, 271
Lower bound of arrays, setting (?IE F

68-69, 70, 72, 73, 270
Lowercase/uppercase control
by flag (-15), 199
by key ([LC)), 11140
by statements (i.i LD OR) LD OFF), 140

    

 

M

 

 
Magnetic card, 287-293
Marking, 286
operations. See entries under card reader
organization, 287
Pulling, through card reader, 287-289

Magnetic card reader. See card reader
Main
environment, 211-213

program, 203
Main RAM, 104- 108

Reclaiming (i MoROET), 107

Manual conventions, 14 16 21, 34
Marking magnetic cards 286
Math exception

as error, 176, 269-270
as warnlng, 177 269270
flags (I [ DE) LIHEF, ITHH),

176-177197
Recoverlng from (

  

    L

 

269-270
Value for, (7 =), 59-60

Math exceptions, IEEE proposal for handling, 59-
60
M function, 49

Max1mum -

  

  

 

functlon 107-108

Memory
RAM, 103-108, 273

reset, 13-14, 153, 193

        port RAM/ROM data (&i ), 108

ROM, 103-105, 273-274

structure, 103-108

), 107-108Unused amount of, in RAM (¥

+ display, 14
- staternent 116, 128

function, 49

Minimal BASIC, deviations from, 269-271
Minimal BASIC, extensions to, 268-269

  

  

 

Subject Index 301

i), 49
i function, 61

functlon 49
Module, plug-in, 103-108, 273
Modulo (#:51), 49
Movie program, 138
Moving file pointer (¥ %), 258
Multiple assignment statements, 67
Multiplication operator (i), 47

Multistatement line, 146

Minimum

  

  

 

N
 

itk statement, 27, 101, 145

Names

Device, 110-114
File, 22, 109-110
Numeric variable, 68
Program (BASIC file), 21-22, 101, 109-110, 143-

145

String variable, 72
rH function, 59-60

Hab value, 59-60, 68

Natural antilog

  

   

   

 

), 50
Natural log (i 1), 50
Natural log (L. 158 1), 50
Nested

loops. See program, loops, nested
subroutmes See program, subroutines, nested

HEFT statement, 185-187, 269
Normal keyboard, 28
Normal/User keyboards sw1tch1ngbetween

m>28,126
Not a number (=), 59-60, 68
Not a number ( 1), 59-60

Not-equal-to (#) logical operator, 62
H1T logical operator, 62-63
Null string, 72, 268

FiLirt function, 74, 77

Number

formatting, 54-56
of digits flags (-17 through -20), 199-200
rounding, displayed, 56

Numbers, range of, (1

61
Numeric

functions, 4753
precision ({iF

variable precmon
57

 

  

   

   



302 Subject Index

0 
Off, automatic, 13

key, 13   

 

statement, 172

statement, 181

statement, 181

 

key, 13
il: statement, 183-184
statement, 182, 184

1 status annunciator, 30
USER] key, 28-29, 126
Opening data file (#% HO#), 248-249
Operating precautions, 267268
Operating system version (iEF#), 267
Operation, verifying proper HP71, 273-274
Operations unsupported in CALC mode, 46
Operator precedence, 64

in CALC mode, 41-42
Operators

Arithmetic, 47
Logical, 62-63
order of precedence, 64
Relational, 62

   

: statement, 50

: statement, 50

statement 68-69, 70, 72-73, 270

F statement, 56

statement, 56

statement, 56

1 statement, 56

1% logical operator, 62-63
Order of evaluation, 64
Organization of magnetic cards, 287

  

  

  

  

 

   

  

 

  

Output spacing (7T #E, semicolon (:), comma (.)),

226-227
Overflow ({14F), 57-61
OUF flag, 57-60

P

Parameter list. See parameters
Parameter passing (AL L, SiiE), 204-210, 263-

264
Parameters

used in statement, 206-210
used in £ * statement, 218-219

Parentheses
in array declarations, 69-72
In numeric expressions, 64
in numeric functions, 48-52

in string functions, 74-75
Passmg channel number (FL L, i
o - statement, 154

i keyword, 289, 292-293

 

        1), 263-264
     

Percent (%) operator, 47
= functxon 49

" =T statement, 157

Pomter data file, 252-253, 258
Fi{iF statement, 180

Port 104-108
= function, 74-75

Potential for radio/television interference (U.S.A.

only), 279

Power consumption, 271
Power supply, 271-273
Precedence of operators, 64

in CALC mode, 41-42
Predicted values ), 85-86, 89
Pressed key test (& 1), 129

PRGM status annunmator 25 30

Print list, 230

# statement, 250-252, 256-263

. T statement, 225

Quotatlon marksin, 67
F 1{i statement, 230-232

Pnnter control 232-234
Printing information, 224234
Prlvate magnetlc cards (: FiF2i1), 289, 292-293

I statement, 117118

Product information, 280
Program. See also subprogram and program line

branching, conditional (

   

  

  
  

     

branchmg, uncondltlonal SOTO
E £ CAl 1), 179-181  

Chamed 151152
changing of array dimensions, 70-71, 73
Conditional, branching. See program, branching,

conditional
Conditional execution of, lines. See program,

lme(s), condltwnal execution of
data (DFTH ), 245-247, 269
data pomter resettlng (F ORE
Editing, 22-26, 156-159
Ending execution of (& 7ToF, EHD
Entering, 22-25, 143-149,269
environment, 153, 210-215
Execute, 25, 149-152. See also entries under pro-

gram, line(s).

Execute, at specified line (¥

150
Execute current file (% Lik,

149-150
Execute magnetic card (¥

  

 

   

     

, 289



Program, cont.

Execute specified, (5LUH, CRLL,) THETH), 150-
152

execution, single step .@ key,168171
executlon trace fiow of (TERCE Ol

- WAESD), 166-167 171
F1b0nacc1 216218
file, 27, 143-144
Halting, execution, 153-155
input, 22-25, 143-149, 269
Interrupting, 152-155
line, adding, to program, 158
lines, automatic numbering of (#L!T!¢
hne(s) condltlonal executlon of (IF...THEH

FLTHEMLLELERE), 187-189

line,current 154, 158

line(s), deleting (HELETE), 158159
1ine(), displaying (F( ETCH, LIST, FLIST, (A],

(v]), 21, 156-158
line, format of 145
line, keying in, 22-25, 145-149
line label. See statement labels
line, multistatement, 146
line number, 145
line, renumber (FEHLUMEER), 159

lme(s) uncond1t10na1executlon of (Z0isil

COTO, BRETURM, FOF, CHATH), 179-
Load magnetlc card (F. LM CRRED

RO OCDHATH :

 

   

     

    

 

  

  

  

  
PR=), 289

loops ( WHEHET), 185-187, 269

loops, nested 186-187

merging, 116
Movie, 138

name, 21-22, 101, 109-110, 143-145

protection, 117, 127, 292

Resuming, execution ([fJ{CONT], =0k T), 155
Retrieving data from (RFEF), 246
Running. See program, execute.
Saving (EDIT, MAME), 21-22, 27, 101, 143-145

Storing data in (ATH), 245, 269

subroutines, 179-184
subroutines, nested, 179
Suspending, execution ([ATTN], FRUSE, HAIT),

 

 

153-154
Tracing, execution (TFEHIE FLO
Tracing, variable assignment (7F

167
Trapezoidal rule integration, 76
Twocount, 130
Unconditional, branching. See program, branch-

ing, undonditional
Unconditional execution of, lines. See program,

line(s), unconditional execution of

 

Subject Index 303

Program/keyboard1nteract10ns 129-132
Prompts, input (I 1), 243
P oper HP71 operatlon verifying, 273-274
f -7 statement, 289, 292
Protected display fields (i1 HiiE), 135-136
Protected display fields using escape sequences,

237-239
Protecting files

 

 

  
117118,et

Pulhng magnetic cards through card reader, 287-
289

IFiE statement, 115-116, 127

function, 131-132

   

Q

Quotation marks, 67, 72, 109, 269

R

 

 
1 function, 52

RAD st tus annunciator, 30
. statement, 50, 270

Radlans to degrees (I1E III) 52

Radio/television interference, potential for (U.S.A.

only), 279
RAM, 13, 103-108

Independent, 104-108
Main, 104-108
Plug-in, modules, 103-108, 273
port data (=ZHOE FIORET), 108

Unused memory in (1E#), 107-108
Random access memory, 13, 103-108. See RAM

[l

1
EE

K

  

Random data recall (FE

 

  
  

Random data storage (CREAT
T #), 256-260

Random 1ntegers generating, 53
Random number (FH1), 52-53
F 2 function, 52-53, 271

  

Range of numbers (MIHREEAL, EFESMASREEAL),

61
EEMAD # statement, 254-257, 260

Readonly memory (ROM), 103-105, 273-274
1 statement, 246, 269

Readlng calendar date (DRTE, DATE$), 17, 90-91
F L statement 57,69

  

    

 

”) 254-257, 260
Recalhng data sequentlally(ESTORE #

EAD#), 254-263
Recalhng program data (FEF), 246, 269. See

accessing data files
Reclaiming memory (DEZTEDY), 67-68
Records, file, 256-260
Recovering from math exceptions, 58, 269-270
Recursive subprograms, 214-218

 



304 Subject Index

Recursive user-defined functions, 222

" function, 49
Redefinlng the keyboard (DEF
Reduction (FEi¥), 49
Reference parameters (ZFL1), 206

Referencing user-defined function, 220
Relational ope tors, 62, 64

Remainder (%1i1), 49

Remove write-protection from magnetic card
FECT), 289, 292

i gcard reader, 285
- statement, 101, 115, 127

¥ statement, 159
Replace cursor, 14, 23
Replacing batteries, 272
EEfunction, 49
Reserved words for file names, 110

T 00E statement, 96
Reset data pointer in program (¥

247
Reset HP-71 (1 17T), 13-14, 193, 273-274

statement, 193

# statement, 2564, 258, 262-263

statement, 246-247

Restricting HP-71 use (L. 30E), 139

Result (FE%), 49

Resuming program execution, ([f]J[CONT], i
155

Retrlevmg data sequentially (
fo#), 254-263

Retrlevmg file data randomly (FE~D #), 254-257,
260

Retrieving program data (=t
accessing data files

Return key, 13
LiFH statement, 179

nght arrow key ([»]), 15-16
function, 49
function, 52-53

ROM 103

HE'Y), 28, 121-124

 

  
 

  

  

   

&), 246-

  

  

     

i1), 246, 269. See

  

Plug-in, modules, 103108, 273
port data (= PROET), 108

 

Rounding, dlsplayed number 56
Round-off setting flags (-11, -12), 198
(RUN]J, 25, 27, 41, 149

statement, 289
t statement, 289

statement 27, 149-151
Run-time errors, 163-165
Running program. See program, execute.

  

S 
Sample correlations (i

Saving programs (&
143-145

=1 statement, 55

Scientific dxsplay format (=:1), 55
Scrolling rate, display, 26
SDATA files, 99, 247-264
Search order for files, 112

- statement, 117- 118 127

  
, 21-22, 27, 101,

 

Securmg HP-71 contents (i.1ik), 139
Semicolon (:) for output spacing, 227
Sequence, escape, 234-239
Sequential data access, file pomter252253 258

  Sequential data recall (¥
254-263

Ty

 

#), 250-253,
256-263

Serial number of HP-71 (i
Service, 276-279

contracts, 279

in Europe, 276-277
in United States, 276
International, 277
repair charge, 278
shipping instructions, 278-279
warranty, 278

Set, character, 132-135, 268
- statement, 17, 90-91

- statement, 17-18, 92-95

267  £)

  

  

  

Setting
clock speed See adjusting clock speed
date (%=1 , 17, 9091

lower bound ofarrays (P TI0H
70 7273, 270

&), 17-18, 92-95; (#

 

1
1

\
-
/

  
unction, 49

Shipping instructions for service, 278-279
tatement, 57, 69-71
T statement, 108
49

Simplified syntax, 34
= 1+ function, 52
Single-step execution ([fJ(SST)), 41-42, 168-171
Single quotation marks 67, 72, 269
Smallest integer 1i.), 48

Spacing output (7 semzcolon (:), comma (.)),

226-227
Spemfy magnetic card file (i

TR, 289-293
Speed correctron factor for clock, 92-96

 

  

     



 

: function, 49
@ key, 41,168-171
Standard deviations (&[iE
Standard dlsplay format (570,
: ¥ statement, 139-140
: statement, 78-80, 87
Statement()

execution (automatic) at start-up (ZTHETLUF),
139-140

Concatenating, 22, 67, 146
labels, 146-147
Suspend execution of program, 153-154

Statistical statements and functions, 78-89
Status annunciators, 15-16, 20, 22, 30
: statement, 55

= keyword, 185-187
: statement, 155
Stormg and retrieving data
Stormgdata randomly (=

EIHT #), 256-263
Stonng data sequentlally (F

256-263
= T#E% function, 75, 77

Strmg(s) 71-77

character code to character (I:HFE%), 75, 77
concatenation (i) symbol, 73
default (i iT), 243-244
first character to character code (Hiiti), 74, 77

functions, 74-77
length (i_£#) function, 74

lowercase to uppercase (.
Null, 72, 268
Numeric value to string (%71
Quoted, 71-72
String to numeric value (4 F
Substring position (F %),
Substrings, 73-75
variables, 71-73

Structure of memory, 103-108
ZilE statement, 204-205

Subprogram, 151, 203-218
channel number, passing (I
env1ronments 210-215

  
       

55

  

   

240264

  

 

#), 250-253,

     

, BLE), 263-264

  

Form of (&iiE, , 204-205

parameterpassmg ( 1E), 204-205, 263-
264

Recursive, 214-218
T‘ransfer program execution to (Z#LL), 205-210

-+ i@t warning/error message,68
Subtractlon () operator 47
Summing data points in statistical array (7T{7#L),

82-83
SUSP status annunciator, 30, 153, 155

 

Subject Index 305

Suspend statement, 153
Syntax

errors, 163-164

guidelines, 34
Simplified, 34

System flag(s), 196-201

Angular setting (-10), 197
Annunciator (-57, -60 through -64), 201
Base option (-16), 199

BASIC prompt (-26), 200

Beeper (-2, -25), 197

Continuous-on (-3), 197

Dlsplay format (-13, -14), 198-199
(-46), 200

Lowercase (-15), 199

Math exceptlon (-4 through -8, DWE) OUF,
=), 57-60, 68, 176-177197

Number of dlglts (-17 through -20), 199-200
Round-off setting (-11, -12), 198

User keyboard (-9), 197
Warning message (-1), 196

System version, operating (.

  

¥), 267

 

T

statement, 226-227

F#r function, 52

Technical assistance, 280
Television/radio interference, potential for (U.S.A.

only), 279

TEXT files, 99, 247-264
FHER keyword, 187-189
3 status annunciator, 30
Time. See clock
Timer program branching. See program, branching,

conditional
Timers, 182-184

Timers, deactivating (i F
Tone

loudness, controlling, 32-33
Producmg, 3233

| statement, 166-167

statement, 168

. statement, 167

statement, 160-161

## function, 59-60, 68

Trapezmdal rule integration program, 76
2 status annunciator, 30

Twocount program, 130

Typing
aids, 12, 21-22, 24, 26, 28
errors, correcting, 16, 22-23, 25-26

   

  

 

  

 



306 Subject Index

U 
Unary minus (~) operator, 64

Unconditional program branching. See program,
branching, unconditional

Underflow (LiFF), 57-61
LUHF flag, 57-61
Unordered () operator, 62

T statement, 289, 292

£ statement, 117-118 127
Unsupported operations in CALC mode, 46, 48
Uppercase/lowercase control. See

lowercase/uppercase control
: function, 75

m key, 28, 29, 126
- & statement, 126

USER status annunciator, 30
User. See also user-defined functions

flags, 193-196
key definitions (IEF KEY), 28, 121-124
keyboard, 28-29, 122124, 126
keyboard flag ( -9), 197

User-defined functions, 218-222
Environment of 220221
Forms of (DEF FH, EHD DEF), 218-219
Recursive, 222
Referencing, 220, 269

User/Normal keyboards sw1tchmg between
(U L, LEER {, USER

(TUSER)), 28,126
F statement, 126

(it statement, 126
Usmg magnetic cards, 287-293

  

  

    

  

  

vV 
function, 74, 76

Value parameters (ZFiL), 206

Variable (numeric) preC1s10n (i

56
Variables, 66-77

Array, 68-73
Default values for, 67-68, 72, 268
Names of, 68, 72
Nonexistent, 68, 72
Sharing, between keyboard and programs, 67
String, 71-73, 268

YiEEE function, 267
Verlfylng proper HP-71 operation, 273-274
(VIEW] key, 126
Viewing

angle, 29-30
key definitions (FETOH HEY

(fJLvIEW]), 125-126
program lines (F§

V). 21, 156-158

 

  

   

 

 

W IT statement, 154
Warning message, 13, 68, 175-176
Math exception, 68, 177, 269-270
flag (-1), 196
in CALC mode, 46

Warranty
on HP-71, 274-276

servxce 278
TH statement, 232-233

   

i 4 statement, 135-136

Workfile, 27-28 100, 101, 144-145

Copying (Zi#Y), 145

 













Keyword Index

This index lists the HP-71 keywords by category and gives a page number where that keyword is in-

troduced in this manual. Some keywords appear in more than one category.     

  

   

  

  
  

Program Entry/Editing Program Control Logical and Relational General Math (continued)
149 (continued) Operators ; i 56

158 OR TIMERE # 182  #HD 63 57

143  OH.LGOSUE 181 63 52
157  ORLLGOTO 181 63 49
157 ' iEE — R 63 49

145 154 = 62 49

157 FOF 180 # 62 52

116  RETURH 179 62 49
22  ETOF 155 62 49

159 =UE 204 = 62 49
116 WHIT 154 62 57

160 o 62

116 Debugging 62 Logarithmic Operations

146 ot 155 50
DEFAULT 58 50
EREL 175 50

151 EREM# 175 50
151 EREH 173 50
155 M ERREOR GOSUER 172 50

149 OH ERROR GOTO 172 50
FRUZE 154 50
TEACE 166

184 Trigonometric
005 Storage Allocation Operations

180 CLAIM FORT 107 48 mrns 52
218 DESTREOY 67 48 52

155 i 69 60 52

219 FEEE FOET 105 57 52

204 IHTEGER 70 50 52

220 HMEM 107 49 52
185 OFTION BRSE 68 48 52
179  EEHAL 69 FF 48 52

179 SHORT 70 IHT 48 52
187  SHOM FORT 108  IHH 57 50
13 =ZTHT 79 IF 48 HGLE 50

172 TiH 57 52

184 LET 67 50
5172 : 49 52

172 49 52 49



Statistics Input/Output (continued)  File Management Customization and

      
 

   
  

    

I 80 EHMD 5g (continued) Keyboard Control
79 FIx 55  HAME 145 L
84 GOISF 137 - 116 132
81 GOISFE 137 292 132
84 IMAGE 231 115 29
83 IHMFUT 241 115 191

85 KEYDOH 129 116 26
83 L 140 108 48

79  LIHFUT 244 160 125
82 LI=T 157 292 55

OFESTORE — 116 48
FLIST 157 231

61 FRINT 225 Time and Date 121

s9 FRINT LSINE 200 o3 130
61 F F: '.i HT # 250 95 125

61 FHT 131 95 129
59 FHIOTH 232 91 140

FEAD # 254 96 _
FEZTORE 246 96 _

3 FESTORE # 254 90 131
2e s I 55 92 139

74 -F 55 94 126
74 FAE 226 94 135

24 UFRCF 75

75 HEEF 126 gystem Settings

7S THOOu 135
74 192

267 Graphics gg

Input/Output GLLSF 137 26
) COIsRE 137 57

SHO# 248
32 . 191

32 File Management 57

32 : — 57

29 118 50

112 — 68
248 107 56

245 112 57

26 248 50

225 143 193

BTHE 230 105 192
P 136 107 59

EHOLTHE 234 116 57

 



How to Use This Manual (page 6)

1: Getting Started (page 10)

2: Calculating with the HP-71 (page 36)

3: Variables: Simple and Array (page 66)

4: Statistical Functions (page 78)

5: Clock and Calendar (page 90)

6: File Operations (page 98)

7: Customizing the HP-71 (page 120)

8: Writing and Running Programs (page 142)

9: Error Conditions (page 162)

10: Branching, Looping, and Conditional Execution (page 178)

11: Flags (page 190)

12: Subprograms and User-Defined Functions (page 202)

13: Printer and Display Formatting (page 224)

14: Storing and Retrieving Data (page 240)

A: Owners Information (page 266)

B: Accessories Included With the HP-71 (page 282)

C: Using the HP 82400A Magnetic Card Reader (page 284)

() Prytra

Portable Computer Division

1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

European Headquarters HP-United Kingdom

.0,Box,CHAZ17Meyrin2 GB-Nine MileRids,Wokingham
Geneva - Switzerland Berkshire RG11 3LL

00071-90001 Rev. D English Printed in U.S.A. 2/85

00071-90099


	Cover
	Contents
	How to Use This Manual
	Part I: Basic Operation
	Section 1: Getting Started
	Overview
	Keyboard Operation
	Memory Reset, BASIC Mode, and the BASIC Prompt
	The Display Window
	Setting the Time and Date
	Keyboard Calculations
	Entering and Running Prewritten Programs
	Redefining the Keyboard
	Display Contrast and Viewing Angle
	Status Annunciators
	Recalling Commands—The Command Stack
	Producing Tones
	What's Ahead
	Syntax Guidelines

	Section 2: Calculating with the HP-71
	Overview
	Using CALC Mode
	Arithmetic Operators
	Numeric Functions
	Number Formatting
	Numeric Precision
	Precision of Numeric Variables
	Math Exceptions
	Range of Numbers
	Relational Operators
	Logical Operators
	Precedence of Operators

	Section 3: Variables: Simple and Array
	Overview
	Features of Variables and Arrays
	Numeric Variables: Simple and Array
	Strings

	Section 4: Statistical Functions
	Overview
	Declaring Statistical Arrays
	Using the Statistical Operations
	Fitting Sample Values to Other Curves

	Section 5: Clock and Calendar
	Overview
	The HP-71 Calendar
	The HP-71 Clock

	Section 6: File Operations
	Overview
	The Current File
	The workfile
	Introduction to File Operations
	Structure of HP-71 Memory
	File Names
	Device Names
	Copying Files
	Renaming Files
	Purging Files
	Merging Files
	File Security
	File Catalogs

	Section 7: Customizing the HP-71
	Overview
	Redefining the Keyboard
	Program/Keyboard Interactions
	Alternate Characters
	Protected Display Fields
	Reading Characters From the Display
	Display Graphics
	Restricting HP-71 Use
	Automatic Command Execution
	Controlling the Display


	Part II: Programming the HP-71
	Section 8: Writing and Running Programs
	Overview
	Entering a New Program
	Running a Program
	Interrupting a Program
	Editing a Program
	Using BIN and LEX Files
	Transforming Files

	Section 9: Error Conditions
	Overview
	Types of Errors
	Error Messages
	Debugging Operations
	Program Control of Errors
	Warnings
	Math Exceptions In Programs

	Section 10: Branching, Looping, and Conditional Execution
	Overview
	Unconditional Branching
	Multiple Branching
	Timer Branching
	Looping
	Conditional Execution

	Section 11: Flags
	Overview
	Introduction to Flags
	Testing Flags
	Setting and Clearing Flags
	User Flags
	System Flags

	Section 12: Subprograms and User-Defined Functions
	Overview
	Subprograms
	User-Defined Functions

	Section 13: Printer and Display Formatting
	Overview
	Simple Formatting
	Advanced Formatting
	Controlling the Display and Printer

	Section 14: Storing and Retrieving Data
	Overview
	Keyboard Data Entry
	Program Data
	Data Files
	Storing and Retrieving Data Sequentially
	Storing and Retrieving Data Randomly
	Storing and Retrieving Arrays
	Passing Channel Numbers to a Subprogram


	Appendixes and Indexes
	Appendix A: Owner’s Information
	Serial Number and Operating System Version
	Environmental Limits
	Operating Precautions
	Clock Accuracy
	Conformance of BASIC Interpreter to ANSI Standards
	Power Supply Information
	General Cleaning Information
	Plug-In Modules
	Verifying Proper Operation
	Limited One-Year Warranty
	Service
	Potential for Radio/Television Interference (For U.S.A. Only)
	When You Need Help

	Appendix B: Accessories Included With the HP-71
	Appendix C: Using the HP 82400A Magnetic Card Reader
	Overview
	Installing the Card Reader
	Removing the Card Reader
	Caring For the Card Reader and Cards
	A Look At a Magnetic Card
	Pulling Cards Through the Card Reader
	Card Reader Operations


	Subject Index
	Keyword Index

