(A 5acinre

HP-71

Owner’'s Manual

Notice

Hewlett-Packard Company makes no express or implied warranty with regard to the pro-
gram material offered or the merchantability or the fitness of the program material for any
particular purpose. The program material is made available solely on an ‘‘as is”’ basis, and
the entire risk as to its quality and performance is with the user. Should the program ma-
terial prove defective, the user (and not Hewlett-Packard Company nor any other party)
shall bear the entire cost of all necessary correction and all incidental or consequential
damages. Hewlett-Packard Company shall not be liable for any incidental or consequential
damages in connection with or arising out of the furnishing, use, or performance of the
program material.

Printed in U.S.A.

A iciane

HP-71

Owner’s Manual

February 1985

Reorder Number
00071-90001 Rev. D

© Hewlett-Packard Company 1983

Introducing the HP-71

Congratulations! You have purchased the HP-71, an advanced computational tool that works as easy as
a calculator but is as powerful as a computer. The rugged design and high performance of the HP-71
can substantially increase your productivity.

The HP-71 offers you the following features:

e Small sized and battery powered for maximum portability.

e A special calculator mode for performing sophisticated computations while viewing intermediate
results.

o A powerful set of BASIC functions, statements, and operators—over 230 in all. Many larger
computers don’t have a set of BASIC instructions this complete.

e Advanced statistics functions that enable you to perform computations on up to 15 independent
variables.

e Recursive subprograms and user-defined functions, which are usually found in other programming
languages, now extend the power of BASIC in the HP-71.

e An advanced internal file system for storing your programs and data. The HP-71 has continuous
memory. When you turn the computer off, it retains programs and data.

e A keyboard that can be easily customized for your specific applications.

Optional extensions for your HP-71 include application modules containing prerecorded, ready-to-run
programs, a magnetic card reader for low-cost storage and retrieval, and an HP-IL interface that en-
ables you to add printers, a digital cassette drive, a video interface, a modem, and other devices to your
portable computing system.

Contents

How to Use This Manual

Part I: Basic Operation

Section 1: Getting Started
* Overview ¢« Keyboard Operation
* Memory Reset, BASIC Mode, and the BASIC Prompt ¢ The Display Window
« Setting the Time and Date * Keyboard Calculations
« Entering and Running Prewritten Programs Redefining the Keyboard
« Display Contrast and Viewing Angle - Status Annunciators
* Recalling Commands—The Command Stack ¢ Producing Tones
* What’s Ahead * Syntax Guidelines
Section 2: Calculating with the HP-71
* Overview Using CALC Mode - Arithmetic Operators * Numeric Functions
* Number Formatting < Numeric Precision « Precision of Numeric Variables
» Math Exceptions ¢« Range of Numbers Relational Operators
* Logical Operators * Precedence of Operators
Section 3: Variables: Simple and Array
» Overview - Features of Variables and Arrays
* Numeric Variables: Simple and Array * Strings
Section 4: Statistical Functions
» Overview ° Declaring Statistical Arrays * Using the Statistical Operations
« Fitting Sample Values to Other Curves
Section 5: Clock and Calendar
* Overview * The HP-71 Calendar * The HP-71 Clock

Section 6: File Operations
* Overview * The Current File * The work § 1 1=
* Introduction to File Operations * Structure of HP-71 Memory ° File Names
 Device Names « Copying Files « Renaming Files « Purging Files
» Merging Files - File Security « File Catalogs

Contents

Section 7: Customizing the HP-71 120
» Overview - Redefining the Keyboard « Program/Keyboard Interactions
- Alternate Characters - Protected Display Fields
- Reading Characters From the Display - Display Graphics
- Restricting HP-71 Use < Automatic Command Execution
« Controlling the Display

Part II: Programming the HP-71

Section 8: Writing and Running Programs 142
« Overview - Entering a New Program < Running a Program
« Interrupting a Program - Editing a Program - Using BIN and LEX Files
» Transforming Files

Section 9: Error Conditions 162
- Overview - Types of Errors - Error Messages - Debugging Operations
- Program Control of Errors « Warnings < Math Exceptions In Programs

Section 10: Branching, Looping, and Conditional Execution 178
- Overview « Unconditional Branching < Multiple Branching - Timer Branching
« Looping - Conditional Execution

Section 11: Flags 190
« Overview - Introduction to Flags - Testing Flags - Setting and Clearing Flags
» User Flags - System Flags

Section 12: Subprograms and User-Defined Functions 202
» Overview - Subprograms - User-Defined Functions

Section 13: Printer and Display Formatting 224
- Overview - Simple Formatting < Advanced Formatting
- Controlling the Display and Printer

Section 14: Storing and Retrieving Data 240
» Overview - Keyboard Data Entry « Program Data
- Data Files « Storing and Retrieving Data Sequentially
- Storing and Retrieving Data Randomly - Storing and Retrieving Arrays
- Passing Channel Numbers to a Subprogram

Appendixes and Indexes

Appendix A: Owner’s Information 266
Appendix B: Accessories Included With the HP-71 282
Appendix C: Using the HP 82400A Magnetic Card Reader 284
Subject Index 294

Keyword Index Inside Back Cover

How to Use This Manual

The HP-71 is an advanced computational tool with more functions, statements, and operators than
many larger computers. The extensive documentation will enable you to use the HP-71 as the solution
to your scientific and business applications.
Included with the HP-71 are the following documents:

e HP-71 Owner’s Manual.

This manual describes how to use the HP-71. It is written for the user who has an introductory
level of programming experience. All users should read some portions of this manual, particularly
section 1, “Getting Started.”

o HP-71 Reference Manual.

The reference manual contains complete descriptions of the syntax of every statement, operator,
and function in the HP-71. After you have learned how to use the HP-71, the reference manual
will become your main source of information about individual keywords.

e HP-71 Quick Reference Guide.
This portable reference guide slips into the computer’s case. It contains memory-jogging informa-
tion to help you out when the owner’s manual or reference manual are not handy.
The HP-71 owner’s documentation assumes you have written BASIC programs using:
e Variables and arrays.

Subroutines.

Branches, loops, and conditional execution statements.
e [IHTH statements.

Printers.

®

e IMFLIT statements.

e Comments in program lines.

If you have never programmed in BASIC, but intend to program the HP-71, you might need to first
gain some experience in elementary BASIC programming. If you don’t intend to program the HP-71
yourself, then you don’t need to learn how to program to be able to use the HP-71. The computer is
designed so that if you wish, you can simply perform calculations and run prewritten programs. The
owner’s manual shows you how you can do this.

How to Use This Manual 7/8

All users should read section 1, “Getting Started” to become familiar with the computer’s operation.
Other sections are optional, depending on what you want to learn about the computer’s operation. The
following table indicates what you will need to read in order to learn particular skills on the HP-71.

If you want to learn how to... Read sections...

Run a prerecorded program.
Perform keyboard calculations. ,

1, 6, 8*
1,2
Perform statistical analysis. 1,2
1
1
1

4

Use the internal clock and calendar. , 5

Customize the HP-71. , 7

Write and run programs. ,2,3,6,8,9,10, 11
Use advanced programming structures. 12, 13, 14

Use the HP 82400A Magnetic Card Reader. Appendix C

* Section 8 describes how to write and run programs. If you are interested in simply run-
ning programs, you need read only the parts of section 8 that show how to run a
program.

In the back of the manual you’ll find a subject index followed by a keyword index on the inside back
cover for your reference.

Part I
Basic Operation

Section 1

Getting Started

Contents
OVEIVIBW . . o 1
Keyboard Operation 11
Keys That Execute Immediately 12
Typing Aids . ..o 12
Conventions for Representing Keystrokes 13
Power On and Off ((ON], (fJ(OFF])) 13
The KOY 13
Memory Reset, BASIC Mode, and the BASIC Prompt 13
The Display Window 14
Moving the Display Window ((«J,], (@)(«], (8)™]) 15
Clearing the Display ([ATIN])o 16
Correcting Typing Errors ([ATTN], (FJ(BACK]) 16
Setting the Time and Date 17
Keyboard Calculations 18
BASIC Mode Calculation 19
CALC Mode Calculation 19
Entering and Running Prewritten Programs 21
Displaying Any Program Line ((A], (], (9)(X}, (9)(X]) .- - oo . 21
Editing Any Line ((f]J(BACK], (f][=CHAR], [{]J(I/R], (FJ(=LINE]) 21

Naming a Program File (E0 I T)

Entering, Editing, and Running the ! 22
Controlling Program Display Speed (E 26
Saving the U E , i 27
Running Any Program in Memory 27
Redefining the Keyboard ((fJ(USER], [O)[AUSER])cooirieeeeoooo... 28
Display Contrast and Viewing Angle (ZOHTRERET) 29
Status AnnuNnciators 30
Recalling Commands—The Command Stack ([9J(CMDS]) 31
Producing Tones (EEEF) 32
What's Ahead 33
Syntax Guidelines 34

10

Section 1: Getting Started 11

Overview

This section introduces:
e The keyboard.
e The display.
¢ Clearing memory.
e The HP-71 clock.
e Keyboard calculations.
¢ Entering and running a program.
e Editing a program.
e Creating user-defined keys.
e Using previously entered commands.
e Using direct-action keys.
e The beeper.

e The rest of this manual.

Keyboard Operation

Most keys on your HP-71 perform one primary and two alternate, shifted operations. The primary
operation of any key is indicated by the white or black character(s) on the top face of the key. The
alternate operations are indicated by the gold characters printed above the keys and the blue char-
acters on the lower faces of the keys.

e To select the character or operation printed on the top face of a key, press
only that key. For example: [].

e To select the alternate character or operation printed in gold or blue,
press the like-colored prefix key ([f] or [g]) and the operation key. For

example: (fJ[CALC], (9)(>]. You can release the prefix key before pressing
the operation key, or you can keep the prefix key pressed as you press the

operation key.

e To select uppercase letters, press the letter key. (If letter keys produce lowercase letters, first press
(f)(Lc], then press the letter key).
e To select lowercase letters, press (9] followed by the letter key.

12 Section 1: Getting Started

Keys That Execute Immediately

Most HP-71 keys only display characters when pressed. However, most bottom-row keys are immedi-
ate-execute keys—they perform an operation when pressed. For instance, pressing [f] followed by
executes the operation, which erases a character in the display. This operation allows you to
easily correct typing errors. All shifted and unshifted keys are listed in this manual’s index.

Typing Aids

All (f]-shifted keys in the top three rows are typing aids. A typing aid is a key that produces in the
dlsplay an often-used group of characters. These characters can be displayed by pressmg only the typ-
ing aid key instead of all the 1nd1v1dual character keys. For instance, to display i E with a trailing
space, you can either press [f] followed by (S], or press the (G] [0] (S] (U] (B] [SPC] keys. The gold
printing above each key indicates the characters each typing aid displays. The diagram below shows
how these aids are grouped logically to make them easier to use.

TYPING AIDS

FOE.HE=T loops

User defined
TF...THEH...ELSE keys Statistics
THEN ELSE FOR T0 NEXT DEF KEY ADD LR PREDV MEAN SDEV
Program GALL GOSUB RETURN GOTO INPUT PRINT DISP DIM BEEP FACT CcOoS TAN EXP
.,,ancmnr@@@@@@@@@@ A0
EDIT CAT NAME PURGE FETCH LIS] DELETE AUTO COPY RES ASIN ACOS ATAN LOG
|mmed|ate OFF SST BACK -CHAR I1/R ALINEW USER VIEW CALC CONT

- JO000000CO0CUOOOO

File manipulation Program line Calculations
manipulation

Other typing aids
GROUPING OF (f]) SHIFTED KEYS

Section 1: Getting Started 13

Conventions for Representing Keystrokes
Except for a few cases where keys we ask you to press are indicated in narrative style, this manual
represents keystrokes in four ways:

1. Unshifted or shifted keystrokes that display characters are indicated by those characters. For
example, # means “Press the (x] key” and # means “Press the [9] and (4] keys.”

2. Unshifted keystrokes that do not display characters are represented by keys printed with the keys’
top-face symbols. For example, means “Press the left-arrow key.”

3. Keystrokes shifted with [f] that do not display characters are indicated by [f] followed by the keys’
gold symbols. For example, means “Press the (f] key, then the key.”

4. Keys shifted with [g] that do not display characters are indicated by [9] followed by the keys blue
symbols. For example, [g][»]) means “Press the (9] key, then the key.”

Power On and Off ([ON], OFF])

Pressing turns your HP-71 on, while pressing turns it off. To preserve battery life, the
computer turns off automatically after 10 minutes of inactivity.

The Key

The key acts in a manner similar to that of the RETURN key found on many computers.
When you press [END LINE], one or more of the following happens:

e The statement or calculation you’ve just typed is executed.

e The characters you’ve just typed are stored in memory. For example, when you enter a program
into memory, you press after you type each program line into the display.

o The HP-71 may detect an error. In that case, the computer beeps and displays an error or warning
message.

Memory Reset, BASIC Mode, and the BASIC Prompt

The HP-71 has continuous memory, which means memory contents are not lost when the HP-71 is
turned off. You can clear and reset memory, however, and it’s important to do so now to ensure that
examples throughout this section produce the results as shown. There are three kinds of resetting avail-
able to you, IHIT: 1, IMIT: # and IHIT: 3. The last one (IHIT:) is the one you’ll use
now, since it clears main user memory, also called main RAM (random access memory). (Descriptions
of the other two resetting operations appear in the “Owner’s Information” appendix, page 273.) The

following example shows you how to clear memory.

14 Section 1: Getting Started

Note: The format of the procedure below will be used often throughout this manual to detail a
series of keystrokes and resulting displays. The keystrokes follow the conventions described on
page 13. The displays that are the result of your commands and entries are shown as i i = 1 &y
characters inside a “display box.”

Input/Result
Press and release these two keys at the same time.
IHIT ! Your display shows the command for the first
type of reset. All the keys are now inactive ex-
cept for 1], (2], (3], and [END LINE].
Selects a type = reset, a memory reset.

LoE The computer indicates memory is now clear.

Clears the display.

The : symbol is the BASIC prompt, showing that you’re in BASIC mode. You’ll probably do most of
your work, such as entering and running programs, in BASIC mode. You can operate your HP-71 in one

cursor, showing where the next typed character will replace either a blank or another character.

The Display Window

The 22-character display is a window through which you view the 96-character line. The following
keystrokes demonstrate the length of this line and show you the characters and spaces displayed by
some of the typing aids.

Section 1: Getting Started 15

Input/Result

Press [f], and while holding [f] down, press in or-
der (@], (W], (E], and [R].

The BASIC prompt, , occupies the first position
of the 96-character line.

Press and hold (], then press the rest of the top
row keys, left to right, followed by the second row
keys (L to R) ending with [J]. That is, press and
hold (f], then press (7], (Y], (U], (1], (0], (P, (7],
(8], (o], (13, (AJ, (8], (0], [F], (&), [H], and [U].

-

Pressing produced a beep, indicating the 96-
character line is full. Therefore, pressing [J] did
not change the display. The left arrow at the far
left edge of the window indicates part of the line
is out of the display window to the left. The
cursor is now located at position 96.

Why is the 96th character position blank in the display shown above? What happened to the 7 of
; T? When more than 96 characters are entered into one line, the 97th and succeeding characters
appear in the 96th character position—repeatedly overwriting that position as long as new characters
are entered. In this case, the last character is the final space of [F , the typing aid produced by

L.
Moving the Display Window ([<], [>], (9)(«], (9)>))

The and keys allow you to scroll the display window back and forth along the line. Here is a
summary of their actions:

o moves the cursor left one space at a time along the line without erasing characters. If held
down for longer than about one-half second, this key action repeats.

. moves the cursor to the right. Otherwise, and act the same.
¢ (9][«] moves the cursor immediately to the first character of the line.
¢ [(g][»] moves the cursor immediately to one space beyond the last character of the line, or to char-
acter number 96 if the line contains 96 characters.
Input/Result
Moves the cursor four positions to the left.

-

16 Section 1: Getting Started

Note: When any character (other than a space) occupies the same location as the Replace cursor,
this manual will indicate it as shown above.

(9)(] Moves the cursor to the first character of the line.

The arrow at the far right edge of the display
indicates the line continues to the right.

EE Moves the cursor to the right end of the line.

Clearing the Display ([ATTN])

When your HP-71 is on, the key becomes the (attention) key. This key performs two
actions:

e When a program is not running, clears the display.

e When a program is running, halts (suspends) the program, and the SUSP annunciator turns
on.

Input/Result
Clears the display.

When the display is clear, or when the cursor is not displayed, you can always type a statement, a
calculation, or program line, and then enter it into the HP-71 (by pressing (END LINE]). If the display
contains characters but no cursor, the first key pressed clears the display and performs that key’s ac-
tion. (This is true except for (<], (>], (9)(&], and [9](>], which produce no action in this situation.)
We’ll demonstrate these actions as we progress through this section.

Correcting Typing Errors ([ATTN], [f](BACK])

Two editing tools make it easy to recover from any errors you might make as you proceed:
. clears the display when no program is running.
° backspaces the cursor one space and erases the character in that space.

Section 1: Getting Started 17

Setting the Time and Date

The HP-71 contains an accurate quartz-crystal clock and a calendar covering several thousand years.
This clock runs whether the HP-71 is on or off, and begins running as soon as batteries are installed.
We’ll show you how to set this clock to the correct date and time.

The example below assumes the date is May 20, 1984, and the time when the clock setting process
begins is 4:13 PM and 10 seconds. Read through this example to learn how to set your clock to the
correct time and date.

The HP-71 requires a year/month/day (YY/MM/DD) format for the date, and six digits must always
be entered, including leading zeros.

Example: Set the date for May 20, 1984.

Input/Result
' Sets the date.

R
Puche 9

Enters the date.

i]

Displays the date.

We’ll describe a technique to set the clock with an accuracy of 1 second or better. Read the following
description, then set your clock.

Key in a time about 30 seconds ahead of the actual time and press when the actual time
catches up with the keyed-in time.

You don’t need to clear the display before pressing the next group of keys. When the cursor is not
displayed, the next keystroke clears the screen and enters that key’s character into the display.

18 Section 1: Getting Started

Input/Result

T

Soldaae This statement sets the time. The HP-71 clock
uses the 24-hour format, and six digits must al-
ways be entered, including leading zeros. The two
zeros following the second colon are the seconds.

Suppose the typing of this ZETTIME command is finished at 16:13:30. Now look at a watch that
shows seconds, and get in the rhythm of counting in half seconds. At one-half second before 16:14:00,
press [END LINE], and the HP-71 clock is set with an accuracy of a few tenths of a second. Page 92 in
Section 5 describes how to adjust the clock’s setting, and page 94 describes how to adjust the clock’s
speed.

The TIME# function returns the current time. To display a changing clock, a simple program is re-
quired, such as the ©L ik program on page 131 in section 7.

Suppose you execute T I

£ exactly one minute after executing :

Input/Result
Displays the time as a string, not a numeric value.

Keyboard Calculations

You can perform calculations on the HP-71 in two different modes:

e In BASIC mode, keyboard calculations are performed as they are on most BASIC language
computers. You first key in the entire expression, then press to obtain the result.

e In CALC mode, you key in the entire expression as you do in BASIC mode, but whenever the
portion of the expression already keyed in can be evaluated, the HP-71 automatically displays the
intermediate result. You then press to obtain the final result.

The ability to monitor the progress of a calculation by viewing intermediate results provides important
advantages compared to viewing only the final result:

¢ You can see if the calculation is progressing as you expect, allowing you to catch errors that other-
wise might remain hidden.

e You can understand more easily and completely how an expression behaves, which is often more
useful than the final result.

Section 1: Getting Started 19

The expression we’ll evaluate is:
74+ 4 —9 x (15 — 7/3).

To ensure that the results of calculations you display on your HP-71 look like those in this manual,
execute the following statement.

Input/Result

B The HP-71 will now display results rounded to
two decimal places.

BASIC Mode Calculation.

Example: Evaluate the expression in BASIC mode as follows.

Input/Result

FoAE The expression is keyed in, ready for evaluation.

Evaluates the expression.

The result.

CALC Mode Calculation.

Example: Evaluate the same expression in CALC mode.

First, set the HP-71 to CALC mode. If you make an error as you enter the expression, press
enough times to erase the mistake, then complete the expression correctly.

Input/Result

The annunciator tells you you’re in CALC mode,
CcaLC and the flashing Insert cursor (page 21) says that
characters will be inserted into the display from
the right edge.

20 Section 1: Getting Started

As soon as you key in an operator in CALC

CALC | mode, the HP-71 accepts the most recently typed
operand and displays it in the same format as a
result.

i When you key in ~, the HP-71 not only enters

CALC | the ##, but evaluates and displays the intermediate

result.
kS
11 ¥
CALC

This display shows two CALC mode features:

e The HP-71 does not evaluate 11 .&&~%, @i, since to do so would violate operator precedence
(section 2, page 64).

e The Insert cursor shares its position with a right parenthesis, reminding you that the expression
requires a matching right parenthesis.

Input/Result
PLLEE-3, 08012, 87 0 4 When you key in the closing parenthesis, the
CALC flashing * reminder disappears. If an expression
includes several nested pairs of parentheses, the
closing parenthesis reminder remains until the fi-
nal pair is closed.
Evaluates and displays the final result.
.....] Ei
CALC

Now set the HP-71 back to BASIC mode by pressing [f]J(CALC]. (The keystroke is a toggle.
Pressing it switches back and forth between CALC mode and BASIC mode.)

Section 1: Getting Started 21

Entering and Running Prewritten Programs

The next few pages show you how to convert a program listing on paper into a program in memory, and
then how to execute that program. Since you might make an error as you enter program lines into the
HP-71, we’ll first describe some error-correcting tools that allow you to display and edit program lines.

Displaying Any Program Line ([4], (v}, (9)(x], (9)(X])

When you’re entering or running a program, these four keys allow any program line to be displayed for
viewing or editing. Any line brought to the display using these keys becomes the current line. Shortly,
actions of these keys will be demonstrated when you enter a program.

° brings the line preceding the current line to the display, ready to edit. If held down for longer
than about one-half second, its action repeats.

® brings the line following the current line to the display, ready to edit. If held down for longer
than about one-half second, its action repeats.

e [9)[X] brings the lowest numbered line to the display, ready to edit.
e [9])(Y] brings the highest numbered line to the display, ready to edit.

Editing Any Line ([f](BACK], [f]J(=CHAR], (f](1/R], [f]J(-LINE])
These four keys, when used in BASIC mode, allow you to change any displayed line:

o backspaces the cursor one position and erases the character at that position. If held down
longer than about one-half second, its action repeats.

° erases the character at the cursor and moves characters left one space to fill in the gap.
If held down longer than about one-half second, its action repeats.

° switches between the Replace cursor (¥) and the Insert cursor (#). A character typed when
the Replace cursor is showing replaces the character or space at the cursor. A character typed when
the Insert cursor is showing is inserted where the Insert cursor points; that is, between the char-
acter at the cursor and the character immediately to its left.

o erases all characters starting from the character at the cursor through the right end of
the line (which might include more characters than those immediately visible in the display).

)

Note: To help you find typing aids more easily, the keystroke sequences on the next few pages will
show key symbols above the characters displayed by the typing aids. For instance, =i 1 7T will be
shown as:

Naming a Program File (&

22 Section 1: Getting Started

The HP-71 can hold many programs. Each program is stored in a location called a file, which you must
identify by a file name. A file name can be up to eight characters long. The first character must be a
letter, and the remaining characters may be letters or digits.

You’ll soon enter a program into memory. First, create and name the file that will contain this program
using the " statement.

Input/Result
(BED)

A The

i file’s catalog entry is dis-

The right arrow in the display shows that the catalog entry continues to the right. This display in-
dicates the W ERFL O file is an empty BASIC file. File catalogs are covered in section 6 starting on
page 117.

Entering, Editing, and Running the i Program

As you enter a program into memory, any errors you might make can be of two types:

1. Errors you catch before pressing [END LINE], or errors the HP-71 recognizes as soon as you press
END LINE |.

2. Errors neither you nor the HP-71 recognizes until you run the program.

You might make both kinds of errors as you enter this and other programs. To help you recover from
such errors, we’ll deliberately introduce one error of each type and show you how to correct each one.
(Errors and error recovery are covered in more detail in section 9).

Following this listing of the I\ EEFL {1l program, we’ll show you how to enter each line (including the
two deliberate errors). Note that program lines that start with | are comments, which are ignored by
the computer when the program is run. However, the HP-71 does reproduce such comments in program
listings. The # symbol joins (concatenates) statements on a single line.

10! OVERFLOW PROGRAM

20 REAL X,Y @ STD

30 FOR X=1 TO 20

40 Y=(X"2)(X"2) @
DISP Y @ IF Y=MAXREAL THEN 60

50 NEXT X

60 “The largest finite positive number the
HP-71 can display is”;Y

Section 1: Getting Started 23

In the following keystroke sequence, type the spelling errors as shown. We’ll correct them shortly.

Input/Result

BJBJBJH0AR)

U OVERFLOW 4ROGREAM

END LINE
28 REAL #.Y @ ZTD (ENDLINE

i

We ll correct the lin to read

The Insert cursor points to the position where the
next typed character will be inserted.

Enters line 10 into your program file. The
key acts with either the Insert or the
Replace cursor displayed at any position.

The HP-71 is ready for the next program line.

E v (page 57) declares variables and
to be full precmon and =TIl (page 55) sets a
display format that shows numbers with full
precision.

24 Section 1: Getting Started

OrE) @O
: M=l TO 2@

The variable %" at the end of the program line (fol-
lowing the & symbol) is an implied [! I =F state-
ment. It means the same thing to the computer as
DIzF %, Implied O I %F statements are ex-
plained further on page 67. (The HP-71 also al-
lows implied i ET statements).

: |
.
i
o
-
—
I

T
i
i

Note the spaces given by the typing aids.
MAXEEAL is the HP-71 name for the largest
finite positive number it can represent.

-
IF Y=HASREAL THEHN £0B The left arrow annunciator indicates the rest of
this line is to the left of the displayed portion.

e
=
—
O
o
i
fot
il
-
B
]
i
-

fini switches between the two letter cases. It
sets upper- or lowercase letters as the standard
for the unshifted letter keys. In either situation, a

[9]-shifted letter key produces the opposite let-
ter case.

Section 1: Getting Started 25

te positive pumber th Continues line 50.

Pasem mimbier T E

When typing the next part of line 60, use the (9] shift key to type HF. (We’ll explain how to correct the
17 error after we run the program.)

Input/Result

HE-17 ocan o

ER ¥ switches back to uppercase.
+ — . T
: can diszplay is"YE
Enters line 60 into your [it file. The

complete program is now entered.

Press to execute this program.

The PRGM annunciator on the right edge of the display appears, and a series of increasingly large
numbers is displayed, one after the other, including i . EZ&#. The E means “exponent,” so this num-
ber represents 1 x 10200, Just after you see 1 . 4F44% a warning message,
WEM L48: Over flow is displayed. This means the next number in the series is larger than the
HP-71 can represent. Since this difficulty results in just a warning and not an error, the program
continues, and substitutes for the next number in the series the largest number the computer can

As line 60 displays its message, you realize the model number of your computer is “71,” not “17.” Here’s
how you enter the correction into the program after the program stops.

26 Section 1: Getting Started

Input/Result

Brings line 60 to the display.

-
COBOISP Y"The largsst Fetching a program line positions the cursor im-

mediately after the line number to facilitate
editing. The right arrow annunciator shows the
line continues to the right.

EE) Moves the cursor to the right end of the line.

-
- 17 oan displag 15" YE

Press 20 times. Or hold down until the
cursor is close to or at the i. Then use or
as needed to correctly position the cursor.

o
1 gy disEplay 187 5Y
71 (ENDLINE The program is corrected.

]

You have control over how many seconds a line is displayed before being replaced by the next line (line
rate), and also how fast a displayed line containing more than 22 characters scrolls from the right (the
optional character rate). You can choose a line rate and a character rate from 0 up to 8 seconds. A rate
equal to or over 8 seconds is considered infinite—no line replacement or scrolling occurs. These two
parameters are independent of each other.

Section 1: Getting Started 27

Saving the i/EEFL O Program (201 T,

Suppose sometime later you wanted to enter a new program, and forgot to create the new file using the
E1 1T statement before keying in the program’s lines. Where would those new llnes go" They would go

into the same file the D ERF LI program’s lines went: into the file named %/ i. The lines of
your new program would overwrite the lines of the {I'/ERF L (il program, corrupting both programs.

One way to guard against such an accident is to create a new program file before keying in any lines, as
you did when you executed ELIT OWERFLOM. A second way is to make available a scratch file named
wark £ 1 1e, which will accept any new program lines you enter. To make the : 11 available,

execute EI I ".r without specifying a file name.

Input/Result

S 2 O bbb DL il

This is the first part of the catalog entry for your new file, showing that the file is an empty BASIC
file. File catalogs are covered in section 6 starting on page 117.

Ifa work 112 exists (even if it’s empty), £ I T [END LINE] positions you at that existing
not at a newly created work ¥ i 1=, The HP-71 can contain only one :: &

You can create a new, empty workils (using EDIT[ENDLINE]) if you first name the existing
work file using MAME filename. See section 6, pages 100-102 for further information about
rkfile and HAME.

To summarize, when you key a program into your HP-71, it is good practice to:
1. Create a new file by executing EII I T file name.
2. Enter the program lines, test the program, and edit the program as necessary.

3. Select the work i 1s by executing EDIT.

Running Any Program in Memory

There are two ways to execute a program:
o Execute R LIt file name. This works for any program.

e Press (or execute F:LI14). This works only for a program located in the current file, explained
below.

28 Section 1: Getting Started

Running the Program in the Current File. At the moment, o+ i ¥ i L= is the current file. The
HP-71 always contains one and only one current file. When you enter a program from the keyboard, it
is automatically entered into the current file, and you can run it by pressing or executing FLIH.
You can edit the program in the current file from the keyboard, as you edited %/ ERF L 4.

not located in the current file must by executed in this way. When you execute such a program, it
becomes the current file, so you can edit it, and you can use the key to repeat its execution.

Redefining the Keyboard ([f](USER], (9])(1 USER])

The HP-71 includes two complete and separate keyboards that share the same physical keys. The Nor-
mal keyboard, the one you’ve been using, performs the actions indicated by the symbols printed on and
above the keys. The User keyboard performs those same actions except where a key’s operation has
been redefined—that is, user defined. There are two ways to switch between these two keyboards:

e switches from one keyboard to the other. To switch back to the earlier keyboard, press
again.

o [9])(1 USER] switches from one keyboard to the other for only one shifted or unshifted keystroke,
then the HP-71 automatically switches back to the earlier keyboard.

You can redefine the shifted and unshifted action of all but two keys. The two keys you cannot redefine
are the two shift keys themselves, (1] and [9]. Key actions can be redefined to display a typing aid of
your choice, or to execute any statement, or combination of statements, concatenated with i, that are
executable from the keyboard. User defined keys can also be used to assist data entry in response to
program input requests. You can use the entire 96-character line length for your key definition. The
beginning of section 7 discusses user defined keys in more detail. We’ll now lead you through creating
and using a simple key assignment.

Enter the following key definition:

Input/Result
([M0ux
FEE KEY

CELUTTIMES® Redefines (9)[<] to display the current time when-
ever (9](<] is pressed from the User keyboard.

Section 1: Getting Started 29

We’ll show two ways the user-defined key (9](<] can be used.

Input/Result
Activates the User keyboard.
usen - B The USER annunciator tells you the User key-
board is active.
(<)
user +ETEDESD This display represents a time of 4:59:39 PM.
B The USER annunciator is off, and once again the
Normal keyboard is active.

Here’s another way to use the same redefined key:

Input/Result
(9)(x user] (9])(<] Simply press and hold down (9], then press in or-
der the [0] and [-] keys.
198183 Notice that the USER annunciator is not on. The

[9)(1 USER] keystroke activates the User key-
board only for the next shifted or unshifted key-
stroke. After that next keystroke, the Normal
keyboard is automatically active again.

1)

Display Contrast and Viewing Angle (i::

COMTEARSZT contrast value

intensity and optimum viewing angle. C0HTREMAST & gives the least contrast and shallowest viewing
angle, and COHTREAST 15 gives the sharpest contrast and steepest viewing angle. COHTEASZT 15
also makes all the annunciators easily visible. After memory reset, contrast value is set to = (the default

value). You can adjust contrast value to suit your personal preference.

30 Section 1: Getting Started

1% [END LINE

Input/Result
- Oof
AcBAT - B

RAD

0 (o)
: ':’s[)‘lg-':‘} If you look directly down on the keyboard, you’ll

see the BASIC prompt and cursor displayed with

strong contrast. If you now tilt your HP-71 away
from you, you’ll see all the dots used to make
characters plus all the annunciators.

Status Annunciators

Here are brief descriptions of the HP-71 annunciators.

Annunicator

Meaning

AC
BAT
USER
RAD

W N = O

4
(o)
-
PRGM
SUSP
CALC

The line extends to the left of the display.

(9] has been pressed, but not the second key required to complete the key
sequence.

has been pressed, but not the second key required to complete the key
sequence.

Reserved for future use.

Low battery.

The User keyboard is active.
The angular setting is Radians.
Flag 0 is set.”

Flag 1 is set.

Flag 2 is set.

Flag 3 is set.

Flag 4 is set.

Reserved for future use.

The line extends to the right of the display.
A program is running.

A program is suspended.

The HP-71 is in CALC mode.

* Flags are covered in section 11.

Section 1: Getting Started 31

Now return your display to normal contrast. Execute:

o

e

Recalling Commands—The Command Stack ([9](CcMDS])

A list of the five most recent commands is maintained in a separate part of memory called the Com-
mand Stack. “Commands” refer to operations that have been executed by pressing (END LINE], such as
evaluated expressions and entered program lines, statements, and functions. Any command in the
Command Stack can be displayed and executed again (by pressing [END LINE]), or edited, then executed.
The Command Stack is especially useful when repeatedly executing a series of commands, all of which
are identical or contain only minor differences.

If any of the last five commands are identical, the Command Stack maintains only the one most re-
cently implemented.

Here’s how you activate and deactivate the Command Stack:
o Activate the Command Stack by pressing (9](CMDS].
o Deactivate the Command Stack by pressing (9](CMDS] again or pressing [ATTN].
o Deactivate the Command Stack and execute the displayed command by pressing [END LINE].

We’ll show you how to display a few of the commands you’ve just entered.

Input/Result
(9](cmbs] Activates the Command Stack.

o The display shows your most recently executed
command, together with the Replace cursor. The
~. symbol is the Command Stack prompt. All
cursor-moving and editing keys are active.

Use the and keys to move through the
Command Stack. You display progressively older
commands by pressing repeatedly, and more
recent commands by pressing [¥].

15 This is your older command.

END LINE You can execute (by pressing [END LINE]) any

expression or statement displayed by the Com-
mand Stack, or enter any program line displayed
by the Command Stack.

32 Section 1: Getting Started

« gf 0 (w) =
ek ou T
RAD 3 CALC
(9](cmbs
« ot 9
ACBAT - COHTRAST 15 } PRGM
RAD 2 CALc
- gt N 9 =
ACBAT - CIHTRAST @ 3 PRGM
RAD 3 CALC
END LINE

Producing Tones (:

=)

Pressing m (END LINE] executes the displayed com-
mand (COHTEA) and deactivates the
Command Stack o 1% is now your
most recently executed command

Reactivates the Command Stack and displays
your most recently executed command.

Displays the older command.

Executes the displayed command and deactivates
the Command Stack.

The BASIC prompt shows that you have deacti-
vated the Command Stack.

The EEEF statement produces an audible signal whose frequency and duration you can control. You
can also turn off this signal, and choose between two levels of loudness. The main application of the

beeper is to provide audible warnings.

There are five forms of this statement:

frequency in hertz

frequency in hertz . duration in seconds
Ok

OFF

O oo
T Mmoo
T T oim
B R R

Section 1: Getting Started 33

Here are facts about BEEEF:

e When you execute EEEF without specifying frequency or duration, a 500 Hz signal sounds for .25
second.

e You can specify frequency up to a maximum of about 4900 Hz. Frequencies as low as 150 Hz
produce recognizable tones.

e You can specify duration as long as 1000 seconds.

o You can specify both frequency and duration as numeric expressions. The HP-71 evaluates these
expressions when EEEF is executed.

e EEEF (1M enables the beeper.

e BEEEF OFF disables the beeper.

e After memory reset, EEEF [H is active.

e You increase the intensity of the tone by executing =FLFz~Z% (set flag number —25). (Flags are
covered in section 11.)

o You decrease intensity to the memory reset level by executing CFLFAG~Z% (clear flag number
—25).

What’s Ahead

You’ve sampled the HP-71 in this section. There’s much more information ahead, but you don’t have to
read it all. If you’re primarily interested in using prewritten programs, you need read only sections 6
and 8 to become familiar with the HP-71 file structure and to learn details on running programs. Read
section 2 if keyboard calculations are important to you. If you plan to solve statistical problems with-
out using prewritten programs, read sections 2 and 4.

For programming help, look at sections 2, 3, 6, and 8 through 14. You might also wish to read section 5
(clock) and section 7 (User keyboard).

Check the appendixes and the reference manual to see what’s there. For example, the reference manual
contains a glossary that defines many of the terms used in this manual.

34/35 Section 1: Getting Started

Syntax Guidelines

Syntax is the way that instructions must be typed so they can be understood by the computer. The
following conventions are used throughout this manual.

TYFE

italics type

[]

stacked items

Words in dot matrix (like GEF kEY) can be entered in lowercase or upper-
case letters. The examples in this manual show statements, functions, and
operators entered in LFFERCASE.

Items in italics are the parameters you supply, such as the file name in the
HAME file name statement.

Character strings can be enclosed with single or double quotes and can be
entered in lowercase or uppercase letters. (The examples use double quotes.)
In general, file names can be quoted (single or double quotes) or unquoted.
When quoted, the left quote must match the right quote. (The examples use
unquoted file names.) The HP-71 converts file names to uppercase.

Square brackets enclose optional items; for instance, [IEL.HY line rate
. [character rate].

When items are placed one above the other, one and only one must be
chosen.

An ellipsis indicates that the optional items within the brackets can be re-
peated; for instance, A1 [coordinate value 1 [. coordinate value 2 [. . .[. co-
ordinate value 15] .. .1]]].

The descriptions for keywords (statements, functions, operators) that appear in this manual allow you
to use them effectively. However, these descriptions often do not include all details. Syntax descriptions
that omit some detail are labelled “simplified syntax.” For a complete and detailed definition of each
keyword, refer to the “Keyword Dictionary” in the reference manual.

Section 2

Calculating with the HP-71

Contents
OVEIVIBW . . 37
Using CALC Mode 37
CALC Mode Features 38
Correcting Typing Errors 45
Unsupported Operations 46
Warning Messages in CALC Mode 46
Arithmetic Operators (+, —, &, », ™, DI, %) 47
Numeric Functions 47
Number-Alteration Functions (RE=, IF, FF, ITHT, FLOORE, CETL) 48
Decimal and Hexadecimal Conversions (LiTHE, HTD) 48

General Functions (F I, =GR, FROCT, MAs, MIM, MO0, BEMO,
RED BES SGH)

Logarithmic Functions (LT, LG, EXF, EXPOMENT, LOGFL, E by ..
Angular Settings (RHDIARME, DECEEES)
Trigonometric Functions (= IH, CO%, TAM, ASITH, ACOE, ATAM,
DEG, BEAD AMGLE) 51
Random Numbers (FHO, EAMOOMIZE) 52
Number Formatting 54
Exponential Notation (E) 54
Standard Display Format (= TD) 55
Fixed-Decimal Display Format (F 1) 55
Scientific Display Format (= 1) 55
Engineering Display Format (EHZ) ... o 56
Numeric Precision (ZiF T IOH REOUMD) oo 56
Precision of Numeric Variables (FEHL, “HORET, THTEGER) 57
Math Exceptions (IW/L, DWE, OWFUMF, THE) oo o0 o 57
Recovering From Math Exceptions (GEFHLLT ik,
DEFAULT OFF, DEFAULT ESTEHD)Y oo oo 58

The IEEE Proposal for Handling Math Exceptions

(FIrd, =TI, THF, HAM, Hal, TEAF, D) (oo . 59
Categories of Numbers (CLHEZS) Lo 60

36

37

Range of Numbers (M IHEEFML,
Relational Operators (Combinations of -
Logical Operators (Fil4li, iR, E=lE, |
Precedence of Operators 64

Overview

This section covers:
e A new way to calculate with a computer: CALC mode.
o All math operators: arithmetic, relational, and logical.
¢ All math functions.
e Random numbers and how to use them.
e Three ways to format a displayed number.
o The precision of displayed and stored numbers.
e The math exceptions: invalid operation, division by zero, overflow, underflow, inexact result.
o The three responses to each math exception.

o The IEEE Proposal for handling math exceptions.

Using CALC Mode

You can evaluate a numeric expression with the HP-71 within two different frameworks. Each uses the
normal algebraic precedence of operators (page 64). (For instance, terms within parentheses are evalu-
ated first.)

¢ BASIC mode, which is the familiar framework shared by most BASIC computers. You key in the
entire expression before any evaluation occurs, then you press to evaluate the expression
and display the result.

o CALC mode facilitates evaluation in many ways not available to BASIC mode, including the dis-
play of intermediate results while the expression is being keyed in.

CAUTION

Do not insert or remove a module while CALC mode is on. Doing so will cause a memory reset (loss
of memory). Refer to section 6 for more information about the use of plug-in modules.

38 Section 2: Calculating with the HP-71

CALC Mode Features

The following list of features, some illustrated with examples, shows how you can use CALC mode to
your advantage to evaluate numeric expressions.

Complete Numeric Function Set. All HP-71 numeric functions and operators can be used in CALC
mode, including the single-line user-defined numeric functions in the current file.

Common Variable Set. CALC mode and BASIC mode share the same set of variables. A variable
assigned a value in BASIC mode retains that value in CALC mode, and vice versa.

User-Key Assignments. You can use User keyboard key assignments in CALC mode, except for ex-
ecute-only (colon) key definitions. (Key definitions are covered in section 7.)

Unbounded Complexity in Expressions. Any numeric expression that can be keyed in and evalu-
ated in BASIC mode can also be evaluated in CALC mode.

Twelve Digit Math. Intermediate results are carried with 12 decimal digits of precision.

Assignment Statements. Variables can be assigned values and used in expressions, as the following
example shows.

Note: For this and the other examples that illustrate some of these CALC mode features, you
should be in F I & display format so your displays will look like those in this manual. You cannot
execute F I I while CALC mode is on, so make sure you're in BASIC mode. (If the CALC
annunciator is displayed at the right edge of the display window, press to set BASIC
mode.) You should see the BASIC prompt () at the left end of your display window. If your display
is not clear, press [ATIN].

Input/Result
:

Entered numbers and results will be displayed
rounded to two decimal places.

Sets CALC mode.

CALC

i

it
£l
s
-
&

CALC
A=1, 50-54
CALC
END LINE
CALC
?}%
CALC
i CALC
END LINE
CALC

Section 2: Calculating with the HP-71 39
Starts the assignment statement example.
So far, no partial evaluation has occured.

You evaluate a partial result as soon as you

press [=].

Terminates the expression and assigns its value
to H.

Use # in an expression to confirm that it now

As soon as an operator (#) is keyed in, # is re-
placed by its value.

Displays the answer.

Automatic Parenthesis Matching. For every left parenthesis you enter, the HP-71 automatically
supplies a right parenthesis. So you need not key in closing parentheses at the end of a line. However, if
you do type closing parentheses, the HP-71 accepts the correct number, and no more than the correct

number.

40 Section 2: Calculating with the HP-71

Input/Result

CALC

s
fald

CALC

The typing aid above the key supplies = 1H
and the left parenthesis.

The flashing right parenthesis sharing the
cursor’s position represents a number of right
parentheses equal to the number of open left
parentheses you’ve keyed into the expression so
far. In this case, that number is one.

You did not have to press either [(J or ()] to
evaluate this expression.

Implied Result (). A pair of empty parentheses keyed in as part of the current expression repre-
sents the value of the last evaluated expression. The current expression then uses this current value.
The empty parentheses pair can either represent a separate term in the expression or the argument of a

function.

Input/Result

ASIHCS
CALC
END LINE
- CALC
F= [END LINE
CALC

Pressing enters the closing parenthesis,
supplies the previous result represented by the

pair of empty parentheses, and evaluates
Ao lHoE, Ses,

This demonstrates another important use of im-
plied result.

The previous result,
the variable .

is now assigned to

Comma Reminder for Argument Lists. For those functions and arrays requiring two or more ar-
guments, the display indicates the minimum number of commas required in the argument field.

Input/Result

CALC
CALC

END LINE
cALC

Section 2: Calculating with the HP-71 41

Key in the first argument of a ¥ I function.

The comma sharing the cursor’s position in-
dicates at least one more argument is required.

Key in the comma and the second argument.
Since the character following the # could be a
comma, or a continuation of the first expression
(such as another numeral), you must supply the
comma from the keyboard.

The flashing parenthesis tells you no more ar-

guments are required.

Again, you did not need to key in the closing
parenthesis before terminating the expression.

Viewing Each Step Separately ([f](SST] or [RUN]). When you key in an expression with CALC
mode active, there are times when several terms will appear to be evaluated simultaneously. In these
situations, you can view each intermediate result separately without violating the order in which oper-

ators should act (order of precedence).

Example: Suppose you wish to evaluate log(11) + 332 — 4, and you also wish to see the intermediate

result given by 332, (Note the typing aid for i

Input/Result

- - -

LoGaolis+Z~3. 2

?
=
fx]

f
i
i

CALC

RUN

s

CALC

- and that [g](*] displays ™).

Since you’re interested in the value of Z7% . 2, do
not key in ~+# yet. If you did,

Li 1+ would be evaluated as soon
as you keyed in -, and you would not see the

result given by = * alone.

and perform the same action with
CALC mode active.

Single-step displays the value of -

42 Section 2: Calculating with the HP-71

IR 5 The final answer.
CALC

Example: CALC mode will not allow you to violate the proper order of operator precedence when you
single step through an expression. To illustrate this, use the expression Z +7%# .

Input/Result

RUN Displays the intermediate result.

CALC

(] Now you try to key in #, but multiplication is not
performed. Instead you see:

You’re told multiplication should have been per-

CALC formed before addition.

RIS E The earlier display soon replaces the warning
CALC | message.

We’ll soon show you how you can easily recover from this error by activating the Command Stack.

Recovering the Complete Expression ([a]). When you press [(A], you activate the Command
Stack. (Pressing activates the Command Stack only when CALC mode is set.) The resulting display
can be of two types:

o The display shows all terms of the last evaluated expression plus the symbol, , indicat-
ing an expression has just been evaluated.

e The display shows all terms of the expression being keyed in whose final result has not yet been
evaluated. This Command Stack display recovers the individual operands and operators you
originally keyed into the HP-71.

In either case, you can edit the displayed expression using the Command Stack’s movable cursor.
Different actions are performed by (Command Stack active) depending on the presence or
absence of 4 in the display. Here are those actions:

e : not displayed: deactivates the Command Stack and displays the partially evaluated
expression, including the effects of any Command Stack editing.

e i symbol displayed: evaluates the displayed expression (including the results of any
editing), deactivates the Command Stack, and displays the final result.

Input/Result

il

r

CALC

)3 #+ [ENoLNE]

CALC

Section 2: Calculating with the HP-71 43

Activates the Command Stack and recalls the
original form of your expression so you can cor-
rect your operator precedence error.

The cursor is ready for editing use.

Completes the expression and deactivates the
Command Stack.

In this case, displays the same

unevaluated expression.

Displays the result.
CALC
Suppose you wish to evaluate the expression 6 — 37, and key in & +3“7, then evaluate it before you

realize your error (+ instead of —). As this example demonstrates, you need not reenter the complete
expression. You can activate the Command Stack, edit your expression, and reevaluate it.

Input/Result

CALC

CALC

Displays an incorrect result.

You now realize you should have keyed in -,
not .

Activates the Command Stack.

The symbol (+) indicates that you
pressed just before you activated the
Command Stack.

44 Section 2: Calculating with the HP-71

Corrects the expression.

CALC

END LINE Evaluates the correct expression.
A R R 5 When the Command Stack expression displays
CALC «, pressing [END LINE] reevaluates the expression.

Backward Execution ([f][BACK]). Before an expression is completed by pressing (END LINE], terms
that had already been combined to display a partial result can be restored to their original form using

(1)(BACK].

Example: To demonstrate the use of backward execution, suppose you key in an expression (#),
and before evaluating it, you realize you keyed in a wrong number (8 instead of 9). You then use back-
ward execution to erase elements of the expression back to and including the wrong number (8). After
keying in the correct number (9), you complete the expression and evaluate it.

Enters the incorrect expression.

b}
]
it
x5
e
L
=

The HP-71 displays the partially evaluated
result.

CALC

(f)(BACK] [f](BACK] [f][BACK] Erases operands and operators back to and
including the incorrect operand () you entered.

g
Lol
sl
e

You’re now ready to complete the correct
expression.

% (END LINE Completes and evaluates the correct expression.

CALC

CALC

Section 2: Calculating with the HP-71 45

Correcting Typing Errors

If you try to complete a function after you misspell its name, the HP-71 will issue a warning. After
such a warning, erase all characters of the misspelled function name using backward execution, even if
the display suggests this in unnecessary. Then type the name in correctly and complete the expression.
This example shows why this is necessary.

Example: Suppose you wished to evaluate an expression which includes
of 4 .-—% in the proper quadrant), and you make a typing error as you key in fiH

+ (arc tangent

Input/Result
SOAMGLE You inadvertently press (M] instead of (N].

CEGFCODCRAMGLED You don’t notice your error, so you continue.
CALC

Generates a warning message.

15
]
ik

rator Eapeoted We’ll discuss the meaning of this message
CALC shortly. This message is soon replaced by:

You’re determined to spell it right this time, so

CALC | you key in:
and see:
Y tor BEupeot replaced quickly once again by:
CALC
SRSl What’s happening?
CALC

:LE 1, the HP-71 searched for a function with that spelling. When it couldn’t find
one, it searched for a variable name instead, and found . After a variable name, the HP-71 expects an
operator, which Fiz{.E is not. So all characters after the & were discarded. When you typed ‘!
the display looked fine, but the HP-71, still looking for an operator, rejected i just as it had
. To recover from this situation, use backward execution ([f]J(BACK]) to erase #, then key in the
correct characters:

46 Section 2: Calculating with the HP-71

Input/Result

CALC

Corrects your typing error and evaluates the
expression.

CALC

Unsupported Operations

Since CALC mode is a powerful, friendly, and intelligent environment for keyboard calculations, rather
than a replacement for BASIC mode, we want you to know what operations cannot be performed in
CALC mode. CALC mode does not support:

e Strings.

® The decimal and hexadecimal conversion functions & TH# and HTI.
e Multi-lined, user-defined functions.

e Statements, except assignment statements.

e Program lines.

Warning Messages in CALC Mode

In the following CALC mode cases, check the contents of the Command Stack before proceeding.
® You are evaluating an expression in the Command Stack and get a warning message (any kind).
* You are performing backward execution ([f][BACK]) and get a warning message.

® You press a user-defined key on the User keyboard and get a warning in response.

Note that characters coming after those that generated the warning may not have been accepted.

Section 2: Calculating with the HP-71 47

L4, %)

The HP-71 adds * to the usual set of BASIC arithmetic operators. This table shows how these oper-
ators are used. To reproduce the results shown in this and the following tables, execute % 7 [
in BASIC mode to set =T display format (discussed on page 55.)

Arithmetic Operators

Operator Operation Example with Result

+ Addition
Subtraction
Multiplication
Division

Exponentiation

Integer Division (no remainder)

The operation x*y returns
x percent of y.

Numeric Functions

Numeric functions are built-in routines that take numeric or string information and return single val-
ues. The information acted on by a function is called the argument of the function. An HP-71 function
can operate on zero or more arguments. An argument can itself be a variable, another function, or an
entire expression, so long as it reduces to a single value at the time it’s evaluated.
To execute any HP-71 function from the keyboard:

1. Type the function name.

2. Type the argument, if the function requires one, enclosed within parentheses. If the function re-
quires multiple arguments, separate them with commas.

3. Press to compute the result.

The following topics group the HP-71 numeric functions according to their use.

48 Section 2: Calculating with the HP-71

Number-Alteration Functions (i

The table below shows the value returned by each function from a numeric expressxon x. For instance,
the example for FiF%{x: shows that ZZ% is returned when x reduces to i

Number Alteration Functions

Function and

i E le with R
Argument Meaning xample with Result

Absolute value of x.

TFixs Integer part of x—that portion of x to the left of the decimal
point.

Fractional part of x—that portion of the number to the right of
the decimal point (including the decimal point and sign).

The greatest integer less than or equal to x.

Greatest integer less than or equal to x. (Same as IHT{x3.)

e

Smallest integer greater than or equal to x. CEILCY . 230

Notice the difference between the I+, FL 0k (or [HT), and ©E IL functions. Given a positive ar-
gument, ¥ and FL O0E return identical values; given a negative argument, ¥ and E 1L return
identical values.

Decimal and Hexadecimal Conversions (i

These two functions cannot be executed in CALC mode. To use the result of # in CALC mode,
switch into BASIC mode ([f]J(CALC]), execute the function to get the result, switch back to CALC
mode, then type © * to automatically display the same result. This result can then be used in further
calculations.

Decimal and Hexadecimal Conversions

Function and

Argument Meaning Example with Result

Converts a positive decimal number no larger than 16° — 1
(=1048575) to a string that represents its five digit
hexadecimal value.

Converts a one to five digit hexadecimal value to a decimal
number. The hexadecimal value must be entered as a string.

1)

Section 2: Calculating with the HP-71

49

These general functions are described in the following table, together with examples showing results
produced when these functions are executed.

General Functions

Function and

nearest integer to x.y.

Value of most recently executed expression.

Sign of x. Returns 1 if the argument is positive, 0 if it is
0, and —1 if it is negative.

Argument Meaning Example(s) with Result(s)
FI Twelve-digit approximation of . = 1
SR OXD Positive square root of x.
FROTOx: Factorial of the positive integer x.
Y Maximum of two values.
MIMix,y Minimum of two values.
MODiox,y x reduced modulo y, that is x—yF IHT ix-y:.
Erbix.y Remainder of x.-y, that is x—y# IF ix.y:.
EEDOX,y> Reduction of x by y, that is x—-y#n, where n is the

50 Section 2: Calculating with the HP-71

1)

These logarithmic functions are described in the following table, together with examples showing re-
sults produced when these functions are executed.

Logarithmic Functions (.. i, i,

Logarithmic Functions

Function and

Argument Meaning Example with Result

loge x. The common logarithm of a positive x
Eoxs (base 10).

In x. The natural logarithm of a positive x (base e).

e*. The natural antilogarithm.

EXFOMEMT (x| The exponent of normalized x. EXNFOMEMTCLI23458723 0
In(1+x) (LOG01 +x3). LOocRiol,
Useful for accurate evaluation of L. {i:<x: for x :

very close to 1.

e—1 (ExFixs-1). Useful for accurate evalu-
ation of ExF Cxfor x very close to 0.

Hyperbolic functions, inverse hyperbolic functions, and certain financial calculations involve the
expressions In(1 + x) and (e*) — 1 for arguments near zero. To allow greater accuracy in such calcula-
tions, 1 and E=Fi1 evaluate these expressions directly.

)

After memory reset, the HP-71 assumes angles are measured in degrees. If you wish radians to be the
unit of measure for expressing angles, execute in BASIC mode F (or

! A 4%). If you wish degrees to be the unit of measure, execute [i EZ (or
i - G %). Note that these statements do not convert arguments from one unit of
measure to the other Such a conversion is done by the functions DE and F#i, described below.

Angular Settings (*

Section 2: Calculating with the HP-71 51

The HP-71 provides 9 predefined trigonometric functions. It’s important to keep in mind the range of
values that the inverse functions (arc sine, arc cosine, and arc tangent) return, which lie in Quadrants I
through IV. Assuming radians is the angular setting, the HP-71 represents angles as follows:

y —axis
m
2
Quadrant I Quadrant |
T<o<n 0<H< =
2 9 < 2
N
T \\ 0 x-axis
Quadrant lll Quadrant IV
m™ m™
<< 2 2 <6<O0

N3

52 Section 2: Calculating with the HP-71

Trigonometric Functions

Function and Example with Result

Argument Meaning (Radians Setting)
SIHOx Sine of x. SIMORFI 20
1
IR o Cosine of x. CODoE
THHOXx S Tangent of x. THHOPT -4

Arc sine of x, where —1 < x < 1. In Quadrant | or IV.

Arc cosine of x, where —1 < x < 1.In Quadrant l or Il. | A0S0 1

Arc tangent of x. In Quadrant | or IV.

Radians to degrees conversion.
EHEldx: Degrees to radians conversion.

AMGLE (X, y3 Arc tangent of y/x, in “proper” quadrant; that is, the angle
between (x,y) and the positive x-axis.

There is an important difference between the & £ and ATHH functions. -~ takes two ar-
guments to find the arc tangent of their quotient in the proper quadrant. #T it returns the principal
value of the arc tangent—that is, the value in Quadrant I or IV—of a single argument. For example

: returns -idE, 30 “4 74 degrees (in Quadrant III), whereas A

2 & degrees (m Quadrant I).

The FHI function (which takes no argument) generates the next number R in a sequence of pseudo-
random numbers such that 0 < R < 1. Each time ! is evaluated, it returns a new random number.
The starting number of a random number sequence determines the sequence of values that & will
return.

FHH G

Random Numbers (¥

- [numeric expression]

Section 2: Calculating with the HP-71 53

To set the starting number for the random number generator, either:

o Execute FAHIOMIZE alone, which causes the HP-71 to generate the starting number, based on
the current HP-71 clock reading.

e Specify any constant or expression within the range of the HP-71 in a ~ statement,
which causes the HP-71 to start the sequence based on the value of that expression. (Specifying a
numeric expression of zero causes a constant sequence of zeros).

. After a
-, the HP-71 will generate a

"y

For instance, executing FRHOOMIZE 4273, then executing FHII, returns
memory reset, if you repeatedly execute F I before executing & HHDTM I

specific sequence of numbers, starting with . 523 152! Z. So if you want a different series of

numbers, execute FAHDIMIZE before FHI.

Use the following formula to generate random integers, iy, iy, . . ., ij, ..., such that & < i;

;< L, where =

and i represent any two real numbers.

Example: To illustrate the rule given above, enter a ErH[expression that will return a random num-
ber in the range 1 to 100 inclusive.

Input/Result
: iO+1

]
oy
-

53 This is the first number returned after a memory
reset, and before F MM I ZE has been ex-
ecuted. (After a memory reset, the HP-71 is in
BASIC mode).

Good statistical properties can be expected from the random number generator if a statistically signifi-
cant sample size is considered.*

* The HP-71 random number generator passes the Spectral Test. Donald E. Knuth, The Art of Computer Programming (Massachu-
setts, 1969),vol.2,section 3.4.

54 Section 2: Calculating with the HP-71

Number Formatting

Numbers are always stored in the HP-71 to 12 digits, but you can display numbers in any one of four
formats: ST, FIkd, S21d, and EHGd. The parameter d specifies the number of fractional digits
(F Id) or one less than the number of significant digits (= Id, EFMd). The results of 1&&.-2 dis-
played in each format are:

fod el

Each of these number formats is described in more detail below, following the discussion of exponential
notation.

Exponential Notation (&)

Exponential, or scientific, notation is a short-hand system to express numbers too large or too small to

fit the display normally—that is, numbers that can’t be expressed adequately with 12 digits. The
number

—.00000000000123456789012

expressed in exponential notation is:

Single digit FromOto 11 Two or three

to the left digits to the digits for the

of decimal point. right of decimal exponent
point.

~

Negative sign /// 1 / T~
(If number is” / / Negz;tive sign
less than 0). Decimal The symbol &, (if number is
point. indicating a a fraction).
power of 10.

Exponential representations have two parts: the base part, which consists of significant digits, and the
exponent, which consists of an integer power of ten.

You can enter numbers in any form. However, the HP-71 will display a number in exponential notation
only when it’s required by the number format in use, as the following examples show.

Section 2: Calculating with the HP-71 55

Example: Execute FI:2 in BASIC mode.

Input/Result

e e e e e e e 5 R 5 In ¥ I ¥Z format, this number is displayed with-
out exponential notation, since it’s less than 1012,

iz Numbers whose magnitude exceeds 1 x 1012 — 1
are always displayed in exponential notation.

In standard display format, numbers are displayed with the smallest number of digits consistent with
presentmg maximum accuracy. The result of i .= is displayed as .%, while i.-7% is displayed as
3273 Z. Numbers too large or too small to be viewed with maximum accuracy without
exponents are dlsplayed in exponential notation.

Fixed-Decimal Display Format (-

I # digits

In fixed-decimal display format, numbers are displayed rounded to the speciﬁed number of digits
(# digits) past the decimal point. The range of values for # digits is & through i i. Numbers too large
or too small to be viewed in the current fixed format are displayed in scientific format. In ¥ I =

display format, the result of 1 .-Z is displayed as & . Z3.

1)

Scientific Display Format (=

=01 # digits

In scientific display format, numbers are displayed with an exponent. The base part shows the speci-
fied number of digits (# digits) past the decimal point, while the exponent shows as few digits as the
number permits. The range of values for # digits is & through 1 i.In %1 display format, the result
of 1.7 is displayed as Z.Z3E~1.

56 Section 2: Calculating with the HP-71

Engineering Display Format (= 1i:)

. # digits

In engineering display format, numbers are displayed as they are in scientific format, except exponents
are shown in multiples of three, and the specified number of digits (# digits) refers to the number of
digits to the right of the leadlng digit. The range of values for # digits is & through 1 1. In EHEGE

- i F_.

display format, the result of 1. 73 is displayed as 3373

Numeric Precision (

)

The HP-71 performs calculations internally using 15 significant digits. The results of these calcula-
tions are then rounded to 12 digits for storing and display. This rounding can be done in any of four
round-off settings given by UFTIOH REOLHD:

e IFTION REOUMD HEAE rounds to the 12-digit value nearest to the 15-digit internal result of the
calculation, and in case of a tie, it rounds to the value with the even last digit.
OFTIOH REOUMD MEAR is in effect after a memory reset. Entered = E i numbers (page 57) over
12 digits long always round according to OFTIOH REOUHD HEAE, regardless of the round-off
setting in effect. For example, when the 13 digit number 1.234567890125 is entered, the display
shows 1.ZZ45675%012. The number is not rounded up to show = as a final digit; rather,
OFTIOH REOUMD HEAR causes rounding to the value with the even last digit (Z).

o OFTIOH REOUMD ZERD rounds towards zero.

o IFTION REOUMD FOZ rounds up.

o IFTIOM ROUMHD HEG rounds down.
Calculation results stored in variables whose types are ZHi1FE T and FE#L. are rounded according to the
current round-off setting. Results stored in IHTEGER type variables are rounded to the nearest digit,

with ties always rounding up in absolute value. REAL, ZHET, and IMTEGER precision variables are
introduced on the next page and also discussed under “Declaring Arrays” in section 3.

If the current display format causes less than 12 digits to be displayed, the displayed result of a cal-
culation is always rounded to the nearest displayable value, with ties always rounding up in absolute
value.

Precision of Numeric Variables (& i, = s R ER)

Besides declaring the name and value of a numeric variable (section 3), you can declare its precision—
that is, the number of digits used by the HP-71 to store its value. In arrays, the fewer dlglts used the

less memory is used to store variable values. Three types of precision are offered: & E ", and
CER.

o REFRL variable values are stored with the full precision of the HP-71. They cover the range of
values from -FFA<FEEAL through MA<EEAL. Numbers with ®EFL precision are represented in-
ternally by 12 digits and a three-digit exponent.

+T variable values cover a slightly narrower range, —9.9999 x 10499 through 9.9999 x 10499,
Accordlngly, ZHOET numbers are represented internally by five digits and a three-digit exponent.

o IMTEGER variable values lie between —99999 and +99999. IHTE
five digits and no exponent.

¥ numbers are stored with

Math Exceptions (i

HEH i R LR
ey BT I I T A)

During a calculation, various operations can result in unusual results, depending on the values of the
terms involved. Such exceptions include the square root of a negative number, division by zero, results
too large or too small for the HP-71 to represent, and results that cannot be represented exactly in a
12-digit, floating-point format. Associated with each math exception is a flag that is set by the HP-71
whenever an exception is encountered. These flags remain set until you clear them. Each of these flags
can be accessed by its number or by its name. You can clear and set the math exception flags in the
same way as any flag, except that flag names can be used as well as flag numbers.

For more information on flags, refer to section 11. And for information on when math exception flags
are set, refer to “IEEE Proposal For Handling Math Exceptions” in the reference manual.

The following table summarizes these five math exceptions, and subsequent topics in this section dis-
cuss how you can control the HP-71 responses to such exceptions.

Math Exceptlons

F|ag , [
Exception — — Examples i
Name | Number |

Invalid operation Tul | -

Division by zero | [t -7
Overflow OE ——
Underflow LMF -5

Inexact result IHA =i

58 Section 2: Calculating with the HP-71

Recovering From Math Exceptions (

H

The HP-71 provides three ways to recover from math exceptions:

-

AULT OH is active after a memory reset. With DEFALILT OH active, the occurrence of a

division by zero, overflow, or underflow exception results in a warning message, and the calculation
continues using default values. The occurrence of an invalid exception causes the calculation to
stop.

e With EFAIULT 0OFF active, when any math exception occurs, except inexact result, an error
results and the calculation stops. In this case, the it EFREiF statement (page 172) can be used to
recover from math exceptions.

o With DEFAULT EHTEHMD active, the HP-71 supplies a special set of default values for math
exceptions, which is described beginning on the next page.

Regardless of the IEFALILT setting, an inexact result is always rounded according to the round-off
setting in effect (page 56).

Assuming a DEGREEES setting, the DEFAULT O warning conditions and default values are:

Default Values Supplied in Response to Math Exceptions
(DEFARULT OH Active)

Warning Number
(EEREH) and Warning Condition
Exception

Default Value
(Degrees Setting)

Underflow; that is, a nonzero result between
~EFZ and +EFE,
Overflow:

e For IHTEGER variables.

e For “HIIFET variables.

e For HEFL variables.

ERFOMENT G

i

THH is infinite, caused by an argument equal to
an odd multiple of 90°.

Zero raised to a negative power.

£ Zero raised to a power of zero.”

LB -

Section 2: Calculating with the HP-71 59

The IEEE Proposal for Handling Math Exceptions (+ ¢, ~ 1§, I}

At the time the design of the HP-71 was completed, the IEEE Computer Society was in the process of
defining a standard for floating-point arithmetic. The two main aspects of the IEEE proposal that
pertain to decimal arithmetic are accuracy of arithmetic results and exception handling. The HP-71
meets the specifications of the IEEE Radix Independent Floating-Point Proposal, as it existed when
this design was fixed.

Associated with each math exception flag is a trap that “traps” a particular exception and specifies a
particular action to be taken, as summarized in this table.

Actions Corresponding to Math Exception Trap Values

Trap Value Trap Action

R

Suspend execution with an error message.

For LiHF, OWF, and 04 Z, supply default
values shown in the table above. For I%ii.,
suspend execution with an error message.
For IH:, supply rounded result.

ot

Supply IEEE default values.

TEFF is a function that either returns the current trap value or sets a new trap value for a specified
math exception flag.

. . exception flag #

TREAFC , [new trap value]:
exception name

Examples:

TRARCOVE, 82

R

Causes the HP-71 to suspend execution with an
error message in response to the division-by-zero
exception.

TEAPCDOVE, Causes the HP-71 to supply the default value
o % in response to the
d1v1510n-by-zer0 exception.

TEAPCDVE, 2 Causes the HP-71 to supply the IEEE default

value Irf or ~Ir¥ in response to the
division-by-zero exception.

60 ection iculati

I choices for each of the five math

This table shows the trap values set by each of the three
exceptions.

Math Exceptlon Trap Values Set By !

1117 Choices

Default

OFF
ik

l
?
l
= |

The special responses to trap values of = include + I (infinity) and =8 (not a number)
& value supplied for an overflow exception (7% F) or a division by zero exception
is the THFF 2 value supplied for an invalid operation exception (i %i.). is a no- argument
function that returns I f, which behaves like mathematical infinity in subsequent calculations. :
is a no-argument functlon that returns a signaling H=zH, which can be used to initialize any
uninitialized data so that the 1%L flag will be set whenever this data enters into a calculation. The
“IEEE Proposal For Handlmg Math Exceptions” section in the reference manual covers the I ¥ and

functions and these TEHF = math exception responses, and also includes a further discussion of

how the HP-71 meets the provisions of the IEEE Proposal.

In addition, the reference manual discusses the relational operator 7, which returns 1
or both of the expressions being compared are unordered; that is, one or both are

)

The inclusion of TEFF & default values for math exceptions extends the normal range and type of
numbers. This extended range is divided into six classes. Class 3 includes normalized numbers from
L. inclusive. The other five classes cover zero, denormalized numbers (between zero
and %), infinity, and Mz (quiet and signaling). The function returns a 51gned number
showing the class and sign of the argument. Program control is the main application for :. The
HP-71 Reference Manual discusses L A% % in more detail.

(true) when one

Categories of Numbers (i1

ction 2: Calculating with the HP-71 61

Range of Numbers (i [L,

The following diagram shows the range of values that can be entered and stored (the shaded areas
indicate values that can’t be represented on the HP-71.):

—0.00000000001E—499 0.00000000001E —499

9.99999999999E499

Denormalized
Numbers

All numeric operands are represented by a sign, a 12-digit base part, and an exponent ranging from

format as

).

normallzed numbers For example the number —1234.56 is displayed in
k2. The smallest normahzed number is called
The largest normalized number is called ¥ (=

The HP-71 displays very small numbers, whose normal exponents are less than —499, as denormalized
numbers, with one or more leading zeros. For instance, with the trap value (page 59) for the underflow
ﬂag (page 57) set to & (TEAFIUNF,Z), % is displayed in 1 format as

TEEE 35 The smallest positive denormalized number is called i F
#). Smaller values generally underflow to zero.

(

Entered numbers or results smaller than the smallest positive normalized number the HP-71 can re-
present (EF %) may produce an underflow condition. Numbers or results larger than the maximum
positive finite number the HP-71 can represent (¥ i1.) produce an overflow condition. These
conditions either suspend a calculation with error messages or continue the calculation with various
default values (such as values between EF = and ¥ i1, as explained above). These errors and

default values are discussed on pages 57-60 beglnmng with the topic “Math Exceptions.”

62 Section 2: Calculating with the HP-71

Relational Operators (Combinations of -, =, >, #,)

Relational operators compare the values of two expressions and return a i if the comparison is true,
and a # if the comparison is false. That is, the relational operators operate on numeric and string
values to return Boolean values. (Strings are covered in section 3, “Variables: Simple and Array”.) The
new 7 relational operator is described in the HP-71 Reference Manual in the section “IEEE Proposal
For Handling Math Exceptions.”

Examples of Relational Operators

Fg’;:?:;?' Meaning Example(s) with Result(s)

Greater than? IR

o Greater than or equal to? L FI
Less than? IZSj 144F1

o Less than or equal to? :
Less than or greater than?

Not equal to?

H & REIRE-I8

Unordered? 4 ’:

The equal sign (=) is used in both variable assignment statements and in relational expressions. When-
ever an entry can be interpreted either way, the HP-71 assumes the entry is a variable assignment.

Logical Operators (~#ii, ik, E ,

The four logical operators operate on Boolean values to return Boolean values. The logical operators
interpret all nonzero numeric operands as 1, or true, and operands equal to zero as 0, or false. FHII,
1k, and E+0F return a value of 1 if the relationship between operands is true and a value of 0 if the
relationship is false. H{IT, a unary operator, returns the opposite value (0 or 1) of a single operand.

Section 2: Calculating with the HP-71 63

Logical Operators

Logical . .
Operator Evaluation Examples with Results
AR Both expressions true (that is, nonzero)?

Either expression true?

o

equivalent of ©H A MOT B» O

One or the other expressmn true—but not both? ThIS |s the

MOT Is the expression false (that is, zero)?

Relational and logical operators may be used to compare numeric constants (= £1), variables

(A ®HDE), functions (SIHCA> AHD CO%<FA), and larger expressions.
Example: If # = 0 and & = 20, then:

Input/Result

A OAMD JEYSSE-E (ENDLINE Enters an expression with logical, relational, and
arithmetic operators.

The expression evaluates “true.”

64/65 Section 2: Calculating with the HP-71

Precedence of Operators
The list below shows HP-71 operators in their order of precedence, from highest to lowest.

The operations with higher precedence are performed first. Expressions are evaluated from left to right
for operators at the same level.

1. Expressions within parentheses. Nested parentheses are evaluated from the inside out.

2. Functions, such as ZIH, LG, and FRCT.

3.

4. Unary —, logical HT. The minus sign in ~# is the unary ~ operator, which changes the sign of #,
whether Fi is positive or negative.

5. %, -, %, DI

6. +, .

7. Relational operators: Combinations of <, =, », #, and 7.

8. Logical ritii.

9. Logical iF, EHOE.

Section 3

Variables: Simple and Array

Contents
OVEIVIBW . o oo 66
Features of Variables and Arrays 67
Sharing Variables Between Keyboard and Programs 67
Reclaiming Memory (DESTEDY) .o 67
Numeric Variables: Simple and Array 68
Setting the Lower Bound of Arrays (ZF T Ik 68
Declaring Arrays (I, REAL, SHOET, I 69
SHINGS . . 71
Quoted Strings 72
String Variables: Simple and Array (DI, OGFTION BRZE) 72
String Concatenation (i) 73
SUDbStINGS 73
String Functions (L EH, F WH) oo 74

Overview

This section covers:

e Special features of the HP-71 BASIC language relating to quoted strings, string functions, and
variables, both numeric and string.

e Simple variables, numeric and string.
e Array variables, numeric and string.

e Manipulation of strings.

66

Section 3: Variables: Simple and Array 67

Features of Variables and Arrays

The HP-71 BASIC language includes some features that may not be familiar to those who have worked
with other versions of BASIC. The more important of these are listed here, and page references are
given for those features discussed later in more detail.

Array and string dimension limits can be expressions.

AL and ZTR#$ evaluate numeric expressions and return the result as a numeric value or a string
(page 76).

Variables are shared between keyboard use and programs (see below).

Default variable values (& or ") are automatically returned without warning when an unassigned
variable is used from the keyboard or in a program (page 68).

Variables can be destroyed and the memory they use reclaimed (page 67).
A simple and an array variable cannot share the same name (page 68).
The # symbol concatenates statements in one line (page 146).

Multiple assignment statements (such as A, E . U=1%) are not allowed. However, one program
line can assign values to several wvariables using concatenation (for example,

A=10E @ B=180 @ C=108 @ [0O=32%5

LET can be omitted from assignment statements.

D IZF can be omitted from display statements except after THEM or EL

Both * and “ can be used in ' I%F and PR IHT statements.

E (page 226).

Sharing Variables Between Keyboard and Programs

Reclaiming Memory (iE:
The

When you run a program, the variables used by that program may contain values assigned to them
from the keyboard or from a previously run program.

If you don’t want your program’s variables to have previously assigned values, you can cancel your

variables’ assignments using DE S TR or, for simple variables only, dimension your variables using
ODIM, FEAL, SHORT, or IMTEGER. You can use these keywords in your program or from the
keyboard. To ensure your array variables do not have previously assigned values, you must use
DESZTEDOY or assign each element a new value.

=.§.=)

DEZTREOY statement allows you to recover the memory allocated to a variable, to several

variables, or to all variables.

* variable [. variable...]

ALL

68 Section 3: Variables: Simple and Array

Examples:

Cad M RE The variables <%, i, and F Z no longer exist, the
user memory prev1ous1y devoted to them is re-
leased, and the variable names are available for
other uses.

ALL All variables are destroyed, and all memory pre-
viously allocated to them can now be used for
other purposes.

Numeric Variables: Simple and Array

A variable or array can be named with a letter alone or a letter followed by a single numeral, 0 through
9. Some examples are: A, 3, F7. Simple numeric variables and arrays share the same name choices.
For instance, if a variable A is assigned a value, say %, the letter F cannot be used as the name of an
array.

A nonexistent variable is one that has neither been assigned a value nor declared to have IHTEGEER,
ZHORET, or EEFL precision, either in a program or from the keyboard. If an attempt is made to recall
the value of a nonexistent numeric variable, a zero is returned without a warning or error message or
beep. However, the variable still does not exist.

If you attempt to recall an element of a nonexistent array, whose row and column numbers (subscripts)
are within the BASIC default dimensions (10), a zero is returned without a warning or error message or
beep.

If an array reference has a row or column number larger than that given by the array’s dimensions,
either a Zub=cr ipt error is given and the program halts (TEAFC IV & or TRAFCIVL 12
active), or a Subizor ipt warning is given, Halb is returned and the program continues
(TEAFCIVL . 22 active).

Setting the Lower Bound of Arrays (COF T I0H ERSZE)

All HP-71 array subscripts begin at 0 or 1, depending on whether TiIFTIIMH EAZE & or
DFTION BASE 1 is active at the time the array is created.

Section 3: Variables: Simple and Array 69

Once an OFTIOH EARZE statement is executed from the keyboard or in a program, it stays active
until another OFTIOH EASE statement is executed or until a memory reset occurs. Memory reset
sets OFTIOH EFASE &. The argument for the TFTITOH EFZE statement can be any numeric
expression that evaluates to either 0 or 1, but the most common forms for &FTIOH EFASE
shown above.

are those

Example: The following program segment illustrates the action of 0F T I0MH BEAZE
10 OPTION BASE 0 Any array declared after this statement is
executed will have 0 (or 0,0) as the lowest
numbered subscript.

20 DIM A(5,5) Since array A has 6 rows and 6 columns, it has a
total of 36 elements.
30 OPTION BASE 1 Any array declared after this statement is

executed will have 1 (or 1,1) as the lowest
numbered subscript.

40 DIM B(5,5) Since array B has 5 rows and 5 columns, it has a
total of 25 elements.

The execution of line 30 does not affect the lower bound of array #. It still has 36 elements.

)

An array declaration not only defines the highest numbered subscript(s) of the array, but it also defines
the precision of the array’s elements. If the array did not previously exist, an array declaration also
initializes all elements to zero. [I and FEFAL both declare FEFi precision numeric variables. How-
ever, only [1 I can declare string variables, as described on page 72.

Declaring Arrays (i If, REARL, SHORET, I

— simplified syntax S e —

DI M variable list

— simplified syntax ——m8 ———————

EEHL variable list

70 Section 3: Variables: Simple and Array

— simplified syntax

1T variable list

— simplified syntax

* variable list

Examples: These examples assume the arrays do not already exist.

Both arrays have real precision. Assuming
OFTION BARSE L is active, array # has five
elements, and array % has 225 elements. All
elements in each array are initialized to zero.

Assuming OFT 1M B

has IHTEZEER precision and 88 elements all
initialized to zero. The lowest numbered element
is (0,0).

Default Array Dimensions: (10) or (10,10). The HP-71 assigns dimensions (10) or (10,10) to a
nonexistent array when an assignment statement stores a value into a nonexistent element. If one
index of this element is beyond 10, an error occurs. All other elements are assigned the value zero. Each
element has real precision.

Examples: The array in each of the following examples has not been dimensioned.
- & is set.

Since neither of the indices © 7 . % is greater
than 10, the array is d1mens10ned (10,10) and is
given 121 elements Element 7, = is assigned the
real value /, and all other elements are assigned
the value zero.

Since the array element in this assignment state-
ment has an index greater than 10, no array is
created, and no value is stored.

Changing Array Dimensions Under Program Control. The HP-71 can redimension an array
during program execution. This allows you to design a program whose arrays automatically change size
to accomodate changing amounts of data. Redimensioning is done with any of the same four statements
that declare initial dimensions: DI, FEAL, SHORT and IHTEGER.

Note: When redimensioning an array, declare the same precision that the array currently has.
Otherwise, all array values will be lost.

Section 3: Variables: Simple and Array 71

If an array’s dimensions are reduced, some elements will of course be lost. Otherwise, existing elements
remain intact, although they will probably appear to have been rearranged. Array element values are
stored row-by-row. That is, the first row, last column value is followed by the second row, first column
value. If an array’s dimensions are expanded, all new elements are initialized to zero.

Example: Array # is declared as fi1F

%, %, and contains values i through % arranged as shown.

Array A
Column Column Column
1 2 3
Row 1 1 2 3
Row 2 4 5 6
Row 3 7 8 9

After

= is executed, the array’s values are rearranged as shown:

Column Column

1 2
Row 1 1 2
Row 2 3 4
Row 3 5 6
Row 4 7 8
Row 5 9 0

The additional element A(5,2) is assigned the value zero.

Strings

A string can be a quoted collection of characters, or a variable or expression representing such a collec-
tion of characters. The HP-71 supports one-dimensional string arrays and offers a powerful set of
string functions. These are all discussed below.

72 Section 3: Variables: Simple and Array

Quoted Strings

Quoted strings can be enclosed by a pair of single or double quotation marks, as shown in the following
example. A quoted item must be enclosed by a pair of single or double quotes; the quote symbols cannot
be intermixed.

FRIMNT '"Paradize Lost" was written by Jokben Militon, !’

When a file name is used as a parameter in a BASIC statement, quotes can be omitted.

)

String variable names consist of a letter, an optional numeral, and a dollar sign. Some examples: F#,
4% and J7#. A simple string variable and a string array cannot share the same name.

o

String Variables: Simple and Array (LI, GFTION B

Default Value—The Null String (" "). The null string, represented by “* or ‘', is the value re-
turned for a reference to a nonexistent string variable. It is also the value given to a string variable
when it is first created. The null string contains no characters, and can’t be printed or displayed.

Declaring Dimensions (DI, OFTION EARZE). The DI statement is used to declare, in square
brackets, the greatest number of characters (including spaces) a string variable can represent. 1 111 is
also used to declare, in parentheses, the highest numbered element in a string array. [i I I initializes all
string variables to the null string, except for previously dimensioned string arrays.

OFTIOH EFAZE not only sets the lower bound of numeric arrays, but of string arrays as well.

Only one-dimensional string arrays are allowed.

simplified syntax
|7r 11 variable list

Examples:

DIM REFCEE] Dimensions a simple string variable to have a
maximum length of 25 characters.

DIM CECIs048] Assuming OFTIOH EASZE 1 is active, declares

a string array to have 15 elements, each with a
40 character maximum length. Each element is
assigned the null string.

Section 3: Variables: Simple and Array 73

Default Dimensions. If a string variable’s length is not declared with : I, the HP-71 sets its maxi-
mum length to 32 characters. IFTI0H EFAZE has no effect on string length or position.

If a string array’s dimension is not declared with I I before its use in an assignment statement, the
array’s dimension is automatically set to 10. The number of elements in such an automatlcally
d1mens1oned stnng array will be 10 or 11, -corresponding to

&1 1s set when this statement is executed.

String array F%# has 5 elements, and the maxi-
mum length of each element is 32 characters.

Changing Array Dimensions Under Program Control. can also be used to change the
dimensions of an existing string array. For the original string values to remain unaltered, the maximum
string length for each element must remain unchanged. If the string length dimension of the
redimensioned array is changed, all elements become null strings. If the redimensioned array has fewer
elements, some string values will be lost. If the redimensioned array has more elements, the additional
elements will be initialized to the null string.

Example: Assume OFTIOH EARZSE & is in effect.

ODIM WECR? This statement changes the dimension of arrary
H¥ to the current value of the variable F. Since
no string length is specified, the maximum string
length becomes 32 characters.

String Concatenation (3:)

Two or more string variables or quoted strings, in any combination, can be joined together to form a
new single string using the concatenation operator ..

Substrings

A substring is a portion of a quoted string or string variable made up of one or more adjacent char-
acters. The null string can also be a substring.

Specifying Substrings. A substring is specified by a subscript or subscripts enclosed within square
brackets following the string.

Examples:

A%="ALARM"

1
el
Lo

Assigns to Fi# the substring from the third
through the last character.

BEE=T#[4,2 Assigns to £# the fourth through the ninth char-
acters of T#.

74 Section 3: Variables: Simple and Array

Assigning Values to Substrings. You can assign any string expression directly to a substring of a
variable.

Examples:

Assigns % # to the fifth element of array ¥ start-
ing at position seven. Any characters that pre-
viously existed, starting at position seven, are
deleted from i < 5 :, If this M# element
originally had fewer than seven characters, say
four, three blanks would be inserted between the
original fifth element and the start of & #%.

YELDLD, dd="teacup" This statement expands or contracts the part of
‘% from positions numbered I through . so
that " t=zcue ™ will fit into it exactly. Any char-
acters that previously existed from I through .i
are deleted, including the characters at positions
I and .l

The HP-71 BASIC language includes a flexible set of string functions that allows you to create, analyze
and manipulate strings. The following four numeric functions analyze strings, returning a numeric
result:

Numeric Functions

Function Action
LEMCstring & Returns the number of characters in a string.
Fiidstring 1., string 2 Returns the position of string 2 in string 1. The optional numeric expres-
[. numeric expression] sion specifies the search start position.
LYRL ostring Evaluates the string as if it were a numeric expression and returns the
value of that expression.
HilF <string Returns the character code of the first character in the string.

The following three string functions return a string result:

String Functions

Function

Action

S TEF Cnumeric expression

CHE$ Cnumeric expression

Evaluates the numeric expression and returns the result as a string. |
Returns the character whose character code equals the value of |
numeric expression. |

Converts all lowercase letters in the string to uppercase letters.

Substring Position (F %), This two- or three-argument function returns the position of a substring
within a string. The first argument specifies the string being searched, while the substring is specified
by the second argument. An optional third argument specifies the character position where the search

is to begin.

If the second string is not contained within the first string, the value returned by the function is zero.

Without the optional third argument, only the first occurrence of the substring is given by F

1%, BED

TEMHES!

S0 s [END LINE Returns ¢

“ within

the starting position of *

Returns &, since the substring does not occur in
the string being searched.

=" 0ATLYE EBEf="HIL" (ENDLINE

T

Returns =, showing that "# 1L " begins at posi-
tion two in L

L ME™,E3 [ENDLINE Returns &, the first &£ whose position number is 3

or higher.

The first £ is ignored, since its position number is lower than Z. The function begins its character-by-
character comparison with the character () located at position . This comparison continues to posi-
tion five, where a match is found. The function then returns &, the position of the first £ whose
position number is three or higher.

76 Section 3: Variables: Simple and Array

String-to-Numeric Conversion (./#l). This function converts a string expression containing a
valid numeric expression into a numeric value. The numeric expression can include variables, functions,
and operators. Note that ‘/Fi. evaluates a string expression as though it were a numeric expression.
In summary, il evaluates the following as though they were numeric expressions:

e Quoted strings of characters, such as "<47Z" or "MEz3Z",

e The characters represented by string expressions, such as A% or BEf& "% "L O%,

Any characters following the first valid numeric expression are ignored. If the first character in the
string cannot be interpreted as part of a numeric expression, an error results.

Input/Result

CE="FROTOoZ

S, SUEFIEEZ (ENDLINE

fx]

2% (ENDLINE Returns 5. £1E4 2. Since i# represents a valid
numeric expression, HFL {C# 3 evaluates the
expression and returns its result.

Example: An example of the '/Fl function’s power is the following program to compute the integral,
using the trapezoidal rule, of an arbitrary function you enter from the keyboard. (Execute
oI “IHT to open a file for this program, then enter it and try it out.)

10 ! Trapezoidal rule integration
20 DIM F$[90],L,U,X,T,S,I
30 INTEGER N

40 INPUT “f(X)=";F$ The expression you enter here must use : as the
variable of integration.

50 INPUT “Lower limit=";L
60 INPUT “Upper limit=";U
70 INPUT “Number of trapezoids=";N

80 X=L @ T=VAL(F$)/2 Evaluate at lower limit.

90 S=(U-L)/N

100 FOR I=1 TO N—1

110 X=L+1%kS @ T=T+ VAL(F$) Evaluate at points in middle.
120 NEXT |

130 X=U @ T=T+VAL(F$)/2 Evaluate at end point.

140 I=T%S

150 DISP “Integral:”;l

When you run this program, lines 80, 110 and 130 evaluate the function that you entered at line 40.

Section 3: Variables: Simple and Array 77

After keying in this program, execute F I3 Z, then press (RUN]. When the f ¢ = display prompts
you for your function, enter i +:. Note that your function must use i as the independent variable.
Next respond to the other prompts by entering i as the lower limit, % as the upper limit, and 1 as the
number of trapezoids the program will use to approximate the integral. You will then see

Imtegral: 53,44 This approximates the true integral of 53V5.

As you increase the number of trapezoids, the integral will become more accurate, but calculation time
will increase.

Numeric-to-String Conversions (=TF#). This function evaluates a numeric expression and con-
verts the result into a string, according to the current display format.

Input/Result
STRECZHESTD

b}
b

“THE# first evaluated & 7, then converted it
to a string (shown in F1 display format).
The string = . & & cannot be used in calculations.

Converting a Character to Its Character Code (iii!f1). Your HP-71 uses a set of 256 characters.
The factory defined set is shown in your reference manual. Each character has a different character
code (0 through 255) associated with it. Ninety-five characters (character codes 32 through 126) are
standard printable characters as defined by the American Standard Code for Information Interchange
(ASCII). riitt returns the character code as a numeric value (not a string) for the first character of its
string argument.

Converting a Character Code to Its Character (Z+F#). This is the inverse function of HilF. It
converts the character code (0 through 255) to the corresponding character. {:HE# accepts any
arithmetic expression as its argument, and, if necessary, it subtracts from or adds to the rounded result
a multiple of 256 to obtain a number in the range 0 through 255. It then converts that number to the
correspondmg ASCII character. For instance, CHE# ¢ &8 returns i, because 1 K
turns =5, the character code for .

Section 4

Statistical Functions

Contents
OVEIVIEW . o 78
Declaring Statistical Arrays (=THT, L% 78
Using The Statistical Operations 79
Adding Data Points to Arrays (FiZid) ... 80
Deleting Data Points from Arrays (LiEDIF) oo o 81
Summing Data Points (T&THL) . 82
Calculating Means (FIEFM) ... 83
Calculating Standard Deviations (:) 83
Calculating Sample Correlations (iZ0HERE) .o 84
Fitting a Linear Regression Model (L.E) 84
Calculating Predicted Values (FRE 85
Fitting Sample Values to Other Curves 86

Overview

This section covers:
¢ The use of the HP-71 statistical statements and functions in a linear regression example.
¢ How data can be fit to a straight line model.

e The use of these statements and functions, together with suitable transformations, in exponential,
logarithmic and power curve examples.

Declaring Statistical Arrays (:

A special one-dimensional array is used to store the data (the point coordinates) to be used for statisti-
cal calculations. ZTHT creates and dimensions this array, and L ZTHT clears the data previously
stored in a statistical array.

78

Section 4: Statistical Functions 79

ZTHT array name [# variables]

This statement dimensions a one-dimensional statistical array to the appropriate size for a specified
number of up to 15 variables. The array name can be any standard numeric variable name. = T#T can
also select a previously dimensioned statistical array to be the current statistical array. The # variables
is optional only if ZTHT selects a previously dimensioned statistical array. The array dimensioned by
ZTHT has base option zero regardless of the iFTIIH ERZE currently in force. All numbers are
stored with FEFL precision.

This statement clears (sets to zero) all elements of the currently specified statistical array.

Using the Statistical Operations

Example: The following table lists the consumer price index change (CPI), the producer price index
change (PPI), and the unemployment rate (UR), all in percentages, for the United States over a 12-
year period.

The goal is to enter the CPI, PPI and UR data into the HP-71 and to calculate some simple statistics.
To get the results in the form shown in the following pages, use ¥ I display format.

Data for Statistical Example

Year | CPI | PPI | UR

1968 4.2 25 | 3.6
1969 5.4 39 | 35
1970 5.9 3.7 | 4.9
1971 4.3 33|59
1972 3.3 45 | 56
1973 6.2 | 13.1 | 4.9
1974 | 11.0 | 189 | 5.6
1975 9.1 9.2 | 85
1976 5.8 46 | 7.7
1977 6.5 6.1 7.0
1978 7.6 7.8 | 6.0
1979 | 11.5 | 19.3 | 5.8

80 Section 4: Statistical Functions

Your first step is to declare a statistical array in which to accumulate the data’s summary statistics.
Note that this one-dimensional array will not store the entered data, but only the summary statistics
that are updated each time data is added or dropped. Since you wish to accumulate summary statistics
for three variables (CPI, PPI and UI):

Input/Result

STAT S033 Creates and dimensions a statistical array = for 3
variables.

CLETAT Clears array =.

If another array = already existed, ZTHT %% would only redimension array %, and the array

elements could contain unexpected data. To be safe, clear an array (with CLZTHT) after declaring it,
unless you wish to use the previous array’s data.

Adding Data Points to Arrays (~ilil)

F il [coordinate value 1 [, coordinate value 2 [...[. coordinate value 15]...1]]

This statement adds a data point, consisting of up to 15 matched coordinate values—numbered from 7
to 75 (one for each variable)—to the current data set represented by the current statistical array.

Example (continued): On a two-dimensional plot, a point is often defined in terms of its x, y coordi-
nates. Similarly, the data point for 1968 is defined in terms of the three coordinates of that data point,
CPI, PPI, and UR. You will accumulate in your array the summary statistics for the 12 data points,
corresponding to the 12 years 1968 through 1979. You enter the first nine data points as follows:

Input/Result
25,306 Data point for 1968.
B35 Data point for 1969.
ENE I Data point for 1970.
.58 Data point for 1971.
5E Data point for 1972.
131,43 Data point for 1973.
S5 .8 Data point for 1974.
LB S Data point for 1975.
ADD S.2,4.8,7.7 Data point for 1976.

Here you realize you made a mistake; the 4 . & should have been 4 . &. To correct the error, use

Section 4: Statistical Functions 81

The [FEF statement is used to delete data points from the array. You’ll see how to execute this state-
ment, and, alternatively, how the HP-71 Command Stack can be employed to make the correction even
easier.

Note: Use only one of the following two methods for correcting data points when working through
this example. Otherwise, your results won’t match those shown in the example.

Method One: Using [ECF to Delete Data Points.

[ROF [coordinate value 1 [. coordinate value 2 [...[. coordinate value 15]...]]]

This statement deletes (drops) a data point, consisting of up to 15 matched coordinate values, numbered
1 to 15, from the summary statistics maintained in the current statistical array.

Example (continued): You proceed as follows to correct your error:

Input/Result

ODROF 5.8.4.8,7.7 Removes the incorrect data point from the sum-
mary statistics.

ADD S.2.4.6,7.7 Enters correct data point for 1976.

Method Two: Using the Command Stack to Change Data Points. Alternatively, by editing an
A00 statement with the Command Stack active, an incorrect data point can be removed from the
current statistical array and the correct data point can be added.

Example (continued): Here’s the procedure for correcting your error using the Command Stack.

Input/Result
(9)(cmbs] Activates the Command Stack.
SRDD SLoE 4 8T The Command Stack displays the most recent

command,* ready for editing.

Replaces AL with DR F.

* This keystroke sequence assumes the error has not been corrected.

82 Section 4: Statistical Functions

Deletes the incorrect data point from the array
and deactivates the Command Stack.
(9)(cmbs] Activates the Command Stack again.
The Command Stack displays your [
statement.
Display the earlier command.
Press 10 times. Positions the Replace cursor at the incorrect
numeral.
& Corrects the error.
Now enter the rest of your data points:
HLoEL LT Data point for 1977.
“““ I Data point for 1978.
""" L Data point for 1979.

Summing Data Points (7

)

The - L. function sums one coordinate’s values (one variable’s values) for all data points. For in-
stance, if each of your data points had two coordinates (variables), say x and y, you would use ~ !
to sum all the x values and then use T{iT#L again to sum all the y values.

[« variable #]

This function returns the total of the coordinate or variable values for the specified variable # in the
current statistical array. If the optional variable # is omitted, the function returns the total of the
values for the first variable (or “variable #1”). If & is specified for variable #, T returns the num-
ber of data points in the array.

Section 4: Statistical Functions 83

Example (continued): Using T 7L, display the sample totals for variable #1 (CPI), variable #2
(PPI), and variable #3 (UR).

Input/Result

Displays !z . &, the total number of samples.
BRI Displays 1, the total of the CPI values.
Displays # the total of the PPI values.

o Displays & 1, the total of the UR values.

Calculating Means (i

4 [+ variable #]

This function returns the mean of the values for the specified variable # in the current statistical array.
The default value for variable # is 1.

Example (continued): You use MEH in this example as follows:

Input/Result
E Displays # . 7%, the mean of the CPI values.
HEAMCZ Displays # the mean of the PPI values.

the mean of the UR values.

HE FIH

A Displays &

Calculating Standard Deviations (=

4 [variable #]

This function returns the sample standard deviation of the coordinate or variable values for the speci-
fied variable # in the current statistical array. The default value for variable # is variable #1.

84 Section 4: Statistical Functions

Example (continued): Use =[IE! to calculate your sample standard deviations.

Input/Result

SOEMC L Displays = . & 1, the standard deviation of the CPI
values.

SOEVCZD Displays & . ©5, the standard deviation of the PPI
values.

SOEMCES Displays 1 . 4%, the standard deviation of the UR
values.

Calculating Sample Correlations (:1FF)

{1EF Cvariable #1 , variable #2:

This function returns the sample correlation of the values for the two specified variables (variable #1
and variable #2) in the current statistical array.

A correlation involving a constant is undefined. If you tried CiiEFR &, i, for instance, you'd hear a
beep and see Iriwalid Stat Op.

Example (continued): Determine the three sample correlations among CPI, PPI, and UR.

Input/Result
CORRCL, 20 Displays & . &, the correlation between CPI and
PPI values.
CORRECL,E: Displays & . 373, the correlation between CPI and
UR values.
CELE Displays & . i+, the correlation between PPI and
UR values.

Fitting a Linear Regression Model (.=

I.F variable #1 , variable #2 [, variable [. variable]]

This statement specifies the current linear regression model. You specify the dependent variable as
variable #1 and the independent variable as variable #2. The |_F statement then computes the inter-
cept and slope for that model. If you supply the first optional variable (any valid variable name is
acceptable), the HP-71 stores the intercept in that variable. If you supply the second optional variable,
the HP-71 stores the slope in that variable.

Section 4: Statistical Functions 85

The calculation of predicted values (using FFELY, explained below) does not use these two optional
variables. Their use simplifies the recovery of the model’s slope and intercept. If these optional
variables are not used, slope and intercept can be recovered as follows, since FFE [/ recalculates slope
and intercept each time it’s executed.

FREDW {8 returns the intercept, a.
FEEDVC1» - FREEDWV{E returns the slope, b.

You can fit a straight line by the method of least squares to any pair of variables by using the L F
statement. The only restriction is that the independent variable not have a sample standard deviation
of zero.

Example (continued): Suppose you wish to fit a straight line between the consumer price index
change (variable #1) and the producer price index change (variable #2), where the CPI is the dependent
variable and the PPI is the independent variable. That is, you wish to fit the line

CPI =a + b~ PPI

to the data, determining values for the parameters a (intercept) and b (slope). Since the independent
variable, PPI, does not have a standard deviation of zero (you determined above that
SOEWC2: = 5.,25), you can use the LF statement. Use two optional variables, # and &, as ar-
guments three and four, which will hold the values for the parameters a and b.

Input/Result

LR 1,EZ.ALE Determines the best-fit straight line for the 12
(PPI,CPI) points, and stores the intercept in
and the slope in E.

F Displays the intercept

E Displays the slope &

Calculating Predicted Values (i

FEEDV Cargument

This function returns the predicted value of the dependent variable based on the current linear regres-
sion model and the value of the independent variable specified as the argument. You must execute L F to
specify the dependent and independent variables before executing FRE D,

86 Section 4: Statistical Functions

Example (continued): Now predict CPI values for PPI values of 4, 5, 6 and 7.

Input/Result
EEERAE Displays & . 1, the predicted CPI value for
PPI = 4.
O Displays % . %4, the predicted CPI value for
PPI = 5.
F CE Displays % . %73, the predicted CPI value for
PPI = 6.
L Displays # the predicted CPI value for

PPI = 17.

Fitting Sample Values to Other Curves

Using suitable transformations, exponential, logarithmic, and power curves can be fitted to data in the
standard linear regression form

y = a + bx.
The following table gives these transformations.

Transformations to Linear Regression Form

Name of Untransformed For y, | For a, | For x, Transformed
Curve Equation Use: Use: Use: Equation

Linear y=a-+bxx y a X y=a-+bxx

Exponential | y = a x eb>xx In(y) In(a) X In(y) = In@) + b x x
(@>0)

Logarithmic | y = a + b X In(x) y a Inx) | y=a+ b xInx)

Power y=ax xb In(y) In(a) In(x) | In(y) = 1In@ + b x In(x)
@=>o0

Example: Suppose the following values for x and y, obtained during an experiment, have been given to
you for analysis. You plan to determine how well each of the four curves-linear, exponential, logarith-
mic, or power—fit the data.

Data for Transformation Example

X 1 1.3 4.7 9.0 17.9 24.4

y | 16.69 13.51 7.498 3.662 7170 3271

Section 4: Statistical Functions 87

To facilitate entering data into a statistical array, arrange it in the following table, with each sample
column labeled by name and number.

Rearranged Data for Transformation Example

Variable #
1 2 3 4
Variable
X In(x) y In(y)
Observation Variable Value

1 .1 -2.3083 16.69 2.815
2 1.3 .2624 13.51 2.603
3 4.7 1.548 7.498 2.015
4 9.0 2.197 3.662 1.298
5 17.9 2.885 .7170 —.3327
6 24.4 3.195 3271 —1.117

Now create and dimension your statistical array and enter your data:

Input/Result

STAT Edd0

|

-
s 47

'

[S B e |
HER WE N PP PR

HOD 17 .9,2 .08

4.4,

Dimensions a new array. (This statement would

select and dimension array & if it already
existed).

This would clear array £ if it already existed.
While this step is not necessary in many cases,
it’s a good habit to develop to ensure against new
data being intermingled with old data in the
same array.

Enters the first observation.
Enters the second observation.

Enters the third observation.

Enters the fourth observation.

Enters the fifth observation.

Enters the sixth observation.

88 Section 4: Statistical Functions

Determine the appropriate correlations to see if any of the models can be excluded from further consid-
eration. Execute the correlation functions shown below and see the indicated results. The arguments of
the correlation functions are the variable numbers from the table immediately above. The transforma-
tion table on page 86 shows what variables to correlate for each type of curve.

For instance, the transformation to fit a logarithmic curve in linear regression form uses (from the
table on page 86) In(x) for x and y for y. The next table (page 87) shows In(x) is variable 2 and y is
variable 3. So the appropriate correlation function in this example for a logarithmic curve in linear
regression (straight line) form is CORER (2, 3.

For the exponential, logarithmic, and power curves, you're checking to see how well the transformed
data fits a straight line. If one or more of these curves has a reasonably high correlation, you might
then use the FEELY function to predict dependent variable values (y or In(y)), given independent
variable values (x or In(x)). The last step would then be to transform In(y) values back to y values using
the £:F function.

Correlations Resulting From Transformation Example

Correlation
Type of Curve Function Result
Linear
Exponential
Logarithmic
Power

None of the correlations is very low. Note that all the transformed curves (straight lines) have negative
slopes, as shown by their negative correlations.

You decide to model the data with the curve having the highest correlation, the exponential curve.
You’ll first use the L E statement to specify the linear regression model (“best fit” straight line) cor-
responding to the transformed exponential curve data. Once that model is established, you’ll be able to
use the FEEY function to predict some additional In(y) values, as well as to check on several In(y)
values transformed from the original data.

Input/Result

LE 4.1.8.B Specifies a linear regression model with In(y)
(variable #4) as the dependent variable and x
(variable #1) as the independent variable. The
intercept will be stored in # and the slope in E.

H Displays the intercept =
= Displays the slope ~& . 1 7.

Section 4: Statistical Functions 89

Now you're ready to predict some values. You want to predict In(y) values for the following x-values:
—10, —5, 0, 20, and 30. For x = 0, the predicted In(y) value should equal the intercept . Finally, you’ll
transform In(y) values back to y-values. As a check, you also want to use some x-values equal to the
data values you were given, and see how close the predicted y-values come to the corresponding data y-
values.

Input/Result

FREDV(-1a3 Displays 4 . 4%, the predicted In(y) value for
x= -1,

EUPORES Displays the result of €445, where 4.45 is the pre-

dicted In(y) value just obtained.

25,8 This is the predicted y-value given by y = a x e(6>¥
for an x-value of — 1 £, where a and b have the val-
ues E4F ¢ H» and E. (You calculated # and F
above with the L.F function).

Predict the other y-values in the same way and display the following results.

Predicted Values Resulting From Transformation Example

-5 o |47 |9 J(| 244 | 30
. +
Predicted Iny) | 363 | 280 | 202 | 131 | -051 124 | 217 |
Predicted y | 37.53 | 16.40 | 7.53 | 3.70 j 060 | 029 011

The In(y) value for x = & is Z . &, which is equal (as it should be) to the intercept 7. Also, the predicted y
values above corresponding to the data x-values 4 . 7, &, and Z 4 . 4 are reasonably close to the actual data
y-values shown in the table on page 86.

Section 5

Clock and Calendar

Contents

OVEIVIBW . . 90

The HP-71 Calendar (SETDRTE, DRTE, DRTEE) 90

The HP-71 Clock 91

Setting the Clock (ZETTIME, ADJABS) ..o o 92

Reading the Time (TIME, TIMEE) 94

Adjusting Clock Speed (SETTIME, ADJUST, AHF,

ESAACT, BESET CLOCDE) o 94

Overview

This section covers:
e Setting and reading the calendar.
e Setting and reading the clock.

e Improving the accuracy of the clock.

The HP-71 Calendar (= -)

Dates from January 1, 0000 to December 31, 9999 are accepted by the HP-71, but dates before October
15, 1582—before January 1, 1752 for English speaking countries—do not relate directly to our current
Gregorian calendar.

J—
i

I E numeric date
ZETHOATE date string

This statement sets the date on the HP-71 clock as either an integer or a string. The numeric date is
entered as YYDDD or YYYYDDD, where YY or YYYY = year and DDD = the day number in that year. The
day number ranges from 001 through 365 (or 366 for leap years), and is always entered as three digits
including leading zeros as necessary. The form of the date string is “YY/MM/DD” or “YYYY/MM/DD,”
and includes zeros as necessary to create an eight- or ten-character string.

90

Section 5: Clock and Calendar 91

The actions of A TE and ATE# (explained below) are unaffected by the way you enter the date. The
two methods (numeric date or date string) are provided to make it easier for you to enter the date.

Examples: Both these statements set the date to March 7, 1985. Note the leading zero in the three-
digit numeric day number, and the leading zeros in both the month and day characters in the date
string.

SETOATE

This function returns the date as a number in the form YYDDD, where YY = the last two digits of the
year and DDD = the day number in that year.

Example: Assume the date is March 7, 1985.

Input/Result

OATE Returns #5855, showing that March 7, 1985, is
the 66th day of the year.

This function returns the date in the form “YY/MM/DD”, where YY = year, MM = month, and
DD = day.
Input/Result

2 Returns 7, the same date (March 7,
1985) presented as a string.

The HP-71 Clock

The HP-71 provides you with a versatile set of statements and functions to set and adjust your quartz-
controlled clock and to change its speed. Once you learn how to use each of these keywords, you’ll find
it easy to change your clock’s setting in response to time zone and other time changes, and to maintain
your clock’s accuracy to within a few seconds over weeks or months.

There is one statement, AlIJFAES (adjust absolute), that adjusts the clock without introducing any
speed correction factor. Two statements, ZETTIME and FI.1IET, set or adjust the clock and in-
troduce speed correction factors. These factors are accumulated between two executions of the ExFAIT
statement, and are used when the second E T statement is executed. Finally, one functlon =15
(adjustment factor), both introduces and executes speed correction factors. However, when &F is ex-
ecuted, the clock setting remains unchanged.

92

This table gives an overview of these statements, and following the table, each keyword is discussed

more fully.

Caction 5
Section o

Clock

and Calendar

Keywords to Ad]ust and Correct Clock

-T-
|
|
|

| Clock Clock Settmg Speed Correction | Speed Correction
| Setting and Speed-Error Based on Error Based on
Only Accumulation Accumulation Argument

% AOJARES SETTIME E=ACT FF

; AOJUST

L

Setting the Clock (=

CTTIHFE [mnd
A B T A b B AP s R

When you first use your HP-71 clock, or after a memory reset, you should use ZETTIME to set the
clock, but don’t use “ETTIME thereafter unless you also want to accumulate a speed correction factor.

= sets the clock without accumulating a speed correction factor. Its argument is a time incre-
ment like 1% seconds or -1 :#E: @@ (adjust the clock back one hour). Hl.IFES is useful for
operations like time zone changes.

Initial Setting (SETTIME).

1k seconds since midnight
[IME time string

The HP-71 clock can be set using a numeric expression (seconds since midnight) whose value ranges
from 0 through 86399. The system clock can also be set using a time string of the form “HH:MM:SS,”
where HH is hours in the 24 hour format, MM is minutes and SS is seconds. Leading zeros must be
included as necessary to maintain an eight character string.

A technique you can follow to set your HP-71 clock is given in section 1 under the topic “Setting the
Time and Date,” page 17.

After memory reset, if SETTIME is executed before E AT
adJustment is accumulated for speed correction; the adJustment is used only to set the clock Once
T is executed, however, the entire adjustment is still used to set the clock, but any part of the
The

adJustment other than full hours and half hours is also accumulated as a speed correction factor.*
next time EXFCT is executed, this factor is used to change the clock’s speed.

* Therefore, if you want to adjust time for time zone change, you can use ZETT IIME. If you reset for an even hour, no error will be
accumulated. But if you reset the time by one hour and three minutes, the three minutes will be accumulated for error correction.

Section 5: Clock and Calendar 93

In summary:
o After memory reset, execute SETTIME before EXHiT to set your clock initially.
o After EXFLT is executed, use ETTIME to simultaneously:
1. Reset the clock because it’s running fast or slow, and

2. Accumulate a speed correction factor that will be converted to a speed change by the next
execution of EXALT.

Examples: The following statements are executed following a memory reset, but before &
been executed.

T has

SETTIME S4Ze08+15%8s80 Sets the clock to 8:15 AM, the number of seconds
for 8 hours plus the number of seconds for 15
minutes.

SETTIME "ag: 1580 Also sets the clock to 8:15 AM.

SETTIME "lg@s.asy Sets the clock to five seconds past 6:08 PM.

Setting Adjustment (RL.!IAES),

FALIAES adjustment in seconds
FALLIAES adjustment string

The adjustment in seconds can be any numeric expression including one or more variables. Both a
positive and a negative change is accepted. The adjustment string is in the form “HH:MM:SS” or
“_—HH:MM:SS.” Leading zeros must be included as necessary to maintain an eight or nine character
string. The entire adjustment is treated like a time zone change; no part is accumulated as a speed
correction factor.

Example: Suppose you discover that the watch you used to initially set your HP-71 clock was 43
seconds slow. You execute this statement to add 43 seconds to the HP-71 clock:

AOAERS 43

You’re flying from New York to Chicago. You execute this statement to change your clock to Central
Standard Time:

ADJAEBS ~3Z&00 Sets time back 3600 seconds (1 hour).

You continue your journey from Chicago to Denver. To change your clock to Mountain Standard Time,
you execute this statement:

ADJARS "—-@1 88 88" Sets time back 1 hour.

94 Section 5: Clock and Calendar

Reading the Time (!

This function returns the time as a number expressed as seconds since midnight. It can be used in
numeric expressions as can any numeric function.

Example: Suppose you construct a program to time the durations of a series of experiments, all start-
ing at the same time. The following statement assigns to T the starting time (seconds since midnight)
of this series.

Line 780 in your program (below) is triggered by the completion of your first experiment. It assigns to
£ 1 the duration of the first experiment in seconds. Suppose your experiments began at 9:00 AM
(32,400 seconds since midnight), and the completion of your first experiment occured at 10:30 AM
(37,800 seconds since midnight). £ i would be assigned the value 5400 (seconds), the duration of your

first experiment.

This function returns the time of day as a string with the form “HH:MM:SS,” expressed in the 24-hour
format.

The circumstances under which each of these keywords can be used most effectively are explained
below.

Speed Correction. Normally, each of these keywords is used in the following situations:

o SETTIME: except for setting your clock after memory reset, use ZETTIME if you want its entire
argument to change the clock’s setting, and any “minor” portion of its argument—the portion
other than full hours and half hours—to be accumulated as a speed correction factor

L

I use ADLILET if you want its entire argument to be added to or subtracted from the
clock’s current setting, and the “minor” portion of its argument—the portion other than full hours
and half hours—to be accumulated as a speed correction factor.

to change the clock’s speed without waiting for the next execution of i

Section 5: Clock and Calendar 95

The syntax for ZETTIME is shown and explained on page 92.

=T seconds
=T adjustment string

This statement allows you to reset your computer’s clock for different time zones, for daylight savings
time, etc., while at the same time accumulating a small amount of time (no larger than +15 minutes)
for a later speed correction. This speed correction is made the next time E I is executed. The
argument can be seconds, expressed as a numeric expression that, when evaluated, can range between
—360,000 and 360,000 seconds (100 hours). The argument can also be an adjustment string in the form
“HH:MM:SS” or “—HH:MM:SS,” where zeros are used to maintain an eight or nine character string.

Example: You're about to cross from Central to Eastern time. You know your clock has lost one
minute since you set it accurately 4 months ago. You now wish to:

1. Set your clock ahead one hour.
2. Accumulate a speed correction factor to compensate for the clock’s slowness.

3. Reset your clock to compensate for the lost minute.

To perform all three operations at once, you execute the following:

=T

H g

i
]
s

-

A < new adjustment factor :

The adjustment factor changes the clock’s speed. It is the number of seconds that pass before the clock
adds (positive) or subtracts (negative) one second to or from its reading. The &F function always re-
turns the current value of the adjustment factor. If #F is executed with a new adjustment factor, the new
value replaces the current adjustment factor. #F with its optional argument sets an adjustment factor
directly (as opposed to Fli.illZTand ZETTIME), and does not require the execution of FHIT

Example: The new adjustment factor changes the clock’s speed in the following way. (For this example,
assume the current adjustment factor is 24000.)

Input/Result

AF -2

Displays =468, the current adjustment factor,
and sets a new adJustment factor (—28800).

After a period about 56 seconds long (28,800/512) has passed following the execution of this function, a
small fraction of a second (1/512) will be subtracted from the clock’s reading.

96/97 Section 5: Clock and Calendar

Correcting Accumulated Speed Errors.

P

EnACT

This statement is used to improve the accuracy of the clock’s speed. The first execution of ExALT
following a memory reset defines the beginning of an adjustment period. Each subsequent execution of
E#ACT defines the end of the current adjustment period and the beginning of the next adjustment
period. All clock speed corrections accumulated by the execution of ZETTIME and AI.ILUET during
the current adjustment period (normally weeks or months long) are used to define a new adjustment

.15 7T do not define an adjust-
ment factor; that is, they do not change the clock’s speed. They only accumulate speed corrections.)
The new adjustment factor defined when E:=HiT is executed is used by the HP-71 as described in the

AF discussion directly above.

Since EXALCT is used to improve the accuracy of the clock’s speed, you should execute it only when you
are sure the clock’s reading is correct.

Cancelling the Speed Adjustment Factor .

CLOCE

This statement clears the adjustment factor and resets the clock’s speed to that in effect after a mem-
ory reset. No seconds will be added to or subtracted from the clock’s reading as a speed correction until
AF or EXALCT is executed again.

Section 6

File Operations

Contents

Overview

The Current File

The :: :

Introduction to F|Ie Operatlons .. 101

Structure of HP-71 Memory 103
Two Types of Memory: RAM and ROM 103
Main RAM and Independent RAM 104

Declaring Independent RAM (&
Reclaiming Independent RAM
Obtaining Memory Information (i
File Names

Device Names,

Characteristics of Device Names 111
Default DevVICeS 111

File Search Order ... 112
Copying Files (&R
Renaming Files
Purging Files (F
Merging Files
File Security

Protecting a File’s Contents

Controlling File Access (F#

Using Both =ik
File Catalogs (i-

Overview

The HP-71 retains programs and data in memory in the form of files. The computer can contain sev-
eral files at one time, each with its own name. This section discusses how to manage files. It does not
cover the specifics of creating and adding information to files. (That is covered in other sections as
noted.)

98

Section 6: File Operations 99

This section describes the operations that are common to all HP-71 files. More specifically it describes:

The current file.
The work 11

How HP-71 memory is structured.

T

Copying files.

Renaming files.

Purging files from memory.
Protecting files.

Finding out which files exist in memory.

If you are simply going to run programs from plug-in modules, you don’t need to read this section. But,
if you are going to use programs or information stored on magnetic cards, or plan to use HP-IL devices,
you should read this section.

If you want to create, add information to, or use the following types of files, refer to the indicated
sections:

BASIC Files.
This type of file contains a BASIC program. These are described in section 8, “Writing and Run-
ning Programs.”

BIN and LEX Files.

Files of both types are written in HP-71 machine language. A BIN file can be executed as a
subprogram. A LEX file can add BASIC keywords to the computer. These file types are described
in section 8, “Writing and Running Programs.”

DATA Files.
DATA files contain numeric and string data and are used by programs for data storage. DATA files
are described in section 14, “Storing and Retrieving Data.”

TEXT Files.

This is a special type of data file which is used for transferring information between the HP-71 and
other computers. BASIC files can be transformed into TEXT files so that they can be transferred
to other computers. Similarly, TEXT files can be transformed into BASIC files. TEXT files are
described in section 14, “Storing and Retrieving Data.”

KEY Files.

KEY files contain the key redefinitions that you create. Several KEY files can reside in the
computer’s memory at the same time, however, only one can be active at any given time. These are
described in section 7, “Customizing the HP-71.”

SDATA Files.
SDATA files are data files that can be sent to and received from an HP-41 Handheld Computer.
These are discussed in section 14, “Storing and Retrieving Data.”

100 Section 6: File Operations

The Current File

More than one file can reside in the HP-71. At any time, one file is designated the current file. A file
can be edited only when it is the current file. Also, the current file is the default file (the file used when
one isn’t specified) on which the computer performs many file operations.

The following functions and statements change the current file designation:

o FLiM.

o DLAIM FORET.

e FURGE (only when the current file is purged).

e Inserting or removing a RAM or ROM module from a port.

HEFOEM (only when the current file is transformed into a non-BASIC file).

The wioek + 1 1

The HP-71 maintains a program file called wok i 1=, which is a scratch file. The ek
becomes the current file when you:

e First install batteries.

* Reset the HP-71 (IHIT: 3).

e Purge the current file.

e Execute EINI T without specifying a file name.

e Transform the current file into a non-BASIC file.

e Insert or remove a RAM or ROM module from a port.
e Execute FREE FORT or CLAIM FORET.

For more information about using the work #ils, refer to section 8, “Writing and Running
Programs.”

Section 6: File Operations 101

Introduction to File Operations

As need arises, you will probably want to create and make copies of files, rename them, and purge them
from memory. To give you a feel for how these operations can be performed, some examples are given
here demonstrating file operations at the most elementary levels. The details of how the statements
shown in the following examples work are given later in the section and in the HP-71 Reference
Manual.

If you write a program in o+ k¥ i 12 and want to give it a name, you can use the HF[ME statement:
Input/Result

T [END LINE Designates wimii b § i

= as the current file.

work file ERoIO £ Displays the file name (
type (BEFIS IO,

;¥ i1ls) and file

Enters a line into the file.

TE=T

=T (END LINE Names the file TE=T.
END LINE Creates a new ::: ile

Rather than using the wz+k f i 1=, you can simply create a file with a name and enter program lines
into it:

Input/Result
TEZT1 Creates a new file named TEZT1. It is the cur-
rent file.
TEZT! BRSO & Shows that TE% 7T 1 was created and that its file

type is BASIC.

To avoid confusing a file with other files having similar names, you can rename a file using ¥

Input/Result

T WOLTAGE L (ENDLINE Renames

102 Section 6: File Operations

If you are going to make changes to a file, you might want a backup copy of the file in case you decide
later that you don’t want to incorporate the changes. You can copy a file, giving the duplicate a new
name using OFY

Input/Result
CORY UOLTAGEL TO VOLTESTI Creates a copy of 1L THZE 1 and names it
WOLTESTL. Both ﬁles now reside in memory.

After creating several files, you might occasionally want to know which ones you have in memory. You
can instruct the computer to display a list of the files in memory using CHT HIL:

Input/Result
CRT ALL .Instructs the computer to display a list of the files
in memory.
HAME Z TYFE LEH
H ORTE TIME PFORT Displays headings for catalog information.
TEST BEASIC il Shows that the oldest file is TEST.
Displays the next file name.
srkfile EARSIC & The next oldest file is u:: ile
EASIC 5 Piisplays an entry in the catalog for the file
£ Displays an entry for i i
Pressing [¥] again displays the same file name,

indicating that this is the last file in the catalog.
Returns the BASIC prompt to the display.

Section 6: File Operations 103
When you no longer need a file, you might want to purge it (erase the file) to free up memory for other
uses. You can do this using FURGE:

Input/Result

FURGE MOLTESTI Purges *

i from memory.

The quick demonstration of file operations above shows how you can create, name, rename, catalog,
and purge the files in memory. The HP-71 gives you greater flexibility than shown here in how you can
manipulate files. But before you can understand the details of the file operations available to you, you
need to understand something of how memory is organized on the HP-71.

Structure of HP-71 Memory

The HP-71 gives you great flexibility in specifying where files are stored in memory. The HP-71 mem-
ory can be divided into smaller sections, called ports (described below), in which programs and data can
be stored. Storing information in a specific port enables the HP-71 to find it fast since, if you specify
the port where your information is located, the HP-71 searches only that port rather than all of mem-
ory. This can increase the speed of programs that use files.

Two Types of Memory: RAM and ROM

The HP-71 contains two kinds of memory:
¢ Read-Only Memory (ROM). This memory can’t be altered.

¢ Random-Access Memory (RAM). You can store and delete information in this type of memory.

Read-Only Memory (ROM). The HP-71 contains 64 kilobytes (64K) of ROM.* The ROM contains
the operating system and all the functions of the HP-71. You can’t write information to this memory,
but you can increase the capabilities of the HP-71 by adding ROM modules to any of the four front
ports (as described below). Also, you can run programs contained in ROM modules and read informa-
tion from them.

Random-Access Memory (RAM). The HP-71 contains 17.5K bytes of RAM, all of which is avail-
able to the user. (However, the HP-71 uses about 1K of RAM for its operations.) You can add up to four
RAM modules to the HP-71 to increase the amount of RAM.

This section deals primarily with manipulating files in RAM. It also describes how to copy files from
plug-in memory.

* A kilobyte equals 1024 (2'Y) bytes.

104 Section 6: File Operations

Main RAM and Independent RAM

The HP-71 contains four external ports in addition to the HP-IL and Card Reader ports. These ports
are numbered 1 through 4, from left to right. You can plug applications modules (ROM) or memory
modules (RAM) into any of these ports in any order.

The HP-71 contains an additional port, port 0, which is internal—you can’t add any modules to it.
This internal port contains 16K bytes of RAM which can be set aside from the rest of the internal
RAM.

The HP-71 RAM can exist in two forms:
e Main RAM.
e Independent RAM.

Section 6: File Operations 105

Main RAM. The HP-71 is initially equipped with a certain amount of RAM (described above), some
of which is contained in port 0. This RAM, and RAM added to any ports, is called main RAM. The
HP-71 uses main RAM for its operations, keeping files, and storing variables.

Independent RAM. Independent RAM is memory that is internally set aside from main RAM. In-
dependent RAM is not used by the HP-71 for its operations but contains only the information that you
store in it. Independent RAM is useful for:

e Protecting files from a memory reset condition caused by an |

¢ Enabling the computer to locate files quickly, since the search for a file can be limited to one
portion of RAM.

¢ Enabling you to remove a memory module from a port without disturbing the information in the
remainder of RAM.

If memory modules were plugged into all four ports (assuming that they are not set aside as indepen-
dent RAM), main RAM would consist of the internal RAM plus the plug-in memory, as shown in the
following illustration:

Port O
. Internal
Main RAM RAM
Plug-in
Port 1 Port 2 Port 3 Port 4 Memory

Main RAM, independent RAM, and plug-in ROM are all called memory devices. For example, when
main RAM consists of all internal RAM and all plug-in RAM (as shown in the above illustration),
there is one memory device—main RAM. Any portion of RAM that is designated independent RAM
becomes a separate memory device. Also, a ROM is always a separate memory device.

Declaring Independent RAM ('}

The RAM within a port can be set aside as independent RAM by executing !

FEEE FOET port number :

106 Section 6: File Operations

Example: Change the RAM in port 0 to independent RAM:

Input/Result

[o@n Port 0 becomes independent RAM, and is set off
from all other RAM.

If you don’t have a RAM module plugged into any of the ports, the memory in your HP-71 can be
represented by the following diagram, which shows the memory in port 0 having a boundary between it
and main RAM as a result of executing the above statement.

Port O
. Internal
Main RAM
' RAM
Plug-in
Port 1 Port2 | Port3 | Porta | Memory

Note: When you remove a memory module, first free the module’s port. If you don’t first free the
port, main RAM will be cleared when you remove the module.

If the computer doesn’t have enough unused memory in main RAM to free a port, you will need to
purge some files from main RAM to make enough memory available. (Refer to “Purging Files,” page
115.)

The HP-71 contains 16K bytes of RAM in port 0 which is subdivided into four 4K units. You can free
each of these units separately by specifying them in the FREEE FOFET statement as 0, 0.01, 0.02, and
0.03. (The leading zero can be dropped.) For example:

To . B81n

sets aside one 4K portion of port 0 as independent RAM.

Section 6: File Operations 107

Reclaiming Independent RAM (:

To incorporate an independent RAM back into main RAM, execute i

CLAIM FOET Cport number:

The port number can be a number from 0 to 5. (Port 5 is the card reader port.)
Example: Claim the memory in port 0 as part of main RAM.

Input/Result

LAl FORETOE

The memory in port 0 is now part of main RAM, as illustrated below.

Port O
. Internal
Main RAM RAM
Plug-in
Port 1 Port 2 | Port 3 Port 4 | RAM

Note: When you claim an independent RAM, its memory is cleared by the HP-71. Therefore, you
might want to copy files from the independent RAM to main RAM, another port, or a mass storage
device before you claim that independent RAM.

Obtaining Memory Information (i

When creating, storing, or copying files you might need to know the storage capacity of a RAM module

and how much of that capacity is unused. This information is especially useful if you need to determine
how much memory to make available so you can create an independent RAM (as described above).

Determining the Amount of Unused Memory. You can determine the amount of unused memory
in main RAM or an independent RAM by executing

MEM[<port number]

108 Section 6: File Operations

The integer returned indicates the number of bytes of memory that are unused.

Examples:

Returns amount of unused memory in main
RAM.

Returns the amount of memory available in the
port indicated by .

Returns the amount of unused memory in port 1.

Determining Memory Capacity. You can determine the size (in bytes) and type of memory in a port

When you execute this statement, the HP-71 shows you the port number, the memory capacity in
bytes, and the type of memory for each ROM and independent RAM, starting with the lowest-num-
bered port. A memory type of “1” indicates independent RAM. A memory type of “2” indicates a ROM.

Example: Set aside port 0 as an independent RAM, then find out the size and type of memory in that
port.

Input/Result

Determine if there is enough memory in main
RAM to set aside port 0 as an independent
RAM. (As you shall see, port 0 contains 4096
bytes of RAM.)

Displays the number of unused bytes in main
RAM. If the number in your display is at least
4096, this example will work. If you don’t have at
least this much memory, you will need to purge
some files to free up some memory if you want to
complete this example.

ToED Sets aside port 0 as independent RAM.
Shows the type and size of port 0.

Displays port information. Port 0 contains 4096
bytes of independent RAM.

Section 6: File Operations 109

File Names

Each file you create in memory has a name. When you perform operations on a file, you refer to the file
by name. Before you start creating files, you should become familiar with the rules governing file
names.

Characteristics of File Names

File names can be a combination of up to eight letters or digits, but the first character must be a letter.
Characters other than letters or digits are not allowed. You can use upper- or lowercase letters, but
they will all be converted to uppercase.

Examples of Invalid and Valid File Names

Invalid Reason Valid

THHGEHTIAL | Too long.
dFLER Can’t begin with a number.
Tezt: 1% Can’t use a colon or a dollar sign.

A file name can be an unquoted string or a string expression.* Of course, a string expression must
evaluate to a valid file name (as described above).

Examples:

CORY TRARGETE Uses an unquoted string to specify a file.

CORY O U"TREGETS® Uses a quoted string to specify the same file.

COFY RAE Uses a string variable which evaluates to a file
name.

CORY RE oL OBE Uses a string expression which evaluates to a file
name.

Files with the same name can exist in different memory devices (for example, in port 0 and in main
RAM). However, an error results if you try to store a file in a port or in main RAM when a file by that
name already exists there. For example, the following is a valid statement:

* A quoted string is the simplest form of a string expression. Therefore, when this manual refers to a string expression, it means
that a quoted string is also valid.

110 Section 6: File Operations

However, this is not valid:

FYOORADIALFORTCGY TO RERDIALFPORTOS:

since the file name already exists in the port.

Default Files

For statements that operate on files, you can optionally specify a file. When you don’t specify a file,
some statements automatically use a default file (usually the current file) for their operation.

You can determine the default files that a statement uses by referring to the statement’s keyword dic-
tionary entry in the HP-71 Reference Manual. Where a statement is introduced in this manual, the
default files it uses are described.

Reserved Words

The HP-71 attaches special significance to certain words used in statements that operate on files.
These words are:

HP-71 Reserved Words

Word Description

Used in some statements to refer to all allowed options.
Refers to the magnetic card reader.

Used as part of the TF statement.

Refers to the file of current key definitions (

).

Used as an mtermedlate word in statements such as

You cannot use these words as file names unless they are included in string expressions. To avoid am-
biguity, it is better not to use them as file names at all.

Device Names

For file operations, you can also specify the location of a file in addition to its name. This speeds up the
search for the specified file, and can prevent ambiguity when files of the same name reside in dlﬂerent
memory devices. For this discussion, a device name is the name of a memory device, such a !

Section 6: File Operations 111

Characteristics of Device Names

Device names differ from file names in that device names can’t be created by the user. The HP-71 only
recognizes certain device names—attempting to use a device name other than one the computer recog-
nizes generates an error. The following table shows valid device names on the HP-71:

Valid Device Names

Device Name Description
FORT Specifies all ports beginning with port 0.
FORTOn: Specifies a particular port (where n is a number from
0 through 5)
A TH Specifies main RAM.
CHED Specifies the magnetic card reader.
FORED Specifies a private file on the magnetic card reader.
To specify a device in statements such as Z1F* and ! , precede the device name by a colon. This

distinguishes it from a file name. For example

i file name Tii :FORET (8

copies a file to port 0.

If you want to specify both a file and its location, use
file name : device name

For example,

LEL:HATH TO (FORT

stores a copy of FILE 1 in port O.

Default Devices

In many cases the HP-71 uses a default device when one isn’t specified. Generally, the following rules
apply:

When a device is not specified:

o If a file name is specified, the computer searches for it beginning in main RAM, then in succes-
sively higher-numbered ports beginning with port 0.

o If a file name is not specified, the device in which the current file resides is the default device.

If a device isn’t specified for a destination file in a {1 operation, the default device is main RAM.

112 Section 6: File Operations

File Search Order

When the HP-71 needs to locate a file in memory (when a device isn’t specified for a file), it first
searches main RAM, then searches the memory in each successive port, beginning with port 0.

If #&7T is the specified device but no port number is given, then all ports are searched, from the
lowest- numbered port to the highest. If a specific port is specified, then only that port is searched.
Also, if 4 is the specified device, then only main RAM is searched.

Copying Files (i-iiF%)

The :0iF*% statement enables you to store and retrieve files from main RAM, independent RAM, mag-
netic cards, and to retrieve files from plug-in ROM. This statement duplicates a file that you specify.

simplified syntax
’— source file T destination file

Two files are specified in the statement:

e The source file (the one to be copied).
e The destination file (the one to contain the duplicate).

When you execute :iF%, the HP-71 creates the destination file and stores a copy of the source file in
it. The destination file cannot already exist.

The source f//e or destination file can be specified by a file name, a device name, or both. Also, you can
execute 1F % without explicitly specifying a file or a device. That is, you can specify a file in one of the
followmg forms:

e file name
e :device name
e file name : device name

e no file name or device name.

When you omit a file name, device name, or both, the HP-71 uses defaults (as previously described).

The following table summarizes the effects of
names and device names and their defaults.

v given the different combinations of specified file

Section 6: File Operations 113

Effects of C{IF "% Given Various Parameters

Source*

Destination*

Name | Device

Name | Device

Computer’s Response and Example

X
X
X X
X
X
X X

Copies current file, if in an independent RAM or a ROM, to main
RAM. The destination file has the same name as the current file.
Oy

Copies current file to specified device. The destination file has the
same name as the current file.

COFY TO FPORTOZ:

Copies current file to main RAM. The destination file has specified
file name.

COFY S TO HEME

Copies current file to specified device. The destination file has the
specified file name.

CORY TO HEWL G PORTOZ

Copies file from CHED or FOED to main RAM. No other device
can be specified. Destination file has same name as card file.
COFY T FORD

Valid only if ZARD or FLED is source file’s device and A IH is
destination file’s device. Copies a card file to specified main RAM.
Destination file has card file’'s name.t

CORY CARD TO iMAIH

If specified device is CARED or FLED, copies card file to main
RAM. If a different device is specified, copies a file from specified
device to main RAM. The HP-71 searches for a source file with
the same name as the specified destination file.t

CORY CFORTCE) TO HAMEL

If source file’'s device is CFFED or FIELD, then destination file’'s
device must be A IH; copies file from magnetic card to main
RAM. If source file’s device is any other, searches for a source file
with the same name as the specified destination file and copies it
to specified file in the specified device.} Destination file has speci-
fied file name.

CORY O CARD TO HEW
CORY cMAITH TO HAT

FAIH
TELPFORT G

R

* An X indicates that the parameter is specified.

1 When only a device is specified for the source file (other than CAEL or FIZF), a name must be specified for the destination file.

1 Files from the magnetic card reader can only be copied into main RAM. Therefore, if you specify R or FEL as the source file's
device, you can specify only MAIH as the destination file’s device. (For more information about using the magnetic card reader,
refer to appendix C, “Using the HP 82400A Magnetic Card Reader.”)

114 Section 6: File Operations

Effects of _iF' Given Various Parameters (continued)

Destination*

Name | Device

Computer’s Response and Example

Source*
Name | Device
X
X
X
X
X X
X X
X X
X X

X
X
X X
X
X
X X

Copies specified file to main RAM. Destination file has same name
as source file.
COpy oL

Copies specified file to specified device. Destination file has same
name as source file.
COpy oLDl TO cPORTOE?

Copies specified file to main RAM. Destination file has specified
name.
COPY OLDT TO HEMI

Copies specified file to specified device. Destination file has
specified name.
COFY OLDL TO HEMHLIFOETOL:

Copies specified file in specified device to main RAM. Destination

file has same name as source file.
COFY OQLOLPORTOE:

Copies specified file in specifed device to specified destination de-
vice. Destlnauon file has same name as source file.
CORy OLDLyPORTOEY TO (FORTOLD

Copies specified file in specified device to main RAM. Destination
file has specified name.
CORY OLOL PORT:

Copies specified file in specified device to specified destination
device. Destination file has specified name.
CORY OLDL PORTOEY TO MEHIL R

* An X indicates that the parameter is specified.

Section 6: File Operations 115

Renaming Files (:

Files can be renamed with EEMHAME.

simplified syntax
FEHD”E old file name T} new file name

An old file name can be expressed as:
e File name.
o File name : device name.
¢ Blank. (Defaults to current file.)

A new file name can be expressed as:
e File name.
e File name : device name.

There is no default for a new file name—you must always specify it. The file’s device can be specified
with either the old file name or the new file name.

Examples:

FEMAME TO FILEZ Renames current file to F I E:.
FEHAME FILEL TO FILEZ Renames FILEL to FILEZ.
FEMHAME FILEL:FORTOEY TO FILEEZ Renames FILE! in port 0 to FILEZ.
REMAME FILELD TO FILEZ:PORTOGE: Renames FILE! in port 0 to FILEZ.

Purging Files (:

To purge a file from RAM, use FLIEGE.

et

FLURGE [file namel : device]]

The default file for this statement is the current file. If you specify a device, you must also specify a file
name.

116 Section 6: File Operations

Examples:

FURGE LOGICH Searches for a file named L. 23101 and if found,
purges it.

FURGE FPREOTOMMAIH Purges a file named #&07T0H from main RAM.

FURGE Purges the current file.

You can purge all unsecure files in main RAM by executing FiiRZE AL,

FURGE ALL

Executing FURGE FALL doesn’t affect files stored in independent RAM.

You can use the HEFRGE keyword to integrate a BASIC file into the current file or a KEY file into the

system & = w# file. Merging BASIC files is discussed here; merging a KEY type file is discussed on page
128.

Merging Files (¥

simplified syntax
Iﬁ - source file [, start line or key number [, final line or key number]]

The source file is the file you wish to merge into the current file. The default values for start line and
final line are the first line and the last line in the source file. The source file is not changed by a MEFR GE
operation.

All line numbers are correctly inserted into the current file. If the same line number exists in the
source and current files, the line in the source file replaces the line in the current file. To ensure that
all lines in the current file are preserved, you can FEHUMEER

i either the source or the current file.

Examples:

Tl Merges all of BASIC file ¥
the current file.

Merges lmes 70 through 150 of BASIC file
i into the current file.

! in port 1 into

Merges file ¥
at line 100.

£ into the current file starting

Section 6: File Operations 117

File Security

The HP-71 enables you to perform many operations on files, such as viewing, modifying, and copying.
However, in some situations you might want to prevent these operations from being performed on a
file. For instance, you might not want a program to be viewed or modified by others. The HP-71 en-
ables you to control the access to files and protect them from being modified, purged, or viewed.

Protecting a File’s Contents (=

You can protect a file from being modified or purged using =t
be reversed by the statement LIHESECLIRE.

SECURE [file name [: device]]

UHEZECURE [file name [: device]]

You can secure any type of file. A secure file can’t be altered or purged. However, you can execute it (if
it is a program file), view its contents, read from it, or copy it.

Controlling File Access (F 1

You can prevent your file from being viewed, copied, or modified using FF IR TE.

FEIVHATE file name [: device]

The FEIVATE statement is permanent—you can’t reverse its effects.

Since this statement has such lasting effects, you must explicitly specify a file for the statement. This
ensures that you don’t accidentally make the current file a private file.

Examples:

FREIVATE BEARIHG

FRIVATE RAZIMUTH: FORTOG

FEIVATE operates on program files only. You can execute or purge a private file in memory, but no

one (including you) can view, copy, or modify it. (You can copy private files from magnetic cards to
memory, but you can’t copy them to other parts of memory or back to magnetic cards.)

118 Section 6: File Operations

Using Both =EUEE and FEIVHTE

A program file can be both private