HEWLETT-PACKARD

The HP-IL
Interface Specification

/A cackaro

The HP-IL Interface Specification

November 1982

82166-90317

Printed in U.S.A. (C) Hewlett-Packard Company 1982

Preface

Chapter one provides an overview of the HP-IL interface
system with some example implementations. The complete
functional, electrical, and mechanical specifications of HP-IL
are contained in chapters two, three, and four respectively.
Chapter five discusses system considerations such as recommended
sequences of interface messages, asynchronous loop operations,
and device compatibility. In the appendices information such as
message coding and glossary of terms may be found. This manual
is not intended to be a tutorial on HP-IL or I/O techniques,
therefore, familiarity with other interfaces is very helpful.
Because of the extensive similarity between HP-IL and HP-1B, an
understanding of the latter is recommended, though not required.

CONTENTS

Chapter 1: Introduction

1.1

=
Sow N

General Information e e

1.1.1 Application Examples .

Functional Overview
Electrical Overview « . . .
Mechanical Overview . . .« « « « « .

Chapter 2: Functional Specifications

2.1

N DD DNDNDNDDDNDDNDDNDN
HHEWOYOONOU P wN

NN
-
w NS

N
[
(SN

2.15
2.16
2.17
2.18

Introduction . . « .« ¢ ¢ « ¢« o« o . .

2.1.1 Logical Partitions

State Diagram Notation
R (Receiver) Function
D (Driver) Function« « « .« .

AH
SH

(Acceptor Handshake) Function
(Source Handshake) Function

C (Controller) Function
T (Talker) Function . . .
L (Listener) Function

SR
RL
AA
PD
PP
DC
DT
DD

(Service Request) Function

(Remote Local) Function
(Automatic Address) Function . .
(Power Down) Function
(Parallel Poll) Function
(Device Clear) Function
(Device Trigger) Function
(Device Dependent Command) Function

Remote Message Coding

Chapter 3: Electrical Specifications

3.
3.
3

w N

General . . . ¢ ¢ ¢ ¢ v e e e e e e
Electrical and Logical Relationships .
Output Specifications

3.3.1 Open Circuit Voltage
3.3.2 Output Impedance
3.3.3

Common Mode Output Voltage

H R

wwwwww

H N W -

= 0w wbh -

3.4 1Input Specifications
Input Impedance
Input Hysteresis
Input Test Circuits
Input Filtering
Cable Specifications
Cable Type . . .
Characteristic Impedance
Cable Rise Time

3 5. 4 Cable Loss
3.6 Isolation Requirements
Electromagnetic Compatlblllty (EMC)
3.8 Electrostatic Discharge (ESD)

o K e .
U'IU'IU'lE,h»bthvhtb
WNHFEQ WD

w
Ul
H
o]

t

wwwm wwww
()

w
~

Chapter 4: Mechanical Specifications

Chapter 5: System Guidelines

System compatibility

System Configuration

Address Assignment

Asynchronous Operations o .
5.4.1 Power Up and Error Recovery
5.4.2 Loop Integrity Check
5.4.3 Asynchronous Service Requests

5.5 Operational Sequences

[S2BNC, BNC, 00, |
> w N+

Appendix A: Capability Subsets

Appendix B: Message Glossary

B.1 Local Messages and Pseudomessages
B.2 Remote Messages

Appendix C: Message Coding

Command Coding

Ready Coding

Frame Hierarchy
Accessory Identification
System Status Messages

OHONONO NS
ad wnN -

3~-10
3-11
3-11
3-11
3-13
3-14
3-14
3-15
3-16
3-16
3-18
3-19
3-22

[S20C, RO, I C, RO, B0, BN G,) |
|
NO 0 nbhNdND -

1. INTRODUCTION

l.1 General Information

HP-IL (Hewlett-Packard Interface Loop) is a system which
permits communication between devices. In comparison with other
interface systems HP-IL is small, low power, low cost, and medium
distance. HP-IL has the capability to transfer data at a faster
rate than commonly available serial interfaces. As the name
implies, devices are connected in a circular loop structure.
Digital messages travel from one device to the next around the
loop in one direction only. All devices must obey certain
functional, electrical, and mechanical rules in order to
communicate by means of HP-IL.

This chapter provides an introduction to the HP-IL
interface specifications which are presented in chapters 2, 3,
and 4. Because this manual is not tutorial in nature, the novice
may wish to refer to "THE HP-IL SYSTEM"* for a complete tutorial
before proceeding.

1.1.1 Application Examples

The following three applications help show the wide range
of capabilities available with HP-IL.

For his dissertation, a forestry graduate student is
studying the effect of various types of herbicides on underbrush,
tree growth, etc. Observations are made on several different
plots many miles from the school. Because of its low cost, small
size, and continuous memory feature he uses the HP-41CV handheld
computer as a data collector. A short program he has written
prompts him for the correct data items and stores them in the
appropriate registers. The university forestry lab has a small
HP-IL system including the HP 82160JA HP-IL Module for the

* Gerry Kane, Steve Harper, and David Ushijima, "THE HP-IL
SYSTEM: An Introductory Guide to the Hewlett-Packard
Interface Loop" (Osborne/McGraw-Hill 1982).

1-1

General Information Introduction

HP-41CV, the HP 82161A Digital Cassette Drive, the HP 82162A
Thermal Printer, and the HP 747@0A Plotter. When the student
returns the lab he connects his HP-41CV to the HP-IL system and

inserts a minicassette into the tape drive. The cassette
contains his programs and the data he has collected on his
project over the last several months. He loads and runs a

program from the minicassette which reads the data taken today
from the HP-41CV and stores it on the tape with the rest of the
data. He then loads another program which uses all the collected
data on the tape to make finished graphic plots and histograms
of various combinations of the data, such as toxicity levels over
time, amount of undesirable foliage with respect to the type of
herbicide, etc. Prior to the HP-41CV and HP-IL, the cost of such
an application would have been prohibitive. Furthermore, the low
power requirements and the power down feature of HP-IL permit
unattended operation for extended time periods. If the student
had needed to measure toxicity level, for example, every hour for
a week, a small system in a weatherproof box could be left on
site under battery power. Naturally, the measuring apparatus
would need to be connected to the HP-IL system, but this could be
accomplished with the HP 82166A HP-IL Converter.

Each jewelery store in a small chain uses from two to five
point-of-sale terminals consisting of an HP-75C computer and
an HP 82162A Thermal Printer. These devices are all connected on
HP-IL to an HP 82161A Digital Cassette Drive and an HP 82905B
8/ column printer located in the back room of the store. Each
HP-75C contains a program which prompts the salesclerk for all
necessary information about each transaction. The data, which
might include item description, inventory number, price, and
charge card number is stored on the cassette drive. A customer
receipt is printed on the small printer on the counter and a
transaction summary is printed simultaneously on the larger
printer in the back room. At any time, a special program can be
used to generate sales reports, lists of items to be re-ordered,
etc. With the HP 82164A HP-IL/RS-232-C Interface and a modem the
transaction or inventory data could be transmitted by telephone
to the main store. Prior to HP-IL, such a system would have been
much too expensive for very small businesses.

A small electronics firm is about to begin volume
production of a new audio amplifier printed circuit board. The
production engineer has designed an automatic test system
consisting of the HP-85A Personal Computer with the HP 82938A
HP-IL Interface, and the HP 3468A HP-IL Digital Multimeter. The
engineer has also built a special device containing a test
fixture for the PC boards, a programmable power supply, a
programmable waveform generator, and relay switches to connect

1-2

Introduction Functional Overview

these devices to the various PC board test points. This special
device uses the HP 82166A HP-IL Converter so that it too is
controlled with HP-IL. After initial debugging, the engineer
writes the test program so that up to three identical test
stations can be controlled on the same loop since he has found
that HP-IL and the HP-85A are fast enough to support this
throughput. Test programs and results are stored on the internal
cartridge tape drive for future failure analysis. Later when a
second version of the amplifier board goes into production some
simple program modifications permit testing of both versions at
the same time on different test stations using the same system.
The low cost and flexibility of HP-IL were the deciding factors
in the use of automated testing as opposed to a traditional
manual approach.

1.2 Functional Overview

HP-IL is a master-slave interface system. One of the
devices on the loop is designated the loop controller and this
device has the responsibility to transmit all commands to other
devices on the loop. The HP-41C and the HP-85A are examples of
devices that can be HP-IL controllers when they are equipped with
the proper plug-in module. A device with the ability to send
device dependent data to other devices on the loop is called a
talker. Note that even though a device has the talker capability
it must not actually send its data until commanded to do so by
the loop controller. The HP 82161A Digital Cassette Drive is a
device which can be a talker. Listeners are devices with the
capability to receive data from the loop. Once again, listeners
must remain inactive until they receive a command from the
controller which enables them to receive data. The HP 82162A
Thermal Printer is a device which can be a listener.

Controller, talker, and listener functions are the three
basic capabilities of HP-IL devices. A device may have only one
of the three or may include some combination of capabilities as
is more often the case. Talkers often have listener capability
and controllers almost always have both talker and listener
capabilities as well. 1In general, every HP-IL system has all
three capabilities somewhere within its devices; however, under
special circumstances a system can be constructed with only a
talker and one or more listeners without the controller. In this
case, all devices must be able to operate in the talk-only or
listen-only mode. An example might be a voltmeter logging

1-3

Functional Overview Introduction

readings on a printer. 1In larger loop systems there are usually
several talkers and listeners. The controller will permit only
one talker to be active at a given time, but may enable multiple
listeners to receive the talker's data, if desired. There may
even be several controllers on one loop. In this case, one of
the controllers (the system controller) is in charge when the
system is first turned on. Protocol exists within HP-IL to allow
the various controllers to take turns controlling the other

devices on the loop. Only one of the controllers is active at
one time.

In addition to the talker, listener, and controller
functions the following capabilities are available on HP-IL:

® Devices may indicate a need for service from the
controller using two different methods.

® Power down mode may be used to conserve power.

® The controller may assign addresses in three different
ways for a maximum of 31 or 961 devices.

® Devices may be identified by model number or a device
capability code.

® Devices can be triggered, cleared and commanded to
ignore local controls and only respond to loop
messages.

e The talker may be temporarily interrupted during long
data transmissions so that other tasks may be
performed.

This wide range of capabilities permits the controller to
be in charge of both the configuration and the operation of the
loop. It is possible to implement high-level functions in the
controller which make the details of loop protocol entirely
transparent to the user. 1In such a friendly system, the user
would simply execute a function and the computer would
automatically configure the loop, find the desired device, and
send the appropriate commands and data.

1-4

Introduction Functional Overview

There are two major classes of messages which are sent
over the loop. Interface messages are usually sent by the active
controller and are used to direct the operation of the system.
The controller's commands are an example of this type of message.
In general, these messages are considered overhead. The primary
purpose of HP-IL, of course, is the transmission of data. Data
messages are used as a communication medium and do not directly
affect the operation of the interface system. Data messages are
sent by the active talker and received by one or more active
listeners.

Normally only one message is in transit around the loop
at any given time. In general, when a device sources a message
it waits for the message to go completely around the loop and
return before transmitting the next message. Most messages are
held at each loop device until it is ready to accept the next
message. This is the normal loop handshake and it guarantees
that talkers and controllers do not send messages faster than
devices can accept them. This handshake also provides an
excellent error-checking capability. If the message returns the
same as it was sent, the sending device knows that all devices
must have received it correctly.

Clearly, if there are a number of slow devices on the
loop that delay each message until they are ready to pass it on
to the next device, the loop speed will be unacceptably low.
Fortunately, data messages are usually intended for only one or
two devices at a time. Other devices on the loop are in their
inactive state. Devices are built so that messages not meant for
them are passed on very rapidly. In this manner the loop
throughput can be maintained at an acceptable level.

Since commands are often meant for all devices on the
loop, the handshake process for commands is modified slightly in

order to maintain reasonable throughput. When a device receives
a command message, it passes it on immmediately but also retains
a copy of the message for interpretation. In this manner all

devices can be executing the same command in parallel. The
message returns to the controller fairly rapidly, but its return
does not indicate that the devices are ready. The controller
must now send a special message called Ready For Command (RFC).
This message is held by each device until it is ready for another
message. If all devices execute the command in about the same
amount of time, there will be a delay until the first device is
finished and then the RFC message will move fairly rapidly around
the loop to the controller. Now the controller knows that all
devices are ready and the next message can be sent.

1-5

Functional Overview Introduction

Cassette
talker
listener
address 1
Printer
listener
Computer address 2
HP-IL
listener
controller
address 0 Voltmeter
talker
listener
address 3
address 4
Plotter
listener

Figure 1-1. Sample HP-IL System

Suppose that we have an HP-IL system consisting of
devices with basic capabilities and loop addresses as shown in
figure 1-1. Assume that the voltmeter is ready to transmit a
reading on the loop, and the user wishes to print it on the
printer. The computer first sends the Unlisten command which
causes any previous active listener devices to become inactive.
When the command returns the controller sends the Ready For
Command (RFC) message as is required after every command. The
calculator now sends the Talk Address 3 command (and the RFC) to
direct the voltmeter to be the talker and to cause any previously
addressed talker to become inactive. At this point, even though
the voltmeter is addressed to talk, it may not send its data
until specifically instructed to do so. The computer then sends
the Listen Address 2 command and RFC. The printer alone
recognizes this command and becomes ready to receive data
messages. This command does not cause other listeners to go
inactive, hence the need for the Unlisten command at the
beginning. At this point the computer sends a special message

1-6

Introduction Electrical Overview

called Send Data to cause the voltmeter to begin sourcing data
messages. The Send Data is in the ready class of messages which
is used for handshake purposes. When the voltmeter receives the
Send Data it does not retransmit it, but instead sends its first
data message. The voltmeter sends a sequence of data bytes, for
example, +2.658VDC followed by carriage return and line feed
characters. Each data byte goes around the loop to the printer,
which holds the byte momentarily until it is loaded into the
buffer, and back to the voltmeter. After each byte is received
and error-checked the voltmeter sends the next character. When
the line feed returns and error-checks properly the voltmeter
sources a special End Of Transmission ready message. This
message signals the computer that the transmission is now
complete and that the computer should resume active control of
the loop. Similar to the Send Data message, the computer does
not retransmit the End Of Transmission but replaces it with the
next command message.

It must be noted that HP-IL protocol is based very
strongly on HP-IB (Hewlett-Packard's implementation of IEEE-488).
While it appears that HP-IL is functionally a bit-serial version
of HP-IB, the user is warned that there are some significant
differences in protocol. While familiarity with HP-IB is very
helpful, it is not necessary. All information needed to learn
and use HP-IL is contained in this document.

1.3 Electrical Overview

Every message on the loop is sent as a sequence of eleven
bits called a message frame. The first bit, called the sync bit,
is coded in a special way so that each device can easily
recognize the beginning of a frame. The sync bit and the next
two bits are called control bits and they determine the major
classification of a message. Command messages, ready messages,
and data messages are examples of these major classes. The
remaining eight bits, sometimes called data bits (not to be
confused with the data message) specify the particular message
within the classification. The Unlisten command frame, for
example, would be 100 ©@011111, while the Interface Clear command
is 1900 10010@033d. The Send Data ready message is 101 @1100000.
The space between the control and data bits is for clarity only
and does not represent a time delay or any other delimiter.

Electrical Overview Introduction

The electrical connection from one device to the next is
a differential, voltage-mode, two-wire, balanced line. Both
wires are floating with respect to both devices' ground
connections. One of the wires is chosen as a reference and the
voltage of the other wire is measured only with respect to the
reference. This has several advantages. Device grounds need not
all be at the same potential. In fact there can be rather large
differences with no effect. This is especially handy for
voltmeters which need to measure values not referenced to ground.
It totally avoids the problem of ground loops in an interface
system. Since noise pulses tend to affect both wires equally,
the balanced nature of HP-IL strongly rejects these pulses. The
same holds true for noise radiation from the system itself. As
one wire's voltage rises, the other's falls, tending to cancel
any radiated signal.

Bits are encoded using a three level, or bipolar code.
The voltage difference between the two wires may be nominally
-1.5 Volts, @ Volts, or +1.5 Volts. A logical one is encoded as
a high pulse (+1.5 Volts) followed by a low pulse (-1.5 Volts).
A logical zero is a low followed by a high. A logical one sync
is a high, low, high, low sequence. A zero sync is low, high,
low, high. The nominal pulse width is one microsecond and each
bit sequence is always followed by a minimum delay time (@ Volts)
of about two microseconds. Refer to figure 1-2. This type of
code provides good noise immunity, is relatively insensitive to
speed variations, is self-clocking, and has no DC component in
the signal.

zero one sync zero sync
+1.5v
—1.5v {—‘ Ll J_lﬂr M
01234 01234 0123458 01234568
microseconds
Send Data ready frame
1 sync 0 1 0 1 1 0 0 0 0 0

Figure 1-2. HP-IL Bit Encoding

1-8

Introduction Electrical Overview

Frames are asynchronous with respect to each other. That
means no common system clock is necessary in HP-IL. Furthermore,
even bits within frames are asynchronous. The sync bit requires
six microseconds to transmit while other bits take four
microseconds. A complete frame, which may contain one byte of
data, takes 46 microseconds assuming no extra delay between bits.
If we further assume no extra delay between frames, a maximum
loop rate of approximately 20 kilobytes per second could be
achieved. 1In a typical implementation with present electronics,
other hardware and software delays lower this rate to somewhere
between three and five kilobytes per second. This is enough to
transmit more than a full single-spaced typewritten page of data
every second.

Figure 1-3 is a simple block diagram of the interface
electronics used in a particular implementation of HP-IL in a
device. The HP-IL input and output lines are isolated through
simple pulse transformers. The discrete components provide the
proper load value for input and filtering for EMI reduction with
impedance matching for the output side.

electronics HP—IL out

N transtormer >

2 capacitors
2 resistors
2 diodes

HP—IL IC

micro—
processor
transmit

— ——

electronics HP—IL in

—

system

bus transformer

2 resistors
2 diodes

2V

to other electronics

Figure 1-3. Example Device Electronics

Mechanical Overview Introduction

Many of the HP-IL interface functions can be implemented
in a single LSI integrated circuit with the remaining aspects of
the protocol implemented in firmware using a standard

microprocessor. The microprocessor may also be used to control
the device functions and the interaction between the device and
the interface. Since most devices will require the

microprocessor anyway, its cost is only partly attributable to
the interface and partly to the device itself.

1.4 Mechanical Overview

Since HP-IL utilizes a loop structure, each device only
needs two connectors, an input and an output, regardless ocf how
many devices are on the loop. In the interest of small size,
HP-IL uses a special connector. Both connectors panel mounted
together only require about @.4 inches by 1.5 inches of panel
space and about 9.8 inches of depth. If less space than this is
available the lines themselves can go directly into the panel
through strain reliefs with cable connectors at the loose ends.
connectors are constructed so that the reference line cannot be
reversed and also so that an output cannot be plugged into
another output. Cable connectors plug together properly to form
running cable "splices". See figure 1-4.

For relatively short distances up to a maximum of 19
meters from one device to the next, very low cost "zip cord" can
be used as shown in the illustration. Note that the "rib" on the
"zip cord" always corresponds to the reference line. For longer
distances up to 100 meters between devices, shielded twisted pair
cable must be used. No change is necessary in the device
electronics for the longer distance. Only the cable between
those particular devices that are farther than 1@ meters apart
must be changed.

Introduction Mechanical Overview

(SMALL)

FEMALE
(LARGE)

FEMALE
(LARGE)
PLUG

(SMALL)
PLUG

Figure 1-4. HP-IL Connectors

1-11/1-12

2. FUNCTIONAL SPECIFICATIONS

2.1 Introduction

The complete functional specification of the HP-IL system
is contained throughout this chapter in the state diagrams,

associated text, tables, and examples. In cases of apparent
disagreement, the state diagrams are to be used as the primary
reference with all other material of secondary importance. All

cases not specifically accounted for in the diagrams or text are
to be ignored.

An HP-IL device may be partitioned conceptually into
three functional areas, each with unique capabilities: device
functions, interface functions, and message coding logic. Figure
2-1 shows how these functional areas interact within each HP-IL
device.

2.1.1 Logical Partitions

Device functions are those unique features and
capabilities that each device possesses. They represent the
entire motivation for building any device and are specified by
the device designer. The device functions can affect the
operation of interface functions with local messages.

Interface functions are the basic operational units of
the HP-IL system. Through the interface functions, the device may
receive, process, and send messages. Interface functions are not
specified by the designer, but are defined in this chapter. All
interface functions within a physical device must conform to the
specifications exactly in order for the device to properly
communicate with other devices in the HP-IL system.

The message coding logic performs transformations between
logical interface messages and signal line values.

2-1

Introduction

Functional Specifications

Device Functions

. local
device messages
Sne:sesr::dzr: to and from

. 9 interface
(listener) .
functions

device dependent
messages (talker)
or

interface messages

(controller)

Interface Functions

state linkages

Ininininininininininininin

R |AH| L |RL|PD|DC|DT |DD |AA |[PP |SR |C T |SH| D
remote remote
messages messages
in out

Decoder Encoder

HP—IL in HP—IL out

Section Interface Function Section Interface Function

2.3 R receiver 2.1 RL remote local

2.4 D driver 2.12 AA automatic address

2.5 AH acceptor handshake 213 PD power down

2.6 SH source handshake 2.14 PP parallel poll

2.7 C controller 2.15 DC device clear

2.8 T talker 2.16 DT device trigger

2.9 L listener 2.17 DD device dependent

2.10 SR service request command

Figure 2-1.

HP-IL Functional Partitions

Functional Specifications Introduction

The interface functions are defined in terms of one or
more groups of interconnected states called state diagrams. The
state diagrams define only the external behavior of the interface
functions and are not intended to limit the design. Interface
functions may be implemented with any combination of hardware,
firmware, or software as long as the external behavior is the
same. Refer to figure 2-1 for a complete list of interface
functions and their mnemonics.

Within each connected group of states, one and only one
state may be active at any given time. The state variable
associated with a state is true if and only if that state is
active. Definitions given for each state describe the messages
that must be sent while that state is active and the conditions
which cause a transition to another state within the group.

All communications between an interface function and its
environment is through messages or combinations of messages. A
complete understanding of messages and of figure 2-1 is essential
to understanding the state diagrams and the entire interface
system. Each message has a logical value associated with it
which is either true or false at any specific time. The inputs
to an interface function are remote messages, pseudomessages,
state linkages, and local messages. The outputs are remote
messages and local messages (state variables).

Local messages are those messages sent between the device
functions and the interface functions. The set of local messages
sent to the interface functions is defined and may not be changed
by the device designer. Local messages sent from interface
functions to device functions may include any state variable or
combination of state variables and are completely designer
specified. Local messages sent by device functions must exist
for enough time to cause the required state transitions.

Remote messages are translated to or from the interface
signal line values through the process of encoding and decoding.
Interface functions must ignore any message coding not
specifically defined.

Pseudomessages (not shown in figure 2-1) are a small set
of messages similar to local messages which are sent by the
message coding logic to the interface functions.

A state linkage is a logical interconnection between an
active state of one state diagram and a transition between states
in another. This is the vehicle for the extensive interaction
between the interface functions.

2-3

Introduction Functional Specifications

Prior to decoding, remote messages consist of eleven-bit
message frames. The three control bits place the message in one
of four major classes, and the eight data bits specify the
particular message within the category. These bits are sent in
the following order and designated as shown:

C2 Cl1 C@ D7 D6 D5 D4 D3 D2 D1 D@

Note that C2 is also the sync bit indicating the start of a
frame. The major classes of messages are:

1. Data or End messages (DOE). These are device
dependent messages which are sourced by the active
talker and received by the active listener(s). End
messages (control bit Cl set) are data messages that
indicate an end-of-record condition (not end of
transmission). The service request message (control
bit CO set) indicates to the controller that one or
more devices on the loop need attention.

2. Command messages (CMD). These interface messages
are always sourced by the active controller. Several
groups of commands are defined by the coding of the
data bits. These groups are UCG (universal command
group) messages, ACG (addressed command group)
messages, TAG (talk address group) messages, LAG
(listen address group) messages, and SAG (secondary
address group) messages. All devices respond to UCG,
TAG, and LAG commands, but only devices enabled by a
talk or listen address respond to ACG or SAG commands.

3. Ready messages (RDY). These interface messages are
sometimes sourced by the active controller and
sometimes by the active talker or active listener.

They are used for handshake purposes such as initiating
or terminating a data transmission. Groups of ready
messages are RFC (ready for command group) messages,
ARG (addressed ready group) messages which include SOT
(start of transmission) and EOT (end of transmission)
messages, and AAG (auto address group) messages.

4. Identify messages (IDY). These messages are
normally sent by the controller to determine if devices
have a need for service. Note that bit CO of both DOE
and IDY messages may be set by devices to indicate a
need for service.

Functional Specifications State Diagram Notation

Detailed definitions of all local and remote messages
are given in appendix B. Information regarding coding of remote
messages can be found in section 2-18 as well as appendix C.

2.2 State Diagram Notation

Figure 2-2 shows the notation used throughout this
chapter within the state diagrams. Each state that an interface
function can assume is represented by a four letter upper-case
mnemonic always ending in S within a circle. All permissible
transitions between states are represented by arrows qualified by
expressions that evaluate either true or false. The interface
function shall remain in its current state if all expressions
which qualify transitions leading to other states are false. The
interface function shall enter the state pointed to if and only
if the associated expression becomes true.

Notation Meaning Notation Meaning

interface function state expression transition between states
ACDS linkage from other + OR logical operator
interface functions
PPU remote messages . AND logical operator
from the interface
rdy local messages SPAS NOT logical operator
from the device
sync pseudomessages [+ SDC LACS] optional expression term
from the encoding/ (at the designer's choice)
decoding logic
Figure 2-2. State Diagram Notation

2-5

State Diagram Notation Functional Specifications

An expression consists of one or more local messages,
pseudomessages, remote messages, or state linkages used in
conjunction with the operators AND, OR, or NOT. Local messages
to an interface function are represented by lower-case three-
letter mnemonics. Pseudomessages are represented by lower-case
four-letter mnemonics. Remote messages are represented by upper-
case three-letter mnemonics. A linkage from another state
diagram is represented by the state mnemonic in boldface type.

A state linkage is true if the state is currently active;
otherwise, it is false. The AND operator is represented by a
dot. The OR operator is represented by a plus sign. The NOT
operator is represented by a horizontal bar placed over the
portion of the expression to be negated. The resulting negated
expression has a true value if and only if the value of the
expression under the bar is false. The AND operator takes
precedence over the OR operator in an expression unless indicated
otherwise by parentheses.

If a portion of an expression is optional in that its
true value is not required for the complete expression to be true
(at the designer's choice), then it is enclosed within square
brackets. If a specific expression causes a transition to a
state from all other possible states of the diagram, an arrow
without a state at its origin is used, and is assumed to
originate in all states. Note also that the power-off state is a
valid state of most interface functions and should normally be
shown with a transition leading to the state to be entered when
power is first turned on. This state is omitted for clarity in
the diagram and only the transition to the first state is shown.

Functional Specifications R Function

2.3 R (Receiver) Function

The R interface function provides the device with the
capability to receive messages over the interface. It
categorizes the received message into major classifications which
are used by the AH (Acceptor Handshake) and D (Driver) interface
functions to effect proper communication.

The R function receives the remote messages one bit at a
time and decides as quickly as possible if immediate
retransmission is required. If so, the message is passed
directly to the D interface function for retransmission. The R
function also decides whether the message is to be interpreted by
the device or other interface functions or is to be ignored. 1If
the device is to interpret the message, it is passed to the AH
function. If no device or interface interpretation is required,
the frame is passed to the D function. When the D or AH function
signals that it has accepted the message, the R function returns
to its idle state ready to receive the next remote message.

While it is possible to simplify the implementation of
the R function by waiting for all message bits to be available
before performing any decoding, the resulting throughput would be
unacceptable. It is strongly recommended that the decoding begin
as soon as enough bits have been received to permit correct
decoding. This occurs on the first bit for DOE messages, the
second bit for IDY, the third bit for CMD, etc. In general, only
a few bits need be received to decide if retransmission is
necessary.

Please note that all devices must implement the full R
interface function capability. No subsets are permitted.

R Function

PONS

CMD « DTRS

/ W‘RS

RITS CMD « DTRS

Functional Specifications

ACDS + NRD » NRWS+ ACRS

echo = DOEe TACS + SPAS « DIAS « AIAS - TAHS + TERS+ LACS « NRWS+ CACS

+ (CMD+IDY) » CACS » CSBS

+ ARG+ TADS »« TACS « SPAS «» DIAS + AIAS « TAHS « TERS

+ (AAD+AMP)+ AAUS + AEP « AWPS + AES « ZES+ AWSS
+ IAA + IEP + IMP + IES

TPAS « LACS « CACS+ CSBS
+ AES « AAUS « AWSS

hold = DOE e (TACS+SPAS+DIAS+AIAS+TAHS+TERS+LACS+NRWS+CACS)

sync

AAD
AAG
AEP
AES
AMP
ARG
CMD

RCDS
REIS
RITS

RSYS

AAUS
ACDS
ACRS
AIAS

AWPS
AWSS
CACS

+ RDY * ARG » AAG + (CMD+IDY)« (CACS+CSBS)

+ ARG ¢ (TADS+TACS+SPAS+DIAS+AIAS+TAHS+TERS+TPAS+LACS+CACS+CSBS)

+ (AAD+AES+AMP)« AAUS + AEP « AWPS + ZES e+ AWSS

Messages

valid sync bit received DOE

IAA
auto address IDY
auto address group IEP
auto extended primary IES
auto extended secondary IMP
auto multiple primary NRD
addressed ready group RDY
command ZES

data or end

illegal auto address
identify

illegal extended primary
illegal extended secondary
illegal multiple primary
not ready for data

ready

zero extended secondary

Interface States

receiver data state (links to AH,C,L) CSBS
receiver idle state DIAS
receiver immediate transfer state DTRS
(links to D,C,SR,PP) LACS
receiver sync state NRWS

PONS
auto address unconfigured state (from AA) SPAS
acceptor data state (from AH) TACS
acceptor ready state (from AH) TADS
accessory ID active state (from T) TAHS
auto wait for primary state (from AA) TERS
auto wait for secondary state (from AA) TPAS

controller active state (from C)

controller standby state (from C)
device ID active state (from T)
driver transfer state (from D)
listener active state (from L)

not ready wait state (from L)
power on state (from PD)

serial poll active state (from T)
talker active state (from T)
talker addressed state (from T)
talker hold state (from T)

talker error state (from T)

talker primary active state (from T)

Figure 2-3. R State Diagram

2-8

Functional Specifications R Function

REIS (Receiver Idle State)

In REIS the R interface function is not engaged in any
message transfer process. The function powers on in this state.
Transition out of this state does not occur until a valid sync
bit has been received from the loop.

RSYS (Receiver Sync State)

In this state the R interface function has begun to
receive a message from the interface and is in the process of
determining whether to immediately retransmit the message (echo)
or not (hold).

RITS (Receiver Immediate Transfer State)

DOE messages not sourced by or intended for this device,
CMD or IDY messages not sourced by this device, and ARG messages
not for this device should be immediately retransmitted on the
loop. In RITS the R function is signaling the D (Driver)
function that retransmission of the incoming frame should
commence. RITS is not entered until the D function is finished
transmitting any previous message and is not exited until the D
function has accepted the current message and commenced
retransmission. Most messages which are echoed do not affect the
device or interface functions (except R and D), however CMD
messages are both echoed and held for device and interface
interpretation. This decoding is also done in RITS. If the
message is not a CMD the function returns to REIS, otherwise the
transition is to RCDS.

RCDS (Receiver Data State)

In this state the R function is signaling the AH
(Acceptor Handshake) function that the message being received is
for this device. When the AH function signals in return that it
has accepted the message, the R function returns to REIS.

D Function Functional Specifications

2.4 D (Driver) Function

The D interface function provides the device with the
ability to transmit messages on the loop. These messages come
from three different sources: messages generated by this device,
messages received on the loop which must be immediately
retransmitted, and messages received on the loop which must be
retransmitted after acceptance by the device.

When the R (Receiver), SH (Source Handshake), or AH
(Acceptor Handshake) functions indicate that a message is
available for transmission, the D function begins the
transmission. When the frame transmission is complete, the D
function again becomes idle.

The D function transmits all remote messages. These
messages are transferred to it by the R, AH, or SH functions. 1In
this transfer certain modifications of the message may be
performed by the parallel poll and service request interface
functions. The SR function allows the device to set the SRQ bit
on DOE or IDY frames before the Driver transmits them on the
loop. The PP function allows the device to modify one bit of IDY
frames before retransmission for parallel poll response. Refer
to these two functions for a full description of this
modification process.

All devices must have the full D function implemented.
No subsets are permitted.

Functional Specifications D Function

PONS

ACRS RITS

DACS) (DIDS | [DTRS
frte frtc

frtc SDYS+SCHS

Messages

frtc frame transmission complete

Interface States

DACS driver transmit from acceptor state ACRS acceptor ready state (from AH)
(links to AH,L) PONS power on state (from PD)
DIDS driver idle state (links to SR,PD) RITS receiver immediate transfer state
DSCS driver transmit from source state (from R)
(links to SH) SCHS source command handshake state
DTRS driver transfer state (links to R,PP) (from SH)

SDYS source delay state (from SH)

Figure 2-4. D State Diagram

2-11

D Function Functional Specifications

DIDS (Driver Idle State)

In DIDS the D function is not transmitting any message.
The function powers on in this state. When the SH (source
handshake), AH (acceptor handshake), or R (receiver) functions
indicate that a frame is ready for transmission, the D function
enters DSCS, DACS, or DTRS respectively.

DSCS (Driver Source State)

In this state the function is transmitting a message
frame originated by this device. DSCS is entered when the SH
(Source Handshake) function indicates that the message is ready
to be transmitted. When transmission is complete the function
returns to DIDS.

DTRS (Driver Transfer State)

In DTRS the D function has commenced retransmitting a
message transferred from the R (Receiver) function which must not
be held up by the device's ability to interpret it. When
finished with the retransmission the D function returns to DIDS.

DACS (Driver Acceptor State)

This state is entered when retransmission of a message
which has been received and interpreted by the device has begun.
The message is transferred from the AH (Acceptor Handshake)
function. When transmission is complete the function transitions
to DIDS.

Functional Specifications AH Function

2.5 AH (Acceptor Handshake) Function

The AH interface function provides the device with the
capability to interpret remote messages. It also determines if
the frame needs to be retransmitted after interpretation (repeat)
or not (norepeat), and indicates to the D (Driver) interface
function when this retransmission should begin.

If the Receiver interface function signals that a frame
has been received and is intended for this device, the Acceptor
Handshake function indicates to the device and to the other
interface functions when that frame is ready for interpretation.
If the message is to be retransmitted, the transmission begins
after the device indicates that it has finished interpreting the
message (with the local message rdy). The AH function also
controls the NRD (not ready for data) sequence by holding the
data while the device sources the NRD message and retransmitting
the data when the NRD returns.

The AH interface function is not capable of originating
remote messages. It only accepts received messages from the R
(Receiver) interface function and transfers them to the device
and other interface functions for appropriate action. After the
device indicates that interpretation is complete, the AH function
can transfer the received message to the Driver interface
function for retransmission.

The AH function may be implemented such that it receives
all eleven bits of the message frame prior to any decoding
(repeat, norepeat expressions). It is permitted, however, to
perform this decoding earlier in the frame so that loop
throughput may be considerably enhanced at the expense of greater
complexity.

Please note that all devices must implement the full AH
capability. No subsets are permitted.

[\®)
|

13

AH Function Functional Specifications

PONS

RCDS «rdy

norepeat «rdy

IFC « RCDS

rdy + DACS * NACS repeat « rdy

repeat = DOE +(LACS + NRWS + CACS)
+ RDY ¢ SOT »« AAG+« CACS+» CSBS
+ SOT « TADS « TACS » SPAS » DIAS « AIAS « TAHS - TERS

+ NRD « CACS

norepeat = DOE «(TACS + SPAS + DIAS + AIAS + TAHS + TERS)
+ CMD + IDY + AAG
+ RDY * NRD « (CACS + CSBS)
+ SOT+(TADS + TACS + SPAS + DIAS + AIAS + TAHS + TERS)

+ NRD « CACS
Messages
rdy ready for next frame IDY identify
IFC interface clear
AAG auto address group NRD not ready for data
CMD command RDY ready
DOE data or end SOT start of transmission

Interface States

ACDS acceptor data state (links to R,SH,C,T,L, DIAS device ID active state (from T)
SR,RL,AA,PD,PP,DC,DT,DD) LACS listener active state (from L)
ACRS acceptor ready state (links to R,D) NACS not ready active state (from L)
AIDS acceptor idle state (links to PD) PONS power on state (from PD)
ANRS acceptor not ready state RCDS receiver data state (from R)
SPAS serial poll active state (from T)
AIAS accessory ID active state (from T) TACS talker active state (from T)
CACS controller active state (from C) TADS talker addressed state (from T)
CSBS controller standby state (from C) TAHS talker hold state (from T)

DACS driver transmit from acceptor state (from D) TERS talker error state (from T)

Figure 2-5. AH State Diagram

2-14

Functional Specifications AH Function

AIDS (Acceptor Idle State)

In AIDS the AH function is not engaged in the handshake
cycle and does not have a message available. This is the
power-on state for this function. When the R (Receiver) function
indicates that a message for this device is available, the AH
function enters ACDS.

ACDS (Acceptor Data State)

In this state the interface function is indicating to all
other interface and device functions that a message for this
device has been received and is now valid for interpretation.
This state also decodes the message to determine whether it
should be retransmitted or not. DOE, CMD, RDY or IDY messages
sourced by this device, and SOT messages intended for this device
are not retransmitted on the loop. After the device has
indicated that it has accepted the message for interpretation by
sending the rdy local message false (not ready), the AH function
returns to AIDS if retransmission is not necessary, or
transitions to ANRS if the message must be retransmitted.

ANRS (Acceptor Not Ready State)

In ANRS the AH function is waiting for the device to
indicate (via rdy) that it is ready for the next message frame.
This typically occurs after the device has completed any actions
necessitated by the current message. When the device is ready
the function transitions to ACRS. If the R function indicates
that the IFC message has been received while the AH function is
waiting in ANRS, the function transitions back to ACDS.

ACRS (Acceptor Ready State)

This state is indicating to the D (Driver) function that
retransmission of the current message frame should begin. When
the D function indicates in return that it has accepted the frame
and has commenced transmission, the AH function returns to AIDS.

SH Function Functional Specifications

2.6 SH (Source Handshake) Function

The SH interface function gives the device the capability
to originate remote messages primarily while the device is a
talker or controller. It coordinates the message transfer from
the device to the interface.

For normal loop handshake, the SH interface function
accepts a message from the device and transfers it to the D
interface function. When the R function indicates that the
transmitted frame has returned, the SH function completes the
handshake with the device and becomes ready to accept another
message. For sourcing commands, the SH function causes the RFC
(ready for command) message to be sent after every command is
sent and received. The SH function also controls asynchronous
handshaking with the local message lab (local abort).

The SH function becomes ready to accept messages from the
device when the device is first enabled to source remote messages
(source expression). If the SH function is ready and the device
has a message available, message transmission begins and the
function waits for the message to return. When the R function
indicates that the frame has returned, the SH function again
becomes ready to source another frame. As soon as the device is
no longer enabled to source messages, the source handshake
function returns to idle.

The SH function does not originate remote messages on the
loop but merely controls the orderly transfer of messages from
the device to the D (Driver) function for transmission. The
device may change the message frame while SIDS or SGNS are
active, but must hold the frame valid while in SDYS and STRS.

All devices must have the full SH function. No subsets
are permitted.

Functional Specifications

PONS

lab
nfa

CMD

SCHS

SDYS
SGNS
SIDS

STRS

AIAS
ACDS
AMIS
APIS
ARSS

SH Function

nfa « DSCS

source 7@

+ lab

source

nfa ¢ frmrtn

CMD « CACS+ ACDS~ DSCS

STRS)_

“(scHs

RFC+ DSCS

source = TACS + SPAS + DIAS + AIAS + TAHS + TERS + CACS
+ NACS + ARSS + AAIS + ASIS + APIS + AMIS

frmrtn =
+ (RDY+IDY) « CACS « ACDS

DOE »(TACS + SPAS + DIAS + AIAS + TAHS + TERS) ACDS

Messages
local abort DOE data or end
new frame available IDY identify
RDY ready
command RFC ready for command

Interface States

source command handshake state ASIS auto secondary increment state
(links to D) (from AA)

source delay state (links to D) CACS controller active state (from C)
source generate state DIAS device ID active state (from T)
source idle state DSCS driver transmit from source state
source transfer state (links to C,T,SR,AA) (from D)

NACS not ready active state (from L)
auto address increment state (from AA) PONS power on state (from PD)
accessory ID active state (from T) SPAS serial poll active state (from T)
acceptor data state (from AH) TACS talker active state (from T)
auto multiple increment state (from AA) TAHS talker hold state (from T)
auto primary increment state (from AA) TERS talker error state (from T)

asynchronous request source state
(from SR)

Figure 2-6.

2-17

SH State Diagram

SH Function Functional Specifications

SIDS (Source Idle State)

The SH function powers on in SIDS and in this state no
handshake is taking place. The device is not sourcing frames.
When the appropriate interface functions indicate that the device
should begin to source messages (source expression) the function
transitions to SGNS.

SGNS (Source Generate State)

In SGNS the device is in the process of generating the
next message frame to be sourced. When the device indicates that
the new message is available (nfa local message) and the D
(Driver) function indicates that it is not still transmitting a
previously sourced frame, the function enters SDYS. When the
sourcing device is no longer enabled to source messages, the
function will return to SIDS.

SDYS (Source Delay State)

In this state the SH function is waiting for the D
(Driver) interface function to acknowledge receipt of the sourced
message and begin transmission. When this occurs the function
enters STRS.

STRS (Source Transfer State)

In STRS the SH function is waiting for the sourced
message to go around the loop and return (normal loop handshake,
frmrtn expression). When this occurs the function returns to
SGNS if the sourced message was not a command and transitions to
SCHS if the message was a command. Asynchronous loop operations
are possible using the lab local message to force the return to
SGNS before the handshake is complete so a new message frame may
be sent. Normally, the last frame sourced by a device will be a
Ready frame (such as EOT if talker) and will cause a transition

directly from STRS to SIDS since the frame might not return to
the device.

SCHS (Source Command Handshake State)

The function enters SCHS when the receiver function
indicates that the sourced command has returned. In this state,
the function is signaling to the driver function that the RFC
(ready for command) message is ready for transmission. When the
driver function indicates that the RFC transmission has begun, the
function returns to STRS to wait for the RFC to return.

Functional Specifications C Function

2.7 C (Controller) Function

The C function provides a device with the ability to send
interface messages (including CMD, RDY, and IDY messages) to
devices on the loop. It also provides the capability for
conducting parallel polls, detecting the SRQ message from devices
requesting service, and detecting transmission errors in device
dependent data transmissions. These capabilities exist only
while the controller function is in its active state.

If more than one device that possesses the C function is
on the loop, then all but one must be in the idle state at any
given time. The device with the active C function is called the
active controller. Protocol is provided to allow controllers to
take turns as active controller of the loop.

One and only one controller device may send the local
message scl true indicating that it is the system controller.
This condition should remain true throughout the operation of the
interface. The system controller takes charge at power on and is
the only device which can source the IFC message. It can do this
at any time regardless whether it is the active controller.

When this function is in its active state, the device is
enabled to originate interface messages including CMD, RDY, and
IDY message frames under control of the SH (Source Handshake)
function. These interface messages may be used to control the
interface functions within other devices on the loop. When the C
function is not in its active state, the device may not source
interface messages. The C function does not give the device the
capability to source or accept DOE (data or end) messages. Those
capabilities are offered only by the T and L functions.

The normal loop handshake consists of sourcing one frame
at a time and waiting for its return while each receiving device
holds the frame until it is ready for the next. When a frame
returns, all devices on the loop are ready to receive the next
message. For frames intended for only a few devices, the penalty
of such serial interpretation is not severe. However, since CMD
frames are often intended for all devices, they are retransmitted
immediately by each receiving device to allow for parallel
interpretation. When a CMD frame returns, the active controller
sources the RFC ready frame which is held by each device until it
is ready for the next message. Refer to the SH function for more
information about both types of loop handshake.

2-19

C Function Functional Specifications

It is strongly recommended that the controller error
check its messages by comparing the received frame with the
previously transmitted frame to guarantee proper reception of
messages and to enhance reliability.

The active controller may source the IDY message
asynchronously to the loop handshake at any time but will not
normally do so unless there has been a long delay in loop
transmission. All devices should be implemented so that they
will respond properly to the IDY and yet still continue correct
response to other messages without disturbing normal loop
operation. The controller may use the local message gta to
enable the asynchronous IDY if it is not already in the active
state. Refer to chapter 5 for complete discussion of
asynchronous operations.

Devices on the loop indicate a need for service from the
controller by setting the SRQ bit in DOE or IDY frames. When
rapid response is important, the controller may execute a
parallel poll by sending the IDY message. When configured to do
so, devices respond by modifying one of the assigned eight data
bits in the IDY frame. Devices may also have the capability of
asynchronously sourcing their own IDY frames with the SRQ bit
set. The controller may choose to enable this mode when no loop
operations are in progress.

For various reasons the controller may choose to
interrupt a device dependent message transmission between a
talker and listener(s). This may be done through the L
(listener) interface function. The controller may also enable
active listeners to perform this NRD sequence so that the
transfer may be halted before extensive delays occur. Refer to
section 2.9 for further information about this capability.

The system controller is the only device on the loop
which is permitted to source the IFC message. It may do this at
any time (even if it is not the currently active controller)
and take control of the loop asynchronously. Under this
circumstance it is possible to have an extraneous frame on the
loop since the source of the frame may be cleared before the
frame returns. To prevent this frame from recirculating, the
system controller, after sourcing the IFC, must destroy any
frames which it receives until the IFC returns. Further, no
device may source any frame after retransmitting the IFC (and
RFC) until specifically commanded to do so by succeeding
interface messages. The sic or gta local messages may initiate
this sequence depending on the state of the system controller.

2-20

Functional Specifications C Function

When power is first applied the system controller should
observe special protocol to insure that all devices on the loop
are present and properly connected. The recommended sequence is
to send the IFC message at regular intervals while stopping all
frames received to guarantee that no extra frames are
circulating. When one IFC returns, loop continuity is verified.
At that time, the controller should send one and only one RFC
while stopping all frames being received. When the RFC returns,
the loop is ready for normal operations. Refer to chapter 5 for
more information on the power up sequence.

No controller capability is designated C@. If the device
has the controller capability, it must include subset Cl. The
allowable subsets of the controller function are:

Cl: Basic controller capability. Includes the ability to send
interface messages and detect transmission errors by
interpreting the ETO or ETE messages. Requires CIDS, CACS,
CSBS, CEIS, and CEMS.

C2: System controller capability. Provides the capability to
send the Interface Clear message. If this capability is not
present the local messages sic and scl must always be false.
It is strongly recommended that the scl message not always
be true so that the device may be used on a loop with
multiple controllers.

C3: Detect SRQ capability. Note that the L function is
necessary if the device is to receive and interpret status
bytes. Requires CSNS and CSRS.

C4: Pass and receive control capability. This allows
controllers to take turns controlling the loop. Requires
CTRS and the optional term in the transition between CIDS
and CACS. The T function is also required.

C5: Parallel poll capability. Includes the ability to conduct
parallel polls and to enable device response.

C6: Asynchronous service request capability. Includes the
ability to enable devices to source asynchronous IDY
messages and to interpret those messages.

All controllers will include Cl with, optionally, some
combination of the other capabilities. A simple system
controller with only SRQ capability would be C1,2,3. A basic
controller with parallel poll and control passing capability
would be designated C1,4,5.

C Function Functional Specifications

IFC » scl+ ACDS

sic +scl [+ TCT- TADS - ACDS] /7 “\ SOT-TCT- STRS + gts
CACS)

PONS “(csBs
(SOT + EOT)+ ACDS + gta
L TCT « ACDS TCT« STRS
TCT » ACDS
SRQ ¢ (RITS+RCDS)
ETE« ACDS
+(CACS+CSBS)
+(CACS+CSBS)
PONS —{CSNS)_ [CSRS PONS CEIS | “[CEMS
(DOE+IDY) +SRQ CMD ¢ STRS
*(RITS+RCDS)
Messages
gta go to active EOT end of transmission
gts go to standby ETE end of transmission with error
scl system control IFC interface clear
sic send interface clear SOT start of transmission
SRQ service request
CMD command TCT take control
Interface States
CACS controller active state (links to R,AH, ACDS acceptor data state (from AH)
SH,T,L,PD) PONS power on state (from PD)
CEIS controller error idle state RCDS receiver data state (from R)
CEMS controller error mode state RITS receiver immediate transfer state
CIDS controller idle state (from R)
CSBS controller standby state (links to R,AH,L) STRS source transfer state (from SH)
CSNS controller service not requested state TADS talker addressed state (from T)

CSRS controller service requested state
CTRS controller transfer state

Figure 2-7. C State Diagram

2-22

Functional Specifications C Function

CIDS (Controller Idle State)

In CIDS the device has no loop control capability. This
is the power-on state. If the function receives the TCT message
while addressed to talk or the device is system controller and
has need of sending the IFC (interface clear) message (local
messages scl and sic), then the function enters CACS.

CACS (Controller Active State)

In CACS the device is enabled to send interface messages
through the SH (source handshake) function. If the function
enables a talker to begin sourcing DOE (data or end) messages or
the local message gts (go to standby) is true, the function
enters CSBS. If the function sends the TCT (take control)
message in an attempt to pass active control to another device on
the loop, the function enters CTRS.

CSBS (Controller Standby State)

In CSBS the function has enabled a data transfer between
a talker and listener(s) with an SOT (start of transmission)
message. If the SOT returns or an EOT (end of transmission) is
received, the function returns to CACS. While in CSBS the device
may not source any remote messages unless it is the active
talker. The function may return active with the gta (go to
active) local message if asynchronous operations are desired.

CTRS (Controller Transfer State)

In CTRS the device has sent the TCT in an attempt to pass
active control to another loop device. If the TCT returns, the
attempt is unsuccessful and the device must resume active control
of the loop. If any other frame is received, the attempt was
successful and this function must enter CIDS.

N
1

23

C Function Functional Specifications

CSNS (Controller Service Not Requested State)

In this state the function is indicating that no loop
devices are currently requesting service. This is the power-on
state. If a DOE (data or end) or IDY (identify) message is
received with the SRQ bit true, the function enters CSRS.

CSRS (Controller Service Request State)

In CSRS the function is indicating that at least one loop
device is requesting service. If a DOE or IDY frame is received
with the SRQ bit false, then the function returns to CSNS.

CEIS (Controller Error Idle State)

In this state the function is indicating to the device
that no error has been detected by the talker in a data transfer.
If the ETE message is received the function moves to CEMS.

CEMS (Controller Error Mode State)

In CEMS the function is indicating to the device that an
talker has discovered an error in a data transfer. When the
controller sends its next command the function returns to CEIS.

Functional Specifications T Function

2.8 T (Talker) Function

The T interface function provides the device with the
capability to send device dependent data, status, device ID, and
accessory ID on the loop. This capability exists only when the
device has been addressed to talk.

This function enables the device to send device dependent
DOE (data or end) messages on the loop under the control of the
SH (Source Handshake) interface function. The device may send
data messages only if one of TACS, SPAS, DIAS, or AIAS is active.

To enhance device compatibility it is strongly
recommended that wherever possible device dependent data messages
be sent using the ASCII code.

The talker may send the END message within the
transmitted data string to indicate an end-of-record condition to
the listener(s) without terminating the transmission. The EOT
(end of transmission) message should be sent to the controller
when the talker has no more data ready to send. The EOT message
does not necessarily indicate an end of message condition, it is
used only as a handshake to the controller. Therefore, if a
delay may occur before the talker is able to source another data
byte, ETO should be sent.

The controller or an active listener (if enabled by the
controller) may elect to interrupt the data transfer using an NRD
sequence as controlled by the L (Listener) and AH (Acceptor
Handshake) interface functions. The talker's current data byte
is held by the device interrupting the transfer and the NRD
message is inserted in its place. When the talker receives and
retransmits the NRD frame, it waits for the held data byte to be
returned. When the interrupting device receives its NRD, then
the held data byte is retransmitted to the talker. When the
talker receives the data byte, it will source the appropriate EOT
(end of transmission) message. Refer to the L interface function
in section 2.9 for a more complete description.

Each time a talker becomes enabled to source status or ID
information with the SST, SAI, or SDI ready messages, it must
begin with the first byte regardless of any previous operations.
However, if a talker is enabled to source data with an SDA ready
message, the transmission must begin with the current data byte.

2-25

T Function Functional Specifications

A talker must have the capability to be interrupted one
or more times during a data transfer without adverse effects.
During this interruption, the controller may ask devices on the
loop for status or ID information one or more times, or may
simply start a transfer between other devices. The talker must
be able to be interrupted in this manner without affecting the
data to be sourced. When the talker is re-enabled to source
data, it must continue at the point of interruption unless
directed otherwise by the controller in a device dependent
manner.

A device's status response may contain one or more bytes
that indicate various device dependent conditions. The two most
significant bits of the first byte are defined and may not be
used for any other purpose. Bit 7 (msb) is set if the byte is a
system status byte and clear otherwise. Bit 6 is always equal to
the value of the local message rsv. Refer to the SR (Service
Request) interface function on page 2-36 and section 2.18 for
information on status message coding.

The device ID is an ASCII string representing the the
device's model identification followed by carriage return and
linefeed. It is typically of the following form: two alpha
characters representing the company code, a one to five digit
model number, and a single alpha character model revision.
Devices may optionally send additional information (before the
carriage return) to indicate such things as options installed in
the device or other information to identify or classify the
device capabilities.

The accessory ID consists of one or more bytes that
provide information about device functions and capabilities.
Refer to section 2.18 for a complete description of the accessory
ID byte(s).

When a DOE message returns to the talker the SRQ bit may
be set. If the talker is not also the controller, the SRQ
message must be sent to the active controller. The talker may do
this by sourcing the following DOE message (if there is one) with
the SRQ bit set. The talker must not allow more than one DOE
frame to be sourced without the SRQ bit set after receiving a DOE
with the SRQ bit set. If the SRQ bit on any received DOE message
is received false, the talker must discontinue sourcing the SRQ
message with its device dependent data.

Functional Specifications T Function

The loop structure is ideal for error checking purposes
since the originator of a message can compare the returned frame
with the original transmitted frame. While not specifically
required it is strongly recommended that devices perform this
error checking function to enhance loop reliability. If a device
detects an error it should set the local message fre true. The T
function will then complete the current handshake and source the
ETE (end of transmission with error) message to signal the
controller that a transmission error has occured. If the device
does not perform error checking, it must always send the fre
local message false.

As with other interface functions, a complete
understanding of the four frame handling functions (Receiver,
Acceptor Handshake, Source Handshake, and Driver) is essential
for correct implementation of the Talker function.

A talk-only listen-only system has no controller and
involves some special protocol. The talker in such a system must
not send the EOT message (since it would circulate endlessly) and
therefore must always send the local messages 1lfs and fre false.
Furthermore, after power-on, if the talker has not received back
its first message frame after a certain amount of time (say, one
second) it should continue to send this message at this slow,
device dependent interval until the frame returns completing the
loop handshake. Then the talker may begin normal transmission.
Without this provision the first frame might be destroyed at an
as yet unpowered listener and the talker would never send the
next frame. This permits devices in this type of system to be
powered on in any order.

If the talker function is not implemented, the device is
designated T@. The designer may choose among several possible
subsets of the T function, all of which (except T@) must include
TIDS, TADS, TAHS, TERS. The data, status, accessory ID, and
device ID capabilities are designated by the numbers 1, 2, 3, and
4 respectively. It is very strongly recommended that devices
respond to both accessory ID and device ID. Talk-only mode
(designated T5) requires subset Tl and allows the ton local
message to be true. Some means of disabling the ton local
message must be provided. Extended addressing may be added with
the TPIS and TPAS states (requires the AA2 or AA3 subsets of the
auto address function). For example, a device which can send
data and status only would be given the T1l,2 designation. The
same device with the inclusion of talk-only mode would be listed
as Tl,2,5. A device that can send only status and its accessory
ID and which has extended addressing capability would be T2,4,6.

2-27

T Function

Functional Specifications

PONS
+ IFC » ACDS
ton
TIDS TACS
SDA » ACDS
(MTA « AECS + tlk «CACS
+ MSA « TPAS) « ACDS
(UNT + OTA + OSA TPAS SST « ACDS
+ MLA + AECS + MSA «LPAS)+ ACDS
PONS SDI« ACDS
MTA « AECS « ACDS SAl+ ACDS
TPIS “(TPAS
—_— _—— ETE+ STRS
RFC «IDY « SAD
ETO « STRS —
*MTA « ACDS
fre fre
TERS
Ifs + NRD « ACDS
Messages
tlk local talk MTA my talk address
ton talk only NRD not ready for data
Ifs last frame sent OSA other secondary address
fre frame error detected OTA other talk address
RFC ready for command
ETE end of transmission with error SAD secondary address
ETO end of transmission, OK SAl send accessory 1D
IDY identify SDA send data
IFC interface clear SDI' send device ID
MLA my listen address SST send status
MSA my secondary address UNT untalk
Interface States
AIAS accessory ID active state (links to R,AH,SH) ACDS acceptor data state (from AH)
DIAS device ID active state (links to R,AH,SH) AECS auto extended configured state
SPAS serial poll active state (links to R,AH,SH,SR) (from AA)
TACS talker active state (links to R,AH,SH) CACS controller active state (from C)
TADS talker addressed state (links to R,AH,C,DD) LPAS listener primary active state
TAHS talker hold state (links to R,AH,SH) (from L)
TERS talker error state (links to R,AH,SH) PONS power on state (from PD)
TIDS talker idle state STRS source transfer state (from SH)
TPAS talker primary addressed state (links to R,L)
TPIS talker primary idle state

Figure 2-8.

2-

28

T State Diagram

Functional Specifications T Function

TIDS (Talker Idle State)

In this state the device is not able to send data
messages. The function powers on in this state. A talk-only
device may use the local message ton to enter TACS directly from
TIDS without first being addressed. If the MTA (my talk address)
message is received or the MTA and MSA (my secondary address) are
received, and the device is configured for extended addressing,
then the function enters TADS.

TADS (Talker Addressed State)

In TADS the T function has received its talk address (and
secondary address if extended addressing is used). The function
is prepared for, but not yet engaged in the sending of device
dependent messages over the loop. When the appropriate start of
transmission (SOT) message is received the function enters one of
the active states to begin sending the device dependent messages.
Controllers may use the local message tlk to enter TACS without
receiving the SDA (send data) message. If a CMD which causes the
function to become unaddressed is received while in TADS the
function returns to TIDS.

TACS (Talker Active State)

In this state the SDA (send data) message has been
received and the device is enabled to begin sourcing device
dependent data messages (DOE). These transmissions are
controlled by the SH (Source Handshake) function. When an NRD
(not ready for data) ready message is received or the device
detects that no more data is ready to be sent, the function
enters TAHS. If the device detects that a DOE frame has been
received in error, then the device enters TERS. If an IFC is
received the function immediately aborts back to TIDS.

SPAS (Serial Poll Active State)

In this state the SST message has been received and the
device is enabled to replace this message with one or more bytes

of device status information. Transition to TAHS occurs when the
status 1is sent or when an NRD is received. Transition to TERS
occurs if an error is detected. IFC causes an immediate abort to
TIDS.

T Function Functional Specifications

DIAS (Device Identify Active State)

In this state the function has received the SDI message
and the device is enabled to replace this message with its device
ID string followed by a transition to either TAHS or TERS.

AIAS (Accessory Identify Active State)

In AIAS the SAI frame has been received and the device is
enabled to replace it with one or more bytes of accessory ID
information followed by a transition to either TAHS or TERS.

TAHS (Talker Hold State)

In talker hold state the device has completed sourcing
its device dependent data and is waiting for the SH (source
handshake) function to indicate that the current handshake cycle
is complete. If an error is detected then the function enters
TERS. If the device does not indicate that an error has
occurred, then ETO (end of transmission, OK) is sourced and the
function enters TADS.

TERS (Talker Error State)

In TERS the T function has just received the fre local
message indicating that a transmission error has occurred. When
the SH function signals that the current handshake cycle is
complete, the ETE (end of transmission with error) is sourced and
the function enters TADS.

TPIS (Talker Primary Idle State)

The function is able to respond to its primary talk
address in TPIS but must not recognize its secondary address.
This is the power-on state.

TPAS (Talker Primary Active State)

In TPAS the function has received its primary talk

address and is now able to recognize and respond to its secondary

address. Receipt of any frame other than IDY, RFC, MSA, or MTA
(again) will cause return to TPIS.

2-30

Functional Specifications L Function

2.9 L (Listener) Function

This interface function provides the device with the
capability to receive device dependent data including status,
device ID, and accessory ID over the loop from other devices.
The L function also allows devices the capability to halt data
transfers if enabled to do so by the controller.

When the device is addressed to listen, DOE (data or end)
messages received from the loop may be interpreted in a device
dependent manner. When not addressed to listen, received data
may not be interpreted. Message receiving is controlled by the
AH (Acceptor Handshake) interface function. If necessary and
enabled by the controller, a listener may halt the data transfer
by sending an NRD (not ready for data) sequence to the active
talker as controlled by the AH (acceptor handshake) and SH
(source handshake) functions.

To enhance the compatibility between the various devices
on the loop it is strongly recommended that wherever possible
device dependent data messages be sent using the ASCII code.

The talker may send the END message as part of the sent
data to indicate an end-of-record condition. The listener(s) may
use this information in a device dependent manner. The EOT (end
of transmission) message, however, is intended only for the
controller and is not interpreted by the listener(s).

The L interface function controls only when data may be
accepted from the loop but does not describe how the data is to
be interpreted. Since the data transfer may be interrupted so
that other operations may be performed, the listener must not
allow state changes within the L function to affect the
interpretation of the received data.

Listeners may stop active data transfers if enabled to do
so by the controller with the ELN (enable listener not ready)
command (controllers have this capability intrinsically). If
necessary, the device may halt a data transfer with an NRD
sequence by sending the local message hlt (halt data transfer)
true. If the function is enabled, then it becomes ready to halt
the transfer as soon as a DOE (data or end) message is received.
When the AH (acceptor handshake) function signals that a DOE

2-31

L Function Functional Specifications

frame has been received and is being held, the NRD message is
sent out on the loop. As soon as the R function indicates that
the NRD has returned, the AH function retransmits the held DOE
frame to the talker. If an IFC (Interface Clear) frame is
received at any time, the function immediately returns to its
inactive state.

The most important usage of the transfer interrupt
capability is for listeners to halt the input data before a
buffer overrun condition occurs. When a listener detects that it
no longer has room to hold the incoming data, it may send the NRD
message (if enabled) to the talker before it is forced to stop
all loop operations by holding a DOE frame.

Devices which do not implement the L function are
designated L@. The basic L capability is designated L1 and
includes LIDS and LACS. If the L function includes the ability
to operate in the listen-only mode, the number 2 is added to the
designation. Devices must allow some means of disabling the lon
message so that it is not always true. Devices without the
listen only capability must always send the lon local message
false. 1If the device has the capability to use a two byte
address then LIDS, LACS, LPIS, and LPAS are required and the
number 3 is added to the designation. Devices with the
capability to halt data transfers add the number 4 to the
designation and include NIDS, NENS, NRWS, and NACS. For example,
a basic listener with listen-only mode would be written L1,2. A
basic listener with extended addressing capability would be L1, 3.
A listener with listen-only capability, extended addressing, and
the capability to halt the data transfer when necessary would be
designated L1,3,4.

Functional Specifications L Function

(MLA+ AECS PONS
+ MSA « LPAS) » ACDS
+ lon + Itn « CACS MLA « AECS+ ACDS
PONS LIDS) [LACS LPIS) “(LPAS
lun « CACS IDY *RFC« SAD
+ (UNL+IFC+MTA « AECS «MLA » ACDS

+ MSA« TPAS)+ ACDS

IFC « ACDS
ELN » LACS « ACDS
+CSBS /7 O\, hit _ /7~ N\ DOE - ACDS
PONS —={ NIDS |_ “(NENS)_ “(NRWS)_ “(NACS

CMD » ELN » ACDS —_~’ DOE + DACS N._~ NRD-RCDS
+ (CMD+NRD) » ACDS

Messages
hit halt data transfer IDY identify
lon listen only IFC interface clear
Itn local listen MLA my listen address
lun local unlisten MSA my secondary address
MTA my talk address
CMD command NRD not ready for data
DOE data or end RFC ready for command
ELN enable listener not ready SAD secondary address
UNL unlisten

Interface States

LACS listener active state (links to R,AH,RL,PP, ACDS acceptor data state (from AH)
DC,DT,DD) AECS auto extended configured state

LIDS listener idle state (from AA)

NACS not ready active state (links to AH,SH) CACS controller active state (from C)

NENS not ready enabled state CSBS controller standby state (from C)

NIDS not ready idle state DACS driver transmit from acceptor state

NRWS not ready wait state (links to R) (from D)

LPAS listener primary addressed state (links to T) PONS power on state (from PD)

LPIS listener primary idle state RCDS receiver data state (from R)

TPAS talker primary addressed state (from T)

Figure 2-9. L State Diagram

2-33

L Function Functional Specifications

LIDS (Listener Idle State)

In this state the device is not able to receive device
dependent messages. The function powers on in this state. A
listen-only device or a controller may use the appropriate local
message (lon, ltn respectively) to enter LACS without being

addressed to listen. If the MLA message is received and the
device is not configured for extended addressing, then the
function enters LACS. If the device is configured for extended

addressing, both the MLA and MSA (my secondary address) messages
must be received before LACS is entered.

LACS (Listener Active State)

In LACS the device has received its listen address (and
its secondary address if extended addressing is used) and is
ready to receive device dependent data messages over the loop.
This message transfer is controlled by the AH (Acceptor
Handshake) interface function. If a command is received that
causes the device to become unaddressed, the function returns to
LIDS. A controller device may use the lun local message to cause
the function to return to LIDS.

LPIS (Listener Primary Idle State)

In LPIS the device is able to recognize its primary
listen address but is not able to respond to its secondary
address. The L function powers on in this state. If the device
is configured for extended addressing, then the MLA (my listen
address) message will cause a transition to LPAS.

LPAS (Listener Primary Active State)

The function has received its primary listen address and
is now able to respond to and recognize its secondary address in
this state. The receipt of any frame other than MSA, MLA
(again), RFC, or IDY will cause a return to LPIS.

Functional Specifications L Function

NIDS (Not Ready Idle State)
This is the power-on state. In NIDS the function is not
enabled to interrupt a data transfer. If the device is active

listener and the ELN (enable listener not ready) command is
received or the device is controller, the function enters NENS.

NENS (Not Ready Enabled State)

In NENS the function has been enabled to perform the NRD

sequence but is not actively doing so. If the device decides
that the data transfer should be halted, it sends the local
message hlt true and the function enters NRWS. If any command is

received, the function returns to NIDS.

NRWS (Not Ready Wait State)

In this state, the function is waiting for a data byte to
be received so that it can perform the NRD sequence. When a DOE
frame is received, the function enters NACS. If a CMD or NRD
frame is received, the function returns to NENS.

NACS (Not Ready Active State)

In NACS the function is in the process of sourcing the
NRD frame. When the NRD frame returns, the function returns to
NRWS.

N
|

35

SR Function Functional Specifications

2.19 SR (Service Request) Function

The SR function provides the device the ability to
request service from the controller. Devices may request service
by setting the SRQ (C@) bit in DOE and IDY messages. The set SRQ
bit notifies the controller that one or more devices on the loop
have requested service. CMD and RDY frames do not have an SRQ
bit and may not transmit the service request message.

The device enables the SR function to send the service
request message by setting the local message rsv true. When the
controller asks the device to send its status, the SR function
stops sending the SRQ message on the loop unless the local
message rsv is set false and then true again.

A device may send the service request message to the
controller by setting the SRQ bit on any DOE or IDY frame that
the device sources or retransmits. This requires a commitment on
the part of the controller to source IDY frames periodically when
no data is being transferred to check for service requests. If
the loop is to be idle and periodic polling is not desirable, the
controller may enable devices to source asynchronous IDY frames
with the SRQ bit set by sending the EAR (enable asynchronous
requests) command. When the controller receives an asynchronous
IDY or decides on its own that it needs to perform further
operations, it will source a UCG (universal command) to disable
further asynchronous requests and proceed with normal operations.
While devices are enabled to source asynchronous IDYs, the
controller must not send any frames except UCG or IDY. Since
asynchronous IDYs may not travel the entire loop, the parallel
poll bits will not necessarily be correct.

Two bits in the first byte of a device's status are
reserved and must not be used for any other purpose. Bit 7 (msb)
is set to indicate that the first byte is a system status message
and is clear otherwise. System status messages are a device
independent method of communicating status information (Refer to
appendix C for a complete list of system status messages and
their usage). Bit 6 is always equal to the device's local
message rsv.

Functional Specifications SR Function

To enhance the compatibility between many different
devices, system status messages should be used whenever possible.
This allows generalized controllers to be implemented that can
understand status messages from any device on the loop. Most
devices can describe all possible status with the system messages
defined. If more specific information is necessary or desirable,
the device may send additional bytes of status.

Devices that do not implement system status should not
request service for reasons other than data integrity unless
enabled by the controller. Events which involve data integrity
are defined to be those events that risk either data loss or an
infinite halt of the loop data transfer. The controller may
enable devices to send the SRQ message for causes other than data
integrity (if the device has the capability) using either device
dependent commands or ASCII commands defined for that purpose.

Devices that implement system status should request
service for data integrity reasons and may optionally send the
SRQ message whenever the current status changes. System status
messages are required for change of status SRQs because the
controller needs no device specific information to correctly
interpret the request.

When a controller receives a service request from a
device, it should stop the current operation immediately and find
the reason for the SRQ. If data loss is a possibility, there may
be a limited amount of time before data is actually lost.

SRZ indicates no service request capability. Basic
service request capability is indicated by SR1 with the sta%es
ARSS, ARIS, and ARAS omitted. SR2 indicates full SR capabiiity
including asynchronous service requests with no states omitted.
SR1 and SR2 both require the T2 subset of the talker function to
send the device's status byte(s). Note that the arg message may
be sent true only when SRSS is active. It must be sent false
immmediately on entry to ARSS.

SR Function

rsv
arqg

DOE
EAR

ARAS
ARIS
ARSS

SRIS

SRSS
SRAS
SRHS

rsv SPAS 77\

Functional Specifications

(DOE + DY)
«(RITS + ACDS)

PONS —={ SRIS |_

| SRSS |_

| SRAS

rsv + SPAS

EAR « ACDS

IDY «STRS

SRQ - DIDS

arg » ARAS

PONS —>{ ARIS |

[ARAS

UCG + EAR+ LPD + ACDS

Messages
request service IDY
asynchronous request LPD

SRQ
data or end UcCG

enable asynchronous requests

identify

loop power down
service request
universal command

Interface States

asynchronous request active state ACDS
asynchronous request idle state DIDS
asynchronous request source state PONS
(links to SH) RITS
service request idle state

service request standby state SPAS
service request active state STRS

service request hold state

acceptor data state (from AH)
driver idle state (from D)

power on state (from PD)
receiver immediate transfer state
(from R)

serial poll active state (from T)
source transfer state (from SH)

Figure 2-10. SR State Diagram

2-38

Functional Specifications SR Function

SRIS (Service Request Idle State)

In SRIS the SR function is not requesting service. This
is the power-on state. When the rsv local message goes true the
function enters SRSS provided the controller is not currently
requesting the device's status byte(s) via a serial poll.

SRSS (Service Request Standby State)

In this state the device is waiting for an opportunity to
send the SRQ message. When a DOE or IDY frame arrives the
function enters SRAS. If ARAS is active and the arqg local
message is true the function enters ARSS. If the device no
longer requires service the function returns to SRIS. When the
controller conducts a serial poll to retrieve the device's status
the function enters SRHS.

SRAS (Service Request Active State)

In SRAS a DOE or IDY message has been received and the
device is setting the SRQ bit in this message prior to its
transmission by the D (Driver) interface function. When the
transmission begins, the function returns to SRSS.

ARSS (Asynchronous Request Source State)

In this state the device sources its own IDY message with
the SRQ bit set. When the D function indicates that transmission
has begun the function returns to SRSS.

SRHS (Service Request Hold State)

In SRHS the device requires service but may not request
it over the loop. When the device sends the local message rsv
false, the function returns to SRIS.

ARIS (Asynchronous Request Idle State)

In ARIS the device may not generate asynchronous service
requests. This is the power on state. When the EAR message 1is
received the function moves to ARAS.

ARAS (Asynchronous Request Active State)
In this state the device is enabled to generate

asynchronous service requests. If any universal command other
than EAR or LPD is received the function returns to ARIS.

RL Function Functional Specifications

2.11 RL (Remote Local) Function

The RL interface function provides a device with the
capability to select between two sources of input information.
The input may either be from a local source (such as a front
panel keyboard) or from the interface.

The RL function allows the device to have three basic
levels of local control. Full local control allows all local
controls such as switches or keyboards to be fully operative.
Device commands received in this mode may be ignored or treated

as device dependent data. Remote control requires the device to
ignore all local controls that have corresponding remote
controls. Local controls that generate local messages to the

interface functions will continue to be operative including the
rtl message which can be used to return the function to local
control. Remote control with local lockout requires the device
to ignore all local controls including those that generate local
messages.

Note that this function does not affect a device's
ability to send or receive messages on the loop, although device
interpretation of data messages may be altered. Selected devices
may be placed in remote control by sending the device's listen
address, while others are left under local control. Note also
that the IFC (Interface Clear) message does not affect the RL
function.

When the function transitions from one of the local
states to one of the remote states the device functions may
retain their local settings until receiving specific remote
settings, or they may immmediately revert to the remote settings
previously received. Conversely, when returning to local
control, the device functions may retain their remote settings
until local controls override them, or they may immediately
revert to the present settings of the local controls.

Devices without RL capability are designated RLZ. RL1
indicates basic RL capability without local lockout and includes
all states except LWLS and RWLS. Note that devices designated
RL]1 must always send the rtl local message false. RL2 indicates
full RL capability including local lockout and includes all
states. Both RL1 and RL2 designations require the L function.

2-49

Functional Specifications RL Function

rtie MLA » RACS + ACDS
PONS LOCS | “(REMS
RIDS + GTL * LACS * ACDS + rtl N

RIDS LLO » RACS+ ACDS LLO « ACDS
N\ MLA « ACDS
LWLS | “(RWLS
GTL « LACS » ACDS
REN+ ACDS
PONS RIDS | [RACS
NRE «ACDS
Messages
rtl return to local MLA my listen address
NRE not remote enable
GTL go to local REN remote enable
LLO local lockout
Interface States
LOCS local state ACDS acceptor data state (from AH)
LWLS local with lockout state LACS listener active state (from L)
RACS remote active state PONS power on state (from PD)

REMS remote state
RIDS remote idle state
RWLS remote with lockout state

Figure 2-11. RL State Diagram

2-41

RL Function Functional Specifications

RIDS (Remote Idle State)

In RIDS the function is not enabled for remote operation.
The function powers on in this state. If the REN (remote enable)
message is received the function enters RACS.

RACS (Remote Active State)

In this state the function is indicating that the active
controller has enabled the interface for remote operation,
however, the device functions remain under local control if LOCS
is active. TIf the NRE (not remote enable) message is received
the function immediately returns to LOCS and RIDS.

LOCS (Local State)

In LOCS all local controls of the associated device
functions (both front and rear panel) are operative. The device
may store but not respond to corresponding device dependent
messages from the interface. The RL function powers on in this
state. If RACS is active and MLA is received the function will
enter REMS, provided the rtl local message is not true. If LLO
(local lockout) is received the function enters LWLS.

LWLS (Local With Lockout State)

In this state, as in LOCS, the local controls are
operative. The device may store but not respond to corresponding
device dependent messages from the loop. If RACS is active and
MLA is received the function enters RWLS. NRE causes the
function to return to LOCS.

REMS (Remote State)

In REMS the local controls which have corresponding
remote controls are inoperative and those device functions are
under control of messages received from the interface. This does
not include those controls which generate local messages for the
interface functions. If the NRE or GTL messages are received or
if the local message rtl goes true the function returns to LOCS.
If the LLO message is received the function enters RWLS.

RWLS (Remote With Lockout State)

In this state all local controls are inoperative and the
function will not respond to the rtl local message. If the GTL
message is received the function goes to LWLS. If the NRE
command is received, the function will return to LOCS.

2-42

Functional Specifications AA Function

2.12 AA (Automatic Address) Function

The AA function gives the device the ability to have its
address assigned by the active controller. Either a one byte or
a two byte address may be assigned to each device. If all
devices have the capability to accept a two byte address, a
maximum of 961 devices may be on the loop.

At power-on the device has no address assigned to it and
may elect to respond to a default address or respond to no
address at all. When an implemented addressing sequence is
received, the device becomes configured for the assigned address.
While the device is configured, it may not respond to any other
address or accept another address assignment. If at any time the
AAU (auto address unconfigure) message is received, the function
immediately returns to its unconfigured state and the device must
assign itself a default or switch selectable address. Note that
since devices may not have any address at all at power-on,
controllers intending to use the default or switch selectable
addresses must send the AAU command at least once.

The least significant five bits of the AAD (auto address)

AEP (auto extended primary), AES (auto extended secondary), and
AMP (auto multiple primary) messages contain the binary address
assignment, addresses @ through 3¢. Address 31 is not a legal
address (11111). This message is called IAA, IEP, IES, or IMP
(illegal AAD, AEP, AES, AMP respectively) and the AA function
does not respond in any way to these message though it might
generate them in response to an incoming auto address message.

To configure the loop for one byte addressing, the
controller would send the AAD1l (auto address 1) message
(reserving address @ for itself). If a valid AAD message
returns, then the address it contains is one more than the number
of devices on the loop. If the returned message is IAA then the
loop may contain more than 3@ devices and the controller should
send AAD30 to check. If the AAD30 returns unchanged then there
are exactly 39 devices on the loop and the controller may proceed
as usual. If IAA is returned again, more than 30 devices are on
the loop and improper operations may result.

Auto extended addressing allows each device on the loop
to be asigned a two byte address so that a maximum of 961 devices

2-43

AA Function Functional Specifications

may be connected at once. For configuration, the controller
would send the AES1 (auto extended secondary 1) message
(reserving address 0,8 for itself). The first group of devices

would receive their secondary addresses and increment the AES
until IES is generated. When the controller receives the IES
message, it will send the AEP@ (auto extended primary @) message.
Only those devices which have received legal secondary addresses
will respond to and accept this primary address. This group is
now configured and will not respond to any auto address messages
until AAU is received. Note that the primary address is not
incremented by the loop devices and must be incremented by the
controller. The controller should now send AESY followed by AEP1
to configure the next group of devices. The controller should
continue this AES@-AEPn sequence until the AES message returns
with a legal address (not IES). The value of the returned AES
message and the coresponding AEP message sent indicate how many
devices are on the loop. This addressing sequence must be sent
before the auto multiple sequence if both are to be used on one
loop, or it will not work correctly.

Auto multiple addressing allows devices with multiple
functions to be assigned one primary address and have a separate
secondary address for each function. This form of addressing
allows as many as 31 devices (including the controller) with up
to 31 functions in each. The configuration sequence begins when
the controller sends the AMP1l (auto multiple primary) message
(reserving address 9 for itself). The address returned in the
AMP message indicates the number of devices connected (IMP,
illegal multiple primary, would indicate that there may be more
than 30 devices on the loop as in simple auto addressing). Then
the controller would send ZES (zero extended secondary) once for
each device. The return values indicate the number of separate
functions in each device. If both auto extended and auto
multiple addressing are to be implemented in the same loop, the
auto extended addressing sequence must be sent first so that the
ZES message of the auto multiple sequence is not incorrectly used
by extended addressing devices

Simple auto addressing is designated AAl. Extended

addressing is designated AA2. Auto multiple addressing is
designated AA3. All devices must implement one or more of these
three subsets. For example, a device that can be assigned either

one or two byte addresses is designated AAl,2.

Functional Specifications

PONS

AAD
AAU
AEP
AES
AMP

AACS

AAUS
AECS
AMIS
APIS

ASIS

AWPS
AWSS

AAU« ACDS

AAUS AAD « ACDS @ NAA « STRS

AA Function

AACS

AEP « ACDS

NES « STRS

AES « ACDS

NES « STRS

AMP ¢ ACDS
N\\\ NMP « STRS ‘J//ﬂ\\\ ZES « ACDS

Messages

auto address NAA
auto address unconfigure NES
auto extended primary NMP
auto extended secondary ZES

auto multiple primary

Interface States

auto address configured state ACDS
auto address increment state (links to SH) PONS
auto address unconfigured state (links to R) STRS

auto extended configured state (links to L,T)
auto multiple increment state (links to SH)
auto primary increment state (links to SH)
auto secondary increment state (links to SH)
auto wait for primary state (links to R)

auto wait for secondary state (links to R)

next auto address
next extended secondary

next multiple primary
zero extended secondary

acceptor data state (from AH)
power on state (from PD)
source transfer state (from SH)

Figure 2-12. AA State Diagram

2-45

AA Function Functional Specifications

AAUS (Auto Address Unconfigured State)

In AAUS the function has no automatic address assignment.
At power-on the device may elect to respond either to a preset or
switch selectable address or to no address at all (in order to
reduce the chances of two devices having the same address).
After the AAU message is received, the device must respond to
either a default or switch selectable address. If the AAD (auto
address), AES (auto extended secondary), or AMP (auto multiple
primary) messages are received, the function enters AAIS, ASIS,
or APIS respectively. AAUS is the power-on state.

AAIS (Auto Address Increment State)

In AAIS the AAD message has been received with the
device's primary address contained in the lower five bits. 1In
this state the device accepts the address assignment and then
increments it to generate the NAA (next auto address) message for
the next device. When the NAA transmission begins the function
enters AACS.

AACS (Auto Address Configured State)

In this state the device is configured for one byte
addressing and must only respond to the address assigned by the
active controller in the AAD message. The device may not respond
to AAG (auto address group) messages while AACS is active. If
the AAU command is received the function returns to AAUS.

ASIS (Auto Secondary Increment State)

In ASIS the AES message has been received with the
device's secondary address assignment contained in the lower five
bits. The device accepts this assignment and increments the AES
message to generate the NES (next extended secondary) message for
the next device. When transmission of NES begins the function
enters AWPS.

Functional Specifications AA Function

AWPS (Auto Wait for Primary State)

In AWPS the function has received its secondary address
assignment and has sent the NES message to the next device. The
function now waits for the AEP message containing its primary
address. The function enters AECS when AEP is received. The AAU
command causes a transition to AAUS.

APIS (Auto Primary Increment State)

In APIS the function has received the AMP message
containing its primary address assignment in the lower five bits.
The function accepts the assigned primary address and increments
it to generate the NMP (next multiple primary) message for the
next multiple function device. When transmission of NMP begins
the function enters AWSS.

AWSS (Auto Wait for Secondary State)

The function has its primary address and is waiting for
the ZES (zero extended secondary) message. When the ZES message
is received, the function enters AMIS. If AAU is received the
function returns to AAUS.

AMIS (Auto Multiple Increment State)

In AMIS the device has received the ZES message and is
assigning each function of the device a secondary address
starting with zero. The last address assigned within the device
becomes the NES message. Note that all devices to be configured
for extended addressing (and not auto multiple addressing) must
already be configured or they will respond to the NES message.
When transmission begins, the function enters AECS.

AECS (Auto Extended Configured State)

In this state the device is configured for two byte
addressing and must only respond to the primary and secondary
addresses assigned by the active controller. The function will
no longer respond to any remote messages except AAU. If AAU is
received the function returns to AAUS.

PD Function Functional Specifications

2.13 PD (Power Down) Function

This function gives a device the capability to be placed
in a power-down or low power mode by command received over the
loop and likewise to be reactivated for normal operation. When
in the power-down mode the device only needs to monitor the loop
for any pulse. When any frame arrives the edge pseudomessage is
generated which reactivates the device and places the interface
functions in the power-on state.

If the PD function receives the LPD (loop power down)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>