HEWLETT-PACKARD

HP-75

USERS' LIBRARY SOLUTIONS Finance

NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

1. BREAKEVEN ANALYSIS 1 by Tom Brundage and Bill 01sen, Real Estate Microcomputing Systems, Inc. This program will accept as input fixed costs, sales price, variable costs, number of units sold, and profits. Given any four of these, it will compute the fifth. Given fixed costs, variable costs, unit price and units sold, it will compute the operating leverage.
2. SECURITIES EARNINGS 10
by Tom Brundage and Bill 01sen, Real Estate Microcomputing Systems, Inc.
Given an investment in a stock, find the number of years of constant growth in earnings per share to justify the purchase price of the stock.
3. NOTES 20
by Tom Brundage and Bill Olsen, Real Estate Microcomputing Systems, Inc.
This program computes the discount amount and the net cost of a note. The input data are the face (future) value of the notes, the discount rate as a percentage, and the number of days to maturity. The program assumes a 360 -day calendar.
4. BOND PRICE AND YIELD 26
by Tom Brundage and Bill Olsen, Real Estate Microcomputing Systems, Inc.This program uses a 360 -day calendar to compute either the yield on abond or the price of the bond. Input data are settlement date, redemp-tion date, annual coupon rate, redemption value, and yield or bond pricefor semi-annual bonds.
5. DEPRECIATION CALCULATOR 34
by Tom Brundage and Bill 01sen, Real Estate Microcomputing Systems, Inc.This program acts as a depreciation calculator for investments usingstraight line, sum-of-years-digits, declining balance, or ACRS depre-ciation schedules.
6. LEASE VERSUS PURCHASE 43
by Tom Brundage and Bill 01sen, Real Estate Microcomputing Systems, Inc. This program uses a simple model to estimate the advantage of leasing versus purchasing a capital asset.

TABLE OF CONTENTS (continued)
7. PRESENT VALUE OF A GEOMETRIC SERIES 54 by Tom Brundage and Bill 01 sen, Real Estate Microcomputing Systems, Inc. This program computes the present value of a series of payments that grow at a geometric rate. Adjustments are made for inflation.
8. PRESENT VALUE OF AN ARITHMETIC GRADIENT SERIES 60 by Tom Brundage and Bill 01 sen, Real Estate Microcomputing Systems, Inc. This program computes the present value of a series of cash flows that grow at a steady rate over a finite number of periods.

PROGRAM DESCRIPTION

BREAKEVEN ANALYSIS

Breakeven analysis is basically a technique for analyzing the relationships among fixed costs, variable costs, and income. Until the breakeven point is reached at the intersection of the total income and total cost lines, the producer operates at a loss. After the breakeven point, each unit produced and sold makes a profit. Breakeven analysis may be represented as follows:

The variables are: fixed costs (F), sales price per unit (P), variable costs per unit (V), number of units sold (U), and gross profit (GP). One can readily evaluate GP or U or P given the other four variables. To calculate the breakeven volume, simply let the gross profit equal zero and calculate the number of units sold (U).

To calculate the breakeven volume:

1. Key in the fixed costs.
2. Key in the sales price.
3. Key in the variable costs.
4. Enter the profits as zero.

The program will now compute the number of units, and when you review the data, the answer will be included as part of the items displayed.

To calculate the gross profit at a given volume:

1. Key in the fixed costs.
2. Key in the sales price.
3. Key in the variable costs.
4. Key in the number of units sold.

The sales volume may be computed by:

1. Key in the fixed costs.
2. Key in the sales price.
3. Key in the variable costs.
4. Key in the profits desired.

To calculate the required sales price to achieve a given gross profit at a specified sales volume:

1. Key in the fixed costs.
2. Key in gross profits desired.
3. Key in the specified sales volume.
4. Key in the variable costs.

The program will compute the sales price required to achieve the specified gross profits at the chosen sales volume.

Operating Leverage

The degree of operating leverage (OL) at a point is defined as the ratio of the percentage change in net operating income to the percentage change in units sold. The greatest degree of operating leverage is found near the breakeven point where a small change in sales may produce a very large increase in profits. Likewise, firms with a small degree of operating leverage are operating farther from the breakeven point, and they are relatively insensitive to changes in sales volume.

The necessary inputs to calculate the degree of operating leverage are fixed costs (F), sales price per unit (P), variable costs per unit (V), and number of units (U).

The program uses the breakeven routine to enter the data, and to compute the variables needed for the operating leverage.

Jon Hirsh has a new gadget that he is interested in selling. He wants to know the number of units he needs to sell to break even (profits $=$ zero) with the following facts known:

$$
\begin{array}{rr}
\text { fixed costs : } & \$ 20,000.00 \\
\text { sales price : } & 15.00 \\
\text { variable costs : } & 9.81 \\
\text { profits : } & 0.00
\end{array}
$$

Given this information, what is his leverage at 4000 units?
(Answer : 3854 units) (Answer : leverage $=27.32$)

STEP	INSTRUCTIONS	DISPLAY	INPUT		
1	Run program	\$\$ BREAKEVEN ANALYSIS \$\$			
$1 a$	Select Breakeven analysis				
	function	PRESS Breakeven OR Leverage	B [RTN]		
2	Enter fixed costs figure	Fixed Costs =	20000 [RTN]		
3	Enter sales price figure	Sales Price =	15 [RTN]		
4	Enter variable costs	Variable Costs =	9.81 [RTN]		
5	Skip number of units for now	Number of Units =	[RTN]		
6	Enter breakeven profits	Profits =	[RTN]		
7	View answers:		[RTN]		
	Fixed costs:	Fixed Costs 20000.00	[RTN]		
	Sales price:	Sales Price 15.00	[RTN]		
	Variable costs:	Variable Costs 9.81	[RTN]		
	Number of units:	Number of Units 3853.56	Profits 0		
	Profits:	Rerun for leverage computation	Run again, View again, or End?	$]$	[RTN]
:---					

STEP	INSTRUCTIONS	DISPLAY	INPUT
9	Perform leverage analysis	PRESS Breakeven OR Leverage	L [RTN]
10	Enter the 4000 units sold	Number of Units sold	4000 [RTN]
11	View the parameters and the		
	answers next:		
	Fixed costs:	Fixed Costs 20000.00	[RTN]
	Sales price:	Sales Price 15.00	[RTN]
	Number of units:	Variable Costs 9.81	[RTN]
	Profits	Pumber of Units 4000.00	[RTN]
	Leverage:	LRTN]	
12	End the program	Run again, View again, or End?	E [RTN]

USER INSTRUCTIONS

NAME	DESCRIPTION	NAME	DESCRIPTION
$V(1)$	Fixed costs	C	Input counter (0 $\leq C \leq 4)$
$V(2)$	Sales price	N	Formula pointer
$V(3)$	Variable costs	X	Loop index
$V(4)$	Number of units sold	A\$	Output labels
$V(5)$	Profits	K\$	Single key response
$V(6)$	Leverage	$Q \$$	User interaction
		$X \$$	User interaction

NOTES AND REFERENCES

Note: When viewing either breakeven analysis of leverage answers, [RTN] goes to next answer, [BACK] steps to prior answer.

Reference: Breakeven Analysis, HP-12C Solutions Handbook, p. 54.

PROGRAM LISTING

```
    10 ! Breakeven analysis
    zo ! Computes units sold,
    30 ! variable costs,fixed costs,
    40 ! selling price, or profits
    50 ! given the other four.
    6 0 ! ~ ( - ~ )
    70 ! Given fixed costs,
    80 ! sales price, variable
    90 ! costs, and the number of
s00 ! units sold, it will
f.0 ! compute the operating
120 ! leverage.
1.30 !
140 ! Revision 11/01/82
1.50 !
160 DElay 2
170 DISF " 制 Breakeven analysis 制"
180 DIM A$l.96]
150 IMAGE 16a,2x,7d.dd
200 IMAGE 7d
2.0 FOR X=1 70 6 E U(X)=0 # NEXT X
220 !
20 ! Single, uppercase key in
```

240 DEFFFNK

260 FNK $\ddagger=$ UPRCれ (K \ddagger)
270 END DEF
230 !
290 ! Prompt and label strings

310 A来 17,3 ? $=$ "Gales Price "
320 A $\$[33,48]=$ "Variable Coste "
330 A生[49,64]="Number of Units"
340 A [$[65,80]=$ "Profits "
350 Ab[81,96]="Leverage "
360 !
370 ! Breakeven or Leverage
330 DISF "PRESS "; CHR制(194);"reakeven 0
R "; CHR $\$(204)$; "everage ";
390 INPUT ""; K\$
400 TF UFRC \ddagger (K $\$$) ="E" THEN 630
A10 TF UPRCD(K\$):\#"L" THEN 380
4\%0 ! Fall into leverage routine
A30 TNFUT "Number of units sold "; X制e
IfF X非="" THEN 430

450 ON ERROR GOTO 470
460 V(A) $=$ VAL (Xt) E OFF ERROR E GOTO 480
470 DISF "OOPE..."; © COTO 430
Ag0 IF U(4) 米(U(2)-V(3))非(1) THEN 510
490 DTSF "Leverage is infinite at "; U(A
5006070 1.1.0
$-5 i g n$ on message
－民eturns single uppercase character
－wnitialize prompts
－select program option
－leverage routime
－Tf user entere＇or then quit
－Test for infinite leverage

Ef0	$\begin{aligned} & v(6)=:=v(4) *(V(2)-v(3)) /(V(4) *(V(2)-v \\ & (3))-V(1)) \end{aligned}$	-Compute I Everage
520	! display leverage results	
530	FOR $\quad \times=1 . \operatorname{TO} 6$	
540		-Show label and quantity
550	Q ${ }^{\text {a }}=\underline{F} \mathrm{FNK}$	
560	TF NUM (Q\$):\#B AND NUM (Q5) \#13 THEN 55 0	-Wait for 'RTN' or 'EACK' Keys
570		
580	$X=X-2$ O TF $X<0$ THEN $X=0$	Decrement wounters for 'BACK' key
590	NEXY \times	
600	G070 i110	-mroceed to options menu
610	$!$ Data entry 1000	
620	$!$ Set C and ciear variables	
6.30		
640	! Dj $\mathrm{S}_{\text {p }}$	
650	FOR $\quad \times=1 \quad$ TO 5	
660		-Show next laber for input
670	IF $U(X)$ THEN DISP USING 200 ; $U(X)$	-Show previous data that has been entered
680	JNPUT ""; X\$ E IF X	
650	IF X \$ $=$ " O " THEN 11.70	
700	ON ERPOR GOTO \% 20	
710	coro 730	
720		
730	IF NOT C THEN $X=5$	
740	NEXT X	
750	IF C THEN 640	
760	! Compute answers	
770	COSUE 370	
780	! display the results	
750	GOSUE 1050	
800	!	
810	! Loop back for more inputs	
\%\%	GOTO 610	
830	!	
840	! Subroutjnes follow	
8:50	$!$	
960	$!$ Find proper formula	
870	$N=0 \Leftrightarrow \mathrm{FOR} X=1 . \mathrm{TO}$	
880		
890	NEXY \times	
900	ON N GOSUE $930,950,970,990,1010$	
71.0	RE: TURN	
920	!	
930		
940	!	
$9 \% 0$		
960	!	
970	$V(3)=$ \#V(2)-(V(5)+U(4))/V(4) ERETURN	

PROGRAM LISTING

```
    980 !
    GG0V(4)=\(5)+V(1)/(V(2)\cdotsV(3)) (# RETURN
1.000 !
1010 U(5):=U(A)*(U(2)-U(3))\cdots...V(1) E: RETURN
1020 !
1030 ! disp results
1040 FOR X=1 TO 5
```



```
        = ";V(X)
1.060 Q$:=FNK$
```



```
    60
1000 TF NUP(Q&):#8 THEN 1100
1.090 X=X-2 E IF X<0 THEN X=0
1.1.00 NEXT X
1.110 GOSUR 1.1.40
11%0 TF G!$="U" THEN {OAO
1.30 TF @$="R" THEN 390 ELSE {1.70
1140 DTSF CHR年(10);"un again, ";(HR年(21
    4);"iew agajn, or ";CHK%(1.97);
1150 INPU" "nd ","R"; Ot e QS=UPRC施(QS)
3.160 1F |
    RETURN
1.%.% DELAY 1. E DTSP E GTOP
```

PROGRAM DESCRIPTION

SECURITIES EARNINGS

Given the expected growth rate, current price per share, earnings per share, initial growth rate, years of declining growth rate, the discount rate, current payment and final P / E ratio, compute the number of years of constant growth to justify the current price of the stock.

If an HP-IL printer is attached to the system, and defined by a "printer is" command, this program will print the results.

SAMPLE PROBLEM

Given a stock with a share price of $\$ 66$ and a growth rate of 4%, compute the number of years to justify the current price. The earnings per share are 2.87; the initial growth rate is 10%. The discount rate is 12%, the current payment ratio is 48%, the number of years of declining growth are 6 and the final P/E ratio should be 12 .

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run program		
1a	Sign-on message	\$ Securities Earnings \$	
2	Enter data	Growth rate (decimal)?	0.04 [RTN]
		Current share price?	66 [RTN]
		Earnings per share?	2.87 [RTN]
		Initial growth rate in EPS?	0.10 [RTN]
		Years of declining growth?	6 [RTN]
		Discount rate (decimal)?	0.12 [RTN]
		Current payout ratio (decimal)?	0.48 [RTN]
3	Change computed P/E ratio	Your PE ratio is 7.5	[RTN]
		If this is not satisfactory	[RTN]
		Enter the new PE ratio,	[RTN]
		Otherwise, enter zero?	12 [RTN]
4	Perform computations	>>> Calculating <<<	
5	Display results	Current share price 66	[RTN]
		Earnings per share 2.87	[RTN]
		Initial growth rate (EPS) . 1	[RTN]
		Final growth rate (EPS) . 04	[RTN]
		Yrs of declining growth 6	[RTN]

STEP	INSTRUCTIONS	DISPLAY	INPUT
		Discount rate .12	[RTN]
		Current payout ratio .48	[RTN]
		Final PE ratio 12	[RTN]
		Price 66 assumes 41 years	[RTN]
		Intrinsic value for N1=40 is	[RTN]
		Price in 46 years 2337.91	[RTN]
6	End program	Run again, View again, or End?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run program		
1a	Sign-on message	\$ Securities Earnings \$	
2	Enter data	Growth rate (decimal)?	n [RTN]
		Current share price	P2 [RTN]
		Earnings per share?	E [RTN]
		Initial growth rate in EPS?	G3 [RTN]
		Years of declining growth?	N2 [RTN]
		Discount rate (decimal)?	K [RTN]
		Current payout ratio (decimal)?	PO [RTN]
3	User has option to change the	Your PE ratio is I3	[RTN]
	computed PE ratio	If this is not satisfactory,	[RTN]
		Enter the new PE ratio,	[RTN]
		Otherwise enter zero?	I3 [RTN]
4	Perform computations	<<< Calculating >>>	
5	Display results	Current share price P2	[RTN]/[BACK]
	[RTN] advances to next display	Earnings per share E	[RTN]/[BACK]
	[BACK] displays prior entry	Initial growth rate (EPS) G3	[RTN]/[BACK]
	[TAB] ends program	Final growth rate (EPS)	[RTN]/[BACK]
	If an HP-IL printer is attached	Yrs of declining growth N2	[RTN]/[BACK]
	and if the user defined the	Discount rate K	[RTN]/[BACK]
	printer by "printer is" then	Current payout ratio P0	$[R T N] /[B A C K]$
	this will be printed out one	Final PE ratio I3	[RTN]/[BACK]
	line at a time	Price P2 assumes N1 years	[RTN]/[BACK]
		Present value S	[RTN]/[BACK]
		Intrinsic value for $\mathrm{N} 1=\mathrm{N} 1$ is X	[RTN]/[BACK]

\Longrightarrow USER INSTRUCTIONS \square

STEP	INSTRUCTIONS	DISPLAY	INPUT
		Price in X years X	[RTN]/[BACK]
	Program options	Run again, View again, or End?	R,V, V or E [RTN]
	If 'R' is pressed, goto 2		
	If 'V' is pressed, goto 5		
	If ' E ' is pressed stop		

NAME	DESCRIPTION	NAME	DESCRIPTION
D(*)	Dividends	P(*)	Holding values
E(*)	Earnings per share	P	Share price
F2	Average growth rate	P0	Payout ratio
F3	Weight in present value routine	P1	Temporary value
G1	Growth rate in EPS	P2	Share price
G2	Temporary growth rate	P9	Payout ratio
G3	Initial growth rate	Q0	Annual change in payout ratio
I	Index value	Present value	
I3	P/E ratio	S0	Intrinsic value K
Discount rate	Parameter in rounding function		
N	 declining growth yrs	Parameter in rounding function	
N1	Years of constant growth	Y9	Indicates subscript variable
N2	Years of declining growth	Q\$	Keyboard response
Alpha value input convert-			

PROGRAM LISTING

```
    FFind the number of yeare
    20! of constant growth in the
    30 ! earning per Ehare (EPS) to
    A0! justify the c:urremt share
    G0! price.
    60
    70
    80 ! revision 11/01/82
    !
    DELAY 2 & DTSP " $ Gecurities E
    arnings牛"
1.10 DIM D(60), E(60),P(8)
120 P9=.6@ G%=.04
```

130
1.40! Round $\times 9$ to PG decimal digits
150
3. 60 DEF FNR $(X 9, Y 9)=$ TNT (X9世50^Y9+5/1.0^
Y () /1.0^Y 9
9.70 !
1.80 TNPUT "Crowth rate?"; X末 E ON ERROR
0070200
190 Gy

$210 P(4)=63$

ON ERROR GOTO 240

"50 F (1.) $=\mathrm{F}$

$\begin{gathered}\mathrm{S} \\ E R R O R ~ G O T O \\ 280\end{gathered}$

$\%$ OOGOSUE 1.70 E GOTO 260

300 TNPUT "Lnitial growth rate in Eps?"
; X\$ O ON FRROR GOTO $3 \% 0$
30 G1=UAL (XS) O OFF ERROR (GOTO 330
$3 \% 0$ GOSUR 1170 @ GOTO 300
$300 \mathrm{~F}(3)=\mathrm{E} 1$
340 JNFUT "Yeare of dectining growth?";
X米 \because ON ERROR GOTO 360
350 N2 =VAL.. (Xs) E OFF ERROR E GOTO 370
360 GOSUE 1170 E GOTO 340
$370 \mathrm{~F}(5)=\mathrm{Na}$
zo0 TNPUT "Discount rate (decimal)?"; x
* O ON ERROR GOTO 400
$350 K=U A 1 . . X$ (3) OFF ERROR G GOTO ASO
400 GOSUR 1.170 @ GOTO 380
$410 \mathrm{P}(6)=\mathrm{K}$
4\%0 INPUT "Current payout ratio?"; X剚
ON ERROR GOTO 440

－Tnitialize delay and display sign…on Mewsage
－Indotadize default values for payout ratio，growth rate
－FNR rounds X9 to P9 places
… Input for growth rate；setup error trap
－On error display error mescage amd ask again

PROGRAM LISTING

440 gOSUB 1．170 e coto 420
$450 \mathrm{P}(7)=\mathrm{P} 0$
$460 E(1)=E(1) *(1+G 1)$
$470 \mathrm{D}(1)=\mathrm{FP} 0$ 炬（1）
ABO DTSF＂Your FEE ratio is＂；PG／（K－（G3）
e cosur 1220 e TF NUM（Qa）$=6$ THEN 48 0
490 DTSP＂Tf this is not satisfactory，＂
 OTO 480
500 DISF＂enter the new PE ratio．＂e GO SUB 1巳e0 e IF NUM（Q＊）＝ 8 THEN GOTO 4 90
510 INFU7＂Otherwise，enter zero？＂；x 来 －ON ERROR GOTO 530

530 gosue 1170 e coto 510
540 TF 13 \＃10 THEN $\mathrm{P}(8)=\mathrm{TB}$ ELSE $\mathrm{P}(8)=\mathrm{PQ} /($ K．．．63）
550 IF K 763 THEN $5 \% 0$
S60 DTSP＂Discount must be $>$＂；G3 e cos UB 1220 IF NUM（Q＊）$=8$ THEN GOTO 56 0
570 GOTO 1280
$58050=E(1) * P G /(K-63)$
590 DTSF＂＞＞ン〉〉 Calculating〈くくくくく＂
$600 \mathrm{~S}=0$
610 FOR N1＝1 1040
$6200=5$
630 Q0 $\quad \mathrm{FP}$ F－P0
$6 A 0$ NNATNE
650 JF $N \angle=5$ THEN 670
$660 Q 0=(P 9-P 0) /(N-5)$
$6 \% 0 \mathrm{P}$ 亿 $=\mathrm{P} 0$
680 IF N $1=1$ THEN 750
690 FOR I＝e TO N．
$700 \mathrm{E}(\mathrm{I})=\mathrm{E}(\mathrm{I}-\mathrm{A})$＊（1．＋G1）
$710 \mathrm{D}(1)=\mathrm{EE}(\mathrm{T})$＊P「．
7e0 IF Tく5 THEN 740
730 P1
740 NEXT I．
750 Gewi
$760 \mathrm{~F}=(\mathrm{G} 1 .-\mathrm{CB}) /(\mathrm{Ne}+1)$
770 FOR I＝N $1+1$ TO N
$780 \mathrm{C}=\mathrm{Ge} \mathrm{F}$
$790 E(I)=E(I-1)$＊（ $1+G 2)$

810 IF $1<5$ THEN 830
－Display computed P／E ratio， wait for keyboard
－Use new value for computing new P／E ratio if valicl．
－Tf discount＜growth rate， quit．
－Compute the intrinsic value －lndicate that calculation is i．n progress
－Begin computations for each year of constant growth
－N is the total number of years involued
－If total mumer of yars 5 ， skip payout ratio

Compute dividends and earnings per share for each year
－Setup temporary growth rate in EPS

PROGRAM LISTING

```
820 P1:#P1+Q0
830 NEXT I
&40 D(N)=F9*E(N)
8W0 P2=D(N)/(K\cdotsCZ)
860 TF T. }=0=0\mathrm{ THEN 880
870 P2=T3*E(N)
890 PO=FF%/({+K)^N
    890 S=0
900 F3:=1.
910 FOR I=1. TON
920 F3=F3/(1.+K)
9305=5+D(I)*F3
940 NE:XT J.
950 S=5+P2
960 TF P<S THEN 980
970 NEXT NS.
SG0 PRTNT "Current share pricee ";FNR(P(
        1),2) e GOSUR 1220 ( TF NUM(Q*)=Q T
        HEN 960
990 PRINT "Earninge per share ";FNR(P(足
        ),2) (2 GOSUR {2%0 G TF NUM(ON)=8 TH
        EN GOTO 980
1000 PRTNT "Tmitiat growth rate (Fps) ";
```



```
        $):=8 THEN GOTO 990
1010 PRTMT "Final growth rate (FFS) ";FN
```



```
    =8 THIEN GOTO 1000
10%0 PRTNT "Yres of declining growth ";FN
        R(P(F), 1) & GOSUK {220 TF NUM(Q&)
        =% THE:N GOTO {010
1030 PRTNT "DAE%OUnt rate ";FNR(F(b), E)
        巴 GOSUB {220 @ IF NUM(O%)=0 THEN {0
        20
{.0.A0 PRTNT "Current payout ratio ";FNR&P
        (7), #) GOSUS {2%0 % TF NUM(O*)=%
        THEN GOTO 1.030
{0%0 PRTMT "Fimal P/E ratio ";FNR(P(8),%
        ) GOSUR {2%0 JF NU的(Q$)=8 THEN
        GOTO 1040
1060 PRENT "Price ";FNR (F, 2);" a%@umes "
```



```
        ($)==0 THER {050
{0%0 PRTNT "Fresent value ";FNR(S,%) & G
        OSUB {2%0 (% IF NUM(Q)=0 THEN {060
{0g0 PRTN" "Intrinsice value fom Na=";Na."
        A;" i.# " @ GOSUS 12%0 (# TF NUM(O$)=:
        8 THEN GOTO 10%0
{0%0 PRTNT FNR(50,%) e cosUR 12%0 e TF N
        WM(Q$)=% THEN GOTO 1.080
1.1.00 PRTNT "Price in ";N;"y#ars ís ";FNR
        (р)*({.+K)^N, 2) GOSUB 12%0
        ;N{;" yeare" w GOSU& {2"%0 er TF NUM(
```


PROGRAM LISTING

```
1.1.0 IF NUM(Q$)==8 THEN {.090
1.1%0 6070 1280
13.30 !
1.4.40 ! Prepend error message to
1150 ! input prompt
1.1.60 !
11%0 DISF "OOpE...";
1.1.80 RE:. TURN
1.190 !
1200 ! monitor the keyboard
1.310 !
```



```
1.230 Q*:#UFRC专(Q$)
1240 RETURN
{%50 !
1260 ! uptions menu
1.370 !
```



```
    );"jew again, or ";CHR&(197); (% TMP
    U" "nd ";Q$
1.290 Q韦=UPRRC手(Q#)
```



```
    N GOTO 1%80
1310 IF M&N:#"R" THEN 180
1320 TF Qs="U" THEN 980
{330 DELAAY {. @ DJSP & STOP
```


NOTES

This program accepts the face value of a note, its discount rate (as a percentage) and the days to maturity of the note and computes the discount amount and the net cost of the note.

The formula for the discount amount is:

$$
D=F * I / 100 * N / 360
$$

Where: $F=$ Face value of note
I = Discount rate
$N=$ Days to maturity (360 day calendar)
The net cost of the note is equal to face value less discount amount.

SAMPLE PROBLEM

Bob Johnson is purchasing a $\$ 150,000$ note that will mature in 126 days. If the discount rate is 14.5%, what is the discount amount, and what is the net cost of the note?

Answer: $\$ 7,612.5$ and $\$ 142,387.5$

SOLUTION

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run the program	\$ Notes \$	
	Sign-on message	Face (future) value?	150000 [RTN]
2	Enter the face value of the note	Discount rate (\%)?	14.5 [RTN]
	Enter the discount rate	Days to maturity?	126 [RTN]
	Enter the days to maturity	Face (future) value \$150000	[RTN]
3	View the results	Discount rate 14.5\%	[RTN]
		126 days to maturity	[RTN]
		Discount amount is \$7612.5	[RTN]
		Net cost is \$142387.5	[RTN]
4	Options menu - end program	Run again, View again, or End?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run the program	\$ Notes \$	
	Sign-on message	Face (future) value?	F [RTN]
2	Enter face value of note	Discount rate (\%)?	I [RTN]
	Enter the discount rate	Day to maturity?	N [RTN]
	Enter the days to maturity	[RTN]	
3	View the results:	[RTN] advances to meet item	Discount rate I (\%)
	[BACK] shows the prior item	N days to maturity	[RTN]/[BACK]
	[TAB] terminates the program	Discount amount is D	[RTN]/[BACK]
		Net cost is F-D	[RTN]/[BACK]
4	Program options	Run again, View again, or End?	R,V, Or E
	If 'R' is pressed, goto 2		
	If 'V' is pressed, goto 3		
	If 'E' is pressed, end program		

\square
VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION
D	The discount amount	X	Number to be rounded
F	Face value of the note	K\$	Keyboard input
I	Discount rate	Q $\$$	Value of the key used
N	Days to maturity	K\$	Input value
P	Precision of rounding function		

NOTES AND REFERENCES

Note: The program uses a 360 day calendar.
Reference: Poole, Lon and Mary Borchers, SOME COMMON BASIC PROGRAMS, 2nd ed., (Osborne-McGraw-Hill, 1977), p. 27-28.

PROGRAM LISTING

```
20 ! calculates the cost of
30 ! a note, qiven face
40 ! (future) value, the discount
50 ! rate, and the number of
60 ! days to maturity.
70
80 ! revision \(11 / 01 / 82\)
90 !
100 DELAY 2 2 DTSP" \("\) Nates
```

1.10 ! round X to p decimal digite
120 !
1.30 DEF FNP (X, P)

150 END DEF
1.60 !
3.70 ! single upper-mase key in
180 !

1. 90 DEF FNK

310 FNK事=UFRC\# (K放)
OROND DEF
230 ! begin data input
240
INFUT "Face (future) value?"; X串 保
ON ERROR GOTO 270

N 2"70 ELSE 280
※70 DSP "OOPE..."; 世 GOTO 250

ERRROR GOTO 300

N 300 EL...EE 31.0
300 DSP "OORE..."; © GOTO 280
3AO INPUT "Oays to Maturity?"; X名 G GN
ERROR GOTO 330

N 330 EL...EE 370

340
350 ! Compute results
360 !

380
350 ! Gutput values
400 !
4ád DSP "Face (future) value क"; (x GO
SUE 5000 IF NUM (Q\$) $=\mathrm{B}$ THEN 410
420 DISP "Discount rate"; I;"\#" GOSUR

00 O JF NUM (Q*) =\# THEN 420

120 ！
1．30 DEF FNR (X, P)
1．40 FNR＝：INT（X＊10＾F＋G／10＾P）／10＾P
150 END DEF
1．60！
！single upper－mase key in
！
DEF FNK\＄

END DEF
！begin data input
INFUT＂Face（future）value？＂；X来 É ON ERROR GOTO 270
 N 2＂70 ELSE 280
270 DISP＂OOPE．．．＂；世 GOTO 250
 EERROR GOTO 300
 N 300 EL．．．EE 31.0
300 DSP＂OODE．．．＂；© OOTO 280
3AO INPUT＂Days to maturity？＂；X施 GN ERROR GOTO 330
 N 330 EL．．． 5 E 370
3 30 0Tsp＂Oops．．．＂；6 GOTO 3́0
340
350 ！Compute results
360 ！
$3 \% 0$ D＝FWL／100 $2 \mathrm{~N} / 360$
380 ！
！Gutput values
DISP＂Face（future）value s＂；

420 DISP＂Discount rate＂；I；＂\＃＂GOSUR

－Display sign－on message
This function rounde X to F digits
－－Display prompt，set error trap
Convert ampha imput to numeric：test data valididy －－Prepend error message to input prompt and ask again
－Compute the discount amount
－Wingalay the face value，wadt for keyboard
－Dasplay next ane of output， monitor keyboard
\square PROGRAM LISTING \square

```
440 DISP "Discount amOunt j@ 事;FNR(D, {
    @ GOSUE S00 & IF NUM(G$)=% THEN 4
    30
450 DTSF "NEt cost is $";FNK(F-D), 1) (G)
    OSUE 500 @ TF NUM(O㣌)=% THEN 440
4606070 560
470!
480 ! Monitor the keyboard
490!
```



```
    #S AND NUM(Q#)栍42 TH:NN %00
5{0 IF NUM(0$)={4% THEN 6{0
FO RETURN
50%!
S40 ! Present optione menu
5 5 0 !
560 DISP CHR年(%{0);"un a@ain,";CHR自(214
    );"jew agajn, or ";(HR束(197); E TNP
    U" "nd?";贮
```



```
    NG60
590 1.F O曹="R" THEN 100
600 JF O$:="U" THEN 410
GA0 DELAY { (B DTSP GTOP
```

－Accept only＇RTN＇，＇BACK＇or
＇TaE＇keys
－Duit if＇TAE＇WKE pressed
－Dicplay options menu
－Ac：ept only the＇R＇，＇V＇，or ＇E＇keys

BOND PRICE AND YIELD

The program uses a 360 day calendar and given the redemption date, settlement date, annual coupon rate, redemption value, annual yield or bond price, will compute either the bond price or annual yield for semi-annual coupon bonds.

The program computes the number of coupon periods between the settlement and redemption dates, and uses this in computing the bond price.

If an HP-IL printer is attached and defined by "printer is", this program will print the results.

Mark is interested in purchasing a bond that yields 6.23\%.
The bond has a coupon of 5%. If the settlement date is $7,7,1983$ and the redemption date is $6,30,1985$, what is the price of the bond?

Jane is buying a 3.22% bond for $\$ 89.43$. The settlement date is $3,23,1982$ and the maturity date is 5,25, 1988. What is the bond's yield?

\square

STEP	INSTRUCTIONS	DISPLAY	INPUT
		Bond price?	89.43 [RTN]
6	Display answers:	Number of coupon periods 12.34	[RTN]
		Annual coupon rate (\%) 3.22	[RTN]
		Redemption value 100	[RTN]
		Annual yield 5.246	[RTN]
		Bond price 89.43	[RTN]
7	End program	Run again, View again, or End?	E [RTN]

NAME	DESCRIPTION	NAME	DESCRIPTION
A	Parameter in bond price computation	R1	Annual coupon rate for output
B	Bond price	S1	Parameter in year conversion routine
C	Temporary variable in bond yield	S2	Parameter in year conversion routine
C1	Number of coupon periods	V1	Redemption value
D1	Converted days for settlement date	X	Parameter in the rounding function
D2	Converted days for redemption date	Y	Yield
D3	Difference between D2 \& D1	Y1	Temporary variable in yield routine
D8	Day of month redemption date	Y2	Yield - held for output
D9	Day of month settlement date	Y8	Year number - redemption
I	Temporary variable in bond yield	Y9	Year number - settlement
\checkmark	Temporary variable in bond price	Z	Parameter in rounding function
M8	Month number - redemption	K\$	Upper case keyboard input
M9	Month number - settlement	Q\$	Keyboard input
P	Computed bond price in yield computations	X\$	Alphabetic input values
R	Annual coupon rate computations	Y\$	that are converted to
		Z\$	

PROGRAM LISTING

10 ！Given the number of coupon
20！periods between eettlement
30 ！date and redemption date，
40 ！the ammual coupon rate as
50 ！a percent，the redemption
60 ！value（if other than 100 ），
70 ！and the annual yield as a
80！percent，compute the flat＇
90 ！price．
1.00 ！

120 ！
 Yi＠ld ${ }^{(1)}$
140 ！
150 ！convert to 360－day calendar
160 ！
3．70 DEF FNA（51， $52,5 \%)=360 * 53+30 * 51+52$
3.80 ！

1． 90 ！Compute price of bond
200 ！
＂10 DEF FNE（A）＝R／2火（1／（Y／め／（ $3-1)+Y / 2))+1.00$ 娄（1．$+\mathrm{Y} / 2)^{\wedge}(\cdots \mathrm{O} Z)$
？
2s0 ！Round z to P decimal places
240 ！
 0^{\wedge} ค
260
2\％0！Single upper－c．ase key in
280 ！
＂． 90 DEF FNK末

3．0 FNK事：UPRC末（K\＄）
320 END DEF
330 ！
340 ！begin data input
350 ！
360 INPUT＂Settament date（mf，doy，yyy）？

 coto 390
380 605um 1060 © 6070360
390 TNPUT＂Redemption date（mm，delyyyy）

 BOTO $4 \% 0$
410 GOSUK 40 a e GOTO 390

－Function to convert date to 360 day x alendar
－Compute the price of the bond
－round 2 to p places
－Mondtor keyboard and return uppercase character
－Actept imput values for settlement date
…Convert imput to numeric． convert to 360 day malendar
… Processerror and ask again
－Compute number of coupon periods for semi．wannual． c：oupons

430 TNFUT＂Amnual coupon rate（\％）？＂；X非 E ON ERROR GOTO $4: O$
440 RA＝VAL（X 0） 460
450 GOSUB 1010 e GOTO 4 30
460 TNFUT＂Redemption value？＂；Xs ERRROR GOTO 490
$4 \% 0$ IF X $\$=" " 7 H E N$ UA＝\｛ 00 ＠OFF ERROR GOTO 500
480 ソィ＝UAL（X
4GO GOSUE 1．0s．0 e GOTO 460
500 TNFUT＂Annual yield（\％）？＂；X施 ON ERROR GOTO 530

 540
530 GOSUE 1010 ＠GOTO 500
540 IF Y非 0 THEN 740
550 INPUT＂Kond pric：e？＂；X各 GN ERROR BOTO 570

$5 \% 0$ GOSUR 3010 e GOTO 50
$590 \quad 03=(F N A(M B, D B, Y B)-F N A(M 9, D 9, Y 9)) / 36$ 0

$600 \quad \mathrm{C}=(\mathrm{H}+100) / 2$（ $\mathrm{Y}=\mathrm{I}=\mathrm{C} / \mathrm{C}$
610 TF Yく＝0 7HEN DTSP＂Yield is negativ巴 or zero＂（ Y马：

ELSE Y：2＊Y GOTO 620
$630 \quad Y=Y \cdots \neq Y 1$
$640 \quad Y=Y+Y$ ．
GS0 F：＝FNE（Y）
$660 \mathrm{TF} \mathrm{ABS}(\mathrm{P}-\mathrm{F})<.001$ THEN 690

670 Y1＝Y1／Z
680 IF $\vdash-E<0$ THEN 630 ELSE \quad AA
690 Y2ㅡㅜㄴ． 00
700 GOTO 850
710 ！
\％o！Compute bond price
730
740 ！TF YA＝0 THEN 360
$750 \quad \mathrm{~J}=1 .-\mathrm{FF}$（C．1．）
$760 \mathrm{R}=\mathrm{R} / 100$（2） $\mathrm{Y}=\mathrm{Y} / 100$

790 60TO 850

－Compute the number of yeare for the life of the bond
－Interest on the bond
－Compute the initial guess of they yold
… Tf the yield is negative， inform uwer and goto end
－If computed yield generates bond pric：exit
… Compute test bond price using emtimated yi．eld
－If the difference iss less than ．1．©ent，exjt
－ff input yield is xero，error axists；ask aqain
－If number of coupon periods＜ 1．Use different formula

PROGRAM LISTING

```
    81.0
    820
    830 ! View the data
    040!
    850 PRTN% "Number of coupon period: ";F
```



```
        THEN 650
    860 PRJNT "Annual coupon rate (%) ";R1
        @ GOSUB 940 IF NUM(O$)=8 THEN 850
8%0 PRINN "Redemption value ";Vá E GOSU
        B 940 @ IF NUM(G*)=8 THEN 860
8S0 PRTNT "Annual yield ";FNR(Y2,3) E G
        OSUB 940 2 IF NUM(Q*)=8 THEN GOTO 8
        70
890 PRINT "Eond price ";FNR(E,2) E GOSU
        B 940 & TF NUM(G&)=8 THEN 880
    9006070 1060
810!
ge0 ! Monitor the keyboard
930!
940 Q#FFNK& emF NUM(Q#):#G AND NUM(O&)#
    1.3 AND NUM(Q&):#AC THEN 940
950 1F NUM(Q旃)=14E THEN 1050
960 RE TURN
9%0!
g80 ! Prepend error message
990 ! to input prompt
1000 !
1010 DTSP "OOPS...";
1.020 RETURN
1.030 !
1040 ! Display options menu
1.050 !
1060 DISP CHR年(210);"un again,";CHR$(21A
);"iew agajm, or ";CHR束(19%); E INP
    U7 "nd?";Q$
1070 (01$=UPRCW(Q.#)
1080 ON POS('RUE',Q$)+1.6070 1060,130,85
    0,1090
10%0 DELAY i E DTSP "" E STOF
```

－1）isplay results
－Display next item．If＇BACK＇ key pressed，show last item
－Monitor keyboard for＇RTN＇，
＇BACK＇or＇TAB keys －Tf＇Tak＇preseed，quit
－Display progran options

DEPRECIATION CALCULATOR

This program will calculate depreciation schedules for investments using straightline, sum-of-years'-digits, declining balance and ACRS methods. The input data are the life of the investment, the cost and salvage value, and the month of purchase. The program will present the depreciation amounts for any year, or print out an entire schedule. For declining balance and ACRS calculations an automatic switchover to straight line is available. In the case of a calculation for a real estate investment with ACRS the calculation will be made with 175% declining balance and automatic switchover to straightline. The calculations use the following formulae:

```
N = asset's useful life expectancy
    I = starting book value
S = salvage value
F = declining balance factor (%)
j = period number
D(i) = depreciation expense for first period
D(j) = depreciation expense for period j, j=2,3,...N
R(j) = remaining depreciable value at end of period j
M = month of purchase
Yi = 13-M
```

Straightline:

$$
\begin{aligned}
& D(i)=(I-S) / N * Y 1 / 12 \\
& D(j)=(I-S) / N \\
& D(N+1)=R(N)
\end{aligned}
$$

PROGRAM DESCRIPTION

DEPRECIATION CALCULATOR (continued)

Sum-of-years-digits:

$$
\begin{aligned}
& D(1)=\operatorname{SOYD}(1) * Y 1 / 12 \\
& D(j)=\operatorname{SOYD}(j) * Y 1 / 12+D(j-1)-d(j-1) * Y 1 / 12 \\
& D(N+1)=R(N)
\end{aligned}
$$

where: $\operatorname{SOYD}(k)=(N+1-k) /(N *((N+1) / 2)) *(I-S)$
Declining balance:

$$
\begin{aligned}
& D(1)=I * F / 100 * N * Y 1 / 12 \\
& D(j)=R(j-1) * F / 100 * N \text { for } j=2,3, \ldots N \\
& D(N+1)=R(N)-S
\end{aligned}
$$

Accelerated Cost Recovery System:
Lives of assets are recovered over 3, 5, 10, or 15 year periods under the 1981 tax law. The depreciation expense is calculated for each year from a data table. The tables for 1981 are:

Life	Recovery percentage
3	25,38,37
5	15,22,21,21,21
10	8,14,12,10,10,10,9,9,9,9
15	5,10,9,8,7,7,6,6,6,6,6,6,6,6,6

Thus depreciation expense for an asset in year 3 of the 10 year schedule would be $\mathrm{I} * 12 / 100$.

For a real estate asset under ACRS 175% declining balance depreciation is taken with a 15 year life and automatic switchover to straight line.

SAMPLE PROBLEM

Waincorp purchased a computer for $\$ 79,500$ in March. It has a salvage value of $\$ 6,000$ and an expected useful life of 8 years. Using 200% declining balance with automatic switchover, what are the depreciation expenses for years 1, 2, and 3 ?

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run program	\$ Depreciation Calculator \$	
2	Select declining balance	Select: SL, SOYD, DB, or ACRS?	DB [RTN]
3	Elect switchover	Switchover to SL (Y/N)?	Y [RTN]
4	Enter cost of investment	Enter cost of investment?	79500 [RTN]
5	Enter useful life	Enter life expectancy?	8 [RTN]
6	Enter month of purchase	Month of purchase (Apri1=4)?	3 [RTN]
7	Enter depreciation factor	Depreciation factor?	200 [RTN]
8	Do not print schedule	Print schedule (Y/N)?	N [RTN]
9	Year 1	Enter year \#?	1 [RTN]
		Depreciation = 16562.5	[RTN]
10	Year 2	Enter year \#?	2 [RTN]
		Depreciation = 15734.38	[RTN]
11	Year 3	Enter year \#?	3 [RTN]
		Depreciation = 11800.78	[RTN]
12	Halt inquiry	Enter year \#?	0 [RTN]
13	End program	Run again or End? R	[RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run program	\$ Depreciation Calculator \$	
2	Select depreciation method	Select: SL, SOYD, DB, or ACRS?	
	For straight line, goto step 3		SL [RTN]
	For sum-of-year digit, goto step 11		SOYD [RTN]
	For declining balance, goto step 19		DB [RTN]
	For ACRS goto step 27		ACRS [RTN]
3	Enter cost of investment	Enter cost of investment?	I [RTN]
4	Enter salvage value	Enter salvage value?	S [RTN]
5	Enter useful life	Enter life expectancy?	N [RTN]
6	Enter month \# of purchase	Month of purchase (April=4)?	M [RTN]
7	View first year's depreciation	SL Depr 1st year =	[RTN]
8	View subsequent depreciation expense	Straightline $=$	[RTN]
9	View last year's depreciation	Last year $=$	[RTN]
10	Goto step 33		
11	Enter cost of investment	Enter cost of investment?	I [RTN]
12	Enter salvage value	Enter salvage value?	S [RTN]
13	Enter useful life	Enter life expectancy?	N [RTN]
14	Enter month \# of purchase	Month of purchase (April=4)?	M [RTN]
15	Select print option	Print schedule (Y / N) ?	Y or N [RTN]
16	If you select ' γ ' the schedule		
	will be printed. Goto step 33		
17	Enter the year \# for calculation	Enter year \#?	Y [RTN]
	To quit, enter 0 and goto step 33		
18	View depreciation and		
	goto step 17	Depreciation $=$	[RTN]

USER INSTRUCTIONS

\square VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION
D\$	Schedule type	M	Month of purchase
R1	Real estate flag	N	Life expectancy
R2	SOYD remaining balance	X	Loop counter
P1	Print flag	Y	Year \#
R	Remaining balance for DB	F	Depreciation factor
I	Investment cost	D1	Depreciation expense
S	Salvage value		

References: 1. Calculations refer to HP-12C Owner's Handbook.
2. "AN ANALYSIS: 1981 TAX LEGISLATION", Coopers \& Lybrand, 1981.
3. Weston \& Brigham, MANAGERIAL FINANCE, (The Drylen Press, 1981), p. 60-63.

```
10 ! Depr - Depreciation
20 ! calculator
30 !
40 ! Revision 1.1/01/82
50 DEF FNA(X) = 1NT(X*100+.5)/100
60 DEF FNE
70 IF NUM(KEY泣)期3 THEN 70
80 FNE=0 @ ENND DEF
90 DISF, $ Depreciation Calculator $
    * WATT 1
1.00 INFUT 'GeIEct: SL, SOYD, DE, or ACR
    S?'; D$ Q D$=:UPRC必(D方)
110 1F D泫='SL' THEN 160
120 IF D多='SOYD' THEN こ个0
130 JF D炶='DE' THEN 310
1.40 IF D$='ACRS' THFN W10
3.50 COTO 100
160 R1=1 0 GOSUF 640
1.70 DISF 'GL Depr {.st year =';FNA\(13-M
    )/1系*(I--S)/N) (% Z:=FNE
1g0 DISP 'Gtrajghtaine=';FNA((I-S)/N)
    (< Z=FNE
1.70 DTSF'Last year =';FNA((I-S)/N-\cdots(1Z-
    M)/{寽*(I--S)/N) @ Z=FNB
200 60T0 700
210 RA=1 E GOSUE 640 G GOSUE 730 e JF P
        1 THEN Y=N (2 GOYO 230
200 GOSUE 750
230 R2=\--5 FOR X:=1. TO Y (02%=(N+1-X)/
    (N*((N+1)/2))*(I--6)
240 IF X=1. THEN D1=S2*(13-M)/12 & S{% S% 
    -Di
50 IF X:1 THEN D{=6%*(13-M)/1%+5{ 6自
    =52-52*(13-M)/12%
#60 IF P1. THEN PRTNT 'Year';X;' ='';DS.
```



```
2%0 IF FS THEN PRTMT 'Year'; X;' =';R⿱丷天
2g0 IF NOT PA THEN DTSF 'Depreciataon =
    \prime;01. Q z=FNB & GOTO 220
300 6OTO 780
340 TNPUT 'SWitchover to 5l.. (Y/N)','Y';
```



```
    =1 ELSE S{=0
3%0 R{=0 * G0Suk 640
30 JNPUT 'Deprecemtion factor?';F
340 GOSUS 730 @ IF NOT Fi THEN 360
350 Y=N & 60T0 370
360 GOSUE 750
370 R=I © FOR X=1. TO MJN(Y,N)
```



```
        (R--S*R{)/(N-X+2--(13-M)/12)) EL.GED D
        {=Ti.
390 TF X=1 THEN D{=(13-M)/1%*T{ (% R=N--D)
        1* GOTO 4.0
```

- Enter depreciation actor
- Selfet print option
－Round X to two places
－Function to wait for＇RTN＇key
－Display sign－on message
－Select depreciation scheduhe
－Stradght lime
- Sum－of－years digits
－Dectining batance
－Selfet print option
$400 R=R-1)$ i．
4．0 IF X\＃Y AND NOT P．THEN 460
$4 \cong 0$ IF NOT P1 THEN 450
430 PRINT＇Year＇；X ；$=$ ；；FNA（DA）
440 GOTO 460
450 DISF＇Depreciation ：＂：；FNA（D1）© Z＝FF NB
460 NEXT X
4\％0 IF NOT P1．AND Y：＝N＋\｛ THEN DTSP＇DOPM eciation＝＇；FNA（R… 6 ）$Z=F N B$
480 IF F1 THEN PRTNT＇Year＇；Y＋1；＇＝＇；FN A（R－S）
490 IF NOT PA．THEN GOTO 360
500 GOTO 780

 6 ELSE R1＝1
 640 E GOTO 340
530 GOSUB 640 E GOSUE 730
S40 IF N：$=3$ THEN RESTORE O\％O
ESO IF $N=5$ THEN RESTORE 830
560 TF $N=10$ IHEN REGTORE 840
570 IF $N=15$ THEN RESTORE 850
$\boxed{50}$ TF P1 THEN 620
$5 \% 0$ GOSUK 750 EFOR $X:$ TO TO Y READ DA （a）NEXT X

 X 9 GOTO 780
640 INPUT＇Enter
 TNPUY＇Enter saluage value？＇；
660 TF NOT R1．AND D湖＇DE＇THEN N： ETURN
670 INPUT＇Enter IIfe expectancy？＇；N
680 TF D
690 INFUT Month of purehase（April：＝A）？ ＇；M
 valad month G GOTO 690
710 RETURN
 EN EEEP＠DTSP＇Tnvalid IAfe＇＠GOT 0670 EI．SE RETURN
730 INPUT＇Print schedule（Y／N）？＇；P串
 LSEFF $1=0$
740 RETURN
750 INPUT＇Enter year 非？；Y
…Subtract deprectiation from remaining book value
－ACRS depreciation schedule－ ：encotreat estate option
…fread estate use 175% dectiming balance
－Get jnput data，print option
－Select proper table

Get year number to display and table value
－Display result
－Wait for return key and ask for year mumber again
－．．Acenept input data
…et salvage valuefor St．．．and SOYD
－Set 15 year life for ACRS real estate option
－Check validity of lifefor ACRS
－andect print option
－Get year number

```
\(760 \quad Y==\mathrm{TNT}(A E S(Y))\) T TV \(Y>0\) AND \(Y\langle=N+1 T\)
    HEN RETURN
```



```
    frange! \(e\) GOTO 750
```



```
    1.97);
"750 INPUT 'nd?', 'R'; Q
    , 1.1)
```



```
810 DISP © STOP
\(8 \cong 0\) DATA \(25,38,37\)
```



```
840 DATA \(8,14,12,10,10,10,9,9,9,9\)
850 DATA \(5,10,9,8,7,7,6,6,6,6,6,6,6,6,6\)
--Frogram options
```

-1986 ACRS tables ... three year table

- 5 year table
-10 year table
- 15 year table

LEASE VERSUS PURCHASE

An investment decision frequently encountered is the decision to lease or purchase capital equipment. Although a thorough evaluation of a complex acquisition usually requires the services of a qualified accountant, it is possible to simplify a number of assumptions and use annual cash flow estimates to produce a first approximation.

The program assumes that the purchase is financed with a loan and that the loan is made for the term of the lease. (The term may be either $3,5,10$, or 15 years, to correspond with the ACRS depreciation schedule). The tax advantages of interest paid, depreciation, and the investment credit which accrues from ownership are compared to the tax advantage of treating the lease payment as an expense. The resulting cash flows are discounted to the present at the firm's after-tax cost of capital.

The program displays the net advantage of owning vs. leasing for each year of the analysis as well as reporting the total net advantage at the end of all the years.

A negative value for the net advantage indicates that a lease is a better choice.

SAMPLE PROBLEM

Home Style Bagel Co. is evaluating the acquisition of a mixer which can be leased for $\$ 1,700$ per year with the first and last payments in advance and a $\$ 750$ buy-back option at the end of 10 years. The lease includes maintenance. The same equipment could be purchased for $\$ 10,000$ with a 12% loan. Maintenance is assumed to be 2% of the purchase price for the first four years. A major overhaul is predicted for the fifth year at a cost of $\$ 1,500$. Subsequent yearly maintenance of 3% is estimated for the remainder of the 10 year term. The company would use the ACRS method of depreciation on a 10 year life with no salvage value. An accountant informs management to take the 10% capital investment tax credit at the end of the second year and to figure the cash flows at a 48% tax rate. The after-tax cost of capital (discounting rate) is 5%.

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run program		
1a	Sign-on message	\$ Lease vs Purchase \$	
2	Enter data	Life of investment?	10 [RTN]
		Principal of loan?	10000 [RTN]
		Loan interest rate (\%)?	12 [RTN]
		Marginal tax rate (\%)?	48 [RTN]
		Discount rate (\%) ?	5 [RTN]
		Initial year; lease amt?	3400 [RTN]
		Year: 1	
		Lease payment amount?	1700 [RTN]
		Maintenance expenses?	200 [RTN]
		Net advantage is: 1739.58	[RTN]
		Year: 2	
		Lease payment amount?	1700 [RTN]

STEP	INSTRUCTIONS	DISPLAY	INPUT
		Maintenance expenses?	200 [RTN]
		Net advantage is: 1943.97	[RTN]
		Year: 3	
		Lease payment amount?	1700 [RTN]
		Maintenance expenses?	200 [RTN]
		Net advantage is 2023.93	[RTN]
		Year: 4	
		Lease payment amount?	1700 [RTN]
		Maintenance expenses	200 [RTN]
		Net advantage is 1987.24	[RTN]
		Year: 5	
		Lease payment amount?	1700 [RTN]
		Maintenance expenses?	1500 [RTN]
		Net advantage is 1386.5	[RTN]
		Year: 6	
		Lease payment amount?	1700 [RTN]
		Maintenance expenses?	300 [RTN]
		Net advantage is 1028.12	[RTN]
		Year: 7	
		Lease payment amount?	1700 [RTN]

STEP	INSTRUCTIONS	DISPLAY	INPUT
		Maintenance expenses?	300 [RTN]
		Net advantage is: 1028.12	[RTN]
		Year: 8	
		Lease payment amount?	1700 [RTN]
		Maintenance expenses?	300 [RTN]
		Net advantage is 781.08	[RTN]
		Year: 9	
		Lease payment amount?	0 [RTN]
		Maintenance expenses?	300 [RTN]
		Net advantage is: -70.81	[RTN]
		Year: 10	
		Lease payment amount?	0 [RTN]
		Maintenance expenses?	300 [RTN]
		Net advantage is: -932.02	[RTN]
		Amt and year of tax credit:	1000,2 [RTN]
		Amount of buy-back	750 [RTN]
3	Display result	Final net advantage: 214.44	[RTN]
4	End program	Run again, View again, or End?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
		Discount rate (\%)	[RTN]
		Final net advantage:	[RTN]
6	Goto step 4		

NAME	DESCRIPTION	NAME	DESCRIPTION
A	ACRS depreciation rate	L	Amount of lease payment in year Z
A1()	Dollar amount to interest	M	Maintenance expense in year Z
A2	Amount amortized	N	Life of investment
B	$\begin{aligned} & \text { Balance due on loan } \\ & \text { (starts }=P \text {) } \end{aligned}$	N2	Net advantage
B1	Dollar amount of buy-back in year N	P	Loan principal
B9	Net present value (NPV) of buy-back	R1	Annual payment on loan
C	Tax credit in year Z1	T	Marginal tax rate (percent)
CO	Cost of owning	T1	Marginal tax rate (decimal)
C1	Cost of leasing	T8	Total amount amortized
C9	NPV of tax credit	X	Target number in rounding function
D	Discount rate (percentage)	Z	Year in life of investment
D2	Discount rate (decimal)	Z1	Year of tax credit
D9()	Dollar amount of ACRS depreciation	K\$	Key pressed by user
I	Loan interest rate (percentage)	Q\$	Key pressed by user
I1	Loan interest rate (decimal)	X\$	Alpha variables used to input data
J	Precision in rounding function	Y\$	Usually converted to numeric

NOTES AND REFERENCES

Note: The computations assume ANNUAL data only.
Reference: HP-12C Solutions Handbook, pp. 49, 143.

1． 0
20 ！and interest rate of a loan；
30
40
50
60
70
80
50

1．1．0
1．20
1．30 1． 40
150 DEFFNR $(X, J)=\mathrm{TNT}\left(X * 10^{\wedge} \mathrm{J}+.5\right) / 10^{\wedge} \mathrm{J}$ 160 ！
170 ！Gingle upper－cose key in
1．80 ！
190 DEF FNK业

＂20 ENO DEF
＂30 DTGF＂
240
250 ！wegin to gather the data
260 ！
a＂0 TNPUT＂Life of investment？＂；Xo e ON ERROR GOTO 3 SO

3s0 DTSF＂OOps．．．＂；EOTG E＂70
3% IF N\＃3 AND NW5 AND N：SO AND NWSE TH EN BEEP G GOTO 3ıO
 N ERROR GOTO 370
340 IF X非＝＂＂THEN GOTO 330
350 TF X $\$=" 0=1$ THEN GOTO 1500
360 P＝UA1．．．（X末）E OFF ERROR e GOTO 380
370 DTSF＂Oops．．．＂；E GOTO 330
3 з0 TNPUT＂loan interest rate？（\％）＂；Xt （\＃）ON ERROR GOTO \＆20
$3 \% 0$ lF X 业 $=" 1$ THEN OOTO 380
400 TF $X \$="$＂
 GOrO A 30
4き0 DTSP＂Oops．．．＂；※ GOTO 380
430 TNFUT＂Marqinal tax rate？（\％）＂；X Q ON ERROR GOTO 470
440 lF x 来＝＂＂THEN GOTO 430
$450 \mathrm{TF} \times \$=" Q "$ THEN GOTO 1500
 Goror 480
－कccept input，Eet arror trap
－If＇G＇then goto program options
－Convert to mumeric．
－Frepend error message to prompt and ask agadm
…heck anfe of investment

PROGRAM LISTING

```
4%0 DISP "DOpS..."; E GOTO 430
4G0 INPUT "Diccount rate (%)? "; X& 0
    N ERROR GOTO Se0
490 IF X泣="" THEN 430
500 TF XF="O" THEN 1500
Gi0 D=U(LL(X&) e OFF ERROR & D2:=1)/100 世
    @OTG 560
520 DISF "OOPS..."; & OOTO 4EO
530 !
S40 ! Select depr. schedule
5 5 0 ~ !
560 IF N:=3 THEN RESTORE 1540
570 IF N=5 THEN RESTORE 1550
580 IF N=10 THEN RESTORE 1560
590 IF N=15 THEN RESTORE 15%0
600!
Gi0 ! Compute annual depr.
620 !
GO0 FOR X=1 TO N (% READ A
640 D9(X) #PWA/{00 NEXT X
650 !
660 ! Compute the annual pmt
6%0!
680 R1=I{*P/(1-(1+T1.)^(-N))
6 9 0 ~ \mathrm { Em } \mathrm { e } \mathrm { Te=0 }
700 INPun "Tnitial year: lease amt? ";
X$ E ON E:ERROR GOTO 740
710 IF X年:"" THEN 700
720 IF X$=""Q" THEN {500
730 L=UAL (X&) & OFF ERROR E GOTO 750
740 DISF "OOpS..."; 巴 COTO 700
"50 NE=({-7{)*L
760 DISP
770 !
780 ! Amortize loan
790!
```



```
{. (Z)
8.0 18=18+Aを * H=F-ME E NEX7 Z
8巳0 !
830 ! Display current year
840 !
850 FOR Z=:1 TO N E DISF" Year: ";Z
E60 INPUT "Lease payment amount? "; X直
        E ON ERROR COTO 900
870 IF X范="" THEN GOTO 860
Ge0 IF XF="Q" THEN COTO 1500
890 L=:VAL(X*) & OFF ERROR e GOTO gio
900 DISP "Oops..."; E COTO 860
910 4NFUT "Maintenance expenses"? "; X&
        G ON ERROR GOTO 950
920 IF X咅"" THEN 9{0
```

- Buid array of interest
payments

－Select depr．schedule
－Build array of depreciation amounts

Compute annual payment
－Get indtial lease amount
－Buid array of interest payments

[^0]```
 90 TF X$="Q" THEN $500
 940 M=UAL(X&) E OFF ERROR E GOTO 990
 950 DISF "OOps..."; # GOTO 910
 960!
 9%0 ! Compute:
 980!
 790 Ci=(i-Tj)*L.
```




```
{0%0 DISP "Net advantage is: ";FNR(NO,2)
 @ GOSUE 1.440 & IF NUM(O非):=% THEN {.
 0%0
1030 DTSP O DISP
1.040 NEXT Z.
1.050
1060 ! Adjustments for tax
1070 ! credits and buy-backs
1.080
1.090 INFUT "Amt and year of tax creadt:
 "; X*,Y$ E ON ERROOR GOTO A.{30
```



```
1.140 TF X&="#" OR Y多="Q" THEN 1500
```



```
 * GoT0 1.180
1.3.30 DISF "OOps..."; e OOTO 1090
1.440
{150 ! Compute the met present
1.60 ! value of the tax mredit
1.1.70 !
1.1.80 C与=C/(1.+D2)^Z1.
1.190 N2=N2+C9
1:00 TNPUT "Amount of buy\cdotsback: "; X甾 #
 ON ERROR GOTO {2AO
{&{0 IF X$="" THEN 1200
1%%0 1F X采="Q" THEN 1500
1230 E=UAL..(X$) a OFF ERNOR E GOTO 1%90
1%40 DTSF "OOps..."; E GOTO 1%00
1.%50!
1.260 ! Compute net present value
12%0 ! of the buy-back
1.%80
1.290 B%=B*(1.-T1.)/(1+D%)^N
1%00 N%=N2+%%
1,3s0 DGEF "Final net advantage: $";FNN(N
 2,2) G GOSUB 自440 & IF NUM(Q多)=% TH
 EN 1310 ELSE 1500
1.320
1.330
1340
1.350 DTSF "Li.j.fe of invertment: "; N E GOS
 UB 1.440 @ IF NUM(O$)=0 THEN 1.3.50
{360 DISF "Principal of loan: ";P eGOSU
 E {.440 < TF NUM(Q叓)=E THEN {TSE0
13%0 DTSF" "Loan intereet rate ";T; "%" @
 GOSUB 1.440 & IF NUM(Q&)=0 THEN GOTO
 1.360
```


## PROGRAM LISTING

1380 DTSF＂Marginal．tax rate＂；T；＂\％＂er
OSUE 1.440 ＠IF NUM（Qs）$=8$ THEN GOTO
1370
1390 DISF＂Discount rate＂；；＂\％＂GeOUB

1400 DTSP＂Final net aduantage：古＂；FNR（N
 EN 1390 EL．SE 1500
1410 ！
1420 ！Mondtor the keyboard


1450 IF NUM（OW）$=142$ THEN 1500
1460 RETURN
1470 ！
1．480！Display options menu
1490 ！
 ）；＂jew again，or＂；CHRe（1．夕7）；（3NP U＂＂nd＂；
1510 贝方：UFRC出（N末）
1520 ON POS（＇RUE＇，Q5）＋1 6070 $1500,230,13$ $50, .530$
1530 UTGF＂＂ETOP
1540 DATA $2 \mathrm{E}, 38,37$
－-1981 ACRS tax tables
1550 DATA $6,22,21,21, \ldots 1$
1560 DATA $8,14,12,10,10,10,9,9,9,9$
1570 DATA $5,10,6,8,7,7,6,6,6,6,6,6,6,6,6$

## PROGRAM DESCRIPTION

## PRESENT VALUE OF A GEOMETRIC SERIES

This program computes the present value of a series of cash flows that changes over time, such as with inflation. Example required inputs are the payment, growth rate, discount rate, and the number of periods. The period for the payment is the same as the period for the growth and discount rates.

SAMPLE PROBLEM

What sum must a person have in an education fund if they wish to draw from the fund purchasing power equal to $\$ 550$ per month for five years? Assume a monthly inflation rate of . $67 \%$ ( $8 \%$ annually), and a discount rate of $.56 \%$ ( $6.75 \%$ annually).

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
| 1 | Run the program |  |  |
| 1 a | See sign-on message | \$ Geometric Gradient \$ |  |
| 2 | Enter the data | What is the payment? | 550 [RTN] |
|  |  | How many periods? | 60 [RTN] |
|  |  | Discount rate? | . 56 [RTN] |
|  |  | Growth rate? | . 67 [RTN] |
| 3 | Display results | $P V=33897.93$ | [RTN] |
| 4 | Program options | Run again, View again, or End? | $V[$ RTN] |
| 5 | View data and results | Payment $=550$ | [RTN] |
|  |  | Discount rate $=.56$ | [RTN] |
|  |  | Growth rate $=.67$ | [RTN] |
|  |  | Periods $=60$ | [RTN] |
|  |  | Present value $=33897.93$ | [RTN] |
| 6 | End program | Run again, View again, or End? | E [RTN] |

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :--- | :--- | :--- | :--- |
| 1 | Run program |  |  |
| $1 a$ | See sign-on message | \$ Geometric Gradient \$ |  |
| 2 | Enter data as requested: | What is payment? | P [RTN] |
|  | An uppercase "Q" entered at | How many periods? | N [RTN] |
|  | this time will cause the | Discount rate? | I [RTN] |
|  | program to goto step 4. | Growth rate? | G [RTN] |
| 3 | Display results. | PV = | [RTN] |
| 4 | Display options menu: | Run again, View again, or End? | R,V,Or E |
|  | If 'R' then goto la |  |  |
|  | If 'E' then program stops. |  | [RTN] |
| 5 | If 'V' then view data and | Payment = | [RTN]/[BACK] |
|  | results. [RTN] advances to | Discount rate = | [RTN]/[BACK] |
|  | next item. [BACK] shows | Growth rate = | [RTN]/[BACK] |
|  | previous entry. [TAB] goes | Periods = |  |
|  | to step 4. | Present value = |  |
|  | Goto step 4. |  |  |

$\square$
VARIABLE NAMES

| NAME | DESCRIPTION | NAME | DESCRIPTION |
| :---: | :--- | :---: | :--- |
| G | Growth rate as <br> a percentage | P | Payment in series |
| G1 | Growth rate as <br> a decimal fraction | V | Present value of series |
| I | Discount rate as <br> a percentage | X | Target value in <br> rounding function FNR |
| I1 | Discount rate as a <br> decimal fraction | K\$ | Key pressed by user |
| J | Precision in rounding <br> fraction FNR | Q $\$$ | Keyboard response |
| K | Temporary variable | Alpha input value, <br> converted to decimal <br> by routine |  |
| N | Number of time periods |  |  |

## NOTES AND REFERENCES

Notes: 1. The discount rate is assumed to be an annual value. If the data are not annual, the discount rate has to be adjusted appropriately.
2. The growth rate is assumed to be an annual value. If the data are not annual, the growth rate has to be adjusted appropriately.
3. The payments are assumed to be end of the period payments.

Reference: Stermole, F.J., ECONOMIC EVALUATION AND INVESTMENT DECISION METHODS, Investment Evaluations Corp., 1974, Appendices E and F.

10 ！compute the present value
20 ！of a geometric gradient 30 ！series for a finite number
40 ！of periods
50 ！
$60!$ Revision $11 / 01 / 82$
70 ！

90 ！
1．00 ！round $X$ to $J$ decimal places
1．10！
120 DEFFNR $(X, J)=\operatorname{TNT}\left(X * 10^{\wedge} J+.5\right) /$ 1． $0^{\wedge} J$
130 ！
140 ！monitor keyboard，returning
1．50 ！key value
160 ！
$1 \% 0$ DEF FNK\＄
1． 80 K $\ddagger=K E Y \&$ TF K
1． $5^{\circ} 0$ FNK $\ddagger=$ UFRC $\ddagger(K \$)$
OOO END DEF
2．．．0！
wo ！get the input data
230 ！
240 DISP＂What is the payment＂；tapuT X幸 ON ERROR GOTO 2GO
250 1F X专：＂＂＂THEN 240
260 TF X丰：＂Q＂THEN 780

280 DISF＂OOps．．．＂；巴 GOTO 240
 E ON ERROR GOTO 30
300 1F X末＝：＂＂THEN 290
310 TF X方＝＂Q＂THEN 780
320 N二VAl（X出）巴 OFF ERROR Q GOTO 3 AO
330 DTSF＂OOps．．．＂；E GOTO 290
340 DISP ＂Discount rate＂；© INFUT xt 区 ON ERROR GOTO 380
350 1F $X \$=1 "$ THEN 340
360 1F X
 60rO 390
3 G 0 DSP ＂OOps．．．＂；日 GOTO 340
390 DISF＂Growth rate＂；e INPUT X ERROR GOTO 430
400 TF X标：＂＂THEN 390
410 IF X将：＂O＂THEN 780
 GOTO 440
430 DISF＂OOPE．．．＂； $60 T 0390$
4A0 TF $1=G$ THEN U：WFWN E GOTO
$4 \% 0$ ！
$460 K=(1+61) /(1+11)-1$
－D）isplay signoon
－Accept jnput，set ermor trap
－－Trap null input
…f＇Q＇then goto program optams
－Convert to mumeric：
－Prepend error message to prompt and ask again
－Computeresults

## PROGRAM LISTING

```
470 V=F*(1/(1+I1))*(((1+K)^N-1)/K)
480 !
490 ! display the present value
500 !
510 DISP "PU = ";FNR(U,2) & COSUR 720 e
 IF NUM(Q#)=8 THEN COTO 510
5e0 6070 780
50 !
G40 ! view jnput and rewults
550 !
560 DISP "Payment = ";F e GOSUE 7e
5%0 IF NUM(Q&)=8 THEN GOTO 560
SG0 DISP "Discount rate = "; e GOSUB 7
 20
590 IF NUM(Q斻)=6 IHEN GOTO 560
600 DISP "Growth rate == ";G e cosuk 720
610 IF NUM(Q$)=8 THEN 580
6%0 DTSF "Periods == ";N e GOSu& 7e0
6 3 0 ~ I F ~ N U M (O \&) = 8 ~ T H E N ~ G O T O ~ 6 0 0 ~
640 DISF "Present value == ";FNR(U,2) e
 gOsuE 7%0
650 IF NUM(Q&)=8 THEN OOTO 620
660 60TO 780
670
680 ! monitor keyboard and
6 9 0 ~ ! ~ a c c e p t ~ o n l y ~ R T N , ~ E A C K , ~ o r ~
%00 ! TAE as valid keys
710 !
720 Q$=FNK$ & IF NUM(Q$)|{3 AND NUM(Q*)
 #O AND NUM(Q#)#\42 THEN 720
730 1. NUM(Q年)={42 THEN 780
740 RETURN
750 !
760 ! display options menu
770 !
760 DIGP CHR婁(2i0);"un again, ";CHR年(21
 4);"iew again, or "; CHR&(19%);
790 INFUT "nd?"; Q* e Q$=UPRCक(Q$)
800 ON FOS("RUE",Q$)+1 GOT0 780,80,560,
 810
810 DTSF E STOP
```

－Display result
－view input data and result
－If＇BACK＇key pressed Ehow previousi item
－1）isplay optans
－Acemet only＇R＇，＇V＇，or＇E＇ keys

## PROGRAM DESCRIPTION

## PRESENT VALUE OF AN ARITHMETIC GRADIENT SERIES

This program is used to compute the present value of a series of cash flows that changes arithmetically. Example required inputs are the initial cash flow, the amount of the payment that changes the cash flows, the number of periods in the series, and the interest rate. Note that the period of the interest rate is the same as the payment period.

## SAMPLE PROBLEM

The after-tax expenses on a machine are expected to begin at $\$ 1,200$ at the end of the first year and increase by $\$ 350$ at the end of each year over the 12 -year life of the machine. What is the present value of the series if it is discounted at $12 \%$ ?

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
| 1 | Run program |  |  |
| 1 a | See sign-on message | \$ Arithmetic Gradient \$ |  |
| 2 | Enter the data | What is the 1st cash flow? | 1200 [RTN] |
|  |  | What is the payment? | 350 [RTN] |
|  |  | How many periods? | 12 [RTN] |
|  |  | Discount rate? | 12 [RTN] |
| 3 | Display answer | $P V=16516.55$ | [RTN] |
| 4 | Present options menu | Run again, View again, or End? | $V$ [RTN] |
| 5 | View the data and results | 1st cash flow $=1200$ | [RTN] |
|  |  | Payment $=350$ | [RTN] |
|  |  | Discount rate $=12$ | [RTN] |
|  |  | Periods $=12$ | [RTN] |
|  |  | Present value $=16516.55$ | [RTN] |
| 6 | Present options menu | Run again, View again, or End? | E [RTN] |
|  | End program |  |  |

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
| 1 | Run program |  |  |
| 1 a | Sign-on message | \$ Arithmetic Gradient \$ |  |
| 2 | Enter data | What is the 1st cash flow? | S [RTN] |
|  |  | What is the payment | $p$ [RTN] |
|  | An uppercase "Q" at this time | How many periods? | n [RTN] |
|  | will cause the progarm to go |  |  |
|  | to step 4 | Discount rate? | i [RTN] |
| 3 | Display results | PV = | [RTN] |
| 4 | Program options: | Run again, View again, or End? | $\begin{aligned} & R, V \text {, or E } \\ & {[R T N]} \end{aligned}$ |
|  | If 'R' then goto 1a |  |  |
|  | If 'E' then end program |  |  |
|  | If 'V' then: 3 |  |  |
| 5 | View the data and results | 1st cash flow $=$ | [RTN] |
|  |  | Payment = | [RTN]/[BACK] |
|  |  | Discount rate $=$ | [RTN]/[BACK] |
|  |  | Periods $=$ | [RTN]/[BACK] |
|  |  | Present value = | [RTN]/[BACK] |
|  | Goto step 4 |  |  |

$\square$

| NAME | DESCRIPTION | NAME | DESCRIPTION |
| :---: | :--- | :---: | :--- |
| I | Discount rate <br> as a percentage | W | Temporary value |
| I1 | Discount rate as <br> a decimal function | X | Number to be <br> rounded in FNR |
| J | Precision in rounding <br> function FNR | K\$ | Key pressed |
| N | Number of periods <br> in analysis | Q $\$$ | Alpha input; used to <br> control the program <br> execution |
| P | Payment |  |  |
| V | Present value of payment <br> over N time periods at <br> I discount rate | X $\$$ | Input value; converted <br> to numeric |
|  | S | First cash flow |  |

## NOTES AND REFERENCES

Reference: Stermole, F.J., ECONOMIC EVALUATION AND INVESTMENT DECISION METHODS, Investment Evaluations Corp., 1974, Appendices E and F.

## PROGRAM LISTING

 INPUT X 2 ON ERROR GOTO 290
260 1F X $\$="$＂THEN 250
270 IF X末＝＇Q＇THEN 800
280 S＝VAL（X：${ }^{2}$ ）OFF ERROR Q GOTO 300
250 DISP＇OOPS．．．＇e GOTO e50
300 DISP＂What is the payment＂；efNPUT X
310 IF X：F＂＂THEN 300
3\％0 IF X旃＝＂Q＂THEN 800
$\left.330 \mathrm{P}=\mathrm{VAL}(X)^{\prime}\right)$ Q OFF ERROR 8 COTO 350
340 DTSF＂OOps．．．＂；E COTO 300
350 DISF＂How many periods＂；e INPUT X Q ON ERROR GOTO 390
360 1F X永：＂＂THEN 350

390 N $=$ VAL（X $\$$ ）E OFF ERROR 9 GOTO 400
390 DISF＂OOps．．．＂；GOTO 350
400 DISP＂Discount rate＂；E INPUT X ${ }^{2}$ e ON ERROR GOTO 440
440 IF X $\mathrm{X}=\mathrm{F=}$＂＂THEN 400

 coto 470
AAO DISP＂OOps．．．＂；ge GOTO 400
450 ！
460 ：compute the values．．．

－display signon message
－Accept input，set erron trap
－If nulu input，ask again
－If＇Q＇entered，goto program options
Convert to numerice
－Prepend error to prompt and ask again

Compute result

```
480 V=W*P*(1/I1-N/(I1*W*(1.+I{)^N))
490 V:=U+5*W
500 !
Sa0! display the present value
520!
530 DISF "PO = ";FNR(N,2) O GOSUR 740 世
 IF NUM(Q&S)=8 THEN GOTO 530
540 6070 800
650 !
5 6 0 ~ ! ~ v i e w ~ t h e ~ d a t a ~ a n d ~ r e s u l t s
570 !
580 DISP "15St cash flow = ";S @ GOSUK 7
 40
590 1F NUM(Q方)=8 THEN GOTO 580
600 DISP "Fayment =% "; % GOSU& 740
6{0 IF NUM(Q&)=G THEN GOTO 580
6% DJSF "Diccount rate= "; E EOSUB %
 40
630 IF NUM(O&)=Q THEN GOTO 600
640 DISF "Periods= ";N @ GOSUF 740
650 TF NUM(Q&):=G THEN GOTO 6%O
6S0 DISP "Fresent value= ";FNR(v,2) @
 GOSUB 740
6% IF NUM(QS)=:8 THEN GOTO 640
600 GOTO S00
6%0!
700 ! monidor keyboard and
70! acc:ept only RTN, RACK, or
%0! TAEE as valid keys
730
```




```
7%0 1F NUM(O$)=1.42 THEN 600
760 RETURN
770 !
780 ! display options menu
790!
```



```
 4);"jew again; or ";CHR年(a.97);
```



```
8%0 ON FOS("RUE", 晾)+1. GOTO 800,90, %80,
```

－Display result
－View data and results
－If＇EACK＇key pressed，show preujous item
－Ac：cept only＇R＇，＇U＇or＇E＇
830
830 DTSF G GTOP

## FINANCE

BREAKEVEN ANALYSIS SECURITIES EARNINGS NOTES
BOND PRICE AND YIELD
DEPRECIATION CALCULATOR
LEASE VS. PURCHASE
PRESENT VALUE OF A GEOMETRIC SERIES
PRESENT VALUE OF AN ARITHMETIC GRADIENT SERIES
ALL HP-75 SOLUTIONS BOOKS ARE AVAILABLE RECORDED ON MINI-DATA CASSETTES FROM EITHER A HEWLETT-PACKARD DEALER OR THE HP USERS' LIBRARY.


[^0]:    for ※ach year and compute
    for each year and compute

