HEWLETT 🏠 PACKARD 19310 Pruneridge Avenue, Cupertino, California 95014, Telephone 408-996-0100

HEWLETT-PACKARD SUPPLIES THE PROCEDURES HEREIN WITHOUT WARRANTY AND WILL NOT BE LIABLE FOR DAMAGES ARISING FROM THEIR USE.

HP-80 APPLICATION NOTES PUBLISHED AS A SERVICE FOR USERS OF THE HP-80 FINANCIAL POCKET CALCULATOR

MARCH 28, 1974

LINEAR REGRESSION CALCULATIONS

GENERAL

Least squares linear regression is a statistical method for finding a straight line that best fits a set of data points, thus providing a relationship between two variables. The HP-80 Trend Line (π) calculation performs linear regression calculations, but requires that input data be evenly spaced and in chronological order. If data is not evenly spaced, the calculations described below can be used to develop a regression line.

Given the observations of two variables, the HP-80 user can solve for the *slope* (m), and *y-intercept* (b) of the standard regression line equation, y = mx + b. From this equation, the dependent variable (y) can be predicted for any given independent variable (x). In addition, the following procedures calculate the *correlation coefficient* (r), which measures the linear relationship between the two variables $(-1 \le r \le 1)$, the *coefficient of determination* (r²), which indicates the goodness of fit of the line to the data points $(0 \le r \le 1)$, and the *standard error* (s) of the estimate of y on x, which is a measure of the scatter about the regression line of y on x.

The following symbolic values will be used to demonstrate the keystroke sequences below.

Input data: $(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)$

where n = number of observations x = independent variable y = dependent variable

Notation:

sum of x values $\sum x_i = x_1 + x_2 + \ldots + x_n$ $\Sigma y_i = y_1 + y_2 + \ldots + y_n$ sum of y values $\Sigma x_i^2 = x_1^2 + x_2^2 + \ldots + x_n^2$ sum of squares of x values $\Sigma y_1^2 = y_1^2 + y_2^2 + \ldots + y_n^2$ sum of squares of y values sum of x y products $\sum x_i y_i = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$ $\sigma_{\rm x}$ = standard deviation of x values $\sigma_{\rm v}$ = standard deviation of y values m = slopeb = y-intercept r = correlation coefficient r^2 = coefficient of determination s = standard error of the estimate of y on x

NO. 80-010

GENERATING TREND LINE AND ESTIMATING VALUES

Keystrokes:

1.	Solve for Σx_i and store it; solve for Σx_i^2 and σ_x and write these down.			
	(gold key) CLX $x_1 \Sigma + x_2 \Sigma + \dots x_n \Sigma + $ STO	$\rightarrow \Sigma x_i$		
	R+ R+	$\rightarrow \Sigma x_i^2$	write this down*	
	R+ R x:y	$\rightarrow \sigma_{\rm X}$	write this down	
2.	Solve for Σy_i , Σy_i^2 , and σ_y and write these down.			
	(gold key) $\begin{bmatrix} CLEAR \\ CLX \end{bmatrix} y_1 \begin{bmatrix} \Sigma + \end{bmatrix} y_2 \begin{bmatrix} \Sigma + \end{bmatrix} \dots y_n \begin{bmatrix} \Sigma + \end{bmatrix}$	→ Σy _i	write this down*	
		$\rightarrow \Sigma y_i^2$	write this down	
	R+ x <y< td=""></y<>	→ σ _y	write this down	
3.	Solve for $\Sigma x_i y_i$ and write it down.			
	$x_1 \text{ save } y_1 \times x_2 \text{ save } y_2 \times + \ldots x_n \text{ save } y_n \times +$	$\rightarrow \Sigma x_i y_i$	write this down	
4.	Leaving $\Sigma x_i y_i$ on the display, continue as follows to calculate the slope (m). Write this answer down.			
	$\operatorname{RCL} \Sigma y_i \times n \div - \Sigma x_i^2 \operatorname{RCL} \operatorname{Save} \star n \div - \div$	→ m	write this down*	
5.	Calculate, store and write down the y-intercept (b).			
	RCL $\mathbf{X} \Sigma \mathbf{y}_i \mathbf{x} \mathbf{z} \mathbf{y} - \mathbf{n} \mathbf{z}$	→> b	write this down*	
6.	Now the slope (m) and y-intercept (b) can be properly located in the operational so the TL key can be used to find the corresponding y value for any given x vertices the second	l stack and alue (x _k).	storage register	
	m SAVE ← SAVE ← b STO			
7.	х _к п т	→ y _k		
	(This step may be repeated for any x value)			

*These intermediate results must be written down in order to complete this set of keystroke procedures; i.e., in order to determine the equation for the regression line. All other results are optional, in that they are only required for computing the correlation coefficient (r), coefficient of determination (r^2) , and standard error (s) in the following section.

(NOTE: If a high degree of accuracy is desired, press 22 (gold kev) 6 before writing down intermediate results.)

Example:

A commercial land appraiser has examined 4 vacant lots in the downtown section of a local community, all of which have the same depths but different frontages and values as shown below. Based on this data, what is the relationship between frontage and lot value? What predicted value would a lot have with a 65 foot frontage? With a 50 foot frontage?

Pro	seedure: See	Displayed:		
	m = 268.30 $\sigma_{\rm x}$ = 10.37 $\sigma_{\rm y}$ = 2858.33			
Using the data from the previous example, what is the correlation coefficient (r) and coefficient of determination (r^2) ? The required values written down from that example are:				
Example:				
	$2 y^{x} \longrightarrow r^{2}$			
2.	Leaving the correlation coefficient on the display, find the coefficient of determ	nination (r^2) .		
	m Save \bullet $\sigma_x \times \sigma_y \div$			
1.	Calculate the correlation coefficient (r).			
Kevstrokes:				
CORRELATION COEFFICIENT AND COEFFICIENT OF DETERMINATION				
		lot with 50 foot frontage)		
	50 n TL-	(\$5,006.20, projected value of		
		lot with 65 foot frontage)		
7.	65 n TL	→ 9030.70 (\$9,030.70, projected value of		
6.	268.30 SAVE + SAVE + 8408.80 CHS STO	-8408.80		
	(The equation of the regression line is: $y = $268.30 \text{ x} - 8408.80)			
5.	RCL × 44439 $xzy - 4 \div$	(y-intercept, b, write this down)		
4.	RCL 44439 X 4 21492.00 RUL SAVET X +	(slope, m, write this down)		
4		$(\Sigma x_i y_i, \text{ write this down})$		
3.	70.8 SAVE + 10100 × 60 SAVE + 8219 × + 85 SAVE + 15000	→ 3319444.00		
		$(\sigma_{\rm y}, {\rm write this down})$		
		$(\Sigma y_i^2, \text{ write this down})$		
	R* R*	→ 518216361.0		
2.	(gold key) CLX 10100 Σ + 8219 Σ + 15000 Σ + 11120 Σ +	$(\Sigma y, write this down)$		
	CLEAR			

STANDARD ERROR OF THE ESTIMATE OF y ON x

Keystrokes:

Example:

Using the data from the first example, what is the standard error(s) of the estimate of y on x?

Given values or values written down from intermediate calculations are:

 $\Sigma y_i^2 = 518216361.0$ b = -8408.80 m = 268.30 $\Sigma y_i = 44439.00$ $\Sigma x_i y_i = 3319444.00$ n = 4

1⁄2

Equations:

$$m = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}$$

$$b = \frac{1}{n} (\sum y_i - m \cdot \sum x_i)$$

$$r = \frac{m \sigma_x}{\sigma_y}$$

$$s = \left[\frac{\sum (x_i - \overline{x})^2}{n - 1}\right]^{\frac{1}{2}}$$