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Introducing the Math Pac

The Math Pac is a set of powerful tools for solving a wide range of mathematical, scientific, and en-

gineering problems. These tools are provided in the convenient and flexible form of BASIC keywords.

Once the Math Pac is plugged into your HP-75 computer, these keywords are instantly available: no

program to load, no waiting. (The Math Pac is a ROM-based LEX file, described in appendix B of the

HP-75 Owner’s Manual.) You can use these keywords in any program as often as needed; you avoid the

restrictions that would apply to program calls and save the memory that subroutines would require.

The Math Pac adds the following capabilities to your HP-75.

¢ Advanced real- and complex-valued functions.

¢ Real and complex matrix operations.

Solutions to systems of equations.

Roots of polynomial equations and user-defined functions.

¢ Numerical integration.

¢ Finite Fourier transform.
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How To Use This Manual

This manual assumes that you are generally familiar with the operation of your HP-75 computer, espe-

cially how to create, edit, store, and run programs. You should also understand the mathematical basis

for the operations you will be performing. Because the keywords in the Math Pac cover such a wide

range of mathematical subjects, we cannot provide much tutorial information on the mathematical

concepts involved.

The keywords in the Math Pac are independent of one another, so you may deal with only the keywords

that specifically interest you. Each section in this manual contains information on keywords of a

particular mathematical type—real-valued functions, matrix algebra operations, and so on. All

keywords described after section 3 (except FHEIOT and IHTEGFHL) use arrays in their operation. To

become familiar with arrays you should read section 13 of the HP-75 Owner’s Manual and the general

information at the beginning of section 4 of this manual.

Within each section you will find a description of each keyword name, function, syntax, and operation

in the following format.

Keyword Name Function That the Keyword Performs
 

Syntax

Legal data types and numeric values for use with this keyword.
 

Describes the values returned by this keyword and the details of the keyword’s operation.  
 

Keyword Name. This is the way the keyword will be referenced elsewhere in the manual. It is usually

a mnemonic of the function that the keyword performs. In most cases the name must be embedded in a

longer statement that includes arguments, parentheses, and so on; the name by itself usually isn’t an

acceptable BASIC statement.

Several keywords have names that are identical to names of keywords already present in your HP-75—

like &1 1%F, + and #. The syntax in which such a name is embedded indicates which operation to

perform. All operations available to you in the HP-75 itself are still available, unaffected by the pres-

ence of the Math Pac.

Syntax. This is a description of the acceptable BASIC statements in which the keyword’s name can

be embedded. The following conventions are used throughout the manual in describing the syntax of a

keyword.
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Typographical Item Interpretation

Aot matrix Words in dot matrix type may be keyed in using either lower or upper

case letters, but otherwise must be entered exactly as shown.

italic Variables in italic type represent numeric expressions; phrases in

italic type represent a parameter that is defined elsewhere.

bold Variables in bold type represent arrays.

[ ] Square brackets enclose optional items.

stacked When two items are placed one above the another, one (and only one)

items of them may be used.

An ellipsis indicates that the optional items within the brackets may

be repeated indefinitely.

Legal Data Types and Numeric Values. This information describes the types and ranges of ar-

guments for the keyword that are acceptable to the Math Pac. Use this information to avoid generating

errors and to isolate the cause of those that do occur. This is not a mathematical definition of the

domain of the function that the keyword computes.

Included in each section are a number of examples illustrating the use of the keywords in the section.

Almost all of the examples are given as keyboard calculations so that you can immediately see the

result of using a particular keyword. The effects of using a keyword in a program will be identical

except that in a program you can access only program variables, not calculator variables.

To try an example yourself, type in the commands given in the Input/Result column using either

upper or lower case, ending each line with a [RTN]. After you complete a command, the display of your

HP-75 should look like the display shown in the Input/Result column following the command—pro-

vided that you have set your line width to 32 by entering itk ZZ[RIN]. In many cases a single

command will produce a sequence of displays, shown as consecutive lines in the display figure. You can

control the length of time each display remains visible with the [iEL A" command described in section

2 of the HP-75 Owner’s Manual.

Some sections include additional information to help you make effective use of the more sophisticated

operations. If you would like still more information, you can refer to the HP-15C Advanced Functions

Handbook. Although the Math Pac differs from the HP-15C Advanced Programmable Scientific Cal-

culator in its operation and capabilities, much of the information in the HP-15C Advanced Functions

Handbook applies to the Math Pac. Such information includes techniques to increase the effectiveness

of equation-solving algorithms, integration algorithms, matrix operations, system solutions, and accu-

racy of numerical calculations.



Section 1

Installing and Removing the Module

The Math Pac module can be plugged into any of the three ports on the front edge of the computer.

 

CAUTIONS

* Be sure to turn off the HP-75 (press [SHIFT][ATTN]) before installing or removing any module. If
there are any pending appointments, type =1 atm of f in EDIT mode to prevent the arrival

of future appointments (which would cause the computer to turn on). If the computer is on or if it

turns itself on while a module is being installed or removed, it might reset itself, causing all stored

information to be lost.

* Do not place fingers, tools, or other foreign objects into any of the ports. Such actions could result

in minor electrical shock hazard and interference with pacemaker devices worn by some persons.

Damage to port contacts and internal circuitry could also result.  
 

To insert the Math Pac module, orient it so that the label

is right-side up, hold the computer with the keyboard fac-

ing up, and push in the module until it snaps into place.

During this operation be sure to observe the precautions

described above.

 

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the

module and pull the module straight out of the port. Install a blank module in the port to protect the

contacts inside.

11/12





Section 2

Real Scalar Functions

Hyperbolic Functions

SINH Hyperbolic Sine
 

ZIHHOX

where X is a numeric expression, |X| < 1151.98569368   
COSH Hyperbolic Cosine
 

COsHOX

where X is a numeric expression, |X| < 1151.98569368   
TANH Hyperbolic Tangent
 

THHHOX

where X is a nhumeric expression.   
ASINH Inverse Hyperbolic Sine
 

AS THHX

where X is a numeric expression.   
ACOSH Inverse Hyperbolic Cosine
 

FCOEHOX S

where X is a numeric expression, X > 1.   

13
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ATANH Inverse Hyperbolic Tangent
 

HTAMHHCX

where X is a numeric expression, —1 < X < 1.  
 

Logarithmic Functions

LOG2 Base 2 Logarithm
 

LOGzoXa

where X is a numeric expression, X > 0.
 

LOGZCXs = logyX) = ::gé))

  
 

LOGA Variable Base Logarithm
 

LOGAROX, B

where X is a numeric expression, X > 0, and B is a numeric expression, B > 0 and B # 1.
 

LOGHCX,B» = logg(X) = :rr:(g)  
 

Rounding and Truncating Functions

ROUND Round
 

FOUMHDOOX, N2

where X, N are numeric expressions.
 

If N is positive, rounds X to N digits to the right of the decimal point. If N is negative, rounds X to N digits

to the left of the decimal point.
. « 10°

FOUHDOX. Ny = IHTX 101,,0 + .5

where IHT is the standard HP-75 function, and P is N rounded to the nearest integer.  
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Note: The rounding convention given above is used only in the FE LMD keyword. In particular,

the FOLHD keyword rounds numbers “toward positive infinity” so that if 1.5 is rounded to the

nearest integer using FECOLIMDO, the result is 2. If —1.5 is rounded to the nearest integer using

FOLMHD, the result is —1. Anywhere else a number needs to be rounded, the Math Pac uses

the same convention as the HP-75 itself: positive numbers are rounded “toward positive infin-

ity”, and negative numbers are rounded “toward negative infinity”. This can only make a dif-

ference when the number to be rounded is negative and lies exactly halfway between the

numbers to which it could be rounded.

TRUNCATE Truncate

 

TREUHCATECX, N

where X, N are numeric expressions.

 

If N is positive, truncates X to N digits to the right of the decimal point. If N is negative, truncates X to N

digits to the left of the decimal point.

\ P

TEUHCHTECX. NI = 1F )§0P10

where IF is the standard HP-75 function, P is N rounded to the nearest integer.  
 

Factorial/Gamma Function

FACT Combined Factorial and Gamma Functions

 

FHOTOX:

where X is a numeric expression not equal to a negative integer,

—254.1082426465 < X < 2583.1190554375.

 

If X equals a non-negative integer, FACT X = X!

In general, FECToX: = [ (X + 1), defined for X > —1 as

X +1)= te!X+ 1) fo e 'dt

and defined for other values of X by analytic continuation.  
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Examples

COSH, SINH, ATANH, ACOSH

 

Input/Result

coEh CE D

1

  

 

  
 

SEEE 1Ea3225

atanhilsqr =i

 

  
 

 

  
 

 

  
 

SEE

LOG2, LOGA

Input/Result

log2i2™17a

17

ECEI-IEE

 

  
 

Hyperbolic cosine of a numeric constant.

Hyperbolic sine of a numeric expression.

Inverse hyperbolic tangent of a numeric expres-

sion with a numeric variable.

Inverse hyperbolic cosine of a numeric expression.

Logarithm (base 2) of a numeric expression.

Logarithm (base 3) of 81.
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logadz, =0 LOEA of numeric variables.

 

   

ROUND, TRUNCATE

Input/Result

w=12245, =+ [RTN

Truncates, 12

 

1T
y127245, TRUHCATE “blanks” all the digits rightward of

the digit indicated by the second argument.   

fruncateds, B

 

123245

   

truncatets, -2, 10

 

TeZaa

   

PD, 13
 

12345, 7 FUHD rounds the first argument at the digit
indicated by the second argument.   

PCw, -1

 

12250 If the second argument is negative, this in-
dicates a digit to the left of the decimal point.   

pournde-13 025,10

 

----- 12,2 —13.25 is midway between —13.2 and —13.3; in
this case the number is rounded in the positive
direction to —13.2.

   





Section 3

Base Conversions

Binary, Octal, and Hexadecimal Data Types

The operations in this section allow your HP-75 to recognize and manipulate numbers expressed in

number systems other than decimal (base 10). These functions conform to the ANSI standards de-

scribed in appendix B of the HP-75 Owner’s Manual.

Because the HP-75 assumes that any number stored in a numeric variable or entered from the key-

board is a decimal number, you must enter and store every non-decimal number as a character string.

In particular, if you store the number in a variable, the variable’s name must end with “$”; if you enter

the number from the keyboard, it must be enclosed in quotes.

In the tables below, S§ will represent a binary, octal, or hexadecimal string or string expression.

* A binary string consists entirely of 0’s and 1’s, and represents a number in the base 2 number

system. A binary string expression is a string expression whose value is a binary string.

* An octal string consists entirely of 0’s, 1’s, ..., 6’s, and 7’s, and represents a number in the base 8

number system. An octal string expression is a string expression whose value is an octal string.

* A hexadecimal string consists of 0’s, ..., 9’s, A’s, ..., F’s, and represents a number in the base 16

number system. (Be sure to capitalize the letters A through F, which represent the decimal values

10 through 15.) A hexadecimal string expression is a string expression whose value is a hexadecimal

string.

19
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Base Conversion Functions

BVAL Binary, Octal, or Hexadecimal to Decimal Conversion
 

EVALCS$. N

where S$ is a binary string expression whose value is not greater than

1110100011010100101001010000111111111111 (binary), and N is a numeric expression whose

rounded integer value is 2;

or S$ is an octal string expression whose value is not greater than 16432451207777 (octal), and N is

a numeric expression whose rounded integer value is 8;

or S$ is a hexadecimal string expression whose value is not greater than E8D4AS50FFF

(hexadecimal), and N is a numeric expression whose rounded integer value is 16.
 

Converts a string expression S$ representing a number expressed in base N into the equivalent decimal

number. The value of the decimal equivalent can’t exceed 999,999,999,999 (decimal).  
 

BSTR$ Decimal to Binary, Octal, or Hexadecimal Conversion
 

ESTEEOX, N

where X is a numeric expression, 0 < X < 999,999,999,999.5,

and N is a numeric expression whose rounded integer value is 2, 8, or 16.
 

  Converts the rounded integer value of X (decimal) into the equivalent base N string.
 

Examples

Input/Result

bwalotl@alan, 2o

 

o
t

] The decimal value of 1010 (binary).

  
 

BE=1111"

Bwalobhd, 20

 

15 The decimal value of the binary string “1111”.
  
 



broalibEibhE, 20
 

Bl
A[ N

  
 

E‘ETT'-:F'__:_:, =7 |RTN
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bstr 07D, S

116
  
 

betr$Fibwal c"AFLCS" , 16y, 20

 

  
 

1A1E1111AG81116A18AG0

Bztrfibwal 0147720, 20 +hoy.
COSTEN LS, 80
 

  
 

Additional Information

Section 3: Base Conversions 21/22

The decimal value of the binary string
“11111111”7.

The binary representation of 3 (decimal).

The octal representation of 72 (decimal).

The binary representation of AF1C8
(hexadecimal).

The octal sum of 14772 (octal) and 570 (octal).

Three considerations determined the range of acceptable parameters for the base conversion keywords.

e The keywords give the exact answer for any integer in the range of acceptable parameters.

* The keywords are inverses of one another, so that composition in either direction is the identity

transformation for integers.

e The integers from 0 through 999,999,999,999 form the largest block of consecutive non-negative

integers that the HP-75 can display in integer format.





Section 4

Array Input and Output

An array is a variable that is either singly subscripted (a vector) or doubly subscripted (a matrix), with a

range of values for the subscripts (dimension) limited only by available memory. Values for array

elements are stored sequentially in memory, in row order:

* From left to right along each row.

* From the top row to the bottom row.

An array can be one of three data types: FEAL, SHIRET, or INTEGEF. Operations provided by the

Math Pac will not change the declared type of an array; when the values from a FEHL array are

assigned to a ZHIRET or IMNTEGEFRarray, the values are rounded as they are stored into that array.

(Arrays are described in section 13 of the HP-75 Owner’s Manual; FEAL, SHOET, and INTEZEFRare

described in section 5.)

Recall that the upper bounds of an array’s subscripts are determined by a dimensioning statement, and

that the lower bound of all subscripts in a program is determined by an OFTIOH ERZE statement:

o OFTIOM EAZE & sets the lower bound to zero.

o OFTION EAZE 1 sets the lower bound to one.

For calculator variables, OFTIOH ERZE & is always in effect. However, a program variable

dimensioned under JFTIOH EAZE 1 will continue to have 1 for the lower bound of its subscripts

when the program is interrupted, until the program is deallocated. Note that DI I, FEAL, SHIET, and

IMTEGEFRstatements executed in calculator mode will have no effect on program variables even if the

program is interrupted and the program variables are accessible. This is also true for the explicit and

implicit redimensioning implemented by the Math Pac.

Many array operations in the Math Pac are of the form

MHATresult array=operation . operand array(s) :

where the operand arrays are the arguments of the operation and the result array is the array in which

the results of the operation will be stored. The operation changes only the result array.

It is wise to dimension every array before it appears in a Math Pac statement. (Refer to section 13 in

the HP-75 Owner’s Manual for information on default dimensioning of arrays.) If an operation

redimensions an array, the array must have been given at least as many elements in its original dimen-

sioning statement as there will be in the redimensioned array, but the numbers of rows and columns

need not be individually greater.

23
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The keywords in this section can help you to:

¢ Change the size of an array.

e Fill an array with values.

¢ Display values already in an array.

Redimensioning an Array (FE L 1)

The keyword FEL Iallows you to rearrange an array without destroying the information in the array.

The values are reassigned according to the new dimensions, and any extra values are inaccessible and

unaffected by operations on the array until you again redimension the array. (Some statements can

redimension an array before performing an operation. In these cases, the extra values will become

accessible when the array is redimensioned and then will be acted on by the operation.)

For example, if you redimension the 2 x 3 array shown below to a 2 X 2 array, you can no longer access

the elements 5 and 6.

1 2 3 1
If 4 5 is redimensioned to s 4l 5 and 6 become inaccessible.

In some cases a [ I 11 array statement should be followed by a FE[I Iarray statement using the same

parameters. This is necessary only if the array is later redimensioned, either explicitly or implicitly, and

only if the program segment that dimensions and redimensions the array will be executed more than

once under program control. Because the [i 1 statement is executed the first time that the program

segment is executed but is skipped each subsequent time, the array won’t be reset to its initial size by

the 111 statement. The FEIstatement following the [i {1 statement and using the same param-

eters is redundant the first time but properly resets the array to its initial size each subsequent time.

This rule also applies to FEHL, SHIET, and [HTEZER statements that dimension an array.

REDIM Redimensioning

Aiijz Bij:

FEDIM :
Cik.l: Dim.n:

where A, B are vectors, and C, D are matrices, and i, j, k, /, m, n are numeric expressions.

 

 

Redimensions arrays and reassigns values in row order. A redimensioning subscript can be a numeric

expression; its rounded integer value becomes the upper bound of the corresponding subscript.

The total number of elements in the redimensioned array can’t exceed the total number of elements the

array was given in a dimension statement.  
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Assignments

= Simple Assignment
 

MHAT A=B

where A, B are both vectors, or A, B are both matrices.

 

Redimensions A to be the same size as B and assigns to A the corresponding values from B. The total

number of elements of A must be at least as large as the total number of elements of B.  
 

=() Numeric Expression Assignment
 

MAT A=0X2

where A is an array and X is a numeric expression.

 

Assigns the value of X to every element of A.   
 

ZER Zero Array
 

MAT A=ZEF["redimensioning subscript(s) ]

where A is an array.

 

Assigns a value of zero to every element of A. If redimensioning subscripts are present, redimensions A

just as EED Iwould.   
 

CON Constant Array
 

MAT A=C0OM[ < redimensioning subscript(s) ]

where A is an array.
 

Assigns a value of one to every element of A. If redimensioning subscripts are present, redimensions A

just as FED Iwould.   
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IDN Identity Matrix
 

MAT A=I10H

MAT B=IOHCX, Y

where A is a square matrix;

or B is a matrix, and X, Y are numeric expressions with the same rounded integer value.

 

For a square matrix A, assigns a value of one to every element on the diagonal of A and assigns a value

of zero to every other element.

For a matrix B, redimensions B to a square matrix with the upper bound of each subscript equal to the

rounded integer value of X and Y; then assigns a value of one to every element on the diagonal of B and

assigns a value of zero to every other element.  
 

Array Input

READ Assign Values from Data Statements
 

MAT RERD A[. B]...

where A, B are arrays.

 

Assigns values to the specified array(s) by reading from one or more LT statements in the same

program as the MHT FEEHRD statement. Operation is similar to the FERL keyword in the HP-75. For

each array, elements are assigned values in row order; if there is more than one array, they are filled in

the order specified.

This keyword can be used only in a program.  
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INPUT Assign Values from Keyboard Input
 

MAET IHFUT A[. B]...

where A, B are arrays.
 

Assigns values to the specified array(s) by prompting with the name of an array element and then

accepting a number from the keyboard as the value of that element. For each array, prompts are given

for the elements in row order; if there is more than one array, they are handled in the order specified.

When the name of an array element is displayed, enter its value by typing in the number and then

pressing (RTN]. You can enter values for several consecutive elements by separating the values with

commas. When an array is filled, the remaining values are automatically entered into the next array.

After you press the computer will display the name of the next element to be assigned a value.

All values entered must be numbers; you cannot enter numeric variables or expressions.  
 

Array Output

DISP Display in Standard Format

oz|el
where A, B are arrays.

 

 

Displays the values of the elements of the specified arrays. The values are displayed in row order. Each

row begins on a new line; a blank line is displayed between the last row of an array and the first row of

the next array.

The choice of terminator—comma or semicolon—determines the spacing between the elements of an

array.

Terminator Spacing Between Elements

Close: Elements are separated by two spaces. A minus sign, if present, oc-

cupies one of the two spaces.

Wide: Elements are placed in 21-column fields.

If the last array specified doesn’t have a terminator, the array will be displayed with wide spacing be-

tween elements.  
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PRINT Print in Standard Format

vor eena [ o]]
where A, B are arrays.

 

 

Prints the values of the elements of the specified arrays. Operation is identical to MHAHT [IZF except

that the output is sent to the FREIMTEFR I3 device. (If no FEIMTEER 1% device is present, the out-

put is sent to the DI =FLAY I%= device.)  
 

 

DISP USING Display Using Custom Format

format string : :

AT DISF USIHG PA B|..
statement number : ;

where A, B, ..., are arrays.
 

Displays the values of the elements of the specified arrays in a format determined by the format string or

by the specified IMHLE statement. (Refer to section 16 of the HP-75 Owner’s Manual for a description

of I=F LUSIHEG, format strings, IMAGE statements, and their results.)

The values are displayed in row order. Each row begins on a new line; a blank line is displayed between

the last row of an array and the first row of the next array.

The terminators between the arrays—commas or semicolons—serve only to separate the arrays and

have no effect on the display format.  
 

PRINT USING Print Using Custom Format

format string . .
MAT PEIMNT USIHG ‘A Bl..

statement number ; ;

where A, B are arrays.

 

 

Prints the values of the elements of the specified arrays in a format determined by the format string or

by the specified I[1H:E statement. Operation is identical to that of MHT DImF Lz IHE except that

the output is sent to the FEIMTER I% device. (Ifno FEIMTER 1% device is present, the output is

sent to the NI ZFLAY 1% device.)  
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Examples

IDN, DISP USING

Input/Result

c—lear war = |RTIN

dim =z, D0

mat a=idn

mat disp uwusing"=.d.dd" s
 

1,08 0.00 8,80 The 3 x 3 identity matrix displayed with one
B.0E 1,00 @, 80 digit before the decimal point, two digits after the
BLEE . ae 1,88 decimal point, and one space between the values

displayed.   
INPUT, REDIM, DISP, ZER, CON

Input/Result

clear wars

dim boOZ20 Dimensions B to be a 3 X 3 array (remember we
are in OFTION BRSE &),

mat imput b

 

BORL AT Prompts for first element’s value.

   
PR, E 4.5, 8, 7 [RTN The values for &, & Eo@, x|,

B kb,

 

T

i

-

i

Prompts for next value to be assigned.

   

= .= [RTN The values for <=, 1and Bz, &5,

 

2 3 The matrix displayed in close formation.
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Fedim kol , 1o

mat dis=p bB: [RTN

 

.
,

[
t

  
 

mat b=rar [RTN

mat diszp b

 

P
o
i
s
t

b
1

P
o
i
t

b
i

  
 

Fedim BOE, 2D
mat disp b

 

A.,.
.
. p
—

o
t K

£

o
i

L
I

Y

  
 

mat b=concd, 10

mat disp b

 

foo
sde

 fo
oee

le
foo

sed
e

fru
eed

e

e
foo

eed
e

fon
ned

e
e
y  
 

redim Lo, 2
mat dizp b

 

fro
ede
e

fuo
set

fro
ede

 fe
eee

de
fon

net
e

—

  
 

Redimensions B to a 2 X 2 matrix.

The values of the redimensioned matrix.

Sets all the elements of B to zero.

The zero matrix.

Redimensions B to its original size.

The values that were inaccesible are again acces-
sible, unchanged by mzt k=zsr,

Redimensions B to be a 4 X 2 array and assigns
the value 1 to all elements.

The 4 X 2 constant array.

The value from the original matrix is unchanged.
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MAT READ, MAT DISP

To try this example, key in the program listed below and the program.

10 OPTION BASE 1
20 DIM A(2,3),B(3,1)
30 DATA 1,2,3,4
40 MAT READ A,B
50 MAT DISP A;B;
60 DATA 5,6,7,8,9,10,11

 

Input/Result

RUN

1 2 = The array A is given the first six values in the
4 5 & data statements.

And the array B is given the next three values.
The remaining values of the [IF TH statement
would be assigned to the next array in a

- MAT FEAD statement, if there were one.  
 





Section 5

Matrix Algebra

Arithmetic

The keywords below perform standard arithmetic operations on arrays. Be sure that the dimensions of

the operand arrays are compatible with the particular operation.

e For addition and subtraction, the operand arrays must both be vectors or both be matrices, and

they must have the same number of rows and the same number of columns. In this case we will say

that the arrays are conformable for addition.

e For multiplication, the arrays can be matrices with the number of columns of the first operand

equal to the number of rows of the second operand. You can also multiply a matrix and a vector as

long as the vector is the second operand and the number of columns of the matrix is the same as

the number of rows of the vector. In either case, we will say that the arrays are conformable for

multiplication.

The result array is automatically redimensioned (if possible) to be the correct size.

Negation

 

MAT A=-B

where A, B are both vectors or both matrices.

 

Redimensions A to be the same size as B and assigns to each element of A the negative of the cor-

responding element of B.  
 

+ Addition

 

MAT A=B+C

where A, B, C are all vectors or all matrices, and B, C are conformable for addition.

 

Redimensions A to be the same size as B and C, and assigns to each element of A the sum of the

values of the corresponding elements of B and C.  
 

33
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- Subtraction

 

MHAT A=B-C

where A, B, C are all vectors or all matrices, and B, C are conformable for addition.

 

Redimensions A to be the same size as B and C, and assigns to each element of A the difference of the

values of the corresponding elements of B and C.   
 

%k Matrix Multiplication
 

MHT A=B%¥C

where B is a matrix, A, C are both vectors or both matrices, and B, C are conformable for multiplication.

 

Redimensions A to have the same number of rows as B and the same number of columns as C. The

values of the elements of A are determined by the usual rules of matrix multiplication.   
 

( )* Multiplication by a Scalar

 

MAT A=0X1¥B

where A, B are both vectors or both matrices, and X is a numeric expression.

 

Redimensions A to be the same size as B and assigns to each element of A the product of the value of

X and the value of the corresponding element of B.   
 

Operations

INV Matrix Inverse

 

MAT A=TIHV OB

where A is a matrix and B is a square matrix.

 

Redimensions A to be the same size as B and assigns to A the values of the matrix inverse of B.   
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TRN Matrix Transpose
 

MAT A=TEHCBX

where A, B are matrices.

 

Redimensions A to be the same size as the matrix transpose of B, and assigns to A the values of the

matrix transpose of B.  
 

CROSS Cross Product
 

MAT A=CROZS0B,Cx

where B, C are both vectors having three elements, and A is a vector.
 

Redimensions A to have exactly three elements and assigns to A the values of the cross product B x C.   
RSUM Row Sum
 

MAT A=RESLUM OB

where A, B are arrays.
 

If A is a vector, redimensions A to have as many elements as there are rows in B; if A is a matrix,

redimensions A to have as many rows as B and to have exactly one column.

Assigns the sum of the values in each row of B to the corresponding element of A.   
CSUM Column Sum
 

AT A=ColMoB:

where A, B are arrays.
 

If A is a vector, redimensions A to have as many elements as there are columns in B; if A is a matrix,

redimensions A to have as many columns as B and exactly one row.

Assigns the sum of the values in each column of B to the corresponding element of A.   
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Examples

( )%k, 3k, INV, CSUM, RSUM

Input/Result

i D — Zclesar war:

cdim aczZ, 20 b2, 20,003, 20

mat a=conlZ, 1o

mat oisp i
t T 3 =z

 

  
 

mat o=ix"Z-10%a

mat odisp o: [RTN

 

  
 

mat input b
 

  
 

LB R AL 1L RB8,

 

_

5

o
.

P
e
P

  
 

A 1s now a 3 X 2 constant matrix.

The scalar product of a numeric expression and
an array.

Note that C was redimensioned to be a 3 x 2

matrix.

The matrix B.



 

 

 

 

  
 

 

  
 

 

 
 

 

 
 

B

11

mat bEinw ok

mat di=p B [RTN

o=z 1

i 1 =

B 1

mat a=kb¥o [RIN

mat di=p =z (RIN

1

o1

o1

mEt CECSUmlE D

at di=zp o [RIN

BT CFFEUmL a0

di=p o [RTN
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The matrix product BA.

Inverts the matrix B.

The matrix inverse of the matrix B.

This should “undo” the earlier multiplication by

B.

Sum of each column of A. Note that C was

redimensioned to be a 1 X 2 matrix.

Sum of each row of A. Note that C was

redimensioned to be a 3 X 1 matrix.
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Additional Information: I/

The IH'Y' keyword uses the LU decomposition (described in section 7), together with extended preci-

sion arithmetic, to produce an accurate inverse. Special attention is paid to matrices that are nearly

singular—that is, close to a matrix which is not invertible. Consider the matrix shown below.

1 3 0

0 0 1

666666666667 2 0

Although this matrix is very nearly singular, it can be succesfully inverted using the I/ keyword:

Input/Result

clear wars RIN

dim alZ, 2y, b0z, 20

mat input a
 

FO@, B Prompts for the first element.
   

 

   

 

   

Hol@ Prompts for the next element.

@8,

ez, @aT

CEELLEELEEREY 2, @ [RTN A now represents the matrix given above.

mat bEinwial B is now the computed inverse of A.

mat b=bisz

mat disp B [RTN

 

g B The product of the matrix and its computed in-
g1 & verse is the identity.

   
If the matrix to be inverted is singular, then the LU decomposition is changed by an amount, which is

usually small in comparison with roundoff error, to yield a nonsingular matrix. It is this nonsingular

matrix which is then inverted.
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Real-Valued Matrix Functions

The keywords in this section are functions that use arrays as arguments and give a real number as a

value. Like other HP-75 functions, they may be used alone or in combination with other functions to

produce numeric expressions.

Determinants

DET Determinant
 

DETCA

where A is a square matrix.

 

Returns the determinant of the matrix A.  
 

DETL Determinant of Last Matrix
 

DETL

 

Returns the determinant of the last matrix that was:

e Inverted ina MHT . . . IMHY statement.

e Decomposed ina MAT . . . LUFACT statement (described in section 7).

e Used as the first argument of a MAT . . . =% = statement (described in section 8).

DETL retains its value (even if your HP-75 is turned off) until another MHT . . . ITHY,

AT, . D LUFACT, or MAT . . . &% %statement is executed.   

39
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Matrix Norms

FNORM Frobenius (Euclidean) Norm
 

FHORMCAD

where A is an array.
 

Returns the square root of the sum of the squares of all elements of A.    
RNORM Infinity Norm (Row Norm)
 

FHOREMCA:

where A is an array.
 

Returns the maximum value (over all rows of A) of the sums of the absolute values of all elements in a

row.   
CNORM One-Norm (Column Norm)
 

CHOREMOAS

where A is an array.
 

Returns the maximum value (over all columns of A) of the sums of the absolute values of all elements in

a column.   
SUM Array Element Sum
 

SCAL

where A is an array.
 

Returns the sum of the values of all elements in A.   
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ABSUM Array Element Absolute Value Sum
 

HESLIMCA S

where A is an array.

 

Returns the sum of the absolute values of all elements in A.   
AMAX Array Element Maximum
 

HMH=CAD

where A is an array.
 

Returns the value of the maximum element in A.   
AMIN Array Element Minimum
 

HRMTHOAS

where A is an array.
 

Returns the value of the minimum element in A.   
MAXAB Array Element Maximum Absolute Value
 

MHSHECAS

where A is an array.
 

Returns the value of the largest element (in absolute value) in A.   
MINAB Array Element Minimum Absolute Value
 

MIMAEBCAG

where A is an array.
 

Returns the value of the smallest element (in absolute value) in A.   
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Inner Product

DOT Inner (Dot) Product
 

OOTEX, Yo

where X, Y are vectors with the same number of elements.

 

Returns X - Y, the inner product of X and Y.  
 

Subscript Bounds

UBND Subscript Upper Bound
 

HEMHDOCA NG

where A is an array and N is a numeric expression whose rounded integer value is 1 or 2.

 

Returns the upper bound of the Nth (first or second) subscript of A. If A is a vector,

PEHDOA, 20 = —1. 
 

 
LBND Subscript Lower Bound
 

LEMOCA, N

where A is an array and N is a numeric expression whose rounded integer value is 1 or 2.
 

Returns the option base in effect when A was dimensioned. If A is a vector, L. EMHII(H, &3 = —1,  
 

Examples

DET, DETL, RNORM, UBND

Clear wars



 

mat 1nput (
L

 

   

 

   

 

  

1,1,1.4[RTN

detial [RIN]

=4

mat a=inw sl

et ]

=

mat S=ipwl sl

mat disp = RTN

 

i 8 8 4

2 8 &

11 2 8

111 4   
FrOEa0
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Entering the elements of a matrix one row at a
time makes the data entry easier and more
accurate.

The determinant of A.

Computes the inverse of A.

Displays the determinant of the last matrix in-
verted in a MAT . . . IHY MAT. . . 3YS, or

MAT . . . LUFACT statement. In this case, it is
the determinant of the matrix A.

The original matrix A.

The sum of the absolute values of the elements

in the rows are (in order) 1, 3, 5, 7. The maximum

of these is 7.
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Fedim st, 40

bca, 10

 

   

WbCa, 20

 

4

   

ABSUM, AMIN, DOT

 

   

 

   

 

   

 

   

Input/Result

clear wars

dim om0y, g0dy502, 1

mat input =, 4, 3

CE

1.,2.,3,8,8 [RIN

SR

BB, -3, -2, -1

Fof, @as

= [RTN

ROl E T

i ’{

 

   

After redimensioning, the upper bound of the
first subscript of A is 2 ...

And the upper bound of the second subscript is
4.

The HP-75 prompts you for the first element to
be assigned ...

And when the first array is full, it begins filling
the next matrix in the MAT IHFLIT statement.
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mat dlsp T RTN

1 The vector X.

LE1

A

g The vector Y.
5

-1

T The matrix A.
1 -1

absumi=2, absumdalr, absumg

e 6 = 1] + [2] + [3] + [0] + |0}
£ 12 = |3 + 2| + 1| + |=1| + |—2| + |=3|

6 = [0] + (0| + |=3| + |—2| + |—1]

ITFlEd,amintl, amint gl

i i -3 = min {3, 2, 1, —1, —2, —3}.
- 0 = min {1, 2, 3, 0, 0}.

-3 = min {0, 0, —3, —2, —1}.

ol i+ |RTN

- The inner product of X and Y.

Additional Information: iii 1, Lik 1L,

The DETL keyword is most useful in direct conjunction with the FHT . . ITHY MAT . . LUFADT,

and MAT . . . %Y % statements. In each of these, the result of the operation is less reliable when the

matrix argument is very nearly singular. This condition can be detected with [IETL. If DETL gives a

result very close to zero, then the matrix argument in the corresponding operation is very nearly singu-

lar and the result should be interpreted accordingly.



46 Section 6: Real-Valued Matrix Functions

The DET keyword computes the determinant of a matrix by first decomposing the matrix into its LU

form. (The next section in this manual describes LU decomposition.) If the matrix is singular—that is,

its determinant is equal to zero—it may not have an LU decomposition. This may cause underflow or

overflow warnings to be generated, but it will not affect the result of the DET function.
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LU Decompositon

A number of operations in the Math Pac, including DET, =% =, and IH'}, use the LU decomposition of

a matrix as an intermediary step. The keyword below gives you access to this powerful operation for

your own use.

LUFACT LU Decomposition
 

MAT A=LUFACT OB

where A is a matrix and B is a square matrix.
 

Redimensions A to be the same size as B and assigns to A the values of the LU decomposition of B:

e The elements in A above the diagonal are assigned the value of the corresponding elements in U.

e The elements in A on or below the diagonal are assigned the value of the corresponding elements

in L.    
Example

Input/Result

—lear war = |RIN

Aim acz, 20

mat input &
 

   
Aom, Bt

1.1.1[RIN]

1.8,.1 [RIN]

47



48 Section 7: LU Decomposition

 

  
 

2 .5 1 The L part of the LU decomposition of A is
1 -5 @

1 oA 9

1 -5 ,

1 5 0

5 1

0,

so that

2 0 0 1 5 1

L=|1 -5 0OlandU =0 1 0

1 5 0 0 0 1

Additional Information

The Math Pac LU decomposition factors a square matrix A into the matrix product LU, where

e L is a lower-triangular matrix—it has values of zero for all elements above the diagonal.

¢ U is a upper-triangular matrix—it has values of zero for all elements below the diagonal—with

values of one for all elements on the diagonal.

For example,

for any pair of lower- and upper-triangular matrices L. and U. However, if rows are interchanged in the

matrix to be decomposed, then any non-singular matrix can be so decomposed. Row interchanges in the

matrix A can be represented by the matrix product PA for some permutation matrix P. Allowing for



Section 7: LU Decomposition 49

row interchanges, the LU decomposition can be represented by the equation PA = LU. So, for the

above example

PA = = = = LU.

Row interchanges can also reduce rounding errors that can occur during the calculation of the

decomposition.

The Math Pac uses the Crout method with partial pivoting and extended precision arithmetic to con-

struct the LU decomposition. The LU decomposition is returned in the form

[L U]'

For example, if the result of the MHT H=[IIFACTCE> statement is

2 3 4 2 0 0 1 3 4

A=1|5 6 7|,thenL=|5 6 OlandU=]|0 1 7

8 9 2 8 9 2 0 0 1

and PB = LU for some row interchange matrix P.

It is not necessary to store the diagonal elements of U in the result matrix since the value of each of

these is equal to one. The row interchanges are also recoverable in many cases because, aside from row

interchanges, the first column of L is the same as the first column of the matrix being decomposed.

0 __ 2 5
For example, if B = ) and MAT FA=LUFACT OBis executed, then A = L s

1 -

The fact that the first column of A is reversed from the first column of B indicates that the rows have

been interchanged, so that

0 1|1 O 2 1 2 0|1 5

1 0|2 1 1 0 1 -5|]10 1

In many cases, the LU decomposition will be correct even if the matrix is singular. This can be checked

by remultiplying the L. and U matrices and comparing the result to the original matrix. This feature

gives you the ability to find the LU decomposition of matrices that are not square.
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For example, to find the LU decomposition of the 3 X 4 matrix

1 2 3 4

1 4 9 161,

1 8 27 64

we will find the decomposition of

1 2 3 4

1 4 9 16

1 8 27 64

0 0 0 O

instead. From this decomposition, the LU decomposition of the original matrix is easily found. The

keystroke sequence below illustrates the process.

Input/Result

clear wars

dim =0E, 30

mat input =

 

  
 

 

1.2, 23,4, 1,4, 2,16, 1,523,27,64,8,8,

B, 8 |RTN

NER 5:1!”_:_“'1!_:!

mat disp = RTN

1 = 3 =)

1 = 4 16

1 = -2 =

T_ L T
P

KX - x5 — K! i i 1  
 



Therefore

1

1
L =

1

0

Their matrix product is

so that

1 0 01

0 0 1]]1

0 1 0]]1

Section 7: LU Decomposition

0 O 1 3 4

0 O 0 4 10
and U =

0 0 1 4

0 O 0 0 1

1 2 3 4

1 8 27 64

1 4 9 16

0O 0 0 O

2 3 4 1 0 01 2 3 4

4 9 16]|=]1 6 0]|0 1 4 10

8 27 64 1 2-2110 0 1 4

51/52

This technique works best when the matrix has fewer rows than columns. If your matrix has fewer

columns than rows, find the LU decomposition of its transpose by the above technique, and take the

transpose of the result.
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Solving a System of Equations

The Math Pac provides you with a quick and accurate way to solve a system of linear equations. The

first step in using this capability is to translate the system of equations into a triple of arrays: the

result array, the coefficient array, and the constant array. The result array corresponds to the variables

in the equations; the coefficient array holds the values of the coefficients of the variables; the constant

array holds the values of the constants in the equations. For example, if you wanted to solve the system

of equations

11x + 12y + 132 =1

21x + 22y + 23z = 2

3lx + 32y + 332 =3

then the result array would correspond to the array

the coefficient array would be

11 12 13

21 22 23

31 32 33

and the constant array would be

53
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If we denote the result array by X, the coefficient array by A, and the constant array by B, then the

system of equations can be written in matrix notation as AX=B. This is the form assumed by the

=5 keyword.

SYS System Solution
 

MATX=%2%ZCA,. B2

where A is a square matrix, X, B are both vectors or both matrices, and A, B are conformable for

multiplication.

 

Redimensions X to be the same size as B and assigns to X the values that satisfy the matrix equation

AX=B.  
 

Example

To solve the system of equations given in the introduction, namely,

11x + 12y + 13z = 1

21x + 22y + 23z 2

3lx + 32y + 33z = 3

we could use the following keystrokes.

Input/Result

L e ar=

x

dim =022, bi2r, 802,20 X will represent y

z

mat input b

 

  
 

1

1.2,.%|RTN B will be 2

3



 

  
 

 

mat 1rnput 3 |[RTN

Fem, @

11,122,132, 21, 22,22,21,22, 22 [RTIN]

mat x=sdsia, bl

nER xji';[: RTN

Sleadzdaniagd

~F A4S 1IBEZBELEE-2
-5, SMETEI4 959 E-2
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11

A will be 21

31

Solving the Steady-State Heat Equation

Solving a System of Equations

12 13

22 23

32 33

55

A rectangular plate, with a length-to-width ratio of 6 to 5, has its edges held at a constant temperature

of 0.* The plate also has a number of internal heat sources or sinks with the result that these points

are held at constant temperatures, perhaps different from 0. Find the steady-state heat distribution

throughout the plate.

The Model

The plate will be modeled by a rectangular lattice of points, any number of which can be designated as

sources or sinks of heat. The temperature of a lattice point at location (i, j) will be denoted by T(i, j)

(1<i<b, 1<5<6).

 

* The equations are independent of the temperature scale used, so that this only represents the zero of this temperature scale.
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The system of equations that models the steady-state heat distribution is derived from the “average of

nearest neighbors” technique:

The given value if (i, j) corresponds to a source or a sink.

TG, j) = TG+ L)+TG—1,)) i TG,)+ D+ TG J = 1) otherwise, with the

convention that T(m, n) = 0 if (m, n) represents a location outside the lattice.

For example, if (4, 2) is not the location of a source or sink, then

TG, 2) +TG6,2) +TH4,3) +TH, 1)
4 . T4, 2) =

We can redimension the 5 X 6 array T with elements T'(i, j) to be a 30 X 1 array X with elements

X(k, 1) by the formula

X(k,1)=T@,j) for k=6(1—1) + .

The correspondence between indexes can be defined equivalently by

 . = int 4+ 1landj = mod (k — 1, 6) + 1.

Now the system of equations can be written in the form X = CX + B, where C is the 30 X 30 matrix

given by

0 if (1, J) corresponds to a source or sink,

where 1 = int k 6 1 + 1and j = mod (k — 1, 6) + 1. 

Cop = W Y4 if (¢, j’) 1s a nearest neighbor to (i, j),

wherei’=intng1 4+ 1landj = mod (n — 1, 6) + 1. 

 \ 0 otherwise.

and B is the 30 X 1 matrix given by

The given value if k corresponds to a source or sink.
o =

! 0 otherwise.

The system of equations can finally be written as the matrix equation AX=B where A=(I—C) and I

is the identity matrix. This is the form required by the %"= keyword and the form we will use to solve

the equations.



The Program

10 OPTION BASE 1
20 SHORT A(30,30)

30 DIM B(5,6)

40 MAT B=ZER @ MAT A=IDN

50 INPUT“Number of sources/sinks?”;N

60 FOR L=1 TO N

70 INPUT“,J,T(1,J)";1,d,B(1,J)

80 NEXT L
90 DISP “Solving; please wait”
100 REDIM B(30,1)

110 FOR K=1 TO 30

120 IF B(K,1)< >0 THEN GOTO 190

130 1=INT((K-1)/6)+1
140 J=MOD(K-1,6)+1
150 IF J<6 THEN A(K,K+1)=—.25

160 IF J>1 THEN A(K,K-1)=—.25
170 IF 1<5 THEN A(K,K+6)=—.25
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Since A will consist of 0’s, 1’s and —W’s, we can

use this data type to save memory.

B is the source/sink array and will be used to
store the final results.

Gets the locations and temperatures at the
sources and sinks.

Rearranges B as a one-column array in
preparation for using the system solver.

Begins construction of the matrix A. K
corresponds to that row of A currently under
construction.

We check whether a location is a source/sink by
checking whether the assigned temperature is
non-zero.* If it is a source/sink, we go on to the
next location, leaving the entire row of A

unchanged from the corresponding row of the
identity matrix. If it isn’t a source/sink, we

continue the computation of the elements of the
Kth row of A.

Computes the (I,J) position from K.

If the nearest neighbor isn’t off the edge, assigns
—-Y to the corresponding element of A.

* If a source is supposed to have zero as a given temperature, do not enter zero for its value. Instead, enter a very small but non-

zero number; 1E-40 will work.
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180 IF 1>1 THEN A(K,K-6)= —.25
190 NEXT K

200 MAT B=SYS(A,B) Solves the equations and stores the results in B.

210 REDIM B(5,6) Arranges the results in lattice form.

220 MAT DISP USING“x,dd.d”;B This will display the results in a compact lattice
form. If your results have more than two digits
to the left of the decimal point, this display will
be inadequate.

Using the Program

Suppose there is one source located at position (2, 3) that maintains a 10-degree temperature dif-

ference. We would run the program and when prompted with riumber of sources-zinkz? we

would respond with 1. When prompted with I ,.1, T< 1,7 we would respond with =, 2, 1&. The

program would then display

 

Solwing: pleaze walt

 

 

e 202 Z.oe 2.3 1.2 C3

Toe 4.2 18008 4.4 2.1

.4 208 4.0 2.2 1.8 =

E 1.y 203 1.8 1.2 B

o4 - 1.4 A £ ;3   
This is the lattice of temperatures in the plate under these conditions.

Additional Information

The %% keyword solves the matrix equation AX = B for X in several stages. First, the LU de-

composition of A is found to give PA = LU. (LU decomposition is described in section 7.)

Using PA = LU, the equivalent problem is to solve LUX = PB for X. This is done by solving

LY = PB for Y (forward substitution) and then solving UX = Y for X (backward substitution). This

value for X is used as a first approximation to the desired solution in a process of iterative refinement,

which produces the final result.

In many cases, the Math Pac will arrive at a correct solution even if the coefficient array is singular (so

that the formula X = A™'B is invalid). This feature allows you to use &% % to solve under- and over-

determined systems of equations.
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For an under-determined system (more variables than equations), the coefficient array will have fewer

rows than columns. To find a solution using ==:

e Append enough rows of zeros to the bottom of your coefficient array to make it square.

e Append corresponding rows of zeros to the constant array.

You can now use these arrays with the ="'keyword to find a solution to the original system.

For an over-determined system (more equations than variables), the coefficient array will have fewer

columns than rows. To find a solution using =% =:

e Append enough columns of zeros on the right of your coefficient array to make it square.

e Be sure that your result array is dimensioned to have at least as many rows as the new coefficient

array has columns.

e Add enough zeros on the bottom of your constant array to ensure conformability.

You can now use these arrays with the =% keyword to find a solution to the original system. Only

those elements in the result array that correspond to your original variables will be meaningful.

For both under- and over-determined systems the coefficient array is singular, so you should check the

results returned by Z%'= to see if they satisfy the original equation.

The =% = keyword can also be used for inverting a square matrix A. AT H=%4Y%0H, Bwill return

the inverse of A if X, A, B are all dimensioned to exactly the same size and if B is chosen to be the

identity matrix. This technique is more accurate and generally faster than FMFAT ==I1HWIH >, but it

requires more memory for its operation. (Refer to appendix B for information about memory

requirements).
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Complex Variables

The keywords in this section enable you to perform algebraic operations on complex numbers in a

simple and efficient way. The HP-75 Math Pac can interpret any array with exactly two elements as a

complex number. In particular, a 1 X 2 matrix, a 2 X 1 matrix, and a two-element vector can all repre-

sent complex numbers. If an array Z represents a complex number z, then the value of the first element

of Z is the real part of z and the value of the second element of Z is the imaginary part of z. For

example, the arrays

[1 2] and

both represent the complex number 1 + 2(—1)” = 1 + 2i. Throughout this section we will refer to an

array with exactly two elements as a complex scalar.

The operand arrays for these keywords must be complex scalars. However, you need not ensure that the

result array is a complex scalar. If it is not, it will be automatically redimensioned to have exactly two

elements. The result array must, therefore, have been given at least two elements in its original dimen-

sioning statement. If the result array is doubly subscripted, it will be redimensioned to be a 1 x 2

matrix. If it is singly subscripted, it will be redimensioned to have exactly two elements. This feature

allows two-element arrays to be used interchangeably for complex operations.

Polar/Rectangular Conversions

Since the Math Pac assumes rectangular (Re + iIm) form for all complex numbers, two operations are

provided to change a pair of numbers representing the magnitude (R) and angle (f) of a complex num-

ber into the real and imaginary parts of that complex number, and vice versa.
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CPTOR Polar to Rectangular Conversion
 

MAT Z=CFTORCA

where A is an array with two elements and Z is an array.

 

Redimensions Z to be a complex scalar; then assigns to the first element of Z the real part, and to the

second element of Z the imaginary part, of the complex number R exp (if), where R is the value of the

first element of A and 6 is the value of the second element of A.

 6 will be interpreted as degrees or radians, according to the OFTIOH HHELE in effect. 
 

CRTOP Rectangular to Polar Conversion
 

MAT A=CRETOFCZY

where Z is a complex scalar and A is an array.

 

Redimensions A to be a complex scalar; then assigns to the first element of A the magnitude, and to the

second element of A the angle, of the complex number x + iy, where x is the value of the first element

of Z and y is the value of the second element of Z.

The angle will be given in degrees (—180 < # < 180) or in radians (—= < 6 < w) according to the

OFTION AMGLE in effect.   
 

Complex Arithmetic Operations

CONJ Complex Conjugation
 

MAT Z=C0H WD

where W is a complex scalar and Z is an array.

 

Redimensions Z to be a complex scalar and assigns to the first element of Z the value of the first

element of W and assigns to the second element of Z the negative of the value of the second element of

W.   
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CADD Complex Addition
 

MAT Z=CHODOCW,U>

where W, U are complex scalars and Z is an array.
 

Redimensions Z to be a complex scalar and assigns Z the values corresponding to the complex number

W+ U   
CcSuB Complex Subtraction
 

MAT Z=CSUECW, U2

where W, U are complex scalars and Z is an array.
 

Redimensions Z to be a complex scalar and assigns Z the values corresponding to the complex number

w - Uu   
CMULT Complex Multiplication
 

MAT Z=CHMULT W, U

where W, U are complex scalars and Z is an array.
 

Redimensions Z to be a complex scalar and assigns to Z the values corresponding to the complex

number W*U.   
CDIvV Complex Division
 

MAT Z=COIYWIW, Uz

where W, U are complex scalars, U # (0, 0), and Z is an array.

 

Redimensions Z to be a complex scalar and assigns to Z the values corresponding to the complex

number W/U.   
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CRECP Complex Reciprocal
 

MAT Z=CEECF W2

where W is a complex scalar, W # (0, 0), and Z is an array.
 

number 1/W. 
Redimensions Z to be a complex scalar and assigns to Z the values corresponding to the complex

 
 

Examples

CPTOR, CRTOP

Input/Result

o lear war= |RTN

option arnale dear T T i
1F :

pLTo2L 3 RTN]clim wolx, ol

mat Input

 

BlOE s

  
 

Te, 2e e
t RTN

mat rEoptor

=@ =1 |RTNfoo
st

o

mat o

 

T sz
,

oo
t

1
]

2
.

  
 

mat input oo
 

  
 

dog,axs

3, -

mat EEoOr Top s

The HP-75 will now use degree measure for the
angle in CETIOF and CFTOR conversions.

W and U are dimensioned as two-element arrays
and so are both complex scalars. It will be possi-
ble to redimension Z as a complex scalar, since it
has more than two elements.

W will be used to represent a vector with mag-
nitude 10 and angle 90 degrees.

Z is the complex number 0 + 10i, which is the
rectangular representation of W.

U represents the complex number 3 — 4i.
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mat disp = [RTN

 

Do-DE 1Zalez2E54: Z now represents the magnitude (5) and the di-

rection (—53.1301023542 degrees) of the vector U.  
 

optlon andle radians

mat T=Ccrtoaptign

mat di=zp = [RTN

 

SZlsaaz In this case, the direction is given in radians.|

L

  
 

CADD, CMULT, CRECP

Input/Result

c—lear wars [RIN

Aim T O, 20, i@, 1, w1

mat Inputou

 

  
 

 

 

  
 

 

Lo@

1.1 U represents the complex number 1 + 1.

mat WEorecp iU W represents 1 i L

pat di=p wi [RIN

5 -5 Which equals .5 — .51.

st T=oadd w0 Z represents 1 _1+_ ; + (1 +1) ..

=1 di=zp = [RIN

 

1.5 .5 Which equals 1.5 + .51.
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 mat Z=cmu4ltiy,zo Z represents (1 + l) < 1 i - + (1 + L))
l

mat dis=p =: [RTN

 
Which equals 1 + 2.
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Complex Functions

Many useful functions are defined for complex as well as real arguments. The keywords below give you

access to a number of these functions. Since the values of these functions are, in general, complex

numbers, their syntax is closer to that of array operations than to their real-valued counterparts. Al-

though the result array need not be a complex scalar for these keywords, it must have been given at

least two elements in its original dimensioning statement.

These keywords will produce error (or warning) messages if the conditions listed in their descriptions

are not satisfied. They will also produce error or warning messages if either the real or the imaginary

part of the function’s value cannot be represented in the range [—9.99999999999E499, —1E—499],

[1E-499, 9.99999999999E499] or 0. The two-dimensional nature of these functions precludes giving

more simple bounds for the arguments that will avoid all such error messages. In addition, if either the

real or imaginary part of the value for any of the functions CEZIH, COOE, CZIMH, COOSH, or

CFOMER is too large to be represented by the computer and so produces a iuim  too 1 aras mes-

sage and returns a value of +9.99999999999E499, it is quite likely that the other part of the value

returned is inaccurate.

Simple Transcendental Functions

All keywords in this section involve trigonometric functions and always take their arguments to be in

radian measure, even if OFTIOH AHGLE DEGEEES is in effect.

CEXP Complex Exponential
 

AT Z=CESFCW 2

where W is a complex scalar and Z is an array.
 

Redimensions Z to be a complex scalar and assigns to Z the values of the complex exponential of W. If

W represents the complex number x + iy, then Z will represent the complex number

exp (x + iy) = e* (cosy + i siny).  
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CSIN Complex Sine

 

MAT Z=CSIHCW?2

where W is a complex scalar, |[Im (W)| < 2300.28250791, and Z is an array.

 

 sin (x + iy) = sinx coshy + i cos x sinh y.

Redimensions Z to be a complex scalar and assigns to Z the values of the complex sine of W. If W

represents the complex number x + iy, then Z will represent the complex number

 
 

CCOS Complex Cosine

 

MAT Z=CC0SW

where W is a complex scalar, |Im (W)| < 2300.28250791, and Z is an array.

 

 cos (x + iy) = cos x coshy — i sin x sinh y.

Redimensions Z to be a complex scalar and assigns to Z the values of the complex cosine of W. If W

represents the complex number x + iy, then Z will represent the complex number

 
 

CTAN Complex Tangent

 

MAT Z=CTHHCW

where W is a complex scalar and Z is an array.

 

 tan (x + iy) =

Redimensions Z to be a complex scalar and assigns to Z the values of the complex tangent of W. If W

represents the complex number x + iy, then Z will represent the complex number

sin (x + iy)

Ccos (x + iy)

_ Sinx cosx + isinhy coshy

sinh?y + cos?x  
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CSINH Complex Hyperbolic Sine
 

MAT Z=CZIHHCW

where W is a complex scalar, |[Re (W)| < 2300.28250791, and Z is an array.

 

Redimensions Z to be a complex scalar and assigns to Z the values of the complex hyperbolic sine of W.

If W represents the complex number x + iy, then Z will represent the complex number

sinh (x + iy) = (—i) sin (—y + ix).   
 

CCOSH Complex Hyperbolic Cosine
 

MAT Z=CCOSHOWD

where W is a complex scalar, |Re (W)| < 2300.28250791, and Z is an array.
 

Redimensions Z to be a complex scalar and assigns to Z the values of the complex hyperbolic cosine of

W. If W represents the complex number x + iy, then Z will represent the complex number

cosh (x + iy) = cos (—y + ix).   
 

CTANH Complex Hyperbolic Tangent
 

MAT Z=CTHHHW

where W is a complex scalar and Z is an array.

 

Redimensions Z to be a complex scalar and assigns to Z the values of the complex hyperbolic tangent

of W. If W represents the complex number x + iy, then Z will represent the complex number

 tanh (x + iy) = (—/) tan (—y + ix). 
 

Inverse Functions

The keywords in this section give you the ability to compute the principal values of a number of com-

plex inverse functions. A description of the principal branches and values chosen for these inverse

functions is given in “Additional Information” at the end of this section.

Although the result array need not be a complex scalar for these keywords, it must have been given at

least two elements in its original dimensioning statement.
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CSQR Complex Square Root
 

MAT Z=CSHE CW2

where W is a complex scalar and Z is an array.

 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the square root

of W.   
 

CPOWER Complex Power
 

MAT V=CFOWERCZ, W

where Z, W are complex scalars, Z # (0, 0) if Re (W) < 0, and V is an array.

 

Redimensions V to be a complex scalar and assigns to V the complex principal value of Z¥. If Z and W

represent complex numbers z and w respectively, then V represents the complex number exp (w In z).   
 

CLOG Complex Logarithm
 

MAT Z=CLOGCW2

where W is a complex scalar, W # (0, 0), and Z is an array.

 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the logarithm of

W. If W represents the complex number

R (cos 6 + i sin 6)

where —7 < § < = (radian measure), then Z represents the complex number

InR +i6.   
 

CASIN Complex Inverse Sine
 

AT Z=CHZTHOWS

where W is a complex scalar and Z is an array.

 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse sine

of W.   
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CACOS Complex Inverse Cosine
 

MAT Z=CHCOZ CW 2

where W is a complex scalar and Z is an array.

 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse

cosine of W.   
 

CATN Complex Inverse Tangent
 

MAT Z=CAHTHOW

where W is a complex scalar, W # (0, 1) or (0, —1), and Z is an array.

 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse

tangent of W.   
 

CASINH Complex Inverse Hyperbolic Sine
 

MAT Z=CHZIHHCOW

where W is a complex scalar and Z is an array.

 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse

hyperbolic sine of W.   
 

CACOSH Complex Inverse Hyperbolic Cosine
 

MAT Z=CHCOSHOW

where W is a complex scalar and Z is an array.

 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse

hyperbolic cosine of W. 
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CATANH Complex Inverse Hyperbolic Tangent
 

MAT Z=CHTHHHCW

where W is a complex scalar, W # (1, 0) or (—1, 0), and Z is an array.
 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse

hyperbolic tangent of W.  
 

Roots of a Complex Number

This keyword allows you to easily and accurately determine the set of all Nth roots of a complex num-

ber, where N is a positive integer. The roots are returned in an N X 2 array where each row represent-

ing a complex root, with the real part of the root in the first column and the imaginary part of the root

in the second column. Successive roots are in order of increasing argument (angle). The result array

must have been given at least 2N elements in its original dimensioning statement.

CROOT Roots of a Complex Number
 

MAT R=CROOTCZ, N2

where R is a matrix, Z is a complex scalar, and N is a numeric expression whose rounded integer value

is positive.
 

Redimensions R to be an P x 2 array (where P is the rounded integer value of N) and assigns to R all

the values of Z'/P.  
 

Examples

CSIN, CTAN, CCOSH, CACOSH

Input/Result

clear wars (RIN

cim mOlr, wii, 20 Z is dimensioned to be a complex scalar. W is just
an array.

mat input =

 

   



 

Input/Result

21, -2 (RTN]

mat w=ozinizo

mat disp w! [RTN

.14V eez23822 1. 33532758313

  
 

mat w=otamlzo

mat disp w: [RTN

 

  
 

 

  
 

 

  
 

mat di=zp w! [RIN

2.741e2212244

-9 BEETVIZIEIIESE-2

mat w=Ecoosh

mat dis=zp wi [RIN

21 —=

CSQR, CLOG

Input/Result

clezar wars (RIN]

default on

dim zioly, z20c@, 12, rd1,8 [RTN]

mat inpuwi =Z1.z=2 [RTN
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Z now represents 21 — 2i.

The complex sine of 21 — 2i.

The complex tangent of 21 — 2i.

The principal value of the inverse hyperbolic co-
sine of 21 — 2i.

The hyperbolic cosine of the principal value of
the inverse hyperbolic cosine of 21 — 2i.

The values we will use will produce error messages
and stop the operation unless we choose the
DEFAULT OH option.

All of these are dimensioned to be complex
scalars.
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=1,-1e-4232 [RIN

 

   

 

   

 

   

mat r=c=qr izl »@mat dis=p r: [RTN

MAEHIMG  rmum too =mall

5] 1

mat r=csqriz228mat dis=p ) [RTN

HAEMIHMG ' mum too =mall

g -1

mat r=clogdizl@8mat di=p r: [RTN

HARMHIMG rmum too =mall

g 3, 14153265359

mat r=clogizdiEmat disp r: (RIN

 

MARHIHNG rmum too =mall

   

Additional Information

Z1 represents —1 + EF =i,

And Z2 represents —1 — EF =i,

The warning indicates that the result is so close
to the imaginary axis that its real part is less than
1.E-422 and so cannot be shown as anything
but zero, even though it is nonzero. The principal
value of the square root of —1 + EF =1 is thus
very close to 0 + 1.

The warning here occurs for the same reason as
the previous warning. The result this time is very
close to 0 — i. The jump between this value and
that of the previous example is the direct con-
sequence of the branch cut along the negative
real axis for the complex square root function.

Again, the jump in value from ni to —=i when
the argument changes from —1 4+ EF X1 to
—1 — EF=1is a direct result of the branch cut,
this time for the complex logarithm function.

In general, the inverse of a function f(z)—denoted f'(z)—has more than one value for any argument z.

For example, cos™ 'z has infinitely many values for each argument. However, the Math Pac calculates

the single principal value, which lies in the part of the range defined as the principal branch of the

inverse function f~!(2). In this discussion, uppercase letters will denote a single-valued inverse function

(like COS™!2) to distinguish it from its multivalued inverse (cos 'z).
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For some inverse functions, the definitions of the principal branches are not universally agreed upon.

The branches used by the Math Pac were carefully chosen. They are all analytic in the regions where

their real-valued counterparts are defined; that is, the branch cut occurs where the real-valued inverse

is undefined. In addition, most of the important symmetries are preserved. For example,

SIN!(—2z2) = —SIN (2) for all 2.

The illustrations that follow show the principal branches of the inverse functions that the Math Pac

calculates. The left-hand graph in each figure represents the cut domain of the inverse function; the

right-hand graph shows the range of the principal branch. The blue and the black lines in the left-hand

graph are mapped, under the inverse function, to the corresponding blue and black lines in the right-

hand graph.

vz =\re'for —r<6<n

 

 

N 5 I s
I
,
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LN(z) =Inr +ifdfor —m <0 <
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cos Y(z) = —iln[z + (22 — 1)
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cosh™'(z) = In[z + (22 — 1)
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The principal branches in the last four graphs above are obtained from the equations shown, but don’t

necessarily use the principal branches of In z and \/z.

The remaining inverse functions may be determined from the illustrations above and the following

equations:

SINH Y(z) = —i SIN(i2)

TANH(z) = —i TAN!(i2)

w® = exp (z LN w)

To determine all values of the inverse functions, use the expressions below to derive these values from

the principal values calculated by the Math Pac. In these expressions, K = 0, +1, +2, and so on.

Vz = +SQR(2) In(z) = LN(z) + 27ik W = w? Tk

sin"}(z) = (=1)* SIN"'(z) + =k sinh ™ }(z) = (—=1)* SINH'(2) + =ik

cos 1(z) = +COSY(2) + 2nk cosh }(z) = +COSH!(z) + 2rik

tan '(z) = TAN(2) + =k tanh~'(z) = TANH'(2) + =ik
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Complex Matrix Operations

The keywords in this section perform complex operations on arrays with complex values. The form in

which complex numbers are stored in an array is similar to the form they are stored in complex scalars.

The Math Pac can interpret any array with an even number of columns as an array with complex

values. The first column of the array will represent the real part of the complex array’s first column,

the second column will represent the imaginary part, and so on. For example, the 2 X 6 matrix

1 2 3 4 5 6

7 8 9 10 11 12

will represent the complex 2 X 3 matrix

1+21 3+ 4 5+ 61

7+8 9+ 10 11 + 12

We will say that an array is a complex array if it is doubly subscripted and has an even number of

columns.

The operations of addition, subtraction, and negation are identical for real- and complex-valued arrays,

so these operations are not included in this section. You can use the array addition, array subtraction,

and array negation operations discussed in section 5 in exactly the same manner for both complex and

real arrays.

CMMULT Complex Matrix Multiplication
 

MAT A=CHMMULTIB.CX

where B, C are complex matrices such that there are twice as many columns in B as there are rows in C,

and A is a matrix.
 

Redimensions A to have the same number of rows as B and the same number of columns as C, and

assigns to A the values of the complex matrix product BC according to the usual rules of complex matrix

multiplication.  
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CTRN Complex Conjugate Transpose
 

MAT A=CTEHIB:

where B is a complex matrix and A is a matrix.

 

Redimensions A to have half as many rows as B has columns and twice as many columns as B has

rows—if B is an N x 2P matrix, A will be a P x 2N matrix. A will be assigned the values of the complex

conjugate transpose of the complex matrix represented by B. 
 

CINV Complex Matrix Inverse
 

MAT A=CTHWV OB

where B is a square complex matrix (twice as many columns as rows) and A is a matrix.

 

Redimensions A to be exactly the same size as B and assigns to A the values of the matrix inverse of

the complex matrix represented by B. 
 

CDET Complex Determinant
 

MAT Z=C0OETCA>

where A is a square complex matrix (twice as many columns as rows) and Z is an array.

 

 

 

Redimensions Z to be a complex scalar and assigns to Z the complex value of the determinant of the

complex matrix represented by A.  
 

CIDN Complex Identity Matrix
 

MAT A=CTOH

where A is a square complex matrix (twice as many columns as rows).

 

Assigns to A the values of the complex identity matrix. A is not redimensioned.  
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CSYS Complex System Solution
 

where A is a square complex matrix (twice as many columns as rows), B is a complex matrix with the

same number of rows as A, and Z is a matrix.

 

Redimensions Z to be exactly the same size as B and assigns to Z the complex values that solve the

complex matrix equation

  
 

 

  
 

AZ = B.

Examples

CTRN, CIDN

Input/Result

-lear war = |RTN

dim atl, S, kI3, 80 Dimensions A to be a 2 X 6 array and B a 4 x 7
array.

mat 1npudt = |RTN

HOB, B

1,2, 2,4,5,6,7.8,9,18,11,1% A now represents the complex 2 X 3 matrix

1+2 3+ 4 5+ 6i
748 9+ 100 11+12 |

mat b=ctrmial

mat disp b [RTN

 

|

|

e
I

o
)
e

|

B
,

|
e

-5 B now represents the complex conjugate trans-

pose of A.
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redim acl, 32

mat a=cidmn

mat di=p a: [RTN

 

1 a8 8 @&

BB 1 a8

   

CINV, CMMULT

Input/Result

RTN

dim =02, 5, b02, 50

mat input a

o lear war

 

   

 

o
t

-

o
[
T

..
_.

.,
_.

)
o
o

.
-

e
f
T

   

mat h=cifnwial

 

- 20 25 2D - 23 B n

B B -, lEECCEEEEEEE

JlEREEEEEEEET A EEEEEEELEER
e e e e e e e e e e ey   

mat bEommultib, a3l

The 2 X 2 complex identity matrix:

1+0: 0+ 0:

0+0: 1+ 0:

A represents the complex 3 X 3 matrix

1+i 0+0: 0+ 0:

147 2421 0+ O:

1+i 2+2i 3+ 3

B represents the complex 3 X 3 matrix

1/2 — i/2 0 + 0 0 + 0i

—1/4 +i/4  1/4 —i/4 0 + 0i

0 + 0 —1/6 +i/6 1/6 —i/6
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mat disp b |[RTN

1 K K K K K

HooA 1 K K K

~  HARRNERREERAZ

You can use C=''= to solve a system of equations with several choices of constants all at once. For

example, to solve the systems

2+31) 2 +(7T—1)2,=2+ 21

(4—13) 2, +@4+0)2z,=1+ 3

and

2+3)u, +(7T—1)u,=0

(4—13) u +@4+0) u=—3i

and

2+3) w+(7T—1) w,=9— .22

(4—13) wy+ @+ 0)w,=—-35+1

we could write the entire system as the complex matrix equation AX = B where

2+3 T— 1 2, U w,

4—-13i 440 2, U, W,
’

24210 0+00 9— .22
and B =

1+ 3t 0—3i —35+1:

This i1s the form that Z %= accepts, and the one we will use to solve the system.
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Input/Result

clear war =z [RIN]

Aim acl,3r, =01, 5y, b01,50

mat input a,hb

Fog, @07

RR|

ROl800

d4,-1.2, 4,8 [RIN

Fo@, @

. 1.@a,8,3, -, 22 RTN]

Bl @00

1.Z2.8,-2,-2.5,1 (RIN]

pEt w=Eozysia, b

mat disp wsirng Y=, dd.d" s [RTIN

4, 1.4 = —-.1 5 -2.4a

-4.6 . F -.1 =-.& -.F 2.4
  
 

Don’t forget to enter both the real and imaginary
parts of each complex number, even if the value
1S zero.

The solution of the matrix equation gives the
solution of all three systems:

2, = 4.4 + 1.4

ul = .2 - -1L

u2 = _.1 - .6L

w,=.5 — 2.0i
w,= —.7 + 2.4i.



Section 11: Complex Matrix Operations 85

Additional Information

By combining FEDIM and real array operations with the operations of this section, you have at your

disposal all of the common operations on complex matrices. As already mentioned, addition, subtrac-

tion, and negation of arrays are identical operations for real and complex arrays.

Scalar Multiple of a Complex Array

If you multiply an array B by a real scalar x using

MATA=Cx 1 ¥B,

the result is correct whether B represents a real or a complex array. For multiplying a complex array by

a complex scalar, use the following procedure.

If Bis an N x 2P array representing an N X P complex matrix, and Z is a 1 X 2 array representing a

complex scalar:

1. Redimension B to be an NP X 2 array. This makes B into a complex column vector.

2. Multiply B on the right by Z using complex matrix multiplication. (You must use complex matrix

multiplication, not real matrix multiplication.)

3. Redimension the result of the multiplication to be an N X 2P array. The result array is now the

complex product of B with the complex scalar Z. Remember to redimension B if you want it in its

original form.

The following example demonstrates this procedure.

Input/Result

~lear wars

dim bBOZ,Zx, a0, 3, zoe, 10 A and B are dimensioned to be 3 X 4 arrays; Z is
al X 2 array.

 

  
 

i

1

1 i

i s i . [ A ft
e

- i i ] o ]S B now represents the complex matrix

1+0 0+ 20

0+2i 14 0:

0+2i 04 2

Fedim BO%, 13 [RTIN B is redimensioned as a complex column vector.
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mat di=p b [RTN

 

o
T

i
e

L
R

P
l

o
[
T
I

o si  
 

mat input = [RTN]

 

i

o

i

o ii

  
 

g1 Z represents 0 + 1.

mat a=cmmultob, zo A=B.

redim st3 bO2, 30

mat diszp a: [RTN

 

  
 

Complex Conjugate of a Complex Array

You can use a similar technique to find the complex conjugate of a complex array. For example, if B is

an N X 2P array representing an N X P complex matrix, you can find its complex conjugate as follows.

1. Redimension B to be an NP X 2 array and multiply B on the right by the 2 X 2 array

using real array multiplication.

2. Redimension the result to be an N X 2P array.

The result will then be the complex conjugate of the original. Be sure to redimension B if you want it

in its original form.

Note that combining this complex conjugation with the complex conjugate transpose operation gives

you the complex transpose of a complex matrix.
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Complex Form of a Real Array

As a final example of these operations, note that you can use the following procedure to create a com-

plex matrix with zero imaginary part and the same real part as a given real matrix. The resulting

matrix then represents the same matrix, but can be used in complex array operations.

If B is a real N X P array you wish to put in complex form:

1. Dimension the array in which you wish to store the result to be N x 2P and assign it the values of

the zero array.

2. Assign the result array the values of B. This also redimensions the result to be N x P, and has no

effect on the inaccessible zero values.

3. Redimension the result array to be 2 X NP. The result array now consists of two rows, the first

row contains the values of the B and the second row contains only zeros.

4. Take the (real) transpose of the result array.

5. Redimension the result array to be N x 2P. The result array now has the values of B alternating

with zeros.

The following program will convert a 4 X 3 real array to its corresponding complex array using the

above procedure.

10 OPTION BASE 1
20 DIM B(4,3),A(4,6)
30 MAT A=ZER
40 MAT INPUT B
50 MAT A=B
60 REDIM A(2,12)
70 MAT A=TRN(A)
80 REDIM A(4,6)
90 MAT DISP A;

To create the complex form of the real matrix

1 2 3

4 5 6

7 8 9|

10 11 12

type in the program and use the following keystrokes.
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Input/Result

RUN

BEol,1»%

1.2,3,4,5,6,7,8,9,18,11,12 [RIN]

1|z oB I oA The complex form of the given real matrix.
4 @B 5 B8 & @A

T 1 = (1 o A

18 @ 11 K 12 @   
 



Section 12

Finding Roots of Polynomials

The keyword in this section finds all solutions—both real and complex—of P(x) = 0, where P is a

polynomial of your choice with real coefficients. If P is a polynomial of degree n there will be n (not

necessarily distinct) solutions of this equation, so this keyword resembles an array operation in its

format.

To use this keyword to find the solutions of the equation P(x) = 0, where

P(x)=a,x"+a, X"'+ ...+ ax+ a,

first store the coefficients a,, a,_,, ..., a, in an array with n + 1 elements in all. They should be stored

in the order indicated above, with the coefficient of the highest power first and the constant term last.

Aside from the total number of elements in the array, which indicates to the Math Pac the degree of

the polynomial, the dimensions of the array are irrelevant. For example, the arrays

6 5
6 5 4

[6, 5, 4, 3, 2, 1], ,and |4 3
3.2 1

2 1

all can represent the polynomial

6x° + 5x* + 4x® +3x% + 2x + 1.

The array in which you wish the roots to be stored must be doubly subscripted and must have been

given at least 2n elements in its original dimensioning statement. The degree of the polynomial you can

find the roots of is limited only by the amount of memory you have available.

89
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PROOT Roots of a Polynomial

 

MAT R=FREOOTCP

where P is an array with at least two elements, and R is a matrix.

 

 
Redimensions R to be an N x 2 array (where P has a total of N + 1 elements) and assigns to R the

(complex) values of the solutions of the equation P(x) = 0 (where P is the polynomial of degree N whose

coefficients are the values of the elements of P). The first column of R will contain the real parts of the

roots and the second column will contain the imaginary parts.  
 

Example

Input/Result

o lear war s [RTN

dim =063, wiS, 10

mat input = [RTN]

 

1
1
t

- i

  
 

L
0

v P
£ i [ i
l |

i i o
t

- T e
l
=
]
K
N

i L i R |
-

3 z

mat wEproot s

mat odisp w! [RTN

 

o
t

i
po

—
2

f
a
d

fn
d

Pu
l

b
e
e

K
b
t

i
B

iE

  
 

S will contain the seven coefficients of a sixth de-
gree polynomial, and W will contain its six com-
plex roots.

S now represents the polynomial

5x% — 45x° + 225x* — 425x°

+ 170x% + 370x — 500.

The roots of this polynomial are 1 — ¢, 1 + 1,
—1+40t, 2+ 01, 3 — 41, and 3 + 4i.
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Additional Information

The Math Pac uses a modified version of Laguerre’s method together with extended precision

arithmetic and a sophisticated scaling and deflation (polynomial division) procedure to find the roots

of polynomials. Ordinarily, an array with n + 1 elements represents a polynomial of degree n, and

should therefore have n roots. However, if the leading coefficient happens to be zero (so that the poly-

nomial is actually of degree n — 1) this method will calculate that the polynomial has a root at complex

infinity, and so will report (9.99999999999E499, 9.99999999999E499) as a root. This will normally

produce an error message; if the DEFALILT [H option is in effect, the Math Pac will display a warn-

ing message and then correctly find the roots of the lower degree polynomial.

There are several methods of gauging the accuracy of the calculated roots. The first method is to cal-

culate the value of the polynomial at the alleged root, and compare this value with zero. Although quite

straightforward in theory, this has a number of drawbacks in practice. It may easily happen that the

the root calculated is the closest machine-representable number to a true root, but because the polyno-

mial has such a large value for its derivative at this root, the value of the polynomial at the calculated

root is very large. A simple example of this phenomenon is given by the polynomial 1E20x* — 2E20. A

true root is \/2; a calculated root is 1.41421356237, which is the machine-representable number closest

to V2. However, the value of the polynomial at this approximation to the square root of 2 is

—1,000,000,000, a number which seems very far from zero.

Another drawback of the above method is that because of the limited precision available in any numeri-

cal calculation, the roundoff errors that occur in the calculation of the polynomial’s value may com-

pletely eliminate the significance of the difference between the calculated value and zero. This is

especially true when the polynomial is of large degree, has coefficients widely varying in size, or has

roots of high multiplicity.

A second method of gauging the accuracy of the calculated roots is to attempt to reconstruct the poly-

nomial from these roots. If the reconstructed polynomial closely resembles the original, the roots are

then judged to be accurate. This technique is less sensitive to the problems that affect the polynomial

evaluation method. Of course, this method does not give information on the accuracy of an individual

root.

The program given below asks you for a polynomial and then calculates the roots of the polynomial and

reconstructs the polynomial from these roots. If you wish, the program continues and calculates the

value of the polynomial at a root, or any other real or complex point you choose.

To compute the reconstructed polynomial, this program starts with the polynomial 1, and then succes-

sively multiplies the polynomial by the linear factors (x — r), where r is a calculated real root, or by the

quadratic x* — (r, + ry)x + (r, r,) where r, and r, are a pair of complex conjugate roots.

To compute the value of the polynomial at a complex point z, the program uses synthetic division

(synthetic substitution) of the polynomial by the linear binomial (x — z) and the fact that the remain-

der of such a division is the value of the polynomial at the point z. This method of computation has the
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advantage of avoiding much of the roundoff error that would occur in a more straightforward

calculation.

10 OPTION BASE 1
20 DIM P(51,1),Q(52,2),C(52),T(52),R(50,2)

30 DELAY 1

40 DISP “What degree is the polynomial? (It
must be less that 51)”

50 INPUT D

60 REDIM P(D+1,1),Q(D+2,2),C(D+2),
T(D+2),R(D,2)

70 DISP “Enter the coeff.s of the polynomial’

80 DELAY 0

90 MAT INPUT P

100 A1=P(1,1)

110 MAT R=PROOT(P)

120 DELAY 1

130 DISP “The roots are”

140 MAT DISP R;

150 DELAY 0

160 REM#* %% %% »

170 MAT C=ZER

180 C(2)=1

P will contain the coefficients of the original
polynomial. Q will contain a complex copy of the
coefficients used in the synthetic division. C will
contain the reconstructed coefficients. T is used
as a temporary storage for intermediate steps in

the reconstruction. R will contain the calculated
roots.

Throughout the program we will lengthen the
delay before something is to be displayed, and
shorten it during a calculation.

D is the degree of the polynomial.

Redimensions the variables to the appropriate
sizes for a polynomial of degree D.

P will now contain the coefficients.

The reconstructed polynomial will always have
leading coefficients equal to 1. We will scale the
reconstructed polynomial by A, to make the
leading coefficients match. Note that this will

not work if A, = 0.

Calculates the roots and stores them in R.

Displays the calculated roots.

We now begin the process of reconstructing the
polynomial from the roots found.

C now represents the polynomial 1.



190 MAT T=C

200 F=0

210 FOR J=1TOD

220 IF R(J,2)=0 THEN GOSUB 320 ELSE
GOSuUB 380

230 NEXT J
240 MAT C=(A1)+C

250 DELAY 1

260 DISP “The reconstructed polynomial is”

270 FOR K=2 TO D+2

280 DISP C(K);“sX"~";D—K+2;“+";

290 NEXT K

300 INPUT “Do you wish to evaluate the poly.?
(N will stop the program)”,“Y”;U$

310 IF UPRC$(U$)="N" THEN STOP ELSE
GOTO 470

320 REM % %k Xk %k Kk Kk Xk

330 FOR L=3 TO D+2

340 T(L)=C(L)—R(J,1)*C(L—1)

350 NEXT L

360 MAT C=T

370 RETURN
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This just gives T some values for initialization.

F is a “flag”: if F equals zero, this will indicate
that the previous root was real; if F equals one,
this will indicate that the previous root was
complex. Since a root and its complex conjugate
will be consecutive on our list of roots, when we

find a complex root, we will multiply by the
quadratic and then ignore the next root on the
list.

J represents the number of the root we are
currently working with.

If the current root is real, we will multiply by the
linear factor (subroutine starting at 320). If the

current root is complex, we will multiply by the
corresponding quadratic factor, if it hasn’t
already been done (subroutine starting at 380).

Scales the reconstructed polynomial by the
leading coefficient of the original.

Displays the polynomial in standard form.

The leading coefficient is ¢ 2, not &1,
=017 will always be zero.

This begins the subroutine to multiply the
polynomial by a linear factor.

During this calculation, T stores the results of the
multiplication. After it’s done, the result is
again stored in C.
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380 REM sssssss

390 IF F=1 THEN LET F=0 @ RETURN ELSE
LET F=1

400 LET A=2+R(J,1)

410 LET B=R(J,1)*2+R(J,2)*2
420 FOR L=3 TO D+2
430 T(L)=C(L)—A=+C(L—1)+B+C(L—2)

440 NEXT L
450 MAT C=T
460 RETURN
470 REM *xxxxxx

480 DIM X(2),Z(2),W(2)
490 INPUT “Evaluate at a root, or some other

value? (R for root)”,“ ";U$

500 IF UPRC$(U$)=“R’ THEN GOSUB
710@GOTO 550

510 DELAY 1

520 DISP “Enter the real and imaginary parts of
the value”

530 DELAY 0

540 MAT INPUT X

550 REM ##%xxxx

560 DELAY 0

570 MAT Q=ZER

580 MAT Q=P

590 REDIM Q(2,D+1)
600 MAT Q=TRN(Q)

This begins the subroutine to multiply the
polynomial by a quadratic factor.

If the flag equals one, we have already used the
quadratic corresponding to this root and so we
clear the flag and go on to the next root. If the
flag doesn’t equal one, we set the flag and
continue the process.

1, A, and B are the coefficients of the quadratic

factor.

T stores the results during the multiplication.
The results are again stored in C when we are
done.

This begins the polynomial evaluation routine.

X, Z, and W will be used as complex scalars.

The subroutine starting at 710 looks up the value
of the root.

X contains the value of the point at which the
polynomial will be evaluated, either from the
MAT IHFUT or the from the lookup of the root.

This section assigns to Q the values of the
complex form of P.



610 FOR L=2 TO D+1
620 Z(1)=Q(L,1) @ Z(2)=Q(L.2)

630 W(1)=Q(L—1,1) @ W(2)=Q(L—1,2)
640 MAT W=CMULT(W,X)

650 MAT Z=CADD(Z,W)
660 Q(L,1)=2Z(1) @ Q(L,2)=Z(2)
670 NEXT L
680 DELAY 1
690 DISP “The value of the polynomial is ”;

QD+1,1):“+i=";Q(D+1,2)

700 GOTO 300
710 REM sxxxxs
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The values of Q are converted to complex scalars
so that the complex arithmetic operations can be
used.

This calculates the next term in the synthetic
division.

The value of the polynomial is the last
(remainder) term.

Gets another point to use in the evaluation.

This begins the subroutine to look up the value of
a root.

720 DISP “Which root? (1,...,”;D;)’

730 INPUT J

740 X(1)=R({J,1) @ X(2)=R(J,2)

750 RETURN

J 1s the number of the root.

If we wanted to find and evaluate the roots of the polynomial

O+t 4+ x4,

we would run the program using the following keystrokes.

 

  
 

 

Input/Result

RUN

Mihat degreese 12 the polunomisl?

I md=st be leszz thamn 513

£ Foothe coeff s of the poluno
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o =

56 - o

Hz - 1=

He AT S 15

B 99 -, 7VE1E31452468

o 59 FE12314224688

= tructed polunomial 1=

F C o+ HR939999999 F a5+

1 F=" 4 + 933339393953 F 3+

1 =" 2 4+ 3333339339939 F 1+

1 =" 8 +

o owow wish to evaluate the poly

Tt wi1ill s=top the programat  
 

 

  
 

 

  
 

 

i [RTN Any response but “N” or “n” will be interpreted
as “yes.”

i RTN

Ewaluate a3t a root or some othe

Fowalue? CF for orootl

r [RTN Any reponse but “R” or “r” will be interpreted as
“some other value.”

Mhich root® O1, .., 6 2

1 |RTN

The walus of the polunomial is The value of the polynomial at the first com-
B o+id F.OS24E-13 puted root.
Do owow wish to evaluate the pol

W, FoH owill ostop the programay  
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L oE2EE2E ik 125214

Oo gow wish to sevaluate the poly
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About the Algorithm

The Math Pac uses Laguerre’s method to find the roots of the polynomial, one root at a time, by

computing a sequence of approximations Z,, Z,, ..., to a root using the formula Z, , , = Z, + S,
where S, (called the Laguerre step) is given by the formula

 

P(Z,) + [(n—1)*(P(Z,))*—n (n— 1) P(Z,) P"(Z)]"

where P, P’, P” are the polynomial and its first and second derivatives, n is the degree of the polyno-

mial, and the sign in the denominator is chosen to give the Laguerre step of smaller magnitude. Poly-

nomials of degree 1 or 2 are solved using linear factorization or the quadratic formula. Laguerre’s

method is cubically convergent to simple zeros and linearly convergent to zeros of multiplicity greater

than one.

The operation of FEIIT is global, in the sense that you are not required to supply an initial guess.

FEOOT always attempts to begin its search for a root at the origin of the complex plane. An annulus

that contains the root of smallest magnitude is determined, and the intial step is rejected if it would

lead out of this region. If the initial step is rejected, a spiral search is begun from the inner radius to

the outer radius of the annulus, and continues until an acceptable initial guess is found. Once the

iteration process has begun, a circle known to contain the root is computed around each Z,.The

Laguerre step is modified if it leads outside this circle, or if the value of the polynomial does not

decrease. The roots are thus generally found in order of increasing magnitude, which minimizes the

roundoff errors resulting from deflation.
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FREOOT uses a sophisticated technique to determine when an approximation Z, should be accepted as a

root. As the polynomial is being evaluated at Z,, a bound for the roundoff error for the evaluation is

also being computed. If the polynomial value is less than this bound, Z, is accepted as a root. Z, can

also be accepted as a root if the value of the polynomial is decreasing but the size of the Laguerre step

has become negligible. Before an approximation Z, is used in an evaluation, its imaginary part is set to

zero if this part is small compared to the step size. This improves performance, since real-number

evaluations are faster than complex evaluations. If the Laguerre step size has become negligible but the

polynomial is not decreasing, then the message FFIOT {zilur e is reported and the computation

stops. This is expected never to occur in practice.

As the polynomial is being evaluated, the coefficients of the quotient polynomial (by either a linear or

quadratic factor corresponding to the Z,) are also computed. When an approximation Z, is accepted as

a root, this quotient polynomial becomes the polynomial whose roots are sought, and the process begins

again.

Multiple Zeros

No polynomial rootfinder, including FFI0T, can consistently locate zeros of high multiplicity with

arbitrary accuracy. The general rule-of-thumb for FFEZIT is that for multiple or nearly-multiple zeros,

resolution of the root is approximately 12/K significant digits, where K is the multiplicity of the root.

Accuracy

FEOOT’s criterion for accuracy is that the coefficients of the polynomial reconstructed from the cal-

culated roots should closely resemble the original coefficients.

FEODT’s performance with isolated zeros is illustrated by the 100th degree polynomial x'%° — 1. When

FEOOT is used to find the roots of this polynomial, all but eight of the roots are found to 12-digit

accuracy. Of these eight, all but two are accurate to 11 digits, with the 12th digit of either the real or

imaginary part off by 1. The other two calculated roots are 3.27172623763E—14 =+ instead of 0 =+i.

The polynomial (x + 1)%, which has —1 as a root of multiplicity 20, was solved by FRIIT to yield

calculated roots of:

—.999954866562 + 0i

—.985568935304 + 0i

—.676467025812 + 0i

—.746641243182 + .203801767293i

—.746641243182 — .203801767293i

—1.04166040212 + .334892343643i

—1.04166040212 — .334892343643i

—.827370927334 + .278237315935i

—.827370927334 — .278237315935i

—.92857985345 + .323524811701i
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—.92857985345 — .323524811701/

—1.35739089743 + 0/

—1.33261156263 + .128152487571i

—1.33261156263 — .128152487571i

—.694494465769 + .107674717679i

—.694494465769 — .107674717679i

—1.15757200375 + .307382598202i

—1.15757200375 — .307382598202i

—1.26137867921 + .23658285644

—1.26137867921 — .23658285644i

The computed roots are inaccurate due to the high multiplicity of the true root. From the formula

given previously you would expect no correct digits, or perhaps one, but note that the first pair of

computed roots are more accurate than this. When a polynomial is reconstructed from these roots,its

coefficients resemble the coefficients of the original polynomial to 11 or more digits.





Section 13

Solving f(x) = 0

You can use the keywords in this section to help you determine the solutions of an equation in one real

variable. The first step in using this capability is to rewrite the equation to be solved in the form

f(x) = 0. Even this form, however, is not explicit enough to be used by your Math Pac. You must write a

user-defined function F Hfunction name such that F Hfunction name(x) calculates f(x). (Refer to section

13 of the HP-75 Owner’s Manual for information about user-defined functions.)

The keyword FHEDIIT can be used anywhere inside the program that contains the definition of the

function (except inside the definition itself) to find the values of x for which f(x) is zero.

The keyword FHZIIEZ= is provided as an aid in interpreting the results of the FHEIIT keyword.

Since they are numeric valued, FHZIIEZZ and FHEOOT can be used alone or in combination with

other functions and variables to form numeric expressions.

FNROOT Function Root
 

FHREOOTCA, B, FHfunction name iX

where A, B are numeric expressions (not necessarily distinct), Ftifunction name is a user-defined

numeric function, and X is a numeric variable.

 

Returns the first value found (starting with guesses A and B) that is one of the following.

1) An exact root of the specified function.

2) An approximation to a root of the specified function, correct to 12 digits.

3) An approximation to a local minimum of the absolute value of the specified function.

4) In a region where the specified function is constant.

5) +9.99999999999E499 if the search for a root led beyond the range of representable numbers.

X is a dummy variable—its inclusion here doesn’t affect the use of this variable name in any other

context.

This keyword can be used only in a program.  
 

101
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FNGUESS Previous Estimate of Function Root
 

FHGUESS

 

Returns the next-to-last value tried as a solution in the most recent FHEDDT statement.

FHEGLUESS retains its value, even if your HP-75 is turned off, until FHEIOT is again executed.  
 

To help you distinguish among the five possibilities outlined above for FHFEIIT, you should always

include a statement in your program that calculates and stores and/or checks the value of the specified

function at the point found by FHFEDIT. Examples of such statements are

LET Z=FHFIFHEOOTCA,EBE,FHF =22 and

ODIZF FHEQOTOCH,.E,FHFO=2 @ OIZF FHFOREESS

where FHF is the specified function.

By checking the values of FIHF at the points returned by FHEDIT and FHZUE %%, you can interpret

the result of FHEDIDT as follows.

o If FHF <result of FHEDIT» =0, the result of FHEIIT is an exact root and the result of

FHGUEZS will be a number close to the root.

o If the result of FHEDIT and the result of FHZUE Sdiffer only in the twelfth significant digit,

these two numbers surround the exact root.

o If the result of FHEDIIT and the result of FHGUE =S differ but FHF i result of FHEDDT » and

FHF tresult of FHGIIESZS » are equal, these results lie in a region where FHF is constant.

Example: Solving log (x) = e/x

To solve log (x) = e/x, we first write the equation in the form f(x) = 0. This can be done by subtracting

e/x from both sides of the equation, yielding log (x) — e/x = 0. We can rewrite this in the equivalent

but slightly more convenient form xlog (x) — e = 0. Since the left-hand side of this equation is

undefined for x < 0, and we can’t guarantee that the search for a root will not venture into this region,

we will consider instead the equation |x|log |x| — e = 0. This equation has exactly the same positive

solution(s) as the first equation, but this equation makes sense for both positive and negative (but non-

zero) numbers. The program below includes a user-defined function that computes the left-hand side of

this equation, and uses FHEZIIT to find a solution of the equation.
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10 DEF FNF(X) This user-defined function computes the left-hand
side of the equation.

20 FNF=ABS(X)+LOG(ABS(X))—EXP(1)
30 END DEF

40 INPUT AB These will be the initial guesses.

50 R=FNROOT(A,B,FNF(X))
60 DISP “The value found (R) is”;R

70 DISP “FNF(R)=";FNF(R)
80 DISP “FNGUESS=";FNGUESS

To use the program we must decide on initial guesses. Although the initial guesses need not be in

increasing order, or even distinct, a choice of initial guesses that surround a root will produce results

more quickly in general. Noting that if | X| < 1 then FHF ¢ X will be negative and if | X| is large (say,

100) then FHF X will be positive, we can choose .5 and 100 for our initial guesses.

Key in the program and it, and when prompted with * respond with . 5. 1% [RIN], which
supplies the initial guesses. The computer will then display

 

   

The walue fournd CEY 1=

ZLOFIEERIBEE4E
FHFiR»= B

FHGUESS= 2. FIEEE182R30

Since FHF ¢k := @, the value given is an exact root for FiF.

Additional Information

Choosing Initial Estimates

When you use FHECOT to find roots of equations, the initial estimates determine where the search for

a root will begin. If the two estimates surround an odd number of roots (signified by their function

values having opposite signs), then FHEZDIT will find a root between the estimates quite rapidly. If the

function values at the two estimates do not differ in sign, then FHEDIT must search for a region

where a root lies. Selecting initial estimates as near a root as possible will speed up this search. If you

merely want to explore the behavior of the function near the initial estimates (such as to determine if

there are any roots or extreme points nearby), then specify any estimates you like.

Another thing to consider is the range in which the equation is meaningful. In solving f(x) = 0, the

variable x may only have a limited range in which it is conceptually meaningful as a solution. In this

case, it i1s reasonable to choose initial estimates within this range. Frequently an equation that is ap-

plicable to a real problem has, in addition to the desired solution, other roots that are physically mean-
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ingless. These usually occur because the equation being analyzed is appropriate only between certain

limits of the variable. You should recognize this restriction and interpret the results accordingly.

Interpreting Results

When using FHEDOOT, always evaluate the function at the value returned, as described above. This

enables you to interpret the results. There are two possibilities: the value of the function at the value

returned by FHEDOT is close to 0; or the value of the function at the value returned by FHEDIT is not

close to 0. It is up to you to decide how close is close enough to consider the value a root.

If the function value is too large, then the information returned by the keyword FHGILIE %%, together

with information already considered, is sufficient to determine the general behavior of the function in

the region. For example, suppose that FHEIT is used to find a root of a function—say, FHF © 1 —

and the value returned is r. If |FHF i+ 1| is too large to consider r a root, then there are several
possibilities.

If FHF<r » and FHF i FHZIUESZS» have the same sign, then r is either an approximation to a local

minimum of |FHF | or in a region where the graph of FHF iis horizontal.

  
In these two cases, FHEIIT sees no tendency of FHF ¢ to decrease in absolute value, and so to

cross the x-axis. It will then try to approximate a local extreme point, if any. This approximation can

be resolved to further precision by further executions of FHEIIT, using r and FHGUES S as initial

estimates. Repeated execution of FHEIIT in this manner will tend to convergence to the extreme

point in many cases. The idea is that FHEDIT can be used to find local extreme points, or the in-

formation about where the extreme points are can be used to re-direct the search elsewhere, in hope of

finding a root. Here is an example program which can be used to find the local minimum and root of

flx) = |x — 1|V2. Note that x = 1 is both a root and local minimum, which makes it a difficult root to

find. This program takes advantage of the way FHFEIIT finds minima to find the root.



Section 13: Solving f(x) = 0 105

10 DEF FNF(X) = SQR(ABS(X—1)) This is the user-defined function.

20 R=FNROOT(5,9,FNF(X)) Tries to find a root.

30 FORI1=1TO 20 Iterates 20 times to resolve the minimum to
greater accuracy.

40 R=FNROOT(R,FNGUESS,FNF(X))

50 NEXT |

60 DISP “Root or minimum at”;R

To execute this program, key it in and it. The display will then show:

 

Foot or mimimudm a1 1

   

When |FHF @+ 1| is too large to consider r a root, another possibility is that FHF:r: and

FHF ¢ FHGUESS » have different signs. In this case it would appear that there is a root between, be-

cause for the function to change signs it should cross the x-axis. Typically, when FHEOOT finds two

guesses on opposite sides of the x-axis, it only stops after it has resolved them to two consecutive

machine numbers. In this case there is no machine representable number between r and FHZUESS,

Thus, the behavior of the function cannot be determined between r and FHiZLIEZ %, To interpret such

results, you should be aware of these situations.

l
|

|

|

|

|

\

   

   I I
In case 1, r and FHGIUIEZS are the best approximations to the root which are representable on the

machine. Case 2 looks exactly the same to FHEDT, but there is no root—there is a jump discontinuity

instead. In case 3 there is a pole, which can look like a root if a guess on each side of the pole is found.

FHREOOT returns information in FHGUES and the root to help you isolate situations where conver-

gence is to a pole or jump discontinuity.
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Decreasing Execution Time

The exponent range of your HP-75 is +499. This allows for sensitive observation of the behavior of a

function, even very close to a root. FHEDIT takes advantage of this dynamic range by not accepting a

guess as a root until the function value underflows, is zero, or two consecutive machine representable

numbers that bracket a root are found. The cost of this precision is that, occasionally, it may take quite

a while to obtain such precision. If this high degree of sensitivity is not required, then you may wish to

set a smaller tolerance. For example, you may only need to know a place where the function is less than

1E-20. This is accomplished in your function subprogram by checking the value of the function before

assigning it to the function variable and setting the function variable to zero if the computed value is

smaller than the desired tolerance. For example, suppose you wanted to find any roots of f(x) = x* and

[f(x)| < 1IE—32 is acceptable as a root. Here is a program you can use.

10 DEF FNF(X) Multiline function definition of f(x) = x*.

20 F=X"4

30 IF F<=1E—382 THEN FNF=0 ELSE

FNF=F Checks error tolerance and sets the function
value accordingly.

40 END DEF

50 DISP FNROOT(2,3,FNF(X)) Computes and displays the root.

60 DISP FNF(RES) Displays the function value at the root.

To execute this program, key it in, and press (RUN]. In the display will appear:

 

   
In this example, if this tolerance technique were not used, execution would last much longer. This is

because the computed function will not underflow until x is very small, since the root is at zero and the

distribution of machine-representable numbers is very dense close to zero. So FHET has a lot of

guesses to try before finding one it can accept as a root.
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An alternate approach to decreasing execution time is to translate the function so that the root is not

so near zero, compute the root of the translated function, then translate the root back. This will de-

crease the time to find roots of certain functions with roots close to zero, but will generally decrease

the accuracy of the roots found. Here is a sample program for f(x) = x*.

10 DEF FNF(X) = (X—1)"4 This is x* translated by 1.

20 R= FNROOT(3,4,FNF(X)) Computes the root.

30 DISP R—1 Translates the root back and displays the root and
function value.

40 DISP FNF(R)

Finally, there is a technique that may improve the speed and accuracy of FHFEIIT. Any equation is

typically one of an infinite family of equivalent equations with the same roots. However, some may be

easier to solve than others. For example, the two equations f(x) = 0 and exp (f(x)) — 1 = 0 have the

same real roots, but one is almost always easier to solve. When f(x) = x* — 6x — 1, the first is easier;

but when f(x) = In (x* — 6x — 1), then the second is easier. While FHF 1T has been designed to pro-

vide accurate results for a wide range of problems, it is worthwhile to be aware of such possibilities.
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Numerical Integration

The keywords in this section enable you to evaluate the integral of a function between definite limits.

Before you can calculate the integral of a function f(x) you must write a user-defined function that

calculates the values of f(x). (For information about user-defined functions, refer to section 13 of the

HP-75 Owner’s Manual.)

You can then use the keyword IHTEGREHAL to calculate the integral of the user-defined function. You

can use [HTEGREAL anywhere within the program in which the user-defined function is defined except

within the definition of the user-defined function.

The keywords IEQIIHD and IWALLE give you additional flexibility in the evaluation of the integrals.

IMTEGEAL, IBOUHD, and IYALLE are numeric-valued, so they can be used alone or in combination

with other functions and variables to form numeric expressions.

INTEGRAL Definite Integral
 

IMHTEGREHLCA, B, E, FHfunction name. X 1

where A, B, E are numeric expressions, F MHfunction name is a user-defined numeric function, and X is a

numeric variable.
 

Returns an approximation to the integral from A to B of FrHfunction name. The relative error E (rounded

to the range 1TE—12 < E < 1) indicates the accuracy of F MHfunction name and is used to calculate the

acceptable error in the approximation to the integral.

IHTEGEHRL generates a sequence of increasingly accurate approximations to the definite integral. If

three successive approximations are within the acceptable error of each other—the first is close to the

second and the second is close to the third—they are considered to have converged and the third

approximation is returned as the value of the definite integral. If a total of 16 approximations are cal-

culated without converging, the sixteenth approximation is returned.

X is a dummy variable—its inclusion here doesn’t affect the use of this variable name in any other

context.

This keyword can be used only in a program.   
109
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IVALUE Last Result of THTEGREFAL
 

ITVAHLLUE
 

Returns the last approximation computed by the IHTEZFEHL keyword. If the key was pressed

or the operation of IHTEZFHAL was otherwise interrupted, then I''HLLIE returns the value of the

current approximation to the integral. Otherwise, I''ALIIE returns the same value that THTEGREHAL

last returned.

IWHLUE retains its value (even if your HP-75 is turned off) until another ITHTEZFEHL is computed.   
IBOUND Error Approximation for [ [T EGREML
 

TEOUHD

 

Returns the final error estimate for the definite integral most recently computed by IHTEZREAL.

e A positive value for IECLIMHDO means that the approximations converged.

e A negative value for I ECLIMHD means that the approximations didn’t converge completely, so that

the value returned by IHTEGREHL may not be within the acceptable error of the actual value.

Like IVHLLE, TECOLHMHD retains its value (even if the HP-75 is turned off) until another THTEZREHAL is

computed. Unlike I''HLLIE, the value of IECLIMD has no relation to the current approximation to the

integral if the operation of IHTEGFEHL is interrupted.   
The operation of IMTEZRAL and IEQUHD can be described more precisely as follows.

1. Based on a relative error of E for the specified function, the computer calculates an error tolerance

for the integral of the specified function. If f(X) is the “true” function that FIF approximates,

then choose E such that

- |FHF (X) — AX)]

IFHF (X))

for all X in the interval of integration. Your input for E is rounded to the range 1IE—12 < E < 1.

For example, if FHF is derived from experimental data with N significant digits, let E equal 10Y.

2. The computer calculates a sequence of approximations I, to the integral of the specified function.

The difference between successive approximations is compared to the error tolerance for the

integral.

3. A value for the integral is returned when:

e The approximations I, have converged. Convergence is determined using J,, defined as the kth

approximation to the integral of 100"t (g IFHFD) Gyer the same interval of integration. J, repre-

sents the error inherent in the computation of I,.
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The approximations I, are judged to have converged to I, if

(I =1, | < E J,

for k = n — 1 and for k = n. The value of I, is then returned by IHTEGFFL; a positive value
for the error estimate will be returned by IE LI,

or when

e The computer has evaluated I, through I,; but the convergence criterion is still not met. I, is
then returned by IHTEZFEHAL; a negative value for the error estimate will be returned

TECQUHD.

Examples

INTEGRAL, IBOUND, IVALUE

To find the integral from 0 to 1 of the function

f(x) = exp (x* + 4x* + x + 1)

you can use the following program.

10 DEF FNF(X)=EXP(X"3+4*X"2+X+1)
20 INPUT E

30 DISP “Integrating; please wait”

40 X=INTEGRAL(0,1,E,FNF(W))

50 BEEP

60 DISP “The value of the integral is”; X

70 DISP “The approx. error is”

80 DISP IBOUND

The user-defined function FHF.

Gets the relative error we expect in FHF as
compared with f.

Remember that W is a dummy variable.

After you key in the program, run it using the following keystrokes.

Input/Result

RUN

 

  
 

LE~% [RTN]

The prompt to enter the relative error of the
function.

Although our function is accurate to one part in
10'%, we can say that it is less accurate (in this

case, one part in 10°) so that the computation will

finish more quickly.
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Integratina: please wait The integral will take about a minute to be
computed.

The walus of the integral is The value of the integral is 104.2911
184, 231 Aa7EEE +3.4 x 10°*.
The appro Srror 1=

2.42828Va2E25E-4   
 

1ad, z221aa37s2: IWAHLUE gives the value of the last computed
integral.  

 

INTEGRAL, IBOUND

You can use IHTEGZEHAL to compute the amount of heat required to heat one gram of gas at a constant

volume from one temperature to another. The amount of heat needed, @, is given by the formula

Q- [“cmar,

where C(T) is the specific heat of the gas as a function of temperature, 7T'1 is the starting temperature,

and T2 is the final temperature.

If C(T)=a+ bT, where a and b are experimentally determined to be a = 1.023E—2 and

b = 2.384E—2 with four significant digits, then we can compute the relative error of C(T) to be

approximately 5E —4. The program below prompts you for the initial and final temperature in degrees

Kelvin and then computes the heat needed to raise the temperature of the gas from the initial to the

final temperature.

10 DEF FNC(T) = .01023+.02384+T The user-defined function that calculates the
specific heat.

20 INPUT “Initial and final temp.s in degrees
Kelvin?”;T1,T2

30 DISP ‘“Integrating”

40 Q=INTEGRAL(T1,T2,.0005,FNC(T)) Computes the integral.

50 DISP “The amount of heat needed
is”;Q;“+ —";IBOUND Displays the answer and the approximate error.

To find the heat needed to raise the temperature from 300°K to 310°K, type in the program and use the

following keystrokes.
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Input/Result

RUN

Irmitial and fimal temp.= 1m0 deatr

ez Felwin

   

 

 

 

The amount of heat neseded 1=

=214 4= BES   
Additional Information

The IMTEGREHAL keyword has been designed to obtain accurate results rapidly for a wide range of

problems. Without some help from the user, however, no numerical integration scheme can successfully

integrate all functions representable by the computer. This section includes information about numeri-

cal integration in general, the algorithm used by IHTEZEFAL, and ways to handle more difficult

problems.

Overview of Numerical Integration

Numerical integration schemes generally sample the function to be integrated at a number of points in

the interval of integration. The calculated integral is simply a weighted average of the function’s values

at these sample points. Since a definite integral is really an average value of a function over an infinite

number of points, numerical integration can produce accurate results only when the points sampled are

truly representative of the function’s behavior.

If the sample points are close together and the function does not change rapidly between two consecu-

tive sample points, then the numerical integration will give reliable results. On the other hand, numeri-

cal integration will not produce good answers on a function whose values vary wildly over a domain

that is small in comparison with the region of integration. Other errors that can affect the result of a

numerical integration include the round-off errors typical of any floating point computation and errors

in the procedure that computes the function to be integrated.

Handling Numerical Error

The IHTEGREAL keyword requires specification of an error tolerance E for its operation. This error

tolerance is taken to be the relative error of the user-defined function as compared with the “true”
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function to be integrated. The error tolerance is used to define a ribbon around the user-defined func-

tion and the “true” function should then lie inside this ribbon. If the “true” function is f(x) and the

computed function is FNF(x), then

FNF(x) — Error (x) < f(x) < FNF(x) + Error (x)

where Error (x) is half the width of the ribbon at x.

  

 

 
We can then conclude that

b b b
["#x) dx~ [  FNF(x) dx + [ Error (x) dx
a a a

where the third integral is just half the area of the ribbon—that is, integrating the user-defined func-

tion instead of the actual function can introduce an error no greater than half of the area of the ribbon.

IMTEGREAL estimates this error while computing the integral; IECIIHD gives you access to the

estimate.

Choosing the Error Tolerance

The accuracy of the computed function depends on three factors:

e The accuracy of empirical constants in the function.

e The degree to which the function may accurately describe a physical situation.

e The round-off error introduced when the function is computed.
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Functions like cos (x — sinx) are purely mathematical functions. This means that the functions con-

tain no empirical constants, and neither the variables nor the limits of integration represent any actual

physical quantities. For such functions you can specify as small an error tolerance as desired, provided

that the function is calculated within that error tolerance (despite round-off) by the BASIC function.

Of course, due to the trade-off between accuracy and computation time, you may choose not to specify

the smallest possible error tolerance. Any specified error tolerance is rounded to the range [1IE—12, 1].

When the integrand relates to an actual physical situation, there are additional considerations. In these

cases, you must ask yourself whether the accuracy you would like in the computed integral is justified

by the accuracy of the integrand. For example, if the function contains empirical constants which

approximate the actual constants to three digits, then it may not make sense to specify an error toler-

ance smaller than 1E—3.

An equally important consideration, however, is that nearly every function relating to a physical situ-

ation is inherently inaccurate because it is only a mathematical model of an actual process or event. A

mathematical model is typically an approximation that ignores the effects of factors judged to be in-

significant in comparison with the factors in the model.

For example, the equation s = s’ — (.5)gt?, which gives the height s of a falling body when dropped

from an initial height s, ignores the variation with altitude of g, the acceleration due to gravity. Math-

ematical descriptions of the physical world can provide results of only limited accuracy. If you cal-

culated an integral with an accuracy greater than your model can support, then you would not be

justified in using the calculated value to its full (apparent) accuracy. It makes sense to supply an error

tolerance that reflects any inaccuracies in the function, or the IHTEGEFRL keyword will waste time

computing to a level of accuracy that may be meaningless. Further, the value returned by I EiLIHmay

not be significant.

If f(x) 1s a function relating to a physical situation, its inaccuracy due to round-off is typically very

small compared to the inaccuracy in modelling the situation. If f(x) is a purely mathematical function,

then its accuracy is limited only by round-off error. Precisely determining the relative error in the

computation of such a function generally requires a complicated analysis. In practice, its effects are

determined through experience rather than analysis.

Handling Difficult Integrals

Integrating on Subintervals. A function whose values change substantially with small changes in

its argument will likely require many more points than one whose values change only slightly. This is

because the behavior of the function must be adequately represented by the sampling. If a function is

changing more rapidly in some subintervals of the interval of integration than in others, you can sub-

divide the interval and integrate the function separately on the smaller intervals. Then the integral

over the whole interval is the sum of the integrals over all the subintervals, and the error of the in-

tegral is the sum of the errors of the integrals over the subintervals.
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The algorithm used by IHTEGF AL makes a reasonable decision during execution of how many points

to sample, based on the behavior of the specified integrand on a particular interval. When the interval

of integration is split up, each subinterval can be handled according to the function’s behavior on that

subinterval alone. This results in greater speed and precision.

For example, to integrate f(x) = (x* + 1E—12)"” from x = —3 to x = 5 using an error tolerance of

1E—12, it speeds up execution to subdivide the interval at x = 0, where f(x) has a sharp bend in its

graph. Because f(x) is very smooth on the subintervals (—3, 0) and (0, 5), the integrals over these

subintervals can be evaluated quickly.

5 0 5
f_3 f(x) dx = f_3 f(x) dx + fo f(x) dx

The following program computes this integral on the two subintervals and then combines the results.

10 DEF FNF(X) = SQR(X+X+.000000000001) We will use % rather than7 because %is
more accurate. An analogous situation generally
occurs for any integer power of a variable.

20 I=INTEGRAL(—3,0,.000000000001,FNF(X)) Integrate over the first subinterval.

30 E=IBOUND Save the error to add in.

40 DISP “The value of the integral is”

50 DISP
I+INTEGRAL(0,5,.000000000001,FNF(X)) The sum of the first and second integrals.

60 DISP “The approximate error is

70 DISP E + IBOUND Compute the relative error by adding the two
errors together.

You can run this program by keying it in and then pressing [RUN]. The following will then appear in

the display.

 

The waluse of the intearal iz

17

The appro=imat

5LSERDANRZERARE  
 

When the interval is subdivided, IHTEZREFHL computes the answer in a few seconds. Without sub-

dividing the interval, execution may take a long time.

Subdividing the interval of integration is also useful for functions with a singularity in the interval.

The singularity may consist of one or more points where the function is undefined or has a sharp

corner point.
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For example, the integral

2 dx - 1 dx 2 dx
J(; _(x— 12 may be split 1nt0f0 ————(x— 12 +J; ——(x— 1)

to avoid evaluating the function at x = 1, where it is undefined. You can now integrate the function on

each subinterval because x = 1 is an endpoint of each subinterval, and I HTEZFFL. does not sample at

an endpoint.

Similarly, the function \/|x — 1| has a sharp corner point at x = 1.

Vix — 1

T~

 
Suppose you need to integrate this function from 0 to 2. You can increase the speed and accuracy of the

computation by integrating separately on the subintervals (0, 1) and (1, 2), because the function is

smooth on each of these subintervals.

Transformation of Variables. A second method of handling difficult integrands is by transforming

the variable. When the variable in a definite integral is transformed, the resulting definite integral may

be easier to compute numerically. Consider the integral

1
f (———\/; 1 ) dx
0 \x — 1 In x

The derivative of the integrand approaches infinity as x approaches 0, as shown on the left below. The

substitution x = u” stretches out the x-axis and causes the function to be better behaved, as shown on

the right.
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0.1+

2u? u

u+ 1)u —1) Inu
0.1  

 0——  

 

  X 0 —Uu

0 1 0 1

You can now evaluate the integral that results from this substitution:

1 2J‘ ( 2u . u ) du.

0\(u+1) (u—1) In u

(Do not replace (u + 1) (u — 1) with u? — 1; as u approaches 1, u?> — 1 loses half ofits digits to round-

off, yielding a final result that is too large.)

 

As a second case requiring substitution, consider the following function. Its graph has a long tail

stretching out much farther than the main body (where most of the area is).
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Although a very thin tail may be truncated without greatly degrading accuracy, this function has too

wide a tail to ignore when calculating

f‘ dx

-t x> 4+ 10710

if t is large. In general, the compressing substitution x = b tan u maps the entire real line into (—=/2,

7/2) and maps subsets of the real line into subsets of (—x/2, n/2). For b = 1E—5 the substitution

becomes x = 1E—5 tan u and the integral becomes

tan " (t/b)

10° f 1 du,
tan~ '(—t/b)

which is readily computed for very large t.

This compressing substitution is also a standard way to deal with infinite intervals. For example,

o dx 5 (/2X_ 10 .
f-oo 2+ 10710 f o0

In some cases the tail can be chopped off. Consider the function exp (—x?). This functions underflows

(that is, gives a result of zero in machine arithmetic) for x > 34. Thus,

© _2 34 _2

f e Tdx = f e “dx .
0 0

Therefore, when dealing with infinite integrals you can cut off the tail if it is insignificant, but you

should use a compressing substitution if it is not.

About the Algorithm

The Math Pac uses a Romberg method for accumulating the value of an integral. Several refinements

make it more effective. Instead of equally spaced samples, which can introduce a kind of resonance or

aliasing that produces misleading results when the integrand is periodic, [HTEGREFL uses samples

that are spaced nonuniformly. Their spacing can be demonstrated by substituting

3
2

X = u —

m]
»—
a

u® into fb f(x)dx

and then spacing u uniformly. Besides suppressing resonance, the substitution has two additional bene-

fits. First, no sample need be taken from either endpoint of the interval of integration unless the inter-

val is so small that points in the interval round to an endpoint. As a result, an integral like

J‘l sin x dx

0 X
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will not be interrupted by division by zero at an endpoint. Second, I HTEZFHAL can integrate functions

whose slope is infinite at an endpoint. Such functions are encountered when calculating the area en-

closed by a smooth closed curve like x*> + f2(x) = R.

In addition, IHTEZRAL uses extended precision. Internally, sums are accumulated in 16-digit num-

bers. This allows thousands of samples to be accumulated, if necessary, without losing any more signifi-

cance to round-off than is lost within your function subroutine.

During the computation, IHTEZFHL generates a sequence of iterates that are increasingly accurate

estimates of the actual value of the integral. It also estimates the width of the error ribbon at each

iterate. IHTEGREHAL stops only after three successive iterates are within the computed error of each

other or after 16 iterations have been performed without this criterion being met.

In the latter case the function will have been sampled at 65,535 points. The value returned by

TEOUHD will be the negative of the computed error to signify that the returned value of the IH-

TEGREAL is likely not within the error tolerance of the actual value. Typically, you should then split up

the interval of integration into smaller subintervals and integrate the function over each of the

subintervals. The integral over the original interval will then be the sum of the integrals over the

subintervals. In this way, up to 65,535 points can be sampled on each subinterval, thus computing the

integral to greater precision.

In summary, IHTEGEAL has been designed to return reliable results rapidly and in a convenient,

easy-to-use fashion. The above theoretical considerations discuss problems with numerical integration

in general. The IHTEGEHRL keyword is capable of handling even difficult integrals with their aid.
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Finite Fourier Transform

The finite Fourier transform is a key step in solving many problems in mathematics, physics, and

engineering, such as problems in signal processing and differential equations.

Given a set of N complex data points Z,, Z,, ..., Zy _,, the finite Fourier transform will return an-
other set of N complex values W,, W,, ..., Wy _,, such that for k=10,1,..., N — 1,

 
N—1 . .

Z,= S W, <cos 27K | ; sin M) .“ N N

The W’s then represent the complex amplitudes of the various frequency components of the signal

represented by the data points. The values for the W’s are given by the formula

N-1 . .
—27kj . . —2mkj

W.=1/N > Z <cos——+LS1n——> .
! =" N N

This formula holds for any number of data points. The Math Pac uses the Cooley-Tukey algorithm and

the internal language of the HP-75 to achieve excellent speed and accuracy in the calculation of the

finite Fourier transform. This requires, however, that N be an integral power of 2; for example, 2, 4, 8,

16, 32, 64, and 128 are all acceptable values for the number of complex data points.

To use the finite Fourier transform, store your complex data points Z, ..., Z5 _ ; as successive rows of

an N X 2 array with Z, in the first row, Z, in the second row, and so on. Store these values in the usual

complex form: real parts in the first column, imaginary parts in the second column. The results of the

finite Fourier transform W, ..., Wy _, will be returned with the complex values stored in successive
rows of an N X 2 array—the same form as the data points.

The number of data points you can use is limited only by the amount of available memory and by the

requirement that the number of data points be a non-negative integral power of 2.

FOUR Finite Fourier Transform
 

MATW=FOURECZ:

where Z is a N x 2 matrix, N a non-negative integer power of 2, and W is a matrix.
 

Redimensions W to be exactly the same size as Z and assigns to W the complex values of the finite

Fourier transform of the data points represented by Z.  
 

121
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Example

Input/Result

zlear wars [RIN

dim zOlS, 10, wi1S, 10 Z and W are 16 x 2 arrays.

mat TEoOrn Z now represents the complex column vector, each
of whose values is 1 4+ 1i. Z could be the sam-
pling of a complex constant function, for example.

mat wEfour Cz

mat disp

 

This is the finite Fourier transform of the con-
stant function. The only frequency that occurs is
the zero frequency—all rows but the first are
Zero.
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Additional Information

Relation Between the Finite and Continuous Fourier Transform

The finite Fourier transform is most often used as an approximation to the continuous (infinite)

Fourier transform. To understand in what sense it is an approximation, and to understand the effects

of various choices to be made in using this approximation, it is most useful to have the direct relation-

ship between the continuous and finite transforms.

If Z(x) is a complex valued function, its continuous Fourier transform is defined to be

w(f) = f:’ Z(x) exp (—2nifx) dx.
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If we have a set of N complex data points Z,, Z,, ..., Zy _, given by sampling the function Z at N
equally spaced points

Zy,=Z(xy+ kAx) for k=0,1,..., N — 1,

and then find the finite Fourier transform W, W,, ..., W, _, of this data set, we can relate these
values to the values of the continuous Fourier transform W(f) as follows. For k=0,1, ..., N — 1,

W, = (r/N) W(k/Ax) where r = exp (—2mwix,).

W is a “smeared” version of the true continuous Fourier transform W. To get W from W, you must

average W in two important but very different ways. The first type of averaging that occurs can be

described by defining a new function A(f) intermediate between W and W.

A = > W(f + k/Ax)

This says that the value of A at a point f is equal to the sum of the values of W at all points that are

integer multiples of the limiting frequency 1/Ax away from f. In particular, if W consists of a small

bump centered at the origin, then A will consist of an infinite sequence of bumps spaced 1/Ax units

apart. This is the aspect of the finite Fourier transform that gives rise to aliasing: any frequency that

occurs in W (that is, W has a non-zero value there) will give rise to a non-zero value for A (and also W)

somewhere in the interval [0, 1/Ax] no matter what the original frequency was. For this reason, you

should choose Ax small enough so that 1/Ax is larger than the distance between the largest and small-

est f’s that you suspect will occur in W. Since most functions occuring in actual situations (and all

real-valued functions) have continuous Fourier transforms which are roughly symmetric about the ori-

gin, if a frequency f, occurs in W, it is likely that —f, also occurs in W. For the finite Fourier transform

to contain both frequencies without aliasing, 1/Ax must be larger than 2f,. If we define the largest

frequency occuring in W as Af, we can express the no-aliasing requirement as AfAx < Y.

The second type of averaging that occurs when going between W and W is much more local in nature

than the first. It results in a loss of frequency resolution in W as compared with W; more precisely,

W(f) = (NAx) f“ sinc (eNAx) A(f—g) dg

1ifa=0,

where sinc (a) = .
sin (wa) otherwise.

Ta

Since sinc (gNAx) consists primarily of a bump with width inversely proportional to NAx, W is more

blurred (compared to W) for smaller values of NAx. This is not a serious problem unless W has a large

value at a frequency that is not a multiple of the fundamental frequency N/Ax. In this case, the “side

lobes” of the sinc function become evident in W. This can be reduced somewhat by multiplying the

data values Z, by a smoothing function G(k) before taking the finite Fourier transform. This results in
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an averaging function that has smaller side lobes than the sinc function. One example of such a func-

tion is the Hanning function G(k) = (¥2)(1 — cos (2wk/N)).

Inverse Finite Fourier Transform

Many applications of the finite Fourier transform involve taking the transform of a set of data points,

operating on the transformed values (for example, increasing or decreasing the amplitudes), and then

retransforming the data using the inverse Fourier transform defined by

N—1 . .
_ 27k . . 27kj

Zk = j;o VVJ (COS —]V_L + 1 SIn T) .

You can also use the FILIE keyword to compute the inverse finite Fourier transform in a simple way. If

W is an N X 2 array for which you wish to take the inverse Fourier transform:

1 0
. Multiply W on the right by the 2 X 2 array 0 using real array multiplication.—

2. Take the finite Fourier transform of the result.

3. Multiply the result array of the finite Fourier transform by the 2 X 2 array given in step 1.

4. Scalar-multiply the result by N. This will produce the inverse finite Fourier transform of the origi-

nal array.

This application of the finite Fourier transform and the procedure for obtaining the inverse finite

Fourier transform are illustrated in the example below.

Example

Suppose we want to find the steady state solution Z(x) of the inhomogeneous differential equation

2" (x) + 3Z'(x) + 12Z(x) = P(x)

where P(x) is a function for which we have sampling data. If we denote the (continuous) Fourier trans-

form of any function @ by @, by taking the Fourier transform of the above equation we arrive at

—f?Z(f) + BifZ(f) + 12Z(f) = P(f).

Solving this equation algebraically, we obtain

5o P(f)
Z(f) (—f%2 4 12) + 3if ~

If we can get a good approximation to P, we can easily calculate the right side of this equation. From

this result we can obtain the solution to the original equation by taking the inverse Fourier transform.
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For simplicity, we will assume that the equation has been scaled so that P(x) has unit period, and that

the highest frequency component of P is (approximately) 30 times the fundamental frequency. Sam-

pling P 64 times in one period will then suffice to avoid aliasing.

Rather than prompt the user for 64 complex data points representing the sampling of P, the program

below uses a relatively simple function for P, although you could use values from any other source

equally well.

10 OPTION BASE 1
20 DIM P(64,2),Q(64,2),Z(64,2)

30 DIM C(2,2), T(2), S(2)

40 C(1,1)=1@C(2,2)= —1@C(1,2),C(2,1)=0

50 DISP “Working; please wait”

60 FOR I=1 TO 64

70 P(1,1)=6000+COS(3+Pl+1/32)
+SIN(7.5+PI+1/32)=COS(5.5+Pl+1/32)

80 P(1,2)=4000+COS(13+Pl+1/32) +
3500+SIN(11+P1+1/32)

90 NEXT |
100 MAT Q=FOUR(P)
110 FOR F=—31 TO 32

120 J=MOD(F,64)+1

130 T(1)= —F"2+12@T(2)=3+F
140 S(1)=QWJ,1)@S(2)=Q(,2)
150 MAT S=CDIV(S,T)

P will contain the data points representing the
sampling of P. Q will represent P and eventually
P/(—f* + 12 + 3if). Z will represent the solution
to the differential equation.

C will be used in the inverse transformation; T
and S are dimensioned to be complex scalars for
use in the complex division.

1 0
C is now the matrix .

0 -1

This is the sampling routine that assigns to P the
values of the complex-valued function
represented by the right-hand sides of lines 70
and 80, sampled at 64 equally spaced points.

Q now represents P.

F represents the frequency variable and spans the
full range of frequencies, positive and negative,

that we expect to occur in P.

J represents the number of the row in the Q array

where the amplitude of the frequency F' is

stored.

T will be the denominator and

S the numerator in the complex fraction.
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160 Q(J,1)=S(1)@Q(J,2)=S(2)

170 NEXT F Q now represents P/(—f% + 3if + 12).

180 MAT Q=Q+C This is the procedure that assigns to Z the values
of the inverse finite Fourier transform of Q.

190 MAT Z=FOUR(Q)
200 MAT Z=2+C
210 MAT Z=(64)+Z
220 DISP “THE VALUES ARE’
230 MAT DISP USING “X,DDDD.D” ; Z The values displayed will represent the complex

values of the steady state solution of the
differential equation, sampled at 64 equally
spaced points in one period.

Fourier Sine/Cosine Series

There is another transform closely related to the finite Fourier transform that is applicable when the

data points Z, are purely real (that is, their imaginary parts are equal to zero). This is the Fourier

series transformation, which takes a set of 2N (real) data points Z, Z,, ..., Z,5 _, and returns a set of

N + 1 real values A\, Ay, ..., Ay, By, ..., By with the property that

4, X ok . 27jk
Zk=7+]_§1 AjCOS?JVL+BjSan'

If Wy, Wi, ..., Won | are the complex values of the finite Fourier transform of the real data points Z,,

..., Zyn _ 1, then the Fourier series values are given by

Aj=2Re(Wj) forj=20,..., N,

B]- = —2Im(Wj) forj=1,..., N.
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Owner’s Information

 

CAUTIONS

Do not place fingers, tools, or other objects into the plug-in ports. Damage to plug-in module contacts

and the computer’s internal circuitry may result.

Turn off the computer (press [SHIFTJ[ATTN]) before installing or removing a plug-in module.

If a module jams when inserted into a port, it may be upside down. Attempting to force it further may

result in damage to the computer or the module.

Handle the plug-in modules very carefully while they are out of the computer. Do not insert any ob-

jects in the module connecter socket. Always keep a blank module in the computer’s port when a

module is not installed. Failure to observe these cautions may result in damage to the module or the

computer.  
 

Limited One-Year Warranty

What We Will Do

The Math Pac is warranted by Hewlett-Packard against defects in materials and workmanship affect-

ing electronic and mechanical performance, but not software content, for one year from the date of

original purchase. If you sell your unit or give it as a gift, the warraaty is transferred to the new owner

and remains in effect for the original one-year period. During the warranty period, we will repair or, at

our option, replace at no charge a product that proves to be defective, provided you return the product,

shipping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of

service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.

ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED

TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces,

129
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or countries don’t allow limitations on how long an implied warranty lasts, so the above limitation may

not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE

FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclu-

sion or limitation of incidental or consequential damages, so the above limitation may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which may vary from

state to state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a

consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be

determined by statute.

Obligation To Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard

shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard

dealer or a Hewlett-Packard sales and service office. Should you be unable to contact them, please

contact:

e In the United States:

Hewlett-Packard Company

Portable Computer Division

1000 N.E. Circle Blvd.

Corvallis, OR 97330

Telephone: (503) 758-1010

Toll-Free Number: (800) 547-3400

(except in Oregon, Hawaii, and Alaska)

¢ In Europe:

Hewlett-Packard S.A.

150, route du Nant-d’Avril

P.O. Box CH-1217 Meyrin 2

Geneva

Switzerland

Telephone: (022) 83 81 11

Note: Do not send products to this address for repair.
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¢ In other countries:

Hewlett-Packard Intercontinental

3495 Deer Creek Rd.

Palo Alto, CA 94304

U.S.A.

Telephone: (415) 857-1501

Note: Do not send products to this address for repair.

Service

Service Centers

Hewlett-Packard maintains service centers in most major countries throughout the world. You may

have your product repaired at a Hewlett-Packard service center any time it needs service, whether the

unit is under warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard computer products normally are repaired and reshipped within five (5) working days

of receipt at any service center. This is an average time and could vary depending on the time of year

and work load at the service center. The total time you are without you product will depend largely on

the shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational devices is lo-

cated in Corvallis, Oregon:

Hewlett-Packard Company

Service Department

P.O. Box 999

Corvallis, OR 97339, U.S.A.

or

1030 N.E. Circle Blvd.

Corvallis, OR 97330, U:S.A.

Telephone: (503) 757-2000
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Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer

where you purchased your unit.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H.

Kleinrechner-Service

Wagramerstrasse-Lieblgasse 1

A-1220 Wien (Vienna)

Telephone: (0222) 23 65 11

BELGIUM

HEWLETT-PACKARD BELGIUM SA/NV

Woluwedal 100

B-1200 Brussels

Telephone: (02) 762 32 00

DENMARK

HEWLETT-PACKARD A/S

Datavej 52

DK-3460 Birkerod (Copenhagen)

Telephone: (02) 81 66 40

EASTERN EUROPE

Refer to the address listed under Austria.

FINLAND

HEWLETT-PACKARD QY

Revontulentie 7

SF-02100 Espoo 10 (Helsinki)

Telephone: (90) 455 02 11

FRANCE

HEWLETT-PACKARD FRANCE

Division Informatique Personnelle

S.A.V. Calculateurs de Poche

F-91947 Les Ulis Cedex

Telephone: (6) 907 78 25

GERMANY

HEWLETT-PACKARD GmbH

Kleinrechner-Service

Vertriebszentrale

Berner Strasse 117

Postfach 560 140

D-6000 Frankfurt 56

Telephone: (611) 50041

ITALY

HEWLETT-PACKARD ITALIANA S.P.A.

Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

1-20063 Cernusco Sul Naviglio (Milan)

Telephone: (2) 90 36 91

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V.

Van Heuven Goedhartlaan 121

N-1181 KK Amstelveen (Amsterdam)

P.O. Box 667

Telephone: (020) 472021

NORWAY

HEWLETT-PACKARD NORGE A/S

P.O. Box 34

Oesterndalen 18

N-1345 Oesteraas (Oslo)

Telephone: (2) 17 11 80

SPAIN

HEWLETT-PACKARD ESPANOLA S.A.

Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

SWEDEN

HEWLETT-PACKARD SVERIGE AB

Skalholtsgatan 9, Kista

Box 19

S-163 93 Spanga (Stockholm)

Telephone: (08) 750 20 00

SWITZERLAND

HEWLETT-PACKARD (SCHWEIZ) AG

Kleinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057) 31 21 11

UNITED KINGDOM

HEWLETT-PACKARD Ltd

King Street Lane

GB-Winnersh, Wokingham

Berkshire RG11 5AR

Telephone: (0734) 784 774
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International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you

bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is avail-

able in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local

Hewlett-Packard service center to see if service is available for it. If service is unavailable, please ship

the unit to the address listed above under Obtaining Repair Service in the United States. A list of

service centers for other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and

materials. In the United States, the full charge is subject to the customer’s local sales tax.

Computer products damaged by accident or misuse are not covered by the fixed repair charge. In these

cases, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period

of 90 days from date of service.

Shipping Instructions

Should your product require service, return it with the following items:

e A completed Service Card, including a description of the problem.

e A sales receipt or other documentary proof of purchase date if the one-year warranty has not

expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of pur-

chase date should be packaged in adequate protective packaging to prevent in-transit damage. Such

damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the

shipment to the service center. The packaged product should be shipped to the nearest Hewlett-

Packard designated collection point or service center. Contact your dealer for assistance.

Whether the product is under warranty or not, it is your responsibility to pay shipping charges for

delivery to the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the product with postage prepaid. On

out-of-warranty repairs in the United States and some other countries, the product is returned C.0O.D.

(covering shipping costs and the service charge).
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Further Information

Service contracts are not available. Computer products circuitry and design are proprietary to Hewlett-

Packard, and service manuals are not available to customers. Should other problems or questions arise

regarding repairs, please call your nearest Hewlett-Packard service center.

Technical Assistance

The keystroke procedures and program material in this manual are supplied with the assumption that

the user has a working knowledge of the concepts and terminology used. Hewlett-Packard’s technical

support is limited to explanations of operating procedures used in the manual and verification of an-

swers given in the examples. Should you need further assistance, you may write to:

Hewlett-Packard Company

Portable Computer Division

Customer Support

1000 N.E. Circle Blvd.

Corvallis, OR 97330
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Memory Requirements

The Math Pac reserves 52 bytes of read/write memory for its own uses. In addition to this 52-byte

“overhead” and the memory required to dimension the arrays and variables you use with the keywords

(described in appendix D of the HP-75 Owner’s Manual), certain Math Pac operations use additional

memory during their operation. After the operation is completed, the memory is again available for

your use. The tables below provide you with the memory requirements for those keywords whose oper-

ation requires additional temporary memory.

 

Item Memory Required During Operation
 

T L
1
— s H

DET

IH  

ESZTRE£CM, HI requires:

e One byte if M = 0.

o IMTCLOGARCM, M + 1 bytes otherwise. This is the number of digits needed to

represent M (decimal) in base N.

Requires additional memory only if an operand array is used for the result array. If A is

an M x N matrix and B is R X S matrix:

o MAT FA=FA%A requires T » M? bytes.

e MAT H=H¥Erequires T =+ M « S bytes.

e MAT H=E¥H requires T =+ R +« N bytes.

8if Ais FEHL.

where T =< 4 if Ais SHORET.

ifAis IMNTEGEFR.

If Alis an N x N matrix, DET < H 3 requires 2N (4N + 1) bytes.

If Ais an N x N matrix, MAT E=IHWIH? requires:

e 4N bytes if B is FEHL.

e AN (2N + 1) bytes if B is =HIET or IMTEGER.

If Ais an N x N matrix and B is an N x P matrix, FHT C==Z%= oM, BHY requires

4N (2N + 4P + 1) bytes.   
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Item Memory Required During Operation

LUFHCT If Ais an N x N matrix, MAT E=LUFHACTCHrequires:

e 2N bytes if Bis FEAL.

e 2N (4N + 1) if Bis “HOFET or IMTEGEE.

CRMULT Same as #.

COET If Aisan N x 2N array, MAT Z=C0OETCHX requires 16N? bytes.

T HA If Aisan N x 2N array, MAT E=CIHWCHY requires 8N (4N + 1) bytes.

Ly o If Ais an N x 2N array and B is an N x 2P array, MAT C=Co%ooH, EY requires

8N (4N + 4P + 1) bytes.

FROOT If P is an array with N + 1 elements representing a polynomial of degree N,

MAT E=FFEOOTCF I requires 22N + 267 bytes.

FOUE If Aisan N x 2 array, MAT E=FOLECH? requires:

e No additional memory if B is FEHL.

e 16N bytes if Biis =HIFET or IMTEGEFR.

ITHTEGEAL ITHTEGEALCH, B, E ., FHF =11 requires 333 bytes.

FHEOOT FHEOOTCR, B, FHF <X requires 87 bytes.
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Number Error Message and Condition

1 Frdm too =mall

o |Result| < 1E—499.

2 P too 1lar oo

o |Result| > 9.99999999999E499.

o MHT L=THW WL, FIAT D=0 TRV PMHT U=l URROT OV

MAT U=y S0lWa) MAT U=0syYS oyWy

DET WS MAT U=COETOW

The matrix V is singular (that is, its determinant is zero) and the LU decomposition of V

requires division of a non-zero number by zero. This does not always indicate that the

results of the operation are invalid. In particular, the results of [IET and CIE T will be

valid. The results of the other operations should be checked when this error occurs.

11 ara out of rangs

o HDOSHIHI X < 1.

o ATAMH I a: |X| > 1.

o LUOGHCH BB =1.

o MHT Z=CDIVOW, Wi MAT Z=CEECFIW:: V= (0, 0).

o MAT Z=CFOMERECH, V2 W=(0, 0) and Re(V) < 0.

o BEETESIM, Hi: M = 999,999,999,999.5.

o EIVHLCESE, M (value) > 999,999,999,999.

12 LOGod

o L ULE X =

o LIGH X=0o0orB=0

o MAT Z=CLOG 0, 0
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Number Error Message and Condition

13 LOGYnea number 2

o LOGZOH>: X < 0.

o LOGAHCX , EBEx: X < 0orB < 0.

89 nad parameter

o EVALCEF My, ESTEF M, H>: rounded integer value of N not equal to 2, 8, or 16.

o EVHALCE#,H: B$ not a valid number in base N.

e ESZTREFIM, HI: M < 0.

e MAT H=I10H "redimensioning subscript(s) :,

MAT HA=C0HCredimensioning subscript(s) *,

MAT HA=ZEFCredimensioning subscript(s) :,

FEDIM H<redimensioning subscript(s) ::

rounded integer value of one or both subscripts is less than the option base in effect.

o LEHDCA, My, LEMDCA, M3 rounded integer value of N not equal to 1 or 2.

e MAT RE=CEOOTOF, MY rounded integer value of N not positive.

201 Fesglt dimension

o MAT H=COMCL, i, MAT A=ZERC1, i3, MAT A=ITDOHCL, 153,

FREDIM A1, 0% A singly subscripted.

o MAT A=COMCLY MAT A=ZERECi1:, FEDIM H<13: A doubly subscripted.

e MAT H=operation (operand array(s)): number of subscripts of A not the same as the

number of subscripts required for the result of the operation.

202 @Eiglt size

e KEDIM Hiredimensioning subscript(s):,

MAT H=COM Credimensioning subscript(s)

MAT HA=ZEFECredimensioning subscript(s) :,

MAT H=I1D0Hredimensioning subscript(s) ::

number of elements in the redimensioned array greater than the total number of

elements given to it in a dimensioning statement.

e MMHT H=operation: operand array(s) ::

total number of elements in A (as given in its original dimensioning statement) less than

the number of elements needed to store the results of the operation.
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Number Error Message and Condition
 
 

 

203 conformability

e MHAT H=E+C, MAT HA=E-C: B and C not conformable for addition (the number of

rows are unequal or the number of columns are unequal).

° MHT H=BFC, MAT ==Z%ZCE,C>»: B and C not conformable for multiplication (the

number of columns of B is not equal to the number of rows of C).

e DIOTOH, E»: number of elements of A not equal to the number of elements of B.

o MAT E=CHMULTOAR,EY, MAT ==CSYSC0A, B3 number of columns of A not

equal to twice the number of rows of B.

204 ot Equar e

o DETOHY, MAT H=SYSOA, By MAT BE=IHVOAD,

MAT E=LUFACTCAY, MAT A=IT0H:

number of rows of A not equal to the number of columns.

o MAT A=I0OMCL, ji:1i # |

o MHAT FE=CIMVOHY MAT E=CSYSOR, B MAT A=CIOH, MAT B=CD0ETOA:

number of columns of A not equal to twice the number of rows.

205 Frot et o

o MAT w=CREOZZOA, B DOTOA, B3 A or B not singly subscripted.

206 Pt EeET Tor

o MHT H=CEOSZS{H,E*: A or B not three dimensional.

207 cperand dimension

o MHT H=IDH1: only one redimensioning subscript specified.

Be DIET! , AT A=COETOBEX MAT ==

MAT HA=LUFACT OB, MAT HA=TEHCEX MAT A=CTEHOE:

MAT A=CIHV OB MAT HA=IHVCEX MAT A=FOURCE::
   

B not doubly subscripted.

o FMAT FE=CHMMULTOR, B MAT E=CSYSOif, B

A or B not doubly subscripted.
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Number
 

Error Message and Condition
 

208

209

210 

operand =517 T

-
e MAT F=complex function: < : Z not a complex scalar.

* MAT F=complex function: = .l : Z or W not a complex scalar.

e AT E=CEOOTCZ, MY Z not a complex scalar.

e MAT RE=FEOOTCF: P contains exactly one element (and so represents a polynomial

of degree zero).

MAT E=COETCAY, MAT RE=CIHVCAY, MAT E=CTREHOA

A doesn’t have an even number of columns.

MAT E=CHMMULTCA B, MAT ==CSYSOA, B

A or B doesn’t have an even number of columns.

e MAT A=FOURECEX: Bisnotan N x 2 array with N a non-negative integer power of 2.

FEOOT failures

e FEOOT cannot find a root of the specified polynomial.

PEEtlng error

o FHEQOTOH, B, FHF XL 1 user-defined function FHF uses the FHEDDT keyword in

its definition.

o ITMTEGHEARLOH,E,E, FHFCX2 2 user-defined function FHF uses the THTEGREML

keyword in its definition.
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Keyword Page Description

HE=LIM 41 Sum of the absolute values of array elements.

HZO=H 13  Inverse hyperbolic cosine.

HIMH= 41 Largest element of an array.

HMIH 41 Smallest element of an array.

HZITHH 13  Inverse hyperbolic sine.

HTHHH 14  Inverse hypererbolic tangent.

EZTES® 20 Decimal to binary/octal/hexadecimal conversion.

ELVAL 20 Binary/octal/hexadecimal to decimal conversion.

CROOS 71 Complex inverse cosine.

CHCOSH 71 Complex inverse hyperbolic cosine.

CROD 63 Complex scalar addition.

CHZIH 70  Complex inverse sine.

CHZIHH 71 Complex inverse hyperbolic sine.

CHTHMH 72  Complex inverse hyperbolic tangent.

CHTH 71 Complex inverse tangent.

Coos 68 Complex cosine.

CoOEH 69  Complex hyperbolic cosine.

COET 80 Determinant of a complex matrix.

CoIw 63  Complex division.

CEHF 67 Complex exponential.

CIOH 80 Complex identity matrix.

ST R 80 Complex matrix inversion.

CLOG 70  Complex logarithm.

CHMULT 79  Complex matrix multiplication.

CRULT 63 Complex scalar multilication.

CHOREM 40 One-norm (column norm) of an array.

COH 25 Constant value array.

DM 62  Complex conjugation.

COEH 13  Hyperbolic cosine.

CROMER 70  Complex power of a complex number.

CRFTOR 62  Polar to rectangular conversion.
 

141

 



142 Keyword Index

 

  
 

 

Keyword Page Description

CEECF 64  Complex reciprocal.

CEOOT 72  Roots of a complex number.

CREOSS 35  Vector (cross) product.

CETOF 62  Rectangular to polar conversion.

CEIH 68 Complex sine.

LSRR 70  Complex square root.

CEIHH 69  Complex hyperbolic sine.

CEUE 63 Complex scalar subtraction.

CElM 35 Column sum of an array.

Zms 81 Complex system solution.

CTHH 68 Complex tangent.

CTHHH 69 Complex hyperbolic tangent.

CTEH 80 Complex conjugate transpose of a matrix.

DETL 45  Determinant of the last matrix.

DET 45  Determinant of a matrix.

ODI=F 27  Display an array in standard format.

ODI=F USIHG 28 Display an array using custom format.

ooT 42 Dot product.

FACT 15  Factorial/gamma function.

FOUR 121 Finite Fourier transform.

FHORM 40  Frobenius norm of a matrix.

FHGUESS 102  Second-best guess to value returned by FHEDOIT.

FHEOOT 101 Solution of f(x) = 0.

TEOUHD 110  Uncertainty of last-completed integration.

TOH 26  Identity matrix.

THFUT 27  Assign array values from keyboard entries.

IHTEGEAL 109  Definite integral of user-defined function.

TH 34  Matrix inversion.

ITWALUE 110  Current aproximation to an integral.

LEHD 42  Lower bound of array subscripts.

LOGH 14  Variable-base logarithm.

LOGs 14  Base-2 logarithm.

LUFHCT 47 LU decomposition.

MAAE 41 Maximum absolute value of array elements.

MIMHE 41 Minimum absolute value of array elements.

FREIMT 28  Print an array in standard format.

FEIMNT USIHG 28  Print an array using custom format.

FROOT 90 Roots of a polynomial.

FEAD 26 Read array values from 1H TH statements.

FEEDODIM 24 Redimension an array.
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Keyword Page Description

FHOREM 40 Infinity norm (row norm) of an array.

FOLHD 14  Round.

Rzl 35 Row sum of an array.

= THH 13  Hyperbolic sine.

=L 40 Sum of array elements.

g 54  System solution.

THHH 13  Hyperbolic tangent.

TEH 35 Transpose of a matrix.

TEUHCATE 15  Truncate.

LEHD 42 Upper bound of array subscripts.

ZEF 25  Zero array.

= 25  Simple assignment.

=03 25  Numeric-expression assignment.

= 33  Array negation.

33  Array addition.

- 34  Array subtraction.

¥ 34  Array multiplication.

i 34  Scalar-array multiplication.  
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