
o

HP—75 DESCRIPTION

75 NOMAS VOL Ii

e

INTRODUCTION

The information contained in this document is made available with the
understanding that it is not supported by Hewlett-Packard. The custom
microprocessor used by the HP-75 was not intended to be supported with
technical details made available to the user community. When you read this
document you will quickly notice that there is no effort to explain to non-
design team members how or what is going on. At the time of developement
there was no plan to do this. While this document may stimulate more
questions than it answers that situation must be accepted "as is". See the
NOMAS statement stamped below. This material is being made available to
the user community through PPC because we believe that information in this
form is better than none at all. PPC offers this information as a service
to the community. Additional copies may be ordered from PPC at the address
below.

Another source for HP-75 technical information is the Computer Journal of
PPC and other volumes in the 75 NOMAS series. Contact PPC for details if
desired.

PPC - POB 9599
Fountain Valley, CA 92728-9599 USA

Telephone: (714) 754-6226

NOMAS
NOt MAnufacturer Supported

recipient agrees NOT to contact manufacturer

Note: This material copyright (c) Hewlett-Packard 1983

HP-75 Description and Entry Points

WHAT IS PPC?

PPC is the Personal Programming Center Inc., a California non-profit public
benefit corporation. PPC is the oldest personal computer users group - founded
in June 1974. PPC is dedicated to supporting machines that meet the concept of
a personal computer as being small enough and portable enough to be conveniently
always with the user. The ideal machine hasn't been designed yet. PPC's major
activity is to support those products that are available and provide design
ideas for better products. This is accomplished by active information exchange
on a personal basis.

PPC is a unique organization in that it is non-commerical. It is dedicated to
the individual and his or her persuit of making the always too slow or too low
capacity machine do the task desired. PPC is a world wide organization composed
of over 5,000 members in 63 countries. A chapter organization is supported with
50 chapters worldwide. PPC is an educational organization that gathers and
disseminates user information on the machines PPC supports. PPC publishes two
regular 'Journals', one dedicated to calculators (our heritage is in the HP-65
Programmable Scientific Calculator) and the other is dedicated to computers.
PPC offers a wide range of services and 'products' to its members and the
community at large. PPC is a member supported organization, we do not accept
advertising, and if we make a profit on certain "commerical" products it is for
the purpose keeping membership costs as low as possible. Our 'products' are
self generated and are intended to be sold to our members. We do not buy
commerical products and resell them. This concept is fundamental to the PPC way
of serving its members and the community. We are not in the Hardware or
Software business. We supplement the manufacturing, academic, technical, and
consumer communities - we do not compete with them. We are applications and
state-of-the-art oriented. We contribute our ideas freely and we have a very
carefully defined operating philosophy with regards to commerical activity. We
encourage and support commerical activity, but remain non-commerical in our
exchange of ideas, solutions, and problems. In this regard we are unique.

PPC is managed by a board of seven directors. The directors are Emmett Ingram,
Chariman; Richard Nelson, President; Richard Schwartz, Secretary; Fernando Lopez
Lopez, Treasurer; Douglas Mecham, Director; John Kennedy, Director; and Bruce
Murdock, Director. PPC is an open corporation in that its policies are
continuously discussed and debated. PPC is comitted to providing a true users
forum for ideas, comments, and suggestions regarding any topic related to
equipment, software, or standards. Within the framework of good taste and
supportative viewpoints any member or member of the community may present his or
her own feelings and ideas. PPC is not a consumer pressure group. All
contributions must stand on their own merit in the market place of ideas. PPC
members want to hear about what has been done, not what someone may do? Dreams
are nice, but PPC members are interested in performance not specifications. We
are a meat and potatoes group of people and are not too interested in the
parsley.

A typical PPC member is a technical, multi-disciplined, independent thinking
user who takes great delight in solving problems. The small, truely personal

machines that PPC members use creates a special psychology between user and
machine that provides one of the binding forces of the organization. Interested
users may send a large self addressed envelope with three ounces of postage (or
IRC's) attached to:

PPC - POB 9599
Fountain Valley, CA 92728-9599 USA

ii HP-75C Description and Entry Points

HP-75 Description and Entry Points

CONTENTS

Allocation Documentation — GKC . . . « « ¢« ¢« ¢ ¢ o « .
Buzzer Driver Software — RY « ¢« ¢« ¢« ¢« « « . .

Ckecksum Computation —RY ¢ ¢ ¢ ¢ ¢ v ¢« ¢ o o
Comparator Driver Software —RY
Card Reader Driver — RY . . & . ¢ ¢ ¢ v ¢ ¢ ¢ ¢ ¢ o o .
Deallocation —GKC & & v ¢« ¢ ¢ ¢ v ¢ ¢ o« o o o &
Decompiler —GKC ¢ ¢« ¢ ¢« v o o .. e e
On ERROR Comments —RY ¢ ¢« ¢« ¢« ¢ ¢« o .
Subroutine File Grouping : : :
Handi Calls — Doctor Cobols Demonic Guide — SDA, MJH,

JA, and RH . & . & & v v v e e e e e e e e e e e e
Wakeup Procedure —MJH ¢ o o o ..
Input Software —JA e e
Interpreter —GKC o
Keyboard Translation —SDA & JA : : : . : : :
LCD Driver Software — JA . . « ¢ ¢ ¢ ¢ ¢ ¢ 4 e v e e e .
Lock Description —RY 0 .o,
Battery Detect — 7 o oo 0o .. : .
Routines:

ASPACK, BADDEV C e e e e e e e
CLRCOD, DATRPT+, DATSND, DDLREP
DDLRP, DDTREP, FILINT, FLCAF+ . . .
FLCAT. FLCOPY. FLSTOR. FLLOAD . . . » v v vowo .
FLFIN. FIFIND. FLFTOF. FLGOF+ o . o v i]
FLGOFE, FLGET1, FLGTFN, FLNEW
FLPUR. FLPUR!, FLPURG, FLR36 . . » » v oo,
FLRENA, FLSAM?, FLSBON, FLSTACK
FLSWCH. FLTTOT. FLVEO?. INIT . = v o v vomn oo,
DDT67, INISIZ, INICHK, JSBCRT
PACK, PAKO, PAKL, KAK2 . .« v u v oo,
PAK2A, PAK3, REVBYT, REVPSH . » o » v v v v v o . .
RDYSD+, TENRIT, UNTUNL, VFITO2 . . » « « v v o . . .
?

VFADDR, AS&VFB. VFBSY+ . . o oo
VFBYE, VECD46, VFCDCO, VFCDEP
VFLCCH, VFDDLZ2, VFDELL, VFDIR :) :
VFDIR+, VFDUDE, VFEOD?, VFERR
VFEXCH, VFGET, VFGLOC, VFHI
VFHI+, VFLAD*. VFLED?. VFLIF?, . » » o oo oo
VFLTBY, VFLTY+, VEMFP?, VEMM? . . « o o o o o . .
VFMOVE, VFMSG, VFNXD-, VENXDE
VFNXE +, VFPED?, VFRCEX, VFRDE e e e .
VFRENA, VFRLF?, VFROO?, VFRREL
VFRVDE, VFRWO+, VFRWK+, VFRWRD
VFRWSO, VFRWSB, VFRWSK, VFRWUO
VFRWWR, VFSECT, VFSKFL, VFSTAT
VFTAD+. VFTERM. VETIME. VFTRNL . . & o v v v oo
VFUTL+, VFWACH, VFWAC2, VFWBUO
VFWOOP. VFWR, VFWRBK. VEWRCL . . » o v v iv oo
VFWRD1, VFWRD-, VFWRDE, VFWREC

HP-75 Description and Entry Points

iv

HP-75 Description and Entry Points

CONTENTS - Continued Page

Overall Layout of Memory ¢« « « ¢« ¢ o « o . 104
List of Mainframe Memory Routines 111
Mass Storage Driver —SDA+ « « 112
Output Software —JA « v ¢ ¢ o o o000 e 119
Parser —GKC ¢ « « v v o e e e e e e e e e e e e 121
Routines:

APEXIT, TIMEMD, CSTRIG, CKTRIG 128
CKTRIG, AINCHK, RINCHK, TINCHK 129
YINCHK, UPDISP, STDATE, TICK « « « « « « . 130
APINFO, APTDEL, APDEL', APTDSP 131
APTERR, APTFND, APFND, APTGET 132
APTINS, APTR+, APTR-, GETLNX « 133
RSTBUF, SAVBUF, TIMDIV, TIMPLT 134
ATMPLT, APMSKE, APMSKY, STMMSK 135
TIMMSK, YEARTM, REPTIM, APTCHK 136
DCCLOK, ENCLOK, FINDTD, (?) . . .« « « ¢« v « « « « . . 137
FXAPPT, ALMCHK, DATCHK, DATCK' 138
DAYCHK, DAYOK, DCDAY, DUPCHK « . « . . 139
FLDCHK, FXALRM, FXDATE, FXDAY, 140 *
FXTIME, FXYEAR, LPYEAR, MINDD 141 *
MIMDD, MINHH, MINMM, MINMN 142 *
MINYY, NUNPCK, RPTADJ, RPTINP 143 *
TIMCHK, ACREAT, AOPEN, AOPEN' 144 *
ALBEEP, APPROC, APPTRS, APSTAT 145 %
APTACK, APTMRG, APTRIG, STALRM 146 *
ALARM, OFALRM, CNTRIG, GETCLK 147 *
GETTD, MULTGO, NXTAPT, PRNOTE 148 *

Pocket Secretary Theory — MR o« o .. 149 *
LEX Files — SDA & « ¢ v v e i vt e e e e e e e 155 *
ROM Switching Guide« o o o o ... 166 *
Time and Date Stuff —RY« o o oo o .. 169 *
Transform — GKC. ¢ ¢ ¢ ¢« v v e v e e e e 170 =
On Timer — RY . & & . &« & i i i e e e e e e e e e e e 173 *
Time Mode Command Processing —RY 174 *
User Function Operations « « « « « . . 175 *

Programmers Initials - At the end of many entries are the
programmers initials following a dash. The programmers are:

GKC - Gary K. Cutler JA - Jack Aplin IV
RY - Raan Young RH - Robert Heckendorn
SkA - Seth D. Alford MR - Mark Rowe
MJH - Mary Jo Hornberger

*Page 140 to 177 is an italic type style.

HP-75C Description and Entry Points

NOMAS
NOt MAnufacturer Supported

recipient agrees NOT to contact manufacturer

ALLOCATION DOCURENTRTION

Gary K. Cutler

9:17 PN THU., 3 RUG., 1978

Pointer Rllocation

Sdre-eccccccacaccanca ¢+

| I
Progran Pointer Rllocation | CHRPTER 1 |

I
i$ommmmmcce—eecccana +

1.1 Overvieu

Definition: Pointer allocation 1s a process which builds a block
of infornation (VPR entry) uwithin the Variable Pointer RArea
(VPR) for each variable in the progran, replaces each variable
nane 1n the progran uith a relative pointer to 1ts VPR entry
and replaces the line nunbers 1n GOSUB. GOTO and IF statenents
uith the relative addresses of the target statenents.

Calculator vs. Noncalculator prograns: The continued existence
of calculator variables after the execution of a calculator

statenent, necessitates a differentiation of Pointer
Rllocation for these tuo nodes.

Noncalculator progran:
a VPR (variable pointer area) will be created.
all variable nanes u1ll be replaced by pointers to their nane
forn and other data i1n the VPR,
the PCB (Progran Control Block) 1s given values as follous:

P.LEN - the length of the progran including the PCB. If
this value 1s nonzero this indicates that the progran has been
allocated.

P.PLEN - the length of the VPR
P.ELEN - the total length of the environnent not including

the ECB.

Calculator progran:
the VPR uill be augnented by uhat ever neu variable references
there are.
variables w1ll be replaced by pointers as for a progran.
The P(B and a few systen paraneters are nodified as follows:

P.LEN - the length of the progran as for an ordinary
progran

P.PLEN - the length of the VPR
P.ELEN - the total length of the environnent not including

the ECB
LSTPLN - the value of the P.PLEN before allocation (set at

beginning of PTRALO 1f 1in calc; zero otheruise)

9:17 PR THU., 3 AUG., 1978

Pointer Rllocation

LSTELN - the value of P.ELEN before ue allocate (set at
the beginning of PTRALO 1f 1n calc; zero otheruise)

Should pointer allocation fail, the deallocator, DALLOC, 1s
called to rerove the VPR that uas just created.

occurrence: Pointer allocation 1s the first procedure in a three
step process. The culrminatian of these three steps 1s the
execution of a progran or calculator node statenent. The
three steps, 1n succession, are Pointer RAllocation,
Environnental Rlloction and Execution.

Handi Calls: If a basic token. created by an external ROM,
requires sorre unique type of Pointer Rllocation, such token

nust be assigned a prinary attribute greater than or equal to
57 (octal). This attribute wi1ll generate the V.ALLO hand:
event at Pointer Rllocation tine (refer to the V.ALLO event 1n
the HRANDI call docurientation for further infornation).

9:17 Pn THU., 3 AUG., 1978

~n
N

Pointer Rllocation

1.2 Variable Nane Forn

FRANAN: FRANAR 1s the routine which translates the ASCII name of
a variable i1nto an internal fornat. This fornat not only
preserves the RSCII nane but also provides all the necessary
infornation, concerning the variable, for Rllocation and
Execution. The 1internal structure consists of a tuo byte forn
Hith bit patterns representing the variables status.

1.2.1 Internal Structure

7 6 5 4 3 2 1 0

byte t: | T3 | T2 | T1 | TO | NI | N2 | NT | NO |
DIel

byte 2: | R1 | RO | FO | L4 | L3 | 2] L1 | LO|

13 -- 0 --> nuneric
1 --> string

T2 -- 0 --> sinple
1 --> array

1,710 == 0 --> real
! --> integer
2 --> chort

J not used

N3--NO -- 0-9 --> nuneric portion of RS"II nare
10 --> no nuneric in nare (blank)

FO -- 0 --> variable
1 --> function

R1,R0 -- 0 --> local variable
1 --> renote variable paraneter passing for CALL
2 --> paraneter variable

L4--10 -- variable nare rank. (R=1, B=2, (=3, etc.)

S:17 PN THU., 3 ARUGC., 1978

Pointer Rllocation

Exanples:

local sinple nuneric variable: a1

byte1: 00000001 01 hex value

byte 2: 000000 11 03 hex value

renote string array variable: F$(1,))

byte1: 11001010 CR hex value

byte 2: 01000110 46 hex value

9:17 PN THU., 3 RUG., 1978

Pointer Rllocation

1.3 Variable Pointer Entry

In the follouing block descriptions, each nenber of an
entry in the VPR (Variable Pointer Area) 1s 2 bytes long.

1. Nuneric variable: Ex. 29

Length: 4 bytes

Entry forn: | Nane | Rel Ptr |

II. String variable: Ex. $3%

Length: 6 bytes

Entry forn: | Narne | Max Len | Rel Ptr |

III. Array variable: Ex. V(S)

Length: 10 bytes

Entry forn: | Nare | Total Len | Max Rou | Max Col* | Rel Ptr |

* In the case of a 1-dinensional array, the naxinun colunn
entry will be initialized to -1 (FFFF hex internally).

Iv. User defined function (nureric): Ex. FNF(a,b)

Length: 6 bytes

Entry forn: | Nare | Rel value Ptr | Rel Exp Rddr |

9:17 PN THU., 3 AUG., 1978

Pointer Rllocation

V. User defined function (string): Ex. FNP1$(RS)

Length: § bytes

Entry forn: | Nane | Max Len | Rel value Ptr | Rel Exp Rddr |

9:17 PR THU.. 3 AUG., 1978

Pointer Rllocation

PCB:

1.4 Progran Control Block

The PCB 1s a block of 10 bytes that contains infornation
about an allocated file. The P(B directly precedes the first
line of any lined file 1n mnenory and does not exist for
unlined files (LIF1 files have no P(B). For any deallocated
file, the PCB uill contain all zeros. For further inforration
regarding the PCB, refer to the HMenory HManagenent
Docunentation.

The PCB (Progran Control Block) 1s structured as followus.

byte 0/1 P.LEN -- length of pgn and P(B (0 if deallocated)
byte 2/3 P.PLEN -- length of VPR
byte 4/5 P.CLEN -- spare location
byte 6/7 P.ELEN -- total size of environnent not including ECB
byte 8/9 P.SPAR -- spare location (for parameter passing)

9:17 PR THU., 3 RUG., 1978

Pointer Rllocation

1.5 Deallocated Vs. Rllocated Progran

The follouing progran will be followed by tuo forns of
its 1nternal structure; Deallocated and Rllocated. The
inportant differences are:

Deallocated Rllocated

PCB set to O Rll PCB entries are valid
Variables are ASCII Variables replaced by relative pointer
No VPR VPR begins directly succeeding endline

Progran: 10 R4=P]

20 B%="h1 there’

30 N(1,1)=3*R4/2

Deallocated Structure (internal)

P.LEN P.PLEN P.CLEN P.ELEN P.SPARR

PCB: 00 00 00 00 00 00 00 00 00 00

Line 10: 10 00 06 "M >N 41 « (9 08 Ot
nun var R4

Line 20: 20 00 OF 13 > 20 42 < 9 08 68
str var B$

69 20 74 68 65 72 65 07 Ot

Line 30: X 00 19 12 > 20 4D < 1R 01 00
nun array N

00 1R 01 00 00 OR 1R 03 00

00 > 34 41 <« 2R 1R 02 00 00 2F

9:17 PR THU., 3 AUG., 1978

Pointer Rllocation

nun var R4

08 Ot

End line: 99 R9 02 8R 3

% No VPR **

9:17 PN THU., 3 ARUG., 1978

Pointer Rllocation

PCB:

Line 10:

Line 20:

Line 30:

Endline:

10

20

69

08

Allocated structure (internal)

LEN P.PLEN P.CLEN P.ELEN

00 14 00 0 00 Fe 03

00 06 11 > 47 00 « (9 08
rel ptr to
A4 nane forn 1n VPR

00 of 13 > 48 00 <« 96 08
rel ptr to B$
nare forn 1n VPR

20 74 68 65 72 65 07

00 19 12 » %1 00 < 1R 01
rel ptr to N
narne forn in VPR

1R o 00 00 OR 1A 03

> §7 00 « 2R 1R 02 00 00

rel ptr to
R4 nane forn 1n VPR

Ot

R9 02 8R OE

9:17 PR THU., 3 RUG., 1978

P.SPRR

Ot

68

Ot

2F

Pointer Rllocation

nane
var: R4 04 01 |

nare

var: B$ 8R 02 |

nane
ne,) 48 0D |var:

2% PR A%

val ptr

1E 00

nax len val ptr
20 00 | 26 00

tot len ** max rou
(8 83 | OR 00 | OR

max col val ptr
00 | 48 00

** The nost significant bit of the first byte of the total
length denotes the OPTION BASE.

total length negative --> OPTION BASE O (upper bit set)

total length positive --> OPTION BASE 1 (upper bit off)

9:17 pPn THU., 3 RUG., 1978
"

Pointer Rllocation

1.6 Major Routines

PTRALO: This routine allocates all wvariable pointers in the file
naned i1n R40,

Input: R40 - the file to be pointer allocated.

Internal: R24 - token pointer that mnoves through out the
progran

R26 - points to beginning of variable search area

R0 - points to end of variable search area. if 1n
pgn node for allocation this 1s increnented as
pointers to values are stored. when the last
line of code 1s allocated, R12 1s reset to 10S
and ERRSTP is set to 0.

Notes: The routine 1s entered by a JSB and saves and restores
the 0N (binary/BCD) status. It requires 1input
other than the global systen pointers, houever ALL
registers beginning with R22 are considered
volatile.

NXTONE: obtains;
token (R23)
token class (R36)
current line (R45/46)
length of line (R47)
conditional;

tk class >= 30 non-allocatable, loop
tk class < 30 pass control to allocation
routine

XKALL1: exit code for allocation 1f EOF
: calculates and stores; P.CLEN (length of connon
area) P.PLEN (length of VPR)
: on return restores registers 20-77 (EVIL)

9:17 PN THU., 3 AUG., 1978
12

Pointer Rllocation

1.7 Procedure

Procedure: Pointer allocation works fron a table of token
classes. Each token, having at least one attribute, has 1its
token class deternined by the routine GETNXT (token class is
the octal nunber defined by the tuo least significant digits
of the primnary attribute). This token class keys the
appropriate allocation routine for each particular token. If
a token has class < X0 (octal) then that token is allocatable.
Non-allocatable tokens have token class >z 30 (octal). Tokens
uhich are created in the future and require allocation
different from existing routines, should assign a prinary
attribute >z 57 (octal). This will generate the V.ALLO handiy
event. For further information on the V.ALLO handl event
refer to the Handi Call Documentation. Here follous the
pointer allocation table; giving, the allocation routine, the
class of tokens which that routine is responsible for, and a
description of the type of tokens found 1n that class.

9:17 PR THU., 3 AUG., 1978
13

Pointer Rllocation

POINTER RLLOCRTION TABLE

Routine Class Token

INIRON -1 RON class > 56
XALLY 0 End-of-line
VALOC 1 Fetch variable
BININT 2 Integer constant
SVAL 3 Store variable
SKPCON 4 Real constant
SKPCON 5 String constant
FUNCARL 6 User function call
LINEAL 7 Junp true line
LINERL 10 Goto, Gosub
RELINP " Junp relative
DEFFN 12 User define function
DEFEND 13 User function end def
ERON 14 External RONM (obsolete)
OPTION 15 Option base
DEFEND 16 Function return
FNASN 1?7 Function let
SKPNXT 20 Data
DIn 21 Din
SHORT 22 Short
INT 23 Integer
INIRON 24 Handl call
LINERL 25 Else jump line
RELINP 26 Else junp relative
LINERL 27 Using line

9:17 PR THU., 3 RAUG., 1978
14

Pointer Rllocation

Exanple: The follouwing exanple illustrates the structure of a
user defined function, deallocated and allocated. Because of
the conplexity inherent 1n the allocation of DEF FN
staterents, the routine responsible for each step 1n the
allocation process 1s included. It should be noted that the
pararieters of a user defined function are translated into
internal fornat during Parsing.

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

9:17 PN THU., 3 ARAUG., 1978
15

Pointer Rllocation

40 DEF FNN(R,B)=NRX(RBS(R),RBS(B))

DERLLOCRTED DESCRIPTOR RLLOCRTED ROUTINE

40 line 40
00 nunber 00

87 def fn 87

20 ASCII 2 byte addr of N DEFFN
40 blank N in VPR

---- junp past 2 byte rel pos FNEND
---- fn end of EOL

04 paran type/count (see note 1) 04

O0R internal OR
01 narne forn R 01

---- var value 2 byte rel loc of DEFFN
-—-- ptr R 1n environnent

OR internal OR

02 nane forn B 02

---- var value 2 byte rel loc of DEFFN
---- ptr B in environnent

---- rel posit 2 byte rel pos DEFFN
---- of PCR of def fn statenent

01 fet var 01

20 RSCII 2 byte rel addr of VALLOC
41 blank R A in def fn statenent

83 abs value 83

01 fet var 01

20 RSCII 2 byte rel addr of VRLLOC
4?2 blank B B 1n def fn statenent

B3 abs value 83

RE nax RE

RF inv fn end AF

9:17 PR THU., 3 RUG., 1978
16

Pointer Rllocation

el daddiReLS

---- pos of store 2 byte rel addr of FNEND
---- value ptr N 1in VPR (FNR3)

Ot eol Ot

NOTE 1: the paran count/type 1s fornatted as:
BIT 7-BIT 1 nunber of parameters in definition (X2)
BIT 0 type of function, O=nuneric, 1=string

9:17 PR THU., 3 AUG., 1978
17

Pointer Allocation

1.8

1.9

1.10

18

Globals

Location
- ---—-

8385
8285
8386
8388
838t
839
8381
8251
83(3
8301
8282
824D
8243
8263
8247
8383
8257
838F

Hand1 Calls

Description

nested array counter
location of DEF FN
start of FN definiton
end of FN definition

type of variable being allocated
loc of variable that resulted in alloc error
end of file to be allocated
beginning of environnent
last P.LEN value
last P.PLEN value
0 -- option base 1; 1 -- option base 0
progran counter

location of file to be allocated
narne of file to be alocated
location of current running file
current alloc point for array paraneters
current top of stack (R12)
next avallable loc 1n environnent

V.ALLO -- token class »>= 57 (octal)

Cross References

Nernory Managenent Docunent RH"REN
Internal Code Exanples Docunent RH"ICE
Hand1 Call Docunent RH"HDI
Source File RH&PRL
Global File KR&GLO

9:17 PN THU., 3 RUG., 1978

Environnental RAllocation

dmmeeeeeececeecececceccccaaaa. $emcmmmmccmcmeaeaae +

|
| Progran Environnent Rllocation | CHRPTER 2 |
|
decemeececccecccccmccceceme—e—en~ demcccccccaccccnana +

2.1 Definition

Definition: Environnental allocation 1s the second and last step
in progran allocation. This process has the responsibility of
creating an environnent (variable value ares and a control
block) for the progran naned 1n PRNANE.

The environnental structure for each type of variable 1s as
follous:

Nurerics:
Real -- eight byte value field
Short -- four byte value field
Integer -- three byte value field
Array -- field length 1s deternined by the

nunber of elerents 1n the array tines
field length allotted for the type of
variable.

Strings: tuo byte actual length field folloued by
the character field, whose length s
defined 1n the Nax Llen field of the VPR
entry.

9:17 PR THU., 3 ARAUG., 1978
19

Environnental Rllocation

2.2 Routines and Pointers

Pointers:

NXTRER - the top of the environnent stack. This 1s one byte
above uhere the next environnent uill be inserted.

FUVRRS - a pointer to the ECB of the current environnment

Routines:

ENVRLO - allocates the environnent for the progran in PRNRNE.
Calls PUSHEN to allocate roon and build the ECB,
then goes to INIVLP to initialize the variable value
area.

PUSHEN - allocates space for the environnent at NXTHEN and
builds the ECB.

INIVLP - determines the nature of the variable and i1nitializes
the variable's environnent appropriately (zeros the
field and sets the nost significant byte to -1 for
nuneric variables, blanks the field and sets the
length to -1 for string variables).

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

9:17 PN THU., 3 RUG., 1978

Environnental Rllocation

8/9
10/11
12/13
14/
22/23
24/25
26
2?7
28/29

2.3 Environnmental Control Block

The ECB 1s a block wuithin an environnent that contains
infornation about the allocated file. The ECB 1s the first X
bytes of the environnent and 1s built and validated by the
routxn; PUSHEN. The following 1llustrates the structure of
the ECB.

Nane Description

E.LEN length of environnent including the ECB.
E.PREV length of previous block.
E.RNEN reserved menory (RESMEN) allocated for progran
E.FCNT FOR/NEXT count
E.GCNT GOSUB count
E.EREX address of code to be executed upon an ON ERROR
E.ERPC Kangaroo PC after an ON ERROR
E.RON RON nunber of nother progran
€E.N0N nane of the nother progran
€E.RTN R10 for cont/run
E.PCR PCR for cont/run
E.STRT current status (R16)
E.DRTR location 1n current DATA line
E.DRTL pointer to current DATR line

9:17 PN THU., 3 AUG., 1978
A

Environnental Rllocation

2.4 ARllocated Structure

To denonstrate the 1nternal structure of an allocated
progran, the follouing Basic progran and 1ts allocated forn
are supplied.

10 R4:=P]
20 B$="h1 there’

30 Nn(1,1)=3*R4/2

ALLOCRTED STRUCTURE (1internal)

nerory location: 8593 h

he p[B i

P.LEN P.PLEN P.CLEN P.ELEN P.SPAR

nenory location: 8590 h

%% PROGRAR **

Line 10: 10 00 06 11 > 49 00 « (9 08 OE
A ptr

Line 20: 20 00 OF 13 » 4D 00 <« 96 08 68 69
B8 ptr

20 74 68 65 72 65 07 0t

Line 30: 30 00 18 12 > 983 00 <« 1R 01 00 00

ne,) ptr

1R 01 00 00 OR 1R 03 00 00 01

9:17 PR THU., 3 ARUC., 1978
2¢

Environnental Rllocation

> 49 00 < 2R 1R 02 00 00 oF 08 Ot
R4 ptr

ENDLINE: 99 RS 02 8" OF

neriory location: 8508 h

%2 YPR %4

ceccrocse cmmeoene ee---

ceee---- cemceccnne —m—--—--- cre ome e ---

nernory location: 8634 h --> FUVARS

Rk Eca AR

E.LEN E.PREV E.RAEN E.FCNT E.GONT E.EREX
commcnw- coemnccme- coeccoeee P ceccc=a coecocceos

cwmcreeee cE e —---- PR e e mce ccc et r e c e c e T, e e e Ct e c e, r R e e, e e e.-

E.RTN E.PCR E.STRT E.DRTR €.DRTL
cmweeme e ceecnccee ------ ————-- ---

- - r R e EE .S,.., e, S ee,TR,-,e,", eeeREERe®e--

2 Eavironnent **

Val M4: 00 00 59 83 26 59 41 N

9:17 PR THU., 3 ARUG., 1978
23

Environnental Rllocation

val B$:

I
3
R
S

3
3
3

3
3
3

3
3
T

3
3
3
3

3
3
3
3

3
3
3
X

Val n(0,0):
n,1):

n(0.5):

n(0.10):
n(1,0): 8

8
8
8
8
3
8
8
8
8
8
8

2
8
3
3
8
8
8
3
8
8
8
8
8

8
8
3
3
8
8
8
8
8
8
8

8
8
8
3
8
3
8
8
3
8
8
8
8

I
l
O) o
o

- ~
N

o ~
4ne,1):

8
8

8
8
8
3
8
3
3
8
8
8
8
8
8

3
8

8
3
3
8
3
3
8
8
3
8
8
8
8
8

8
8

8
8
3
8
8
8
8
8
8
8
8
8
8
8

8
8

3
8

8
8

8
8

Refer to the Memory Hanagenent Docunentation for a
discussion on the existence and structure of the environnental
stack.

9:17 PN THU., 3 ARAUG., 1978
24

Environnental Rllocation

2.5 Globals

PRFILE
PRNRNE
RONPTR
XTNOLM

2.6

V.ERLO

2.7

Location

Hand: Calls

GLOBALS

Description

pointer to current environment
variable nenory leeuay
change 1n environnent size
last value of P.PLEN
next byte in available user menory
loc of paraneter file
nane of paraneter file
rel loc of current RON
extended LEEWRY flag

-- This handi call 1s generated under tuo separate
circunstances.
1) the current variable is renmote
2) the current variable is a string array

Cross References

flenory Managenent Docunent RH"NEN
Handi Call Docurent RH'HDI

Source File RH&EAL
Global File KR&GLO

9:17 PN THU., 3 ARUG., 1978
25

Environnental Rllocation

Table of Contents

1 Progran Pointer Rllocation
1.1 Overvied . . v . v v e e e e e e e e e e e e
1.2 Variable Name Form 3

1.2.1 Internal Structure 3
1.3 Variable Pointer Entry 5
1.4 Progran (ontrol Block ?
1.5 Deallocated Vs. Rllocated Program 8
1.6 Major Routanes« v v v .. 12
1.7 Procedure v v ¢ v v e e e e e e e e 13
1.8 Globals e e e e e 18
1.9 Handa Calls v v v v v v .. 18
1.10 Cross References « v v v « o« . . 18

2 Progran Environnent Rllocataon 19
2.1 Defimytion L. . e e e e e e e e 19
2.2 Routines and Pointers « 20
2.3 Environnental Control Block 21
2.4 Allocated Structure 0. 22
2.5 Globals . . . v . i e e e e e e e e e e e e 25
2.6 Handy Calls 25
2.7 Cross References ¢ ¢« v ¢« v o« o 25

9:17 PR THU., 3 ARUGC., 1978
Y¥v]

Environnental RAllocation

The Buzzer Driver Sof tuare

Raan Young
07/09/82

000Q0Q0Q
0QQQQQoo0qQaaa

00QQQ0QQ0Q00QaQ0Q
00Q00Q000000000000GA0QN

QQ Q000000000000Q00A000GA0G00A
\0\ 00Q0000000000Q0Q00AA000AAA0AN Q.
00\ 000000000000000QA000000CAG0A0Q0NAYN QQ
Q0\ .00000000000Q0000C00000Q0G000A0C0ARAAN \QQQo
Q000.. __..00000000000Q0000000000000000000000000QQO. _. 00GRAAQ
000003000000000000" \0000000C30L0A000000000000000000000Q00.

00QQQ0oQQaa” 000000Q300000000000000000G0QC000000AAA
e \0000000000000000000000Q0Q0000" "0’

QQ0000000003aRa0Q00Q0Q000G/
\000000Q0Q/"QQaQaaQaa/
\Q0QaoQ {Q0Q0QaQ
0Q0QQ| 000/
0000| . 00
0000 | OVO00
000| /
000 |
1001
1000
00000Q
00000000

"00000.
0000

Buzzer driver

The beep code lives 1n tuo files (KR-BEE & KR-BE’). It uas
split up to allow BE' to be put 1n suitching ron (freeing up
nore non-suitching space).

The beeper 1s accessed 1n tuo ways:
1) the systen routine STBEEP; STBEEP sets up default

paraneters and calls the BEEPER routine which
does the actual driving of the beeper. STBEEP 1s
used for the error beep by the systen.

2) the user connand BEEP; BEEP takes the user input,
translates 1t to internal forn and calls BEEPER.

BEEP parsing expects paraneters of forn:
1) keyuord ON or OFF.

2) none; frequency and duration are sarme as STBEEP.
3) 1 nunber; interpreted as frequency, duration sane

as STBEEP.
4) 2 nunbers; frequency and duration.

Beep runtine handles the paraneters as:
1) set or clear BEEPOK flag.
2) get default frequency and duration, beep.
3) get default duration, beep.
4) beep.

Duration 1s converted (using the ONE?PR routine) to a S-byte
binary nunber which 1s added to the current real-time clock
value to get the absolute tine to quit beeping. The BEEPER
routine checks this value against the current tine every
half cycle to see 1f we have exceeded the absolute tine (1f
so, ue quit beeping). The value 1s saved 1n HDBRT(to allow
a clock rollover to adjust the absolute time appropriately
(see KR"CHP for nore i1nfo on rollover).

Frequency 1s converted to half-cycle counts uith the fornula
(=28300/F-16. This returns a count for the nunber of cycles
of the i1nner loop in BEEPER. The 16 1s subtracted to cornpen-
sate for the overhead of the outer loop betueen half cycles.
The routine KEY? uhich 1s called by STOP? (called 1n BEEPER)

has been specially constructed so that both possible paths
through 1t take the sane length of tine. This prevents the
pitch fron changing 1f a user hits a key uhile we are
beeping. The nunbers 28300 and 16 were found algebraically
and fine tuned by experinentation. They should produce tones
uhich are reasonably accurate in the low fregencies. Rbove
about 1000 Hz the accuracy begins to degrade, the naxinun
frequency 1s approxinately 1700 Hz.

Hary Jo Homberger
7/12/82

Going to sleep 1n Kangaroo

There are several ways to go to sleep in Kangaroo:

nethod corresponding 'key’

3) type BYE BYEKEY
b) use BYE in a progran no key (Basic runtime routine)
c) let nachine tine out NAPKEY
d) get very lou batteries NRPKEY
e) press shift-RTTN NRPKEY

Sleep node can be entered either fron the interpreter (running the
BYE token) or the node switcher (NAPKEY or BYEKEY seen any time we're
looking for 1nput).

If our pouer 1s ok, there are 3 things that could keep us fron going
straight to sleep after entering the sleep code:

happening action

3) pending tiners u1ll exit the sleep code and junp
to uhere tiner uas set up to go

b) appointnents due uill exit the sleep code, take care
and nothing running of the appointrent and then call

the sleep code again

¢) sleep HANDI call could possibly be set up to not return
to sleep code (see warning below)

There are also a feu other obscure ways to keep us fron going straight
to sleep. These i1nclude nodifying the V.LOOP HANDI call in the HPIL
frane-sending routine so 1t doesn’t return, or changing any of the
interrupt service routines. SUCH CHANGES SHOULD ONLY BE RTTEMPTED
BY QUALIFIED PERSONS WITH R FULL UNDERSTRNDING OF THE COMPLICARTIONS
INVOLVED.

KR"BYE page 1
Follouing 1s the sequence of steps ue take when ue’re putting Kangaroo

to sleep, fron either the BYEKEY or the NRPKEY.

R) If BYE typed in calc node, stall the calc progran.

If the user types BYE 1n calc node, we want to stall the calc progran,
$0 appointrnents uill be processed. (Rppointrents aren’t processed if
ue go to sleep while sonething 1s running.) To do this, ue stall
the calc progran, set up a BYEKEY as the pending key, and return
to the interpreter (1e, exit the BYE token that we're executing).
The interpreter returns to EDIT node 1nput, which sees the BYEKEY,
and returns to the node suitcher. The node suitcher sees the BYEKEY
and sends us to sleep node again, this time with nothing running.

B) Turn the HPIL loop off.

After we have taken care of BYE 1n calc mode, the BYE and NAP keys

If

function the same. First ue set the 'test loop before using’ flag,
in case the user has turned off the HPIL devices on the loop. This
heeps us fron uaiting forever (or until the batteries run doun) for
a frane to return fron a dead loop when we’re 1n STRANDBY ON node.

there are any DISPLRY IS devices active, ue need to unlisten then.
Before sending the unlisten, ue test the integrity of the loop with
on IDY. If the loop 1s ok, we clear the ’test before using’ bit and
send out an unlisten. (The '"test before using’ flag uill be set
agaln as soon as anything tines out on the loop.)

C) Take care of tiners and appointments.

(If we are being forced to sleep because of lou pouer, ue skip this
part.)

First ue trigger any devices that have set up a conparator interrupt.

If

If there are any pending tiners, ue set up an EDIT key, and return
to caller. This uill cause Kangaroo to execute uhatever the tiner
uas set up to do, then go to Edit node when done. (This does NOT
return to sleep node, until another BYEKEY or NRPKEY 1s done.)

we're not running a progran, ue look for and process any unprocessed
pending appointrents. If we find one, we load up a NRPKEY, and
return to the caller. This uill cause Kangaroo to cone back through
the sleep code when 1t 1s done uith the appointnent.

Note that ue will never process both a timer and an appointment, since
tiners are onlyactive when a progran 1s running, and appointrents
are only processed uhen a progran 1s NOT running.

D) Disable the comparator interrupt.

We nou disable the conparator interrupt, to nmininize the chance of
another conparator interrupt being serviced 1n the interrupt service
routine, but not getting triggered before we go to sleep. This
uould have the effect of that interrupt (let's say a tiner) being
1gnored untal the user woke us up again. If the user had been
depending on the timer to uske his nachine up, this could be very
frustrating.

KR"BYE page 2
Should a conparator interrupt cone due betueen the tine the conparator

interrupt 1s disabled and the time we go to sleep, 1t will cause the
harduare to override us uhen ue try to tell the pouer supply to put
us to sleep. Instead, we uil]l return to the uwakeup code, alrost as
1f the user had hit an RTTN key i1nnediately after sending us to
sleep. The difference betueen this and a regular uakeup 1s that the
diagnostic ron will not be called, and the lcd will get cleared a
little later than usual.

€) Do the Sleep HRNDI call.

He do a HANDIO call (VAL V.SLEE) to let the rons know that we’re going
to sleep. (If any roms want to do anything uith the comparator, or
don’t plan on returning to the sleep code, 1t 1s up to then to
re-enable the conparator interrupt.)

F) Put out the lou batteries warning 1f wue have low pouer.

If ue uere sent to sleep because of lou pouer (PURFLG = nonzero), we
put out the lou batteries uwarning nessage.

G) Check the HPIL loop again and turn of f the HPIL chip oscillators.

He set the ’'check loop before using’ flag again, and resend the
unlisten sequence 1f there are active DISPLRY IS devices. This 1s
done so ue have the nost current infornmation possible uhen ue go to
sleep.

Fron now on, no franes uill be sent on the HPIL loop until we uake up,
so ue turn off the chip oscillators.

H) Do niscellaneous housekeeping.

First ue clear the LETSEE flag, which 1s the flag that tells Kangaroo
that there 1s sonething in the LCD. Leaving this flag set would
cause Kangaroo to not 1ssue the pronpt at uakeup, believing
that there uas sorething i1n the LCD that the user uanted to see.

The global 1nterrupts are then disabled, and the corparator interrupt
1s reenabled.

The 'key waiting’ bit in SVCHRD 1s cleared, just i1n case soneone hit a
key after the BYE, so that key doesn’t pop up 1n the LCD uhen ue
uake up.

I) Save registers and conpute the checksun

We save a place for the checksun on R6, and push our uwakeup address.
He then save registers 6,10,12, and 16 1n THPAN2. He nou calculate
the checksun fron 10 bytes past the R6 stack to the last word of
ava:lable neriory (LWRREM) and store the checksun i1n the space
reserved on R6.

J) Put us to sleep.

And last, but not least, we urite the proper values to the power supply
status byte (PSSB) to set us to light and deep sleep.

KR"BYE page 3

Things used:

Globals:
LETSEE
PURF LG
LURNEN

SVCHRD
PLSTRY

Equates:
V.SLEE
BYEKEY
NRPKEY

EDITKY

! byte
1 byte
2 bytes
b1tH0
b1 tH0

equ O3M
equ FEH
equ ROH
equ 83H

1/0 addresses:
PSSB
GINTDS
cnpPsB

dad FF82H
dad FFOIN
dad FF8OH

Major routines:
BYE.
unun

in KR8212
in KR&212

Related routines:
HRITKY
NODEKY

PURSRYV

in KR&IO
in KR&NOD

in KRILOW

Related docunents:

See Roo Chip ERS for more information about the PSSB and ChPSB

znonzero 1f sonething in the LCD
znonzero 1f low power
taddress of last word of available nerory
=1 1f key waiting to be seen
=1 1f nust test loop before using

=event nunber for going-to-sleep HANDI call
zkey generated by BYE
=key generated by shift-RTIN
zkey generated by EDIT

=pouer supply status byte
zglobal interrupt disable address
zconparator status byte

entry point for BYE token runtime routine
entry point for NRPKEY

and BYEKEY uhen seen in node suitcher

loads NRPKEY 1f tineout uhen waiting for input
(the node suitcher) 1f NRP or BYE key seen,

sends us to sleep code
sets up pouwer flag to indicate low pouer

KR"BYE page 4

Checksun conputation

Raan Young
07/09/82

QGoaQoaQaa
0000CQ00000Qa

00000000QG0000QCA00
00000G0000000000G0000A

Q0 Q0000Q0aN00a00a0uLL0c0GaL
\0\ Q0000000C0002000u0036as00000 aQ.
00\ Qu00000000500200000000000U00R000N 00
QQ\ .000Q0Q00CaI0000000000000000GGA0000 Y \200Q0
00Q0. . __..0Q00000Q00000N00G01000000000000C0N00G0000000. _. 0000000
000Q00000000Q0QQQ0" \00000Q000000000000G2CQ0G00000000AG00G.

oocooQaQoao 000000090GQ00000000G000000Q0000UAAAGAAG0A
e \00000000C00Q0000000000000AG0" "00’

0000QQ0CQ0Q000000QG0000AA/
\0000000QQG/"0Q00Q0Q000Q/
\QQ0000 jQ0Q0caQ
00000| 000/"
0000| . 00
0000 | 0VO0
000| /
000 |
1001
1000
000000
00000000

00000
nmo

BOUND
Registers:

Globals:

Subroutines:

Description:

R34/35 pointer to ran (2K increnents)
R36/37 scratch

TOPROM a label in KR&TOK which is the first
byte of code i1n the top ron (56K)

none

Starting at 32K and 1increnenting by 2K
steps, get 2 bytes fron ran. One’s conple-
nent the first byte, urite then back out,

and conpare uhat was uritten uith uhat is
actually there. If they are not the sane we
have found the first byte of non-ran and are
done. Otheruise, one’s conplenent the first
byte again, and restore the original ran
contents. Then 1increment and try again 1f
rot at the top of ram. NOTE: the con-

plenenting of the first byte 1s done
because, 1f there 1s no ram we will read
back the high order byte of the address
tuice. He want to nake sure the tuo bytes ue
urite out are different so that (1f there 1s
no ran) we uill read back the sane (2nd)
byte tuice and get an error uhen ue do the
conpare.

CHECK
Registers:

Globals:

Subroutines:

Description:

RO0/01 pointer to end of ran space to be
sunned (physical end of nenory found
by BOUND)

RO2/03 scratch
R14/15 pointer to beginning of ran space to

be sunned (current stack pointer ¢
10 bytes)

R46/47 accunulator for checksun

LUANEN pointer 1n KR&GLO to last word of
ran (+1)

SUNIT+ sunming routine 1n KR&CRD

Get the begqin and end points for the
checksun and call the sunning routine. The
sunning routine is 3 loop which gets 2 bytes
at a tine and adds them to 8 2 byte ac-
cunulator uith urap around carry. If ue are
sunning an odd nunber of bytes, the extra
byte on the end 1s cleared before the add.
The loop continues wuntil our ranm pointer 1s
>: the end location,

General Operation:
On coldstart, the systen calls BOUND to establish the 1ni-
tial ran size. Each tine the systen goes to sleep, 1t
calls CHECK to checksun all ran (minus a snall part of the
systen stack) and saves the result on the stack. Each tinme
the systen wakes up, 1t calls BOUND to determine if the
user has changed the anount of ran. If 1t 15 less than
last tine a coldstart 1s forced (since things could be
danaged). If it 1s the sane or more, then CHECK 1s called
to conpute the checksun of the amount there last time the
systen uent to sleep; the result 1s conpared to the result
saved on the stack wuhile going to sleep. If the results
are not the sane a coldstart 1s forced (sonething has been
danaged). If the results are the sane nmenory 1s adjusted
as needed for the neu ran, the neu ran size 1s saved, and
ue go on waking up.

HP-75 Instruction Set

§eecmcceccecccraccccaceaan
—
e
—
—
—
.

.
i
e
e
e
t
—
—
.
s
—
i
—
—
—
—

—
—
—
—
—
—
—
—
—
—
—
—
s

e
t
e

e
t
S
—
—
—
—
—
—
—
—
—
—
—
—

Systen Connand

RDJST
RLARN OFF

ALARN ON

RSSIGN 10
RUTO
BEEP OFF

BEEP ON
BYE
At

CAT ALL

CAT CARD

CLERR LOOP
CLERR VARS

CONT
CoPY...T0
DEFRULT OFF

DEFRULT ON
DEF KEY
DELAY
DELETE
DISPLAY IS
EOIT
ENDLINE
EXACT

EXTD
FETCH
FETCH KEY
INITIALIZE
LIST
LIST 10
LOCK
MRRCIN

MERGE
NANE

OFF 10
OPTION ANGLE DEGREES
OPTION ANGLE RRDIANS
PACK
PLIST
PLIST

PRINTER IS

PROTECT

PURGE
PUIDTH

RENANE. .. T0
RENUNBEFR

RESET

RESTORE 10
RUN

SET
STANUBY OFF

STANDBY ON

STARTC

TRACE FLOW

P

...................... §recrcccccnce

BRSIC Statenent

RSSIGN #
BEEP
CALL
DRTA
OEF FN
oIn
DISP
DISP USING
END
END DEF
FOR...T70...STEP
cosus
c0T0
IF. . THEN. . ELSE
INAGE
INPUT
INTEGER
LET
LET FN
NEXT
OFF ERROR
OFF TINER W
ON ERROR
ON TIRER W
ON...GOSUB
ON...COTO
OPTION BRSE
POP
PRINT
PRINT ¥
PRINT USING
PUT
RANDONIZE
RERD
PUT
RANDONI2E
RERD
RERD #
RERL
REN
RESTORE
RESTORE #
RETUFN
SHORT
ST0P
WARIT

Pl

—
—
—
—
—
—
—
—
—
—
—
—
—
—

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

e
—

BRSIC P
Function

RRD
RND

STRS

TAN
11ne
1Ines
UPRCS
VAL
VEF$

TRACE OFF| | |
| TRACE VARS | |
| TRANSFORM...INTO | I
| UNPROTECT | |
| WIDTH | |

| YERR | |
deccccccncceccccccncana--ecccceeet

Conparator draver sof tuare

Raan Young
07/09/82

000QQQQQ
Q0QQQ00QoaeQaq

00000Q00QQ000QQRQAQ

QQQQ0Q0Q00Qe00QQeQaQQQQ
00 0000000000000Q000G0QQ00QQA0
\Q\ 0000QQ000AAA0AAAA000QA0A0NQAQQ0 Q.
00\ 0000000000000Q000Q000000Q00QQ0AQGN QQ
QQ\ .0Q00000000Q00000QQ0QQ00000000000Q00Q0N \00Q0Q
0000..__..00000000Q0QG000A0000000000a0G0E0AAA00GA0AR0. _. Q00000
0000Q0000G000a0eaaR0" \0000Q0Q000000000Q00Q00Q00000G00QNTANAA.

Q0QQQa0aaa” 000000Q0Q000000000C000G0QAA0GGRANGAAANN
- \000Q0000000000Q00Q000Q0QAAAL" "00’

Q00Q00Q0000Q0000000Q0000R0RA/
\0000000QQQ/QQ0000C0D/
\Q000QQ0 |QaQocQQq
0Q00G| 000/"
0000| . 00
0000 | OV0O
000| /
000 |
|00
1000
000000
"0000000

"00000.,
"000Q

"o

The conparator 1s a harduare device which interacts with the
real tine clock and causes an i1nterrupt uhenever the value
in the clock 1s >z the value i1n the conparator. This allous
the softuare to initiate events at a time specified by the
user. The pocket secretary, tine node, and ON TINER state-
nent are exanples of the things which can be done.

The harduare only handles one value at a tine. This neans
that 1f nore than one conparator device (appointnent, tiner,
etc) wants to wuse 1t, there is a conflict. This code
resolves this conflict. It presents the conparator devices
uith a conparator nachine which handles input in the forn of
tagged entries (1ndicating ounership) and inforns the ouner
uhen that entry 1s active. The mnachine can handle 8 dif-
ferent devices (5 are used by the nainfrane, see extension
section for nore), and also handles the rollover of the RI(
(once a year). The 1niti1alization of the RT(and absolute
tine 1s handled by TINE node (see KR"THC for nore).

Usage of the machine consists of sending an entry to 1it,
flagged wuwith your ouner nunber (see CHPENT section for
nore?. When that entry becones the next value to be natched,
1t 1s loaded 1nto the conparator harduare, and when the in-

terrupt happens, the flag cooresponding to that entries
ouner 1s set. (NPCHK checks these flags and calls the
trigger routine for the ouner of each entry needing service.
Entries can be absolute or relative time, depending on the
ouner, and sone have autonatic reentry.

COMPRRATOR SETUP:
The conparator 1s setup at coldstart to have all entries in
the table O except rollover, wuhich 1s set to 1 year. The
rollover value 1s loaded i1nto the conparator harduare.

CONPARATOR ENTRY:
The conparator entry 1s setup by calling CMPENT with R4O
containing the ouner W and R41/47 containing the appropriate
value. Ouners are:

0 (CT.RLV) rollover entry (not used by CNPENT) [absolute]
7 (CT.APT) pocket secretary - time of next appointrent

[absolute]
14 (CT.RPR) repeating alarn - time of next beep [absolute,

auto inci

21 (CT.C/S) clock/stopuatch - tine of next tick [absolute,
auto inc)

28 (CT.TMR) ON TINER - tine of next timer [absolute)
35 (C1.0M1) unused - see extension section [absolute)
42 (CT.ADJ) clock adjust - tine of next adjust to RTC [in-

terval, auto inc)
49 ((1.DNC) unused - see extension section [interval]
56 (C1.013) unused - see extension section [interval]

absolute = tine 1s conpared directly to clock
interval = tine 1s added to current clock to get absolute

value
auto Inc = entry 1s autonatically updated by sone interval

' sec for (T.C/S, 15 sec for CT.RPR, and the
value stored i1n TREINC (by CMPENT) for CT.RDJ.

An entry of 0 value uill turn off the designated device.

Rfter the table entry has been added, the table 1s searched
for the lowest value, and this 1s loaded into the conparator
harduare.

CONMPARATOR INTERRUPT:
The conparator interrupt routine (CMPSRV) handles the
processing of the interrupt. This consists of finding out
uhich entry caused the 1interrupt (since the conparator can
not be read, the ouner nunber 1s kept i1n CHPPNT). If the en-
try was rollover, then the rollover processing is 1nitiated
at interrupt tine (see rollover for nore). Otheruise, the
conparator bit 1s set in SVCNRD to 1indicate service 1is
needed (this uill cause SPY to call CMPCHK). Then, the
increnent value 1s fetched fron THEINC for clock adjusts, or
fron the service table for repeating alarms and clock/stop-
uatch. The increnent is added to the current table value (if
appropriate) and the new absolute tine (or O for non-auto
inc entries) 1s placed in the table. Then, the next entry is
loaded i1nto the conparator harduare. The service table has
the increnent value, or 0, for each entry, and the flag nask

for that entry. It 1s indexed by the owner number. The flag
nask 1s added to the current contents of CHPFLG to indicate
to C(HPCHK which device or devices need service. This con-
pletes the interrupt service, the guts of each device 1s
handled uhen CMPCHK gets called by the systen (uhen 1ts
safe).

Rollover:
This 1s a special case of i1nterrupt processing, which hap-
pens once a year for a nachine that has not been coldstarted
nore recently. Rollover handles the problen of the RI(hard-
uare overflouing 1ts count buffer by resetting the buffer to
0 (harduare can count about 2.5 years). The setting of 1
year uas chosen for a nice boundary. The current RI(value
1s saved, and the RT(C 1s cleared. The value 1s used to ad-
Just WDBRIC (used by WRIT, DELAY, and BEEP for the absolute
tine to quit). The value 1s also added to the tine base. The
value 1s then subtracted fron each of the entries in the
conparator table (1f the value 1s < O then the mininun value
of 1 1s loaded). The routine THRRLV 18 called to adjust the
timers, and then the rollover value 1s reloaded.

CONPARATOR ENRBLE/DISABLE:
The conparator interrupt 1s enabled (CHPENR) or disabled
(CAPDSR) without affecting any of the other bits i1n the con-
parator status. This 1s because the biat which controls the
buzzer 1s 1n this status, and the state of 1t should not be
changed by the interrupt change.

CONPRRATOR CHECKING:
The flags which 1ndicate comparator devices that need ser-
vicing are kept in CMPFLG. CMPCHK checks these flags (1f
NOCHEK 1s O) and calls the apppropriate routine to service
the device. CMPCHK also clears the device flag (uith inter-
rupts disabled -- to prevent possible setting during the
clearing) and, 1f all devices have been serviced, clears the
comparator bit 1n SVCURD. RIl registers (R20-77) are saved
before the device routine is called, and restored after-
words. Rfter the routine returns, a check 1s nade for pouer
failure or a key pending. If so, we exat CNPCHK (this 1s to
allou the user to type wuhile conparator 1interrupts are
coning 1n too fast to service [tine mode to a printer, or
nultiple alarns)). Otheruise loop around again to see if any
other devices need service.

DEVICE SERVICE ROUTINES:
In the nainfrane, there are 5 service routines:

Repeating alarn: CNTRIG (see Pocket Secretary
docunentation)

Rlarm: RPTRIG (see Pocket Secretary
docurentation)

Tiners: TATRIG (see KR"TIN)

Clock: CSTRIG (see KR"TNC and Pocket
Secretary)

Rdjust: RJTRIG (see KR"THC and following
text)

An exanple routine 1s RJTRIG, which handles the clock ad-
Justnents set up by tine node. RJTRIG checks the bit 1in
PSSTAT uhich 1indicates the type of clock adjustient (1in-
crenenting or decrenenting). It then sends the appropriate
status to the RTC harduare. This 1s all that needs to be
done, because the setup for the next conparator interrupt to
trigger this 1s done autonatically by the comparator inter-
rupt routine (adjust is an auto-increnent entry).

COMPARRTOR EXTENSIONS:
The conparator can be extended i1n tuo uays:

* The conparator intercept (CMPINT) can be used to nodify
or change the 1interrupt service routine (subject to ron
sultching restrictions).

* The trigger HANDI call can be used to pick up triggers
for non-nainfrane events. This 1s done by setting up an
entry using one of the unused entry codes. When this e-
vent cones due, CNPCHK will call HANDI with event #
V.ETRG. R20 u1ll contain & pointer such that (R20+1-

OVCTBL) will 1ndicate the external entry code used (1,2,
or 3). The ron using the conparator nust decide 1f this
18 1ts external device, service 1t 1f so, and return
u1th HANDLD set (1f serviced).

GENERAL FLOW:
The general flou of conparator control 1¢ as follous:

* An entry 1s set up for the conparator and loaded into
the harduare.

* The conparator interrupt happens.
* The 1nterrupt service routine flags the event and loads

the next event.

* (MPCHK detects the flag and calls the service routine.
* The service routine does 1ts thing (update display, load
next entry ...).

* Life goes on.

Card reader driver

Raan Young
07/13/82

0000000Q
0000000000000

QoQoo0o0aQQoGeaaa
00000000000Q0Q000000Q0AQ

o 00Q00Q000000000Q0000000000
\0\ 0000000000000000060Q00000A000 Q.
@0\ 00000Q000Q000000000G0000000Q0000N Q0
0o\ .00000000Q000000000000000000E000AN0N \0000Q
Q000Q..__..0Q00Q000Q0Q0000000000000G0000A000000000G0A00. _. 0000000
0000000000QUeQQ0Q0™ \0000000000000Q000Q00000AG00C0000N0GAGA0AA.

0Qo0Q0g00aQ” 0000C000000000000000000000000I0A0AQC000
B \0000000000000Q000Q000000GR0R00" 00"

00000QQQ0Q0Q000QAGTGRAGAG/
\00009000Q0/ "000000QA0A/
\00Quao |QCuLGQQ
0Q00Q0| 000 /"
0000| . 00
0000| OVOO
000| /
000 |
[00]
| 000
00000Q
"0000000Q

"00000.
"000Q

The card reader has PROTECT, UNPROTECT, COPY ... CRRD/PCRD,
and CRT CARD as 1ts key words. The general flow of each con-
nand is given here and then key subroutines will be
discussed.

CRRD LAYOUT:
The card is layed out as:

domemmacandereemmmmceas $ocmcmconann docoenn +
| HP head l urite protect l file head | data |
demcmmecedemegeeeemceceaedomea- +

WUhere each field 1s ended by at least one 0 and starts
uith a special code (the trailing O 1s not part of the
field [1t can't be read], and is not included in the
count). There 1s a gap betueen each field, and at both
ends. The special code and gap are handled by the harduare
(see the card reader harduare ERS for more).

HP head: This 1ndicates the type of card we have. Cur-
rently the only type 1s HPCV(700D)00. This 8 byte code
neans HPCV type card, 700 bytes naxinun storage (length
of card after urite protect). The O's are reserved for
future extension.

Hrite protect: This indicates uhether or not the card
can be uritten on. Only the first 2 bytes of this 4 byte
field 1s wused for the flag, 0000 = unprctected, FFFF =

protected.

File head: This contains all the 1dentification and

directory info for this card, in addition to the
checksuns.

byte purpose

1 Sub-formnat. Indicates a sub-fornat (1e, 2 data
fields) 0=R00

2 # of tracks. # of tracks in file
3 Track #. # of this track
4-5 Track si1ze. # of bytes 1n track
6-7 File size. N of bytes in entire file
8-9 File type. Basic progran, text, lex, LIF, etc.

10-17 Filenane. 8 character filenare
18-21 Passuord. 4 character stiring
22-25 Tine/date. Date and tine of file creation (27-14

secs fron century)
26-27 File checksun. To nake copy unique but nultiple

cards nixable
28 Partial status Status of partial statenment in-

fornatior 0=RQOQ

26-30 Partial 1st statement. Information abtout first
partial statement

31-32 Partial next statenent. Information about next

partial statenent

33-34 Card checksun, Checksun of card data
35 Header checksur. Checksun for file header.

Data: This contains the data stored on the card. The
s1ze of this field 1s 1-650 bytes.

GENERRL FLOM:
PROTECT/UNPROTECT: the code for both of these conmands 1s
the sare, only the flag 1s different (O=unprotected,
#O:=protected). The code calls STRTUP to get things started
(save registers, etc.), then calls STRI(D to disable 1n-
terrupts, prornpt the user for the card, and read/check the
HP header. Finally, WRITCR 1s called to urite the flag on
the card. INTENR reenables the interrupts, and ENDIT

cleans up and leaves.

(AT CRRD: the code for this connand 1s i1nvoked by the code
for the (RT <«filenarne> connand. When the connand deter-
nines that the device to be cataloged 1s the card reader,

1t calls CRDEXR (uhich does the work). STRTUF gets things
started, then CGOCRFD prompts the wuser for the card,
read/checks the HP header, and reads the urite protect

field. HWe are now ready to read the file header, which 1s
done by READC(R. Then we test the header uith HEDSUR to
nake sure 1t was read correctly. If 1t was, ue enable in-
terrupts, check the sub-fornat, and (1f correct) display
the track nunber, nurber of tracks, and filenane (this can
be recalled uith shift-FET). Then (RTLIN outputs the stan-
dard catalog for the file, and waits until SIGNIF returns
to clean up with ENDIT.

COPY ... CRRD/PCRD: the copy code recognizes tuo devices,
CARD and PCRD. These are the sarme, except that, 1in the
case of PCRD, the file on the target end 1s nade private.
The copy connand 1nvokes the card reader code when 1t en-
counters one (tuo 1s an error) card reader device. The
code enters through (RDCPY uhich deternines the direction
of the copy (fron card=load. to card=store) and calls the
sppropriate routine (LORL or STORE). CRDCPY also handles
the privatization of the target file by calling the
routine MKEPRV 3¢ needed.

Load: this routine calls STRTUP to get things rolling,
then calls RLCALL to get as nuch nemory as 1s available.
The tatle for tracks loaded 1s next init1alized to in-
dicate no tracke loaded. (This table concists of 38
bytec of 1, wuher a track 1¢ loaded, the bvte coores-
ponding to that track nunber 1s changed to C.) GOCARD

gets the card going and read/checks the HP header and
urite protect. Next, read the file header (RERD(R) and

check the possible error conditions (CHKHED - too big,
urong file, password, etc). If all 1s ok, corpute the

location for the data track in the file (track#-1 tines
FULTRK + file start) and copy the data into file using

READCR. Then check the data checksun to nake sure 1t uas
read ok, enable interrupts, and check to see 1f need any
nore tracks. If so, put out the track message and get
the next one. Otheruise, straighten up the file direc-
tory with C(RTFLE (release unneeded nerory), and finish

up H1th ENDIT,

Store: STRTUP begins the store, then HEDBLD builds up
the file header to be uritten on the card. Tell the user
hou many tracks they need, and see 1f the card nane 1s
different than the RAM narme (1f so wuse neu creation

date). Calculate the location of the data to be stored,
and checksun 1t. Then, 1f not a retry of the sare track,
scan for the statenent that crosses the boundary betueen
this track and the next track. Save the overlap count
for the next track and add the nunber of bytes overlap
into this track to the file header. Next, calculate the
checksurn of the header. Nou GOCRRD prorpts the user for
the card, read/checks the HP header, and reads the urite
protect. If not write protected, then WRIT(R 1s called
to urite the file header, and then again to urite the
data. Rfter enabling interrupts, check to see 1f verify
18 on (aluays 1s for the nainfrane), and call VERIFY 1if
needed. Reenable interrupts after the call to VERIFY.
Finally 1f not the last track, display the track nessage
and go do the next track. Otheruise, clean up uith EN-
DIT.

Verify: VERIFY saves sone info to allou recursive call
of sone routines, and then calls COCARD to get things
oing. The file header 1s read into TNPNN2, checksurned

?agaxnst the original), and then ROVFY 1s called. RDVFY
reads 1n the data and conputes a flying checksun (the

data 1s never stored anywhere, just sunmed up). The
result of this checksun 1s conpared to the original. If
either checksun 1s bad, E 1s set to indicate failure.

ERROR HANDLING:
There are tuo types of card reader errors: hard and soft.
Hard errors are errors wuwhich abort the entire operation
(for exanple, wurong passuord -- the user nust redo the

copy connand). Soft errors are errors uhich restart the
current track (for exanple, card pulled too fast -- user
1s pronpted for sane track again).

Since errors can happen at several different places, and
unknoun Jlevels of the Re stack, an RBORT routine 1s uced
to restore things to a knoun location. Several 1tems are

saved at the beginning of the operation to enable this:
SUBPNT saves the current R6 pointer; RTNSVE save the ad-
dress of where to go for a retry; and RBIFLG 1s
1nitaalized to a 0.

When an error 1s encountered, RBTFLG is set to 1 1f the

error 1s hard, and the error ® jis passed to the RBORT
routine. RBORT restores R6 to SUBPNT and checks the error
type. If hard, check to see 1f doing a load (1f yes, purge
the partial. file), and call ENDIT to cleanup. If soft,
report the error uith WRRN.R, put RTNSVE on the stack, and
return to 1t.

SETUP & CLERNUP:
The setup 1s handled by STRTUP. This calls EVIL to save
all registers used by the code, saves R6 in SUBPNT, and
sets NOCHEK to 1 (this prevents CMPCHK fron doing anything
uhile waiting for the user to hit RIN). The cleanup 1s
handled by ENDIT. This routine trashes its return (return
to the caller of the caller of ENDIT), clears the error
buffer, sets NOCHEK to O, and restores the registers saved
in EVIL.

GETTING THE CRRD STRRTED:
STRTCD handles the startup of the card (GOCARD does a
STRTCD, reads the urite protect, and sets up for the file
header). RBTFLG 1s 1n1tialized to O (soft error), the
first part of the card pronpt (for exanple "(OPY T0') 1s
uritten to the LC(D, and then the rest of the pronpt is
uritten. Then, wait for a key with SIGNIF. If the key 1s
RTTN or shift-RTIN, cause a hard error uith no error nes-

sage. Kill the key, and 1f 1t 1s RIN, start reading the
card. Otheruise, wait for another key. To start, save the
current delay, urite out the pull message uith no delay,
and restore the delay. Disable interrupts fron the key-
board, conparator, and PIL (pouer 1s left enabled 1n case
the battery dies during the card reader), and turn on the
card reader harduare. Read the HP header, and check to see
1f power 1s ok (1f not, cause hard error mith no nessage
-- 1f the pouer 1s ok then assume 1t w1ll last for the
rest of the card). See 1f the header natches the expected
header (the call to HPINTC allous plugin rons to change
this header). If ok, all done. Otheruise, report the soft
error (unrecognized header) and restart the track.

READING/HMRITING THE CRRD:
The harduare connunicates via tuo bytes of information.
Data 1s the first byte, and status 1s the second byte (all
reads and urites are 2 byte hunks reached via FF10H 1/0
address). The status 1s laid out as:

RD/WRT BITHO Set indicates a read operation, clear
indicates 3 urite operation.

CORDST BITH1 Indicates state (“ON"/"OFF") of card
reader. Set by CPU to 1nitiate card
reader, cleared by CPU to terminate
card reader.

STRSTP BITH2 Set by CPU to start card reader opera-
tion, cleared by (PU to stop opera-
tion.

unused BITHI This bit is not used for anything.
SPDHI BITH4 Set by card reader to indicate speed

error uas on fast side, clock count
too lou. Cleared by CPU.

SPDLO BITHS Set by card reader to indicate speed
error uas on slow side, clock count
too high. Cleared by CPU.

GENERR BITHE Set to indicate a general card error,
such as overflou. Cleared by CPU.

RERDY? BITH? WUhen set, indicates data buffer is
ready for next access (read fronm/urite
to), cleared by CPU to indicate access
conpleted.

Data 1s passed betueen the (PU and the card via an 8-bit
data buffer. For reads, RERDY? 1s set to indicate that 8
bits have been copied fron the card to the buffer, ready
for access by the CPU, which then clears RERDY? to in-
dicate access finished. For urites, READY? is set to in-
dicate that 8 bits have been copied to the card fron the
buffer, which 1s ready for the next 8 bits. The (PU clears
RERDY? to indicate that the buffer has been reloaded.

REAPCR and WRITCR are the general routines for talking to
the card reader harduare. They take as input the starting
point and nunber of bytes to be read (the starting point
1s the ran location data 1s to be stored in/taken fron).
They put the harduare in the appropriate node, and set E
to i1ndicate the node (E=1 1f read, O 1f urite). For reads,
the count 1s adjusted by -1 to conpensate for the harduare
uriting the last byte after 1t 1s shutdoun (the sane loop
1s used for both read and urite). For urites, the count is
adjusted +4 to nake sure there are at least 3 bytes of
padding for Titan and 1 byte of O for the harduare to end
1t’s read on. The paraneters start address, data end ad-
dress, and field end address (includes padding, etc) are
conputed and passed to the gut level routines GET-
BYT/NXTBYT and GORDHR. (Note: Titan required the pad bytes
at one tine, but does not any longer. However, code had
already been frozen by the tine this was known.)

GETBYT/NXTBYT sends the card reader the status/data, and
goes into a loop to wait for the RERADY bit to be set. This
loop decrenents a tineout count (initialized by INTDSA for
the first tine and then restored to internal count after
each byte -- this allous a long count to get the first

byte and then a short one for all follouing bytes). If the
count goes to O, then we have a tineout problen and a soft
error 1s reported. MHhen RERDY 1s set, the status/data 1s
resd and the ready bit 1s cleared. Next the error bits are
checked (1f any set then ERRS deternines which one and
reports the error -- 1f this 1s the last byte of a urite,

the errors are 1gnored). NXTBYT also checks to see 1f we
are at the last byte of data, and clears the STRART/STOP
bit 1f so (this will stop the read/urite after the current
byte 1s handled).

GORODUR 1s a loop uhich checks to see 1f we have done the
last byte of data. If so urite O, 1gnore read; otheruise,
save/qget the data. If the card reader uas stopped on the
last byte, then exit, otheruise call NXTBYT and go around
again,

ROVFY 1s a special read routine used by the VERIFY opera-
tion. It uses GETBYT/NXTBYT to read the card, but instead
of storing the data 1n ram, 1t builds up a tuo byte nunber
and adds 1t to an accumulator (uith urap around carry) to
build up a checksun of the data on the card. When the end
of the field 1s reached, 1t returns uith the conputed
checksun,

DRTR LOCRTION:

The starting point for data 1in RAN 1s found using the
DIRCLC routine, which uses FULTRK (maximun card length) to

deternine the location: :

(FULTRK*(FLHERD-1)+<f1le start>)

The length of the field 1s also set up by DTACLC.

CHECKSUNS:
The checksuns are all done as tuo byte nunbers added to an
accunulator with wraparound carry. The header checksun
takes the tuo byte result and adds the top byte to the
botton byte for a one byte result. For the header this 1s
done by VYHDIN/HEDSUR (VYHDSH uses TNPANZ instead of the
nornal file header ran). The data checksun 1s handled by
DIRSUN. Rll routines (and the RAN checksun routine [see
KR"CHK for nore)]) use the SUNIT routines for the actual
conputation. The SURMIT routines use RO for an end value,
R14 for a pointer, and R46 for the accunulator.

MESSRGES TO THE USER:
In addition to the pronpt, and error nescages, 3 nessages
are dicplayed for the wuser (all can be retrieved uith
sh1ft-FET). These are the si1ze nescage (nunber of trachs
needed for 1the copy), the catalog nescage (track N and W
of tracke), and the track neccage (what track was just

handled). These are handled by SZENSG, EXMMSG, and TRKASC
respectively. Rll routines use NUNOUT to translate nunbers
to ASCII, and MVBYTS to nove nessage portions to output.
EROUT- 1s used to put the nessage out for the user.

INFORMATION CHECKING:
Infornation fron the file header 1s checked during a read
to nake sure that:

the header uas read correctly, soft error
the sub-forrat 1s ok, soft error
the track 1s part of the file, soft error

in addition, 1f this 1s the first track read:

the filenare (1f given) natches the card, soft error
the passuord (1f given) natches the card, hard error
the file will f1t 1n RAN, hard error
the types (1f special [APPT]) natch, hard error
and the track 1d # 1s loaded (file checksun)

This 1s done by CHKHED. Rt the end of the data, the data
1s checksured and tested by CHKEND. CHKEND also updates
the track load table and finds the next needed track for
the track message.

EXTE NDING THE CRRD RERDER:
There are 3 wuays provided to extend the functions of the
card reader.

1) V.CARD HANDIO call. This is called fron TRKNSG before

2)

3)

the nessage 1s uritten out. It allous plugin rons to do
post processing of a track of data before the user is
pronpted for the next one. For exanple, to allow nore
than 36 tracks, this could be used to adjust the track
nunber for the user nessage, and nove the track fron a
buffer to the real location (this assunes the track uas
uritten uwith @ track nunber < 37).

HPINTC intercept. This 1s a ranm intercept which gets
called uhen the HP header and/or sub-format 1s checked.
If the HP header 1s being checked then R40/41 contains
"HP" and R40/47 contains the HP header. If 1t 1s the
sub-fornat, then R40/41 contains O and R47 contains the
sub-fornat., If the ron wants to do something, 1t can
e1ther return O/#0 flag and let the code carry on, or
1t can grab control and never return.

Neu device nane. This will cause the (OPY or whatever
code to do a V.FILE (or V.SPEC) HANDI call, uhich the
ron can pickup and process. The card reader routines
are avallable for use. For an exanple of this, see the
BCRD device 1n RY-RPR.

GLOBALS USED:

RBTFLG Flag to indicate type of abort desired.
CRDSTS Status bits for card reader machine
FULTRK Baxinun track size

HPHERD HP header buffer
HPINTC Intercept for HP header
LSTIRK Size of last track 1n bytes
RTINSVE Uhere to go after an error
SUBPNT Pointer to stack at entry to card reader
TRKTBL Table of tracks to be loaded.
WRTPRO WUrite protect buffer

File header buffer:
SUBF RN Sub-fornat of card
FLHERD Track ® and # of tracks

TRRSZE Track s1ze in bytes
FILSZE File s1ze in bytes
FILTYP Type of file
TREDTE Tine/date of file creation
FILNRE Filenane
PASHRD File passuord
FLECHK Checksun of entire file including directory
PRTSTS Partial statement status
PRT1ST Length of partial statenent on this track
PRTNKT Length of partial statement on next track
CHKSUN Conputed checksun fron card
HDCKSH File header checksun

COMNAND SYNTRX:

COPY “<filenarel>:{CARDIPCRD}[/<passuord>]" T0 "<filenane2>"
Copies card to rerory, 1f nenory 1s available. Copy will
be restarted 1f filenare on card does not natch the name
in the header. Misnatched passwords will also abort the
copy. If the reserved word "CRRD" 1s used i1n place of
the filenarne! specification then filenane checking uill
by passed. (RRD device ui1ll copy nomally, PCRD device
ui1ll nake the file private.

COPY "<filenanel>" T0 "<filenane2>:{CARD|PCRD}(/<passuord>)"
Copies nenory to card. Passuord will secure the card. If
the reserved word "CRRD" 1s wused 1in place of the
filenane2 specification then filenane on card uill be
the sane as ran. (ARD device will copy nornally, PCRD
device u1ll nake the file private.

PROTECT

Writes a write-protect code before the header. This re-
quires tuo passes of the card, (first writes data,
second urites protect).

UNPROTECT

Erases urite protect on card.

CAT {CRRD|":CARD"|":PCRD"}
Displays card header, does not copy file.

These connands can be entered for inmediate execution or

be included in a progran for progranmnatic execution. Rll
connands pronpt the wuser wuntil all tracks have been
processed. All connands can be aborted when prompting for
a card by typing RTTN. Rnything other than RTN, SHIFT-
ATTN, or RTTN 1s 1gnored.

Catalog card flouchart:

dommmmemcmmeeaeaas +

| CRT CRRD |
Aoeas+

I
v

dommmmemem e eeaas +
STRTUP |

save registers |
save stack pntr |
suppress CHPCHK |

#omcmeccccaaa +

|
v

doommmmmee+
| save return adr |
$rmmmmmme eena—an +

|
v

dmmmmmmmmm———a—a- ‘+

GOCARD |
pronpt user |
disable intrpts |
read HP header |

check HP header |
read wpr flag |

$omooemcmccacaas +

|
v

fommmmme4

| RERDCR |
| read fi1le head |
$omececmcecceaeas +

|
v

$omemmeccecee ‘.

| HEDSUA |

| check headr sun |
.‘+

|
v

o¢+

| INTENRA |
| enable intrpts |
mmmme‘4

|
v

| FRACHK |
| check subfornat |
$ommmmme+

|
v

$ecccccecocoacannas +

| EXNNSG |
| display track |
dmmmmmmmmceeeao +

|
v

de-coccmccacaccoas +
| CATLIN |
| display catalog |
oe+

|
v
e+
| SIGNIF |
| wait for key |
$mmmmet+

|
v

$o-cmemccceccccaan +
| ENDIT |
| restore regs |
| return |
dmmmmmmmmee+

Protect/Unprotect card flouchart:

oo+ docccccccccecaeaa- 4

| PROTECT | | UNPROTECT |
| set nsg & flag | | set nsg & flag |
$mmmme* $mcmmmccececce- +

I I
$ommmeY4(mmmemmmmee+

I
v

$ommmmmmmm—eeeaes ‘
| STRTUP |
| save reqisters |
| save stack pntr |
| suppress CHPCHK |
docceccoccccocanaa- +

|
v

d-cmmeccmmmmcaaan +
| save return adr |
$mcmmemccccccceaan +

|
v

$occccecsccaceccan +
| STRTCD |
| prompt user |
| disable i1ntrpts |
| read HF header |

| check HP header |
.+

|
v

dommmmmmmcccaaeas +
| WRITCR |
| urite wpr flag |
$ommmmmmmmmmmaas +

|
v

4mmmmmmmemem——aa- +

| INTENR ;
| enable intrpts |
$mmmmmmmmm—es+

|
v

$ecmcccecccccacnan +
| ENDIT |
| restore regs |
| return |
dommmmmeaeo+

Copy card controller flouchart:

$mcmemmccccceeeaa. +
| COPY ... CRRD |
| (CROCPY) |
R+

|
v

%
£ %

no * * yes
$o-eorececececoana ' load? Reeececeececeeoooo +

| * * |
| Aok I
I * I
| v
v $ommmmmee+
% | LORD |
2 | do load card |

% * yes dmmmmmmee+
* store? A--------- + |
£ | |

2 1 v |

* $ommmmcmee+ |

| I STORE | |
no | | do store card | v

| e+ *

| | ¢ o
| v % A
| dommmmmcee+ yes % x

| | return | et private? *
| drmmmmme+ | A *

| | * s
v | r %

dommcemmecce¢+ | *

| must be private | | | no
| store | | v

dmmmmememmeemeeea - + | dmcmmmmmmmmee¢

| | | return |
v | $dommmmcmee+

doemmemccecaeee + |
NKEPRV	
make basic priv	
(uarn if not)	
e+ *

| 2 %

v * load * no
$ocecemcemenneaeo- + * aborted? A---------------- +

| STORE |
| do store card |
dmmmmo+

|
\4

#occmmmcecccccaeas +

| restore access |
dommmmmmeecs+

|
|
v
e+
| return |

r
1

| yes
v

domeccccceccocana- +

| return |
R4

$ommcmemmeceece¢

| MKEPRV |
| nake basic priv |

| (warn 1f not) |
e‘.

|
v

dommmmmmmceeeeae ‘+

| return |
emmmmmrceemenaaaa ¢

Store card flouchart:

$o-ecmcaconcceanas +
| Store card |
domemmmceem e eeeaa +

|
v

dommmmmeeeeeee+

| GET STRARTED: |
| save reg-STRTUP |
| build file |
| header-HEDBLD |
| tell user |
| size - SZENSG |
$ocmmmcmcemceee- +

|
v

%
o2

2 2

* source/ * yes
* target nane *----¢

* sane? %
A 2 i
A2 |

* |
| no |
v |
ome¢+ |

CRYNDT	
get new creat	
date for target	
CRINDY	
Littt+ |

| |
v |

dmmemecmcecccccesceccan- Yoo mmmme e ’

|
v

emmmmmmeeee +

| FINISH HERDER: |
| get track size |
| get data chksun |

* neu * no

§ocecmccccoconcaan +
| compute partial |
| statenent info |
decmecmccmcccneann *

|
v
$Cremmmemne

|
v

LT+
| HEDSUN |
| compute header |
| checksun |
docccemccccacaaas *

|
v

$ommmmmeecceeneee +

| GOCRRD |
| get card started|
#ecccccccoocceacan +

l
v

*

o
2 %

' urite %
* protected? *--

| PROCESS CRRD: |
| urite fi1le |
| header-UWRITCR |

| urite data |
| WRITCR |

| enable interrupt|
| INTENR |

----- +

|
|
|
|
|

|
|
|
I
|
|

----- +

yes
--------- +

|
v

$oremeomceacanacaa +
| Error, restart |
ommmeme*

|
R * '

£ 2 |

A |
| |
v |

dmcmcccccccneeean + |
ver1fy card	
VERIFY	
enable interrupt	
INTENR	I
$occmmccccceeneaea + |

| |
v |
Hommmmmcecceccecccmaee +
|
v

*

2 2

* last * yes
* otrack? Eo-ce-ceceeee- +

R’ R l

L 2 v
* doccccececnceaaa-+

| | clean up, leave |
| | ENDIT |
| dommemcmcacaceae +

l
v

domcccccmacccannn +

| shou track nsg |
| TRKNSG |
e+

|
|

....................... ¢

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

Load card flouchart:

emmmme+

| Load card |
$ommmmmeeaao +

|
v

4o+

GET STRRTED: |
save reg-STRTUP |
get ran-RLCALL |

1n1t track table]
+S

|
v

$omccmemccccemccmaeaees >4

|
v

dmmmeme¢+

| GOCRRD |
| get card started|
dommmmeeeea +

|
v

$ocmecccomce+
PROCESS CRRD: |
read file |
header-READCR |

check header |
read data |
READCR |

enable i1nterrupt|
INTENR |

--------- ‘

|
v
L'

| clean up, leave |
| ENDIT |
$ommmmmme e emeeas *

shou track nsg ||
| | TRKNMSG |
| $ecmmmmemeecceaees +

| I
| |
$eccccccccccccoccacocnans +

Verify card flouchart:

L+
| Verify card |
e4

|
v

$mcmcmcmcee+

| GET STRARTED: |
| save old restart|
| 1nfornation |
$ecrmccccnnsacean-n +

|
v

$ecmcccaconcnaaaan +
| GOCRRD |
| get card started|
$emmmmccceme+

|
v

deeecmcsncccnmcacan +

PROCESS CARD: |

read file |
header-RERDCR |

verify header |
VYHDSH |

verify data :
ROVFY

$mmccmmcccecceeaa +

|
v

$omcmcmccmccaceran +
| restore old |
| restart anfo |
$mmmemcmccmcmeeeas +

|
v

dommmemmmeee+
| return |

Li

(__ _uelcore to _ _
deallocation

R
—)

2:10 PN TUE., 8 JuNe, 1982

Gary K. Cutler

2:10 Pn TUE., 8 JUNE, 1982

Deallocation

$omcemecmcmmececeecmceccccecccccceccamaaa$mmecmmmememe+

I l I
| DERLLOCATION | CHAPTER 1 |

1.1 Definition

Definition: Deallocation 1s a clean up process. HWhen certain
Basic connands are executed, which involve a paraneter file(s)
that 1s (are) allocated or an error in allocation has
occurred, the process of Deallocation 1s 1nitiated.
Deallocation deletes the progran’s environnent (if necessary),
replaces all relative pointers in the progran wuith variable
nanes or BCD line nunbers, 2zeros the values in the P(B
(Progran Control Block) and deletes the VPR (Variable Pointer
Area

1.2 Run/Call

At the conclusion of a RUN or CRLL statenent, the environnent of
the paraneter f1le 1s removed fron the environnent stack by
the routine POPENV. Houever,the Variable Pointer Rrea and the
Progran Control Block are still valid. This allows repeated
execution of a progran uithout repeated construction of the
VPR and PCB.

1.3 Invocation

Basic Connands that Deallocate: In order to ensure the integrity
of the systen, sone Basic connands require that the paraneter
file(s) be deallocated. To optinize these cases, a routine,
SRFE!, uas created. SRFE' opens the paraneter file, checks
the file for an allocated state and, 1f so, deallocates the
file by calling the routine, DRLLOC. If the parameter file 1s
currently running, then SRFE' calls DRLLAL to deallocate all
files 1n nenory. Follouing 1s & list of the Basic Connands
uhich deallocate the file(s) i1n menory 1f necessary:

2:10 PR TUE., 8 JUNE, 1982

Deallocation

Rt

Connand

copy
DELETE
eI
NERGE
PRINT
PURGE
RENANE
TRANSFORN

1.4 Maintaining the Environnent

the conclusion of progran execution, the progran’s
environnent, in mnany cases, 1S renoved fron the environnent
stack. The routine POPENV, which renoves the prograns
environnent, 1s called uhen an END statement is executed at
runtine. Thus, 1n order to maintain the environnent,
prevention of execution of an END statement 1s necessary.
This can be acconplished i1n three uays.

1) an error occurs at runtine (not during allocation)

2) 1nsertion of a SIOP statement before the END
statenent

3) hitting the RTIN key before executing an END
statenent

1.5 Variable Nanes

Nane forn: Rt the 1nvocation of the deallocator, all variables
have been replaced by relative pointers to their entry 1n the
VPR, The routine VDALOC has the responsibility of locating
the variable nane forn 1n the VPR and converting this into
RSCII code. To acconplish this the routine RSCNAN 15 called.
RSCNAM ands out all bits except for the ASCII nane i1nformation
(see Pointer Rlocation Documentation) and subsequently
replaces the relative pointer uith the original RSCII code.

2:10 PR TUE., 8 JUNE, 1982

Deallocation

1.6 Deallocation Routines

DALLAL: DALLAL 1s the entry point for deallocating all files in
nenory. The sequence of operation 1s as follous:

1) pending error infornation 1s saved
2) locates directory and

3) opens file
b) checks for allocated state
¢) if allocated, calls DALLOC to deallocate
d) checks for end of directory

3) cleans up the environnent stack (except for
calculator environnent)
4) restores pending error information

DALLOC: DALLOC is responsible for deallocating the file 1n R40.
Thas consists of:

1) clearing the flags DFPARY, DCLCOM, NXTCOM and
DINFLG

2) inmtialize OPTBRS to the wundefined state
(8001h)

3) replace all relative pointers for variables
uwith their ASCII nane

4) replace all relative pointers for line nunbers
uwith their BCD value

S) initialize all values i1n the PCB to zero

6) delete the VPR

Input:

ERRSTP - 1If zero, deallocates all variables in
the current progran
- If non-zero, then deallocation ceases at
the token pointed to by ERRSTP
- If non-zero, then allocation uas halted
by an error. This should be the only tine
ERRSTP is set.

P.LEN - the length of the progran before
allocation

P.CLEN - the length of VPR before PAL started

2:10 PN TUE., 8 JUNE, 1982

Deallocation

(used 1n recovery of errors from calcprog
allocation)

NEXT: NEXT 1s the rnain Jloop for variable pointer deallocation.
Deallocation (like allocation) 1s keyed by the class of the
current token. Tokens with class >z 30 (octal) are
non-allocatable and therefore deallocation 1s unnecessary.
Tokens with class < 30 (octal) have been allocated and thus
sone type of deallocation i1s needed. GETNXT 1s the routine
uvhich obtains the token class for each token seen and NEXT
then 1nitiates the appropriate deallocation routine (af
necessary) by table addressing. Here follous the deallocation
table, with the deallocation routine name, the token class
this routine 1s responsible for and 3 description of the types
of tokens 1n the particular class.

2:10 PN TUE., & JUNE, 1982

Deallocation

1.7 Deallocation Table

Routine Class Descriptor

INIRON -1 RON class > 56
XDALLY 0 End-of-line
VDRLOC 1 Fetch variable
BININT 2 Integer constant
SVALD 3 Store variable
SKPCON 4 Real constant
SKPCON 5 String constant
DRLFNC 6 FN call
LINEDA 7 Jurip true line
LINEDR 10 Goto, Gosub
RELINP 1" Jurp relative
DALFN 12 DEF FN statenent
FRET 13 DEF END statenent
RONCLA 14 Ext ROM (obsolete)
FRRET 15 Option base (RTN)
FRETY 16 Function return
FRRET 17 Function let (RTN)
SKPNX1 20 Data
DIND 2 Din (RTN)
SHORTD 22 Short (RTN)
INTD 23 Integer (RTN)
connp 24 (just a RIN)
LINEDR 25 Else junp line
RELINP 26 Else junp relative
LINEDR 27 Using line

1.8 Handa Call

The V.DRLO hand1 event 1s generated when a token class >
56 (octal) 1s found. If a basic token, created by an external
RON, requires a unique deallocation routine not found 1n the
systen deallocator, then the prinary attribute of this token
should be > 56 (octal).

2:10 Pn TUE., 8 JUNE, 1982

Deallocation

1.9

DF PRR1
DINFLO
DIRECT
ENDLIN
ERLIN
ERRSTP
ERRTHP
OPTBRS
PCR
PRFILE
PRNANE
RONMOFF
ROMPTR
VRRPTR

1.10

Globals

Location Description

8386 beginning of user defined function
838t type of variable (1integer,short or real)
85%4R beginning of directory
R999 internal endline ¥
8378 lIine ¥ 1n uhich error occurred
8391 location at uhich PRL quat
836E tenporary for error infornation
8282 option base flag
8240 progran counter
8243 loc of paraneter file
8263 nane of paraneter file
82R5 offset to nake ROMPTR absolute
82R3 relative pointer to current RON
838F pointer to variable environment location

Cross References

Menory Nanagenent Docunent RH"NEN
Pointer Rllocation Docunent GC"RLO

Environnent Rllocation Docunent G6C"ALD
Handa Call Docurent RH"HDI
Source File RH&DAL
Global File KR&GLO

2:10 PR TUE., 8 JUNE, 1982

Deallocation

Table of Contents

1 DERLLOCARTION ot e e e e e e e e e e e e e
1.1 Defimataion e e e e e e e e e e e

1.2 RunfCall e e e e . .« e .
3 Invocataon:® . L L L L L s e e e e e e e e e e e e e e

1.4 Naintaining the Environment
1.5 Variable Names v v v i et e e e e e
1.6 Deallocation Routines e e e e e e e e e e
1.7 Deallocation Table ¢ o v v v v v v o
1.8 Handa Call e e e e s
1.9 Globals, c e e e e e e
1.10 Cross References e e e e e e e e e e

2:10 PR TUE., 8 JUNE, 1982
vii

Deallocation

DECONPILER

Gary K. Cutler

2:20 Pn THU., 15 JULY, 1982

The Deconpiler

Aoemeeeemecmcceccececcccecccmceee———-$mmememmemeceaeaae ¢

I l
DECONPILER | CHAPTER 1 |

1.1 INTRODUCTION

Decorpiling 1s the process of listing a progran or
staterent. Internally, 1t requires the reconstruction of
input code. The tokens, which have been parsed 1into RPN and
distributed 1n the systen, nust be re-assenbled into 1nfix
notation. Thus deconpiling 1s actually the reverse of parsing
and conpiling.

Deconpiling 1s a tuo-stack operation. An expression
stack 1s wused to reconstruct expressions fron RPN to their

original forn, and an output stack 1s used to buffer the
output. R12 1s used as the expression stack pointer.

In deconpilation there are tuo 1nportant paraneters of a
given operator-- 1its precedence and 1ts position on the R12
stack. Follouing 1s list of operators and their precedences:

OPERRTORS PRECEDENCES (octal)

any operator

cemeccccrcncccwe|
|

enclosed 1n ()’'s | 100

TtTttt{ """;;"""

VeTI
CorereT
govT
eeTYT
ooT; """";T

Uhen a staternent 1s decorpiled, first the line number and
then (1f present) a LET token are put on the output buffer,
because they don't change. The rest of the procedure 1s

2:20 PN THU., 15 JuLY, 1982

The Deconpiler

perforned uith the expression (R12) stack. When variables are
parsed, their order 1s never changed. So, 1n deconpilation,
the variables are put on the expression stack as they appear

in the parsed statenent, ulth each variable nane preceded by a
stack narker (OE) and 1ts token. Rs operators are
encountered, they are inserted in the most recent position.
When an operator 1s inserted, 1ts precedence and location 1s
checked against the stored precedences and locations of the
previous operators that were inserted. The routine OPTST then
tests the current operator’'s information against all previous
operators’ infornmation to determine 1f parentheses are needed
(see appendix for more detailed information).

In deconpiling, the system processes each token and uses
1ts class (the token class 1s the tuo right most octal digits
of the token) to determine hou the token 1s to be deconpiled.
The token class
particular
class has

class, 1.e.,

1ts oun routine(s)

is code for the routine uwhich deconplles the
3 table look-up 1s implied-- each

to deconpile that class. Here
are sone connon token classes, and their action:

CLRSS

o
a
u
g

W
A
N
D
W
N
—
-
O

~
n

-
N

~
N

N
D

O
b

51

52

55

TOKEN-TYPE

End-of-l1ne
Fetch variable
Integer
Store variable
Nuneric constant
String constant
Subscript e.g. R(3)

DIN subscript
Prints
Other reserved words

Miscellaneous output

Not seen by user
Unary operator

Binary operator

String unary operator
String binary operator
Systen function

RCTION

Unstack (dunp line out of stack).
Send to expression stack.
Send to expression stack.
Send to expression stack.
Send to expression stack.
Send to expression stack.
() to expression 1f token odd,
else (,) to expression stack.
Action sane as class 32.
Unstach, and push , to output.
If : then unstack; else output
reserved, and unstack.
If then push to expression stac
and unstack; otheruise output
Ignore e.q9. inplied LET token
Insert after nost recent stack
narker and deternine the
necessity of parentheses.
Replace nost recent nissing
operator in expression stack

and deternine the necessity
of parentheses.
Sane action as class 50.
Sane action as class 51.
Conpute the nurber of
paraneters, locate the paraneter
string, insert the function
nane and parentheses 1f

2:20 Pn THU., 15 JULY, 1982

The Deconpiler

necessary after the most
recent stack narker,

56 String systen function Sane action as class S5.

The nunber of operators already deconpiled 1s stored in
PRECNT. The precedences of the operators and their positions
on the expression (R12) stack are saved 1n an array addressed
by LAVRIL.

The follouing routines are inportant to the deconmpiler:

1) pecon 6) FETVAR
2) DCLINM 7) STOVAR
3) BSCLN 8) BINCON

4) SYSFUN 9) EXPAND
5) BINOP 10) UNSTRK

1) DECON
This routine 1s the entry point 1into the decorpiler, and
clears PRECNT and then calls ODCLIN# (PRECNT contains the
nunber of operators deconpiled).

2) DCLINM
This deconpiles the line nunber-- the line nunber is converted
to decimal, nornalized, and put in the deconpilation buffer,
folloued by a blank. The pointer into the decorpilation
buffer (R30) is then saved, and control 1s passed to BSCLN.

3) BSCLN
BSCLN (and ensuing subroutine calls) deconpiles the rest of
the line. RAs each token 1s obtained--via GETNEXT--1ts token
class (right nost tuo octal digits of token) 1s checked, and
the proper deconpilation for that class 1s called.

4) SYSFUN
SYSFUN deconpiles systen functions, by looking 1n the
functions RSCII table for the ASCII nane and paraneter count
of the function. The ASCII nane 1s pushed on the expression
stack, and then the closing parentheses nust be added; space
is 1nserted 1n the expression stack (by E¥PAND) and the
parenthesis 1s 1nserted in the proper location.

5) BINOP
BINOP decoripiles binary operator analogously to SYSFUN. The
ASCII for the operator 1s inserted 1n the expression stack (in
the rnost recent spot betueen two variables or constants),
deternination of the necessity of parentheses 1s nade, PRECNT
1s increnented by one, the precedence and location of the
operator are then stored at the locatinon pointed to by LRVAIL.

2:20 PN THU., 15 JuLY, 1982

The Decoripiler

6) BINCON
BINCON converts a three byte 1integer i1nto a nornalized real
constant for output to the LCD.

7) EXPAND
EXPAND 1s called uhen space 1s needed on the expression stack
betueen T0S and the R12 stack pointer. To do this, EXPAND
calls RALLOC, which in turn, call ADJUST and COPY.

8) FETVAR

FETVAR deconpiles variable tokens that are wused 1in an
expression. FETVAR pushes E, token class, and the variable
nane (E 1s a narker on the expression stack for any variable)
on the expression stack.

9) STOVAR
STOVAR does the same thig as FETVAR for variables being
assigned by the statenent.

10) UNSTRK
UNSTAK 1s the routine that processes an end-of-line or token
class 41, by dunping the expression stack 1into the
deconrpilation buffer.

1.2 GLOBALS

Nare Location Description

DCALEN 837F deconpile length (not greater than 96)
DCOVFL 82(8 overflou flag
EDFILE 8245 Jocation of current edit file
LAVARIL 8258 pointer to operators’ location and prec
NXTHER 8253 next 1n avallable user nenory
ONF LG 8303 on gosub goto flag
PRECNT 8364 ¥ of deconpiled operators
PRFILE 8243 loc of current parareter file
RM.ASC 0004 of fset to ROM RASCII table
ROMOFF 82R5 of fset to nake ROMPTIR absolute
RONPTR 82R3 rel pointer to current RON
108 8257 current top of stack

1.3 HANDI CALLS

V.DEC -- token with attribute >= 57 (octal)

2:20 PR THU., 15 JULY, 1982

The Deconpiler

1.4 CROSS REFERENCES

Hand1 Call Docurent

Internal Code Exanples Docunent
Source File
Global File

2:20 PR THU., 15 JuLy, 1982

RH"HDI
RH"ICE
KR&DEC
KR&GLO

The Deconpiler

§ecemcccercccncecccrcccmcmcrccccccacrcccccaraccnan fevcecncccccncaccnaa ¢

l l l
| CLOSER INSPECTION | CHAPTER 2 |

l

2.1 REGISTERS

R12: expression stack pointer

RY0: decompilation buffer pointer

R76(LARVRIL): ptr to precedence and location of all previous
deconpiled operators in current line

R7S(PRECNT): ptr to count of deconpiled operators in current line

R23: current token

R24: ptr into current line

R36: initrally, token class

R45/46: current line number

R47: nunber of bytes left in current line

T0S: beginning of deconpiled line on R12 stack

PRECNT: # of deconpiled operators in current line

LAVRIL: precedence and location of all previous decompiled operators
1n current line

2.2 EXPAND and OPERATORS

EXPAND: The routine EXPAND 1s called when space 1s needed on the
R12 stack internediate to the T10S and the stack ptr. At
entry, R36 contains the location in the R12 stack at which the
required space wil]l be allocated, and R32 contains the nunber
of bytes of space needed. The actual expansion 1s done in the
routine ALLOC which also calls ARDJUST and COPY. This routine

2:20 PN THU., 15 JULY, 1982

The Deconpiler

takes the contents of each address from the initial point doun
through the R12 stack and copies then sequentially starting at
the ;nputted (R32) nunber of bytes after the initi1al address
(R36).

2:20 PN THU., 15 JuLYy, 1982

The Deconpiler

EXANPLE: Expand three bytes at R36 ptr.

R12 stack pre-expand R12 stack post-expand

R A
B B
% ¢<--R36 ptr % <--R36 ptr

2 2
SIN <--R34 ptr 2 «--R¥M ptr
F ~

«--R12 ptr 2
SIN
F

«--R12 ptr

Note: The only ptr into the R12 stack uhich 1s ad)usted 1s the R12
stack ptr.(R36 ard all other pointers renain absolute, not
relative, to the stack)

STRCK MARKERS: E: place narker for unary and binary
operators, systen functions and user
def fns

F: keys end for the routine UNSTRK

PRECEDENCE: operator precedence(octal)

(any op) 100
~ 14

Y 12
4,-,unary - ?
log bin rel 6
log and q
log or 2

In deconpilation there are aluays tuo characteristics of
an operator under consideration, precedence and position (1n
R12 stack). Tuo important values in this procedure are PRECNT

(the nunber of operators already deconpiled) and LRVRIL (all
deconpiled operators precedence and location on the R12
stack). Rfter each neu operator 1s obtained and 1ts position
on the R12 stack 1s located, tests are nade, relative to each
preceding operator’s precedence and location, to deterrine 1f
parenthesis are needed for a2 nested expression.(Note: 1f user
used parenthesis 1n an expression uhere not required, the
above test, i1n nany cases, will fail and after decompilation
no parenthesis uill appear)

EXANPLES: not required not required not requlred
preserved elininated elininated

2:20 PH THU., 1S5 JULY, 1982

The Decorpiler

USER: x=za*(b/c) x=(a%*b)/c x=a*(b%c)
PRARSE : xabc/* xabtrtc/ xabc”™
DECON: xza*(b/c) x=atb/c x=a*b”c

PREC LOC STORRGE: (parsed expression) RBC + *EF 2" / -
(user expression) R*(B8+C)-E/F72

<--R76(LAVAIL) (decreasing stack)

<--original LAVARIL

2:20 PN THU., 15 JuLy, 1982

Yhe Deconpiler

2.3 DECONPILRTION TRBLE

Routine Class Token

DEF INIRON -1 RO class > 56
DEF EOL 0 end of line
DEF FETVAR 1 fetch variable
DEF BINCON 2 bin i1nteger
DEF STOVAR 3 store variable
DEF CONST 4 nun float or str const
DEF SCNST 5 string constant
DEF UFNCAL 6 user function call
DEF JnPLw 7 conditional jnp line W
DEF GOLINE 10 goto and gosub
DEF JNPREL n Jnp relative
DEF UFNDEF 12 user fn def
DEF FNEND 13 fn end
DEF EXTRON 14 external ROM
DEF RESHD 15 option base
DEF FNRTN 16 user fn return
DEF FNASGN 17 fn assign
DEF RESWD 20 data
DEF RESHD+ 2 din/real

DEF RESUD+ 22 short
DEF RESWD+ 23 integer
DEF INIROR 24 undef 1ned
DEF EJNPH 25 else jrnp line W
DEF EJNPR 26 else jnp relative
DEF ULINH 27 using line W
DEF ON 0 on
DEF PU= N store
DEF SUBSCR 32 subscripts
DEF DEFKY 33 def key
DEF DINSUB M din cubscripts
DEF PRNEOP 35 print EOL
DEF PRINTS 36 print stuff
DEF INPUT 7 input ulu/o a pronpt
DEF RETURN 40 1nned execute
DEF RESHD 41 other reserved words
DEF nISC 42 nisc output
DEF NSTOR 43 nulty store
DEF RETURN 44 nisc 1gnore
DEF PRTFUN 45 print functions
DEF SYSFUN 46 nuneric pseudo-function
DEF SYSFUN 47 speci1al filenanes
DEF UNOP 50 nun unary operator
DEF BINOP 51 nun binary operator

2:20 PR THU., 15 JULY, 1982
10

The Deconpiler

DEF
DEF
DEF
DEF
DEF

UNOP$
BINOPS
RETURN
SYSFUN
SYSFNS$

52
53

56

str unary operator

str binary operator
1nned execute
nun function
str function

2:20 PN THU., 15 JuLY, 1982
"

The Deconpiler

12

RCTION OF DECORPILER ON R BRASIC PROGRAN STATEMENT

USER: 10 R=X*(Z+SIN(Y))72/T

PRRSE: 10 A X Z Y SIN+ 27T/ * [STORE TOK]) E

DECON, the systen deconpiler, 1s our entry for each line
to be deconpiled. DECOM clearc PRECNT, ONFLRG, and CORFLG
then jurips to DCLINM to deconpile the line nunber. The line
nunber R,0 1s converted to decinal, nornalized and placed in
the deconpilaticn buffer, folloued by a blank byte. The ptr
(R30) to the decon buffer 1s saved, pointing to the second
byte after the line nunber. C(ontrol 1s nou passed to BRSCLN
which will direct the remainder of the deconpilation of this
line. Rs each token 1s obtained (GETNXT) 1ts token class
(right nost tuo digits of the prinary attribute) keys the
proper decompilation routine. In the above exarnple R with
token class 3 directs control to STOVAR. STOVAR replaces R's
token (11) uith the token 1 (numeric variable) and then pushes
a stack narker (E), the token (1) and the variable name (R)

onto the R12 stack. X uith token class 1 passes control to
FETVAR. FETVAR exanines the type of variable (array, nuneric)
and then pushes E, 1, and X onto the stack. In a comparitive
nanner the variables Z and Y are also nanipulated, leaving the
R12 stack, at this tine, as:

R12 stack: [tos) EVRE VY XE1TZETY

SIN, token D8, uith token class 55, directs control to
the systens function deconpile routine, SYSFUN. SYSFUN
utilizes the token D8 to locate the RSCII name fron the
routines RSCII table and the functions paranmeter count. The
RSCII nare .s pushed to the decon buffer and the location of
the nane (on the R12 stack) 1s deternined by the paraneter
count. Since, 1n this case, the count 1s one, the highest
addressed £ 15 located on the stack and EXPAND 1s called to
allocate three bytes of space for the insertion of SIN. Once
the appropriate space has been allocated SIN 1s pushed 1nto
the stack. (Note: In the case of a systen or user defined
function, the stack narker 1s NOT overuritten. This sane
narker nust be preserved as a locator for the appropriate
unary or binary operator.) Before leaving SYSFUN. houever, the
paraneter nust be inclosed. The appropriate location for the
parenthecis are Jlocated, the R12 stack 1¢ expanded and the
parenthesis are placed. The nevt token 2B (+), uith class S1,
directs control to BINOF. BINOF locates the RSCII nane and
sa.es 1t on the decorn buffer. The highest addressed £ 1s
located and the ¢+ overurites the [on the stack. PRECNT 1

2:20 PR THU., 15 JULY, 1982

The Deconpiler

increnented (now 1) and the precedence and location are stored
beginning at LAVRIL. 2 (token 1R) with class 2, sends control
to BINCON. BINCON converts the three byte integer to an eight
byte nornalized real and replaces the token 1R uith the token
4 (real constant). E, 4, 2 (eight byte real) are then pushed

onto the R12 stack. The token 30 (”) and 1ts class, 51, are
exanined and control passes to BINOP. BINOP obtains the RSCII
narie and places the nane 1n the decon buffer. The correct
narker (E) 1s located and the = overurites into the stack.
Since PRECNT > 0O the previous operators are recalled fron
LAVAIL, one by one, and each precedence and location 1is
corpared to that of the current operator, in this case ~. If
any comparison indicates the existence of a nexted expression,
the location 1s deternined and the parenthesis are inserted.
In this case a nested expression 1s recognized, the R12 stack
1s expanded and parenthesis are appropriate placed. BINOP
then replaces the precedence of the nested operator (in our
case +) to 100 (octal), increments PRECNT and stores the
pertinent information at LRVRIL.

The follouing token 1 (T) and 1ts class, result in E, 1,
T being placed on the R12 stack. 2F (/) uith class 51 1s nou
exarnined and control 1s directed to BINOP. The RSCII nare 1s
found and stored on the decon buffer, while the next stack

narker € 1s located. / overurites the narker and the
precedence and location conparisons are mnade. RAll fail, so
PRECNT 1s 1ncrenented and all operators precedence and
location are restored. The last operator *, token 2R uith
class 51, 1s exanined and control 1s again passed to BINOP.
Rs above, the procedure results 1n the * overuriting the
appropriate E, comparisons nade and failed, PRECNI
increnented, and the operators precedence and location
restored. The next token 8 (store value) sends control to
PU=, wuhere the next available stack narker 1is located and
overuritten with an =,

The end of line token (E) is obtained, uhich eventually
directs control to UNSTRK. UNSTRK trashes the first stack
narker, trashes all variable tokens, replaces any renaining
stack narkers uith connas, converts all numeric values to
decinal forn and finally places the deconpiled statenent onto
the deconpilation buffer.

Status of R12 stack and deconpilation buffer before EOL:

R12 stack: [tos) ER=X* (Z +SIN(Y))~2/1

Decon buffer: 10

2:20 PR THU., 15 JuLy, 1982
13

The Deconpiler

14

RCTION OF THE DECOMPILER ON THE PROGRRM STATEMENT

USER: 20 DEF FNR=SQR(X"2¢Y"2)

PARSER: 20 [DEF FNJ R X 2 =Y 2 ™ + [SQR)

In the above exanple, deconpilation initiates wuith DECON
and then directs control to BASCLN. BRSCLN gets the line
nunber (decinal) and places this on the deconpilation buffer,
The next token 1s obtained (GETNXT) and control 1s passed to
UFNDEF (user def fn decon routine). UFNDEF places the ASCII
code for DEF FN on the decon buffer and sends control to
FNNARN. FNNRNR locates the nane of the user def fn (R) and
sends this to the decon buffer. Control returns to UFNDEF,
uhich trashes the relative jump and obtains the paraneter
count/type byte. The nunber of paraneters 1s deternined and
stored (R34) and the relative PCR 1s trashed. In our case (no
paraneters) an end of line token is tested. If not, then an =
1s pushed to the buffer and control 1s returned.

Decon buffer: 20 DEF FNR=

Subsequently, a stack narker (E), the token (1), and the
variable nane (X) 1s nou pushed to the R12 stack. The next
token (1R) sends control to BINCON, which converts the three
byte integer to an eight byte real and places this on the
stack, preceded by an t and the token 4 (real constant). 30
() 1n1tiates a junp to BINOP, which locates the RSCII nane
and stores this on the decon buffer. The proper stack narker

1s located and overuritten by ~. PRECNT 1s increnented and
the precedence and location of © are stored beginning at
LAVAIL. E,1,Y are pushed to the stack, 2 1s converted to an
eight byte real and pushed after € and 4 and the next token 30
(”? 1s obtained. Control once rore returns to BINOP. ~
overurites the appropriate narker, 1its precedence and location

are cornpared the the previous operators, which, 1n this case,
causes no further action other than increnenting PRECNT and
storing the operators’ precedence and location. The final
operator 1s obtained and exanined. BINOP again resunes
control and overurites the narker with ¢+. The conparisons are
nade, no nested expresions are recognized, PRECNT 1s
increnented and the operators’ precedence and location are
stored. (SQR) 1s exarmined and control 1s passed to the
systen's function routine SYSFUN. The RSCII code 1s obtained
and stored on the buffer. The stack narker 1s located and
EXPAND 1s called to allocate three bytes of space on the R12
stack. SOR 1s 1inserted 1into the stack the beginning and
ending of the paraneter are located, tuo bytes are allocated

2:20 PN THU., 15 JuLY, 1982

The Decompiler

and the parenthesis are inserted. The end of line token
directs control to EOL which in turn passes control to
UNSTRCK. UNSTACK trashes the initial stack marker (recall
that DEF FNR= 1s already on the decon buffer uith the ptr
(R30) after the =) on the R12 stack, trashes all variable
tokens, and pushes the remaining decompiled statement onto the
deconpilation buffer.

Status of R12 stack and deconmpilation buffer befor EOL:

R12 stack: [tos) E SOR (1 X ~4 (2] + 1 Y~ 4 [2))

Decon buffer: 20 DEF FNR=

2:20 PN THU., 15 JuLY, 1982
15

The Deconpiler

16

RCTION OF THE DECOMPILER ON THE PROGRAN STRTEMENT

USER: 30 IF L$=CHR$(?7%5) THEN 180 ELSE L$= "="

PARSER: 30 L8 7 5 * CHRS = (JTRUE) 150 [JREL) L$ "=" [STORE)

Dispensing uith the 1ni1ti1al action upon the line nunber
ue turn to the action upon the statenent itself. The variable
L$ 1s deconpiled by the routine FETVAR, the constants 7 and 5
are handled by BINCON and the operator, *, 1s acted upon by
BINOP. The result of this deconpilaton 1s

R12 stack: (tos) E 1 $ LE 4 [7]) * 4 [5)

The following token (2 (CHRS) and 1ts class 55, directs
control to SYSFUN. The sequence of action 1s as follous; the
RSCII narme for CHRS 1s obtained and saved on the buffer, space
1s allocated for insertion of the name, CHR$ 1s pushed in, the
nunber of paraneters 1s deternined, the paraneters are located
ond space 18 allocated for the parenthesis, and finally the
parenthesis are inserted. 35 (=) signifying a binary op sends
control to BINOP which locates the next available E and pushes
the = to the stack. Since the precedence of = 1s 6, no tests
are nade for a nested expression,

R12 stack: [tos]) E 1 & L = CHRS (4 [?]) * 4 [5])

The jump line ® token, 18, sends control to JNPLM.
Rction 1s nou directed towards the decon buffer. IF 1s placed
on the buffer and control 1s passed to UNSTRCK, which unstacks
the R1Z stack and places this part of the statenent on the
buffer, folloued by then and line W.

Decon buffer: IF L8=CHR$(7%5) THEN 180

Control returns and 1C, jump relative, 1s exanined. The
routine initiated 1s EJAPR. First & check for ELSE LINE # 1s
performed. The hey 1s not found so the routine assunes ELSE
STRTENENT. The ELSE 1s placed on the decor buffer (the nunber
of bytes for rel jump 1s trashed). Control 1s returned and
the renmaining statenent 1s deconpiled and pushed on the R12
stach. The EOL 1s obtained, the remaining portion 1§ cleaned
up and placed on the decon buffer.

2:20 PR THU., 15 JuLy, 1982

The Deconpiler

Status of R12 stack and deconpilation buffer before the ??

R12 stack: [tos] E1 $ L =6§" ="

Decon buffer: 30 IF L$=CHR$(7*5) THEN 180 ELSE

2:20 PN THU., 15 JuLY, 1982
17

Tne Deconpller

Table of Contents

1 DECOMPILER« v v v v v v vt e e e e e 1
1.1 INTRODUCTION v v v v v v v o v 1
1.2 GLOBALS o v v v s i e e e e e e e 4
1.3 MANDT CRLLS v v v v vt e e e e e e 4
1.4 CROSS REFERENCES S

2 CLOSER INSPECTION ¢ v v v v v e v o o o o 6
2.1 REGISTERS ¢ v v v v v v v v oo 6
2.2 EXPAND and OPERATORS ¢ . ¢ ¢ o 6
2.3 DECOMPILATION TRBLE 10

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

2:20 PN THU., 15 JULY, 1982
Xv111}

The Deconpiler

|
WHAT IS ICE :

Ice 1s frozen water, sonething looking like frozen uater, dianonds,
or 3 serving of 1ce crean in Great Britan. ICE 1s the Internal Code Ex-
anples. In this docunent one uill find a list of all the mainfrane
tokens, a collection of exanples of the uses of all the tokens, all the
data types that appear on the R12 stack, and a table of the attribute
routines for deconpile, pointer allocation and deallocation.

HOU TO RERD THE TOKEN TRBLE FORMAT |

The file that contains the runtine

code

The token's attributes

The nane of the runtirne routine

The nane of the parse time routine
In this case there 1s no parse tine
routine.

token nunber
in hex

nane of the
token

____ RSCII string
! for the token

| (1n this case
| no string)
vB
S

—
—

€
e

a
—
—
c
—

®

€
o
s
e

o
t
o
—
—
—
—
—
—
—
—

—
—
—
—

€
e
e
.

c
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

€
o
s
e
s
o

c
o
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

€
o
o
e
e
—
—
—
—
—
—
—
—
—
—
—
—
—

—
—
—
—
—
—
—
—
—

store nun <none> STOSV 0,31 RH&VAR

input fron R12
nunval - value to be stored <--- top value on the R12 sta
naneforn - nane of target variable
(dinflag) - if tracing, tracing infornation <-- value conditionally

(col) - 1f tracing, tracing infornation on R12
(rou) - 1f tracing, tracing infornation

nunvalptr - pointer to target value
output on R12

(nunval) - 1f nultistore, value being stored

A

list of data objects placed on and renoved fron
the R12 stack

LIST OF LATR OBJECTS ON THE R12 STRCK |

naneforn - 1s the internal representation of a variable. The tuo bytes
that rake up the nane forn are layed out as follous:

bits
7 66 % 4 3 2 1 0

byte 1- T3 T2 11 T0 N3 N2 N NO
byte 2- A1 RO FO L4 L3 L2 L1 O

T3 - nuneric
string-

O

"w
ou

12 - sinple
array-

O

(11,70) - real

integer

short

(not used)n
o
n

o

o
u
w
o
u

N - 0-9 = 0 through 9 after letter in
variable nane

blank
greek variable

1

S
W
A
=
O

(N3, N2, N

- 10
-1

.

W
)
=
O(R1,R0) local variable
renote variable \
paraneter variable) remote access
connon variable /“"

w
u
w

FO - variable
function-

0
"
n
o
n

(L4, L3, L, LY, L0) - (firet letter)-"R"41 = first letter
of variable

dinflag - 1 byte that 1s 1 1f 1 dinensional array and O 1f tuo dinen-
s10nal array

rou - ¢ bvte si12e of the rou dinension
col - 2 byte ¢1ze of the cclunn dinercion
rurval - & byte nureric value

string - strptr on top the R12 stack followed by a strlen
strlen - 2 byte value of the nunber of characters in the string

strptr - 2 bytes pointer (may be relative to R12) that points to a
strval

bseptr - a strptr that points to the beginning of a string fron which
3 substring u1ll be extracted.

FNparan - 4 or 8 bytes as deternined by the FNparntype that 1s at R10

l l
| LIST OF DATA OBJECTS IN THE CODE STRERM (from R10) |

strlent - 1 byte length of the string
VPRptr - 2 byte pointer relative to the beginning of the file
reljnpaddr - 2 byte pointer relative to the beginning of the file

pointing to the code to be executed next
FNblockptr - 2 byte pointer relative to the beginning of the file that

points to the function parameter block
FNparncount - 1 byte count of the nunber of paraneters
FNparntype - 1 byte flag indicating the type of the function paraneter

expected (80 1f nuneric and 81 1f string)
strval - n bytes where n 1s deterrined by context this 1s the actual

string of characters.

l l
| THE TOKEN TRBLE I
I I

0 ERROR ' <none> ERRORX 0,44 KR&TOK

1 nun value ' <none> FTSVL 0,1 RH&VAR

input fron R10
VPRAptr - relative pointer to variable that contains the desired valu

output to R12 stack
nunval - the value of the variable

2 get VPR addr '’ <none> SVADR 0,1 RHSVAR

input fron R10
VPRptr - relative pointer to variable that contains the desired valu

output to R12
VPRptr - sane relative pointer

J get string <none> FISTL 0,1 RHEVAR

input fromn R10
VPRptr - relative pointer to variable in VPA

output to R12
strptr - pointer tc string value
strlen - length of that string

4 nun constant <none> ICONST 0,4

input from R10
nunval - nuneric constant to be placed on the stack

output to R12
nunval - the nuneric value just fetched

5 ‘'"quoted str '’ <none> SCONST 0,5

input fronm R10
strlenl - the length of the string
strval - the characters in the sting

output to R12 stack
strptr - location of value
strlen - length of string

6 unquoted str '’ <none> SCONST 0,5

input fronm R10
strlenl - the length of the string
strval - the characters in the sting

output to R12 stack
strptr - location of value
strlen - length of string

7 store string '’ <none> STOST 0,3

1nput fron R12 stack
strptr - source string address
strlen
strptr

strlen

VPRptr
bseptr

output to

8 store nun

source string length
target string address
target string length
pointer to target string VPR
pointer to base addr of target <len field>

R12 stack
(strptr) - 1f nultistore, source string pointer
(strlen) - 1f nultistore, source string length

’ <none> STOSV 0,

input fron R12
nurval - value to be stored
naneforn - nane of target variable
(dinflag) - 1f tracing, tracing information
(col) - 1f tracing, tracing information
(rou) - 1f tracing, tracing infornation
nunvalptr - pointer to target value

output
(nunval) - if multistore, value being stored

9 1-DIN RDR) <none> RAVADRY 0,32

RHEVAR

RHLVAR

RHSVAR

RHEVAR

RHEVAR

RH&VAR

input fron R12

rou - dinension of array
VPRptr - variable to be indexed

output

naneforn - nane of variable being referenced
(dinflag) - 1f tracing, tracing information
(col) - af tracing, tracing information
(rouw) - 1f tracing, tracing information
nunvalptr - pointer to array elenment

R 2-DINn ROR ' <none> RAVADRZ 0,32 RH&VAR

input fron R12
col - colunn dinension of array
rou - rou dinension of array
VPRptr - variable to be indexed

output

naneforn - nane of variable being referenced
(danflag) - if tracing, tracing information
(col) - 1f tracing, tracing infornation
(rou) - 1f tracing, tracing information
nunvalptr - pointer to array elenent

8 1-din value <none> RWAL1 0,32 RHEVAR

input fron R12
col - colunn dinension of array
rou - row dinension of array
VPAptr - variable to be indexed

output to R12
nunval - value of array elenent

C 2-din value '’ <none> RWARL2 0,32 RH&VAR

input fron R12
col - colunn dinension of array
ron - rou dinension of array
VPRptr - variable to be indexed

output to R12
nunval - value of array elenent

D carriage rtn <none> ERRORX 0,44 KR&T0K

E end of line '’ <none> GORTN 0,0 RHEVAR

F " <none> ERRORX 0,44 KR&TOK

10 invisible RIN’’ <none> INVRTN 0,44 RHSERL

11 nuneric addr '’ <none> FTRDR 0,3 RHLVAR

input fron R10

VPRptr - variable to be fetched
output to R12

naneforn - nane forn of the variable
nunvalptr - pointer to the value

12 get nun addr ’’ <none> SVADR+ 0,3 RHEVAR

note: calls SVADR with different attribute
input fron R10

VPAptr - relative pointer to variable that contains the desired valu
output to R12 stack

VPRptr - sane relative pointer

13 SAVE STR ' <none> FISTLS 0,3 RHEVAR

input fron R10
VPAptr - relative pointer to variable 1n VPR

output

strptr - pointer to string value
strlen - length of that string
VPRptr - relative pointer to variable in VPR
bseptr - pointer to base address of target <len field>

14 nULTI S10. " <none> STOSvh 0,43 RHEVAR

note: calls STOSV with different attribute
input fron R12

nunval - value to be stored
naneforn - nane of target variable
(dinflag) - 1f tracing, tracing infornation
(col) - 1f tracing, tracing infornation
(rou) - 1f tracing, tracing infornation
nunvalptr - pointer to target value

output
(nunval) - 1f nultistore, value being stored

*

15 RULTI STO8 *° <none> S10STA 0,43 RH&VAR

note: calls STOST uith different attribute
input from R12 stack

strptr - source string address
strlen - source string length
strptr - target string address
strlen - target string lenqth
VPRptr - pointer to beginning of target string
bceptr - pointer to base address of target <len field>

output to R12 stack
(strptr) - 1f nultistore, source string pointer
(strlen) - 1f nultistore, source string length

16 nun FN call <none> FNCAL. 0,6

note: same as FNCALS
input fron R10

FNblockptr - relative pointer to FN variable block
FNparrcount - function paraneter count
(FNparntype) - function paraneter type 1
(FNparntype) - function paraneter type 2

(FNparntype) - function paraneter type n

anput fron R12
(FNparan) - function parareter n
(FNparan) - function paraneter n-1

(FNparan) - function paraneter 1

17 str FN call "’ <none> FNCALS 0,6

note: sane as FNCAL.

1nput fron R10
FNblockptr - relative pointer to FN variable block
FNparncount - function paraneter count
(FNparntype) - function paraneter type 1
(FNparntype) - function paraneter type 2

(FNparntype) - function paraneter type n

input fron R12
(FNparan) - function paraneter n
(FNparan) - function paraneter n-1

(FNpa}an) - function paraneter 1

18 JnP TRUE ' <none> JTRUE® 0,7

input fron R10:
reljynpaddr - relative address to jump to

anput fron R12:
nunval - value to be tested

19 i1nput taal "’ <none> ITRAIL. 0,44

RHEVAR

RHAVAR

RH&FOR

IV8INP

1R INT CONST e <none> INTCON 0,2

input fron R10
intval - integer constant to be placed on the stack

output to R12 stack
nunval - 1nteger 1n nunval form

18 JnP FALSE '’ <none> JFALSR 0,11

input fron R10:
rel ynpaddr - relative address to jump to

input fron R12:
nunval - value to be tested

1C JNP REL " <none> JNPREL 0,26

input fron R10:
rel jnpaddr - relative address to junp to

10 1 substring '’ <none> SUBST1 0,4

input fron R12
nunval - the substring character nunber
strptr - pointer to string value
strlen - string length

output to R12
strptr - neu pointer to string value
strlen - new string length

1€ 2 substring '’ <none> SUBSTZ2 0,04

input fron R12

nunval - the second substring subscript nunber
nunval - the first substring subscript nunber
strptr - pointer to string value
strlen - string length

output to R12
strptr - neu pointer to string value
strlen - new string length

1F ELSE a4 " <none> EJNPH 0,25

note: EJNPH 1s just JAPLNN with different attributes

1nput fron R10:

rel ynpaddr - relative address to junp to

20 ' <none> ERRORX 0,44

2 ' <none> ERRORX 0,44

RHAVAR

KR&TOK

KR&T0K

RHEVAR

RHAVAR

KR&DEC

KR10K

KR&TOK

22 Rrray PRINTM '° <none> PUARRY

input fron R12:
VPAptr - array to be printed (fetched using FETSET)

notes: does a fetnun and pritval for each i1ten

2 " <none> ERRORX

24 Array RERDN '’ <none> RWARRY

input fron R12:
VPRptr - array to be read (fetched using FETSET)

notes: does 3 read (NUM) for each elenent

25 " <none> ERRORX

26 & concatinate'd’ <none> CONCR.

input on R12:
string - second string
string - first string

output on Ri12:
string - first string concatinated to second string

2?7 ve? <none> PRSEN.

28 (' <none> ERRORX

29) ') <none> ERRORX

2R * TRt <none> MNPYROI

input on R12:
nunval - factor
nunval - factor

output on R12
nunval - product

28 ¢ e’ <none> RDDROI

input on R12
nunval - addend
nunval - addend

output on R12
nunval - sun

0,36

0,44

0,44

0,44

7,53

0,41

0,44

0,44

12,51

7,51

MJ&TXT

KR&TOK

MJRTXT

KR&TOK

KR&FUN

MJI&TXT

KR&TOK

KR&TOK

KR&NTH

KR&NTH

2[, r.'

20 - diadic Tet

input on R12:
nunval - Y

nunval - X

output on R12:
nurval - X-Y

. '

2F / l/'

input on R12:
nunval - Y

nunval - X

output on R12:
nunval - X/Y

” ~ XAY) Ay

input on R12
nunval - Y
nunval - X

output on R12:
nunval - X°Y

N "

input on R12:

strang - first string to conpare
string - second string to conpare

output on R12:
boolval - result of compare

3 <= ‘es?

input on R12:
string - first string to conpare
string - second string to conpare

output on R12:
boolval - result of conpare

33 o= Prz’

1nput on R12:
string - first string to conpare
string - second string to conpare

output on R12:
boolval - result of conpare

<none>

<none>

«none>

<none>

«none>

«none>

<none>

«none’>

ERRORX

SUBROI

ERRORX

DIVe

YTXS

UNEQS.

LEQS.

GEQS.

0,44

7,51

12,51

14,51

6,53

6,53

6,53

KR&TOK

KR&NTH

KR&TOK

KR&NTH

KR&NTH

Iva0P

Ivaop

Iveop

N o '

input on Ri12:
string - first string to conpare
string - second string to compare

output on R12:
boolval - result of conpare

¥ = '

input on R12:
string - first string to conpare
string - second string to conpare

output on R12:
boolval - result of conpare

36 > vy

input on R12:
string - first string to conpare
string - second string to conpare

output on R12:
boolval - result of corpare

37 ¢ '

input on R12:
string - first string to conpare
string - second string to conpare

output on R12:
boolval - result of conpare

38 - nonadic -

input on Ri12:
nurival - operand

output on R12:
nunval - additive inverse

39 "’

input on R12:
nunval - first nunber to conpare
nunval - nunber to compare against

output on R12:
boolval - result of conpare

R <= "e='

input on R12:
nunval - firet nunber to conpare
nunval - nunber to conpare against

<none>

<none>

<none>

<none>

<none>

«one>

<none?

UNEQS.

EQS.

GRS.

LS.

CHSROI

UNEQ.

LEQ.

6,53

6,53

6,53

6,53

7,50

6,51

6,51

Iv&oP

IvaoP

Iva0opP

IvaoP

KR&NTH

Ivaop

Ivaop

output on K12:
boolval - result of conpare

3B = s’

i1nput on R12:
nunval - first nunber to conpare
nunval - nunber to conpare against

output on R12:
boolval - result of compare

i o ')

input on R12:
nunval - first nunber to compare
nunval - nunber to compare against

output on R12:
boolval - result of conpare

30 s l"

input on R12:
nunval - first nunber to compare
nunval - nunber to conpare against

output on R12:
boolval - result of conpare

3E) 'y

input on R12:
nunval - first nunber to conpare
nunval - nunber to conpare against

output on R12:
boolval - result of conpare

3F < ’(v

input on R12:
nunval - first nunber to conpare
nurval - nunber to corpare against

output on R12:
boolval - result of conpare

4 @ e’

41 ON ERROR "ON ERROR’

42 OFF ERROR 'OFF ERROR’

43 DEF KEY "DEF KEY®

44 1nv FN LET '

<none>

<none>

<none>

<none>

<none>

<none>

ONERRO

P1RNC!

DEFKEY

FNLET

GtQ.

UNEQ.

€Q.

GR.

Lt.

RISIGN

ONERR.

OFFER.

DEFKY.

FNLET.

6,51

6,51

6,51

6,51

6,51

0,42

0,341

0,241

0,241

0,217

Iva0P

IvaoP

Iva0P

Iva0P

Iva0P

KR&TOK

KR&TOK

KR&TOK

IV&0K

RH&VAR

45

46

47

48

49

4R

48

4

40

4t

aF

50

51

52

53

54

55

56

57

note: sane as LET FN

input fron R10:
FNtype - indicates the type returned by the function
VPRptr - relative pointer to variable that contains the

output fron R12:
1f nuneric then
(naneforn) - of the function variable
(nunvalptr) - pointer to the area uhere the value uill be put

1f strin
(strptr?

then
- pointer to string

(strlen) - string length
(VPRptr) - pointer to VPR entry for the string

AUTO

CART ALL

LISTIO

CATS

DISPLRY IS

CAT

LIST

NARNE

DELRY

NERGE

CALL

RERDH

input:

"AUTOD’

"CAT ALL’

'LIST I0°

"CRTS’

'DISPLAY IS’

"CART’

"LIST

"NRNE’

"DELAY’

"NERGE’

"CALL’

"RERD ¥’

optional record nunber on ri2
file nunber on ri2

then does a read(NUM), read (STR), or read(RRRAY) for each 1ten

FETCH a key "FETCH KEY®

display width'UIDTH’

POP return

RUN

REAL

DISP

FETCH

'POP’

"RUN’

"REAL’

'0ISP’

"FETCH’

GO12N

PUSHIR

PUSH1R

ERRORX

G180R*

PUSH1F

G$O12N

GET1S

GETIN

6$'012

GET1$

READW

GET1$

GETIN

P1RANC!

GOTNS

TYPSTR

PRINT

COTNS

AUTO.

CRTAL.

LSTIO.

CRTS.

OSPIS.

CRT.

LIST.

NRHE.

DELRAY.

MERGE.

CALL.

READH.

FETK.

WIDTH.

POP.

RUN.

SKIPR

DISP.

FETCH.

0,241

0,241

0,241

20,56

0,241

0,241

0,241

0,241

0,241

0,241

0,241

0,241

0,241

0,241

0,241

0,241

0,321

0,241

0,241

KR&TOK

RH&LAT

nJ&DI0

RH3LTS

nJ&oIo

RH&CAT

RH&LHD

RH&RUN

KR&TOK

RH&RUN

RH&RUN

RJ&TXT

IV&0K

KR&TOK

RH&FOR

RH&RUN

IvaDCL

KR&TOK

RH&FET

58 printer width'PNIDTH’ GETIN PUIDT. 0,241 KR&TOK

59 DEFRULTON/OFF’DEFRULT’ ON/OFF DEFAL. 0,241 KRETOK

SR GOTO 6070’ GOTOPR JHPLN® 0,210 RH&F OR

input fron R10:
rel)ynpaddr - relative address to junp to

58 GOSuB ' GOsusB’ GOTOSU JnPSus 0,210 RH&FOR

5C PRINT ¥ "PRINT #° PRINTH PRINM. 0,241 nJSTXT

input fron R12:
optional record nunber on r12
filenunber on r12

50 MARGIN n "NARGIN’ GETIN NARGN. 0,241 IV&ED

SE RESTORE "RESTORE #’ GIOR2N RESTW. 0,241 MJ&TXT

input fron R12:
optional record nunber on ri2
fi1lenunber on ri12

5F INPUT "INPUT’ INPUT INPUT. 0,237 IVAINP

60 RSSIGNR "ASSIGN #’ RSSICN RISIN. 0,291 MJ&TXT

input fron r12:
lenght and address of filenane
file nunber (1nteger constant)
optional 2byte filetype

61 LET FN "LET FN’ FNLET FNLET. 0,217 RHSVAR

FNtype (1 byte) - 1 for nuneric, 2 for array, 3 for string
input fron R10:

FNtype - 1ndicates the type returned by the function
VPRptr - relative pointer to variable that contains the

value to be returned.
output from R12:

1f nuneric then
(naneforn) - of the function variable
(nunvalptr) - pointer to the area uhere the value u1ll be put

1f string then
(strptr? - pointer to string

(strlen) - string length
(VPRptr) - pointer to VPR entry for the string

62 LET "LET? LET NOP. 0,241 KR&TOK

63 STRN(BY *STANDBY’ ON/OFF SIAND. 0,241 RJ&PTL

64 ON TINERM "ON TINER &’ ONTRR TRRON. 0. 341 RY&1In

65

66

67

68

69

6R

68

6C

60

6t

6F

70

n

72

73

74

75

76

77

78

79

7R

78

7C

70

7t

7F

81

OFF TINER#

ON

BYE

HRIT

PROTECT card

PRINTER IS

PRINT

printlist

RANDORIZE

RERD

RESTOREIO

RESTORE

RETURN

UNPROTECT

EDIT filenan

OFF10

sTopP

PUT <key>

TRACE FLOW

TRACE OFF

TRACE VAR

ENDLINE

CLERR VARS

copy

PURGE filnn

RENRNE fT0f

INTEGER

SHORT

DELETE

"OFF TINER W’

'ON’

"BYE’

"WRIT’

"PROTECT’

"PRINTER IS’

"PRINT’

"PLIST’

"RANDONIZE’

"RERD’

'RESTORE IO’

"RESTORE’

"RETURN’

"UNPROTECT’

'EDIT’

'OFF I0°

*STOP’

'PUT’

'TRACE FLOW’

"TRACE OFF’

'TRACE VARS’

"ENDLINE’

"CLERR VRRS’

*CoPY’

*PURGE’

*RENRNE’

"INTEGER’

*SHORT’

"DELETE’

OFFTHR

ON

PUSH1R

GETIN

PUSH1A

G1$0R*

PRINT

G$O12N

TRYIN

RERD

PUSH1R

RESTOR

P1ANC!

PUSHIR

EDIT

PUSHIR

P1ANC!

CET1$

PUSHIR

PUSH1R

PUSHIR

018

PUSH1R

FLIOFL

PUSH1F

FLYOFL

TYPSTN

TYPSTR

GO12N

TRROF. 0,241

ON. 0,23

BYE. 0,241

WRIT. 0,241

CRDUPR 0,241

PRINS. 0,241

PRINT. 0,241

PLIST. 0,241

RNDIZ. 0,241

RERD. 0,241

REST. 0,241

RESTO. 0,241

RETRN. 0,241

CRDUPR 0, 241

EDIT. 0,241

OFFI0. 0,241

STopP. 0,241

PUT. 0,241

TRFLO. 0,241

TROFF. 0,241

TRVARR. 0,241

EOL. 0,241

CLRVR. 0,241

CoPY. 0,241

PURGE. 0,241

RENRN. 0,241

SKIPI 0,323

SKIPS 0,322

DELET. 0,241

RY&TIN

RH&FOR

1va2121

KR&10K

RY&CRD

nJ&nIo

KR&TOK

RH3.CHD

MJ&RIZ

MJ&TXT

nJ&oIo

MI&TXT

RH&F OR

RY&CRD

RHERUN

nJ&oIo

RHERUN

Iv&10

IV&IR

IV&IR

IV&TR

NJEPIL

KR&EXE

RH&NEN

RH&CND

RH&CHD

IveDCL

IvaDCL

RH&CMD

82 ROM missing 'ROM missing’ ERRORX ERRORX 0,44

83 RENARK *REN’ REN SKIP' 0,241

84 OPTION BASE 'OPTION BRSE’ OPTION 0PT10. 0,315

85 END FN "END DEF’ FNEND FNRTN. 0,313

anput fron R10:
VPRptr - pointer to VPR for function variable

input fron R12:
output to R12:

1f numeric:
(nunval) - nuneric value returned

1f string:
(strptr? - pointer to the string (in RESMEN)
(strlen) - length of string

86 DATA 'DATA’ DATR SKIPEM 0,320

87 DEF FN *DEF FN’ DEF SKPDEF 0,312

input R10:
reljnpaddr - relative junp address to eol on END DEF line

88 DIn 'oIn’ oIn SKIPD 0,321

input for allocation:
array nane:

row <integer const>

[col) <integer const>
and/or

string nane:
nax len <integer const>

output:
none

89 RENUMBER "RENUMBER’ GOTOAN RENUR. 0,241

8R END "END’ PIANC' END. 0,241

88 renark e REN SKIP' 0,241

8C FOR *FOR’ FOR FOR. 0,341

80 IFf "IF’ IF ERRORT 0, 344

8E IMAGE "INAGE’ REN SKIPIT 0,341

8F NEXT "NEXT’ NEXT NEXT. 0,341

input fron R12:
naneforn - nane forn of the variable
nunvalptr - pointer to the value

KR&T0K

IvaD(L

KRT0K

RHAVAR

IvancL

KR&TOK

IveDCL

RHACND

RHARUN

IvaDCL

RH&FOR

KR&TOK

IvaDCL

RH&FOR

91

92

93

94

9%

96

97

98

99

9R

9%

BEEP

LET (InPLY)

RSSIGN 10

clear loop

CONTINUE

CLERR <dev>

‘ed string

TEXT

BRSIC

LIFY

RESULT

INTO

input/output

9

90

9t

9f

none

inv POP

clr tnrflg

or

for/next to

input fron R12:
nunval - value for the upper bound of the loop

RO

R1

R2

A3

M

RS

R6

R?

RS

R9

using line

READ string

print end

string ;

string ,

print¥;

printh,

printiend

ON of on/off

'BEEP’

"ASSIGN 10’

"CLEAR LOOP’

"CONT’

'CLERR’

*TEXT’

'BRSIC’

'LIFY’

'RES’

*INTO’

DoRl

l'o.

"USING’

'RERD’

"

"

’e

9

)

’ONi

OFF of on/off'OFF’

BEEP

ILET

Go18/%

PUSHIA

GOIN

GET1S

<none>

<none>

<none>

<none>

PUSH1A

<none>

<none>

<none>

<none>

«none>

<none>

<none>

<none>

<none>

<none>

<none>

<none>

<none>

<none>

<none>

BEEP. 0,241

ERRORT 0, 344

CONFIG 0,241

CLooP. 0,241

CONTI. 0,241

CLDEV. 0,241

SCONST 0,5

TEXT. 0,46

BRSIC. 0,46

LIF1. 0,46

RESUL. 0,55

NOP2. 1,51

INVPOP 0,44

THRCLR 0,44

OR. 2,51

10. 0,41

ULIN®. 0,327

RERDS. 0,44

PRLINE 0,35

PRSTR. 0,36

PRSTR. 0,36

SENIN. 0,36

conru. 0,36

PRMEND 0,35

ONTOK. 0,46

OFTOK. 0,46

RY&BEE

KR&T0K

nJ&niIo

nJaDIo

RHERUN

nJ&oI0

RHSVAR

RHERUN

RHERUN

RHSRUN

KR&FUN

KR&TOK

RH&F OR

RY&TIN

Ivaop

RH&F OR

KR&TOK

MJ&TXT

KR&TOK

IVEPUN

IVAPUN

RJ&TXT

RISTXT

MI&TXT

IV&ON

IVSON

AR TP Rl <none> IPS 20,55 KR&NTH

1nput on R12:
nurival - argunent for the function IP

output on R12:
nurival - 1nteger portion <integer val> (flagged integer)

RB EPSILON 'EPS’ <none> EPS10 0,55 KR&NTH

1nput:

none

output on R12:
nunval - louer bound of machine precision

RC frac part FP’ <none> FPS 20,55 KR&NTH

input on R12:
nurval - argunent for the function IP

output on R12:
nurival - 1nteger portion <integer val> (flagged 1nteger)

RD CEIL "CEIL’ <none> CEIL10 20,55 KR&ANTH

input on R12:
nunval - operand

output on R12:
nuiival - snallest integer >= operand <integer val> (flagged integer

RE NAX "NAX' <none> NRX10 40,55 KR&NTH

RF anv FN END '’ <none> FNRET. 0,16 RHSVAR

1nput fron R10:
VPRptr - pointer to VPR for function variable

input fron R12:
1f nuneric stuff returned
(nunval) - nuneric value returned

1f string stuff returned
(strptr? - pointer to the string (in RESNEN)

1f none returned due to failure

output to R12:

1f nuneric:
(nurval) - numeric value returned

1f string:

(strptr? - pointer to the string (1n RESPEN)
(strlen) - length of string

note: same as END DEF

80 SQR *SQR’ <none> SQRS 20,55

input on R12:
nunval - operand

output
nunval - principal square root of operand

Bt NIN "MIN’ <none> MNIN10O 40,55
1nput on R12:

nunval - operand
nunval - operand

output on R12:
nunval - nininun value

B2 AVAIL NEMRY ‘'nERN’ <none> MNEM. 0,55

B3 ABS "RBS’ <none> RBSS 20,55
input on R12:

nunval - operand

“output on R12:
nurval - absolute value of operand

B4 external ron '’ <none> RON:GO 0,214

85 1 dan afray <none> SVADCK 0,1

B6 2 din array <none> SVARDCK 0,1

_87 SGN "SGN’ <none> SGNS 20,55

_-input onvl12:
' nunval - operand

output on R12:
signun value of operand <integer const> (flagged int)

B8 - KEY$ 'KEYS’ <none> KEY$. 0,56

89 (ot ‘cor’ <none> CO0T10 20,55

input on R12:
nunval - argument

output on R12:
nunval - cotangent of argunent

BR (SC 'CSC’ <none> (SEC10 20.55

input on Ri12:
nunval - argunent

output on R12:

KRSNTH

KR&NTH

KR&FUN

KR&NTH

IV&RSH

RH&VAR

RH&VAR

KR&NTH

KR&F UN

KR&NTH

KRENTH

nunval - cosecant of argument

BB RPPT filenane’APPT’ <none> RPPT. 0,47 RHSFIL

BC EXP "EXP’ <none> EXPS 20,55 KRANTH

input on R12:
nunval - argunent

output on R12
nunval - anti-natural logarithn of argunent

B0 INT "INT’ <none> INIS 20,55 KR&NTH

1nput on R12:
nunval - operand

output on R12:
nunval - greatest integer <= operand

BE L0610 "L0610° <none> LOGTS 20,55 KR&NTH

input on R12:
nuiival - operand

output on R12
nunval - logarithn of operand (base 10)

BF LOG (E) *L0G’ <none> NS 20,55 KR&NTH

1nput on R12:
nunval - operand

output on R12:
nunval - natural logarithn of operand

(0 VERS "VERS’ <none> VER. 0,56 KR&FUN

€1 SEC *SEC’ <none> SEC10 20,55 KR&MTH

1nput on R12:
nunval - argunent

output on R12:
nunval - secant of argument

(2 CHRS "CHRS’ <none> C(HPS. 20,56 KR&FUN

C3 STRS *STRY’ <none> VALS. 20,56 KR&FUN

(4 LEN " LEN® <none> LEN. 30,55 KR&FUN

(5 NuUn "NUn’ <none> NUN. 30,55 KR&FUN

(6 VAL 'VAL' <none>

C?7 INF *INF’ <none>
input:

none

output on R12:
nunval - upper bound of machine precision

C8 read nunber <none>

9 Pl 'PI°’ <none>
input:

none

output on R12:
nunval - 3.14159265359

CR UPCS 'UPRCS’ <none>

C8 USING "USING’ <none>

CC THEN *THEN’ <none>

CO TRB "TRB’ <none>

CE STEP *STEP’ <none>

input fron R10:
nunval - value of i1ncrement

CF EXOR ' EXOR ° <none>

DO NOT "NOT ° <none>

D1 DIV (\) ' DIV’ <none>

1nput on R12:
nunval - dividend
nunval - divisor

output on R12:
nunval - 1nteger quotient (real flagged as

D2 ERRN "ERRN’ <none>

D3 ERRL "ERRL’ <none>

D4 CARD filenare’CRARD’ <none>

D5 AND " AND ’ <none>

D6 KEYS filenane’KEYS’ <none>

D? ELSE "ELSE’ <none>

VRL. 30,55

INF10 0,55

RERADN. 0,44

PI10 0,55

UPC$. 30,56

USING. 0,341

ERRORX 0,44

TRB. 20,45

STEP. 0,41

EXOR. 2,51

NOT. 7,5

INTDIV 12,51

integer)

ERNUN. 0,55

ERRL. 0,55

CARD. 0,47

RND. 4,51

KEYS. 0,47

ERRORX 0,44

KR&FUN

KR&NTH

RJ&TXT

KRSNTH

KR&FUN

KR&TOK

KR&TOK

KR&FUN

RH&FOR

IvaopP

Ivaop

KR&ATH

KR&FUN

KR&FUN

RH&FIL

IvaopP

RHSFIL

KR&TOK

D8 SIN 'SIN’ <none>

1nput on R12:
nunval - argunent

output on R12:
nunval - sine of argunent

D9 C(O0S 'CoS’ <none>

DA

08

bl

0D

1nput on R12:
nunval - argunent

output on R12:

nunval - cosine of argunent

TAN "TAN’ <npone>

1nput on R12:
nunrval - argurient

output on R12:
nurival - tangent of argurent

10 binary op ' 10 '’ <none>

RESTORE to x "' none>

1nput:

address of line# 1n r10 strean

input W ' «none>

anput fron R12
nunval - value to be stored
narneforn - nane of target variable
(dinflag) - 1f tracing, tracing infornation
(col) - 1f tracing, tracing information
(row) - 1f tracing, tracing information
nunvalptr - pointer to target value

output to R12 stack

DE

DOF

£o

£

nun

(i <none>

] ") <none>

\ "\’ <none>

POS *POS’ <none>

k1D "DEG’ <none>

SIN1O 20,55

€os10 20,55

TAN1O 20,55

NOPZ. 1,51

RESTN. 0,227

INPUN. 0,44

ERRORX 0,44

ERRORX 0,44

INTDIV 12,51

POS. 52,55

DEGIO 20,55

KR&MTH

KR&ATH

KR&NTH

KR& 10K

MJ&TXT

IVSINP

KR&T0K

KR&TOK

KR&NTH

KR&FUN

KR&NTH

E3 DR "RARD’ <none> RRD10. 20,55

€4 FLOOR "FLOOR’ <none> INT5 20,55

input on R12:
nunval - operand

output on R12:
nurval - greatest integer <= operand

ES INPUT § " <none> INPUS. 0,44

input fron R12 stack
strptr - source string address
strlen - source string length
strptr - target string address
strlen target string length
VPAptr - pointer to beginning of target string

output to R12 stack
none

€6 ERROR ' <none> ERRORX 0,44

E7 nuneric ; » <none> PRNUN. 0,236
note: 1t should be 36 but the attribute was left out (sigh)

€8 numeric , " <none> PRNUN. 0,236
note: 1t should be 36 but the attribute uas left out (sigh)

Fron ALTRON

00 ! ERRORX ERRORX 0,44

01 ALRARN ON/OFF 'RLRRAN’ ON/OFF RLRRN. 0,241

02 LOCK "LpCK’ GET1$ LOCK. 0,241

03 DEG "OPTION ANGLE DEGREES’ PUSHIR DEG. 0,241

04 RRD "OPTION ANGLE RRDIANS' PUSHIR RRD. 0,241

Fron NELRON

00 ' RETURN ERRORX 0,44

01 TRANSFORN ' TRANSFORN’ TRNSLP TRFRN. 0,241

input on R12:
[fi1le nane) <string>
file type, 2-byte attribute

output:

none

02 PRCK "PACK’ RSPACK PRCK. 0,241

KR&NTH

KR&NTH

IVSINP

KR&10K

IV&PUN

IV&PUN

KR&TOK

KR&PSS

RY&LOK

IVARNG

IVEANG

KR&T0K

GC&TFN

RS&PAK

input on R12:
device nane <string>

output:

03

05

06

07

08

09

OA

08

oC

oD

Ot

none

INITIALIZE

input on R12:
device nane <string>
nunval - [W of directory entries)

output:

none

TInE

DRTE

TINE

DRTE

ANGLE

RCOS

AIN

RSIN

RMD

noo

RND

"INITIALIZE’

*TINES’

"DRTES’

‘TIne’

*DRTE’

"ANGLE’

"ACOS’

'RTN’

"RSIN’

*RND’

"noo’

"RND’

ASINIT

<none>

«none?

<none>

<none>

<none>

«none>

wnone>

«none>

<none>

<none>

<none>

INIT.

TINES.

DRTES.

TINE.

ORTE.

ATNZ.

I1C0S.

ITAN.

ISIN.

REN10.,

noop10.

RND10.

0,241

0,56

0,56

0,55

0,55

20,55

20,55

20,55

40,55

40,%

40,55

0,55

RSSINI

RY&TED

RY&T&D

RY&TRD

RY&T&D

KR&TRG

KR&TRG

KR&TRG

KRTRG

AJ&noo

nJanoo

NJARND

ON ERROR connents

Raan Young
07/09/82

00000000
0000000000000

00000Q0000000000Q0
000000000000000QQ00000

Qa Q00Q00000000Q00000Q000000
\Q\ 0000000000Q000Q0000000000000 Q.
00\ 00000000000000000Q0000000000000\ Q0
0\ .000000000000000006000000060000000Q0\ \00Q0
0000. . __..000000QQ000Q000Q00000000000000Q0000000000. _. QQQQ00Q
000000000000000000" \000Q000000Q00000U00000000000Q00AQ0QQ0.

0Q0Q000Q0Q" 000000000Q00000GQA000C00000QQ00G000000AQ
e \000000Q00000Q00000000000000Q" “00°

00000000000Q00Q00000000000/
\00000Q000Q/*0QQQ0QQ0QQ/
\000000 10000000
00000} 000/
0000| . 00
0000 | OV00
000| /
000
1001
1000
000000
"00000000

The ON ERROR code consists of three parts:

* the ON ERROR setup, invoked by the ON ERROR statenent;
* the ON ERROR ternination, invoked by the OFF ERROR

statenent;
* the actual 1invokation of the ON ERROR user code uhen an
error happens.

The ON ERROR parsetine calls PRRSE' to parse the rest of the
line, and then adds an anvisble RETURN token at the end of
the line. If there are any GOT0 or ON...GOTO tokens in the
line, an invisible POP token 1s placed in front of then.

The ON ERROR runtine saves the relativized address of the
first token (keyword follouing ON ERROR) to be executed wuhen
an error 1s encountered, in E.EREX; and the relativized PCR
in E.ERPC. It then skips to the next line.

The OFF ERROR runtine 0's out E.EREX and E.ERPC.

The runtine code executed uhen an error 1s detected 1s the
heart of the ON ERROR function. This 1s invoked by REPRT+ or
one of 1ts derivatives. When REPRT+ 1s called to report any
errors, 1t tests to see if E.EREX 1s positive and non-zero.
If 1t 15 then an ON ERROR 1s active and ue set up a GOSUB to
the first token 3in the ON ERROR statenent. If 1t 15 O, ON
ERROR has either been OFFed or was never declared to start
uith. If 1t 1s negative, then ue are 1n an ON ERROR state-
nent and do not want to call 1t again (read infinite loop).
The call to the ON ERROR code 1s setup by using E.EREX for
the relative R10, and E.ERPC for the relative P(R of the
GOSUB address. The address of the next line 1s used for »
return address and PCR. SUBSTF 18 called to do the actual
GOSUB setup, and then CLRERR clears the error so the progran
uill not stall. The GOSUB 1s traced., and finally RTSICGN 1s
called to clean up any garbage left on R12 by the error. The
value of E.EREX 1s nade negative by setting the top bat.
This flags us as being in an ON ERROR. When the invisible
POP or invisible RETURN 1s executed, This value 1s restored
to 1ts original positive value (usually), and execution
returns to the line after the one containing the error.

In addition to the PCR and R10, 2 flag 1s saved on the
subroutine return stack. Thas flag 1s used by ON ERROR and
ON TINER to clean up things that need cleaning up at the end
of the statenent. The flag = 8000H for normal GOSUBS, is »>=
0 and < 8000H for ON TINER (see KR"TIM for more), and 1s »
8000H for ON ERROR. This flag contains the E.EREX value ¢
8000H (the E.EREX value 1s relative address of code, and 1s
assuned to never be >7FFFH). This serves to flag the return
info as being for ar ON ERROR, and also saves the relative
address. This address can not be saved 1n E.EREX because the
ON ERROR code mnight contain either an OFF ERROR or another

ON ERROR. Either of these uill change the contents of
E.EREX. If the value of E.EREX 1s O when the return 1s ex-
ecuted, then an OFF ERROR was done and the value 1s not
restored. Otheruise the old E.EREX 1s restored. This neans
that an ON ERROR declared in an ON ERROR only 1s effective
during that ON ERROR.

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

This docunent is meant as an aide to people working with the
Kangaroo systen. Each file has a line describing the type of
subroutines that 1t has. Beneath each file 18 a list of subroutines
in that file along wuwith a description of what 1t ‘does and what
registers 1t wi1ll certainly trash. (Note: there 1s no guarantee that
1t w1ll not trash other registers. RAll registers uhich are 1n the
subroutine are listed: houever, the subroutine nay call another
subroutine which would trash different registers.) If there are any
nistakes or untruths i1n this docunent, readers are asked to please
nake the changes thenselves. Make the changes to KR'FIL and then run
runof to obtain KR"FIL (this file). Thank-you.

9:27 AN WED., 16 SEPT, 1981

Quick Reference Documentation of Kangaroo Subroutines
File Grouping

Sub- Description
routine

..

LleReoiASS

| ROM 1n1tialization: 1nvokes each keyuord file one by one.
| R20=error nunber, E=1 1f ERROR uas called, E=0 if handled
| by file.
| Uses: RO-1, R2, R6 stack

HANDIO | 'HANDI' with no error: passes control to all keyuord files.
| Uses: RO-1, R2, R6 stack
| "HANDI’ with no error: passes control to all keyuord files.
| Uses: RO-1, R2, R6 stack

S eeeee Cc R C.e n e C . c e C eTr eReEr et E GecRNee e rcr e rTr ErEeRC eTSe®

ROMINI

LlRlRiekTSIA SAp RIS SR S SN SyS-

ATIN? | Checks to see 1f there is any key waiting. E=1 1f key is
| waiting & 1t’s RITN, E=0 otheruise.
| Uses: R2

CURSE- | Turns the cursor off. No error.
| Uses: RO-1, R2-3, R0-37, R44-47, R53-57, RO stack, R6 stack

CURSE+ | Turns the cursor on. No error.
| Uses: RO-1, R2-3, R30-37, R44-47, R53-57, RO stack, R6 stack

DEQUE | Kills any queued up keyboard interrupts
| Uses: R3

EOLND | 'OUTEOL’ with Ne Delay
| Uses: RO-1, R2-3, R30-37, R44-47, R53-57, RO stack, R6 stack

GETCHR | Gets a single character in KEYHIT and R2
| Uses: RO-1, R2-3, R6 stack

GETLN | Reads a line uith the 1ni1ti1al tenplate 1n INPBUF. Returned
| terminating character 1s 1n R2S.
| Uses: R20-25, R6 stack

HLFLIN | Sends a string to LCD. Called with a nulti-byte count in R36
| and the address of the string in R26.
| Uses: R6 stack

HLFOUT | R cheap uay to call HLFLIN
| Uses: R6 stack, R26 stack

KEY? | Checks to see if any key (even RTTN and node suitchers) has
| been pressed. E=1 1f a key was hit, E=0 1f no key uas hit,
| Uses: R2

LETGO | Waits until the key 1s released
| Uses: R2-3

NSGOUT | R cheap uay to call OUTSIR
| Uses: R6 stack

OUTICH | Hrites a character
| Uses: R6 stack

OUTC40 | ’OUTCHR' uith the character in R40
| Uses: R6 stack

OUTCHR | Outputs a character to the display device: ALL output to

I the display device filters through this routine.

F 9:27 AN WED., 16 SEPT, 1981

Quick Reference Docurentation of Kangaroo Subroutines
File Grouping

OUTEOL

OUTESC

OUTSTR

PUTKEY

SETLIN

Uses: R6 stack
Does the end of line sequence for display devices (CRLF)
Uses: R6 stack
Writes out an escape + 'OUTICH’
Uses:
Hrites out the device to the current display device
Uces:
Nakes the character i1n R2 the current character
Uses: R2-3, R6 stack
Sets up a line for 1nput
Uses: R24-25, R6 stack

. e EE— .-,e, .., m .,e E ... — ., E ., SR E ., e, e,.,RS e R TR S e R e ... e ~®-

DeTNeeR

ROM: GO

RONMJSB

ROMRTN

Cycles through all the ROMs and RON files. Call the
subroutine each lexfile enabled: RO 1s the ROM nunber.
Uses: RO-1, R2-3, R6 stack
Enables a ROM whose 2 byte identifier 1s an RO. If
successful, ZR 1s returned, otheruise NI 1s returned.
Uses: R6 stack
This 1s a token to transfer to & given address in 3 RON
Uses: RO-1, R2-3, R20-21, RI0-31, R6 stack
Suitches to a given ROM, calls the address, and suitches
back to the current RON
Uses: R6 stack
Returns to regular systern RON. Systen ROM 1s enabled,
RONOF =0, ROMPTR:=24K, and NZ
Uses: R2-3

DeTTTI

BRSEND

BLANKS

PRR1

RETURN

The last line 1n a progran
Uses:
Eight blanks for public consunption
Uses:
Get one byte paraneter after call. R2=1 byte that R6 pointed
to uhen you called PARY1, R6 := R6 + 1. Changes PROTEN.
Uses: R2, R6 stack, R44 stack
The address of a RIN 1nstruction
Uses:

DeeTIeeee

BIeeIeet

DRYSEC

DTRBO

KOPY

NURCHK

Seconds 1n day data
Uses:
Days 1n nonth data
Uses:
Byte copy routine. Source address 1s R74-75, destination

address 1< R76-77, and the byte count address 1s R73.
Uses: R72-73, R74 stack, R76 stach
Nuneric check and encode. The first byte (high byte) 1s 1n

9:27 RN UWED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

! R20, the second byte (low byte) 1s in R21.
Uses: R20-21

TORSC2 Converts tuwo digat BCD to ASCII. The tuo digit BCD value
1s 1n R20, the tuo byte result 1s in R20-21.
Uses: R20-21

108CD2 Converts tuo byte binary to BCD. The eight bit binary value

|

'
|

|

|

|

! that 1s to be converted to 3 digits of BCD 1s i1n R20, the
' BCD result 1s an R20-21.
! Uses: R2-3, R20-21

10BCD8 ' Converts eight byte binary to BCD. Values to be converted
! to BCD are 1n R40-47, the eight BCD results are 1n R40-47,
! Uses: RO-1, R20-21
' Converts tuo digit BCD to binary. The BCD value 1s in R20,
! the binary result 1s 1n R20.
! Uses: R20-21
! Converts eight byte BCD to binary. The eight bit BCD value
' 15 1n R40-47, the eight bit bainary result 1s i1n R40-47.
! Uses: R20-21
DLkRRe

TOBIN2

TOBINS

ReeeeRe

CONBIN Converts binary to floating point. Binary nunber 1s 1n
R36-37, converted floating point nunber in R40-47.
Uses: R32-35, R40-47
Handles terninating key for connand intput
Uses:
Execution loop for the Kangaroo
Uses: R2-3, R20-24, R32, R76-77
Gets a BRSIC input line fron the keyboard
Uses: R20-24
Llets the user see the output on the LCD
Uses: R2
Initiali1zes the GETLN paraneters
Uses: R2-3

|

I
|

pocnp !
|

|

|

!

|

|

|

|

|

OTHER ! Handles other than terninating keys for comnand input
|

|

'
|

I
'
|

!

|

i
|

'

EXEC

GETALN

HANG

INITOL

Uses: R2-3, R10-11, R16-17, R40-47, R76-77
Prints out the line pointed to by R36/37 unless 1t is the
special last line flag EOLIN.
Uses: R20, R24-25, R26-27, R30-31, R36-37, R45-47, R67
Reports parsing errors by re-displaying the input line uith
the cursor over the point at uhich the parsing failed. R10
points one past the error.
Uses: R2-3, R10-11
Coldstart
Uses: R2-3, R6-7, R2S
Clears out AUTOI 1f there 1s an overflow
Uses: RZ-3

KR/MTH - contains nathenatical functions. Rlso has a feu paraneter

getting routines, randon nunber generating routines,
unpacking routines.

OUTLIN

REPORP

START

UNRUTO

F 9:27 AN WED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

- e P B ReEC T, e P ., EE e ER EEEE, - - .., CE N e e Tl B RTRS Ee rTrrc AT CRRCBO R e®

Calculates the absolute value of a real on the R12 stack.
Output 1s on the R12 stack uith a copy 1n R40.
Uses: R40-47, R60-67
Calculates the sun of tuo reals on the R12 stack. Output
18 on the R12 stack uith a copy 1n R40.
Uses: R32-37, R40-47, RS0-57, R60-67
Calculates the sun of tuo reals or integers on the R12
stack. Ouput 1s on the R12 stack uith a copy on R40.
Uses: R32-37, R40-47, RS0-57, R60-67
Locates the snallest integer >z the real or integer on
the R12 stack. Output is on R12 wath copy in R60 or R?0.

! Uses: R2-3, R32-37, R40-47, R50-57, R60-67, R70-77
Generates the negative of the real or integer on the R12
stack. Output is on the R12 stack uith a copy i1n R40.
Uses: R40-47
Calculates the cosine of a real on the R12 stack. Output
18 on the R12 stack uith a copy in R40.
Uses: R20-27, R30-37, R40-47, RS0-57, R60-67, R70-77
Calculates the cotangent of a real on the R12 stack.
Output 1s on the R12 stack uith a copy in R40.
Uses: R20-27, RX-37, R40-47, R50-57, R60-67, R70-77
Calculates the cosecant of a real on the R12 stack.
Output 1s on the R12 stack uith a copy 1n R40.

|

|

|

ADDY !
|

|

|

|

|

1

|

|

|

|

|

|

!

|

|

!

|

|

|

! Uses: R20-27, R30-37, R40-47, R50-57, R60-67, R70-77
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

!

|

RDDROI

CIEL10

CHSROI

€os10

coT10

CSEC10

DCONI Tables and constants
Uses:
Converts a real on the R12 stack fron radian to degree
neasure. Output on the R12 stack, copy in R40.
Uses: R32-37, R40-47, R50-57, R70-77

! Calculates the guntient of tuo reals on the R12 stack
Uses: R32-37, R40-47, R50-57, R60-67
Calculates the exponential function at 1ts argunent
Uses: R32-37, R40-47, R50-57, R60-67
Function return
Uses: R32-37, R40-47, RS50-57
Nain frouard trig subroutine
Uses: R30-37, R40-47, RS0-57, R60-67
Calculates the greatest integer <= the real or integer on
the R1Z stack. Output on R12, copy 1n Rb0.
Uses: R32-37, R40-47, RSO-57, Re0-67, R70-77
Integer nultiply. R66 1s the nultiplier, R76 1s the nulti-
plicand, the result 1s four byte starting in R54.
Uses: R54-57, R60-67, R74-77
Yields the integer part of 3 a real or integer on the R12
stack. Output 1s on R12 stack uith copy 1n R60 or R70.
Uses: R32-37, R40-47, RS0-57, R60-67, R70-77
Calculates the natural log of a real on the R12 stack.
Output 1s on the R12 stack with a copy in R40.
Uses: RO, R26-27, R32-37, R40-47, R50-57, R60-67, R70-77
Calculates the log base 10 of a real on the R12 stack.

DEG10

DIVe

EXPS

FPS

FTRS3

INTS

INTRUL

IPS

LNS

LOGTS

F 9:27 AN UWED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

NAX10

nIN1O

nPY30

NPYROI

ONEB

ONEI

ONEROI

RAD10

RND10

RNDINI

SEC10

SEP10

SEP1S

SGNS

SKF10

SHRONF

SIN10

Output 1s on the R12 stack uith a copy 1n R40.
Uses: RO, R26-27, R32-37, R40-47, R50-57, R60-67, R70-77
Locates the maxinun of tuo reals on the R12 stack. Output
18 on the R12 stack uith a copy 1n RS0.
Uses: R32-37, RA0-47, RS0-57, R60-67
Locates the mininun of tuo reals on the R12 stack. Output
is on the R12 stack with a copy 1n R50.
Uses: R32-37, R40-47, RY-57, R60-67
Calculates the product of tuo real values (a*b). n(b) R40;
exp(b) R36; sgn(b) R32; n(a) RSO; exp(a) R34; sgn(a) R3I;
Output is 1n R40,
Uses: R32-33, R36-37, R40-47, RS0-57, R60-67
Calculates the product of tuo reals or integers on the R12
stack. Output 1s on the R12 stack uith a copy i1n R40.
Uses: RO, R32-37, R40-47, R%0-57, R60-67, R70-77
Gets one binary integer in R40. 32767 if too big, E<>0 if
overflow or underflou.
Uses: R46-47, R60-67, R70-77
Gets one BCD integer 1in R40. 99999 1f too big, E<>0 if over-
flou or underflou.
Uses: R40-47, R60-67
Gets one real or integer in R40. 32767 if too big, E<> O if
Af overflow or underflou.
Uses: R40-47
Converts a real or integer on the R12 stack fron degrees
to radians. Output on the R12 stack, with a copy 1n R40.
Uses: R30-37, R40-47, R50-57, R60-67
Generates a randon number an places 1t on the R12 stack,
uith a copy 1n R40.
Uses: R36-37, R40-47, RS0-57, R60-67, R70-77
Generates a neu seed for the randon nunber generator
Uses: R40-47
Calculates the secant of a real on the R12 stack. Qutput
1s on the R12 stack uwith a copy 1n R40.
Uses: R20-27, R30-37, R40-47, R50-57, R60-67, R70-77
Unpacks a real in R40. Output: nan R40, exp R36, sgn R32.
Uses: R32, R36-37, R40-47
Unpacks tuo reals in R40 and R50 (a and b). Output:
nan(b) R36, exp(b) R36, sgn(b) R32, man(a) RS0, exp(a) R34,
sgn(a) R33
Uses: R32-37, R40-47, RS0-57
Stgnun function: sgn(x)=-1, x<0; sgn(x)=0, x=0; sgn(x)=1,
x>0. Input 1s a real on the R12 stack, output 1s on the
R12 stack uwith a copy 1n R40.
Uses: R40-47
Shift leading zeros off of R40
Uses: R36-37, R40-47

Shift leading 2eros off of R40, round and pack the result.
Uses: R32, R36-37, R40-47
Calculates the sine of a real on the R12 stack. Output
is on the R12 stack uith a copy in R40.

9:27 AN UED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

Uses: R20-27, R30-37, R40-47, R50-57, R60-67, R70-27
SQRS Calculates the square root of a real on the R12 stack.

Output 1s on the R12 stack uith a copy in R40.
Uses: R32-37, R40-47, RS0-57, R60-67, R70-77

SUBROI Calculates the difference of tuo reals or integers on the

|

|

|

|

|

I R12 stack. Output 1s on the R12 stack uith a copy in R40.
I Uses: R32-37, R40-47, RS0-57, R60-67

TAN10 ! Calculates the tangent of a real on the R12 stack. Output
' 18 on the R12 stack with 3 copy 1n R40.
| Uses: R20-27, RI0-37, RA0-47, RS0-57, R60-67, R20-77
' Real/integer data fetch
I Uses:
! Calculates pouers of tuo reals on the R12 stack (x7y).
' Qutput 1s on the R12 stack uith a copy 1n R40.
' Uses: R22-27, R30-37, R40-47, RS0-57, R60-67, R70-77

DiIIeeeTeReeeR.

18L3B

YTXS

BeeeeeleeeL

ALFA DRP=20 + 'ALFR °
RLFR Converts a letter to upper case, 1f necessary
RSSIGN Parses an RSSIGN staterent

BRCK1O Pulls R10 back 1f R20 «> (R
DATA Parses a DRTA statenent
DEF Parses a DEFINE function

DICIT Checks to see 1f R20 contains a digat
DIn Parses a dinension statenent
DANDCR Denands a (R or ' after a statenent
ERRES Prints out bad paraneters nessage
FNEND Parses the end of a function statenent
FNLET Parses the function LET statenent
FOR Parses a FOR statenment
FORPMAR Parses a fornal array
FUN1 Gets one standartd function paraneter

|

|

|

|

|

|

|

|

|

|

|

1

|

|

|

C$CIZN ' 'GO12N' + gets a filenane
|

|

|

|

|

|

!

|

|

|

|

|

|

|

|

|

|

6$'012 "G8012N’ uith an error 1f no file
GOIN Gets O or 1 line nunbers
GO INS Gets a string and/or a line nunber
6012N Gets 0, 1, or 2 line nunber

GOT0AN Gets O to 4 line nunbers
GIORCN Looks for optional paraneters
GCHRR Gets the next non-blank character
GCHRR "G{CHRR’ + DRP=20 and RRP=10

CET1$ Gets one string
GETIN Gets one paraneter
GET(RR Gets a conna
GETLIN Gets a sequence nunber
GETPR? Gets all the paraneters
GETPRR Gets a specifiable nunber of parameters
GOTOPR Parses a GOT0 cornand
GOTOSU Parses a GOSUB connand
If Parses an If statenent

F 9:27 AR UWED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

ILET ! Parses a LET statenent
INPUT ' Parses an INPUT statenent
ISCHR ! Sees 1f R14 15 a conna
LET ! Parses a LET statenent
NEXT ! Stores the next token
NOCLC' ! Checks for not calculator
NUNMBER ! Gets a floating point nunber
NUNREP ! Cheus up leading + or= and produces a signed constant
NUMVR+ ! *NURMVAL’ + 'SCAN’
NUMVAL ' Parses a nunber or a value
ON ! Parses the ON token
ONERRO ' Handles any error after ’'THEN’
OPTION ' Parses an option base
PRRSE!' ' Main parse 1inner loop
PARSER ' Is this a progran, statement, or expression
PARSIT ! ’PARSE!’ + 'SCAN’
PU36SC * 'PUSH32' + DRP=36
PUSHIR ! Pushes out the token + 'SCANE1’
PUSH32 ' Pushes an 1nteger onto the stack
REARD ' 'RERD ' + checks for calculator node
RERD ! Reads one or tuo paraneters
REN ' Parses a renark
RESTOR ' Restores the parsed line
RSTREG ' Restores R21-37, r60-67
SCAN ' Scanner
SCAN+ ! "SCRAN’ + 'GCHAR'
SCANEY ' "SCAN’ + E=1
STRCN+ ' Renark and string constant
STREX!' ' 'STREX+' with an error 1f no string
STREXP ' et a string expression
TRYIN ! Looks for optional paraneters
TYPSTR ' Scans type statenents
UNQUOT ! Scans a string stopping at connas
- P B E B Ce E R EEE ., — e, . E. T. ee CE .. — - E R, P .., EE RS e e me .,.-—e®~~e

MJ/DI0 - Basic routines. Includes su-e parsing routines and does
basic manipulation uith the loop.

--e=eee=e ee~eee——.-.- ———---

ANY.IS Gets either a string or a *
CHKEND Checks a line nunber to see 1f 1t 1s R999
CLDEV. Clears ":dev" (Token R7)
cLoop Clears loop (Token R?7)

CLOSE+ Processes PRINTER IS * and DISP IS *
CONFIG Token 140 assignio

|

)
|

|

|

|

DSPIS. ' Display 1s runtine
|

i

|

|

1

|

'

EoL. End of line routine
G018/* Gets a string, a *, or no paraneters
GISOR* Gets either a string or a *
GETRDR Gets a loop address for a specified device
LPOFF Clears bat O (loop on bit) in PLSTAT
LPON Sets bit 0 (loop on bit) 1n PLSTAT
LSTIO Lists devices configured on loop

F 9:27 AR WED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

NOVEIT Moves things into the error buffer
OFFI0. Processes offio
PRINS. Printer 1s runtine

REST. Restores 1/0 routine

|

|

|

|

SKPCHK ' Skips a line and checks for the end
|

|

|

STAR? Looks for a * or null string
TRB String for a tab
THERE? Sees 1f device table 1s there; returmns the address 1f so
.e E e E .. - _E C e, e... CeeeCES C AeReCr CT e Y T E R AT E P eTRTR e ® e-

RJ/PIL - Basic PIL nanmipulating routines. Sone parsing routines.
Rlso sends connands and franes.

o - E- .-, eRee...,NSRRTRPP,TAT eOBe

RACTREP ' Checks 1f active controller
RLARN. ' Parses RLRRN connand

C.INIT ' Coldstart 1n1taalization
CL.ACT ' Clears active bits in PLSTAT
CROREP ! Sends connands uith error reporting
CNDOSND ' Sends SEND frane
DRTREP ' Sends data uith error reporting
LROSND ' Sends listen addresses
PILOF' ' Turns PIL chip off
PILON' ' Turmns PIL chip on
RDYSND ' Sends RERDY franme
SENDID ' Verifies 1f loop 1s intact
SNDRUT ' Sends auto unconfigure and auto address
SNDFRR ! Sends a frane
STAND. ! Parses the STANDBY comnand
STRND- ' "STAND.' with an arbitrary DRP
UNLREP ' Sends UNL, reports errors 1f any, and falls into CL.RCT
UNLSND ' Sends the UNL frane

e m e e — e h e e m e m e mE E e,, E -, . E R, e -, . -, ,EnN .S CE RS ETGEe®®e®we e

ERR1 "ERROR’ uith E=1

ERR1+ "ERR1’ with return address trashed
ERROR Error parsing routine

|

|

|

ERROR+ ' "ERROR’ with return address trashed
|

|

|

|

ERRORR Takes the error nunber in a register
ERRREP Calls '"ERROR' and then 'REPORT’s
WARN Prints a uarning nessage
HARN.R Entry for 'WARN’ with nunber in register R36
-.Ee, . . e E e ... E e ", CRe ...,EeE..., _ES e eeTRE--=-~

CREOL? ! Tests for end of line tokens
EDLIN ! Fetches a line nunber
FETCH. ' Finds a given string or line nunber
LINEDR ! Inserts and deletes lines in files
eL

F 9:27 AN HED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

APPT. Parses APPT connmand
CARD. Parses CRRD conmand
EDIT Parses EDIT connand
FILNA+ '"FILNA?' with prescan
FILNN! 'FILNA?’ with an error

|

|
|

|

1

FLCHR? | Gets a filenane or a special file token
FLORD ' 'FLORDT’ with no type check

!

|

|

!

'

FLORDT Gets a filenane fron the R12 stack as in GETFL.
FLIOFL Parses COPY and RENRME
GETNRN Gets a filenane fron the R12 stack
KEYS. Checks to see 1f any key has been pressed
PUSHIF Gets a filenane parameter or null
eeeee,eR,RER..R eSRee,ReeERNReRRPRTeme>

LlKRlReekTRP,

RDJUST Updates the location of all files
ALCALL Rllocates all renaining nenory
ALLOC Rdds free space to the given location
DELETE Deletes data at a given location
DELLIN Deletes a line 1n a file
FCOPY Copies a f1le
FCRALO Creates a file (nare in R20, type in R40)
FCRERT Creates a file (nanme 1n R40, type 1n R20)
FCRNUL Creates a file uith only a header and an endline
FENPT? Tests to see 1f a file 1s enpty
FLINIT Initializes file systen variables
FNDLED "FSEEK’ with R36 set to EDFILE
FNDLIN "FSEEK’ with R36 set to EDFILE
FNOLPR 'FSEEK' with R36 set to PRFILE
FNDLRN "FSEED' with R36 set to RNFILE
FOPEN Opens a file uith a given nane

!

'
'
'
|

'
!

[
'
!

|

'
|

|

|

|

FPURGE ' Purges a file
|

!

|

|

'
'
|

|

|

'
'
'
'
'
|

|

FRENAR 'Renaves a file
FSEEK Finds a given line by nunber i1n given areas of nerory
FSREPL '"FSEEK’ + 'REPLIN’
INSERT Inserts a given block of data at a given location
LINLEN Returns the length of a line
ONR12 Tests to see 1f anything 1s on the R12 stack
PFNDPR 'PREFND' for PRFILE
PREFND Finds the first line before a fiven line i1n the edit file
REPLIN Replaces a line 1n a f1le
ROON! Sets an error to be reported 1f no roon
ROON? ! Tests to see if the required menory is available
RSETEN Sets variable area
SETPR Sets up the file paraneters PRNANE and PRFILE
SETRN Sets up the run file paraneters
SKPLN Finds the address of the next line
SKPLN "SKPLN’ uith an arbitrary DRP
Lettteeeee]

eeeeR

F 9:27 AN WED., 16 SEPT, 1981

Quick Reference Docurentation of Kangaroo Subroutines
File Grouping

FINDRE Locates your position in the RB
FRELSN (leans up loop after halt or abort of 1/0
GETVAR Gets the 1/0 RAM variable
GOODLF Checks to see 1f our RB 1s the sare as reality
1/0CHK Deternines whether there 1s 1/0 to do
INRST Restores the current input file and status
INSRVE Saves the current 1nput file and status
LSTN1 Listen addresses a device

|

|

|

|

|

|

'

|

LSTNR? ' Checks to see 1f there are listeners ready for a talker
|

!

|

!

|

!

|

NXTDEV Goes. to the next device on the loop
OTLINE Deconpiles a line 1nto the output buffer
OTSTRT Qutput start routines
PUTSYS Checks to see 1f systen I/0 files should be updated
RSTORE Restores the PIL registers; transmits PILINT characters
STRTUS Checks the SRQ (status) and procesces 1t 1n the RB
TRLK1 Talk addresses a particular device

- er. — EE e, e, .t m . m EE e .. . w RN, .-, e .. * . B .e e -, R e .- CP e E CAEE T ,-e=~

e m e e m. m . . e e .- e R e e- e, ., B ... ee,., SRS, E SR Ee,e.S-

cno Interprets connand franes as a non=controller (CA=0)
CNTRL Transrits & error checks non=SRQ connands on the loop
PILER Handles errors for PIL routines
PILINT PIL interrupt service routine (I/0 engine)

|

|

|

|

RDY | Interprets ready franes as a non-controller (CR=0)
|

|

|

!

RECIVE Receives data over the loop fron a file (LR=1)
SEND Sends data over the loop fron a file (TR=1)
SRQ Services a request fron a peripheral
XLATE Stores collected paripheral status bytes
PeIettt

TTRARXRT

AYLOOP ' Attenpts to get control of the loop
NEUFB ' Nakes a neu current resource block
PILNIT ' Initzalization routine for the ROM; processes HANDI call
REQEST ' Requests service as a peripheral fron the current (R

9:27 AN UWED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
File Grouping

Table of Contents

9:27 AN UWED., 16 SEPT, 1981

Quick Reference Docunentation of Kangaroo Subroutines
file Grouping

NRUNHNN HHNURNNEE HNHRRUNNN HHERERNEN RRNERRNNN HRRNNNN
HHNNNNHY HUNNENRNN HHRRHRNNN HHRNNENEN BHHRRRNNN NN
WU HREN R BER REN NN LLL CLUR LU LL L

HHN NNN NN NN NN " FHE U NN
HHN NEN HEN NN R nen LLU LU LDLD
CCT LD LR LLR LU " NN NN N e

HUNNNRAN HRNNNERNE RN NN CILLTILLLI LI L
HHNRHUN LULELELDILD " NNURUNNNN NN N

NRHRHHNEN HRRNREHRN NRRNNNNE NRNRNNEEN W 0 NUNNEARNN
WHRUNHENR HRRRNNNIN NHRNRNNNN NRNRRNNNE W0 § RUNNNNENN
NN HHN R R NN NN N e e N
Ny HHR NN RENRRNNN e NN e NUNNNNRNN
NN NEN NEN RNBRHRNN NN NN N LLELLLL
MRE NKE REN NEE NEN NN RN NN NN e

HHHUUHHNE HEHRNHENN RHRHARNNEN RRHRRRANN RNRNNNENN NN
NHRHHRHRN HHRRARRAN RRRENNEN NRRREHNRE NEANNRANR HHRNHINN

0000 00000 O 0 000 0 0 00000 0000

0 0 O 00 00 O 0 00 O 0 0

0 0 o000 000 0 ©O©0 OOO 0 0

0 0 © o 0 0 0 0 00 0 0

0000 00000 © 0 0000 0 0 00000 00000

0000 O 0 00000 0000 00000 00000 000

0 0 0 o 0 0 0 0 o 0

0 000 O 0 0 0 0 000 0 0 0

0 0o 0 0 0 0 0 0 0 0 0

0000 0000 00000 0000 00000 o 0000

0 0 000 0 0 0000 00000

0 0 0 0 00 0 O 0 0

00000 00000 0 OO0 O o 0

0 0 0 0 0 00 O 0 0

0 0 O 0 0 0 0000 00000

0000 000 0 0 0000

0 0 0o 0 0 0

0 00000 © 0 00000

o 0 0 0 0 0

00000 O ¢ 00000 00000 0000

HANDI CALL DOCUMENTATION
Seth D. Rlford

1/27/82

Event: V.LFTY Translate a strange file type.

HANDI error: 68 Invalid File type.

Uhere invoked: RS3VF2(509)

Under what conditions is this called?

Kangaroo file types must be translated into LIF file types for
copying files to mass menory. VFTRNL does this translation. VFTRNL
recognizes the file types currently existent 1n kangaroo: lifl, text,
lex, basic, systen and appt. Inevitably soneone uill create a new
file type. VFIRNL wi1ll not find 1t in 1ts table and so uill issue
a HANDI call.

What should the handler do?

The progranner uho creates the neu file type should obtain a neu
LIF file type nunber fron Frank Hall, the current PL21 dispenser
of LIF file type nunbers.

The handler should intercept the HANDI call and look at R21
to deternine the file type being translated. If this file type
natches one the handler knous about he should set the HANDLD flag
and return the LIF file type in R46/47. The handler should check
the file type to determine 1f indeed 1t 1s one he knous about,
and not just assune that the case because he intercepted the HANDI
call. ARfter all, we nay have different RONS creating neu file types.

Entry registers and RAN paraneters:
R21: kangaroo file type
R24/25: FNB pointer
R36/37: devfile offset (points to RCB)

Exit registers and RAM paraneters:
R46/47: LIF file type, 1f knoun

Hhat registers can be changed:
R40/47
RS0/57
(And nore if necessary. These should be sufficient for a
table lookup subroutine. See ne or exanine the code if
this 1s 1nsufficient.)

Should HANDLD be set? Only if you can translate the file nane.

Notes:

Do not trash R24/25 or R36/37!

HANDI CALL DOCUMENTATION
Seth D. Riford

1/27/82

Event: V.RFTY Translate file types coming into kangaroo.

HANDI error: NONE, HANDIO call.

Mhere 1nvoked: RS8VF2(82)

Under uhat conditions 1s this called?

See the V.LFTY docunentation.

Nou that you have read the V.LFTY docunentation you uill understand
uhat 1s going on. (So go and read 1t 1f you have not already.)

Suppose that ue want to bring back one of these neu file types.
VFRO0? 1s the routine which translates LIF file types to kangaroo
file types. Sirilar to VFTIRNL, 1f the file type 1s not 1n 1ts table
VFRO0O? 111l generate a HANDIO call. If 1t can, the handler 1s to
provide a kangaroo file type.

Mhat should the handler do?

The handler should exarnine R20/21, which contains the LIF
file type. If 1t knous of this type the handler should return
the kangaroo file type 1n R21 and clear the HANDLD flag.

Entry registers and RAN paraneters:
R2C/21: LIF file type
R24/25: FNB pointer
R36/37: devfile offset

Ex1t registers and RAN paraneters:
R21 : kangaroo file type

What registers can be changed:
R40 /47
R50/57
(RAnd naybe sone others, see ne or exanine the code 1f
necessary.)

Should HANDLD be set? Only 1f you can translate the file type.

Notes:

Do not trash R24/25 or R36/37!
itRiteRRRR

HANDI CALL DOCURENTRTION

Event:
V.RSSI (not used at this time)

HANDI error:

Where 1nvoked:

Under uhat conditions is this called?

What should the handler do?

Entry registers and RAN paraneters:

Ex1t reqisters and RAN paraneters:

Uhat registers can be changed:

Should HANDLD be set? yes/no/other

Notes:

RLeeRT

Nary Jo Hornberger
1/27/82

PRL

NOt MAnufacturer Supported

veciplent agrees NOT to contact manufacturer

HANDI CALL DOCUMENTATION
Rary Jo Hornberger
6/15/82

Event:
V.ASSN Devfile has been changed

HANDI error:

none

WUhere invoked:

nJ&DI0

Under uhat conditions 1s this called?
Called after assignio, printer is, or display is runtine tokens to let
10ron know that the devfile has changed

What should the handler do?
Update uhatever depends on the devfile

Entry registers and RAM paraneters:
none

Exit regqisters and RAN paranmeters:
none

Nhat registers can be changed:
any

Skould HAND(LD be set?

don’t care

Notes:

e e m ee, . . e et R C E e E,m .., e . e E e, e e, e, e e R, E e R e e Ere T, Ct e AR R E TPe E e e ee eo

HANDI CALL DOCUMENTRTION
Nary Jo Hornberger
1/28/82

Event:
V.ADDR P1l address needed for unrecognized nane

HANDI error:
630 (11legal filespec)

Uhere invoked:

nJanio

Under wuhat conditions is this called?
Called when Getpad 1s called for a device nane that we don’t recognize
(either >2 characters or not in Devfile)

What should the handler do?
Return us a p1l address 1f it recognizes the nane

Entry registers and RAN paraneters:
rébn =nane, 1f <3 characters
r32 =nunber of characters in nane
r3dn =address of nane 1f > 2 characters

Exit registers and RAN paraneters:
r20 =p1l address for that nane
r3én =address for that device's entry in Devfile

Hhat registers can be changed:
r20n, r3On, r36n, r40n

Should HANDLD be set?
yes

Notes:

HANDI CALL DOCUNENTRTION
Nary Jo Hornberger
6/15/82

Event:
V.L0OP Ask-pernission bit 1s set in plstat (we may not be controller)

HANDI error:
none

Where 1nvoked:

MJ&PLL

Under what conditions 1s this called?

Called uhen bi1tH7 of plstat 1s =1
This bit 1s set and cleared by the 1oron

What should the handler do?
Try to get control of the loop. If the handler can’t get the loop, 1t
needs to 1ssue an appropriate error

Decide 1f 1t wants to send the frane 1tself, or 1f we should send 11t
Clear plstat bit#7 1f ue don’t need to ask pernission any nore

Entry registers and RAN pararieters:
r55n =p1l regs 0,1,2 for franme we uant to send

Exi1t registers and RAN paraneters:
handled =set 1f 1t got control of the loop

r?? =cleared 1f handler 1s going to send frane
zunchanged 1f handler uants sndfrn to send the frane

plstat bitN7=0 1f we don't need to ask pernission next tine
bitH7=1 1f e still need to ask permission

What registers can be changed:
r?7(1f handler 1s going to send frane), rOm,ren

Should HANDLD be set?
only 1f handler gets control of the loop. If 1t doesn’t, ue expect the
handler to i1ssue an error

Notes: If r77=0, sndfrn uill finish up as 1f the frame uas sent uith no
errors, returning e=0., If handled 1s not set, sndfrn will return uath e=3
and the 'not sent’ flag set. IT IS UP TO THE HANDLER T0 ISSUE AN ERROR IN
THIS CRSE.

- e e e e e n e e e e c e, e, e, e r e e, e, e, e.. . e, e ,e e, T e, CE R, hEr ee e e R e Rt S, e. .-

Event:
V.SRQR Intercept for service requests received

HANDI error:

none

Where 1nvoked:
nJapPLL

Under what conditions 1s this called?
Called uhenever ue get a service request fron the loop

What should the handler do?
Whatever they want

Entry registers and RAN paraneters:
r56 pi1l reqister 1 received
r57 p1l reqister 2 received

Ex1t registers and RAN paraneters:
none

Hhat registers can be changed:
ron, r2n

Should HRNDLD be set?
don’t care

Notes:

Beeeelee

Nary Jo Hornberger
6/15/82

HANDI CALL DOCURENTRTION '
Mary Jo Hornberger
1/27/82

Event:
V.ASNH Printh, Read# or Rssign¥ of non-Kangaroo base nachine file

HANDI error:
630 (Illegal filespec)

Where 1nvoked:
MJ&TXT

Under what conditions 1s this called?
Called whenever the 10file type byte for the file ue’re going to use
1s not O (except for assign# to * which we handle)

What should the handler do?
Everything. The handi call neans ue gave up.
If readd, readd. If printM, prantd. Etc...
See the subevent lists following.

Entry registers and RRN paraneters:
token token that we’'re trying to do

(nay be read, read¥, readW array, print, printd iten, prant¥
array, printh end, read nunber, read string, assignd, restore,
or restoreM.)

1f assign¥, r20 = nunber to assign file to
other parans fron getnan

for all other operations
r14 =access needed for this operation
r?’6 =file nunber
r36 =10f1le entry for that file

access access needed for this operation (tyxxx? bits)
filnun file nunber ue’re working uith
prntH? =1 1f printH, else cleared
prtptr =1 1f first print# 1ten not printed yet, else cleared

1f readH, printH, restore, read, or restored, uill also have
red =0EH 1f want to go to front of file

OFH 1f serial
BCO lined 1f randon

alio address of 10file entry for this file

1f read nunber or read string, uill also have
r20 =09H 1f string

=00H 1f nunber

Exit registers and RAN paraneters:
10f1le entry should be updated to reflect neu status

1f assign#t, entry for file should be 1nserted
1f others, current data i1ten and current lineM fields should be updated

text? =1 1f working uith text file. (may not be necessary to update,
=0 1f basic file but 1t can’t hurt...)

What registers can be changed:
any, except usual registers under r20

Should HANDLD be set?
yes, if 1t was handled

Notes:

Instead of uriting a book on everything that needs to be done for all 12
cases, I reconnend that the user look in rh"ice or rh"ei1s to see what
tokens cone i1n what order for the different connands, and then check
n)/txt to see uhat the base machine does. There is currently no clearing-
house for deciding who can use what 10fi1le type bytes. If there are 2
rons out there that both have strange files and they pick the sane type
nunber, things could get interesting. You can add as many bytes to your
10f1le entry as you like (until ue get to 255), as long as you keep the
line length updated. Just be sure to add then RFTER the type byte!'
Rlso, NEVER assume that memory hasn’t noved betuween one token and the
next.

HANDI CALL DOCURENTRTION
fary Jo Hornberger
6/15/82

Event:
V.ASNN Data file manipulation of non-Kangaroo base machine file

Subevent:
Assignl Rssigni statenment that ue can’t handle

HANDI error:
630 (Illegal filespec)

Hhere i1nvoked:

WJRTIXT

Under wuhat conditions is this called?
Called uhenever a device nane 1s given in an assign# connand
Exanple: Rssignil to 'joe:ca’

Uhat should the handler do?
Here 1s uhat Kangaroo does with a Kangaroo file:

Check to see 1f the file exists, creating 1t if it doesn’t. If the
user specified a type, that type 1s checked/used. If no type uas
specified, the type defaults to Basic.

Build an iofile record for the file, of the follouing forn:

byte type contains exanple

1 8co least byte of file nunber 01
2 Beo other byte of file nunber 00
3 binary length of this iofile record -3 oC
4 ascii first character of filenane (blank filled) J
5 " next character of filenarne 0
6 " next character of filenane t
7 " next character of filenane
8 " next character of filenane

9 " next character of filenane
10 " next character of filenane
" " last character of filenane
12 binary current data 1ten, 1nmitially zero 00
13 BCD least byte of current line nunber, 1nitially 00 00
14 " other byte of current line nunber, i1nmitially 00 00
15 binary type byte (0O=regular Kangaroo nainfrane file) 00

?16+ ? uhatever you uwant (K/R records stop at byte 15)

The record 1s then inserted into the 10file by the Fsrepl, uriting over
the old assignrnent for that file nunber 1f there uas one.

What should the handler do?
Do uhat Kangaroo would have done. Sone steps nay need to be added,changed,
or deleted, depending on uhat nakes sense for your application.
You should probably check to see 1f the desired file exists on the given
ned1a. You nay or nay not be able to create 1t if 1t doesn’t, depending on
uhether you are implenmenting 3 variable length or fixed length record
fornat. If you are inplenenting a fixed length fornat, you nay uant to add
bytes to the iofile record indicating nunber of records per file, nunber of
bytes per record, etc.

Entry registers and RRN paraneters:
token 60H assign#t token
reOn XXAX B(D file nunber
r40m XXXX upper case file nane, blank f1lled
r50 XXX X getnan special file type bytes
r5n XX KX device nane
res XX XX nunber of bytes fron R12 (1f >12D, type uas specified)
réén XX > X type (basic or text)

r7dn XXX X passuord, blank f1lled

Exit registers and RAN paraneters:
An 10f1le record should be inserted i1nto the 1ofile for the filenunber
vanted, uriting over any old assignnent of that filenunber. Notice that
the filenunber asked for 1s the 10fi1le linenunber for that record.
The first record i1n the 10fi1le (linenunber 000C) 1s reserved for use with
read and restore statements i1n 3 running progran.

What registers can be changed:
any, except usual registers under r20

Should HANDLD be set?
yes

Notes:

The 'RAssignitx to *' cornand 1gnores the type byte. The 1ofile entry for
that nunber uill be deleted (regardless or uhether or not that entry 1s
for a non-Kangaroo type file), and a Handi call uill NOT be 1ssued.

See Rh"i1ce or Rh"e1s to find out uhat tokens cone i1n uhat order for the
different connands. Nj/txt nay be useful as a reference to see what the
base nachine does uwith the different tokens. C(heck uith the keeper of
assi1gn¥ non-Kangaroo file type nunbers 1f you want to add or use a
particular type. You can add as nany bytes to your 10file entry as you
like (unt1l ue get to 255)., as long as you keep the line length updated.
Just be sure to add then RFTER the type byte! Rlso, NEVER assune that
rnencry hasn’t noved betueen one token and the next.

® 0 0 00 600 00 000 000 P00 O VT G000 P 0SS0 SO EU S0 0L E eIV IOELELLSIOELLOIOEOSEL OGS

HANDI CRLL DOCURENTATION
Rary Jo Hornberger
8/4/82

Event:
V.ASNH Data file nanipulation of non-Kangaroo base machine file

Subevent:
Print¥, ReadM, RestoreN, Read, Restore Najor tokens for data file

nanipulation
HANDI error:

630 (Illegal filespec)

Uhere invoked:

MJLTXT

Under what conditions 1s this called?
Called uhenever the iofile type byte for the file we’re going to access
1s not 0.

What should the handler do?

The purpose of this handi call for these tokens 1s to get an accurate
update of current linenunber and current datanunber in the Iofile
entry for the data file, and to nake sure they are really there!

Here 1s what Kangaroo would do with regular files (after the point uhere
the Handa call 1s 1ssued):

clear text? flag, check file for correct access bits,
allouing a text file 1f all access bits except the runnable
bit match. If the file access 1s urong, we issue a V.accM
Handi call and quit. If the file is a text file, we set the
text? flag.

1f ue’'re doing a printH, we check for the printd to a running
file error, do a call to safe'. If safe! returns ed0, quit.

next ue set up the current lined and current data¥ as follous:

(2] function used by

OEH set current line# and datalt to 0, Restore
nHake r24 =serial flag (OFH) Restorelin

OFH (seri1al flag) Printin
Af prant# and current datal <> O: Read
increrent current lineH, set current Read#in
data# to 0. else do nothing

legal (randon flag) Restore 1
8Co set current line# to r24n, set current Restoreln,l

data# to O Printin,l
Read#n, |

(1f the current lineN would increment past 9999, we error.)

nouw we see if that line 1s really there, and if it is a valid
line to access (either a DATR statenent 1n a Basic file, or
any line 1n a Text file).

1f the line 1s not there:
1f this 1s a serial printW, we try to create that line

(1f we’'re printing to an empty file, we create linei1)
1f this 1s a3 serial access other than printd, ue find the

next valid line in the data file
1f this is a2 randon access, ue error

finally, we look in the data file to verify the number of the
current data iten. (We’'ve already set up which iten we would
LIKE to be at, houever the line may or may not contain that
nany data itens!)

Entry registers and RAN paraneters:
token SCH Printd token

S0H Readd token
SEH Restored token
6EH Read token
70H Restore token
DCH Restore <to lined> token

r14 =access needed for this operation
z=tyrun?|tylin?|tyedt?|tyran? for print
=tyrun?|tylin? for read,restore,restored
=tyrun?|tylin?|tylst?|tycop? for readd

red =0tH 1f want to go to front of file (as in restore)
=OFH 1f serial (as in readi1;as$)

r2dn =BCD line number 1if randon (as in readd1,30;a$)

r?76 =file nunber (this uill be linenunber of 1ofile record)
r3é6 =addr of 10file entry for that file

o addr of 10fi1le entry for this file (=r36n)
access access needed for this operation (=ridn)
f1lnun fale nunber we’re working uith (=r76n)
prot#? =1 1f printl, else cleared
prnti1 =1 1f first printh 1ten not printed yet, else cleared

Ex1t registers and RAN paranmeters:
10f1le record should be updated to reflect neu current data 1ten and
current line nunber

text? =1 1f working uith text file (may not be necessary to update,
=0 1f Basic file but 1t can't hurt...)

Hhat regqisters can be changed:
any except usual registers under r20

Should HANDLD be set?
yes, 1f you handle it

Notes:

See Rh"1ce or Rh"eis to find out what tokens cone in uhat order for the

different connands. M)/txt n3y be useful as a reference to see uhat the
base nachine does uith the different tokens. (heck uith the keeper of
assignd non-Kangaroo file type nunbers 1f you uant to add or use a
particular type. You can add as nany bytes to your 1ofile entry as you

Iike (unt1l ue get to 255), as long as you keep the line length updated.
Just be sure to add then RFTER the type byte' Rlso, NEVER assune that
nenory hasn't noved betueen one token and the next.

HANDT CRLL DOCUMENTARTION
fary Jo Hornberger
8/4/82

Event:
V.ASKH Data file nanipulation of non-Kangaroo base machine file

Subevents:
Readn. Reads. (Read<nur> and Readstring> tokens)

HANDI error:
630 (Illegal filespec)

Where 1nvoked:

HJ&TXT

Under uhat conditions 1s this called?

Called uhenever the 10file type byte for the file we want to read a
string or nunber fron 1s not 0

Hhat should the handler do?

Read one nunber (for Readn.) or one string (Reads.) fron the data file.

The tokenized form of Basic lines in Kangaroo files are as follous:

line nunber length data data 1tens end
token token

| | | | I eee e e e e |

f¢rmmmomcccenna- nax 255 bytes ------------- >

The data 1tens are of the forn (no bytes are used for deliniters):

‘quoted strings: 96H stringlength string
"quoted strings: OSH stringlength strang

unquoted strings: 06H stringlength string
real nunbers : 04H eight bytes of nunber

integer nunbers: 1RH three bytes of nunber

The lines in Text files are of the follouing fom:

line nunber length characters 1in line
| l I I e e e Ce e e e e e|

Jemmmmmmmmme-nax 255 bytes ------------- |

Hhen reading a string fron a text file, the whole line is read intc one
string.

Entry registers and RAN paraneters:
token =A1H 1f read¢string>

=C8H 1f read<nunber>
ri4 =access needed for this operation
r20 =00H if read<num>

=09H 1f read<string>
r24d =0fFH 1f serial
rédn =B(D line nunber 1f randon

r7én =file number (1,42, etc.)
r3én =addr of 10file entry for that file

ao addr of 10file entry for this file
access access needed for this operation (tyxxx? bits)
f1lnun file nunber ue’re uorking uith
prnt#? =1 1f printd, else cleared
priptr =1 1f first printd 1tern not printed yet, else cleared

Ex1t registers and RAN paraveters:

Current data iten and line# should be correct.

What registers can be changed:
any, except the usual registers under R20

Should HANDLD be set?
yes

Notes:
See Rh"nen for infornation on uhere to put the nunber or string that
you read. The infornation that you need fron the variable nane 1s
already set up on R12 before you enter these tokens.

See Rh"1ce or Rh"e1s to find out wuhat token: cone in what order for the
different connands. M)/txt nay be useful as a reference to see what the
base nachine does uith the different tokens. Check uwith the keeper of
assignk# non-Kangaroo file type nunbers 1f you want to add or use a
particular type. You can add as nany bytes to your 1o0file entry as you
like (until ue get to 255), as long as you keep the line length updated.
Just be sure to add then RFTER the type byte'! Rlso, NEVER assure that
nernory hasn’t noved betueen one token and the next.

HANDI CRLL DOCUMENTRTION
Mary Jo Hornberger
8/4/82

Event:
V.RSNH Data file nanipulation of non-Kangaroo base machine file

Subevent:
SeraW. (onad. Préval (Print one 1ten tokens)

HANDI error:

630 (Illegal filespec)

tthere 1nvoked:

nJsTXT

Under what conditions 1s this called?
Called whenever the 10file type byte for the file ue're going to printh
to 1s not O

What should the handler do?
Printd the nunber or string given to the data file at the current line
nunber and data nunber, See the PrintM subevent for anformation on how
to locate the current line nunber and data nunber. It 1s 3 good idea to
recalculate everything uith each token, since if there is a defined
function 1n the print list, when we hit that function it nay assigni us
to a different file, purge the data file, etc., all of which would be
disastrous if ue went ahead and urote to where ue thought we should in
Ran, as nou we don’t knou what ue nay be uriting over.

At the first printed iten in each paraneter list, Kangaroo clears the
line ue’re going to use.

If a 1ten won’t fi1t on a partially full line and the user is
doing a ser1al printd, Kangaroo noves to the next valid line, building
one 1f there are none left. If we’re doing a randon printW, we error.

If a string 1s too large to fit on an enpty line, Kangaroo truncates 1t
and 1ssues 3 warning.

If the 1ten 1s a nunber, Kangaroo does a V.RCCH handi call if we’re 1in
a text fale.

Entry registers and RAN paraneters:

string address&length OR 8 bytes of nunber uill be on R12

token ASH =printh senicolon
A6H =printH conna

ri4 =access needed for this operation
r2d =0FH 1f serial printh

zBCD line nunber 1f randon

r76 =file nunber (#1,M2,etc.)
r36 =addr of 10file entry for that file

aio addr of 10file entry for this file
access access needed for this operation (tyxxx? bits)
filnun file nunber ue’re working uith
prmti? =1 1f printH, else cleared
prntii =1 1f first printh 1ten not printed yet, else cleared

Ex1t registers and RAN paraneters:
The current linenunber and current datanunber should be updated in
the Iofile

dhat registers can be changed:
any, except the usual registers under r20

Should HANDLD be set?

yes

Notes:
See the subevents Readn. and Reads. for the structure of the data 1tens
in the data files.

See Rh"i1ce or Rh"eis to find out what tokens come in what order for the
different connands. M)/txt nay be useful as a reference to see what the
base machine does uith the different tokens. Check uith the keeper of
assign¥ non-Kangaroo file type numbers 1f you uant to add or use 3
particular type. You can add as nany bytes to your 10file entry as you
like (unt1] ue get to 255), as long as you keep the line length updated.
Just be sure to add then RFTER the type byte' Rlso, NEVER assune that
wenory hasn’t noved betueen one token and the next.

HANDI CALL DOCUMENTATION
fary Jo Hornberger
8/4/82

Event:
V.ASNH Data file manipulation of non-Kangaroo base machine file

Subevent:
PHaray RWaray (printh or readd array tokens)

HANDI error:
630 (Illegal filespec)

WUhere invoked:
. WJ&TXT

Under uhat conditions is this called?
Called uhenever the 10file type byte for the file we're going to use
is not 0

Uhat should the handler do?
Erther Pranth or Read# the given array to/fron the current data file.
In Kangaroo, this 1s done by calling Prival or Readn. for each 1iten.

Kangaroo does a V.ACCH handi call if the user if trying to printh or
readd an array to or fron a text file

Kangaroo also nodifies the trace flag after the first 1ten 1s read, so
only the first iten is traced. The trace flag is restored uhen the
array read 1s conpleted.

Entry registers and RAN paraneters:
infornation fron the 1 or 2 dinensional array tokens uill be on R12

token =22H 1f array printh
=24H if array read#

r14 =3ccess needed for this operation
r24 =0FH if serial

=8CD line nunber if randon
r76 =file nunber (W1,M2,etc.)
r36 =addr of iofile entry for that file

Mio addr of 10f1le entry for this file

access access needed for this operation (tyxxx? bits)
f1lnun file nunber we’re working uith
prnti? =1 1f print#, else cleared
prntil =1 1f first printd 1ten not printed yet, else cleared

Ex1t registers and RAN paraneters:
The current linenunber and current datanunber should be updated 1n the

Tofile.

What registers can be changed:
any, except usual registers under r20

Should HANDLD be set?
yes

Notes:

See Prval and Readn. subevents for infornation about uhat to do with

each 1ten. See Rh"nen for information about array nane forns, etc.

See Rh"ice or Rh"eis to find out what tokens cone 1n uhat order for the
different connands. MNj/txt nay be useful as a reference to see uhat the
base nachine does uith the different tokens. Check with the keeper of
assi1gn¥ non-Kangaroo file type nunbers 1f you uant to add or use a
particular type. You can add as nany bytes to your 1ofile entry as you
like (unt1l ue get to 255), as long as you keep the line length updated.
Just be sure to add then AFTER the type byte' Rlso, NEVER assune that
neriory hasn’t noved betueen one token and the next.

HANDI CALL DOCUMENTATION
Nary Jo Hornberger
8/4/82

Event:
V.RSN# Data file nanipulation of non-Kangaroo base nachine file

Subevent:
Priend (Printd end token)

HAND] error:

630 (Illegal filespec)

Where invoked:
RJ&TXT

Under what conditions 1s this called?
Called uhenever the 10fi1le type byte for the file we’re going to use
1s not O, and we've reached the end of our Print#,

Uhat should the handler do?
If no 1tens were printed to the line, the line should be deleted.
The Prnt#1 flag should be cleared.

Entry registers and RAN paraneters:
token =R7? =PrintHend token

ri4 =3ccess needed for this operation

r2d =0fH if uant to go to front of file
=0FH 1f cerial
=B(0 line nunber 1f randon

r76 =file nunber (H1,#2,etc.)
r36 =addr of 10file entry for that file

Mo addr of 10fi1le entry for this file
access access needed for this operation (tyxxx? bits)
f1lnun file number ue’re working uith
prnti? z{ 1f print#, else cleared
prnt#1 =1 1f first printd 1ten not printed yet, else cleared

Exit registers and RAN paraneters:
The current linenunber and current datanuriber in the Iofile should be
updated.

Hhat registers can be changed:
any, except usual registers under r20

Should HANDLD be set?
yes

Notes:
See Rh"1ice or Rh"e1s to find out uhat tokens cone in uhat order for the
different connands. M)/txt may be useful as a reference to see what the
base nachine does with the different tokens. C(heck with the keeper of
ass1gn¥ non-Kangaroo file type nunbers if you want to add or use a
particular type. You can add as nany bytes to your 10file entry as you
like (untal we get to 255), as long as you keep the line length updated.
Just be sure to add then AFTER the type byte! Rlso, NEVER assune that
nenory hasn’t noved betueen one token and the next.

DRYeee

HANDI CALL DOCUNENTARTION
Rary Jo Hornberger
1/27/82

Event:

V.RC(H Access bits for data file didn’t natch our needs

HANDI error:
650 (Illegal access)

Where i1nvoked:
nJ&TXT

Under uhat conditions 1s this called?
Called when the access bits for our data file don’t match uhat we're
trying to do (1.e., trying to print¥ to a ron file, or trying to readd
3 non-copyable, non-listable file), or uhen ue don’t knou hou to do
uhat the user asks (like print¥ nunbers to a text file)

Nhat should the handler do?
If ue call handi, we’ve given up, and are quitting
If 1t knous hou to do the operation uith the given access bits, it should
0 ahead and finish the operation, being sure to update the 1ofile entry

?Sec V.ASN#)

Entry reqisters and RAN paraneters:
token uhat ue’re trying to do
ri4 =access we need for this operation
r7é =f1le nunber ue’re uorking uith
r34 =address of 10file entry for that filenunber

Exit registers and RAN paraneters:
10f1le updated to new status

What registers can be changed:
any

Should HANDLD be set?

yes

Notes:
Note that r14 (access we need for this operation) 1s negotiable. (1.e.,
1f the handler can do 1t anyuay, do 1t'!)

em e nrE e .. .-, mE.. E—" e e .. —— ., .- e - S mE eSS mE® .-, ,T e et e CrrP e.--

HANDI CALL DOCURENTRYION
Mary Jo Hornberger
1/27/82

Event:
V.UNKD Unknoun data type encountered in data file

HANDI error:

330 (data type)

Where invoked:
MJ&TXT

Under uhat conditions is this called?
Called when token in data file 1s not an END, integer, real, "ed string,
‘ed string, or un'ed string

What should the handler do?
1f restoreM, printd, readd, restore, or read, just nake sure current lineM,
current datal, address of current line, and address of current data are set
up correctly in 1ofile.

for the other tokens, do the above, then finish out the token. (1.e., 1f
read nunber, do it.) (See V.RSNM subevents for list of tokens)

Entry registers and RAN paraneters:
token token we're executing
r20 zdata¥ of current 1ten -1
ri4 zaddress of entry in 10file
r32 zunknoun token
r3 zaddress unknoun token uas popped fron

Exit registers and RAN paraneters:
none

What registers can be changed:
any

Should HANDLD be set?
yes

Notes:

See V.ASNH subevents for nore specific information

BeeReeelRNee

HANDI CALL DOCUMENTRTION
Raan Young
6/09/82

Event: V.SPY (Rllou ron to do processing at end of progran line, safely)

HANDI error: 18 (ROM MISSING)

Where i1nvoked: IV&SER

Under uhat conditions 1s this called?
1f BITH1 of SVCWRD 1s set, SPY will 1ssue a V.SPY handi call whenever

SPY 1s called (EOL, GOTO, GOSUB, NEXT, etc).

What should the handler do?
Do whatever 1t uwants to do at that point.

Entry registers and RRN paraneters:
TOKEN: The token which preceded the SPY call.

Exit registers and RAN parareters:
None.

Hhat registers can be changed:
Rll nornally safe ones.

Should HANDLD be set?
Yes, to prevent error report.

Notes:
BITH1 1n SVCHRD 1s cleared by SPY after the HANDI call returns.
Therefore, the ron doesn’t need to clear 1t, nust set 1t for each
desired occurance, and can’t set 1t during the V.SPY call.

BIeeRettt

HANDI CALL DOCURENTATION
Raan Young
1/28/82

Event: V.ETRG (Rllou extension of conparator machine for plugins)

HANDI error: 18 (ROM NISSING)

Where invoked: RY&CHP

Under what conditions 1s this called?
When Conparator receives trigger for external device nunber 1,2, or 3.
This trigger 1s setup by call to CAPENT. UWhen CMPCHK processes the
conparator nachine, 1t does the HANDI call for external devices.

What should the handler do?
Deternine uhich external device needs service, and do it.

Entry registers and RRN paraneters:
R20?21: device table entry [(R20/21 - DVCTBL)/2 = device nunber)

Ex1t registers and RRN paraneters:
None

Hhat registers can be changed:
R20-77 all protected

Should HANDLD be set?
Yes, 1f device recognized and serviced.

---..-.e....PRRR,..T ET.eTS @E .- "E>®-®-=

HRNDT CALL DOCUMENTRTION
Raan Young
1/28/82

Event: V.CARRD (Rllou rons a chance after each track of a card operation)

HANDI error: NONE

Where invoked: RYSCRD

Under what conditions 1s this called?
Rfter each track, just before the track nessage 1s displayed, this HRNDIO
call lets rons do wuhatever they uant before we start the next track.

What should the handler do?
Whatever he uants.

Entry reglsters and RAN paraneters:
0 1f doing urite, 1 if doing read

FLHERD first byte 1s track ¥, second byte is # of tracks
See RY"CRD for nore details about card reader function and
register usage.

Ex1t registers and RAN paraneters:
Whatever 1s needed to achieve desired results.

What registers can be changed:
R14/15 and nornal scratch registers, all else uill have sone effect.

Should HANDLD be set?
Does not natter, 1t 1s 1gnored.

Notes:
See card reader code and docurnentation for more information about
possible changes which can be made uith this HANDIO cpll.

HRNDI CALL DOCUMENTARTION
Raan Young
1/28/82

Event: V.TNCX (Extend tine mode connands)

HANDI error: 78 (1nvalid connand)

Where invoked: RY&TNC

Under uhat conditions 1s this called?
When connand typed in 1s not recognized by Tine node.

What should the handler do?
Handle connand, 1f possible.

Entry registers and RAN paraneters:
R43/47: uppercased conand.

Exit registers and RAM paraneters:
None

What registers can be changed:
Subject to nornal restrictions, anything.

Should HANDLD be set?

Yes, if comnand handled.

---eRCReC.-,e.PRECE R-RETER,EP,TEEPECREBRE®-wwe

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

-

HANDI CALL DOCUNMENTATION

Gary Cutler
29-Jan-82

Event: V.PAR

HANDI error: none

Invoked: KR&PAR

Conditions: This call 1s 1n1tialized at every call to routine PARSER,
including appointnents.

What should the handler do?

This call provides the handler an opportunity to parse the
the connand string in the input buffer.

Entry registers and RAR pointers:

INPBUF: location of the connand string <INPUT BUFFER>

Ex1t registers and RAN paraneters:

On return to the Parser, the contents of the INPUT BUFFER
uill be parsed. The handler may or nay not supply
a neu string i1n the INPUT BUFFER.

What registers can be changed?

any

HANDLED set? not applicable

- - Ee-..,....-N.SeTRTRR,SRR,eNPT E .. e . EE . E® e e B... ® -~

HANDI CALL DOCUMENTATION

Event: V.STRR (sub a)

HANDI error: none

Invoked: KR&PAR

Under what conditions 1s this called?

There are tuo possible situations which can generate
the V.STRAR HANDI call. The first (sub a) is
initi1ated uhen a paraneter of a function 1s of
unknoun type (boffo). Sone useful infornation
follous.

What should the handler do?

The handler should be able to recognize the current
paraneter and 1t's type and corplete the parsing
of this paraneter.

Entry registers and RRAN pointers:

R12 STRCK

BRRoAeee

8 bytes of the functions
attributes. The tuo MSBits
of the top byte describe the
type of the current paraneter
an this case STRANGE'! type

R40--R47 This 1s the infornation
fron SCAN on the current paraneter

—m e e ., e e e e —t e mE e e e, —r e e, e E .- ---" -

R32 The function's token

At the time of the call the tuo NSBits
of R57 ui1ll also contain the type of
the current paraneter.

Ex1t registers and RAN paranmeters:

The contents of the R6 stack (other than the HRNDI
overhead) must remain 1intack.

What registers may be changed:

any but R33

HANDLED set? not applicable

ARelRReteLLLLL LTT LTTSSSNrNE SN

HANDI CRLL DOCUWEWTWYYIOW

Event: V.STRA (sub b)

HANDI error: none

Invoked: KR&PAR

Under what conditions is this called?

This event (sub b) will be initiated if
the PRRSER sees a string variable and the
succeeding character 1s not '[°’.

What should the handler do?

Thsi call is specifically for parsing String Rrrays.
The handler should therefore parse the renainder
of the String expression iff it is a String Rrray.

Entry registers and RAN paraneters:

R14: current token (other than '[’)
R20: next character
R10: ptr to INPUT BUFFER
R12: ptr to parsing stack

Exit reqisters and RAN pointers:

Parsed string array on the R12 stack
Scan nust be called to obtain the necessry

infornation on the next token

Uhat registers can be changed?

not R10
not R20

HANDLED set? not applicable

...

HANDI CALL DOCURENTRTION

Event: V.DEC

HANDI error: none

Invoked: KR&DEC

Under uhat conditions 1s this called

This event 1s generated when the Deconpiler
sees a token with class > 56.

What should the handler do?

The handler should deconpile the token contained
1n R23 and depending upon the attributes
of the token place the RSCII string in the
appropriate place on the R12 stack or the
Deconpilation Buffer

Entry registers and RAN paraneters:

R23: contains the current token
R24: points to the next token 1n line
R45/46: contains the BCD line nunber
R3: points to the input buffer one space

af ter the line nunber
PRECNT: contains the # of binary and unary operators

1n the current line which have already been
deconpiled

LRVRIL: contains the pointer to the location (on the R12
stack) and precedence of each of the operators
nentioned above.

Exit registers and RAN paraneters:

R24: pointer to next token
R30: pointer to 2nd byte after line # in buffer
PRECNT: updated
LAVRIL: updated

Hhat registers can be changed?

R40-47
R50-57
R60-67
R70-77
R32-37
R20-22

HANDLED set? not applicable

Lettteleet

HANDI CALL DOCURENTARTION

Event: V.INER

HANDI error: none

Invoked: KR&RTS

Under what conditions is this called?

This event is 1nitiated by the appearence
of a strange RADIX while attenpting to format
output.(other than 0 , or .)

What should the handler do?

Fornat the nunber in R40 and output to the display

Entry registers and RAN paraneters

R40: nunber to fornat

R54: contains the character count
R70: contains the sign type

z -1 ---> - 1f neg; blank for non-neg
3 0 ~--->- 3as adiqut 1f neg; blank non-neg
x 1 ---> - 1f neg; ¢+ 1f non-neg
: 2 ---> - 1f neg; blank non-neg

R71: contains the type of f1ll
-1 --> default
0 --> DI : digit position, z 1n units position
1 -->D : digit position
2 --> *7 : left filled with *, 2 1n units position
J-->* : Jeft filled uith ¢
4 --> 7 : left filled wmath 0

R72: radix (other than 0 , .)
R73: E/R fornat

-1 ---> AR fornat

0 ---> none
1 ---> E fornat (IMRGE)
2 ---> [fornat (suppress ¢,-,lead zeros)

Ex1t registers and RAN parareters:

none

#hat registers can be changed?

any

HANOLED set? not applicable

HANDI CALL DOCUMENTRTION

Jack Rpplin IV
January 28, 1982

Event: V.TEST (The Test event for XYZIY to use)

HAND] error: NONE

Uhere 1nvoked: IV&XYZ

Under uhat conditions 1s this called?
Uhen XYZIY uants to tinme HRANDIO calls,
1t calls HANDIO 10,000 tires uith the V.TEST event.

WUhat should the handler do?
Nobody should ever handle this event.

Entry registers and RAN paraneters:
None, you shouldn’'t hardle this event.

Ex1t registers and RAN parareters:
None, you shouldn’t handle this event.

What registers can be changed:
None, you shouldn’'t handle this event.

Should HANDLD be set?
No, cause you shouldn’'t handle this event.

Notes:

Don’t handle this event.

- o e e r e e e C e e, E e e . e . e E, . —e . . R,.., ., e PN RS ee,TE E e r RS, c e r e e EECeRe

HANDI CALL DOCURENTRTION
Jack RApplin IV

January 28, 1982

Event: V.CHED (The Character Editor event)

HANDI error: NONE

Where 1nvoked: IV&ED

Under uhat conditions 1s this called?
When the character editor (CHEDIT) 1s called.

Uhat should the handler do?
Perforn uhatever action 1t deens fit depending on R40.
If 1t changes R40, the neuw R40 will be acted upon by
the character editor. Or, 1t could perforn sone action
of 1ts oun, and set RA0=NOPKEY, which uill do nothing.

Entry registers and RAN paraneters:
R40: The key that 1s being passed to the editor
INPBUF: The 1input line
INPTR: Pointer to current position in INPBUF
LASTCH: Pointer to current last character of 1nput.
I/RFLG: Insert/Replace node flag.

Ex1t registers and RAN paraneters:
R40: The key that uill be passed to the editor,

possibly changed by the handler
INPBUF: The 1nput line
INPTR: Pointer to current position i1n INPBUF
LASTCH: Pointer to current last character of input.
I/RFLG: Insert/Replace node flag.

Hhat registers can be changed:
R41-47, RO-3

Should HANDLD be set? NO

Notes:
It 1s not possible to nake a non-terninating key into
a terminator uith V.(HED. VYou can perforn the function
yourself and nake RA0=(R, though. See also INPCHK, which
1s called just before HANDIO, which can nake a non-terninator
into 3 ternminator.

DeieNeeeeee

HANDI CALL DOCURENTRTION
Jack Rpplin IV

Janvary 28, 1982

Event: V.COLD (Machine 1s Coldstarting)

HANDI error: NONE

Where 1nvoked: IVAINI

Under uhat conditions 1s this called?
Coldstart occurs uhen the nachine 1s just turned on, after CNTL-SHIFT-CLR,
uhen RAN 1s rerioved, or when ue get a RAN checksun error,
During coldstart, just after initializing the RESHER area
and setting up a skeleton file systen.
Rll devices have been 1nitialized.

Hhat should the handler do?
Anything that should only occur once, such as
stealing nenory fron Kangaroo, clearing your printer, etc.

Entry registers and RRN paraneters:
Practically everything.

Ex1t registers and RAN paraneters:
Practically everything.

What registers can be changed:
A1l of then.
R6/7,R10/13,R16,R17 are used for other stuff, other.

Should HANDLD be set? NO

Notes:

PReeeeeT)

HANDI CRLL DOCUMENTARTION

Jack Rpplin IV
January 28, 1982

Event: V.URIT (The URITKY event, waiting for a key)

HRNDI error: NONE

Where i1nvoked: IV&IO

Under uhat conditions 1s this called?
At WRITKY, uhen the systen wants to wait for a key.

Uhat should the handler do?
Supply a key fron another keyboard into KEYHIT,
or perhaps convert the key that might be in KEYHIT.

Entry registers and RRN paraneters:
KEYHIT: The current pending key, if any
SVCHURD: The low bit 1s 1 1f there is a pending key in KEYHIT

Exit registers and RANM paraneters:
KEYHIT: The key that 1s nou pending
SVCHURD: The low bit set to 1 1f a key is in KEYHIT

What registers can be changed:
RO-3

Should HANDLD be set? NO

- --....SeT"®T ERSDSWDDET.-WTGe e.SNG ..TG-S®--

HANDI CALL DOCURENTARTION
Jack Rpplin IV

January 28, 1982

Event: V.ENDL (PRINT End-of-line uith unrecognized ROUTE)

HANDI error: NONE

Hhere 1nvoked: LINEND in file IVAPRN

Under what conditions 1s this called?
Routine LINEND 1s called when PRINT/DISP code uants to generate
an end-of-line. MWhere the end-of-line 1s sent 1s deternined by
ROUTE, which contains a code for the printer/display devices.
If ROUTE 1s not 1 or 2, then HANDI 1s called with V.ENDL.

What should the handler do?
If the ROUTE code 1s theirs, perforn the appropriate output.

Entry registers and RAN paraneters:
LINELN indirect: Current device width

Ex1t registers and RAN paraneters:
NONE

What registers can be changed:
RO-3 (R32 for OUT)

Should HANDLD be set?
YES, 1f ROUTE 1s your code.

Notes:
This 1s i1ntended to create other statenents of the sane

class as PRINT and DISP, 1.e., OUTPUT.
See V.CHAR for a similar event.

PeeeTRRRRLX

HANDI CALL DOCUMENTRTION
Jack RApplin IV

January 28, 1982

Event: V.CHAR (PRINT character uith unrecognized ROUTE)

HANDI error: NONE

Where invoked: Routine QUT in IV&FRN

Under what conditions 1is this called?
Routine OUT 1s called when PRINT/DISP code wants to output
a character. The code inspects ROUTE to deternine whether
to urite to the printer, display, or other devices. If 1t's
not printer or display, we call HANDIO uith V.CHRR.

What should the handler do?
If the ROUTE 1s theirs, perforn the appropriate output.

Entry registers and RAN paraneters:
R32: character to be output.

Exi1t registers and RAN parareters:
none

Uhat registers can be changed:
RO-3, R32

Should HRNDLD be set?
If this was your ROUTEing code.

Notes:

See V.ENDL for a sinilar event.

- -BTB-- " .STEEE e- REE- E eRSERT,., ,P, CEeROTRe CECCEEESe-

HRANDI CRLL DOCURNENTRTION
Jack Applan IV

January 28, 1982

Event: V.SLEE (NMachine 1s going to deep sleep)

HANDI error: NONE

Where i1nvoked: IV&211

Under what conditions 1s thas called?
When the nachine 1s going to go to deep sleep.

Hhat should the handler do?
Whatever 1t uwants to. Possibly release menory,
reset the printer, reuind the tape drive, etc.

Entry registers and RAN paraneters:
Nothing 1n particular.

Exit registers and RAN paraneters:

Hhat registers can be changed:
Rl1 except R6-13, R16/17, of course.

Should HRNDLD be set? NO

Notes:

eeteRRRLTS

HANDI CALL DOCURENTARTION
Jack Rpplin IV

January 28, 1982

Event: V.URRN (Maching is Harnstarting fron deep sleep)

HANDI error: NONE

Where invoked: IV&2121

Under uhat conditions 1s this called?
The nachine has just warnstarted (uoken up fronm deep sleep)
and has conputed RRN bounds & checksun, and re-enabled
the RON that was active when we went to sleep.

Uhat should the handler do?
WUhatever it uishes. Perhaps re-enable devices that it
pouered doun when we uent to deep sleep (see V.SLEE).

Entry registers and RAM paraneters:
None in particular,

Exit registers and RAN paraneters:
None 1in particular,

What registers can be changed:
A1l except normal Roo precious registers like R6-13, R16/17.

Should HANDLD be set? NO

Notes:

LeliR

HANDI CRLL DOCUMENTARTION
Jack Rpplin IV

January 28, 1982

Event: V.VOLT (Destruction of volatile files)

HRANDI error: NONE

Where 1nvoked: Iv8221

Under uhat conditions 1s this called?
When we’ve detected a volatile file (filenane begins uith a period)
during uarnstart. We're going to destroy that file unless
soneone defends 1t.

What should the handler do?
Set HANDLD 1f the volatile file belongs to 1t.

Entry registers and RRN paraneters:
RA0/47: wvolatile file nane

Exit registers and RAM parareters:
Ra0/47: fi1le nane to be destroyed

What registers can be changed:
R40/47, T suppose. This would cause a different file do be destroyed.
R11 others except standard precious registers.

Should HRNDLD be set?
If the volatile file 1s yours and you uish to protect 1t.

Notes:
Volatile files are designed to be used by RONs. If the ROM is
pulled out, the file uill be destroyed upon the next uarnstart,
thereby 1nsuring that junk files don’t get left hanging around.

RlRiLXRLLITs

HANDI CALL DOCUNENTRTION
Jack RApplin IV

January 28, 1982

Event: V.CRUN (Enterang CRUNCH, the interpreter)

HRANDI error: NONE

Uhere invoked: Routine CRUNCH in KRSEXE

Under uhat conditions 1s this called?
In CRUNCH, the interpreter, uhen we're about to start interpreting.

What should the handler do?
Possibly change the top environnent to go interpret something else.
Or perhaps change R16/17 to not 1nterpret anything.

Entry registers and RAN paraneters:
R16: Running status (0=1dle, 1=calculator, 2=progran)

Exit registers and RRM paraneters:
R16

Uhat registers can be changed:
A1l except standard Roo precious registers.

Should HANDLD be set? NO

Notes:

-ee. - — ., e G R.. E T .. EECTR RGRS TeSST.STTS...--

Robert Heckendorn
Jan 27, 1982 RD

Event: V.SPEC file specifier parsing

Subevent: R53=0 target file parsing

HANDI error: 63 (invalid file/device nane)

Where 1nvoked: RHACNHD

Under what conditions 1s this called?
When looking for a target file name 1n 2
statenent of the forn XXXX source T0 target.
E=2 fron FLORD of strang for target nane.
This occurs for syntax errors and access
errors but access errors cause FLORD to
do a prenature return so HANDI 1s not called.

Entry registers and RAN paraneters:
RS3 - 0 indicates target file

Ex1t registers and RAN paraneters:
R34/37 - device nane (zero if none)
RS2 - 0 handled but no device present

- 1 handled device present
- 2 not handled

R60/67 - target filenane
R70/74 - passuord

Event: V.SPEC file specifier parsing

Subevent: R53=1 source file parsing

HANDI error: 63 (1nvalid file/device nane)

Where invoked: RH&CND

Under what conditions is this called?
When looking for a source file nane in a
statenent of the forn XXXX source T0 target.
E=2 fron FLORDT of string for source nane.
This occurs for syntax errors and access
errors but access errors cause FLORDT to
do a prenature return so HANDI 1s not called.

Entry registers and RAN paraneters:
RS) - 1 indicates source file

Ex1t registers and RAN paraneters:
R40/47 - source filenane
R50/51 - "special file" file type bytes

-1 1f not a special filenane
RS2 - O handled but no device present

- 1 handled device present
- 2 not handled

R54/57 - device nane (zero 1f none)
R74/77 - passwuord

..

Event: V.FILE unable to handle this file uith this comnand

Subevent: TOKEN=RENRTK

HANDI error: 63 (1nvalid file/device nane)

Where invoked: RH&CND renare code

Under uhat conditions 1s this called?
unable to handle the filenane with device.
This 1s 1ndicated by FLSPEC flag being positive.

Hhat should the handler do?

Entry registers and RAN paraneters:
R34/37 - target device (R34 zero 1f not found)
R60 - target filenane (blank 1f not found)
R70/73 - target passuord (blank 1f not found)
R24/27 - source device (R24 zero 1f not found)
RSO - source filenane (blank 3f not found)
R74 - source passuord (blank if not found)

Ex1t registers and RAN paraneters:

What registers can be changed:

Should HANDLD be set? yes

Notes:

. -. E ., EE... . e E N e ...,EE. S, - —E.RS- ErN, T e T e e, c A cE e,ST TS SRR R--

Event: V.FILE unable to handle this file uith this connand

Subevent: TOKEN=COPYTK

HRNDI error: 63 (1nvalid file/device nane)

Uhere invoked: RH&CHD 1n the copy code

Under uhat conditions 1s this called?
unable to handle the filenane uith device.
This 1s 1indicated by FLSPEC flag being positive.

What should the handler do?
Try to copy the files given.

Entry registers and RAN paraneters:
R17 - the stall bit nay be set if the source file

is allocated.
R34/37 - target device (R34 zero if not found)
R60 target filenane (= source nane 1f not found)

(pointer i1n R66 to directory entry
1f 1n RAN)

filenare 1s valid uppercase filenane
(1s not volitile filenane)

target passuord (blank 1f not found)
source device (R24 zero 1f not found)
source filenare (= target name 1f not found)
(pointer 1n R56 to directory entry
1f 1n RRAN)

filenane 1s valid uppercase filenane
(nay be volitile filenane)

R74 - source passuord (blank 1f not found)

R70/73
R24/27
RS0

Exit registers and RAN paraneters:

What registers can be changed:

Should HRNDLD be set? yes

Notes: If the stall bit (see R17) 1s set and KR systen routines
are called, they nay fail to behave correctly.
This effects those routines that check R17 to see 1if an
error uas called or the progran uas stalled internally but
assune that the stall bit 1s NOT set on entry e.g. PIRALO.

e-Ee,PRe, ®N,PPE. ..RSeTS C"e .., .- CERS -TT e R ,E e CTrET ecr et ReTCTECee e

Event: V.FILE unable to handle this file uith this connand

Subevent: TOKEN=PURGTK

HANDI error: 63 (1nvalid file/device nane)

Mhere 1nvoked: RHACNMD

Under what conditions is this called?
Unable to handle the filenane uith device or

there 1s @ syntax error

This 1s indicated by FLSPEC flag being positive.

What should the handler do?
purge the given file

Entry registers and RAN paraneters:
€z1 - device nane present
z2 - syntax error in filenane (ERROR SET)

R14 - the nask for the access byte
R15 - the type byte if file exists in nen

or all ones 1f not
(undefined for sytax errors)

R - pointer to directory if exists
R40 - filenane blank filled
R50/51 - special file type or FFFF 1f no

special file nentioned
R54/57 - device nane

(zero 1f no device)
R74/77 - passuord right filled uith blanks

fx1t registers and RAN paraneters:
none

What registers can be changed:
R20-77

Should HANDLD be set? yes

Notes:

- e e e Ee . E B, .. E ..,B,...e,SNe.e... CPPSSR CCr,ePRTCB® ®ae

Event: V.FILE

Subevent: TOKEN=EDITTK

HANDI error: 63 (invalid file/device nane)

Where 1nvoked: RHERUN

Under what conditions is this called?
Unable to handle the filenane uith device or

there 1s 3 syntax error
This 1s indicated by FLSPEC flag being positive.

What should the handler do?
EDIT the given file

Entry registers and RRN paraneters:
E=1 - device nane present
*2 - syntax error in filenane (ERROR SET)

R14 - the nask for the access byte
R15 - the type byte if file exists in nen

or all ones if not
(undefined for sytax errors)

R - pointer to directory if exists
R40 - filename blank filled
R50/51 - special file type or FFFF if no

special file nentioned
RS4/57 - device nane

(zero if no device)
R74/77 - passuord right filled with blanks

Exit registers and RAN paraneters:
none

What registers can be changed:
R20-77

Should HANDLD be set? yes

Notes:

Event: V.FILE

Subevent: TOKEN=CRTTK

HANDI error: 63 (1nvalid file/device nane)

Where 1nvoked: RHSCRT

Under uhat conditions 1s this called? When there 1s an unrecongnized
device or there 1s a syntax error 1n the filenane

Hhat should the handler do? give a catalog line for the given file

Entry registers and RAN paraneters:
E=0 - device nane present
=1 - syntax error 1n filenane (ERROR SET)

R14 - the nask for the access byte
R1S - the type byte 1f file exists 1n nen

or all ones 1f not
(undefined for sytax errors)

R30 - pointer tc directory 1f exists
R40 - filenane blank fi1lled (1f E=1)
R50/51 - special file type or FFFF 1f no

special fi.ie nentioned
RS4/57 - device nane

(2ero 1f no device)
R60O - filenare blank filled (1f E=0)
R74/77 - passuord right filled wuith blanks

Ex1t registers and RAN paraneters:
none

What registers can be changed:
R20-77

Should HANDLD be set? yes

Notes:

eRitttRReLRL RTL

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

Event: V.TYPE

Subevent:

HANDI error: none

Uhere invoked: RH&FIL

Under uhat conditions is this called?
R14 has been returned by the parser and we are nou
looking for a file type token (e.g. TEXT, BRSIC)

What should the handler do?
look at R14 and R43 to see 1f the token scanned 1s a
file type. The handler nust remove the HANDI return
info fron the stack and set the Z flag to indicate
if the token uwas 'equal to' a filetype nane.

Entry registers and RAN paraneters:
R14 - the token nunber
R43 - the ROMM

Exit registers and RAN paraneters:

What registers can be changed:
R50-77

Should HANDLD be set? no (see above)

Notes:

-- -, OR,ST,-e,NRCCETReSR E SRR R T EE"e.-®-n-

Event: V.DALOD

Subevent:

HANDI error: none

Khere 1nvoked: RH3DAL

Under uhat conditions 1s this called” Rn external ROM token is
being deallocated. The external ROM has been suitched to and
the token information has been fetched. The token class of

the token had to be greater tham 56 octal befare this HANDI
call would be nade. The other classes are assuned not to need
to be deallocated.

What should the handler do?
deallocate the token

Entry registers and RAN parameters:
R23 - the token nunber of the external ROM token
R24/25 - pointer to the next token or infornation
R36/37 - the token class (aluays -1 by the time you get here)

Exit registers and RRN paraneters:

What registers can be changed:
RS0-77

Should HANDLD be set? yes

Notes:

e E e e E e E e - -, . n ., ..., e e, e e, . E C e ., .,E -, - e R hE .S, E e R.,AaEe e®ewa

Event: V.ALLO

HANDI error: none

Where 1nvoked: RHSPAL

Under what conditions is this called? Rn external ROM token is
being deallocated. The external ROM has been suitched to and
the token had to be greater than 56 octal before this HANDI
call uould be nade. The other classes are assuned not to need
to be deallocated. '

What should the handler do?
pointer allocate the token

Entry reqisters and RAM paraneters:
R2) - the token nunber of the external ROM token
R24/25 - pointer to the .next token or information
R36/37 - the token class (aluays -1 by the time you get here)

- Exit registérs and RAN paraneters:

‘What registers can be changed:
R50-70

Should HRANDLD be set? yes

Notes:

OBRB Be-& RE o -~ oo . -&nit —EnECE®CEene nmnndDt e wwdwwewnd ewwdeedeseesen

Event: V.ERLD

HANDI error: none

Where invoked: RH&ERL

Under what conditions 1s this called? during environnental allocation
uhen the variable 1s found to have a non-zero reference node or
1s a string array.

What should the handler do?
allocate the space provided for in the environnent

Entry registers and RAM paraneters:
R32 - end of variable pointer ares
R34 - pointer to 4 bytes after the nane of

the currently processing variable
R54/55 - nane forn of the variable
RS6/57 - next tuwo bytes (usually a pointer)
R3 - the upper 2 bits of variable type

the access nethod type

Ex1t registers and RAN paraneters:
R34 - pointer to next variable in VPR

Hhat registers can be changed:

Should HANDLD be set? yes

Notes: space for what ever in1tail values you uish to
place i1n the environnent nust already be provided for
in the VPR uhich occured during pointer allocation.

R m e e m e, C ee, . C e e, e E .,ee, - e A nea, E..e, CR eR, eerr R e T ee e eE "o-

Event: V.RUN

HANDI error: none

Where invoked: RH&RUN

Under uhat conditions 1s this called?
When ue are prepared to construct the environnent for a
progran to run.

Hhat should the handler do?
serving suggestion:

fiddle with parareters to CALL or avoid 1t altogethe:

Entry registers and RAN paraneters:
R22 - ROM nunber of the file to run
R40 - nane of the file to run
R76 - the line nunber to start running at

Exit registers and RAN paraneters:

Hhat registers can be changed:

Should HANDLD be set? yes

Notes:

- o . e m e m e E e e c e m . m e E e e a e E . e . e e e e m e w e w eeeeeWeee.-

Event: V.CALL

HRANDI error: none

Mhere invoked: RHSRUN

Under uhat conditions 1s this called?
after an environnent has been created.

What should the handler do?
adjust the environnent to his liking, for instance.

Entry registers and RAN paraneters:
R16 - the run node (1dle, calc, run etc)
R34 - pointer to the environnment
R40 - the filenane of the mother of the environnent

Exit registers and RAN paraneters:

Uhat registers can be changed:

Should HANDLD be set? yes

PRRRRRR Yettt

Event: V.CAL.

HANDI error: none

Where invoked: RHSRUN

Under wuhat conditions 1s this called?
ue are ready to establish the environnent for the progran

Nhat should the handler do?
do anything that needs to be done to prepare to establish the
progran environnent the way you want.

Entry registers and RAM paraneters:
R22 - RON nunber of the file to run
R40 - nane of the file to run
R76 - line nunber (default is zero)

Exit registers and RAN paraneters:

What registers can be changed:

Should HANDLD be set? yes

...

Event: V.STAL

HRANDI error: none

Where 1nvoked: RHSRUN

Under uhat conditions 1s this called?
uhen a prograr stalls. This includes attention and STOP
as uell as errors and END.

What should the handler do?

clean up anything tied to a running progran

Entry registers and RAN paraneters:
nothing too useful

Ex1t registers and RAN paraneters:

Hhat registers can be changed:

Should HANDLD be set? NO NEVER'' BEWRRE'' POTENTIAL DISASTER'! ->-|

|vtonayotwork27WOLDetby
another ron here

--Joseph Rlbert

oe.e.S—.o ... G-, GT e.. e- ER-G"SR E" TR"EE.T. T ".S®e---®®

HANDI CALL DOCUMENTATION

Hark Rowe

Feb. 2, 1982

Event: V.RPTO (Start of appointrnent cormand loop)

HANDI error: None

Where 1nvoked: KR&PSH

Under uhat conditions 1s this called?
At the start of the appointnent connand loop prior to displaying the
tenplate/appointnent and 1nputing a comnand key.

What should the handler do?
Perforn any custon application desired at start of appointnent connand
loop prior to appointnent display and comnand input. This intercept
uould be used to replace the normal appointnent mode features uith a
conpletly custorn application.

Entry registers and RRN paraneters:
R30/31: pointer to start of appointment file
R32/33: pointer to current appointnent 1n appointment file
R34/35: pointer to end of appointnent file
PSIOST: appointnent input/display infornation

Exit registers and RAN paraneters:
Sane as above

What registers can be changed:
Rll except R10/17

Should HANDLD be set? no

Notes:

--.eE..--. EN-o ®-.Te=""S--.-....- ,.-.-o>

HANDI CALL DOCUMENTRTION

Nark Roue

Feb. 2, 1982

Event: V.AKEY (Rdd, delete, or nodify processing of APPT connand keys)

HANDI error: None

Where 1nvoked: KR&PS1

Under uhat conditions 1s this called?
Rfter an 1nput operation in appointrent nmode has been conpleted and
the terminating key has been identified but before the corresponding
processing routine has been 1nvoked.

What should the handler do?
Test for any terminator that night require custon processing and perforn
any custon processing that is required.

Entry registers and RAN paraneters:
R24: s1ze of appointrnent input (in INPBUF)
R2S: value of terninator key
R30/31: pointer to start of appointnent file
R32/33: pointer to current appointnent in appointment file
R34/35: pointer to end of appointnent file
INPBUF: appointrent 1nput
PSIOST: appointnent input/display information

Exit registers and RAM paraneters:
Sane as above

What registers can be changed:
Rll except 10/17

Should HANDLD be set? no

Notes:

. . ee e e ., e, Ee Re,- -, RN e .., E"..RGNEEPRe CEREeS ®®®w-ew--

HANDI CALL DOCUMENTRTION

Nark Roue

Feb. 2, 1982

Event: V.ARTN (Custon processing at exit from appointment node)

HANDI error: None

Uhere 1nvoked: KR&PS1

Under uhat conditions 1s this called?
Hhen a node suitching key has been entered from appointment mode but.
prior to exiting appointrent node.

WUhat should the handler do?
Any special clean-up that nay be required before exiting appointment node
due to any custon features that may have been added.

Entry registers and RAN paraneters:
R30/31: pointer to start of appointment file
R32/33: pointer to current appointment in appointment file
R34/35: pointer to end of appointnent file

Ex1t registers and RAM paraneters:
RY0/31: pointer to start of appointmnent file
R34/35: pointer to end of appointnent file

What registers can be changed:
Any except R10/17

Should HANDLD be set? no

Notes:

HANDI CALL DOCURENTATION
Mark Roue

Feb. 2, 1982

Event: V.AFET (Custon processing for Fetch key 1n appointnent node)

HANDI error: None

Where 1nvoked: KR&PS1

Under what conditions 1s this called”
When a Fetch key has been entered in appointnent node.

What should the handler do?
Any custorn processing required for a Fetch key. (This key has been
intended to have an appointnent search feature tied to 1t).

Entry registers and RAN paraneters:
R30/31: pointer to start of appointnent file
R32/33. pointer to current appointnent 1n appointment file
R34/35: pointer to end of appointnent file
INPBUF: current appointient input

Ex1t registers and RRM paraneters:
Sane as above

Uhat registers can be changed:
Any except R10/17

Should HANDLD be set? no

Notes:

. - - e EEm e EE E-SR., ER ET ER.e,SER,STTR e e ER e R e, —e "o -"®

HANDI CALL DOCUMENTATION
Nark Roue

Feb. 2, 1982

Event: V.CLOK (Custon processing at clock conparator service call)

HANDI error: None

WUhere invoked: KR&PS1

Under uhat conditions is this called?
At the start of the service routine for processing a comparator interrupt
for the clock.

What should the handler do?
Any special processing that nay be associated uith a custon application
that uses the clock interrupt; such as 3 stopuatch feature.

Entry registers and RAN paraneters:
INPBUF: current tine/date display
PSSTART: BitHO=1 1ff tine display 1s disabled

Ex1t registers and RAN paraneters:
Sane as above

What registers can be changed:
Rll except R10/17

Should HANDLD be set? no

Notes:

--Be.-,.- e E®S.EGee EE .. e-.- .--,-,eReCE R eEe® " .---

HANDI CALL DOCUMENTRTION
Mark Rowe

Feb. 2, 1982

Event: V.AFNT (Custon appointnent fornatting)

HAND]I error: None

Where i1nvoked: KR&PS2

Under uhat conditions 1s this called?
When RPTDSP 1s called to take the encoded appointrent pointed at by the
current appointnent pointer (R32/33) and decode 1t into the input buffer

#hat should the handler do?
Any custon appointnent display processing that may be required; such as
translating the day of week fields into a foreign language.

Entry reqisters and RRN paraneters:
R32/33: pointer to encoded appointnent to be decoded

Exit registers and RAN paraneters:
Sane as above

hat registers can be changed:
Any except R10/17

Should HANDLD be set? no

Motes:

PRRIeeR

HANDI CALL DOCUMENTRTION
Mark Roue

Feb. 2, 1982

Event: V.RERR (Custon error handling 1n appointnent node)

HANDI error: None

Where invoked: KR&PS2

Under uhat conditions 1s this called?
When RPTERR 1s called to set up the display in response to an erroneous
entry 1n appointnent node.

Hhat should the handler do?
Any special error handling that nay be required for a custon application
1n appointnent node.

Entry registers and RAN paraneters:
R20: error nunber (binary)

Ex1t registers and RAN paraneters:
Sane as above

What registers can be changed:
R11 except R10/17

Should HANDLD be set? no

Notes:

. >-PPPBB B ERE BT...RBEE BR,., —E ...,RN, P, PP E RNTRe®.®®®

NOMAS
NOt MAnufacturer Supported

Yeclplent agrees NOT to contact manufacturer

HANDI CRLL DOCURMENTRTION

Rark Roue
Feb. 2, 1982

Event: V.APRC (Custon appointnent processing)

HANDI error: None

Where i1nvoked: KR&PSS

Under uhat conditions 1s this called?
Khen RPPROC 1s called to process a pending appointrent.

What should the handler do?
Any special appointnent processing that nay be required by a custon
application. '

Entry registers and RRN paraneters:
None

Ex1t registers and RRM parareters:
None

What registers can be changed:
Rny except R10/17

Should HANDLD be set? no

Notes:

...

HANDI CRLL DOCUMENTRTION

Mark Rowue

Feb. 2, 1982

Event: V.AACK (Custon processing during appointnent acknouledge)

HANDI error: None

Where invoked: KR&PSS

Under uhat conditions 1s this called?
When RPTARCK 1s called to acknouledge the current appointnent and perforn
the associated housekeeping chores

Uhat should the handler do?
Rny special processing or housekeeping chores that nay be associated with
acknouledging an appointnent in sore custon application.

Entry reqisters and RAN paraneters:
R3C/31: pointer to start of appointnent file
R32/33: pointer to current appointnent (one to be acknouledged)
R34/35: pointer to end of appointnent file

Exit registers and RRN paraneters:
Sare as above

Hhat registers can be changed:
Rny except for R10/17

Should HANDLD be set’ no

Notes:

- - - — . mE .e E e, RE—e ...Re...., ®e ThREe.E e E. . —E . e .- —..-®-

HANDI CALL DOCUMENTRTION
Mark Roue

Feb. 2, 1982

Event: V.RTRG (Custon processing at appointment triggering)

HANDI error: None

Where 1nvoked: KR&PSS

Under uhat conditions 1s this called?
Khen RPTRIG 1s called to perforn the necessary tashs associated uith
triggering an appointrnent when an appointnent interrupt has been
detected by CNPCHK

Hhat should the handler do?
Any special processing that may be required to trigger an appointnent
1n 3 custon application.

Entry registers and RRM paranmeters:
None

Ex1t registers and RAN parameters:
None

Hhat registers can be changed:
Any except R10/17

Should HRNDLD be set? no

Notes:

. e e--, - ., ee... e, EC e, e, e,e, C, e E e e, e e, CrE Ce EeErTeE cfr S ETCrTRSee

HANDI CRLL DOCUMENTRTION
Rark Roue

Feb. 2, 1982

Event: V.RANOT (Custon processing of appointment note field)

HANDI error: None

Where invoked: KR&PSS

Under what conditions 1s this called?
Hhen PRNOTE 1s called to set up the processing of a note or BRSIC
connand that 1s in the note field of an appointment being processed.

What should the handler do?
Any special processing that may be associated with the note field in
an appointnent within a custon application.

' Entrj reqisters and RAN paraneters:
R32/33: pointer to appointnent being processed

Exit registers and RRAN paraneters:
Sane as above

What registers can be changed:
Rny except for R10/17

Should HANDLD be set? no

Notes:

LAAL RRLRRittteeAAR

HANDI CALL DOCUMENTRTION
Gary Cutler
June 14,1982

Event: V.DIN

Error: none

Invoked: KR&PAR

Under what conditions 1s this generated?

This call 1s generated uhile parsing a dinension statenent
in uhich a string token 1s followed by a character other than
l['

What should the handler do?

Parse the string array and do a post SCAN.

Entry registers and RAN parareters:

R14: current token
R10: 1nput buffer pointer
R20: next character
R12: stack pointer

Exit registers and RAN paraneters:

R14: next token
R10: 1nput buffer pointer
R20: next character
R12: stack pointer

What registers nay be changed?

Rll except R10/11 and R20/21

Should HANDLD be set?

not necessary

Notes:

Kangaroo Wake Up Procedure
Mary Jo Hornberger

July 8, 1982

Kangaroo Wakeup Procedure

This documnent details the wuakeup procedure for
Kangaroo. It 1s separated into three sections:

1) things aluays done
(at both warnstart and coldstart)

2) things done only at coldstart
(full 1nm1t1alization)

J) things done only at warnstart
(partial 1nitialization)

-1- KR"HI

Kangaroo Wake Up Procedure
Mary Jo Hornberger

July 8, 1982

R)

8)

0

| Thangs aluays done

Harduare detects conparator interrupt or RTIN key

The process of waking up fron deep sleep starts uith
the harduare detecting either a conparator interrupt
or an RTIN key. The harduare uill force a jump to the
address given 1n the pouer on interrupt vector, where
the operating systen starts executing.

Clear LCD and check for diagnostic ROM

The first thing the operating systen does 1s to as-
sert binary node and clear the LCD. We then check to
see 1f the diagnostic ROM is plugged in. If ue find
1t, we uill let 1t take over control of the nachine.
The only wuay to get back to Kangaroo fron the diag-
nostic RON 1s to coldstart us again.

Enable systen RON and decide on warnstart or cold-
start

The systen ROM (RLTROM) is enabled by uriting to ad-
dress FFA46H.

To decide 1f we need to coldstart or uarnstart, we
read the Pouer Supply Status Byte (PSSB). If the POR
bit (bitH2) 1s a zero, it neans pouer has been lost
since ue wuere auake last, and the RAN nay not be
valid. In this case ue need to go through the cold-
start procedure again, resetting all of the global
variables, and reinitialize the file systen, leaving
the user uith a functionally enpty Kangaroo.

-2- KR"HI

Kangaroo Wake Up Procedure
Hary Jo Hornberger

July 8, 1982

If the POR bit 1s a 1, the RAN 1s still valid, so all
ue need to do 1s to restore the CPU registers
6,10,12, and 16 fron THPANZ, and do a return. The ad-

dress for the uarmstart wakeup has been set up on R6
by the going-to-sleep code, so this essentially ac-
conplishes a8 junp to the warmstart code. Notice that
if sone routine wants to put us to sleep and have us
uake up through a different uarnstart routine, all it
has to do 1s adjust the warnstart uakeup address on
R6.

-3- KR"HI

Kangaroo Wake Up Procedure
Nary Jo Hornberger

July 8, 1982

| Things done only at coldstart |

R)

8)

(Full machine 1n1ti1alization)

Clear POR and 1nitialize sone CPU registers

The coldstart initialization starts uith clearing the
POR bit 1n the PSSB. This guarantees that 1if
sonething interrupts us and sends us to sleep before
our initialization 1s done, wue wuill coldstart again
uhen ue uake up. This bit will already be zero 1f
this 1s the first tine auake since pouer uas lost,
but 1f we are coldstarting because the softuare
detected invalid RAN (e1ther a bad checksun or RAN
taken away), the softuare nust clear POR.

The R6 subroutine return stack 1s set to address
8000H, the (FU registers 10 through 17 octal are
clesred, (clearing the stall byte and putting
Kangaroo into 1dle node), and binary node 1s asserted
again.

Conpute the RAM boundary

The RAN boundary 1s conputed by reading tuo bytes
fron the lowest end of RAN (32K), conplenenting one
of then, wuriting then back, and then reading then
again to see 1f they are the sane as wuhat we just
urote. If they are the sane, we nove up 2K and try it
again. If they are different, 1t neans that ue have
reached the first non-uritable byte of mnenory (1e,
ue're trying to urite to RAN that isn’t there). This
RAN boundary value uill be stored in LUAREN.

-4- KR"HI

Kangaroo Wake Up Procedure
Rary Jo Hornberger

July 8, 1982

This schene assunes that RAN uill aluays be added in
a nultiple of a 2k increment, up to 3 64K narinun
si1ze. The tuo byte wurite and read 1¢ necescary

because if uwe write just one byte to a non-existent
location and then innediately read it back, we will
indeed read uhat we just urote, (even though there
uas no RAN there), due to bus capacitance. For this
reason, tuwo different bytes nust be uritten and read.
By conplenenting one of the bytes, we guarantee that
if there 1s no RAN there (in which case the tuo bytes
read would be identical), we still wurite tuwo
distinctly different bytes.

C) Clear RAM

Rfter deternining hou nuch RAN ue have, we clear all
RAM fron 96D bytes before the input buffer (R6LIN1)
to the end of nenory (LWANEM). This saves individual
in1tialization of global variables that are initially
cleared.

D) Make sure buzzer is off

B1t#0 in the Conparator Status Byte 1s cleared,
forcing the 1nitial state of the buzzer to be off.

E) Build RON table

A table of enable addresses for all ROMs plugged in
(RONTRB) 1s created. The last three entries 1in the
table are the internal Kangaroo RONs: BASROM, RLTROM,
and NELRON.

F) Initialize Real Tinme Clock and Tine and Rppointment
variables

The Real Time Clock (RTC) harduare 1s initialized by
uriting 3 zero to address FF81H. The Tine and Rp-
pointrnent variables, including the clock rollover and
adjust factors are 1nitialized. The rollover value 1s
uritten to the corparator, and the conparator inter-

rupt 1s enabled.

-5- KR"HI

Kangaroo Hake Up Procedure
Hary Jo Hornberger

July 8, 1982

G) Set up operating nodes

VERIFY ON, BEEP ON, and DEFAULT ON nodes are asserted

H)

I

by setting CRDSTS, BEEPOK, and DEFRUL to 1. The nax-
inun nunber of bytes per track per card (FULTRK) 1s
set to 650D. The display and print wadths (DISPLN and
PRNTLN) are set to 32D.

Enable the keyboard interrupt

The keyboard interrupt is enabled by setting bit#1 in
the Keyboard Status Byte.

Initialize the intercepts to returns

There are ten intercepts in Kangaroo. These inter-
cepts are each 8 bytes long, and give the interceptor
a chance to change the function of a particular area
of code by causing the intercept to junp to an ad-
dress that the wuser has set up. The intercepts are
all i1n3ti1alized to returns.

Six of the intercepts are executed in the nainfrane:

Intercept Location

KYIDLE keyboard interrupt service routine
PSTRAP lou pouer interrupt service routine
CMPINT conparator interrupt service routine
INERR inage error processing
HPINTC card reader header processing
PILTRP HPIL frane sending routine (PILTRP 1s

also the HPIL interrupt service
routine)

-6- KR"HI

Kangaroo Hake Up Procedure
Nary Jo Hornberger

July 8, 1982

There are also four spare intercepts, three of which
are interrupt vectors:

Intercept Function Interrupt vector address

EXTRAH unused (not interrupt vector)
SPRRO bar code reader vector address OOORH
SPAR1 unused vector address OOOEM
SPAR2 unused vector address 0010H

INPCHK, which 1s 1ike a tuo-byte intercept vector in
the character editor, is initialized to the address
of a return.

J) Initialize the LCD globals

He now initialize the LCD globals. The width of the
LCO (SIZSIZ) 1s set to 32D, the leftmost LCD address
(NINRIN) to 80D, and the rightnost LCD address (MAX-
ARX) to 490. The left edge of the LCD display windou
(LCOWIN) and the LCD cursor position (LCOPTR) are set
to the far left edge of the LCD.

The right margin for input (RMARG) is set to 91D. The
pointer to the last character of input (OLDLST) is
set to the start of the input buffer, signifying that
there hasn’t been any 1nput yet. The flag DERD 1s set
to nonzero, signalling that we may purge the current
LCD line when ue receive the next character.

K) Make sure the card reader is off

Five bytes of zeros are mritten to the card reader
harduare (CRORDR) to make sure the card reader 1is
off. (Tuo bytes are all that are necessary, the other
three are uritten for coding convenience.)

-7- KR"HI

Kangaroo Wake Up Procedure
Mary Jo Hornberger

July 8, 1982

L) Set the delay

The machine DELRY is set to one-half second.

n)

N)

0)

P)

Initialize niscellaneous globals

The HPIL globals, GETLN paraneters, and the randon
seed are 1nitialized, and STANDBY OFF node 1s as-
serted. (STANDBY OFF causes a HPIL tineout after 10
seconds, and a nachine timeout to deep sleep after 5
ninutes of 1nactivity.)

Set up low pouer detect and enable global interrupts

We deternine 1f we have NiCad or alkaline batteries
present (see KR"LOW), and set up the corresponding
first interrupt level. The 1nitial interrupt level 1s
3.55 volts 1f NiCad batteries. and 3.10 volts f
alkalines. (Kangaroos plugged 1into the wall are
treated as having NiCad batteries).

The global i1nterrupts are enabled as ue exit the low
pouwer 1nitialization routine.

(reate an enpty file systen

The GOSUB/RETURN stack poanter (NXTRTN) and the ad-
dress of the last available byte of RAM (LAVAIL) are
set to the last byte of RAN. The LEEWRY for the R12
stack (the nininun required distance fron the botton
of the R12 stack to the last available byte of RAN)
1s set to 576 bytes.

An enpty directory 1s created, and the follouing
globals are set to the first byte after the direc-
tory:

FUUSER the botton of the environnent stack
FUVARS the current environnent
NXTREN the top of the environnent stack
108 the botton of the active R12 stack

STSIZE the pointer to the statement size

-8- KR''HI

Kangaroo Wake Up Procedure
Mary Jo Hornberger

July &, 1982

Do the coldstart HANDIO call

The HRNDIO call V.COLD 1s executed to giave plug-in

Q)

R)

S)

1)

RONS a chance to do any extra initialization they
night need.

Rsk user to set tine

R protected field tenplate 1s displayed for the user,
asking the user to fill in day, date, and tine.

Set up sone 1nitial files

The calculator progran (nane ’'calcprog’, type Basic)
1s created. The environnent stack 1s 1nitialized,
creating an idle environnent for the calculator
variable file. This environnent renains in Kangaroo
until the next tine wue coldstart.

The 1n1t1al ‘workfile’, (type Basic) 1s created, and
nade the current editfile and runfile. The current
line nunber 1s set to 0.

The ‘’1ofile’, uhich 1s the systen file for keeping
track of assign# infornation, 1s created and a dunny
record 1s inserted at line O for data and read state-
nents.

Set POR to 1

The POR bit 1n the PSSB is set to 1 so next tine we
uwake up We won't coldstart.

Go to the node swultcher

Having finished our i1ni1tialization, we jurp to the
node suitcher with a TINEKY as the current key. The
node suitcher uill see the TINEKY and send us to tine
node, where ue'll display the tine for the user.

-9- KR"HI

Kangaroo Hake Up Procedure
Nary Jo Hornberger

July 8, 1982

Things done only at warnstart
|
| (Partial 1ni1tialization)
|
|

R) Enable the systen RON

The first thing done by the warnstart code 1is to
disable all ROMs and then enable the systen ROM (AL-
TRON). Even though this is usually done earlier by
the 1ni1tjal wakeup code, wue need to do 1t again, in
case the initial wakeup code uas never executed. This
can happen 1f ue have a conmparator interrupt pending
uhile we are trying to tell the harduare to put us to
sleep. In this case, we will immediately start ex-
ecuting the wuwarnstart code, wuithout going to sleep
and uaking up through the uakeup vector.

B) Decide who woke us up

If the RTTN key uoke us up, ue wuant to go to EDIT
node when we finish the warnstart, but 1f a con-
parator interrupt woke us up, ue uant to go back to
sleep. UWe deternine which kind of uakeup this is by
checking b1thd of the Keyboard Status Byte. This bit
uill be a 1 1f this 1s a conparator uakeup, and a 0
1f 1t 1s an ATTN key wakeup. He set up R25 uith the
key that corresponds to the node we want to end in,
ei1ther a NAPKEY for sleep node, or an EDITKY for EDIT
node.

-10- KR"HI

Kangaroo Hake Up Procedure
Nary Jo Hornberger

July 8, 1982

C) Check to see if RAN was added or taken auay

The RAM bound 1s reconputed to see if RAMN was added

or taken auay while we uere asleep. (For details of
this procedure, see the coldstart section).

If ue have less RAN than when ue went to sleep, ue
report "ERROR: RAM 1s 1nvalid’, and coldstart
Kangaroo, since several of our necessary pointers
u1ll no longer be there.

D) Conpute the checksun

The checksun is computed for the amount of RAN we had
uhen ue went to sleep, and conpared uith the checksun
conputed before ue went to sleep. If the checksuns
are different, ue report "ERROR: RAN is invalid’ and
coldstart Kangaroo.

If RAN uas added, we nove the upper menory informa-
tion (the bytes that reside betueen LAVAIL and
LUANEN) to the nem upper nenory bounds. The global
pointers betueen LRVARIL and LHRANEM are updated to
shou the neu addresses. (The new address = old ad-
dress ¢+ anount of RAN added).

E) Nake sure the card reader is off, and clear pending
key interrupts

The card reader 1s set to the off state by uriting
tuo bytes of O to the card reader harduare. Any
pending key 1nterrupts are cleared by setting bitWi
of the Keyboard Status Byte.

F) Turn on HPIL chip oscillators 1f needed

If ue are in STANDBY ON mode, the HPIL chip oscil-
lators need to be turned on. This 1s deternined by
testing bith0 of STAND?. If i1t is set, we initialize
the HPIL chip and turn on the oscillators.

-11- KR"HI

Kangaroo Hake Up Procedure
Mary Jo Hornberger

July 8, 1982

G) Initialize intercepts and the LCD display

The intercepts are reinitialized to returns, the LCD

H)

I

J)

K)

1s cleared, and the annunciators are redisplayed.

Initialize low battery detect sequence and enable
global interrupts

The battery type 1s checked, and the appropriate
first interrupt level 1s set up: 3.55 volts 1f NiCad
batteries, and 3.10 volts 1f alkalines.

The global interrupts are enabled at the end of the
lou battery 1nitialization.

Make a ROM table

Nou ue set up a table of all ROMs that are plugged
in, wulth the three systen ROMs (BASROM, RLTRON, and
RELRON) last. We enable the ROM that was enabled when
ue uent to sleep, 1ssuing "ERROR: ROM nissing’ 1f 1t
1s no longer there.

If uakeup 1s fron conparator, go to sleep nachine

If the wakeup uas fron the conparator, ue junp to the
sleep nachine, uhere we will take care of the timer
or appointnent. See KR"BYE or KR"CMP for nore infor-
rnation about the corparator interrupt processing.

The rest of the 1nitialization 1s done only for
uakeups by the RTTN key.

Check for LOCK passuord

If the wuser has required a LOCK string, we check to
see 1f 1t wmas supplied. If the first eight bytes of
the supplied passuord do not natch the expected pas-

suord, we junp to the sleep nachine and put ourselves
back to sleep. See KR"LOK for nore information on the
LOCK token,

-12- KR"HI

Kangarco Wake Up Procedure
fary Jo Hernberger

July 8. 1982

L) Check the HPIL loop

Bit#? 1n PLSTAT 16 cleared. This bit 1s availatle for

plug-1n RONs to set if they want wus to do a HRNDI
call before sending any HPIL frame out on the loop.
Clearing this bit prevents us fron doing these extra
HANDI calls 1f the RON that set the bit was pulled
out uhile we were asleep.

If the wuser has assigned & DISPLRY IS device,
Kangaroo wum1ll send every character the user types
around the HPIL loop. If any of the peripherals are
off, the frare uill never core back.

If the user tries to type on Kangaroo while the loop
1s dead, (uwith a DISPLAY IS device assigned), there
uill be either a 10 second wait before Kangaroo gives
up and displays the 'Loop timeout’ error nessage (in
the case of STANDBY OFF), or worse, Kangaroo uill sat
there patiently waiting forever for the frane to cone
back (STANDBY ON).

To prevent this fron happening, the ’test loop before
using’ bit in PLSTAT 1s set at wakeup. This will
cause an IDY frane to be sent around the loop before
we try to use 1t. Since the IDY franes are
autonatically retransmitted by the HPIL chip hard-
uare, we can tell quickly 1f the loop 1s functional
or not, uithout naking the user wuait the tineout

period.

If there are any DISPLRY IS devices assigned, an UN-
Listen frane 1s sent. This 1s a result of using the
sane HPIL subroutine for uakeup that we use when we
are going to sleep.

N) Do the warnstart and volatile file HANDIO calls

The warnstart HANDIO call (V.WARM) 1s done to give
plug-1n RONs a chance to do any uarnstart initiali2a-
tion. After polling all the RONs with event V.UWRRA,
ue assert binary node again, and do the volatile file

-13- KR"HI

Kangaroo Hake Up Procedure
Mary Jo Hornberger

July 8, 1982

HANDIO call (V.VOLT) for each volatile file in the
directory. Each volatile file that does not set
HRANDLD 1s purged. Rfter checking all the files in the

directory, we execute 3 return, which puts us back in
the node suitcher. The node suitcher uill see the
EDITKY, and send us to EDIT node (unless a ter-
ninating node suitcher (TINEKY, etc.) was pressed
uhen entering the LOCK passuord, in which case we
uill go to that mode). Kangaroo 1s nou fully auake
and ready for 1input.

-14- KR"HI

Kangaroo Wake Up Procedure
Mary Jo Hornberger

July 8, 1982

N) Globals used:

For nore infornation on the initialization of globals

not nentioned here, use the cross-reference to locate
their 1mitialization routines. Remenber that all
globals are set to zero uhen RAN is cleared at cold-
start, so any globals that do not have initialization
routines will still be 2ero until changed by the
user.

Caution: sone variables are initialized in 8 byte
chunks, so the anitialization routine for a specific
location nay not be nmentioned by that nane in the
cross-reference. In this case, the routines involving
the 8 bytes in front of 1t nmay also need to be
checked.

1/0 addresses:

CRDROR FFO8H Cardreader Status Byte
cnpPse FF80N Conparator Status Byte
GINTDS FFO1H Global Interrupt Disable Rddr
GINTEN FFOOH Global Interrupt Enable Rddr
KEYSTS FFO2H Keyboard Status Byte
PSSB FF82H Pouer Supply Status Byte
RTC FF31H Real Tine Clock Status Byte

Rajor entry points:

KILLIT in KR&22Z Reports RAN error, coldstarts
START in KR&INI Coldstart code
START? 1n KR&INI Decides on uarn or coldstart
START+ 1n KR3EXE Harduare vectors here at wakeup
WRAKEUP 1n KR&122Z MWarmstart code

Related routines:

122227 1n KR8IIZ Start of the Sleep machine
BYE. in KR&Z2Z This uill also put us to sleep

-15- KR"HI

Kangaroo Wake Up Procedure
Mary Jo Hornberger

July 8, 1982

Related docunents:

KR"PIL HPIL theory and inplementation

KR" LOK

KR"CHP

KR"TRC

KR“HDI

KR"LOW

Roo Chip ERS

Card Reader ERS

HPIL chip ERS

Kangaroo Sof tuare ERS

Kangaroo Ouners' Manual

Lex Files for Kangaroo

Infornation about LOCK sequence

Conparator infornation

Tine node 1nfornation

Intercepting Handi calls

Lou pouer detect information

Infornation about the Keyboard
Status Byte, Conparator Status
Byte, Power Supply Status Byte,
Real Tine Clock Status Byte,
and Global Enable and Disable
addresses

The card reader harduare

The HPIL chip harduare

Hou the Kangaroo operating
systen works

Hou Kangaroo appears to
the user, including a
table of coldstart and
uarnstart states of
settable operating nodes,
such as DEFAULT ON/OFF
and PUIDTH,

More on intercepting warn
or coldstart Handl calls

-16- KR*HI

ROO INTERNAL CODE EXANPLES
april 20, 1981 RD

The follouing are exanples of unallocated code fron the heart
of the kangaroo.

1) R=12345

<ftadr> [nare] <1ntcon>
1 20 Q1 1R

(integer constant] <stosv>
45 23 01 08

2) R$="Fh’

«ftstls> [nane] <’ed str> [string constant] <stost>
13 20 96 02 66 68 07

3) B:=R

<ftadr> [nane]) <ftsvl> [nane] <stosv>
11 242 01 20 41 08

4) B$=RS

ftstls> [name] <ftstl> [name] <stost>
13 20 42 03 20 41 07

5) R(1)=2

<svadr+> [nane) <intcon> [integer constant] <avadri>
12 20 41 1R 01 00 00 09

antcon> [integer constant] <stosv>
1R 02 00 00 08

6) R$[1)="a"

«ftstls> ([nane] <intcon> [integer constant] <1 dinsub>
13 20 41 1R 01 00 00 10

"ed str> [string constant] <stost>
05 01 61 0?7

7) R=B(1)

«ftadr> [nane] <svadr> [name] <intcon> [integer constant]
n 20 41 02 20 42 ‘A 01 00 00

<avvall> <gtosv»
08 08

8) R$=B$(1)

«ftstls> [nanme] <ststl> [nane] <antcon> [intger constant)
13 20 41 03 20 42 1R 01 00 00

<subst!»

10

9) R,B=4

«ftadr> [name) <ftadr> [nane] <intcon> (xnteg;r constant] ...
11 20 41 1 20 42 1R 04 00

cgtosvn> <stosvm)

14 14

10) R$[4,6])="u"

«ftstls> [name] <intcon> [1integer constant] <intcon>
13 20 41 1R 04 00 00 ' 1R

[integer constant] <subst2> <"ed str> ([string constant] <stost>
06 00 00 1E 05 01 77 07

11) INTEGER S,7

<integer> <ftsvl> [nane] <«ftsvl> [nane]
7F 01 20 53 01 20 54

12) DIn B(3)

«din> <svadr> [nane] <intcon> [integer constant] <awvalt>
88 02 20 42 1R 03 00 00 08

13) DRTA 1,1.0,'fg’, w1

<data> <«ntcon> [1nteger constant] <realcon> [real constant] ...
86 1R 01 00 00 04 00 00 00 00 00 00 00 01

<'ed str> [string constant] <un"ed str> [string constant]
96 02 61 73 06 02 75 69

14) GO 10 200

<goto> [line nunber)
SR 00 02

15) IF X THEN 200

<«ftsvl> [name] <then> [line nunmber]
01 20 58 18 00 02

16) IF X THEN X=1

ftsvl> [name] <)falsr> [rel jump] <Fftadr> [nane]
01 20 58 18 0R 00 " 20 58

<intcon> [1nteger constant] <stosv>
1R 01 00 00 08

17) IF X THEN X=1 ELSE 200

<ftsvl> [name] <)falsr> [rel junp) <ftadr> [nanme)
01 20 58 18 00 00 1 20 58

<intcon> [integer constant] <stosv> <jrel> [rel jmp] ...
1R 01 00 00 08 1C

<else junp> [line nunber)
1f 00 02

18) IF X THEN X=1 ELSE Y=2

<ftsvl> [name) <)falsr> [rel jump] <ftadr> [nane)
01 20 58 18 00 00 1 20 58

<intcon> [integer constant] <stosv> <jrel> [rel jmp) ...
1R 01 00 00 08 1C OR 00

<ftadr> [nane] <intcon> [integer constant] <stosv>
" 20 59 1R 02 00 00 08

19) ON X GOTO 200,300,400

<«ftsvl> [narne] <on> <goto> [line nunber] <goto> [line nunmber] ...
01 20 58 66 5R 00 02 5A 00 03

<goto> [line nunber)
5A 00 04

20) RENAME T0 *frog’

<'ed str> [string constant] <noop to> <renane>
96 04 66 72 6F 67 0B 7t

21) COPY ’toad’ T0 'frog’

<’ed str> [string constant] <’ed str> [string constant]
96 04 74 6F 61 64 96 04 66 72 6F 67

<noop to> <copy>
0B 7C

22) EDIT TEXT

text> <edity
52 7R

23) EDIT ’xenon’,BRSIC

<'ed str> [string constant] <basic> <edit>
96 05 78 65 6E 6F 6F 53 7R

24) INPUT R,BS

<INPUT> <«ftadr> [nane) <inpH>
SF 1 20 41 DD

«ftstl> [nane] <inp$> tailtko
03 20 42 €S 19

25) INPUT *A=";R

<’ed str> [string constant] ¢(INPUT> [nane) <inpM> <tailtk>
36 02 41 3D 5F 20 41 DD 19

26) DISP A, RS

«disp> <ftsvl> [name) <printh,> <ftstl> [nane] <print$;> <endprint>
56 01 20 41 £8 03 20 41 A3 tc

27) LIST 10,70

<intcon> [integer constant] <intcon> [integer constant] <list>
1R 10 00 OO0 1A 70 00 00 48

28) FOR I=2 T0 173 STEP 9

«for> «<ftadr> [nane] <intcon> [1integer constant] <stosv>
8C n 20 49 1R 02 00 00 08

<intcon> [integer constant] <to> <intcon> [integer constant] ...
1R 73 01 00 R4 1R 09 00 00

cstep>
CE

29) NEXT I

<«ftadr> [nane] <next>
1 20 49 8F

30) ON ERROR BEEP @ BEEP

<on error> <beep> <@> cbeep> <1nv rtn>
41 X% 40 9% 10

31) ON ERROR GOSUB 100

<on error> <gosub> [line nunber] <inv rtn>
41 58 o0 01 10

32) ON ERROR GOTO 100

<on error> <inv pop> <goto> [line nunber] <inv rtn>
41 9C 5A 00 01 10

33) ON ERROR ON X GOSUB 100,200

con error> <ftsvl> [nane)] <on> <gosub> [line nunber] <gosub>...
41 01 20 58 66 58 00 01 58

[line nunber) <inv rtn>
00 02 10

34) ON ERROR ON X GOTO 100,200

<on error> <ftsvl> [nare] <1nv pop> <on> <goto> [line number] <goto>...
41 01 20 58 9C 66 SR 00 01 5R

[line nunber] <inv rtn>
00 02 10

35) OFF ERROR

<off error>
42

36) ON TINERW1,1 BEEP @ BEEP

antcond [value] <intcon> [value) <on tiner> <timer clear> ...
1R 01 00 00 1R 01 00 00 64 90

<beep> <«@> <beep> «inv rtm>
%0 40 X 10

37) ON TINERWX,X GOSUB 100

«ftsvl> [nane]) <ftsvl> [nane) <on timer> <timer clear>
01 20 58 01 20 58 64 90

<gosub> [line nunber) <inv rtm>
58 00 01 10

38) ON TINERW1,1 GOTO 100

antcon> [value] <intcon> [value] <on timer> <timer clear> ...
1R 01 00 00 1R 01 00 00 64 9%

<inv pop> <goto> [line nunber} <inv rtn>
9C 5R 00 01 10

39) ON TINERW1,1 ON X GOSUB 100,200

<intcon> [value] <antcon> [value) <on timer> <tnrclr> <ftsvl> [nane] ...
1R 010000 1A 01 00 00 64 90 01 20 58

<on> <gosub> [line nunber] <gosub> [line nunber] <inv rtn>
66 58 00 01 58 00 02 10

40) ON TINER#1,1 ON X GOTO 100,200

cintcon> [value] <intcon> [value] <on timer> <tnr clr> <ftsvl> [nanme) ...
1R 0100 00 1A 0100 00 64 90 01 20 58

<inv pop> <on> <goto> [line nunber) <goto> [line number) <inv rtn>
9C 66 5A 00 01 SR 00 02 10

41) OFF TIMERM1

<intcon> [value] <off timer>
1R 01 00 00 65

42) DEF FNAR(R,B$[3))

«def fn> [fnnarne] [rel Junp] [type/count] [par! nane] [val pntr] .
87 20 41 00 00 01 OR 00 00

[par2 nane] [length] [val pntr] [rel PCR]
02 8R 05 00 00 00 00 00

43) LET FNR = 1 or FNR =1

clet fn> or <inv let fn> <var type> [fnname] <intcon> [value] ...
61 44 01 20 41 1R 01 00 00

<store>

08

44) DISP FNR(1,'HI’)

<disp> <intcon> [value] <’ str> [length] [value] <Mfncall> ...
56 1R 01 00 00 96 02 48 49 16

[frnare]) [parcnt] [par! type] [par2 type) <;> ceol>
20 41 2 80 81 E7 R2

45) DEF FNRS(R,B$[3))

<def fn> [fnname] [rel junp] [type/count] [parl nane] [val pntr] .
8?7 20 41 00 00 01 OA 00 00

[par2 nane) [length] [val pntr] [rel PCR)
02 8R 0S 00 00 00 00 00

46) LET FNRS = 1 or FNRS$ =

<let fn> or <inv let fn> <var type> [fnnane] <intcon> [value)
61 44 03 20 41 1A 01 00 00

<store>

07

47) END DEF

<fn end> [fnnane)
85 20 4

48) DISP FNRS(1,’HI’)

<disp> <intcon> [value] <’ str> [length) [value) <$fncall> ..
56 1R 010000 96 Og 48 49 1?7

(fonane] [parcent] [part type) [par2 type] <;> <eol>
20 41 2 80 81 RI R2

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

49)

50)

51)

52)

53)

54)

55)

56)

57)

DEF FNA(R,B$[3]) =

<def fn> [fnnane] [rel jump] [type/count] [par! name] [val pntr] .
87 20 41 00 00 01 OR 00 00

[par2 nane] [length] [val pntr] [rel PCR) <intcon> [value] ...
02 8R 05 00 00 00 00 00 1R 01 00 00

<anv fn end> [fnnane]
RF 20 41

DEF FNRS(R,B$(3])) = 'R’

<def fn> [fnnane] [rel jump] [type/count] (part nane) [val pntr] .
87 20 &1 00 00 01 OR 00 00

[par2 narve) [length] [val pntr) [rel PCR] ¢’ str> [length] ...
02 8R 05 00 00 00 00 00 96 01

[value) <inv fn end> [fnnare)
41 RF 20 41

RSSIGN#1 TO 'R’

antcon> [value] <’ed str> [length] [value] <T0> <RSSIGNM>
1R 01 00 00 96 01 61 DB 60

RSSIGNH1 TO 'R’ TEXT

<intcon> [value) <’ed str> [length] [value] <T0> <TEXT> <ASSIGNM>
1A 01 00 00 96 01 61 0B 52 60

RSSIGN#1 T0 'R’ ,BRSIC

antcon> [value) <’ed str> [length] ([value] <«T10> <BRSIC> <ASSIGN#>
1R 01 00 00 96 o1 61 0B 53 60

RSSIGNH1 10 *
antcon> [value] «<un"ed str> [length] [value] <T0> <RSSIGN#>

1R 01 00 OO0 06 o1 ZR 08 60

RESTORE

<RESTORE»
70

RESTORE 300 [11ne nunber)

CRESTORE> <RESTORE to line> <offset address of line>
70 DC n 01

RESTOREM

aintcon> [value] <RESTOREM>
1R 01 00 00 SE

58) RESTOREW1,10

antcon> [value] <intcon> [value] <RESTOREW>
1R 01 00 00 1R 10 00 00 5t

?
59) READ R,AS

<RERD> <ftadr> [name] <READ (NUM)> «ftstls> [name] <RERDS>
6€ " 3F 01 1 13 43 01 EB

60) READM1,2

«anteon> [value) <intcon> [value] <RERDW>
1R 01 00 00 1R 02 00 00 50

?

61) READN1;R,AS

<intcon> [value]) <RERDN> <semicolon> <ftadr> [nane] <RERD NUM>
1R 01 00 00 50 27 1" 3f 01 £é

ftstls> [name] <RERDS>
13 43 01 €8

?

62) READM1,2;R,R$,A(),A(,)

<intcon> [value) <intcon> [value]) <RERADN> <senicolon>
1R 01 00 00 1R 02 00 00 50 27

«ftadr> [nanme] <READ NUM> <ftstls> [name] <RERDS>
" ¥ 01 E6 13 43 01 €8

<1 din array> [nane] <Readd Array> <2 din array> [nane] <Readd array>
F3 49 01 24 F4 49 01 24

63) PRINTMY,2

cintcon> [value] <intcon> [value] <PRINTH> «<PrintM EOL>
1R 01 00 00 1R 02 00 00 5C EC

?
64) PRINTH1;R,RS$,7, hi’,R(),R(,)

<intcon> [value] <PRINTH> <genicolon> <ftsvl> [name] <Printw ,»
1R 01 00 00 5C 27 01 IF 01 FO

<ststl> [name) <Printd ,> <intcon> [value] Printh ,>
03 43 01 FO 1R 07 00 00 FO

'ed str> [length] [value] <Printd ,> <1 din array> [nane]
96 02 68 69 FO F3 49 01

Pranth array> <Printh ,> <2 din array> [nane] <Printh array>
22 FO Fq 49 01 22

Prainth ;> <Printh EOL>
EF 18

65) TRANSFORM 'file’ INTO BRSIC

<sconst> <len> <string> <basic> <into> <eromtk> <rormd>

96

<transform>

01

04 file

TOKEN LISTY

98

token 1 nane: <ftsvl> runtine:FISVL parsetine: -
ascs - takes: [nane)
exanples:
purpose:

DATA FORMAT LIST

nane: [nane)
deconpiled fornat: 2 bytes of ascii being the name

conpiled format: again 2 bytes of data but this time it is a pointer
to what is called the “name form” followed by a 2 byte address.

$ococoncnn- +
| address |--, in progran
$ommomomees |

|
________________ ’

’

|
| #ecccceee--$ocmccccccccanaa+
*<>| naneforn | rel val addr | in VPR

dmcccmmaeaes|=--=-=-- +

|
..................... »

’

|
[+
‘o value | in environnent
-+

function variable:

$oemmmmeeee +
| address I--i fn nane 1n progran
$occconnnecn

|
R’ ,-> type/count in def
| I (1n progran)
Td-omeeomeegmaee+
‘-»| naneforn l [length(8)] I val pntr | def pntr | fn nane in VPR

$oemccmceaemmeeeemacdemeemca o demeaee+

!
I
v

$ommeatoennn$ecmecdommmcccceanaenL+
| RIN | PCR | 10S I E.RNEN I CSTRT | [length($)) l value | fn value
$ommompooaen dommocdoeeomecgomeees $ommmcemmeceecgoeoeae + 1n env,

function parareter:

?
-

ece 4

| address |--
dommmmmeene +

crcccnsvoecnnccccae

->| nareforn | [length($)] | val pntr | 1n FN VPR 1n progran
+ +

$omemmemenn dmmemeeemeaaen $omememe

erccccc e rccccrrc s cee

I
omemen- + |

| value |¢--=--nuun '
dommmen- +

-——-t

in environnent

RAN/RON CONSUNPTION TRBLE

In the follouing table N refers to the nunber of tines a variable
or constant 1s referenced. L refers to the dimensioned length of the
string rather that 1ts actual length. This defaults to an incredible
32 bytes.

The anount of rbon consuned can best be measured uith the NEN
function rather than using CRT. This 1s because only that part of
the progran labeled below under ROM uill appear in the file being
run. That uhich 1s under RAN uill appear on the stack (not shown
in CRT). If the progran 1s 1n RO then the followuing
table shous how much RAN and ROM will be consuried by each variable
type. If the progran is i1n RAN then then sane anount of nemory will
be consuned but all in RAR.

arount of each| |
| consuned |
| RAN rROR | exarple inmits for vars

...............dereemercececceccee cecedeercer e r eeree rac s e sene

| const | 0 9N |
REAL $omonen- + |

| var | 8 3N+4 | 10 X=3.14159 (9+8)
...............drccecccrccmccce cmcccmceeectcccccace s eeseeee

| const | O 4N |
INTEGER ¢------- + |

var | 3 IN+4 | 10 X=3 (9+3)
--4omcccmcccccececeeee

| const | © SN |
SHORT ¢---e--- + |

| var | 4 IN+4 | 10 X=3.14 (9+4)
...feccccccacconccncccccacccnenccccan

| const | O (L¢2)N |
STRING 4------- + |
(len=L) | wvar | L2 IN+6 | 10 X$="FROG’ (9¢L¢2)
-------- demmecmcgceeemcececccene§emmecmcecceccscccccencecceeee——ne

TOKEN CLRSS TRBLES

octal
token deconpile allocate deallocate class desciption
class routine routine routine

- INIRON INIRON *none* RON CLASS > S6
0 EoL XALLY XDALL1 END OF LINE
1 FETVAR VALOC VDARLOC FETCH VARIARBLE
2 BINCON BININT BININT BIN INTEGER
3 STOVAR SVAL SVALD STORE VARIARBLE
4 CONST SKPCON SKPCON NUN FLORT OR STR CONST
5 SCNST SKPCON SKPCON STRING CONST
6 UFNCAL FUNCAL DALFNC USER FUNCTION CALL
? jnpim LINERL LINEDA COND JnP LINE W
10 GOLINE LINEAL LINEDA 6010 GOSUB
1 JRPREL RELINP RELINP JnP REL
12 UFNDEF DEFFN DALFN USER FN DEF
13 FNEND DEFEND DEFND1 FNEND
14 EXTRON ERON RONCLA EXT RON
15 RESWD OPTION FRRET OPTION BASE
16 FNRTN DEFEND FRET USER FN RETURN
17 FNRSGN FNRSN FRRET FN RSSIGN
20 RESKD SKPNXT SKPNX1 DRTA
21 RESHD+ pIn pInD DIN/RERL
22 RESHD+ SHORT SHORTD SHORY
23 RESWD+ INT INTD INTEGER
24 RESHD- conn connp con
25 EJnPH LINERL RELINP ELSE--InPH

26 EJnPR RELINP LINEDA ELSE JNP REL
27 ULINH LINERL RELINP USING LINE #
kK¥ ON fnonet tnonet ON
3 PU= *nonet *nonet STORE
32 SUBSCR *none* tnonet SUBSCR
3 DEFKY *nonet tnone* DEF KEY
M DINSUB *nonet fnone? DIn SUBS
35 PKNEOP tnonet *nonet PRINT EOL
36 PRINTS tronet *none* PRINT STUFF
37 INPUT tnonet *none* INPUT ulu/o a prompt
40 NSCRTN *none* *none* INNED EXECUTE
41 RESWD *none* *nonet OTHER RESERVED WORDS
4?2 nIsSC *none* *none? NISC OUTPUT
43 NSTOR *nonet *nonet NULTI STORE
44 NSCRTN *nhonet *nonet NISC IGNORE
45 PRTFUN none* *none* PRINT FUNCTIONS
46 SYSFUN *nonet* *nonet nureric pseudo-function
47 NSCRTN fnonet tnonet ounny
50 UNOP none? *none* NUN UNRRY OP
51 BINOP *nonet tnonet NUn BINRRY OP
52 UNOP$ *none* fnone? STR UNRRY OP

53 BINOPS *none* *nonet STR BINRRY 0P
54 RUEX *none* *none* punny
55 SYSFUN Anonet Xnone? NUN FUNC
56 SYSFNS$ Xnonet Anone? STR FUNC

The Kangaroo Input Softuare
Jack Rpplin IV

11:11 July 7, 1982

00000000
Q0000000QQQ0Q0

00000Q000QQ000000Q0
. 000000000Q0000000Q0000

Q 00Q0Q000GQ000000Q00000000
0\ 00000000000000000000Q0000000 Q.
e\ 000000Q000Q000000000000000000Q00\ Q0
00\ .00000Q000000000000000000000G0000QA0\ \00Q0
00QQ. . _..00Q0000Q000000000Q00000000000000000000000. _. 0000000
00000000Q0000QG000Q0" \00000000000Q0Q00000000Q000Q000000000.

000C¢00Q00QQ" 0000000Q00000000Q0000000000000000000A00
o \00QQ00000Q0000000000000000000" "00’

00000Q00000000000000000Q00/
\00Q000Q00/0Q00Q000a0/
\0QoQaa |00aQ0QQ
000Q0| 000/
0000| . 00
0000| OVO0
000| /
000 |
100]
1000
000000
00000000

"00000.
“mo

Kangaroo Input Sof tuare

Kangaroo Input Sof tuare

4% Tntroduction *%*

In this paper, ue uill discuss Kangaroo 1nput. This will
be divided into line i1nput and character 1nput. Line input
u1ll concern getting i1nput 3 line at a tine. Character 1input
u1ll concern single character i1nput and keyboard routines.

Most users will sinply use line input. Feu users have to
do character 1input.

Exanples of line input are:

EDIT node reading a line.
Appointrent node reading a line.
Tine node reading a line.
A BRSIC INPUT statenent reading a line.

Exanples of character 1nput are:

The KEY$ function.
The PUT statenment.
CAT RLL reading up and doun arrous.
Checking for the RTTN key.
Sh1ft-RPPT 1n appointnent node.
Shift-fetch.

Kangaroo Input Sof tuare

eg - sst sttt

Relevant globals:

KEYHIT: The current key

SVCURD: Bit zero 1s 2 validity flag for KEYHIT

Whenever a key is hit, the keyboard interrupts. The in-
terrupt service routine translates the keycode to RASCII.
Then bit zero of SVCURD 1s checked. If the bit asn't set,
then KEYHIT 1s undefined and 1s ready for a neu key. If the
bit 1s set, then KEYHIT already contains a pending key. In
this case, the neu key can only go into KEYHIT 1f at's the
RTTN key, which has priority over all other keys. Rt any
rate, bit zero i1n SVCURD 1s set to i1ndicate that ue nou have
a pending key.

KEYHIT may be regarded as a one-character stack of
pending keys. The systen could have been designed so that
KEYHIT uas a larger stack (say it could hold 20 keys
pending) but 1t wasn’t,

Nost of the character routines access KEYHIT and SVCURD,
and don't speak to the keyboard I/0 address at all. Thus,
the harduare interrupting 1/0 address has been transforned
into a virtual keyboard, consisting of KEYHIT and SVCHRD.

Kangaroo Input Sof tuare

et<ei eet .

RTIN? See 1f the RTTN key 1s pending
OEQUE Eliminate any pending key
GETCHR Hait for and eat/return a character
KEY? See 1f there's a key pending
KEYSRV Keyboard interrupt service routine
LETG0 Wait for the user to let go of the keyboard
PUTKEY MNake a key pending
SIGNIF Ma1rt for a ’'significant’ key, 1.e., not left/right arrow
WRITKY Wait for a key or timeout and return NAPKEY

RTTN?: Calls KEY? to see if a key is pending. If 2 key 1is
pending, checks if 1t’s the RTTN key.

DEQUE: Clears bit zero in SVCURD. This “eats” the current
key 1f any exists.

GETCHR: Call WRITKY to wait for a key or timeout and then
calls DEQUE to eat the key.

KEY?: Checks bit zero in SVCURD to see 1f a key is
pending. Doesn’t eat the key.

KEYSRV: Keyboard interrupt service routine. Called only
by the harduare at interrupt tine. Translates the key to
RSCII and renders 1t pending.

LETGO: Waits for the user to let go of a key. Then calls
DEQUE to eliminate the key.

PUTKEY: Renders the given key pending by putting it into
KEYHIT and setting bit zero 1n SVCHRD.

SIGNIF: Rn extension of HRITKY that handles certain keys
internally. Calls WRITKY to get a key. If that key 1s one of
a set (left/right arrow, shift-fetch, etc.) 1t handles the
key and goes to get another.

WRITKY: Wait for the user to hit a key or tineout. If
KEY? returns true wuithin the countdoun period, return that
key. If we count doun, return the NRPKEY unless STANDBY ON.
If STANDBY ON, don’t ever tine ovt, just wait for a key hat.

Kangaroo Input Softuare

%24 OQverview of line 1nput %t

R1l line 1nput 1s done through GETLN. GETLN has nany
shell routines, such as GETLNX, GETREP, GETIER, etc.
Curiously enough, GETLN perforns both 1nput and output. It
both sets up the initial termplate (say 1n appointnent node)
and reads the input line.

GETLN reads characters and feeds then to CHEDIT (the
character editor). CHEDIT perforns editting functions 1f the
keys are special (like BS) or just echos then and puts then
in INPBUF (the 1nput buffer). CHEDIT returns a flag 1f the
key 1s a “terminator” (CR,APPT RTIN, etc.) that tells GETLN
to ex1t.

Sone versions of GETLN (GETTEM, GEVVER, etc.) also set
SHIELD. SHIELD 1s a 96-bit protection template that corres-
ponds to INPBUF. CHEDIT considers a position 1in INPBUF
protected 1f the corresponding bat in SHIELD 1s set.

Kangaroo Input Sof tuare

Here's 3 diagran of GETLN:

#mmmmee+

| Set up i1nitial template |
$ememmceemee+

I
|¢ammmcmnnnI

| |
$omemeecccccce+ |

| Turn on cursor | |
#occemceccccccccee4+ |

| |
$ocmccece+ |

| Get a character | |
decmecceceeeee 4 ~

I |
$o-emmemmcmeet+ |

| Turn of f cursor | |
dommmcmmeeaeecmmememeea- + |

| |
$ommmmecece+ ~

| Call CHEDIT | |
$-memecmemmeeee-+ |

I |
* |

® R l

R R '

R % yes |

* Terminator? *----j>-----
1 2

% *
% ®

% no
|

$omemmemmcccce+
| Disable error annunciator |
R+

|
R+

| EXIT |
R+

-7-

Kangaroo Input Sof tuare

*%22 Li1ne 1nput routines %%

GETLN Read a line
GET.IN Call GETLN uith default paraneters
GETREP Call GETLN, report errors
GETTER Set up protection template, call GETLN
GETTEM Call GETTER, return status describing terminator
SETLIN Set up an 1ni1ti1al line

BLINP Blank out the 1nput buffer
CHEDIT (Character editor
I/ROFF Disable Insert/Replace mode
LA Go left one character
LI1? Is the literalize flag set?
NULOLD Reset the old line length
RA Go right one character
SHELD? Do we have a protection shield?
SHFET Display the error buffer

GETLN: Read a line. Calls SETLIN to set up the initial
tenplate, then calls GETCHR to get keys and CHEDIT to
process thern. UWhen CHEDIT signals that 1t got a terminator,
GETLN ex1ts.

GET.IN: Call GETIN with default paraneters. These
paranaters specify no 1nitial input and normal cursor place-
nent.

GETREP: (Call REPORT to report any errors, call GETLN,
call REPORT again, and clear out SHIELD.

GETTER: Sets up SHIELD according to the protection ten-
plate pointed to by R2, and calls GETREP.

GETTER: Sets INPCHK to the address of the 1nput checking
routine supplied 1in R44. Calls GETTER to set up SHIELD and
get 1nput (reporting errors). Clears the 1input check. Sets
the status flags according to the input terminator, 1.e., IR
1s set 1f the terminator 1s the CLR key.

SETLIN: Sets up the xnxtxal»ixne for GETLN. This 1I:t
would contain, say, the RPPT tenplate or the auto line
nunber.

BLINP: Blanks out the 1nput buffer.

CHEDIT: Character editor. This handles 1input keys and
processes ther. Nornal keys, such as 'R’, are echoed and
placed 1into INPBUF. Terninator keys, such as CR or FETCH,

are flagged and returned. Editting keys, such as BRCK, are

-8-

Kangaroo Input Sof tuare

processed each according to 1ts function.

1/ROFF: Turns insert mode off by clearing I/RFLG and
sending the appropriate escape sequences to the display
devices.

LR: Go left one character. This is the special character
routine for the left arrou.

LIT?: See 1f the literalize flag JUSTSO is set. JUSTSO
gets set by shaft-I/R. LIT? clears JUSTSO and returns 1its
previous state.

NULOLD: Clear out the previous input Jlength OLDLST.
OLDLST 1s looked at by CNTL-FETCH to determine hou long the
previous 1nput line was. BLINP calls NULOLD.

RR: Go right one character. This is the special character
routine for the right arrou.

SHELD?: See if SHIELD is set at all, that is, is any
character position protected.

SHFET: The code for the shift-FETCH key. This looks at
OLOLST to deterrine uhat the old input length is, and calls
SETLIN to set up the old input.

Kangaroo Input Sof tuare

#2% Other docunents ***

RS'KEY by Seth D. Rlford & Jack Rpplin IV

This explains the keyboard harduare and sof tuare translation.

-10-

INTERPRETER

Gary K. Cutler

2:21 PR THU., 15 JuULY, 1982

Interpreter

gd-evccceccacaccccana ¢

I I |
| INTERPRETER | CHRPTER 1 =

§occmcemccccccccccscecreascccrrcreseaccaen demcccrecccconccnce¢

1.1 INTROOUCTION

The interpreter loop processes the next token (fron the
token strean pointed to by R10),and passes control to the
runtine code for the particular token. When the runtine code
has been executed, control returns to the interpreter loop,
uhich either processes the next token, or, if flagged, returns
control to the executive loop.

R token 1s a numeric value representing a position or
rank 1n 3 table of addresses. The procedure enacted by the
interpreter to 1nitiate the runtine code for each token 1s as
followus:

The token value 1s doubled, creating an offset into the
table.

This offset is added to the base address of the table
uhich yields the appropriate runtine address.

An 1ndexed subroutine junmp to this address begins the
execution.

RUNTINE
RDDRESS TRBLE RUNTINE ROUTINES

| | $mmemccccncaaa. +
| RDDR | | |

| | | |
#ocsoo‘ | | 1 |
| (Token*2)+Base Rddress |------- >| RDDR |-==---=~ >] Start of |
$mmeemccemmccececceaaaann + | | | Runtine |

| | | Routine |
| RDDR | $occcmcccacnoe+

| I

This procedure is for systen tokens. To process external tokens
(1.e. fron plug-in RONs) the interpreter first processes the systen
token, B4h (ext ROM token). The token, B4h, 1s first doubled, then

2:21 PN THU., 15 JuLY, 1982

Interpreter

added to the base address of the Systen Table and the runtine address
for B4h is located. This runtine routine takes the next tuo bytes 1in
the token strean as an external ROM nunber and enables that ROM in the
suitching position. The follouing byte in the strean 1s interpreted
as the actual token. The token, i1n turn, 1s doubled and added to the
base of the External RON Table thus obtaining the location of the
runtine routine.

The high order bit, bit 7 in R17 is set to flag stall status.
This implies an end of token strean, an error has been set or the
attention key has been hat. Rfter each runtine routine has been
executed, R17 is tested. If R17 is positive (inplying the upper bit
is not set) then the loop continues. If R17 is negative then any
pending errors are reported and control is passed back to the
executive loop.

OMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

2:21 PR THU., 15 JULY, 1982

Interpreter

1.2 FLON DIRGRANS

ocmmeeeeee +

| INTERPRETER |
R|====-- +

I
4oV--==--- +

| set basic |
| PCR (R10) |
d----- |------ +

|
4oV---=-- +

| set R12=T0S |
$ommen-a |------ ¢+

|
4---e--V------ +

|release tenp. |
| nenory |
T|------ +

| -mnnee
$------Vosooe- +
| get next |
|systen token |

| double 1t |
| for offset |

| add to base |
| address of |
|runtine table|

| get runtine |
|address fron|
| table |
4oeeee- |------ +

|
RV------ >

| JSB %20 |
$omcemmeme >

2:21 Pn

---->| bit 7 of R17 set |---->
2ee?

THU., 15 JuLY, 1982

| stop |
4omemee +

Interpreter

Table of Contents

T INTERPRETER o v o v e e s e s e s e e e e e e e
1.0 INTRODUCTION . . v v v v v o e v e e e e e e e e e o e e e e
1.2 FLOW DIRGRANS v v v v it e e e e e e e

2:21 PR THU., 15 JuLY, 1982
v

. =v

Keyboard Translation
for Kangaroo

Seth D. Rlford
Jack Rpplan IV
May 11, 1982

HP Confidential

Keyboard Translation
Seth D. Rlford
Jack Rpplin IV

Nay 11, 1982

CHRPTER 1

Introduction

The HP-75 (Kangaroo) comnunicates with the keyboard via
the Roo chip. The Roo chip reports which key the user
presses on the keyboard in terns of an internal keycode.
The TRanslate KEY (TRKEY) routine translates this internal
keycode 1into ASCII for use by the rest of the Kangaroo
operating systen.

HP Confidential

Keyboard Translation
Seth D. Riford
Jack Rpplin IV

Nay 11, 1982

CHAPTER 2

Keycodes fron the Roo Chip

The Roo chip produces 8 bit key codes according to the
rou and colunn of the keystroke. See the keybcard scan
layout. attached, for which keys are on which rous and
colunns. B7-5 give the colunn and B4-1 give the rou. BO 1s
aluays high (aluays 1.) The encoding 1s shoun belou.

B7 86 B85 Colunn B4 B) B2 861 Rou

1 1 1 co 1 1 1 1 RO
1 1 0 a 0 1 1 1 R1
1 0 1 €2 1 1 0 0 R2
1 0 0 a3 0 1 0 0 R3
0 1 1 4 1 0 Y 0 R4
o 1 0 s 0 0 0 0 RS
0o 0 1 cé 1 1 1 0 {3
0o 0 0 ¢ 0 1 1 0 R?

1 0 1 0 R8
0 0 1 0 R9

Except for control and shift, each key corresponds to a
unique keycode, but all possible keycodes are not used.
Whether control and/or shift are depressed 1s reported in
the keyboard status byte. As an exarple, the keycode for
“R" as reported by the Roo chip 1s 10011001 binary.

HP Confidential

4

Keyboard Translation
Seth D. Riford
Jack Rpplin IV

May 11, 1982

CHRPTER 3

Hou TRKEY Works

3.1 The RAUNUN Table

TRKEY uses the keycode reported by the Roo chip. Since
B0 1s aluays 1, the register containing the keycode 1s right
shifted one bit. This value 1s used as an index into the
RRUNUN table; based on the index a value fron the table 1s
obtained. The RAUNUN table yields 3 classes of keys: non-
RSCII, alphabetic, and regular RSCII. Non-RSCII keys have
values greater than or equal to 128, and include {RTTN],
[LOCK), [TINE), and so forth. Regular RSCII contain the
rest of the RASCII keys, such as *,8.-, and so forth. The
RAUNUN table also contains dunny no-op entries wuhich are
denoted by FF. These entries are not used and nerely exist
as padding.

3.2 uhat is Done uith the Value

Non-RASCII keys are handled at the label NONRSC. Here the
control and shift bits of the keycode are set.

Rlphabetic keys are handled at the Jlabel ISRLFR. The
louercase letter returned fron RRUNUN has 1ts shift or con-
trol bits set depending on the value i1n CRPLOK and uhether
the shift or control keys were depressed. The ISALFA
routine falls 1nto nuneric pad processing.

Nureric pad processing proceeds 1f the value 1n CRPLOK 1s
equal to KY.PRD. The translation table PRDTBL contains
values for louercase letters follouwed by their numeric
value. If the value cannot be found in the PRDTBL then the
BEEPKY 1s returned.

Regular RSCII keys are processed at the label REGRSC
using values fron the KEYTRB table. KEYTRB contains
triples. Each triple consists of the nornal forn of a key,
the shifted forn of the key, and the control form of the

HP Confidential

Keyboard Translation
Seth D. Riford
Jack Rpplin IV

Nay 11, 1982

key. Shift and control are made equivalent to control. The
index for the KEYTRB 1s obtained by multiplying the value
fron RAUNUN by 3. Thas value 1s then increnented by 1 or 2
depending on uhether shift or control respectively were
pressed.

HP Confidential

6

Keyboard Translation
Seth D. Rlford
Jack Rpplin IV

Nay 11, 1982

CHAPTER 4

Flouchart

The follouing flouchart graphically shous hou TRKEY
works.

2 R 2 A8

% gtart
A AR 2

v
T EEERERER

Generate an
index into
RAUNUN. Get

the nunber at

the 1index.
R AR ARAR

v
2

ixs *

foat * Y
* non ASCII #-----emeommmmcccccccce

t 2 2
t

%

%
%

%
B
W

B
»

»
%

%
B
%

¥
»

HP Confidential

Keyboard Translation
Seth 0. Riford
Jack Rpplin IV

fay 11, 1982

v v

% 22 A 2 4 4 A R QR

g * * Set the ¢
£ar vy * control and *

*furthin al- #-----ieeioaan- | * shift bits, *
'phabet-‘ l 2 A f k2P

*1cst | |
' | v
'N ' 2 2R 2 2

v v * end *
A 2R A AR AR R A A AR R AR SR R AR

* Generate an * * Look at CRPLOK®
* index into * * and shift to *
* KEYTRB and * * caprtalize or *
* get the key. * * set the .
’ * * control bat, *
2R RR R AR A2 A kAR A

| I
| v
| .
v t

P AR *process* Y
* end * % nuneric fe------ee-e-- |
A R R AR ik.yp.dt v

7 2 A RERRR

* Look 1n PRDTBL*
N for letter to *

lation. If *
not there thent
return BEEPKY.®
TR

v
2Rk AR

-------------- >* end *
P

*

1

* nunber trans- *
t

*

1

%

HP (onfidential

Keyboard Translation
Seth D. Rlford
Jack Rpplin IV

hay 11, 1982

CHRPTER §

Globals Used

Global Type Usage
eReeeY

APPTKY
ATTNKY
BEEPKY
s
CRPLOK
CLRKEY
CR
DELKEY
DOUNKY
EDITKY

ESC
FTCHKY
1/RKEY
KEYSTS
KY.PAD
KYIDLE
LEFTKY
LOCKKY
RGHTKY
RUNKEY
TABKEY
TINEKY
UPKEY

EQu
EQu
EQu
eQu
DRD
eQu
€Qu
EQu
EQu
€Qu
eQu
EqQu
EQu
DRD
EQu
DRD
EQu
EQu
EQu
EQu
EQu
EQu
EQu

Value for [RAPPT] key
Value for [ATTN] key
Value for beep key
Value for backspace
Keyboard status: shift lock or numeric pad
Value for [CLR) key
Value for carriage return
Value for [DEL) key
Value for [V key
Value for [EDIT) key
Value for escape key
Value for [FET] key
Value for [I/R] key
1/0 address for keyboard
Value 1n CAPLOK uhen 1n numeric pad node
Keyboard intercept location
Value for [<--] key
Value for [LOCK) key
Value for [-->] key
Value for [RUN] key
Value for tab key
Value for [TIHE] key
Value for ~] key

HP Confidential

Keyboard Translation
Seth D. Rlford
Jack Rpplin IV

Ray 11, 1982

CHRPTER 6

Conclusions

We would recconend that the keyboard translation be done
by the harduare in future products. Keyboard translation
occupies approxinately 300 bytes of mainframe code. This
space could be used elseuhere. If the nainframe sof tuare
required additional freedon to reassign keys 1t could per-
forn the additional translation.

HP Confidential

10

Keyboard Translation
Seth D. Rlford
Jack Rpplin IV

Ray 11, 1982

CHAPTER 7

References

1. Roo Chip ERS

2. KR/GLO (Kangaroo global file)

3. KR/KEY (location of TRKEY)

HP Confidential

1

Keyboard Translation
Seth D. Rlford
Jack Rpplin IV

Ray 11, 1982

Table of Contents

Introduction

Keycodes fron the Roo Chip

Hou TRKEY MHorks

3.1 The RAUNUM Table

3.2 HWhat 1s Done uith the Value

Flouchart

Globals Used

Conclusions

References

HP Confidential

R
O
y

n
~

10

"

The Kangaroo LCD Driver Softuare

Jack Rpplin 1V
2:24:39 July 19, 1982

QooQQaao
Q0Q00Q0oQoQQeaQ

00QQ00QQ0oGaa0QQa0Q
00002000Q0000Q000000000

Qa Q00QQQ00Ga00G0LA00Q0R0AT0AA
\Q\ 00000000Q00000Q00Q000000GG000A a.
00\ 0000000000000000000Q00000000000\ 00
o0\ .0000200Q000QQ0CA000000000G000000AAG0RAN \oaae
0000. . __..0000000000000QQQ000GQ000Q000Q00000000Q00Q0. _. Q00GAC0
00000QQO0QQ00Q0QaQR0" \000003GQ2C0000000Q00200000002C000AANAAA.

00QQaQaaoag” 00GQ002000000202Q0000000QA0M000UA0AA0AA
e \0000000000000000Q000G000A00R" 00’

Q00000Q00Q00000000GAARNAAG/
\00000QQ00Q/Q00G0aqQaa/
\0000Qq0 |Q000QQ0
0QQoal 000/
0000| . 00
0000| OVOO
000| \0/
000 |
|00]
| 000
000000
00000000

LCD Draver Sof tuare

CHRPTER 1

Introduction

This docunent uill describe the LCD draver softuare for
the HP-75 (Kangaroo). It will describe 1ts character set,
hou 1t scrolls, hou 1t responds to escape sequences, and
uhat special characters 1t responds to. It will describe
hou the annunciators uork.

It uill also describe the behavior of the physical LCD,
as nuch 3s 1s necessary.

LCD Driver Softuare

CHRPTER 2

Description of the physical LCD

2.1 General layout of the physical LCD

position 80 position 49

§rerrrcrccrc eeececcccrcccnececna

§errccrncccccrmccecnccacncncecncccccccsd

BRTT ERROR PRGN RPPT

The LCD consists of 81 addressable positions.

Addresses 80-49 are the LCD windou. This contains
characters,

Address 48 1s the left annunciator pair. It contains the
BRTT and ERROR annunciator pair.

Address 47 1s the right annunciator pair. It contains
the PRGN and APPT annunciator paair.

Address 1 1s a dunny position. If the cursor is uritten
to this (or any other position 1¢X<46) then the cursor is
effectively off, 1t does not appear.

Rddress O, 1f uritten to, coples 1ts data to all posi-
tions. Uriting @ blank to location 0 1s a good uay to
quickly clear the LCD. Of course, this data 1s also copied
to the annunciator positions. R blank happens to clear the
annunciators. Other characters night set or clear the an-
nunciators, based on the shape of those characters. See
'The Rnnunciators’ below.

3
LCD Driver Sof tuare

2.2 Reading status

When reading fron the LC(D 1/0 address (FFFC), only the
Jou-order bit of the status 1s used. It 1s 1 when the LCD
1s busy uriting the previous data, 0 uhen the LCD 1s ready
to accept data. The routine LCDRDY waits for the LCD to be
ready to accept data by naiting for that bit to clear.

2.3 Sending position only

Uhen 3 single byte 1s uritten to the LCD 1/0 address
(FFFC), the value of the byte indicates where the cursor 1s
to go. Writing 80 decinal, for instance, uill send the cur-
sor to the leftrnost position of the display. WUriting 1 will
send the cursor to position 1, which will not be displayed
and hence the cursor 1s effectively off. ARActually, any
position fron 1-46 will do for this purpose, but position 1
has the least chance of being used 1f the L(D 1s widened to
nore than 32 characters.

WARNING

Never urite to any position greater than 80 (the
leftrnost position) as this will cause the LCD
scanning harduare to latch up.

The high bit of the address 1s used to indicate the cur-
sor type. If the high bit 1s of f, the ansert (arrou) cursor
1s used. If the high bit 1s on, the replace (box) cursor 1s
used.

LCD Driver Softuare

2.4 Sending position and data

When tuo bytes are uritten to the L(D I/0 address (FFFC),
this 1indicates both position and data. The first byte in-
dicates position and cursor type, as described in the
previous section. The second byte 1ndicates the data to
place at that position. If the high bit of the data 1s set,
the character uill be underlined.

2.5 The annunciators

There are tuo annunciator pairs, the BRTT/ERROR pair and
the PRGN/APPT pair. The BRTT/ERROR 1s in position 48, and
the PRGN/APPT pair 1s in position 47. The fact that the an-
nunciators are paired nakes then difficult to manipulate.
The left annunciator of the pair 1s keyed to the lower-left
segnent. The right annunciator of the pair 1s keyed to the
louer-right segrient. Hence, the following procedure nust be
used:

To activate only the left annunciator: write a 'p’
To activate only the right annunciator: wurite a 'q’
To activate neirther annunciator: urite a '’
To activate both annunciators: urite a '’

Other characters can be used, of course. For instance, a
dash could be used instead of a blank since 1t activates
neither of the louer corners. Houever, the characters used

seened to have the best chance of surviving changes i1n the
character set. For exanple, a 'g’ uas formerly used 1nstead
of 3 'Q’, but then the descender on the 'g’ was changed so
it didn’t activate the louer-right segnent.

5
LCD Driver Sof tuare

2.6 The character set

For the nost part, the character set corresponds to the
RASCII character set. The characters 0-31, the control
characters, display a bunch of strange characters.
Character 126 displays the 1insert cursor. Character 127
displays the replace cursor. Rny character fron 128-255
displays the corresponding character fron 0-127 except un-
derlined.

To get the correct ASCII set for characters 126 and 127,
the softuare has to do translation of characters on output.
See the section on "Character translation” that follows.

NOMAS
NOt MAnufacturer Supported

recipient agrees NOT to contact manufacturer

LCD Driver Softuare

CHAPTER 3

Description of the virtual LCD

3.1 General description

The virtual LCD is a thing of both softuare and harduare.
Hhen I speak of cending something to the virtual LCD, I nean
1t 1s sent to the L(D driver softuare uhich nanipulates 1t
and then sends stuff to the LCD harduare.

THE VIRTURL LCD

(oomococcaonen- 96 character uide buffer ---------------- >

o mmmeeeaas+
dommenea|omemmmmeeR+

| | I l
4=|mmmmeelJ-o-emmmeeme+
e+

<-- 32 character uide uindou -->

The virtual LCD consists of a 32 character uindow iInto a
96 character wide buffer. The uindou 1s aluays within the
buffer. The cursor 1s aluays uithin the windou. (Except,
of course, wuhen the cursor's off.) (Mell, not really. See
*The Earthquake problen’ belou.)

The uindou noves whenever the cursor "bumps" against 1t.
For instance, 1f the cursor 1s at the 32nd position of the

uwindow, and a nornal character 1s sent, the windou will be
forced to move foruard one position to keep up uith the cur-
sor. Of course, 1f the cursor (and hence the uindou) uas
already at the far right end of the buffer, then the
character uill be rejected. Sinilarly, BS characters nove
the uindou back 1f they bump against it.

7

LCD Driver Sof tuare

3.2 Special characters

The following are the only special characters the virtual
LD recogrizes. Rll other characters (even 1f control
characters) are sinply displayed, perhaps as Greek or other

strange synbols.

The special characters are:

1. BS: backspace

2. C(R: carriage return

3. LF: line feed

4. ESC: escape

1. BS causes the cursor to go left one space. If this
would cause us to go too far left, the BS 1s 19-
nored. If this would nove the cursor outside the
uindou, then the uindow 1s noved.

2. (R causes the cursor to go to the far left position.
This uill nove the uindou to the far left.

3. LF causes the current line to be "dead” by setting
the DERD flag. This causes the line to be cleared
uhen the next character 1s sent to the L(D. Rlso,
LF uaits the current DELAY rate.

4. ESC narks the start cf an escape sequence. It sets
the flag LCDESC to 1ndicate this so the code will
treat the next character specially.

NOTE

There 1¢ no “neuline” character in Kangaroo. The
(R/LF cequence serves that purpose.

LCD Oriver Sof tuare

3.3 Escape sequences

Except for ESC X, all recognized escape sequences are tuo
characters. The second character nust be upper case. Un-
recognized escape sequences (ESC R, say) are 1gnored.

1. ESCC: go foruard

2. ESC D: backuard

3. ESC E: hone, clear

4. ESC G: go to left of display

5. ESC H: hone cursor

6. ESC J: clear to end of screen

7. ESC K: clear to end of line

8. ESC 0: delete with uraparound

9. ESC P: delete uithout uraparound

10. ESC <: cursor off

11. ESC >: cursor on

12. ESC X: cursor addressing

1. ESC C: go forward. If this would cause the cursor
to nove outside the buffer, then 1t 1s 1gnored. If
this would cause the cursor to nove outside the cur-
rent uindow, then the uindou 1s noved foruard.

2. ESC D: go backuward. Just like BS.

3. ESC E: hone and clear. This resets the LCD. It
resets the cursor and windou positions to the far

left.

4. ESC G: go tc far left. Just like (R.

S. ESC H: hore cursor. Just like C(R.

10.

".

12.

ESC J: clear to end of screen. (lears the display

9
LCD Draver Sof tuare

and buffer from the current position to the end.

ESC K: clear to end of line. Just like ESC J

ESC 0: delete with wuraparound. Delete the current
character, noving in characters fron the right over
it.

ESC P: delete without wraparound. Just like ESC 0.

ESC <: turn the cursor off.

ESC >: turn the cursor on.

ESC X <colunn> <row>. Go to the given <colunn>,
The <rou> 1s 1gnored, and 1s included only for con-
patability uith other devices. The <colunn> and
<row> are one-byte binary quantities uith only the
First five bits (possible value 0-31) regarded. The
uindow 18 placed at the beginning of the buffer,
even 1f this 1s not absolutely required by the
colunn given.

10
LCD Oriver Softuare

CHARPTER 4

Inplenentation

4.1 Trip through the LCD sof tuare

In this section, we will describe the path of a typical
character as it travels through the LCD driver softuare.

4.1.1 Check CREST for ESC X <colunn> <row>

CREST is the flag that says if we’re currently 1in an
ESC X <colunn> <rou> sequence, the only escape sequence
that's over tuo characters.

If CREST='C’, then the <colunn> is expected next. The
inconing character 1s taken, reduced nod 32, and placed as
the current cursor position. The uindou 1s forced to the
leftrnost position.

If CREST="R’, then the <rouw> 1s expected next. The in-
coning character 1s 1gnored, and CREST 1s set to zero to 1in-
dicate the end of this sequence.

4.1.2 Check for a DERD line

If DERD is set, then the current line 1s dead. If so, we
clear DERD and clear the LCD. DERD was set when the
previous LF cane by.

4.1.3 Rre we part of an escape sequence?

If LCDESC 1s set, then the previous character wuas an
escape. If so, we take the inconing character and look 1t
up in the table of escape sequences. If it'’s found, we
transfer to the appropriate routine and exit. If it's not
found, the character is ignored.

4.1.4 Are ue a special character?

11

LCD Driver Sof tuare

The 1inconing character 1s searched for 1in the table of
special characters. If 1t's found, ue transfer to the ap-
propriate routine and exit.

4.1.5 Rssure that ue’'re uithin the uindou

INUIND 1s called to assure that the cursor (pointed to by
LCOPTR)1s within the windou (pointed to by LUDWIN). See
the section on 'The Earthquake problen’ that followus.

4.1.6 Rpply character translation

The i1ncoming character 1s searched for i1n the translation
table TRANS1. If 1t 1s found, me translate 1t to the paral-
lel character 1n TRANS2.

4.1.7 Set LETSEE

Since wuwe knou that the 1ncoring character 1s a normal
character, we call DOSEE to set the LETSEE flag. This flag
1s 1nterrogated by the HRANG routine so that BRSIC can pause
to allon the user to view previous output. HRNG clears the
LETSEE flag by calling UNSEE.

4.1.8 \Urite character 1n insert or replace node

Based on I/RFLG, we either call CH2LCD to display the
character 1n replace node, or INSCHR to display the

character 1n 1nsert node.

4.1.8.1 Urite character i1n 1nsert node

Rl1l the characters to the right of the current position
are noved over one to the right. The inconing charcter 1s
inserted at the current position. and the LCOPIR 1¢ noved up
by one. Ncte that 1f this would cause LCOFIR to be outside

the current wuindou, the windou is NOT noved nou. The cur-

rent uindow is then uritten out to the LCD with PUTUIN. See

12
LCD Driver Softuare

the section on 'The Earthquake problen’ that followus.

4.1.8.2 MUrite character in replace node

The i1nconing character 1s placed into the buffer, LCDBUF,
and LCOPTR 1s updated. The inconing character 1s uritten to
the LCD. Note that 1f this would cause LCDPTR to be outside
the current windou, the window 1s NOT noved nou. See the
section on 'The Earthquake problen’ that followus.

4.1.9 Display the cursor

CURSE? 1s called to display the cursor. If CURSOR 1s
not set, then no cursor 1s displayed. If CURSOR 1s set,
then the cursor 1s displayed according to I/RFLG, which says
uhether we’'re in i1nsert or replace node.

13
LCD Driver Sof tuare

4.2 Flouchart

$omeceen +
| STRART |
$omemeee +

|
|
R’

2 2
2 *

2 £ yes

* CREST='C’'7? R-cod-ecd
% 2 I

1 % I
2 4 |

* |
| no docceccccccceaaaa- +
| | Get <column>, |
| | set cursor |
| | and uindou |
| omcmeccceeccacan 4

| |
| |
| 4---4

| | €|
* 4---t

R R

% %

* * yes
x CREST='R'? #--->--us

2 2 |
* ® '

2 * |

» |
| no $emcceccmcmcmec e cecaes +
| | Ignore incoming <row> |
| dommmmecmcccccccccae +

l |
| |
| t---d

| | €|
* 4---¢

2 1
* %

* DERD * yes
% line? Recoyannd

% A |
% 2 |

L A |

|

14

| M0 deccceccccccenan. ‘
| | Clear the line |

LCD Driver Softuare

| $occmccceccccacaae ¢

| |
I I
|------ (eeeeoen- +

I
|
%

2 2
% %

£ LCDESC * yes
* set? Recoyanne

% 2 |
% % I

£ % |

. |
| no $omcemmccmeecaae +
| | Look up routine |
| dmmmmemcce+

| |
I |
| domemcmmnccecneae- +

| | Call routine |
| omemmmeemceeee+

I |
| |
| Y

| | E |
% +---4
2

2 ®

* special * yes
% character? %--->---4

* * '

2 2 |
x ot |

' |
| no #--c-cemcmccccano- +
| | Look up routine |
| dommmmcome+

I |
| |
| mmmmecmececaaea +

| | Call routine |
| dommmmcmeccceaeaea +

| I
| |
| 4---4

| | E|
| 4---4

|
$emcememececcmacecceceeaae +
| Get us within the windou |
dmmmmmmmeeccemcmmceececmenan 4

15
LCD Driver Sof tuare

4o mmmmeecmecneeo- +

|Rpply character translation|
§emmmeemcceeemcececeananaaa +

|
|

$mmmmmmmccceee+

| Set LETSEE flag |
dm-mmeeememeecemcmeccaeao- +

|
|
%

% ”

2 »

Replace * Uhat % 1nsert
dom-c--ok node? Recormmcs

I . . |
l A * |
I £ I
| * |

$rmmmmmme4 i+

| Urite character | | Urite character |
| 1n replace node | | 1n insert node |
mmmmmmmeemee+ dommemmmeemanmaean 4

| |
| |
RYoemmmmeem————- (mmmmmmm- +

|
|

4=t |

| € |------ > |
+--=4 |

|
|

rmmmmemmee eceecmccccaeee- +

| Display the cursor |
$ommmmmccececccccccmcccceee~ +

|
bemomne +
| EXIT |

16
LCD Driver Softuare

4.3 The Earthquake problen

The earthquake probler used to occur when 3 32 character
line uwas wuritten to the LCD. When the 32nd character uas
uritten, the windou uas noved to the right and re-trans-
nmitted. Then CR/LF was sent. The CR caused the uindou to
be at the far left and re-transmitted. Visually, the dis-
play had quivered, Hence, the earthquake.

The solution to this problen was to not move the window
until the next "nornal” character cones along. Hence, when
the 32nd character uas uritten, the uwindow uas NOT re-trans-
nitted because the window wasn't noved. Then, uhen the
CR/LF uas sent, the window uas set to the far left. Since
the uindou never noved, no earthquake problen.

17

LCD Oriver Sof tuare

4.4 Quick list of globals

Here 1s a list of the LCD globals:

ANNF LG :
CREST
CURSOR :
DERD
DELRY
I/RFLG :
INPTR
LASTCH :
LCDBUF :
LCDESC
LCDOFF
LCOPIR :
LCOUIN :
LETSEE :
NAXMAX :
NINHIN

SIZSIZ .

Annunciator status

: Status of ESC X Colunn Rou
Whether cursor 1s on/off

: WNhether current line is to be cleared
: Current DELRY count
Insert/Replace mode

: Pointer 1nto 1input buffer
Pointer to last character in input buffer
LCO buffer

: Flag 1f ESC has been seen
LCD output disabled
Current cursor position i1n LCDBUF
Current uindou position in LCDBUF
We have displayed a nornal character
Rddress of far right LCD position
Rddress of far left LCD position
Width of LCD

18
LCD Draver Sof tuare

4.5 Detailed list of globals

--- ANNFLG ---

Status of annunciators.

ANNFLG bit 3 : battery annunciator
ANNFLG bit 2 : error annunciator
ANNFLG bit 1 : progran annunciator
ANNFLG bit O : error annunciator

--- CREST ---

Status of ESC X Colunn Rou escape sequence.
If CREST=0, then ue are not in the sequence.
If CREST='C’, then the Colunn is expected next.
If CREST='R’, then the Rou is expected next.
Hhen wue’'ve just seen the ESC, we don’t know what kind of
escape sequence ue’'re in, so just LCDESC 1s set.

--- CURSOR ---

Uhether cursor 1s on/off. If CURSOR 1is nonzero, then the
cursor should be displayed.

--- DERD ---

Hhether the current line is to be cleared at the next
character. If DERD 1s nonzero, then the LCD shall be
cleared uhen the next character cones through. DERD 1s set
uhen a LF cones 1in. If the LCD uas cleared right when the
LF cane in, the line would appear and disappear quickly.
This forces the line to hang around.

--- DELRY ---

The current DELRY length. This 1s a five-byte gquantity of
tiner "ticks" (27-14 seconds). Please refer to the con-
parator docunent for nore information on how such tiners
work. We wait this long after each LF character.

19
LCD Driver Sof tuare

--- I/RFLG ---

Input Insert/Replace node. If I/RFLG 1s nonzero, then we're
in insert node. This 1s used for deciding uhat kind of cur-
sor to emt.

--- INPIR ---

Input pointer. INPTR points to the current location in the
1nput buffer. It 1s used (here he hangs his head 1n shane)
to deterrnine hou long the buffer 1s for 1nsertions and dele-
tions.

--- LRSTCH ---

Pointer to last character 1n the 1nput buffer. It 1s used
(gasp choke uheeze) to deternine hou long the buffer 1s for
insertions and deletions.

--- LCOBUF ---

The 96-character LCD buffer. It contains the actual data
that 1s displayed 1n the harduare.

--- LCDESC ---

Flag 1f escape character has been seen. 1f LCDESC 1s non-
zero, then the previous character was an escape and an
escape sequence 1S nOM 1n progress.

--- LCDOFF ---

Flag L(D output enabled/disabled. If LCDOFF 1s non-zero,
then L(D output 1s disabled. Certain character editting
operations tenporarily set LCDOFF so that the operation will
be faster.

--- LCOPIR ---

Current cursor position in LCDBUF. LCOPTR points to the
current cursor position 1n LCDBUF.

--- LCOWIN ---

Current wuindou position in LCDBUF. LCDUIN pointe to the
current windou position in LCDBUF.

LCD Driver Softuare

~-- LETSEE ---

Flag that 1s set when 3 normal character (not special
character) 1s sent to the LCD. The routine HANG looks at
LETSEE and waits 1f a1t's set. The routine DOSEE sets LET-
SEE.

--- MAXMRX ---

Rddress of far right LCD position. Normally contains 49,

--- NINMIN ---

Rddress of far left LCD position. Normally contains 80.

--- SIZSIZ ---

Hidth of the LCD. Nornally contains 32.

21
LCD Driver Sof tuare

4.6 RAnnunciator inplenentation

To turn on or off any annunciator, call one of the fol-
louing routines:

ANN.R- turmn appointnent annunciator off
ANN. R+ turn appointnent annunciator on
ANN.B- turn battery annunciator off
RANN. B+ turn battery annunciator on
ANN.E- turn error annunciator of f
ANN.E+ turn error annunciator on
ANN.P- turn progran annunciator off
ANN. P+ turn program annuncliator on

The annunciator information 1s kept 1n ANNFLG. ANNFLD
contains four bits, one for each annunciator. The fornat of
ANNFLG 1s:

RANNFLG bit 3 : battery annunciator
ANNFLG bit 2 : error annunciator
ANNFLG bit 1 : progran annunciator
ANNFLG bit O : error annunciator

When any of the annunciator mnanipulation routines 1s
called, all four annunciators are re-uritten according to
ANNFLG. Given nore space, the routine could have only re-
Written the appropriate pair of annunciators, but uriting

both pairs saved code and seered adequately quick.

22

LCD Driver Sof tuare

4.7 Character tranglation

The LCD harduare (fixed forevernore) has the follouing
configuration:

08 tilde character 88 underlined tilde
OR lazy-T character 8R underlined lazy-T1
7€ insert cursor FE underlined 1nsert cursor
7F replace cursor FF underlined replace cursor

The locations 7€ and 7F are fixed because the display
generator displays 7€ or 7F uhen 1t wuants an insert or
replace cursor. Houwever, RSCII dictates thet 7E 1s the
tilde, and wue uant 7F to be the lazy T. Hou do we solve
this dilenna?

We have the SOFTHARE device driver translate 7E->08 and
7F->0R. Nothing knous about this but the louest level of
sof tuare (and us). If the user sends a 08 or OR, these are
BS and LF and get processed specially anyuay.

A parallel napping goes on uith FE->88 and FF->8R, for
these pairs are the previous characters uith their high bits
set.

23
LCD Driver Sof tuare

CHAPTER S

Doing strange things

5.1 MNodifying uindou paraneters

By nodifying RNINMIN, NAXMRX, and SIZSIZ, the inplenentor
can alter uhat 1s uritten to the LCD. He can, for 1instance,
say: "Protect the first 10 and the last 10 characters of
the display” by setting RINAIN, NAXNAX, and SIZSIZ. Then
characters uill only appear 1n positions 11-22 and will
scroll 1n those locations only. Houever, if any LF's or
ESC-E's are sent, C(LRLCD 1s called, which 1gnores the NIN-
NIN, NAXNAX, and SIZSIZ paraneters and clears the ENTIRE
LCD.

5.2 Setting LCDOFF

By setting LCDOFF, the implenentor can disable LCD out-
put. This nakes nany operations quicker 1f the implenentor
knous that PUTHIN will be called (possibly by hin) after
LCOOFF 1s cleared again.

5.3 Putting LCOPTR and LCOWIN outside LCDBUF

I have no i1dea what this would do, but 1t sounds an-
teresting.

24
LCD Driver Softuare

CHAPTER 6

Other docunents

IC Display Controller Detailed Description (R-1LF1-0301-3)
by Tin Nyers

This describes the LCD harduare.

IV'C0D by Jack Rpplin IV,

This describes the character set and character translation.

—
~
N

)
D

Table of Contents

Introduction

Description of the physical LCD

N
N

A
N
D
W
A
— General layout of the physical LCD

Reading status
Sending position only
Sending position and data
The annunciators
The character set

Description of the virtual LCD

3.
3.
J.

1
2
3

General description
Special characters
Escape sequences

Inplenentation

q.

L
H
L
D
L
L
L

N
O
N
D
W
w
N
D

D
D
O
D
D
L
O
L
L
L
O
L
D
L
L
D
-

Doing

g
V

W
A
—

-
P
R
L
e
e

a
d
d

w
h
e

e
k
b

e
e

e
e

e
e

e
e

e

rip through the LCD softuare
Check CREST for ESC X <colunn> <row>
Check for a DERD line
Rre ue part of an escape sequence?
Rre we 3 speci1al character?

Rpply character translation
Set LETSEE
Write character 1n 1insert or replace node

.8.1 HWrite character in 1nsert node

.8.2 HUrite character 1n replace node

1
1
2
3
4

.5 ARAssure that we’re uithin the uindou

6
7
8
1

1

.9 Display the cursor
Flouchart
The Earthquake problen
Quick list of globals
Detailed list of globals
Annunciator 1nplenentation
Character translation

strange things

Modifying uindou paraneters
Setting LCDOFF
Putting LCOPTR and LCDWIN outside LCDBUF

LCD Driver Soft

N
N

L
W

w
~

0
o
~

LOCK description

Raan Young
07/09/82

Q000QQoQ
00000000000Q0Q

0000Q0QQQQQ000Q0Q0
2Q0000000a00000000Q000Q0

o 00000000Q000Q0000000000QA0
\Q\ 00Q00000000Q0Q0000QQ000AA00AA 0.
Qa\ 0000000G000000000Q00Q00QAQ0EA0ARAN QQ
Qo\ .0000Q00000000000000000000000000000N \Q0QQ
Q000. . __..00000000Q0000000000000000000000Q0000Q00Q000. _. QGRQQNA
000000000Q000QGA0Q0" \0QQ000000000000Q000Q02000Q0QQ00QQ00000.

0000QQQ00QQ" 000000Q000000000QQ000000Q000000000Q000A
e \0000Q00000000Q0000Q000000000Q" 00’

0000000000Q0QQ00000000G0R0A/
\000000Q0Q/**00Q000aQa/
\0000Q0 |000QaQq
00000| 000/"
0000| . 00
0000| OV00
000| /
000|
100]
1000
000000
00000000

NOMAS
- NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

LOCK lives 1n the file KR-LOK. LOCK sets a passuord which
the user will be asked to supply each tine the nachine 1s
auakend by the RTTN key (see KR"HI for more about wakeup ac-
tivites). If the wuser does not supply the correct passuord,
the nachine uill go back to sleep 1innediately. If the pas-
sword 1s null, then the LOCK option 1s effectively turned
off. Only the first 8 characters of the LOCK string are
used, although the user may type in any length. The string

nay contain any possible characters.

LOCK 1s parsed as a sinple one-string keyuord. The runtine
code sinply stores the first 8 characters of that string in
LOKPSU, and clears the 1nput buffer to prevent any chance of
looking at the user input. Strings of shorter characters are
end-filled with 0’s, so a null string ends up equalling
zero.

When Kangaroo wakes up, 1t calls the LOCK? routine just
before returning to user control. The LOCK? routine checks
the value in LOKPSW, 1f 1t 1s O, 1t returns 1nnediately.
Otheruise, 1t pronpts the user for the passuord, and reads
his 1nput. The routine conpares the first 8 characters of

the 1nput to the wvalue 1n LOKPSH, and returns with the
results of the conpare. If LOCK? returns uith the zero flag
set, then the nachine continues to wakeup (either no pas-
suord, or passuword right). If the zero flag 1s clear, then
the nachine goes back to sleep (urong passuword). This only
happens uhen the nachine 1s auakend by the RTIN key. (on-
parator wakeups bypass LOCK?, and are handled differently
(see KR"CNMP for nore info on this).

An 1nteresting side effect of the LOCK? code (undocunented
in the user nanual) 1s that 1f the passuord entry 1s ter-
ninated uith a node key instead of the RTN key, the nachine
uill wakeup 1n that node. Rll other terminators uill cause
an 1nvalid passuword result.

fary Jo Hornberger

5/13/82

Battery Detect 1n Kangaroo

Follouing 1s a description of the battery detect sequence in Kangaroo,
as seen fron both the user’s vieupoint, and the internal Kangaroo
vieupoint.

Fron the user’'s vieupoint:

Fresh batteries Kangaroo as usual
to level 1:

Fron level 1 to Battery annunciator 1s on, otheruise Kangaroo as
level 2: usual

Rt level 2: If Kangaroo 1s 1dle (waiting for 1input) when the
pouer drops below level 2, Kangaroo uill output
the 'Lou batteries’ nessage and put 1tself
to sleep.

If we are 1n a BEEP or WAIT connand, using the
card reader or HPIL, LISTing, FETCHing or
uaiting for a key to be hit, these will abort.
Other connands should terrinate nornally.
Rs soon as the current connand 1s finished,
Kangaroo uill output the 'Lou batteries’
nessage and put 1tself to sleep.

Soneuhere belowu Harduare reset
belouw 2.5 volts:

Bringing Kangaroo back to life:

If the user tries to wake up Kangaroo and the pouer level 1s
belou level 2, Kangaroo will output the ’'Louw batteries’
nessage again and put 1tself back to sleep.

If the pouer level 1s betueen level 2 and level 1, Kangaroo should
operate nornally uith the battery annunciator on.

If the pouer level 1s above level 1, ue’re back to Kangaroo
¥s usual.

Note: the battery annunciator 1s turned OFF only uhen ue uake up fron
deep sleep, even 1f the user plugs in the recharger as soon as
the annunciator 1s turned on.

KR"LOH page 1
Frorn an 1nternal vieupoint:

Ne use tuo lines fron the Roo Chip to monitor the batteries. The BOR line
tells us if ue have alkaline batteries, and BDK nonitors the actual
battery voltage.

At each coldstart or uamstart:

Ne turn off the battery annunciator, and clear the low power
flag (PURFLG) and the Rlkaline battery flag (RLKFLG).

We decide uhich batteries ue have by the value of BOR. If BDR 1s >.630V
ue assune ue have nicad batteries, otheruise ue assune alkalines.

To do this, we select BOR by setting bitM1 in the Pouer Supply
Status Byte (PSSB) to 0. We get around the fact that BDR cannot
be read directly by writing a value to the PSSB that corresponds
to .630V. If the value ue urite is less than the current value of
BOR, we will get a low pouer interrupt, and go through the
interrupt service routine, setting ALKFLG.

We wait 300 microseconds, then check RALKFLG. If ALKFLG is
nonzero (ue DO have alkaline batteries), we load BATTRY uwith
ALKLNT! and RLKLNZ, uhich are the first and second interrupt levels
for alkaline batteries. If RLKFLG 1s still O (nicads), we load up
BRITRY with NICRD1 and NICRD2.

He then select BDK (by setting BatN? an PSSB to 1) and set up our
first interrupt level by uriting the first value 1n BRTTRY to
the PSSB with the battery interrupt disabled, then enabling the
interrupt. The re-enabling of the interrupt causes the harduare
to restart 1ts voltage conparing cycle.

Finally, ue clear SVCHRD bitH6 (the 'turn on the battery annunciator’
bit) and enable the global interrupts.

Rt each battery 1interrupt:

He get an interrupt uhenever the BOK line drops to the level
corresponding to a value we have uritten into the pouer

supply conparator. UWe have tuo interrupt levels. The i1mitial
level 1s set up by B.INIT every tine ue uake up fron deep sleep
(1ncluding coldstart). The second level 1s set up uhen we reach
the first interrupt level.

At the first interrupt, ue set bithé in SVCURD so the next time ue pass
through SPY the battery annunciator uill be turned on. At the
second 1nterrupt, we set another flag(PURFLG), so the next time we
are uairting for input (HRITKY) or pass through the Node suitcher
(NODEKY), those routines ui1ll send us to sleep uith the ’Lou
batteries’ nessage.

We keep track of uhich state ue are i1n by the PHRFLG. PURFLG
is 0 unti]l we drop belou the 2nd interrupt level.

The harduare uill reset Kangaroo 1f the power drops belou the
level needed to keep the systen alive.

KR"LON page 2

He use the follouing equation to find the reference nurbers:

{(256)(voltage to interrupt))
{ ~-mmememmeece } -1 = reference nunber
{ Ve (5.4V) }

This cones out to be the following:

Battery levels Rlkalines Nicads
voltage refi voltage refi

Battery annunciatoron3.0V1460 3.56v 1670
"Lou batteries’ nessage 2.70v 1270 3.0V 155D
Harduare reset -----soneuhere below 2.5v-----

Things used:

Globals:
RLKFLG 1byte =0 if nicads,! 1f alkalines
PURFLG 1byte =0 1f BDK above 2nd level,! 1f below
BATTRY 2bytes byte! =1st interrupt level (RLKLN1 or NICRD1)

byte2 =2nd interrupt level (RLKLN2 or NICRD2)
SVCURD bitH6 =1 if need to turn battery annunciator on

Equates:
ALKINY equ 146D =3.1Qv =1st alkaline interrupt level
RLKLN2 equ 1270 =2.70v =2nd alkaline interrupt level
NICRD! equ 167D =3.55v =1st nicad interrupt level
NICAD2 equ 1550 =3.30v =2nd nicad interrupt level

I/0 addresses:
GINTEN dad FFOOH =global interrupt enable address
PSSB dad FF82N =pouer supply status byte
POWVEC dad OOOCH =pouer supply interrupt vector

Major routines
B.INIT in KR&LOW coldstart and warmstart battery init
PURSRV 1n KRALOW battery interrupt service routine

Related routines
SPY 1n KRASER turns on batt annun if SVCHRD bitH6 set
NODEKY in KRENOD sends us to nap code 1f PRUFLG nonzero
WAITKY 1n KR&IO sendc us to nap code 1f PURFLG nonzero
172717 in KR&ZIZ sends us to sleep with ’Low batteries’

nessage if PURFLG M0
Other useful routines

PUROK? 1n KR&LOW returns € nonzero if low pouer
sToP? in KRALOW returns E nonzero if lou pouer or ATTN

Related docunents:
See Roo Chap ERS for more information about the PSSB.

KR"LON page 3
Routine: RSINIT

File: KR&IN2

Author: RS, GC

Description: Parses "INITIALIZE ':DV'[,X]" and leaves the
paraneters on the R12 stack.

Input:

Output (1nclude E-Reg, 2-Flag, (-Flag 1f pertinent):
R12 stack Paraneters pushed

Routines Called:

ERROR+, GETSTP, NUMVA+, SYSJSB.

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):
Generates a nissing paraneter error 1f the user 1nputs
@ conra and no nunber.

Notes:

Reg: x = volatile Status: R12 stack:
bdmeed dommmdemcdemmdmeI Ri+

| 10123]4%567| | lin Jout] Legend | | Entry |
dommdbocmcpooand docmcdomogombememeae b beecemeemeees ¢

RO [Mode| | x| d-BCD | | |
[R10| l | [€ | | x| b-BIN | | I
|R20| | | [ORP | | x | 1-1nput] | |

|R30| I [RRP | | x | I |
IRGO| | | Aemmeeeememmeeeeeeeev |
|RSO | xxxx | | MELISB Needed: x | | |
RO | | #eemeoooeoeeeeeeeeees ¢ | |
|R70| | | | HANDI Called: I |
dommboeemh----d dommccmmccceecaaaaLkb4

Routine: RSPRCK

............ ¢

Exat |
............ ¢

Paraneters |
for 1n1-
tialize.

File: KR&PRAK

Ruthor: RS, GC

Description: Parses "PRCK ':DV'" and leaves the
paraneters on the R12 stack.

Input:

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
R12 stack Paraneters pushed

Routines (alled:
GETSTP

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):
Generates a nissing paraneter error 1f the user inputs
a conna and no nunber.

Notes:

Reg: x = volatile Status: R12 stack:
boccpoeeponan #occdeccdemcomnmaean 4 fecccceeceeoo +
| 1012314567] | l1in jout| Legend | | Entry |
bomedooponnnt foemmdemmdommpmme¢ dememecmennn- +

LA | | |Hode| | x | d-BCD | | |
|R10| | I [€ | | x| b-BIN | | |
|R20| | | [ORP | | 54| 1-1nput| | |
[R0| | I IARP | | 12] I |
IR&O| | | #mmmmmmmmemmeememeees‘v |
|RSO| | xxxx| | NELJSB Needed: x | | |

R6O| | | emmmemesesooeeeeeeoe‘o |
IR70| | | | HRANDI Called: | |
dooohomecdomant L¢ decccecccaae- ‘
Routine: BRDDEV

............ ¢

Exat |
------------’

Paraneters |
for pack. |

|
|
|
|
|
|

............ ¢

File: KR3VFO

Author: RS

Description: Generates error 57, bad transmission, and untalks

and unlistens the loop.

Input:

Output (1nclude E-Reg, 2-Flag, C-Flag if pertinent):
E-Reg "o

Routines Called:
ERROR, VFBYE

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):
Generates error 57,

Notes:

Reg: x = volatile
d-m=decc-t----¢

| 10123]4567|
doc-pmmmmd---=

|RO | | |
IR10| | |
[R201 | |
|R30| | |
|R40 | | |
|RS0| | l
{R60 | | |
[R?70| | |
$-ccd==t

Routine: CLRCOD

Status:
domemdomcdommbocmcmcnn *
| lin |out| Legend |
oofmemm 4+

[Mode| | x | d-BCD |
€ | | o] b-BIN |
IDRP | | x | 1-1nput|
IRRP | | x| |
demecmmccorammncacnaas .
| MELJSB Needed: x |
$ocmcemea+

| HANDI Called: |
decemcecmccccccaccacen +

R12 stack:

G
e
e

—
—
—
—
—
—

>
—

' ' ' ' ‘ . ' | 1 . ' | <
>

File: KR&VFO

Ruthor: RS

Description: Clears the VF.COD byte in the devfile line.

Input:
R36/37 pointer to devfile line

Output (include E-Reg, Z-Flag, C-Flag if pertinent):

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dmmmdmmmmp-a-ad $ommfocmdoccpeconnnn 4 deeececmeeea-

| 10123|4567| | lan |out| Legend | | Entry
doccdocmcbomant foemcfomcbommpmmmmmeae $ beeecemecece-
IRO | xx| | |Mode| | | d-8C0 | |

R0 || € | | |b-BIN | |
RO |x | | IDRP | | 20| 1-1nput| |

IR0| I 11 IARP | | 36] I
|R40| | | $osmmeemececmeneoe+ |
|RS0| | | | NELISB Needed: x | |
REO| | | #eesecooocememeeooooo‘|
|R70| | | | HANDI Called: I
domcbomcmpmeand dmmmcmcmcccccccceeeeeeT

Routine: DRTRP+

@
e

c
—
—

—
—
—
—
—
—
—

o
—
—

File: KREXIT

Ruthor: RS

Description: Calls DRTIREP and pops the return stack 1f 1t returns
uith EHO.

Input: See DRTREP

Qutput (1nclude E-Reg, Z-Flag, (-Flag 1f pertinent):
See DATREP

Routines (alled:
DARTREP

Stack depth R6 (nax) : 2 + DRTREP

Calls to Error routines (include error nunber and reason):

Notes: See DRTREP

Reg: x = volatile
b4

| 1012314567|
dommho--md----4

IRO | wx| |

|R10| | |
[R20| | |
R3O | |
|R40| | |
RS0 | | |
|R60 | | |
IR?701 | |
do-dmm---

Routine: DRTSND

Status:
$ommmdemo¢

| lin |out| Legend |
$omocdoccomb+
|Model | x | d-BCD |
IE | | ol b-BIN |
IORP | | x | 1-1nput|
IRRP | | x | |
doeommmmmceccceanae ¢+

| RELISB Needed: x |
dommmccccmcmcecee+

| HANDI Called: |
dommeeeees 4

Ri2 stack:
dececcmcccacnna

| Entry
’

|
|
|
|
|
|
|
|
decccccacacae E

e
—

—
—
—
—
—
—

p
—
—
—

File: KR&PIN

Ruthor: RS

Description: Sends a data byte on HPIL uith HP-75 1n listener node.

Input: R57 Data byte to send

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
Sane as SNDFRM except that

R56 Frane recieved

Routines Called:
SNDFRN, PILREP

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes: See SNDFRN

Reg: x = volatile Status: R12 stack:
e oo4 -mmemeemeee-

| 1012314567| | lin |out| Legend | | Entry
b=t dmmmmmmmmmdommmmmae 4 dmmmeceeaee-

RO [Mode| | x | d-BCD | |
IRo) || € | | ol b-BIN | |
ROl | | IORP | | x | 1-1mput| |
IR | | IRRF | | x | I
ROO] | | 4emsesseeoeooooeoeeoe-
|IRSO| | | | BELJSB Needed: x | |

IREO| | | 4eememeeeoseeoeoeeoes-
|R70] | | | HANDI Called: | |
Pdmmby $mmmmmmmmceccecaeee- ¢ dmmmmmemeeee-

Routine: DDLREP

G
—
—
—
—
c
—
—
—
—
—
—

g
—

File: KRSPIN

Ruthor: RS

Description: Issues a DDLX, where X 1s the value 1n RS?, onto WPIL.

Input:
RS7 Contains X for DDLX

Output (include E-Reg, Z-Flag, (-Flag if pertinent):
Sane as SNDFRA.

Routines Called:

CHOREP,

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
domcbmemdoo-cd dececfeccdoccfommnann b decemcmccana-
| 10123]4567] | Iin |out| Legend | | Entry
dommd-mmmd---= dommmdmeeeee ¥ b

[RO | | I |Mode| | x | d-BCO | |
[R10| | I I€E | 1o b-BIN | |
[R20| I I IORP | | x | 1-1nput| |
IRXO| | | [RRP | | x | I
|R40 | | | #ocmececccneccce+ |
|RSO | | obl | MELISB Needed: x | |

RO| | | 4emmmmseemeemeoeoeee ¢ |
|R70| | | | HANDI Called: I |
dommbommpomm domcmccecccen e maeeea ¢ dmeemcmmceea-

Routine: DDLRP+

G
.
—
—
—
—
—
—
—
—

—

File: KR&PIN

Ruthor: RS

Description: Calls DDLREP and does an extra return 1f EHO.

Input:
Sane as DDLREP.

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
Sane as DDLREP.

Routines Called:
DOLREP.

Stack depth R6 (nax): 2 ¢+ DDLREP.

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
LRRRJ docemfemcbeme¢ dececceceneoo ¢4

| 10123]14567| | l1n Jout| Legend | | Entry |
$omebomecdoneny $occcdoccfomctoncacnnn ¢ bommcceccaee- ¢+

[RO | | I Node| | x | d-BCO | | |
(R0} | | € | |o]| b-BIN | | I
IR2O| | | IORP | | x | 1-2nput| | |
IRX0| | | IARRP | | x | I | |
|R40| | | $occcecccccccaceccaaan + | |
IR0 | | ob] | NELISB Needed: x | | |
IREOI |] eeoemeeeeemceeeeeee- |
|R70| | | | HANDI Called: || |
4ot do~cmecccecmccacccana- 4 deccccececea- 4+

Routine: DDTREP

File: KR&PIN

Author: RS

Description: Issues a DDTX, where X 1s the value in RS7, onto WPIL.

Input:
RS7 Contains X for DDTX

Output (1nclude E-Reg, 2-Flag, (-Flag 1f pertinent):
Sarne as SNDFRN.

Routines (alled:

CNOREP.

Stack depth R6 (nax):

Calls to Error routines (include error nunter and reason):

Notes:

Reg: x = volatile Status: R12 stack:
domboag----4 oomceeae ¢ demmeeemeeee-

|]0123]4%67| | |1n Jout] Legend | | Entry
ot-9 dommmfmmcg¢ bmmemeemeea-l

|RO | | |Mode| | x | d-BCD | |
[R10] I | l€ | ol b-BIN | |
|R20 | | | [ORP | | x | 1-anput] |
|R3O| | | [RRP | | x | I
|R40 | | | deccceemete+ |
|RSO| | ob] | RELISB Needed: x | |
IREO| | | 4eeseeeeeecemceeceoaao v |
|R70] | | | HANC'T Called: |
bmdm--4 dommmesmeeee e cae 4 deeeeeeeeeee-

Routine: FILNIT

G
e
e

c
—
—
—
—
—
—
—
—

A
w
—

File: KR&HDR

Author: RS

Description: Initialization routine for the RMELRON. Intercepts
the V.FILE HANDI event and perforns nass storage functions.

Input:
RO HRND] event

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
HANDLD Set 1f FILNIT recognizad the event and uas able to

handle 1t.

Routines (Called:
EVIL. FLCAT, FLCOPY, FLPURG, FLRENR, FLSBON,
LOOKUP, RESCON.

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile
dommgy

| 1012314567]|
do--dcopaecd

|RO |1xxx|
|R10)
|R20 | xx

IR30|
|RAO|
|RSO|
|R60|
IR70|
4ot

Routine: FLCRF+

O
—
—
e

a
—
—
—
—

—
—

Status:
oo+

| lin lout| Legend |
omdmmme+

|Mode| b | | d-BCD |
l[E | | x| b-BIN |
IDRP | | x | 1-1nput|
[RRP | | x | |
doommceeccecmee+

| RELISB Needed: x |
eemmcmemee+

| HANDI Called: |
dommmemmmmeean ¢+

R12 stack:

G
e
—
—
—
—
—
—
—

Y
—

fFile: KR&F LO

Ruthor: RS

Description: Tries to find the 1nput file nane and

generates an error 1f 1t 1s not found.

Input:
R36/37 devfile line pointer
R4A0/47 nane of file to find

Output (1nclude E-Reg, I-Flag, C-Flag 1f pertinent):
E-Reg %0 if error occurred

Routines Called:
ERR1+, FLFIN¢

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):
Generates an error 62, file not found, 1f 1t cannot faind
the file.

Notes:

Reg: x = volatile Status: R12 stack:
4o dmmmmdecmdmmmoo4 deeemmceeeea- +

| 10123]4%67| | l1n Jout| Legend | | Entry |
domdmmamp---=d dommcdo¢ deeeeeceeenoe- +

RO | | | [hode|l b | | d-B(D | | |
IR0l | | IE 1 ol b-BIN | | |
|R20 | | | IDRP | | x | 1-anput] | |
[R30| | 11 IRRP | | x| I |
|R40| 1111|2121 $-cemmeomccecccaconnan + | |
IRSO| | | | MELISB Needed: x | | |
REO| | | #mmommemmooeeeoooeee v | |
|R70| | | | HANDI Called: I | |
4odmmmm-} ittt¢ deececcmecana- +

Routine: FLCRY

. . ' ' ' 1 . ' ' ' ' 1 <
>

File: KR&LR2

Ruthor: RS

Descraption: Catalogs 1 or all files on a mass storage mediun.
Uses [*], [V], [SHIFT)-("), [SHIFT]-[V] to step through the
directory.

Input:
R24/25 FNB Poanter

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
t # 0 if error occurs

Routines Called:
CRTBUF, DEQUE, FLCRF+, LOOKUP, SIGNIF, VF1T02,
VFBYE, VFDIR, VFEOD?, VFGLOC, VFHI+, VFNFP?, VFASG,
VFNXD-, VFNXE+, VFRDE, VFRVDE, VFRUSB, VFRUSK, VFUTL+.

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bomefemecpmntd $poemedmmcfompmme¢ dememmemeeee-+
| 10123]4567] | lin Jout| Legend | | Entry | Exat
Voo $oecedmempmmmpmeceeans ¢ feeecmememcaa 4+
|RO | xxxx| | |Mode] | x | d-BCD | | |

R0 | | l€ | | x| b-BIN | | |
|R20 | xxxx|11xx| [ORP | | x | 1-1nput] | |
IRO|xx | xx| [ARP | | x | I |
| RQO | xxxx | xxxx | ev | |
RS0 | | xx| | RELISB Needed: x | | |
IR60| I xxxx| $-cmeececceeceeee + | |
IR70| | | | HANDI Called: | |
ooty $omemcmceme¢ deccmccccca-- +

Routine: FLCOPY

File: KR&(OP

Ruthor: RS

Description: Dispatches to an appropriate copy routine.
Paraneters are found 1n the FNS.

Input:
R24/25 FNB Pointer

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
t #0 1f error occurs

Routines Called:
FLSTOR, FLLORD, FLTYTOT, FLFTOF.

Stack depth R6 (nmax):

Calls to Error routines (include error nunber and reason):

Notes: FLSTOR and FLLORD are not entry points, but
are docunented here anyuay.

Reg: x = volatile Status: R12 stack:
dommbmmccbeam dommcomcpemndmmmenanR
|]10123]4567| | fin Jout| Legend | | Entry
bdmmmgy $omcoboccfomfomemenns¢e
RO | x| | [Mode| | » | d-BCD | |
IR10| | | € | | x| b-BIN | |
|R20Ixx |11 | IORP | | x | 1-1nput| |

IR3OIx | | [ARP | | x | I |
JRAO | xxxx | sxeex | domecccccccccacenoan ¢ |
|RS0| | xxxx| | RELISB Needed: x | |
IREO| I x| $ommemcemetecccneeee ¢ |
IR70 | xxxx | xxxx| | HANDI Called: ||
bomcbocecdoooct ececccccecancccrcanas ¢ dececcmccenaan

Routine: FLSTOR

G
e

—
—
—
—
—
—
—
—

>
—
—

File: KR&COP

Author: RS

Description: Handles copying a file from menory to the nass storage
nediun., Paraneters are passed using the FNB.

Input:
R24/25 FNB pointer
RS4/57 nass storage device nane
DRP 64

Ouiput (include E-Reg, Z-Flag, C-Flag 1f pertinent):
E H0 1f error

<nediun> neu fi1le 1f no error

Routines Called:
VFHI+, FLGET1, FLFIN+, FLPUR-, FLNEW, VFRUSK, VFLAD< VFUREC,
VFRLF?, VFUR, VFRDCL, VFBSY, FLPUR', VFTERN.

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status:
$ombommmtoemy $ommpmmemeoeae +
| 10123]4567| | lin |out| Legend |
$occdoooconnd S+
IRO | xx| | |Mode|l b | x | d-BCD |
IR10] | | l€ | | o b-BIN |
|IR20Ix |11 | [IORP | | x | 1-1nput|
IRX| | xx| |ARP | | x |
|R40| | xxxx| $remmememccmeeemaeaen +
LE l1111]) | NELJSB Needed: x |
|R60 | I x| $oemmecemooe+
L] | | | HANDI Called: |
bbby #omcmcmmmmeeeecaeees +
Routine: FLLORD (Not an entry point)

R12 stack:

@
—

—
—
—
—
—
—
—
—
—
—
—
—
—
—

Ay
—

File: KR&LOP

Author: RS

Description: Loads a file fron nediun into RAN. Paraneters are
found 1n the FNB. Purges the file in RAN if the user hits
[RTTN] or an error occurs.

Input:
R24/25 FNB pointer
R64/67 nass storage device nane

Output (include E-Reg, 2-Flag, (-Flag if pertinent):
E %0 1f error
<nenory> contains neu file 1f no error.

Routines Called:

VFHI, FLGOFE, FLVFO?, VFRDE, VFROO?, ERR1, VFSKFL,
VFLIF?, VFRURD, FLSAN?, JSBCRT, ALLOC, FPURGE, VFTERM,

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):
Generates an error 68, invalid file type, if 1t cannot
recognize the LIF file type of the file on the nediun.
Generates an error 16, insufficient menory, 1f the file
to be copied will not fit i1n Kangaroo.

Notes:

Reg: x = volatile Status: R12 stack:
otp-mmp Yoodmmmdmemeen $ emmeemeceee- dommmeeeee
| 1012314567| | [in Jout| Legend | | Entry | Exat
doc-dmmmp--mny oomdmmemeee b doemeeeeme-- domcmmceeaeao +

RO | xx| | [Mode| b | x | d-BCO | | |
R0l | | [E | | ol b-BIN | | I
|IR20Ixx |11 | IDRP | | x | 1-1nput| | |
IR30 | xxxx| xx| IRRP | | x | | | |
| RAO | xxxx | xxxx | $ommmmeeemee ccceees ¢ | |
IRSO| l | | MELJSB Needed: x | | |
|R60 | l1111] $omcmmeeeccceceaeae + | I
|R70| | xxxx| | HANDI Called: | |
dmmmdmmempmmmy $ommmmeemmmeecceeead-R+

Routine: FLFIN+

File: KR&F LO

Author: RS

Description: Sets up a call to FLFIND. FLFIND takes R70
as 2 paraneter; FLFIN+ noves R40 to R70 and calls FLFIND.

Input:
R36/37 Devfile line pointer
R40/47 Nane of file to find

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
Z Set 1f file found
€ # 0 1f error occurs

Routines Called:
FLFIND

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
domcbomemgommnd $occmdecbomodomemaann 4 deeccccceee- ’
| 10123]4567] | lin Jout| Legend | | Entry |
bommbomechemany docecdocomfmmmnean 4 decmcccoccea- +
IRO | xx| | |Mode| b | | d-BCO | | |
IR10] | | € | Jol b-BIN | | |
|R20| I I [ORP | | x | 1-1nput| | |
IR30| | | IARP | | x | || |
IR40|1112]i111] $oo-cococmoooooiooanen + | |
RSO | xxxx | xxxx | | MELISB Needed: x | | |
|R60 | | | $oceeccccecccncnceoeo- + | |
|R70 | sxxx | xxxx | | HANDI Called: || |
bombmmenpennnd $mmemeecceccecccccace 4 e+
Routine: FLFIND

File: KR&F LO

Ruthor: RS

Description: Finds a directory entry on the nass storage nediun uhose
nane natches the 1st 8 characters of the input nane. Ignores
purged directory entries.

Input:
R70/77 Nare of file to find
R36/37 devfile line pointer

Output (1nclude E-Reg, Z-Flag, C(-Flag 1f pertinent):
z Set 1f file found
<devfile line> CDE field has directory entry 1f found
E % 0 1f error occurs

Routines Called:

VFDIR+, VFEOD, VFHFP?, VFNXE+.

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dom—bmmmmh----y d-cmcpmfemme¢ deemmmemmeee- domeme+

| 10123]4567| | in |out| Legend | | Entry | Exat |
4o 4odocmmeee+ dememmmeeemes docomcee+

RO | xx| | |hode| | x | d-BCO | | | |
|R10| l | € | ol bBIN | | | |
|R20| | | IORP | | x | 3-anput| | I |
IR0 | | 11 IRRP | | x | | | |
[RAO| | | emememeeemeeeeeoeoeees ¢ | l |
| RSO | xxxx | xxxx | | MELISB Needed: x | | | |
IREO| | | 4memeeemeeeeeieee ¢ | | |
IR?0 111112201 | HANDI Called: | | | |
$omepmemd === deccrmecccecce ccceen T Pdrcemmcee+

Routine: FLFTOF

File: KR&C02

Author: RS

Description: Copies a file fron HPIL nass storage device to another.
Paraneters are passed using the FNB.

Input:
R24/25 FNB pointer
R64/67 Device nane of the source mass storage device

Output (include E-Reg, Z-Flag, C-Flag if pertinent):

t # 0 1f error occurs

Routines Called:
VFHI+, FLSWCH, VFHI, FLGTFN, FLGOF+, FLVFO?, VFCDEP,
COPY, FLNEW, VFRUWSK, VFSKFL, VFRREC, VFLRD, VFDDLZ2, FLR36,

VFTAD, VFWACH, VFADCL, VFTERM, FLPUR!', VFBYE.

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
ommbomembmmeny dommeRP+
| 1012314567] | lin |out| Legend | | Entry |
docbomobomocd docccdocdrmboemoennn 4 doceecoeccen- +
IRO | x| | |Mode| b | x | d-BCD | | |
IR10| | | [€E | lol b-BIN | | |
IR20Ix |11 | IORP | | x | 1-1nput| | |
R3O	xxxx	xx		IRRP		=	I	
R40		xx	doeeemee+					
RSQ				MELISB Needed: x				
R60	111 4mmmmcmmeceecieooe +							
R70]			HANDI Called:					
domcbommbod T4 dememmeeeeno- ¢+

Routine: FLGOF+

File: AS&F LO

Ruthor: RS

Description: Gets the source name fron the FNB and falls
into FLFIN+

Input:
R24/25 FNB Pointer
R36/37 devfile line pointer

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
z Set 1ff file found
<devfile line> COE has directory entry of file, if found
t # 0 if error occurs

Routines Called:
FLFIN®

Stack depth R6 (nax):

Calls to Error routines (1nclude error nunber and reason):

Notes:

Reg: x = volatile
domdmemapoemmt
| 1012314567]
docbmmmdmm -t

[RO | | |
{R10| | |
{R20] liy |
[R30] | 11
IRA0 | xxxx | xxxx|

[R50 | | |
|R60| | |
IR70] | |
dmmcbmmmabt
Routine: FLGOFE

Status:
domcfomdomdecmmmens +
| lin |out| Legend |
oodmmmgea4

|Model b | x | d-BCD |
I€E | | ol b-BIN |
[ORP | | x | 1-1nput|
[RRP | | x | I
§omeccemccccccascconae +
| MELISB Needed: x |
L+
| HANDI Called: |
domcememeeeceemeen +

R12 stack:

@
e

—
—
S

—
—
—

>
—

‘] ' ' . ! ' ' ! . ' 1 *

File: KR&F LO

Ruthor: RS

Description: Gets the source nane fron the FNB, tries to
find 1t on the nediun and generates an error if 1t
1s not there.

Input:
R24/25 FNB Pointer
R36/37 devfile line pointer

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
<devfile line> CDE has directory entry of file, if found
E # 0 if error occurs

Routines Called:
ERR1+, FLGOF+

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):
Generates an error 62, file not found, 1f the file cannot
be found.

Notes:

Reg: x = volatile Status: R12 stack:
domepocmcbmeacd oo4 decccccmcennne+
|]0123|4567| | f1n |out| Legend | | Entry | Exat |
$occpmemmbmmant $ommhommfome¢ 4emmccoccceen$occeccmcmen +

jRO | | | {Mode| b | x | d-BCD | | | |
IR10] | | € | 1o b-BIN | | | |
|R20{ lir | IORP | | x | 1-1nput| | | |

IR30{ | 1l IARP | | x| || | |
L T B¢ | | |
IRSO| I | | MELISB Needed: x | | | |
RO| | | #mooeeememe-eeeeeee¢ | |
|R70| | | | HANDI Called: I | | |
o=ty 4ommmmceccaccceetdommmmccmee +

Routine: FLGETY

File: KR&F LO

Ruthor: RS

Description: Gets target paraneters fron the FNB.

Input:
R24/25 FNB Pointer

Output (1nclude E-Reg, Z-Flag, (-Flag 1f pertinent):
R40/47 Target filenane
R74/77 Target password

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
domepmmemby oo¢e

| 1012314567 | lin |out| Legend | | Entry
domedmmmmg-em docemfomcocnpronemen- 4 deemmmmemmeen

IRC | wx| | {Model | | d-BCD | |
[R10| | | € | | | b-BIN | |
|R20) jir | [DRP | | 40| 1-1nput| |

[R30] | | [RRP | | 24| I
|R40 | oooo | oooo| RLL L L L L LP+ |
IRSC| | | | NELISB Needed: x | |
IR6O | | | doccmmcmceccceee+ |
IR70 | loooo]| | HANDI Called: ||
Gomot dmmcmmeememeeeaee 4 oo

Routine: FLGIFN

@
e

—
—
—
—
—
—
—
—

File: KR&F LO

Author: RS

Description: Gets the target paraneters and determines 1f the file
already exists on the mediun,

Input:
R24/25 FNB Pointer
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
E-Reg % 0 1f the file exasts

Routines (alled:
FLGETY, FLFIN+, ERR1

Stack depth R6 (max):

Calls to Error routines (1nclude error nunber and reason):
Generates an error 64, duplicate filenane, 1f the file already
exists on the mediun.

Notes: Saves the R40s and the R74/7?7 on the stack.

Reg: x = volatile
$--mdmmmdm-=m

| 10123]4567|
oot--d

Routine: FLNEW

Status:
4mmmmdomm§mmbmmmeme +

| lin Jout| Legend |
dococbocbocdoncmeen +
[Mode] b | | d-BCD |

l[E | | ol b-BIN |
IORP | | 40| 1-1nput]
|RRP | | 6 | |
dmmmmmmmmmemccmaeaa - +
| NELISB Needed: x |
$eemmmemmm e mcceeaeman +

| HANDI Called: |
$omemmmememoo +

R12 stack:

eee- C
e

c
—
e
—
—
—

—
—
d
—

Generates an error 1f 1t does.

File: KR&F L1

Ruthor: RS

Description: Finds space for and creates a new directory entry
on the nediun. The new entry points to a space for the neu
file. Uses a kangaroo directory entry or the VF.20E area
of the devfile line, depending on the TTT flag.

Input:
R20 T1T flag, determines VF.20E or HP-75 directory entry
R30/31 HP-75 directory entry pointer (when needed)
R36/37 devfile line pointer (aluays needed)

Output (include E-Reqg, Z-Flag, C-Flag if pertinent):
R66/67 sector address of where the file will go
<nediun> new directory entry
€ %0 1f error occured (neu entry probably not

present on nediun.)
Routines Called:

ERR1+, FLGET1, JSBCRT, VFCDCO, VFCLCH, VFDIRe, VFOUDE, VFEOD?,
VFLIF?, VFNFP?, VFNXE+, VFPED?, VFRENR, VFR0O0?, VFRVDE,
VFSECT, VFTINE, VFTRNL, VFUTLe, VFURD1, WARN.

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Generates an error 95, mediun full, i1f the mediun 1s full.

Notes: Llocal subroutine references are onitted from the Routines
Called last.

Reg: x = volatile Status: R12 stack:
dommdmemcoaany $ommdmmmdmmemenae ¢ demmmmeeeeean 4mcmcmeeaaas +
| 10123]4567| | lin Jout| Legend | | Entry | Exat
e dommmdmmmhomee4 dmmmemmeeeeao dmmmmmemeeeas
IRO | xx| | [fode| b | x | d-BCD | | |

|R10| | | [E | ol b-BIN | | |
IR0 1x | I [ORP | | x | 1-1nput| | |
[RIO|11xx] 11 |RRP | | x | || |
IRAO| xx|xxxx]| $mmmeemmcecec e eecanasv |
|RS0 | | xxxx| | NELJSB Needed: x | | |

[R60|x x|xxo0| $ommmmmee¢ | |
|R70| | xxxx | | HANDI Called: || |
domobommmey $mmmmeeeeeeen ¢ dmmmmmmeeeaeo $rmmmmmeeees +
Routine: FLPUR-

File:

Author:

KR&PRG

RS

Description: Marks the directory entry in the VF.CDE (current
directory entry) area of the devfile line as being purged.
The directory entry 1s then reuritten to the nediun.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, (-Flag if pertinent):
t W0 if error occurs

Routines Called:
VFDECL

Stack depth R6 (max): 2 ¢+ VFDECL

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
doc—bommcdomeny ooty¢ demececeeeeeoe+

I 10123]4567] | lin Jout| Legend | | Entry I Exat |
boomdococdoo-ny oo4 deeeeeccecee- $omccccecacaa+

RO | xx| | IMode| | | d-BCD | | | |
IR0} || l€E | | |b-BIN | | I I
IR2O| | | [ORP | | | i-anput| | | I
IR30] | | RRP | | | I | I
LLI | xx| $oecccmcccccneccconna- + | | |
|RSO| | | | MELISB Needed: x | | | |
LT R B¢ | | l
[R70] | | | HANDI Called: I | |
dombmmecbaeamy oeee4 ¥mmemecemeeao docmmmemeceea +

Routine: FLPUR!

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

File: KR&(OP

Ruthor: RS

Description: Tries to find a purge the target filename fron the
rnass storage nediun during a copy. Hill attenpt to purge
the file even 1f [RTTN] has been pressed.

Input:
R24/2% FNB Pointer
R36/37 devfile line pointer

Output (i1nclude E-Reg, 2-Flag, (-Flag 1f pertinent):

Routines Called:
FLGETY, FLFIN+, FLPUR-

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
ooy -dmmmdmmi mmee ¢ ememmemeeeen

| 1012314567 | [in Jout| Legend | | Entry
d---b----4----4 dommmbmmce¢e

|RO | xx| | |hode| b | x | d-BCD | |

[R10| | | [€ | | x| b-BIN | |
|R20| | | [DRP | | x | 1-1nput| |
|R30| | | IRRP | | x | I
|R4O | | | #eccmmcmee+ |
[R50 | | x| | NELISB Needed: x | |
|R60 | | | $e-cccesccescociennn + |
|R70| | | | HANDI Called: ||
bpmemb—m-=y ommmmmeee¢ dememmmeeea-

Routine: FLPURG

e
—
—
—
—
—
—
—
—

g
—

File: KR&PRG

Ruthor: RS

Description: Finds and narks purged a directory entry on the
nass storage nediun. Paraneters are found 1n the FNB.

Input:
R24/25 FNB pointer

Output (include E-Reg, Z-Flag, C(-Flag 1f pertinent):
t # 0 1f error occurs

Routines Called:

VFHI+, FLCAF+, FLPUR-, VFBYE

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dommbmmmmpomm bommmfemmee¢ dmmmmmmmeeee- +

| 10123]4567| | [1n Jout| Legend | | Entry |
oop domm-4e+

RO | xx| | [Mode| b | x | d-8C0 | | |
[R10} | | IE 1 |ol b-BIN | | I
|R20| | | IDRP | | x | 1-1nput| | |

[R30| | I IRRP | | x| I |
| RQO | xxxx | xxxx | $--emecereacemcoo+ | |
IRSO| | | | MELISB Needed: x | | |
|R60| | exxx| $ocemeemme+ | |
|R70| | | | HANDI Called: || I
bommbomecdmmao} dmmmmme¢ dmmemmeee-.

Routine: FLR36

file: KR&LO02

futhor: RS

Description: Suitches R36/37 uith the value in the FNBSW 1n the
FNB.

Input:
R24/25 FNB Pointer
R36/37 Value to be put 1n FNBSH

Butput (include E-Req, Z-Flag, (-Flag 1f pertinent):
R36/37 Value fron FNBSH

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$---dmmmmd---d 4omemmeee ¢ e

{ 10123]4%67] | [in Jout| Legend | | Entry
d-mcdmcemd---4 ooeeee¢ deememeeeee-

|RO | xxxx| | |Mode | | | d-BCD | |

IR10] l I [€ | | | b-BIN | |
(R20| Jir | IORP | | 36| 1-1nput] |

IR30| | bb] [RRP | | O | I
|R40 | | | $ommmmececmee+ |
|RS0| | | | MELISB Needed: x | |
{k60 | | | domeetceeae + |
{R70| l I | HANDI Called: ||
dommemd domccmeeeet

Routine: FLRENR

G
e

—
—
—
—
—

e
w
—

File: KRSREN

Ruthor: RS

Description: Finds and renanes a directory entry on the nass
storage nediun. Paraneters are obtained fron the FNB.

Input:
R24/25 FNB Pointer

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
E %0 af error

Routines Called:
VFBYE, VFOECL, FLGOFE, FLGET1, FLGETFN, VFHI+, VFRENR

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bmembomechomad dommmfoempmcfooaoonn 4 demececccaan- +
| 0123|4567 | lin |out| Legend | | Entry |
$omcbommcbomacd oohomeeee 4+ demmmmmmeeee- +
JRO | xx| | |Mode| b | | d-BCD | | |

RO | | l€E | 1ol b-BIN | | |
|R20| jir | [IORP | | x | 1-1nput| | |

[R30| I | [ARP | | x | || |
IR40| | | $osscecccctrcecanoana- + | |
RS0)			HELJSB Needed: x		
R60		xxxx	$ommemmmceeceemacaee +		
IR70				HANDI Called:	
$omcbmmempoonnd #mmmececcccmocecenaen 4 deccecomcncao +
Routine: FLSAN?

File: KR&F L1

Author: RS

Description: Sets the Z flag based on FLSFLG.

Input:
R24/25 Pointer to FNB

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
I Set 1f FLSFLC 158 ©
R20 Value of FLSFLG

Routines (alled:

Stack depth R6 (nax): O

Calls to Error routines (1nclude error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
4oy dommcdeeommbomeeee ¢ dmceeememeo-.o+
| 10123]4%67] | lin Jout| Legend | | Entry | Exit
bh----d omedmmedmena 4 deeeemmeceo-o $occmmmemaas +
[RO | xx| | |Mode | | | d-8CD | | |
[R10] [l € 1 | | b-BIN | | |
[k20lo |1y | IDRP | | 20| 1-1nput| | |
IR3C| | | [RRP | | 24| || |
|R40 | | | 4occmcmmccceceecean + | |
k50| | | | MELISB Needed: x | | |
K60 | | | $omcmcmmcccnncccceceen + | |
|R70| | | | HRANDI Called: I |
4oby dommemmecee¢ decemmmeemeesR

Routine: FLSBON

File: KR&F LO

Ruthor: AS

Description: Puts Kangaroo into standby on and adjusts the stack
so that the calling routine uill return to FLSBON and HP-75
can be put 1into previous standby node.

Input:

Output (1include E-Reg, Z-Flag, C-Flag 1f pertinent):
R6 stack appropriately adjusted. On R6 1s a return address
to FLSBOF (an internal label in FLSBON) and the old standby
value.

Routines Called:

STAND-

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes: The calling routine should NOT do anything uith
the return stack.

Reg: x = volatile Status: R12 stack:
tecobroccpoct $oemmfomcgoccpommenee 4 bececcccacano +
| 10123]4567] | lin Jout| Legend | | Entry | Exat
$oeepomcpoanny docefoccdoccpommoean $ decemccceoee- +
|RO | | | |IMode] | b | d-BCD | | |
[R10} I | [€ | | | b-BIN | | |
|R20|x xx| | IDRP | | 22| 1-input] | |

R0			[ARRP		6	I
R40			#o--mmmmescmemoooooee +			
RS0				NELJSB Needed: x		
IROOI | | 4eemeeemeooeeniee. |
IR70 | xxxx | xxxx| | HANDI Called: | | |
ooy docmmmmemme¢ deemmmemeeeee +

Routine: FLSTACK

File: KR&F LO

Ruthor: RS, G

Description: Obtains a device name fron the R12 stack, in the
form ":DV". The device nane 1s converted to capitals and
returned 1n R64/67. Checks to determine that the nane
18 correct.

Input:
R12 stack Device nane

Output (include E-Reqg, Z-Flag, (-Flag if pertinent):
Re4/67 Capitalized nane
€ 0 1ff the nane 1s correct

Routines Called:

GETROM, GETFST

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
do-—do-mp----p 4otmdomcdmmmmmea ¢ emmmemmmeeeo +

| 101234567 | lin |out] Legend | | Entry |
b4 dommcdomcdomo4 deeemeeeeee- +

|RO | | | |fode] | b | d-BCD | | Device nane|

|R10| | | € | |ol b-BIN | | |
[R2O|x | xx| [DRP | | 64| 1-input| | |
IR0 x |xxxx| |ARP | | 34] | |

R40			$omomemcoemeee+			
RSO				HELJSB Needed: x		
R6O		oooo	#--mcmemccccmecceaaaee +			
R70				HANDI Called:		
-gy $emmmmmmmee¢ oo+
Routine: FLSHWCH

File: KR&(02

Ruthor: RS

Description:
Does a VFBYE and falls into FLR36.

Input:
R36/37 Devfile line pointer
R24/25 FNB pointer

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
R36/37 Devfile line pointer from FLR36

Routines Called:
FLR36

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

See FLR36

Reg: x = volatile Status:
$ombmmempomand Aopeme+
| 10123]4567| | lin lout| Legend |
$ocbomct----¢ dommcdemmoo+

|RO [xxxx| | [hode| | b | d-B(D |
|R10| | | € | | | b-BIN |
|R20] lir | IORP | 136 | 1-1nput]

IR30| | bb]| [RRP |] 0 | |
|R40| | | domemmemmccccmes+
|RSO| | | | HELISB Needed: x |
IR60| | | $ommmmemme+
{R70| | | | HANDI Called: |
doccbmmecb----4 docemccee+

Routine: FLTTOT

R12 stack:

G
e
—
—
—
—

—
—
—
—
—

.
w
—

File: KR&(02

Author: AS

Description:
to the sane nass storage device.

Input:
R24/25
R64/67

Output (include E-Reg, Z-Flag, C(-Flag 1f pertinent):
E-Reg

Routines Called:

0 1f error

Handles copying of a file fron a nass storage device

FNB Pointer (paraneters for copy are in FNB.)
Device nane of the nass storage device

VFHI+, FLGTFN, FLGOFE, FLVFO?, VF1T02, FLNEW, VFHOVE, FLPUR!,
VFTERN.

Stack depth R6 (nax):

Calls to Error routines (1nclude error nunber and reason):

Notes:

Reg: x = volatile
domcdommdooond

| 10123]4567|
domdoemhoaat

|IRO | xx| |

[R10] | |
[R20|x |11 |
|R30| | xx|

[RAO| | |
|RS0 | | xxxx |

|IR6O|] xx]1111]

IR70| | |
domcdomemhom-n

Routine: FLVFO?

Status:
oo+

| [1n |out| Legend |
#occfoccdoocbocccenn- +
|Node|l b | | d-B(D |
IE | | o] b-BIN |
IORP | | x | 1-1nput]

[RRP | | x|
4ecccracccecaccccccacs .
| NELJSB Needed: x |
dmmmmmeccccccamccaaaa. ¢

| HANDI Called: |
dommmmeee+

R12 stack:

G
e

—
—
—
—
—
—

g
—

File: KR&F LO

Ruthor: RS

Description: If the VF.CDE field of the extended devfile line
refers to a HP-75 readable, non LIF 1 file, then FLVFO? checks
that the user has supplied a correct passuord.
an error Af the passuord 1s incorrect.

Input:
R24/25
R36/37

FNB Pointer
devfile line pointer

Output (1nclude E-Reg, Z-Flag, C-Flag i1f pertinent):
E

Routines Called:

0 1f 1nvalid passuord

ERRY, VFROO?, VFLIF?, VFRVDE.

Stack depth R6 (nax):

Calls to Error routines (1include error nunber and reason):
Generates error 66, 1nvalid passuord, 1f the user has
supplied an 1nvalid passuord.

Notes:

Reg: x = volatile
S
| 10123]4%67|
dooopomcdmmed

IRO | xx| |
IR10] I |
|R20| j1r |

IR30| | 11l
|RQO| I |
|RSO| | x|

|R60| | |
|R70] | xxxx|
etpmmemd

Routine: INIT.

Status:
ooe‘

| in lout| Legend |
ooymmema +

[Model b | | d-BCD |
i€ | | ol b-BIN |
IDRP | | x | 1-1nput|
|[RRP | | x | |
dmmmemmmcmemccmeeeaas 4
| NELISB Needed: x |
ommmmcmcceccceceaeea +

| HANDI Called: |
dommmmmmm emeeeaa +

R12 stack:

G
—
—
—
—
—
—
—
—
—

—

Generates

File: KR&IN2

Ruthor: RS

DPescription: Deternines the size of and 1ni1tialize the nass storage
nediun. Puts Kangaroo into standby on. If the user-specified
s1ze for the nunber of directory entries 1s incorrect
invalid argunent error 1s generated. Uses DDT6 to obt
physical attributes and DDT7 to obtain the size of the

Input:
R12 Input paraneters generated by RSINIT

Butput (i1nclude E-Reg, Z-Flag, C-Flag 1f pertinent):
E # 0 1f error
<nediun> fornatted according to LIF 1 if no error.

Routines Called:
FLSBON, ONR12?, ONEB, FLSTRK, VFGET, VFHN? ERR1+, CLRC
UNTUNL, VFSTAT, INISIZ, INICHK, VFLRD< DDLREP, VFBSY,
VFRUSK, VFDUDE<« VFRWSK, VFCDEP, COPY, REVBYT, DDT67,
JSBCRT, VFTINE, VFCD46, VFRWWR, VFCLCH, VFBYE.

Stack depth R6 (max):

Calle to Error routines (include error nunber and reason):
Generates error 63, i1nvalid filespec, 1f comnunication
ulth the nass storage device is not established.

Notes:

INICHK, DDT67 are local subroutines

Reg: x = volatile Status: R12 stack:
P dececlemcdonfemmaeea 4 decmccmcceaa- +

| 1012314567| | lin Jout| Legend | | Entry |
dmmmdmmmmy--= $mmmedomcdmmcg¢ feeemccceeea- +

RO | xx| xx| Ihode| | b | d-BCD | | Paraneters |
{R10} | | IE | | o) b-BIN | | fron RSINIT|
IR20 | xx | | [IORP | | x | 1-2nput| | |

IR0 | »xxx|xx | [RRP | | x | | |
IR40 | | xxxx| $omrccemmccecarcane+ | |
|RSO | | x| | MELISB Needed: x | | |
|R60 | | | $---eemocoscosooooono + | |
IR70] | xx| | HANDI Called: I |
ommdmmmbeeand $memmeemcecccmeaaaaa 4 deceececeenes +
Routine: DDT6? (Not an entry point)

then an

ain
nediun.

00,

............ ’

Exat |
............ 4

|
|
|
|
|
|
|
|

............ ¢

File: KRSIN2

Ruthor: RS

Description: Mandles the DDT6 and 7 connands under the extended
Filbert protocal.

and sends out an SDA.paraneter,

Issues a DDTX, where X is an 1nput
If an ET0 18 recieved then

returns, otheruise sets up a call to VFURC2.

Input:
RS? Value for DDTX connand
R44/45 Hou many bytes to recieve for DDTX response
Ra6/47 Where to put those bytes.

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
€ # 0 if error occurs
<nenory> MNodified by any bytes recieved.

Routines Called:
DDTREP, RDYSD+, VFURC2.

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile
domcbmemmpmmand
| |0123|4567|

Routine: INISIZ

Status:
oopmmcceean+
| lin |out| Legend |
$ommmommehommmennn +
{Mode| b | | d-BCD |
IE | | of b-BIN |
IORP | | x | 1-1nput|
|9RP I x| |

l NELISB Needed: x |
..................... +

l HANDI Called: |

R12 stack:

¢
—
—
—
e

—
—
—
—
—
—
—
—

dp
—

File: KR&IN?

RAuthor: RS

Description: Deternines the size of a mass storage nediun.
Loads VF.NED with 1FF hex (511 decinal), the default size
of the mediun. Issues a DDT7 using DDT6?. Then reverses
the bytes of VF.NED so that Kangaroo can use then. This
reversal uill reverse either the default value (uhich uas
loaded 1n reverse) or the bytes recieved (which are recieved
in reverse.)

Input:
R36/37 Devfile line pointer

Output (1nclude E-Reqg, I-Flag, (-Flag 1f pertinent):
t #01f error
VF.HED Highest addressable sector on the nediun

Routines Called:
DD167, REVBYI

Stack depth R6 (nax):

Calls to Error routines (1include error nunber and reason):

Notes:
0DT67 1s not an entry point

Reg: x = volatile Status: R12 stack:
4-mmdeeccboamd omembmmfmmmpmme4 deemmmeeee- +

| 1012314567 | [3n Jout| Legend | | Entry | Exat
R 4obemo¢ bemeeeeeee- 4

{RO | xx| | |Node| b | | d-8C0 | | |

[R1C| | I € | ol b-BIN | | |
[F20 x| I [ORP | | » | 1-1nput]| | |
[R30 |11l IARP | | x | I |
|R40 | | oxxx | #meceeemeeeees v | |
LE x| | BELJSB Needed: x | | |
(REO| | | #eememeeooeeoeoeo- |
IR720l | | | HANDI Called: I l
DR ommmemeeee e 4 4eeeemeeeme- +

Routine: INICHKk (Not an entry point)

File: KR&IN2

Ruthor: RS

Description: Determines 1f the mediun is large enough for the nunber
of directory entries that the user specified. The formula used
18

Y iz [(X ¢+ 7)/8) + 2 ¢+ X
uhere (] are greatest integer, X 1s the user-input nunber of
directory entries, and Y 1s the nininun size that the nediun
nust be to support X directory entries.

Input:
R76/27 Value for X
R36/37 Devfile Line Pointer

Output (1nclude E-Reg, Z-Flag, (-Flag if pertinent):
R76/77 Value for Y
E % 0 1f 1llegal size

Routines Called:
ERR1+

Stack depth R6 (nax):

Calls to Error routines (1nclude error nunber and reason):
Generates an invalid argqunent, error 11, 1f the nediun
1s too snall to support X directory entries, or 1if
X 1s 0 or negative.

Notes:
RRP and DRP output are only valid for E % 0.

Reg: x = volatile Status: R12 stack:
doocbomecdonncd domredoccfomcfenecennn ¢ emmememmeeeeo $eccmmemceann +
| 10123]4567| | Jan Jout] Legend | | Entry | Exat
$oecdmmecdenncy $occmpomcpepommmeann 4 dmeemeemeaon-L—+
RO | xx| | |Model b | | d-BCD | | |
IR0l 4 | lE | |o| b-BIN | | |
|R20| | | IORP | | 30| 1-1mput| | |
JR30 | xxxx| | |RRP | | 76| | | |
IR40| | | $o-m--sescscsomsooone + | |
|RSO| | | | RELJSB Needed: x | | |

ROI | | #mmmmcmeememceeeeees ¢ | |
IR70] | bbj | HANDI Called: | |
deeebmemctooond $ommeemmce4 bemccceeceeno $omcemceane- +
Routine: JSBCRT

File: KR&FUT

Author: RS

Description: Issues a SYSJSB to CRTNDT.

Input:

Output (a1nclude E-Reg, Z-Flag, C-Flag if pertinent):
Ra4/47 Current tine 1n internal format

Routines Called:
SySJse, CRTmDT,

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dommdmmmmd----d dom—mdmmfommpmmmmmae ¢ dememmmeeeee-
| 10123]4567| | [in Jout| Legend | | Entry
$o--d-mmmp----4 ommmdmmmpommgmmmmmemn ¢ 4m-mmmmmee-e-

|RO | | | |Model b | | d-BCD | |

IRo] || l€ | | | b-BIN | |
|R20| | | IORP | | x | 1-1nput| |
|RYO| | | [RRP | | x | I
|R4O | |ooo0| $ocemecesmomance+ |
|RSO| | | | NELISB Needed: x | |

REO| | | eememmmeeseeeeeeeoe-
|R70) | | | HANDI Called: |
drmcdmmmnpmmen $emmmmemce¢ d-ememmcceen-

Routine: PACK,

G
—

=
—
—
—
—
—
—
—

—
—
—
>
—

File: KR&PRK

Ruthor: RS

Descraiption: Packs the nediun in the device specified. Generates
an error 1f the pack 1s interrupted or 1f the device 1s not
3 nass storage device. HP-75 1s put 1n standby on for duration
of the pack. R 4 pass fast pack algorithn 1s used.

Input:
R12 Paraneters specifying the device to pack

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
t % 0 1f error occurs
<nediun> packed.

Routines Called:
FLSBON, FLSTRK, VFHI, ERR1+, PAKO, PRK1, PRK2, PRK3,
VFBSY, ERR1, VFTERN.

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):
Generates an error 63, 1nvalid filespec, 1f VFHI fails
and the user did not hit [RTIN]. Generates an error
97, 1nvalid pack, if one of the pack passes fails.

Notes:

PRKO, PRK1, PRK2, PRK3 are local subroutines.

Reg: x = volatile Status: R12 stack:
dommbomemgomany docccdoccdomcboemeaeI Tettt+

| 10123]4567| | lin lout| Legend | | Entry |
docgomebmm-my oot4 dmemmemeeeeao +

RO | x| | [Mode] | b | d-BCO | | I
IR10} | | € | 1ol b-BIN | | l
IR20l | | IORP | | x | 1-anput| | I
IR0l | | IARP | | x| (. I
RG] | | emeemmeeeeeceeeeeeee¢ |
RS0l | | | MELISB Needed: x | | |
LB- |
IR70| | | | HANDI Called: I | |
Veembommemdmnend docemcmeccccccacaaesTe+
Routine: PAKO (Not an entry point)

File: KR&PRAK

Ruthor: RS

Descriaption: Packs the directory of the nass storage
nediun. Purged file entries are reroved and holes are
collapsed.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
t % 0 1f error occurs
<nediun> directory packed

Routines (Called:
VFDIR+, RSMEM-, VFCDEP, VFEOD?, VFRWO+, COPY, VFWOOP,
VFNFP?, COPY, VFNXDE.

Stack depth R6 (nmax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bommeymd domccfeccpornbocmmnann 4 bememeeeeaa- +

| 10123]4%67] | lin jout| Legend | | Entry |
drmmdemmeet domccpeomgompommmennn 4 dememeeeeeee- +
IRO | xx| | |Mode|l b | | d-BCD | | |
R10	I	lE	lo	b-BIN			
R20		x	[ORP		x	1-1nput]	
R30x	xxa1	IARRP		x	I		
RAO	xxxx	xxxx	decccccccccceceet+				

[R50 | | xx| | MELISB Needed: x | | |
IR6O | | xxx| docececmccccccenaaeen s | |
IR0 | | | | HANDI Called: I |
ooy docmemecme¢ bmmemmeeeeoa-)

Routine: PRK1 (Not an entry point)

File:

Ruthor: RS

Description:
Henory area.

KR&PAK

Generates a list of triples in the tenmporary (RESCON)
Each triple 1s 6 bytes long, and one triple 1s

generates for each directory entry (uhich 1s assumed to be packed.)
tach triple consists of uhere a file 1s, hou long 1t 1s, and
uhere 1t u1ll go.

Input:
R36/37 Devfile line pointer

Each triple elenent 1s 1n sectors.

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
t
R24/25

Routines Called:

VFDIR+, RESCON, VFEOD?, VFRVDE, VFNXE+.

0 2f error
Pointer to the triple list

Stack depth R6 (nax):

Calls to Error routines (i1nclude error number and reason):

Notes:

Reg: x = volatile
dommdmmmcboo-t

| 10123]4567|
doocbommhoaent
|IRO | xx| |

IR10| | |
|R20Ixx |oox |
IR0 | 11
IRAO| xx|xxxx|

IRSO| | |
|IR6O| xx | xxxx|

IR70] | |
doccbomccdeennd

Routine: PRK2

Status:
4oy+

| lin |out| Legend |
doccmdemcdoncdonnncann +
|Mode|l b | | d-BCD |
l[E | | ol b-BIN |
IDRP | | x | 1-1nput]

[RRP | | x| |
#oceccccmecmeccccacnns +
| NELISB Needed: x |
S+
| HANDI Called: |
demmmmccmcccce+
(Not an entry point)

R12 stack:

G
e
—
—
—
—
—
—
—

Yy
—

>

File:

Author:

KR&PAK

RS

Description:
Upda tes directory entries on the nass storage nediun to
reflect the new locations of the files. Uses the triple
list

Input:

to obtain the neuw values.

R24/25 Triple list pointer
R36/

Output (1
t

Routines

VFDI

37 Devfile line pointer

nclude E-Reg, I-Flag, C-Flag if pertinent):
% 0 1f error occurs on HPIL

Called:
R+, VFRUSB, VFLAD+, PRK2A, DDLRP+, DATRP+.

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Notes:
PRK2R 1s not an entry point

Reg: x = volatile Status: R12 stack:
$-mmdmmmmpo--=t 4odomcmmean T Detttdemmememeeeae +

| 1012314567| | lin Jout| Legend | | Entry | Exat
bombmmmm-= domemdmmdommdmmmemeae 4 dmmmeeeeceae- $emmmmmemeea ¢4

IRO | l | |Mode| b | | d-BCD | | |
[R101 | | I€E | 1o b-BIN | | |
{R20| J1axx| IORP | | x | 1-1nput| | |

{R30] | 11 IRRP | | x | I I
{RA0 | | xxx| 4er-eceemccacneccccan- ¢+ | |
|R50| | x| | HELJSB Meeded: x | | |
IR6O| xx | xxxx| $omecmemmeeee+ | |
IR70) | | | HANDI Called: 1 | |
e $omemmmmeboodoemmcmmens *
Routine: PRAK2R (Not an entry point)

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

File: KR&PRK

Ruthor: RS

Descraiption: Puts auay a buffer 0 uhich has been updated
uith neu file locations. Rlso reads in the next sector

fron the mediun.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
t # 0 if error occurs

Routines Called:
VFRUUVO, VFRREC

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
docbocemg--—-4 oo¢ demeemmmeceo- +

| 1012314567 | in Jout| Legend | | Entry |
domcbocccho--oy oodmmcdemeeeen 4 4o4+

|RO | | | [Mode| b | | d-BCD | | |
IR10] | | IE | 1ol b-BIN | | |
IR0} | | [ORP | | x | i-input] | l
IR0| | i1l IRRP I x| I |
|R40| | xxx| 4--emceemeccccecoean-. + | |
|RS0| | | l NELISB Needed: x | | |
IREOI | | #eemmooeeeseeeeeeeeoe- ¢ | |
IR720f | | | HANDI Called: I |
do=cdmmmcdomc=d Jmecmcmcomccccccccoca- I Tet+

Routine: PRK3J

File: KR&PRK

Author: RS

Description: Steps through the triple list, noving each file
to 1ts neu location appropriately.

Input:
R24/25 Triple list pointer
R36/37 Devfile line pointer

Qutput (include E-Reg, Z-Flag, (-Flag 1f pertinent):
E-Reg # 0 1f error occurs

Rocutines Called:

VFBSY+, VFNMOVE

Stack depth R6 (max):

Calls to Error routines (i1nclude error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
d--=deemg--- docecbommdmedmmecnan ¢ demememeeeaa. +

| 10123]45%67| | lin |out| Legend | | Entry |
dmmmdmmmmd—m-my dommmoo4e4

[RO | | | hode| b | | d-BCD | | |
[R1C| | | 1€ | | ol b-BIN | | |
|R20| [11xx| [ORP | | x | 3-1nput] | |
IR3C| l I [ARP | | x| I |
|R40| | | $ommemeececmeeeeee + | |
[R50 | | | | MELISB Needed: x | | |
IRBO| x| xxxx| domecmcececceaaceeaaas| |
|IR70] | | | HANDI (alled: || |
ogm-- - dommmme¢ demememeeea-. ‘4

fFoutine: REVBYT

............

File: KR&FUT

Ruthor: RS

Description: Exchanges 2 consecutive bytes in nenory.
The address of the lower byte 1s in R20/21.
This routine 1s needed since nany values obtained
fron LIF nedia have bytes arranged in reverse order
as far as the Capricorn CPU 1s concerned.

Input:
R20/21 Pointer to bytes to exchange

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
<nenory> 2 bytes exchanged with each other.

Routines Called:

Stack depth R6 (rax): 0

€alls to Error routines (1nclude error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bbby e4 dmmmmeeeeeao-

| 10123]4567] | fin Jout| Legend | | Entry
$cbmmemmend dmmdmmeo mmmmmmmeae b b
|IRO | xx| | |Mode] | | d-BCD | |
IR10| | | € | | | b-BIN | |
IR2011 | | IORP | | 20] 1-1mput]| |

RY0				ARP		20		
R40			dommcemecmeceeee+					
RSO)			MELISB Needed: x					

|R60 | | | $--mmmmmmeceomomoees + |
|R70] | | | HRANDI Called: |
dommbmmedmmand dmmmmmmemmoo¢ dmemeeceeeeeo

Routine: REVPSH

@
—
—
—
—
—
—
—
—
—
—
—

Y
—

File: KR&FUT

Ruthor: RS

Description: Pushes R44/47 1n reverse order onto a stack pointed
to by R32/33 (R47, R46, R4S, R44 1n that order.) This needs
to be done since many LIF values are 1n reverse order as far
as the Capricorn CPU 1s concerned.

Input:
R44/47 Values to push
R32/33 Uhere to push then

Output (include E-Reg, Z-Flag, (-Flag if pertinent):
R32/33 Points just after data pushed

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dommpmmmmdmammy $o-m=d-mopme—pmmmmmean ¢ dememceccee

| 10123]4567| | lin |out| Legend | | Entry
$ommdmmmmt--—4 oo¢ dmmmemmemeao

IRO | | [hode| | | d-8CD | |
|R10] | I € | | | b-BIN | |
|R20| | | IDRP | | 44| 1-1nput] |
IRbb| I [ARP | | 32| | |
|R40 | l1111] $mcccommcmernccennaen- + |
[RSO | | | | MELISB Needed: x | |
IR6O| | | #emmemmeemseeeoooee v |
[R70| | | | HANDI Called: |
$ommbmmenyoaand $mmmmmeccemecmccenaa ¢ femmmeeecea-

Routine: RDYSD+

S
—
—
—
—
—
—
—

—
—
d
—

File: KREXIT

Ruthor: RS

Description: (Calls ROYSND and pops return stack if 1t returns
with £ 8 0.

Input:
See RDYSND

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
See RDYSND

Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Notes:
See ROYSND for register usage. RDYSD+ 1s a so-called
plus routine. Do not call fron outside MELRON.

Reg: x = volatile Status: R12 stack:
dommdemegy omcmdomcpomcpmmneccnn ¥ oo+
| 10123]4567| | lin |out| Legend | | Entry |
bommdmmmmgmmemd $o-mmpomcdonpmmceeae ¢ oo4

IRO | | | {hode| | | d-BCO | | I
[R10| I [€ | | | b-8IN | | |
|R20| | | [ORP | | | i-1nput| | |
IR30| | | [RRP | | | I I
R4O			$-ccmceecmccncocoaooo- +			
RSO				MELISB Needed: x		
R60			$---scescecccccoocono +			
R?0]			HANDI Called:			
dommdomempmmed dmmemecmccecccccaeeee- ¢ dememcececea- 4
Routine: TENRIT

File: KR&FUT

Ruthor: RS

Description: Divides a 3 byte nunber by 1024, uith rounding.

Input:
R45/47 Nunber to divide

Output (1nclude E-Reg, Z-Flag, (-Flag 1f pertinent):
R45/47 Original nunber divided by 1024.

Routines Called:

Stack depth R6 (max): O

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
do-mdoedeo-- o4tcmboccmeas ¢ dececccecoee- ¢

| 10123]4567| I lin Jout| Legend | | Entry |
dombmmmmd---= 4ooodmmmmmee 4 bemeemeeeeee- +

IRO | wx| | IModel | | d-BCD | | |
IR0 || € 1 | | b-BIN | | I
IR0l | | IORP | | 2 | 1-2nput] | |
[R30l | | IRRP | | | | l
|R40| | bbb| $ecccecemecnccncccana- + | |
IRSO| | | | NELISB Needed: x | | |
[REO| | | #emmemeeecemceeceeeee-- |
|R70] I | | HANDI Called: | |
d-mmbmmmmdmead decccmccece¢ dmemmmecceaa- ‘4

Routine: UNTUNL

File: KR&PIN

Ruthor: RS

Description: Untalks, unlistens the loop.

Input:

Output (include E-Regq, Z-Flag, C-Flag 1f pertinent):
t %0 1f error

See SNDFRN also

Routines (alled:
UNTREP, UNLREP

Stack depth R6 (max):

Calls to Error routines (1nclude error nunber and reason):

Notes: All this routine does 1s call UNTREP and UNLREP

Reg: x = volatile Status: R12 stack:
bommpmmempm=m $ommmprmmdemcmmemaaae ¢ deemccccccnc--

| 1012314567] | lin Jout| Legend | | Entry
eb— dmmmmfemmdemoa4 bmmmmmemmeee-

IRO | | | |Mode| b | | d-BCD | |
L37 i€ | 1ol b-BIN | |
IR20| | | IORP | | x | 1-1nput| |
IR301 || [RRP | | x| I
|RAO| | | $--ecveecmcmeoeeeaeas + |
IRS0| | | | MELISB Needed: x | |
IR6O| | | 4mmceeesesceeeeoooev
IR70]| | I | HANDI Called: | |
doebmmembm=d RT4 bemcccceneee-

Routine: VF1102

G
e
—
—
—
—
—
—
—
—

p
—
—

fFile: KR3VF4

Ruthor: RS

Description: Noves the bytes in VF.CDE to VF.2DE 1n a devfile line.

Input:
R36/37 Pointer to the devfile

Output (i1nclude E-Reg, Z-Flag, C-Flag 1f pertinent):

Routines Called:

VFCDCO

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
-t d-mcceccmecdmmeemaas 4 Qeeccceccene-

| 1012314567| | lan |out| Legend | | Entry
domdmmemdeocd domeclocmfoocdonocncnn 4 deccccceccacas
IRO | | | |ode| b | | d-8CD | |

[R10| | I e | | | b-BIN | |
IR20| | | IORP | | x | 1-1nput| |
IR30|xx |xx11] IARRP | | x | |
|R40 | | | docmccccceccccncacaee+ |
IR50| | | | NELISB Needed: x | |
IR60 | | | $omeeccccccce+ |
IR70| | | | HANDI Called: ||
$ommbmcemdoennd emecceccccccccennaea¢ dececmcccnnea @

e
—
—
—
—
—
—
—
p
—

File: KR&VFU

Author: RS

Description: Does a VFADDR and drops into VFCLCH. Gets the
current address of the nediun and conditionally sends a
close record to the mass storage device.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
€ % 0 1f HPIL error

Routines Called:
VFADOR, VFCLCH

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
domedmemndemany $omemdmmepmmce$ dmmeeeeeeaaas +
| 10123]4567| | lin lout| Legend | | Entry |
$oecbmmmmdomany dmmmedmeoo$ dmmemmmmeeano +
IRO | | | |Model b | | d-BCD | | |
IR0} | | IE | | ol b-BIN | | I
|R20| | | [ORP | | x | 1-1nput| | |
IR30| I 1 [ARP | | x | I |
R&O| | | #memesceeseccceeeoooo v | |
IRS0| | | | NELISB Needed: x | | |
REO| | | emsemoeeeeoceeeeaeoe ‘| |
IR70| | | | HANDI Called: | | |
dmmmdmmmmpmma $mmmmcccccccceceeaea ¢ demcmcmceeee- +

Routine: VFADDR

File: KREVFO

fiuthor: RS

Description: Cets the current position of the nediun fron the mass
storage device, updating the VF.LOC field.

Input:
R36/37 Devfile line pointer

Dutput (include E-Req, I-Flag, (-Flag 1f pertinent):
t # 0 1f error occurs
<VF.L0C> Updated position

Routines (alled:
DOTPEP, VFTARQ+, RDYSD+, DARTSND

Stack depth R6 (nax):

falls to Error routines (include error nunber and reason):

Notes:

Reg: » = volatile Status: R12 stack:
dommp-mmcd-=- domccpmmmpmemde4 dememeemmeee-

| 1012314567 | lin lout| Legend | | Entry
domm-gm-- boecodmmgmmgmmmmm ¢ dmmmmmmemeee-

IRG | | | |Node| b | | d-BCD | |

IR10| | I l€E | | ol b-BIN | |
|R20 | x» | | IORP | | 56| 1-1nput| |

R3] | 11l [RRP | | x | I |
|RAC | | | #ommemeecccecmeceee + |
JRSC| | xx| | NELISB Needed: x | |
|R6O | | | dmmmmemccmmemeeeo + |
IR70| | | | HANDI Called: ||
b-mhmemmpmm-s ommmme4 e

foutine: RSEVFB

@
e
c
—
—
—

—
—
—
—
—

A
—

File: KR&VFB

Ruthor: RS

Descraption: Obtains the status fron the nass storage device
and possibly generates an error.

Input:
R36/37 Devfile line pointer

Output (1include E-Reg, Z-Flag, (-Flag 1f pertinent):
RS? Status byte, invalid 2f EH O
t # 0 1f error

Routines (alled:
VFSTAT, VFERR

Stack depth R6 (max):

Calls to Error routines (i1nclude error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
Vomcfmemmhmmay $ommmdemmemepecmmmeae 4 deemmemceaaa- +

| 1012314567| | lin |out]| Legend | | Entry |
A=mmd-mmmb-mu dmemmdoecdommoemeD et+

IRO | | | [Mode|l b | | o-BCD | | |
IR0l 1| IE | |olb-BIN | | |
|R20| | | {ORP | | x | 1-1nput| | |
R3O | | IRRP | | x | I I
R8O| | | #eeeemosemeeceeeooooe v | |
|IRSO| | | | NELISB Needed: x | | |

IREO| | | #eesmcoeemseeeeooees ¢ | |
IR701 | | | HANDI Called: I |
b=t dmmmmmmecmeaas 4 demeecemeneea +

Routine: VFBSY+

File: KR&XIT

Author: RS

Description: Sets up a call to VFBSY and does an extra pop
fron the R6 stack 1f VFBSY returns with E # 0.

Input:

Output (anclude E-Reg, 2-Flag, C-Flag if pertinent):

Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

See VFBSY for 1nput and output paraneters and register
usage. VFBSY+ 1s a plus routine.
nE LRON.

Reg: x = volatile
b=t

| 10123]4567]|
d---d--emd----d

[RO | | |
R10		
R20		
R30		
R40		
R50		
R60		
IR0 | | |
docmdmmmng—-—4

Routine: VFBYE

Status:
domccfoccdocodococncns +
| l1in Jout] Legend |
fococdocobombonccnace +
|Nodel | | d-BCD |
i€ | | | b-BIN |
IORP | | | 1-1nput|
IRRP |1 | |
$occceccccccncmann +
| NELISB Needed: x |
ILRRLRTP+

| HANDT Called: |
$emmemmeceean ¢+

R12 stack:

cecemcccmen- ¢
s
e

—
—
e
—
—
>
=

Do not call from outside

File: KR3VF1

Ruthor: RS

Description: Calls UNTUNL after setting the NORTIN flag.

Input:

Output (1nclude E-Reg, 2-Flag, C-Flag if pertinent):
t % 0 1f WPIL error occurs

Routines Called:
UNTUNL

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
docmfmmmmbo=-d do-cdoccdomcpmccanan 4 dememceeeee--

I 10123]4567| | lin lout| Legend | | Entry
dommpmmemd—mmd $omecboccpomcpmeeeman ¢ b

IRO | x| | |Mode| b | | d-BCD | |

|R10] | | l[E | |ol b-BIN | |
IR20| | I IORP | | 2 | i-1nput| |
IRX0| | | IARP | | x | I

>|urinas“ent
LE | | | MELISB Needed: x | |
RO | | #eeceoemooeoeeoes ¢ |
IR70] | | | HANDI Called: I
deccbocectaa-d docemmcccccccccceL Ds

Routine: VFCD46

—
e
—
—

>
—
—

@
—
—
—

File: KR&VFU

Ruthor: RS

Description: Sets up R44/47 are set uith the values described
belown.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
R44 /45 32 decinal
RA6/47 points to the VF.CDE field 1n the devfile Jine

Routines (alled:

VFCDEP

Stack depth R6 (wax):

Calls to Error routines (1nclude error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
docmfmmeag-mmy 4omfemmmmaa 4 demememeeeea- +

] 10123]14567| | l1n jout] Legend | | Entry |
4mmdmmmd---=d domecbmmehe¥ e4

[RO | | | Model b | | d-BCD | | |
K19 | | i€ | | | o-BIN | | |
|P20| | | IORP | | x | 1-1nput| | |
IR3C| | 11l [RRP | | x | I |
|RAO | |oooo| $ocmmcccccce+ | |
IRSO| | | | MELISB Needed: x | | |
REO| | | #emmeessemceceeceanao v | |
|R70| | | | HANDI Called: I |
4oy domecemceemea ¢ demcecemecceaa ‘

Routine: VFC[CO

File: KR&VFU

Author: RS

Description: DRP 1s set the VF.CDE in the devfile line. R32/33
1s set to 32 decinal, and COPY 1s called.

Input:
R36/37 Devfile line pointer
DRP set to register by caller

Output (1nclude E-Reg, Z-Flag, C-Flag 1f pertinent):

Routines (Called:
copy

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$--mbommmd---y 4omcecee e ¢ b

| 1012314%67| | lan Jout| Legend | | Entry Exit
4---d----b----4 bomemdomgeit

IRO | | | |Node | | d-8CD |

4

|
4

R10			l€E			bBIN		
R20			[ORP	2	x	1-1nput		
IR30	xx	11 IRRP		x				

|R40| | | #ommmememmemeeeees + | |

IRSQ| | | | NELISE Needed: x | | |
|R6O| | | domemmmecemeeeoen' |
|R70| | | | HANDI Called: | |
bdaeay et4 bmememememeao +

Routine: VFCDEP

File: KR&FUT

Ruthor: RS

Description: DRP 1s set to VF.(DE field 1n the devfile
line.

Input:
DRP Set by calling routine
R36/37 devfile pointer

Output (include E-Regq, I-Flag, C-Flag 1f pertinent):
DRP = R36/37 + VF.CDE

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
b=d-9 doommdmmmpemme4 d-memmmeceee-

| 10123]|4567] | lin Jout| Legend | | Entry
4o mbommy ommme4 decimmmeeeaeo

|RO | | | |Mode| b | | d-8CD | |

|R10| | | |E | | | b-BIN | |

IR20] | | |DRP | 1 | | 1-1nput| |
|R30| Y IARRP | | 36| I
|R40 | | | dommmmeemeet+
RSO			NELISB Needed: x		
R60			dommmmemmeieeieee s +		
R?20				HANDI Called:	
dommdmmmby ommmeemmeas¢e

Routine: VFLCCH

B
e
—

—
—
—
—
—

dp
—
—

File: KR&VFU

Ruthor: RS

Description: Closes a sector 1f the byte pointer of VF.LOC is
nonzero.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
E-Reg # 0 1f HPIL error occurs

Routines Called:
VFURCL, VFLAD+

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
docbecdmaamd 4=t¢ dmmmmeeceeee- ¢+

| 10123]4567] | fin |out]| Legend | | Entry |
bomcbocmp---d 4opmmecman¢ demmmeemeee-a 4

IRO | xx| | |Mode|l b | | d-BCD | | |
[R1O] | | IE | ol bBIN | | |
|R20| | | IDRP | | x | 1-1nput| | |
IR0| Y IRRP | | x | || |
[REO| |] #eeoseoemeeeeeoes‘o |
|RSO| | xxx| | MELISB Needed: x | | |

RO | | 4eemeeeseecemoceeonns¢ |
|R70| | | | HANDI Called: I |
4=t docccmcecccccccecaaas 4 demmceeeeee- +

Routine: VFDDL2

File: KR&VFU

‘Ruthor: RS

Description: Puts filbert into urite node by 1ssuing a DDLZ.

Input:
R36/37 Devfile line pointer

Output (include E-Reg. 2-Flag, C-Flag 1f pertinent):
E-Reg % 0 1f HPIL error occurs

Routines (alled:

DODLFEP

Stack depth R6 (nax):

Calls to Error routines (1nclude error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
d-mmdmmmedet domccbecmgoccfommmnann ¢ decemmmmeee- +

| |012314567| | lin jout] Legend | | Entry |
dmmdommym-md Yoodeme4 mmemmmeeeee-)

(RO | | | |hode| b | | d-BCD | | |
[R1C| I | lE | | o]l b-BIN | | I
|R20 | | {ORP | | x | 1-anput| | |

30	1l [RRP		x	I	
R30]		do-mmmmmeecimeeeeeo+			
F50			NELJSB Needed: x		
[Ro0			$-ee-cemcmcocmcconaeno ¢		
F20				HANDI Called:	

4 4+Ao

Routine: VFDRECL

File: KR&VF1

Ruthor: RS

Description: Reurites the directory entry fronm VF.(DE and closes
the record.

Input:
R36/37 Devfile line pointer

Output (1nclude E-Reg, Z-Flag, (-Flag 1f pertinent):
t-Reg # O if error occurs

Routines Called:

Stack depth R6 (nmax):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
doeccbmmeclmaany ot¢ bememmcemmeeao

| 1012314567| | fin lout| Legend | | Entry
domcbmmmmd--- ootmmmmemn ¢ b

|RO | | | |Mode|l b | | d-BCD | |

R0} || l€ | |ol b-BIN | |
|R20| | | IORP | | x | 1-anput| |
IR30| (Y IARP | | x| I
IRA0| | | $ocmcemmcmeecmceceen + |
|RSO | | | | NELISB Needed: x | |

IREO| | | eeeoeoeemeeoeeen¢
IR701| | | | HANDI Called: | |
$omcdmmeidamay $ommmememmcecmoo¢ demeemceceeea-

Routine: VFDIR

G
e
s
o

—
—
—
—
—

—

File: KR&VF1

Author: RS

Description: Seeks the nass storage nmediun to the first
directory entry.

Input:
R36/37 Devfile line pointer

Output (include E-Req, Z-Flag, C-Flag 1f pertinent):
t % 0 1f HPIL error occurs

Routines (alled:

VFRUSK, VFNXD-

Stack depth R6 (max):

Calls to Error routines (1nclude error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
domdm-y dmmmdmmmdommdmmemmees 4 bmmmmmemeee--

| 1012314567 | lin |out] Legend | | Entry
4o dommcdemeee¢ e

[RO | xx| | |Mode|l b | | d-BCD | |

|R10| I I lE | 1ol b-BIN | |
[R20 | | | [ORF | | x | 1-1nput| |
IF30] | 11 IRRP | | x | I
|R40 | | xxx| #ommmeeeecececeees + |
[R50 | | | | NELJSB Needed: x | |
R6OI | | 4meeemeomeeeeeoeoeeeol
IR0 I l | HANDI Called: ||
domodmmmmdmmm dmmm e mmemmeeeeaen ¢ b

Routine: VFUIR

E
.
—
c
—
—
—
—
—
—

.
—
—
—

File: KR&XIT

Ruthor: RS

Description: Calls VFDIR and pops R6 stack on E ¥ O

Input:

Output (1nclude E-Reg, Z-Flag, C-Flag if pertinent):

Routines Called:

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:
See VFDIR for input and output paraneters and register
usage. VFDIR+ 1s a plus routine. Do not call fron outside
RELRONM.

Reg: x = volatile Status: R12 stack:
bmmmdemm} efomoo¢e$mmmmmmemee +

| 10123]4%567| | lin |out] Legend | | Entry | Exat |
dommdmmmmdomany dommmmo4 Ammmmmeemeee-Re+

1RO | | IMode| | | d-BCD | | | |
ROl |1 JE | | [b-BIN | | | |
|R20| | | [ORP | | | 1-1nput] | | |

IR30| I [[ARP || | I l l
|R4O| | | $omemommcemmoooon+ | |
|R50| | | | MELISB Needed: x | | | |

|REO| I | dommmmemmeeimoo+ I I
[R70| | | | HANDI Called: || | |
dommdmmeyamd ommmmmmmmemeeemeeeo ¢ dmemmeeme—ao mmmmmmmeee+

Routine: VFDUDE

NOt MAnufacturer Supported
reciplent agrees NOT to contact manufacturer

File: KR&VF 2

Ruthor: RS

Description: Hrites dunmy directory entries to the nediun according
to the 1nput paraneters.

Input:

R20 Durny byte
R21 Repeat count.

the nediur, each filled uith the dunny byte.
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
E-Reg # 0 1f error occurs

Routines (alled:
VFCDEP, VFURD-, VFCLCH

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile
domcdmmmmey
| 1012314567
dommdom 4ot

[RO | | |
[F10] l |
[k2G 11 | xx|

[K30] [11}
[RAO | xxxx | wxxx |

LE | |
|R6O | | |
|R70| | |
domcbmmby

Routine: VFEQOD?

Status:
dommcdmmgmeman +

| l1n fout| Legend |
$ommpemdmme+

Model b | | ¢-BCD |
€ | | ol b-BIN |
IDRP | | x | 1-1nput]|
[RRP | | x | I
domececmeecmeeaas +

| RELISB Needed: x |
dome+

| HANDI Called: |
dmmmme‘.

R12 stack:
R

| Entry
’

-
e

—
—
—
—
—

—

Hrite this nany directory entries to

File: KR&VF1

Ruthor: AS

Description: Deterrines whether the neidun 1s at the end of
the directory

Input:
R36/37 Devfile line pointer

Output (1nclude E-Reg, Z-Flag, C-Flag 1f pertinent):
z Set 1f end of edirectory

Routines (Called:

VFPED?, VFLED?

Stack depth R6 (nax):

Calls to Error routines (1nclude error nurber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
ombmmmmdmmmmd dommge¥ dmmmmmeemeeeo +

| 10123]4567] | lin lout| Legend | | Entry |
o=t eoee4 dmememeeeeee- 4

IRO | xx| | |Mode| b | | d-BCD | | |
IR0l | | € | 1ol b-BIN | | l
IR2O| | | IDRP | | 46 1-1nput]| | |
IR3ol | | [RRP | | x| b I
|R40O| | xx| dmmmmeme+ | |
|RSO| | xx| | RELISB Needed: x | | |

IR60| | | $ommmmesemomemee==+ | |
[R70] | | | HRANDI Called: I |
drmmdmmemd-t Fommmee¥ e+

Routine: VFERR

File: KR&VFB

Ruthor: RS

Description: Tests the status input and generates a possible
error nessage. Rssumes that the status byte has been generated
under the filbert protocal.

Input:
RS7 Status to test
R36/37 Devfile line pointer

Output (1nclude E-Reg, I-Flag, (-Flag 1f pertinent):
£ ¥ 0 if error uas generated

Routines Called:
ERRORR

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):
benerates 93, nass nenory, 94, no nediun, or

96, i1nvalid nediun errors.

Notes:
Does not generate an error for a neu nediun status.

Reg: x = volatile Status: R12 stack:
4omdo---n docoo¢ deccemeceans

| 1012314567 | fin |out| Legend | | Entry
4=—b----4 domccdomcdmeoo¢ deemeecmeeea-

RO | | | |Mode| b | | d-BCD | |

R0} | | I€ | 1ol b-BIN | |
|IR20 | xx | | |ORP | | x | 1-1nput| |

[R30xx | l [RRP | | x| I
R40			$oemmmmmeeeae +
R50	Y	RELJSB Needed: x	
REO			dommmmme+
R?70			
4-=cdo-emp----9 doccmcemeccceDettt

Routine: VFEXCH

@
e

c
n
n
—
—
—
—
—

—
—
P
—

File: KRSVF 1

Ruthor: RS

Description: Causes mass storage device to exchange its buffers
0 and 1.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
€ % 0 af error occurs

Routines Called:
VFLAD+, DDLREP

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dooobmeonpaand $ocecdomcfmmcfne¢ demmecemecea-

| 10123]4%67| | lin Jout| Legend | | Entry
b= docccfecdmeoprmmmee 4 deommccmmceeno

|IRO | | | |Mode| b | | d-BCD | |

[R10] I | € | | o b-BIN | |
jR20] | | IDRP | | x | 1-1nput| |
IRX| I 1l IRRP | | x | I
IR40| | | doecmmccmcccccs+ |
[RSO| | | | MELISB Needed: x | |
IRGO| | | #eeemseseeoeoeeeeoee-
|R?70| | | | NANDI Called: | |
4-mcbmeempoad ocmcecccccccce4 d-ccceccceaa-

Routine: VFGET

@
s

—
—
—
—
—
—
—
—
>
w
—

File: KR&VFO

Ruthor: RS

Description: Sets up and calls GETPAD. If successful, expands the
devfile line to acconodate additional infornation stored there
by the nass storage code. (lears HANDLD 1f GETPAD call successful.

Input:
R64/67 Device nnerionic

Output (i1nclude E-Reg, Z-Flag, (-Flag 1f pertinent):
R36/37 Pevfile line pointer 1:f £ = 0
t # 0 1f error occurs

Routines (Called:
SYSJSB, GETPRD, RLLOC, CLRCOD, SKPLNM

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: » = volatile Status: R1C stack:
d-mmdmmmg--m -t docmcompomcdommmmae- ¢ decemmmeeeee- 4o-cmmmeceae- +

| 10123]4567] | lin [out] Legend | | Entry | Exat |
=tmmp---d docecfmempmmchmmmmmaa ¢ 4eemmmmmeeee- domcemmee*

IRC | xx| | |Mode| b | | d-BCD | | | |

IR10] | | lE 1 | ol b-BIN | | | |
[R20|x | . [ORP | | x | 1-1nput| | | I
IR0 | xxxx|xx00] |RRP | | » | | | | |

RAO| | | wemeemmceeceeoeeeeoe- | |
IRs¢| 1 | | NELISE Needed: x | | I |
|R60 | l1121] f-eecmeeeceeniceanan. ¢ | | |
|R70| | | | HANDI Called: | | |
by dmmmmecceaaa. ¢ dememmmeeaaae d-cmccmmcaaa ¢

Routine: VFGLOC

File: KR&VF1

Author: RS

Description: Get the directory starting sector (VF.DL) and the
current directory location (VF.CDL)

Input:
R36/37 Devfile line pointer

Output (1nclude E-Reg, Z-Flag, C-Flag 1f pertirent):
RAS/47 VF.COL
RS6/57 VF.DL

Routines (Called:

Stack depth R6 (nax): 0

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
d-mdececbonnny $ocmcpmmmdomedemmenae ¢ dmeemceeeeee- ‘.

| 10123]4567| | fin |out| Legend | | Entry | Exat
dommbmmmnhamany efmee4 fmemmmmemceean +

IRO | xx| | |Mode| b | | d-BCD | | |
jRol || l€ | | | b-BIN | | |
|R201 I I IORP | | 46| 1-1nput| | |
IR30| I 1l IRRP | | S6| I |
|R40| | ooo0| $-mmmecemcccccaccaoan + | |
IR0 | | ool | MELJSB Needed: x | | |

REO| | | #mmmmeeeeeseeeocoeeeee‘| |
IR70] | | | HANDI Called: | | |
oot dmmmmcmmemcme4 dmemmmemeeeeo ¢+

Routine: VFHI

File: KR&VFO

Author: RS

Description: Establish conmnunication uith the nass storage device.
Ensures that the device 1s a filbert (SRI response 10 hex),
gets 1ts status and nediun address, and expands the devfile line.

Input:
Re4/67 Device nane

Output (include E-Reg, Z-Flag, (-Flag if pertinent):
R36/37 Devfile line pointer
£ % 0 1f error occurs

Routines Called:
VFGET, VFMn?, VFBSY, BLEBUF, VRDDR, VFBYE, UNTUNL, LRDREP,
VFRUSK, VFRWRD, INISIZ, ERR1

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):
Generates an 1nvalid nediun error 1f it 1s not fornatted

according to LIF. Invalid nediun error = 96.

Notes:

Calls the internal subroutine VFFBHI. I have 1included
the entry points uhich VFFBHI calls in the above list.

Reg: x = volatile Status: R12 stack:
$occdococpocccy $omccdoponpommceen $ demmemeeeeeeo $omecceconen- +
| 10123]4567| | lin Jout| Legend | | Entry | Exat
blm gyey dommmes$ dmemmmeee-dommemmemeees +
RO | xx| | IModel b | | d-BLOD | | |
R0l | | [E | | o] b-BIN | | I
|IR20|x | | [ORP | | x | 1-1nput| | |

[R30| xx| ool [RRP | | x | I |
[R40 | | xxxx| $ommmememcmcee+ | |
|RSO| | | | NELJSB Needed: x | | |
[Re0l 1 | #rmmeosmomoo+ | I
|R70| | | | HANDI Called: | |
dommdm meb4 ee¢ e-dommmceem—ean

Routine: VFHI+

File: KR&XIT

Author: RS

Description: Sets up a call to VFHI. Does an extra pop of the
R6 stack 1f VFHI returmms uith E # 0.

Input:

Output (include E-Reg, Z-Flag, C-Flag if pertinent):

Routines Called:

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:
VFHI+ 1s a plus routine. See VFHI for a input and output
paraneters and register usage. Do not call fron outside
RELRON.

Reg: x = volatile Status: R12 stack:
dom—dmmmmpommd dmmmmdemcgeee¢ demmmmmemee-- +
| 10123]14567] | lin |out] Legend | | Entry | Exat
$ommpomeedomeny $ocempomcpuccponcncane + bememceccena- +

[RO | | | [MHode| | | d-BCD | | |
IR10] I le | | | b-BIN | | |
[R20| I | [ORP | | | i-1nput| | |
IR30| | | [RRP || | I |
R40			$o--mmcccccmcnccaanaan +			
RSO				NELISB Needed:		
R60			4-ocmcsseceeooo+			
R70				HANDI Called: I		
doomfomenpemeny dmmmmmcmcmees4

Routine: VFLAD+

File: KREXTT

Ruthor: RS

Description: Sets up a call to VFLRD. 1If VFLAD returns with E # 0
then VFLRD+ does an extra pop of the R6 stack.

Input:

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):

Routines Called:

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes: VFLRD+ 1s a plus routine. See VFLRD for 1nput and
output paraneters and register usage. Do not call fron
outside NELRON.

Reg: x = volatile Status: R12 stack:
bocmbeemdo-y 4o cdecce¢ demmmeeeeeem +

| 1012314567| | jin |out| Legend | | Entry |
dommdememd---- ooymeaee ¢ deemmmeeemeeo ¢

|kO | l l [Hode| | | d-BCO | | |
|R10] I I l€ | | | b-BIN | | l
|R20 | | | IORP | | | 1-1nput] | |
[K30| | | [ARP || | || I
|R40 | | | $ommemmsemmeeeceenes + | |
[R50 | | | | NELISB Needed: I |
REO| |] #emseeseeeeeioeeoev |
IR?20] | | | HANDI Called: I |
$ommpmmemdmenn 4oeeae¢ emmmmemcaaaa +

Routine: VFLED?

e c e me .---

File: KR&VF1

Ruthor: RS

Description: Deternines 1f the current directory entry is the logical
end of the directory. 7 1s set 1f at the logical end of
directory. If at the physical end of the directory then
Z 1s not set.

Input:
R36/37 Devfile line pointer

Output (1nclude E-Reg, Z-Flag, C-Flag if pertinent):
Z Set 1f at logical end of directory

Routines Called:

VFPED?

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dommdmmecgy oobemme+ dmmemeeeeee-- $mmmmmmeee +

| 10123]4%567| | lin Jout| Legend | | Entry | Exat |
dommdmmmmgy fomedommdomchomemenan 4 deeeemeeeeao- $oeemmemceee- +
IRO | xx| | |Hode| b | | d-BCD | | | |
[R10] | | e | | | b-BIN | | | I
|R20| | | [DRP | | 46| 1-1nput] | | I
|R30| | 11 |RRP | | 56| || | I
|R4O| | xx| $ommmmesmmece+ | | |
|RSO| | xx| | HELIJSB Needed: x | | | |

RO| | | eemmseemesoooeeeoe- | |
IR70| | | | HANDI Called: I | |
TT dmmmmemaead doememceeceas deecmmenccen- +

Routine: VFLIF?

File: KR&VF 2

Author: RS

Description: Exanines the directory entry in the VF.(DE field of
the devfile line. If the directory entry refers to an LIF
1 fi1le then returns uith 7 set.

Input:
R36/37 Devfile line pointer

Output (1nclude E-Reg, I-Flag, (-Flag 1f pertinent):
1 Set 1f LIF 1 file
R20/21 File type decrenented once

Routines Called:

Stack depth R6 (nax): 0

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
d=mmd=c-ct----4 oo4 b-eemceccen-- 4

| 10123]4567| | lin fout] Legend | | Entry |
domcdmmemg ==y dommmdmbdemmee¢ demmmcceceo-- 4 -

RO | xx| | |fodel b | | d-BCD | | |
IR0 || [€ 1 | | b-BIN | | |
|R20|00 | | [ORP | | 20| 1-1nput| | |

IR0 | a1 IRRP | | 36| I |
|R4O | I I $-m-o-emcccoosnnooo + | |
IRS0| | I | NELISB Needed: x | | |
[R60 | I | $e-mmmmmcmcecme+ | |
Ik720]| | | | HANDI Called: | |
dmmmbmme dommemmeeme ee ee¢ bemmemeemeea- +

Routine: VFLTBY

File: KRRVFB

" Ruthor: RS

Description: Does a VFBSY+ and listens the nass storage device
1f VFBSY+ found no errors.

Input:
R36/37 Devfile line pointer

Output (1nclude E-Reg, Z-Flag, C-Flag if pertinent):
t % 0 if error occurs

Routines Called:

VFBSY+, VFLRD

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bbbt $ommcpeccbomcpommeenn ¢ dmeemcmceeea- +
I 10123]4567] | lin lout| Legend | | Entry | Exat
4ot docecdmccdomcgommenn ¢ e+

{RO | | |Mode| b | | d-8CO | | |
IRo} || IE | 1ol b-BIN | | I
IR0l | | IORP | [x | 2-1nput| | |
IR | | [ARP | | x| I I
RIO| | | emmeemeeeeeeceneeoe ¢ | |
|RSO| | | | NELISB Needed: x | | |
REOI | | 4ememoeseeseecoeieesv |
IR70| | | { HANDI Called: I |
domcdommpmmnd ooccnceaa ¢ bmmmemcccee-- 4

Routine: VFLTY+

File: KREXIT

Ruthor: RS

Description: Calls VFLIBY and pops the R6 stack on E # 0. R

plus routine.

Input:

Output (include E-Reg, 21-Flag, C-Flag 1f pertinent):

Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes: For input and output paraneters and register usage see
VFLIBY. Do not call fron outside NELRON.

Reg: x = volatile Status: R12 stack:
d-ccdememg- ocmmbomctoccte4 dmmeeeemeeen- +

| 1012314567 | lin jout]| Legend | | Entry |
4ot ooe¢oo¢

IRG | | | |fodel | | d-BCD | | |
|R10| I i€ | | | b-BIN | | |
|k20| | | jorRP | | | 2-1mput| | |
[R30] | | [RRP | | | (I |
IR4G| | | d-emmemccmceconocoen. + | |
RS0 | | | | RELISB Needed: | |
|R60| | | 4-cccecccccccccccccce- ¢ | |
{R20| | | | HANDI Called: I |
4mdmmcmd et decocccmceccae¢e¢

Routine: VFNFP?

File: KR&VF1

Author: AS

Description: Deternines 1f the directory entry in the VF.(DE field
of the devfile line 1s narked for purging. Returns I set 1f
1t 18,

Input:
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
l Set 1f file 1s narked for purging
R20/21 File type of directory entry in VF.CDE

Routines (Called:

Stack depth R6 (max): 0

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R1Z2 stach:
4ot bbbe¢ mmmmeceeee--

| 1012314%67] | lin |out]| Llegend | | Entry
btd---=d Pem¢ deemmeemeeee-

IRO | xx| | |Mode| | | d-BCD | |

IR10| | | e | | | b-BIN | |
|R20 |xx | | |ORP | | 20| 1-1nput| |
IR0 | 11l IRRP | | 36| I
|R40 | | | $-msessemememccenaan + |
IRS0| | | | NELSB Needed: x | |
IREO| | | 4-seooeemeoseooeeeee o |
|R70| | | | HANDI Called: | |
RRN do-cceccmcccceeeee ¢ beemeeeeeaeao

Routine: VFNR?

¢
e
e

>
—
—
—
—
—
—
—
—
>
—

File: KR&VFO

Ruthor: RS

Description: Deternines 1f the specified device 1s 3 nass menory
uhich responds to the filbert protocal. Mass nenories of this
type respond uith 10 hex to the SRl connand.

Input:
R36/37 Devfile line pointer

Output (include E-Reqg, Z-Flag, C-Flag if pertinent):
z Set 1f a nass storage device operating under the

filbert protocal
E # 0 1f an error occurs on HPIL

Routines Called:
UNTUNL, VFTRD+, RDYSD+, ERROR, DRTSND, ERR1, VFBYE

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):
Generates an error 56, no loop response, 1f the SRI
frane returns to Kangaroo. GCenerates an error 57,
invalid transmission, 1f the device does not source
an ET0 within 10 franes after the SRI. Generates an
error 92, not a nass nenory, 1f the device does not
respond with a 10 hex to an SRAI connand.

Notes

Reg: x = volatile Status: R12 stack:
dommdommmpo-o-d ommmdmmmdome4ooommmmemee +

| 10123]4567| | fin Jout| Legend | | Entry | Exat
$ommd---mt----4 mmmmbmecooedommmmmeeen +

|RO | | | |Node| b | | d-BCD | | |

[R10] | l [E | o] b-BIN | | |
|R20 | | | [ORP | | x | 1-1nput| | |
IR30| | 11 [RRP | | x | || |
|RAO | | xxx| $oeemmmecemmeme+ | |
|RSO| | xx| | MELISB Needed: x | | |
[REO| | | #mmeeemeomooeeeeoeeo- |
[R?70| I I | HANDI Called: || |
dommdmemd—a-md ommmmmeecce4 deemmemmeeee-4o

Routine: VFNOVE

File: KR&VF1

Ruthor: RS

Description: MNoves a file on a nass storage device to a neu

location.

Input:
R36/3? Devfile line pointer
R62/63 Where the file is \
R64/65 How long the file is >- 1in sectors
R66/67 Where the file should go /

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
€ # 0 1f error occurs on HPIL

Routines Called:
VFRUK+, VFRCEX, VFRUUO, VFEXCH, VFHBUO

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
L $omccpemmdomedmmmmaaan 4 demmemeeeeeo- +
| 10123]4567] | lin lout| Legend | | Entry |
ooy pmmmmpommdmmoI+
IRO | xx| | |Mode| b | | d-BCD | | |
IR10| I IE | |ol| b-BIN | | l
|R20| | | [ORP |, :li% | 1-1nput| | |
IR30] | il (ARP [T x| | |
|R4D| | xxx| $omemedecccccnacaaaa. + | |
|RSO| | | | NELISB Needed: x | | |
[R6Q| 11]1111] $-o--oesoecoocoionooo + | |
|R70| | | | HANDI Called: | | |
dmmmtmmmet ommmmmmcmmaccceea 4 dmmmmemeeeeo +

Routine: VFNSG

File: KR&VF 2

Ruthor: RS

Description: Untalks, unlistens the loop. Displays a nessage using
ASGOUT. Untalks, unlistens the loop again.

Input:
R26/27 Pointer to nessage for MSGOUT
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
t # 0 1f error occurs on HPIL

Routines (alled:
UNTUNL, HSGOLT

Stack depth R6 (nax):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
by $ommmdemepommmmaa b dmmmemeeenee-

| 1012314567 | | lin Jout| Legend | | Entry
gt drcmepeme4 demmmemeeeeao

RO | | | |Mode) b | | d-BCD | |
IR10 | | | € | | ol b-BIN | |
|R20 | | 11 JORP | | x | 1-anput| |

[R30| | 11 [RRP | | x | ||
| k40 | | | domeecceemcccmcaaes + |
[R50 | | | | NELJSB Needed: x | |
|R6O | | | $em-rocmececcacacnaaa- + |
[R?70| | | | HANDI Called: ||
demmbmmep--=d beea- 4 dmememmeeeees

Routine: VFNXD-

V
e
—
—
—
—
—
—
—
—
—
—
i
—

File: KR&VF1

Author: RS

Description: Reads in 32 bytes of into the current directory
entry, VF.CDE, 1n the devfile line.

Input:
R36/37 Devfile line pointer

Output (include E-Req, Z-Flag, C-Flag 1f pertinent):
E # 0 1f error on HPIL occurs

Routines Called:

VFCD46, VFRWRD

Stack depth R6 (nax):

Calls to Error routines (include error number and reason):

- Notes:

Reg: x = volatile Status: R12 stack:
domcpmmmcey drmmme¢e+

| 10123]45¢7] | in fout] Legend | | Entry |
ooh---d oo4 demeeecmeaee- +

RO			[Mode	b		d-BCD		
R10		I [€	1ol b-BIN					
R20			[ORP		x	1-1nput]		
R30			[RRP		x	I		
R40			dmmesmcemcee+					
{RSO| | | | NELISB Needed: x | | |

ROl |] emoeeooooeeoeeeoeees‘o |
|R70] | | | HANDI Called: I |
$omdmmmee §ommmmeeme¢ dememeeeeeaas 4+

Routine: VFNXDE

File: KR&VF 1

Ruthor: RS

Description: Updates the current directory location (VF.DL) and
reads 1n the next directory entry using VFNXD-.

Input:
R36/37 Devfile line pointer

Output (1nclude E-Req, 2-Flag, (-Flag if pertinent):
t % 0 1f error occurs on HPIL

Routines (alled:

VFNXD-

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
d--md-mmp----4 4=4 emmemmeeeeo

| 1012314567| | lin Jout| Legend | | Entry
4---d-mmp----4 oo~¢e

(RO | x| | |Mode| b | | d-8CD | |
IR10] I I [E | o] b-BIN | |
|R20 | | | [ORP | | x | 1-1nput| |
IR30| | 1 [RRP | | x | I
IR40 | | xxx| $oceccceorerceece+ |
IRS0| | | | MELISB Needed: x | |
REO| | | #emseoeemeeeemeeeeee v |
|R?0 | | | | HANDI Called: |
dommpmmb=t docmmmmcececc e e e eeea¢e

Routine: VFNXE+

e
s

-
e
—
e
—
—

>
—
—

File: KR&XIT

Author: RS

Description: Sets up a call to VFNXDE and pops R6 stack if
1t returns wath € # 0. R plus routine.

Input:

Output (include E-Reg, Z-Flag, C-Flag if pertinent):

Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

This 1s a plus routine. For a description of register
usage and 1nput and output paraneters see VFNXDE. Do
not call from outside MELRON.

Reg: x = volatile Status: R12 stack:
deecpmmecdemnnt $omcepompomcdmccncan ¢ fecmeccmenne- +

| 10123]4567] | lan Jout| Legend | | Entry |
e $omempoccdemmpmmmeeee ¢ bmmeemeememe- +

RO | | | [Node| | | d-8CD | | |
R10]		fe			b-BIN			
R20			IORP			i-anput		
RY0			[RRP			I		
IR40			$ocsecccmocccecacona- +					
IRSO	I	MELISB Needed:						
R60			$-ccsecccoccoccooanon +					
IR70				HANDI Called:				
domcbmmmcpmmmnt $ommemmcecccccce¢ deecmemmeeea- +

Routine: VFPED?

File: KR&VF 1

Author: RS

Description: Deternines 1f the current directory entry 1n
VF.CDE 1s the physical end of the directory.
1f VF.CDE has the first 32 bytes of file space.

Input:
R36/37 Devfile line pointer

Output (1nclude E-Reg, Z-Flag, (-Flag 1f pertinent):
l Set 1f physical end of directory

Routines (alled:

VFGLOC

Stack depth R6 (max):

Talls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile
do--d-ccmd-a-d

| 1012314567
obemmb---- 4

IRG | xx| |

P10 | |
|R20| ||
[K30| |
{RA0 | |
RS0 | | xx]|
|R6Q | |
|R?70| |

4b

Routine: VFRCEX

Status:
fecmebomctoncdmmmee+

| l1n Jout] Legend |
dommcefmmmmmme +

|Mode| b | | d-8(D |

I€E | | | b-BIN |
JORP | | 46| 1-1nput]
IARP | | S6I |
d-cmcmcmmcmee e ccecaaan +

| RELISB Needed: x |
4onceeaee ‘

| HANDI Called: |
fomcecccccce+

R12 stack:

That 1s,

@
a
m
m
n
e
"
—

—
—
—
—
—

G
a
e
—
&

File: KR&VFU

Author: RS

Description: Reads a record and exchanges the buffers in the
nass storage device.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
€ # 0 1f error occurs

Routines (alled:
VFRREC, VFEXCH

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
domedmmemp-memd Vomfme4oo‘4

| |0123]4567| | lin Jout] Legend | | Entry |
docb--m-p----4 dommoo4e4+

|IRO | | | |Mode] b | | d-BCD | | |

R10}		[€		olfb-BIN				
R20			[ORP		x	1-1nput		
RY0	I 1 [ARP		x	I				
IR&O| | | #ememseeeceieeeeoe v | |
IRS0| | | | NELISB Needed: x | | |
IREO| | | #eemooeeeeeeeeceeeen v | |
IR?70| | | | HANDI Called: . |
boeebomt--t $mmmmemeemeeme eeo ¢ dmmeeemeeeeo- +

Routine: VFROE

File: KR&VF4

Ruthor: RS

Description: Translates the LIF directory entry in VF.CDE to
3 Kangaroo directory entry in VF.RDE. Uses only the first
8 characters of the nare and translates the size into bytes,
kilobytes, or negabytes. Depending on the size of the file,
R20 will have a ' ', "K', or a "N’ respectively.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, I-Flag, C-Flag 1f pertinent):
t 0 .1f error
R20 Si1ze character

Routines Called:

SYSJSB, ENCLOK, VFROO?, TENRIT

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$ommdmmma4 dmmmmdmmme$ e+
| 10123]4567] | lin Jout| Legend | | Entry | Exat
bb-y $mmmcdmeemmmeb mmemmeeeeae +

|IRO | xx| | |Node| b | | d-8CO | | |

[R10| | | IE | | ol b-BIN | | |
|R20 | xx | | IORP | | 56| 1-1nput| | |
[R30| | 11 [ARP | | 36| I |
| RAO | xxxx | xxxx | $omme+ | |
|R50 | | xxxx | | MELISB Needed: x | | |

|R60 | | | $oommmeoococcioeoe v | |
|R?70| | | | HANDI (alled: | |
bommdmmmet Voeeeaee¢ dememmmmeeeeao +

Routine: VFRENR

File: KR3VF1

Ruthor: RS

Description:
line.

Input:
R40/47
R36/37

Neu nare to put into VF.CDE
Devfile line pointer

Output (1nclude E-Reg, Z-Flag, C-Flag 1f pertinent):
<VF.CDE>

Routines Called:

Neu nane field

Stack depth R6 (nax): 0

Calls to Error routines (1nclude error nunber and reason):

Notes:

Routine: VFRLF?

volatile Status:
domomdocdmmo+

| lin Jout| Legend |
L+

|Mode| b | | d-BCD |
€ 1 | | b-BIN |
IORP | | 46| 1-1nput]|
|RRP | | 36} |
dosecccccceceneccanaan +
| MELISB Needed:
dommmmee+
| HANDI Called:

R12 stack:

R @
"

—
—
—
—
—
—
—
—
—

d
w
—

Changes the nane 1n the VF.CDE field of the devfile
The last 2 characters of the nane field are filled

uith blanks.

File: KR&VF2

Ruthor: G

Description: Determines 1f z Kangaroo directory entry
in the HP-75 refers to an LIF 1 file.

Input:
R30/31 Pointer to Kangaroo directory entry

Output (i1nclude E-Reg, Z-Flag, (-Flag 1f pertinent):
l Set 1f LIF 1 fale
R22/23 Type/access bytes of the Kangaroo directory entry

Routines Called:

Stack depth R6 (nax):

Calls to Error routines (include error nurber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dommdmmmmgmaed dommcdmmms¢ demememeeao +

| 101234567 | | lin Jout| Legend | | Entry | Exat
dommpmemooy ooeaee+

|RO | xx| | |Model b | | d-8CD | | |
[R10| | | [E | | | b-BIN | | |
|R20| oo0] | [ORP | | 22| 1-1nput} | |

[R30|11 | I [RRP | | 30| I |
R40			$oe-cmcccccccaaet			
RS0				NELISB Needed: x		
R6O			IRR LRRe+			
[R70| | | | HANDI Called: | | |
bommhmmec ooy oeeceaes 4 demeemmrce—es ‘-

Routine: VFROO?

File: KR&VF2

Author: RS

Description: Deternines 1f the VF.CDE contains a directory entry
uhich Kangaroo can read. If 1t 1s not a readable directory
entry then a HANDIO call 1s 1ssued. Only i1f soreone inter-
cepts the call or 1f the entry is readable 1s Z set on return.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
R21 Kangaroo file narie type (valid 1f Z set)
Z Set 1f Kangaroo readable file type

Routines Called:
HANDIO

Stack depth R6 (rax):

Calls to Error routines (include error nunber and reason):

Notes:
Generates a HANDIO call uith the event V.RFTY,
See the HANDI call docurentation for a description

Reg: x = volatile Status: R12 stack:
omembmmmy 4rmmmdmmmdmme4 b

| 10123]4567] | in |out] Legend | | Entry
bbby fmmmmeemmeeees 4 demmeceeeeenoo
IRO | x| | Hode| b | | d-BCD | |
[R10] | [E | | x| b-BIN | |
|R20} - | | [PRP | | % | 21-1nput| |

[R30f | | IRRP | 1 x| I
R40		xxx	$-mmemmmmeececeeoeea. +		
RSQ		xx		RELISB Needed: x	
R60			#mmmmeseonoocioions +		
{R70| | | | HANDI Called: I
bommbommmdmmem dommmeb demememeeeeo

Routine: VFRREC

G
e
e

c
—
—
—
—
—

>
—

‘F1le: KR&VFR

Author: RS

Description: Instructs the nass storage device to read a sector.

‘Input:
R36/37 Devfile line pointer

JButput (include E-Reg, 2-Flag, C-Flag 1f pertinent):
£ ¥ 0 1f error occurs

Routines Called:

VFTRD+, DDTREP

.Stack depth R6 (max):

CTalls to Error routines (include error nunber and reason):

"Notes:

Reg: x = volatile Status: R12 stack:
do--dmmmp---d ooy¢ deceeeeeee--

| 10123]4567| | lin |out| Legend | | Entry
do--d--mt----9 oodmmmmean ¢ decemmeceeea-

|RO | | | |Mode| b | | d-BCD | |

[R10] || [E 1 1ol b-BIN | |
|R20 | | | IORP | | x | 1-1nput] |

1R3C| I | IRRP | | x | I
|R40| | | domemee+ |
IRSO| | x| | MELISB Needed: x | |
IREOI | | #emcemeeeeoooooeee-
{R?70| | | | HAN['1 Called: I
$ombmmmmt----¢ oeeeeeaen 4 d-cemcceceaa-

Routine: VFRVDE

W
s

—
—
—
—
—

>
—
—

File: KX8VF2

Author: RS

Description: Reverses the length and start fields of the
LIF directory entry in VF.CDE. This is done so that
the Capricorn CPU can manipulate these values.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
<VF.(DE> Length and starting address fields reversed

Routines Called:
REVBYT

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dommpmmmmbmm- doccmdomcdemcpemeeanea ¢ decececccaaao +

| 10123]4567| | lin |out| Legend | | Entry |
domcbmmmmbmmay oodeecpremeeaa ¢ dmcemeccacea- +

RO || | [Mode| b | | d-BCD | | |
IR0 || l€E | | | b-BIN | | I
|R20|xx | | IORP | | 20| 1-1nput| | |

IR0l | 11l IARP | | 20| I I
ROO| | | #eeeemoseeeeeeoeeeoon- |
IRS0| | | | NELJSB Needed: x | | |
IREO| | | #eeomooeemeseoeeeeeoee- |
IR70| | | | HANDI Called: | |
TeS e4 dmmmcceceee- +

Routine: VFRWO+

File: KR&XIT

Ruthor: RS

'Pescription: R plus routine for VFRUSO.

Input:

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):

Routines (alled:

Stach depth R6 (nax):

Calls to Error routines (1nclude error nunber and reason):

Notes: R plus routine.
and register usage.

Reg: x = volatile
--4

I 1012314567]

Routine: VFRUK+

Status:
decmmbmmmfemede+

| lin |out| Legend |
doccchomeeee .

|Node | | | d-8CD |

e | | | b-BIN |
[ORP | | | 1-1nput|
[RRP | | | |
dmmmce+
| MELISB Needed: |
dommmmmme mecccmeae ¢

| HAND] Called: |
dmecneeee +

R12 stack:

@
s
o

c
—
—
—
—
—
—
—

Y
e
—
—

See VFRUSO for input/output paraneters
Do not call fron outside NELRON.

File: KR&X1T

Ruthor: AS

Description: R plus routine for VFRUSK

Input:

Output (include E-Reg, 2-Flag, (-Flag 1f pertinent):

Routines Called:

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes: R plus routine for VFRUSK.
paraneters and register usage.
neELRON.

Reg: x = volatile
Vo bmmmcbeeny

| 1012314567

l
I
I
l
l
l
l
l

Routine: VFRURD

Status:
$oemmtmmcboncdmmmemea ¢+

| lin |out] Legend |
L+
|Model | | d-BCD |

€ | | | b-BIN |
|DRP | | | 1-1nput|

|ARP | | | |
doc-cecccccocnccancans ’
| RELISB needed |
$mcemmme+

| HANDI Called: |
$occmccmemcee+

R12 stack:

G
e

e
e

c
—
—
—
—
—
—

>
—

See VFRUSK for input/output
Do not call from outside

File: KR&VFR

Ruthor: RS

Description: Read bytes fron the nass storage device into menory.
Updates VF.LOC uhen finished.

Input:
R36/37 Devfile line pointer
R44/45 Nunber of bytes to read
Ra6/47 Uhere to put the bytes read

Output (include E-Reg, 2-Flag, (-Flag 1f pertinent):
€ # 0 1f error occurs
Ra6/47 Points to the location just after the bytes

read 1n.

Routines Called:
VFBSY+, VFRREC, VFLRD+, DDLREP+, DRTRP+, VFTRD+, VFWACH,
VFADDR

Stack depth R6 (nmax):

Calls to Error routines (1nclude error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
domcdommagmomnd dococboccpocctoccncann ¢ deccececcecan +
| 10123]4567| | lin |out]| Legend | | Entry |
4oy-- ¢ bommmbmmo4 dememmemeeaeeo +

|RO | xx| | |node| b | | d-BCD | | |

[R10] I I [E | |ol b-BIN | | |
[R20Ix | | [ORP | | x | 1-1nput] | |
[R30| | 11 [ARP | | x| | |
|R40 | [1111] $mcmcmemccecccecnnne- + | |
[RSOIx | x| | NELISB Needed: x | | |

IREO| | | #--cmosoeesicmoiemeeo + | |
[F2C| | | | HANDI Called: || |
dmmmm=t dommmme¢ dmmeeememeean +

Routine: VFRHUSO

File: KRSVFS

Ruthor: RS

Description: Seeks the nass storage device to a sector. Checks
VF.RSH and VF.FLG flags to detrmine uhether the seek should
be done.

Input:
R36/3? Devfile line pointer
R46/47 Rddress of sector to seek to

Output (include E-Reg, I-Flag, C-Flag if pertinent):
€ % 0 1f HPIL error occurs

Routines Called:

VFLRD+, DDLRP+, DRTRP+, DRTREP.

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dompmmmmp----t domccdoccomcgmmaean 4 demememeeae--

| 10123]4¢%67] | fin |out| Legend | | Entry
deommbemmmgy dmmemdomcdommpmmmmmman 4 bemmmcemeee--

IRO | | |Mode| b | | d-BCD | |

[R10| | | f€E | |ol| b-BIN | |
|R20| | | IORP | | x | 1-1nput} |

[R30] | 11 (RRP | | x | b
|R40| | 11 $emom—cmcmeoiocaooanns+
|RSO| | xx| | BELISB Needed: x | |

IR6O| | | ememmceeeemoeeeeeeoen ‘o
|IR70] | | | HANDI Called: I
boemdmmmcgy $omemmmeccmmcec e eeaes ¢ deeecmceneea-

Routine: VFRUWSB

G
i
.
e
c
—
—
—
—
—
—

>
—
—
—
&

File: KR&VFS

Ruthor: RS

Description: Sets the byte pointer on the nass storage device.

Input:
R36/37 Devfile line pointer
R4S Value to set byte pointer to

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
E # 0 1f HPIL error occurs

Routines (alled:

VFLRD+, DDLREP+, DRTRP+, VFRDDR

Stack depth R6 (max):

Cails to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
docmdemeng-mas 4otdemmpmmmea 4 -‘4

| 10123]4567] | lin |out| Legend | | Entry |
Yoo mmg---—4 domccbmde4e+

[FO | | | |Hode| b | | d-BCD | | |
[F1G] | | l€ | o] b-BIN | | |
|F20| | | [DRP | | x | 1-anput] | |
[k30| | 11 [RRP | | x| I |
|R40| |1 | $ommeme+ | |
[RSO| | x| | MELISB Needed: x | | |
[R6O | | | $ecmcemmcoccccecacaans + | |
|k701 | | | HANDI Called: I |
doccbemecdommy eboo+

Routine: VFRUSK

ce e mr e .- --

File: KR&VFS

Author: RS

Description: Seehs the nass storage device to a specified sector and
byte address.

Input:
R36/37 Devfile line pointer
R4S Byte 1n sector
R46/47 Sector

Output (i1nclude E-Reg., 2-Flag, (-Flag 1f pertinent):
E # 0 1f error occurs

Routines Called:

VFRUO+, VFLTY+, VFRUSB

Stack depth R6 (nax):

Calls to Error routines (i1nclude error nunber and reason):

Notes:

Req: x = volatile Status: R12 stack:
$ommpmmmmdet dommm o mbemmdmee¢ dmemmceceeoo-

| 10123]14567| | fin |out| Legend | | Entry
Pbmmg demmmbommdre4 fmemmemememaeo

|RO | | |Mode| b | | d-BCD | |
[R10] I IE | 1ol b-BIN | |
|RZO| I | [ORP | | x | 1-1mput| |
R3] | | IRRP | | x | ||
|R40| | | dommme+
|RSO| | | | NELISB Needed: x | |
IR60| | | $mmmmememee+ |
|R70| | | | HANDI Called: | |
bbb} oo¢b

Routine: VFRHUO

G
—
—
—
—

—
—
—
—
—
—

A
—

File: KREVFU

Ruthor: N

Description: Seeks to a sector and urites buffer 0 on the nass
storage device.

Input:
R36/37 Devfile line pointer
Ra5/47 Byte and sector address to which to seek

Output (include E-Reg, 2-Flag, (-Flag if pertinent):
t % 0 1f HPIL error occurs

Routines Called:

VFRUK+, VFUBUO

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bommdomecdoo-o bbbmemean ¢ deemmeeeeen +

| 10123]4567] | lin |out| Legend | | Entry | Exat
dommdmmmmdo-—m oo¢ emmemmemeeeo +

IRO | | | |hode| b | | d-B(D | | |

[R10] | I [€E | o] b-BIN | | I
[R20 | I | [ORP | | x | 1-amput] | |
[R30| I l [ARP | | x | I |
RAO| | | aeeemmceeeeeeeeeoon ‘| l
{RSO| | | | MELISB Needed: x | | |
IR60 | | | et+ | |
|R70] l I | HANDI Called: || |
bmmmbmme} ommmme¢ dmmmmmeemaaa +

Routine: VFRUWUR

File: KR&VFU

Ruthor: RS

Description: Urites data to the nass storage mediun. Puts
the nass storage device into partial urite node before
sending bytes.

Input:
R36/37 Devfile line pointer
R44 /45 Nunber of bytes to urite
Ra6/47 Where to obtain bytes to urite

Output (include E—Re?. Z-Flag, C-Flag if pertinent):
E # 0 if HPIL error occurs
<nass storage>

Infornation uritten out
Routines Called:

VFLTY+, VFURBK, VFUR, VFRDDR, VFLTBY

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
ooy ooL Rbt+

| 10123]4567| | lin |out| Legend | | Entry |
do-ct---ct----2 4ote4 d-mememmceeea4

IRO | | | [Model b | | d-BCD | | |
[R10| | | [€E | | o b-BIN | | |
|IR20| | | IDRP | | x | 1-1nput] | |

IR30| | 11 IARP | | x | I | |
|R40| f1111] #o--eooocoocecooooono + | |
IR0 | | | RELISB Needed: x | | |

REO| | | #memmmeeeeooemeooees ¢ | |
|IR70| | | | HANDI Called: | | |
4o docmcemcecccee¢ decmecemeeeeo +

Routine: VFSECT

File: KR&VF4

Author: AS

Description: Deternines hou large a file uill be 1n sectors
fron hou large the file 1s 1n Kangaroo.

Input:
R3O0/ Kangaroo directory entry pointer

Qutput (1nclude E-Reg, I-Flag, (-Flag 1f pertinent):
R20/21 Si1ze of the file 1n sectors

Routines (alled:
VFRLF?

Stack depth R6 (nav):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
d--d----g---- -eee¢ deeemeeeeeee +

| 10123145%67| | lin |out]| Legend | | Entry |
O docccdocctocndoccnmnnnn 4 dmemmmmeeaes +
IRO | xx| | |nodel b | | d-BCD | | |
IR10| | | € | ol b-BIN | | |
{R20|o0 | | IORP | | x | 1-1nput| | |

{R30|11 | | IARP | | x | I |
|RA0 | | | dommesciceemeiieeee + | |
[R50 | | | | MELJSB Needed: x | | |
{R60 | | | d-mecmcmrcecccccccnna- + | |
IR70| | | | HANDI Called: | |
Ao bmmmcdmcd domecmeemcmeee¢ femmmmmeeaee- ‘

Routine: VF3KFL

File: KR&VF2

Author; RS

Description: Seeks the nass storage nediun to the start of the file
referred to by the directory entry
contained in the VF.CDE field of the devfile line.

Input:
R36/37 Devfile line pointer

Output (1include E-Reg, Z-Flag, (-Flag 1f pertinent):
t # 0 1f error occurs on HPIL
<nediurn> At start of file

Routines Called:
VFRUSK

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
b= ¢t4e

| 10123]4567| | lin |out| Legend | | Entry
d-ccdoeopo-act dommmhmedommdommeeeen 4 dmmemeeeeeeo
[RO | xx| | |Hode| b | | d-BCD | |
IR0l || IE 1 ol b-BIN | |
IR20] | | [ORP || x | 1-anput| |
IR0 | 11l [ARP || x| (.
IR40 | | xxx| $ocmmecememeccmeaoa + |
RS0 | | | | NELJSB Needed: x- | |
REO| | | #eseemmeesooeeeeooee ¢ |
IR70] | | | HANDI Called: I |
Vool dommmemmmmemmme e ceeen 4 e

Routine: VFSTAT

O
e
e
—

—
—
—
—
—
—

A
—

File: KR&VFB

Ruthor: RS

Description: Obtains the status of the mass storage mediun by
perforning a serial poll (SST frane). If the busy bat 1s
set then VFSTAT obtains the status again.

Input:
R36/37 Devfile line pointer

Output (include E-Req, Z-Flag, C-Flag if pertinent):
RS? Status byte from nass storage device
E % 0 1f HPIL error occurs

Routines Called:
ROYSD+, VFTRD+, ERR1+, DRTSND

Stack depth R6 (max):

Calls to Error routines (1include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dommdmmmmd-mmmy dommmdmmmdmmmdmmm ee¢ dmmrmmmeeae-- +

| 10123|4567| | lin jout]| Legend | | Entry |
eny $ommedomdmeeamaeit+

RO | | | |Mode] b | d-BCD | | |

[R10] I | [€ | o] b-BIN | | |
[R20| | | [ORP | | x | 1-1nput| | |
[R30] | 11 [RRP | | x | || |
RAO| | | #esoemsocceeoceeoeoo‘o |
[RQOIx | ol | MELISB Needed: x | | |

R6O| | | 4eememeescmeeeoeonao- |
|R70] | | | HANDI Called: | |
domd—m4---=4 $ommmmmme¢ demmememeeee- +

Routine: VFTAD+

File: KREXIT

Author: RS

Description:
R plus routine for VFTARD.

Input:

Output (include E-Reg, Z-Flag, C-Flag if pertinent):

Routines Called:

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes: R plus routine for VFTAD. For input/output paraneters
and register usage see VFTRD. Do not call fron outside
HELRON,

Reg: x = volatile Status: R12 stack:
ot focccdocndommpomemmeneLR

| 1012314567| | lin |out| Legend | | Entry
bommhomemdmamp $omempommdmmcpommmcann ¢ frmemecmcmea-

IRO | I |fode| | | d-BCD | |
|R10] | | l[€e | | | b-BIN | |
[R20] I [oRP | | | 1-input| |
IR30| | | IRRP || | I |
R40			#ocmccececememcee+		
RS0	I		NELISB Needed:		
R60			$---m-emccmcccenooenn ¢		
R70				HANDI Called:	
bommdomecponand bocmmcccccememceeen 4 demmecemeeee-

Routine: VFTERH

@
e
o

c
—
—
—
—

—
—
—
—
p
—
—

File: KR&VF1

Ruthor: RS

Description: Rewinds the nass storage nediun (1ssues a DDL?) and
untalks and unlistens the nass storage device. If a previous
error has occurred and £ # O on 1nput then the device 1s
only untalked and unlistened.

Input:
R36/37 Devfile line pointer
t = 0 then device 1s reuound

Output (1nclude E-Reg, 2-Flag, C-Flag 1f pertinent):

Routines Called:

DDLKEP, VFLRD+

Stack depth R6 (nax):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
o=domm -y 4omee-¢ e$o--cemememe- 4

| 10123145€7| | lin |out| Legend | | Entry | Exat |
bfmmmgt oitdommmmme ee+

|RO | | | |hode| | | d-BCO | | | |
IR10] l | € x| | b-BIN | | | |
|R20| | | [ORP |] 2 | 1-1nput| | | |
[RIC| | I [RRP | | x | I | |
| K40 | | | $--ce-cececsoccroncce- + | | |
[R50 | | x| | NELJSB Needed: x | | | |

R6OI | | #emeeemeseemeeeeeoees- | |
|k20| | | | HANDI Called: || | |
4y ommmcemeLdomscccmenan +

Routine: VFTINE

File: KR&VF3

Author: RS

Description: Converts internal Kangaroo tine into LIF fornat and
puts 1t in nenory.

Input:
R32/33 Hhere to put converted time information
R44/47 Internal time to convert

Output (1nclude E-Reg, Z-Flag, (-Flag 1f pertinent):
R32/33 Points)just after converted tine infornation

Routines Called:

SY$JSB, DCCLOK

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$omdmmmmdommnt d-mmmpemmb4 dmmemmeeeeo- ¢+
| 10123]4567| | l1n |out| Legend | | Entry |
4ommdmmmmpo--d o=4 dmemeecceeeo-)

[RO | | | [Mode] b | | d-BCD | | |
|R10] | | l€ | | | b-BIN | | |
|R20| | | IDRP | | 40| 1-1nput| | |

[R30| bb| | IRRP | | 32§ I |
[RAO| x|1111] #-o-commomcmmoooooooo + | |
|RSO | xxxx | xxxx | | NELISB Needed: x | | |

|R60| | | trmomsecemcoooooooeooe + | |
IR70| | | | HANDI Called: || |
bommbmmecpemand mmmmmemme¢e+

Routine: VFTRNL

File: KRVF2

Author: RS

Description: Translates a Kangaroo file type into an LIF f)le
type. Obtains the Kangaroo file type from a Kangaroo directory
entry. The LIF file type 1s put into VF.FTY in the devfile
line. If the Kangaroo file type 1s not nainfrane defined
then VFTRNL assunes that a LEX file created 1t, and therefore
1ssues a HANDI call for the LEX file to intercept and
translate the file type.

Input:
R30/31 Kangaroo directory entry pointer
R36/37 Devfile line pointer

Output (1nclude E-Reqg, 2-Flag, (-Flag 1f pertinent):
t # 0 1f VFTRNL cannot translate the file type (no

one intercepts the HANDI call.)
<VF.FTY> LIF file type

Routines Called:

HANDI

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes: Issues a HANDI call with the event V.LFTY

Reg: x = volatile Status: R12 stack:
dommbmmemgmmm $mmmmbembemeg4 dmmmceeeens $ommmmeemees +
| 10123]4%67| | lin Jout| Legend | | Entry | Exat
bt dommmbommommmeee ¢ be+

|RO | | | |Model b | | d-BCD | | |
[R10] I | lE | | ol b-BIN | | |
|R20| x | | IDRF | | x | 1-1nput] | |
IR0 | 11 IRRP | | x| I |
|RA0 | | xxx| $--e-ecereconnanaca—- + | |
RSO | | xx| | MELISB Needed: x | | |

|R6O | I | e¢ | I
|R70| | | | HANDI Called: x | | |
dmmmdmmmmpmmm b drmmmmmmemm e ecemaean ¢ demmmmememaeoR+

Routine: VFUTL+

File: KREXIT

Author: RS

Description: R plus routine for VFUTL.

Input:

Output (include E-Reg, Z-Flag, C-Flag if pertinent):

Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes: See VFUTL for input/output paraneters and register usage.
Do not VFUTL+ fron outside the NELROMN

Reg: x = volatile Status: R12 stack:
mmedmmmeb e4 oo
| 10123]4567| | lin lout] Legend | | Entry
dommdmmmmb o=—domcdomcpmmmmemae 4 e

RO | | | [fode|] | | d-BCD | |
IRo] 1| [E | | |b-BIN | |
|R20| | | [ORP | | | 1-1nput| |
R3] | | IARP | | | bl
|R40 | | | $omooecomccmmcooioons + |
IRSO| I I | MELISB Needed: |
REOI | | e‘o
IR70| | | | HANDI Called: |
emd 4ommmmmmmmceemeceeaao ¢ Yemmmcemmeeee-

Routine: VFUWRCH -

G
.
—
—
—
—
—
—
—
—
—

>
w
—

File: KR&VFR

Ruthor: RS

Description:
Reads or nonitors bytes fron a nass storage device.

zeroes then a NRD 1s sent,
Input:

R36/37 Devfile line pointer
R20 Read/nonitor flag, 1f O then read node
Raa /a7 Read node: sare as VFRURD

Monitor node: R45/47 1s the nunber of bytes
which uill traverse the loop.

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
t # 0 1f HPIL error occurs

Routines (Called:

DDTREP, RDYSD+, VFURCZ2.

Stack depth R6 (nmax):

Calls to Error routines (1nclude error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$---d-mmmpmen dommcbomgme- ¢ Ao

| 101234567 | lin |out| Legend | | Entry
domebomapmaamy decccboccpomdoemmmmen 4 bememmmeeeaee
RO | | | |odel b | | d-BCD | |
|R10| | | l[E | ol b-BIN | |
|k20)1 | | IORP | | x | 1-1nput| |

IR3C| | 11} [ARRP | | x| I
|RA0 | j1111] $mmmmommomcenaccccana- + |
IR0 | | xx| | MELISB Needed: x | |
IR60 | | | doceecme+ |
|R70| | | | HANDI Called: .
dommdmmmm=) eemeae ¢ deecececeaaa.

Routine: VFUWR(?

If reading
stores the bytes i1n RAN. If nonitoring, decrements a counter
for each data frane uhich traverses the loop. When the counter

G
—

—
—
—
—
—
—
—
—
—

4
—

File: KR&VFR

Author: RS

Description: Monitors or reads bytes as they travel around
the loop. If reading then bytes are stored in nmerory.
If nonitoring then a counter 1s decrenented. When the
counter zeroes then a NRD frame 1s sourced. VFUR(2

assunes that the caller has sent a DDTX and an SDR, and that

a recieved data frane 1s 1n RS6/57. 1If in nonitor node
VFUACZ2 w1ll put auay R57 in nenory.

Input:
R20 Monitor/read flag; 1f O then read
R37/37 Devfile line pointer
R44 /47 Read rode: sane as VFRURD

Monitor node: R45/47 1s a counter telling
hou nany bytes should
traverse the loop.

RS6/57 Frane recieved by caller
Output (1include E-Req, Z-Flag, (-Flag 1f pertinent):

E # 0 1f HPIL error occurs
<nenory> nodified 1f i1n read node.

Routines (alled:
DRATSND, UNTUNL, VFBSY+, RDYSND, ERR1+

Stack depth R6 (nax):
Calls to Error routines (include error nunber and reason):

Generates error 57, bad transnission, 1f a prenature
ET0 1s recieved.

Notes: VFURC2 uas added to fix bug #963, the LIF physical
attributes bug. In the mainframe VFURCZ 1s only called
1n read node to recieve bytes sent in response to 2
0D16 or 7 connand.

Reg: x = volatile Status: R12 stack:
bmmetmmmmdmmmmd dmmmmpommpommfomcmeme + dmmeememeeee- +
| 10123]4567| | in Jout| Legend | | Entry | Exat
bbbt $mmempmmmdammpommmmeee ¢ dmmmmeemeeee- +
IRO | xx| | |Mode| b | | d-BCD | | |
IR0} || [E | |olb-BIN | | I
[R2012 | | {ORP | | x | 1-1nput| | I
|R0| | 11| IARP | | x | I |
IR4O| |1211} #-o-moocemseceooooan-+ |
RSO | 11} | MELISB Needed: x | | |
|R60| | | ettt¢ | |
IR7201 | | | HANDI Called: I |
bbb $mmmmmmemee4b+

Routine: VFUBUO

File: KRSVF1

Ruthor: RS

Description: Issues a DDL2 and closes the sector on the nass
storage device.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, (-Flag if pertinent):
E # 0 1f HPIL error occurs

Routines Called:

VFLRD+, VFDDLZ2, VFHRCL

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dom—d-mmd---=y dommpmmcdme¢ dommeemeeem-- +

| 1012314567 | lin Jout| Legend | | Entry |
$ommpommmd----4 $mmmmdbomeeme¢ e+

[RO | I l |ode|l b | | d-BCD | | |
IR10 | I | lE | ol b-BIN | | |
|R20| | | [IORP | | x | 1-1nput] | |

|R30| | 11 [ARP | | x | || |
RAO| | | aemeemceemceeeeoooe ‘| |
|RSO | | | | HELJSB Needed: x | | |

|R60 | | | dommmomee+ | |
[R70 | | | | HANOT Called: | | |
4o demmgm-- -y $ommmmeeo ¢ demmmmmeeeo-)

Routine: VFUOOP

File: KR&VFU

Author: RS

Description: Sets up the VF softuare and the nass storage device
in urite only node. HWrites bytes to the nass storage nediun
and then updates the nediun position in VF.LOC.

Input:
R36/37 Devfile line pointer
R44/45 Nunber of bytes to urite
R46/47 Uhere to obtain bytes fron

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
€ # 0 1f error occurs
<nediun> Bytes uritten (valid 1f € = 0)

Routines Called:
VFLTY+, VFUREC, VFUR, VFRDDR, VFLIBY

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
b=tmmt dmmmmdmmmdomcdmemcmean ¢ dmmmmmmeeeea- +

| 10123]4567] | lin Jout| Legend | | Entry | Exat
dommdmmmmpomm—d -mpommmmemeee 4 Ao+
|IRO | xx| | |Mode| b | | d-BED | | |

[R10| I [E | |olb-BIN | | |
R20			IDRP		x	1-1nput		
R30		11 IARP		x				
R4O	1111] $mmmmmemmeemoo+							
RSO		x		MELISB Needed: x				

R6OI | | emomememoeeeeeoooe‘v |
|R70| | | | HANDI Called: | | |
ommbmmecdonnd $mmmmmmmmcece¢ demmmmeemeeo +

Routine: VFUR

File: KR&VFH

Ruthor: RS

Description: Sends out data bytes on the loop. Rssurnes that the
caller has done any other necessary setup.

Input:
R44/45 Nuriber of bytes to send out

R46/47 WUhere to obtain those bytes

Output (include E-Reg, 2-Flag, (-Flag 1f pertinent):
£ # 0 1f HPIL error occurs

Routines Called:
DRTRP+

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

RRP/DRP output are only valid 1f E = 0

Reg: x = volatile Status: R12 stack;
$ombmemdm--4 dommeL

| 10123]14567| | lin Jout| Legend | | Entry
ooy domccdeccdee4 demmmemecenen

IRC | xx| | |Mode| b | | d-BCD | |

|K10| I I € | ol b-BIN | |
|R20| | | [ORP | | 2 | 1-1nput] |
[R30| I l IRRP | | 44| (.
|R40 | [1111] $es-cemcoironon-m—----+
[R50 | | x| | NELISB Needed: x | |
|R6O | | | $ommmmee+ |
|R?0| | | | HAND'] Called: ||
be ee¢ dmemmmmeemea-

Routine: VFUREK

¢
—
—

—
—
—
—
—
—
—

i
—

File: KR&VFH

Ruthor: RS

Description: Puts the VF nachine 1n partial urite node by
exariining the VF.RSW flag and possibly backing the nediun
up 1 sector. The nass storage device 1s put into partial
urite node uith a DOL6.

Input:
R36/37 Devfile line pointer

Output (1include E-Reg, Z-Flag, C-Flag 1f pertinent):
E # 0 1f WPIL error occurs

Routines Called:

VFRUSK

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
ompmmeedet e¢ dmmmeeceeeenn +

| 101234567} | [in |out| Legend | | Entry |
occdmmm b=t edmmmg¥ dememmcceeee-)

IRO | xx| | |Mode| b | | d-BCD | | |

[Rol | [E | lol b-BIN | | |
|R20| | | [IORP | |'x | 1-1nput| | |

IR30| | 11 [RRP | | x { I |
|R4O| | wxx| 4o om-- semcmmeeee—- + | |
|RSO| | x| | NELISB Needed: x | | |

R6OI | | 4mesemeesomeeeoieoee. |
|R70] | | | HRANDI Called: || |
boccpommnbannd omemmeeas ¢ deemmmeeeee- +

Routine: VFUHRCL

File: KR&VFU

fAuthor: RS

Description: (loses the sector on the nass storage device.
Issues a DDLS.

Input:

Output (1nclude E-Reg, 2-Flag, C-Flag 1f pertinent):
t ¥ 0 1f HPIL error occurs

Routines Called:
DD LREP

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
4omp---m do=c-do-domcdmmmmea B Dettt

| 10123]4567| | lin Jout| Legend | | Entry
do--bommmh--mny ootID

IRO | | | |Mode|l b | | d-BCD | |
IR10| l | lE | | o] b-BIN | |
IR20| I | IDRP | | x | 1-anput] |
IRIO| | | IRRP | | x | ||
|R4O | | | $omomcmmeemecioooanns + |
[R50 | | x| | MELISB Needed: x | |

R6O| | | 4eeeeoseeeeoeeoooees ¢ |
{R70| | | | HANDI Called: | |
do-mdmmmmt----4 doccecmecmcmeceece¢ deememmcceeee

Routine: VFURD1

G
—
—
—

—
—
—

—
—
—

c
—

dp
—

File: KR&VF1

Author: RS

Description: Seeks to the input address and urites the VF.CDE
area (32 bytes) of the devfile line to the nass storage
nediun.

Input:
R36/37 Devfile line pointer
R4S/47 Rddress to urite VF.CDE

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
€ % 0 1f HPIL error occurs

Routines Called:

VFRUK+, VFURD-

Stack depth R6 (nax):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bty #omccdob4 dmemmmmeeeeo +
| 10123|4567| | lin fout| Legend | | Entry |
ooy -femmmeeae 4 deemmeemeeao +

IR0 | | | [Mode| b | | d-BCD | | l
IR0l | | IE | |olb-BIN | | l
IR0 | | IORP | | x | 1-1nput| | |
(R | 11 [ARP | | x| |1 I
|R40 | | i1 #oomeoomeocooioeee + | |
RSOl | | | MELISB Needed: x | | |
RO| | | #eeceeeseeeeoeieoooo ¢ | |
IR70| | | | HANDI Called: | | |
bdmmmmbmmem dmmmmemmmeeae D et+

Routine: VFURD-

File: KR&VF1

Ruthor: RS

Description: Urites out 32 bytes fron the VF.CDE field of the
devfile line.

Input:
R36/37 Devfile line pointer

Output (1nclude E-Req, Z-Flag, (-Flag 1f pertinent):
E % 0 1f HPIL error occurs

Routines (alled:
VFCD46, VFRUKR

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
d-cmdmmmd o= =4 dmmoooeme4 dememeeeeee- +

| 012314567 | lin |out| Legend | | Entry |
d---d----d----4 obmmgfemmme¢ emememmeeee- ¢+

|RO | | | |hode| b | | d-BCD | | |
[R10| | | € | Jolb-BIN | | |
|R20| [| [ORP | | x | 2-anput| | |
{R30| I 1l IRRP | | x| I |
|RA0 | | | do-eceiscctomectneen + | |
|RS0 | | | | RELISB Needed: x | | |

[REO] | | 4emsememsesceeoeeenees- |
|R?0] | | | HANDI Called: | |
4o dmmmeb-mmd dommcececeemee I Rb+

Routine: VFURDE

File: KR&VF1

Ruthor: RS

Description: Calls VFURDY using the current directory location,
VF.CDL, as the address to seek filbert.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, (-Flag if pertinent):
t % 0 af HPIL error occurs

Routines Called:
VFURD1

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dommdmmmmbmemy -mmdeme4 dmeemmmmmeeao

| 1012314567 | lin |out| Legend | | Entry
doccdmcmc---¢ dommme¢ dmmmmeememea-

IRO | xx| | [Mode| b | | d-BCD | |
IR10} | | IE | |o] b-BIN | |
|R20| | | IORP | | x | 1-1nput] |
R | 11 |IARP | | x | I
|R4O| | xxx| $omemmmmmcccccaoeone + |
|RSO| | | | NELISB Needed: x | |
ROOI | | 4emsemeeommoeoiee-
IR201 | | | HANDI Called: I
eecdemochoen=d ommmmmmecececeeeeeeenS

Routine: VFUREC

G
—
—
.

—
—
—
—
—
—
—
—
—
>
—

File: KR&VFU

Ruthor: RS

Description: Puts the VF nachine into urite node and falls into
VEDDL2.

Input:
R36/37 Devfile line pointer

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
t % 0 1f HPIL error occurs

Routines Called:

VFDOLZ

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$-mmbmmmgt domm-mmeae ¢ e

| |0123]4567] | lin |out| Legend | | Entry
bmmmpmmmm g - b o=e¢e

IRO | xx]| | |Node| b | | d-BCD | |
IR10] I I [€ | | o] b-BIN | |
|R20 | | I IDRP | | x | 1-1nput| |
[R30 | | 11 IRRP | | x | ||
| k40 | | | $ommcmeccemeceaeee + |
|RS0| | x| | MELJSB Needed: x | |

|R60 | | | dommemecme+ |
[R70 | I l | HANDI Called: ||
b---- docmmeee¢ deememeeeeaan G

e
c
—
—
—
—
—
—

A
—
—

Q0QQ0QQQ
0Q0000Q0QQaaaa

0000000000000000Q0
Q000000000000000000000

Q0 000000000000000000000QQ00
\Q\ 0000000000Q0QG000GA00AQ0000AAGA Q.
Q0\ 0000Q00000000Q00000000000000QQ0AA\ 00
Q0\ .0000000Q0000000Q00000000000000000A0YN \00Qa
Q000..__..000000000000000Q000C0000Q0Q00000000QQ00000. _. 000Q0Q]
00Q000000Q000000Q00" \0000000000000000Q0000000000Q0000A00A.

QoooQo0aQeQ” 00000000000000000Q0000000G0Q00A000A000AA
e \0000000000000000000000000000" "0’

Q000C00202000000000000QQ0/
\0000000Q0/"0000Q000Q0G/
\Q00G0Q 10000QQQ
0Q0QaQ| 000/"
0000| . 00
0000 | OVO0
000| /
000
100]
|000
000000
00000000

"00000

| |) ((_) kangaroo ()) _ | |
|) nenory OW
| —_7 nanagenent [I |
Io-7 docunent C |_ol

“Nenories, light the corners of ny nind"
-fron the novie "The Hay We Were"

| The Overall Layout of Menory

Menory is divided into the eight regions. Each of these regions
will be discussed in the paper to follou. But first to give you an
1dea of how it 1s all laid out, here 1s a snall nap of nenory.

$mmme+ high addresses
I |
| GOSUB/RETURN |

| stack |
| |
e+

I |
| FOR/NEXT |
| and |
| RESHEN |

| |
#ommoo+

|
| V VVV VY

| unused

l
|
|

nerory
A A AN

| l
| I
| stack |
I |
dmmme+

I |
| files |
l I
$mmmeeeaee +

I l
| directory |
I
dommmmmceccmmeaes +

| I
| systen |
| variables |
| |
$ecemeccecccccaaaas + lou addresses

Basically nenory consists of tuo areas of nenory grouwing touard
each other wuith the unallocated region 1n betueen. The allocation and

Roo Memory Docurent hp pirate 7/29/1982 page 2
release of nerory 1n each area 1s under the control of specific nenory
routines. I would caution the user not to try to circunvent the use of
these routines since the slightest nudge to the precarious balance of
Kangaroc'¢ nenory could be fatal.

For the purposes of this paper up, higher and above nean larger ad-

dresses and doun, louwer,and belou nean smaller addrecces. The conven-
tion of aluays drauing nenory uith the highest addresses at the top of
the paper wuill be adhered to throughout this docunent. Top and botton
usually refer to active and nonactive ends respectively of stack-like
structures and do not mnean to 1nply higher or Jouer addresse<. The
tern upper nenory refers to all the reserved nenory above the unuced

area of nerory. The term louer merory refers to all the reserved
nenory belou the unused area of nenory. The inplerentor wi1ll be
distinguished fron the wuser or BRSIC user by being the individual who
prograns in assenbler and interacts with the system at that level.

Roo Mernory Docunent hp pirate 7/29/1982 page 1

| The GOSUB/RETURN Stack

For every pending RETURN of a GOSUB there 1s an entry on the
GOSUB/RETURN stack. The stack grous doun to louer addresses pushing
the RESNEN area before 1t. R GOSUB entry 1s six bytes long and 1s
in the follouing fornat:

offset size function

0 2 relative return address (R10 rel. to RNFILE)
2 2 relative P(R (PCR rel. to RNFILE)
4 2 GOSUB type flag which has one of these values:

1f highest bit O then 1t contains ON
TINER nunber.

1f only highest b1t 1s set then this
GOSUB entry 18 for a regular
GOSuB.

1f highest bit 1s set and. the rest is
nonzero then the nunber 1gnoring
the high bit 1s the relative ad-
dress of the ON ERROR statenent.

The following are sone i1nportant pointers in this reqion of
renory.

LURMER - the highest usable location i1n RAN and the botton of
the GOSUB/RETURN stack.

NXTRTN - the top of the GOSUB/RETURN stack. This 1s uhere the
next GOSUB entry would go.

E.GCNT - offset into the environnent to a one byte quantity for
the nunber of (OSUB's pending 1n the current running
progran.

The routine that both allocates and releases menory in this area
1s GETREN,

GETREM - R positive si1ze allocates menory 1n the GOSUB/STRCK
area. Negative size deallocates the space,

Roo Nerory Document hp pirate 7/29/1982 page 2

| RESMEN RArea

This area is the nost error prone of all the menory regions. The
inportant variables in this region are:

NXTRTN - the pointer to the botton byte in the RESHER area.

LRVRIL - the pointer to the top of the RESMEN area. This 1s
uhere the nost recent FOR entry 1s expected to be found RND
uhere to find the first byte of the most recently allocated
scratch space.

E.FCNT - offset 1nto the environment to a one byte quantity for
the nunber of FOR’s pending in the current running progran.

In this area lives sinultaneously the FOR/NEXT stack and the
scratch nenory heap knoun as RESHEN (reserved memory). Even though
these tuo functions of nenory coexist 1in the sane area, let us
treat then separately for a moment and then resolve the conflicts
that will arise. The FOR entries are placed i1n stack like fashion
in the RESNEN area grewing downuard into unused merory.

FOR entries are 22 byte quantities that contain:

offset size function
0 2 relative PCR (relative to RNFILE)
2 2 relative R10 (relative to RNFILE)
4 2 relative pointer to VPR entry for index variable

(relative to RNFILE)
6 8 terminating value for loop (stack nunber format)
14 3 increnent value for loop (stack nunber format)

FOR entries are created by a call to RSMENM= 1n the FOR token. If
the FOR code attenpts to place a FOR entry for a variable whose
loop index variable 1s already used by a pending FOR then the old
FOR entry 1s deleted uith the help of COPY before the neu one is
created. The top entry 1n the FOR stack 1s destroyed by the routine
EXNXT,

The RESNEN area 1s also uhere scratch memory can be had. R call
to an allocation routine pushes doun the LAVAIL pointer and returns
1t as a pointer to the neuly acquired nenory. When RESHER area 1s
appropriated the arount taken 1s usually added to a running total
kept in the current environnent. A flag i1n the aquisition routine

deternines 1f the size is to be added. When nenory 1s released with
the RELNEN staterment, the arount of nemory that was sunned into the
special location 1n the current environnent will be released.

The scratch nenory 1s wused for internediate results such as
string values returned by functions like C(HR$ and the string con-
catenation operator. Scratch menory 1s also used for formatting
nunbers for output.

The question that nouw arises is how can the RESMEN area contain

Roo Nerory Docunent hp pirate 7/29/1982 page 3

both scratch wnemory and FOR stack? The ansuer 1s: not easily!
Whenever the mnest recent FOR entry needs to be found 1t 1s assuned
that 1t 1s at the boundary of the unused nenory and the RESHEN
area. This 1nplies that there 1s no scratch nemory on the top of
the FOR stack to impede the fetching. This 1s done by calling REL-
NEN appoxinately one 21llion tines throughout Kangaroo's 1inter-
pretation loop' For instance, RELNEN's can be found at the end of
each statenent, including at-signs, and before each expression in 3
FOR statenent. The effect that this has on the 1nplenentor 1is he
can't, for exanple, assune that any inforration placed i1n the RES-
NEN area w1ll survive over staterent boundaries. This uas necessary

houever to allou NEXT, FOR, TO and STEP to get at the values in the
FOR entry uhich can only be found by discovering uhere the top of
the FOR stack 1s. RELMEN’s are found:

1. 1n - the begianing of POPENV. This routine 1s called for ex-
ecution of the END token.

2. at GORTIN, uhich 1s called at the end of lines, NEXT, GOTO,

and GOSUB.
3. at the RTSIGN code.
4. 1n GTFOR which 1s called at the beginning of the TO and STEP

tokens.

5. 1n the BASIC to TEXT and TEXT to BRSIC transforn code.

To further conplicate things, as mnultiple C(RLLs are nade neu
layer< of FOR stack and RESHER area are laid doun. The size of the
nen FOR stack and the si1ze of the scratch nenory consunned are
recorded 1n each neu environnent. RAfter several calls the RESHEN
area nay look like this:

|
| |
| GOSUB |
| stack |

NXTRTN -> #-----c-commcmcen- ¢+ fron earlier cal-
ling pgn

| FOR/NEXT | (s1zes 1n environnent)

| stack |
$ommmmee+

| reserved |
| scratch |
| Henory |
Yoe+
| FOR/NEXT | fron current progran

| stack | (si1zes 1n environnent)
emmmemceemceee ae +

| reserved |
| scratch |
| nenory |

LAVRIL -> #-----cccmcmeceemnee ¢+

| unused |
| nenory |
| |

|

Roo Merory Docunent hp pirate 7/29/1982 page 4

The 1nportant routines for this region are:

EXN¥T - deletes the top entry of the FOR stack
CTFOF - does a RELMEM ang then fetches the index variable fron

the top entry in the FOF stack.
NORGRE (local label 1n RHZFOR) - creates the FOR entry.
RSRER- - reserves RS6 bytes 1n the RESNEN area recording the

anount stored in the enrvironment.
SPEN= - reserves FSb bytes 1n the RESNEN area recording the

anount stored 1n the environnent 1f the £ flag 1s set.

RESCON - reserves the ariount of nmerory specified :n the byte
follousng the JSB to RESCON.

Roo Menory Docunent hp pirate 7/29/1982 page 5

| ‘ The Unused Menory

The ’unused nenory' 1s the part of nmernory that falls betueen the
dounuard grouing RESNEN area and the upuard grouing R12 and file area.
For the nachine to continue to function there 1s a mininal anount of
unused nenory that nust exist. It 1s from thic space that menmory uill

be allocated for the runtine stack (R12) and for storage of the cal-
culator progran tokens. To do this, as menory 1s allocated the
distance betueen LAVAIL and T0S must and uill be kept larger than the
value stored 1n location LEEWRY (see the section on memory overflow).

Relevant variables and pointers in this part of menory are:

LRVRIL - the lower bound of the RESHEN area.
R12 - the register that points to the top of the Kangaroo operand

stack
10S - (short for Top Of Stack -old capricorn terminology [n1s-

guided terninology -editorial]) the pointer to the BOTTON of
the R12 stack.

LEEWRY - contains the required amount of separation betueen T0S
and LAVAIL to prevent memory lockup.

Roo Menory Docurent hp pirate 7/29/1982 page 6

| The R12 Stack

The R12 stack 1s wused during Kangaroo execution as the operand
stack for the token based nachine. The R12 stack 1s also used by the
deconpiler as a stack to disentangle the operators and operands fron
their RPN 1nternal forn. Firally the R12 stack 1s used during parsing

3s the place where the token strean 1s constructed before being placed
in the desired file.

Since the R12 stack is the uorking stack of Kangaroo, 1t 18 impor-
tant to knou when Kangaroo clears 1t. This 1s done by setting R12 to
10S (see SETR12). The R12 stack 1s cleared i1n the following places:

at ENDIT when the interpreter loop 1s finished.
at SETINI to im1t the parser for parsing 3 line.
at PRAREX uhen we exit the parser.
at the end of pointer allocation (PTRALO) 1f there uas a error.
at the end of deconpile.
1f there was an error or attn was hit in the INPUT statenent.
Af FLOKD or FLORDT fails the type test.
at end of statenent 1n RTISIGN and GORTN.
at the end of the TRANSFORM connand.

0. even though this is already handled in sone cases, the RTSIGN
code 1s called in the ERROR code thereby clearing the R12
stack.

-
O
O
0
V
A
N
A
N
B
W
N
—

During the running of the interpreter the operands for the tokens
are placed on the R12 stack. The token that renoves the operands nust
know what type of operands are there in order to remove then; houever,
the type 1s not stored explicitly on the stack. To deternine the type,
the token usually either assumes that the operands are of a fixed type
in a fixed order or by looking at hou nany bytes are stored on the
stack deternines what 1s on the stack. For exanple nunbers go on the
stack as 8 bytes regardless of uhether they uere generated by a real,
integer or short variable. ON the other hand, strings go on the stack
as 2 bytes of address and 2 bytes of length,

Inportant pointers in the R12 stack are:

R12 - the top of the R12 stack.
T0S - the botton of the R12 stack. This 1s good for protecting

earlier R12 stacks fron current work. NOTE: 1f the user leaves
sonething on the R12 stack belou TOS no one will clean up 1t
for hin.

NXTHEN - the top of the environnent stack.
STSIZE - an archaic but st1ll used pointer to the line length of

the statenent being currently parsed onto the R12 stack. This
1s used by the parser and line editor.

There are tines wuhen the user nay uant to protect the contents of
the R12 stack against being cleared or misused by by sore internediate
routine. This can be acconplished by renenbering the current value of
T10S 1n a private location and noving TOS up to R12. Since T0S 1s the
botton of the stack the stack 1s nouw effectively enpty and the inter-

Roo Menory Document hp pirate 7/29/1982 page 7
nediate routine can be called. Be sure that T0S gets restored' If the
internediate routine noves nenory around then an absolute pointer to
the old TOS can’t be saved but we might suggest that the inplenentor
save the size of the R12 stack.

current | | I
stack | | R12 |

| | stack |
10S--> | I

ommmmmmemeeee o ae +

/| |
saved | | old | R12
stack | | stack |

|1 |
\ #--cmmemmmeet+

It used to be the case that string pointers and l-values uhere
placed on the stack as absolute addresses. This 1s not a safe. Hitness

the case 1n which a staterent nakes a function call. The function will
save the contents of the R12 stack. The function nay then perforn as
nuch merory nanipulation and evecute as nany statenents as 1t chooses
before returning to use the data that was saved there. Indeed at the

end of each statement the R12 stack was cleared but not conpletely
because the old R12 stack stil] presists belou TOS. Upon return to the
caller the addresses in the old R12 stack will be expected to be
valid. Not so. Our function noved all the data that ue uere pointing
to out fron under us.

In order to alleviate this problen addresses that would point doun
into environrnents that 1s areas that might nove during nmerory alloca-
tion will be nade relative to the value of R1Z at the tine they are
placed on the stack. The assurption here 1s that the distance betueen

the place uhere the address 1s placed and wuhere the address points
u1ll not change for addresses pointing into the environnent. Note that
this schene 1s of no help to those who want to point into 3 file. He
reconnend that these kind of pointers be relative to the beginning of
the file and a filenane and offset take the place of the address. For
pointers to other areas of nenory absolute pointers uill work fine.

There 1s a convention for placing relative addresses on the R12
stack. The convention 1s, 1f the value 1s positive then 1t 1s rela-
tive, 1f 1t 1s negative then 1t 1s absolute. Note, this prevents one
fron having absolute pointers to the lower 32K bytes.

Uhen an address 1s plucked fron the R12 stack 1t 1s necessary to
decide 1f 1t 1s a relative address or not. If 1t 1s, then 1t nust be
converted to an absolute address. PUTREL, PUTRDR, and PUTRLH are
routines 1n RHEUTV to help nake the addresses for the stack relative.
GETRUR, GETRDH, and GETRD+ are helpful little routines to pull ad-
dresses fron the stack and mnake then absolute 1f they need be.
Routines that night be useful 1n the R12 stack are:

Roo Menory Docurment hp pirate 7/29/1982 page 8
SETR1Z - a small routine to set R12 to TOS.
EXPAN(- (used i1n the decconpiler) a disgusting routine to allow

non-stack like insertions i1n the R12 stack.
GETROF, GETRDM, GETRD+, PUTFEL, PUTRLW, PUTRDR, - routines for

getting addresses fron the F12 stack,

Roo Menory Docurent hp pirate 7/29/1982 page 9

| Environnent Stack

The environnents contain all the data necessary to run a given in-
stance of a progran and are created one for each 1nstance of a running
progran. In the environnent you will find all the thingse about a
progran that change fron one execution to the next such as the

variable values, GOSUB and FOR counts, DRTR pointers, and ON ERROR
status.

The layout of an environment 1s:

offset sizeequate nod
0 ¢ E.LEN [- length of environnent including the ECB

and divider byte.
2 ¢ E.PREV [- length of previous block. This gives us a

uay back to the previous environnent.
4 2 E.RMEM S - anount of reserved nemory (RESMEN) al-

located for this progran
6 1 E.FCNT S - FOR/NEXT count
7 1 E.GCNT § - GOSUB count
8 2 E.EREX A - the address of code to be executed upon

an ON ERROR
10 ¢ E.ERPC R - the Kangaroo PC after an ON ERROR
12 2 E.ROWm C - ROM nunber of nother progran
14 8 €m0 C - nane of the mother progran
22 2 E.RTN S - relative address for R10 for next startup

of progran
24 2 E.PCR S - relative address of PCR for next startup

of progran
26 1 E.STRAT § - the current value of R16 (the run mode of

the progran)
27 1 E.DRTA § - location in current DATR line
28 2 E.DRTL S - pointer to current DRIR line

nod(1fy) legend:
R - aluays kept up to date
C - established at creation and constant

(exception 1s calc progran)
S - saved 1n SRVENV

Note: ECBLEN 1s equated to the length of the environnent control
block (ECB): which 1s 30 bytes.

Relevant pointers are:

NXTHER - the top of the environnent stack. This 1s one byte above
where the next environrnent will be 1nserted.

FUVARS - a pointer to the ECB of the current environnent to be ex-
ecuted.

FWUSER - a pointer to the bottorn of the environnent stack. This
points to the E(B of the 1dle environnent.

Roo Nenory Document hp pirate 7/29/1982 page 10
Environnents are created by the routine CALL (not to be confused

uith the runtine routine CALL.) When environnents are created they ap-
pear betueen the tuo divider bytes (Here 1s the first exanple of the
use of what 1s called a divider byte. Divider bytes are aids to the
nemory nanagenent routines below T0S and will be discussed in detail
later 1n the section on nenory allocation.) right below NXTREN (see
figure below). The environnents thenselves are pushed and popped in a
stack like fashion though the contents of the environments are likely
to change during a running progran and i1n the case of calculator en-
vironnents even the size will change.

Since environnents are variable sized objects, the push and pop

operation 1s nade more complicated. Rt the beginning of each environ-
nent 1s the size of the current environnent and the size of the
previous environnent. This allous the environment stack to behave nuch
like a doublely linked list.

NXTHEN-> ¢cccccccccnccanaaaa.¢+ <-neuw environnent would
| divider byte | go here
$omemccecmccceacaan+

| |
| current |
| running |
= envjronnent |

|
FUVARS-> #=--==cccooocmcacann.+

|
+
| | |
| calling |
| progran’s |
| environnent |
I |
¢

‘
..... ‘

| |
I idle |
| environnent |
' |

FUUSER-> #-==mmmmmmmmmmmmmeee .

Routines that are useful here are:

PUSHEN - called 1in the environmental allocator, 1t places an en-
vironnent for a given progran of a given progran status
(E.STAT).

ENVALO - environnentally allocates a program, that is, 1t exanins
a pointer allocated progran and 1n turn sets up an appropriate
environnent for 1t including the setting of variables to un-

Roo Merory Document hp pirate 7/29/1982 page 11
def1ned.

CALL - the routine generally called to pointer and environnentally
allocate a progran. This calls PTRALO and ENVALO. This routine
should not be confused with the runtine routine "CALL."

NOVENV - moves the variable values fron one environment to
another. This 1s used to move the calculator values fron calc
environnent to another (see theory of operation).

RDJENV - is wused to change the size of the environnents uhen the
above routine 1s used.

POPENV - renoves the top environnent fron the stack.
CLRENV - reroves all but the botton environnent from the stack.

The botton environnent 1s a special environnent called the 1dle
environnent and nust not be renoved.

INENV® - deternines 1f an environnent for a given progran exists
soneuhere 1n the environnent stack. This routine 1s jrportant
to knou 1f the user 1s going to change sonething in that
progran destroving 1ts ability to be restarted fron the infor-
nation in the environnent.

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

Roo Merory Document hp pirate 7/29/1982 page 12

| The File and Directory Region

The area belou FUUSER and above the systern RAN 1s the realn of
files and their directories.

Files are the largest nared. nanageable unit of nenory. R progran
in Kangaroo 1s a file. Data, syster information and text are also

stored 1n files. If the user or inplementor wuants to reserve sone
nernory for long tern use they generally allocate a file.

The fi1le area consists of a directory at the botton which 1s a col-
lection of directory entries and above 1t, a region of files pointed
to by those entries.

When a file 1s created a directory entry for it 1s placed at the
BEGINNING of the directory and the file 1tself 1s placed at the END of
the fi1le space followed by a divider byte. The end of the directory is
narked by tuo bytes of zero. These tuo bytes would fall 1n the address
field of the next directory entry but since no file will have an ad-
dress of zero, this 1s a unique narker. (see diagran)

FUUSER-> #----o-cccocoocconne + high addresses
| divider byte |

next file-> #------ccocoooooooo +
| divider byte |
$mmmmmccmecaccaeees +
| |
| last file |

| |
| |

entered
L+

$-mccecececcemee+ |

| divider byte | |
dmmmmmmmmmmceeaeo + |

l I I
| second file | |
| | coeeme |
$rmmmemmmmcmmcaaean + ||
| divider byte | ||
$mmmmmmmeeeceeeeee + | |

| | | |
| first file | |

I |-]
$ommmmenenneesoeesRN

/| 00 00 | I 1
| #--emmmmemmeomeee + 1
| first entry | o---+ | |
I' ||

directory : | second entry | o----- + =
$emmmecemme4+

|| last file | ------- +
|1 entry |

DIRECT-> \ ¢-----e-mmommmeoeeee + low addresses

Roo Merory Docunent hp pirate 7/29/1982 page 13
The fi1le mnay contain the infornation desired by the user but 1t 1s

the directory that contains the 1nfornation about the file. In the
directory you uill find the location, size, type and nane of the file.

The directory entries have the follouing fornat:

offset si2e function

0 2 DR.LOC - the absolute addrecs of the file
2 2 DR.SIZ - the (binary) size of the file
q 1 DR.TYP - the access bits for the file
5 1 DR.TNR - the (RSCII) narne of the type of the file

6 4 DR.DRT - the date of creation
10 8 DR.NRN - the (RSCII) nane of the file

The address of the file i1s absolute and therefore nust change 1f
nenory 1s allocated belou the the file. The routine RDJUST along uith
adjusting a snall set of critical systen pointers will handle this up-
dating problen provided the systen nerory routines are called. Since
the directory 1s ordered fron highest address files to louest as one
preceeds 'up’ through nernory, the RDJUST routine proceeds 1in this
direction also updating the absolute addresses of the files t1l 1t
discovers the file in which the change uas nade. At this point 1t up-
dates the size of the file. Rs a result, the file pointers and sizes
renain constantly up to date. WARNING: THE SYSTEM FILE MANRGERENT
ROUTINES RRE INTERRUPTRBLE AND THEREFORE FILE INFORMARTION NAY NOT BE
VALID AT INTERRUPT TINE. Rn address of zero marks the end of the
directory and the renaining portion of the directory entry 1s not
present.

The next tuo bytes in the directory are the size of the file EX-
CLUDING THE DIVIDER BYTE. File size 1s a binary nunber.

The next tuo bytes together are refered to as the type bytes. In
the first, each bit is intended as an access permission flag or to in-
dicate sone other property of the file. The second byte 1s used to
store the nane that 1s to be used by the CRT progran. Often options
can be overridden with the 'in RAN' bit. For example, 1f the RAM bit
is NOT set (that 1s the file 1s 1n ROM) and the list bit IS set then
the file cannot be listed. If this file is copied into RAN, the systen
routines for the copy u1ll turn on the RAN bit exposing the list bat
and the file can be listed.

The follouing options are overridden by the RRM bit being off. Rlso
provided 1s a table of useful equates for setting the access byte.

Roo Merory Docurent hp pirate 7/29/1982 page 14

-- OPTIONS OVERRIDDEN BY THE RRM BIT BEING OFF --

edit, list, purge

-- BIT NASKS FOR RACCESS TYPE BYTE --

TYRAN? EQU 100000008 in RAN (NUST be set 1f 1n RAN')

TYROR? EQU OO0OO000B in RON

TYRUN? EQU 010000008 test 1f file can be run
TYEDT? EQU 001000008 test 1f file editable
TYLST? EQU 000100008 test if file 1s listable
TYPUR? EQU 000010008 test if fi1le can be purged
TYCOP? EQU 000001008 test 1f file can be copied
TYLIN? EQU 000000108 standard lined file?
TYT0K? EQU 000000018 test 1f file 1s token f1le
TYPRI? EQU 001101008 test 1f private
TYDAT? EQU 011111108 data file for PRINTH/RERDN
TYLF1? EQU 000011008 is it LIF type 1 file?

The second byte tells the systen uhat type to present to the user
as the type of the file uhen asked 1n a CRT connand (the type nane
byte). For convenience this byte contains the RSCII letter that will
be printed. If the file is a systen file 1t WILL NOT BE PRINTED in the
catalog listings. Systen files are designed to be unseen by the user.

The user can use the following equates to fornulate their oun type
bytes.

-- JUST THE NARE BITS --

TYNSYS EQU 000000008 nane of systen type
TYNRPP EQU 'R’ nane of appointnent type
TYNBRS EQU °'B’ nane of basic type
TYNLIT EQU 'TI’ nane of LIF type 1 file
TYNLEX EQU 'L’ nane of LEX file type
TYNRON EQU 'R’ nane of ROM file
TYNTEX EQU °'T’ nane of text type
TYNVOL EQU 'V° nane of volatile file
TYN??7 EQU '?° nane of stranger type

Roo Menory Docunent hp pirate 7/29/1982 age 15
-- SOME COMMON TWO BYTE BRSIC FILE TYPES --

< nane > caccess>
NRELPCLY

TYCALC DRD (TYNSYS*100H+111000108) filetype for calc
TYSYSH DAD (TYNSYS*100H+000000008) filetype for syst
TYTEXT DAD (TYNTEX*100H+101111108) filetype for text
TYBRSC DAD (TYNBRS*tOOH+111111108B) filetype for BRSIC
TYAPPT DRD (TYNRPP*10CH+100011008) filetype for appo
TYLEXF DRD (TYNLEX*100H+00001001B) filetype for LEX
TYLIF1 DRD (TYNLI1*100H+100011008) filetype for LIF

TYRONF DRD (TYNFOR*100H+100011008) filetype for RON
TYDIRG DAD (TYNSYS* 100H«00GC1000B) filetype for diagnotic ROM

The tine/date field contains the tine and date encoded nunber as
the offset fron the beginning of the century in 2**-14 seconds. (see
list of routines for time conversion subroutine)

The nave 1s stored in an eight byte field an RSCII. Even though the
nane of the file nay have been given 1n louercase by the BRSI(user 1t
u1ll be placed 1n uppercase by the systen, left justified and blank
filled 1n the nare field. The assenbler inplenentor, houever; can
create files uith any eight characters.

If the filename begins with a period then the file 1s a volatile
file. A1l volatile files are disposed of that are not accounted for by
a ROR during the V.VOLT HRANDI call at warn start. This gives user and
inplerentor alike a sinple nechanisr for creation and distruction of
scratch files. Note that since the volatility of the file 1s deter-
nined by the narme alone, a file of any type can be volatile.

Another filenaning convention 1s used for systen files (DR.TNH=0).
This schene adds security by having louercase nanes for wuser 1nac-
cessible files. Since the filenanes specified by the user are all con-
verted to uppercase by runtine filenane parsing routines, the filenane
can never be specified. This convention prevents a ’'file already ex-
1sts’ error fron occuring for a file nane the user can type 1n but
does not appear 1n a catalog.

-- R LIST OF INTERNAL FILES --

calcprog - nane of calculator progran. This 1s a nornal BRSIC file
uhose only access security 1s through the lowercase nane only.
This file 1s created at coldstart and 1s destroyed and
recreated during a CLEAR VARS.

devfile - a lined systen file that contains the assignio inforna-
tion. This fi1le 1s created when the first assignio 1s done and
1s purged uhen an assignio to '’ or * 1s done.

10file - lined systen file uith all the assign ¥ infornation 1n
1t. This file 1s created at coldstart and 1s never destroyed.

appt - this file 1s a file of type appointwent. It 1s not a lined
file and 1ts fornat 1s a nystery to this author.

tiners - this lined systen type file contains ON TINER informa-
tion. It 1s created when the first ON TINER 1n a program 1s ex-
ecuted. It 1s destroyed uhen the progran 1s deallocated in DAL-
LAL (a systen routine for deallocating all prograns 1n nenory).

keys - a text file that contains the encoded DEF KEY information.
This file exists only when at least one key currently has other
than default assignnent. This file though 1t 1s 1n lowercase 1s

Roo Merory Docurent hp pirate 7/29/1982 page 16
ucer accessible though the special filenane keyuord "keys".

workfile - a standard BRSIC or TEXT file that 1s used as tenporary
uorkspace for the wuser. The workfile 1s never explicitly
referred to by nane but rather 1s created as the default
filenane for the EDIT connand. The file nay thereafter be
referred to by virtue of the default name for nost file con-
nands being the current edit file. The workfile was created to
help control the proliferation of scratch files in a bhighly
nenory rectricted systen.

Roo Merory Document hp pirate 7/29/1982 page 17

| Systen RAN

This 1s an area of 1354 bytes starting at 8000(hex) that contains
1nportant systen variables such as the 1input buffer, file pointers,
flags, the (PU’'s subroutine stack (R6 stack), and many, nany nore.
Collect the whole set. No purchase necessary. This area does not nove

about. The fixed value DIRECT points to the first directory entry, one
byte past the systen RRN.

Roo Menory Docunent hp pirate 7/29/1982 page 18

| ROM Is Like RAM Except ...

Kangaroo ROMN 1s like RAN 1n that each ROM contains a conplete file
directory and corresponding set of files, i1n the nuch sane fornat as
1n RAN. (see Joey's Big Book of ROMs) ROM 1s not like RAM in that
these files are not aluays searched and the incorperation of ROM files

into the RAN systen 13 as transparent as 17mn lead plate. For exanple
there are routines for seaching just the RAN file directory, for
searching the ROM directories and for searching both. (When searching
both, the RAN files are searched first.) The inplenentor nust be sure
when writing his code that the routines he chooses search the desired
directories. The lesson to be learned here is: when using systen
routines uith the 1ntent of then working for both ROM and RAM examin
then carefully to see 1f they provide for ROM files. The routines you
choose nay only work in RAN,

Roo Nernory Docurent hp pirate 7/29/1982 page 19

| Rcquisition And Release Of Menory

Mermory is acquired for one of tuo general areas of nmemory fron the
unused central region. As nenory 1s requested, each region will expand
to absorb more of the wunused niddle portion. (see nenory layout
diagrans).

L+ large addresses

I |
| UPPER |
| HENORY |

| |
ooteet+

|
P
v v v

unused

|
|
|
|
|

space |

|
|
|
|
|

4o ccmm emeoo+

I I
| LOWER |
| REMORY |
I I
4emccccccecarceacee- + louer addresses

Merory above the wunused portion 1s aquired by the routines
specified 1n the sections above concerned with this area. The R12
stack 1s generally pushed and popped like a8 stack, except 1n the case
of the deconpiler; therefore, outside of that case there 1s no need
for special allocation and deallocation routines. Nenory belou the
unused portion and under T10S 1s ultinately allocated by the RLLOC
routine and released by DELETE. Both these routines rely on RDJUST and
copy. .

The COPY routine 1s a general mnernory copy routine that uill copy

fron lower to higher or higher to lower addresses uithout fear of a
propagating copy. flost large sections of data are noved about uith the
(OPY routine.

There 1s no fragnentation of menory on kangaroo and no garbage col-
lection. The reason for this 1s that all of the allocations and
releases of menory cause all the data contained in the nenory above
that altered address and below R12 to be noved up or doun accordingly.
This neans 1f there are critical systen pointers into these noved
areas they nust be adjusted. RDJUST 1s ultinately called by any menory

Roo Menory Docunent hp pirate 7/29/1982 page 20
routine that may nove nenory.

The follouing pointers are adjusted by the routine RDJUST so that
they are aluays valid even though merory nay be noved about as the
systern runs. Renenber this 1s guaranteed only as long as the systen
inplerentor yces the mermory nanagrent routines provided (e.g. DELETE,
INCEFT, ...) Belou 1s a tatle uhich indicates uhat relation 1¢ tested
in RDJUST to deterrane af the qiven systen pcinter 1¢ to be adjusted.
(e.g. 1f location of adjustment 1s < EDFILE then EDFILE 15 updated.)

pointer adjustnent
nane relation

EDFILE
PRFILE
RNFILE
KLUDGE
R10
PCR
FUVARS
FULVAR
STSIZE
FUUSER <

NXTHEN aluays
108 aluays
R12 aluays

A
A

A
A

A
A

A
A

A
N

"

One of the inputs to nany of these routines 1s the address at uhich
to 1insert or delete infornation. The address 1s assured to point to
the first byte of uhere the infornation 1s to be placed or deleted. An
anbiguity arises for ADJUST 1f this address 1s at the beginning of a
file. Is the 1infornation inserted in the file or just below the
beginning of the file? This dilenna is resolved uith a DIVIDER BYTE.
There 1s a byte called a divider byte after each file (they also ap-
pear 1n the environnent stack). The divider byte belongs to no file!
It 1s used sinply as a convenience for insertion and deletion. Fur-
therrnore the divider byte has and can have no reliable value. It con-
tains junk!

RAs an exanple of the use of the divider byte assune ue have an ad-
dress for 1nsertion that 1s the divider byte at the end of the file
then the 1nsertion takes place at the end of the file. If on the other
hand the insertion 1s nade after the divider byte then 1t 1s in the
follouing file.

The out of mernory condition occurs when the distance betueen T0S
and LAVRIL would be forced to be less than the value stored in LEEHRY.
This 1s a guarantee that there 1s at least LEEWRY bytes for the R12
stack.

LEEMAY 1s 1n1t1alized in the calculator 1nmitialization routine SET-
CAL. This routine 1s called on coldstart and during a CLERR VARS con-
nand. The starting value 1s 320042560 which 1s equated to LENYSZ. The
320 1s the wuorst case requirenent for the size of the R12 stack. No
nachine function can generate nore than 320 bytes of stuff on the R12
stack. The 256 1s the naxinum s1ze of a calculator staterent.

When a line in the calcprog file 1s edited. the size of the line is
subtracted fron LEWYSZ and placed into LEEWRY. By aluways adjusting
LEEWRY by just enough for the calculator statement we guarantee that
there 1s aluays roon for 1t.

Roo Nerory Docunent hp pirate 7/29/1882 page ¢1
When the creation of an environrent 1s attenpted for the calculator

progran and 1t fails to fand enough roon, LEEMRY 1s reduced by the
length of an enpty environnent (ECBLEN+1) and the creation 1s again
attenpted. This 1insures that the calcprog, even though possibly
restricted to no variables, will be able to run.

Roo Memory Docunent hp pirate 7/29/1982 page 22

| The Birth and Death of Environnents

An environnent 1s a progran’s activation record. For every instance
of a progran, an environnent can be found. The environnents are stored
in 3 stack 1n the area krou, logically enough, as the environnent
stack. In this section ue uill be looking at the environnent stack's

relation to the execution of BRSIC tokens.
Uhen nothing 1s executing the environnent stack contains only the

‘1dle’ environnent. The purpose of this environnent will be nade clear
later.

Uhen a progran runs, an environnent 1s created, placed on the en-
vironnent stack and assoclated uith the running file. The environnent
contains the BASIC variables and inmportant systen variables necessary
for the BRSIC progran's. execution. When the progran reaches 1ts END
statenent the environment 1s renoved from the stack and execution 1s
resuned for the environnent beneath. Here ue uncover the 'idle’ en-
vironnent uhich, by design, stops further execution of tokens.

In the case that during the execution of a progran, another progran
is called, the neu prograns environnent 1s placed on the top of the
stack covering the environnent belou. Hhen the called progran reaches
1ts END statenent, 1ts environnent 1s poped of f the stack and the
calling progran 1s resuned.

Since the state of a BRSIC progran 1s stored in the environnent,
recursion 1s sinply a matter of placing another environnent on the

stack associrated with the recursive procedure.
Calculator execution 1s an unfortunate departure fron this. When

the user types 1n a calculator expression 1t 1s stored in the file
'calcprog’ which 1s then run. R calculator environnent 1s created and
destroyed during this execution.

In the rmidst of this devastation of environnents one night ask; hou
do the calculator variables survive? Calculator variable values are
saved in the 'idle’ environment uhich 1s guaranteed to aluays exist
(exculding CLERR VRRS). There are tuo rules that govern the nmovenment
of the calculator variable values. When a calculator environnent 1s
created the calculator varijable values are noved fron the previous en-
vironnent whose running progran i1s 'calcprog’. (The progran associated
uith the ’1dle’ environnent1s 'calcprog’ so that when the values are
saved 1n the ’'idle’ environnent, they can be found.) The second rule
1s: when 3 calculator environnent 1s popped off the stack, the cal-
culator variables are noved to the calcultor environnent that is
highest in the environnent stack. The effect of these tuo rules 1s
that the calculator variables have a tendancy to 'float’ 1in the top-
nost calculator environnent.

Since, unlike a regular progran, a calculator progran can be
changed while 1ts environnent 1s on the stack, a notation has been
developed to prevent the continuation of environnents that are no
longer valid. These environnents are called deactivated environnents
and are narked by having their status byte set to DRCSTS (a 1 byte e-
quate). When the environnent to be recovered after the execution of an
END statenent 1s a deactivated environnent, that environnent 1s popped
off, restored (see RESTEN) and then popped off and 1gnored. Control
passes though deactivated environnents as 1f they ueren't there!

Roo Merory Document hp pirate 7/29/1982 page 23
Even though an environnent 1s deactivated; 1t nay contain the cal-

culator wvarjable values while other environnents are running. Deac-
tivated environnents are popped off under the sane rule as netioned
above for regular environnments.

Roo Merory Document hp pirate 7/29/1982 page 24

| Rerory at Coldstart and Warmstart

During the warnstart routine, WAKEUP, menory 1s checked to to see
1f any uas added and checksunned tc to see 1f any was danaged uhile we
uere asleep. If there 1s lesc nenmory or the checksun after cleep did
not natch the checkeun before cleep then sone data 1¢ assuned to be

lost and the nachine 1s coldstarted. If there 1s nore nerory than uhen
ue went to sleep, the wupper nenory area from LRVAIL to LWAMEM 1s
copied to the neu end of nerory.

At coldstart all nerory fron the top of the R6 stack to the end of
nernory 1s 2zeroed, the file structure 1s rebuilt, and upper nenory 1s
in1t1alized to enpty. The calcprog, workfile and 1ofiles are then
created 1n that order and the idle environnent placed i1n the environ-
nent stack.

Roo Merory Document hp pirate 7/29/1382 page 25

| The Lined File Fornat

One of the nost popular file attributes 1s the lined file at-
tribute. These files contain nunbered variable length records and are
of the s<sanme forn as BRZIC, test and csone sveten filec. The advantage
this attribute offers to the 1nplerentor 1¢ that he will find nmany

systen routines designed to nanipulate these kinds of files.
Rs an exanple the timer file 1s a lined file. The tiner nunbers

correspond to the line nunbers, so that routines for insertion, dele-
tion and searching by line nunber could be used to reduce inplenenta-
tion tine and conserve code space.

Lined files have a ten byte header called the progran control block
(PCB). This block 1s wused by BRSIC files alone even though all lined
files have this block. For a BRSIC progran the elenents of the block
have the follouing purposes:

EQU FOR BYTE DESCRIPTION
OFFSET NO.

P.LEN 0/1 length of pgn and PCB
P.PLEN 2/3 length of var pointer area
P.CLEN 4/5 spare for use with CON
P.ELEN 6/7 length of environnent area
P.SPAR 8/9 spare for use with CALL

Total length: 10 bytes equated to PCBLEN

The renainder of the file consists of records called lines. R line
begins uith a tuo byte line nunber 1n BCD and 1s followed by the one
byte length of the renainder of the line. This means that lined files
can contain no records longer than 255 bytes.

The lines, which mnay begun numbering uith zero, nust be 1n in-
creasing order with no duplicates. There 1s a mandatory trailing line
on all lined files called the end of file line. The end of file line
1s line nunber R999 and 1s a total of five bytes long including the
line nunber and length. The DAD ENDLIN 1s a global set equal to the
end of file line nunber and at the address BRSEND 1n the systenm is
stored the five byte EOF line. Even though the EOF line 1s never
printed, 1t does serve tuo useful purposes. The first 1s to tell
routines that loop though the lines of a file uhen to stop. The second
1s to act as an invisible END to BRSIC progrars since the renaining
bytes of the EOF line are an END token and an EOL token for BRSIC.

R sanple fi1le night look like this:

Roo Menory Docurment hp pirate 7/29/1982 page 26
oeeeeaas +

| |
| |
| |
| line 2 |
| |
| |

[PCB |
beginning--> #----------oooooooo- +

Note that an enpty lined file nust be at least 15 bytes long since
both the EOF line and the PCB nust exist.

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

Roo Merory Docunent hp pirate 7/29/1982 page 27

| File and Progran NMernory Routines

The user generally uishes to do nore than just allocate sone space.
He nay uish to create a file, insert a line 1n a lined file or replace
an existing line. Many different flavors of acquisition and release
routines are provided for by the systen. The inplenentor 1s encouraged
to look into what routines are available before inmplenenting his oun

since the nenory nanagerent routines supplied by the systen often up-
dete critical "syster pointers” as nenory 1s noved. The implerientor is

also 1ncouraged to use file types that already exist since there are
nany routines available for dealing uith then. The concept of a lined
file 1s particularly useful (see section on file layouts) since there
are nany routines already present in the nainfrane to deal with then.

The following 1s a list of design assumptions used 1n construction
of the systen’s nenory routines.

1. Nost of the nmeriory routines assurne BINRRY NODE'
2. Nost nerory routines that take a size, take a signed two byte

nunber for the size.
3. It 1¢ assuned that one can urite to address O safely.
4. The acquisition and release of merory 1s controlled by the

nenory nanagerent routires provided for by the systen.
5. It 1s assumed that there 1s only one file 1n RAN of a given

nane.
6. There 1s at least one file 1n the systen.

LIST OF RAINFRANE NENORY ROUTINES

--- nenory 1nitialization ---
BOUND - checks to see how nuch RAN 1s available to the machine. This

routine 1s used 1n the wakeup code and at coldstart.
CHECK - checksuris all the nenory fron a little above the R6 stack up to

LUARNEN

SURIT+ - checksuris a region of nenory
SETCAL - sets up the calculator progran and creates the 1idle environ-

Hent,

UPSET - 1n1t1alizes the upper region of nenory.
FLINIT - 1n1tializes file systen (that 1s the area belou R12.)
136.56 - zeroes the nenory fron addresses R36 to RS6-1
ZERD1- - fills an area of nemory uith copies of a bit pattern in R[RO]
IRON1- - fills an area of neiory uith copies of the 8 bytes in R60
IROMEN - zeroes or blanks an area of nenory
SETED - sets up @ neu editfile. This routine 1s used when we want to
change edit files.

SETRN - sets RNFILE and RNNRNE syster variables.
SETPR - sets PRFILE and PRNRNE systen variables.

--- rau Werory acquisition ---
ROOR? & ROON' - are there R32 bytes available in louer nernory?
UROON' - are there R32 (unsigned) bytes available i1n lower menory?

Roc Menory Document hp pirate 7/29/1982 page 28
ALCRLL - allocate all free file space.
RLLOC - allocates a specified arount of space in lower nenory.
DELETE - deallocates a specified anount of space in louwer menory.
FPURGE - purges a file.
INSERT 1ncerts data into file space.

--- f1le creation ---
FCRALD - creates a file of & given size.
FCFERT - creates a file of length zero.
FCFNUL - creates a functionally enpty progran file.

--- renaning and copying files ---
FRENAM - renanes a file.
FCOPY - makes a copy of a file under neuw nane.
FCOPYG - does nearly the sare thing

--- line oriented operations ---
FNDLED & FNDLIN - finds line uith a given nunber in the edit (EDFILE)

file.
FNDLPR - finds line mith a given nunber in the paraneter (PRFILE) file.
FNOLRN - finds line with a given nunber 1n the run (RNFILE) file.
FSEEK - finds line with a given nunber starting at a given location.
PREFND - finds preceding line in EDFILE.
PFNOPR - finds preceding line in PRFILE.
SKPLN, SKPLN, SKPLNH - gets address of next line.
IOOPEN - put a record in the 10file.
FSREPL - replaces lines i1n a file given target line nunmber.

REPLIN - replaces lines 1n a file given target line location.
LINLEN - returns the length of a line.
DELLIN - deletes a line in a file given the address.
FOELLN - deletes a line fron a given file at given line nunber.
DELLNS - deletes a collection of lines given by line nunber.
FREPLS & FREPLN - make an entry 1n a line file. If the file did not ex-

1st 1t 1s created.

--- f1le predicates ---
TYPOK? - tests the access bits.
FENPT? - 1s the file enpty?
PTRLO? - asks 1f a file 1s pointer allocated.

--- data novenent prinatives ---
MOVE - noves bytes around in core uithout overurite or deletion.
(OPY - bytes fron one place to another.
RDJUST - adjusts the directory entries and critical systen pointers
during any menory nanagerment routine for louer nenory.

INSRTN - noves (as in the NOVE routine) data in louer menory.
REPLAC - replaces a block of nenory uith another.

--- RESRER stuff ---
RSMER- - acquire temp nerory.
RSHEM= - acquire tenp nerory.
RELAEN - releases tenp nenory.

Roo Merory Docurent hp pirate 7/29/1342 page 29
--- locate f1ile stuff ---
FLOPEN - returns & pointer to the first line i1n a lined file.
FOPRC? - finds a file by nare and tests the access bits.
FOPEN - finds a file by nare 1n RAN only.
GOPEN - finds a file by nane anyuhere 1n RAMN or ROM. This routine

csearches RAN first.
ROFEN - finds a file by nane 1n RON.
GETRID - get current ROM 1d nunber.

--- R12 stach routines ---
PUTREL. PUTRDR. and PUTRL® - routines to help relativize addresses for

the stack,

GETADR, GETRDM, and GCETAD+ - to pull addresses fron the stack and make
then absolute 1f they need be.

ONR127? - test si1ze of R12 stack.

--- filenane parsing ---
FLTOFL - parse for "“file T0 file" syntax.
PUSHF - gets a filenare paraneter or null.
FILNRe, FILNR? & FILNA' - acquire filenanes.

--- runtine retrieval of filenanes ---
FLORDT - gets and typechecks filename or default from the R12 stack.
FLORD - gets filenane or default from the R12 stack.
GETFL - gets filenane fron the R12 stack.
GETNRM - pops filenane of f R12 stack.
GETFST - gets a string of legal name characters.
FLCHR? - 18 a character a legal filenane character.

Roo Mernory Docunent hp pirate 7/29/1982 page X

| List of Important Systen Variables

The 1nportant systen variables are as followus:
LEEWARY - The required distance betueen T0S and LAVAIL. This is the

LEEWRY for the calculator program and the R12 stack.
LURHER - points to just above the highest lccation in RAN that the

systen has.

NXTRIN - the next available slot for a GOSUB/RETURN entry.
LAVRIL - The botton of the RESMEN area which grous doun from the top
R12 - points to the top of the R12 stack (see below)
T10S - renenbers wuhere the botton of the current R12 stack 1s. (T10S

stood for Top Of Stack but 1t 1s the opinion of the Roo Crew that
the active end of a stack i1s the top.)

STSIZE - often points to the size byte of the statenent being cur-
rently processed.

NXTRER - points to the absolute bottom of the R12 stack and the ab-
solute top of the environnent stack.

FUWRRS - points to the currently active environnent block (see
belou). It also acts as the base pointer for referencing renote
variables.

FUUSER - points to the botton of environment stack which is the cal-
culator environnent. It also points to the top of the file area.

PCR - points to the current executing line in a progran.
R10 - points to the next token to be executed.
EDFILE - points to the current edit file.
RNFILE - points to the current running file.
PRFILE - points to a file being processed and like the tuo pointers

above 1s updated by the kangaroo allocation systen. This pointer
1s used as a tenporary working pointer.

KLUDGE - actually doesn’t point to anything in particular. Nou the
R12 stack may contain absolute addresses (as in the case of
strings) these addresses must nou be adjusted but the adjust
routine (RDJUST) DOES NOT go into the stack to change these (cause
A3t can't find then). Houwever, ONE kludge location 1s provided
uhich uill be adjusted as the other pointers. What does this nean
to YOU, the nan on the street? Lets take an exanple, the ON KEY
statement during runtine wu1ll pop the address of the string to be
equated wuith the key. If the key file does not exist, 1t is
created possibly noving the string out fron under the pointer that
you just popped. Hhen the file uas created all of merory after the
file was nmoved up, 1n the address space, to make roon and all the

pointers 1t kneu uere inportant uere adjusted. This did not in-
clude the address you popped off the stack. If you were to place
that address 1n the KLUDGE location 1t too would be adjusted.
Yuchy but functional. What 1f I had tuo addresses you ask? You'll
have to byte the bit as they say and invent your oun horrible
kludge. So there!'

Roo Merory Docunent hp pirate 7/29/1982 page 3

The Kangaroo Mass Storage Driver

Seth D. Rlford
July 27, 1982

HP Confidential

Mass Storage Driver
Seth D. Rlford
July 27, 1982

(HRPTEFR 1

Introduction

The HP-75 (Kangaroo) nass mermory driver allous the user
to store, retrieve, catalog, renane, and purge files on a
nass storage device such as the HP &2161R digital tape drive
(filbert.) The wuser 1s also able to 1niti1alize and pack
rnedia 1n @ nass storage device. MNedia are formatted ac-
cording to LIF level 1 extension.

HP Confidential

4

Mass Storage Driver
Seth D. Rlford
July 27, 1982

CHRPTER ¢

Organization of the Driver

The subroutines that make up the mass storage driver for
Kangaroo are hierarchical. Routines or classes of routines
call louer level routines in order to acconmplish the mass
storage task. Three inportant classes of routines exist in
the driver: the FL machine, the VF nachine, and the lower
level Kangaroo HP-IL routines. This document only discusses
the FL and VF nmachines.

2.1 The FL Rachine

The various features of the nass storage driver are ex-
ecuted by a group of subroutines referred to as the FL
nachine. These routines are called from the i1nitialization
routine (see the next chapter). Exanples of routines which
are classified in the FL group include the code which ex-
ecutes the various forns of copy, rename, catalog, purge,
pack, and initialization, as well as code which finds files
on the nediun. These routines only perforn the high level
decision naking involved i1n their tasks. Subroutines in the
VF nachine are called to actually access the nass storage
device.

2.2 The VF Nachane

2.2.1 Using the VF Machine

Various VF routines require R36-37 to be a pointer to a
line 1n the devfile. Sone of these routines assune that the
corresponding device 1$ @ nass storage device or that the
devfile line has been expanded so that the routines can
store or retrieve infornation about the nass storage opera-

HP Confidential

Rass Storage Driver
Seth D. Alford
July 27, 1982

tion. This block of i1nfornation 1s referred to as the R(CB

(Roofid Control Block). The R(CB 1s stored in the devfile

line starting at byte 7.
fornation used by RSSIGNIO,
storage WPIL connands.
the follouing diagran.

< ' . ' ' ' ‘ 1 ' . . ' ' ‘ ' ' ' .
-

9 ' <
>

| VF.COD ? |
| Location of code |
| to indicate MELRON|
| has setup devfile =
| line.
$mmcmmmmmceccccaaees +
| VF.OL 8 4 |
| Directory location|
$oemmcmcmmeeanaee+
| VF.BIGC 12 4 |
| Directory Saze |
$emcmmmcmcccccceaas +
| VF.LOC 16 3|
| Current Location |
| (byte, rec, track)l
feccccccccaccnccnce~

| VF.NED 19 2 l
| Nunber of records/|
| nediun, starting |
I the count uith 0 |
................... ¢

I VEFLG 21
| Seek flag |
4VVVVVVVVVYVVVVVVVYVYV¢

HP Confidential

6

The RCB

Bytes 0-6 are used for storing 1in-
DISPLAY IS, and other non-nass

1s layed out according to
. . Infornation obtained fron the nediun
is stored in corresponding places in the devfile line.

v

$VVVVVVVVVVVVVVVVYYVS

| VF.RSW 22 1|
| Read, seek, wurite |
...................’

I VF.TIT 23 1
I Tape to tape flag |
...................¢

I VF.COE 24 32|
| Current Directory |
I Entry
----------+

I VF.FTY +10 2
| Type of the the
| current direct-
l ory entry

|
|
I
|

--------- +
| VF.CST +14 4 |
| Current starting |
| address |

|
¢

|

|
B RT

| VF.CLN +18 4
| Current length |
| |
¢ = = e e e e e-- ¢+
| VF.CTC +20 6 |
| Tine Of Creation, |
| YYMNDDHHANSS |
$VVVVVVVVVVVVYVVYYVYS

v

OVVVVVVVVVVVVVVVVVVVQ

| VF.CRP 428 4 |
| Current imple- |
| mentation bytes |
L-¢
| VF.COL 56 3|
| Location of |
| current directory |

| entry |
| (byte, rec, track)|
$mcmmcemcmccecaeas+
| VF.2DE- 59 32 |
| Current directory |
| location #2, a |
| spare dir entry |
$mecmcceccccccccnea- ¢
| VF.RDE 91
| Space for a roo |
| directory entry |
4

Nass Storage Driver

2.2.2 Entering the VF Nachine

Seth D. Rlford

July 27, 1982

VFHI or VFGET/VFAN? are used to 1nitiate connunications
uith a nass storage device. VFHI deternines whether naned
device exists, whether 1t 1s a nass storage device, obtains
infornation concerning 1ts directory start and length, and
expands the devfile line corresponding to the device.
VFGET/VFAN? are tuo routines uhich do the sane as VFHI ex-
cept for obtaining the infornation concerning the directory
start. VFGET/VFAN? are only be used when connunication
uith the filbert 1s desired and the tape 1s possibly not
1nitialized or 1s not fornatted according to LIF. An ex-
anple of this case 1s with INITIRLIZE. In other cases VFHI
1s used because other routines in the VF nachine use the
directory start and length.

2.2.3 Traversing a Directory

Several routines exist which allow traversal of a direc-
tory. VFDIR seeks the nediun to the directory start and
reads 1n the first entry. VFNXDE reads 1in a directory.
VFEOD? deterrines whether the nediun 1s at either the
physical or logical end of the directory. VFLED? and
VFPED" only deternine wuhether the nediun 1s at the logical
or physical end of the directory, respectively.

2.2.4 O0ther Functions

Other routines i1n the VF nachine seek, read, reurite a
directory entry, urite information to the nediun, nonitor
bytes travelling on the loop, translate LIF directory en-
tries to Kangaroo entries and vice versa.

2.2.5 Terminating Connunication

HP Confidential

Nass Storage Driver
Seth D. Rlford
July 27, 1982

Comrunication with the device 1s terninated using either
VFTERR or VFBYE. VFIERM 1¢csues a BOL7 (reuind the tape on 3

filbert) and falls into VFBYE. VFBYE will issue an UNT and
UNL to the loop regardless of the value in KEYHIT. The cas-
sette nust be untalked or 1t nay interfere with Kangaroo's
connunication uith a display device.

2.3 The E Nonzero Return

SNDFRR, the routine which 1ssues HPIL franes fron
Kangaroo returns uith the E flag nonzero in the case of an
error. When 3 connunication failure occurs the nass storage
operation should terninate. Hence nany of the subroutine
calls are folloued by a REN (return on ENO.) The "plus"
routines vere created to solve this problen. These routines
reside 1n the KR&XIT file. R plus routine, FRED+ for ex-
anple, calls FRED. FRED returns uith ENO uhen an error oc-
curs. FRED+ does an extra pop fron the R6 stack in this
case. FRED+ can be called instead of FRED, saving approx-
inately 2 bytes per call. See the KR/XIT file for ad-
ditional details.

HP Confidential

8

fass Storage Driver
Seth D. Rlford
July 27, 1982

CHRPTER 3

Rlgorithns Used

3.1 Sizing a NMediun

Nedia initialized under the LIF level 1 extension contain
infornmation 1n the volune header regarding physical at-
tributes. In addition, 1n order to properly copy files to
the nediun, Kangaroo nust knou the size of the mediun.

3.1.1 Pre-CNOSC Kangaroos

In pre-CROSC versions of Kangaroo the size of the mediun
1s obtained through a binary search for the highest ad-
dressable sector on the nediun. This infornation 1s saved
for future reference when copying files to the nmediun. The
highest sector nunber is also used to incorrectly generate
the LIF Jlevel 1 physical attributes for the volune header.
The attributes are incorrect because the code assunes that
tracks are aluays conposed of 256 sectors. Other devices,
such as floppy disks, have a different nunber of sec-
tors/track. Other floppy disk drivers may require the cor-
rect physical attributes information to properly read the
disk. This problen was fixed for the C(NOSC release of
Kangaroo.

3.1.2 (n0SC and Later Kangaroos

In CNOSC and later versions of Kangaroo, the physical at-
tributes and size information 1s obtained using the DDT6 and
D077 connands, respectively. These connands have been added
to the protocal which Kangaroo uses the connunicate wuith
nass storage devices on HPIL. (This protocal 1s referred to
as the Filbert protocal.) These connands are used sinmilarly

HP Confidential

Nass Storage Driver
Seth D. Rlford
July 27, 1982

to the DDT3 connand: after the connand an RFC and an SDA
are sent, and the device responds by sending an appropriate

strean of data franes anu an enu oOY (ransnission (L10.)

3.1.2.1 Hou DDT6 and 7 UWork

The nass storage device should respond to a 0076 by
sending the 12 bytes of physical attributes data as
described 1n the LIF nanual under "Extensions." The 12 bytes
are sent as they would appear in the volune header of the
nediun, starting uith the nost significant byte of word 12.
Kangaroo wuses the 12 bytes returned by the DDT6 connand
while creating the volume header while 1initializing a
nediun.

The mnass storage device should respond to a DDT7 by
sending 2 bytes uwhich contain the nunber of the highest ad-
dressable sector on the mnediun. The nore significant byte
is sent first. Kangaroo saves this nunber for Ffuture
reference in determining uhether a file will f1t uhen copied
onto the nediun.

Since the nass storage device presuneably "knous" the
fornat of the nediun that 1t 1s using, i1nformation for the
DD16 and DDT7 connands should be sent by the device itself
and NOT read fron the mediun.

3.1.2.2 Filbert and Kangaroo

Filtert (that 1s, the HP-82161R,) was put into production
before the DDT6 and DDT?7 conmands uere introduced, and res-

ponds to then by sending an ET0 only. The Kangaroo nass
storage driver assunes that any device uhich responds to a
0DT6 or DDT? with an ETO 1s a Filbert, and substitutes the
appropriate physical attributes (2 tracks/surface, 1 sur-
face/mediun, and 256 sectors/track) and highest addressable
sector (511.)

3.2 Packing a Nediun

HP Confidential

10

Nass Storage Driver
Seth D. Rlford
July 27, 1982

R fast-pack algorithn is used during PRCK. This al-

gorithn first packs the directory and then the files. (R
slou-pack algorithn would pack 1 file at a tine, updating
the directory after each file.) The fast-pack algorithn re-
quires four passes.

3.2.1 Pass 0O

The directory 1s packed by reading 1n successive non-
purged directory entries 1nto a 256 byte buffer i1n Kangaroo.
When this buffer f1lls 1t 1s uritten back out to the direc-
tory. This continues until the end of the directory 1is
found.

3.2.2 Pass 1

Triples are wused to deternmine where files are to be
roved. Triples are stored 1n tenporary nenory (nemory ob-
tained uith RESCON) and are each 6 bytes long. Each triple
contains where a file 1s on the nediun, hou long 1t 1s 1in
sectors, and where 1t should be. The triples are generated
by traversing the directory.

3.2.3 Pass 2

The directory 1s updated by overuriting the location of
the file uith 1ts present location uith uhere 1t will go
after the pack. The value fror the corresponding triple 1s
used. Rfter this pass and before the next, the nediun nay
be conpletely unuseable.

3.2.4 Pass 3

HP Confidential

n

Nass Storage Driver
Seth D. Rlford
July 27, 1982

In this final pass the files are noved to their neu Joca-
tions according to the values fron the triples.

NOt MAnufacturer Supported

recipient agrees NOT to contact manufacturer

HP Confidenti
al

12

Rass Storage
Driver

Seth D. Alford
July

27,
1982

Invoking the Driver

The code for the mass memory driver lives in a suitchable
RON, referred to as the NMELRON. The code 1s entered either
through a HRANDI call or fron executing a BRSIC keyuword.

4.1 The HRANDI Call

The NELROM contains & RON header and initialization code
sinilar to other plug-in ROAS. The initialization code in-
tercepts the V.FILE HANDI eall. Thas HANDI call 1s
generated from the operating systen for CRT, PURGE, RENANE,
and COPY uhen a device nane 1s found in any of the filespecs
used 1n those statenents. The MELRON initialization code
uses the event nunber and the currently executing token to
generate a call to an appropriate subroutine which will
catalog, purge, rename, or copy a file to, fron, or betueen
the nass storage device(s).

4.1.1 Paraneter Passing

File and device nanes and passuords are passed as
paraneters in (PU registers uith the HANDI call. To allow
the registers to be re-used these paraneters are stored in a
tenporary area referred to as the File Nanme Block (FNB).
When needed these paraneters are retrieved fron the FNB and
a pointer to the FNB 1s passed to those routines uhich re-
quire 1t. The FNB 1s layed out according to the follouing
diagran.

docmmcmcecccceeceaas +

| FLDEVO 0 4 |

| source device for |
| COPY, RENANE |
4oeeeean +

| FLDEVY 4 q |

HP Confidential

13

Nass Storage Driver
Seth D. Rlford
July 27, 1982

| target device for |
| COPY, RENANE |

$omecemeccccncacan.. +

| FLNARN 3 8|
| Filenane for |
| PURGE. |
$occcncoccccmacccann *
| FLNRRO 16 8 |
| Source filenane |
| for RENRNE, COPY |
¢ = e e e oo e ¢
| FLDEV 20 4
| Device for CRT
| and PURGE
@ o e o e e oo

| FDIRO 22 2
| Pointer to roo
| directory entry
| for source file
| for COPY

Filenane for CAT,
target filenane
for COPY, RENRNE

FLWDIRY 30 2
Pointer to roo
directory entry
for target file
for COPY

| FLPUDY 32 4 |

| Target passuord |
| for COPY, RENANE |
$oeemcmcoo+
| FLPUDO 36 q |
| Source password |
| for COPY, RENRNE |
$ocmmemcee+

| FNBSW 40 2 |
| Space for suitch- |

HP Confidential

14

| ing R36/37 -- dev-|
| file pointers |

fass Storage Driver
Seth D. Riford
July 27, 1982

eT+

| FLSFLG 42 1
| Flag for the sare |
| target and source |
| fFilenane’s. |

HP Confidential

15

Mass Storage Driver
Seth D. Rlford
July 27, 198¢

(HRFTER S

Floucharts

5.1 Flou of Control for MELROM

This flouchart describes the flow of control fron the
V.FILE HANDI call into the FL machine.

X R R RR

t1n1t1aly-t
* 2ation *
XA R

Rk R RE R RR AR A K

* Save registers, set up
FNB, dispatch to FL
routine usxng LOOKUP.
A AR A A AR R A AR &

»

»
%

W
¥

»

»

HP Confidential

16

Nass Storage Driver
Seth 1. Rlford
July 27, 1982

| I
v v

£ & % Ak R AR AR2

URGE * * COPY * * RENANE *
B EE R EEEEE

v
BEEEER

Copy file to
or fron RAN,

or copy file

|
|

2R A AR R R AR |

|
|
I

fron mediun tot* |

|
|
|
|
|
|

|
v

#

R
*

|
|
|

* Catalog all * =

|
|
|
|
|
|
|
|

» entries or a *
specified file*

TEEEEEREY

»
¥

¥
W

»

nediun or fron*
filbert to 4
filbert *
R AR R R R ARW

%
¥

W
W

B
W

W
»

HP Confidential

1?7

Nass Storage Driver
Seth D. Rlford
July 27, 1982

9.2 Flouchart for FLLRIR

FLCATR 1s the routine which lists directory entries for
an entire directory. It waits for the user to input up,
doun, shift-up, and shift-doun keys to determine which
directory entry 1t should display.

Xt A &R

t gtart
R 2R

v

A EREER R

* display cate-
log header
line
R % % R * A R

|
|
v

R 2 AR RRRR

* gseek to start
* of directory
R & R R AR R %

»

»
%

»
»

»
»

¥
W

»

HP Confidential

18

Mass Storage Driver
Seth D. Rlford
July 27, 1982

|
v

R R Rk AR

find 1st non- *

purged direc- *
tory entry %
further doun *

in the direc- *
tory. *
Renenber the *
location of *

the starting *
address of the*
file. g
Xk & R % R R &»

W
%

%
X

%
%

%
%

N
%

W
B

v

%
% *

* end of* Y N

* directory?*---->* stop *<---|
R X ok kR R '

£ |

* |
| N I

|------Y€ee ----

l v |
I * * l
' * * iIs * l

lIN *has a * ¥ *itan * N
--* key been *-->*up or doun *-----

2 ht? * key? *
% t &

2 %

|y

HP Confidential

19

Mass Storage Driver
Seth 0. Rlford
July 27, 1982

HP Confidential

20

»
¥

%
%

X
X

X
N
N

¥
W

N

Rk * k kR ok

Dispatch to ant®
appropriate *
routine which *
finds an entry*
1n the direc-
tory based on
up, doun,

shift-up,

or shift-doun.
X R R R % R R

v
%

2]g %

* this a* N

»
W

%
%

N
B

*different *---
* entry *

x 7 %
%
|y
v

AR R AR 2 *

Display this *
entry *
A A 2 R & & A X

----- >

Rass Storage Driver
Seth D. Rlford
July 27, 1982

5.3 Flouchart for FLNEM

FINEM finds space for and creates new directory entries
on the nediun. FLNEW 1s called by the different routines
which copy files to a mass storage nediun.

2tk AR

* gtart %
2 R R R

ltl:ll!h!iliifl

Seek to the directory
start. Imtialize:
P--purged file count
D--first purged entry

found
F--free space pointer

C--current directory
pointer

A2k RR AR AR AR%
%

%
%

%
B

W
%

%
B

»
%

%
%

%
%

»
¥

»

* end of* Y

|
|
|
|
|
| * directory *-------cmemmeomccmcommeeoeaon |
| 2 2 %

|
|
|

* &

*

HP Confidential

4|

Mass Storage Driver
Seth D. Rlford
July 27, 1982

] 2 222 2R R SR|
| £t ® File has to *
| fcurrent? Y * f1t betueen %
| *f1le purgedt-------- | * F and end of *
| £ 2 | * nediun %
l * * | R R AR RA

| . | I
| IN | |
I | v v
| | ‘ ‘
| | r @ 1

| | % * N £ ull & N
| | tPpe0? R * ot fat 7 f-|
' | % A | 2 *
' | 2 | P

	*	*
	Iy	Iy
I v	v	
	ARR AR RAR	R X AR RRA R

	% Re-initialize *	* Urite the
	%D, *	% entry, and add*
	*AARRE 228	% 5neyendof *

| | | | * directory t
| | |¢-mmeemenme t mark. t |
| | | £AAR LR R

| | v | |
| | AR EEEEER | I

| | * increnent P, % I |
| | . get next entry* I v
| | t 22 EEEEEEE

| | | | * generate a
J¢mmcmcmccmcae eccccccceeas | * mediun full
| | | * error
| v [a2 s

| * |
l ® X ememe——-)'

' % 2y '

*P=07 Hooomene		
* *		
Aok		
*		

HP Confidential

22

Nass Storage Driver
Seth D. Riford
July 27, 1982

»
W

W
W

v

2 2 2 2 2 2 4

Just skipped

over a hole
A 9 2 R % R %

»
€
—

*wll
file f1t an-----omoeiomooono-

* hole? *

v

»
%

¥
%

»
B

%
»

*

N

A &2 & 2 A %

Seek to D and *

entry
PR E R kR

HP Confidential

*

*

* urite an
R

2

R

(HA

2 kP R PR B

Update F, P:=0*
get next entry*
At Ak kAR

I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
l
I
I

23

Mass Storage Draver

FTEF 6

Seth 0. Rlford

July 27, 1982

Neu File Types

The Kangaroo mass nerory driver 1s able to copy all file
types created by the mainframe to and fron nass storage.
Neu file types created by applications prograns can also be
copied 1f the application prograns respond to the V.LFTY and
V.RFTY HANDI calls. See the HRNDI call documentation for
further infornation.

HP Confidential

24

Mass Storage Draver
Seth 0. Rlford
July 27, 1982

CHARPTER 7

Conclusions

Several 1nprovenents should be kept in mind for the nass
nenory driver wuritten for future products.

7.1 Centralized Copy

R better method of copying files needs to be used. I
would recomend a schene uhere tables are naintained which

contain nanes or addresses of setup, transfer, and cleanup
routines for both source and target devices. This allous
for copying betueen various source and target devices. If
this schene had been used i1n Kangaroo, for exanple, files
could be copied directly from card to cassette, cassette to
printer, and so forth.

7.2 Buffering Nediun References

Renenbering where a file is on the nediun would decrease
nediun uear and tire requirenents. Hith this schene the
last feuw directory entries referenced would be naintained in
a cache 1n RAN. Before referencing the nediun directory the
cache would be searched first. If a directory entry had to
be updated then 1t would be reuritten to the mediun. Other-
uise only the file would be reuritten. The 410 wuses a
sinilar schene enploying buffer 1 of the filbert. This
nethod 1s not available to Kangaroo since the nass nenory
driver uses buffer 1 for noving files during sone copy
operations.

HP Confidential

25

Nass Storage Driver
Seth D. Rlford
July 27, 1982

CHRPTER 8

References

1. LIF Standard (HP doc # R-5955-6529-1, available fron
Gordon Nutall at Greeley Division)

2. HP-IL manual (available fronm Steve Harper at CVD)

3. Kangaroo ouner’s nanual

4. HP 82161R Digital Cassette Drive Ouner's manual (WP
part 82161-90002)

5. HP-IL Driver for Kangaroo document

6. Joey’s book of RONS

7. Kangaroo NER docunment

8. HANDI call documentation

HP Confidential

Table of Contents

6

Introduction

Organization of the Driver

2.1 The FL Rachine
2.2 The VF Rachine

2.2.1 Using the VF Machine
2.2.2 Entering the VF Rachine
2.2.3 Traversing a Directory
2.2.4 Other Functions
2.2.5 Terminating Connunication

2.3 The E Nonzero Return

Rlgorithns Used

3 121ng a Nediun
Pre-(NOZC Kangaroos
(no5C and Later Kangaroos

2.1 Hou D0T6 and 7 Hork
2.2 Filbert and Kangaroo

acking a Mediun
Pass 0
Pass 1
Pass 2
Pass 3

w
W 1

1.
3.1
3.1

S
1

2
1
1
p

1

2
3
4

W
W
w
W
w
w
w
m
r
n

2.
2.
2.
2.

Invoking the Driver

4.1 The HANDI Call
4.1.1 Paraneter Passing

Floucharts

51 Flouw of Control for MELRON
5.2 Flouchart for FLCRTR
5.3 Flouchart for FLNEW

Neu File Types

HP Confidential

w
W
O
N
I
V

O
Y
U

7 Conclusions

7.1 Centralized Copy
7.2 Buffering Nediun References

8 References

HP Confidential

25

25
25

26

The Kangaroo Output Sof tuare
Jack Rpplin IV

10:27 July 8, 1982

00000000
Q00Q000000Q00

00000000Q00Q0Q0000
00000000Q0000000000000

«Q 000000Q00000000000Q000000
N 00000Q000000000000000Q00000A00 Q.
00\ 000000000000Q000000000000000000\ Q0
00\ .000000000000Q000000000000000000Q00N \Q00Q
0000. . __..00. _. 0000000
0000000000000Q00Q00" \0000000000000000000000000000Q0QQ0000.

000Q00G00Q0Q" 0000000000000000000000000000000Q0000A00
e \000000000Q0000Q0Q0000Q0Q0000" "00*

0000000000000000Q00G000A0AQ/
\00000000Q/" 200000000/
\000000 1000000Q0
ogooal 000/
0000| . 00
0000| OV0O
000| /
000 |
|00}
1000
00000Q
"0000000Q

llmo

Kangaroo OQutput Sof tuare

Kangaroo Qutput Sof tuare

Overview of Kangaroo output

In this paper,
several sections.

Kangaroo output wi1ll be divided 1into

1) General output schene
2) high-level output
3) Lou-level output

Most users will sinply use high-level output. Feu users
have to do lou-level or device-dependent stuff.

Kangaroo Output Sof tuare

| Overall output structure

Vommme- ‘
zzzzz2: | Printer |

| dommmmmeee- +
z=zzz) | TV |

| $omommeeee+

|
dommmmeee + | $mmmmemmmee 4

$ommmmmaae + | Virtual | I | Kangaroo |
| Kangaroo | ======> | Qutput | ====z=z==z==> | Harduare |
$omomioneee + | Device | | | LCD |
/1N R+ I $ommmmmoee- ¢

/ | \ |
/ | \ | $o-coomcoe- ¢

/ | \ =z====) | Hoden '

/ | \ | $o-mmmmmme- +
/ | \ |

| | | | e'
'} '} '} | | Other |

Pommmmm - TRPe+ s=zz2) | PIL |

| Hass | | Card | | LCD | | Devices |
| Nernory | | Reader | | Rnnunciators | docemmeena- +
dommmmeen ¢ bemmmeene 4 dmememmmeeeeeas +

The Kangaroo atterpts to deal with only one sort of
1dealized virtual output device. It 1s then up to the in-
dividual device drivers to translate this i1dealized output
to uhatever the device harduare wants.

Other devices exist wuwhich bypass this schene. The card
reader 1s spoken to directly, as are the LCD annunciators,
and nass nenory devices.

Kangaroo Output Softuare

| General output schene

fost top-level output 1¢ directed to print or display

devices. These devices have been previously set up with
DISPLAY IS or PRINTER IS statenents and stored away 1n the
device file (DEVFILE). When a string 1s output, it 1s
directed to the print or display devices. The device file 1s
scanned to find out uhat physical devices they are and the
output 1s routed to then.

The output fron the operating systen for the most part
goes to the display devices. DISP output, LIST output, RS-
SIGNIO prompts, INPUT pronpts, TINE and RPPT node output,
the EDIT node pronpt, and key echoing all go to the display
devices.

The output fron PRINT and PLIST statenents goes to the
printer devices.

NOMAS
NOt MAnufacturer Supported

reciplient agrees NOT to contact manufacturer

Kangaroo Output Sof tuare

| High-level output overvieu

 -

Rt the highest level 1n Kangaroo, all output 1s directed

touards the PRINTER IS or DISPLAY IS devices. Here 1s a
typical sequence to wurite out a string to the PRINTER IS
devices:

PRINT "Houdy!'"

-orc

JSB =PRINT. set output strean to print devices
LDN R36,=STRLEN get length of the string
LN R26,=STRADR get address of the string
LDB R20,=1 don’t go to next print zone

JSB =PRNFNT urite nunber to current devices
% {uhich are the print devices)

JSB =LINEND urite EOL sequence to current devices
RTN

STRLEN ORD 6
STRRDR RSC 'Houdy!’

The general sequence is:

1) Set up the output route by calling PRINT. or DISP. to
send output to the PRINTER IS or DISPLAY IS devices.

2) Call PRNFNT or PRNUN. or PRSTR. to urite data to the
current output strean. Repeat as needed.

3) Call LINEND to urite out the end-of-line sequence.
Note that the current route 1s s _t _1 _1 _1 _ set and that
further calls to PRNFNT and such can be nade without
another call to PRINT. or DISP.

Kangaroo Output Softuare

High-level output routines

DISP. Set output to display devices
PFINT. Set output to print devices
LINEND Mrite EOL to DISP/PRINT devices
PRNFHMT Write a string to DISP/PRINT devices
PRKUR. Write a nunber to DISP/PRINT devices
PRSTR. MWrite a string to DISP/PRINT devices

DISP.: Send future output to the DISPLRY IS devices by
setting the global ROUTE.

PRINT.: Send future output to the PRINTER IS devices by
setting the global ROUTE.

LINEND: Send end-of-line sequence. The end-of-line se-
quence for DISPLRY IS devices 1s CR/LF. The end-of-line se-
quence for PRINTER IS devices 1s initially (R/Lr, but nay be
changed by the ENDLINE statenent.

PRNFNT: Send a string, pointed to by R26 uith length 1n
R36. Based on R2C, PRNFMT uil]l tab to the next print zone or

not. This 1nplenents the senicolon/conna terninator on
PRINT/DISP statenents.

PRNUM.: Send a number fron the R12 stack.

PRSTR.: Send a string fron the R12 stack.

Kangaroo Output Sof tuare

| Lou-level display output

The lou-level display output routines all urite to the

display devices, of uhich the LCD is aluays included. The
display devices are assuned to understand several control
characters and the "HP standard" escape sequences.

EROUT- MWUrite a nessage, put 1t i1nto the error buffer
HLFLIN Hrite a line uith no EOL
HLFOUT Send a string of characters (no EOL)
NSGOUT Write a string of characters and EOL
OUTEOL Hrite out CR/LF
EOLND Send end-of-1ine uith no delay
OUTSTR Wraite a line uith EOL

EROUT-: Send a string to the display devices and put that
string into the error buffer ERRBUF. The string can then be
retrieved by CNTL-FETCH.

HLFLIN: Send a string (pointed to by R26 with length 1in
R36) to the display devices. N _o _ end-of-line sequence 1is
generated.

HLFQUT: Send a string (R26 points to length byte followed
by string) to the display devices. N _o _ end-of-line sequence
1s denerated.

NSGOUT: Like HLFOUT, except OUTEOL 1s called to generate
the end-of-line sequence.

OUTEOL: Send CR/LF to the display devices.

EOLND: Like OUTEOL except urites with DELRY O.

OUTSTR: Like HLFLIN, except OUTEOL 1s called to generate
the end-of-line sequence.

Kangaroo Output Softuare

I Lou-level character display routines

CURSE+ Turn on the cursor

OUTICH Writeout acharacter, static paraneter
0UTC40 Urite out the character in R4O
OUTCHR WUrite out the character in R32
OUTESC Nrite out ESC and the character in R32

CURSE+: Turn on the cursor by sending ESC > to display
devices.

CURSE-: Turn off the cursor by sending ESC < to display
devices.

OUTICH: Hrite out a character to display devices. The
character 1s a static paraneter placed after the call to
OUT1CH.

OUTC40: Write out the character in R0 to display
devices.

OUTCHR: MNrite out the character in R32 to display
devices.

OUTESC: Like OUTICH, except ESC 1s written before the
character. This 1s useful for uriting escape sequences.

Kangaroo Output Sof tuare

Other docunents

KR"LCD by Jack ARpplin IV This explains the LCD driver

KR"IN by Jack Applin IV This explains the Kangaroo input
softuare

-10-

PARSER

Gary K. Cutler

2:19 PR THU., 15 JuLy, 1982

Parser

§eceecvenccrecceccaecreeccerccercenmemccceo §-evremmccccnccenaa +

I I
THE PARSER | CHAPTER 1 |

1.1 INTRODUCTION

As a line of progran or calculator node statement 1s entered,
it 1s i1n ASCII code. When <RIN> 1s pressed, the line 1s
parsed. The PARSER controls the conversion of RASCII code into
the internal 'tokenized’ form 1n which prograns are run and
stored.

Rs 2 line 1s parsed, it is checked for syntax errors, changed
to RPN fron 1ts algebaic forn, and converted into executable
tokens uhich are then stored. Each token consists of a single
byte, and can represent a single keyuord, such as LET, FOR,or

DISP. Token B4 (external RONM token) 1s wused to allou
extensions of the systen by neans of extenal ROMs and LEX

files.

The systen PRRSER 1s conprised of three main functions.

1) Scanning: the process of translating RSCII code
into i1nternal tokens

2) Parsing: nanipulation of tokens into an
executable strean

3) Editing: 1nserting the token strean into the
appropriate location 1n nenory

1.2 SCANNING

SCAN: The routine SCAN has the responsibility of differentiating
betueen nunbers,variables and BRASIC keywords. If SCAN nakes
the determination that the current collection of RSCII code 1s
neither a nunber nor a variable then the routine SALT 1s
called. SALT has the responsibilaty of nratching the RSCII
code 1n the 1nput buffer uith 1ts 1nage 1n the collection of

RSC]1 tables. The search through the RS(II tables 1s

2:19 PR THU., 15 JuLy, 1982

Parser

conpleted by SALT, whichs polls, 1n order, LEX fales,
externals RONs and 1f unsuccessful, proceeds to the systen
RONs. It 1s inportant to note that SALT does not have the
capability to recognize the end of a keyword that appears in
the 1nput buffer.

Ex; If RBS is a keyword in the mainfrane and an
external RON creates a keyword RB, SALY
u1ll aluays natch both RBS and RB with
"AB’ 1n the ext RONs ASCII table. Thus
the statenment

10 X=RBS(Y*2)

uill probably not parse as long as the external ROM is plugged
in.

Each entry i1n an RSCII table has 1ts last character flipped or
negated. This signifies the end of a keyword. When the last
character 1s reached, SALT deternines 1f 1t has a match. If
s0 SALT returns to SCAN with the appropriate token value in
R14, otheruise SALT 1increnents the token value and continues
searching that particular RSCII table until the end of table
1s reached. At the conclusion of each RSCIT table 1s the
value FF. This inforns SALT that 1t has reached the end of
this RSCII table and searching should continue 1n another RON.
The final output fron scanning 1s a token value in R14.

CRUTION: Rt the conclusion of SCAN, the 1integrity of the
follouing registers should be naintained until the next call
to SCAN.

R40: The first character of the current keyword
R41: Lou order byte of the ROM
R42: High order byte of the RON W
R43: Token value 1f external ROM token
R44-R45: Nanme 1f variable
R44-R46: Value 1f integer
R46: Secondary attributes 1f function
R47: Prinary attributes

1.3 PRARSING

PARSIT: The first keyword (tokenized) generates the parsing
scherie, through the routine PRARSIT. To deternine the location
of the parsetine routine, PRARSIT doubles the token value and
adds 1n this offset to the PARSE table. R direct load and

2:19 PR THU., 15 JuLy, 1982

Parser

indexed subroutine jump 1nitiates the desired routine.

There are four conditional tests upon the 1nitial keyuord 1in

PARSIT, before any parsing routine 1s entered. These tests
involve the primary attribute of the 1nitial token.

1) If the first token 1s a variable then the variable
token 1s replaced with the implied LET token and the
prinary attribute 1s given a value of 200 (octal).

2) If the THEN flag 1s set (during the parsing of an
IF-THEN statement the PRRSER considers the
hypothesis and conclusion as tuo seperate
statenents) then the prinary attribute of the token
is tested to ensure a legal after THEN status (¢
300 octal).

3) The prinary attribute 1s tested for value greater
than or equal to 200 (octal). If so we have a
progranmnable keyword and parsing i1nitiates.
If not:

4) The prinary attribute i1s tested for value greater
than or equal to 100 (octal).

TRUE: Then ue have a BRSIC systen call
and the nachine nust be 1in

calculator node or wuwe error.

FALSE: PARSIT stops and sets an error
(regard expression parsing for
prinary attributes less than
100 octal).

Once these conditionals are passed we enter the appropriate
parsing routine.

1.4 EDITING

EDITIT: Each token strean, whether in progran or calculator node,

1s preceded by three bytes of information. R tuo byte BCD
line nunber (0 1f 1n calc node) followed by a one byte value
representing the length of the token strean. The routine
EDITIT calculates the size of the token stream and uses the
BCD line nunber to insert the line fronm the R12 stack into the
appropriate location of the EDIT FILE.

Note: The inplied length of a token streanm must be less than

2:19 PR THU., 15 JuLY, 1982

Parser

or equal to 255 bytes (not including line nunber and
statenent size byte).

2:19 PR THU., 15 JuUlY, 1982

Parser

1.5

ARARRARARRRARRAA AR AR EARRRRA AR AR R AR R A AR RRRARRR SRR AR AR KRR AN K&

%

*

%

%

*

%

*

&

x

R

%

X

*

%

%

*

X

*

R

%

*

3

%

1

%

r

%

2

*

x

®

2

%

%

%

Sone exariples of statenents and hou they are
interpreted by the parser can nost easily
be shoun by these tuwec tables.
NOTE: order of attnpted parse 1s

. progran statenents

. calculator staterents

. calculator expressions

. progran expressionsS
w
r

—

uhen editing a BRSIC file:

progran calculator

dmmmmmmeeeemeee+

I | l
| 10 X | X |

| 10X+ | 10E+1 | expresions

| ¢-]--- 1042 |
| | (x=5) /I\ |
| | |
dommmmmmme#omcemm e ccccanan +

| | | |
| 10 BEEP | X=5 | |
| 20<null> ----|-> BEEP | statenents
| | <null> |

| | |
fmmmmmmeene+

The <null> staterent uill delete the lineH given.
20<null> m1ll delete statenent 20.

Just <null> deletes line O i1n the calculator file.

STATERENT vs. EXPRESSION PRRSING

¥
X

%
%

X
X

X
X

%
%

X
%

X
%
%

3
%
%

%
%

X
%
%

%
%

%
X
%
X

B
%

%
%

%
¥

N
%

%

ARARRAASRARARRARARAARR A AR A AR AARARRAAARAARRR AR AR AARRR AR AR A RAA

There exists four states of allowable basic forn 1n the nachine

1) Progran statenents

2) Calculator statenents

3) Calculator expressions

2:19 PR THU., 15 JuLYy, 1982

Parser

4) Progran expressions

Progran and calculator statements are subject to the previous
discussions on parsing procedures. Progran and calculator expression
parsing 1s nothing more than inserting or forcing the initial token to
be the DISPLRY token and treating this whole entity as a progran or
calculator statenment.

Ex: user 10 x*y/2
af ter parsing and deconpiling line 10 is

10 DISP Xtv/2

1.6 GLOBALS

Nane Location Description

EDNANE 8268 nane of current edit file
ERLINN 8378 line # of which error occurred
ERRR10 836C loc of R10 at error
ERRTMP 836E tenporary location for error infornation
INPBUF 8180 location of RSCII code to be parsed
PERRSV 8518 save area for parser error 1nfornation
PRNRHE 8263 nane of file to be parsed
PROTEN 8233 tenporary nenory
R6LIM 8120 linit on the R6 stack depth
RM.PAR 0006 relative offset to parse table
RONOFF 82R5 offset to make ROMPTR absolute
RONPTR 82R3 relative pointer to current ROM enabled
RTNF LG 8365 invisible return flag
SAVR10 8368 loc last error that occurred
STSIZE 8255 location of beginning of line
THENF L 8362 then flag
108 8257 current top of stack (R12)

2:19 PN THU., 15 JuLYy, 1982

Parser

1.7

1.8

HANDI CALL EVENTS

V.PRR -- gent upon initiation of PRRSER
V.STR -- sent for string arrays
V.DIN -- gent to intercept the DIN statement
V.PRRR -- sent to intercept function paraneters

CROSS REFERENCES

Handi Call Docunent RH"HDI
Internal Code Exanples Document RH"ICE
Source File KR&PAR
Global File KREGLO

2:19 PR THU., 15 JuLYy, 1982

Parser

1.9 FLOW DIRGRANS

THE PARSER

e+
| PARSER |
e|~-2--- ‘4

|
v

PecmcmeceNO oo+

|1s there a |-->-->-->--| calc |
|11ne nunber? | ~ | statenent |
ooJ-emne- ? | | STPARS |

| YES | bomeeee |------ '
I | |
v | |

dommmmmmee+ | v

| parse prgn | | NO?-------e--e-- ?
| statenent | | V---] errors? |
| steeRs 1 || ?--e--- |------ ?
ef------ + || |YES

| | | v
v Pl 4o+
PTYES | || calc |
| errors? |-->--" | | expression |
To----- f------ ? | | EXPARS |

INO | 4f------ +
| | |
v | |

dommmmmee‘4 | v

| edit an | V NB?---ommmemeo ?
| the line |----¢--¢---] errors? |
| EDITIT | | Pemiio- |------ 7
e I¥ES

| | v
Vv | $occmecmeene +

Io e
| rtn | | | expression |
bommnn.v | EXPRRS |

| | e
l | |
| | v
~ | NO ?7----cmmcmennn ?

4----- |------- + “-¢----] errors? |
| report | LCERLRY J------ ?
| error Jermmmmmmmmcmceee- <YES

2:19 PR THU., 15 JuLY, 1982

Parser

STATENENT PARSING

Pommmmmmeeeeee +
| STPRRS |
IJ----- +

I
I
'}

ommmmememeaaa +

| process linel
| nunber and |
| size byte |
| LINHED |
4=|------ +

|
|
v

Pocomoccecena- ?YES 4mmmmmom- +
| errors? |---->----- | rtn |
Peomee- | ? domemmemn ¢

INO

|
ooVeoono-- +

| parse the |
| statement |
| PRRSIT |
-|-==---- +

|
|

$ooomm-V------ +
| process |
| end of line |
| EoL |
T|------ +

|
|
v

$ommmememeamae +
| set error |
| flag 1f |
| necessary |
| RNYER? |
etJ------ +

|
|

DV------ +

| rtn |
ocmmmmmeeo +

2:19 PN THU., 15 JuLy, 1982

Parser

10

THE PRRSIT ROUTINE
-------- +

| PARSIT |
4eme|-mmmd

I
4----V----- +
| get first |

yemmeomn- yemooono- | token |
| SCAN |
e|----- ¢

|
PeooooV--ou-Ty $eccccmcccccccaceann +
| variable? |---->---| 1nplied let token |
----- |-----7 domcccccen|ey

N| |
|[¢ommmemenmnnnnneneenneas |
v

Poecaccmcmee ? Pemccmccccc—coaan?

| then flag |YES | token legal |NO

|
|
|
|
|
|
|
|
|
|
|
| set? |---»----] after then? |---V
A Pomeem—? Veeemmmenn J-eeeen)

| INO |YES |
| V(-emeennun (rocememmccanne < |

| ?-eee-V----- ? |
| YES| basic | |
| V----- C(-=-=--- | keyword | |

| | l prgrable | |
I o T f----- ? |
| | INO Vv
| I ooV---e-- ? |
		systen INO	
		call	----- yoooememn-v
		non- prgnablel	
	Pomone-	------	I
~	IYES		
	e		
	Teeee-UARTTE ? »-->	error	¢------ <
		calculator	---->--" 4----V----¢
I	node ?	N l	
O			
INO >------I>|Y |

oo |eemmee- ?YES $omee-V----- + |
| ' |---->----] execute | |
oo? | parse-tine| '}

~ rtn | routine | |
~ R|-=--- + |

|y | N | |
e+ N ?7-----V-----Yy 4--ee- +

| next token |¢------ | errors? |----- yeemmma- | rtn |
| @ or ! | oo? 4ommme 4
dommmmmmemee +

2:19 PN THU., 15 JuLy, 1982

Parser

EXPRESSION PRRSING

docmmomccaaao 4

| EXPARS |
$o---- |-=-=--- +

I
v

$ocmmmemmeees +
| line nunber|
| processing |

| size byte |
| LINHED |
4----- |------ +

I
'

Femeceeeeeaes ?YES temmeeee ¢
| errors? |---->----] rtn |
Peeeee | ? domcccen 4

INO
|
v

$ommmmecmeeae +
| load R14 |
| with DISP |
| token |
| set |

| proper |
| attributes |
4-uu- |--=--- 4

I
v

$memmmememae +

| parse the |
| expression |
| PRRSIT |
$om--- =eee-- +

|
v

$ommmmeeeeeo + dommcmmmmeccae- +

process		set error flag
end of	--->	if necessary
line		ANYER?
EoL I	--=ommm=- +	
4o+ |

v
P+
| rtn |
4----- +

2:19 PR THU., 15 JuLYy, 1982
"

Parser

4oeceeeeceemese--eecsceeeedemeeseeceeeeeee +

| |
| EXAMPLES R CHAPTER 2 |

>
—
—
s
e

g

dme meeeeeeemeeeeecccesccecceccceecoefocmcccmmeccccmeane +

ACTION OF THE PRRSER ON THE PROGRAM STRTENENT

10 R=X*(Z+SIN(Y))"2/7

(It 1s inplied that all entities which are exanined,
nanipulated, and pushed onto the R1Z stack are the respective
tokens of the characters, operators, and functions.)

To parse the preceding progran statenent the parser uill
first atternpt to find & line nunber. If successful, control
H1ll be passed to the statement parser, STPARS which will
place the line nunber and a blank byte for the statement size
on the R12 stack. The first character of the statenent is
then exanined and 1n this case, since 1t 1s a varlable,
control 1s then passed to the IMPLIED LET routine.

LET places the let token and the token for R on the R12
stack. The rnext character encountered 1s = wuhich 1nitiates
the follouing progression of subroutine junps.

NUMVR+ --> LOGFRC --> LOGPRIM --> NUREXP -->
TERA --> FACTOR --> PRINARY

PRINARY 1s the routine which exanines the next character
and directs control to the appropriate routine for parsing.

In the given case the next character is X, since 1t 1s a
nuneric variable 1ts token 1s placed on the stack and *
becones the current character, Control nou proceeds fron
PRINAPY backuards through the progression, stopping at each
routine and testing the attributes of the current character.

FACTOR: tests for ~
TERM: tests for *,/

NUNEXP: tests for +,-,nonadic -
LOGPRIN: tests for binary relation operator
LOGFRC: tests for logical and
NUMVAR+: tests for logical or

* pacses the test at TERM so * 15 stored in F33 and (
becones the current character. When a test 1s passed, control

2:19 PR THU., 15 JULY, 1982
12

Parser

1s directed foruard through the progression to PRINARY.

PRINARY then directs control to the appropriate routine

far (. Since (1nplies a nested expression, I becones the
current character and 1s i1nnediately placed on the R12 stack.
+ 1s now current, control 1s digressed, and ¢+ passes at
NUNEXP. Before ¢+ 1s stored, houever, the occurrence of (

causes * and the renainder of R32-37 to be saved on the R6
stack. + 1s then stored 1n R34 naking the next character SIN.
Control passes to PRIMARY which directs control to the systen
functions routine, FUN1. FUN1 then pushes R32-35,R40-47 onto
the R6 stack and stores SIN 1n R35. FUN1 then exanines the
next character and checks for a (. If a (1s found this
signals FUN1 to obtain the next character(Y). If Y 1s
acceptable as a paraneter for SIN, FUN1 places Y on the R12
stack and shifts SIN to R36. R32-35 and RA40-47 are restored
and SIN 1s pushed to the R12 stack. FUN1 then tests the next
character for). If true, the) 1s disregarded and the next
character obtained. Control 1s then returned to PRIMARY uith
the second) as the current character. Since PRIMRRY sees the
), ¢ 1s placed on the R12 stack thus ending the nested
expression and naking ~ the current character. = attributes
are checked and since they are greater than the attributes of
the saved *, ~ 1s processed first while * remains on the R6
stack. ~ passes the test in FRCTOR. The "~ 1s stored in R32
and the next character, 2, 1s exanined in PRIMARY. Since 2 1s
acceptable, first 2 then ~ are placed on the R12 stack, and /
becornes current. The attributes of / are checked and found
equal to the attributes of the saved *, the / 1s processed
first for convenience. / attributes pass the test in TERN.

1s stored 1n R33 and T becones current. Control goes to
PRINARRY uhich exarmines 1. Being acceptable, T then / are
placed on the R12 stack. Finally since there are no nore
operable characters * 1s popped off the R6 stack and pushed on
the R12 stack.

R12 STRCK

| I
| 10 | lou order byte of line nunber: 10
| |
I |
| 0 | high order byte of line nunber: 0
| |-
I |
| 18 | progran statenent size: 18 bytes

| |
| |
| 91 (let) | let token: 91
I I
I I

2:19 PR THU., 15 JuLY, 1982
13

Parser

| 11 (R) | sinple nuneric address

I I
l |
I 20 |
| ____ | RSCII code for blank R
I |
| 41 I
| I
| |
| 1 (X) | fetch nuneric value: X

| |
| |
I 20 |
| ___ __ | ASCII code for blank X
l |
| 58 |
l I
I I
| 1 (2) | fetch nuneric value: 2

| |
I |
| 20 |
| _____ | ASCII code for blank 2
l |
| 5A l
| |
I I
| 1 (Y) | fetch nureric value: Y

I I
I I
I 20 I
| - ____ | ASCII code for blank Y

I |
I 59 |
I |
| |
| D8 (SIN) | SIN token
I I
l |
| 2B (+) | ROD token
I I
| |
| 1A | 1nteger constant token

| l
I |
| 2 | three byte
| - . |
I |
| 0 | 1nteger: 2 , in
| |
I I

2:19 PR THU., 15 JuLY, 1982
14

Parser

PIR --> next byte available on R12 stack

| 0 | BCD mode
| |
| |
= 0 (7) = exponentiate token

| |
= 1 (1) ’ fetch nuneric value

| |
| 20 |
: _____ = ASCII code for blank T

| 54 |
| |
| |
: 2F (/) = divide token

| |
: 2R (%) = nultiply token

| |
= 8 = store nuneric value token

| |
| € : staterent end token
|
| |
| |
| |

Parsed staterent: [10] R X Z Y [SIN] ¢ 2~ T / * [STORE]

2:19 PR THU., 15 JuLy, 1982
15

Parser

1¢

ACTION OF THE PRRSER ON THE USER DEFINED FUNCTION

10 DEF FNR=SQR(X"24Y"2)

The parser attenpts to locate a line nunber. If
successful, control 1s passed to the staternent parser, STPARS
(ncte: 1f DEF 1s located 1n a calculator statenent an error
uill be generated). STPARS then places the line nunber and a
null byte for the statenent size on the R12 stack. STPARS
then exanines the next character (DEF) and passes control to
the user definded function routine . DEF FN places the DEF
token on the stack and passes control to the function nane
routine, FNNAME. FNNRNE pushes the nane 'R’ on the R12 stack
followed by tuo null bytes which reserve the position for the
relative junp past the fn end. FNNARE then pushes the
paraneter type/count (one byte value giving the type: nuneric
or string, and the count: nunber of paraneters).

Note: User defined functions cannot be longer than 65,535
bytes 1n definition.

Note: It 1s RSSUMED (given the constraints of the 1nput
buffer) that the user cannot assign nore than 43 [sic)
paraneters. The naxinun nunber of paraneters that nay
be handled 1s 128.

| | n...n (b1tM1-bitH?) paran count 1n binary
|annnnnnt |

| I t (b1tw0) type: O for nuneric
| for string

EXANPLE: FNX4(a,b,c,d) = nuneric expression

| |
paran type/count byte: |00001000| nuneric, 4 parameters

I |

EXRNPLE: FNX$(R$,F$,C8) = string expression

| |
paran type/count byte: |00000111| string, 3 paraneters

I |

FNR 1s a nunerjc function wuith no paraneters, thus the

2:19 PR THU., 1S JuLy, 1982

Parser

paran type/count byte 1s zero. Control 1s now returned to DEF
FN. DEF FN nou exanines the paraneter count and the type. If
there were one or more paraneters DEF FN would push each
paraneter nane followed by tuo null bytes (holders for
variable value ptr.) onto the R12 stack. In the current case,
houever, no paraneters exist. DEF FN then places two null
bytes onto the stack, reserving space for the relative PCR.

DEF FN then exanines the current character (=). Since
this inplies an in-line definition control 1s passed to NUMVR+
for a nuneric expression, or STREX+ for a string expression.
In the current exanple, NUMVR¢ places, 1n order, the follouing

on the R12 stack.
X277 Y2~ + [SQR)

Control 1s returned to DEF FN uhich places the three
bytes OOER, O, O (first byte: invisible fn end token; next two
bytes: position holder for store nuneric value ptr) and the
carriage return on the stack.

R12 STRCK

I I
| 20 | low order byte of line nunber: 20
| l
| |
| 0 | high order byte of line nurber: O
| |
| |
| 1€ | staterent size
| |
| |
| 87 | DOEF FN token

| |
I |
| 2 |
| _ _ _ _ | RSCII code for blank R

| |
(Y4 |
| |
I I
I o |
| __ __ | position of relative junp past fn end
I I
| © |
| |
l l
| 0 | paraneter type/count
| |
| l
| © |

2:19 PR THU., 15 JuLY, 1982
1?

Parser

position of relative PCR| |
| |
| © |
| |
| |
} 1 (X) : fetch numeric value

| |
| 20 |
: e : RSCII code for blank X

| 58 |
| |
| |
: 1R : integer constant

I |
: 2 : three byte integer

| |
| 0 | constant: 2

o ___|
| |
| 0 | in BCD node
| I
| |
: 0 (") : exponentiate token

I |
: 1 (Y) : fetch nuneric value

| I
| 20 |
| _ _ _ _ | RSCII code for blank Y
| |
| 59 |
| |
| |
: 1R ; integer constant

| |
: 2 : three byte 1integer

| |
| 0 | constant: 2
- ___|
| |
| 0 | 1n BCD mode
| |
| |
| 30 () | exponentiate token

2:19 PR THU., 15 JuLy, 1982
18

Parser

PIR ---> next available byte on R12 stack

| |
| |
| 2B (¢) | add token

| |
| |
‘ 60 | square root token

|
| |
| OOER | 1invisible fn end token
| |
| |
I o0 | . '
| ____ | position of store variable ptr.
| |
I o |
| |
| |
| € | statenent end token

| |
| |
| |
| |

Parsed statenent: [20) [OEF FNJ R X 2~ Y 2 ~ + [SOR]

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

2:19 PN THU., 15 JULY, 1982
19

Parser

ACTION OF THE PARSER ON THE PROGRAN STRTENMENT

30 IF L$=CHR$(7*5) THEN 180 ELSE L$='=’

Follouing action upon the line nunber, ue start the
discussion at the IF parsing routine. The If token initiates
the following subroutine junps. :

NUMVA+ (gets next token L$) --> LOGFRC --> LOGPRIN (sees
string variable token 3) --> STREXP

STREXP, string expression parser, passes control to
SOURCE, which differentiates betueen, string constants, string
variables and string functjons. In this case SOURCE
recognizes L$ as a string variable thus sending control to
STVRBL. STVRBL pushes L$ onto the R12 stack and obtains the
next character (=). Control returns to LOGPRIN which checks
the attributes of =. R natch occurs, which causes = to be
saved on the R6 stack and control passes back to STREX+ (adds
scan to STREXP). The next character (CHRS) 1s obtained and
control passes to SOURCE. SOURCE catagorizes CHRS as a string
function and thus directs control to FUN1.

FUN1 saves registers 32-35,40-47 on the R6 stack and
stores (HR$ i1n R35. The next character 1s checked for (, and
1f so, the first [and 1n our case the only] parameter type 1s
obtained. Since CHR$ 3s a function of one nuneric paraneter,
control 1s passed to NUMVA+, NUVR+ parses the nunerac
expression (see above) and places 7, 5, and * on the RI12
stack. Control 1s returned to FUN1, which pushes CHRS on the
stack, restores registers 32-35,40-47 and checks the next
character for). If) 1s found, control 1s directed bach to
LOGPRIN through STREXP. LOGPRIN restores the saved =, pushes
1t to the R12 stack and returns to IF with the next character
(THEN). IF seeing the THEN passes control to DIGIT which
searches for a digit. In this case DIGIT confirns that the
next character 1s a digit (1) and returns control to IF. IF
pushes the jump true token, then pushes the line nunber 180
and gets the next character, ELSE. The appearance of ELSE
in1tiates a jump to DICIT. If a digit 1s found control
returns; 1f not, as 1n our case, control passes to PRRSIT (an

this case a dunny junp relative 0 token 1s placed on to the
stack). PRRSIT sees the follouing;

LET L§ = "=~

Thus, follouing nany of the progressions as above the
expression 18 parsed as follous. The let token and L$ are
placed on the R12 stack. The = 1nitiates the junps to SOURCE.
SOURCE recognizes the next character STRCON saves the " in RC,
pushes a byte to the R12 stack to reserve space for the string

2:13 PR THU., 1S JuLYy, 1982

Parser

length and gets
1s pushed on
recognized as
calculated and this
on the stack.

1s pushed.

X

18

R12 STACK

3 (18)

24

a(

1R

~
N

the first character of the string (=). This
to the stack and the next character (")
the correct delimiter. The string length

value 1s 1nserted 1nto the reserved byte
Control returns to IF uhere the carriage return

lou order byte of line nunber: 30

high order byte of line nunber: 0

statenent size

fetch string value

ASCII code for LS

integer constant

three byte integer

constant 7 1in

BCD node

integer constant

three byte 1integer

constant 5 1n

BCD node

:19 PR THU., 15 JULY, 1982
21

1

1s

Parser

22

2R

2

3

—
s
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

—
—
—
—
—
—
—
—
—
—

—
—
—
—
—
—
—
—
—
—
—
—

nultiply token

CHRS token

z token

Junp true token

lou order byte of line nunber: 80

high order byte of line nunber: 1

Junp relative token

nunber of bytes to junp starting

directly after jump rel token (dumny jump)

let token

sinple string address

ASCII code for L$

string constant

of length 1 byte

RSCII code for =

store string value token

2:19 PR THU., 15 JuLy, 1982

Parser

R12 PIR --->

statenent end token

next available byte on R12 stack

2:19 PN THU., 15 JuLYy, 1982
23

Parser

Table of Contents

THE PRRSER o o o o e e e e e e e e e e e e e
1.1 INTRODUCTION . . v . o v o o o e e e e e e s e e e e e e
1.2 SCANNING o v oose e e e e
1.3 PARSING . . v . v oose e e e
1.4 EDITING o v o o o e e e e e e s e e e e e
1.5 STRTEMENT vs. EXPRESSION PARSING o . ..
1.6 GLOBALS o o ee e e e e e
1.7 HANDI CALL EVENTS o v v o b e ee
1.8 CROSS REFERENCES o o v o v v v v v v e oo
1.9 FLOW DIRGRARS o oo e s e e e e e

2 EXRAPLES R . . . oe s s s e e s e e e e

2:19 PR THU., 15 JuLy, 1982
Y¥1lv

Parser

Routine: ARPPTHD

File: KR/PS1

Ruthor: HK

Description: Rppointnent node.
1) Display current apointnent or RPPT template
2) Input and execute appointment comnnands
3) Raiuntain appointnent file

Input:
PSSTAT--Systen variables affecting tine/appointnent functions

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
PSSTRT--Updated systen status
<APPT fi1le>--Updated appointnent data
<conparator>--next appointnent, 1f any
R25--terninator key
Routines Called: RCREAT, ERROR+ APSTAT, HANDIO, BLINP, RTMPLT, RPTDSP,

GETTER, KOPY, ANN.E-, LOOKUP, RPTCHK, RPTFND, DUPCHK, RPTINS,
NUNPCK, RPTERR, RPTACK, APTR-, RPTR+, RPPROC, RPEXIT, RPINFO,
APTDEL.

Stack depth R6 (max):
Calls to Error routines (include error nunber and reason):
16--called 1f RCRERT, or appointment insert fails.
71--called 1f duplicated appointnent 1input

Notes:

HANDI calls V.RPTO, V.RKEY

Reg: x = volatile
do-—docmoont

| 1012314567
domcpommooy
|IRO | xx]| |

[R10] I I
|IR20|x |xo x|
|RIO | xxxx | xxxx|

|R4O | | |
[RSO| | |
|R60 | | xx|

|R?70 | x| xxexx |
S

Routine: RPEXIT

Status:
d-cmedemmdmme+

| [in |out| Legend |
dommmdommpmmbmnee ¢+

|Mode| b | | d-BCD |
[€e 1 | | b-BIN |
[ORP | | | i-1input|
IARP || | |
rmemmmmecceemcee+

| RONJSB Needed:
dommmmmme+
| HANDI Called:

R12 stack:

C
-
—
o
-
—
—
—
—

—
—
—

File: KR/PS1

Ruthor: RK

Description: Perforns the necessary housekeeping tasks
prior to exiting fron appointnent node.
1.) Purge the RPPT file 1f 1t 1s enpty
2.) Blank the error buffer

Input:
R30/31--Start of Rppointnent file
R34/35--End of Appointment file

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
<File structure>--possibly altered
<Error buffer>--blanked

Routines Called:
HANDIO, BLEBUF, FPURGE.

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

HANDI call to V.ARIN

Reg: x = volatile Status: R12 stack:
bommhmmmmbammmd dmmmmdrmmdompmmemeee 4 dmmmeemeecaa-

| 10123]4567] | in |out| Legend | | Entry
bommbmmembmmamy dmmemdommdmmeL De

IRO | | | |Mode] b | | d-BCD | |
[R10] I | l€ | | x| b-BIN | |
|R20| | | IORP | | x | 1-1nput| |

IR30| | | [ARP | | x| I
|R40| | | 4ececcecmeee+ |
[R50 | | | | ROMJSB Needed: X | |
R6O| | | 4emmeoeeseeeeeeieeoe‘|
|R70| | | | HANDI Called: X | |
$om—demembommmy ooeeeee-4 demeccccccea-

Routine: TINMEND

G
o
e
.
—

—
—
—
—
—
—
—
>

File: KR/PS1

Ruthor: MK

Description: This subroutine executes the tine nmode features of
Kangaroo.

1.) Display the current tine and update 1t once per second
2.) Input and execute tine node conmands.

Input:
<systen variables>--Set up for current tine
PSSTAT--Current display options set

Output (i1nclude E-Reg, Z-Flag, (-Flag 1f pertinent):
PSSTRT--Updated display options
<Conparator>--Tables updated 1f necessary
«Ssytei Time Variables>--Updated 1f necessary

Routines Called: BLINMP, TCKTGL, TICK, GETTEM, TMECRD, CNMPENT,

CHPCHK,

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Uses background processing to update tine display.

Reg: x = volatile Status: R12 stack:
Pt ooee¢ demeemeceea- +

| 10123/4567| | lin |out]| Legend | | Entry | Exat
d---b-m-d----4 oott dmmmmemeeoees +
[RO | yxxx| | [Mode| b | x | d-BCD | | I
[R10] I I [€ | | x| b-BIN | | |
|R20 | I | {ORP | | x | 1-1nput| | |
[R30| I I IRRP | | x| I l
[RAO| |] aeeememeeeeieaev I
|R50 | | | | RONJSB Needed: X | | |
IREO| | | #eeeeeeseeooeeeoieono v | |
IR70| | | | HRANDI Called: I |
bombomem4-4 dmmmmeemce¢ demememeeaeo +

Routine: (STRIG

File: KR/PS1

Ruthor: 1K

Descriptian:
Routine called fron the conparator service routine to execute

the V.(LOK HANDIO call.

Input:

Output (1nclude E-Reg, Z-Flag, C-Flag 1f pertinent):
E as set fron HANDIO call.

Routines Called:

HANDIO

Stack depth R6 (nmax): ?

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
b= d-mmme¢ dmmmmeceemean dmmmmemmee+

| 10123]4567| | [in lout] Legend | | Entry | Exat
dommdommmd---d dommmdmmmeb dmmmmmemeeea dommmmme+

|RO | | | [Mode| | x | d-BCD | | |
IRiof || IE | | x| b-BIN | | I
|R20| | | IDRP | | x | 1-1nput| | |
IR0l | | [RRP | | x | I |
RIO| | | eemmeceeseoeeeeeeee ¢ | |
[Rsol | | | ROMJSB Needed: X | | |
IREOI | | #memmceeoecoeooeooos ‘o |
|R70| | | | HANDI Called: X | | |
$omdmmmmb--- ommmmmeet mee+ deemmmeeeaea- dommmeee

Routine: C(KIRIG

fFile: KR/PS1

Author: MK

Description: This subroutine processes a clock interrupt
uhich updates the clock display every second.
1.) Display the current tine and date 1f time display not

disabled.
2.) Retain the connand field 1n colunns 27 to 3N
3.) Restore the cursor location 1n the connand being

entered.

Input: <BIN>
<input buffer>--Current tine/date display.
PSSTRT--B1th0 = 1 1ff time display disabled.

Output (1nclude E-Reg, 2-Flag, (-Flag if pertinent):
<input buffer>--Updated tine/date display.

"Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
doempommmmmmd d-mmme¢e+

| 10123]45%67| | lin Jout| Legend | | Entry |
R $omecdommgomcdamanmaaaY+

RO | | | |Mode| | | d-BCD | | |
IR10] I | € | | | b-BIN | | |
|R20| | | [ORP | | | 1-1nput] | |
IRX0| | | IARP | | | | |
ROO| | | #ememmmceeeeseceeeooes‘o |
|RS0| | | | ROMJSB Needed: | |
IREO| | | #memosceemmeecocaees‘| n
|R70] | | | HANDI Called: I | |
4oty ommmmmmemeemeeceeeeas b deemmmmemmaeo +

Routine: CKTRIG

File: KR/PS1

Ruthor: MK

Description: This subroutine processes a clock interrupt which
updates the clock display every second.
1.) Display the current tine and date if the tine display

18 not disabled.
2.) Retain the connand field in colunsn 27 to 31.
3.) Restore the cursor location in teh comnand being entered.

Input:
BIN
<input buffer>--Current tine/date display
PSSTRT--B1th0 = 1 iff tine display disabled

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
<input buffer>--Updated tine/date display.

Routines Called: STDRTE, FXTIME, TORSC2, UPDISP

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bombmmmmmmay $omme¢ $omememeeeaeo +
| 10123]4567] | lin Jout| Legend | | Entry | Exat
bommdmmmgmamd 4=4 d-emmcemeee- ¢+

IRO | xx| | |Mode| b | x | d-BCD | | |
IR0 | | IE | | x|b-BIN | | |
[ROIx | | {ORP | | x| 1-input| | |
IR | xx| [ARP | | x| I l
| RAO | xxxx | xxxx | $emmmemmemcmcceecceeas + | |
IRSO| | | | ROMISB Needed: X | | |
IR60| | | $-mo-o-cmmmeececmoooe + | |
IR70l | | | HANDI Called: I |
bbby $ommmmmccccecmcceeeaa D R+

Routine: RINCHK

;File: KR/P31

Ruthor: nK

Vescription: This routine provides character checking of

input duyring appointnent tenplate entry.
1.) Process special urite protection of the note field

pronpt character.

2.) Update the 10 status byte PSIOST as needed.
Input: BIN

R40--Character 1nput to be checked
INPTR--Current address of the cursor
PSIOST--Current I0 status

Output (include E-Reg, Z-Flag, (-Flag 1if pertinent):

R40--Character to be processed as the 1nput
PSI0ST--Updated 10 status byte
E-Reg--Set toe terminate I0 on the key input.

‘Routines Called:

Stack depth R6 (max): 2

Calls to Error routines (include error nunber and reason):

fNotes:

‘Reg: x = volatile Status: R12 stack:
d-m-dmmempoe=d domcopomcbmmmpommmmeae 4 dmmmmmmmmeee-

| 1012314567 | lin |out| Legend | | Entry
4ocd-o-y dommmdmecpmme¢ d-memememeeeo

{RO | x| | |hodel b | | d-BCD | |

[R10] | | l€E | o] b-BIN | |
|R20| | | [ORP | | x | 2-1nput| |
IR0 | | IRRP | | x | I
[RAOIb | xx| $ommececcceeccceeeeen + |
{R50| | | | ROMISB Needed: X | |
IR60| | | 4-c--ccicmccccncan + |
{R?20| | | | HANDI Called: ||
Aoy Re4 deeeemmmeeee

Routine: RINCHK

G
e

c
—
c
—
—
—
—

—
—
—
—

Y
y
—
—

File: KR/PS1

Author: HNK

Description: Provides the input checking for sone of the tenplate
10 done 1n TIME and RPPT nodes.
1.) Disable the insert/replace key to leave the I0 in
replace node.

Input: (BIN)
R40--Input key to be checked

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
RA0O--Input key or NOPKEY 1f input was I/R.

Routines Called:

Stack depth R6 (nax): 0

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$o-cdomcp--- $ocmmdommboccpemnme4+ bemceceeeeee-

| 10123(4567| | lin |out| Legend | | Entry
oo o=+ Ammmmeeemee-

IRO | | | |Mode| 2 | | d-BCD | |
|R10] | | lE | | | b-BIN | |
|R20| | | [ORP | | 40| 1-1nput| |
|RX0| | | [ARP | | x| I
|[RAOID | | $omemceemececee¢ |
|RS0| | | | RONJSB Needed: X | |

REO| | | #me=soossomeeeoeeeeev
|R70| | | | HANDI Called: ||
b= 4o4 dmmmmmeeemeeo

Routine: TINCHK

G
—
—
—
—
—
—
—
—

>
—

File: KR/PS1

Ruthor: MK

Description: Provides the input checking for sone of the
10 done in TINE and RPPT nodes.
1.) Disable the insert/replace key to leave the I0 in
replace node.

Input: (BIN)
R40--Input key to be checked

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
RA0--Input key or NOPKEY 1f 1nput was I/R.

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (i1nclude error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$-mmdmmmeg == 4ogmemdmmecmee= ¢ Yreememeeeeaa +

| 10123(4567| | [in |jout| Legend | | Entry |
$ocmb--mmd----4 bommcdoeoo¢ deeceenccene- +

RO | | | |Mode| 1 | | d-BCD | | |

[R10] | | IE | | | b-BIN | | |
[R2C | | | [DRP | | 40| 1-1nput] | |
IR0 | | | [RRP | | x| I |
|[R&OIb | | dommcccccmemeeceee+ | |
[R50 | | | | ROMISB Needed: X | | |
R6O| | | 4meeemooemoeeeaeeees ¢ | |
[R70 | | | | HANDI Called: | 1 |
dom=bmmmmp----9 4--cceeeeccccccccccea- ¢ deeccccceeo +

Routine: YINCHK

tenplate

File: KR/PS1

Ruthor: MK

Description: Provides the input checking for sone of the
I0 done 1n TINE and APPT nodes.
1.) Disable the insert/replace key to leave the 10 1in
replace node.

Input: (BIN)
R40--Input key to be checked

Output (i1nclude E-Reg, 2-Flag, C-Flag 1f pertinent):
R40--Input key or NOPKEY 1f 1nput was I/R.

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dommbmmem--=-d 4o4+ demmcemeeeee- +

| 10123]4567| | lin Jout]| Legend | | Entry |
o-bo—-mt----4 do-ccdomcpemcpo¢ deeeeccccene- +

|RO | | | Mode| 1 | | d-BCD | | |
|R10| | | i€ | | | b-BIN | | I
|R20| | | |ORP | | 40| 1-1nput| | |
L& | | [RRP | | x | I |
[RAOIb | | #emeeeceemeeeeeeeoeeeo ¢ | [
|RSO| | | | ROMJSB Needed: X | | |
IReol | | $ommmoommeoooomoooooo- ¢ | l
IR70| | | | HANDI Called: | |
$occbomcnonad d-mceccccccccccanccan- ¢ decmmcmecee-- +

Routine: UPDISP

tenplate

File: KR /PSH

Ruthor: MK

Description: Qutputs data from the i1nput buffer to the display
and turns on the cursor, without terninating the current
lnput operation.

1.) Output a specified nunber of characters from the

input buffer to the start of the display.
2.) Rssert the cursor at a specified location

Input: (BIN)

R36/37--Nunberr of characters to output
<1nput buffer>--Characters to output to display
INPTR--Rddress at which to set cursor

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
<display>--Neu data from input buffer uith cursor
on at specified location

Routines (alled:

CURSE-, OUT1CH, HLFLIN, CURSE+

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
4o bemmmd- $mmmcdomcoemo L R+

| 1012314567 | [in |out| Legend | | Entry | Exat
docmdommd----4 dommmdmdeeb dmemmemeeee- +

RO | xx| | [Node| b | | d-BCD | | |
[R10] I I € | | x| b-BIN | | |
|R20 | | | [ORP | | x | 1-1nput] | |
[R3O| | 11 [ARP | | x | I I
[RAO| | | emoemoeeeeceeoeeoaes- |
[R50 | | | | RONJISB Needed: X | | |
[R6O | | | $--cccemceosrieeeenn ¢ | |
|R70| | | | HANDI Called: || |
$ommdmmmme demmemete¢ e+

Routine: STDRTE

File: KR/PS1

Ruthor: HK

Description: Sets up the day & date RPPT fields in the 1input
buffer for a date a specified nunber of days in the future.
The i1nfornation 1s stored in ASCII.

Input: (BIN)
R20--nunber of days in the future to display.

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
RS0/57--Tine/date infornation 1n BCD.
<1nput buffer>--Day & date infornation 1n RSCII.

Routines Called:
DCCLOK, DCDAY, FXDRTE, FXDRY, GETCLK

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
doobomectooocd doccmdom—dempommemen 4 $eccccococeco +
| 10123]4567| | lin Jout| Legend | | Entry |
dom-pmmedomany §omecpoccdomnbmmccens 4 deccccccecenn +
[RO | xxxx| | |Hode| b | | d-8C(D | | |
|R10] | | [€ | | x| b-BIN | | |
|R20 | }xxx | xxxx | IDRP | | x | 1-1nput| | |
[R30 | xxxx | xxxx | |IRRP | | x | | | |
JREQ | xxxx | xxxx | $-memmemooceaeee + | |
RSO	xxxx	xxxx		ROMISB Needed: X		
REO	xxxx	xxxx	$ocemcesmceceeeeeaaan +			
R70	xxxx	xxxx		HANDI Called:		
bbbt §e-cvescccecnecacoacns P S+

Routine: TICK

File: KR/PS1

RAuthor: NK

Description: Sets up the clock comparator table entry to
interrupt every second on the second.

Input: (BIN)
RTCSB--Current time (offset from time base)
TNBRSE--Current tine base

Output (anclude E-Reg, Z-Flag, (-Flag 1f pertinent):
<Clock entry 1n conmparator table>--Set to interrupt

every second on the second.

Routines Called:
CRPENT

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
4ommdmmemgmmand d-o-mtrmcdocbocmeeaee 4 Heemmeemmeees
| 1012314567 | lin |out| Legend | | Entry
$=mmdommmpamny dommmbmmcpmmpmemmean ¢ dmmmmcemeeaao

|RO | | | |Mode| b | | d-BCD | |
IR10] | l € | | x| b-BIN | |
|R20 | xx | | [ORP | | x | 1-1nput| |

IR0 | l [RRP | | x| (I
RO | xxxx | xxxx | e+ |
|RSO| | | | RONJSB Needed: X | |
IR60 | | | 4mmms--emseeooonooos + |
[R70| | | | HANDI Called: ||
bomcdmemmgmm-md dmmememmee¢ oo

Routine: ARPINFO

@
e
e

c
—
c
—
—
—
—
c
a
—
—

w
—
>
—

File: KR/PS2

Author: MK

Description: Displays the 4 digit year and the repeat fields
(1f any) of the current appointment. The infornation 1s
held i1n the display for as long as a key is held doun.

Input: (BIN)
R32/33--Pointer to current appointment

Output (anclude E-Reg, 2-Flag, C-Flag if pertinent):

Routines Called: GETLNX, DCCLOK, TOASC2, FXDRY, TINDIV,
OUTSTR, LETGO

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$ocbmcemtomany doemefmmcfedemcmanee¢ deemememeeee- +
| 10123]4567| | lin |out| Legend | | Entry |
$oeebomecponacd dmemmoccdoccfeccmeee 4 demceceeee- +
IRO | | | |Mode| b | x | d-8CD | | |
IR10| | | |E | x | b-BIN | | I
|IR20Ixx | xx| IDRP | | x | 1-1nput] | |
IR30| | xx| IRRP | | x| I |
IRAO| x| mxexx | $occomemcccmeeccaees + | |
Lt | | | RONJSB Needed: x | | |
REOI | | #eeeeeoesooeeeeieeee. |
IR?70| | | | HANDI Called: | |
$ocpmcmmpomand $mmmmmme4 dememccceceae +

Routine: APTDEL

File: KR/PS2

Ruthor: nK

Description: Deletes an appointrent fron the APPT file after
acknouledging the current appointnent. HRlso enables the
pending appointnent.

Input: (BIN)
R32/33--Pointer to current appointnent
R34/35--Pointer to end of RFPT file

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
R34/35--Updated end of file pointer
<APPT file>--F1le shortened with deletion

Routines Called:
RPTACK, DELETE, STALRN,

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes: See APDEL’

Reg: x = volatile Status: R12 stack:
d--bomemd—emm de-cbmmmd ey mmmme4 b-cemeccecee- +

| 1012314567| | lin |out| Legend | | Entry |
Vo bmmemp---d docedmmmooa¢ d-eeeeeeeeeeo ¢+

IRO | xx] | |hode| b | | d-8CD0 | | |

IR10| l | l€ | | x| b-BIN | | I
|[R20Ixx | x| JORP | | » | 1-1nput] | |

IR0 Ixx11]|bb | |ARP | | x| || |

[RAO| | | emesemesesceeeceoaoees e | |
|RS0 | | | | RONJSB Needed: x | | |
IR6O | | | $-cevmcmcecccneccaana- + | |
|R?0| | | | HANDI Called: | | |
dommdmemmg---- domemceeseeI R+

PFoutine: RPUEL’

File: KR/PS2

Ruthor: nK

Description: Deletes an apontement fron the APPT file without
acknouledging the current appointnrent.

Input: (BIN)
R32/33--Pointer to current appointrent
R34/35--Pointer to the end of the RPPT file

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
R34/35--Updated end of file pointer
<RPPT file>--Shortened due to deletion

Routines Called:
DELETE, STALRN

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes: See RPTDEL. ARPDEL’ 1s an entry point within RPTDEL.

Reg: x = volatile Status: R12 stack:
Yoob= G-4 decemeccecaaa +

| 10123]4567| | lin |out] Legend | | Entry |
boecpmematomand Voob e+
|RO | | | |Mode| b | | d-BCO | | |

IR10] | | [E | x| b-BIN | | |
|R20|xx | | IDRP | | x | 1-1nput| | |
IR1albb | [RRP | | x | I |
[RAOI | | eemmemcemeeeeoeoe- |
|RSO| | I | ROMJSB Needed: x | | |
RO | | ememmoeememeeeeeen- |
IR70| | I | HANDI Called: I |
4omecp---9 R4 demceeeeeea- +

Routine: RPIDSP

File: KR/PS2

Ruthor: NK

Description: Sets up the specified appointment 1n the input
buffer ready for display (decoded RSCII format.) R20/24
are left set up as paraneters for a call to GETTEN.

Input: (BIN)
R32/33--Pointer to current appointnent (may not be at the

end of the appointment list.)

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
<1nput buffer>--Decoded current appointnent
R20/21--Points to the start of the input buffer
R22/23--sane as R20/21
R24--S1ze of decoded appointment in bytes

Routines Called: HANDIO, RPTGET, FXAPPT

Stack depth R6 (max): ?

Calls to Error routines (include error nunber and reason):

Notes: Generates a HRNDIO call uith event V.AFAT.

Reg: x = volatile Status: R12 stack:
dommpmmmmpmmmnt dom=mdoccpoecdocccacan 4 deceecmccaaa- +

| 1012314567| | lin |out| Legend | | Entry |
bpommmd 4odmmcpmemfommeee ¢ deecmcmcecaa- +

RO	xxxx]			hode	l b		d-BCD		
R10]		[E		x	b-BIN				
R20	0000]	0	IORP		x	1-1nput]			

IR30O] 11| | IRRP | | x | | |
|R40 | | | $osmomeecocmcocconnn- + | |
|RS0 | | | | RONJSB Needed: X | | |

ROI | | #emmomceeemooeeeoooe‘| 1
IR70| I | | HANDI Called: X | | |
dmmmdemmmb—mmmd emaceaa¢ decccemccenan 4

Routine: APTERR

File: KR/PS2

Author: RK

Description: Sets up the display in response to an erroneous
appointnent entry. Sets up the error buffer and annunciator
for the specified error, restores the input buffer to the
May 1t uds entered, sets error indication in PSIOST, and sets
up R20/24 for GETTEn to display the erroneous entry.

Input:
R20--Error number in binary

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
Error annunciator on
<error buffer>--error nessage
<input buffer>--original input that caused the error
PSIOST--set to 41 hex to indicate error
R20/21--Points to INPBUF
R22/23--Rt start of line
R24--Set to size of RPPT entry
E--set to 1

Routines Called:
ERRORR, KOPY

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):
Calls ERRORR to set ERRBUF and annunciator.

Notes:

Reg: x = volatile Status: R12 stack:
boccdomaponany $occcdoccpoccdoccncnnn b dmeemccecea- +
| 10123]14567| | lin Jout| Legend | | Entry | Exat
ooy $omcmdommbompmmnmee ¢ demcccceeeeeo +

IRO | xx| | |Mode] | x | d-BCD | | |
|R10]| | x x| € | | 1] b-BIN | | |
{R20|booojo | IORP | | 20| 1-1nput| | |
IR30| | | IARP | | 22| | |
|R4O| | | $-occocmceemococoaoon-+ |
IRSO| | | | ROMJSB Needed: x | | |
IR60| | | fmmosmemmccccrcncecaan + | |
IR70] x|xxxx]| | HANDI Called: | | |
$occponcnponnn L$ decccccccee-o +

Routine: RPTFND

File: KR/PS?2

Ruthor: HK

Description: Finds the location in the apppointnent file where
the specified appointrnent would belong.

Input: (BIN)
R30/31--Pionter to start of appointment file
R34/35--Pointer to end of appointment file
<input buffer>--Encoded RPPT to search for

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
R32/33--POIhnter to first apointrnent that occurs at or
past the one specified i1n the 1nput buffer,
E-reg--Equal 1 1ff the found appointnent 1s at the sane
tine as the target appointment.

Routines Called:

Stack depth R6 (nax): O

Calls to Error routines (include error nunber and reason):

Notes: See RPFND’

Feg: x = volatile Status: R12 stack:
4o bommmta-—y 4o¢ bemeemceceeen +

| 10123]4%67| | fin |out| Legend | | Entry | Exat
dommdemengey oot4 d-eeecceenao ¢+

RO				hode	b	b	d-BCD		
R10			lIE		o]	b-BIN			
R20		xx	[ORP		x	1-input]			
IR	21xx	11		IARRP		x			
IRAO	x	xxxx] $ommemee¢							
[R50	xx	xxxx		RONISB Needed: X					
IREO			4eeceesesceceeeeooooo-						
R?0				HANDI Called: I					
deccbmeapaans 4ocae-4 dececccceeaa- +

Routine: RPFND’

File: KR/PS2

Ruthor: nK

Description: Finds the location in the appointnent file where
an appointnent uith the specified time would go. R pointer
1s returned which points to the first appointnent whose
tine field 1s >= the 1nput tine.

Input:
R43/47--Tine to search for (in encoded forn.)
R30/31--Pointer to start of appointnent file
R34/35--Pointer to the end of the appointment file
<input buffer>--Encoded RPPT to search for

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):
R32/33--Pointer to the first appointrent in the APPT file
which occurs at or past the one specified 1n the 1nput
buffer.
E=1 1ff the found appointnent has the sane tine as the
1nput time.

Routines (alled:

Stack depth R6 (max): 0

Calls to Error routines (1nclude error nunber and reason):

Notes: See APTFND

Reg: x = volatile Status: R12 stack:
oot -dommebe+

| 10123]4567] | lin |out| Legend | | Entry | Exat
bommdmmemg d-mcefomcdome¢ 4o+

IRO | | | |Mode|l b | b | d-BCO | | |
[R10| | | [€ | ol b-BIN | | I
|R20O| | xx | IORP | | % | 1-1nput| | |

[R30)1100/12 | [RRP | | x | I |
[RAO| 1|21} #o-ommececceeeceooes + | |
IRSO| x| xxxx| | RONJSB Needed: x | | |
IR60} | | doccmececeemeooiaeeon + | |
IR70] | | | HANDI Called: | |
$mmmdmmemo mmd o4 demmececeeea- +

Routine: RPTGET

File: KR/PS2

Author: HK

Description: MNove the current apointnent to the input buffer
fron the RPPT file.

Input: (BIN)
R32/33--Pointer to current appointnent

Output (include E-Reg, 2-Flag, (-Flag if pertinent):
<1nput bufer>--Current encoded appointment

Routines Called:
KOPY

Stack depth R6 (max): 2

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dommbmmmcd o=t $ommcdemmpmmee4 dmemmmemeee-- 4

| 10123]4567| | lin |out| Legend | | Entry |
Pmmedmmmmbey 4omeme 4 demmmemeceae- +

[RO | | | |fode| 2 | | 9-BCD | | |
|R10] | | l€e | | | b-BIN | | |
[R20| | | [DRP | | x | 1-1nput| | |
R 11 I [RRP | | x | I |
|R4O | | | $occcmscccsscnconcnn ¢ | |
|RSO| | | | RONJSB Needed: X | | |

IRO| | | 4meemoeoeeoceeooais¢ |
IR70| x|xxxx| | HANDI Called: . |
ooy dreemmmcccccecceceea¢ dececceccccaa- 4

Routine: APTINS

File: KR/PS2

Ruthor: NK

Description: Inserts an encoded appointnent into the appointnent
file. The encoded appointnent 1s 1n the 1nput buffer.
the conparator uith the pending appointment. E 1s nonzero 1ff
the insertion fails.

Input: (BIN)
R32/33--Location at which to insert the RPPT
R34/35--Pointer to the end of the RPPT file

Output (include E-Req, Z-Flag, C-Flag if pertinent):
R34/35--Updated pointer to the end of RPPT list
<APPT f1le> RPPT inserted and file si1ze is increased.
E-Reg--0 iff insert occurs as described.

Routines Called: INSERT, STRALRN

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dom—bmmmcbomany $ocmcbomcdomcdoccmcnnn 4 deccccccncao-
| 10123]|4567] | lin |out| Legend | | Entry
$oeegmmcgoaond doceodommbocoponmcanann 4 doceccccocee-
IRO | xx| | [fode| b | | d-8CD | |
IR10| I | lE | | o b-BIN | |
|R20| | | [ORP | | x | 1-input| |
IR11lbb | [ARRP | | x | [
|RA0| xx|xxxx| $-eccecmceenccccenenn + |
IRS0| | I | ROMJSB Needed: X | |
REO| | | #eooooeseeeeeeieeeo‘|
|IR70| | | | HANDI Called: ||
$occbecmchoncct doemmccccceccacecaan ¢ beccccccccaao

Routine: APTR+

E
e

—
—
—
—
—
—
—
—
—
—

d
—

Sets

File: KR/PS2

Author: MK

Pescription: Rdvances the current RPPT pointer (R32/33)
to the next apointnent in the RPPT file. E=1 1ff the
pointer 1s at the end of the file.

Input: (BIN)
R32/33--Pointer to current RPPT

R34/35--Pointer to end of the RPPT file

Qutput (include E-Reg, Z-Flag, (-Flag 1f pertinent):
R34/33--Updated current appolintnent pointer
E-Reg--1 1ff the pointer was at the end of

the RPPT file, O otheruise.

Routines Called: APSTAT, RAPTR-

Stack depth R6 (max):

Calls to Error routines (1include error nunber and reason):

Notes: Falls 1nto the RPTR- routine.

Reg: x = volatile Status: R12 stack:
4ot--- ooomcdommmena ¢ boeeceemceenn +

| 1012314567| | lin Jout] Legend | | Entry |
Aemcdeeoch---- oo¢e¢+

RO | | | |fode| b | | d-BCD | | |
{R10] | | l[€E | ol b-BIN | | |
[R20 | xxxx | | IORP | | x | 1-1nput] | |

IRXO| bblia | IRRP | | x | || |
RAG] | | mmeemseseeemeeeoee‘| |
|R50 | | | | RONJSB Needed: X | | |

REO| | | #emmeesemoeeceeoeeees- |
IR20| | | | HANDI Called: || |
Ay decemencmcccecccceeca ¢ beccmmemeeeaa +

Routine: ARPIR-

File: KR/PS2

Ruthor: NK

Description: Sets the current appointnent pointer to the
previous entry in the RPPT file. Does not nove the
pointer prior to the first entry i1n the file.

Input: (BIN)
R32/33--Pointer to the current appointment
R30/31--Pointer to the start of the RPPT file

Output (1nclude E-Reg, 2-Flag, C-Flag 1f pertinent):
R32/33--Updated current appointnent pointer

Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$mmmbmemmp-mamd dommedmecde4 e

| 1012314567| | in jout] Legend | | Entry
bommdommmpommy oo4 4o

IRO | I | |Mode| b | | d-8CD | |
|R10| | | [€ | | x| b-BIN | |
|R20 | xxxx| | IORP | | x | 1-anput] |
IR30|11bb]| | |RRP | | x | I |
|R40| | | $oememmcmcecenmcceaen + |
IRS0| | I | RONJSB Needed: x | |
IREO| | | 4-eemoeeeeoeeoeeee-
|R70| | | | HANDI Called: |
dmcmpmmmc e4-

Routine: GETLNX

@
e
e
e

c
—
—
C
—
—
—
—
—

&
—
—
o

File: KR/PS2

RAuthor: nK

Description: Sets up the input bufer and necessary paraneters for a call
to the keyboard/display routine (GETTEM) based on a given data
string.

Input:
R20/21--Pointer to paraneter string
[R20/21)--Paraneter string consisting of:

Bytes to place 1n the input buffer
0 byte
Input check routine address
Tenplate shield address
Line position address
Cursor position address
Byte count

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):
<nput buffer>--Data to be displayed 1n the subsequent call

to GETTEN.
R20/21--Line position for the display
R22/23--Cursor position for the display
R24--Nunber of bytes to be displayed
R44/45--[tenplate protect shield)
R46/47--[1nput check routine)

Routines Called:
Stack depth R6 (nax): O
Calls to Error routines (1nclude error nunber and reason):
Notes:

See GETTEN.

Reg: x = volatile Status: R12 stack:
ooy dommcpomcdmemgocmconnn ¢ dececmcmneeao dommeoeemeeR
| 10123]4%67| | lin Jout| Legend | | Entry | Exat |
domcdommpoomd docccdoccpomcdomnnannan 4 fecmeecacoanoL—+

[RO | | | [hode| | | d-BCO | | I |
[R10] | | f€e | | | b-BIN | | | |
|R20 |bboojo | IORP | |53 | 1-1nput| | | |

IRXO| | | IRRP | |20 | || | |
|R40 | | ooo0| $omcmmcmaceccecceaes + | | |
IRSO| x|xxxx]| | RONISB Needed: x | | | |

R6O| | | 4emmmoeeseoeeeeeen- | 1
[R70| | | | HANDI Called: I | |
dommdmmmd- 4ocmmmmmeececemeee4 $eccccccaccaa $occccccnann- +

Routine: RSTBUF

File: KR/PS2

Ruthor: nK

Description: Copies 40 bytes fron the pocket secretary scratch
area (PSTENP) to the input buffer.

Input: (BIN)
<PSTENP>--40 bytes to be copied

Output (1nclude E-Reg, I-Flag, (-Flag 1f pertinent):
<input buffer>--First 40 bytes fron PSTENP

Routines Called: KOPY

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:
See SRAVBUF, a routine uhich copies the first 40 bytes
of the 1nput buffer to PSTERP.

Reg: x = volatile Status: R12 stack:
$omcdom-deec $ommedocmdmme¢ demcmcceccae- +

| 10123|4%67] | lin |out| Legend | | Entry | Exat
dommdmmmmgt docomdocomcbommaen 4 dommmmmeemee- *

[RO | I | fMode| b | | d-BCD | | |
IR10] | | lI€e | | | b-BIN | | |
|R20| | | [IDRP | | | 1-1nput| | |
IR30| | | [ARP | | | I |
|R40| | | dococmcccccrceccnnean- + | |
|RSO| | | | RONJSB Needed: x | | |
IR60| | | $o--m-ecosecmooee + | |
IR70| xx|xxxx| | HRANDI Called: || |
docobmmccdoaat domcmemmccccccce¢ beeeccccceeen +

Routine: SAVBUF

File: KR/PS2

Ruthor: MK

Description: Copies 40 bytes fron the input buffer to the pocket
secretary scratch area (PSTERP.)

Input: (BIN)
<anput buffer>--First 40 bytes to be copied

Qutput (1nclude E-Req, Z-Flag, (-Flag 1f pertinent):
<PSTENP>--40 bytes fron the 1input buffer

Routines Called: KOPY

Stack depth R6 (nax):

Calls to Error routines (1include error nunber and reason):

Notes<:

See RSTBUF, a routine uhich copies the first 40 bytes
of PSTERP to the input buffer.

Reg: x = volatile Status: R12 stack:
bommdmmm g m -4 demmdmmmfmmmommee4 b

| 10123]4%67] | lin Jout| Legend | | Entry
oy domedommdmmomeae ¢ 4emmmmmeeeea-
|KO | | | |hode| b | | d-BCD | |

[R10]| | I lE | | | o-BIN | |
|R20 | | | JORP | | | 1-1nput| |

|R30| I l [RRP || | I
k4G			4oeiaee+		
R50				ROMISB Needed: x	
REO			4ocmremmccmceeeonae +		
[R?201 x| xxxx| | HANDI Called: | |
bbmmb--- $mmmmmemememmeeeeaao ¢ deemmmemmeeae-

Routine: TINDIV

E
e
—
—
—
—
—
—
—
—
—

o
—

File: KR/PS2

Ruthor: nK

Description: Extracts a particular unit of tine fron
a given nunber of seconds. Tuo 3 byte nunbers (both 1in
seconds) are divided to yield a result which 1s returned in
RSCII. For exanple, 638 seconds can be divided by 60

, seconds to yield 11 minutes 23 seconds
Input:

R26/27--Pointer to a 3 byte binary divisor
R45/47--3 byte binary dividend

Output (1nclude E-Reg, Z-Flag, C-Flag 1f pertinent):
R20/21--2 byte RSCII quotiert
R45/47--3 byte binary renainder
Z-Flag--Set 1f result (R20/21) 1s O.

Routines Called:

T0BCD2, TORSC2.

Stack depth R6 (rnax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dmmmpmmmcd -y 4mpmmmmmaan 4 dmmmmmmemeee- +

| 1012314567 | lin Jout| Legend | | Entry | Exat
bommpmmmd----d e4 demmmmmeemeee- +

IR0 1| | |Mode| b | | d-BCD | | l
IR10] I | € | | | b-BIN | | I
IR20Joo | 11] [DRP | |20 | 1-1nput| | |

[R30| | | [RRP | | x| I l
|R40| | bbb 4-=mmecemceeocmneoeaev |
|RSO| | | | ROMJISB Needed: x | | |
RO | | emeseeoceeeeeeioev |
|R70] | | | HANDI Called: I |
4o dommmmmmmeee4 dmmmmmeemeeo- +

Routine: TTINPLT

File: KR/PS2

Ruthor: nK

Description: Sets up a call to GETLNX which sets up a call to
GETTER for 1nput uith the time template.

Input: (BIN)

Output (include E-Req, Z-Flag, C-Flag 1f pertinent);
<input buffer> Tenplate display string
R20/21 Line position in display
R22/23 Initial cursor position
R24 Byte count of template
R44/45 Pointer to input check routine
R46/47 Pointer to template protect shield

Routines Called:
GETLNX

Stack depth R6 (nmax):

Calls to Error routxhes (1nclude error nunber and reason):

Notes:

See RTHPLT

Reg: x = volatile Status: R12 stack:
4omcdomcnpoaany d--ccbeccdomedommemeae 4 decmmccmceeao +

| 10123]4567] | lin |out| Legend | | Entry |
b docemdemcdmmmdemmemeee I R+

IRO | | | |Mode| b | | d-BCD | | |
IR0 || I€ | | | b-8BIN | | |
|R20|oo00l0 x| [ORP | |20 | 1-1nput| | |
[R30] l | [RRP | |20 | I | |
[R4O| | oooo| el+ | |
JIRSO| xx | xxxx| | RONJSB Needed: x | | |

{R60 | | | $omomms-me-eescooooonoo + | |
[R?0] l | | HANDI Called: || |
4opmmmt demmmmeccccee¢ deecmccmccaa- +

Routine: RATHPLY

File: KR/PS2

Ruthor: MK

Description: Sets up a call to GETLNX which sets up 3 call to
GETTER for input uith the appointnent template.

Input: (BIN)

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
<input buffer> Tenplate display string
R20/21 Line position 1n display
R22/23 Initial cursor position
R24 Byte count of template
R44 /45 Pointer to input check routine
R46/47 Pointer to template protect shield

Routines Called:
GE T LNX

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:
See TTHPLY

Reg: x = volatile Status: R12 stack:
$ommdocecdonnd $memmfemcpeccpoccaanas 4 dececoccennae +
| 10123]4567] | lin Jout| Legend | | Entry |
$omoboccboany $ommmpeonfomcpoccconnas 4 deeccceeee- +

RO | | | [Node| b | | d-8CD | | |
IR10| | | IE | | |b-BIN | | |
|R20|0c000lo x| IORP | |20 | i-input] | |
IR30| | |ARP | |20 | I |
|R40| |oooo]| $oseccomcocccocaccaea- + | |
IRSO| x| xxxx| | RONJSB Needed: x | | |

|R60| | I $oemcccceceomoocooenn- + | |
IR70| | | | HANDI Called: | |
domedmemcpoacny omemccccccenccecacae ¢ bememcececeao ‘4

Routine: RPHSKE

file: KR/PS2

Ruthor: nK

Description: Protect shield for RPPT template in EXTD node.

Tnput:

Output (include E-Reg, Z-Flag, C-Flag 1f pertinent):

Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
d--cdo-tony domcobompoccpocnnnnan ¢ d-eeecccenane

| 1012314567 | lin jout| Legend | | Entry
$oempomcbeeod docecdoccdoccocemaae ¢ e

IRG | | | [Mode| | | d-8CD | |
[R10| | | € | | | b-BIN | |
IR20| I | IORP | | | 1-1nput| |
IR30| | | [RRP | | | I
JRA0| | | doccmcecccccmccanaaae + |
{R50] | | | ROMJSB Needed: I |
IR60 | | | 4-ce-ccccccnanaanno- ¢ |
IR?0| I | | HANDI Called: I
Aoy dmcccemmeeeceaa- ¢ demeemcmecaa-

Routine: RPNSKY

G
—
—

—
—
—
—
—
—
—

dp
—

File: KR/PS2

Author: nK

Description: Protect shield for RPPT template in YERR node.

Input:

Output (1include E-Reg, Z-Flag, C-Flag 1f pertinent):

Routanes Called:

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
docdmmempaad oo¢ deeeemmeeeee-

| 1012314567 | lin |out| Legend | | Entry
ooy $omedomcdommo¢ d-cecececeneao

RO | | |Mode| | | d-BCD | |
R0} || [E 1 | | b-BIN | |
|R20| | | [ORP | | | x-1mput| |
IR0 | | IRRP || | I
IR0} | | $emcmoov |
IRSO| | | | RONISB Needed: ||
IR0l | | $mommmmemecceeeee+
IR0l | | | HANDI Called: |
Pty ecemcce¢ deeccmeeeeeo-

Routine: STHNSK

O
e

c
—
e
—
—
—
—
—

Y
—
—

File: KR/PS2

Ruthor: nK

Description: Protect shield for set tine template.

Input:

Output (include E-Reg, Z-Flag, C-Flag if pertinent):

Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile
b=md---=d

| 10123]4567|

Routine: TIMNSK

Status:
d-emmdmmmpommoo4+
| lin |out| Legend |
$mmmmdmmepmmmpe+
|fode|] | | d-BCD |

[e 1 | | b-BIN |
[ORP | | | 1-1nput|

[RRP |] | |
$ommmemccccecccccaaen- ¢
| RONJSB Needed: |
beees ¢
| HANDI Called: |
$occcccoccmcncocccaacs +

R12 stack:

O
e

e
—
—
—
—
—
—

A
—

File: KR/PS2

Ruthor: 1K

Description: Protect shield for tine connand i1nput tenplate.

Input:

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):

Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
o=t $ecmmdomcdumcpomaennnDet+

| 1012314567| | lin |out| Legend | | Entry | Exat
ep---- dmcemdommdommg$ bmeemeecemea- dommmmemee

[RO | I |Mode| | | ¢-BCO | | |
IR10| | l. le | | |b-BIN | | |
|R20| | | IORP | | | 1-1nput| | |
|R30| | | IARP || | I |
IRO| | | #memeememeeeseooeeesv |
|RSO | | | | RONJSB Needed: |] |
IR6OI | | #meseseemeoeeeeeeeooe‘| |
IR?0| | | | HANDI Called: || |
ooy ooee4 bememececcea- dommmceeeeee- +

Routine: YERRTNH

File: KR/PS2

Ruthor: MK

Description: 4 digit YERR entry tenplate.

Input:

Output (include E-Reg, Z-Flag, (-Flag 1f pertinent):

Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: » = volatile Status: R12 stack:
do-cdomcbe--y ooeet

| 1012314567] | lin Jout| Legend | | Entry
Re docccdmccgommgmmmaan L RT

[RO | l I [Mode| | | d-BCD | |
|R10] l | l€ | | | b-BIN | |
|R20] | | [ORP | | | 1-1nput] |
|R30| | | [ARP || | I
|RA0 | | | dommmmmmcceecceeaee- + |
|RS0 | | | | RONJSB Needed: I |
IR6O| | | #memeemmeeeeeeeeee. v |
|R?0 | | | | HANDI Called: I
bt dommceeee¢ deemmeeeeee-

Routine: REPTIN

File: KR/PS2

Ruthor: nK

Description: RPPT repeat field entry tenplate.

Input:

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):

Routines Called:

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
dommmmmmb---- docecdecctome¢ bmmmmmeeeeeo-

| |0123]4567| | in |out| Legend | | Entry
doemdmmmmdm==m docmmdommdommdmmmmee 4 dmmmemeeeee-

IRO | | I |Mode| | | d-BCO | |
|R10| | | [€ | | | b-BIN | |
|R20| | | [ORP | | | r-1nput]| |
IR30| | | [RRP | | | I
|R40| | | $-cemcemmmcecoeeenes + |
|RSO| | | | ROMJSB Needed: |

R6O| | | #eemmssemeoceeoeeeeesv
|R70] | | | HANDI Called: | |
domdmmmmdmman dmmmmmemeS

Routine: RPTCHK

@
e
—

—
—
—
—

o
—

‘File: KR/PS3

Ruthor: K

Description: Checks each field of the appointment entered
in the 1nput buffer. Encodes the appointnent for storage
in the appointment file. If a field 1s incorrect RPTCHK
returns with the appropriate error number.

Input: (BIN)
<input buffer>--ASCII appointrnent (as displayed)

:Qutput (include E-Reg, 2-Flag, (-Flag i1f pertinent):
€=0 or 1 1f there was no error or an error occured,

respectively.
R20/24--GETTEN paraneters for error display.

"Routines Called: RLACHK, RPTERR, DATCHK, DAYCHK, FINDTD,
GETTD, KOPY, RPTINP, TINCHK.

‘Stack depth R6 (max):

«Lalls to Error routines (include error nunber and reason):

‘Notes:

‘Reg: x = volatile Status: R12 stack:
$omcdoccmgooans $eccchoccpoccpocccncan 4 decocccceanoo +
| 10123|4567| | lin |out| Legend | | Entry |
foccbomchomcy docccdocgmmfomemmen 4 dreccccccana- +
IRO | | | |Node) b | x | d-BCD | | |
{R10] | | lE | | o] b-BIN | | |
|R20 | xxxx| x| IORP | | x | 1-1nput] | |

[R30| | | [RRP | | x | I |
|RAO | xxxx | xxxx | $m-emmmmcccceccccccaee ¢ | |
{RSO | xxxx | xxxx| | RONISB Needed: x | | |

R6O| | | #eeoooememeeeeceeee‘| |
IR20] x| xxxx| | HANDI Called: | | |
SS¢ deememmeeaeo +

‘Routine: DCCLOK

File: KR/PS3

Ruthor: NK

Description: Converts a binary number of seconds from nidnight
1-JAN-0000 to BCD representing seconds, minutes, hour of
day, day of month, month, year, and century.

Input: (BIN)
R43/47--Binary nunber of seconds from midnight 1-JAN-0000

(40 bit value.)
Output (include E-Reg, 2-Flag, C-Flag if pertinent):

R40 seconds (0-59)
R41 ninutes (0-59)
R42 hours (0-23)
R43 days (1-3)
R44 nonth (1-12)
R4S year (0-99)
R46 century (0-99)

Routines Called:
108CD8

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$momdocmcboany $omm—dmmbmmooeeeas 4 dememmeeeeea- +
| 1012314567] | lin |out| Legend | | Entry | Exat
$membommnbmand $ocmmdomcdeecbmeeeean 4 dmmmmmeeeeas ¢
RO | [fMode] b | | d-BCD | | |
IR0} | | l€ | | | b-BIN | | |
|R20 | xxxx | xxxx | [ORP | | x | i-1nput| | |
IR | | IARP | | x | I |
|R40 | ooob | bbbb| + | |
IRSO| x|xxxx| | ROMJSB Needed: x | | |

RO| | | #eesecmeeeeeeeieeoo‘o |
IR70| | | | HANDI Called: I | |
$omebmmebmmand $occemmccmcccccaceeaae 4 fmmemmcceea- +

Routine: ENCLOK

' ' ! | ! | ' ‘ ' ' ! ' -+

' ! 1 ' 1 ' ' 1 | ' ' ' <+

file: KR/PS3

futhor: MK

Pescription: Converts an array of 7 BCD tine fields representing
centuries, years, nonths, days, hours, minutes and seconds
to a single 40 bit binary nunber representing the nunber of
seconds since 1-Jan-0000.

Input: (BIN)
R40 Seconds i1nto minute \
R41 minutes 1nto hour \
R42 hours into day \
R43 day of month »----B(D data
R44 nonth of year /
R45 years 1into century /
R46 century /

Output (1nclude E-Reg., Z-Flag, (-Flag 1f pertinent):
R43/47 Binary nunbers of seconds from 1-Jan-0000.

Routines Called:
TOBINS

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes: See DCCLOK

Reg: x = volatile Status: R12 stack:
$omebmmey 4odomot¢ dememecaeeaan 4+

| 10123]4567] | lin Jout| Legend | | Entry | Exat
bomopomempmand $occcdecctoccbooconnnn 4 feeceemeeeaan +

RO | | | [fhode| b | | d-BCO | | |
IR10| I | l€E 1 | |o-8IN | | |
IR20| xx|xxxx| [ORP | | 20| 1-1nput| | |

IRY0| | | [RRP | | 6 | I I
[R40|121b|bbbb]| 4--eecomcemacaceaaoaan + | |
IR0 | | | | RONISB Needed: X | | |
LTR‘| n
IR70] | | | HANDI Called: I | |
domey $ommmmmmceceacccceaaaeDittt+

Routine: FINDTD

File: KR/PS3

Ruthor: NK

Description: Conputes the first occurence of a tine and date that
neets a given set of specifications that includes a base tine/
date, a tine/date nask, and a day nask indicating a day of
the ueek or a default.

Input: (BIN or BCD)
R21 Day of ueek nask
R40/46 Base tine and date for tine/date search
R50/56 Tine and date nask
PSSTAT B1tH6 1ndicates entry node (year/extd)

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
E-Reg 0 1f match uas found, 1 1f no natch found.
R43/47 Natching tine/date in seconds since 1-Jan-0000,

valid only 1f E=0.
Routines (Called:

DAYOK, DCDRY, ENCLOK, NINDD, MINHH, MINHR, NINAN, NINYY,

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes: FNDTD’ 1s an entry point uithin FINDTD.

Reg: x = volatile Status: R12 stack:
dmccdocccponact mmmmfempomapmmmcmeae ¢ dememeceeee- $mmemmeeeeea- +
| 10123]4567| | lin jout| Legend | | Entry | Exat
boemfmemngomamy dommdoccdompommmemee 4 dmeememceeee-R+

IRO | xx| | |fode] | b | d-BCD | | |
R0} || IE | | ol b-BIN | | |
|R20 | 3xx|xxxx| IORP | | x | 1-1nput] | |

R | | [RRP | | x| I |
|R40|111b|bbbo] 4oomemmemcoecooooee + | |
IR0 111110211 | | RONJSB Needed: x | | |
I R6O | xxxx |x| $om-eemcecncmcccecenas ¢ | |
IR70 | xxtxx | xxxx | | HANDI Called: | | |
bbbt dommmmmmeceeo4 demememeeeeeo *

Routine: FINDTD

File: KR/PS3

Ruthor: HK

Description: Operates the sane as FINDTD entered with appointnents
1n extended entry node.

Input: (8CD)
R21 Day of ueek nask
R50/56 Tine and date nask
R60/66 Mininun tine/date fields
R70/76 Naxinun tine/date fields

Output (1nclude E-Req, Z-Flag, C-Flag if pertinent):
E-Reg O 1f match uas found, 1 1f no match found.
R43/47 Natching tine/date in seconds since 1-Jan-0000,

valid only 1f E=0.
Routines (alled:

DAYOK, DCDAY, ENCLOK, MINDD, MINHH, MINARM, RINAN, RINYY,

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes: FNDID’ 1s an entry point uithin FINDTD.

Reg: x = volatile Status: R12 stack:
bombommmpmmm=d bommmbmmmdmeI Lit¢
| 10123]4567] | lin |out| Legend | | Entry |
epmm==d dommcdmmmdmmmdmmmemaan 4 deememmeeoaan- 4

[RO | | | |lode|l | b | d-BCD | | |
R0} | | IE | | ol b-BIN | | |
|R20| 1xx|xxxx] [IORP | | x | 1-1nput| | |

IR30| | | IARP | | x | I |
|R30| oloooo] #---mecemmeecccccenees + | |
[RSO 11130111 | | RONJSB Needed: x | | |
[R60 1211]211 | $mcoceeeceocmcoenaanae + | |
[R?0 11113212 | | HANDI Called: I 1 |
mmmdmmmmg-y dommme¢ deeecccceeeas ¢+

Routine: FXAPPT

File: KR/PS3

Author: MK

Description:
the resulting fornatted appointnent in the i1nput buffer.

Decodes and fornats an encoded appointnent, leaving
The

first 21 characters of a past due appointment are underlined.

Input: (BIN)
<input buffer> Encoded appointnent

Output (1nclude E-Reg, 2-Flag, C-Flag if pertinent):
Decoded fornatted appointnent<input buffer>

Routines Called:
DCCLOK, DCDRY, FXALRM, FXDRTE, FXDAY, FXTIME, GETCLK, NUNPCK

Stack depth R6 (nax):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile
Pomcbommpmmamd

| 10123]4567]
boccbocmmdomny

RO | xx| |
|R10] | |
|R2O|xx |x xx|

IR30| I |
|RQO | xxxx | xxxx|

IRSO| x|xxxx|

|R60| | |
[R201 1|
decchocmctonnct

Routine: RLNCHK

Status:
docedeccdocfommnmann +
| lin lout] Legend |
$occsdommpoopmncccnnn ¢+

|Mode| b | | d-BCD |
[E | | x| b-BIN |
|IORP | | x | i-1nput|
IARP | | x| |
$ececcmcceccmace+
| RONJSB Needed: x |
$rmmmmemceecemeaas +
| HANDI Called: |
$eccecoccacoremcncnnnn +

R12 stack:

@
.

—
—
—
—
—
—
—
—
—
e
—

File: KR/PS4

Ruthor: nK

Description: Checks the RLRRM field for proper syntax and
returns an encoded alarn byte.

Input: (BIN)
R46/47 First and second bytes of the alarn field in

that order

Output (i1nclude E-Reg, Z-Flag, (-Flag if pertinent):
R47 & R21 Encoded alarn byte
E-Reg 0 1f syntax ok, 1 if not

Routines Called:
NURCHK

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile
$ommbmmmmd-- - b

| 1012314567]
$ommdmmmmg---=

|RO | | |
|R10] | |
[R20 |xo0 | |

|R30| | |
|RAO | | 11

RSO		
R6O		
R70]		
$ommdecendo--—4

Routine: DRATCHK

Status:
edocnmcca- +

| l1n Jout| Legend |
dmmmmdmmcdmcmfmmcemae +

[hodel b | | d-BCD |
e | | o | b-BIN |
[ORP | |21 | 1-1nput|
|ARRP | |47 | |
domcmceceececneene- +

| RONJSB Needed: x |
$ecemeecceccccncencaans +

| HANDI Called: |
ommmmee+

R12 stack:

E
—
—
—
e
—
—
—
—
—
—
—

Al
—
—

cremec.-

File: KR/PS4

Ruthor: nK

Description: Checks for a valid date field and returns an

encoded date field.

Input:
R40/47 ASCII date field fron appointment entry

Output (anclude E-Req, Z-Flag, C-Flag 1f pertinent):
R44/47 Encoded date field
E-reqg E=0 1ff date valad

Routines Called:

FLDOCHK, FXYERR, LERPYR.

Stack depth R6 (max):

Calls to Error routines (i1nclude error nunber and reason):

Notes:

See DRTCK’,

Reg: x = volatile Status: R12 stack:
omb odemcdemmgmemmenn ¢ dmemmceemeea-

| 1012314567] | lin Jout] Legend | | Entry
$odmmemd----d oo4 deemecmceeaa

|RO |xx | | |Mode| b | x | d-BCD | |

|R10| | | € | |ol b-BIN | |
|R20| | | [DRP | | x | 1-1nput| |

|R30| | I [ARP | | x| I
R40	1111]bbbb	#m-ommeccccccccocoeaa- +			
RS0				RONJSB Needed: x	
R60		xx	$omemmeemeeeemeeeneeen +		
[R70| | | | HANDI Called: |
DR $occcmecce¢ bemeemeeeeeo-

Routine: DRICK’

G
e

—
—
—
—
—
—
—

—
—
—

‘File: KR/PS4

Ruthor: MK

Description: DRICK' 1s an alternative entry point into the
routine DRTCHK. It 1s used during the set time connand
uhen the century field has been explicitly set.

Input:
R40/47 RSCII date field fronm appointment entry

‘Output (include E-Reg, 2-Flag, (-Flag if pertinent):
R44/47 Encoded date field
E-reg E=0 1ff date valid

Routines Called:
FLDCHK, FXYERR, LERPYR.

Stack depth R6 (max):

Calls to Error routines (i1nclude error nunber and reason):

"Notes:

See DATCK’.

Reg: x = volatile Status: R12 stack:
do-mbmmmmdeemy ommmdmmge¢ fememecemeaan +

| 1012314567 | lin |out| Legend | | Entry |
d---d---md---=y emmmmee 4 dmmmmmmeeeeao +

IRO |xx | | |Mode| b | x | d-BCD | | |

IR10] I I IE | o] b-BIN | | |
[R201 | | [ORP | | x | 1-1nput| | l
|R30| | | [RRP | | x | I I
IR40|11112|bbbb]| 4--orereccrcacrecoaaas + | l
[R50 | | I | ROMJSB Needed: x | | |
|R60| | xx | $-ccmmemmcccecccceae + | |
{R70| | | | HANDI Called: | | |
gndoot ommmmmmeme¢ demeeeceeeee- +

sRoutine: DRY(CHK

File: KR/PS4

Ruthor: NK

Description: Checks the validity of an RSCII day of week
field and returns an encoded DOK byte.

Input: (BIN)
R45/47 ASCII DOM field

Output (include E-Req, Z-Flag, C-Flag if pertinent):
R218r47 Encoded DOW byte
E-Reg E=0 if field OK, E=1 otheruise

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (1nclude error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bommdemmmgmmamy dommmdmcmpmmme4 d-ececceeeea- +
| 10123]4567| | lin Jout| Legend | | Entry |
bomcdommmboaay dommmpmmeges4 dmeemmmeeeen- +
IRO | | | |Node| b | b | d-BCD | | |
[R10| | | € | | o b-BIN | | I
|R20 | xox | | IORP | | x | 1-anput| | |
IRX| | | IRRP | | x | I I
|R40 | | 11b] $-mmcemcmmmccmeeaeon + | |
|RSO| | xxx| | ROMJSB Needed: x | | |

R6O| | | eeeeeseeoeoeooo. |
IR70| | | | HANDI Called: || |
bommdmmmmdmmam 4ommmemeeeo4 dmmememmeeo- +

Routine: DRYOK

File: KR/PS4

Author: NK

Description: Takes a date and deternines 1f the day 1s
legitinate for the nonth.

Input: (BIN)
R63 Day of month \
R64 Month of year '\ BCD data
R6S VYear of century /
R66 Century

Output (include E-Reqg. I-Flag, (-Flag 1f pertinent):
E-reg E=1 1f day of nmoth 1s too large, otheruise 0.

Routines Called:
LPYERR

Stack depth R6 (max):

‘Calls to Error routines (1include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
Aoeb-em 4 oo4 dmmmmeeeeeee

| 1012314567 | lin Jout| Legend | | Entry
dmmmbmmmpmmmmd dommbemmdmmeme b demmmmmeeees

|RO | xxxx| | |Node| b | | d-BCD | |

[R10] | | 1€ | | ol b-BIN | |
|R20 | | | IDRP | | O | 1-1nput| |

IR30| | | [RRF | | 63| I
|RAO | | | $oceememceme+ |
|RS0| | | | ROMISB Needed: x | |
[R6O] afaaa | 4mmmeeemmccommnaeenaes+
{R?70}| | | | HAND] Called: |
Ammgt s¢ pmmmmmmmeme--

Routine: DCDRY

C
o
—
—
—
—
—
—
—

>
o
—

File: KR/PS4

Author: nK

Description: Deternines the day of ueek for a given tine and
date.

Input:
R43/47? Tine/date in binary fornat

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
R27 Day of week nunber (1 for Sat .. 7 for Fri)

Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$ommdmmmcbmme= $ommmdmme¢ dmmmmmmmeee-- +

| 10123]45%67| | lin Jout| Legend | | Entry |
Voomdo-o= ==domdommdemmemaeI4

RO 11 | |Mode| b | b | d-BCD | | |
IR0l || [E 1 | | b-BIN | | I
|R20| | ol [DRP | | 43| 1-1nput| | |
IRO| | | IRRP | |6 | | |
|RQO| 11111} #ommmeeomieemoo+ | |
RSOl | | | ROMJSB Needed: x | | |
IREO| | | #eeoemeeeeoeeeeoe‘| |
IR0} | | | HANDI Called: I l
bommpommmbamand $mmme¢ dmmmmmemeaoo)

Routine: DUPCHK

File: KR/PSA

Ruthor: nK

Description: Checks for an appointnent 1n the appointnent file that
natches the contents of the input buffer.

Input: (BIN)
<1nput buffer> Test appointnent
R32/33 Current appointnent pointer

(assumed set by call to RPTFND)
R34/35 Pointer to end of appointnent file

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
E-reg E=0 1f there 1s no duplicate

z1 if there 1s a duplicate
R32/33 Pointer to duplicate appointment (E=1)

Pointer tg location for test appointnent
(E=0

Routines Called:

Stack depth R6 (max): O

Calls to Error routines (1nclude error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
domcbomet domcedommbommdmmceeae ¢ dememenccan-- ‘4
| 10123]4567| | lin |out| Legend | | Entry |
dommbomemdmmmt dommmbmecbmmme4 e¢+

|IRO | xx| | |Model b | b | d-BCD | | |

R0} 1| IE 1 o] b-BIN | | I
| R20 | xxxx | xxxx | IORP | | x | 1-1nput| | |
[R30| bblia | [RRP | | x | || |
|RAO| x|xxxx| doccmcemeecemeccceenae+ |
IRSO| x| xxxx| | RONJSB Needed: x | | |

|R6O | | | #ommmmeeooemiiiieeee + | |
|R701 | | | HANDT Called: || |
Y docececccececcccccacas 4 deecemcmccene- ¢

Routine: FLDCHK

File: KR/PS4

Ruthor: NK

Description: Checks for default or numeric value in & 2
byte field. Returns FF hex 1f default value or blanks,
or returns the BCD equivalent of the ASCII input. E=1
1f the field does not contain nunbers.

Input: (BIN)
RO/ ASCII default value
R20/21 Field to be encoded

Output (include E-Reg, Z-Flag, (-Flag if pertinent):
R20 BCD value of nuneric field (or FF 1f default)
R21 0
E-Reg 0 if value uas ok; 1 if value not ok

Routines Called:

)JANUMCHK

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Notes:
E is set by NUMCHK.

Reg: x = volatile Status: R12 stack:
oopenns bbb¢ Smcemmmmeemee-$rmmcmmee+
| |0123 | 4567 | | |sn |out| Legend | | Entry | Exit |
bbby $mmmmdmmepome¢ $emmmccccmeaa$ommmmmm———en +

RO |sv | | |Mode| b | | d-BCD | | I |
ko] | | |E | o |®BIN | | | |
|R20|¥d | I |DRP | | x | s-snput| | | I
|IR30] | | larRP | | x | I | |
(R0 | | #mmememmeemeceeeeeo | | |
|RS0| | | | ROMISB Needaed: x | | | |

B0 | | #mmememememeeeeeeeeee. | |
|R70| | | | HANDI Called: || | |
$ommpmmmnpmnny $mmmmmmcccceeea—ae ¢ $mmmmemmeeee-e+

Routine: FXALRM

File: KR/PS4

Author: MK

Description: Decods the encoded alarm byte and returns a 2 bdyte
ASCII alarm field.

Input: (BIN)
R47 Encoded alarm byte

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
R46/47 Decoded ASCII alarm field

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error number and reason):

Notes: Consult the Appointment moda documentation for
the encoding scheme for the encoded alarm byte.

Reg: x = volaotile Status: R12 stack:
$ombpeean s $-mmepommponeome¢ Fmmmmemmmeea-
| |0123 14567 | | |sn |out| Legend | | Entry
$ommbmemcomn $eccmprccprcnpre¢ Somcmmmmceea-

|RO |xxxx| | |Mode| b | & | d-BCD | |

|R10| I I lE | | | ®-8IF | |
|Re0 | | | |DRP | |47 | s-snput| |

|R30| I I |ARP | | 0 | I
|R¢0 | | ob] #omemmcceceee+ |
|RSO | | | | ROMJSB Needed: x ||

1B60] | | #emmemmmemeeeeeeeeos¢ |
|R70| | | | NANDI Called: | |
$ommbmmmey $mmmmmemmemmcm—cecea—as

Routine: FXDATE

$
e

e
e
e
e
e
—

File: KR/PS¢

Author: MK

Description: Formats a BCD date specification snto an ASCII date
Jreld. Arranges the frelds according to the date mode,
OMY or MDY and fills tn slash separators.

Input: (BIN)
Re5/47 BCD formatted date specification

Output (include E-Reg, Z-Flag, C-Flag t1f pertinent):
Re0/47 ASCI1 formatted ddate specification

Routines Called:

TO0ASC?2

Stack depth RE (max):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bbby bbb¢oo+
| 10123 | 4567 | | |tn Jout| Legend | | Entry |
bmeby ¢mcbmmb¢ bmmmmemmeeee- ¢

RO | l l |Mode| & | | @-BCD | | |
|R10| | I £ | | x| b-8IN | | l
|R20 | xxxx | x| |DRP | | 20| v-input| | |

RZ0			14		#6]		
R$0	oococ ottt	ome+					
RS0				ROMISB Needed: x			

|R60] | | #meememmmeeeeeeee. |
|R70) | | | HANDI Colled: | | |
$mmmpmmmey $emmmmmeemeeeas$ bemmmmmmmeeee- +

Routine: FXDAY

File: KR/PS¢

Author: MK

Description: Given a day of the veek nwmber, this routine returns
the ASCII day of the week abbreviation.

Input: (BIN)

R20 Day of the week number

Output (snclude E-Reg, Z-Flag, C-Flag if pertinent):
R45/¢47 ASCII day of the week abbreviation

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error number and reason):

Notes: Day of the week nwnmber s 1-7: Sat=1 .. Fri=7.

Reg: x = volatile Status: R12 stack:
bbbs $mmmmprmeIe
| 101234567 | | |tn |out| Legend | | Entry
$mmmbmbt $ommmpmmbpmeSS
|RO | xx| | |Mode| b | & | d-BCD | |

|R10] | l l& | | | &-BIN | |
|R20 | 1 | xx| |DRP | |45 | s-snput| |

|R30| l I |ARP | |26 | I
|R¢0 | | ooo| $oemmee+ |
|RS0 | | | | ROMISB Needed: x |

|R80| | | ememmmeoeeeceeoeeeeee |
|R70| | | | HANDI Called: I |
$ommpmey oeemmam¢ pemmmmmmmeee-

Routine: FXTIME

G
e

s
—
.

—
—
—
—
—

)
—
—

File: KR/PS¢

Author: MK

Description: Translates a time of day sn BCD format to the
ASCII. Numbers are arranged in the proper format and with
regard to 12 or 2¢ hour tims.

Input: (BIN)
Ré1/¢2 BCD minutes and hours, respectively

Output (include E-Reg, Z2-Flag, C-Flag if pertinent):
Re0/#7 ASCI1 time of day

Routines Called:
TOASC?

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Notes: Looks at PSSTAT to determine 12 or 2¢ hour mode.

Reg: x = volatile Status: R12 stack:
bbby $ommmpommmmcbY+
| 10123 | 4567 | | |tn |out| Legend | | Entry | Exi¢
bbby $omcmbmmcpmmnpmneS+

L I I |Mode| b | | d-BCD | | I
|R10| | | IE | | x| d8IFN | | |
|R20 |xx x| | |DRP | | €2 s-input| | |

R30		I	ARP		¢0	I
R20	obbo	oooo	#mmmme¢+			
RSO				ROMISB Needed: x		

60| | | #mmmmmmmmmmmmmoceemee-o |
|R70| | | | NANDI Called: I |
$mmmpommnpemmy $rmmmmecmcccecec—————$ bemmmme—meee- +

Routine: FXYEAR

File: KR/PS¢

Author: MK

Description:

tnput of the ¢ digit year.

Prompts and inputs a ¢ digit year for an apposntment
spectfication. Saves and restores the input buffer used for

Also adyusts the default entry
so that tt will parse properly in the appotntment check
routine.

Input: (BIN)

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
Re4/47

Routines Called:

ASCI] ¢ digit year

GETLNX, GETTEM, RSTBUF, SAVBUF.

Stack depth R6 (max):

Calls to Error routines (snclude error number and reason):

Notes:

| |0123]4567|
$ommbommntma—s

|RO | xx| xx|

R10		
R2O	xx	
R3¢0		

|R¢0 | |
|RSO | |

|R6C | |
|R70 | |

’

Routsne: LPYEAR

Status:
$emmepmmmpmmmpome+
| |tn |out| Legend |
$ocmmbrmbb+
Mode	&	x	d-BCD
E	x	4-BIN	
DRP		x	s-snput

|ARP | | x | |
$oecmcmemee————¢
| ROMISB Needed: x |
$oemmcmecee+
| HANDI Called: |
$oemmee-+

R12 stack:
G
e
e

—
—
—
—

.
—

File: KR/PS¢

Author: MK

Description: Tests to determine if a given yar s a leap year
or not.

Input: (BIN)
R6S Year of century (BCD digits)
R66 Century (BCD digits)

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
E=z1 1ff the year vs a leap year; 0 otherwise.

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
b $rmembeme¢ $emmmmememeeeb+
| 10123 | 4567 | | |tn |out| Legend | | Entry | Exst
by $ommmpmmmpmemm ¢ bmmmmmmmeeee- $ommm————————

(RO | | I |Mode| b | b | d-BCD || |
|R10| I I IE | o | d-BIN | | |
|R20 | | x| |DRP | | x | s-tnput| | |

|R30| | I larP | | x | I l
[Re0] | | emeemoememeeeeeeeo |
RSO				ROMISB Needed: x		
R60		¢¢	#oemeeme+			
R70				NANDI Called:		
bpommm $mmemmeem ¢ bmmmmmmmmeeo-$ommme

Routine: MINDD

File: KR/PS¢

Author: MK

Description: Sets BCD day, hour, ond minute and second to their
lowest possidle values, 1, 0, 0, and 0 respsctively.

Input: (BIN or BCD)

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
R63 1,
R62 0,
R61 0,
R60 0 »

Routings Called:

M3 n1mon
minimwn hour
minimwn minutes

minimwon seconds

Stack depth R6 (max): 0

Calls to Error routines (snclude error number and reason):

Notes: See MINYY, MINMM, MINKN, and MINMN also.

Routine: MINDD

Status: R12 stack:
$ocmcbocnpomcpomcccnae ¢ becccmcceeee- $emomccmce¢
| |tn |out| Legend | | Entry | Exs¢ |
$occcpoccpoepommeaee ¢ domcmmcccece--*

|Mode| | | d-BCD | | | |
IE | | | b-BIN | | | |
|DRP | | 60| s-snput| | | |
|ARP | | | I | |
eo | |
| ROMISB Needed: =x | | | |

bommmmmmmmeme.| | |
| HANDI Called: . | |
$o—cccecceccccccconcna ¢ $emmmcccccce- $mmmememcc——— ¢+

File: KR/PS¢

Author: =

Description: Sets BCD day, hour, and minute and second to thesr
lowest possidle values, 1, 0, 0, and 0 respectively.

Input: (BIN or BCD)

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
R63 1, minsmwm day
R62 0, minimon hour

- R61 0, minimwn minutes
R60 0, minimwn seconds

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error number and reason):

Notes: See MINYY, MINMM, MINHN, and MINMN also.

Reg: x = volatile Status: R12 stack:
bbbs $mcmepomcbomebmeee¢ bmmemcmmmeee-
| 10123 4567 | | |tn Jout| Legend | | Entry
bbbmnd $omembmmepmmcP¢ bomememceeee

RO			Mode			d-BCD		
R10			i€			o-BI8		
R20				DRP		60	s-tnput	
R30			larP			I		
R¢0			$omeemcemcccceeae¢					
RS0				ROMISB Needed: x				
R60	o000		#ecemcemcccccme+					
R70				NANDI Called:				
bbby $mmmmmecemcccecceee¢ bmmememeemeeo

Routine: MINKN

P
e

e
s
e
o
o
—

),
—

File: KR/PS¢

Author: MK

Description: Sets BCD hour, and minute and second to thesr
lowest pessidle values, 0, 0, and 0 respectively.

Input: (BIN or BCD)

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
R6¢ 0, minimum hour
R61 0, minimwn minutes
R60 0, minimwn seconds

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error number and reason):

Notes: See MINYY, MINMM, MINDD, and MINMN also.

Reg: x = volatile Status: R12 stack:
$ommbomety $ocmepmmebmemb¢ Fmmemmmmcmeee- ¢
| 10123 | 4567 | | |tn |out| Legend | | Entry |
by $ecmcpemnpencpoccnccend Pomemmmmm———= ¢

RO				Mode			4-BCD		
R10	l l lE			b-BIN					
R20				DRP		60 s-vnput			

|R30| | I larp | | | P I
[R80] | | emmememmmmeemeeoeees.| |
[R50 | | | | ROMISB Needed: x | | |
|R60 |coo | | $ommmmee-+ | |
|R70| | | | HANDI Called: | |
$emmbmmmoy $ommmmeeme4 Pemmmmmmm—me- ¢

Routine: MINMM

File: KR/PS#

Author: MK

Description: Sets BCD month, day, hour, minute, and second
Jrelds to their lowest possidle values, 1, 2, 0, 0, 0
respectively.

Input: (BIN or BCD)

Output (include E-Reg, 2-Flag, C-Flag «f pertinent):
R6¢ 1, minimwn month
R63 1, minimwn day
R62 0, minimwn hour
R61 0, minimwn minutes
R60 0, minimwn seconds

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error nwnber and reason):

Notes: See MINYY, MINMN, MINKH, and MINDD also.

Reg: x = volatile Status: R12 stack:
$oeebmmmeponmny $mmeprmebmemfmmme¢ Sememcmmcee- ¢
| 1021234567 | | lsn |out| Legend | | Entry |
bbbmbennny $ommmbmrcpormbrccnnnncd Pemcmmceem———+

|RO | I | |Mode| | | d-BCD | | I
|R10| | | & | | | &-8IN | | |
|R20| | | |DRP. | | 60| s-input| | l
|R30| | | larp | | | I |
R#0] | | #mommceceeeeeeeees | |
RS0				ROMISE Needed: x		
R60	0000	0	#ocmmmemcccccaeeee¢			
R70				HANDI Called:		
ebmmmey $emcmccmmeeeeeS+

Routine: MINMN

File: KR/PS¢

Author: MK

Description: Sets BCD minute, and second
frelds to their lowest possible values, 0, 0
respectively.

Input: (BIN or BCD)

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
R61 0, minimuwn minutes
R60 0, minimum seconds

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error number and reason):

Notes: See MINYY, MINMM, MINKK, and MINDD also.

Reg: x = volatile Status: R12 stack:
$ommpmmmmpemmmy $mmmcdeccbRee
| 10123 | 4567 | | |tn |out| Legend | | Entry
Vopmm e pmg bmbe¢ Peeeccecceo-o

RO	I I	Mode			4-BCD		
R10		I & 1		&8N			
R20				DRP		60] s-snput	

|R30| l I |ARP | | | I
R40			$ocmmemececccccaae+		
RSO				ROMJSB Needed: x	
R60	00		#occmemccccecnncaa +		
R70				NANDI Called:	
$ommpmme $mmmemmccee$ Pemmemmmme—as

Routine: MINYY

¢
e
o

—
—
—
—

—

File: KR/PS¢

Author: .

Description: Sets BCD year, month, hour, minute, and second
Jields to their lowest possidle values, 0, 2, 1, 0, 0, 0
respectively.

Input: (BIN or BCD)

Output (include E-Reg, 2-Flog, C-Flag if pertinent):
R6S 0, minimon year
Ro¢ 1, mintmum month
R6J 1, minimwm day
R62 0, minimuwn hour
R61 0, minimwm minutes
R60 0, minimwn seconds

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error number and reason):

Notes: See MINYY, MINMM, MINHN, and MINDD also.

Reg: x = volatile Status: R12 stack:
by $occmboccbeeeI S+
| 10123 | 4567 | | |sn |out| Legend | | Entry |
$ommpmmmmey Pocmepmccpmmmb¢ prmmmmmmeeee- ¢+

[RO | | | |Mode| | | a-BCD | | |
ol 11 IE | 1 | &BIN | | |
|R20 | I | IDRP | | 60| i-snput| | |
|R30| | I larp | | | I |
[RO] | | mmemmmmemeeeeeeoos. |
RSO				ROMISB Needed: x		
R60	ooo0o	oo	#mmeememcccccce+			
R70				NANDI Called: I		
$mmmprmeenpnnny $ommme¢ bemmmmemmee-¢

Routine: NUNPCK

File: KR/PS¢

Author: MK

Description: Moves the note field from its position in an
encoded appointment to its position tn a decoded
appointment within the input buffer.

Input: (BIN)
“snput buffer- Encoded appointment

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
<input buffer- Encoded appointment with the note field

moved to INP+26.

Routines Called:

Stack depth R6 (max): o

Calls to Error routines (include error numder and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bbby $ommebmeeprmmpomme4 bommmmmmeea- ¢
| 101234567 | | |tn |out| Legend | | Entry | Exvt¢
$mpmmeny bbb4 bemmmmemmeee- +

RO | | l |Mode| b | | 4-BCD | | |
|R10] | | £ | | | &-BIN | | |
|R2O| x | | |DRP | | 73| s-snput| | |

|R30| | | laRP | | = | I I
[R40] | | #memmeeememeeeeeeos . | |
|RSO| | | | ROMJSB Needed: x . |

[R60| | | #mmmmmmmemememeeee-.| |
|R70] x|xxxx| | RANDI Called: | |
dommbmmempeneny #ommmeeecememe¢ $ommmmmmemeae ¢

Routine: RPTADJ

File: KR/PS¢

Author: MK

Description: Reschedules a repeating apotntment.

Input: (BIN)
R32/33 Pointer to a repeating appintment to be rescheduled

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
“APPT file> Apposintment rescheduled

Routines Called:

APFND' , DCCLOK, DCDAY, ENCLOK, GETCLX, GEITD, MOVE, STALRM

Stock depth R6 (max):

Calls to Error routines (include error number and reason):

Notes: RPTADJ will attempt to reschedule an appointment
16 times. That is, if 16 * repeat_interval added to the
time of the appotintment creates an appointment that 1s
still past due, then the routine will give up and
set the appointment to the current time.

Reg: x = volatile Status: R12 stack:
bbby $rmmmpeme¢ #emmmmmeeeee- +
| 10123 | 2567 | | |tn |out| Legend | | Entry | Exit
bommbemey De¢ Pemmmmmmmeee- +
|RO | xx| xx| |Mode| & | x | d-BCD | | |

|R10| | | lE | | x| &84 | | l
|R2O|xx | x| |DRP | | x | s-input| | |

R30	xx	l	ARP		x	I
R$0	x xx	xxxx	$ommmme+			
RS0	x x	xxxx		ROMISB Needed: x		
R60	xxxx	xxxx	$mmmemee+			
R70	xxxx	xxxx		HANDI Called: I		
$ommbmcenpomany $ommmmeeeD+

Routine: RPTINP

File: KR/PS4

Author: MK

Description: Inputs and encodes the repeat specification for a
repeating apposntment (type R or A.)

Input: (BIN)

Output (include E-Reg, 2-Flag, C-Flag 1§ pertinent):
E-reg 0 sf repeat field encoded correctly

1 of repeat field encoded sncorrectly
Re3/¢7 Encoded repeat field, sf E=0.

Routines Called:
DAYCHK, GETLNX, GEITEM, MULTG0, NUMCKNX, RSTBUF, SAVBUF,
ToBINe.

Stack depth R (max):

Calls to Error routsnes (include error nuwnder and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$ommbmmmnpmmm s $rmmedmmcpomabencmnnend frmecmmmmmmme+
| |0123 | 4567 | | |tn |out| Legend | | Entry |
oo $ommmpmmbpmmmeeI S¢

|Ro | I I |Mode| & | x | d-BCD || |
|R10| | | IE | o | BN | | I
|R20 | xxx | | |DRP | | x | s-snput| | |

R30	I l	ARP		x	I
R$0	o]oooo]	#ommcmecccmme+			
RSO		xxx		ROMISB Needed: «x I	

[R80] | | #meememcmeeeeeeee.. | |
|R70 | | | | HANDI Called: | |
$ommpme $ommmme¢ bemmmcmcmeea-+

Routine: TIMCHK

File: KR/PS¢

Author: MK

Description: Checks and converts an ASCII time field of an APPT
entry to BCD 24 hour mode.

Input: (BIN)
Re0/97 ASCII time field from appointment entry

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
Re? BCD hour or FF sf defoult
R¢6 BCD minute or FF sf default
ReS 0 seconds or FF 1f default

Routines Called:

NUMCKK

Stack depth R6 (max):

Calls to Error routines (snclude error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$ocepocncponnny $ocrpomnboobonccenee O S$ecmcmcme
| 10123 | 4567 | | |tn |out| Legend | | Entry | Exst
$omcbmrapemnny $ocmmpoccdocnpoeecnen ¢ $occmccmeeea-$ommcmmm————n

|rRo | | | |Mode| & | | d-BCD | | I
|R10| | | I | | | BN | | I
|R20 | xxxx | xxxx | |DRP | | x | s-tnput| | |

R30			laRP		x	I
R$O	ssss	1bBD	#mcmmecccee+			
RS0				ROMISB Needed: x		
R60			#emmmmmmmme—eeceeeee-.			
R70				HANDI Called:		
$rembmemapmannd $rmmmmemceccccme¢ decmcccccnana$mememmm-

Routine: ACREAT

File: KR/PSS

Author: MK

Description: Opens already existing or creates an appotntment
Jile with the name "APPT
the start and end of apointment file pointers and the
current appotntment pointer.

Input: (BIN)

“ and type TYAPPT.

Output (snclude E-Reg, Z-Flag, C-Flag i1f pertinent):
E-Reg E=1 1f insufficient memory to create

file; 0 otherwise
R30/31 Start of appointment file pionter
R32/33 Current appointment file pointer (same as start)
R3¢/3§ End of apointment file pointer

Routines Called:

FCREAT, FOPEN

Stack depth RE (max):

Calls to Error routines (include error number ond reason):

Notes: AOPEN s an entry point within ACREAT.

| |0123|4567)|
bgy

Ro	
R10	
R20	xx

|A40 | xxxx | xxxX
|RSO |

|R60 |
|R70|
be

|
|
I

|R30|0o00|oo |

|
|
|
|

—
—
—

Routine: AOPEN

Status:
$ommmpmmcbemmpocennnan +
| ltn |out| Legend |
Pocmcpmeponngooncreany
|Mode| b | x | d-BCD |

o:| b-BIN |
| §-snput|

|

S S >

M
%
O
N

| ROMISB Needed: x |
$emmmemmeeeam¢
| HANDI Called: |
frrcrc e rccc cccrcc-~ ->n-o

R12 stack:
7

| Entry
Prmmdrrecmme -

I
l
|
I
I
|
I
]
Precccccccewe- P

e
o

—
—
—
—
—
—

,
—

Sets up

............ ¢

Exyt |
—meacere———- ¢

|
|
|
|
|
|
|
|

............ ¢

File: KR/PSS

Author: MK

Description: Opens already existing appotntment file.
Does not craate @ non-existent appotntment file.
Sets up appointment file pointers.

Input: (BIN)

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
E-Reg E=1 1f file does not exist;

0 otherwise
R30/31 Start of appointment file pionter
R32/33 Current apposntment file potnter (same as start)
R34/3S End of apointment file pointer

Routines Called:
FOPEN

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Notes: AOPEN 1s an entry point within ACREAT.

Reg: x = volatile Status: R12 stack:
by $rmmmbrmmbme¢ pmmmmeme—ee-+
| 10123 | 4567 | | |sn lout| legend | | Entry |
$ompommnpeeny $ommmbrmebmmb¢ $emcmccmmeene ¢

(RO | | I |Mode| b | x | d-BCD | | |
R10				E	o	&-BIN			
R20	xx			DRP		x	s-snput		
R30	00co	oo		ARP		x			
R40	xxxx	xxxx	#mmmmeee+						
R&0				ROMISB Needed: x					

R6O| | | mmmmecmmmememeieoooe-o |
|R70| | | | HANDI Called: I |
by eo¢ Femmmmemeeeo- +

Routine: AOPEN'

File: XR/FS$S

Author: MK

Description: Opens o file and sets up pointers to the
start and end of the file.

Input: (BIN)

Re0/47 Name of file to open

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
E-Reg E=1 vf file does not exist;

0 otherwise
R30/31 Start of file pointer
R32/33 Start of file pointer
R34/3S End of file pointer

Routines Called:

FOPEN

Stack depth R6 (max):

Calls to Error routines (snclude error number and reason):

Notes: AOPEN' 1s an entry point within ACREAT.

Reg: x = volatile Status: R12 stack:
$ommpmeep $ommmpmme¢ bmmmmmmemeeao
| 101234567 | | |tn jout| Legend | | Entry
epmeb=y $ocmmpmcmpommbmoS.

|RO | | | |Mode| & | x | d-BCD | |

R10]			lE		o	b-BIN		
R20	xx			DRP		x	t-snput	
R30	ocooo	oo		ARP		x		
RE0	rvvae $ommmmmmeee+							
RSO				ROMJSB Needed: x				

IR6O| | | #memmeemmmmmmmmeooeeso |
|R70 | | | | HANDI Called: I
bbby $ommmme¢ bemmmmmmmeee-

Routine: ALBEEP

¢
e

—
—
—
—

—

4

File: KR/PSS

Author: MK

Description:

Input: (BIN)
Re7

Executes tone patterns for the alarms of
appointments.

Output (snclude E-Reg, 2-Flag, C-Flag if pertinent):

Routines Called:

BEEPER, STCOMP, STOP?

Stack depth R6 (max):

Calls to Error routines (isnclude error number and reason):

Notes:

Reg: x = volatile
$emepemmpenany
| 101234567 |
$pomepmmmmmcene +

|RO | xx| I
|Ri0| | I
|R20 | xxxx | i

|R30| | I
|R40 | xxxx | xxxx |

RSO		
R60		
R70		
by

Routine: APPROC

Status:
bbbce+
| |sn |out| Legend |
$omcmpmmmpoccpomce+
Mode	b		d-BCD
E		x	-BIN
DRP		x	s-input

lagp | | x | |
g+
| ROMISB Needed: x |
$rmmmmee+
| HANDI Called: |
$mmmmmmeccccccce+

R12 stack:
'------------

| Entry
Prrrcmcmcce———

I
|
|
|
|
|
|
I
*------------ ¢

—
—
e

e
e
—

§
—

¢

Encoded alarm byte (low digit is the alarm muwmber)

Firle: KR/PSS

Author: MK

Description: Processes pending appointments. Sets up the note
of a pending appointment for display or execution as a BASIC
statement.

Input: (BIN)

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
E-Rag

of R2S; E=1 1f no processing due.
R2S

no processing due.)

Routines Called:

Terminator for note field processing (0 1f

AOPEN, APSTAT, APTDEL, APTRIG, HANDIO, PRNOTE

Stock depth R6 (max):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile
bommbmmb=y

g |0123 |45€7 |
bbb
|RO | xx|
|R10| |

¢

|
|

| o x|
|R30 |xxxx|xx |
|R40 |xxxx |xxxx |

|RSC | | |
|
I

|R6C | |
|R70| |
Pmemmm

Routine: APPTRS

HANDIO called with the

Status:
bbb-+
| |tn |out| Legend |
focmmfecmPe¢

Mode	b	x	d-BCD
\E		o	-BIN
DRP		x	s-1nput

larp | | x| |
$ocmmceccccmccemcee- +
| ROMISE Needed: x |
$eemmmeemceeev
| HANDI Called: x |
T¢

V.APRC event.

R12 stack:
*------------

| Entry
[ggg

|
|
|
|
|
|
|
|
Pre,m—---

E=0 1f processing due according to contents

G
e

s
—
—
—
—
—
—

,
—

1f a pending appointment has no note field then
the file ts searched for another pending appotrntment.

File: KR/PSS

Author: MK

Description: Loads registers with pointers to the start
and end of a file.

Input: (BIN)
R30/31 Pointer to directory for a file

Output (include E-Reg, 2-Flag, C-Flag 1f pertinent):
R30/31 Start of file
R32/33 Also start of file
R34/35 End of file + 1

Routines Called:

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
ebemngenany $ommmbmmmdoee¢ $ommmmmmeeee-
| 10123 | 4567 | | |tn |out| Llegend | | Entry
bbby $ommepmmmbmmmbme¢ pmmmmmemmeee-

RO | | | |Mode| | | d-BCD ||
|R10| | I e | | | BN | |
\Ro| | | [DRP | | | i-input| |
|R30 | | | laRP | | | I
|R40 | | | #ommememe+ |
|RSO | | | | ROMISB Needed: | |

R6O| | | #memmmmmeeeoeeeeeeos s |
|R?70 | | | | NANDI Called: |
bb $mmmmmmmeememe ¢ oo

Routine: APSTAT

4
e

e
—
—
—

.
—

4

File: KR/PSS

Author: MK

Description: Returns status tnformation regarding the current
appointment. Returns the size, the encoded alarm byte,
whether or not the appointment has been triggered, and
whether or not the appointment has been acknowledged.

Input:
R32/33 Pointer to the curent appointment

Output (include E-Reg, Z-Flag, C-Flag if pertinent):
Re/3 Size of the current appointment
Rer Encoded alarm byte from current appointment
E-Reg E=1 1f apointment 1s triggered; 1 otherwise
CY-Flag high 1ff appointment acknowledged
DRP 2 (This is used elsevhere in the pocket

secretary code.)
Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
oo $ommcpoemponnpommnan ¢ bmmmmcmmeeee- ¢
| 101234567 | | |tn |out| Legend | | Entry |
$omebomecpoamy $omceponcbomoo¢ bememmceeeee- .
RO	xx			Mode	&		d-BcD		
R10			lE		o b-8I8				
R20		x		DRP		2	t-snput		

|R30| | I |ARP | | 32| I |
(RS0 | | gmmmmommmecmmeomeoe. |
|RS0 | | | | ROMISB Needed: x || |

|R60 | | | o-meeese—eesocomon- + | |
|R70 | | | | HANDI Called: || |
$ommpmmenponnns oeee——es 4 bmmmmmmmcmee- ¢

Routine: APTACK

--—---

File: KR/PSS

Author: MK

Description: Acknowledges the current appointment. Returns without

acknowledging 1f the appointment is already acknowledged or has
not yet been triggered.
apposntment.
appointment pointer ot the oldest due
Clears the appointment annuynciator and PSIOST if there are no
Jurther due appointments.

Input: (BIN)
R30/31

R32/33
R34/3§

Pointer to start of appointment file
Pointer to apotntment to acknowledge
Pointer to end of appointment file +1.

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
Asswning appoitntment was acknowledged:
MSB of size byte of acknowledged appointment is set
R32/33

cappointment annunctiator’ C(leared
PS10ST

ANN.A-, APSTAT, NANDIO, RPTADJ
Stack depth R6 (max):

1f there are furthar due appotntments,
a pointer to another next due appointment;
otherwise a poitnter to the acknowledged
appointment.

Calls to Error routines (include error number and reason):

Notes:

HANDIO call is with event V. AACK.

| 0123|4567
Pmrmcpe—e=y

RO	xx	
R10]		
R20		x
R30	iibb	ii
R40		
RS0		
R60		
R70]		

Pr———ybommpmmm—

Routsine: APTMRG

Status:
bbb¢
| |tn |out| Lagend |
bb+
Mode	b		d-BCD
E		x	4-BIN
DRP		x	t-snput

laRP | | x | I
$mrmmmee+
| ROMISB Needad: x |
$reeme+
| HANDI Called: x |
$remmmcmccce+

R12 stack:

P
e

e
e
e
e

—

Sats the MSB of the size byte in the
Reschedules type A appointments. Sets current

appointment, if any exist.

Cleared, such that the template is displayed
by the next command entry.

Routines Called:

ewo-

File: KR/PSS

Author: MK

Description:
secretary’'s appointment file.

Merges the scratch appointment file into the pocket
Nandles the case where esther

the scratch file or the APPT file does not exist and does
not transfer duplicate appotntments.
deleted after the merge.

Input: (BIN)
(APFILO) Name of appotntment scratch file
{APFILE] Name of appointment file

Output (snclude E-Reg, Z2-Flag, C-Flag 1f pertinent):
<APPT file> Merged contaents of scratch file and

appointment file
escratch file> purged

Routines Called:

AOPEN, AOPEN', APDEL', APTGET, APTFND, APTINS,
ATTN?, BLIMP, DUPCKK, ERROR, FOPAC?, FPURGE, FRENAM

Stack depth R6 (max):

Calls to Error routines (include error number and reason):
Error 68 1f scratch file 1s an tnvalid file type.

Notes:

Reg: x = volatile Status R12 stack:
D $mmebmmpmcnfmmmmmean¢ Semmmmmceeee-
| |0123|4567 | | |in |out| Legend | | Entry
$ommbmmemgos S¢ pmmmemmmeeee-
RO | xx| | |Mode| & | x | 4-BCD | |

|R10| lx | £ | | x| &-BIN | |
|R20 | x | | |DRP | | x | s-snput| |

|R20| | | lARP | | = | I
|R40 | xxxx |xxxx | dommmee+ |

|RS0 | xxxx |xxxx | | ROMISB Needed: |

|REO | | I #o-mmoemcsoooooooonoo-+ |
|R70 | | | | WANDI Called: |
bommbmmeeg $emmmcece mene4 Semmmcmcmmeaa

Routine: APTRIG

—
—
—
—
—
—
—
—
e

4
=

¢

The scratch file 1s

File: KR/PSS

Author: MK

‘Description:
Performs thae necessary tasks assoctated with an appotntment
tnterrupt detected by CMPCHK.

Input: (BIN)
Output (wnclude E-Reg, Z2-Flag, C-Flag 1f pertinent):

cAll past due appointments have been triggered’
«Comparator i1s set for next pending apposntment>
«Status and annunciator set for due aprpotntment:

Routines Called:

ALBEEP, ANN.A+, AONOF?, APTACK, GETCLK, NXTAPT, STALRM, STOP?

Stack depth R6 (max): ?

Calls to Error routines (include error nwnber and reason):

Notes:

Generates a HANDIO call with the event V.ATRG

bbpamm o s

| 10123 |¢S67
bommbomnnponny

|RO |xxxx | |

|R10| | |
|Re0| | xx|

R30		
R¢0	x	
RSO		
R60		
R70		
Pommbmmcpommm s

Routine: STALRM

Status:
bmeb+
| ltn |out| Legend |
$omempommpommmme+
Mode	b	x	d-BCD
E		x	4-BIN
DRP		x	1-input

|ARP | | x | |
$omcemcomceccccaaa ¢
| ROMISB Needed: x |
$mmmmmee+
| HANDI Called: x |
$oemmmmmcccceemmeee oo +

R12 stack:
e

e
§

—
&

File: KR/PSS

Author: MK

Description: Sets up the appointment comparator table entry with
the currently pending appointment. 1f OFF ALARM has been
executed then returns with out setting up an appointment.

Input: (BIN)
PSSTAT Bit #2 = 1 indicates that appointments Aave

been turned off via OFF ALARM.

Output (snclude E-Reg, Z-Flag, C-Flag if pertinent):
Comparator set up with pending appointment

Routines Called:

CMPENT, EVIL, NXTAPT

Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

EVIL saves registers 27-57.

Reg: x = volatile
$ommbmmm—bmmm s
| 1012314567

Routine: ALARM.

Status:
bbb+
| ltn |out| Legend |
$rmmcfmmmepeme¢

Mode	b		d-BCD
E		x	4-BIN
DRP		x	v-snput

|ARP | | x | I
$ommmceccmmecece+
| ROMJSB Needed: x |
$mmmmmmcecce—aa¢
| HANDI Called: |
$emmmmmceeccccceee+

R12 stack:
P

e
e
e
e
-
—
—
—

,
—

File: KR/PSS

Author: MX

Description:
Runtime code for ALARM on/off.

Input:
R12 stack 1 byte; alarm on if value is 1, alarm

off sf value s 0.

Output (sinclude E-Reg, 2-Flag, C-Flag if pertinent):
PSSTAT Bit #2 = 1 if executing ALARM OFF.

Routines Called:

OFALRM, STALRM

Stack depth R6 (max):

Calls to Error routines (snclude error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
b $omcebmmmmecpmeme¢ $oceccmmemea-
| 102123 |4567 | | |tn |out| Legend | | Entry
$ommpmmoy bbb¢P
RO	xx			Mode	b		d-BCD	
R10	14			E		x	d-BIN	
R20				DRP		x	s-input	

|R30| | I |ARP | | x | I
|R$0 | | | #ommmmmeeme+ |
|RS0 | | | | ROMISB Needed: x |

1B0| | | #mmmmmemm—eeeeeooo-s |
|R70 | | | | HANDI Called: x .
bpms $ommmmmeceeanD

Routine: OFALRM

P
—
—
—
—
—
—
—
—
—

s

File: KR/PSS

Author: MK

Description: Disables the appointment entry in the comparator
tables, preventing appointments from triggering regardless
of the appointment file.

Input: (BIN)

Output (include E-Reg, 2-Flag, C-Flag 1+f pertinent):
«Comparator table entyr for apposntments>

disabled

Routtnes Called: STACMP

.Stack depth R6 (max):

Calls to Error routines (include error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$ommpmmmoy $bocccdocmdmb$ pmmmmmmee+
| |0123 4567 | | ltn |out| Legend | | Entry | Exit
bmpoeg $eemcpoccdomnprmcccmm ¢ b¢

|RO | | | |Mode| & | & | d-BCD | | |
k10| || IE | | | b-BIN | | |
Re0		I	DRP		x	s-snput		
R3C	l		ARP		x	I		
R$0	xxxx	rxxx	$mmmmmemmeeoo+					
RSC				ROMISB Needed: x				

[R60| | | #mmemmmememeemeeeees |
|R70| | | | HANDI Called: || |
bs $ommmmee+

Toutine: CNTRIG

File: KR/PSS

Author: MK

Description: Processes an alarm pattern tn response to a
continuous alarm snterrupt.

Input: (BIN)
{CNALRM] Coninuous alarm nwmder (0 to disable continuous

alam)

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
Continous alarm is disabled 1f CNALRM was 0, else the
alarm pattern corresponding to the alarm number sn CNALRM
1s soundad.

Routines Called:
ALBEEP, CMPENT

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bbby $mmmmbmmbmdme¢ bmmmmmmmemmeo +
| 10123 | 4567 | | |tn |out| Legend | | Entry |
bpmmms $ommmbmmmbee+

|RO | | | |Mode| b | | d-BCD || |
lRzoj | | IE | |x|bBIN | | |
|R20 | | x| |DRP | | x | i-vnput| | |

|R30 | | I |ARP | | x | I I
|R$0 | xxxx | xxxX | #ommmmeee-+ | |
|RSO | | | | ROMISB Needed: x | | |

R8O | | #ememoeemeceeeeoeooo o | |
|R70 | | | | HANDI Called: | | |
bpmes $mme¢b+

Routine: GETICLK

File: KR/PSS

Author: MK

Description: Gets the binary value of the current time, in seconds
from 00:00:00 on 1-Jan-0000.
real time clock are used.

Input: (BIN)

TMBASE and the contents of the

«TMBASE> Contains the time at which the clock was last
cleared, in seconds from 00:00:00 on 1-Jan-0000.

«RTCSB> Contains the time since the clock was last set

Output (snclude E-Reg, 2Z-Flag, C-Flag if pertinent):
Re0/47 Current time sn binary seconds since 00:00:00 on

1-Jan-0000.
DRP $2

Routines Called:

Stack depth R6 (max): 0

Calls to Error routines (snclude error nuwmber and reason):

Notes:

Reg: x = volatile
$rmmepemm g

| 101234567

Routine: GETTD

Status:
$ocmcpecmponcpomccannn+
| |tn |out| Legend |
S¢
|Mode| b | | d-8CD |
£ | | | &-BIN |
|DRP |. | #2| s-snput|

laRP | | | |
$eeemmccecccccee—en—¢
| ROMISB Needed: =x |
et¢
| NANDI Called: |
L¢

R12 stack:
S$omcmmcee¢
| Entry | Exsit |
.$emecceccemenn ¢

.$eccccncncans¢

File: KR/PSS

Author: MR

Description: Gets the current time and date in a standard BCD
Jormat.

Input: (BIN)
«TMBASE> The time at which the clock was last cleared, in

seconds from 00:00:00 on 1-Jan-0000.
‘RTCSB> TLime since the clock was last set.

Output (include E-Reg, 2-Flag, C-Flag 1§ pertinent):
o \Re7

Re6 century \
Re¢S year \
Res month __ BCD data
R& day /
Re2 hour /
Re1 minute /

Re¢0 second /
Routines Called:

DCCLOK, GETCLX

Stack depth R6 (max):

Calls to Error routines (include error nwmber ond reason):

Notes: Does nothing other than call GETCLK and DCCLOK.

Reg: x = volatile Status: R12 stack:
bbby $mmmmpmmepmmb¢ $emmmmeeceeo +
| |0123|4567| | ltn Jout| Legend | | ZEntry |
$mmmpommmpommnd $memmbmmebmmeD+

|RO | | | |Mode| | | d-BCD | | |
IR10| | | ie | | &8N | | |
IR20| | I [DRP | | | s-input| | |
R30	I I larRP			I		
R#0]		#emmmceemeeeececeeee..				
RSO				ROMISB Needed: x		

|R6O| | | #memmmmmmmeeeeeeeeooe | |
|R70| | | | KANDI Called: || |
$occpmccndmmany $ommceccecccccncecaee¢ $mmmcmceeea-+

Routine: MJLTEO

File: KR/PSS

Author: MK

Description: Specival purpose multiply routine. Multiplies a J
byte dinary nwnber by 60.

Input: (BIN or BCD)
R45/47 Number to multiply

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
(BIN)

R45/47 Number multiplied

Routtines Called:

Stack depth R6 (max): 0

Calls to Error routines (include error number and reason):

Notes:

Reg: x = volatile Status: R12 stack:
$omby $emmmpemmponcpomcennen ¢ $ommmemcmeee-
| 10123 | 4567 | | |tn |out| Legend | | Entry
$ommpmmmey $ommepmmcpecnpomceR S

RO		I	Mode		&	4-BCD		
R10]		I e			&-8IFN			
R20				DRP		5	s-snput	

|R30| l | |ARP | | $5| I
|R40 | | bbb $oemmcemcmccme+ |
|RS0 | | xxx| | ROMISB Needed: x | |

[R60] | | #ememmmemeeeeeeeeee..|
|R70 | | | | NANDI Called: | |
$ommpommey e¢ Somcemcccceeaa

Routine: NXTAPT

¢
e

e
e
e

—
—
.
—
—
§
-

- Ccecomwwwe--~-

File: KR/PSS

Author: MK

Description: Finds and returns status for the next appointment that
will go off. Opens the appointment file i1f t1¢ can. Finds the
earliest appointment tn the file that has not triggered.

Input: (BIN)

Output (include E-Reg, 2-Fleg, C-Flag if pertinent):
If there are no untriggered appotntments:

E»0
If there is an untriggered appointments:

E=0
R30/31 Address of the start of the appointment file
R34/35 Address of the end of the appointment file
R32/33 Address of the next appointment to trigger
Re7? Encoded alarm byte for this appointment
R2/3 Size of this appointment

Routines Called:
AOPEN, APSTAT.

Stack depth R6 (max):

Calls to Error routines (snclude error nunber and reason):

Notes:

Reg: x = volatile Status: R12 stack:
bbby $mmmmbpme¢ bemmmemmeeee-A¢
| 10123 | 4567 | | lsn |out| Legend | | Entry | Exit
bpoemnpmnnnd $rmmmdrmmpomb¢ Fememcmeceaa--
|RO | oo | |Mode| b | | d-8CD | | |
R1o| | | IE | |o | 8-BIN | | |
|R20| | ol |DRP | | x | s-input| | |
|R30 0000 |oo | |ARP | | x | | | |

(R0 | | #mmemeemmeeeeeeeeo |
|RS0| | | | ROMISB Naeded: x | | |
B60] | | #memoememmeeemoiooeeo |
|R70| | | | NANDI Called: I |
$ocmbmmmnpemay $ommee¢ $mmmmccmeeee-b

Routine: PRNOTE

File: KR/PSS

Author: MK

Description: Sets up processing of note field of a processing
appointment.

Input: (BIN)
R32/33 Posnter to processing appointment

Output (include E-Reg, 2-Flag, C-Flag if pertinent):
R2S Terminator sndicating what type of processing

to be done: 0 for no note field, APNOTE
Jor displaying a note, APCMND for execution

: of a BASIC command.
<snput duffer-

Note to be processed by EXEC code
Routines Called:

APTDSP, KOPY

Stack depth R6 (max):

Calls to Error routines (include error number and reason):

.Notes:

Reg: x = volatile Status: R12 stack:
e $mmmmpmemepomemmeae ¢ pemmmmmmmeeo +

| 101234567 | | ltn |out| Legend | | Entry | Exvt
epmmmm d $emmebmmmoo¢ bmeeeo¢

RO	x	I	Mode	b		d-BCD			
R10	l I \&			d-BIN					
R2O	xxxx	x0		DRP		x	s-snput		

|R30| I | |ARP | | x | I l
R8O | | es | |
|RSO | | | | ROMISB Needed: x | |

|R60 | I l #oommcocoooooooooooooo + | l
|R70| x|xxxx| | NANDI Called: || |
Wbey $ommmcmeceD+

6:01 P THU., 29 JULY, 1982

Pocket Secretary Theory
Mark Rowe

gygg

| Appointment Mode

¢
—
_
—
—

: N ™ o] e

$rrrrcmeeeee e e cr e eee eeet ecee e —- --—-

1.1 Overview

The appointment mode of Kangaroo is allows the user to
enter, exomine, modify, acknowledge, and delete appointments.
The appointment and time management code occupies about 6000
bytes of the Kangaroo mawtnframe software. The software structure
for the appointment mode uses several components other than the
code 1tself. Some of these components are dedicated to the
appointment management code and some are heavily used by other
parts of the Kangaroo system. Some of the major software
components of the appointment management code isnclude the
appointment file, the pocket secretary status byte (PSSTAT), the
real time clock (RTC), the time base (TMBASE), the input buffer,
and the pocket secretary IO status byte (PSIOST).

This document outlines the major components and operations
of the appointment mode. It s sntended to supplement the
documentation provided with the appcintment management code and
1s not intended to provide @ complete description in itself, but
rather to be used as an appendix for the code documentation. The
appointment mode code and code documentation s listed 1n the
following files: KR/PS1, KR/PS2, KR/PS3, KR/PS4, KR/PSS.

1.2 Time

Time in the pocket secretary can refer to either elapsed
time such as § days or 126230400 seconds, or o particular time
and date such as 11:43:22 AM on September 12, 1987. The former
case 1s fairly common in many of the routines and most frequently
occurs as some nunber of seconds. Another common unit of measure
for elapsed time 1s €1.03515625 microseconds (2°-14 seconds)
which 1s the unit of the 1internal system clock. These nunlers
typically occur as binary wvalues ond are converted to BCD or
ASCII only for display purposes.

6:01 PM THNU., 290 JULY, 1982
1-2

Pocket Secretary Theory
Mark Rowe

Time ond date specifications within the appointment mode are
usually specified as either the nuwnder of seconds or as the
nunber of 61.03515625 microseconds from midnight (AM) on January
1 of the year 0000. Note, unless stated otherwise, 61.03515625
microseconds will be stated as 61 microseconds throughout the
remasnder of this docwment. If the units are seconds thaen the
value will generally occupy five bytes. 1f the units are 61
microseconds, then the value will usually occupy seven bytes.

&

._.!;%—/ = £1.0385/5€25

6:01 PM THU., 29 JULY, 1982

Pocket Secretary Theory
Mark Rowe

S$mcmmceccccccccnnaa*
|

| The Appointment File | CHAPTER 2 |
I I |
SS$ocmccmcmccccecccn-¢

v2.1 Overview

The appointment file is where all the appointments are kept.
The file is created, opened, purged, and initially accessed
through the standard file manipulation routines. The
appointments are kept in chronological order (based on trigger
time) ond in an encoded format (see section 2.3). When the
appointment mode s executing, it will Aave opened the
appointment file and set up three pointers identifying the file
bounds and current appointment.

2.2 The Appointment File Posnters

The pointers for the appointment file are set up by AOPEN or
ACREAT and are generally kept sn R30/35 as follows:

R30/31 start of appoinment file
R32/33 current appointment in display (usually)
R34/35 next byte after appointment file

These pointers are used by many routines tn appointment mode and
most routines that do not use them will not destroy thesr
contents.

2.3 The Encoded Appointment

The appointments are stored in the appointment file in an
encoded format to conserve memory space. The encoded appointment
consists of four fields (five for a repeating appointment). The
first field (size byte) s one byte long and contains the
appointment size and appointment acknowledged flag. The second

6:01 PM THU., 29 JULY, 1982
2-1

Pocket Secretary Theory
Mark Rowe

2-2

Jield (time field) is five bytes long and contains the time that
the appointment is set to go off. The third field (encoded alam
byte) contains the alarm type, alarm nwnber, apposntment
triggered flag and an appointment processing due flag. If the
appointment is a repeating appointment (this s known via the
encoded alarm byte) then the fourth field will be a five dyte
repeat specificotion field; if the appointment is not repeating
then this field does not exist. The last field is the note field
and contains a note or BASIC command associcted with the
apposntment.

Encoded Appointment Format

Repeating Appointment Non-repeating Appointment
$remmmececcce-+ $ommmmcmece+

o | Size Byte | o | Size Byte |

|-mmmmmee| |-mmmmmmmmemmeenee |
1 | 1| |
2 | Appointment | 2 | Appointment |
3| Time | 3 | Time |
¢ | Field | ¢ | Field |

N 0 |
6 | Encoded Alarm Byte | 6 | Encoded Alarm Byte |

R| e|
7 | I 7| l
8 | Appointment | 8 | Note |
9 | Repeat | 9 | Field |
10 | Specification | 10 | |
11 | | 11 | |

|-==---oooomemmee | 12 | I
12 | | 13 | |
13 | Note | 14 | |
1¢ | Field | 15 | |

15 | | 16 | |
16 | | 17 | |

- | . l . |
| I I |
I I | I

2.4 The Size Byte

The first byte of the encoded appointment is the size byte
which contaitns two pieces of information. The msd of the size
byte (bit 7) ss the appointment acknowledged flag. This bit is
set when the appointment is acknowlaedged (see saction 7.1). The

6:01 PM THU., 29 JULY, 1982

Pocket Secretary Theory
Mark Rowe

seven low order bits of the size byte (bits 0-6) give the size
of the encoded appointment. This value varies due to the
variable length note field and the existence or nonextistence of
the repeat field. The minimum size for an appointment 1s seven
bytes (no repeat field and no note). The maximum size of an
appointment 1s 81 bytes: a repeating oppointment with a 69 byte
note, sncluding the note prompt.

2.5 The Appointment Time Field

The time field occupres the 2nd through 6th bytes of the
encoded appointment. This field contatns a 40 bit positive
tnteger that represents the number of seconds from midnight (AM)
on January 1 of 'the year 0000 to the time that the appointment
has been set to go off. The minimun value for the time fiaeld s
0 for an appointment 00:00 of 1/1/0000. The maximum value for
the time field vs 10000 years minus 1 second which equals
315,569,519,999 seconds (497968BD7F hex) for an appotntment at
23:59:59 of 12/31/9999.

2.6 The Encoded Alarm Byte

The seventh byte of the encoded appointment contains encoded
information giving the alarm type and alarm number as wvell as
status flags descridbing the current state of the appointment.
The two most significant bits of the byte contain the alarm type:
00 for normal appointments (type N), 10 for aon immediately
repeating appointment (type R), and 11 Jor a
repeat-at-acknowledge appointment (type A) (see seaction ¢4.2).
Type 01 ss unused.

Bit § of the encoded alarm byte 1s the alarm triggered flag.
This dit 13 cleared when the appointment s set up and 13 set
when the appointment s triggered (see chapter 7). Bit ¢ of the
alarm byte s the processing due flag. This Bit s initially
cleared when the appointment 13 set up and s set wvhen the
appointment triggers. It indicates that the appointment needs to
be processed (see section 7.2), ond s cleared when the
appointment ss processed.

The four low order bits of the encoded alarm byte contain
the alarm nwmber. This value 15 o binary numler 0 to 9
corresponding to the nwnber entered along with the alarm type

6:01 PM TWU., 20 JULY, 1982
2-3

Pocket Secretary Theory
Mark Rowe

when the appointment was entered (see section ¢.3). The volues
Jrom 10 to 15 Mhave not been implemented in the base machine but
could be used dby an enhancement ROM for some special purpose
applications.

2.7 The Appointment Repeat Specification

If the appointment 1s of type R or A (bit 7 of encoded alarm
byte set), then the 8th through 12¢th bytes of the encoded
apposntment contatn a repeat specification conststing of three
distinct parometers. They determine when a repeating apposntment
ts to be rescheduled.

The first byte of the repeat spectification contains the
day-of-the-week parameter. If this byte 1s zero then the
day-cf-the-week defaults to a don‘t care condition and the
appointment will repeat irrespective of the day-of-the-week. If
this byte 1s not zero then the Lleft digit contains the
day-of-the-week number:

1 for Saturday
2 for Sunday
J for Monday
¢ for Tuesday
S for Wednesday
6 for Thursday
? for Friday

The right digit specifies any modifiers to the day-of-the-week as
Jollows:

Jor a normal day-of-week specification (1.e., Mon)
Jor a particulor week (i.e., Mo3)
Jor a forward relative specification (sv.e., Mo+)
Jor a backward relative specification (v.e., Mo-)

All other possidilities are unused (note that in the repeat
specification, the normal and forward relative specifications are
treated the some).

The second Ddyte of the repeat specification contains the
month parameter. Thss byte spectfies how many months are to be
added when the appointment s rescheduled. The amount of time
that s actually added depends on the current month; thus adding
one month to a date sn January will add 31 days, but adding a
month to a date in April will add 30 days. Thus adding one month
to March 31 will result sn May 1. The parometer can be as small

6:01 P THU., 29 JULY, 1982

HPocket Secretary Theory
Mark Rowe

as 0 and as large as 99.

The third through fifth bytes of the repeat specification
contain a number of seconds specifying the days, hours, and
minutes field. The minimum value for this fiald 1s zero (for 0
days, 0 hours, and 0 minutes). The maximwm value for this field
ts 8,015,940 seconds for 99 days, 99 hours, and 99 minutes
(880BD¢ hex).

2.8 The Note Field

In non-repeating appointments the note field starts at the
eighth byte. In repeating appointments the field starts at the
thirteenth byte. Due to the 96 character limit to the input, the
note field 1s limited to a maximwm length of 69 bytes. The
minimwn length of the note field is zero; thus the note fiald
does not exist 1f no note s specified. If o note 1s specified
then the first character of the note field is the prompt
character and 1s either a “’” 1f the note field contains a note
to be displayed or 1s a “»>” 1f the note field contains a BASIC
command to be executed (see section 7.2).

6:01 P THNU., 29 JULY, 1982
-5

Pocket Secretary Theory
Mark Rowe

J.1 The Pocket Secretary Status Byte (PSSTAT)

The pocket secretary status byte (PSSTAT) is a variable
stored in system memory. The 8 bits of this byte contain eight
Jlags that identify the status snformation pertinent to the
pocket secretary. The msd of this byte (bit 7) s the
appointment due flag. This flag i1s set when an appotntment
triggers and s reset when all appointments have been
acknowledged.

Bit 6 of PSSTAT contains the appointment entry mode flag.
If this flag 1is clear then the appointments are entered in YEAR
mode. In YEAR mode the year field of the date is not used and
the appointment will be set for some time in the next 12 months.
If this flag 1s set, then the appointments are entered in
EXTENDED mode. In EXTENDED mode the year of the appointment can
be set to any time in the current century or, i1f ** is entered,
the year can be set to any value from 0000 thorugh 9999.

Bit § of PSSTAT contains the date format flag. If this flag
ts clear, then the dates are entered and displayed in
month/day/year format (with / delsmiters). If this flag 1s set,
then dates are entered and displayed sn day\month\year format
(with \ delimiters). In a similar manner, bit ¢ of PSSTAT

contains time format flag. If this flag s cleor, then
time-of-day information is displayed tn 12 hour mode with an AM
or PM indicator. If this flag s set, then time-of-day 1s
displayed 1n 2¢ hour mode with the AM or PM indicator being
replaced with **.

Bit J of the status byte contains the time adjust decrement
Jlag. If this flag is clear, then all internal corrections to
the time will be 1/¢ second increments. If this flag 1s set,
then all 1nternal corrections to the time will be 1/4 second
decrements. This flag ss used and maintained by the TIME mode
software.

Bit 2 of PSSTAT ss the appointment disable flag. If this
Jlag s clear, then the appointments are anabled and operate

6:01 PM TRU., 29 JULY, 1982
J-1

Pocket Secretary Theory
Mark Rowe

normally; otherwise, 1f the flag 1s set, the appointments Aave
been disabled. WHhen the apposntments are disabled, the
appcintment mode will operate normmally except the comparator
entries will be disabled and thus nc appointment interrupts will
be allowed to occur. In this state the appointments will not go
off even though the user can still create, acknowledge, set,
delete, and edit appointments in the usual manner. This flag s
controlled by the ALARM ON and ALARM OFF commands sn EDIT mode.

Bit 1 of PSSTAT contains the time exact flag. If the EXACT
time command has not been executed, then this flag s clear and
time corraction 1s disabled. Executing an EXACT cosmand sn TIME
mode will set this flag. Executing a RESET time command will
clear this flag. This flag ts used and mawntatned by the TIME
mode software.

The lsb PSSTAT 1s the time enabled flag. If this flag ss
set, then tha time display 1s enabled and the clock interrupts in
time mode will result in the display betng updated. If this flag
ts clear, then clock 1interrupts in time mode are sgnored Thss
flag allows time commands to disable the time display while they
use the display to display 1nformation or snput values.

3.2 The Pocket Secretary 10 Status Byte (PSIOST)

The Pocket Secretary IO Status Byte (PSIOST) contains
temporary flags whtch are set up and used 'n apporntment mode.
This byte 1s set up 1n temporary system memcry since 1t need not
be maintained outside of the appcintméent mode. PSIOST contains
three flags with five unused bits.

The msb of PSIOST (bit 7) contarns the display appointment
flag. This flag s set up by the appointment commands and s
passed to the command entry software. If this flag 1s set, then
the command entry software will display the current apposntment
(potnted at by R3I2/33); otherwise, the flag s clear and the
appointment template ts displayed. The flog 1s also used by some
of the commands that need to know wvhether or not an arpointment
was 1n the display. At the 1tinitial entry i1nto appotntment mode,
the flag 1s set 1f there 1's a due aprcintment to display;
otherwise, 1t 1s cleored and the template 1s displayed.

Bit 6 of FSIOST contains the template changed fleg. This
flag s cleared pricr to calling the 10 routine to input an
arpcintment command. The flag 1s cet by the appointment input
chaeck sntarcept routine wherever a character 1s entered 1n the

6:01 PM THU., 29 JULY, 1982

Pocket Secretary Theory
Mark Rowe

diaplay. This flag ss checked by those commands that need to
know 1f anything was actually entered tn the display, such as the
appotntment entry command which will ignore the tnput 1f no entry
was made. This flag ts necessary since with the template 10 1t
ts not possible to distinguish what was 1n the display when the
tnput routine was called from what was actually input.

The lsd of PSIOST (bit 0) contains the erroneous input flag.
This flag 1s set by a cormand that detects an error. In addition
to setting the flag, the command sets up the input buffer as it
was entered and sets the desired cursor address tn R22/23. When
the command entry software detects that the erroneous input flag
is set, 1t reports the error (error annunciator and beep) and
outputs the erroneous input buffer contents with the cursor at
the specified position. The command entry will clear this flag.

6:01 PM THU., 29 JULY, 1982
3-3

Pocket Secretary Theory
Mark Rowe

frcmccereeeeecee—emeceee-

I
| Alarm Field Specifications

t
—
_
—

§§ % -

T

4.1 Introduction

The alarm field in the appointment specifies some of the
actions that are to be taken when the appointment s triggered or
processed. The field consists of two characters. The first
character specifies the appointment type, and the second
choracter specifies the alarm number. The appotintment type
specifies the general disposition of the appointment after is has
triggered (see section 6.1). The clarm nunber specifies the tone
pattern (if any) and whether or not the pattern will sound
continuously.

4.2 Apposntment Type

The appointment type is specified tn the alarm field by one
of the characters N, A, or R corresponding to three different
types of appointments with type N being the default. Type N
appointments are normal appointments, type R appointments
reschedule themseleves immediately when they go off, and type A
appointments are repeating apposntments that wast until they are
acknowledged before they will reschedule themselves.

4.2.1 Type N Appointments

Type N appointments are normal appointments which go through
the normal process of triggering, processing the note field, and
waiting to be acknowledged. After being acknowledged, type N
appointments remain in the appotntment file where they can be
examtned, editted, or deleted in the normal manner.

6:01 PM THU., 29 JULY, 1982

Pocket Secretary Theory
Mark Rowe

4.2.2 Type R Appointments

Type R appointments are repeating appotntments and as such
have a repeat interval specified when they are entered. When a
type R appointment 1is triggered it will reschedule 1tself
tmmediately by tnvoking the appoitntment acknowledge software
which reschedules repeating appointments. Thus this appointment
will not wait to be acknowledged and as such it may be missed if
the user is not present when the appointment triggers. This
appointment type i1s nonetheless important for those applications
vhere a process needs to be scheduled at regular sntervals
without user interaction or in applications like a snooze alarm
vhere an alarm will sound at regular intervals until the
appointment s removed. Processing of the appointment takes
place even 1f the appointment has been rescheduled.

¢.2.3 Type A Appointments

Type A appointments are also repeating apposntments with a
repeat interval specified. Type A appointments trigger and are
processed tn the normal manner; however, when the appointment is
acknowledged the appotntment will reschedule itself according to
the specified interval. Processing will take place normally
whether the appointment has been rescheduled or not. This type
of appointment s important for those applications where a
recurring event must be brought to the attention of ¢the user,
such as a reminder to the user to take medicine at four hour
tntervals or of meetings that occur at 9:00 AM every Monday.

4.3 Alarm Number

The alarm number ts the second part of the alarm field.
This field contains @ nunmber from 0 to 9 and specifies what (if
any) tone pattern ¢to sound and whether or not to sound 1t
continuously.

6:01 PH THU., 29 JULY, 1982

Pocket Secretary Theory
Mark Rowe

¢.3.1 Alarm Tone Patterns

The purpose of the alarm number ss to specify which tone
pottern to execute. There are six distinct tone patterns
assoctated with the nwnber 1 through 6. These six patterns
proceed from @& tnnocuous Ulittle beep at 1 to an attention
grabbing string of rising and falling tones at 6. Specifying 0
as the alarm number will result 1n a silent alarm (annunciator
but no tones). The alarm nwnbers of 7, 8 and 9 are the some as
the tone patterns of alarm numbaers 2, ¢ and 6 respectively but
these patterns sound continuously (see section 6.2.2). Using the
system command BEEP OFF to disable the beeper will override all
of the tone patterns except for nwnber 6 (and 9) which will
always sound unless the appointments have been disadbled; all
other alarms will be silenced (but all other processing will
stell occur).

4.3.2 Contsnuous Alarms

Alarm numbers 7 through 9 will set up continuous alarms.
When a continuous alarm goes off, the appropriate tone pattern is
executed and the alarm software sets up a special interrupt that
goes off every 15 seconds and sounds the specified tone pattern.
This continues until a key has been hit (any key will do).
Hitting a key clears the continuous alarm snterrupt.

6:01 PM THU., 29 JULY, 1982

Pocket Secretary Theory
Mark Rowe

5.1 Overview

In appointment mode command entry the display will contain
either an appointment template or one of the appotntments in the
file. A command s entered by entering data from the keyboard
(1f necessary) and pressing one of the command terminator keys.
The terminator keys determine which command 1s being executed.
The clear key and shift delete change their function 1n
appointment mode; the clear restores the template and the shift
delete key delaetes or edits appotintments.

5.2 Exiting Appointment Mode

Pressing any of the mode switch keys will cause the
appointment mode to exit. If the [APPT] key ts pressed, than the
agppotntment mode will be restarted (the mode switching software
will send control back to appcintment mode). When appointment
mode 1s exited, the appcointment file length 1s checked and 1f the
length s zero then the file 1s purged since 11t contains no
appointments. Note that the [ATTN] key s not a mode switching
key and s used to acknculedge appointments.

§.3 Exomining Appointments

The appointment mode provides commands that scroll up and
down through the appointment file allowing the user to view
appcintments 1n sequential order. The up arrow key will cause
the appointment ivmmediately preceding the current appointment to
be displayed. The down arrcw key 1n a similiar manner will cause
the appotintrent that immediately follows the current appcintment
to be displayed. Both of these keys will stop when they

6:01 P THU., 29 JULY, 1982
S-1

Pocket Secretary Theory
Mark Rowe

5-2

encounter the top or bottom of the file. The shift up arrow key
will move the display to the first appointment i1n the file, and
the shift down arrow key will move the display to the last
appointment in the file.

Provision has been made for providing an appotntment search
on the fetch key, dut this has not been implemented on the base
system. An intercept has been provided that will allow the
feature to be added i1n o plug-itn ROM. See the Nandi call
docwmentation.

S.¢ Clearing the Display

Since appointment information s itnput on a template, a
clear display function would not be useful since 1t would clear
the template information that s necessary to enter any
appointmentdata; therefore, the function of the clear key in
appointment mode has been changed so that it will display an
appointment template.

5.5 Appointment Acknowledge

The [ATTN)] key is used to acknowledge an appointment. When
the [ATTN] kaey t1s detected, the software checks the display. If
an appointment was not tn the display or 1f the appointment that
ts in the display had been editted, then the software returns to
the appointment command entry without acknowledging an
appointment; othervise, the appointment n the display s
acknowledged. The software processes snvolved 1in acknowledging
an appointment are covered sn chapter 7.

5.6 Adding Appointments

An appointment 1s added to the appointment file by entering
the necessary isnformation isnto the appointment template and
pressing the [(RTN] key. The internal processes that are snvolved
tn entering an appotntment are covered in chapter 6.

6:01 PM THRU., 29 JULY, 1082

Pocket Secretary Theory
Mark Rowe

5.7 Editing and Deleting Appointments

The appointment editting and delete features are implemented
via the shift delete key. Tfo delete an appointment, the
apposntment s displayed and [(SEIFT) [DEL) pressed. To edit an
appointment, the appointment is displayed, any required changes
are made, and the [SNIFT) [DEL] +s pressed. The software then
checks to see 1f the display has been changed. 1f the display
has not been changed, then the appointment is deleted; otherwise,
the appointment is deleted and the nen entry is added as though
{RTN] had been pressed.

5.8 Processing Appointments

Appointments can, under normal circwmstances, be processed
only when the software s aobout to go to deep sleep in order to
prevent a conflict between the processing required by the
appointment and a running BASIC progrom, editting, or user
calculations; however, in appointment mode the user s not
calculating, editting or running a BASIC progrom. Therefore,
appointments with processing pending can be processed from
appotntment mode through an explicit command. The [RUN] key
implements such o command. Pressing [RUN] will n appointment
mode will snvoke appotntment processing.

§.9 Viewing Extended Appointment Information

In appointments there are two pieces of tnformation that do
not occur as part of the standard appointment display: the
century of an appointment, and the repeat specification of a
repeating appotntment. A command is provided in the appointment
mode that allows the user to examine these missing pieces of
information. This command is implemented via [SHIFT] [APPT) key.
Hith an appointment in the display, 1f the (SHIFT] [APPT] key s
pressaed, the software will display the four digit year of the
appointment and, +f it 1s a repeating appointment, then repest
specification s also displayed. This information is held the
display as long as [SHIFT) [APPT]} is held down. Hhen the key s
released the display returns to the normal appointment display.

6:01 PM TRU., 29 JULY, 1982
5-3

Pocket Secretary Theory
Mark Rowe

#eeceemmeeeeeee—e———- +

l |
| Entering Appotntments | CHAPTER 6 |

l
47gggS

6.1 Setting Up an Appotntment

Appointments are set up by entering snformation on an
appcintment template and pressing [RTN] (template I0 s covered
tn section 6.2). When [(RTN] 1s pressed, the software parses the
contents of the tnput buffer (which contatns all of the template
tnformation) and (1f the contents are valid) produces an encoded
appointment which 1s subsequently stored in the appointment file.
The maethod of entering and computing the appoitntment date varies
depending on whether extended mode or year mode 1s active (thss
1s covered 1n section 6.1). Section 6.4 covars some of the
enhancements 1n setting up the day and date fields.

6.2 Extended Mode Verses Year Mode

Appointments are set up sn etther extended mode or year
mode. The active mode can be examined or changed via the STATS
command 1n time mode. The default (at coldstart) s year mode.
In year mode the year field of the appointment template s
protected and the user s only allowed to enter a month and day
tn the date field. In year mode all appointments are set for
some time up to the end of the following year. If the
tnformation entered ts not compotible with some time before the
end of the following year, then an error s reported.

In extended mode the appointments are not required to be sn
the coming year (and ore sn fact not required to be tn the future
or wn the current century). The year field 1s not protected in
extended mode and the wuser may enter a year number, may enter a
** or may let tt default. If the freld s allowed to default,
the appcintment 1s parsed 1n the same manner as year mode except
that the software will continue to search forward 1n time until a
match 1s found. Only 1f the dau and date fiaelds cannot be
matched within the following 400 years will an error occur (the
Gregorian calendar repeats every 400 years). If a nuwmeric value

6:01 P TNU., 29 JULY, 1982

6-1

Pocket Secretary Theory
Mark Rowe

6-2

is specified tn the year field then 1t specifies a year in the
current century and the software attempts to set up an
appointment within this year (else error). A ** n the year
field 1s interpreted as a request to 1input a ¢ digit year; the
user will be prompted with “Year? YYYY” and allowed to entered a
¢ digrt year which fixes the year in which the apposntment s
set.

6.3 Template IO

The appotntment template ts a string of characters 1n the
display that 1dentify the various fields of an appointment that
the user can specify. The blanks (or other characters) between
the fields and the delimiters within the fields (such as the : n
the time field) are protected and cannot be typedover by the
user; sn fact, the cursor will skip over the protected fields
stopping only on those spaces that can be typed snto. The
template’s appearance varies slightly depending on the current
date mode and time mode, but the position of the fields never
change.

6.3.1 Appointment Template Fields

The first two fields are the doy and date fields. These
frelds determine the date of the appointment, The
characteristics of these fields and the way 1n which they
tnteract 1s covered in section 6.4. The third field 1s the time
field which appears as Hr:Mn ** s the time s 1n 12 hour mode or
as Hr:Mn AM 1f the time ts 1n 2¢ hour mode. The hours and
minutes con be entered as dasired and can be specified as AM, PM,
or ** (** for 24 hour mode) regardless of what the current time
mode 1s (the time mode affects the display only). The fourth
Jreld 1s the alarm field vhich appears as IN which s the default
alarm number and appointment type. The alarm nwmber can be any
digtit from 0-9 and the type can be N, A, or R.

The last field 1s the note field which appears as ‘Note.
The / charocter at the stort of the field s semi-protected.
The cursor can be positioned on this space only by backspacting
from the position tmmediately 1n front of st. Once the cursor s
pesitioned there, the only characters that are allowed to be
typed are a !/ end a °. The rematnder of the field s
unprotected and can be filled as desired. If the first character
of the note field 1s a / then the software 1interprets the note

6:01 PH THU., 29 JULY, 1982

Pocket Secretary Theory
Mark Rowe

field as DISP “message” and displays it when the appointment s
processed; if the first character ss a » then the note field is
interpreted as a BASIC command and executed when the appointment
ts processed.

6.3.2 Input Check Intercepts

In appointment mode isnput, after every key s hit on
tntercept routsne (AINCHK) ts called which does some IO

processing on the fly. In this routine the special
semi-protection of the first character of the note field s
smplemented. This routine also flags the clear key and shift
delete key as terminators which will dypass the normal processing
of these keys allowing the spacial appointment mode functions to
be smplemented.

6.3.3 Editting on Protected Fields

When editting a protected field, the insert character and
delete character function only within the current field. This
prohidits the fields from shifting around vhile one of the fields
ts betng editted. The [TAB] key and [SHIFT] [TAB] key can be
used to skip from field to field. The [TAB) key skips to the
start of the next field and the [SKIFT) [TAB] skips back to the
start of the previous field (or current field if not already ot
the start).

6.4 Day/Date Interactions

In specifying an appointment, the day field, date field, and
the current time interact to determine the date of the
appotntment. Unless the year field specifies otherwise, the
software starts at the current time and searches forward in time
until a match 1s found with the date field or the search fails.
If the day field 1s not compatible then the match fails and the
search continues. If the day field is compatidble then the date
ts accepted aond possidly modified dapending on the contents of
the day field.

A default day field 1is compatible with any date. A day
field may specify a particular day of the week (i.e. Mon) sn

6:01 PM TRU., 29 JULY, 1982
6-3

Pocket Secretary Theory
Mark Rowe

6-¢

which case 1t 15 compatible only with dates that are on that
particular day of the week. Another possibility for the day
Jield is a specification of a particular day of the week and week
of the month; for example: Mod will specify the third Monday of
the month and this day field would only be compatible with a date
that occured on the third Monday of a month. MNone of the above
specifications will modify the specified date.

A final possible format for the day field is relative to the
specified date. This format s compatidle with ony date, but
will modify the date to match the specified day. The day can be
specified as forwvard relative with a + or backward relative with
a -. For exomple, Mo+ would be compatidle with any date but
would change the date to the subsequent Monday (even if the date
is on a Monday); while Mo- would likewise be compatible with any
date but would change the date to the previous Monday (even if
the date s already a Monday). If the date field defaults, then
a relative day specification will move forwards or backwards from
the current date.

6.5 Repeat Specification Template

When a repeating appotntment s specified for the
appointment (types R & A), a repeat specification template s
displayed to allow the repeat specification to be snput. The
repeat template has five fields that combine to specify the
repeat interval. The first four fields specify the number of
months, days, hours, and minutes to add to the old appointment
time and date to get the new apposntment ¢ime and date. The
Jifth field s the day of the week field (DOW) which differs
slightly from the day field in the appointment template. In the
repeat specification’s DOW, the date is not changed if the day of
the week matches a relative specification (i.e. a date on Monday
will not be advanced o week by a Mo+ specification). If the day
of the week does not match the date then the date is advanced in
24 hour increments until the date and DOW field match; unless the
DOW field contains a backward relative specification (i.e. Mo-)
in which case the date is moved back in 2¢ hour decrements until
the date and day match. A repeat specification is never allowed
to move backward in time; hence, 1f a backward relative DOW
specification would set the new appointment time earlier than the
old appointment time then the minus sign is ignored. Thus if a
Mo- sn the DOW field causes a repeating appotntment to back up to
before the old appointment time then the appointment i1s scheduled
Jor the following Monday.

6:01 PN THU., 29 JULY, 1982

Pocket Secretary Theory
Mark Rowe

ee+

I l
| Triggering an Appointment : | CHAPTER 7 |

I
¢Pe-----------

An appotntment s triggered when the comparator interrupts
on that appointment’'s entry. HWhen this happens the comparator
service routine sets a flag that s examined fairly frequently
and causes the appotintment trigger routine to be called (APTRIG).
This routine will search the appointment file for an appointment
that 1s past due but has not yet been triggered. If no such
appointment s found then the routtne will exit without
triggertng an appointment. If such an appointment s found then
the routine will set two bits n the appointment’'s encoded alarm
byte. Bit § s set to sndicate that the appointment has
triggered and bit ¢ 1s set to indicate that the appointment needs
processing. The routine also sets bit 7 of the pocket secretary
status byte (PSSTAT) indicating that an appointment 1s due. The
routine then turns on the appointment anaunciator. The
appointment 1s then checked to see 1f 11t is an smmediatly
repeating appointment (type R). If so then the appointment s
acknowledged (by calling the appointment acknowledging routine)
which reschedules the appotntment. The last step 1n triggering
the appointment 1s to sound the tone pattern (if any) associated
with the appointment.

After the appointmant has been triggered, the trigger
routine loops back to +ts start and searches for another
appointment that needs processing. This continues until all past
due appointments 1n the appointment file have been triggered.
When the seach of the appointment file fails to turn up an
appointment that needs to be triggered the routine calls STALRM
which sets up the comparator with the next appointment to trigger
and the routine returns.

After this routine returns, all past due appotntments will
have been triggered and the next appointment will be in the
comparator. This is true whether or not an appotntment was
actually triggered.

7.1 Acknowledging an Apposntment

After an appointment has triggered it can be acknowledged.

6:01 PM THU., 29 JULY, 1982
7-1

Pocket Secretary Theory
Mark Rowe

7-2

This s done automatically in repeast tmmediately appotntments
(type R). In the other two cases the appointment will be either
acknowledged or deleted by the user. Deleting an appointment
will cause the appointment to be acknowledged before it s
deleted. To acknowledge an appointment explicitly the user
positions the appointment n the display and presses ([ATTN].
When the [ATTN] key ts hit the software checks for an unchanged
appointment in the display. If the display contains anything
other than an wunchanged appotntment then the software will
perform no operation itn response to the [ATTN] key; otherwise,
the software calls the routine that acknowledges appointments
(APTACK) .

The first action of the routine s to check the appointment
to see that 1t has triggered ond has not already been
acknowledged. If the appointment has not ¢triggered or Hhas
already been acknowledged then the routine exits without
acknowledging; otherwise, the routine acknowledges the
appointment by setting bit 7 of the size byte which 1s the first
byte of the encoded appointment. If the appointment is repeating
appointment, then the routine snvokes another routine which
reschedules the appointment according to i1ts repeat specification
(RPTADJ).

After the appointment has been acknowledged the routine
searches the appointment file for another appointment that has
been triggered but has not been oacknowledged. If such an
appointment s found then the current appointment pointer ts set
to that appointment and the routine returns; otherwvise, the
appointment annunciator s cleared and the I0 status s cleared
to caouse the template to be displayed.

7.2 Processing an Appointment

An appointment can cause several different activities to
occur. Among these are lighting the appointment annunctiator,
sounding a tone pattern, rescheduling 1tself to a future time,
displayitng a note, deleting 1itself, and executing a BASIC
statement. The first of these activities take place when the
appointment triggers and has already been descrided. These three
activities can occur at essentially any time since the
appotntment triggersng oc urs ot the first comparator check
Jollowing the isnterrupt for the appointment n the comparator
regardless of what the machine was dotng at the time. The other
activities cannot be allowed this much freedom; deleting an
appointment changes the file structure, and displaying a note or
executing a BASIC command may snterfer with the display that the

6:01 PM THU., 29 JULY, 1982

Focket Secretary Theory

Mark Rowe

user might be using. For this reason these activities have been
designated as “processing an appointment,” which is allowed to
occur only when 11t will not upset any other octivities that the
machine may be dotng. There are only two times at which an
appointment can be processed; one is on explicit request from the
user. This s provided in the appointment mode with the [RUN)
key.

The other time at which appointments can be processed is
when the machine s going to go to sleep. Before the machine ¢s
allowed to go to sleep the routine which processes appointments
ts 1tnvoked (APPROC) and any appointments needing processing are
found and processed. If there is ¢ note field then it is set up
in the snput buffer. A special parameter 1s provided which
itnforms the mode switching software vhether the buffer contains a
note to be displayed or a BASIC command to be executed. If there
ts not a note field, then the routine searches for another
appointment that needs processing. If the routine finds no
agppointments that contain a note field to process, then the
routine exits to the mode switching software with a status flag
set to tell it to go to sleep. In ony case the appointments
contain a bit sn the encoded alarm byte which indicates whether
or not the appointment 1s due. If the flag 3s set then the
software will clear the flag and process the appointment.

6:01 P THU., 29 JULY, 1982
7-3

rocwee PecCTrvvary wvwevey

Mark Rowe

)

Table of Contents

Appointment Mode
1.1 OVerview . v . v v v o v v 4 e e e e e e
202 r"m

The Appointment File
Overview . . o« o e e
The Appomtmnt Fulc Pomtcr: P
The Encoded Appomtmnt e

The Size Byte . . . c ¢ o o o o
The Appointment Time Fuld e o o o o o
The Encoded Alarm Byte . . . o . e
The Appcintment chcatSpcc:jccatuon o o o
The Note Field . . e e eW

N
D
U
N
R
L
N

he Status Bytes
.1 The Pocket Secretary Status Byte (PSSTAT) .
2

larm Field Specifications
.1 Introduction ..
2

1 Type N Appomtmcnt: . .
2 Type R Appointments .
.3 Type A Appointments
a
1
2

@
W
L

N
L
v
L
L
V
L
O
V
L
Y
L
O

Alarm Tone Pattcrns .

Continuous Alarms .

Appountmnt Mode Cormands
Overview o s s e
Exiting Appomtvnent Hodc e e e e e e
Examining Arpointments « o s .
Clearing the Display . .
Appointment Acknowledge

Adding Appointments
Editing and Deleting Appotntmcnts .
Processing Appointments
Viewing Extended Appointment Infonnatton‘

O
Q
Q
O
M
Q
Q
N
N

ntering Appointments
.1 Setting Up an Appointment
.2 [Extended Mode Verses Year Mode ..
.J Template 10

.J.1 Appointment I‘cmplatc Ful.ds .
J.2 Input Check Intercepts . .
3.3 Editting on Protected }'ulds .
Day/Date Interactions . e e

O
O
O
N

(
n
(
n
(
n
(
n
(
n
(
n
(
h
(
h
(
h

O
O
O

6.4

6:01 PM TRU., 29 JULY, 1982

M
L
V
O
V
L
O
L
O
L
O
L
O
L
N

The Pocket Secretary 10 Status Byte (PSIOST)

O
I
U
!
M
O
!
(
'
&
Q
O
G
O
O
Q

W
W
W
N
M
M
M

ke
e

e
h
e

| e
b

J
'

L
R

b
e

he
b

4
| N
N

W
W
W
R
D
N

Pocket Secretary Theory
Mark Rowe

6.5 Repeat Specification Template .

7 Triggering an Appointment
7.1 Acknowledging an Appcintment
7.2 Processing an Appointment .

NOMAS
NOt MAnufacturer Supported

reclplent agrees NOT to contact manufacturer

6:01 PM THU., 29 JULY, 1982

. 6-¢

Pocket Secretary Theory
Mark Rowe

LEX Files for Kangaroo:
Joey's Big Book of ROMS

Seth D. Alford
David A. Barrett
June 1¢, 1982

Joeys Big Book of ROMS
Seth D. Alford

CHAPTER 1

Introduction

Language EXtensiton (LEX) files allow additional features to be
added to the HP-75 (Kangaroco), such as new BASIC keywords,
enhancement of existing statements and interception of system
events. LEX files allow Kangaroo's BASIC to access progroms
written in assemdbly language, and can greatly enhance Kangaroo's
capabilities.

1.1 The Purpose of this Document

This docwnent descrides general concepts of, the structure of, how
to write, and how the system accesses LEX files.

The 1intended reader s the programmer who s interested 1n
extending Kangaroo’'s BASIC with LEX files. We assume that the
reader 1s already fomiliar with the Kangaroo assembly language.

-3 -
CHAPTER 2

Concepts--When the System Uses LEX Files

The KXangaroo operating system accesses LEX files at parse time,
run time, from intercepts, and with subroutine calls.

2.1 Parse T'ime

In BASIC, when a user types in a line to Kangaroo and presses
{RTN], the Kangaroo operating system translates the line from an
ASCII string to an internal representation. This internal
representation 1s referred to as tokenized BASIC or simply as
tokens. The translation phase ts referred to as parse time.

LEX files can add new keywords to BASIC. The tokenized form of a
LEX file created keyword indicates which LEX file created the
keyword. Since the operating system may not know how to properly
parse these new keywords, the LEX file may have to provide
appropriate parsing routines.

2.2 Run Time

Run time refers to the execution of a tokenized BASIC progrom.
When tokens referring to the keyword created by a LEX file are
encountered, the operating system transfers control to an
appropriate assembly language run t¢ime routine contatned tn the
LEX file.

2.3 Intercepts

The operating system allows LEX files to intercept an interesting
event, such as a coldstart, NPIL operation, or file command. The
operating system uses two methods of intercepts which we refer to
as polled and direct. Polled sntercepts are also known as KHANDI
calls (each of the LEX files s pollad), and direct intercepts
refer to the RAM-based intercept vectors which are called by the
tnterrupt service routines.

2.4 Subroutine Calls

Subroutines within LEX files can also be referred to by other LEX
Jiles through subroutine calls. Usually these subroutine calls
will be through ROMISBs. A ROMISB allows transfer of control in
and out of switching ROMs and LEX files. See the System Hooks and
Handles docwment for a complete description of how to use ROMISBs.

-5 -
CHAPTER 3

A Standard Structure for LEX Files

J.1 Introduction

This chapter presents a standard structure for LEX files. This
standard 1s more rigid than the structure imposed by the operating
system. LEX file handlers, such as Faline, expect LEX files to
Jollow this standard. Other LEX file handlers which already exist
or could be written will use the standard to allow LEX files to ba
moveable and mergeable. In this way librarves of LEX files could
be constructed. Because eack LEX file follows the standard,
different modular LEX files could be joiyned together to form a
larger LEX file which ts suited for a particular application.

If you are reading this document tn looseleaf form we recommend
that you separate the Appendix containing the example LEX file and
refer to 1t as you read the detailed description,

J.2 Specific Structure

-7 -

J.2.1 General Overview

Shown below, and on page 2 of the example LEX file, is the general
structure of a LEX file:

oeem+
| NEADER (order mandatory) |

| tdentification nwnber |
| runtime taoble address |
| keyword table address |
| parse table address |
| error table address |
| tntercept routine address |
oe+
| TABLES (erder mandatory) |
#eem+

runtime table
parse table

keyword table

I l
| . |
| relocation marker |

I |
| error table |

code attributes byte

parse routines > any order

I I
| | |
| tntercept routine \ |

I l
| runtime routines / |

I I

LEX FILE STRUCTURE

Note that the order tn the header is different from the order in
which the tables themselves occur. This 1s a historical accidaent.
However, both orders are mandatory under the standard.

J.2.2 Identification Number

The 1dentification nwmber s usad to distinguish LEN files and
ROMS from each other for purposes of ROMISE and errors. Chapter 7
discusses 1dentsfier and other nwmbers used 1n LEX files.

J.2.3 Relationship Between the Tables

Entries n the runtime, parse, and keyword tablaes cecrrespend to
each othar. The runtime tadle maps one-tc-one onto the kagucerd

table. The first n entries of the parse table map onto the first
n entries in both the keyword and runtime tables.

J.2.4 The Runtime Table

Under the standard, the runtime table immediately follows the LEX
Jile header. The runtime table lists addresses of all the runtime
routines tn a LEX file. The first two bytes of the table are not
accessed or used by the operating system, so the address given tn
the header is offset by 2.

By convention, names of runtime routines ore terminated with o
period. The runtime routine "SPEAK.” in the example i1llustrates
this.

J.2.5 Parse Table

Kangaroo parses keywords created by LEX files according to the
attridbutes associated with the hkeyword. Attridutes indicate
vhether the kayword s a function or a statement. Attridutes for
a keyword vmmediately precede 1ts runtime, NOT parsetime, routine.
(see 1tem 267 right before the label “speak.” in the example.) The
operating system 1s able to parse functions, but requires LEX
files to provide their own parse routines for statements.

The parse table contains addresses of parse routines. In the
standard the parse table immediately follows the runtime tabdle.
The first two bytes of the parse table are never accessed or used,
and as with the runtime table the address of the parse table sn
the header 1s offset by 2. The entries 11n this table correspond
to keywords in the ASCII talle whose attridutes indicate that the
keyword requires parsing. The Parser document gives additional
tnfcrmation on asstgning attributes and parsing routines to call.
The HF-85 Assembler HROM manual (page S5-19 to 5-22) also provides
useful snformation.

In the above example "SFEAK#” s a parse routine.

J.2.6 Relocation Marker

Under the standard the relocation marker immediately follows the
parse table. This relocation marker 1s a two byte quantity equal
to RELMAR, a global address. Everything before the relocation
marker 1in the LEX file ts altered 1t moves to or from ROM or RAM.
In ROM these addresses are absolute whereas 1in RAM the are
relative to the starting address of the LEX file.

J.2.7 Keyword Table

The keyword table, following the relocation marker under the
standare, lists the new keywords created by the LEX file. The
last character in each keyword has its most significant bit set by
the KARMA ASP instruction, as shown in the example LEX file. The
end of the table 15 indicated by FF hex. The keyword table is
searched by the scanner/parser. Each string in the keyvord table
corresponds to an address in the runtime table, and may correspond
to an address in the parse table.

In the above example the last character of the “SPEAK" keyword has
1ts high bit set. The runtime routine "“SPEAK.” and the parse
routing "SPEAKN" correspond to the "“SPEAK” keyword (each item
appears first sn its respective table.)

J.2.7.1 Keyword Searching

When the syetem attempts to process a keyword, the parser searches
each keyword table 1n order untsil a match 1s found. Table
searching proceeds from RAM LEX files, to ROM lex files and lastly
to the operating system keyword taobles. The parser treats all LEX
file keyword tables as if thay were concatenated and followed by
the operating system tables.

J.2.7.2 The “Lockout” Problem

Let X and XY be two keywords present within Kangaroo. If X
appears in a keyword table 1i1n a LEX file before XY, the parser
will match an tnput string contatning XY to X, subsequent parsting
will attempt to process Y (which will probably fail). The keyword
XY Hhas been “locked out”; the wuser cannot access 1t. This
particular problem can be corrected by placing XY preceding X.

Since the parser views all keywords in a single list, lockouts can
occur between LEX files or between a LEX file and the operating
system.

An example of this prodlem occurs with the keyword “ONE”, defined
in a LEX file. ONE locks out ON ERROR; ON ERROR would not parse.

When choosing keywords the programmer must be aware of this
problem.

- 10 -

3.2.8 Error Tabdble

The error table allows LEX files to create and use their one error
messages . The error table follows the keyword talle under the
standard. This tatle consists of a starting error nwnber and
strings which define error messages. Each string corresponds tc a
successtve error number. In the LEX file example, the
“mal function malfunction’” error message s generated by calling
ERROR with errnum+l. The most significant bit of the last
character of each of the error message strings ss set using ASP
tnstructions. The table s terminated with FF. Chapter 7
discuscses how to which errornumbers to use. A LEX file cannot
accaess error massages tn other LEX files.

J3.2.9 Code Attridutes

Coda attributes tmmediately precede the intercept routine under
the LEX file standard. The code attridutes give snformation about
the LEX file. The operating system has no knowledge of the code
attributes; the:e will only be used by the LEX file handlers. The
following table describes the usage of the bits of the attributes;
1f a L1t 1s set than the code has the corresponding attributs.

RAMable (bit 2 must also be set).
The code will run correctly wn RAN.

ROMable
The code will run correctly wn ROM.

Position independent code

This LEX file con be merged with ancther LEX
file. This attridbute 1s not completaly defined.

LEX identifrer number sndependent.
The LEX 1d can be changed by o LIX file
handier and the code w1ll still run correctly.
This 1mplies that the LEX 1d occurs ONLY 1n
the heoder and nouhere else.

Feserved for future use (set to 0).

¢

I | |
I I |
I I |
I | |
I I |
I | |
| I |
I I |
| | |
| 3 | Mergeatle (bits 2 & ¢ must also be set). |

I | |
| | |
I | |
l | |
I	
I	
	I
I I |

4

CODE ATTRIBUTES BYTE

- 11 -

J.2.10 Executable Code

Under the standard, the 1intercept routsne, parse routines, and
runtime routines follow the attridute byte 1n that order.
Intercepts are described 1in the next chapter. Parse and runtime
routines are discussed hare; additional snformation can be found
tn the Parser, Interpreter, and Entry Posnt docuwmentation.

3.2.10.1 Parse Routines

Parse routines are provided for each keyword which ts a statement.
Parse routines are called at parse time to translate a user tnput
tnte tokens. Note that keywords defined by their attributes to be
Junctions do not require user written parse routines.

J.2.20.2 Runtime Routines

Runtime routines are provided for every keyword. Based upon the
attridbutes for the hkeyword and the result of a possidle parse
routine, runtime routines pop parameters from the Rl12 stack.
Runtime routines then perform appropriate manipulations on the
parameters and push any results onto the R12 stack.

- 18 -

CEFAFrTER ¢

Intercepts

The operating cystem uze: tuc methods cf intercepts: direct and
pelled.

4.1 Direct Intercepts

The Kangarco hardware is capable of generating interrupts for the
keybecrd, the compcrator, the power supplu, aend HPIL. When one of
thasc interrupts occur, control 1s trancsferred to an addréscs
contained 1n an interrupt vector. The¢ interrupt vectors are
locatcd at the start of ROM. The addresse: in the interrupt
vectors refer to wnterrupt routines, which are located somewhere
tn ROM or RA¥. Since the interrupt vectors are tn RON there s no
way of changing the addresses of the interrupt routines. -

Direct intercepts are one method provided tc allow for future
expansion. At or near the start of each of the wnterrugpt routines
ts a subroutine call to an 1intercept vectoer. Eack intercept
vecter 1s 8§ bytes long, and 1: located 1n the global area 1n RAM.
The sustem 1nitializes the tntercept vector: with RTNs. To modify
interrupt handitng a LEX file can change the intercept vector.

¢.1.1 Problems with this Method

A major dravback with this technique ts that onlu one LEX file may
use ar tntercept at any girren time. Coordiration tn using an
intercept btetween two different LEX filaes 1s difficult.

Ancther major drawback t1s tha* ROMISE cannot b¢ used at interrupt
time. The ROM'SE cod¢ 1s nct re-entrant; successive 1intercepts
can occur while a AROMISE 1s executing. Fixing this problem 1s
possible by using KAM-based code. Appendix E, which contains code
from RY/JSB, presents a possible approach,

Direct ntercepts should only be used whgn the problem at hand
requires 1t and when speed 1: absolutely necessary. In manu cases
a pollied intercept cculd be used tnstead.

¢.2 Folled Intercepts--NANDI Calls

HANDI calls are genaerated at many interesting events. Each of the
LEX files present s polled to determine 1f 1t can handle or s
tnterested 1n the event. The LEX file ccn perform special
parsing, modifu tnput, and so forth. Because each UFX file 1s
polled, we refer to HANDI cclls a: polled 1intercepts. By

teferring to the header 1n each LEX file, KHANDI 1s able to find
and c¢all each LEX file's tntercept routine.

- 13 -

The 1tnterasting event: upon which HNANDI calls are generated are
numbered. A list of NANDI events can be found 1n XR/GLO, and 1s

reproduced below. Additional information can be found 11n the
HNANDI call and the System Nooks and Nandles docwmentation.

rc e cee m e m e c ee m e m e e cmce e e, mr e e ee,—e,———-———————————— +

| event value error raison d’'etre |
$eecegemcccmcceccceccccccececmeeeeeceeee—————- ¢
| V.AACK ¢2 none Acknowledgc an appointment |
| V.ACCM €6 none ASSIGN#: wrong type file |
| V.ADDR 45 none PIL: get address for unknown nane |
| V.AFMI' 39 none Format display of appointment |
| V.AKEY 36 none Process input terminator in APPT |
| V.ALLO 8 nonge Allocate token with class > 56 octal |

| V.APRC 41 none Process an appotntment |
| V.APTO 35 none Start of AFPT command loop |
| V.ARTN 3§ none Exit APPT mode |
| V.ASN# 25 none PIL: assign¥ with device name |
| V.ASSN 24 none PIL: assignio hook for I/0 rom |
| V.ATRG 43 none Trigger an appcintment |
| V.CARD S0 none Doing card copy, E=1 (read), E=0 (write) |

| V.CHAR 56 none Character output with undefined ROUTE |
| V.CKED 20 none CHEDIT: character editor |
| V.CLOK 34 none Cleck/Stopwatch Interrupt |
| v.coLp 0 none Coldstart (power on) |
| V.CRUN 18 none CRUNCH: start of interpreter loop |
| V.DALO 9 none De-allocate token with class > §6 octal |
| V.DEC 10 none Decompile token with class » 56 octal |

| Vv.DiM 11 none Dimemsion for string arrays |
| V.EALO 7 none Enviromwment allo (undef access method) |
| V.ENDL 57 none EOL output with undefined ROUTE |
| V.ERR 63 none ERROR routine called |
| V.ETRG 29 15 External comparator trigger #1,#2,#3 |
| V.FILE 49 60 A file conmand (use TCKEN to identify) |
| V.LFTY 89 none Translate tnternal name to LIF format 1d |
| V.LOOP 19 none PIL: get control of loop |
| V.PAR el nona Start of PARSER |
| V.PARA 12 none Strange function parameter |
| V.RFTY 60 none Translate LIF format 1d to internal name |
| V.RSTN ¢ none RESTEN (Restore environment) |
| V.SLEE J none Goto deep slaep |
| V.SPEC ¢8 60 Filespec syntax error |
| V.SPY S 15 Interruptable point 1n progrom (SVCWRD) |
| V.SRQR 23 none PIL: sarvice request recetved |
| V.STAL 6 none Interpreter stops (opposite of V.CRUN) |
| V.STRA 22 none PARSER: strange data type |
| V.TMCX 51 92 Time mode ccmmand extenstions |
| V.TYPE 16 none Typename extension tn EDIT and ASSIGN |
| V.UNKD 26 none ASSIGN#: unknown data type |
| v.voLr 62 none Volatile file purge at warmstart |
| V.WAIT 32 none HAITKY: We're warting for a kaey |
| V.HARM 1 none Warmstart (up from deep sleep) |

NANDI EVENTS

- 14 -

4.2.1 Receiving a Polled Intercept

NOTE

Historically the ntercept routing wa: referred to as
the 1nmitialization routine. Initialization 1s a
misnomer. Thi: nome mau still persist in some parts of
the documantation.

HANDI calls the intercept routine with th¢ event number contaetned
tn RO (1 buyte). To wntercept an event, the N file sheould
exanine RO. I1f RO does not have the event nuwnble:, the intercept
routine should tmmediately return: HANDI 15 calied Quite often;

farlure to return Quickly wupon uninteresting events will affect
the speed cf the ent:ire system.

A: can be seen 1n the WX file example, the value of RO s
compared with the event V.WARM (warmstart!, and the intercept
routine immediatelu returns 1f RO 1s not nct equel to V.WASM. If
thi: intercept 15 called at V.WAKN 1t displcur the message
"Kangaroo at ycur service’” and returns.

The HANDLD flea t: used to indicate te the cpcrating system that
an eréent was successfully handled by o LEX file¢. Futting 0 snto
HANDLD indicates that the cient was handled ond terminctes further
polling. Clearing HAXDLD may alsc cause cr prevent system action,
depending on the KNANDI call. HWriting ¢ to HANDID after a V. VOLT
HANZI call, fer exomple, will prevent o volatilc file from berng
puraed.

In the example cloie, the wntercept routine does not set the
HANDIS flaa. Aftir 1t return: to the opcratina sustem polling of

LEX files with the erant V.WARM continues. The HANDLD flag should
NOT be set fer manu of the tntercepts suck a: ccldstart or
warm:ztart since 1t would precaent other LEX files a chance ot the
erent. The HANDI Adocumentation shcould be consuited for NANDLD
taformation for a spvorfrc erent.

#.¢.¢c Othcr Farameter: for Intercepts

The wntercept rcutine may alter RO-3, the ARF, DRF, stotu:s, and
the F regi:zter. The follewira swwmcrizes input and output
cendition: for intércept routiner.

- 15 -

Input:

BIN mode set
DRP 0
RO = Event number
ROMFL =z Eventnumber
ROMFTR z Base address of this LEX file
TOKEN = A pointer to the last token called by the

itnterrreter. If TOKEN points to EROMIK,
then 1t potnts to ¢ bytes as shown:

PrmmransMt—— - -b=b=+

| EROMTK | ROM NUMBER | Token
#$ommmmm #$ommmm- #pmmmmme$ommmm +

TOKEN + 0 1 2 3

Output:

BIN mode set
NANDLD > Clear tc terminate pelling.

Non-zerc te continue polling.
The defaoult ts to continue; no action

ts needed tnthis case.

¢.2.3 Generating a Polled Intercept

An example HANDI call:

JSB =NANDI
VAL EVENT#
BYT ERRCR#

HANDI polls e@each ROM's intercept routtne tco determine i1f 1t s
intcrested tn the event referred to by EVENTH. If none¢ of the
ROMS clears the HANDLD flag then the error ERROR# s generated.

HANDIO s stmilar to MANDI except that 1t does not gencrate an
errcr. KHANDIO 1s called:

JSE =HANDIO
VAL EVENTH

- 1€ -

CHAPTER §

Types of LEX Files

LEX files can exist 1n ROM or RAM.

5.1 ROM-Based Files

A plug-1n ROM 1s formatted as a small file system similar to the
system memory. Plug-in ROMs are 8K bytes long.

o e e eeeememee oo +

| Address Item |
eeeeetcmcc e m eee-¢

| 6000 RMKEAD--ROM Existence Header |

| 6002 File Directory |
| LEX File |
| Other Files |
| Checksum |
#eecceecccccecceeemeeeo +

ROM FORMAT

§5.1.1 Existence Header

The ROM Existence header 1s used to indicate that a ROM 1s plugged
tn. The operating system assumes that the hardvare will never
produce the RMHEAD numtar when a ROM 1s not plugged in.

- 17 -

$.1.2 File Directory

The directory
agppear 1n ROM followed by an end-of-dircctory marker.

tn @ ROM consists of entries in the order the files
Directory

entries are 18 bytes each (equated to DRENSZ) and are arranged as
Jollows:

... ¢

| Naome Offset

DR.S1Z 2/3

DR.TYP ¢

DR.TNM &

DR.DAT 6/9

DR.NAM 10/17

Description

Absolute address of the file in the ROM

Si1ze of the file in bytes including the PCB but
not the divider byte. If the entire ROM is one
LEX file then this sizc should be no larger than
8169d stince the rest ts ROM overhead such as the
existence header, directory entry, and checksunm.

Type of file, access permission. See KR/GLO and
the Kangaroo Memory Management document for a
list of possible file types. The RAM bit should
be set appropriately.

Access bits:

bmmrfrmce rccc e mme e drm eaf---+

|RAH|RUN|£DTIL$‘T|PUFlC’OPILINlTOKI

Type of file, name cf file type for CAT.
See KR/CGLO for a list of mainframe defined
Sile type nomes. For additional file types
see Custom Products in Marketing.

File Type naome bytes:

A APPointment R FROM image
B BASic T TEXt file
I LIf type 1 file V VOLitile
L LEX file ? Strange type

Date of creation in internal Kangaroo
form. (Number of elapsed seconds since 1900)

Name of the file right filled with blanks.
Legitimate file nomes are determined by FGETNM.
System files should have lowercase names.
Volatile files are not allowed 1n ROMs

FILE DIRECTORY FORMAT

- 18 -

The last directory entry mus? corresgond to the last file 1n the
ROM. This 1vs sco that the st12¢ of the used portion of tha RCM can
Be found. An end of directory s wndicated by two bytc: of 0
following the last directory entru.

§.1.3 The LEX File

ROM-based LEX files resida tn the switchadble plug-1n oddress space
6000H-7FFFH. Absclute code may be used and absolute addre:se¢s are
used in the header table, parse table, and runtime toble. (See
the next chapter for writing ROM-based assembly language.)

One and only orne LFX file must be present tn a plug-1n ROM. The
LEY file rmust be the first file 1n the directory, and under the
standard must also tmmediately follow the directery with the
Jollowing exception: 1f the LEX file s abtsolute, 1t may leave
space between the directory and tself for future directory
expansior.. The 1dentifier nunber tn the LEX file s used as ¢
unique t1dentifier for the ROM. No other ROM or LEX file in the
system can have this numbar.

A ROM-baszed LEX file will run in RAM only 1f the code ts posttion
tndependent. (See the section on Hubrids and the chapter on
Coding Practices.) To prevent a sustem crash, the COPY bit 1n the
file access byte 1n the directery entry for a ROM LEX file should
be set to 0.

§.1.4 Other Files

Any other non-LEX files mau alsc appear tn a plug-i1n ROM, such as
BASIC progroms. BASIC programs may be e¢xecutec from the ROM
spacc, but files of other types 1n ROM mau only be copied tc RAM
and are otherwise snaccessable to the system. Fer further
tnformaticn on BASIC prograoms sn RCM, consult the Kangarco Memcry
Maragament document. All files, wtncluding the LEX file., lut not
the last file, wmust have a byte followtng 1t to separate 1t from
the fellowing file. The value of this byte 1s undefined.

5.1.5 Checkswn

The checkswn 12 used by the diroanostic ROM and other proaraom: to
ensure thet the plug-1n ROM 1s working correctly. Undcr the
standard the chechzwn appecrs 1rmediotily following the last tyte
tn the last file 1n the FOM. Thé checkswn 1 computed cuck that
arn & bit end-arcund-carry sww ¢f all of the byte:s 1n the AOM wi1ll
yreld OFFH.

- 19 -

KLOUT s a program which computes checksums of ROMs. It takes an
absolute output file from KLINK and produces a ccre tmage with
chacksums . KILOUT searches for BSE instructions tc replace with
chacksums . Since the BSS wnstruction generates peculiar code, 1t
should only be used for this purpese. KR%WSUM, a file containing
only a BSS 1, can be linked such that 1t 1s the last file 1n a
plug-1n ROM. KLOUT will find the BSS code from KR%WSUM and replace
1t with a checkswn, thus guaranteeing that the ROM conforms to the
standard.

5.2 RAM-Based LEX Files

RAM-based LEX files exist tn the system’'s main memery. Since the
operating system can move all files at wi1ll, RAM-btased LEX files
must be position independent. (See the next chapter.) All
addresses in the header table, runtime table, and parse table are
made relative to the start of the LEX file.

$.3 Hybrids

A LEFX file which moves around tn memory can be difficult to debug.
One way around th:s problem ts tc do mest of the debugaing 1n ROM
and then modrfy the LEX file for RAM; pesiticon inderendent code
can be run from ROM. To ago from ROM to RAM the LEFX filec must be
modified so that its tables are relative to the start of the LEX
Jrle.

Ona conventant way te de this s to tllustrated 1n the exomple LEX
ftle. BASE 1s the base address cof the LEXN file. while RMRASE 1s
used as the base of the address tables befere RELMAR. For RAM
based LEX files, RMBASE s made th: same value cf BASE by removing
the 'equ 0’ part of the lina; this makes the table addresses

réalative. Alsco RAM based files shculd have the ARS and LOC

statements remcved from the first twe lines of the file. ROM
bacsed lex files (like the exomple) have atsclute tables so RMBASE
ts set to 0. Appendix C discusses a method for mcovement of LEX
ftles tnto RAM.

- 20 -
CHAPTER €

Coding Fractices

6.1 ROM-based LEX Files

Table addresses preceding RELMAR 1in ROM-based LEX files are
absolute.

A ROMISB may be required to call a subroutine i1n another LEX file
or in the operating system. Beware of passing a pointer to a
parameter to a subroutine which requires a ROMISB. 1f the
parameter 1s tn a switchable ROM and the ROM i1s switched out,
1nvalid data will be used instead of the parameter.

A ROK-bascd LEX file must also not access data 1n the ROM which is
not part of the ROM's file system since this area ts undefined.

6.2 RAM-based LEX Files

A RAM-based LEX file can move whenever a file below tt tn memory
changes s1ze, s purged, or s created. Operating system files
which change si1ze tnclude the workfile, calcprog, 1voftle, and
devfile.

Because of this movemant, the operating system requires table
addresses preceding REILMAR tn RAM-based LEX files to be relative
to the start of the LEX file. This can be done by assemtling from
a bas¢ address of 0 or by subtracting a bas¢ address from all
addresses tn the table. 1In addition, LEX file movement requires
position independent code, which add: several additional
constraints.,

Internal table references, subroutine gwmps, and GI0s within a LEFX
file must be indexed. Indexing 1s donc ustng ROMFTR, a global
location which contains the start of the currently executing LEX
file. Several examples will sllustrate the use of ROMPTR with
tndexing.

- 21 -

6.2.1 Example 1

LDMD R20,=ROMPTR Get the start of this LEX file
SBM R20,=BASE Now R20 is an isndex to use with

» references to other labels in
» the LEX file

JSB X20,DEST
» DEST is an snternal subroutine

LDMD R30,X20,TABLE TABLE 1s an internal data

* table within the LEX file

6.2.2 Example 2

LDMD R22,=ROMPTR
JSB Xe2e2,(DEST-BASE)

* DEST 1s an tnternal subroutine

DEST POMD R2,-R6 pop the return address;
’ this makes the above

subroutine jump w1nto a GIO

6.2.3 Exomple 3

LDMD R24,=ROMPTR
SBM R2¢,=(TABLE-BASE)

R2¢ now points to the
s start of the TABLE

Altering the size of a file will cause movement of other files
which reside after the altared file. Routines which alter file
size should be caolled using ROMISB, which will automatically
update tts return address and ROMPTR to compensate for the new
location of a LEX file.

- 22 -

6.2.4 PC-Relative Addressing

Using PC-relative addressing tn Kangaroo 1s difficult because the
PC 1s undefined at the stert of an instruction. This 1s because
the CPU does not always update the PC when an instruction s
executed. All Capricorn CPU 1instructions maintain an amount to
update the PC 1n the N-register, a special ¢-bit counter.
Whenever a Ubtyte of an instruction s faetched, the N-register 1s
tncremented. Most instructions will add N to the PC, clear N and
ocutput the PC to the bu: tefore the next instructicn 1s fetched.
However, the following spictal class of wnstructions do not update
the PC: ARP, DRFP, DCE, ICE, and CLE. All other 1snstructions
update the PC, but the programmer cannot assume that the the PC 1s
not updcted after a special class instruction. This ts because an
tnterrupt can occur which will update the PC.

Thus, the programmer must ensure that the PC 1s updated to use
PC-relative aoddressing. The NUP instruction 1s useful for this.

- 23 -
CHAPTER 7

Identifier and Other Numbers

Do not simply assign @ number of your choice to a LEX file you are
writing. Each LEX file number should refer to a unique LEX file
tn order to avord conflicts and a possible software crash in
Kangaroo. LEX file tdentifier numbers are assigned by Custom
Products in Marketing. Identifiers availadble for experimental or
un-relcased LEX files are 100 to 199D. Under the LEX file
standard, error numbers will range from 150 to 255 for all LEX
Jiles.

NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

- 25 -
APPENDIX A

Example ROM-based LEX File

KARMA 06/09/82=s=zz=zzzzs=z22s=22zs2szs22==s2sss=sssss=sss=s=ssss==se=ssssc=====z==

CODE SRC=BDAEXA OBJ=BDYEXA 6/14/1982 9:51 A PG 1
:::S:-’:-'::3:::8Z::'—':-‘-’2=::.’S2.’::3:::::::-’::2:::::::::_’8:::::::::::::::::::::::

6000K
; Used only for ROM
.
) Used only for ROM

BB RRNRRRRIRIRRRRARNRARRRARINASPI AR RRRRADRRIRIRPADRRINRERRRY

ASSEnmnNBLY INFORNMNATION

use uppercase to denote external and global symbols
and declared entry points.

»

2

2

* Note the careful use of upper and lower case here. I
»

»

»

» PRRARDRPRRRIRRIRNSRRARNRI I RARDRIRRP RSN RRRNRRIRRNNRAN RN

ERRORR
NUMVA+
ONEB
OUTCHR
SFSCAN
SYSJSB
UNSEE

00001101B

’

; Parse expression w/predpost sc
; Pop binary# from rl12 at runtsm
; Output a chr to all disp devic
; Safe scan routine.

’

’

’

’

)

’

An Error reporter.

; Safe way to call system.
; OK to clear LCD routine.

ROM,Purge,Copy,Token.

BRRRDARRRRNRRRRPREIRRRRARD NI RRDRPPIRIRRIRRSDIRNRDRIRNIARNNRY

* File Directory (Used only for ROM LEX files)

BRRRPARRIRARRIRARERIARRARN AR AR RN R RRIRARRANRANIRIARIRRDN

ITEM LOC OBJE

25500050 Exomple LEX file
2 0000 abs
J 0000 loc
4 6000
¢ 6000
$ 6000

6 6000
7 6000

8 6000

9 6000
9 6000
9 6000

10 6000 ext

11 6000 ext
12 6000 ext
13 6000 ext

14 6000 ext
18 6000 ext

16 6000 ext
17 6000

18 6000 tylex equ
19 6000

20 6000

20 6000 »
21 6000

21 6000 »

21 6000
22 6000

23 6000 E3 1C def

2% 6002 16 60 def

25 600¢ EC 00 def
26 6006 0D val
27 6007 ¢C val

28 6008 90 B3I F3 9A byt

29 600C »
JO0 600C 4C 45 S8 ¢S5 asc
JO 6010 S8 41 4D 20

31 601¢ 00 00 def
J2 6016

RMHEAD ; Yes, there is a ROM.
lxsetrt ; Beginning of lexfile.
(lxend-lxstrt) ; Svze of file.
tylex
TYNLEX ; LEX file sn RAM.
90X,0B3H,0F3H,9AH ; Date t1n sec since 1900

; 05/18/82 16:28:00
" LEXEXAM ; File nome.

(0) ; end of directory.

KARMA 06/09/82====c=c=s255-c22=322-22282222335558822s=s

ITEM LOC OBJECT CODE SRC-=BD&EXA OBJ=BDREXA 6/14/198c 9:51 AM PG 2
TTSS S ST STSSTSSSTTSISTSTSISSIS=SSzsSTs=Ssz=ss=E=Es2

20000000 Address Tables cecee

34 6016 I FEEEAE SR ER RS R EEEEE RN SRR ERSRERERENRERR R RARREEREERERNN]

J¢ 6016 *
J5 6016 * LEXEXAM Address Tables
35 6016 *
35 6016 AERIAPRRRBARRRARPRRRRRRRADRRANRDADDRRNDNARRRARIRRIRRPASI RIS

36 6016
37 6016 lexid equ 0100d ; Thae id of this LEX fil
38 6016 errnwn equ 0150d ; Starting error nwmber.
J9 6016
40 6016 IFEEESEERSASEEEEER SRS REERERARSNERERERRREEREEESEERRE D)

40 6016 »
41 €016 * LEX FILE HEADER
41 6016 »
41 6016 I EE SRS EEE R RS EEEESERE SRR RREE AR SR EERERRERERRREANEERNREDNY]

42 6016 base * Assembly-time tase add
43 6016 rmbase equ 0 * remove ‘equ 0' for RAM
4¢ 6016 Ixstrt

45 6016 64 00 def Ulex:id ; Number of this LEX fil
46 6018 20 60 def (runtab-rmbase-2) ; Address of runtime tabd
47 601A 2C 60 def (keuwrd-rmbase) ; Address of keyword tabd
48 601C 2¢ 60 def (partab-rmbase-2) ; Address of parse talle
49 601F 37 60 def (errmsg-rmbase) ; Address of error table
50 6020 60 60 def (intcpt-rmbase) ; Addr. of wntercept cod
51 6022
$2 6022 * Note that the addresses of the Runtime and Pars
53 6022 * tables are offset by two. This 1s because the syste
5¢ 6022 * will 1ignore the first table entry n those tables
55 6022
56 6022 I R R EEE R SRR REENEERE SN ARRSRR RERRRRRRRRERERERRNEEND.]

S€ 6022 ’
57 6022 » RUNTIMNE TABLE
57 6022 »
57 6022 I FE2ZARAREEEE RS SRR ERRR ARRRARRN ERRARRERRARERDRN]

58 6022 runtab
5§59 €022 BC 60 def (speak.-rmbase) ; 1st keyuword code addre
60 60cd ['4 60 def (error.-rmbase)
61 €0c6
62 6026 I E R ERRR RS RS EEEE RS NERERRRERANEEREARERSRRERRERERERNEEE]

62 €026 ’
63 €026 » PARSE TARLEFE
63 €0c6 »
63 6(“"6 R P92 RRPR I RRPORNRDADPRNDDNNNRRRRRRPRPRR RO RPRRNRRPRORDPPIORRRREY

6¢ €.c€ partab
6S €0cE EB 60 def (speatl#i-rmtase) ; Addr. of parse-time co
6€ €0c6 Q8 60 def (errord#-rmbase)

€7 602A FF FF def RELMAR ; Relocation Marker.
68 €0cC
€9 602C * All t1tems atove RELMAR must be addresses only.
70 602C

KARMA 06/09/82===ssz=2zzs2ss22ss2ss2c222252225222225255232ssss55823222

ITEM

P2 I20220)0

72
72
73
73
73
7¢
78
76
76
77
7?7
78
79
80
80
81
81
81
82
83
8¢
85
85
85
8s
86
86
86
§6
86
86
87

602C
602eC
602C
602C
602C
602C
602C
602C
6030
6031
6035
6036
6037
6037
6037
6037
6037
6037
6037
6037
6037
6038
603C
6040
6044
6046
604A
604
6052
6056
6054
60SE

LOC OBJECT CODE SRC=BD&EXA OBJ=BD%WEXA 6/14/1982 9:51 AM PG 3
eTSTS S S S SSSY STsSsT2TTYs>SS>>=z=2s==

Data Tables cecce
I B ESEREEEER AR RERRRERRRRRERRRSR AR R RRERRERRRRRRRRRRRERDSE]

»

’ KEYWORD TABLE
»

I EE SRR EERESERERRRERRRARRERRERRRRRREERRRSERRERERRERESNSS]

keywrd
53 S0 ¢5 41 asp 'SPEAK’ ; Invoking keyword #1.
CcB
45 52 S2 ¢F asp 'ERROR’ ; Invoking keyword #2.
D2
Fr val ff ; End of keywecrd table.

ARRNRRRRARRERRRARNRARRRNRRARERDIRREIRARRLRRRARRARARIRRNARN RPN

2

* ERROR MESSAGES
»

PARRRRORNRRRARR R P ARARRARRR NP RN RN RRRRRRRR AR RNRRRRRNRA N RN

errmsg
96 val errnwnm ; 1st error message numd
73 6F 72 72 asp 'sorry charlve’’ ; Error message errnum +
79 20 63 6§
61 72 6C 69
6§ Al
6D 61 6C 66 asp ’'malfunction malfunction’’ ; v
75 6F 63 7¢
69 6F 6F 20
6D 61 6C 66
75 6 63 7¢
69 6F 6F Al

* Note that above 1s the longest displayable error msg.
FF val ff ; End of error messages.88

89
60SE
60S5F

KARMA 06/09/82==s==s=c=-=5=2=3=355333523T305582235552555525335335832ss2sss25sss

ITEM
O - ---> e- e = . e eseG m AGGeEE e eE.-, e.e T,SRSewS -®P T T T T T T T S T S T S TS S S T I T S S T S S S T S S T S S S S T S e S S T e S S s S S e T T s T e s s eSS s s s e s e s s Ssess=s-

PIPII>IPID

91
91

9¢c
93
9¢
95

g6
97

98
99

100

101
102

103

104
105
108

105
106
107

108

605F
60SF
605F
605F
60SF
60SF
605F
605F
605F
605F
605F
605F
60S5F
605F
605F
60SF
605F
605F
60SF
605F
6060

LoC

1F

OBJECT CODE SRC=BD&EXA OB’=BU7EXA 6/14/1962 9:51 AM PG ¢

Code Attridutes cecce
AARRPRDPRRRARRRARRIRRRRRRRRARRRARIARIRRARRNNRNRSRNARNRARRADRY

LEX 1D Independent code
(reserved for future use)
(reserved for future use)
(reserved for future use)N

O
U
N
R
W
L
W
N
N
N
O

W

* CODE ATTRIBUTES
2

* The byte tmmediately preceeding the intercept code
* the code attridbutes byte. This byte supplies snforma
* ¢tion about the code used i1n this LEX file as follows
»

* RAMable; bit 2 must also be set.
* ROMable
* Position-Independent code
: Mergable
*

»

*

»

»

» AERARERRDPARLRRIRDDIRDSIRRNARRRIRSRRPARBREIRNRRRNIRRNDRIRRRND

byt 000111118 ;ALl of the above.

KNARMA 06/09/82:::::::::=::::::::=::::::::::::::::::::::::::::::::::.—:::::::::

ITEM LOC OBJECT CODE SRC=BDAEXA OBJ=BDAEXA 6/14/1982 9:51 AM PG S
TSS T STS T T S S TS S T TS SSSSSS T R T R TTRS S STReTT S T S T eSS S S S S S S S s sSs=o e oe e e e eBE Ge.eeeeGeeeee.————-——---- - -

22050000 Intercept Routine ccece
110 6060 RPRRRRARARIRPAASRRRRAPARIRNIRSRRARNASRRNRRNRRNRRARRARNDRARDAY

110 6060 »

111 6060 * INTERCEPT ROUTINE
112 6060 »
113 60€0 * The intercept routine may trash: r0-3, arp, drp
11¢ 6060 * and £ register, and status. Since NANDI saves
115 6060 s and restores them on the r6 stack, they cannot
116 6060 * be used to pass out parameters.
117 6060 »
118 6060 * Inputs:
119 6060 *
120 6060 » bin

121 6060 * drp 0
122 6060 » RO = Event nunmber
123 6060 » (ROMFL) = Duplicate copy of event number.
12¢ 6060 » (ROMPTR) = Base address of this LEX file.
125 6060 * (TOKEN) = A pointer to the last token called b
126 6060 » the snterpreter. If st ss EROMTK, the
127 6060 » it potnts to four bytes as shown delow
128 6060 »
129 6060 » Pmm———$ommmebbe+
130 6060 » | EROMTK | ROM NUMBER | Token |
131 6060 » $ommmm—-$om——mee$ommmmeR+
132 6060 » TOKEN + 0 1 2 3
133 6060 »

13¢ 6060 * All other snput will depend upon the intercept.
135 6060 *
136 6060 * Output: bin
137 6060 » (HANDLD) = clear to terminate polling.
138 6060 » non-zero to continue polling.
138 6060 »
138 6060 IR ERSRERRRR RS RRERSRRERRRERRRRRRRRRRRRRERERRRRREE]

139 6060

140 6060 intcpt
141 6060 drp /0 ; From scannar.
142 6060 C8 01 cmd r0,=V.WARM ; Is 1t a warmstart?
143 6062 F6 26 rne ; NO/

144 606¢ SE Bl A3 82 ldnd r36,=ROMPTR ; Load my base address.
145 6068

146 6068 1E C6 C8 00 Jsb x36,(mesout-base) ; Tell user about it.
147 606C 4B 61 6F 67 asc 'Kangaroo at your service!’’
147 6070 61 72 6F 6F
147 607¢ 20 61 7¢ 20
147 6078 79 6F 75 72
147 607C 20 73 65 72
147 6080 76 69 63 65
147 608¢ 21
148 6085 0D 8A def crlf’
149 6087 CE FF FF Jsb =UNSEE ; OK to undisplay.
150 6084 9F rtn
151 608B

KARMA 0€/09/8f==z==s==zz===zsz=ss=2ssscs=sss==rss==-=s====zss==s=szszss=z==ss===z==

ITEM

lac

Loc

42
02

* CE
Fo

¢2
02

" CE

Fr

» 6C
0A
ar

-~

OBJECT CODE SRC=BD&EXA OBJ=BD7EXA 6/14/1982 9:51 AM PG 6
o e e-eeeGeAeS Uee G TST S W e e NeNeN We TeeoWWes T I T I I S T S S S S S S S S S S S S S S S S S S S T S S TSTSTSTsssSs sssTsz==z

Parse Routines ecece

B!

FF
0D

Bl
cé
£F
FE

06
ES

A3
95
FF

€

123

E3

82
00

IR RS REEER SRR SRERREAREED AR RERRREARRR SRR R RRRRERREEERERR D]

»

* PARSE ROUTINES
»

* Input: (from scanner)
* bin
* rlo = Pointer tc ASCII text input.
* rl¢ = Rom token nuwmber.
' r1s = 0 (for multibyte adds).
’ ré4l1/42 = Two Byte ROM 1d number.
* red = ROM token number.
* r¢? = Primary Attributes.
»

* Output: The R12 tncreasing stack contains the tokens
* corresponding to the keywords i1n this file.
2

* NOTE: The above registers must be correct on extt in
» addition to matntaining ré$-13, rl16/17.
»

IR SRR ER SR SRR ERE SRR ER RS RRERRRRRR ERRRRRRRRRREEE D]

I PR EERERERREREERRERRRRRRRRERRRRERRRRRRR R SRR RRRRERNE]

*

* Parse one keyword with no paraometers. Put the token
* onto the r12 stack 1n tncreastng addresses as follows
»

* ROM switch token (EROMIK)
* ID number of this LEX file
* Ordinal of corresponding keyword.
*or12 --»
»

» LRERREEEREEEERRERRRRERERREERRRRSRRESRRERRRRERRRRRERREED

speak#
ldnd r2,=ROMPTR ; Fetch base address.
Jsb x2,(prslex-base) ; Save lex switch tokens

Jsb =SESCAN - ; Get naext token safaly.

Jmp pushme
PRRRPERP AR RRDN AR AR ARSI RO AP RO R IRRRAR AR RRRNRAARRRANRPND

»

* Parse one keyword with one nwmertc parameter.
»

AR R AR ERERE R EREE R RS R SRR RN AR ERERARERRAREER R AN EREEAEEEREENENN)

error#
ldmd r2,=ROMPTA ; Fetch base address.
Jeb x2,(prslex-tace) ; Save lex switch tokens
gt =SYSUSE ; Frescan, get a nwmeric
def NUM'A+ ; expression, pestscan.

pushme
pomnd r54,-r€ ; Get lax switch tolens
pwnd rS4,+rl1e ; and put then onto rlc.

rtn

196 60AB

KARMA 06/09/82:::

ITEM

P PI2II2D0)

198
198
199
200
201
e0e
203
20¢
208
206
207
208
209
210
211
212
213
214
215
216
217
218
219
eeo
eeal
ecl
eecl
222
223
22¢
225
226
ee7
228
229
230
231
232

60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AB
60AD
60B0
6083
60B6
6088
60BA
60BB

LOC OBJECT CODE SRC=BD&EXA OBJ=BDAFXA 6/14/1982 9:51 A PG 7
SO S PT W BRSSTGUT Y SGSAPST e S S eGeSe>E P T Y T P MR G SS e S e wh e P SW Se W eW-S R S e e S S e S T s S T e T T s e s S S S S T S S s S S S S S S S S S S ST S SS T T e T S TIs s S s I T TTezmsz

Prslex - LEX Token Saver cecee

06 E3
6D A8 B¢
6F 21 Al
60 06 ES
¢C E¢
¢2 ES
73

*

»

»

»

»

»

»

»

»

*

»

»

»

»

»

»

»

»

»

*

»

»

»

»

»

»

2

I BE R ERERRERER DR RRERRRRRRRRRRRERRRRERRRRRRRRRRRRRRREE]

Pushes the LEX tokens onto R6 on entry.

In: DRP 2
rl¢ = LEX token.
rél1/42 = LEX 1d numder.

Out:

ROM switch token (EROMIK)
ID number of this LEX file
Ordinal of correspending keyword.

6 -->

Trashes: R2/3, R55/57
Calls: none

Errors: none

This routine 1s necessary to make this lex file tndep
endent of the LEX file nwnber. This allows LIX file
to change numbers when copted from ROM to RAM. Th
user simply calls this routine on entry to the pars
code, and moves the tokens from the R6 stack to th
R12 stack before returning to the operating system

I RE SRR RERERERRERRREERRRRRRRRRRRRRRRRRERERERRERE]

prslex
drp ‘2 ; From caller.
pcmd re,-ré ; Get return address.
1db r855,=EROMTK ; Lead switch token.
ldn rS6,r41 ; Fetch LEX 1d#.
puwnd r55,+rb6 ; Save em both for later

pubd rl14,+r6 ; and current token also
pwnd re,+rb ; Save old return addres
rtn

KARMA 06/09/82::r=ss=cz=2=z==

ITEM

PIPIIII)

23¢
234
235
236
237
238
239
240
241
242
LN
244
245
246
247
2¢7
247
248
249
249
250
251
252
253
25¢
255
256
256
256
257
258
258
259
260
260
260
261
262
263
264
2635
266
267
267
267
268
269
270
271

6088
6088
6088
6088
6088
6088
60BB
608B
6088
60BB
608B
6088
6088
6088
6088
60B8
60EB
6088
6088
608B
6088
608B
6088
6088
6088
6088
6088
608B
6088
6088
6088
€088
608B
6088
6088
608B
60BB
60BC
608C
608D
608D
60C0
60C4¢
60C8
60CC
60CD
60CF
6002
6003

Loc

Al

98

B1
10
41
20
21
oD
CE
9L

OBJECT CODE SRC=BDAEXA OBJ=BD*XA
TTSTISSTSSSSSTSSTSISTSSITSSSSTESSTTESTTSSsSSLSstsS222 ss=322

Runt ime

A3 82
6 C8 00
72 66 21
41 72 66

8A
FF FF

6/14/1982 9:51 AN PG 8

vegqgec

AP RRBRBNIRANSRRANDRRRRRRDANDNRRNRAINIP RN RRANDINRNRERNDRRD

Routines

2

» RUNTIME
»

* Input: BCD
’ drp 20
s r1o =
* rid s
» r1é s
s ri? s
» (ROMPTR) =
» (TOKEN) =
»

»

* of registers r$-13, r16/17
»
»

ROUTINES

posinter 1 byte past current token
operational stack pointer
Machine state byte
contatns stall flag
base address of this LEX file
same as for parse routines

The runtime routines must maintain the integrity

RRRRRERRRRRRRNRRRRRRRRRRDDRNRRRRNRNRRRANRRRPANRRRANRANRRRND RN .

RARRBRPARDRNRR AP RANRRDIRPRIRNANRNRRRRPRRRRRRANAIDADRNRRINDP AR

100 SPEAX ccr’

Output a silly message to all display devices

ne

Out: message on display devices

®»

»

»

»

»

*» In no
»

* Calls: me
»

»

sout

2RREEE SRS SERSEEREERNEEEERRSEESEREERRERERRREREERERN D]

APANRRRRARRNNARRARRRANRNPRRNRARRADIRARRIANRRIAR RN NP RART AN AR R RS

»

* The attributes byte must itmmediately preceed the
* runtime code for that keyword.
*

I ERERRERERERERERRERERRERRRRRERRERRRRRRRRRRRRRRRSREERERDE N

byt
speak.

bin

drp
ldnd
Jsb
asc

de f
Jsb
rtn

241

/20
r20,=ROMPTR
x20,(mescut-base)
‘Arf’ Arf’’

crlf’

=UNSEE

Statement, THEN OK.

System entered in BCD.
System supplied DRP.
Fetch my base address.
Output the message.

Output EOL sequence.
Undisplay when done.

KARMA 06/09/82=s=2zszzzzszzz==ss2s222s2222c2222czszzssssz2cxzzssz22=ss=s=s2====

ITEM LoC OBJECT CQDE SRC=BDAEXA OBJ=BDREXA 6/14/1982 9:51 AM PG 9
:::::S:::::::::::8:8:::-‘::::-‘::::::::::::’:.‘.’:::::::::3::::::::::::::::::::::::

22300050 Error - Reports the specified error ceces
273 60&’ ’ PREIRPIDNIIIPRPAIBRERIRNNRRARRARA NP RRANARIRANDDNR PR RRANAR

273 6003 »
27¢ 60D3 » 100 ERROR <error number’ <cr-
275 6003 s
276 6003 * Report the error specified after the keyword.
277 60D3 * Note that only the least significant byte ts used.
278. 6003 *
279 éon3 * In: R12 points to runtime parameter stack.
280 6013 » In this case an 8 byte nunber 1s expected there.
281 60D3 *
282 6003 * Out: The error text on the display devices.
283 60D3 *

28¢ 60D3 * Calls: ONEB, ERRORR.
285 60D3 ’
285 6003 *
285 60D3 RABNRRRPRRRRRRARRADPRARNRRDIRRNINDARNRNDIIRNIRDIRINRRNNNDRARDD

286 60D3 Al byt 242 ; Statement, THEN OK.
287 60D¢ error.
288 6004 CE FF FF Jsb =ONEB R76 := binary # on rl2
289
290
291
292

6007 50 JE A0
60DA CE FF FF
600D OF
60DE

;s
iddb r20,r76 ; Set up error nwmber.
Jsb =ERRORR ; Output that error.
rtn

KARMA 06/09/82=s==z=cs=sss=s=ss2S2223353838s=3ssssss==2===22

ITEM
XTI IISLRPS I S TTN SN S SSS S S P P SISSSXS S ZSRS SISINS S SIS ST NINIXL X3ST T S S T S S S T T T S S S T S S S S S S S S Y S S S S S S S S S S S TS S S S S Ss S S s s s eSS s S S s s S S S sSss s Aamse~

22200000

29¢
294
295
296
297
298
299
Joo
Jo1
Joe
303
Jo¢
Jos
J06
Jo6
Jo6
Jo7
Josg
Jog
Ji10
J11
Ji1e
J13
J1¢4
318
J16
J17
J18
J19
320
Jel
Jee
Jed
Je¢
Jes
Jeb
3e7
Jes
Je9
J3o
331

60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60DE
60£&12
60E3
60FS
60E8
60EA
60FA
60EA
60LC
60D
60LLE
60LF
60F2
60F3
60FS
60F8
€0FC
60FD
60FF
6101
6102

Loc

40
L4
58
BS
SA

18
9A
8¢
86
CE
9F
FS
54
58
&3
42
40
9k

OBJECT CODE SRC=BD&EXA OBJ=BDAEXA

Mesout - Output Message Subroutine

06
ES
ES
re
k¢

ES

FF

ko0

FF FF

FS
06
B7

E2
F8 FF

£3
£3

6/14/19682 9:51 AM PG 10

ece

BR EE SR AR D EEEEER R NSRS SR AREEERRERRRRERERRRREREERNEEER]

Calling

Inputs:

Output:
Trashes:
Calls:

»

»

»

»

»
»

»

»

»

»

»

»

» Errors:
»

»

crlf’ equ

mesout

lxend fan

sequence:

BIN

JSB
ASP

Output a message to display devices.

sMESOUT
‘message’

Message bytes follow call with high
bit set on the final character.
Message on the all display devices.
status

OUTCKHR --> Does ROM switching’
none

8a0dh

r0,+rb
re,+rb

r30,+r6
r30,X6,(0-8D)
r3e,+rb

132
r32,+r30

rJe
rJe

=QUTCHR

r32,-rb
r30,x6,(0-8d)
r30,-r6
re,-rbé
r0,-rb

2RAPARERARDIANPARSNRPRAERIRNRARRRPANIIRIR DA NN R R RRARRNRNRRRRY

JCRLF with terminator.

;Save used registers.

;Fetch message address.

;Get nxt chr; bump coun
;Save flags.
;Clear MSE.

;Output the character.

;Restore uscd registers.
;Sare new return address

;End of file.

KARMA 06/09/82=z=cxc=szc=zcsr=ssss222c2ss22-5-082-c8s=rso=s2S2s8ssSsss3s-22=

SYMBOL VALUE TYPE COUNT Symbol Table 6/1¢4/1982 9:51 AM PG 11

BASE 6016 LCL ¢
CRLF ' 8A0D LU 2
EROMTK 00B¢ G EQU 1
ERRMSG 6037 LcL 1
ERRNUM 0096 EQU 1
ERROR% 6098 LCL 1
ERROR. 60D¢ LCL 1
ERRORR FFFF EXT 1
FF O00FF G EQU 2
INTCPT 6060 LcL 1
KEYWRD 602C LClL 1
LEXID 0064 EQU 1
LXEND 6102 LCL 1
LXSTRT 6016 LCL e
MESOUT 60DE LCcL 2
NUMVA+ FFFF EXT 1
ONER FFFF EXT 1
QUICHR FFFF EXT 1
PARTAB 6026 LCcL 1
PRSLEX 60AB LCL 2
PUSKME 60AS LCcL 1
RELMAR FFFF G DAD 1
RMBASE 0000 EQU 9
RMYEAD 1CE3 G DAD 1
RCMFTR 82A3 G DAD ¢
RUNTAR €022 LCcL 1
SFSCAN FFFF EXT 1
SFEAK8 ©608B LcL 1
SPEAK. 60BC LCL 1
SYSJSE FFFF EXT 1
IYLEX 000D QU 1
TYNLEX 004C G EQU 1
UNSEE FFFF EXT 2
V.WARM 0001 G EQU 1
lo0007 60EA4 LCL 1
rtn004 6084 LCL 1

KARMA 06/09/82zc=z==z=z=-==ss=s====25855355535853552353555555ss2ss58ssss=ss==23s3=s==

HEADING Toble of Contents PAGE PG 12
::-‘::3:::::::

Example LEX file
Address Tables
Data Tables e e e e e e e

Code Attributes «
Intercept Routine
Parse Routines
Prslex - LEX Token Saver .
Runtime Routines + « o « « « .

Error - Reports the specified error .
Mesout - Output Message Subroutine . Q

O
®
V
N
D
N
R
L
N
N

~

BDAFXA NAD 0 ERRORS 0 WARNINGS 95 LABELS SI2E 258 LAST ERROR AT 0

KP Confidential

-39 -

APPENDIX B

RAM-based Intercept Handling

The following progrom is from RY/JSB. It suggests a possible way
to handle ROM switching for intercept handling.

~ O
W
M
N
D
O
L
a
v
d
W
~

W
W
M

M
M
M
M
M
M

N
K
R
h

b
b
N

W
D

O
N
A

W
M

r
D
O
N
I
L

J¢
3s
36
37

38
39
40
¢1
4c
«
44
45
¢€

4§

¢9
S0

0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000

0000

0000
0000

0000
0000
0000

0000

0000
0000
0000
0000

0000
0001
0004
0006
0009

5 000C

000F

0C0F

0010

0010

0012

0018

0019

001B

0C1E

001F

0023

0024

0027

0028

0029

ocecC

002F

0032

032

003€

0039

CCA

003D

0C3F

00¢e

94
¢0

42
CE
é¢c
40
9F

9r

CE
08
6J
06
81
ES
66
£S
81
ES
93
B
CE
FF
Fr
6€
&7

[‘T

&7

€65
&7

£3

06
ES
10
06
E3

123
cs
Bl
ES
A2

81

4A

4A
FF
FF
£F
06
¢A

¢C

ES
A2

ES

00
£3

FF

9D 82

82

4C 8¢

85

85
FF

E3
85

&4

82

I B B RS AREREEEREREEREERESDE]

2

* THIS CODE HAS NOT BEEN
* work, tut NQ guarantees
»

FRR AP PPRRRRRRR NP RRP R RN NS

EXT
EXT
EXT
EXT
EXT
EXT

COFY
DODO
EVIL
10ISVR
ROOM?
ROMJSB

INTSIZ
§10-77

INTERR

6§D
-56D*256D+10

(0)

EQU
DAD
DAD

* Code for

SAD
PUMD
PUMD

safe ROMJSB:

RMJSB+

RO, +R6
Re, +R6

JSB
POMD
POMD

=1F
R2,-R6
RO, -R6

PAD
RTN

1N JSB =EVIL
DEF $10-77

LDMD R43,=ROMFL
PUMD R43,+R6
LDMD R43,=(SLOT+1)
PUMD R43,+R6
LDMD R46,=ROMNUM
PUMD R46, +RE
LDM> R4$6,=DIRECT
PUMD R46,+R6
CL» R46
STMD R46,=DIRECT
JSEB =ROMISE

DEF I0ISVR
DEF DODO

POMD R4E, - RE
STMD R4$€,=DIRECT
POMI R¥E., - RE
STHD R4€., =ROMNUM
POMI R4, - RE
STHD R&?,=(SLOT+1)
POMD R4, -RE

RRARPRDRARRINIRDINDARRARPARNRRRN NS

TESTED:' '/ It should
are made.

I EEEERRERERRRESERERRRERRRERDEDSE]

move bytes
t/o0 rom
save registers
1/0 wnterrupt service
chaeck ram room
Jst to rom

interrupt shell size

error handling code

save status

save RO/1
save R2/2
do the guts
restore R2/3
restore R0O/1
restore status

go back

save R10/77

get some globals
save them
get some more

save them
and mcre globals
save them
get the directory
save 1t

clear the
diractory
do the safe romysd

to interrupt service
tn rom

get directory
restcre 1t
get bock some globlals
restere them
get scmé more
restore them

and some more

KARMA 05/10/82======s===2323355=S55255523SSSSS=SSSSsS=23s=3=

ITEM LOC OBJECT CODE SRC=RY&ISB OBJ=RY%JSB 5/19/1982 11:1¢4 AM PG 1
3:::::::::::=:=:==:—':::8’==3:=TSTSTSTSSTSTSeTESssSzs===

S1 0043 B3 9D 82 STMD R43,=ROMFL restore that too
52 0046 9F RTN finish up
S3 0047
s, 0047 I ERESARRERERRRESRNERREERERERRRRR SRR RRRR SRR RRRRRRERRRRDS

S¢ 0047 »

§&§ 00¢7 * Notes for the interrupt service routine in rom:
56 0047 * Must save NANDLD 1f going to do NANDI calls.
57 0047 * If this routine interrupts itself, there will
58 0047 * be problems (and possible stack overflow).
59 0047 * Must sove PROTEM 1f going to do SYSJSB or MELJSB.
59 00¢7 »
59 0047 RRBRRIRRRRPAARRRRRRRNRARARRRNRSRARNS AR AIRARRRNERDRIRRRI RN

60 0047
61 0047

62 0047

KARMA 05/10/82=zzc==z=z=z=z=zcz=s=ssssss==s==s=-s=s===s==s=s-g=s=sssssssssss=sssszz2==

OBJECT CODE SRC=RY&'SB OBJ:=RY%JSE $/19/1982 11:14 AM PG 2ITEM
PX-RRTR RRyRYR YRNPlRtddddRtRR N RR RRes-- - - -ee . e e, e e c e TS e S s AT e S s e e T S S S S e S S TS R ST S s Y e S SS S S S T S S S ST S EsITz=2s

*» Code to move ROMISB shell to rom:

LocC

ce
Jo
A9
FF

B1
1C
cS
FF
10

58
58
81
A9
A9
FF

01

¢4 00
FF

5B 82
Al

FrF
Al

82
82
61 82
¢¢ 00
00 00
Fr

INTSET CMB RO ,=V.WARM warmstart?
IFEQ
oM
JSB
JEN
oMo
oM
SBM
JSB
Lom
STM
ADMD
STMD
LoMD
oM
Lon
JSB
RTN

ENDIF

FIN

yes,
R32,=INTSIZ get the size
=ROOM? room for us?
INTERR no, handle st
R34,=LAVAIL location to copy from
R30,R3¢ calculate place to move to
R30,R32 to move to
=COPY move lavail to lwamem
R60,R20 move siza to R60 (ignore gar
R60,R62 and propagate (ignore R70/
R60,=LAVAIL adjust the
R60,=LAVAIL pointers
R30,=LNAMEM get rom start
R32,=INTSIZ get the size
R34,=RMJSB+ get the code
=COPY move ¢

all done

KARMA 05/10/88=s=z=z=z2zss==s2ss22zz=z2z223z22ssxsssc2ss2=ss23ss2s2s=2s==22s=2=2=

5/19/1982 11:1¢ AM PG
::.’::::.’:'-':-‘3::::::.’:.’.’:::::::2::::_’:::::.‘::::_’::::::3.’::::S::::::::::::::::::

SYMBOL

1K0001
COPY

DIRECT

DODO
EVIL

INTERR
INTSET
INTS12

IOISVR

LAVAIL
LYHAMEM
RMJSB+

ROMFL
ROMJSB
ROMNUM

ROOM?
S10-77

sLor
V.WARM

10003

RY&JSB HAD 0 ERRORS 0 WARNINGS 28 LABELS SIZE

VALUE

0010
FEFF
8544
FFFF
FFFF
0000
0047
004¢
FFFF
8258
8261
0000
829D
FFFF
8§¢4C
FFFF
c8os
82A1
0001
007C

TYPE COUNT

LcL
EXT

G DAD
EXT
EXT
DAD
LcL
EQU
EXT

G DAD
G DAD

wcL
G DAD
EXT

G DAD
EXT
DAD

G DAD
G EQU

LCL

HP Confidential

"
e
)
e
e
)
M
)
%
e
Q
e

)
O
O

h
e
e

h
a
W
)
e

Symbol Table

¢--- NOT REFERENCED??

- 45 -

124 LAST ERROR AT 0

J

APPENDIX C

BORWLEX and Hybrid LEX files

BDVWLEX 15 a LEX file which allows the creation of RAM-based LEX
files using the HP1000 development systems (Systems J1 and J2 1n the
lab.) BDWLEX 1s an unsupported product. To use BOWLEX, follow the
tnstructions which appear tn the file and which are also reproduced
here.

This routine copies specially formatted ROM files into
LEX files which can by accessed by Kangarco. Non-lex
files can also be copted, but they must be KLINK com-
patable. The workfile s purged and a CLEAR VARS s
done after the file ts copred which will make the lex
file much more stable 1n RAM. (HNence easiver to debug’)

To use this facility:

1) The source files must consist of relocatable mod-
ules. A file directory, 1including the ROM exist-
ance header, must be first. Make sure that the
runtime tables are relative to base address zero.

2) Run KLINK. Link this module first followed by the
modules contatning your code.

J) Once you have loaded the resulting ROM code onto
the development system, run the operating system
and ON Kangaroo type: LEX <cr’

The file will be created from the directory in-
formation contained at the beginning of your ROM.

HP Confidential

APPENDIX D

References

1. Comments contatned in the source code

2. Entry Point documentation

J. HANDI call documentation

4. Interpreter docuwment

S. Kangaroo Cross Reference

6. Kangaroo Memory Management document

7. Kangaroo Owner’'s Manual

8. Kangaroo System MHooks and Handles docwment

9. KP/GI? (Kangaroo global file)

10. Parser document

NP Confidantial

xlix

Table of Contents

Introduction

1.1 The Purpose of this Document

Concepts--When the System Uses LEX Files

.1 Parse Time

.2 Run Time

.J Intercepts

.¢ Subroutine Callsv

Standard Structure for LEX Files

Introduction
Specific Structure

Gerneral Cverview

Identification Number
Relationship Batween the Tables
The Runtime Table
Parse Table

Relocation Marker
Keyword Table
.1 Keyword Searching

7.2 The “"lockout” Problem

Error Taltle
Code Attridutes

0 Exacutalle Code
.10.1 Parse Routines
.10.2 Runtime Routines

W
h

W
U
W
U
U
Y
W
L
~

W
M
L
V

U
W
W
Y
W
L
D
H
L
D
L
D
D
L
D

~

W
U

M
M
M

O
©
D
U
O
V
L
N
D
T
N
W
~

Intercepts

¢. Direct Intcrcepts
1.1 FProllems with this Method

Pollcd Intercepts--NANDI Calls
Recerving a Polled Intercapt2.1

.2.2 Other Parometers for Intercepts

.2.3 Generating a Polled Intaercept

4.

D
~

Types of LEX Files

5.1 ROM-Based Files

§.1.1 Existence Neader
5.1.2 File Directory

HP Confidential

\
N
h
n
h
n

n
W

W
Q
O
O
®
™
®
®
I
V

e
e
e
e
e
g
e

M
O
V
N
N
O
O
O

13

13
13
13
15
15
16

17

17
17
18

l

§.1.3 The LEX File
S5.1.¢ Other Files
§.1.8 Checksum

5.2 RAM-Based LEX Files
5.3 HNybrids

6 Coding Practices

6.1 ROM-based LEX Files
6.2 RAM-based LEX Files

6.2.1 Exomple 1
6.2.2 Example 2
6.2.3 Example 3
6.2.¢4 PC-Relative Addressing

7 Identifier and Other Numbers

Appendix A--Example ROM-based LEX File

The Kangarco Rom Switching Guide
Jack Applin IV

J: 47 July 19, 1962

QLY
QRLLLIPPLRRQ

QRUQLRPLNQVRLRQ
QROQQRPRRRRRLLLVIVRVLY

¢ QQLLIRAVPIEVPVQLROPY
A\ QPRIIORRLOQ Q.
@\ QLRI o«
@0\ - QRPROQLLRPRYQLLVRPQLCOOQILORQ\ \QoQ
QPQQ. . __. . QUQRRRRRQLQQQQQIVIVILIAACLLIRRL0 . _ . Q000
0QQRLLLRIRVRRQ0 " \QROQOCRCQRQRPPQVQRQRQRIRVILLLLLLOY .
QRO 0QRRLLRIVCRICVIOV
e \QRUPRQRRQQPOQIQPRQQRQRRRROCQ “00'

QLRIRQ/

19
19
19
20
20

21

a1
21
22
22
22

25

27

\QQQPQRQQQ. "QRQRPLRPQ/
\QOV0eQ | QQOOQCY
0QQe¢ | 000/"
0000| . 00
0000| 0V00
000| /
000 |
44
|000
00000Q
“0000000Q

“00000.
“000Q

"0 n

Kangaroe Rom Switching Guide

Big Picture

6J.

INSIDE KANGAROO

64K #~---ceceeao ¢

| I/0 space |
785K $occmmceanaa ¢

l l
| System |
| Rom ¢ |
| (BASROM) |

SEK 4--cmme¢

l |
| RA¥ |
l l
| I

GEKe mme.

OUTSIDE KANGAROO

I
| RAM
I
I

I
I
|
|

J2K #4-=-mmmmmem 4 Pommmmemmeeo b ! pmmmmmeeR S+

I || |« | | | I
System		System	:	Plug-in		Plug-tn
Rom 3		Rom §	¢+	Rom		Rom
C(ALTROM)		(MELROM)	:			

24K 4----cee-¢ Feememmceea-¢ $emmeemeeee- ¢ peeemmmeeeeeo ¢

I I :
| System | :
| Rom 2 | :

I I
16K #4-cvvconcee-a v :

I I :
| System | :
| Rom 1 | :

I | :
8K +-~---on-- + :

| | :
| System | :
| Rom 0 | :
| | ;

0K #4-<-vceceu-- ¢ :

-2-

Kangaroo Rom Switching Guide

In the Kangaroo system, the addresses 2¢4K-32K contain the
switching roms. Only one of these roms should be enabled at one
time. The software kaeps track of which rom is enabled at any
given time. The address S6K-63.75K contains what is ! o g { ¢ _a _l
switching rom, the BASROM, but it in fact s non-switching. The
Jact that the BASROM contains a lexfile makes 1t a logical rom.

-3-

Kangaroo Rom Switching Guide

| Enabling and Disablng Roms

Roms are enabled and discbled by writing to I/0 oddresses. A n
data whatsoerer may be written, st is the act of writing that the
hardware notices. The FF30s, FF40s, and FFS50s are the 1/0 ad-
dresses that control rom enable/disabdle.

Unfortunately, there are two different revisions of the roms,
the “old” roms (part numberss 1LD$4 & 1LF9) and the "new” roms
(part nunber ????). The ortginal CHMOSV roms (part # 1LD4) were
designed by Bruce Schoeber. These rems were modified for CMOSC
(part # 1LF9) by Lvz Myers. Then, Liz modified them to become
“new” roms (part # 7777). '

Also, there are the 16K CMOSC 1LKN8 roms for use sn MEMIC.

-e= OLD ---

The old roms were only manufactured to fit in the FF4X addresses.
These roms were enabled by writing to an FFéceven’ address and
were disabled by writing to the corresponding FFé<odd> address.
Nence, to disable a rom, you have to write to esther the corres-

ponding FFé<odd> address (assuming you know what rom’s enabled)
or write to all the FF#-0dd> addresses. It is possible to have
two roms enabled at once.

-—= NEW ---

The new roms are manufactured to fit in the FF3IX, FF4X, or FFSX
addresses. They are enabled by writing to an FF3ceven>,
fFr4-even, or FFSc<even> address. They are disabled by writing to
e n y oddress FF30-FF5F except for FFS5, which is a test addrass.
This “should make it difficult to enable two roms at once, since
the act of enabling any rom disables all others.

--- MEMIC ---

The MEMIC roms are manufactured to fit sn only the FFSX ad-
dresses. They are enabled by writing to an FFSceven> address.
They are disabled by writing to FF4F o n Uy

NOTE
Since 1t 15 unknown whether the I1/0 space auto-incre-

ments or not, (and sn fact it varies between different
revisions of the roms) you should o _n 1 y _ perform one-byte

writes to the I/0 addresses.

-¢-

Xangaroo Rom Switching Guide

The routine UNROM writes to the FF$¢<odd> addresses to disable
all the roms. This should work for any of the roms.

NOMAS
- NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

-5-

Kangaroo Rom Switching Guide

| The Rom Switching Software

The rom switching software consists of several routines and a
few pointers. The routines are used to switch between roms. The
pointers can be used to see what rom/lexfile you're in.

For example, 1f routine ALPHA used ROMISR to call routine BETA
tn rom 2222 (in rom, not rom), BETA could look at:

ROMNUM to find out the ID number (2222) of the lexfile BETA's in
SLOT to find out the enadle address of the rom BETA's n

If routine ALPHA used ROMISB to call routine GAMMA 1n lexfile
3333 sn rom, GAMMA could look at:

ROMNIIM to find out the ID number (3333) of the lexfile GAMMA's in
ROMPTR to find out the addrass of the lexfile GAMMA's 1in

NOTE

Since each rom must contain a lexfile as sts first file
(and rno other lexfile:)
I refer to tha lexfrle' s ID numtaer (frrst two bytes cf the lexfile)

as the rom’s ID number.
Technically speaking, only lexfiles have ID numbers, not roms.
This 1s pretty sloppy, but 1t works.

-6-
Kangaroo Rom Switching Guide

| Rom Switching Routines |

¥ CYCLE: cycle thrcugh the lexfiles #W#

CYCLE calls a given subroutine once with each lexfile enabled.

#WW GETROM: enalle a lexfile ##¥

GETROM enables the lexfile whose ID 1s 1n RO. If the laexfile 1ts
tn @ rom, the rom 1s enatled. If the lexfile 1s tn rom, only the
pcinters (ROMPTR, ROMOFF, etc.) are changed and n ¢ harduare rom
switching 1s done. -

#¥ GETRMZ2: enable a lexfile ###

GETRMZ enables the lexfile whose ID is in R22. Otherwise the same
as GETROM above.

W MELJISB: call a routine sn the MELROM ###

MELJSB saves the current lexfile/rom status, enables the MELROM,
calls the routine given after the call to MELJSB, re-enables the
previous rom, and returns to the caller. MELISB 1s transparent to
the colled subroutine, that i1s, the ¢ x o _c _t _status of the calle
(ARP, DRP, E, everything’) is passed to the called subroutine,
and the e x a ¢ _t _ returning status of the subroutine ss passed bac
to the caller of MELJSB.

#s NXTROM: get the next rom ###

NXTROM, given a pointer to the rom table ROMIAB, enables the next
rom (not lexfile) and returns an updated pointer. It is used by
NXTKWF & CYCLE to loop through lexfiles for KANDI.

-7- .
Kangaroo Rom Switching Guide

##% ROMISB: call a routine i1n any lexfile MWW

ROMJSB saves the current lexfile/rom status, enables the lexfile
gtven 1n the call, calls the routine given tn the call, re-
enables the previous rom, and returns to the caller. ROMISB is
transparent to the called subroutine, that is, the ¢ x a ¢ _t _ statu
of the caller (ARP, DRP, E, everything’) is passed to the called
subroutine, and the ¢ x a ¢ _t _ returning status of the subroutine ¢
passed back to the caller of ROMJISB.

ROMRTN: enable the system rom #W#

ROMRTN enables BASROM, setting the pointers (ROMPTR, ROMNUM,
etc.) to reflect this. Note that it does physically enable ALTROM
(at 24K) but the pownters are set to BASROM (at S6K).

ROMRTN 1s the same as calling GETROM to enable the BASROM.

% ROMSET: set up the table of roms M

ROMSET (called ot coldstart/varmstart) initializes ROMIAB, the
tadle of roms. ROMTAB contains the slot address of oll currently
existing roms, followed by a 0000 for end-of-table. The entry for
BASROM (at S56K) is 0001.

##8 RUNROM: enable the lexfile for the current environment N¥##

RUNROM looks in the current environment for the current program’s
lexfile and calls GETROM to enadle 1t.

-8-
Kangaroo Rom Switching Guide

N SAVEME: save me from rom switching #iW

SAVEME is used like this:

SUB JSB =SAVEME save me from rom switching

JSB =GETROM enable some other rom

RTN return with previous lexfile enabdbled/’

When SAVEME s called, 1t saves the current lexfile status.
Then 1t calls the rest of 1t's caller (SUB, in our example) as a
subroutine. The caller executes, possibly performing rom
switching, and then returns. This return takes us back 1into
SAVEME! At this point, SAVEME restores the previous lexfile (it
saved the lexfile status on the stack previously) and returns.
This takes us back to the caller of SUB with the previous lexfile
enabled.

% SYSJISB: call a routine 1n the BASROM ###

SYSJSB saves the current lexfile/rom status, enables the BASROM,

calls the routine given after the call to SYSJISB, re-enables the
previous rom, and returns to the caller. SYSJSB 1s transparent to
the called subroutine, that 15, the ¢ x _a ¢ _t _ status of the calle
(ARP, DRP, E, everything’) 1s passed to the called subroutine,
ond the e x a ¢ _t _ returning status of the subroutine i1s passed bac
to the caller of SYSJSB.

Please note that SYSJISB enables BASROM (qt 56K) and not ALTROM

(at 29K) and so ROMPTR and ROMNUM are set accordingly. It does
physically enable ALTROM, but the pointers are set to BASROM.

#W# UNROM: physically disable all roms ##

UNROM physically disables all roms by writing to the FFé#-odd> od-
dresses. It doesn't modify the pointers (ROMPRT, ROMNUM, etc.).

-9-
Kangaroo Rom Switching Guide

| Rom Svitching Software Globals |

MR NANDLID #ww#

The flag for a routine to stop a HNANDI call. If a intercept
routine (called by HANDI) ¢ 1 e o _r _s _ HANDLD, then NANDI stops cycl
through the intercept routines and stgnals success to the caller
cf NANDI. If HANDLD s never set, NANDI goes through all inter-
cept routines.

NOTE: intercept routines called by HANDIO can also set HANDLD to
stop 1ts cycling, dut this 1s not reccomended.

-1 ROMNUM waw

The ID number of the current lexfile. The ID nwnler 1s contained
in the first twe butes of the lexfile.

W% ROMOFE W¥#

The "offset” for the current lexfile. It i1s added to the routine
addresses in the lexfile's tables to make them absolute ad-
dresses. In lexfiles sn rom, ROMOFF=0. In lexfiles n ronm,
ROMOFF=ROMPTR=the address of the lexfile.

W8 ROMPTR ###

The pointer to the current lexfile. For the BASROM, ROMPTR=56K+2
(Just after the rom header bytes). For all other lexfiles tn rom,

" ROMPTR=2¢K+2. For lexfiles sn rom, ROMPTR=the address of the lex-
Jile (no header needed for lexfiles sn rom).

~10~

Kangaroo Rom Switching Guide

#WN ROMTAB ###

The tadle of slots that contain roms. The table contains a series
of slot addresses followed by a zero to indicate end-of-tabdle.
The BASROM is indicated by 0001 1sn this tadle. The table s
initialized at coldstart/warmstart.

W8 SLOT Wiw

The enadle address of the currently enabled rom (not lexfile). If
a lexfile s currently posnted to by ROMPTR/ROMOFF, SLOT still
contains the enable address of the previously enabled rom, which
is still physically enabled.

-11-
Kangaroo Rom Switching Guide

| Other docwnments

Joey's Big Book of Roms (KR'ROM) by Dave Barrett & Seth D. Alford
This tells you how to write a lexfile

-12-

Time & date stuff

Raan Young
07/09/82

QRQOQQY
GROCLROQRNQ

QRUORLORLION
QPRI

Q QUQLORLRRQLRRILVRLOQVOQ
\Q\ QOO0 Q.
@\ QRQALRRERPIRVIIIQULRQQLIRQ\ 4
A - QRAQPQLLRLLLIIPVQLLQIOQRR\ \QooQ
Q0QQ. .. . QOQREQUQQIVQOLIQQILIORQLOROLIIRIVOQ0 . _. QOO0
0QQQUQQPALLLRQ0 ~ \QQRROLLR0RPIPOQRQPOOQ0Q .
QL0 0QQRQQLRQLRIREVPILORLLRVAON
R \QOPPQRQQQVIORQRLLRNVOQ" “00’

QPQARIRPRQRORVUIQ/
\QPP"QRQALQY/
\QUeeeQ | QQLQOY

0QQee| 000/"
0000| . 00
0000| 0V00
000| /
000|
oo
|o00
00000Q
“0000000Q

*00000.
“000Q

"w o

TIMES and DATES use essentially the same code, the only dif-
Jeraence being the delimiter used (which oalso serves as a
flow flag at one point). The process gets some ram for the
string and gets the current time/date. Depending on the
delimiter, i1t converts the hours/years to ASCII and outputs
them to the string, followed by the delimiter. The process
ts repeated for the minutes/month and second/days fields.
Finally, the string address ond length are put on the stack.

DATE gets the current time, converts the month to nwnber of
days by going through a loop which adds up the nwnber of
days tn each month, adds the day to get number of days since
start of year, and aodjusts as needed for leap year. The bot-
tom two digits of the year are multiplied by 1000 and added
to the day count to produce the Julsan date YYDDD. This in-
teger 1s put on the stack.

TIME gets the current time, multiplies the hours by 60, adds
the minutes, multiplies the results by 60, ond adds the
seconds. This gives the 1nteger nwnler of seconds since md-
night. Then we get the fractions of seconds by adding the
RTC to the time base and throwing away everything above the
1¢th bit. This number 1s converted to floating pcint and
divided by 16384 (1 sec 1n 2°-14 second ticks). The result
ts added to the integer seconds, the new result 1s left
shkifted I decimal point:, truncated and right shifted bock

(this truncates to milliseconds). The real nwmber is left on
the stack.

TRANSFEORM

Gary K. Cutler

2:e0 pm THU., 15 JULY, 1982

Transform

$recccccmmcccecccccccccceemcee$ecmcmcccce¢

| | |
| TRANSFORM | CHAPTER 1 |

| | |
gg$rccrrere-¢

1.1 TRERM. -- The runtime routine

TRFRM. +s the runtime entry point for TRANSFORM. At the time of
entry there are six bytes on the R12 stack (unless the user ss
transforming the current editfile, tn which case only the
rtype> will Be on the stack). Four bytes which contain
location and length of the filename and two bytes descriding
the attridutes of the ctype-.

SYNTAX: TRANSFORM [“<filespacifier>”] INTO ctype-

PARSED: [“<filespecifier>”], <type>, INTO, TRANSFORM

| filenome length |
f-mmmmmemnnee |
| filename length |

| filename location |

| filename location |

1.2 INITIAL STEPS

I. the type 1s popped off the stack and examined. This triggers
one of three routines. CONAS-, BAS_AS, or CONLIF.

2:20 PM THU., 15 JULY, 1982

Transform

II.

III.

I.

I1I.

1.

Jile directory entry 1s located and the file type s
determined.

conversion 1s tnitiated and 1f nc errors occur the Jile ss
converted and the directory t1s updated

CONTROL AND ACTION

The control is directed by the specified <type-. fj
«BASIC» 1s specified then control s passed to CONAS-; <TEXT>
sends control to BASAS; and <LIF1> passes control to CONLIF.

«type’: =BASIC

a) <file type>:=BASIC; action: none

b) <file type»: =TEXT; routine: CONAS-

action: Each text line ss parsed. If no errors occurred
then the original text line s replaced with the
tokenized line. If an error has occurred, then the
original text line will be interpreted as a line of
comment and tnitiated with '/ ?°',

c) <file type>:=LIF1; routines: CLIF --> CONAS-

action: The lifl file s stripped of sts filler. The PCB
(Prograom Control Block) s isnserted. Then the ASCII
format s converted to 1internal text form. This s
accomplished by converting the line# to B and swaping
position with the line length. Finally the text file s
converted to basic as stated above.

ctype’: =TEXT

a) file type’:=TEXT; action: none

b) <file type>:=BASIC; routine: BAS_AS

action: Each basic line is decompiled. The original line
ts then replaced with the decompiled version.

c) <file type’:=LIF1; routine: CLIF

action: The PCB 1s inserted, ASCII line numbers are
converted to BCD and the relative pesitions betuween the
length dyte and BCD line number are reversed.

2:20 PM THU., 15 JULY, 1982

Transform

111. ctype>: =LIF]

a) <file type>:=LIF1; action: none

b) <file type>:=TEXT; routine: CONLIF

action: The PCB s deleted and each text line s
converted to Uvfl format. The internal endline s
replaced with a binary length of -1 (FF,FF internally).
The length of logical file ts calculated (not sncluding
the lifl header) and the appropriate number of bytes are
added to the file sn order to conform to sector length.

c) <file type>:=BASIC; routines: BAS_AS, CONLIF

action: The basic file 1s decompiled tnto text. The text
Jile ts then converted to lifl as described adove.

ccurrent type> to <type’: <routine’

basic text : BASAS
text dasic: CONAS-
text Usfl : CONLIF
basic lefl1 : BAS AS --> CONLIF
lig1 text : CLIF
lifl bassc: CLIF --» CONAS-

2:20 PM THU., 1§ JULY, 1982

Transform

1. ¢ ERRORS

ERROR CONDITIONS

a) tmproper <type’
1) not BASIC,TEXT,LIF1

b) improper file type
1) file not BASIC,TEXT,LIF1

c) not sufficient memory

d) smproper LIF1 structure
1) no line #s
11) snvalid line lengths

wrong file type

wrong file type

not enough memory

bad statement
line too long

e) text line greaster than 25§ line too long

J) TRANSEORM <workfile» snto LIF1 tnvalsd filespec

g) ROM missing during BASIC to TEXT ROM missing

h) <filespec> containing device spec tnvalid filespec

1.5 GLOBALS

Name Location Description

DCOVFL
ENDLIN
ENLINS
INPBUF
KLUDGE
MISSNG
ORIGIN
PARERR
RNFILE
STSI1ZE
ros

82ce
A999
8301
8180
8249
8287
8382
8288
82¢7
82s5s
8257

overflow flag for snput buffer
tnternal endline
current endline (stopping criterion)
used as decompile buffer
updated location during memory moves
ROM missing flag
Jile orsgin TEXT or LIF1
parsing error flag
location of current running file
loc for parsing DEF FN statements
current top of stack (R12)

2:20 PM THU., 1§ JULY, 1982

Transform

1.6 CROSS REFERENCES

Globdal File KR&GLO
Source File GCATEM
Utilities File GC&UTL

2:20 PM THU., 1S JULY, 1982

Trans form

1.7 FLOW DIAGRAMS

FLOW DIAGRAMS

TRANSFORM

BASIC 4---~--meee- + LIF1
1 cecmmemeeeee | ctype> |=-eeemccme> 82

R|---=-- ¢

| TEXT

|
-|+

LIF1 | file | TEXT b¢
#JF eeemeeeeee- | type |omemeememeem- | ren |

b|------ ¢ bomemmae ¢

| BASIC

('.' w'“ .")

T
b=Veeooeem +

| decompile |
e| current |
| | line |
| b |------¢

| | $emmccmcccce¢

SVeeomee +	reset endline		
	ROM	YES	reconvert to
	missing	------ s----	basic
$omee	¢	GOTO CONAS-	

| | #o bomennes Aoeeoie- .
D	+	
	snsert new	NO
	Line	--=--- domcmmcmeene~
	enough room	

| #----- |------ +
| | YES

| |
| $om——Veeoeo- ¢

| | delete old |
| | Line |

I #o---- |------ +
| | $ommmmee¢
| NO ¢----- Veoome- + YES | updote | b¢

- cemteemee- | endline |----2]| directory |--->| rtn |
P—ev b¢ -¢

2:20 Pn THU., 15 JULY, 1982

Transform

e+
|reset endline |

(*** § 1 *¥r) |reconvert to text|
|IGOTO BAS_AS |

rtype’: =BASIC -Aecemccmee¢

|
$emmcmmemeeee ¢ |

LIF1 | Jile | BASIC b¢ |
¥4e| type e>| rtn | |

$eeee |===-- ¢ $m———- ¢ |

| TEXT |
(*** CONAS- ***) |

l .Ncme

bVoemeee ¢ NO | |

| parse | P|-=e=-¢ |
Pommmceee>| current | |tnsert ¢ 7?7 | |
| | line | |enough room | |

#-----	------ + #om=Teoeee	--+	
			YES
$omm-mVeooooo¢ YES			
	errors	=====--s~	

$-----	-=-=---+	
SVeemoe-¢		

| | snsert | | |
| | tokenized | NO -V |
| | Line ePVoo~
| | enough room| V--v

| ¢----- |-=-=--+ |
| | YES |

| | |
| TlVeooeu- ¢ |

| | delete | |
| | text line | |

#ommmn	memene
NO 4-----Veeoeee ¢	
Semee| endline j===ee=--eeee e .

e|-==--- ¢

| YES

|
bVoo¢

| update |
| directory |
$o———- |------ ¢

|
bVeoooee v

| rtn |
$omemem ee¢

2:20 P THU., 1§ JULY, 1982

Jrans form

(.D’ # e !l.)

«type’:= LIF1

$ommmmeme+
BASIC | Jile | LIF2 b=¢

Vomemmmeeceeee | type Jommmmmme >| rtn |
| b |mmmma- ¢ $ommmm¢

| |
¢meeVeuaea + | TEXT
| convert | |
| ¢to | (*** CONLIF **?)
| TEXT | |
| BAS AS | -|+
¢—aaTeeuuu¢ 2-—-->| delete PCB |

dommmmma~ Dj-=---- ¢

|
$m———— Veoomae +

| BCD line # |
it»| to ASCII | $occmcmcrcncna"¢
	calc new		reset endline
	length		reconvert to
$emeee	==-=-- +	TEXT	
		CLIF	
	SRe¢		

| -Voo¢ |

| | open up 3 | NO |
| | dbytes fer |------ dommmmem e-
| | LIF1 line |
| | enough room|

| oo |--==-- +
| | YES

| |
| bm———Voo+

	tnsert
	ASCII line
	nwmber and
	new length
pm———-	-==--- ¢

| |
| NO 4----- Veooue- +

A€eeee | endline |
e|-=----- ¢

| YES

|
bVeeoma- ¢ Dettt¢

| tnsert | | wpdate | pmm———¢
| logical |----»| directory |--->| rtn |
| end of file| $occmmmcee+ $mmmmd
| marker |
S¢

2:20 PM THU., 1S JULY, 1982

Transform

('.. ‘ 3 ...)

ctype’:= TEXT

Jile type:= LIF1

(*** CLIF ***)

S+
| calculate | $mmcemmeme¢
| fsller and | | restore filler|
| delete | | rtn |
D|====--¢ $rm————Neemcceae¢

| |
| |

bo—en-|¢ |

| snsert PCB | NO |
| enough room|------ Pommmemm~
$oecee|omneee¢

Porcncnrsccnccense=)l

| |
| $omceeVemcanan+
	ASCII line
	nwnber to
	BCD format
	calc new
	length
	snsert in
	delete 3
	dytes

| #-m--- |--="-- +
| |
| $om———-Veoouue +
| NO | logical end|
femeeee| of file |

$o-—- |=====- +
| YES
|

$ommmalVmemee ¢
| snsert |
| tnternal |
| endline |
.¢
| update |
| directory |
D|oeem"-¢

|
beeccalVomeee¢

| rtn |
$occcomcmeaae¢

2:20 PM TIHU., 1§ JULY, 1982

Transform

('D’ * 4 .")

ctype~:= BASIC

file type:= LIF1

dococceccena- +
| convert to |
| TEXT |
| CLIF |
- |--=-=--- +

|
|

po——-|+ YES De¢

| errors |----- >--| reconvert|
bJ=-e--- + | to LIF1 |

| | CONLIF |
| §O | rtn |
| #ome*

bm—————O¢+

| convert |
| TEXT to |
| BASIC |
| CONAS- |
$m———- |------ +

| R+

oLe+ YES |recon to |
| errors |=---- »-- |TEXT |
$omme |--=m-- + |BAS_AS |

| bommm|

| |
SVeoomae + |

| update | #--o-Voooono ¢+
| directory | | recon to
Pmmmm— ' ------ + l LIF1

| | CONLIF
frmme- Veeooea + | rtn

| rtn | $ommcmmmmm-- g
$ocmemmecaae +

2:20 P THU., 15 JULY, 1982
10

Transform

Table of Contents

1 TRANSFORM .

reciplent agrees NOT to contact manufacturer

N
W
D

1
1
1
1.
1
1
1

TRERM. -- The runtime routsne .
INITIAL STEPS . . e .

CONTROL AND ACTION
ERRORS v v v v v ¢« v « «
GLOBALS . . . « « v v o« ¢ o o o o &
CROSS REFERENCES .

FLOW DIAGRAMS .

OMAS
NOt MAnufacturer Supported

2:20 PM THU., 1S JULY, 1982
x

D
D
W
A
e

Transform

ON TIMER documentation

Raan Young
07/09/82

QRQQRCQ
QQQLAROQO0Q

QOQOPRRAOOQQ
QRO

3 QOQQLORRRRROLLIROROQ
\Q\ AAAAA Q.
oo\ 00RO\ 4
o\ - QRPQQQOLOQQLLROLLIIOCLPRQOR\ \QO
QQQQ. . __ . . QUQRRQQQUORQQLO0QOIOOQLOROQVOQQ0000 . _. Q0000
0PIV \QORIRAPQCCQ .
QROOQLeeQ” 0QQLRPRLRPLLARPVIOICOOCOC
o \QQQRPQLROLRACQIVORROOOVOLP "00’

QERRQVLRORRPOIIQORQ/
\QQQOQUEQQ/ ~QQOIQVQRQ/
\QROOQ | 0QQ0QQQ
0QQQ| 000/"
0000| . 00
0000| 0V00
000| /
000]
joo|
|0oo
00000Q
“0000000Q

“00000.
“000Q

w0

Timers ollow a basic program to cause execution of basic
statements at specified real time intervals. Sudject to
restrictions on minimwm duration and compleation of the cur-
rent line, the program will GOSUB to the timer statement at
the interval specified.

GENERAL FLOW:
The ON TIMER statement is initialized when the ON TIMER
token s executed. N seconds later, the comparator snter-
rupt will trigger the timer. This trigger sets up the next
timer, sets R10 and PCR to point to the code in the ON
TIMER statement, and sets the flag TMRFLG to indicate the
timer wants to run (this is only used when a timer wakes
up the machine). The first token of the timer statement
clears the flag, and excution continues until the in-
visidle pop or invisible return sends us bdack to where we
were.

PARSING:
The ON TIMER staotement parses into the ON TIMER token,
porameters, 1invisible clear token, execution tokens, in-
visible RETURN token. If there s a GOTO or ON ... GOTO
token then an tnvisible POP token 1s placed tn front of
it

SETUP:
The runtime for the ON TIMER (ONTMR.) token sets up the
timer entry in the timer file ('timers’). The format of an
entry s:

byte entry comment

1-2 line # (bcd) saome as timer #
J line length
¢-10 interval tn 2°-1¢ sec ticks
11-17 absolute time of next interrupt (sn ticks)
18 dbusy flag Oznot busy, #0=busy
19-20 relative PCR of ON TIMER line
21-22 relative R10 of clear token in ON TIMER statement
23-30 runfile name of program declaring ON TIMER

Busy flag 1s used to prevent a timer from snterrupting
ttself (see trigger section). The runfile nome ts used
to ensure that timers only try to execute when in the
program that delcared them (see trigger section).

The tinterval ss fetched from the R12 stack using ONE7+B to
Jormat it snto ticks. If the nwnber s <« 1/10 second, then
1/10 second s wused 1instead (this is to prevent timers

from constantly interrupting). The timer number ts also on
the R12 stack, and 1s checked for 0<=#=1000 (1f not, then

error). The line ss added to the timer file by FREFLS,
which creates the file sf needed. After the antry s
odded, the timer file 1s searched for the next absolute
time of stnterrupt, and this 1s sent to the comparator as
the timer entry (see KR'CMP). The numder of this timer 1s
saved tn TMRNMB for later identification. The execution
then skips to the next line, bypassing the rest of the ON
TIMER statement.

TRIGGER:
The trigger routine for ON TIMER (TMIRIG) s called by
CMPCHK when the timer flag 1n CMPFLG 1s set. The timer
file s located, and the timer which caused the stnterrupt
1s found using TMRNMB. The interval ts added to the old
absolute time to get the next time of tnterrupt. If the
busy flag 1s not set, then the relative PCR and R10 values
are fetched, and the timer progrom name is checked against
the current program name. If the names match, then the
busy flag 1s set. The next timer vs then found and set to
the comparator (TMRNMB s updated). If the names did not
match or the timer was busy, this 1s all that s done.
Otherwise, the current PCR and R10 are saved by SUBSTF,
which also puts the timer number on as the flag. Next, the
program rom ss asserted (this is sn case the timer woke us
up), the new PCR and R10 are absolutized and set up, the
Jwnp s traced, and TMRFLG is set to 1indicate o timer
wants processing. (TMRFLG is only tested when a timer woke
us up.)

PROCESSING:
The normal flow of BASIC will pick up with the clear timer
token tn the ON TIMER statement after the trigger has set
things to this token. The THRCLR routine for this token
clears the TMRFLG to indicate the timer has been
processed. The rest of the line executes normally until
the tnrisible POP or snvisibdle RETURN 1s encountered. This
token will take the itnformation on the GOSUB stack (put
there by the trigger) and return (or discard) to the line
vhere the interrupt occured. The timer busy flag s
cleared as part of the stack cleon up (the timer number
pushed on the stack s used to locate and clear the flag
(done by TMRDNE])). (See KR"ERR for more on this GOSUB
stack flog.) In the case of the timer waking us up, the
call to CMPCKE 1s done i1n the going to sleepr stuff and we
are not 1n the CRUNCH loop. This s why the THMRFLG s
used, 1t 15 tested by the sleep stuff after the cali to
CMPCHK. If 1t s set, then the machine returns to edit
mode and continues the progrom instead of going to sleep.
(The machine will wakeup and go right back to sleep when
weken by the comparator wunless diverted - see wakeup and
sleep docwments for more.)

SUSPENSION:
Timers are suspended whaen the progrom i1s stalled (this is
handled by TMRSS). The timer entry in the comparator s
0'd (turned off), and the time of suspension 1s saved in
TMRRTC (this ts used at restart time). Finally, the timer
Jlag s cleared to prevent any problems if the machine
goes to sleep.

RESTART :
The timers are restarted when the program ts continued (by
TMRGO). This gets the current time, and subtracts the
value saved 1n TMRRTC, to compute the duration of the sus-
pension. This value 1s added to each timer’'s absolute time
to adyust for the suspension. The next timer s then found
and loaded.

OFF TIMER:
The 1individual ¢imer is turned off by TMROF., which
deletes that entry from the timer file. All timers are
offed at dealloc-all time by TMRKIL, which purges the
timer file.

TIMER CONFLICTS:
There are three ways the timer processing can be skipped:

* timer 1s busy -- the timer time s updated, but
processing s skipped

* prograom is not the one which declared the timer -- the
timer s updated but processing is skipped

* ¢timers suspended by stall -- timer processing s
missed (because timers aren’t running) dut the suspen-
ston time 18 ’‘snvisidble’ to the timers so they will
continue as 1f never stopped.

TIMER ROLLOVER:
The vrollover of the clock initiates adjustment of the
timers by calling TMRRLV (see KR"CMP for more on this).
The suspend time s adiusted (in case timers are sus-
pended while rollover), and then each timer’'s absolute
time 1s oadjusted (by adding the complement of the rol-
lover time).

T'ime mode command processing

Raan Young
07/09/82

QQROPPQ
QAL

QROQQRLIOQ
QLRI

o0 QURPOQILLIRRLLLOQVOQ
\@\ QOQULRPRRLLOIRIIIVVOOQ Q.
o\ QERRYQOQORI\ 0
&\ - QROPORELLRQPOIVLLLAOOQQ\ \QeQQ
Q0QQ. .. . QOQRQQIAPAQILPROOQQOOQOLOOROLCY0 . .QRN
0QRRARLPRQQ0 \OWWWQWC’W

QQOLOLLOQ"” 0QQPPIRELLRNIPQOVOROCOQVCRQ
B \QQQQERPRURRIVCPLORRRLQ “00'

QPRI/
\QQRQRPRER/ “QRRRRLLRY/
\QRRURQ | 0Q0QQQQ
0QQQe| 000/"
0000| . 00
0000| 0V0O
00o| /
000
loo|
|000
00000Q
“0000000Q

00000.
“000Q

"wen

Time mode consists of three parts: the part which handles
the time display, the part which gets user command snput and
then calls the third part which handles the parsing and
processing of time mode commands.

DISPLAY:
The time display is driven by the comparator. When time
mode is entered, the clock entry is set up so that an in-
terrupt for clock triggering will occur every second on
the second. This trigger will update the display of the
time through CSTRIG. This is the normal operation for time
mode and will continue until time mode is left or o com-
mand §s entered. (See the Pocket Secretary documentation

Jor more on this).

INPUT:
Input is done in @ § character LCD window, with the time
bdeing simultaneously displayed (and updated) on the LCD to
the left of ¢this vindow. The command input ts done with
GETTEM, and is checked for type of terminator key. If the
terminator was RIN, the command processor TMECMD s
called. If the terminator was CLR or other non-mode key,
the command 1s erased and ignored. If st is a mode key,
then time mode s left and we switch to that mode. (See
the Pocket Secretary documentation for more on this).

COMMANDS':
Valtd commands are EXACT, SET, ADJST, STATS, and RESET.
The command is blank filled, uppercased, and then the com-
mand table 1s searched for a match, (if not found then an
error s reported and the command is returned to the dis-
play for correction). If the command is not recognized in
the mainframe, the HANDI call V.TMCX is issued to allow
Jor extensions to the command list. If the command s
recognized, then “ticking” (display update) is turned off
(snterrupts still happen but the display is stnhidited).
ond the command process routine s called via table
lookup. After the routine returns, ticking i1s reenadled,
and the clock tick ts forced by setting the clock flag in
CMPFLG (this prevents any delay after the command s
Jinished). The display snhibit is controlled by a bit in
PSSTAT and s toggled by TCKIGL.

STATS:
This command displays/modifies the current clock status
(month/day mode, 12/2¢ hr mode, exactness, and calender
mode). The display 1s first buslt up dy asswming default
states for the modes and moving the default display line

to the 1input buffer. Then each mode s checked (flags are
stored tn PSSTAT) and the display line ts adjusted ap-

propriately. Then line is displayed as a protected field
and the user 1s allowed to modify certain parts of the
display. If the user terminates input with a CLR then the
ortginal status s redisplayed and we go around agatn. If
terminated with anything else (other than RTN), STATS com-
mand 1s aborted and nothing 1s changed. If terminated with
return, then each field 1s examined and the corresponding
flag 1s changed to reflect the new field contents (or ne
change 1f the field was not altered). If there i1s an er-
ror, the offending field s sndicated, aond input s
restarted. Otherwise, the flags are saved in PSSTAT.

SET:
This command allows the user to reset the time. The time
set template 1s displayed, with tts format determined by
the current mode settings. The wuser s then allowed to
Jsll vn the dasired changes. As with STATS, the terminator
determines the disposttion of the snput. If terminated
with return, the current absolute time ts saved, and the
tnput ts processed for date and time snformation. The cur-
rent time 1s used to fill «n any unspecifed values. If
there are any errors, the error is reported, and input 1s
restorted. If all is ok, the new time ts used to compute
the error and adjustment values, and the new time base s
set to new time - RIC. (See error/adjust for more).

ADJST :
This command s wused to adyust the clock by a relative
amount, rather than setting 1t to an absolute time. The
template 1s built and displayed for the user to fill sn.
Termination charactaer s processed as usual, tf RIN then
the adjust 1s swmed up by adding the portions together
(hrs, mins, sec, tenths). The sign 1s checked to see 1f

the adjust 1s forward or backward, the sum 1s complemented
1f backward. The adjust type flag is fetched. If there are
any errors, the error s flaged, and tnput 1s restarted.
The oadjust value ts added to the time base, and then
separated into errors and adjustments. (See error/adjust
Jor more).

EXACT:
This command establishes an end point for the somple
pertod, and (1f not the first exact), computes the error
over the last somple period. Error s the difference
between the time now (which the user has sord 1s correct
by doing the EXACT) and the uncorrected time we thought 1t
was. This error 1s equivalent to the accumulated errors
from SETs and ADJSTs. The time of the exact 1s computed by
taking the current time and subtracting the accumulated
odjustments. This gives the time with all time 20nes

removed. This time 1s saved as the start of ¢the next
somple period. The exact flag 1s set, and the tntaerval 1s

computed by subtracting the last exact time from this
time. (If result s negative then a warning is reported,
and the adjust period ts not changed.) If the accuwnulated
errors are 0, then the adjyust period is set to 0 (which
turns off the adjustment interrupt). If the error is #0
then the 1interval 1s adjusted by subtracting the errors.
(This makes negative errors [clock fast] sncrease the in-
terval, and positive errors [clock slow] decrease the in-
terval). If the error is negative, the decrement flag
(slow down clock) ss set sn PSSTAT and the error ts com-
plemented. The interval 1s multiplied by 2712 (1/¢ second
in ticks) and divided by the error. This result is the
time (in ticks) between clock adjustments of 1/¢ second (+
or -), and s sent to the comparator.

In formula form:

Exact_time=time-accuwnulated_adjusts

Sample_period=new_exact_time-old_exact_time

Adjust_persod =
((sample_period-accum_errors)*2”12)/accum_errors

or:

Adjust_period =
(somple_period-accum_errors)/(accum_errors*1/4*2°-14)

RESET:
This command simply clears out thae exact tnformation to
get back to a pre-EXACT state. The comparator interrupt is
turned off, the exact flag s cleared, and the ac-
cumulators are cleared.

Comparator setup:
The value to be sent to the comparator for the clock ad-
Just s checked to snsure st is not less than 1/2 second
(excluding 0). If st 1s, then 1/2 second 1s sent instead.
This ts to snsure that interrupts don't come n so fast
that nothing else can operate.

Error/adjust:
The seperation of time difference tnto errors and adjust-
ments 1s based on the asswmption that any change evenly
divisible by 30 minutes 1s a time 20ne change and not an
error. The difference therefore has as many 30 min hunks
removed as 1s possible (these are added to the adjust ac-

cwmulator), and the oamount left over s taken as error.
If the error s greater than 15 minutes then one more 30

minute hunk 1s removed and the error sis taken to be nega-
tive (errors are added to the error accwmulator).

Examples:

Difference Adjust amount Error amount Comment

30 minutes J0 minutes 0 zone ahead
S minutes 0 S minutes S min slow
35 minutes JI0 minutes S minutes zone chead slow
25 minutes JO minutes -§ minutes zone achead fast

-J0 minutes -30 minutes 0 2one back

-§ minutes 0 -§ minutes S min fast
-35 minutes -30 minutes -§ minutes zone back fast
-25 minutes -3J0 minutes S minutes zone back slow

Other routines:
There are two other routines in this file which are not
directly related to time mode. CRTMDT returns the current
time/date 1n R44/47 n internal format (number of 27-1¢
ticks since the turn of the century). DTECNV takes an in-
ternal format date and converts 1t to two strings: date
(MO/DY/YR or DY\MO\YR depending on month/day mode) and
time (HR:MN, olways 2¢hr). Strings are returned in R40/47
and R72/77 respectively, snput ss sn Ré4/47.

User function operations

Raan Young
07/09/82

Q00
Q0QR00000000Q

[1Jeelelelelelalototelotelalels
QQ0RQRQQRRIPQRRQ

® 0000000000000
\Q\ Q000000R00Q0A0RRQRRIOR000Q Q.
o\ 0000000000000\ ®
QQ\ . Q000000000RRRR0C00RO\ \QeQQ
QQQQ. . . . Q0QQQQ00RRQQA0QIQ00QQRCRVARRCP0000 . . QQORQ0Q
00QQ000000000QQQ00" \QRQR0RVQARRPPRRRR00RRT00000QQ .

Q0QUALOQQQ” 0Q0QRQQACPPPQRLIIRRIQOLIQPORQIQPQ
o \QQQORQQ0QRQRLLLLRRPQ00Q” “00°

QROOCQQRRLQQRAPQ/
\0000QRQ/ “QRQQQQLQQ/
\QQoQQQ | QOCQQQQ
0Qee¢ | 000/"
0000| . 00
0000| 0V00
ooo| /
000 |
joo|
|000
00000Q
“0000000Q

“00000.
“000Q

"wn

The general flow of user functions begins with a call
(X=FNA(B)). The call token checks each supplied
parameter against the parometers defined in the function
definstion. If any do not match in type, or t1f there are
too many or too few, an error i1s reportad and the token
stops. The token also checks 1f this function has al-
ready been called (recursive call). If oll s ok, the
porometer values are moved from the R12 stack to the
function parometer value location pointed to by the
Junction parometer block (in the program). The call
token then saves the return aoddress, PCR, T0OS, R16, and
E.RMEM and does an 1imitation GOSUB to the defintition.
Execution continues with the definition until an END DEF
token 1s encountered. In the case of a multi-line func-
tion, o LET token must be encountered to assign a value
to the function variable, or 1t will return undefined.
One-line definitions have an snvisible END DEF token and
the value s already on the stack (from evaluation of
the expression), so no value 1is fetched from the func-
tion variable. The END DEF token makes sure the value s
on the stack, restores all the saved information (T0S,
E.RMEM, R16, PCR, return address) and returns to where
the function was called. Note that the one-line string
Junction s not subject to the 32 char length limst,
because 1t does not acually use the function variable
for storage.

User functions are Qquite complex sn their internal for-
mat. For this reason, each phase will be handled
separately. The following table shows the routines for
each phase.

KEYWORD: DEF FN UET END DEF call
PNASE: 4-----------it$ommmmee$ommmmme*

| | | | FNSCAL w1 |
PARSE | DEF | FNILET | FNEND | FNCALL w2 |

$ommmmeVo=b-Dbt+

l I | I I
PALLOC | DEFFN | FNASN | DEFEND | FUNCAL |
e—bbrmceD+

| | | FNRET. #3 | FNCALS ¥ |
RUN | SKPDEF | FNLET. | FNRTN. | FNCAL. #c |
e$ommmmmmmee e $ommmeme-$ommmmeem oo ¢

l l I I I
DEALLOC | DALFN | FRRET | FRET | DALFNC |

pommee$rmmme$emmee - +

| | | FNRTN #3 | |
DECOM | UFNDEF | FNASGN | FNEND | UFNCAL |

becme.-eeeemmmme~v

In addition, ENV alloc 1s handled by INVEN, and variable

tnit 1s handled by INIVLP for the function variable.
Paraometers are not initialized at allocation because
they allways hare a value loaded into them before they
are accessed (see RUN for CALL token).

#1: string function. #2: nwmeric function. #3: invisible
token

PARSE :
DEF EN:
Parsing of the function definition 1insists on
program mode and on being the first thing on the
line. FNNAME pushes the naome and scans for
parameters. (If SCAN finds a real nwnmber 1t
automatically puts 1t out, so FNNAME takes 1t back
off the stack.) FNNAME then puts out 2 bytes filler
(for rel jump value -- see allocation phase of END
DEF). 1If the function was simple nwmeric (from ini-
tial SCAN) then 1t was nwneric with no parameters
and a ‘0’ s output for the count/type. If the func-
tion was stmple array (from 1initial SCAN) then it
was numeric with paraometers, and a ‘2’ s output for
the count/type. If the function was string (from
tnitial SCAN) then the string type ts set and FNNAME
looks for a ‘(' (beginning of parometer list). If
Jound then a '3’ s output, otherwise a ‘1’ s out-
put (for the count/type). If the function ss not any
of the above types, than FNNAME returns with E=0 and
an error s reported, otherwise E=1.

FNNAME returns with 'NAME(2), ZERO(2), COUNT/TYPE'
output to the stack. If there were any parameters
(count/type>1) then the location of the count/type
byte on the stack is saved (for later modification),
and a loop to parse the parameters is entered. This
loop checks each parameter for type (must be string
or simple numeric, otherwise an error s reported)
and pushes the snternalized form of the naome. String
parometers are also checked for user defined length,
and the length s pushed. Next 2 bytes of filler are
pushed for later addition cof the value pointer (see
allocotion phase for DEF FN). The parameter counter
ts tncremented by 2 (tottom Bt 1s function type)
Jor each paraometer found. This loop continues until
ne comma s found after the parometer just parsed.
After the loop ends, the count/type location 1s
retrieved, and the count/type is updated to reflect
the count found.

After 1insuring o trailing ‘')’, the parsing puts out
2 bytes of filler for the relativized PCR (see al-
location phase of DEF FN), and checks for an '=’' (is
this a one-ltne definition?). If not found, then we

are done parsing the DEF FN, and insist that nothing
else follow. If found, then we insist on an expres-

ston consistent with the type of function being
parsed. After the expression we output the snvisidle
Junction end and 2 bytes of filler for the function
value pointer (see the allocation phase of END DEF).
Finally, we tnsist on being the last thing on the
line.

DEF FN parsed form, not allocated: (see RN"ICE)

(1) DEF EN token
(2) function name
(2) filler (relative jwmp to end)
(1) count/type

optional parameters: repeated count times
(2) param name form

optional string parameter:
(2) string max length

(2) filler (parom value posnter)
(2) filler (relative PCR)

(1) EOL or !/ token OR (n) expression
/ (1) snvisible END DEF token

one-line def fn ---- (2) filler (fn value pointer)
\ (1) EOL or ’/ token

LET:
Parsing for the LET and snvisible LET tokens is the
same (SCAN having decided which we have before st
gets to us). After checking for program mode, we
check that the function type is string or numertc
(error 1f not), and handle the appropriate type of
right hand expression.

LET parsed form, not allocated:

(1) LET or snvisible LET token
(1) varsable token, string or numersc
(2) function name
(n) expression
(1) storae token, string or numersc
(1) EOL, !/, or @ token

END DEF:
Parsing for this insists on program mode, pushes the
token and 2 bytes of filler for the function value
pointer (see allccation of END DEF), and then
demands that it be the last thing on the line.

END DEF parsed form, not allocated:

(1) END DEF token
(2) filler (function value posnter)
(1) EOL or ’ token

CALL:

String and numeric function calls differ only in
vhat token is initially loaded. Parsing insists on
program mode. After saving parse snformation, the
routine FNNAM+ s called (FNNAM+ s Jgust like
FNNAME, see DEF FN parsing, except it does an 1int-
tial SCAN). FNNAM+ puts the function name, filler,
and count/type on the stack, and R3O0 has the type.

Parsing checks to see f the type of the function
called s compatable with the expression it is being
used sn. If not (or 1f the name was invalid), the
values saved ot the start are restored, and the call
ts flaged as an error for the porser to deal with.

If all s ok so far, the sinformation on the stack
Jrom FRNAM+ s removed, and we check to see 1f any
parometers ware specifaed. If so, the parameter in-
formation s parsed and the parameter type $s saved
on the R6 stack for later (at this point, the real
number tnformation removed by FNNAM+ s restored
also). Parsing 1is handled by asswning ¢ numeric ex-
pression and tryitng a string tf nwmeric fails (if
string fails also, then clean up the stack and error
out). This Uloop continues as long a comma follows
the parometer. After the last parometer a ')’ s
checked for. Now the call token, function nome, and
paraometer count are pushed out (along with a byte of
garbage which 1s backed over). Using the parometer
count, we compute the Llocation on R12 of the last
paraometer and position R12 there. Now we proceed to
pop the paraometer types off the R6 stack and move
them to the R12 stack (last one first). Finally we
restore R12 to the end of this mess, and we are
done.

CALL function parsed form, not allocated:

(m) preceding part of expression
optional parameters: repeated for count parometers
(n) parameter expression

(1) call token
(2) function name

(1) parometer count
optional parameters: repeated for count parameters
(1) parameter type flag

(p) rest of expression

ALLOCATION: (see GC*ALO)
DEF EN:

Allocation first checks to see tif we are already al-
locating a function (tf so, we give up and error).
1f ok, save the pointer to the name (follows the DEF

FN token), and get the name, filler, and count/type.
The count/type 1s massaged tnto the function type

flag. Next, the CRDF? routine s called to search
for the function variable, and create one 1f needed.
The name s also converted to internal form. If the
function variable ha: not already been encountered
(tn a call), then CRDF? will allocate a vartiable
pointer block using ALVENT. The parameters to ALVENT
are set up asswning a numric function and then we
check the type (1f string, the parameters are
modified). The «call to ALVENT sets up the variable
posnter entry for the function variable. The last
thing CRDF? does ts rearrange the pointer block to
look like:

bommmeedommmme aedemcrrmccc ee$emmmmccceceae ¢

| name from | {(max str len] | rel value pntr | rel def pntr |
b$ommmmem—e$ommemeccmeebm——ae ¢

If there were no errors sn CROF?, then we check to
see 1f the function vartable was found. If so, check
to see 1f the def pntr ss non-zero (1f 1t s, the
function ts already defined and we error on the
duplicate). If the def pntr is zero, the relative
pointer to the count/type byte tn the definition s
placed there (using the name pointer saved earlier).

The function name in the definition is replaced with
the relative pointer to the pointer block. This
potnter s also saved tn CURFUN for use by the END
DEF allocation and the LET allocation. The pointer
to the first function parometer (in the function
paroneter area) is saved 1i1n DFPARI. This tells the
variable search routine to look first sn the
porameter area (and where that area ts). DFPARI s
also used by the END DEF allocation to fill in the
rel Jump value and by LET allocation to see 1f the
LET s 1instde a function definition. The type s
stripped out of the count/ type tnfo, and a loop s
entered which allocates space for the value of each
parometer, and saves the relotive value pointer tn
the parometer variable block. After all parometers
are handled, the potntér to the end of the parameter
variable block s saved wn DFPAR2 (this tells the
variable search routine where the end of the block
1s). Finally, the filler for the relative PCR s
frlled 1n.

LIT or snvisible LET:
The variatle token (following the LET token) ts mas-
saged inte the function tupe flag. Then we check to
see 1f DFPARI s 0 (1f so, error on LET outside
Junction daef). If ok, the nome s changed tc inter-
nal form and the variabic¢ pointer is compared tc the

one saved tn CURFUN to make sure it s the right
function variable (1f not, error ss reported). The

value of CURFUN (which 1s the same as the relative
pointer) ts substitued for the name.

END DEF:
First, DFPAR1 1s chacked to see 1f a function ss
being defined (if not, error s reported). The
pointer in DFPARl i1s then adjusted to point to the
filler for the relative jump. The jwmp value s com-
puted by taking the current position (absolute -
Just after END DEF token) and adjusting to skip the
Jollowing filler and make pointer relative. The
relative juwmp addrass 1s then placed tn the filler
in the function definition. The value tn CURFUN s
saved 11n the filler for the function value pointer.
Finally, DFPAR] ts cleared to 1indicate the end of
the function definttion.

CALL:
The allocation massages the call token to be the ap-
propriate function type flag. CRDF? is called to set
up a partial varvadble entry (if needed, see DEF FN
allocation for more on CRDF?). If there were no er-
rors, the nome s replaced with the variable
pointer, and the parameter type list 1s skipped
over.

Environmental allocation:
INVEN zeros out the function state snformation. This
ts called by INIVLP in addition the initialization
of the function value to undefined.

RUN:
DEF FN:
Skip over the variable pointer to get to the relo-
tive Juwp address, and jump to that address (EOL or
! following the END DEF tokaen).

LET or nvisidle UET:
Skip over the variable type token, get and ab-
solutize the variadble pointer. Check the name form
to see 1f 1t 1s string or numersc. If string, call
FTSTLS to set up the R12 stack. If numeric, skip
over the pointer, get the adbsolute value address and
put 1t on R12 as relative address with the nome
Jorm. The stack 1s now set up for normal vartiable
storage, and there 1s nothing further which 1s dif-
Jerent for the function variable.

END DEF:

The snvisible function end is slightly different at
runtime from the END DEF token. It tests to see if
there 1s a value on the stack (result of evaluating

the one-line definition). If there is not, then the
tnvisible end s treated like an END DEF (fetch the
value from the function variadble). If there s,
ENGET 1s called to restore the mochine to the state
the function was called in, and then return to vhere
Junction was called (viae FNDRIN).

The END DEF token first calls FNGET. FNGET finds the
Junction state info by locating the function
variable value and using the 9 bytes in front of the
value (which contain the function state). The rel
return address i1s retrieved (and the value 0'd - see
CALL runtime for more on this), sJ this s already
zero then we error out (function was jumped into).
Next, the relative PCR ss fetched. Then the relotive
value of TOS at call time is retrieved, absolutized
ond restored (see CALL runtime for more). Then the
old value of E.RMEM is retrieved and updated by the
amount accwnulated by the function (see runtime CALL
Jor more - this will couse all rsmem’'d memory to be
released wvhen the expression contaitning the function
call 1s finished). Finally, R16 s restored to the
state of the function call. (I don't know why --
Capricorn saved this, so we do too).

FNDRTN expects the registers set up to imitate a
GOSUB return and takes care of absolutizing the
pointers, setting the new R10 and PCR, and tracing
the return.

CALL:
The runtime stuff for call first gets the variable
block pointer as absolute, and then asks the system
tf there ts LEEWAY memory left. This s done by
calling ROOM! asking for 0 space at a location known
to be below the current R12. If ROOM’ returns an er-
ror, then there 1s not enough room left to evaluate
a one-line function, so we give up. Next, we locate
the function varstable value and backup to point to
the function state info. If the function return ad-
dress s already #0 then function calls stself and
we error out. The parameter count in the definition
and the parameter count in the call are compared (if
not the saome we have an error), and we go into a
loop to process the parameters.

The end of the call parameter type Llist 13 cal-
culated aond saved for later. The loop bdacks through
the parameter values on the R12 stack asswning the

parometer 13 a string and then adjusting if the type
Jlag from R10 indicates ¢ is a nwmber. This con-

tinues until the value of R10 equals the computed
end of the Llist. The nenv value of R12 is saved, and
R10 is put back to the beginning of the Ulist.
Starting with the first parometer, the type of the
coll parameter is compared to the type of the def
parometer (if no match, then error out). If the
parameter 13 a string, then the def parameter info
(length, value pointer) are fetched and the call
parometer info retrieved from R12. (Note that the
stack s NOT being used as o stack, so GETAD+ must
be compensated for in its absolutization of the ad-
dresses on R12). FETCHA and STOST- are used to move
the value to the parameter (TRFLAG s changed to
turn off trace mode - this prevents garbage display
to the user). If the parameter is ¢ number, then
ONER- 1s wused to make sure the number is real and
the value is moved to the parometer. This continues
until the parameter count is down to 0.

After the parameters have bdeen processed, the return
address (after the function call) is relativized and
saved in the function state info. Then the PCR s
proccessed similarly. The current value of TI0S is
saved as the difference between T'OS and R12 (the END
DEF will add this to the new T0S to get back to the
old one) and the new I'0S is set to R12. The current
E.RMEM is saved, and E.RMEM ss 0'd (the END DEF will
add this saved value to the ending E.RMEM to get a
total). R16 is saved (I don’'t know why). R10 is set
to point to the token following the relative PCR in
the definition, aond the PCR s set to the ab-
solutized PCR from the definition. Finally, the
Junction call ss traced.

DEALLOCATION:
DEF FN:

The deallocation of the DEF FN simply replaces the
Junction variable pointer with the function variable
naome, and skips over the parameter block and rela-
tive PCA.

LET and invisible LET:
Does nothing (just an RTN).

END DEF:
Just skip over the variable value potinter.

CALL:
Restore the function variable name, and skip over

the paraometer type list.

DECOMFLILE:
DEF FN: Output a 'DEF FN' for the token, get the name,

skip over the
relative Jwmp, get the count/type, and output the
nome with ‘8§’ +f necessary. If there are any
paraometers, output @ ‘(’, and go into a loop which
translates the parameter naome form to a name and
puts 1t with appropriate token and stack marker on
the stack for later processing. If the parometer is
a string then the user defined string length is also
put on the stack (if not J2). This continues unt:il
all parometers hove been handled, then the ')’ s
stacked and UNSTAK 1s called to output the mess on
the stack. The trailing blank s removed, and we
check for a one line definition. If the next token
ts not an EOL or !/, we assume so, aond output a “=";
otherwise we put the blank back.

LET or tnvisible let:
The keyword 1s moved to the output (LET FN or FN
respectively), and the variadle token t1s left for
FETVAR to decompile as a normal varsable.

END DEF:
The keyword s moved for END DEF (thss step s
skipped for the invisidle end) and the variable
pointer ss skipped over.

CALL:
Get the function variable name and save 1t. The
parometer type list s skipped through, changing
each corresponding marker on the R12 stack (for the
parameter expressions - already decompiled and
stacked) to a comma. Next, find the start of the
parometers on the R12 stock, and insert the function
variable name, ‘FN', '§' (1§ necessary), and '(’.
Finally, add a ')’ at the end of the stack. If there
are no parameters, then a stack marker and the func-
tion nome, ‘FN', and ‘$§’' (1S necessary) are added to
stack. The call to UNSTAK at the end of the expres-
s1on contaitning the function call takes care of out-
puting all this stuff.

NOMAS
NOt MAnufacturer Supported

reciplent agrees NOT to contact manufacturer

	Cover
	Table of Contents
	Allocation Documentation
	1 Program Pointer Allocation
	1.4 Program Control Block
	1.6 Major Routines
	1.8 Globals

	2 Program Environment Allocation
	2.3 Environmental Control Block
	2.5 Globals

	Buzzer Driver
	Going to Sleep in Kangaroo
	Checksum Computation
	BOUND
	CHECK

	HP-75 BASIC/System Instruction Set
	Comparator Driver Software
	Card Reader Driver
	Deallocation
	1.9 Globals

	Decompiler
	On Error Comments
	Quick Reference of Kangaroo Subroutines - File Grouping
	Doctor Cobol's Demonic Guide to HANDI Calls
	Kangaroo Wakeup Procedure
	Things onlydone at Coldstart
	Things done only at Warmstart

	Roo BASIC Internal Code Examples
	DATA format list

	RAM/ROM memory consumption table
	Token Classes
	The Kangaroo Input Software
	Interpreter
	Keyboard Translation
	Keyboard Globals

	LCD Driver Software
	The Virtual LCD
	Implementation
	LCD Driver Globals
	Announciator Implementation
	Doing strange Things
	TOC

	LOCK Description
	Battery Detect in Kangaroo
	System Functions
	ASINIT
	ASPACK
	BADDEV
	CLRCOD
	DATRP (HP-IL)
	DATSND (HP-IL)
	DDLREP (HP-IL)
	DDLRP+ (HP-IL)
	DDTREP (HP-IL)
	FILNIT (HP-IL)
	FLCRF+
	FLCAT
	FLCOPY
	FLSTOR
	FLLOAD
	FLFIN+
	FLFIND
	FLFTOF
	FLGOF+
	FLCAT
	FLCOPY
	FLSTOR
	FLLOAD
	FLPUR-
	FLPUR!
	FLPURG
	FLR36
	FLRENR
	FLSAM?
	FLSBON
	FLSTACK
	FLSWCH
	FLTTOT
	FLVFO?
	INIT.
	DDT67 (HP-IL)
	INISIZ
	INICHK
	JSBCRT
	PACK.
	PAK0
	PAK1
	PAK2
	PAK2A
	PAK3
	REVBYT
	REVPSH
	RDYSD+
	TENRIT
	UNTUNL (HP-IL)
	VF1TD2
	VFADDR
	AS&VFB
	VFBSY+
	VFBYE
	VFCD46
	VFCDC0
	VFCDEP
	VFLCCH
	VFDDL2 (HP-IL)
	VFDECL
	VFDIR
	VFDIR+
	VFDUDE
	VFEOD?
	VFERR
	VFEXCH
	VFGET
	VFGLOC
	VFHI
	VFHI+
	VFLAD+
	VFLED?
	VFLIF?
	VFLTBY
	VFLTY+
	VFMFP?
	VFMM?
	VFMOVE
	VFMSG
	VFNXD-
	VFNXDE
	VFNXE+
	VFPED?
	VFRCEX
	VFRDE
	VFRENA
	VFRLF?
	VFROO?
	VFRREC
	VFRVDE
	VFRWO+
	VFRWK+
	VFRWRD
	VFRWSO
	VFRWSB
	VFRWSK
	VFRWU0
	VFRWWR
	VFSECT
	VFSKFL
	VFSTAT
	VFIAD+
	VFTERM
	VFTIME
	VFTRNL
	VFUTL+
	VFWACH
	VFWAC2
	VFWBU0
	VFWOOP
	VFWR
	VFWRBK
	VFWRCL
	VFWRDI
	VFWRD-
	VFWRDE
	VFWREC

	The Overall Layout of Memory
	The GOSUB/RETURN Stack
	RESMEM Area
	The unused Memory
	The R12 Stack
	Environment Stack
	The File and Directory Region
	System RAM
	Acquisition and Release of Memory
	The Birth and Death of Environments
	Memoryat Coldstart and Warmstart
	The Lined File Format
	File and Program Memory Routines
	List of Important System Variables

	Mass Storage Driver
	The Kangaroo Output Software
	Parser
	Pocket Secretary Functions
	APPTMD
	APEXIT
	TIMEND
	CSTRIG
	CKTRTG
	CKTRIG
	RTNCHK
	RINCHK
	TIMCHK
	YINCHK
	UPDISP
	STDATE
	TICK
	APINFO
	APTDEL
	APDEL*
	APTDSP
	APTERR
	APTFND
	APFND'
	APTGET
	APTINS
	APTR+
	APTR-
	GETLNK
	RSTBUF
	SAVBUF
	TIMDIV
	TIMPLT
	RTMPLT
	APMSKE
	APMSKY
	STMMSK
	TIMMSK
	YEARTM
	REPTIM
	APTCHK
	DCCLOK
	EMCLOK
	FINDTD
	FXAPPT
	ALMCHK
	DATCHK
	DATCK'
	DAYCHK
	DCDAY
	DUPCHK
	FLDCHK
	FXALRM
	FXDATE
	FXDAY
	FXTIME
	FXYEAR
	LPYEAR
	MINDD
	MINDD
	MINHM
	MINMM
	MINMH
	MINYY
	MUNPCK
	RPTADJ
	RPTINP
	TIMCHK
	ACREAT
	AOPEN
	AOPEN'
	ALBEEP
	APPROC
	APPTRS
	APSTAT
	APTACK
	APTMAG
	APTRIG
	STALRM
	ALARM.
	OFALRM
	CMTRIG
	GETCLK
	GETTD
	MULT60
	NXTAPT
	PRNOTE

	Pocket Secretary - Appointment Mode
	LEX Files for Kangaroo / Joey's Big Book of ROMs
	1 - Introduction
	2 - Concepts
	3 - Standard Structure
	4 - Intercepts
	5 - Types of LEX Files
	6 - Coding Practices
	7 - Identifier and other Numbers
	A - Example ROM-based LEX File
	B - RAM-based Intercept Handling
	Safe ROMJSB

	C - BD%LEX and Hybrid LEX Files
	D - References

	The Kangaroo ROM Switching Guide
	Time & Date Stuff
	ON TIMER Documentation
	Time Mode Command Processing
	User Function Operations

