A caciano

HP-71
Software Developers’ Handbook

EWLETT

[

ﬂﬁ HEWLETT

PACKARD

Portable Computer Division

Copyright © 1984 HEWLETT-PACKARD COMPANY

NOTE

Hewlett-Packard Company makes no express or implied warranty with
regard to the keystroke procedures and program material offered or their
merchantability or their fitness for any particular purpose. The keystroke
procedures and program material are made available solely on an "as is"
basis, and the entire risk as to their quality and performance is with the
user. Should the keystroke procedures or program material prove defective,
the user (and not Hewlett-Packard Company nor any other party) shall
bear the entire cost of all necessary correction and all incidental or
consequential damages. Hewlett-Packard Company shali not be liable for
any incidental or consequential damages in connection with or arising out
of the furnishing, use, or performance of the keystroke procedures or
program material.

Table of Contents

Section 1
DN rodUCtiOn . 1-1
Section 2
Version Identification 2-1
Section 3

Working Environment

3.1 Printer ASSISNMENTS 3-1
3.2 Required Modules 32
3.3 Card Reader 3-2
3.4 Memory REQUITEMENTS e e 32
Section 4

User Environment Preservation

4.1 Variables. 4-1
4. Flags . 4-2
4.3 0/0 ASSIGNIMENES.ot 4-3
4.4 Display Attributes. 4-3
4.5 Alternate Character Set 4-4
4.6 (AT TN KeY . oo 4-4
4.7 NUMETIC SeLUIMES . ..ottt ettt e e e e e e e 4-4
4. 8 Ky Files . ..o 4-5
4.9 Manual ConsSiderationttt e 4-6
Section 5§

Messages To The USer e e 5-1
Section 6

Waiting For The User: KEYWAILT S 6-1
Section 7

Option Selection

7.1 Command ENLIIES . .. oo oottt 7-1
7.2 Immediate EXECULE IMEIUS. . - . oottt e e e e e e e e e 7-2
7.3 Fixed Option MEIUS - - . . o oottt et ettt e e e e e e e e e 7-3

Table of Contents

Section 8

Section 9
Input Routines

9. 1 CUISOr COMtIOlo 9-1
9. 2 NUMETIC ENtry . .o e e e 9-1
9.3 Numeric Entry With Option e e e i 9-3
0.4 StriNg Enry ..o e 9-4
0. 5 XS OF NOT . . oo 9-5
9.6 Protected Field Entry. o e e e e e 9-6

Section 10
INPUT Alternative: INLINEot s 10-1

Section 11
File Name Verification

11.1 File Names FOr Loading - - - -« vttt ettt e e e e e e e e e e e 11-1
11.2 File Names FOr SaVINg. - - -« o ettt ettt ettt e e e e e e 11-3
11.3 Names Of SUDDIOZIAIMNS - - - - -« e vttt ettt ettt ettt et e e e e e e e e e e et 11-4

Section 12
Output Routines

12.1 Configuration And Data VOIUME i 12-1
12.2 Some HP Printer Features. - -« o oottt et e e e e e e e e e e e e e e e e e e 12-2
12.3 Multiple Results In The LCD . . - . .ot e 12-3
12.4 Large Results In The LCDo e e 12-4
12.5 Numeric FOrmatting. - - - - oo oottt 12-4

Section 13
Internal Calculations

13.1 Changing ATTAY SIZES. - - -« vt a ettt et ettt e e e e 13-1
13.2 Adding And Deleting ROWS - . ..o 13-1
13.3 Adding And Deleting COIUIMNS - - - .« vttt e e e 13-2

Section 14
Error Messages: MSG$ & Translator

14, 1 MSG S - o oo 14-1
14, 2 TransSlators - - -« o oottt e e e e e e e e e e 14-2

Table of Contents

Section 15
Speed and Space

1S, 1 Variable Names 15-1
15,2 Line References. 15-1
15.3 Multi-line Statements 15-1
L5 4 LOODS o et 15-2
15.5 Clearing Arrays and Strings 15-2
15.6 Logical EXPresSiONSottt et e e 15-2
15.7 Device AdAresSing e e 15-3

Section 16
HPATF File Standard

16.1 Header infOrmationttt e e e 16-2
16.2 Data 18COTAS oot et et e e e 16-2
16. 3 Descriptor BlOCK e 16-3

Section 17
String Functions

171 MEMBER . oo oo 17-1
17.2 LTRIMS, RTRIMS, TRIMS . ..ottt e 17-2
IT.3LWES, LWRCS e 17-3
17 8 REVS oo 17-4
TT S ROTS - oo 17-5
1706 RPTS - oo 17-6
LT T SBIT « oo oo e e 17-7
TT 8 SBITS . oo oo 17-8
179 SPAN © oo oot 17-9

Section 18
BREAKPT: BASIC Breakpoint System.................. 18-1

Section 19
KEYBOARD IS - Using A Terminal

19.1 KEYBOARD IS With HP =150, .. it e 19-1
19.2 KEYBOARD IS With HP-2648 Terminalot e e e e 19-2
19.3 Disabling KEYBOARD IS . . . oo 19-3

Section 20

Graphics
20.1 GEDIT - Graphics Editor.o oottt e 20-1
20. 2 PATTERN S . 20-3

20,3 EXAMPIE . - o oo 20-3

Table of Contents

Section 21
Forth Utilities

21.1 Loading FORTH Utility Fileso 21-1
21.2 DECOMPILINE - o o o vttt et e e et e e 21-2
21,3 SINGLE SEEPDIME. -« - o e ettt ettt et e e e 21-3
21.4 Memory Examination 21-5
21, S DU PUL - - - e e ettt 21-6

21,6 MISCEIIAMBOUS - -+« o e e et e e e e e 21-7

SECTION
Introduction -

1

This document is a ’cookbook’ for applications programmers working with the HP-71. Two goals are
envisioned: first to serve as a timesaver, and second to suggest a measure of consistency among programs
written for the HP-71. While there is no hope of addressing all possible applications on the HP-71,
common subjects such as user interface, environment preservation, and error trapping are discussed. The
specifics of each application are left to the programmer.

SECTION

2

Version Ildentification

Any BASIC, BIN, or LEX file which is a) likely to hit a wide market, b) not so trivial as to be 100%
perfect, and c¢) likely to have software written to interface to it, is a candidate for requiring version
numbering. Like the mainframe version number (eg: 1 EEEE) a version number is useful in identifying
the version of a piece of software which may go through several revisions. Service and support personnel
may need to know which version of software is in use to help answer questions.

LEX files contain a poll handler which answers the VERS poll. For instance, the KEYBOARD Lex file
returns the string "KE[% H". For more information about the VERS$ poll, refer to the Software Internal
Design Specification, Volume I.

BASIC and BIN files should include a subprogram named “'[EF! that returns the version string. For

example:
SUER WERCHEY BORFE="Ealt om RS

follows:
CHLL WEECHFEY IM <file name>

Nonexecutable files (eg. DATA) cannot respond to the VERS$ poll, or contain a subprogram. If such a file
is revised, some method of identifying the version should be provided, such as a dedicated record
containing a version number. If a data file is in the HPAF format, a tag in the descriptor block might be
used to contain a version number. Section 16 contains a description of the HPAF file format.

SECTION
Working Environment

The "working environment" defines the physical environment, hardware and software configuration under
which tasks are performed. This "environment" may have varying impact upon software considerations.
For instance, if the HP-71 is being built into an instrument as a "front panel”, the hardware configuration
is likely to remain fixed, with only dedicated software in use. At the other end of the scale, a mechanical
application program might be found in a number of different situations, from the classroom to the
drafting table to the machine shop. In each of these situations the number or type of peripherals attached
to the HP-71 may be different. Software routines which produce reports may, under some conditions,
need to be sensitive to varying configurations.

3.1 Printer Assignments

When different printers may be used, a distinction between printer types is desirable. The following
subprogram PRTYPE examines the current printer assignment and returns:
A = 0 Where the printer is LCD, *, or there is no HP-IL interface.

A = 1 Where the printer is a 24-column strip printer, or 32-column
video interface.

A = 2 For anything else.

D$ = Assignment string

SUE FRTYFECA, DF
OH EREOR GOTO 1326

I

1
CFRIMT "'

2 TF AE="aarF" OF AFE="FFF" THEH 1z

Fd=FEL S
=R DIY 16

SIRFHELLL LT B FH=HTLOHE
o IR AECET="0a" THEH
1k

H=k THAMLCH CTRIEMDCF, 9950 [T S
R ! B ST

1 T
FOKE "2F6
SUOTO 14
= L

FOADETERETRECL Y ELSE DE=ETRECHD

1688

I
i

=4

sl THEM H
Al

! 1 ELzk H=2
A N

3-1

Working Environment

PRTYPE provides a non-intrusive examination of the printer assignment. The principal advantage is that
output routines can customize themselves to the existing machine configuration without disturbing the
configuration or asking the user any questions. Depending upon the result from a call to PRTYPE, the
software may choose to send results to the printer, or send a line at a time to the display, waiting for a
keystroke between results to avoid hurrying the user.

3.2 Required Modules

In cases where an application pac requires the presence of another module, a test should be made early on
to verify that module’s presence. This avoids the situation where an application halts at some line in a
program with a mainframe error, leaving the user suspended in an environment with little hope of clean
departure.

A simple test involves examining the string returned by the “EF#F function for that module. For
instance, suppose you wish to verify that the MATH module is in the machine:

QA CTF HOT POSCVERE, " MATH: "y THEH DISF "Ho MATH FPac 6 GOTO 996
3.3 Card Reader

If a card reader is required, its presence may be detected by examining location 2C014. A non-zero value
at this location indicates a card reader is installed:

128 IF PEEK$C"ZCA14", 10="8" THEM DISP "Mo Card Reader”

3.4 Memory Requirements

Calculating the amount of memory needed to run an application at any given time can be difficult. One
procedure for estimating memory requirements involves a trick:

1) Execute a M1 FLL and a DESTEDY FLL. to collapse environments and variables. Purge
any key assignments that may be established within the program.

2) Do a ME 1, and write this figure down.

3) Run the application, and pause at a place you suspect takes the most memory. Do a k[l again.
The difference between the two results represents the amount of memory used by the program af that
point. Next compute an overhead figure to accomodate unexpected events, such as interrupt processing,
string operations, and so on. This 'fudge factor’ is an insurance policy against unexpected program crashes,

such as interrupts from other pacs, larger than expected buffer requirements, and so on.

The ’fudge factor’ may vary in size from application to application. Actions that take lots of memory
include concatenation of large strings, calls to user defined functions: FHM©H . E s [1E 3] calls to other

3-2

Working Environment

sub-programs, use of IMMI:E statements, and open file channels. Some experimentation may be required
to determine an appropriate 'fudge factor’. In previous applications, 300 bytes seems to have been a
reasonable size.

In cases where a file is to be added to main memory (file* ['1F I), a check should be made to ensure that
sufficient memory exists prior to creation. Simply putting an error trap around a CEERTE and a MEM
test afterwards has proven dangerous. Instances have occurred where sufficient memory was available for
file creation, but the program crashed immediatly thereafter due to lack of scratch memory for normal
execution. The amount of available memory for file creation should be equal to the file size plus the
’fudge factor’.

3-3

SECTION
User Environment Preservation -
4

Preserving the user’s environment can be a fairly difficult issue, depending upon the application. In the
case where the HP-71 is being used in a dedicated environment, for one purpose only, there may be little
need to worry. In cases where an application is being marketed as a general purpose solution, careful
preservation of the environment is extremely important. The HP-71 has many settings that control
display attributes, math functions, and so on. These settings are ’global’ in nature - they affect all
programs and actions. In addition, variables are global, so they might be used by the user to store personal
information. It is inappropriate to destroy the user’s information.

4.1 Variables

The simplest way to preserve user variables is to run the new application in its own subprogram
environment. Create a subprogram with the same name as the user would type. For example:

File: HLIOTT

la U RUDIT Copuright Cod LAF Troc.o. 19584

s CHLL AUDTT

SE SR AUDIT

48 IF MEM<zZE8 THEH DISF MoGEo2dd @ GOoTo 2450
s B I A e

In this case, the user can press [RUN] when the file pointer indicates the file FILILII T, or he can type
CHLL. FAUDIT or UM FMIIDIT. When RLIDIT terminates, the user’s environment is restored, along
with his variables.

User Environment Preservation

4.2 Flags

Although the application is running within its own environment, it is vital to remember that system flags
(-64 to -1) and user flags (0 to 63) are global - their states are the same regardless of which environment
is active. There are two ways to preserve these flags - individually, or as a group. To preserve an
individual flag, allocate an integer and store the old value of the flag there until it can be restored.
Example:

188 Fi=FLRAGC-1.12 Set quiet mode, saving old value in F5
118 S=T-H Perform questionable operation
1268 FS=FLHGC-1+F5) Restore original value of flag -1.

The system flags are located at 2F6D9 (16 nibbles), and the user flags are located at 2F6E9 (16 nibbles).
The IEEE traps are located after the flags at 2F6F9 (5 nibbles). If an application is going to work with a
large number of system flags, they can be saved as a group:

HEODIM FeflSl.Fy$FLle] F HELS] To save RAM, dimension small strings
1868 Fef=FEEEF " 2Falm", f Save user-settable system flags
118 Féd=REEEFfC"2F a2, 1!:- ; Save user flags
128 FofF=FEEEFC"2FaF3" 50 Save IEEE traps
18 OIM F2Elza7] Create on string for all flags
118 F9f=FEEEE " 2FalE" 270 Save all flags in the same string

When the program terminates, restore the flags with a poke:
S PORE "2Felet, FYE Restore original flag values
Note that using FEEE and FIEE for preserving and setting numerous flags results in a significant code

saving over the same procedure using -FL.F3 and =F LLH(:. For instance, if an application needs to assert
quiet mode and continuous operation, leaving other system settings in their default (power on) settings:

SEE FASf=PEEREC 2R 50 R PORE "2Fast, PEAREEERY
-instead of -

BoF :E::f« FFH FotZRFelety 5y B osFLAG -1 B CFLAG -2 @ SFLAG -3
B b -d BODFLAG T MEST I

4-2

User Environment Preservation
4.3 I/0 Assignments

If the application requires changing I/O assignments, the FEIMTER IZ and DIZFLAY I3
assignments may be preserved and restored.

To save:
DISPLAY IS: VE [9fF=FEERFC"ZFTE0", 7o
PRINTER IS: &H PoF=FEERFI"ZFT34", 70
KEYBOARD IS: WE R Wf=FEERE"ZFTIE", 7

To restore:

DISPLAY IS: W<@E FOKE "EF7VE[
2418 POEE "ZFVELT. VYR RESTORE 10

PRINTER IS: =2 FORE "2F @94y g

KEYBOARD IS: Fd4id FORE "ZFFw=B" kw2 © FORE “"2F7RC". "8

Another approach to preserving the printer assignment might include prompting the user for alternate
assignment. In the case where having a more "human readable" representation of the printer assignment
is desired, use the subprogram F'FT%'FE (in chapter 2).

4.4 Display Attributes

Display attributes such as WMIHMDOM,. DELAY. WIDOTH. FRIDTH. and EMOLIHE may be
preserved and restored. Use F'EZEF and FIUIFE to preserve these settings.

Address Length Description

2F471 4 Window start and length

2F346 4 Scroll and delay rate timer
2F94F 2 Display width

2F958 2 Printer width

2F95A 7 ENDLINE length and characters

(Lowercase mode is system flag ~15)

4-3

User Environment Preservation

4.5 Alternate Character Set

Characters with ASCII character codes from 128 through 255 may be redefined by the user to represent
alternate forms, or letters. If an application needs to define some alternate characters, any existing
character definitions should be saved and restored.

1160 DIM CHILEMCCHERSETS:1 ® CH=CHARSETS
9599 CHRRSET CF © EHOD

4.6 [ATTN] Key

The [ATTN] key may be locked out, preventing the user from suspending the program. There are two
methods of locking the [ATTN] key: redefining the key and using a [*[JF.E statement.

DISABLE: FIkE "ZF441"."F"

CAUTION

ENABLE: FIOEE "aZF441", "e"

The FUIEE statement will prevent the [ATTN] key from suspending a program. In the event of
catastrophe,an IMIT# 1 will usually bring back the HP-71.

To prevent the [ATTN] key from suspending an executing IMFIIT statement, use a [IEF EEY
assignment, eg: [EF EEY "#42"4.""5 . In this case the user’s keys file will need to be preserved and

restored.

Past experience indicates that if the [ATTN] key is to be locked out, both methods should be used.

4.7 Numeric Settings

The settings that control the format of numbers, - I, ST and EMC: may be preserved and restored.
These settings are controlled by system flags. A quick way to preserve them is with a FEFEE:

SEE FE3¥F=PEERFC"ZFeDC" 2y B STD B AF=LTREECOGY B FORE "2Falll", F5E

4-4

User Environment Preservation

4.8 Key Files

An application that redefines the keyboard will have to preserve and restore the user’s key definitions.
Several existing pacs have dealt with this issue: Finance, Curve Fit, and Text Editing. In each case, the
current keys (if they exist) are kept in a temporary file "lLIZEREEYS". To prevent any chance of a
program ’crash’ leaving the user suspended with a redefined keyboard, restrict the duration of redefinition
as much as possible. For example:

188 IT=FLAGC-1.12 @ Tl=FLAGO-%,12 | quiet mode. user mode
118 PURGE USEREEYS ® OH ERRORE GOTO

128 REMAME EEYS TO USEREEYS

128 MERGE FACKEEYS @ O ERREOR GOTO 156 @ FOEE "2F441"."F"

148 DISF MSGEolaxy B ITHPUT I#

156 0OFF ERREOR ® FLURGE EEYS B OH EREQRE GOTO 17E

1 REMAME LSEREEYS TO EEYS

I8 FOEE "2F441","@", B GOT0D ' PROCEZS!

178 DISF EREME @ GOTO 1468

183 '"PROCESS s |

This routine is useful when entering a string or responding to hidden key definitions. For instance, with
this routine the user could either enter a string, or press a previously defined key to branch to another
w |

part of the program. This is one instance where key definitions terminated with a colon ': ' are very
handy. Suppose the following keys are defined:

OEF o add© L

[EF M- N WIS A

OEF s ' Lock out USER key
OEF BT Lock out [*]

OEF ST Lock out [v]

If the user presses the [+] key, I$ would take the value]l 1, and the display would remain unchanged.
Likewise, if the user presses the [-] key, I$ would take the value zwLik: 1. If needed, the contents of the
display after the prompt can be read with the [1] =k statement.

NOTE

In the above example, the USER mode key and the keys for the command
stack have been ’locked out’. While each application has different
requirements, there may be one or more keys which should be locked out to
provide a ’cleaner’ interface. This merits careful examination.

4-5

User Environment Preservation

When defining keys for an application, keep in mind that a foreign language might use a different letter

for a certain response, so [1Z5#F should supply the definitions. For example, if you want [Y] to display the
word "Yes", use:

418 DEF EEY MEGECI4Z60e1201, 11 MEGECldz8e] 2

instead of:

l:1' 1 El |:| EI: I.E '-l-' 1" '.l.' 1" . 1" -T:

53]

"
a

'WARNING

This technique depends on each option having a different letter for each
response. When translaiing an application ensure that each command in a
prompt begins with a unique letter!

4.9 Manual Consideration

While an application may preserve global system settings, it is still important to indicate their use in the
owner’s manual. In the event of a breakdown of the software, the user should be able to recover his
environment with help from the manual. Information in the manual should include a list of settings that
are changed and a list of any temporary files that are created.

4-6

Messages To The User

Prompts, status messages, and error messages destined for the LCD should be easy to understand and
spelled correctly. When shortening a message, do not introduce ambiguity by eliminating too many
words. Also, to shorten individual words, omit as few letters as possible. Try to avoid cryptic messages. In
addition, messages should fit within the display window.
The following is a guideline for messages in the display:

1) A question mark implies that some response is required:

If a cursor is present, the entry is terminated with the [ENDLINE] keystroke (such as file
name entry).

If no cursor is present, the first letter of each word denotes the appropriate key to press. The
first letter should be capitalized, the rest should be in lowercase.

2) If a long operation is in progress, a status message is suggested. No response is required. For
long calculations, use "Working...".

3) Use mainframe messages as much as possible, or use similar internal words.

Some examples:

Status message

Mork img. .« .
Loadinmg. .. Status message
Oata EBEclit Fit it ? Immediate execute menu (no cursor)

File name Prompt with cursor

MARMIMG: Low Yoltage Warning message

5-1

Messages To The User

MEH: Undert Low Found

EREREORE: Zero Toleramnos

ERE: Imsufficient Mem

Warning message

Error message

Error message

Result

If an application is destined for a world market, ['1%05F should be used to generate all messages (and all
comparison strings for incoming messages.) The [M:Z5F keyword fetches messages from a LEX file table,

allowing them to be accessed by number. More importantly, [l

example, the message

Mok img. . .

could be displayed with:

Laer OISR MoiE o L edize s

performs a translating function. For

so that a localized Spanish language version of the application pac would display:

Trabajanco. ..

5-2

Waiting For The User: KEYWAITS$

There are many circumstances where the HP-71 is doing little more than sitting, waiting for a keystroke.

During these times, the machine is still awake, consuming battery power, while accomplishing little for the
user. A keyword called KEYIHIT# is available, and presents some unique opportunities. KEYMNAIT#
places the HP-71 into a low-power state until a key is pressed, then returns that key in the same format
as KEY#¥. IMPORTANT: If the attention key is not disabled, KEYIMAIT# will return "#42" but the
machine will still pause.

Example:
0B RE=RKEYF B OIF RE="" THEM 258

is replaced by: DEA EF=REYHAITE

The key buffer can contain up to 15 keys or keystroke combinations. The format in which the key data
is returned is the same as that for F.E'{'#. The string returned for a given key is determined as follows:

o If there is a single ASCII character that uniquely identifies the key, KE“MA I T# returns this
character. For example, [! identifies the [Q] key and =J identifies the [g]-shifted [Q] key.

e If the key is an [f]-shifted or [g]-shifted key, and the Key’s primary function is uniquely
identified by a single ASCII character, then FEl4A I T# returns a two-character string. This
string consists of ¥ or 5 followed by the corresponding primary character. For example, ik is
the [g]-shift of the [0] key.

o If neither of the above apply, K.E"' MM I T# returns # followed by the decimal numbered key
code for that key. For example, F.EY AT T# returns "#<&" for the [RUN] key.

The |..[> statement does not affect the returned string.

6-1

Option Selection

At first appearance, the 22-character display on the HP-71 might seem to be an obstacle to creating
friendly menus. Actually the architecture of the HP-71 provides for several possibilities. Regardless of
the specific application, option selection in a handheld/portable environment should be reduced to the
bare minimum of keystrokes. Prompts in the display should be as legible as possible.

7.1 Command Entries

When an application is command driven, (the Text Editor, for example), consistency in movement between
states becomes of paramount importance. If a command is defined in some places as a handy ’escape’ key,
it should work the same way at all times. Entries should be case independent if possible, so that
commands work regardless of the case of the entry. If possible, build the display prompt with some ’clue’
as to the state of the program. For instance, the Text Editor uses different prompts between command
and editing levels.

Some examples:

Input/Result

ecording optiont Command prompt

Level G0 Command?

Command prompt w/ status

7-1

Option Selection

7.2 Immediate Execute Menus

When a tree-structure of options is used, immediate execute menus should be used. This reduces the
selection of an option to a single keystroke. For example:

1 |Data Edit Report Quit?

Editor L———» END

2 |Load Save Print Quit? 3 |Weekly Monthly Yearly?

In each display, the key choices are indicated by the capital letters. Pressing the [D] key in the first box
leads to box 2, and so on. In this application, Quit is the escape mechanism. In box 3, the [Q] key should
also be active to enable a return to box 1, so as to be consistent with the other menus. An example
implementation of box 1 looks like:

27A DISF "Data Edit Report Quits"
2EA P=POSCUOERE" , UPRCECKETHMATTED 1+ 1
23 OH P GOTO 278, 'OTA' . 'EDT' "RFT'y "GUIT

Notice that this handles an unusual circumstance with little extra effort. Suppose the user presses the
attention key and suspends the program. When the user presses [f] [CONT], execution of line 280 will
proceed with the result of KEYIMAI T# being "#< 3" The FII% command will return zero, causing the
branch to line 270. This restores the prompt in the display, so the users may continue without confusion
as to where they are in the application.

Some shifted keystrokes will return "f" or "" as the first character of the
result of KEYHI T#H. If "F" or "5" are allowable keys, they should appear
last in the match string to avoid possible input errors.

7-2

Option Selection

7.3 Fixed Option Menus

Configuration of a device or a set of preconditions for a calculation can be reduced to a few keystrokes by
presenting a two-dimensional picture of the options. This ’picture’ would contain all available, fixed
options.

For instance, suppose a multimeter is being configured for an experiment. There are four settings to be
made: the type of measurement, accuracy of the measurement, choice of input channels, and data rate.
Each setting has a number of different options. A common approach is to prompt for each setting. A
faster method is to present a menu that can be scrolled by the user.

CURRENT OPTION AVAILABLE OPTIONS
MEASURE: Ohms Ohms Resistance Current
ACCURACY: 3 Digits 3 Digits 4 Digits 5 Digits
INPUT: Front Front Back
DATA RATE(Pt/min) 100 100 200 500 1000 5000

Define the vertical arrow keys [*] & [v] (B5E and #51) to scroll in wrap-around fashion between
MEASURE, ACCURACY, INPUT, and DATA RATE. Define the horizontal arrow keys [<] & [>] (#47
and #+}3) to scroll in wrap-around fashion between the options at the current setting.

Selection of an option could be made simply by leaving the option in the display, or requiring a keystroke
to select the option. Another key would be used to exit the menu.

The user can now examine all four settings and exit the menu with four keystrokes. If the user wishes to

alter just one option, the maximum number of keystrokes ever needed would be 7, including the exit from
the menu!

7-3

Option Selection

Suppose the user wishes to change the accuracy from 3 digits to 4 digits. In this example, a horizontal
option is selected merely by being in the display, and the [ENDLINE] key exits the menu. The sequences
on the left and right yield identical results. The right column shows the user taking advantage of the
wrap around selection of choices.

MEASURE: Ohms MEASURE: Ohms

[v] Goto ACCURACY setting [v] Goto ACCURACY setting
ACCURACY: 3 Digits ACCURACY: 3 Digits

[>] Select 4 Digits option [<] Select 5 Digits option
ACCURACY: 4 Digits ACCURACY: 5 Digits

[>] Select 5 Digits option [ENDLINE] Exit menu
ACCURACY: S Digits Press any key to begin

[ENDLINE] Exit menu

Press any key to begin

TOTAL: Four keystrokes Three keystrokes

When the user returns to the menu again, the ’accuracy’ will be S digits.

Note that an implementation of this technique can be ’smart’. For instance, suppose that the maximum
data rate for § digit accuracy is 500 readings per minute. If the user enters the data rate option, only the
100, 200, and 500 options are presented. If the user enters the accuracy option while the data rate is
2000, only the 3 digit accuracy option is visible. Possibilities abound!

7-4

SECTION

EIl
Help! l—a—

If an application uses a variety of commands that must be obtained from the manual, or a possibly missing
keyboard overlay, a help file deserves consideration. There are many ways to implement a help
function - each application’s needs will be different. The following routine suggests one method. This
routine reads lines from a text file, making foreign language translation possible. In this example, the
help routine is activated by pressing the [?] key when a menu prompt is in the display.

OISR "Data Edit Report Qoit?
EfF=UFRCECEEYMAITEY B P=POSO"DERD?Y, kF o
O F+1 GOTO 188, "DRTH - "EOT S "FPT S "2IT . "HELF!

"HELF's FA=1 ® H=1& | H=Humber of records in help file
=S IGH #Es TO "HELRFTEST"

FEAD #29,A82F ® DISPLAY 2 B FE=UPRCECEEYMATITE

IF Eg="in TO = 0 GOTO 188

IF =UEEEY THEMN A=MODCA-Z M+l
S S A S THEM F=MO0CH Hx+1
TR GOTO

Note that if the application is driven from specific keys on the keyboard, the help routine above may be
extended. For instance, if pressing the [W] key always triggers a specific action, such as computing an
interest rate, the help routine could respond to [W]. In the above example, if the 5th record in the help
file describes the interest rate calculation, the following line of code could be added:

LEES TF RE="W" THEH A=%5
Clearly there are many possibilities for help files beyond this example. Experimentation is encouraged. If
an application can be easily run without a manual and keyboard overlay, using just the built-in help

commands, the user will spend more time thinking about the task at hand, rather than computer science
problems.

8-1

SECTION

9

Input Routines

Standard input routines for an application reduce the chance of error, add consistency to a program, and
make the programmer’s job easier. The following input routines are suggested for normal entry of
numbers and strings.

9.1 Cursor Control

When the user is editing an entry, the cursor may not be placed over characters in the display buffer that
were written when the cursor was ’off’. This technique is used in the implementation of the IHFLIT
statement, where the cursor may not override the prompt. This may be used in the construction of custom
input sequences.

To create non-editable characters in the display, send a ’cursor off’ sequence before the characters that
you wish to protect, then send the ’cursor on’ sequence. The ’cursor on’ sequence is ILHFEF (27 2" "
SRy

and the ’cursor off’ sequence is L-HE# ¢ 21 7. "', The cursor control characters are not counted in the
96 character length of the display buffer.

Section 9.6 has an example of protected field entry which uses cursor control sequences to enter a date.
9.2 Numeric Entry

This routine accepts a single number from the keyboard. For non-real data types, a declaration of the
type is suggested at the start of the program. Note that if the type of incoming data is invalid, such as a
string "==%%¥", the system error message will be displayed and the user will be prompted again. Line
1300 requires a quantity that is greater than or equal to 1, and is not a Mzl or Inf.

1y RERL &

12viEd O ERRECE GOTO 1296
ZE

THEUT "Soart ity "0 B OFF ERREOR E GOTO 1206
LTSF EREME 2 GOTO LzZ2e
IFo@s?L THEW DISF "ERRED ITreeslicd Ghoant ity @ GOTO 1Z2VE

Input Routines

If the application is going to have foreign language capability, the routine looks a little different. For the

1278 0OM EREOR GOTO 1z

1288 IHPUT """y CHREFCZF DO EMSGECSE2RVACHRF C27 e " 0
1278 OFF ERREOR ® GOTO 1z149

1z68 DISPF EREEME & GOTO 12829

1218 IF <71 THEM DISF MsGECSOZ4 @ GOTO 1274

The escape codes in line 1280 are used to turn off the cursor while displaying the prompt, and then turn
on the cursor again. The trick is that when the user is editing the response, the cursor cannot be
positioned over a character that is written to the display when the cursor is off. All of this is done so that
the user can pause the program with the [ATTN] key, press [f] [CONT], and get the prompt restored in the
display.

If a default answer is going to appear, say 24, line 1280 would look like this:

T2sa IMPUT " CHESC2F DR EMEGF OB 2 DECHES C2V 2" 224 50

Leftmost possible position for cursor

NOTE

For convenience and ROM savings, the escape codes can be imbedded in the
[1%03F message table itself.

9-2

Input Routines

9.3 Numeric Entry With Option

The Curve Fitting ROM has a situation where the user may select a single row from an array for
evaluation, or all rows as a group. A hybrid input module was devised which would let the user enter the
character [A] to evaluate all rows, or enter the number of an individual row. Pressing the [A] key results
in immediate printing of all rows, with no [ENDLINE] keystroke required.

The following code (altered slightly for the example) was used:

DISF “Row # tor ALLIY?'CHRFCZTIG"E" B O$=KEYMALTE
IF KEYHAIT$="#43" THEH 1063
DISF CHRECZ7IE"C": B IF UPRC

: THEH 1878
G GOTD 1856

i I

1813

1821

1E3E FUT 0F B OH ERRC

1E46 THRUT "";R @ OFF ERREOR © GOTO 1
1656 DISF ERREME ® OFF ERROR ® GOTO 1G6E
16 DISE A B STOF

1E7E DISFE "ALL" ® STOF

Line 1000 displays the prompt, turns the cursor on, and waits for a key. If the [ATTN] key is returned,
indicating that the program was suspended, the prompt is displayed again.

Line 1020 turns off the cursor, and tests for the character "A". If the character is an "A", the program
branches to the module for printing all rows in the array.

Line 1030 places the character back in the input buffer, and uses an IHMFILIT statement to obtain an
individual row number. If an error is encountered, it is important to rebuild the prompt, so the error trap
branches back to line 1000.

Experimentation with this technique is encouraged - it may be useful in simplifying user interfaces
and/or reducing the number of questions put to the user.

9-3

Input Routines

9.4 String Entry

Entry of strings is similar to that of numbers:

18e DIM FELE]

OH EREOE GOTO 2196

IMFUT "LOAD: File name?"iFF @ OFF ERROR & GOTO 2266
OI=ZF EREREME @ GOTO 2189

IF LEMOCFE)=8 THEM DISF "Irnwvalicd Filespec" B GOTO 2178

P T o [l
a1 =

.,:_--.._
[N S X R |
T T T
LR i SO% B % |

Or, for foreign languages:

2178 0OM ERREORE GOTO 21968
S1ed TMFUT "y CHESO2F 8O EMEEE OS2 kCHREF (27 28" "I FF
2198 OFF ERREORE & GOTO 2216

ODISF EREME @ GOTO 2128
IF F&="" THEH DIZF MSGEFCSE22 B GOTO 2176

P
P
—

[e |

Again, the same technique with the cursor used in the numeric input module is used for string entry. If
there is a default answer, it may be included after the cursor-on command.

9-4

Input Routines

9.5 Yes or No?

Answering yes/no questions should require just one keystroke. If an application has many of these
questions, a function may be created to simplify the process:

DEF FHYCRED

ISP GF B I=FOSCUHY " UPECECKEYMATITHFOL 12001
IF I<@ THEH 17V

FHY=1 & EHD DEF

1 = (T

— et et et

)
-
D R R on x

If the user suspends the program during this function with [ATTN], and then restarts, the prompt will be
restored to the display.

NOTE

For foreign language purposes, line 170 might read:

1P DISP GF B I=FOSCMSGECLEI0ET 2, UFRCECKEYMATITEFIL. 11001

9-5

Input Routines

9.6 Protected Field Entry

Some entries, such as dates may require either a limited number of characters, or a specific number of
characters. This may be made more apparent to the user with the use of protected field data entry. For
example, suppose the user is going to enter a date. A protected field template may be constructed to
indicate the number of required characters, as well as the sequence of month, day, and year fields:

Date?mm/dd/yy The user is prompted for the date.

The following routine may be used to set up the date template:

16 OFTION BASE
S0 OOIM T$C116]
B0 CE=CHRECET

40 TE=CEL"CDate? "
S0 TE=TERCEL"
£ TELL1E]=" "
TEOTHRUT "%, 1§30F
g DIEF DF

Notice that I# is 110 characters long. The cursor on and cursor off sequences are not included in the 96
character count for the limit of the display buffer.

The user may type over the characters rri, olid, and ity only. The HP-71 will beep after the last u is

edited, and the cursor will remain in that position. The cursor keys may still be used to edit the entry.

9-6

INPUT Alternative: INLINE

10

The IML.IME keyword (available in the "CLISTUTIL" LEX file) adds extended cursor control and
extended termination capability for user input. Editors, menus, protected fields, and custom entry
sequences are possible with THL IHE.

Syntax

IMLIME T#.L1.C1.TEMI[VELVE]]

Parameters

input string The input string (I ¥ in the example) will appear in the display. Cursor
control characters may be imbedded to control which characters may be
edited by the user.

first character The first character (l.1 in the example) is the index to which character in
the input string will appear in the leftmost position of the LCD window.
For instance, if the first character is 3, the third character of I# would
appear in LCD position 1.

cursor start The cursor start parameter (C:1 in the example) specifies the starting
location and type of the cursor. A negative value specifies the insert cursor.
The expression must round to X, such that 1<=|X|<=96.

terminator string The terminator string (T:# in the example) specifies which keys may
terminate input. Normally, only the [ENDLINE] key will terminate input
from the keyboard (such as with the IHFUT statement). The ML IME
keyword uses the terminator string to extend termination to a specified list
of keys. Keys are specified by their physical key code, such as #4 = for the
[ATTN] key. Keys are numbered in row-major order, from 1 to §6. For
f-shifted keys, add 56; for g-shifted keys, add 112. For instance, to allow
termination with the [ENDLINE] key and the vertical arrow Kkeys, the
terminator string would be "#HoSHEAESE 1",

terminator variable Upon termination of IML.THE execution, the terminator variable (\'1 in
the example) contains a number indicating which key the user pressed to
terminate input. If the key pressed was the second in the terminator string
list, the terminator variable will contain 2.

OPTIONAL PARAMETERS The following parameters are optional, and need not be used.

cursor position variable The cursor position variable (' in the example) contains the final cursor
position and type. A negative value indicates the insert cursor.

window position variable The window position variable (' in the example) contains a number
indicating which character was in LCD position 1 when IHL. IHE
terminated execution.

10-1

INPUT Alternative: INLINE

NOTE

The values returned in the cursor position variable and the window position
variable are affected by the |4 I M1l settings. For more information, refer
to the HP-71 Reference Manual’s discussion of the [I M1l statement.

IHL IME is a statement that extends the capability given in the HP-71’s IMFLIT statement and FEY'¥
statement. IHL IHME allows you to specify:

e The prompt string.

e The number of prompt string characters to be scrolled off the left side of the display.

e Where in the display the cursor is to come up flashing.

The type of cursor to appear (insert or replace).

THL IME allows the user to press any combination of keys for input and editing, just like the ITHFLIT
statement. While IHFLIT terminates execution only when specific keys are pressed (such as [ENDLINE]),
any number of different keys can be defined to terminate IML.IME execution. When one of these
terminating keys is pressed, I L. IMHE returns a number that indicates which key caused termination.
IHLIME will optionally return additional values indicating the cursor position/type and number of
characters scrolled off the left side of the display on exit.

For increased customization, the input string may contain cursor on and cursor off characters to make
certain portions of the string are non-editable. For more on cursor control, see sections 9.1 and 9.6 of this

document.

There are three additional limitations placed on the input parameters for first character, and cursor start:

1) If first character is greater than cursor start, then first character is set equal to cursor start.
2) first character is limited to 97-k T Mk size.

3) If cursor start exceeds first character + MIHDlsize, then the specified cursor start takes
precedence, and the first character is incremented until the cursor start character appears in the
display window.

For example:
THILIHE FE. 9188, TEH

According to #1 above, first character becomes 80, instead of 91. Then, according to #2 above, first

10-2

INPUT Alternative: INLINE

In order to get character #95 in the display window, character #74 is put in LCD position 1.

Example

The following is an example illustrating the use of protected fields (non-editable characters) in the input
string:

% =default input string

B

E# =escape character: CHFEH {272

IHLIHE E#%"<Enter MHame "LEFL":"LOF, 2,1, "HISHEOHRIL"H.B.C

In this example the user cannot back the cursor up over the prompt since the cursor was turned off.
However, they can edit the default input string since the cursor was turned back on. The replace cursor
will come up on the first "readable" character, that is, the first character of C$. The first character of the
input string will be scrolled off the left side of the display - this was specified by the first character
parameter.

IMI.IME will terminate on one of three keys: [ENDLINE], [up-arrow], and [down-arrow] If
[down-arrow] is pressed, 1 will be 3 on exit. If the user typed in a five character name before pressing a
terminator key (assuming no backspaces), B will be 17 on exit (the cursor originally came up on the 12th
character and was advanced five positions), and [will be 2.

Note that the cursor start argument “"counts" readable characters only. Also, [1IZF# "sees" readable
characters only, so that a [1I[=F# done in the above example returns only the user input (including the
default input), not the prompt itself.

Note that the cursor position argument and the value returned in the first optional variable do not
operate exactly the same way. The cursor position argument counts readable characters only, whereas the
value returned in [(in the example above) reflects the fotal number of characters in the "free portion" of
the display, readable and non-readable.

Also note that because of unreadable characters in the display, the above example is not affected by

limitation (1) on the previous page. Even though the first character appears to be bigger than cursor start,
because of unreadable characters in the display, cursor start actually designates character 12.

10-3

File Name Verification

11.1 File Names For Loading

An applications program may wish to verify the name of a file or subprogram that has been entered by
the user. The following routine is useful for trimming unneeded spaces and detecting invalid characters
in a file name F$ prior to loading data.

IF F£E01.10=""" THEM F¥=Ff[2] @ GOTO VZed

I=LEMCFE> @ IF FELOII=" " THEM F#LII1="" & GOTO 7218
JEROSCFE, " B OIF J=1 0F POSCFE, " " 0OR HOT I THEH V228
GOTO Ve

DI=F "Irmwalid Filespeo" ® REETLIEH

DIzF rlirge . B OON EREREOR GOTO Ve
CF=FO0EFCFEY © GOTO ¥270

OI=F "ERREORE: File Mot Found" @ EETUREHM
AzmIGH #1 TO FE oo ...

B IF o THEH VEVE

Line 7200 strips leading blanks, and line 7210 strips trailing blanks, leaving the length of the string F$ in
I. This will be used later. These lines may be replaced with the keyword TF [1% (described elsewhere in
this document) as follows:

VEEE FE=TREIMECFED B I=LEMCFF

In line 7220 the variable J takes the position, if any, of a colon. Three tests follow, each of which would
indicate an invalid name. The first is the presence of an embedded space. The operating system will only
use the characters in front of the space, possibly confusing the user. The first test looks for a null name
before a device specifier. The second test rejects a name with an embedded space, even if an experienced
user understands the implications. The third test is obvious - if there are no characters in the name there
can damage the file chain if a file is accessed in *[MFIM with a null name. IT IS IMPORTANT TO
MAKE THIS TEST!!!

NOTE

This precludes one situation: that where a user wishes to load a file from
s OO, If the HP-71 is not a system controller, a different procedure
will be needed.

11-1

File Name Verification

The variable J is used again in line 7240 to decide if a file contains any device specifier. If no device
specifier is present, the file will have to be in RAM or in a port.

WARNING

An AS=STGH # statement will create a null length data file in main
memory if the file does not exist and no device specifier (": MIHIM") is in
the name string F$. If there is a colon in F$, there is no danger of creating

an empty file.

In order to prevent the creation of an empty file, the FII[IE¥ function is used in line 7250 to verify the
file’s existence. Line 7250 actually plays a dual purpose. First, it parses the string F$§, and will yield an
error if there are any strange characters present. Secondly, if the file is not in memory, an error will
occur. Both errors result in a return with an error message in line 7260.

Again, the use of 1515 # is encouraged in place of fixed error messages and prompts.

11-2

File Name Verification

11.2 File Names For Saving

The following routine is useful for checking file names when saving to a data file. It bears much
similarity ‘to the routine used for loading. The routine assumes the file name in F ¥, the desired number
of records is in [, and that the number of bytes per record is in M. Note that 1940 and 1950 can be
replaced with TF IM#, as shown earlier.

1240 IF FFL1.10=" " THEM F#C1,13="" & GOTO 19348

1250 I=LEMCF£> 2 IF FFLITI=" " THEW F#LIJ1="" & GOTO 1956

19a0 J=FOScF$E, "2 "2 @ IF J=1 0OF HOT T OF POSCFE," "3 THEH
19v8 ELSE 1926

1278 DISF "Inwalid Filespec" @ RETLEH

1908 DISF "Savinge .. ® O ERREOR GOTO 2AEE

220 CREATE DATA FE.M.F & ASSIGH #1 TO FF @ OFF ERROR ® GOTO
SEEE

SHEE TF EREM#E5D OF ERREMH#1G52 0OF ERREH #255620 0F ERREH H#Z55153

THEH ZB5E

IF HOT FHYC"Owerurite file <YM 2 THEH RETURH

OISF "Sawving..." B PURGE F¥f

OH ERECOE GOTO ZE50

CREATE DATA FFE.H.F B ASSIGH #1 TO F£ @& OFF EREOR @ SOTO

SEEE

SEEE OFF EREOR ® DISF EREME & RETLREH

SEEE TF MEMS 2868 AMD HOT J THEM FURGE F£ @ DISP "Imnsufficient
[flamorg” # RETUREH

el

This routine accounts for null files, duplicate files in both ram and on a device, and for insufficient
memory in either ram or a device. The routine '’ may be found in the chapter "Input Routines". FHY'
returns a one for yes and zero for no. Notice the offsets used with EFFHMH that account for foreign
language localization. Further 1nformat10n on errors may be found in the chapter "Error Messages". Error
59 is the mainframe error for "FFi l& izt as is 255030 for HP-IL. Errors 1059 and 255158
account for localization of the " i 1l E: !

error

File Name Verification

11.3 Names Of Subprograms

Verifying the name of a subprogram for existence is similar to the system used for checking data file
names. First, the name is checked for valid characters with HLI[IF ¥ and then a dummy call is made with
intentionally mismatched parameters. The resulting error message will either indicate that the
subprogram is not present, or that it is there, but the parameters do not match the test. This routine
assumes the subprogram name in A1$ and the file name containing the subprogram in A2$. REMEMBER:
the subprogram name can be the same as a file name!

1 0O EREOR GOTO 26260 @ OF=A00REECALTED & GOTO Z04E
B2E OFF ERROR B IF ERREH=5Z 0OF ERREM=185Z THEM DISF ERREME
B RETLREH
8 0OH ERREOR GOTO 2858 @ QF=A00EEFCRZEY © GOTO 28908
2B DTSR EREREME 2 EETUEH
OH EREOR GOTO 2678 ® CALL AlEcHaMy Haby Haks Hakly Halkly Hak
TH RZF
OFF ERREOR & IF EEREM=26 0OF EREREM=1GZ6 THEH 2998
DISF "EREORE: "sEEREME @ REETLEH

%)
R

11

|
N

utput Routines ’——’

12

Output routines on the HP-71 may take a wide variety of forms, using everything from the 22 characters
in the display to 80 column printers. Regardless of the specific form selected, it is vital to insure that the
user is able to view the entire result, with all relevant digits of the mantissa and (if applicable) the entire
exponent. Further, there should be no time pressure on the user.

12.1 Configuration And Data Volume

Output routines should be sensitive to both the volume of data to be presented to the user and the system
configuration. If varying configurations are anticipated, multiple output routines are suggested to
maximize legibility of the results and usability of the software.

Results best expressed in tabular form may need one routine for the LCD or strip printer, and another for
wide output devices.

Unless specific configurations are going to be used, use of specific printer features must be evaluated with
care. If an output routine depends on such features as vertical half spacing (for superscripts and
subscripts), the application will not run with conventional printers, such as an HP82905B. Conventional
printer features such as form feed capability are generally acceptable. When in doubt, check the
capability of several possible target printers for common features. The subprogram FET%FE can be used
to determine what class of printer is assigned.

NOTE

Output routines should use F'FIMHT statements, while message routines
(such as prompts, warnings, and errors) use [1I =F statements. This will
insure that the user’s FEIMTEFR I assignment will route the output to
the desired location.

The following table may be used to help select a suitable output routine given varying results from
FRTYFE:

PRTYPE REPORT HAIT?

0 Narrow Yes
1 Narrow No
2 Wide No

12-1

Output Routines

12.2 Some HP Printer Features

For reference, the following table contains a listing of common printer features in the HP product line,
and the escape sequences that enable them.

OPERATION FEATURE ESCAPE SEQUENCE PRINTER
CR CHR$(13) 1,2,3,4,5
Formfeed CHR$(12) 1,2,3,4
Linefeed CHR$(10) 1,2,3,4
Backspace CHR$(8) 1,2,3,4
Vertical 6 L/in ESC &16D 1,2,3,4
Spacing 8 L/in ESC &18D 1,2,3,4
Perforation On ESC &11L 1,2,3,4
Skip off ESC &LO1 1,2,3,4
Select Normal ESC &kOS 1,2,3,4,5
Print Expanded ESC &k1S 1,2,3,4,5
Mode Compressed ESC &k2S 1,2,3,4
Comp, Exp ESC &k3S 1,4
Emphasized ESC &k9S 1,4
Underlining On ESC &dD 3,4
Underlining off ESC &d@ 3,4

Printers: 1=HP82905B 2=HP2671 3=HP2631 4=ThinkJet 5=HP82162A

12-2

Output Routines

12.3 Multiple Results In The LCD

Results presented in the LCD are especially vulnerable to being lost or forgotten. Since the user may at
any time answer the phone, sneeze, or for some reason look away from the machine, a result must be held
in the LCD until reciept of the information is acknowledged. A simple way to do this is to call
FEYMAITE, and then continue.

If a long string of results is anticipated, a method of scrolling back and forth through the results is
suggested, along with an escape method. The following routine assumes that the results are in an array A,
with 9 answers, and their titles in a message file from positions 17 to 25. The LEX ID of the message file
is 12

aREE M=17 k['L" F'E"F 2 IZ b3 B OQELAY 8.8

oS I

QIsF M-‘ R 1R 1H+H -qH- =182

HF=LIFRED F‘. BMETITH

IF FEd$UH=s" AHD DEH"H#51" THEH
j

o]
—
=
PR RO

;
e
X RN]

48 IF M=25 THEM BEEF B GOTO ZE2E mOGOTO 2E1e
aE TR CREHUHREO" THEM 2670

sk T H“]? lHLH BEEF & GOTD ZB26 BOGOTO 2818
FEOTF E=TRLe2" THEM M=17 & GOTO

mE IR GF ez THEM H=25 @ GOT0

B IR GREHTLY OTHEM 2ies

g PORE "2F9de0F B RETUEH ! Restore DELAY amcd SCREROLL

The routine will advance to the next result when either the [v] or the [ENDLINE] keys are pressed. If the
[*] key is pressed, the previous result will appear. The [g]"] and [g][v] keys go to the first and last results.
The [Q] key exits the routine. If the user attempts to go beyond out of range, a beep sounds.

The use of K EYIMIT# can go even further in the case of a large table that has been generated. Suppose
the program creates a table of results, and the user may only be interested in a subset of the results. One
way to address this issue is to ask the user for the location in the table that he wishes to view. Another
scheme might be to place the user "in the table" and let him move about with the arrow keys, in a
two-dimensional version of the routine presented above.

12-3

|

Output Routines

12.4 Large Results In The LCD

If a result is simply too large to fit within 22 characters, scrolling the display is the last resort. The best
way to implement this is to preserve the display, set [MEEL.FY ‘242 and call KEYMAIT*. The following
routine illustrates the technique:

1 OIM AFC186]

28 AF="LEJADLEJDSFOGAREBAGESF TJLEMLHDEN MO T a4

28 OF=FEEEFC"ZF24e", 42 1 DELAY 9,9

48 DIZF "Mame: "iAF B QE=KEYWAITE & FOKE "2F34e",DF

Another approach to the scrolling technique "windows" the title:

19 OIM RAFC122]

28 AF="LJEE0AF LRS00 JESOF LJUHEF LRSS0 LR E DD IH
2B DFE=PEEKFC"ZFI4a" 40 @ DELAY .9

48 DIZF "Hames " @ WINDOW Y @ DISF AF

-8 QFE=REYMAITE & WIMDON 1 @ FORE "2F34e", 0F

12.5 Numeric Formatting

Numbers that occupy a very large dynamic range (say, a hundred orders of magnitude) will present a
challenge when presenting results in the LCD. If the title for the result is very small, there may be room
in the display for both the title and the number as displayed in =TI} format. If there is doubt about
available room, an I[1FI:E statement is suggested. The disadvantage of the I[1HILE statement is that the
user’s display digit setting is overridden.

12-4

SECTION

Internal Calculations ’———-——|

13

13.1 Changing Array Sizes

The size of an array may be changed with a new [II[1 statement. This can only be done in the originating
environment. Data is stored in row major order and is not zeroed out during redimension. The following
paragraphs address techniques for changing the size of arrays. The examples use an array A with R rows
and C columns. The array is of type FEFL., and a 300 byte fudge factor’ is used. Variables I and J are
scratch integers, and the array is in OF TIOH BASE 1.

13.2 Adding And Deleting Rows

Add a new, empty row at N:

]
—
2y

il

IF MEM-Ceoman THEM DISF "Insufficient Men” B EETUEH
IF M1 OF M:R+1 THEM DISF "Momsxistent Eow" B REETUEM
[

5
R

IsF "Morking. . B E=E+1 2 DIM ACE.Cy & IF M=K THEH EETLEH
QF I=F TO H+1 STEF -1 ® FOR =1 TO O

i

1K Holadd=Rol-100 2 HEST S B MEST I
1ade FOR I=1 T0O @ Ao Tr=8 B HEST I ® EETUEH

Delete a row at N:

Tegs IF H<1 OF H:RE THEM OIZF "Honesistent Eow" B REETUREH
tate IF RE=1 THEM DIzF "EREOES %Wou Meed 1 Eow" @B RETUEH
taze DISF "Horking. .. " ® IF M=K THEH 168356

' i FOR T=H TO E-1 @ FOR J=1 TO

Tede Aol do=ACl+1ydd @ HEST W B HEST 1

TEEE R=RE-1 8 OIM Ak S0 @ RETLRER

13

1

Internal Calculations

13.3 Adding And Deleting Columns

Add a column at N. The data will be scrambled after the [11[1 is executed so a shuffle must occur. Data
is moved from positions at T8,T9 to new locations G8,G9. The pattern works backwards, shifting data up
to fill the new top locations, straightening out the columns, and setting the new column to zero.

0 Fo 0 PO e T
IR IR RN R RN R]

. T
18 1o,

b

b b b b b b et b bk ek ek ek et
T T T
a0 TS T % 0 % B S T T o B O o I)
EX RN

o= O u 0 00 =g 1T

i

IF MEM- F+—13ﬂ3 THEH DISF "Imsufficient Mem" & RETUEH
IF H<1 OF MeC+1 THEM DISF "MHomessisztent Col" ® RETURH
OISk "“HFFlﬁd TR C=0+1 0@ OIM ACELC

GE=R B 59= !—'E—H? B To=R ® T9=C

FHF I=1 TO R ® T9=T23~1 @ IF HOT T9 THEH T9=C B TE=T3-1

-

T9=T5-1 & IF HOT T3 THEW T9=C B Ta=To-1
Go=G9-1 @ OIF HOT G5 THEM Go=C & GEsGE-1
IF HOT GE THEM 112G

IF Go=H THEM RCGE,GH0=A @ GOTO @86

IF GEx@ AMD TE:H THEM 1860

RETURH

Delete a column at N. Again, the data will be scrambled, so a shuffle occurs in a similar manner. First,
the data is column shifted so that the column to be removed is the last one. Then the data is shifted down
starting at the front and working up. The last locations in the array will be lost when the dimension
statement is executed.

ey
1

N
L e 0 o T

AU Y

o
LI RN

Pt et b et b et
RN N)
28 1

7o
LI I)
i dld R i ilgd il 1l

KA
i

et et et
LR RN] 1
P

—
X
id il il

13-2

IF HM<1 OF MeC THEM DISF "MHonesistent Col” # BETURH
OISF "Morkimge.." ® IF H=C THEH 1648

FOR I=1 TO F @ FOR J=H TO -1

FoTladr=ACla 1y B HEST O ® HEST I

Ga=1 @ G09=1 @B T8=1 @ T
FHF I 1 TO R B FOR =1 »

FoGeE. 5t \“H T TR @B G9=09e] 0 IF G9:0 THEM G9=1

?q;f9+1 B OIF TS0 THEM To=1
MEKT J B To=T3+1 ® IF TS:0 THER
MEXT T B C=C-1 B DIM ACR,CH B RETURH

Error Messages: MSG$ & Translator

14.1 MSG$

The M:=5F keyword provides retrieval of error message text from the mainframe, plug-in modules, or
LEX files. Each M=(i¥ LEX file should contain prompts and messages for an application program. This
leaves a hook for foreign language translators to work with. The syntax for the keyword is:

MZ0GF © numeric expression

The first three digits of the message number contain the LEX id, and the second three digits contain the
message number. Leading zeros may be suppressed. As an example, suppose the 21st message of a LEX file
id 94 is needed: AF=MSGECI4E21 0,

The Miz3F keyword will work with translators. If a translator is present, MS5G# ¢ 24 would return the
same message as ["150GF 0 1EZ4 2 if a mainframe translator is present.

The heaviest use of [M=5F will be to display prompts, error messages and status messages in an application
package. [M1=05# used in this way allows customization for foreign languages. Keeping messages in a LEX
file message table may also save ROM space. For example, if your LEX file number is 17, use

TEOIMPUT """y MEGFC1ITEES 3 0F
instead of:

CEOTHFUT "My CHEFCET pE O lor? "ECHES C2F s ="y OF

which will allow other language translators to handle the prompt. Other examples are provided in
previous sections.

built-in message table. This can be constructed using the HP-71 IDS volume I as a guide.

14-1

Error Messages: MSG$ & Translator
14.2 Translators

A translator is a LEX file whose sole purpose is to translate messages from the resident English to a
foreign language. These LEX files are composed of tables and a poll handler which intercepts the pMEM,
pERROR, pWARN, and pTRANS polls to substitute alternate message numbers.

The following convention has been set up to facilitate error trapping with language translators.

For mainframe messages:
Translated message number = ERFEHM--1EGE
For other LEX files:

Translated message number = ERFMH-+1 23

For example, mainframe error 57 is "File Not Found". If an (M ERFFR routine is trapping for this error
and must allow for foreign language messages, the appropriate statement is:

IF ERREM=57 0OF EREM=1857 THEM

The HP-IL error 255031 is "Directory Full". If an I EFFIE routine is trapping for this error and
must allow for foreign language messages, the appropriate statement is:

IF ERREM=255821 0OF ERREH=25515% THEM

This extended error trapping can be shortened with the user-defined function:

[

DEF FHECH = C&=ERREHY OF CE=ERREH+LZE+ O TERBE #5720

2t
s
ot

and the previous two examples above can be compressed to:
IF FHECSY Y THEH
IF FHECZESA21Y THEM ...

14-2

Speed and Space

The disadvantages of packing code need little enumeration: the risks are extreme. If packing must occur,
caution is advised. If a working program is being packed in order to fit into available ROM space, we
suggest that the author maintain a very complete audit trail. Some packing techniques actually improve
speed as well, however combining code into user defined functions ((lEF FHMHA 1) can slow down the
program, as additional time is required by the operating system to set up the call to the function. This
slowdown can be up to .6 second for a function, and 1 second for a subprogram.

15.1 Variable Names

Single letter variable names save a byte for each reference, and slightly improve speed. Large groups of
variables under one letter slow down the searching. For example, it would be better to use variables A, B,
C, and D than CO, C1, C2,and C3.

15.2 Line References

When entering a label reference, such as 0TI HEILF, don’t enter the quotes. This will save a byte. The
quote will appear on decompile. Remember: if you edit the line later on, use the [- CHAR] key to avoid
re-entering quotes!

A GOTIEY pointing to a line that has a single letter label will save a byte as compared to using a GOT0
pointing to a line number. This works best in instances where many 01T statements refer to a single
line.

Don’t use GOT after THEM or EL.5E. Simply use the line number or or a label.

15.3 Muiti-line Statements

Multi-line statements save two bytes for each line number saved.

15-1

Speed and Space
15.4 Loops

FOFE ... HMHEXT loops can be a source of speed improvement under some conditions. For instance,
suppose each element in a 5 by 100 element array is to be incremented by 3. The following two blocks of
code would do the same job, but the one on the right would execute faster.

188 FOR I=1 TO 166 1ag FOR J=1 To 5
118 FOR =1 TO & 118 FOR I=1 TO 1848
128 ACT,do=RACT, Jo+3 128 ROl do=ACT,d0+3
128 HEST 128 HEST I

1483 HEST I L48 HE=T

The speed increase comes from the inner loop having less stack searching to perform for each MEXT
statement.

15.5 Clearing Arrays and Strings

Numeric arrays may be cleared (all elements set to zero) very quickly by DIEZTR'Ying them and
executing a new [11[1 statement. The operating system defaults all elements to zero.

In cases where a long string is to be set to spaces, a similar technique may be used. For instance, suppose a
100 character string of all spaces is needed:

S34E GE="Y R GEOIAE =" o

The operating system will "pad" the missing characters from the beginning to 99 with spaces.
15.6 Logical Expressions

Logical expressions can be very useful in constructing numeric expressions, and generally save code.
Logical expressions return a 1 or O depending on the evaluation of a comparison. For instance,

Use: T H=zZ-oy=y 0OF LEMCEFDD

-—

Instead of: 18E I[F %=y 0O EFEH"" THEM =2 ELSE ==2

15-2

Speed and Space

15.7 Device Addressing

Addressing devices with the HP-IL module may be accomplished with a variety of commands. Generally,
as the ease and luxury of the addressing mode increases, the amount of work the HP-71 has to do
increases. The following table illustrates the relative times required to address a device as compared other
addressing methods.

METHOD SPEED

(:LOOP) Fast
<addr> .

%50

DISPLAY

HP829058B .

Volume Label Slow (Limited by media access times)

The fastest method of addressing a device is by its address on the loop. The loop will slow down as the
number of devices present increases, and depending on the type of devices and their response times, the
rate of increase in addressing times may be non-linear. A simple way to maximize the speed of addressing
is to search once for the address of a device, and save that address in a variable for future use in the
program. For example:

188 E=0EVMADDEC"HFZ22124R" Y R = Address of RS-232 interface
1@ QUTFUT sRE3TF @ EMTER fR USIHG FEy I#
22l OUTFUT sRyDFE B RETUERN

15-3

HPAF File Standard

SECTION

16

The Applications File format (HPAF), is intended to allow exchange of data between various programs.
The format provides room for information that describes the structure of the data, so that various
programs may make use of and exchange the data.

HPAF files are of type [IHTH, and may reside in either the HP-71 or a mass storage device, such as the

HP82161A digital cassette drive.

The HPAF files are composed of three major sections: a header, the data records and an optional
descriptor block. An example of such a file looks like this:

Rec # Contents
0 "HPAFNNS"

1 4

2 12

3| 77,9.3,"RED"

4 | 78,9.4,"BLUE"

5 81.5,10.3,"GREEN"
6 | 82.9,10.4,"GREEN"

12 "COLNAMS" ,3,"TEMP"
"VISCOSITY","COLOR"
"DEGREES",1,"KELVIN"

Description

Type string: two numbers, one string
There are four records of data

The descriptor block startsat 12
First data record

Last data record
Empty data records
Empty data records
Descriptor block

The following sections describe the header, the data records, and the descriptor block.

16-1

HPAF File Standard

16.1 Header information

The header must contain the following items:

1) Record zero contains a type string. The type string serves two purposes. The first four
characters indicate the file ia a HPAF file. The remaining characters describe the number of
data items in each record, and their type. For example: HFAFHHMZ. The characters MH=
indicate that there are three items in each record: the first two are numbers, and the third is a
string.

2) Record 1 contains the number of data records that contain information. This number may
be less than the total number of available records, allowing room for additional records to be
added later, or the optional descriptor block.

3) Record 2 contains the address of the optional descriptor block. If no descriptor block is
present, this number should be zero.

16.2 Data records

The data records begin in record 3, and must end before the descriptor block. Note that all data items for
each record must fit within each logical record, so that any record may be accessed randomly. To
compute the optimal logical record length for the file, remember that each number written in the record
occupies 8 bytes, and each string occupies 3 bytes plus the number of bytes in the string. In addition, there
must be one byte for the end of record mark. For example, if each record is going to hold two numbers
and a ten character string, the record length must be at least 2*8+3+10+1, or 30 bytes. For more
information about creating DATA files, see the HP-71 owner’s manual, section 14.

16-2

HPAF File Standard

16.3 Descriptor block

The descriptor block is optional. The descriptor block must come after the data records, and record 2 must
contain the address of the first item in the block. Information in the descriptor block consists of fags
which identify the type of information that follows, followed by the number of items associated with the
tag, followed by the items themselves. The tag must be a string, the number of items must be a number,
and the items must be strings. If numeric values are to be in the items, they should be string
representations (= TFF).

tag, number of items, item one [item two...]
The information in the descriptor block may be written serially, or, if the logical record size is sufficiently
large, written one tag to a record. In either case, the descriptor block must be able to be read serially.

For example, to describe the names of the columns, a temperature offset, and the fact that the
temperature units are degrees Kelvin, the descriptor block for the file might look like this:

Rec# File contents Comments

67) "COLNAMS",3,"TEMP","VISCOSITY","DENSITY" Column names
"OFFSET",1,"2.172" Offset
"UNITS",1,"KELVIN" Units information

{EOF}

16-3

SECTION

17

String Functions

The LEX file = TR IHMGL A provides 11 keywords that enhance the string manipulation capabilities of the
HP-71.

17.1 MEMBER

The MEMEEFR keyword returns the location of the first character in a subject string that is a member of a
set string.
Syntax:

MEMEER © subject stringset string [starting position]:

Examples:

FMEMEER CHE, "B 25458759 0
Returns the location of the first numeric character in AS.

FMEMBERCAF, "A1223456789" , 120
Returns the location of Ist numeric character at/after position 12.

Ee=PMEMEERE CRE BE, 00

17-1

String Functions

17.2 LTRIMS, RTRIMS$, TRIMS

These keywords trim specified characters from the ends of string arguments. L. TFEI1# trims characters
from the left end, ETF IM¥ trims characters from the right end, and TFE I [1# trims characters from both
ends.

Syntax:
L.TEIME string expression [string expression]
FTEIME Y string expression [string expression]

TEIMF string expression [string expression]

The first string expression contains the string to be trimmed. The second, optional string expression
specifies which character is to be trimmed, if found. Only the first character of the second string
parameter is used. The default is to trim spaces.

Examples:
LTREIMEC" abeod "2 LTEIMES "Rk or osarthte Tht
=" gbed " = pEaE
ETEIMED" abos " ETEIME "peace on sarthppe . @
=" abce" =Mpegoe onosarth"
TEIMEC abod M wart e, Yt
=M abod

TFE=TEIMFCGED

17-2

String Functions

17.3 LWCS$, LWRCS$

These keywords convert all uppercase characters in a string to their lowercase counterparts. The keywords
are identical except in name.

Syntax:
LWC# C string expression?
LLRCE C string expression
Examples:
LMCFC"THIS IS HICE™

=" his 15 nice"

FE="THIS IS HICE"
DISF AE
"Lhiz iz nice"

17-3

String Functions

17.4 REV$

This keyword reverses the order of the characters in a string.

Syntax:
FEN ¥ string expression’

Examples:
FEVFEC"ZFRECZ" S FEVEC"pal indrome"
="acEF2" ="emordnilap”

RE=RENE RS
An address stored in memory is backwards when obtained with a PEEK. F[=%# is useful when converting

the address into decimal:

DIZF "The decimal address is"iHTOOREVECPEERE " 2Ry S0l

17-4

17.5 ROTS$

String Functions

This keyword rotates the contents of a string a specified number of places to the right. If the number of

spaces is negative, the string will be rotated to the left.

Syntax:
FOT#H O string expressionnumeric expression

Examples:
FEOTEC" 122345 1 EOTHFC"LI2245%, -1 2
=] Eng R L

FE=ROTHECOE, S50

17-5

String Functions

17.6 RPT$

The RFT# keyword concatenates multiple copies of a string expression together to form the resulting
string.

Syntax:
FFT# 1 string expressionnumeric expression

Examples:
REFTEC"E" e 30 FEFTEC"FRED" 2 20
=M ="FREDFREEDFREED"

17-6

String Functions

17.7 SBIT

The ZEIT keyword returns the value of a specific bit in a character string. It is most useful when
analyzing the contents of the HP-71 graphics display.

Syntax:

SEIT string expressionnumeric expressionnumeric expression .

The string expression is the string to be examined. The first numeric expression specifies which character
to examine. The second numeric expression specifies which bit in the specified character to examine. Bits
are numbered 0-7.

Examples:
i=EEITOGOISFE, 182 Returns the bit value of the upper left
pixel in the display.
et = N B = P B B Returns the value of bit 4 in the Nth

character of the string AS$.

17-7

String Functions
17.8 SBIT$

The “EI T# keyword allows enhanced bit manipulation of data in strings.

Syntax:

SEITHC str exp, num exp [num exp[numexp]]?

The first numeric expression specifies which byte in the string is to be modified. Other bytes in the string
will be unchanged.

The second numeric expression specifies the bit to be manipulated. If not present, the byte specified by
the first expression will be complemented. Bits are numbered 0-7.

The third numeric expression specifies the new value for the bit specified by the previous numeric
expression. If not present, the bit will be complemented.

Examples:
AfF=SBITEFOHE, S Complement the fifth byte
RE=SBITECAE. 2410 Complement the bit one of byte 3
AfE=ZBITECHE Mo da B2 Clear bit J in byte N

17-8

17.9 SPAN

String Functions

The =AM keyword returns the location of first character found in a subject string that is not a member

of a set string.

Syntax:

Example:

SFHAMC subject string,set string [, starting position]

SEAM " 1ZE456e85", "B12456TED") Returns 7
5 039 123", "B1234SETEF", 8) Returns 10

éiﬂci

17-9

BREAKPT: BASIC Breakpoint System

The BREFEFT program is a LEX file which provides breakpoint capability for debugging BASIC
programs. When EREFEFT is in the HP-71, three new keywords become available: BERERE,
IIMEREFME, and BELLI=T. These keywords allow setting, clearing, and listing of breakpoints in BASIC
program execution. Setting a breakpoint in this manner is equivalent to inserting a FFHIISE statement at
the beginning of a program line.

The EEREFAEFT program works by intercepting a poll each time a statement is executed. This will slow
down an application program significantly, and so should be used with caution in time sensitive situations.

BLIST
Lists all breakpoints in order of entry.
BRERE <line number> [<line number> ...]

Sets breakpoints at specified line numbers. Any number of breakpoints
may be specified, separated by commas.

LINERERE

Clears all breakpoints.

18-1

KEYBOARD IS - Using A Terminal

The FORTH/Assembler ROM provides a set of keywords that permit keyboard entries to originate from
devices on the HP-IL loop. These keywords are EZCHFE, EEYBORED 1=, and
FESET ESCAHFE. The KEYEDOARD IS statement assigns one HP-IL device to act as a remote
keyboard for the HP-71. The EZIHFE statement specifies that a particular one-character escape
sequence received by the HP-71 from the current F.EYEIARD 1% device will be replaced by an HP-71
key code. This permits mapping of terminal-specific features to the HP-71 keyboard. The

EESET ESCHFPE statement clears out any existing mapping specified by E=CHFE statements. Refer to
the FORTH/Assembler ROM Owner’s Manual for a detailed discussion of these keywords.

19.1 KEYBOARD IS With HP-150

The following routine is useful when configuring an HP-150 as a remote keyboard and display device.

18 IF POSCVERE, "EBD: "2=8 THEH BEEF 1458,.8688 & DISF "Hesd EEYE
COARD lex File!™ ® EMHD

S8 RESET ESCRAFE @ REAL A ® DIM EF 1 Ef=CHREC2T

AR O'RSZI2WT s CLEAR fRS222 B REMOTE & QUTFUT fRS222 3 "SEQ;SES

®LOCAL
: -rIILL' "raaoEty BOIF R 22% THEW 'RES2ZZWT' ELSE A=DEVADDREY

g
Ti=s
n

56 ESCAFE "0, 165 B ESCAPE "M", 185 & ESCAPE "R", 165 | Ieor
66 ESCAFE "i". 182 | Back
PROESCAFE "DV, 47 B ESCAPE "CU, 45 @ ESCAPE "A",S8 @ ESCAPE "B

i
i
l_i‘i T T U A0
ii
1
m

it

i EIEHFE "ptedz @ ESCAFE "at, 89 @ ESCAPE "r " 156 EzCRFE "=
182 0 HTTHY, FETCHSC Hr1~q|l i

HE ESCHPE "R, 1EE B OESCAFE "o, 159 @ ESCAFE "w', 16E ® ESCAFE
Wty 1EE 1 To fﬁinfﬁquH1rHH

TEg EsCAFE "'y B EZCAFE "F".d4e @ ESCAFE O "JY. 187 @ ESCARE
MR, 1ET Fun.*Llnwngine

18 EzCARE " PoHut o

28 OUTRUT s H 2f

QUTFUT A

OUTFUT @A

OUTFUT &R

OUTFUT & H

OQUTFUT :H

OUTFUT @A

OUTFUT :H

OUTFUT @/

FeqliE e

l: 2l Attt NI
edzl. FETOH
Sl L Commarne 5
Su EA H seapt Chogolel

H 11-:! I
it}

B
3 %
.l

O i
3] o 800

T8 (g e i
et 321

T
et

FN

F s Lt t
2l Far Fight
L~:.'L Bt focam

LiETs D Set smtrap +n wMit eszcape

T
st

LT =l T
SRR T DU]
x5

=2 °8S =3 =3 ‘=3 =S WS B3 =8 3

R e ey
KN
L B | s:: |:||
]
m._LHHH,_LHHH

—

HROH

[BRI
-
= i

L]

E
1

1. it

19-1

KEYBOARD IS - Using A Terminal

216
22K

et

Lo OFF = -
DISPLAY IS sRS222 & EEYEOARRD IS tRLZ2zE

Y

19.2 KEYBOARD IS With HP-2648 Terminal

The following routine will configure an HP-2648 terminal as the remote keyboard. The terminal cursor
keys are active, as are the insert/delete character keys. Pressing ESC twice gives the [ATTN] keystroke.
[CTLIIBACKSPACE] gives the [BACK] character. [f1] is [ATTN], [f2] is FETCH, [f3] is the command
stack, [f4] is the user mode ID COMMANDS] is g[*], [f6] is gl<], [f7] is g[>], and [f8] is g[v].

The [CLEAR DSPLY] key also gives the —|.I[4E. command. The ’home’ key recalls the first line of the
current workfile, and [CTL] home’ key recalls the last line of the current workfile.

FESET ESCAFPE @ REEAL
REeasWT s CLERAR § R
it R LOCHL

:'F'I:ILL'i TEaZEIy O OIF A#9EY THEH 'REE22ZWUTY ELSE A=DEVADDE

A @ OITM Ef B Ef=CHREFCCZ
o B OREMOTE @ QUTFUT sRS2Z2 5 "sEos SR

= 3 0 P
Do R L I o e

;

f

l

3 [

—

o

—

(I S SN K
— e [
e

gty 1Es B ESCARE "H". 185 B ESCAFE "R". 185 ! Terae I
ewit insert)
u'n 1”- !

= - BEaclk

A F IHkaﬁT},43 I Attt

TEOESC B R E ESCARE "CU.dm @ ESCAPE "A". 58 R ESCAFE "B
"yEB1 D Left, F14h a LIE e Do

=8 ESCHFE “F A3 R ESCARPE "gqU,89 @ ESCAFE "r". 158 B BESCAFE "
=", 189 I ALt n.FETOH. Crds. lser

28 ESCHAFE "t'l.1lel W ESCARE "u". 159 @ ESCAFPE "w" 168 @B ESCAFE

v TDP,' ?;qrn*fnﬂ

ﬁn H!!WMj

W' 153 0
183 ESCAFE "hR". B ESCARE "FUeles b Top. Bobtom
118 ESCAPE "1". 182 B ESCAFE ”E“y4ﬁ B OESCARE "ML 1Y B ESCAFE
" "nlﬁi‘" ISt hun:.lerua -l i

T

LR IR ey
T
I
!
W

"$U, 52 1 Auto
AUTFUT FEF5 0 e
DLTFUT
OUTFUT
OLUTFUT
OUTFUT

i e 00 G
IR RN

LI I R I I
4
-
ﬂ

DUTF I_I T
DUTFUT
HHTFHT

Tl i
Y i

Pl ol b= bt bt e et et e
ICEJJIHD:DJBIJI

oLy transmit o escape S8

R

DRRCHE N O B S o B O B B Y

Pl [od T

I.m . o
B ODISPLAY IS sRE222 B KEYEORARED Iz sRz2zd

19-2

KEYBOARD IS - Using A Terminal

19.3 Disabling KEYBOARD IS

Use the following routine when turning off the remote keyboard:

¢ITE SDISFLAY B EEYBOARRED IH o+ @ RESET ESCHFPE
21 @ FEESET HFIL

19-3

SECTION

20

Graphics

The LCD display of the HP-71 may be used to depict graphic images using the 11 =ZF statement. The
contents of the LCD display may be read to a string with the 3[1I ZF ¥ statement. The HP-71 Owner’s
Manual (p. 137) has a discussion of these statements. Several tools are provided to assist in preparation of
a graphics image. They are a graphics editor, a keyword FATTEFRHM#¥, and the keywords =EIT and
SEIT#, found in the STRINGLX file (see the chapter String Functions.)

20.1 GEDIT - Graphics Editor

The ZEDIT program provides a facility for interactivlv creating a graphics image on the LCD. To
create an image, run LELIT T, and use redefined keys to move the cursor and set or clear points. The
following keys are active when GELII T is running:

[.] Turn pixel on
[SPC] Turn pixel off

[<] Move cursor one pixel left
[>] Move cursor one pixel right
(] Move cursor one pixel up
[v] Move cursor one pixel down

[C] Copy column, shifting display to right
[D] Delete column, shifting display to left
[G] Goto x,y location in display

[1] Insert blank column

[L] Display current location

[P] Print graphic image on ThinkJet printer

[R] Read image from file

[S] Save image to file (as 132 character string)

[Q] Exit program

20-1

Graphics

—
it

I GEDIT - Graphics Editor (Fequires HP-IL kegwordso
CHLL GEDIT @ SR GEDIT
OIM AFL1IZ221.BF0132]
OISF @ Af=GR0ISFE & ==1 B Y=0 @B FS3=FLAGAY ® FI=FLAGIS
GOISF A%
Eg="" B CFLLAG 5
Z=FLHGC@;BIT¢HUHKH$[H,H]},T)}
Ef=RF B BFLEs®1=CHEFBEIMEQR CHUMOEEL S om0y 25 00
oM TIMEFR #1,.H GOSUE 2948
Ef=KEY$ ® IF Ef="" THEH 1846
FR=FO=sc"d, SRIDCLGFO",UFRCECEELL 1001
oM P2 GOTD S8, 1° .L1,1—L1..14L1..1 K
ubﬁ
Hf[wen 1=0HRFCBIHMIOR CHUMCH
AfLHa m]1=CHREE EIHHHD'HHH'?
IF fi*“#4"“ THEH #=MO0 -2
IF Ex="#45" THEMH =S=MOD0CE
IF Ef="#50" THEH Y=MODOCY
IF E&="#51" THEH %=MODCY
QISF "SPVES "3 B GOSUE =
DISF "READ: "3 ® GOSUER S ERED O #1.E3AFE ®OGOTD 5@
AfF=FAFL1am~-118CHEF A LAFL=. 1210 @& COTO 15
AfF=R¥L 1 m~-118HFL: +1] LSHEE ®GOTO 56
JJ

0 e 0
X I IR B R B I]

T8 1T
ALY)

o HH-.._,IHH. Sy ZEE, D8, Sel, 25

et et 05700 T
Pl o= 0 T T

Al 2N e B OGOTH S8
F]JqEIHIHF'EﬁTD}} BOGOTO S8
S o I T T T

L OGOTO SA

TomoGOTO B0

TOEOGOTO SE ELSE 56

CRIHT B8 AF B OGOTO 58

— T
L% 28 %

ot

(™ 1

BN
R]

B
e

)
b

RN I e I] !_l:l l:i:l

T, T (T T,
LA I B A % B % O

.
LI I R

L_
A$=AED L, 81 TRAE0H, 18AE0H, 1311 @ GOTO SO
EIIIE;F‘ II::.::. Il; " '.I.'= II.‘ |+1
IF KEYDOMH THEM 258 ELSE 50

Pod P Pl T Pl Tl o= = =t et et
—

N e 0 P e T D 00] T U e 0

XX
ol

ot

A=MODCTHT OE-1 2y 12320+1 B Y=MODOTHT Y -1, 230 @ GOTO SE
FRIMT CHEFCZFE"=122G"iAF & GOTO 56

A=FLAGCS . MOT FLAGCS XD

IF Ex#"" THEM REETLEH

IF A THEH GDOISF EBf ELSE GDISZF AF

FETLEH

IMFUT "Files "sF#

IF FE="" THEM FOF ® GOTO 56

AHz=TGH #1 TO FE 2 RETURH

CFLAG 8 ® DISF "Dome" B FosFLAGOE, FE) B FR=FLRAGCD R ©®
EHD ZLUE

SCERLAR

IR SR R Ol O

o Tl g
R R Ry

-
et 1

=
AR R0

%

-
IR R RN

T
H
1
s

20-2

Graphics

20.2 PATTERNS

The FHTTERM# keyword returns a character string which contains the G0 I ZF# equivalent of an ascii
string in the display. The resulting string will contain 6 bytes for each character in the string argument.

SYNTAX: FHTTERHNF string expression

EXAMPLE: GDI=F FATTEREMEC"1ZE" D
HE=FATTERHFC"Hello" o

20.3 Example

A graphic image may be frozen on the left of the display with the lJIH[statement. Some
applications may find this useful when implementing a user interface. In this example, a train is created
in TS, placed in the display, and frozen in place for a prompt.

la CALL GE= B SUR GE= & OFTIOH BRZE 1
sa DIM THEO121 ® FOR I=1 ToO 12 @ RERD T @ THFLII=CHEFOTY @ HEST I
28 DATH 1aB.66, 120, 194, 0f, P8, S8, 201, Vi, V2, 200, 208, 128, 192, 12,8

w Ky £
GRT=F TE & WIMDOW 4 @ THFUT "Dest inat ton™ "y 0F
WIMOOM 1 @ OISF "Goimg to "i0F B EMD SUE

DRI R
RS

—
T T

20-3

Forth Utilities

The following is a description of a collection of utilities developed to facilitate FORTH programming and
debugging. There are five categories of words:

e Decompiling: I!M: and FZ.. These words are used to produce a map of a colon-compiled
dictionary entry, and to decompile the contents of the return stack.

e Single-stepping: EF, BREERE, COMT, FIMISH, STEF,and S57T. These words are used to
interrupt execution of a FORTH secondary word and single step each word or group of words.

e Memory examination: [ILIFF, DUMF+, LIST, ROOMY, %, and ‘=HOW. These words are used
to examine the contents of memory.

e Output: [~ [~0 0O-F, DO-F, DELAYES PAUSE, FEINT,and =K IF. These words are
used to assign the display, pause during execution, and configure the printer.

¢ Miscellaneous: EFZET, TIME, and TIMEL.

21.1 Loading FORTH Utility Files

There are three FORTH utility files: FTHIITILA, FTHUTILF, and FTHIITILZ, If you have not
established a F R THEFI file, use the F THIIT .12 file as follows:

If you have already established F I THREFM, the new words may be added with a two step procedure
from within the FORTH environment:

"FTHUTILA TAFE]" ASSEMBLE
"FTHUTILF(TRFE]" LOADF

The FTHUTILF file must be assembled first, as its words are subsequently used by words in the
FTHUTILF file.

21-1

Forth Utilities

21.2 Decompiling

UN: —>

Decompile the word following LI % in the input stream. Used in the form:

LIH% <word name>
IIH* produces a complete map of a colon-compiled dictionary entry, showing the contents of the word
header, and an addressed list of the words comprising the decompiled word’s definition. For example,

execution of

IIHs ADDE~- produces output like this:

Porods ADORE-
LFA» =@iled
HFAD Z@169
CFAY 28115
2E11A
SZALIF
ZE124

The first column of numbers show the address of each element of the word; the second column show the
content of the address. After the CFA, the content is the :FH of a FORTH word, which is also identified
by its name. From the above we can read off that the definition of HOIDFR~ is ¢+ HODE- 5~ [3

The rate at which IIM 2 displays successive words in a definition is controlled by the FHIIZELM variable.

IIH% does not necessarily give a definition listing exactly the same as the original definition, because of
the nature of certain common FORTH words. [BELIM and THEM, for example, have no compiled
representations. I3 does allow you to determine the location of these structures by displaying the
destination address for all branches. An IFF word, for example, is displayed like this:

IF to xxxxx
where xxxxx is the address of the word that will be executed next if the flag tested by IF is false.

A second class of words for which the decompilation does not match the original definition exactly
consists of words that are compiled as multiple words. Examples are [JF and L.EF%E. UF is compiled as
OWER = IF DOREOF; LERAVE is compiled as » Fx» Z0OROF ELSE (the ELZE’s here are just
unconditional branches).

Finally, LIFM: does not recognize the headerless words used in the FORTH ROM dictionary, which may
cause problems if you attempt to decompile a ROM word. In most cases, LIM3 will just display Lirik i

for a word it doesn’t know. If the unknown word advances the instruction pointer when executed, LIM 3
will get out of synch and produce garbage or hang up. The headerless words are listed in the FORTH IMS.

21-2

Forth Utilities

RS. -

Decompiles the contents of the return stack. [=. lists each item on the return stack, in bottom-to-top
order, each followed by the name of the word identified by the address. The lowest two levels, which refer
to the outer interpreter, are omitted.

21.3 Single Stepping

The words ZTEF, =%T, BEEAK, BEF, COHT, and FIMIZH enable you to interrupt a FORTH
secondary word at any point in its execution and single step each successive word or group of words in its
definition. A separate return-stack and instruction pointer environment is set up for the word, so that
you can carry out various FORTH operations between steps, and so that return-stack operations included
in the word will not confuse the normal outer interpreter. The interrupted word uses the normal data
stack, so that any operations you perform between steps must leave the stack in the state expected by the
next step.

Interrupted execution of a word /% is initiated by either STEF XXX or <address> BFERE XXX.
Both methods set up the interrupt environment, then begin executing X XX. = TEF executes only the first
word (after the " & ") in XX X’s definition; EFEME executes XXX up to <address>, or to the final " 3 "
whichever is encountered first.

Execution of an interrupted word is resumed by the words ST, DOMT, and FIMIZH. 5T executes the
next word in the definition; "1 T resumes continuous execution, stopping at the next encounter of the
breakpoint address (which can be reset with [F), or at the end of the word. FIMIZH clears any
breakpoint setting and completes execution of the word through the final " & ".

Each time a word is interrupted, a user-selectable vectored word is executed. The [ZFF1 of the vectored
word is stored in the variable S TCILIT. The default %= TOLT word is =4, which displays the stack in
bottom-to-top order (reverse of . =) within square brackets [].

Single stepping proceeds through a word’s definition at the level of the definition - each secondary in the

definition is executed entirely as a single step. ==7T does not wander up and down through the various
levels of secondaries in a definition. EFEFME and CUHT will stop at a breakpoint address set at any level,
but a subsequent =%T will halt back at the top-level of the original word’s definition. You can

effectively single-step through lower levels by setting breakpoints in the low level definition and using

T

The single-step words use two user variables during their execution. #.2FE7F is used to pass the address
of the start of the single step environment to the single step primitives. #: k5 which is also used by
the colon compiler, is used to hold the current breakpoint address. FORTH words that are tested with
EREFE or %% T must not disturb the contents of these variables. Furthermore, they must not disturb the
return stack pointer stored in FFE, nor move the return stack itself. In particular, do rot EFEFE or

55T words containing LFED or SHEITHE at any level.

BP n—»

Set a breakpoint at address n, for use with COHT.

21-3

Forth Utilities

BREAK h—>

Used in the form <addr> BEREERE <wordname>.

Create a single step environment for the word named next, then execute the word, stopping when the
instruction pointer reaches the address on the top of the data stack. The addresses for EFEME can be
obtained using |!M: on the word to be single stepped. EFEME can stop at any word address in a
definition after the first address following the & (use “TEF if you want to stop on the first address) and
before the final 3 (stopping on the i is the same as executing the full word).

CONT -

Resume execution of a word that was interrupted with ZTEF, EREFE, or Z%T. Execute up to the
breakpoint address, or to the final " & " whichever comes first.

FINISH -

Complete execution of an interrupted word through the final " 3

SST -

Display the name of the word identified by the next address in the current single-step word’s definition,
then execute the named word. Then execute the word whose IZFF is stored in the variable S=TOLT,

The default =5 TOUT word is 5. which displays the stack in bottom-to-top order (reverse of . =).

STEP —

Used in the form S TEF <wordname>.
Create a single step environment for the word named next, then =5 7T the first word following the & in
the word’s definition.

21-4

Forth Utilities

21.4 Memory Examination

DUMP addr n —»

Display » nibbles, starting at addr, as ASCII hex characters.

DUMP+ addr n — addr+n

Display » nibbles, starting at addr, as ASCII hex characters. Leave the next address (addr+n) on the stack.

LIST -

Display a list of user-dictionary words, starting with the most recently created.

ROOM? -

Display the number of nibbles available in the F O THRERM file.

S. —

Display the data stack contents, in bottom first, top last order (opposite of . ‘=), inside [] brackets.

SHOW —» addr+5n

Display the address and contents of n consecutive 5-nibble cells, starting at addr. Leave the next address
on the stack. Display time is controlled by FHIIZELEM.

21-5

Forth Utilities

21.5 Output

D-* —

Execute "[DIGFLAY Io " BRZICH

D-D —>

Execute "[I%ZFLAY Tm DISFLAY" BRZIOCH

D-P —>

Execute "DIZFLAY In PRIMTERE" BARAZICE

D-R —

Execute "DISZFLAY Tim EzZza" BRSIOE

DELAYO0O -

Execute "[DELAY B.8" BAZIC:N

PAUSE -

Pause for the number of milliseconds stored in the variable FHIISELER. (Does an empty [t LOOF).
Intended for use with outputs to the HP-71 display.

PAUSELEN —> addr

Return the address of the variable containing the delay in milliseconds produced by FFHLIZE.

21-6

Forth Utilities

PRINT -

Used in the form F'FIMT xxxxx, which causes the display output of the FORTH word xxxxx to be
directed to the printer (: FEIMTER ©11). The original [1IZFI_AY 15 device is restored automatically
after xxxxx has finished execution. FEIMT LIMs FRELD, for example, will print the decompilation of
FFRELD on a printer instead of the display.

SKIP -

Send E=C %1 1L tothe s FEIMTEFR to set perforation skip mode.

21.6 Miscellaneous

BASE? -

Display the current base in decimal.

TIME -

Pushes the current HP-71 clock time onto the floating point stack. Time is expressed in seconds from
midnight, rounded to the nearest .01 second.

TIMED -

Used in the form T IMELl xxxx, which displays the execution time of the word xxxx in seconds (to the
nearest . 01 second). For timing floating point words, be aware that T I[E[l will change the T-register on
input, and the T- and Z- registers on output.

21-7

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

[ﬁ'ﬂ HEWLETT

PACKARD

00071-90097 Printed in U.S.A.

	Cover
	Table of Contents
	Section 1: Introduction
	Section 2: Version Identification
	Section 3: Working Environment
	3.1 Printer Assignments
	3.2 Required Modules
	3.3 Card Reader
	3.4 Memory Requirements

	Section 4: User Environment Preservation
	4.1 Variables
	4.2 Flags
	4.3 I/O Assignments
	4.4 Display Attributes
	4.5 Alternate Character Set
	4.6 [ATTN] Key
	4.7 Numeric Settings
	4.8 Key Files
	4.9 Manual Consideration

	Section 5: Messages To The User
	Section 6: Waiting For The User: KEYWAIT$
	Section 7: Option Selection
	7.1 Command Entries
	7.2 Immediate Execute Menus
	7.3 Fixed Option Menus

	Section 8: Help!
	Section 9: Input Routines
	9.1 Cursor Control
	9.2 Numeric Entry
	9.3 Numeric Entry With Option
	9.4 String Entry
	9.5 Yes or No?
	9.6 Protected Field Entry

	Section 10: INPUT Alternative: INLINE
	Section 11: File Name Verification
	11.1 File Names For Loading
	11.2 File Names For Saving
	11.3 Names Of Subprograms

	Section 12: Output Routines
	12.1 Configuration And Data Volume
	12.2 Some HP Printer Features
	12.3 Multiple Results In The LCD
	12.4 Large Results In The LCD
	12.5 Numeric Formatting

	Section 13: Internal Calculations
	13.1 Changing Array Sizes
	13.2 Adding And Deleting Rows
	13.3 Adding And Deleting Columns

	Section 14: Error Messages: MSG$ & Translator
	14.1 MSG$
	14.2 Translators

	Section 15: Speed and Space
	15.1 Variable Names
	15.2 Line References
	15.3 Multi-line Statements
	15.4 Loops
	15.5 Clearing Arrays and Strings
	15.6 Logical Expressions
	15.7 Device Addressing

	Section 16: HPAF File Standard
	16.1 Header information
	16.2 Data records
	16.3 Descriptor block

	Section 17: String Functions
	17.1 MEMBER
	17.2 LTRIM$, RTRIM$, TRIM$
	17.3 LWE$, LWRC$
	17.4 REV$
	17.5 ROT$
	17.6 RPT$
	17.7 SBIT
	17.8 SBIT$
	17.9 SPAN

	Section 18: BREAKPT: BASIC Breakpoint System
	Section 19: KEYBOARD IS - Using A Terminal
	19.1 KEYBOARD IS With HP-150
	19.2 KEYBOARD IS With HP-2648 Terminal
	19.3 Disabling KEYBOARD IS

	Section 20: Graphics
	20.1 GEDIT - Graphics Editor
	20.2 PATTERN$
	20.3 Example

	Section 21: Forth Utilities
	21.1 Loading FORTH Utility Files
	21.2 Decompiling
	21.3 Single Stepping
	21.4 Memory Examination
	21.5 Output
	21.6 Miscellaneous

