PPC

HP—75 DESCRIPTION

75 NOMAS VvVOL Il

PPC

INTRODUCTTION

The information contained in this document is made available with the
understanding that it is not supported by Hewlett-Packard. The custom
microprocessor used by the HP-75 was not intended to be supported with
technical details made available to the user community. When you read this
document you will quickly notice that there is no effort to explain to non-
design team members how or what is going on. At the time of developement
there was no plan to do this. While this document may stimulate more
questions than it answers that situation must be accepted "as is". See the
NOMAS statement stamped below. This material is being made available to
the user community through PPC because we believe that information in this
form is better than none at all. PPC offers this information as a service
to the community. Additional copies may be ordered from PPC at the address
below.

Another source for HP-75 technical information is the Computer Journal of
PPC and other volumes in the 75 NOMAS series. Contact PPC for details if
desired.

PPC - POB 9599
Fountain Valley, CA 92728-9599 USA

Telephone: (714) 754-6226

NOMAS

NOt MAnufacturer Supported
recipient agrees NOT to contact manufacturer

Note: This material copyright (c) Hewlett-Packard 1983

HP-75 Description and Entry Points

WHAT IS PPC?

PPC is the Personal Programming Center Inc., a California non-profit public
benefit corporation. PPC is the oldest personal computer users group - founded
in June 1974. PPC is dedicated to supporting machines that meet the concept of
a personal computer as being small enough and portable enough to be conveniently
always with the user. The ideal machine hasn't been designed yet. PPC's major
activity is to support those products that are available and provide design
ideas for better products. This is accomplished by active information exchange
on a personal basis.

PPC is a unique organization in that it is non-commerical. It is dedicated to
the individual and his or her persuit of making the always too slow or too low
capacity machine do the task desired. PPC is a world wide organization composed
of over 5,000 members in 63 countries. A chapter organization is supported with
50 chapters worldwide. PPC is an educational organization that gathers and
disseminates user information on the machines PPC supports. PPC publishes two
regular 'Journals', one dedicated to calculators (our heritage is in the HP-65
Programmable Scientific Calculator) and the other is dedicated to computers.

PPC offers a wide range of services and 'products' to its members and the
community at large. PPC is a member supported organization, we do not accept
advertising, and if we make a profit on certain "commerical" products it is for
the purpose keeping membership costs as low as possible. Our 'products' are
self generated and are intended to be sold to our members. We do not buy
commerical products and resell them. This concept is fundamental to the PPC way
of serving its members and the community. We are not in the Hardware or
Software business. We supplement the manufacturing, academic, technical, and
consumer communities - we do not compete with them. We are applications and
state-of-the-art oriented. We contribute our ideas freely and we have a very
carefully defined operating philosophy with regards to commerical activity. We
encourage and support commerical activity, but remain non-commerical in our
exchange of ideas, solutions, and problems. In this regard we are unique.

PPC is managed by a board of seven directors. The directors are Emmett Ingram,
Chariman; Richard Nelson, President; Richard Schwartz, Secretary; Fernando Lopez
Lopez, Treasurer; Douglas Mecham, Director; John Kennedy, Director; and Bruce
Murdock, Director. PPC is an open corporation in that its policies are
continuously discussed and debated. PPC is comitted to providing a true users
forum for ideas, comments, and suggestions regarding any topic related to
equipment, software, or standards. Within the framework of good taste and
supportative viewpoints any member or member of the community may present his or
her own feelings and ideas. PPC is not a consumer pressure group. All
contributions must stand on their own merit in the market place of ideas. PPC
members want to hear about what has been done, not what someone may do? Dreams
are nice, but PPC members are interested in performance not specifications. We
are a meat and potatoes group of people and are not too interested in the
parsley.

A typical PPC member is a technical, multi-disciplined, independent thinking
user who takes great delight in solving problems. The small, truely personal
machines that PPC members use creates a special psychology between user and
machine that provides one of the binding forces of the organization. Interested
users may send a large self addressed envelope with three ounces of postage (or
IRC's) attached to:

PPC - POB 9599
Fountain Valley, CA 92728-9599 USA

ii HP-75C Description and Entry Points

Allocation Documentation — GKC

HP-75 Description and Entry Points
CONTENTS

Buzzer Driver Software —RY ¢ o o o o oo ..
Ckecksum Computation — RY ¢ ¢ ¢ ¢ v v ¢ v v v o
Comparator Driver Software —RY

Card Reader Driver — RY . . & . v ¢ v ¢ v v ¢ o v« o o .
Deallocation —GKC &« v v ¢« ¢ v ¢ ¢ ¢ ¢ ¢ o o o o .
Decompiler —GKC & ¢ v v v v v v o v 4 v o ..
On ERROR Comments — RY ¢ ¢ ¢ ¢ ¢ v ¢ ¢ v v « o &

Subroutine File Grouping

Handi Calls — Doctor Cobols Demonic Guide — SDA, MJH,

JA, and RH . & . . o 0 e e e e e e e e e e e e e e
Wakeup Procedure —MJH o 0 00 0 o0 .
Input Software —JA o o000 e ., e e
Interpreter —GKC 0 o000 0. . ..
Keyboard Translation —SDA & JA « . ..
LCD Driver Software —JA . . & & ¢« i 4 e v et e e e e
Lock Description —RY o o 0 o o 0. . ..
Battery Detect — 7 . . ¢« « ¢ ¢ ¢ v i i b e e e e e e .

Routines:
ASPACK,
CLRCOD,

BADDEV c v b s e s e e e
DATRPT+, DATSND, DDLREP

DDLRP, DDTREP, FILINT, FLCAF+ « . e
FLCAT, FLCOPY, FLSTOR, FLLOAD« « .« « « . .
FLFIN, FIFIND, FLFTOF, FLGOF+

FLGOFE,

FLGET1, FLGTFN, FLNEW

FLPUR, FLPUR!, FLPURG, FLR36 . . . » v v v v

FLRENA,
FLSWCH,

FLSAM?, FLSBON, FLSTACK e e
FLTTOT, FLVFO?, INIT

DDT67, INISIZ, INICHK, JSBCRT
PACK, PAKO, PAK1, KAKZ . . . « o v v ¢ o« o« o o o o
PAK2A, PAK3, REVBYT, REVPSH

RDYSD+,

VFADDR,

TENRIT, UNTUNL, VF1TO2

AS&VFB. VEBSY+ . o o v

VFBYE, VFCD46, VFCDCO, VFCDEP

VFLCCH,
VFDIR+,
VFEXCH,

VFDDL2, VFDELL, VFDIR . . » » v v v v
VFDUDE. VFEOD?. VFERR L
VFGET, VFGLOC, VFHI . & v v v e e e e o

VFHI+, VFLAD+, VFLED?, VFLIF?,

VFLTBY,
VFMOVE,

VFNXE +,

VFRENA,
VFRVDE,
VFRWSO,
VFRWWR,
VFTAD+,
VFUTL+,
VFWOOP,
VFWRD1,

VFLTY+, VFMFP?, VFMM?
VFMSG, VFNXD-, VENXDE
VFPED?, VFRCEX, VFRDE
VFRLF?, VFROO?, VFRREL
VFRWO+, VFRWK+, VFRWRD
VFRWSB, VFRWSK, VFRWUO
VFSECT, VFSKFL, VFSTAT
VFTERM, VFTIME, VFTRNL
VFWACH, VFWAC2, VFWBUO e e e e e
VFWR, VFWRBK, VFWRCL
VFWRD-, VFWRDE, VFWREC

HP-75 Description and Entry Points

iv

HP-75 Description and Entry Points

CONTENTS - Continued Page
Overall Layout of Memory « .« « « v o . . 104
List of Mainframe Memory Routines 111
Mass Storage Driver —SDA 112
Output Software —JA « v v o o oo o0 119
Parser —GKC « o . v v b v e e e e e e e e e e e 121
Routines:
APEXIT, TIMEMD, CSTRIG, CKTRIG 128
CKTRIG, AINCHK, RINCHK, TINCHK 129
YINCHK, UPDISP, STDATE, TICK 130
APINFO, APTDEL, APDEL', APTDSP 131
APTERR, APTFND, APFND, APTGET 132
APTINS, APTR+, APTR-, GETLNX« . . 133
RSTBUF, SAVBUF, TIMDIV, TIMPLT 134
ATMPLT, APMSKE, APMSKY, STMMSK 135
TIMMSK, YEARTM, REPTIM, APTCHK 136
DCCLOK, ENCLOK, FINDTD, (?) . . « . « v ¢ « ¢« ¢« o . . 137
FXAPPT, ALMCHK, DATCHK, DATCK' 138
DAYCHK, DAYOK, DCDAY, DUPCHK « 139
FLDCHK, FXALRM, FXDATE, FXDAY, 140 *
FXTIME, FXYEAR, LPYEAR, MINDD 141 *
MIMDD, MINHH, MINMM, MINMN 142 *
MINYY, NUNPCK, RPTADJ, RPTINP 143 *
TIMCHK, ACREAT, AOPEN, AOPEN' 144 *
ALBEEP, APPROC, APPTRS, APSTATo .. 145
APTACK, APTMRG, APTRIG, STALRM 146 *
ALARM, OFALRM, CNTRIG, GETCLK 147 *
GETTD, MULTGO, NXTAPT, PRNOTE 148 *
Pocket Secretary Theory — MR 149 *
LEX Files —SDA« v v v v v v v v e e e e e e 155 *
ROM Switching Guide o o o o o oL 166 *
Time and Date Stuff —RY« . o oo o .. 169 *
Transform — GKC. « o o v o v 0 e e e e e e 170 =
On Timer —RY & &« i i vt e e e e e e e e e e 173 *
Time Mode Command Processing —RY 174 *
User Function Operations« o o« o .. 175 *

Programmers Initials - At the end of many entries are the
programmers initials following a dash. The programmers are:

GKC - Gary K. Cutler JA - Jack Aplin IV

RY - Raan Young RH - Robert Heckendorn
SkA - Seth D. Alford MR - Mark Rowe

MJH - Mary Jo Hornberger

*Page 140 to 177 is an italic type style.

HP-75C Description and Entry Points

NOMAS

NOt MAnufacturer Supported
reciplent agrees NOT to contact manufacturer

ALLOCATION DOCURENTRTION

Gary K. Cutler

9:17 PR THU., 3 RUGC., 1978

Pointer Rllocation

e demcmcemecmcce e +

I
Progran Pointer Rllocation | CHRAPTER 1 |
l

decmccemc e cccccccmcccccecececec—a- fececcccccrnccrenss .

1.1 Overvieu

Definition: Pointer allocation is a process which builds a block

of infornation (VPR entry) uithin the Variable Pointer Area
(VPR) for each variable in the progran, replaces each variable
nane in the progran uith a relative pointer to 1ts VPR entry
and replaces the line nunbers in GOSUB. GOTO and IF statenents
uith the relative addresses of the target statenments.

Calculator vs. Noncalculator prograns: The continued existence

of calculator variables after the execution of a calculator
statenent, necessitates a differentiation of Pointer
Rllocation for these two nodes.

Noncalculator progran:

a VPR (variable pointer area) uill be created.
all variable names uill be replaced by pointers to their nane
forn and other data 1n the VPR,
the PCB (Progran Control Block) 1s given values as followus:
P.LEN - the length of the progran including the PCB. If
this value 1s nonzero this indicates that the progran has been
allocated.
P.PLEN - the length of the VPR
P.ELEN - the total length of the environnent not including
the ECB.

Calculator progran:

the VPR ui1ll be augrnented by uhat ever neu variable references
there are.
variables u1ll be replaced by pointers as for a progran.
The P(B and a feu systen paraneters are nodified as follous:

P.LEN - the length of the progran as for an ordinary
progran

P.PLEN - the length of the VPA

P.ELEN - the total length of the environnent not including
the ECB

LSTPLN - the value of the P.PLEN before allocation (set at
beginning of PTRALD 1f 1n calc; zero otheruise)

9:17 PH THU., 3 AUG., 1978

Pointer Rllocation

LSTELN - the value of P.ELEN before ue allocate (set at
the beginning of PTRALO 1f 1n calc; zero otheruise)

Should pointer allocation fail, the deallocator, DALLOC, 1s
called to rerove the VPR that uas just created.

occurrence: Pointer allocation 1s the first procedure 1n a three
step process. The culrinatian of these three steps 1s the
execution of a progran or calculator node statenent. The
three steps, 1n succession, are Pointer Rllocation,

Environnental Rlloction and Execution.

Handi Calls: If a basic token, created by an external ROM,
requires sore unique type of Pointer Rllocation, such token
nust be assigned a prinary attribute greater than or equal to
57 (octal). This attribute will generate the V.ALLO handi
event at Pointer Rl]location tine (refer to the V.ALLD event in
the HRANDI call docurentation for further infornation).

9:17 PN THU., 3 AUG., 1978

N

Pointer Rllocation

1.2 Variable Nane Forn

FRANAR: FRANAR 1s the routine which translates the RSCII name of
@ variable i1nto an internal fornmat. This fornat not only
preserves the RSCII nare but also provides all the necessary
infornation, concerning the variable, for ARllocation and
Execution. The internal structure consists of a tuo byte forn
uith bit patterns representing the variables status.

1.2.1 Internal Structure

7 6 5 4 3 2 1 0
byte t: | T3 1 T2 | 71 | TO | NI | N2 | N1 | NO |

e cc e rcrrrt Tt e T c T, e T Cr C P TS ceC ER e e BT ® e

byte 2: | R | RO | FO | L4 | L3 | L2 LI | LO|

13 -- 0 --> nuneric
1 --> string

12 -- 0 --> sinple
1 --> array

1,70 == 0 --> real
! --> 1nteger
2 --> chort
3 not used

N3--NO -- 0-9 --> nuneric portion of RS"II nane
10 --> no nunreric 1n nare (blank)

FO -- 0 --> variable
1 --> function

R1,R0 -- 0 --> local variable
1 --> renote variable paraneter passing for CALL
2 --> paraneter variable

L4--10 -- variable narne rank.(R=1, B=2, (=3, etc.)

9:17 PR THU., 3 AUG., 1978

Pointer Rllocation

Exanples:

local sinple nuneric variable:

byte 1: 00000001
byte 2: 000000 11

rencte string array variable:
byte1: 11001010
byte 2: 01000110

1
01 hex value

03 hex value

F$(1,))
(A hex value

46 hex value

9:17 PR THU., 3 ARUGC., 1978

Pointer Rllocation

1.3 Variable Pointer Entry

In the follouing block descriptions, each menber of an
entry in the VPR (Variable Pointer Rrea) 1s 2 bytes long.

I. Nuneric variable: Ex. 29

Length: 4 bytes

Entry forn: | Nane | Rel Ptr |

II1. String variable: Ex. $3%
Length: 6 bytes
Entry forn: | Name | Hax Len | Rel Ptr |
IIT1. Array variable: Ex. V(S)
Length: 10 bytes
Entry forn: | Nare | Total Len | Max Row | Max Col* | Rel Ptr |

* In the case of a 1-dinensional array, the maximun colunn
entry will be initialized to -1 (FFFF hex internally).

Iv. User defined function (nureric): Ex. FNF(a,b)
Length: 6 bytes
Entry forn: | Nare | Rel value Ptr | Rel Exp Rddr |

9:17 PH THU., 3 AUGC., 1978

Pointer Rllocation

V. User defined function (string): Ex. FNP1$(RS)
Length: § bytes
Entry forn: | Nane | Max Len | Rel value Ptr | Rel Exp Rddr |

9:17 PR THU.., 3 AUGC., 1978

Pointer Rllocation

1.4 Progran Control Block

The PCB 1s a block of 10 bytes that contains information
about an allocated file. The PCB directly precedes the first
line of any lined file in mnernory and does not exast for
unlined files (LIF1 files have no P(B). For any deallocated
file, the PCB uill contain all zeros. For further infornation
regarding the P(B, refer to the HMenory MNanagenent
Docunentation.

PCB: The PCB (Progran Control Block) 1s structured as followus.

byte 0/1 P.LEN -- length of pgn and PCB (O 1f deallocated)
byte 2/3 P.PLEN -- length of VPR

byte 4/5 P.CLEN -- spare location

byte 6/7 P.ELEN -- total size of environment not including ECB
byte 8/9 P.SPAR -- spare location (for parareter passing)

9:17 PN THU., 3 RUC., 1978

Pointer Rllocation

1.5 Deallocated Vs. Rllocated Progran

The follouing progran will be folloued by tuo forns of
its 1nternal structure; Deallocated and Rllocated. The
inportant differences are:

Deallocated Allocated

PCB set to O Rll PCB entries are valid

Variables are ASCII Variables replaced by relative pointer
No VPR VPR begins directly succeeding endline

Progran: 10 R4=P]
20 B$="hy there’
30 M(1,1)=3%R4/2

Deallocated Structure (1internal)

P.LEN P.PLEN P.CLEN P.ELEN P.SPRR
P(B: 00 00 00 00 00 00 00 00 00 00
Line 10: 10 00 06 11 >3 41 « (9 08 ot
nun var R4
Line 20: 20 00 OF 13 > 20 42 < 96 08 68
str var B$
69 20 74 68 65 72 65 07 113
Line 30: K0 00 19 12 » 20 4D < 1R 01 00

nun array N

00 1R 01 00 00 OR 1R 03 00

00 > 34 41 <« 2R 1R 02 00 00 2F
9:17 PH THU., 3 AUG., 1978

Pointer Rllocation

nun var R4

08 ot

End line: 99 R9 02 &R OF

% No VPR **

9:17 PN THU., 3 ARUG., 1978

Pointer Rllocation

P

PCB: ;;-
Line 10: 10
Line 20: 20
69

Line 30: KV
00

00

08

Endline: 99

10

Rllocated structure (internal)

. LEN P.PLEN P.CLEN P.ELE
00 14 00 0 o0 Fe
00 06 11 > 47 00 « (9
rel ptr to
A4 nane forn 1n VPR
00 OFf 13 > 49 00 « 96
rel ptr to B$
nane forn 1n VPR
20 74 68 65 72 65
00 19 12 » " 00 < 1R
rel ptr to N
nare forn 1n VPR
1A 0} 00 00 OR 1A
> 47 00 « 2R 1R 02 00
rel ptr to
R4 nane forn 1n VPR
43
R9 02 8R (]2
9:17 PR THU., 3 ARUG., 1978

-

08

08

07

]

03

P.SPAR

........

Ot

68

13

43

Pointer Rllocation

*h ypp A

nane val ptr
var: M 04 01 | 1E 00

nane nax len val ptr
var: B$ 8R 02 | 20 00 | 26 00
nane tot len ** nax rou nax col val ptr

var: N(,) 4 0D | (8 83 | OR. 00 | OR 00 | 48 00
%% The most significant bit of the first byte of the total
length denotes the OPTION BASE.
total length negative --> OPTION BASE O (upper bit set)

total length positive --> OPTION BASE 1 (upper bit off)

9:17 PN THU., 3 ARUG., 1978
"

Pointer Rllocation

1.6 NMajor Routines

PTRALO: This routine allocates all variable pointers in the file
naned 1n R40,

Input: R4O - the file to be pointer allocated.

Internal: R24 - token pointer that mnoves through out the
progran

R26 - points to beginning of variable search area

R30 - points to end of variable search area. if in
pgn node for allocation this 1s incremented as
pointers to values are stored. when the last
line of code 1s allocated, R12 1s reset to 10S
and ERRSTP is set to O.

Notes: The routine 1s entered by a JSB and saves and restores
the DCRN (binary/BCD) status. It requires 1input
other than the global systen pointers, houever ALL
registers beginning with R22 are considered
volatile.

NXTONE: obtains;

token (R23)

token class (R36)

current line (R45/46)

length of line (R47)

conditional;
tk class >= 30 non-allocatable, loop
tk class < 30 pass control to allocation
routine

XALL1: ex1t code for allocation 1f EOF

: calculates and stores; P.CLEN (length of connmon
area) P.PLEN (length of VPR)

: on return restores registers 20-77 (EVIL)

9:17 PH THU., 3 AUG., 1978
12

Pointer Rllocation

1.7 Procedure

Procedure: Pointer allocation works fron a table of token
classes. Each token, having at least one attribute, has 1its
token class deternined by the routine GETNXT (token class is
the octal nunber defined by the tuo least significant digits
of the primary attribute). This token class keys the
appropriate allocation routine for each particular token. If
a token has class < X (octal) then that token is allocatable.
Non-allocatable tokens have token class >z 30 (octal). Tokens
uhich are created in the future and require allocation
different from existing routines, should assign a prinary
attribute >z 57 (octal). This will generate the V.ALLO handy
event. For further infornation on the V.ALLO handi event
refer to the Handi Call Documentation. Here follous the
pointer allocation table; giving, the allocation routine, the
class of tokens which that routine is responsible for, and a
description of the type of tokens found i1n that class.

9:17 P THU., 3 AUG., 1978
13

Pointer Rllocation

POINTER RLLOCARTION TRBLE

Routine Class Token

INIRON -1 RON class > 56

XALLY 0 End-of-l1ne

VALOC 1 Fetch variable
BININT 2 Integer constant
SVAL 3 Store variable
SKPCON 4 Real constant

SKPCON 5 String constant
FUNCRL 6 User function call
LINEAL 4 Junp true line
LINERL 10 Goto, Gosub

RELINP " Junp relatave

DEFFN 12 User define function
DEFEND 13 User function end def
ERON 14 External ROM (obsolete)
OPTION 18 Option base

DEFEND 16 Function return
FNARSN 17 Function let

SKPNXT 20 Data

DIn 21 Din

SHORT 22 Short

INT 23 Integer

INIRON 24 Handa call

LINERL 25 Else junp line
RELINP 26 Else junp relative
LINERL 27 Using line

9:17 PR THU., 3 RAUG., 1978
14

Pointer Rllocation

Exanple: The follouwing exanmple illustrates the structure of a
user defined function, deallocated and allocated. Because of
the conplexity inherent 1n the allocation of DEF FN
statenents, the routine responsible for each step 1n the
allocation process 1s included. It should be noted that the
paraneters of a user defined Ffunction are translated into
internal fornat during Parsing.

NOMAS

NOt MAnufacturer Supported
reciplent agrees NOT to contact manufacturer

9:17 PN THU., 3 AUG., 1978
15

Pointer Rllocation

40 DEF FNM(R,B)=NAX(RBS(R),ABS(B))

DERLLOCRTED DESCRIPTOR RLLOCATED ROUTINE

40 line 40

00 nunber o0

87 def fn 87

20 ASCII 2 byte addr of N DEFFN
40 blank N in VPR

-—-- Jurp past 2 byte rel pos FNEND
-——-- fn end of EOL

04 paran type/count (see note 1) 04

OR internal OR

01 nane forn R 01

---- var value 2 byte rel loc of DEFFN
cen- ptr R 1n environnent

OR internal (o]3]

02 nane forn B 02
---- var value 2 byte rel loc of DEFFN
---- ptr B in environnent

---- rel posit 2 byte rel pos DEFFN
---- of PCR of def fn statenent

01 fet var 01

20 RSCII 2 byte rel addr of VALLOC
41 blank R A in def fn statenent

83 abs value 83

01 fet var 01

20 RSCII 2 byte rel addr of VRLLOC
42 blank B B 1n def fn statenent

B3 abs value 83

RE nax RE

RF inv fn end RF

9:17 PN THU., 3 RUG., 1978
16

Pointer Rllocation

bt S i et R i R ol e e e Rk L S ——

=—=- pos of store 2 byte rel addr of FNEND
---- value ptr N 1in VPR (FNR3)
OE eol Ot

hdada il A L R A R L L E L R el e T T T T T T T T S TS S S S SIS S SSSISSN

NOTE 1: the paran count/type is fornatted as:
BIT 7-BI7 1 nunber of parameters in definition (X2)
BIT 0 type of function, O=nuneric, 1=string

9:17 PR THU., 3 AUG., 1978
17

Pointer Allocation

1.8 Globals
Nane Location Description
(STRR 8385 nested array counter
CURFUN 8285 location of DEF FN
DFPRRY 8386 start of FN definiton
DFPRR2 8388 end of FN definition
DINFLG 838t type of variable being allocated
ERRSTP 8391 loc of variable that resulted 1n alloc error
FILEND 8381 end of file to be allocated
FUVARS 8251 beginning of environnent
LSTELN 83(3 last P.LEN value
LSTPLN 8301 last P.PLEN value
OPTBRS 8282 0 -- option base 1; 1 -- option base 0
PCR 8240 progran counter
PRFILE 8243 location of file to be allocated
PRNANE 8263 narne of file to be alocated
RNFILE 8247 location of current running f1le
RSTAR 8383 current alloc point for array paraneters
105 8257 current top of stack (Rk12)
VARPTR 838F next avallable loc 1n environnent

1.9 Handi Calls

V.ALLO -- token class >= 57 (octal)

1.0 Cross References

Nernory Managenent Docunent RH"REN
Internal (ode Exanples Document RH"ICE
Handi (all Docunent RH"HDI
Source File RH&PRL
Global File KR&GLO

9:17 PR THU., 3 RUG., 1978
18

Environnental Rllocation

e cccccceccaceaee. $occeemmccmcaeaeane +
| |

| Progran Environnent Rllocation | CHRPTER 2 |

|

R e T T T T ——— L e T TR +

2.1 Definition

Definition: Environnental allocation 1s the second and last step
in progran allocation. This process has the responsibility of
creating an environnent (variable value area and a control
block) for the progran nared i1n PRNANE.

The environnental structure for each type of variable 1s as
follous:

Nunerics:

Real -- eight byte value field

Short -- four byte value field

Integer -- three byte value field

Array -- field length 1s deternined by the
nunber of elements 1n the array tines
field length allotted for the type of
variable.

Strings: tuo byte actual length field folloued by
the character field, whose length 1s
defined 1n the Nax Len field of the VPR
entry.

9:17 PR THU., 3 RUG., 1978
19

Environnental Rllocation

2.2 Routines and Pointers

Pointers:

NXTHER

the top of the environnent stack. This 1s one byte
above uhere the next environment uill be inserted.

FUVRRS - a pointer to the ECB of the current environnent

Routines:

ENVRLO - allocates the environnent for the progran i1n PRNARAE.
Calls PUSHEN to allocate room and build the ECB,
then goes to INIVLP to initialize the variable value
aread.

PUSHEN - allocates space for the environnent at NXTNEN and
builds the ECB.

INIVLP - determines the nature of the variable and initializes

the variable’s environnent appropriately (zeros the
field and sets the most significant byte to -1 for
nuneric variables, blanks the field and sets the
length to -1 for string variables).

NOMAS

NOt MAnufacturer Supported
reciplent agrees NOT to contact manufacturer

9:17 PR THU., 3 ARUG., 1978

Environnental Rllocation

8/9
10/11
12/13
14/21
22/23
24/25
26

27
28/29

2.3 Environnmental Control Block

The ECB 1s a block within an environment that contains
infornation about the allocated file. The ECB 1s the first X0
bytes of the environnent and 1s built and validated by the
routxn; PUSHEN. The following 1llustrates the structure of
the ECB.

Nane Description

E.LEN length of environnent including the ECB.
E.PREV length of previous block.

E.RNEN reserved menory (RESMEN) allocated for program
E.FCNT FOR/NEXT count

E.GCNT GOSUB count

E.EREX address of code to be executed upon an ON ERROR
E.ERPC Kangaroo PC after an ON ERROR

E.RON RON nunber of nother progran

E.NON nane of the nother progran

E.RTN R10 for cont/run

E.PCR PCR for cont/run

E.STRT current status (R16)

E.DATA location in current DATA line

E.DRTL pointer to current DATA line

9:17 PR THU., 3 AUG., 1978
A

Environmental Rllocation

2.4 ARllocated Structure

To denonstrate the 1nternal structure of an allocated
progran, the follouwing Basic progran and 1ts allocated forn
are supplied,

10 R4:=P]

20 B$="h1 there’
30 N(1,1)=3*R4/2

ALLOCATED STRUCTURE (1internal)

nenory location: 8593 h
L 3] PCB 1 3
P.LEN P.PLEN P.CLEN P.ELEN P.SPAR

nenory location: 859D h
#% PROGRAN **

Lire 10: 10 00 06 11 > 49 00 « (9 08 1]
A ptr

Line 20: 20 00 OF 13 » 4D 00 < 96 08 68 69
8BS ptr
20 74 68 65 72 65 07 Ot

Line 30: 30 00 18 12 > 93 00 <« 1R 01 00 00
n(,) ptr

1R 01 00 00 OR 1R 03 00 00 01

9:17 PH THU., 3 ARAUG., 1978
2¢

Environnental Rllocation

> 49 00 < 2R 1R 02 00 00 2F 08 Ot
R4 ptr

ENDLINE: 99 RS 02 8R O

nenory location: 8508 h
1§ VPR 3]

ereceoeen cr e onw

........................

e .o ---- cemcccnn- ————-—-- —cm e ce-- R

nenory location: 8634 h --> FUVARS
1 3 Eca 3]
E.LEN E.PREV E.RNEN E.FCNT E.GCNT E.EREX

crmmene- co - cm-- ceccee e R ceceee coececrew-

P R D el e

E.RTN E.PCR E.STRT E.DRTA E.DRTL

cmweme e ceenccecee - ---- —————- -——-—----

e ittt T R

% Environnent **

val M4: 00 00 59 53 26 59 41 N

9:17 PR THU., 3 AUG., 1978
23

Environnental Rllocation

Val BS:

33338
33
333F
3333
3333
333

val n(0,0):
n(0,1):

n(o,5):

B8ZSIIZ]Z8E8Y
Z288388838838
8883883883838
8883883888888

ﬂ(0:10):
n(1,0):

o0
LV~
[)]
o0
-
N
P
~4

LIGIRDE

88 8 8388888888838

38 8 8888833888888
838 8 8338388388888

83
g8
83
88

Refer to the Menory MNanagenent Docunentation for a
discussion on the existence and structure of the environnental
stack.

9:17 PN THU., 3 ARAUG., 1978
24

Environnental Rllocation

2.5 Globals

GLOBARLS

Nane Location

PRFTLE 8243
PRNANE 8263
RONPTR 82R3
XKTNDLM 8380

2.6 MHandi Calls

Description

pointer to current environment
variable nenory leeuay

change 1n environnent size

last value of P.PLEN

next byte in available user nemory
loc of paraneter file

nane of paraneter file

rel loc of current ROM

extended LEEWRY flag

V.ERLO -- This handi call 1s generated under tuo separate
circunstances.
1) the current variable is remote
2) the current variable is a string array

2.7 C(ross References

flenory Nanagenent Docunent RH"NEN
Handi Call Docurent RH"HDI
Source File RH&ERL
Global File KR&GLO

9:17 PR THU., 3 AUG., 1978

25

Environnental Rllocation

Table of Contents

1 Progran Pointer RAllocation
1.1 Overvieuw v v e e e e e e e e e e e e

1.2 Variable Nane Form o 3
1.2.1 Internal Structure 3

1.3 Variable Pointer Entry -
1.4 Progran (ontrol Block 7
1.5 Deallocated Vs. Rllocated Program 8
1.6 Najor Routines e e e e e . 12
1.7 Procedure v v v v v e e e e e e .. 1
1.8 Globals i e e e e e 18
1.9 Handy Calls v v v v o v oo 18
1.10 Cross References « v & ¢« ¢« « « « 18

2 Progran Environnent Rllocation 19
2.1 Definitaon e e e e e e e 19
2.2 Routines and Pointers« . ¢ . 0 .o 20
2.3 Environnental Control Block 21
2.4 Rllocated Structure v v . v .. 22
2.5 Globals B 4
2.6 Handy Calls v v v v v v v v .. 25
2.7 Cross References ¢ v v o v « o . 25

9:17 PR THU., 3 AUG., 1978

Y¥v]

Environnental Rllocation

The Buzzer Driver Sof tuare

Raan Young
07/09/82

000Q0Q00
0QQQ0Q000QaQa
00QQ00QQaQa0QaeQeq
0QQ0QQ000000Q000000GA0QA
Q0 000Q00000000Q00A00GA0KQ0A
\O\ 0000000000000000000000Q00Q000 Q.
00\ 000000000000000QA000000Q0000000N o
Q0\ .00000000000Q00000Q000000000Q00000A0AN \Q0Q0
0000. . __..00000000000Q0000000000000000Q0Q0000AA0AQRO. _. Q0QRGAQ
0Q0000Q0Qo0QoQaRQQe™ \0000000CC00aa0c000Qa00aQaQana0aQaaQa.
00QQQoaQaQe” 0000000000000000000000Q000Q00Q0Q000C00A0AG
e \0Q00Q0000Q000000000000Q0Q000Q" "00’
Q0QQQo0Q0QnaQaYQ0QQQQaQQY/
\000000Q00/*0QaeaQNaa/
\000Q0Q {QQQ0QaQ

0000QQ| 000/"
0000| . 00
0000 | OV00

000| /
000 |
1001
1000
000000
00000000
"00000.

"0000

"we

Buzzer driver

The beep code lives 1in tuo files (KR-BEE & KR-BE'). It uas
split up to allow BE' to be put 1n suitching ron (freeing up
nore non-suitching space).

The beeper 1s accessed 1n tuo ways:

1) the systen routine STBEEP; STBEEP sets up default
paraneters and calls the BEEPER routine which
does the actual driving of the beeper. STBEEP 1s
used for the error beep by the systen.

2) the user comnand BEEP; BEEP takes the user 1input,
translates 1t to internal forn and calls BEEPER.

BEEP parsing expects paraneters of forn:
1) keyuord ON or OFF.
2) none; frequency and duration are sare as STBEEP.
3) 1 nunber; interpreted as frequency, duration sanme
as STBEEP.
4) 2 nunbers; frequency and duration.

Beep runtine handles the paraneters as:
1) set or clear BEEPOK flag.
2) get default frequency and duration, beep.
3) get default duration, beep.
4) beep.

Duration 1s converted (using the ONE7PR routine) to a 5-byte
binary nunber which 1s added to the current real-tine clock
value to get the absolute tane to quit beeping. The BEEPER
routine checks this value against the current tine every
half cycle to see 1f ue have exceeded the absolute tire (1f
so, ue quit beeping). The value 1s saved i1n WDBRT(to allou
a clock rollover to adjust the absolute tine appropriately
(see KR"CHP for nore i1nfo on rollover).

Frequency 1s converted to half-cycle counts uith the fornula
(=28300/F-16. This returns a count for the nunber of cycles
of the 1nner loop in BEEPER. The 16 1s subtracted to cornpen-
sate for the overhead of the outer loop betueen half cycles.
The routine KEY? uhich 1s called by STOP? (called 1n BEEPER)
has been specially constructed so that both possible paths
through 1t take the sane length of tine. This prevents the
pitch from changing 1f a wuser hits a key uhile we are
beeping. The nunbers 28300 and 16 uere found algebraically
and fine tuned by experinentation. They should produce tones
uhich are reasonably accurate in the low fregencies. Rbove
about 1000 Hz the accuracy begins to degrade, the naxinun
frequency 1s approxinately 1700 Hz.

Hary Jo Homberger

7/12/82
Going to sleep 1n Kangaroo

There are several ways to go to sleep in Kangaroo:

nethod corresponding 'key’
3) type BYE BYEKEY
b) use BYE in a progran no key (Basic runtine routine)
c) let nachine tine out NAPKEY
d) get very lou batteries NRPKEY
e) press shift-RTTIN NRPKE Y

Sleep node can be entered either fron the interpreter (running the
BYE token) or the node suitcher (NAPKEY or BYEKEY seen any time we're
looking for 1nput).

If our pouer 1s ok, there are 3 things that could keep us fron going
straight to sleep after entering the sleep code:

happening action
a) pending tiners u1ll exit the sleep code and junp
to uhere tiner uas set up to go
b) appointnents due uill exit the sleep code, take care
and nothing running of the appointrent and then call

the sleep code again

¢) sleep HANDI call could possibly be set up to not return
to sleep code (see warning belou)

There are also a feu other obscure uays to keep us from going straight
to sleep. These include nodifying the V.LOOP HANDI call 1n the HPIL
frane-sending routine so 1t doesn’t return, or changing any of the
interrupt service routines. SUCH CHRNGES SHOULD ONLY BE RTTEMPTED
BY QUALIFIED PERSONS WITH R FULL UNDERSTRNDING OF THE CORPLICARTIONS
INVOLVED.

KR"BYE page 1
Follouing 1s the sequence of steps we take uhen ue’re putting Kangaroo

to sleep, fron either the BYEKEY or the NRPKEY.

R) If BYE typed 1n calc node, stall the calc progran.

If the user types BYE 1n calc node, we uwant to stall the calc progran,
$0 appointnents u1ll be processed. (RAppointments aren’t processed if
ue go to sleep uhile sonething 1s running.) To do this, ue stall
the calc progran, set up a BYEKEY as the pending key, and return
to the interpreter (1e, exit the BYE token that ue're executing).
The interpreter returns to EDIT node 1nput, uhich sees the BYEKEY,
and returns to the node suitcher. The node sultcher sees the BYEKEY
and sends us to sleep node again, this tine with nothing running.

B) Turn the HPIL loop off.

Rfter ue have taken care of BYE 1n calc node, the BYE and NAP keys
function the sane. First ue set the "test loop before using’ flag,
in case the user has turned off the HPIL devices on the loop. This
heeps us fron uaiting forever (or until the batteries run doun) for
3 frane to return fron a dead loop uhen ue're i1n STRNDBY ON node.

If there are any DISPLAY IS devices active, we need to unlisten then.
Before sending the unlisten, we test the integrity of the loop uith
an IDY. If the loop 1s ok, ue clear the 'test before using’ bit and
send out an unlisten. (The 'test before using’ flag uill be set
again as soon as anything tines out on the loop.)

C) Take care of timers and appointments.

(If we are being forced to sleep because of lou pouer, we skip this
part.)

First ue trigger any devices that have set up a conparator interrupt.
If there are any pending tiners, ue set up an EDIT key, and return
to caller. This u1ll cause Kangaroo to execute uhatever the tinmer
uas set up to do, then go to Edit node when done. (This does NOT
return to sleep node, until another BYEKEY or NRPKEY 1s done.)

If we’re not running a progran, ue look for and process any unprocessed
pending appointrnents. If we find one, we load up a NAPKEY, and
return to the caller. This uill cause Kangaroo to cone back through
the sleep code uhen 1t 1s done uith the appointnent.

Note that we will never process both a tiner and an appointnent, since
tiners are only active when a progran 1s running, and appointrents
are only processed uhen a progran 1s NOT running.

D) Disable the conparator interrupt.

We nouw disable the conparator interrupt, to mininize the chance of
another conparator interrupt being serviced i1n the interrupt service
routine, but not getting triggered before ue go to sleep. This
uould have the effect of that interrupt (let's say a timer) being
1gnored untal the user woke us up again. If the user had been
depending on the tiner to wake his nachine up, this could be very
frustrating.

KR"BYE page ¢

Should a conparator interrupt cone due betueen the tine the conparator

interrupt 1s disabled and the tine ue go to sleep, 1t uill cause the
harduare to override us uhen we try to tell the pouer supply to put
us to sleep. Instead, we uill return to the wakeup code, alrost as
1f the user had hit an RTTN key innediately after sending us to
sleep. The difference betueen this and a regular uakeup 1s that the
diagnostic ron uill not be called, and the lcd uill get cleared a
little later than usuval.

€) Do the Sleep HRANDI call.

He do a HANDIO call (VAL V.SLEE) to let the rons know that we’re going
to sleep. (If any rons want to do anything uith the comparator, or
don’t plan on returning to the sleep code, 1t 1s up to then to
re-enable the conparator interrupt.)

F) Put out the lou batteries warmning 1f we have lou pouer.

If ue uere sent to sleep because of low pouwer (PWURFLG = nonzero), we
put out the low batteries warning nessage.

G) Check the HPIL loop again and turn of f the HPIL chip oscillators.

He set the ’check loop before using’ flag again, and resend the
unlisten sequence 1f there are active DISPLRY IS devices. This 1s
done so ue have the nost current information possible uhen ue go to
sleep.

Fron nou on, no franes w1ll be sent on the HPIL loop until we uake up,
so ue turn off the chip oscillators.

H) Do niscellaneous housekeeping.

First ue clear the LETSEE flag, which 1s the flag that tells Kangaroo
that there 1s sonething in the LCD. Leaving this flag set would
cause Kangaroo to not 1ssue the pronpt at uakeup, believing
that there uas something i1n the LCD that the user uanted to see.

The global interrupts are then disabled, and the corparator interrupt
1s reenabled.

The 'key waiting’ bit in SVCURD 1s cleared, just 1n case soneone hit a
key after the BYE, so that key doesn’t pop up in the LCD uhen we
uake up.

1) Save registers and conpute the checksun
We save a place for the checksun on R6, and push our uakeup address.
He then save registers 6,10,12, and 16 1n TAPANZ2. We nou calculate
the checksun fron 10 bytes past the R6 stack to the last uord of
ava:lable nerory (LHWRAMEN) and store the checksun in the space
reserved on R6.
J) Put us to sleep.

And last, but not least, ue urite the proper values to the power supply
status byte (PSSB) to set us to light and deep sleep.

KR"BYE page 3

Things used:

Globals:
LETSEE
PURF LG
LURREN
SVCURD
PLSTART

Equates:
V.SLEE
BYEKEY
NRPKEY
EDITKY

! byte
1 byte
2 bytes
bitNo
b1 tH0

equ O3M
equ FEH
equ ROH
equ 83H

1/0 addresses:

PSSB
GINTDS
cnpss

dad FF82H
dad FFO1M
dad FF80H

Major routines:

BYE.
unn

in KR&222
in KR&212

Related routines:

HAITKY
NODEKY

PURSRV

in KR&IO
in KR&NOD

in KRS LOW

Related docunents:
See Roo Chip ERS for more information about the PSSB and CNPSB

znonzero 1f sonething 1n the LCD

znonzero 1f low power

taddress of last word of available nenory
=1 1f key waiting to be seen

=1 1f nust test loop before using

sevent nunber for going-to-sleep HRANDI call
zkey generated by BYE

zkey generated by shift-RTIN

zkey generated by EDIT

tpouer supply status byte
zglobal interrupt disable address
sconparator status byte

entry point for BYE token runtime routine
entry point for NAPKEY
and BYEKEY when seen 1n node suitcher

loads NRPKEY 1f timeout when waiting for input

(the node suitcher) 1f NRP or BYE key seen,
sends us to sleep code

sets up pouwer flag to indicate low pouer

KR"BYE page 4

Checksun conputation

Raan Young
07/09/82

QooQoaqa
0000QCQo0o000QQ
0000000Q00000QC0a00
000000000000000QQG00000
Q0 00000Q00N00R00G0VLL000LL0
\Q\ Q0000QQ0NC0002009V003GA50Q000 Q.
00\ 0000000000000200000000000U00R000N Q0
o0\ .000Q0a00ra3000000000000000070000000 Y \2000
Q0Q0..__..0Q00Q0Q0G000NMAGAN00000000CA00NCNAGG0000000. _. 0000000
0000000000000Q00QQQ0" \0000C20000000000000JG00G0000000G0AG00A.
ooCooQQoe” 000000090GQ000A00000000000000000GAAG0G
R \00000000C00Q0000000A0000A0000” "00’
0000QQ0C00Q0G0Q00QK00GQQA/
\0000000QG/"0Q00Q0QaQa/
\QQaooo jQQQ0caQ

00000 000/"
0000] . 00
0000| OV0O
000| /
000 |

|00|

1000

000000

"0000000Q

"mo

BOUND
Registers:

Globals:

Subroutines:

Description:

R34/35 pointer to ran (2K increnents)
R36/37 scratch

TOPRON a label in KR&TOK uhich is the first
byte of code 1n the top ron (56K)

none

Starting at 32K and 1increnenting by 2K
steps, get 2 bytes fron ran. One’s conple-
nent the first byte, urite then back out,
and conpare uhat wuas uritten with uhat 1s
actually there. If they are not the sane we
have found the first byte of non-ran and are
done. Otheruise, one's conplenent the first
byte again, and restore the original ran
contents. Then 1ncrement and try again 1f
rot at the top of ram. NOTE: the con-
plenenting of the first byte 1is done
because, 1f there 1s no ran we uill read
back the high order byte of the address
tuice. He want to nake sure the tuo bytes ue
urite out are different so that (1f there 1s
no ran) we u1ll read back the sane (2nd)
byte twice and get an error when ue do the
conpare.

CHECK
Registers:

Globals:

Subroutines:

Description:

RO0O/01 pointer to end of ranm space to be
sunned (physical end of nenory found
by BOUND)

RO2/03 scratch

R14/15 pointer to beginning of ram space to
be sunned (current stack pointer ¢
10 bytes)

R46/47 accunulator for checksun

LUANEN pointer 1n KRRGLO to last word of
ran (+1)

SunIT+ sunming routine in KR&CRD

Get the begin and end points for the
checksun and call the sunning routine. The
sunning routine is a loop which gets 2 bytes
at a tine and adds them to & 2 byte ac-
cunulator uith urap around carry. If ue are
sunning an odd nunber of bytes, the extra
byte on the end is cleared before the add.
The loop continues wuntil our ram pointer 1s
>z the end location.

General Operation:

On coldstart, the systen calls BOUND to establish the ini-
tial ran size. Each tine the systen goes to sleep, 1t
calls CHECK to checksun all ranm (minus a snall part of the
systen stack) and saves the result on the stack. Each time
the systen wakes up, 1t calls BOUND to deternine 1f the
user has changed the anount of ran. If 1t 1s less than
last tine a coldstart 1s forced (since things could be
danaged). If it 1s the sane or nore, then CHECK 1s called
to conpute the checksun of the amount there last time the
systen went to sleep; the result 1s conpared to the result
saved on the stack wuhile going to sleep. If the results
are not the sane a coldstart 1s forced (sonething has been
danaged). If the results are the sare nenory 1s adjusted
as needed for the neu ran, the neu ran size 1s saved, and
ue go on waking up.

HP-75% Instruction Set

§eccccncrececreccccacenan

Systen (onmand

P

o>
[]
]
'
'
(]
[
]
(]
L}
(]
(]
]
[}
[}
]
]
1
[}
(]
]
(]
]
]
[}

— . — —— i, e e, e et < . e — i — — — — S— — — — — — — — — — — . e et e et . — — — — — — — —— — — —

RDJST
RLARN OFF
ALARN ON
RSSIGN 10
RUTO

BEEP OFF
BEEP ON
BYE

CAT

CAT ALL
CAT CARD
CLEAR LOOP
CLERR VARS
CONT
copy...T0
DEFRULT OFF
DEFRULT ON
DEF KEY

DE LAY
DELETE
DISPLRY IS
EOLT
ENDLINE
EXACT

EXTD

FETCH
FETCH KEY
INITIRLIZE
LIS

LIST 10
LOCK
MHARCIN
MERGE

NRME

OFF 10
OPTION ANGLE DEGREES
OPTION ANGLE RRDIANS
PRCK

PLIST
PLIST
PRINTER IS
PROTECT
PURGE
PUIDTH
RENANE. .. TO
RENURBER
RESET
RESTORE 10
RUN

SET
STANDBY OFF
STANDBY ON
STHTC
TRACE FLOW

— e — — — ———— —— —— — — — ——— ——————— ——— —— —— — — ——— — . e e, e i . i e e S s — . . e e, . Yy e, e

...................... 7 .

BRSIC Staterent

RSSIGN
BEEP

CALL

DRTA

OEF FN

oIn

DISP

DISP USING
END

END DEF
FOR...T0...STEP
cosus

G0TO

IF. . THEN.. . ELSE

INAGE
INPUT
INTEGER
LET

LET FN
NEXT

OFF ERROR
OFF TINER W
ON ERROR
ON TIRER &
ON...GOSUB
ON...COTO
OPTION BRSE
POP

PRINT
PRINT ¥
PRINT USING
PUT
RANDONIZE
RERD

PUT
RANDORT2E
RERD

RERD W
RERL

REN
RESTORE
RESTORE W
RETURN
SHORT

s1op

WAIT

P| BRSIC

Function

STR$
TRB
TAN
T1nE
TInEs
UPRCS
VAL
VEFS

— e ——— —— —— —— ———— —— —— — ————— — ———— — — —————— ———————————— ——————— ——— —— g e
~—
o
(3]

p

TRACE OFF

I l I
TRACE VRRS	
TRANSFORN...INTO	
UNPROTECT	
WIDTH	
YEAR l l	
T doccmccmcccccccccceeae .
Conparator driver softuare
Raan Young
07/09/82
QQoQgaQQ
00QQQo0g0QQaQ
00000Q0Q0QQ0Q0QAAA

000Q0Q0QQ0Q000QQQ0QAQQa
00 000000000000000000Q0000QA0
\Q\ 00000Q000QQ000QA00C00Q0A00Q00A00 Q.
00\ 0000000000Q00G000Q00QC0Q00AAQA0AAYN QQ

Q0\ .QQ0000000000000Q000Q00000000Q00QQ000N \QQaaQ
0000. . __..00000000Q0QQ0Q00000Q000000000000QQ0Q000QR0. _. QAaa0qa
0Q0QQ0Q00G0aQeQQR” \0000Q000000QQ00000Q0000000000Q00Q0A0A.
Q0QQQa0aQQ” 000Q0000Q000000000000Q0Q0000Q000Q00GAANANA
e \0Q0Q00000000Q0000AQ000QQQQ00RQ" "00"

Q000Q00Q000Q000000Q000QRRAA/
\000000QQQ/QQQou0QaQ/
\0000Qo {QQooeQa

00000| ©000/"
0000| . 00
0000 | OV0O
000| /
000 |
|00]
1000
000000
" 0000000
"00000 .

"000Q

The conparator 1s a harduare device which interacts uith the
real tine clock and causes an 1nterrupt uhenever the value
in the clock 1s >= the value 1n the comparator. This allous
the softuare to 1nitiate events at a tane specified by the
user. The pocket secretary, tine node, and ON TINER state-
nent are exanples of the things which can be done.

The harduare only handles one value at a tine. This neans
that 1f nore than one conparator device (appointnent, tiner,
etc) uants to wuse it, there is a conflict. This code
resolves this conflict. It presents the conparator devices
uith a conparator machine which handles input 1n the forn of
tagged entries (indicating ounership) and inforns the ouner
uhen that entry 1s active. The nachine can handle 8 dif-
ferent devices (5 are used by the nainfrane, see extension
section for more), and also handles the rollover of the RI(C
(once a year). The 1nitialization of the RT(and absolute
tine 1s handled by TINE node (see KR"THC for nore).

Usage of the nachine consists of sending an entry to it,
flagged with your ouner nunber (see CMPENT section for
nore?. When that entry becones the next value to be natched,
1t 1s loaded 1nto the conparator harduare, and when the in-
terrupt happens, the flag cooresponding to that entries
ouner 1s set. (NPCHK checks these flags and calls the
trigger routine for the ouner of each entry needing service.
Entries can be absolute or relative time, depending on the
ouner, and sone have autonatic reentry.

COMPRRATOR SETUP:

The conparator 1s setup at coldstart to have all entries in
the table O except rollover, which 1s set to 1 year. The
rollover value 1s loaded 1nto the conparator harduare.

CONPARATOR ENTRY:
The conparator entry 1s setup by calling CPMPENT wuith R40
containing the ouner W and R41/47 containing the appropriate
value. Ouners are:

0 (CT.RLV) rollover entry (not used by CHPENT) [absolute]
7 (CT.APT) pocket secretary - tine of next appointment

[absolute]

14 (CT.RPR) repeating alarn - tine of next beep [absolute,
auto inci

21 (CT1.C/S) clock/stopuatch - tine of next tick [absolute,
auto inc)

28 (CT.TMR) ON TINER - tine of next timer [absolute)

35 (C1.0M1) unused - see extension section [absolute)

42 (CT.ADJ) clock adjust - tine of next adjust to RTC [in-
terval, auto inc]

49 ((71.0M2) unused - see extension section [interval)

56 ((1.013) unused - see extension section [interval]

absolute = tine 1s conpared directly to clock

interval = tine 1s added to current clock to get absolute
value

auto 1nc = entry 1s autonatically updated by some interval
T sec for CT.C/S, 15 sec for CT.RPR, and the
value stored 1n TREINC (by CMPENT) for CT.RDJ.

An entry of 0 value uill turn off the designated device.

Rfter the table entry has been added, the table 1s searched
for the louest value, and this 1s loaded 1nto the comparator
harduare.

COMPARATOR INTERRUPT:

The corparator anterrupt routine (CMPSRV) handles the
processing of the interrupt. This consists of finding out
uhich entry caused the 1nterrupt (since the conparator can
not be read, the ouner nunber 1s kept in CHPPNT). If the en-
try was rollover, then the rollover processing is initiated
at interrupt tine (see rollover for nore). Otheruise, the
conparator bit 1s set in SVCHRD to 1ndicate service is
needed (this uill cause SPY to call CNMPCHK). Then, the
increnent value 1s fetched fron TREINC for clock adjusts, or
fron the service table for repeating alarms and clock/stop-
uatch. The increment 1s added to the current table value (if
sppropriate) and the new absolute tine (or O for non-auto
inc entries) 1s placed in the table. Then, the next entry is
loaded i1nto the conparator harduare. The service table has
the increnent value, or 0, for each entry, and the flag rask

for that entry. It 1s indexed by the owner nunber. The flag
nask 1s added to the current contents of CHPFLG to indicate
to (MPCHK which device or devices need service. This con-
pletes the interrupt service, the guts of each device 1s
handled uhen CNPCHK gets called by the systen (uhen 1ts
safe).

Rollover:

This 1s a special case of interrupt processing, which hap-
pens once a year for a nachine that has not been coldstarted
rnore recently. Rollover handles the problen of the RI(hard-
ware overflouing 1ts count buffer by resetting the buffer to
0 (harduare can count about 2.5 years). The setting of 1
year uas chosen for 3 nice boundary. The current RI(value
1s saved, and the RT(s cleared. The value 1s used to ad-
Just WDBRTC (used by WARIT, DELAY, and BEEP for the absolute
tine to quit). The value 1s also added to the tire base. The
value 1s then subtracted fron each of the entries in the
conparator table (1f the value 1s < 0 then the nininun value
of 1 1s loaded). The routine THRRLV 1s called to adjust the
tiners, and then the rollover value 1s reloaded.

CONPRARATOR ENRBLE/DISABLE:

The conparator interrupt 18 enabled (CNPENR) or disabled
(CNPDSR) without affecting any of the other bits in the con-
parator status. This 1s because the bit which controls the
buzzer 1s 1n this status, and the state of 1t should not be
changed by the interrupt change.

CONPRRATOR CHECKING:

The flags uhich indicate comparator devices that need ser-
vicing are kept in CMPFLG. CNPCHK checks these flags (af
NOCHEK 1s O) and calls the apppropriate routine to service
the device. CMPCHK also clears the device flag (uith inter-
rupts disabled -- to prevent possible setting during the
clearing) and, 1f all devices have been serviced, clears the
comparator bit 1n SVCURD. RIl registers (R20-77) are saved
before the device routine is called, and restored after-
words. Rfter the routine returns, a check 1s nade for power
failure or a key pending. If so, we exat CMPCHK (this 1s to
allou the user to type while conparator 1nterrupts are
coning 1n too fast to service [tine mode to a printer, or
nultiple alarns)). Otheruise loop around again to see if any
other devices need service.

DEVICE SERVICE ROUTINES:
In the nainfrane, there are 5 service routines:

Repeating alarn: CNTRIG (see Pocket Secretary
docunentation)

Rlarm: RPTRIG (see Pocket Secretary
docunentation)

Tiners: TNTKIG (see KR"TIN)

Clock: CSTRIG (see KR'THC and Pocket
Secretary)

Rdjust: RJTRIG (see KR"THC and follouing
text)

An exanple routine 1s RJTRIG, which handles the clock ad-
Justnents set up by tine node. RJTRIGC checks the bit 1in
PSSTRT uhich 1indicates the type of clock adjustient (1in-
crenenting or decrenenting). It then sends the appropriate
status to the RTC harduare. This 1s all that needs to be
done, because the setup for the next conparator interrupt to
trigger this 1s done autonatically by the conparator inter-
rupt routine (adjust is an auto-increnent entry).

COMPARRTOR EXTENSIONS:
The conparator can be extended 1n tuo ways:

* The conparator intercept (CMPINT) can be used to nodify
or change the interrupt service routine (subject to ron
sultching restrictions).

* The trigger HANDI call can be used to pick up triggers
for non-nainfrane events. This 1s done by setting up an
entry using one of the unused entry codes. When this e-
vent cores due, CNPCHK will call HANDI with event #
V.ETRG. R20 will contain a3 pointer such that (R20+1-
OVCTBL) will 1ndicate the external entry code used (1,2,
or 3). The ron using the corparator nust decide 1f this
18 1ts external device, service 1t if so, and return
u1th HANDLD set (1f serviced).

GENERAL FLOW:
The general flou of conparator control 1¢ as follous:

* An entry 1s set up for the conparator and loaded 1nto
the harduare.

* The conparator interrupt happens.

* The 1nterrupt service routine flags the event and loads
the next event.

* (NPCHK detects the flag and calls the service routine.

* The service routine does 1ts thing (update display, load
next entry ...).

* Life goes on.

Card reader driver

Raan Young
07/13/82

Q000000Q
000000QQ000Q00
Q0000000Q0a0Geaeaa
0000000QQ00QQ000000000
o Q0Q200Q000000000Q000Q000000A
0\ 0000000000000000000000000000 Q.
Q0\ 00000Q000Q00000Q0300000000000000N Q0
00\ .00000000Q0000U000000000000QG0Q0AQ0N \0Q00Q
Q00Q..__..0Q00Q0000000000Q000Q0000G0000A000000000C0A00. _. 00CR000
000000000000GQQ000" \000000000000000000000QG00ACO00000GGAN0A.
0QooogeaoQe” 0Q000000000Q0G00QQ000000000000000000C000
B \00000Q00000000Q00000C00QG0R000" "00'
00000QuQCQ00Q0G0R0Q0GTLL0GAR/
\000020000/"000GA0AQ0Q/
\00QuQQ |QCQGGAQ

0QoQa| 000/"
0000| . 00
0000| 0V00

000| /
000 |
[00]
{000
000000
00000000
00000 .

IDMQ

LIXN]

The card reader has PROTECT, UNPROTECT, COPY ... CRRD/PCRD,
and CAT CARD as 1ts key words. The general flow of each con-
nand is given here and then key subroutines will be
discussed.

CARD LRYOUT:
The card is layed out as:

domemmanan P $occccmacans $oceens +
| HP head l urite protect | file head | data |
R R e et $---ee- +

Where each field 1s ended by at least one 0 and starts
uith a special code (the trailing 0 1s not part of the
field [1t can't be read]), and 1s not 1included in the
count). There 1s a gap betueen each field, and at both
ends. The special code and gap are handled by the harduare
(see the card reader harduare ERS for nmore).

HP head: This 1indicates the type of card we have. Cur-
rently the only type 1s HPCV(700D)00. This 8 byte code
neans HPCV type card, 700 bytes naxinun storage (length
of card after write protect). The O's are reserved for
future extension.

Hrite protect: This 1indicates uwhether or not the card
can be uritten on. Only the first 2 bytes of this 4 byte
field 1s wused for the flag, 0000 = unprctected, FFFF =
protected.

File head: This contains all the 1dentification and
directory info for this card, 1in addition to the

checksuns.
byte purpose
1 Sub-fornat. Indicates @ sub-fornat (1e, 2 data

fields) 0=R00

2 # of tracks. # of tracks in file

J Track #. # of this track

4-5 Track s1ze. ¥ of bytes 1n track

6-7 File size. N of bytes in entire file

8-9 File type. Basic progran, text, lex, LIF, etc.

10-17 Filenane. 8 character filenarne

18-21 Passuord. 4 character string

22-25 Tine/date. Date and tine of file creation (27-14
secs fron century)

26-27 File checksun. To nake copy unique but nultiple

ctards rixable

28 Partial status Status of partial statenent in-
fornatior 0=RQOQ

29-30 Partial 1st statement. Information about first
partial statenent

31-32 Partial next statenent. Information about next

partial statenent
33-34 (Card checksum, Checksur of card data
35 Header checksur. Checksun for file header.

Data: This contains the data stored on the card. The
s1ze of this field 1s 1-650 bytes.

GENERRL FLOW:

PROTECT/UNPROTECT: the code for both of these connands 1s
the sare, only the flag 1s different (O=unprotected,
#0=protected). The code calls STRTUP to get things started
(save registers, etc.), then calls STRICD to disable 1in-
terrupts, pronpt the user for the card, and read/check the
HP header. Finally, WRIT(R 1s called to urite the flag on
the card. INTENR reenables the interrupts, and ENDIT
cleans up and leaves.

(RT CARD: the code for this conmnand 1s 1nvoked by the code
for the (RT <«filenare> connand. When the connand deter-
nines that the device to be cataloged 1s the card reader,
1t calls CRDEXN (uhich does the work). STRTUF gets things
started, then GOCRFD prompts the wuser for the card,
read/checks the HP header, and reads the urite protect
field. MWe are nou ready to read the file header, which 1s
done by RERDCR. Then wue test the header uith HEDSUR to
nake sure 1t was read correctly. If 1t uas, ue enable in-
terrupts, check the sub-fornat, and (1f correct) display
the track nunber, nunber of tracks, and filenane (this can
be recalled with shift-FET). Then (RTLIN outputs the stan-
dard catalog for the file, and waits until SIGNIF returns
to clean up with ENDIT,

COPY ... CRRD/PCRD: the copy code recognizes tuo devices,
CRRD and PCRD. These are the sare, except that, in the
case of PCRD, the file on the target end 1s nade private.
The copy connand i1nvokes the card reader code when 1t en-
counters one (tio 1s an error) card reader device. The
code enters through (ROCPY which deterrnines the direction
of the copy (fron card=load. to card=store) and calls the
sppropriate routine (LORL or STORE). C(RDCPY also handles
the privatization of the target file by calling the
routine MKEPRV 3¢ needed.

Load: this routine calls STRTUP to get things rolling,
then calls RLCALL to get ac nuch nemory as 1s available.
The table for tracks loaded 1s next 1nit1alized to 1n-
dicate no tracks loaded. (This table coneists of 38
byteec of 1, uwher a track 3¢ Joaded, the bvte coores-
ponding to that track nunber 1¢ changed to 0.) GOCARD

gets the card going and read/checks the HP header and
urite protect. Next, read the file header (RERD(R) and
check the possible error conditions (CHKHED - too big,
urong file, password, etc). If all 1s ok, compute the
location for the data track in the file (track#-1 tines
FULTRK + file start) and copy the data into file using

READCR. Then check the data checksun to nake sure 1t was
read ok, enable interrupts, and check to see 1f need any
nore tracks. If so, put out the track nessage and get
the next one. Otheruise, straighten up the file direc-
tory with (RTFLE (release unneeded nerory), and finish
up w1th ENDIT,

Store: STRTUP begins the store, then HEDBLD builds up
the file header to be uritten on the card. Tell the user
hou many tracks they need, and see 1f the card nane 1s
different than the RAN name (1f so use neu creation
date). Calculate the location of the data to be stored,
and checksur 1t, Then, 1f not a retry of the sane track,
scan for the statenent that crosses the boundary betueen
this track and the next track. Save the overlap count
for the next track and add the nunber of bytes overlap
into this track to the file header. Next, calculate the
checksun of the header. Nou GOCRRD pronpts the user for
the card, read/checks the HP header, and reads the urite
protect. If not write protected, then WRIT{R 1s called
to urite the file header, and then again to write the
data. Rfter enabling 1interrupts, check to see 1f verify
1s on (aluays 1s for the nainframe), and call VERIFY if
needed. Reenable interrupts after the call to VERIFY.
Finally 1f not the last track, display the track nescage
and go do the next track. Otheruise, clean up uith EN-
DIT.

Verify: VERIFY saves sone info to allou recursive call
of sone routines, and then calls COCRRD to get things
oing. The file header 1s read i1nto TAPNM2, checksunned
?agaxnst the original), and then ROVFY 1s called. ROVFY
reads 1n the data and conputes a flying checksun (the
data 1s never stored anyuhere, just sunred up). The
result of this checksun 15 conpared to the original. If
ei1ther checksun 1s bad, E 1s set to indicate failure.

ERROR HANDLING:
There are tuo types of card reader errors: hard and soft.
Hard errors are errors wuwhich abort the entire operation
(for exanple, wurong passuord -- the wuser nust redo the
copy conrnand). Soft errors are errors uhich restart the
current track (for exanple, card pulled too fast -- user
1s pronpted for sane track again).

Since errors can happen at several different places, and
unknoun Jlevels of the Re stack, an RBORT routine 1s uced
to restore things to a knoun location. Several iteme are

saved at the beginning of the operation to enable this:
SUBPNT saves the current R6 pointer; RTNSVE save the ad-
dress of where to go for a retry; and RBTFLG 1s
1niti1alized to a 0.

When an error 1s encountered, RBTFLG is set to 1 1f the

error 1s hard, and the error ® jis passed to the RBORT
routine. RBORT restores R6 to SUBPNT and checks the error
type. If hard, check to see 1f doing a load (i1f yes, purge
the partial. file), and call ENDIT to cleanup. If soft,
report the error uith HARN.R, put RTNSVE on the stack, and
return to 1t.

SETUP & CLERNUP:

The setup 1s handled by STRTUP. This calls EVIL to save
all registers used by the code, saves R6 1n SUBPNT, and
sets NOCHEK to 1 (this prevents CHPCHK fronm doing anything
uhile waiting for the user to hit RTIN). The cleanup 1s
handled by ENDIT. This routine trashes its return (return
to the caller of the caller of ENDIT), clears the error
buffer, sets NOCHEK to 0, and restores the registers saved
in EVIL.

GETTING THE CRRD STRRTED:

STRTCD handles the startup of the card (GOCRRD does a
STRTCD, reads the urite protect, and sets up for the file
header). RBTFLGC 1s 1n1t1alized to O (soft error), the
first part of the card pronpt (for exarnple 'COPY 10') 1s
uritten to the LC(D, and then the rest of the pronpt 1is
uritten. Then, wait for a key with SIGNIF. If the key 1s
RTTN or shift-RTIN, cause a hard error uith no error nes-
sage. Kill the key, and 1f 1t 1s RIN, start reading the
card. Otheruise, wait for another key. To start, save the
current delay, urite out the pull message uith no delay,
and restore the delay. Disable interrupts fron the key-
board, conparator, and PIL (pouer 1s left enabled 1n case
the battery dies during the card reader), and turn on the
card reader harduare. Read the HP header, and check to see
1f power 1s ok (1f not, cause hard error mith no nessage
-- 1f the pouer 1s ok then assume 1t w1ll last for the
rest of the card). See 1f the header natches the expected
header (the call to HPINTC allous plugin rons to change
this header). If ok, all done. Otheruise, report the soft
error (unrecognized header) and restart the track.

READING/HURITING THE CRRD:
The harduare connunicates via tuo bytes of infornation.
Data 1s the first byte, and status 1s the second byte (all
reads and urites are 2 byte hunks reached via FF10H 1/0
address). The status is laid out as:

RD/WURT BITWO Set indicates a read operation, clear
indicates a urite operation.

CORDST BITH1 Indicates state (“ON"/"OFF") of card
reader. Set by CPU to 1nitiate card
reader, cleared by CPU to terminate
card reader.

STRSTP BITH2 Set by CPU to start card reader opera-
tion, cleared by CPU to stop opera-
tion.

unused BITH) This bit is not used for anything.

SPDHI BITH4 Set by card reader to indicate speed
error uas on fast side, clock count
too lou. Cleared by CPU.

SPDLO BITHS Set by card reader to indicate speed
error wuas on slow side, clock count
too high. Cleared by CPU.

GENERR BITH6 Set to indicate a general card error,
such as overflouw. Cleared by CPU.

RERDY? BITH? Uhen set, indicates data buffer is
ready for next access (read from/urite
to), cleared by CPU to indicate access
conpleted.

Data 1s passed betueen the CPU and the card via an 8-bit
data buffer. For reads, RERDY? 1s set to indicate that 8
bits have been copied fron the card to the buffer, ready
for access by the CPU, which then clears RERDY? to in-
dicate access finished. For urites, READY? js set to in-
dicate that 8 bits have been copied to the card fron the
buffer, which 1s ready for the next 8 bits. The CPU clears
RERDY? to indicate that the buffer has been reloaded.

READCR and WRITCR are the general routines for talking to
the card reader harduare. They take as inmput the starting
point and nurber of bytes to be read (the starting point
1s the ran location data 1s to be stored in/taken fron).
They put the harduare 1n the appropriate node, and set E
to indicate the node (E=1 1f read, O 1f urite). For reads,
the count 1s adjusted by -1 to conpensate for the harduare
uriting the last byte after 1t 1s shutdoun (the saqe loop
1s used for both read and uwrite). For urites, the count 1s
adjusted +4 to nake sure there are at least 3 bytes of
padding for Titan and 1 byte of O for the harduare to end
1t’s read on. The paraneters start address, data end ad-
dress, and field end address (includes padding, etc) are
conputed and passed to the gut level routines OGET-
BYT/NXTBYT and GORDWUR. (Note: Titan required the pad bytes
at one tine, but does not any longer. Houever, code had
already been frozen by the tine this was knoun.)

GETBYT/NXTBYT sends the card reader the status/data, and
goes into a loop to wait for the READY bit to be set. This
loop decrenents a tineout count (1nitialized by INTDSR for
the first tine and then restored to internal count after
each byte -- this allous a long count to get the first

byte and then a short one for all follouing bytes). If the
count goes to O, then we have a tineout problen and a soft
error 1s reported. Hhen READY 1s set, the status/data 1s
resd and the ready bit 1s cleared. Next the error bits are
checked (1f any set then ERRS deternines which one and
reports the error -- 1f this 1s the last byte of a wurite,

the errors are i1gnored). NXTBYT also checks to see 1f ue
are at the last byte of data, and clears the STRART/STOP
bit 1f so (this will stop the read/urite after the current
byte 1s handled).

GORDUR 1s a loop wuhich checks to see 1f ue have done the
last byte of data. If so urite O, 1gnore read; otheruise,
save/get the data. If the card reader uas stopped on the
last byte, then exit, otheruise call NXTBYT and go around
#gain,

ROVFY 1s a special read routine used by the VERIFY opera-
tion. It uses GETBYT/NXTBYT to read the card, but 1nstead
of storing the data in ran, 1t builds up a tuo byte nunber
and adds 1t to an accumulator (uith ur3p around carry) to
build up a checksun of the data on the card. When the end
of the field 1s reached, 1t returns uith the conputed
checksun.

DRTA LOCRTION:
The starting point for data 1in RAN 1s found using the
DIRCLC routine, which uses FULTRK (naxinun card length) to
deternine the location:

(FULTRK*(FLHERD-1)¢<fyle start>)

The length of the field 1s also set up by DTACLC.

CHECKSUNS:

The checksuns are all done as tuo byte nunbers added to an
accunulator with wraparound carry. The header checksun
takes the tuo byte result and adds the top byte to the
botton byte for a one byte result. For the header this 1s
done by VYHDSN/HEDSUM (VYHDSH uses THPHMZ 1nstead of the
nornal file header ran). The data checksun 1s handled by
DIARSURN. All routines {and the RAN checksun routine [see
KR"(Hk for nore)) use the SUMIT routines for the actual
conputation. The SURIT routines use RO for an end value,
R14 for a pointer, and R46 for the accunulator.

MESSAGES TO THE USER:
In addition to the pronpt, and error nessages, 3 nessages
are dicplayed for the wuser (all can be retrieved wuith
shi1ft-FET). These are the s1ze nescage (nunber of tracks
needed for the copy), the catalog nescage (track M and W
of tracke), and the track meccage (what track was just

handled). These are handled by SZENSG, EXMNSG, and TRKASG

re
to

spectively. Rll routines use NUMOUT to translate nunbers
RSCII, and MVBYTS to nove nessage portions to output.

EROUT- 1s used to put the nessage out for the user.

INFORNATION CHECKING:

In
to

fornation fron the file header 1s checked during a read
nake sure that:

the header uwas read correctly, soft error
the sub-forrnat 1s ok, soft error

the track 1s part of the file, soft error

in addition, 1f this 1s the first track read:

the filenare (1f given) natches the card, soft error
the passuord (1f given) natches the card, hard error
the file will f1t 1n RAN, hard error

the types (1f special [APPT]) nmatch, hard error

and the track 1d ¥ 1s loaded (file checksun)

This 1s done by CHKHED. Rt the end of the data, the data

1s

checksured and tested by CHKEND. CHKEND also updates

the track load table and finds the next needed track for
the track nessage.

EXTE

NDING THE CRRD RERDER:

There are 3 ways provided to extend the functions of the
card reader,

1)

2)

3)

V.CARD HANDIO call. This is called fron TRKASG before
the nessage 1s wuritten out. It allous plugin rons to do
post processing of a track of data before the user is
pronpted for the next one. For exanple, to allow nore
than 36 tracks, this could be used to adjust the track
nunber for the user nessage, and nove the track fron a
buffer to the real location (this assumes the track uas
uritten uith @ track nunber < 37).

HPINTC antercept. This 1s a ranm antercept uhich gets
called uhen the HP header and/or sub-format 1s checked.
If the HP header 1is being checked then R40/41 contains
"HP" and R40/47 contains the HP header. If 1t 1s the
sub-fornat, then R40/41 contains O and R47 contains the
sub-fornat. If the rom wants to do something, 1t can
elther return O/#0 flag and let the code carry on, or
1t can grab control and never return,

Neu device nane. This will cause the (OPY or whatever
code to do a V.FILE (or V.SPEC) HANDI call, uhich the
ron can pickup and process. The card reader routines
are available for use. For an exanple of this, see the
BCRD device i1n RY-RPR.

GLOBALS USED:
RBTFLG Flag to indicate type of abort desired.

CRDSTS Status bits for card reader machine
FULTRK Maxinun track si2e

HPHERD HP header buffer

HPINTC Intercept for HP header

LSTIRK Size of last track 1n bytes

RTNSVE Where to go after an error

SUBPNT Pointer to stack at entry to card reader

TRKTBL Table of tracks to be loaded.
WRTPRO WUrite protect buffer

File header buffer:
SUBFRN Sub-fornat of card
F LHERD Track ® and 8 of tracks
TRKSZE Track si1ze 1n bytes
FILSZE File size in bytes
FILTYP Type of file
TREDTE Tine/date of file creation
FILNNE Filenane
PRSWRD File passuord

FLECHK Checksun of entire file including directory
PRTSTS Partial statenent status

PRT1ST Length of partial statenent on this track
PRTNKT length of partial statement on next track
CHKSUN Corputed checksun fron card

HDCKSH File header checksun

COMNAND SYNTRX:

(OPY “<filenanet>:{CARD|P(RD}[/<passuord>]" 10 "<filenane2>"
Copies card to renory, 1f menory 1s available. Copy will
be restarted 1f filenare on card does not natch the name
in the header. Misnatched passuords will also abort the
copy. If the reserved word "CRRD" 1s used in place of
the filenane! specification then filename checking will
by passed. (RFD device wi1ll copy nomally, PCRD device
ui1ll nake the file private.

COPY "<filenanel>" T0 “<filenane2>:{CARD|PCRD}({/<passuord>]"”
Copies nernory to card. Password wi1ll secure the card. If
the reserved word "CRRD'" 1s wused 1n place of the
filenane? specification then filenane on card uill be
the sane as ran. (RARD device will copy nornally, PCRD
device uill nake the file private.

PROTECT
Writes a8 write-protect code before the header. This re-
quires tuo passes of the card, (first writes data,
second urites protect).

UNPROTECT

Erases urite protect on card.

CAT {CARD|":CRRD"|":PCRD"})
Displays card header, does not copy file.

These connands can be entered for 1nnediate execution or

be included in a progran for progrannatic execution. Rll
connands prompt the wuser until all tracks have been
processed. Rll connands can be aborted uhen prompting for
a card by typing RTIN. Rnything other than RTN, SHIFT-
ATTN, or RTIN 1s 1gnored.

Catalog card flowchart:

................. 4
CRT CRRD |
................. ¢
l
v
................. 4
STRTUP

save stack pntr

I
save registers |
I
suppress CMPCHK |

................. 4
|
v
................. ’
save return adr |
................. +
|
v
................. 4
GOCRRD

|
pronpt user |
disable intrpts |
read HP header |
check HP header |
read upr flag |

................. 4

|

v
................. ¢
RERDCR |
read fi1le head |
................. +

|

v
................. ¢
HEDSUN |
check headr sun |
................. 4

|

v
----------------- '
INTENA |
enable 1ntrpts |
................. 4

| FRACHK |
| check subfornat |

S +

|

v
L e TR +
| EXNNSG |
| display track |
T +

|

v
R e e +
| CATLIN |
| display catalog |
R +

I

v
$oommmemem e +
| SIGNIF |
| wait for key |
R L E T T T epp—— +

i

v
L T T ‘
| ENDIT |
| restore regs |
| return |

Protect/Unprotect card flouchart:

$mmmmmmme e ' R +
| PROTECT | | UNPROTECT |
| set nsg & flag | | set nsg 8 flag |
L R ST ’ L T +
I l
$ommm e Y Y +
I
v
D +
STRTUP

I I
| save registers |
| save stack pntr |
| suppress CHMPCHK |

domccccccccaccanas +
|
v
d-mmmecemmmeeaaes +
| save return adr |
docecccrocmomecann +
|
v
R L e T T +

| STRTCD |
| prompt user |
| disable intrpts |
| read HF header |
| check HP header |

R +

|

v
domccmccmccccaanaa +
| WRITCR |
| write wpr flag |
s +

|

v
Tt T +
[INTENR ’
| enable intrpts |
4o +

|

v
T +
| ENDIT |
| restore regs |
| return

Copy card controller flouchart:

| COPY ... CARD |
| (CROCPY) |

$-mmcceccccceccas +
|
v
%
2 2
no * * yes
oo 2 load? Reemceceeeeee- +
| * % |
| Aok |
| * |
| v
v P
* | LORD
s | do load card
* * yes ommmmce e
* store? A--------- + |
S ! |
E I v |
A $ommmme e + |
| | STORE | |
no | | do store card | v
| T L T + *
| | $
| dommmmmce e + yes * x
| | return I L s % private? *
| LT E T T + | % %
| | s s
v | r #
e T) | *
| must be private | | | no
| store | | v
T T DT T TRpR + | deemmmmm e
| | | return
v | R
L e + |
| NKEPRV | |
| make basic priv | |
| (warn if not) | |
e Lt T TEPRp. + *
| 2 %
v * load * no

$mommemommeeoaoeo- + * aborted? *---------------- +

| STORE | * » |
| do store card | L |
b + A v

| | yes $omcmccmea- c-emen- +

v v | NKEPRV |
$ommmmmm e + L kbl + | nake basic prav |
| restore access | | return | | (warn 1f not) |
o ceeaan + R T T T TP 4 dommmmme e ceneaa ¢+

| |

| v

v L et it +
e L L LT L + | return |
| return | $oommmmmmmmem e ¢

Store card flouchart:

omemmmmcmm——e—— e "
| Store card |
dommmmmmcm e ae +
|
v
R i +

| GET STARTED: |
| save reg-STRTUP |
| build file |
| header-HEDBLD |
| tell user |
| size - SZENSG |

* source/ * yes
* target nane *----¢
* sane? *

CRTNDY |
et new creat |
ate for target |

CRTNDT |

— e e P
[]
Qw '
’
'
'
'
[
'
[
'
'
'
'
.
(]
]
'
-

| FINISH HERDER: |
| get track size |
| get data chksun |

* neu * no

| compute partial |
| statement info |

T +

|

v

Y

|

v
R e +
| HEDSUN |
| compute header |
| checksun |
P +

|

v
4ommmmmeceeeeas ¢
| GOCRRD |
| get card started|
oo +

l

v

%

PO
2 %

* urite %

* protected? *--

| PROCESS CRRD: |
| urite f1le |
| header-URITCR |
| urite data |
| WRITCR |
| enable interrupt|
| INTENR |

----- +

|

|

|

|

I

|

|

|

I

|

|
----- +
yes
--------- +

|
v

dorevesmcsacacacan +
| Error, restart |
decmcecccceccaaca. .

|
] '
2 & |
* |
| |
v |
$emcemcmcccccecan. +
| verify card |
| VERIFY | |
| enable interrupt| |
| INTENR |
S . +
|
v |
Y T T R +
|
v
%
2
* last * yes
*otrack? Fece-ee-eeee. +
A % |
'S v
* D LD +
| | clean up, leave |
| | ENDIT |
| it +
l
v
domemmem e +
| shou track nsg |
| TRKRSG |
e LT +
|
|
........................ Y

NOt MAnufacturer Supported
reciplent agrees NOT to contact manufacturer

Load card flowuchart:

B e e

................. +
Lload card |
................. ’
|
v
................. '

GET STRRTED:
save reg-STRTUP
get ran-RLCALL
1n1t track table

I
I
I
I
+

l

v

------- X

l

v
................. .
GOCARD |
get card started|
................. ¢

l

v
................. ¢

PROCESS CRRD: |
read file |
header-READCR |
check header |
|

|

|

|

read data
READCR
enable interrupt
INTENR
................. ¢
|
v
*
|] |
* last ' yes
* track? Meceec-ceooo-o- +
* '
1] | v
@eccccencccncccmn=
| | clean up. leave |
| | ENDIT
| #occcmcmmceceeeas
I
N

|
| | TRKHSG |
| T TP +
| I
| |
e L +
Verify card flouchart:
S +
| Verify card |
ommmmmmeee e +
I
v
$ecmcmceccccnaane- ¢+
| GET STARTED: I
| save old restart|
| 1nfornation |
demremcccencaaea- +
I
v
$ocemcnccmaaan +
| GOCARRD |
| get card started|
S 4
|
v
$ececccsccccacan=- +

shou track nsg |

PROCESS CARD: |
read file |
header-RERDCR |
verify header |
VYHDSH |
verify data :

ROVFY
................. ¢
|
v
................. ¢
restore old |

restart info |
----------------- .
|
v
................. ‘
return |

B

(__ _“uelcone to _ _)
(" “deallocation __)

2:10 Pn TUE., 8 JUNE, 1982

Gary K. Cutler

2:10 Pn TUE., 8 JUNE, 1982

Deallocation

e i e mee e +

I l I
| DERLLOCATION | CHAPTER 1 |

1.1 Definition

Definition: Deallocation 1s a clean up process. When certain
Basic comnands are executed, which involve a paraneter file(s)
that 1s (are) allocated or an error in allocation has
occurred, the process of Deallocation 1s 1nitiated.
Deallocation deletes the progran’s environnent (1f necessary),
replaces all relative pointers in the progran with variable
nanes or BCD line nunbers, 2eros the values in the P(B
(Progran Control Block) and deletes the VPR (Variable Pointer
Area

1.2 Run/Call

At the conclusion of a RUN or CRLL statenent, the environnent of
the paraneter file 1s renoved fron the environnent stack by
the routine POPENV. Houever,the Variable Pointer Rrea and the
Progran Control Block are still valid. This allows repeated
execution of a progran uithout repeated construction of the
VPR and PCB.

1.3 Invocation

Basic Cornands that Deallocate: In order to ensure the integrity
of the systen, some Basic connands require that the paraneter
file(s) be deallocated. To optinize these cases, a routine,
SRFE!, was created. SRFE' opens the paraneter file, checks
the file for an allocated state and, 1f so, deallocates the
file by calling the routine, DRLLOC. If the parameter file 1s
currently running, then SRFE' «calls DALLAL to deallocate all
files in nenory. Follouing 1s 2 list of the Basic Conmnands
uhich deallocate the file(s) i1n menory 1f necessary:

2:10 PR TUE., 8 JUNE, 1982

Deallocation

Rt

Connand

coPy
DELETE
E0IT
NERGE
PRINT
PURGE
RENANE
TRANSFORN

1.4 NMaintaining the Environnent

the conclusion of program execution, the progran’s
environnent, 1n nany cases, 1s renoved fron the environnent
stack. The routine POPENV, which renoves the prograns
environment, 1s called uhen an END statenent is executed at
runtine. Thus, in order to maintain the environnent,
prevention of execution of an END statement 1s necessary.
This can be acconplished i1n three uays.

1) an error occurs at runtane (not during allocation)

2) insertion of a SIOP statenent before the END
statenent

3) hitting the RTIN key before executing an END
staterient

1.5 Variable Nanes

Nane forn: Rt the invocation of the deallocator, all variables

have been replaced by relative pointers to their entry 1n the
VPR. The routine VDALOC has the responsibility of locating
the variable nare forn 1n the VPR and converting this into
RSCII code. To accomplish this the routine ASCNAN 15 called.
RSCNAN ands out all bits except for the RSCII nane infornation
(see Pointer Rlocation Docurentation) and subsequently
replaces the relative pointer with the original RSCII code.

2:10 PN TUE., 8 JUNE, 1982

Dealloucation

1.6 Deallocation Routines

DALLAL: DALLAL 1s the entry point for deallocating all files in
nenory. The sequence of operation 1s as follous:
1) pending error infornation 1s saved
2) locates directory and
3) opens file
b) checks for allocated state
¢) 1f allocated, calls DALLOC to deallocate
d) checks for end of directory
3) cleans up the environment stack (except for
calculator environnent)
4) restores pending error information

DALLOC: DALLOC is responsible for deallocating the file 1n R40.
Thas consists of:

1) clearing the flags DFPARY, DCLCOM, NXTCOM and
DINFLG

2) initialize OPTBRS to the undefined state
(8001h)

3) replace all relative pointers for variables
uwith their RSCII nane

4) replace all relative pointers for line nunbers
uwith their BCD value

5) initialize all values i1n the PCB to zero
6) delete the VPR
Input:

ERRSTP - 1If zero, deallocates all variables in
the current progran
- If non-zero, then deallocation ceases at
the token pointed to by ERRSTP
- If non-2ero, then allocation uas halted
by an error. This should be the only tine
ERRSTP is set.

P.LEN - the length of the progran before
allocation

P.CLEN - the length of VPR before PRL started
2:10 PN TUE., 8 JUNE, 1982

Deallocation

(used 1n recovery of errors from calcprog
allocation)

NEXT: NEXT 1s the nain Jloop for variable pointer deallocation.
Deallocation (like allocation) 1s keyed by the class of the
current token. Tokens wuith class >z 30 (octal) are
non-allocatable and therefore deallocation 1s wunnecessary.
Tokens with class < 30 (octal) have been allocated and thus
sone type of deallocation is needed. GETNXT 1s the routine
uhich obtains the token class for each token seen and NEXT
then 1nitiates the appropriate deallocation routine (1f
necessary) by table addressing. Here follous the deallocation
table, with the deallocation routine name, the token class
this routine 1s responsible for and 3 description of the types
of tokens 1n the particular class.

2:10 PN TUE., & JUNE, 1982

Deallocation

1.7 Dealleocation Table

Routine Class Descriptor

INIRON -1 RON class > 56
XDALLY 0 End-of-1l1ne

VORLOC 1 Fetch variable
BININT 2 Integer constant
SVALD 3 Store variable
SKPCON 4 Real constant
SKPCON 5 String constant
DRLFNC 6 FN call

LINEDR 7 Jurip true line
LINEDA 10 Goto, Gosub

RELINP " Junp relative

DALFN 12 DEF FN statenment
FRET 13 DEF END statenent
RONCLA 14 Ext RON (obsolete)
FRRET 15 Option base (RTN)
FRET 16 Function return
FRRET 17 Function let (RTN)
SKPNX1 20 Data

DIND 21 Din (RTN)
SHORTD 22 Short (RTN)
INTD 23 Integer (RTN)
comnp 24 (just a RIN)
LINEDR 25 Else junp line
RELINP 26 Else junp relative
LINEDR a7 Using line

1.8 Handa Call

The V.DALO handi event 1is generated when a token class >
56 (octal) 1s found. If a basic token, created by an external
RON, requires a unique deallocation routine not found 1n the
systen deallocator, then the prinary attribute of this token
should be > 56 (octal).

2:10 PR TUE., 8 JUNE, 1982

Deallocation

1.9 Globals

Nane Location Description

DF PAR1 8386 beginning of user defined function
DINFLG 838¢ type of variable (1integer,short or real)
DIRECT 854R beginning of directory

ENDLIN R999 internal endline #

ERLIN 8378 Iine ® 1n uhich error occurred

ERRSTP 8391 location at uhich PRL quit

ERRTHP 836E tenporary for error infornation

OPTBRS 8282 option base flag

PCR 8240 progran counter

PRFILE 8243 loc of paraneter file

PRNRHE 8263 nane of paraneter file

ROMOFF 82R5 of fset to make RONPTR absolute

RONPTR 82R3 relative pointer to current RON

VRARPTR 838F pointer to variable environment location

1.10 Cross References

Nenory Nanagenent Docunent RH"NEN
Pointer Rllocation Docunent GC"ALO
Environnent Rllocation Docunment GC"ALD
Hand1 Call Docurnent RH"“HDI
Source File RHSDAL
Global File KR&GLO

2:10 PR TUE., 8 JUNE, 1982

Deallocation

Table of Contents

1 DERLLOCARTION s e e e e e e e e e e e e e e
1.1 Definmtaon L e e e e e e e e e e e e
1.2 Run/Call . . o e e e e e e e e e e e e e e

B I R {117 o 3 3 X 1
1.4 Naintaining the Envaronment
1.5 Variable Nares v i e e e e e e e
1.6 Deallocation Routines ¢ . v v v v o..
1.7 Deallocation Table ¢ v v v v v v v oo
1.8 MHanda Call et e e e e e e e e e e e e e
1.9 Globals s e et e e e e e e e e e e
1.10 Cross References e e e e e e e e e

2:10 PN TUE., 8 JUNE, 1982

vii

Deallocation

DECONPILER

Gary K. Cutler

<:20 PR THU., 15 JULY, 1982

The Deconpiler

R e T L PP TP T PP $mmmmmmmemecceeao +

I | l
| DECOMPILER | CHAPTER 1 |

1.1 INTRODUCTION

Decorprling 1s the process of listing a progran or
statenent. Internally, 1t requires the reconstruction of
input code. The tokens, which have been parsed 1nto RPN and
distributed 1n the systen, nust be re-assenbled into 1infix
notation. Thus deconpiling 1s actually the reverse of parsing
and conpiling.

Decorpiling 1s a tuo-stack operation. An expression
stack 1s used to reconstruct expressions fron RPN to theair
original form, and an output stack 1s used to buffer the
output. R12 1s used as the expression stack pointer.

In deconpilation there are tuo 1inportant paraneters of a
glven operator-- 1its precedence and 1ts position on the R12
stack. Follouing 1s list of operators and their precedences:

OPERRTORS PRECEDENCES (octal)

any operator

—cmecccenrcnceewe

P I I R et

|

|
enclosed 1n ()'s | 100
Tt Tttt { """ ;; """
oy T T
S
g b v TR
e e T T
oo T ; """" T

When a statenent 1s decorpiled, first the line number and
then (i1f present) a LET token are put on the output buffer,
because they don't change. The rest of the procedure 1s

2:20 PR THU., 15 JuLYy, 1982

The Deconpiler

perforned uith the expression (R12) stack. When variables are
parsed, their order 1s never changed. So, 1n deconpilation,
the variables are put on the expression stack as they appear
in the parsed statement, ulth each variable nane preceded by a
stack narker (OE) and 1ts token. Rs operators are
encountered, they are inserted in the most recent position.
When an operator 1s inserted, 1ts precedence and location 1s
checked against the stored precedences and locations of the
previous operators that were inserted. The routine OPTIST then
tests the current operator’'s 1information against all previous
operators’ 1nfornation to determine 1f parentheses are needed
(see appendix for more detailed information).

In deconpiling, the system processes each token and uses
1ts class (the token class 1s the tuo right most octal digits
of the token) to deternine how the token 1s to be decorpiled.
The tokenr class 1is code for the routine which deconpiles the
particular class, 1.e., 3 table look-up 1s inplied-- each
class has 1ts oun routine(s) to deconpile that class. Here
are sone conmon token classes, and their action:

CLRSS TOKEN-TYPE RCTION

0 End-of-line Unstack (dump line out of stack).

1 Fetch variable Send to expression stack.

2 Integer Send to expression stack.

3 Store variable Send to expression stack.

4 Nuiteric constant Send to expression stack.

5 String constant Send to expression stack.

32 Subscript e.g. R(3) () to expression 1f token odd,
else (,) to expression stack.

34 DIN subscript RAction sane as class 32.

36 Prints Unstack, and push , to output.

q1 Other reserved words If : then unstack; else output
reserved, and unstack.

42 Miscellaneous output If then push to expression stac
and unstack; otheruise output

44 Not seen by user Ignore e.g. 1nplied LET token

50 Unary operator Insert after nost recent stack
narker and deternine the
necessity of parentheses.

51 Binary operator Replace nost recent nissing
operator 1n expression stack
and deternine the necessity
of parentheses.

52 String unary operator Sene action as class 50.

53 String binary operator Sane action as class 51.

55 Systen function Conpute the nunber of

paraneters, locate the paraneter
string, insert the function
nane and parentheses 1f

2:20 PA THU., 15 JuLY, 1982

The Deconpiler

necessary after the most
recent stack marker.
56 String systen function Sane action as class 55.

The nunber of operators already deconpiled 1s stored in
PRECNT. The precedences of the operators and their positions
on the expression (R12) stack are saved 1n an array addressed
by LAVRIL.

The follouing routines are inportant to the decompiler:

1) Decon 6) FETVAR
2) DCLINM 7) STOVAR
3) BSCLN 8) BINCON
4) SYSFUN 9) EXPAND
5) BINOP 10) UNSTRK

1) DECOM
This routine 1s the entry point into the decorpiler, and
clears PRECNT and then calls DCLIN® (PRECNT contains the
nunber of operators deconpiled).

2) DCLINW
This deconpiles the line nunber-- the line nunber is converted
to decimal, nornalized, and put in the deconpilation buffer,
folloued by a blank. The pointer into the decorpilation
buffer (R30) is then saved, and control 1s passed to BSCLN.

3) BSCLN
BSCLN (and ensuing subroutine calls) deconpiles the rest of
the line. Rs each token 1s obtained--via GETNEXT--1ts token
class (right nost tuo octal digits of token) 1s checked, and
the proper deconpilation for that class 1s called.

4) SYSFUN
SYSFUN deconpiles systen functions, by looking 1in the
functions RSCII table for the RSCII nane and paraneter count
of the function. The ASCII nane 1s pushed on the expression
stack, and then the closing parentheses nust be added; space
is 1nserted 1in the expression stack (by E¥PAND) and the
parenthesis 1s inserted in the proper location.

5) BINOP
BINOP deconpiles binary operator analogously to SYSFUN. The
ASCII for the operator 1s inserted in the expression stack (in
the rost recent spot betueen two variables or constants),
deternination of the necessity of parentheses i1s nade, PRECNT
1s increnented by one, the precedence and location of the
operator are then stored at the location pointed to by LAVAIL.

2:20 PR THU., 15 JuLy, 1982

The Deconpiler

1.

3

6) BINCON
BINCON converts a three byte integer into a nornalized real
constant for output to the LCD.

7) EXPAND
EXPAND 1s called uhen space 1s needed on the expression stack
betueen T0S and the R12 stack pointer. To do this, EXPAND
calls ALLOC, which 1n turn, call ADJUST and COPY.

8) FETVAR
FETVRR deconpiles variable tokens that are wused 1n an
expression. FETVAR pushes E, token class, and the variable
nane (E 1s a narker on the expression stack for any variable)
on the expression stack.

9) STOVAR
STOVAR does the same thig as FETVAR for variables being
assigned by the staterment.

10) UNSTAK
UNSTRK 1s the routine that processes an end-of-line or token
class 41, by dunping the expression stack 1into the
decorplilation buffer.

1.2 GLOBALS
Nane Location Description
DCHLEN 837F deconpile length (not greater than 96)
OCOvVFL 82(8 overflou flag
EDFILE 8245 Jocation of current edit file
LAVAIL 8256 pointer to operators’ location and prec
NXTRER 8253 next 1n avallable user nenory
ONF LG 8303 on gosub goto flag
PRECNT 8364 ¥ of deconpiled operators
PRFILE 8243 loc of current paraneter file
RN.ARSC 0004 of fset to ROM ASCII table
ROMOFF 82R5 offset to nake ROMPIR absolute
ROMPTR 82R3 rel pointer to current RON
10S 8257 current top of stack

HANDT CALLS

V.DEC -- token with attraibute >z 57 (octal)

2:20 PR THU., 15 JuLY, 1982

The Deconpiler

1.4 (ROSS REFERENCES

Handy Call Docunent

Internal Code Exanples Docunent
Source File

Global File

2:20 PR THU., 15 July, 1982

RH"HDI
RH"ICE
KR&DEC
KR&GLO

The Deconpiler

L e $ococceccccneanaaes)

l | l
| CLOSER INSPECTION | CHAPTER 2 |
l

2.1 REGISTERS

R12: expression stack pointer
R30: deconpilation buffer pointer

R?76(LAVRIL): ptr to precedence and location of all previous
deconpiled operators in current line

R7S(PRECNT): ptr to count of decompiled operators in current line
R23: current token

R24: ptr into current line

R36: initially, token class

R45/46: current line nunber

R47: nunber of bytes left in current line

T0S: beginning of deconpiled line on R12 stack

PRECNT: # of deconpiled operators in current line

LAVRIL: precedence and location of all previous deconpiled operators
in current line

2.2 EXPAND and OPERATORS

EXPAND: The routine EXPRAND 1s called when space 1s needed on the
R12 stack internediate to the T0S and the stack ptr. At
entry, R36 contains the location 1n the R12 stack at which the
required space will be allocated, and R32 contains the nunber
of bytes of space needed. The actual expansion 1s done in the
routine ALLOC which also calls RADJUST and COPY. This routine

2:20 PN THU., 15 JuLy, 1982

The Deconpiler

takes the contents of each address fron the initial point doun
through the R12 stack and copies then sequentially starting at
the 1nputted (R32) nunber of bytes after the ini1t13l address
(R36).

2:20 PN THU., 15 JuLY, 1982

The Deconpiler

EXANPLE: Expand three bytes at R36 ptr.

R12 stack pre-expand R12 stack post-expand
] A
B B
% ¢--R36 ptr t <--R36 ptr
2 2
SIN <--R34 ptr % ¢--R4 ptr
F -~
«--R12 ptr 2
SIN
F
«--R12 ptr

Note: The only ptr 1nto the R12 stack uhich 1s adjusted 1s the R12
stack ptr.(R36 ard all other pointers renain absolute, not
relative, to the stack)

STRCK MARKERS: E: place narker for unary and binary
operators, systen functions and user
def fns

F: keys end for the routine UNSTRK

PRECEDENCE: operator precedence(octal)
(any op) 100
~ 14
' 12
+,-,unary - ?
log bin rel 6
log and q
log or Z

In deconpilation there are aluays tuo characteristics of
an operator under consideration, precedence and position (1in
R12 stack). Tuo important values in this procedure are PRECNT
(the nunber of operators already deconpiled) and LAVRIL (all
deconpiled operators precedence and location on the R12
stack). Rfter each neu operator 1s obtained and 1ts position
on the R12 stack 1s located, tests are nade, relative to each
preceding operator's precedence and location, to determine 1f
parenthesis are needed for 2 nested expression.(Note: 1f user
used parenthesis 1n an expression wuhere not required, the
above test, in nany cases, will fa1l and after deconpilation
no parenthesis uill appear)

EXANPLES: not required not required not required
preserved elininated elininated

2:20 PR THU., 15 JuLY, 1982

The Deconpiler

USER: x=a*(b/c) x=(a%b)/c x=a*(b"¢c)
PRRSE ; xabc/*® xab*c/ xabc”*
DEcon: xza*(b/c) x=atb/c xza*b”c

PREC LOC STORARGE: (parsed expression) RBC ¢+ *EF 2~ / -
(user expression) R*(B+C)-E/F"2

7 <--R76(LAVAIL) (decreasing stack)

2 byte loc
of -

12

2 byte loc
of /

14

of
12

2 byte loc
of *

100

2 byte loc

of ¢

|
|
|
|
I
|
|
|
I
|
|
I
I
l
|
|
|
I
|
I
|
|
|
: <--original LAVRIL

|
I
I
I
I
I
I
l
I
l
I
—_—
2 byte loc:
I
I
I
I
I
|
I
|
|
l
I

2:20 PN THU., 15 Juty, 1982

Yhe Deconpiler

10

2.3

DECONPILATION TRBLE

Routine

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

INIROA
EoL
FETVAR
BINCON
STOVAR
CONST
SCNST
UFNCAL
JnpLe
GOLINE
JRPREL
UFNDEF
FNEND
EXTRON
RESHD
FNRTN
FNRASGN
RESUWD
RESHD+
RESUWD+
RESWD+
INIROR
EJnPy
EJNPR
ULINH
ON

PU=
SUBSCR
DEFKY
DInSuB
PRNEOP
PRINTS
INPUT
RETURN
RESWD
nIsc
nSTOR
RETURN
PRTFUN
SYSFUN
SYSFUN
UNOP
BINOP

Class

51

Token

R e L L R

ROM class > 56

end of line

fetch variable

bin 1nteger

store variable

nun float or str const
string constant

user function call
conditional jnp line W
goto and gosub

Jnp relative

user fn def

fn end

external RON

option base

user fn return

fn assign

data

din/real

short

integer

undef 1ned

else)rp line W

else jnp relative
using line W

on

store

subscripts

def key

din cubscripts

prart EOL

print stuff

input ulufo a pronpt
1nned execute

other reserved uords
ni1sc output

nulty store

n1sSC 1gnore

print functions
nuneric pseudo-function
special filenanes
nun unary operator
nun binary operator

2:20 PR THU., 15 JuULYy, 1982

The Deconpiler

DEF
DEF
DEF
DEF
DEF

UNOP$

BINOPS
RETURN
SYSFUN
SYSFNS

52
53

56

str unary operator
str binary operator
i1nned execute

nun function

str function

2:20 P THU., 15 JuLY, 1982

1"

The Deconpiler

12

RCTION OF DECORMPILER ON R BRSIC PROGRAN STRTEMENT

USER: 10 R=X*(Z+SIN(Y))"2/T

PRRSE: 10 R X 2 Y SIN+ 2~ 1/ * [STORE TOK] E

DECON, the systen deconpiler, 1s our entry for each line
to be decormpiled. DECOM clearc PRECNT, ONFLRG, and CONFLG
then jurips to DCLINM to decorpile the line nunber. The line
nunber R,0 15 converted to decinal, nornalized and placed in
the deconpilaticn buffer, folloued by a blank byte. The ptr
(R30) to the decon buffer 1s saved, pointing to the second
byte after the line nunber. Control 1s nou passed to BRSCLN
which uill direct the remainder of the deconpilation of this
line. Rs each token 1s obtained (GETNXT) 1ts token class
(right nost tuo digits of the prinary attribute) keys the
proper deconpilation routine. In the above exanple A with
token class 3 directs control to STOVAR. STOVAR replaces R's
token (11) with the token 1 (nuneric varlable) and then pushes
a stack narker (E), the token (1) and the variable nane (R)
onto the R12 stack. X uith token class 1 passes control to
FETVAR. FETVAR exanines the type of variable (array, nuneric)
and then pushes £, 1, and X onto the stack. In a conparitive
nanner the variables Z and Y are also nanipulated, leaving the
R12 stack, at this tine, as:

R12 stack: [tos) E1T RE VT XE1ZETY

SIN, token D8, uith token class 55, directs control to
the systens function deconpile routine, SYSFUN. SYSFUN
utilizes the token D8 to locate the RASCII nane fron the
routines RSCII table and the functions paraneter count. The
RSCII nare .s pushed to the decon buffer and the location of
the nare (on the R12 stack) 1s deternined by the parameter
count. Since, 1n this case, the count 1s one, the highest
addressed £ 15 located on the stack and EXPAND 1s called to
allocate three bytes of space for the insertion of SIN. Once
the appropriate space has been allocated SIN 1s pushed 1into
the stack. (Note: In the case of a system or wuser defined
function, the stack mnarker 1s NOT overuritten. This sane
narker nust be preserved as a locator for the appropriate
unary or binary operator.) Before leaving SYSFUN, houever, the
paraneter nust be inclosed. The appropriate location for the
parenthesis are located, the R1Z stack 1s expanded and the
parenthesis are placed. The ne~vt token 2B (+), uwith class S1,
directs control to BINOP. BINOF locates the RS(I] nane and
ca.ec 1t on the decorn buffer. The highect addressed £ 1s
located and the + overurites the [on the stack. PRECNT 1

2:20 PR THU., 15 JuLY, 1982

The Deconpiler

increnented (now 1) and the precedence and location are stored
beginning at LAVRIL. 2 (token 1R) with class 2, sends control
to BINCON. BINCON converts the three byte integer to an eight
byte nornalized real and replaces the token 1R uwith the token
4 (real constant). E, 4, 2 (eight byte real) are then pushed
onto the R12 stack. The token 30 (”) and 1ts class, 51, are
exanined and control passes to BINOP. BINOP obtains the RSCII
nane and places the nane 1in the decon buffer. The correct
narker (E) 1s located and the © overurites into the stack.
Since PRECNT » O the previous operators are recalled fron
LRVAIL, one by one, and each precedence and location 1s
corpared to that of the current operator, 1n this case ~. If
any conparison indicates the existence of a nexted expression,
the location 1s deternined and the parenthesis are inserted.
In this case a nested expression 1s recognized, the R12 stack
1s expanded and parenthesis are appropriate placed. BINOP
then replaces the precedence of the nested operator (1in our
case +) to 100 (octal), increnents PRECNT and stores the
pertinent infornation at LAVRIL.

The follouing token 1 (T) and 1ts class, result in E, 1,
1 being placed on the R12 stack. 2F (/) uith class 51 1s nou
exarnined and control 1s directed to BINOP. The RSCII nare 1s
found and stored on the decon buffer, while the next stack
narker € 1s located. / overurites the wnarker and the
precedence and location conparisons are mnade. Rll fail, so
PRECNT 1s 1ncrenented and all operators precedence and
location are restored. The last operator *, token 2R uith
class 51, 1s exanined and control 1s again passed to BINOP.
Rs above, the procedure results i1n the * overuriting the
appropriate £, conmparisons nade and failed, PRECNI
increnented, and the operators precedence and location
restored. The next token 8 (store value) sends control to
PU=, wuhere the next available stack narker 1s located and
overuritten with an =,

The end of line token (E) i1s obtained, which eventually
directs control to UNSTRK. UNSTRK trashes the first stack
narker, trashes all variable tokens, replaces any remaining
stack narkers uith comnas, converts all numeric values to
decinal form and finally places the deconpiled statenent onto
the deconpilation buffer.

Status of R12 stack and deconpilation buffer before EOL:
R12 stack: [tosJ ER=X®* (Z+SIN(Y))~2/1

Decon buffer: 10

2:20 PR THU., 15 JuLYy, 1982
13

The Deconpiler

14

RCTION OF THE DECONPILER ON THE PROGRRM STATEMENT

USER: 20 DEF FNR=SQR(X"2¢Y"2)

PARSER: 20 [DEF FNJ R X 2 ~ ¥ 2 ~ + [SOR)

In the above exanple, decompilation initiates uith DECON
and then directs control to BASCLN. BRSCLN gets the line
nunber (decinal) and places this on the deconpilation buffer,
The next token 1s obtained (GETNXT) and control 1s passed to
UFNDEF (user def fn decon routine). UFNDEF places the RSCII
code for DEF FN on the decon buffer and sends control to
FNNRNH. FNNRNR locates the name of the user def fn (R) and
sends this to the decon buffer. Control returmns to UFNDEF,
uhich trashes the relative junp and obtains the paraneter
count/type byte. The nunber of paraneters i1s deternined and
stored (R34) and the relative PCR 1s trashed. In our case (no
paraneters) an end of line token is tested. If not, then an =
1s pushed to the buffer and control 1s returned.

Decon buffer: 20 DEF FNR=

Subsequently, a stack narker (E), the token (1), and the
variable nane (X) 1s nou pushed to the R12 stack. The next
token (1R) sends control to BINCON, which converts the three
byte integer to an eight byte real and places this on the
stack, preceded by an £ and the token 4 (real constant). 30
() 1n1tiates a junp to BINOP, which locates the RSCII name
and stores this on the decon buffer. The proper stack marker
1s located and overuritten by ~. PRECNT 1s 1ncrenented and
the precedence and location of © are stored beginning at
LAVARIL. E,1,Y are pushed to the stack, 2 1s converted to an
eight byte real and pushed after € and 4 and the next token 30
(“? 1s obtained. Control once riore returns to BINOP. ~
overurites the appropriate narker, its precedence and location
are conpared the the previous operators, which, 1n this case,
causes no further action other than incrementing PRECNT and
storing the operators’ precedence and location. The final
operator 1s obtained and exanined. BINOP again resunes
control and overurites the narker with ¢+. The conparisons are
nade, no nested expresions are recognized, PRECNT s
increnented and the operators’ precedence and location are
stored. (SQR) 1s exarmined and control 1s passed to the
systen’s function routine SYSFUN. The RSCII code 1s obtained
and stored on the buffer. The stack nrarker 1s located and
EXPAND 1s called to allocate three bytes of space on the R12
stack. SQR 1s 1inserted into the stack the beginning and
ending of the parameter are located, tuo bytes are allocated

2:20 PR THU., 15 July, 1982

The Decompiler

and the parenthesis are inserted. The end of line token
directs control to EOL which in turn passes control to
UNSTRCK. UNSTACK tragshes the 1nitial stack marker (recall
that DEF FNR= 1s already on the decon buffer uith the ptr
(R30) after the =) on the R12 stack, trashes all variable
tokens, and pushes the renaining deconpiled statenent onto the
deconpilation buffer.

Status of R12 stack and deconpilation buffer befor EOL:
R12 stack: [tos]) E SOR (1 X ~4 [2]) + 1Y~ 4 [2))
Decon buffer: 20 DEF FNR=

2:20 PN THU., 15 JuLy, 1982
15

The Deconpller

16

RCTION OF THE DECOMPILER ON THE PROGRAN STATENENT

USER: 30 IF L$=CHR$(7#5) THEN 180 ELSE L$= "=

PARSER: 30 L8 7 5 * CHRS = (JTRUE) 150 [JREL] L$ "=" [STORE]

Dispensing uith the 1n1t13l action upon the line nunber
we turn to the action upon the statenent itself. The variable
L$ 1s deconpiled by the routine FETVAR, the constants 7 and 5
are handled by BINCON and the operator, *, 1s acted upon by
BINOP. The result of this deconpilaton 1s

R12 stack: [tos) E 1 $ LE 4 [?7) * 4 (5]

The following token (2 (CHRS) and 1ts class 55, directs
control to SYSFUN. The sequence of action 1s as follous; the
RSCII nane for CHR$ 1s obtained and saved on the buffer, space
1s allocated for insertion of the name, CHRS 1s pushed in, the
nunber of paraneters 1s deterrnined, the parameters are located
oand space 18 allocated for the parenthesis, and finally the
parenthesis are inserted. 35 (=) signifying a binary op sends
control to BINOP which locates the next available E and pushes
the = to the stack. Since the precedence of = 1s 6, no tests
sare nade for a nested expression,

R12 stack: [tos] E 1 & L = CHRS (4 [7) * 4 [5])

The jump line ® token, 18, sends control to JHPLWN,
Action 1s now directed touwards the decon buffer. IF 1s placed
on the buffer and control 1s passed to UNSTRCK, which unstacks
the R1Z stack and places this part of the statenent on the
buffer, folloued by then and line W.

Decon buffer: IF L8=CHR$(7%5) THEN 130

Control returns and 1C, junp relative, 1§ exanined. The
routine i1nitiated 1s EJAPR. Farst & check for ELSE LINE W 1s
perforned. The key 1s not found so the routine assures ELSE
STRTEMENT. The ELSE 1s placed on the decon buffer (the nunber
of bytes for rel junp 1s trashed). Control 1s returned and
the renaining statenent 1s deconpiled and pushed on the R12
stach. The EOL 1s obtained, the remaining portion 1s cleaned
up and placed on the decon buffer.

2:20 PM THU., 15 JuLYy, 1982

The Deconpiler

Status of R12 stack and deconpilation buffer before the 77
R12 stack: [tos) E1 $ L =865" ="

Decon buffer: 30 IF L$=CHR$(7%5) THEN 180 ELSE

2:20 PR THU., 15 JuLy, 1982
17

Tne Deconpller

Table of Contents

1 DECOMPILER ¢ v v v v e v v v v v v e v e e e 1
1.1 INTRODUCTION o v v v v v v v o o 1

1.2 GLOBALS ¢ v v i i e e e e . 4

1.3 MRNDT CRLLS v . v v v v v v v v v e 4

1.4 CROSS REFERENCES ¢ . o v v v o 5

2 CLOSER INSPECTION ¢ v v v v v v o v o o oo 6
2.1 REGISTERS A

2.2 EXPAND and OPERATORS ., « .. 6

2.3 DECOMPILATION TRBLE 10

NOMAS

NOt MAnufacturer Supported
reciplent agrees NOT to contact manufacturer

2:20 Ph THU., 15 JULY, 1982

xv111

The Deconpiler

NHAT IS ICE

Ice 1s frozen water, sonething looking like frozen water, dianonds,
or 2 serving of 1ce crean 1n Great Britan. ICE 1s the Internal Code Ex-
anples. In this document one uill find a list of all the nainfrane
tokens, a collection of exanples of the uses of all the tokens, all the
data types that appear on the R12 stack, and a table of the attribute
routines for deconpile, pointer allocation and deallocation.

HOU TO RERD THE TOKEN TRBLE FORMAT

The file that contains the runtine

code

The token’s attributes

The nane of the runtine routine

The nane of the parse tine routine
In this case there 1s no parse tine

routine.

€ e s am— c—— ®

L
|
I
v
8 store num

input fron R12

token nunber
in hex

nane of the
token

RSCII string
for the token
(1n this case
no string)

nunval - value to be stored

naneforn - nane of target variable

€ e e e c— —————— — —— ———— — —
€ e s e e c— ——— — ——————— ——— —— —

l
l
l
I
I
|
I
I
|
I
l
l
|
l
l
I
v

€ e e e e . —— — ——— — —————

<none> STOSV 0,3 RHEVAR

<--- top value on the R12 sta

(dinflag) - if tracing, tracing infornation <-- value conditionally

(col) - 1f tracing, tracing infornation on R12
(rouw) - 1f tracing, tracing infornation

nunvalptr - pointer to target value
output on R12
(nunval) - 1f nultistore, value being stored

A

list of data objects placed on and renoved fron
the R12 stack

LIST OF DATR OBJECTS ON THE R12 STRCK |

naneforn - 1s the internal representation of a variable. The tuo bytes
that nake up the nane forn are layed out as follous:

bits
6 5 4 3 2 1 0
byte 1- T3 T2 T1 10 N3 N2 Nt NO
byte 2- A1 RO FO L4 L3 L2 LY O

T3

'
o

'
—
" ou

nuneric
string
12 - sinple
array

-

(1T1,70) - real
integer
short

(not used)

now o nwow

N

1
8 WM - O

(N3, N2, N1 - 0-9 = 0 through 9 after letter in
varlable nane
- 10 = blank

- 11 = greek variable

'
WA - O

(R1,R0) local variable
rerote variable \
paraneter variable) renote access

conrion variable /

“"w . n n

FO - variable

function

—_O

"on

(L4, L3, L, LY, L0) - (faret letter)-"R"41 = first letter
of variable

dinflag - 1 byte that 1s 1 1f 1 dinensional array and 0 1f tuo dinen-
si0nal array

rou - ¢ bvte si1ze of the rou dinension

col - 2 byte c1ze of the colunn dinencion

rurval - & byte numeric value

string - strptr on top the R12 stack followed by a strlen
strlen - 2 byte value of the nunber of characters in the string

strptr - 2 bytes pointer (ray be relative to R12) that points to a
strval
bseptr - a strptr that points to the beginning of a string fron which
3 substring u1ll be extracted.
FNparan - 4 or 8 bytes as deternined by the FNparntype that 1s at R10

I l
| LIST OF DATA OBJECTS IN THE CODE STREAR (fron R10) |

strlent - 1 byte length of the string

VPRptr - 2 byte pointer relative to the beginning of the file

reljnpaddr - 2 byte pointer relative to the beginning of the file
pointing to the code to be executed next

FNblockptr - 2 byte pointer relative to the beginning of the file that
points to the function parameter block

FNparncount - 1 byte count of the nunber of parameters

FNparntype - 1 byte flag indicating the type of the function paraneter
expected (80 1f nuneric and 81 1f string)

strval - n bytes uhere n 1s deternined by context this 1s the actual

string of characters.

l
THE TOKEN TRBLE l

I
0 ERROR " <none> ERRORX 0,44 KR&TOK

1 nun value <none> FISVL 0,1 RH&VARR
input fron R10

VPAptr - relative pointer to variable that contains the desired valu
output to R12 stack

nunval - the value of the variable

2 get VPR addr '’ <none> SVADR 0,1 RHSVAR

input fron R10

VPRptr - relative pointer to variable that contains the desired valu
output to R12

VPRptr - sane relative pointer

»

J get string <none> FISTL 0,1 RHEVAR
input from R10

VPRptr - relative pointer to variable 1n VPA
output to R12

strptr - pointer tc string value

strlen - length of that string

4 nun constant

<none> ICONST 0,4

1nput from R10

nunval
output to
nunval

- nuneric constant to be placed on the stack
R12
- the nuneric value just fetched

5 ‘"quoted str '’ <none> SCONST 0,5

input fron R10
strienl - the length of the string

strval
output to

- the characters in the sting
R12 stack

strptr - location of value
strlen - length of string
6 unquoted str '’ <none> SCONST 0,5

input from R10
strlenl - the length of the string

strval - the characters in the sting
output to R12 stack

strptr - location of value

strlen - length of string
7 store string '’ <none> STOST 0,
1nput fron R12 stack

strptr - source string address

strlen - source string length

strptr - target string address

strlen - target string length

VPAptr - pointer to target string VPR

bseptr - pointer to base addr of target <len field>
output to R12 stack

(strptr) - 1f nultistore, source string pointer
(strlen) - 1f nultistore, source string length

8 store nun " <none> STOSV 0,31

input fron R12

nutval

- value to be stored

naneforn - nare of target variable
(dinflag) - 1f tracing, tracing information
(col) - 1f tracing, tracing infornation
(rou) - 1f tracing, tracing infornation
nunvalptr - pointer to target value

output

(nunval) - if nultistore, value being stored

9 1-DIN RDR > <none> AVADRY1 0,32

RHAVAR

RHLVAR

RHSVAR

RHEVAR

RHEVAR

RHSVAR

input fron R12

rou - dinension of array
VPRptr - variable to be indexed

output

naneforn - nane of variable being referenced
(dinflag) - 1f tracing, tracing information

(col) - 1f tracing, tracing information
(rou) - if tracing, tracing information

nunvalptr - pointer to array elenment

R 2-DINn RDR '
input fron R12

col - colunn dimension of array
row - rou dinension of array
VPRptr - variable to be indexed

output

naneforn - nane of variable being referenced

<none>

(dinflag) - if tracing, tracing i1nformation
(col) - 1f tracang, tracing infornation
(rou) - 1f tracing, tracing infornation

nunvalptr - pointer to array elenent

8 1-din value "'

input fron R12

col - colunn dinension of array
rou - rou dinension of array
VPAptr - variable to be indexed

output to R12

nunval - value of array elenent

C 2-din value '’

input fron R12

col - colunn dimension of array
rou - rou dinension of array
VPRptr - variable to be indexed

output to R12

nunval - value of array elenent

D carriage rtn

E end of line "

10 invisible RIN’’

11 nuneric addr

<none>

<none>

<none>

<none>

<none>

<none>

«none>

AVADRZ 0,32

RAWAL1

RWARL2

ERRORX

GORTN

ERRORX

INVRIN

FTADR

0,32

0,32

0,44

0,0

0,44

0,44

0,3

RH&VAR

RH&VAR

RH&VAR

KR&TOK

RHEVAR

KR&TOK

RH3EAL

RHSVAR

input fron R10

VPRptr - variable to be fetched
output to R12

naneforn - nane form of the variable

nunvalptr - pointer to the value

12 get nun addr ’’ <none> SVADR+ 0,3

note: calls SVADR wuith different attribute
input fron R10

RHVAR

VPAptr - relative pointer to variable that contains the desired valu

output to R12 stack
VPRptr - sane relative pointer

13 SAVE SIR e <none> FTISTLS 0,3

input fron R10

VPAptr - relative pointer to variable 1n VPR
output

strptr - pointer to string value

strlen - length of that string
VPRptr - relative pointer to variable in VPR
bseptr - pointer to base address of target <len field>
14 nULTI ST0. <none> STOSVA 0,43

note: calls STOSV with different attribute
input fron R12
nunval - value to be stored
naneforn - nane of target variable
(dinflag) - 1f tracing, tracing infornation
(col) - 1f tracing, tracing infornation
(rov) - 1f tracing, tracing infornation
nunvalptr - pointer to target value
output
(nunval) - 1f nultistore, value being stored

»
15 nuLtI stos <none> S10STA 0,43

note: calls STOST uith different attribute
input fron R12 stack
strptr - source string address
strlen - source string length
strptr - target string address
strlen - target string length
VPRptr - pointer to beginning of target string
bceptr - pointer to base address of target <len field>

output to R12 stack
(strptr) - 1f nultistore, source string pointer
(strlen) - 1f nultistore, source string length

RHEVAR

RHEVAR

RH&VAR

16 nun FN call '’ <none> FNCRL. 0,6

note: sane as FNCALS
input fron R10

FNblockptr - relative pointer to FN variable block
FNparrncount - function paraneter count
(FNparntype) - function paraneter type 1
(FNparntype) - function paraneter type 2

(FNparntype) - function paraneter type n

input fron R12
(FNparan) - function parareter n
(FNparan) - function paraneter n-1

(FNparan) - function parareter 1

17 str FN call " <none> FNCALS 0,6
note: sane as FNCAL.

input fron R10
FNblockptr - relative pointer to FN variable block
FNparncount - function paraneter count
(FNparntype) - function paraneter type 1
(FNparntype) - function paraneter type 2

(FNparntype) - function paraneter type n

input fron R12
(FNparan) - function paraneter n
(FNparan) - function paraneter n-1

(FNpa;an) - function paraneter 1

18 JMP TRUE ' <none> JTRUEM 0,7

input fron R10:

rel jnpaddr - relative address to jump to
anput from R12:

nunval - value to be tested

19 1nput taal "’ <none> 1TAIL. 0,44

RH3VAR

RHEVAR

RH&FOR

IVSINP

1A INT CONST " <none> INTCON 0,2

input fron R10

intval - integer constant to be placed on the stack
output to R12 stack

nunval - 1nteger in nunval form

18 JnP FALSE '’ <none> JFALSR 0,11

input fron R10:
rel)npaddr - relative address to jump to

input fron R12:
nunval - value to be tested

1C JnP REL ' <none> JHPREL 0,26

input fron R10:
rel)npaddr - relative address to jump to

10 1 substring '’ <none> SUBST1 0,4

input fron R12
nunval - the substring character nunber
strptr - pointer to string value
strlen - string length

output to R12
strptr - neu pointer to string value
strlen - neuw string length

1€ 2 substring <none> SUBSTZ 0,34

input fron R12
nunval - the second substring subscript nunber

nunval - the first substring subscript nunber
strptr - pointer to string value
strlen - string length

output to R12

strptr - neu pointer to string value

strlen - neuw string length
1F ELSE Ju " <none> EJNPN 0,25
note: EJNPH 1s just JNPLNN uith different attributes

1nput fron R10:
rel)npaddr - relative address to junp to

20 ' <none> ERRORX 0,44
21 i c<none> ERRORX 0,44

RHAVAR

KR& 10K

KR&T0K

RHAVAR

RHAVAR

KR3OEC

KRS TOK
KR&TOK

22 Rrray PRINTH '° <none> PHARRY

input fron R12:

VPAptr - array to be printed (fetched using FETSET)

notes: does a fetnun and pritval for each iten
) ' <none> ERRORX

24 RArray RERDN '’ <none> RWARAY

input fron R12:
VPRptr - array to be read (fetched using FETSET)

notes: does 3 read (NUN) for each elenment
25 e <none> ERRORX

26 & concatinate'd’ <none> CONCR.

input on R12:
string - second string
string - first string
output on R12:
string - first string concatinated to second string

2?7 s <none> PRSEN.
28 ((* <none> ERRORX
29) ') <none> ERRORX
r{, I Yh? <none> MPYROI
input on R12:
nunval - factor
nunval - factor
output on R12
nunval - product
r{. e’ <none> RDDROI
input on R12
nunval - addend
nunval - addend

output on R12
nunval - sunm

0,36

0,44

0,44

0,44

7,53

0.41

0,44

0,44

12,51

7,51

X1

KR3TOK

MJRTXT

KR&TOK

KR&FUN

M&TXT

KR&TOK

KR&TOK

KR&NTH

KR&NTH

2[, -'-

2D - diadic vet

input on R12:
nunval - Y
nunval - X

output on R12:
nurval - X-Y

28 . '
ZF / I/I
1nput on R12:
nunvel - Y
nunval - X
output on R12:
nunval - X/Y
” ~ XAY) Ay
input on R12
nunval - Y
nunval - X

output on R12:
nunval - X°Y

KA "'

input on R12:
string - first string to conpare
string - second string to conpare
output on R12:
boolval - result of conpare

B2 < es!

input on R12:
string - first string to conpare
string - second string to conpare
output on R12:
boolval - result of conpare

33 = Prz’

1nput on R12:
strang - first string to conpare
string - second string to conpare
output on R12:
boolval - result of conpare

<none>

«none>

«none>

<none>

<none>

«none>

none>

«none>

ERRORX 0,44

SUBROI 7,51

ERRORX 0,44
DIV? 12,51
YTXS 14,51
UNEQS. 6,53
LEQS. 6,53
GEQs. 6,53

KR&TOK

KR&NTH

KR&TOK

KR&NTH

KR&NTH

IvaopP

Ivaop

Iveop

N o Ye>'

input on R12:
string - first string to conpare
string - second string to compare
output on R12:
boolval - result of conpare

kLI !

input on R12:
string - first string to conpare
string - second string to conpare
output on R12;
boolval - result of conpare

36 > vy

input on R12:
string - first string to conpare
string - second string to conpare
output on R12:
boolval - result of conpare

37 < '

input on R12:
string - first string to conpare
string - second string to conpare
output on R12:
boolval - result of conpare

38 - nonadic -

input on Ri12:
nurival - operand
output on R12:
nunval - additive inverse

9 W’

input on R12:
nunval - first nunber to conpare
nunval - nunber to conpare against
output on R12:
boolval - result of conpare

R «= Tez!

1nput on R12:
nunval - first nunber to conpare
nunval - nunber to compare against

<none>

«none>

<none>

«none>

<none>

«none>

<none?

UNEQS.

EQS.

GRS.

LS.

CHSROI

UNEQ.

LEQ.

6,53

6,53

6,53

6,53

7,50

6,51

6,51

Iv&oP

IvaopP

Ivaop

Ivaop

KR&HTH

Ivaop

IvaoP

output on K1Z:
boolval - result of conpare

38 = "r=!

input on R12:
nunval - first nunber to conpare
nunval - nunber to conpare against
output on R12:
boolval - result of compare

I o 'Oy

input on R12:
nunval - first nunber to conmpare
nunval - numnber to compare against
output on R12:
boolval - result of conpare

30 = l"

input on R12:;
nunval - first nunber to conmpare
nunval - nurber to conpare against
output on R12:
boolval - result of conpare

3[» vyt
1nput on R12:
nunval - first nunber to conpare
nunval - nunber to conpare against
output on R12:
boolval - result of conpare
3F < ’<v
1nput on R12:
nunval - first nunber to conpare
nurval - nunber to conpare against
output on R12:
boolval - result of conpare
4 @ ‘e’
41 ON ERROR "ON ERROR’
42 OFF ERROR 'OFF ERROR’
43 DEF KEY "OEF KEY’

44 inv FN LET

<none>

<none>

«none>

«none>

<none>

<none>
ONERRO
P1RNC!
DEFKEY

FNLET

6tEQ.

UNEQ.

€Q.

GR.

L.

RISIGN
ONERR.
OFFER.
DEFKY.
FNLET.

6,51

6,51

6,51

6,51

6,51

0,42

0,341
0,241
0,241
0,217

Iva0p

Ivaop

IvaoP

IvV&0P

IvVa0P

KR&TOK
KR&TOK
KR&TOK
IV&0K

RH&VAR

note: same as LET FN

input fron R10:

FNtype - indicates the type returned by the function
VPRptr - relative pointer to variable that contains the
output fronm R12:;
1f nuneric then
(naneforn) - of the function variable

(nunvalptr) - pointer to the area uhere the value uwill be put
then
- pointer to string

if strin
(strptr?

(strlen) - string length
(VPAptr) - pointer to VPR entry for the string

45 RUTO "AUTO’ GO12N AUTO. 0,241 KR&TOK
46 (AT ALL "CAT ALL’ PUSHIR CATAL. 0,241 RHSLAT
47 LISTIO "LIST I0° PUSHIR LSTIO. 0,241 NJ&DIO
48 C(RTS *CRTS’ ERRORX CRTS$. 20,56 RH&CT$
49 DISPLAY IS 'DISPLRY IS’ G1SOR* DSPIS. 0,241 nJ&nIo
4R (AT "CAT’ PUSHIF CRT, 0,241 RH&CAT
48 LIST "LIST’ G$O12N LIST. 0,241 RH&LCND
47 NANE "NANE’ GET1$ NRME. 0,241 RH&RUN
40 DELRY "DELRY’ GETIN DELRY. 0,241 KR&TOK
4t NERGE "NERGE’ G$'012 MERGE. 0,241 RH&RUN
4aF C(ALL "CALL’ GET1$ CALL. 0,241 RH&RUN
50 READH "RERD #° READH RERDH. 0,241 NJATXT
input:
optional record nunber on r12
file nunber on r12
then does a read(NUM), read (STR), or read(RRRAY) for each 1ten

51 FETCH a key 'FETCH KEY’ GET1$ FETK. 0,241 IV&0K

52 display width'WIDTH’ GETIN WIDTH. 0,241 KR& TOK
53 POP return 'POP’ P1ANC! POP. 0,241 RH&F OR
54 RUN "RUN’ GOINS RUN. 0,241 RH&RUN
55 REAL "REAL’ TYPSTH SKIPR 0,321 IvVaDCL
56 DISP 'DISP’ PRINT DISP. 0,241 KR8 10K
57 FETCH "FETCH’ GOINS FETCH. 0,241 RHSFET

58 printer width'PHIDTH’

59 DEFRULTON/OFF’DEFRULT’
SR G010 G010’

input fron R10:

GETIN PWIDT. 0,241

ON/OFF DEFAL. 0,241
GOTOPR JnPin# 0,210

reljnpaddr - relative address to junmp to

58 GOSUB 'GOsuB’
5C PRINT # "PRINT #°
input fron R12:
optional record nunber on r1?2
filenunber on r12
50 MNARGIN n "MARGIN’
SE RESTORE # *RESTORE '
input fron R12:
optional record nunber on ri2
fi1lenunber on r12
SF INPUT > INPUT?
60 RSSICN& "ASSIGN ¥’
input fron r12:
lenght and address of filenane

file nunber (1nteger constant)
optional 2byte filetype

61 LET FN "LET FN’

GOTOSU JnPsSue 0,210
PRINTH PRINM. 0,241

GETIN PMARGN. 0,241
GIORZN RESTN. 0,241

INPUT INPUT. 0,237
RSSIGN RISIN. 0,241

FNLET FNLET. 0,217

FNtype (1 byte) - 1 for nuneric, 2 for array, 3 for string

input fron R10:

FNtype - i1ndicates the type returned by the function
VPRptr - relative pointer to variable that contains the

value to be returned.
output from R12:
1f nureric then

(naneforn) - of the function variable

(nunvalptr) - pointer to the area where the value ui1ll be put

1f string then
(strptr? - pointer to string
(strlen) - string length

(VPRptr) - pointer to VPR entry for the string

62 LET TLET?
63 STRNGBY *STANDBY'
64 ON TINERM "ON TINER w°

LET NOP. 0,241
ON/OFF STRAND. 0,241

ONTAR TRRON. 0,341

KR&TOK

KRS 10K
RH&F OR

RH&FOR

nJ&TX1

IVSED
MJ&TXT

IVRINP
MJ&TXT

RHEVAR

KR&TOK
nJ&PIL
Rv&1In

65

66
67
68
69
6R
68
6C
60
(13
6F
70
A
72
73
74
75
76
77
78
79
7R
78
7C
70
7t
7F

81

OFF TINERW

ON

BYE

HAIT
PROTECT card
PRINTER IS
PRINT
printlist
RANDONIZE
RERD
RESTOREIO
RESTORE
RETURN
UNPROTECT
EDIT filenan
OFF10

SToP

PUT <ckey>
TRACE FLOW
TRACE OFF
TRACE VAR
ENDLINE
CLEAR VARS
coPy

PURGE filnnm
RENRRE fT0Of
INTEGER
SHORT
DELETE

"OFF TINER W’

'ON’
"BYE’

"WRIT’
"PROTECT’
"PRINTER IS’
"PRINT’
"PLIST’
"RANDONIZE’
"RERD’
"RESTORE IO’
"RESTORE’
"RETURN’
"UNPROTECT’
"EDIT’

'OFF 10’
'STOP’

'PUT’

'TRACE FLOW’
"TRACE OFF’
'TRACE VRRS’
"ENDLINE’
"CLERR VRRS’
*CoPY’
*PURGE”’
"RENRRE’
"INTEGER’
*SHORT’

"DELETE’

OFFTHR

ON
PUSH1R
GETIN
PUSH1R
G1$0R*
PRINT
G$O12N
TRYIN
RERD
PUSH1R
RESTOR
P1ANC!
PUSHIR
EDIT
PUSH1R
P1RANC!
CET1$
PUSH1R
PUSH1R
PUSH1R
018
PUSH1R
FLYOFL
PUSH1F
FLYOFL
TYPSIN
TYPSTR

GO1CN

TNROF

ON.
BYE.
HAIT,

. 0,241

0,23
0,241
0,241

CRDUPR 0, 241

PRINS.
PRINT.
PLIST,
RNDIZ.

RERD.
REST.

RESTO.
RETRN.

0,241
0,241
0,241
0,241
0, 241
0,241
0,241
0,241

CRDUPR 0,241

EDIT.

OFFI0.

sToP.
PUT.

TRF LO.
TROFF.
TRVRAR.

EoL.

CLRVA.

coPy.

PURGE .
RENAN.

SKIPI
SKIPS
DELET

0,241
0,241
0,241
0,241
0,241
0,241
0,241
0,241
0,241
0,241
0,241
0,241
0,323
0,322

. 0,241

RY&TIN

RH&FOR
Iv&z1122
KR&TOK
RY&CRD
nJ&nIo
KR&TOK
RH3CMD
MJ&RIZ
NI&TXT
nJ&0I0
MI&TXT
RH&F OR
RY&CRD
RH&RUN
nJ&DIO
RHERUN
IvV&10

IV&IR

IV&TR

IV&TR

NJ&PIL
KR&EXE
RH&NEN
RH&CND
RH&CMD
IvaDCL
IvanCL

RH&CND

82 ROM missing 'ROM missing’ ERRORX ERRORX 0,44

83 RENARK 'REN’ REN SKIP' 0,241
84 OPTION BASE 'OPTION BRSE’ OPTION OPTIO. 0,315
85 END FN "END DEF’ FNEND FNRTN. 0,313

input fron R10:
VPRptr - pointer to VPR for function variable
input fron R12:
output to R12:
1f numeric:
(nunval) - nuneric value returned
1f strang:
(strptr? - pointer to the string (in RESMEN)
(strlen) - length of string

86 DRIA 'DRTA’ DATR SKIPEM 0,320
87 DEF FN "OEF FN’ DEF SKPDEF 0,312
input R10:

reljnpaddr - relative junp address to eol on END DEF line

88 DIn 'oIn’ oIn SKIPD 0,321

input for allocation:
array nane:
rou <integer const>
[col] <integer const>
and/or
string nane:
nax len <integer const>

output:
none
89 RENUMBER "RENUMBER’ GOTOAN RENUR. 0,241
8R END "END’ PIANC' END. 0,241
88 renark e REN SKIP! 0,241
8C FOR *FOR’ FOR FOR. 0,341
80 IF "IF’ IF ERRORT 0, 344
8t IMAGE " INARGE’ REN SKIPIT 0,341
8F NEXT "NEXT’ NEXT NEXT. 0,341

input fron R12:
naneforn - nane forn of the variable
nunvalptr - pointer to the value

KR&T0K

IvaDCL
KR TOK
RHAVAR

IvancL
KR&TOK

IvaDcL

RHACHD
RHIRUN
Iva0CL
RH&FOR
KR&TOK
IvaDCL
RHEFOR

91
92
9
94
95
96
97
98
99
9

9

BEEP

LET (InPLY)
RSSIGN 10
clear loop
CONTINUE
CLERR <¢dev>
‘ed string
TEXT

BRSIC

LIFY

RESULT

INTO

input/output

i«
90
9
9F

none

inv POP
clr tnrflg
or

for/next to

input fron R12:
nunval - value for the upper bound of the loop

LY
A1
R2
R3
M
RS
R6
R?
R8
A9

using line
READ string
print end
string ;
string ,
printi;
printh,
printiend

ON of on/off

'BEEP’

"ASSIGN 10’
"CLERR LOOP’
"CONT’
'CLERR’
"TEXT’
'BRSIC’
'LIFY’

'RES’

*INTO’

DOR'
D'OD

"USING’
'RERD’

"
LN]
"o
9
L]

’ONO

OFF of on/of f'OFF’

BEEP

ILET
GO18/%
PUSH1A
GOIN
GET1S
<none>
<none>
<none>
<none>

PUSH1A

none>

<none>
<none>
<none>

«none>

<none>
<none>
<none>
<none>
<none>
<none>
<npone>
<none>
<none>

<none>

BEEP. 0,241
ERRORT 0,344
CONFIG 0,241
CLoOP. 0,241
CONTI. 0,241
CLDEV. 0,241
SCONST 0,5

TEXT. 0,46
BRSIC. 0,46
LIF1. 0,46
RESUL. 0,55

NOP2. 1,51

INVPOP 0,44
TARCLR 0,44
OR. 2,51
10. 0,41

ULING. 0,327
RERDS. 0,44
PRLINE 0,35
PRSTR. 0,36
PRSTR. 0,36
SERIN. 0,36
consu. 0,36
PRNEND 0,35
ONTOK. 0,46
OFTOK. 0,46

RY&BEE

KR&TOK
nJ&nIo
nJaDIo
RHSRUN
nJ&oIo
RHVAR
RHRUN
RH&RUN
RHSRUN
KR&FUN

KR&TOK

RH&F OR
RY&TIN
IvaoP

RH3FOR

KR&TOK
MJ&TXT
KR&TOK
IVEPUN
IVAPUN
RJ&TXT
MJ&TXT
MJ&TXT
IV&ON

IVSON

RA IP 1P’ <none> IPS 20,55 KR&NTH

1nput on R12:
nurval - argunent for the function IP

output on R12:
nurival - 1nteger portion <integer val> (flagged integer)

RB EPSILON "EPS’ ¢none> EPS10 0,55 KR&NTH

1nput:
none

output on R12:
nunval - louer bound of machine precision

RC frac part 'FP’ <none> FPS 20,55 KR&NTH

input on R12:
nurnval - argunent for the function IP

output on R12:
nurival - 1nteger portion <integer val> (flagged integer)

RD CEIL "CEIL’ <none> CEIL10 20,55 KRANTH

input on R12:
nunval - operand

output on R12:
nuival - smallest integer >= operand <integer val> (flagged integer

RE MAX ' HAX' <none> NMRK1O 40,55 KR&HTH
RF ainv FN END *° <none> FNRET. 0,16 RHEVAR

1nput fron R10:
VPRptr - pointer to VPR for function variable

1nput fron R12:
1f nuneric stuff returned
(nunval) - nuneric value returned
1f string stuff returned
(strptr) - pointer to the string (1n RESNEN)
1f none returned due to failure

output to R12:
1f nuneric:
(nurival) - nuneric value returned
1f string:
(strptr? - pointer to the string (1n RESMEN)
(strlen) - length of string

note: sane as END DEF

80 SQR 'SQR’ <none> SQRS 20,55

input on R12:
nunval - operand

output
nunval - principal square root of operand

B1 NIN "IN’ <none> MNIN10 40,55
1nput on R12:
nunval - operand
nunval - operand

output on R12:
nunval - mininun value

B2 AVAIL NEMRY 'nNEN’ <none> MNEN. 0,55
B3 ABS 'RBS’ <none> ABSS 20,55
input on R12:

aunval - operand
“output on R12:
nunval - absolute value of operand

B4 external ron '’ <none> ROM:GO 0,214

“ 8% 1 dan afray <none> SVADCK 0,1

86 2 din array <none> SVRADCK 0,1
87 SGN "SGN’ <none> SGNS 20,55

. -input on'l12:
' nunval - operand

output on R12:
signun value of operand <integer const> (flagged int)
B8 - KEYS "KEYS$’ <none> KEY$. 0,56
89 coT1 ‘cov’ <none> C0T10 20,55

input on R12:
nunval - argument

output on R12:
nunval - cotangent of argunent
BR (SC 'CSC’ <none> (SEC10 20.55

input on R12:
nunval - argunent

output on R12:

KRSNTH

KR&NTH

KR&FUN
KR&NTH

IV&RSK
RHVAR
RHAVAR
KR&HTH

KR&F UN
KR&NTH

KRENTH

nunval - cosecant of argument

BB RPPT filenanme’RPPT’ <none> RPPT. 0,47 RHSFIL
BC EXP "EXP’ <none> EXPS 20,55 KRANTH

input on R12:
nunval - argunent

output on R12
nunval - anti-natural logarithn of argunent
BD INT "INT’ <none> INIS 20,55 KR&NTH

1nput on R12:
nunval - operand

output on R12:
nunval - greatest integer <= operand
BE L0G10 10610’ <none> LOGTS 20,55 KR&NTH

input on R12:
nuival - operand

output on R12
nunval - logarithn of operand (base 10)
BF LOG (E) "L0G’ <none> NS 20,55 KR&NTH

1nput on R12:
nunval - operand

output on R12:

nunval - natural logarithn of operand
(0 VERS "VERS’ <none> VER. 0,56 KR&FUN
1 SEC *SEC’ <none> SEC10 20,55 KREMTH

1nput on R12:
nunval - argunent

output on R12:
nunval - secant of argument

(2 CHRS "CHRY’ <none> (HPS. 20,56 KR&FUN
(3 SIRS *STRS’ <none> VALS. 20,56 KR&FUN
(4 LEN "LEN® <none> LEN. 30,55 KR&F UN

(5 NuUn "NUn’ <none> NUN. 30,55 KR&FUN

C6 VAL 'VAL’ <none>
C? INF 'INF’ <none>
input:
none

output on R12:
nunval - upper bound of nachine precision

C8 read nunber '’ <none>
c9 PI 'P1°’ <none>
input:
none
output on R12:
nunval - 3.141592653%9
CR UPCS 'UPRCS’ <none>
C8 USING "USING' <none>
CC THEN ' THEN’ <none>
CO TRB 'TRB’ <none>
CE STEP *STEP’ <none>
input fron R10:
nunval - value of increment
CF EXOR " EXOR ° <none>
DO NOT "NOT <none>
D1 DIV (\) ' DIV’ <none>

1nput on R12:
nunval - dividend
nunval - divisor

output on R12:
nunval - integer quotient (real flagged as

D2 ERRN "ERRN’ <none>
D3 ERRL "ERRL’ <none>
D4 CARD filenane’CARD’ <none>
D5 AND " AND °’ <none>
D6 KEYS filenane’'KEYS’ <none>
D7 ELSE "ELSE’ <none>

VRL. 30,55

INF10 0,55

RERDN. 0,44

PI10 0,55

upPCs. 30,56
USING. 0,341

ERRORX 0,44

TRB. 20,45
STEP. 0,41
EXOR. 2,51
NOT. 7,50

INTDIV 12,51

integer)

ERNUN. 0,55
ERRL. 0,55
CARD. 0,47
RAND. 4,51
KEYS. 0,47
ERRORX 0,44

KR&FUN

KR&NTH

nJ&TXT
KR&NTH

KR&FUN
KR&TOK
KR&TOK
KR&F UN
RH&FOR

IvVaoP
IvV&0P

KR&NTH

KR&FUN
KR&FUN
RH&FIL
Ivaop

RHSFIL
KR&T0K

D8

09

DR

08
0C

0D

SIN "SIN’

1nput on R12:

nunval - argunent

output on R12:

nunval - sine of argunent

N 'C0S’

1nput on R12:

nurival - argurent

output on R12:

nurival - cosine of argunent

TAN "TAN’

1nput on R12:

nunval - argurent

output on R12:

nurnval - tangent of argurient

10 binary op ' 10 '

RESTORE to x '

1nput:

address of line# 1n r10 strean

input W

anput fron R12

nunval - value to be stored
naneforn - nane of target variable

«none>

«none>

<npone>

«none>

«none>

«none>

(dinflag) - 1f tracang, tracing infornation
(col) - 1f tracing, tracing information
(row) - 1f tracing, tracing information

nunvalptr - pointer to target value

output to R12 stack

DE
OF
£o

nun

([

] Bl
\ "\’
POS 'POS’
RTD 'DEG’

«none>

«none>

«none>

«none>

“none>

SIN1O 20,55

€0sS10 20,55

TAN1O 20,55

NOPZ. 1,51%

RESTN. 0,227

INPUN. 0,44

ERRORX 0,44
ERRORX 0,44
INTDIV 12,51
POS. 52,55
DEGYIO 20,55

KR&NTH

KR&NTH

KR&NTH

KR8 10K

MJ&TX1

IVSINP

KR&T0K
KR&TOK
KR&NTH
KR&FUN

KR&NTH

E3 DIR 'RRD’ <none>

E4 FLOOR *FLQOR’ <none>

input on R12:
nunval - operand

output on R12:
nurval - greatest integer <= operand
ES INPUT § ' <none>

1nput fron R12 stack
strptr - source string address

RRD10. 20,55

INTS 20,55

INPUS. 0,44

strlen - source string length
strptr - target string address
strlen - target string length
VPAptr - pointer to beginning of target string
output to R12 stack
none
€6 ERROR ' <none>

E? nuneric ; <none>

ERRORX 0,44
PRNUH. 0,236

note: 1t should be 36 but the attribute was left out (sigh)

€8 nuneric , <none>

PRNUN. 0,236

note: 1t should be 36 but the attribute was left out (sigh)

Fron ALTRON

00 " ERRORX
01 RLARM ON/OFF 'ALRRA’ ON/OFF
02 LOCK "LpCK’ GET1S

03 DEG "OPTION ANGLE DEGREES’ PUSHIR
04 RRD "OPTION ANGLE RRDIANS’ PUSHIR

Fron MELRON
00 ' RETURN
01 TRANSFORN " TRANSFORN'’ TRNSLP
input on R12:
[file nane) <string>
file type, 2-byte attribute

output:
none

02 PRCK "PRCK’ RSPARCK

ERRORX 0,44

ALARN. 0,241
LOCK. 0,241
DEG. 0,241
RRD. 0,241
ERRORX 0,44
TRFRA. 0,241
PRCKh. 0,241

KR&NTH

KR&NTH

IVAINP

KR& 10K

IV&PUN

IV&PUN

KR&T0K
KR&PSS
RY&LOK
IVAANG
IVEANG

KRS 10K
GC&TFN

RS&FPRK

input on R12:

device nane <string>

output:

03

05
06
07
08
09
OR
0B
oC
oD
Ot

none

INITIALIZE

input on R12:
device nane <string>
nunval - [W of directory entries)

output:
none
TInE
DATE
TINE
DRTE
ANGLE
RCOS
RIN
RSIN
RHD
noo
RND

"INITIALIZE’

'TINES’
"DATES’
'TINE’
*ORTE’
"ANGLE’
"ACOS’
"ATN’
"ASIN’
'RAD’
"noo’
"RND’

ASINIT

<none>
<none>
<none>
<none>
<none>
«none>
wnone>
«none>
<none>
<none>

none>

INIT. 0,241

TInES. 0,56
DRTES. 0,56

TINE. 0,55

DATE. 0,55

ATN2. 20,55
1C0S. 20,55
ITAN. 20,55
ISIN. 40,55
REM1O. 40,50
noop10. 40,55
RND10. 0,55

RSSINI

RYSTED
RY&T&D
RY&T&D
RY&T&D
KR&TRG
KR&TRG
KR&TRG
KRS TRG
nJ&noo
nJanoo
NJARND

ON ERROR conments

Raan Young
07/09/82

00000000
0000000000000
00000Q000Q0000000
000000000000Q000Q0000Q
Qa Q00Q000000000000000Q000000
\Q\ 000Q0000000000000000000000000 Q.
00\ 00000000000000Q00Q0000000000000\ Q0
00\ . 00000000000000000000000000000000Q0Y \Q0Qo
0000. . __..00000000000Q00000000000000000Q0000000000. _. 0QQR00Q
000000000000000000" \QQ0Q000000Q00000VU00000000000Q0AQ0QQN.
QQ0Q0Q0Q0Q" 000000000Q00000000000000Q00Q0000000Q00Q0
e \000000000000Q00000000000000Q" “00’
0000000000000000000000000/
\00000000Q/ 00000000/
\000000Q 10000000

00000] 000/"
0000| . 00
0000| OV00
00|/
000 |

100]

1000

000000
"00000000

“0000

The ON ERROR code consists of three parts:

* the ON ERROR setup, invoked by the ON ERROR statenent;

* the ON ERROR termination, invoked by the OFF ERROR
statenent;

* the actual 1invokation of the ON ERROR user code uhen an
error happens.

The ON ERROR parsetimne calls PRRSE' to parse the rest of the
line, and then adds an i1nvisble RETURN token at the end of
the line. If there are any GOT0 or ON...GOTO tokens in the
line, an 1nvisible POP token 1s placed in front of then.

The ON ERROR runtine saves the relativized address of the
first token (keyword follouing ON ERROR) to be executed when
an error 1s encountered, i1n E.EREX: and the relativized PCR
in E.ERPC. It then skips to the next line.

The OFF ERROR runtine O's out E.EREX and E.ERPC.

The runtine code executed uhen an error 1s detected 1s the
heart of the ON ERROR function. This 1s invoked by REPRT+ or
one of 1ts derivatives. Uhen REPRT+ 15 called to report any
errors, 1t tests to see i1f E.EREX 1s positive and non-zero.
If 1t 1s then an ON ERROR 15 active and we set up a GOSUB to
the first token 3n the ON ERROR statenment. If 1t 15 O, ON
ERROR has either been OFFed or uas never declared to start
uith. If 1t 1s negative, then ue are in an ON ERROR state-
nent and do not want to call 1t again (read infinite loop).
The call to the ON ERROR code 1s setup by using E.EREX for
the relative R10, and E.ERPC for the relative P(R of the
GOSUB address. The address of the next line 1s used for a
return address and PCR. SUBSTF 13 called to do the actual
GOSUB setup, and then CLRERR clears the error so the program
uill not stall. The GOSUB 1s traced. and finally RTSICGN 1s
called to clean up any garbage left on R12 by the error. The
value of E.EREX 1s nade negative by setting the top bat.
This flags us as being in an ON ERROR. When the invisible
POP or invisible RETURN 1s executed, This value 1s restored
to 1ts original positive value (usually), and execution
returns to the line after the one containing the error.

In addition to the PCR and R10, & flag 1s saved on the
subroutine return stack. This flag 15 used by ON ERROR and
ON TINER to clean up things that need cleaning up at the end
of the statenent. The flag = 8000H for normal GOSUBS, is »>=
0 and <« BOOOH for ON TINER (see KR"TIN for more), and 1s >
8000H for ON ERROR. This flag contains the E.EREX value ¢
8000H (the E.EREX value 1s relative address of code, and 1s
assuned to never be >7FFFH). This serves to flag the return
info as being for an ON ERROR, and also saves the relatave
address. This address can not be saved in E.EREX because the
ON ERROR code night contain either an OFF ERROR or another

ON ERROR. Either of these uill change the contents of
E.EREX. If the value of E.EREX 1s O when the return 1s ex-
ecuted, then an OFF ERROR was done and the value 1s not
restored. Otheruise the old E.EREX 1s restored. This means
that an ON ERROR declared in an ON ERROR only 1s effective
during that ON ERROR,

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

This document is meant as an aide to people working wuith the
Kangaroo systen. Each file has a Jine describing the type of
subroutines that 1t has. Beneath each file 1s a list of subroutines
in that file along wuith a description of uhat it ‘does and what
registers 1t will certainly trash. (Note: there 18 no guarantee that
1t wall not trash other registers. Rll registers uhich are 1n the
subroutine are listed: houever, the subroutine nay call another
subroutine which would trash different registers.) If there are any
nistakes or untruths 1n this docunent, readers are asked to please
nake the changes thenselves. Make the changes to KR'FIL and then run
runof to obtain KR"FIL (this file). Thank-you.

9:27 AM KWED., 16 SEPT, 1981

Quick Reference Documentation of Kangaroo Subroutines
File Grouping

Sub- Description
routine

..

bl A A i L R Rk R R el e R L L L L Lk T SR

| ROM 1n1tialization: 1nvokes each keyuord file one by one.

| R20=error nunber, E=1 1f ERROR was called, E=0 if handled

| by file.

| Uses: RO-1, R2, R6 stack

HANDIO | 'HANDI’ with no error: passes control to all keyuord files.

| Uses: RO-1, R2, R6 stack
| "HANDI’ with no error: passes control to all keyuord files.
| Uses: RO-1, R2, R6 stack

bl db R e e L L L L L T O SR p——

ROMINI

Dt e R e e e A e SRR ——

ATIN? | Checks to see 1f there 1s any key waiting. E=1 1f key is
| waiting & 1t’s RATTN, E=0 otheruise.
| Uses: R2
CURSE- | Turns the cursor off. No error.
| Uses: RO-1, R2-3, R30-37, R44-47, RS3-57, RO stack, R6 stack
CURSE+ | Turns the cursor on. No error.
| Uses: RO-1, R2-3, R30-37, R44-47, R53-57, RO stack, R6 stack
DEQUE | Kills any queued up keyboard interrupts
| Uses: R3
EOLND | "OUTEOL' with Ne Delay
| Uses: RO-1, R2-3, R3I0-37, R44-47, R53-57, RO stack, R6 stack
GETCHR | Gets a single character in KEYHIT and R2
| Uses: RO-1, R2-3, R6 stack
GETLN | Reads & line uith the 1nit1al tenplate 1n INPBUF. Returned
| terminating character 1s in R2S.
| Uses: R20-25, R6 stack
HLFLIN | Sends a string to LCD. Called with a nulti-byte count 1n R36
| and the address of the string in R26.
| Uses: R6 stack
HLFOUT | R cheap uay to call HLFLIN
| Uses: R6 stack, R26 stack
KEY? | Checks to see 1f any key (even RTTN and node suitchers) has
| been pressed. E=1 1f a key uas hit, E=0 1f no key uas hit,
| Uses: R2
LETCO | Haits untal the key 1s released
| Uses: R2-3
NSGOUT | R cheap uay to call OUTSTR
| Uses: R6 stack
OUTICH | Hrates a character
| Uses: R6 stack
OUTC40 | 'OUTCHR® with the character in R40
| Uses: R6 stack
OUTCHR | Outputs a character to the display device: ALL output to
I

the display device filters through this routine.

F 9:27 AN WED., 16 SEPT, 1981

Quick Reference Docurentation of Kangaroo Subroutines

File Grouping

OUTEOL
OUTESC
OUTSTR
PUTKEY

SETLIN

Uses: R6 stack

Does the end of line sequence for display devices (CRLF)
Uses: R6 stack

Writes out an escape ¢ 'OUTICH’

Uses:

Hrites out the device to the current display device
Uces:

Nakes the character i1n RZ2 the current character
Uses: R2-3, R6 stack

Sets up a line for 1nput

Uses: R24-25, R6 stack

D e i T e R I I e

B e e e R T e e e i

ROM: GO
ROMJSB

ROMRTN

Cycles through all the ROMs and ROM files. Call the
subroutine each lerxfile enabled: RO 1s the ROR nunber.
Uses: RO-1, R2-3, R6 stack

Enables a ROM whose 2 byte identifier 1s in RO. If
successful, ZR 1s returned, otheruise NZ 1s returned.
Uses: R6 stach

This 1s a token to transfer to a given address 1in a RON
Uses: RO-1, R2-3, R20-21, RI0-31, R6 stack

Suitches to a given RON, calls the address, and suitches
back to the current RON

Uses: R6 stack

Returns to regular systern RON. Systen ROR 1s enabled,
RONOF =0, ROMPTR=24K, and NI

Uses: R2-3

I i e e Rttt

BRSEND
BLANKS

PRR1

RETURN

The last line 1n a progran

Uses:

Eight blanks for public consunption

Uses:

Get one byte paraneter after call. R2=1 byte that R6 pointed
to uhen you called PRR1, R6 := R6 ¢+ 1. Changes PROTEN.

Uses: R, R6 stack, R44 stack

The address of a RIN instruction

Uses:

D e e e T R I e e e e et

B it e I ettt

DRYSEC
DTRBO

KOPY

NUNCHK

Seconds 1n day data

Uses:

Days 1n nonth data

Uses:

Byte copy routine. Source address 1s R74-75, destination
address 1< R76-77, and the byte count address 1s R73.
Uses: R7Z-73, R74 stack. R76 stach

Nuneric check and encode. The first byte (high byte) 1s 1in

9:27 AN UED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

! R20, the second byte (low byte) 1s in R21.
Uses: R20-21

TORSC2 ' Converts tuo digat BCD to RSCII. The tuo digit BCD value
1s 1n R20, the tuo byte result 1s in R20-21.
Uses: R20-21
108CD2 ' Converts tuo byte binary to BCD. The eight bit binary value

|
'
|
|
I
|
! that 1s to be converted to 3 digits of BCD 1s in R20, the
' BCD result 1s an R20-21.
! Uses: R2-3, R20-21
T0BCD8 ' Converts eight byte binary to BCD. Values to be converted
! to BCD are 1n R40-47, the eight B(D results are i1n R40-47,
! Uses: RO-1, R20-21
' Converts tuo digit BCD to binary. The BCD value 1s in R20,
! the binary result 1s 1n R20.
! Uses: R20-21
! Converts eight byte BCD to binary. The eight bit BCD value
! 1s 1n R40-47, the eight bit banary result 1s in R40-47.
I Uses: R20-21

D L e L R

TOBIN2

TOBINS

R e e e e R e R e e

CONBIN ' Converts binary to floating point. Binary nunber 1is 1n
R36-37, converted floating point nunber 1n R40-47.
Uses: R32-35, R40-47

Handles terninating key for connand intput

Uses:

Execution loop for the Kangaroo

Uses: R2-3, R20-24, R32, R76-77

Gets a BRSIC input line fron the keyboard

Uses: R20-24

Llets the user see the output on the LCD

Uses: R2

Initializes the GETLN paraneters

Uses: R2-3

|
'
'
pocnp !
!

|

'

!

|

|

!

|

|

OTHER ' Handles other than terninating keys for connand 1nput

'

!

'

'

'

'

|

'

]

|

!

]

EXEC
GETALN
HANG
INTTOL

Uses: R2-3, R10-11, R16-17, R40-47, R76-77

Prints out the line pointed to by R36/37 unless 1t is the

speci1al last line flag EOLIN.

Uses: R20, R24-25, R26-27, R30-31, R36-37, R4S-47, Re6?

Reports parsing errors by re-displaying the input line uith

the cursor over the point at uhich the parsing failed. R10

points one past the error,

Uses: R2-3, R10-11

Coldstart

Uses: R2-3, R6-7, R2S

Clears out RUTOI 1f there 18 an overflou

Uses: R2-3

KR/MTH - contains nathenatical functions. Rlso has a feu paraneter
getting routines, randon nunber generating routines,
unpacking routines.

OUTLIN

REPORP

START

UNRUTO

F 9:27 AN UWED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

U S e L e R T T R R R R R R L LR R L L L L]

Calculates the absolute value of a real on the R12 stack.

Output 1s on the R12 stack uith a copy 1n R40.

Uses: R40-47, R60-67

Calculates the sun of tuo reals on the R12 stack. Output

18 on the R12 stack uith a copy i1n R40.

Uses: R32-37, R40-47, RS0-57, R60-67

Calculates the sun of tuo reals or integers on the R12

stack. Ouput 1s on the R12 stack uith a copy on R40.

Uses: R32-37, RA0-47, RSO-57, R60-67

Locates the snallest integer >z the real or integer on

the R12 stack. Output is on R12 wath copy in R60 or R?0.
! Uses: R2-3, R3I2-37, R40-47, R50-57, R6O-67, R70-77

Generates the negative of the real or integer on the R12

stack. Output is on the R12 stack uith a copy in R40.

Uses: R40-47

Calculates the cosine of a real on the R12 stack. Output

1s on the R12 stack uith a copy in R40.

Uses: R20-27, R30-37, R40-47, R50-57, R60-67, R70-77

Calculates the cotangent of a real on the R12 stack.

Output 1s on the R12 stack uith a copy in R40.

Uses: R20-27, R30-37, R40-47, R50-57, R60-67, R70-77

Calculates the cosecant of a real on the R12 stack.

Output 1s on the R12 stack uith a copy 1n R40.

|
|
[}
|
|
|
ADDROT
|
|
|
[}
|
|
|
|
|
|
|
|
!
|
|
|
! Uses: R20-27, R30-37, R40-47, R50-57, R60-67, R70-77
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
!
|

CIEL1O
CHSROI
cos10
coT10
Csec10

DCONY Tables and constants
Uses:
Converts a real on the R12 stack fron radian to degree
neasure. Output on the R12 stack, copy 1n R40.
Uses: R32-37, R40-47, R50-57, R70-77

! Calculates the quntient of tuo reals on the R12 stack
Uses: R32-37, RA0-47, R50-57, R60-67
Calculates the exponential function at 1ts argunent
Uses: R32-37, R4A0-47, R50-57, R60-67
Function return
Uses: R32-37, Ra0-47, RS0-57
Main frouard trig subroutine
Uses: R30-37, R40-47, R50-57, R60-67
Calculates the greatest integer <= the real or integer on
the R1¢ stack. Qutput on R12, copy 1in Re0.
Uses: R32-37, R40-47, RSO-57, R60-67, R70-77
Integer nultiply. R66 1s the nultiplier, R76 1s the nulti-
plicand, the result 1s four byte starting in RS54,
Uses: R54-57, R60-67, R74-77
Yields the integer part of 3 a real or i1nteger on the R12
stack. Output 1s on R12 stack uith copy in R60 or R70,
Uses: R32-37, R40-47, RS0-57, RE60-67, R70-77
Calculates the natural log of a real on the R12 stack.
Output 1s on the R12 stack uith a copy 1n R40.
Uses: RO, R26-27, R32-37, R40-47, RS50-57, R60-67, R70-77
Calculates the log base 10 of a real on the R12 stack.

DEG10

DIV
EXPS
FPS
FTRS3
INTS

INTRUL

IPS

LNS

LOGTS
F 9:27 AN WED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

Output 1s on the R12 stack uith a copy in R40.

Uses: RO, R26-27, R32-37, R40-47, RS0-57, R60-67, R70-77
Locates the maxinun of tuo reals on the R12 stack. Output
18 on the R12 stack uith a copy i1n R50.

Uses: R32-37, RA0-47, RS0-57, R60-67

Locates the minimum of tuo reals on the R12 stack. Output
1s on the R12 stack with a copy 1n R50.

Uses: R32-37, R40-47, RSO-57, R60-67

Calculates the product of tuo real values (a*b). n(b) R4O;
exp(b) R36; sgn(b) R32; n(a) RSO; exp(a) R34; sgn(a) R33I;
Output is 1n R40.

Uses: R32-33, R36-37, R40-47, RS0-57, R60O-67

Calculates the product of tuo reals or integers on the R12
stack. Output 1s on the R12 stack uith a copy in R40.
Uses: RO, R32-37, R40-47, R50-57, R60-67, R70-77

Gets one binary integer in R40. 32767 if too big, E<>0 if
overflouw or underflow.

Uses: R46-47, R60-67, R70-77

Gets one BCD integer in R40. 99999 1f too big, E<>0 if over-
flouw or underflou.

Uses: R40-47, R60-67

Gets one real or integer in R40. 32767 if too big, E<> O if
1f overflow or underflow,

Uses: R40-47

Converts a real or integer on the R12 stack fron degrees
to radians. Output on the R12 stack, with a copy 1n R40.
Uses: RX-37, R40-47, R50-57, R60-67

Generates a randon nunber an places 1t on the R12 stack,
uith a copy 1n R40.

Uses: R36-37, R40-47, R50-57, R60-67, R70-77

Cenerates a neu seed for the randon nunber generator

Uses: R40-47

Calculates the secant of a real on the R12 stack. Qutput
1s on the R12 stack uith a copy 1n R40.

Uses: R20-27, R30-37, RA0-47, R50-57, R60-67, R70-77
Unpacks a real in R40. Output: man R40, exp R36, sgn R3I2.
Uses: R32, R36-37, R40-47

Unpacks tuo reals in R40 and RS0 (a and b). Output:

nan(b) R36, exp(b) R36, sgn(b) R32, man(a) RS0, exp(a) R34,
sgn(a) R33

Uses: R32-37, R40-47, RSO-57

Stgnun function: sgn(x)=-1, x<0; sgn(x)=0, x=0; sgn(x)=1,
x>0. Input 18 2 real on the R12 stack, output 1s on the
R12 stack uith a copy 1n R40.

Uses: R40-47

Shift leading zeros off of R40

Uses: R36-37, R4A0-47

Shift leading zeros off of R40, round and pack the result.
Uses: R32, R36-37, R40-47

Calculates the sine of a real on the R12 stack. Output

is on the R12 stack uith a copy in R40.

NAX10

NIN1O

nPY30

NPYROI

ONEB

ONEI

ONEROI

RAD10

RND10

RNDINI
SEC10

SEP10

SEP1S

SGNS

SHF10
SHRONF
SIN10

F 9:27 AN UED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

Uses: R20-27, R30-37, R40-47, RS0-57, Re0-67, R70-77

SQRS Calculates the square root of a real on the R12 stack.
Output 1s on the R12 stack uith a copy i1n R4O.
Uses: R32-37, R40-47, RS0-57, R60-67, R70-77

SUBROT ' Calculates the difference of tuo reals or integers on the

|
|
|
|
|
I R12 stack. Output 1s on the R12 stack uith a copy in R40,
I Uses: R32-37, R40-47, RS0-57, R60-67
TAN1O ! Calculates the tangent of a real on the R12 stack. Output
' 18 on the R12 stack uith a copy 1n R4O,

| Uses: R20-27, RI0-37, RA0-47, R%0-57, R60-67, R20-77

|

|

I

|

|

T8L38B Real/1nteger data fetch
Uses:
YTXS Calculates pouers of tuo reals on the R12 stack (x7y),

Output 1s on the R12 stack usth 3 copy 1n R40.
Uses: R22-27, R30-37, R40-47, RS0-57, R60-67, R70-77

B i I R e e e e e e e T X ey

B e e N el e e L

ALFA DRP=20 + 'RLFR °*

ALFR Converts a letter to upper case, 1f necessary
RSSIGN ' Parses an RSSIGN statement

BRC(K10 ' Pulls R10 back 1f R20 «> CR

DARTR Parses a DRTA statenent

DEF Parses a DEFINE function

DICIT Checks to see 1f R20 contains a digat
bIn Parses a dinension statenent

DANDCR ' Denands a (R or ' after a statenent
ERRES Prints out bad paraneters nessage
FNEND Parses the end of a function statenent
FNLET Parses the function LET staterent

FOR Parses a FOR statenent

FORNAR ! Parses a fornal array

FUN1 Gets one standartd function paranmeter

|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
G$C1ZN ' "GO12N’ + gets a filenane
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|

6$'012 ' "G8012N’ with an error 1f no file
GO1IN Gets O or 1 line nunbers

GO1INS Gets a string and/or a line nunber
GO12N Gets O, 1, or 2 line nunber

(OT0AN ' Gets O to 4 line nunbers

GIORCN ' Looks for optional parameters
GCHRR Gets the next non-blank character
G(HRR "GLCHAR' + DRP=20 and RRP=10

GET1S Gets one string

GETIN Gets one paraneter

GETCNA ' Gets a conna

GETLIN ' Gets a sequence nunber

GETPR? ! Gets all the paraneters

GETPRR ' Gets a specifiable nunber of paraneters
GOTOPR ' Parses a GO10 cornand

GOTOSU ' Parses a GOSUB conmnand

IFf Parses an If statenent

F 9:27 AN WED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

REN
RESTOR
RSTREG
SCAN
SCAN¢
SCANE1
STRCN+
STREX!
STREXP
TRYIN

Parses a renark

Restores the parsed line

Restores R21-37, r60-67

Scanner

DS(RN’ ’ IGCHRR.

"SCAN' + E=1

Renark and string constant

*STREX+’ with an error 1f no string
Get a string expression

Looks for optional paraneters
TYPSTR ' Scans type statenents

UNQUOT ' Scans a string stopping at connas
MJ/DI0 - Basic routines. Includes su~e parsing routines and does
basic manipulation uith the loop.

- - = e e e e e e e S e e e e n e m- . .- - —-——--

ILET ' Parses a LET statenent
INPUT ' Parses an INPUT statenent
ISCHR ! Sees 1f R14 1s a connma
LET ! Parses a LET statenent
NEXT ! Stores the next token
NOCLC' ' Checks for not calculator
NUMBER ! Gets a floating point nunber
NUMREP ' Cheus up leading + or= and produces a signed constant
NUHVR+ ' *NURVAL’ + 'SCAN’
NUMVAL ' Parses a nunber or a value
ON ' Parses the ON token
ONERRO ' Handles any error after ’'THEN’
OPTION ' Parses an option base
PRRSE! ' Main parse inner loop
PARSER ! Is this a progran, statement, or expression
PRRSIT ' 'PARSE!'’ ¢+ 'SCAN’
PU36SC * 'PUSH32' + DRP=36
PUSHIA ' Pushes out the token ¢ 'SCANE1’
PUSH32 ' Pushes an 1nteger onto the stack
RERD ' 'RERD ' + checks for calculator node
RERD ! Reads one or tuwo paraneters

|

]

]

]

|

]

1

]

!

1

L

L]

Clears bat 0 (loop on bit) an PLSTRAT
Sets bat 0 (loop on bit) 1n PLSTRT
Lists devices configured on loop

ANY.IS ' Gets either a string or a *
CHKEND ' Checks a line nunber to see 1f 1t 1s R999
CLDEV. ' Clears ":dev" (Token R7)
CLOOP. ' Clears loop (Token R?)
CLOSE+ ! Processes PRINTER IS * and DISP IS *
CONFIG ' Token 140 assignio
DSPIS. ' Display is runtine
EoL. ' End of line routine
GO18/* ' Gets a string, a *, or no paraneters
GISOR* ' Gets either a string or a *
GETRDR ' Gets a loop address for a specified device
]
1
]

F 9:27 AN WED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

ROVEIT ! Noves things into the error buffer
OFFI0. ' Processes offio

PRINS. ' Printer 1s runtine

REST. Restores 1/0 routine

STAR? Looks for a * or null string

String for a tab

Sees 1f device table 1s there; returns the address 1f so

RJ/PIL - Basic PIL nanipulating routines. Sone parsing routines.
Rlso sends connands and franes.

L R ittt e L I T X R e

|
|
|
|
SKPCHK ' Skips a line and checks for the end
|
|
|

ACTREP ' Checks 1f active controller

RLARA. ' Parses RLRRN conrand

C.INIT ' Coldstart 1nitialization

CL.ACT ' Clears actaive bits in PLSTAT

CHDREP ' Sends connands uith error reporting
CNDSND ' Sends SEND frane

DRTREP ! Sends data uith error reporting

LROSND ' Sends listen addresses

PILOF' ' Turns PIL chip off

PILON' ' Turns PIL chip on

RDYSND ' Sends RERDY frane

SENDID ' Verifies 1f loop 1s intact

SNDRUT ! Sends auto unconfigure and auto address
SNDFRM ! Sends a frane

STAND. ! Parses the STANDBY connand

STRND- ' "STAND.' uith an arbaitrary DRP

UNLREP ! Sends UNL, reports errors 1f any, and falls into CL.RCT
UNLSND ' Sends the UNL frane

R e e e e e e N

B I ettt ettt

ERR1 "ERROR’ with E=1
ERR1+ "ERR1" with return address trashed
ERROR Error parsing routine

|
|
|
ERROR+ ' "ERROR’ with return address trashed
|
|
|
|

ERRORR ' Takes the error nunber in a register

ERRREP ' Calls '"ERROR' and then 'REPORT’s

HARN Printe a uarning nessage

HRARN.R ' Entry for 'WARN' with nunber 1n register R36

B T T R e e e e

P L A e N e e L T T R R R R P R

CREOL? ' Tests for end of line tokens

EDLIN ! Fetches a line nunber

FETCH. ' Finds a given string or line nunber
LINEDR ! Inserts and deletes lines 1in files

T e e e T e R el

F 9:27 AN MED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

APPT. Parses APPT connand
CARD. Parses CRRD cornand
EDIT Parses EDIT connand

FILNA+ ' "FILNA?' w1th prescan
FILNAY 1 "FILNN?’ with an error
FLCHR? | Gets a filenane or a special file token

'
|
|
|
|
|
FLORD ' "FLORDT' with no type check
!
I
I
|
|

FLORDT ' Gets a filenane fron the R12 stack as in GETFL.
FLIOFL ' Parses COPY and RENARME

GETNRN ' Gets a filenane fron the R12 stack

KEYS. Checks to see 1f any key has been pressed
PUSHIF ! Gets a filenane parameter or null

R T R R R R e b kL X X T R A

LA dia R R R L b L L X R e

RDJUST ' Updates the location of all files

RLCALL ' Rllocates all remaining nenory

RLLOC Rdds free space to the given location
DELETE ' Deletes data at a given location

DELLIN ! Deletes a line 1n a file

FCOPY Copies a file

FCRALO ' Creates a fi1le (nare 1n R20, type in R40)
FCRERT ' Creates a file (nane 1n R40, type 1n R20)
FCRNUL ! Creates a file with only a header and an endline
FENPT? ' Tests to see 1f a file 1s enpty

FLINIT ' Initializes file systen variables

FNDLED ' 'FSEEK’ with R36 set to EDFILE

FNOLIN ' 'FSEEK' with R36 set to EDFILE

FNOLPR ' 'FSEEK' uith R36 set to PRFILE

FNDLRN ' "FSEED' with R36 set to RNFILE

FOPEN Opens a file with a given nane

|
!
|
'
|
[
|
!
[
|
|
|
|
|
|
|
FPURGE ' Purges a file
|
!
|
!
I
|
|
|
|
'
[
|
|
[
|
|

FRENAR ! Renaves a file

FSEEK Finds a given line by nunber 1n given areas of nenory
FSREPL ' 'FSEEK’ + "REPLIN'

INSERT ' Inserts a given block of data at a given location
LINLEN ! Returns the length of a line

ONR12 Tests to see 1f anything 1s on the R12 stack

PFNDPR ' 'PREFND' for PRFILE

PREFND ' Finds the first line before a fiven line in the edit file
REPLIN ' Replaces a line 1n a f1le

ROON! Sets an error to be reported 1f no roon

ROON? ! Tests to see if the required memory is available
RSETEN ! Sets variable area

SETPR Sets up the file paraneters PRNANE and PRFILE

SETRN Sets up the run file paraneters

SKPLN Finds the address of the next line

SKPLN "SKPLN’ wuith an arbitrary DRP

D i I e e el e e

R e ket e e R e R

F 9:27 AN WED., 16 SEPT, 1981

Quick Reference Docurentation of Kangaroo Subroutines
File Grouping

FINDNE ' Locates your position in the RB

FRELSN ' (leans up loop after halt or abort of 1/0
GETVAR ' Gets the I/0 RAM variable

GOODLF ' Checks to see 1f our RB 1s the sare as reality
1/0CHK ' Deternines whether there 1s 1/0 to do

INRST Restores the current input file and status
INSARVE ' Saves the current input file and status

LSTN1 Listen addresses a device

|
|
|
|
|
|
|
|
LSTNR? ' Checks to see 1f there are listeners ready for a talker
|
!
|
!
|
|
|

NXTDEV ' Goes. to the next device on the loop

OTLINE ' Deconpiles a line i1nto the output buffer

OTSTRT ' Output start routines

PUTSYS ' Checks to see if systen 1/0 files should be updated
RSTORE ' Restores the PIL registers; transmits PILINT characters
STRTUS ' Checks the SRQ (status) and processes 1t 1n the RB
TRLK1 Talk addresses a particular device

B T e e ettt et

B e e i I R R R e

tno Interprets connand franes as a non=controller (CR=0)
CNTRL Transnits & error checks non=SRQ connands on the loop
PILER Handles errors for PIL routines

PILINT ' PIL interrupt service routine (I/0 engine)

|
|
|
|
RDY ! Interprets ready frarnes as a non-controller (CR=0)
|
|
|
|

RECIVE ' Receives data over the loop fron a file (LR=1)
SEND Sends data over the loop fron a fi1le (TR=1)
SRQ Services a request fron a peripheral

XLATE Stores collected paripheral status bytes

P T T e R ettt

D T I ettt ettt

AYLOOP ' Attenpts to get control of the loop

NEUFB ' Nakes a new current resource block

PILNIT ' Initialization routine for the ROM; processes HANDI call
REQEST ! Requests service as a peripheral fron the current (R

9:27 AR UWED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

Table of Contents

9:27 AN UED., 16 SEPT, 1981

Quick Reference Documentation of Kangaroo Subroutines
file Grouping

LLLLLE L) HHNHUNNRN NRNEENNN RARNENEN HHNNONNNN RN
HUNHUNEE HUNHHNNNE HHNRHANEN NHRNNNNNN NTRRNNNN NN
(LI LD UL LB LD B LD R L L L1 CLLI LD L L
(UL LU LD B L LI UL LU (I LDl
(T TN LU L L B L) LU NN RN NN
BHN NNRE NHN BN RN NN (L1 L LU L LD L]
HUNNNUHN HRNANERNE NRRRNNNNN LLL) WHRRNHNNN NN N0
LLLLELL] LLLLLE LT I LD L L) UL NHNHNNNNN NN N

NHHRHRNEN RRHNRENRN RRENNNNEN HERRNNNRN 0 U L
WHRHNRENE HRRANNRNE BNURNNNAN NHNNNNNN WY L L]

WHN HHN BN RN RN NN BN N e LLL]

LLL] HHN NNE RN N RN e LLLLLLE L
LU NON AN NNHNHENN NN NN N LB D
WRE NNE REN AR NN NN RN R e UL

WRRHHRHUNE HENUHHONE BHRHNRENN RUHARNNNR RNURRNRNN HHRNEH
NURRHREHEN NRRRHRHEN RRRENNRE RRNRERREN NHONNNANE RN

0000 00000 O 0 000 0 0 00000 0000

0 0 0 00 00 © 0 00 O 0 0
0 0 000 000 O 0 00O 0 0
0 0 o o 0 o 0 0 o0 0 0

0000 00000 O 0 0000 o 0 00000 00000

0000 O 0 00000 0000 00000 00000 000
0 0 0 0 0 o O 0 0 0
0 000 O 0 0 0 0 000 0 0 0
0 0 O 0 0 0 0 O 0 0 0
0000 0000 00000 0000 00000 0 0000

0 0 000 0 0 0000 00000
0 0 0 0 00 0 O 0 0
00000 00000 00O O 0 0
0 o 0 0 0 00 O 0 0

0 0 0 0 0 0 0000 00000
0000 000 0 0 0000

0 0 0o 0 0 0

0 00000 O 0 00000

0 0 0o 0 0 0

00000 O ¢ 00000 00000 0000

HANDI CALL DOCUMENTATION
Seth D. Rlford
1/27/82

Event: V.LFTY Translate a strange file type.
HANDI error: 68 Invalid File type.

Uhere invoked: RS3VF2(509)

Under what conditions is this called?

Kangaroo file types must be translated into LIF file types for
copying files to mass menory. VFTRNL does this translation. VFIRNL
recognizes the file types currently existent in kangaroo: 1lifi, text,
lex, basic, systen and appt. Inevitably soneone uill create a new
file type. VFIRNL will not find 1t in 1ts table and so uill issue
a HANDI call.

Uhat should the handler do?

The progranner uho creates the neu file type should obtain a neu
LIF file type nunber fron Frank Hall, the current PL21 dispenser
of LIF file type nunbers.

The handler should intercept the HANDI call and look at R21
to deternine the file type being translated. If this file type
natches one the handler knous about he should set the HANDLD flag
and return the LIF file type i1n R46/47. The handler should check
the file type to determine 1f indeed it 1s one he knous about,
and not just assune that the case because he intercepted the HANDI
call. ARfter all, ue nay have different RONS creating neu file types.

Entry registers and RAN paraneters:
R21: kangaroo file type
R24/25: FNB pointer
R36/37: devfile offset (points to R(B)

Exit registers and RAM paraneters:
R46/47: LIF file type, 1f knoun

What registers can be changed:
R40/47
RS0/57
(And nore if necessary. These should be sufficient for a
table lookup subroutine. See ne or exanine the code if
this 1s insufficient.)

Should HANDLD be set? Only if you can translate the file nane.
Notes:

Do not trash R24/25 or R36/37!

HANDI CALL DOCUMENTATION
Seth D. Rlford
1/27/82

Event: V.RFTY Translate file types coming into kangaroo.
HANDI error: NONE, HANDIO call.
khere 1nvoked: RS&VF2(82)
Under uhat conditions 1s this called?
See the V.LFTY docunentation.

Nou that you have read the V.LFTY docunentation you uill understand
uhat 1s going on. (So go and read 1t 1f you have not already.)

Suppose that ue uant to bring back one of these neu file types.
VFROO? 1s the routine which translates LIF file types to kangaroo
file types. Sinilar to VFIRNL, 1f the file type 1s not 1n 1ts table
VFROO? 111l generate a HANDIO call. If 1t can, the handler 1s to
provide a kangaroo file type.

Mhat should the handler do?

The handler should exanine R20/21, uhich contains the LIF
file type. If 1t knows of this type the handler should return
the kangaroo file type in R21 and clear the HANDLD flag.

Entry registers and RAN paraneters:
R2C/21: LIF file type
R24/25: FNB pointer
R36/37: devfile offset

Exat registers and RAM paraneters:
R21 : kangaroo f1le type

What registers can be changed:
R40 /47
R50/57
(And naybe sone others, see ne or exanine the code 1f
necessary.)

Should HANDLD be set? Only 1f you can translate the file type.
Notes:

Do not trash R24/25 or R36/37!

D i et

HANDI CALL DOCUHENTRTION
Rary Jo Hornberger
1/27/82

Event:
V.RSSI (not used at this tinme)

HANDI error:

Uhere invoked:

Under uhat conditions is this called?
What should the handler do?

Entry registers and RAN paraneters:
Ex1t registers and RAN paraneters:
Hhat reqisters can be changed:

Should HANDLD be set? yes/no/other

Notes:

O - - . e - T e e e e e e e T W e e T e e T R e R e e e e e -

NOt MAnufacturer Supported

rveclplent agrees NOT to contact manufacturer

HANDI CRLL DOCUMENTATION
Nary Jo Hornberger
6/15/82

Event:
V.ASSN Devfile has been changed

HANDI error:
none

Uhere invoked:
nJsonIo

Under uhat conditions 1s this called?
Called after assignio, printer 1s, or display is runtine tokens to let
10ron knou that the devfile has changed

What should the handler do?
Update uhatever depends on the devfile

Entry registers and RANM paraneters:
none

Exit registers and RRN parameters:
none

Nhat registers can be changed:
any

Skould HANDLD be set?
don’t care

Notes:

B e e T T T gy U ey LM g I A S Sy

HANDI CALL DOCUMENTARTION
Mary Jo Hornberger
1/28/82

Event:
V.ADDR Pi1l address needed for unrecognized nane

HANDI error:
630 (11legal filespec)

WUhere 1invoked:
nJanio

Under wuhat conditions is this called?
Called when Getpad 1s called for a device nane that we don’t recognize
(either >2 characters or not in Devfile)

What should the handler do?
Return us a pil address 1f it recognizes the nane

Entry registers and RAN paraneters:
rébn =nane, 1f <3 characters
r32 =nunber of characters in nane
rdn =address of namne 1f > 2 characters

Exat registers and RAN paraneters:
re0 =p1l address for that nane
r3én =address for that device's entry in Devfile

Hhat registers can be changed:
r20n, r30n, r36n, r40n

Should HRANDLD be set?
yes

Notes:

HANDI CALL DOCUNENTRTION
Nary Jo Hornberger
6/15/82

Event:
V.L0OP Ask-pernission bit 1s set 1n plstat (uwe may not be controller)

HANDI error:
none

Where 1nvoked:
MJ&PLL

Under what conditions 1s this called?
Called uhen bi1tH7 of plstat 1s =1
This bit 1s set and cleared by the 1oron

What should the handler do?
Try to get control of the loop. If the handler can’t get the loop, 1t
needs to 1ssue an appropriate error

Decide 1f 1t wants to send the frane 1tself, or i1f we should send 11
Clear plstat bith7 1f ue don't need to ask pernission any nore

Entry registers and RAN parareters:
r55n =p1l regs 0,1,2 for frane we uwant to send

Ex1t registers and RAM paraneters:
handled =set 1f 1t got control of the loop

r?? =cleared 1f handler 1s going to send frane
zunchanged 1f handler uants sndfrn to send the frane

plstat bit#7=0 1f ue don't need to ask perrission next tine
bi1tH7=1 1f ue st1ll need to ask permssion

What registers can be changed:
r?7(2f handler 1s going to send frane), rOn,r2n

Should HANDLD be set?
only i1f handler gets control of the loop. If 1t doesn’t, ue expect the
handler to 1ssue an error

Notes: If r77=0, sndfrn will finish up as 1f the frame uas sent uith no
errors, returning e=0. JIf handled 1s not set, sndfrn will return uith e=3
and the 'not sent’ flag set. IT IS UP TO THE HANDLER 10 ISSUE AN ERROR IN
THIS CRSE.

B I I e e I e e e

Rary Jo Hornberger
6/15/82

Event:
V.SRQR Intercept for service requests received

HANDI error:
none

Where 1nvoked:
nJ&PLL

Under what conditions 1s this called?
Called uhenever ue get a service request from the loop

Uhat should the handler do?
Uhatever they want

Entry registers and RAN paraneters:
r56 pi1l reqister 1 received
r5? p1l reqister 2 received

Ex1t registers and RAN paraneters:
none

What registers can be changed:
on, r2n

Should HANDLD be set?
don’t care

Notes:

B i e T R e el T R s

HANDI CALL DOCURENTRTION
fary Jo Hornberger
1/27/82

Event:
V.ASN® Printh, Read or Rssign¥ of non-Kangaroo base nachine file

HANDI error:
630 (Illegal filespec)

Where 1nvoked:
MJ&TXT

Under what conditions 1s this called?
Called whenever the 10file type byte for the file ue’'re going to use
1s not 0 (except for assign# to * which we handle)

Uhat should the handler do?
Everything. The handi call neans ue gave up.
If readd, readd. If prainth, prantd. Etc...
See the subevent lists following.

Entry registers and RAM paraneters:
token token that we're trying to do
(nay be read, read, readW array, print¥, printh i1ten, prant¥
array, printh end, read nunber, read string, assigndl, restore,
or restoreM.)

1f assign¥, r20 = nunber to assign file to
other parans fron getnan

for all other operations
r14 =access needed for this operation
r?6 =file nunber
r36 =10f1le entry for that file

access access needed for this operation (tyxxx? bits)

filnun file nunber ue’re working uith

prntH? =1 1f printd, else cleared

prtptr =1 1f first printi 1ten not printed yet, else cleared

af readd, printH, restore, read, or restored, uill also have
r24 =0EH 1f uant to go to front of file
OFH 1f serial
BCO lined 1f randon
alio address of 10file entry for this file

1f read nunber or read string, ui1ll also have
r20 =09H 1f string
=00H 1f nunber

Exit registers and RAN paraneters:
10f1le entry should be updated to reflect neu status
1f assign#t, entry for file should be 1inserted

1f others, current data 1ten and current lined fields should be updated

text? =1 1f working uith text file. (may not be necessary to update,
=0 1f basic file but 1t can’t hurt...)

What registers can be changed:
any, except usual registers under r20

Should HANDLD be set?
yes, if 1t uas handled

Notes:

Instead of uriting a book on everything that needs to be done for all 12
cases, 1 reconrmend that the user look in rh"ice or rh"eis to see what
tokens cone i1n wuhat order for the different connands, and then check
n)/txt to see uhat the base machine does. There is currently no clearing-
house for deciding wuho can use wuhat 10f1le type bytes. If there are 2
rons out there that both have strange files and they pick the same type
nunber, things could get interesting. You can add as many bytes to your
10f1le entry as you like (until we get to 255), as long as you keep the
line length updated. Just be sure to add then RFTER the type byte!
Rlso, NEVER assume that memory hasn’t moved between one token and the
next.

HANDI CALL DOCURENTRTION
fary Jo Hornberger
6/15/82

Event:
V. ASNH Data file manipulation of non-Kangaroo base machine file

Subevent:
Assignl Rssignd statenent that ue can’t handle

HANDI error:
63D (Illegal filespec)

Uhere invoked:
WETIXT

Under uhat conditions is this called?
Called uhenever a device nane 18 given in an assignd connand
Exanple: Rssigndtl to ')oe:ca’

Uhat should the handler do?
Here 1s uhat Kangaroo does with a Kangaroo file:
Check to see 1f the file exists, creating 1t if it doesn’t. If the
user specified a type, that type 1s checked/used. If no type was
specified, the type defaults to Basic.

Burld an iofile record for the file, of the following formn:

byte type contains exanple

1 8co least byte of file nunber 01
e BCD other byte of file nunber 00
3 binary length of this iofile record -3 oC
4 ascai first character of filenane (blank filled) J
5 " next character of filenane 0
6 " next character of filenane 3
7 " next character of filenane

8 " next character of filenane

Hhat
Do
or
You
Hed
1the
for
byt
byt

Entry
tok
r20
r40
r50
r54
res
réé
r74

Exit
An

9 " next character of filenane

10 " next character of filenane

1" " last character of filenane

12 binary current data 1ten, i1n1tially zero 00

13 8CD least byte of current line nunber, 1nitially 00 00

14 " other byte of current line nunber, initially 00 00

15 binary type byte (0O=regular Kangaroo nainfrane file) 00
3

16+ ? uhatever you uwant (K/R records stop at byte 15)

The record 1s then inserted into the 10file by the Fsrepl, uriting over
the old assignrent for that file nunber 1f there was one.

should the handler do?

what Kangaroo uould have done. Sone steps nay need to be added,changed,
deleted, depending on what nakes sense for your application.

should probably check to see 1f the desired file exists on the given
1a. You nay or nay not be able to create 1t 1f 1t doesn’t, depending on
ther you are inplementing a variable length or fixed length record

nat. If you are inplerenting a fixed length fornat, you may want to add

es to the 1ofile record i1ndicating nunber of records per file, nunber of
es per record, etc.
registers and RAN paraneters:
en 60H assignit token
n XX XX BCD file nunber
m XX XX upper case file nane, blank f1lled
KX XX getnan special file type bytes
" XX R X device nane
XX XX nunber of bytes fromn R12 (1f >12D, type uas specified)
" XX > X type (basic or text)
n XXX X passuord, blank filled
registers and RAN paraneters:

10f1le record should be inserted into the 10file for the filenunber

vanted, uriting over any old assignnent of that filenunber. Notice that
the filenunber asked for 1s the 10file linenunber for that record.

The first record i1n the 10fi1le (linenunber 000C) 1s reserved for use with
read and restore statements 1n a running progran.

What

registers can be changed:

any, except usual registers under r20

Shoul
yes

d HANDLD be set?

Notes:
The 'AssignWx to *' connand 1gnores the type byte. The 1o0file entry for
that nunber u1ll be deleted (regardless or uhether or not that entry 1s

for

See
dif
bas
ass
par
11k
Jus

3 non-Kangaroo type file), and a Handi call uill NOT be 1ssued.

Rh"1ce or Rh"e1s to find out uhat tokens cone 1n uhat order for the
ferent connands. Nj/txt nay be useful as a reference to see uhat the
e nachine does uwith the different tokens. C(heck uith the keeper of
1gn# non-Kangaroo file type nunbers 1f you want to add or use a
ticular type. You can add as nany bytes to your 1o0file entry 3s you
e (unt1l ue get to 255), as long as you keep the line length updated.
t be sure to add then RFTER the type byte'! Rlso, NEVER assune that

renory hasn’t noved betueen one token and the next.

L I I R R R R I I I I I N N R N R A

s e 000 00

HANDI CRLL DOCUMENTARTION

Nary Jo Hornberger
8/4/82

Event:
V.ASNM Data file nanipulation of non-Kangaroo base machine file

Subevent:
Printd, ReadM, Restored, Read, Restore Najor tokens for data f1le
nanipulation
HANDI error:
630 (Illegal filespec)

Uhere invoked:
MJ&TXT

Under what conditions 1s this called?
Called uhenever the iofile type byte for the file we’re going to access
18 not O.

What should the handler do?

The purpose of this handi call for these tokens 1s to get an accurate
update of current linenunber and current datanumber in the Iofile
entry for the data file, and to nake sure they are really there!

Here 1s what Kangaroo would do uith regular files (after the point uhere
the Handi call 1s 1ssued):

clear text? flag, check file for correct access bits,
allouing a text file 1f all access bits except the runnable
bit match. If the file access 1s urong, we issue a V.acch
Handi call and quit. If the file is a text file, we set the
text? flag.

1f ue're doing a printH, we check for the printd to a running
file error, do a call to safe'. If safe' returns e, quit.

next we set up the current line# and current data¥ as follous:

re4 function used by

OEH set current lined and datadt to O, Restore
Hake r24 =serial flag (OFH) Restorefin

OFH (serial flag) Printin
1f prant# and current datal <> O: Read

increrent current lined, set current Read¥n
data¥ to O. else do nothing

legal (randon flag) Restore 1
BCD set current line# to r24n, set current Restoreln,l
datad to O Printén,l

Readiin,]

(1f the current lineN would increment past 9999, ue error.)

nou ue see if that line 1s really there, and 1f it is a valid
line to access (e1ther a DRTR statement 1n a Basic file, or
any line 1n a Text file).

1f the line 1s not there:
1f this is a serial printW, ue try to create that line
(1f we're printing to an empty file, we create line#t)
1f this 1s a serial access other than printd, ue find the
next valid line in the data file
1f this 1s a randon access, ue error

finally, ue look in the dats file to verify the nunber of the
current data iten. (We’ve already set up which item we would
LIKE to be at, houever the line may or may not contain that
nany data itens!)

Entry registers and RAN paraneters:
token SCH Print# token
S0H Read¥ token
SEH Restored token
6EH Read token
70H Restore token
DCH Restore <to lineM> token

r14 =access needed for this operation

z=tyrun?|tylin?|tyedt?|tyran? for printh
=tyrun?|tylin? for read,restore,restored
=tyrun?|tylin?|tylst?|tycop? for readd
red =0tH 1f want to go to front of file (as in restore)
=0FH 1f serial (as in readwt;a$)
r2dn =BCD line number 1f randon (as in readd1,30;a$)

r?6 =file number (this uill be linenunber of 1ofile record)
r36 =addr of 10file entry for that file

o addr of 10f1le entry for this file (=r36n)

access access needed for this operation (=ridm)

f1lnun file nunber we’re working uith (=r76n)

prnti? =1 1f printh, else cleared

prntii =1 1f first print# 1ten not printed yet, else cleared

Ex1t registers and RAM parameters:
10f1le record should be updated to reflect neu current data 1ten and
current line nunber

text? =1 1f working with text file (may not be necessary to update,
=0 1f Basic file but 1t can't hurt...)

What registers can be changed:
any except usual registers under r20

Should HANDLD be set?
yes, 1f you handle it

Notes:
See Rh"1ice or Rh"eis to find out what tokens cone in uhat order for the

different connands. MNj/txt nay be useful as a reference to see uhat the
base nachine does uith the different tokens. C(heck uith the keeper of
assignk non-Kangaroo file type nunbers 1f you uant to add or use a
particular type. You can add as nany bytes to your 1ofile entry as you
like (unt1l ue get to 255), as long as you keep the line length updated.
Just be sure to add then AFTER the type byte' Rlso, NEVER assune that
nenory hasn’t noved betueen one token and the next.

HANDI CRLL DOCUMENTRTION
fary Jo Hornberger

8/4/82

Event:
V.ASKH Data file nanipulation of non-Kangaroo base machine file

Subevents:
Readn. Reads. (Read<nur> and Read<string> tokens)

HANUT error:
630 (Illegal filespec)

Where 1nvoked:
HI&TXT

Under uhat conditions 1s this called?

Called uhenever the 10fi1le type byte for the file ue uwant to read a
string or nunber from 1s not O

What should the handler do?
Read one nunber (for Readn.) or one string (Reads.) fron the data file.
The tokenized form of Basic lines in Kangaroo files are as follous:
line nunber Jlength data data 1tens end

token token

I ' l l ' DRI LY ¢ s LY L) |
— —

The data 1tens are of the forn (no bytes are used for deliniters):

"quoted strings: 96H stringlength string

"quoted strings: 0SH stringlength string

unquoted strings: 06H stringlength string
real nunbers 04H eight bytes of nunber
integer nunbers: 1RH three bytes of nunber

The lines in Text files are of the follouing fom:

line nunber length characters 1in line

' ' ' l e v e s ew e ... o . e e e s ee eee v '
—_— —

When reading a string fron a text file, the whole line is read intc one
string.

Entry registers and RAN paraneters:
token =A1H 1f read<string>
=(8H 1f read<nunber>
ri4 =access needed for this operation
re0 =00H 1f read<nun>
=09H 1f read<string>
r2d =0FH 1f serial
redn =B(D line nunber 1f randon

r7én =fi1le number (¥1,M2,etc.)
r3én =addr of 10fi1le entry for that file

aho addr of 10file entry for this file

access access needed for this operation (tyxxx? bits)

f1lnun file nunber ue’'re working uith

prnt#? =1 1f printh, else cleared

priptr =1 1f first printh 1ten not printed yet, else cleared

Ex1t registers and RAN paraneters:
Current data itern and line# should be correct.

What registers can be changed:
any, except the usual registers under R20

Should HRANDLD be set?
yes

Notes:
See Rh'nen for infornation on where to put the nunber or string that
you read. The infornation that you need fron the variable nane 1s
already set up on R12 before you enter these tokens.

See Rh"1ce or Rh"eis to find out uhat token: cone in wuhat order for the
different conmands. M)/txt nay be useful as a reference to see what the
base nachine does uith the different tokens. C(heck uwith the keeper of
assignk non-Kangaroo file type nunbers 1f you want to add or use a
particular type. You can add as nany bytes to your jofile entry as you
like (unt1l we get to 255), as long as you keep the line length updated.
Just be sure to add then RFTER the type byte! Rlso, NEVER assune that
nernory hasn’t noved betueen one token and the next.

HANDI CALL DOCURENTRTION
fMary Jo Hornberger
8/4/82

Event:
V.RSNH Data file nanipulation of non-Kangaroo base nachine file

Subevent:
SeraW. (onad. Préval (Print one 1ten tokens)

HANDI error:

630 (Illegal filespec)

tthere 1nvoked:
nJSTXT

Under what conditions 1s this called? _
Called whenever the 10file type byte for the file ue’'re going to printh
to 1s not O

What should the handler do?
Print4 the nunber or string given to the data file at the current line
nunber and data nunber. See the Printd subevent for information on how
to locate the current line nunber and data nunber. It 1s a good idea to
recalculate everything uith each token, since if there is a defined
function 1n the print list, when we hit that function it may assignil us
to a different file, purge the data file, etc., all of which would be
disastrous if ue went ahead and urote to where ue thought ue should in
Ran, as nou we don’t knou what ue nay be uriting over.

Rt the first printled iten in each paraneter list, Kangaroo clears the
line we’re going to use.

If a 1ten won’t fit on a partially full line and the user is
doing a ser1al printh, Kangaroo moves to the next valid line, building
one 1f there are none left. If we’re doing a randon printW, ue error.

If a string 1s too large to fit on an enpty line, Kangaroo truncates 1t
and 1ssues 2 uarning,

If the 1ten 1s a nunber, Kangaroo does a V.RCCW handi call if we’re 1n
a text fale.

Entry registers and RAN paraneters:
string address8length OR 8 bytes of nunber uill be on R12

token RASH =printd senmicolon
R6H =printH conna

ri4d =access needed for this operation
r24 =0FH 1f serial printh
=BCD line nunber if randon

r’6 =file nunber (#1,M2,etc.)
r36 =addr of 10file entry for that file

alio addr of 10file entry for this file

access access needed for this operation (tyxxx? bits)

filnun file nunber ue’re working uith

prntk? =1 1f printH, else cleared

prntii =1 1f first printh 1ten not printed yet, else cleared

Exit registers and RAN paraneters:

The current linenunber and current datanunber should be updated in
the Iofile

dhat registers can be changed:
any, except the usual registers under r20

Should HRANDLD be set?

yes

Notes:
See the subevents Readn. and Reads. for the structure of the data 1itens
in the data files.

See Rh"ice or Rh"eis to find out what tokens come in uhat order for the
different connands. M)/txt nay be useful as a reference to see what the
base machine does uith the different tokens. Check uith the keeper of
assign non-Kangaroo file type numbers 1f you uant to add or use 3
particular type. You can add as nany bytes to your 10file entry as you
like (unta] ue get to 255), as long as you keep the line length updated.
Just be sure to add then RFTER the type byte' Rlso, NEVER assune that
nwenory hasn’t noved betueen one token and the next.

HANDI CALL DOCUNENTRTION
flary Jo Hornberger
8/4/82

Event:
V.ASNH Data file nanipulation of non-Kangaroo base machine file

Subevent:
PHaray RWaray (printh or readd array tokens)

HANDI error:
630 (Illegal filespec)

Where invoked:
- NJ&TRT

Under uhat conditions is this called?
Called whenever the 10file type byte for the file we’re going to use
is not 0

Uhat should the handler do?
Either Printd or Read the given array to/fron the current data file,
In Kangaroo, this 1s done by calling Pritval or Readn. for each 1iten.

Kangaroo does a V.RCCH handi call if the user if trying to printh or
readd an array to or fron a text file

Kangaroo also nodifies the trace flag after the first 1ten 1s read, so
only the first iten is traced. The trace flag is restored when the
array read 1s conpleted.

Entry registers and RAN paraneters:
infornation fron the | or 2 dinensional array tokens will be on R12

token =22H 1f array printH
=24H if array readd
ri4 =3ccess needed for this operation
r24 =0FH if serial
=BCD line nunber if randon
r76 =file number (W1,M2,etc.)
r36 =addr of iofile entry for that file

o addr of 10f1le entry for this file

access access needed for this operation (tyxxx? bits)

f1lnun file nunber ue’'re working with

prntd? =1 1f print#, else cleared

prnthi =1 1f first print# 1ten not printed yet, else cleared

Exi1t registers and RAN paraneters:
The current linenurber and current datanunber should be updated 1n the
Iofile.

Hhat registers can be changed:
any, except usual registers under r20

Should HANDLD be set?
yes

Notes:
See Pr¥val and Readn. subevents for infornation about uhat to do uith
each 1ten. See Rh"nen for infornation about array nane forns, etc.

See Rh"ice or Rh'e1s to find out what tokens cone 1n what order for the
different connands. MNj/txt nay be useful as a reference to see uhat the
base nachine does uith the different tokens. Check with the keeper of
assign¥ non-Kangaroo file type nunbers 1f you want to add or use a
particular type. You can add as nany bytes to your iofile entry as you
like (unt1l ue get to 255), as long as you keep the line length updated.
Just be sure to add them RFTER the type byte! Rlso, NEVER assune that
neriory hasn’t noved betueen one token and the next.

HANDI CALL DOCUMENTATION
Nary Jo Hornberger
8/4/82

Event:
V.RSNH Data file manipulation of non-Kangaroo base nachine file

Subevent:
Priend (Printd end token)

HANDI error:
630 (Illegal filespec)

Where invoked:
RJSTXT

Under uhat conditions 1s this called?
Called uhenever the 10fi1le type byte for the file we’'re going to use
1s not 0, and we've reached the end of our Print#,

What should the handler do?
If no 1tens were printded to the line, the line should be deleted.
The Prnt#l flag should be cleared.

Entry registers and RAN paraneters:
token =R? =PrintHend token
ri4 =3ccess needed for this operation
r2d =0tH 1f uant to go to front of file
=0FH 1f cerial
=BCD line number 1f randon

r76 =file nunber (#1,#2,etc.)
r36 =addr of 10file entry for that file

1o addr of i1ofi1le entry for this file

access access needed for this operation (tyxxx? bits)

filnun file nunber ue’re working uith

prnt#? =1 1f print, else cleared

prntii =1 1f first print# 1ten not printed yet, else cleared

Exit registers and RAN paraneters:
The current linenunber and current datanurber in the Iofile should be
updated.

What registers can be changed:
any, except usual registers under r20

Should HANDLD be set?
yes

Notes:
See Rh'1ce or Rh"eis to find out uhat tokens cone in what order for the
different connands. Mj/txt may be useful as a reference to see what the
base nachine does with the different tokens. (heck with the keeper of
assign¥ non-Kangaroo file type nunbers 1f you uant to add or use a
particular type. You can add as nany bytes to your 1ofile entry as you
like (unta] we get to 255), as long as you keep the line length updated.
Just be sure to add then RFTER the type byte! Rlso, NEVER assune that
nernory hasn’t noved betueen one token and the next.

Y e otk R Y

HANDI CRLL DOCURENTARTION
Nary Jo Hornberger
1/27/82

Event:
V.R((H® Rccess bits for data file didn’t natch our needs

HANDI error:
650 (Illegal access)

Where 1nvoked:
MJ&TXT

Under uhat conditions 1s this called?
Called when the access bits for our data file don't match uhat we're
trying to do (1.e., trying to printh to a ron file, or trying to reads
3 non-copyable, non-listable file), or when ue don’t knou hou to do
uhat the user asks (like print¥ nunbers to a text file)

Nhat should the handler do?
If we call handi, ue’ve given up, and are quitting
If 1t knous hou to do the operation with the given access bits, it should
0 ahead and finish the operation, being sure to update the 10file entry
?See V.ASNK)

Entry reqisters and RAM paraneters:
token uhat ue’re trying to do

ri4 zaccess ue need for this operation
r7é =f1le nunber ue’'re working uith
r34 zaddress of 10file entry for that filenunber

Exat registers and RAM paraneters:
10f1le updated to new status

What registers can be changed:
any

Should HANDLD be set?
yes

Notes:
Note that r14 (access we need for this operation) 1s negotiable. (1.e.,
1f the handler can do 1t anyuay, do 1t!)

D T D e I e I I e Y

HANDI CALL DOCURENTRTION
Nary Jo Hormberger
1/27/82

Event:
V.UNKD Unknoun data type encountered in data file

HANDI error:
330 (data type)

Where invoked:
MJ&TXT

Under what conditions is this called?
Called when token in data file 1s not an END, integer, real, “ed string,
‘ed string, or un'ed string

What should the handler do?
1f restoreM, printd, readd, restore, or read, just nake sure current lineM,
current datal, address of current line, and address of current data are set
up correctly in 1ofile.

for the other tokens, do the above, then finish out the token. (1.e., if
read nunber, do i1t.) (See V.RSNM subevents for list of tokens)

Entry registers and RAN paraneters:
token token ue're executing
r20 zdatadl of current 1ten -1

ri saddress of entry in 1ofile
r32 zunknoun token
r30 zaddress unknoun token uas popped fron

Exit registers and RAN paraneters:
none

What registers can be changed:
any

Should HANDLD be set?
yes

Notes:
See V.ASNH subevents for more specific information

R et e e e e R I L e L R

HANDI CALL DOCUNENTRTION
Raan Young

6/09/82
Event: V.SPY (Rllou ron to do processing at end of progran line, safely)
HANDI error: 18 (ROM NMISSING)
Where 1nvoked: IVASER
Under uhat conditions 1s this called?
If BIT#1 of SVCWRD 1s set, SPY will 1ssue a V.SPY handi call uhenever
SPY 1s called (EOL, GO0, GOSUB, NEXT, etc).

What should the handler do?
Do whatever 1t wants to do at that point.

Entry registers and RRN paraneters:
TOKEN: The token which preceded the SPY call.

Exit registers and RAM paraneters:
None.

Hhat registers can be changed:
Rll nornally safe ones.

Should HANDLD be set?
Yes, to prevent error report.

Notes:
BITH1 1n SVCHRD 1s cleared by SPY after the HANDI call returns.
Therefore, the ron doesn’t need to clear 1t, nust set 1t for each
desired occurance, and can’t set 1t during the V.SPY call.

B i e e R R ettt

HANDI CALL DOCURENTRTION
Raan Young
1/28/82

Event: V.ETRG (Rllou extension of cormparator machine for plugins)
HANDI error: 18 (ROM RISSING)
Where invoked: RY&(NP

Under what conditions 1s this called?

When Conparator receives trigger for external device number 1,2, or 3.
This trigger 1s setup by call to CRAPENT. UWhen CAPCHK processes the
conparator nachine, 1t does the HANDI call for external devices.

Uhat should the handler do?
Deterrine uhich external device needs service, and do 1t.

Entry registers and RRN paraneters:
R20?21: device table entry [(R20/21 - DVCTBL)/2 = device nunber)

Ex1t registers and RRN paraneters:
None

Uhat registers can be changed:
R20-77 all protected

Should HRANDLD be set?
Yes, 1f device recognized and serviced.

L R T e e e e R e

HRNDI CALL DOCUMENTRTION

Raan Young
1/28/82

Event: V.CRRD (Rllou rons a chance after each track of a card operation)
HANDI error: NONE
Where invoked: RY&CRD

Under what conditions is this called?
Rfter each track, just before the track nessage 1s displayed, this HRNDIO
call lets rons do uhatever they want before we start the next track.

What should the handler do?
Uhatever he wants.

Entry reglsters and RAN paraneters:
0 1f doing urite, 1 if doing read
FLHERD first byte 1s track ¥, second byte is # of tracks
See RY"CRD for nore details about card reader function and
register usage.

Ex1t registers and RAN paraneters:
Whatever 1s needed to achieve desired results.

Uhat registers can be changed:
R14/15 and nornal scratch registers, all else uill have some effect.

Should HANDLD be set?
Does not natter, 1t 1s 1gnored.

Notes:
See card reader code and docunentation for more information about
possible changes which can be nade uith this HANDIO call.

HRNDI CALL DOCUMENTARTION
Raan Young
1/28/82

Event: V.TNCX (Extend tine mode commands)
HANDI error: 78 (invalid connand)
Uhere invoked: RY&TAC

Under what conditions 1s this called?
When cornnand typed in 1s not recognized by Time node.

What should the handler do?
Handle connand, 1f possible.

Entry registers and RAN paraneters:
R43/47: uppercased conand.

Exit registers and RAM paraneters:
None

WUhat registers can be changed:
Subject to nornal restrictions, anything.

Should HRANDLD be set?
Yes, if comnand handled.

e e et ettt

NOMAS

NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

HANDI CALL DOCURMENTARTION

Gary Cutler
29-Jan-82

Event: V.PAR
HANDI error: none
Invoked: KR&PARR

Conditions: This call 1s 1nitialized at every call to routane PARSER,
including appointnents.

Uhat should the handler do?

This call provides the handler an opportunity to parse the
the connand string 1n the input buffer.

Entry registers and RAA pointers:

INPBUF: location of the conrand string <INPUT BUFFER>
Exit registers and RAN paraneters:

On return to the Parser, the contents of the INPUT BUFFER

uill be parsed. The handler may or nay not supply
a neu string 1n the INPUT BUFFER.

Hhat registers can be changed?

any

HANDLED set? not applicable

LR e S ettt e e e T T .

HANDI CALL DOCURENTATION
Event: V.STRR (sub a)
HANDI error: none
Invoked: KR&PRR
Under uhat conditions 1s this called?

There are tuo possible situations which can generate
the V.STRR HANDI call. The first (sub a) is
initiated uhen a paraneter of a function 1s of
unknoun type (boffo). Sone useful information
follows.

What should the handler do?

The handler should be able to recognize the current
paraneter and 1t’s type and corplete the parsing
of this paraneter.

Entry registers and RAN pointers:

R12 STRCK

R L e e e

P L R

8 bytes of the functions
attributes. The tuo NSBits

of the top byte describe the

type of the current paraneter

in this case STRANGE' type
R40--R47 This 1s the infornation
fron SCAN on the current paraneter

J kS R

R32 The function's token

At the tine of the call the tuo MSBits
of R57 uill also contain the type of
the current paraneter.

Ex1t registers and RAN paraneters:

The contents of the R6 stack (other than the HRNDI
overhead) nmust remain 1ntack.

Hhat registers may be changed:

any but R33

HANDLED set? not applicable

hadadad R R il A i g gy

HANDI CRLL DOCUMEWTWHYIOW
Event: V.STRA (sub b)
HANDI error: none
Invoked: KR&PAR
Under what conditions is thas called?
This event (sub b) will be anitiated if

the PRARSER sees a string variable and the
succeeding character 1s not '[°,

What should the handler do?
Thsi call 1s specifically for parsing String Rrrays.

The handler should therefore parse the renainder
of the String expression i:ff it is a String Rrray.

Entry registers and RAM paraneters:
R14: current token (other than '[’)
R20: next character

R10: ptr to INPUT BUFFER
R12: ptr to parsing stack

Exit reqisters and RAN pointers:
Parsed string array on the R12 stack

Scan nust be called to obtain the necessry
infornation on the next token

Uhat registers can be changed?

not R10
not R20

HANDLED set? not applicable

...

HANDI CALL DOCURENTRTION
Event: V.DEC
HANDI error: none
Invoked: KREDEC
Under uhat conditions 1s this called

This event 1s generated when the Deconpiler
sees a token with class > 56.

Hhat should the handler do?

The handler should deconpile the token contained
in R23 and depending upon the attributes
of the token place the RSCII string in the
appropriate place on the R12 stack or the
Deconpilation Buffer

Entry registers and RAN paraneters:

R23: contains the current token

R24:. points to the next token in line

R45/46: contains the BCD line nunber

R30: points to the input buffer one space

af ter the line nunber

PRECNT: contains the # of binary and unary operators
1n the current line which have already been
deconpiled

LRVRIL: contains the pointer to the location (on the R12
stack) and precedence of each of the operators
nentioned above.

Exat registers and RAN paraneters:

R24: pointer to next token

R30: pointer to 2nd byte after line # 1n buffer
PRECNT: updated

LAVRIL: updated<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>