
[/ excinro

HP-71

Software Developers’ Handbook

[fip HEWLETT
PACKARD

Portable Computer Division

Copyright © 1984 HEWLETT-PACKARD COMPANY

NOTE

Hewlett-Packard Company makes no express or implied warranty with

regard to the keystroke procedures and program material offered or their

merchantability or their fitness for any particular purpose. The keystroke

procedures and program material are made available solely on an "as is"

basis, and the entire risk as to their quality and performance is with the

user. Should the keystroke procedures or program material prove defective,

the user (and not Hewlett-Packard Company nor any other party) shall

bear the entire cost of all necessary correction and all incidental or

consequential damages. Hewlett-Packard Company shali not be liable for

any incidental or consequential damages in connection with or arising out

of the furnishing, use, or performance of the keystroke procedures or

program material.

Table of Contents

Section 1

INntrodUuctioN1-1

Section 2

Version Identification2-1

Section 3

Working Environment

3.1 Printer ASSIGNMENTS3-1

3.2 Required Modules3-2

3.3 Card Reader3-2

3.4 Memory ReQUITEMENTS3-2

Section 4

User Environment Preservation

4.1 Variables.4-1

G Flags .oo4-2

4.3 01/0 ASSIGNIMENTS. . ..ot4-3
4.4 Display AttribUtes.4-3

4.5 Alternate Character Set4-4
4.6 [ATTN KeY..o4-4

4.7 NUMETIC StIS ...oee e ee4-4

4. 8 Key Files4-5

4.9 Manual Considerationt4-6

Section 5

Messages To The Useree5-1

Section 6

Waiting For The User: KEYWAITS6-1

Section 7

Option Selection

7.1 Command ENtIIeS . .. oooot7-1

7.2 Immediate EXECULe MEIUS. . - o v v oot e e e e e e e ee7-2

7.3 Fixed OPtion MEIUSottt ettt et e e e e e e e e e e ee7-3

Table of Contents

Section 8

Helpl..8-1

Section 9
Input Routines

0. 1 CUursor Controli9-1

0. 2 NUMETIC Entry . .ooe9-1
9.3 Numeric Entry With Optioneee9-3
0.4 String Entry ...o9-4

0. S YES OF NOT ..o9-5

9.6 Protected Field Entry.e9-6

Section 10

INPUT Alternative: INLINEoes10-1

Section 11

File Name Verification

11.1 File Names FOr LOading - - - - - - oottt ettt e e e e e e e eee11-1
11.2 File Names FOr Saving. - - - - o oottt ettt e e et e e e e e e e e e e e e e e ee11-3
11.3 Names Of SUDPrOgIramsootttettte11-4

Section 12

Output Routines

12.1 Configuration And Data VOIUME - - . . .ooo12-1
12.2Some HP Printer Features.o ootttet e e e e e e e e ee12-2

12.3 Multiple Results In The LCDoie12-3

12.4 Large Results In The LCDooe12-4

12. 5 Numeric FOrmatting. - -oooie12-4

Section 13

Internal Calculations

13.1 Changing ATTay SIZES. - -« oottt et e et et e e e ee13-1

13.2 Adding And Deleting ROWSoo13-1

13.3 Adding And Deleting COIUIMNS - - - .« ooottt13-2

Section 14

Error Messages: MSG$ & Translator

LA T MSGS - - - - oo e e ee14-1
14. 2 Translators - - -« o oottt eee e eee14-2

Table of Contents

Section 1§
Speed and Space

15, 1 Variable Names15-1

15,2 Line References.15-1

15.3 Multi-line Statementse15-1

L S4 LO0DS - .oo15-2

15.5 Clearing Arrays and StrIngs15-2

15.6 Logical EXPressIONSe15-2

15.7 Device AdAressing15-3

Section 16

HPAF File Standard

16.1 Header information16-2

16.2 Data 1eCOTASoot16-2

16. 3 Descriptor BloCK16-3

Section 17
String Functions

L7 1 MEMBER . .ooo17-1
17.2 LTRIMS, RTRIMS, TRIMS .oot17-2
173 LWES, LWRCSoot17-3
17 4 REVSoo17-4
L7 S ROTS o oooo17-5
176 RPTS .« oooo17-6
LT T SBIT v oo e ee17-7
ARo517-8
179 SPAN .« o ooe17-9

Section 18
BREAKPT: BASIC Breakpoint System,18-1

Section 19

KEYBOARD IS - Using A Terminal

19.1 KEYBOARD IS With HP-150. ..ooeeee19-1

19.2 KEYBOARD IS With HP-2648 Terminaloee19-2

19.3 Disabling KEYBOARD ISo19-3

Section 20

Graphics

20.1 GEDIT - Graphics Editor. . . . oooottt20-1
20. 2 PATTERNS.20-3

20. 3 EXAMIPIE - - oot20-3

Table of Contents

Section 21

Forth Utilities

21.1 Loading FORTH UtIlity FIlesottteeee21-1
21.2 DECOMPIIINIE . - . oo e ettt et e eee21-2
21,3 SINGLE StEPDIME. - - - o e e et ettte e e e ee21-3
21.4 Memory EXamination21-5

2. S DUPUL - - -et21-6
21.6 MISCEIIANEBOUS - -« - o v et et et e e e e ees,21-7

SECTION

Introduction -
1

This document is a ’cookbook’ for applications programmers working with the HP-71. Two goals are

envisioned: first to serve as a timesaver, and second to suggest a measure of consistency among programs

written for the HP-71. While there is no hope of addressing all possible applications on the HP-71,

common subjects such as user interface, environment preservation, and error trapping are discussed. The

specifics of each application are left to the programmer.

1-1

1R

2
 Version ldentification

Any BASIC, BIN, or LEX file which is a) likely to hit a wide market, b) not so trivial as to be 100%
perfect, and c¢) likely to have software written to interface to it, is a candidate for requiring version

numbering. Like the mainframe version number (eg: 1 EEEE) a version number is useful in identifying
the version of a piece of software which may go through several revisions. Service and support personnel

may need to know which version of software is in use to help answer questions.

LEX files contain a poll handler which answers the VERS$ poll. For instance, the KEYBOARD Lex file

returns the string "F.E[1% H". For more information about the VERS$ poll, refer to the Software Internal
Design Specification, Volume I.

BASIC and BIN files should include a subprogram named “'EI 6 that returns the version string. For
example:

SUES WERECHE D B oRE="aalt oRS

This occupies 34 bytes. A L:Fl.l. statement may be used to determine the version of the software as
follows:

CHLL WERCHEY TH <file name>

Nonexecutable files (eg. DATA) cannot respond to the VERS$ poll, or contain a subprogram. If such a file

is revised, some method of identifying the version should be provided, such as a dedicated record

containing a version number. If a data file is in the HPAF format, a tag in the descriptor block might be

used to contain a version number. Section 16 contains a description of the HPAF file format.

 Working Environment

The "working environment" defines the physical environment, hardware and software configuration under

which tasks are performed. This "environment" may have varying impact upon software considerations.

For instance, if the HP-71 is being built into an instrument as a "front panel”, the hardware configuration

is likely to remain fixed, with only dedicated software in use. At the other end of the scale, a mechanical

application program might be found in a number of different situations, from the classroom to the

drafting table to the machine shop. In each of these situations the number or type of peripherals attached

to the HP-71 may be different. Software routines which produce reports may, under some conditions,

need to be sensitive to varying configurations.

3.1 Printer Assignments

When different printers may be used, a distinction between printer types is desirable. The following

subprogram PRTYPE examines the current printer assignment and returns:

A = 0 Where the printer is LCD, *, or there is no HP-IL interface.

A = 1 Where the printer is a 24-column strip printer, or 32-column

video interface.

A = 2 For anything else.

D$ = Assignment string

16 SUE FRTYPE A, DE
SEOOH ERROR GOTO 156
B0 RE=FEERECEFTACY, 10 @ IF BRITOHTOCAE: 30 THEH 156
40 RESTORE T0 @ PRIMT "'
56 RE=FEEREC "EFTEA", 20 B IF PE="BEF" OR AE="FFF" THEM 138
EE FE=AED S TRAEDE, PIRAEL 1, 1] B AsHTOCORE:
FE L=A DOIY 1884+] ® IF AE[21="008" THEHM 156
S0 F=ETHARD R, 31 0B THAMDOR, 9920 DI 52 1RE
A5 DE=PEEEECUEFEOCY, 20 B ST
186 IF Lx1 THEM DEsSTRECATL": "RETRECLY ELEE DE=STRECA
116 FOKE "2FEDC", GF
LE6 GOTO 1460
LEE R=@ @ DEs="s" @ GOTO 166
LebEt A=0EYAT
156 IF F=&2 OF =48 THEM As1 ELSE Fms@
166 OFF ERROR @ ERHDSLUE

3-1

Working Environment

PRTYPE provides a non-intrusive examination of the printer assignment. The principal advantage is that

output routines can customize themselves to the existing machine configuration without disturbing the

configuration or asking the user any questions. Depending upon the result from a call to PRTYPE, the

software may choose to send results to the printer, or send a line at a time to the display, waiting for a

keystroke between results to avoid hurrying the user.

3.2 Required Modules

In cases where an application pac requires the presence of another module, a test should be made early on

to verify that module’s presence. This avoids the situation where an application halts at some line in a

program with a mainframe error, leaving the user suspended in an environment with little hope of clean

departure.

A simple test involves examining the string returned by the “EI# function for that module. For
instance, suppose you wish to verify that the MATH module is in the machine:

SACOTF HOT POSOYERE." MATH: "2 THEH DISF "Moo FMATH Pac' © GOTO S9@

3.3 Card Reader

If a card reader is required, its presence may be detected by examining location 2C014. A non-zero value

at this location indicates a card reader 1s installed:

lzg IR FEERESC"Z2CEAL14, 1a="0" THEH DI=F "Ho Card Esadser

3.4 Memory Requirements

Calculatirg the amount of memory needed to run an application at any given time can be difficult. One

procedure for estimating memory requirements involves a trick:

1) Execute a =M1 HL.L. and a DESTEOY HLL. to collapse environments and variables. Purge
any key assignments that may be established within the program.

2) Do a IME 1, and write this figure down.

3) Run the application, and pause at a place you suspect takes the most memory. Do a [lk:I' again.

The difference between the two results represents the amount of memory used by the program at that

point. Next compute an overhead figure to accomodate unexpected events, such as interrupt processing,

string operations, and so on. This 'fudge factor’ is an insurance policy against unexpected program crashes,

such as interrupts from other pacs, larger than expected buffer requirements, and so on.

The ’fudge factor’ may vary in size from application to application. Actions that take lots of memory

include concatenation of large strings, calls to user defined functions: FHMHCH s ks [1E 3 calls to other

3-2

Working Environment

sub-programs, use of [[1HI:l= statements, and open file channels. Some experimentation may be required
to determine an appropriate 'fudge factor’. In previous applications, 300 bytes seems to have been a

reasonable size.

In cases where a file is to be added to main memory (file: [l I), a check should be made to ensure that
sufficient memory exists prior to creation. Simply putting an error trap around aFEEHATE and a MEM
test afterwards has proven dangerous. Instances have occurred where sufficient memory was available for

file creation, but the program crashed immediatly thereafter due to lack of scratch memory for normal

execution. The amount of available memory for file creation should be equal to the file size plus the

fudge factor’.

3-3

SECTION

4
 User Environment Preservation

Preserving the user’s environment can be a fairly difficult issue, depending upon the application. In the

case where the HP-71 is being used in a dedicated environment, for one purpose only, there may be little

need to worry. In cases where an application is being marketed as a general purpose solution, careful

preservation of the environment is extremely important. The HP-71 has many settings that control

display attributes, math functions, and so on. These settings are ’global’ in nature - they affect all

programs and actions. In addition, variables are global, so they might be used by the user to store personal

information. It is inappropriate to destroy the user’s information.

4.1 Variables

The simplest way to preserve user variables i1s to run the new application i1n its own subprogram

environment. Create a subprogram with the same name as the user would type. For example:

File: HLIOITT

e U HUDIT Copuriaght Cox LHAF Trno. s 15960

S CHLL HUDTT
=S8 =l AUDIT
48 ITF MEM<=Z68 THEH DISF MSGEC24 @ GOTO 2450

gB BEMD =L

In this case, the user can press [RUN] when the file pointer indicates the file HIILII T, or he can type
CHLL FHUDTIT or ELIM HLUDITT. When FILILII T terminates, the user’s environment is restored, along
with his variables.

User Environment Preservation

4.2 Flags

Although the application is running within its own environment, it is vital to remember that system flags

(=64 to -1) and user flags (0 to 63) are global - their states are the same regardless of which environment

1s active. There are two ways to preserve these flags - individually, or as a group. To preserve an

individual flag, allocate an integer and store the old value of the flag there until it can be restored.

Example:

La=FLHGEC-1412 Set quiet mode, saving old value in F5
=T Perform questionable operation
=FLHGET 14 F5 Restore original value of flag -1.

-
o
d
1
t

f
r
e
t
e
l
e
l

o
t
=

T
T
,

e
i

T
T

.'_
rs
n

The system flags are located at 2F6D9(16 nibbles), and the user flags are located at 2F6E9 (16 nibbles).

The IEEE traps are located after the flags at 2F6F9 (S nibbles). If an application is going to work with a

large number of system flags, they can be saved as a group:

HEODIM FefFlSlaFYPFL1alaFEFLE] Tosave RAM, dimension small strings
1l FefF=REERF " 2Fall=o5 Save user-settable system flags
118 FyYdE=FEEEF" 2FaE2" . 160 Save user flags
128 FefF=FEEEF" 2FaF2" 50 Save IEEE traps

1lOIM F9FE0a7] Create on string for all flags
118 F9f=FEEEF O2Rl @y Save all flags in the same string

When the program terminates, restore the flags with a poke:

e FORE "2FallstY Restore original flag values

Note that using F'EEF and FLEE for preserving and setting numerous flags results in a significant code
saving over the same procedure using I-F L.FH: and %F L H(:. For instance, if an application needs to assert
quiet mode and continuous operation, leaving other system settings in their default (power on) settings:

SR FRF=REEEEC2Rs By B FORE " EFel s T EEEEEn

-instead of -

SEE Faf=REEREFRC SRSy By o SRLHG L e CFLAG -2 SRLHG -

S1E FOR T=-21 b -3 CFLHG T MHEST T

4-2

User Environment Preservation

4.3 I/0 Assignments

If the application requires changing I/0O assignments, the FFIMTERE I3 and DIZFLAY I3
assignments may be preserved and restored.

To save:

DISPLAY IS: /E [Hf=REERFC"ZFFR0M, 72

1
tPRINTER IS: =B F9f=PFEERFO"Z2FTR4" .70

KEYBOARD IS: S E'k=pFEREEC"SFTSR V0

To restore:

DISPLAY IS: ‘waide FORE "ZFslD

Al FOREE "ZFVELTLTSY R RESTORE IO

PRINTER IS: bk FOEE "27wd 'y ok

KEYBOARD IS: “ddid FOEE "ZFV=BE"E9FE B FOEE "2FFHC" "@"

Another approach to preserving the printer assignment might include prompting the user for alternate

assignment. In the case where having a more "human readable" representation of the printer assignment

is desired, use the subprogram FFET%'FE (in chapter 2).

4.4 Display Attributes

Display attributes such as MIHDOM. DELAY. WIDOTH. FHIDTHs and EMOLIMHE may be
preserved and restored. Use [FEEFEand FIEE to preserve these settings.

Address Length Description

2F471
2F946
2F94F
2F3958
2F95A

Window start and length

Scroll and delay rate timer

Display width

Printer width

ENDLINE length and charactersN
P

D
A

(Lowercase mode is system flag =139)

4-3

User Environment Preservation

4.5 Alternate Character Set

Characters with ASCII character codes from 128 through 255 may be redefined by the user to represent

alternate forms, or letters. If an application needs to define some alternate characters, any existing

character definitions should be saved and restored.

1100 DIM CEILEMCCHARSETSY] B Ci=rHARSETS

S999 CHARSET ©fF © EMD

4.6 [ATTN] Key

The [ATTN] key may be locked out, preventing the user from suspending the program. There are two

methods of locking the [ATTN] key: redefining the key and using a [*[JFE statement.

 CAUTION DISABLE: [LkEE "ZF441"."F

ENABLE: FOEE "2F441","a"

The FIEE statement will prevent the [ATTN] key from suspending a program. In the event of
catastrophe, an I1 T: 1 will usually bring back the HP-71.

To prevent the [ATTN] key from suspending an executing IMHFILIT statement, use a [lEF KEY
assignment, eg: [IEF FEY "#4:2"4 """ 3 . In this case the user’s keys file will need to be preserved and
restored.

Past experience indicates that if the [ATTN] key is to be locked out, both methods should be used.

4.7 Numeric Settings

The settings that control the format of numbers, I 1, “T[I, and EMiz may be preserved and restored.
These settings are controlled by system flags. A quick way to preserve them is with a FEEF:

A FEE=FEEKEC"EFA00 B0 B OETD B AfF=STREOG: © FORKE "ZFED0C",F5E

4-4

User Environment Preservation

4.8 Key Files

An application that redefines the keyboard will have to preserve and restore the user’s key definitions.

Several existing pacs have dealt with this issue: Finance, Curve Fit, and Text Editing. In each case, the

current keys (if they exist) are kept in a temporary file "lI'=EFEEYS". To prevent any chance of a
program ’crash’ leaving the user suspended with a redefined keyboard, restrict the duration of redefinition

as much as possible. For example:

i
d I=FLAGC=1.12 @ IT1=FLAGI-9,12 | Set quiet mode. wuser mods

FLIFGE USEREEYS @ O EREOER GOTD 1326
FERAME EEYS TO USEREREYS
MERGE FARCEESYS & O ERREOER GOTD 156 0 FOKE "2F441""F"
OISF MSGECIey ® ITHFUT IF

i
i
l
e
d

—a
da
’

e
t

1

0
o

1
0
o
=
T

1
'
_
1
—

‘e
na
le
’

 *
em
ad
a

W OOFF ERECE B FLUEGE EEYZ B OM EREOE GOTD 17E
i REMAME SEREEYS TO KEYS
1V FORE "ZF441", "@t, o GOTO "FROCESS!
1A DIsF BEREME B GOTO 146
L PHREOCESS

This routine is useful when entering a string or responding to hidden key definitions. For instance, with

this routine the user could either enter a string, or press a previously defined key to branch to another
w |

part of the program. This is one instance where key definitions terminated with a colon ': are very

handy. Suppose the following keys are defined:

DEF EEY "'y "acddy'
DEF EEY '"—'y "mubiy 1t
ODEF EEY "F@E', "' Lock out USER key
DEF EEY "#HE5E, Lock out [*]
DEF EESY "HS1 . "' Lock out [v]

If the user presses the [+] key, I$ would take the value i1l 1| and the display would remain unchanged.
Likewise, if the user presses the [-] key, I$ would take the value sLikxv 1. If needed, the contents of the
display after the prompt can be read with the [1] =[¥ statement.

NOTE

In the above example, the USER mode key and the keys for the command

stack have been ’locked out’. While each application has different

requirements, there may be one or more keys which should be locked out to

provide a ’cleaner’ interface. This merits careful examination.

4-5

User Environment Preservation

When defining keys for an application, keep in mind that a foreign language might use a different letter

for a certain response, so ["=5# should supply the definitions. For example, if you want [Y] to display the
word "Yes", use:

18 DEF EEY MEGECLI4Z28e 1201, 11 MaGECLaZ0e] by

instead of:

G1E DEF EEY "y . "

i
1 "

3

This technique depends on each option having a different letter for each
response. When translaiing an application ensure that each command in a

prompt begins with a unique letter!

4.9 Manual Consideration

While an application may preserve global system settings, it is still important to indicate their use in the

owner’s manual. In the event of a breakdown of the software, the user should be able to recover his
environment with help from the manual. Information in the manual should include a list of settings that

are changed and a list of any temporary files that are created.

4-6

Messages To The User

Prompts, status messages, and error messages destined for the LCD should be easy to understand and

spelled correctly. When shortening a message, do not introduce ambiguity by eliminating too many

words. Also, to shorten individual words, omit as few letters as possible. Try to avoid cryptic messages. In

addition, messages should fit within the display window.

The following is a guideline for messages in the display:

1) A question mark implies that some response is required:

If a cursor is present, the entry is terminated with the [ENDLINE] keystroke (such as file
name entry).

If no cursor is present, the first letter of each word denotes the appropriate key to press. The

first letter should be capitalized, the rest should be in lowercase.

2) If a long operation is in progress, a status message is suggested. No response is required. For

long calculations, use "Working...".

3) Use mainframe messages as much as possible, or use similar internal words.

Some examples:

 Status message

Workimng. « .

oA ireg. .. Status message

Oata Edit Fit Chait™ Immediate execute menu (no cursor)

File mname? Prompt with cursor

WHEHIHG: Low Yoltage Warning message

5-1

Messages To The User

BERS Undert Low Foumd Warning message

EREOE: Sero Toleramos Errormessage

ERE: Inmsutticient Mem Error message

e ResultTotal=s 247, 2z P

If an application is destined for a world market, ['':3% should be used to generate all messages (and all
comparison strings for incoming messages.) The [1=13# keyword fetches messages from a LEX file table,
allowing them to be accessed by number. More importantly, [1::0:¥ performs a translating function. For
example, the message

Mork img. o .

could be displayed with:

g DTSR MoadE o Ladese

so that a localized Spanish language version of the application pac would display:

Trabajarndo. ..

5-2

 Waiting For The User: KEYWAITS$

There are many circumstances where the HP-71 is doing little more than sitting, waiting for a keystroke.

During these times, the machine is still awake, consuming battery power, while accomplishing little for the

user. A keyword called F.EYIMAI T# is available, and presents some unique opportunities. F.EYMATT#
places the HP-71 into a low-power state until a key is pressed, then returns that key in the same format

as KEY'¥. IMPORTANT: If the attention key is not disabled, KEVIMAIT# will return "#4 32" but the
machine will still pause.

Example:

G50 KE=KEYE ® IF K$="" THEM 35E

isreplaced by: BHE KE=REVHAITS

The key buffer can contain up to 15 keys or keystroke combinations. The format in which the key data

is returned is the same as that for F.E2"":. The string returned for a given key is determined as follows:

e If there is a single ASCII character that uniquely identifies the key, F.E%' 1MH I T# returns this
character. For example, I! identifies the [Q] key and =] identifies the [g]-shifted [Q] key.

e If the key is an [f]-shifted or [g]-shifted key, and the key’s primary function is uniquely
identified by a single ASCII character, then FEIMFH I T# returns a two-character string. This
string consists of ¥ or o followed by the corresponding primary character. For example, w35 is
the [g]-shift of the [0] key.

o If neither of the above apply, F-ETMHIT# returns # followed by the decimal numbered key
code for that key. For example, F.E“MATTH returns "#<4" for the [RUN] key.

The |..[statement does not affect the returned string.

 Option Selection

At first appearance, the 22-character display on the HP-71 might seem to be an obstacle to creating

friendly menus. Actually the architecture of the HP-71 provides for several possibilities. Regardless of

the specific application, option selection in a handheld/portable environment should be reduced to the

bare minimum of keystrokes. Prompts in the display should be as legible as possible.

7.1 Command Entries

When an application is command driven, (the Text Editor, for example), consistency in movement between

states becomes of paramount importance. If a command is defined in some places as a handy ’escape’ key,

it should work the same way at all times. Entries should be case independent if possible, so that

commands work regardless of the case of the entry. If possible, build the display prompt with some ’clue’

as to the state of the program. For instance, the Text Editor uses different prompts between command

and editing levels.

Some examples:

Input/Result

Recording optiont Command prompt

Lete] SHE Cofmand? Command prompt w/ status

7-1

Option Selection

7.2 Immediate Execute Menus

When a tree-structure of options is used, immediate execute menus should be used. This reduces the
selection of an option to a single keystroke. For example:

1 |Data Edit Report Quit?

 Editor L END

2 |Load Save Print Quit? 3 |Weekly Monthly Yearly?

In each display, the key choices are indicated by the capital letters. Pressing the [D] key in the first box
leads to box 2, and so on. In this application, Quit is the escape mechanism. In box 3, the [Q] key should

also be active to enable a return to box 1, so as to be consistent with the other menus. An example
implementation of box 1 looks like:

OISF "Datas Edit Report o1t"
FapPOso "DERD" o UIFRECECEEYHATITE 2 241
O F GOTO 278, "DTH . "EDT "y "RFT W "I T!

r
s| . i

f'
x_

:!
!"

l_
:!

°

L
o

-

2
1
i
i

Notice that this handles an unusual circumstance with little extra effort. Suppose the user presses the

attention key and suspends the program. When the user presses [f] [CONT], execution of line 280 will

proceed with the result of F.EYMAITH being "#<4=" The FII'z command will return zero, causing the
branch to line 270. This restores the prompt in the display, so the users may continue without confusion

as to where they are in the application.

Some shifted keystrokes will return "f " or "" as the first character of the

result of KEYWATTE. If "F" or "5" are allowable keys, they should appear
last in the match string to avoid possible input errors.

7-2

Option Selection

7.3 Fixed Option Menus

Configuration of a device or a set of preconditions for a calculation can be reduced to a few keystrokes by

presenting a two-dimensional picture of the options. This ’picture’ would contain all available, fixed

options.

For instance, suppose a multimeter is being configured for an experiment. There are four settings to be

made: the type of measurement, accuracy of the measurement, choice of input channels, and data rate.

Each setting has a number of different options. A common approach is to prompt for each setting. A

faster method is to present a menu that can be scrolled by the user.

CURRENT OPTION

MEASURE: Ohms

ACCURACY: 3 Digits

INPUT: Front

AVAILABLE OPTIONS

Ohms Resistance Current

3 Digits 4 Digits 5 Digits

Front Back

DATA RATE(Pt/min) 100 100 200 500 1000 5000

Define the vertical arrow keys [*] & [v] #5E and #%1) to scroll in wrap-around fashion between
MEASURE, ACCURACY, INPUT, and DATA RATE. Define the horizontal arrow keys [<] & [>] (#+7
and #+}i) to scroll in wrap-around fashion between the options at the current setting.

Selection of an option could be made simply by leaving the option in the display, or requiring a keystroke

to select the option. Another key would be used to exit the menu.

The user can now examine all four settings and exit the menu with four keystrokes. If the user wishes to

alter just one option, the maximum number of keystrokes ever needed would be 7, including the exit from

the menu!

7-3

Option Selection

Suppose the user wishes to change the accuracy from 3 digits to 4 digits. In this example, a horizontal

option is selected merely by being in the display, and the [ENDLINE] key exits the menu. The sequences

on the left and right yield identical results. The right column shows the user taking advantage of the

wrap around selection of choices.

MEASURE: Ohms MEASURE: Ohms

[v] Goto ACCURACY setting [v] Goto ACCURACY setting

ACCURACY: 3 Digits ACCURACY: 3 Digits

[>] Select 4 Digits option [<] Select 5 Digits option

ACCURACY: 4 Digits ACCURACY: 5 Digits

[>] Select 5 Digits option [ENDLINE] Exit menu

ACCURACY: 5 Digits Press any key to begin

[ENDLINE] Exit menu

Press any key to begin

TOTAL: Four keystrokes Three keystrokes

When the user returns to the menu again, the ’accuracy’ will be 5 digits.

Note that an implementation of this technique can be ’smart’. For instance, suppose that the maximum

data rate for 5 digit accuracy is 500 readings per minute. If the user enters the data rate option, only the

100, 200, and 500 options are presented. If the user enters the accuracy option while the data rate is

2000, only the 3 digit accuracy option is visible. Possibilities abound!

7-4

Help!
8

S
L

“I
N

\
\
,

|
\ 7

@Hi?/

S
If an application uses a variety of commands that must be obtained from the manual or a possibly missing

keyboard overlay, a help file deserves consideration. There are many ways to implement a help

function - each application’s needs will be different. The following routine suggests one method. This

routine reads lines from a text file, making foreign language translation possible. In this example, the

help routine is activated by pressing the [?] key when a menu prompt is in the display.

Lae DISF "Datas Edit Report it ?o
1H EF=FRCEFCEEYHATITEY B P=POSC"DERES" , kE
S O F+D GOTO 188 "DATA . "EDT " "RPET S "QIIIT Yy "HELPF!

LEge "HELF's FH=1 ® H=1& | H=Humber of records in help file
TE1E ASSTGH #=9 TO "HELFTEST!
TEZe BEAD #29.A1s2F 0 DISPFLAY 2F &2 EFE=UPRCECEEYMAITE
Lz TR EFE="0" THEH ASSIGH #59 TO @« & GOTO 128
T ITF EfFE="#5E" THEM FA=MODCA~2. M+l

Tame ITF EE=Ug50" THEM FM=MODCH M+
TEeE GOTO 1826

Note that if the application is driven from specific keys on the keyboard, the help routine above may be

extended. For instance, if pressing the [W] key always triggers a specific action, such as computing an

interest rate, the help routine could respond to [W]. In the above example, if the 5th record in the help

file describes the interest rate calculation, the following line of code could be added:

Lanh IF EE="" THEH F=5

Clearly there are many possibilities for help files beyond this example. Experimentation is encouraged. If

an application can be easily run without a manual and keyboard overlay, using just the built-in help

commands, the user will spend more time thinking about the task at hand, rather than computer science

problems.

8-1

 Input Routines

Standard input routines for an application reduce the chance of error, add consistency to a program, and

make the programmer’s job easier. The following input routines are suggested for normal entry of

numbers and strings.

9.1 Cursor Control

When the user is editing an entry, the cursor may not be placed over characters in the display buffer that

were written when the cursor was ’off”. This technique is used in the implementation of the IMHFLIT
statement, where the cursor may not override the prompt. This may be used in the construction of custom

input sequences.

To create non-editable characters in the display, send a ’cursor off’ sequence before the characters that

you wish to protect, then send the ’cursor on’ sequence. The ’cursor on’ sequence is LHFEF 2y 0" e ")
and the ’cursor off’ sequence is LHEF C 27 28"", The cursor control characters are not counted in the
96 character length of the display buffer.

Section 9.6 has an example of protected field entry which uses cursor control sequences to enter a date.

9.2 Numeric Entry

This routine accepts a single number from the keyboard. For non-real data types, a declaration of the

type is suggested at the start of the program. Note that if the type of incoming data is invalid, such as a

string "=" the system error message will be displayed and the user will be prompted again. Line
1300 requires a quantity that is greater than or equal to 1, and is not a Mzl or In¥f.

lea REAL

127O ERECQE GOTO 1E99
Lame THRFUT "Goant itw?s @ 0FF ERROE B GOTO TEEE
Lawe OISR BEREREME @ GOTO TR
TzIF ool THEH DISF "ERED ITrealid Gosntito” & GOTO 1270

Input Routines

If the application is going to have foreign language capability, the routine looks a little different. For the

following example, assume that message 5023 reads "Ert&ouamt 1Ly

1278 0OERECQRE GOTD 12068
122 IMPUT """y CHEFCZV D&M EMEGEF CSEEEDLOHREE 2y2""
1298 0OFF EREQR ® GOTO 12168
lzea DISF EEREME 2 GOTO 1226
1218 IF <71 THEW DISF MSGERCSE24 @ GOTO 1274

The escape codes in line 1280 are used to turn off the cursor while displaying the prompt, and then turn

on the cursor again. The trick is that when the user is editing the response, the cursor cannot be

positioned over a character that is written to the display when the cursor is off. All of this is done so that

the user can pause the program with the [ATTN] key, press [f] [CONT], and get the prompt restored in the
display.

If a default answer is going to appear, say 24, line 1280 would look like this:

L2sd IHPUT "y CHEF2VOEMSEECHE2DRCHES G2V a i ka4 i

Enter quantity?24

Leftmost possible position for cursor

NOTE

For convenience and ROM savings, the escape codes can be imbedded in the

[1%03F message table itself.

9-2

Input Routines

9.3 Numeric Entry With Option

The Curve Fitting ROM has a situation where the user may select a single row from an array for

evaluation, or all rows as a group. A hybrid input module was devised which would let the user enter the

character [A] to evaluate all rows, or enter the number of an individual row. Pressing the [A] key results

in immediate printing of all rows, with no [ENDLINE] keystroke required.

The following code (altered slightly for the example) was used:

18EE DISF "Row # Cor ALL2P"SCHREECZV8" B QE=RKEYVHATTE
1ale ITF EEYHMAITE="#42" THEM 186
1z DIsP CHREFOZVRy @ TF UPRECECEp="1" THEH 1878
laze FUT G 2 O BEREOE GOTO 156
lade THFUT ""iH @ OFF ERERECE @& GOTO TR
1858 DISF EREEME @ OFF ERRECQE EOGOTO 1EEE
18DISF A R STOF
1ave DI=F "Rl@ =TOF

Line 1000 displays the prompt, turns the cursor on, and waits for a key. If the [ATTN] key is returned,

indicating that the program was suspended, the prompt is displayed again.

Line 1020 turns off the cursor, and tests for the character "A". If the character is an "A" the program

branches to the module for printing all rows in the array.

Line 1030 places the character back in the input buffer, and uses an IHMFLIT statement to obtain an
individual row number. If an error is encountered, it is important to rebuild the prompt, so the error trap

branches back to line 1000.

Experimentation with this technique is encouraged - it may be useful in simplifying user interfaces

and/or reducing the number of questions put to the user.

9-3

Input Routines

9.4 String Entry

Entry of strings is similar to that of numbers:

106 DIM FELE]

DM EREQE GOTO 2196

— T

DIZF EEREME B GOTO 2126
IF LEMOCFF =8 THEM DISF

B
R
I
s

i

.,.
..
R T, 1
5
1
4
- an

el
e’

Po
d

P
o

P
l

{2
3
b
=
e
t

Or, for foreign languages:

OH ERREDE GOTO 21 “45"1

T
t
1
T

OFF ERECE @ G070 ;“_1L1

DIZF EREREME ® GOTO Z126

3
0
0
0
]

T
3
X

i i

i
t
i

rl
_i

r:
_i

i
P
o
e

X

e A
R
N

ee
ad
e’

em
al
e’

LLLLL

IMFUT "LLOARD: File name™'
i o

Ls REE P OOFF ERREQOE

"Trwalid Filespec"

IF FE="" THEH DIZF MSGECSRZ20 ® GOTO 2178

LOTO 22688

B GOTO 21VE

THFLIT "y CHEFCET28OMEEE CSEERLCHREE C 2T 2" s

Again, the same technique with the cursor used in the numeric input module is used for string entry. If

there is a default answer, it may be included after the cursor-on command.

9-4

Input Routines

9.5 Yes or No?

Answering yes/no questions should require just one keystroke. If an application has many of these

questions, a function may be created to simplify the process:

DEF FHY CLED
DISF F B I=POSCUHY Y UFRECECHKEYMATTELL 1T 01
IF I<v THEHM 1V&
FHY=T ® EHMDO DEF

.j
C
I
"
.

o
t
i

[

i
i e

e
l
e
l
e
l
e

o
l

i

i

If the user suspends the program during this function with [ATTN], and then restarts, the prompt will be

restored to the display.

NOTE

For foreign language purposes, line 170 might read:

178 DISFP GF B I=POSOMSGEOLEZEeT 0y UFRCECKEYMATITEIL L T0 01

9-35

Input Routines

9.6 Protected Field Entry

Some entries, such as dates may require either a limited number of characters, or a specific number of

characters. This may be made more apparent to the user with the use of protected field data entry. For

example, suppose the user is going to enter a date. A protected field template may be constructed to

indicate the number of required characters, as well as the sequence of month, day, and year fields:

Date?mm/dd/yy The user is prompted for the date.

The following routine may be used to set up the date template:

ey OFTION BH=E 1
S OTFM T#EL11E]
SR CE=CHEED
S D=Date N ECEL T Fam s0ELDet
M DE=TgnrgnOTRgTRY
sE TFLLLE]=" "
VECCTHFUT "My THEyDE
e DI=F DE

e
’

Notice that I # is 110 characters long. The cursor on and cursor off sequences are not included in the 96

character count for the limit of the display buffer.

The user may type over the characters rr, il and .l only. The HP-71 will beep after the last . is

edited, and the cursor will remain in that position. The cursor keys may still be used to edit the entry.

9-6

 INPUT Alternative: INLINE

The [HL.IME keyword (available in the "CILISTUTIL" LEX file) adds extended cursor control and
extended termination capability for user input. Editors, menus, protected fields, and custom entry

sequences are possible with I HL I HE.

Syntax

THLTIHE T L1010 THEML [VE[WE]]

Parameters

input string The input string (I ¥ in the example) will appear in the display. Cursor

control characters may be imbedded to control which characters may be

edited by the user.

first character The first character (l.1 in the example) is the index to which character in

the input string will appear in the leftmost position of the LCD window.

For instance, if the first character is 3, the third character of [# would
appear in LCD position 1.

cursor start The cursor start parameter (-1 in the example) specifies the starting

location and type of the cursor. A negative value specifies the insert cursor.

The expression must round to X, such that 1<=|X]|<=96.

terminator string The terminator string (T# in the example) specifies which keys may

terminate input. Normally, only the [ENDLINE] key will terminate input

from the keyboard (such as with the IHFLIT statement). The ML IHE
keyword uses the terminator string to extend termination to a specified list

of keys. Keys are specified by their physical key code, such as #+4= for the
[ATTN] key. Keys are numbered in row-major order, from 1 to 56. For

f-shifted keys, add §56; for g-shifted keys, add 112. For instance, to allow

termination with the [ENDLINE] key and the vertical arrow Kkeys, the

terminator string would be "#HZ:EHDEHET ",

terminator variable Upon termination of [HML.THE execution, the terminator variable (1 in
the example) contains a number indicating which key the user pressed to

terminate input. If the key pressed was the second in the terminator string

list, the terminator variable will contain 2.

OPTIONAL PARAMETERS The following parameters are optional, and need not be used.

cursor position variable The cursor position variable ("'in the example) contains the final cursor

position and type. A negative value indicates the insert cursor.

window position variable The window position variable (vin the example) contains a number

indicating which character was in LCD position 1 when IHL. IHE
terminated execution.

10-1

INPUT Alternative: INLINE

NOTE

The values returned in the cursor position variable and the window position

variable are affected by the I I MLsettings. For more information, refer
to the HP-71 Reference Manual’s discussion of the b I M1lstatement.

IHL IME is a statement that extends the capability given in the HP-71’s ITHFLIT statement and KEY#
statement. IHL IHE allows you to specify:

The prompt string.

¢ The number of prompt string characters to be scrolled off the left side of the display.

e Where in the display the cursor is to come up flashing.

The type of cursor to appear (insert or replace).

IML IME allows the user to press any combination of keys for input and editing, just like the IHFLIT
statement. While IMF1IT terminates execution only when specific keys are pressed (such as [ENDLINE]),
any number of different keys can be defined to terminate I[FML.IME execution. When one of these
terminating keys is pressed, I L. IME returns a number that indicates which key caused termination.
IMLIHE will optionally return additional values indicating the cursor position/type and number of
characters scrolled off the left side of the display on exit.

For increased customization, the input string may contain cursor on and cursor off characters to make

certain portions of the string are non-editable. For more on cursor control, see sections 9.1 and 9.6 of this

document.

There are three additional limitations placed on the input parameters for first character, and cursor start:

1) If first character is greater than cursor start, then first character is set equal to cursor start.

2) first character is limited to 97-1 I MLsize.

3) If cursor start exceeds first character + lIMDOIsize, then the specified cursor start takes
precedence, and the first character is incremented until the cursor start character appears in the

display window.

For example:

THLTHE HFE9 1880, TEH

According to #1 above, first character becomes 80, instead of 91. Then, according to #2 above, first
character is further reduced to 75 (assuming the default I [M1Isize of 22).

To illustrate #3 above:

THLLIHE HE. a8, 95 TELH

10-2

INPUT Alternative: INLINE

In order to get character #935 in the display window, character #74 is put in LCD position 1.

Example

The following is an example illustrating the use of protected fields (non-editable characters) in the input

string:

I=F =default input string

-y,

EF =escape character: CHEF (270

IMLIHE E#%"<Enter Hame "SEFL"H"RCE,Z, 1, "HZSHIEHEI1L"Ha B C

In this example the user cannot back the cursor up over the prompt since the cursor was turned off.

However, they can edit the default input string since the cursor was turned back on. The replace cursor

will come up on the first "readable" character, that is, the first character of C$. The first character of the
input string will be scrolled off the left side of the display - this was specified by the first character

parameter.

ITHI.THE will terminate on one of three keys: [ENDLINE] [up-arrow], and [down-arrow] If
[down-arrow] is pressed, F1 will be 3 on exit. If the user typed in a five character name before pressing a
terminator key (assuming no backspaces), & will be 17 on exit (the cursor originally came up on the 12th

character and was advanced five positions), and L= will be 2.

Note that the cursor start argument "counts" readable characters only. Also, [11%F % "sees" readable
characters only, so that a [J[=¥ done in the above example returns only the user input (including the
default input), not the prompt itself.

Note that the cursor position argument and the value returned in the first optional variable do not

operate exactly the same way. The cursor position argument counts readable characters only, whereas the

value returned in [(in the example above) reflects the tofal number of characters in the "free portion" of

the display, readable and non-readable.

Also note that because of unreadable characters in the display, the above example is not affected by

limitation (1) on the previous page. Even though the first character appears to be bigger than cursor start,

because of unreadable characters in the display, cursor start actually designates character 12.

10-3

 File Name Verification

11.1 File Names For Loading

An applications program may wish to verify the name of a file or subprogram that has been entered by

the user. The following routine is useful for trimming unneeded spaces and detecting invalid characters

in a file name F$ prior to loading data.

PO IF F¥[1,11=" " THEM F#=F$[2] @ GOTO VFZEG
P18 I=LEMCF#» @ IF F#LIT=" " THEM F#[I1="" @ GOTO 7210
FIEE J=POSCFE, "rty B OIF J=1 OR FOSCF#," "3 OR HMOT I THEM 7230
FIIE GOTO 7240
F2EE DISF "Irwalid Filespec" @ RETLRH
74 DISF "Loading..." ® O ERROR GOTO F2E@ @ IF J THEH 7270
FEER QF=FADDREFCFEY B OGOTO FEVE
Vel OISR "ERREOE: File Mot Found" @ REETLREH
FETE OASSIGH RL OTO FE

Line 7200 strips leading blanks, and line 7210 strips trailing blanks, leaving the length of the string F$ in

I. This will be used later. These lines may be replaced with the keyword TF II1:#(described elsewhere in
this document) as follows:

TEEE Fé=TRIMECFE) @ IsLEM(F$)

In line 7220 the variable J takes the position, if any, of a colon. Three tests follow, each of which would

indicate an invalid name. The first is the presence of an embedded space. The operating system will only

use the characters in front of the space, possibly confusing the user. The first test looks for a null name

before a device specifier. The second test rejects a name with an embedded space, even if an experienced

user understands the implications. The third test is obvious - if there are no characters in the name there

is no file, right? Mostly. There is a bug in an early release version (1 EE[:E) of the mainframe code that
can damage the file chain if a file is accessed in [lIH with a null name. IT IS IMPORTANT TO
MAKE THIS TEST!!!

NOTE

This precludes one situation: that where a user wishes to load a file from

W LCWIF. If the HP-71 is not a system controller, a different procedure
will be needed.

11-1

File Name Verification

The variable J is used again in line 7240 to decide if a file contains any device specifier. If no device

specifier is present, the file will have to be in RAM or in a port.

An A== TGH # statement will create a null length data file in main
memory if the file does not exist and no device specifier (" MIHIHM") is in
the name string F$. If there is a colon in F§, there is no danger of creating
an empty file.

In order to prevent the creation of an empty file, the F[ILIE ¥ function is used in line 7250 to verify the
file’s existence. Line 7250 actually plays a dual purpose. First, it parses the string F$, and will yield an

error if there are any strange characters present. Secondly, if the file is not in memory, an error will

occur. Both errors result in a return with an error message in line 7260.

Again, the use of ['1=05¥ is encouraged in place of fixed error messages and prompts.

File Name Verification

11.2 File Names For Saving

The following routine is useful for checking file names when saving to a data file. It bears much

similarity ‘to the routine used for loading. The routine assumes the file name in F¥, the desired number

of records is in F, and that the number of bytes per record is in . Note that 1940 and 1950 can be
replaced with TF I[1# as shown earlier.

124 IF F£L1.10="" THEM F£L1,11="" @ GOTO 1346
1258 I=LEMCFE2 & IF FELI1=" " THEM FFLIJ="" & GOTO 1956
198 J=FOScFE, "2 "2 @ IF J=1 0OF HOT I OR POSCFE," ") THEH

13768 ELSE 1928
I27a DISF "Irmwealid Filespec" @ REETLREHM
I2ze OIsF "Saving. " B O EREOE GOTO ZEEE
228 CEEATE DATH FF.H.F B ASSIGH #1 TO FE & OFF EREREOR & GOTO

SEER
IF ERREH#Z? OF EREREMH#1852 O0F EREREH #255028 0F EEEH #255152
THEH 2856
IF HOT FHYC"Ouerwrite file OWeoM2?"0 THEM REETURH
LIsF "Ha“Jnu..,” B FURGE F#
UM EREQE GOTO ZE5E
CREATE DATH Fi,H,F B oHZ=IGH #1 TO Ff ® OFF EREREOE @ GOTO
=EE

,. i -
—
i — £ o o
t
1

r.
i

o
j
d

i
l

fo
te

i o
t

T
T

i
i

s
%
T

o

fa
la

d
Rl

ed
3
l

T
T

P
o
a
s
t
i

i
3

L
o
l
T

]
l
.

.,
en
ad
e’

SEEE OFF BERRECE ® DISF EREME B RETURH
el TFOMEMS S@e ARD HOT J THER PURGE F£ @ DISPF "Insufficisnt

Mesporug ' B RETURH
S

This routine accounts for null files, duplicate files in both ram and on a device, and for insufficient
memory in either ram or a device. The routine M may be found in the chapter "Input Routines". FH"/
returns a one for yes and zero for no. Notice the offsets used with EFFF that account for foreign
language localization. Further information on errors may be found in the chapter "Error Messages". Error

59 is the mainframe error for "Fi1le Exists" as is 255030 for HP-IL. Errors 1059 and 255158
account for localization of the "1 LEw1 =t =" error

File Name Verification

11.3 Names Of Subprograms

Verifying the name of a subprogram for existence is similar to the system used for checking data file

names. First, the name is checked for valid characters with H[I[IF ¥, and then a dummy call is made with
intentionally mismatched parameters. The resulting error message will either indicate that the

subprogram is not present, or that it is there, but the parameters do not match the test. This routine

assumes the subprogram name in A1$ and the file name containing the subprogram in A2$. REMEMBER:

the subprogram name can be the same as a file name!

AlD @ GOTO ZEde4 =B
{=18%52 THEM DISF EREMEFF

ed
e’

i T i
ogo

me,
—
—
’

OH ERECE GOTO ZEze 2 DE=HODE

OFF EEREOE B IF ERREH=ZSE 0F ERE
i FEETUREHR

1
T !

oo, oee

OH ERREORE GOTO Z2E560 2 2F=A00REECRZED © GOTO Z8c8=
SA5E DISF ERREME B RETUEH
SRR O EREOR GOTO @78 @ CALL MlEdoHaMs Habe Haks Hakl Habkls Hakd s

IH RAZ#
2878 OFF ERREOR & IF EREEMH=2ZOF EREREM=10Z6 THEH =Z@920
2E5E DIzP "ERRORED "iEREME B EETLEH
SEPE ...

11 1 &

 Output Routines

Output routines on the HP-71 may take a wide variety of forms, using everything from the 22 characters

in the display to 80 column printers. Regardless of the specific form selected, it is vital to insure that the

user 1s able to view the entire result, with all relevant digits of the mantissa and (if applicable) the entire

exponent. Further, there should be no time pressure on the user.

12.1 Configuration And Data Volume

Output routines should be sensitive to both the volume of data to be presented to the user and the system

configuration. If varying configurations are anticipated, multiple output routines are suggested to

maximize legibility of the results and usability of the software.

Results best expressed in tabular form may need one routine for the LCD or strip printer, and another for

wide output devices.

Unless specific configurations are going to be used, use of specific printer features must be evaluated with

care. If an output routine depends on such features as vertical half spacing (for superscripts and

subscripts), the application will not run with conventional printers, such as an HP82905B. Conventional

printer features such as form feed capability are generally acceptable. When in doubt, check the

capability of several possible target printers for common features. The subprogram FET%'FE can be used
to determine what class of printer is assigned.

NOTE

Output routines should use FFIFHT statements, while message routines
(such as prompts, warnings, and errors) use [1] =F statements. This will
insure that the user’s FEIMHTER 1'% assignment will route the output to
the desired location.

The following table may be used to help select a suitable output routine given varying results from
SRTY REFETYFE:

PRTYPE REPORT HAIT?

0 Narrow Yes

1 Narrow No

2 Wide No

12-1

Output Routines

12.2 Some HP Printer Features

For reference, the following table contains a listing of common printer features in the HP product line,

and the escape sequences that enable them.

OPERATION FEATURE ESCAPE SEQUENCE PRINTER

CR CHR$(13) 1,2,3,4,5

Formfeed CHR$(12) 1,2,3,4

Linefeed CHR$(10) 1,2,3,4

Backspace CHR$(8) 1,2,3,4

Vertical 6 L/in ESC &l16D 1,2,3,4

Spacing 8 L/in ESC &18D 1,2,3,4

Perforation On ESC &11L 1,2,3,4

Skip off ESC &LO1 1,2,3,4

Select Normal ESC &kOS 1,2,3,4,5

Print Expanded ESC &k1S 1,2,3,4,5

Mode Compressed ESC &k2S 1,2,3.4

Comp, Exp ESC &k3S 1,4

Emphasized ESC &k9S 1,4

Underlining On ESC &dD 3,4

Underlining off ESC &d@ 3,4

Printers: 1=HP82905B 2=HP2671 3=HP2631 4=ThinkJet 5=HP82162A

Output Routines

12.3 Multiple Results In The LCD

Results presented in the LCD are especially vulnerable to being lost or forgotten. Since the user may at

any time answer the phone, sneeze, or for some reason look away from the machine, a result must be held
in the LCD until reciept of the information is acknowledged. A simple way to do this is to call

F-EYMAIT#,and then continue.

If a long string of results is anticipated, a method of scrolling back and forth through the results is

suggested, along with an escape method. The following routine assumes that the results are in an array A,

with 9 answers, and their titles in a message file from positions 17 to 25. The LEX ID of the message file

s 12.

SEEE H=17 B DE=FEEREC"2R3 B DELAY Bl 8
bomave DELAY & SCROLL

SE1TE DIsF MGkl S@nae-+Hs Hob-160
SE2E DE=URPRECECEEYMHLITE

SEREE TR CEETHEDEY OAMND GFEFUHS1LY THEH 20356
SEde IF M=25% THEH BEEF ® GOTO 26260 BELSE M=H+1 ® GOTO ZE10
SEEE TR REEUHEEY THEM Zeye
SEeE IR M=17 HILH BEEF & GOTO 2828 ELSE H=MH-1 0 GOTO 2818
SEVE TR E="H#le2" THEM M=1V @ GOTO &LEI 1E6
SEEE TR LE=" H.I.l:::-: "OTHEM =231

bOIFRNTHEM 2Rz
A POKE "2FSdet DE B RETUREN U REestore DELAY amod SCREOLL

e x"
"'
:
i k iLT

The routine will advance to the next result when either the [v] or the [ENDLINE] keys are pressed. If the
[*] key is pressed, the previous result will appear. The [g]”] and [g][v] keys go to the first and last results.

The [Q] key exits the routine. If the user attempts to go beyond out of range, a beep sounds.

The use of F.EY' MM I T# can go even further in the case of a large table that has been generated. Suppose
the program creates a table of results, and the user may only be interested in a subset of the results. One

way to address this issue is to ask the user for the location in the table that he wishes to view. Another

scheme might be to place the user "in the table" and let him move about with the arrow keys, in a

two-dimensional version of the routine presented above.

12-3

Output Routines

12.4 Large Results In The LCD

If a result is simply too large to fit within 22 characters, scrolling the display is the last resort. The best

way to implement this is to preserve the display, set [IEEL.HY 24 % and call KEYIHIT#. The following
routine illustrates the technique:

1 OIM AFC1ea]
28 AF="LEJADLEJDEFOGAREAGESF TALEMLHDEYJHO T "
28 DFE=FEEEFC"ZF24e" 40 @ DELAY Y. 59
48 OISR "Hamed "sHE B QE=EEYWAITE & FORE "ZF234e".DF

Another approach to the scrolling technique "windows" the title:

1a DIM AFl1=22]
2B HF=" LADALkDSDLUEELRSDLRDH
2B DFE=FEERFC"ZFF4e" 34y @ DELAY @9
48 DISF "Hames "R WIMDOW ¥R OISR HE
2B E=RKEYMAITE @ WIMDOW 1w PORE "ZF240", DF

12.5 Numeric Formatting

Numbers that occupy a very large dynamic range (say, a hundred orders of magnitude) will present a

challenge when presenting results in the LCD. If the title for the result is very small, there may be room

in the display for both the title and the number as displayed in = T[] format. If there is doubt about
available room, an [[1Hi:E statement is suggested. The disadvantage of the |[IHIzE statement is that the
user’s display digit setting is overridden.

12-4

o121

Internal Calculations E
1

13.1 Changing Array Sizes

The size of an array may be changed with a new [I {1 statement. This can only be done in the originating
environment. Data is stored in row major order and is not zeroed out during redimension. The following

paragraphs address techniques for changing the size of arrays. The examples use an array A with R rows

and C columns. The array is of type FEHL., and a 300 byte 'fudge factor’ is used. Variables I and J are
scratch integers, and the array isin OFTIOH BEARSE 1.

13.2 Adding And Deleting Rows

Add a new, empty row at N:

taga ITF MEM-Cxmozaa THEN DISF "Insufticient Men" B REETLEH
Tl IF M1 0OF MxE+1 THEM DIZF "MHomewistent Eow" B REETLEH
aze OIzF "MWorking. .o B RE=E+1 @ OIM ACE.Cx ® IF M=K THEHM EETLEH
Teze FOR I=R T0O M+1 STEF -1 & FOR =1 TO O
Tadd Aoy do=Rol-1a 00 ® NEST o ® MEST 1
sy FORE T=1 T @ Ao, Ta=a @ HEST I ® EETUEN

o o
3
1

Delete a row at N:

tega IF K1l OF Mk THER DISF "Homexistent Row® @ EETLUREM
Tete IF RE=1 THEH DDZF "EREOES Yoo Meed 1 Row® 2 REETLUEH
taze DI=F "Morkimg. " © TF M=k THEM 1856
Leze ROk =M T0 E-1 @ FORE J=1 TO 1

Terder HODw odam=HO ey @ HEST oHEST T
LG RE=RE-1 8 00 Aok, G B REETLEH

13-1

Internal Calculations

13.3 Adding And Deleting Columns

Add a column at N. The data will be scrambled after the [11[1 is executed so a shuffle must occur. Data
i1s moved from positions at T8,T9 to new locations G8,G9. The pattern works backwards, shifting data up

to fill the new top locations, straightening out the columns, and setting the new column to zero.

IF MEM-RE=2<2688 THEWM DISF "Insuftficient Mem" @ REETLEH
IF HW<1 0OR HeEC+1 THEW DISF "Honexistent Col" @ REETLEH
DISF "Morking. .o 2 C=C+1 2 OIM ACRE.C)
o=kGE=0-0 |:3=HP TE=R B TE=0
FORE I=1 TO R ® T3=T23-1 @ IF HOT T2 THEM T9=0 2 To=TI-1
HE=T I

T
i
t
i
i
t
i

s
T

2
T
,

i
B
1

I, T: 1 T

IF HOT T9 THEM T9=
IF HOT l:a"THEH o=

. HHT a2 THEH 11
IF G9=H THEM HOGE_L:”‘amEoE GUTO 1

IF GExa AMD TExa THEM 18ei
FETLUREH

T
T

i
i
y

c
4
—
I

L o
o

LT
.!
—
0

i
.

I
i

L
T

e

o
=
H I
l

=
i

i =
:
T

V
T
l

on
gs
o

P
t
b
b
b

e
l
e
t

f
e
e
b

f
e
e
d
e
k

f
e
e
k

f
e
e
b
e

k
e

T
T
T

e
R
e

o
5
T
T
T
T

T

B
o
g
d
8

B
1
0

i

Fo
or
=
O
T

0
0
g
O
O

F
e
0

P
O
e
T

H
R
H

e
l

Delete a column at N. Again, the data will be scrambled, so a shuffle occurs in a similar manner. First,

the data is column shifted so that the column to be removed is the last one. Then the data is shifted down

starting at the front and working up. The last locations in the array will be lost when the dimension

statement 1s executed.

IF M1l OF M@ THEM DISF "Monexistent Col" @ RETURM
OISF "Morking..." @ IF H=C THEH 1848
FOR I=1 TO R @ FOR J=H TO -1
ACT, Jo=ACT, J+1d B HEXT J B HEXT I
GE=1 B G3=1 B TES1 R TI=
FOR I=1 TO R @ FOR J=1 T
ACGE, GRO=ACTE, TH) B G9=G
B GE=hE+]

TE=TS+1 B IF T30 THEM To=1 @ To=Ta+l
HEST o B T3=T%+1 @ IF T9:0 THEM To9=1 @ T&=To+l
MEXT 1 B C=C-1 @ DIM ACR,Cr @ RETURH

o 1
1

T i
1

i
b

1
o
t

$
l
e
d

3
2
0

i
l
g
d
i

fl
f
e
i

o
0
=

i
i

;! !
-
—

e
t

f
e
l
e
e
l
k
e

f
e
d
e

f
e
d

f
e
d
e

T
1
7
0
1
T

1
-1
Al TR GRE0 THEH GE=1l:

T'
t

i

i
i

ogo
es,

i
1

D
o
t

— ke

Ta
b
i
i

I L
1

13-2

Error Messages: MSG$ & Translator

14.1 MSG$

The M=% keyword provides retrieval of error message text from the mainframe, plug-in modules, or
LEX files. Each [1=0:# LEX file should contain prompts and messages for an application program. This
leaves a hook for foreign language translators to work with. The syntax for the keyword is:

M=5FE C numeric expression

The first three digits of the message number contain the LEX id, and the second three digits contain the

message number. Leading zeros may be suppressed. As an example, suppose the 21st message of a LEX file

id 94 is needed: HE=1=5LF CH4E@21 o,

The [1=13% keyword will work with translators. If a translator is present, M=5G$ 024 would return the
same message as ['1'=0F ¢ 1242 if a mainframe translator is present.

The heaviest use of [''z15¥ will be to display prompts, error messages and status messages in an application
package. ['1=05¥ used in this way allows customization for foreign languages. Keeping messages in a LEX
file message table may also save ROM space. For example, if your LEX file number is 17, use

TEOTHFUT """ MeGE Il VEAE3 CF

instead of:

v THFUT Yy CHEF 2Pe "I Do lor? "BHEFCET" s OF

which will allow other language translators to handle the prompt. Other examples are provided in

previous sections.

The205keyword is in LEX file 82. The use of %% in a particular pac requires a LEX file with a
built-in message table. This can be constructed using the HP-71 IDS volume I as a guide.

14-1

Error Messages: MSG$ & Translator

14.2 Translators

A translator is a LEX file whose sole purpose is to translate messages from the resident English to a

foreign language. These LEX files are composed of tables and a poll handler which intercepts the pMEM,

pERROR, pWARN, and pTRANS polls to substitute alternate message numbers.

The following convention has been set up to facilitate error trapping with language translators.

For mainframe messages:

Translated message number = ERFH-+1EEE

For other LEX files:

Translated message number = ERFM-+1 25

For example, mainframe error 57 is "File Not Found". If an (1M EFFIF routine is trapping for this error
and must allow for foreign language messages, the appropriate statement is:

IF EREREHM=5%7 0F EEREMH=1837 THEH

The HP-IL error 255031 is "Directory Full". If an [0 EFE{FEroutine is trapping for this error and
must allow for foreign language messages, the appropriate statement is:

IF EREM=235821 0OF EREM=252215% THEM ...

This extended error trapping can be shortened with the user-defined function:

DEF FHECS= Cx=EREENY OF Chs=ERRERA4LZEOTERED Demy2

and the previous two examples above can be compressed to:

IF FHECSY Y THEM ...

IF FHECZ22821Y THEM ...

14-2

 Speed and Space

The disadvantages of packing code need little enumeration: the risks are extreme. If packing must occur,

caution is advised. If a working program is being packed in order to fit into available ROM space, we

suggest that the author maintain a very complete audit trail. Some packing techniques actually improve

speed as well, however combining code into user defined functions (IEF FHMHH= 1) can slow down the
program, as additional time is required by the operating system to set up the call to the function. This

slowdown can be up to .6 second for a function, and | second for a subprogram.

15.1 Variable Names

Single letter variable names save a byte for each reference, and slightly improve speed. Large groups of

variables under one letter slow down the searching. For example, it would be better to use variables A, B,

C,and D than CO, C1, C2,and C3.

15.2 Line References

When entering a label reference, such as 10THEILF, don’t enter the quotes. This will save a byte. The
quote will appear on decompile. Remember: if you edit the line later on, use the [- CHAR] key to avoid

re-entering quotes!

A GUITT) pointing to a line that has a single letter label will save a byte as compared to using a0T
pointing to a line number. This works best in instances where many 1[I TI] statements refer to a single

line.

Don’t use01Tafter THEM or EL.%E. Simply use the line number or or a label.

15.3 Multi-line Statements

Multi-line statements save two bytes for each line number saved.

15-1

Speed and Space

15.4 Loops

FOFE ... HE®T loops can be a source of speed improvement under some conditions. For instance,
suppose each element in a 5 by 100 element array is to be incremented by 3. The following two blocks of

code would do the same job, but the one on the right would execute faster.

1l FOR I=1 TO 1 Tee FOR =1 T 4
1180 FOR =1 TO 3 L1e FOR I=1 TO 189
128 ACT.da=HCT, Ji+3 T2 ACT =R, d0+3
128 HE=T W 128 MEST I
148 HEST 1 L4e MEST o

The speed increase comes from the inner loop having less stack searching to perform for each ME:T
statement.

15.5 Clearing Arrays and Strings

Numeric arrays may be cleared (all elements set to zero) very quickly by DESTEOYing them and
executing a new [1I[1 statement. The operating system defaults all elements to zero.

In cases where a long string 1s to be set to spaces, a similar technique may be used. For instance, suppose a

100 character string of all spaces is needed:

ol CE=Ur

o

SEL1AR]o0

The operating system will "pad" the missing characters from the beginning to 99 with spaces.

15.6 Logical Expressions

Logical expressions can be very useful in constructing numeric expressions, and generally save code.

Logical expressions return a 1 or O depending on the evaluation of a comparison. For instance,

Use: TR m=g-oh=y OF LEHCEF DD

Instead of: 1HE IF %=y 0OF FEEHE"" THEM ==2 ELSE =2

15-2

Speed and Space

15.7 Device Addressing

Addressing devices with the HP-IL module may be accomplished with a variety of commands. Generally,

as the ease and luxury of the addressing mode increases, the amount of work the HP-71 has to do

increases. The following table illustrates the relative times required to address a device as compared other

addressing methods.

METHOD SPEED

(:LOOP) Fast
<addr> .

%50
DISPLAY
HP829058B .

Volume Label Slow (Limited by media access times)

The fastest method of addressing a device is by its address on the loop. The loop will slow down as the

number of devices present increases, and depending on the type of devices and their response times, the

rate of increase in addressing times may be non-linear. A simple way to maximize the speed of addressing

1s to search once for the address of a device, and save that address in a variable for future use in the

program. For example:

lay R=DEVADDEC"HFZ2 a4/ R = Address of RS-232 interface

ey QUTREUT sRsTF @ EMTERE sR LIEIHG FEy IT#

mdEE QUTFUT SRS DFE & RETUHERM

15-3

 HPAF File Standard

The Applications File format (HPAF), is intended to allow exchange of data between various programs.

The format provides room for information that describes the structure of the data, so that various

programs may make use of and exchange the data.

HPAF files are of type [IHTH, and may reside in either the HP-71 or a mass storage device, such as the
HP82161A digital cassette drive.

The HPAF files are composed of three major sections: a header, the data records and an optional

descriptor block. An example of such a file looks like this:

Rec # Contents Description

0 "HPAFNNS" Type string: two numbers, one string
1 4 There are four records of data

2 12 The descriptor block startsat 12

3| 77,9.3,"RED" First data record
4 78,9.4,"BLUE" ..

S 81.5,10.3,"GREEN" .

6 82.9,10.4,"GREEN" Last data record
Empty data records

. e Empty data records

12 "COLNAMS",3,"TEMP" Descriptor block
"VISCOSITY", " COLOR"

"DEGREES",1,"KELVIN"
The following sections describe the header, the data records, and the descriptor block.

16-1

HPAF File Standard

16.1 Header information

The header must contain the following items:

1) Record zero contains a type string. The type string serves two purposes. The first four

characters indicate the file ia a HPAF file. The remaining characters describe the number of

data items in each record, and their type. For example: HFHFMM, The characters MHE
indicate that there are three items in each record: the first two are numbers, and the third is a
string.

2) Record 1 contains the number of data records that contain information. This number may

be less than the total number of available records, allowing room for additional records to be

added later, or the optional descriptor block.

3) Record 2 contains the address of the optional descriptor block. If no descriptor block is

present, this number should be zero.

16.2 Data records

The data records begin in record 3, and must end before the descriptor block. Note that all data items for

each record must fit within each logical record, so that any record may be accessed randomly. To

compute the optimal logical record length for the file, remember that each number written in the record

occupies 8 bytes, and each string occupies 3 bytes plus the number of bytes in the string. In addition, there

must be one byte for the end of record mark. For example, if each record is going to hold two numbers

and a ten character string, the record length must be at least 2*¥8+3+10+1, or 30 bytes. For more

information about creating DATA files, see the HP-71 owner’s manual, section 14.

16-2

HPAF File Standard

16.3 Descriptor block

The descriptor block is optional. The descriptor block must come after the data records, and record 2 must

contain the address of the first item in the block. Information in the descriptor block consists of tags

which identify the type of information that follows, followed by the number of items associated with the

tag, followed by the items themselves. The tag must be a string, the number of items must be a number,

and the items must be strings. If numeric values are to be in the items, they should be string

representations (= T FF).

tag, number of items, item one [item two...]

The information in the descriptor block may be written serially, or, if the logical record size is sufficiently

large, written one tag to a record. In either case, the descriptor block must be able to be read serially.

For example, to describe the names of the columns, a temperature offset, and the fact that the

temperature units are degrees Kelvin, the descriptor block for the file might look like this:

Rec# File contents Comments

67) "COLNAMS",3,"TEMP","VISCOSITY","DENSITY" Column names

"OFFSET",1,"2.172" Offset

"UNITS",1,"KELVIN" Units information

{EOF)}

16-3

SECTION

17
 String Functions

The LEX file = Tk I Mzlprovides 11 keywords that enhance the string manipulation capabilities of the
HP-71.

17.1 MEMBER

The MEzMEER keyword returns the location of the first character in a subject string that is a member of a
set string.

Syntax:

MEMEEF C subject stringset string [starting position]

Examples:

PR Pbbbs s "] Smd BeFmat o

Returns the location of the first numeric character in AS.

MEMEBERCHE, "B123457529, 120

Returns the location of 1st numeric character at/after position 12.

EefEMbERE CHE BE. O

17-1

String Functions

17.2 LTRIM$, RTRIMS$, TRIM$

These keywords trim specified characters from the ends of string arguments. L. TFEIM# trims characters
from the left end, K TF [I1# trims characters from the right end, and TFI[1#F trims characters from both
ends.

Syntax:

L.TEIM¥ C string expression [,string expression]

FTEIMEF string expression [string expression]

TEIMEstring expression [string expression]

The first string expression contains the string to be trimmed. The second, optional string expression

specifies which character is to be trimmed, if found. Only the first character of the second string

parameter is used. The default is to trim spaces.

Examples:

LTEIMEC abod Mo LTREIMEC "Mhhpeacse on earth" "R
=tgbod " ="peace on earth"

RTEIMEC" aboe " ETRIMEC "peace o earthppp"., "p"
=1 ghoe” =Upegoe oo earth”

TRIME abvod " TRIMEC rrrpease on earths". "e
=Mabod =Upegce on eart "

TE=TRIMECGFD

17-2

String Functions

17.3 LWCS, LWRCS$

These keywords convert all uppercase characters in a string to their lowercase counterparts. The keywords

are identical except in name.

Syntax:

LWIZE C string expression
LWECE < string expression

Examples:

LWCEC"THIS IS5 MICE":
="t iz 12 nice"

HfE="THIS I= HICE"
DISF AF
"thi=s iz nice"

17-3

String Functions

17.4 REV$

This keyword reverses the order of the characters in a string.

Syntax:

FE¥ string expression’

Examples:

REVEC"ZFBECZN REVE"pal indromes")
="a0ERF2" ="emordnilap”

RE=FEVECEED

An address stored in memory is backwards when obtained with a PEEK. F["'# is useful when converting
the address into decimal:

OIZF "The decimal address 12" iHTOORENMEFCPEEREC"2Ro 5000

17-4

String Functions

17.5 ROTS$

This keyword rotates the contents of a string a specified number of places to the right. If the number of

spaces is negative, the string will be rotated to the left.

Syntax:

RT3 0 string expressionnumeric expression !

Examples:

ROTFEC" L2245, 10 FEOTHEFC"L2345", 12
s E] Eag = EEgEsL

FE=ROTECDE DD

17-5

String Functions

17.6 RPTS$

The FFT# keyword concatenates multiple copies of a string expression together to form the resulting
string.

Syntax:

F:FT* Cstring expressionnumeric expression

Examples:

RFETEFC" Sg REFTEFC"FREED" » 20
=1 =" FREDFREDFRED"

17-6

String Functions

17.7 SBIT

The =SEIT keyword returns the value of a specific bit in a character string. It is most useful when
analyzing the contents of the HP-71 graphics display.

Syntax:

=B 1T string expressionnumeric expressionnumeric expression .

The string expression is the string to be examined. The first numeric expression specifies which character

to examine. The second numeric expression specifies which bit in the specified character to examine. Bits

are numbered 0-7.

Examples:

iT T OGO I SFE. 1y Returns the bit value of the upper left
pixel in the display.

BlLT ORE My Returns the value of bit 4 in the Nth
character of the string AS.

17-7

String Functions

17.8 SBIT$

The =E I T# keyword allows enhanced bit manipulation of data in strings.

Syntax:

=SB IT#F str exp, num exp [num exp[num exp]]:

The first numeric expression specifies which byte in the string is to be modified. Other bytes in the string

will be unchanged.

The second numeric expression specifies the bit to be manipulated. If not present, the byte specified by

the first expression will be complemented. Bits are numbered 0-7.

The third numeric expression specifies the new value for the bit specified by the previous numeric

expression. If not present, the bit will be complemented.

Examples:

HE=SBITECAE, S Complement the fifth byte
HE=SBITECHE. 2410 Complement the bit one of byte 3
HE=SBTTECAHE Mty B2 Clear bit J in byte N

17-8

String Functions

17.9 SPAN

The =FHMH keyword returns the location of first character found in a subject string that is not a member
of a set string.

Syntax:
=SFHM Y subject string.set string [starting position]

Example:

SPAMCY 122450e3 ", "Bl 2245075321 Returns 7
mRFAMCY 122450mE?r 122, "R 12845e 7 ER ", B Returns 10
E=SFAMCAF BF . O

17-9

 BREAKPT: BASIC Breakpoint System

The BREFMEFT program is a LEX file which provides breakpoint capability for debugging BASIC
programs. When EFREMHEFT is in the HP-71, three new keywords become available: EFREHE,
LIMEREME., and ELLI'=T. These keywords allow setting, clearing, and listing of breakpoints in BASIC
program execution. Setting a breakpoint in this manner is equivalent to inserting a FHIISE statement at
the beginning of a program line.

The EiFEFEFT program works by intercepting a poll each time a statement is executed. This will slow
down an application program significantly, and so should be used with caution in time sensitive situations.

BLIST

Lists all breakpoints in order of entry.

BERERE <line number> [<line number> ...]

Sets breakpoints at specified line numbers. Any number of breakpoints

may be specified, separated by commas.

LIMERERE.

Clears all breakpoints.

18-1

 KEYBOARD IS - Using A Terminal

The FORTH/Assembler ROM provides a set of keywords that permit keyboard entries to originate from

devices on the HP-IL loop. These keywords are ESHFE., FEYEORRED I=,. and
FREZET E=CHFE. The EEYEDOAED IS statement assigns one HP-IL device to act as a remote
keyboard for the HP-71. The EZCHFE statement specifies that a particular one-character escape
sequence received by the HP-71 from the current F.EYEIHRED 1% device will be replaced by an HP-71
key code. This permits mapping of terminal-specific features to the HP-71 keyboard. The

FESZET ESUCHFE statement clears out any existing mapping specified by E=CHFE statements. Refer to
the FORTH/Assembler ROM Owner’s Manual for a detailed discussion of these keywords.

19.1 KEYBOARD IS With HP-150

The following routine is useful when configuring an HP-150 as a remote keyboard and display device.

18 IF FOSONVERS. "ERBD: " 2= THEH BEEF 1456, .65 & DISF "Hesd EEYE
DARD lex file!" B EHD

S REESET ESCAHRFE ® EERL H ® DOIM EF @ Ef=CHRECZ2Y
A TRS222WT s CLEAE fRS232 B REMOTE ® OUTFUT tRS232 s "SEQ;SES
PR LOCAL

G A=SFOLL " rssE2t s B OIF
"RmEEs

S ESCHRFE "0,
B ESCHFE "1t
FEOESCARFE "D

vl
wE BESCHFE "p"adm ®BOESCHPE "a". 59 @ ESCARE """ 158 B ESCAFE "=
elb HTTHY FETCHS Cmds 5'|-Ar“

G ESCHFE " J1#“ # ESCAFE "', 159 ® ESCARE Tty led B ESCAFE
W'e TEE b T, {{fi,;;g.En1fnn

TEe ESCHFE "Ry 182 B ESCARFE "F".de @ ESCHFE "JY. 187
"EM . TRV SETY Eume Ll imey -l 1mes

11e E=SCHFE "'yb Huto
g OUTRUT & H R lkBa
=SEOUTFUT oA ;o

1HED THEM '"ES2=Z2WT ' ELSE A=DEVADDET

e l e ® ESCAFE "H". 183 ® ESCHFE "RE", 183 1 Lo
ez T Back
o ESCARFE "CU. 48 B EDCARPE "AY.58 B ESCHFE "R

2 ESCAFE

e
} 2

=Tu
I 2

L.
LCormare] Stack
|
I
I
I

HET LR
FETCH i.

i

ckBa gt

JEOUTRFUT s H SEFSkBAalads "LEEL""
S OUTRUT = [Mtk aaled seap Chogoled"SREFL" ="

o)
A "

:.-:. 1] '. I on

AN
sk DHTRUT fH

FEOOUTFUT = F

S8 OUTPUT & F

SR OOUTFUT o F

2EE OUTRUT 5 F

Sle

F- [ef t. "k
Far Frioht YRR ER

sl Bk bom "EEFL !
Exe"wiB"s 1 Set mtrap to =mit escape

_
—
‘

i ‘"
:—
e

m
m
m
m
m
m
i
m

b
b
b

b
R
b
R
4

m
m
m
m
m
m
m
m

e o ti
i

A
E
E
B

A
I
B
i

P
o
D
D
D
D
T
D
D
T

9

"

9

R

q

q

4

'!

T e

1
3
0
1
3
0

i
:

3

=
8
8
%

‘=
S
‘
=
2
3

‘
=
3
2
3

‘
=
3
=
=
=
S

‘
=
=
=

7
o
D

g
D
g
D
D
o
4
D
e

1
T

]
e
R

=
R
R
R
R

T
o
=
0
0
=
)
T

1
%
=
]

T HH !E
:
e

L

-
i

o
l

i

1
i

19-1

KEYBOARD IS - Using A Terminal

18 Lo OFF 2 SFLAG -21
22 DISPLAY IS sRSZ22 B KEYEBOARD Iz tRZzZzE

19.2 KEYBOARD IS With HP-2648 Terminal

The following routine will configure an HP-2648 terminal as the remote keyboard. The terminal cursor

keys are active, as are the insert/delete character keys. Pressing ESC twice gives the [ATTN] keystroke.

[CTLIBACKSPACE] gives the [BACK] character. [f1] is [ATTN], [f2] is FETIH, [f3] is the command
stack, [f4] is the user mode ID COMMANDS] is g[*], [f6] is g[<], [f7] is g[>], and [f 8] is g[v].

The [CLEAR DSPLY] key also gives the —|.[IME. command. The ’home’ key recalls the first line of the
current workfile, and [CTL] ’home’ key recalls the last line of the current workfile.

18 RESET ESCARPE ® EEAL A © OIM E$f # EE=CHEFCZ)
28 'RSZIZWMT ' CLEAR fRSZE2 © REMOTE @ OUTELTFmemg s MEEENSE
=S I# L.OCHL

2B H=EFOLLC"rs2z2t sy @ IF A#?29 THEW '"RREZZZWUT' BELsE A=RENRDDE
I.' 1 r.. TII .I

i
i"
._
'!

i
H

L
o

5
t HFE "R, 1S B OESCARE "H". 185 B ESCAFE "E".185 10 Tore I

ntoo exit 1nEert
SDFRFE "i". 183 D Back
=LHFE LHF$L;.J543 b HE LR
SOAFE "D". 47 @ OESCARPE "CUa.d4E R ESCAFE "AM. 58 R ESCHFE "B

b Left o Fight o Ups Do
", dE @ OESCARE "aq".s89 @ ESCARE "r"e 158 B ESCAFE "

H++rl-| FETIH I Tll':l.:-lLI....l':'l'

"R, 1E2 B OESCAFE "u". 159 B ESCARE "w". 168 # ESCHFE
I Tup.{{{_fi;}.rnffnm

FE "L 1EE B OESCHFE "FUha 13 D Tops Bottom
FE "1". 182 ® ESCARE "2" ¢4@ ESCAFE 0" 187 B ESCHFE
PoSst s Fune~Lins.~Line
UL a2 1 Aubo
PROFEFL a1k Rail"REELR
A SE#L 5§ ZkBazL " RESL")

OUTFUT A §E$E"SF 2k0aZl"LEFL""
OUTFUT $A FEFS"SF4k0aZL"LESL5"
OUTFUT 3R FE#5 8§ SkOsEL " BEFL"

A ;
H ;
H

H

_,
1

T
i
.

o

-
u
fi
n
i
4

]
n
i
"
’
i

l
n
x
i
i

o
l
i

fi

o
=
T
l

o
]
.

i
1

i

i
0

=

fi
j
=

j
i
j
r
—

ii
i
"
F
=

T
i

"'
1

s'l
’

I A
‘
l
’
]

L
E

g

=
i] e "T
_'
]

.

T

i
z

i
!

i
k
e

=
=

g
l

R
I
R

i
i

=
}
T
I
l l

-l
_:
l

S
T
, o
l

;
’
.
"
s

_
r
i
z

I

UUTFUT
OUTEFUT

o
d
i
e

I
- m
-

. "e
—a
de
’

B
l
1
0

4
Bl

og
d
B
0

8
,
0

07

OUTFUT JESS"SFEk0allL " BESFL"U";
OUTFUT :
CLTEUT

OUTRUT

- e
l LF TRlREFLW

ok Bal

T
T
,

Pl
gd
i

Tk .
SRFEE Basl eEER " n

s EFEL1A D Set strap o transmit escape sFo
lt
T
l
=
=
=
t

b
t
e
t
e
t

5 LL OFF ® SFLAG -:21
I:1 DISFLAY IS fR5222 B EEYVEOARLD IS skR@&zs

-
—
L
—

|'_
x_'

|
P

T
=

a
0
T

0
0
=
O

0
]
e
0

[
M
o
o

19-2

KEYBOARD IS - Using A Terminal

19.3 Disabling KEYBOARD IS

Use the following routine when turning off the remote keyboard:

18 DISFLAY IS sDISPLAY & KEYVEBOARD IS % @ RESET ESCHFE
28 CFLAG —-21 @ REESET HFIL

19-3

SECTION

20
 Graphics

The LCD display of the HP-71 may be used to depict graphic images using the 5[1I=F statement. The
contents of the LCD display may be read to a string with the [SF¥ statement. The HP-71 Owner’s
Manual (p. 137) has a discussion of these statements. Several tools are provided to assist in preparation of

a graphics image. They are a graphics editor, a keyword FHTTEFHM*, and the keywords =EIT and
=EIT#, found in the STRINGLX file (see the chapter String Functions.)

20.1 GEDIT - Graphics Editor

The GE[I T program provides a facility for interactivlv creating a graphics image on the LCD. To
create an image, run E[LII T, and use redefined keys to move the cursor and set or clear points. The
following keys are active when GELIT T is running:

[.] Turn pixel on
[SPC] Turn pixel off

[<] Move cursor one pixel left
[>] Move cursor one pixel right
[~] Move cursor one pixel up
[v] Move cursor one pixel down

[C] Copy column, shifting display to right
[D] Delete column, shifting display to left
[G] Goto x,y location in display
[1] Insert blank column
[L] Display current location
[P] Print graphic image on ThinkJet printer
[R] Read image from file
[S] Save image to file (as 132 character string)
[Q] Exit program

20-1

Graphics

e 5
t b GEDIT - Graphics Editor CRequires HF-IL kewwordso

CARHLL GEDIT @ SUR GEDIT
OIM HFELCI1I220.BF0132]
OIsSF ® AfF=GCOISFE @ «==1 B Y=8 B FE=FLAGCEY B F9=FLAGCD
GOISF AF
Eog="" W CFILHG 5

S=FlLRG ut[THHH HELHamTaa o
Ef=H% W BEExles = 1=CHEEC EIHEDRiHUM(E$[HyHIb,E“TDh
O TIMEERE #1. H GOSUE 2968
Ed=KEY$ [IF Eg="" THEH 188
Fas=FO=o"d, SEIDCLGFO"UFRECECEELL. 100+
O F4 SO0 fia.l.H,1—u,14n,14nqflHH.M1HqLhuqh_n,_4nqabk,23@

§
i

A
R
R
S

R
N

—t
t
s
l

B
8

S
5
5

b
t

ni
i

]
i
i
i

P
o
=
T
8
T
o
T
T

T
T

:
"
"
i

'q;]'u:“TD? FoGOTO 568

eBIHCHFO™202 B GOTD S
S22B OSOTO 5@

-kl HoGOTO 58

—
-

o
t
B
l

l
I
i

y SRk

HEL#a @ 1=0HEFCETH TR CHLIM
HE Lm 1=0HES CETHAMDNC MLCR:
IF fI“"#4?” THEM s=M00 s
IF EF="#42" THEM H=M0O00CK
IF Ex="#28" THEM Y=MOalcYy
IF EF="#51" THEH Y=pRODoY
DDz "SEWES "y BGOSR
DISF "REEAD: "5 w2 GoezlE =z
AE=HFEL 1 =51 TRCHEF (B BRF LS
HE=HF[1,=-—-11%H$[K+1]&EHF$
HE=HEL 14J]SHELA e w TRAELE

T

I
R
R

1"
._
'1

1-
—'

-

o
o
P
R

H
e

2
w
=

l"
-l

l_
‘l

@ GOTO S8 ELSE 56
FRIMT #1685 A5 B GOTO 50
READ #1.85A% @ GOTO S8

11 @ GOTO 56
o GOTO D
=171 W GOTO 58

v
.,.

..
1
T
T
T

S
n
D
=
T
O
e
O

.,
_

e
’

T

i'
_i
_'
!

i'_
i_'

t
+

i
=

,. N

-
T

=
i
1

_
'
n
i
|
2
1
]
E
l

- i
a
i

1:
K

a1

—
o
i
l

OISF "wevewgn Vet

IF EEYDOMH THEM 258 ELZE WP
D
o
P
P
o

T
l
o
=
b

e
t
e
t
e
t
e
t
e
t

0
e

0
0
a
0
o

A=MODCTHT =10, TSE+1 B Y=MODCIHT V=12, 8) @ GOTO 56
FEINT CHREFC2VE"=123260"§AF © GOTO S8

A=FLAGES, HOT FLAGOS)
IF K##"" THEHM RETLRH
IF A THEM GOISF B ELSE GOISF A#

T "e
ma
de

3
T e
’

i_:
i

f'
x_

:i
{'

x_
:l

f'
l_

‘i

T e
’

=
s
L
i

P
v e

S RETLRERM
B THFUT "Files "iF#F

IF FE="" THEH FOF @& GOTO 5G9
He=TGH #1 T F@ EETUREH
CRFLAG @ @ DISF "Dome" B FosFLAGOE, FE) B F9=FLHGCS RS0

EHD =l

R
R
i
i

i
i
d

i
7
"

=
£
3
3

37
<
f
n

i
T

T
T

b
i
l
i

i
t

20-2

Graphics

20.2 PATTERNS

The FHT TEFM* keyword returns a character string which contains the [I =F# equivalent of an ascii
string in the display. The resulting string will contain 6 bytes for each character in the string argument.

SYNTAX: FHTTERHF string expression

EXAMPLE: GLOI=F FATTEREMHEC" 12=0 0
HE=FATTERHF O "Hel 1o

20.3 Example

A graphic image may be frozen on the left of the display with the [IH[IIL statement. Some
applications may find this useful when implementing a user interface. In this example, a train is created

in T§, placed in the display, and frozen in place for a prompt.

e
t CAHLL GE= ® oSUE GES B OFTION BERZE 1

I THFO1ET @ FOR I=1 TO 12 ® READ T @ TELITI=CHEFCTY ® HEST I
LHTH 1aBaooe 1EGe 19Gy @0 ZEE, 2801 Vale 72 S0, 2B, T2, 192, 12,5
a K1y K

TR TE & WIMOON 4 @ THFOT "Dest inat iony?" s DF

1
P i

1
T

i
l

3
S WIHDGR 1 = DISF "Going to "aDE B EHD ZUER

20-3

Forth Utilities

The following is a description of a collection of utilities developed to facilitate FORTH programming and

debugging. There are five categories of words:

e Decompiling: LIH: and F'=.. These words are used to produce a map of a colon-compiled
dictionary entry, and to decompile the contents of the return stack.

e Single-stepping: EF, BRERE, COMT, FIMIZH, STEF,and =57T. These words are used to
interrupt execution of a FORTH secondary word and single step each word or group of words.

e Memory examination: [ILIMF, DUMF+ LIST, EOOMY, 5., and SHOL. These words are used
to examine the contents of memory.

e Output: [[0 [O-F, O-F, DELAYED PAUSE, FEINT,and SFEIF. These words are

used to assign the display, pause during execution, and configure the printer.

¢ Miscellaneous: EF=E™, TIME,and TIMEL.

21.1 Loading FORTH Utility Files

There are three FORTH utility files: FTHUTILA, FTHUTILF, and FTHLITILLZ, If you have not
established a FFIETHEFIM file, use the FTHIIT L= file as follows:

COFY FTHUTILCE TRFED TO FORTHEHM

If you have already established1=THFFM[1, the new words may be added with a two step procedure
from within the FORTH environment:

"FTHUTILFE TAFE]" ASSEMBLE

"FTHUTILF(TRFE]" LOADF

The FTHIITILF file must be assembled first, as its words are subsequently used by words in the
FTHUTILF file.

21-1

Forth Utilities

21.2 Decompiling

UN: —>

Decompile the word following Il * in the input stream. Used in the form:

LIM% <word name>

IIM = produces a complete map of a colon-compiled dictionary entry, showing the contents of the word
header, and an addressed list of the words comprising the decompiled word’s definition. For example,

execution of

IIMs MO~ produces output like this:

Worcls ROOR-
LFAS @aladg Lirk s SEERE
MFHS @alas oLd 3G =S0H
CFHY =alls EVELH &

=K1 1A EBESA S5
1R E@zy1 @
S [Y-

The first column of numbers show the address of each element of the word; the second column show the

content of the address. After the CFA, the content is the L:FH of a FORTH word, which is also identified
by its name. From the above we can read off that the definition of HLI[IF~ is &+ HO[DE—~ S5— B §

The rate at which I * displays successive words in a definition is controlled by the FHILI=ELF variable.

I1H% does not necessarily give a definition listing exactly the same as the original definition, because of
the nature of certain common FORTH words. EEGIH and THERM, for example, have no compiled
representations. ll: does allow you to determine the location of these structures by displaying the

destination address for all branches. An I word, for example, is displayed like this:

IF to xxxxx

where xxxxx is the address of the word that will be executed next if the flag tested by [is false.

A second class of words for which the decompilation does not match the original definition exactly

consists of words that are compiled as multiple words. Examples are Iand L.EF%E. CF is compiled as
OWER = IF [DREOF; LEAYE is compiled as K> F> Z0EOF ELSE (the ELwE’s here are just
unconditional branches).

Finally, LIFH% does not recognize the headerless words used in the FORTH ROM dictionary, which may

cause problems if you attempt to decompile a ROM word. In most cases, LIM& will just display LIk rciarm
for a word it doesn’t know. If the unknown word advances the instruction pointer when executed, LM+
will get out of synch and produce garbage or hang up. The headerless words are listed in the FORTH IMS.

21-2

Forth Utilities

RS. —>

Decompiles the contents of the return stack. <™. lists each item on the return stack, in bottom-to-top

order, each followed by the name of the word identified by the address. The lowest two levels, which refer

to the outer interpreter, are omitted.

21.3 Single Stepping

The words =TEF, %7, BREEAE, BF, COMT, and FIMIZH enable you to interrupt a FORTH
secondary word at any point in its execution and single step each successive word or group of words in its

definition. A separate return-stack and instruction pointer environment is set up for the word, so that

you can carry out various FORTH operations between steps, and so that return-stack operations included

in the word will not confuse the normal outer interpreter. The interrupted word uses the normal data

stack, so that any operations you perform between steps must leave the stack in the state expected by the

next step.

Interrupted execution of a word /404 is initiated by either = TEF XXX or <address> BEFEHE. XXX.
Both methods set up the interrupt environment, then begin executing XXX. =TEF executes only the first
word (after the " & ") in XXX’s definition; EFEHE executes XXX up to <address>, or to the final " § "
whichever is encountered first.

Execution of an interrupted word is resumed by the words ==T, UM T, and FIHI ZH. 55T executes the
next word in the definition; -1 7Tresumes continuous execution, stopping at the next encounter of the
breakpoint address (which can be reset with EF), or at the end of the word. FIMI=H clears any
breakpoint setting and completes execution of the word through the final " & "

Each time a word is interrupted, a user-selectable vectored word is executed. The L.of the vectored

word is stored in the variable == TUILIT. The default =5TOLT word is =W, which displays the stack in
bottom-to-top order (reverse of . =) within square brackets [].

Single stepping proceeds through a word’s definition at the level of the definition - each secondary in the

definition is executed entirely as a single step. ==T does not wander up and down through the various

levels of secondaries in a definition. EFEHE and CUMT will stop at a breakpoint address set at any level,
but a subsequent =T will halt back at the top-level of the original word’s definition. You can
effectively single-step through lower levels by setting breakpoints in the low level definition and using

LCIHT.

The single-step words use two user variables during their execution. #.:'FE7'Fis used to pass the address
of the start of the single step environment to the single step primitives. #.: - ki< which is also used by
the colon compiler, is used to hold the current breakpoint address. FORTH words that are tested with

REME or %i=T must not disturb the contents of these variables. Furthermore, they must not disturb the
return stack pointer stored in FFEl nor move the return stack itself. In particular, do rot EFHE or
== Twords containing a1l or =HI I HE at any level.

BP n—

Set a breakpoint at address n, for use with LUT.

21-3

Forth Utilities

BREAK n—»

Used in the form <addr> BEFERE <wordname>.

Create a single step environment for the word named next, then execute the word, stopping when the

instruction pointer reaches the address on the top of the data stack. The addresses for EFEHE. can be
obtained using l!M* on the word to be single stepped. EFEHE can stop at any word address in a
definition after the first address following the & (use =TEF if you want to stop on the first address) and
before the final ¥ (stopping on the i is the same as executing the full word).

CONT —

Resume execution of a word that was interrupted with S TEF, EFEERE, or 2T, Execute up to the
breakpoint address, or to the final " 3 ", whichever comes first.

FINISH —

Complete execution of an interrupted word through the final " &

SST —->

Display the name of the word identified by the next address in the current single-step word’s definition,

then execute the named word. Then execute the word whose :FFF is stored in the variable == TLILIT,
The default ==TILT word is . which displays the stack in bottom-to-top order (reverse of . =).

STEP —

Used in the form = TEF <wordname>.

Create a single step environment for the word named next, then =T the first word following the & in
the word’s definition.

21-4

Forth Utilities

21.4 Memory Examination

DUMP addr n —»

Display n nibbles, starting at addr, as ASCII hex characters.

DUMP+ addr n — addr+n

Display n nibbles, starting at addr, as ASCII hex characters. Leave the next address (addr+n) on the stack.

LIST —

Display a list of user-dictionary words, starting with the most recently created.

ROOM? —->

Display the number of nibbles available in the FIETHERM file.

S. —

Display the data stack contents, in bottom first, top last order (opposite of . =), inside [] brackets.

SHOW — addr+5n

Display the address and contents of n consecutive S-nibble cells, starting at addr. Leave the next address

on the stack. Display time is controlled by FHII=ELEHM.

21-5

Forth Utilities

21.5 Output

D-* ~

Execute "[DISFLHAY IS #" BRSICH

D-D —>

Execute "D ImFLAY IS DISFLAY" BRZICE

Execute "[DI=FLAY Im FRIMTER" BARZIGH

Execute "[I=FLAYIm REozZza" BRSEIOE

DELAYOO —>

Execute "[ELAY B.8" BRI

PAUSE —

Pause for the number of milliseconds stored in the variable FFHLISELERM. (Does an empty [IL1 L.CHIF).
Intended for use with outputs to the HP-71 display.

PAUSELEN — addr

Return the address of the variable containing the delay in milliseconds produced by FHLI=E.

21-6

Forth Utilities

PRINT —->

Used in the form FFEIMHT xxxxx, which causes the display output of the FORTH word xxxxx to be
directed to the printer (s FEIMTER ©12). The original [11=FLLHY 1% device is restored automatically
after xxxxx has finished execution. FFIHT LIH: FFEED, for example, will print the decompilation of
FFEL on a printer instead of the display.

SKIP -

Send E=C 21 1L tothe s FEIMTEINto set perforation skip mode.

21.6 Miscellaneous

BASE? —>

Display the current base in decimal.

TIME —>

Pushes the current HP-71 clock time onto the floating point stack. Time is expressed in seconds from

midnight, rounded to the nearest .01 second.

TIMED —>

Used in the form T II1E[1 xxxx, which displays the execution time of the word xxxx in seconds (to the
nearest . 01 second). For timing floating point words, be aware that T [I"lE.[1 will change the T-register on
input, and the T- and Z- registers on output.

21-7

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

PACKARD
(bfi HEWLETT

00071-90097 Printed in U.S.A.

	Cover
	Table of Contents
	Section 1: Introduction
	Section 2: Version Identification
	Section 3: Working Environment
	3.1 Printer Assignments
	3.2 Required Modules
	3.3 Card Reader
	3.4 Memory Requirements

	Section 4: User Environment Preservation
	4.1 Variables
	4.2 Flags
	4.3 I/O Assignments
	4.4 Display Attributes
	4.5 Alternate Character Set
	4.6 [ATTN] Key
	4.7 Numeric Settings
	4.8 Key Files
	4.9 Manual Consideration

	Section 5: Messages To The User
	Section 6: Waiting For The User: KEYWAIT$
	Section 7: Option Selection
	7.1 Command Entries
	7.2 Immediate Execute Menus
	7.3 Fixed Option Menus

	Section 8: Help!
	Section 9: Input Routines
	9.1 Cursor Control
	9.2 Numeric Entry
	9.3 Numeric Entry With Option
	9.4 String Entry
	9.5 Yes or No?
	9.6 Protected Field Entry

	Section 10: INPUT Alternative: INLINE
	Section 11: File Name Verification
	11.1 File Names For Loading
	11.2 File Names For Saving
	11.3 Names Of Subprograms

	Section 12: Output Routines
	12.1 Configuration And Data Volume
	12.2 Some HP Printer Features
	12.3 Multiple Results In The LCD
	12.4 Large Results In The LCD
	12.5 Numeric Formatting

	Section 13: Internal Calculations
	13.1 Changing Array Sizes
	13.2 Adding And Deleting Rows
	13.3 Adding And Deleting Columns

	Section 14: Error Messages: MSG$ & Translator
	14.1 MSG$
	14.2 Translators

	Section 15: Speed and Space
	15.1 Variable Names
	15.2 Line References
	15.3 Multi-line Statements
	15.4 Loops
	15.5 Clearing Arrays and Strings
	15.6 Logical Expressions
	15.7 Device Addressing

	Section 16: HPAF File Standard
	16.1 Header information
	16.2 Data records
	16.3 Descriptor block

	Section 17: String Functions
	17.1 MEMBER
	17.2 LTRIM$, RTRIM$, TRIM$
	17.3 LWE$, LWRC$
	17.4 REV$
	17.5 ROT$
	17.6 RPT$
	17.7 SBIT
	17.8 SBIT$
	17.9 SPAN

	Section 18: BREAKPT: BASIC Breakpoint System
	Section 19: KEYBOARD IS - Using A Terminal
	19.1 KEYBOARD IS With HP-150
	19.2 KEYBOARD IS With HP-2648 Terminal
	19.3 Disabling KEYBOARD IS

	Section 20: Graphics
	20.1 GEDIT - Graphics Editor
	20.2 PATTERN$
	20.3 Example

	Section 21: Forth Utilities
	21.1 Loading FORTH Utility Files
	21.2 Decompiling
	21.3 Single Stepping
	21.4 Memory Examination
	21.5 Output
	21.6 Miscellaneous

