HEWLETT-PACKARD

I/O ROM

PROGRAMMING TECHNIQUES MANUAL

For the HP-75

HEWLETT [
Pacwkaro | 75

¥ % k HF-~-TS 4 & & [(/,,;]

SHIFY RUN

Notice

Hewlett-Packard Company makes no express or implied warranty with regard to the keystroke procedures and program material offered or
their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on
an “as is” basis, and the entire risk as to their quality and performance is with the user. Should the keystroke procedures or program material
prove defective, the user (and not Hewlett-Packard Company nor any other party) shall bear the entire cost of all necessary correction and all
incidental or consequential damages. Hewlett-Packard Company shall not be liable for any incidental or consequential damages in connection
with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

A ciciane

HP-75 I/O0 ROM

Programming Techniques Manual

January 1984

00075-90243

Printed in U.S.A. © Hewlett-Packard Company 1984

Contents

How To Use This Manualiiiui.. 5
Section 1: Getting Started 7
Installing and Removing the ROM Module 7
Translating LEX File Programs 8
The Role of the Hewlett-Packard Interface Loop 8
A Brief Review of HP-IL 9
Device AdAreSSeSo 10
Device COdeSot 11
Syntax Guidelines 1
Section 2: Simple I/O Operations 13
Using Simple TLITFLIT Statements 13
Using Simple EHTER Statements 14
Entering Numeric Data 14
Entering String Data 15
Section 3: Formatted I/O Operations 17
Formatted LI TR T 17
Numeric Image Specifiers 18
Digit Specifiers 18

Sign Specifiers 18
Punctuation Specifiers 19
String Image Specifiers 20
The End-of-Line Sequence Image Specifier 21
Formatted EH T ER L 22
Data Imagest 23
Numeric Image Specifiers 23
String Image Specifiers 23
Skipping Unwanted Characters 24
Terminator IMages 25
Eliminating the Statement Terminator Requirement 27

Using the ETO Message As a Statement Terminator 27
There’s Always an Exception 27
Changing the Size of the EMTEFR Buffer 28

A Word of Advice About Images 28

Contents

Section 4: Sending and Receiving HP-IL Messages 29
The SEHDID Statement 29
Resuming Data Transmission With ZEMDOY™ o o o i 31
SEMDOIO Restrictions 32
The EMTIOE FUNCHON e 32
Defining Logical End-of-Record i 34
Enhanced Printing Control 35
EHTIOE Restrictions 35
The SEHMD Statement 35
Sending Command Group Messages 36
Sending Ready and Identify Group Messages 38
Sending Data/End Group Messages 38
Application Programs 39
An HP-75/HP Series 80 Interface i .. 39

An HP-75/Modem Interface 40
Obtaining Readings From a Multimeter 41
Section 5: Other HP-IL Statements and Functions 43
Assigning The LOOp 43
The AZZIGH LOOF and AUTOLOOF OH-OFF Statements 43
Assigning HP-IL Addresses and Device Codes to HP-IB Devices 44
The DEVALDDE and DEVHAMEF Functions 45
The ADODREESE Function 45
Remote and Local Control of HP-IL Devices 45
The FEMITE Statement 46
The LOCHL Statement 46
The LOCAL LOCEOUT Statement 47
The TRIGGER Statement 47
Checking the Device ID or Accessory ID of HP-IL Devices 48
Device ID 48
ACCESSOrY ID . ..o 48
Polling HP-IL Devices i 49
Serial Polling 49
Parallel Polling 50
Appendix A: Owner’s Information 53
Appendix B: Syntax Reference Guide 59
Appendix C: HP-IL Commands 85
Appendix D: Support Functions and Editing Keys 89
Appendix E: Errors and Warnings 121

Keyword Index 123

3

How To Use This Manual

Please take a minute to read this introduction so that you can better understand how this manual is
organized, and how to get the most utility from it. The HP-75 I/O ROM adds many new capabilities to
your portable computer, opening a whole new world of applications. This manual is intended as both a
learning and a reference tool. At first, you may use it to learn the fundamentals of I/O programming
with your HP-75, and to become familiar with the many new statements and functions that the ROM
provides. Later, as you develop your own I/O application programs, the manual will serve as a reference
source.

Section 1 covers the installation of the ROM in your HP-75 Portable Computer and gives an overview of
the Hewlett-Packard Interface Loop. It is assumed that you are familiar with HP-IL, but you may find the
brief review to be helpful. Section 1 also covers the conventions that are used in defining the syntax of
statements and functions throughout this manual. Please read the subsection “Syntax Guidelines” in sec-
tion 1.

Sections 2 and 3 cover the fundamentals of I/O programming, and cover the capabilities of the
OUTRUT, EHTER, and IMAGE statements. If I/O programming is new to you, sections 2 and 3 will get
you started, and may contain all of the information that you need for most applications. Even if you are
an accomplished I/O programmer, you should at least skim through these sections. The concepts pre-
sented are basic, but you still need to know how they are implemented for the HP-75.

Section 4 covers the SEHD IO, EMTIO#, and SEHMHD statements. These statements deal with the Hewlett-
Packard Interface Loop on a message level and provide a wide spectrum of capabilities for the advanced
I/O programmer. Section 5 covers several statements and functions that are useful in controlling HP-IL
devices through the loop. These statements allow you to assign HP-IL addresses and device codes, to set
up devices for remote control, and to identify and poll HP-IL devices.

The appendices provide some useful reference materials. Appendix A covers warranty and service informa-
tion. Appendix B provides complete syntax definitions for all of the statements and functions covered in
sections 1 through 5. Appendix C summarizes the HP-IL command mnemonics used in ZEMIID and
EHTI0#% statements. In addition to the primary I/O functions covered in sections 1 through 5, the I/O
ROM provides many useful support functions. Appendix D gives a complete list of these support func-
tions, describing their operation and syntax. A list of errors and warnings is given in appendix E.

Section 1

Getting Started

The HP-75 I/O ROM gives the HP-75 the capability to communicate with any Hewlett-Packard Interface
Loop (HP-IL) talker or listener device. This manual is for programmers who are experienced with the
HP-75 and with HP-IL. Familiarity with HP-75 and HP-IL commands is assumed. Information on spe-
cific HP-IL commands can be found in the owner’s manuals for HP-IL devices, and also in THE HP-IL
SYSTEM: An Introductory Guide to the Hewlett-Packard Interface Loop, by Gerry Kane, Steve Harper,
and David Ushijima, published by OSBORNE/McGraw-Hill, Berkeley, California, 1982. The complete
functional, electrical, and mechanical specifications of the HP-IL interface system are given in The HP-IL
Interface Specification (part number 82166-90017), Hewlett-Packard Company, 1982.

Installing and Removing the ROM Module

CAUTION

Be sure to turn off the HP-75 (press (ATTIN]) before installing or removing any module. If there
are any pending appointments, type = larm of f in EDIT mode to prevent the arrival of future
appointments (which would cause the computer to turn on). If the computer is on or if it turns itself on
while a module is being installed or removed, it might clear itself, causing all stored information to be
lost.

WARNING
Do not place fingers, tools, or other foreign objects into any of ports. Such actions could result in
minor electrical shock hazard and interference with pacemaker devices worn by some persons. Dam-
age to port contacts and internal circuitry could also result.

The HP-75 I/O ROM module can be plugged into any of the three ports on the front edge of the com-
puter.

To insert the I/O ROM, orient it so that the label is
right-side up (facing toward you), hold the computer
with the keyboard facing up, and push in the module
until it snaps into place. Be sure to observe the
precautions described above during this operation.

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the module
and pull the module straight out of the port. Install a blank module in the port to protect the contacts
inside.

8 Section 1: Getting Started

Note: You may install the HP-75 VisiCalc® ROM and the I/O ROM concurrently, but the VisiCalc ROM
must be installed in the rightmost port.

Translating LEX File Programs

Some of the capabilities of the HP-75 I/O ROM have been previously available in the form of LEX files.
The I/0 Utilities LEX file has been supplied with the HP-75 I/O Utilities Solutions Book (HP part num-
ber 00075-13013). The Autoloop LEX file has been available as the HP-75 Autoloop Users’ Library pro-
gram (HP part number 75-00104-6). The HP-75 I/O ROM supersedes these LEX files, providing new
versions of the statements and functions they contain. To avoid conflicts between the old and new ver-

sions of these statements and functions, both LEX files must be purged from your HP-75 before you use
the I/0 ROM.

If you have written programs using statements and functions from the I/O utilities LEX file and/or the
Autoloop LEX file, you can translate these programs so that they will run with the I/O ROM versions of
the same statements and functions. The procedure follows:

1. Install the I/O ROM (turn off the computer first).

2. Load the LEX file(s) used in your original program.

3. Load the original program, then convert it to a TEXT file (refer to your HP-75 Owner’s Manual).
4. Purge the LEX file(s).

5. Transform the program back to BASIC.

The translated program will run just as if it was originally written using the I/O ROM.

The Role of the Hewlett-Packard Interface Loop

The HP-75 I/0 ROM provides several useful functions that enable your HP-75 Portable Computer to
carry out Input/Output operations. However, an interface or hardware link is needed in order for a com-
puter to communicate with its peripheral devices. The Hewlett-Packard Interface Loop (HP-IL) provides
the link through which your HP-75 can communicate with the growing family of HP-IL devices. The HP-
75 and all devices included in the interface loop are connected together in series, forming a communica-
tions circuit. Any information that is transferred among HP-IL devices is passed from one device to the
next around the circuit. If the information is not intended for a particular device, the device passes the
information on to the next device in the loop. When the information reaches the proper device, that
device responds as directed. In this way, the computer can send information to and receive information
from each device in the loop, according to the device’s capability. All I/O operations are carried out
through this interface loop.

VisiCalc is a registered trademark of VisiCorp.

Section 1: Getting Started 9

A Brief Review of HP-IL

Before going further in this manual, you may find it helpful to review the fundamentals of HP-IL. This
review covers the material necessary to understand the rest of this manual. Previous exposure to HP-IL is
assumed. Users who feel sufficiently comfortable with HP-IL may skip this review.

HP-IL is an interface system in which devices are connected in a circular loop. Devices communicate with
each other by sending messages around the loop. When a device sends or sources a message, each device
in the loop examines the message, then passes it on to the next device. The message is passed around the
loop until it returns to the original sender. All messages travel in the same direction around the loop.

HP-IL operates on a master-slave principle. One of the devices in the loop functions as loop controller.
The controller has the responsibility of transmitting all commands to other devices in the loop. The HP-
75 can function as loop controller. A device that can send data, but not commands, to other devices in the
loop is called a talker. Although a device has talker capability, it will not actually send its data until
commanded to do so by the controller. Listeners are devices with the capability to receive data from the
loop. A listener will not receive data until commanded to do so by the controller.

Each HP-IL device can have one or more of the three basic capabilities: controller, talker, and listener.
There can be any number of devices in the loop with controller, talker, or listener capabilities. Only one
controller may be active at a time, and only one talker may be active at a time, but there may be more
than one active listener. The controller device that was active when the system was turned on is called the
system controller, and is in charge of the whole system. The HP-75 is always the system controller
when used in the HP-IL loop. Figure 1-1 shows a typical HP-IL configuration:

T e

inactive inactive

H (listener
—/

0000000000000

listener
(and controller)

Figure 1-1. Hewlett-Packard Interface Loop

10 Section 1: Getting Started

The system controller assigns an address to each device in the loop. It can direct commands to specific
devices by using the device address. The address is a number from 0 to 30 or, with extended addressing,
from 0 to 960.

Data and commands are sent around the loop as 11-bit messages. The first three bits of each message
identify the type, or group, of the message. There are four groups of HP-IL messages: the command
group, the ready group, the identify group, and the data/end group. In this discussion we will consider only
command messages and Data Byte messages. The last eight bits are the actual content of the message.
Thus, to send a command such as IFC (Interface Clear), a message would be sent out as follows: three bits
identifying the message as a command message followed by eight bits with the command code for IFC
(binary “10010000”). A Data Byte message consists of three bits identifying it as a Data Byte message
followed by eight bits of data.

Each message is examined by every device in the loop. By examining the message, devices determine
whether or not any further action is required. Action is indicated in a number of circumstances. Certain
command messages, such as IFC, indicate action for all devices in the loop. Other command messages,
such as LAD (Listen Address) and TAD (Talker Address), contain a device address. A device acts on the
command only if the address in the command is the same as the address of the device. Some messages are
processed only if the device is in an active state. Data Byte messages and DDL (Device Dependent Lis-
tener) messages are processed only by devices that are in an active listener state. The SDA (Send Data)
message is processed only by a device that is an active talker.

An example of how all this works is as follows: Suppose the HP-75 controller wants to print a line on a
printer. Assume that the printer has a device address of 2 and that all devices in the loop have inactive
status. The controller first sends a LAD2 (Listen Address, Device 2) message around the loop. This puts
device 2, the printer, into active listener status. The controller then sources the Data Byte messages. If the
line to be printed is an 80-character line, 80 Data Byte messages are sent, followed by one message each
for a carriage-return and a line-feed character. Once data transmission is complete, the controller
sources the UNL (Unlisten) command message. This deactivates all listener devices in the loop, in this
case, the printer.

Appendix C summarizes the HP-IL commands and their mnemonics.

Device Addresses

In order to distinguish among devices in the loop, each device must have an address — a number from 0 to
30. The system controller assumes the 0 address at power on, and then assigns addresses starting with 1
for the device next in order after the controller in the direction of information transfer. Each device in the
loop stores its unique address internally.

Figure 1-2 shows how you can determine the direction of information transfer by noting the differences in
the plugs on the HP-IL cables. It may be helpful to remember that information flows out of the computer
through the large connector, around the loop, and back into the computer through the small connector.
These connectors are labeled IN and OUT as shown in the figure.

Section 1: Getting Started 11

=
< L W
)

Figure 1-2. Connectors

out

Device Codes

Once your computer has assigned device addresses to the devices connected in the interface loop, you
should assign a device code to each device. Most 1/O operations require you to identify devices with device
codes. Device codes may be one or two letters, a letter and a digit, or a digit and a letter. Examples of
acceptable device codes are T, T%, T1, and 1 T. (A space used as the last character of a device code will be
ignored; a space may not be used as the first character.) The letters of device codes may be entered in
lowercase, but are converted internally to uppercase. The HP-75 I/O ROM provides two functions —
AESIGH LOOF and AUTOLOOF — that automatically assign device codes to all devices in the loop
(refer to section 5). You may also assign device codes manually with the A== 1 GH 10 command (refer to
your HP-75 Owner’s Manual). When you specify a device code in a command, it must be preceded by a
colon and enclosed in quotation marks, for example: DI ZFLAY IS ' : T4 ', You may also specify a
device code by using the name of a string variable, for example: &1 ZFLAY I35 AF where A% = ' T,

Syntax Guidelines

Instructions must be typed with proper syntax in order for the computer to understand their meaning.
The following guidelines are used throughout this manual in defining the syntax of commands, state-
ments, and functions:

DOT MATREIE TYPE Words in dot matrix type may be keyed in using either lowercase or upper-
case letters, but otherwise must be entered exactly as shown. Commands,
statements, and functions entered in 1ower - a=e are converted internally
to UFFERCHEZE.

italics type Items in italics are the parameters you supply, such as the filename in the

FUUREGE command.

, ! Filenames and other character strings can be enclosed with single or double
quotation marks and can be entered in lowercase or uppercase letters.
Quoted filenames are converted to uppercase internally.

[] Square brackets enclose optional items.
An ellipsis indicates that the optional items within the brackets may be re-
peated.

stacked items When two or more items are placed one above the other, one (and only one)

of them may be used.

or When two or more items are separated by or, one or more instances of ei-
ther or both items may be included.

12 Section 1: Getting Started

Some examples may clarify the use of these symbols. The syntax of the PURGE command can be repre-
sented as follows:

“filename [: device code]
FUREGE | EEYS
AFFT

In this representation filename stands for the name of the file to be purged; device code for a valid HP-IL
device code. The following statements are all valid:

FURGE "ORTH: DL
FURGE EEYS
FURGE AFFT

The brackets around : device code indicate that the colon and device code are both optional when you are
specifying a filename. The outer set of brackets indicates that you may omit all parameters when using
the FLIEZE command. Thus, the following statements are also valid:

FURGE "ORTAH'

Any parameter represented in this manual as a string in quotation marks (such as ‘filename ') may be
specified by either a quoted string expression or the name of a string variable that contains the equivalent
expression. The following statements are equivalent to FIIFGZEL "DATH':

18 AfF="0RTH'
S8 FURGE AF

Section 2

Simple I/O Operations

The principal tools for using HP-IL to move data into and out of the computer are the JLUTFLIT and
EHTEFR statements. These statements are the core of I/O operations. They are usually the fastest and
easiest ways of getting data from the source to the destination in its final form. Many applications require
no more than the proper use of JUTFLUT and EMTEE.

Simple JLUTFUT and EMTEFR statements (as described in this section) use ASCII representation for all
data. ASCII stands for American Standard Code for Information Interchange. It is a commonly
used code for representing letters, numerals, punctuation, and special characters. The ASCII code provides
a standard correspondence between binary codes that are easily understood by the computer and alpha-
numeric symbols that are easily understood by humans. A complete list of the characters in the ASCII set
and their decimal code values is included in the HP-75 Owner’s Manual.

When special formatting is desired, the JUTFUT UZ IHE and EHTER L% IHEG forms are very convenient.
These forms are discussed in section 3.

Using Simple [1LITFLIT Statements

A simple 1LTFUT statement may be used anywhere that a simple FF IMHT statement is proper. The
OUTFUT statement (like the PR IHT statement) contains a list of items to be output, but it also specifies
one or more destination devices. You may use either the device code or the HP-IL address of a device in
an 0LITFLUT statement. However, you must use device codes if you are specifying more than one output
device. Only one device address may be specified in an 1LITFLIT statement. Here are some examples of
properly syntaxed JUTFUT statements:

OQUTRFUT " TW ' Hella!
OUTRUT 2 1 K

OQUTFUT S1$:R$FBF
OQUTRUT " T PR p ey 2

OUTPUT " PR AL GBCZ s HECE, 7O

Notice that a semicolon is used to separate the device code(s) or device address from the output list.
Semicolons are also used to separate items within the output list. Items in the output list may be numeric
variables, numeric constants, string variables, or string constants. An end-of-line sequence (normally car-
riage-return/line-feed) is output after the last item in the output list unless the list is followed by a
trailing semicolon.

The simple QLITFLIT statement (with items in the output list separated by semicolons) uses the same
compact-field output format as the simple FFIHT statement. In each numeric output field the digits of a
number are preceded by a space (if positive) or a minus sign (if negative), and followed by one space.
String data is output with no leading or trailing spaces. Each field (numeric or string) is appended to the
field before it. Obviously, compact-field output is inappropriate for many applications. Formatted output,
using output images, is described in section 3.

13

14 Section 2: Simple I/O Operations

i Statements

Using Simple &t

A simple EHTEF statement may be used wherever an IHFLT statement is proper. The EHTER state-
ment (like the IHFLIT statement) contains a list of items to be entered, but it also specifies a device as
the source. You may specify either the device code or HP-IL address of the source device in an EMTER
statement, but there can be only one source. Here are some examples of properly syntaxed EHTEF state-
ments:

EHTER '"B1' =
EHTER S1%: A%, B%,CF
EMTER ' TR :

EMTER 3 JARCL BOZ HE

Notice that a semicolon is used to separate the device code or device address from the enter list. Commas
are used to separate items within the enter list. Items in the enter list may be numeric variables or string
variables.

To use the EHTEFR statement effectively, it is important to understand what constitutes the beginning
and ending of an entry into a variable. The simple EHTEF statements just shown use a free field for-
mat for processing incoming characters. This format operates differently with string and numeric data.

Entering Numeric Data

The computer enters numeric values by reading the ASCII representations of those values. For example, if
the computer reads an ASCII i, then an ASCII =, and finally an ASCII %, it places the value one hundred
twenty five into a numeric variable.Understanding the process that the computer uses to read a free field
number can help you remove much of the mystery from I/0O. Suppose your program has the statement:

EMHTER " TR 8,Y

Now assume that when this statement is executed, the following character sequence is received through
the interface loop:

) 1197 (9 |EOL

do nothing. Then the 1 1 is read. Once the computer has started to read a number, a space or non-numeric
character signals the end of that number. Therefore, the comma after the i i causes the computer to place
the value eleven into variable X and start looking for the next value. The space and comma in front of
127 % are ignored and the computer reads the 1 %7 . Finally, the EOL (end-of-line) sequence causes the
computer to place the value nineteen hundred seventy nine into variable Y and terminate the EHTEFR
statement. The computer goes on to the next program line with X=11 and Y=1979.

Note: The HP-75 allows you to change the EOL (end-of-line) sequence with the EH1L. I HE statement
(refer to the HP-75 Owner’s Manual). The default EOL sequence is a two-character sequence consist-
ing of a carriage-return followed by a line-feed character. In this manual EOL sequence refers to
the current end-of-line sequence that you have set with the ERHLOL IHE statement (unless otherwise
noted). The symbol EOL is used to represent the end-of-line sequence in the examples.

Section 2: Simple 1/O Operations 15

The process just described can be easily summarized. When entering numeric data using free-field format,
the computer:

1. Ignores leading spaces and non-numeric characters.
2. Uses numeric characters to build a number.
3. Terminates the building of a value when a trailing space or non-numeric character is encountered.
4. Inputs characters until an EOL sequence or End Byte message is encountered.
The discussion so far has referred to numeric and non-numeric characters without being specific. The
digits & through = are always numeric characters. Also, the decimal point, plus sign, minus sign, and the

letter £ can be numeric if they occur at a meaningful place in a number. For example, assume that the
following character sequence is read by an EHTEF statement:

If a numeric value is being entered, the leading minus signs and the E in TEZT will be ignored. They have
no meaningful numeric value when surrounded by non-numeric characters. However, the characters
12 .5E-7Z will be interpreted as 12.5 x 10~ 3. In this case, the minus sign and the exponent indicator (E)
occur in a meaningful numeric order, so they are accepted as numeric characters.

Entering String Data

The computer enters string data by placing ASCII characters into a string variable. The process used for
free-field entry is straightforward. All characters received are placed into the string until:

1. The string is full, or

2. An EOL sequence or End Byte message is received.

Assume that the computer is executing the statement:

EHTER ' TF'iRAF.EBF,CF

The following character sequence is received:

H|E|L|L|[OIEOLEOL[T |H|E|R | E [EOL

The letters HEL L[are placed into A$ when the first EOL sequence is encountered. Note that the EOL
sequence itself is not placed into A$; it acts only as a terminator for the entry into A$. The entry into B$
begins. However, an EOL sequence is read immediately. This terminates the entry into B$, and B$ be-
comes the null string. Next, the entry into C$ begins. The characters THEFRE are placed into C$, ter-
minated by the EOL sequence that follows those characters. With the enter list now satisfied and an EOL
sequence detected at the end of the data, the computer will go on to the next program line.

Note: The current EOL sequence (specified with the EHOL I HE statement) will act as a terminator
and will not be entered into the string. If the current EOL sequence is carriage-return/line-feed, this
sequence will terminate entry into a string variable and will notitself be entered. However, other
potential end-of-line sequences (such as the line-feed character by itself) will not terminate entry and
will be entered into the string. An End Byte message will terminate entry after its character has been
entered into the string.

16 Section 2: Simple 1/O Operations

Another example can be used to show termination on a full string. This time, suppose the program con-
tains the following statements:

DIM #$L3]
EMTER ' :TF' %

The following characters are sent to the computer:

B(o|(fYy|[Cc|O|T|T [EOL

The computer places the characters Ei% into X$, which fills the dimensioned length of 3. Then the
computer continues to read the incoming characters until an EOL sequence is encountered. At that time,
the EHMTEF statement is completed, and the computer goes on to the next program step with X$=BOY.

Section 3

Formatted I/O Operations

Although simple CUTFUT and EHTER statements work well for some I/O situations, there are times
when more control over format is necessary. Perhaps a column of numbers with the decimal points in line
is desired or an end-of-line sequence terminator is not wanted or expected. There are many reasons for
desiring format control during I/O operations.

The format of information sent or received through interfaces is controlled by the use of image speci-
fiers. These image specifiers can be placed in an IMAGE statement or can be included directly in an
QUTPUT or EMTER statement. This section of the manual provides details on the meaning and use of
image specifiers.

An output image can control all major characteristics of output data, including spacing, appearance of the
field, form of data representation, and use of end-of-line sequences. The HP-75 uses an output image
when some form of the DUTFUT USIHG statement is encountered. There are two forms of this
statement:

— simplified syntax

IMAGE output image
DUTFUT ' :device code' UESIHG 16 :output list

— simplified syntax

OUTFUT ' :device code' LUSIHEG ‘'output image' :output list
The examples above show the general forms of the TLUTFLT LS IHG statement. Here are some specific
examples:
18 IMAGE "'Total =',Z2.0
28 IMAGE SR 25, 17A
8 OUTRUT BRI USIHG 18:01,02, 03
e OOUTRUT 2 USIHG Z8:R%.BF

!

QUTRUT S3F USIHG 'HMODD. DD Toix, TaZ:
QUTRUT P TW, PR USIMG ITF:HE A

P I

B
)

17

18 Section 3: Formatted I/O Operations

In the general forms, device code represents a list of one or more device codes (one for each output
device). Each device code must be preceded by a colon. Commas separate the successive codes in the list
(for example, ' : 11, : 02, : 02 '), The device code field can be occupied by the name of a string variable
that contains the list of device codes. The symbol output image represents a proper list of image specifiers.
The image specifier list may be a literal enclosed in quotation marks or the name of a string variable that
contains the specifier list. The specifiers within the list must be separated by commas. The list of items to
be output is represented by output list. You may use either commas or semicolons to separate items within
the output list. All spacing is controlled by the image specifiers, so a semicolon has the same effect as a
comma. As with the simple LI TFLT statement, the output list can contain numeric or string data (vari-
ables or constants), and a trailing semicolon will suppress the output of a final EOL sequence.

Note: You may substitute a valid HP-IL device address for the device code field in an GLITFLIT
statement; however, only one device address may be specified. If you want to specify more than one
device, you must use device codes. If the intended destination device has already been addressed to
listen, you may leave the device code field blank. Refer to appendix B for a complete definition of
DUITHFUT statement syntax.

Numeric Image Specifiers

The image specifiers in this group are used to control the format of numbers that are output. These image
specifiers are the same as the FF I 1T image specifiers that may already be familiar to you. Since there are
many numeric image specifiers, these specifiers are broken down into three categories in the following
discussion. The categories are digit specifiers, sign specifiers, and punctuation specifiers.

Digit Specifiers. These are the image specifiers which form the digits of the number. They allow you to
determine the number of digits before and after the decimal point, display or suppress leading zeros, and
control the inclusion of exponent information.

Image Specifier Meaning

o, [Causes one digit of a number to be output. If that digit is a leading zero, a space is
output instead. If the number is negative and no sign image has been provided, the
minus sign will occupy one digit place. If any sign is output, the sign will float to a
position just left of the left-most digit.

e Same as [, except leading zeros are output.
* Same as =, except leading zeros are replaced by asterisks.
g, B Causes the number’s exponent information to be output. This is a 5-character se-
quence including the letter E, the exponent sign, and three exponent digits.
bk Causes the number to be output in compact format. No leading or trailing spaces are
output.

Sign Specifiers. These are the image specifiers used to control the output of sign information. Note that
if no sign specifier is included in the image, negative numbers will use a digit position to output the minus
sign.

Section 3: Formatted 1/O Operations 19

Image Specifier Meaning

Causes the output of a leading plus or minus sign to indicate the sign of the number.

i, 1 Causes the output of a leading space for a positive number or a minus sign for a
negative number.

Punctuation Specifiers. These are the image specifiers used to control the output of punctuation within
a number, such as the inclusion of a decimal point.

Image Specifier Meaning

Causes an American radix point to be output (a decimal point).

t,F Causes a European radix point to be output (a comma).

o, Usually placed between groups of three digits. Causes a comma to be output to sepa-
rate the groups of digits (American convention).

=N Same as [, except a period is used to separate the groups of digits (European
convention).

It would be unrealistic to attempt examples of all possible combinations of these numeric image specifiers.
The following examples show some of the many ways of combining these specifiers and the resulting
output when numbers are sent to a typical printer. Additional examples for many of the specifiers can be
found in the “Display and Printer Formatting” section of the HP-75 Owner’s Manual.

Sample Statements Printed Output
OQUTFUT 'y PREY USIHG BEZEA, 34
OQUTRFUT ' PR USTIHG HEZER, 2
OQUTRUT " PRY IS TIHG ; L EEE BEE, 3
OUTRFUT PR USIHG 'Z0CEDCZE0DY 0 1ES 1,880,880
OQUTPUT " FREY USIHG 'Z0OCI0DCEDY o 1. 2345E4 12,345
OUTPUT ' PR USIHG 'Z0DCEDCEDY & 1, 2ER (Overflow Error) .

QUTRUT ' FRY USIHG '22.000° 5 +E, SEHE
QUTRUT " PR USIHG 'HZ.DDOOC b B, SR
OUTEUT 'y PREY USIHG 'MO.0OOO .5 L SR
OUTFUT PR USIHG 'Z.00DE" @ . BE845: 4, BEE-BE83

—p

Notice in these examples that the image ZZZZ and the image #4Z mean the same thing. The same is true
for the [and # specifiers. You can indicate the number of digits desired by simply placing that number in
front of the specifier. The use of parentheses, as in Z <[}, changes the meaning. The image Z[! means

“output one numeric quantity in a three-digit field.” The image Z: [means “output three numeric
quantities, putting each in a one-digit field.”

Be careful of overflow conditions when using these image specifiers. An overflow occurs when the number
of digits required to accurately represent a number is greater than the number of digits allowed for in the
image. If this happens, a warning is issued and something is output so that the program can continue.
However, it is difficult to predict exactly what will be output. The output will probably bear little or no
resemblance to the number that caused the overflow.

20 Section 3: Formatted 1/O Operations

String Image Specifiers

The image specifiers in this group deal with the output of string characters. They can also be used in
combination with the numeric image specifiers for spacing and labeling purposes. All of these image speci-
fiers are the same as the FFIMT image specifiers, which may already be familiar to you.

Image Specifier Meaning
&,H Causes the output of one string character. If all the characters in the current string
have been used already, a trailing blank is output.
“literal * A literal is a string constant formed by placing text or in quotes, using a string func-
or tion (such as CHFE %), or a combination of the two. The character sequence specified is
" literal output when a literal image is encountered. When the literal is enclosed in quotes, the
quotation marks themselves are not output. Literal images are commonly used for
labeling other output.
i Causes the output of one space.
kK Causes the string to be output in compact format. No leading or trailing spaces are

output.

The following examples show some of the many ways of using these specifiers and the resulting output
when the characters are sent to a typical printer. Additional examples for these specifiers can be found in
the “Display and Printer Formatting” section of the HP-75 OQwner’s Manual.

Sample Statements Printed Output
CUITRUT " FPRY OUSTIHG R
i P RREYOUSIHG TH, L0 VHHCLE Y, T EAM!
COFRYOURIHG TE, S OIS, mE D T
TOTAL = ', 30,5, K
B HE='CHRES!
PePRYOUSIHG 18 T,A% TOTHL = 125 CHRS

Notice that the : and # image specifiers allow a number before them in the same fashion as the [, Z, and
specifiers. The k. specifier works equally well with string data or numeric data. String and numeric
image specifiers may be combined in the same image statement.

Literal images may be enclosed in either single or double quotation marks (* ' or " ") when included in
an [MAGE statement. You may include a literal image directly in an ©LiTFUT statement provided that
you do not use the same form of quotation marks to enclose both the literal and the whole output image.
Thus, the following statements could be used:

GUTFUT "rFEY USIHG " "Total=" K
PrPRYOUSIHG Y 'Total=',E ¢
However, the statement OUTFUT ' :FR' USIMG * 'Total='.E ' % results in an error be-

cause the computer is not able to distinguish the nested quotation marks.

Section 3: Formatted 1/O Operations 21

The End-of-Line Sequence Image Specifier

The end-of-line sequence image specifier controls the output of end-of-line sequences. An end-of-line se-
quence consists of one or more characters that are normally output after the last item in an output list.
The default end-of-line sequence of the HP-75 is a two-character sequence: a carriage-return followed
by a line-feed. You can change the normal carriage-return/line-feed EOL (end-of-line) sequence to
any desired sequence of up to three characters by using the EMH[IL I HE statement. This command can be
executed either manually or in a program and is described in the HP-75 Owner’s Manual. If an EOL
sequence is output, it will be the current EOL sequence set by you or your program with the EH[IL IHE
statement. The end-of-line sequence image specifier does not alter the EOL sequence, but simply causes
one to be output.

Note: In this manual EOL sequence refers to the current end-of-line sequence that you (or your
program) have established with the EFMLL IHE statement, unless otherwise noted. The symbol EOL
is used in the examples to indicate the EOL sequence.

Image Specifier Meaning

Causes the output of an EOL sequence. Often used for skipping lines in a printout.

The .- may be placed anywhere in the image list and may have a number before it to indicate how many
EOL sequences are desired. A typical use of the .- image is shown by the statement:

QUTPUT " PREY USIHNG 'K.o4-. K" AE,.BF

If the destination is a printer, A$ is printed, followed by four blank lines, then B$ is printed. If A$=“HI",
B$=“JOE”, the character sequence is output as follows:

H | | |[EOL|EOL|EOL(EOL| J [O | E [EOL

You can suppress the output of the final EOL sequence by ending the TILITFLIT statement with a semi-
colon (:). For example, a semicolon could be added at the end of the above statement:

OUTFUT " PR USTIHG 'K, 4. K JRFLEE;

The resulting output follows:

H | | |EOL(EOL|EOL(EOL| J [O | E

The string HI is printed and four lines are skipped. The string -!{iE is not printed, but is transmitted to
the printer’s buffer.

Note: A reference list of all TLITFLIT image specifiers is given in appendix B under IFMHAGE.

22 Section 3: Formatted 1/O Operations

Formatted &

Using EHTEF statements with image specifiers gives you a high degree of control in two areas:
1. Accurately describing to the computer what the incoming data looks like and what should be done
with it.

2. Precisely specifying what conditions constitute the end point of the EHTEF statement itself.

This discussion deals with data formatting images first, then presents the terminator images. The HP-75
uses an enter image when some form of EHTEFR L% 1M statement is encountered. There are two forms of

this statement:

r simplified syntax

18 IMAGE enter image
=8 EMTEERE ' :device code' IS IHEG 16 :enter list

— simplified syntax

EMTER ' :device code' LIZIMEG 'enter image' :enter list
The examples above show the general forms of the EHTEFR L% IHG statement. Here are some specific
examples:
g IHMAGE R 4
28 THAGE ca, Al
g8 EMTER ' rBZY USIHG 18:AR%,B%,
SECOEMTER " TR OUSIHG 26 aod
28 EHTER F OUEIMHG ', 8R, K 0F,RE
SE EMTER ' TR USIHG IH:H:E.B

The general forms use the same type of symbols that were used to represent the JLITFLIT statement. In
the EHTEF statement, device code stands for the device code of the device from which the data is to be
entered, enter image for the list of image specifiers, and enter list for the list of variables to be entered.
Note that the EHTEF statement will accept only one device code, and that you may use string variables in
place of the device code and/or enter image fields. As with simple EHTER statements, the enter list must
contain either string or numeric variables. You can’t enter into a constant.

Note: You may substitute a valid HP-IL device address for the device code field in an EHTER state-
ment. If the intended source device has already been addressed to talk, you may leave the device
code field blank. Refer to appendix B for a complete definition of EHTEF statement syntax.

Section 3: Formatted I/O Operations 23

Data Images
The image specifiers in this group are used to indicate what the computer should do with the incoming
stream of data. The basic choices are:

1. Use characters to build a numeric variable.

2. Place characters into a string variable.

3. Skip over a number of characters.
Note: A reference list of all EMTEF image specifiers is given in appendix B under IMAGE.

Numeric Image Specifiers. These specifiers are used to control the input of numeric characters, includ-
ing digits, sign, exponent, and punctuation. You may precede any of these specifiers (except k) with a
number from 1 to 255. In an EHTEFR image S0 and DODDD both mean “enter five characters to be used
in building a number.”

Image Specifier Meaning
o, [These specifiers all accept one character to be used in building a number. The incom-
T,E ing characters do not have to follow the specified format, there just has to be the right
* number of characters. The six different specifiers are provided so that your program

can document the expected format of the characters, and so that EHTEFR and
=,5 OLUTFUT statements can share the same I HGE statement, if desired.

o, This specifier also accepts one character to be used in building a number. However, if
a = is present anywhere in a number’s image, all commas will be ignored while the
number is being entered. Without this specifier, a comma would terminate numeric

entry.

e, B Accepts five characters to be used in building a number. The five characters may be
exponent information, but do not have to be.

bk Enters data into a numeric variable using free-field format (explained in section 2).

L E Accepts one digit and treats all commas (.) as radix symbols (to accept numeric input

in European format).

F,F Accepts one digit and ignores all periods (to accept numeric input in European format).

String Image Specifiers. These specifiers are used to enter characters into string variables. You may
precede the F specifier (but not the k) with a number from 1 to 255. In an EHTEFR image 4 and AFAFA
both mean “enter four characters into a string variable.”

Image Specifier Meaning

a,H Enters one character into a string variable.

bk Enters data into a string variable using free-field format (explained in section 2).

24 Section 3: Formatted I/O Operations

Some examples are in order. Suppose the following character sequence is received by the computer:

1(2|3|4|H|E|L]|L]|O |EOL

Either of the following EHTEF statements can be used to enter a numeric variable followed by a string
variable:

EMTER " TF' UzSIHG 40,0

SR TE
EMTER ':TF' USIMG 'Z.00,

JORYIELYE

Notice that any numeric image that accepts four characters will properly enter the 1 =7 4. String data can
be entered with an i+ image if 1 (the number of characters) is known, or with a ¥ if the number of
characters is unknown.

Suppose instead that the incoming data was:

1 , |2|3|(4|H|E|L|L|O|EOL

The EHMTEFE image would now have to include a for the entire 1234 to be entered. For example:

EMTER " TP' USIHG '"C4D, R 8, YF
EMTER ":TPF' USIHMG 'DODDC,SAT;HE.YE

Notice that the = does not have to appear at the same place in the image as the comma does in the
incoming data. However, the comma is counted as a character.

Skipping Unwanted Characters. The following specifiers can be used with incoming numeric or string
data to skip over any characters that you do not want to include in the input. You may precede the

specifier with a number from 1 to 255. In an EHTEF image 2 and ¥ both mean “skip three spaces.”

Image Specifier Meaning

0 Causes one character to be skipped.

Causes the computer to skip characters until the next terminator is received. The nor-
mal terminators are the current EOL sequence (defined with the EHIIL IHE state-
ment) or the End Byte message.

The = specifier should only be used when you have a good understanding of the structure of the incoming
data, but can be very useful in formatting operations. For example, suppose that text is being entered from
a remote computer that sends a line number at the beginning of every string. You know that the line
number information always appears in the first eight characters of each string, and you don’t want these
line numbers in your data. The following format could be used to strip off the line numbers:

EHTERE ' TR UZIHG "8x, K" HAE

Section 3: Formatted I/O Operations 25

The .- specifier is used to demand a terminator (either the current EOL sequence or an End Byte mes-
sage) before going on to the next variable. To see the effect of this specifier, assume that the incoming
data is as follows:

12 |3 |H]|I |[EOL|B | Y | E [EOL

Note: The normal terminators are the current EOL sequence and the End Byte message. The .-
specifier will cause the EHTEF statement to skip to whichever terminator occurs first. The operation
of this specifier is affected by the use of terminator images (refer to the following subsection). If you
have used a terminator image to redefine the active terminators, the .- specifier will cause a skip to
the first recognized terminator.

Using the statement:

EHTER TP USIHG '"Z0,E':;Y.A%

causes Y to get the value 123 and A$ the value HI. However, if the statement:
EHTER ':TF' USIHG "Z20, -, K'Y, HE

is used, then Y gets the value 127Z and A$ becomes E''E. The .- specifier causes the computer to skip all
characters after Y is satisfied until it receives the EOL sequence. The entry into A$ begins with the first
character after the EOL sequence. Without the .- specifier, the entry into A$ begins as soon as the =[
field is exhausted.

Terminator Images

Terminators (normally the current EOL sequence and the End Byte message) serve in two roles for the
EHTEFR statement. If a terminator is received in a field of data (before the variable is otherwise satisfied),
it will serve as a field terminator and will terminate entry into the variable. The EHTEF statement will
begin entry into the next variable. Once all variables have been satisfied, a terminator will serve as a
statement terminator and will terminate the EHTEF statement. Indeed, a statement terminator is nor-
mally required in order to go on to the next statement in the program. The terminator that terminates
the EMTEF statement can be the same one that satisfied the last variable. Note that terminators are not
required to satisfy a variable. Data entry into a variable can be ended by satisfying an image list, by filling
a dimensioned string variable, or by the free-field entry of a trailing blank or non-numeric character into a
numeric variable.

26 Section 3: Formatted I/O Operations

You can redefine the active terminators by using a terminator image. By using the appropriate termina-
tor image specifier, you may eliminate the current EOL sequence, the End Byte message, or both as
statement terminators. You may also establish the ETO (End Of Transmission — OK) message as a
terminator. The terminator image specifiers, and their various combinations, are listed in the following
table:

Image Specifier Meaning

Eliminates the current EOL sequence as a terminator. When this specifier is present,
the EHTEFR statement terminates only on an End Byte message.

! Eliminates the End Byte message as a terminator. The EHTEFR statement terminates
only on an EOL sequence.

Establishes the ETO (End Of Transmission — OK) message as a terminator. The
EHTEFE statement terminates on an ETO message, End Byte message, or an EOL
sequence.

#1 or 1 # Both the current EOL sequence and the End Byte message are eliminated as termina-
tors. No terminator is required. The EHTEF statement terminates when the last vari-
able is satisfied.

#% oor N Eliminates the current EOL sequence as a terminator, but establishes the ETO mes-
sage. The EMTEF statement terminates on an ETO message or an End Byte
message.

Paoor &t Eliminates the End Byte message as a terminator, but establishes the ETO message.

The EHMTEF statement terminates on an ETO message or an EOL sequence.

#1% Eliminates EOL sequence and End Byte message as terminators. EHTEFR statement

(any order) terminates only on an ETO message.

Most data entry situations do not require the use of terminator images. If you are entering data from a
device that outputs the carriage-return and line-feed characters after each data item, the EHTER
statement will terminate on this EOL sequence (provided that carriage-return/line-feed is the current
EOL sequence). In most other cases, the EHTEFR statement will correctly terminate when an End Byte
message is received. Normally, it is not necessary to specify which terminator to use, since the EHTER
statement will terminate on the first one received. However, terminator images do give you the flexibility
to handle certain specialized applications.

If you want the EHTEF statement to terminate only on an End Byte message, you can suppress the
current EOL sequence as a terminator by including the # specifier at the begining of the image list. The
following statement will terminate only when an End Byte message is received:

EMTER ":E1" USIHG "#,.E.50':A%,B1

Note: Terminator image specifiers must be listed first in the EHTEF image list (before the first
comma). You cannot precede them with a number.

The ! specifier suppresses the End Byte message as a terminator. The following statement will terminate
only when the current EOL sequence is received:

EHTER ":EZ2' USIHG "1,40,3R" 18, YF

Section 3: Formatted I/O Operations 27

Eliminating the Statement Terminator Requirement. Normally, the EHTEF statement must see the
current EOL sequence or an End Byte message at the end of the incoming data before the program can go
on to the next statement (the ETO message may be specified as an alternative terminator). If there is no
statement terminator at the end of the data, a record overflow error will result. You can use the #! (or
! #) image specifier to eliminate the requirement for a statement terminator. This specifier eliminates the
EOL sequence and End Byte message as terminators, and causes the FHTEF statement to terminate
when the last variable is satisfied. In the following example, the EHTFR statement terminates after the
variable Y is satisfied.

EHTERE ":rE1Y USTIHG "#bP, 4D, 600 16,y

If 10 numeric characters are received, the two variables are satisfied and the statement terminates.

Note: The & and .- specifiers override the # ! (or ! #) specifier. If a i or .~ is present in an EHTER
image, a terminator is required for that field.

Using the ETO Message As a Statement Terminator. If you are unable to use either an EOL se-
quence or an End Byte message to terminate an EHTEF statement, you may use the specifier to estab-
lish the ETO (End Of Transmission — OK) message as an alternative statement terminator. The
following statement terminates when an EOL sequence, End Byte message, or an ETO message is
received:

EMTER "o 0Z0 USIHG "X, SR HE B

You may combine the # or ! specifiers with * to suppress the EOL sequence or End Byte message as a
terminator, while establishing the ETO message. The following statement will terminate on either an End
Byte message or an ETO message:

EHTER 03D L

MG THERLVELVGR SRELEE

If you want only an ETO message to terminate your statement, specify # i :

EHTER D30 USIHG "HIE . K, 5R7 A%, B
There’s Always an Exception. Not all terminator problems are a proper job for terminator images.
Consider the example of a name field (string) followed by an age field (numeric). Suppose that the names
are variable in length and separated from the age by a comma. If the age came first, this would not be a
problem since the comma would end the entry into the numeric variable. But since the string data is
entered first in this example, the task is a bit trickier. You could input the entire record into a temporary
string variable, then use the FiiZ function and string subscripts to extract the name and age fields. This
hypothetical situation emphasizes the importance of knowing the nature of the data you are trying to
enter. Some problems are handled by terminator images, and some are solved by different means, but all
require thought by the programmer.

28 Section 3: Formatted 1/O Operations

Changing the Size of the L TEF Buffer

The EHTEF statement receives data into a reserved area in memory called the EHTEF buffer. This buffer
is also used by other statements that enter data (for example, EHT I 0% and ALDFESS :. The default size
of this buffer is 256 bytes. Thus, the EHTEF statement reads up to 256 bytes into this buffer, then places
this data into the appropriate variables when the statement is terminated. You can change the size of the
EHTER buffer with the I 1% 1 ZE statement. If an EHTEF statement receives more than 256 bytes (or the
size set with I11%1ZE) before a terminating condition is reached, an error will result.

The 1= IZE statement allows you to set any EHTEFR buffer size from 1 to 24,575 bytes. The general
form of this statement is:

105 12K buffer size

where buffer size is a number from 0 to 24,575 (a zero or negative value sets the default size of 256 bytes).
You should set 1% IZE to be at least the maximum expected record size plus one byte.

A Word of Advice About Images

Choosing the proper image for your application can often mean the difference between success and failure
for your program. However, considering the wide range of peripheral devices and the near-infinite variety
of possible data formats, it is understandably difficult to pick just the right image. Even experienced
programmers will go through a period of trial-and-error before finding the perfect combination of image
specifiers.

There is an old, but true, saying in the world of computers: “You can’t program a computer to do some-
thing that you don’t know how to do yourself.” This is an appropriate sentiment for formatted I/0. If you
don’t know exactly what character sequence needs to be output or what an incoming sequence contains, it
is very unlikely that you will know eactly what image specifiers to use.

Deciding on an exact character sequence for an output is simply a matter of definition. You know what
data is generated by your program, so all you need to do is pick a desirable form for its output. The
primary caution here is to avoid image overflow conditions.

But how can you determine the exact nature of the incoming data when you can’t get it into the computer
to study? Fortunately, there is a way to inspect a totally unknown character sequence. Any sequence of
bytes, including potential terminators, can be entered with the # ! , ri¥i image (where +: is the number of
characters to read). For example, the statement:

EHTERE 'D1" USIHG "#!, 18R AE
will read 10 bytes as the equivalent ASCII characters. You may then use the HE:# function (refer to

appendix D) to convert these ASCII characters to a hexadecimal representation. Once you know the exact
nature of the incoming data, the job of choosing image specifiers will be much simpler.

Section 4

Sending and Receiving HP-IL Messages

The HP-75 I/0 ROM provides enhanced versions of the ZEH[II{i statement and EHT I 0% function that
are compatible with the ZEHIID and EHTI0# of the HP-75 I/O Utilities Solutions Book. A ZE M state-
ment, similar in syntax to the HP Series 80 ZE ML statement, is also provided for software compatibility.
All three instructions enable you to source individual HP-IL messages. The ZEHI I statement allows
you to send commands and data to specified HP-IL devices. The EHTIi# function allows you to send
commands to a specified device and return data as the value of the function. The ZEH[! statement allows
you to send any HP-IL message. To use SEHD I, EMTIO#, and ZEHD successfully, you must follow
HP-IL protocol. A full discussion of HP-IL protocol is beyond the scope of this manual. Refer to the
following sources for a complete discussion of HP-IL protocol:

e Kane, Gerry, et al. THE HP-IL SYSTEM: An Introductory Guide to the Hewlett-Packard Interface
Loop. Osborne/McGraw-Hill, Berkeley, California, 1982.

e Hewlett-Packard Company. The HP-IL Interface Specification. HP part number 82166-90017, 1982.

The ZEHD I Statement

The SEHD I statement is used to send commands and data to HP-IL devices. ZEHII I can be issued
from the HP-75 keyboard or executed in a BASIC program. The general form of this statement is:

simplified syntax
|7E;EH 110 ' :device code' , 'command list’ . ‘data list’

The three parameters are string expressions. The device code parameter is a list of one or more device
codes, each representing a device that will receive HP-IL commands or data. The command list is a list of
HP-IL commands to be executed, separated by commas. The commands may be specified in the form of
HP-IL command mnemonics. The commands that you may use in a ZEM I command list are listed in
appendix C. The data list is a character string to be transmitted as data. Any of the three parameters may
be specified with either a literal enclosed in quotation marks or the name of a string variable that contains
the quoted string. A complete definition of the syntax of the ZEH[I Il statement is given in appendix B.

29

30 Section 4: Sending and Receiving HP-IL Messages

Most of the time, SEMD I will be used to activate a device as a listener. The device to be activated can
be specified with either the device code parameter or the command list:

e Use the device code parameter when you know what device code has been given to the intended
device. You can specify one or more device codes in this parameter (for example: ':[iil' or
"LFRE,:TY). You can send a LAD (Listen Address) message to the specified device(s) either by
leaving the command list null, or by specifying L7 i# in the command list. (Only one L_F[i# command
is needed, even if more than one device code is specified.) L.Fili# can be used in combination with
other HP-IL commands, and it may appear anywhere in the command list.

e Use the command list when the HP-IL address of the intended device is known. To do this, specify
LFDr, where ri is the HP-IL address of the device. This will cause a LAD message to be sent to
device 1+ regardless of what appears in the device code field. You may have any number of L Al
commands within a single ZEM[I I I statement, and you may have both L. fir: and L. F1# in the same

SEHDIOL
The following ZEHMI T statement sends the string HEL L. to the devices named [1 and [1Z, and also to
the devices with addresses 5 and 6:
SEMDOIO DL, s 02, TLADE, LADS, LADe Y P HELL O
It is not necessary to supply values for all three parameters. If you wish to omit a parameter, you must

specify a null string. The following example of ZEHI I sends no commands, but sends the string &5 TH
to any devices in the loop that already have active listener status:

MOIO v TATeY

You may substitute the name of a string variable for any of the three parameters, as long as you have
defined the variable. In the following example, the SEHDI I statement sends the string 1R T to the
devices named FFE and T''. (Leaving the command list null generates a L.F[i# command.)

g AE = PR, TV
S8 ZEMDIO AE, Y, TDATAY

The ZEHDIID statement processes parameters from left to right. Processing proceeds as follows:

1. If the device code parameter has been specified, ZEH I determines the HP-IL address of the speci-
fied device. This device address is used when processing the command list. If more than one device is
specified in the device code field, ZEM[I I determines the address of each device. If the device code
field is null, then no action is taken in this step.

2. The command list is processed. Commands are sent one at a time through the loop. RFC (Ready For
Command) messages are sent automatically after each command.

3. After all commands are sent, the data specified in the data list is sent around the loop, one character
at a time. If a listener device sends an NRD (Not Ready For Data) message, transmission of data is
terminated. You can recover from this condition by using the SEHI™ function (refer to the sub-
heading “Resuming Data Transmission With =FE M%),

4. After all commands and data have been sent, the UNT (Untalk) and UNL (Unlisten) messages are
sent around the loop, deactivating all talker and listener devices. If you want the talker and listener
devices to remain active, you can suppress the automatic UNT/UNL by including a TL + anywhere in
the command list.

Section 4: Sending and Receiving HP-IL Messages 31

You can use ZEHI I to send HP-IL commands around the loop without sending data. For example, you
can use the following ZEHD I T statement to address the loop:

SEMDOIO U, TAAUL ARDL Y,

The AAU (Auto Address Unconfigure) command clears all device addresses in the loop, then the AAD1
(Auto Address) command automatically readdresses the devices in the loop starting with address 1. A1
should appear last in the command list.

Resuming Data Transmission With ZE M7

If a device in the loop sends an NRD message while SEH[II{l is transmitting data, the transmission
terminates. You can resume transmission from the point of interruption by using the the SEHD?
function.

ZEMD?T is a function that requires no parameters. It returns an integer value representing the position in
the data list of the character after the last one that was successfully sourced in the last SEMIII state-
ment. If the data list in the last ZEHDOI 0 was null, or if the last SEHD I was successfully completed,
SEMDTY returns a . (If a device in the loop sends an NRD message after the last character was sent,
SEMDT will return a value equal to the length of the string plus one).

The following program is an example of how to use ZEHM[I". The program will send the characters
I lowe mu HF~75 to the fourth device in the loop:

18 A% = 'I love my HF-75'
=@ SEMDIO ', 'LAD4' A%

Z@ IF SEHD? = & THEM GOTO 5@
48 SEMDIO ‘', 'LAD4' ,A$CSEHD?]
5@ EMD

If the first “EHDO I (statement 20) successfully transmits the entire string, = E ™" will return a value of
zero. This will cause a branch to statement 50, completing the program. Suppose that an NRD message is
received after the SEMDI I in statement 20 sends the m in mw. SEHDIO will stop transmitting at this
point. The ZEHD? function returns a value of =, since the m is the eighth character in the data list (and
the last one successfully sent). In this case, statement 40 is executed before the program ends. In state-
ment 40, “EMD I sends a substring of A$ that starts at the ninth position. The substring has the value w
HF -5,

If the SEMD I in statement 20 successfully sends the entire string and the device in the loop then sends
an NRD message, the value of ZEHMHD™ will be the length of the string plus one. Statement 40 will be
executed, but will send the null string. Thus, the program sends the complete string I 1owe my HF 75
in any event.

32 Section 4: Sending and Receiving HP-IL Messages

SEMDOIO Restrictions

ZEMDOID causes the HP-75 to become active as a talker. Therefore, although it is possible to issue TAD
(Talker Address) commands with ZEHMH 111, doing so will cause more than one talker to become active in
the loop. You should not use SEHO I to address devices as talkers since this will result in a deadlock
condition.

IfDISFLAY 1% or FRIMTER I% devices have been assigned for the HP-75, the talkers will automati-
cally be deactivated even if TL + is specified in the command list. Although TL + will stop SEHDI I from
automatically deactivating listeners, HP-75 I/O operations not related to “EFMDI I may cause deactiva-
tion when DIZFLAY I% or FEIMTER I% devices are in use.

The EHTIO# Function
The EHT I# function is used to receive data from other HP-IL devices. In contrast to SEHD 1D, which

is a statement; EHTI0# is a function, and returns a character string value. The string returned is the
data transmitted by the specified HP-IL device. The general form of the EHTIZ# function is:

simplified syntax

EMTIOEC ' 1 device code' . 'command list'

The two parameters are string expressions. The device code parameter is a list of one or more device
codes. The command list consists of one or more HP-IL commands, separated by commas. The commands
may be specified in the form of HP-IL command mnemonics. The commands that you may use in an
EHTIO# command list are listed in appendix C. Both parameters may be specified with either a literal
enclosed in quotation marks or the name of a string variable that contains the quoted string. You may
specify the null string for either of the parameters, but not both. A complete definition of EMT I %
syntax is given in appendix B.

Most of the time, EHT I 0% will be used to activate a device as a talker. The device to be activated can be
specified with either the device code parameter or the command list:

e Use the device code parameter when you know what device code has been given to the device. You can
talk or listen address the specified device by including TAL# or LA# in the command list. If you
leave the command list null, TA#, Z0A is automatically generated. The TH[# and LFO# com-
mands may be used in combination with any other HP-IL commands, and may appear anywhere in
the command list. If TADO# is specified in the command list, only one device code may be specified
(otherwise an error will result).

e Use the command list when the device’s HP-IL address is known. To do this, specify TF it or LFi,
where 1 is the HP-IL address of the device. This will send a TAD or LAD message to device
regardless of what appears in the device code field. Both TFliri and L Fillr may be used in conjunc-
tion with other HP-IL commands within a single EHT I (1% instruction. You may also combine TFiliti
or THAD# with LADn or LAD# in the same EMTI 0%,

Section 4: Sending and Receiving HP-IL Messages 33

The following example shows how you might use the EHT I ¥ function in a BASIC statement:
VEOAE = EMTIO®C 01, "TAD#, S0AR " »

The EHTIO# function addresses the device named ['1 as the talker, then sends an SDA (Send Data)
message. The data sent by device [11 is returned by the EHTI# function as the value of A$.

With EMTI0#, either the device code parameter or the command list may be null, but not both. If null
strings are specified for both parameters, an error results (see appendix E).

EHTIO# processes parameters from left to right, as does ZEHDI0. Note, however, that EHT I 0% does
not have a data field. This is because EHT I 0% causes the HP-75 to become active as a controller and a
listener only; it can transmit commands and receive data, but it cannot send data. Processing proceeds as
follows:

1. If the device code parameter has been specified, EHTI 1% determines the device addresses in the
loop. These device addresses are used when processing the command list. If the device code field is
null, then no action is taken in this step.

2. The command list is processed. Commands are sent one at a time through the loop. RFC (Ready For
Command) messages are automatically sent after each command.

3. Data is collected from the loop. The value returned by the EHT I % function will be the data col-
lected in this step. Data collection terminates when one of the following conditions is met:

e An End Of Transmission message is received. The ETO (End Of Transmission — OK) message
will terminate data collection unless an E T~ command is included in the command list. The ETE
(End Of Transmission — Error) message will always result in termination.

o

e The number of Data Byte messages exceeds the limit set with the =Z= command. The default
value is either 256 bytes or the value set with I 0% 1IZE. The HP-75 sources an NRD message if
the limit is exceeded.

e A logical end-of-record character or sequence is received. If this occurs, an NRD message is
sourced. Refer to the subheading “Defining Logical End-of-Record” for more details.

End-of-line sequences are treated as data by EHT I 0%, If EOL sequences are received, they are
included in the string returned by the EHTI# function.

L

UNT (Untalk) and UNL (Unlisten) messages are sent around the loop to deactivate all talker and
listener devices. If you want the talkers and listeners to remain active, you can suppress the automatic
UNT/UNL by including the TL + command in the command list.

The =7 = command is used to set the maximum number of bytes that the EHT I 0% function will read. If
no %= command is included in the command list, the maximum number of bytes will be the current size
of the EHTEFR buffer. The default size is 256 bytes. You can set the size of the EHTEF buffer to any value
from 1 to 24,575 bytes with the I 1= 1 ZE statement (refer to section 3). If a ZZ= command is included in
an EMTIOF command list, the specified size overrides the EHTEF buffer size set with 1% I ZE for that
EHTIO% only. The maximum size that you may set with the =Z= command is 32,767 bytes (unless [IF -
is also specified in the command list). The syntax is ZZ =1 .+ where =5 1s a decimal number in
the range 1 to 32767.

34 Section 4: Sending and Receiving HP-IL Messages

The [~ command prevents the EHTI0# function from reading any data into the computer. EHT I 0¥
returns the null string if ['A~ is included in the command list; however, data will be transmitted from the
talker to any active listeners in the loop. If %Z= is not specified, the maximum number of bytes transmit-
ted will be the current value of I0%IZE (default = 256). If both [Fi— and %Z= are included in the
command list, sizes up to 999,999,999 bytes may be set. The syntax is SZ=HkEKKKKHEHE
'+ is a number in the range 0 to 999999999. If =Z=# is specified, an unhmlted number of

bytes will be transferred from the talker to any active llsteners Z 7 =0 cannot be specified unless [1F—
also specified.

. where

An example may clarify this. In the following statement ET I# addresses device 1 as the talker and
devices 2 and 3 as listeners, then causes the talker to send its bytes to the listeners:

....... SEBEE = EMTIOE 0, UTRDL, LADE,LARDE DA, 55=0, SOAR ' 2

The = i command negates the size limit on the number of bytes to be read. The [1f~ command causes
EHTIO¥ to return no data (the null string is returned for B$). Thus, the %[1F command in the above
statement causes the talker to send as many bytes as it has to send, and listeners 2 and 3 to receive the
transmitted data.

Defining Logical End-of-Record

You can define a character or sequence of characters to serve as a logical end-of-record during trans-
mission. When the logical end-of-record is received, transmission will be terminated. The data that has
been collected up to the point of termination will be returned by EHT I1#. You can define the logical end-
of-record by including one of the following commands in the EHT I 0% command list:

TE# You can specify the current EOL sequence as a logical end-of-record by
including TE# in the command list.

TFE: Youcan specify any ASCII character as a logical end-of-record by includ-
ing TE : % in the command list, where i is the hexadecimal representa-
tion of the ASCII character number (you cannot specify a null value for

K1),

TEL You can specify any desired string of up to six characters as a logical end-
of-record by including TFELstringl in the command list. Note that the
string is delimited with brackets rather than quotation marks. You can-
not include the 1 character in the string. If the string includes quotation

marks, they must not be the same form (single or double) that is used to
delimit the command list itself.

TE'! You can use the End Byte message as a logical end-of-record by including
TE! in the command list.

Here is an example of how you might use logical end-of-record: Suppose that the data you are receiving
consists of lines of text with a line-feed character separating each line. Rather than having EMTI#
return 256-character strings with embedded line-feed characters, you may wish to treat each text line as
a logical record. To accomplish this, you would simply include TF :#F within the command list. This
command establishes the line-feed character (ASCII decimal code 10, hexadecimal &) as the logical
end-of-record. Each time EHT I ¥ is executed, it will return a string containing just one line of text. The
line-feed character will be included in the string.

Section 4: Sending and Receiving HP-IL Messages 35

Enhanced Printing Control

You can have an EOL sequence inserted into the data string automatically each time an End Byte mes-
sage is received from the talker. If you include a L + command in the command list, a carriage-
return/line-feed sequence will be inserted after each End Byte message. If you use the EL + command
instead, the current EOL sequence (established with the EHIIL I HE statement) will be inserted. Suppose
that you want to receive readings from an HP-IL device that transmits Data Byte messages followed by
End Byte messages, then print the readings on a printer. If these transmissions were printed as received,
the readings would all be on one line with no spacing. Specifying EL + will cause the current EOL se-
quence to be inserted after each reading, thus allowing each reading to be printed on a separate line.

4T I 1% Restrictions

The EHTI# function will return the null string unless either S0F, 55T, S0, %A, ARDm, or I0: 86
appears as the last command in the command list. These commands should not appear in the command list
except as the last command. If one of these commands occurs as other than the last command, it will
cause the transmission to begin, but the transmission will be terminated after one message is sent.

If DISFLAY IS or FRIMTER I% devices have been assigned for the HP-75, the talker will automati-
cally be deactivated even if TL. + is specified in the command list. Although T + will stop EMTI 0¥ from
automatically deactivating listeners, HP-75 I/O operations not related to EHT I 1% may cause deactiva-
tion when DISFLAY 1% or FRIMTER I devices are in use.

The ZEHDI Statement

Most I/0 applications can be performed most easily by using either the 2L TFIUIT and EHTEF statements,
or ZEMDIC and EMTI0#, However, the HP-75 I/O ROM also provides the SEM[I statement, which
allows you to send any HP-IL message or sequence of messages. This provides enhanced capability for the
advanced user. The syntax of the ZEH[! statement appears to be rather complex due to its versatility:

— simplified syntax

I . byte number ... byte number . . byte number .
SERD Mol , L. = . EL
#EH I:I:l Mt byte string :| [DHTH byte string [EOL]] [Bl byte string []

[I byte number] [FELY byte number] [[ilil. byte number] [1TIT byte number]
[ZA0 byte number] [L.IZTEH byte number] [THLE byte number]

[GTL] [RMO] [HEE] [LLO) [CIF] [LPO] [MLA] [MTAI[SDC] [UHL] [L_H-nIT]]...

The =EH[D statement enables the HP-75 to source individual HP-IL messages. You can send any
combination of the bracketed items listed in the above syntax representation, in any order (consider the
representation to be one continuous line). Since the ZERHD statement deals with individual messages, a
discussion of HP-IL messages and how to specify them follows.

36 Section 4: Sending and Receiving HP-IL Messages

Each HP-IL message is defined by 11 bits: three control bits and eight data bits. HP-IL messages are
separated into four groups according to their control bits:

e Command group: These messages convey instructions from the controller and are monitored by all
HP-IL devices (including idle devices).

e Ready group: These messages provide special-purpose communication between the controller and one
or more devices, and are generally used to coordinate the transfer of instructions and data.

o Identify group: These messages enable devices to request service from the controller. Any device can
modify these messages to indicate a service request condition to the controller.

e Data/end group: These messages convey data between active devices (possibly including the control-
ler). Any device can modify these messages to indicate a service request condition to the controller.

The SEHMD statement allows you to specify messages from each of these four groups by including the
appropriate message indicators and qualifiers. An example of a message indicator is [i[i, which in-
dicates a command message. Message qualifiers specify a specific message, and include the byte number
and byte string.

Sending Command Group Messages

Certain command message indicators — GTL, BEMO, HEE, LLO, CIF, LPD, MLA, MTA, 00, UHL, and
i/HT — require no qualifiers. You may include any combination of these indicators in a ZEHI! statement,
and you may include them in combination with other indicators. These indicators (except CIF, R,
MLA, and MTH) cause the ZEHD statement to send the HP-IL commands with the corresponding
mnemonics (refer to appendix C). The i IF indicator causes ZEHMH[to send the IFC (Interface Clear)
message. The EMi indicator causes ZEHMD to send the REN (Remote Enable) message. The Iil.A in-
dicator causes ZEHM[! to send no message, while MTH causes ZEHMHD to send the UNT message. In the
following example, the ZEHM[statement sends the HP-IL command messages UNT (Untalk), UNL
(Unlisten), and REN (Remote Enable):

28 SEHD UMT UHL EMO

Note: The HP-75 automatically sends an RFC (Ready For Command) message after each command
message sent by the ZEHI! statement.

You may specify any HP-IL command message with the [l message indicator. The specific command is
indicated by either a byte number or byte string. A T byte number is a number in the range 0 through
255 (modulo 256) that represents the eight data bits of the command message. The byte number for the
NRE (Not Remote Enable) message is 147, representing the bit pattern “10010011”. The following =E ML
statement sends the NRE message:

FEOSEMD CHD 147
You may specify more than one command byte number in a CFi[l field, separating the successive numbers

with commas. The following statement sends the UNT and UNL messages (UNT is command number 95
and UNL is command number 63):

e SEMD CHD 25,63

Section 4: Sending and Receiving HP-IL Messages 37

You may also use a byte string to specify a series of HP-IL commands in a =M field. Each ASCII charac-
ter in a byte string indicates the command that has the byte number equivalent to its ASCII decimal code.
The following statement also sends the UNT and UNL messages:

i@ SEMD CHD ' %

The underscore (_) has ASCII decimal code 95, representing the UNT message. The question mark (%)
has decimal code 63, representing the UNL message. Note that capital and lower case letters specify
different bytes when used in a byte string. You may use the C“HF# function to include characters that
cannot be generated directly from the keyboard.

The [l and OOT message indicators may be used to specify Device-Dependent Listener and Device-
Dependent Talker messages having number 0 through 31 indicated by byte number (modulo 32). More
than one byte number may be specified in a [ICIL or OOT field.

The ZA message indicator is used to specify a Secondary Address message having an address in the
range 0 through 31 indicated by byte number (modulo 32). More than one byte number may be specified in
an SAD field.

The L IZTEHM message indicator is used to specify LADn (Listen Address) messages. Addresses are in-
dicated by byte numbers in the range 0 through 31 (modulo 32). The device at the specified address
becomes a listener — except that 31 clears all devices from listener status. More than one LADn message
may be specified in a L I = TEH field. The following ZEH statement sets up the devices at addresses 2, 3,
and 5 to listen:

SE SEMD UMT UML LISTEM 2,3.5

You can now send the string RE to these devices with the following QLI TFLT statement:

@ QUTFUT o 'ARBCY

The HP-75 automatically becomes the talker when the JLITFiIT statement is executed. You need not
specify device codes in the JLITFLIT statement since you have already addressed the intended devices to
listen.

The THLE message indicator is used to specify a TADn (Talk Address) message. The address ri is in-
dicated by a byte number in the range 0 through 31 (modulo 32). The device at the specified address
becomes a talker — except that 31 clears all devices from talker status. Only one TADn message may be
specified in a THLE field. The following ZEH[statement addresses device 3 as the talker:

I8 SEMD UMT UML TRLE 2

You may now enter data from device 3 with the EHTEF statement. To enter data as a string:

48 EMTER @ A#

The HP-75 automatically becomes a listener when the EHTEF statement is executed. You need not in-
clude a device code in the EHTEF statement since the intended device has already been addressed to talk.
Once the EHTEFR statement is completed, you should remove talker status from device 3 with UNT or
MTA.

38 Section 4: Sending and Receiving HP-IL Messages

Note: You should be careful when using the SEHI statement to address talkers. The HP-75 will
automatically become a talker when you execute an JUTFLUT or FRIHMT statement. If a device in
the loop has been addressed as a talker with ZEMII, there will be two active talkers.

Sending Ready and ldentify Group Messages

Ready group messages are specified with the F:[1'¥ message indicator. Identify group messages are specified
with the I [message indicator. In either case the message sent will have the data bits set according to a
byte number in the range 0 through 255 (modulo 256). More than one byte number may be specified in an
EOY or IDY field.

Sending Data/End Group Messages

Data/End group messages are specified with the [iA T and EHI message indicators. You may use either a
byte number field or a byte string to specify the actual Data Byte message or End Byte message. The byte
number field may contain several byte numbers each indicating the ASCII character code of one character
in a string. Byte numbers have the range 0 through 255 (modulo 256). A byte string results in a series of
Data Byte messages that transfer the characters defined by the string. The following statements both send
the Data Byte messages that transfer the string AEC (A, E, and - have the ASCII decimal codes 65, 66,
and 67):

EHD DRTR "REC

The inclusion of an EOL indicator in a A TH or EMI field causes the current EOL sequence (defined
with the EHIIL IHE statement) to be transmitted as a sequence of Data Byte messages. The following
statement addresses device 2 as a listener, sends the string HEL.i.0}, and sends the current EOL sequence:

SEMHDUNT UML LISTEN 2 DRTR "HELLOY E0

If device 2 is a printer, the EOL sequence will normally cause HE L i1 to be printed (provided the current
EOL sequence is carriage-return/line-feed).

Section 4: Sending and Receiving HP-IL Messages 39

Application Programs

The following programs exemplify some typical I/O applications using OLUTFUT, EMTER, SEHDIM, and
EMTIOE,

An HP-75/HP Series 80 Interface

The following programs allow you to set up an interface between the HP-75 and an HP Series 80 Personal
Computer using HP-IL. The HP Series 80 computer must have an HP-IL module and an I/0 ROM
installed. The Series 80 HP-IL module must be set in the non-controller mode and have a select code of 9.
There are two programs involved: one for the HP-75 and one for the HP Series 80 machine. The programs
assume that the HP Series 80 machine has been assigned the device code 1.

Instructions:
1. Key in each program to the appropriate machine.
Run the programs concurrently.
The HP-75 starts out as the talker, the HP Series 80 as the listener.

The prompt MEZZHGE : will appear on the display of the talker.

AR

Key in the message to be sent and press the return key. The message will appear on the display of the
listener.

&

To exchange the talker and listener functions, precede the message with a #.
7. To stop the programs, precede the message with a -..

8. Go to step 4 unless the last message began with a -..

HP-75 Program Listing:

18 OIM A$CzSe] Dimensions the string.
2EOIMPUT 'HMESSACE @ ' RAE Inputs message.

I OUTRUT i1l A Sends message.

48 IF AFCi,1d="%"'" THEH 78 Change talkers?

=@ IF AFCL,1d='-" THEH EHD Terminate communications?
@ OGOTO 2@

TEOEMTER 010 ¢ HE Enters message.

e DISFP USIHG 128 @ AF Displays message.

@@ IF AL, 1I="%" THEH 28 Change talkers?

1ag IF AFC1,13='-' THEH EHD Terminate communications?
1ig GoTo 78

126 IMAGE 'HP SERIES 28--:HP-TE Pk

13

]

=X
X

EMD

40 Section 4: Sending and Receiving HP-IL Messages

HP Series 80 Program Listing:

e DI RELZE5]

28 EMHTER ZGHE

Z@ DIER USIHG 138 RE

48 IF FA$CL, 1d="%" THEH 78

SpIF AECL, 1d=0- THEM EHD
sE GOTO Z8

FEODIER O"MESSAGE Mg

= ITHFUT AF

FUT SiAE

IF A#DL, 1d="4" THEH Z8
e IF mRECL, L d="-" THEH EHD
SEOGOTO Y8

ITMAGE "HPF-75--:HPF SERIES
BRI

fax]
oy

fx]
-

An HP-75/Modem Interface

Dimensions the string.
Enters message.

Displays message.

Change talkers?

Terminate communications?

Inputs message.
Sends message.
Change talkers?
Terminate communications?

This program allows communication between the HP-75 and another mainframe through an HP-IL
modem. The HP-75 functions as though it is a terminal while the program is running. The program
assumes that the device code F1i1 has been assigned to the modem.

Instructions:
1. Turn on the modem.
. Dial the number for the computer on the telephone.
. Place the phone handset into the modem.

2
3
4. When the carrier light comes on, run the program.
5

. The HP-75 now functions as a terminal. From this point on, the procedure depends on the computer
to which you are connected. Do what you would normally do to communicate with the computer from

a terminal.

Program Listing:
18 WIDTH IHF
2@ CLEARE MO

2@ SEHMDIO oMot VUML L EEM, LADH# ", ' parameters !
Mot THEE Y

48 EE=KEYFE B IF K #'' THEH GOSUER 8

S0 EF=EMTIOEC MO, "UHL, TRO#, S0A
sE DISF E#:

EOGOTO 48

ZEOSEMOIO ' iMO', CUMHL, LAD#' KE

28 RETURH

Sets large width.
Clears the modem buffers.

Remote enables the modem.

Gets the key.
Gets input from modem.

Displays input.

Sends the key.

Section 4: Sending and Receiving HP-IL Messages 41

Note: The parameters field in line 30 of the program is used to specify the parity and protocol for your
application. Refer to your modem manual for further information.

Obtaining Readings From a Multimeter

In this program the HP-75 triggers the HP 3468A Multimeter to take 10 voltage readings (one every 10
seconds), receives the data from the multimeter as a string, and outputs each voltage reading to the
printer. The program assumes that the device codes E 1 and F1 have been assigned to the multimeter and
the printer, respectively.

Instructions:

1. Turn on the multimeter, printer, and HP-75. Assign the appropriate device codes.

2. Run the program.

Program Listing:

18 EEMOTE ":EL1Y Sets meter to remote mode.
SEOFOR OF = 1 TO 18

I8 SEHDIO ':ELY,'LADHT,FIRATEY Sets meter to read voltage.*
48 AF = EMTIOEC (EL, "THDH®H,SDA Gets reading from meter.
SEOOUTEUT " PLY USIMG ""Yoltage = "K' DAE; Outputs reading to printer.
8 WARIT 18 Wait 10 seconds.

FEOHEST F

=@ LOCAL T EL! Returns meter to local mode.
SE EHD

The 0UTEUT statement (line 50) ends with a semicolon (:) to suppress the output of a final EOL se-
quence. Without the final semicolon, the printer will skip a line after each reading because the voltmeter
itself sends carriage-return/line-feed after each reading. The FEMITE and L OZFL statements (lines
10 and 80) are covered in section 5. These statements leave the multimeter addressed to listen. If this

causes problems in a program, use SEHDIT or SEHD to send the UNL (Unlisten) command.

* The string F 1 RATZ consists of HP 3468A Multimeter command codes (refer to the HP 3468A Multimeter Operator’s Manual). The
function code F 1 specifies DC Volts. The range code F:fi specifies Autorange. The command code TZ specifies the Single Trigger
mode.

Section 5

Other HP-IL. Statements and Functions

The HP-75 I/O ROM provides several statements and functions that allow you to automatically assign
the loop, select remote or local control of HP-IL devices, check the device ID and accessory ID of HP-IL
devices, and conduct serial and parallel polls.These statements and functions are described in this section.

Assigning the Loop

The I/0 ROM provides two statements — AZZ I GH LOOF and ALUTOLOOF OH.-0FF — that enable you
to automatically assign device codes to all devices in the loop. You need not assign device codes individ-
ually with A= % IGH 10, Two functions — DEWALDDE and DEWHAME# — allow you to quickly determine
the device address or device code of a specified device. The AIEE =% function addresses the loop and
returns the number of devices in the loop.

The A IGH LOOF and AUTOLOOF OM-0OFF Statements

When you execute the A== IGH LI0F statement, device codes are automatically assigned to all devices
in the loop. For each HP-IL device A= % IGH LIOOF uses the Accessory ID to determine its class, then
assigns a two-character device code. Each device code consists of a letter indicating the class of the device
followed by a numeral indicating its occurrence within the class. The characters used to indicate the
device classes are:

Analytical Instrument
HP-IB Device
Controller

Display

Electronic Instrument
Graphic Device
Interface

Keyboard Device
Mass Storage Device
General Device
Printer

Unknown Class
Extended Class

¥ o022 R~ HUOQWE »

43

44 Section 5: Other HP-IL Statements and Functions

The first display device found would be assigned the device code [11; the third electronic instrument, £ 3,
and so forth. Device codes are assigned in this manner for all classes except “B” (HP-IB Devices). Refer to
“Assigning HP-IL Addresses and Device Codes to HP-IB Devices” for information about this class.

The ALITOLOOF statement automatically executes FSS I GH LiO0OF when the HP-75 is turned on. You
may turn this feature on or off by executing ALITOLOOF OH or AUTOLOOF OFF. When AUTOLOOF is
in the on state, device codes are assigned to all devices in the loop each time the computer is turned on.
The computer “beeps” to indicate that the assignment has been made. FALITILOOF sends the LPD (Loop
Power Down) command when you turn the computer off. ALITILO0F remains in the on state until you
execute ALITOLOOF OFF.

Assigning HP-IL Addresses and Device Codes to HP-IB Devices

When used in “translator” mode, the HP 82169A HP-IL/HP-IB Interface allows you to control HP-IB
devices from HP-IL, and vice-versa. (In “mailbox” mode, the interface transfers only data between HP-IL
and HP-IB.) When the HP 82169A HP-IL/HP-IB Interface is connected in the loop with an HP-75 as the
controller, you can assign HP-IL addresses for the HP-IB devices connected to the interface. The inter-
face must be the last device in the loop, must be in “translator” mode, and must use default addressing
(refer to the HP 82169A HP-IL/HP-IB Interface Owner’s Manual). When the HP-75 assigns addresses to
the loop, the interface receives its appropriate address, then reserves all higher numbered HP-IL ad-
dresses for the HP-IB devices connected to it. If, for example, the interface is the fifth (and last) device in
the loop, it is assigned HP-IL address 5 and reserves HP-IL addresses 6 through 30 for HP-IB devices.
You must then set the address switches of each HP-IB device to one of the available addresses.

Once device addresses have been assigned, you can use A=S IGH LOOF or ALUTOLOOF to assign device
codes. The A= GH LOOF statement (or AUTOLO0F) assigns a device code to each HP-IL device in the
loop including the HP 82169A HP-IL/HP-IB Interface. The interface is assigned a device code of the “I”
(Interface) class (for example, I1). Next, A== IGH LOOF assigns a device code for each of the HP-IL
addresses reserved by the interface for HP-IB devices. The first character of each device code is E (in-
dicating an HP-IB Device). The second character of each device code indicates the corresponding address.
Addresses 2 through 9 are assigned the device codes EZ through E=. (There can be no device code E 1
because the interface itself occupies one address.) Letters are used to represent device addresses above 9.
Device addresses 10 through 30 are assigned the device codes E# through E!l! (address 10 is assigned
device code Ei, address 11 is assigned EE, and so forth).

Now let’s consider a specific configuration. The following devices (in order) are connected in the loop with
the HP-75 as the controller: an HP 82161A Digital Cassette Drive, an HP 82162A Thermal Printer, an
HP 3468A Multimeter, and the HP 82169A HP-IL/HP-IB Interface. An HP 82905B Printer is connected
to the HP-IB side of the interface. The HP-IL devices are assigned addresses 1 through 4. The interface
reserves addresses 5 through 30 for HP-IB devices. The A== IGH LOOF statement assigns the device
codes 11, F1, E1, and I1, respectively, for the cassette drive, thermal printer, multimeter, and interface.
FZSIGH LOOF assigns the device codes ES through E Ll for the reserved addresses (5 through 30). How-
ever, the reserved addresses and device codes do not yet correspond to any device. You must set the ad-
dress switches of the HP 82905B Printer to the address that corresponds with the desired device code.
(The owner’s manual of each HP-IB device gives the procedure for setting the address switches.) For
example, if you set the address to 5, the HP-IB printer will have the device code E%. If you set the address
to 10, the device code will be Eif. Note that each HP-IB device must have a unique address greater than
that of the interface, and that a maximum of 30 devices (HP-IL and HP-IB) may be assigned.

Section 5: Other HP-IL Statements and Functions 45

The DEVADIDE and DEYVHAME$ Functions

The DEVADDE and DEWVHAME# functions operate on the device code or address of a device, allowing you
to determine one if you know the other. The DEWRLLF function accepts a device code as its argument
and returns the address of the specified device. The [EHAME % function accepts a device address as its
argument and returns the device code as a string. In the following examples assume that the printer has
address 5 and the device code F1.

The DEWADDE function can be used in the following BASIC statement:
Z@ A1 = DEVADDRE < RFL

OEVADDORE will return a value of 5 for Al.

The EVHAME#$ function can be used in the following statement:

TEOAF = DEVHAMES: (52
DEVHAME$ will return a value of : F1 for AS.

The HIIDEES= Function

The #DOREESS function allows you to quickly determine the number of devices in the loop. The function
addresses all devices in the loop and returns a number. L E %% causes the controller to assume address
0, then addresses the devices in the loop starting with address 1. Once all addresses have been assigned,

the ALDREES S function returns a value equal to the number of devices in the loop (the address of the last
device). The ADDREES S function might be used in a BASIC statement as follows:

FE ok o= AOORESS

If there are 15 devices in the loop, the AILEE S function will address the loop and return the value 15
for X.

Note: If you have already assigned device codes for the devices in the loop, use caution when using
the ADDIRES S function. ADDEESS will cause no problems as long as you have not added or re-
moved any devices from the loop. However, if you have added or removed devices, the addresses
assigned by the ADOREES S function will not agree with the original addresses. This will invalidate the
device code assignments.

Remote and Local Control of HP-IL Devices

The HP-75 I/O ROM provides four statements — REMOTE, LOCAL, LOCAL LOCKEOUT, and
TRIGGER — that allow you to select either remote (through the loop) or local (front panel) control of
HP-IL devices.

46 Section 5: Other HP-IL Statements and Functions

The FEMOTE Statement

With the FEMOTE statement you can set up HP-IL devices for remote control. The general form of this
statement is:

simplified syntax

EEMOTE ' :device code'

You may specify one or more device codes in a FEMITE statement, or you may omit the device code
parameter. If you do not specify a device code, the REMITE statement sends a REN (Remote Enable)
message to all devices in the loop.Individual devices will go into the remote state once they are addressed
to listen. If device codes are specified, the FEMITE statement sends out the UNL and REN messages,
then addresses the specified devices to listen. Thus, the devices specified in the device code parameter are
set up for remote control. Remote mode disables a device’s front panel controls except for the power
switch and the remote-mode override control (the LOCAL button). In remote mode HP-IL data bytes are
interpreted by the device as remote control commands. The following statement sets devices £ 1 and E =
to remote mode:

TH REMOTE ' tEL, tE2"

A device will respond to the REN message only if it has been designed with HP-IL remote control capabil-
ity. Once a device has been set up for remote control, the functions that can be controlled remotely by the
HP-IL controller depend on the design of the device. For example, the HP 3468A Multimeter allows you
to control its range settings remotely.

Note: The EEMITE statement (also the LT HL and TR IGEER statements) leave HP-IL devices
addressed to listen. You may remove listen-addressed status by sending the UNL (Unlisten) command
with SEHDTO or SEHD.

The L3+l Statement

With the LOCAL statement you can return HP-IL devices from the remote state to local control.The
general form of this statement is:

simplified syntax

L.OCHL ' device code'!

The device code parameter is optional, and one or more device codes may be specified. If device codes are
specified, the L 0CAL statement sends out the UNL message, addresses the specified devices to listen,
then sends the GTL (Go To Local) message. The GTL message returns the devices to local control, but
leaves them remote enabled and addressed to listen. The devices will return to remote mode when next
addressed to listen. The following statement returns £1 and E to local control, but leaves them remote
enabled:

5@ LOCHL Y EL L, ERY
If the L. O AL statement is used without parameters, the NRE (Not Remote Enable) message is sent. This

removes remote enabled status from all devices in the loop. The following statement returns all devices to
local control and removes remote enabled status:

e LOCAL

Section 5: Other HP-IL Statements and Functions 47

The L.OCHL LOCKEOUT Statement

The LOCAL LOCKOUT statement enables you to lock out the front panel remote-mode override control
(the LOCAL button) on a device that is in the remote state.This prevents an operator from returning to
local control at a critical time during remote operation. The statement has no parameters:

LOCHL LocEQUT

The LOCAL LOCKDUT statement sends the LLO (Local Lockout) message. To establish local lockout for
devices E1 and EZ you could use the following sequence of instructions:

18 REMOTE "EL, EZ

S8 LOCHL LOCEOUT

Only those devices that have been designed with local lockout capability will respond to the LLO message.

You can return a device from the local lockout state to local control with the L i Fl statement.

The TRIGGER Statement

You can use the TR IZGEFR statement to initiate operation of devices that are designed to respond to the
GET (Group Execute Trigger) message. The general form of this statement is:

simplified syntax

TEIGGER ' :device code'

You may specify one or more device codes in the device code parameter, or you may leave it blank. If you
do not specify a device code, the GET message is sent. All devices that have already been addressed to
listen will receive the GET message. If device codes are specified, the TF IZGER statement sends the
UNL message, addresses the specified devices to listen, then sends the GET message. The following state-
ment causes devices E 1, E=, and EZ to initiate operation:

2@ TRIGGER '":EL.EZ. i EZ!

The response of an HP-IL device to the GET message depends on the design of the device. The
TRIGGEFR statement simply initiates the operation of several devices at (approximately) the same time.
For example, several temperature measuring instruments could be periodically triggered with this
statement.

The possible remote control applications using the REMOTE, LOCAL, LOCAL LOCKOUT, and
TRIGGER statements are obviously numerous. However, since the response of an individual device to
these statements depends on the design of the device, specific applications are beyond the scope of this
manual. The remote control characteristics of individual HP-IL devices are covered in the owner’s man-
uals for those devices. For general information about remote and local control, refer to THE HP-IL SYS-
TEM: An Introductory Guide to the Hewlett-Packard Interface Loop, by Gerry Kane, Steve Harper, and
David Ushijima, published by OSBORNE/McGraw-Hill, Berkeley, California, 1982.

48 Section 5: Other HP-IL Statements and Functions

Checking the Device ID or Accessory ID of HP-IL Devices

The HP-75 I/0 ROM provides two functions — [IE' I[1# and DEYA ID# — that enable you to check the
device ID or accessory ID of HP-IL devices. Only one device at a time may be specified in either function.

Device ID

The DEY ID# function allows you to check the device ID of an HP-IL device. The general form of this
function is:

ODEVIDE 7 1 device code' :

DEYI0E addresses the specified device as the talker and sends the SDI (Send Device ID) message. The
device sends its device identification, and [IE' I[# returns this identification as a string. The device
identification that a device sends is usually an ASCII string consisting of a two-letter manufacturer’s
code, a five-character model number, model revision, and any additional information included by the
manufacturer of the device. In the following example DE' I[# is used to determine the device identifica-
tion of an HP 3468A Multimeter that has been assigned the device code E 1.

48 A = DEVIDE ' EL 2

The DEWID% function returns the device identification HF Z4 &5 H as the value of A$.

Accessory ID

The DEWAID# function allows you to check the accessory ID of an HP-IL device. The general form of
this function is:

DEVARIDF <" :device code'

DEVARIDF addresses the specified device as the talker and sends the SAI (Send Accessory ID) message.
The talker sends its accessory identification and [IE'FH I [1# returns this identification as a string. The
accessory identification is usually a single byte in which the most-significant four bits designate the device
class (for example, printer, mass-storage device, etc.) and the least-significant four bits indicate a specific
device. Since [IEWH I D# returns a character string, this eight-bit byte is represented as an ASCII charac-
ter. In the following example DE'WH ID# is used to determine the acessory identification of an HP 82161A
Digital Cassette Drive that has been assigned the device code 1.

VEOBEFE = DEVAIDE Ot M1t D
The DEWAID# function returns the ASCII character & as the value of BS.
Note: Certain characters (for example, the Greek letters) may not be printable with your printer. Thus,

the DEWIDE, DEVAID$ and SFOLL # functions may return strings that contain characters that do
not appear in a printout. However, all characters will appear on the display.

Section 5: Other HP-IL Statements and Functions 49

Polling HP-IL Devices
The HP-75 1/0 ROM provides three functions that enable you to conduct polls of HP-IL devices. The

ZPOLL and SFOLL# functions are used in serial polls. The FFILL function is used to conduct parallel
polls.

Serial Polling

The ZFOLL and ZFOLL# functions both conduct a serial poll of a specified device. These functions
differ in the way they represent the results of the poll.

The general form of the ZFiILi function is:

SFEOLL ¢ ' i device code!'

The ZF 0L L function sends the SST (Send Status) message to the specified device. The device responds
by sending back one or more status bytes. The value returned by the ZF il L function is the first status
byte, represented as a number. In the following example =F L L is used to conduct a serial poll of an HP
82162A Thermal Printer that has been assigned the device code F 1:

148 = = SPOLL O P12

If the printer sends the status bytes “00100000” and “01100000”, = F L L returns 32 (the decimal value of
the first byte) as the value of X.

The ZFZLL# function conducts a serial poll of a specified device, like ZF 1L L, but returns the result as a
character string. The general form of this function is:

SREOLLE ' 1 device code'’

The =FOLL# function sends the SST message to the specified device. The device responds by sending
back one or more status bytes. The value returned by the ZF L L # function is a string of ASCII charac-
ters representing the status bytes. Suppose that ZF L L #, rather than ZFCLL, is used to conduct the
serial poll of the previous example:

128 DF = SFOLLE O P11 D

The =FOLL# function converts the status bytes “00100000” and “01100000” to the ASCII characters
with the equivalent decimal codes (32 and 96). The string returned for D$ is “ *”. Note that the first

-

character in the string is CHFE#+ 22, a blank space.

50 Section 5: Other HP-IL Statements and Functions

Parallel Polling

The FFiLL function conducts a parallel poll of those devices in the loop that have been configured for
parallel polling. The FFILL function sends the IDY (Identify) message. All devices that are to be polled
must be capable of responding to this message. Each device in the poll sets one bit of the parallel poll
response byte according to its configuration. The FF 1L L. function has no parameters, and returns a num-
ber representing the response byte.

Each device is configured by sending the appropriate PPEn (Parallel Poll Enable) message to the device
with the ZEHII I statement. The PPEn message configures a device to set the one of the eight data bits
(DO through D7) of the parallel poll response byte, and also specifies whether the device is to set the bit if
service is requested or if service is not requested.

Note: Normally, each device will specify its own exclusive bit in the response byte, allowing you to
poll up to eight devices at once. It is possible to assign more than one device to each bit of a parallel
poll response byte. If you do, you can poll more than eight devices. However, if two or more devices
share a bit that has been set, you will not be able to tell which device set it.

The PPEn message enables a device to respond to an IDY message, and defines the response according to
the value of n, an integer from 0 to 15. The following table lists the configurations set by PPEn messages
from PPEO to PPE15. Note that PPEO through PPE7 specify that the configured device is to set the
designated bit of the response byte (DO through D7) if service is not requested. The messages PPES
through PPE15 specify that the device is to set the designated bit if service is requested.

Note: In a parallel poll response, a device will set its assigned bit to a “1” if the condition specified in
the table exists. Otherwise the bit will be left unchanged. Also, control bit CO will be set if service is
requested by any device in the poll.

Parallel Poll Response to an IDY Message

Enable message: | Designates bit... | Device sets that bit if...
PPEO DO
PPE1 D1
PPE2 D2
PPE3 D3 service is not requested.
PPE4 D4
PPES D5
PPE6 D6
PPE7 D7
PPES8 DO
PPE9 D1
PPE10 D2
PPE11 D3 service is requested.
PPE12 D4
PPE13 D5
PPE14 D6
PPE15 D7

Section 5: Other HP-IL Statements and Functions 51

An example will show how to configure the loop. Suppose that there are two devices in the loop, a printer
at address 1, and a digital cassette drive at address 2. You should start by setting the loop to an initial
condition by executing the following SEH[D IO statement:

SEMOIO U, TUML L PRUT

The UNL (Unlisten) command prevents unwanted devices from responding to the subsequent commands.
The PPU (Parallel Poll Unconfigure) command resets any existing parallel-polling configuration.
Remember that ZEHDIC automatically sends an RFC (Ready For Command) message after each com-
mand. You may now start configuring the devices, one at a time, for the parallel poll. The following
statement will configure the first device (the printer):

SEMDIO " PLARDLPFELE UHL Y,

The LAl command addresses device 1 to listen. FFE 13 specifies that the addressed device should use
bit D5 of the parallel poll response byte, and should set that bit to a “1” if service is requested. The UNL
command unlistens the printer so that it will ignore further commands.

You may now configure another device. The following statement configures device 2 (the cassette drive) to
set bit D7 of the response byte to a “1” if service is not requested:

SEMDOIO U, PLADE FRPEV L UMLY Y

Once you have configured the desired devices for parallel polling, you may execute the FF{il.l. function as
often as you want. The IDY message will be sent out each time you execute FF 1L L, and each device will
assert one bit of the response byte according to the configuration. The FFiil.lL. function will return a
number representing the response byte. You could poll devices 1 and 2 (configured above) by executing the
following statement:

8w = PROLL
Device 1 will set bit D5 of the response byte if it needs service, and device 2 will set bit D7 if it does not

need service (according to the above configuration). The value of X will be a number that represents the
response byte. If the response byte is “10100000”, FF L L will return the value 160.

For further information on parallel polling, refer to THE HP-IL SYSTEM: An Introductory Guide to the
Heuwlett-Packard Interface Loop, by Kane, Harper, and Ushijima.

Appendix A

Owner’s Information

CAUTIONS

Do not place fingers, tools, or other objects into the plug-in ports. Damage to plug-in module contacts
and the computer’s internal circuitry may result.

Turn off the computer (press (ATTN]) before installing or removing a plug-in module.

If a module jams when inserted into a port, it may be upside down. Attempting to force it further may
result in damage to the computer or the module.

Handle the plug-in modules very carefuly while they are out of the computer. Do not insert any objects in
the module connector socket. Always keep a blank module in the computer’s port when a module is not
installed. Failure to observe these precautions may result in damage to the module or the computer.

Limited One-Year Warranty

What We Will Do

The HP-75 I/O ROM is warranted by Hewlett-Packard against defects in materials and workmanship
affecting electronic and mechanical performance, but not software content, for one year from the date of
original purchase. If you sell your unit or give it as a gift, the warranty is transferred to the new owner
and remains in effect for the original one-year period. During the warranty period, we will repair or, at our
option, replace at no charge a product that proves to be defective, provided you return the product, ship-
ping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of
service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.
ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED
TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or
countries do not allow limitations on how long an implied warranty lasts, so the above limitation may not
apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR
CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclusion or
limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to
you.

53

54 Appendix A: Owner’s Information

This warranty gives you specific legal rights, and you may also have other rights which vary from state to
state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a
consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be deter-
mined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard
shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard dealer
or a Hewlett-Packard sales and service office. Should you be unable to contact them, please contact:

e In the United States:

Hewlett-Packard
Personal Computer Group
Customer Support
11000 Wolfe Road
Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

e In Europe:

Hewlett-Packard S.A.
150, route du Nant-d’Avril
P.O. Box CH-1217 Meyrin 2
Geneva
Switzerland
Telephone: (022) 83 81 11

Note: Do not send units to this address for repair.

e In other countries:

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, California 94304
U.S.A.
Telephone: (415) 857-1501

Note: Do not send units to this address for repair.

Appendix A: Owner’s Information 55

Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may have
your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit is under
warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt at
any service center. This is an average time and could vary depending upon the time of year and the work

load at the service center. The total time you are without your unit will depend largely on the shipping
time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is located
in Corvallis, Oregon:

Hewlett-Packard Company
Service Department

P.0. Box 999 or
Corvallis, Oregon 97339, U.S.A.

1030 N.E. Circle Blvd.
Corvallis, Oregon 97330, U.S.A.

Telephone: (503) 757-2000

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer

where you purchased your unit.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H.
Kleinrechner-Service
Wagramerstrasse-Lieblgasse 1
A-1220 Wien (Vienna)

Telephone: (0222) 23 65 11

BELGIUM

HEWLETT-PACKARD BELGIUM SA/NV
Woluwedal 100

B-1200 Brussels

Telephone: (02) 762 32 00

DENMARK
HEWLETT-PACKARD A/S
Datavej 52

DK-3460 Birkerod (Copenhagen)
Telephone: (02) 81 66 40

EASTERN EUROPE
Refer to the address listed under Austria.

FINLAND
HEWLETT-PACKARD OY
Revontulentie 7

SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 455 02 11

FRANCE

HEWLETT-PACKARD FRANCE
Division Informatique Personnelle
S.A.V. Calculateurs de Poche
F-91947 Les Ulis Cedex
Telephone: (6) 907 78 25

GERMANY
HEWLETT-PACKARD GmbH
Kleinrechner-Service
Vertriebszentrale

Berner Strasse 117
Postfach 560 140

D-6000 Frankfurt 56
Telephone: (611) 50041

ITALY

HEWLETT-PACKARD ITALIANA S.P.A.
Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

1-20063 Cernusco Sul Naviglio (Milan)
Telephone: (2) 90 36 91

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V.
Van Heuven Goedhartlaan 121

NL-1181 KK Amstelveen (Amsterdam)
P.O. Box 667

Telephone: (020) 472021

NORWAY

HEWLETT-PACKARD NORGE A/S
P.O. Box 34

Oesterndalen 18

N-1345 Oesteraas (Oslo)
Telephone: (2) 17 11 80

SPAIN

HEWLETT-PACKARD ESPANOLA S.A.
Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

SWEDEN

HEWLETT-PACKARD SVERIGE AB
Skalholtsgatan 9, Kista

Box 19

S-163 93 Spanga (Stockholm)
Telephone: (08) 750 2000

SWITZERLAND
HEWLETT-PACKARD (SCHWEIZ) AG
Kleinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057) 31 21 11

UNITED KINGDOM
HEWLETT-PACKARD Ltd
King Street Lane
GB-Winnersh, Wokingham
Berkshire RG11 5AR
Telephone: (0734) 784 774

56 Appendix A: Owner’s Information

International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you
bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is available
in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local Hewlett-
Packard service center to see if service is available for it. If service is unavailable, please ship the unit to
the address listed above under Obtaining Repair Service in the United States. A list of service centers for
other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and
materials. In the United States, the full charge is subject to the customer’s local sales tax. In European
countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable. All
such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered by the fixed repair charges. In these
situations, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period of
90 days from date of service.

Shipping Instructions

Should your unit require service, return it with the following items:
e A completed Service Card, including a description of the problem.

e A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of purchase
date should be packaged in adequate protective packaging to prevent in-transit damage. Such damage is
not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the shipment to
the service center. The packaged unit should be shipped to the nearest Hewlett-Packard designated collec-
tion point or service center. Contact your dealer for assistance. (If you are not in the country where you
originally purchased the unit, refer to “International Service Information” above.)

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery to
the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-of-
warranty repairs in the United States and some other countries, the unit is returned C.0.D. (covering
shipping costs and the service charge).

Appendix A: Owner’s Information 57

Further Information

Service contracts are not available. Circuitry and designs are proprietary to Hewlett-Packard, and service
manuals are not available to customers. Should other problems or questions arise regarding repairs, please
call your nearest Hewlett-Packard service center.

When You Need Help

Hewlett-Packard is committed to providing after-sale support to its customers. To this end, our customer
support department has established phone numbers that you can call if you have questions about this
product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call the
toll-free number below:

(800) FOR-HPPC
(800 367-4772)

Technical Assistance. For technical assistance with your product, call the number below:

(408) 725-2600

For either product information or technical assistance, you can also write to:

Hewlett-Packard
Personal Computer Group
Customer Support
11000 Wolfe Road
Cupertino, CA 95014

Appendix B

Syntax Reference Guide

This appendix provides syntax definitions for the statements and functions described in sections 1
through 5 of this manual. The syntax representations in this appendix follow the format described in
section 1 (refer to the subheading “Syntax Guidelines”).

ADDRESS

Syntax

AODEESS

Sample Statement

FE AL = ADORESS

Actions Taken

Addresses all devices in the loop, starting with 1, and returns a value equal to the number of devices (the
address of the last device).

Related Statements

FESIGH LOOF
AUTOLOOF OM-0OFF

59

60 Appendix B: Syntax Reference Guide

ASSIGN LOOP

Syntax

HSS IGH LOOF

Actions Taken

Causes two-character device codes to be assigned to each device in the loop. The first character (a letter)
indicates the class of the device. The second character (a numeral) indicates the occurrence of the device.
The following letters are used to indicate device class:

Analytical Instrument
HP-IB Device
Controller

Display

Electronic Instrument
Graphic Device
Interface

Keyboard Device
Mass Storage Device
General Device
Printer

Unknown Class
Extended Class

HamoZR~oEHUAawW»

Note: Class “B” (HP-IB Devices) is treated differently. Refer to “Assigning HP-IL Addresses and De-
vice Codes to HP-IB Devices” in section 5.

Related Statements

AODREESS
AUTOLOOF OH-0OFF

Appendix B: Syntax Reference Guide 61

AUTOLOOP ON/OFF

Syntax

M

AUTOLOOR AFF

Actions Taken

Device codes are assigned to all devices in the loop each time the computer is turned on if ALITOLOOF is
in the on state. A “beep” indicates that the assignment has been made. Device codes are assigned follow-
ing the same rules used by AZZIGH LOOF. Also, ALUTOLOOF sends the LPD (Loop Power Down) mes-
sage when the computer is turned off. ALITILIOF remains in the on state until an ALTOLOOF OFF

command is executed.

Related Statements

0

-
L

H=S

T

FED!
ITGH LOOF

62 Appendix B: Syntax Reference Guide

DEVADDR

Syntax

DEVRIDOE < :device code '

Sample Statements

=1 o= DEVADDE <" D1
o= DEVADDE CAE

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken

Returns the HP-IL address of the specified device.

Related Statements

ODEVHAMES

Appendix B: Syntax Reference Guide 63

DEVAID$

Syntax

ODEVAIDE ' 1 device code' :

Sample Statement

4

-
fex]

Bf = DEVAIDE <" 01"

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken

Addresses the specified device as the talker and sends the SAI (Send Accessory ID) message. The talker
sends its accessory identification, and DIE' A I[# returns this identification as a string. The accessory
identification is usually a single byte, and is represented as an ASCII character.

Related Statements

DEVIDOE

64 Appendix B: Syntax Reference Guide

DEVID$

Syntax

DEYIDE o' 1device code'

Sample Statement

48 FAE = DEVIDE ' P30

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken
Addresses the specified device as the talker and sends the SDI (Send Device ID) message. The device

sends its device identification, and [IE' I returns this identification as an ASCII character string
(including any carriage-return/line-feed characters sent by the device).

Related Statements

DEVAIDF

DEVNAMES$

Syntax

Appendix B: Syntax Reference Guide

65

DEVHAME# < device address

Sample Statements

1

DEVHAMES <1
DEVHAME® <A

(R n]

RO

F
F

=
o

Parameters

device address — a valid HP-IL device address (0 through 30).

Actions Taken

Returns the device code of the specified device.

Related Statements

DEVADDOR

66 Appendix B: Syntax Reference Guide

ENTER

Syntax

' : device code' ___ ‘'image list'] , ,
EHTER EIHG : [variable][. variable]...
EHTER [device address] [line number (1 It b

Sample Statements

FEOEHTER TR OLUEIHG RAFEx.Y, 2
HE EMTER CF MHOI, 26
128 EHTER ":D1°7
156 EHTER USIHG
178 EHTER EB¥

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

device address — a valid HP-IL device address (0 through 30).

image list — a string expression that contains a valid set of image specifiers. The expression can be either
a list of image specifiers enclosed in quotation marks or the name of a string variable that contains a
list of image specifiers.

line number — the line number of an IFMAGE statement that contains a valid set of image specifiers.

variable (numeric or string) — the name of a variable intended as a destination of the EMHTEF operation.

Actions Taken

Inputs bytes from the specified device; uses those bytes to build a number or string; places the result into
a BASIC variable.

When LIZIHEG is not specified, free-field format is used. A free-field entry into a string places incoming
bytes into the variable until the current EOL (end-of-line) sequence or an End Byte message is received,
or the string is full. Terminating sequences are not placed into the destination string. A free-field entry
into a numeric variable ignores leading blanks and non-numeric characters. Entry into a numeric variable
is terminated by the first trailing blank or non-numeric character.

When LIZ IHG is specified, input operations are formatted according to the image specifiers used. Image
specifiers may be enclosed in quotation marks and placed in the EHTEF statement, contained in a string
variable named in the EHTEF statement, or placed in an IFMFAGE statement referenced by the EHTEFR
statement. For detailed information on image specifiers, refer to “Formatted EHTEF " in section 3.

Appendix B: Syntax Reference Guide 67

EMTEFR requires either the current EOL sequence or an End Byte message to terminate the statement
after the variable list has been satisfied. If no EOL sequence or End Byte message is detected, an error
will be issued. This requirement can be removed by using # ! as the first image specifier. For more detailed
information on statement terminators, refer to “Formatted EHTER”.

Related Statements

ITMAGE

68 Appendix B: Syntax Reference Guide

ENTIO$

Syntax

EHMTIOE ¢ '[:device code|. : device codel...]' . ' [command[.command]...] ' :

Sample Statements

IB OAF = EMTIOE O 'TRDL,SOA
sE o= EMTIOF O D1, 'TRO#, DR
= EMTIOf C' D30, "%

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

command — a valid HP-IL command mnemonic (refer to appendix C). You may substitute the name of a
string variable that contains the list of commands.

Actions Taken

EMTIO¥ is a function that returns a character string value. EHT I 0% is usually used to address an HP-IL
device as a talker, then return the data received from that device as the value of the function. Only one
device may be addressed as a talker, but one or more listeners may be addressed.

EHTIE processes parameters from left to right. If a device code parameter has been specified, EHT I 0%
determines the corresponding device address in the loop. If TH# is specified in the command field, only
one device code may be specified. If the device code field is the null string, no action is taken in this step.

Next, the list of HP-IL commands in the command field is processed. A THI# or LA# command causes
the device specified in the device code field to be addressed as a talker or listener, respectively. If no device
code is specified, TAD# and LAD# are not valid in the command list. The T+ and LFix commands
contain HP-IL device addresses. A TR+ or LAl in the command list causes the device with address
to be addressed as a talker or listener. EHT I 0% returns the null string unless the last command in the
command field is Z0OA, 55T, 501, SAI, AADR, or 1D : 5. The data sent by the active talker in response
to the ready group command is returned as the result of the EHT I % function. If the command field is
the null string, EHT I 0% automatically generates THI# , SOIA.

Either the device code field or the command field can be the null string, but not both.

Related Statements

SEMDIO

Syntax

Appendix B: Syntax Reference Guide

IMAGE

69

IMAGE specifier [., specifier]...

Sample Statements
1E
1868 IMAGE #,K, 24,

Parameters

B O IMAGE 'Total ='.40.00
5 k.

specifier — a valid QLU TFLUT or EHTER image specifier. These specifiers are listed below. Refer to section
3, “Formatted I/O Operations”, for detailed descriptions.

Summary of JUTFLUT Image Specifiers

Meaning

Output one string character

Output a comma separator in a number

Output one digit character; blank for leading zero
Output exponent information; five characters
Output a variable in free-field format

Output number’s sign if negative, blank if positive
Output a period separator in a number

Output a European radix point (comma)

Output number’s sign, plus or minus

Output one blank

Output one digit character, including leading zeros
Output a literal (enclosed in quotation marks)
Output one digit character; asterisk for leading zero
Output an American radix point (decimal point)

Output the current EOL sequence

70 Appendix B: Syntax Reference Guide

Summary of EHTEFR Image Specifiers

Meaning

Demand one string character

Demand one character for a numeric field; allows
commas to be skipped over

Demand one character for a numeric field

Demand five characters for a numeric field

Enter a variable in free-field format

Demand one character for a numeric field

Demand one digit and ignore all periods

Demand one digit and treat comma as radix symbol
Demand one character for a numeric field

Skip one character

Demand one character for a numeric field

Demand one character for a numeric field

Demand one character for a numeric field

Demand the current EOL sequence

Eliminate the current EOL sequence as a terminator
Eliminate the End Byte message as a terminator

Establish the ETO (End Of Transmission — OK)
message as an alternative terminator

Related Statements

EMHTERE.USTHG

Appendix B: Syntax Reference Guide 71

I0SIZE

Syntax

1051 2E buffer size

Sample Statement

TOSIZE S84

RN
ooy

Parameters

buffer size — an integer representing the desired buffer size (range: 0 to 24,575 bytes). A zero or negative
value specifies the default value of 256 bytes.

Actions Taken

Sets the size of the EHTER buffer to the specified value. Controls the maximum number of bytes to be
read by a statement or function that causes input of data (EHTER, EHTIO#, ADDRESE, etc.) If buffer
size is exceeded, a record overflow error will result. A 7= command in an EHTI0# command list will
override the value of I0%IFE for that EHT I0# statement only.

Related Statements

EHTER
EMTIOE

72 Appendix B: Syntax Reference Guide

LOCAL

Syntax

LIOCAL [' :device code[. : device code]...']

Sample Statements

LOCAL
qOLOCAL D
IEZA OLOCAL Bl :ED, BT
Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code(s).

Actions Taken

L.0ZAL addresses the specified device(s) to listen and sends the GTL (Go To Local) message. The speci-
fied devices are returned to local mode, but remain remote enabled. |. T FL. leaves devices addressed to
listen.

If no device code is specified, L 0ZFL sends the NRE (Not Remote Enable) message. This returns devices
to local control and removes remote enabled status.

Related Statements

EEMOTE
TEIGGER

Appendix B: Syntax Reference Guide 73

LOCAL LOCKOUT

Syntax

LOCAL LOoCcEQUT

Sample Statements

S8 LOoCcAL LOCKEOUT
LOCAL LOCEOUT

Action Taken

Sends LLO (Local Lockout) command. Locks out LOCAL button on front panel of devices in remote

mode. Devices can be returned to local control only by a GTL or NRE message (refer to the L.OCHL
command).

Related Statements

LOCAL
FEMOTE
TRIGGER

74 Appendix B: Syntax Reference Guide

OUTPUT

Syntax

AUTELT ' : device code][. : device codel...' UETHE “image list'
el device address =" line number

[: expression] . expression][: expression)...]

Sample Statements

4@ OUTPUT @ A%

FEOOUTPUT o TW USIHG AE oWy, 2

OUTFUT OF 3 Mol :F#
OUTRUT D1 USIHG I8 ; AF
Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code(s).

device address — a valid HP-IL device address (0 through 30). Only one device address may be specified.
Use device codes if more than one device is to be specified.

image list — a string expression that contains a valid set of image specifiers. The expression can be either
a list of image specifiers enclosed in quotation marks or the name of a string variable that contains a
list of image specifiers.

line number — the line number of an IMMHZE statement that contains a valid set of image specifiers.

expression (string or numeric) — any string expression or numeric expression intended to be output. Ex-
pressions may be constants or variables and may be separated by commas or semicolons.

Actions Taken
Outputs bytes to the specified device(s); bytes may be string or numeric.

When LIz I1HG is not specified, and output items are separated by semicolons, compact format is used. A
compact output of a string expression causes it to be sent with no leading or trailing blanks. A compact
output of a numeric quantity causes it to be sent with one trailing blank and one leading sign character
(blank if positive, minus sign if negative).

When 115 I HIG is specified, output operations are formatted according to the image specifiers used. Image
specifiers may be enclosed in quotes and placed in the DU TFLIT statement, contained in a string variable
named in the OLITFIUIT statement, or placed in an IMAZE statement referenced by the QITFLUT state-
ment. For detailed information on image specifiers, refer to “Formatted I TFLIT” in section 3.

Appendix B: Syntax Reference Guide 75

CUTFUT sends the current EOL (end-of-line) sequence after the last item in the CUTFUT list. This
sequence can be changed with the EHIL I HE statement, and defaults to carriage-return/line-feed. The
EOL sequence can be suppressed by using : after the last variable. For more detailed information on
statement terminators, refer to “Formatted TLITFLIT ",

Related Statements

ITHMAGE

76 Appendix B: Syntax Reference Guide

PPOLL

Syntax

FROLL

Sample Statements

218 R=FPOLL

e PR=RPOLL

Actions Taken

FFOLL is a function that returns the results of a Parallel Poll operation. Sends an IDY (Identify) mes-
sage. Devices capable of responding each assert one bit of the parallel poll response byte.

Related Statements

SROLL
SROLLE

Appendix B: Syntax Reference Guide 77

REMOTE

Syntax

FEMOTE [' : device code[. : device code]... "]

Sample Statements

EMOTE Z1#

S8 REMOTE ':D1
F
FEMOTE

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code(s).

Actions Taken

If no device code is given, FEMITE sends the REN (Remote Enable) message. Devices do not go into
remote mode until they are addressed to listen.

If device codes are specified, FEMITE sends the UNL (Unlisten) and REN messages, then addresses the
specified devices to listen. Devices are left addressed to listen.

Related Statements

LocAL
LOCHL LOoCEoUT
TRIGGER

78 Appendix B: Syntax Reference Guide

SEND

SEMD [[- byte number [, byte number]...]
sEE " byte string

I:E‘ — byte number [. byte numberl]... [E0L]]
byte string

[W Z;ﬁ: Z;;rf;t;er [. byte numberl]... [EDI_]]
[I0Y byte number [.byte number]...] [FL% byte number [.byte number]...]
[[:IiL. byte number [.byte number]...] [CIIT byte number |[.byte number]...]
[SED byte number [, byte number)...] [LISTEH byte number [.byte number]...]

[THLE byte number] [GTL] [RMO] [HEE] [LLO] [CIF) [LED] [MLA]

[(MTA] [500] [UHL) [UHT]]...

Note: The above bracketed items may be included in any order. They may be repeated as many times
as desired, with one exception: E{iL. may be included only once in a [1FTH or EHII field.

Sample Statements

CED TUREY ODATH 'Hello!
CHDOAE SRG 14,18 DATH
MTH UHL LISTEM &,14 DOATY

W

i

o

THECY

Parameters

byte number — a number that specifies the actual message to be sent. Byte numbers for the D, DFTH,
EHDO, T0%, and EIY message indicators represent bits DO through D7 of the message, and have the
range 0 through 255 (modulo 256). Byte numbers for the DIliL, D0T, SAD, LISTEHM, and THALE mes-
sage indicators have the range 0 through 31 (modulo 32).

byte string — a string of ASCII characters that specify a series of messages. Each character represents a
message having the byte number equivalent to its ASCII character code.

Actions Taken

oMb

DATHA

EMD
Ty
Oy
DoL

GTL
RO
HEE
LLo
CIF
LFD

I
o] o]

SO
LML
LHT

Appendix B: Syntax Reference Guide 79

Sends list of commands specified by byte number. Each byte number specifies bits DO
through D7 of the command message. A byte string may be substituted for a list of
byte numbers. Each character in the string specifies the command with the byte num-
ber equivalent to its ASCII character code.

Sends list of Data Byte messages with bits DO through D7 specified by byte number. A
byte string may be substituted for a list of byte numbers. Each character specifies the
bit pattern with the byte number equivalent to its ASCII decimal code. ASCII charac-
ter strings may be sent exactly as specified in quotes. Inclusion of EOL causes the
current EOL sequence to be sent.

Sends End Byte message, but otherwise same as A TH.
Sends identify message having bits set according to byte number.
Sends ready message having bits set according to byte number.

Sends Device-Dependent Listener message having number 0 through 31 indicated by
byte number (modulo 32).

Sends Device-Dependent Talker message having number 0 through 31 indicated by
byte number (modulo 32).

Sends Secondary Address message having address 0 through 31 indicated by byte
number (modulo 32). Associates this secondary address with the primary address of
the preceding command message, indicating an extended address.

Sends LADn (Listen Address) message to device i, the address specified by a byte
number in the range 0 through 31 (modulo 32). Makes device i1 a listener, except that
31 clears all devices from listener status.

Sends TADn (Talk Address) message to device i1, the address specified by a byte num-
ber in the range 0 through 31 (modulo 32). Makes device +: a talker, except that 31
clears all devices from listener status.

Sends GTL (Go To Local) message.

Sends REN (Remote Enable) message.
Sends NRE (Not Remote Enable) message.
Sends LLO (Local Lockout) message.
Sends IFC (Interface Clear) message.
Sends LPD (Loop Power Down) message.
Sends no message.

Sends UNT (Untalk) message.

Sends SDC (Selected Device Clear) message.
Sends UNL (Unlisten) message.

Sends UNT (Untalk) message.

80 Appendix B: Syntax Reference Guide

SEND?

Syntax

By
i
-
i
o

Sample Statements

1= SEMDY
Bf = RAFLCSEMDT]

£
T T
LI AN

Actions Taken
Returns an integer value representing the position in the string of the character that was unsuccessfully

sourced in the last ZEHI I statement. Returns a value of 0 if the SEM I data list was null, or if the
last SERMDID statement was successfully completed.

Related Statements

SEMHDIO

Appendix B: Syntax Reference Guide 81

SENDIO

Syntax

ZEMDIO '[:device codel. : device code]...]' . ' [command[.command]...]' . ‘[data]’

Sample Statements

3G SEHDIO D1, D2', 'LAD®,LADS', 'DATA:
55 SEMDIO 'Y, LADL,LADZ', 'HI!
a5 SEHDIO ', ', 'EYE!

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code(s).

command — a valid HP-IL command mnemonic (refer to appendix C). You may substitute the name of a
string variable that contains the list of commands.

data — a string expression to be sent out by ZEMD I,

Actions Taken

SEMD IO sends commands and data to HP-IL devices. ZEHII 111 can be executed from the keyboard or in
a program. Listener devices may be addressed by including either device codes or device addresses in a
SEMDOID statement.

ZEHMD I processes parameters from left to right. One or more device codes may be included in the device
code field. If device codes are specified, ZEHM I determines the HP-IL address of each specified device.
If the device code field is null, no action is taken.

A single L.Al'# command in the command field causes all devices specified in the device code field to be
addressed as listeners. The LAL# command may be used in combination with other HP-IL commands,
and may appear anywhere in the command field. Listener devices may also be addressed by including
.Ar commands in the command field. Any number of i.Filli1 commands may be included, and they may
be used in combination with other HP-IL commands, including L Ai#. SEMDID should not be used to
address talkers.

Once all commands in the command field have been sent, the string expression in the data field is sent out
over the loop.

One or two of the quoted parameters may be the null string, but not all three.

Related Statements

EMTIOE
SEHDT

82 Appendix B: Syntax Reference Guide

SPOLL
Syntax
SHOLL ' 1 device code '
Sample Statements
SPOLL (E#:
SPOLL ¢ D13 > &3 THEH GOTO 750
Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken

Polls a device in the loop by sending the SST (Send Status) message. Returns a number representing the
first status byte sent by the polled device.

Related Statements

FROLL
SROLLE

Appendix B: Syntax Reference Guide 83

SPOLL$

Syntax

SROLLE 7 1 device code!’

Sample Statements

o

=
b

SPFOLLE CBf:
SPOLLE < D1t

o

i x)
[
T

£
Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken

Polls a device in the loop by sending the SST message. Returns a string of ASCII characters representing
the status bytes sent by the polled device.

Related Statements

84 Appendix B: Syntax Reference Guide

TRIGGER

Syntax

TEIGGER [' :device code [. :device codel... ']

Sample Statements

78 TRIGGER 01,02
i TRIGGER Z1#
TRIGGER
Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code(s).

Actions Taken
Sends the Group Execute Trigger command (GET).

If no device code is given, the GET command is sent. All devices that have already been addressed to
listen will receive the GET command.

If a device code is specified, the UNL (Unlisten) command is sent, followed by the LAD (Listen Address)
of the specified device(s). The GET command is then sent. Devices are left addressed to listen.

Related Statements

Lodal
LOCAL LOCEOUT
EEMOTE

Appendix C

HP-IL Commands

Summary of HP-IL Commands

The following is a list of HP-IL command mnemonics for the commands that you may use in a SEHOI 0
or EHTIC¥ command list. Although SEHD IO and EMTI0% do not recognize the mnemonics of other
HP-IL commands, you may include other commands in a command list by using extended HP-IL com-
mand capability.

Note: The commands CL +, OA—, EL +, ET-, %€=, TR!, TR¥, TE:, and TEL may be included in
a command list for either EHTI0# or SEMDIO; however, only EMT I 0% will recognize them.

£ Represents a one byte non-negative integer.

AR Auto Address: addresses the loop starting with initial address ri (0-30).

FFL Auto Address Unconfigure: resets addresses of the loop to the unassigned state.

AEFRn Auto Extended Primary: assigns primary address i (0-30) to extended address group.
AESH Auto Extended Secondary: assigns secondary address starting with i (0-30).

FAMF R Auto Multiple Primary: assigns primary addresses to all devices starting with : (0-30).

CL+ The L + command inserts carriage-return/line-feed in the incoming string after each
End Byte message received during EHT I 0% data collection.

DA~ The LA~ command prevents the EHT I 1% function from reading any data into the HP-75.
EMTIO# returns the null string if OFA— is in the command list. However, up to 256 Data
Byte messages (or the number set with I 0% I ZE) will be transmitted from the talker to any
active listeners in the loop. If a == command is used to specify a size, that size will take
precedence over 1= I1ZE. If ZZ2=@ is specified, there is no size limit on the number of
Data Byte messages that the talker can send.

Dol Device Clear: clears all devices in the loop.

I Device Dependent Listener: sends the Device Dependent Listener command denoted by
(0-31).

OOTe Device Dependent Talker: sends the Device Dependent Talker command denoted by i (0-
31).

ELH Enable Device Sourcing NRD: enables devices to source own NRD messages.

EL+ The EL + command inserts the current EOL sequence in the incoming string after each End
Byte message received during EHT I0# data collection (similar to L +).

ET- The ET- command disables EHT I 1% termination by an ETO (End Of Transmission - OK)

message received from an HP-IL device. EH T I % will terminate only when the logical end-
of-record is detected, size is exceeded, an ETE (End Of Transmission - Error) message is
received, or the key is pressed.

85

86

THRO#

THIF

T

TL

Appendix C: HP-IL Commands

+

Group Execute Trigger: sets listeners to begin device operation.

Go To Local: returns listen addressed devices to local control, but leaves them remote en-
abled. Devices will return to remote mode when next addressed to listen.

Illegal Auto Address: sent to determine if there are too many devices in the loop.
Illegal Extended Primary: basically a no-op.

Illegal Extended Secondary: sent to determine if there are too many devices in the loop.
Interface Clear: clears the interface loop.

Illegal Multiple Primary: sent to determine if there are too many devices in the loop.
Listen Address: activates listener status of device specified in device code.

Listen Address: activates listener status of device at address i (0-30).

Local Lockout: disables LOCAL button on front panel of device. Device can be returned to
local control only by a GTL or NRE command.

Loop Power Down: puts devices in power down state.

No Op command.

Not Ready For Data: controls interrupt of talker.

Not Remote Enable: returns devices to local control and removes remote enabled status.
Parallel Poll Disable: causes listen-addressed devices to no longer respond to FFE#.

Parallel Poll Enable: enables listen-addressed devices to respond to a parallel poll where
(0-15) sets the state of response (refer to section 5).

Parallel Poll Unconfigure: disables all devices from responding to PPEn.

Remote Enable: sets devices to remote enabled state. Devices go to remote mode when ad-
dressed to listen.

Secondary Address: enables talkers or listeners with secondary address.
Send Accessory ID: initiates talker to source accessory ID.

Send Data: initiates talker to source data.

Selected Device Clear: clears the active listeners.

Send Device ID: initiates talker to source device ID.

Send Status: initiates talker to source status byte(s).

The %Z= command sets the maximum input size for an EHTI# instruction. The default
value is 256 (or the value set with 10%1ZE). If 1A~ is not specified in the command list,
the syntax is: SZ=5 4. . is a decimal number (range 1 to 32767) representing the
number of bytes to read. The EMTIO# instruction termlnates when size is exceeded. If
DA~ is specified, the syntax is: &Z =} 1 where ¥ is a number in the
range 0 to 999999999. If =Z =i is specified, there is no size limit on the number of bytes to
be read. (5Z =8 cannot be specified unless [iFi— is also specified.)

Talker Address: activates talker status of device specified in device code.
Talker Address: activates talker status of device at address i (0-30).
Take Control: passes control to next controller in the loop.

A TL +command in a ZEMD I or EMTIO# command list inhibits the automatic UNT and
UNL feature. Devices addressed as talkers and/or listeners will remain active after the
SZEMDIO or EMTIO# operation is completed.

Appendix C: HP-IL Commands 87

TE A TR! command in the command list of an EHT I 0% instruction establishes the End Byte
message as a logical end-of-record.

TR#% A TE#% command in the command list of an EMTI1# instruction establishes the current
EOL sequence (defined with the EH[IL IHE statement) as a logical end-of-record.

TE Any ASCII character can be specified as a logical end-of-record by including TF : '} in an
EMTIOF command list, where % is the hexadecimal representation of the ASCII character
number (&8 will be ignored).

TRL Any desired character string (up to six characters) may be specified as a logical end-of-
record by including TRCstring] in an EHT I 0% command list. Note that the string is delim-
ited with brackets rather than quotation marks, and that the 1 character cannot be included
in the string. If the string contains quotation marks, they must not be the same form (single
or double) that is used to delimit the command list itself.

LML Unlisten: deactivates all listeners in the loop.

LHT Untalk: deactivates the talker.

ZES Zero Extended Secondary: assigns secondary addresses to devices with multiple address
capability.

Extended HP-IL Command Capability

Extended HP-IL command capability allows the programmer to send commands for which no mnemonics
exist. The capability can be used with both ZEHI I and EHT I 0%, This ensures that when new HP-IL
devices and functions are introduced, “EMHD I and EMT I0# will continue to be usable.

Note: By using extended command capability you can include any HP-IL command in a ZEHD I or
EMTIO% command list. However, you should be careful when you are including a command that is
not in the “Summary of HP-IL Commands” in this appendix. Certain unlisted commands may cause
problems.

Recall that HP-IL messages consist of 11 bits: a three-bit prefix that identifies the type of message,
followed by eight bits of message content. Eight possible prefixes exist, each with its own special meaning.
Extended command capability provides an easy way for the programmer to construct HP-IL messages.

Eight identifiers are supplied, one for each type of HP-IL message. The types of messages and
corresponding identifiers are listed below:

HP-IL Message Type Identifier
Command CD
Ready RD
Data DA
End .. EN
Identify ID
Data w/service requestiiiii DS
End w/service request ES

Identify w/service request IS

88 Appendix C: HP-IL Commands

To send a message, simply specify “::: hex value” in the command list, where 3 is one of the eight
identifiers listed above, and hex value is the content of the message in hexadecimal. To send an UNL
command using extended HP-IL command capability, you would code:

SERDIO oD 3R,

This would send a message with a three-bit prefix identifying the message as a command, and then a
binary “00111111”, which is the code for UNL.

Appendix D

Support Functions and Editing Keys

The HP-75 I/O ROM provides several support functions in addition to the I/O functions and statements
that are covered in sections 1 through 5 of this manual. These support functions are covered in this
appendix under the subheadings “I/O Support Functions,” “Advanced Programming Support Functions,”
and “File Manipulation Functions.” This appendix also covers some additional HP-75 editing keys pro-
vided by the ROM (refer to “Additional Editing Keys”) and a facility for running an autostart program
when the HP-75 comes on (refer to “Running an Autostart Program”).

Note: The syntax representations in this appendix follow the same conventions that are used else-
where in this manual. Refer to the subheading “Syntax Guidelines” in section 1.

1/O Support Functions

The following functions are used, in conjunction with the primary I/O functions and statements described
in sections 1 through 5, to facilitate I/O operations.

ASNLOOP$ — assign loop and return string:

ASHLOOFE

Assigns device codes to devices in the loop according to the same rules as A== IGH LOOF (see appendix
B), but returns a string. Each character in the string corresponds (in order) to a device in the loop, and
represents the first byte of the Accessory ID response of that device.

DISPLAY$ — list current display devices:

DIZPLAYE

Returns a string listing the device codes of the currently assigned display devices (in order of ascending
address).

ENABLE SRQ — reenable 0 =R after an 0H SR execution:

EMABLE SER

Resets the active state for an [ZEil statement. Programs that include it =i processing of HP-IL
SRQ (Service Request) messages must execute EHAELE ZFi at the end of the processing to allow an-
other SRQ message to be processed (refer to IiH ZRE).

89

90 Appendix D: Support Functions and Editing Keys

ENDLINE$ — return current endline string:

EMOLIHES

Returns the current EOL sequence (established with the ERHIL I HE statement) as a string.

ESC-I/R ON/OFF — turn modified on or off:

K
OFF

it}

This feature defaults to the iti state and sends escape sequences to control the cursor of the current
DIZFLAY 1% device. When you press the key, ESC Q is sent to change the cursor on the external
display to the insert mode; ESC R is sent to return the cursor to replace mode. Type EZC—1 <F {IFF to
suppress the output of ESC Q and ESC R. For some external display devices, you will need to turn this
feature off to avoid getting a false echo on the display in the insert mode.

IOSIZE? — return current [ii%1ZE setting:

e
e

Returns the current I IZE setting as a number. The value returned represents the number of bytes
that the EMTEF buffer will hold — except that a zero value indicates that I 1% I FE is set to its default
value (256 bytes).

KEYBOARDS$ — return the device code of the current keyboard device:

EEYBOREDS

Returns the device code of the HP-IL device currently assigned as the keyboard. The null string is re-
turned if no device is assigned.

KEYBOARD IS — assign device for keyboard entry:

EEYEBEOARED IS ' 1 device code'

device code — the device code of an HP-IL device to be assigned as the keyboard (may be the device code
of an interface to which a keyboard or terminal is connected).

KEYEOARD I5 can be used to assign an external device as the keyboard. You can assign any keyboard
device capable of sending ASCII characters as data bytes. If the keyboard device is not HP-IL equiped,
you can connect it to the loop through an appropriate interface. The HP-75 keyboard is not disabled, so
you may enter characters from the external keyboard, from the HP-75 keyboard, or both.

Appendix D: Support Functions and Editing Keys 91

All 256 decimal keycodes may be sent from the external keyboard if it is capable of generating them. Refer
to the manual for your keyboard device to determine which keys generate which keycodes. The standard
ASCII characters (decimal codes 0 through 127) can be transmitted from the external keyboard by simply
pressing the appropriate keys. For these characters, the external keyboard uses the same keycodes as the
HP-75. For other characters, you will have to determine which key on the external keyboard generates the
keycode for the desired HP-75 key. For example, key number 132 on the HP-75 is the key. If the
key on your external keyboard generates keycode 132, it will map directly to the HP-75 key. However,
suppose the roll-up key on your external keyboard generates keycode 132. In this case, roll-up on the
external keyboard maps to [¢] on the HP-75 keyboard.

Most keyboard devices use escape codes to represent editing keys such as the cursor keys, roll-up, roll-
down, etc. The HP-75 can interpret escape codes by means of a TEXT file named KFE'YMHAF. The
FEYMAF file contains one line for each key to be mapped. Each line consists of a line number that
corresponds to the desired HP-75 keycode and a character that is used to generate it (comments may be
appended if desired). The following kE"'[MFAF file is given as an example:

When an ESC character is received from the external keyboard, the next character received is “looked-
up” in the KEYHMAF file. If the character is found, the corresponding line number is used as a keycode.
Suppose that your EEYEDIARD I5 device sends ESC-A when you press its (¢] key. The HP-75 looks up F
in the #E¥MAF file and finds it in line 132. The keycode 132 is generated from the kE ¥ [MAF file, execut-
ing (#] on the HP-75.

You may also send escape codes from the external keyboard by pressing followed by the desired
character. If you type Fi on the external keyboard, keycode 132 ([#]) is generated by the HP-75. If
you press E, keycode 133 ([¥]) is generated, and so forth. If you press twice on the external
keyboard, ESC is generated by the HP-75.

Note: The i E ' # function does not work for an external keyboard defined with K EYEOARD T2, The
key will not stop a program if KEvEOFARD % is active unless the program receives it as part
EEYEOMARED I3 will also be disabled if an error occurs while a key is being transmitted. If is
pressed, only the HP-75 keyboard, not the external keyboard, will be affected. The computer will not
timeout when EEYEOARRED % is active.

You may use DI ZFLAY I% to define an external display device as well as KEYEOAED 13 to define an
external keyboard device. If you are connecting a terminal to your HP-75, you may execute [l I ZF LAY IS
and KEYEOARD IS to the same device code (the device code of the terminal or its interface). The termi-
nal will act as a display when characters are sent to it, and as a keyboard when a character is expected by
the HP-75. If you are using an external display, you should also refer to “ESC-I/R ON OFF” in this
appendix.

92 Appendix D: Support Functions and Editing Keys

LISTIO$ — list HP-IL device codes in string:

POT T T e
LIsTIios

Returns a string listing the device codes of all HP-IL devices in the loop in order of ascending address.
Device codes are preceded by colons and separated by commas, for example: : {1, :F1.

OFF SRQ — turn off HP-IL service request response:

Clears the i :
edited, purged, or renamed. Fallure to do so may cause problems.

ON SRQ — respond to HP-IL SRQ messages:

i statement & statement] ...

statement — any statement valid after a THEH.

Similar to iH EREREORE and O TIMER. On receipt of an SRQ (Service Request) message, the program
branches to the i ZF i statement (after the entire current line has been executed). Once the i SR
statement is done, execution returns to the line after the one where the SRQ message was received. iH
ZE& will not mterrupt itself, and must be reenabled with an EHFAELE SR statement before it will again
branch. ZFF SFE{ permanently cancels an 1M ZFE and should be done as part of the end-of-program
cleanup routine.

PRINTER$ — list current printer devices:

Returns a string listing the device codes of the currently assigned printer devices (in order of ascending
address). For example: : F 1, :FZ.

REASSIGN — change device code of an HP-IL device:

™

ASSIGH ' idevlt T ' idev2!

devl — old device code.
dev2 — new device code.

Change the device code of the specified device to new device code.

Appendix D: Support Functions and Editing Keys 93

RIO — read data from an HP-IL register:

F I <register number

register number — an HP-IL register number (0 through 7).

Reads data from the specified HP-IL register. = THHIE"Y must be set to [if for F I to function properly.

WIO — write data to an HP-IL register:

W I register number . data

register number — an HP-IL register number (0 through 7).
data — byte of data to be written (MOD 256 is performed).

Writes data byte to specified HP-IL register. ZTHMHIIEY must be in the i} state for proper operation.

Advanced Programming Support Functions

The functions that follow are useful not only in I/O programming, but in advanced programming applica-
tions in general.

Note: Functions that manipulate ASCII strings will accept any ASCII character in an input string. Up-
per and lower case letters have different ASCIl decimal codes and are interpreted as different ASCII
characters. Functions that manipulate hexadecimal strings will accept the characters & through =, A
through F, and = through f in an input string (upper and lower case letters are equivalent in a hexa-
decimal string).

AAND$ — AND of two strings:

ARMOEC "string 1", 'string 2"

string 1 and string 2 — ASCII character strings.

A bit-by-bit logical AND is performed on the bit patterns of the corresponding characters of the two
strings (the strings are left justified). The output string consists of ASCII characters that represent the
resulting bit patterns. The length of the resulting string is equal to the shorter input string.

94 Appendix D: Support Functions and Editing Keys

ADJUST — set adjust factor for clock:

FADLEET " factor!

factor — a string that starts with a + or ~ and contains exactly 14 hexadecimal characters that represent
the adjust factor.

Sets the clock adjust factor to the specified value. Specify + to make the clock run faster or ~ to make the
clock run slower. The string must meet the size and format requirements, and the minimum absolute value
that may be entered is 1 @& H. A smaller value (except 0) will cause an error. A zero value will negate the
clock adjustment. The value specifes the number of 2* second intervals between 1/4 second adjustments
(4+/—) to the system clock. The proper sequence follows:

1. Set the time.
2. Execute E=HCT twice to set the flags.

3. Execute A.JUET to set the factor.

ADJUST$ — show current clock adjust factor:

HOJISETE

Returns a string that starts with + or — and contains 14 hexadecimal digits representing the current
adjust factor. + means the clock is slow (adjusting to a faster rate). — means the clock is fast (adjusting to
a slower rate). A zero value means no adjustment is being made (clock running on time).

AOR$ — OR two strings:

AOREC "string 1, 'string 2" &

string 1 and string 2 — ASCII character strings.
A bit-by-bit logical OR is performed on the bit patterns of the corresponding characters of the two strings.

Trailing characters of the longer string are ORed with CHF % & . The output string consists of ASCII
characters that represent the resulting bit patterns.

AROTS$ — rotate a string left or right by bit count:

AREOTEC "string ' . count

string — ASCII character string to be rotated.
count — number of bits to rotate (to right if +, to left if —).

Rotates an ASCII string on a bit level, considering the string to be a binary number with a length that is a
multiple of eight bits. Rotates the bits of the given string by the number of bits specified in the bit count.
Bits rotated off one end are added on at the other end. Returns an ASCII character string that represents
the rotated bit pattern. The resulting string will have the same length as the input string.

Appendix D: Support Functions and Editing Keys 95

ASC$ — convert hexadecimal string to ASCII:

AZCEC " hex string '

hex string — string of hexadecimal characters.

Converts hexadecimal characters to ASCII decimal codes, then returns the string of ASCII characters.
Note that two hexadecimal characters specify one ASCII character. If the input string does not have an
even number of hexadecimal digits, a leading zero is added.

ASCII$ — return string of ASCII characters in specified range:

ASCII$EC 'start' . 'end '

start — starting ASCII character. The null string specifies CHE$ ¢ 6.
end — ending ASCII character. The null string specifies CHRE$ ¢ 2551,

Returns a string of ASCII characters in the specified range (inclusive). If start is greater than end, the
string is reversed.

ASHF$ — shift a string left or right by bit count:

HZHF £ 'string ' . count, bit

string — string of ASCII characters to be shifted.
count — number of bits to shift (to right if +, to left if—).
bit — value to shift into the bit pattern (1 or 0).

Operates on an ASCII string at a bit level, considering the string to be a binary number with a length that
is a multiple of eight bits. Shifts the bit pattern left or right by the bit count, shifting in 0’s or 1’s as
specified by the bit parameter. If count is +, the bit pattern is shifted right, and leading 0’s or 1’s are
shifted into the pattern. If count is —, the bit pattern is shifted left, and trailing 0’s or 1’s are shifted into
the pattern. Returns an ASCII character string that represents the shifted bit pattern. The resulting
string will have the same length as the original string. An example should clarify this:

ASHFFC W, 1,82

The string is the ASCII character 14 (decimal code 87). The bit pattern for I is “01010111”. The count is 1,
a positive number, so the bit pattern is shifted to the right one space. The bit value is “0”, so 0’s are
shifted in to replace the leading characters. The resulting bit pattern is “00101011” (note that bits shifted
past the end are lost). The corresponding decimal code is 43, and the returned string is the character +.

96 Appendix D: Support Functions and Editing Keys

AXORS$ — exclusive OR of two strings:

FOREC 'string 1' ., 'string 2" 2

string 1 and string 2 — ASCII character strings.
Performs a bit-by-bit logical EXOR on the bit patterns of the corresponding characters of the two strings.

Each trailing character of the longer string is EXORed with ZHF# ¢ 255 . The output string consists of
ASCII characters that represent the resulting bit patterns.

BINAND — bit-by-bit logical AND of two integers:

ETHAMOCinteger , integer

integer — range: —32768 to + 32767

Returns the 16-bit logical AND of two integers. Each bit of the result is calculated using the correspond-
ing bit of each argument.

BINCMP — binary complement of integer:

EIHCHMEF Cinteger s

integer — range: —32768 to +32767

Returns the 16-bit binary complement of an integer. Each bit of the result is the inverse of the
corresponding bit in the argument. If the argument has less than 16 bits, leading zeros are assumed.

BINEOR — bit-by-bit exclusive OR of two integers:

EIHEDE Cinteger , integer

integer — range: —32768 to +32767

Returns the 16-bit binary exclusive OR of two integers. Each bit of the result is calculated using the
corresponding bit of each argument.

BINIOR — bit-by-bit inclusive OR of two integers:

EIHIDORE Cinteger, integer?

integer — range: —32768 to +32767

Returns the 16-bit binary inclusive OR of two integers. Each bit of the result is calculated using the
corresponding bit of each argument.

Appendix D: Support Functions and Editing Keys 97

BIT — test bit in integer:

EIT cinteger . position :

integer — range: —32768 to +32767
position — bit position to be tested (0 to 15). Bit number zero is the rightmost bit.

Returns value of specified bit in an integer argument. Result is “1” if bit is set, “0” if bit is clear.

BREAK — find next position of character in list:

ERERAK < 'list' , 'target' . start:

list — string of characters to be accepted in search.
target — string to be scanned.
start — position in target string to scan from.

The target string is scanned from the specified starting position until a character from the list string is
found. Returns the position number of that character. If no listed character is found, returns 0.

BTD — convert binary string to decimal number:

BTOC "string ' 3

string — string to be converted (represents binary number) range “0” to “1111111111111111”.

Returns decimal value of binary representation contained in the string argument.

BUF$ — return contents of specified buffer:

ELUF$C ' buffer'

buffer — 1 (input buffer) or L (LCD buffer).

The entire contents of the specified buffer are returned. The returned string is 96 characters long.

98 Appendix D: Support Functions and Editing Keys

CALL — call basic program with parameters:

CALL *filenamel : device code]' [:]+ parameters

filename — name of program. If a string variable is used to name the file, a semicolon must precede the
parameters list. Otherwise the semicolon is optional.

device code — device code of device where program is located.

parameters — list of actual parameters to pass.

A mainframe extension that allows the passing of variables to and from the subprogram named in a Z L. L.
statement. This statement calls a basic program and passes the variables to it. The results are passed back
through the same variables. The variables may be passed in two forms:

e Passed by reference: Provides bidirectional access to the values of the variables. Values of variables
may be updated by the subprogram, and such updates are reflected immediately in the main program.
For example: A, %, [1% <, », and ¢ » are all passed by reference.

e Passed by value: Provides unidirectional access to the values of the variables. The values of the vari-
ables in the calling program remain static during the execution of the subprogram. All expressions
and subscripted variables are passed by value. For example: =#% -2, %01, 53, 002, 1, and © &>
are all passed by value.

An example of a Fi.L. statement (with parameters) would be:

PHprog ' CRLCASEDL VDI GECL L DD

COPY “:BCRD’ — recover bad card with missing tracks:

Ry filename : BURED[.-password]’ Tt ' filename '

filename — a valid filename for a BASIC or TEXT file.
password — the password of a private file on the card.

{ ¢ PP RCRED works just like COFY ' DFRRED Y unless you press [ATTN] or[SHIFT][ATTNJ before all of
the tracks of the card have been read. The filename parameter is required for :{i1F*% ' : BECRED ', and must
match the name on the card (use CAT CHFED to determine the proper name). When the copy process is
allowed to go to normal completion, the result will be a normal copy. If there are errors, the partial file is
purged, just as with C0OFY * : ZARD . However, if the copy is aborted with the key, the file copied
up to that point is manipulated into a valid file and retained. The new file will contain as many lines of
the original file as could be recovered. This process only works for BASIC and TEXT files.

Note: If you are using a KEYEORRED IS device, you cannot use the external keyboard to abort
COFY ' rBCORD'. You must press the (ATTN] m key on the HP-75 keyboard.

Appendix D: Support Functions and Editing Keys 99

COUNT? — show current length of DI ZF or FEIHT output:

COUMT?C flag ' »

flag — [(DISP), or F (PRINT).

Returns the number of characters in the D' I ZF or FREIMT buffer (since the last time carriage-return
was sent).

Note: This function will not operate correctly for the [I =F buffer if L ILTH is set to INF; for the
FEIMT bufferif FUIDTH is set to INF.

DEFKEY$ — return current key definition:

DEFEEY % 'character '

character — character representing key wanted (may be specified with the CHF# function).

Returns the key definition string for the specified key as stored in the keys file. If the key was defined
with a trailing semicolon, the first character will be a semicolon. Otherwise the first character will be
blank.

DELAY? — return current delay setting:

Returns the current delay setting. The returned value may not be exact due to some internal round-off
error. For example: DELAY . & @ ODISF DELAYT returns . 533375585238,

DO ERROR — cause given error:

error# — number of error to cause.

Causes the specified error condition to occur. If the error# field is left blank, the last error is caused.
Program execution is stopped, EFRFH is set to the specified error number, and the error message is dis-
played. ROM errors will not display error messages, but EEREOFE : =+ or # will be displayed. Refer to
appendix E for I/O ROM error definitions.

100 Appendix D: Support Functions and Editing Keys

DTB$ — convert decimal number to binary string:

OTE#$ Cnumber

number — number to convert (—32768 to 32767).

Rounds decimal number to the nearest integer and returns the binary representation as a string.

DTH$ — convert decimal number to hexadecimal string:

OTH* Cnumber

number — number to convert (—32768 to 32767).

Rounds decimal number to the nearest integer and returns the hexadecimal representation as a string.

DTO$ — convert decimal number to octal string:

OTO#F Cnumber

number — number to convert (—32768 to 32767).

Rounds decimal number to the nearest integer and returns the octal representation as a string.

ESC$ — return string of escape-character sequences:

ESl#EC string'

string — string to be escaped.

Returns string with ESC added in front of each character.

EXIT — leave a FOR-NEXT loop early:

E=1T index variable name

index variable name — the name of the FF variable to be exited.

Causes program execution to branch to the statement following the HE T that corresponds to the index
variable name. For example: EXIT would cause a branch to the statement following HE*T . If E=IT
is included in a multiple-statement line, statements that precede the E 1T will be executed, but the
E+IT will cause an immediate branch, skipping the statements that follow it in the line. If HE:T is in a
multiple-statement line, execution will continue with the statement after the HE T in that line.

Appendix D: Support Functions and Editing Keys 101

FILL$ — fill a string:

FILLF< "left' , "middle' . 'right' ,size:

left — left fill string.

middle — string to fill around.

right — right fill string.

size — size of string to be returned.

Places the middle string in a string of the specified size, and fills in on the left and right sides with the left
and right strings, respectively. Each fill string is duplicated (if necessary) to fill the space from the left or
right margin to the middle string. Odd pieces of the fill string will bracket the middle string since the fill is
from the edges in, both sides. If both left and right strings are specifed, the middle string will be centered
(odd space to the right). If the left string is null, the middle string will be left justified. If the right string is
null, the middle string will be right justifed. If both strings are null, the middle string will be right and left
justifed (spaces will be expanded to fill the size). If the middle string is longer than the size, then the
middle string is returned truncated to that size.

FIND — find specified occurrence of substring in string, with wild card:

FIHDC 'subject' . 'target' . '[wild]' .occur:

subject — substring to find (with wild cards).

target — string to scan for occurrence of subject substring.

wild — character to use as wild card in subject substring.

occur — an integer specifying the desired occurrence of the subject substring.

Finds the specified occurrence of the subject substring in the target string. The wild character (if specified)
will match any character, and overlapping occurrences are counted. If the pattern is not found, the re-
turned value is zero, otherwise it is the position of the first character of the match. For example, in HHHH
the second occurrence of HHH is at position 2 and there is no third occurrence. This match could also be
made with the subject string H—~, where — is the declared wild character.

FLAG$ — set specifed bit to specified value in given string:

FLAG# < 'flag string ' | bit# , value

flag string — string being used as an array of flag bits.
bit# — number of bit to set (negative numbers default to zero).
value — 0 or 1. Set the bit to the specified value.

This will set the specifed bit to the specified value and return the new string. If the bit is outside the

current string length, an error will result. The flag string may be initialized with A= #, for example:
F£=AZC#¢ '@BFFA"' ». Bit number zero is at the extreme right.

102 Appendix D: Support Functions and Editing Keys

FLAG? — test specified bit in string:

FILLRGY O 'flag string ' , bit#

flag string — string being used as an array of flag bits.
bit# — number of the bit to be tested, (negative numbers default to zero).

Returns 0 if bit is clear, 1 if bit is set. Bit number zero is at the extreme right.

FOR — F i allowed after a THEH or EL SF:
The I/0 ROM provides a modified FiIF that works just like the mainframe ¥ {iF, except that it is allowed

after a THEH or an EL.ZE in a multiple-statement line. F IF: may be used in multiple-statement lines as
shown in the following two examples:

The I/O ROM is required only while such a statement is being written into a program. Once the program
has been written, it can be run even if the ROM has been removed.

GOSUBX — :i%LiE to a variable as a line number:

= numeric expression

numeric expression — numeric expression to be evaluated and used as line number. Expression is rounded
to an integer (MOD 10000). Negative numbers default to zero.

Performs a &ELIE to the line number derived from the numeric expression, or the line after that if that
line does not exist.

GOTOX — z(1T1 to a variable as a line number:

0T 0= numeric expression

numeric expression — numeric expression to be evaluated and used as line number. Expression is rounded
to an integer (MOD 10000). Negative numbers default to zero.

Performs a 0171 to the line number derived from the numeric expression, or the line after that if that
line does not exist.

Appendix D: Support Functions and Editing Keys 103

HAND$ — AND of two hexadecimal strings:

HAMOFC "string 11, 'string 2

string 1 and string 2 — two hexadecimal strings.

A bit-by-bit logical AND is performed on the bit patterns of the corresponding characters of the two
strings (the strings are left justified). The output string consists of hexadecimal characters that represent
the resulting bit patterns, and is equal in length to the shorter input string. If an input string does not
have an even number of hexadecimal digits, a leading 0 is added (before left justification).

HEX$ — convert ASCII string to hexadecimal:

HE % " ASCII string *

ASCII string — string of ASCII characters.

Returns string of hexadecimal characters that represent the bit pattern specified by the ASCII string.

HOR$ — OR two hexadecimal strings:

HiEE < 'string 11, 'string 2"

string 1 and string 2 — hexadecimal character strings.

A Dbit-by-bit logical OR is performed on the bit patterns of the corresponding characters of the two strings.
Trailing characters of the longer string are ORed (in pairs) with “00”. The output string consists of hexa-
decimal characters that represent the resulting bit patterns. If an input string does not have an even
number of hexadecimal digits, a leading zero is added to it before the OR is performed.

HROT$ —rotate a hexadecimal string left or right by bit count:

HEDTHEC tstring ' . count

string — hexadecimal character string to be rotated.
count — number of bits to rotate (to right if +, to left if —).

Rotates a hexadecimal string on a bit level, considering the string to be a binary number with a length
that is a multiple of eight bits. (If the input string does not contain an even number of hexadecimal digits,
a leading zero will be added.) Rotates the bits of the given string by the number of bits specified in the bit
count. Bits rotated off one end are added on at the other end. Returns hexadecimal character string that
represents the rotated bit pattern.

104 Appendix D: Support Functions and Editing Keys

HSHF$ — shift a hexadecimal string left or right by bit count:

HzZHF %< 'string' , count , bit

string — string of hexadecimal characters to be shifted.
count — number of bits to shift (to right if +, to left if—).
bit — value to shift into the bit pattern (1 or 0).

Operates on a hexadecimal string at a bit level, considering the string to be a binary number with a length
that is a multiple of eight bits (if the input string does not have an even number of hexadecimal digits, a
leading zero will be added). Shifts the bit pattern left or right by the bit count, shifting in 0’s or 1’s as
specified by the bit parameter. If count is +, the bit pattern is shifted right, and leading 0’s or 1’s are
shifted into the pattern. If count is —, the bit pattern is shifted left, and trailing 0’s or 1’s are shifted into

the pattern. Returns a hexadecimal character string that represents the shifted bit pattern. An example
should clarify this:

HEHF £ REE , -3, 15

First, a leading zero is added to make an even number of hexadecimal digits. The string becomes = E:.
The bit pattern for this string is “0000 1010 0101 1011” The count is —3, so the bit pattern is to be
shifted three spaces left, with 1’s shifted in on the right. The shifted bit pattern is “0101 0010 1101 1111”.

The hexadecimal string that represents the shifted pattern is SZ[IF, and this string is returned by
HEZHF #,

HTD — convert hexadecimal string to decimal number:

HTLC "string '

string — hexadecimal string to convert, range “0” to “FFFF”. Limited to the characters “0” through “9”,
“A” through “F”, or “a” through “f”.

Returns the decimal numeric value of a base 16 representation contained in the string argument.

HXOR$ — EXOR two hexadecimal strings:

HeORE$ < "string 7', 'string 2' 2

string 1 and string 2 — hexadecimal character strings.

A bit-by-bit logical EXOR is performed on the bit patterns of the corresponding characters of the two
strings. Trailing characters of the longer string are EXORed (in pairs) with “FF”. The output string con-
sists of hexadecimal characters that represent the resulting bit patterns. If an input string does not have
an even number of hexadecimal digits, a leading zero is added to it before the EXOR is performed.

Appendix D: Support Functions and Editing Keys 105

INSTALL — load private file from tape (created by MiZCF)

IMZTARLL 'filename : device code'

filename — filename of desired file.
device code — device code of desired tape drive.

Copies a private file (created by MZOF) from tape to RAM. This is the only way to retrieve a private
MCOFY tape file (refer to MCOFY).

LCD ON/OFF — turn LCD on/off:

LCD OH specifies normal LCD operation. L[OFF prevents anything further from being displayed on
the LCD. L0 OFF remains in effect until LC0 OH is executed or the program stops.

LEFT$ — return left portion of string:

LEFT#< 'string ' , count

string — input string (left part to be returned).
count — number of characters to be returned.

Returns the number of characters specified, starting from the left end of the string. If count is greater
than the length of the string, the right end is padded with blanks.

LTRIMS$ — left trim a string:

LTEIMEC "trim* , 'target' »

trim — list of characters to trim.
target — string to be trimmed.

Trims the listed characters off the left edge of the string until a character is encountered that is not in the
trim list.

LWRCS$ — convert string to lowercase:

LWRECEC "string '

string — string to be converted.

The characters “A” through “Z” are converted to lowercase. Other characters are not changed.

106 Appendix D: Support Functions and Editing Keys

MAP$ — map “from” characters into “to” characters in target string:

MHFEC "from' , 'to' , ‘target' :

from — list of characters to find.
to — list of characters to replace the from characters.
target — string to operate on.

Scans target string, searching for any from characters. Each from character found is replaced with the
correspondmg character from the to list. All other characters are passed through unchanged. For example

MAFEC "hact, 'de ', "abofde ' will return the string = ¥ <=, FAF % maps & into = and b into
The = goes to null, and ¥ = is passed through. Note that MAF# dlfferentlates between upper and lower
case characters For example: MAF&< "Aa', "bo', "Hardwark ' s returns the string b

MARGIN? — return current right margin setting:

MAREGIHY

Returns the current right margin setting as a decimal number.

MCOPY — duplicate tape onto multiple tapes:

N H _ :slave[. :slave]...
MOOryY e]:master’ Tii ® -

master — device code of source tape drive (MH=normal, F =private).
slave — device code of a destination tape drive (ALL will find all of the drives).

Copies the entire contents of the master tape onto all of the destination tapes. Tapes are first initialized
unless the colon before master is replaced with a period. The resulting tapes will be made private if you
specify a ' in the [MZ0FY statement (only BASIC and LEX files will be private). The files of the ¥ (i
tape can be read into memory with the IH%THL L command (see IHZTHLL).

Note: The slave tapes will be exact copies of the master tapes. You cannot use HiiiF" to append
data to an existing tape. You should only specify a period before master if you have already initialized
the destination tapes.

MID$ — return middle portion of string:

MIDEC "string' | start. count:

string — string of which to return middle portion.
start — starting position.
count — number of characters to return.

Returns specified number of characters from the given string, starting from the start position. If the count
passes the end of the string, blanks are appended to the end.

Appendix D: Support Functions and Editing Keys 107

NEXT — HEXT allowed after a THEHM or ELSE:

The I/O ROM provides a HE T that works just like the mainframe HE T, except that it may be used
after a THEH or ELZE in a multiple-statement line. For more details, refer to FIF.

NSCR$ — remove underscoring:

-i 'string '

string — string to be modified.

Removes the underscore bit from all characters in the string and returns the string without the
underscoring.

OTD — convert octal string to decimal number:

07T toctal

octal — string to be converted, range “0” to “177777”.

Returns the decimal numeric value of the octal representation contained in the string argument.

PWIDTH? — return current FUIOTH setting:

Returns the current FI{ I TH setting as a number. Returns 9.99999999999E499 if the setting is IHF.

REPL$ — replace substring in target string with another:

REFLEC "from' . 'to’ . 'target' , '|wild]"® ,occur:

from — old substring to replace.

to — new substring.

target — string to scan.

wild — character to use as a wild card in the from substring.

occur — an integer specifying the occurrence of the from substring to replace.

Scans the target string for the specified occurrence of the from substring. The wild character (if specified)
will match any character, and overlapping occurrences are counted. If a match (with or without a wild
character) is found, the specified occurrence of the from substring will be replaced with the to substring (or
deleted if the to substring is null). If the from substring is null, the to substring will be inserted in front of
the occur character in the target string. If no match is found, the target string is returned unchanged. For
example: REFL#('a--"', 'b', 'zazef', '=', 3 will return the string zak. The first, second,
and third occurrences of =—— are ===, s==, and 2=, respectively. The third occurrence, z= 1, is re-
placed with k.

108 Appendix D: Support Functions and Editing Keys

REV$ — reverse string:

FEWEC 'string '

string — string to be reversed.

Returns reversed string, (REZDO becomes DCER).

RIGHT$ — return right portion of string:

EIGHTE 'string' , count:

string — string of which right portion is to be returned.
count — number of characters to return.

Returns the specified number of characters at the right end of the string. If the count is greater than the
string length, blanks are added on at the left end.

ROT$ — rotate string by character count:

FOTHC 'string ' . count

string — string to be rotated.
count — number of spaces to rotate (to right if +, to left if —).

String is rotated right or left by specified count. Characters rotated off one end are added on at the other
end. Returns rotated string. For example: RO T# ¢ " AECD ' , ~ 1+ returns the string BEDA.

RPT$ — repeat string.

FFT#: ' pattern' , count

pattern — pattern to be repeated.
count — number of times to repeat the pattern.

Concatenates pattern the number of times specified by count and returns the resulting string.
EFT#:'AE"' , 21 returns the string AEAEAE.

RTRIM$ — trim trailing characters:

ETEIMEC "trim' , 'string' &

trim — list of characters to trim.
string — string to be trimmed.

Trims trailing characters listed in the trim list. All listed characters to the right of the last non-listed
character are trimmed. For example: ETEIM*: ', ., ', "abc,de, .., ' returns the string abc-, de.

Appendix D: Support Functions and Editing Keys 109

SHELL — automatic run of programs by name:

CH

SHELL OEF

Turns SHELL mode on or off. If SHELL mode is on, CHLL 'filename' is automatically executed for any
line that is a valid filename for a BASIC file. For example, if there is a BASIC file named AFFOG in
memory, typing AFREOG will cause CALL 'AFREOG"' to be executed. ZHEL L mode also can be used
to execute a CHLL with parameters (refer to CALL ». For example, typing EFROGCH, & will

cause CHLL 'EFEOG'CA, = to be executed. Note that EFFIZ ¢ A, » must be typed with no embed-
ded blanks.

SKEY$ — wait for significant key:

SREYE

ZKEY#, like KE'#, returns the character associated with any pressed key or keystroke combination,
allowing “live” keyboard branching. However, %k E* # does not return a character until a key is pressed
(KE'# will return the null string if no key is depressed while it is being executed). This allows a running
program to “wait” for a pressed key.

There are some keys that do not cause =k E ¥ # to return a character. You may press to fetch
an error message if an error occurs before the =k E''# statement. Also, the [«] and keys (and their
variations) are not returned, but scroll the LCD.

SPAN — find position of first character not in list:

SFAMC ist' , 'target' | startl

list — list of characters to pass over.
target — string to be scanned.
start — starting position in target string.

Scans target string and returns the position number of the first character found that is not in the list
string. The scan starts at the specified start position, and continues to the end of the string. If no unlisted
character is found, zero is returned. The function is inclusive. If the starting character is not listed, the
start position is returned.

110 Appendix D: Support Functions and Editing Keys

STATUS — set status of system flags:

STHTUEL *flagset'

flagset — 12 character string. Characters indicate settings for flags:
1. A = ALARM OH, &2 = ALAEM OFF

L= AUTOLOOR OH, 1 =

UTOLOOR OFF

o

I =ESC-TsF OM, 1 = ESC-1I-F OFF
o= SHELL OH, = = SHELL OFF

B o= BEEPF OM, b = BEEF OFF

I

DEFRULT OH, o ODEFAULT OFF
Lo= STAHMDEY OH, = = STHHDEY OFF

T = TIMEQUT OH, + = TIMEDUT OFF

© ® N ok N
I

Vo= WERIFY O, »w = VERIFY OFF

H
o
I

—
—

—
ro

o= MOY mode, I = DMY mo

13. A = AMAFH mode, ¥ = 24 hour mods

Any flag may be left in its present state by including a period (.) as a place holder in the string. Strmgs
shorter than 13 characters do not change trailing flags. For example: % T T ' CeED sets FLARM
04, leaves AUTOLOOF, ESC~1-F, and “HELL in their present state, sets FEFF {i1FF, sets [IF
1, and leaves the trailing flags in their present state.

STATUS$ — show current system flag settings:

STHTUSE

Returns flag string representing system flag settings as set with = THT11%. The format is the same as for
ZTHTUE (see above).

Appendix D: Support Functions and Editing Keys 111

STRING ARRAYS — dimensioning and referencing:

The I/O ROM provides the capability to declare string arrays. String arrays may be one or two dimen-
sional, and consist of string elements of specified length. The syntax of the [' I 1 (dimension) statement is:

DIM A%dcol, row:|[size]

col — column upper bound.
row — row upper bound.
size — size of element (all elements have the same size).

Dimensioning a string array is similar to dimensioning a numeric array. The column and row upper
bounds are specified in the [111 statement, but the actual number of elements is affected by IFTI0H
EFSE just as for numeric arrays. The following [I 1 statement would dimension a one-dimensional string
array with six elements, each a string 10 characters long (assuming the default of IFTIOH EAZE ©):

g niMAsdsaliald

You can reference a dimensioned string array as follows:

FF = FEdcol, row:|[start, [stop]]

col — column specifier.

row — row specifier.

start — start position in element.
stop — stop position in element.

If you do not specify a start and stop position, the entire element is copied. For example, E# = A1, 55
copies the element A%< 1.5 into E#. If start and/or stop are specified, only the specified portion of the
element is copied. For example, E# = A1 .52, 4 copies characters two through four of the element
FECL, S into B¥.

SUB — header for subprogram:

ZUIE name ' formal parameters

name — name of subprogram.
formal parameters — list of parameters to be passed.

Each subprogram must have a =!IE statement as the first line in the file (only one subprogram may be in
a file). =UE defines the beginning of the subprogram and the parameters expected by the subprogram.
Parameters within the subprogram must match the passed parameters in type. Formal parameters must be
used, for example: ¥, A1<, s, 0%, and F1%:<, ». The name field must match the filename of the sub-
program. The SUE statement is used in conjunction with CHLL.

112 Appendix D: Support Functions and Editing Keys

SUB$ — return middle portion of string:

SUBEC "string ' | left, right

string — string to process.
left — left position.
right — right position.

Returns the portion of the string bounded by the /left and right positions (inclusive). If left is negative,
blanks are added in front. If right is larger than the string, blanks are added at the end.

TCAT$ — CHAT# of a tape drive:

TCATH ' 1 device code' | file#

device code — device code assigned to tape drive.
file# — number of desired file.

Returns catalog entry for the specified file as a string (like AT #). If file does not exist on tape, returns
null string.

TEMPLATES$ — return template string with protected fields:

TEMFLATE% 'protect templ ' . 'trail '

protect templ — protected template string up to 96 characters long.
trail — trailing field flag (F = protected, LI = unprotected).

Returns a protected template string with unprotected fields that the user may change. Specify protected
fields with underlined characters (use (17R]). The underlining will not appear in the returned string.
Use characters without underlining to specify unprotected fields. The trailing field may be protected, or
left unprotected, by specifying F or LI for trail. For example:

TEMFLATES$: 'Time_= hhimm__Temp_ = dd F', P
returns the string Time = hhimm Temp = dd F. You can change the fields ki, mm, and i, but all
other characters are protected. The trailing field is also protected because F is specified. You can tab right
and left from field to field with [TAB] and [SHIFT] [TAB]. The [CLR] key restores the original template.
When input is terminated with [RTN], the entire 96 character string (with user changes) is returned.
Termination with any other terminator (such as (ATTN]) causes the null string to be returned.

Appendix D: Support Functions and Editing Keys 113

TIMEOUT ON/OFF — set timeout mode:

- M
TIMEOUT OFF

M — allow timeout after five minutes.
[IFF — prevent timeout after five minutes.

STAHOEY OH-OFF will affect this setting. If TIMEQUT OH is done after a STAMHDOEY COH, the HP-75
will stay fully on for five minutes, then turn itself off. If TIMEOUT OFF is done after a STAMDOEY OFF,
the HP-75 will go into the partial power down state almost immediately, and will stay in this state indefi-
nitely. Normally you would want to execute = THHOE"Y OFF first if you are using TIMEQUT OH.-OFF.

TIMER? — return current timer interval setting:

TIMERT Ctimer number :

timer number — number of timer to be checked.

Returns the value of the specifed timer’s interval. Zero is returned if the timer is not declared.

TOBASE$ — convert number to specified base, return as string:

TOERZE# “number , base

number — decimal number (floating point format) to be converted.
base — positive integer (range: 2 through 36).

Converts decimal number to the specified base (2 through 36). Returns result as a string. Maximum string
length is 256 characters. Issues warning if the string is too long.

TODEC — convert string from specified base to decimal number:

TODECC 'string ' . base

string — string representing number to convert. Valid characters are: 0-9, A-Z, and a-z (characters must
be valid for the specified base).
base — positive integer (range: 2 through 36).

Returns decimal number in floating point format equivalent to the string representation in the specified
base.

114 Appendix D: Support Functions and Editing Keys

USCR$ — underscore string:

ECREC "string ' 2

string — string to be underscored.

Returns specified string, but with underscored characters.

USERMSG — send message to display and error buffer:

USERMEZE "message' L . error number 1

message — message to be displayed (maximum of 32 characters).
error number — error number to be reported with message.

The specified message is sent to the display and error buffer. The message may be recalled with
(until the next terminator key is pressed). If error number is non-zero and positive, the error
annunciator will be turned on, EEEF will sound, and you may recover the number with EREH. If error
number is zero or negative, the message will be displayed, but the error annunciator, EEEF, and ERREH
will remain unchanged.

VERIFY ON/OFF — set verify mode for card reader:

[

VERIFY AEFE

i — turn on verify mode for card reader.

IFF — turn off verify mode for card reader.

WEND? — show current window end:

WEHDT

Returns the current window end column as a number.

WIDTH? — return current HILDTH setting:

WMIDTH®

Returns the current LI I0OTH setting as a number. Returns 5. 2533353333 333E453% if the setting was
ITHF.

Appendix D: Support Functions and Editing Keys 115

WINDOW — set the LCD window start, end:

WIHDOOW [start] . end]]

start — start column: 1 through 32 (defaults to 1).
end — end column: 1 through 32 (defaults to 32).

Sets the start and end columns of the LCD window. The window setting remains until reset. When used
in a program, I I MO may be used to set up a field within which data may be displayed. Anything that
is outside the window, and that is sent to the display by a DIZF or FRIMT statement before the
HIHDOOL statement is executed, will remain “frozen” until the display is cleared by a CR/LF. To avoid
clearing the display, append a semicolon (;) to all II=F and FRIMT statements, and set HIDTH and
FWIDTH to IMF. The following program exemplifies the use of I I HIk:

18 DISP "dedds A 4 AL
A WIHDOM &,18

28 DIsk "123450

48 EHD

The program displays ### %% 1224544+ %% when it is run. You may scroll 1345 with the and (+]
keys. Type W IHDO to return the display to normal.

WKEY$ — wait for key, return any key pressed:

WEEY ¥

Works like EE'v# except that it will not execute until a key is pressed. Unlike ZkE“'#, it returns a

character for any key that is pressed (including (FET), (+], and [=)).

WSIZE? — show current window size:

HoIZE?S

Returns a number representing the number of columns in the current window.

WSTART? — show current window start:

WETRET?Y

Returns number of the starting column of the current window.

116 Appendix D: Support Functions and Editing Keys

File Manipulation Functions

The following functions provide enhanced file manipulation capabilities.

ADVANCE# — advance data item pointer in a file:

ADVAMCE# file number ; count , return variable

file number — number of data file (assigned with FZ3 I GH#).
count — number of items to skip.
return variable — variable to contain the number of items not skipped.

Moves data item pointer forward in the file specified by file number. Skips the number of data items
specified by count. If the end-of-file marker is encountered before count items are skipped, the number of
items not skipped (count less the number skipped) is returned as the value of return variable.

CAT# — return file number of nth A== I GH# file:

CHT#On?

n — 0 to 9999 (negative numbers default to zero).

Returns the file number of the nth A% IGH# file. Returns zero if the nth file does not exist. If file
numbers 1, 5, and 8 have been assigned, CAT#+ 1 returns 1, CHAT# {23 returns 5, and CAT# (3

returns &, If n = 0 is specified, the next available A== IGH# file number is returned. In the above
example, CHT# & would return Z.

CLEAR ASSIGN# — clear all A% IGH# assignments.

CLEAR ASSIGHE

All RZZIGH# assignments are cleared, recovering space in memory.

DELETE# — delete data items.

DELETE# file number . count

file number — specifies A== I GH# file to delete data from.
count — count of items from current position.

Delete specified number of data items from specified A== I GH# file. Number of items is specified by
count, beginning at the current position.

Appendix D: Support Functions and Editing Keys 117

FILE$ — show name of specified ASS I GH# file:

FILE#% <file number:

file number — number of A== IGH# file (0 specifies the current run file if any reads have been done, a
negative number specifies the current edit file).

Returns the name of the A== I GH# file specified by file number. Returns the null string if the file number
does not exist. Returns underlined name if the file has been assigned, but does not exist.

INDEX# — return current data pointer position in file:

ITHOE =# < file number:

file number — number of A== IGH# file (0 specifies the current run file if any reads have been done).

This returns the current data pointer position in the specifed file, in terms of the number of items from
the beginning of the file.

INSERT# — insert an item at the current data pointer:

IHSZERT# file number ; value

file number — the number of the desired A== IGH# file.
value — the value to be inserted into the file.

Inserts item into the file in front of the item at the current data pointer position. You can use
AOWAMCE# to position the pointer at the end of the line (after the last item), then insert an item at the
end of the line.

ITEM# — return pointer position in current line:

ITEM# < file number :

file number — number of A== IGH# file (0 specifies the current run file if any reads have been done).

Returns the pointer position in the current line, (the number of items from the beginning of the line).
Returns an error if the file has been purged.

LASTLN? — return line number of last line in specified file:

LASTLHTC ' [filename]' »

filename — name of file to be checked.

Returns the line number of the last line in the specified file. If you specifiy the null string for filename, the
line number of the last line in the current file will be returned.

118 Appendix D: Support Functions and Editing Keys

LINE# — return current line number in specified AZ = IGH# file:

L IHE# < file number :

file number — number of A== IGH# file (0 specifies the current run file if any reads have been done, a
negative number specifies the current edit file).

Returns current line number in the file specified by file number. If the file is not assigned, IHF is re-
turned. If the file has been assigned, but does not exist, a negative line number is returned.

LINELEN# — return the number of items in a line:

LIHELEHM# <file number . line number

file number — number of A== I GH# file.
line number — number of line in 5= IGH# file.

Returns the number of items on the specifed line, in the specified file. Text files return the character
count of the line.

PRINT# ... USING — FREIHT# to a TEXT file with L= IHG format:

i . N _ image list
FEIHT# file number[.line number] UZIHG

P 1 expression| . expression]...
line number P [P]

file number — A== IGH# file number (must be a TEXT file).

line number — line number to print to.

image list or line number — a valid list of image specifiers or the line number of a statement containing the
image list.

expression — item to print (a numeric or string expression).

FRIMTH# ... USIHG works just like FREIHT ... IS IHG, except that it “prints” to an AZE I GHE file.

REPLACE# — replace a data item in a file:

FEFLACE# file number ; value

file number — A== 1GH# file number.
value — value to replace old value.

Replaces item currently pointed to in the specified A== I ZH# file with the new item specified by value.

Appendix D: Support Functions and Editing Keys 119

SEARCH# — search for value in data file:

SEARCH# file number(, start[, end]] : value

file number — AZZ IGH# file number.
start — start line number for search.
end — end line number for search.
value — value to search for.

Moves item pointer in specified A% I GH# file to the first occurrence of the specified value. If start is not
specified, search starts at the current location. If end is not specified, search continues to the end of the
file. The pointer does not move and an error is issued if the value is not found.

SEEK# — position item pointer at a given location:

ZEEK# file number , [line number . litem number

file number — A== IGH# file number.
line number — line to position pointer in (optional).
item number — item number (in line if line number is specified; otherwise, in file).

Positions item pointer in the specified A5 S IGH# file to the specified position. If line number is specified,
positions pointer to item number in the specified line. If line number is not specified, item number is an
absolute item number, and the pointer is placed at that item, counting from the beginning of the file.

Additional Editing Keys

The HP-75 I/O ROM provides several additional editing keys. Some of these keys are redefinitions of
existing keys or key sequences, while others are entirely new. These editing keys cannot be reassigned to
other keys or key sequences, and the key sequences that execute these keys cannot be redefined with [IEF
EEY.

— clear display devices:
Press to clear all current display devices without affecting the contents of the input buffer.
Sends ESC H and ESC J to the current display devices.

— delete to beginning of line:

Press to delete all characters from the beginning of the current edit line to the position just
left of the cursor. If there is a line number adjacent the prompt, the beginning of the line is defined as just
after the line number. Otherwise, the line begins just after the prompt. The remaining characters are
justified left.

— literalize and underscore next key:

Works like (i7R], but with the addition of underscoring.

120 Appendix D: Support Functions and Editing Keys

(+] — find next occurrence of character on line:

Press the (CTL], [(SHIFT], and [+] keys (holding all three down), release all of them, then press a character
key. The cursor will move to the next (right) occurrence of the specified character on the current edit line.
The cursor does not move if no occurrence of the character is found.

SHIFT] [«] — find previous occurrence of character on line:

Works like the previous function, except that the cursor moves to the left instead of to the right.

— tab left or right in non-protected field:

enables you to tab from field to field. Press to move right, to move left. Stops on
the first character of the next or previous field (delimited by a space, semicolon, comma, or period). For
example, in the string abvc def ;aki, ikl .mro the tab points are &, o, o, i, and m.

Running an Autostart Program

The HP-75 I/O ROM enables the HP-75 to automatically run a program named Fi!TZ%T when the
computer is turned on (or turns itself on). This facility operates through the definition of key number 159.
If a program named AT T is present when the power is turned on and key number 159 has not been

defined, the function executes DEF KEY CHRE$C152:, "LREUH '"AUTOET ' 4", then runs the
AUTOET file. If key number 159 has been defined, its current definition will be executed when you turn
on the power. You can turn the feature off by executing LEF KEY CHE$C 1523, ' ' (establishing a null

definition). To turn the feature back on, execute DEF KEY CHEFC 152, "gRUH "AUTOST "#". If no
ALITOST program exists and key number 159 has not been defined, the feature remains inactive.

Note: Type to produce . Type to produce #.

The content of the FHUITIET program depends on your application. Simply write a program named
ALITOET that causes the HP-75 to do whatever you want it to do when it is turned on. The program will
run the next time the computer is turned on (unless key 159 is defined to do something else). You may
also define key 159 to run any desired program or function. For example, if you execute [IEF KE'Y
CHREFO1S2, "CATALL Y, CATALL will be executed each time the computer is turned on.

Appendix E

Errors and Warnings

The HP-75 I/O ROM displays the following error messages when the listed error conditions occur. Other
error messages and warnings are listed in the HP-75 Owner’s Manual.

Note: Errors 28, 42, 47, 52, 68, 82, 85, 88, 89, and 91 are HP-75 mainframe error messages. These
error messages have their usual meanings and may also be used by the HP-75 I/O ROM to indicate
the error conditions listed in the following table. Errors 120 through 129 are specific to the I/O ROM.

Number Message and Condition
28 record over f low
IS IZE is exceeded by the record being entered.
42 strirg too long
Device code of more than two characters entered in a FEHZZ IGH statement.
47 o matching FOR
No HE =T can be found to match the index variable of the E< I T statement.
52 inwalid IMAGE
Invalid field in an EHTEFR or QULITFLT image.
68 wrong file type
ECRD used on a file of a type other than BASIC or TEXT.
82 ztring e<pecied
EHTEFR image and variable type do not match (image is a string).
85 sxpr too big
Reported on key entry if KEYEIARD I5 has no room left for entering a key.
88 bad statement
An unrecognized mnemonic is used in a SEHM[I statement.
89 bad parameter
An 1/0 ROM statement or function detects an invalid parameter (form or content).
91 mizzing parameter
A parameter has been left out for a ZEHL mnemonic that requires one.
120 rumber sxpected
EHTEFR image and variable type do not match (image is numeric).
121 bad digit
A function that processes base dependent strings (HE ¥, HAMD ¥, etc.) encounters an
invalid digit for the current base.
122 bad template
Reported when TEMFLHATE# is given a template with no unprotected field.

121

122 Appendix E: Errors and Warnings

Number Message and Condition
125 data ot found
A file manipulation function cannot find the data requested.
126 tupe mismatch
ZHL.L and ZLIE parameters do not match in type.
127 bad param valus
ZALL value does not match =LIE parameter type.
128 inwalid subnams
ZLE name does not match filename.
129 bad param tupe

AL L parameter is not of valid type. Numbers must be FEFil
are not allowed).

L (IHTEGER and SHORET

Keyword Index

Keyword Page Description
AAMDOF 93 AND of two strings.
HODRESS 45,59 Address the loop and return number of devices.
ADJUST 94 Set adjust factor for clock.
ADJUETS 94 Show current clock adjust factor.
AOVAMCE# 116 Advance data item pointer in file.
FORF 94 OR two strings.
AROTH 94 Rotate string left or right by bit count.
HElE 95 Convert hexadecimal string to ASCII.
ASCIIE 95 Return string of ASCII characters in specified range.
AEHFE 95 Shift string left or right by bit count.
ASHLOOFRS 89 Assign loop and return string.
HESIGH LOOF 43,60 Force automatic assignment of loop.
AUTOLOOR OM-OFF 43,61 Assign loop at power on.
FEORE 96 Exclusive OR of two strings.
BIMAMHD 96 Bit-by-bit logical AND of two integers.
BEIHCHP 96 Binary complement of integer.
BEIHEOR 96 Bit-by-bit exclusive OR of two integers.
EIMIOR 96 Bit-by-bit inclusive OR of two integers.
BEIT 97 Test bit in integer.
EREEAFE 97 Find next position of character in list.
BETO 97 Convert binary string to decimal number.
BUFF 97 Return contents of specified buffer.
CALL 98 Call basic program with parameters.
CRTH 116 Return file number of nth AZS T EHE file.
CLEAR ASSIGHE 116 Clear all A% = IGH# assignments.
Copy oy BCEDY 98 Recover bad card with missing tracks.
COUHTS 99 Show current length of DI =F or FREIMT output.
119 Clear display devices.
119 Delete to beginning of line.
119 Literalize and underscore next key.
120 Find next occurrence of character on line.
120 Find previous occurrence of character on line.
DEFEEYSF 99 Return current key definition.

123

124 Keyword Index

Keyword Page Description

DELAY® 99 Return current delay setting.

DELETE# 116 Delete data items.

DEVADDOR 45,62 Return HP-IL address of specified device.

DEVARIDSF 48,63 Return Accessory ID as a string.

DEVIDE 48,64 Return Device ID as a string.

DEVHAMES$ 45,65 Return device code of specified device.

OIn 111 Dimension string arrays.

DISPLAYSE 89 List current display devices.

Lo ERREOR 99 Cause given error.

DTES 100 Convert decimal number to binary string.

OTH# 100 Convert decimal number to hexadecimal string.

ODTOF 100 Convert decimal number to octal string.

EHABLE SRR 89 Reenable it =R after an i SEE execution.

EHDLIHES® 90 Return current endline string.

EHTER 14,22,66 Input bytes from specified device; build number or string;
place result in BASIC variable.

EMTIOF 32,68 Send HP-IL commands to specified devices; return data as
a character string.

ESCF 100 Return string of escape-character sequences.

EmC-TsF OH OFF 90 Turn modified I/R on or off.

E=IT 100 Leave a FIOE-HE=T loop early.

FILE# 117 Show name of specified A== TEH#E file.

FILL# 101 Fill a string.

FIHD 101 Find specified occurrence of substring in string, with wild
card.

FLAGE 101 Set specifed bit to specified value in given string.

FLAGT 102 Test specified bit in string.

FiE 102 FiF allowed after a THEHM or ELZE.

GOSUE: 102 ZOSUUE to a variable as a line number.

GOTOH 102 GOTO to a variable as a line number.

HAHDE 103 AND of two hexadecimal strings.

HE =% 103 Convert ASCII string to hexadecimal.

HOE# 103 OR two hexadecimal strings.

HEOT# 103 Rotate a hexadecimal string left or right by bit count.

HZHF # 104 Shift a hexadecimal string left or right by bit count.

HTD 104 Convert hexadecimal string to decimal number.

HeOR$ 104 EXOR two hexadecimal strings.

IMAGE 17,69 Specify format of EHTEFR or QLTFLT statement.

Keyword Index

Keyword Page Description
THOE=# 117 Return current data pointer position in file.
IHSERT# 117 Insert an item at the current data pointer.
ITMSTALL 105 Load private file from tape (created by MZIIF).
I0=IZE 28,71 Set enter buffer size.
IOsIZE" 90 Return current 101 ZE setting.
ITEM# 117 Return pointer position in current line.
EEYEOREDS® 90 Return device code of current keyboard device.
FEEYEBOARD I3 90 Assign device for keyboard entry.
LASTLH? 117 Return line number of last line in specified file.
LCD OM-OFF 105 Turn LCD on/off.
LEFTH# 105 Return left portion of string.
LIME# 118 Return current line number in specified A== I GH# file.
LIMELEM# 118 Return the number of items in a line.
LISTIOS 92 List HP-IL device codes in string.
LachalL 46,72 Return HP-IL devices to local control.
LOCHEL LOockEQuUT 47,73 Lock out local control of HP-IL devices.
LTREIME 105 Left trim a string.
LHRECE 105 Convert string to lowercase.
MAF#% 106 Map “from” characters into “to” characters in target string.
MARGIHTY 106 Return current right margin setting.
MCOpY 106 Duplicate tape onto multiple tapes.
MIOF 106 Return middle portion of string.
HEST 107 HET allowed after a THEH or ELSE.
HECR¥$ 107 Remove underscoring.
OFF SE@ 92 Turn off HP-IL service request response.
OH SREE 92 Respond to HP-IL SRQ messages.
oTh 107 Convert octal string to decimal number.
OUTRFUT 13,17,74 Output bytes (string or numeric) to specified devices.
FROLL 50,76 Return result of parallel poll.
FREIMTH# ... USIHG 118 FREIMT# to a TEXT file with LIS IHG format.
FEIMTER# 92 List current printer devices.
FUIDOTH?Y 107 Return current FLHIDOTH setting.
FEASSIGH 92 Change device code of an HP-IL device.
FEMOTE 46,77 Set specified devices to remote mode.
REFLF 107 Replace substring in target string with another.
REFLACE# 118 Replace a data item in a file.

125

126 Keyword Index

Keyword Page Description
RELVE 108 Reverse string.
EIGHT# 108 Return right portion of string.
FIO 93 Read data from an HP-IL register.
EOTH 108 Rotate string by character count.
FEFTE 108 Repeat string.
ETEIME 108 Trim trailing characters.
SEARCH# 119 Search for value in data file.
EER# 119 Position item pointer at a given location.
EHD 35,78 Send HP-IL commands and/or data.

SEMHD 31,80 Return position in string of character unsuccessfully

sourced in SEHD IO data list.
SEMDIO 29,81 Send HP-IL commands and/or data to specified devices.
SHELL 109 Automatic run of programs by name.
= 109 Wait for significant key.

109 Find position of first character not in list.
49,82 Return result of serial poll as a number.

SREOLLE 49,83 Return result of serial poll as a string.
STATLUE 110 Set status of system flags.
STATUSE 110 Show current system flag settings.
=B 111 Header for subprogram (see [:Fil.L.).
SLIECE 112 Return middle portion of string.
TAB 120 Tab left or right in non-protected field.
TCATH 112 CHT# of a tape drive.
TEMFLATES* 112 Return template string with protected fields.
TIMEOUT OH-0OFF 113 Set timeout mode.
TIMER® 113 Return current timer interval setting.
TOERZES 113 Convert number to specified base, return as string.
TODED 113 Convert string from specified base to decimal number.
TEIGEER 47,84 Send GET (Group Execute Trigger) command to trigger de-

vice operation.
LIsCRE 114 Underscore string.
LHEERMEG 114 Send message to display and error buffer.
WERIFY OM-0OFF 114 Set verify mode for card reader.
WEHD?T 114 Show current window end.

Keyword Index

127

Keyword Page Description
WIDTH? 114 Return current W IDTH setting.
WIMDOM 115 Set the LCD window start, end.
IO 93 Write data to an HP-IL register.
WEEY S 115 Wait for key, return any key pressed.
WEIZE®D 115 Show current window size.
WETAHRET®Y 115 Show current window start.

How To Use This Manual (page 5)

Getting Started (page 7)

Simple 1/O Operations (page 13)

Formatted 1/O Operations (page 17)

Sending and Receiving HP-IL Messages (page 29)
Other HP-IL Statements and Functions (page 43)

L

(,‘] HEWLETT
B pACKARD
Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

European Headquarters
150, Route Du Nant-D’Avril
P.O. Box, CH-1217 Meyrin 2

Geneva - Switzerland

00075-90243 English

HP-United Kingdom
(Pinewood)
GB-Nine Mile Ride, Wokingham
Berkshire RG11 3LL

Printed in U.S.A. 1/84

	Cover
	Contents
	How To Use This Manual
	Section 1: Getting Started
	Installing and Removing the ROM Module
	Translating LEX File Programs
	The Role of the Hewlett-Packard Interface Loop
	A Brief Review of HP-IL
	Device Addresses
	Device Codes

	Syntax Guidelines

	Section 2: Simple I/O Operations
	Using Simple OUTPUT Statements
	Using Simple ENTER Statements
	Entering Numeric Data
	Entering String Data

	Section 3: Formatted I/O Operations
	Formatted OUTPUT
	Numeric Image Specifiers
	Digit Specifiers
	Sign Specifiers
	Punctuation Specifiers

	String Image Specifiers
	The End-of-Line Sequence Image Specifier

	Formatted ENTER
	Data Images
	Numeric Image Specifiers
	String Image Specifiers
	Skipping Unwanted Characters

	Terminator Images
	Eliminating the Statement Terminator Requirement
	Using the ETO Message As a Statement Terminator
	There’s Always an Exception

	Changing the Size of the ENTER Buffer

	A Word of Advice About Images

	Section 4: Sending and Receiving HP-IL Messages
	The SENDIO Statement
	Resuming Data Transmission With SEND?
	SENDIO Restrictions

	The ENTIO$ Function
	Defining Logical End-of-Record
	Enhanced Printing Control
	ENTIO$ Restrictions

	The SEND Statement
	Sending Command Group Messages
	Sending Ready and Identify Group Messages
	Sending Data/End Group Messages

	Application Programs
	An HP-75/HP Series 80 Interface
	An HP-75/Modem Interface
	Obtaining Readings From a Multimeter

	Section 5: Other HP-IL Statements and Functions
	Assigning The Loop
	The ASSIGN LOOP and AUTOLOOP ON-OFF Statements
	Assigning HP-IL Addresses and Device Codes to HP-IB Devices
	The DEVADDR and DEVNAME$ Functions
	The ADDRESS Function

	Remote and Local Control of HP-IL Devices
	The REMOTE Statement
	The LOCAL Statement
	The LOCAL LOCKOUT Statement
	The TRIGGER Statement

	Checking the Device ID or Accessory ID of HP-IL Devices
	Device ID
	Accessory ID

	Polling HP-IL Devices
	Serial Polling
	Parallel Polling

	Appendix A: Owner’s Information
	Appendix B: Syntax Reference Guide
	Appendix C: HP-IL Commands
	Appendix D: Support Functions and Editing Keys
	Appendix E: Errors and Warnings
	Keyword Index

