

DECEMBER 10, 1973

NO. 80-007

CALCULATING LOGS, ANTI-LOGS, AND ROOTS OF NUMBERS

GENERAL

This Application Note will be of assistance to those HP-80 owners who require the ability to calculate *common* and natural logarithms, anti-logarithms (base 10 and base e), and the "nth" root of a number.

COMMON (BASE 10) AND NATURAL (BASE e) LOGARITHMS

The following keystrokes will simultaneously calculate the common logarithm (log) and natural logarithm (ln) of a number (B).

Keystrokes:

Example:

Determine the common logarithm and natural logarithm of 256.

LOGARITHMS FOR ANY BASE

The following keystrokes solve for the exponent c in the equation $A^{c} = B$ when A and B are known. This procedure may be labeled "finding the logarithm of B to the base A".

The natural logarithm of B will again be available in the y register.

HEWLETT-PACKARD SUPPLIES THE PROCEDURES HEREIN WITHOUT WARRANTY AND WILL NOT BE LIABLE FOR DAMAGES ARISING FROM THEIR USE.

Note:

When calculating logarithmic values, features that are required for other purposes are being used. Specifically, when solving for n in the compound interest equation,

$$FV = PV (1 + i/100)^n$$

the HP-80 uses natural logarithms and the expression becomes;

$$n = \frac{\ln (FV/PV)}{\ln (1 + i/100)}$$

Therefore, the keystroke sequence, 900 i 1 PV B FV n , results in the following solution:

$$n = \frac{\ln (B/1)}{\ln 1 + \frac{900}{100}} = \frac{\ln(B)}{\ln (10)} = \log B \text{ (base 10)}.$$

Similarly the keystroke sequence,

As an intermediate step the HP-80 places the $\ln (FV/PV)$ in the y register, and for the values discussed this becomes $\ln (B/1)$ or simply $\ln B$ (base e).

ANTI-LOGARITHMS (BASE e)

The following keystrokes solve for B in the equation $e^{c} = B$, where e is the base of natural logarithms, and the exponent c is the natural logarithm of B. Step 1 generates the value of e correct to 9 decimal places.

Keystrokes:

1.	1.000001 SAVE + 1000000 yx	2.718281828
2.	c yx	В
Exa	mple:	
Dete	ermine the number whose natural logarithm equals 2.36.	
Procedure:		See Displayed:
1.	1.000001 SAVE + 1000000 yx	2.72
2.	2.36 yx	10.59

Since a portion of the value of e repeats itself some will find it easier to remember 2.718281828 than the keystrokes that generate this number. In this case step 1 may be replaced by simply entering e and pressing **SAVE**.

ANTI-LOGARITHMS (BASE 10)

The following keystrokes solve for B in the equation $10^{c} = B$ where the exponent c is the common logarithm of B.

Keystrokes:

Example:

Find the number whose common logarithm is 2.41.

Procedure:	See Displayed:	
10 SAVE + 2.41 yx		257.04

"nth" ROOT OF A NUMBER

The key sequence, A (Gold Key), where A is a positive number, will calculate the 2nd root (i.e., square root) of A. This operation is commonly written as \sqrt{A} or $\sqrt[2]{A}$. However, the square root of A may also be written in mathematical notation as

A¹⁄₂

and in this form it may be said that A is being raised to the ½ power. A more general representation for finding the "nth" root of a number would therefore be:

 $A^{1/n}$

where n = 2 for square or 2^{nd} root, n = 3 for cube or 3^{rd} root, and so on. Since the $\sum_{n=1}^{\infty}$ key will raise a positive number to any power, the HP-80 may be used to calculate the "nth" root of positive numbers as shown below.

Kevs	tro	kes.
neys	"	nco.

A SAVE \bullet 1 SAVE \bullet n \div yx	"nth" root of A
<i>Example:</i> Find the cube (3 rd) root of 6859.	
Procedure: 6859 SAVE → 1 SAVE → 3 ÷ У ^X	<i>See Displayed:</i> 19.00