ANNUITY DUE CALCULATIONS FOR SAVINGS FUNDS

GENERAL

 calculations involving ordinary annuities. The most common definition of ordinary annuity (sometimes called "payments in arrears") assumes that payment amounts are equal, that payment periods are equally spaced in time, and that these payments are made at the end of each period. However, by slightly modifying the standard key sequences, the HP-80 can be used for annuity due calculations (sometimes called "payments in advance") where equal payments are made at the beginning of equally spaced periods.

This issue of the HP-80 APPLICATION NOTES will be of assistance to the HP-80 user wishing to solve for Future value, payment amount, number of payment periods, and interest rate in annuity due calculations.

The symbolic values listed below will be used to demonstrate the various keystroke sequences that follow.
$\mathrm{A}=$ number of payment periods in a year
$B=$ number of years
$\mathrm{C}=$ annual interest rate
$\mathrm{D}=$ payment amount
$F=$ future value of the series of payments at the end of the last payment period

FIND THE FUTURE VALUE OF A SERIES OF PAYMENTS

Keystrokes:

Example:

Deposits of $\$ 75$ a month for 6 years will be paid into a savings account starting tomorrow. The savings plan compounds monthly using a 5\% nominal interest rate. How much money will be in the account at the end of 6 years?

Procedure:

(This series of payments will be worth $\$ 6,308.49$)

Note:

When solved using ordinary annuity assumptions the future value of these payments would be $\$ 6,282.32$.

FIND THE PAYMENT AMOUNT REQUIRED TO ACHIEVE SOME FUTURE VALUE

Keystrokes:

1. A STO SAVE A $B \quad n$
2. C RCL \div STO

3. \quad PMT $\longrightarrow \mathrm{D}$

Example:

It has been determined that $\$ 10,000$ will be required 15 years from now to send a son to college. A savings plan paying 7% (compounded monthly) is available. What equal monthly payments should be made in order to accrue the required amount?

Procedure:

12 STO SAVE 4 $15 \times \mathrm{x} \quad 7 \mathrm{RCL} \quad \div \mathrm{STO}$ i 1 RCL $\%$
$+10000 \quad x \geqslant y \quad \div \mathrm{FV}$ PMT $\longrightarrow 31.366525$
(\$31.37 per month)
FIND THE NUMBER OF PERIODS WHEN PMT FV AND i ARE KNOWN

Keystrokes.

1. C SAVE A A \div STO i
2. $D \mathrm{RCL}$ \% $\quad+$ PMT
3. $\mathrm{F} F \mathrm{FV}$
4. $\mathrm{n} \longrightarrow \mathrm{AxB}$

Example:

The same $\$ 10,000$ amount is desired as in the previous example and a 7% interest also applies. Now however, the individual will be placing $\$ 40$ per month in his account. How long will it be before the desired sum is available?

Procedure:

FIND THE ANNUAL INTEREST RATE

Keystrokes:

1. $A \operatorname{SAVE} A B 1+n$
2. D SAVE PMT
3. $F+\mathrm{FV}$
4. $\quad i \mathrm{~A} X \mathrm{X} \longrightarrow \mathrm{C}$

Example:

Suppose the individual in our second example was only able to pay $\$ 20$ per month but still wanted to accumulate $\$ 10,000$ in 15 years. What interest rate must a savings plan offer in order to accomplish this?

Procedure:

