Notice

Hewlett-Packard Company makes no express or implied warranty with regard to the keystroke procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as is" basis, and the entire risk as to their quality and performance is with the user. Should the keystroke procedures or program material prove defective, the user (and not Hewlett-Packard Company nor any other party) shall bear the entire cost of all necessary correction and all incidental or consequential damages. Hewlett-Packard Company shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.
Contents

Section 1: Using the HP 82143A Printer 5
Printer Controls ... 5
AC Adapter/Recharger and
Rechargeable Battery Pack .. 7
AC Line Operation .. 7
Battery Operation ... 7
Battery Pack Replacement .. 8
Connecting the AC Adapter/Recharger 9
Plugging the Printer Into the HP-41C 10
Removing the Printer From the HP-41C 11
Loading Paper Into the HP 82143A Printer 12

Section 2: Printer Operations ... 15
Standard HP-41C Printing Functions 16
View Register Contents .. 16
ALPHA View ... 16
Prompting ... 17
Paper Advance ... 17
HP 82143A Printer Functions ... 18
The PRINT Key ... 18
Print X-Register ... 18
Print ALPHA-Register .. 19
Printing Registers ... 19
Using PRREG .. 19
Using PRREGX .. 20
Using PRΣ ... 21
Using PRSTK ... 22
Printing Programs .. 22
Using PRP ... 22
Using LIST ... 23
Printing Status and Key Assignment Information 24
Using PRFLAGS ... 24
Using PRKEYS .. 25
Printing the Catalogs ... 26
Programming and the Printer ... 26
Using the Printer During Program Entry 26
Printer Operation During a Running Program 26
Executing Programs Containing Print Functions
With No Printer Present
Flags and the Printer

Section 3: Accumulated Printer Output
Accumulating ALPHA Characters Into the Print Buffer
Accumulating Numbers in the X-Register Into the Print Buffer
Character-By-Character Accumulations
Printing the Contents of the Print Buffer
Accumulating Formatted and Unformatted Numbers
Skipping Characters in the Print Buffer
Accumulating Lower-Case and Double-Wide Settings
Programming With the Accumulating Functions

Section 4: Plotting
Interactive Plotting of Functions
Programmable Plotting
Plotting a Y-Axis
Single-Line Plotting
Plotting With Special Characters

Section 5: Graphics
Specifying a Column of Dots
Accumulating Columns
Skipping Columns
Building Special Characters
Right- and Left-Justified Buffer Printing
Programming the Special Character Operations
Special Plotting Characters

Appendix A: Accessories, Maintenance and Service
Accessories
Maintenance
Limited One-Year Warranty
Service
Potential for Radio/Television Interference (for U.S.A. Only)
Technical Assistance

Appendix B: Messages and Errors

Appendix C: Annotated [PRPL] Program Listing

Appendix D: Reading and Keying in Programs
From Printer Listings

HP 82143A Printer Function Index
Section 1

Using the HP 82143A Printer

The HP 82143A Printer was designed specially for the HP-41C* calculator system, adding powerful printing, plotting, graphics and special character capability. When you plug the printer into one of the ports on the HP-41C, an impressive set of printing functions becomes active.

This handbook takes you through the detailed operation of each of the functions as well as the general operation of the printer. So that you can become familiar with the capabilities of the calculator/printer system, you should read through this handbook.

Printer Controls

OFF [] ON Switch. This switch controls the power to the printer. In order for the printer to operate in the system, the power must be on. Procedures for ac line operation and charging the batteries are given later in this section.

MAN [] NORM Print Mode Switch. The printer has three modes of operation, which are controlled by the position of this switch. This switch controls what and how information is printed.

- In the MAN (manual) position, the printer is idle and does not print unless you or a program executes a print function. Listings of programs are printed left-justified when the printer is set to MAN.

- In the NORM (normal) position, the printer prints numbers and ALPHAs that are keyed in, function names as they are executed from the keyboard, and output from print functions. Running programs print only output from print functions and [PROMPT] output. Listings of programs are printed right-justified when the printer is set to NORM.

* The HP-41C and HP-41CV model calculators differ only in their initial Continuous Memory capacities. The term "HP-41C” is used throughout the rest of this manual to refer to both calculators.
In the TRACE position, the printer prints numbers and ALPHAs that are keyed in, function names, intermediate and final answers, and output from print functions. Program listings are printed in a special "packed" or condensed form when the printer is in TRACE.

Above each example printer listing in this handbook, the position of the print mode switch is shown like this: Printer: MAN[...]. This lets you know how you should set the print mode switch to obtain the printed output shown in the example.

Print Intensity Switch. This is a five-position switch that controls the intensity of the characters being printed.

Print Key. When the HP-41C is in normal mode (with no program running), you can print the contents of the X-register by simply pressing [PRINT]. In ALPHA mode, when you press [PRINT], the contents of the ALPHA register are printed. Pressing [PRINT] while the HP-41C is set to PRGM mode inserts a [PRX] (print X) as a line in the program, or while the HP-41C is also in ALPHA mode, inserts a [PRA] (print ALPHA) into the program.

Paper Advance Key. The paper advance key, [ADV], on the printer is used to advance the paper in the printer. When the HP-41C is in normal mode, pressing the paper advance key simply advances the paper one line. Holding the key down produces multiple advances. When the HP-41C is in PRGM mode and you are keying in a program, pressing the paper advance key inserts an [ADV] (advance) into the program. (If you hold the paper advance key down for longer than a second, the [ADV] is not inserted into the program and the paper is immediately advanced.) When the calculator executes the [ADV] in the program, the paper is advanced one line.

Power Light. This light is on when the power to the printer is turned on. If the battery power is not sufficient to run the printer, the power light is off.

Bat Light. The bat light tells you the status of the rechargeable batteries in the printer. When the bat light is on, battery power is low. This means that the printer has about 10 to 15 minutes of power remaining. To continue operation you should immediately turn the printer OFF and insert a fully charged battery pack or connect the AC adapter/recharger and recharge the batteries for a few minutes before you resume printing.
Continued printing with the bat light on may damage the rechargeable batteries.

The AC Adapter/Recharger and Rechargeable Battery Pack

The complete AC adapter/recharger and rechargeable battery pack are important parts of your printer system. The rechargeable battery pack supplies the printer with sufficient power for sustained portable printing for 4000 to 5000 printed lines. When plugged in, the AC adapter/recharger supplies operating power for the printer and recharges the battery pack.

AC Line Operation

To operate the printer using the ac adapter/recharger, simply turn the printer off, plug the ac adapter/recharger into the proper power source and then into the printer, and turn the printer on. It is normal for the underside of the printer and the ac adapter/recharger to be warm when connected.

CAUTION

The battery pack must be in the printer while the AC adapter/recharger is connected. Failure to do so could damage the printer.

Battery Operation

When not being used, the rechargeable batteries have a self-discharge rate of approximately one percent of available charge per day. If you have not used the printer for an extended period of time, connect the ac adapter/recharger and charge the battery pack. The rechargeable batteries are being charged while you operate the printer from the ac adapter/recharger. The battery pack will charge with the printer on or off. Normal charging time from fully discharged battery pack to full charge is (time depends on ac line voltage value):

Printer ON or OFF: 14 to 16 hours
Shorter charging periods will reduce the operating time you can expect from a single battery charge. Whether the printer is off or on, the battery pack is never in danger of becoming overcharged.

Do not attempt to incinerate, puncture or disassemble the battery pack—it may burst or release toxic materials. Do not connect together or otherwise short-circuit the battery pack terminals—the pack may melt or cause serious burns.

Battery Pack Replacement

1. Turn the printer OFF and disconnect the ac adapter/recharger.

2. Slide the two battery door latches inward.

3. Let the battery door and battery pack fall into your hand.
4. Insert the new battery pack so that its contacts face the printer and line up with the connector springs.

5. Insert the end of the battery door that is opposite the latches behind the retaining groove, and close the door.

6. Secure the door by pressing it gently while sliding the two battery door latches outward.

Connecting the AC Adapter/Recharger

1. Turn the printer and calculator off.

2. Plug the ac adapter into the proper power source.
Using the HP 82143A Printer

3. Plug the female recharger plug into the back of the printer as shown. The batteries will charge and the printer can be operated normally.

Plugging the Printer Into the HP-41C

1. Make sure the calculator and printer are turned off.

2. Remove the port cap that is in the lowest numbered unused port. If you must remove a memory module, always remove one from the highest numbered port. (If you remove a memory module, make sure the HP-41C has enough memory allocated to data storage registers—executing [SIZE] 064 will ensure this.)
3. Insert the printer interface module into the empty port as shown. Push it into the calculator until it snaps firmly into place.

Your HP-41C system is now ready to use!

Removing the Printer From the HP-41C

1. Turn the HP-41C and the printer off!

2. Pull the printer interface module straight back until it is free from the port. Do not pull on the cord.

3. Replace the port cap on the empty port.
Loading Paper Into the HP 82143A Printer

The HP 82143A Printer is a thermal printer and it requires a special heat-sensitive paper. You should use only the Hewlett-Packard thermal paper available in 80-foot rolls from your nearest HP distributor or sales office or by mail from:

Hewlett-Packard
Computer Supplies Operation
1326 Kifer Road
Sunnyvale, California 94086

CAUTION

To prevent damage to your HP 82143A Printer use only Hewlett-Packard thermal paper.

To load paper into the printer:

1. Turn the printer ON and open the paper roll cover. Remove the empty core from the paper well.

2. Before inserting the new roll of paper into the printer, discard the first two turns to ensure that no glue, tape or other foreign matter is on the paper. Make sure that the leading edge of the paper is straight, not crooked or jagged. A short, sharp crease on the leading edge may aid in the loading of the paper.
3. Temporarily place the paper roll in the paper roll cover. With your finger, push the leading edge of paper into the slot near the bottom of the paper well. Continue pushing until the paper can be pushed no further into the print mechanism.

4. Press the paper advance key and hold it down until the paper passes the top of the plastic tear bar.

5. Drop the roll of paper into the paper well, close the cover, and press [PRINT] two or three times. (If you ran out of paper during the execution of a program, press [R/S].) If the paper is feeding properly but no printing appears when you print, the paper may be inserted backwards. The paper is chemically treated and will print on only one side.
Section 2

Printer Operations

The HP 82143A Printer is an easy to use but very capable addition to the HP-41C. To use the printer all you do is follow the directions given in section 1 for plugging in the printer and then turn the printer on. The system is instantly integrated and ready to use. This section and the following three sections show you how to use the printer from its most simple operations to the more specialized applications in plotting, special character output and graphics.

To begin using your new printer, press the following keys to print a list of all of the functions in the printer.

Keystrokes

- **CATALOG**
- **2**

Printer:

```
-PRINTER-
ACA
ACCHR
ACCOL
ACSPE
ACX
BLDSPE
LIST
PRA
'PRAXIS
PRBUF
PRFLAGS
PRKEYS
PRP
'PRPLOT
'PRPLOT
PRREG
PRREGX
PRE
FRSTK
PRX
REGPLOT
SKPCHR
SKPCOL
STKPLT
```
All of these functions can be executed or assigned to keys for execution just as any other HP-41C function. These functions are available only while the printer is plugged in. Refer to section 4 in the *HP-41C Owner’s Handbook and Programming Guide* for information about executing and assigning functions.

Standard HP-41C Printing Functions

There are four standard HP-41C functions that will automatically print as well as perform their normal functions while the printer is attached and set to the proper print mode. These functions are **VIEW**, **AVIEW**, **PROMPT**, and **ADV**. They perform their normal functions as well as the printing functions regardless of whether they are executed from the keyboard or in a program.

View Register Contents **VIEW**

The **VIEW** (view register contents) function causes the contents of the specified register to be displayed. With the printer attached, **VIEW** causes the contents of the specified register to be printed as well as displayed. The example below stores a number into a register then uses **VIEW** to display and print it.

Keystrokes

```
27.9380 STO 01
VIEW 01
```

Display

```
27.9380
```

Printer:

```
MAN
```

ALPHA View **AVIEW**

The **AVIEW** (ALPHA view) function displays the contents of the ALPHA register. When the printer is attached, **AVIEW** displays and prints the contents of the ALPHA register. In the example, an ALPHA string is placed into the ALPHA register and then displayed and printed using **AVIEW**.

Keystrokes

```
ALPHA
PRINT IT
AVIEW
```

Display

```
PRINT IT
```

Printer:

```
MAN
```

```
PRINT IT
```
Prompting \(\text{PROMPT}\)

When this standard HP-41C function is executed in a program, it displays the contents of the ALPHA register and halts program execution. While the printer is attached and the print mode switch is set to NORM or TRACE, the execution of \(\text{PROMPT}\) displays and prints the message in the ALPHA register, and then halts program execution. While the print mode switch is set to MAN, execution of \(\text{PROMPT}\) displays the ALPHA register and halts program execution but does not print.

Executed from the keyboard, \(\text{PROMPT}\) simply displays the contents of the ALPHA register while the printer is set to NORM or TRACE. The example here shows how \(\text{PROMPT}\) prints when executed from the keyboard (the example assumes that the contents of the ALPHA register are intact from the previous example).

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Display</th>
<th>Printer:</th>
<th>[Image]</th>
</tr>
</thead>
<tbody>
<tr>
<td>XEQ ALPHA PROMPT</td>
<td>PRINT IT</td>
<td>NORM</td>
<td>PROMPT</td>
</tr>
<tr>
<td>ALPHA</td>
<td>PRINT IT</td>
<td></td>
<td>PRINT IT</td>
</tr>
</tbody>
</table>

Paper Advance \(\text{ADV}\)

To advance the printer paper, press the Paper Advance key, \(\text{ADV}\), on the printer. Pressing this key once advances the paper a single line. Holding the key down continues advancing the paper until you release the key.

Another way to advance the paper in normal and USER modes is to execute the \(\text{ADV}\) functions from the keyboard. Each execution of \(\text{ADV}\), either in a program or from the keyboard, advances the paper a single line. Pressing the advance key on the printer while the HP-41C is set to PRGM mode inserts an \(\text{ADV}\) function into program memory.
All of the rest of the functions covered in this section are available only while the printer is plugged into the HP-41C. Two of these functions are available by pressing the PRINT key on the printer.

The PRINT Key

The PRINT key on the printer provides a method for printing the contents of the display at any time, in any print mode.

While the HP-41C is not in ALPHA mode, pressing PRINT prints the contents of the X-register (in PRGM mode, pressing PRINT inserts a PRX into the program). While the HP-41C is set to ALPHA mode, pressing PRINT prints the contents of the ALPHA register (in PRGM/ALPHA mode, pressing PRINT inserts a PRA into the program).

Keystrokes
123,456,789
PRINT
ALPHA
ABCDE
PRINT
ALPHA

Print X-Register PRX

PRX (print X) prints the contents of the X-register regardless of the print mode setting. It performs the same function as pressing the PRINT key on the printer when the calculator is not set to ALPHA mode. Remember, you can insert a PRX into a program by pressing PRINT on the printer while the HP-41C is set to PRGM mode.

Keystrokes
123,456,789
XEQ ALPHA PRX
ALPHA

Printer: MAN
Print ALPHA-Register

(print ALPHA) prints the contents of the ALPHA register, regardless of the print mode setting. performs the same function as pressing the key on the printer with the calculator set to ALPHA mode. You can insert a into a program by pressing the key on the printer while the HP-41C is set to ALPHA and PRGM modes.

Keystrokes

ALPHA

ABCD

XEQ ALPHA

PRA

Printing Registers

There are three printer functions that allow you to print the contents of data storage registers: , , and . The fourth register printing function prints the contents of the automatic memory stack registers (). All of these functions are programmable, that is, they can be keyed in as lines in programs that you store in program memory.

Using (print registers). When you execute , the contents of all currently allocated data storage registers beginning with are printed. Each printed register is labeled with the register number on the left (Rnnn=) and the contents of the register (up to 15 characters) on the right. When a register contains ALPHA characters, its contents are enclosed in quotes when printed, like this R01 = "ABC". The listing can be terminated at any time by pressing .

For use in a program, key in the function just as you would any other function. Allocation of registers in example below is 017.

Keystrokes

XEQ ALPHA

PRREG

Printer:

MAN

PRREG

R96= 0.0600

ALPHA R#i= 27.9380

RE2= 9.8000

R83= 0.08080

R84-=9.0000

R85=9.8600
Using \textit{(print registers as directed by X)}. This function provides you with complete control over which registers you are printing. \textit{(print registers as directed by X)} uses a number in the \textit{X}-register to control the printing operation. Here is a procedure for using \textit{(print registers as directed by X)}:

1. Using the following format, place a data control number in the \textit{X}-register:

\textit{bbb.eee}

where \textit{bbb} is the beginning data storage register address and \textit{eee} is the ending data storage register address.

The calculator uses the absolute value of this number to control which data storage registers are to be printed. The \textit{bbb} portion instructs the printer to begin at that data storage register address and the \textit{eee} portion is the last data storage register to be printed. The \textit{bbb} portion can be one to three digits and the \textit{eee} portion must be three digits. The sign of the control number in \textit{X} is not used or altered, it is ignored.
For example, when using \texttt{PRREGx}, 10.020 would instruct the printer to print the contents of registers \(R_{10}\) through \(R_{20}\). The number 120.254 would instruct the printer to print \(R_{(120)}\) through \(R_{(254)}\). If the \texttt{eee} portion is less than or equal to \texttt{bbb}, the printer prints only the register specified by \texttt{bbb}. So, the number 20.000 would print just \(R_{20}\). If \texttt{eee} is larger than the number of currently existing registers, the calculator prints from \texttt{bbb} to the first nonexistent register encountered (\texttt{NONEXISTENT}). If \texttt{bbb} is larger than the number of currently allocated registers, the display will show \texttt{NONEXISTENT}.

2. Execute \texttt{PRREGx}. In a program, key the control number into the X-register (as a line in the program), and follow it with the \texttt{PRREGx} function. The control number can also be calculated by the program.

3. The printer now uses the control number to determine which registers to print. You can terminate the print session at any time by pressing \texttt{R/S}.

Here is an example showing how \texttt{PRREGx} can be used to print the contents of registers \(R_{01}\) through \(R_{05}\). The control number is 1.005.

Keystrokes

```
1.005
\texttt{XEQ}
\texttt{PRREGx}
```

Printer:

```
1.0050
PRREGx
```

```
R01= 27.9380
R02= 0.0000
R03= 0.0000
R04= 0.0000
R05= 0.0000
```

Using \texttt{PRg} \textit{(print statistics registers)}. The \texttt{PRg} function enables you to print the contents of the currently defined statistics registers (refer to section 6 in the \textit{HP-41C Owner's Handbook and Programming Guide} for information about \texttt{ΣREG} and how statistics registers are defined). Executed in a program or from the keyboard, \texttt{PRg} prints the contents of all six statistics registers.
Using \texttt{PRSTK} (\textit{print stack}). When executed in a program or from the keyboard, the \texttt{PRSTK} function prints the contents of the automatic memory stack registers in \textit{T, Z, Y, X} order.

\textbf{Keystrokes}

\begin{verbatim}
XEQ
\end{verbatim}

\begin{verbatim}
\texttt{PRSTK}
\end{verbatim}

\begin{verbatim}
\texttt{PRSTK}
\end{verbatim}

Printing Programs \texttt{PRP} \texttt{LIST}

There are two printer functions that print programs that you store in program memory: \texttt{PRP} (\textit{print program}) and \texttt{LIST} (\textit{list program}). Both of these functions are non-programmable (cannot be keyed in as part of program).

Using \texttt{PRP} (\textit{print program}). To print a specific program that is presently stored in program memory, follow this procedure:

1. Execute \texttt{PRP}.
2. The calculator prompts you for the name of the program you wish to print. Simply key in the name of the program (press \texttt{ALPHA} name \texttt{ALPHA}) and printing will begin at the first line of the named program. If you press \texttt{ALPHA} \texttt{ALPHA} (do not specify a program name) in response to the prompt, the printer will print the program to which the calculator is presently positioned beginning at its first line.
You can terminate the printing operation at any time by pressing \texttt{R/S}. \texttt{LIST} and \texttt{PRP} format program lines depending upon the position of the print mode switch. Following is a listing of a program printed using \texttt{PRP} showing the three formatting options. The program name is \texttt{CHARS}. (You may wish to key in and run this program—it produces a list of all printer characters. You will learn more about the printer functions used in this program later.)

Keystrokes

\begin{tabular}{|c|c|}
\hline
\texttt{XEQ} & \texttt{ALPHA PRP ALPHA} \\
\texttt{ALPHA CHARS} & \texttt{ALPHA} \\
\hline
\end{tabular}

Using \texttt{LIST}. Using \texttt{LIST}, you can specify a number of lines of a program to print. Here is the \texttt{LIST} procedure:

1. Position the calculator to the desired program and then to the line where you wish printing to begin.

2. Execute \texttt{LIST}.

3. The calculator prompts you for a three-digit number of lines. After you key in the number, printing begins. You can terminate the printing operation at any time by pressing \texttt{R/S}.
Here is an example showing how to print only lines 5 through 10 of the CHARS program (printed in the example under PRP). The listing is shown printed in NORM print mode, (right justified).

Keystrokes

GTO
ALPHA CHARS
ALPHA
GTO 005
XEQ
ALPHA LIST
ALPHA 006

Printing Status and Key Assignments

Since the HP-41C system has many flags and a reassignable keyboard, you may wish to review this information. Using PRFLAGS and PRIKEYS, you can print this information at any time.

Using PRFLAGS (print flags). When executed from the keyboard or in a program, PRFLAGS begins printing the following information:

Number of data storage registers (SIZE = nnn).
Location of first statistics registers (Σ = nnn).
Trigonometric mode (DEG, RAD, or GRAD).
Display format (FIX, SCI, or ENG and number of digits).
Status of all flags (F nn SET or CLEAR).
You can terminate the printing operation at any time by pressing \(R/S \).

Here is an example of the output from `PRFLAGS`:

Keystrokes: \[XEQ, \alpha \text{PRFLAGS}, \alpha \]

Printer: \[\text{STATUS:} \]
\[\text{SIZE= 017} \]
\[\text{Z= 11} \]
\[\text{DEG} \]
\[\text{FIX 4} \]

\[\text{FLAGS:} \]
\[F 00 \text{ CLEAR} \]
\[F 01 \text{ CLEAR} \]
\[F 02 \text{ CLEAR} \]
\[\vdots \]
\[F 49 \text{ CLEAR} \]
\[F 50 \text{ CLEAR} \]
\[F 51 \text{ CLEAR} \]
\[F 52 \text{ CLEAR} \]
\[F 53 \text{ CLEAR} \]
\[F 54 \text{ CLEAR} \]
\[F 55 \text{ SET} \]

Using `PRKEYS` (print key assignments). When executed from the keyboard or in a program, `PRKEYS` prints the keycode of the reassigned key followed by the name of the program or function assigned to that key. Keycodes are a row-column identification of a key location. The keycodes for shifted key locations are prefixed with a \(-\) (minus sign). This example assumes that no key assignments have been made.

Keystrokes: \[XEQ, \alpha \text{PRKEYS}, \alpha \]

Printer: \[\text{USER KEYS: NONE} \]

You can terminate the printing operation at any time by pressing \(R/S \).
26 Printer Operations

Printing the Catalogs

The information in any of the function catalogs can be printed by simply setting the print mode switch to TRACE, pressing [CATALOG] and the number of the catalog you wish to print (1, 2, or 3). As the display and printing of [CATALOG] 1 progresses, the calculator is automatically positioned to the program in program memory that is currently displayed. In addition, when you print [CATALOG] 1, the number of "bytes" (refer to appendix D in the HP-41C Owner's Handbook and Programming Guide for an explanation of "bytes") that each program occupies in program memory is printed next to the END of each program printed. Refer to the example below.

The [CATALOG] function is not programmable (cannot be recorded as a line in program memory).

Print the contents of [CATALOG] 1:

Keystrokes

\[\text{[CATALOG]} \ 1 \]

Printer:

```
Lbl 'CHARS
END 33 BYTES
.END. 0 BYTES
```

Programming and the Printer

Using the Printer During Program Entry

While you are keying in a program in PRGM mode, you can use the printer to print a record of each line you key in. With the print mode switch set to TRACE or NORM, each completed line you key in is printed.

If there is not enough room left in program memory for the line you just keyed in, it is printed and then PACKING and TRY AGAIN are printed below the line just printed. This gives you a record of the line you just keyed in, even though it did not fit into program memory.

Printer Operation During a Running Program

If you set the print mode switch to TRACE during the execution of a program that you have stored in program memory, the printer will print the operation on that line along with any intermediate and final results calculated. While you are executing a program with the printer in this
mode, you will notice that program execution slows significantly to allow the printer to keep up with the execution. TRACE mode execution is a good way to debug your programs.

Programs will obviously execute faster while the print mode switch is set to NORM or MAN. And in these print modes, the printing functions in the executing program control what is printed, and when.* Later you will learn how flag 21 can be used to control printing by print functions in a running program.

Executing Programs Containing Print Functions With No Printer Present

Remember from the beginning of this section that the printer functions only become available while the printer is plugged in and turned on. So if you have programs stored in program memory that contain specific printing functions, and the printer is not attached, those print functions are **NONEXISTENT** and that program will not execute properly (when a print function is encountered, the display will show **NONEXISTENT**). However, when you plug the printer back in, turn it on and execute that program, it will execute properly. Here is how the HP-41C keeps track of these printer functions:

1. While the printer is in place, the function name appears normally in the program like this: *04 PRX*, or *55 PRREG*.†

2. When the printer is removed, these functions are displayed as a function called XROM. An XROM function tells the HP-41C that the function belongs to some plug-in accessory. Next to the XROM function name are two numbers. These numbers indicate which accessory the function belongs to as well as an indicator of the function. So, the program line *04 PRX* (with the printer plugged in) would change to *04 XROM 29,20* when the printer was removed. The **XROM** tells the system that the function belongs to a plug-in accessory, and the **29,20** tells the system that that accessory is number 29 (the printer) and the function number is 20 (PRX).

* The HP-41C interacts with the printer during program execution, even if the program does not contain printing operations. When the printer is turned on, program execution will be slightly slower than if the printer is turned off or removed.

† PRAXIS, PRPLOT, and PRPLOTP are contained in a program written using normal HP-41C functions. These instructions are displayed—whenever the printer is connected—as XROM followed by the function name.
Programs containing these functions have the following XROM numbers when the printer is removed.

<table>
<thead>
<tr>
<th>Function</th>
<th>XROM Number</th>
<th>Function</th>
<th>XROM Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACA</td>
<td>XROM 29,01</td>
<td>PRP</td>
<td>Not programmable</td>
</tr>
<tr>
<td>ACCHR</td>
<td>XROM 29,02</td>
<td>PRPLOT</td>
<td>XROM 29,14</td>
</tr>
<tr>
<td>ACCOL</td>
<td>XROM 29,03</td>
<td>PRPLOT+</td>
<td>XROM 29,15</td>
</tr>
<tr>
<td>ACSPEC</td>
<td>XROM 29,04</td>
<td>PAREG</td>
<td>XROM 29,16</td>
</tr>
<tr>
<td>ACX</td>
<td>XROM 29,05</td>
<td>PRREGX</td>
<td>XROM 29,17</td>
</tr>
<tr>
<td>BLDSPEC</td>
<td>XROM 29,06</td>
<td>PRZ</td>
<td>XROM 29,18</td>
</tr>
<tr>
<td>LIST</td>
<td>Not programmable</td>
<td>PRSTK</td>
<td>XROM 29,19</td>
</tr>
<tr>
<td>PRA</td>
<td>XROM 29,08</td>
<td>PRX</td>
<td>XROM 29,20</td>
</tr>
<tr>
<td>PRAXIS</td>
<td>XROM 29,09</td>
<td>REGPLOT</td>
<td>XROM 29,21</td>
</tr>
<tr>
<td>PRBUF</td>
<td>XROM 29,10</td>
<td>SKPCHR</td>
<td>XROM 29,22</td>
</tr>
<tr>
<td>PRFLAGS</td>
<td>XROM 29,11</td>
<td>SKPCOL</td>
<td>XROM 29,23</td>
</tr>
<tr>
<td>PRKEYS</td>
<td>XROM 29,12</td>
<td>STKCHT</td>
<td>XROM 29,24</td>
</tr>
</tbody>
</table>

If a printer function is entered, using \texttt{[XEQ]} into a program line while the printer is not connected, the function is recorded, displayed, and printed as \texttt{XEQT} followed by the function name. Program execution is slowed by lines of this form because the calculator will search for a matching ALPHA label or function name—first in program memory, then in each module plugged in.

Flags and The Printer

There are five HP-41C flags that are used in controlling the printer. Four of these (flags 12, 13, 21, 25) are user flags; that is, you can set, test and clear them. The fifth (flag 55) is a system flag and it can only be tested.

Printer Existence Flag (Flag 55). This flag is used to indicate if the printer is attached to the HP-41C (power on or off). Each time the HP-41C is turned on, the calculator checks to see if the printer is plugged in. If it is, the calculator automatically sets flag 55. If the printer is not plugged in, the flag is cleared. Since flag 55 is a system flag, you can only test it.

Printer Enable Flag (Flag 21). This user flag is used to control printing in programs that contain specific print functions. While flag 21 is set,
printing functions in a running program will print normally. While flag 21 is clear, printing is suppressed. Each time the HP-41C is turned on flag 21 is set to match the status of flag 55. If the printer is plugged in when you turn the calculator on, flags 55 and 21 are both automatically set. If it is not plugged in, when you turn the HP-41C on, flags 55 and 21 are cleared. Flag 21 has no effect on print functions executed from the keyboard.

Here is a table that shows how flags 55 and 21 work together to control printing in executing programs.

Flag 55 Printer Existence Flag

<table>
<thead>
<tr>
<th>SET</th>
<th>CLEAR</th>
</tr>
</thead>
</table>
| **Flag 21** Printer Enable Flag | **This is the initial condition when the printer is connected.**
1. If printer is ON, print functions print normally
2. If printer is OFF, print functions result in **PRINTER OFF** display. **[VIEW]** and **[AVIEW]** perform their normal functions and halt execution. **[ADV]** is ignored. |
| **Printer is connected but flag 21 has been cleared.**
1. Running programs will not print output generated by print functions, even if printer is connected and turned ON. **[VIEW]** and **[AVIEW]** operate normally in programs but do not print.
2. If printer is ON, print functions executed from the keyboard print normally.
3. If printer is OFF, print functions executed from the keyboard result in **PRINTER OFF** display. |
| **This is the initial condition when the printer is not connected.**
1. **[VIEW]** and **[AVIEW]** perform their normal functions and will "not" halt execution. **[ADV]** is ignored.
2. Print functions are displayed as **XROM nn,nn** in programs and result in **NONEXISTENT** display when executed by running program.
3. Print functions executed from keyboard result in **NONEXISTENT** display. |
Double Wide Flag (Flag 12). Flag 12 is a special purpose user flag that is used to control how characters are printed on the printer paper. While flag 12 is set, all characters are printed double width.

Keystrokes

<table>
<thead>
<tr>
<th>Key</th>
<th>Action Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA</td>
<td>Type in these letters in ALPHA mode.</td>
</tr>
<tr>
<td></td>
<td>Press the PRINT key on the printer.</td>
</tr>
<tr>
<td>ALPHA</td>
<td>Set flag 12—the double wide flag.</td>
</tr>
<tr>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Return to normal print width.</td>
</tr>
</tbody>
</table>

The maximum number of characters in one line of single-wide print is 24, and the maximum number of characters in one line of double-wide print is 12. If you print more than 12 double-wide characters, the additional characters will be printed on the next line.

Remember that all special purpose user flags (flags 11 through 20) are cleared each time the HP-41C is turned on.

Lower Case Flag (Flag 13). Flag 13 is another special purpose user flag that is used to control the way characters are printed. While flag 13 is set, all letters printed appear in a lower case format. All other characters other than alphabetic letters are not affected by flag 13.

Try this example to see how the printer and this flag work.
Keystrokes

Key in the letters in ALPHA mode.

Set the lower case flag.

Return to normal printing.

Notice that the display shows the letters in upper case. The lower case flag only changes the way letters are printed, not displayed.

The printer will continue to print all letters in lower case as long as flag 13 is set. The flag is cleared each time the HP-41C is turned on, resulting in upper case printing until the flag is again set.

Error Ignore Flag (Flag 25). This flag can be used in programs to control how the calculator reacts to errors. While set, the HP-41C will ignore the first error it encounters. The error automatically clears the flag. A list of all errors and messages is given in appendix B.

For more information about flag 25 and errors, refer to section 14 in the HP-41C Owner's Handbook and Programming Guide.
Accumulated Printer Output

The HP 82143 Printer has a special set of registers that enable you to control printing. These registers are collectively known as the print buffer. Using the functions presented in this section and later in section 5, you can place specific characters in the print buffer without printing them. When all of the desired characters have been placed into the print buffer, you can then instruct the system to print the contents of the buffer. This process is called accumulated printer output because you can accumulate information into the print buffer before printing it. In this way, you can control exactly what is printed and how it is formatted.

Accumulating ALPHA Characters Into the Print Buffer

Characters that you have placed into the ALPHA register (in ALPHA mode, or in a running program) can be accumulated into the print buffer using one simple function: \(\text{aca} \) (accumulate ALPHA).

Here is how \(\text{aca} \) works:

1. Executing \(\text{aca} \), either from the keyboard or in a program, causes all characters currently in the ALPHA register to be copied into the print buffer. The ALPHA register is unchanged.

2. Each subsequent \(\text{aca} \) execution places the contents of the ALPHA register into the print buffer after whatever is already in the print buffer.

For example, use the following keystrokes to accumulate ALPHA characters into the buffer. So that \(\text{aca} \) is easy to execute, first assign it to a key for USER mode execution. The first keystroke, \(\text{adv} \) prints anything that is already in the print buffer. (The \(\text{prbuf} \) function also prints the buffer. Both \(\text{adv} \) and \(\text{prbuf} \) and their relationship to the print buffer are covered later in this section.) Be sure to set the printer to MAN before you begin.
Accumulated Printer Output

Keystrokes	Display
ADV | 0.0000

This advances the paper and prints whatever is in the print buffer. (X-register is shown cleared.)

ASN | 0.0000
ALPHA ACA ALPHA | ASN ACA
LN | 0.0000

ACA is now assigned to the key location ...
... and can now be executed by pressing LN in USER mode.

This places the ALPHA letters ABCDE in the ALPHA register.
The contents of the ALPHA register (ABCDE) are now copied into the print buffer but are not printed.
This places the ALPHA letters FGHIJ into the ALPHA register.
The contents of the ALPHA register (FGHIJ) are now added to the print buffer after the first letters. So the print buffer now has the letters ABCDEFGHIJ accumulated in it. Nothing has been printed yet.

Print the contents of the print buffer by pressing the ADV key on the printer. You will learn more about printing the buffer later.
Here is what happened when you accumulated the ALPHA characters with `ACA` and then pressed `ADV`.

Contents of the ALPHA Register

<table>
<thead>
<tr>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCDE</td>
</tr>
</tbody>
</table>

The Print Buffer

<table>
<thead>
<tr>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
</tbody>
</table>

Printer:

<table>
<thead>
<tr>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCDE</td>
</tr>
</tbody>
</table>

FGHIJ

<table>
<thead>
<tr>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>J</td>
</tr>
</tbody>
</table>

Adv

<table>
<thead>
<tr>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCDEFGHIJ</td>
</tr>
</tbody>
</table>

Accumulating Numbers in the X-Register into the Print Buffer

The `(ACX)` *(accumulate X-register)* function does the same operation that `ACA` performs except that `ACX` accumulates the information in the X-register into the print buffer. When you execute `ACX`, a copy of the characters in the X-register is accumulated into the print buffer.

To see how `ACX` works, do the following example. Assign `ACX` to the `LOG` key location for USER mode execution. (The HP-41C is still in USER mode from the last example.)

Keystrokes

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASN</td>
<td></td>
</tr>
<tr>
<td>ALPHA ACX</td>
<td></td>
</tr>
<tr>
<td>ALPHA</td>
<td></td>
</tr>
<tr>
<td>LOG</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASN ACX</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

`ACX` is now ready for USER mode execution. All you do is press `LOG` in USER mode to execute `ACX`.
Now print the buffer by pressing \textit{ADV}.

\textbf{Keystrokes} \hspace{1cm} \textbf{Display} \hspace{1cm} \textbf{Printer: MAN} \\
\texttt{ADV} \hspace{1cm} \texttt{-123.0000} \hspace{1cm} \texttt{-123.0000}

Notice that the character position for the sign of the number ("blank" for positive numbers and "-" for negative numbers) and the decimal point are also accumulated.

Here is what happened to the print buffer:

\begin{center}
\textbf{Contents of X-Register} \hspace{1cm} \textbf{The Print Buffer} \hspace{1cm} \textbf{Printer: MAN} \\
\texttt{-123.0000} \hspace{1cm} \texttt{ACX} \hspace{1cm} -123.0000
\end{center}

\textbf{Character-by-Character Accumulations}

There are a total of 127 standard characters that can be printed on the HP 82143 Printer. Fifty-nine of these characters are on the ALPHA mode keyboard and can be accumulated into the print buffer using \texttt{ACA}. Using \texttt{ACCHR} (\textit{accumulate character}) you can accumulate any of the 127 characters, one at a time, into the print buffer.

Each of the 127 characters is assigned a number from 1 through 127. To accumulate a character, you specify the number that corresponds to the desired character and execute \texttt{ACCHR}. Here is a listing of each character and its corresponding number. (The program in the example on page 23 produces this list of characters and numbers.)
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>34.</td>
<td>67.</td>
<td>100.</td>
</tr>
<tr>
<td>2.</td>
<td>35.</td>
<td>68.</td>
<td>101.</td>
</tr>
<tr>
<td>3.</td>
<td>36.</td>
<td>69.</td>
<td>102.</td>
</tr>
<tr>
<td>4.</td>
<td>37.</td>
<td>70.</td>
<td>103.</td>
</tr>
<tr>
<td>5.</td>
<td>38.</td>
<td>71.</td>
<td>104.</td>
</tr>
<tr>
<td>6.</td>
<td>39.</td>
<td>72.</td>
<td>105.</td>
</tr>
<tr>
<td>7.</td>
<td>40.</td>
<td>73.</td>
<td>106.</td>
</tr>
<tr>
<td>8.</td>
<td>41.</td>
<td>74.</td>
<td>107.</td>
</tr>
<tr>
<td>9.</td>
<td>42.</td>
<td>75.</td>
<td>108.</td>
</tr>
<tr>
<td>10.</td>
<td>43.</td>
<td>76.</td>
<td>109.</td>
</tr>
<tr>
<td>11.</td>
<td>44.</td>
<td>77.</td>
<td>110.</td>
</tr>
<tr>
<td>12.</td>
<td>45.</td>
<td>78.</td>
<td>111.</td>
</tr>
<tr>
<td>13.</td>
<td>46.</td>
<td>79.</td>
<td>112.</td>
</tr>
<tr>
<td>14.</td>
<td>47.</td>
<td>80.</td>
<td>113.</td>
</tr>
<tr>
<td>15.</td>
<td>48.</td>
<td>81.</td>
<td>114.</td>
</tr>
<tr>
<td>16.</td>
<td>49.</td>
<td>82.</td>
<td>115.</td>
</tr>
<tr>
<td>17.</td>
<td>50.</td>
<td>83.</td>
<td>116.</td>
</tr>
<tr>
<td>18.</td>
<td>51.</td>
<td>84.</td>
<td>117.</td>
</tr>
<tr>
<td>19.</td>
<td>52.</td>
<td>85.</td>
<td>118.</td>
</tr>
<tr>
<td>20.</td>
<td>53.</td>
<td>86.</td>
<td>119.</td>
</tr>
<tr>
<td>21.</td>
<td>54.</td>
<td>87.</td>
<td>120.</td>
</tr>
<tr>
<td>22.</td>
<td>55.</td>
<td>88.</td>
<td>121.</td>
</tr>
<tr>
<td>23.</td>
<td>56.</td>
<td>89.</td>
<td>122.</td>
</tr>
<tr>
<td>24.</td>
<td>57.</td>
<td>90.</td>
<td>123.</td>
</tr>
<tr>
<td>25.</td>
<td>58.</td>
<td>91.</td>
<td>124.</td>
</tr>
<tr>
<td>26.</td>
<td>59.</td>
<td>92.</td>
<td>125.</td>
</tr>
<tr>
<td>27.</td>
<td>60.</td>
<td>93.</td>
<td>126.</td>
</tr>
<tr>
<td>28.</td>
<td>61.</td>
<td>94.</td>
<td>127.</td>
</tr>
<tr>
<td>29.</td>
<td>62.</td>
<td>95.</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>63.</td>
<td>96.</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>64.</td>
<td>97.</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>65.</td>
<td>98.</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>66.</td>
<td>99.</td>
<td></td>
</tr>
</tbody>
</table>
Accumulated Printer Output

For example, accumulate Φ into the print buffer and print it. Specify the number 15 (for Φ) and execute ACCHR. (For use in a program, place the number of the desired character into the X-register and follow that with ACCHR as a line in the program.)

Keystrokes
15
XEQ ALPHA
ACCHR ALPHA
ADV

ACCHR uses the absolute value of the integer portion of the number in the X-register, and does not alter the sign or the number.

Printing the Contents of the Print Buffer

Once you have the desired characters accumulated into the print buffer you can then instruct the printer to print the contents of the buffer. The buffer is printed left to right—the first character you place in the buffer is printed on the left and the last character you place in the buffer is printed on the right. There are two ways to print the contents of the buffer and further control the format of how the print buffer is printed. The two functions that cause the print buffer to be printed are PRBUF (print buffer) and ADV (advance). PRBUF prints the contents of the print buffer left justified, that is, the information will be printed beginning at the left margin of the print tape. ADV on the other hand, prints the contents of the print buffer right justified, where the information is lined up to the right margin.

Once any information in the print buffer is printed, that information is no longer in the print buffer.
The other functions that will cause the contents of the print buffer to be printed are, in general, any functions that normally cause printing (e.g., \texttt{PRX}, \texttt{PRA}, \texttt{VIEW}, \texttt{AVIEW}, etc.). However, you should remember that these functions may also change the contents of the buffer in the course of their normal function execution. \texttt{AVIEW}, for example, normally causes the contents of the ALPHA register to be printed and displayed. If the print buffer contains accumulated characters and you execute \texttt{AVIEW}, the print buffer will be printed on one line and then the contents of the ALPHA register will be printed on the next line.

When the buffer is completely filled,* the printer \textit{automatically} prints one line of the buffer to provide additional buffer space.

You can clear the contents of the print buffer \textit{without printing} by turning the power to the printer off then back on. All information in the print buffer will be lost.

To see how the \texttt{PRBUF} works with the accumulating functions, try this example. Begin by assigning \texttt{PRBUF} to the \texttt{TAN} key location for execution in USER mode. Check the USER display annunciator to ensure that the \textbf{HP-41C} is in USER mode.

\begin{tabular}{ll}
\textbf{Keystrokes} & \textbf{Display} \\
\hline
\texttt{ASN} & \texttt{ASN PRBUF} \\
\texttt{PRBUF} & \texttt{PRBUF} \\
\texttt{ALPHA} & \texttt{ALPHA} \\
\texttt{TAN} & \texttt{15.0000} \\
\end{tabular}

\texttt{PRBUF} is now assigned to the \texttt{TAN} key location for USER mode execution. The displayed number remains from the previous example.

\begin{itemize}
\item * The print buffer is 44 registers long. Depending upon the characters printed and operations performed during the buffer filling process, the buffer will hold fewer actual printing characters.
\end{itemize}
Now accumulate characters using [ACA], [ACX], and [ACCHR] to print this output: \(25.4 \text{ MM/IN!}\). (This example assumes that [ACA] is assigned to the [LN] location, [ACX] is assigned to [LOG], and [PRBUF] is assigned to [TAN] for USER mode execution.)

Keystrokes

```plaintext
USER
125
XEQ  ALPHA
ACCHR  ALPHA
FIX  1
25.4
ACX  (LOG)
ALPHA  SPACE  MM
/IN  ALPHA
ACA  (LN)
33
XEQ  ALPHA
ACCHR  ALPHA
PRBUF  (TAN)
```

The contents of the print buffer are printed left-justified and the buffer is now empty. To see how [ADV] prints the print buffer, repeat the above keystrokes and press [ADV] rather than [PRBUF] when you print the buffer.

Keystrokes

```plaintext
125
XEQ  ALPHA
ACCHR  ALPHA
25.4
ACX  (LOG)
ALPHA  SPACE  MM
/IN  ALPHA
ACA  (LN)
33
XEQ  ALPHA
ACCHR  ALPHA
ADV
```

Printer:

```
MAN

\(25.4 \text{ MM/IN!}\)
```
Accumulating Formatted and Unformatted Numbers

The \textbf{ACX} function causes the entire formatted number to be accumulated into the print buffer; this includes the number, formatted to the current display format specification, and the space for the minus sign in front of the number. If you wish to accumulate just the number and not the initial space, use \textbf{ARCL} to recall the contents of the X-register (press \textbf{ARCL} \textbf{X} in ALPHA mode) into the ALPHA register. \textbf{ARCL} copies only the number and its sign to the ALPHA register, not the initial space for positive numbers. For example:

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{X-Register} & \textbf{ALPHA Register} & \textbf{Print Buffer} \\
\hline
25.4 & \textbf{ARCL} & 25.4 \rightarrow \textbf{ACA} & 2 \rightarrow 25 \rightarrow . \\
-25.4 & \textbf{ARCL} & -25.4 \rightarrow \textbf{ACA} & -2 \rightarrow 4 \rightarrow . \\
25.4 & \textbf{ACX} & & 5 \\
-25.4 & \textbf{ACX} & & -4 \\
\hline
\end{tabular}
\end{center}

Skipping Characters in the Print Buffer

One additional function \textbf{SKPCHR} (\textit{skip character}), enables you to skip a number of character positions on the printed line. The number of characters to skip is specified by a number in the X-register. This function allows you to easily control the format of information you accumulate and then print.
To use \texttt{SKPCHR}, place the number of spaces you wish to skip into the X-register and then execute \texttt{SKPCHR}. Here is a simple example showing how \texttt{SKPCHR} can be used to control formats. Assign \texttt{SKPCHR} to the \texttt{COS} key location for USER mode execution. This example assumes that \texttt{ACA} is still assigned to the \texttt{LN} location, that \texttt{ACX} is still assigned to the \texttt{LOG} location, and that \texttt{PRBUF} is still assigned to the \texttt{TAN} location. Make sure the HP-41C is in USER mode.

Keystrokes

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{FIX} 4</td>
<td>33.0000</td>
</tr>
<tr>
<td>\texttt{ASN} SKPCHR</td>
<td>\texttt{ASN SKPCHR}</td>
</tr>
<tr>
<td>\texttt{ALPHA}</td>
<td>33.0000</td>
</tr>
<tr>
<td>\texttt{COS}</td>
<td>\texttt{SKPCHR} is now assigned to the \texttt{COS} location and is ready for execution in USER mode.</td>
</tr>
</tbody>
</table>

Now, accumulate the following into the print buffer:

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{ALPHA} TIME:</td>
<td>TIME:</td>
</tr>
<tr>
<td>\texttt{ALPHA}</td>
<td>33.0000</td>
</tr>
<tr>
<td>\texttt{ACA} \texttt{LN)}</td>
<td>The ALPHA string TIME: is now in the print buffer.</td>
</tr>
</tbody>
</table>

Using \texttt{SKPCHR}(assigned to the \texttt{COS} location), accumulate 12 spaces into the print buffer.

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12.0000</td>
</tr>
<tr>
<td>\texttt{SKPCHR} (\texttt{COS})</td>
<td>The number of spaces to be skipped is placed in the X-register.</td>
</tr>
<tr>
<td></td>
<td>The print buffer now contains the string TIME: followed by 12 spaces.</td>
</tr>
</tbody>
</table>
To complete the line, accumulate the string 4:35 AM into the print buffer.

Keystrokes

<table>
<thead>
<tr>
<th>ALPHA</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3 AM</td>
</tr>
<tr>
<td>5</td>
<td>4:35AM_</td>
</tr>
</tbody>
</table>

Display

12.0000

Print the buffer using **PRBUF** (assigned to the **TAN** location).

Keystrokes

<table>
<thead>
<tr>
<th>PRBUF</th>
<th>(TAN)</th>
</tr>
</thead>
</table>

Printer:

MAN

TIME: 4:35AM

The buffer was printed and is now empty. Note that **SKPCHR** uses the absolute value of the integer portion of the number in X to define the skip value.

Accumulating Lower-Case and Double-Wide Settings

HP-41C flags 12 and 13 control how the actual characters are printed. (A complete description of these flags is given on pages 28 through 31.) Flag 12, which is the double wide flag, controls the width of the characters printed. When set, flag 12 instructs the printer to print all characters double their normal width. Flag 13 is the lower-case flag, and when it is set, all alphabetic characters are printed lower case. When flags 12 and 13 are clear, printing is normal width (24 characters per line) and upper-case (except in the case of the actual lower-case characters on the ALPHA keyboard, a through e).

By setting and clearing these two flags, you can accumulate different width characters and upper/lower-case letters into the print buffer for later printing. Here is a simple example: (This example assumes that **ACA** and **PRBUF** are still assigned to the **LN** and **TAN** key locations, respectively, and that the HP-41C is in USER mode.)
### Keystrokes	Display

MY NAME IS | MY NAME IS...

This string is in the ALPHA register, ready for accumulation into the print buffer. The number remains from a previous example.

12.0000 | The ALPHA register contents are now in the print buffer.

B (sp 12 12.0000) | Sets the double-wide flag.

This next string is accumulated in the buffer with the double-wide flag set.

M (sA 13 12.0000) | The lower-case flag is now set.

This lower-case string “ay” is accumulated in the print buffer.

Now, print the buffer with **PRBUF**:

Keystrokes	**Printer:**

PRBUF (TAN) | **MAN**

The buffer is printed.

My NAME IS Ray

Return to normal print settings.
Programming With the Accumulation Functions

All of the accumulation functions covered in this section can be keyed in as instructions in programs that you write. Using these functions, you can construct special formats for your output and control all phases of the program print operations.

Programs that contain accumulation functions should not be executed with the print mode switch set to TRACE or NORM. The TRACE and NORM printing operations use the same special buffer registers that are used for accumulating printed output. The results of executing a program with the print mode switch set to TRACE or NORM is that information that the program accumulates in the print buffer will print prematurely with the TRACE or NORM printing information.
The advanced capabilities of the HP-41C/HP 82143A system provide printing features never before offered by Hewlett-Packard in a portable calculator. While the printer is plugged into the HP-41C, five powerful plotting operations are available. Using these operations you can plot any valid single-value mathematical function. This section explains how each of the plotting operations are used and gives some examples of how each operation works.

Interactive Plotting of Functions

The interactive plotting operation, called \texttt{PRPLOT} (print plot), requires a basic knowledge of how the HP-41C is programmed. If you are unsure as to how to key a program into the HP-41C, refer to part II of the \textit{HP-41C Owner's Handbook and Programming Guide}.

\texttt{PRPLOT} prompts you for all of the information necessary to construct the axes of the plot and the values to be used to plot your function. Then, it uses a program that you have already stored in program memory to plot the actual values.

Before we get into the specifics of how \texttt{PRPLOT} works, try this simple example.

The function we will plot is:

\[y = \text{SIN}(x) \]

This example assumes that program memory is cleared and the allocation of data storage registers is \texttt{SIZE 017}. In addition, ensure that the HP-41C is set to degrees mode for this example and clear storage register \texttt{R03} before you begin—you will learn how \texttt{R03} is used in plotting later.
48 Plotting

Keystrokes Display

0 STO 03 0.0000
PRGM
GTO * * 00 REG 46
LBL
ALPHA WIGGLE
ALPHA SIN
GTO * * 00 REG 44
0.0000
PRGM

Now execute [PRPLOT]. Since the function you are plotting is \(\text{SIN}(x) \), it would be useful to plot the values of \(x \) from 0 to 360, and the resultant values will be between \(-1.0000\) and \(1.0000\). These values should be specified as \(\text{YMIN} = -1.1 \) and \(\text{YMAX} = 1.1 \) to provide room to adequately plot the values close to \(-1\) and \(1\). For this example, the values of \(x \) should be in increments of \(10\). So \(x \) will be 0, 10, 20, ..., 360, and \(y \) will be \(\text{SIN}(0) \), \(\text{SIN}(10) \), \(\text{SIN}(20) \), ..., \(\text{SIN}(360) \). The \(x \)-axis should be set to zero.

Here are all of the values we have defined and the words that [PRPLOT] uses to prompt for those values.

Name of function: \(\text{name? WIGGLE} \)
Minimum \(y \) value: \(\text{Y MIN? -1.1} \)
Maximum \(y \) value: \(\text{Y MAX? 1.1} \)
\(x \) axis location: \(\text{AXIS? 0} \)
Minimum \(x \) value: \(\text{X MIN? 0} \)
Maximum \(x \) value: \(\text{X MAX? 360} \)
\(x \) increment value: \(\text{X INC? 10} \)

Note that [PRPLOT] uses registers \(R_{00} \) through \(R_{11} \) to construct the plot. Be sure that the function you are plotting does not use these registers. Any values stored in these registers prior to plotting will be lost. Refer to page 55 for additional information.
Keystrokes

PRPLOT
ALPHA NAME?
WIGGLE
R/S 1.1 CHS
R/S 1.1
R/S 0
R/S 0
R/S 360
R/S 10
R/S

Display

NAME?
WIGGLE
Y MIN?
-1.1
Y MAX?
1.1
AXIS?
0
X MIN?
0
X MAX?
360
X INC?
10

Printer: MAN

PLOT OF WIGGLE
X <UNITS= 1.> ↓
X <UNITS= 1.> ↑
-1.10 1.10
0.00

<table>
<thead>
<tr>
<th>0.</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>z</td>
</tr>
<tr>
<td>20.</td>
<td>x</td>
</tr>
<tr>
<td>30.</td>
<td>z</td>
</tr>
<tr>
<td>40.</td>
<td>x</td>
</tr>
<tr>
<td>50.</td>
<td>z</td>
</tr>
<tr>
<td>60.</td>
<td>z</td>
</tr>
<tr>
<td>70.</td>
<td>x</td>
</tr>
<tr>
<td>80.</td>
<td>x</td>
</tr>
<tr>
<td>90.</td>
<td></td>
</tr>
<tr>
<td>100.</td>
<td>x</td>
</tr>
<tr>
<td>110.</td>
<td></td>
</tr>
<tr>
<td>120.</td>
<td></td>
</tr>
<tr>
<td>130.</td>
<td></td>
</tr>
<tr>
<td>140.</td>
<td></td>
</tr>
<tr>
<td>150.</td>
<td></td>
</tr>
<tr>
<td>160.</td>
<td></td>
</tr>
<tr>
<td>170.</td>
<td></td>
</tr>
<tr>
<td>180.</td>
<td></td>
</tr>
<tr>
<td>190.</td>
<td></td>
</tr>
<tr>
<td>200.</td>
<td></td>
</tr>
<tr>
<td>210.</td>
<td></td>
</tr>
<tr>
<td>220.</td>
<td></td>
</tr>
<tr>
<td>230.</td>
<td></td>
</tr>
<tr>
<td>240.</td>
<td></td>
</tr>
<tr>
<td>250.</td>
<td></td>
</tr>
<tr>
<td>260.</td>
<td></td>
</tr>
<tr>
<td>270.</td>
<td></td>
</tr>
<tr>
<td>280.</td>
<td></td>
</tr>
<tr>
<td>290.</td>
<td></td>
</tr>
<tr>
<td>300.</td>
<td></td>
</tr>
<tr>
<td>310.</td>
<td></td>
</tr>
<tr>
<td>320.</td>
<td></td>
</tr>
<tr>
<td>330.</td>
<td></td>
</tr>
<tr>
<td>340.</td>
<td></td>
</tr>
<tr>
<td>350.</td>
<td></td>
</tr>
<tr>
<td>360.</td>
<td></td>
</tr>
</tbody>
</table>
50 Plotting

You can see how simple the PRPLOT operation is to use. You key a program into program memory, execute PRPLOT and supply the information requested by PRPLOT.

Now let’s cover how PRPLOT works and how you can take advantage of its powerful plotting capabilities.

Programs for PRPLOT. The program or function that you wish to plot can be *any* program that takes a value in the X-register and returns a result to the X-register.* PRPLOT supplies the x-value to the program, runs the program, and then uses the result in the X-register to plot a point.

* When executed from a program, PRPLOT uses a minimum of three subroutine levels and up to two more than the number of subroutine levels in the function you are plotting.
In our example program WIGGLE, we specified the minimum x-value to be 0 and the maximum x-value to be 360. \texttt{PRPLOT} uses this specification to supply x-values to the program. The increment value (10 in the example) is used by \texttt{PRPLOT} to determine in what increments the x-values are to be supplied.

So, in the example, the x-values supplied by \texttt{PRPLOT} are 0 through 360 in increments of 10 (0, 10, 20, 30, 40, ..., 350, 360). WIGGLE computes the sine of each of these values and places the answer back into X.

<table>
<thead>
<tr>
<th>X-Values For Use By WIGGLE: (X-Coordinates)</th>
<th>Output From WIGGLE In X: (Y-Coordinates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>10</td>
<td>0.1736</td>
</tr>
<tr>
<td>20</td>
<td>0.3420</td>
</tr>
<tr>
<td>30</td>
<td>0.5000</td>
</tr>
<tr>
<td>40</td>
<td>0.6428</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>360</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

This input/output scheme allows you to plot even the most complicated of functions. All you do is key in the function as a program so that it uses the x-values (supplied by \texttt{PRPLOT}) in the X-register, and places each resultant back into the X-register. \texttt{PRPLOT} does the plotting and execution of the program automatically.

\texttt{PRPLOT} uses the Y, Z, and T stack registers for plotting. Any data placed in those registers will be destroyed by the execution of \texttt{PRPLOT}.

Specifying the X- and Y-Axes. When you run \texttt{PRPLOT}, it prompts you for all of the data it needs to construct a plot. Three of these values (X MIN, X MAX and X INC) determine what x-values are to be supplied to the function and how the x-axis is to be printed. The value specified for X MAX must be larger than X MIN. If incorrect values are entered, the calculator will continue to prompt for that value until a correct value is entered. The X INC will not plot x beyond X MAX.

Here are some examples of X MIN, X MAX and X INC values and their effects on the values supplied to our example function (SIN(x)):
An added feature of X INC is that by specifying a negative value, the value you specify tells the calculator that you want that number of x-increments. The calculator then determines the increment for you, automatically. For example, in the following example, if you specify X INC as -36, that means that you want the calculator to supply a starting value and 36 x-increments from 0 to 360.

\[
\begin{align*}
X \text{ MIN} & \quad 0 \\
X \text{ MAX} & \quad 360 \\
X \text{ INC} & \quad -36
\end{align*}
\]

If you specify X INC as -10, the calculator supplies a starting value and 10 increments from 0 to 360:

\[
\begin{align*}
X \text{ MIN} & \quad 0 \\
X \text{ MAX} & \quad 360 \\
X \text{ INC} & \quad -10
\end{align*}
\]

The y-axis is specified in the same way as the x-axis except that it does not affect the values supplied to the function you are plotting. Instead, it determines how the values will be plotted. In our first example, where the function SIN(x) was plotted, the y-values were specified as -1.1 for Y MIN and 1.1 for Y MAX. That is because all values of SIN(x) fall between negative one and positive one, inclusive. By varying the y-axis values, you can further control how the plot is printed. If you specify the y-axis to be smaller than the range of the values to be plotted, the values that are larger than the range will be plotted at the corresponding maximum or minimums.
Here are some examples of how you can vary the y-values to change the plot. Notice that as the y-values are changed, the shape of the plot changes. In this way, you can specify the values to allow you to concentrate on a specific portion of a plot.

\[Y \text{ MIN} \quad -1.1 \quad \quad Y \text{ MIN} \quad -2 \]
\[Y \text{ MAX} \quad 1.1 \quad \quad Y \text{ MAX} \quad 2 \]
\[\text{AXIS} \quad 0 \quad \quad \text{AXIS} \quad -2 \]
\[X \text{ MIN} \quad 0 \quad \quad X \text{ MIN} \quad 0 \]
\[X \text{ MAX} \quad 90 \quad \quad X \text{ MAX} \quad 90 \]
\[X \text{ INC} \quad 10 \quad \quad X \text{ INC} \quad 10 \]
The **AXIS** prompt is asking where you wish to plot the x-axis. The value specified for **AXIS** should be between (inclusive) **YMIN** and **YMAX**. If it is not, the calculator will continue to prompt you for the **AXIS** value until a valid value is specified. Keying in **NONE** (or any other ALPHA characters) will suppress the printing of the X-axis. Look at the above examples to see how you can vary the position of the axis.

Plot Labels. Each printed plot is labeled with five lines of information. The first line is the name of the program you are plotting. The second and third lines are the x- and y-axis units. The last two lines are the actual y-axis labels.

Since the width of the printer tape is limited, many-digit labels on the axes are not possible to print. Instead, **PRPLLOT** determines a unit value that will allow the labels to be printed in a shorter form. The format is:
The arrow pointing down in the X-row is a reminder that the unit value applies to the labels on the x-axis down the left side of the plot. The arrow pointing to the right in the Y-row reminds you that the Y unit value applies to the numbers in the y-axis across the top of the plot.

For example, the unit values below indicate that the x-label units are 10^4, and the y-label units are 10^3.

The next line in the plot label is the minimum and maximum Y-axis values. Directly under these numbers is the label for the vertical X-axis, which is positioned and labeled according to the value that you specified for the axis.

Registers Used By \texttt{PRPLOT}. \texttt{PRPLOT} uses registers R$_{00}$ through R$_{11}$ to hold the plotting information. Before \texttt{PRPLOT} will execute properly, the register allocation must be set to at least \texttt{SIZE} 012. In addition, \texttt{PRPLOT} uses the contents of R$_{03}$ to specify the character to be used to plot the actual x, y values. Refer to Plotting With Special Characters on page 59 for more information. (Before you begin using \texttt{PRPLOT}, it is a good idea to clear R$_{03}$ so that the plot character is not some other unwanted character.)

The \texttt{PRPLOT} Program. \texttt{PRPLOT} is a program written using normal HP-41C functions. If you wish to look at the program, you can download it into program memory using \texttt{COPY}. The \texttt{PRPLOT} program requires a minimum of one additional plug-in memory module before it can be copied into program memory. Once the \texttt{PRPLOT} program is in program memory, you can add new lines, and delete existing lines. The changes that you make cannot, however, be recorded back into the printer. You must use the altered program as it is in memory, or record it on a card (using the HP 82104A Card Reader) for permanent storage. You can print the complete program on the printer. Appendix C contains an annotated listing of \texttt{PRPLOT}.

If \texttt{PRPLOT} is allowed to execute to completion, the display format will be set to \texttt{FIX} 4, regardless of the display format that was in effect when \texttt{PRPLOT} began execution. In addition, flag 12 will be cleared.
Programmable Plotting

The PRPLOT operation is programmable and works in a program just as it does when executed from the keyboard. In addition, there is another programmable version of PRPLOT that is not interactive (does not prompt for the plotting parameters). It is called PRPLOTP (print plot, programmable).

To execute PRPLOTP from the keyboard or in a program you must first store all of the plotting parameters into these registers:

<table>
<thead>
<tr>
<th>Register</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R00</td>
<td>YMIN</td>
</tr>
<tr>
<td>R01</td>
<td>YMAX</td>
</tr>
<tr>
<td>R03</td>
<td>Plotting Character</td>
</tr>
<tr>
<td>R04</td>
<td>AXIS</td>
</tr>
<tr>
<td>R08</td>
<td>XMIN</td>
</tr>
<tr>
<td>R09</td>
<td>XMAX</td>
</tr>
<tr>
<td>R10</td>
<td>XINC</td>
</tr>
<tr>
<td>R11</td>
<td>NAME</td>
</tr>
</tbody>
</table>

When PRPLOTP is executed, it uses these values to construct a plot. Like PRPLOT, PRPLOTP also uses the contents of R03 to specify the character to be used to plot the values. Refer to Plotting With Special Characters on page 59 for more information. The display format is set to FIX 4 when the plot is completed.

PRPLOTP is written using normal HP-41C functions and can be copied into program memory using COPY. It requires a minimum of one plug-in module before it can be copied into program memory. (PRPLOTP is the same program as PRPLOT except without the prompting operations.)

The DATA ERROR message will result if YMAX \(\leq \) YMIN, XMAX \(\leq \) XMIN, or AXIS is not between (inclusive) YMIN and YMAX. The NONEXISTENT display will result if the function to be plotted does not exist.

Plotting a Y-Axis

PRAXIS is the part of the PRPLOT program that determines what the Y-axis is to look like. It uses the values in the following registers to construct and label an axis, as well as determine the y unit value. PRAXIS is programmable, or it can be executed from the keyboard.
This operation can be used for your special applications where you wish to construct your own plotting routines. PRAXIS does the axis labeling and scaling computations for you. When you copy PRPLOT or PRPLOTP into program memory using COPY, the PRAXIS subroutine is included with that program. A complete annotated listing of PRPLOT, including PRAXIS, is given in appendix C.

Sample Axis: (YMIN=-2, YMAX=5, nnn=140, AXIS=-0.75)

The PRAXIS program uses two subroutine levels in its execution. If you wish to execute PRAXIS in a program or subroutine, be sure that the program has at least two subroutine levels available. When the top axis has been printed, you again have the full six subroutine levels available. PRAXIS clears flag 12 and leaves the display format set to FIX 4 when the plot is completed.

The DATA ERROR display will result if the absolute value of nnn (R_{02}) is greater than 168.

* The nnn parameter defines the width of the plotting field in columns. Each printed character is seven columns wide and there is a maximum of 24 characters on a line so the maximum width is 7 \times 24 or 168 columns wide. In the execution of PRAXIS, the nnn input is changed to a form that is suitable for use by RECPLOT and STKPLOT. This form, nnn.aaa is explained later in Single-Line Plotting. PRAXIS uses only the nnn portion of the number.
Single-Line Plotting

The operation (register plot) prints a vertical and one plot value. is used by and for plotting. The plotting parameters for are:

- X-Register: value to plot
- R_{00}: YMIN
- R_{01}: YMAX
- R_{02}: nnn.aaa

where nnn is the column width of the plot (refer to footnote on page 57), and aaa is the column number of the x-axis. If aaa = 0 the axis is automatically positioned on the column closest to Y = 0. If nnn.aaa is negative, only the x-value is plotted, not the axis. You can execute the function covered on page 56 to automatically determine the nnn.aaa values.

uses R_{03} to specify the plotting character. Refer to Plotting With Special Characters on page 59 for more information. The program does not use any subroutine levels and does not change the display format or any of the values you store in the registers.

Here is a sample of input and output:

X-register	3
R_{00}	-2
R_{01}	5
R_{02}	140.000

An additional plot operation (stack plot) also enables you to do single-line plots just as you would with except that requires that the value and parameters be placed into the stack registers. The use of stack registers for plotting removes the possible conflicts that may arise between your program's use of R_{00} and R_{01}. The operation always plots the x, y value with a small x.

- T-register: value to plot
- Z-register: YMIN
- Y-register: YMAX
- X-register: nnn.aaa
Here is an example of input and output:

<table>
<thead>
<tr>
<th>Register</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-register</td>
<td>5</td>
</tr>
<tr>
<td>Z-register</td>
<td>-10</td>
</tr>
<tr>
<td>Y-register</td>
<td>10</td>
</tr>
<tr>
<td>X-register</td>
<td>140.000</td>
</tr>
</tbody>
</table>

The \texttt{REGPLOT} and \texttt{STKPLOT} operations enable you to easily set up your own labeled plots. You first accumulate the X-label for a line of the plot with \texttt{ACK} and then execute \texttt{REGPLOT} or \texttt{STKPLOT}. The X-label will automatically be positioned in the correct column. This procedure can be repeated in a program for each line you wish to plot. Because the labels are positioned automatically, they can vary in length, providing they fall into the number of columns not used for plotting.

In both \texttt{REGPLOT} and \texttt{STKPLOT} the \texttt{DATA ERROR} message will result if $Y_{MIN} \geq Y_{MAX}$, $nnn=000$, $|nnn| > 168$.

Plotting With Special Characters

The \texttt{PRPLOT}, \texttt{PRPLOTP} and \texttt{REGPLOT} operations all use R_{03} to specify the character to be used for plotting. By using a special function (\texttt{BLDSPEC}, covered in section 5) you can specify the plotting character that you wish to use in your plots. Each of these operations uses the data in R_{03} to determine which character to plot with. If the contents of R_{03} is numeric, the plot character used is the small x. But if the contents of R_{03} is output generated by \texttt{BLDSPEC}, that information is used to determine the plot character. To ensure that the plot will be made using the small x, and not some unwanted character, clear R_{03} (press 0 \texttt{STO} 03).
The HP 82143A Printer has operations that allow you to control precisely what is printed, even the exact shape of what is printed. You can build your own character fonts, special characters, even print non-character graphics. Using the graphics operations discussed in this section, you can specify the plotting character used in [PRPLT], [PRPLTP], and [REGPLT].

All standard characters printed by the HP 82143A Printer are composed of dots in a five-by-seven matrix. If you look very closely at a printed character, you will be able to see how the dots make up the characters. In order to provide spaces between characters, each character sits in a seven-by-seven matrix. To print a specific character, the printer prints the dots that make up that character.

The 5×7 character Matrix

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

The Full 7×7 Matrix

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Printed Character

Using the graphics operations, you can actually tell the printer which dots are to be printed in each column of the seven-by-seven dot matrix.

Specifying a Column of Dots

Here is a simple way to specify which dots you wish to have printed in a particular column. Using the following illustration as a guide, fill in the dots you wish to print in a column. Each row is assigned a numeric value and the values for the dots you are printing are added together. The result is the *column print number* which is used in some of the graphics operations. The column print number can be 0 through 127.
Accumulating Columns

A series of column print numbers can be accumulated together into the print buffer using \(\text{ACCOL} \) (accumulate column). This allows you to print special graphics up to 43 columns wide.

To use \(\text{ACCOL} \), place a column print number into the X-register and execute \(\text{ACCOL} \). The column print number is converted by \(\text{ACCOL} \) and is placed into the print buffer. Each converted column print number occupies one register in the print buffer. (Refer to section 3 for more information about the print buffer.) The \(\text{ACCOL} \) operation should be executed only while the print mode switch is set to MAN. The TRACE and NORM settings cause the print buffer to be printed prematurely.

The following example accumulates nine column print numbers into the print buffer and then prints the buffer.

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & & & & & & & & \\
2 & & & & & & & & \\
4 & & & & & & & & \\
8 & & & & & & & & \\
16 & & & & & & & & \\
32 & & & & & & & & \\
64 & & & & & & & & \\
\end{array}
\]

\[
\text{Column Print Numbers} = 0 \ 127 \ 65 \ 93 \ 85 \ 93 \ 65 \ 127 \ 0
\]
You may wish to assign `PRBUF` and `ACCOL` to the keyboard for USER mode execution. The example below assumes that these operations have been assigned to the keyboard for USER mode execution.

Keystrokes

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>CLX</code></td>
<td>Clears the X-register.</td>
</tr>
<tr>
<td><code>PRBUF</code></td>
<td>Clears the print buffer.</td>
</tr>
<tr>
<td>0 <code>ACCOL</code></td>
<td>The first column is accumulated.</td>
</tr>
<tr>
<td>127 <code>ACCOL</code></td>
<td>The second column is accumulated.</td>
</tr>
<tr>
<td>65 <code>ACCOL</code></td>
<td>The last column is accumulated.</td>
</tr>
<tr>
<td>93 <code>ACCOL</code></td>
<td>The print buffer is printed and cleared.</td>
</tr>
</tbody>
</table>

`ACCOL` uses the absolute value of the integer portion of the number in the X-register for the column print number specification.

You can accumulate columns until the print buffer is filled. When filled, the print buffer is automatically printed.

Skipping Columns

As you are accumulating columns into the print buffer, you may find that you need to skip columns to obtain the desired output. The `SKPCOL` (skip column) operation allows you to do just that. To use `SKPCOL`, simply place the number of columns that you wish to skip into the X-register and then execute `SKPCOL`. The skip value is accumulated into the print buffer. As with `ACCOL`, `SKPCOL` should be executed with the print mode switch set to MAN.
The largest number of columns that you can specify is 167 (skipping 168 columns would be the same as a paper advance). The **DATA ERROR** message will result if the absolute value of the integer portion of the skip value is larger than 167. The smallest valid skip value is 0.

If you are skipping a large number of columns, you may wish to use `[SKPCOL]` rather than `[SKPCOL]`. For example, if you wish to skip 63 columns, that is the same as 9 characters (one character is seven columns wide). In programs, this technique will save program memory space by allowing smaller skip numbers.

Notice that the width of the printer paper is wider than the maximum-width printing. You can print up to 24 characters wide, or 168 columns wide on the printer.

Here is a simple example showing how `[SKPCOL]` can be used with `[ACCOL]`. The example assumes that `[SKPCOL]`, `[ACCOL]` and `[PRBUF]` are all assigned to the keyboard for USER mode execution. The characters accumulated are two vertical lines, one is placed on the right margin, one on the left.

Keystrokes

```
PRBUF
127 ACCOL
166 SKPCOL
127 ACCOL
PRBUF
```

Printer:

```
MAN
```

Clears the print buffer.
The first vertical line.
Skips 166 columns.
The second vertical line.
Prints the buffer.

Building Special Characters

Whereas the `[ACCOL]` operation is used to accumulate special graphics up to 43 columns wide, the `[BLSPEC]` (*build special*) is used to build special characters in the normal seven-by-seven matrix. Using the X- and Y-registers, `[BLSPEC]` takes up to seven column print numbers, one at a time, and converts them into a seven-column character specification. This character is then accumulated into the print buffer using `[ACSPEC]` (*accumulate special*), or stored into a register for later accumulation.

By using `[BLSPEC]` and `[ACSPEC]` you can create your own special characters, new characters, and special symbols. Here is a procedure for using `[BLSPEC]` and `[ACSPEC]

1. Determine the seven column print numbers that make up the character.
2. Press 0 [ENTER+] to clear the X- and Y-registers.

3. Place the first column print number in the X-register and execute [BLDSPEC]. Repeat this procedure for each of the seven column print numbers. The characters displayed by the HP-41C are meaningless.

4. Execute [ACSPEC]. You can store the character into any storage register for later use. Even though the character is not displayed, it is in the X-register when you have completed the [BLDSPEC] operations.

5. Print the print buffer using [PRBUF] or [ADV].

Here is an example showing how the procedure is used to build and store a special character.

<table>
<thead>
<tr>
<th>Column Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>V 1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>64</td>
</tr>
<tr>
<td>Column Print Numbers = 0 28 85 127 85 28 0</td>
</tr>
</tbody>
</table>

From left to right, the column print numbers are now "built" into a special character using [BLDSPEC].

Keystrokes

0 [ENTER+] clears the X- and Y-registers.

0 [BLDSPEC] the first column print number.

28 [BLDSPEC] the second.

85 [BLDSPEC] the third.

127 [BLDSPEC] the fourth.

85 [BLDSPEC] the fifth.

28 [BLDSPEC] the sixth.

0 [BLDSPEC] the seventh.
Now that all of the column print numbers have been built into a special character you can accumulate and print it. The character can also be stored into a register and recalled for later accumulation.

Printer: MAN

```plaintext
ACSPEC

The seven-column special character is accumulated into the print buffer. The character is printed. The complete character is stored into register R_{01} and also remains in X.

RCL 01
ACSPEC
PRBUF

The **ACSPEC** operation always accumulates seven columns. So if you specify fewer than seven column print numbers with **BLDSPEC**, the **ACSPEC** operation will automatically insert blank columns to right-justify the character in the matrix.

When you specify more than seven column print numbers with **BLDSPEC**, the first numbers specified will be lost as each excess number is specified.

**Right- and Left-Justified Buffer Printing**

You can control whether your accumulated output is right-justified (lined up to the right margin) or left-justified (lined up to the left margin) using the **ADV** and **PRBUF** operations.

To right-justify a buffer printing, press **ADV** on the printer or execute the **ADV** function.

To left-justify a buffer printing, execute **PRBUF**.

When the print buffer is automatically printed as a result of a buffer overflow or execution of other print functions, it is printed justified according to the last printed line.

With the contents of the stack intact from the previous example, print the print buffer right-justified.
**Graphics**

### Keystrokes

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ACSPEC</strong></td>
<td>Accumulates the character into the buffer. Prints right-justified.</td>
</tr>
<tr>
<td><strong>ADV</strong></td>
<td>Now print the buffer left-justified.</td>
</tr>
</tbody>
</table>

### Programming the Special Character Operations

Any of the operations discussed above for using **BLDSPEC** and **ACSPEC** can be programmed. Just structure the program so that it builds and accumulates according to the procedure on page 64. Remember that you can store the special characters in any data storage register and then recall and accumulate them when you wish to print.

### Special Plotting Characters

The **PRPLOT**, **PRPLOTB**, and **REGPLOT** operations discussed in section 4 all use a value in storage register $R_{03}$ to specify the plotting character that is used in printed plots. Using **BLDSPEC** you can “build” any plotting character you desire, and then store it into register $R_{03}$ prior to executing the plotting function.

1. Build a special plotting character.
2. Store it into $R_{03}$.
3. Execute the desired plotting operation.
Appendix A

Accessories, Maintenance and Service

Accessories

Standard Accessories
AC Adapter/Recharger
Rechargeable Battery Pack
*HP 82143A Printer Owner's Handbook*
Two Rolls of Paper

Optional Accessories for the HP 82143A Printer
Paper Rolls
Reserve Power Pack
Security Cable

Maintenance

The HP 82143A Printer has been designed with the utmost attention to detail and quality. After construction, each printer is thoroughly inspected for electrical, mechanical, and cosmetic flaws.

Temperature Specifications

- **Operating**: 0° to 45°C 32° to 113°F
- **Storage**: -40° to 55°C -40° to 131°F
- **Charging**: 15° to 40°C 59° to 104°F

Printer Maintenance

**CAUTION**

Always turn the HP-41C off before inserting or removing any plug-in extensions or accessories. Failure to turn the HP-41C off could damage both the calculator and the accessory.

1. Keep the contact area on the printer plug free of obstructions. Should the contacts become dirty, carefully brush or blow the dirt out of the contact area. Do not use any liquid to clean the contacts or the printer.
2. Store the printer in a clean dry place.

3. Always turn the HP-41C off before inserting or removing any plug-in extension. Failure to do so could damage both the calculator and the extension.

**CAUTION**

Do not insert your fingers or any other objects other than an HP module or plug-in accessory into any port. Doing so could alter the Continuous Memory or could even damage the port or the calculator. Always keep the port caps in place over any HP-41C ports that are not in use.

**Improper Printer Operation**

If your HP-41C system appears to be operating properly except for printing, check the following:

1. Make sure that the calculator is in the proper operating mode. Read the specific procedure for the print operation you are executing.

2. If a function executes from the keyboard but not from a program, make sure flag 21 is set. Refer to page 28.

3. Make sure that the printer interface cable is plugged into one of the I/O ports on the calculator and that both the calculator and printer are turned on.

4. Check the BAT and POWER indicators on the printer. If the rechargeable batteries do not have adequate power, the printer will not operate. Refer to section 1, pages 7–10 for more information about batteries and power.

5. Check the HP-41C display for the **OUT OF PAPER** message. If the printer is out of paper, it will not print.

6. Press [PRINT] then [ADV] on the printer. If the paper advances, the printer is operating properly.

7. If the paper is feeding properly but no printing appears on the paper, the paper roll may be inserted backwards. Pull the paper backwards out of the print mechanism, turn it over and reinsert the paper. Refer to section 1, pages 12–13 for more information. Use only Hewlett-Packard thermal paper.
8. If the paper is jammed, clear it by grasping the tape and pulling it forward or backward through the printer mechanism. Never insert tools into the printer or its mechanism.

9. If you still cannot determine the source of the problem, you may wish to take your HP-41C and the HP 82143A Printer to your nearest authorized HP retail outlet prior to sending the unit in for service. By temporarily exchanging printers, or calculators, you and the dealer may be able to determine which device is not functioning properly. Only the device that has been determined to be malfunctioning should be sent to HP for service. If you and the dealer are unable to determine the source of the malfunction, send the HP-41C and the printer to HP for service. Refer to Repair Policy.

Limited One-Year Warranty

What We Will Do

The HP 82143A Printer is warranted by Hewlett-Packard against defects in materials and workmanship for one year from the date of original purchase. If you sell your unit or give it as a gift, the warranty is transferred to the new owner and remains in effect for the original one-year period. During the warranty period, we will repair or, at our option, replace at no charge a product that proves to be defective, provided you return the product, shipping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy. ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or countries do not allow limitations on how long an implied warranty lasts, so
the above limitation may not apply to you. **IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR CONSEQUENTIAL DAMAGES.** Some states, provinces, or countries do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights that vary from state to state, province to province, or country to country.

**Warranty for Consumer Transactions in the United Kingdom**

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be determined by statute.

**Obligation to Make Changes**

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard shall have no obligation to modify or update products once sold.

**Warranty Information**

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard dealer or a Hewlett-Packard sales and service office. Should you be unable to contact them, please contact:

- **In the United States:**
  
  Hewlett-Packard  
  Corvallis Division  
  1000 N.E. Circle Blvd.  
  Corvallis, OR 97330  
  Telephone: (503) 758-1010  
  Toll-Free Number: (800) 547-3400 (except in Oregon, Hawaii, and Alaska)
Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may have your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit is under warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt at any service center. This is an average time and could vary depending upon the time of year and the work load at the service center. The total time you are without your unit will depend largely on the shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is located in Corvallis, Oregon:
Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer where you purchased your unit.

**AUSTRIA**
HEWLETT-PACKARD Ges.m.b.H.
Kleinrechner-Service
Wagramerstrasse-Lieblgasse 1
A-1220 Wien (Vienna)
Telephone: (0222) 23 65 11

**BELGIUM**
HEWLETT-PACKARD BELGIUM SA/NV
Woluweval 100
B-1200 Brussels
Telephone: (02) 762 32 00

**DENMARK**
HEWLETT-PACKARD A/S
Datavej 52
DK-3460 Birkerod (Copenhagen)
Telephone: (02) 81 66 40

**EASTERN EUROPE**
Refer to the address listed under Austria.

**FINLAND**
HEWLETT-PACKARD OY
Revontulentie 7
SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 455 02 11

**FRANCE**
HEWLETT-PACKARD FRANCE
Division Informatique Personnelle
S.A.V. Calculateurs de Poche
F-91947 Les Ulis Cedex
Telephone: (6) 907 78 25

**GERMANY**
HEWLETT-PACKARD GmbH
Kleinrechner-Service
Vertriebszentrale
Berner Strasse 117
Postfach 560 140
D-6000 Frankfurt 56
Telephone: (611) 50041

**ITALY**
HEWLETT-PACKARD ITALIANA S.P.A.
Casella postale 3645 (Milano)
Via G. Di Vittorio, 9
I-20063 Cernusco Sul Naviglio (Milan)
Telephone: (2) 90 36 91
International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is available in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local Hewlett-Packard service center to see if service is available for it. If service is unavailable, please ship the unit to the address listed above under “Obtaining Repair Service in the United States.” A list of service centers for other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and materials. In the United States, the full charge is subject to the customer’s local sales tax.
In European countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable. All such taxes will appear as separate items on invoiced amounts.

Products damaged by accident or misuse are not covered by the fixed repair charges. In these situations, repair charges will be individually determined based on time and materials.

**Service Warranty**

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period of 90 days from date of service.

**Shipping Instructions**

Should your unit require service, return it with the following items:

- A completed Service Card, including a description of the problem.
- A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of purchase date should be packaged in adequate protective packaging to prevent in-transit damage. Such damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the shipment to the service center. The packaged unit should be shipped to the nearest Hewlett-Packard designated collection point or service center. Contact your dealer for assistance. (If you are not in the country where you originally purchased the unit, refer to “International Service Information” above.)

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery to the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-of-warranty repairs in the United States and some other countries, the unit is returned C.O.D. (covering shipping costs and the service charge).
Further Information

Service contracts are not available. Circuitry and designs are proprietary to Hewlett-Packard, and service manuals are not available to customers. Should other problems or questions arise regarding repairs, please call your nearest Hewlett-Packard service center.

Potential for Radio/Television Interference (for U.S.A. Only)

The HP 82104A Printer generates and uses radio frequency energy and, if not installed and used properly—that is, in strict accordance with the instructions in this manual—may cause interference to radio and television reception. It has been tested and found to comply with the limits for a Class B computing device in accordance with the specifications in Subpart J of Part 15 of FCC rules, which are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation. In the unlikely event that your printer does cause interference to radio or television reception (which can be determined by halting printer operation) you are encouraged to try to correct the interference by one or more of the following measures:

- Reorient the receiving antenna.
- Relocate the HP-41 and the printer with respect to the receiver.
- Move the HP-41 and the printer away from the receiver.
- If the printer is being used with the ac adapter/recharger, plug the ac adapter/recharger into a different ac outlet so that the printer and the receiver are on different branch circuits.

If necessary, you should consult your dealer or an experienced radio/television technician for additional suggestions. You may find the following booklet, prepared by the Federal Communications Commission, helpful: *How to Identify and Resolve Radio-TV Interference Problems*. This booklet is available from the U.S. Government Printing Office, Washington, D.C. 20402, Stock Number 004-000-00345-4.
**Technical Assistance**

The keystroke procedures and program material in this manual are supplied with the assumption that the user has a working knowledge of the concepts and terminology used. Hewlett-Packard's technical support is limited to explanations of operating procedures used in the manual and verification of results obtained in the examples. If you have technical problems involving this manual, first consult the owner's manual for the HP-41. Should you need further assistance, you may write to:

Hewlett-Packard  
Corvallis Division Customer Support  
1000 N.E. Circle Blvd.  
Corvallis, OR 97330

**Dealer and Product Information**

For dealer locations, product information, and prices, please call (800) 547-3400. In Oregon, Alaska, and Hawaii, call (503) 758-1010.
### Messages and Errors

Following is a listing of all printer messages and errors that you might see. For a list of all standard HP-41C messages and errors, refer to appendix E of the *HP-41C Owner’s Handbook and Programming Guide*.

#### Display

**ALPHA DATA**

ALPHA characters are in a register where a number was required. The following print functions may result in this display (refer to appendix E of the *HP-41C Owner’s Handbook and Programming Guide* for more information):`REGPLOT, STKPLOT, PRREGX, SKPCHR, SKPCOL, ACCHR, ACCOL, BLDSPEC, PRPLOT, PRPLOTP, PRAXIS`.

**DATA ERROR**

The following abnormal conditions will result in this message (refer to appendix E of the *HP-41C Owner’s Handbook and Programming Guide* for more error conditions):

- `SKPCOL` where \(|x| \geq 168\).
- `SKPCHR` where \(|x| \geq 24\).
- `REGPLOT` and `STKPLOT` where \(|y_{\text{MIN}} = y_{\text{MAX}}|, nnn=0, |nnn|>168\).
- `PRREGX` where \(|x| > 999\).
- `ACCOL`, `ACCHR`, `BLDSPEC`, `PRPLOT`, `PRPLOTP`, and `PRAXIS` where \(|x| \geq 128\).
- `PRAXIS` and `PRPLOTP` where `Y_{\text{MAX}} \leq Y_{\text{MIN}}`, or `AXIS` is not between (inclusive) `Y_{\text{MIN}}` and `Y_{\text{MAX}}`.
- `PRAXIS` and `PRPLOTP` where `nnn > 168`.
- `PRAXIS` and `PRPLOTP` where `X_{\text{MAX}} \leq X_{\text{MIN}}`.

78
**NONEXISTENT**
An attempt was made to print a nonexistent program, or a printer function that is not intended for listing.

\[ |x| > \text{address of highest numbered existing data storage register.} \]

and

\[ \text{where the named function is nonexistent.} \]

**OUT OF PAPER**
The printer is out of paper. Load a new roll of paper following the instructions given on page 12.

**PRINT ERROR**
The printer has malfunctioned. Turn the printer OFF and ON, and press \[ \text{\textup{\textasciitilde}} \]. If repetition of this procedure several times continues to result in this message, the unit requires service. Refer to Service, page 70.

**PRINTER OFF**
A printer function was executed while the printer was turned OFF. Turn the printer on. If you wish to continue execution of the program with the printer OFF, clear flag 21 and press \[ \text{R/S} \].

**PRIVATE**
An attempt was made to list, trace, edit, or view a private program.
Appendix C

Annotated PRPLOT Program Listing

Following is a listing of the PRPLOT plotting program. This program can be downloaded into program memory using the COPY operation. Refer to page 260 of the HP-41C Owner's Handbook and Programming Guide for more information about COPY. The PRPLOT program requires a minimum of one additional plug-in memory module before it can be copied into program memory.

```
01 *LBL "PRPLOT"
02 AON
03 "NAME ?" PROMPT
05 AOFF
06 ASTO 11
07 *LBL 11
08 "Y MIN ?" PROMPT
09 STO 00
11 "Y MAX ?" PROMPT
13 STO 01
14 X=V?
15 GTO 11
16 *LBL 12
17 "AXIS ?" CF 23
19 PROMPT
20 STO 04
21 FS? 23
22 ASTO 04
23 RCL 01
24 XYY?
25 GTO 12
26 CLX
27 RCL 00
```

Prompts for inputs, checks data, and stores the input values.
Prints the name of the function being plotted.

Calculates and prints the X-units.

Sets plot field width to 130 columns.

Calculates Y-units and completes the plot label.
Checks X INC for positive or negative sign.

Calculates X increment value if X INC is negative (number of increments).

Determines print format for X-labels.

Sets first X-value equal to XMIN (the initial value).

Sets print format and accumulates X-label.
Calculates and prints one point.

\[
\begin{align*}
95 & \text{ RCL 06} \\
96 & \text{ XEQ IND 11} \\
97 & \text{ REGPLOT}
\end{align*}
\]

Increments X-value and checks for completion of plot.

\[
\begin{align*}
98 & \text{ RCL 10} \\
99 & \text{ ST+ 06} \\
100 & \text{ RCL 09} \\
101 & \text{ RCL 06} \\
102 & \text{ X=Y?} \\
103 & \text{ GTO 14}
\end{align*}
\]

Resets display mode.

\[
\begin{align*}
104 & \text{ FIX 4}
\end{align*}
\]

Calculates and prints Y-units label.

\[
\begin{align*}
105 & \text{ RTH} \\
106 & \text{ LBL "PRAXIS"} \\
107 & \text{ CF 12} \\
108 & \text{ RCL 00} \\
109 & \text{ RCL 01} \\
110 & \text{ "Y"} \\
111 & \text{ XEQ 05} \\
112 & \text{ STO 06} \\
113 & \text{ 125} \\
114 & \text{ ACCHR} \\
115 & \text{ PRBUF}
\end{align*}
\]

Converts \texttt{nnn.aaa} to \texttt{nnn} and checks \texttt{nnn}.

\[
\begin{align*}
116 & \text{ RCL 02} \\
117 & \text{ INT} \\
118 & \text{ ABS} \\
119 & \text{ STO 02} \\
120 & \text{ 168} \\
121 & \text{ X<Y?} \\
122 & \text{ GTO 10}
\end{align*}
\]

Formats and accumulates YMIN label.

\[
\begin{align*}
123 & \text{ RCL 00} \\
124 & \text{ RCL 06} \\
125 & \text{/} \\
126 & \text{ RND} \\
127 & \text{ ACX}
\end{align*}
\]
Calculates and skips number of columns between the YMIN and YMAX labels.

Accumulates the YMAX label and prints the Y-labels.

Calculates axis column location (if printed).
<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>168</td>
<td>RCL 04</td>
</tr>
<tr>
<td>169</td>
<td>RCL 06</td>
</tr>
<tr>
<td>170</td>
<td>/</td>
</tr>
<tr>
<td>171</td>
<td>RND</td>
</tr>
<tr>
<td>172</td>
<td>ACX</td>
</tr>
<tr>
<td>173</td>
<td>XEQ 05</td>
</tr>
<tr>
<td>174</td>
<td>2</td>
</tr>
<tr>
<td>175</td>
<td>/</td>
</tr>
<tr>
<td>176</td>
<td>X&lt;Y?</td>
</tr>
<tr>
<td>177</td>
<td>GTO 00</td>
</tr>
<tr>
<td>178</td>
<td>+</td>
</tr>
<tr>
<td>179</td>
<td>RCL 02</td>
</tr>
<tr>
<td>180</td>
<td>1</td>
</tr>
<tr>
<td>181</td>
<td>-</td>
</tr>
<tr>
<td>182</td>
<td>X&lt;Y?</td>
</tr>
<tr>
<td>183</td>
<td>ENTER^</td>
</tr>
<tr>
<td>184</td>
<td>-</td>
</tr>
<tr>
<td>185</td>
<td>GTO 01</td>
</tr>
<tr>
<td>186</td>
<td>LBL 00</td>
</tr>
<tr>
<td>187</td>
<td>ENTER^</td>
</tr>
<tr>
<td>188</td>
<td>+</td>
</tr>
<tr>
<td>189</td>
<td>RCL 02</td>
</tr>
<tr>
<td>190</td>
<td>-</td>
</tr>
<tr>
<td>191</td>
<td>LBL 01</td>
</tr>
<tr>
<td>192</td>
<td>SKPCOL</td>
</tr>
<tr>
<td>193</td>
<td>ADV</td>
</tr>
</tbody>
</table>

Positions and prints axis label.
Calculates position of axis mark and prints Y axis.

```
194 XEQ 08
195 STO 05
196 X=0?
197 GTO 06
198 RCL 02
199 1
200 -
201 X=Y?
202 GTO 06
203 X<Y
204 1
205 -
206 XEQ 06
207 RCL 05
208 1
209 +
210 GTO 01
211 *LBL 03
212 XEQ 08
213 *LBL 00
214 RCL 02
215 2
216 *LBL 01
217 -
218 XEQ 06
219 ADV

220 RCL 02
221 RCL 05
222 1
223 +
224 1 E3
225 /
226 +
227 ENTER↑
228 CHS
229 X<Y
230 RCL 04
231 SIGN
232 X=0?
233 RDN
234 RDN
235 STO 02
```
Resets display format.

{236 FIX 4
237 RTN

Formats label value into actual label.

{238*LBL 04
239 RCL 06
240 /
241 RMD

Calculates number of columns required for a label.

{242*LBL 05
243 ABS
244 INT
245 X≠0?
246 GTO 00
247 RDN
248 5
249*LBL 06
250 LOG
251 INT
252 RCL 05
253 +
254 3
255 +
256 7
257 *
258 RTN}
Fills in axis with dashes between label marks.

Accumulates a label mark.
Annotated Program Listing 89

Calculates multiplier value and places that value into X. Accumulates "units" line.

Generates **DATA ERROR** message for bad inputs.
Programs listed on the HP 82143A Printer are printed in a special format. The format shows all functions by name, without showing every key-stroke. Here are some hints that will help you when you read and key in your programs from printed program listings.

1. When you see " (quote marks) around a character or group of characters in the program listing, those characters are ALPHAs. To key them in, simply press [ALPHA], key in the characters, then press [ALPHA] again.

2. The diamond in front of each LBL instruction is a visual aid to help you locate labels in the program listings. When you key in a program from a listing, ignore the diamond.

3. The printer indication of the divide sign is / (the same as the display). When you see / in the program listing, press [÷].

4. The printer indication of the multiply sign is * (the same as the display). When you see * in the program listing, press [×].

5. The ← character in the program listing is an indication of the [APPEND] function. When you see ←, press [APPEND] in ALPHA mode (press [ ] and the K key in ALPHA mode).

6. All operations requiring register addresses accept those addresses in these forms:

   \begin{align*}
   & nn \quad \text{a two-digit number.} \\
   & \text{IND } nn \quad \text{indirect ( } \text{ )followed by a two-digit number.} \\
   & X, Y, Z, T, \text{ or } L \quad \text{a stack address: } \text{ } \text{ followed by } X, Y, Z, \\
   & \text{IND } X, Y, Z, T, \text{ or } L \quad \text{indirect stack: } \text{ } \text{ followed by } X, Y, \\
   & \text{Z, T, or } L.
   \end{align*}
Indirect addresses are specified by pressing \( \text{IFF} \) and then the indirect address. Stack addresses are specified by pressing \( \text{GTO} \) followed by X, Y, Z, T, or L. Indirect stack addresses are specified by pressing \( \text{IFF} \) \( \text{GTO} \) and X, Y, Z, T, or L.

Here is a sample program listing that illustrates how you can key in programs.

<table>
<thead>
<tr>
<th>Printer:</th>
<th>Keystrokes</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>01*LBL &quot;SAMPLE&quot;</td>
<td>( \text{LBL} )</td>
<td>01 LBL T SAMPLE</td>
</tr>
<tr>
<td>02 &quot;THIS IS A&quot;</td>
<td>( \text{ALPHA} ) ( \text{SAMPLE} )</td>
<td>02 T THIS IS A</td>
</tr>
<tr>
<td>03 &quot;SAMPLE&quot;</td>
<td>( \text{ALPHA} )</td>
<td>03 T SAMPLE</td>
</tr>
<tr>
<td>04 AVIEW</td>
<td>( \text{ALPHA} )</td>
<td>04 AVIEW</td>
</tr>
<tr>
<td>05 6</td>
<td></td>
<td>05 5</td>
</tr>
<tr>
<td>06 ENTER↑</td>
<td></td>
<td>06 ENTER</td>
</tr>
<tr>
<td>07 -2</td>
<td></td>
<td>07 -2</td>
</tr>
<tr>
<td>08 /</td>
<td></td>
<td>08 /</td>
</tr>
<tr>
<td>09 ABS</td>
<td></td>
<td>09 ABS</td>
</tr>
<tr>
<td>10 STO IND L</td>
<td>( \text{STO} ) ( \text{IND} ) ( \text{L} )</td>
<td>10 STO IND L</td>
</tr>
<tr>
<td>11 &quot;R3=&quot;</td>
<td></td>
<td>11 T R3 =</td>
</tr>
<tr>
<td>12 ARCL 03</td>
<td>( \text{ARCL} ) 03</td>
<td>12 ARCL 03</td>
</tr>
<tr>
<td>13 AVIEW</td>
<td>( \text{AVIEW} ) ( \text{ALPHA} )</td>
<td>13 AVIEW</td>
</tr>
<tr>
<td>14 END</td>
<td></td>
<td>14 END</td>
</tr>
</tbody>
</table>
HP 82143A Printer Function Index

While the HP 82143A Printer is plugged into the HP-41C, these operations become active in the system. These operations, and programs containing these operations are only executable while the printer is plugged in and turned on. You can print these functions as well as functions in other plug-in accessories by executing \texttt{CATALOG} 2 while the printer is set to TRACE, or only view them in the display by executing \texttt{CATALOG} 2 while the printer is set to MAN or NORM.

- \texttt{ACA} Accumulate ALPHA register (page 33)
- \texttt{ACCHR} Accumulate character (page 36)
- \texttt{ACCOL} Accumulate column (page 62)
- \texttt{ACSPEC} Accumulate special character (page 64)
- \texttt{ACX} Accumulate X-register (page 35)
- \texttt{ADV} Advances paper and prints buffer right justified (page 38)
- \texttt{BLSPEC} Build special character (page 64)
- \texttt{LIST} List program lines (page 23). Not programmable.
- \texttt{PRA} Print ALPHA register (page 19)
- \texttt{PRA\textsc{axis}} Print axis (page 56)
- \texttt{PRBUF} Print buffer (page 39)
- \texttt{PRFLAGS} Print flags and other status information (page 24)
- \texttt{PRKEYS} Print reassigned keys (page 25)
- \texttt{PRP} Print program (page 22). Not programmable.
- \texttt{PRPLOT} Print plot, interactive plotting (page 47)
- \texttt{PRPLOT\textsc{p}} Print plot, noninteractive plotting (page 56)
- \texttt{PRREG} Print registers (page 19)
- \texttt{PRREG\textsc{x}} Print registers as directed by X (page 20)
- \texttt{PRSTK} Print statistics registers (page 21)
- \texttt{PR\textsc{x}} Print stack (page 22)
- \texttt{PRX} Print X register (page 18)
- \texttt{REGPLOT} Plot single line using data in registers (page 58)
- \texttt{SKPCHR} Skip characters, accumulate in print buffer (page 41)
- \texttt{SKPCOL} Skip columns, accumulate in print buffer (page 63)
- \texttt{STKPLOT} Plot single line using data in stack (page 58)