

JULY 30, 1973

NO. 80-002

ANNUITY DUE CALCULATIONS FOR SAVINGS FUNDS

GENERAL

Data entry sequences for the HP-80 top row keys (**n i PMT PV FV**) were designed to be simplest for calculations involving ordinary annuities. The most common definition of *ordinary annuity* (sometimes called "payments in arrears") assumes that payment amounts are equal, that payment periods are equally spaced in time, and that these payments are made *at the end* of each period. However, by slightly modifying the standard key sequences, the HP-80 can be used for *annuity due* calculations (sometimes called "payments in advance") where equal payments are made *at the beginning* of equally spaced periods.

This issue of the HP-80 APPLICATION NOTES will be of assistance to the HP-80 user wishing to solve for *Future value*, *payment amount*, number of *payment periods*, and *interest rate* in annuity due calculations.

The symbolic values listed below will be used to demonstrate the various keystroke sequences that follow.

- A = number of payment periods in a year
- B = number of years
- C = annual interest rate
- D = payment amount
- F = future value of the series of payments at the end of the last payment period

FIND THE FUTURE VALUE OF A SERIES OF PAYMENTS

Keystrokes:

Example:

Deposits of \$75 a month for 6 years will be paid into a savings account starting tomorrow. The savings plan compounds monthly using a 5% nominal interest rate. How much money will be in the account at the end of 6 years?

Procedure:

HEWLETT (hp PACKARD 10900 Wolfe Road, Cupertino, California 95014, Telephone 408-996-0100

HEWLETT-PACKARD SUPPLIES THE PROCEDURES HEREIN WITHOUT WARRANTY AND WILL NOT BE LIABLE FOR DAMAGES ARISING FROM THEIR USE.

Note:

When solved using ordinary annuity assumptions the future value of these payments would be \$6,282.32.

FIND THE PAYMENT AMOUNT REQUIRED TO ACHIEVE SOME FUTURE VALUE

Keystrokes:

1.	A STO	SAVE + B × n	
2.	C RCL	÷ STO	
3.	1 RCL	% + F xzy ÷ FV	
4.	РМТ		D

Example:

It has been determined that \$10,000 will be required 15 years from now to send a son to college. A savings plan paying 7% (compounded monthly) is available. What equal monthly payments should be made in order to accrue the required amount?

Procedure:

AxB

Example:

The same \$10,000 amount is desired as in the previous example and a 7% interest also applies. Now however, the individual will be placing \$40 per month in his account. How long will it be before the desired sum is available?

Procedure:

FIND THE ANNUAL INTEREST RATE

Example:

Suppose the individual in our second example was only able to pay \$20 per month but still wanted to accumulate \$10,000 in 15 years. What interest rate must a savings plan offer in order to accomplish this?

Procedure:

12 SAVE + 1	5 🗙 1	+ n	20 SAVE +	рмт 1	0000 [+ FV	i	12	x -	;	▶11.904	4768
								(a	n 11.9	90% ințere	est rate i	s required)