HEWLETT-PACKARD HP-75 USERS' LIBRARY SOLUTIONS Test Statistics

NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

HP-75 SOLUTIONS BOOK/MEDIA ORDER FORM

All HP-75 Solutions Books are available recorded from the Users' Library^{*} or from any Hewlett-Packard Full Service Dealer. The individual Solutions Books are \$12.50 each; recorded mini-data cassettes are \$12.00 for each Solutions Book requested.

Telephone the Users' Library directly (503-757-2000, ext. 3371) with your Solutions Book request, your order will ship that SAME DAY; or, call our TOLL FREE number (800-547-3400, Continental U.S. only), and orders ship within 48 hours. Mail requests also ship within 48 hours of receipt.

HP-75 Users' Library Solutions Books

00075-90061	Math I
00075-90062	Math II
00075-90063	Math III
00075-90065	Games
00075-90066	Electronics
00075-90067	Statistics
00075-90070	Real Estate
00075-90071	Finance
00075-90071	Finance
00075-90076	Test Statistics

Solutions Book Part Number	Title	Book Only	Mini-Data Cassettes	Price		
00075-90						
00075-90						
00075-90						
Pleas	se add Handling Charge on orders incl	uding Solut	ions Books	3.50		
		State and	Local Taxes			
			TOTAL			
Send orders (with p	All payments must be in U.S. dollars and drawn on a U.S. bank. Send orders (with payment) directly to: HEWLETT-PACKARD USERS' LIBRARY 1000 N.E. Circle Blvd. Corvallis, Oregon 97330					
Card Number/Company Purchase	Order			Exp		
Name						
Company (if applicable)						
Address				Telephone		
City	State/Country			Zip		
*Recorded Solutions Book	programs shipped to U.S. customers only.					

TABLE OF CONTENTS

1. ONE SAMPLE TEST STATISTICS FOR

THE MEAN by George and Richard Rankin 1 This program calculates the z statistic for testing the mean if the variance is known. If the variance is unkown, then the t statistic is calculated.

- 2. KENDALL'S COEFFICIENT OF CONCORDANCE by George and Richard Rankin '7 This program calculates Kendall's coefficient of concordance to test agreement between rankings.
- 3. CORRELATION COEFFICIENT TEST . . . by George and Richard Rankin 14 The t statistic can be used to test if the true correlation coefficient is zero. The z statistic is also calculated.
- 4. INTRACLASS CORRELATION COEFFICIENT by George and Richard Rankin 20 This program calculates the intraclass correlation coefficient which measures the degree of association among individuals within classes or groups. Also calculates R-squared and Omega-squared.
- 5. KRUSKAL-WALLIS STATISTIC by George and Richard Rankin 31 The Kruskal-Wallis statistic can be used to test if independent random samples come from identical continuous populations.
- 6. MANN-WHITNEY U-TEST by George and Richard Rankin 41 This program calculates the Mann-Whitney test statistic on two independent samples of equal or unequal sizes.
- 7. FISHER'S EXACT PROBABILITY . . . by George and Richard Rankin 50 Fisher's exact probability test is used for analyzing a 2 x 2 contingency table when the two independent samples are small in size.
- 8. 2-FACTOR ANALYSIS OF VARIANCE . . by George and Richard Rankin 56 Row and column effects in a data set that may have unequal cell sizes are tested in the analysis of the total variability of a set of data.
- 9. BARTLETT'S CHI-SQUARE STATISTIC , by George and Richard Rankin 66 This chi-square statistic can be used to test the homogeneity of variances.
- 10. DIFFERENCES AMONG PROPORTIONS . . by George and Richard Rankin 72 Calculates the chi-square statistic to test if several independent binomial distributions have equal means.
- 11. DATA TRANSFORMATIONS by George and Richard Rankin 78 This program provides log, standard score, square root, and t data transformations.

PROGRAM DESCRIPTION

ONE SAMPLE TEST STATISTICS FOR THE MEAN

Suppose $(x_1, x_2, x_3, \dots, x_n)$ is a sample from a normal population with a known variance σ^2 and an unknown mean μ . A test of the null hypothesis

$$H_0: \mu = \mu_0$$

is based on the z statistic which has a standard normal distribution.

If the variance σ^2 is unknown then the t statistic, which has the t distribution with n-1 degrees of freedom, is used instead.

Equations:

$$z = \sqrt{n} (X - \mu_0)$$

$$\sigma$$

$$t = \sqrt{n} (\overline{X} - \mu_0)$$

$$S$$

le mean and S is the population estimate of the ation.

SAMPLE PROBLEM

Suppose that the mean intelligence of the general population is 100 with a standard deviation of 15. Test the null hypothesis that the following sample of students is different from the population.

Student	1	2	3	4	5
Score	109	115	125	113	103

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "ONESAM"	One Sample Test For The Mean	
		<u>E</u> to end input, <u>C</u> to correct	
1	Enter data as prompted	Enter datum 1?	109 [RTN]
		Enter datum 2?	115 [RTN]
		Enter datum 3?	125 [RTN]
	ERROR	Enter datum 4?	1 [RTN]
2	Call error correction	Enter datum 5?	C [RTN]
		Datum 4 deleted = 1	
1	Enter correct value	Enter datum 4?	113 [RTN]
1	Continue	Enter datum 5?	103 [RTN]
3	End data input	Enter datum 6?	E [RTN]
4	Enter general mean	Enter µo?	100 [RTN]
5	Enter general std (N-1)	Enter o?	15 [RTN]
6	Read output. Use [RTN] to see	z = 1.9379	[RTN]
	next output. Use [BACK] to	T = 3.5781	[RTN]
	see last output	Mean = 113	[RTN]
		St. dev. = 8.124	[RTN]
7	End program	<u>R</u> un, <u>V</u> iew, <u>E</u> nd, or <u>C</u> ontinue?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "ONESAM"	One Sample Test For The Mean	
		\underline{E} to end input, \underline{C} to correct	
	Do steps 1-2 N times		
1	Enter value of indicated datum	Enter datum k?	Xk [RTN]
2	If an error was made:	Enter datum k?	C [RTN]
	This will be displayed:	Datum k deleted = Xk	
	If not finished with input,		
	goto 1		
3	Indicate the end of input:	Enter datum k?	E [RTN[
4	Enter µ naught:	μο?	μο [RTN]
5	Enter ơ:	σ?	σ [RTN]
6	Read output - [RTN] to see	Z =	[RTN]
	next output, [BACK to see	T =	[RTN]/[BACK]
	last result	Mean =	[RTN]/[BACK]
		St. dev =	[RTN]/[BACK]
7	Review routine	<u>R</u> un, <u>V</u> iew, <u>E</u> nd, or <u>C</u> ontinue?	
	R = rerun the program - step 1		R [RTN]
	V = review results - step 6		V [RTN]
	E = end the program		E [RTN]
	C = goto step number 4		C [RTN]

VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION
A()	Data storage	К\$	General utility string
N	Sample size	S1	Sum $X = \Sigma X$
S2	Sum X-squared $\Sigma(x^2)$	М	Mean
S3	Standard deviation (n-1)	Z	Z-value
Т	t-value	U	Delay flag, = 1 if [BACK]

NOTES AND REFERENCES

- Notes: 1. Both t and Z are computed. The user is reminded to use z only when the population standard deviation is known.
 - This program is limited to a maximum of 300 data points. To change this limit, change the dimension statement in line 80.
- References: The formula for this program came from the HP-41C Users' Library Solutions book TEST STATISTICS.

<pre>10 ! ONESAM - One sample 20 ! lest statistics for 30 ! the mean 40 ! REV 11/01/82 50 ! 60 DELAY .5 70 DISP "One Sample Test for the Mean" 80 DIM A(300),K\$[100] 90 DEF FNI(X) = INT(X*10000+.5)/10000 100 !</pre>	-Define precision of output
110 ! Delay routine	
120 ! 130 DEF FND	-Wait for 'RTN' or 'BACK' key.
140 K\$=KEY\$ @ IF K\$<>CHR\$(8) AND K\$<>CH R\$(13) THEN 140	Return 1 if 'BACK' key
150 FND=K\$=CHR\$(8) @ END DEF 160 !	
170 ! Error correction 180 !	
190 DEF FNE	-Delete incorrect input from the counters
200 IF N<1 THEN DISP "Must have data to delete" @ BEEP 440 @ GOTO 230 210 DISP "Datum";N;"deleted ==";A(N)	
220 S2=S2-A(N)^2 @ S1=S1-A(N) @ N=N-1 230 FNE=0 @ END DEF 240 !	
250 ! Initialize 260 !	
270 N,S1,S2=0 280 DISF CHR\$(197);" to end input, ";CH R\$(195);" to correct" @ WAIT 1	
290 ! 300 ! Input loop	
310 ! 320 DISP "Enton datur" Alia o tubur u.	
320 DISP "Enter datum";N+1; @ INPUT K\$ 330 IF UPRC\$(K\$)="E" AND N>1 THEN 410	-Goto end-of-data routine upon entry of 'E'
340 IF UPRC\$(K\$)="E" THEN BEEP 220 @ DI SF "Must have more than i datum" @ WAIT i @ GOTO 320	-Display error if 'E' entered and there is no data
350 1F UPRC\$(K\$)="C" THEN U=FNE @ GOTO 320	-Call error correction routine
360 ON ERROR BEEP 220 @ DISP 'Enter num eric, ["E"], or ["C"]/ @ WAIT 1 @ G	if 'C' is entered −Error trap
OTO 320 370 A(N+1)=VAL(K\$) @ N=N+1 @ S1=S1+A(N) @ S2=S2+A(N)^2 @ GOTO 320	-Increment counters and continue adding data
380 ! 390 ! Enter sigma, mu0 400 !	
410 ON EKROR BEEP 220 @ DISP "Please en ter numeric data" @ GOTO 420	-End-of-data routine, second error trap
1	

420	DISP "Enter ";CHR\$(12);"o"; @ INPUT	
	U0	
430	DISP "Enter ";CHR\$(9); @ INPUT S	
440	!	
450	! Computation	
460	!	
	OFF ERROR	
480	M=S1/N @ S3=SQR((S2-S1^2/N)/N*(N/(N	-Mean and standard
		deviation(n-1)
	Z = SQR(N) * (M - U0) / S	-Z-value and T-value
	T = SQR(N) * (M - U0) / S3	85 ·
510	PRINT "z=";FNI(Z) @ U=FND @ IF U TH	-Display the results
	EN 510	
520	PRINI "T=";FNI(T) @ U=FND @ IF U TH	
	EN 510	
530	PRINT "Mean =";FNI(M) @ U=FND @ IF	
	U THEN 520	
540	PRINT "St.dev. =";FNI(S3) @ U=FND @	
F	IF U THEN 530	
550		
560	! Review routine	
570		David week and the David
580	DISP CHR\$(210); "un, "; CHR\$(214); "ie	-Review module
	w, ";CHR\$(197);"nd, or ";CHR\$(195);	
	"ontinue";	
590	INPUT KS @ KS=UPRCS(KS&" ")	
600	ON POS("RVEC",K\$[1,1])+1 GOTO 580,2	
	70,510,610,410	
61.0	STOP	

6

PROGRAM DESCRIPTION

7

KENDALL'S COEFFICIENT OF CONCORDANCE

Kendall's Coefficient of Concordance is used to test the communality of preference among observers who have assigned n individuals ranks ranging from 1 to n according to some specified characteristic. The coefficient (W) varies from 0 (no community of preference) to 1 (perfect agreement), and is an extension of those rank-based measures used to test the degree of association in the twovariable case. This test is frequently considered a reliability measure of ranks.

$$W = \frac{\frac{12 \sum_{i=1}^{n} {\binom{K}{\sum_{j=1}^{K} R_{i,j}}^2}}{{\binom{K^2}{(n)(n^2-1)}}} - \frac{3(n+1)}{n-1}$$

$$\chi^2 = K(n-1)W$$

degrees of freedom = n-1

where: K is the number of observers

n is the number of individuals

 R_{ij} is the rank assigned to the ith individual by the jth observer

SAMPLE PROBLEM

"Suppose three company executives are asked to inteview six job applicants and to rank them separately in their order of suitability for a job opening. The three independent sets of ranks given by executives X, Y, and Z to applicants a through f might be those shown . . . " (Siegel, NON-PARAMETRIC STATISTICS, p. 230).

Find the degree of agreement among the three executives whose rankings of six job applicants are shown below. (Artificial data).

Applicant							
	a	b	C	d	e	f	
Executive X	1	6	3	2	5	4	
Executive Y	1	5	6	4	2	3	
Executive Z	6	3	2	5	4	1	
R _i (not computed)	8	14	11	11	11	8	

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run "KENDALL"	Kendall's Coeff. of Concordance	
2	Enter the # of executives	How many observers (K)?	3 [RTN]
	Enter the # of applicants	How many subjects (N)?	6 [RTN]
		Type <u>C</u> to delete error	
3	Enter Appl.1, Exec.1	Subject 1 Observer 1?	1 [RTN]
	Enter Appl.1, Exec.2	Subject 1 Observer 2?	1 [RTN]
	Enter Appl.1, Exec.3	Subject 1 Observer 3?	6 [RTN]
	Enter Appl.2, Exec.1	Subject 2 Observer 1?	6 [RTN]
		Subject 2 Observer 2?	5 [RTN]
		Subject 2 Observer 3?	3 [RTN]
	Enter Applicant 3	Subject 3 Observer 1?	3 [RTN]

STEP	INSTRUCTIONS	DISPLAY	INPUT
		Subject 3 Observer 2?	6 [RTN]
		Subject 3 Observer 3?	2 [RTN]
	Enter Applicant 4	Subject 4 Observer 1?	2 [RTN]
		Subject 4 Observer 2?	4 [RTN]
		Subject 4 Observer 3?	5 [RTN]
	Enter Applicant 5	Subject 5 Observer 1?	5 [RTN]
		Subject 5 Observer 2?	2 [RTN]
		Subject 5 Observer 3?	4 [RTN]
	Enter Applicant 6	Subject 6 Observer 1?	4 [RTN]
	Error	Subject 6 Observer 2?	334 [RTN]
	Call correction	Subject 6 Observer 3?	C [RTN]
	Correction displayed	6,2 deleted = 334	
	Enter correct value	Subject 6 Observer 2?	3 [RTN]
	Continue	Subject 6 Observer 3?	1 [RTN]
4	Coefficient of Concordance	W = .1619	[RTN]
5	Chi-square value	Chi-square = 2.4286	[RTN]
6	Degrees of freedon	Df = 5	[RTN]
7	End program	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run "KENDALL"	Kendall's Coeff. of Concordance	
2	Enter the # of observers	How many observers (K)?	k [RTN]
	Enter the # of subjects	How many subjects (n)?	n [RTN]
		Type C to delete error	
3	Enter data as prompted	Subject i Observer j?	R _{ij} [RTN]
	If an error was made:	Subject i Observer j?	C [RTN]
	Deleted datum displayed	i,j deleted = Rij	
	Goto 3 until done		
4	Real output. Use [RTN] key	W =	[RTN]
	to see next, [BACK] to see	Chi-square =	[RTN]/[BACK]
	last result.	Df =	[RTN]/[BACK]
5	Review routine	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	
	R = rerun program - step 2		R [RTN] or
	V = review results = step 4		V [RTN] or
	E = end program		E [RTN]

VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION
K\$	General input string	A()	Temporary data storage
SO	Grand sum of data	Ν	Grand N of data
S1	ΣXij	S2	$\Sigma(\Sigma Xij)^2$
М	Mean of data	Z	Z statistic
E	ETA ŋ		

NOTES AND REFERENCES

- Notes: The value of the Coefficient of Concordance must be in the range of zero to 1 (O<=W<=1). If it is not within that range, the program will display a warning message. If you get the message "W is illegal. Check data", make sure that you have entered the data by subject (see sample problem), and that the observer's ranks are in the range 1 to n (the number of subjects). Tied ranks are each assigned the average of the ranks they would have been assigned had no ties occurred (see reference to Siegel).
- References: 1. Siegel, Sidney, NONPARAMETRIC STATISTICS FOR THE BEHAVORIAL SCIENCES, (McGraw-Hill, 1956), p. 231-232.
 - Gibbond, J.D., NONPARAMETRIC STATISTICAL INFERENCE, (McGraw-Hill, 1971).
 - 3. Conover, W.J., PRACTICAL NONPARAMETRIC STATISTICS (John Wiley, New York, 1971).
 - 4. Formulae found in HP-41C Users' Library solutions TEST STATISTICS.

20 30 40 50 60 70 80	!	
100 110	DIM A(100),K\$[100]	
120 130	! Delay routine	
	DEF FND	-Wait for 'RTN' or 'BACK' keys. Return 1 if 'BACK' key
	K\$=KEY\$ @ IF K\$<>CHR\$(8) AND K\$<>CH R\$(13) THEN 150 FND=K\$=CHR\$(8) @ END DEF	
180	! Error correction	
190 200	! Def fne	-Error correction routine, decrement counters
210	IF JK2 THEN BEEP 220 @ DISP "Must h ave data to delete" @ GOTO 240	
	<pre>DISP STR\$(I);",";STR\$(J-1);" delete d =";A(J-1) @ WAIT 1</pre>	
240	J=J-1 @ S0=S0-A(J) FNE=0 @ END DEF DEF FNI(X) = INT(X*10000+.5)/10000	-Define precision of output
$\frac{260}{270}$! ! Initialize	
	! X0,X,S≡0	
300	INPUT "How many observers (K) ?";K	Input dialogue and initialization
	IF K<2 OR K>100 THEN BEEP 220 @ DIS P "Please enter 1 <k<100" 300<="" @="" goto="" td=""><td></td></k<100">	
	INPU1 "How many subjects (n) ?";N IF N<2 THEN BEEP 220 @ DISP "Please enter n>1" @ GOTO 320	
340	DISP "Type ";CHR\$(195);" to delete error" @ WAIT 1	
320	ON ERROR BEEP 220 @ DISP 'Enter num eric data or ["C"]' @ WAIT 1 @ GOTO 400	-Error trap- display warning if invalid entry
360 370 380		
390	FOR I=1 TO N @ SO=0 @ FOR J=1 TO K	
	DISP "Subject";I;"Observer";J; INPUT K\$ @ IF UPRC\$(K\$)="C" THEN U= FNE @ GOTO 400	-Call correction routine if user enters 'C'

430	A(J)=VAL(K\$) @ S0=S0+A(J) NEXT J @ S=S+S0^2 @ NEXT I ,	-Increment subject counter -End loop and increment total counter
440 450 460	! Calculate W,chi2,df	
470	W=12*S/(K^2*N*(N^2-1))-3*(N+1)/(N-1)	-Compute W
480 490	C2=K*(N-1)*W @ D=N-1	-Compute chi-square
	DISP "W=";FNI(W) @ U=FND @ IF U THE N 520	-Printout routine
530	IF W>1 OR W<0 THEN DISP W;"is illeg al. Check data." @ BEEP 440,1.5 @ V ≕FND	-Display warning if W <o or="" w="">1</o>
540	DISP "Chi-square =";FNI(C2) @ U=FND @ IF U THEN 520	
550	DISP "Df=";D @ U=FND @ IF U THEN 54 0	
560	DISP CHR\$(210);"un again, ";CHR\$(21 4);"iew again, or ";CHR\$(197);"nd";	-Review routine
570 580	INPUT K\$ @ K\$=UPRC\$(K\$&" ") ON POS("RVE",K\$I1,11)+1 GOTO 560,29	
	0,520,590 STOP	

PROGRAM DESCRIPTION

CORRELATION COEFFICIENT TEST

Under the assumptions of rank-order correlation analysis, the t statistic, which has the t distribution with n-2 degrees of freedom, may be used to test the null hypothesis (the true correlation coefficient ρ =0).

To test the null hypothesis $\rho = \rho_0$, where ρ_0 is a given number, the z statistic is used. z has approximately the normal distribution.

Equations:

$$t = \frac{r - n - 2}{\sqrt{1 - r^2}}$$

$$Z = \frac{\sqrt{n-3}}{2} \ln \left[\frac{(1+r)(1-\rho_0)}{(1-r)(1+\rho_0)} \right]$$

Where r is an estimate (based on a sample of size n) of the correlation coefficient $\rho.$

SAMPLE PROBLEM

Given a sample size (N) of 31, and correlation coefficient of .12, test that the null hypothesis ρ_0 = 0.

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "CORRTEST"	Correlation Coefficient Test	
1	Enter the sample size	Enter the sample size (n)?	31 [RTN]
2	Enter r	Correlation coefficient (r)?	.12 [RTN]
3	Enter p _o	Enter RHO-naught?	O [RTN]
4	Read t	t = .650923	[RTN]
5	Read Z	Z = .638055	[RTN]
6	End program	Run again, <u>V</u> iew again, or <u>E</u> nd?	e [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "CORRTEST"	Correlation Coefficient Test	
1	Enter N	Enter the sample size (n)?	N [RTN]
2	Enter r	Correlation coefficient?	r [RTN]
3	Enter Po	Enter RHO-naught?	P _O [RTN]
4	Read t value	t = t	[RTN]
5	Read Z value	Z = z	[RTN]/[BACK]
	Use [BACK] to review t-value		
6	Review routine	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	
	R = rerun the program - step 1		R [RTN] or
	V = review results - step 4		V [RTN] or
	E = end the program		E [RTN]

VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION
К\$	Input string	N	Sample size
R	Correlation	RO	Po
Т	t-score	Z	Z-score
U	Delay flag		

NOTES AND REFERENCES

- Notes: 1. This program will check that N>3, ρ =<31, and $\rho_0^{<1}$, and will display a warning if an error is found.
 - 2. Usually, the z statistic is used when the sample size is large.
 - 3. Note that both t and z are returned. If the test being made is that ρ is not equal to zero then use z. Choice of the appropriate statistic is left to the user.
- References: 1. Hogg and Craig, INTRODUCTION TO MATHEMATICAL STATISTICS, (Macmillan and Co., 1970).
 - 2. J. Freund, MATHEMATICAL STATISTICS, (Prentice-Hall, 1971).
 - 3. The formulae for this program come from the HP-41C Users' Library solutions TEST STATISTICS, "Test statistics for the correlation coefficient", p. 5.

20 30 40 50 60 70 80 90 100 110	DELAY .5 DISP "Correlation Coefficient Test" DIM K\$[100] ! ! Delay function	
	K\$=KEY\$ @ IF K\$<>CHR\$(8) AND K\$<>CH R\$(13) THEN 130	-Wait for 'RTN' or 'BACK' keys- return 1 if 'BACK' key
1.50 1.60	FND==K\$==CHR\$(8) @ END DEF DEF FNI(X) = INT(X*10^6+.5)/10^6 ! ! Input	-Define output precision
	ON ERROR BEEP 220 @ DISP "Please en ter numeric data" @ WAIT 1 @ GOTO 1 90	-Error trap- display warning if non-numeric entry
200	INPU1 "Enter the sample size (n) ?" ;N	-Enter N
210	IF N(3 THEN BEEP 220 @ DISP "Data e rror - n(3" @ WAIT 1 @ GOTO 200	-Verify that N>2
220	INPU1 "Correlation coefficient (r) ?";R	-Enter correlation (r)
240	IF ABS(R)>=1 THEN BEEP 220 @ DISP " Impossible correlation" @ GOTO 220 INPUT "Enter RHO-naught ?";R0 IF ABS(R0)>=1 THEN DISP "Data error . ";CHR\$(12);"o illegal." @ GOTO 24 0	-Verify that the absolute value of (r) is less than one -Enter rho-naught -Verify that the absolute value of rho is less than one
$\frac{260}{270}$		
280 290 300	! T==R*SQR(N-2)/SQR(1-R^2) Z==SQR(N-3)/2*LOG((1+R)*(1-R0)/((1-R)*(1+R0)))	-Compute the t-value -Compute the z-value
	! ! Print-out !	
340	DISP "t=";FNI(T) @ U=FND @ IF U THE N 340	-Print the results
350	DISP "Z=";FNI(Z) @ U=FND @ IF U THE N 340	
$\frac{360}{370}$! ! Review routine	
	! DISP CHR\$(210);"un again, ";CHR\$(21 4);"iew again, or ";CHR\$(197);"nd"; INPU] K\$ @ K\$≕UPRC\$(K\$&" ")	-Review module
**		

410 ON POS("RVE",K\$[1,1])+1 GOTO 390,19 0,340,420 420 END

PROGRAM DESCRIPTION

INTRACLASS CORRELATION COEFFICIENT

The intraclass correlation coefficient r_I measures the degree of association among individuals within classes or groups. The coefficient is most easily calculated using the analysis of variance techniques. r_I is the sample estimate of the population intraclass correlation coefficient ρ_I . If we can assume that the individuals within groups are random samples from normal populations with the same variance, then the hypothesis $\rho_I=0$ can be tested using the F statistic. This program also calculates the R-squared statistic, which is a measure of the relationship between the <u>sample</u> independent and dependent variables in the fixed effect case, and Omega-square, which is an estimate measure of the independent-dependent variable association in the population in the fixed effect case.

Mean of subjects in the i^{th} sample

$$\bar{\mathbf{x}}_{i} = \frac{\Sigma \mathbf{x}_{i}}{n_{i}}$$

Standard deviation
$$\sigma_{I} = \sqrt{\frac{\Sigma(x_{i}^{2})}{n_{i}} - (\overline{x}_{i})^{2}}$$

SS total = $\Sigma \left(\Sigma x_{j}^{2}\right) - \left(\Sigma \Sigma x\right)^{2}/n$ SS treatment = $\Sigma \left(\frac{T_{i}^{2}}{n_{i}}\right) - \frac{(\Sigma T)^{2}}{n}$ T is the column sum

SS error =
$$\Sigma \left(\Sigma x_{j}^{2} \right) - \Sigma \left(T_{j}^{2} / n_{j} \right)$$

Df total = n-1 K = the number of sets Df treatment = K-1 n = the total n Df error = n-k J = the number of subjects

PROGRAM DESCRIPTION

INTRACLASS CORRELATION COEFFICIENT (continued)

MS treatment = SS treatment/df treatment MS error = SS error/df error F = MS treat/MS error $R^2 = SS$ treat/SS total $\Omega^2 = (SS \text{ treat} - (MS \text{ error})(K-1))/(SS \text{ total} + MS \text{ error})$ Intraclass $r = \left[\frac{SS \text{ treat}}{K-1} - \frac{SS \text{ error}}{K(J-1)}\right] \left[\frac{SS \text{ treat} + \frac{SS \text{ error}}{K-1}}{K-1}\right]$

SAMPLE PROBLEM

Find the degree of association between individuals (A-B) within the following set of groups:

		Suþjects	5
		А	В
	1	71	71
	2	69	72
	3	59	65
Groups	4	65	64
(sets)	5	66	60
	6	73	72
	7	68	67
	8	70	68

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run "INTRA"	Intraclass Correlation Coeff.	
2	Enter the N of groups	How many sets?	8 [RTN]
3	Enter the N of subjects	How many subjects?	2 [RTN]
		<u>C</u> to correct error	
4	Enter set 1	Set 1 Subject 1?	71 [RTN]
		Set 1 Subject 2?	71 [RTN]
	Enter set 2	Set 2 Subject 1?	69 [RTN]
		Set 2 Subject 2?	72 [RTN]
	Enter set 3	Set 3 Subject 1?	59 [RTN]
		Set 3 Subject 2?	65 [RTN]
	Set 4: ERROR	Set 4 Subject 1?	666 [RTN]

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Call correction routine	Set 4 Subject 2?	C [RTN]
	Deleted value is displayed	(4,1) DELETED = 666	
	Enter correct value	Set 4 Subject 1?	65 [RTN]
		Set 4 Subject 2?	64 [RTN]
	Enter set 5	Set 5 Subject 1?	66 [RTN]
		Set 5 Subject 2?	60 [RTN]
	Enter set 6	Set 6 Subject 1?	73 [RTN]
		Set 6 Subject 2?	72 [RTN]
	Enter set 7	Set 7 Subject 1?	68 [RTN]
		Set 7 Subject 2?	67 [RTN]
	Enter set 8	Set 8 Subject 1?	70 [RTN]
		Set 2 Subject 2?	68 [RTN]
4	Read means	Set 1 Me = 71 Std = 0	[RTN]
		Set 2 Me = 70.5 Std = 1.5	[RTN]
		Set 3 Me = 62 Std = 3	[RTN]
		Set 4 Me = 64.5 Std5	[RTN]
		Set 5 Me = 63 Std = 3	[RTN]
		Set 6 Me = 72.5 Std = .5	[RTN]
		Set 7 Me = 67.5 Std = .5	[RTN]
		Set 8 Me = 69 Std = 1	[RTN]
5	Read output	Total Me = 67.5 Std = 4.031	[RTN]
		Treat DF = 7 SS = 216	[RTN]
		Treat MS = 30.857	[RTN]
		Error DF = 8 SS = 260	[RTN]
		Error MS = 5.5	[RTN]

STEP	INSTRUCTIONS	DISPLAY	INPUT
		Total DF = 15 SS = 260	[RTN]
	F value	F = 5.61039	[RTN]
		R squared = .830769	[RTN]
		Omega squared = .66855	[RTN]
	Degree of association	Intraclass r = .697446	[RTN]
6	End program	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run "INTRA"	Intraclass Correlation Coefficient	
2	Enter the N of groups	How many sets?	k [RTN]
3	Enter the N of subjects	How many subjects?	n [RTN]
		<u>C</u> to correct error	
4	Enter indicated datum	Set i Subject j?	Xij [RTN]
	If an error was made:	Set i Subject j?	C [RTN]
	This will be displayed:	(i,j) DELETED = Xij	
	Goto 4 until done		
5	View means	Set i Me = Std =	[RTN]
6	View results. [RTN] to see	Total Me = Std =	[RTN]
	next result, [BACK] to see	Treat DF = SS =	[RTN]/[BACK]
	last result.	Treat MS =	[RTN]/[BACK]
		Error DF = SS =	[RTN]/[BACK]
		Error MS =	[RTN]/[BACK]
		Total DF = SS =	[RTN]/[BACK]
		F =	[RTN]/[BACK]
		R squared =	[RTN]/[BACK]
		Omega squared =	[RTN]/[BACK]
		Intraclass r =	[RTN]/[BACK]
7	Review routine	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	
	R = rerun program - step 2		R [RTN]
	V = review results - step 6		V [RTN]
	E = end program		E [RTN]

VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION
T(i)	Σx _i	X2(i)	Σx_{i}^{2}
M(i)	Mean of treatment i	IO()	t_{i}^{2}/n
S9(i)	SD of treatment i	V(i)	Variance of i
R()	Temporary storage	E1	Value of deleted data
X\$	General input string	Т	Grand sum of all data
N	Grand n of all data	Х2	Σx_{i}^{2} of treatment
10	$\Sigma(T_i^2/n)$	I1	Intraclass correlation
S1	Treatment SS	M1	Treatment MS
S2	Error SS	M2	Error MS
S3	Total SS	F	F-value
D1	Treatment df	R2	R squared
D2	Error df	02	Omega squared
D3	Total df		

NOTES AND REFERENCES

- Notes: 1. A maximum of 100 subjects per set may be used. To change this, change the dimension statements in line 70.
 - 2. A maximum of 20 sets may be used. To change this, change lines 370 and 420.
 - 3. Once a set has been finished, it may not be corrected.

References: 1. Winer, B.J., STATISTICAL PRINCIPLES IN EXPERIMENTAL DESIGN, (McGraw-Hill, New York, 1971) pages 210-214.

- Hays, W.L., STATISTICS FOR PSYCHOLOGISTS, (Holt, Rinehart and Winston, 1963) page 382.
- 3. Ostle, B., STATISTICS, IN RESEARCH, Iowa State University Press, 1972.
- 4. HP-41C Users' Library, TEST STATISTICS, p. 33-34.
- 5. HP-75 STATISTICS SOLUTIONS BOOK, One-Way Analysis of Variance

20 30 40 50	! INTRAC-Intraclass ! Correlation Coeff. ! Rev 11/01/82 ! DELAY .5 DISP "Intraclass Correlation Coeff. "	
80	DIM T(20),X2(20),I0(20),V(20),M(20) ,S9(20),R(100) DIM X\$[20] !	
	! Define variance	
$110 \\ 120$! DEF FNS(S1,S2,N) = S2/N-(S1/N)^2	-Routine to calculate the variance
130		
140 150	! Delay routine	
160	DEF FND	-Wait for 'RTN' or 'BACK' key. Return 1 if 'BACK' key
	A\$=KEY\$ @ IF A\$="" THEN 170 FND=0 @ IF A\$=CHR\$(8) THEN FND=1	
	END DEF	
200		
	Precision routine	
	! DEF FNI(X) = IN1(X*10^3+.5)/10^3	"Dafina providian of outwork
	DEF FNJ(X) = $INT(X*10^{-6+.5})/10^{-6}$	-Define precision of output
250	!	
	! Correction	
	: DEF FNE(C)	-Error correction routine-
		decrement counters
290	IF 1=1 THEN BEEP @ DISP "Must have	
300	data to delete" @ WAIT 1 @ GOTO 330 E1=R(I-1) @ DISP "(";C;",";I-1;") D	
310	ELETED =";R(I-1) @ WAIT 1 T(C)=T(C)-E1 @ T=T-E1 @ I=I-1 @ N=N	
	-1	
	X2=X2-E1^2 @ X2(C)=X2(C)-E1^2 FNE=0 @ END DEF	
340		
	! Initialize	
360		
370	FOR Y=1 TO 20 @ T(Y)=0 @ X2(Y)=0 @ IO(Y)=0 @ V(Y)=0 @ M(Y)=0 @ NEXT Y	-Set counters to zero
380	N,T,X2,I0=0	
390	1	
	! Enter data	
	! INPUT "How many sets ?"; K @ IF K(2	
v	OR K>20 THEN BEEP @ GOTO 420	
430	INPU) "How many subjects? "; NO @ I	
	F NOKI THEN BEEP @ GOTO 430	

	ON ERROR BEEP @ DISP "Please enter numeric data" @ WAIT 1 @ GOTO 470	-Error trap- return warning if illegal data is entered
450	DISP CHR\$(195);" to correct error." @ BEEP 440 @ WAIT 1	
	FOR J=1 TO K @ FOR I=1 TO NO DISP 'Set';J;'Subject';I; @ INPUT X \$	-Input loop -Call error correction
	1F X\$="" וואר 470 IF POS("Cc",X\$) THEN U=FNE(J) @ GOT 0 470	-Decrement counters
	X=VAL(X\$)	
510		
530	! Loop counters	
	N=N+1 @ R(I)=X	
	T(J)=T(J)+X @ l=T+X @ X2(J)=X2(J)+X ^2 @ X2=X2+X^2	
	NEXT I	
	NEXT J OFF ERROR	
590		
600	! CALCULATION	
	Me,STD,Internal	
620		
	FOR J=1 TO K I0(J)=T(J)^2/NO @ I0=I0+I0(J)	-Intermediate calculation
	V(J)=FNS(T(J),X2(J),N0) @ S9(J)=SQR	-Variance and SD(n)
	(V(J))	
	M(J)=T(J)/N0	M@an
670	DISP "Set";J;"Me=";FNI(M(J));"Std=" ;FNI(S9(J)) @ U=FND	
680	NEXT J @ V=FNS(T,X2,N) @ M=T/N @ S9 =SQR(V)	
690	DISP "Total Me=";FNI(M),"Std=";FNI (S9) @ U=FND	
700		
710	! Int,SS,MS,DF	
	: 11=T^2/N	
	S1=I0-I1 @ S2=X2-I0 @ S3=X2-I1	-Calculate sum-squares
750	Di=K-i @ D2=N-K @ D3=N-i	-Calculate degrees of freedom
	M1=S1/D1 @ M2=S2/D2	-Calculate mean-squares
770		
790	! F,R^2,O^2	
	F=M1/M2 @ R2=S1/S3 @ D2=(S1-(K-1)*M 2)/(S3+M2)	
810	11=(S1/(K-1)-S2/(K*(N0-1)))/(S1/(K- 1)+S2/K)	
820	1	
	Print Out	
840		
820	DISP "Treat DF=";D1;"SS=";FNI(S1) @ U=FND	
	I	

860	DISP "Treat MS=";FNI(M1) @ U=FND @
	IF U THEN 850
870	DISP "Error DF=";D2;"SS=";FNI(S2)
	@ U=FND @ IF U THEN 860
880	DISP "Error MS=";FNI(M2) @ U=FND @
	IF U THEN 870
890	DISP "Total DF=";D3;"SS=";FNI(S3)
	@ U=FND @ IF U THEN 880
900	DISP "F=";FNJ(F) @ U=FND @ IF U THE
	N 890
910	DISP "R squared=";FNJ(R2) @ U=FND @
	IF U THEN 900
920	DISP "Omega squared=";FNJ(O2) @ U=F
	ND @ IF U THEN 910
930	DISP "Intraclass r =";FNJ(I1) @ U=F
	ND @ IF U THEN 920
940	DISP CHR\$(210); "un again, ";CHR\$(21
	4);"iew again, or ";CHR\$(197);"nd";

950 INPUT X\$ @ ON POS("RVE",UPRC\$(X\$))+ 1 GOTO 940,370,690,960

960 STOP

-Review module

PROGRAM DESCRIPTION

KRUSKAL-WALLIS STATISTIC

Suppose we want to test the null hypothesis that k independent random samples of sizes $n_1, n_2, \ldots, n_{k-1}, n_k$ come from identical continuous populations.

This program will arrange all values from k samples jointly (as if they were one sample) in an increasing order of magnitude. Values that have equal ranks will be assigned the average of the ranks that they cover. Let R_{ij} be the rank of the jth value in the ith sample.

The Kruskal-Wallis statistic H can be used to test the null hypothesis that each observer has identical ranking preference.

When all sample sizes are large (>5), H is distributed approximately at the chi-square with k-1 degrees of freedom. For small samples, the test is based on special tables (not computed). This program will accept a maximum of 254 TOTAL observations, due to a restriction in the sorting routine.

Equation: df = K-1

$$H = \left(\frac{12}{n(n+1)}\right) \quad \begin{pmatrix} K \\ \sum_{i=1}^{K} \frac{\binom{n_i}{\sum} R_{ij}}{n_i}^2 \\ j=1 \end{pmatrix} - 3(N+1)$$

Where: $N = \sum_{i=1}^{K} n_i$

 R_{ij} = Rank of observation (i,j) K = number of samples n_i = number of observations in the ith sample

SAMPLE PROBLEM

	1	2	2		3		4
Obs.	Rank	Obs.	Rank	Obs.	Rank	Obs.	Rank
83	11	91	23	101	34	78	2
91	23	90	19.5	100	33	82	9
94	28.5	81	6.5	91	23	81	6.5
89	17	83	11	93	27	77	1
89	17	84	13.5	96	31.5	79	3
96	31.5	83	11	95	30	81	6.5
91	23	88	15	94	28.5	80	4
92	26	91	23			81	6.5
90	19.5	89	17				
		84	13.5				

Compute the H-statistic for the following data: (data from Conover, p. 258).

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "KRUSKA"	Kruskal-Wallis Statistic	
1	Enter the N of treatments	How many treatments?	4 [RTN]
		\underline{E} to end treat., \underline{C} to change	
2	Begin treatment 1	Treat. 1 Subject 1?	83 [RTN]
		Treat. 1 Subject 2?	91 [RTN]
		Treat. 1 Subject 3?	94 [RTN]
		Treat. 1 Subject 4?	89 [RTN]
		Treat. 1 Subject 5?	89 [RTN]
		Treat. 1 Subject 6?	96 [RTN]
		Treat. 1 Subject 7?	91 [RTN]
		Treat. 1 Subject 8?	92 [RTN]

STEP	INSTRUCTIONS	DISPLAY	INPUT
		Treat. 1 Subject 9?	90 [RTN]
4	End treatment 1	Treat. 1 Subject 10?	E [RTN]
2	Begin treatment 2	Treat. 2 Subject 1?	91 [RTN]
		Treat. 2 Subject 2?	90 [RTN]
		Treat. 2 Subject 3?	81 [RTN]
		Treat. 2 Subject 4?	83 [RTN]
		Treat. 2 Subject 5?	84 [RTN]
		Treat. 2 Subject 6?	83 [RTN]
		Treat. 2 Subject 7?	88 [RTN]
		Treat. 2 Subject 8?	91 [RTN]
		Treat. 2 Subject 9?	89 [RTN]
		Treat. 2 Subject 10?	84 [RTN]
4	End treatment 2	Treat. 2 Subject 11?	E [RTN]
2	Begin treatment 3	Treat. 3 Subject 1?	101 [RTN]
		Treat. 3 Subject 2?	100 [RTN]
		Treat. 3 Subject 3?	91 [RTN]
	Error	Treat. 3 Subject 4?	9333 [RTN]
3	Call correction routine	Treat. 3 Subject 5?	C [RTN]
	This will be displayed:	(3,4) DELETED = 9333	
2	Enter correct value	Treat. 3 Subject 4?	93 [RTN]
	Continue	Treat. 3 Subject 5?	96 [RTN]
		Treat. 3 Subject 6?	95 [RTN]
		Treat. 3 Subject 7?	94 [RTN]
4	End treatment 3	Treat. 3 Subject 8?	E [RTN]
2	Begin treatment 4	Treat. 4 Subject 1?	93 [RTN]

STEP	INSTRUCTIONS	DISPLAY	INPUT
		Treat. 4 Subject 2?	82 [RTN]
		Treat. 4 Subject 3?	81 [RTN]
		Treat. 4 Subject 4?	77 [RTN]
		Treat. 4 Subject 5?	79 [RTN]
		Treat. 4 Subject 6?	81 [RTN]
		Treat. 4 Subject 7?	80 [RTN]
		Treat. 4 Subject 8?	81 [RTN]
4	End treatment 4	Treat. 4 Subject 9?	E [RTN]
5	Skip the ranks	View the ranks (Y/N)?	N [RTN]
6	View printout	H = 25.46437	[RTN]
		df = 3	[RTN]
		Total n = 34	[RTN]
7	End program	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "KRUSKA"	Kruskal-Wallis Statistic	
1	Enter the number of treatments	How many treatments?	k [RTN]
		\underline{E} to end treat., \underline{C} to correct	
	do steps 2-5 k times		
2	Enter data as prompted	Treat. i Subject j?	Xij [RTN]
3	If an error was made:	Treat. i Subject j?	C [RTN]
	Deleted datum displayed:	(i,j) DELETED = Aij	
	Goto 2 until treatment done		
4	Depress E to end treatment	Treat. i Subject j	E [RTN]
	Goto 2 until all treatments		
	have been entered		
5	Depress Y to see ranks	View the ranks (Y/N)?	Y or N [RTN]
	To view the ranks:	i,jS= R=	[RTN]/[BACK]
6	Read the printout. Use	Н =	[RTN]/[BACK]
	[RTN] key to see next result,	df =	[RTN]/[BACK]
	[BACK] key to see last result.	Total n =	[RTN]/[BACK]
7	Review routine	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	
	R = rerun program – step 1		R [RTN]
	V = review results - step 5		V [RTN]
	E = end program		E [RTN]

VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION
A()	Data storage	N	Total N
X\$	General use string	A1()	Storage of ranks
N(j)	N of column j	N1	Internal: total N
NO	Grand sum	К	Number of treatments
Х	Temporary input value	Н	H-value
R2	$\Sigma(R,j)^2$	R1	Temporary sum of rank
D	Degrees of freedom	U*	Delay flag, = 1 if [BACK]
	VARIABLES USED IN THE	INDEX SORTING	ROUTINE
L	Lower parameter of search	U*	Upper parameter of search
I	Middle of binary search	K1	Value to "search" for
T\$	Upper part of index string	В\$	Lower part of index string
A\$	Index string		
VAR	IABLES USED IN THE RANKING A	ND TIED-VALUE	CORRECTION ROUTINE
L1	Last discrete rank value	C1	Index (position) of L1
СО	Number of ranks that = L1	C2	Sum of indexes after C1
т	"Current" rank value	R	Value to replace "current" tied ranks
	* Some variables used f	or more than o	ne purpose

NOTES AND REFERENCES

- Notes: 1. The program is presently limited to a maximum of 20 treatments. To change this limit, change lines 70 and 320.
 - 2. The program is limited to a maximum of 254 total data items. To change this would require a major reprogramming effort, and would slow down the ranking routine.
- References: 1. Conover, W.J., PRACTICAL NONPARAMETRIC STATISTICS (John Wiley and sons. 1971), p. 257-259.
 - 2. Knuth, Donald E., THE ART OF COMPUTER PROGRAMMING, Volume 3, Sorting and Searching, (Addison-Wesley, 1972).
 - 3. HP-41C Users' Library solutions, TEST STATISTICS, Kruskal-Wallis statistic.

20 30 40 50 60 70	<pre>! KRUSKAL: Kruskal- ! Wallis statistic ! REV 11/01/82 ! DELAY .5 DISP " Kruskal-Wallis Statistic" DIM A(255),A\$[255],T\$[255],B\$[255], A1(255),X\$[20],N(20) DEF FNC(X) = NUM(A\$[X,X])</pre>	-Conversion function for
90	!	ranking routine
	! Delay routine	
110		
1,20	DEF FND	-Wait for 'RTN' or 'BACK' keys- return 1 if 'BACK' key
140 150 160	A\$=KEY\$ @ IF A\$="" THEN 130 FND=0 @ IF A\$=CHR\$(8) THEN FND=1 END DEF !	return I It (BUCK, Keà
1.20	! Correction	
	DEF FNE(C)	-Correction routine
200	IF N(C)(i THEN BEEP @ DISP "Must ha	
	ve data to delete" @ GOTO 230 DISP "(";C;",";N(C);") DELETED =";A (N) @ WAIT 1	
	N(C)=N(C)-1 @ $N=N-1$ @ $N0=N0-A(C)$	
	FNE=0 @ END DEF DEF FNI(X) = 1NT(X*10^5+.5)/10^5	-Define precision of output
250	!	weithe bleetston of bo(b)(
260		
270 280 290	N1,R1,R2,N,N0=0	
	! Enter data	
310		
<i>⊲≃</i> 0	INPU3 "How many Treatments ?"; K @ IF K<2 OR K>20 THEN BEEP @ GOTO 320	-Enter and verify the number of treatments
330	DISP CHR\$(197);" to end treat., ";C HR\$(195);" to correct" @ WAIT 1	
340	FOR $J=1$ TO K @ N(J)=0	
350	<pre>DISP 'Treat.';J;'Subject';N(J)+1; @</pre>	
34.0	INPUT X\$ IF UPRC\$(X\$)="E" THEN 490	Costa debra un el efector de manda en la
000	$1 0 \mathbf{(} 0 \mathbf{(} 0 0 \mathbf{(} 0 $	-Goto the end of the treatment if 'E' is entered
	IF UPRC\$(X\$)="C" THEN U=FNE(J) @ GO TO 350	-Call error correction routine if 'C' is entered
380	ON ERROR BEEP 220 @ DISF 'Enter num eric, ["E"], or ["C"]' @ WAIT 1 @ G 010 350	-Error trap
	X=VAL(X\$)	
$\begin{array}{c} 400\\ 410 \end{array}$! ! Loop counters	
420		
	I	

430	N(J)=N(J)+1 @ N=N+1 @ A(N)=X @ N0=N	-Increment counters
440	0+X TE NAMORA DUEN DEED O DIGD MORE (* 5	
** *† U	IF N>=254 THEN BEEP @ DISP "Can't E nter any more" @ WAIT 1 @ GOTO 490	-Check number of data items
450	GOTO 350	
460		
	! End of treatment	
480		
	IF N(J)(2 THEN BEEP @ DISP "Must ha	c
-470	ve more than one subject" @ GOTO 35	
	Ve Hore (Han one sobject e Goto 55 0	
500	NEXT J	
	OFF ERROR	
520		
	! Rank data by	
550	! "Binary" sort	
		w
200	L1,A(N+1),A(0)=-INF @ C0=1 @ C1,C2=	-Binary index sort
r" 1"3 ().	0 6 d 1919 d - (-)	
	A\$=CHR\$(1)	
	FOR X=2 TO N	-Binary search
	L=1 @ U=X-1	
	I = INT((L+U)/2)	
	Ki=A(NUM(A\$[I,I]))	
	IF A(X)=K1 THEN 650	
	IF A(X)(K1 THEN U=I-1 ELSE L=I+1	
	IF U>=L THEN 600	
	IF 1>1 THEN B\$=A\$[1,I-1] ELSE B\$=""	
660	· · · · · · · · · · · · · · · · · · ·	-Insert present index into A\$
	SE [\$=""	
670	IF A(X)(K1 THEN A*=B\$&CHR\$(X)&A\$II,	
	LEN(A\$)] ELSE A\$=A\$[1,1]&CHR\$(X)&T\$	
	NEXT X	
	A\$=A\$&CHR\$(0)	
200		
	! Compute & store	
	! ranks	
730		
	FOR X=1 TO N	-Store ranks in A()
750	T=A(FNC(X)) @ IF T(>L1 AND C0=1 THE	
	N Li=T @ A1(FNC(X))=X @ C1,C2=X @ G	
10. 2 25	OTD 800	
	IF)=Li]HEN CO=CO+1 @ C2=C2+X	-Replace tied ranks
	IF X<>N AND 1=L1 THEN 800	
780	R=C2/C0 € FOR Q=C1 TO C1+C0-1 € A1(
	FNC(Q))=R @ NEXT Q	
790	C0=1 @ L1=1 @ A1(FNC(X))=X @ C1,C2=	
	X	
	NEXT X	
810		
	Compute r2/n	
830	1 11	
	FOR X=1 TO K	
820	Ri=0 @ FOR Y=i TO N(X)	
	1	

870 880 890 900 910 920	N1=N1+1 @ R1=R1+A1(N1) @ NEXT Y R2=R2+R1^2/N(X) @ NEXT X D=K-1 H=12/(N*(N+1))*R2-3*(N+1) ! ! Print-out ! DISP "View the ranks? (";CHR\$(217);	-Compute H and degrees of freedom
940 950 960 970	<pre>"/";CHR\$(206);")"; INPUT A\$ @ A\$=UPRC\$(A\$&" ") IF POS("NY",A\$[1,1])=0 THEN 930 IF A\$="N " THEN 1050 X1,X=0 @ Y=1 PRINT "Sample";Y</pre>	-Routine to allow user to view the ranks
1000 1010	<pre>X=X+1 @ X1=X1+1 @ IF X>N THEN 1050 IF X1>N(Y) THEN Y=Y+1 @ X1=0 @ X=X- 1 @ GOTO 980 PRINT STR\$(Y);",";STR\$(X1);" S=";A(X);"R=";A1(X) @ V=FND IF V AND X1>1 THEN X=X-1 @ X1=X1-1 @ GOTO 1010</pre>	
1040	IF V AND Y>1 THEN Y=Y-1 @ X1=N(Y) @ X=X-1 @ GOTO 1010 GOTO 990 PRINT "H =";FNI(H) @ U=FND @ IF U T HEN X1=N(K) @ X=N @ Y=K @ GOTO 1010	Printout
1070 1080	PRIN] "df=";D @ U=FND @ IF U THEN 1 050 PRIN] "Total n=";N @ U=FND @ IF U T HEN 1060 ! ! Review routine	
	! DISP CHR\$(210);"un again, ";CHR\$(21 4);"iew again, or ";CHR\$(197);"nd " ;	-Review module
1130	INPUT A\$ @ A\$=UPRC\$(A\$&" ") ON POS("RVE",A\$[1,1])+1 GOTO 1110,2 80,930,1140 STOP	

PROGRAM DESCRIPTION

MANN-WHITNEY U-TEST

This program calculates the Mann-Whitney test statistic on two independent samples of equal or unequal sizes. The Mann-Whitney test will test the null hypothesis that there is no difference between the two samples. The program will rank all values from both samples as if they were one sample, assigning tied ranks the mean of the positions that they occupy. This program will also accept, as input, data that has already been ranked in the preceding manner. The smaller of the two U-statistics will be displayed, as according to statistical convention. The Z-value that is displayed is approximately a random variable having the standard normal distribution.

For small samples (less than or equal to 8) the specially constructed tables should be used. For example: HANDBOOK OF STATISTICAL TABLES, D. B. Owen, Addison-Wesley, 1962.

Formula:

$$U = n_1 n_2 + \frac{n_1(n_1+1)}{2} - \frac{\sum_{i=1}^{n_1} R_i}{i=1}$$

$$z = \frac{U - \frac{n_1 n_2}{2}}{\sqrt{n_1 n_2 (n_1 + n_2 + 1)/12}}$$

Where:
$$n_1$$
 = Size of sample 1
 n_2 = Size of sample 2
 R_{\pm} = Rank assigned to item i of the sample with the smallest U.

Note: Both of the two possible U's are computed. The smallest U is displayed, as is conventional.

SAMPLE PROBLEM

The two-sample case is one in which the investigator has obtained two samples from possibly different populations. The null hypothesis tests the rejection of the assumption that the samples come from two different populations.

Consider two independent samples of students trained in a series of athletic events under two different conditions. The null hypothesis is that there are no differences between the training methods. Use the program MANN to calculate the ranks, U-statistic and z-statistic of these students.

		Sc	ore			
Method	А	18	15	13	21	11
Method	В	13	6	2	5	

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "MANN"	Mann-Whitney U-Test Statistic	
		Sample 1 <u>C</u> =change <u>E</u> =end	
1	Enter sample 1	Sample 1 Item 1?	18 [RTN]
		Sample 1 Item 2?	15 [RTN]
		Sample 1 Item 3?	13 [RTN]
		Sample 1 Item 4?	21 [RTN]
		Sample 1 Item 5?	11 [RTN]
4	End sample 1	Sample 1 Item 6?	E [RTN]
		Sample 2 C=change E=end	
2	Enter sample 2	Sample 2 Item 1?	13 [RTN]
		Sample 2 Item 2?	6 [RTN]
	ERROR	Sample 2 Item 3?	299 [RTN]
3	Call error correction	Sample 2 Item 4?	C [RTN]
	This will be displayed	Item 3 deleted = 299	

STEP	INSTRUCTIONS	DISPLAY	INPUT
2	Enter the correct value	Sample 2 Item 3?	2 [RTN]
	Continue	Sample 2 Item 4?	5 [RTN]
4	End sample 2	Sample 2 Item 5?	E [RTN]
5	View the rank scores?	View the ranks? (Y/N)?	Y [RTN]
6	View the ranks. Use [RTN]	Sample 1	
	to see the next rank.	1,1 S = 18 R = 8	[RTN]
		1,2 S = 15 R = 7	[RTN]
		1,3 S = 13 R = 5.5	[RTN]
		1,4 S = 21 R = 9	[RTN]
		1,5 S = 11 R = 4	[RTN]
		Sample 2	
		2,1 S = 13 R = 5.5	[RTN]
		2,2 S = 6 R = 3	[RTN]
		2,3 S = 2 R = 1	[RTN]
		2,4 S = 5 R = 2	[RTN]
7	View results, using [RTN] as	U = 1.5	[RTN]
	above	Z = -2.08207	[RTN]
8	End program	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "MANN"	Mann-Whitney U-Test Statistic	
		Sample 1 C = change, E = end	
1	Enter items of sample 1	Sample 1 Item i?	A(1,i) [RTN]
	If an error was made:	Sample 1 Item i?	C [RTN]
	This will be displayed:	Item i deleted = A(1,i)	
	Goto 1 until done		
	End sample 1	Sample 1 Item i?	E [RTN]
		Sample 2 C = change, E = end	
2	Enter items of sample 2	Sample 2 Item i?	A(2,i) [RTN]
	If an error was made:	Sample 2 Item i?	C [RTN]
	Will not correct sample 1	Item i deleted = A(2,i)	
	Goto 2 until done		
	End sample 2	Sample 2 Item i?	E [RTN]
3	Do you wish to view the	View the ranks? (Y/N)?	Y [RTN] or
	ranks? If not, goto 5		N [RTN]
4	View the ranks. Use the	Sample 1	
	[RTN] key to see the next	1,1 S = sample R = rank	[RTN]
	rank, [BACK] to see previous	1,i S = sample R = rank	[RTN]/[BACK]
	rank	Sample 2	
5	View U and Z. Use [RTN] and	U = u value	[RTN]/[BACK]
	[BACK] as above	Z = z value	[RTN]/[BACK]
6	Review routine	Run again, View again, or End?	
	R = rerun the program - step 1		R [RTN] or
	V = review results - step 3		V [RTN] or
	E = end the program		E [RTN]

VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION	
A()	Data storage	A1()	Storage of ranks	
N(j)	N of column j	N	Total N	
Х9	Temporary input data value	Z	Z-statistic	
U1,U2	Large and small U statistic	К\$	General use string	
R1,R2	Sum of ranks in var. 1,2	U*	Delay flag, = 1 if [BACK]	
D	Degrees of freedom		used	
	VARIABLES USED IN THE	INDEX SORTING	ROUTINE	
L	Lower parameter of search	U*	Upper parameter of search	
I	Middle of binary search	K1	Value to "search" for	
Т\$	Upper part of index string	В\$	Lower part of index	
A\$	Index string			
VARI	VARIABLES USED IN THE RANKING AND TIED-VALUE CORRECTION ROUTINE			
L1	Last discrete rank value	C1	Index (position) of L1	
СО	Number of ranks that = L1	C2	Sum of indexes after C1	
Т	"Current" rank value	R	Value to replace "current" tied ranks	
* Some variables used for more than one purpose				

NOTES AND REFERENCES

- Notes: 1. A maximum of 254 items (TOTAL) may be entered. This is due to the design of the ranking program, and can't be changed easily. See the Notes and References to Kruskal-Wallis statistic.
 - 2. In accordance with statistical convention, the smaller of the two possible U-statistics is displayed. Variables U1 and U2 contain, respectively, the U-statistic computed using item 1 and the U-statistic computed using item 2.
- References: 1. J.E. Freund, MATHEMATICAL STATISTICS, (Prentice-Hall, 1962).
 - 2. S. Siegel, NON-PARAMETRIC STATISTICS, (McGraw-Hill, New York, 1956).
 - 3. TEST STATISTICS, HP-41C Users' Library solutions, (MANN-WHITNEY STATISTIC).

20 30		
	DIM A(255),A\$[255],T\$[255],B\$[255], A1(255),N(2) DELAY .S	
60		
80	1	
,00 100	$DEF FNC(X) = NUM(A \pm [X, X])$	-Conversion function for ranking routine
	! Error correction	
	DEF FNI(X) = INT(X*10^5+.5)/10^5 DEF FNE	-Define precision of output -Delete user's input error and decrement counters
150	DISP "Item";N(S);"deleted ≕";A(N(S) +N0)	Gettement Coonters
1.70	N=N-1 @ N(S)=N(S)-1 @ FNE=0 END DEF	
180 190	! ! Delay routine	
200	!	
210	DEF FND	-Wait for 'RTN' or 'BACK' keys. Return 1 if 'BACK' key
	K\$≕KEY\$ @ IF K\$<>CHR\$(13) AND K\$<>C HR\$(8) THEN 220	Neton i i indi key
230 240	FND=K\$=CHR\$(8) @ END DEF	
250	! Initialize	
260 270	! DISP "Mann-Whitney U-test statistic "	
280	ON ERROR BEEP 440 @ DISP 'Enter num eric, ["E"], or ["C"]' @ GOTO 350	-Error trap
	L1,A(0)=-INF @ C0=1 @ N,N0,N(1),N(2),R,C1,C2=0	
$300 \\ 310$! ! Input loop	
320		
	FOR S=1 TO 2 DISP "Sample ";S;" ";CHR\$(195);"=	
	chang⊜, ";CHR\$(197);"≕end" @ WAIT 1 B\$≕"" @ DISP "Sample";S;"Item";N(S)	-Enter sample value
360	+1; @ INPUT B\$ 1F UPRC\$(B\$)="E" THEN 410	"Endersten anderen der Frider anderen d
370	IF UPRC\$(B\$)="C" AND N(S)>0 THEN U= FNE @ GOTO 350	-End data entry if E is entered -Call correction routine if C is entered
380	IF UPRC\$(B\$)="C" THEN DISP "Must have data to delete" @ BEEP 220 @ GOT	-Return error if attempting to delete non-existent data
	O 350 IF N>250 THEN BEEP @ DISP "WARNING- Can't accept n>254" @ WAIT 1.5	-Return error if more than 254
	mmer s sesserappis itzanazin (; WPLL L L)	data items entered

400	X9=VAL(B\$) @ N=N+1 @ N(S)=N(S)+1 @ A(N(S)+N0)=X9 @ GOTO 350	-Increment counters, store value, and continue
410	IF N(S)(2 THEN BEEP 220 @ DISP "Mus	
	t have more than one item" @ GOTO 3 50	
420	NO=N @ NEXT S	
	OFF ERROR	
440		
	! Binary sort	
460		-Binary index sort
	A\$=CHR\$(1) @ A(N+1)=−INF	
	FOR X≕2 TO Ň	-Binary search
	$L=1 \oplus U=X-1$	
500	I=INT((L+U)/2)	
510	K1=A(NUM(A\$[I,I]))	
520	IF A(X)=K1 THEN 550	
530	IF A(X)(K1 THEN U=I-1 ELSE L=I+1	
540	IF U>=L THEN 500	
550	IF 1>1 THEN B\$=A\$[1,I-1] ELSE B\$=""	
560		-Insert preset index into A\$
	SE T\$=""	
570	IF A(X)(K1 THEN A\$=B\$&CHR\$(X)&A\$E1,	
	LEN(A\$)] ELSE A\$=A\$[1,I]&CHR\$(X)&T\$	
	NEXT X	
	A\$=A\$&CHR\$(0)	
600		
	! Paired ranks	
620	! FOR X=1 TO N	-Store ranks in A1()
	T=A(FNC(X)) @ IF T()L1 AND CO=1 THE	ator w ranks in Mix ()
0.40	N L1=T @ A1(FNC(X))=X @ C1,C2=X @ G	
	OTO 690	
650	IF]=L1 THEN C0=C0+1 @ C2=C2+X	-Replace tied ranks
660	IF XX>N AND T=L1 THEN 690	
670	R=C2/C0 @ FOR Q=C1 10 C1+C0-1 @ A1(
	FNC(Q))=R @ NEXT Q	
680	CO=1 @ L1=7 @ A1(FNC(X))=X @ C1,C2=	
	X	
	NEXT X	
700		
	! Compute U and Z	
720		
230	R1,R2=0 @ FOR X=1 TO N(1) @ R1=R1+A 1(X) @ NEXT X	-Compute sum of ranks in variable i and 2
12 A O	FOR X=N(1)+1 TO N(1)+N(2) @ R2=R2+A	variable i and z
740	$1(X) \otimes NEXT X$	
250	U2=N(1)*N(2)+N(2)*(N(2)+1)/2-R2	-Compute U using variable 2
	$U_1=N(1)*N(2)+N(1)*(N(1)+1)/2-R_1$	-Compute U using variable 1
	U=U1 @ IF U2(U1 THEN U=U2	-Choose smallest U
	Z=(U-N(1)*N(2)/2)/SQR(N(1)*N(2)*(N(-Compute z-score
	1)+N(2)+1)/12)	
790		
800	! View ranks	
810	!	
	•	I

820	DISP "View the ranks? (";CHR\$(217);	-Routine to view the ranks
	"/";CHR\$(206);")";	
830	INPUT K\$ @ K\$=UPRC\$(K\$&" ")	
	IF POS("NY",K\$[1,1])=0 THEN 820	
850	IF K\$="N " THEN 970	
860	X1,X=0 @ Y=1	
870	DISP "Sample";Y	
880	X=X+1 @ X1=X1+1 @ IF X>N THEN 970	
890	IF X1>N(Y) THEN Y=Y+1 @ X1=0 @ X=X-	
	1 @ GOTO 870	
900	DISP STR\$(Y);",";STR\$(X1);" S=";A(
	X);"R=";A1(X) @ V=FND	
910	IF V AND X1>1 THEN X=X-1 @ X1=X1-1	
	@ GOTO 900	
920	IF V AND Y>1 THEN Y=1 @ X1,X=N(1) @	
76.0	GOTO 900	
070	GOTO 880	-Printout/display routine
940	l I lláma ll ll	
950		
960		
	DISP "U = ";FNI(U) $@$ V=FND	
980	IF V THEN X=N @ X1=N(2) @ Y=2 @ GOT	
	0 900	
990	DISP "Z=";FNI(2) @ V=FND @ IF V THE	
	N 970	
1000	DISP CHR\$(210);"un again, ";CHR\$(21	-Review module
	4);"iew again, or ";CHR\$(197);"nd";	
	INPUT B\$ @ B\$=UPRC\$(B\$&" ")	
1020	ON POS("RVE",B\$[1,1])+1 GOTO 1000,2	
	80,820,1030	
1030	STOP	

PROGRAM DESCRIPTION

FISHER'S EXACT PROBABILITY

Fisher's exact probability test is used for analyzing a 2 x 2 contingency table when the two independent samples are small in size.

a (I-)	b (I+)
c (II-)	d (II+)

Given frequencies a, b, c, d, with a as the smallest frequency, this program calculates:

- the exact probability of observing the given frequencies in a 2 x 2 table, when the marginal totals are regarded as fixed, and
- 2) the exact probability P_i (i=1, 2, ..., a) of each more extreme table having the same marginal totals.

Formula:

Exact probability $P_0 = (a+b)!(c+d)!(a+c)!(b+d)!$ N!a!b!c!d!

Where: N = a+b+c+d

Each more extreme table (with the same margins)

$$P_{i} = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{N!(a-i)!(b+i)!(c+i)!(d-i)!}$$

Where: $P_{i} \in \{1, 2, ..., a-1, a\}$ X! = (1)(2)...(X-1)(X)

SAMPLE PROBLEM

Calculate P_0 , P_2 , P_3 , and P_4 for the following table:

Frequency:

7	10
8	5

NOTE: The table must be arranged as:

Frequency

5	8
10	7

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run "FISHER"	Fisher Exact Probability Test	
2	Enter frequency A	Enter Group I- (A)?	5 [RTN]
3	Enter frequency B	Enter Group I+ (B)?	8 [RTN]
4	Enter frequency C	Enter Group II- (C)?	10 [RTN]
5	Enter frequency D	Enter Group II+ (D)?	7 [RTN]
6	Read probabilities, Use	Exact probability = .01467	[RTN]
	[RTN] to see the next	Prob.(1) = .05705	[RTN]
	probability	Prob.(2) = .13691	[RTN]
		Prob.(3) = .1867	[RTN]
		Prob.(4) = .12446	[RTN]
		Prob.(5) = .02872	[RTN]
7	End program	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Arrange table so that a is		
	the smallest frequency		
1	Run "FISHER"	Fisher Exact Probability	
2	Enter frequency A	Enter group I- (A)?	a [RTN]
3	Enter frequency B	Enter group I+ (B)?	Ь [RTN]
4	Enter frequency C	Enter group II- (C)?	c [RTN]
5	Enter frequency D	Enter group II+ (D)?	d [RTN]
6	View probabilities. Use [RTN]	Exact probability =	[RTN]
	to see next display, [BACK]	Prob. (1) =	[RTN]
	to see previous one	Prob. (2) =	[RTN]/[BACK]
		Prob. (3) =	[RTN]/[BACK]
		Prob. (4) =	[RTN]/[BACK]
		Prob. (5) =	[RTN]/[BACK]
7	Review routine	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	
	R = rerun the program - step 2		R [RTN]
	V = review results - step 6		V [RTN]
	E = end program		E [RTN]

VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION
P()	Probability storag®	К\$	General input string
F	Factorial function	А	Group I- (A)
В	Group I+ (B)	С	Group II- (C)
D	Group II+ (D)	N	A+B+C+D
Ι,Χ	Index values	U	Delay flag, = 1 if [BACK]

NOTES AND REFERENCES

- Notes: 1. a must be the smallest among the frequencies. Rearrange the table if necessary.
 - 2. This program requires that a <= 50. To change this limit, change the dimension statement in line 70.
 - 3. This program contains a routine for calculating the factorial of a number in lines 170-230. You can use it in your own program as follows:

1000 DEF FNF(N) 1010 F=1 1020 FOR X=2 to N 1030 F=F*X 1040 NEXT X 1050 FNF=F @ END DEF 2300 A=FNF(B)/C (Sample formula)

References: 1. Sidney Siegel, NONPARAMETRIC STATISTICS, (McGraw-Hill, 1956).

- Sir R.A. Fisher, STATISTICAL METHODS FOR RESEARCH WORKERS, (Oliver and Boyd, 1950).
- 3. Hewlett-Packard, HP-41C Users' Library Solutions TEST STATISTICS, formula from program FISHER'S EXACT TEST FOR A 2 x 2 CONTINGENCY TABLE, p. 39.

20 30 40 50 60 70 80 90 100	<pre>! FISHER - Fisher's exact ! test for a 2*2 contingency ! table ! REV 11/01/82 ! DISP " Fisher Exact Probability Te st" DIM P(50),K\$[20] ! ! Delay routine ! DEF FND</pre>	-Wait for 'RTN' or 'BACK' keys.
	K\$=KEY\$ @ IF K\$<>CHR\$(13) AND K\$<>C HR\$(8) THEN 120 FND=K\$=CHR\$(8) @ END DEF ! ! Calculate factorial !	Return í if 'BACK' key
170 180 190 200 210 220 230 240 250	FNF=F END DEF ! ! Limit output precision	-Function to compute factorial
280 290 300 310	! DEF FNI(X) = INT(X*100000+.5)/10000 0 INPUT "Enter Group I- (A) ?";A INPUT "Enter Group I+ (B) ?";B INPUT "Enter Group II- (C) ?";C INPUT "Enter group II+ (D) ?";D IE (A(D) + (A(D) + (A(D) - 2 - 2)) = 240	-Function to define output precision -Enter the frequencies
330	IF (A(B)+(A(C)+(A(D)=3 THEN 340 BEEP 880 @ DISP "A must be the smal lest freq." @ WAIT 1 @ GOTO 140 N=A+B+C+D ! ! Calculate prob.	-Verify that A is the smallest frequency
380 390 400 410 420 430	<pre>FOR I=0 TO A P(1)=FNF(A+B)*FNF(C+D)*FNF(A+C)*FNF (B+D) P(I)=P(I)/(FNF(N)*FNF(A-I)*FNF(B+I) *FNF(C+1)*FNF(D-I)) NEXT I !</pre>	-Calculate the probabilities. Store exact prob. in A(O)
440 450	! DISP "Exact probability =";FNI(P(0)) @ U=FND @ IF U THEN 4 50	-Display the probabilities

460 X=0 470 X=X+1 @ IF X>A THEN 540 480 DISP "Prob.(";X;") ==";FNI(P(X)) @ U ≔FND 490 IF U 1HEN X=X-(X>1) @ GOTO 480 500 GOTO 470 510 ! 520 ! Review routine 530 ! 540 DISP CHR\$(210); "un again, "; CHR\$(21 -Review module 4);"iew again, or ";CHR\$(197);"nd " 550 INPUT K\$ @ K\$=UPRC\$(K\$&" ") 560 ON POS("RVE",K\$[1,1])+1 GOTO 540,28 0,450,570 570 STOP

PROGRAM DESCRIPTION

2-FACTOR ANALYSIS OF VARIANCE

A two way analysis of variance allows the user to test the null hypothesis against columns, (condition a), rows (condition b), and the interaction of rows and columns, (a*b). This program can be generalized to any sized p*q 2-factor experiment, depending upon memory size. Unequal cell sizes are handled by considering each cell as though it contained the same number of subjects as all the other cells, with an adjustment based upon the harmonic mean. If the cell sizes are equal, the harmonic mean will have no effect.

- <u>RESTRICTIONS:</u> If the cell sizes are relevant to the experimental manipulation, then other methods should be used. Severe variations in cell size (greater than 2:1) should be avoided. A negative Sum Square for the interaction term is cause for the immediate use of other methods.
 - p = number of rows
 - q = number of columns

	Ce	Total	
	\overline{x}_{11}	$\overline{X}_{12} \ \cdots \ \overline{X}_{1q}$	a ₁
	\overline{x}_{21}	$\overline{X}_{22} \ \dots \ \overline{X}_{2q}$	a ₂
	\overline{x}_{31}	$\overline{x}_{32} \cdots \overline{x}_{3q}$	a ₃
	:	: :	÷
	\overline{x}_{p1}	$\overline{x}_{p2} \ \dots \ \overline{x}_{pq}$	a _p
Total	^B 1	^B 2 ^B q	G

Intermediate formulas:

(1) =
$$G^2/pq$$

(2) = $(\Sigma a_i^2)/q$
(3) = $(\Sigma B_j^2)/p$
(4) = $(\Sigma \overline{X}_{ij})^2$

Harmonic mean $\overline{n}_{h} = \frac{pq}{\Sigma\Sigma(1/n_{ij})}$

PROGRAM DESCRIPTION

2-FACTOR ANALYSIS OF VARIANCE (continued)

$$\begin{split} &\mathrm{SS}_{\text{within}} = \Sigma \left(\sum_{C} \chi_{\text{cij}}^{2} - \left(\frac{\Sigma \chi_{\text{cij}}}{n_{\text{ij}}} \right)^{2} \right) & \mathrm{df}_{W} = \Sigma \Sigma n_{\text{ij}} - pq & \mathrm{MS}_{W} = \mathrm{SS}_{W} / \mathrm{df}_{W} \\ &\mathrm{SS}_{a} = \bar{n}_{h} [(2) - (1)] & \mathrm{df}_{a} = p - 1 & \mathrm{MS}_{a} = \mathrm{SS}_{a} / \mathrm{df}_{a} & \mathrm{F}_{a} = \mathrm{MS}_{a} / \mathrm{MS}_{W} \\ &\mathrm{SS}_{b} = \bar{n}_{h} [(3) - (1)] & \mathrm{df}_{b} = q - 1 & \mathrm{MS}_{b} = \mathrm{SS}_{b} / \mathrm{df}_{b} & \mathrm{F}_{b} = \mathrm{MS}_{b} / \mathrm{MS}_{W} \\ &\mathrm{SS}_{ab} = \bar{n}_{h} [(4) - (2) - (3) + (1)] & \mathrm{df}_{ab} = (q - 1)(p - 1) \\ &\mathrm{MS}_{ab} = \mathrm{SS}_{ab} / \mathrm{df}_{ab} & \mathrm{F}_{ab} = \mathrm{MS}_{ab} / \mathrm{MS}_{W} \end{split}$$

SAMPLE PROBLEM

An experimenter wishes to study the effects of standard vs. reverse polish calculation under 3 conditions of instruction by scoring the number of errors per 100 calculations.

		Conditions (B)		
		1	2	3
Calculators (A)	RPN	3,3,2	2,2,1	3,1,2
	STANDARD	9,6,7	8,6,6	9,5
		(art	ificial d	ata)

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "AOV2F"	2-Factor Analysis of Variance	
1	Enter the row dimensions	How many rows (p)?	2 [RTN]
2	Enter the column dimensions	How many columns (q)?	3 [RTN]
3	Display the means	Print the means (Y/N)?	Y [RTN]
		\underline{C} to correct, \underline{E} to end cell	
6	Enter column (1,1)	Row 1 Clm. 1 Item 1?	3 [RTN]
		Row 1 Clm. 1 Item 2?	3 [RTN]
		Row 1 Clm. 1 Item 3?	2 [RTN]
6b	End column (1,1)	Row 1 Clm. 1 Item 4?	E [RTN]
7	Read mean and SD (n-1)	[1,1] Mean = 2.666667 N = 3	[RTN]
7	Use [BACK] to review mean	[1,1] Std. = .4714	[RTN]
6	Enter column (1,2)	Row 1 Clm. 2 Item 1?	2 [RTN]
		Row 1 Clm. 2 Item 2?	2 [RTN]
		Row 1 Clm. 2 Item 3?	1 [RTN]
6b	End column (1,2)	Row 1 Clm. 2 Item 4?	e [RTN]
7		[1,2] Mean = 1.666667 N = 3	[RTN]

STEP	INSTRUCTIONS	DISPLAY	INPUT
		[1,2] Std. = .4714	[RTN]
6	Enter column (1,3)	Row 1 Clm. 3 Item 1?	3 [RTN]
		Row 1 Clm. 3 Item 2?	1 [RTN]
		Row 1 Clm. 3 Item 3?	2 [RTN]
6b	End column (1,3)	Row 1 Clm. 3 Item 4?	E [RTN]
7		[1,3] Mean = 2 N = 3	[RTN]
		[1,3] Std. = .8165	[RTN]
6	Enter column (2,1)	Row 2 Clm. 1 Item 1?	9 [RTN]
		Row 2 Clm. 1 Item 2?	6 [RTN]
		Row 2 Clm. 1 Item 3?	7 [RTN]
6b	End column (2,1)	Row 2 Clm. 1 Item 4?	E [RTN]
7		[2,1] Mean = 7.3333 N = 3	[RTN]
		[2,1] Std. = 1.24722	[RTN]
6	Enter column (2,2)	Row 2 Clm. 2 Item 1?	8 [RTN]
		Row 2 Clm. 2 Item 2?	6 [RTN]
		Row 2 Clm. 2 Item 3?	6 [RTN]
6b	End column (2,2)	Row 2 Clm. 2 Item 4?	E [RTN]
7		[2,2] Mean = 6.66667 N = 3	[RTN]
		[2,2] Std. = .94281	[RTN]
6	Enter column (2,3)	Row 2 Clm. 3 Item 1?	9 [RTN]
	Error	Row 2 Clm. 3 Item 2?	95 [RTN]
6a	Call error correction	Row 2 Clm. 3 Item 3?	C [RTN]
	This will be displayed:	2,3,2 deleted = 95	
6	Enter correct value	Row 2 Clm. 3 Item 2?	5 [RTN]
6b	End column (2,3)	Row 2 Clm. 3 Item 3?	E [RTN]

STEP	INSTRUCTIONS	DISPLAY	INPUT
7		[2,3] Mean = 7 N = 2	[RTN]
		[2,3] Std. = 2	[RTN]
9	Read output using [RTN] key	A SS = 99.28205 df = 1	[RTN]
	to see next result.	A MS = 99.28205 F = 58.50549	[RTN]
		B SS = 1.94872 df = 2	[RTN]
		B MS = .97436 F = .57418	[RTN]
		AB SS = .10256 df = 2	[RTN]
		AB MS = .05128 F = .03022	[RTN]
		Within SS = 18.66667 df = 11	[RTN]
		Within MS = 1.69697	[RTN]
10	End program	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "AOV2F"	2-Factor Analysis of Variance	
1	Enter row dimensions	How many rows (p)?	p [RTN]
2	Enter column dimensions	How many columns (q)?	q [RTN]
3	Display cell means?	Print the means (Y/N)?	Y or N [RTN]
		\underline{C} to correct, \underline{E} to end cell	
4	Enter cell value	Row i Clm. j Item c?	Xijc [RTN]
5a	If error, call correction	Row i Clm. j Item c?	C [RTN]
	This will be displayed:	i,j,c deleted = Xijc	
	If not done, goto 4 else		
5b	If cell is finished	Row i Clm. j Item c?	E [RTN]
6	If you answered Y to #3:	[i,j] Mean = N=	[RTN]
		[i,j] Std. =	[RTN]/[BACK]
7	Goto 6 until all rows and		
	columns are done.		
8	Read output. Use [RTN] key	A SS = df =	[RTN]
	to see next result, [BACK]	A MS = F =	[RTN]/[BACK]
	key to see previous result.	B SS = df =	[RTN]/[BACK]
		B MS = F =	[RTN]/[BACK]
		AB SS = df =	[RTN]/[BACK]
		AB MS = F =	[RTN]/[BACK]
		Within SS = df =	[RTN]/[BACK]
		Within MS =	[RTN]/[BACK]
9	Review routine	<u>R</u> un again, <u>V</u> iew again, or End?	
	R = rerun the program - step 2 V = review results - step 8 E = End the program		R [RTN] V [RTN] E [RTN

VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION
Р	Number of rows (p)	Q	Number of columns (q)
A()	Sum of cell means (row)	X()	Temporary cell storage
B()	Sum of cell means (clm)	NO	Temporary n per cell
X\$,A\$	General input strings	N1	Grand total n
X1	Temporary ∑x per cell	Х2	Temporary Σx^2 per cell
G1	Grand sum of cell means	SO	Temporary SD(x) of cell
A2	Sum of A-squared	B2	Sum of B-squared
H1	Harmonic mean	М	Temporary mean of cell
E1	Computation formula #1	E3	Computation formula #3
E4	Computation formula #4	E5	Computation formula #5
S1	Sum-Squared of A (SSa)	M1	Mean-Squared of A (MSa)
S2	Sum-Squared of B (SSb)	M2	Mean-Squared of B (MSb)
S3	Sum-Squared of AB (SSab)	M3	Mean-Squared of AB (MSab)
S4	Sum-Squared within cell	M4	Mean-Squared within cell
D1	Df. of A (p-1)	D2	Df. of B (q-1)
D3	Df. of AB (q-1)	D4	Df. within (G-P*Q)
F1	F-ratio of A	F3	F-ratio within
F2	F-ratio of B	P1	Flag 1=display cell means

NOTES AND REFERENCES

- Notes: This program is limited to 20 rows, 20 columns, and 50 items per cell. To change this, change the dimensions in line 80.
- References: Winer, B.J., STATISTICAL PRINCIPLES IN EXPERIMENTAL DESIGN, 2nd ED., (McGraw-Hill, New York, 1971), p. 446-447.

	! ANOVARE - 2-factor	
	! Analysis of variance	
	! (equal or unequal cell size)	
^ 1 U	! Unweighted (NON least-squares) me thod	
50		
50		
	DISP "2-Factor Analysis of Varianc	
	e" @ WAIT 1	
80	DIM A(20),B(20),X\$[50],X(50),A\$[20]	
20		
	! Precision	
1.1.0		
120	DEF FNI(X) = INT(X*10^5+.5)/10^5	-Function to define output
		precision
130		
140	! Correction	
	DEF FNE	
	W L. F. F. Peti	-Error correction routine to delete data from counters
170	IF NOK1 THEN BEEP 880 @ DISP "Must	delete data from Courters
	Have data to delete" @ GOTO 200	
180	<pre>DISP I;",";J;",";N0;"Deleted =";X(N</pre>	
	0) @ WAIT 1	
190	X1=X1-X(N0) @ X2=X2-X(N0)^2 @ N0=N0	
~ ~~~	-1 (2) $N1 = N1 - 1$	
	FNE=0 @ END DEF	
210	: ! Delay	
230	i nyantanà	
	DEF FND	-Wait for 'RTN' or 'BACK' keys.
		Returns i if 'BACK' key
250	X\$=KEY\$ @ IF X\$<>CHR\$(13) AND X\$<>C	
	HR\$(8) THEN 250	
	FND=X\$=CHR\$(8) @ END DEF	
270	l. The data data to the second	
$\frac{280}{290}$! Initialize	
	: INPUT "How many rows (p) ?";P	-Starting prompts
	INPUT "How many columns (q) ?";Q	motarting prompts
	INPUT "Print the means (Y/N) ?"; X\$	
	<pre>@ P1=POS(UPRC\$(X\$), "Y")</pre>	
330	FOR X=1 TO P @ A(X)=0 @ NEXT X	-Initialize counters
340	FOR Y=1 TO Q @ B(Y)=0 @ NEXT Y	
	N1,G1,S4,E5,A2,B2,M1,N1,H1=0	
360	DISF CHR\$(195);" to correct, ";CHR\$	
	(197);" to end cell." @ WAIT 1	
370		
390	! Error trapping	
	ON ERROR BEEP 880 @ DISP "Please en	-Error message for data entry
	ter [E],[C],or numeric" @ WAIT 1 @	routines
	GOTO 460	
4 10	!	

$\frac{420}{430}$! Input routine	
	FOR I=1 TO P @ FOR J=1 TO Q	
	N0=0 @ X1=0 @ X2=0	
	DISP "Row";I;"Clm.";J;"Item";N0+1;	-Data entry
	X\$="" @ INPUT X\$	marka writer y
	IF POS(UPRC\$(X\$),"C") THEN U=FNE @ GOTO 460	-Call error correction if 'C'
490	IF POS(UPRC\$(X\$),"E") THEN 550	is entered -Goto end of cell if 'E' is entered
500	X=VAL(X\$) @ X1=X1+X @ X2=X2+X^2 @ N 0=N0+1 @ X(N0)=X @ N1=N1+1	-Increment cell counters and total N
510	GOTO 460	
520		
\$30	! End cell	
540	!	
550	IF NO(2 THEN BEEP 880 @ DISP "Must	
	have >1 datum per cell." @ WAIT 1 @ GOTO 460	
	M=X1/N0 @ S4=S4+X2-X1^2/N0	-Cell mean
570	$H_1 = H_1 + 1/N0 \otimes A(I) = A(I) + M \otimes B(J) = B(J)$	-Harmonic mean counter, grand
)+M	total
280	E5=E5+M^2 @ G1=G1+M @ S0=SQR((X2-X1	-Cell standard deviation (n)
	^2/N0)/N0)	
	IF P1=0 THEN BEEP 440 @ GOTO 620	-Display mean if P1 is set
	DISF "f";f;",";J;"] Mean =";FNI(M); "N=";N0 @ U=FND @ IF U THEN 600	
	DISP [*] "[";1;",";J;"] Std.=";FNI(S0) @ U=FND @ IF U THEN 600	
	NEXT J @ NEXT I	
	H1=P*Q/H1	
640	FOR 1=1 TO P @ A2=A2+A(I)^2 @ NEXT I	-Compute sum of A-squared, sum of B-squared
650	FOR J=1 TO Q @ B2=B2+B(J)^2 @ NEXT J	
660	1	
670	! Sub-equations	
680	!	
	E1=G1^2/(P*Q)	
	E3=A2/Q @ E4=B2/P	
710		
	! Compute SS,MS,df,F	
730		
	D1=P-1 @ S1=H1*(E3-E1) @ M1=S1/D1	Computation
	D2=Q-1 @ S2=H1*(E4-E1) @ M2=S2/D2	
760	D3=(Q-1)*(P-1) @ S3=H1*(E5-E3-E4+E1	
1919.75) @ M3=S3/D3	
	D4=N1-P*Q @ M4=S4/D4	
780 790	F1=M1/M4 @ F2=M2/M4 @ F3=M3/M4 !	
	! Display the results	
810		
820	DISP "A SS=";FNI(S1);"df=";D1 @ U= FND @ IF U THEN 820	-Display results

A DESCRIPTION OF THE PARTY OF T

830	DISP "A MS=";FNI(M1);"F=";FNI(F1)	
	@ U=FND @ IF U THEN 820	
840	DISP "B SS=";FNI(S2);" df=";D2 @	
	U=FND @ IF U THEN 830	
850	DISP "B MS=";FNI(M2);" F=";FNI(F2	
) @ U=FND @ IF U THEN 840	
860	DISP "AB SS=";FNI(S3);" df=";D3 @	
	U=FND @ IF U THEN 850	
870	DISP "AB MS=";FNI(M3);" F=";FNI(F3	
) @ U=FND @ IF U THEN 860	
880	DISP "Within SS=";FNI(S4);"df=";D4	
	@ U=FND @ IF U THEN 870	
890	DISP "Within MS=";FNI(M4) @ U=FND @	
	IF U THEN 880	
900	DISP CHR\$(210);"un again, ";CHR\$(21)	-Review module
	4);"iew again, or ";CHR\$(197);"nd";	
910	INPUT AS @ AS=UPRCS(AS&" ")	
920	ON POS("RVE",A\$[1,1])+1 GOTO 900,30	
	0,820,930	
930	STOP	

PROGRAM DESCRIPTION

BARTLETT'S CHI-SQUARE STATISTIC

Bartlett's Chi-square has a distribution (approximately) with k-1 degrees of freedom which can be used to test the null hypothesis that the variances are all estimates of the same population variance.

F max tests the hypothesis that the largest and the smallest variance come from the same population of variances.

Formula: (Note: χ = CHI)

$$\chi^{2} = f \ln (S^{2}) - \sum_{i=1}^{K} f_{i} \ln(s_{i}^{2})$$
$$-\frac{1}{1 + \left(\frac{1}{3(K-1)}\right) \left[\left(\Sigma \frac{1}{f_{i}}\right) - \frac{1}{f}\right]}$$

Where: s_i^2 = Sample variance of the ith sample

 F_{i} = Degrees of freedom (n_{i} -1) of the ith sample

$$s^{2} = \frac{\sum_{i=1}^{K} f_{i} S_{i}^{2}}{f}$$
$$f = \sum_{i=1}^{K} f_{i}$$

 $F \max = \max (s^2) / \min(s^2)$

SAMPLE PROBLEM

Determine whether the variances of the groups shown below differ significantly across the groups. The obtained chi-square of 1.04 shows that the differences are not significant.

Group	N (not used)	Variance (σ)	Degrees of freedom (df)
1	21	12.20	20
2	13	13.50	12
3	15	7.86	14
4	10	10.89	9

Df is based upon N-1

Data comes from Edwards, EXPERIMENTAL DESIGN IN PSYCHOLOGICAL RESEARCH.

SOLUTION

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "BARTLETT"	Bartlett's Chi-square Statistic	
		E,E to end, C,C to correct	10.0.00
1	Enter sample 1	Sample 1 enter var., df?	12.2, 20 [RTN]
	Enter sample 2	Sample 2 enter var., df?	13.5, 12 [RTN]
	Error	Sample 3 enter var., df?	12,3 [RTN]
2	Call error correction	Sample 4 enter var., df?	C C [RTN]
	This will be displayed:	Sample 3 deleted = 12,3	
1	Enter correct values	Sample 3 enter var., df?	7.86, 14 [RTN]
	Enter sample 4	Sample 4 enter var., df?	10.89, 9 [RTN]
3	End data input	Sample 5 enter var., df?	E,E [RTN]
4	Real results. Use [RTN] to	Chi-square = 1.04955	[RTN]
	see next item.	Fmax = 1.71756	[RTN]
		df = 3	[RTN]
5	End program	Run again, <u>V</u> iew again, or <u>E</u> nd?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run "BARTLETT"	Bartlett's Chi-square Statistic	
		E,E to end, C,C to correct	
2	Enter value of sample	Sample i enter var, df?	σ,df. [RTN]
3	If an error was made:	Sample i enter var, df?	C,C [RTN]
	this will be displayed	Sample i deleted = Si,DFi	
	Goto 2 until all samples have		
	been entered		
4	To end data input:	Sample i enter var, df?	E,E [RTN]
5	Read display. Use [RTN] to	Chi-square =	[RTN]
	see next item, [BACK] to	F max =	[RTN]/[BACK]
	see previous item	df =	[RTN]/[BACK]
6	Review routine	Run again, View again, or <u>E</u> nd?	
	R = rerun the program - step 2		R [RTN]
	V = review results - step 5		V [RTN]
	E = end the program		E [RTN]

VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION
S2()	Variance storage	F()	Storage of df.
A\$	Variance input, general use	В\$	Df. input
K	Total number of sample	U	Delay flag, = 1 if [BACK] used
S4	Sum of inverse df	M1	Minimum variance
A1	Maximum variance	МО	F max
CO	Chi-square value	D	Total df. (degrees of freedom)

NOTES AND REFERENCES

- Notes: 1. This program is presently limited to a maximum of 50 samples. To change this limit, change the dimension statement in line 70.
 - 2. Because a different method was used, the solution to the sample problem is slightly different from the solution in Edwards EXPERIMENTAL DESIGN IN PSYCHOLOGICAL RESEARCH, p. 198.
- References: 1. Hald, A., STATISTICAL THEORY WITH ENGINEERING APPLICATIONS, (John Wiley and Sons, 1960).
 - Edwards, A., EXPERIMENTAL DESIGN IN PSYCHOLOGICAL RESEARCH, (Rinehart & Co., 1950), p. 198.
 - Hewlett-Packard, HP-41C Users' Library solutions TEST STATISTICS, Procedure from Bartlett's Chi-square Statistic, p. 46.

20 30 40 50 60 70	<pre>) ! BARTLETT - Bartlett's Chi-) ! square statistic (test for) ! homogeneity of variance)) !) ! REV 11/01/82) DISP "Bartlett's Chi-square Statist ic" @ WAIT 1) DIM S2(50),F(50),A\$[10],B\$[10]</pre>	
80 90 1.00) ! ! Correction routine	
120	IF K<1 THEN BEEP 440 @ DISP "Must h ave data to delete" @ GOTO 150 DISP "Sample";K;"deleted =";S2(K);"	-Correct user's output
	<pre>,";F(K) S2=S2-S2(K)*F(K) @ F=F-F(K) @ S3=S3 -F(K)*LOG10(S2(K)) @ S4=S4-1/F(K) @ K=K-1</pre>	-Delete incorrect value from the counters
160 170	FNE=0 @ END DEF ! ! Delay routine	
	DEF FND	-Wait for 'RTN' or 'BACK' keys. Return 1 if 'BACK' key
210	K\$=KEY\$ @ IF K\$<>CHR\$(8) AND K\$<>CH R\$(13) THEN 200 FND=K\$=CHR\$(8) @ END DEF DEF FNI(X) = INT(X*10^5+.5)/10^5	
230	S2,S3,S4,F,K=0 @ A1=-INF @ M1=INF DISP "E,E to end, C,C to correct" @	-Function to define the output precision -Initialize counters
250	WAIT 1 ON ERROR BEEP 220 @ DISP "Enter [E] [RTN],[C][RTN] or S2,F" @ WAIT 1 @ GOTO 260	-Error trap
270	DISP "Sample";K+1;"enter var., df"; INPUT A\$,B\$ IF POS(UPRC\$(A\$[1,1]),"E") THEN 360	-Goto end-of-data if 'E' is
290	IF POS(UPRC\$(A\$[1,1]),"C") THEN U=F NE @ GOTO 260	entered -Call error correction if 'C' is entered
	S2(K+1)=VAL(A\$) @ F(K+1)=VAL(B\$) S3=S3+VAL(B\$)*LOG10(VAL(A\$)) @ S4=S	-Increment counters and enter next sample
	4+1/VAL(B\$) F=F+VAL(B\$) @ S2=S2+VAL(A\$)*VAL(B\$) @ K=K+1 @ GOTO 250	
320	! ! End of data !	
	S2=S2/F @ C0=(F*LOG10(S2)-S3)*2.302 6/(1+1/(3*(K-1))*(S4-1/F)) FOR I=1 TO K @ IF S2(I))A1 THEN A1= S2(I)	-End of data- compute chi-square value -Determine maximum∕minimum variance

	IF S2(I)(M1 THEN M1=S2(I) NEXT I	1
	MO=A1/M1 @ D=K-1	-Compute F max, total degrees of freedom
410	PRINT "Chi-square =";FNI(CO) @ U=FN D @ IF U THEN 410	-Display the results
420	PRINT "FMax =";FNI(MO) @ U=FND @ IF U THEN 410	
430	PRINT "df=";D @ U=FND @ IF U THEN 4 20	
440	DISP CHR\$(210);"un again, ";CHR\$(21 4);"iew again, or ";CHR\$(197);"nd "	-Review module
	, INPUT "?"; A\$ @ A\$≕UPRC\$(A\$&" ") ON POS("RVE",A\$[1,1])+1 GOTO 440,23	
	0,410,470 STOP	

PROGRAM DESCRIPTION

DIFFERENCES AMONG PROPORTIONS

This program tests proportions in independent sets of data to determine if each could have been randomly drawn from the same population of proportions. A chi-square statistic with k-1 degrees of freedom is computed. Theta is a measure of association between the independent (groups) and dependent (proportions) variables.

Equations:

$$\chi^{2} = \sum_{i=1}^{K} \frac{(C_{1,i} - n_{i}\hat{\theta})^{2}}{n_{i}\hat{\theta}(1-\hat{\theta})}$$

Where:

$$\hat{\theta} = \Sigma C_1 / i / \Sigma n_i$$
$$n_i = C_{1,i} + C_{2,i}$$

K = number of samples

SAMPLE PROBLEM

Suppose that a simple test of mechanical ability is given to 4 groups of school children under the conditions found below. Determine whether there is a difference among the effectiveness of the 4 experimental conditions by testing the null hypothesis, which is that the proportion of successes in the 4 groups should not be significantly different.

	C ₁	C_2
Condition	Failure	Success
Extensive training before lunch	8	42
Extensive training after lunch	12	18
Minimal training before lunch	50	170
Minimal training after lunch	9	90

SOLUTION

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run "DIFF"	Differences Among Proportions	
<u>_</u>	Kun Diri	E,E to end input, C,C to correct	
2	Enter case 1 fail, success	Sample 1 enter C1,C2?	8,42 [RTN]
	Enter case 2	Sample 2 enter C1,C2?	12,18 [RTN]
	Enter case 3	Sample 3 enter C1,C2?	50,170 [RTN]
	Error	Sample 4 enter C1,C2?	19,19 [RTN]
	Call correction routine	Sample 5 enter C1,C2?	C,C [RTN]
	This will be displayed:	Sample 4 deleted = 19,19	
		Sample 4 enter C1,C2?	9,90 [RTN]
3	End data input	Sample 5 enter C1,C2?	E,E [RTN]
4	Real display, use [RTN] to	Chi-square = 16,50082	[RTN]
	see next output.	df = 3	[RTN]
	·	Theta = .19799	[RTN]
5	End program	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
1	Run "DIFF"	Differences Among Proportions	
		E,E to end input, C,C to correct	
2	Enter indicated case:	Sample i enter C1,C2?	Cli,C2i[RTN]
	If you made an error:	Sample i enter C1,C2?	C,C [RTN]
	This will be displayed:	Sample i deleted = C1i,C2i	
	Goto 2 until all data has		
	been entered.		
3	End data input	Sample i enter C1,C2?	E,E [RTN]
4	Read output. User [RTN] to	Chi-square = χ^2	[RTN]
	see next output, [BACK] to	df = df	[RTN]/[BACK]
	see previous output.	Theta = $\hat{\theta}$	[RTN]/[BACK]
5	Review routine	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	
	R = rerun the program step 2		R [RTN]
	V = review results - step 4		V [RTN]
	E = end program		E [RTN]

VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION
C1()	Storage of condition 1	C2()	Storage of condition 2
A\$	General use, input C1()	В\$	Input C2() (Condition 2)
X1	Sum of condition 1	N1	Sum of N(i)
N	Total N	Т	Theta
D	Degrees of freedom	C2	Chi-square value
NO	Temporary N(i)		

NOTES AND REFERENCES

- Notes: 1. A maximum of 300 samples may be entered. To change this limit, change the dimension statement in line 70.
- References: 1. J. Freund, MATHEMATICAL STATISTICS, (Prentice-Hall, 1971).
 - 2. Allen L. Edwards, EXPERIMENTAL DESIGN IN PSYCHOLOGICAL RESEARCH (Rinehart & Co., 1950), p. 74.

This program was derived from the HP-41 Users' Library Solutions Book, "Test Statistics", program DIFFERENCES AMONG PROPORTIONS, p. 9.

20 30 40 50 60	DELAY .5 DISP "Differences among proportions "	
80 90 100	! Correction	-Routine to correct error and
120	IF NK1 THEN BEEP 220 @ DISP "Must h ave data to delete" @ WAIT 1 @ GOTO 150	decrement counters
	DISP "Sample";N;"deleted =";C1(N);" ,";C2(N) @ WAIT 1 X1=X1-C1(N) @ N1=N1-C1(N)-C2(N) @ N	
160 170	! Delay routine	
$\begin{array}{c} 1 \otimes 0 \\ 1 \otimes 0 \\ 1 \otimes 0 \end{array}$	I DEF FND	-Wait for 'RTN' or 'BACK' key.
200	A\$=KEY\$ @ IF A\${>CHR\$(8) AND A\${>CH R\$(13) THEN 200	Return 1 for 'BACK' key (
	FND=A\$=CHR\$(8) @ END DEF DEF FNI(X) = INT(X*10^5+.5)/10^5	-Function to define output precision
230 240 250	! ! Input routine !	
	X1,N1,N=0 DISP CHR\$(197);" to end input, ";CH R\$(195);" to correct" @ WAIT i	
280	ON ERROR BEEP 220 @ DISP 'Enter I"E "1,I"C"],or IC1,C21' @ WAIT 1.5 @ G OTO 290	-Error trap- returns warning if illegal data is entered
290	DISP "Sample";N+1;" enter C1,C2 "; @ INPUT A\$,B\$	
300	IF UPRC\$(A\$)="E" THEN 340	-End data entry if 'E' is entered
310	IF UPRC\$(A\$)="C" THEN U=FNE @ GOTO 290	-Call correction routine if 'C' is entered
320	Ci(N+i)=VAL(A\$) @ C2(N+i)=VAL(B\$) @ N=N+i	-Increment counters, store condition values, and cont.
330	X1=X1+C1(N) @ N1=N1+C1(N)+C2(N) @ G OTO 290	sayında ya yırı yara oldayı alındi (2011 ().
340	IF NK2 THEN BEEP 220 @ DISP "Please enter more than i sample" @ WAIT i	-End routine- verify that N>1
350	@ GOTO 290	

	! Computation	
380	T=X1/N1 D=N-1	-Compute Theta
	C2=0	-Loop to compute chi-square value
420	FOR I=1 TO N N0=C1(I)+C2(I)	
	C2=C2+(C1(I)-N0*T)^2/(N0*T*(1-1)) NEXT I	
450 460	! ! Print out	
470 480	PRINT "Chi-square =";FNI(C2) @ U=FN	-Routine to display data
490	D @ IF U THEN 480 PRINI "df=";D @ U=FND @ IF U THEN 4	
500	80 PRINT "Theta=";FNI(T) @ U=FND @ IF	
510		
530		es
540	DISP CHR\$(210);"un again, ";CHR\$(21 4);"iew again, or ";CHR\$(197);"nd "	-Review module
	; INPUT A\$ @ A\$=UPRC\$(A\$&" ") ON POS("RVE",A\$[1,1])+1 GOSUB 540,2 60,480,570	
570	STOP	
		I

PROGRAM DESCRIPTION

DATA TRANSFORMATIONS

This program will either transform or standardize data sets. The square-root transformation is appropriate in analysis of variance when cell variances tend to be functions of the cell means. The log transformation is useful when normalizing distributions with positive skew.

The standard score (z score) manipulation converts distributions into standard score form, with a mean of zero and unit standard deviation. The T transformation changes data into a distribution with a mean and standard deviation defined by the user.

Formula:

mean = $\overline{X} = \frac{\Sigma x}{n}$ Standard deviation $\sigma_x = \sqrt{\left(\frac{\Sigma x^2}{n}\right) - \left(\frac{\Sigma x}{n}\right)^2}$

Log transformation = log X

Square root transformation = \sqrt{X}

Standard score s = $\frac{X - \overline{X}}{\sigma_x}$

T transform t = $s(\sigma_c) - \bar{X}_c$

Where: $\sigma_{_{\rm C}}$ is the constant standard deviation.

 $\bar{X}_{_{\rm C}}$ is the constant mean.

SAMPLE PROBLEM

The following data represents the time (in minutes) that it took 8 new HP-75 owners to build a short, working BASIC program on their new computers. Convert these scores to:

- 1) standard scores, and
- 2) t-scores with a mean of 75 and a standard deviation of 12.

Owner								
	1	2	3	4	5	6	7	8
Time (minutes)	27	15	26	17	12	9	8	27
(Artificial data)								

SOLUTION

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "TRANS"	Transformations	
		E to end input, C to correct	
1	Enter datum 1	Item 1 Score?	27 [RTN]
	Enter datum 2	Item 2 Score?	15 [RTN]
	Enter datum 3	Item 3 Score?	26 [RTN]
	ERROR	Item 4 Score?	177 [RTN]
2	Call error correction	Item 5 Score?	C [RTN]
	This will be displayed	Item 4 deleted = 177	
1	Enter correct value	Item 4 Score?	17 [RTN]
	Enter datum 5	Item 5 Score?	12 [RTN]
	Enter datum 6	Item 6 Score?	9 [RTN]
	Enter datum 7	Item 7 Score?	8 [RTN]
	Enter datum 8	Item 8 Score?	27 [RTN]
3	End data input	Item 9 Score?	E [RTN]
4	Read value of mean and SD.	Mean = 17.625 Std. = 7.51561	[RTN]
5		Enter type of transformation:	7

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Enter transformation type	Log, STandard, SQr, or T?	ST [RTN]
5b		Std. score transformation	[RTN]
6	Read transofrmations. Use	Item 1 Raw = 27 Trn = 1.2474	[RTN]
	[RTN] key to read the next	Item 2 Raw = 15 Trn =34927	[RTN]
	transformation.	Item 3 Raw = 26 Trn = 1.11435	[RTN]
		Item 4 Raw = 17 Trn =08316	[RTN]
		Item 5 Raw = 12 Trn =74844	[RTN]
		Item 6 Raw = 9 Trn = -1.14761	[RTN]
		Item 7 Raw = 8 Trn = -1.28067	[RTN]
		Item 8 Raw = 27 Trn = 1.2474	[RTN]
7	Options: Select 'view'	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	V [RTN]
4	Read the mean again	Mean = 17.625 Std. = 7.51561	[RTN]
5		Enter type of transformation:	
	Enter transformation t	Log, STandard, SQr, or T?	T [RTN]
5a	Enter constant μ,σ	Enter µ,σ?	75,12 [RTN]
5b		T score transformation	[RTN]
6	Read the transformations	Item 1 Raw = 27 Trn = 89.96885	[RTN]
		Item 2 Raw = 15 Trn = 70.80872	[RTN]
		Item 3 Raw = 26 Trn = 88.37217	[RTN]
		Item 4 Raw = 17 Trn = 74.00208	[RTN]
		Item 5 Raw = 12 Trn = 66.01869	[RTN]
		Item 6 Raw = 9 Trn = 61.22866	[RTN]
		Item 7 Raw = 8 Trn = 59.63198	[RTN]
		Item 8 Raw = 27 Trn = 89.96885	[RTN]
7	End program	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	E [RTN]

USER INSTRUCTIONS

STEP	INSTRUCTIONS	DISPLAY	INPUT
	Run "TRANS"	Transformations	
		\underline{E} to end, \underline{C} to correct	
1	Enter value of item #i	Item i Score?	Ai [RTN]
2	If you made an error:	Item i Score?	C [RTN]
	This will be displayed	Item i Deleted = A _i	
	Goto 1 until all data is in		
3	End data input	Item i Score?	E [RTN]
4	Read mean and std. deviation	Mean = Std. =	[RTN]
5	Enter transformation type:	Enter type of transformation:	
		Log, STandard, SQr, or T?	
	L = Log (base e) transformation	η	L [RTN] or
	ST = Standard score transforma	tion	ST [RTN] or
	SQ = Square root transformation	η	SQ [RTN] or
	T = t-transformation		T [RTN]
5á	If t was chosen:	Enter µ,σ?	μ,σ[RTN]
5b	Transformation type is display	ed transformation	[RTN]
6	Read transformations	Item i Raw = R _i Trn = T _i	[RTN]/[BACK]
7	Review routine	<u>R</u> un again, <u>V</u> iew again, or <u>E</u> nd?	
	R = rerun the program - step 1		R [RTN]
	V = review the answers and		V [RTN]
	select new transformation		
	type – step 4		
	E = exit the program		E [RTN]

VARIABLE NAMES

NAME	DESCRIPTION	NAME	DESCRIPTION
A()	Data storage	А\$	General use input string
Т	Type of transformation	N	Total N of data
S1	Sum of all data ΣX_{i}	S2	Sum of all data-squared $\Sigma(X_{i}^{2})$
K\$	Delay function string	М	Mean of data
S	Standard deviation (N)	D	Value of displayed trans.
MO	Constant μ for T	SO	Constant σ
U	Delay, = 1 if [BACK] used	Х	Increment for output

NOTES AND REFERENCES

- Note: 1. The program is limited to a maximum of 500 items. To change this alter the dimension statement in line 80.
- References: 1. B.J. Winer, STATISTICAL PRINCIPLES in Experimental Design (2nd ED), (McGraw-Hill, New York, 1971).
 - 2. G.A. Ferguson, STATISTICAL ANALYSIS in Psychology and Education (2nd ED), (McGraw-Hill, New York, 1966), p. 109.

20 30 40 50	! TRANS - Data transformation ! Log base e, square root, ! standard score, & t score ! ! REV 11/01/82	
60 70	! DISP " Transformations" @ W AIT 1	
9 O	D1M A(500),A\$[60] INTEGER T DEF FNI(X) = INT(X*10^5+.5)/10^5	-Function to define output
	DEF FNE IF NK1 THEN BEEP 220 @ DISP "Must h ave data to delete" @ WAIT 1 @ GOTO 150	precision -Function to handle error
140	DISP "Item";N;"deleted =";A(N) S1=S1-A(N) @ S2=S2-A(N)^2 @ N=N-1 FNE=0 @ END DEF	-Decrement counters
170	! Delay function	 Delay function. Wait for 'RTN' or 'BACK' keys.
1	! DEF FND K\$=KEY\$ @ IF K\$<>CHR\$(13) AND K\$<>C HR\$(8) THEN 200	
220	FND=K\$=CHR\$(8) @ END DEF N,S1,S2=0 DISP CHR\$(197);" to end input, ";CH R\$(195);" to correct" @ WAIT 1	-Beginning of user dialogue
	ON ERROR BEEP 220 @ DISP "Enter [E] [RTN],[C][RTN],or data" @ WAIT 1 @ GOTO 250	-Error trap
250	DISP "Item";N+1;" Score"; @ INPUT A \$	
	IF POS(UPRC\$(A\$),"E") THEN 330	-Check to see if user wishes to end data entry -Check to see if user wishes to
	IF POS(UPRC\$(A\$),"C") THEN U=FNE @ Goto 250 S1=S1+VAL(A\$) @ S2=S2+VAL(A\$)^2 @ N	correct data —Increment counters
	=N+1 A(N)=VAL(A\$) @ GOTO 250	
300	!	
$\frac{310}{320}$! End data input !	
330	IF NK2 THEN BEEP 220 @ DISP "Must h ave more than i item" @ WAIT i @ GO TO 250	-Check validity of sample size
340	M=51/N @ S=SQR(S2/N-(S1/N)^2)	-Compute mean and standard deviation
350	PRIN) "Mean= ";FNI(M);"SD.= ";FNI(S)	
	Ú=FND @ IF U THEN 350 DISP "Enter type of transformation: "	-Prompt user to select transformation type

380	DISP CHR\$(204);"og, ";CHR\$(211);CHR \$(212);"andard, ";CHR\$(211);CHR\$(20	
	9);"r; or ";	
390	DISP CHR\$(212); @ INPUT A\$	
400	A\$=UPRC\$(A\$&" ") @ A\$=A\$[1,2]	
410	IF POS("L LOSQSTT ",A\$)=0 THEN 370	
420	T=POS("L LOSQSIT ",A\$) @ IF T>1 THE N T=T-1	
430	IF 1>1 THEN T=T/2	
44()	<pre>IF 1=4 THEN DISP "Enter ";CHR\$(12); ",";CHR\$(9); @ INPUT M0,S0</pre>	-Enter mean and SD for t-transformation
450	A\$="Log(e) Square-rootStd.score T-score "	(Cransformation
460	PRINT A\$IT*11-10,T*11];" transformation"	-Display name of transformation type
470	U=FND	() he
	OFF ERROR	
	X=0	
500	X=X+1 @ IF X>N THEN 610	-Increment counter and check for end of data
510	IF T=1 THEN D=LOG(A(X))	-Compute log transformation
520	IF 1=2 THEN D=SQR(A(X))	-Compute square-root
		transformation
530	IF 1=3 OR T=4 THEN D=(A(X)-M)/S	-Compute t and standard score transformation
540	IF 1=4 THEN D=D*S0+M0	-Transform Mean and SD for t-transformation
550	PRINT "Item";X;"Raw=";A(X);"Trn=";F NI(D)	-Display transformed data
560	U=FND @ IF U THEN X=X-1*(X>1) @ GOT O 510	
570	GO10 500	
580	1	
590	Review routine	
600	1	
610	DISP CHR\$(210);"un again, ";CHR\$(21 4);"iew again, or ";CHR\$(197);"nd";	-Program options
620	INPUT A\$ @ A\$=UPRC\$(A\$&" ")	
630	ON POS("RVE", A\$[1,1])+1 GOTO 610,22	
	0,350,640	
640	STOP	

TEST STATISTICS

ONE SAMPLE TEST STATISTICS FOR THE MEAN KENDALL'S COEFFICIENT OF CONCORDANCE CORRELATION COEFFICIENT TEST INTRACLASS CORRELATION COEFFICIENT KRUSKAL-WALLIS STATISTIC MANN-WHITNEY U-TEST FISHER'S EXACT PROBABILITY 2-FACTOR ANALYSIS OF VARIANCE BARTLETT'S CHI-SQUARE STATISTIC DIFFERENCES AMONG PROPORTIONS DATA TRANSFORMATIONS

ALL HP-75 SOLUTIONS BOOKS ARE AVAILABLE RECORDED ON MINI-DATA CASSETTES FROM EITHER A HEWLETT-PACKARD DEALER OR THE HP USERS' LIBRARY.

00075-90076 Printed in U.S.A. Reorder No. 00075-13012