Math Pac
 Quick Reference Guide

For Use With the HP-75

Contents

Real Scalar Functions 1
Base Conversions 3
Array Input and Output 4
Matrix Algebra 8
Real-Valued Matrix Functions 11
LU Decomposition 13
Solving a System of Equations 13
Complex Variables 14
Complex Functions 16
Complex Matrix Operations 20
Finding Roots of Polynomials 22
Solving $f(x)=0$ 22
Numerical Integration 23
Finite Fourier Transform 24
Error Conditions 24
Real Scalar Functions
Hyperbolic Functions
EIHH numeric expression Hyperbolic Sine
Hyperbolic Cosine Hyperbolic Tangent Inverse Hyperbolic Sine Inverse Hyperbolic Cosine
HTHHH (numeric expression)

```
LGGe<x
```

where X is a numeric expression $(X>0)$.

```
LOGF(X,B)
where }X\mathrm{ is a numeric expression (X>0) and
    B is a numeric expression (B>0 and B}=1\mathrm{ ).
```


Rounding and Truncating Functions

ROUND
 Round

```
ROUH[CX,N
```

where X, N are numeric expressions.
If N is positive, rounds X to N digits to the right of the decimal point. If N is negative, rounds X to N digits to the left of the decimal point.

TRUNCATE

TRUHCHTE X, N
where X, N are numeric expressions.
If N is positive, truncates X to N digits to the right of the decimal point. If N is negative, truncates X to N digits to the left of the decimal point.

Factorial/Gamma Function

FACT Combined Factorial and Gamma Functions
FHCTC
where X is a numeric expression not equal to a negative integer.

If X is a positive integer, returns X ! Otherwise, returns $\Gamma(X+1)$.

Base Conversions

BSTR\$
Decimal to Binary, Octal, or Hexadecimal Conversion

```
ESTR事决
```

where X is a numeric expression with a positive value less than $999,999,999,999.5$ and N is a numeric expression with a rounded integer value of 2,8 , or 16.

Converts the rounded integer value of X (decimal) into the equivalent base N string.

BVAL

Binary, Octal, or Hexadecimal to Decimal Conversion

EUHL S S
where $S \$$ is a binary, octal, or hexadecimal string expression and N is a numeric expression whose rounded integer value is 2,8 , or 16 respectively.

Converts a string expression $S \$$, representing a number expressed in base N, into the equivalent decimal number. The value of the decimal equivalent can't exceed 999,999,999,999 (decimal).

Array Input and Output

REDIM

Redimensioning

$$
\begin{aligned}
& \text { EEDIMA} \begin{array}{l}
\mathbf{A} i \\
\mathbf{C} k, l
\end{array}\left[\begin{array}{l}
\mathbf{B} j \\
\mathbf{D} m, n
\end{array}\right] \ldots \\
& \text { where } \mathbf{A}, \mathbf{B} \text { are vectors, and } \mathbf{C}, \mathbf{D} \text { are matrices, and } i, j, k, \\
& \quad l, m, n \text { are numeric expressions. }
\end{aligned}
$$

Redimensions arrays and reassigns values in row order. A redimensioning subscript can be a numeric expression; its rounded integer value becomes the upper bound of the corresponding subscript.

The total number of elements in the redimensioned array can't exceed the total number of elements the array was given in a dimension statement.

Assignments

CON
Constant Array

$$
\begin{aligned}
& \text { MAT } \mathbf{A}=\mathrm{COH}[\text { redimensioning subscript }(\mathrm{s})] \\
& \text { where } \mathbf{A} \text { is an array. }
\end{aligned}
$$

Assigns a value of one to every element of A. If redimensioning subscripts are present, redimensions \mathbf{A} just as REDIN would.

IDN

Identity Matrix

```
MHT \(\mathbf{A}=\mathrm{I}\) [H
MAT \(B=I D N C X, Y\) ?
```

where \mathbf{A} is a square matrix;
or \mathbf{B} is a matrix and X, Y are numeric expressions with the same rounded integer value.

For a square matrix A, assigns a value of one to every element on the diagonal of \mathbf{A} and assigns a value of zero to every other element.

For a matrix \mathbf{B}, redimensions \mathbf{B} to a square matrix with the upper bound of each subscript equal to the rounded integer value of X and Y; then assigns a value of one to every element on the diagonal of \mathbf{B} and assigns a value of zero to every other element.

ZER

Zero Array

$$
\begin{aligned}
& \text { MAT } \mathbf{A}=Z E R[\text { redimensioning subscript(s) }] \\
& \text { where } \mathbf{A} \text { is an array. }
\end{aligned}
$$

Assigns a value of zero to every element of A. If redimensioning subscripts are present, redimensions \mathbf{A} just as REDIM would.

$$
\begin{aligned}
& =\quad \text { Simple Assignment } \\
& \hline \text { MAT } \mathbf{A}=\mathbf{B} \\
& \text { where } \mathbf{A}, \mathbf{B} \text { are both vectors, or } \mathbf{A}, \mathbf{B} \text { are both matrices. }
\end{aligned}
$$

Redimensions \mathbf{A} to be the same size as \mathbf{B} and assigns to \mathbf{A} the corresponding values from \mathbf{B}.

$$
\operatorname{MHT} \mathrm{A}=\mathrm{C}
$$

where \mathbf{A} is an array and X is a numeric expression.
Assigns the value of X to every element of \mathbf{A}.

Array Input

INPUT
Assign Values From Keyboard Input

```
MHT IHFUT A[,B] ...
where \(\mathbf{A}, \mathbf{B}\) are arrays.
```

Assigns values to the specified array(s) by prompting with the name of an array element and then accepting a number from the keyboard as the value of that element. For each array, prompts are given for the elements in row
order; if there is more than one array, they are handled in the order specified.

READ
Assign Values From Data Statements

```
MHT EEGO A[,B] ...
```

where A, B are arrays.
Assigns values to the specified array(s) by reading from one or more पHTH statements in the same program as the NHT REAO statement. Operation is similar to REFD keyword in the HP-75. For each array, elements are assigned values in row order; if there is more than one array, they are filled in the order specified.

Array Output

DISP

Display in Standard Format

$$
\operatorname{MAT} \operatorname{GISF} \mathbf{A}[: \quad \mathbf{B}] \cdots\left[\begin{array}{l}
: \\
:
\end{array}\right]
$$

where A, B are arrays.
Displays the values of the elements of the specified arrays. The values are displayed in row order. Each row begins on a new line; a blank line is displayed between the last row of an array and the first row of the next array. The choice of terminator-comma or semicolon-determines the spacing between the elements of an array.

Terminator

Spacing Between Elements

Close: Elements are separated by two spaces. A minus sign, if present, occupies one of the two spaces.

Wide: Elements are placed in 21column fields.

If the last array specified doesn't have a terminator, the array will be displayed with wide spacing between elements.

MHT FEIHT $\mathbf{A}\left[\begin{array}{l}; \\ \boldsymbol{B}\end{array}\right] \ldots\left[\begin{array}{l}! \\ !\end{array}\right]$

where A, B are arrays.
Prints the values of the elements of the specified arrays. Operation is identical to UHT UISF except that the output is sent to the PRIHTER IS device. (If no PRINTER IS device present, the output is sent to the DISFLAY IS device.)

DISP USING
Display Using Custom Format

Displays the values of the elements of the specified arrays in a format determined by the format string or by the specified IMAGE statement. (Refer to section 16 of the HP-75 Owner's Manual for a description of DISF USING, format strings, IMFGE statements, and their results.)

The values are displayed in row order. Each row begins on a new line; a blank line is displayed between the last row of an array and the first row of the next array.

The terminators between the arrays-commas or semicolons-serve only to separate the arrays and have no effect on the display format.

MAT FRINT UEING	format string statement number A
where A, B are arrays.	$\left[\begin{array}{ll} : & \mathbf{B} \end{array}\right] \cdots\left[\begin{array}{l} \\ : \end{array}\right]$

Prints the values of the elements of the specified arrays in a format determined by the format string or by the specified INHGE statement. Operation is identical to that of MAT UIEF USIHG except that the output is sent to the FRINTER IS device. (If no FRINTER IS device is present, the output is sent to the IISFLAY IS device.)

Matrix Algebra

Arithmetic

= -
Negation
MAT $\mathbf{A}=-\mathbf{B}$
where A, B are both vectors or both matrices.
Redimensions \mathbf{A} to be the same size as \mathbf{B} and assigns to each element of \mathbf{A} the negative of the corresponding element of \mathbf{B}.
$+$
Addition
MAT $\mathbf{A}=\mathbf{B}+\mathbf{C}$
where A, B, C are all vectors or all matrices, and B, C are conformable for addition.

Redimensions \mathbf{A} to be the same size as \mathbf{B} and \mathbf{C}, and assigns to each element of \mathbf{A} the sum of the values of the corresponding elements of \mathbf{B} and \mathbf{C}.

MHT $\mathbf{A}=\mathbf{B}-\mathbf{C}$

where A, B, C are all vectors or all matrices, and B, C are conformable for addition.

Redimensions \mathbf{A} to be the same size as \mathbf{B} and \mathbf{C}, and assigns to each element of \mathbf{A} the difference of the values of the corresponding elements of \mathbf{B} and \mathbf{C}.

Matrix Multiplication

$$
\text { MनT } \mathbf{A}=\mathbf{B} \ddagger \mathbf{C}
$$

where \mathbf{B} is a matrix, \mathbf{A}, \mathbf{C} are both vectors or both matrices, and B, C are conformable for multiplication.

Redimensions \mathbf{A} to have the same number of rows as \mathbf{B} and the same number of columns as \mathbf{C}, and assigns to \mathbf{A} the values corresponding to the matrix $\mathbf{B C}$.

Multiplication by a Scalar

$$
\text { MRT } \mathbf{A}=X \text { : } \mathbf{B}
$$

where A, B are both vectors or both matrices, and X is a numeric expression.

Redimensions \mathbf{A} to be the same size as \mathbf{B} and assigns to each element of \mathbf{A} the product of the value of X and the value of the corresponding element of \mathbf{B}.

Operations

CROSS

Cross Product

$$
\text { MHT } \mathbf{A}=\mathrm{COSSCB}, \mathbf{C}
$$

where B, C are both vectors having three elements and A is a vector.

Redimensions \mathbf{A} to have exactly three elements and assigns to \mathbf{A} the values of the cross product $\mathbf{B} \times \mathbf{C}$.

```
MAT A=CSUMCB
where A, B are arrays.
```

If \mathbf{A} is a vector, redimensions \mathbf{A} to have as many elements as there are columns in \mathbf{B}; if \mathbf{A} is a matrix, redimensions A to have as many columns as \mathbf{B} and exactly one row. Assigns to each element in \mathbf{A} the sum of the values in the corresponding column of \mathbf{B}.

INV
Matrix Inverse
WHT $\mathbf{A}=\mathrm{IHU}$ (\mathbf{B}
where \mathbf{A} is a matrix and \mathbf{B} is a square matrix.
Redimensions \mathbf{A} to be the same size as \mathbf{B} and assigns to \mathbf{A} the values of the matrix inverse of \mathbf{B}.

RSUM
Row Sum

```
NHT A=FSUHCB
where A, B are arrays.
```

If \mathbf{A} is a vector, redimensions \mathbf{A} to have as many elements as there are rows in \mathbf{B}; if \mathbf{A} is a matrix, redimensions \mathbf{A} to have as many rows as \mathbf{B} and to have exactly one column. Assigns to each element of \mathbf{A} the sum of the values in the corresponding row of \mathbf{B}.

```
NHT A=TEHCB
where A, B are matrices.
```

Redimensions \mathbf{A} to be the same size as the matrix transpose of \mathbf{B} and assigns to \mathbf{A} the values of the matrix transpose of \mathbf{B}.

Real-Valued Matrix Functions

Determinants

DET

Determinant
[ETGA
where \mathbf{A} is a square matrix.

Returns the determinant of the matrix \mathbf{A}.

DETL

Determinant of Last Matrix

DETL

Returns the determinant of the last matrix that was:

- Inverted in a MHT. . . IHU statement.
- Decomposed in a MAT. . LUFHET statement.
- Used as the first argument of a MHT: : S statement.
[ETL retains its value (even if your HP-75 is turned off) until another MET:.IHU, MAT: LIFFGT, or HHT. . SYS statement is executed.

Matrix Norms

AESU|carray Array Element Absolute Value Sum Returns the sum of the absolute values of all elements.

AHAX array Array Element Maximum Returns the value of the maximum element.

HMIHarray
Array Element Minimum
Returns the value of the minimum element.
CHDRM, array
One-Norm (Column Norm)
Returns the maximum value (over all columns) of the sums of the absolute values of all elements in a column.

Returns the square root of the sum of the squares of all elements.

MHREE array Array Element Maximum Absolute Value

 Returns the value of the largest element (in absolute value).
MINHE array Array Element Minimum Absolute Value

 Returns the value of the smallest element (in absolute value).EHOEH array Infinity Norm (Row Norm) Returns the maximum value (over all rows) of the sums of the absolute values of all elements in a row.

Sulcarray

Array Element Sum
Returns the sum of the values of all elements.

Inner Product

DOT
Inner (Dot) Product

```
DOT X Y
where X, Y are vectors with the same number of
    elements.
```

Returns $\mathbf{X} \bullet \mathbf{Y}$, the inner product of \mathbf{X} and \mathbf{Y}.

Subscript Bounds

LBND
Subscript Lower Bound

```
    LEHIGA N
    where A is an array and N is a numeric expression whose
    rounded integer value is 1 or 2.
Returns the option base in effect when \(\mathbf{A}\) was dimensioned. If \(\mathbf{A}\) is a vector, \(\mathrm{LE}+\mathrm{I}(\mathrm{H}, \bar{z}=-1\).
```

```
UEHDCA \(N\)
```

where \mathbf{A} is an array and N is a numeric expression whose rounded integer value is 1 or 2 .

Returns the upper bound of the N th (first or second) subscript of \mathbf{A}. If \mathbf{A} is a vector, $\triangle E N \square \subset A, 2)=-1$.

LU Decomposition

LUFACT

LU Decomposition
MAT $\mathbf{A}=\mathrm{LUFROTCB}$
where \mathbf{A} is a matrix and \mathbf{B} is a square matrix.
Redimensions \mathbf{A} to be the same size as \mathbf{B} and assigns to \mathbf{A} the values of the $L U$ decomposition of \mathbf{B} :

- The elements in A that are above the diagonal have the same value as the corresponding elements in \mathbf{U}.
- The elements in A that are on or below the diagonal have the same value as the corresponding elements in L.

Solving a System of Equations

$$
\text { MAT } \mathbf{X}=\mathrm{SYSCA} \mathbf{B}
$$

where \mathbf{A} is a square matrix, \mathbf{X}, \mathbf{B} are both vectors or both matrices, and A, B are conformable for multiplication.

Redimensions \mathbf{X} to be the same size as \mathbf{B} and assigns to \mathbf{X} the values that satisfy the matrix equation $\mathbf{A X}=\mathbf{B}$.

Complex Variables

Polar/Rectangular Conversions

CPTOR
Polar to Rectangular Conversion

```
MHT Z=EFTOF(A)
where \(\mathbf{A}\) is an array with two elements and \(\mathbf{Z}\) is an array.
```

Redimensions \mathbf{Z} to be a complex scalar; then assigns to the first element of \mathbf{Z} the real part, and to the second element of \mathbf{Z} the imaginary part, of the complex number R $\exp (i \theta)$, where R is the value of the first element of \mathbf{A} and θ is the value of the second element of \mathbf{A}.
θ will be interpreted as degrees or radians, according to the GFTIOH FHGLE in effect.

CRTOP
Rectangular to Polar Conversion

```
MHT A=GETGFCZ)
```

where \mathbf{Z} is a complex scalar and \mathbf{A} is an array.
Redimensions \mathbf{A} to be a complex scalar; then assigns to the first element of \mathbf{A} the magnitude, and to the second element of \mathbf{A} the angle, of the complex number $x+i y$, where x is the value of the first element of \mathbf{Z} and y is the value of the second element of \mathbf{Z}.

The angle will be given in degrees ($-180<\theta \leqslant 180$) or in radians ($-\pi<\theta \leqslant \pi$) according to the OFTI OH FHGLE in effect.

Complex Arithmetic Operations

CADD
Complex Addition

$$
\text { NAT } \mathbf{Z}=\mathrm{GACIC} \mathbf{W}, \mathbf{U}
$$

where \mathbf{W}, \mathbf{U} are complex scalars and \mathbf{Z} is an array.
Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex number $\mathbf{W}+\mathbf{U}$.

$$
\begin{aligned}
& \text { MAT } \mathbf{Z}=\mathrm{C} I \mathrm{I} \mathbf{W}, \mathbf{U} \\
& \text { where } \mathbf{W}, \mathbf{U} \text { are complex scalars }(\mathbf{U} \neq(0,0)) \text { and } \mathbf{Z} \text { is an } \\
& \quad \text { array. }
\end{aligned}
$$

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex number \mathbf{W} / \mathbf{U}.

CMULT

Complex Multiplication

$$
\begin{aligned}
& \text { MAT } \mathbf{Z}=\mathrm{CHULT} \mathbf{W}, \mathbf{U} \\
& \text { where } \mathbf{W}, \mathbf{U} \text { are complex scalars and } \mathbf{Z} \text { is an array. }
\end{aligned}
$$

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex number $\mathbf{W} * \mathbf{U}$.

CONJ

Complex Conjugation

```
MAT Z=COH|EW
where W is a complex scalar and \mathbf{Z}}\mathrm{ is an array.
```

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex conjugate of \mathbf{W}.

CRECP
Complex Reciprocal

```
NHT Z=CRECFCW
where W is a complex scalar (W \not=(0,0)) and Z is an
    array.
```

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex number $1 / \mathbf{W}$.

CSUB

Complex Subtraction

```
MHT Z=CSUECW,U
where \(\mathbf{W}, \mathbf{U}\) are complex scalars and \(\mathbf{Z}\) is an array.
```

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex number $\mathbf{W}-\mathbf{U}$.

Complex Functions

Simple Transcendental Functions

CCOS
Complex Cosine

```
MAT Z=ccoscw
```

where \mathbf{W} is a complex scalar and \mathbf{Z} is an array.
Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex cosine of \mathbf{W}.

CCOSH

Complex Hyperbolic Cosine

```
MHT Z=COOSHCW
where \mathbf{W}}\mathrm{ is a complex scalar and Z is an array.
```

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex hyperbolic cosine of \mathbf{W}.

CEXP
Complex Exponential
MAT $\mathbf{Z}=\mathrm{CE} \mathrm{EF} \mathbf{W}$
where \mathbf{W} is a complex scalar and \mathbf{Z} is an array.
Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex exponential of \mathbf{W}.

CSIN

```
MHT Z=CSINCW
where \mathbf{W}}\mathrm{ is a complex scalar and Z Z is an array.
```

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex sine of \mathbf{W}.

```
mHT Z=CSIHHCW
```

where \mathbf{W} is a complex scalar and \mathbf{Z} is an array.
Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex hyperbolic sine of W.

CTAN

Complex Tangent

MAT $\mathbf{Z}=\mathrm{CTH} \mathrm{C} \mathbf{W}$

where \mathbf{W} is a complex scalar and \mathbf{Z} is an array.
Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex tangent of \mathbf{W}.

CTANH
Complex Hyperbolic Tangent

```
NHT Z=CTHHHCW
```

where \mathbf{W} is a complex scalar and \mathbf{Z} is an array.
Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the values corresponding to the complex hyperbolic tangent of \mathbf{W}.

Inverse Functions

CACOS
Complex Inverse Cosine

```
NHT Z=CHCOSCW
```

where \mathbf{W} is a complex scalar and \mathbf{Z} is an array.
Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the complex principal value of the inverse cosine of \mathbf{W}.

CACOSH

```
MET Z=C:HCOSHCW
```

where \mathbf{W} is a complex scalar and \mathbf{Z} is an array.
Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the complex principal value of the inverse hyperbolic cosine of \mathbf{W}.

CASIN

Complex Inverse Sine

```
MHT Z=CHSIHCW
where \mathbf{W}}\mathrm{ is a complex scalar and Z is an array.
```

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the complex principal value of the inverse sine of \mathbf{W}.

CASINH

Complex Inverse Hyperbolic Sine

```
MHT Z=EASIHHCW
where \(\mathbf{W}\) is a complex scalar and \(\mathbf{Z}\) is an array.
```

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the complex principal value of the inverse hyperbolic sine of \mathbf{W}.

CATN
Complex Inverse Tangent

$$
\begin{aligned}
& \text { MHT } \mathbf{Z}=\mathrm{CHTH} \mathbf{W} \\
& \text { where } \mathbf{W} \text { is a complex scalar }(\mathbf{W} \neq(0,1) \text { or }(0,-1)) \text { and } \\
& \mathbf{Z} \text { is an array. }
\end{aligned}
$$

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the complex principal value of the inverse tangent of \mathbf{W}.

```
NHT Z=EHTHFHHCW
```

where \mathbf{W} is a complex scalar $(\mathbf{W} \neq(1,0)$ or $(-1,0))$ and \mathbf{Z} is an array.

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the complex principal value of the inverse hyperbolic tangent of \mathbf{W}.

CLOG

Complex Logarithm

```
MAT Z=CLDGCW
where W is a complex scalar (W # (0,0)) and Z is an array.
```

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the complex principal value of the logarithm of \mathbf{W}.

CPOWER

```
MHT V=CFOHERCZ,W
```

where \mathbf{Z}, \mathbf{W} are complex scalars $(\mathbf{Z} \neq(0,0)$ if $\operatorname{Re}(\mathbf{W}) \leqslant 0$) and \mathbf{V} is an array.

Redimensions \mathbf{V} to be a complex scalar and assigns to \mathbf{V} the complex principal value of $\mathbf{Z}^{\mathbf{W}}$.

CSQR
Complex Square Root

```
MHT Z=CSERCW
where W is a complex scalar and \mathbf{Z}}\mathrm{ is an array.
```

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the complex principal value of the square root of \mathbf{W}.

Roots of a Complex Number

CROOT
Roots of a Complex Number

```
MHT R=\EOUT (Z N
where \mathbf{R}}\mathrm{ is a matrix, }\mathbf{Z}\mathrm{ is a complex scalar, and N is a
    numeric expression whose rounded integer value
    is positive.
```

Redimensions \mathbf{R} to be an $P \times 2$ array (where P is the rounded integer value of N) and assigns to \mathbf{R} all the values of $\mathbf{Z}^{(1 / P)}$.

Complex Matrix Operations

CDET

Complex Determinant

```
NHT Z=IDETCA
```

where \mathbf{A} is a square complex matrix (twice as many columns as rows) and \mathbf{Z} is an array.

Redimensions \mathbf{Z} to be a complex scalar and assigns to \mathbf{Z} the complex value of the determinant of the complex matrix represented by \mathbf{A}.

CIDN
Complex Identity Matrix

```
MHT \(\mathbf{A}=\mathrm{CIDH}\)
```

where \mathbf{A} is a square complex matrix (twice as many columns as rows).

Assigns to \mathbf{A} the values of the complex identity matrix. A is not redimensioned.

```
NHT A=CIHUCB
```

where \mathbf{B} is a square complex matrix (twice as many columns as rows) and \mathbf{A} is a matrix.

Redimensions \mathbf{A} to be exactly the same size as \mathbf{B} and assigns to \mathbf{A} the values of the matrix inverse of the complex matrix represented by \mathbf{B}.

CMMULT
Complex Matrix Multiplication

```
NHT A=CNHULTBB
```

where B, C are complex matrices such that there are twice as many columns in \mathbf{B} as there are rows in \mathbf{C}, and \mathbf{A} is a matrix.

Redimensions \mathbf{A} to have the same number of rows as \mathbf{B} and the same number of columns as \mathbf{C}, and assigns to \mathbf{A} the values of the complex matrix product $\mathbf{B C}$.

CSYS

Complex System Solution

$$
\text { NAT } \mathbf{Z}=\mathrm{CYSCA} \mathbf{B}
$$

where \mathbf{A} is a square complex matrix (twice as many columns as rows), \mathbf{B} is a complex matrix with the same number of rows as \mathbf{A}, and \mathbf{Z} is a matrix.

Redimensions \mathbf{Z} to be exactly the same size as \mathbf{B} and assigns to \mathbf{Z} the complex values that solve the complex matrix equation $\mathbf{A Z}=\mathbf{B}$.

CTRN
Complex Conjugate Transpose
MET $\mathbf{A}=$ CTEHC \mathbf{B})
where \mathbf{B} is a complex matrix and \mathbf{A} is a matrix.
Redimensions \mathbf{A} to have half as many rows as \mathbf{B} has columns and twice as many columns as \mathbf{B} has rows-if \mathbf{B} is an $N \times 2 P$ matrix, A will be a $P \times 2 N$ matrix. A will be assigned the values of the complex conjugate transpose of the complex matrix represented by \mathbf{B}.

Finding Roots of Polynomials

PROOT
Roots of a Polynomial

$$
\begin{aligned}
& \text { MHT } \mathbf{R}=\mathrm{FFQOT} \mathbf{P} \\
& \text { where } \mathbf{P} \text { is an array with at least two elements and } \mathbf{R} \text { is a } \\
& \text { matrix. }
\end{aligned}
$$

Redimensions \mathbf{R} to be an $N \times 2$ array (where \mathbf{P} has a total of $N+1$ elements) and assigns to \mathbf{R} the (complex) values of the solutions of the equation $P(x)=0$ (where P is the polynomial of degree N whose coefficients are the values of the elements of \mathbf{P}). The first column of \mathbf{R} will contain the real parts of the roots and the second column will contain the imaginary parts.

Solving $f(x)=0$

FNROOT
Function Root
FHRODT A, B, user-defined function X
where A, B are numeric expressions and X is a numeric variable.

Returns the first value found (starting with guesses A and B) that is a root of the user-defined function or is the best approximation available. This keyword can be used only in a program.

FNGUESS Previous Estimate of Function Root
FHGUESS
Returns the next-to-last value tried as a solution in the most recent FHFOUT statement. FHGUESS retains its value (even if your HP-75 is turned off) until FHFODT is again executed.

```
INTEGEFL A,B,E,user-defined function`X)
where A,B,E are numeric expressions and X is a numeric
    variable.
```

Returns an approximation to the integral from A to B of the specified user-defined function. The relative error E (rounded to the range $1 \mathrm{E}-12 \leqslant E \leqslant 1$) indicates the accuracy of the user-defined function and is used to calculate the acceptable error in the approximation to the integral. This keyword can be used only in a program.

IVALUE
Last Result of INTEGPAL

IUHLUE

Returns the last approximation computed by the IHTEGRFL keyword. If the ATTN key was pressed or the operation of IHTEGEFL was otherwise interrupted, then IURLUE returns the value of the current approximation to the integral. Otherwise, IUFLUE returns the same value that IHTEGRFL last returned. IUFLUE retains its value (even if your HP-75 is turned off) until another IHTEGRAL is computed.

IBOUND Error Approximation for THTEEFAL

IEOUND

Returns the final error estimate for the definite integral most recently computed by IHTEGFAL.

- A positive value for IEOUHO means that the approximations converged.
- A negative value for IEOUHD means that the approximations didn't completely converge, so that the value returned by INTEGEFL may not be within the acceptable error of the actual value.

Like IURLUE，IEOUHO retains its value（even if the HP－75 is turned off）until another IHTEGRAL is com－ puted．Unlike IUFLUE，the value of IEOUNG has no relation to the current approximation to the integral if the operation of INTEGRFL is interrupted．

Finite Fourier Transform

FOUR
Finite Fourier Transform

```
MAT W=FOURCZ
```

where \mathbf{Z} is a $N \times 2$ matrix（ N a non－negative integer power of 2）and \mathbf{W} is a matrix．

Redimensions \mathbf{W} to be exactly the same size as \mathbf{Z} and as－ signs to \mathbf{W} the complex values of the finite Fourier trans－ form of the data points represented by \mathbf{Z} ．

Error Conditions

Number Error Message and Condition

1 num tog small
－ \mid Result $\mid<1 \mathrm{E}-499$ ．

2

$$
\begin{aligned}
& \text { Пum tog large } \\
& \text { - } \mid \text { Result } \mid>\text { 9.99999999999E499. } \\
& \text { - MHT U=INUCめ\%, MAT U=CINUCU }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MAT U=БロET U. }
\end{aligned}
$$

The matrix V is singular（that is，its deter－ minant is zero）and the $L U$ decomposition of \mathbf{V} requires division of a non－zero number by zero．This does not always indicate that the re－ sults of the operation are invalid．In particular， the results of $\angle E T$ and $C[E E T$ will be valid． The results of the other operations should be checked when this error occurs．
arg out of range

- $\operatorname{HCOSHCx}: X<1$.
- ATAHH(X): $|X|>1$.
- LOGACX, Ey: $B=1$.
- MAT $z=0$-IUch, U,

$\operatorname{Re}(\mathbf{V}) \leqslant 0$.
－EETRECM，H：$M \geqslant 999,999,999,999.5$ ．
－EUHLCE事，H：Result＞999，999，999，999．
$\operatorname{LgG}(0)$
－Logecx）$X=0$ ．

－NHT $z=$ LOG（d） $\mathbf{W}=(0,0)$ ．
Logeneg numbery
－LDGéx）$X<0$ ．
－Logics E）$X<0$ or $B<0$ ．
89 bad ferameter
 teger value of N not equal to 2,8 ，or 16 ．
－EUHL EE ：H）B\＄not a valid number in base N ．
－EGTR事《，H：$M<0$ ．
－MAT $\mathrm{A}=\mathrm{I}$［H（redimensioning subscript（s）＞， MAT $\mathrm{H}=\mathrm{COH}$（redimensioning subscript（s））， MHT $\mathrm{H}=\mathrm{ZEF}$（redimensioning subscript（s））， EEDIM A （redimensioning subscript（s）：
rounded integer value of one or both subscripts is less than the option base in effect．
 value of N not equal to 1 or 2 ．
－HAT $E=C R O D T$ © H ：rounded integer value of N not positive．

Number Error Message and Condition

result dimension
－MAT $H=$ COH\＆i，j，MAT $H=2 E R \subset i, j y$ ，

A singly subscripted．
 EEDIM H©iy：A doubly subscripted．
－MHT $\mathrm{H}=$ operation operand array（s）：number of subscripts of \mathbf{A} not the same as the number of subscripts required for the result of the operation．

ドモモult＝ize
－EEDIN H （redimensioning subscript（s），
MAT $\mathrm{H}=\mathrm{DOH}$ redimensioning subscript（s） ，
HAT $H=2 E F$ redimensioning subscript（s），
MHT $\mathrm{H}=\mathrm{IDH}$（redimensioning subscript（s）：
number of elements in the redimensioned array greater than the total number of elements given to it in a dimensioning statement．
－HFT H＝operation operand array（s）：
total number of elements in \mathbf{A}（as given in its original dimensioning statement）less than the number of elements needed to store the results of the operation．
－MAT $\mathrm{A}=\mathrm{E}+\mathrm{C}$ ，MAT $\mathrm{A}=\mathrm{E}-\mathrm{C}$ ：B and \mathbf{C} not conformable for addition（the number of rows are unequal or the number of columns are unequal）．
－NAT H＝E末L，NAT R＝SYGCE，CO：B and C not conformable for multiplication（the number of columns of \mathbf{B} is not equal to the number of rows of \mathbf{C} ）．
－ロOT A E E：number of elements of \mathbf{A} not equal to the number of elements of \mathbf{B} ．
 NAT $\because=$ CSYSGA，By：
number of columns of \mathbf{A} not equal to twice the number of rows of \mathbf{B} ．

－NAT \quad＝CROSSGA，E ，DOT（A，E）：
A or \mathbf{B} not singly subscripted．

－MHT $8=\mathrm{CROSG} \mathrm{C}, \mathrm{B}$ ： \mathbf{A} or \mathbf{B} not three

207
ドロナ 玉タリヨドミ
－पETCH，MHT \＆＝SYECH，E ，
 MAT $\mathrm{H}=\mathrm{I}$ 마：
number of rows of \mathbf{A} not equal to the number of columns．
－MAT $\mathrm{H}=\mathrm{IDH} \mathrm{C} \mathrm{i}, \mathrm{j}: i \neq j$ ．
 MHT $\mathrm{H}=\mathrm{EICH}$ MHT E＝CDET © C ：
number of columns of \mathbf{A} not equal to twice the number of rows．
dimensional.
operand dimension
－MHT $\mathrm{H}=\mathrm{IDHE} \mathrm{I}$ ：only one redimensioning subscript specified．
 MAT X＝SYGEE，CO，MAT A＝LUFACTEB， MHT $H=T R H C E$ ，MAT $\mathrm{H}=\mathrm{CTEHCE}$ ， MHT $\mathrm{H}=\mathrm{CIHW} \mathrm{E}$ ，MAT $\mathrm{H}=\mathrm{IHU} \mathrm{CE}$ ， NHT $H=F$ OUR © E ：

B not doubly subscripted．
 MAT $\mathrm{F}=\mathrm{CYGGA} \mathrm{E}$ ：

A or \mathbf{B} not doubly subscripted．

Number Error Message and Condition

- $\mathrm{HH} \mathrm{F}=$ complex function $Z: Z$ not a complex scalar.
- H H 下 $\mathrm{F}=$ complex function $Z, H: \mathbf{Z}$ or \mathbf{W} not a complex scalar.
- HAT $\mathrm{F}=\mathrm{CGOT}$ GZ, H: Z not a complex scalar.
- MAT $R=F R O T(P): \mathbf{P}$ contains exactly one element (and so represents a polynomial of degree zero).
- MAT $\mathrm{E}=\mathrm{CDETGA〕}, \mathrm{MAT} \mathrm{E}=\mathrm{CINUGH}$, MAT $R=$ CTRHCH: A doesn't have an even number of columns.
 MAT $X=$ CSYGC, E): A or B doesn't have an even number of columns.
- MAT $\mathrm{H}=\mathrm{FOUFCE}: \mathbf{B}$ is not an $N \times 2$ array with N a non-negative integer power of 2 .
FROGT failure
- FROGT cannot find a root of the specified polynomial.

- FHEOTCA, E, user-defined function © user-defined function uses the FHFOOT keyword in its definition.
- INTEGEAL $\mathrm{A}, \mathrm{E}, \mathrm{E}$, user-defined function C$)$: user-defined function uses the INTEGRFL keyword in its definition.

(h) HEWLETT
 PACKARD

Portable Computer Division

1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

© Hewlett-Packard Company 1983

