
HEWLETT-PACKARD

I/O ROM
PROGRAMMING TECHNIQUES MANUAL

For the HP-75

Notice

Hewlett-Packard Company makes no express or implied warranty with regard to the keystroke procedures and program material offered or

their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on

an “as is” basis, and the entire risk as to their quality and performance is with the user. Should the keystroke procedures or program material

prove defective, the user (and not Hewlett-Packard Company nor any other party) shall bear the entire cost of all necessary correction and all

incidental or consequential damages. Hewlett-Packard Company shall not be liable for any incidental or consequential damages in connection

with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

”fi HEWLETT
PACKARD

HP-75 I/0 ROM

Programming Techniques Manual

January 1984

00075-90243

Printed in U.S.A. © Hewlett-Packard Company 1984

Contents

How To Use This Manual 5

Section 1: Getting Started 7

Installing and Removing the ROM Module 7

Translating LEX File Programs 8

The Role of the Hewlett-Packard Interface Loop 8

A Brief Review of HP-IL 9

Device AdAreSSesS10

Device Codes1

Syntax Guidelines1

Section 2: Simple I/O Operations 13

Using Simple DLITFUT Statements13

Using Simple EHTEFRStatements 14

Entering Numeric Data 14

Entering String Data 15

Section 3: Formatted I/O Operations 17

Formatted (il TF LTL17

Numeric Image Specifiers18

Digit Specifiers18

Sign Specifiers18

Punctuation Specifiers 19

String Image Specifiers20

The End-of-Line Sequence Image Specifier 21

Formatted EH T ER.22

Data Images23

Numeric Image Specifiers23

String Image Specifiers 23

Skipping Unwanted Characters 24

Terminator Images25

Eliminating the Statement Terminator Requirement 27

Using the ETO Message As a Statement Terminator 27

There’s Always an Exception 27

Changing the Size of the EMTER Buffer 28

A Word of Advice About Images 28

Contents

Section 4: Sending and Receiving HP-IL Messages 29

The SEHDID Statement29

Resuming Data Transmission With SERMDOY o000 ooo 31

SEMDOIO Restrictions32

The EHTIOE Function32

Defining Logical End-of-Record 34

Enhanced Printing Control 35

EMTIOE Restrictions35

The SEHMD Statement35

Sending Command Group Messages 36

Sending Ready and Identify Group Messages 38

Sending Data/End Group Messages 38

Application Programs 39

An HP-75/HP Series 80 Interface 39

An HP-75/Modem Interface 40

Obtaining Readings From a Multimeter 41

Section 5: Other HP-IL Statements and Functions 43

Assigning The LoOp43

The AZSIGH LOOF and AUTOLOOF OM-0OFF Statements 43

Assigning HP-IL Addresses and Device Codes to HP-IB Devices 44

The DEVADDE and DEWHAME® Functions 45

The AODOREESE FUNCIONe45

Remote and Local Control of HP-IL Devices 45

The FEMITE Statement46

The LIOCHL Statement46

The LOCAL LOCEOUT Statement47

The TRIGGER Statement47

Checking the Device ID or Accessory ID of HP-IL Devices 48

Device ID...48

Accessory ID48

Polling HP-IL DeviCes49

Serial Polling49

Parallel Polling50

Appendix A: Owner’s Information 53

Appendix B: Syntax Reference Guide 59

Appendix C: HP-IL Commands 85

Appendix D: Support Functions and Editing Keys 89

Appendix E: Errors and Warnings 121

Keyword Index123

3

How To Use This Manual

Please take a minute to read this introduction so that you can better understand how this manual is

organized, and how to get the most utility from it. The HP-75 I/0 ROM adds many new capabilities to

your portable computer, opening a whole new world of applications. This manual is intended as both a

learning and a reference tool. At first, you may use it to learn the fundamentals of I/O programming

with your HP-75, and to become familiar with the many new statements and functions that the ROM

provides. Later, as you develop your own I/O application programs, the manual will serve as a reference

source.

Section 1 covers the installation of the ROM in your HP-75 Portable Computer and gives an overview of

the Hewlett-Packard Interface Loop. It is assumed that you are familiar with HP-IL, but you may find the

brief review to be helpful. Section 1 also covers the conventions that are used in defining the syntax of

statements and functions throughout this manual. Please read the subsection “Syntax Guidelines” in sec-

tion 1.

Sections 2 and 3 cover the fundamentals of I/O programming, and cover the capabilities of the

OQUTFUT, EMTER, and I MAGE statements. If I/O programming is new to you, sections 2 and 3 will get

you started, and may contain all of the information that you need for most applications. Even if you are

an accomplished I/O programmer, you should at least skim through these sections. The concepts pre-

sented are basic, but you still need to know how they are implemented for the HP-75.

Section 4 covers the SEHD IO, EMTIO%, and SEMHD statements. These statements deal with the Hewlett-

Packard Interface Loop on a message level and provide a wide spectrum of capabilities for the advanced

I/O programmer. Section 5 covers several statements and functions that are useful in controlling HP-IL

devices through the loop. These statements allow you to assign HP-IL addresses and device codes, to set

up devices for remote control, and to identify and poll HP-IL devices.

The appendices provide some useful reference materials. Appendix A covers warranty and service informa-

tion. Appendix B provides complete syntax definitions for all of the statements and functions covered in

sections 1 through 5. Appendix C summarizes the HP-IL command mnemonics used in ZEHDIID and

EHTIO#$ statements. In addition to the primary I/O functions covered in sections 1 through 5, the I/0

ROM provides many useful support functions. Appendix D gives a complete list of these support func-

tions, describing their operation and syntax. A list of errors and warnings is given in appendix E.

Section 1

Getting Started

The HP-75 I/0 ROM gives the HP-75 the capability to communicate with any Hewlett-Packard Interface

Loop (HP-IL) talker or listener device. This manual is for programmers who are experienced with the

HP-75 and with HP-IL. Familiarity with HP-75 and HP-IL commands is assumed. Information on spe-

cific HP-IL commands can be found in the owner’s manuals for HP-IL devices, and also in THE HP-IL

SYSTEM: An Introductory Guide to the Hewlett-Packard Interface Loop, by Gerry Kane, Steve Harper,

and David Ushijima, published by OSBORNE/McGraw-Hill, Berkeley, California, 1982. The complete

functional, electrical, and mechanical specifications of the HP-IL interface system are given in The HP-IL

Interface Specification (part number 82166-90017), Hewlett-Packard Company, 1982.

Installing and Removing the ROM Module

CAUTION

Be sure to turn off the HP-75 (press (ATTN]) before installing or removing any module.If there

are any pending appointments, type =1larm of f in EDIT mode to prevent the arrival of future

appointments (which would cause the computer to turn on). If the computer is on or if it turns itself on

while a module is being installed or removed, it might clear itself, causing all stored information to be

lost.

WARNING

Do not place fingers, tools, or other foreign objects into any of ports. Such actions could result in

minor electrical shock hazard and interference with pacemaker devices worn by some persons. Dam-

age to port contacts and internal circuitry could also result.
The HP-75 I/O ROM module can be plugged into any of the three ports on the front edge of the com-

puter.

To insert the I/O ROM,orient it so that the label is

right-side up (facing toward you), hold the computer

with the keyboard facing up, and push in the module

until it snaps into place. Be sure to observe the

precautions described above during this operation.

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the module

and pull the module straight out of the port. Install a blank module in the port to protect the contacts

inside.

8 Section 1: Getting Started

Note: You may install the HP-75 VisiCalc® ROM and the /0 ROM concurrently, but the VisiCalc ROM

must be installed in the rightmost port.

Translating LEX File Programs

Some of the capabilities of the HP-75 I/O ROM have been previously available in the form of LEX files.

The I/0 Utilities LEX file has been supplied with the HP-75 I/O Utilities Solutions Book (HP part num-

ber 00075-13013). The Autoloop LEX file has been available as the HP-75 Autoloop Users’ Library pro-

gram (HP part number 75-00104-6). The HP-75 I/O ROM supersedes these LEX files, providing new

versions of the statements and functions they contain. To avoid conflicts between the old and new ver-

sions of these statements and functions, both LEX files must be purged from your HP-75 before you use

the I/0 ROM.

If you have written programs using statements and functions from the I/O utilities LEX file and/or the

Autoloop LEX file, you can translate these programs so that they will run with the I/O ROM versions of

the same statements and functions. The procedure follows:

1. Install the I/O ROM (turn off the computer first).

2. Load the LEX file(s) used in your original program.

3. Load the original program, then convert it to a TEXT file (refer to your HP-75 Owner’s Manual).

4. Purge the LEX file(s).

5. Transform the program back to BASIC.

The translated program will run just as if it was originally written using the I/O ROM.

The Role of the Hewlett-Packard Interface Loop

The HP-75 I/0 ROM provides several useful functions that enable your HP-75 Portable Computer to

carry out Input/Output operations. However, an interface or hardware link is needed in order for a com-

puter to communicate with its peripheral devices. The Hewlett-Packard Interface Loop (HP-IL) provides

the link through which your HP-75 can communicate with the growing family of HP-IL devices. The HP-

75 and all devices included in the interface loop are connected together in series, forming a communica-

tions circuit. Any information that is transferred among HP-IL devices is passed from one device to the

next around the circuit. If the information is not intended for a particular device, the device passes the

information on to the next device in the loop. When the information reaches the proper device, that

device responds as directed. In this way, the computer can send information to and receive information

from each device in the loop, according to the device’s capability. All I/O operations are carried out

through this interface loop.

VisiCalc is a registered trademark of VisiCorp.

Section 1: Getting Started 9

A Brief Review of HP-IL

Before going further in this manual, you may find it helpful to review the fundamentals of HP-IL. This

review covers the material necessary to understand the rest of this manual. Previous exposure to HP-IL is

assumed. Users who feel sufficiently comfortable with HP-IL may skip this review.

HP-IL is an interface system in which devices are connected in a circular loop. Devices communicate with

each other by sending messages around the loop. When a device sends or sources a message, each device

in the loop examines the message, then passes it on to the next device. The message is passed around the

loop until it returns to the original sender. All messages travel in the same direction around the loop.

HP-IL operates on a master-slave principle. One of the devices in the loop functions as loop controller.

The controller has the responsibility of transmitting all commands to other devices in the loop. The HP-

75 can function as loop controller. A device that can send data, but not commands, to other devices in the

loop is called a talker. Although a device has talker capability, it will not actually send its data until

commanded to do so by the controller. Listeners are devices with the capability to receive data from the

loop. A listener will not receive data until commanded to do so by the controller.

Each HP-IL device can have one or more of the three basic capabilities: controller, talker, and listener.

There can be any number of devices in the loop with controller, talker, or listener capabilities. Only one

controller may be active at a time, and only one talker may be active at a time, but there may be more

than one active listener. The controller device that was active when the system was turned on is called the

system controller, and is in charge of the whole system. The HP-75 is always the system controller

when used in the HP-IL loop. Figure 1-1 shows a typical HP-IL configuration:

T e
inactive inactive

P'I I'(listener

—
000000000000
0000000000000
0000000000000
0000000000000
OO000000000000

listener

(and controller)

Figure 1-1. Hewlett-Packard Interface Loop

10 Section 1: Getting Started

The system controller assigns an address to each device in the loop. It can direct commands to specific

devices by using the device address. The address is a number from 0 to 30 or, with extended addressing,

from 0 to 960.

Data and commands are sent around the loop as 11-bit messages. The first three bits of each message

identify the type, or group, of the message. There are four groups of HP-IL messages: the command

group, the ready group, the identify group, and the data/end group. In this discussion we will consider only

command messages and Data Byte messages. The last eight bits are the actual content of the message.

Thus, to send a command such as IFC (Interface Clear), a message would be sent out as follows: three bits

identifying the message as a command message followed by eight bits with the command code for IFC

(binary “10010000”). A Data Byte message consists of three bits identifying it as a Data Byte message

followed by eight bits of data.

Each message is examined by every device in the loop. By examining the message, devices determine

whether or not any further action is required. Action is indicated in a number of circumstances. Certain

command messages, such as IFC, indicate action for all devices in the loop. Other command messages,

such as LAD (Listen Address) and TAD (Talker Address), contain a device address. A device acts on the

command only if the address in the command is the same as the address of the device. Some messages are

processed only if the device is in an active state. Data Byte messages and DDL (Device Dependent Lis-

tener) messages are processed only by devices that are in an active listener state. The SDA (Send Data)

message is processed only by a device that is an active talker.

An example of how all this works is as follows: Suppose the HP-75 controller wants to print a line on a

printer. Assume that the printer has a device address of 2 and that all devices in the loop have inactive

status. The controller first sends a LAD2 (Listen Address, Device 2) message around the loop. This puts

device 2, the printer, into active listener status. The controller then sources the Data Byte messages. If the

line to be printed is an 80-character line, 80 Data Byte messages are sent, followed by one message each

for a carriage-return and a line-feed character. Once data transmission is complete, the controller

sources the UNL (Unlisten) command message. This deactivates all listener devices in the loop, in this

case, the printer.

Appendix C summarizes the HP-IL. commands and their mnemonics.

Device Addresses

In order to distinguish among devices in the loop, each device must have an address — a number from 0 to

30. The system controller assumes the 0 address at power on, and then assigns addresses starting with 1

for the device next in order after the controller in the direction of information transfer. Each device in the

loop stores its unique address internally.

Figure 1-2 shows how you can determine the direction of information transfer by noting the differences in

the plugs on the HP-IL cables. It may be helpful to remember that information flows out of the computer

through the large connector, around the loop, and back into the computer through the small connector.

These connectors are labeled IN and OUT as shown in the figure.

Section 1: Getting Started 1

Figure 1-2. Connectors

Device Codes

Once your computer has assigned device addresses to the devices connected in the interface loop, you

should assign a device code to each device. Most I/O operations require you to identify devices with device

codes. Device codes may be one or two letters, a letter and a digit, or a digit and a letter. Examples of

acceptable device codes are T, T%}, Ti, and i 7. (A space used as the last character of a device code will be

ignored; a space may not be used as the first character.) The letters of device codes may be entered in

lowercase, but are converted internally to uppercase. The HP-75 I/O0 ROM provides two functions —

AESIGH LOOF and AUTOLOOF — that automatically assign device codes to all devices in the loop

(refer to section 5). You may also assign device codes manually with the A== IGH I0 command (refer to

your HP-75 Owner’s Manual). When you specify a device code in a command, it must be preceded by a

colon and enclosed in quotation marks, for example: DIZFLAY I3 ' : T4 ', You may also specify a

device code by using the name of a string variable, for example: I ZFLAY 1% AF where AF = ' TUW',

Syntax Guidelines

Instructions must be typed with proper syntax in order for the computer to understand their meaning.

The following guidelines are used throughout this manual in defining the syntax of commands, state-

ments, and functions:

DOT MATEISE TYPE Words in dot matrix type may be keyed in using either lowercase or upper-

case letters, but otherwise must be entered exactly as shown. Commands,

statements, and functions entered in 1:wisr sz are converted internally

to UFFERLCHZE.

italics type Items in italics are the parameters you supply, such as the filename in the

FURGE command.

PR Filenames and other character strings can be enclosed with single or double

quotation marks and can be entered in lowercase or uppercase letters.

Quoted filenames are converted to uppercase internally.

[] Square brackets enclose optional items.

An ellipsis indicates that the optional items within the brackets may be re-

peated.

stacked items When two or more items are placed one above the other, one (and only one)

of them may be used.

or When two or more items are separated by or, one or more instances of ei-

ther or both items may be included.

12 Section 1: Getting Started

Some examples may clarify the use of these symbols. The syntax of the PURGE command can be repre-

sented as follows:

‘ filename : device code]’

FURGE KEYS

HEFT
In this representation filename stands for the name of the file to be purged; device code for a valid HP-IL

device code. The following statements are all valid:

FURGE "ORTH: DD

FURGE FEYS

FUREGE RAFFT

The brackets around : device code indicate that the colon and device code are both optional when you are

specifying a filename. The outer set of brackets indicates that you may omit all parameters when using

the FLIEGE command. Thus, the following statements are also valid:

Any parameter represented in this manual as a string in quotation marks (such as 'filename') may be

specified by either a quoted string expression or the name of a string variable that contains the equivalent

expression. The following statements are equivalent to FIUUFGET "ORTH':

18 HE="DARTH'

S8 FUREGE AF

Section 2

Simple I/O Operations

The principal tools for using HP-IL to move data into and out of the computer are the JLUTFLUT and

EHTEFRstatements. These statements are the core of I/O operations. They are usually the fastest and

easiest ways of getting data from the source to the destination in its final form. Many applications require

no more than the proper use of JUUTFUT and EHTER.

Simple TLITFUT and EMTEFRstatements (as described in this section) use ASCII representation for all

data. ASCII stands for American Standard Code for Information Interchange. It is a commonly

used code for representing letters, numerals, punctuation, and special characters. The ASCII code provides

a standard correspondence between binary codes that are easily understood by the computer and alpha-

numeric symbols that are easily understood by humans. A complete list of the characters in the ASCII set

and their decimal code values is included in the HP-75 Owner’s Manual.

When special formatting is desired, the JLUTFUT USIHG and EHTEFR S IHG forms are very convenient.

These forms are discussed in section 3.

Using Simple 1LTFLT Statements

A simple UTFUT statement may be used anywhere that a simple FFEIMHT statement is proper. The

OUTFUT statement (like the FE IHT statement) contains a list of items to be output, but it also specifies

one or more destination devices. You may use either the device code or the HP-IL address of a device in

an OUTFUT statement. However, you must use device codes if you are specifying more than one output

device. Only one device address may be specified in an TTFUT statement. Here are some examples of

properly syntaxed ZILITFLIT statements:

QUTFUT P T " Hel o

QUTRUT 2 08

QUTPUT S1$ R4B%

QUTFUT " TPR P EY E

QUTRUT "rPREYJRCL 2BCS 2 HFEDZ V0

Notice that a semicolon is used to separate the device code(s) or device address from the output list.

Semicolons are also used to separate items within the output list. Items in the output list may be numeric

variables, numeric constants, string variables, or string constants. An end-of-line sequence (normally car-

riage-return/line-feed) is output after the last item in the output list unless the list is followed by a

trailing semicolon.

The simple UTFLT statement (with items in the output list separated by semicolons) uses the same

compact-field output format as the simple FFE IHT statement. In each numeric output field the digits of a

number are preceded by a space (if positive) or a minus sign (if negative), and followed by one space.

String data is output with no leading or trailing spaces. Each field (numeric or string) is appended to the

field before it. Obviously, compact-field output is inappropriate for many applications. Formatted output,

using output images, is described in section 3.

13

14 Section 2: Simple 1/O Operations

Using Simple £TiER Statements

A simple EHTEFRstatement may be used wherever an IHFLT statement is proper. The EMTEFstate-

ment (like the IHF LT statement) contains a list of items to be entered, but it also specifies a device as

the source. You may specify either the device code or HP-IL address of the source device in an EHTEFR

statement, but there can be only one source. Here are some examples of properly syntaxed EHTEF state-

ments:

ERTER "EH1L'#

EHTER S1$;R% ,BF,0C%

ERTER " TR E,Y 2

ERTER 3 ;RO BOE HE

Notice that a semicolon is used to separate the device code or device address from the enter list. Commas

are used to separate items within the enter list. Items in the enter list may be numeric variables or string

variables.

To use the EHTEFRstatement effectively, it is important to understand what constitutes the beginning

and ending of an entry into a variable. The simple EHTEF statements just shown use a free field for-

mat for processing incoming characters. This format operates differently with string and numeric data.

Entering Numeric Data

The computer enters numeric values by reading the ASCII representations of those values. For example, if

the computer reads an ASCII 1, then an ASCII =, and finally an ASCII %, it places the value one hundred

twenty five into a numeric variable.Understanding the process that the computer uses to read a free field

number can help you remove much of the mystery from I/O. Suppose your program has the statement:

EMTERE " TF R,y

Now assume that when this statement is executed, the following character sequence is received through

the interface loop:

TIU|[E|S|D]JA]Y D|E|C 1 1 , 1197 |9 |[EOL

The computer ignores all leading spaces and non-numeric characters, so the TUEZAY DEC characters

do nothing. Then the 1 1 is read. Once the computer has started to read a number, a space or non-numeric

character signals the end of that number. Therefore, the comma after the 1 1 causes the computer to place

the value eleven into variable X and start looking for the next value. The space and comma in front of

1272 are ignored and the computer reads the 1 %7 %. Finally, the EOL (end-of-line) sequence causes the

computer to place the value nineteen hundred seventy nine into variable Y and terminate the EHTEE

statement. The computer goes on to the next program line with X=11 and Y=1979.

Note: The HP-75 allows you to change the EOL (end-of-line) sequence with the EHIIL I HE statement

(refer to the HP-75 Owner’s Manual). The default EOL sequence is a two-character sequence consist-

ing of a carriage-return followed by a line-feed character. In this manual EOL sequence refers to

the current end-of-line sequence that you have set with the EHIIL I HE statement (unless otherwise

noted). The symbol EOL is used to represent the end-of-line sequence in the examples.

Section 2: Simple 1/O Operations 15

The process just described can be easily summarized. When entering numeric data using free-field format,

the computer:

1. Ignores leading spaces and non-numeric characters.

2. Uses numeric characters to build a number.

3. Terminates the building of a value when a trailing space or non-numeric character is encountered.

4. Inputs characters until an EOL sequence or End Byte message is encountered.

The discussion so far has referred to numeric and non-numeric characters without being specific. The

digits through = are always numeric characters. Also, the decimal point, plus sign, minus sign, and the&

letter E can be numeric if they occur at a meaningful place in a number. For example, assume that the

following character sequence is read by an EHTEF statement:

If a numeric value is being entered, the leading minus signs and the E in TEZT will be ignored. They have

no meaningful numeric value when surrounded by non-numeric characters. However, the characters

1% . 5E~73 will be interpreted as 12.5 x 10 3. In this case, the minus sign and the exponent indicator (E)

occur in a meaningful numeric order, so they are accepted as numeric characters.

Entering String Data

The computer enters string data by placing ASCII characters into a string variable. The process used for

free-field entry is straightforward. All characters received are placed into the string until:

1. The string is full, or

2. An EOL sequence or End Byte message is received.

Assume that the computer is executing the statement:

EHTER ' TF' R, BF,CF

The following character sequence is received:

H|E|L|L|OI|EOLEOL| T |H|E |R|E [EOL

The letters HEL LI are placed into A$ when the first EOL sequence is encountered. Note that the EOL

sequence itself is not placed into A$; it acts only as a terminator for the entry into A$. The entry into B$

begins. However, an EOL sequence is read immediately. This terminates the entry into B$, and B$ be-

comes the null string. Next, the entry into C$ begins. The characters THEFRE are placed into C$, ter-

minated by the EOL sequence that follows those characters. With the enter list now satisfied and an EOL

sequence detected at the end of the data, the computer will go on to the next program line.

Note: The current EOL sequence (specified with the EMHOL IHE statement) will act as a terminator

and will not be entered into the string. If the current EOL sequence is carriage-return/line-feed, this

sequence will terminate entry into a string variable and will notitself be entered. However, other

potential end-of-line sequences (such as the line-feed character by itself) will not terminate entry and

will be entered into the string. An End Byte message will terminate entry after its character has been

entered into the string.

16 Section 2: Simple I/O Operations

Another example can be used to show termination on a full string. This time, suppose the program con-

tains the following statements:

DI=021

EMTER "1 TF' 1 HF

The following characters are sent to the computer:

B|O|Y|[C|O]|T|T [EOL

The computer places the characters EiY into X$, which fills the dimensioned length of 3. Then the

computer continues to read the incoming characters until an EOL sequence is encountered. At that time,

the EHTEFRstatement is completed, and the computer goes on to the next program step with X$=BOY.

Section 3

Formatted I/O Operations

Although simple GUTFLUT and EHTER statements work well for some I/O situations, there are times

when more control over format is necessary. Perhaps a column of numbers with the decimal points in line

is desired or an end-of-line sequence terminator is not wanted or expected. There are many reasons for

desiring format control during I/O operations.

The format of information sent or received through interfaces is controlled by the use of image speci-

fiers. These image specifiers can be placed in an IMHZE statement or can be included directly in an

OUTFUT or EHTEFRstatement. This section of the manual provides details on the meaning and use of

image specifiers.

Formatted CiiTHLUT

An output image can control all major characteristics of output data, including spacing, appearance of the

field, form of data representation, and use of end-of-line sequences. The HP-75 uses an output image

when some form of the CLUTFUT USIHG statement is encountered. There are two forms of this

statement:

— simplified syntax

18 IMAGE output image

2@ OUTRUT ' idevice code' LT IMG 18 :output list

 — simplified syntax

OQUTFUT ' :device code’ Iz IMEG 'output image' :output list

The examples above show the general forms of the CHLITFUT LS IHEG statement. Here are some specific

examples:

8 IMACGE '"Total =',22.0

20 IMAGE SR, Z2#.17VH

0 OUTRUT "aRLY USIHG 101,002,032

FEOOUTRUT 2 USIHG Z28:R%.B%

S0 OUTRUT 3% USIHG "MODD. DD 7ol ToZa

S QUTRUT T, PR USIHG TH:HFE,H

17

18 Section 3: Formatted 1/O Operations

In the general forms, device code represents a list of one or more device codes (one for each output

device). Each device code must be preceded by a colon. Commas separate the successive codes in the list

(for example, ' : 01, : 02, : 03 "). The device code field can be occupied by the name of a string variable

that contains the list of device codes. The symbol output image represents a proper list of image specifiers.

The image specifier list may be a literal enclosed in quotation marks or the name of a string variable that

contains the specifier list. The specifiers within the list must be separated by commas. The list of items to

be output is represented by output list. You may use either commas or semicolons to separate items within

the output list. All spacing is controlled by the image specifiers, so a semicolon has the same effect as a

comma. As with the simple LITFLIT statement, the output list can contain numeric or string data (vari-

ables or constants), and a trailing semicolon will suppress the output of a final EOL sequence.

Note: You may substitute a valid HP-IL device address for the device code field in an CGLITFLT

statement; however, only one device address may be specified. If you want to specify more than one

device, you must use device codes. If the intended destination device has already been addressed to

listen, you may leave the device code field blank. Refer to appendix B for a complete definition of

OUTFUT statement syntax.

Numeric Image Specifiers

The image specifiers in this group are used to control the format of numbers that are output. These image

specifiers are the same as the FF I HT image specifiers that may already be familiar to you. Since there are

many numeric image specifiers, these specifiers are broken down into three categories in the following

discussion. The categories are digit specifiers, sign specifiers, and punctuation specifiers.

Digit Specifiers. These are the image specifiers which form the digits of the number. They allow you to

determine the number of digits before and after the decimal point, display or suppress leading zeros, and

control the inclusion of exponent information.

Image Specifier Meaning

ot [Causes one digit of a number to be output. If that digit is a leading zero, a space is

output instead. If the number is negative and no sign image has been provided, the

minus sign will occupy one digit place. If any sign is output, the sign will float to a

position just left of the left-most digit.

i Same as [, except leading zeros are output.

* Same as =, except leading zeros are replaced by asterisks.

e b Causes the number’s exponent information to be output. This is a 5-character se-

quence including the letter E, the exponent sign, and three exponent digits.

bk Causes the number to be output in compact format. No leading or trailing spaces are

output.

Sign Specifiers. These are the image specifiers used to control the output of sign information. Note that

if no sign specifier is included in the image, negative numbers will use a digit position to output the minus

sign.

Section 3: Formatted 1/O Operations 19

Image Specifier Meaning

i 1
1 Causes the output of a leading plus or minus sign to indicate the sign of the number.

iy, Causes the output of a leading space for a positive number or a minus sign for a

negative number.
Punctuation Specifiers. These are the image specifiers used to control the output of punctuation within

a number, such as the inclusion of a decimal point.

Image Specifier Meaning

Causes an American radix point to be output (a decimal point).

e LR Causes a European radix point to be output (a comma).

o, Usually placed between groups of three digits. Causes a comma to be output to sepa-

rate the groups of digits (American convention).

= Same as [, except a period is used to separate the groups of digits (European

convention).

It would be unrealistic to attempt examples of all possible combinations of these numeric image specifiers.

The following examples show some of the many ways of combining these specifiers and the resulting

output when numbers are sent to a typical printer. Additional examples for many of the specifiers can be

found in the “Display and Printer Formatting” section of the HP-75 Owner’s Manual.

Sample Statements Printed Output

QUTRFUT PR OUSIHG 'ZZZ2.00°0 ¢ 28, 33 BHEEe, 24

QUTRUT PR OUSTIHG 42,200 ¢ 28, 22a BB SR, e

QUTRUT ' PRY USIHG '42.200 0 38, 23s ~E A, e

OUTFUT ‘PR USIHG 'I0DCI0CED' @ 1EE 1, @06, AAE
OQUTFUT ' PRY OUSIHG "ZDCEDCEDY ¢ 1. 234584 12,345

OUTRFUT ' PRY USIHG "ZDCEDCEDY ¢ 1, 2ES (Overflow Error) :

QUTRUT ' PR USIHG "2, 0007 . +E, SEE

QUTRUT ' PR USIHG "M, DDOY o o, DB

QUTRUT ' PRY USIHG "HMD.DOOC o oEE

OQUTRUT ' PRY USIMG "Z.DDE' @ 88456 G BnE -

ey ooy ey

Notice in these examples that the image ZZZZ and the image 4Z mean the same thing. The same is true

for the [t and # specifiers. You can indicate the number of digits desired by simply placing that number in
-

front of the specifier. The use of parentheses, as in =t [, changes the meaning. The image Z#[! means

“output one numeric quantity in a three-digit field.” The image Z:[l* means “output three numeric

quantities, putting each in a one-digit field.”

Be careful of overflow conditions when using these image specifiers. An overflow occurs when the number

of digits required to accurately represent a number is greater than the number of digits allowed for in the

image. If this happens, a warning is issued and something is output so that the program can continue.

However,it is difficult to predict exactly what will be output. The output will probably bear little or no

resemblance to the number that caused the overflow.

20 Section 3: Formatted 1/O Operations

String Image Specifiers

The image specifiers in this group deal with the output of string characters. They can also be used in
combination with the numeric image specifiers for spacing and labeling purposes. All of these image speci-

fiers are the same as the FFIMT image specifiers, which may already be familiar to you.

Image Specifier Meaning

a,H Causes the output of one string character. If all the characters in the current string
have been used already, a trailing blank is output.

“literal | A literal is a string constant formed by placing text or in quotes, using a string func-
or tion (such as CHFE#), or a combination of the two. The character sequence specified is

" literal " output when a literal image is encountered. When the literal is enclosed in quotes, the

quotation marks themselves are not output. Literal images are commonly used for

labeling other output.

Ly Causes the output of one space.

B H Causes the string to be output in compact format. No leading or trailing spaces are

output.

The following examples show some of the many ways of using these specifiers and the resulting output
when the characters are sent to a typical printer. Additional examples for these specifiers can be found in

the “Display and Printer Formatting” section of the HP-75 Owner’s Manual.

Sample Statements Printed Output

GLITHFUT Py PREY OUSTIHG "SR, R 0 v iy ,

OUTFUT " FREY USTHG K, 36, 5 'UHCLE', 'SAM: UHCLE SAM
DUTFUT " PREY USTHG "ELZ3E08Y 0 98,8, 5%, 9 s R

e ITMAGE "TOTHL = ', 30,8, K

SE T=125% B MfF='CRRS

S QUTRUT YRR USIHG 18 @ T.,AF TOTHL = 125 CHRES

Notice that the i and # image specifiers allow a number before them in the same fashion as the 1, 2, and
specifiers. The kspecifier works equally well with string data or numeric data. String and numeric
image specifiers may be combined in the same image statement.

Literal images may be enclosed in either single or double quotation marks (' ' or " ") when included in
an [IMHGE statement. You may include a literal image directly in an 1L/ TFUT statement provided that
you do not use the same form of quotation marks to enclose both the literal and the whole output image.
Thus, the following statements could be used:

SECDUTRFUT ' PREY OUSIHG P "Total=",E

e OUTRFUT PR USIHG " "Total=s', K @

However, the statement TLUTFUT ' :FE' USIHG ' "Total=',kE @4 results in an error be-
cause the computer is not able to distinguish the nested quotation marks.

Section 3: Formatted 1/O Operations 21

The End-of-Line Sequence Image Specifier

The end-of-line sequence image specifier controls the output of end-of-line sequences. An end-of-line se-

quence consists of one or more characters that are normally output after the last item in an output list.

The default end-of-line sequence of the HP-75 is a two-character sequence: a carriage-return followed

by a line-feed. You can change the normal carriage-return/line-feed EOL (end-of-line) sequence to

any desired sequence of up to three characters by using the EMHIIL I HE statement. This command can be

executed either manually or in a program and is described in the HP-75 Owner’s Manual. If an EOL

sequence is output, it will be the current EOL sequence set by you or your program with the EH[IL I HE

statement. The end-of-line sequence image specifier does not alter the EOL sequence, but simply causes

one to be output.

Note: In this manual EOL sequence refers to the current end-of-line sequence that you (or your

program) have established with the EMIL I MHE statement, unless otherwise noted. The symbol EOL

is used in the examples to indicate the EOL sequence.

Image Specifier Meaning

Causes the output of an EOL sequence. Often used for skipping lines in a printout.
The .- may be placed anywhere in the image list and may have a number before it to indicate how many

EOL sequences are desired. A typical use of the .- image is shown by the statement:

QUTHFUT " FREY USIHG "K.od4es, K" JHEBE

If the destination is a printer, A$ is printed, followed by four blank lines, then B$ is printed. If A$=“HI”,

B$=“JOE”, the character sequence is output as follows:

H | |EOL(EOL|EOL|EOL| J O E |EOL

You can suppress the output of the final EOL sequence by ending the [iliTFLIT statement with a semi-

colon (:). For example, a semicolon could be added at the end of the above statement:

CQUTFUT " PR USIHG " 4., K" RE. B,

The resulting output follows:

H | |[EOL(EOL|EOL(EOL| J O E

The string H I is printed and four lines are skipped. The string ./TE is not printed, but is transmitted to

the printer’s buffer.

Note: A reference list of all ZLITFLIT image specifiers is given in appendix B under IMHAGE.

22 Section 3: Formatted 1/O Operations

Formatted EHTER

Using EHTEF statements with image specifiers gives you a high degree of control in two areas:

1. Accurately describing to the computer what the incoming data looks like and what should be done

with it.

2. Precisely specifying what conditions constitute the end point of the EHTEFRstatement itself.

This discussion deals with data formatting images first, then presents the terminator images. The HP-75

uses an enter image when some form of EHTER 115 I HG statement is encountered. There are two forms of

this statement:

simplified syntax

te ITMHGE enter image

28 EWMTEER ' :device code’ U=IHG 18 :enter list

— simplified syntax

 EMTER ' :device code' LIZIHE ‘'enter image' :enter list

The examples above show the general forms of the EHTEFRUZ MG statement. Here are some specific

examples:

T8 IMAGE 20F» K

28 THMAGE 50, 2#, 30

sE EMTER "rB2Y USIHG 18:R%,B%, 5

SEOEMTERE P TRY OUSIHG 2807,

SE BEMTER S2F USTHG '"H.808, -,E' (0F,BE

HE EMTER TR USIHG IT£:HFE,H

The general forms use the same type of symbols that were used to represent the ZiLITFLIT statement. In
the EHTEF statement, device code stands for the device code of the device from which the data is to be
entered, enter image for the list of image specifiers, and enter list for the list of variables to be entered.
Note that the EHTEF statement will accept only one device code, and that you may use string variables in

place of the device code and/or enter image fields. As with simple EHTEFR statements, the enter list must

contain either string or numeric variables. You can’t enter into a constant.

Note: You may substitute a valid HP-IL device address for the device code field in an EHTEF state-

ment. If the intended source device has already been addressed to talk, you may leave the device

code field blank. Refer to appendix B for a complete definition of EHTEF statement syntax.

Section 3: Formatted 1/O Operations 23

Data Images

The image specifiers in this group are used to indicate what the computer should do with the incoming

stream of data. The basic choices are:

1. Use characters to build a numeric variable.

2. Place characters into a string variable.

3. Skip over a number of characters.

Note: A reference list of all EHTEF image specifiers is given in appendix B under IMHAGE.

Numeric Image Specifiers. These specifiers are used to control the input of numeric characters, includ-

ing digits, sign, exponent, and punctuation. You may precede any of these specifiers (except I) with a

number from 1 to 255. In an EMTEF image 5[and DDDDD both mean “enter five characters to be used

in building a number.”

Image Specifier Meaning

o, 0 These specifiers all accept one character to be used in building a number. The incom-

=, ing characters do not have to follow the specified format, there just has to be the right

¥ number of characters. The six different specifiers are provided so that your program

can document the expected format of the characters, and so that EHTEF and

=5 DLUTFUT statements can share the same IMAGE statement, if desired.

o, This specifier also accepts one character to be used in building a number. However,if

a i is present anywhere in a number’s image, all commas will be ignored while the

number is being entered. Without this specifier, a comma would terminate numeric

entry.

&,k Accepts five characters to be used in building a number. The five characters may be

exponent information, but do not have to be.

kLK Enters data into a numeric variable using free-field format (explained in section 2).

LF Accepts one digit and treats all commas (.) as radix symbols (to accept numeric input

in European format).

= Accepts one digit and ignores all periods (to accept numeric input in European format).
String Image Specifiers. These specifiers are used to enter characters into string variables. You may

precede the F specifier (but not the k) with a number from 1 to 255. In an EHTEFimage #4H and AFAFH

both mean “enter four characters into a string variable.”

Image Specifier Meaning

a,H Enters one character into a string variable.

kLK Enters data into a string variable using free-field format (explained in section 2).

24 Section 3: Formatted 1/O Operations

Some examples are in order. Suppose the following character sequence is received by the computer:

1|2 |3|4|H|E|L|L/|O |EOL

Either of the following EHTEF statements can be used to enter a numeric variable followed by a string

variable:

EMTER " TF' USIMG "40,3R" =5.Y¥%

EMTER ' TF' USIHG "Z.00,23R")&, YE

Notice that any numeric image that accepts four characters will properly enter the i =324, String data can

be entered with an i image if 1 (the number of characters) is known, or with a ¥ if the number of

characters is unknown.

Suppose instead that the incoming data was:

1 , |23 |4 |H|E|L]|L|O |[EOL

The EHTEF image would now have to include a - for the entire 1234 to be entered. For example:

ERMTER "o TR USIHG "C4D0,E " 1 H,.YE

EHTER TR USIHG 'DDDODC, SR, YE

Notice that the = does not have to appear at the same place in the image as the comma does in the

incoming data. However, the comma is counted as a character.

Skipping Unwanted Characters. The following specifiers can be used with incoming numeric or string

data to skip over any characters that you do not want to include in the input. You may precede the

specifier with a number from 1 to 255. In an EHTEF image 2and #both mean “skip three spaces.”

Image Specifier Meaning

i Causes one character to be skipped.

Causes the computer to skip characters until the next terminator is received. The nor-

mal terminators are the current EOL sequence (defined with the EHIIL IHE state-

ment) or the End Byte message.
The = specifier should only be used when you have a good understanding of the structure of the incoming

data, but can be very useful in formatting operations. For example, suppose that text is being entered from

a remote computer that sends a line number at the beginning of every string. You know that the line

number information always appears in the first eight characters of each string, and you don’t want these

line numbers in your data. The following format could be used to strip off the line numbers:

EMTER " TF" USIHG "2x,KE' i HE

Section 3: Formatted 1/O Operations 25

The .- specifier is used to demand a terminator (either the current EOL sequence or an End Byte mes-

sage) before going on to the next variable. To see the effect of this specifier, assume that the incoming

data is as follows:

1|12 |3 |H|I [EOL| B |Y E |[EOL

Note: The normal terminators are the current EOL sequence and the End Byte message. The .-

specifier will cause the EHTEF statement to skip to whichever terminator occurs first. The operation

of this specifier is affected by the use of terminator images (refer to the following subsection). If you

have used a terminator image to redefine the active terminators, the .- specifier will cause a skip to

the first recognized terminator.

Using the statement:

EMTER TR UzIHG "Z0ET:)Y, HE

causes Y to get the value 123 and A$ the value HI. However, if the statement:

EMTER ' TR UzIHG 20, - K'Y, HE

is used, then Y gets the value 1=7Z and A$ becomes E''E. The .- specifier causes the computer to skip all

characters after Y is satisfied until it receives the EOL sequence. The entry into A$ begins with the first

character after the EOL sequence. Without the .- specifier, the entry into A$ begins as soon as the Z[

field is exhausted.

Terminator Images

Terminators (normally the current EOL sequence and the End Byte message) serve in two roles for the

FHTEF statement. If a terminator is received in a field of data (before the variable is otherwise satisfied),

it will serve as a field terminator and will terminate entry into the variable. The EHTEF statement will

begin entry into the next variable. Once all variables have been satisfied, a terminator will serve as a

statement terminator and will terminate the EHTEF statement. Indeed, a statement terminator is nor-

mally required in order to go on to the next statement in the program. The terminator that terminates

the EHTEFRstatement can be the same one that satisfied the last variable. Note that terminators are not

required to satisfy a variable. Data entry into a variable can be ended by satisfying an image list, by filling

a dimensioned string variable, or by the free-field entry of a trailing blank or non-numeric character into a

numeric variable.

26 Section 3: Formatted I/O Operations

You can redefine the active terminators by using a terminator image. By using the appropriate termina-

tor image specifier, you may eliminate the current EOL sequence, the End Byte message, or both as

statement terminators. You may also establish the ETO (End Of Transmission — OK) message as a

terminator. The terminator image specifiers, and their various combinations, are listed in the following

table:

Image Specifier Meaning

Eliminates the current EOL sequence as a terminator. When this specifier is present,

the EHTEF statement terminates only on an End Byte message.

! Eliminates the End Byte message as a terminator. The EHTEFEstatement terminates

only on an EOL sequence.

Establishes the ETO (End Of Transmission — OK) message as a terminator. The

EHTER statement terminates on an ETO message, End Byte message, or an EOL

sequence.

#1 oor t# Both the current EOL sequence and the End Byte message are eliminated as termina-

tors. No terminator is required. The EMHTEF statement terminates when the last vari-

able is satisfied.

#5oor = Eliminates the current EOL sequence as a terminator, but establishes the ETO mes-

sage. The EHTER statement terminates on an ETO message or an End Byte

message.

Peoor =t Eliminates the End Byte message as a terminator, but establishes the ETO message.

The EHTEF statement terminates on an ETO message or an EOL sequence.

#1H Eliminates EOL sequence and End Byte message as terminators. EHTEFRstatement

(any order) terminates only on an ETO message.
Most data entry situations do not require the use of terminator images. If you are entering data from a

device that outputs the carriage-return and line-feed characters after each data item, the EHTEFR

statement will terminate on this EOL sequence (provided that carriage-return/line-feed is the current

EOL sequence). In most other cases, the EHTEF statement will correctly terminate when an End Byte

message is received. Normally, it is not necessary to specify which terminator to use, since the EHTEFR

statement will terminate on the first one received. However, terminator images do give you the flexibility

to handle certain specialized applications.

If you want the EHTEFRstatement to terminate only on an End Byte message, you can suppress the

current EOL sequence as a terminator by including the # specifier at the begining of the image list. The

following statement will terminate only when an End Byte message is received:

EMTER ' ELY USIHG "#,.E,20":A%.B1

Note: Terminator image specifiers must be listed first in the EHTEF image list (before the first

comma). You cannot precede them with a number.

The ! specifier suppresses the End Byte message as a terminator. The following statement will terminate

only when the current EOL sequence is received:

EMTER "EZ'Y USIHG 'V, 40,50 1=%%

Section 3: Formatted I/O Operations 27

Eliminating the Statement Terminator Requirement. Normally, the i TEF statement must see the

current EOL sequence or an End Byte message at the end of the incoming data before the program can go

on to the next statement (the ETO message may be specified as an alternative terminator). If there is no

statement terminator at the end of the data, a record overflow error will result. You can use the # ! (or

| #) image specifier to eliminate the requirement for a statement terminator. This specifier eliminates the

EOL sequence and End Byte message as terminators, and causes the EMHTEF statement to terminate

when the last variable is satisfied. In the following example, the EHTEF statement terminates after the

variable Y is satisfied.

EMTEE ":ELY USTIHG "#1P,.aD, el x5,y

If 10 numeric characters are received, the two variables are satisfied and the statement terminates.

Note: The I and .- specifiers override the # ! (or ! #) specifier. If a & or .- is present in an EHTER

image, a terminator is required for that field.

Using the ETO Message As a Statement Terminator. If you are unable to use either an EOL se-

quence or an End Byte message to terminate an EHTEF statement, you may use the : specifier to estab-

lish the ETO (End Of Transmission — OK) message as an alternative statement terminator. The

following statement terminates when an EOL sequence, End Byte message, or an ETO message is

received:

ERTER P D030 UoIMHG "X, KGR HE,B

You may combine the # or ! specifiers with * to suppress the EOL sequence or End Byte message as a

terminator, while establishing the ET'O message. The following statement will terminate on either an End

Byte message or an ETO message:

ERTER D030 UzSIHG THXE,SHT IHE L BEE

If you want only an ETO message to terminate your statement, specify #! *:

EMHTERE " DEY UsIHG THTE KSR (HE,BE

There’s Always an Exception. Not all terminator problems are a proper job for terminator images.

Consider the example of a name field (string) followed by an age field (numeric). Suppose that the names

are variable in length and separated from the age by a comma. If the age came first, this would not be a

problem since the comma would end the entry into the numeric variable. But since the string data is

entered first in this example, the task is a bit trickier. You could input the entire record into a temporary

string variable, then use the F 1% function and string subscripts to extract the name and age fields. This

hypothetical situation emphasizes the importance of knowing the nature of the data you are trying to

enter. Some problems are handled by terminator images, and some are solved by different means, but all

require thought by the programmer.

28 Section 3: Formatted 1/O Operations

HTEFRBufferTChanging the Size of the

The EHTEFRstatement receives data into a reserved area in memory called the &+ TER buffer. This buffer

is also used by other statements that enter data (for example, EHT I 1% and ADIFESS », The default size

of this buffer is 256 bytes. Thus, the EHTEFEstatement reads up to 256 bytes into this buffer, then places

this data into the appropriate variables when the statement is terminated. You can change the size of the

EHTEFRbuffer with the 1021 ZE statement. If an EHTEFRstatement receives more than 256 bytes (or the

size set with 1% 1ZE) before a terminating condition is reached, an error will result.

The 1% 1ZE statement allows you to set any EMHTEFRbuffer size from 1 to 24,575 bytes. The general

form of this statement is:

TO=12E buffer size

where buffer size is a number from 0 to 24,575 (a zero or negative value sets the default size of 256 bytes).

You should set 115 IZE to be at least the maximum expected record size plus one byte.

A Word of Advice About Images

Choosing the proper image for your application can often mean the difference between success and failure

for your program. However, considering the wide range of peripheral devices and the near-infinite variety

of possible data formats, it is understandably difficult to pick just the right image. Even experienced

programmers will go through a period of trial-and-error before finding the perfect combination of image

specifiers.

There is an old, but true, saying in the world of computers: “You can’t program a computer to do some-

thing that you don’t know how to do yourself.” This is an appropriate sentiment for formatted 1/0. If you

don’t know exactly what character sequence needs to be output or what an incoming sequence contains,it

is very unlikely that you will know eactly what image specifiers to use.

Deciding on an exact character sequence for an output is simply a matter of definition. You know what

data is generated by your program, so all you need to do is pick a desirable form for its output. The

primary caution here is to avoid image overflow conditions.

But how can you determine the exact nature of the incoming data when you can’t get it into the computer

to study? Fortunately, there is a way to inspect a totally unknown character sequence. Any sequence of

bytes, including potential terminators, can be entered with the # ! , ri# image (where r: is the number of

characters to read). For example, the statement:

EMTER D1 USIHG "#1P, 18/ AE

will read 10 bytes as the equivalent ASCII characters. You may then use the HE:# function (refer to

appendix D) to convert these ASCII characters to a hexadecimal representation. Once you know the exact

nature of the incoming data, the job of choosing image specifiers will be much simpler.

Section 4

Sending and Receiving HP-IL Messages

The HP-75 I/0 ROM provides enhanced versions of the ZERHI Istatement and EHT I% function that

are compatible with the ZEMHIID and EHTI0# of the HP-75 I/0O Utilities Solutions Book. A =EMII state-

ment, similar in syntax to the HP Series 80 ZEHMH[statement, is also provided for software compatibility.

All three instructions enable you to source individual HP-IL messages. The ZEHMII Istatement allows

you to send commands and data to specified HP-IL devices. The EHT Ii# function allows you to send

commands to a specified device and return data as the value of the function. The ZEH[I statement allows

you to send any HP-IL message. To use SEHDIC, EMTIOE, and SEHD successfully, you must follow

HP-IL protocol. A full discussion of HP-IL protocol is beyond the scope of this manual. Refer to the

following sources for a complete discussion of HP-IL protocol:

e Kane, Gerry, et al. THE HP-IL SYSTEM: An Introductory Guide to the Hewlett-Packard Interface

Loop. Osborne/McGraw-Hill, Berkeley, California, 1982.

e Hewlett-Packard Company. The HP-IL Interface Specification. HP part number 82166-90017, 1982.

The ZEHDI IStatement

The =FEHDIT statement is used to send commands and data to HP-IL devices. SEHII Ican be issued

from the HP-75 keyboard or executed in a BASIC program. The general form of this statement is:

 simplified syntax

SEMDIO ' :device code' . fcommand list’ . ' data list'®

The three parameters are string expressions. The device code parameter is a list of one or more device

codes, each representing a device that will receive HP-IL commands or data. The command list is a list of

HP-IL commands to be executed, separated by commas. The commands may be specified in the form of

HP-IL command mnemonics. The commands that you may use in a ZEHIcommand list are listed in

appendix C. The data list is a character string to be transmitted as data. Any of the three parameters may

be specified with either a literal enclosed in quotation marks or the name of a string variable that contains

the quoted string. A complete definition of the syntax of the ZEI I I statement is given in appendix B.

29

30 Section 4: Sending and Receiving HP-IL Messages

Most of the time, ZEMHI Iwill be used to activate a device as a listener. The device to be activated can

be specified with either the device code parameter or the command list:

e Use the device code parameter when you know what device code has been given to the intended

device. You can specify one or more device codes in this parameter (for example: ' :[il' or

"1FE,:TY '), You can send a LAD (Listen Address) message to the specified device(s) either by

leaving the command list null, or by specifying L. F[1# in the command list. (Only one L F[1# command

is needed, even if more than one device code is specified.) L.F[i# can be used in combination with

other HP-IL commands, and it may appear anywhere in the command list.

e Use the command list when the HP-IL address of the intended device is known. To do this, specify

[.Filiry, where i is the HP-IL address of the device. This will cause a LAD message to be sent to

device r: regardless of what appears in the device code field. You may have any number of iFlir

commands within a single “EHIstatement, and you may have both L.+ and .Fi# in the same

mEHDIO

The following =ET statement sends the string HEL LI to the devices named 1 and 1, and also to

the devices with addresses 5 and 6:

SEMDTO Dl Dt TLRD#, LADSLaDe ' THELLOY

It is not necessary to supply values for all three parameters. If you wish to omit a parameter, you must

specify a null string. The following example of ZEHIsends no commands, but sends the string [FTH

to any devices in the loop that already have active listener status:

mEMDIOD T T ORTHY

You may substitute the name of a string variable for any of the three parameters, as long as you have

defined the variable. In the following example, the ZEHIII{ statement sends the string [T to the

devices named FF and Ti'. (Leaving the command list null generates a L.F{i# command.)

Fo= PR, TR

The ZEHDID statement processes parameters from left to right. Processing proceeds as follows:

1. If the device code parameter has been specified, =E111 determines the HP-IL address of the speci-

fied device. This device address is used when processing the command list. If more than one device is

specified in the device code field, ZEM1 Idetermines the address of each device. If the device code

field is null, then no action is taken in this step.

2. The command list is processed. Commands are sent one at a time through the loop. RFC (Ready For

Command) messages are sent automatically after each command.

3. After all commands are sent, the data specified in the data list is sent around the loop, one character

at a time. If a listener device sends an NRD (Not Ready For Data) message, transmission of data is

terminated. You can recover from this condition by using the SERH[1%* function (refer to the sub-

heading “Resuming Data Transmission With SERD?”).

4. After all commands and data have been sent, the UNT (Untalk) and UNL (Unlisten) messages are

sent around the loop, deactivating all talker and listener devices. If you want the talker and listener

devices to remain active, you can suppress the automatic UNT/UNL by including a TL + anywhere in

the command list.

Section 4: Sending and Receiving HP-IL Messages 31

You can use ZEHMD Ito send HP-IL commands around the loop without sending data. For example, you
can use the following ZEHD Istatement to address the loop:

ISEMHDIO VY UAAUARDL Y,

The AAU (Auto Address Unconfigure) command clears all device addresses in the loop, then the AAD1

(Auto Address) command automatically readdresses the devices in the loop starting with address 1. RF[1

should appear last in the command list.

Resuming Data Transmission With ZEI

If a device in the loop sends an NRD message while ZEHD Iis transmitting data, the transmission

terminates. You can resume transmission from the point of interruption by using the the =FEH[I™

function.

ZEHMDT is a function that requires no parameters. It returns an integer value representing the position in

the data list of the character after the last one that was successfully sourced in the last SFH[I Istate-

ment. If the data list in the last ZEHIII D was null, or if the last “EHMHD Iwas successfully completed,

SEMDT returns a &, (If a device in the loop sends an NRD message after the last character was sent,

SEHMDOY will return a value equal to the length of the string plus one).

The following program is an example of how to use ZEHMH[I7, The program will send the characters

I lowe my HF-75 to the fourth device in the loop:

1@ A = ‘1 lowe my HF-F5
FE SEMOIO ', LAD4' A%
@ IF SEHD? = @ THEH GOTO 5@
46 SEMDIO ', ' LADS ', AFCSENDT]
5@ EMD

If the first “EHD IO (statement 20) successfully transmits the entire string, =EHI1'* will return a value of

zero. This will cause a branch to statement 50, completing the program. Suppose that an NRD message is

received after the SEHIIIC in statement 20 sends the i in mw. SEMDI 0 will stop transmitting at this

point. The ZEHMHDO7 function returns a value of %, since the m is the eighth character in the data list (and

the last one successfully sent). In this case, statement 40 is executed before the program ends. In state-

ment 40, SEHI Isends a substring of A$ that starts at the ninth position. The substring has the value

HE-5

If the “EHMD Iin statement 20 successfully sends the entire string and the device in the loop then sends

an NRD message, the value of ZEHMHD7™ will be the length of the string plus one. Statement 40 will be

executed, but will send the null string. Thus, the program sends the complete string I 1 cwe my HF-F5

in any event.

32 Section 4: Sending and Receiving HP-IL Messages

=E D10 Restrictions

ZEMDI0 causes the HP-75 to become active as a talker. Therefore, although it is possible to issue TAD

(Talker Address) commands with ZEHI, doing so will cause more than one talker to become active in

the loop. You should not use ZEHIIIT to address devices as talkers since this will result in a deadlock

condition.

IfDISFLAY I% or FEIMNTER IZ devices have been assigned for the HP-75, the talkers will automati-

cally be deactivated even if TL + is specified in the command list. Although TL. + will stop ZEHDI Ifrom

automatically deactivating listeners, HP-75 1/O operations not related to =kImay cause deactiva-

tion when DI EFLAY 1% or FEIMTER 1% devices are in use.

The ErHT I0% Function

The EHTI# function is used to receive data from other HP-IL devices. In contrast to =EMHI I, which

is a statement; EHTI0# is a function, and returns a character string value. The string returned is the

data transmitted by the specified HP-IL device. The general form of the EHT I 0% function is:

simplified syntax

EHTIOEC 1 device code' , ' command list'

The two parameters are string expressions. The device code parameter is a list of one or more device

codes. The command list consists of one or more HP-IL commands, separated by commas. The commands

may be specified in the form of HP-IL command mnemonics. The commands that you may use in an

EHTIOE command list are listed in appendix C. Both parameters may be specified with either a literal

enclosed in quotation marks or the name of a string variable that contains the quoted string. You may

specify the null string for either of the parameters, but not both. A complete definition of FHT I1#

syntax is given in appendix B.

Most of the time, EHT I 1% will be used to activate a device as a talker. The device to be activated can be

specified with either the device code parameter or the command list:

e Use the device code parameter when you know what device code has been given to the device. You can

talk or listen address the specified device by including THII# or L.AL# in the command list. If you

leave the command list null, THI# , Z[IF is automatically generated. The TFH[1# and LFII# com-

mands may be used in combination with any other HP-IL commands, and may appear anywhere in

the command list. If TH# is specified in the command list, only one device code may be specified

(otherwise an error will result).

e Use the command list when the device’s HP-IL address is known. To do this, specify TFlior LR,

where 11 is the HP-IL address of the device. This will send a TAD or LAD message to device

regardless of what appears in the device code field. Both TFliri and L flir may be used in conjunc-

tion with other HP-IL commands within a single EHT I (1% instruction. You may also combine T Fili

or THI# with LADn or LAD# in the same EMTIO%,

Section 4: Sending and Receiving HP-IL Messages 33

The following example shows how you might use the EHTI% function in a BASIC statement:

FEOAE = EMTIOEC (DL, "TAHDH®# , S0OAR " »

The EMTI# function addresses the device named ['1 as the talker, then sends an SDA (Send Data)

message. The data sent by device [11 is returned by the EHT I 0% function as the value of A$.

With EMTIO#, either the device code parameter or the command list may be null, but not both. If null

strings are specified for both parameters, an error results (see appendix E).

EMTIO# processes parameters from left to right, as does ZEHDIII. Note, however, that EHT I 1% does

not have a data field. This is because EHT I% causes the HP-75 to become active as a controller and a

listener only; it can transmit commands and receive data, but it cannot send data. Processing proceeds as

follows:

1. If the device code parameter has been specified, EHT I% determines the device addresses in the

loop. These device addresses are used when processing the command list. If the device code field is

null, then no action is taken in this step.

2. The command list is processed. Commands are sent one at a time through the loop. RFC (Ready For

Command) messages are automatically sent after each command.

3. Data is collected from the loop. The value returned by the EHTII# function will be the data col-

lected in this step. Data collection terminates when one of the following conditions is met:

e An End Of Transmission message is received. The ETO (End Of Transmission — OK) message

will terminate data collection unless an E T~ command is included in the command list. The ETE

(End Of Transmission — Error) message will always result in termination.

e The number of Data Byte messages exceeds the limit set with the == command. The default

value is either 256 bytes or the value set with I1ZE. The HP-75 sources an NRD message if

the limit is exceeded.

e A logical end-of-record character or sequence is received. If this occurs, an NRD message is

sourced. Refer to the subheading “Defining Logical End-of-Record” for more details.

End-of-line sequences are treated as data by EHT I 0%, If EOL sequences are received, they are

included in the string returned by the EHT I% function.

e~ UNT (Untalk) and UNL (Unlisten) messages are sent around the loop to deactivate all talker and

listener devices. If you want the talkers and listeners to remain active, you can suppress the automatic

UNT/UNL by including the TL + command in the command list.

The == command is used to set the maximum number of bytes that the EHT I 1% function will read. If

no =7 = command is included in the command list, the maximum number of bytes will be the current size

of the EHTEFRbuffer. The default size is 256 bytes. You can set the size of the EHTEF buffer to any value

from 1 to 24,575 bytes with the I 1= I ZE statement (refer to section 3). If a =Z= command is included in

an EHTIOF command list, the specified size overrides the EHTEF buffer size set with I 1= I ZE for that

EMTI0% only. The maximum size that you may set with the =Z= command is 32,767 bytes (unless [IH~

is also specified in the command list). The syntax is =Z=iwhere% is a decimal number in

the range 1 to 32767.

34 Section 4: Sending and Receiving HP-IL Messages

The [1fi~ command prevents the EHT I% function from reading any data into the computer. EHT I (1#

returns the null string if [Fi~ is included in the command list; however, data will be transmitted from the

talker to any active listeners in the loop. If %Z= is not specified, the maximum number of bytes transmit-

ted will be the current value of I1=IZFE (default = 256). If both [iFi— and %Z= are included in the

command list, sizes up to 999,999,999 bytes may be set. The syntax is ZHZ=H&kKHEEKEE where

a0EMis a number in the range 0 to 999999999. If == is specified, an unlimited number of

bytes will be transferred from the talker to any active listeners. = Z = cannot be specified unless [~

also specified.

An example may clarify this. In the following statement EMTI0# addresses device 1 as the talker and

devices 2 and 3 as listeners, then causes the talker to send its bytes to the listeners:

128 B= EMTIOF <00" TADL,LADE, LADE OF-,2=, 50 2

The &7=command negates the size limit on the number of bytes to be read. The [Ifi—~ command causes

FHTI0# to return no data (the null string is returned for B$). Thus, the =[i# command in the above

statement causes the talker to send as many bytes as it has to send, and listeners 2 and 3 to receive the

transmitted data.

Defining Logical End-of-Record

You can define a character or sequence of characters to serve as a logical end-of-record during trans-

mission. When the logical end-of-record is received, transmission will be terminated. The data that has

been collected up to the point of termination will be returned by EHT I1#. You can define the logical end-

of-record by including one of the following commands in the EHT I 1% command list:

TE+ You can specify the current EOL sequence as a logical end-of-record by

including TE# in the command list.

TE: You can specify any ASCII character as alogical end-of-record by includ-

ing TF: in the command list, where . is the hexadecimal representa-

tion of the ASCII character number (you cannot specify a null value for

TEL You can specify any desired string of up to six characters as a logical end-

of-record by including TFELstringl in the command list. Note that the

string is delimited with brackets rather than quotation marks. You can-

not include the 1 character in the string. If the string includes quotation

marks, they must not be the same form (single or double) that is used to

delimit the command list itself.

TE ! You can use the End Byte message as a logical end-of-record by including

TE ! in the command list.

Here is an example of how you might use logical end-of-record: Suppose that the data you are receiving

consists of lines of text with a line-feed character separating each line. Rather than having EHT I (%

return 256-character strings with embedded line-feed characters, you may wish to treat each text line as

a logical record. To accomplish this, you would simply include TF: &H within the command list. This

command establishes the line-feed character (ASCII decimal code 10, hexadecimal &) as the logical

end-of-record. Each time EHT I 0% is executed, it will return a string containing just one line of text. The

line-feed character will be included in the string.

Section 4: Sending and Receiving HP-IL Messages 35

Enhanced Printing Control

You can have an EOL sequence inserted into the data string automatically each time an End Byte mes-
sage is received from the talker. If you include a CL + command in the command list, a carriage-
return/line-feed sequence will be inserted after each End Byte message. If you use the EL + command
instead, the current EOL sequence (established with the EHDIL IHE statement) will be inserted. Suppose
that you want to receive readings from an HP-IL device that transmits Data Byte messages followed by
End Byte messages, then print the readings on a printer. If these transmissions were printed as received,
the readings would all be on one line with no spacing. Specifying EL + will cause the current EOL se-

quence to be inserted after each reading, thus allowing each reading to be printed on a separate line.

EMT I0# Restrictions

The EHTI0# function will return the null string unless either S0, S5T, S0I, SAI, AFDM, or 10 : &

appears as the last command in the command list. These commands should not appear in the command list

except as the last command. If one of these commands occurs as other than the last command, it will

cause the transmission to begin, but the transmission will be terminated after one message is sent.

If DIsFLAY IS or FRIMTER IS devices have been assigned for the HP-75, the talker will automati-

cally be deactivated even if TL + is specified in the command list. Although Ti.+ will stop EHT I 0% from

automatically deactivating listeners, HP-75 I1/O operations not related to EHT I 1% may cause deactiva-

tion when DIZFLAY 15 or FEIMTER I% devices are in use.

The =it Statement

Most I/0 applications can be performed most easily by using either the 1! TFLIT and EHTEFRstatements,

or SEMIIT and EMTID#., However, the HP-75 I/O ROM also provides the ZEHM[I statement, which

allows you to send any HP-IL message or sequence of messages. This provides enhanced capability for the

advanced user. The syntax of the ZEHM[! statement appears to be rather complex due to its versatility:

 — simplified syntax

.....) . byte number - ... byte number byte number
SE M I HTH oL = M) B
EHE I:I: -t byte string :I I:DHTH byte string [ECL] :| [= byte string []

[IDbyte number] [FLi'Y byte number] [[1[il. byte number] [[1LT byte number]

[ZAD byte number] [L.IZTEH byte number] [TFHLE byte number]

[GTL] [FHO] [MEE) [LLO] [CIF] [LRD] [MLA] [MTR][E00]) [UHL] [z...tz--J'z"]]...

The =EH[D statement enables the HP-75 to source individual HP-IL messages. You can send any

combination of the bracketed items listed in the above syntax representation, in any order (consider the

representation to be one continuous line). Since the ZEHMH[statement deals with individual messages, a

discussion of HP-IL messages and how to specify them follows.

36 Section 4: Sending and Receiving HP-IL Messages

Each HP-IL message is defined by 11 bits: three control bits and eight data bits. HP-IL messages are

separated into four groups according to their control bits:

e Command group: These messages convey instructions from the controller and are monitored by all

HP-IL devices (including idle devices).

e Ready group: These messages provide special-purpose communication between the controller and one

or more devices, and are generally used to coordinate the transfer of instructions and data.

e Identify group: These messages enable devices to request service from the controller. Any device can

modify these messages to indicate a service request condition to the controller.

e Data/end group: These messages convey data between active devices (possibly including the control-

ler). Any device can modify these messages to indicate a service request condition to the controller.

The =EH[statement allows you to specify messages from each of these four groups by including the

appropriate message indicators and qualifiers. An example of a message indicator is [1[!, which in-

dicates a command message. Message qualifiers specify a specific message, and include the byte number

and byte string.

Sending Command Group Messages

Certain command message indicators — GTL, BMO, HEE, LLO, CIF, LFD, MLA, MTAH, 500, UHL, and

IIMT — require no qualifiers. You may include any combination of these indicators in a ZEi statement,

and you may include them in combination with other indicators. These indicators (except IF, R,

MLA, and MTH) cause the ZEHM[Istatement to send the HP-IL commands with the corresponding

mnemonics (refer to appendix C). The CIF indicator causes =ZEHMH[to send the IFC (Interface Clear)

message. The FEIMindicator causes ZEHMD to send the REN (Remote Enable) message. The L in-

dicator causes ZEHMI! to send no message, while M TH causes ZEMD to send the UNT message. In the

following example, the ZEHD statement sends the HP-IL command messages UNT (Untalk), UNL

(Unlisten), and REN (Remote Enable):

28 SEHD UHT WML EMO

Note: The HP-75 automatically sends an RFC (Ready For Command) message after each command

message sent by the =EF[I statement.

You may specify any HP-IL command message with the I} message indicator. The specific command is

indicated by either a byte number or byte string. A ©:Ii[i byte number is a number in the range 0 through

255 (modulo 256) that represents the eight data bits of the command message. The byte number for the

NRE (Not Remote Enable) message is 147, representing the bit pattern “10010011”. The following SM

statement sends the NRE message:

Ve SEMD MO 147

You may specify more than one command byte number in a T field, separating the successive numbers

with commas. The following statement sends the UNT and UNL messages (UNT is command number 95

and UNL is command number 63):

e SEHD CMD 25, 83

Section 4: Sending and Receiving HP-IL Messages 37

You may also use a byte string to specify a series of HP-IL commands in a[field. Each ASCII charac-
ter in a byte string indicates the command that has the byte number equivalent to its ASCII decimal code.
The following statement also sends the UNT and UNL messages:

pig SEMD CHD

The underscore (_) has ASCII decimal code 95, representing the UNT message. The question mark (%)
has decimal code 63, representing the UNL message. Note that capital and lower case letters specify
different bytes when used in a byte string. You may use the “HF# function to include characters that
cannot be generated directly from the keyboard.

The DL and OOT message indicators may be used to specify Device-Dependent Listener and Device-

Dependent Talker messages having number 0 through 31 indicated by byte number (modulo 32). More

than one byte number may be specified in a [IlL. or [IOT field.

The ZA[! message indicator is used to specify a Secondary Address message having an address in the

range 0 through 31 indicated by byte number (modulo 32). More than one byte number may be specified in

an ZAD field.

The L I=TEH message indicator is used to specify LADn (Listen Address) messages. Addresses are in-

dicated by byte numbers in the range 0 through 31 (modulo 32). The device at the specified address

becomes a listener — except that 31 clears all devices from listener status. More than one LADn message

may be specified in a L I ZTEH field. The following =EHMH[statement sets up the devices at addresses 2, 3,

and 5 to listen:

S SEMD UMT UML LISTEH 2,323,535

You can now send the string AEL to these devices with the following TILITFIIT statement:

EEOOUHTRFUT @ "ABECY

The HP-75 automatically becomes the talker when the TlLITFIIT statement is executed. You need not

specify device codes in the ILITFLIT statement since you have already addressed the intended devices to

listen.

The THLE message indicator is used to specify a TADn (Talk Address) message. The address i is in-

dicated by a byte number in the range 0 through 31 (modulo 32). The device at the specified address

becomes a talker — except that 31 clears all devices from talker status. Only one TADn message may be

specified in a TALE field. The following ZEHMHD statement addresses device 3 as the talker:

A6 SEMD UNT UHL TARLE =

You may now enter data from device 3 with the EHTEF statement. To enter data as a string:

48 EMTER @ AE

The HP-75 automatically becomes a listener when the EHTEF statement is executed. You need not in-

clude a device code in the EHTEF statement since the intended device has already been addressed to talk.

Once the EHTEF statement is completed, you should remove talker status from device 3 with UNT or

MTA.

38 Section 4: Sending and Receiving HP-IL Messages

automatically become a talker when you execute an ULITFUT or FREIMHT statement. If a device in

the loop has been addressed as a talker with ZEHMLI, there will be two active talkers.

Sending Ready and Identify Group Messages

Ready group messages are specified with the F:[1*' message indicator. Identify group messages are specified

with the I[1'Y message indicator. In either case the message sent will have the data bits set according to a

byte number in the range 0 through 255 (modulo 256). More than one byte number may be specified in an

ROoor 10field.

Sending Data/End Group Messages

Data/End group messages are specified with the [1# Tand E Rmessage indicators. You may use either a

byte number field or a byte string to specify the actual Data Byte message or End Byte message. The byte

number field may contain several byte numbers each indicating the ASCII character code of one character

in a string. Byte numbers have the range 0 through 255 (modulo 256). A byte string results in a series of

Data Byte messages that transfer the characters defined by the string. The following statements both send

the Data Byte messages that transfer the string #Ei (M, B, and i have the ASCII decimal codes 65, 66,

and 67):

0 OATA PRBC

The inclusion of an EOL indicator in a [IATH or EHfield causes the current EOL sequence (defined

with the EHIILIHE statement) to be transmitted as a sequence of Data Byte messages. The following

statement addresses device 2 as a listener, sends the string HEL.}, and sends the current EOL sequence:

S REMDUNT UML LISTEH 2 ODATH "HELLOY EOL

If device 2 is a printer, the EOL sequence will normally cause HELL i to be printed (provided the current

EOL sequence is carriage-return/line-feed).

Appendix B gives a complete definition of the syntax of the ZEI statement.

Section 4: Sending and Receiving HP-IL Messages 39

Application Programs

The following programs exemplify some typical I/O applications using OUTFLT, EHTER, SEHDI0, and
EHTIOE,

An HP-75/HP Series 80 Interface

The following programs allow you to set up an interface between the HP-75 and an HP Series 80 Personal

Computer using HP-IL. The HP Series 80 computer must have an HP-IL module and an I/0 ROM

installed. The Series 80 HP-IL module must be set in the non-controller mode and have a select code of 9.

There are two programs involved: one for the HP-75 and one for the HP Series 80 machine. The programs

assume that the HP Series 80 machine has been assigned the device code 1.

Instructions:

1. Key in each program to the appropriate machine.

Run the programs concurrently.

A

listener.

&

7. To stop the programs, precede the message with a -.

8. Go to step 4 unless the last message began with a -..

HP-75 Program Listing:

g OIM AFLE5a]

S THRPUT "MESSAGE o ' HE

2@ OUTRUT a1t AE

48 IF RECL,1d="%" THEH ¥@

5@ IF RECL, 1d='-" THEHN EHD

s GOTO 28

FEOEMTER "1 HE

b
}

i
1 DIsk USIHG 128 0 HE

i:*:l

B
i

e
,G IF AECL, 1= THEH =Z@

tes IF AFCL, 1d="-" THEH EHD

Tig GoTo va

12 IWMAGE "HPF SERIES 28--0HF-VZ 7 H

13a EMD

The HP-75 starts out as the talker, the HP Series 80 as the listener.

The prompt MEZZHGE : will appear on the display of the talker.

Key in the message to be sent and press the return key. The message will appear on the display of the

To exchange the talker and listener functions, precede the message with a #.

Dimensions the string.

Inputs message.

Sends message.

Change talkers?

Terminate communications?

Enters message.

Displays message.

Change talkers?

Terminate communications?

40 Section 4: Sending and Receiving HP-IL Messages

HP Series 80 Program Listing:

e DIM RECzEs] Dimensions the string.

S8 EMTER 2R Enters message.

2@ DIsP USIHG 138 (R¥E Displays message.

40 IF AFEC1, 1 d="%" THEH V& Change talkers?

=@ IF R, 1 d=t-0t THEHM EHD Terminate communications?

s COTO =28

FEODISE "MESSAGE @ 4
=S THPFUT HE Inputs message.

SE GUTRUT 9iHE Sends message.

1EE IF AECL,10="%" THEH 26 Change talkers?
118 IF AEC1,13="-" THEH EHD Terminate communications?

.....

THAGE YHE -7 E-~3HF SERIES BK

T4 BEHD

An HP-75/Modem Interface

This program allows communication between the HP-75 and another mainframe through an HP-IL

modem. The HP-75 functions as though it is a terminal while the program is running. The program

assumes that the device code i has been assigned to the modem.

Instructions:

1. Turn on the modem.

2. Dial the number for the computer on the telephone.

3. Place the phone handset into the modem.

4. When the carrier light comes on, run the program.

5 . The HP-75 now functions as a terminal. From this point on, the procedure depends on the computer

to which you are connected. Do what you would normally do to communicate with the computer from

a terminal.

Program Listing:

e WIDTH ITHF Sets large width.

28 CLEAR MO Clears the modem buffers.

AR SEMDIO MOt TUML L REEM, LADE Y, ' parameters ! Remote enables the modem.

BoSEMDIO t et THEET N

48 EF=KEY+® @ IF kK& #'' THEH GOSUE 20 Gets the key.

SECOEF=EMTIOEC MO, "UML, TRO®, SOA Gets input from modem.

R OISR Ef; Displays input.

CECOGOTO 48

i — x
5 SEMDIO tepM0t, CUML, LAD# ' K F Sends the key.

FETUREHL T A
N

Section 4: Sending and Receiving HP-IL Messages 41

Note: The parameters field in line 30 of the program is used to specify the parity and protocol for your

application. Refer to your modem manual for further information.

Obtaining Readings From a Multimeter

In this program the HP-75 triggers the HP 3468A Multimeter to take 10 voltage readings (one every 10

seconds), receives the data from the multimeter as a string, and outputs each voltage reading to the

printer. The program assumes that the device codes E 1 and F 1 have been assigned to the multimeter and

the printer, respectively.

Instructions:

1. Turn on the multimeter, printer, and HP-75. Assign the appropriate device codes.

2. Run the program.

Program Listing:

g EEMOTE ':E1Y Sets meter to remote mode.

o8 FOR F o= 1 TO 18

IR OSEMDIO "G ELY,CLADE,CFLIEATE! Sets meter to read voltage.*

40 HE = EMTIO®EC ELY, "THO#,Z0R Gets reading from meter.

5@ OQUTRUT PR USIHG ""Woltaae = ", R IAE: Outputs reading to printer.

aEOMAIT 18 Wait 10 seconds.

TEOMEST F

=@ LOoCAL rELY Returns meter to local mode.

6 BEMD

The 01LITELT statement (line 50) ends with a semicolon (:) to suppress the output of a final EOL se-

quence. Without the final semicolon, the printer will skip a line after each reading because the voltmeter

itself sends carriage-return/line-feed after each reading. The FEMITE and LJZAL statements (lines

10 and 80) are covered in section 5. These statements leave the multimeter addressed to listen. If this

causes problems in a program, use SEHDIT or SEMD to send the UNL (Unlisten) command.

* The string F 1 RATZ consists of HP 3468A Multimeter command codes (refer to the HP 3468A Multimeter Operator’s Manual). The

function code F 1 specifies DC Volts. The range code F:f specifies Autorange. The command code TZ specifies the Single Trigger

mode.

Section 5

Other HP-IL Statements and Functions

The HP-75 I/O ROM provides several statements and functions that allow you to automatically assign

the loop, select remote or local control of HP-IL devices, check the device ID and accessory ID of HP-IL

devices, and conduct serial and parallel polls.These statements and functions are described in this section.

Assigning the Loop

The I/0 ROM provides two statements — A=% IGH LOOF and AUTOLOOF OH.-OFF — that enable you

to automatically assign device codes to all devices in the loop. You need not assign device codes individ-

ually with A== I GH I0, Two functions — DEVADDE and DEVHAME$ — allow you to quickly determine

the device address or device code of a specified device. The FI[IEE %% function addresses the loop and

returns the number of devices in the loop.

The A= TGH LOOF and AUTOLOOF OH-0OFF Statements

When you execute the A== IGH LiIOOF statement, device codes are automatically assigned to all devices

in the loop. For each HP-IL device A== I GH LIOOF uses the Accessory ID to determine its class, then

assigns a two-character device code. Each device code consists of a letter indicating the class of the device

followed by a numeral indicating its occurrence within the class. The characters used to indicate the

device classes are:

Analytical Instrument

HP-IB Device

Controller

Display

Electronic Instrument

Graphic Device

Interface

Keyboard Device

Mass Storage Device

General Device

Printer

Unknown Class

Extended Class¥
"

o0
2
R
~

H
U
O
Q
W

>

43

44 Section 5: Other HP-IL Statements and Functions

The first display device found would be assigned the device code [11; the third electronic instrument, E =,

and so forth. Device codes are assigned in this manner for all classes except “B” (HP-IB Devices). Refer to

“Assigning HP-IL Addresses and Device Codes to HP-IB Devices” for information about this class.

The FLITOLOMOF statement automatically executes A% S IGH LIOOF when the HP-75 is turned on. You

may turn this feature on or off by executing ALITOLOOF OF or AUTOLOOF OFF, When AUTOLOOR 1s

in the on state, device codes are assigned to all devices in the loop each time the computer is turned on.

The computer “beeps” to indicate that the assignment has been made. FiLiTIL 00F sends the LPD (Loop

Power Down) command when you turn the computer off. ALiTL {IIF remains in the on state until you

execute FHUTOLOOF OFF,

Assigning HP-IL Addresses and Device Codes to HP-IB Devices

When used in “translator” mode, the HP 82169A HP-IL/HP-IB Interface allows you to control HP-IB

devices from HP-IL, and vice-versa. (In “mailbox” mode, the interface transfers only data between HP-IL

and HP-IB.) When the HP 82169A HP-IL/HP-IB Interface is connected in the loop with an HP-75 as the

controller, you can assign HP-IL addresses for the HP-IB devices connected to the interface. The inter-

face must be the last device in the loop, must be in “translator” mode, and must use default addressing

(refer to the HP 82169A HP-IL/HP-IB Interface Owner’s Manual). When the HP-75 assigns addresses to

the loop, the interface receives its appropriate address, then reserves all higher numbered HP-IL ad-

dresses for the HP-IB devices connected to it. If, for example, the interface is the fifth (and last) device in

the loop, it is assigned HP-IL address 5 and reserves HP-IL addresses 6 through 30 for HP-IB devices.

You must then set the address switches of each HP-IB device to one of the available addresses.

Once device addresses have been assigned, you can use A=IGH LOOF or ALITOLOOF to assign device

codes. The H== 1 GH LOOF statement (or ALITILC0F) assigns a device code to each HP-IL device in the

loop including the HP 82169A HP-IL/HP-IB Interface. The interface is assigned a device code of the “I”

(Interface) class (for example, I1). Next, A== IGH LOOF assigns a device code for each of the HP-IL

addresses reserved by the interface for HP-IB devices. The first character of each device code is E (in-

dicating an HP-IB Device). The second character of each device code indicates the corresponding address.

Addresses 2 through 9 are assigned the device codes E: through E#. (There can be no device code Ei

because the interface itself occupies one address.) Letters are used to represent device addresses above 9.

Device addresses 10 through 30 are assigned the device codes Eifi through E!l! (address 10 is assigned

device code Efi, address 11 is assigned EE, and so forth).

Now let’s consider a specific configuration. The following devices (in order) are connected in the loop with

the HP-75 as the controller: an HP 82161A Digital Cassette Drive, an HP 82162A Thermal Printer, an

HP 3468A Multimeter, and the HP 82169A HP-IL/HP-IB Interface. An HP 82905B Printer is connected

to the HP-IB side of the interface. The HP-IL devices are assigned addresses 1 through 4. The interface

reserves addresses 5 through 30 for HP-IB devices. The A== IGH LiI0F statement assigns the device

codes 11, F1, E1,and I1, respectively, for the cassette drive, thermal printer, multimeter, and interface.

MESIGH LOOF assigns the device codes E S through El! for the reserved addresses (5 through 30). How-

ever, the reserved addresses and device codes do not yet correspond to any device. You must set the ad-

dress switches of the HP 82905B Printer to the address that corresponds with the desired device code.

(The owner’s manual of each HP-IB device gives the procedure for setting the address switches.) For

example, if you set the address to 5, the HP-IB printer will have the device code E . If you set the address

to 10, the device code will be Ef. Note that each HP-IB device must have a unique address greater than

that of the interface, and that a maximum of 30 devices (HP-IL and HP-IB) may be assigned.

Section 5: Other HP-IL Statements and Functions 45

The LEVAHDDE and DEVHAME#$Functions

The DEVADDR and DEWHAME# functions operate on the device code or address of a device, allowing you

to determine one if you know the other. The [E'/ALIF function accepts a device code as its argument

and returns the address of the specified device. The TE'HAME# function accepts a device address as its

argument and returns the device code as a string. In the following examples assume that the printer has

address 5 and the device code F1.

The DEWADDREfunction can be used in the following BASIC statement:

28 Hl = DEVADDRE VP10

ODEVADDE will return a value of 5 for Al.

The DEWHAME#$ function can be used in the following statement:

TEORFE = OEVHAMEE 52

DEVHAME® will return a value of : F1 for AS$.

== Function

The AL

The ALDFESS function allows you to quickly determine the number of devices in the loop. The function

addresses all devices in the loop and returns a number. AIDFEE %% causes the controller to assume address

0, then addresses the devices in the loop starting with address 1. Once all addresses have been assigned,

the ADIIRES S function returns a value equal to the number of devices in the loop (the address of the last

device). The AIDEESE function might be used in a BASIC statement as follows:

TR oY = ADDRESS

If there are 15 devices in the loop, the AIIFE %S function will address the loop and return the value 15

for X.

Note: If you have already assigned device codes for the devicesin the loop, use caution when using

the AODREESS function. ADIDREESS will cause no problems as long as you have not added or re-

moved any devices from the loop. However, if you have added or removed devices, the addresses

assigned by the ALDRE S S function will not agree with the original addresses. This will invalidate the

device code assignments.

Remote and Local Control of HP-IL Devices

The HP-75 I/O ROM provides four statements — FREMOTE, LOCAL, LOCAL LOCEOUT, and

TEIGGER — that allow you to select either remote (through the loop) or local (front panel) control of

HP-IL devices.

46 Section 5: Other HP-IL Statements and Functions

The EEMOTE Statement

With the FEMITE statement you can set up HP-IL devices for remote control. The general form of this

statement is:

simplified syntax

EEMOTE ' :device code’

You may specify one or more device codes in a FEMITE statement, or you may omit the device code

parameter. If you do not specify a device code, the FEMITE statement sends a REN (Remote Enable)

message to all devices in the loop.Individual devices will go into the remote state once they are addressed

to listen. If device codes are specified, the FEMITE statement sends out the UNL and REN messages,

then addresses the specified devices to listen. Thus, the devices specified in the device code parameter are

set up for remote control. Remote mode disables a device’s front panel controls except for the power

switch and the remote-mode override control (the LOCAL button). In remote mode HP-IL data bytes are

interpreted by the device as remote control commands. The following statement sets devices £ 1 and E &

to remote mode:

A EEMOTE "tEL, EZY

A device will respond to the REN message only if it has been designed with HP-IL remote control capabil-

ity. Once a device has been set up for remote control, the functions that can be controlled remotely by the

HP-IL controller depend on the design of the device. For example, the HP 3468A Multimeter allows you

to control its range settings remotely.

Note: The EEMITE statement (also the LOCHL and TEIGGER statements) leave HP-IL devices

addressed to listen. You may remove listen-addressed status by sending the UNL (Unlisten) command

with ZEMOTI0 or SEMHD.

The L1+l Statement

With the L1l statement you can return HP-IL devices from the remote state to local control.The

general form of this statement is:

 simplified syntax

LOCHL ' 1 device code'

The device code parameter is optional, and one or more device codes may be specified. If device codes are

specified, the LICAL statement sends out the UNL message, addresses the specified devices to listen,

then sends the GTL (Go To Local) message. The GTL message returns the devices to local control, but

leaves them remote enabled and addressed to listen. The devices will return to remote mode when next

addressed to listen. The following statement returns £ 1 and EZ to local control, but leaves them remote

enabled:

S LOCHL " ELL G ESY

If the L. 0IAL. statement is used without parameters, the NRE (Not Remote Enable) message is sent. This

removes remote enabled status from all devices in the loop. The following statement returns all devices to

local control and removes remote enabled status:

oELOCAHL

Section 5: Other HP-IL Statements and Functions 47

The LOCAHL LOCEDIT Statement

The LOCAL LOCKOUT statement enables you to lock out the front panel remote-mode override control
(the LOCAL button) on a device that is in the remote state.This prevents an operator from returning to
local control at a critical time during remote operation. The statement has no parameters:

Loompl LOCEOQUT

The L. OCHL LOCKOUT statement sends the LLO (Local Lockout) message. To establish local lockout for

devices E1 and EZ you could use the following sequence of instructions:

18 REMOTE ":EL, tE2"

EOLOCAL LOCEDOUT

Only those devices that have been designed with local lockout capability will respond to the LLO message.

You can return a device from the local lockout state to local control with the L {1l statement.

The TIGGERE Statement

You can use the TF I:GEFRstatement to initiate operation of devices that are designed to respond to the

GET (Group Execute Trigger) message. The general form of this statement is:

 simplified syntax

TRIGGER ' :device code'’

You may specify one or more device codes in the device code parameter, or you may leave it blank. If you

do not specify a device code, the GET message is sent. All devices that have already been addressed to

listen will receive the GET message. If device codes are specified, the TF I Z:ZEF statement sends the

UNL message, addresses the specified devices to listen, then sends the GET message. The following state-

ment causes devices E 1, EZ, and EZ to initiate operation:

e TRIGGER "B, EZ,ESY

The response of an HP-IL device to the GET message depends on the design of the device. The

TR IGGER statement simply initiates the operation of several devices at (approximately) the same time.

For example, several temperature measuring instruments could be periodically triggered with this

statement.

The possible remote control applications using the FEMOTE, LOCAL, LOCAL LOCEOUT, and

TR IGGER statements are obviously numerous. However, since the response of an individual device to

these statements depends on the design of the device, specific applications are beyond the scope of this

manual. The remote control characteristics of individual HP-IL devices are covered in the owner’s man-

uals for those devices. For general information about remote and local control, refer to THE HP-IL SYS-

TEM: An Introductory Guide to the Hewlett-Packard Interface Loop, by Gerry Kane, Steve Harper, and

David Ushijima, published by OSBORNE/McGraw-Hill, Berkeley, California, 1982.

48 Section 5: Other HP-IL Statements and Functions

Checking the Device ID or Accessory ID of HP-IL Devices

The HP-75 I/O ROM provides two functions — DEY ID# and DEWHA I ¥ — that enable you to check the

device ID or accessory ID of HP-IL devices. Only one device at a time may be specified in either function.

Device ID

The DEWID# function allows you to check the device ID of an HP-IL device. The general form of this

function is:

ODEWYIDE < F ' device code '

MEWINE addresses the specified device as the talker and sends the SDI (Send Device ID) message. The

device sends its device identification, and [EI[# returns this identification as a string. The device

identification that a device sends is usually an ASCII string consisting of a two-letter manufacturer’s

code, a five-character model number, model revision, and any additional information included by the

manufacturer of the device. In the following example [IE4 I 1% is used to determine the device identifica-

tion of an HP 3468A Multimeter that has been assigned the device code E 1.

48 HE = DEVIDE <P EL1T D

The [IEWI# function returns the device identification HF Z4 &= H as the value of AS.

Accessory ID

The DEWAIDF function allows you to check the accessory ID of an HP-IL device. The general form of

this function is:

OEWHIDE < rdevice code '

DEVAIDE addresses the specified device as the talker and sends the SAI (Send Accessory ID) message.

The talker sends its accessory identification and CIEYFH I # returns this identification as a string. The

accessory identification is usually a single byte in which the most-significant four bits designate the device

class (for example, printer, mass-storage device, etc.) and the least-significant four bits indicate a specific

device. Since [IEWH I 1% returns a character string, this eight-bit byte is represented as an ASCII charac-

ter. In the following example [IE'A I [1# is used to determine the acessory identification of an HP 82161A

Digital Cassette Drive that has been assigned the device code 1.

TEEF = DEVAIDE oMl

The DEVWHID# function returns the ASCII character & as the value of B$.

Note: Certain characters (for example, the Greek letters) may not be printable with your printer. Thus,

the DEWVIDF, DEVAID# and SFOLL # functions may return strings that contain characters that do

not appear in a printout. However, all characters will appear on the display.

Section 5: Other HP-IL Statements and Functions 49

Polling HP-IL Devices

The HP-75 I/0 ROM provides three functions that enable you to conduct polls of HP-IL devices. The

ZFOLL and ZFOLL# functions are used in serial polls. The FFL L function is used to conduct parallel

polls.

Serial Polling

The ZFOLL and SFOLL# functions both conduct a serial poll of a specified device. These functions

differ in the way they represent the results of the poll.

The general form of the ZF 1L L function is:

SFOLL O i device code '

The ZFLL function sends the SST (Send Status) message to the specified device. The device responds

by sending back one or more status bytes. The value returned by the ZF il . function is the first status

byte, represented as a number. In the following example ZFL L is used to conduct a serial poll of an HP

82162A Thermal Printer that has been assigned the device code F1:

Tde s« = SPOoLL of L2

If the printer sends the status bytes “00100000” and “01100000”, =FiL. L returns 32 (the decimal value of

the first byte) as the value of X.

The =FL L # function conducts a serial poll of a specified device, like ZFL L, but returns the result as a

character string. The general form of this function is:

=FOLLE ¢ 1 device code '

The =FOLL#% function sends the SST message to the specified device. The device responds by sending

back one or more status bytes. The value returned by the ZFL L # function is a string of ASCII charac-

ters representing the status bytes. Suppose that ZFL L #, rather than ZFULL, is used to conduct the

serial poll of the previous example:

1o 0DF = SPOLLE O FL 2

The =FLL# function converts the status bytes “00100000” and “01100000” to the ASCII characters

with the equivalent decimal codes (32 and 96). The string returned for D$ is “ *”. Note that the first
-

character in the string is CHE# ¢ 22, a blank space.

50 Section 5: Other HP-IL Statements and Functions

Parallel Polling

The FFil. L function conducts a parallel poll of those devices in the loop that have been configured for

parallel polling. The FFL L function sends the IDY (Identify) message. All devices that are to be polled

must be capable of responding to this message. Each device in the poll sets one bit of the parallel poll

response byte according to its configuration. The FF il L function has no parameters, and returns a num-

ber representing the response byte.

Each device to be polled must be configured for parallel polling before you execute theil L. function.

Each device is configured by sending the appropriate PPEn (Parallel Poll Enable) message to the device

with the ZEHIt statement. The PPEn message configures a device to set the one of the eight data bits

(DO through D7) of the parallel poll response byte, and also specifies whether the device is to set the bit if

service is requested or if service is not requested.

Note: Normally, each device will specify its own exclusive bit in the response byte, allowing you to

poll up to eight devices at once. It is possible to assign more than one device to each bit of a parallel

poll response byte. If you do, you can poll more than eight devices. However, if two or more devices

share a bit that has been set, you will not be able to tell which device setit.

The PPEn message enables a device to respond to an IDY message, and defines the response according to

the value of n, an integer from 0 to 15. The following table lists the configurations set by PPEn messages

from PPEO to PPE15. Note that PPEO through PPE7 specify that the configured device is to set the

designated bit of the response byte (DO through D7) if service is not requested. The messages PPES

through PPE15 specify that the device is to set the designated bit if service is requested.

Note: In a parallel poll response, a device will set its assigned bit to a “1” if the condition specified in

the table exists. Otherwise the bit will be left unchanged. Also, control bit CO will be setif service is

requested by any device in the poll.

Parallel Poll Response to an IDY Message

Enable message: Designates bit... Device sets that bit if...

PPEO DO

PPE1 D1

PPE2 D2

PPE3 D3 service is not requested.
PPE4 D4

PPES D5

PPEG6 D6

PPE7 D7

PPES DO

PPE9 D1

PPE10 D2

PPET1 D3 service is requested.
PPE12 D4

PPE13 D5

PPE14 D6

PPE15 D7

Section 5: Other HP-IL Statements and Functions 51

An example will show how to configure the loop. Suppose that there are two devices in the loop, a printer

at address 1, and a digital cassette drive at address 2. You should start by setting the loop to an initial

condition by executing the following SEHMII Istatement:

SEMOIO ', VUHL L FRUY

The UNL (Unlisten) command prevents unwanted devices from responding to the subsequent commands.

The PPU (Parallel Poll Unconfigure) command resets any existing parallel-polling configuration.

Remember that SEHD Iautomatically sends an RFC (Ready For Command) message after each com-

mand. You may now start configuring the devices, one at a time, for the parallel poll. The following

statement will configure the first device (the printer):

SEMDOIO U PLADL LV PPELS UML Y,

The LA}l command addresses device 1 to listen. FFE 1% specifies that the addressed device should use

bit D5 of the parallel poll response byte, and should set that bit to a “1” if service is requested. The UNL

command unlistens the printer so that it will ignore further commands.

You may now configure another device. The following statement configures device 2 (the cassette drive) to

set bit D7 of the response byte to a “1” if service is not requested:

SEMDIO PP LRDE LV PREV UL Y T

Once you have configured the desired devices for parallel polling, you may execute the FF ilL. function as

often as you want. The IDY message will be sent out each time you execute FFL L, and each device will

assert one bit of the response byte according to the configuration. The FF il L function will return a

number representing the response byte. You could poll devices 1 and 2 (configured above) by executing the

following statement:

S8 5 o= FROLL

Device 1 will set bit D5 of the response byte if it needs service, and device 2 will set bit D7 if it does not

need service (according to the above configuration). The value of X will be a number that represents the

response byte. If the response byte is “10100000”, FFil.L. will return the value 160.

For further information on parallel polling, refer to THE HP-IL SYSTEM: An Introductory Guide to the

Heuwlett-Packard Interface Loop, by Kane, Harper, and Ushijima.

Appendix A

Owner’s Information

CAUTIONS

Do not place fingers, tools, or other objects into the plug-in ports. Damage to plug-in module contacts

and the computer’s internal circuitry may result.

Turn off the computer (press (ATTN]) before installing or removing a plug-in module.

If a module jams when inserted into a port, it may be upside down. Attempting to force it further may

result in damage to the computer or the module.

Handle the plug-in modules very carefuly while they are out of the computer. Do not insert any objects in

the module connector socket. Always keep a blank module in the computer’s port when a module is not

installed. Failure to observe these precautions may result in damage to the module or the computer.
Limited One-Year Warranty

What We Will Do

The HP-75 I/O ROM is warranted by Hewlett-Packard against defects in materials and workmanship

affecting electronic and mechanical performance, but not software content, for one year from the date of

original purchase. If you sell your unit or give it as a gift, the warranty is transferred to the new owner

and remains in effect for the original one-year period. During the warranty period, we will repair or, at our

option, replace at no charge a product that proves to be defective, provided you return the product, ship-

ping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of

service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.

ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED

TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or

countries do not allow limitations on how long an implied warranty lasts, so the above limitation may not

apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR

CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclusion or

limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to

you.

53

54 Appendix A: Owner’s Information

This warranty gives you specific legal rights, and you may also have other rights which vary from state to

state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a

consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be deter-

mined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard

shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard dealer

or a Hewlett-Packard sales and service office. Should you be unable to contact them, please contact:

e In the United States:

Hewlett-Packard

Personal Computer Group

Customer Support

11000 Wolfe Road

Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

e In Europe:

Hewlett-Packard S.A.

150, route du Nant-d’Avril

P.O. Box CH-1217 Meyrin 2

Geneva

Switzerland

Telephone: (022) 83 81 11

Note: Do not send units to this address for repair.

e In other countries:

Hewlett-Packard Intercontinental

3495 Deer Creek Rd.

Palo Alto, California 94304

U.S.A.

Telephone: (415) 857-1501

Note: Do not send units to this address for repair.

Appendix A: Owner’s Information 55

Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may have

your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit is under

warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt at

any service center. This is an average time and could vary depending upon the time of year and the work

load at the service center. The total time you are without your unit will depend largely on the shipping

time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is located

in Corvallis, Oregon:

Hewlett-Packard Company

Service Department

P.O. Box 999

Corvallis, Oregon 97339, U.S.A.

1030 N.E. Circle Blvd.

or Corvallis, Oregon 97330, U.S.A.

Obtaining Repair Service in Europe

Telephone: (503) 757-2000

Service centers are maintained at the following locations. For countries not listed, contact the dealer

where you purchased your unit.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H.

Kleinrechner-Service

Wagramerstrasse-Lieblgasse 1

A-1220 Wien (Vienna)

Telephone: (0222) 23 65 11

BELGIUM
HEWLETT-PACKARD BELGIUM SA/NV

Woluwedal 100

B-1200 Brussels

Telephone: (02) 762 32 00

DENMARK

HEWLETT-PACKARD A/S

Datavej 52
DK-3460 Birkerod (Copenhagen)

Telephone: (02) 81 66 40

EASTERN EUROPE
Refer to the address listed under Austria.

FINLAND

HEWLETT-PACKARD OY

Revontulentie 7

SF-02100 Espoo 10 (Helsinki)

Telephone: (90) 455 02 11

FRANCE

HEWLETT-PACKARD FRANCE

Division Informatique Personnelle

S.A.V. Calculateurs de Poche

F-91947 Les Ulis Cedex

Telephone: (6) 907 78 25

GERMANY
HEWLETT-PACKARD GmbH

Kleinrechner-Service

Vertriebszentrale

Berner Strasse 117

Postfach 560 140

D-6000 Frankfurt 56

Telephone: (611) 50041

ITALY

HEWLETT-PACKARD ITALIANA S.P.A.

Casella postale 3645 (Milano)

Via G. Di Vittorio, 9
1-20063 Cernusco Sul Naviglio (Milan)

Telephone: (2) 90 36 91

NETHERLANDS
HEWLETT-PACKARD NEDERLAND B.V.

Van Heuven Goedhartlaan 121

NL-1181 KK Amstelveen (Amsterdam)

P.O. Box 667

Telephone: (020) 472021

NORWAY
HEWLETT-PACKARD NORGE A/S

P.O. Box 34

Oesterndalen 18

N-1345 Oesteraas (Oslo)

Telephone: (2) 17 11 80

SPAIN
HEWLETT-PACKARD ESPANOLA S.A.

Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

SWEDEN
HEWLETT-PACKARD SVERIGE AB

Skalholtsgatan 9, Kista

Box 19
S-163 93 Spanga (Stockholm)

Telephone: (08) 750 2000

SWITZERLAND

HEWLETT-PACKARD (SCHWEIZ) AG

Kleinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057) 31 21 11

UNITED KINGDOM

HEWLETT-PACKARD Ltd

King Street Lane

GB-Winnersh, Wokingham

Berkshire RG11 5AR

Telephone: (0734) 784 774

56 Appendix A: Owner’s Information

International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you

bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is available

in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local Hewlett-

Packard service center to see if service is available for it. If service is unavailable, please ship the unit to

the address listed above under Obtaining Repair Service in the United States. A list of service centers for

other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and

materials. In the United States, the full charge is subject to the customer’s local sales tax. In European

countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable. All

such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered by the fixed repair charges. In these

situations, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period of

90 days from date of service.

Shipping Instructions

Should your unit require service, return it with the following items:

e A completed Service Card, including a description of the problem.

e A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of purchase

date should be packaged in adequate protective packaging to prevent in-transit damage. Such damage is

not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the shipment to

the service center. The packaged unit should be shipped to the nearest Hewlett-Packard designated collec-

tion point or service center. Contact your dealer for assistance. (If you are not in the country where you

originally purchased the unit, refer to “International Service Information” above.)

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery to

the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-of-

warranty repairs in the United States and some other countries, the unit is returned C.O.D. (covering

shipping costs and the service charge).

Appendix A: Owner’s Information 57

Further Information

Service contracts are not available. Circuitry and designs are proprietary to Hewlett-Packard, and service

manuals are not available to customers. Should other problems or questions arise regarding repairs, please

call your nearest Hewlett-Packard service center.

When You Need Help

Hewlett-Packard is committed to providing after-sale support to its customers. To this end, our customer

support department has established phone numbers that you can call if you have questions about this

product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call the

toll-free number below:

(800) FOR-HPPC

(800 367-4772)

Technical Assistance. For technical assistance with your product, call the number below:

(408) 725-2600

For either product information or technical assistance, you can also write to:

Hewlett-Packard

Personal Computer Group

Customer Support

11000 Wolfe Road

Cupertino, CA 95014

Appendix B

Syntax Reference Guide

This appendix provides syntax definitions for the statements and functions described in sections 1
through 5 of this manual. The syntax representations in this appendix follow the format described in
section 1 (refer to the subheading “Syntax Guidelines”).

ADDRESS

Syntax

HOOREESZSRT i i
y

Sample Statement

FE AL = ADDEE:!

Actions Taken

Addresses all devices in the loop, starting with 1, and returns a value equal to the number of devices (the

address of the last device).

Related Statements

Ao TGH LOOF

AUTOLOOR OH-0OFF

59

60 Appendix B: Syntax Reference Guide

ASSIGN LOOP

Syntax

Aoz IGH LOOF

Actions Taken

Causes two-character device codes to be assigned to each device in the loop. The first character (a letter)

indicates the class of the device. The second character (a numeral) indicates the occurrence of the device.

The following letters are used to indicate device class:

Analytical Instrument

HP-IB Device

Controller

Display

Electronic Instrument

Graphic Device

Interface

Keyboard Device

Mass Storage Device

General Device

Printer

Unknown Class

Extended ClassX
O
O
w
O
o
O
E
R
—
~
O
E
@
H
m
O
Q
W
>
»

Note: Class “B” (HP-IB Devices)is treated differently. Refer to “Assigning HP-IL Addresses and De-

vice Codes to HP-IB Devices” in section 5.

Related Statements

AODRESS

HUTOLOOF OH-0OFF

Appendix B: Syntax Reference Guide 61

AUTOLOOP ON/OFF

Syntax

H
AHUTOLOOR AEE

Actions Taken

Device codes are assigned to all devices in the loop each time the computer is turned on if ALITOLOOF is

in the on state. A “beep” indicates that the assignment has been made. Device codes are assigned follow-

ing the same rules used by A== IGH LOOF. Also, AUTOLOOF sends the LPD (Loop Power Down) mes-

sage when the computer is turned off. ALITOL IF remains in the on state until an AUTOLOOF OFF

command is executed.

Related Statements

AOORESS

Ao ToM LOOF

62 Appendix B: Syntax Reference Guide

DEVADDR

Syntax

DOEVAHDDORE © ' 1 device code’

Sample Statements

In Bl = DEVADDR ¢ 01

FEOH = OEUADDR <A$:

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device code.

Actions Taken

Returns the HP-IL address of the specified device.

Related Statements

DEVHAMES

Appendix B: Syntax Reference Guide 63

DEVAID$

Syntax

OEYHIDOE7' rdevice code'’

Sample Statement

40 B = DEVAIDE <010

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device code.

Actions Taken

Addresses the specified device as the talker and sends the SAI (Send Accessory ID) message. The talker

sends its accessory identification, and DEWFH ID# returns this identification as a string. The accessory

identification is usually a single byte, and is represented as an ASCII character.

Related Statements

DEVMIDE

64 Appendix B: Syntax Reference Guide

DEVID$

Syntax

ODEVIDOE ¢ 1 device code'

Sample Statement

i HE = DEVIODE CF o FE D

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device code.

Actions Taken

Addresses the specified device as the talker and sends the SDI (Send Device ID) message. The device

sends its device identification, and [IE' I[# returns this identification as an ASCII character string

(including any carriage-return/line-feed characters sent by the device).

Related Statements

ODEVATIDE

DEVNAMES$

Syntax

Appendix B: Syntax Reference Guide 65

ODEWHHAME® < device address

Sample Statements

8 A% = DEVHAMEE (153

af CF = DEVHAMES <A1l

Parameters

device address — a valid HP-IL device address (0 through 30).

Actions Taken

Returns the device code of the specified device.

Related Statements

DEVAHDODRE

66 Appendix B: Syntax Reference Guide

ENTER

Syntax

' 1 device code' _ ‘'image list’) .
T EB WS IHG i [variable]| . variable]...
EHTER [device address] [line number] L1 Il -]

Sample Statements

FEOEMTER ' TRYOUSIMHG AF;a.Y, 2

HSEOEMTER CFE MO, IF

128 EMTER '":DI1Y UsIHG Z8:RF

158 EHTER USIHG 28 :HF

1¥8 EMTEE EB¥

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device code.

device address — a valid HP-IL device address (0 through 30).

image list — a string expression that contains a valid set of image specifiers. The expression can be either

a list of image specifiers enclosed in quotation marks or the name of a string variable that contains a

list of image specifiers.

line number — the line number of an IMFAGE statement that contains a valid set of image specifiers.

variable (numeric or string) — the name of a variable intended as a destination of the EHTEF operation.

Actions Taken

Inputs bytes from the specified device; uses those bytes to build a number or string; places the result into

a BASIC variable.

When 1% IHEG is not specified, free-field format is used. A free-field entry into a string places incoming

bytes into the variable until the current EOL (end-of-line) sequence or an End Byte message is received,

or the string is full. Terminating sequences are not placed into the destination string. A free-field entry

into a numeric variable ignores leading blanks and non-numeric characters. Entry into a numeric variable

is terminated by the first trailing blank or non-numeric character.

When LIZ ITHG is specified, input operations are formatted according to the image specifiers used. Image

specifiers may be enclosed in quotation marks and placed in the EHTEF statement, contained in a string

variable named in the EHTEF statement, or placed in an IMAGE statement referenced by the EHTEFR

statement. For detailed information on image specifiers, refer to “Formatted EHTEF " in section 3.

Appendix B: Syntax Reference Guide 67

EHTEFRrequires either the current EOL sequence or an End Byte message to terminate the statement

after the variable list has been satisfied. If no EOL sequence or End Byte message is detected, an error

will be issued. This requirement can be removed by using # ! as the first image specifier. For more detailed

information on statement terminators, refer to “Formatted EHTEFR”.

Related Statements

IMAGE

68 Appendix B: Syntax Reference Guide

ENTIO$

Syntax

EHMTIOE® « '[:device code[. :device codel...]' . ' [command[.command]...]' :

Sample Statements

IH OAE = EMTIOE ¢, 'TADL.SOA'

170 s = EMTIOE ' D1', 'TAD#®, SDA

IR OBE = EMTIOR ¢ Q30,00

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device code.

command — a valid HP-IL command mnemonic (refer to appendix C). You may substitute the name of a

string variable that contains the list of commands.

Actions Taken

EHMT IO is a function that returns a character string value. EHT I 1# is usually used to address an HP-IL

device as a talker, then return the data received from that device as the value of the function. Only one

device may be addressed as a talker, but one or more listeners may be addressed.

EHTI0F processes parameters from left to right. If a device code parameter has been specified, EHT I (1%

determines the corresponding device address in the loop. If THII# is specified in the command field, only

one device code may be specified. If the device code field is the null string, no action is taken in this step.

Next, the list of HP-IL commands in the command field is processed. A TF[i# or L.A[1# command causes

the device specified in the device code field to be addressed as a talker or listener, respectively. If no device

code is specified, THAI# and L.A# are not valid in the command list. The TFir and LFAD+ commands

contain HP-IL device addresses. A Tt or LFALin the command list causes the device with address

to be addressed as a talker or listener. EHT I 0% returns the null string unless the last command in the

command field is Z0A, S57T, 501, SA I, AADM, or 10 : B4, The data sent by the active talker in response

to the ready group command is returned as the result of the EHT I 1% function. If the command field is

the null string, EHT I 0¥ automatically generates THII# , S[IH.

Either the device code field or the command field can be the null string, but not both.

Related Statements

SEHDIO

Syntax

Appendix B: Syntax Reference Guide

IMAGE

69

IMAGE specifier [. specifier]...

Sample Statements

g IMAGE '"Teotal =

188 IMAGE #,.K.,=2

Parameters

uaD b

L

specifier — a valid DL TFUT or EMTEFRimage specifier. These specifiers are listed below. Refer to section

3, “Formatted I/O Operations”, for detailed descriptions.

Summary of CLITFLIT Image Specifiers

Meaning

Output one string character

Output a comma separator in a number

Output one digit character; blank for leading zero

Output exponent information; five characters

Output a variable in free-field format

Output number’s sign if negative, blank if positive

Output a period separator in a number

Output a European radix point (comma)

Output number’s sign, plus or minus

Output one blank

Output one digit character, including leading zeros

Output a literal (enclosed in quotation marks)

Output one digit character; asterisk for leading zero

Output an American radix point (decimal point)

Output the current EOL sequence

70 Appendix B: Syntax Reference Guide

Summary of EHTEF Image Specifiers

Meaning

Demand one string character

Demand one character for a numeric field; allows

commas to be skipped over

Demand one character for a numeric field

Demand five characters for a numeric field

Enter a variable in free-field format

Demand one character for a numeric field

Demand one digit and ignore all periods

Demand one digit and treat comma as radix symbol

Demand one character for a numeric field

Skip one character

Demand one character for a numeric field

Demand one character for a numeric field

Demand one character for a numeric field

Demand the current EOL sequence

Eliminate the current EOL sequence as a terminator

Eliminate the End Byte message as a terminator

Establish the ETO (End Of Transmission — OK)

message as an alternative terminator

Related Statements

ERHTERLLUSTHG

LITRFUT.LS THG

Appendix B: Syntax Reference Guide 7

IOSIZE

Syntax

105 1ZE buffer size

Sample Statement

TSISoeoge
ee

Parameters

buffer size — an integer representing the desired buffer size (range: 0 to 24,575 bytes). A zero or negative

value specifies the default value of 256 bytes.

Actions Taken

Sets the size of the EHTER buffer to the specified value. Controls the maximum number of bytes to be

read by a statement or function that causes input of data (EHTER, EHTI0#, RODRES S, ete.) If buffer

size is exceeded, a record overflow error will result. A %7 = command in an EHTI0# command list will

override the value of 115 1FE for that EHTI0# statement only.

Related Statements

EMTER

EMTIO®

72 Appendix B: Syntax Reference Guide

LOCAL

Syntax

LOCAL[device codel . : device code]... "' |

Sample Statements

e LOCHL

S LoCHL D!
.........

A28 LOCAHL T BRL,cBZ, BEY

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device code(s).

Actions Taken

LOCAL addresses the specified device(s) to listen and sends the GTL (Go To Local) message. The speci-

fied devices are returned to local mode, but remain remote enabled. L.L. leaves devices addressed to

listen.

If no device code is specified, L. 1FL sends the NRE (Not Remote Enable) message. This returns devices

to local control and removes remote enabled status.

Related Statements

LOCAL LOCKDUT
REMOTE
TRIGGER

Appendix B: Syntax Reference Guide 73

LOCAL LOCKOUT

Syntax

LOCAL LOocEOouUT

Sample Statements

S LOCAHL LOCEQUT

LOCAL LOcEQuUT

Action Taken

Sends LLO (Local Lockout) command. Locks out LOCAL button on front panel of devices in remote

mode. Devices can be returned to local control only by a GTL or NRE message (refer to the L OZFAL

command).

Related Statements

LooHL

FEMOTE

TEIGGER

74 Appendix B: Syntax Reference Guide

OUTPUT

Syntax

e ' 1 device code] . : device code]..." ST HE ‘image list’

R device address T line number

[: expression| . expression][: expression]...]
Sample Statements

48 OUTFUT @ A%

FEOOUTFUT ' TW USIHE A% =

S OUTFUT CfF @ Heloa:=#

TEm OUTRFUT D1 USIHG 260 @ A

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device code(s).

device address — a valid HP-IL device address (0 through 30). Only one device address may be specified.

Use device codes if more than one device is to be specified.

image list — a string expression that contains a valid set of image specifiers. The expression can be either

a list of image specifiers enclosed in quotation marks or the name of a string variable that contains a

list of image specifiers.

line number — the line number of an IMFAE statement that contains a valid set of image specifiers.

expression (string or numeric) — any string expression or numeric expression intended to be output. Ex-

pressions may be constants or variables and may be separated by commas or semicolons.

Actions Taken

Outputs bytes to the specified device(s); bytes may be string or numeric.

When L% IHG is not specified, and output items are separated by semicolons, compact format is used. A

compact output of a string expression causes it to be sent with no leading or trailing blanks. A compact

output of a numeric quantity causes it to be sent with one trailing blank and one leading sign character

(blank if positive, minus sign if negative).

When L% I HG is specified, output operations are formatted according to the image specifiers used. Image

specifiers may be enclosed in quotes and placed in the (Il TFIIT statement, contained in a string variable

named in the 0IITFLUIT statement, or placed in an IMAGE statement referenced by the DLITFUT state-

ment. For detailed information on image specifiers, refer to “Formatted Z!LITFLIT” in section 3.

Appendix B: Syntax Reference Guide 75

OUTFUT sends the current EOL (end-of-line) sequence after the last item in the JUTFLUIT list. This

sequence can be changed with the EHIIL I HE statement, and defaults to carriage-return/line-feed. The

EOL sequence can be suppressed by using : after the last variable. For more detailed information on

statement terminators, refer to “Formatted TLITFLIT ™,

Related Statements

IMAGE

76 Appendix B: Syntax Reference Guide

PPOLL

Syntax

FROLL

Sample Statements

Il M=FPOLL
ol PE=RFROLL

Actions Taken

FrOLL 1s a function that returns the results of a Parallel Poll operation. Sends an IDY (Identify) mes-

sage. Devices capable of responding each assert one bit of the parallel poll response byte.

Related Statements

=ROLL

mROLLE

Appendix B: Syntax Reference Guide 77

REMOTE

Syntax

FEMOTE [' :device code[. : device code]... ']

Sample Statements

=f REMOTE ':D01°

1726 REMOTE Si#

198 REMOTE

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device code(s).

Actions Taken

If no device code is given, FEMITE sends the REN (Remote Enable) message. Devices do not go into

remote mode until they are addressed to listen.

If device codes are specified, FEMITE sends the UNL (Unlisten) and REN messages, then addresses the

specified devices to listen. Devices are left addressed to listen.

Related Statements

LOCAHL

LOCAL LOCEQUT

TEIGGER

78 Appendix B: Syntax Reference Guide

SEND

byte number [. byte number]...]

byte string

[{:}- byte number [. byte number]... (En ‘—--]:I

byte string

cn byte number [, byte number]... (E0L)
- 7 i e ot Heene

byte string

[IDbyte number [.byte number]...] [FLl'Y byte number [.byte number]...]

[(iDiL. byte number |.byte number]...] [[1TIT byte number [.byte number]...]

[Z#D byte number [.byte number]...] [LIZTEHM byte number [.byte number]...]

[TALE byte number] [GTL] [RHO] [MEE] [LLO] [CIF] [LPD] [MLA] [MTHE] [200] [UHL] [UH T]]...

Note: The above bracketed items may be included in any order. They may be repeated as many times

as desired, with one exception: Eil. may be included only once in a LTH or R field.

Sample Statements

CRD TR O HT

CHDoHE SRG 14

MTH LML LIZSTE

A 'Hello!
.18 DATA H¥
M £.14 DATA 'ABC

Parameters

byte number — a number that specifies the actual message to be sent. Byte numbers for the i, DRTH,

ERO, T, and FDY message indicators represent bits DO through D7 of the message, and have the

range 0 through 255 (modulo 256). Byte numbers for the DiliL, DOT, SAD, LISTEHN, and THLE mes-

sage indicators have the range 0 through 31 (modulo 32).

byte string — a string of ASCII characters that specify a series of messages. Each character represents a

message having the byte number equivalent to its ASCII character code.

Actions Taken

CHMO

DHTH

T=TEH

Appendix B: Syntax Reference Guide 79

Sends list of commands specified by byte number. Each byte number specifies bits DO

through D7 of the command message. A byte string may be substituted for a list of

byte numbers. Each character in the string specifies the command with the byte num-

ber equivalent to its ASCII character code.

Sends list of Data Byte messages with bits DO through D7 specified by byte number. A

byte string may be substituted for a list of byte numbers. Each character specifies the

bit pattern with the byte number equivalent to its ASCII decimal code. ASCII charac-

ter strings may be sent exactly as specified in quotes. Inclusion of EOL causes the

current EOL sequence to be sent.

Sends End Byte message, but otherwise same as [F TH.

Sends identify message having bits set according to byte number.

Sends ready message having bits set according to byte number.

Sends Device-Dependent Listener message having number 0 through 31 indicated by

byte number (modulo 32).

Sends Device-Dependent Talker message having number 0 through 31 indicated by

byte number (modulo 32).

Sends Secondary Address message having address 0 through 31 indicated by byte

number (modulo 32). Associates this secondary address with the primary address of

the preceding command message, indicating an extended address.

Sends LADn (Listen Address) message to device i, the address specified by a byte

number in the range 0 through 31 (modulo 32). Makes device : a listener, except that

31 clears all devices from listener status.

Sends TADn (Talk Address) message to device i, the address specified by a byte num-

ber in the range 0 through 31 (modulo 32). Makes device r: a talker, except that 31

clears all devices from listener status.

Sends GTL (Go To Local) message.

Sends REN (Remote Enable) message.

Sends NRE (Not Remote Enable) message.

Sends LLO (Local Lockout) message.

Sends IFC (Interface Clear) message.

Sends LPD (Loop Power Down) message.

Sends no message.

Sends UNT (Untalk) message.

Sends SDC (Selected Device Clear) message.

Sends UNL (Unlisten) message.

Sends UNT (Untalk) message.

80 Appendix B: Syntax Reference Guide

SEND?

Syntax

mEHDY

Sample Statements

T net
e!

et

B

mERDY

AELSEMDOT]£ T X
A

Actions Taken

Returns an integer value representing the position in the string of the character that was unsuccessfully

sourced in the last ZEHMI {1 statement. Returns a value of 0 if the SEML Idata list was null, or if the

last “EHDIT statement was successfully completed.

Related Statements

SEMDIO

Appendix B: Syntax Reference Guide 81

SENDIO

SEMDOIO '[:device code[. :device code)...]' . ' [command[.command]...]' . '[data]'

Sample Statements

IHOSEMDIO Y DiL:DEt,LAD®.LADS', 'DATA!
=@ SEMDIO Y, YLADLLLADZY, 'HIY

S SEMDIO v, vt TREYE!

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device code(s).

command — a valid HP-IL command mnemonic (refer to appendix C). You may substitute the name of a

string variable that contains the list of commands.

data — a string expression to be sent out by SEHII I,

Actions Taken

SEMDO IO sends commands and data to HP-IL devices. ZERHDI Ican be executed from the keyboard or in

a program. Listener devices may be addressed by including either device codes or device addresses in a

EMD IO statement.

SEMD IO processes parameters from left to right. One or more device codes may be included in the device

code field. If device codes are specified, ZEMHI Idetermines the HP-IL address of each specified device.

If the device code field is null, no action is taken.

A single L.A# command in the command field causes all devices specified in the device code field to be

addressed as listeners. The LFA'# command may be used in combination with other HP-IL commands,

and may appear anywhere in the command field. Listener devices may also be addressed by including

{.#lm commands in the command field. Any number of L.Fil'ri commands may be included, and they may

be used in combination with other HP-IL commands, including LFAI#. SEHD IO should not be used to

address talkers.

Once all commands in the command field have been sent, the string expression in the data field is sent out

over the loop.

One or two of the quoted parameters may be the null string, but not all three.

Related Statements

ERTIOR

SERDY

82 Appendix B: Syntax Reference Guide

SPOLL

Syntax

=FOLL © ' i device code ' ¢

Sample Statements

=8P = SFOLL CE#D
FEEOIF OEPOLL ' :D1'» » &3 THEHM GOTO 7Sa

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device code.

Actions Taken

Polls a device in the loop by sending the SST (Send Status) message. Returns a number representing the

first status byte sent by the polled device.

Related Statements

FROLL

SFOLLE

Appendix B: Syntax Reference Guide 83

SPOLLS$

Syntax

S“FOLLE £ rdevice code '’

Sample Statements

40 S¥ = SPOLLE cBE#

S@ E$ = SPOLLE o' :01':

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device code.

Actions Taken

Polls a device in the loop by sending the SST message. Returns a string of ASCII characters representing

the status bytes sent by the polled device.

Related Statements

84 Appendix B: Syntax Reference Guide

TRIGGER

Syntax

TEIGGEER [' :device code [. :device code]... ']

Sample Statements

Fe OTRIGGER D1, D
196 TRIGGER S1%
2ER TRIGGER

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device code(s).

Actions Taken

Sends the Group Execute Trigger command (GET).

If no device code is given, the GET command is sent. All devices that have already been addressed to

listen will receive the GET command.

If a device code is specified, the UNL (Unlisten) command is sent, followed by the LAD (Listen Address)

of the specified device(s). The GET command is then sent. Devices are left addressed to listen.

Related Statements

LOoHL LOCEQUT

FEMOTE

Appendix C

HP-IL Commands

Summary of HP-IL Commands

The following is a list of HP-IL command mnemonics for the commands that you may use in a SEH[I I [0

or EMTI% command list. Although SEHDOIT and EMTIO# do not recognize the mnemonics of other

HP-IL commands, you may include other commands in a command list by using extended HP-IL com-

mand capability.

Note: The commands L +, OA—-, EL+ ET-, &=, TE!, TE¥, TR, and TEL may be included in

a command list for either EHTI 0% or SEMDIO; however, only EHTI# will recognize them.

Fi Represents a one byte non-negative integer.

FARDm Auto Address: addresses the loop starting with initial address i (0-30).

AL Auto Address Unconfigure: resets addresses of the loop to the unassigned state.

HEFm Auto Extended Primary: assigns primary address i (0-30) to extended address group.

ESr Auto Extended Secondary: assigns secondary address starting with i (0-30).

HMF Auto Multiple Primary: assigns primary addresses to all devices starting with +: (0-30).

CLo+ The L + command inserts carriage-return/line-feed in the incoming string after each

End Byte message received during EHT I 0% data collection.

D~ The [iFi— command prevents the EHT I% function from reading any data into the HP-75.

EMTIO# returns the null string if [IA~ is in the command list. However, up to 256 Data

Byte messages (or the number set with I 1% I ZE) will be transmitted from the talker to any

active listeners in the loop. If a ZZ= command is used to specify a size, that size will take

precedence over IS IZE. If ZZ=8 is specified, there is no size limit on the number of

Data Byte messages that the talker can send.

oL Device Clear: clears all devices in the loop.

Dol Device Dependent Listener: sends the Device Dependent Listener command denoted by

(0-31).

DOTr Device Dependent Talker: sends the Device Dependent Talker command denoted by i (0-

31).

EDH Enable Device Sourcing NRD: enables devices to source own NRD messages.

EL+ The EL + command inserts the current EOL sequence in the incoming string after each End

Byte message received during EHT I 0% data collection (similar to L. +).

ET~ The E T~ command disables EHT I 0% termination by an ETO (End Of Transmission - OK)

message received from an HP-IL device. EHT I 0% will terminate only when the logical end-

of-record is detected, size is exceeded, an ETE (End Of Transmission - Error) message is

received, or the key is pressed.

85

86 Appendix C: HP-IL Commands

TL

THO#

THM

T

Group Execute Trigger: sets listeners to begin device operation.

Go To Local: returns listen addressed devices to local control, but leaves them remote en-

abled. Devices will return to remote mode when next addressed to listen.

Illegal Auto Address: sent to determine if there are too many devices in the loop.

Illegal Extended Primary: basically a no-op.

Illegal Extended Secondary: sent to determine if there are too many devices in the loop.

Interface Clear: clears the interface loop.

Illegal Multiple Primary: sent to determine if there are too many devices in the loop.

Listen Address: activates listener status of device specified in device code.

Listen Address: activates listener status of device at address : (0-30).

Local Lockout: disables LOCAL button on front panel of device. Device can be returned to

local control only by a GTL or NRE command.

Loop Power Down: puts devices in power down state.

No Op command.

Not Ready For Data: controls interrupt of talker.

Not Remote Enable: returns devices to local control and removes remote enabled status.

Parallel Poll Enable: enables listen-addressed devices to respond to a parallel poll where

(0-15) sets the state of response (refer to section 5).

Parallel Poll Unconfigure: disables all devices from responding to PPEn.

Remote Enable: sets devices to remote enabled state. Devices go to remote mode when ad-

dressed to listen.

Secondary Address: enables talkers or listeners with secondary address.

Send Accessory ID: initiates talker to source accessory ID.

Send Data: initiates talker to source data.

Selected Device Clear: clears the active listeners.

Send Device ID: initiates talker to source device ID.

Send Status: initiates talker to source status byte(s).

The % Z= command sets the maximum input size for an EHT I {1# instruction. The default

value is 256 (or the value set w1th IO=IZE). If OFA- 1s not spec1fiedin the command list,

the syntax is: ZZ=4M, HH5 1s a decimal number (range 1 to 32767) representing the

number of bytes to read The !':MTIOF 1nstruct10n termmates when size is exceeded. If

[F~—is specified, the syntax is: SE=HuEAR where #HHHEHHH Y 1s a number in the

range 0 to 999999999. If ===is specified, thereis no size11m1t on the number of bytes to

be read. (%Z =& cannot be specified unless [ifi— is also specified.)

Talker Address: activates talker status of device specified in device code.

Talker Address: activates talker status of device at address r: (0-30).

Take Control: passes control to next controller in the loop.

A TL + command in a SEHDI IO or EMTIDN# command list inhibits the automatic UNT and

UNL feature. Devices addressed as talkers and/or listeners will remain active after the

SEMDOIO or EMTID# operation is completed.

Appendix C: HP-IL Commands 87

TRE! A TE! command in the command list of an EHT I 0% instruction establishes the End Byte
message as a logical end-of-record.

TR A TE# command in the command list of an EHT I 0% instruction establishes the current
EOL sequence (defined with the EHIIL IHE statement) as a logical end-of-record.

TE: Any ASCII character can be specified as a logical end-of-record by including TF: 3 in an
EMTIOF command list, where ' is the hexadecimal representation of the ASCII character
number (&will be ignored).

TRL Any desired character string (up to six characters) may be specified as a logical end-of-
record by including TFLCstring1 in an EHT I 0% command list. Note that the string is delim-

ited with brackets rather than quotation marks, and that the 1 character cannot be included

in the string. If the string contains quotation marks, they must not be the same form (single

or double) that is used to delimit the command list itself.

LIHL Unlisten: deactivates all listeners in the loop.

LIMT Untalk: deactivates the talker.

TES Zero Extended Secondary: assigns secondary addresses to devices with multiple address

capability.

Extended HP-IL Command Capability

Extended HP-IL command capability allows the programmer to send commands for which no mnemonics

exist. The capability can be used with both ZEHD Iand EMTI 0%, This ensures that when new HP-IL

devices and functions are introduced, “EHD Iand EHT 1% will continue to be usable.

Note: By using extended command capability you can include any HP-IL command in a =EMHI Tor

EMTIO® command list. However, you should be careful when you are including a command that is

not in the “Summary of HP-IL Commands” in this appendix. Certain unlisted commands may cause

problems.

Recall that HP-IL messages consist of 11 bits: a three-bit prefix that identifies the type of message,

followed by eight bits of message content. Eight possible prefixes exist, each with its own special meaning.

Extended command capability provides an easy way for the programmer to construct HP-IL messages.

Eight identifiers are supplied, one for each type of HP-IL message. The types of messages and

corresponding identifiers are listed below:

HP-IL Message Type Identifier

CommandCD

ReadyRD

DataDA

End...EN

IdentifyID

Data w/service request DS

End w/service request ES

Identify w/service request IS

88 Appendix C: HP-IL Commands

To send a message, simply specify “:: :hex value” in the command list, where i is one of the eight

identifiers listed above, and hex value is the content of the message in hexadecimal. To send an UNL

command using extended HP-IL command capability, you would code:

SEHDIO L, OO 3R,

This would send a message with a three-bit prefix identifying the message as a command, and then a

binary “00111111”, which is the code for UNL.

Appendix D

Support Functions and Editing Keys

The HP-75 I/O ROM provides several support functions in addition to the I/O functions and statements

that are covered in sections 1 through 5 of this manual. These support functions are covered in this

appendix under the subheadings “I/O Support Functions,” “Advanced Programming Support Functions,”

and “File Manipulation Functions.” This appendix also covers some additional HP-75 editing keys pro-

vided by the ROM (refer to “Additional Editing Keys”) and a facility for running an autostart program

when the HP-75 comes on (refer to “Running an Autostart Program”).

Note: The syntax representations in this appendix follow the same conventions that are used else-

where in this manual. Refer to the subheading “Syntax Guidelines” in section 1.

I/O Support Functions

The following functions are used, in conjunction with the primary I/O functions and statements described

in sections 1 through 5, to facilitate I/O operations.

ASNLOOP$ — assign loop and return string:

ASHLOOR$

Assigns device codes to devices in the loop according to the same rules as #5% I GH Li0F (see appendix

B), but returns a string. Each character in the string corresponds (in order) to a device in the loop, and

represents the first byte of the Accessory ID response of that device.

DISPLAY$ — list current display devices:

DISFLAYE

Returns a string listing the device codes of the currently assigned display devices (in order of ascending

address).

ENABLE SRQ — reenable i SRafter an M ZFexecution:

EMABLE SR

Resets the active state for an M ZFEi statement. Programs that include M ZFEi processing of HP-IL

SRQ (Service Request) messages must execute EHAELE ZE[at the end of the processing to allow an-

other SRQ message to be processed (refer to it SR).

89

90 Appendix D: Support Functions and Editing Keys

ENDLINE$ — return current endline string:

EHDLIMES

Returns the current EOL sequence (established with the EHIIL I HE statement) as a string.

ESC-I/R ON/OFF — turn modified on or off:

This feature defaults to the iiti state and sends escape sequences to control the cursor of the current

DIsFLAY 1% device. When you press the key, ESC Q is sent to change the cursor on the external

display to the insert mode; ESC R is sent to return the cursor to replace mode. Type E=iZ~1 -8 {FF to

suppress the output of ESC Q and ESC R. For some external display devices, you will need to turn this

feature off to avoid getting a false echo on the display in the insert mode.

IOSIZE? — return current %1 ZE setting:

Returns the current IZ%IZE setting as a number. The value returned represents the number of bytes

that the EHTEF buffer will hold — except that a zero value indicates that I 0% I7E is set to its default

value (256 bytes).

KEYBOARDS$ — return the device code of the current keyboard device:

FEYEOAREDS®

Returns the device code of the HP-IL device currently assigned as the keyboard. The null string is re-

turned if no device is assigned.

KEYBOARD IS — assign device for keyboard entry:

EEYBORED I3 ' :device code'

device code — the device code of an HP-IL device to be assigned as the keyboard (may be the device code

of an interface to which a keyboard or terminal is connected).

FEYEOARD I'% can be used to assign an external device as the keyboard. You can assign any keyboard

device capable of sending ASCII characters as data bytes. If the keyboard device is not HP-IL equiped,

you can connect it to the loop through an appropriate interface. The HP-75 keyboard is not disabled, so

you may enter characters from the external keyboard, from the HP-75 keyboard, or both.

Appendix D: Support Functions and Editing Keys 91

All 256 decimal keycodes may be sent from the external keyboard if it is capable of generating them. Refer

to the manual for your keyboard device to determine which keys generate which keycodes. The standard

ASCII characters (decimal codes 0 through 127) can be transmitted from the external keyboard by simply

pressing the appropriate keys. For these characters, the external keyboard uses the same keycodes as the

HP-75. For other characters, you will have to determine which key on the external keyboard generates the

keycode for the desired HP-75 key. For example, key number 132 on the HP-75 is the [#] key. If the [*]

key on your external keyboard generates keycode 132, it will map directly to the HP-75 key. However,

suppose the roll-up key on your external keyboard generates keycode 132. In this case, roll-up on the

external keyboard maps to on the HP-75 keyboard.

Most keyboard devices use escape codes to represent editing keys such as the cursor keys, roll-up, roll-

down, etc. The HP-75 can interpret escape codes by means of a TET file named KE%YMAF. The

EEYIMAF file contains one line for each key to be mapped. Each line consists of a line number that

corresponds to the desired HP-75 keycode and a character that is used to generate it (comments may be

appended if desired). The following K E*FMAF file is given as an example:

When an ESC character is received from the external keyboard, the next character received is “looked-

up” in the KEYMAF file. If the character is found, the corresponding line number is used as a keycode.

Suppose that your EEYEDAED I% device sends ESC-A when you press its key. The HP-75 looks up F

in the EEYFMAF file and finds it in line 132. The keycode 132 is generated from the & E%A Ffile, execut-

ing on the HP-75.

You may also send escape codes from the external keyboard by pressing followed by the desired

character. If you type on the external keyboard, keycode 132 ([¢]) is generated by the HP-75. If

you press E, keycode 133 ([+]) is generated, and so forth. If you press twice on the external

keyboard, ESC is generated by the HP-75.

Note: The K E%'# function does not work for an external keyboard defined with ¥ EY¥ELGHED . The

key will not stop a program if KEYELARELD 1% is active unless the program receives it as part

of an input statement. 0IFF Iwill disable EEYEOHED I5 until a EESTOREE I is executed.

REYBEOARED IS will also be disabled if an error occurs while a key is being transmitted. If is

pressed, only the HP-75 keyboard, not the external keyboard, will be affected. The computer will not

timeout when EEYEOHED I% is active.

You may use D IZFLAY I3 to define an external display device as well as EEYEIAED % to define an

external keyboard device. If you are connecting a terminal to your HP-75, you may execute [t I ZFL FAY I %

and EEYEBEOARD 15 to the same device code (the device code of the terminal or its interface). The termi-

nal will act as a display when characters are sent to it, and as a keyboard when a character is expected by

the HP-75. If you are using an external display, you should also refer to “ESC-I/R ON OFF” in this

appendix.

92 Appendix D: Support Functions and Editing Keys

LISTIO$ — list HP-IL device codes in string:

o b

Returns a string listing the device codes of all HP-IL devices in the loop in order of ascending address.

Device codes are preceded by colons and separated by commas, for example: : 1, :F1.

OFF SRQ — turn off HP-IL service request response:

OFF SR

Clears the it =F1statement. This should be done before a program stops, and definitely before thefile is

edited, purged, or renamed. Failure to do so may cause problems.

ON SRQ — respond to HP-IL SRQ messages:

{1+ SRstatement [statement] ...

statement — any statement valid after a THEH.

Similar to it EREOR and OH TIMEER. On receipt of an SRQ (Service Request) message, the program

branches to the it = statement (after the entire current line has been executed). Once the {iH SR

statement is done, execution returns to the line after the one where the SRQ message was received. it

= will not interrupt itself, and must be reenabled with an EHAELE ZEstatement before it will again

branch. {{FF ZEpermanently cancels an i ZFi& and should be done as part of the end-of-program

cleanup routine.

PRINTER$ — list current printer devices:

Returns a string listing the device codes of the currently assigned printer devices (in order of ascending

address). For example: : F 1, :FZ.

REASSIGN — change device code of an HP-IL device:

FEASSIGH '"idevl® TO ' :dev2’

devl — old device code.

dev2 — new device code.

Change the device code of the specified device to new device code.

Appendix D: Support Functions and Editing Keys 93

RIO — read data from an HP-IL register:

k11 Cregister number

register number — an HP-IL register number (0 through 7).

Reads data from the specified HP-IL register. = THHIEY must be set to M for F I 0 to function properly.

WIO — write data to an HP-IL register:

W 110 register number . data

register number — an HP-IL register number (0 through 7).

data — byte of data to be written (MOD 256 is performed).

Writes data byte to specified HP-IL register. = THHMHIEY must be in the i} state for proper operation.

Advanced Programming Support Functions

The functions that follow are useful not only in I/O programming, but in advanced programming applica-

tions in general.

Note: Functions that manipulate ASCII strings will accept any ASCII character in an input string. Up-

per and lower case letters have different ASCIl decimal codes and are interpreted as different ASCII

characters. Functions that manipulate hexadecimal strings will accept the characters & through =, H

through F, and = through f in an input string (upper and lower case letters are equivalent in a hexa-

decimal string).

AANDS$ — AND of two strings:

HAMDOEC 'string 1, 'string 2"

string 1 and string 2 — ASCII character strings.

A bit-by-bit logical AND is performed on the bit patterns of the corresponding characters of the two

strings (the strings are left justified). The output string consists of ASCII characters that represent the

resulting bit patterns. The length of the resulting string is equal to the shorter input string.

94 Appendix D: Support Functions and Editing Keys

ADJUST — set adjust factor for clock:

ADIIET *factor!

factor — a string that starts with a + or — and contains exactly 14 hexadecimal characters that represent

the adjust factor.

Sets the clock adjust factor to the specified value. Specify + to make the clock run faster or ~ to make the

clock run slower. The string must meet the size and format requirements, and the minimum absolute value

that may be entered is 1&HH. A smaller value (except 0) will cause an error. A zero value will negate the

clock adjustment. The value specifes the number of 2-'* second intervals between 1/4 second adjustments

(+/—) to the system clock. The proper sequence follows:

1. Set the time.

2. Execute E=FLCT twice to set the flags.

3. Execute A.ILIST to set the factor.

ADJUST$ — show current clock adjust factor:

HOIUET*

Returns a string that starts with + or - and contains 14 hexadecimal digits representing the current

adjust factor. + means the clock is slow (adjusting to a faster rate). — means the clock is fast (adjusting to

a slower rate). A zero value means no adjustment is being made (clock running on time).

AOR$ — OR two strings:

HOE%C "string 1, 'string 2°* >

string 1 and string 2 — ASCII character strings.

A bit-by-bit logical OR is performed on the bit patterns of the corresponding characters of the two strings.

Trailing characters of the longer string are ORed with CHF# & 3. The output string consists of ASCII

characters that represent the resulting bit patterns.

AROTS$ — rotate a string left or right by bit count:

HELDT# < "string ' . count

string — ASCII character string to be rotated.

count — number of bits to rotate (to right if +, to left if —).

Rotates an ASCII string on a bit level, considering the string to be a binary number with a length that is a

multiple of eight bits. Rotates the bits of the given string by the number of bits specified in the bit count.

Bits rotated off one end are added on at the other end. Returns an ASCII character string that represents

the rotated bit pattern. The resulting string will have the same length as the input string.

Appendix D: Support Functions and Editing Keys 95

ASC$ — convert hexadecimal string to ASCII:

HZF O " hex string '

hex string — string of hexadecimal characters.

Converts hexadecimal characters to ASCII decimal codes, then returns the string of ASCII characters.

Note that two hexadecimal characters specify one ASCII character. If the input string does not have an

even number of hexadecimal digits, a leading zero is added.

ASCII$ — return string of ASCII characters in specified range:

H=CIIxC 'start' , 'end’' 2

start — starting ASCII character. The null string specifies ©HF$ 0 & 3.

end — ending ASCII character. The null string specifies CHFE¢ 255

Returns a string of ASCII characters in the specified range (inclusive). If start is greater than end, the

string is reversed.

ASHF$ — shift a string left or right by bit count:

HoHF %"string ' , count , bit

string — string of ASCII characters to be shifted.

count — number of bits to shift (to right if +, to left if—).

bit — value to shift into the bit pattern (1 or 0).

Operates on an ASCII string at a bit level, considering the string to be a binary number with a length that

is a multiple of eight bits. Shifts the bit pattern left or right by the bit count, shifting in 0’s or 1’s as

specified by the bit parameter. If count is 4+, the bit pattern is shifted right, and leading 0’s or 1’s are

shifted into the pattern. If count is —, the bit pattern is shifted left, and trailing 0’s or 1’s are shifted into

the pattern. Returns an ASCII character string that represents the shifted bit pattern. The resulting

string will have the same length as the original string. An example should clarify this:

AoHFEO W 1,80

The string is the ASCII character I (decimal code 87). The bit pattern for I4 is “01010111”. The count is 1,

a positive number, so the bit pattern is shifted to the right one space. The bit value is “0”, so 0’s are

shifted in to replace the leading characters. The resulting bit pattern is “00101011” (note that bits shifted

past the end are lost). The corresponding decimal code is 43, and the returned string is the character +.

96 Appendix D: Support Functions and Editing Keys

AXOR$ — exclusive OR of two strings:

HEOREC "string 1' ., 'string 2" 7

string 1 and string 2 — ASCII character strings.

Performs a bit-by-bit logical EXOR on the bit patterns of the corresponding characters of the two strings.

Each trailing character of the longer string is EXORed with CHFE#$ ¢ 255 1. The output string consists of

ASCII characters that represent the resulting bit patterns.

BINAND — bit-by-bit logical AND of two integers:

EIHAMD Cinteger . integer

integer — range: —32768 to +32767

Returns the 16-bit logical AND of two integers. Each bit of the result is calculated using the correspond-

ing bit of each argument.

BINCMP — binary complement of integer:

ETHCMF Cinteger

integer — range: —32768 to +32767

Returns the 16-bit binary complement of an integer. Each bit of the result is the inverse of the

corresponding bit in the argument. If the argument has less than 16 bits, leading zeros are assumed.

BINEOR — bit-by-bit exclusive OR of two integers:

EIHEDE Cinteger , integer

integer — range: —32768 to +32767

Returns the 16-bit binary exclusive OR of two integers. Each bit of the result is calculated using the

corresponding bit of each argument.

BINIOR — bit-by-bit inclusive OR of two integers:

EIHIOE Cinteger ., integer:

integer — range: —32768 to +32767

Returns the 16-bit binary inclusive OR of two integers. Each bit of the result is calculated using the

corresponding bit of each argument.

Appendix D: Support Functions and Editing Keys 97

BIT — test bit in integer:

E 1T <integer , position

integer — range: —32768 to +32767

position — bit position to be tested (0 to 15). Bit number zero is the rightmost bit.

Returns value of specified bit in an integer argument. Result is “1” if bit is set, “0” if bit is clear.

BREAK — find next position of character in list:

EREAEC 'ist' . 'target’ , start:

list — string of characters to be accepted in search.

target — string to be scanned.

start — position in target string to scan from.

The target string is scanned from the specified starting position until a character from the /ist string is

found. Returns the position number of that character. If no listed character is found, returns 0.

BTD — convert binary string to decimal number:

BTONG 'string '

string — string to be converted (represents binary number) range “0” to “1111111111111111”.

Returns decimal value of binary representation contained in the string argument.

BUF$ — return contents of specified buffer:

ELUF£ ' buffer'

buffer — I (input buffer) or L. (LCD buffer).

The entire contents of the specified buffer are returned. The returned string is 96 characters long.

98 Appendix D: Support Functions and Editing Keys

CALL — call basic program with parameters:

AL L'filename[: device code]'[:]+ parameters :

filename — name of program. If a string variable is used to name the file, a semicolon must precede the

parameters list. Otherwise the semicolon is optional.

device code — device code of device where program is located.

parameters — list of actual parameters to pass.

A mainframe extension that allows the passing of variables to and from the subprogram named in a Z#i. L

statement. This statement calls a basic program and passes the variables to it. The results are passed back

through the same variables. The variables may be passed in two forms:

e Passed by reference: Provides bidirectional access to the values of the variables. Values of variables

may be updated by the subprogram, and such updates are reflected immediately in the main program.

For example: #, %, %<, », and =+ » are all passed by reference.

e Passed by value: Provides unidirectional access to the values of the variables. The values of the vari-

ables in the calling program remain static during the execution of the subprogram. All expressions

and subscripted variables are passed by value. For example: =#% -2, A$C 1,51, 002, 13, and © &5

are all passed by value.

An example of a Fil. L. statement (with parameters) would be:

CHLL '"Hprog ! CHRHLVHSFECET,0F01 01y, OH

COPY “:BCRD’ — recover bad card with missing tracks:

COFY filename : BECED[-password]f T filename

filename — a valid filename for a BASIC or TEXT file.

password — the password of a private file on the card.

COPY BORDY works just like DOFY P CAED Y unless you press [ATTN| or FSHIFT][ATTNJbefore all of

the tracks of the card have been read. The filename parameter is required for ©0FY ' BECED Y, and must

match the name on the card (use ZF7T HELDto determine the proper name). When the copy process is

allowed to go to normal completion, the result will be a normal copy. If there are errors, the partial file is

purged, just as with COFY ' CARD . However,if the copy is aborted with the key, the file copied

up to that point is manipulated into a valid file and retained. The new file will contain as many lines of

the original file as could be recovered. This process only works for BASIC and TEXT files.

P P T.-
Note: Ifyou are using a KEYECOARED I% device, you cannot use the external keyboard to abort

COFY ' BECEDY. You must press the [ATTN]m key on the HP-75 keyboard.

Appendix D: Support Functions and Editing Keys 99

COUNT? — show current length of D' I =F or FEINT output:

COUMTYC "flag '

flag — i (DISP), or F (PRINT).

Returns the number of characters in the I ZF or FEIHMT buffer (since the last time carriage-return

was sent).

Note: This function will not operate correctly for the [i I =F buffer if LILTH is set to INF; for the

FREINT buffer if FUIDTH is set to INF.

DEFKEY$ — return current key definition:

™

DEFEEY$Y 'character'

character — character representing key wanted (may be specified with the ZHF# function).

Returns the key definition string for the specified key as stored in the keys file. If the key was defined

with a trailing semicolon, the first character will be a semicolon. Otherwise the first character will be

blank.

DELAY? — return current delay setting:

Returns the current delay setting. The returned value may not be exact due to some internal round-off

error. For example: DELAY . & & DISF DELAYY returns | S333 755055338

DO ERROR — cause given error:

OO0 ERRORE[error#]

error# — number of error to cause.

Causes the specified error condition to occur. If the error# field is left blank, the last error is caused.

Program execution is stopped, EFFis set to the specified error number, and the error message is dis-

played. ROM errors will not display error messages, but EREFEIE: =rror # will be displayed. Refer to

appendix E for I/O ROM error definitions.

100 Appendix D: Support Functions and Editing Keys

DTB$ — convert decimal number to binary string:

OTE$ Cnumber »

number — number to convert (—32768 to 32767).

Rounds decimal number to the nearest integer and returns the binary representation as a string.

DTH$ — convert decimal number to hexadecimal string:

OTHF Cnumber >

number — number to convert (—32768 to 32767).

Rounds decimal number to the nearest integer and returns the hexadecimal representation as a string.

DTO$ — convert decimal number to octal string:

OT0O% Cnumber

number — number to convert (—32768 to 32767).

Rounds decimal number to the nearest integer and returns the octal representation as a string.

ESC$ — return string of escape-character sequences:

EmEC 'string '

string — string to be escaped.

Returns string with ESC added in front of each character.

EXIT — leave a FOR-NEXT loop early:

E= 1T index variable name

index variable name — the name of the FiIF variable to be exited.

Causes program execution to branch to the statement following the HET that corresponds to the index

variable name. For example: E< I T % would cause a branch to the statement following HET . If E¥IT

is included in a multiple-statement line, statements that precede the E:IT will be executed, but the

E# 1T will cause an immediate branch, skipping the statements that follow it in the line. If HE* T is in a

multiple-statement line, execution will continue with the statement after the HET in that line.

Appendix D: Support Functions and Editing Keys 101

FILL$ — fill a string:

FILL%®C "left' , "middle' . 'right' ,size:

left — left fill string.

middle — string to fill around.

right — right fill string.

size — size of string to be returned.

Places the middle string in a string of the specified size, and fills in on the left and right sides with the /eft

and right strings, respectively. Each fill string is duplicated (if necessary) to fill the space from the left or

right margin to the middle string. Odd pieces of the fill string will bracket the midd/e string since the fill is

from the edges in, both sides. If both left and right strings are specifed, the middle string will be centered

(odd space to the right). If the left string is null, the midd/e string will be left justified. If the right string is

null, the middle string will be right justifed. If both strings are null, the middle string will be right and left

justifed (spaces will be expanded to fill the size). If the middle string is longer than the size, then the

middle string is returned truncated to that size.

FIND — find specified occurrence of substring in string, with wild card:

FIMDC 'subject' , 'target' . '[wild]' .occur:

subject — substring to find (with wild cards).

target — string to scan for occurrence of subject substring.

wild — character to use as wild card in subject substring.

occur — an integer specifying the desired occurrence of the subject substring.

Finds the specified occurrence of the subject substring in the target string. The wild character (if specified)

will match any character, and overlapping occurrences are counted. If the pattern is not found, the re-

turned value is zero, otherwise it is the position of the first character of the match. For example, in HHHH

the second occurrence of HHH is at position 2 and there is no third occurrence. This match could also be

made with the subject string H-—, where - is the declared wild character.

FLAGS$ — set specifed bit to specified value in given string:

FLHAGEC 'flag string' . bit# , value

flag string — string being used as an array of flag bits.

bit# — number of bit to set (negative numbers default to zero).

value — 0 or 1. Set the bit to the specified value.

This will set the specifed bit to the specified value and return the new string. If the bit is outside the

current string length, an error will result. The flag string may be initialized with AZC#, for example:

F#=ASC#%{ '@BFFA"' ». Bit number zero is at the extreme right.

102 Appendix D: Support Functions and Editing Keys

FLAG? — test specified bit in string:

FLAGYC flag string ' , bit#

flag string — string being used as an array of flag bits.

bit# — number of the bit to be tested, (negative numbers default to zero).

Returns O if bit is clear, 1 if bit is set. Bit number zero is at the extreme right.

FOR — FiiF allowed after a THEHM or EL5F:

The I/O ROM provides a modified F ik that works just like the mainframe F 15, except that it is allowed

after a THEH or an ELZE in a multiple-statement line. F i may be used in multiple-statement lines as

shown in the following two examples:

Fe=2 THEM FOR ¥=1 TO S @ F

The I/0 ROM is required only while such a statement is being written into a program. Once the program
has been written, it can be run even if the ROM has been removed.

GOSUBX — :{i%ilE to a variable as a line number:

LizUE X numeric expression

numeric expression — numeric expression to be evaluated and used as line number. Expression is rounded

to an integer (MOD 10000). Negative numbers default to zero.

Performs a% 1LIEto the line number derived from the numeric expression, or the line after that if that

line does not exist.

GOTOX — 07Tto a variable as a line number:

0T0numeric expression

numeric expression — numeric expression to be evaluated and used as line number. Expression is rounded

to an integer (MOD 10000). Negative numbers default to zero.

Performs a 1Tto the line number derived from the numeric expression, or the line after that if that

line does not exist.

Appendix D: Support Functions and Editing Keys 103

HAND$ — AND of two hexadecimal strings:

HHMOE"string 1, 'string 2" =

string 1 and string 2 — two hexadecimal strings.

A bit-by-bit logical AND is performed on the bit patterns of the corresponding characters of the two

strings (the strings are left justified). The output string consists of hexadecimal characters that represent

the resulting bit patterns, and is equal in length to the shorter input string. If an input string does not

have an even number of hexadecimal digits, a leading 0 is added (before left justification).

HEX$ — convert ASCII string to hexadecimal:

HEXE < ' ASCI string *

ASCII string — string of ASCII characters.

Returns string of hexadecimal characters that represent the bit pattern specified by the ASCII string.

HOR$ — OR two hexadecimal strings:

HOREEC "string 11, 'string 2"

string 1 and string 2 — hexadecimal character strings.

A bit-by-bit logical OR is performed on the bit patterns of the corresponding characters of the two strings.

Trailing characters of the longer string are ORed (in pairs) with “00”. The output string consists of hexa-

decimal characters that represent the resulting bit patterns. If an input string does not have an even

number of hexadecimal digits, a leading zero is added to it before the OR is performed.

HROTS$ —rotate a hexadecimal string left or right by bit count:

HEOTEC "string ' , count

string — hexadecimal character string to be rotated.

count — number of bits to rotate (to right if +, to left if —).

Rotates a hexadecimal string on a bit level, considering the string to be a binary number with a length

that is a multiple of eight bits. (If the input string does not contain an even number of hexadecimal digits,

a leading zero will be added.) Rotates the bits of the given string by the number of bits specified in the bit

count. Bits rotated off one end are added on at the other end. Returns hexadecimal character string that

represents the rotated bit pattern.

104 Appendix D: Support Functions and Editing Keys

HSHF$ — shift a hexadecimal string left or right by bit count:

HzHF %1 'string ' , count , bit

string — string of hexadecimal characters to be shifted.

count — number of bits to shift (to right if +, to left if—).

bit — value to shift into the bit pattern (1 or 0).

Operates on a hexadecimal string at a bit level, considering the string to be a binary number with a length

that is a multiple of eight bits (if the input string does not have an even number of hexadecimal digits, a

leading zero will be added). Shifts the bit pattern left or right by the bit count, shifting in 0’s or 1’s as

specified by the bit parameter. If count is +, the bit pattern is shifted right, and leading 0’s or 1’s are
shifted into the pattern. If count is —, the bit pattern is shifted left, and trailing 0’s or 1’s are shifted into
the pattern. Returns a hexadecimal character string that represents the shifted bit pattern. An example
should clarify this:

HoHFF O ASE , -3, 10

First, a leading zero is added to make an even number of hexadecimal digits. The string becomes=E.
The bit pattern for this string is “0000 1010 0101 1011” The count is —3, so the bit pattern is to be
shifted three spaces left, with 1’s shifted in on the right. The shifted bit pattern is “0101 0010 1101 1111”.
The hexadecimal string that represents the shifted pattern is SZ[IF, and this string is returned by
HoHEFF,

HTD — convert hexadecimal string to decimal number:

HTOC "string "

string — hexadecimal string to convert, range “0” to “FFFF”. Limited to the characters “0” through “9”,

“A” through “F”, or “a” through “f”.

Returns the decimal numeric value of a base 16 representation contained in the string argument.

HXOR$ — EXOR two hexadecimal strings:

HeOREE < "string 1, 'string 2 &

string 1 and string 2 — hexadecimal character strings.

A bit-by-bit logical EXOR is performed on the bit patterns of the corresponding characters of the two

strings. Trailing characters of the longer string are EXORed (in pairs) with “FF”. The output string con-

sists of hexadecimal characters that represent the resulting bit patterns. If an input string does not have

an even number of hexadecimal digits, a leading zero is added to it before the EXOR is performed.

Appendix D: Support Functions and Editing Keys 105

INSTALL — load private file from tape (created by MOF'):

IMSTHLL 'filename : device code'

filename — filename of desired file.

device code — device code of desired tape drive.

Copies a private file (created by MZJF %) from tape to RAM. This is the only way to retrieve a private

MCOFY tape file (refer to MZOFY).

LCD ON/OFF — turn LCD on/off:

L.CD M specifies normal LCD operation. L1 OFF prevents anything further from being displayed on

the LCD. L[l OFF remains in effect until L C0 OH is executed or the program stops.

LEFT$ — return left portion of string:

LEFT® 'string' , count:

string — input string (left part to be returned).

count — number of characters to be returned.

Returns the number of characters specified, starting from the left end of the string. If count is greater

than the length of the string, the right end is padded with blanks.

LTRIMS$ — left trim a string:

LTEIMEC "trim' , 'target' :

trim — list of characters to trim.

target — string to be trimmed.

Trims the listed characters off the left edge of the string until a character is encountered that is not in the

trim list.

LWRC$ — convert string to lowercase:

LWECEC "string '

string — string to be converted.

The characters “A” through “Z” are converted to lowercase. Other characters are not changed.

106 Appendix D: Support Functions and Editing Keys

MAP$ — map “from” characters into “to” characters in target string:

MAFEC "from*' , "to' . "target’ :

from — list of characters to find.

to — list of characters to replace the from characters.

target — string to operate on.

Scans target string, searching for any from characters. Each from character found is replaced with the

correspondingcharacter from the to list. All other characters are passed through unchanged. For example:

FE Stode !, taboides ' 1 will return the string =§ e, MAF#$ maps = into & and b into .

Th © goes tonull and ¥is passed through Note that MrAF ¥ differentiates between upper and lower

case characters For example: MAFE< "Ha', "o, "Hardwark ' » returns the string &

MARGIN? — return current right margin setting:

MAREGIHNTY

Returns the current right margin setting as a decimal number.

MCOPY — duplicate tape onto multiple tapes:

: slave| . :slave]...
MCOFY []imaster' TOO'

master — device code of source tape drive (M =normal, F=private).

slave — device code of a destination tape drive (ALL will find all of the drives).

Copies the entire contents of the master tape onto all of the destination tapes. Tapes are first initialized
unless the colon before master is replaced with a period. The resulting tapes will be made prlvate1f you
specify a I in the M1F" statement (only BASIC and LEX files will be private). The files of the i {iF

tape can be read into memory with the IHZ Tl Lcommand (see [HETHLL).

Note: The slave tapes will be exact copies of the master tapes. You cannot use I {iFY to append

data to an existing tape. You should only specify a period before master if you have alreadyinitialized

the destination tapes.

MID$ — return middle portion of string:

MILEC "string ' . start. count

string — string of which to return middle portion.

Start — starting position.

count — number of characters to return.

Returns specified number of characters from the given string, starting from the start position. If the count
passes the end of the string, blanks are appended to the end.

Appendix D: Support Functions and Editing Keys 107

NEXT — HE=XT allowed after a THEHM or ELSE:

The I/O ROM provides a HE =T that works just like the mainframe HE T, except that it may be used

after a THEHM or ELZE in a multiple-statement line. For more details, refer to FilF.

NSCR$ — remove underscoring:

MoCEEC T string ' 2

string — string to be modified.

Removes the underscore bit from all characters in the string and returns the string without the

underscoring.

OTD — convert octal string to decimal number:

070 'octal b

octal — string to be converted, range “0” to “177777”.

Returns the decimal numeric value of the octal representation contained in the string argument.

PWIDTH? — return current FI{IDTH setting:

Returns the current Fii ITH setting as a number. Returns 9.99999999999E499 if the setting is IHF.

REPL$ — replace substring in target string with another:

REFLEC "from’ . 'to' . ‘target' . '[wild]' .occur:

from — old substring to replace.

to — new substring.

target — string to scan.

wild — character to use as a wild card in the from substring.

occur — an integer specifying the occurrence of the from substring to replace.

Scans the target string for the specified occurrence of the from substring. The wild character (if specified)

will match any character, and overlapping occurrences are counted. If a match (with or without a wild

character) is found, the specified occurrence of the from substring will be replaced with the to substring (or

deleted if the to substring is null). If the from substring is null, the to substring will be inserted in front of

the occur character in the target string. If no match is found, the target string is returned unchanged. For

example: REFL$¢ 'a--", k', "zaasf ', '=', 33 will return the string zak. The first, second,

and third occurrences of =—— are ==z, ===, and z=f, respectively. The third occurrence, =:f, is re-

placed with k.

108 Appendix D: Support Functions and Editing Keys

REV$ — reverse string:

FEWEC 'string'

string — string to be reversed.

Returns reversed string, (REZ D becomes DICEF).

RIGHT$ — return right portion of string:

FEIGHTEC "string' , count:

string — string of which right portion is to be returned.

count — number of characters to return.

Returns the specified number of characters at the right end of the string. If the count is greater than the

string length, blanks are added on at the left end.

ROT$ — rotate string by character count:

ROTHC "string ' , count

string — string to be rotated.

count — number of spaces to rotate (to right if +, to left if —).

String is rotated right or left by specified count. Characters rotated off one end are added on at the other

end. Returns rotated string. For example: R0 T# ¢ ' AECZD ' , -1returns the string ECDA.

RPT$ — repeat string.

FFTFC 'pattern' , count:

pattern — pattern to be repeated.

count — number of times to repeat the pattern.

Concatenates pattern the number of times specified by count and returns the resulting string.

EFT#C'AEB' , 21 returns the string AEAERE.

RTRIMS$ — trim trailing characters:

ETEIMEC "trim' , 'string '

trim — list of characters to trim.

string — string to be trimmed.

Trims trailing characters listed in the trim list. All listed characters to the right of the last non-listed

character are trimmed. For example: ETREIM&: "', . ', "abc,de, .., 'returns the string abc, de.

Appendix D: Support Functions and Editing Keys 109

SHELL — automatic run of programs by name:

2
ZHELL OFE

Turns ZHELL mode on or off. If ZHELL mode is on, CHLL 'filename' is automatically executed for any

line that is a valid filename for a BASIC file. For example, if there is a BASIC file named FFF Oin

memory, typing AFF0 will cause CHLL 'AFFEOG ' to be executed. “HELL mode also can be used

to execute a CHLL with parameters (refer to CHLL ». For example, typing EFFEOGCH, ¥ will

cause CHLL 'EFROG'CA, ® 1 to be executed. Note that EFFEDE CH, * » must be typed with no embed-

ded blanks.

SKEY$ — wait for significant key:

SEEYE

ZKEY ¥, like KEY ¥, returns the character associated with any pressed key or keystroke combination,

allowing “live” keyboard branching. However, Sk Ev# does not return a character until a key is pressed

(kE%# will return the null string if no key is depressed while it is being executed). This allows a running

program to “wait” for a pressed key.

There are some keys that do not cause =k E* # to return a character. You may press to fetch

an error message if an error occurs before the =k E'# statement. Also, the and (+] keys (and their

variations) are not returned, but scroll the LCD.

SPAN — find position of first character not in list:

SFHAMC 'ist' . 'target' | start:

list — list of characters to pass over.

target — string to be scanned.

start — starting position in target string.

Scans target string and returns the position number of the first character found that is not in the list

string. The scan starts at the specified start position, and continues to the end of the string. If no unlisted

character is found, zero is returned. The function is inclusive. If the starting character is not listed, the

start position is returned.

110 Appendix D: Support Functions and Editing Keys

STATUS — set status of system flags:

“THTUES *flagset’

flagset — 12 character string. Characters indicate settings for flags:

1. A = ALARM OH, 2 = ALAREM OFF

2. L= AUTOLOOR OH, 1 = AUTOLOOR OFF

I = ESC-1-F OH, 1 = ESC-1-R OFF

o= SHELL OH, = = SHELL OFF

o= BHEEF OHM, b = BEEF OFF

OEFAULT OM) o = DEFARULT OFF

STHHOEY OFFo= DTHHDEY OH) =

T = TIMEQUT OH, t = TIMEQUT OFF

©
®

=N
e
O
B

®

I

= WERIFY OH, v = VERIFY OFF

10. 0t = DEGEEES- Fo= RADIAHS

11. T = TEACE FLOWAVARES F = TEARCE FLOM

W = TRACE YARS, + = TRACE OFF

12, ¥ = MDY mode, O = OMY mode

13. A = AMAFM mode, 3 = 24 hour modes

Any flag may be left in its present state by including a period (.) as a place holder in the string. Strings

shorter than 13 characters do not change trailing flags. For example: =THTLIS ' H 21 sets FLFARH

(14, leaves ALITOLOOF, ESC~1R, and SHELLin their present state, sets F

titi, and leaves the trailing flags in their present state.

 F,sets DiEFHLILT

STATUS$ — show current system flag settings:

=THTHSE

Returns flag string representing system flag settings as set with =7

ZTHTLIE (see above).

T11%, The format is the same as for

Appendix D: Support Functions and Editing Keys 111

STRING ARRAYS — dimensioning and referencing:

The I/O ROM provides the capability to declare string arrays. String arrays may be one or two dimen-

sional, and consist of string elements of specified length. The syntax of the [! I 1 (dimension) statementis:

DIM FAEdcol, row 1[size]

col — column upper bound.

row — row upper bound.

size — size of element (all elements have the same size).

Dimensioning a string array is similar to dimensioning a numeric array. The column and row upper

bounds are specified in the i 11 statement, but the actual number of elements is affected by IFT IIH

EFEE just as for numeric arrays. The following [t I 11 statement would dimension a one-dimensional string

array with six elements, each a string 10 characters long (assuming the default of 0FTIOH BAZE &):

e DIMAscSalind

You can reference a dimensioned string array as follows:

Fd o= FEdcol, row :[start . [stop]]

col — column specifier.

row — row specifier.

start — start position in element.

stop — stop position in element.

If you do not specify a start and stop position, the entire element is copied. For example, E# = FF 01, 55

copies the element F#: 1,5 into E#. If start and/or stop are specified, only the specified portion of the

element is copied. For example, E# = F#:{ 1,52 .4 copies characters two through four of the element

HECL .5into BF,

SUB — header for subprogram:

=11E name: formal parameters :

name — name of subprogram.

formal parameters — list of parameters to be passed.

Each subprogram must have a S1E statement as the first line in the file (only one subprogram may be in

a file). =UIFE defines the beginning of the subprogram and the parameters expected by the subprogram.

Parameters within the subprogram must match the passed parameters in type. Formal parameters must be

used, for example: ¥, Al¢, s, 0%, and Fi%<, ». The name field must match the filename of the sub-

program. The ZLIE statement is used in conjunction with CAHLL.

112 Appendix D: Support Functions and Editing Keys

SUB$ — return middle portion of string:

=UUEFC "string ' . left, right

string — string to process.

left — left position.

right — right position.

Returns the portion of the string bounded by the left and right positions (inclusive). If /eft is negative,

blanks are added in front. If right is larger than the string, blanks are added at the end.

TCAT$ — CAHT# of a tape drive:

TCHTEC ' 1 device code ' |file#

device code — device code assigned to tape drive.

file# — number of desired file.

Returns catalog entry for the specified file as a string (likeA T#). If file does not exist on tape, returns

null string.

TEMPLATES$ — return template string with protected fields:

TEMFLATE® < 'protect templ' , 'trail '

protect templ — protected template string up to 96 characters long.

trail — trailing field flag (F = protected, || = unprotected).

Returns a protected template string with unprotected fields that the user may change. Specify protected

fields with underlined characters (use (1/R)). The underlining will not appear in the returned string.

Use characters without underlining to specify unprotected fields. The trailing field may be protected, or

left unprotected, by specifying F or LI for trail. For example:

TEMFLATE$: 'Time= hh:mm__ Temp=ddF', 'F'3

returns the string Time = hk:mm Temp = dd F. You can change the fields b, mm, and «ic, but all

other characters are protected. The trailing field is also protected because F is specified. You can tab right

and left from field to field with and (TAaB]. The key restores the original template.

When input is terminated with [RTN], the entire 96 character string (with user changes) is returned.

Termination with any other terminator (such as [ATTN]) causes the null string to be returned.

Appendix D: Support Functions and Editing Keys 113

TIMEOUT ON/OFF — set timeout mode:

1 CH
TIMEGUT OEE

i+ — allow timeout after five minutes.

OFF — prevent timeout after five minutes.

STAMDEY OM-0OFF will affect this setting. If TIMEQOUT OH is done after a STHHDOEY OH, the HP-75

will stay fully on for five minutes, then turn itself off. If TIMEQJUT OFF is done after a STAMOEY OFF,

the HP-75 will go into the partial power down state almost immediately, and will stay in this state indefi-

nitely. Normally you would want to execute = THAHMHOE"Y OFF first if you are using TIMEQUT OH-OFF.

TIMER? — return current timer interval setting:

TIMEESCtimer number :

timer number — number of timer to be checked.

Returns the value of the specifed timer’s interval. Zero is returned if the timer is not declared.

TOBASE$ — convert number to specified base, return as string:

TOBHSE® Cnumber . base

number — decimal number (floating point format) to be converted.

base — positive integer (range: 2 through 36).

Converts decimal number to the specified base (2 through 36). Returns result as a string. Maximum string

length is 256 characters. Issues warning if the string is too long.

TODEC — convert string from specified base to decimal number:

TOOECC 'string ' . base

string — string representing number to convert. Valid characters are: 0-9, A-Z, and a-z (characters must

be valid for the specified base).

base — positive integer (range: 2 through 36).

Returns decimal number in floating point format equivalent to the string representation in the specified

base.

114 Appendix D: Support Functions and Editing Keys

USCR$ — underscore string:

U=iZREEC "string ' 3

string — string to be underscored.

Returns specified string, but with underscored characters.

USERMSG — send message to display and error buffer:

HZEREMZE 'message ' L . error number]

message — message to be displayed (maximum of 32 characters).

error number — error number to be reported with message.

The specified message is sent to the display and error buffer. The message may be recalled with

(until the next terminator key is pressed). If error number is non-zero and positive, the error

annunciator will be turned on, EEEF will sound, and you may recover the number with EFEEH. If error

number is zero or negative, the message will be displayed, but the error annunciator, EEEF, and EREEH

will remain unchanged.

VERIFY ON/OFF — set verify mode for card reader:

LR
VERTEY AEE

{1— turn on verify mode for card reader.

1FF — turn off verify mode for card reader.

WEND? — show current window end:

WEHDY

Returns the current window end column as a number.

WIDTH? — return current [I0TH setting:

WIDTH

Returns the current M ILOTH setting as a number. Returns = . 222333233 323E42%9 if the setting was

ITHF.

Appendix D: Support Functions and Editing Keys 115

WINDOW — set the LCD window start, end:

WIHMDOOW [start] . end]]

start — start column: 1 through 32 (defaults to 1).

end — end column: 1 through 32 (defaults to 32).

Sets the start and end columns of the LCD window. The window setting remains until reset. When used

in a program, 4 I Mmay be used to set up a field within which data may be displayed. Anything that

is outside the window, and that is sent to the display by a 0IZF or FEIHNT statement before the

W IMOOLN statement is executed, will remain “frozen” until the display is cleared by a CR/LF. To avoid

clearing the display, append a semicolon (;) to allI =F and FRIMT statements, and set WI[ITH and

FUIDOTH to THF. The following program exemplifies the use of 4 I HIICH:

.
e -L
l ODISF 'sdddd FEEEE

WMIMOOW 2,18

DIk 1123450

EHD

o b
R
n
i

wd
1

J
u
o
o
d
a
d
o

The program displays ##### 1224554 % when it is run. You may scroll 1 Z7Z4% with the [(«] and [+]

keys. Type i I HI to return the display to normal.

WKEY$ — wait for key, return any key pressed:

WEEYE

Works like HE# except that it will not execute until a key is pressed. Unlike ZkE'Y#, it returns a

character for any key that is pressed (including (FET], («], and [*)).

WSIZE? — show current window size:

Returns a number representing the number of columns in the current window.

WSTART? — show current window start:

WoTHETY

Returns number of the starting column of the current window.

116 Appendix D: Support Functions and Editing Keys

File Manipulation Functions

The following functions provide enhanced file manipulation capabilities.

ADVANCE# — advance data item pointer in a file:

SOV AMCE# file number : count . return variable

file number — number of data file (assigned with HZS I GH#).

count — number of items to skip.

return variable — variable to contain the number of items not skipped.

Moves data item pointer forward in the file specified by file number. Skips the number of data items

specified by count. If the end-of-file marker is encountered before count items are skipped, the number of

items not skipped (count less the number skipped) is returned as the value of return variable.

CAT# — return file number of nth A=% I GH# file:

LHTHOn

n — 0 to 9999 (negative numbers default to zero).

Returns the file number of the nth A== IGH# file. Returns zero if the nth file does not exist. If file

numbers 1, 5, and 8 have been assigned, ZHT#+: 1returns 1, CATHC 2 returns 5, and CAT#CE

returns =. If n = 0 is specified, the next available AZZ IGH# file number is returned. In the above

example, CFAT# & would return Z.

CLEAR ASSIGN# — clear all AZZIGH# assignments.

CLEARE ASSTGH#

All AZ% T GHE assignments are cleared, recovering space in memory.

DELETE# — delete data items.

OELETE# file number . count

file number — specifies A= % I GH# file to delete data from.

count — count of items from current position.

Delete specified number of data items from specified A= % IGH# file. Number of items is specified by

count, beginning at the current position.

Appendix D: Support Functions and Editing Keys 117

FILE$ — show name of specified A== IGH# file:

FILE#% file number:

file number — number of A== IGH# file (0 specifies the current run file if any reads have been done, a

negative number specifies the current edit file).

Returns the name of the A== IGH# file specified by file number. Returns the null string if the file number

does not exist. Returns underlined name if the file has been assigned, but does not exist.

INDEX# — return current data pointer position in file:

IMOE“# < file number :

file number — number of ASZIGH# file (0 specifies the current run file if any reads have been done).

This returns the current data pointer position in the specifed file, in terms of the number of items from

the beginning of the file.

INSERT# — insert an item at the current data pointer:

IMSERTH file number : value

file number — the number of the desired A== I GH# file.

value — the value to be inserted into the file.

Inserts item into the file in front of the item at the current data pointer position. You can use

AOWAMCE# to position the pointer at the end of the line (after the last item), then insert an item at the

end of the line.

ITEM# — return pointer position in current line:

ITEM# < file number

file number — number of A== IGH# file (0 specifies the current run file if any reads have been done).

Returns the pointer position in the current line, (the number of items from the beginning of the line).

Returns an error if the file has been purged.

LASTLN? — return line number of last line in specified file:

LASTLHS O ' [filename] ' &

filename — name of file to be checked.

Returns the line number of the last line in the specified file. If you specifiy the null string for filename, the

line number of the last line in the current file will be returned.

118 Appendix D: Support Functions and Editing Keys

L IHME# < file number :

file number — number of ASSIGH# file (0 specifies the current run file if any reads have been done, a

negative number specifies the current edit file).

Returns current line number in the file specified by file number. If the file is not assigned, IHF is re-

turned. If the file has been assigned, but does not exist, a negative line number is returned.

LINELEN# — return the number of items in a line:

LIHELEHM# <file number . line number :

file number — number of A== I GH# file.

line number — number of line in RS IGH# file.

Returns the number of items on the specifed line, in the specified file. Text files return the character

count of the line.

PRINT# ... USING — FEIMNT# to a TEXT file with L% IHG format:

image list
FEIMTH# file number|.line number] 1= IHG

line number
: expression[. expression]...

file number — A== IGH# file number (must be a TEXT file).

line number — line number to print to.

image list or line number — a valid list of image specifiers or the line number of a statement containing the

image list.

expression — item to print (a numeric or string expression).

FRIMTH# .. USIHG works just like FREIMT ... IS IHE, except that it “prints” to an HES I GHE file.

REPLACE# — replace a data item in a file:

FEFLHCE#® file number : value

file number — HE==1GH# file number.

value — value to replace old value.

Replaces item currently pointed to in the specified A== I GH# file with the new item specified by value.

Appendix D: Support Functions and Editing Keys 119

SEARCH# — search for value in data file:

SEFARECH# file number| .start| . end]] : value

file number — A== IGH# file number.

start — start line number for search.

end — end line number for search.

value — value to search for.

Moves item pointer in specified A== IH# file to the first occurrence of the specified value. If start is not

specified, search starts at the current location. If end is not specified, search continues to the end of the

file. The pointer does not move and an error is issued if the value is not found.

SEEK# — position item pointer at a given location:

SEEE# file number, [line number . litem number

file number — H=SIGH# file number.

line number — line to position pointer in (optional).

item number — item number (in line if line number is specified; otherwise, in file).

Positions item pointer in the specified A== I :H# file to the specified position. If /ine number is specified,

positions pointer to item number in the specified line. If /ine number is not specified, item number is an

absolute item number, and the pointer is placed at that item, counting from the beginning of the file.

Additional Editing Keys

The HP-75 I/0 ROM provides several additional editing keys. Some of these keys are redefinitions of

existing keys or key sequences, while others are entirely new. These editing keys cannot be reassigned to

other keys or key sequences, and the key sequences that execute these keys cannot be redefined with DEF

KEY.

— clear display devices:

Press to clear all current display devices without affecting the contents of the input buffer.

Sends ESC H and ESC J to the current display devices.

— delete to beginning of line:

Press to delete all characters from the beginning of the current edit line to the position just

left of the cursor. If there is a line number adjacent the prompt, the beginning of the line is defined as just

after the line number. Otherwise, the line begins just after the prompt. The remaining characters are

justified left.

— literalize and underscore next key:

Works like (17R], but with the addition of underscoring.

120 Appendix D: Support Functions and Editing Keys

SHIFT] (] — find next occurrence of character on line:

Press the [CTL], (SHIFT], and keys (holding all three down), release all of them, then press a character

key. The cursor will move to the next (right) occurrence of the specified character on the current edit line.

The cursor does not move if no occurrence of the character is found.

SHIFT] [(«) — find previous occurrence of character on line:

Works like the previous function, except that the cursor moves to the left instead of to the right.

— tab left or right in non-protected field:

enables you to tab from field to field. Press to move right, to move left. Stops on

the first character of the next or previous field (delimited by a space, semicolon, comma, or period). For

example, in the string zbc def ;aki, jk1.mrno the tab points are =, o, @, 0, and m.

Running an Autostart Program

The HP-75 I/0 ROM enables the HP-75 to automatically run a program named FUTZET when the

computer is turned on (or turns itself on). This facility operates through the definition of key number 159.

If a program named FALITI=T is present when the power is turned on and key number 159 has not been

defined, the function executes [EF KEY CHREFC1S2:, "gREUM "AUTOST 4", then runs the

ALUTOET file. If key number 159 has been defined, its current definition will be executed when you turn

on the power. You can turn the feature off by executing DEF KEY CHE$< 152, ' ' (establishing a null

definition). To turn the feature back on, execute [IEF KEY CHEFC1IS2, "LEUN "AUTOET 4", If no

FMIUTOET program exists and key number 159 has not been defined, the feature remains inactive.

Note: Type to produce . Type to produce #.

The content of the FLITIET program depends on your application. Simply write a program named

AUTOET that causes the HP-75 to do whatever you want it to do when it is turned on. The program will

run the next time the computer is turned on (unless key 159 is defined to do something else). You may

also define key 159 to run any desired program or function. For example, if you execute [EF EE®Y

CHE£C1S22, "CATALL 'Y, CATALL will be executed each time the computer is turned on.

Appendix E

Errors and Warnings

The HP-75 I/O ROM displays the following error messages when the listed error conditions occur. Other

error messages and warnings are listed in the HP-75 Owner’s Manual.

Note: Errors 28, 42, 47, 52, 68, 82, 85, 88, 89, and 91 are HP-75 mainframe error messages. These

error messages have their usual meanings and may also be used by the HP-75 I/O ROM to indicate

the error conditionslisted in the following table. Errors 120 through 129 are specific to the I/0 ROM.

Number Message and Condition

28 record owver flow

I0=1ZE is exceeded by the record being entered.

42 =tring too long

Device code of more than two characters entered in a FEH=Z= IM statement.

47 o omatckhing FOE

No HE =T can be found to match the index variable of the E<I T statement.

52 imwalid IMAGE

Invalid field in an EHTER or DLTFUIT image.

68 wrong file type

ECED used on a file of a type other than BASIC or TEXT.

82 Ztring expected

EHTEFRimage and variable type do not match (image is a string).

85 expr too big

Reported on key entry if KEYEOARED I% has no room left for entering a key.

88 bad statement

An unrecognized mnemonic is used in a “EHMH[statement.

89 bad parameter

An 1/O ROM statement or function detects an invalid parameter (form or content).

91 missing paramseter

A parameter has been left out for a ZEHMHL mnemonic that requires one.

120 fidmber expected

EHTEF image and variable type do not match (image is numeric).

121 brad digit

A function that processes base dependent strings (HE =¥, HAMHD#, etc.) encounters an

invalid digit for the current base.

122 bad template

Reported when TEMFLHATE# is given a template with no unprotected field.

121

122 Appendix E: Errors and Warnings

Number Message and Condition

125 data not fournd

A file manipulation function cannot find the data requested.

126 Tupe mismatoh

ZHLL and =lIE parameters do not match in type.

127 brad param values

IZHL. L. value does not match =LIE parameter type.

128 invalid subrname

=11E name does not match filename.

129 bad param tupe

"HL. L. parameter is not of valid type. Numbers must be FEAL (IHTEGER and SHORT

are not allowed).

Keyword Index

Keyword Page Description

FHMHDFE 93 AND of two strings.

ADDORESS 45,59 Address the loop and return number of devices.

JOUET 94 Set adjust factor for clock.

HOLIETE 94 Show current clock adjust factor.

ADVHMCE# 116 Advance data item pointer in file.

HOREE 94 OR two strings.

AREOTE 94 Rotate string left or right by bit count.

HolE 95 Convert hexadecimal string to ASCII.

HoCIIE 95 Return string of ASCII characters in specified range.

AoHFE 95 Shift string left or right by bit count.

HESHLOORSE 89 Assign loop and return string.

AoIGH LOOF 43,60 Force automatic assignment of loop.

HUTOLOOR OM-OFF 43,61 Assign loop at power on.

SRS 96 Exclusive OR of two strings.

FHAMD 96 Bit-by-bit logical AND of two integers.

THOMF 96 Binary complement of integer.

EIMEOR 96 Bit-by-bit exclusive OR of two integers.

ITHIOR 96 Bit-by-bit inclusive OR of two integers.

BIT 97 Test bit in integer.

EREHE 97 Find next position of character in list.

BT 97 Convert binary string to decimal number.

ELFE 97 Return contents of specified buffer.

CHLL 98 Call basic program with parameters.

CHTH 116 Return file number of nth A== TGH#E file.

CLEAR ASSIGHSH 116 Clear all A== I GH# assignments.

COPy rBCEDY 98 Recover bad card with missing tracks.

COLMT? 99 Show current length of DI =F or FEIMT output.

119 Clear display devices.

119 Delete to beginning of line.

119 Literalize and underscore next key.

120 Find next occurrence of character on line.

120 Find previous occurrence of character on line.

DEFEEYS® 99 Return current key definition.

123

Keyword Index

Keyword Page Description

DELAY® 99 Return current delay setting.

DELETE# 116 Delete data items.

DEVHDDRE 45,62 Return HP-IL address of specified device.

DEVAIDE 48,63 Return Accessory ID as a string.

DEVIDE 48,64 Return Device ID as a string.

OEVHAME$ 45,65 Return device code of specified device.

oM 111 Dimension string arrays.

DISPLAYE 89 List current display devices.

00 ERREOR 99 Cause given error.

ODTE* 100 Convert decimal number to binary string.

OTH# 100 Convert decimal number to hexadecimal string.

OTOE 100 Convert decimal number to octal string.

EHABLE SRR 89 Reenable it =Fil after an i ZE{l execution.

EMOLIHES 90 Return current endline string.

EHTER 14,22,66 Input bytes from specified device; build number or string;

place result in BASIC variable.

EMTIOF 32,68 Send HP-IL commands to specified devices; return data as

a character string.

EsCE 100 Return string of escape-character sequences.

Eol-TsR OOFF 90 Turn modified I/R on or off.

E=TT 100 Leave a FLE-HEXT loop early.

FILE# 117 Show name of specified HZ % I EH# file.

FILL#% 101 Fill a string.

FIMD 101 Find specified occurrence of substring in string, with wild

card.

FLAGE 101 Set specifed bit to specified value in given string.

FLAGY 102 Test specified bit in string.

F Ok 102 FIOF allowed after a THEHM or EL ZE.

GO 102 0=UE to a variable as a line number.

GOTOE 102 0Tto a variable as a line number.

HAMHDF 103 AND of two hexadecimal strings.

HE =% 103 Convert ASCII string to hexadecimal.

HORF 103 OR two hexadecimal strings.

HEOT* 103 Rotate a hexadecimal string left or right by bit count.

HZHF # 104 Shift a hexadecimal string left or right by bit count.

HTO 104 Convert hexadecimal string to decimal number.

HeORF 104 EXOR two hexadecimal strings.

IMAGE 17,69 Specify format of EMTEFRor GUTFLUT statement.

Keyword Index

Keyword Page Description

THOE = # 117 Return current data pointer position in file.

IMZERETH 117 Insert an item at the current data pointer.

IM=ZTALL 105 Load private file from tape (created by MZ0F).

IOSIZE 28,71 Set enter buffer size.

IOSIZES 90 Return current I 0= 1 ZE setting.

ITEM# 117 Return pointer position in current line.

KEYEORREDSF 90 Return device code of current keyboard device.

EEYEORRED IS 90 Assign device for keyboard entry.

LAHSTLH?Y 117 Return line number of last line in specified file.

LoD OM-0OFF 105 Turn LCD on/off.

LEFTE 105 Return left portion of string.

LIME# 118 Return current line number in specified A== I GH# file.

LIMELEM# 118 Return the number of items in a line.

LISTIOR 92 List HP-IL device codes in string.

LocAL 46,72 Return HP-IL devices to local control.

LooHL LOockOouT 47,73 Lock out local control of HP-IL devices.

LTEIME 105 Left trim a string.

LHECE 105 Convert string to lowercase.

MAF* 106 Map “from” characters into “to” characters in target string.

MARGIH®Y 106 Return current right margin setting.

MCORY 106 Duplicate tape onto multiple tapes.

MIOF 106 Return middle portion of string.

HE=T 107 HE=T allowed after a THEH or EL=ZE.

HoOREE 107 Remove underscoring.

OFF SRR 92 Turn off HP-IL service request response.

OH SRR 92 Respond to HP-IL SRQ messages.

aTh 107 Convert octal string to decimal number.

QUTRUT 13,17,74 Output bytes (string or numeric) to specified devices.

FROLL 50,76 Return result of parallel poll.

FEIMNTH ... USIHG 118 FEIMT# to a TEXT file with 1= IHG format.

FEIMTEE® 92 List current printer devices.

FUHIOTH? 107 Return current FLIILTH setting.

FREASSIGH 92 Change device code of an HP-IL device.

FEMOTE 46,77 Set specified devices to remote mode.

FEFLF* 107 Replace substring in target string with another.

FEFLACE# 118 Replace a data item in a file.

125

126 Keyword Index

Keyword Page Description

FEVE 108 Reverse string.

RIGHTS* 108 Return right portion of string.

R IO 93 Read data from an HP-IL register.

ROTE 108 Rotate string by character count.

FFTEF 108 Repeat string.

RTEIME 108 Trim trailing characters.

SEARCHH# 119 Search for value in data file.

SEEE# 119 Position item pointer at a given location.

SEHD 35,78 Send HP-IL commands and/or data.

SEMDT 31,80 Return position in string of character unsuccessfully

sourced in ZEMII O data list.

SEHDIO 29,81 Send HP-IL commands and/or data to specified devices.

mHELL 109 Automatic run of programs by name.

SEEYE 109 Wait for significant key.

mFER 109 Find position of first character not in list.

=ROLL 49,82 Return result of serial poll as a number.

mROLLE 49,83 Return result of serial poll as a string.

STHTUS 110 Set status of system flags.

STATUSE 110 Show current system flag settings.

mLE 111 Header for subprogram (see H1L.L).

mUEE 112 Return middle portion of string.

TAB 120 Tab left or right in non-protected field.

TOHTH 112 CHT# of a tape drive.

TEMFLATE® 112 Return template string with protected fields.

TIMEQUT OH-0OFF 113 Set timeout mode.

TIMERT 113 Return current timer interval setting.

TOBEARZES# 113 Convert number to specified base, return as string.

TODEDC 113 Convert string from specified base to decimal number.

TEIGGER 47,84 Send GET (Group Execute Trigger) command to trigger de-
vice operation.

LmCRE# 114 Underscore string.

LmERMSG 114 Send message to display and error buffer.

VERTFY OH-0OFF 114 Set verify mode for card reader.

WEMD? 114 Show current window end.

Keyword Index 127

Keyword Page Description

WMIDTH?Y 114 Return current L ILDTH setting.

WOIHDOM 115 Set the LCD window start, end.

WIO 93 Write data to an HP-IL register.

WEEYSE 115 Wait for key, return any key pressed.

WIS 115 Show current window size.

METHETY 115 Show current window start.

How To Use This Manual (page 5)

Getting Started (page 7)

Simple 1/O Operations (page 13)

Formatted 1/O Operations (page 17)

Sending and Receiving HP-IL Messages (page 29)

Other HP-IL Statements and Functions (page 43)g

(fifl HEWLETT
PACKARD

Portable Computer Division

1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

European Headquarters
150, Route Du Nant-D’Avril

P.O. Box, CH-1217 Meyrin 2

Geneva - Switzerland

00075-90243 English

HP-United Kingdom
(Pinewood)

GB-Nine Mile Ride, Wokingham
Berkshire RG11 3LL

Printed in U.S.A. 1/84

	Cover
	Contents
	How To Use This Manual
	Section 1: Getting Started
	Installing and Removing the ROM Module
	Translating LEX File Programs
	The Role of the Hewlett-Packard Interface Loop
	A Brief Review of HP-IL
	Device Addresses
	Device Codes

	Syntax Guidelines

	Section 2: Simple I/O Operations
	Using Simple OUTPUT Statements
	Using Simple ENTER Statements
	Entering Numeric Data
	Entering String Data

	Section 3: Formatted I/O Operations
	Formatted OUTPUT
	Numeric Image Specifiers
	Digit Specifiers
	Sign Specifiers
	Punctuation Specifiers

	String Image Specifiers
	The End-of-Line Sequence Image Specifier

	Formatted ENTER
	Data Images
	Numeric Image Specifiers
	String Image Specifiers
	Skipping Unwanted Characters

	Terminator Images
	Eliminating the Statement Terminator Requirement
	Using the ETO Message As a Statement Terminator
	There’s Always an Exception

	Changing the Size of the ENTER Buffer

	A Word of Advice About Images

	Section 4: Sending and Receiving HP-IL Messages
	The SENDIO Statement
	Resuming Data Transmission With SEND?
	SENDIO Restrictions

	The ENTIO$ Function
	Defining Logical End-of-Record
	Enhanced Printing Control
	ENTIO$ Restrictions

	The SEND Statement
	Sending Command Group Messages
	Sending Ready and Identify Group Messages
	Sending Data/End Group Messages

	Application Programs
	An HP-75/HP Series 80 Interface
	An HP-75/Modem Interface
	Obtaining Readings From a Multimeter

	Section 5: Other HP-IL Statements and Functions
	Assigning The Loop
	The ASSIGN LOOP and AUTOLOOP ON-OFF Statements
	Assigning HP-IL Addresses and Device Codes to HP-IB Devices
	The DEVADDR and DEVNAME$ Functions
	The ADDRESS Function

	Remote and Local Control of HP-IL Devices
	The REMOTE Statement
	The LOCAL Statement
	The LOCAL LOCKOUT Statement
	The TRIGGER Statement

	Checking the Device ID or Accessory ID of HP-IL Devices
	Device ID
	Accessory ID

	Polling HP-IL Devices
	Serial Polling
	Parallel Polling

	Appendix A: Owner’s Information
	Appendix B: Syntax Reference Guide
	Appendix C: HP-IL Commands
	Appendix D: Support Functions and Editing Keys
	Appendix E: Errors and Warnings
	Keyword Index

