## HEWLETT-PACKARD

HP-75

## USERS' LIBRARY SOLUTIONS Test Statistics



## NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

## HP-75 SOLUTIONS BOOK/MEDIA ORDER FORM

All HP-75 Solutions Books are available recorded from the Users' Library* or from any Hewlett-Packard Full Service Dealer. The individual Solutions Books are $\$ 12.50$ each; recorded mini-data cassettes are $\$ 12.00$ for each Solutions Book requested.

Telephone the Users' Library directly (503-757-2000, ext. 3371) with your Solutions Book request, your order will ship that SAME DAY; or, call our TOLL FREE number (800-547-3400, Continental U.S. only), and orders ship within 48 hours. Mail requests also ship within 48 hours of receipt.

## HP-75 Users' Library Solutions Books

00075-90061
00075-90062
00075-90063
00075-90065
00075-90066
00075-90067
00075-90070
00075-90071
00075-90076

Math I
Math II
Math III
Games
Electronics
Statistics
Real Estate
Finance
Test Statistics

| Solutions Book Part Number | Title | Book Only | Mini-Data Cassettes | Price |
| :---: | :---: | :---: | :---: | :---: |
| 00075-90 |  |  |  |  |
| 00075-90 |  |  |  |  |
| 00075-90 |  |  |  |  |
| Please add Handling Charge on orders including Solutions Books State and Local Taxes TOTAL |  |  |  | 3.50 |
|  |  |  |  |  |
|  |  |  |  |  |

All payments must be in U.S. dollars and drawn on a U.S. bank.
Send orders (with payment) directly to: HEWLETT-PACKARD USERS' LIBRARY 1000 N.E. Circle Blvd.
Corvallis, Oregon 97330
$\square$ Payment enclosedMaster Card
VISA
Purchase order

Card Number/Company Purchase Order

## Name

Company (if applicable)

[^0]1. ONE SAMPLE TEST STATISTICS FORTHE MEAN . . . . . . . . . . . . . by George and Richard Rankin1This program calculates the $z$ statistic for testing the mean if thevariance is known. If the variance is unkown, then the $t$ statisticis calculated.
2. KENDALL'S COEFFICIENT OF
CONCORDANCE by George and Richard Rankin ..... 7
This program calculates Kendall's coefficient of concordance to testagreement between rankings.
3. CORRELATION COEFFICIENT TEST . . . by George and Richard Rankin ..... 14
The t statistic can be used to test if the true correlation coefficient is zero. The $z$ statistic is also calculated.
4. INTRACLASS CORRELATION COEFFICIENT by George and Richard Rankin ..... 20
This program calculates the intraclass correlation coefficient which measures the degree of association among individuals within classes or groups. Also calculates R-squared and Omega-squared.
5. KRUSKAL-WALLIS STATISTIC . . . . . by George and Richard Rankin ..... 31
The Kruskal-Wallis statistic can be used to test if independent random samples come from identical continuous populations.
6. MANN-WHITNEY U-TEST by George and Richard Rankin ..... 41
This program calculates the Mann-Whitney test statistic on two indepen- dent samples of equal or unequal sizes.
7. FISHER'S EXACT PROBABILITY . . . . by George and Richard Rankin ..... 50
Fisher's exact probability test is used for analyzing a $2 \times 2$ contin- gency table when the two independent samples are small in size.
8. 2-FACTOR ANALYSIS OF VARIANCE . . by George and Richard Rankin ..... 56Row and column effects in a data set that may have unequal cell sizesare tested in the analysis of the total variability of a set of data.
9. BARTLETT'S CHI-SQUARE STATISTIC . by George and Richard Rankin ..... 66 This chi-square statistic can be used to test the homogeneity of variances.
10. DIFFERENCES AMONG PROPORTIONS . . by George and Richard Rankin ..... 72 Calculates the chi-square statistic to test if several independent bi- nomial distributions have equal means.
11. DATA TRANSFORMATIONS . . . . . . . by George and Richard Rankin ..... 78This program provides log, standard score, square root, and $t$ datatransformations.

## PROGRAM DESCRIPTION

## ONE SAMPLE TEST STATISTICS FOR THE MEAN

Suppose $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ is a sample from a normal population with a known variance $\sigma^{2}$ and an unknown mean $\mu$. A test of the null hypothesis

$$
H_{0}: \mu=\mu_{0}
$$

is based on the $z$ statistic which has a standard normal distribution.

If the variance $\sigma^{2}$ is unknown then the $t$ statistic, which has the $t$ distribution with $n-1$ degrees of freedom, is used instead.

Equations:

$$
\begin{aligned}
& z=\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{\sigma} \\
& t=\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S}
\end{aligned}
$$

Where: $\bar{X}$ is the sample mean and $S$ is the population estimate of the standard deviation.

## SAMPLE PROBLEM

Suppose that the mean intelligence of the general population is 100 with a standard deviation of 15 . Test the null hypothesis that the following sample of students is different from the population.

| Student | $\underline{1}$ | $\underline{2}$ | $\underline{3}$ | $\underline{4}$ | $\underline{5}$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| Score | 109 | 115 | 125 | 113 | 103 |

## SOLUTION

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
|  | Run "ONESAM" | One Sample Test For The Mean |  |
|  |  | E to end input, $\underline{C}$ to correct |  |
| 1 | Enter data as prompted | Enter datum 1? | 109 [RTN] |
|  |  | Enter datum 2? | 115 [RTN] |
|  |  | Enter datum 3? | 125 [RTN] |
|  | **ERROR** | Enter datum 4? | 1 [RTN] |
| 2 | Call error correction | Enter datum 5? | C [RTN] |
|  |  | Datum 4 deleted $=1$ |  |
| 1 | Enter correct value | Enter datum 4? | 113 [RTN] |
| 1 | Continue | Enter datum 5? | 103 [RTN] |
| 3 | End data input | Enter datum 6? | E [RTN] |
| 4 | Enter general mean | Enter $\mu \mathrm{o}$ ? | 100 [RTN] |
| 5 | Enter general std ( $\mathrm{N}-1$ ) | Enter $\sigma$ ? | 15 [RTN] |
| 6 | Read output. Use [RTN] to see | $z=1.9379$ | [RTN] |
|  | next output. Use [BACK] to | $T=3.5781$ | [RTN] |
|  | see last output | Mean $=113$ | [RTN] |
|  |  | St. dev. $=8.124$ | [RTN] |
| 7 | End program | Run, View, End, or Continue? | E [RTN] |

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
|  | Run "ONESAM" | One Sample Test For The Mean |  |
|  |  | $\underline{E}$ to end input, $\underline{C}$ to correct |  |
|  | Do steps 1-2 N times |  |  |
| 1 | Enter value of indicated datum | Enter datum k? | Xk [RTN] |
| 2 | If an error was made: | Enter datum k? | C [RTN] |
|  | This will be displayed: | Datum k deleted $=$ Xk |  |
|  | If not finished with input, |  |  |
|  | goto 1 |  |  |
| 3 | Indicate the end of input: | Enter datum k? | E [RTN[ |
| 4 | Enter $\mu$ naught: | $\mu_{0}$ ? | $\mu_{0}$ [RTN] |
| 5 | Enter $\sigma$ : | $\sigma$ ? | $\sigma$ [RTN] |
| 6 | Read output - [RTN] to see | z | [RTN] |
|  | next output, [BACK to see | $\mathrm{T}=$ | [RTN]/[BACK] |
|  | last result | Mean $=$ | [RTN]/[BACK] |
|  |  | St. dev = | [RTN]/[BACK] |
| 7 | Review routine | Run, View, End, or Continue? |  |
|  | $\mathrm{R}=$ rerun the program - step 1 |  | R [RTN] |
|  | $V=$ review results - step 6 |  | $V$ [RTN] |
|  | $\bar{E}=$ end the program |  | E [RTN] |
|  | $C=$ goto step number 4 |  | C [RTN] |

$\square$

| NAME | DESCRIPTION | NAME | DESCRIPTION |
| :---: | :--- | :---: | :--- |
| A( ) | Data storage | K\$ | General utility string |
| N | Sample size | S1 | Sum $X=\Sigma X$ |
| S2 | Sum X-squared $\Sigma\left(x^{2}\right)$ | $M$ | Mean |
| S3 | Standard deviation $(n-1)$ | $Z$ | Z-value |
| T | t-value | $U$ | Delay flag, $=1$ if [BACK] |

## NOTES AND REFERENCES

Notes: 1. Both $t$ and $Z$ are computed. The user is reminded to use $z$ only when the population standard deviation is known.
2. This program is limited to a maximum of 300 data points. To change this limit, change the dimension statement in line 80.

References: The formula for this program came from the HP-41C Users' Library Solutions book TEST STATISTICS.

10 ！ONESAM－One Eample
© ！Test statistics for
30 ！the mean
40 ！RE：
501
60 DELAY ．$: ~=~$
70 DTSF＂One Sample Test for the Mean＂
80 1）IM A 300 ），K末l． 100$]$

1． 00
1． 10 ！Delay routine
3．20 ！
130 DEFF FND
 R东（1．3）THEN 1.40

1．60 ！
170 ！Error correction
1． 80
1．90
DEF FNE
\％00 JF N《A THEN DESP Must have data to

Ef0 DTSP＂Datum＂；N；＂eleted＝＂；A（N）

こSO FNE：：O E END DEF
200
250 ！Initianize
260 ！
270 N，51， $50=0$
 R事（1．9世）；＂to correct＂あ WATT
$\% 90$
300 ！ $\operatorname{soput}$ 100p
310


 St＂Must bave more than á detum＂e WATY \｛ G GOTO 320
 צ20

 $0 T 0300$


390
390 ！Enter sigma，mut
400 ！
 ter numeric data＂GOTO 420
－Define preciston of output
－Wait for＇RTN＇or＇BACK＇key． Return 1．jf＇BACK＇key
… Dedete incorrect input from the＂ounteres

Woto end－of wataroutime upon entry of＇E：
－－Wi．Eplay error if＇E＇entered and there its no deta
－wall error correction routime i．f＇ C ＇i． B Entered
－Froor trap
－Tnc：rement wounters and continue adding data
－Find－ofocdataroutine，sec．ond ※rortor trap

## PROGRAM LISTING



```
    10
430 DTSP "Ente% ";CHR$(9); & TNPUT %
440 !
450! Computation
460 !
A"0 OFF ERRROR
```



```
    .....'.) ))
490 Z=SOR(N)*(M㐁U0)/S
#00 T=GQR(N)* (M-U0)/S3
#10 PRINT "z=";FNT(z) & U=FND & IF:% UH
    EN 5i.0
G%0 PRINT "T:=";FNI(T) (U UFNN E TF"U TH
    FN510
G0 PRINT "MEan =";FNT(M) e U"FND & TF
    U THEN 520
540 PRJNT "St.dev. :=";FNT(S%) e U#FND e
            TF: U THEN 530
5%0!
W60 ! Review routine
570 !
```



```
    w, ";CHR官(19%); "nd; of ";CHR未(1.9:%);
    "ontinue";
```



```
600 ON FOS("ROEC",K$[1,{J)+4 GOTO 5%0, 2
    70,510,610,410
610 STOF
```

－Mean and standard deviation（n… a．）
…
… isplay the results
－Review module

## PROGRAM DESCRIPTION

## KENDALL'S COEFFICIENT OF CONCORDANCE

Kendall's Coefficient of Concordance is used to test the communality of preference among observers who have assigned $n$ individuals ranks ranging from 1 to $n$ according to some specified characteristic. The coefficient (W) varies from 0 (no community of preference) to 1 (perfect agreement), and is an extension of those rank-based measures used to test the degree of association in the twovariable case. This test is frequently considered a reliability measure of ranks.

$$
\begin{aligned}
W & =\frac{12 \sum_{i=1}^{n}\left(\sum_{j=1}^{K} R_{i j}\right)^{2}}{\left(K^{2}\right)(n)\left(n^{2}-1\right)}-\frac{3(n+1)}{n-1} \\
X^{2} & =K(n-1) W
\end{aligned}
$$

```
degrees of freedom = n-1
    where: K is the number of observers
            n is the number of individuals
            R ij is the rank assigned to the ith individual
            by the jth observer
```

"Suppose three company executives are asked to inteview six job applicants and to rank them separately in their order of suitability for a job opening. The three independent sets of ranks given by executives $X, Y$, and $Z$ to applicants a through f might be those shown . . . " (Siegel, NON-PARAMETRIC STATISTICS, p. 230).

Find the degree of agreement among the three executives whose rankings of six job applicants are shown below. (Artificial data).

## Applicant

|  | $\frac{\mathrm{a}}{2}$ | $\underline{b}$ | $\frac{\mathrm{c}}{3}$ | $\frac{\mathrm{~d}}{2}$ | $\frac{\mathrm{e}}{}$ | $\frac{\mathrm{f}}{4}$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Executive X | 1 | 6 | 3 | 2 | 5 | 4 |
| Executive Y | 1 | 5 | 6 | 4 | 2 | 3 |
| Executive Z | 6 | 3 | 2 | 5 | 4 | 1 |
| $\mathrm{R}_{\mathrm{i}}$ (not computed) | 8 | 14 | 11 | 11 | 11 | 8 |

## SOLUTION

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :--- | :--- | :--- |
| 1 | Run "KENDALL" | Kendall's Coeff. of Concordance |  |
| 2 | Enter the \# of executives | How many observers (K)? | 3 [RTN] |
|  | Enter the \# of applicants | How many subjects (N)? | 6 [RTN] |
|  |  | Type c to delete error |  |
| 3 | Enter Appl.1, Exec.1 | Subject 1 Observer 1? | 1 [RTN] |
|  | Enter Appl.1, Exec.2 | Subject 1 Observer 2? | 1 [RTN] |
|  | Enter Appl.1, Exec.3 | Subject 1 Observer 3? | 6 [RTN] |
|  | Enter Appl.2, Exec.1 | Subject 2 Observer 1? | 6 [RTN] |
|  |  | Subject 2 Observer 2? | 5 [RTN] |
|  |  | Subject 2 Observer 3? | 3 [RTN] |
|  | Enter Applicant 3 | Subject 3 0bserver 1? | 3 [RTN] |


| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
|  |  | Subject 3 Observer 2? | 6 [RTN] |
|  |  | Subject 3 Observer 3? | 2 [RTN] |
|  | Enter Applicant 4 | Subject 4 Observer 1? | 2 [RTN] |
|  |  | Subject 4 Observer 2? | 4 [RTN] |
|  |  | Subject 4 Observer 3? | 5 [RTN] |
|  | Enter Applicant 5 | Subject 5 Observer 1? | 5 [RTN] |
|  |  | Subject 5 Observer 2? | 2 [RTN] |
|  |  | Subject 5 Observer 3? | 4 [RTN] |
|  | Enter Applicant 6 | Subject 6 Observer 1? | 4 [RTN] |
|  | **Error** | Subject 6 Observer 2? | 334 [RTN] |
|  | Call correction | Subject 6 Observer 3? | C [RTN] |
|  | Correction displayed | 6,2 deleted $=334$ |  |
|  | Enter correct value | Subject 6 Observer 2? | 3 [RTN] |
|  | Continue | Subject 6 Observer 3? | 1 [RTN] |
| 4 | Coefficient of Concordance | $W=.1619$ | [RTN] |
| 5 | Chi-square value | Chi-square $=2.4286$ | [RTN] |
| 6 | Degrees of freedon | Df $=5$ | [RTN] |
| 7 | End program | Run again, View again, or End? | E [RTN] |


| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :--- | :--- | :--- | :--- |
| 1 | Run "KENDALL" | Kendall's Coeff. of Concordance |  |
| 2 | Enter the \# of observers | How many observers (K)? | k [RTN] |
|  | Enter the \# of subjects | How many subjects ( n )? | n [RTN] |
|  |  | Type C to delete error |  |
| 3 | Enter data as prompted | Subject i Observer j? | $R_{i j}$ [RTN] |
|  | If an error was made: | Subject i Observer j? | C [RTN] |
|  | Deleted datum displayed | i,j deleted = Rij |  |
|  | Goto 3 until done |  | [RTN] |
| 4 | Real output. Use [RTN] key | W = | [RTN]/[BACK] |
|  | to see next, [BACK] to see | Chi-square = | [RTN]/[BACK] |
|  | last result. | Df = | [RTN] or |
| 5 | Review routine | [RTN] or |  |
|  | $R=$ rerun program - step 2 again, View again, or End? |  |  |
|  | V = review results = step 4 |  | [RTN] |

## VARIABLE NAMES

| NAME | DESCRIPTION | NAME | DESCRIPTION |
| :---: | :--- | :---: | :--- |
| K\$ | General input string | A( ) | Temporary data storage |
| SO | Grand sum of data | N | Grand N of data |
| S1 | EXij | S2 | $\Sigma(\Sigma X i j)^{2}$ |
| M | Mean of data | $Z$ | Z statistic |
| E | ETA $n$ |  |  |

## NOTES AND REFERENCES

Notes: The value of the Coefficient of Concordance must be in the range of zero to $1(0<=W<=1)$. If it is not within that range, the program will display a warning message. If you get the message "W is illegal. Check data", make sure that you have entered the data by subject (see sample problem), and that the observer's ranks are in the range 1 to $n$ (the number of subjects). Tied ranks are each assigned the average of the ranks they would have been assigned had no ties occurred (see reference to Siegel).

References: 1. Siege1, Sidney, NONPARAMETRIC STATISTICS FOR THE BEHAVORIAL SCIENCES, (McGraw-Hill, 1956), p. 231-232.
2. Gibbond, J.D., NONPARAMETRIC STATISTICAL INFERENCE, (McGraw-Hill, 1971).
3. Conover, W.J., PRACTICAL NONPARAMETRIC STATISTICS (John Wiley, New York, 1971).
4. Formulae found in HP-41C Users' Library solutions TEST STATISTICS.
$\square$
PROGRAM LISTING $\square$

```
    10 ! KENDAl..... - Kendal.'s
    20 ! Coefficient of
    30 ! Concordance
    A0 ! Rev {1/01/\sigma%
    50!
    60
    70!
    80 DELAY .G
    90 DISP "KondalJ's Cowff. of Concordan
        #.%"
100 DIM A(100),K$[100]
1.10 !
{0! Delay routime
1.30 !
1.40 DEF FND
```



```
    R$(13) YHEN {.!0
```



```
4.70
1.00 ! Error correction
1.90 !
#OO DEFF FNE
#10 TF J< THEN EFFP %"O © DTSP "MuEt h
    ave data to dedete" @ GOTO 240
%% DISF STR&(T);",";57R$(J-1);" d#1%te
    Q=";A(J\cdots-1.) @ WAIT {.
2-30 J=J-1. (% S0=S0-A(J)
OAO FNE:#0 (2 END DEF
2E0 DEFFNT(X) =: TNT(X*í0000+5)/10000
260 !
%% ! Indtiamiz%
20 !
290 x0, x,6=0
300 TNPUT "How mamy observer`s(K) ?";多
3{0 JF K<2 OR K\{00 THEN BEEF 天"0 & OTS
    P "Plamse mnter {<k<{00" a GOT0 300
%O TNFU7 "How mamy subject!(n) ?";N
30 TF N<2 THEN BEEP 2%O E 0TSP "Flease
    enter n>a" GOTO 320
З40 DTSP "Type ";(HR串(19%);" to delete
    error" # WAJr {
S50 ON ERROR UFRP 2%O # DTSF 'ENTEM num
    &rice data or [.""]' @ WATT A. e oOrO
        400
380 !
3%0 FOR I=1. TO N E S0=0 & FOR J={ TO K
400 DISF "कubject"; I;"Observer"; J;
```



```
        FN:: @ GOTG 400
```

…Wait for＇RTN＇or＇BACK＇keys．

…roror morrection routine， decrement countere
－Define prectsion of output
－n mout dialogue and inditandyation
－Frror trap－dicplay warning if jmualid entry
－Call correction routime if


## PROGRAM LISTING

$4 \% A(J)=$ UAL (K

440 !
450 ! Calwulate w, chie, df
460 !
 )

490 !
Wol ! Output routine
510 !
 N 50
 a1. Check data." exter 440, 1. 5 (ev $=:=F N D$
 (1) TF U THEN 50
 0



 $0, ~ \% e 0,590$
590 ©TOF

- Therement subject counter

FFnd loop and jncerement total. c.: ounter
-Compute W
… Compute chimsquare
-arintout routine
… i. © $\quad$ ay warning if W《0 or W〉1.
-review routine

## PROGRAM DESCRIPTION

## CORRELATION COEFFICIENT TEST

Under the assumptions of rank-order correlation analysis, the $t$ statistic, which has the $t$ distribution with $n-2$ degrees of freedom, may be used to test the null hypothesis (the true correlation coefficient $\rho=0$ ).

To test the null hypothesis $\rho=\rho_{0}$, where $\rho_{0}$ is a given number, the z statistic is used. $z$ has approximately the normal distribution.

Equations:

$$
\begin{aligned}
& t=\frac{r n-2}{\sqrt{1-r^{2}}} \\
& Z=\frac{\sqrt{n-3}}{2} \ln \left[\frac{(1+r)\left(1-\rho_{0}\right)}{(1-r)\left(1+\rho_{0}\right)}\right]
\end{aligned}
$$

Where $r$ is an estimate (based on a sample of size $n$ ) of the correlation coefficient $\rho$.

Given a sample size (N) of 31 , and correlation coefficient of .12 , test that the null hypothesis $\rho_{0}=0$.

## SOLUTION

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :--- | :--- | :--- |
|  | Run "CORRTEST" | Correlation Coefficient Test |  |
| 1 | Enter the sample size | Enter the sample size ( $n$ )? | 31 [RTN] |
| 2 | Enter $r$ | Correlation coefficient ( $r$ )? | .12 [RTN] |
| 3 | Enter $\rho_{0}$ | Enter RH0-naught? | 0 [RTN] |
| 4 | Read $t$ | $t=.650923$ | [RTN] |
| 5 | Read Z | $Z=.638055$ | [RTN] |
| 6 | End program | $\underline{R u n}$ again, View again, or End? | E [RTN] |

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
|  | Run "CORRTEST" | Correlation Coefficient Test |  |
| 1 | Enter N | Enter the sample size ( n )? | $N$ [RTN] |
| 2 | Enter r | Correlation coefficient? | r [RTN] |
| 3 | Enter $\rho_{0}$ | Enter RHO-naught? | $\rho_{0}$ [RTN] |
| 4 | Read $t$ value | $\mathrm{t}=\mathrm{t}$ | [RTN] |
| 5 | Read Z value | $Z=z$ | [RTN]/[BACK] |
|  | Use [BACK] to review t-value |  |  |
| 6 | Review routine | Run again, View again, or End? |  |
|  | $\mathrm{R}=$ rerun the program - step 1 |  | R [RTN] or |
|  | $V=$ review results - step 4 |  | $V$ [RTN] or |
|  | $\mathrm{E}=$ end the program |  | E [RTN] |


| NAME | DESCRIPTION | NAME | DESCRIPTION |
| :---: | :--- | :---: | :--- |
| K\$ | Input string | N | Sample size |
| R | Correlation | RO | Po |
| $T$ | t-score | Z | Z-score |
| $U$ | Delay flag |  |  |

Notes: 1. This program will check that $N>3, \rho=<31$, and $\rho_{0}<1$, and will display a warning if an error is found.
2. Usually, the $z$ statistic is used when the sample size is large.
3. Note that both $t$ and $z$ are returned. If the test being made is that $\rho$ is not equal to zero then use $z$. Choice of the appropriate statistic is left to the user.

References: 1. Hogg and Craig, INTRODUCTION TO MATHEMATICAL STATISTICS, (Macmillan and Co., 1970).
2. J. Freund, MATHEMATICAL STATISTICS, (Prentice-Hall, 1971).
3. The formulae for this program come from the HP-41C Users' Library solutions TEST STATISTICS, "Test statistics for the correlation coefficient", p. 5.

```
    1.0
    %
    00! Correlation Coefr
30 ! Correlation Coeff.
40 ! REV áN/0{/8%
50!
60 DELAY . F
70 DISF"Corredation Coefficient Temt"
O0 DTM K東[100]
90!
1.00 ! Demay function
1.0 !
1.%O DEF FNO
```

130 K
R皮(13) THEN 130

1.:0 DEF FNI (X) $=\mathrm{INT}\left(X *\left\{0^{\circ} 6+.5\right) / 10^{\wedge} 6\right.$
160 !
1.70 ! Tmput
180 !

ter numerice data" @ WAT á GOTO 1.
90
200 INPU7 "Enter the wmplesixe (n) ?"
; N

rror … n<3" e wATT a © GOTO 200
2\%O INPu7 "Correlation comfficient (r)
?"; R


"40 JiNFM "Enter RHOMnaght ?"; R0
※50 TF AES(R0) $=1$ THEN DTSF "Data емッом

0
260
270
280

300 \%
) $\%(1+R 0))$ )
310 !

330 !

N 340

1) 340
360
3\%0 ! Reviem routime
380 !

4);"iew again; or ":CHR束 (A97); "nd":

－Wait for＇RTN＇or＇ BACK ＇keys－ return 1．if＇BACK＇key
－Define output precision
…roor trapo dispaby wamang if mon mumerice emtry
－Enter N
－verify that Nう
－Finter corredation（r）
…Verify that the absolute value of（r）i．$\%$ les：than one
…nter rhommaught
…Verdfy that the absolute value of rho is less than one

Compute the t－value
－Compute the zovelue
．．．Frint the results
…Ruien module
$\square$ PROGRAM LISTING $\square$

$0,340,420$
420 END

## PROGRAM DESCRIPTION

## INTRACLASS CORRELATION COEFFICIENT

The intraclass correlation coefficient $r_{I}$ measures the degree of association among individuals within classes or groups. The coefficient is most easily calculated using the analysis of variance techniques. $r_{I}$ is the sample estimate of the population intraclass correlation coefficient $\rho_{I}$. If we can assume that the individuals within groups are random samples from normal populations with the same variance, then the hypothesis $\rho_{I}=0$ can be tested using the F statistic. This program also calculates the R-squared statistic, which is a measure of the relationship between the sample independent and dependent variables in the fixed effect case, and Omega-square, which is an estimate measure of the independent-dependent variable association in the population in the fixed effect case.

Mean of subjects in the $i^{\text {th }}$ sample

$$
\bar{x}_{i}=\frac{\sum x_{i}}{n_{i}}
$$

Standard deviation $\sigma_{I}=\sqrt{\frac{\sum\left(x_{i}{ }^{2}\right)}{n_{i}}-\left(\bar{x}_{i}\right)^{2}}$
SS total $=\Sigma\left(\Sigma x_{j}^{2}\right)-(\Sigma \Sigma x)^{2} / n$
SS treatment $=\Sigma\left(\frac{T_{i}{ }^{2}}{n_{i}}\right)-\frac{(\Sigma T)^{2}}{n} T$ is the column sum

SS error $=\Sigma\left(\Sigma x_{j}^{2}\right)-\Sigma\left(T_{j}^{2} / n_{j}\right)$

Df total $=n-1 \quad K=$ the number of sets
Df treatment $=K-1 \quad n=$ the total $n$
Df error $=n-k \quad J=$ the number of subjects

PROGRAM DESCRIPTION

INTRACLASS CORRELATION COEFFICIENT (continued)

$$
\begin{aligned}
& \text { MS treatment }=\text { SS treatment/df treatment } \\
& \text { MS error }=\text { SS error/df error } \\
& \mathrm{F} \quad=\mathrm{MS} \text { treat/MS error } \\
& \mathrm{R}^{2}=\text { SS treat/SS total } \\
& \Omega^{2} \quad=(\text { SS treat }-(\text { MS error })(\mathrm{K}-1)) /(\mathrm{SS} \text { total }+ \text { MS error }) \\
& \text { Intraclass } r=\left[\frac{\text { SS treat }}{\mathrm{K}-1}-\frac{\text { SS error }}{\mathrm{K}(\mathrm{~J}-1)}\right] /\left[\frac{\text { SS treat }}{\mathrm{K}-1}+\frac{\text { SS error }}{\mathrm{K}}\right]
\end{aligned}
$$

## SAMPLE PROBLEM

Find the degree of association between individuals (A-B) within the following set of groups:

Subjects
A B

|  |  | A | B |
| :---: | :---: | :---: | :---: |
|  | 1 | 71 | 71 |
|  | 2 | 69 | 72 |
|  | 3 | 59 | 65 |
| Groups | 4 | 65 | 64 |
| (sets) | 5 | 66 | 60 |
|  | 6 | 73 | 72 |
|  | 7 | 68 | 67 |
|  | 8 | 70 | 68 |


| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :--- | :--- | :--- |
| 1 | Run "INTRA" | Intraclass Correlation Coeff. |  |
| 2 | Enter the N of groups | How many sets? | 8 [RTN] |
| 3 | Enter the N of subjects | How many subjects? | 2 [RTN] |
|  |  | C to correct error |  |
| 4 | Enter set 1 | Set 1 Subject 1? | 71 [RTN] |
|  |  | Set 1 Subject 2? | 71 [RTN] |
|  | Enter set 2 | Set 2 Subject 1? | 69 [RTN] |
|  | Set 2 Subject 2? | 72 [RTN] |  |
|  | Enter set 3 | Set 3 Subject 1? | 59 [RTN] |
|  |  | Set 3 Subject 2? | 65 [RTN] |
|  | Set 4: ERROR | Set 4 Subject 1? | 666 [RTN] |


| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
|  | Call correction routine | Set 4 Subject 2? | C [RTN] |
|  | Deleted value is displayed | $(4,1)$ DELETED $=666$ |  |
|  | Enter correct value | Set 4 Subject 1? | 65 [RTN] |
|  |  | Set 4 Subject 2? | 64 [RTN] |
|  | Enter set 5 | Set 5 Subject 1? | 66 [RTN] |
|  |  | Set 5 Subject 2? | 60 [RTN] |
|  | Enter set 6 | Set 6 Subject 1? | 73 [RTN] |
|  |  | Set 6 Subject 2? | 72 [RTN] |
|  | Enter set 7 | Set 7 Subject 1? | 68 [RTN] |
|  |  | Set 7 Subject 2? | 67 [RTN] |
|  | Enter set 8 | Set 8 Subject 1? | 70 [RTN] |
|  |  | Set 2 Subject 2? | 68 [RTN] |
| 4 | Read means | Set $1 \mathrm{Me}=71 \quad \mathrm{Std}=0$ | [RTN] |
|  |  | Set $2 \mathrm{Me}=70.5$ Std $=1.5$ | [RTN] |
|  |  | Set $3 \mathrm{Me}=62 \quad \mathrm{Std}=3$ | [RTN] |
|  |  | Set $4 \mathrm{Me}=64.5$ Std - . 5 | [RTN] |
|  |  | Set 5 Me $=63 \quad$ Std $=3$ | [RTN] |
|  |  | Set $6 \mathrm{Me}=72.5$ Std $=.5$ | [RTN] |
|  |  | Set $7 \mathrm{Me}=67.5$ Std $=.5$ | [RTN] |
|  |  | Set $8 \mathrm{Me}=69 \quad$ Std $=1$ | [RTN] |
| 5 | Read output | Total $\mathrm{Me}=67.5 \quad$ Std $=4.031$ | [RTN] |
|  |  | Treat DF $=7 \quad$ SS $=216$ | [RTN] |
|  |  | Treat MS $=30.857$ | [RTN] |
|  |  | Error DF $=8 \quad \mathrm{SS}=260$ | [RTN] |
|  |  | Error MS $=5.5$ | [RTN] |


| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :--- | :--- | :--- | :--- |
|  |  | Total DF $=15 \quad$ SS $=260$ | [RTN] |
|  | F value | $\mathrm{F}=5.61039$ | [RTN] |
|  |  | R squared $=.830769$ | [RTN] |
|  |  | Omega squared $=.66855$ | [RTN] |
|  | Degree of association | Intraclass $r=.697446$ | [RTN] |
| 6 | End program | Run again, View again, or End? | E [RTN] |

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
| 1 | Run "INTRA" | Intraclass Correlation Coefficient |  |
| 2 | Enter the $N$ of groups | How many sets? | k [RTN] |
| 3 | Enter the N of subjects | How many subjects? | n [RTN] |
|  |  | C to correct error |  |
| 4 | Enter indicated datum | Set i Subject j? | Xij [RTN] |
|  | If an error was made: | Set i Subject j? | C [RTN] |
|  | This will be displayed: | ( $\mathrm{i}, \mathrm{j}$ ) DELETED $=\mathrm{Xij}$ |  |
|  | Goto 4 until done |  |  |
| 5 | $V$ iew means | Set i $\mathrm{Me}=\quad$ Std $=$ | [RTN] |
| 6 | View results. [RTN] to see | Total $\mathrm{Me}=\quad$ Std $=$ | [RTN] |
|  | next result, [BACK] to see | Treat DF $=\quad$ SS $=$ | [RTN]/[BACK] |
|  | last result. | Treat MS = | [RTN]/[BACK] |
|  |  | Error DF $=$ SS $=$ | [RTN]/[BACK] |
|  |  | Error MS = | [RTN]/[BACK] |
|  |  | Total DF $=$ SS $=$ | [RTN]/[BACK] |
|  |  | $F=$ | [RTN]/[BACK] |
|  |  | R squared $=$ | [RTN]/[BACK] |
|  |  | Omega squared $=$ | [RTN]/[BACK] |
|  |  | Intraclass $r=$ | [RTN]/[BACK] |
| 7 | Review routine | Run again, View again, or End? |  |
|  | $\mathrm{R}=$ rerun program - step 2 |  | R [RTN] |
|  | $V=$ review results - step 6 |  | V [RTN] |
|  | $\mathrm{E}=$ end program |  | E [RTN] |

## VARIABLE NAMES

| NAME | DESCRIPTION | NAME | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| T(i) | $\sum x_{i}$ | X2(i) | $\Sigma x_{i}^{2}$ |
| M ( i ) | Mean of treatment i | IO( ) | $\mathrm{t}_{\mathrm{i}}^{2} / \mathrm{n}$ |
| S9(i) | SD of treatment i | $V(i)$ | Variance of i |
| R( ) | Temporary storage | E1 | Value of deleted data |
| X\$ | General input string | T | Grand sum of all data |
| N | Grand n of all data | X2 | $\Sigma x_{i}^{2}$ of treatment |
| 10 | $\Sigma\left(T_{i}^{2} / n\right)$ | I1 | Intraclass correlation |
| S1 | Treatment SS | M1 | Treatment MS |
| S2 | Error SS | M2 | Error MS |
| S3 | Total SS | F | F-value |
| D1 | Treatment df | R2 | R squared |
| D2 | Error df | 02 | Omega squared |
| D3 | Total df |  |  |

## NOTES AND REFERENCES

Notes: 1. A maximum of 100 subjects per set may be used. To change this, change the dimension statements in line 70.
2. A maximum of 20 sets may be used. To change this, change lines 370 and 420.
3. Once a set has been finished, it may not be corrected.

References: 1. Winer, B.J., STATISTICAL PRINCIPLES IN EXPERIMENTAL DESIGN, (McGraw-Hill, New York, 1971) pages 210-214.
2. Hays, W.L., STATISTICS FOR PSYCHOLOGISTS, (Holt, Rinehart and Winston, 1963) page 382.
3. Ostle, B., STATISTICS, IN RESEARCH, Iowa State University Press, 1972.
4. HP-41C Users' Library, TEST STATISTICS, p. 33-34.
5. HP-75 STATISTICS SOLUTIONS BOOK, One-Way Analysis of Variance

## PROGRAM LISTING

```
Mo ! JNMRAE Intrac.oaso
20 ! Correlation Coeff.
30 ! रev {.1/0{/8%
40!
    G0 DELAAY .5
    60 DTSF "tntrachase Corremation Comff.
    "
    70 DTM T(20), xa(20), T0(20), V(%0), M(%0)
    ,59(20),R(1000)
    D1M X古["0]
90!
1.00! Define varjance
1.10 !
1%0 DEF FNS(S1,S2,N) =%%/N-(S1/N)^%
```

130
1.A0 ! Delay routine
1 1:0

1. 60 DEF FNO


1.90 EMD DEF
2001
玉角 ! Precionon routine
200


250 !
"60 ! Correction
"70
:80 DEF FNE (C)

data to dedere" ※ WAT $x$ GOTO 3 ※0

ELETED :-: "; R(I-1) OMTY

$-1$.
Зの 0 人
گSO FNE: $=0$ (EXD DEF
340
3ッ0 ! Indtanaxe
3601


$360 \mathrm{~N}, \mathrm{~T}, \times \boldsymbol{x}, \mathrm{T} 0=0$
390
400 ! Enter data
410 !
$4 \% 0$ TNPUT "How many set: ?"; K $\quad$ TF K

ABO TMPU" "How Many subjecte? "; N0
F N0<3. THEN REEP O GOTO AZO
－routine to calculate the varis．anc：
… Wist for＇RTN＇or＇KACK＇key．

…Define preciston of output
…Fror morrewtion routinew decrement counter＂


440 ON EKROR REFP E DTSP＂Please enter numeric：data＂e wATT f．GOTO 470
 （a）BEEP 440 W WATT 1
$460 \mathrm{FOR} J=1 . \quad \mathrm{TO} \mathrm{K}$ K FOR I：＝1 70 NO
470 DISF＇Set＇；J；Subject＇；J；© TNPUT $x$韦
480 1F X本＝：＂＂THEN 470
$4 \% 0$ TF FOS（＂C（＂，Xt）THEN U＂FNE（J）E GOT （i） 470
$500 \quad \times=$ UAL（ 5 （ 5 ）
＂．1．0！
ツo ！Loop wounter：
530 ！
W0 $N=N+1 * R(T)=X$
 ＾曰（ 2 人
560 NEXT 3
ツ\％0 NEXP J
990 OFF ERROR
590 ！
$600!$ CALOULATTON
6x0！Me，ST0，Internal．
620 ！
630 FOR J：＝1．TOK

 （V（J））
$660 \mathrm{M}(J)=\mathrm{T}(\mathrm{T}) / \mathrm{NO}$
 FNT（Sq（J））（ $1=F N D$
 $=:=$ SOR（U）
 （S9）e U：＂：NO
700
710 ！Jnt，SS，MS，DF
720 ！
730 TA $=\mathrm{T} \times \mathrm{N}$


760 ми
770 ！
$\% 60$
F， $\mathrm{BA}^{2}$ ，（0＾气
$790!$
 ＂）／（ $3 \mathrm{~B}+\mathrm{M}$ ）
 1．）+B （K）
©0 ！
6s0 ！print Out
840 ！
 （1 $=\mathrm{FW} \mathrm{F})$
－Frror trap… return warnimg jf a．I．legal data is entered
－Tnput $1.00 \%$
－．．Call error correction
－Mecrement countere
－Tmtermediatemaduatam
－Vardance and $50(n)$
Men

$\cdots$ Cobudate degrees of freedom


## PROGRAM LISTING

```
G60 DTSF "Treat MS=";FNT(M{) ( U=FND E
        IF U THI:N 850
8%0 DISF "Error DF:=";DE;"SS=";FNJ(S%)
    @ U=FND @ IFF U THEN 860
```



```
        IF U THEN 870
890 DJSP "Total OF:=";03;"SS=";FNT(S3)
    # U=:FND (2 JF U THEN 800
900 DISF "F=";FNJ(F) (# U#FND E IF U THE
    N 890
g^0 DTSF "R Gquared:=";FNJ(Ra) (# U=FND e
        IF U THEN 900
9%0 DISF "Omeqa squared=";FNJ(O%) & U=F
    ND (G IF UTHEN 9{0
930 DISP "Intraclass r=";FNJ(Ta) (U U=F
    ND !TF U THEN 9%0
```



```
    4);"i.ew again; or" ";CHR年(1.77); "nd";
```



```
    1. GOT0 940,:770,690,960
760 STOP
```


## KRUSKAL-WALLIS STATISTIC

Suppose we want to test the null hypothesis that $k$ independent random samples of sizes $n_{1}, n_{2}$, . . $n_{k-1}, n_{k}$ come from identical continuous populations.

This program will arrange all values from $k$ samples jointly (as if they were one sample) in an increasing order of magnitude. Values that have equal ranks will be assigned the average of the ranks that they cover. Let $\mathrm{R}_{\mathrm{ij}}$ be the rank of the jth value in the ith sample.

The Kruskal-Wallis statistic $H$ can be used to test the null hypothesis that each observer has identical ranking preference.

When all sample sizes are large ( $>5$ ) , H is distributed approximately at the chi-square with k-1 degrees of freedom. For small samples, the test is based on special tables (not computed). This program will accept a maximum of 254 TOTAL observations, due to a restriction in the sorting routine.

Equation: $d f=k-1$

$$
\begin{aligned}
& H=\left(\frac{12}{n(n+1)}\right)\left(\sum_{i=1}^{K} \frac{\left(\sum_{j=1}^{n_{i}} R_{i j}\right)^{2}}{n_{i}}\right)-3(N+1) \\
& \text { Where: } N=\sum_{i=1}^{K} n_{i} \\
& R_{i j}
\end{aligned} \begin{aligned}
K & =\text { Rank of observation }(i, j) \\
K & n_{i} \\
n_{i} & =\text { number of samples observations in the } i^{\text {th }} \text { sample }
\end{aligned}
$$

Compute the H-statistic for the followirg data: (data from Conover, p. 258).

| 1 |  | 2 |  | 3 |  | 4 |  |
| :--- | :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- |
| Obs. | Rank | Obs. | Rank | Obs. | Rank | Obs. | Rank |
| 83 | 11 | 91 | 23 | 101 | 34 | 78 | 2 |
| 91 | 23 | 90 | 19.5 | 100 | 33 | 82 | 9 |
| 94 | 28.5 | 81 | 6.5 | 91 | 23 | 81 | 6.5 |
| 89 | 17 | 83 | 11 | 93 | 27 | 77 | 1 |
| 89 | 17 | 84 | 13.5 | 96 | 31.5 | 79 | 3 |
| 96 | 31.5 | 83 | 11 | 95 | 30 | 81 | 6.5 |
| 91 | 23 | 88 | 15 | 94 | 28.5 | 80 | 4 |
| 92 | 26 | 91 | 23 |  |  | 81 | 6.5 |
| 90 | 19.5 | 89 | 17 |  |  |  |  |

## SOLUTION

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :--- | :--- | :--- | :--- |
|  | Run "KRUSKA" | Kruskal-Wallis Statistic |  |
| 1 | Enter the N of treatments | How many treatments? | 4 [RTN] |
|  |  | E to end treat., $\underline{C}$ to change |  |
| 2 | Begin treatment 1 | Treat. 1 Subject 1? | 83 [RTN] |
|  |  | Treat. 1 Subject 2? | 91 [RTN] |
|  |  | Treat. 1 Subject 3? | 94 [RTN] |
|  |  | Treat. 1 Subject 4? | 89 [RTN] |
|  |  | Treat. 1 Subject 5? | 89 [RTN] |
|  |  | Treat. 1 Subject 6? | 96 [RTN] |
|  |  | Treat. 1 Subject 7? | 91 [RTN] |
|  |  | Treat. 1 Subject 8? | 92 [RTN] |


| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
|  |  | Treat. 1 Subject 9? | 90 [RTN] |
| 4 | End treatment 1 | Treat. 1 Subject 10? | E [RTN] |
| 2 | Begin treatment 2 | Treat. 2 Subject 1? | 91 [RTN] |
|  |  | Treat. 2 Subject 2? | 90 [RTN] |
|  |  | Treat. 2 Subject 3? | 81 [RTN] |
|  |  | Treat. 2 Subject 4? | 83 [RTN] |
|  |  | Treat. 2 Subject 5? | 84 [RTN] |
|  |  | Treat. 2 Subject 6? | 83 [RTN] |
|  |  | Treat. 2 Subject 7? | 88 [RTN] |
|  |  | Treat. 2 Subject 8? | 91 [RTN] |
|  |  | Treat. 2 Subject 9? | 89 [RTN] |
|  |  | Treat. 2 Subject 10? | 84 [RTN] |
| 4 | End treatment 2 | Treat. 2 Subject 11? | E [RTN] |
| 2 | Begin treatment 3 | Treat. 3 Subject 1? | 101 [RTN] |
|  |  | Treat. 3 Subject 2? | 100 [RTN] |
|  |  | Treat. 3 Subject 3? | 91 [RTN] |
|  | **Error** | Treat. 3 Subject 4? | 9333 [RTN] |
| 3 | Call correction routine | Treat. 3 Subject 5? | C [RTN] |
|  | This will be displayed: | $(3,4)$ DELETED $=9333$ |  |
| 2 | Enter correct value | Treat. 3 Subject 4? | 93 [RTN] |
|  | Continue | Treat. 3 Subject 5? | 96 [RTN] |
|  |  | Treat. 3 Subject 6? | 95 [RTN] |
|  |  | Treat. 3 Subject 7? | 94 [RTN] |
| 4 | End treatment 3 | Treat. 3 Subject 8? | E [RTN] |
| 2 | Begin treatment 4 | Treat. 4 Subject 1? | 93 [RTN] |


| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :--- | :--- | :--- | :--- |
|  |  | Treat. 4 Subject 2? | 82 [RTN] |
|  |  | Treat. 4 Subject 3? | 81 [RTN] |
|  |  | Treat. 4 Subject 4? | 77 [RTN] |
|  |  | Treat. 4 Subject 5? | 79 [RTN] |
|  |  | Treat. 4 Subject 6? | 81 [RTN] |
| 4 | End treatment 4 4 Treat. 4 Subject 8? | 80 [RTN] |  |
| 5 | Skip the ranks | Treat. 4 Subject 9? | 81 [RTN] |
| 6 | View printout | View the ranks (Y/N)? | [RTN] |
|  |  | H=25.46437 | [RTN] |
|  |  | df 3 | [RTN] |
| 7 | End program | Total n = 34 | [RTN] |
|  |  | Run again, View again, or End? | E [RTN] |


| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
|  | Run "KRUSKA" | Kruskal-Wallis Statistic |  |
| 1 | Enter the number of treatments | How many treatments? | k [RTN] |
|  |  | E to end treat., $\underline{C}$ to correct |  |
|  | do steps 2-5 k times |  |  |
| 2 | Enter data as prompted | Treat. i Subject j? | Xij [RTN] |
| 3 | If an error was made: | Treat. i Subject j? | C [RTN] |
|  | Deleted datum displayed: | $(\mathrm{i}, \mathrm{j})$ DELETED $=\mathrm{Aij}$ |  |
|  | Goto 2 until treatment done |  |  |
| 4 | Depress E to end treatment | Treat. i Subject j | E [RTN] |
|  | Goto 2 until all treatments |  |  |
|  | have been entered |  |  |
| 5 | Depress $Y$ to see ranks | View the ranks ( $\mathrm{Y} / \mathrm{N}$ ) ? | $Y$ or $N$ [RTN] |
|  | To view the ranks: | $\mathrm{i}, \mathrm{j} S=\quad \mathrm{R}=$ | [RTN]/[BACK] |
| 6 | Read the printout. Use | H = | [RTN]/[BACK] |
|  | [RTN] key to see next result, | $\mathrm{df}=$ | [RTN]/[BACK] |
|  | [BACK] key to see last result. | Total $\mathrm{n}=$ | [RTN]/[BACK] |
| 7 | Review routine | Run again, View again, or End? |  |
|  | $\mathrm{R}=$ rerun program - step 1 |  | R [RTN] |
|  | $V=$ review results - step 5 |  | $V$ [RTN] |
|  | $E=$ end program |  | E [RTN] |


| NAME | DESCRIPTION | NAME | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| A( ) | Data storage | N | Total N |
| X\$ | General use string | A1( ) | Storage of ranks |
| $N(j)$ | $N$ of column j | N1 | Internal: total N |
| NO | Grand sum | K | Number of treatments |
| $X$ | Temporary input value | H | H-value |
| R2 | $\Sigma(\mathrm{R}, \mathrm{j})^{2}$ | R1 | Temporary sum of rank |
| D | Degrees of freedom | U* | Delay flag, = 1 if [BACK] |
| VARIABLES USED IN THE INDEX SORTING ROUTINE |  |  |  |
| L | Lower parameter of search | U* | Upper parameter of search |
| I | Middle of binary search | K1 | Value to "search" for |
| T\$ | Upper part of index string | B\$ | Lower part of index string |
| A\$ | Index string |  |  |
| VARIABLES USED IN THE RANKING AND TIED-VALUE CORRECTION ROUTINE |  |  |  |
| L1 | Last discrete rank value | C1 | Index (position) of L1 |
| CO | Number of ranks that $=$ L1 | C2 | Sum of indexes after C1 |
| T | "Current" rank value | R | Value to replace "current" tied ranks |
| * Some variables used for more than one purpose |  |  |  |

## NOTES AND REFERENCES

Notes: 1. The program is presently limited to a maximum of 20 treatments. To change this limit, change lines 70 and 320.
2. The program is limited to a maximum of 254 total data items. To change this would require a major reprogramming effort, and would slow down the ranking routine.

References: 1. Conover, W.J., PRACTICAL NONPARAMETRIC STATISTICS (John Wiley and sons. 1971), p. 257-259.
2. Knuth, Donald E., THE ART OF COMPUTER PROGRAMMING, Volume 3, Sorting and Searching, (Addison-Wesley, 1972).
3. HP-41C Users' Library solutions, TEST STATISTICS, Kruskal-Wallis statistic.

## PROGRAM LISTING

```
    10 ! KRUSKAL: Kruskam..
    20 ! Wa|Jisswtatistic
    30 ! REU {.1/0A/8%
    40 !
    50 DELAAY . 5
    60 DTSF " KruskalmWaloms Statistic"
```



```
        A1.(255), X多,20.1,N(20)
    G0 DEFFNC(X)=: NUM(AN|X,XI)
```

    90 !
    1.00 ! Deay routime
    1.1.0!
120 DEFFND


150 END OEF
160 !
1.70! Correction
180 !
190 DEF FNE: (C)
E00 TF N(C) (S THEN BEEF ( )TSP "Muet ha
ve data to delete" a GOTO 230

(N) WAIT 4

こらO FNE: =0 E END DEF:

50 !
$260!\operatorname{lnitanaze}$
" 70
$280 \mathrm{Ni}, \mathrm{R} 1, \mathrm{Re}, \mathrm{N}, \mathrm{NO}=0$
290
300 ! Enter data
310
zo0 INPU" "How many Treatmente?"; K

360 DSF CHR制(S97);" to end treat., ";


з50 DTSF'Treat.'; J;'Gubject'; N(J)+4; e
INPUY $x$ 末
360 IF UFRC末 (X\$) = "E" THEN 490

TO 350
3 BO OR ERROR KEEF $2 \% 0$ OTSF Enter mum

010360
390 X $=$ UAL
400
4.0 ! Loop (:0unters
420 !
- Convercion function for
ranking routine
…nter and verify the mumber of
treatments

- Goto the end of the treetment
iff 'E' is entered
- Call wrop correction routime

…Fror trap


## PROGRAM LISTING

 $0+X$
 nter any more＂（ WAIT 1．\＆GOTO 490
4506070350
460 ！
470 ！End of treatment
480 ！
$4 \% 0$ TF N（J）（\％7HEN BEFF a DTSF＂MuEt ha ve more than one subject＂atoto 35 0
500 NEXT J
SíO OFF ERROR
$5 \%$ ！
530 ！Rank data by
G40 ！＂Einary＂$=0 r t$
550 ！
 0
570 A末 $=$ CHR米（1）
GSO FOF X＝\％TO N
$5 \% 0 \quad=1$ ．$\quad \cup=\times \cdots 1$
$600 \mathrm{~T}=\mathrm{TNT}(1 . .+\mathrm{U}) / \mathrm{m})$

6\％TH A

640 TF U＞＝1 THEN 600


SE $\quad$ 「安：＂•＂


6 60 NEXT $X$

700 ！
70 ！Compute $\&=t$ ore
\％\％！ranke
$7 \% 0$ ！
$\because 40$ FOR X＝：$=1$ TO N

 070600


 FNC（O））$=\mathrm{RE} \mathrm{NEXT} \mathrm{A}$
 X
900 NEXT 天
8 SO ！

$930!$
BAO FOR X＝1 TOK

－Tncrement counters
－oheck number of data items
．－Wmary andex mort
．．．Winary search
$-\ln \operatorname{ser} t$ present andex anto ab
．．．Store rankw in $A()$
－Feblace timarankw

## PROGRAM LISTING



```
    ๕%0 R2=下%+R{^%/N(X) # NEXT X
    800 1):=K-1.
    %%(H#1%/(N*(N+1))粗%-3*(N+1)
    900 !
    g40 ! Frint-out
    900!
```



```
    "/";(CHR必(206);")";
```




```
    G60 IF AS:="N " THEN 1050
    970 X1, X=0 & Y=1.
    GO0 PRTNT "Gam@le";Y
    950 X=X+1 @ X{=X1+1 @ IF X>N THEN {050
1000 TF XI>N(Y) THEN Y:=Y+1 & X{=0 O X=:X-
    1. GOT0 980
```



```
    K); "R=";合(X) E V=#FND
```



```
    # GOTO 1.0 % 0
1030 IF U AND Y>1. THEN Y:#Y-4 6 X{=N:Y) (#
        X=X-3. % GOTO {0^0
1040 GOTO 990
{.050 PRTNT "H:":FNT(H) # U#FND (a IF U T
    HEN X{=:N(K) & X=:N (% Y=K e GOTO {0&0
1060 PRTNT "OF=";D O U#FND & IF U THEN a
    050
10%0 PRTN" "Total n=";N @ U#FND & IF U T
    HEN 1060
1080
1.0%0 ! Keview routime
1400 !
```



```
    4);"jew again, or ";(HR$(ag%); "nd "
    ;
```




```
    00,930, 1.440
1.1.40 STOF
```

nompute $H$ and degrees of
freedom
－Routjne to allow user to view the ramks
－wrintout
－Review mocule

## PROGRAM DESCRIPTION

## MANN-WHITNEY U-TEST

This program calculates the Mann-Whitney test statistic on two independent samples of equal or unequal sizes. The Mann-Whitney test will test the null hypothesis that there is no difference between the two samples. The program will rank all values from both samples as if they were one sample, assigning tied ranks the mean of the positions that they occupy. This program will also accept, as input, data that has already been ranked in the preceding manner. The smaller of the two U-statistics will be displayed, as according to statistical convention. The Z-value that is displayed is approximately a random variable having the standard normal distribution.

For small samples (less than or equal to 8) the specially constructed tables should be used. For example: HANDBOOK OF STATISTICAL TABLES, D. B. Owen, Addison-Wesley, 1962.

Formula:

$$
\begin{aligned}
& U=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-\sum_{i=1}^{n_{1}} R_{i} \\
& z=\frac{U-\frac{n_{1} n_{2}}{2}}{\sqrt{n_{1} n_{2}\left(n_{1}+n_{2}+1\right) / 12}}
\end{aligned}
$$

Where: $n_{1}=$ Size of sample 1
$n_{2}=$ Size of sample 2
$R_{i}=$ Rank assigned to item $i$ of the sample with the smallest $U$.

Note: Both of the two possible U's are computed.
The smallest $U$ is displayed, as is conventional.

The two-sample case is one in which the investigator has obtained two samples from possibly different populations. The null hypothesis tests the rejection of the assumption that the samples come from two different populations.

Consider two independent samples of students trained in a series of athletic events under two different conditions. The null hypothesis is that there are no differences between the training methods. Use the program MANN to calculate the ranks, $U$-statistic and $z$-statistic of these students.

Score

| Method A | 18 | 15 | 13 | 21 | 11 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Method B | 13 | 6 | 2 | 5 |  |

SOLUTION

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :--- | :--- | :--- | :--- |
|  | Run "MANN" | Mann-Whitney U-Test Statistic |  |
|  |  | Sample 1 C=change E=end |  |
| 1 | Enter sample 1 | Sample 1 Item 1? | 18 [RTN] |
|  |  | Sample 1 Item 2? | 15 [RTN] |
|  |  | Sample 1 Item 3? | 13 [RTN] |
|  |  | Sample 1 Item 4? | 21 [RTN] |
| 4 | End sample 1 | Sample 1 Item 5? | 11 [RTN] |
|  |  | Sample 2 C=change E=end | [RTN] |
| 2 | Enter sample 2 Item 6? | 13 [RTN] |  |
|  |  | Sample 2 Item 1? | 6 [RTN] |
|  | **ERROR** | Sample 2 Item 2? | 299 [RTN] |
| 3 | Call error correction | Sample 2 Item 3? | CRTN] |
|  | This wil1 be displayed | Item 3 deleted = 299 |  |


| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
| 2 | Enter the correct value | Sample 2 Item 3? | 2 [RTN] |
|  | Continue | Sample 2 Item 4? | 5 [RTN] |
| 4 | End sample 2 | Sample 2 Item 5? | E [RTN] |
| 5 | View the rank scores? | View the ranks? (Y/N)? | Y [RTN] |
| 6 | View the ranks. Use [RTN] | Sample 1 |  |
|  | to see the next rank. | $1,1 \mathrm{~S}=18 \quad \mathrm{R}=8$ | [RTN] |
|  |  | $1,2 \mathrm{~S}=15 \mathrm{R}=7$ | [RTN] |
|  |  | $1,3 \mathrm{~S}=13 \mathrm{R}=5.5$ | [RTN] |
|  |  | $1,4 \mathrm{~S}=21 \quad \mathrm{R}=9$ | [RTN] |
|  |  | $1,5 \mathrm{~S}=11 \quad \mathrm{R}=4$ | [RTN] |
|  |  | Sample 2 |  |
|  |  | $2,1 \mathrm{~S}=13 \mathrm{R}=5.5$ | [RTN] |
|  |  | $2,2 S=6 \quad R=3$ | [RTN] |
|  |  | $2,3 \mathrm{~S}=2 \quad \mathrm{R}=1$ | [RTN] |
|  |  | $2,4 \mathrm{~S}=5 \quad \mathrm{R}=2$ | [RTN] |
| 7 | View results, using [RTN] as | $U=1.5$ | [RTN] |
|  | above | $Z=-2.08207$ | [RTN] |
| 8 | End program | Run again, View again, or End? | E [RTN] |

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
|  | Run "MANN" | Mann-Whitney U-Test Statistic |  |
|  |  | Sample $1 \quad \mathrm{C}=$ change, $\mathrm{E}=$ end |  |
| 1 | Enter items of sample 1 | Sample 1 Item i? | A (1, i) [RTN] |
|  | If an error was made: | Sample 1 Item i? | C [RTN] |
|  | This will be displayed: | Item i deleted $=A(1, i)$ |  |
|  | Goto 1 until done |  |  |
|  | End sample 1 | Sample 1 Item i? | E [RTN] |
|  |  | Sample $2 \mathrm{C}=$ change, $\mathrm{E}=$ end |  |
| 2 | Enter items of sample 2 | Sample 2 Item i? | A $(2, i) \quad[\mathrm{RTN}]$ |
|  | If an error was made: | Sample 2 Item i? | C [RTN] |
|  | Will not correct sample 1 | Item i deleted $=A(2, i)$ |  |
|  | Goto 2 until done |  |  |
|  | End sample 2 | Sample 2 Item i? | E [RTN] |
| 3 | Do you wish to view the | View the ranks? (Y/N)? | Y [RTN] or |
|  | ranks? If not, goto 5 |  | $N$ [RTN] |
| 4 | View the ranks. Use the | Sample 1 |  |
|  | [RTN] key to see the next | 1,1 $\mathrm{S}=$ sample $\mathrm{R}=$ rank | [RTN] |
|  | rank, [BACK] to see previous | 1,i $S=$ sample $R=$ rank | [RTN]/[BACK] |
|  | rank | Sample 2 . . . . . |  |
| 5 | View $U$ and Z. Use [RTN] and | $U=u$ value | [RTN]/[BACK] |
|  | [BACK] as above | $z=z$ value | [RTN]/[BACK] |
| 6 | Review routine | Run again, View again, or End? |  |
|  | $\mathrm{R}=$ rerun the program - step 1 |  | R [RTN] or |
|  | $V=$ review results - step 3 |  | $V$ [RTN] or |
|  | $E=$ end the program |  | E [RTN] |

## VARIABLE NAMES

| NAME | DESCRIPTION | NAME | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| A( ) | Data storage | A1( ) | Storage of ranks |
| $N(j)$ | $N$ of column j | N | Total N |
| X9 | Temporary input data value | Z | Z-statistic |
| U1, U2 | Large and smal1 U statistic | K\$ | General use string |
| R1,R2 | Sum of ranks in var. 1,2 | U* | Delay flag, = 1 if [BACK] |
| D | Degrees of freedom |  | used |
| VARIABLES USED IN THE INDEX SORTING ROUTINE |  |  |  |
| L | Lower parameter of search | U* | Upper parameter of search |
| I | Middle of binary search | K1 | Value to "search" for |
| T\$ | Upper part of index string | B\$ | Lower part of index |
| A\$ | Index string |  |  |
| VARIABLEES USED IN THE RANKING AND TIED-VALUE CORRECTION ROUTINE |  |  |  |
| L1 | Last discrete rank value | C1 | Index (position) of L1 |
| CO | Number of ranks that $=$ L1 | C2 | Sum of indexes after C1 |
| T | "Current" rank value | R | Value to replace "current" tied ranks |
| * Some variables used for more than one purpose |  |  |  |

## NOTES AND REFERENCES

Notes: 1. A maximum of 254 items (TOTAL) may be entered. This is due to the design of the ranking program, and can't be changed easily. See the Notes and References to Kruskal-Wallis statistic.
2. In accordance with statistical convention, the smaller of the two possible U-statistics is displayed. Variables U1 and U2 contain, respectively, the U-statistic computed using item 1 and the U-statistic computed using item 2.

References: 1. J.E. Freund, MATHEMATICAL STATISTICS, (Prentice-Ha11, 1962).
2. S. Siegel, NON-PARAMETRIC STATISTICS, (McGraw-Hill, New York, 1956).
3. TEST STATISTICS, HP-41C Users' Library solutions, (MANN-WHITNEY STATISTIC).

```
    1.0 ! Mann-Whitmey test statistic
    20! REU {.1./01/8%
    30 !
```



```
    A1. (255),N(2)
G0 DELAY .:
60 !
70 ! Rank converemon
80 !
OO DEFFNC(X)=NUM(A$[X,X])
100 !
1.0 ! Emron correction
120 !
130 DEFFNN(X) == TNT(X*S0^5*.S)/10^5
{MO DEF FNE
150 D)TS" "IteM";N(S);"de\世ted =": "A(N(6)
+NO)
160 N:=N-{ @ N(5)=N(S)-4 (# FNE=0
1.70 END OEF
180
{.%(0 ! denay routime
200 !
#10 TEF FND
%0
```



```
HR*(8) THEN &%0
"30 FNO=K$=(%HR方(8) (% %NO D)EF
240
20! ! Initiadjz%
%60
{%0 DTSF MMamawhtuitmey UM+Est statistic
OGO ON ERROR NEEF 4AO E OTSF 'EntE% num
@%ic: [. "E"J, or [."C"] @ GOTO 3%0
```



```
    ),R,Ci, C%=0
30
330 FOR S=1. TO 2
340 0TSF "6ample "; ";" "; CHR多(1夕5);"=
```




```
    +{; ENPUT B%
```

300
30

360 IF UPRCN（Es）：＂E＂THEN 410
 FNE G GOTO 350
ЗGO TF UFRC未（世＊）＝＂C＂THEN DTSP＂Must ha ve data to dedete＂\＆BEFP ※20 \＆GOT 0350


－Conversion function for ranking routine
…Define prectision of output
－Delete user＇s input error and decrement countere
－Watt for＇RTN＇or＇WACK＇keys． Return 1 if＇BACK＇key
…Error trap
－Froter sample value
－Find data entry if E i w motered －Call correction routine if C is entered
－Return error af attempting to deleternonwastent data
 data items entered
 $\mathrm{A}(N(S)+N 0)=X 9$ Q GTO 50
4́0 IF N（S）（2 THEN XEEP 220 E DISP＂Mus $t$ have more than one item＂GOTO 3 50
$4 \%$ NO＝N＠NEXT G
430 OFF ERROR
440 ！
4F0！Einamy sort
460 ！
470
480
490
$500 \mathrm{~T}=\mathrm{TNT}(\mathrm{L}+\mathrm{L}) / \mathrm{O})$

$5 \%$ TF A（X）$=K$ K THEN 50

540 IF U $\because=1 .=T H E N 500$


SE $\quad$ 半 $=\because "$


W80 NE：XT $X$

600
610
$6 \%$
630 FOR $X=1$ TO N

 070690

660 IF $\times<\rightarrow M$ AND $T=L 1$ THEN 690
 $F N C(Q))=\mathrm{F}$（ NE XT Q
 $x$
$6 \%$ NEXT $\times$
700
710
$7 \% 0$
7.60

Compute U and z ！
 A．（X）NEXT X
 1．（X）※ Nए：XT X
$7 \omega 0$ 以


\％$\%$ \％ 1）$+N(2)+1) /$ 12 2
790
900 ！Vjew ramke
－Increment counters，store value，and continue
－Bimary index $\operatorname{sort}$
－玉inary 5 anfon
－ancery preser jndex into Ab
－©tomeranke in Ás）
－Replace tied ranke
－Compute Eum of ranks in variable íand e
$\cdots$ Compute U using varimble 2
Compute U usamg variable
$\cdots$ Choose mmallest U
…Computex．$\overline{\text { Come }}$

## PROGRAM LISTING

 " / "; CHR皮 (206) ; ")";


850 TF K末 $=$ "N " THEN 970
$960 \times 1, X=0$ © $Y=1$.


 $1 \Leftrightarrow 60 \mathrm{O} 0$


 (2) GOTO 900
$9 \% 0$ IF $\cup$ AND $Y>1$ THEN $Y=1$ (6 $\times 1, X=N(1)$ ( GOTO 900
930 GOTO 860
940 !
950 ! view U, V
960 !
970 DTSP "U = "; FNE (U) \# V:WND
 O 900
 N 970



 $80,820,1030$
1.030 STOP

- Foutine to view the ranke
-rrintout/display routine
-Review module


## PROGRAM DESCRIPTION

## FISHER'S EXACT PROBABILITY

Fisher's exact probability test is used for analyzing a $2 \times 2$ contingency table when the two independent samples are small in size.

| a (I-) | b (It) |
| :--- | :--- |
| c (II-) | $d$ (II+) |

Given frequencies $a, b, c, d$, with $a$ as the smallest frequency, this program calculates:

1) the exact probability of observing the given frequencies in a $2 \times 2$ table, when the marginal totals are regarded as fixed, and
2) the exact probability $P_{i}(i=1,2, \ldots, a)$ of each more extreme table having the same marginal totals.

Formula:
Exact probability $P_{0}=\frac{(a+b)!(c+d)!(a+c)!(b+d)!}{(1)}$
N!a!b!c!d!
Where: $\quad N=a+b+c+d$
Each more extreme table (with the same margins)

$$
P_{i}=\frac{(a+b)!(c+d)!(a+c)!(b+d)!}{N!(a-i)!(b+i)!(c+i)!(d-i)!}
$$

Where: $P_{i} \in\{1,2, \ldots a-1, a\}$

$$
x!=(1)(2) \ldots(x-1)(x)
$$

## SAMPLE PROBLEM

Calculate $P_{0}, P_{2}, P_{3}$, and $P_{4}$ for the following table:
Frequency:

| 7 | 10 |
| ---: | ---: |
| 8 | 5 |

NOTE: The table must be arranged as:

Frequency | 5 | 8 |
| ---: | ---: |
|  | 10 |

## SOLUTION

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :--- | :--- | :--- |
| 1 | Run "FISHER" | Fisher Exact Probability Test |  |
| 2 | Enter frequency A | Enter Group I - (A)? | 5 [RTN] |
| 3 | Enter frequency B | Enter Group I+ (B)? | 8 [RTN] |
| 4 | Enter frequency C | Enter Group I I- (C)? | 10 [RTN] |
| 5 | Enter frequency D | Enter Group I I+ (D)? | 7 [RTN] |
| 6 | Read probabilities, Use | Exact probability = .01467 | [RTN] |
|  | [RTN] to see the next | Prob. ( 1 ) = .05705 | [RTN] |
|  | probability | Prob. ( 2 ) = .13691 | [RTN] |
|  |  | Prob. ( 3 ) = .1867 | [RTN] |
|  |  | Prob. ( 4 ) = .12446 | [RTN] ] |
| 7 |  | End program | Run again, View again, or End? |
| [RTN] |  |  |  |


| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :--- | :--- | :--- | :--- |
|  | Arrange table so that a is |  |  |
|  | the smallest frequency |  |  |
| 1 | Run "FISHER" | Fisher Exact Probability |  |
| 2 | Enter frequency A | Enter group I- (A)? | a [RTN] |
| 3 | Enter frequency B | Enter group I+ (B)? | b [RTN] |
| 4 | Enter frequency C | Enter group II+ (D)? | [RTN] |
| 5 | Enter frequency D [RTN] |  |  |
| 6 | View probabilities. Use [RTN] | Exact probability = | [RTN] |
|  | to see next display, [BACK] | Prob. (1) = | [RTN] |
|  | to see previous one | Prob. (2) = | [RTN]/[BACK] |
|  |  | Prob. (3) = | [RTN]/[BACK] |
|  |  | Prob. (4) = | [RTN]/[BACK] |
|  |  | Prob. (5) = | R [RACK] |
| 7 | Review routine | Run again, View again, or End? |  |
|  | R = rerun the program - step 2 |  | [RTN] |
|  | V = review results - step 6 |  |  |
|  | E end program |  |  |


| NAME | DESCRIPTION | NAME | DESCRIPTION |
| :---: | :--- | :---: | :--- |
| P( ) | Probability storage | K\$ | General input string |
| F | Factorial function | A | Group I- (A) |
| B | Group I+ (B) | C | Group II- (C) |
| D | Group I I+ (D) | N | A+B+C+D |
| I,X | Index values | $U$ | Delay flag, $=1$ if [BACK] |

## NOTES AND REFERENCES

Notes: 1. a must be the smallest among the frequencies. Rearrange the table if necessary.
2. This program requires that a $<=50$. To change this limit, change the dimension statement in line 70.
3. This program contains a routine for calculating the factorial of a number in lines 170-230. You can use it in your own program as follows:

```
1000 DEF FNF(N)
1010 F=1
1020 FOR X=2 to N
1030 F=F*X
1 0 4 0 ~ N E X T ~ X ~
1050 FNF=F @ END DEF
2300 A=FNF(B)/C (Sample formula)
```

References: 1. Sidney Siegel, NONPARAMETRIC STATISTICS, (McGraw-Hill, 1956).
2. Sir R.A. Fisher, STATISTICAL METHODS FOR RESEARCH WORKERS, (01iver and Boyd, 1950).
3. Hewlett-Packard, HP-41C Users' Library Solutions TEST STATISTICS, formula from program FISHER'S EXACT TEST FOR A $2 \times 2$ CONTINGENCY TABLE, p. 39.

```
    10 ! FTSHER ... F.: sher'G exact
    "0! test for a ※x": contingency
    30 ! table
    40 ! REV 1.1/01/82
    50!
    60 DISP " Fisher Exact Probabidaty 7e
    #t"
    70 1) TM P(50), K邦:0]
    80 !
    F0! Delay routine
100
1.10 DEF FND
```



```
    HR$(8) THEN 1%0
```



```
140!
150 ! Calculatefactorial
f.60 !
1.70 DEFF FNF(N)
1.80 F=1
1.90 FOR X=%TON
200 F=:F*X
#10 NEXT X
2%0 FNF=F
30 END DEFF
240
#0! L.m.it output precision
260
270
    DEF FNT(X) := TNT(X*,00000+. G)/10000
    0
280 INFUT "Enter G%oup I-\cdots (A) ?";A
"GO INFUT "Ente% Group Tt (B) ?"; %
300 TNPUT "Enter broum TT- (C) ?"; C
30 TNPUT "Enter groun TT& (D) ?";D
S% IF (A<B)+(A<C)+(A<D)==弓 THEN 340
30 ! Calculate prob
3%0
300 FOR T=0 10 A
```

 ( $\mathrm{B}+\mathrm{D}$ )
 *FNF (C+h) *FNF(D-T))
41.0
$4 \% 0$
430 - Frintout
440
450 DTSP "Exact probability ="; FNT(P(0) ) U U FND O JFU THEN 4SO
-Wait for 'RTN' or 'BACK' keys. Return i if 'BACK' key
...Function to compute factorian

Frunction to define output precemson


- verify that A is the mandest frequency
…adoulater the probabidataes. GTore exact prob. in A(0)



## PROGRAM LISTING

```
460 x=0
470 X=X+1. (e IF X>A THEN 540
4S(0 DISF "Prob.(";X;") =:";FNT(F(X)) E U
    =FND
4G0 TF U THEN X:#X--(X).) @ GOTO 480
%006070 A%0
"..10 !
Go! ! Review routine
50 !
```



```
    4);"iew again, or ";(CHR$(1.9%);"na "
    ;
```




```
    0,450,570
570 STOP
```

- Review module

2-FACTOR ANALYSIS OF VARIANCE

A two way analysis of variance allows the user to test the null hypothesis against columns, (condition a), rows (condition b), and the interaction of rows and columns, ( $\mathrm{a} * \mathrm{~b}$ ). This program can be generalized to any sized $\mathrm{p} * \mathrm{q} 2$-factor experiment, depending upon memory size. Unequal cell sizes are handled by considering each cell as though it contained the same number of subjects as all the other cells, with an adjustment based upon the harmonic mean. If the cell sizes are equal, the harmonic mean will have no effect.

RESTRICTIONS: If the cell sizes are relevant to the experimental manipulation, then other methods should be used. Severe variations in cell size (greater than $2: 1$ ) should be avoided. A negative Sum Square for the interaction term is cause for the immediate use of other methods.
$p$ = number of rows
$q=$ number of columns

|  | Cell means | otal |
| :---: | :---: | :---: |
|  | $\begin{array}{llll} \bar{x}_{11} & \bar{x}_{12} & \ldots & \bar{x}_{1 q} \\ \bar{x}_{21} & \bar{x}_{22} & \ldots & \bar{x}_{2 q} \\ \bar{x}_{31} & \bar{x}_{32} & \ldots & \bar{x}_{3 q} \\ \vdots & \vdots & & \vdots \\ \bar{x}_{p 1} & \bar{x}_{p 2} & \ldots & \bar{x}_{p q} \end{array}$ | $\begin{aligned} & a_{1} \\ & a_{2} \\ & a_{3} \\ & \vdots \\ & a_{p} \end{aligned}$ |
| Total | $B_{1} \quad B_{2} \quad \cdots \cdot B_{q}$ | G |

Intermediate formulas:
$(1)=G^{2} / p q$
$(2)=\left(\Sigma a_{i}^{2}\right) / q$
$(3)=\left(\Sigma B_{j}^{2}\right) / p$
$(4)=\left(\Sigma \bar{X}_{i j}\right)^{2}$
Harmonic mean $\bar{n}_{\mathrm{h}}=\frac{\mathrm{pq}}{\Sigma \Sigma\left(1 / \mathrm{n}_{\mathrm{ij}}\right)}$

## 2-FACTOR ANALYSIS OF VARIANCE (continued)

$$
\begin{array}{lll}
S S_{w i t h i n}=\sum \Sigma\left(\sum_{c} X_{c i j}^{2}-\left(\frac{\sum X_{c i j}}{n_{i j}}\right)^{2}\right) & d f_{w}=\sum \sum n_{i j}-p q & M S_{w}=S S_{w} / d f_{w} \\
S S_{a}=\bar{n}_{h}[(2)-(1)] \quad d f_{a}=p-1 & M S_{a}=S S_{a} / d f_{a} & F_{a}=M S_{a} / M S_{w} \\
S S_{b}=\bar{n}_{h}[(3)-(1)] \quad d f_{b}=q-1 & M S_{b}=S S_{b} / d f_{b} & F_{b}=M S_{b} / M S_{w} \\
S S_{a b}=\bar{n}_{h}[(4)-(2)-(3)+(1)] & d f_{a b}=(q-1)(p-1) & \\
M S_{a b}=S S_{a b} / d f_{a b} & F_{a b}=M S_{a b} / M S_{w}
\end{array}
$$

## SAMPLE PROBLEM

An experimenter wishes to study the effects of standard vs. reverse polish calculation under 3 conditions of instruction by scoring the number of errors per 100 calculations.

Conditions (B)
Calculators (A) RPN
STANDARD

| 1 | 2 | 3 |
| :---: | :---: | :---: |
| $3,3,2$ | $2,2,1$ | $3,1,2$ |
| $9,6,7$ | $8,6,6$ | 9,5 |
| (artificial data) |  |  |

SOLUTION

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
|  | Run "AOV2F" | 2-Factor Analysis of Variance |  |
| 1 | Enter the row dimensions | How many rows (p)? | 2 [RTN] |
| 2 | Enter the column dimensions | How many columns (q)? | 3 [RTN] |
| 3 | Display the means | Print the means ( $\mathrm{Y} / \mathrm{N}$ ) ? | Y [RTN] |
|  |  | C to correct, E to end cell |  |
| 6 | Enter column ( 1,1 ) | Row 1 Clm. 1 Item 1? | 3 [RTN] |
|  |  | Row 1 Clm. 1 Item 2? | 3 [RTN] |
|  |  | Row 1 Clm. 1 Item 3? | 2 [RTN] |
| 6b | End column (1,1) | Row 1 Clm. 1 Item 4? | E [RTN] |
| 7 | Read mean and SD ( $n-1$ ) | [1,1] Mean $=2.66667 \mathrm{~N}=3$ | [RTN] |
| 7 | Use [BACK] to review mean | [1,1] Std. $=.4714$ | [RTN] |
| 6 | Enter column (1,2) | Row 1 Clm. 2 Item 1? | 2 [RTN] |
|  |  | Row 1 Clm. 2 Item 2? | 2 [RTN] |
|  |  | Row 1 Clm. 2 Item 3? | 1 [RTN] |
| 6b | End column (1,2) | Row 1 Clm. 2 Item 4? | E [RTN] |
| 7 |  | [1,2] Mean $=1.66667 \mathrm{~N}=3$ | [RTN] |


| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
|  |  | [1,2] Std. $=.4714$ | [RTN] |
| 6 | Enter column (1,3) | Row 1 Clm. 3 Item 1? | 3 [RTN] |
|  |  | Row 1 Clm. 3 Item 2? | 1 [RTN] |
|  |  | Row 1 Clm. 3 Item 3? | 2 [RTN] |
| 6b | End column (1,3) | Row 1 Clm. 3 Item 4? | E [RTN] |
| 7 |  | $[1,3]$ Mean $=2 \mathrm{~N}=3$ | [RTN] |
|  |  | [ 1,3$]$ Std. $=.8165$ | [RTN] |
| 6 | Enter column (2,1) | Row 2 Clm. 1 Item 1? | 9 [RTN] |
|  |  | Row 2 Clm. 1 Item 2? | 6 [RTN] |
|  |  | Row 2 Clm. 1 Item 3? | 7 [RTN] |
| 6b | End column (2,1) | Row 2 Clm. 1 Item 4? | E [RTN] |
| 7 |  | [2,1] Mean $=7.3333 \mathrm{~N}=3$ | [RTN] |
|  |  | [2,1] Std. $=1.24722$ | [RTN] |
| 6 | Enter column (2,2) | Row 2 Clm. 2 Item 1? | 8 [RTN] |
|  |  | Row 2 Clm. 2 Item 2? | 6 [RTN] |
|  |  | Row 2 Clm. 2 Item 3? | 6 [RTN] |
| 6b | End column (2,2) | Row 2 Clm. 2 Item 4? | E [RTN] |
| 7 |  | $[2,2]$ Mean $=6.66667 \mathrm{~N}=3$ | [RTN] |
|  |  | [2,2] Std. $=.94281$ | [RTN] |
| 6 | Enter column (2,3) | Row 2 Clm. 3 Item 1? | 9 [RTN] |
|  | **Error** | Row 2 Clm. 3 Item 2? | 95 [RTN] |
| 6 a | Call error correction | Row 2 Clm. 3 Item 3? | C [RTN] |
|  | This will be displayed: | 2,3,2 deleted $=95$ |  |
| 6 | Enter correct value | Row 2 Clm. 3 Item 2? | 5 [RTN] |
| 6 b | End column $(2,3)$ | Row 2 Clm. 3 Item 3? | E [RTN] |


| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :--- | :--- | :--- |
| 7 |  | $[2,3]$ Mean $=7 \quad \mathrm{~N}=2$ | [RTN] |
|  |  | $[2,3]$ Std. $=2$ | [RTN] |
| 9 | Read output using [RTN] key | A SS $=99.28205 \quad \mathrm{df}=1$ | [RTN] |
|  | to see next result. | A MS $=99.28205 \quad \mathrm{~F}=58.50549$ | [RTN] |
|  |  | B SS $=1.94872 \quad \mathrm{df}=2$ | [RTN] |
|  |  | B MS $=.97436 \quad \mathrm{~F}=.57418$ | [RTN] |
|  |  | AB SS $=.10256 \quad \mathrm{df}=2$ | [RTN] |
|  |  | AB MS $=.05128 \quad \mathrm{~F}=.03022$ | [RTN] |
|  |  | Within SS $=18.66667 \quad$ df $=11$ | [RTN] |
| 10 | End program | Within MS $=1.69697 \quad$ | [RTN] |

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS | DISPLAY | INPUT |
| :---: | :---: | :---: | :---: |
|  | Run "AOV2F" | 2-Factor Analysis of Variance |  |
| 1 | Enter row dimensions | How many rows (p)? | p [RTN] |
| 2 | Enter column dimensions | How many columns (q)? | q [RTN] |
| 3 | Display cell means? | Print the means ( $\mathrm{Y} / \mathrm{N}$ ) ? | Y or N [RTN] |
|  |  | $\underline{\text { C }}$ to correct, E to end cell |  |
| 4 | Enter cell value | Row i Clm. j Item c? | Xijc [RTN] |
| 5a | If error, call correction | Row i Clm. j Item c? | C [RTN] |
|  | This will be displayed: | i,j,c deleted $=$ Xijc |  |
|  | If not done, goto 4 else |  |  |
| 5b | If cell is finished | Row i Clm. j Item c? | E [RTN] |
| 6 | If you answered $Y$ to \#3: | $[i, j]$ Mean $=\quad N=$ | [RTN] |
|  |  | [ $\mathrm{i}, \mathrm{j}]$ Std. $=$ | [RTN]/[BACK] |
| 7 | Goto 6 until all rows and |  |  |
|  | columns are done. |  |  |
| 8 | Read output. Use [RTN] key | A SS $=\quad \mathrm{df}=$ | [RTN] |
|  | to see next result, [BACK] | A $\mathrm{MS}=\quad \mathrm{F}=$ | [RTN]/[BACK] |
|  | key to see previous result. | B $\mathrm{SS}=\quad \mathrm{df}=$ | [RTN]/[BAC, $]$ |
|  |  | $B \quad \mathrm{MS}=\quad \mathrm{F}=$ | [RTN]/[BACK] |
|  |  | $A B \quad S S=\quad \mathrm{df}=$ | [RTN]/[BACK] |
|  |  | AB $M S=\quad F=$ | [RTN]/[BACK] |
|  |  | Within SS $=\quad \mathrm{df}=$ | [RTN]/[BACK] |
|  |  | Within MS = | [RTN]/[BACK] |
| 9 | Review routine | Run again, View again, or End? |  |
|  | $R=$ rerun the program - step 2 <br> $V=$ review results - step 8 <br> $E=$ End the program |  |  |


| NAME | DESCRIPTION | NAME | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| P | Number of rows (p) | Q | Number of columns (q) |
| A( ) | Sum of cell means (row) | X ( ) | Temporary cel1 storage |
| B ( ) | Sum of cell means (clm) | NO | Temporary n per cell |
| X $\$$, A\$ | General input strings | N1 | Grand total n |
| X1 | Temporary Ex per cell | X2 | Temporary $\Sigma \mathrm{x}^{2}$ per cell |
| G1 | Grand sum of cell means | S0 | Temporary SD(x) of cell |
| A2 | Sum of A-squared | B2 | Sum of B-squared |
| H1 | Harmonic mean | M | Temporary mean of cell |
| E1 | Computation formula \#1 | E3 | Computation formula \#3 |
| E4 | Computation formula \#4 | E5 | Computation formula \#5 |
| S1 | Sum-Squared of A (SSa) | M1 | Mean-Squared of A (MSa) |
| S2 | Sum-Squared of B (SSb) | M2 | Mean-Squared of B (MSb) |
| S3 | Sum-Squared of AB (SSab) | M3 | Mean-Squared of AB (MSab) |
| S4 | Sum-Squared within cell | M4 | Mean-Squared within cell |
| D1 | Df. of A (p-1) | D2 | Df. of B (q-1) |
| D3 | Df. of $A B(q-1)$ | D4 | Df. within (G-P*Q) |
| F1 | F-ratio of $A$ | F3 | F-ratio within |
| F2 | F-ratio of $B$ | P1 | Flag 1=display cell means |

## NOTES AND REFERENCES

Notes: This program is 1 imited to 20 rows, 20 columns, and 50 items per cell. To change this, change the dimensions in line 80.

References: Winer, B.J., STATISTICAL PRINCIPLES IN EXPERIMENTAL DESIGN, 2nd ED., (McGraw-Hill, New York, 1971), p. 446-447.

## PROGRAM LISTING

```
    10 ! ANOUA%F - %-factor
20 ! Analycis of variance
30 ! (equal or unequal cell size)
40 ! Unweighted (NON least-squares) me
    thod
S0 ! REV {./01/8e
60 !
70 DISF "emactor Analysis of Varianc
    e" (e WAST {
80 DTM A(20), E(20), X和50], X(50),A$[20]
90 !
100 ! Precision
1.0
1%0
    DEF FNT(X) == INT(X*s.0^54.5)/10^5
130 !
1.40 ! Correction
150 !
160 DEFF FNE
170 TF NO<{ THEN BEEP GQ0 E DTEP "Must
    Have data to dejete" e coto e00
```



```
    (0) E WalT }
```



```
    -1. N1=N1-1
200 FNE=0 E END DEF
210
220 ! Delay
30
2AO DEFFNO
```



```
    HR$(E) THEN 250
260 FNO=X$=CHKक(S) E ENO DEF
2%0 !
2g0 ! Initialize
290
300 INPU7 "How many rows (\beta) ?"; P
300 TNPUT "How many columns (q) ?"; G
ze0 INPUT "Psint the means (Y/N) ?"; X*
    " P{=#口马(UPRC*(X*),"Y")
330 FOR X=1 TO P E A(X)=0 E NEXT X
340 FOR Y=1 TO O E B(Y)=0 E NEXT Y
```



```
360 DTSF CHR$(195);" to correct, ";CHR音
    (197);" to end cell." & WatT i.
370
380 ! Error trappirng
390 !
400 ON ERROR SWEP BSO E DTSF "Please En
    ter [E|,CD,or numeric" WaIT i. e
    GOTO 460

Frunction to define output precticion

Frror correction routine to delate data from countere
… Returns a iff＊ACK＇key

－rmitablymeountere
－Froor mescage for data entry routines

\section*{PROGRAM LISTING}
\(4 \% 0\)
4.30
\(440 \mathrm{FOR} \mathrm{I}=1 . \mathrm{TOF} \mathrm{F}\) FOR \(\mathrm{J}=1 . \mathrm{TO} \mathrm{O}\)

460 DSSF＂Row＂；T；＂Clm．＂；J；＂Ttem＂；N0ta；－Data entry
470 X需＝＂＂世 TNPUT X
 GOTO 460



510 GOTO 460
\(5 \%\) ！
W30 ！End c：end
540
550
TF NO＜\(\because\) THEN EEEF 880 O DTSP＂MUST
 coto 460

 \(+\mathrm{M}\)
 ＾2／N0）／N0）



 （U）FND E TF UTHEN 600
620 NEXT \(T\) M MEXT T
630 H\｛＝\(=\mathrm{FQ} / \mathrm{H}_{1}\)
 I．
 J
660
670
680


710
\(\% 0\)
730


 ） \(\mathrm{E} \mathrm{B}=\mathrm{B} \% \mathrm{D} \boldsymbol{\mathrm { O }}\)


\(\% 0\)
क00 ！Dasplay theresult re
©t． 0
 FAD E TF U THEN O O 0
－Can error worrection iff C＇ isentered
\(\cdots\) Boto end of cell if＇E＇is entered
－ancrement weld wounters and total \(N\)
…世1］Mean
－Harmonde Nean wounter，grand total
－Cow ewtandard deviatdon（n）
…dsplay mean jf pa is set
… Compute sum of Aㄸ．．

computation
…onemay resulta

\section*{PROGRAM LISTING}
```

6% DTSF "A MS=";FNT(M{);"F=";FNT(F{)
0 U=FND @ TH U THFN 820
840 DTSF "% SS%";FNT(6%);" dF=";D" (\#
U=FND \& TF U THEN 830
850 DTS% "\& MS="; FNT(M`);" F=:"FNT(F%
) U=FND \& TF U THEN SAO
860 DTSP "AE SS=";FNT(SO);" df=";D\# \&
U=FND IF U THEN 850
8%0 DTSP "AS MS:";NNT(MO);" F:=";FNT(F3
) U\#FNO O TF U THEN 8G0
8日0 DTGF "Within SS=";FNT(S4);"dF=";D4
6 U=FND @ TF U THEN 8%0
8%0 DISP "Within MS%";FNT(MA) e U":FNO e
IF U THEN 880
900 DTSP CHR事(%í%);"un again, ";CHR变(2i
4);"\mp@code{ew again, of ";(HR㐁(a.97); "nd";}

```


```

    0,020,930
    9%0 STOF

```

\section*{BARTLETT'S CHI-SQUARE STATISTIC}

Bartlett's Chi-square has a distribution (approximately) with k-1 degrees of freedom which can be used to test the null hypothesis that the variances are all estimates of the same population variance.

F max tests the hypothesis that the largest and the smallest variance come from the same population of variances.

Formula: (Note: \(X=\mathrm{CHI}\) )
\[
x^{2}=\frac{f \ln \left(S^{2}\right)-\sum_{i=1}^{K} f_{i} \ln \left(s_{i}{ }^{2}\right)}{1+\left(\frac{1}{3(K-1)}\right)\left[\left(\sum \frac{1}{f_{i}}\right)-\frac{1}{f}\right]}
\]

Where: \(s_{i}{ }^{2}=\) Sample variance of the \(i^{\text {th }}\) sample
\(F_{i}=\) Degrees of freedom \(\left(n_{i}-1\right)\) of the \(i^{\text {th }}\) sample
\[
s^{2}=\frac{\sum_{i=1}^{K} f_{i} s_{i}^{2}}{f}
\]
\[
f=\sum_{i=1}^{K} f_{i}
\]
\(F \max =\max \left(s^{2}\right) / \min \left(s^{2}\right)\)

\section*{SAMPLE PROBLEM}

Determine whether the variances of the groups shown below differ significantly across the groups. The obtained chi-square of 1.04 shows that the differences are not significant.
\begin{tabular}{|c|c|c|c|}
\hline Group & \(N\) (not used) & Variance ( \(\sigma\) ) & Degrees of freedom (df) \\
\hline 1 & 21 & 12.20 & 20 \\
\hline 2 & 13 & 13.50 & 12 \\
\hline 3 & 15 & 7.86 & 14 \\
\hline 4 & 10 & 10.89 & 9 \\
\hline
\end{tabular}

Df is based upon N-1
Data comes from Edwards, EXPERIMENTAL DESIGN IN PSYCHOLOGICAL RESEARCH.
\begin{tabular}{|l|l|l|l|}
\hline STEP & \multicolumn{1}{|c|}{ INSTRUCTIONS } & \multicolumn{1}{|c|}{ DISPLAY } & \multicolumn{1}{|c|}{ INPUT } \\
\hline & Run "BARTLETT" & Bartlett's Chi-square Statistic & \\
\hline & & E,E to end, C,C to correct & \\
\hline 1 & Enter sample 1 & Sample 1 enter var., df? & \begin{tabular}{l}
\(12.2,20\) \\
[RTN]
\end{tabular} \\
\hline & Enter sample 2 & Sample 2 enter var., df? & \begin{tabular}{l}
\(13.5,12\) \\
[RTN]
\end{tabular} \\
\hline & **Error** & Sample 3 enter var., df? & 12,3 [RTN] \\
\hline 2 & Call error correction & Sample 4 enter var., df? & C C [RTN] \\
\hline & This will be displayed: & Sample 3 deleted = 12,3 & \\
\hline 1 & Enter correct values & Sample 3 enter var., df? & \begin{tabular}{l}
\(7.86,14\) \\
[RTN]
\end{tabular} \\
\hline & Enter sample 4 & Sample 4 enter var., df? & \begin{tabular}{l}
\(10.89,9\) \\
[RTN]
\end{tabular} \\
\hline 3 & End data input & Sample 5 enter var., df? & E,E [RTN] \\
\hline 4 & Real results. Use [RTN] to & Chi-square = 1.04955 & [RTN] \\
\hline & see next item. & Fmax = 1.71756 & [RTN] \\
\hline & & df = 3 & [RTN] \\
\hline 5 & End program & Run again, View again, or End? & E [RTN] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline STEP & \multicolumn{1}{|c|}{ INSTRUCTIONS } & \multicolumn{1}{|c|}{ DISPLAY } & INPUT \\
\hline 1 & Run "BARTLETT" & Bartlett's Chi-square Statistic & \\
\hline & & E,E to end, C,C to correct & \\
\hline 2 & Enter value of sample & Sample i enter var, df? & o,df. [RTN] \\
\hline 3 & If an error was made: & Sample i enter var, df? & C,C [RTN] \\
\hline & this will be displayed & Sample i deleted = Si, DFi & \\
\hline & Goto 2 until all samples have & & \\
\hline & been entered & & E,E [RTN] \\
\hline 4 & To end data input: & Sample i enter var, df? & [RTN] \\
\hline 5 & Read display. Use [RTN] to & Chi-square = & [RTN]/[BACK] \\
\hline & see next item, [BACK] to & F max = & [BACK] \\
\hline & see previous item & df = & [RTN] \\
\hline 6 & Review routine & Run again, View again, or End? & [RTN] \\
\hline & R = rerun the program - step 2 & & [RTN] \\
\hline & V = review results - step 5 & & \\
\hline & E = end the program & & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|l|}
\hline NAME & \multicolumn{1}{|c|}{ DESCRIPTION } & NAME & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline S2 ( ) & Variance storage & F( ) & Storage of df. \\
\hline A\$ & \begin{tabular}{l} 
Variance input, \\
general use
\end{tabular} & B\$ & Df. input \\
\hline K & Total number of sample & \(U\) & \begin{tabular}{l} 
Delay flag, \(=1\) if \\
[BACK] used
\end{tabular} \\
\hline S4 & Sum of inverse df & M1 & Minimum variance \\
\hline A1 & Maximum variance & M0 & F max \\
\hline C0 & Chi-square value & D & \begin{tabular}{l} 
Total df. degrees \\
of freedom)
\end{tabular} \\
\hline
\end{tabular}

\section*{NOTES AND REFERENCES}

Notes: 1. This program is presently limited to a maximum of 50 samples. To change this limit, change the dimension statement in line 70.
2. Because a different method was used, the solution to the sample problem is slightly different from the solution in Edwards EXPERIMENTAL DESIGN IN PSYCHOLOGICAL RESEARCH, p. 198.

References: 1. Hald, A., STATISTICAL THEORY WITH ENGINEERING APPLICATIONS, (John Wiley and Sons, 1960).
2. Edwards, A., EXPERIMENTAL DESIGN IN PSYCHOLOGICAL RESEARCH, (Rinehart \& Co., 1950), p. 198.
3. Hewlett-Packard, HP-41C Users' Library solutions TEST STATISTICS, Procedure from Bartlett's Chi-square Statistic, p. 46.

\section*{PROGRAM LISTING}
```

    10 ! BARTLEIT - Bartlettes Chim
    %0! squame statistic: (test for
    30 ! homogeneity of vamianc.e)
    40!
    50 ! REV {.1./01/8%
    60 DSF "Garthett`GKimsquarestatist
        j世" 巴 WAIT {
    ```

```

    6 !
    90 Correction routime
    {.00 !
1.10 DEF FNE:
120 TF K<a THEN HEEP 440 E DTSF "Must h
ave data to delete" e GOTO {50
{\#0 DJSp "SampLe";K;"deleted ="; S%(K);"
,";F(K)
1.40 S% S%-g2(K) *F(K) \& F:=FFF(K) @ S%:G%

```

```

        K:=:K--1.
    ```
150 FN: =0 ※
1.60
1.70! Delay routime
180 !
1.50 DEFFNO
 R皮（1．る）THEN 200



 WATT a

 GOTO 260
260 DTSF＂Sample＂；K4．；＂entervan，df＂；
2\％TNPUT As，Es

 NE a coto e60

 \(4+1\)（VAl．．．（By）


330
Bat End of data
\(3 \% 01\)
 \(6 /(1 * 1 /(3 *(K \cdots 1)) *(\Phi 4 \cdots 1 / F))\)
 ©（T）
－Correct user＇soutput
－Dedete incorrect value from the
－Wait for＇ETN＇on＇EACK＇key： Return a if＇EACK＇key
…＂unction to define the output prew ston
－Tnitialize countere

Wrom trap
－Goto madon－ofata if＇E＇is ※ntered
 As entered
－Tmerement counter：and enter


Find of data… computa chamequare valua
－Detemmine maximumbinimum variance

\section*{PROGRAM LISTING}
```

SO0 TF S%(I)<M自 THEN MA=S%(T)
390 NEXT T
400 M0:=A1/M央 (\#)=K-\cdots自
A{(PRTNT "Chi"Equare =";FNT(G0) \& U=FN
D E TF U THEN 4}0

```

```

        U THEN AS0
    4OO FRTNT "df=";D \& UNFND \& TF U THEN 4
20

```

```

        4);"iew again; or "; CHR年(a.%7); "nd "
        ;
    ```

```

460 OM FOS("RUE",A拃1, 1, 1)+1. GOTO 440,23
0,410,470
470 STOF

```

\title{
PROGRAM DESCRIPTION
}

\section*{DIFFERENCES AMONG PROPORTIONS}

This program tests proportions in independent sets of data to determine if each could have been randomly drawn from the same population of proportions. A chi-square statistic with k-1 degrees of freedom is computed. Theta is a measure of association between the independent (groups) and dependent (proportions) variables.

\section*{Equations:}
\[
x^{2}=\sum_{i=1}^{K} \frac{\left(C_{1, i}-n_{i} \hat{\theta}\right)^{2}}{n_{i} \hat{\theta}(1-\hat{\theta})}
\]

Where:
\[
\begin{aligned}
& \hat{\theta}=\Sigma C_{1} / i / \sum n_{i} \\
& n_{i}=C_{1, i}+C_{2, i} \\
& K=\text { number of samples }
\end{aligned}
\]

\section*{SAMPLE PROBLEM}

Suppose that a simple test of mechanical ability is given to 4 groups of school children under the conditions found below. Determine whether there is a difference among the effectiveness of the 4 experimental conditions by testing the null hypothesis, which is that the proportion of successes in the 4 groups should not be significantly different.
\begin{tabular}{|c|c|c|}
\hline Condition & \begin{tabular}{l}
\(\mathrm{C}_{1}\) \\
Failure
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{C}_{2}
\] \\
Success
\end{tabular} \\
\hline Extensive training before lunch & 8 & 42 \\
\hline Extensive training after lunch & 12 & 18 \\
\hline Minimal training before lunch & 50 & 170 \\
\hline Minimal training after lunch & 9 & 90 \\
\hline
\end{tabular}

\section*{SOLUTION}
\begin{tabular}{|l|l|l|l|}
\hline STEP & \multicolumn{1}{|c|}{ INSTRUCTIONS } & \multicolumn{1}{|c|}{ DISPLAY } & \multicolumn{1}{|c|}{ INPUT } \\
\hline 1 & Run "DIFF" & Differences Among Proportions & \\
\hline & & E,E to end input, C,C to correct & \\
\hline 2 & Enter case 1 fail, success & Sample 1 enter C1,C2? & 8,42 [RTN] \\
\hline & Enter case 2 & Sample 2 enter C1,C2? & 12,18 [RTN] \\
\hline & Enter case 3 & Sample 3 enter C1,C2? & 50,170 [RTN] \\
\hline & **Error** & Sample 4 enter C1,C2? & 19,19 [RTN] \\
\hline & Call correction routine & Sample 5 enter C1,C2? & C,C [RTN] \\
\hline & This wil1 be displayed: & Sample 4 deleted = 19,19 & \\
\hline 3 & End data input & Sample 4 enter C1,C2? & 9,90 [RTN] \\
\hline 4 & Real display, use [RTN] to & Chi-square = 16,50082 & E,E [RTN] \\
\hline & see next output. & df = 3 & [RTN] \\
\hline & & Theta = .19799 & [RTN] \\
\hline 5 & End program & Run again, View again, or End? & E [RTN] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline STEP & \multicolumn{1}{|c|}{ INSTRUCTIONS } & \multicolumn{1}{|c|}{ DISPLAY } & INPUT \\
\hline 1 & Run "DIFF" & Differences Among Proportions & \\
\hline & & E,E to end input, C,C to correct & \\
\hline 2 & Enter indicated case: & Sample i enter C1,C2? & C1i,C2i[RTN] \\
\hline & If you made an error: & Sample i enter C1,C2? & C,C [RTN] \\
\hline & This wil1 be displayed: & Sample i deleted = C1i,C2i & \\
\hline & Goto 2 until all data has & & Eeen entered. \\
\hline 3 & End data input & & [RTN] \\
\hline 4 & Read output. User [RTN] to & Chi-square = \(\chi^{2}\) & [RTN]/[BACK] \\
\hline & see next output, [BACK] to & df = df & [RTN]/[BACK] \\
\hline & see previous output. & Theta = \(\hat{\theta}\) & \\
\hline 5 & Review routine & Run again, View again, or End? & \\
\hline & R = rerun the program step 2 & & [RTN] \\
\hline & V = review results - step 4 & & [RTN] \\
\hline & E = end program & & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|l|}
\hline NAME & \multicolumn{1}{|c|}{ DESCRIPTION } & NAME & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline C1 ( ) & Storage of condition 1 & C2( ) & Storage of condition 2 \\
\hline A\$ & General use, input C1 ( ) & B\$ & Input C2( ) (Condition 2) \\
\hline X1 & Sum of condition 1 & N1 & Sum of N(i) \\
\hline N & Total N & T & Theta \\
\hline D & Degrees of freedom & C2 & Chi-square value \\
\hline NO & Temporary N(i) & \\
\hline
\end{tabular}

\section*{NOTES AND REFERENCES}

Notes: 1. A maximum of 300 samples may be entered. To change this limit, change the dimension statement in line 70.

References: 1. J. Freund, MATHEMATICAL STATISTICS, (Prentice-Ha11, 1971).
2. Allen L. Edwards, EXPERIMENTAL DESIGN IN PSYCHOLOGICAL RESEARCH (Rinehart \& Co., 1950), p. 74.

This program was derived from the HP-41 Users' Library Solutions Book, "Test Statistics", program DIFFERENCES AMONG PROPORTIONS, p. 9.

\title{
PROGRAM LISTING
}
```

    10 ! DIFF... Differences
    20 ! among proportioms
    30 ! KEU 11/01/B%
    40!
    :W0 DELAY . S
    G0 DTSP "Differences among proportions
    |
    ```

```

    80 !
    F0 ! Correction
    1.00
1.10 DEFF FNE:

```

    ave data to delete" (w WATY a 日 BOTO
        5.50
130 DLSF" "Sample"; N;"deleted ="; (ín);"
    ;"; CQ (N) WAIT

    "N-
\(150 \mathrm{FNE}=0\) E END DEF
160 !
x.70 ! Deday routime
1.80 !
1. \(\% 0\) DEF FND

    Rま (13) THETV 200


2301
Q40 ! Tmput routine
※" !
"60 X1, N1, \(N=0\)

    R丰(1.95);" to correct" W WATT


    070290

    ※ TNPUT 介系, \(\mathrm{B} \$\)


    290

        N二小N+1

    070290

        enter more than i. sample" (6 WAlt a
        © GOTO \(\%\)
\(350 \quad 1\)
－Routime to correct error and decrement exountere
－Wedt for＂RTN＂or＂BACK＇key． R世木urn f fow＇BaCK＇key
…Function to define output prew is．iton
－Frror trap… returns watnimg if in legad data is entered

FFnd data entry iff＇E＇in entered
Cond correction routine if＇C＇ js entered
－Jncrement counters，store conditam values，amd wont．
… Find routime．．．uerify that NDit

\section*{PROGRAM LISTING}

360 ! Computation
\(380 \mathrm{~T}=\times\) … N .
\(390 \quad 0=\cdots \cdots 1\)
400 Creme

430 FOR T:=1 TO N
\(4 \% 0\) N(1: \(\mathrm{Ci}(\mathrm{T})+\mathrm{C} \%\) (T)
430 Co:
440 NEXT I.
450 !
460 ! Print out
470 !
4 GO FRTNT "Chamsquare ="; FNT(Cw) E U"FN D) IF U THEN 400
 80
500 PRTN" "Theta="; FNT(T) ※ U=FND ※ IF (1) THEN 490

Wito !
以ot! Review routine
530 !

 ;

 \(60,400,50\)
\(\% 70 \quad 5 T O P\)

\section*{\(\cdots\) mometerneta}
… Wop to compute chicwoume value
-routine to dicmay data


\section*{PROGRAM DESCRIPTION}

\section*{DATA TRANSFORMATIONS}

This program will either transform or standardize data sets. The square-root transformation is appropriate in analysis of variance when cell variances tend to be functions of the cell means. The log transformation is useful when normalizing distributions with positive skew.

The standard score (z score) manipulation converts distributions into standard score form, with a mean of zero and unit standard deviation. The \(T\) transformation changes data into a distribution with a mean and standard deviation defined by the user.

Formula:
mean \(=\bar{X}=\frac{\sum x}{n}\)
Standard deviation \(\sigma_{x}=\sqrt{\left(\frac{\sum x^{2}}{n}\right)-\left(\frac{\sum x}{n}\right)^{2}}\)

Log transformation \(=\log _{e} X\)

Square root transformation \(=\sqrt{X}\)
Standard score \(s=\frac{X-\bar{X}}{\sigma_{x}}\)
\(T\) transform \(t=s\left(\sigma_{C}\right)-\bar{X}_{C}\)

Where: \(\sigma_{c}\) is the constant standard deviation.
\(\bar{x}_{c}\) is the constant mean.

\section*{SAMPLE PROBLEM}

The following data represents the time (in minutes) that it took 8 new HP-75 owners to build a short, working BASIC program on their new computers. Convert these scores to:
1) standard scores, and
2) t-scores with a mean of 75 and a standard deviation of 12.

Owner
\(\begin{array}{lrrrrrrrr} & \frac{1}{2} & \underline{2} & \underline{3} & \underline{4} & \frac{5}{2} & \underline{6} & \frac{7}{8} & \underline{8} \\ \text { Time (minutes) } & 27 & 15 & 26 & 17 & 12 & 9 & 8 & 27\end{array}\)
(Artificial data)

\section*{SOLUTION}
\begin{tabular}{|l|l|l|l|}
\hline STEP & \multicolumn{1}{|c|}{ INSTRUCTIONS } & \multicolumn{1}{|c|}{ DISPLAY } & INPUT \\
\hline & Run "TRANS" & \multicolumn{1}{|c|}{ Transformations } & \\
\hline & & E to end input, C to correct & \\
\hline 1 & Enter datum 1 & Item 1 Score? & 27 [RTN] \\
\hline & Enter datum 2 & Item 2 Score? & 15 [RTN] \\
\hline & Enter datum 3 & Item 3 Score? & 26 [RTN] \\
\hline 2 & Cal1 error correction & Item 4 Score? & 177 [RTN] \\
\hline & This will be displayed & Item 5 Score? & CRTN] \\
\hline 1 & Enter correct value & Item 4 deleted = 177 & 17 [RTN] \\
\hline & Enter datum 5 & Item 4 Score? & 12 [RTN] \\
\hline & Enter datum 6 & Item 5 Score? & 9 [RTN] \\
\hline & Enter datum 7 & Item 6 Score? & 8 [RTN] \\
\hline & Enter datum 8 & Item 7 Score? & 27 [RTN] \\
\hline 3 & End data input & Item 8 Score? & [RTN] \\
\hline 4 & Read value of mean and SD. & Mean = 17.625 Std. = 7.51561 & [RTN] \\
\hline 5 & & Enter type of transformation: & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline STEP & INSTRUCTIONS & DISPLAY & INPUT \\
\hline & Enter transformation type & Log, STandard, SQr, or T? & ST [RTN] \\
\hline 5b & & Std. score transformation & [RTN] \\
\hline \multirow[t]{8}{*}{6} & Read transofrmations. Use & Item 1 Raw \(=27\) Trn \(=1.2474\) & [RTN] \\
\hline & [RTN] key to read the next & Item 2 Raw \(=15\) Trn \(=-.34927\) & [RTN] \\
\hline & transformation. & Item 3 Raw \(=26\) Trn \(=1.11435\) & [RTN] \\
\hline & & Item 4 Raw \(=17\) Trn \(=-.08316\) & [RTN] \\
\hline & & Item 5 Raw \(=12\) Trn \(=-.74844\) & [RTN] \\
\hline & & Item 6 Raw \(=9\) Trn \(=-1.14761\) & [RTN] \\
\hline & & Item 7 Raw \(=8\) Trn \(=-1.28067\) & [RTN] \\
\hline & & Item 8 Raw \(=27\) Trn \(=1.2474\) & [RTN] \\
\hline 7 & Options: Select 'view' & Run again, View again, or End? & V [RTN] \\
\hline 4 & Read the mean again & Mean \(=17.625\) Std. \(=7.51561\) & [RTN] \\
\hline \multirow[t]{2}{*}{5} & & Enter type of transformation: & \\
\hline & Enter transformation t & Log, STandard, SQr, or T? & T [RTN] \\
\hline 5 a & Enter constant \(\mu, \sigma\) & Enter \(\mu, \sigma\) ? & 75,12 [RTN] \\
\hline 5b & & T score transformation & [RTN] \\
\hline \multirow[t]{2}{*}{6} & Read the transformations & Item 1 Raw \(=27\) Trn \(=89.96885\) & [RTN] \\
\hline & & Item 2 Raw \(=15\) Trn \(=70.80872\) & [RTN] \\
\hline & & Item 3 Raw \(=26\) Trn \(=88.37217\) & [RTN] \\
\hline & & Item 4 Raw \(=17\) Trn \(=74.00208\) & [RTN] \\
\hline & & Item 5 Raw \(=12\) Trn \(=66.01869\) & [RTN] \\
\hline & & Item 6 Raw \(=9\) Trn \(=61.22866\) & [RTN] \\
\hline & & Item 7 Raw \(=8\) Trn \(=59.63198\) & [RTN] \\
\hline & & Item 8 Raw \(=27\) Trn \(=89.96885\) & [RTN] \\
\hline 7 & End program & Run again, View again, or End? & E [RTN] \\
\hline
\end{tabular}

\section*{USER INSTRUCTIONS}
\begin{tabular}{|c|c|c|c|}
\hline STEP & INSTRUCTIONS & DISPLAY & INPUT \\
\hline & Run "TRANS" & Transformations & \\
\hline & & E to end, \(\underline{C}\) to correct & \\
\hline 1 & Enter value of item \#i & Item i Score? & Ai [RTN] \\
\hline 2 & If you made an error: & Item i Score? & C [RTN] \\
\hline & This will be displayed & Item i Deleted \(=A_{i}\) & \\
\hline & Goto 1 until all data is in & & \\
\hline 3 & End data input & Item i Score? & E [RTN] \\
\hline 4 & Read mean and std. deviation & Mean \(=\) Std. \(=\) & [RTN] \\
\hline 5 & Enter transformation type: & Enter type of transformation: & \\
\hline & & Log, STandard, SQr, or T? & \\
\hline & \(L=\) Log (base e) transformation & & L [RTN] or \\
\hline & ST = Standard score transformat & ion & ST [RTN] or \\
\hline & SQ = Square root transformation & & SQ [RTN] or \\
\hline & \(T=t-\) transformation & & T [RTN] \\
\hline 5a & If \(t\) was chosen: & Enter \(\mu, \sigma\) ? & \(\mu, \sigma[\mathrm{RTN}]\) \\
\hline 5b & Transformation type is displayed & d transformation & [RTN] \\
\hline 6 & Read transformations & Item i Raw \(=\mathrm{R}_{\mathrm{i}}\) Trn \(=\mathrm{T}_{\mathrm{i}}\) & [RTN]/[BACK] \\
\hline 7 & Review routine & Run again, View again, or End? & \\
\hline & \(\mathrm{R}=\) rerun the program - step 1 & & R [RTN] \\
\hline & \(V=\) review the answers and & & \(V\) [RTN] \\
\hline & select new transformation & & \\
\hline & type - step 4 & & \\
\hline & \(E=\) exit the program & & E [RTN] \\
\hline
\end{tabular}
\(\square\)
\begin{tabular}{|c|l|c|l|}
\hline NAME & \multicolumn{1}{|c|}{ DESCRIPTION } & NAME & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline A( ) & Data storage & A\$ & General use input string \\
\hline T & Type of transformation & N & Total N of data \\
\hline S1 & Sum of all data \(\Sigma X_{i}\) & S2 & \begin{tabular}{l} 
Sum of all \\
data-squared \(\Sigma\left(X_{i}^{2}\right)\) \\
\hline K\$
\end{tabular} Delay function string \\
\hline S & Standard deviation (N) & Mean of data \\
\hline MO & Constant \(\mu\) for \(T\) & D & Value of displayed trans. \\
\hline\(U\) & Delay, =1 if [BACK] used & X & Increment for output \\
\hline
\end{tabular}

\section*{NOTES AND REFERENCES}

Note: 1. The program is limited to a maximum of 500 items. To change this alter the dimension statement in line 80.

References: 1. B.J. Winer, STATISTICAL PRINCIPLES in Experimental Design (2nd ED), (McGraw-Hi11, New York, 1971).
2. G.A. Ferguson, STATISTICAL ANALYSIS in Psychology and Education (2nd ED), (McGraw-Hill, New York, 1966), p. 109.

\section*{PROGRAM LISTING}
```

    10 ! TRANS - Data trameformataon
    20 ! Log Base &, Equare root,
    30 ! stancard score, & t score
    40!
    G0 ! REU 1./01/母%
    60 !
    "0DSF" Transformations" & W
        ATT {
    8(0 )1M A(500),A$[60]
    90 TNTEGER T
    100 DEF FNT(X)= INT(X*.0^5+.5)/{0^5

```
1. 1. O DEF FNE

    ave data to delate" \& WAIX a 2 GOTO
        150
130 DTSF "Ttem"; N; "deleted ="; A (N)

1.50 FNE:
\(160!\)
1.\%0! betay function
180 !
190 DFFFMO

    HK\$(8) THEN \(\because 00\)

\%2 N, S1, \(\%=0\)




    GOTO Swo

    \$


    א0TO 250

    - 小+系

300 !
3. 0 ! Emad data input
\(3 \% 0\) !


    TO \%
3A0 M

    )
360 UFFNO ( \(\because F\) U THEN 350

－Frunction to define output prece is．on
…Function to handle error
－Decrement counter：
－Deany fumction．Wadx fow＇RTM＇ or＇BACK＇key\％．
－Fegimming of user diadogue

Froor viap
 end data entry
\(\cdots\) Whemk to ※ew if user wishes to correect data
－Tncrement ※ountere
－Check valndity of wmpde wixe
－Compute mean and standard devantion
－Prompt user to welew transtorm．tion type


```

    9) "re or ";
    390 DISP CHR\&(21.2); E TNPUT AW

```

```

410 TF FOS("L LOSQSTT ", Al) $=0$ THEN 370

```

```

    \(\mathrm{N} \mathrm{r}=\mathrm{T}=1\)
    430 IF 7>1 THEN TET \% $\%$
440 IF T=A THEN DISP "Enter "; CHR(1き);
", "; CHR泰(9); INPUT M0,50
450 As:="Log(e) Gquare-rootstacere
T-mscore "
460 PRINT ASFT*11-10, Twís;" transforma
tion"
470 U=FND
480 OFF ERROR
$490 \times=0$
$500 \times X+1$ E TF X X THEN G10
50 TF T=1 THEN $0=1$ OG(A $(x))$
与en TF $7=$ THEN D=sor (A(X))

```

```

$540 \times F 7=4$ THEN $D=0 * S 0+M 0$

```

```

    NT(D)
    ```

```

    0510
    $570 \quad 6070 \quad 500$
500
S90 Review routine
600 !

```

```

    4); "iew again, or "; CHR (19\%);"nd";
    ```


```

    \(0,350,640\)
    640 ¢TOP

```
- Fnter mean and SD for
    t-transformation
… isplay name of transformation
    vype
    - Thmerement counter and check
    for end of data
… Compute Cog transformation
- Compute Gquare-moot
    ramsformation
...Wompute \(t\) and wamdard wore
    Trancoformation
- Transform mean and 60 for
    +…tameformation

- Pogiam options

\section*{TEST STATISTICS}

\author{
ONE SAMPLE TEST STATISTICS FOR THE MEAN \\ KENDALL'S COEFFICIENT OF CONCORDANCE \\ CORRELATION COEFFICIENT TEST \\ INTRACLASS CORRELATION COEFFICIENT \\ KRUSKAL-WALLIS STATISTIC \\ MANN-WHITNEY U-TEST \\ FISHER'S EXACT PROBABILITY \\ 2-FACTOR ANALYSIS OF VARIANCE \\ BARTLETT'S CHI-SQUARE STATISTIC \\ DIFFERENCES AMONG PROPORTIONS \\ DATA TRANSFORMATIONS
}

ALL HP-75 SOLUTIONS BOOKS ARE AVAILABLE RECORDED ON MINI-DATA CASSETTES FROM EITHER A HEWLETT-PACKARD DEALER OR THE HP USERS' LIBRARY.
(hp)```


[^0]:    *Recorded Solutions Book programs shipped to U.S. customers only.

