71-00015-8

HEWLETT PACKARD
USERS” LIBRARY

LEX File
Utilities
FOR THE HP-71B

DDDDDDDDDDDDDO
DODDDDDDDDDDDD
DDDDDODODDDMNDDDD
ODDDDDDDDUDDDD

User accepts and uses this program material AT HIS/HER OWN RISK, in reliance soley upon his/her own inspection
of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND
WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR
THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNEC-
TION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM

MATERIAL.

“1-0000¢2 PROGRAM DESCRIPTION

Program Title ROWCOL
Contributor Hewlett-Packard Company

Address 1000 NE Circle Blvd
City Corvallis State Oregon Country U.S.A.
Telephone Zip/Postal Code 97330

This lex file provides one keyword: ROWCOL$. Invocation:

Program Description (include equations)
ROWCOLS$ (<graphstring>)

The keyword accepts a single string argument of 0-8 characters. If argument is n

characters (n<8) then characters n+l through 8 default to nulls. Argument of >8

characters causes an 'Invalid Arg" error.

Argument represents an B pixel by 8 pixel block of row- or column-oriented graphics.

Result is an 8 pixel by 8 pixel block of column- or row-oriented graphics,

respectively.

An argument or result of row-oriented graphics would actually be 8 bytes each

containing 8 bits of column data from consecutive rows.

An argument or result of column-oriented graphics is actually 8 bytes each

containig578 bits of row data from consecutive columns. Here is a more hands-on

explanation:

None

Necessary Accessories
Supported Accessories ___N/A
Operating limits and warnings

File name(s) __ ROWCOL

Size of file(s) ___119 bytes Additional RAM Requirement to run the program _ None

References

This program has been verified only with respect 10 the numencal example give in Arogram Description. User accepts and uses this program matenal AT HIS OWN RISK, in
hance s0isty UpON s Own iNEpection Of the Program Material and WithOUt reliaNCe UPON &Ny NEPresentation of GSCIPLON CONCErMINg the program matenal.

NEITHER HP NOR THE CONTRIBUTOR MAXES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING.
SUT NOT UMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAATICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR
SHALL BE UABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF
THeS PROGRAM MATERIAL.

CHAPTER 3
ROWCOL

New Lex File Indicates "RC:A" in VERS$ string.

Program Title: String function for row/column graphics conversion.

Category Number(s): ?2?

File Name(s): ROWCOL.

Primary Category Name: ???

Size of File(s): 119 bytes.

Additional RAM Requirement: None.

Abstract: lex file provides a keyword that allows easy conversion
between row- and column-oriented graphics. Sample use:
converting graphics data for HP82905B printer (column-
oriented) into graphics data for Thinkjet printer (row-
oriented).

Necessary Accessories: None.

Supported Accessories: N/A.

3.1 Program Description

This lex file provides one keyword: ROWCOL$. Invocation:

ROWCOLS (<graphstring>)
The keyword accepts a single string argument of 0-8 characters. I1f
argument is n characters (n<8) then characters n+l through 8 default to
nulls. Argument of >8 characters causes an "Invalid Arg" error.
Argument represents an 8 pixel by 8 pixel block of row- or column-
oriented graphics. Result is an 8 pixel by 8 pixel block of column- or
row-oriented graphics, respectively.

An argument or result of row-oriented graphics would actually be 8 bytes
each containing 8 bits of column data from consecutive rows.

ROWCOL Page 3-1

3.2 Variable Definitions 3 7 7

nva. 71-00002

3.3 Sample Usage

The following program converts a textfile <containing graphics
information for a THINKJET printer into graphics information for an
HP82905B printer and prints that information.

The program is not fast; each line of print on the HP82905B takes about
45 seconds. But the use of the ROWCOL$ function on line 280 produces a
drastic speed increase over what the program would take if it performed
the equivalent manipulations in BASIC.

The program assumes that the file being dumped (called "MYFILE" here)
contains THINKJET graphics directives of the form “<esc>*b<{bytes>W"
(the preamble) followed by bytes of row graphics information. Any lines
not of this format (as typically occur at the beginning and end of such
files) are discardéd without resulting in anything being printed.

Page 3-2 ROWCOL

Page_‘iof_'

"1-00002

SAMPLE PROBLEM SOLUTION

10
20
30
40
50
60
70
80
90

DISPLAY CONTENTS USER RESPONSE

PRINT CHRS (27)&"&k2S"&CHRS (27) &"&1940L"
PWIDTH INF

DESTROY ALL

OPTION BASE 1

DIM C$[800],L(8),TS$[8)

ASSIGN #1 TO MYFILE

ON ERROR GOTO 320

DESTROY RS € DIM R$(8)[100]

FOR I=1 TO 8

100 READ #1:;R$(I) .

110 IF RS$(I)[1,3)#CHRS(27)&"*b" THEN 100
120 RS (I)=RS (I) [POS(RS(I),"W")+1]
130 NEXT I

140 OFF ERROR

150 GOSUB 170

160 GOTO 70

170 L9=0

180 FOR I=1 TO 8

190 L(I)=LEN(R$(I))

200 L9=MAX(L9,L(I))

210 NEXT I

220 CS=""

230 FOR I=1 TO L9

240 T$=""

250 FOR J=1 TO 8

260 T$=TS$&RS (J) [I,I)&CHRS (0) [1+(I<=L(J))]
270 NEXT J

280 C$=C$&ROWCOLS (TS)

290 NEXT I

300 PRINT CHRS (27)&"#b"&STRS (LEN (C$))&"G";C$
310 RETURN

320 OFF ERROR

330 GOSUB 170

340 END

COMMENTS

Page 3-3

Page_5 of

w1-00002 SAMPLE PROBLEM

The followin program converts a textfile containing graphics information for a
THINKJET printer into graphics information for an HP B2905B printer and prints that
information.

The program is not fast; each line of print on the HP 82905B takes about 45 seconds.
But the use of the ROWCOL$ function on line 280 produces a drastic speed increase
over what the program would take if it performed the equivalent manipulations in
BASIC.

The program assumes that the file being dumped (called "MYFILE" here) contains
THINKJET graphics directives of the form "<esc>*b<#bytes>W" (the preamble) followed
by bytes of row graphics information. Any lines not of this format (as typically
occur at the beginning and end of such files) are discarded without resulting in
anything being printed.

Line 10 initializes the HP 82905B printer to compressed print mode, 9 1lpi spacing
and no-perforation-skip; appropriate settings for many graphics dumps. Lines 20-60
initialize the program. Line 70 traps the end-of-file condition. Line 80
reinitializes the row graphics string array to nulls. Lines 90-130 accumulate 8 rows
of row graphics information for conversion to column graphics. Line 150 calls the
subroutine to perform the actual conversion and line 160 loops back for more graphics
information.

Lines 320-340 handle the printing of the final rows when the end-of-file is reached.

The conversion work is done in the subroutine at lines 170-310. Lines 170-210

build an array containing the lengths of the graphics data in each row, with L9 = the
maximum length (note that line 120 stripped off the row graphics preamble from the
line). Line 220 initializes the column graphics string to empty. Lines 230-290 build
the column graphics string by grouping the row graphics bytes properly into T$ (line
260 insures a null space-filler if a row string is too short), converting T$ into
column form with ROWCOL$ and appending it to the column graphics string (line 280).
Line 300 prints the column graphics information prepended with the proper column
graphics preamble (''<esc;*b<#bytes>G").

With slight modification, this program could print to a file instead of to a printer,
producing a text file that can be easily and quickly printed on a column graphics
printer.

Page __éof__z

71-00002

(Contnuaton Page)

Consider This pixel pattern:
Row graphics pattern:

X XxXx x 4D
(all numbers XXX XXxx | EE
in HEX) XX XX x | 9B
XXX XxX 77
X Xxxxx | FC
X Xxxx x| BD
X X xXxxxx | F5
X X X x 87
Column H EB8F3775F
graphics : DEB7CABGE
pattern :

The ROWCOL$ function will convert the byte sequence EDBEFB377C7AS5BF6h into
4DEE9B77FCBDF587h and will also do the inverse (it is its own inverse).

This function provides a tool for BASIC to speak both row- and column-oriented
graphics with minimal headache.

747

©?1-00002

Line 10 initializes the 82905B printer to compressed print mode, 9 1pi
spacing and no-perforation-skip; appropriate settings for many graphics
dumps. Lines 20-60 initialize the program. Line 70 traps the end-of-
file condition. Line 80 reinitializes the row graphics string array to
nulls. Lines 90-130 accumulate 8 rows of row graphics 4information for
conversion to column graphics. Line 150 calls the subroutine to perform
the actual conversion and 1line 160 loops back for more graphics
information.

Lines 320-340 handle the printing of the final rows when the end-of-file
is reached.

The conversion work is done in the subroutine at lines 170-310. Lines
170-210 build an array containing the lengths of the graphics data in
each row, with L9 = the maximum length (note that line 120 stripped off
the row graphics Ereamble from the line). Line 220 initializes the
column graphics string to empty. Lines 230-290 build the column
graphics string by grouping the row graphics bytes properly into T$
(l1ine 260 insures a null space-filler if a row string is too short),
converting T$ into column form with ROWCOLS$ and appending it to the
column graphics string (line 280). Line 300 prints the column graphics
information prepended with the proper column graphics preamble
("<esc>*b<{bytes>G").

With slight modification, this program could print to a file instead of
to a printer, producing a text file that can be easily and quickly
printed on a column graphics printer.

71-00003 PROGRAM DESCRIPTION 0

Program Title ___LIFE:A

Contributor ewlett- v
Address 1000 NE Circle Blvd

City Corvallis state oregon Coun"y U. S.A.
Telephone Zip/Postal Code _ 97330

Program Description (include equations) A familiarity with the game LIFE is assumed.

This lex file contains one keyword: LIFE$. The keyword is a string function that

takes a string argument representing a current generation of LIFE (on a rectangular

board of arbitrary dimension) and computes the next generation. The keyword is

invoked as follows:

LIFE$ (<boardstring>,<row width<,>wrap flag>[,<alt fill char>])

The input parameters are as follows:

<boardstrin§> String parameter representing the current board. If the board is, for

example, 80 columns by 24 rows, the string is 1920 characters long. The cells are in

row-major order; that is, assuming the 80 x 24 case, the first 80 characters

represent the first row, the next 80 characters represent the second row, etc. Empty

cells are represented by a blank, occupied cells are represented by the fill

character (which defaults to an "*" if not specified in the fourth parameter).

Necessary Accessories __None

Supported Accessories N/A

Operating limits and warnings

File name(s)
Size of file(s) Additional RAM Requirement to run the program

References

This program has been verified only with respect 1o the numerncal example give in Program Description. User acospts and uses this program material AT HIS OWN RISK, in
FOkance soisty LPON s Own Napection of the Program Mmalenal and WEhOUt reliaNce UPON &Ny MEPreseNntation of GESCTIPLON CoNCEMINg the Program matenal.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING.
SUT NOT UMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR

SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF
THS PROGRAM MATERIAL.

71-0000U3 248

CHAPTER 1
LIFELEX

New LEX File Indicates "LIFE:A" in VERS string.

Program Title: LIFE Generation Computation Utility

Category Number(s): Fl02.

File Name(s): LIFELEX.

Primary Category Name: GAMES.
Size of File(s): 457 bytes.

Additional RAM Recquirement: None.

Abstract: This lex file contains a very fast next-generation computer
for John Conway's "Life" game. COmputatgon time for a 24 by
80 board (useful if output is going to a typical terminal) is
typically under two seconds.

Necessary Accessories: None.

Supported Accessories: N/A.

1.1 Program Description:

A familiarity with the game LIFE is assumed.

This lex file contains one keyword: LIFES. The keyword is a string
function that takes a string argument representing a current generation
of LIFE (on a rectangular board of arbitrary dimension) and computes the
next generation. The keyword is invoked as follows:

LIFES (<boardstring>,<row width>,<wrap flag>[,<alt f£ill char>))
The input parameters are as follows:

<boardstring> String parameter representing the current board. If the
board is, for example, 80 columns by 24 rows, the string is
1920 characters long. The cells are in row-major order; that
is, assuming the 80 x 24 case, the first 80 characters
represent the first row, the next 80 characters represent the

LIFELEX Page 1-1

71-0000g A

second row, etc. Empty cells are represented by a blank,
occupied cells are represented by the £ill character (which
defaults to an "#" if not specified in the fourth parameter).

<row width> Numeric parameter identifying row width. In the 80 x 24
case discussed above, this would be 80.

<wrap flag> Numeric parameter. Non-zero if the game board wraps around
the edges. In other words, if non-zero, the top edge of the
board is considered adjacent to the bottom edge and the 1left
edge is adjacent to the right edge. If zero, the board edges
are considered the "edge of the world".

<alt fill char> Optional string parameter. Specifies a character to use
instead of "*" as the fill character.

The result of LIFES$ is a string representing the next generation playing
board. Empty cells are represented by blanks, occupied cells by the
£ill character.

Error Conditions: LIFES$ will fail with an "Invalid Arg" error if any of
the following 1s true:

m Either numeric argument is not a real finite scalar.
B <row width> is less than 3 or greater than 1048575.
® Length of <boardstring> is not an integer multiple of <row width>.
® Number of rows (length of <boardstring> divided by <row width>) is
less than 3.
1.2 Variable Definitions
N/A.

1.3 Sample Usage

The following program demonstrates the use of LIFES$. It was written to
send its output to an HP-82163A video interface, and requires an HPIL
interface and an 82163A. The program uses cursor control seguences
particular to that interface and makes assumptions about the screen
size.

Lines 10-70 initialize variables. Lines 90-120 initialize the board to
a random pattern (50% filled) of empty and occupied cells. Lines 130-
140 print the current generation. Line 150 computes the next
generation. Line 160 checks if the board has reached a one- or two-
generation stability. The program terminates when one- or two-

Page 1-2 LIFELEX

Page_?_ot _S_

“1-00003 SAMPLE PROBLEM |

The following program demonstrates the use of LIFE$. It was written to send its output
to an HP 82163A video interface, and requires an HPIL interface and an HP 82163A. The
program uses cursor control sequences particular to that interface and makes
assumptions about the screen size.

Lines 10-70 initialize variables. Lines 90-120 initialize the board to a random
pattern (507 filled) of empty and occupied cells. Lines 130-140 print the current
generation. Line 150 computes the next generation. Line 160 checks if the board has
reached a one- or two- generation stability. The program terminates when one- or two-
generation stability is reached (on occasion, this may never occur).

DESTROY ALL @ RANDOMIZE @ PRINTER IS :DISP
PWIDTH INF LAY
OPTION BASE 1

DIM B$[480],X$(2) [480]

G=0

XS(l)-”" e xs(z)-nn

BS=nn

PRINT CHR$(27)&"H"&CHR$(27)&"JCONSTRUCTING BOARD..."
FOR I=1 TO 480

100 B$=BS$&"* " [RND+1])[1,1]
110 PRINT BS$[I,I);

120 NEXT I
130 PRINT CHR$(27)&"H";BS:
140 PRINT " GENERATION #";G;CHRS$(27)&"J"; @ G=G+1

iz e
BS#X$ (1) AND BS#X$(2) THEN X$(2)=X$(1) @ XS$(1)=B
igg gﬁgNT CHR$(27)&"¥"&CHR$(O)&CHR$(§5;&"S£A%LE Ag(G%NE;AgIgng"%égl

Page _iof _S

#1-060003

(Continuabon Page)

<yow width> Numeric parameter identifying row width. In the 80 x 24 case discussed
above, this would be 80.

<wrap flag> Numeric parameter. Non-zero if the game board wraps around the edges. In
other words, if non-zero, the top edge of the board is considered adjacent to the

bottom edge and the left edge is adjacent to the right edge. If zero, the board edges
are considered the "edge of the world".

<alt fill char> Optional string parameter. Specifies a character to use instead of
"*" as the fill character.

The result of LIFE$ is a string representing the next generation playing board.
Empty cells are represented by blanks, occupied cells by the fill character.

Error Conditions: LIFE$ will fail with an "Invalid Arg" error if any of the following
is true:

Either numeric argument is not a real finit scalar.
<row width> is less than 3 or greater than 1048575.
Length of <boardstring> is not an integer multiple of <row width>.

Number of rows (length of <boardstring> divided by <row width>) is less than 3.

| s/ ¢

71-00004 PROGRAM DESCRIPTION

Program Title Banner

Contributor Hewlett-Packard Company

Address 1000 NE Circle Blvd

City Corvallis State Oregon Country __U.S.A.

Telephone Zip/Postal Code 97330

Program Description (include equations) The lex file contains one keyword: BANNER$. BANNERS is a

banner-building tool. It takes a string argument of from 1 to 3 characters, and

returns a 48-character string representing a 6x8 "banner" of the characters. For

example, BANNERS ("A'") returns the strinp:
" AAA A A A A AAAAA A A A A A A "

which, when printed in 8 rows of 6 characters, is:

oy
AAAAA (border shown for emphasis only)
A A
AAAAA
A A
A A
A A
ey
None

Necessary Accessories

Supported Accessories __ N/A

Operating limits and warnings
File name(s) _BANNER

Size of file(s) _ 202 bytes Additional RAM Requirement to run the program __one

References

mmmwwmmmnnmwwnmm.u-mmmummminusowunsx,h
ekance sOlety UPON Nes OwNn NSPECchon Of the ProGrAM MAIeNal and WIthOU! FEASNCE LUPCN BNy MERresentation or dESCNELON CONCerMINg the Program Matenal.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING.
SUT NOT UMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR
DMGEUAMFMWT&MNWWSNWMWMMMGMWNMFE!FORMANCEOF
THIS PROGRAM MATERIAL

CHAPTER 2
BANNER

New LEX File Indicates "BNR:A" in VERS string.

Program Title: Banner-building utility.

Category Number(s): ?2??

File Name(s): BANNER.

Primary Category Name: ???

Size of File(s): 202 bytes.

Additional RAM Requirement: None.

Abstract: String keyword to create banner-type representations of
characters in the built-in or alternate character sets. This
allows easy printing of banners (posters) using large
characters.

Necessary Accessories: None.

Supported Accessories: N/A.

2.1 Program Description

The lex file contains one keyword: BANNERS. BANNER$ is a banner-
building tool. It takes a string argument of from 1 to 3 characters,
and returns a 48-character string representing a 6x8 "banner" of the
characters. For example, BANNERS ("A") returns the string:

" AAA A AA A AAAAA A AA AA A ",

which, when printed in 8 rows of 6 characters, is:

BANNER Page 2-1

Page_3 of o

l (1- 0U0U2 SAMPLE PROBLEM

The following program implements a large-display clock on the screen of an
HP 82163A video interface. It requires an HPIL interface and an HP 82163A.

The program works by figuring out the current time, converting to 12-hour format
and "painting' the banner representations of the numbers and the am/pm indicators
on the screen using cursor control escape sequences for the 82163A. The banner is
built out of the CHR$ (160) character, which displays as a white block on the

HP 82163A.

PRINTER IS :DISPLAY @ DISPLAY IS *

PWIDTH INF @ DELAY O @ DESTROY ALL

CLEAR :DISPLAY

Ts-" []
xs-n]
US=TIMES @ T=VAL(US$[1,2])

IF T<12 THEN N$="am" ELSE N$="pm"
T=MOD (T-1,12)+1
US[1,1)=" ®

IF T<10 THEN U$[2,2]=STRS$(T) ELSE U$[1,2])=STRS(T)
DISP US$[1,5]&" “&N$

FOR I=1 TO 5

IF TS[I I)#US[I,I) THEN CALL DSPDGT(U$[I,I],I,0)
NEXT I

T$=U$

FOR I=1 TO 2

IF HS[I IJ#NS$S[I,I] THEN CALL DSPDGT(N$[I,I],I+1.5,7)

NEXT I

M$=N$

WAIT 60-MOD(TIME,60) @ GOTO 60

SUB DSPDGT(D$,P,S)

DIM 29$[48)

230 29$=BANNERS(D$[1,1)&CHRS (160))

240 FOR 29=1 TO 8

250 PRINT CHRS$ (27) &"&"&CHRS (6% (P-1)) &CHRS (Z9+5-1) ;
260 PRINT 29$[Z9%6-5,Z9%6-1)&CHRS (27) &"<"

270 NEXT 29

280 END SUB

Pngeiot i

71-00004

(Contnuaton Page)

If the argument is two characters long, the second character is used as
an alternate building character, so BANNERS ("A*") is:

If the argument is three characters long, the third character is used as
an alternate space character, so BANNERS ("A*.") is:

BANNERS works for the built-in character set and for any characters
defined in the alternate character set.

¢ 1- 0 0 0 O 5 PROGRAM DESCRIPTION

Program Title Running Clock Display

Contributor Hewlett-Packard Company

Address 1000 NE Circle Blvd
City Corvallis State __Oregon Country _ U-S-A.
Telephone Zip/Postal Code 97330

Program Description (include equations) This lex file provides a running hh:mm:ss clock display

that can be turned on or off. The clock occupies the 9 rightmost display positions

and does not interfere with normal operation of the computer. That is, the computer

can be used normally for running, editing, and so on while the clock is running.

The clock is invoked with the keyword sequence:

CLOCK ON

and is turned off with the keyword sequence:

CLOCK OFF

Some things to keep in mind about the clock:

CLKDISP

Necessary Accessories None
Supported Accessories N/A
Operating limits and warnings
File name(s) CLKDI1SP
Size of file(s) 328 bytes Additional RAM Requirement to run the program ___ None

References

mmmmmmmw»umwwnmm@.wmmmmmmﬂnmsownms&h
reliance solety LUpon hs own inspection of the Program Matenal and withOut rEKANCe UPON ANy MEPresentation Of GESCTIPUON CONCeMING the Program matenal.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THtS PROGRAM MATERIAL. INCLUDING.
BUT NOT UMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR
SHALL BE LABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF
THES PROGRAM MATERIAL.

Page ;2_ ofi

“I-UU00U5

(Contnuaton Page)

The clock performs an implicit "WINDOW 1,13" every time it ticks. It is
therefore impossible to use the WINDOW command effectively while the clock is on.

The clock performs an implicit "WINDOW" 1,22" when CLOCK OFF is performed.
The clock is 24-hour format only.

During any operation requiring full CPU attention (such as performing a BEEP),
the clock will stop running. The clock will NOT, however, lose time.

The clock display turns off when the calculator is turned off.

Sample Usage

10 CLOCK ON
20 CLOCK OFF

CHAPTER 4
CLKDISP

New Program Indicates "CLK:A" in VERS string.

Program Title: Running clock display.

Category Number(s): ??7?

File Name(s): CLKDISP.

Primary Category Name: ???

Size of File(s): 328 bytes.

Additional RAM Requirement: None.

Abstract: Lex file provides an optional running clock display in the
right-hand part of display. Clock does not interfere with
normal operation of the computer.

Necessary Accessories: None.

Supported Accessories: N/A.

4.1 Program Description

This lex file provides a running hh:mm:ss clock display that can be
turned on or off. The clock occupies the 9 rightmost display positions
and does not interfere with normal operation of the computer. That is,
the computer can be used normally for running, editing, and so on while
the clock is running.
The clock is invoked with the keyword sequence:

CLOCK ON
and is turned off with the keyword sequence:

CLOCK OFF

Some things to keep in mind about the clock:

CLKDISP Page 4-1

o of 4
71-00005

® The clock performs an implicit "WINDOW 1,13" every time it ticks.
It is therefore impossible to use the WINDOW command effectively

while the clock is on.

E The clock performs an implicit "WINDOW 1,22" when CLOCK OFF is
performed.

® The clock is 24-hour format only.

®m During any operation requiring full CPU attention (such as
performing a BEEP), the clock will stop running. The clock will
NOT, however, lose time.

®E The clock display turns off when the calculator is turned off.

4.2 Variable Definitions

N/A.

4.3 Sample Usage

10 CLOCK ON
20 CLOCK OFF

Page 4-2 CLKDISP

Page 1 of_E

71-00006 PROGRAM DESCRIPTION

Text File Utilities (TEXTUTIL)

Program Title

Contributor HEWLETT PACKARD COMPANY

Address 1000 N.E. Circle Blvd.

City Corvallis State OF- County U.S.A.

Program Description (include equations) TEXTUTIL contains five new keywords, and an extension to
the mainframe LIST. The five new keywords are: FILESZR - a function that
returns the number of records in the specified text file. SEARCH - a function
that searches through a TEXT file for the specified string, returning informatic
as to if and where the string was found. DELETE# - a statement that allows
a TEXT file record to be deleted. INSERT# - a statement that allows a record
to be inserted into a TEXT file . REPLACE# - a statement that allows a TEXT

file record to be replaced by another.

LIST is extended to list TEXT files.

Necessary Accessories None

Operating limits and wamings

Minimum RAM Requirement 1512 bytes

References

This program has been verified only with respect to the numerical example given in Program Description. User accepts and uses this program material AT HIS OWNRISK, in
reliance solely upon his own inspection of the program material and without reliance upon any representation of description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING.
BUT NOT LIMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR
SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF

THIS PROGRAM MATERIAL.

71-08006 2 of 5

The following 1s a 1ist of the keywords, their syntax and an example of the use
of each. In most cases, the parameters are numeric expressions, string expressions
or literals (refer to section 3 of the HP-71 Owner's Manual).

DELETE# channel number, record number

The DELETE# statement deletes the specified record from the text file associated
with the channel number. Channel numbers are assigned with the ASSIGN# statement
(refer to section 14 of the HP-71 Owner's Manual). Record numbers always begin
at 0, so line number 1 is record number 0.

The channel number and the record number are numeric expressions, rounded to
integer values.

DELETE# generates an error message if the assigned file is external, protected
or not a text file.

EXAMPLE: DELETE# 11,14 deletes record number 14 from the file associated with
channel 11.

FILESZR (filename)

The FILESZR function returns the number of records in the specified text file if
that file exists. The filename parameter is a string expression. If an error is
detected, the negated error number is returned so that you can tell the difference
between an error and the number of records. If filename contains an illegal port
specifier, such as FROGS:PORT(8), the error message Invalid Filespec is generated.

EXAMPLE:FILESZR ('FROGS') returns the number of records in the file FROGS.

INSERT# channel number, record number;new record

The INSERT# statement inserts the new record immediately before the specified
record number in the file associated with the specified channel number. The
channel number must first be assigned to the file using the ASSIGN# statement.
Record numbers always begin at 0, so 1ine 1 is record0.

The new record must be a string expression. The channel number and the record
number are numeric expressions, rounded to integer values.

INSERT# generates an error if the file is external, protected or not a text
file.

EXAMPLE: INSERT# 11,35;"This is the new line being inserted." inserts the
string before record 35 (1ine 36) of the file associated with channel 11.
The old record 35 becomes record 36.

LIST filename (begin line{end 1ine))

The LIST statement 1ists a text file. Depending on the parameters you specify,

it 1ists either the entire file, a single 1ine, or a range of lines. Line numbers
are specified using integer constants. The 1ine number parameters are optional,
and the whole file is listed if they are not included. Refer to LIST in the
HP-71 Reference Manual for details.

71-00006 %of 5

REPLACE# channel number, record number;new record

The REPLACE# statement replaces the record indicated by record number with the
new record. The channel number must first be assigned to the file by using the
ASSIGN# statement. Record numbers always begin at 0, so line number 1 is recorc
o.

The new record is a string expression. The channel number and the record numbe:
are numeric expressions rounded to integer values.

REPLACE# returns an error if the file is external, protected or not a text
file.

EXAMPLE: REPLACE# 11,35;"This 1ine will replace the old line."replaces record
35 of the file associated with channel 11. 01d record 35 no longer exists.

SEARCH (search string, column, begin record, end record, channel number)

The SEARCH function searches the file associated with the indicated channel
number for the search string, beginning with the specified column and record
number. The search continues through the end record specified. If the search
is successful, SEARCH returns a value in the form nnn.ccc111, where nnn is the
record number, ccc is the column is the column number and 111 is the length of
matched string. If the search is unsuccessful, SEARCH returns a zero.

The search string can be any string expression, and can contain the special
pattern characters discussed on the next page. The Other parameters are numer
expressions rounded to integer values.

EXAMPLE: Suppose that channel 11 has been assigned to the file FROGS and the
string'frogs are green'appears beginning in column 8 of line 36.

A=SEARCH("frogs are green",1,1,9999,11)

searches the file FROGS, beginning with column 1 of rec. 1 through rec. 9999,
for the search string and returns the value 35.008015 in A.

**Note that since the first 1ine is record 0, 1ine 36 is actually record 35.

Cont. next page

1? 4 of 5
SPECIAL PATTERNS 1-030 0 6

¢ festure of SEARCH is the zwailshility of four characters that have
special meariing when usea in patiterns, Using these chasracters in &
search strino tells SEARCH to look. fer examc:s, ormly for thoss
cccurrences of thz strimng at thz begirnming o rthe lire, or at the end
of the linse, or ailow any pattern betweer tw: specified patterns., Tiwz
four charactsrs that can be useo im this speciasl way are ., @6, ~, £,

The backslash <\N3 character cam be used like = "zwiteh” in the search
ztrirng to start and ston this teature that malies these four character
take on spec:ial mzaning., The backslash characzter is CHRI(S9Z), and for
convenience, may be assianed to & kew by executing:

DEF KEY <k ey names, CHEEI B2
L See pags €9 in the HP-V1 Refererice Manual for further information
about key asszignmentss, Tne first occurrence of the backslash turrz oo
the feature, so that ths four characters take on their specisl meaningsz.
The next eoccurernce of the bacikslaszh turnz thiz feature off.

-

The four characters., thesir mearnings, and soms axamoles of their u
described in the ¢ollowving paragraphs, In &l]l the evamples, aszume
that the spezifies tile is ornen to chanmnel number 3., WAlso, all the
examrles spec-ifw the search to start in record zere, column 1

‘the start ot thz file’), armd to cormtinue throuah recoard number 9993,

atr e

"
m

1) The pericd .7 is a ‘wild card’ character. SEAHFCH looks for the
specifisd string, but any character can o= in those positions in
the string whers yvou pur a period.

-

Example: SERRCHI "ABRCYSOHRSOI2 25", , W",1,0,9939,32)

aQ
Loocks for the first occurrence of ABC followed by any
three characrers, followed b i, ' Fossibilitiez are
ABC=99i, ABCzezW, cor AEC vy

&) The commercial "at'" sumbeol (E) indicates that army number of
charactcrs betweer the beginning of a string and the end of a
string on the same line are ‘wild cards’ -- that is, there can bs
ary number of characters—-= vou dor 't have to specify how marny
charactors or what they are. EBecaurse SEARFCH starts looking for
the ernd of the strirg a2t the end of the iime, the longest match

is found.

Example: SERRPCHC "RBC"LCHRS! 22 :8"@CHE" .1, 0.9959,3)
Looks for the first occurrence ot a str:ng teginning with
AB. and ending with CDE on the =same line. such as
ABC123C0E, RRCCDE, or ABCIZ zzz=I[E

33 The up-srrow V"2 is uged to find & string only when it cc-ours af

the beqimning of a lire., If the string appears anywhere else in

the limnes, it will ce 1gnored, The up-arrow has this special msarning

only wher it appears as the first criaracter of the string. ﬁnymhere

else in the string, * will hawe its norm2: mearning,

Example: SERRCHI{"N"GBC",1,0,999%,3)
Leoks for the firzt occurrence of ABT only at the beginning

of each lire. If AEBC appearz anvuhere elfe in the lins.
a match will rmot be found.

11 -00006

4> The dollar sign (£ feollowing the strina causes SEARCH to look for 5 of
the strirmg orniy at the end of @ lime, Trez dollsr si1gn character
must appear 2t the ena of the string, bhen 1t sppears anywhere

elee in the string, i1t has 1t= normsi mearing.

A AN A
Example: SERRCH. "RAEL-$F".1,0,3993,3) 7 1 - OJ (} (" 6
Lochs for the firs + occurrence of KRBT at the end of a linme,
1f aBC appears anuuhere else 1in the lirme, it will be igncred.

Scemetimes, our strinmg may contzin a backs
actual textr. Inm tris cace. wou don 't want
as a switchh, The =olumion 1s to urfe two s
interpretsz \\ a3z = sinnie backslash charac

last character as part ot the

SESRCH to see the bachkzlaszh

quenrntial backslashes, SEARETH
(gD

=
T az a switch,

71-06000%7 PROGRAM DESCRIPTION

Program Title __Character Set LEX File Generator

Contributor Bruce Stephens

Address Hewlett-Packard Company (PCD), 1000 NE Circle Blvd.

City Corvallis State Oregon Country _U,S.A.

Telephone ___757-2000 Zip/Postal Code 97330

Program Description (include equations) _This program creates a LEX file that contains an

alternate character set of vour design, and adds a keyword to activate that

character set.

Necessary Accessories __None

Supported Accessories _N/A

Operating limits and warnings

File name(s)

Size of file(s) Additional RAM Requirement to run the program

References

This program has been verified only with respect 10 the numerical exampie give in Program Description. User accepts and uses this program material AT HIS OWN RISK, in

rekance solsly LPON his Own NEpection of the Program matenal and withOUt rEaNCe UPON 8Ny MEPrEsSeNtation Or GESCNPUON CONCEMING the Program matenal.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING.
BSUT NOT LMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR
SHALL BE LABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF

THIS PROGRAM MATERIAL

Page i—(_ of_Z

71-0000%7 VARIABLE DEFINITIONS

NAME DEFINITION

F$ Name of LEX file to be created (1 to 8 characters)

v$ VER$ string of new LEX file (1 to 7 characters)

W$ Name of new keyword (2 to 8 characters)

L1 LEX id # of new LEX file

L2 Token # of new keyword

L3 Character set id #

o Length of character set (in bytes) (6 bytes per character)
T Length of LEX file (in bytes)

P$ Holds string of hex digits to be put into new LEX file
FNH$ Returns a character representing the hex value of argument
FNS$ Returns a hex string, 2 digits for each character in argument. The least

signficant nibble of the first byte of the argument occurs first, followed by
the most significant nibble of the first byte. Successive bytes are appended

after the first byte.
FNT$ Same as FNS$ except successive bytes are inserted in front of preceding

bytes, thus reversing the order of the bytes.
2% Used by FNS$ and FNT$ to hold value to be returned.

Page i 01_7

Y1-00007 SAMPLE PROBLEM

Create a character set by following the example in the HP-71 Owner's Manual on pages
133-135 (or create a character set of your own). When you are satisfied that you have
the alternate character set as you like it (any number from O to 128 characters may be
defined) run the example as shown on the following page.

When the example run has been completed the program will have created a new LEX file
called TESTCH. To tell the system to look for the new LEX file, turn the machine off

then back on.

Now display the VER$ function and you should see the string TST embedded somewhere in
the string:

>VERS
HP71:1BBBB TST

To cancel the current alternate character set definition, type:
>CHARSET ""

The LEX file has added a new work (TESTCH) to the language. This keyword may be
entered into a BASIC program or executed directly from the keyboard. To activate

the character set, type:
>TESTCH

Now the character set is active. To display the first character in the special set
type:
>CHR$(128)

The character set will remain active until the character set is redefined by another
character set defining word is executed, the CHARSET statement is executed or the LEX

file (TESTCHAR) is purged from system memory.

When the character set is activated, only 7 bytes of RAM is used in addition to the
memory required to hold the LEX file. If the LEX file is in a ROM then only 7 bytes
total is required to activate the character set.

Page & of_-,

“1-03007

SAMPLE PROBLEM SOLUTION

DISPLAY CONTENTS

>

New LEX file name:
VER$ string:

LEX id #(decimal):
Token #(decimal):
Charset id#(decimal):

USER RESPONSE

RUN CHARSET
TESTCHAR
TST

92

5

92

COMMENTS

Any valid file name
1 to 7 characters

1 to 255

1 to 255

0 to 255

Page. D ui_7]

“I-00007

(Continuaton Page)

This program prepares a string of hex digits which it POKE's into a file. This string
must be exact to prevent locking up the machine or causing a memory lost condition.
For this reason, the user should not attempt to modify this program unless he/she is
quite familiar with the internals of the machine and understands the cryptic detail of

the program.

The user should be careful not to select a LEX id/token # that conflicts with some
other application that he is likely to run. LEX id numbers in the range 92-94 have
been set aside for just such use by users creating their own LEX files. The user
should be aware of possible conflicts with any other locally written lex files. If
the token # is also defined by another LEX file with the same LEX id, the results
are unpredictable and certainly undesirable.

Hewlett-Packard has a process to allocate LEX id's and token numbers to users
submitting programs to the Users' Library or burning application ROM's.

In addition to having a unique LEX id/token number, the LEX file must have a unique
character set id. This number identifies which character set LEX file is active.
Theoretically, up to-256 character set LEX files may be present in memory if they each
have unique character set id's. It is probably a good idea to have the character set id

match the LEX id if possible.

For details about how the LEX file implements the character set, see the HP-71 IDS
Volume I.

oo}

71-00600Y% SYSTEM MODIFICATIONS

GENERAL FEATURES
Alternate character set
ASSIGN #
ENDLINE
EXACT
Files

FLAGS

BEEP ON/OFF
Beep volume
Math Exceptions
OPTION BASE/ROUND/ANGLE
Other system or user flags (inciude flag number)

STARTUP
Variables

Other

DISPLAY
CONTRAST
DELAY
FIX/SCI/ENG/STD
WIDTH
WINDOW

KEYBOARD
Lc
Re-defined keys
USER mode

HPIL

ASSIGN 10
DISPLAY IS
PRINTER IS
PWIDTH
STANDBY

NOTES This program does not modify any general features, flags, start up, display,
keyboard or HPIL parameters.

10

20

=0
40
S0
&0
70
a0
Q0
100
110
120
130
140
150
160
170
189
190
200
210
220
230
240
250
260
270
280
290
IOO0
310
J20
IJO
340
IS0
I60
370
380
390
400
410
420
30
440
450
4450
470
480
49
S00

71-00006%

! CHARSET - Written bv Bruce Stephens

! Creates a LEX file that contains the current character =set and adde

a keyword
' that ernebles the character set.
DIM F$I[B]1,V$€[7]1,Ws[8]
DESTROY ALL
INFUT "New LEX file name: ";F$
INFUT "VER% string: ":;V$

7’5"

INFUT "Name of new keyword: ";Ws & WE=UFRC* (W$) & IF LEN(W$)<2 THEN 8O

INFUT "Lex 1d #(decimal): "3;L1

INFUT "Token #(decimal): "3;L2

INFUT "Buffer id #(decimal): ";L7=

C=LEN (CHARSETS$) /&

T=121+LEN (V$LWS) +&3C

DIM FS$LTX21,Z¢[C¥12+16] S
FP$=FNS$ (CHR$ (L 1)) &FNS%$ (CHR$ (L2) &CHR$ (L)) T
F&=F$&"OOOQOF 7 1000000 "

F$=F$LFNS$ (CHR$ (20+2XLEN (W$)))

F$=P$%" 0000D00"LFNS$ (CHR$ (143+2XLEN (WHLVE)))

F$=F$L" 000D " &FNHS$ (2XLEN (W$) —1) LFNTS$ (W) LFNS$ (CHR$ (L))
F$=F$&"1$f962d0T1bFf 261 "LFNS$ (CHR$ (40+LEN(V$) ¥2)) &"0012b1351121C"
FP$=F$LFNH$ (LEN{(V$) ¥2+1) &"1378Bbbcel ZS1063"
F$=F$LFNH$ (LEN (V$) X2+1) AFNS$ (V$)

F$=F$5"0215d"LFNH$ (LEN (V$) x2+1)
F$=F$%"0032bFfI8F1cB115e27010e0290a42217414b31 "
F$=P$:FNS$ (CHR$ (L3))

F$=F$%L"94646711c87e501cTI0b15d0O0N00OIBITOISO"

P$=FP$%"Off ff2f F fdR2T07dSIbFDBFA7T114908dB4aB0O7€1017431"
P$=P$LFNS$ (CHR$ (LT)) %" 14d1cbT0115d0S0e07 1450375 " \
P$=P$LFNH$ (CK12) &FNH$ (C¥12 DIV 16)&FNH$(CX¥12 DIV 256) {
F$=P$%FNT$ (CHARSET$) —_—— e T
CREATE TEXT F$, (LEN(F$)+1) DIV 2 | Cracte o 4ile o preper Sige
A=HTD (ADDR$ (F$)) ;

POKE DTH$ (A+37) ,F$ i A o /.

FOKE DTH$ (A+16), "802e00" / {7:/4..“/14{ cod: nto Fe

STOF H l-h‘j‘ file t}’}"‘ 12 tEX

DEF FNH$ {(N)=DTH$(N)[5,5]
DEF FNS$ (S€)
Z&=""

FOR Z=1 TO LEN(S%)
Z#$=DTH$ (NUM(S$[Z,ZI))[S5,5I&DTH$ (NUM(S$[Z,Z2]) DIV 16)[5,5]1%Z%

NEXT Z

FNS$=7%

END DEF

DEF FNT$[15361(5%)
Ze=""

FOR Z=1 TO LEN(S$)

2¢$=7%%DTH® (NUM(S$[Z,.Z1))[5,5I%DTHE (NUM(S$[Z,Z]) DIV 16)[5,5]
NEXT Z

FNT$=2Z%

END DEF

raye_s oy v

71-00008 PROGRAM DESCRIPTION

Program Title Customization Utilities (CUSTUTIL)
Contributor Hewlett Packard Company
Address 1000 N.E. Circle Blvd.

City Corvallis State Or. Country U-S-A.
Telephone (503)757-2000 Zip/Postal Code 97330
Program Description (include equations) CUSTUTIL provides six keywords that are helpful in

customizing the user interface: INLINE gives an enhanced input capability;
it allows you to determine the cursor position and type, and which keys terminate
MSG$ allows for localization of error messages and user input, making it possible
for a Basic program to be translated in to any language automatically. KEYWAIT$
puts the 71 in a low power state, waiting for a key to be hit, then returns key
name. SCROLL scrolls the message in the display the specified number of char-

acters. KEYNAM$ returns keyname, given keycode. KEYNUM returns keycodg given

keyname.

Necessary Accessories None

Operating limits and wamings

Minimum RAM Requirement 1007 bytes

References

exampie given in Program Description. User accepts and uses this program materal AT HIS OWN RISK. in

¢ been h h respect 10 the numerical ;
Bimd i puiiio gl without refiance upon any representation or description concerning the program material.

reliance solety upon his own inspection of the program material and

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLI
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL
SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECT!
THIS PROGRAM MATERIAL.

ED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING.
ITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR
1ON WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF

71-0UUCS 2 of 8

Syntax and Explanation of each Keyuword:

INLINE Statement

Syvntax:

INLINE <input string?,<char# in LC[E pozition 1.,...
.. Scursor peositiconAtypes,<terminateors?,<{wvariashblel> [,<{variablez>...
oo l,{variabled»] 1

<input stringi::= String expression to be displaved asz prompt

<char# irn LC[I pos. 1>::= Humeric expreszion which rounds teo X,
such that: 1{= ¥ <= S&
Value out of ranas g=snerates error.

Determines how manw. craracters of disgclayed
£tring are screolled off leit end of the
cisplawy,., For examplie:

1=> nc characters screlled
£=> 1 character scrolled

{cursor posctyper:i:= Numeric expression which rounds to X.
such that: 1{= [X| {=9&
¥Yalue owut of rangs generates error,

Determines which character in the display
the curs=or iz on. kegardiess of input,
this value is forced tc be at least as larag=
as the char# of the first readable character
ir the displiay: alzc, it 15 forced to be no
tigger thar i character position beyond the
lazt readatle character in the input string.

Hegatiwve argumsnt indicates an insert cursor,

<terminators>::= Strimg expreszion of the form:
#:iprivsical kewvcodzs#iphysical keucode™. .,

Kews are numbered in row-major order 1-5&.
For f-shifted keys, add Sc: for g-shifted
key=s, add 112,

Determines which keuvs terminate IHNLINE.
Null string or strina not conforming to

syntax above generates error,

‘#° az last charactar in string is ignored.

<variablet>::= Numer ic variable ints which the terminator
number 1s returred., The variable specified
contains ‘n’ on exit if the terminator hit
was the nth specities in the terminator li=t.

<variablezr: = Numeric variatle into whickh the final curscor

position ana type 15 returned.

HEsuming |[variables| = n, the cursor waszs on3of 8
7 1 - 0() O 0 8 the nth character ir the ’‘free portion’ of

the display buffer. See the dizcuszion of

WINGOW im the HF-7Vi Feference Marual for

details.
If <variablez: < 0 , then insert curscr
<variable3d>::= Numeric variable intno which the character#

in LLD posgition 1 iz returncd.

Once again, note that WINDROW affects the
effective size and locaticn of the LCD.

Descriptior:

INLINE is a statement thst extends the capability given in the HP-T1 =

IHPUT statement and KEY# functien. INLINE allows wou to specify

@) the prompt string

B> the number of preompt string characters to be screlled off the ledt
side of the displavw

c? where in the agisrlaev tne cursor is to come up flashing, and

d> what typz of curszor Creplacecsinsert:

INLINE allows the user to press anuv combination of keys for input
and editing, just like the INPUT statement. UWhile INPUT terminates
execution only wher specific keys are pressed <“such as [Endlinel),
any, number of different kevs can be defimea tc termirmate INWLINE
execution. UWhen one of these terminating kews is preszed, IHLINE
returns a riunber that irmoicates which kew caused termination;
INLIKE will cpticnally return additional values indicating the
cursor positieons/type and rumber of characters screolled off the left
side of the displayv on exit,

For increased customization, the inmput strirmz may contain cursor on
and cursor off characters to make certain portions of the string
rnon—-editatle.

There are three additicr2l limitstions placed on the input parameters
for <char# in LCD pcs. 1) and <{cursor pos.’:
12 1If {char# in LCD poz 1) is greater than <cursor pos?>, then
{char# ir. LCD pos 1: is et equal to <cursor pos:.
2) {char# ir LCD pos 1> ig limited to be <= 97 - WIHDOUWsize
3 1If <curscr poss exceeds <char# in LCD pos 1> + WINDLGOWsize, then
the specified <curscr pos»> takes precederce, and the <char# in
LCD poszsiticon 12 i incremented until the ‘cursor character’
appears in the display window,

For example,
INLINE A$,91,80,T¢,~
According to (1> above, <char# in LCD posz 1> become

€
S1. Then, according to C2) above, <char# in LCD pos
Jassuming the default WINDOWsize of 2z2).

i1, instead of
1> becomes vS

ef @

71-000608

...cont., INLINE

To illustrate (3> above
INLINE R$.,66,95,7T¢.4

In order to get charascter #95 in the disclav window, character
#7494 (G6-225 is put in LCU positiorn 1,

Feollouwing is an examrle illustrating the use ot prctected fields
‘mon-editable characters: irn the <i1nput string::

INLINE CHR£(27H&"{"&"Ernter Hame "&CHRE(ZTL&">"LCE£.2,1,"RIB#SOHS1" , 4, B.C

Fssume that % comntains the defsult imput strimg. Irn this example

the user cannct back the curscr up ower ths prompt since the cursor

war turned off, Howewver, thay can edit the detault input string since
the cursor was turnec back on. The rerclace cursor will come up on ths
firsi ‘readarle’ character, that is the first charecter displawved in
vhich thes cursor is on tin this example that is the tirst character cof
the default input string’ -- this was specified by the cursor position
type argumert., The first character of the input string will be scrolledg
of f the left side of thz cisplay =- thiz was =zpecified by the next
argument .,

INLINE will termirnate on one of three keus:

[Erndliinel. [l arrcwl,IDown arrowi,. I [lon arrowl is the

terminator key, A=Z orn exit, If the user typed in a five character
riame before nhitting the terminator key {assuming no backspacesy,

E=17 or exit J(the cursor otiginallw came up orn the 12th character in
the displav and waz adwvamnced S more character peositicn=z), and C=2.
Note that the {cursor position> argument ‘counts’ readable characters
only. Also, DISP$ ‘rseer readatle characters conly, sc that a DISPE
done in the above exampie returns only the user input {including the
default input’, not the prompt itself.

Alsc note thst the cursor peosition araument and the value returned in
the first optional variable do not operate totzlly analogous. The
cursor position argument ccocunts readable characters only. whereas the
value returned in B <in the examcle aboves reflects the TCTRL number
of characters in the "free portion" of the display, readable and
ron-readable .

Related Keswords:

DISPE, WINDOW

71-000068 >t 8

KEYNAME Function

Syntax:

KEYNAME(<phywsical kewvcods

{physical kewvcede:>::= Numeric expres
= X {=1es

sion, rounded to integer X,
such that 1<{= ¥

“ll values out of range (uwith the exception
ot zero’ generate ar: error.
EEYHAMEC G returns the null string.

Description:

Givern the phwesical keywccoae Crevs are numbersed in row-major order),
KEYNAME returns tre correspording kew nams. Faefer to the KEVE
function in the HF-71 Reference Marnual for ar explanation of kew namez.
KEYNAME is the complement of KEWYHLUM,

Examples:

KEYNAMEC{ 1) -= returns

FEYNARME(1132) —-- returns aq

KEYNAMEI ST 3 —= returns 02

Felated Keywords:

FEYHUM

EEYHUM Furction 71- 00 00 8

Syntax:

KEYHUM {key mname>3

<key namer::;= String expression
HNy string that isn’t 3 valaid key name
gererates an error, with one exception:

If the string is null. KEYHNUM returns 0.

Fefer to ‘kew mame’ in the glocssary of the
HF-71 FRefererce tianual for further details.

Description:

6 of 8

Giver, @8 ke rname, KEYNUM returns the corresponoing prysical kewcoode,

It is the complemaent of KEYHWME.

Examples:

KEYHUMC @Y) -- returns !
KEYNUMC"€G" > -- returns 57
KEYNUHMC #1137) == returm: 112
Related Keyvuwords:

KEYNAME

7 of 8

A\
FEYWAITS Function 7 1- 0U 008

Syntax:

KEYWRITS

Description:

lihen the KEYMNITS$ function is evecuted. the HF-71 goes intc a low

power conpsumption state until a kew is prezzes: when a key is
pressed, KEYNWAITS return=s the correszponding ke name.

Felated Keywords:

KEY'S$

MSG$ Function

Syntax:
MSG$(<111lmmm >

where 111 is the three-diaqit LEx® file ID
and mmm is the three-digit message number ,

If the specified LEY file doesn’'t exist, or if the specifiecd
message number does nct exist in the LEX file. MEGE returns the
null string.

Lescription:

M5G¥ allows a BAZIC user to build custom messages from any message
table. In additicn, the transzlation capabilit.r provides a powerful
tocl for BASIC aprlication pacs to accept commands in anyv language.
An excellent example is the HP-71 Texuwt Editcr. a BASIC program thst
stores all its commands, responsss. and HELF catalog information

in a message table. A1l user input is comparec to entries in the
message table, using MICTE,

Te build your oun foreiar language LEX file, refer to M3G$ in the
HP-71 1DS Yoiume I,

Examples:
ISP MSG$¢ 255131, -- displavs messaqe number 131 from LEX file 255,
according to the foreiar languages LEX file that

iz currentiy pluggea in.

DISP MSGEC08S001>» =-- displaws the first messsac from LEX file &5

8 of 8

SCROLL Statement 7 1 - OO O O 8

Syntas:
SCROLL <char# in LCD po=. 1>
{char# in LCD po=. 12::= Numeric expressior. rounded to an inteqger
value,
Error=s if negative.
Description:
The SCROLL statement scrolls the message in the displaw the necessarwy
number of characters, sc that the character uvcu specify appearz in
LCD position 1.
The number of characters can be specified by any positive numeric
expressior . An errcor rescits iYy the rcounded integer value is

negative, or if it exceeds 1,048,575 (FFFFF Hz»),

For a rounded integer wvalue of 0, SCROLL interprets the paramcter
as 1.

Related Keywords:

WINDOW

Page ! of__l_

71-00009 PROGRAM DESCRIPTION

Program Title Extended Showport

Contributor HEWLETT PACKARD COMPANY
Address 1000 N.E. Circle Blvd.
City Corvallis State OR. Country U.S.A.

Telephone (503)757-2000 Zip/Postal Code 97330

Program Description (include equations) SHOWPORT in operating release 1BBBB only gives information
on RAM which has been freed with FREEPORT. This lexfile extends SHOWPORT so it

gives information on all RAM.,

After SHOWPORT gives information on all independent RAM and ROM, it gives the

information on all other RAM (system RAM). The device type number of system RAM

is O.

The extended SHOWPORT lexfile is operated from the keyword ''Showport'.

Necessary Accessories None

Operating limits and wamings

Minimum RAM Requirement 151 bytes

References

This program has been verified only with respect to the numerical exampie given in Program Description. User accepts and uses this program material AT HIS OWNRISK, in
retiance soiely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING.
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTR!BUTOFF?
SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING. USE OR PERFORMANCE O!
THIQ PRNGRAM MATFRIA!

Page_1 of]

71-0001C PROGRAM DESCRIPTION
Program Title Simple and Enhanced Key Redefinition
Contributor HEWLETT-PACKARD COMPANY
Address 1000 NE Circle Blvd
City Corvallis State Oregon Country U.S.A.
Telephone (503) 757-2000 Zip/Postal Code 97330

Program Description (include equations)

KEYDEF allows keys to be redefined with a minimum of

keystrokes. It leads the user through the redefinition process with a straightforward

series of prompts. The user can also choose to scroll through the "keys" file, viewing

and editing already-existing key assignments. It also provides a simple mechanism for

imbedding escape characters in an assignment string using an intuitive list of

mnemonics (see page 10).

Necessary Accessories CUSTUTIL LEX file

Operating limits and wamings

Minimum RAM Requirement

References
HP-71 Reference Manual - DEF KEY

3214

HP-71 Owners Manual, Section 7 - Redefining the Keyboard

; ; ; : ial AT HIS OWN RISK, in
This am has been verified only with respect 1o the numerical exampie given in Program Description. User mptslln_d uses this program material
nﬁl:é:m solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

CLUDING.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. IN

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOI:
SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE O

THIS PROGRAM MATERIAL.

Page _&of i_c

71-060010 VARIABLE DEFINITIONS
NAME DEFINITION
C Cursor position in user-input string.
Cc2 Cursor position while entering escape character.
E Ending Keycode - largest physical keycode that has an assignment associated
with it.
F Flag indicates keys file was secure on entry.
I Index variable for scrolling through keys file - contains physical keycode.
J Index variable for matching user-input escape sequence mnemonic to
corresponding escape character.
K Indicates which key terminated user input.
L Character # in LCD position 1 (for INLINE prompting).
P Position of blank in D$; Position of escape character in assignment string.
S Starting keycode - smallest physical keycode that has an assignment
associated with it;
= -] if not yet determined
= @ if no redefined keys
W Window start - ensures prompt is in protected field of display.
A$ Assignment string currently (or proposed to be) associated to a particular key.
D$ Display contents when scrolling through key assignments.
E$ Array of escape sequence mnemonics, and their corresponding escape characters.
El$ Escape sequence mnemonic input by user.
K$ Indicates key to redefine.
P$ Prompt.
R$ User response to "Y/N" prompt.
T$ Type of assignment currently - ":", ";", or space.
T1$ Type of assignment proposed - " “
Z$ Faves information about the user's environment:

Z$[1,6] - 1st alternate character set character
2$(7,21]) - System flags -13 through -64 User flags 0 through 7

Page_ > of I(

71-03010 SAMPLE PROBLEM

Assume you want keys redefined as follows:

The [Q] key is to become a typing aid to display:
A$=A$&ASC

The [RUN] key is to remain a "direct execute" key, in the sense that pushing it will
cause execution, without altering the display, but instead of running current file
it will

EDIT NEW

The [<] key is to become a typing aid. When hit in User mode, the following will be
added to the display contents, and then the entire display contents will be executed as

though [END LINE] was pressed
CAT ALL

Additionally, redefine [t] so that when it is pressed in User mode, some escape
sequences are sent to the display device. Have it display ABC, home the cursor, then
display DEF.

Re-define [B], then delete the key redefinition.

Finally, before exiting the program, scroll through your file of key redefinitions. Make
some modifications and delete a key redefinition.

Page_iof L

71-00010

SAMPLE PROBLEM SOLUTION

DISPLAY CONTENTS

>
Define new keys?

Hit key to re-define
String

Type: ; or : or [SPC]

Assignment complete

Done?

Hit key to re-define
String

Type: ; or : or [SPC]

Assignment complete

Done?

Hit key to re-define

String EDIT NEW

Type: : ; [SpcC]

USER RESPONSE

RUN KEYDEF
Y
Q
AS=ASsAS@ [ENDLINE]

.
’

[rRuN]

EDIT NEW [ENDLINE]

COMMENTS

Hit [g] [=] The ; terminator
makes this a typing aid that
remains in the display.

No response

Hit the [RUN] key

Hit [g] [*] The colon
terminator makes this a direct
execute key in user mode, that

does not alter the display.

No response

Let's double check

KEYDEF shows any string alread
assigned. Hitting [ENDLINE]
here leaves the assignment
unchanged.

This time ":" displayed

first - whichever terminator
appears first is the current

terminator.

Page_/ of_4

71-0G0 10 SAMPLE PROBLEM SOLUTION

DISPLAY CONTENTS
Assignment complete

Done?

Hit key to re—-define
String

Type: ; or : or [SPC]

Assignment complete

Done?

Hit key to re-define

String CAT ALL

Type: [SPC] or ; or :

Assignment complete

Done?

Hit key to re-define

String

USER RESPONSE

CAT ALL [ENDLINE]

[sec]

[ENDLINE]

[sec]

(4]
ABC [RUN]

COMMENTS

No response

Hit [g] [.]

Hit the [SPC] key

No response

Let's double check this one,
too

No change

Note that this time [SPC] was
the first terminator type
displayed

No response

Hit the [4] key

Hitting the [RUN] key puts th
program in the proper mode to
recognize escape sequence
mnemonics. Notice that after
[rRn] is hit, the 0
annunciator comes on,
indicating it is waiting for

a memonic.

Page_(7 ot /!

71-00010

SAMPLE PROBLEM SOLUTION

DISPLAY CONTENTS

String ABC

String MBCE CH
Type ; or : or [SPC]
Assigmment complete

Done?

Hit key to re-define
String

Type: ; or :
Assignment camplete

or [spc]

Done?

Hit key to re-define
String BBB

Assignment deleted

ﬁbne?

Scroll thru keys?

Initializing KEYSCROLL

USER RESPONSE

ICHM [RUN]

bEF [ENDLINE]

(e
RRB [ENDLINE]

[B]
[£] [RN]

COMMENTS

User enters "cursor home"
memonic. Hitting the [RUN]
kkey a second time toggles out
pf the mnemonic mode and turns
pff the 0 annunciator.

See note below (*)

Hit [g] [=]

No response

let's re-define the [B] key,
then delete the key
re-definition,

[B] re-defined

Delete the key re-definition

pone re-defining new keys

This takes about 12 seconds

Page__Zof A

€I-UU0 10 sampLE PROBLEM SOLUTION

DISPLAY CONTENTS

KEY Q ;AS=AS&ASE

KEY #46 :EDIT NEW

KEY #50 ;ABC-c HDEF

KEY < CATALL

KEY Q ;A$=AS&ASE

KEY Q ;:AS
KEY Q ; AS$tc &

Assigmment camplete

KEY #46 : EDIT NEW
KEY £ CAT ALL

Assigmment camplete

USER RESPONSE

2

[v]
[Y

[g] [4]
[*] [*] [£] [-1ine] [RUN]

CFL [RUN]

[ENDLINE]

[q] [¥v]
[«] [;] [2OLINE]

COMMENTS

There is nothing wrong with tt
program! It takes about 6
seconds to display the next ke
assignment, since there are nc
re—defined keys between Q
(Reycode #1) and [RN] (keycod
#46) . KEYSCROLL checks each

key to see if it's redefined

It takes about 14 seconds to
see the next re—defined key,
since it has keycode 166. The
program operates much more
rapidly when redefined keys
have keycodes that are closer
together.

Go to first re-defined key
Key assignments can be changed
as well as viewed from
KEYSCROLL

Cursor far left mnemonic

Next re-defined key displayed
automatically
Go to last key re-definition

Change the terminator type

Page_%_of _L(

71-06010

SAMPLE PROBLEM SOLUTION

DISPLAY CONTENTS

Key< ; CAT ALL

Assignment deleted

KEY #50 ;ABC CHDEF
Define new keys?
Scroll thru keys?

Exited KEYDEF

(*) Note that the key assignmept above could have been handleq

Hit key to re-define

String

String ABCDEF

String ABCCCHDEF

Miscellaneous notes:

USER RESPONSE

) [Ron)

[ATIN]

4]
ABCTEF [¢] [¢] [¢] [RuN]

cHiM [RuN]

[ENDLINE]

COMMENTS

then, decide to delete the
key re-definition

Exits KEYSCROLL

a bit differently:

Type in entire ascii string,
position to proper spot in
string, then toggle into
mnemonic mode. Note that while
the 0 annunciator is on, the

cursor keys are disabled.

Hitting [ATIN] when the 0 annunciator is lit, automatically takes the program out of

meuonic entry mode.

In the scrolling portion of

r

the program,to avoid ambiguity [[SPc], £ [SPc], and g [SPC] ar
represented by their key nunpers : #49, #105, #161 espectikvel

y.

B §of

If KEYDEF is interrupted via the ATIN key, and pever allowed to exit normally, ﬂuev 10

following may be changed from what they were on entry:
Y1-UUUIC

GENERAL FEATURES e
Alternate character set __ The first alternate character (CHRS(128)) is set to C

(CHRS (31) & CHRS(21) & CHRS(113) & CHRS(80) & CHRS (80))

ENDLINE

EXACT
Files If the user answers 'Y' to the prampt asking to 'Unsecure keys file', and
suspends the program, the keys file will still be unsecure. When the program exits

normally*, it re-secures the keys file, and gives a message to that effect.

FLAGS

BEEP ON/OFF
Beep volume
Math Exceptions
OPTION BASE/ROUND/ANGLE
Other system or user flags (inciude flag number) ___Flag - 16 (Option Base is set to 0)

Flags 0,5
STARTUP
Variables __If i 1 t in en entering END from

the keyboard will restore all your variables (Executing END will not restore CHRS (128),
“the status of the keys file, or flags 0, 5, -16).

Other

DISPLAY
CONTRAST
DELAY
FIX/SCI/ENG/STD

WIDTH
WINDOW Window is changed to 1 (machine default)

KEYBOARD

LC
Re-defined keys _ Whatever the user changes them to

USER mode

HPIL

ASSIGN 10
DISPLAY IS
PRINTER IS
PWIDTH
STANDBY

NOTES *It is perfectly acceptable to interrupt KEYDEF using the ATIN key. However, the
only way to restore your system to its previous state is to CONT; this gTvesW
opportunity to restore your variables, CHRS(128), flags 0, 5, -16, etc. You know KEYDEF
has done this when it gives the message "Exiting KEYDEF". 1f ATIN is hit during a prampt

requiring a "Y" or "N" response, then when the program continues, the prompt is not

Page _[_Qof _[(

71~-00010 SAMPLE PROBLEM
Mnemonic Escape Character Effect
INSW N Insert cursor (with wrap-around)
INS Q Insert cursor
RPL R Replace cursor
CRT C Moves cursor right
LT D Moves cursor left
CiM H Hames cursor
CcD J Clears display
DEL K Deletes through end of line
ooN ? Turns cursor on
COFF < Turns cursor off
RD E Resets display
DCW 0 Deletes character (with wrap-around)
DC P Deletes character
cpv $ Sets cursor position in video monitor (See page 328 HP-7
Reference Manual)
CFR (CHRS (3)) & Moves cursor to right of righmost character
CFL (CHRS (4)) <M Moves cursor to leftmost character

Yi1-ClU 1]
¢ ¥ PROGRAM DESCRIPTION / og 3

ROMAN 8 Character Set Lexfile

Program Title

Contributor Hewlett-Packard Company

Address 1000 NE Circle Blvd

City __Corvallis State __Oregon Country U.S.A.
Teiephone Zip/Postal Code __ 27330

Program Description (include equations) Lex file adds one keyword: ROMAN8$. This is a string

function of no parameters that returns the 768-byte string needed to define ROMAN 8

as the alternate character set with the HP-71 CHARSET command. To define ROMAN 8 as

the alternate character set, simply execute:

CHARSET ROMANS8$

The CHARSET command (explained in the HP-71 Reference Manual) allows the user to

specify the display bit-patterns that are used to represent the characters 129-255

in the display. ROMAN8$ supplies the bit-patterns for this character set.

The ROMAN 8 character set is supported by many printers and is a standard for

foreign-language localization of American products.

While this lex file has no special memory requirements, consideration of memory

usage is important. The overhead associated with string manipulation requires that

776 bytes be available whenever the ROMAN8$ keyword is invoked. And in the worst

ROMANS

Necessary Accessories __None
Supported Accessories ___N/A

None

Operating limits and warnings
File narne(s) ROMANSLX

Size of file(s) 850 bytes Additional RAM Requirement to run the program ___None

References

This program has been verified only with respect 0 the numerical example give in Program Description. User accepts and uses this program material AT HIS OWN RISK, in

rehance soiety upon e Own nspechon of the program matenal and without reliancs UPoN any representation of deSCNPUON CONCeMING the Program Mmatenal.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY IIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING.
BUT NOT UMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER KP NOR THE CONTRIBUTOR
SHALL BE UABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF

THIS PROGRAM MATERIAL.

Page o2 01_2

TI-voc 11

(Continuaton Page)

case (if there is currently no alternate character set defined), executing
CHARSET ROMANB8$ will take up 772 additional bytes for the newly created charset
buffer. So 1548 bytes is required for successful execution of CHARSET ROMANSS,
although only 772 of those are permanently used. (The lex file does not have to
stick around after the alternate character set is defined, although it is needed
again if the ROMAN 8 character set is desired after the alternate character set

has been redefined.)

Page _iof_f

=X 3 ‘ﬁr
?’ }_-— (TACRY

1

-

1 SAMPLE PROBLEM

Sample Usage: CHARSET ROMANS8$

ROMAN 8 CHARACTER SET

CHRS(1B1)="A"
CHRS(182)="A"
CHR$(163)="E"
CHRS$(1B84)="E"
CHR$(165)="E"
CHR$(1B6)="1"
CHR$(1B7)="1"
CHRs(168)="""
CHR$(1B69)="""
CHR$(170)="""
CHR$(171)="""
CHR$(172)="""
CHR$(173)="0"
CHR$(174)="'0"
CHR$(175)="¢"
CHRS(176)="""
CHR$(177)=" °
CHRs$(178)=" °
CHRS(179)="""
CHRs(180)="(C"
CHR®(181)="¢"
CHRs(182)="R’
CHRE&(183)="A"
CHRS$(184)="i"
CHR$(1B5)="¢"
CHRs(18B8)="{§"
CHR$(187)="¢"
CHRs(188)="¥"
CHR$(188)="§"
CHRS$(180)="#%"'
CHR8(181)="¢"
CHR$(182)="4a"

CHR$(183)="4"
CHR$(194)="5"
CHR$(195)="u"
CHR$(186)="'4a"
CHR$(187)="¢"
CHR$(198)="¢"
CHR$(188)="u"
CHR$(200)="a"
CHRE(201)="a"
CHR$(202)="06"
CHR$(203)="u"
CHR$(204)="a"
CHR$(205)="¢"
CHR$(206)='¢6"
CHR$(207)="04"
CHR$(208)="A"
CHR$(208)="'5"
CHR$(210)="0¢"
CHR$(211)="f"
CHRS$(212)="a"
CHR$(213)=";"
CHR$(214)="g"
CHR$(215)="p"’
CHRS(216)="A"
CHR$(217)="j"
CHR$(218)="0"
CHR$(218)="(0"
CHR$(220)="¢"
CHR$(221)="i"
CHRs$(222)="8"
CHR$(223)="0"
CHR$(224)="A"

CHR$(225)="4A"
CHR$(226)="4"
CHRS$(227)="D"
CHR$(228)="4d"
CHR$(223)="1"
CHRS(230)="1"
CHRS(231)="0"
CHR$(232)="0"
CHR$(233)="0"
CHR$(234)="5"
CHR$(235)="8"
CHR$(236)="¢"
CHR$(227)="U"
CHR$(238)="Y"
CHR$(238)="y"
CHRS(240)="}"
CHR$(241)="p"
CHR$(242)=" '
CHR®(243)=" °
CHRS(244)=" °*
CHRS(245)=" *
CHRS$(246)="-"
CHRS$(247)="4"
CHRS(248)="4"
CHRS(248)="2"
CHRS$(250)="2"
CHR$(251)="¢"
CHR$(252)="u"
CHR$(253)=")"
CHR$(254)="2"
CHRS(255)=""

Mass—storage

Catalog

D1/,23/,85 19:-04: 34
Volume label :

NAaME TYFPE LEM DaTE TIME
ROWCOL LLE X 119 901/7-7091-00 2@ :-56
L. IFELEX L.EX 457 A1/, 0100 Q057
EANNER L_E X 202 017,010 @G@-57
CLOCHKDSPF LLE X S8 @Gl/7-01/7,-00 0058
TEXTUTIL LLEX 1512 @171 700 20 :-58
CHAaRSET BEasIC 1328 @O@1L7A1 7060 0059
CUSTUTIL LLEX 107 010100 @1 -1
SHOWFRPORT LLE X 151 21,217,006 G1 -1
KEYDEF EASIC 3214 @1/7-90176060 @1 - =
ROMARNSILX LLE X 8590 O1/-91L/700 OAO1: 04

	Cover
	00002: ROWCOL
	00003: LIFE:A
	00004: Banner
	00005: Running Clock Display
	00006: Text File Utilities (TEXTUTIL)
	00007: Character Set LEX File Generator
	00008: Customization Utilities (CUSTUTIL)
	00009: Extended Showport
	00010: Simple and Enhanced Key Redefinition
	00011: ROMAN 8 Character Set Lexfile

