
71-00015-8

REWLETT PACKARD
USERS® LIBRARY

LEX File

Utilities

FOR THE HP-71B

(-

DDDDDDDDDDDDDD

DDDDDDDDDNDDDD

DDDDDDDDOoOUDDDD

User accepts and uses this program material AT HIS/HER OWN RISK, in reliance soley upon his/her own inspection
of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND
WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR
THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNEC-
TION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM

MATERIAL.

“1-0000¢2 PROGRAM DESCRIPTION

Program Title ROWCOL

Contributor Hewlett-Packard Company

Address 1000 NE Circle Blvd

City Corvallis State Oregon Country U.S.A.

Telephone Zip/Postal Code 97330

This lex file provides one keyword: ROWCOL$. Invocation:

Program Description (include equations)

ROWCOL$(<graphstring>)

The keyword accepts a single string argument of 0-8 characters. If argument is n

characters (n<8) then characters n+l through 8 default to nulls. Argument of >8

characters causes an ''Invalid Arg" error.

Argument represents an 8 pixel by 8 pixel block of row- or column-oriented graphics.

Result is an 8 pixel by 8 pixel block of column- or row-oriented graphics,

respectively.

An argument or result of row-orientedgraphics would actually be 8 bytes each

containing 8 bits of column data from consecutive rows.

An argument or result of column-oriented graphics is actually 8 bytes each

containing 8 bits of row data from consecutive columns. Here is a more hands-on

explanation:

Necessary Accessories ___None

Supported Accessories ____N/A

Operating limits and warnings

File name(s) ROWCOL

Size of file(s) __119 bytes Additional RAM Requirement to run the program None

References

 This program has been verified only with respect 10 the numerical example give in Arogram Description. User accepts and uses this program matenal AT HIS OWN RISK, in
fehance soisly upon s Own Nepection of the program Matenal and Without reliance UPoN Ny NEpresentation of GesCNPLoN CoNCernIng the Program matenal.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING,

SUT NOT UMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR

SHALL BE UABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF

THeS PROGRAM MATERIAL.

POl

71-00002 77

+--+

CHAPTER 3
ROWCOL

gygggggggyggS+

New Lex File Indicates "RC:A" in VERS$ string.

Program Title: String function for row/column graphics conversion.

Category Number(s): 2?7

File Name(s): ROWCOL.

Primary Category Name: ?2?

Size of File(s): 119 bytes.

Additional RAM Requirement: None.

Abstract: lex file provides a keyword that allows easy conversion
between row- and column-oriented graphics. Sample use:
converting graphics data for HP82905B printer (column-
oriented) into graphics data for Thinkjet printer (row-
oriented).

Necessary Accessories: None.

Supported Accessories: N/A.

3.1 Program Description

This lex file provides one keyword: ROWCOL$. Invocation:

ROWCOLS (<graphstring>)

The keyword accepts a single string argument of 0-8 characters. If
argument is n characters (n<8) then characters n+l through 8 default to
nulls. Argument of >8 characters causes an "Invalid Arg" error.

Argument represents an 8 pixel by 8 pixel block of row- or column-
oriented graphics. Result is an 8 pixel by 8 pixel block of column- or
row-oriented graphics, respectively.

An argument or result of row-oriented graphics would actually be 8 bytes
each containing 8 bits of column data from consecutive rows.

ROWCOL Page 3-1

3.2 Variable Definitions 3 OX 7

nva. 21-00002

3.3 Sample Usage

The following program converts a textfile containing graphics
information for a THINKJET printer 4into graphics information for an
HPB82905B printer and prints that information.

The program is not fast; each line of print on the HP82905B takes about
45 seconds. But the use of the ROWCOLS$ function on line 280 produces a
drastic speed increase over what the program would take if it performed
the equivalent manipulations in BASIC.

The program assumes that the file being dumped (called "MYFILE" here)
contains THINKJET graphics directives of the form “<esc>*b<§bytes>W"
(the preamble) followed by bytes of row graphics information. Any lines
not of this format (as typically occur at the beginning and end of such
files) are discardéd without resulting in anything being printed.

Page 3-2 ROWCOL

71-00002 SAMPLE PROBLEM SOLUTION

90

DISPLAY CONTENTS USER RESPONSE

PRINT CHRS (27)&"&k2S"&CHRS (27) &"&1940L"
PWIDTH INF
DESTROY ALL
OPTION BASE 1
DIM C$[800],L(8),TS$[8)
ASSIGN #1 TO MYFILE
ON ERROR GOTO 320
DESTROY R$ € DIM R$(8)[100]
FOR I=1 TO 8

100 READ #1;:RS$(I) .
110 IF RS(I)[1,3]#CHRS(27)&"*b" THEN 100
120 RS (I)=RS$(I)[POS(RS(I),"W")+1)]
130 NEXT I
140 OFF ERROR
150 GOSUB 170
160 GOTO 70
170 L9=0
180 FOR I=1 TO 8
190 L(I)=LEN(RS$(I))
200 L9=MAX(L9,L(I))
210 NEXT I
220 cs-" "

230 FOR I=1 TO L9

240 T$=""
250 FOR J=1 TO 8
260 TS$=TS$&RS (J) [I,I)&CHRS (0) [1+(I<=L(J))]
270 NEXT J
280 C$=C$&ROWCOLS (T$)
290 NEXT I
300 PRINT CHRS (27)&"#*b"&STRS (LEN(C$))&"G":C$
310 RETURN
320 OFF ERROR
330 GOSUB 170
340 END

Pageiof

COMMENTS

Page 3-3

-—————————m— - - - - -—- C e e em——

Ie -—

Page_5ot

¥1-00002 SAMPLE PROBLEM

The followin program converts a textfile containing graphics information for a
THINKJET printer into graphics information for an HP 82905B printer and prints that
information.

The program is not fast; each line of print on the HP 82905B takes about 45 seconds.
But the use of the ROWCOL$ function on line 280 produces a drastic speed increase
over what the program would take if it performed the equivalent manipulations in
BASIC.

The program assumes that the file being dumped (called "MYFILE" here) contains
THINKJET graphics directives of the form '"<esc>*b<#bytes>W" (the preamble) followed
by bytes of row graphics information. Any lines not of this format (as typically
occur at the beginning and end of such files) are discarded without resulting in
anything being printed.

Line 10 initializes the HP 82905B printer to compressed print mode, 9 lpi spacing
and no-perforation-skip; appropriate settings for many graphics dumps. Lines 20-60
initialize the program. Line 70 traps the end-of-file condition. Line 80
reinitializes the row graphics string array to nulls. Lines 90-130 accumulate 8 rows
of row graphics information for conversion to column graphics. Line 150 calls the
subroutine to perform the actual conversion and line 160 loops back for more graphics
information.

Lines 320-340 handle the printing of the final rows when the end-of-file is reached.

The conversion work is done in the subroutine at lines 170-310. Lines 170-210
build an array containing the lengths of the graphics data in each row, with L9 = the
maximum length (note that line 120 stripped off the row graphics preamble from the
line). Line 220 initializes the column graphics string to empty. Lines 230-290 build
the column graphics string by grouping the row graphics bytes properly into T$ (line
260 insures a null space-filler if a row string is too short), converting T$ into
column form with ROWCOL$ and appending it to the column graphics string (line 280).
Line 300 prints the column graphics information prepended with the proper column
graphics preamble ('<esc,*b<#bytes>G").

With slight modification, this program could print to a file instead of to a printer,
producing a text file that can be easily and quickly printed on a column graphics
printer.

Page_Qof__?_

 71-00002

(Conpnuaton Page)

Consider This pixel pattern:
Row graphics pattern:

| x X X X | 4D
(all numbers | X X X X X X | EE

in HEX) | X x x x X | 9B
| 2 xx xxx | 77
| X XXX Xxx | FC
| x X X X X X | BD
| x X X XXX | F5
| X x x x | 87

Column S E F377585€PF
graphics : DEB7CABGE
pattern

The ROWCOL$ function will convert the byte sequence EDBEFB377C7A5BF6h into
4DEESB77FCBDF587h and will also do the inverse (it is its own inverse).

This function provides a tool for BASIC to speak both row- and column-oriented
graphics with minimal headache.

747

?1-00002

Line 10 initializes the 82905B printer to compressed print mode, 9 1lpi
spacing and no-perforation-skip:; appropriate settings for many graphics
dumps. Lines 20-60 initialize the program. Line 70 traps the end-of-
file condition. Line 80 reinitializes the row graphics string array to
nulls. Lines 90-130 accumulate 8 rows of row graphics Jinformation for
conversion to column graphics. Line 150 calls the subroutine to perform
the actual conversion and 1line 160 loops back for more graphics
information.

Lines 320-340 handle the printing of the final rows when the end-of-file
is reached.

The conversion work is done in the subroutine at lines 170-310. Lines
170-210 build an array containing the lengths of the graphics data in
each row, with 19 = the maximum length (note that line 120 stripped off
the row graphics preamble from the line). Line 220 initializes the
column graphics string to empty. Lines 230-290 build the column
graphics string by grouping the row graphics bytes properly into T$
(line 260 insures a null space-filler if a row string 1s too short),
converting T$ 4into column form with ROWCOL$ and appending it to the
column graphics string (line 280). Line 300 prints the column graphics
information prepended with the proper column graphics preamble
("<esc>*b<ibytes>G").

With slight modification, this program could print to a file instead of
to a printer, producing a text file that can be easily and quickly
printed on a column graphics printer.

71-00003 PROGRAM DESCRIPTION 0

Program Title LIFE:A

Contributor ewlett- v

Address 1000 NE Circle Blvd

Clty Corvallis
State Oregon

Country U.S.A.

Telephone Zip/Postal Code 97330

Program Description (include equations) A familiarity with the game LIFE is assumed.

This lex file contains one keyword: LIFE$. The keyword is a string function that

takes a string argument representing a current generation of LIFE (on a rectangular

board of arbitrary dimension) and computes the next generation. The keyword is

invoked as follows:

LIFE$ (<boardstring>,<row width<,>wrap flag>[,<alt fill char>])

The input parameters are as follows:

<boardstring> String parameter representing the current board. If the board is, for

example, 80 columns by 24 rows, the string is 1920 characters long. The cells are in

row-major order; that is, assuming the 80 x 24 case, the first 80 characters

represent the first row, the next 80 characters represent the second row, etc. Empty

cells are represented by a blank, occupied cells are represented by the fill

character (which defaults to an "*" if not specified in the fourth parameter).

Necessary Accessories None

N/A

 Supported Accessories

Operating limits and warnings

File name(s)

Size of file(s) Additional RAM Requirement to run the program

References

 This program has been verified only with respect to the numerical example give in Program Description. User accepts and uses this program matenial AT HIS OWN RISK, in
fekance soisty LPON his Own MEpection of the Program Malenal and WthOUt relianNce UPON &Ny NEPreSeNtation Of EESCIPLON conCarMIng the program Mmatenal.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING.
SUT NOT UMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR
SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF
THtS PROGRAM MATERIAL

71-000U3 2%5

+--+

CHAPTER 1
LIFELEX

+--+

New LEX File Indicates "LIFE:A" in VERS$ string.

Program Title: LIFE Generation Computation Utility

Category Number(s): Fl02.

File Name(s): LIFELEX.

Primary Category Name: GAMES.

Size of File(s): 457 bytes.

Additional RAM Requirement: None.

Abstract: This lex file contains a very fast next-generation computer
for John Conway's "Life" game. Computation time for a 24 by
80 board (useful if output is going to a typical terminal) is
typically under two seconds.

Necessary Accessories: None.

Supported Accessories: N/A.

1.1 Program Description:

A familiarity with the game LIFE is assumed.

This lex file contains one keyword: LIFES. The Xkeyword is a string
function that takes a string argument representing a current generation
of LIFE (on a rectangular board of arbitrary dimension) and computes the
next generation. The keyword is invoked as follows:

LIFES (<boardstring>,<row width>,<wrap flag>[,<alt £ill char>))

The input parameters are as follows:

<boardstring> String parameter representing the current board. If the
board is, for example, 80 columns by 24 rows, the string is
1920 characters long. The cells are in row-major order; that
is, assuming the 80 x 24 case, the first 80 characters
represent the first row, the next 80 characters represent the

LIFELEX Page 1-1

71-060003 i

second row, etc. Empty cells are represented by a blank,
occupied cells are represented by the £ill character (which
defaults to an "#" jif not specified in the fourth parameter).

<row width> Numeric parameter identifying row width. In the 80 x 24
case discussed above, this would be 80.

<wrap flag> Numeric parameter. Non-zero if the game board wraps around
the edges. In other words, if non-zero, the top edge of the
board is considered adjacent to the bottom edge and the left
edge is adjacent to the right edge. If zero, the board edges
are considered the "edge of the world".

<alt fill char> Optional string parameter. Specifies a character to use
instead of "*" as the fill character.

The result of LIFES$ is a string representing the next generation playing
board. Empty cells are represented by blanks, occupied cells by the
£ill character.

Error Conditions: LIFE$ will fail with an "Invalid Arg" error if any of
the following 1s true:

m Either numeric argument is not a real finite scalar.

m <row width> is less than 3 or greater than 1048575.

® Length of <boardstring> is not an integer multiple of <row width>.

s Number of rows (length of <boardstring> divided by <row width>) is
less than 3.

1.2 Variable Definitions

N/A.

1.3 Sample Usage

The following program demonstrates the use of LIFES. It was written to
send its output to an HP-82163A video interface, and requires an HPIL
interface and an 82163A. The program uses cursor control sequences
particular to that interface and makes assumptions about the screen
size.

Lines 10-70 initialize variables. Lines 90-120 initialize the board to
a random pattern (50% filled) of empty and occupied cells. Lines 130-
140 print the current generation. Line 150 computes the next
generation. Line 160 checks if the board has reached a one- or two-
generation stability. The program terminates when one- or two-

Page 1-2 LIFELEX

 %1-00003 SAMPLE PROBLEM |

Page:fif_o[J§L

The following program demonstrates the use of LIFE$. It was written to send its output
to an HP 82163A video interface, and requires an HPIL interface and an HP 82163A. The
program uses cursor control sequences particular to that interface and makes
assumptions about the screen size.

Lines 10-70 initialize variables. Lines 90-120 initialize the board to a random
pattern (507 filled) of empty and occupied cells. Lines 130-140 print the current
generation. Line 150 computes the next generation. Line 160 checks if the board has
reached a one- or two- generation stability. The program terminates when one- or two-
generation stability is reached (on occasion, this may never occur).

DESTROY ALL @ RANDOMIZE @ PRINTER IS :DISP
PWIDTH INF LAY
OPTION BASE 1
DIM B$[480],X$(2) [480]
G=0
XS$(1)="" @ xs(z)-nu
BS=nn

PRINT CHR$(27)&”H"&CHRS(Z?)&"JCONSTRUCTING BOARD..."
FOR I=1 TO 480

100 B$=BS$&"#* "[RND+1][1,1)
110 PRINT B$[I,I];
120 NEXT I
130 PRINT CHRS$(27)&"H";BS;
140 PRINT " GENERATION #";G;CHRS (27)&"J"; @ G=G+1ItBXS(1) AND BS#XS$(2) THEN X$(2)=X$(1) € X$(1)=B GO
i;g gfigNT CHR$(27)&”%"&CHR$(O)&CHRS(IS;&"S%A%LE Ag(G%NEgAgIONTg"}éEl

Page_iof_,S

#1-060003

(Contnuabon Page)

<yow width> Numeric parameter identifying row width. In the 80 x 24 case discussed
above, this would be 80.

<wrap flag> Numeric parameter. Non-zero if the game board wraps around the edges. In
other words, if non-zero, the top edge of the board is considered adjacent to the
bottom edge and the left edge is adjacent to the right edge. If zero, the board edges
are considered the "edge of the world".

<alt fill char> Optional string parameter. Specifies a character to use instead of
"%®7 as the fill character.

The result of LIFE$ is a string representing the next generation playing board.
Empty cells are represented by blanks, occupied cells by the fill character.

Error Conditions: LIFE$ will fail with an "Invalid Arg" error if any of the following
is true:

Either numeric argument is not a real finit scalar.

<row width> is less than 3 or greater than 1048575.

Length of <boardstring> is not an integer multiple of <row width>.

Number of rows (length of <boardstring> divided by <row width>) is less than 3.

| s/ ¢
71-00004 PROGRAM DESCRIPTION

Program Title Banner

Contributor Hewlett-Packard Company

Address 1000 NE Circle Blvd

City Corvallls State

__

Oregon Country __U.S.A.

Telephone Zip/Postal Code 97330

Program Description (include equations) The lex file contains one keyword: BANNER$. BANNERS is a

banner-building tool. It takes a string argument of from 1 to 3 characters, and

returns a 48-character string representing a 6x8 '"banner' of the characters. For

example, BANNERS ("A") returns the string:

“AAA A A A AAAMMAAA AA AA A",

which, when printed in 8 rows of 6 characters, is:

tommm—ad
AmA (border shown for emphasis only)

A A
AAAAA

_ |A A
A A

—— A A

—_— dmcccaa}

None
Necessary Accessories

Supported Accessories __N/A

 Operating limits and warnings

File name(s) _BANNER

Size of file(s) 202 bytes Additional RAM Requirement to run the program __one

References

 mmmwmwmmnumwmnmm.mmmmummflmmsowunsx.hrekance soisty UPON Nes OWN NSPECHon Of the ProGram MAISNSl and WIhOU! FeRENCS UPON 8Ny MEpresentation O GESCNPYON CONCeMMINg the Program Matenal.

mwnonmcomnwoamsmmmmmmwmmmmmmmmmmmumww&

SUT NOT UMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR

uuu.ssuw.srmmummmmswmmmmmwamm&mmmmm

THIS PROGRAM MATERIAL

+--+

CHAPTER 2
BANNER

GecemmoneeeDeRhGSS.SPPGDS........ .-+

New LEX File Indicates "BNR:A" in VERS$ string.

Program Title: Banner-building utility.

Category Number(s): ?2??

File Name(s): BANNER.

Primary Category Name: ?2?7?

Size of File(s): 202 bytes.

Additional RAM Requirement: None.

Abstract: String keyword to create banner-type representations of
characters in the built-in or alternate character sets. This
allows easy printing of banners (posters) using 1large
characters.

Necessary Accessories: None.

Supported Accessories: N/A.

2.1 Program Description

The lex file contains one keyword: BANNERS. BANNERS is a banner-
building tool. It takes a string argument of from 1 to 3 characters,
and returns a 48-character string representing a 6x8 "banner" of the
characters. For example, BANNERS ("A") returns the string:

" AAA A AA A AAAAA A AA AA A ",

which, when printed in 8 rows of 6 characters, is:

BANNER Page 2-1

Page_3_of4

A p

< (
e[_7'1-

h y

N SAMPLE PROBLEM

The following program implements a large-display clock on the screen of an
HP 82163A video interface. It requires an HPIL interface and an HP 82163A.

The program works by figuring out the current time, converting to 12-hour format
and "painting' the banner representations of the numbers and the am/pm indicators
on the screen using cursor control escape sequences for the 82163A. The banner is
built out of the CHR$ (160) character, which displays as a white block on the
HP 82163A.

PRINTER IS :DISPLAY @ DISPLAY IS *
PWIDTH INF @ DELAY O @ DESTROY ALL
CLEAR :DISPLAY
TS=" [

MS=t" ®

U$=TIMES @ T=VAL(US$[1,2])
IF T<12 THEN NS$="am" ELSE N$="pm"
T=MOD (T-1,12) +1
US[1,1])=" "
IF T<10 THEN U$[2,2]=STRS$(T) ELSE U$[1,2])=STRS(T)
DISP US$[1,5]&" "&N$
FOR I=1 TO 5
IF TS[I I)J#US[I,I] THEN CALL DSPDGT(U$[I,I],I,O)
NEXT I
T$=U$S
FOR I=1 TO 2
IF MS[I,I)J#NS[I,I] THEN CALL DSPDGT(N$[I,I],I+1.5,7)
Ngst
MS$=N

200 WAIT 60-MOD(TIME,60) @ GOTO 60
210 SUB DSPDGT(D$,P,S)
220 DIM 29$[48)
230 29$=BANNERS (D$[1,1]&CHRS (160))
240 FOR Z9=1 TO 8
250 PRINT CHRS (27)&"$"&CHRS (6% (P-1)) &CHRS (Z9+5-1) ;
260 PRINT Z9$[Z9%6-5,Z9%6-1]&CHRS (27) &"<"
270 NEXT 29
280 END SUB

Pageiof_j_

 71-00004

(Continuabon Page)

If the argument is two characters long, the second character is used as
an alternate building character, so BANNERS ("A*") is:

If the argqument is three characters long, the third character is used as
an alternate space character, so BANNERS ("A*.") is:

BANNERS works for the built-in character set and for any characters
defined in the alternate character set.

71-00005 PROGRAM DESCRIPTION

Program Title Running Clock Display

Contributor Hewlett-Packard Company

Address 1000 NE Circle Blvd

City Corvallis State Oregon Country U.S.A.

Telephone Zip/Postal Code 97330

Program Description (include equations) This lex file provides a running hh:mm:ss clock display

that can be turned on or off. The clock occupies the 9 rightmost display positions

and does not interfere with normal operation of the computer. That is, the computer

can be used normally for running, editing, and so on while the clock is running.

The clock is invoked with the keyword sequence:

CLOCK ON

and is turned off with the keyword sequence:

CLOCK OFF

Some things to keep in mind about the clock:

CLKDISP

None
 Necessary Accessories

Supported Accessories N/A

 Operating limits and warnings

File name(s) CLKDISP

Size of file(s) ___328 bytes Additional RAM Requirement to run the program

None

References

 mmmmwmmwnumwwnmm.wmmmmmmflnmsownms&hreliance soisty UpON heg Own inspection of the Program Matenal and withOut rEKaNCS UPON 8Ny rePresentation Of JESCTPUON CONCeMING the Program Mmatenal.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THtS PROGRAM MATERIAL. INCLUDING.

BUT NOT LIAITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR

SHALL BE UABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF

THeS PROGRAM MATERIAL.

Pagegfl_ofi

“I-0U005

(Continuabon Page)

The clock performs an implicit "WINDOW 1,13" every time it ticks. It is
therefore impossible to use the WINDOW command effectively while the clock is on.

The clock performs an implicit "WINDOW'" 1,22" when CLOCK OFF is performed.

The clock is 24-hour format only.

During any operation requiring full CPU attention (such as performing a BEEP),
the clock will stop running. The clock will NOT, however, lose time.

The clock display turns off when the calculator is turned off.

Sample Usage

10 CLOCK ON
20 CLOCK OFF

+--+

CHAPTER 4
CLKDISP

4omeee+

New Program Indicates "CLK:A" in VERS string.

Program Title: Running clock display.

Category Number(s): ?2?

File Name(s): CLKDISP.

Primary Category Name: ???

Size of File(s): 328 bytes.

Additional RAM Requirement: None.

Abstract: Lex file provides an optional running clock display in the
right-hand part of display. Clock does not interfere with
normal operation of the computer.

Necessary Accessories: None.

Supported Accessories: N/A.

4.1 Program Description

This lex file provides a running hh:mm:ss clock display that can be
turned on or off. The clock occupies the 9 rightmost display positions
and does not interfere with normal operation of the computer. That is,
the computer can be used normally for running, editing, and so on while
the clock is running.

The clock is invoked with the keyword sequence:

CLOCK ON

and is turned off with the keyword sequence:

CLOCK OFF

Some things to keep in mind about the clock:

CLKDISP Page 4-1

4.5‘{
©v1-00005

®E The clock performs an implicit "WINDOW 1,13" every time it ticks.
It is therefore impossible to use the WINDOW command effectively
while the clock is on.

E The clock performs an implicit "WINDOW 1,22" when CLOCK OFF is
performed.

® The clock is 24-hour format only.

m During any operation requiring full CPU attention (such as
performing a BEEP), the clock will stop running. The clock will
NOT, however, lose time.

® The clock display turns off when the calculator is turned off.

4.2 Variable Definitions

N/A.

4.3 Sample Usage

10 CLOCK ON
20 CLOCK OFF

Page 4-2 CLKDISP

Page 1 of_‘5

71-00006 PROGRAM DESCRIPTION

Text File Utilities (TEXTUTIL)
Program Title

Contributor EWLETT PACKARD COMPANY

Address 1000 N.E. Circle Blvd.

City Corvallis State OT- County U.S.A.

Telephone (503)757-2000 Zip/Postal Code 97330

Program Description (include equations) TEXTUTIL contains five new keywords, and an extension to

the mainframe LIST. The five new keywords are: FILESZR - a function that

returns the number of records in the specified text file. SEARCH - a function

that searches through a TEXT file for the specified string, returning informatir

as to if and where the string was found. DELETE# - a statement that allows

a TEXT file record to be deleted. INSERT# - a statement that allows a record

to be inserted into a TEXT file . REPLACE# - a statement that allows a TEXT

file record to be replaced by another.

LIST is extended to 1ist TEXT files.

Necessary Accessories None

Operating limits and wamings

Minimum RAM Requirement 1512 bytes

References

 This program has been verified only with respect to the numerical exsmple given in Program Description. User accepts and uses this program materia! AT HIS OWN RISKin

reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING.

BUT NOT LIMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR

SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF

THIS PROGRAM MATERIAL.

“1-060006 2 of 5

The following is a 1ist of the keywords, their syntax and an example of the use
of each. In most cases, the parameters are numeric expressions, string expressions
or literals (refer to section 3 of the HP-71 Owner's Manual).

DELETE# channel number, record number

The DELETE# statement deletes the specified record from the text file associated
with the channel number. Channel numbers are assigned with the ASSIGN# statement
(refer to section 14 of the HP-71 Owner's Manual). Record numbers always begin
at 0, so line number 1 is record number 0.

The channel number and the record number are numeric expressions, rounded to
integer values.

DELETE# generates an error message if the assigned file is external, protected
or not a text file.

EXAMPLE: DELETE# 11,14 deletes record number 14 from the file associated with
channel 11.

FILESZR (filename)

The FILESZR function returns the number of records in the specified text file if
that file exists. The filename parameter is a string expression. If an error is
detected, the negated error number is returned so that you can tell the difference
between an error and the number of records. If filename contains an illegal port
specifier, such as FROGS:PORT(8), the error message Invalid Filespec is generated.

EXAMPLE:FILESZR ('FROGS') returns the number of records in the file FROGS.

INSERT# channel number, record number;new record

The INSERT# statement inserts the new record immediately before the specified
record number in the file associated with the specified channel number. The
channel number must first be assigned to the file using the ASSIGN# statement.
Record numbers always begin at 0, so line 1 is record0.

The new record must be a string expression. The channel number and the record
number are numeric expressions, rounded to integer values.

INSERT# generates an error if the file is external, protected or not a text
file.

EXAMPLE: INSERT# 11,35;"This is the new line being inserted." inserts the
string before record 35 (line 36) of the file associated with channel 11.
The old record 35 becomes record 36.

LIST filename (begin line{end 1ine))

The LIST statement lists a text file. Depending on the parameters you specify,
it 1ists either the entire file, a single 1ine, or a range of lines. Line numbers
are specified using integer constants. The 1ine number parameters are optional,
and the whole file is listed if they are not included. Refer to LIST in the
HP-71 Reference Manual for details.

71-00006 3of 5

REPLACE# channel number, record number;new record

The REPLACE# statement replaces the record indicated by record number with the
new record. The channel number must first be assigned to the file by using the
ASSIGN# statement. Record numbers always begin at 0, so line number 1 is recor«
0.

The new record is a string expression. The channel number and the record numbe:
are numeric expressions rounded to integer values.

REPLACE# returns an error if the file is external, protected or not a text
file.

EXAMPLE: REPLACE# 11,35;"This line will replace the old line."replaces record
35 of the file associated with channel 11. 01d record 35 no longer exists.

SEARCH (search string, column, begin record, end record, channel number)

The SEARCH function searches the file associated with the indicated channel
number for the search string, beginning with the specified column and record
number. The search continues through the end record specified. If the search
is successful, SEARCH returns a value in the form nnn.cccl11, where nnn is the
record number, ccc is the column is the column number and 111 is the length of
matched string. If the search is unsuccessful, SEARCH returns a zero.

The search string can be any string expression, and can contain the special
pattern characters discussed on the next page. The Other parameters are numer
expressions rounded to integer values.

EXAMPLE: Suppose that channel 11 has been assigned to the file FROGS and the
string'frogs are green'appears beginning in column 8 of line 36.

A=SEARCH("frogs are green",1,1,9999,11)

searches the file FROGS, beginning with column 1 of rec. 1 through rec. 9999,
for the search string and returns the value 35.008015 in A.

**Note that since the first 1ine is record 0, 1ine 36 is actually record 35.

Cont. next page

4 of 5
N (¢

SPECIAL PATTERNHS 7 1 () \) O O 6

i festure of SEARTH 1s the zwailskility of four characters thst have

special meariing when useg i1n patiterns, Using these chsracterz in &
secarch strino tells SEARBUH teo lonk. for examc:s, ormly for thoses

cccurrences of th:z string at th: beginning o7 rthe lire, or at the end

of the line, or ailow any cattern betuwesr tuwe specified patterns., Tiz
t+our charactaers that can be usco i this zpezial vay are ., 6, *, £,

The btackslash (N3 characrer casm be uses like = "zwitch! in the search

strirmng to start and ston this teature that males these four character:s

take omn special mzaning. The backslash character is CHRI(9Z), and for
convenlience, may be assi1aned to x kew by executing:

DEF KEY <vrey names, CHEE 320

P See pagas €9 in the HP-V1 Refererce Manual for further irnformation
about kew aszignme=ntsl, Tne first occurtence of the backslash turrz oo
tte feature, so that ths four characters take on their speciasl meanings,

The next cccurernce of the backslash turnz thisz feature off.

The focur characters, their meaningsz, and soms examoles of their use arec

described in the fallowing paragraphsz, In &lil the evampl-,, &=zum
that the spezifies file 1s ornen to channel number 3. HAlso, all th
exam-les specifw the sgearch to start in reccocrd zere, columnm |

‘the start cof thz file?), armagd to cortinue throuah record number 999

m
M
m
o
o

l
i
'

1) The pericd .7 is a ‘wild card’ character., SEAFCH looks for the
specifisd string, tut any character can o= in those positions in

the string whers vou pur & period.

Example: SERRCHY "ABRCVSOHRSOI2 2R, 0", 1,0,9939,3)
or tho first accurrence o+t AR

F
Lecks f B followed by anu
threse characrers, followed b.: bi, ' Fossibilities are
ABCZ994W, ABCzezu, or AEC vzU

&) The commercial "at’ sumbel (E) imdicates that arw rmnumber of

charactcsrs betweer the bteginning of a string anc the end of a

string on the same line are ‘wild cards’” -- that is, there can bs
ary number of characters—— vou dor’'t have to specify how many

charactoirs or what they are,. EBecauzse SEARFCH starts looking for

the end of the strirg a2t the end of the iime, the longest match

is found.

Example: SERPCHC "ABT"LCHRE 22 :"@ChE" .1, 0,.9953, 35
Looks for the first occurrence o+ a string bteginning with
ABi. and ernding with CLE on the same line. such as
RECI123CE, KRRCCDE., or ABCIZ zzzllE

3) The up-srrow "2 is ured to find & strins onlye when 1t cccurs at
the begimnirng of a lire, If the string appears anywhere elsze 1rm
the lines, it will ce 1gnored., The up-arrow has this special meaning
only wher 1t appears as the first craracter of the string. #HAnvuehers
else in the string, ~ will hawe 1its norm2: mearinag,

Example: SERRCH{"N"6GBC",1,0,9993,3)
Lecks for the firzt occurrsnce of ABRT only at the bezinning
of each lire. If AaEC appearz anvuwhere elee in the lins.

a match will rmot te tound.

11-00006
4) The dallar sign (£ feollowing the strina causes SEARCH to look for 5 of

the strirmg only at the end of @ lime, Tre dollsr si1gan character
must appear =2t the ena of the string., bhen 1t sppears anvwhere
else 1n the string., i1t has 1t=z mnormasl mearing,

&Y O

Example: SERRCHY "REL-F" 7 1 G J (f (" 61.0,

Lochs for the firszst occurrence of &KBL at the end of a3 lime.

If @BC appears anuvuhere else irn the lirme, it will be igncred,

Scemetimes, your strimg may contzin a bachslash crharacter as part of the

sctuzal tewuwr., In tris cace, you dom 't want SESRCH to see the backszlash
as a switch. The =solumicn 1s t6c ufe twe sequential backslashes, SEARCH

interpretsz N\ a:z = sirmnle backzlash characrtes, not az a switch,

71-06000%7 PROGRAM DESCRIPTION

Program Tite __Character Set LEX File Generator

Contributor _Bruce Stephens

Address Hewlett-Packard Company (PCD), 1000 NE Circle Blvd.

City Corvallis State Oregon Country _U,S.A.

Telephone 757-2000 Zip/Postal Code 97330

Program Description (include equations) _This program creates a LEX file that contains an

alternate character i rd to activate that

character set.

Necessary Accessories __None

Supported Accessories __N/A

Operating limits and warnings

File name(s)

Size of file(s) Additional RAM Requirement to run the program

References

 mmmmmmmwoumwwhmw.wmmmummnmsownmsx,mrekiance solsly upon hs Own Nspection of the Program material and without rElaNce UPON ANy EPresentation or JESCNPUON CONCEMING the Program Matenal.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING.
SUT NOT LIMITED TO. THE IMPLUIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR
SHALL BE UABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF
THIS PROGRAM MATERIAL

Pagef.z_of_Z

71-0300%7 VARIABLE DEFINITIONS

NAME DEFINITION

F$ Name of LEX file to be created (1 to 8 characters)

v$ VER$ string of new LEX file (1 to 7 characters)

W$ Name of new keyword (2 to 8 characters)

L1 LEX id # of new LEX file

L2 Token # of new keyword

L3 Character set id #

C Length of character set (in bytes) (6 bytes per character)

T Length of LEX file (in bytes)

PS Holds string of hex digits to be put into new LEX file

FNH$ Returns a character representing the hex value of argument

FNS$ Returns a hex string, 2 digits for each character in argument. The least

signficant nibble of the first byte of the argument occurs first, followed by

the most significant nibble of the first byte. Successive bytes are appended

after the first byte.

FNT$ Same as FNS$ except successive bytes are inserted in front of preceding

bytes, thus reversing the order of the bytes.

2% Used by FNS$ and FNT$ to hold value to be returned.

Page_5_01_7

v1-00007 SAMPLE PROBLEM j

Create a character set by following the example in the HP-71 Owner's Manual on pages
133-135 (or create a character set of your own). When you are satisfied that you have
the alternate character set as you 1ike it (any number from O to 128 characters may be
defined) run the example as shown on the following page.

When the example run has been completed the program will have created a new LEX file
called TESTCH. To tell the system to look for the new LEX file, turn the machine off
then back on.

Now display the VER$ function and you should see the string TST embedded somewhere in
the string:

>VERS
HP71:1BBBB TST

To cancel the current alternate character set definition, type:

>CHARSET ""

The LEX file has added a new work (TESTCH) to the language. This keyword may be
entered into a BASIC program or executed directly from the keyboard. To activate
the character set, type:

>TESTCH

Now the character set is active. To display the first character in the special set
type:

>CHR$(128)

The character set will remain active until the character set is redefined by another
character set defining word is executed, the CHARSET statement is executed or the LEX
file (TESTCHAR) 1s purged from system memory.

When the character set is activated, only 7 bytes of RAM is used in addition to the
memory required to hold the LEX file. If the LEX file is in a ROM then only 7 bytes
total is required to activate the character set.

Page 9 of-.,

71-060007 SAMPLE PROBLEM SOLUTION

DISPLAY CONTENTS

>

New LEX file name:

VER$ string:

LEX id #(decimal):

Token #(decimal):

Charset id#(decimal):

USER RESPONSE

RUN CHARSET

TESTCHAR

TST

92

5

92

 BeeC—————

oe————

COMMENTS

Any valid file name

1 to 7 characters

1 to 255

1 to 255

0 to 255

PageDui_T]

«1-00007

(Continuaton Page)

This program prepares a string of hex digits which it POKE's into a file. This string
must be exact to prevent locking up the machine or causing a memory lost condition.
For this reason, the user should not attempt to modify this program unless he/she is
quite familiar with the internals of the machine and understands the cryptic detail of
the program.

The user should be careful not to select a LEX id/token # that conflicts with some
other application that he is likely to run. LEX id numbers in the range 92-94 have
been set aside for just such use by users creating their own LEX files. The user
should be aware of possible conflicts with any other locally written lex files. If
the token # is also defined by another LEX file with the same LEX id, the results
are unpredictable and certainly undesirable.

Hewlett-Packard has a process to allocate LEX id's and token numbers to users
submitting programs to the Users' Library or burning application ROM's.

In addition to having a unique LEX id/token number, the LEX file must have a unique
character set id. This number identifies which character set LEX file is active.
Theoretically, up to 256 character set LEX files may be present in memory if they each
have unique character set id's. It is probably a good idea to have the character set id
match the LEX id if possible.

For details about how the LEX file implements the character set, see the HP-71 IDS
Volume I.

71-0000Y% SYSTEM MODIFICATIONS

GENERAL FEATURES

Alternate character set

ASSIGN #

ENDLINE

EXACT

Files

FLAGS
BEEP ON/OFF

Beep volume

Math Exceptions

OPTION BASE/ROUND/ANGLE

Other system or user flags (include flag number)

STARTUP

Variables

Other

DISPLAY
CONTRAST
DELAY
FIX/SCI/ENG/STD
WIDTH
WINDOW

KEYBOARD

LC

Re-defined keys

USER mode

HPIL

ASSIGN 10

DISPLAY IS

PRINTER IS

PWIDTH

STANDBY

 NOTES This program does not modify any general features, flags, start up, display,

keyboard or HPIL parameters.

7o
\

“1-06000%
10 ' CHARSET - Written bv Bruce Stephens

20 ' Creates a LEX file that contains the current character set and adds

. a keyword
20 ' that enebles the character set.

40 DIM F&I1. Vel 7]1.Ws[R]

50 DESTROY ALL

60 INFUT "New LEX file name: ";:;F$

70 INFUT "VER$ string: ";V$

80 INFUT "Name of new keyword: ";Ws & W$=UFRCE{W$) & IF LEN((W$)<2 THEN 80

@0 INFUT "Lex 1d #(decimal): "3L1

100 INFUT "Token #(decimald): ;L2

110 INFUT "Buffer id #(decimal): "3;L3Z

1220 C=LEN(CHARSETS$) /6

130 T=121+LEN(VSRWS) +63C

140 DIM FSLTx2],.Z¢[Cx12+16] —_—

150 P$=FNS$ (CHR$ (L 1)) &FNS$ (CHR$ (L2) &CHR$ (L))

160 FE=F$L" O00QO0OF7 1000000"

170 P$=F$LFNS$ (CHR$ (20+2%XLEN(W$)))

180 P&=P&L"000000LFNS$ (CHR$ (144+2¥LEN (WHEVE)))

190 P$=F$L"Q0OOD"&FNHS$ (2XLEN(W$) —1) LFNTS$ (W) LFNS$ (CHR$ (L2))

200 F$=F$3"144969d0T71bfR61"LFNS% (CHR® (4O0+LEN(VE) ¥2)) 2001 2b1T51121C"

210 P$=F$LFNH® (LEN(V$) Xx2+1)&"1378bécelIS103"

220 F$=FP$LFNHS$ (LEN(VS$) X2+1) LFNS% (VE)

230 P$=F$L"0215d"%FNH$ (LEN{V$) x2+1)

240 F&=P$%"0032b+I8Ff1cB115e270100290a42217414b31"

250 F$=P$LFNS$ (CHR$ (L3))

260 Fe=FP$3"9646711c47e501cT20b15d0000TBIZTOITO"

270 Ps=PsL"9Fffff2FFFfd2207d532bfbBFd79114908dB84a8071017431"

280 PE=P$UFNS$ (CHR$ (L)) %"14d1cbI0115d0O50e07 1450375+ " \

290 P$=P$LFNH$ (Cx12)LXFNH$ (CX12 D1V 16)EFNH$S(CXx12 DIV 256) {

JI00 Fe=P$LFNT$ (CHARSET®) —_———— - TT

310 CREATE TEXT F$, (LEN(F$)+1) DIV 2 | Craite o 4l of preper Siz
320 A=HTD (ADDR$ (F$)) ;
330 POKE DTH$ (A+37) . F$ i, 4 E -/

I40 FOEE DTH$ (A+16),"802e00" / {’:/""WI’?IC"_’*‘ ito £/
350 STOP ¢ Hherge file Type te TEX
I60 DEF FNH$ (N)=DTH$(N)[5.5]

370 DEF FNS#$(S%)

280 Z¢=""

390 FOR Z=1 TO LEN(S%)

400 Z#=DTHE (NUM(S$L[Z,ZI))I[S5,5IEDTHS (NUM(S$[Z,2Z21) DIV 165, S3%Z%

410 NEXT 2Z

420 FNS$=7%

30 END DEF

44O DEF FNT$L[15361(S5%)

450 Z$=""

440 FOR Z=1 TO LEN(S%)

470 72¢=7$LDTHS (NUM(S$[Z.ZI)) LS5, SI%DTH® (NUM(S$[Z,Z]) DIV 16)[5,5]

480 NEXT Z

490 FNT$=1%

=00 END DEF

- o ee—e o - cmew = Lo

ragye_+s o v

71- 00008 PROGRAM DESCRIPTION

Program Title Customization Utilities (CUSTUTIL)

Hewlett Packard Company

1000 N.E. Circle Blvd.

Corvallis State Or. Country U.S.A.

(503)757-2000 Zip/Postal Code 97330

Program Description (include equations) CUSTUTIL provides six keywords that are helpful in

customizing the user interface: INLINEgives an enhanced input capability;

it allows you to determine the cursor position and type, and which keys terminate

MSG$ allows for localization of error messages and user input, making it possible

for a Basic program to be translated in to any language automatically. KEYWAIT$

puts the 71 in a low power state, waiting for a key to be hit, then returns key

name. SCROLL scrolls the message in the display the specified number of char-

acters. KEYNAM$ returns keyname, given keycode. KEYNUM returns keycodg given

keyname.

Necessary Accessories None

Operating limits and wamings

Minimum RAM Requirement 1007 bytes

References

 This has been verified only with respect 1o the numerical an : !

fflil:(::wso.ireniy upon hig own inspo'cytion of the program material and without reliance upon any representation or description concerning the program material.

NEITHER KP NOR THE CONTRIBUTOR MAKESTAnggu:‘REE:csHOARN!r.:;%i

BUT NOT LIMITED TO, THE IMPLIED WARRANTI

SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR

THIS PROGRAM MATERIAL.

exampie given in Program Description. User accepts and uses this program materia! AT HIS OWN RISK,in

DING
ED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLU .

ITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR

ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF

71-UVBUCQCR 2 of 8
Syntax»x and Explarnation of each Keyword:

INLINE Statement

Svntax:

INLINE <input string:,<char# in LC[E pozition 1.,...

.+ fcursor peositiconAtypes,<terminators:s,{variasblel> [,<{variablez>...
oo L,<variables»] 1]

<input string:i:s String expresszion to te displaved as prompt

<char# in LCD pos., 12::= NHumeric expresszion which rounds to ¥,
sucr that: 1{= X <= Sg
Value ocut of ranmgs gsnerates error,

Determines how manw craracters of displaye

string are screlled off leit end of the

cisplsawy, For examplas:

1= nc characters screlled
e=> 1 character scrolled

{cursor posstype>::= Numeric expression which rounds to X,
such that: 1<{= |X] {=9&

Yalue out of rangs gsnerates error,

Determines which character in the display

the cursor 1= on., kegardiess of i1input,
this value is forced to be at least a=z larag=
as the char# of the first readable character

ri the dispiayv: alzz, it 1z torced to be no

tigager thar i character position beyond the
iazt reacatle character in the input string.

Hegatiwve argumsnt indicates an i1nsert cursor,

<terminators>::= Strima expresszion of the form:
#:.privsical kewvcodzr#iphusicasl kewcods>. .,

Kews are numbered in row-major order 1-5&.
For f-shifted keys, add Sc: for g-shifted
kev=s, add 112,

letermines which kews terminate IHWLIMNE.

Null string or strimng mot conmforming to

svntax above generates error,

‘#° az last charactaer in string is ignhored.

<variahblet>;:= Numer ic variable intc which the terminator

number 1s returred., The variable specified

contains ‘n’ con exit if the terminator hit

was the nth specifies in the terminator lis=t.

<variablezg>::= Numeric variliable into wvhickh the finmal cursor

position ana type 1= returned.

3 of 8
HEsuming |variableZ| = n, the = .

7 1 - 00 O 0 8 the nth ch:ract.er illa t.hz 'f'rZeC:;r::o‘;? o?‘n
the display buffer. See the dizcuszion of
WINGOW im the HF-7i Feference Marnual for
details.

JIf <wvatiablez: < 0 , ther insert curscr

<variabledr>::= Numeric variable into which the character#

in LD position 1 1z returncd.

Once again, nots that WINROW affects the
effective sgi1zs and locaticon of the LCL.

Descripticon:

INLINE is & =ztatement thst extends the capability givern in thes HP-71 =

INPUT statement and KEY¥# functicn. INLINE allows wou to specify
&) the prompt string

b)) the number of preompt string characters to be screlled off the levt
side of the displavw

c) where in the oisrla tne cursor is to come up tlashing, and

d> what typs of curszor Jreplacesinsert:

INLINE allows the user tco press anv combination of keys for input
and editing, Jjust like the IHNPUT statement. UWhile INPUT terminates
execution only wher specific keys are pressed “such as [Endlirmel),
an, number of different keves can be detimec tc termirmate INLINE

execution. UWhen one of these terminating kews is preszed, INHLINE

retyrns a riumber that imngicates which keuv causzed termination;

INLINKE will cpticonally return additional values indicating the
cursor positionstype and rumber of characters scrolled oft the left
side of the displav on e-it.,

For increased customization, the input strir:z may contain cursor on

and cursor off characters to make certain portions of the string
non—-editatle.

There are three additicrm2l limitstions placed cn the i1nput parameters

for <char# in LCD pcs. 1) and <cursor pos./s:

12 If <char# in LCD poz 1> is greater than <cursor pos>, then
{char# ir. LCD pos 1: is fet equal to <cursor pos’>,

2) <char# ir LCD pos 1, is limited to be <= &7 - WIHDOUWsize

3> 1If {curzcr poz’» exceeds <char# in LCD po=s 1> <+ WINDCOhsize, then
the specified <{curscr pos> takes precederce, and the <char# in
LCD peszsition 12 ig incremented until the ‘cursor character’

appears 1n the display windouw,

For example,

INLINE R$,91,80,T%,~

According to (1) above, <char# irn LCD poz 1> becomes 211, instead of

S1. Then, &ccording to <25 above, {char# in LC(DL poz 1> becomes ¢S
Cassuming the default WINDOWsize of 2z2).

Hef ©
71-00008%

...cont. INLINE

To illustrate (3> above

INLINE R$,66,95,.7%,4

In order to get charscter #95 in the disclav window, character
#7494 (Gé&-227 is put in LCL position 1.

Following is an examrle 1llustrating the use nt prcotected fields
Tnon-editable character=: i1n the <input string:-:

INLINE CHR£ (27)H&"<{"¢&"Erter Hame "&LCHRE(ZT7L&L">2"LC$,2.1,"RI2#S04#51" , 4, E.C

fassume that C%F comntains the defaulit input strimg. Im this example
the user cannct back the curscr up ovwer ths prompt since the cursor
war turned off, Howewver, thaey can edit the detault input string since
the cursor was turnec btack on. The rerclace cursor will come up on ths

first ‘readanrle’ character, that 1s the first charecter displaved in
whichk the cursor is on (in this example that is the tirst character cof
the default input strina’» -- this was specified by the cursor position/

type argumert. Trhe first character of the input string will be scrolled
of£ the left side of thz display == thiz was =specitied by the next
argument. .

INLINE will termirnate on one of three keus:
[Erdiinel. Ll arrcwl.,I[Dowrn arrowi, I+ [lown arrowl] 1s the

terminator key, R=3 orn exit, If the user typed in a five character

riame before hittirng the verminator key (assuming No backspacesy,
E=17 or exit J(the cursor otiginallw came up or the 12th character in

the displav and waz adwarced S more character positicns), and C=2.

Note that the <{cursor position> argumert ‘counts’ readable characters

only. Also, DISPF ‘seer readatie characters only, sco that a DISPE
done in the above exanmpie returns only the user input Cincluding the
default input’, not the prompt itself.

Alsc note that the cursor peosition argument and the value returned in

the first opticonal variable do not operate totzlly analogous. The

cursor position argument cocunts resdable characters only. whereas the

value returned in B Yin the examcle abnve’ reflects the TCGTARL number

of characters in the "free portion" of the disclay, readable and

rion-readable

Related Keyvwordsz:

DISPE, WINDCU!

71-063008 > of 8
KEYNAME Function

Syntax:

KEYNAMEC <phwsical kewvcods::a

{physical kevcede:::= Numeric expression
= =

rounded to integer X,

such thsat 1< < V21e

1l values out of ranmge C(uith the exception

ot Tern) gensrate ar error,

FEyHNaMEl) returns the null string.

Description:

Giver the phvesical keycoae tYrevs are numbersad in row-major order),

KEYNAME returns tre ceorrespondins kew nams. Faefer to the KEVSE

function in the HF-71 Reference Marual for ar explanation of kev name=s.

KEYNRME 1s the complement of KEYHLUM,

Examrles:

KEYNAMSE! 1 > -= returns G

FEYNARME(1132) ——= returns q
KEYNAMEL ST 3 == returns 0

Felated Keywords:

FEYHUM

71-00008
EEYNLIM Furmction

Syntax:

KEYNHUM{ <key rname

<key namer:.= ttrimg expressicon

HNy string that isn’t 3 wvaliaid key name
gererates an error, with one exwception:
If the stringa 15 null. KEYHUM returns 0.

Fefer to “kew mpame’ 1n the aloassary of the
HF-71 kFetTererce tiamnusal for furtter details.

Description:

6 of 8

Givern @ ke mame, KE/'NUM returns the corresponaing prhywsical kewcode,

It 1s the complemaent of EKEYHWME.

Examples:

KEYHUMC Q" > -— returncs

KEYNUM"€G") -— returns SV

KEYNUML Y#1127) == returm: 112

Related Keyuwords:

KEYNAME

7 of 3A (
FEYWAITS Fumction ‘1- 60008

Syntax:

KEYWSRITS

Description:

lhen the KEYWRITE function is evecuted. the HF-71 goes intc a low
power consumption state until 2 kew ifs prezzes: when a key is
pressed, KEYWRITS return= the corresponding ke name.

Felated Keywords:

KEY'$

M5G$ Function

Syntax:

MSG$(<111lmmm s 2

where 111 is the three-diait LE» file 1D

and mmm is the three-digit meszage number .

If the specitied LEY file doesn’t exist, or if the specificd

message humber does not exist in the LEX file. MSGE returns the
null string.

Lescription:

M5G% allows a BAZIC user to build custom messages from any message
table. In additicn, the tranzlation capabilit.r provides a powerful

tocl for BASIC aprlication pacs to accept commands in any languages.
Rn excellent examcle is the HP-71 Tevt Editcr. a BASIC program thst

steores all its commarnds, resporsss. and HELF catalog infeormation
in a message table. All user input is comparec to entries in the
message table, using MILE,

Te build your oun foreiar language LEX file, refer to MS5GE in the
HP-7: 1DS Yolume 1,

Examples:

ISP MSC$(255131, -- displavs messaqge number 131 from LEN file 255,

according to the foreiarn language LEX file that

iz currentliy pluggea 1n.

DISP MSGEC 0€S(01 > =—- displawvs the first messaas from LEX file &5

8 of 8

SCROLL Statement "1-060008

Syntax:

SCROLL <char# in LCD po=z. 1>

{char# in LCD po=. 12::= Numeric expressiorn., rounded to an inteqger
value.

Error=s 1f negative.

Description:

The SCROLL statement scrolls the message in the displaw the necessary

number of characters, sc that the character vcu specify appears in

LCD position 1.,

The number of characters can be specified by any pogitive numeric
exXpressior: . AN errcor rescits if the rcounded integer value is
negative, or if it exceeds 1,048,575 (FFFFF Hz:x),

For a roundez integer wvalus of (0, SCROLL interpret:sz the paramster

as |.

Related Keywords:

WINDOUW

Page P oot

71-0000U9 PROGRAM DESCRIPTION

Progran Title Extended Showport

Contributor HEWLETT PACKARD COMPANY

Address 1000 N.E. Circle Blvd.

City Corvallis State OR.

Telephone (503)757-2000 Zip/Postal Code

Country U.S.A.

97330

Program Description (include equations)

on RAM which has been freed with FREEPORT.

gives information on all RAM.

After SHOWPORT gives information on all independent RAM and ROM, it gives the

information on all other RAM (system RAM).

is O.

The extended SHOWPORT lexfile is operated from the keyword ''Showport'.

SHOWPORT in operating release 1BBBB only gives information

This lexfile extends SHOWPORT so it

The device type number of system RAM

Necessary Accessories None

Operating limits and wamings

Minimum RAM Requirement

References

151 bytes

 This program has been verified only with respect 10 the numerical exampe given in Program Description. User accepts and uses this program material AT HIS OWN RISK.in
retiance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING.

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTR!BUTOF:

SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE O

THIQ PRNCRAM MATFRIAI

Page_‘]_ot]

71-00010C PROGRAM DESCRIPTION

Program Title Simple and Enhanced Key Redefinition

Contributor HEWLETT-PACKARD COMPANY

Address 1000 NE Circle Blvd

City Corvallis State Oregon Country U.S.A.

Telephone (503) 757-2000 Zip/Postal Code 97330

Program Description (include equations) KEYDEF allows keys to be redefined with a minimum of

keystrokes. It leads the user through the redefinition process with a straightforward

series of prompts. The user can also choose to scroll through the '"keys'" file, viewing

and editing already-existing key assignments. It also provides a simple mechanism for

imbedding escape characters in an assignment string using an intuitive list of

mnemonics (see page 10).

Necessary Accessories CUSTUTIL LEX file

Operating limits and wamings

Minimum RAM Requirement 3214

References HP-71 Owners Manual, Section 7 - Redefining the Keyboard

HP-71 Reference Manual - DEF KEY

 exampie given in Program Description. User accepts and uses this program material AT HIS OWN RISK, in
This program has been verified only with respect to the numerical

description concerning the program material.
reliance solely upon his own inspection of the program material and without reliance upoN any representation or

OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING.

ITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR

CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL

SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGESIN

THIS PROGRAM MATERIAL.

Page_éé_otééz

71-063010 VARIABLE DEFINITIONS

NAME DEFINITION

C Cursor position in user-input string.

C2 Cursor position while entering escape character.

E Ending Keycode - largest physical keycode that has an assignment associated

with it.

F Flag indicates keys file was secure on entry.

1 Index variable for scrolling through keys file - contains physical keycode.

J Index variable for matching user-input escape sequence mnemonic to

corresponding escape character.

K Indicates which key terminated user input.

L Character # in LCD position 1 (for INLINE prompting).

P Position of blank in D$; Position of escape character in assignment string.

S Starting keycode - smallest physical keycode that has an assignment

associated with it;

= -] if not yet determined

= @ if no redefined keys

W Window start - ensures prompt is in protected field of display.

A$ Assignment string currently (or proposed to be) associated to a particular key.

D$ Display contents when scrolling through key assignments.

E$ Array of escape sequence mnemonics, and their corresponding escape characters.

El$ Escape sequence mnemonic input by user.

K$ Indicates key to redefine.

P$ Prompt.

R$ User response to "Y/N'" prompt.

T$ Type of assignment currently - ":", ";", or space.

T1$ Type of assignment proposed - v “

Z$ #aves information about the user's environment:

2$[1,6] - 1lst alternate character set character

2$(7,21) - System flags -13 through -64 User flags 0 through 7

Page_of|(

%1-08010 SAMPLE PROBLEM

Assume you want keys redefined as follows:

The [Q] key is to become a typing aid to display:

A$=A$&ASE

The [RUN] key is to remain a 'direct execute' key, in the sense that pushing it will
cause execution, without altering the display, but instead of running current file

it will

EDIT NEW

The [<] key is to become a typing aid. When hit in User mode, the following will be
added to the display contents, and then the entire display contents will be executed as
though [END LINE)] was pressed

CAT ALL

Additionally, redefine [4] so that when it is pressed in User mode, some escape
sequences are sent to the display device. Have it display ABC, home the cursor, then
display DEF.

Re-define [B], then delete the key redefinition.

Finally, before exiting the program, scroll through your file of key redefinitions. Make
some modifications and delete a key redefinition.

Page4ot/L

71-00010 SAMPLE PROBLEM SOLUTION

DISPLAY CONTENTS

>

Define new keys?

Hit key to re-define

String

Type: ; or : or [SPC]

Assigrmment complete

Done?

Hit key to re-define

String

Type: ; or : or [SPC]

Assignment complete

Done?

Hit key to re-define

String EDIT NEV

Type: : ; [SpC]

USER RESPONSE

RUN KEYDEF

Y

Q

AS$=AS$&ASE [ENDLINE]

[3
’

[RUN]

EDIT NEW [ENDLINE]

COMMENTS

Hit [g] [=] The ; terminator

makes this a typing aid that

remains in the display.

No response

Hit the [RUN] key

Hit [g] [*] The colon

terminator makes this a direct

execute key in user mode, that

does not alter the display.

No response

Let's double check

KEYDEF shows any string alread

assigned. Hitting [ENDLINE]

here leaves the assignment

unchanged.

This time ":" displayed

first - whichever terminator

appears first is the current

terminator.

71-0C0 10 SAMPLE PROBLEM SOLUTION

Page_Aof4

DISPLAY CONTENTS

Assignment complete

Done?

Hit key to re-define

String

Type: ; or : or [SPC]

Assignment camplete

Done?

Hit key to re—-define

String CAT ALL

Type: [SPC] or ; or :

Assigrment complete

Done?

Hit key to re-define

String

USER RESPONSE

CAT ALL [ENDLINE]

[sec]

[ENDLINE]

[sec]

[4]

aABC [RuN]

COMMENTS

No response

Hit [g] [.]

Hit the [SPC] key

No response

Let's double check this one,

too

No change

Note that this time [SPC] was

the first terminator type

displayed

No response

Hit the [4] key

Hitting the [RUN] key puts th

program in the proper mode to

recognize escape sequence

mnemonics. Notice that after

[RM] is hit, the O

annunciator comes on

indicating it is waiting for

a memonic.

Page~é_of_A

71-00010 SAMPLE PROBLEM SOLUTION

DISPLAY CONTENTS

String ABC

String ABCECH

Type ; or : or [SPC]

Assigmment complete

Done?

Hit key to re-define

String

Type: ; or : or [spc]

Assignment camplete

Done?

Hit key to re-define

String BBB

Assignment deleted

Done?

Scroll thru keys?

Tnitializing KEYSCROLL

USER RESPONSE

CHM [RUN]

bEF [ENDLINE]

[B]

BEB [ENDLINE]

[B]

[£] [RN]

COMMENTS

User enters "cursor home"

memonic. Hitting the [RUN]

key a second time toggles out

pf the mnemonic mode and turns

pff the 0 annunciator.

See note below (*)

Hit [g] [=]

NO response

Lt's re-define the [B] key,

then delete the key

re-definition,

h[B] re-defined

Delete the key re-definition

Done re-defining new keys

This takes about 12 seconds

€1 -U{0 10 saMPLE PROBLEM SOLUTION

Page_Zof_fi

DISPLAY CONTENTS

KEY Q ;AS=AS&ASE

KEY #46 :EDIT NEW

KEY #50 ;ABCc HDEF

KEY € CATALL

KEY Q ;AS=AS&ASE

KEY Q :;AS

KEY Q ; ASEc &

Assigmment camplete

KEY #46 : EDIT NEW

KEY £ CAT ALL

Assigrnment camplete

USER RESPONSE

(V]

[v]

[

[g] [4]

[+] [+] [£] [-line] [RON]

CFL [RUN]

[ENDLINE]

[q] [¥]

[¢] [;] [ENDLINE]

COMMENTS

There is nothing wrong with tt

program! It takes about 6

secords to display the next ke

assignment, since there are nc

re—-defined keys between Q

| (Keycode #1) and [RUN] (keyood

#46) . KEYSCROLL checks each

key to see if it's redefined

It takes about 14 seconds to

see the next re-defined key,

since it has keycode 166. The

program operates rmuch more

rapidly when redefined keys

have keycodes that are closer

together.

G to first re-defined key

Key assignments can be changed

as well as viewed from

KEYSCROLL

Cursor far left mnemonic

Next re-defined key displayed

automatically

Go to last key re-definition

Change the terminator type

Page_aof_[f

T1-00GC 1Q SAMPLE PROBLEM SOLUTION

DISPLAY CONTENTS USER RESPONSE

Key< ; CAT ALL [‘PJ [RuN]

Assignment deleted

KEY #50 ;ABCTHDEF [ATIN]

Define new keys? N

Scroll thru keys? N

Exited KEYDEF

(*) Note that the key assigmment above could have been handled

Hit key to re-define [4]

String ABCDEF [¢] [¢] [«] [RuN]

o
String ABCDEF CHM [RuN]

String ABCEGHDEF [ENDLINE]

Miscellaneous notes:

COMMENTS

then, decide to delete the

key re-definition

Exits KEYSCROLL

| a bit differently:

Type in entire ascii string,

position to proper spot in

string, then toggle into

memonic mode. Note that while

the 0 annunciator is on, the

cursor keys are disabled.

Hitting [ATIN] when the 0 anunciator is lit, automatically takes the program out of
meumonic entry mode.

In the scrolling portion of [the program,to avoid ambigquity |[[SPC], £ [SPC], and g [SPC] ar.
represented by their key numpers : #49, #105, #161 r Y.

Rae §of
If KEYDEF is interrupted via the ATIN key, and never allowed to exit normally, the 10

following may be changed from what they were on entry:

Y1-UUU 10
GENERAL FEATURES

-

Alternate character set __The first alternate character (CHRS(128)) is set to "C

(CHRS (31) & CHRS(21) & CHRS(113) & CHRS(80) & CHRS(80))

ENDLINE
EXACT
Files If the user answers 'Y' to the prompt asking to 'Unsecure keys file', and
suspends the program, the keys file will still be unsecure. When the program exits

normally*, it re-secures the keys file, and gives a message to that effect.

FLAGS

BEEP ON/OFF

Beep volume

Math Exceptions

OPTION BASE/ROUND/ANGLE
Other system or user flags (include flag number) __Flag - 16 (Option Base is set to 0)

Flags 0,5

STARTUP

Variables If] J_and not in en enterinag END from
the keyboard will restore all your variables (Executing END will not restore CHRS (128),
“the status of the keys file, or ftlags 0, 5, -16).

Other

DISPLAY
CONTRAST
DELAY
FIX/SCI/ENG/STD
WIDTH

WINDOW Window is changed to 1 (machine default)

KEYBOARD

LC
Re-defined keys

_

Whatever the user changes them to

USER mode

HPIL

ASSIGN 10

DISPLAY IS

PRINTER IS

PWIDTH

STANDBY

 NOTES *It is perfectly acceptable to interrupt KEYDEF using the ATIN key. However, the

only way to restore your system to its previous state 1s to OONT; this gives KEYDEF the

opportunity to restore your variables, CHRS(128), flags 0, 5, -16, etc. You know KEYDEF
has done this when it gives the message "ExitingKEYDEF'. 1I ATIN is hit during a prampt

requiring a "Y" or "N" response, then when the program continues, the prompt is not

Page_[_Qof_[(

71-00010

SAMPLE PROBLEM

Mnemonic Escape Character

INSW N

INS Q

RPL R

CRT C

CLT D

CHM H

CD J

DEL K

QON ?

COFF <

RD E

DCW 0

DC P

CPV %

CFR (@rs (3) &
CFL (CHRS (4)) M

Effect

Insert cursor (with wrap-around)

Insert cursor

Replace cursor

Moves cursor right

Moves cursor left

Hames cursor

Clears display

Deletes through end of line

Turns cursor on

Turns cursor off

Resets display

Deletes character (with wrap—around)

Deletes character

Sets cursor position in video monitor (See page 328 HP-7

Reference Manual)

Moves cursor to right of righmost character

Moves cursor to leftmost character

Ti1-~UdU 11¢ ¥ PROGRAM DESCRIPTION / ’K 3

ROMAN 8 Character Set Lexfile

Program Title

Contributor Hewlett-Packard Company

Address 1000 NE Circle Blvd

City

__

Corvallis State ___Oregon Country U.S.A.

Telephone Zip/Postal Code 97330

Program Description (include equations) Lex file adds one keyword: ROMAN8$. This is a string

function of no parameters that returns the 768-byte string needed to define ROMAN 8

as the alternate character set with the HP-71 CHARSET command. To define ROMAN 8 as

the alternate character set, simply execute:

CHARSET ROMANS8$

The CHARSET command (explained in the HP-7]1 Reference Manual) allows the user to

specify the display bit-patterns that are used to represent the characters 129-255

in the display. ROMAN8$ supplies the bit-patterns for this character set.

The ROMAN 8 character set is supported by many printers and is a standard for

foreign-language localization of American products.

While this lex file has no special memory requirements, consideration of memory

usage is important. The overhead associated with string manipulation requires that

776 bytes be available whenever the ROMANB$ keyword is invoked. And in the worst

ROMANS

Necessary Accessories __None

Supported Accessories ___N/A

Operating limits and warnings ___one
File name(s) ROMANSLX

Size of file(s) 850 bytes Additional RAM Requirement to run the program ___one

References

 This program has been verified only with respect 10 the numerical examole give in Program Description. User accepts and uses this program material AT HIS OWN RISK, in

fekance soisty upon s Own nspechon of the program matenal and without rekiancs UPON any representaton of dESCNPUON CONCEIMINg the Program matenal.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING.
BUT NOT UMITED TO. THE IMPUED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR
SHALL BE UABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF
THIS PROGRAM MATERIAL.

Pagei01_3_

vl -udi 11

(Contnuabon Page)

case (if there is currently no alternate character set defined), executing
CHARSET ROMANB8S$ will take up 772 additional bytes for the newly created charset
buffer. So 1548 bytes is required for successful execution of CHARSET ROMANS8S$,
although only 772 of those are permanently used. (The lex file does not have to
stick around after the alternate character set is defined, although it is needed
again if the ROMAN 8 character set is desired after the alternate character set
has been redefined.)

o
0 -

,
t
'

.
|
s b=
d

1 SAMPLE PROBLEM

Page_iof_f

Sample Usage: CHARSET ROMANS$

ROMAN 8 CHARACTER SET

CHRS(161)="A"
CHRS(1B62)="A"
CHRS(163)="E"
CHRS(1B64)="¢°
CHRS$(165)="E"
CHRS(166)="1"
CHRS(1B67)="1"
CHR$(168)="""

CHRs(1B69)="""

CHR$(170)="""
CHRS(171)="""
CHR$(172)="""
CHR$(173)="0"
CHRS(174)="0"
CHR$(175)="¢"

CHR$(176)="""
CHR$(177)=" °
CHRS(178)=" °
CHRS(179)="""
CHR$(180)="("
CHR$(181)="¢"
CHRS(182)="R"’
CHRE(183)="'A"
CHRS(184)="i"
CHRS(1B85)="("
CHRs(18E)="§"

CHR$(187)="§f"
CHRS(188)="¥"
CHR$(189)="§"
CHRS$(180)="%"
CHR#(181)="¢"

CHR$(192)="4"

CHR$(183)="¢"
CHR$(194)="5"
CHR$(185)="4"
CHR$(196)='4"
CHR$(187)="'¢"
CHR$(198)="¢6"
CHR$(189)="y"
CHRS$(200)='a’
CHR$(201)="¢"
CHR$(202)='5"
CHR$(203)="u"
CHR$(204)="a"
CHR$(205)="e"
CHR$(206)="¢"
CHR$(207)="u"’
CHR$(208)="A"
CHR$(203)="3"
CHR®(210)="@"
CHR$(211)="f"
CHR$(212)="a"
CHR$(213)="j"
CHR$(214)="¢g"
CHR$(215)="p"
CHR$(216)="A"
CHR$(217)=";i"
CHR$(218)="'0"
CHR$(218)="("
CHR$(220)="¢"
CHR$(221)=";"
CHR$(222)="8"
CHR$(223)='0"
CHR$(224)="4A"

CHR$(225)="4"
CHRE(226)="3"
CHR$(227)="D"
CHR$(228)="4d"
CHR$(229)="1"
CHR$(230)="1"
CHR$(231)="0"
CHR$(232)="0"
CHR$(233)="0"
CHR$(234)="5"
CHR$(235)="8"
CHR$(236)="%"
CHRE(2Z7)="0"
CHR$(238)="Y"
CHR$(239)="y"
CHRS$(240)="}"
CHRS(241)="p"
CHR$(242)="
CHRS (243)="
CHRS(244)="
CHR${245)="
CHRS(246)="~
CHR$(247)="4
CHRS$(248)="4"
CHRS(248)="2"
CHR$(250)="2"
CHR$(251)="¢"
CHR$(252)="a"
CHR$(252)=")"
CHR$(254)="2"
CHR$(255)=""

’

v

.

s

,

.

Mass—storage Catalog

D1 /723,855 1904 - 34

Volume label

NAaME TYFPE L.EM DaTE TIME

ROWCOL LE X 119 1791700 0@ :-56

L. IFELEX L. E X 457 O1L/7017-00 O :-57

EANNER L_E X =02 170100 0@ -57

CLOCHKDSP L.E X . D171 0900 0582

TEXTUTIL L. E X 1512 @101 7700 90 :-58

CHAaRSET Bas IC 13282 @1L701 708 G059

CUSTUTIL L. E X 197 G110 O1 -1

SHOWRORT L. E X 151 @217-0179060 @1 -1

HKEYDEF EASIC 3214 @191 060 @1 -2

ROMAaNSL X L_E X 859 1701700 A1l : 04

	Cover
	00002: ROWCOL
	00003: LIFE:A
	00004: Banner
	00005: Running Clock Display
	00006: Text File Utilities (TEXTUTIL)
	00007: Character Set LEX File Generator
	00008: Customization Utilities (CUSTUTIL)
	00009: Extended Showport
	00010: Simple and Enhanced Key Redefinition
	00011: ROMAN 8 Character Set Lexfile

