Surveying Pac Owner's Manual

Series 70

Notice

Hewlett-Packard Company makes no express or implied warranty with regard to the keystroke procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as is" basis, and the entire risk as to their quality and performance is with the user. Should the keystroke procedures or program material prove defective, the user (and not Hewlett-Packard Company nor any other party) shall bear the entire cost of all necessary correction and all incidental or consequential damages. Hewlett-Packard Company shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

Surveying Pac

Owner's Manual

For Use With the HP-75
developed and written for Hewlett-Packard by
PacSoft Incorporated

May 1983

00075-90098

Introducing the Surveying Pac

The Surveying Pac is a tool to aid the engineer and surveyor in solving many of the common surveying problems. Because it is one large integrated program, and not merely a collection of individual routines, the Surveying Pac exhibits power beyond what you might expect. It simply and easily handles all the calculations involved in:

- Traversing.
- Inversing.
- Curve layout.
- Radial staking.

Its unique data entry system allows inputs to be made in a variety of ways: by using bearings, north and south azimuths, angles left or right, and horizontal deflections left or right. You can choose your input modes regardless of the mode of output you desire. If entries are unknown, the program will ask other questions until enough is known about the situation for an answer to be computed.

Contents

How To Use This Manual 7
Section 1: Getting Started 9
Installing and Removing the Surveying Module - How to Use the Surveying Pac - Exiting the Surveying Pac - Conventions Used by the Surveying Pac Programs - Getting Printed Output
Section 2: File Management 23
Introduction - Routine: List Coordinates - Routine: Clear Coordinates - Routine: Duplicate Points - Routine: Rotate Points - Routine: Trans- late Points - Routine: Scale Coordinates - Routine: Enter and Assign - Routines for Balance Traverse - Routine: Traverse Adjustment
Section 3: Coordinate Geometry 31
Introduction - Routine: Start - Routine: Lines - Routine: Curves - Routine: Radial Stakeout - Traverse Reprint and Area Computations
Section 4: Examples 55
Introduction - Example 1: File Creation and Coordinate Storage - Example 2: Field Traverse - Example 3: Duplicate Points and Balance Tra- verse - Example 4: Reprint Traverse - Example 5: Solve Roadway Center Line and Curb Line - Example 6: Subdivision - Example 7: Lot Summary - Example 8: Radial Stakeout
Appendix A: Owner's Information 97
Appendix B: Error Conditions and Recovery 104
Appendix C: Programs and Subprograms 105
Appendix D: Redefining Keys 111
Appendix E: The Coordinate and Data Files 112
Appendix F: Glossary 114
Index 117

How to Use This Manual

This manual contains detailed information on the operation of the routines in the Surveying Pac. The explanations assume that you know how to use the HP-75 to the level described in sections 1 thru 3 of the HP-75 Owner's Manual. It is also assumed that you are familiar with the procedures used in surveying.

There are four sections in this manual. The first one, "Getting Started," introduces you to the use of the Surveying Pac: how to install it, how to begin each surveying problem, and how to establish what measurement conventions you want to use.

The second section, "File Management," explains the manipulation of individual coordinate points: how to enter, clear, list, duplicate, rotate, and translate coordinates. This also includes a program for traverse balancing.

The third section, "Coordinate Geometry," handles angular and linear relationships between two or more coordinate points. This includes the following routines to solve for new points: traverse, bearingbearing intersection, bearing-distance intersection, distance-distance intersection, curve traverse, and inscribe curve. Other routines return information on the relationship between already solved points. These are the computations for the inverse, curve inverse, radial stakeout, reprint traverse, and area.

The fourth section, "Examples," presents five surveying problems and their solutions using this pac.
The appendices contain reference information:

- Appendix A, "Owner's Information," has warranty and service information.
- Appendix B is "Error Conditions and Recovery" for this pac. (For other error conditions, refer to the HP-75 Owner's Manual.)
- Appendix C, "The Surveying Pac Programs," lists the programs and subprograms available in the Surveying Pac.
- Appendix D, "Key Redefinitions," suggests a convenient scheme for redefining the HP-75 keys so you can execute Surveying Pac programs faster.
- Appendix E, "The Coordinate and Data Files," shows the format of the coordinate and FARAM files created when you run the program SUFUE'
- Appendix F is a short glossary of the surveying terms used in this manual.

A complete subject index is also included at the end of this manual.

Section 1

Getting Started

Contents

Installing and Removing the Surveying Module 9
How to Use the Surveying Pac 10
Running EURUE' 10
Where to Go From Here 12
Exiting the Surveying Pac 12
Conventions Used By the Surveying Pac Programs 13
Menus 13
Program Files 13
The Coordinate File 14
Input and Output Options 14
Data Entry 15
Angles 15
Directions 16
Distances 20
Point Numbers 21
Coordinates 21
Getting Printed Output 21

Installing and Removing the Surveying Module

The surveying module can be plugged into any of the three ports on the front edge of the computer.

CAUTIONS

- Be sure to turn off the HP-75 (press SHIFT ATTN) before installing or removing any module. If there are any pending appointments, type $\exists \mathrm{l}$. m f f RTN in EDIT mode to prevent the arrival of future appointments (which would cause the computer to turn on). If the computer is on or if it turns itself on while a module is being installed or removed, it might reset itself, causing all stored information to be lost.

CAUTIONS CONTINUED

- Do not place fingers, tools, or other foreign objects into any of the ports. Such actions could result in minor electrical shock hazard and interference with pacemaker devices worn by some persons. Damage to port contacts and internal circuitry could also result.

To insert the Surveying Pac module, orient it so that the label is right-side up, hold the computer with the keyboard facing up, and push in the module until it snaps into place. During this operation be sure to observe the previously described precautions.

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the module and pull the module straight out of the port. Install a blank module in the port to protect the contacts inside.

How to Use the Surveying Pac

The Surveying Pac is a system for solving surveying problems. You always start out by running SUFUEY. SURUE' Y asks for information and provides several options for you to follow. In other words, SURUE' sets up or initializes the conditions for solving your particular problem.

Running SURYEY

Let's start out by running the program SURUEY and seeing what it does. This example will explain the meaning and purpose of GURUE'S features, and why your input to the computer must follow certain conventions. This program creates a file-called a coordinate file-to store the coordinate points for your current problem. To create the coordinate file, the program asks you for a file name and file size.*

Step Display

1

2

Instructions

Press ATTN EDIT to turn the HP-75 on and switch to EDIT mode.

Type run'surves' RTN to run the SURUEY program.

[^0]
Step Display

3 FILE HANE?

4
FILE छIZE ©nnn mi.jx

6

7

8a

10
DEEIMALS OH DISTAHEES ©G-5ン?

11 working

Instructions

Enter a name for the coordinate file. (File names can be up to eight letters and digits long, and must begin with a letter.) If the file name you specify already exists, EUFUE' skips to step 11.

For the coordinate file size, enter the number of data points you will be using, which cannot be more than the maximum shown.*

Select Bearings (B), North azimuths (N), or South azimuths (S) for the output of the resulting directions. You do not need to press RTN.
Select Deflection angles (D) or Angles left/right or interior/exterior (A) for the output of relative (field) angles.

Select Degrees (D) or Grads (G) for the angular units.

If you selected Degrees in step 7, specify the number of decimal places (up to two) for the output of the seconds.
If you selected Grads in step 7, specify the number of decimal places (up to six) for the output of the grads.

Select the number of decimal places for the output of the coordinates.
Select the number of decimal places for the output of distances.

[^1]SURUE Y has created a coordinate file to your specifications. You are now ready to start surveying! Press F to access the File Management program, press C to access the Coordinate Geometry (CD) program, or press U to access a program that you have stored in HP-75 memory.

When you return to the Surveying Pac at a later time to use the same set of data (and therefore the same coordinate file), you will still start with SUEUEY, but it will be much shorter. You need only enter the name of the coordinate file. Since the desired coordinate file already exists, SUFUE Y will skip to the last line, asking you which surveying program you want.

Where To Go From Here

After initializing the Surveying Pac by running GUFUE', you can proceed to one of three surveying programs:

- GG. The Coordinate Geometry program takes a known starting point and computes a new point or points. This starts on page 31 .
- FILE. The File Management program will manipulate points that already exist in a coordinate file. Go here if you want to list, delete, or add points, or if you want to rotate or translate them. This starts on page 23.
- SUFU3. SURU3 (UEEr) can be any BASIC program stored in memory. It is not part of the Surveying Pac. This is an option to allow you to access an additional program of your choice while using the Surveying Pac.

Exiting the Surveying Pac

When you are finished with the Surveying Pac, you can stop its execution by pressing ATTN. You can then turn off the HP-75 or work on other problems.

Running the Surveying Pac creates and stores two data files in memory-the coordinate file and a data file named FHEAld. For safety, if you plan to do more work with these coordinate points, you should copy the coordinate file to a card or cassette. It is not necessary to save FHEAM, so it can be purged.

Conventions Used by the Surveying Pac Programs

The Surveying Pac programs use various modes, parameters, options, and files. These conventions are defined below.

Menus

The Surveying Pac contains several different routines for various solutions. These routines are accessed by a series of menus. A menu is a list of options from which you can select a programmed routine or function. For example, the menu at the end of SUPUEY looks like:

```
File, Logo,|EEr &F,G|y?
```

To select the FILE program, press F on the keyboard (either upper or lower case will work). C selects the $\square \square$ program, while \square selects the user program.

If the option you want does not appear on the display, the next menu is accessed by pressing the RTN key. There can be several menus, and each one will be displayed after RTN is pressed.

Program Files

The menus in the Surveying Pac allow you to transfer from one routine to another. Although it is not apparent, the Surveying Pac can also be moving from one program to another. There are three major programs in the Surveying Pac. SURUE' sets up the required data files and then transfers computer activity to one of the other main programs. SURU1 contains the File Management program and SUFUZ contains the Coordinate Geometry program.

The main SURUEY program can also switch activity to a program named SURUZ, SURUS is not part of the Surveying Pac; rather, it is the name of a potential program that you (or anyone else) can write and store in HP-75 memory. This option allows you to add alternative solutions and incorporate them into the Surveying Pac routines.

The Surveying Pac also contains a number of smaller utility subprograms that you can call from your own BASIC programs. Refer to appendix C, "Programs and Subprograms," for a list and description of those subprograms.

Note: When you name programs or data files, take care to choose file names different from those in the Surveying Pac (as well as other application modules). Appendix C contains a list of the file names used in this Pac.

The Coordinate File

All routines in the Surveying Pac write to and/or read from a coordinate file. This file contains northings, eastings, and elevations for all coordinate points that you enter or solve. The points are referenced by point numbers, which can range from 1 to 999.

The coordinate file is stored in the user memory (random access memory or RAM) of the HP-75. The maximum possible size of the file depends on the memory available. Before beginning, you might want to purge unneeded programs or data to make more room for the coordinates. Refer to "Purging Files," in section 3 of your owner's manual for instructions.

The coordinate file is referenced by a name that you assign. The name can be from one to eight characters long. The first character must be a letter; the remaining characters can be letters or digits. The file name must be unique - no other file of the same name can exist in memory at the same time.

A coordinate file is created automatically when you run SUFUET. This program will request a name for the coordinate file. The program will also have you specify the file size, unless the file was created in an earlier run. When a new file is created and its size specified, space is allocated and all coordinates are cleared (set to an unassigned status).

Several different coordinate files can be stored in the HP-75 at the same time as long as the names are different and sufficient space exists. This allows you to maintain coordinates for various jobs in separate files.

Coordinate files can be copied to cards or cassettes via the COFY command (refer to section 3 for copying to cards and section 9 for copying to cassettes in the HP-75 Owner's Manual). This will provide you with a permanent record of your work on a particular job. Once the file has been copied, you can purge it from memory to make room for other files. When you need to access the coordinates again, copy the file back to the HP-75 memory. In any case, making copies of a file is a good idea for protection in case of accidental loss of data caused by battery failure or a system reset.

You can access the coordinate file from your own (BASIC) programs. Appendix E, "The Coordinate and Data Files," contains information on file structure.

Input and Output Options

The Surveying Pac offers a variety of options for the formats of both inputs and outputs. You can specify angular units in either degrees or grads. You can specify the number of decimal places printed for angles, coordinates, and distances.

Directions can be output as bearings, north azimuths, or south azimuths. Relative (field) angles can be either angles left or right or deflections left or right.

Regardless of what mode you select for output, you can still enter input by any method: bearings, north or south azimuths, angles left or right, and deflections left or right.

You make these selections whenever a new coordinate file is created.

Data Entry

Whenever input is required, a prompt is displayed. You should end all data entry by pressing RTN, unless you are making a menu selection. When two or more values are required, separate them with a comma.

When a prompt contains one or more items inside square brackets, those items are optional. For example, when HORIZOHTHL [: YEFT] [ISTAHCE ? is displayed, an entry for the horizontal distance is required, while the vertical distance entry is optional. If you enter the optional value, a semicolon must separate it from the first value.

The Surveying Pac programs check all input for validity. If an entry is not understood by the system, the computer will beep and display a warning message. You can then re-enter the data.

Angles

You can work with one of two angular units-degrees or grads. If you select degrees, enter angles in the form DD.MMSS. If you need decimal seconds, you can show them in the fifth decimal place: for example, $15^{\circ} 31^{\prime} 16.2^{\prime \prime}$ would be entered as 15.31162 . If you select grads, simply enter angles as the decimal number of grads.

Entries for angles can appear as mathematical expressions, involving addition, subtraction, or division.
Following are examples of valid angular entries while running the Surveying Pac.

31.20
$47.3124+90.4$

Equals $31^{\circ} 20^{\prime}$ or 31.2 grads.

```
133.4651.2-30.5
```

Equals $36^{\circ} 03^{\prime} 26^{\prime \prime}$ or 36.2326 grads.

```
180+15.43%
```

Equals $185^{\circ} 14^{\prime} 20^{\prime \prime}$ or 185.1433 grads.

Note: Parentheses and multiplication are not allowed in the angular expressions. Also, the order of expression follows the HP-75 mathematical hierarchy of expression (refer to "Arithmetic Hierarchy" in section 4 of your owner's manual).

Wherever this manual tells you to enter an angle, it means that you can specify angles in any of the valid forms described here.

Directions

You can establish directions by 1) entering an angle from an actual or assumed meridian (bearings, north azimuths, or south azimuths); 2) entering an angle relative to the reference direction (angles left or right, deflections left or right); or 3) using previously solved points to define the direction.

Bearings. Bearings are measured clockwise and counter-clockwise from either a north or south meridian.

To enter a bearing, precede the angle with a two-letter quadrant (NE, NW, SE, or SW):

```
HE angle
H4 angle
s4 angle
EE angle
```


Bearings

Azimuths. Azimuths are measured clockwise from a north (north azimuth) or south (south azimuth) meridian.

To enter a north azimuth, simply enter the angle. To enter a south azimuth, either precede the angle with the $5 \|$ quadrant notation, or add 180° (200 grads) to the north azimuth:
angle
54 angle
angle $+180^{\circ}$

North azimuth.
South azimuth.
South azimuth.

South Azimuths

North Azimuths

Angles Right and Angles Left. Angles right and left are measured from a reference backsight which is usually the previous leg of a traverse.

To enter angles right, precede the angle with a plus. To enter angles left, precede the angle with a minus:

+ angle
- angle
Angle right.
Angle left.

Deflection Angles. Deflection angles are turned from an extension of the previous traverse leg or backsight.

Since deflection angles differ from angles left or right by 180° (200 grads), enter deflection angles as an angle plus 180° :

+ angle +180
Deflection right.
- angle +180

Deflection left.

Defined Direction. A direction can be defined by two existing points.
Given two defined points, $p 1$ and $p 2$, you can enter a defined direction as p1\$p2

The two defined points must have assigned coordinates.
An angular entry (in any of the allowable forms) can be added to or subtracted from a defined direction:

$$
\begin{aligned}
& \text { p1ःp2 + angle } \\
& \text { p1ःp2 -- angle }
\end{aligned}
$$

Distances

There are three ways to enter distance values:

- Enter the numeric distance, for instance, 48e.5.
- Enter a defined distance using previously solved points. For example, to indicate the defined distance between point \#4 and point \#8, enter 4 末s.
- Enter an expression that adds, subtracts, or divides an actual or defined distance. For instance, $48 \mathrm{E}, 5+35,92$.

Following are examples of valid distance entries:

```
132.6
```

\square

```
100.4
```

```
E*?
```

```
369-41$42
```

```
137:9+7$92
```

25.

One-third of the distance from point 6 to point 2. .

Three hundred minus the distance between points 41 and 42 .
137.9 plus half the distance between points 7 and 9.

Point Numbers

You can input a point number directly, or you can enter it as the next consecutive point by entering a + .

Coordinates

When assigning coordinates to a point, you must enter values for the northing and easting. Elevation input is optional-if you don't need it, simply press RTN when the display prompts ELEUATIUH?.

There are several instances when a surveying routine requires input of a point number with known coordinates. If the point number you use is unassigned, you must enter the coordinates at that time. The coordinates will be stored, and you can continue with the problem.

Getting Printed Output

Normally, you will see any output (solved coordinates, bearings, distances, and so on) on the HP-75 display. If the display does not last long enough for you to read it or copy it down, use the HP-75 UELAY command to change the duration of the display. For example, to have each line displayed for 3 seconds, enter del まy 3 RTN.

When a delay is selected, it remains in effect until another DELAY command is executed. The delay can be overridden by pressing any key. You might find it useful to specify a long delay, then use the TAB key to scroll through the display at a comfortable pace. Note that the delay rate also affects the display rate of error and status messages.

The Surveying Pac programs do not require a printer for operation. However, if one is available, all output can be directed to it. The printer must first be assigned a device code using the GSSTGH IT command. Then a FRIHTEF IS command must be executed.

For a complete explanation on how to direct output to a printer, refer to your HP-75 Owner's Manual, section 9 .

Section 2

File Management

Contents

Introduction 23
Routine: List Coordinates 24
Routine: Clear Coordinates 24
Routine: Duplicate Points 25
Routine: Rotate Points 25
Routine: Translate Points 26
Routine: Scale Coordinates 27
Routine: Enter and Assign 27
Routines for Balance Traverse 27
Angle Balance 28
Bowditch Rule 28
Crandall's Method 28
Elevation Adjustment 29
Traverse Input and Adjustment 29
Routine: Traverse Adjustment 29

Introduction

The File Management program contains routines that allow you direct access to and manipulation of the points in a coordinate file. Three menus display the available functions:

Display

Instructions

Press \square to access the List Coordinates routine.
or
Press C to clear coordinate values.
or
Press D to duplicate stored points.
or
Press RTN to display the next menu:

Press B to access the balancing routines.
or
Press A to enter and assign coordinates.
or
Press E to exit the File Management program and return to the main menu.
or
Press RTN to display the first menu again.

Routine: List Coordinates

Purpose: Provides a listing of northing, easting, and elevation for all assigned points within a userdefined range of point numbers.

Step Display

1
List, Clegr, पuplicaterlyg.o?
2 STARTIHG EHOIHG \#三 ?

3
working

Instructions

Press \square.
Enter the point numbers of the first and last points you want listed.
The points will be listed on the selected device (display or external printer). When this is done, the display will return to the menu in step 1.

Routine: Clear Coordinates

Purpose: Clears points by resetting the coordinates to an unassigned status.

Step Display

Instructions

Press C.
Enter the point numbers of the first and last points you want cleared.
After the points have been cleared, the display will return to the menu in step 1.

Routine: Duplicate Points

Purpose: Makes a copy of a point or block of points. New point numbers are assigned to the duplicate points, and the original points remain intact.

Step Display

1 Li三t, Glegr, पuFlicョtectrag?
2 STARTIHG, EHOING \# ? ?

3 HEA STARTING \# ?

4 working

Instructions

Press D.
Enter the point numbers of the first and last points of the block of points you want duplicated.
Enter the first point number you want assigned to the new points.

After the points have been copied, the display will return to the menu in step 1.

Routine: Rotate Points

Purpose: Transforms a point or block of points to a new orientation by rotation through the origin (0,0).
$1 \quad 2$
3
4
1

Step Display

1 Rotate, Translete, SEElecRuTs?
2 STARTIHG, EHDIHG \# = ?

3 FOTATIUH BHGLE?

4
motk ing

Instructions

Press A .
Enter the starting and ending points of the block of coordinates you want rotated.

The angle may be entered in any of the allowable formats described in section 1 , page 14 .
The points are rotated about the origin $(0,0)$, then the display returns to the menu in step 1.

Routine: Translate Points

Purpose: Transforms a point or block of points to a new location by translation along any or all three axes.

Step Display

1 Fotate, Translate, Ecヨlecerts)?
2 STARTIHG, EHOIHG \#S ?

3 H.E.H?

4

Instructions

Press T.
Enter the starting and ending points of the block of coordinates you want translated.

H refers to northing, E to easting, and H to elevation. Enter the adjustments you want made to each ordinate. If no adjustment is needed, enter 0 .
The points are translated, and then the display returns to the menu in step 1.

Routine: Scale Coordinates

Purpose: Applies a multiplier to a point or block of points.

Step Display

2 GTARTING, EHIING \#三?

3 MULTIFLIEF?

4 warkirg

Instructions

Press S.
Enter the first and last point numbers of the coordinates you want scaled.

Enter the scale factor you want applied to all coordinates in the defined block.

The points are scaled, and then the display returns to the menu in step 1.

Routine: Enter and Assign

Purpose: Assigns coordinate values to selected points.

Step Display

2 FT \# ?

Instructions

Press A.
Enter the point number you want to store. or
Enter a + to use the next sequential point number.
or
Press RTN with no entry to return to the menu.

3 HE OF \# F?
$4 \quad H$ OF \# F ?
Enter the northing and easting of the selected point.

Enter the elevation.
or
If no elevation is needed, press RTN.
After the coordinates are printed, continue with step 2.

Routines for Balance Traverse

The Surveying Pac contains three routines for distributing the errors in a traverse: angle balance, Bowditch rule adjustment, and Crandall's rule adjustment.

Angle Balance

For an angle balance, it is assumed that the angular error is the same at each station. The total correction that you input is divided by the number of legs in the traverse. The resulting angular correction is applied to each leg.

Bowditch Rule

The Bowditch (or Compass) rule distributes the errors in latitude and departure in proportion to the length of each leg:

$$
\begin{aligned}
& \frac{\text { Correction in Latitude }}{\text { Length of Leg }}=\frac{\text { Total Error in Latitude }}{\text { Total Traverse Length }} \\
& \frac{\text { Correction in Departure }}{\text { Length of Leg }}=\frac{\text { Total Error in Departure }}{\text { Total Traverse Length }}
\end{aligned}
$$

Crandall's Method

Crandall's method employs the following variation of a least squares adjustment:

$$
\begin{gathered}
A=\frac{e_{D}\left(\sum \frac{L D}{l}\right)-e_{L}\left(\sum \frac{D^{2}}{l}\right)}{\left(\sum \frac{D^{2}}{l}\right)\left(\sum \frac{L^{2}}{l}\right)-\left(\sum \frac{L D}{l}\right)^{2}} \\
B=\frac{e_{L}\left(\sum \frac{L D}{l}\right)-e_{D}\left(\sum \frac{L^{2}}{l}\right)}{\left(\sum \frac{D^{2}}{l}\right)\left(\sum \frac{L^{2}}{l}\right)-\left(\sum \frac{L D}{l}\right)^{2}} \\
C_{L}=\frac{L}{l}(A L+B D) \\
C_{D}=\frac{D}{l}(A L+B D)
\end{gathered}
$$

where L is the latitude of any leg, D is the departure of any leg, l is the length of any leg, e_{D} is the total error in departure, e_{L} is the total error in latitude, C_{D} is the correction in departure applied to any leg, and C_{L} is the correction in latitude applied to any leg.

Elevation Adjustment

If elevations have been carried through a traverse, they will be adjusted when a linear balance (Bowditch or Crandall's Rule) is performed. The adjustment for each leg will be proportionate to the length:

$$
\frac{\text { Correction in Elevation }}{\text { Length of Leg }}=\frac{\text { Total Error in Elevation }}{\text { Total Traverse Length }}
$$

Traverse Input and Adjustment

Field notes are entered and reduced in the Coordinate Geometry program. The unadjusted coordinates are stored in the coordinate file. When a traverse is adjusted, the starting and ending point numbers must be input, and corrections are made directly to the stored coordinates. Points on a traverse to be balanced must be consecutive.

Suggestion: Before adjusting a traverse, make a copy of the unadjusted coordinates using the duplicatepoints routine.

Note: While in the balance routine, the computer stores intermediate values in the space usually reserved for coordinates. Do not interrupt the routine by pressing ATTN, or allow the computer to shut itself off. For information on keeping your HP-75 on, see Section 1 in your owner's manual.

Routine: Traverse Adjustment

Purpose: Distributes the angular and/or linear error in a traverse.

Step Display

1
2 STARTIHG, EHCIIHG \#S?

3 FHGLE FLIUGTMEHT ?

4 working
5

ETARTING, EHCING \#E?
FHGLE FGMETMEHT O
working
UHFロ, IUETE』:
$n n n, n n+$
$n n n, n n \mathrm{E}$
nnn.nn H

Instructions

Press B.
Enter the starting and ending points of the traverse.

Enter the total angular adjustment you want applied. If no angular balance is needed, enter 0 .

The angular error is distributed.
The display shows the unadjusted coordinates of the ending point.

Step Display

6a TRUE H, E IF \#n?

6b TRUE H ?

7 CORREETIOH:
$n n n: n n$ H
nnn:nn E
nnn:nn H
worting elosure:
error nnn:nn
1 in nnn:nn
8 Wone, Eouditah, Grandellchereye

9 working

Instructions

Enter the correct coordinates of the traverse ending point.

If elevations have been stored, enter the correct elevation.

The display shows the correction in latitude, departure, and elevation, along with the linear and relative errors.

Press N to bypass the linear balance, press B to balance using the Bowditch (Compass) rule, or press C to balance using Crandall's method.

Adjustments are made directly to the coordinate file. Afterwards, the routine returns to step 1.

Section 3

Coordinate Geometry

Contents

Introduction 31
Routine: Start 32
Routine: Lines 33
Multiple Solutions 34
General Procedure for the Lines Routine 35
Traversing Lines 36
Sideshots 38
Inverse 39
Bearing-Bearing Intersection of Lines 40
Bearing-Distance Intersection of Lines 41
Distance-Bearing Intersection of Lines 42
Distance-Distance Intersection of Lines 44
Routine: Curves 45
Curve Traverse 46
Inscribe Curve 48
Routine: Radial Stakeout 51
Traverse Reprint and Area Computations 52

Introduction

The routines in the Coordinate Geometry section are based on computing a new point or points given a known starting point, bearing, and distance, or data from which the bearing and distance can be calculated. Also included are staking routines for printing angular and linear relationships between existing points.

The 0 menu contains five routines:

- The Start routine establishes the starting (occupied) point and backsight.
- The Lines routine contains five different solutions for lines: traverse, inverse, bearing-bearing intersection, bearing-distance intersection, and distance-distance intersection. The different solutions are accessed by entering the data that is known, and bypassing unknowns.
- The Curves routine solves for a curve traverse (solves the P.T. given the R.P., P.C., and the arc, chord, central angle, or tangent length) or fits a curve to known tangents.
- The Radial Stakeout routine returns the horizontal angle and distances between stored coordinates for radial staking.
- The Traverse Reprint routine operates like the radial stakeout routine, except that the occupied point and backsight are updated at each point on the traverse. This routine also computes the curve inverse and the area.

Throughout the CO program two parameters are being constantly referenced and updated. The first is the starting (occupied) point. This point establishes the beginning coordinates for most solutions. The starting point is generally moved with each solution; that is, the point solved in one problem becomes the new starting point for the next. The second parameter is the backsight or reference bearing. Whenever a deflection or angle left or right is used to establish a direction, it is turned off the backsight. The backsight is updated every time the starting point moves.

Routine: Start

The Start routine establishes the currently occupied point and backsight. Usually, the starting point is determined from the previous solution. This routine allows you to specify a new point and backsight. Note that you should enter the backsight as the direction from the occupied point toward the reference.

The Start routine also allows you to select absolute or relative angles for subsequent results. Bearings or azimuths will be displayed if you select absolute angles. Relative angles are measured off the current backsight, and may be angles right/left (interior/exterior) or deflections right/left. The Start routine begins running automatically when you select the 00 DG program.

Step	Display
1	STHRT, LINE, GURUESS L ?
2	FFOM \#?
3	EHCKSIGHTO
4	b. =: nnn.nn
5	Ahgles hbs rel efreo

Instructions

Press S. This step is skipped when you enter coge from the main menu.
Enter the currently occupied point number. If you enter a point that has not yet been assigned, the HP-75 will request and then display the coordinates.
Enter the backsight bearing, using any allowable format. If you want to use the previous backsight, just press RTN.
The backsight is printed.
Press A to have the output in absolute angles (bearings or azimuths). Press R to have the output in relative angles (angles left/right or deflections left/right).

The HP-75 prints the starting coordinates and the backsight, and then returns to step 1.

Routine: Lines

Five different solutions are part of the Lines routine of the pyg program. These five solutions are:
Traverse and Sideshot. This calculates the coordinates of a new point given the bearing and distance from a known point.

Inverse. This finds the bearing and distance between two known points.
Bearing-Bearing Intersection. This finds the intersection of two lines.
Bearing-Distance Intersection. This finds the intersections of a line and a circle.
Distance-Distance Intersection. This finds the intersections of two circles.
The various solutions are accessed by supplying the computer with the data values you do know, and ignoring those values you don't know (just press R RTN when the program prompts for that information). There are six possible inputs, although no more than four are needed for any given problem. The program stops requesting data as soon as it has enough information.

The chart below shows the seven possible types of solutions and the information required for each solution. An X means the data were entered, while a O means no data were given. Assume that the occupied point, p1, was established by the previous solution or by the Start routine. The second known point is $p 2$, and the solution point is p.

	p	Horiz. Angle, p1 to p	Distance, p1 to p	p2	Horiz. Angle, p2 to p	Distance, p2 to p
Inverse	X	0	0			
Traverse	X	X	X			
Sideshot	-X	X	X			
Bearing-Bearing	X	X	0	X	X	
Bearing-Distance	x[; ${ }^{\text {] }}$	X	0	X	0	X
Distance-Bearing	X $[$; X$]$	0	X	X	X	
Distance-Distance	X [; X]	0	X	X	0	X

Multiple Solutions

Some cogi intersection problems have two possible solutions. The choice for solving one or both points is made when the solve point number is entered. To solve and store both points, two different point numbers must be entered, separated by a semicolon.

To avoid calculating one of the points, the point number must be zero or else not given. The following examples illustrate this.

Input/Result

```
5:0 or 5
```

```
0:8 or :8
```


$11: 12$

Only the first solution is calculated. Point \#5 is assigned the solved coordinates.

Only the second solution is calculated, and the coordinates are assigned to point \#8.

Both points are solved. The first solution is assigned to point \#11, and the second to point \#12.

General Procedure for the Lines Routine

The general procedure for the Lines routine is:

Step Display

1 GTART, LINE, CURUEGSLGO
2 \#p1 T曰\# ?

3 HOFIZ [:UERT] HHGLE p1 末 \boldsymbol{p}°

5

6 2natrout \# ?

Instructions

Press \square.
p1 represents the currently occupied point. Press RTN with no entry to loop back to step 1.
or
Enter the point number(s) of the point(s) to be solved.
or
To solve the point without changing the current set-up (location and backsight), enter the number of the point to be solved as a negative value.
or
Enter a + to assign the next consecutive point number (incremented one from the occupied point number).
Enter the known direction from the starting point to the point to be solved. This may be entered as a direction (bearing, north or south azimuth) or an angle turned from the current backsight. Press RTN if the direction is unknown.

Enter the known distance from the starting point to the solve point. If unknown, press RTN.
If the program has enough information at this point, the results will be printed and execution will continue at step 2 . Otherwise, it will continue with step 6.
Enter the point number of the second known point ($p 2$). If $p 2$ is not assigned, you must enter the coordinates at this time.

Step Display
7 HORIZ HHGLE p2 * p

8
पISTHHEE p2 * p ?

9

Instructions

Enter the known bearing from the second point to the solve point and proceed to step 9. If the bearing is unknown, press RTN and proceed to step 8.
Enter the known distance from the second point to the solve point.

The results will be printed, and execution continues with step 2.

Traversing Lines

Given: the known starting coordinates of a point, a direction, and the distance.

Solve: the coordinates of a new point.
To facilitate field note reduction, the traverse solution also includes slope reduction and vertical control.

Slope Distances. When the prompt appears for the horizontal angle (step 2 below), a vertical angle can also be entered. If it is entered, the distance input in step 3 a will be assumed to be a slope distance and will be reduced to horizontal and vertical components. Either a vertical or a zenith angle can be input. The program will then calculate the angle to within 45° of horizontal.

Vertical Distances. Vertical distances are computed when a slope distance and a zenith angle are entered. Alternatively, the vertical distance can be input along with the horizontal distance.

Elevations. If the occupied point has an assigned elevation, a new elevation will be stored with the solved point whenever a vertical distance is entered (whether this distance is entered directly or is computed from a slope distance and a zenith or vertical angle).

Step Display

1 FEOH \#p1 TO \# ?

2 HORIZ [:UERT] HHGLE p1 * p ?

3a HORIZ [:UERT] QISTHHCE p1 * $p ?$

3b SLOPE GISTHHCE p1 $: p$?

4

Instructions

Enter the number of the point to be solved. ($p 1$ is the currently occupied point.)
Enter the direction in any allowable form (bearing, azimuth, or relative angle). Optionally, a vertical or zenith angle can be entered, separated from the first entry by a semicolon.

Enter the horizontal distance to the traverse, which can be followed by a semicolon and a vertical distance.

If a zenith or vertical angle were used in step 2, enter the slope distance.

The direction, distance, and coordinates of the solved point are printed. The solved point becomes the new starting point, and the new backsight is to the old occupied point. Execution continues with step 1.

Sideshots

The Sideshot solution is identical to the Traverse solution, except that the occupied point and backsight are not changed.

Step Display

1 \＃p1 T曰 \＃？

2 HOEIZ［：VERT］HHGLE p1 末 p ？

3a HOEIZ［：UERT］［ISTHFIGE p1 末 p ？

3b ELOFE IISTAHEE p1 $⿻ 丷 木$ ？

4

Inverse

Given：two known points．
Solve：the direction and distance between them．

Step Display

1 \＃p1 T日 \＃？

2 HORIZ［：UERT］HHGLE p1 米 p ？
3 HOEIZ［：UERT］［ISTHHEE p1 米 p ？

4

Instructions

Enter the negative point number of the point to be solved．

Enter the direction in any allowable form （bearing，azimuth，or relative angle）．Op－ tionally，a vertical or zenith angle can be entered，separated from the first entry by a semicolon．

Enter the horizontal distance to traverse， which can be followed by a semicolon and vertical distance．

If a zenith or vertical angle were entered in step 2，enter the slope distance．

The direction，distance and coordinates are printed．The occupied point and backsight are not changed．Execution continues with step 1.

Instructions

Enter the number of the second known point．

Skip（press RTN）．
Skip（press RTN）．
The angle，distance，and coordinates are printed．Returns to step 1.

Bearing-Bearing Intersection of Lines

Given: two known points and the bearings from each.

Solve: coordinates of the point of intersection.

Step Display

1 \#p1 TO \# ?

2 HORIZ [:UERT] HHGLE $p 1$: p ?
3 HORIZ [:UERT] पISTHHEE p1 * p ?
4 End khour \# ?

5 HORIZ AHGLE p2 * p ?

6

Instructions

Enter the point number of the point to be solved. To maintain the current occupied point and backsight, enter a negative number.

Enter the direction or angle turned.
Skip.
Enter the number of the second known point.

Enter the direction from the second point to the unknown point.

The directions and distances from both known points to the solved point are printed. The new coordinates are also printed. If the solve point number was entered as a positive number, it becomes the new occupied point, and the new backsight is toward the second known point.

Bearing-Distance Intersection of Lines

Given: two known points, a bearing from the first and the distance from the second.

Solve: the coordinates of the points of intersection (there are two possible solutions).

Step Display

1 \#p1 T口 \# ?

2 HORIZ [:UERT] AHGLE $p 1$ 末 $p ?$

Instructions

$p 1$ is the currently occupied point. Enter the point number(s) of the coordinates to be solved. If only the first solution is required, enter a single point number. For both points, enter two different point numbers separated by a semicolon. To obtain only the second solution, precede the solve point number by a semicolon or a zero value ($\mathrm{G}:$).
Enter the direction from the first known point to the solve point(s).

Step Display

3 HORIZ [:UERT] GISTHHEE p1 \& p ?

4 End khomb \# ?

5 HORIZ HHTLE p2 $\$ p$?

6 GISTHHCE $p 2$ * p ?

7

Instructions

Since the distance from the first point is unknown, skip this entry.

Enter the point number of the second known point ($p 2$). The coordinates will be printed.
Since the second direction is unknown, skip this entry.
Enter the distance from the second known point to the solve point.
Directions, distances, and solved coordinates are printed. Unless entered as a negative, the solve point becomes the new occupied point, with a backsight to the second known point.

Distance-Bearing Intersection of Lines

Given: two known points, the distance from the first point, and a bearing from the second.

Solve: the coordinates of the points of intersection (there are two possible solutions).
This routine is identical to the Bearing-Distance solution, except that the order of input is reversed.

Step Display

1 p1 T口 \# ?

2 HOEIZ [:UEFT] HHGLE p1 末 p ?

3 HOEIZ [:UERT] [ISTAHEE p1 * p ?

5

6

Instructions

$p 1$ is the number of the currently occupied point. Enter the point number(s) of the point(s) to be solved. If only the first solution is required, enter a single point number. For both points, enter two different point numbers separated by :. To obtain only the second solution, precede the solve point number by : or 0 .

Since the direction from the first input is unknown, skip this entry.

Enter the distance between the first known point and the solve point.

Enter the point number of the second known point.
Enter the direction or angle turned to the solve point from the second known point.

The results are calculated and printed. If entered as a positive value, the solve point becomes the new occupied point, and the backsight is to the second known point.

Distance-Distance Intersection of Lines

Given: two known points and the distance from each to a third point.

Solve: the coordinates of the third point (there are two possible solutions).

Step Display

1 \#p1 to \#?

2 HORTZ [:UERT] HHGLE p1末?

Instructions

Enter the point number(s) of the coordinates to be solved. To get both solutions, enter both point numbers, separated by a semicolon. To obtain only the first solution, enter one number. To obtain only the second solution, use zero for the first number (or just enter one number preceded by a semicolon). (In the display, p1 refers to the number of the currently occupied point.)
Since the bearing is unknown, press RTN without entering data.

Step Display
3 HOFIZ［：UERT］GISTAHCE FISF？

4 2nd KHOMN \＃？
5 HORIZ HHGLE p2末？

6 LISTAHCE FZ末口？

7

Instructions

Enter the known distance from the first point．
Enter the second known point number．
Since the bearing is not known，just press RTN．
Enter the distance from the second known point to the solve point．

The HP－75 will now print the angles，dis－ tances，and solved coordinates，and then return to step 1 ．

Routine：Curves

The Curves routine of colves two types of problems：
Curve Traverse．Solves for the point of tangency（PT）from a known point of curvature（PC）and a known radial point（RP），given the arc，chord，tangent，or delta（central angle）．

Inscribe Curve．Solves for the PC，PT，and RP，given a known radius and two known tangents （straight or curved）．

Call the Curves routine from the cogo menu:

Start, Lime, Curve ©
Press C for the Curve routine.

Curve Traverse

The Curve Traverse routine will solve the point of tangency (PT), given the point of curvature (PC), radial point (RP), and the arc, chord, tangent, or delta (central angle) of a curve.

The PC is the currently occupied point. Use the Start routine to change the PC if necessary.
Curve Traverse-Arc Length.

Step Display

1
2 FEC LEHGTH?

3 RP?

4 p1 TO \#?

5

Instructions

Press A.
Enter the arc length. If the curve is counter-clockwise, enter a negative value.

Enter the point number of the known radial point.
Enter the point number to be assigned to the PT ($p 1$ is the PC).
The HP-75 now calculates the PT and prints the curve data. If the point number for the PT was positive, the PT becomes the new starting point, and the backsight is toward the radial point. The routine returns to step 1.

Instructions

Press C.
Enter the chord length. If the curve is counter-clockwise, enter a negative value.
Enter the point number of the known radial point.

Step Display
4 \#F1 TO \#?

5

Instructions

Enter the point number for the PT. (p1 is the PC.)

The routine now calculates the PT and prints the curve data. If the point number for the PT was positive, the PT becomes the new starting point, and the backsight is toward the radial point. The routine returns to step 1.

Instructions

Press T.
Enter the tangent length. If the curve is counter-clockwise, enter a negative value.

Enter the point number of the known radial point.

Enter the point number for the PT. (p1 is the PC.)
The routine now calculates the PT and prints the curve data. If the point number for the PT was positive, the PT becomes the new starting point, and the backsight is toward the radial point. The routine returns to step 1.

Instructions

Press D.
Enter the central angle. If the curve is counter-clockwise, enter a negative value.

Enter the point number of the known radial point.

Step Display
4 \#p1 TD \#'

5

Instructions

Enter the point number for the PT. (p1 is the PC.)
The routine now calculates the PT and prints the curve data. If the point number for the PT was positive, the PT becomes the new starting point, and the backsight is toward the radial point. The routine returns to step 1.

Inscribe Curve

The Inscribe Curve routine will solve three points (the PC, PT, and RP) defining a curve, given the curve radius and the tangent lines. Straight tangents are defined by a known point and bearing, and curved tangents are defined by a known radial point and radius.

Since there are several solutions in any given case, a few rules must be observed when entering data. The first is that data must be entered as it occurs in a clockwise direction. In other words, the angle from the PC to the PT must be clockwise.

If one of the tangents is a curve, you must indicate whether it turns clockwise or counter-clockwise. The examples in the following table illustrate these rules.

Curve \＃	Tangent In	Tangent Out
1	＋Clockwise curve	／SW bearing
2	\downarrow SW bearing	－Counter－clockwise curve
3	\curvearrowleft Counter－clockwise curve	$\nearrow N E$ bearing
4	$\int N E$ bearing	＋Clockwise curve

Inscribe Curve－Straight／Straight．

Step Display

2 EACIIG？
3 \＃时 THN IH？－IF EF

4 HHELE IN？

5 \＃口州 THN DIIT \＆－IF FF

6

7 SOLUE \＃？

8

Instructions

Press R．
Enter the radius of the curve to be solved．
Enter any point that falls on the line tan－ gent to the curve at the PC．

Enter the direction of the line from the PC to the curve PI（ Point of Intersection）．

Enter any point that falls on the line tan－ gent to the curve at the PT．

Enter the direction of the line from the curve PI to the PT．

Enter the first of three consecutive point numbers to be assigned to the solved coordinates．

The routine now solves the PC，PT，and RP of the curve，and the curve data is printed．If the solve number was entered as a positive value，the PT becomes the new starting point with a backsight to the radial point．

Inscribe Curve-Straight/Curved.

Step Display

1
2 RAGIUS?
3 \# OH THH IH? - IF FF?

4 FHOIUS IH? - IF UOH

5 \# OH THH GUT? \& - IF RF?

6 AHGLE OUT?

7 SOLUE \#?

8

Instructions

Press R.
Enter the radius of the curve to be solved.
Enter the radius of the tangent curve. If the curve turns counter-clockwise, enter a negative value.

Enter the radial point of the tangent curve as a negative number.

Enter any point that falls on the line tangent to the curve at the PT.
Enter the direction of the line from the curve PI to the PT.

Enter the first of three point numbers to assign to the solved coordinates.

The routine now solves the PC, PT, and RP of the curve, and the curve data is printed. If the solve number was entered as a positive value, the PT becomes the new starting point with a backsight to the radial point.

Instructions

Press R.
Enter the radius of the curve to be inscribed.

Enter the radial point of the tangent curve as a negative number.

Enter the radius of the tangent curve. If the curve turns counter-clockwise as it approaches the inscribed curve, enter a negative number.
Enter the radial point of the second tangent curve as a negative number.

Step Display

6 FROIUS OUT © - IF CLU

7 SOLUE \#?

8

Instructions

Enter the radius of the second tangent curve. If it turns counter-clockwise as it exits the inscribed curve, enter a negative value.

Enter the first of three point numbers to assign to the solved coordinates.

The routine now solves the PC, PT, and RP of the curve, and the curve data is printed. If the solve number was entered as a positive value, the PT becomes the new starting point with a backsight to the radial point.

Routine: Radial Stakeout

The Radial Stakeout routine prints the angles and distances from a fixed occupied point to a series of existing points. The occupied point and backsight are selected in the Start routine or determined by the previous solution.


```
Step Display
1 STHRT,LIHE,CURUE &SL&GO?
2 RHOIAL,TRHU,EXIT &F,TEYQ
3 #F1 TO #? [:THRU] ?
```

4

Instructions

Press RTN.
Press R.
Enter a single point to be staked. If you have a series of numbers to be staked, enter the first and last number, separated by a semicolon. If you want to exit the Radial Stakeout routine, just press RTN to return to step 1.

After you make your entries, the routine prints the angles and distances between the points, and then returns to step 2.

Traverse Reprint and Area Computations

The Traverse Reprint routine is similar to the Radial Stakeout routine, except that after inversing to a point, that point becomes the new occupied point, and the backsight is toward the old occupied point. This program can be used to:

- Calculate the area within a defined boundary.
- Inverse lines and curves.
- Reprint a traverse after adjustments are made.

In every case, a path is defined by entering a sequence of point numbers. Curves are flagged by entering the radial point as a negative number, after which the computer requests the point of tangency. Curves are always assumed to be less than 180°. If a curve is greater than 180°, it must be broken into two parts.

For each segment, the program prints the coordinates, point numbers, angles, and distances (plus curve information, where applicable). The area is printed when the routine is exited (by pressing RTN with no entry at step 2). The area will be meaningful only if you return to the starting point.

Step Display

1 FAIAL，TFAU，EKIT \＆FTEO？
2a \＃p1 T日 \＃＇［：THFU］？

2b \＃p1 TG \＃？［：THFU］？

2c \＃p1 T曰 \＃？［：THFU］？

3 FT？

Instructions

Press T ．
For straight segments，enter the next point on the line，or enter the first and last points of a series of points，separated by a semicolon．The inverse data will be printed，and the last point becomes the occupied point．
For curved segments，enter the radial point of the curve as a negative number． （ $p 1$ is the point of curvature，or PC．）
To obtain a valid area and then exit the routine，you must first inverse back to the first point of the boundary．Then press RTN with no entry at this step．The area will be printed in square feet and acres， and the HP－75 returns to step 1，above．
Enter the point of tangency．The curve data is printed，and the point of tangency becomes the new occupied point．

Note：If the computed radii differ by more than 1% ，the computer will beep and display r．adi i thequヨl．It will then return to step 2，with the occupied point unchanged．

Section 4

Examples

Contents

Introduction 55
Example 1: File Creation and Coordinate Storage 56
Creating the Coordinate File 56
Assigning Points \#1 and \#2 57
Example 2: Field Traverse 59
Establishing the Occupied Point and Backsight 60
Entering the Traverse 60
Closing on the Starting Point 63
Example 3: Duplicate Points and Balance Traverse 64
Duplicate Points 64
Balance Traverse 65
Example 4: Reprint Traverse 67
Example 5: Solve Roadway Center Line and Curb Line 69
Solving Roadway Center Line 70
Solving the Curb Line 72
Solving the Cul-de-Sac Returns 73
Example 6: Subdivision 77
Lot 1 78
Lot 2 79
Lot 3 81
Lot 4 83
Lot 5 84
Lot 6 and 7 86
Example 7: Lot Summary 88
Example 8: Radial Stakeout 93

Introduction

This section contains eight examples for you to work through using the Surveying Pac. You start at the beginning by establishing a coordinate file. Then you solve five common problems using the Surveying Pac's integrated subprograms and routines.

Example 1: File Creation and Coordinate Storage

Purpose: Set up a coordinate file and store the coordinates which will serve as the reference points of a traverse.

The surveying problem will require approximately 40 points. Create a coordinate file named $\mathbb{E} N$ that holds 50 points. Directions should be output as bearings, and relative angles should be deflections. Use degrees for angular units. Specify the output to have two decimal places for coordinates and distances, and zero places for angles (seconds).

After the file has been created, store point \#1 with coordinates N 1600, E 4150, (no elevation) and point \#2 with coordinates N 1735.68, E 7716.40, and H 506.8 (elevation).

Creating the Coordinate File

Input/Result

\square
rut $^{\prime}$ Edt uEy' RTN

```
FILE HHME ?
```

demo RTN

FILE SIZE \&\#\# mヨ×〉?

5 RTN

B

D

Execute the surveying program, SURUEY'.

Name the coordinate file IEND.

Allocate room for 50 points.

Specify bearing for output of directions.

Select deflections for relative angle output.

Angular Units in degrees.

```
GEITHALG OH SEDOHDG GQ-2%
```

0

```
GECIMALS DH EODFDG ©G-5%?
```

2

```
GEGINHLS OH UISTHHEEG GOGO
```

2

```
wort: img
```

```
File, Iog口,|\Xier &FGG%?
```


F

```
File Nargegmert.
```


RTN

RTN

Assigning Points \#1 and \#2

Input/Result

A

```
FOIHT # ?
```

1. RTN

No fractional seconds will be printed.

Coordinates will be printed with 2 decimal places.

Distances will be output to the hundredths place.

There will be a short delay while the file is created.

Select the File Management program.

Press RTN to access the next menu.

Press RTN to access the next menu.

Select the Assign routine.

Assign point \#1.

```
H,E OF #1 '?
```

1E日E, 45 RTN

```
H OF #1?
```


RTN

\# 1
160日: 0 H
$4150.00 E$
FOINT \# ?

+ RTN

H, E ¢ \# ?
$175 \cdot 6 \mathrm{~F} \cdot \mathrm{~F}: 4 \mathrm{RTN}$

```
H OF #2?
```

5e : RTN

1735.69 H
T7E:40E
$506.80 H$

POTHT \# ?

RTN

```
Ealghue,HEsigh,E%it &E,G%E% ?
```

E

File, GQga, UEEr ©FGU) ?

Enter the coordinates of point \#1.

No elevation is known.

The values are printed.

Auto-increment to assign point \#2.

Input the coordinates of point $\# 2$.

The elevation is known.

The coordinates are printed.

Press RTN to exit the Assign routine.

Exit the File Management program.
The main menu is displayed.

Example 2: Field Traverse

Purpose: Enter and reduce field notes for the traverse below.

The points stored in example \#1 are used as the starting point and backsight for the traverse. The Start routine in Gig establishes the occupied point and backsight. Each leg is traversed using the traverse option of the Lines routine.

From the last point on the traverse (\#5), the closing angle and distance were measured. A temporary point (\#6) will be stored to account for any errors in closure (if no errors were present, points \#6 and \#2 would have the same coordinates).

Establishing the Occupied Point and Backsight

Input／Result

```
File,GQgם,|ミEr &F,G|`%
```


C

```
FFOM # ?
```


RTN

```
#2
\(1735.6 日 H\)
7716.46 E
56.86 H
```

EHCFSTGHT ？

玉1 RTN

```
b:E: 54 ET"49'17'
HHGLES gbS,FEl &HFF` O
```


A

Entering the Traverse

Input／Result

```
Startalime,Gurue GSLGY%
```


L

```
#2 T0 # ?
```

```
#2 T0 # ?
```

Select the Lines routine．

Use a defined direction（from \＃2 to \＃1）to estab－ lish backsight．

Select absolute angle output（directions）．
Point \＃2 is the occupied point．
The coordinates of point \＃2 are printed．

```
HOFIZ [:UEFT] HHGLE Z&马?
```

```
+10E:314日 RTN
```

```
HOFIE [,UEFT] [ISTHHEE Z&马 ?
```

```
HOFIE [,UEFT] [ISTHHEE Z&马 ?
```

Angle right from backsight $106^{\circ} 31^{\prime} 40^{\prime \prime}$ ．

```
19]:E,53RRTN
```

```
Z-3 HE 14020'5%"
## 183.6E
#3
    1913.55 H
    T7E1:9日E
    505.97 H
```

\# TO \#
-10 RTN
HOEIZ [:UEFT] HHELE उ末10?

HE1E：5EGRRN

```
HOFIZ [:UEFT] [ISTHHAE J$1G ?
```

$5 E: 2$ RTN

```
3-10 NE 1G5G'gG"
3-10 5E:20
#1.0
    1967:32 H
    ア7TG:27E
    505.97 H
```

\#3 TO \#

+ RTN

Horizontal distance $=183.6$ ；Vertical distance $=$ ． 83.

Bearing，distance，and coordinates are printed．

A negative point number indicates a sideshot．

Bearing NE $16^{\circ} 56^{\prime} 08^{\prime \prime}$ ．

Horizontal distance $=56.2$ ．

Use the auto－increment to select point \＃4．

```
HOFTZ [:UEFT] HHGLE ZS4 ?
```

```
-113:Q2:2:13 RTN
```

```
SLOPE GTSTHHEE 3*4 ?
```

Backsight is to point \#2. Enter angle left and vertical angle.

The slope distance will be reduced to horizontal.

$3-4$	HE
$3-4$	294,32
$\# 4$	$1957: 99 H$
	565.85
	$517: 36 H$

\#4 TO \# ?

RTN

HOETZ [:UEFT] HHOLE $4 \$ 5$
$196+169: 530: 96,3120$ RTN

```
GLOPE DISTHHEE &$5%
```


EG: ERTN

```
4-5 54 11011'27"
4-5 278:47
#5
    1684,g2 H
    799.60 E
    455,53 H
```

Slope distance entry.
Deflection right $=109^{\circ} 52^{\prime} 30^{\prime \prime}$; Zenith angle $=$ $96^{\circ} 31^{\prime} 20^{\prime \prime}$.

Closing on the Starting Point

Input／Result

```
#5 TG # %
```

+ RTN

```
HOFIZ [:UEFT] HHILE 5, E \sigma
```

-90.3E30 RTN

```
HOFIZ [:UEFT] [ISTH畒E S.E ?
```

```
ZG:9こ:ZG,5,RTN
```

\# T T \# ?

RTN

```
    Gtgrt,Lire,Gutue &SLG% ?
```


RTN
 RTN

```
    Fadigl,Trヨu,EMit धF%TYE` ?
```


E
 E

File，CQgロ，UEEr \＆FGU才 ？


```
5-E ごE.GZ
```

5-E ごE.GZ

 1737.51 H
 1737.51 H
 Tア1G,TE E
 Tア1G,TE E
 506, EH
    ```
                        506, EH
```

RTN
File, Coga, UEEr \&FGU) ?

Point \＃6 holds the unadjusted coordinates of the starting point．

Angle left $=90^{\circ} 36^{\prime} 30^{\prime \prime}$.

Horizontal distance $=286.92$ ；Vertical distance $=20.5$ ．

Example 3: Duplicate Points and Balance Traverse

Purpose: Make a duplicate set of the points solved in example 1 and 2, and balance the traverse according to the Compass Rule.

Points 1-10 will be duplicated as points 11-20. The adjustment will be made to the duplicated points.

Duplicate Points

Input/Result

```
File, Gogo,UEEr &FGGU)?
```

F

```
```

File Mangaemert

```
```

```
```

File Mangaemert

```
```


Select the File Management program.

Select the Duplicate routine.

```
GTHETIHG,EHDIHG #E
```

1.19 RTN

```
HEH STHFTIHG # ?
```


11 RTN

```
morl:irg
```


RTN

RTN

Balance Traverse

Input/Result

B

```
STHETIHG,EHDIHE # = %
```

$1 \approx: 1 E$ RTN

Duplicate points 1 thru 10 .

Assign point \#11 to the first duplicate point.

There is a short delay while the points are copied.

Press RTN to access the next menu.

Press RTN to access the next menu.

Select the Balance routine.

The main traverse is made up of points 12 thru 16.

```
HHGLE GD,IUSTHENT ?
```


RTN

```
UHFDUUSTED
#1E
```

$$
\begin{array}{r}
173751 \mathrm{H} \\
7716.7 \mathrm{E} \\
50.63 \mathrm{H}
\end{array}
$$

```
TRUE HE TF 1E?
```

```
175,6%,71E:4 RTN
```

TEUE H ?
5 EE RTN
CTEEETIOH:
$\# 16$

$$
\begin{array}{r}
-1,33 \\
-0.3 E \\
6: 7
\end{array}
$$

WGEE:

```
Errot" 1:8?
1% 55B,3%
Hore, Eouditoh, Dramdgl1 ©HEEG`
```

B

```
@!+6
```


E

No angle balance will be performed.
The unadjusted values of point \#16 are displayed.

The true coordinates of \#16 should match the coordinates of point \#12 (2).

Enter the correct elevation.

The corrections are printed.

Do not interrupt the program.

The error of closure is displayed.

Select a Bowditch rule balance.
Again, do not interrupt the computations.

When the menu appears the balance is complete. Exit the File Management program.

The main menu is displayed．

Example 4：Reprint Traverse

Purpose：Reprint the adjusted traverse showing deflection angles，distances，coordinates，and total area．

The Start routine allows selection of relative angles（deflections）．The Trav routine will inverse be－ tween the adjusted coordinates and calculate the total enclosed area of the traverse．

Input／Result

```
File, IOg口,|EEr &F,G口\
```

C
Select the Coordinate Geometry program．


```
FFOH # ?
```

12 RTN

```
# 12
    1735.68 H
    7TE,4EE
    506, SQ H
```

EAEFSIGHT ?
$12 末 11$ RTN

```
ち:\Xi, SM ET 49'17"
AHGLEG HLE,FEl धHFF% ?
```

R

Start from point \＃12．
The coordinates are printed．

Use a defined direction to establish the backsight．

Select relative angle output．Deflections will be used，according to the specifications established when the file was created．

Skip to the next menu．

```
Fadigl, Trヨu, Exit © FTGE ?
```


T

\#12 TO \# ? [:THFU] ?
$13: 15 \mathrm{RTN}$

| $12-13$ | [1L | |
| :---: | :---: | :---: |
| $12-13$ | | 183.27 |
| \# 13 | | |
| | | 1913.23 H |
| | | 77E1:84E |
| | | $5 \mathrm{EE}, 11 \mathrm{H}$ |

| $13-14$ | QF |
| :---: | :---: |
| $13-14$ | 2931274 |
| $\# 14$ | |
| | |
| | $5959.15 H$ |
| | $517.72 H$ |

| 14-15 | पF 10946'43 |
| :---: | :---: |
| $14-15$ | 276:96 |
| \# 15 | |
| | 1683.49 H |
| | $7998.54 E$ |
| | 486.99 H |

\#15 TO \# ? [:THEU] ?

12 RTN

```
15-12 [F E9口1%'21"
15-12 2EE.93
#12
    1735.68 H
    71E.40E
    506.80H
```

\#12 TO \# \because [:THFU] ?

Select the Traverse Reprint program.

The THFU command automatically inverses between 12-13, 13-14, and 14-15.
\#12 to \#13.
\#13 to \#14.
\#14 to \#15.

Return to the starting point \#12 to ensure a valid area.
\#15 to \#12.

```
#q+t E4839.74
ヨロサE= 1:49
Fagiヨl,Trヨu,EMit &FOTgE, %
```

RTN
The GTiT menu is displayed．Press RTN to ac－ cess the main menu．

```
GtgrtaLire,Gutue SGLG% ?
```


Example 5：Solve Roadway Center Line and Curb Line

Purpose：Solve and store points defining the roadway center line and curb using the dimensions shown below．

－Center line begins on the east boundary line（14－15）at a point 120 feet from point \＃15．
－Center line projects perpendicular to line（14－15）for a distance of 160 feet．
－Roadway is 40 feet wide and terminates with a cul－de－sac with a 40 foot radius．
－Curb returns on the cul－de－sac have a 15 foot radius．

Input/Result

```
Start,Line,Curve &SLfC% ?
```

S

```
FFOM # ?
```


15 RTN

```
#15
```

$1593.49 H$
7998.54 E
486.99 H

EHCKSTGHT ?

15 1. RTN

Select the Start routine to reset the occupied point.

Select point \#15 as the occupied point.

The coordinates of point \#15 are printed.

Actually, the backsight is unimportant since it is not used in the next solution.

Select absolute angle output (directions).

Choose the Lines routine.

Solve point \#21.

```
HOFIZ [:UEFT] HHELE 15&`1 %
```


15 本14 RTN

```
HOFIZ [:UEFT] [ISTHHIE 1S$こ1 %
```

12 RTN

```
15-ق1 HE 110111%?"
S-z1 120,G世
#こ1
    18日1,21 H
    8Q21, ES E
    4E.0GH
```

\#こ1 T曰 \# '?
-2 RTN
HOFIZ [: UEFT] AHGLE ב1末 $2=?$
+96 RTN
HOFIZ [: UEFT] [ISTHHEE Z1末ここ
160 RTN

```
21-2z HN FB"4日'3."
21-22 16区, 回
#こ
    18ここ:% H
    7EG4,ETE
    4E6.09 H
```

Points \＃22，\＃23 and \＃24 will be set from \＃21．Use the sideshot designation to maintain the oc－ cupied point and backsight．

The center line is perpendicular to line 14－15．

The center line is 160 feet long．

Solving the Curb Line

Input／Result

 #21 T0 # ?
 #21 T0 # ?
 -23 RTN
HORIZ [:UERT] FHELE 21 末23?
$+18 \mathrm{RTN}$
21-23 HE 11"11'27"
21-23 HE 11"11'27"
21-23 20.0日
21-23 20.0日
\#23
\#23
1820.83 H
1820.83 H
8025.71 E
8025.71 E
486.09 H
486.09 H
\#こ1 Tu \# ?
24 RTN
HORIZ［：VERT］AHGLE Z1ま24？

A defined direction of $21 * 14$ could also be entered．

Half the 40 foot roadway width．
+6 RTN
Sight along the backsight．

```
HOFIZ [:UEFT] [IISTHHIE Z1%Z4 ?
```

2 RTN

| 21－24 | 54 | $1^{\circ} 11^{\prime} 7^{\prime \prime}$ |
| :---: | :---: | :---: |
| 21－24 | | 29，90 |
| \＃24 | | |
| | | 1761．59 H |
| | | 8017．95E |
| | | 4 EE .6 H |

\＃こ4 T曰 \＃

RTN

Bypass this entry to return to the menu．

Solving the Cul－de－Sac Curb Returns

Input／Result

StヨrtaLire，Etrue GGLG ？

C

R

```
FHOIIS ?
```

15 RTN

23 RTN

Select the Curve routine．

Curb returns are tangent to the cul－de－sac curve and the straight curbs are parallel to the center line．

Curb radius $=15$ feet．

The tangent going into the curb begins at point \＃23．

```
HHGLE IH?
```

```
Z1&ZERTN
```

```
# OH THH DUT &- IF FF% ?
```

$-2 \mathrm{RTN}$
FHOIUS DUT - IF ECM \because
-49 RTN

```
EDLUE # ?
```


| $\# 25$ | |
| :--- | :--- |
| | 1843.65 |
| | 7910.37 |
| | |

```
#?
```

$1851: 24 \mathrm{H}$
796日． GE

| \＃2e | | | RP |
| :---: | :---: | :---: | :---: |
| | | 1858．36 H | |
| | | $7913.28 E$ | |
| delta | HF | $55^{5144 \prime}$ | |
| ErE | | 13．22 | |
| t．！ | | 7．97 | |
| －hord | | | |
| $25-27$ | $1+14$ | $53 \times 31^{\prime \prime}$ | |
| $25-27$ | | $12 \cdot 79$ | |
| rediels： | | | |
| $25-26$ | HE | 11011＇27＂ | |
| $25-26$ | | 15．9日 | |
| $26-27$ | 54 | E104日＇10＂ | |
| $25-27$ | | 15．09 | |

The straight tangent is parallel to the center line．

Center of the cul－de－sac．

Radius of cul－de－sac，entered as a negative since it turns counter－clockwise．

Three points will be solved，beginning with \＃25．
PC

PT

RP

R

```
FHOI|G ?
```

15 RTN

```
# 口HN THH IH <- IF EFF?
```

$\cdots 2$ RTN

```
FHOIUG IH - IF ECH% ?
```

$-4 \mathrm{RTN}$

```
# 口H THH 口l|T &- IF F:F` ?
```

24 RTN

AHELE DIIT ？
$2 ま=1$ RTN

GILUE \＃？

RTN
\＃2e
1801．30 H
789世，2日 E

| \＃30 | |
| ---: | ---: |
| | $1804: 41$ |
| | 7962.61 |
| | |

The tangent going into the solved curve is a curve with RP \＃22．

The curve turns counter－clockwise，with a 40 foot radius．

Parallel to the center line．

Solve three points beginning with $\# 28$ ．

PC

PT

| \#29 | | |
| :---: | :---: | :---: |
| | | 1789.69 H |
| | | 7699.79E |
| delte | HE | $50^{\circ} 2^{\prime} 4^{\prime \prime}$ |
| Ere | | 13.22 |
| tan | | 7.97 |
| mhard: | | |
| $2 \mathrm{E}-30$ | HE | $75^{97} 5^{1}$ |
| 28-30 | | $12 \cdot 7$ |
| $\mathrm{tadig}=1$ | | |
| 28-99 | EE | 3917 $7^{\prime \prime}$ |
| 2 x - | | $15 \cdot 90$ |
| $29-30$ | HE | $1^{\circ} 11^{\prime} \mathbf{F}^{\prime \prime}$ |
| 2930 | | 15.90 |

RP

RTN

```
தtart,Lime,Gurue &G%G% %
```

L

```
#马# T0 # ?
```

24 RTN

HOFTE [GEFT] HHGLE 3E\& Z4 ?

RTN

```
HOFPE E:UEFT] [ISTHHCE 3G&24%
```

| 30-24 | $E \mathrm{E}$ | 780483 |
| :---: | :---: | :---: |
| 39-24 | | 117: 57 |
| \#24 | | |
| | | 1781.59 |
| | | 日617:95 E |
| | | 4 EE 0 HH |
| \#24 TO \# | | |

Example 6: Subdivision

Purpose: Subdivide the parcel as shown.

LOT $1 \quad 75$ foot frontage；west boundary is perpendicular to the street．
LOT 2 The west boundary is perpendicular to the south parcel boundary（12－15）and radial to the cul－de－sac．

LOT 3 The northwest lot boundary is radial to the cul－de－sac，and the lot has a 40 foot front－ age as measured on the curve．

LOT 4 The northeast lot line is radial to the cul－de－sac and extends to the northwest corner of the parcel（pt \＃13）．

LOT 5 The lot has a 50 foot frontage measured along the chord，and the east boundary is radial to the cul－de－sac．

LOTS $6 \& 7$ Point \＃40 is the midpoint between \＃39 and \＃14，and the common lot line is perpendicu－ lar to the street．

Lot 1

Input／Result

```
#こ4 T0 # ?
```

31 RTN

```
HORIZ [:VERT] AHGLE 24*31 ?
```

21まこ RTN

```
HOFIZ [:UEFT] [ISTAHEE こ4末\Xi1?
```

75 RTN

```
24-31 H& 7B口4日'3"
24-31 75, 回星
# 3 1
    1796.15 H
    7944,37 E
    4E,GG H
```

\#З1 T日 \#

+ RTN

Solve point \＃31． 243 would also work．

Frontage $=75$ feet．

Increment to \＃32．

```
HOFIE [,UEFT] HHGLE SN&ZO
```

```
+9RRTN
```

HOFIZ [: UEFT] [ISTAHEE З1末ЗZ?

RTN

```
zrad <404N # ?
```

```
15 RTN
```

```
#15
    1693.49 N
    7998.54 E
    4EE.0G H
```

HOFIZ HHGLE 15 末Z ?
15 ± 12 RTN

| 31－32 | 5 | $11^{\circ} 11^{\prime} 7^{\prime \prime}$ |
| :---: | :---: | :---: |
| 31－32 | | 109， 9.3 |
| $15-32$ | H6 | 79×113 |
| $15-32$ | | 75： \mathbf{T}_{1} |
| \＃ここ | | |
| | | 1697．13 H |
| | | 7924.79 E |

Lot 2

Input／Result

\square
\# З TG \# ?

+ RTN
HOETE [:UEFT] HHGLE ЗZ末马.

Auto－increment to point \＃33．
$15 \$ 12$ RTN

```
HOFT [:UEFT] DIETHHEE З2*马S ?
```


RTN

```
#nd kNOHH # ?
```

2 RTN

```
#z
    1BSE,2E H
    7EG4,97E
    46, 99 H
```


$15 \$ 12-5 \mathrm{RTN}$

```
32-3 H4 F5%113
#2% E马,49
2-33 5% 10",54,
2233 121.9马
#3%
1712,32 H
7842.69 E
#S3 T0 # ?
```

+ RTN
HORTE : UEET] AHGLE उZ末马4 ?

उके FTN

HOTE E UEET DISTHHEE 3S末34 ？

उ＋2玉－46 RTN

Unknown，so bypass．

Cul－de－sac radial point．

Perpendicular to the boundary．

Auto－increment to point \＃34．

Radial to cul－de－sac．

Computed distance minus 40 foot radius．

```
33-34 NE 10口2g'47"
33-34 81.98
#34
    1792.93 N
    7857.6日 E
```


Lot 3

Input/Result

```
#34 T0 # ?
```


RTN

C

A

```
    HEL LEHGTH '
```

46 RTN

```
FF%
```

2 RTN

```
    #4 TO # ?
```

35 RTN

RP of cul-de-sac.
Bypass to return to the mit menu.

Select the Curve routine.

Traverse on the curve with a known arc distance.

40 foot frontage.

Solve point \#35.

| \＃35 | | |
| :---: | :---: | :---: |
| | | 1817．13 H |
| | | |
| \＃ 2 | | |
| | | 1832． S^{6} |
| | | TEE4，ETE |
| | | $4 \mathrm{SE.0GH}$ |
| delta | HF | $57^{\circ} 1745$ |
| $\cdots r^{\text {¢ }}$ | | 4日． 96 |
| t．引r！ | | $21: 85$ |
| Ehord： | | |
| 34－35 | H4 | |
| 34－35 | | 38．35 |
| | | |
| 34－22 | HE | 10929 $\mathbf{6}^{\prime \prime}$ |
| 34－22 | | 4日，ब区 |
| $22-35$ | 54 | E7046＇32 |
| $22-35$ | | 4日，ब6 |
| | | |

RTN

L

```
#35 T0 # %
```

+ RTN
HOFIZ [:UEFT] AHGLE ZS末3E
$2 ま 35$ RTN
HOFIZ [: UEFT] [ISTHHLE З5末ЗE ?

RTN

12 RTN

```
zha FHOMN # ?
```

```
zha FHOMN # ?
```

 RTN
 Exit the Curve routine．

Select the Lines routine．

Solve point \＃36 by a bearing－bearing intersection．

Radial bearing．

Unknown，so bypass．

| \＃ 12 | | |
| :---: | :---: | :---: |
| | 1735.68 | H |
| | 771E．46 | E |
| | 5 EE ． 8 E | H |
| HORIZ | ご3日 | |

12 13 RTN

```
35-36 5M E7"4E'32"
35-36 109.36
12-36 HE 14口z1'17"
12-36 41.41
#36
    1775.79 H
    772E.67 E
```


Lot 4

Input／Result

```
#ЗE TO # ?
```

Inverse to point \＃13 to establish the next starting point．

```
HOFIE [:UEFT] HHGLE ЗE$1马%
```


RTN

```
HOFIE [:UEFT] [ISTHHIE JG车Z ?
```


RTN

```
36-13 HE 14'21'17"
36-13 141.5%
#13
    1913:23 4
    7E1:84 E
    50E.11 H
#13 TO # ?
```

37 RTN
Traverse to point \＃37．

```
HOETE [UEFTG FHGLE 13SZ? ?
```

$1 \xi+2$ RTN

```
HOTZ [:UEFTT [TETHHCE 1J$马T ?
```

$13+224 \mathrm{RTN}$

```
#3% 5E 510501E
13-37 91.04
#3
1556:95 サ
753,42 E
    56E:11H
```


Lot 5

Input/Result

```
#?% T0 # ?
```


RTN

C

C

MHE LEHCTH ?

5 RTN

Radial to the cul-de-sac.

Computed distance minus 40 foot radius.

Bypass to exit the Lines routine.

Select the Curve routine.

50 foot frontage is measured along the chord.

```
EFF
```

2 RTN

```
# \Xi7 !0 # %
```

3 B RTN

| \＃38 | | |
| :---: | :---: | :---: |
| | | 186E．JEH |
| | | TEGE． 11 E |
| \＃22 | | |
| | | 1日ゴこE H |
| | | TE64．日f E |
| | | 4 SE E H |
| むこ1t． | HF | ア7ロ1＇5＂ |
| ヨr゙ロ | | 54.91 |
| ち．\ddagger 「 | | 32， 9 |
| ロトロサリ： | | |
| 37－39 | HE | 76可可 |
| 37－38 | | 59，90 |
| | | |
| $37-22$ | EE | $51^{5} 518{ }^{\prime \prime}$ |
| 37－22 | | 4日，区0 |
| 22－38 | HE | 25031＇34＇ |
| $22-38$ | | 4日，区区 |
| | | |

RTN
Exit the Curve routine．

```
StgrtaLire, Eurue &GLyG% ?
```

L
\＃З TV \＃？

+ RTN
Select the Lines routine．

Increment to point \＃39．

```
HOFIZ [:UEFT] HHGLE SB&SG ?
```

$2 ま 马 \mathrm{RTN}$

HOFIZ［：UEFT］［ISTHHLE उB末马G ？

RTN

```
玉आぁ kHDH| # ?
```

13 RTN
\＃ 13
1913.23 H

77E1．84E
5 56．11 H
HORIZ HHGLE 13 末3 ？

13 本14 RTN

Lot 6 and 7

Input／Result

```
## T0 # %
```

46 RTN

```
3B-39 NE 25031.34'
```

3B-39 NE 25031.34'
38-39 75.28
38-39 75.28
13-39 NE E1024'44"
13-39 NE E1024'44"
13-39 154.44
13-39 154.44
\#39
\#39
1936:29 H
1936:29 H
7914.55 E

```
    7914.55 E
```

```
HOEIZ [:UEFT] AHGLE 3g&4Q ?
```

HORIZ［：UERT］HHGLE 3G末4日 ？

Radial．

Unknown．

Point on north parcel boundary．

Intersect with the boundary．

Point \＃40 is located on the north boundary．．．

```
HOFIZ [:UEFT] [ISTHHOE उG$4G ?
```

3514． Z RTN

```
39-40 HE E1口24,44:
39-40 E9.95
#40
194E,7EH
    7983.61 E
#4日 TG # ?
```

41 RTN

```
HOFIZ [:UEFT] HHGLE 4G:41?
```

```
14:15 RTN
```

HOFIE [:UEFT] [ISTHHCE 4日末4 ?
RTN

```
玉rad लHOMH # ?
```

RTN

```
#3
    1820:83H
    8Q5:71 E
        48E.99 H
```

HOFIE FHGLE ZZ末41 \%

- 1 Q R RTN

```
4041 54 11011'27!
40-41 115,33
##41 H| TE,4E'3'
2-41 E5,7马
#41
    1533.59 H
    791, EE E
```

The line between lots 6 and 7 is parallel to the east parcel boundary．

Unknown．

ES马 is also valid．

Example 7: Lot Summary

Purpose: Compute the areas of lots 1 and 2.

Input/Result

```
#41 TO # ?
```

31 RTN

HTETE E:GETI FHGLE $41 \$ 31 \%$

RTN

HOETE [: UEET] DISTHACE $41+31 ?$

RTN

Inverse back to \#31 to establish the next starting point.

RTN

RTN

T

```
#31 T\ # ? [:THF|] ?
```

32 RTN

```
31-32 S昨 11品1127"
31-32 106.93
#32
    1697.13 H
    7924.79 E
    #ここ T口 # % [!THF|] ?
```

15 RTN

Exit the Lines routine．

Skip to the next menu．

Select the Traverse Reprint function．

Traverse around Lot 1.
31－32－15－24－31．

31 RTN

```
24-31 H4 F8,4E'33"
24-31 75.0日
#31
            1796.15 H
            7944:37E
                            4G.69 H
```

\# 31 TG \# \because [:THFU]

RTN

```
=9 ¢ 7534.90
\XiOres 0,17
Fgdigl,Trघ\vartheta,EXit धF%TEE %
```

T

```
#\1 TO # 饣 [:THFU] ?
```

32. 4 RTN

You must return to the starting point.

Make no entry to close.

Begin Lot 2.

Automatically inverses between 31-32-33-34.

| 31－32 | 54 | $1^{\circ} 11^{\prime} 7^{\prime \prime}$ | |
|---|---|---|---|
| 31－32 | | 16区： 9 |
| \＃З2 | | |
| | | | 1697．13 H |
| | | 7924．79 E |
| 32－3 | $1+4$ | 790313 |
| 32－33 | | 83.49 |
| \＃ 3.3 | | |
| | | 1712．32 H |
| | | $7842.69 E$ |
| 33－34 | HE | 10口29＇47＂ |
| 33－34 | | E1： 98 |
| \＃ 3.4 | | |
| | | 1792．93 H |
| | | T857，E6E |
| \＃ 3.4 T | ［ | HFU］\square^{\prime} |

$-玉 2 \mathrm{RTN}$

F＇T

2 E RTN

```
#こを
    18日1,3区 H
            7890.20E
#こ
            183z.26 H
            TG4,G7 E
        4E.EG H
HEltヨ FL 4904E'04"
ヨr゙! 34:74
t.छr! 18,5.5
ロケロザ』:
34-28 HE 75035:45'1
34-28 3.66
r゙ヨ山iヨlミ:
34-22 HE 10口z口'47'
34-22 40.0日
2-2G SE 3G口17'17"
2-2g 40, 0®
#2马 T日 # ? [:THF|| ?
```

Use a negative radial point to flag the curve．

Point of tangency．

Radial point of curb return．

```
FT '?
```

3 RTN

```
#30
    1804,41 H
#29
    1789.69 H
    789.70 E
HElt. AF 5G口ze'44"
\Xi!゙! 13,2こ
サシ! F.07
EHotd:
29-30 HE F5口7'65"
28-30 12.79
rシdigl=:
2E-29 SE 39017'17"
29-29 15.00
29-30 HE 11'11127"
29-30 15.00
#马@ TO # ? [!THFU] '?
```

31 RTN

```
30-31 SE F9,48'33"
30-31 42.57
#31
    1796.15 H
    7944.37 E
    4E,09 H
```

\#31 TO \# ? [:THFU] ?

RTN

```
E4 f 5041.92
シェ゙ES 0.1S
Fadigl,Trघध,E×it धF%TEE ?
```

Point of tangency．

Return to the starting point．

Close the figure to print the area．

Example 8：Radial Stakeout

Purpose：From point \＃22（center of the cul－de－sac），compute and print the staking data for all solved points．

Input／Result

Fadiヨl，Tr ヨu，Exit \＆FT，

RTN

S

2 RTN

```
Stヨrt,Lime,GutuE SGLG%
```

```
Stヨrt,Lime,GutuE SGLG%
```

```
FFOH # %
```

```
FFOH # %
```

Skip to the next menu．

Select the Start function to establish the in－ strument point and backsight．

```
#z
    1B32.26H
    7E4.87 E
    486.09 H
```

ERCKEIGHT ?

2． 21 RTN

```
b: E: SE FG口4日'33'
HHGLES HLE,FEl &HFF% O
```


R

```
Gtgrt,Line,Gurue &GLG% ?
```


RTN

R

```
#z TO # % [:THFU] ?
```

31：41 RTN

```
2-31 [IL 1E6045'34"
22-31 ET:32
#31
    1796.15H
    7944,37E
        4E.09 H
2-32
2-32
#32
    1E97.13 H
    7924.79E
22-33 [IL 90口42'39"
22-33 121.98
#33
```

Backsight down the roadway center line．

Select relative angles（deflections）for output．

Next menu．

Select the Radial Stakeout routine．

Staking data for points \＃31 thru \＃41，inclusive， will be printed．

All distances are from point \＃22 and deflection angles are turned from the street center line．

Appendix A

Owner's Information

Contents

Maintenance 98
Limited One-Year Warranty 98
What We Will Do 98
What Is Not Covered 98
Warranty for Consumer Transactions in the United Kingdom 99
Obligation to Make Changes 99
Warranty Information 99
Service 100
Service Centers 100
Obtaining Repair Service in the United States 100
Obtaining Repair Service in Europe 101
International Service Information 102
Service Repair Charge 102
Service Warranty 102
Shipping Instructions 102
Further Information 103
Technical Assistance 103
Dealer and Product Information 103

Maintenance

The Surveying Pac module does not require maintenance. However, there are several precautions, listed below, that you should observe.

CAUTIONS

- Do not place fingers, tools, or other objects into the plug-in ports. Damage to plug-in module contacts and the computer's internal circuitry may result.
- Turn off the computer (press SHIFT ATTN) before installing or removing a plug-in module.
- If a module jams when inserted into a port, it may be upside down. Attempting to force it further may result in damage to the computer or the module.
- Handle the plug-in modules very carefully while they are out of the computer. Do not insert any objects in the module connector socket. Always keep a blank module in the computer's port when a module is not installed. Failure to observe these cautions may result in damage to the module or the computer.

Limited One-Year Warranty

What We Will Do

The Surveying Pac is warranted by Hewlett-Packard against defects in materials and workmanship affecting electronic and mechanical performance, but not software content, for one year from the date of original purchase. If you sell your unit or give it as a gift, the warranty is transferred to the new owner and remains in effect for the original one-year period. During the warranty period, we will repair or, at our option, replace at no charge a product that proves to be defective, provided you return the product, shipping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy. ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or countries do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights that vary from state to state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be determined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard dealer or a Hewlett-Packard sales and service office. Should you be unable to contact them, please contact:

- In the United States:

Hewlett-Packard Company
Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330
Telephone: (503) 758-1010
Toll-Free Number: (800) 547-3400 (except in Oregon, Hawaii, and Alaska)

- In Europe:

Hewlett-Packard S.A.
150, route du Nant-d'Avril
P.O. Box CH-1217 Meyrin 2

Geneva
Switzerland
Telephone: (022) 838111
Note: Do not send units to this address for repair.

- In other countries:

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, California 94304
U.S.A.

Telephone: (415) 857-1501
Note: Do not send units to this address for repair.

Service

Service Centers

Hewlett-Packard maintains service centers in most major countries throughout the world. You may have your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit is under warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt at any service center. This is an average time and could vary depending upon the time of year and the work load at the service center. The total time you are without your unit will depend largely on the shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is located in Corvallis, Oregon:

Hewlett-Packard Company
Service Department P.O. Box 999
Corvallis, Oregon 97339, U.S.A.
or
1030 N.E. Circle Blvd.
Corvallis, Oregon 97330, U.S.A.
Telephone: (503) 757-2000

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer where you purchased your unit.

| AUSTRIA | FRANCE | NORWAY |
| :---: | :---: | :---: |
| HEWLETT-PACKARD Ges.m.b.H. | HEWLETT-PACKARD FRANCE | HEWLETT-PACKARD NORGE A/S |
| Kleinrechner-Service | Division Informatique Personnelle | P.O. Box 34 |
| Wagramerstrasse-Lieblgasse 1 | S.A.V. Calculateurs de Poche | Oesterndalen 18 |
| A-1220 Wien (Vienna) | F-91947 Les Ulis Cedex | N-1345 Oesteraas (Oslo) |
| Telephone: (0222) 236511 | Telephone: (6) 9077825 | Telephone: (2) 171180 |
| | | SPAIN |
| BELGIUM | GERMANY | HEWLETT-PACKARD ESPANOLA S.A. |
| HEWLETT-PACKARD BELGIUM SA/NV | HEWLETT-PACKARD GmbH | Calle Jerez 3 |
| Woluwedal 100 | Kleinrechner-Service | E-Madrid 16 |
| B-1200 Brussels | Vertriebszentrale | Telephone: (1) 4582600 |
| Telephone: (02) 7623200 | Berner Strasse 117 | SWEDEN |
| | Postfach 560140 | HEWLETT-PACKARD SVERIGE AB |
| | D-6000 Frankfurt 56 | Skalholtsgatan 9, Kista |
| DENMARK | Telephone: (611) 50041 | $\text { Box } 19$ |
| HEWLETT-PACKARD A/S | | S-163 93 Spanga (Stockholm) |
| Datavej 52 | | Telephone: (08) 7502000 |
| DK-3460 Birkerod (Copenhagen) | ITALY | Telephone. (08) 75020 |
| Telephone: (02) 816640 | HEWLETT-PACKARD ITALIANA S.P.A. | SWITZERLAND |
| | Casella postale 3645 (Milano) | HEWLETT-PACKARD (SCHWEIZ) AG |
| | Via G. Di Vittorio, 9 | Kleinrechner-Service |
| EASTERN EUROPE
 Refer to the address listed under Austria. | I-20063 Cernusco Sul Naviglio (Milan) | Allmend 2 |
| | Telephone: (2) 903691 | CH-8967 Widen |
| | | Telephone: (057) 312111 |
| | NETHERLANDS | UNITED KINGDOM |
| FINLAND | HEWLETT-PACKARD NEDERLAND B.V. | HEWLETT-PACKARD Ltd |
| HEWLETT-PACKARD OY | Van Heuven Goedhartlaan 121 | King Street Lane |
| Revontulentie 7 | NL-1181 KK Amstelveen (Amsterdam) | GB-Winnersh, Wokingham |
| SF-02100 Espoo 10 (Helsinki) | P.O. Box 667 | Berkshire RG11 5AR |
| Telephone: (90) 4550211 | Telephone: (020) 472021 | Telephone: (0734) 784774 |

International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is available in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local Hewlett-Packard service center to see if service is available for it. If service is unavailable, please ship the unit to the address listed above under "Obtaining Repair Service in the United States." A list of service centers for other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and materials. In the United States, the full charge is subject to the customer's local sales tax.

Computer products damaged by accident or misuse are not covered by the fixed repair charge. In these situations, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period of 90 days from date of service.

Shipping Instructions

Should your unit require service, return it with the following items:

- A completed Service Card, including a description of the problem.
- A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of purchase date should be packaged in adequate protective packaging to prevent in-transit damage. Such damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the shipment to the service center. The packaged unit should be shipped to the nearest Hewlett-Packard designated collection point or service center. Contact your dealer for assistance.

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery to the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-of-warranty repairs in the United States and some other countries, the unit is returned C.O.D. (covering shipping costs and the service charge).

Further Information

Service contracts are not available. Computer products circuitry and design are proprietary to HewlettPackard, and service manuals are not available to customers. Should other problems or questions arise regarding repairs, please call your nearest Hewlett-Packard service center.

Technical Assistance

The keystroke procedures and program material in this manual are supplied with the assumption that the user has a working knowledge of the concepts and terminology used. Hewlett-Packard's technical support is limited to explanations of operating procedures used in the manual and verification of answers given in the examples. Should you need further assistance, you may write to:

Hewlett-Packard
Portable Computer Division
Customer Support
1000 N.E. Circle Blvd.
Corvallis, OR 97330

Dealer and Product Information

For additional product information, refer to the accessory brochure that was included with your HP-75, contact your local Hewlett-Packard dealer, or call toll-free in the United States (800) 547-3400. In Oregon, Alaska, and Hawaii, call (503) 758-1010.

Appendix B

Error Conditions and Recovery

The Surveying Pac programs have been designed to trap errors without aborting program execution. All input values are checked for valid syntax and, if an error is found, the computer will beep, display a warning message (such as ingelid angle), then return the previous prompt. You can then enter the correct value.

Syntax errors commonly occur when a letter or symbol is entered when a number is expected. You can also get an error message when using unassigned point numbers to define a direction or distance, or entering a point number larger than the file size.

Incorrect use of commas is another common cause of problems. Commas are used to separate two or more input values. They should not be used as digit separators or radix symbols. For example, the number ten thousand should be entered as 16060 , and not 10.606.

The Coordinate file is continually and immediately updated as you work. If an error does occur that causes program execution to stop, you generally will have lost no more than a single point. The program can easily be restarted, and work continued at the point where the error occurred.

Appendix C
 Programs and Subprograms

Contents

Introduction 105
Subprogram If (Input Angle) 106
Subprogram IE (Input Bearing) 107
Subprogram I [I (Input Distance) 107
Subprogram IF (Input Points) 108
Subprogram EE (Bearing-Bearing Intersection) 108
Subprogram [I[I (Distance-Distance Intersection) 109
Subprogram E[1 (Bearing-Distance Intersection) 109
Subprogram (Output Angles) 110

Introduction

The following programs and subprograms are included in the Surveying Pac:

Programs

> SURUEY Initializes data file, calls main programs.

Subprograms

SUFU1 Contains File Management routines.
SUFUZ Contains Coordinate Geometry routines.

Utility Subprograms

IH \quad Decodes strings for angles (Input Angle).
IE Decodes strings for directions (Input Bearing).
II Decodes strings for distances (Input Distance).
IF Decodes strings for points (Input Points).
OH Outputs angular information (Output Angle).
EE Solves bearing-bearing intersections.
ED Solves bearing-distance intersections.
DI
Solves distance-distance intersections.
Note: When running the Surveying Pac programs, care should be taken to ensure that no other files with the same names exist in RAM or in another ROM.

The subprograms may be called by user-written programs. All the subprograms require that the coordinate and FAEAM files be open, and that the parameters in lines 1 to 7 of the FHRHM file be assigned as shown in appendix E. Both the input to the subprograms and the output from the subprograms are passed through the FHFAM file (the file that has been assigned Buffer \#99). Information on input and output variables for the utility subprograms follows.

Subprogram IF (Input Angle)

This subprogram accepts an input string and returns a numeric angle in decimal degrees.

```
Input to the subprogram:(from your program)
FRIHT \#99. A : A
CHLL 'IH'
```


Output from the subprogram:(to your program)

Comments:

月韦 is input string.

Comments:

F is the success flag.
If $F=1$, input was accepted.
If $F=-1$, input was bypassed.
If $\mathrm{F}=0$, input was invalid.
if is the angle in decimal degrees.

Subprogram IE（Input Bearing）

This subprogram accepts an input string and converts it to a numeric azimuth in decimal degrees．It will also reduce a vertical or zenith angle input and normalize the result．

Input to the subprogram：

FRINT \＃9g，日 Eも，こも ChLL＇IE＇

Output from the subprogram：
READ \＃99． 9 ：F：H：U

Comments：

E丰 is the string for the horizontal angle．Z末 is the string for the vertical or zenith angle．（If not used，enter a null string．）

Comments：

F is the success flag．
If $F=1$ ，input was accepted．
If $\mathrm{F}=-1$ ，input was bypassed．
If $F=0$ ，input was invalid．
H is the horizontal angle in decimal degrees．ψ is the vertical angle，measured from the horizontal plane．

Subprogram II（Input Distance）

This subprogram accepts an input string and returns a numeric distance．

Input to the subprogram：

FRIHT \＃99，日：［1丰，ロこも CALL＇I［1

Output from the subprogram：

Comments：

$\square 1 \ddagger$ is the horizontal or slope distance．पе己 is the vertical distance（null string if not required）．

Comments：

F is the success flag．
If $\mathrm{F}=1$ ，input was accepted．
If $\mathrm{F}=-1$ ，input was bypassed．
If $\mathrm{F}=0$ ，input was invalid．
$\square 1$ is the horizontal or slope distance．$\square 2$ is the vertical distance．

Subprogram IF（Input Points）

This subprogram accepts input strings for point numbers，and returns numeric values for the point numbers and signs．

Input to the subprogram：

```
FFIHT #GG, ब ; F1专,F己本
GHLL 'IF'
```


Output from the subprogram：

Comments：

F1 \ddagger and $\mathrm{F} 2 \ddagger$ are input strings for point num－ bers（either may be null）．

Comments：

F is the success flag．
If $\mathrm{F}=1$ ，input was accepted．
If $\mathrm{F}=0$ ，input was invalid．
F 1 is the point number of the first point．$F E$ is the point number of the second point． 51 is the sign of the first point． 52 is the sign of the second point．

Note： Fl or FE will equal 0 if a null string is entered． F 1 and F Z will always be positive or zero．

Subprogram BB（Bearing－Bearing Intersection）

This subprogram solves the intersection of two lines．

Input to the subprogram：

PRIHT \＃99，G：H1，E1，Hz，E2，H1，H2 ChLL＇EE＇

Output from the subprogram：

Comments：

H ：E 1 refer to the northing and easting of point \＃1．$H E, E Z$ refer to the northing and easting of point \＃2． H 1 refers to the azimuth from point \＃1．H2 refers to the azimuth from point \＃2．

Comments：

F is the success flag．
If $\mathrm{F}=0$ ，solution is valid．
If $\mathrm{F}=1$ ，solution is impossible．
H, E refer to the northing and easting of the intersection point．

Subprogram DD (Distance-Distance Intersection)

This subprogram solves the intersections of two circles.

Input to the subprogram:

FEIHT \#Se, G: H1, E1, HE, EZ, प1, पe CHLL '日G'

Comments:

H1.E1 refer to the northing and easting of point \#1. $\mathrm{HE}, \mathrm{E} \mathrm{E}$ refer to the northing and easting of point \#2. refers to the distance from point \#1. पe refers to the distance from point \#2.

Comments:

F is the success flag.
If $\mathrm{F}=0$, solution is valid.
If $\mathrm{F}=1$, solution is impossible.
H1, E1 refer to the northing and easting of the first solution. $\mathrm{HE}, \mathrm{E}=$ refer to the northing and easting of the second solution.

Subprogram BD (Bearing-Distance Intersection)

This subprogram solves the intersections between a line and circle.

Input to the subprogram:

FFIHT \# 99, $: H 1, E 1, H 2, E 2, H 1, \square 2$ GHLL 'ED'

Comments:

H1, E1 refer to the northing and easting of point \#1. $\mathrm{HE}, \mathrm{E} \mathrm{E}$ refer to the northing and easting of point \#2. 日1. refers to the azimuth from point \#1. Q e refers to the distance from point \#2.

Comments:

F is the success flag.
If $\mathrm{F}=0$, solution is valid.
If $\mathrm{F}=1$, solution is impossible.
H1.E1 refer to the northing and easting of the first solution. $H E, E=$ refer to the northing and easting of the second solution.

Subprogram OA (Output Angles)

This subprogram prints angles using selected units and formats.

Input to the subprogram:

FRINT \#99, 日: H, HO, M, S
CHLL 'OH'

Comments:

A refers to azimuth in degrees. Ho refers to back-sight azimuth.
if refers to the output mode.
$\mathrm{M}=1$ is bearing.
$\mathrm{M}=2$ is north azimuth.
$\mathrm{M}=3$ is south azimuth.
$\mathrm{M}=4$ is deflection.
$\mathrm{M}=5$ is angle right or left.
Es refers to the string for description of the angle. It has a maximum length of 7 characters. (It is used in the Surveying Pac for showing the end points of a line.)

Comments:

Output from the subprogram:

All output is to the selected printer.

Appendix D

Redefining Keys

It is handy to redefine some of the keys on the HP-75 keyboard when running the Surveying Pac programs. The following layout is suggested:

To aid in entering bearings, SHIFT T, SHIFT Y, SHIFT G, and SHIFT H are redefined as $H A, N E$, $S A$, and $S E$ respectively. Λ is redefined as $+15 \boxed{0}$ (or $+2 Q$ if you are using grads) to simplify entering deflections or reversing directions. 1 and @ are redefined to +90 and $-90(+100$ or -100 in grads) for turning perpendicular angles. Other keys are redefined to provide the familiar ten-key numeric keypad. (To get the numeric keypad, press CTL LOCK.)

To make these key redefinitions, type the following commands:

This creates a \leftarrow 토ミ file, which redefines your keyboard. To disable this file, type

When you disable the surveying key definitions, all keys return to their original definitions, and the surveying key definitions are saved in a file named $k=\operatorname{sir} v$.

Note: If you have another $k= \pm \equiv$ file in memory, you must purge it or rename it before creating the surveying definitions.

Appendix E

The Coordinate and Data Files

Coordinate File Format

The coordinate file is created in the GUFUEY program and is assigned to file \#1. In addition to the coordinates, it contains the variables for units and output modes. Line 0 contains the following:
FO The number of points.
4 Angular units (where 1 refers to degrees and \geq to grads).
H1 The direction mode in absolute angles (where 1 refers to bearings, 2 to north azimuths, and 3 to south azimuths).

HE The relative angle mode (where 4 refers to deflections and 5 to angles right/left).
F1 The number of fractional digits on angles.
FE The number of fractional digits on coordinates.
F3 The number of fractional digits on distances.
Lines 1 to FO contain the H, E, and H coordinates. (H , E or $\mathrm{H}=-999999$ when initialized or unassigned.)

FhEAM File Format

FHRAM is a data file which is used to pass parameters between programs and subprograms. It is initialized in SURUE Y and assigned file \#99. It may be purged after work with the Surveying Pac programs is complete, since it contains only temporary data. It will be recreated next time SURUEY is run.

The file lines and their descriptions are as follows:
Line 0 Used to pass variables between the main program and a called subprogram.
Line 1 The currently occupied point.
Line 2 The backsight azimuth.
Line 3 Angle modes H 1 and HE (same as coordinate file).
Line 4 Angle units, last fractional digit (U, 1G×Fi).
Line 5 The image string for angles.
Line 6 The image string for coordinates.
Line 7 The image string for distances.

Appendix F

Glossary

angle balance: The process of distributing the angular error in a traverse by applying a correction to the direction of each leg.
arc: The curved portion of a circular segment.
azimuth: The direction of a line defined by the clockwise angle between a meridian and the line.

B

backsight: A sight or observation taken to a point, usually in the rear, to establish a reference direction from which to measure horizontal angles.
bearing: The direction of a line defined by the quadrant and acute angle (clockwise or counterclockwise) between a meridian and the line.

C
central angle: See delta.
chord: The straight line from the PC to PT of a curve.

D

delta: The central angle of a curve; the angle between radials to the PC and PT of a curve, or between the tangents.

E

easting: The distance of a point from the origin as measured parallel to the X -axis.
elevation: The vertical distance of a point above or below an arbitrarily assumed level surface or datum.
foresight: A sight taken to a point along a line whose direction is to be determined or established. G
grad: A unit of angular measurement equal to one four-hundredth of a circle. H
horizontal angle: An angle formed by the intersection of two lines in a horizontal plane.
horizontal distance: The distance between two points as measured along the projection onto a horizontal plane.

I,J,K

inverse: An operation to determine the direction and length of a line between two points.

L
linear balance: A method for distributing the linear error of closure in a traverse by applying a correction to the length of each leg.

M

meridian: A fixed line of reference for measuring horizontal angles. N
northing: The distance of a point from the origin as measured parallel to the Y -axis. 0
origin: An arbitrary point with assigned coordinate values 0,0 which will serve as a reference for other points in the coordinate system.

P, Q

point of curvature (PC): The point where a circular curve begins. It also refers to "beginning of curve" and "tangent to curve."
point of tangency (PT): The point where a circular curve ends. It also refers to "end of curve" and "curve to tangent."
radial point (RP): The center point of a circular curve.
radius: The line extending from the center of a circle to the curve.

S
slope distance: The distance between two points as measured on a slope or grade.
T,U
tangent: A line which intersects a circular curve at a single point and is perpendicular to the radial at that point.
traverse: The operation to establish the location of a new point at a given distance and direction from another point.

Also, a series of straight lines connecting a succession of points along the route of a survey.
V,W,X,Y
vertical angle: An angle between two intersecting lines in a vertical plane. In surveying, a vertical angle is usually measured from a line on the horizontal plane.
vertical distance: The difference in elevation between two points.

Z
zenith angle: A vertical angle measured from a line perpendicular to the horizontal plane (as a plumb line).

Index

Page numbers in bold indicate primary reference; page numbers in regular type indicate secondary references. Index references to routines are followed by routine.

A
Angle balance, 28
Angles, 15
deflection, 19
entering, 15-16
in degrees, 15
in grads, 15
relative, 14, 32
Angles left,right 18
entering, 18, 61
measuring, 18
Arc length, $31,45,46$
Assigning coordinates, 21, 57-58
Auto-increment, 21, 58, See also Point numbers
Azimuths, 17
entering, 17
measuring, 17

B

$\mathrm{EE}, 108$, See also Bearing-Bearing intersection
ED, 109, See also Bearing-Distance intersection
Backsight, 31, 32
establishing, 60
Balance traverse routines, 27-30, 65-66
Bearing-Bearing intersection, 33, 40, 82
Bearing-Distance intersection, 33, 41-42
Bearings, 16
entering, 16
measuring, 16
Bowditch rule, 28, 30

C

Cautions, 9,98
Central angle, $31,45,47$
Chord length, $31,45,46$
Clear coordinates (routine), 24
Cobo, 12, 31
selecting, 13
menu, 31
multiple solutions, 34, 42, 44

Compass rule. See Bowditch rule
Coordinate files, $10,12,14$
creating, $10,14,56-57$
copying, 14
format of, 112
making room for, 14
Coordinate geometry, 12, 31, See also
Coordinates,
assigning, to a point, 21, 57-58
clearing (routine), $\mathbf{2 4}$
listing (routine), 24
scaling (routine), 27
entering and assigning (routine), 27
COFY, 14
Crandall's method, 28, 30
Curve traverse (routine), 45, 46-48
Curves routine, 31, 45, 73-76

D

Da, 109, See also Distance-Distance intersection
Data entry, 15, 16-21, 33-34
by mathematical expressions for angles, 15
by mathematical expressions for distances, 20
for a traverse, 60-62
Dealer information, 103
Deflection angles, 19
DELAY, 10, 21
Delta. See Central angle
Directions, 16
defining, for entry, 20
entering, 16-20
Distance-Bearing intersection, 42
Distance-Distance intersection, 33, 44
Distances, entering, 20
Duplicating points (routine), 25, 64-65

E

Elevation
adjustment, 29
input, 15, 21, 37, 66

Enter and assign（routine） 27
Error conditions， 104
Exiting the Surveying Pac， 12
F
FILE， 12
selecting， 13
See also File management program
File management program，12， 23
routines，24－30

I
I \mathcal{F}（Input Angle）， 106
IE（Input Bearing）， 107
II（Input Distance）， 107
IF（Input Points）， 108
Input data．See Data entry
Input and output options，14－15
angular units， 14
directions，14－15
Inscribe curve（routine），45，48－51
Intersection
of two lines，33， 40
of a line and a circle，33，41－43
of two circles，33， 44
Inverse，33，39－40

K－L－M

にもりミ， 111
Keys，redefining， 111
Lines routine，31，33，35，70－71
List coordinates（routine）， 24
Menus， 13
accessing，13，23－24
0
OH（Output Angles）， 110
Occupied point（p1），31，32，38，44，46， 53 establishing， 60
Output，printed， 21
P
p1．See Occupied point
P．C．（point of curvature），31， 45
P．T．（point of tangency），31， 45
FHEAM，12，112－113
Point numbers，14， 21
Printed output， 21
Product information， 103
Program files， 13
Programs， 105

R

R．P．（radial point），31， 45
Radial stakeout（routine），51－52，94－95
radi i unequal， 53
Redefining keys， 111
Relative angles，14， 32
Repair service，100－102
Rotating points（routine）， 25

S

Scale coordinates（routine）， $\mathbf{2 7}$
Start routine，31，32， 70
Sideshot，33，38－39
Slope distances， 36
Stakeout．See Radial stakeout
Subprograms， 105
SURU1， 13
surve， 13
SURUS，12， 13
selecting， 13
SURUET，10， 13
running， 10

T－U

Tangent length，31，45， 47
Technical assistance， 103
Translating points（routine）， 26
Traverse，29，33，36－38，59－63
adjustment（routine），29－30
balance，27－30，65－66
curve（routine），45，46－48
reprint（routine），52－53，67－69，89－90
USER， 12
V－W
Vertical distances， 37
Warranty information，98－100
How To Use This Manual (page 7)
1: Getting Started (page 9)
2: File Management (page 23)
3: Coordinate Geometry (page 31)
4: Examples (page 55)
A: Owner's Information (page 97)
B: Error Conditions and Recovery (page 104)
C: Programs and Subprograms (page 105)
D: Redefining Keys (page 111)
E: The Coordinate and Data Files (page 112)
F: Glossary (page 114)
Index (page 117)

[^0]: * If the duration of the displays is too short, you can prolong it by adjusting the IELAY. The ロELFY command is explained under "Printed Output," page 21.

[^1]: * If you need more room, you can make more memory available by purging files currently in memory. You might want to copy the files to cards or a cassette first. Refer to "Copying Files to Cards" in section 3, for copying to cards and "Mass Storage Operations" in section 9, for copying to a cassette in the HP-75 Owner's Manual.

