
() HEWLETT
PACKARD

Internal Design

Specification Volume I

For the HP-71 HP-IL Module

Hewlett-Packard

Corvallis, Oregon

Portable Computer Division

REERLEARXLLRIRERRLLXRXRERRZRRAXLXREXREERRREZRAERE
%
Zz
%
%
%
x
%
x
x
x

Internal Design Specification

HP-71 HP-IL Module

VOLUME I

L
e
e
R
L

Detailed Design and Entry Point Description %
x
Xx

RRZXXALLLALALXLXXLXXXLALLELALXXXALEALLXXXXLXXXXE

Z AX AXAAXXX
Ax *X AAXXXAXZ
xX XX XX xX
xx x xXx xX
xX XXX xx
EAXAXXRAE ZXARXXLXX XAXXXZ
LXALXLXXL AXAXAXE ZALRLLL
xx xX Xx
xX xX XX
x4 x XX
%*% xX ZZ
x% XXX

xx xx XX%X% zx
x AX x XX xx
Xx XX x x xx
XXX 2X 2X xx
X XXXX XXXLLX

March 1984

RLLAXLXL
RAXXXLZE

ef
eg

ef
re

ge
ge

ga
i

XLAXXXXZ
KXXXXAZX

XXX

HP Part No. 82401-90023

H
T
N

*%
x%

x4
RALLXLXZX
XERXXXXXLX

R

RXXXXX

Copyright (c) Hewlett-Packard Company 1984

HP-71 HP-1L Module IDS - Volume I

WHE NOTICE HH

Hewlett-Packard Company makes no express or implied warranty with
regard to the documentation and program material offered or to the
fitness of such material for any particular purpose. The
documentation and program material is made available solely on an
"as is" basis, and the entire risk as to its quality and
performance is with the user. Should the documentation and program
Raterial prove defective, the user (and not Hewlett-Packard Company
or any other party) shall bear the entire cost of all necessary
correction and all incidental or consequential damages.
Hewlett-Packard Company shall not be liable for any incidental or
consequential damages in connection with or arising out of the
furnishing, use, or performance of the documentation and program
Raterial.

HP-71 HP-IL Module IDS - Volume I

Table of Contents

1 HOM TO USE THIS DOCUMENT

2 INTERNAL DESIGN NOTES
2.

2.

2.

2.

2.

2.

1

2

3

4

5

6
2.7

2.8

System RAM usage ¢ cv v o « « o« « s 2-1
2.1.1 ON INTR address ee ee a 2-1
2.1.2 DISPLAY IS assigmment 2-2
2.1.3 PRINTER IS assigment +. « « « « . 2-3
2.1.4 Last mailbox address + « « « . . 2-4
2.1.5 HP-IL loop status « v vv « « « « 2-5
2.1.6 Display device status ec ee eo oe 2-5
2.1.7 ENTER terminating character 2-6
System Buffer usage ec « « 2-6

2.2.1 HP-IL save buffer eo eo 6 eo so eo eo o 2-6
2.2.2 ASSIGN IO System Buffer «. « « . . 2=7
2.2.3 HP-IL Statement Execution Buffer 2-7

Decoding a device specifier 2-8
2.3.1 How file and device specifiers are tokenized . 2-8
2.3.2 Reserved device word table 2-9
HP-IL ROM and Mailbox interface 2-10

2.4.1 How frame timeouts are implemented 2-10
2.4.2 Interpreting data when in remote mode 2-11
How interrupts are implemented 2-13

2.5.1 Disabling interrupts « « « . . 2-16
HP-71 Requesting Service in Device Mode 2-16
Implementing Multiple Loops 2-17

2.7.1 Status Information Allocation 2-18
How to find out the capacity of a mass memory device 2-18

2.8..1 Uhen the HP-IL ROM uses extended HP82161A 2-20

3 EXTENDED COMMAND SYNTAX

N
e
a
r
i
n
g
N
a
n
r
w
n
»

N
o
n
e

W
w

-
O
o

Loop Number Specifier « « « « « « o « o 3-1
Syntax Identifier Definitions 3-2
ASSIGN & © © © i it i ee ee ee ee eee ee. 3-3

03-4

CATS Ce es eee eee eee eee eee 3-4
CHAIN . ©. ©... ¢ . vv vv vo ce ee ee eee. 3-5
CLEAR eh ee ee ee ee eee eee 3-5
CONTROL OFF co eo ec oe eo +o eo so eo 3-6

CONTROL ON ce ee ee ee ee ee 3-6
COPY . ©. & ¢ ¢ ¢ ¢ « o oo » eo o © o eo eo o eo eo . . 3-7

CREATE ec eo eo 0 0 0 so eo eo o a « « 37

DEVADDR oc oe eo eo o o ec + +s oo so + . 3-8

DEVAID GC ee ee eee eee ee. 3-8
DISPLAY IS . ©. ©. © 4 vt tt ee 6 eo eo eo o o o o oo 3-9

ENABLE INTR & vt tv 4 eo eo eo eo 0 o o o o « 3-9
ENTER . ©. i i i tt te ee eo oe eee ee. 3-10

INITIALIZE oc 6 oe o oo oe o 3-10

iii

HP-71 HP-IL Module IDS - Volume I[

— w

W
O
W
L
L
W
L
V
W
L
V
R
L
W
L
W
V
L
V
W
W
W
W
W
W
W

W
W
W
W
W
W
W
W
R
N
N
N
M
N
N
N
N
N
N
N

B
L
A
H
R
A
K
R
L
E
E
T
I
N
R
R
R
I
N
N
N
N

W
O
W
W

H
H

p
W
w

0
N
=
O
P

8
SP
L
H
L
L
b
L
e

o
n

N
=
O

A
O
N
B
W
N
=

5.3

5.4

5.5

© Io
s)
— 3 i — w
n

REQUEST » ooCe
RESET HPIL . . . » wv onan nnn
RESTORE 10 » 5° Ce

OPERATION AND FILE TRANSFERS

3-13
3-13
3-14
3-14
3-15
3-15
3-16
3-16
3-17
3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-21
3-21
3-22
3-22
3-23

How the HP-71 powers up the loop 4-1
How the loop is addressed 4-2
How the HP-71 searchs for a device by Device ID . . . 4-3
How the HP-71 searchs for a device by Accessory ID . 4-3
How the HP-71 reads a device’s status (serial poll) . 4-3
How to move files between computers and the HP-71 . . 4-4

PROCESSOR FIRMJARE SPECIFICATION

Basic Description «vv ve 4 ee uw... 5-1
1/0 Processor Configuration 5-1

5.2.1 HP-IL Capabilities 5-1
5.2.2 Mailbox Description « «+. . 5-2

5.2.2.1 HP-71 Low Handshake Nibble 5-5
5.2.2.2 HP-71 High Handshake Nibble 5-5
5.2.2.3 1/0 CPU Low Handshake Nibble 5-6
5.2.2.4 I/0 CPU High Handshake Nibble 5-7

Power On Sequence +. vv ¢ vo o oo. 5-8
5.3.1 Powering Up the Loop cc se es ee. . 58
Service Request on the HP-71 Bus ce « + . 59

5.4.1 Power On Service Request «ee ee 5-9
5.4.2 Data Available Service Request , 5-9
5.4.3 Interrupt Service Request 5-9
5.4.4 Loop Service Request 5-10
Terminating Data Transfers 5-11

iv

HP-71 HP-IL Module IDS - Volume I

5.6 Frame Timeouts ce oe eo eo oe eo oo. 512
5.7 Error Handling ¢ ¢ ¢ ¢ ¢ ¢ oo o oo 5-13
5.8 Manual and Scope Modes cc co. 5-13
5.9 Mailbox Messages From HP-71 5-14

5.9.1 No Parameter Class +. « « . 5-14
5.9.1.1 Nop... ve ee ee ee ee 5-14
5.9.1.2 Read Address Table 5-14
5.9.1.3 Request 1/0 Processor Status 5-15
5.9.1.4 End Of Message « « « . . 5-15
5.9.1.5 Clear SRA . . . +. v v v «v ¢ « o o « « 5-15
5.9.1.6 Set SRQ oc oe eo 5-16
5.9.1.7 Send Error Message 5-16
5.9.1.8 Enter Auto End Mode 5-16
5.9.1.9 Go IntoMarmal Mode 5-17
5.9.1.10 Go Into AutoMode 5-17
5.9.1.11 Update System Controller Bit 5-17
5.9.1.12 Reset CURRENT Address 5-18
5.9.1.13 Read CURRENT Address 5-18
5.9.1.14 Increment CURRENT Address 5-18

5.9.1.15 Read My HP-IL Loop Address 5-19
5.9.1.16 Take/Give loop Control c . . 5-19

5.9.2 frame Class co eo oe eo o o oo 5-19
5.9.2.1 Send Frame oc ee ee ee 5-20

5.9.3 Single Nibble Parameter Class 5-20
5.9.3.1 Address/Unaddress me as TL 5-21
5.9.3.2 Power Down Loop «. « ¢ ¢ « « « . 5-21

5.9.4 Address Class « « ¢ ee ¢ o « « « . 521
5.9.4.1 Address P,Sas Talker 521
5.9.4.2 Address P,S as Listener 52
5.9.4.3 Find Nth Device of Type M 5-22
5.9.4.4 Auto Address the Loop 5-23

5.9.5 Comversation Class « v « « « « « 5-24
5.9.5.1 Start Data Transfer 5-24
5.9.5.2 Start Status Poll 5-24
5.9.5.3 Start DevicelID. 5-25
5.9.5.4 Start Accessory ID 5-25
5.9.5.5 Pass Control 5-25
5.9.5.6 Set Frame Timeout 5-25
5.9.5.7 Set frame Count « . . 5-26

5.9.6 Multibyte Parameter Class 5-27
5.9.6.1 Set SOT Response « « . . 527
5.9.6.2 Set Terminator Mode 5-27
5.9.6.3 Set Terminator Character 5-28
5.9.6.4 Set Number of IDY Timeouts 5-29
5.9.6.5 Set IDY Timeout 5-29
5.9.6.6 Clear Data Buffers 5-29
5.9.6.7 Set IDY SRQ Poll Timeout 5-30
5.9.6.8 Setup InterruptMask 53
5.9.6.9 Read Interrupt Cause 5-30
5.9.6.10 Read DDC Frame «. . « « + . 5-30
5.9.6.11 Update Terminate on SRQ Mode 5-31

HP-71 HP-IL Module IDS - Volume I

5.9.6.12 Power Up the Loop 5-31
5.9.6.13 Enable/Disable IDY Poll 65-32

5.9.7 Diagnostic Clas® « « « « « o o 5-32
5.9.7.1 Read RAM 53
5.9.7.2 Urite RAM . co oe eo 0 eo eo eo eo eo o 5-32
5.9.7.3 Self Te8t ¢v v v «v ¢ « o « o « 5-33

5.9.8 Data Class ¢ uv ¢ « « ¢ o o o o o 5-33

5.10 Mailbox Messages from the I/0 processor 5-34
5.10.1 Frame Class ©. ¢. ¢ vv ¢ oe o « o « 5-34
5.10.2 Device Address Class « « « + « 5-34
5.10.3 Status and Error Class 5-34

5.10.3.1 Current I/0 Processor Status 5-35
5.10.3.2 NOP i i i ee ee ee eee 5-36

5.10.3.3 IFC Received 5-36
5.10.3.4 EOT Received 5-36
5.10.3.5 Data Transfer Halted 5-36

5.10.4 Terminating Conditions Met 5-37
5.10.5 Diagnostics Class 5-37

5.10.5.1 Self Test Results 5-37

5.10.5.2 RAM Value 5-37
5.10.6 Data Class «¢ ¢ vv eo « « « o 5-37

5.11 I/O Processor as a Device 5-38
5.11.1 HP-IL Frames and 1/0 Processor’ 8 Response 5-39

5.11.1.1 Univeral Command Group Frames . . 5-39
5.11.1.2 Addressed Command Group Frames 5-41
5.11.1.3 Listener/Talker/Secondary Command Group 5-42
5.11.14 READY Frames 5-43
5.11.1.5 IDY Frames +. +... . 5-44
5.11,1.6 DOE Frames « « « « . . 5-45

§.12 Additional Capabilities 5-45
5.13 HP-IL Capability Subsets 5-47
5.14 Mailbox Messages Opcodes « « + . . 5-48

6 HP-IL POLL HANDLERS

6.1 Overview v « o « . ce ee ee ee. 6-1
6.1.1 Output and Input of data 6-1
6.1.2 Files on a mass memory device « +. 6-2
6.1.3 Parse and Decompilec . 6-2
6.1.4 Initialization and addressing the loop . . 6-2

6.2 pCAT - CAT execution poll handler 6-3
6.3 pCATS - CATS function poll handler 6-3
6.4 pCLDST - Cold start poll handler 6-3
6.5 PpCONEG - Configuration poll handler 6-4
6.6 pCOPYx - COPY execution poll handler 6-4
6.7 DpCREAT - Create a file in a mass memory device . . . 6-5
6.8 pDEVCp - Parse an HP-IL device specifier 6-5
6.9 pDIDST - Store device specifier information 6-5
6.10 pDSUNK - Deep Sleep Wakeup poll handler 6-6
6.11 DpENTER - Enter data from HP-IL 6-6
6.12 DpEXCPT - Exception poll handler 6-7
6.13 pFILDC - Decompile an HP-IL device specifier 6-7

HP-71 HP-IL Module IDS - Volume I

6.14 DpFINDF - Find a file in an HP-IL device 6-8
6.15 pFPROT - Secure a file or make a file private . . . 6-8
6.16 pFSPCp - Parse a file specifier 6-9
6.17 DpFSPCx - Find a file from the file specifier 6-9
6.18 pIMXQT - IMAGE execution poll handler 6-10
6.19 pKYDF - Key definition poll handler 6-10
6.20 pMNLP - Main loop poll handler 6-11
6.21 pPRICL - Print class poll handler 6-11
6.22 pPRTIS - PRINT device poll handler 6-12
6.23 pPUROF - Power-off poll handler 6-12
6.24 pPURGE - Purge a file in a mass memory device . . 6-12
6.25 pRDCBF - Read a record from a mass memory device . 6-13
6.26 pRDNBF - Urite current, read next record 6-14
6.27 pRNAME - Rename a file in a mass memory device . . 6-14
6.28 pSREQ - Service request poll handler 6-15
6.29 pVERS - Version code poll handler 6-16
6.30 pURCBF - Write a record to a mass memory device . 6-16
6.31 pZERPG - Zero program information poll handler . . 6-17

7 HP-IL ROM UTILITY ROUTINES
7.1 Overview vv 4 vv 4 oe 0 o a ce ee ee 7-1
7.2 How to call a utility routine 7-1

7.2.1 JUMPER routine + vv 4 4 eo . . 7-2
7.3 Data Input and Output routines « « o 7-5

7.3.1 PRASCI - Character outputting routine. 7-5
7.3.2 PREND - Closing part of the PRASCI routine. . . 7-6
7.3.3 REDCHR - Character inputting routines. 7-6

7.4 Display routines «4 v4 ee ew uu. 7-8
7.4.1 BDISPJ - Character-oriented display routine . . 7-8

7.5 Mass memory routines 7-9
7.5.1 BLDCAT - Build CAT text from directory entry. 7-10
7.5.2 CHKMAS - Check for mass memory type device. . 7-10
7.5.3 DSPCAT - Display a CAT text string. 7-11
7.5.4 ENDIAP - Loop clean up after mass mem action. 7-11
7.5.5 FINDEL - Find file on mass storage device. . 7-12
7.5.6 FORMAT - Format medium in the specified drive. 7-13
7.5.7 GDIRST - Locate the start, length of directory 7-14
7.5.8 GEIDIR - Get the Nth entry in a tape directory 7-14
7.5.9 INITFL - Initialize a file 7-15
7.5.10 LSTENTNXTENT - Move to directory entry. . . 7-16
7.5.11 MOVEFL - Move a file between two devices . . 7-17
7.5.12 NEWFIL - Create a file on mass memory device. 7-18
7.5.13 READR# - Read specified record from mass mem 7-19
7.5.14 SEEKA - Seek arecord. 7-20
7.5.15 SEEKRD - Seek for a record, then read it. . 7-21
7.5.16 TSTAT - Check the tape drive’s status. . . 7-21
7.5.17 URITE#® - Urite to a specified record. . . . 7-22

7.6 Device searching routines 7-23
7.6.1 CHKAIO - Check if a string is an ASSIGN WORD. 7-24
7.6.2 CHKASN - Check an HP-IL device assigment. . 7-24
7.6.3 DEVPAR - Parse a device specifier. 7-25

vii

HP-71 HP-IL Module IDS - Vo

7.7

7.8

lume I

7.6.4 FXQPIL - Get the file name from program memory 7-26
7.6.5 GADDR - Find the address of a device on loop. 7-26
7.6.6 GADRRM - Get HP-IL address from program memory 7-27
7.6.7 GADRST - Get address from string on math stack 7-28
7.6.8 GEIDID - Fetch the device ID 7-29
7.6.9 GETDVYW - Get device word off the math stack . 7-29
7.6.10 GETID - Get the device ID for a device. . . 7-30
7.6.11 GETLPs - Get loop number, check status. . . 7-31
7.6.12 GETPIL - Extract file name & device ID, acc I 7-32
7.6.13 GHEXBT, GIYPRM - Get hex value from 1 byte. 7-32
7.6.14 GIYPE - Get the accessory ID of a device. . 7-33
7.6.15 GIYPST - Get device type (acc ID) from stack. 7-34
7.6.16 PROCDY - Process device word. 7-34
7.6.17 PROCLT - Process literal. 7-35
7.6.18 PROCST - Process a string device specifier . 7-36
7.6.19 ROMIYP - Check if a string is a reserved word 7-37
7.6.20 SAVEIT - Save device descriptor entry. . . . 7-37
7.6.21 SETUP - Build a recall string in C[6:0]. 7-38

Loop addressing routines 7-39
7.1 CHKSET - Check if this Mailbox has been reset. 7-39
.7.2 LISTEN ; Address a device as listener. . . . 7-40
7.3 MIYL - Address me as talker, one listener. 7-40
7.4 RESTOR - Reactive all devices. ee ee ee 7-41
7.5 RESTRT - Restart all HP-IL devices. 7-41
7.6 START - Set up entry conditions for the loop. 7-42
.7.7 UTLEND - Unaddress talker & listener, Clean up 7-44
7.8 YIML - Address a talker, me as listener. . 7-44

nicating with 1/0 CPU routines 7-45

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
N
N
N

NO
N)

1
2

ht
2

pd
12
2

P
p

p
a

p
s
2
O
O
V
O
B
W
N

N
R
B
E
E
R
R
R
R
E
R
E
S

s
:

0
0
0
0
0
m

a
o
0
0
a
0
0
M
m
M
M
M
M
W
N

n
N
w

CHKSTS - Check Mailbox status, error, etc. . 7-46
DDL,DDT- Send a device dependent command. . . 1-47
ENDMBX - Find an HP-IL Mailbox. 7-48
FRAMEE - HP-IL frame encode. 7-48
FRAME+ ,FRAME- - Returns type of HP-IL message. 7-49
GET,GEINE - Get a message from Mailbox. . . 7-50
GETD - Get data. 7-51
GETDev - Check if the HP-IL module is a device 7-51
GETERR,GEIST - Get Mailbox error/status. . . 7-52
GETHSS -
GEIMBX -
GETX
GFTYPE
GLOOP#
PRIMSGA
PUTARL
PUTC
PUTD
PUTDX
PUTE
PUTEN -
PUIGF -
PUTX -

Get 2 handshake nibbles from Mailbox 7-52
Set DO to the HP-IL Mailbox address 7-53

- Fast data input routine. 7-53
Get frame type from RAM. 7-54
Get loop # from RAM (if one present) 7-55
Print message from C-reg. 7-55
Put data from A(U] to Mailbox. . . 7-56
Put a command (4 nibs) to Mailbox. 7-57
Put a single data byte to the loop. 7-57
Put multiple data bytes to Mailbox. 7-58
Put long message (6 nibs) to Mailbox 7-58

Send message to Mailbox, ignore error 7-59
Send msg to Mailbox, decode response 7-60
Send 3 bytes of data from C[5:0] . 7-60

viii

HP-71 HP-IL Module IDS - Volume I

7.8.24 READIT - Read data bytes from the loop.
7.8.25 SENDIT - Send data from B(U]. .
7.8.26 SETLP - Setup loop rumber for FNDMBR routine.
7.8.27 URITIT - Output data to loop from RAM.

7.9 Parse and decompile routines co oe
7.9.1 DVCSPp - Device spec parse . . eo oe
7.9.2 FRASPd - Decompile a frame specifier. cee a
7.9.3 FRASPp - Frame spec parse for HP-IL frames.
7.9.4 LOOP#d - Decompile optional loop number.
7.9.5 Loop#p - Parse optional loop specifier. . .
7.9.6 NAMEp - Parse a name or device word.
7.9.7 PRNISA - PRINTER 1S decompile routine. . . .
7.9.8 PRNTSp - PRINTER IS parse routine.

ix

HP-71 HP-IL Module IDS - Volume I
How to Use This Document

PoPwwDwwwwwnww===WEwwwwww=+

| |
| HOW TO USE THIS DOCUMENT | CHAPTER 1 i

|
+Porrwwwwwwwwwn===www=.-——-—

This document describes the software design of the HP-IL module for
the HP-71. The HP-IL module is an optional plug-in for the HP-71
which adds 1/0 capability to the HP-71. The hardware of the HP-IL
module includes an HP-71 ROM and an I/0 processor. The HP-71 CPU
communicates with the I/0 processor through a mailbox. The I/0
processor controls the HP-IL loop to perform the HP-IL operations.

WUhen ve use the term "HP-IL module”, we mean the HP-71 ROM and the
1/0 processor. When we use the term “HP-IL ROM", we mean only the
HP-71 ROM.

The role of the I/O pyocessor is to take commands from the HP-71
and send the necessary messages on the HP-IL loop. The role of the

HP-IL ROM is to provide additional keywords to the HP-71 for 1/0
operations. It also extends some of the keywords in the HP-71 to
allow access to devices on the HP-IL loop.

The purpose of this document is to provide information to those
users who want to access the routines in the HP-IL ROM. If an
assembly language application is being written, all of the utility
routines in the HP-IL ROM are accessible to the user. The
utilities may be useful for adding keywords to the HP-71 or
speeding up an application.

The second chapter provides some design notes of the HP-IL ROM.
This chapter describes in detail the implementation of certain
features in the HP-IL Module. The information includes:

- System RAM usage
System buffer usage

- How interrupts are implemented
How multiple loops are implemented
How frame timeouts are implemented

The third chapter gives the loop specifier syntax for HP-IL
keywords. At the present time, unless special hardware is
provided, there is no way to plug another HP-IL mailbox into the
HP-71. However, the firmware of the HP-IL module is capable of
handling up to three mailboxes. Each Railbox is treated as a
separate loop. Whenever a device is specified, an optional loop
specifier is also allowed, which specifies which loop the device is
in. The syntax of the optional loop specifier was not published in
the rnarmual of the HP-IL module. Our intention is to publish the

1-1

HP-71 HP-IL Module IDS - Volume I

How to Use This Document

loop specifier syntax with any future product which allows the user
to plug in an additional HP-IL loop (such as a Port Extender).

The fourth chapter has some examples of what frames the HP-71
actually sends out to perform some basic HP-IL operations, such as
powering up the loop, auto addressing the loop or searching for a
device. This information may be useful to those people who want to
implement an HP-IL interface in their device. They may want to
know what frames to expect from the HP-71 for some simple
operations.

The fifth chapter describes the lowest level utilities. It
describes how to send messages to and receive messages from the 1/0
processor. All HP-IL commands and data transfers go through a
mailbox to the 1/0 processor. If a poll handler or utility routine
can not be found which implements a required special function,
messages can be sent directly to the HP-IL mailbox. At this level,
the user has control of the loop at a frame by frame level.

The sixth chapter describes all the polls answered by this module.
The HP-IL ROM is a soft configured ROM, which means the routines in
this module do not have a fixed address. The simplest way to
access a routine in this module is by issuing a poll which the
HP-IL module answers. A poll can be issued without knowing the
address at which the HP-IL module is configured. Please refer to
the HP-71 IDS for more information about how to use polls.

The final chapter describes all of the utility routines in this
module. There are many utility routines which can not be accessed
through polling. These routines may be accessed by a direct call.
As we mentioned earlier, the HP-IL ROM does not have a fixed
address. To directly call a utility routine, first find the
starting address of the HP-IL ROM LEX table in the configuration
tables. Next, find the offset from the HP-IL ROM LEX table to the
utility routine. Finally, add the offset of the utility routine to
the starting address of the LEX table, and jump to this address.
Ue have provided a routine, JUMPER, in this chapter which searches
the configuration tables for the address of the HP-IL ROM LEX
table. Calling a utility routine in the HP-IL ROM is therefore
simplified to executing a GOSUB to JUMPER and providing the offset
of the utility routine from the start of the HP-IL ROM LEX table.
The description of each routine, including the offset from the
HP-IL ROt1 LEX table, can be found in this chapter.

1-2

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

Pommeemercececreereccccccccccremecca+

| |
| INTERNAL DESIGN NOTES | CHAPTER 2 |

+GPEEEEEEEDCD DDDD UDEDEGEDEED CCDEE>>a

The purpose of this chapter is to describe the implementation
details for some of the features of the HP-IL ROM. These include
system RAM and system buffer usage, standard display and print
device assigrments, interrupts, multiple loop capability and loop
integrity maintenance.

2.1 System RAM usage

The following locations in system RAM are used by the HP-IL ROM:

ONINIR : Address of the ON INIR statement
IS-DSP : Display device assigmment
IS-PRT : Print device assigmment
MBOX™ : HP-IL mailbox address
LOOPST : HP-IL loop status
DSPSET : Display device set up
TERCHR : Terminating character for ENTER

2.1.1 ON INIR address

Symbol : ONINTR
Location : #2F68D
Length : 5 nibbles
Contents : Holds the address of last executed ON INTR statement

This address is set by the ON INTR statement. The address points
to the ON INIR statement, not the interrupt service routine.

This address is cleared when RUN is executed. The ONINIR address
is associated only with the current program. If a CALL statement
is executed, the current value of the ONINTR location is saved and
then the ONINTR location is cleared, before execution of the
subprogran begins. The ONINIR address of the calling program is
restored when an ENDSUB or END is executed.

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

2.1.2 DISPLAY IS assigment

Symbol : IS-DSP
Location : #2F78D
Length : 7 nibbles
Contents : Current standard display device assigrment

Assigrment encoding:

Nibs from
base adr: Usage:

2-0: If device address known, address, loop # here
If LOOP, nibs 1 and 0:0, nib 2 is loop #
If NULL, FOO
If not known/not assigned/system buffer, FFF
If assigned, not HP-IL, FXX, RX<FF

3: If unassigned/not HP-IL, F
If system buffer with one entry, 4
If address specified, 0

If type specified, 100p # +1 (nib 3: 1,2 »3)
If this assignment has been "OFF"ed, bit 3 is 1

6-4: If type, nib 6: sequence #, nibs 5-4: Acc id
If address, 6-4: address, loop #
If system buffer, 6-4: ystentubuffer #
If unassigned (NOT *‘OFF“ed),
If not HP-IL and nib 3=F, not Ffetined

If a system buffer is used for the display asgigrment, the
assigrment is saved in the following way:

Percerccrrrrcrecrccccccccccccmcccccccreecccemceecee————+

| Device ID/Vol Lbl | ID/Vol Flag | loop # | sequence # |
$mrerecreerccececcccecemcaccmccccccccccccccccm———+

nibs: 16 1 1 1
(high memory) (low memory)

At cold start, if the HP-IL module is not present, the value of
[S-DSP is set to FFFFEEE.

The initial value of IS-DSP at cold start with the HP-IL ROM
present depends on whether a display device is found in loop 1. If
no display device (with accessory ID 3X) is found the value is set
to O3F1FFF. If a display device is found, the value is set to the
address of the first display device in the loop. Whenever the
HP-IL ROM detects that it was just added to the HP-71, the initial
value of the display device assigment is set to this default

2-2

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

value.

Any time a loop broken condition is detected while trying to send
characters to the display device, bit 3 of nibble 3 is set to 1 and
nibbles 2-0 are set to FFF. This setting causes the HP-IL ROM to
stop sending data to the display device. When a RESTORE 10 is
executed or the HP-71 is turned OFF and ON again, the HP-IL ROM
searchs for a display device. If the assigned display device is
found, nibbles 2-0 are set to the address of the device and bit 3
of nibble 3 is cleared.

If the ATIN key is pressed while displaying, bit 0 of DSPSET
(location #2F7B1) is cleared and characters are no longer sent to
the display device. This bit is set again whenever the HP-71 goes
through the main loop. The first character sent after this time
causes the HP-IL ROM to try to restore the display device.

2.1.3 PRINTER IS assigmment

Symbol : IS-PRT
Location : #2F794
Length : 7 nibbles
Contents : Current print device assigrment

Assigmment encoding:

Nid from
base adr: Usage:

2-0: If device address known, address, loop # here
If LOOP, nibs 1-0=0, nib 2 is loop #
If NULL, FOO
If not known/not assigned/system buffer, FFF
If assigned, not HP-IL, Fxx, xx<>FF

3: If unassigned/not HP-IL, F
If system buffer with one entry, 4
If address specified, 0
If type specified, loop # + 1 (nib 3: 1,2,3)
If this assigrment has been "OFF'ed, bit 3 is 1

6-4: If type, nib 6: sequence #, nibs 5-4: Acc id
If address, 6-4: address, loop #
If system buffer, 6-4: system buffer #
If unassigned (NOT "OFF"ed), FEF
If not HP-IL and nid 3+F, not defined

If a system buffer is used for the printer assigment, the

2-3

HP-71 HP-IL Module IDS - Volume I

Internal Design Notes

assigrment is saved in the following way:

dem r recececerrrerrrrrrreececm cemremmrccccmcecec——————+

| Device ID/Vol Lbl | ID/Vol flag | loop # | sequence # |
Pormcrccerrrrcrcrrrcrccrcdemrrcmcceme—c_———————————+

nibs: 16 1 1 1

(high memory) (low memory)

If the HP-IL module is not present at cold start, the I[S-PRT
location is initialized to FFFFFFF.

The initial value of IS-PRT at cold start with the HP-IL ROM
present, depends on whether a printer device is found in loop 1.
If no printer device (with accessory ID 2X) is found the value is
set to 02F1FFF. If a printer device is found, the value is set to
the address of the first printer device in loop 1. Uhenever the
HP-IL ROM detects it has just been added to the HP-71, the printer
assigmment is set to this default value.

Every time a PRINT statement is executed, the loop is searched for
the printer device, as specified by the current assigmment.

2.1.4 Last mailbox address

Symbol : MBOX"

Location : #2F7A9
Length : 3 nibs
Contents : Mailbox address of last accessed mailbox

In executing many of the HP-IL keywords, the first step is to find
the address of the mailbox in the configuration tables. This can
be easily accomplished by calling the routine FINDMBX. FNDMBX saves
the address of the mailbox in the system RAM location MBOX". This
eliminates the need to save the mailbox address in a CPU register
during execution of a statement. The routine GEIMBX loads the
railbox address into DO.

The mailbox address is 5 nibbles long. The most significant nibble
is always a 2. This is because the mailbox is a Memory mapped 1/0
type device and so it is always configured in the address range
20000-2C000. The least significant nibble is always a 0, since the
memory size of a device is alway a multiple of 16 nibbles. Since
the value of the top and bottom nibbles are always known, RAM is
allocated for the middle three nibbles only. The routine GETMBX
supplies the top and bottom nibbles of the mailbox address.

HP-71 HP-IL Module IDS - Volume I

Internal Design Notes

2.1.5 HP-IL loop status

Symbol : LOOPST
Location : #2F7AC
Length : 1 nibble
Contents : Holds the status of the HP-IL loop

- ar wn a> a> == ED Gh WD CE ED ED GD ED CDEDEDhE ED ED ED ED EW ED EW WD EW WD WD EP WD ED ED wD GD GD ED AD EDD—- DGD => -— -

3 Set by OFF 10 command

Cleared by RESTORE 10 command

2 When set indicates the last mailbox accessed 1s in
device mode. The routine START either sets or clears
this bit every time it is called.

1-0 Cleared by the routine START every time it is called.
These two bits are not used at the present time, but
provide a mechanism for other LEX files to determine
if the HP-IL ROM has accessed an HP-IL mailbox.

This nibble is initialized to zero at cold start or when the
HP-IL ROM is first added to the HP-71.

2.1.6 Display device status

Symbol : DSPSET
Location : #2F7B1
Length : 1 nibble
Contents : Indicates the type of device to which the display is

assigned and the current status.

- es me wna DEEnwhEanEEEA Eh Eh ED ED WS ER ED ED TP TD E> ED Cn ED = ED EDED>> UW CD > CD wn. -——n wn -— ww a>

3 Set when the display device has been set up to receive
data. The routine START clears this bit every time it
is called.

2 Set if the display device is a HP82163A Video
Interface.

1 Set if the display device is a printer.
0 Set means the display device is OK.

Clear if the ATIN key has been hit or the loop dies
while displaying. Mainloop sets this bit again.

Bits 2 and 1 are used to indicate whether the display device is a
HP82163A or a printer. If both bits are clear, this indicates the
display is neither a HP82163A nor a printer type device. In
othervords, the accessory ID is not 30 hex or 2X hex. If both bits
are set, this indicates the display type is not known. This nibble

2-5

HP-71 HP-1L Module IDS - Volume I
Internal Design Notes

is initialized to 7 at cold and when the HP-IL ROM is first added
to the HP-71.

2.1.7 ENTER terminating character

Symbol : TERCHR
Location : #2F97D
Length : 2 nibbles
Contents : Defines the terminating character for ENTER statement

This character is initialized to the line-feed character (0A) by
the HP-IL ROM at cold start or when the module is added to the
HP-71.

The HP-IL ROM does not provide any keywords for the user to change
the terminating character. PEEK$ and POKE can be used to change it
if required by the application.

2.2 System Buffer usage

Several system buffers are used by the HP-IL ROM for various
purposes. System buffers are also called 1/0 buffers in the code
listings. There is no difference between an 1/0 buffer and a
system buffer.

bPILSV - HP-IL save buffer, a indication of the ROMs presence.
bPILAI - Contains ASSIGN 10 names.
bSTMXQ - HP-IL statement execution buffer

2.2.1 HP-IL save buffer

Symbol : DPILSV
System buffer mumber : #80F

This buffer is created by the HP-IL ROM at cold start or when the
ROM is first added to the HP-71. No information is stored in the
HP-1L save buffer.

Every time the HP-71 wakes up from deep sleep it issues the deep
sleep wake up poll. During this poll the HP-IL ROM checks to see
if this buffer exists. If the buffer is not found, the HP-IL ROM
assumes the [1/0 processor has not been initialized. The HP-1L ROM
creates this system buffer and executes an initialization sequence
which includes the following:

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

1. Initialize all the mailboxes found.
%#Set IDY timeout to 50 milliseconds.
*Set up the accessory ID and the device ID.

2. Initialize DISPLAY IS and PRINTER IS assigrments.
*Jrite O3F1FFF to IS-DSP which indicates the display device
is unassigned but defaults to the 1st device in loop 1
with an accessory ID of 3X.

*Jrite 02F1FFF to IS-PRT which indicates the print device
is unassigned but defaults to the 1st device in loop 1
with an accessory ID of 2X.

3. Set ENTER terminating character to line feed character (0A).

2.2.2 ASSIGN 10 System Buffer

Symbol: bPILAI
System buffer number: #810

This system buffer is created by the ASSIGN 10 statement. Its
length is always 122 nibbles (30 entries * 4 + 2 nibs of 00). The
ASSIGN I0 statement can have up to 30 assign words. Each assign
word takes 2 bytes in the ASSIGN IO system buffer. The two bytes
are the two characters of the assign word. If an assign word has
only one character, the second character is zero filled.

2.2.3 HP-IL Statement Execution Buffer

Symbol: bSTMXQ
Systen buffer mumber: #811

This system buffer is allocated by the HP-IL ROM whenever data is
received remotely as a device. Uhen the HP-71 is a device and in
remote mode, any data received is interpreted as BASIC commands.
The data received is put into this buffer by the HP-IL ROM for
subsequent execution by the HP-71.

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

2.3 Decoding a device specifier

The method used to find a device on the loop depends upon how the
device is specified. The algorithm for decoding a device specifier
is given below:

IF <dev
THEN

IF <dev
THEN

IF <dev
THEN

IF <dev
THEN

IF <dev

THEN
IF <dev

THEN
IF <dev

THEN
ELSE

spec> starts witha ".”
<dev spec> is a volume label
spec> starts with a “%" sign
<dev spec> is an accessory ID
gpec> starts with a "*" gign
<dev spec> is "¥**
spec> starts with a mmeric character
<dev gpec> 1s an HP-IL address
spec> is one of the ASSIGN words
get the HP-IL address from the ASSIGN I0 system buffer.
gpec> is one of the reserved words
get the accessory ID from the reserved word table.
spec> is "NULL" or "LOOP"
<dev spec> has no address
<dev gpec> is a Device ID.

2.3.1 How file and device specifiers are tokenized

File spec. tokenization:

1) «string expression»
2) or
3) or

<tLITRL> [<file name>] <tCOLON> device specifier»
<tLITRL> [<file name>] <tSEMIC> <volume label>

Device spec. tokenization:

1) <gtring expression»
2) or <tCOLON> <HP-IL address>
3) or <tCOLON> <tLITRL> <device word> [<tSEMIC> <loop mumber>]
4) or <tCOLON> <t%> <mm expr> [<tSEMIC> <loop rumber>]
5) or <tCOLON> <tLITRL> <assign word>
6) or <tCOLON> <tLITRL> <device ID> [<tSEMIC> <loop mumber> }

7) or <tCOLON> <t®*>

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

2.3.2 Reserved device word table

The table entry structure is:

1 nibble: length of name minus 1, in nibbles (n-1)
n nibbles: name (Bytes in order!
2 nibbles: accessory ID

The table consists of entries terminated by length nibble of 0.
The table is listed below:

NIBHEX 7 Length of “TAPE"
NIBASC \TAPE\ TAPE:TYPE=10
NIBHEX 01
NIBHEX D Length of "MASSMEM"
NIBASC \MASSMEM\ MASSHEM:TYPE=1F (MASS MEM. CLASS)
NIBHEX F1
NIBHEX D Length of “PRINTER”
NIBASC \PRINTER\ PRINTER: TYPE=2F (PRINTER CLASS)
NIBHEX F2
NIBHEX D Length of "DISPLAY"
NIBASC \DISPLAY\ DISPLAY :TYPE=3F (DISPLAY CLASS)
NIBHEX F3
NIBHEX 7 Length of "GPIO"
NIBASC \GPIO\ GPI0:TYPE=40
NIBHEX 04
NIBHEX 9 Length of "MODEM"
NIBASC \MODEM\ MODEM:TYPE=41
NIBHEX 14
NIBHEX 9 Length of “RS23"
NIBASC \RS232\ RS232:TYPE=42
NIBHEX 24
NIBHEX 7 Length of "HPIB"
NIBASC \HPIB\ HPIB:TYPE=43
NIBHEX 34
NIBHEX D Length of "INIRFCE"
NIBASC \INTRECE\ INTRECE:TYPE=4F
NIBHEX F4
NIBHEX D Length of "INSTR"
NIBASC \INSTRMI\ INSTRMT : TYPE=5F (INSTRMT CLASS)
NIBHEX PS
NIBHEX D Length of "GRAPHIC"
NIBASC \GRAPHIC\ GRAPHIC:TYPE=6F (GRAPHIC 1/0)
NIBHEX F6

NIBHEX 0
END OF TABLE INDICATOR...NULL

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

2.4 HP-IL ROM and Mailbox interface

The HP-IL module has a ROM containing an HP-71 LEX file and an 1/0
processor. The function of the ROM is to extend the BASIC language
to include 1/0 capability on HP-IL. The HP-IL ROM talks to the I/0
processor through a mailbox. If the HP-IL ROM has a message for
the 1/0 processor, it puts the information into the mailbox and
sets a flag. If the 1/0 processor has a message for the HP-IL ROM,
1t puts it into the mailbox and sets a different flag.

The implementation of the feature set of the module is shared by
the HP-IL ROM and the 1/0 processor. The HP-IL ROM is responsible
for moving data between the HP-71’s memory (such as variables and
files) and the mailbox. The I/0 processor is responsible for
moving data between the mailbox and the loop.

The HP-IL ROM and the 1/0 processor work together on things other
than transferring data. These include setting up frame timeouts,
interpreting remote data and generating interrupts to the HP-71.
The following section describes how these features are implemented.

2.4.1 How frame timeouts are implemented

The STANDBY statement takes two parameters:

1. Timeout period: defines how long the HP-71 waits for each
HP-IL message to travel around the loop, back to the HP-71.

2. Verify interval: defines how often the HP-71 tests the loop’s
continuity by sending an HP-IL Identify (IDY) message.
The Identify message travels around the loop quickly.

The 1/0 processor stores and uses the frame timeout values. These
two parameters are not directly sent to the 1/0 processor. The
HP-IL ROM converts the STANDBY parameters into three timeout
parameters used by the 1/0 processor:

1. Frame timeout: Specifies how long to wait for the frame
before sending out an IDY frame.

2. IDY timeout: Specifies how long to wait for the IDY to
return before setting the loop broken error.

3. Number of IDYs: Specifies the number of frame timeouts
to allow before setting the frame timed out error.

The HP-IL ROM always sets the IDY timeout to 50 milliseconds. The
STANDBY statement sets the Number of IDYs to the CEIL(the timeout

2-10

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

period/the verify interval) and sets the frame timeout to the
verify interval. If only the timeout period is specified, it is
used to set the frame timeout, and the number of IDYs is set to 1.

The HP-IL ROM initializes the frame timeout to 2 seconds and the
number of IDYs to 30. This means that if the loop is broken it is
usually detected within 2 seconds. If the loop is complete, any
message sent must return within 60 seconds. Uhen STANDBY OFF is
executed, these default values are used. When STANDBY ON is
executed, the frame timeout is set to infinity. This means the
loop is never tested with an IDY message and the HP-IL module waits
forever for a message to return.

Uhen the HP-IL ROM begins execution of a statement, it first clears
the 1/0 processor error code by reading the error and ignoring it.
From that point on, when the HP-IL ROM wants to send a message to
the mailbox, it first checks the status of the mailbox by looking
at the error bit. If the mailbox reports that an error has
happened, the HP-IL ROM takes an error exit. If the mailbox is
ready to receive a message, the HP-IL ROM writes the message to the
mailbox. If necessary, the 1/0 processor sends message(s) to the
loop and waits for them to return. If a message takes too long to
return, the 1/0 processor sends out IDYs to test the loop. If the
message finally returns, the 1/0 processor checks it for errors.
If the message does not return in time or a transmit error has been
detected, the I/0 processor sets the error bit in the mailbox. The
HP-IL ROM detects that an error has happened on the last
transmission when it trys to send the next Ressage.

2.4.2 Interpreting data when in remote mode

The HP-71 can operate as a device in the loop. There are several
ways to cause the HP-71 to give up control of the loop:

1. Execute a CONTROL OFF on the HP-71.
2. Execute a PASS CONTROL on the HP-71.
3. Send the HP-71 an IFC message. Whenever an IFC is

received which the HP-71 did not source, the HP-71 gives
up control. Controller status is cleared. If the HP-71
is already a device, the HP-71 just executes the IFC command
(exits from both talker and listener state).

A controller can send BASIC commands to the HP-71 when it is a
device. The controller has to put the HP-71 in remote mode to
cause the HP-71 to interpret the ASCII data it receives as a BASIC
statement. The implementation is described below:

1. When the 1/0 processor has data available, it generates a

2-11

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

2.

service request on the HP-71 processor bug. This is similar
to the service request generated by the HP-71 internal timer.
The HP-71 checks first to see if the service request is
generated by the timer. If it is not, then the HP-71 issues
the service request poll to give LEX files a chance to
process the service request.

. When the HP-IL ROM receives this poll, it checks if the
service request is generated by the 1/0 processor. If it is,
the handshake byte of the mailbox is read to see if the
SRQ bit is get. If there are multiple mailboxes found in the
configuration table, the HP-IL ROM looks for the first
mailbox which has the service request bit set.

. After finding a mailbox with the service request bit set, the
HP-IL ROM reads the status of the mailbox and instructs the
I/0 processor to clear the service request bit in the mailbox.

. The status of a mailbox indicates the reason it is requesting
service. There are three reasons for the 1/0 processor to
request service:
a. An interrupt has occurred,
b. Data is available from the loop (only as a device).
c. The 1/0 processor has been reset (very unlikely).

If the 1/0 processor is requesting service because an
interrupt occurred, the HP-IL ROM sets the HP-71 system
Exception flag (ST12) and returns. When the HP-71 sees
the Exception flag is set, it issues the exception poll,
and the HP-IL interrupt is serviced in the exception poll
handler (pEXCPT).

If the 1/0 processor is requesting service because data is
available, the HP-IL ROM implements the following checks:

a. If the HP-71 is not in remote mode, then the HP-IL ROM
just returns. In this case the data is held by the 1/0
processor and service 18 requested until the data has
been read by the HP-71 (usually by an ENTER statement).

b. If the HP-71 is in remote mode, the HP-IL ROM checks if
the HP-71 is idle. Idle means the HP-71 is not running a
program, not in the CALC mode, and not executing an INPUT
statement. If the HP-71 is not idle, the poll handler
returns immediately as in the previous case.

For both of these cases, the HP-IL ROM returns without
processing the service request. The HP-71 contimues
issuing the service request poll until the service request
is no longer present (for the first case, an ENTER has been
executed; for the second, the HP-71 became idle, allowing
processing of the remote data.

If the HP-71 is in remote mode and it is idle, the HP-IL ROM first
clears the key buffer and then puts a single key code in the key

2-12

HP-71 HP-IL Module IDS - Volume I

Internal Design Notes

buffer. The key code put into the key buffer is "FF". This is a
key code that the HP-71 doesn’t recognize. Whenever the HP-71
finds an unrecognized key code in its key buffer, it issues the
KYDF (key def) poll to see if any LEX file knows how to interpret
it. The HP-IL ROM checks the key code when the KYDF poll is
issued. If the key code is "FF", then the HP-IL ROM knows it has
data available in remote mode. The HP-IL ROM finds the mailbox
which has data available, then creates a system buffer. The buffer
is set up to look like a colon-type key definition. The HP-IL ROM
then reads the data from the mailbox and puts it into the system
buffer. Uhen this is done, the HP-IL ROM sets the key definition
pointer to the system buffer and returns. The HP-71 processes the
system buffer exactly like it processes colon-type key definitions.
The ASCII characters are parsed and executed as a BASIC command.

A hidden features of the HP-IL ROM is that remote commands may also
be received from loops 4-16. The loop specifier in the HP-IL ROM
keywords cannot be larger than 3, so these additional loops cannot
be accessed through any of BASIC functions. However remote
commands can be received and processed as on loops 1 through 3.

2.5 How interrupts are implemented

A user program can use the interrupt capability of the HP-IL
rodule through the following keywords provided by the HP-IL ROM:

1. ON INTR GOTO/GOSUB <line mumber>
This statement identifies and enables a branch to the
interrupt service routine.

2. ENABLE INIR <interrupt mask>
This statement defines what events the program wants to
enable for interrupts.

3. OFF INIR
This statement clears the address of the interrupt service
routine defined by the ON INTR statement. The effect is to
cause an interrupt to become pending if it ever happens. This
is a vay to temporarily disable interrupts. The interrupt
is reactivated by the ON INTR statement.

4. READINTR

This function is used to find out what the caused the
interrupt.

Execution of the ON INTR statement simply writes the address of the
ON INTR statement into a location in system RAM (ONINTR). The
HP-IL ROM uses this location in the interrupt service routine to

2-13

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

tell whether an interrupt branch is currently active.

The ENABLE INTR sends the interrupt mask to the 1/0 processor,
since the !/0 processor keeps track of the interrupt events. Two
bytes are used by the 1/0 processor to monitor the interrupt
events:

a. Interrupt mask byte
This is the byte set by the HP-IL ROM to indicate to the 1/0
processor which of the 8 events are enabled to generate an
interrupt. This byte is automatically cleared by the HP-IL
ROM in the following cases:

1. Immediately before the end-of-line branch is taken to the
interrupt service routine.

2. At the end of program execution or whenever an EDIT is
ergecuted.

b. Interrupt cause byte
There are total of 8 events that can cause interrupts. The
8 bits of this byte are a record of each of the 8 events.
An event is recorded, regardless of whether or not that
particular event is enabled to generate an interrupt.

Every time an interrupt event occurs, the corresponding bit in the
interrupt cause byte is set to 1. The 1/0 processor compares the
interrupt cause byte and the interrupt mask byte. If any of the
bits match, the I[/0 processor requests service on the HP-71
processor bus. Every time the HP-71 wakes up from light sleep or
at the end of each statement execution, it checks for a service
request on the HP-71 bus. If there is a request, the HP-71 checks
if it is the timer. If it is, the request is handled by the HP-71.
Otherwise, the HP-71 issues the service request poll to give
external LEX files a chance to service the request.

When the HP-IL ROM receives this poll, it checks if the service
request is generated by an I/0 processor. If so, the handshake
byte of the mailbox is read to see if the service request bit is
set. If there is more than one mailbox found in the configuration
table, the HP-IL ROM looks for the first mailbox which is
requesting service. After finding a mailbox with the service
request bit set, the HP-IL ROM reads its status.

The status of a mailbox indicates the reason it is requesting
service. There are three reasons for the I/0 processor to request
service:

a. An interrupt has occurred.
b. Data is available from the loop (only as a device).
c. The 1/0 processor has been reset (very unlikely).

If the 1/0 processor is requesting service because an interrupt
occurred, the HP-IL ROM sets the HP-71 system Exception flag (ST12)

2-14

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

and returns. Uhen the HP-71 sees that the Exception flag is get,
it issues the exception poll, and the HP-IL interrupt is serviced
in the exception poll handler (pEXCPT).

The exception poll handler is implemented as follows:

1. Read the mailbox status to see if it has a pending interrupt.
If more than one mailbox exists, the first mailbox with a
pending interrupt is serviced.

2. Check if the ON INTR address is non-zero. If it is zero, the
Exception flag (ST12) is set and the poll handler returns.

3. Check if the HP-71 is running a program. If it is not, the
Exception flag is set and the poll handler returns.

4. Check if statement which has just been executed is at the end
of a line. If not, the Exception flag is set and the poll
handler returns.

If the Exception flag is set, the HP-71 issues another exception
poll when it finishes executing the next statement or when it next
wakes up from light sleep.

When all the above conditions are met, the HP-IL ROM clears the
interrupt mask and causes program execution to branch to the
interrupt service routine.

The purpose of automatically clearing the interrupt mask is to
prevent re-entering the interrupt service routine while already in
the routine. The user program should reactivate the interrupt at
the end of the service routine. If the last statement of the
interrupt service routine is a RETURN, the ENABLE INTR statement
goes in the same line as the RETURN. Otherwise, if there is an
interrupt pending, executing an ENABLE INTR causes an end-of-line
branch to take place before the RETURN is executed.

While in the interrupt service routine, the interrupt cause byte
still functions as usual, meaning it still keeps recording any
interrupt events that occur. The interrupt cause byte is cleared
only when read by the READINIR function. Therefore, it is very
important for the interrupt service routine to read the interrupt
cause byte. If the interrupt cause byte is never read, it is never
zeroed. When interrupts are enabled at the end of the interrupt
service routine; the interrupt cause byte causes the interrupt
branch to happen again instantly. Every time the interrupt mask is
set, the [/0 processor compares the new mask and the interrupt
cause byte. If there is a match in any of the bits, the 1/0
processor generates an interrupt right away. If the interrupt
cause byte is not cleared, false interrupts are generated.

2-15

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

2.5.1 Disabling interrupts

There are two ways to disable interrupts:

1. OFF INTR

This statement clears the address set up by the ON INTR
statement. It has no effect on the interrupt mask or cause
byte. An interrupt becomes pending if it happens after an
OFF INTR. Every time an ON INIR is executed, a check is made
for any pending interrupts. If there are pending interrupts
an end-of-line branch takes place.

2. ENABLE INTR 0 (clears the interrupt mask)
Zeroing the interrupt mask prevents interrupt branching.
Zeroing the mask byte guarantees that no bits are set when
the mask byte is anded with the cause byte. Therefore, the
1/0 processor never generates a service request due to an
interrupt.

2.6 HP-71 Requesting Service in Device Mode

The HP-71 can share control of the loop with other controllers. As
a device, the HP-71 has the capability to get the attention of the
active controller by requesting service. The REQUEST statement is
a BASIC keyword which can cause the HP-71 to request service on the
loop.

The REQUEST statement takes an integer parameter in the range 0 to
255. The parameter is the value of status which is returned to the
controller whenever the HP-71 is polled for its status. The

parameter is sent to the 1/0 processor where it is saved in a byte
reserved for the current status. Every time the 1/0 processor is
polled for status, this byte is sent out automatically.

The status byte is initialized to zero at power on and remains zero
until the I/0 processor receives a new status byte from the HP-IL
ROM. When the I/0 processor receives a new status byte from the
HP-IL ROM, it does two things:

1. Save the new status byte in RAM.
2. If the I/0 processor is in device mode, the loop service

request status is updated as the new status byte indicates.

If the bit 6 of the status byte is set, the 1/0 processor
requests service on the loop. The service request bit is set
on any IDY, DAB or END frames which pass the HP-71. If the

2-16

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

loop is in EAR mode (Enable Asynchronous Requests), the I/0
processor starts sourcing IDY frames with the service request
bit set. EAR mode enables a device to source IDYs when it
has a pending service request. This means the controller
does not have to constantly send frames to monitor service
requests.

If the bit 6 of the status byte is zero, the I0 processor
stops requesting service on the loop. If the 1/0 processor
was not requesting service, no change is made.

As long as the I/0 processor is controller on the loop, it
does not request service. Thus executing REQUEST while
controller sets up the service request for whenever the I/0
procegsor leaves controller mode.

RESET HPIL sets the status byte to 0. Bit 7 indicates to the
controller how to interpret the status byte. If bit 7 is set, it
Reans bits 5-0 are interpreted as system status. If the bit 7 is
Zero, it means bits 5-0, are interpreted as device dependent status.
Refer to the HP-IL Interface Specification document for the details
on status responses.

2.7 Implementing Multiple Loops

One HP-IL ROM is all that is necessary to communicate with up to
three mailboxs plugged into the HP-71, There can be more than one
HP-IL ROM plugged into the HP-71, but only the first one is
accessed.

The interface between the HP-71 processor and the 1/0 processor is
a mailbox. The mailbox is soft configurable in the HP-71 address
space. This means the mailbox must be configured for the HP-71
processor to communicate with it. The HP-71 system is reconfigured
whenever a change in the system plug-ins could have occurred, such
as when turning on or when a module pulled interrupt occurs. A
configuration table is generated as the result of the
configuration. From the configuration table, it is possible to
find out how many mailboxes are configured andat vhat address they
reside.

It is quite easy for the HP-IL ROM to handle more than one mailbox.
If a device specifier does not specify the loop number, the HP-IL
ROM searchs the configuration table to find the address of the
first mailbox in the table. The mailboxes appear in the
configuration table in the same order as they appear in the ports.
The port on the back of the HP-71 is port 0, and it is always the

2-17

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

first mailbox in the configuration table. If a loop mumber has
been specified, the HP-IL ROM searchs for the Nth mailbox’s address
in the configuration table.

2.7.1 Status Information Allocation

Certain status and assigrments are maintained by the HP-IL module.
The following lists specify where information is saved: in HP-71
system RAM or the I/0 processor.

The HP-IL ROM saves the global information (same across all loops):

PRINTER IS and DISPLAY IS assigmments.
ASSIGN I0 assigrments.
OFF 10 (it affects all the mailboxes).
Terminating character for ENTER.
Flags -21, -22, -23, -24.
ON INTR addressO

N
W
N

P
+

Each 1/0 processor saves the following information:

. Controller or device status.
Interrupt mask and interrupt cause byte.
Last received DDT or DDL frame.
Its own status, such as talker active or listener active.

. Manual mode status. This status is checked by the HP-IL
ROM every time it trys to talk to a mailbox. If the mailbox
is in manual mode, any HP-IL ROM commands generate an error.
The HP-IL ROM never sends messages to an [/0 processor that
is in manual mode.

5. Frame Timeout settings.
6. Device ID and Accessory ID (for device mode).
7. Loop address table (for controller only).

(Ending AES address, ending AEP address, ending AAD address)
Whether or not the mailbox has been initialized.

. Loop powered up status.

N
A
P
W
N
+

O
o
©

2.8 How to find out the capacity of a mass memory device

The HP-IL ROM is able to control one type of mass memory device.
Only a device with accessory ID of 10 hex is recognized by the
HP-IL ROM. The HP-71 assumes that a device with this Accessory
ID uses the HP82161A digital cassette drive protocol.

2-18

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

In order to control a mass memory device larger than the HPS82161A
the HP-IL ROM assumes certain extensions are implemented by any
future products with Accessory ID 10 hex.

The HP82161A protocol has been extended by the addition of the
following Device Dependent Commands:

DDT6: Send physical attributes -

When SDA is received after a DDT6, the device sends 12 bytes
that represent the 6 words of the LIF volume extension field.
The LIF extension field consists of the following information:

Uords 12 and 13 are the number of tracks per surface
(word 12 is the most significant word).

Uords 14 and 15 are the number of surfaces per medium
(word 14 is the most significant word).

WUords 16 and 17 are the number of sectors per track
(word 16 is the most significant word).

The first byte sent is the most significant byte of word 12.
The last byte sent is the least significant byte of word 17.
All three values are 32 bit binary numbers.

DDT7: Send maximum address -

When SDA is received after a DDI7, the device sends 2 bytes
that represent the record mumber (in binary) of the last
(highest numbered) record on the medium. The most significant
byte is gent first.

DDL11 (11 is decimal): Verify records -

After a DDL11 is received, the next two data bytes received
are interpreted as the number of records to verify (verify
means read the record and verify that the checksum is correct
and the record can be found on the medium). The first byte
received is most significant 8 bits of the number of records.
Verification gtarts at the next record (set previously by
SEEK) and continues until all records are verified OR an
error is detected OR end of medium is reached. Device status
reflects the results of the verify (all OK or checksum error
or record not found).

Clarification on the DDL4 (SEEK) command:

The two bytes of data following a SEEK command are to be

2-19

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

interpreted as a logical record number (where the device
appears to the controller to be organized as an array of
records rumbered from 0 to MaxRec, where MaxRec is the
response to DDT7).

2.8..1 When the HP-IL ROM uses extended HP82161A protocol

The HP-IL ROM uses the extended HP82161A protocol only during
medium initialization (the INITIALIZE command).

The HP-IL ROM uses DDI6 to determine the information to be written
into the LIF extension field. If the device responds to the
subsequent SDA with an ETO, the HP-71 assumes the device is a
(non-extended protocol) HP82161A which has LIF extension field: 00
00 00 02 00 00 00 01 00 00 01 00 (hex). These indicate that the
digital cassette has 2 tracks per surface, 1 surface/medium, and
100 (hex) sectors/track.

The HP-71 uses DDI7 to determine the size of the device (for
checking requested directory size for valid range, and to choose a
default directory size if none is specified). If the number of
directory entries requested by the user is greater than the munmber
of records that would be left in the data portion of the medium
then an error 1s generated.

The default directory size is 1/32 of the total size of the medium.

The HP-71 does not use the DDL11 (Verify) command.

2-20

HP-71 HP-IL Module IDS - Volume I

HP-IL Module Commands

There is a feature in the HP-IL module that has not been mentioned
in the user marmal of the module. The HP-IL module has the ability
to handle multiple loops. At the time the manual uas written,
there was no hardware available to allow the user to plug in
additional loops, so the Owner’s Mamual did not include loop
nurbers in the syntax of the keywords. This chapter provides the
syntax for multiple loops.

3.1 Loop Number Specifier

The HP-IL ROM is capable of handling up to three HP-IL mailboxes.
Each HP-IL mailbox is a different loop which plugs in to the HP-71.
When you specify a device, you can also specify which loop contains
the device.

The optional loop number can be 1, 2, or 3. If the loop number is
not specified, the default is loop 1. The HP-IL module plugged
into the back of the HP-71 is always loop 1. The rumbering for the
second and third loops is determined by the order in which they are
connected to the HP-71.

Generally, the way to specify the optional loop number is to apperd
a colon and a loop number to the device specifier. For example,

PRINTER IS PRINTER: 2

assigns the standard print device to the first printer in the
second loop.

OUTPUT %66(2):3 ; "abcde"

outputs the string to the second device in the third loop that has
the accessory ID of 66.

ENTER LOOP:2 ; AS

reads in data from the second loop.

There are two other cases. In some statements, such as CONTROL ON,
no parameter is required. The loop muaber is specified as a
nUReric expression in this type of statement.

3-1

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

CONTROL ON 2

sets the controller role in the second loop.

DISP STATUS(2)

displays the status of the second loop.

The other case is in a statement such as ENABLE INTR, where a
parameter is required but the parameter is not a device specifier.
In this case, specify the loop number as the first parameter and
separate it from the other parameter with a semicolon.

ENABLE INTR 2 ; 64

sets the interrupt mask to 64 in the second loop.

General rules of specifying the optional loop mmber:

1. If the statement requires a device specifier, append a colon
followed by a numeric expression to the device specifier.

2. If the statement takes no parameter, simply specify the loop
mmber with a mmeric expression.

3. If the statement takes a parameter which is not a device
specifier, insert the loop number as the first parameter and
follow it with a semicolon.

3.2 Syntax Identifier Definitions

This section describes the identifier words used under the SYNTAX
gection of the following keyword descriptions. The identifier
words are listed here in alphabetical order along with their
definitions:

<caccessory ID> ::= 0 | 1 | | 255 -

<agsign word> ::= " [:] <alpha> [<alpha> | «digit>] "

<device> ::= { <HP-IL address> | <device word> | «device type> |
<assign word» | <device ID> }

<device ID> ::= <ID string> [(<sequence rumber>)]

3-2

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

<device specifier> ::= { : <device> [: <loop mumber>] |
. <volume label> [: <loop mmber>] }

<device type> ::= % <accessory ID> [(<sequence mumber>)]

<device word> ::= { MASSYEM | PRINTER | DISPLAY | INTRECE |
INSTRMI | GRAPHIC | TAPE | TV }
[(«sequence rumber>)]

<file name> ::= <alpha> (.... [<alpha> | «digit>]]
(10 characters maximum)

<file specifier> ::= <file name> [«device specifier>]

<HP-IL address> ::= «primary address > [. <secondary address>]

<loop rumber> ::= 1 | 2 | 3

<primary address> ::= 0 | 1 | | 30

<gecondary address> ::= 1 | 2 | | 31

<sequence rumber> :: = 1] 2 | | 16

<volume label> ::= <alpha> [.... [<alpha> | «digit>] ...]
(6 characters maximum)

** The quotes around the assign word are not required, but are
recommended to prevent any ambiguities in specifying a device

ASSIGN # 1 TO NOTES:MASSMEM:L

HP-71 HP-IL Module IDS - Volume I

HP-IL Module Commands

CAT [«file name>] «device specifier»

EXAMPLE STATEMENTS
-e-newsana awa

CAT :TAPE(3):L
CAT .VOLUM1:L

F$=CATS$(1,":TAPE:3")
CATS (F,".DATA:1")

HP-71 HP-IL Module IDS - Volume I

HP-IL Module Commands

CHAIN <file specifier»

EXAMPLE STATEMENTS

CHAIN PARSER:%16:1
CHAIN CLEANUP.QA:L

CLEAR <device specifier»

CLEAR [LOOP [: <loop mumber>]]

EXAMPLE STATEMENTS

IF X(2) THEN CLEAR LOOP:L
CLEAR ":DISPLAY:2"

HP-71 HP-IL Module IDS - Volume I
HP-1L Module Commands

CONTROL ON [<loop number»]

EXAMPLE STATEMENTS

IF C(I) THEN CONTROL ON L

HP-71 HP-1L Module IDS - Volume I
HP-IL Module Commands

COPY [{ <file specifier> | «device specifier» |
LOOP [: <loop rmumber>] }]

TO { «file specifier> | <device specifier» |
LOOP [: <loop rumber>] }]

COPY { <file specifier> | <device specifier» |
LOOP [: <loop rumber>] }]

[TO { <file specifier> | <device specifier» |
LOOP [: <loop rumber>] }]

COPY START:TAPE(2):3
COPY TO BACKUPFILE.DATA1l:L

COPY OLDFILE:CA:L TO NEWFILE
COPY TO :MASSMEM:L

CREATE TEXT FILE6:1:L,500
CREATE DATA A$, 10,50

HP-71 HP-1L Module IDS - Volume I
HP-IL Module Commands

3.12 DEVADDR

DEVADDR («device specifier»)

EXAMPLE STATEMENTS

A=DEVADDR("PR(2):L") @ PRINTER IS A
B=DEVADDR("%16:3") @ COPY FILE1l TO :B
C=DEVADDR(DS)

3.13 DEVAID

T=DEVAID("HP82164A:3")

3-8

HP-71 HP-IL Module IDS - Volume I

HP-IL Module Commands

3.14 DISPLAY IS

- a en wn an

DISPLAY IS «device specifier»
DISPLAY IS LOOP [: <loop rumber>]

EXAMPLE STATEMENTS

DISPLAY IS 1.02:L
DISPLAY IS %48(2):L

3.15 ENABLE INIR

-- En an an wr > wd wr > wan a> ww a> o>

ENABLE INTR L ; LeI*2°N
IF E THEN ENABLE INTR 1;8 @ ENABLE INTR 2;8

3-9

HP-71 HP-1L Module IDS - Volume I
HP-IL Module Commands

ENTER <device specifier> [USING {<string exp> | <line numb>}]
[; <variable> [, «variable> ...]]

ENTER LOOP [:<loop numb>] [USING {<string exp> | <line numb>}]
[; <variable> [, «variable> ...]]

EXAMPLE STATEMENTS

ENTER “HP82:2"; N,A$
ENTER %64:L USING "80A" ; X$,Y$
ENTER 3:L USING " yB" 3 A

ENTER LOOP:L ; Bi$

3.17 INITIALIZE

INITIALIZE AS$,35
INITIALIZE DATA:TAPE:L,55

3-10

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

LOCAL <device gpecifier»>
LOCAL [LOOP [: <loop number»

-- wn w wD A —D ED WP wn ww A a> an wa

IF NOT R THEN LOCAL “HP82164:2"
LOCAL HP71(2):L

IF NOT O THEN LOCAL LOCKOUT L

]]

3-11

HP-71 HP-IL Module IDS - Volume I

HP-IL Module Commands

OUTPUT { «device gpecifier> | LOOP [: <loop mmber>] }
[USING { <string> | <line rumber>]
[;<expression> [{ , | ; } <expression>] 1 [;]

EXAMPLE STATEMENTS

OUTPUT DISPLAY:2;A$
OUTPUT LOOP:3;A/10

IF V THEN PACK TAPE(2):3
PACK X16:L

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

3.22 PACKDIR

PACKDIR :TAPE(3):L
PACKDIR .BKUP:3

PASS CONTROL { <device specifier> | LOOP [: <loop mmber>] }

EXAMPLE STATEMENTS

PASS CONTROL X1:L
PASS CONTROL 3:2

3-13

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

3.24 PRINTER IS

PRINTER IS <device specifier»
PRINTER IS LOOP [: <loop mumber>]

eh En ap wd Ww En ws wn > A> wn > E> a> wna

PRINTER IS "HP(2):2"
PRINTER IS %32:L

3.25 PRIVATE

PRIVATE «file specifier»

EXAMPLE STATEMENTS
- en nanan anan enw wan a wwa>

PRIVATE TEST:TAPE:L
PRIVATE "FILE1.TAPE1l:3"

3-14

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

PURGE BACKUP:TAPE(2):L
IF F$=A$ THEN PURGE A$

3.27 READDDC

-a en a» on

X = READDDC(L)
IF BIT(READINTR,0) THEN A=READDDC(L)

3-15

HP-71 HP-IL Module IDS - Volume I

HP-1IL Module Commands

3.28 READINTR

READINTR [(<loop number>)]

EXAMPLE STATEMENTS

REMOTE «device specifier»
REMOTE [LOOP [: <loop mmber>]]

IF R THEN REMOTE "%66(2):3"
REMOTE LOOP:L

3-16

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

RENAME "FILE1027:TAPE:L" TO "FILE1028"
RENAME "POINTS" TO "DATA:1.02:3"

3.31 REQUEST

REQUEST [<loop number> ;] <mmeric expr>

3-17

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

3.32 RESET HPIL

IF LEN(AS)>L THEN RESET HPIL L
RESET HPIL 3

3.33 RESTORE IO

IF A$=R$ THEN RESTORE I0 2

3-18

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

RUN INIT:TAPE:2
RUN CALENDAR.DATA:3

SECURE VER1:TAPE(2):L
SECURE "TEST: 3:2"

3-19

HP-71 HP-IL Module IDS - Volume I

HP-IL Module Commands

SEND [<loop rumber> ;] [[CMD expression [, expression] ...]
[DATA expression [, expression] ...]

A=SPOLL("3:1")
IF SPOLL("MASSMEM(1):2") = 220 THEN 100

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

STANDBY [<loop mumber> ;] OFF
STANDBY [<loop rnumber> ;] ON
STANDBY [<loop rumber> ;] <mumeric expr> [, <numeric expr>]

STANDBY 2;0N
STANDBY A;OFF
STANDBY L ; F,I

3.39 STATUS

BBEmaan en wd aw en aan=

X=STATUS(2)
IF BIT(STATUS(L),S) THEN GOTO 100

3-21

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

3.40 TRANSFORM

TRANSFORM [<file specifier>] INTO «file type> <file specifier»

EXAMPLE STATEMENTS

TRANSFORM INTO TEXT BACKUP.SAVE:?2
TRANSFORM TEMP:TAPE:2 INTO BASIC TEMP1

TRIGGER «device specifier»
TRIGGER [LOOP [: <loop rumber>]]

ED wr wn wnwaanww a on wan an

IF T THEN TRIGGER 1:2
TRIGGER LOOP:2

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

ErDw AD wn wn wn ED wn wn wn > -—

UNSECURE DATA:X16:L
UNSECURE FILE1:HP82161A:L

3-23

HP-71 HP-IL Module IDS - Volume I

Loop Operations and File Transfers

Perr crcrrccce cc rr crc rrcc rrrcreamccccecaaccwwow+

| LOOP OPERATION AND FILE TRANSFERS | CHAPTER 4

+Prrrree CrCeCCEC EC CEEee ww wwmwwwwww>aww

The purpose of this chapter is to describe at a frame level the
messages the HP-71 sends out. The details of some basic operations
are given, such as powering up the loop, addressing the loop and
searching for a device.

This chapter also describes the file format used to copy a file to
and from a non-mass storage, non-HP-71 device (e.g. HP-IB or RS232
interface).

4.1 How the HP-71 powers up the loop

NOP, NOP, / IEC, IEC, RFC
AAU, REC, [AES, AEP,] AADn
(TADn, REC, SDI ... / TADn, REC, SAI]
(TADn, REC, SAI]

The HP-71 uses either a NOP or IFC command frame to power up the
loop. The NOP/IEFC is sent out at a rate of 50 nilliseconds per
frame until one returns. Up to 50 NOP or IFC frames are sent out
on the loop. If none return, the loop is considered broken.

The power on sequence is always followed by the auto addressing
sequence (unless flag -24 is set).

If there is a display device assigned, the search for the display
device follows auto addressing. The sequence used to search for
the display device depends on how the display device was assigned.
The display device may be searched for by either device ID or
accessory ID. If the display device is the default value, it is
searched for by accessory ID.

After the display device is found, the HP-71 reads its accessory ID
again, to determine the type of display.

The loop power up is performed at the following times:

1. Every time the HP-71 wakes up from deep sleep (turn on), and
there is a display device assigned. The NOP Message is used
to power up the loop in this case.

2. When CONTROL ON, RESTORE 10 or ASSIGN 10 is executed. The

4-1

HP-71 HP-IL Module IDS - Volume I
Loop Operations and File Transfers

IFC message is used to power up the loop in this case.
3. Every time the HP-71 needs to use the loop and the loop has

been broken or has been powered off. The NOP Message is
used to power up the loop in this case.

If there is no display device assigned, the HP-71 does not try to
power up the loop when it wakes up from deep sleep. It tries to
power up the loop only when it needs to use the loop. The 1/0
processor keeps track of when the loop has been powered down or the
loop has been broken, and automatically powers up the loop before
any other frames are sent.

Vith flag -21 set, the HP-71 does not power down the loop when it
is turned off. Therefore, when the HP-71 is turned ON, it does not
power up the loop, since the loop has never been powered down.

4.2 How the loop is addressed

AAU, REC, (AES, AEP sequence,] AADn

The extended addressing sequence (AES, AEP) is sent out only when
flag -22 is set.

The HP-71 auto addresses the loop at the following times:

1. After powering up the loop (refer to previous section about
the power up conditions).

2. When the loop has been unconfigured by with an AAU message
(sent out by the SEND command).

If flag -24 is set, the HP-71 does not send out the auto addressing
sequence, except when a RESTORE 10, CONTROL ON or ASSIGN 10
statement is executed.

4-2

HP-71 HP-IL Module IDS - Volume I
Loop Operations and File Transfers

4.3 How the HP-71 searchs for a device by Device ID

TADn, REC, SDI,....... [NRD]

This sequence is repeated until the Device ID the HP-71 is
searching for is found or all of the devices have been polled. The
HP-71 reads up to 8 characters of the Device ID. An NRD frame is
sent after 8 characters have been received.

4.4 How the HP-71 searchs for a device by Accessory ID

TADn, REC, SAI

This sequence is repeated until the Accessory ID the HP-71 is
searching for 1s found or all of the devices have been polled.

4.5 How the HP-71 reads a device’s status (serial poll)

TADn, REC, SST

This sequence nay be preceded by the sequence of searching for a
device, either by the device ID or accessory ID.

HP-71 HP-IL Module IDS - Volume I
Loop Operations and File Transfers

4.6 How to move files between computers and the HP-71

The COPY statement in the HP-IL ROM can be used to transfer files
between:

1. HP-71 «<=> Digital Cassette Drive
2. HP-71 «<=> HP-71

3. Digital Cassette Drive «<=> Digital Cassette Drive
4. HP-71 <=> Other computers

The HP-71 has the capability to transfer files to and from non-
mass storage type devices (i.e. accessory ID is not between 10 and
1F hex). This can be very useful for transferring file between the
HP-71 and other computers. The computer may communicate with the
HP-71 through a RS232 or HP-IB interface to HP-IL.

When the HP-71 sends a file to the Digital Cassette Drive, it knows
how to find an empty space in the tape and position the tape to the
right sector. When HP-71 sends a file to a device other than a
cassette drive, it does not know what commands are needed to
control the device. Rather than only allow file transfers to and
from the cassette, the HP-71 sends out a file header followed by
the contents of the file. The file header is sent first so the
receiving device knows the file size, type, and name before
receiving all the data for the file. When a device sends a file to
the HP-71, the HP-71 expects to receive the file in this same
format.

The HP-71 has chosen to use the directory entry format of the HP’s
Logical Interchange Format (LIF) as the file header format. The
same entry is stored in the cassette drive directory.

The 32 bytes of the file header are:

Byte # Meaning

0-9 File name (1-10 ASCII chars, trailing blanks)
10-11 File type (most significantbyte first)
12-15 Starting address (32 bits, most significant first)
16-19 Length of file (" " " " 0)
20-25 Time of creation (12 BCD digits) (Year first)
26-27 Volume number (First byte is 80 hex, second is 01)
28-31 Inplementation

File name - Characters are limited to digits (0-9) and upper case
letters (A-Z). The first character must be a letter.

File type - HP71’s file types in hex are:

4-4

HP-71 HP-IL Module IDS - Volume I

Loop Operations and File Transfers

00 01 - TEXT file
EO DO - SDATA file (same as HP-41 data file)
EO FO - DATA file

E2 04 - BINary file
E2 08 - LEX file

E2 OC - KEY file

E2 14 - BASIC file (tokenized BASIC file)

Starting address - Always 00 00 00 00.

Length of the file - These 4 bytes are a 32 bit unsigned integer.
This number shows the file length in number of
gectors. A sector is 256 bytes. The sectors usually
are not the exact data length of the file. The data
length is defined differently by file type (see
Implementation below). The file is ALUAYS sent
in blocks of 256 bytes.

Time of creation - 12 BCD digits of the form YYMIDDHHMISS.

Volume rumber - Always 80 01 hex.

Inplementation -

Fille type Meaning

00 01 Always 00 00 00 00.

EO DO Byte 28-29 - 16 bit unsigned integer shows the
data length in # of registers.
(byte 28 is the lower 8 bits)

Byte 30 - If non-zero, the file is secured.
Byte 31 - Unused.

EO FO Byte 28-29 - 16 bit unsigned integer shows the
data length in # of logical records.
(byte 28 is the lower 8 bits)

Byte 30-31 - 16 bit unsigned integer shows the
logical record length in bytes.
(byte 30 is the lower 8 bits)

E2 04, Byte 28-30 - 20 bit unsigned integer shows the
E2 08, data length in # of nibbles.
E2 0C, (byte 28 is lower 8 bits, 29 next,
E2 14 byte 30 is the high 4 bits)

Byte 31 - Unused.

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

Pr rrr rrrrrcrc cc cr cccccc crc cercreeccc ccccmce cw -—-—

| 1/0 PROCESSOR FIRMJARE SPECIFICATION

Prrm ec cc rrrcrcccc rc crccc crc ccccccc encccaacacoee--

; 2

This chapter contains the firmware specification for the 1/0
processor.

5.1 Basic Description

The 1/0 processor is a (MOS chip designed to be an interface
between the HP-71 CPU and the HP-IL loop. Packaged with a 16K byte
HP-71 ROM, it provides the interface to HP-IL for the HP-71
computer.

The 1/0 processor provides the low level interface to the loop. It
takes care of the “simpler” tasks of sending and receiving frames,
maintaining Talker, Listener and Controller status and error
checking frames.

5.2 1/0 Processor Configuration

The 1/0 processor is configured as follows:

CPU with cycle time of lu sec
RAM - 272 bytes

ROM - 4096 bytes

HP-IL interface - highest priority interrupt
HP-71 BUS interface
HP-71 BUS Mailbox - low priority interrupt
TIMER - middle priority interrupt

5.2.1 HP-IL Capabilities

The 1/0 processor is a slave to the HP-71 CPU. Communication
between the two CPUs is through a mailbox of 8 bytes. The mailbox
is soft configured in the HP-71 address space. See the HP-71 IDS
for more information on the configuration address of the Raildbox.
Following is a summary of all the functions the 1/0 processor

5-1

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

implements:

As a CONTROLLER:

Send out a frame

Address devices to be talkers and listeners (including
the 1/0 processor)

Auto Address the loop (w/wo extended addressing)
Poll a device for:

Status
Accessory ID
Device ID

Pass control to another loop device
Find the Nth device of accessory ID (or class) M
Set up frame timeouts and IDY timeouts
Start data transfers

Set up terminating conditions for ending data transfer
(Transfers always terminate on an EOT):

Terminate after a certain number of frames
Terminate on an END frame
Terminate on a 1 character match
Terminate on loop service request

Enable an IDY poll to monitor service request

As a DEVICE (Noncontroller):

Send data to and receive data from the loop
Set up Accessory ID response
Set up Status Poll response
Set up Device ID response
Request Service on the loop
Receive control from active controller

Additional Commands:

Request service on certain interrupt conditions
Read Status
Read Error Message

Perform diagnostics tests on itself
Set Marmal Mode for low level loop control
Set the 1/0 processor into Scope Mode
Set and clear system controller status

5.2.2 Mailbox Description

The mailbox between the HP-71 CPU and the I/0 processor consists of
8 bytes of [/0 area. Same of the nibbles may be written to by the
[/0 processor, some of them may be written to by the HP-71. All of
the nibbles are readable by both processors. The nailbox is

5-2

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

assigned an address in the HP-71 address space by the configuration
routines. Routines exist in the HP-IL ROM to find the address of a
particular mailbox. The mailbox configuration is shown below:

HP-71 to I/0 CPU Mailbox

HP-71 Bus Nibble Byte 1/0 CPU Bus

Permaeam +

Cee tertenaaen. 0 LON* | Ce ereceeannen.
I - - 1 0

Data to 1 | MSN* | Data from
EE | ---

I/0 CPU 2 | | HP-71

I - - 1 1
3 | |

| = = = - - | ---
4, | .

I - = 1 2
(Read/ 5 | (Read

| = = = - - | ---
Urite) 6 | Only)
Cee eeereeeaens I - - 1 3 Cee ereeeenene
To 1/0 CPU 7 | Handshake | From HP-71
222 = CESSZTTTIH SIT ITIISTI2=SHZIEI=SSSSISTSTIISEISTI

From 1/0 CPU 8 | Handshake | To HP-71

® © 8 0 00 0 0 0 00 eo | - = | 4 ® © © © 0 0 000 0 0° 00

9 | |
Data from | = = = =~ - | --- Data to

A I | .
1/0 CPU | - - | § HP-71

B | | .
| = = = - - | --- .

C | | .
| - = 1 6

D | | .
(Read f = = = = - | === (Read/ .

E | LON® | .
only) fF - - 1 7 Urite) .

Cheese secaan . F | MSN* | Ceeeeceenecans
+

* LSN=Least significant nibble,
MN:=Most significant nibble

Messages are passed through the mailbox in the following way: After
the three message bytes are placed in the mailbox, the sender sets
his message available bit. Uhen the receiver reads a specific byte
of the message, the sender’s message available bit is zeroed

5-3

HP-71 HP-IL Module IDS - Volume I

1/0 Processor Firmware Specification

automatically by hardware. Before modifying any of the mailbox
bytes the sender must simply check his message available bit. If
it is clear, then the previous message has been accepted and it is
Clear to write out the next message.

Two NRD (Not Ready for Data) bits are provided in the mailbox. One
is maintained by the HP-71, the other by the 1/0 processor. This
bit indicates to the sender that the receiver’s buffer is full and
no data messages should be sent. NRD only halts data messages and
has no effect on other messages. This is the only bit in the HP-71
handshake nibble to which the 1/0 CPU can write. Also, this is the
only bit in the handshake nibble from the 1/0 processor to which
the HP-71 can write.

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.2.2.1 HP-71 Low Handshake

Nibble Address: 6
Uritable By: HP-71

BIT NO. DESCRIPTION

3 Three Data Bytes

2 Single Data Byte

1 (Not used)

0 (Not used)

Nibble

This bit is set by the HP-71 when 3
data bytes are in the mailbox. This
bit is valid only when the HP-71
Message Available bit is set.

This bit is set when there is one
data byte message in the mailbox.
This bit is valid only when the
HP-71 Message Available bit is set.
The single data byte is in the low
byte of the mailbox.

5.2.2.2 HP-71 High Handshake Nibble

Nibble Address: 7
Uritable By: HP-71 and 1/0 CPU

BIT NO. DESCRIPTION

3 1/0 CPU Reset Bit

2 Mailbox Configured

1 1/0 CPU NRD (Not

Ready for Data)

HP-71 may reset the 1/0 processor by
uriting a ’1’ to this bit. (The 1/0
CPU reset line is pulsed.) After the
[/0 CPU is reset (whether by the
HP-71 or power on), this bit remains
set until the HP-71 clears it.

This bit is controlled totally by
hardware. It is set when the HP-71
mailbox is configured, and cleared
when it is unconfigured.

This bit indicates the 1/0 CPU is not
ready to receive data. There is not
enough room in buffer to accept more

5-5

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

0 HP-71 Message
Available

data. It is cleared when the 1/0 CPU
is ready to receive more data. This
bit is controlled by the 1/0 CPU.

This bit is set by the HP-71 when it
sends a message. It is cleared when
the [/0 CPU reads the low byte of the
message. When this bit is set, the
bits in the low handshake nibble must
indicate whether or not this message
is data. The HP-71 should verify
this bit is clear before writing the
next message to the mailbox.

5.2.2.3 1/0 CPU Low Handshake Nibble

Nibble Address: 8
Writable By: 1/0 CPU and HP-71

BIT NO. DESCRIPTION

3% 1/0 CPU SRQ on
HP-71 Bus

2 Sleep Flag
(I/O CPU or
HP-71 CPU)

1 HP-71 NRD

This bit is set by the 1/0 CPU to
indicate it requires service. It
is set: (1) if a SRQ is present
when the IDY poll is enabled or
when the loop is in EAR mode, (2)
when an enabled interrupt condition
was met, (3) when there is data
available in device mode (repeatedly
set until data is read), (4) after a
power on reset. This bit is cleared
when the HP-71 reads status with the
clear SRQ option.

Controlled totally by hardware, its
meaning is different on each side
of the mailbox. Looking from the
I/0 CPU side, this bit is clear when
the HP-71 is awake and set otherwise.
From the HP-71 side, this bit is
clear when the 1/0 CPU is awake and
set otherwise. This bit provides
information only, and has no effect
on the execution of any commands.

This bit is set by the HP-71 when it
is not ready to receive data. It is
also used to exit Scope Mode.

5-6

HP-71 HP-IL Module IDS - Volume I

1/0 Processor Firmware Specification

0 WH 1/0 CPU Message
Available

1/0 CPU sets this bit to send a
message to the HP-71. It is cleared
when the HP-71 reads the high nibble
of the message. If the Three Data
Bytes bit in the high handshake
nibble from the 1/0 CPU is set, the
Ressage is 3 data bytes.

#* 1/0 CPU may request service on the HP-71 bus by setting this
bit.

Hk Setting this bit generates a service request on the HP-71 bus.

5.2.2.4 1/0 CPU High Handshake Nibble

Nibble Address: A
Uritable By: 1/0 CPU

BIT NO. DESCRIPTION

3 Three Data Bytes

2 Marmual Mode

1 SRQ received from
loop.

0 Error Occurred

Set whenever there are three data
bytes in the mailbox from the 1/0
CPU. This bit is valid only when the
1/0 CPU Message Available bit is set.

This bit is set to indicate the 1/0
CPU in Marual Mode or Scope Mode. It
is clear otherwise.

This bit is valid only when the 1/0
CPU is an active controller. It is
set when a service request is detect-
ed on the loop and cleared when no
SRQ is pending on the loop. As a
device, this bit is always clear.

When set, this bit indicates an error
has occurred. The bit is updated on
every message to the HP-71, but is
set immediately if a fatal error
occurs. It is cleared when the HP-71
reads the error code.

5-7

HP-71 HP-IL Module IDS - Volume I

1/0 Processor Firmware Specification

5.3 Power On Sequence

At initial power on or whenever the 1/0 CPU is reset a self test is
executed which includes a RAM test and a ROM test. If either of
these tests fail, the error bit is set in the mailbox and the error
code is set to the self test failed error code. (The mailbox test
1s only performed when the self test command is executed.)

The 1/0 CPU does not try to power up the loop at initial power on.
The loop is not powered up until the HP-71 sends a command which
uses the loop.

Defaults set at power on are:

HP-IL Status is active controller, not talker or listener
Loop Address is 31 at power on
Loop Address is 21 after an AAU
Status Response is 1 byte of value 0
Device ID Response has a length of 0
Accessory ID Response has a length of 0
Frame Timeout value is 2 seconds
IDY timeout is 255 milliseconds
Number of IDY timeouts is 30
IDY Poll timeout is 255 milliseconds
All special polls and modes are disabled

5.3.1 Powering Up the Loop

The 1/0 CPU automatically keeps track of the state of the loop
(vhether it is powered up or not). There is not a status bit to
indicate to the HP-71 whether or not the loop is powered up. The
intent is to let the 1/0 CPU keep track of the state of the loop.

Any time a command is received which requires loop action, the I/0
CPU first verifies the loop has been powered up. If not, it powers
up the loop with a NOP frame. It can be verified the loop is
powered up by sending the POUER UP THE LOOP command. If the I/0
processor’s internal status says the loop is already powered up, no
loop action is taken and a status message is sent to the HP-71.
Otherwise the 1/0 CPU powers up the loop with a NOP frame and then
sends status to the HP-71. If the loop can not be powered up, the
current command is aborted (no status message is sent to the HP-71)
and the error bit is set in the mailbox.

If it is desirable to power up the loop with another command frame
(such as an IFC) the TAKE CONTROL command can be used. It allows
the master processor to specify the data bits of the command frame

5-8

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

used to power up the loop.

The routine used to power up the loop sends out up to 50 command
frames. The time between sourcing the command frames is set by the
IDY timeout value. If none of the command frames are received on
the loop, then the loop is considered broken, and the error bit is
get in the mailbox. If a command frame is received, then the RFC
frame is sent out and the power up sequence is completed.

5.4 Service Request on the HP-71 Bus

The 1/0 CPU has the capability to request service on the HP-71 bus.
A bit in the mailbox is used exclusively for this purpose. The 1/0
CPU requests service on the HP-71 bus for various reasons and they
are described in the following sections. Once the service request
bit has been set in the mailbox, it is not cleared by the I/0 CPU
until the HP-71 acknowledges it has seen the service request. This
is done by reading the I/0 CPU status with the clear service
request option selected. For most cases the reason for the service
request can be determined by reading 1/0 CPU status or reading the
handshake nibbles from the 1/0 processor.

5.4.1 Power On Service Request

Uhenever the 1/0 CPU executes a power on reset sequence, the SRQ
bit is set in the mailbox. This is to let the HP-71 Know it has
been reset and accessory ID and device ID values need to be set up.

5.4.2 Data Available Service Request

Uhen the I/0 CPU is in device mode and has data available in the
input buffer, it requests service on the HP-71 bus. The service
request bit is set every time through the Rmain idle loop, so it
appears to the HP-71 to be set continuously, until the data in the
input buffer has been read.

To determine if the service request is due to data available, read
the 1/0 CPU status and check to see if the Data Available status
bit set.

5.4.3 Interrupt Service Request

Vhen an enabled interrupt condition has been met, the 1/0 CPU
requests service on the HP-71 bus. However service is requested

5-9

HP-71 HP-IL Module IDS - Volume I
[1/0 Processor Firmware Specification

only once due to an interrupt. Thus if an interrupt condition is
met, but the Interrupt Occurred status bit is already set, the I/0
CPU does not request service on the HP-71 bus.

To determine if the service request is due to an interrupt
occurring, read the 1/0 CPU’s status and check to see if the
Interrupt Occurred status bit is set.

5.4.4 Loop Service Request

Vhen the I/0 CPU is controller and a loop service request is
detected, the I/0 CPU may request service on the HP-71 bus for two
gpecific cases. The first case is if the loop was in EAR mode when
the service request was received. The second case is if the IDY
Service Request poll was enabled, and when sending out an IDY, a
service request was detected. For all other cases, when a loop
service request is received, the 1/0 CPU does not request service
from the HP-71.

A service request due to the loop service request, can be
determined by looking at the handshake nibble from the 1/0 CPU to
see if the Loop SRQ bit is set.

5-10

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.5 Terminating Data Transfers

When data transfers are terminated various messages may be sent to

indicate the transfer has completed.the HP-71 to

dependent upon current HP-IL status and

halted. The following table lists the message sent for the various
cases.

. . |

Cause of Termination |

DD Mn En EDED——D-DD== —- — ——————-=DDWD .- —-—-——— - -——--— -—— —- eh = WD WD GS Ww W = wn WS W WD = WW

EOT frame received

Frame Count Exceeded

Terminating Character
was Matched

Terminate on END frame
condition met

Terminate on SRQ frame

Required HP-IL Status

Listener OR
Controller Standby

Active Controller
AND Listener

Active Controller AND
Not Listener

Listener

Listener

Active Controller

Listener or
Controller Standby

5-11

The message is
why the transfer was

Message sent
by 1/0 CPU
to HP-71

EOT Received
Message

None

Conversation
Halted
Message

Terminator
Character

Matched

Terminator
Character

Matched

Conversation
Halted

Message

Conversation
Halted

HP-71 HP-IL Module IDS - Volume I

1/0 Processor Firmware Specification

5.6 Frame Timeouts

When it is a controller, the 1/0 CPU keeps track of how long it
takes a frame which is sent out on the loop to return and generates
an error if it takes too long. The I/0 CPU can be set up to send
out IDY frames to verify the loop is complete while waiting for a
frame to return.

There are 3 parameters which affect the amount of time the 1/0 CPU
waits for a frame to return and the number of IDY frames which are
sent out. These parameters are described below:

FRAME TIMEOUT VALUE - is the amount of time to wait for a
frame to return before sending out an
IDY frame and is also the time to wait
between IDY frames.

NUMBER OF IDY TIMEOUTS - is the maximum number of IDYs plus
one, to be sent out to verify the
loop is complete when a frame takes
longer than the frame timeout value
to return.

IDY TIMEOUT VALUE - is the amount of time to wait for the IDY

to return when it is sent out to verify
the loop is still complete.

Vhen a frame is sent out on the loop, the 1/0 CPU sgtarts a timer
loaded with the FRAME TIMEOUT VALUE. If the timer expires and the
frame has not been received then an IDY frame is sent out to
quickly check if the loop is complete. The length of time to wait
for the IDY to return is the IDY TIMEOUT value. If the IDY does
not return within this time period, the loop broken error is set
and the command 1s aborted.

If the IDY is received, the 1/0 CPU again waits the frame timeout
value for the frame to come in. The I/0 CPU repeats the timeout,
sending IDY sequence until the NUMBER OF IDY TIMEOUTS has been met.
(Note: There are NUMBER OF IDY TIMEOUTS frame timeout periods, but
the number of IDY frames sent out is one less than the value in the
NUMBER OF IDY TIMEOUTS byte.) After the final FRAME TIMEOUT period

has expired, the error frame timed out is set and the current
operation is be aborted.

When the 1/0 CPU is active listener or in controller standby mode,
a frame timeout is not monitored. It is assumed the talker on the
loop terminates the data transfer properly.

5-12

HP-71 HP-IL Module IDS - Volume I

1/0 Processor Firmware Specification

5.7 Error Handling

There are basically three types of errors that the 1/0 processor
may detect:

- Data transfer errors, when sourcing data
- Fatal errors, eg. (MD frame not received as sent
- Nonfatal errors, eg. Device didn’t respond to status poll

Each of these errors are handled in a slightly different way.
However they all result in the error code being set to the
appropriate number as soon as the error is detected.

If a data transfer error is detected when the 1/0 CPU is talker, an
ETE is sent out as soon as possible. The error bit and the NRD bit
are set in the mailbox to let the HP-71 know the transfer was
nalted. The NRD bit remains set until status or error message is
read.

If a fatal error occurs, the current processing on the command is
aborted, the error flag is set in the mailbox and the HP-71 returns
to the main idle loop.

On a nonfatal error, the error code is set up immediately. The
error bit in the mailbox is set on the next message to the HP-71.

5.8 Mamual and Scope Modes

Beside "auto" mode, the 1/0 CPU may be set into a MANUAL Mode. In
MANUAL Mode the HP-71 has complete control of the loop. All frames
received are sent directly to HP-71, and only frames from the HP-71
are sourced on the loop. The I/0 CPU does not maintain any loop
status. The I/0 CPU executes all commands from the HP-71 which do
not involve knowing loop status. (All commands with first nibble
opcode of 2 through opcode of C are not executable in Manual Mode.)
Marual Mode is terminated when the Go Into Auto Mode command is
received.

Marual mode has a retransmission option which puts the 1/0 CPU into
a tight Scope Loop. In this mode the 1/0 CPU sends all frames
received to the HP-71 and also retransmits the frames on the loop.
No other commands from the HP-71 are processed, no loop status is
maintained. The 1/0 CPU is an "invisible" device on the loop. The
auto retransmit feature of HP-IL section is used as long as

5-13

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

possible. If the HP-71 can read the messages quickly enough, then
frames are automatically retransmitted. However if a nessage
blocks the mailbox, no frames are automatically retransmitted, to
avoid losing frames. To exit Scope mode, set the HP-71 NRD bit in
the mailbox.

The manual mode bit is set in the mailbox whenever the 1/0 CPU is
in Manual or Scope mode. Scope mode may be entered when in Manual
rode. However, exiting Scope Mode also exits Manual Mode.

5.9 Mailbox Messages From HP-71

The mailbox commands from the HP-71 to the 1/0 processor are
described in this section. The opcodes are listed with the low
nibble (nibble 0) being the leftmost nibble and the high nibble
(nibble 5) being the rightmost nibble.

5.9.1 No Parameter Class

5.9.1.1 Nop

OPCODE: XXXX XXXX XXXX XXXX 0000 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: This command is merely a handshake message, it
does not modify status or send any frames.

5.9.1.2 Read Address Table

OPCODE: XXXX XXXX XXXX XXXX 0001 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: Three data bytes
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: The table read by this command is an address
table which contains the range of addressees of

devices on the loop. The table is created after the auto
address command is executed. The 1/0 CPU sends back 3

5-14

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

data bytes. The low byte is the ending AAD address, the
mniddle byte is the ending AEP address and the high
byte is the ending AES address. If there are no devices
with a particular type of address then the ending address
returned is zero. All addresses in the address table are
zeroed at power on.

5.9.1.3 Request 1/0 Processor Status

OPCODE: XXXX XXXX XXXC XXXX 0010 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: Status message, 1/0 CPU SRQ bit in the

mailbox is cleared if C bit is get,
I/0 CPU NRD bit may be cleared

POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Thig command allows the HP-71 to read twelve
bits of the 1/0 CPU status as well as the

current error number. (The bits are described under
mailbox Ressages from the I/0 CPU in the status class.)
If the C bit is set in the message from the HP-71, the
mailbox status bit which requests service from the
HP-71 is cleared. This command returns exactly the
same information as SEND ERROR message command.
If the I/0 CPU NRD bit was set due to an error
occurring, it is updated to reflect the size of the
buffer. It is cleared if there is room in the buffer.

5.9.1.4 End Of Message

OPCODE:; XXXX XXXX XXXX XXXX 0011 0000

HP-IL FRAMES SENT: EIO
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none

REQUIRED STATUS: Active Talker

DESCRIPTION: If the 1/0 CPU is currently active talker
an ETO frame is sent out on the loop.

5.9.1.5 Clear SRQ

OPCODE: XXXX XXXX XXXX XXXX 0100 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none

5-15

HP-71 HP-IL Module IDS - Volume I

1/0 Processor Firmware Specification

POSSIBLE ERRORS: none
REQUIRED STATUS: Device mode

DESCRIPTION: This message causes the [/0 CPU to stop
requesting service on DOE and IDY frames as
a device.

5.9.1.6 Set SRQ

OPCODE: XXXX XXXX XXXX XXXX 0101 0000

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: none

POSSIBLE ERRORS: none

REQUIRED STATUS: Device mode

DESCRIPTION: As a device, the 1/0 CPU now requests service
on DOE frames and IDY frames. (This command

is ignored as a controller.)

5.9.1.7 Send Error Message

OPCODE: XXXX XXXX XXXX XXXX 0110 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: Status message sent, error bit cleared
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Returns a status message with the current error
umber. (See 1/0 CPU messages, status class.)

The error number is cleared after the message is sent and
the error bit in the mailbox is cleared before the
message is sent. If the 1/0 CPU NRD bit was set
due to an error occurring, it is updated during this
command. It is cleared if there is room in the buffer.

5.9.1.8 Enter Auto End Mode

OPCODE: XXXX XXXX XXXX XXXX 0111 0000

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: none
POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: Sets auto end mode, so that on the next output
data transfer the last data byte sent is an

5-16

HP-71 HP-IL Module IDS - Volume 1

1/0 Processor Firmware Specification

END frame. To source an END frame, the HP-71 may set
this mode, send the data to go out, and then send a non-
data command, such as NOP. The buffer will be emptied
before the NOP command is executed, with the last data
byte sent as an END frame.

5.9.1.9 Go Into Maral Mode

OPCODE: XXXX XXXX XXXR XXXX 1000 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets the [/0 CPU into Manual Mode. The only
frames sourced on the loop are those sent

directly from the HP-71 and any frame received on the
loop is sent directly to the HP-71 for processing. If
the R bit is set in this command the retransmission
option is selected and the 1/0 CPU enters a tight
Scope loop. Entering Mamual Mode or Scope mode causes
all talker and listener status to be cleared. For
more information about Manual and Scope modes, please
refer to the section "Manual and Scope Modes" .

5.9.1.10 Go Into Auto Mode

OPCODE: XXXX XXXX XXXX XXXX 1001 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Exit mammal mode, restores controller or device
status.

5.9.1.11 Update System Controller Bit

OPCODE: XXX XXXX SXXX XXXX 1010 0000

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: none

POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: Sets System Controller bit equal to the S bit

5-17

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

in the command.

5.9.1.12 Reset CURRENT Address

OPCODE: XXXX XXXX XXXX XXXX 1011 0000

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Resets CURRENT Address to start of address
table. CURRENT Address is zeroed at power on.

It is set to the address of the first loop device when
the command "Auto Address the Loop" 1s executed. It is
nodified in the command “Find Nth Device of Type M' and
“Increment CURRENT Address”. It may be used in the
"Address P,S as Listener” and "Address P,S as Talker"
commands.

5.9.1.13 Read CURRENT Address

OPCODE: XXXX XXXX XXXX XXXX 1100 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: Address message sent.
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sends the CURRENT Address to the HP-71.

5.9.1.14 Increment CURRENT Address

OPCODE: XXXX XXXX XXXX XXXX 1101 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: Address message sent (or an error)
POSSIBLE ERRORS: Illegal CURRENT Device Address

REQUIRED STATUS: none

DESCRIPTION: Increment CURRENT Address to the address of the
next device on the loop. If the end of the

address table has been reached, then an error is sent to
the HP-71 and the CURRENT Address is reset to the address
of the first device on the loop. If the end of table was
not reached, then the CURRENT Address is incremented and
sent to the HP-71. If the address table is not valid,
then an Illegal CURRENT Address Error is sent to the

5-18

HP-71 HP-IL Module IDS - Volume I

1/0 Processor Firmware Specification

5.9.1

5.9.1

5.9.2

HP-71,

.15 Read My HP-IL Loop Address

OPCODE: XXXX XXXX XXXX XXXX 1110 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: Address message
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: 1/0 CPU’s current HP-IL loop address is sent
to the HP-71.

.16 Take/Give Loop Control

OPCODE: DDDD DDDD XXLC XXXX 1111 0000

HP-IL FRAMES SENI: OQ(D),RFC (if L option selected)
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: This command allows the HP-71 to set or clear
controller status. If the C bit is clear

the all controller status is cleared, terminate on
END frame and terminate on character match modes
are enabled and the command is completed. If the
C bit is set then the 1/0 CPU will set active
controller status and then check the L bit. If the
L bit is set, the I/0 CPU will try to power up the
loop with a command frame. The data bits of the
command frame sent out on the loop are specified
in the lower byte (D bits) of the command from
the HP-71. The command frame will be sent
up to 50 times before declaring the loop dead. The
time between sourcing the command frames is the
IDY timeout value. The loop will not be auto
addressed. Setting controller status clears
all terminator modes (terminate on SRQ, terminate on
character match and terminate on END frame).

Frame Class

5-19

HP-71 HP-IL Module IDS - Volume I

I/0 Processor Firmware Specification

5.9.2.1 Send Frame

OPCODE: XXXX XXXX DDDD DDDD RCCC 0001

HP-1L FRAMES SENT: Frame sent from HP-71
MAILBOX RESPONSE: Frame received if R bit is set
POSSIBLE ERRORS: Illegal State
REQUIRED STATUS: Dependent upon frame

DESCRIPTION: Using this command the HP-71 may source frames
on the loop. The D bits are the data bits, C

bits are the control bits. The R bit indicates that the
HP-71 wants to see the frame received in response to
sourcing this frame. The R bit is valid only when
the [/0 CPU is controller.

If the 1/0 CPU is currently in Manual Mode, then any
frame is legal. The R bit is ignored, since mammal mode
mode implies that all frames received go to the HP-71.

If the 1/0 CPU is not controller, then only a limited
number of frames may be sent. They are:

DOEs if Active Talker.
ECTs if Active Talker.
NRDs if Listener.
IDYs if Asynchronous Requests are enabled.

If the 1/0 CPU is controller then almost any frame is
valid. The following frames require a certain status:

DOEs require Active Talker status.
EOTs require Active Talker status.

NRDs require Listener or Controller Standby Status.

As controller, if the R bit is set, then the frame is
gent out and the first frame received is sent back to
the HP-71. In this case, the current timeout setting
will be used. If a timeout is detected, the error bit
in the mailbox is set. If the R bit is clear and the
frame is a command frame then an RFC is automatically
sent after the command.

5.9.3 Single Nibble Parameter Class

5-20

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.9.3.1 Address/Unaddress me as TL

OPCODE: XXXX XXXX XTLX XXXN 0000 0010

HP-IL FRAMES SENT: UNT,REC (if address me as talker)
MAILBOX RESPONSE: none
POSSIBLE ERRORS: Illegal State
REQUIRED STATUS: Controller

DESCRIPTION: This command allows the HP-71 to set or clear T
(talker) or L (listener) status of the I/0 CPU.

If the N bit is set then it is an unaddress command,
otherwise it is an address me as T or L command. If the
command is an address me as talker, then an UNT and RFC
frame are sent out on the loop.

5.9.3.2 Power Down Loop

OPCODE: XXXX XXXX XXXX XXXX 0000 0011

HP-IL FRAMES SENT: [NOP,RFC (power up loop)] LPD,REC
MAILBOX RESPONSE: clears Loop Powered Up bit
POSSIBLE ERRORS: Illegal State

REQUIRED STATUS: Controller

DESCRIPTION: If the loop is already powered down, this
command is ignored. If the loop is in EAR mode

the LPD (Loop Power Down) frame and RFC are sent. Other-
wise this command first powers up the loop by sending
out NOP command frame, followed by an RFC. Then a LPD
and RFC are sent.

5.9.4 Address Class

5.9.4.1 Address P,S as Talker

OPCODE: XXXX XXXX PPPP SSSP XXSS 0100

HP-IL FRAMES SENT: TAD P,REC [SAD S-1, REC]
MAILBOX RESPONSE: none

POSSIBLE ERRORS: Illegal CURRENT Device Address or Status
REQUIRED STATUS: Controller

5-21

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

DESCRIPTION: Addresses a device on the loop as talker. The
P bits specify the primary address, the S bits

specify the secondary address+l. If the address passed is
not zero in the primary or secondary parts then TAD P and
REC are sent (and if secondary address is not zero, then
a SAD S-1 and RFC are sent out.) If the address passed
is primary address zero and secondary address zero, then
the CURRENT Address device is addressed as a talker. If
the address table is not set up then an Illegal CURRENT
Address Error will result. This command does not modify
the CURRENT address.

5.9.4.2 Address P,S as Listener

OPCODE: XXXX XXXX PPPP SSSP XXSS 0101

HP-1L FRAMES SENT: LAD P,RFC [SAD S-1, REC]
MAILBOX RESPONSE: none
POSSIBLE ERRORS: Illegal CURRENT Device Address or State
REQUIRED STATUS: Controller

DESCRIPTION: Addresses a device on the loop as listener.
The P bits specify the primary address, S bits

specify the secondary address+1. If the address sent is
not zero in the primary and secondary parts then LAD P,
RFC are sent (and if secondary address is not zero, then
a SAD S-1 and RFC are sent out.) If the address passed
is primary address zero and secondary address zero, then
the CURRENT Address device is addressed as a listener.
If the address table is not set up then an Illegal
CURRENT address error will result. This command does
not modify the CURRENT address.

5.9.4.3 Find Nth Device of Type M

OPCODE: XXXX XXXX IMeeff Mfef{ NNNN 0110

HP-IL FRAMES SENT: UNL,RFC, {TAD,RFC, [SAD,RFC,] SAI}
[UNT, REC]

MAILBOX RESPONSE: Device Address or Error
POSSIBLE ERRORS: No Such Device, Illegal Status, Illegal

CURRENT Address
REQUIRED STATUS: Controller

DESCRIPTION: This command finds the Nth device of a specific
accessory ID on the loop. M specifies a class

(top nibble) and a particular device within a class
(bottom nibdle). If the bottom nibble is F (hex) then
the search is for matching class only.

5-22

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

All devices on loop are polled until a device of given
class (or class and device) is found. If this is the Nth
device of this type then the device address is sent to
the HP-71 and the device is left addressed as a talker.
If the device type or number is not found then a No Such
Device Error message is returned to the HP-71 and an UNT,
REC sequence is sent out.

This command uses the CURRENT Address to keep track of
which device is currently talker. If the device is found
then the CURRENT Address will contain the address of that
device, otherwise CURRENT Address will be reset to the
address of the first device on the loop.

5.9.4.4 Auto Address the Loop

OPCODE: XXXX XXXX XXXX XXXX XXXS 0111

HP-IL FRAMES SENT: AAU,RFC, [AES,AEP sequence,] AAD
MAILBOX RESPONSE: Address of last device on the loop
POSSIBLE ERRORS: Invalid status
REQUIRED STATUS: Controller

DESCRIPTION: This command auto addresses the loop. If the
S bit is clear then extended addressing and

simple addressing are used. If S bit is set then only
simple addressing is used. Addressing always begins
vith secondary address of 0, primary address of 1. The
I/0 CPU’s loop address is set to primary address of 0
vith no secondary address. The first frames sent out are
an AAU, REC to unaddress all devices.

For an auto extended addressing sequence, an AES 0
is first sent. If the frame returns unchanged then
there are not extended addressed type devices and
simple addressing sequence is sent out. Otherwise it
is followed by an AEP 1. If the last AES frame received
had an address of 31 then the sequence is repeated
starting with AES 0, followed by an AEP (next primary
address). This is repeated until an AES is received that
has an address less than 31.

For an automatic addressing sequence an AAD (next primary
address) is sent out.

If at any time during the addressing sequence a primary
address of 31 is received, addressing is halted at that
point and the last address is sent to the HP-71.

5-23

HP-71 HP-IL Module IDS - Volume I

1/0 Processor Firmware Specification

The address table is set up during execution of this
command. The ending AES address, AEP address and
AAD address are saved in the table. If there were
no devices of a particular type, then the ending
address is zero. After the loop has been addressed,
the CURRENT Address is set to the address of the first
device on the loop. The address of the last device on
the loop 18 sent to the HP-71.

5.9.5 Conversation Class

In this class of commands, the HP-71 may start a data transfer with
one of the five SOT (start of transmission) RDY frames, set the
frame timeout value or set the frame count as a device. The first
4 commands which all start data transfers have a 20 bit field in
which a frame count may be specified. This allows the HP-71 to set
up a conversation of X number of frames. After X frames go by the
[/0 CPU will stop the transfer with a NRD sequence. If the count
gent is FFFEF (hex), this is termed infinity and means don’t count.
This is useful if the transfer should be terminated by some other
terminating conditions such as character match or EOT. If the
frame count is set to 00000, then the transfer is halted after 1
data byte.

If the SOT frame returns to the [/0 CPU unchanged, then a Device
Not Ready Error message is sent to the HP-71. If an EOT is
received, then an EOT received message is sent to the HP-71.

5.9.5.1 Start Data Transfer

OPCODE: CCCC CCCC CCCC CcCCcCc ccc 1000

HP-IL FRAMES SENT: SDA

MAILBOX RESPONSE: none

POSSIBLE ERRORS: Device Not Ready, Illegal Status
REQUIRED STATUS: Controller

DESCRIPTION: Sends out an SDA with frame count of C.

5.9.5.2 Start Status Poll

OPCODE: CCCC CCCC CCCC ccc CCCC 1001

HP-IL FRAMES SENT: SST
MAILBOX RESPONSE: none

POSSIBLE ERRORS: Device Not Ready, Illegal Status
REQUIRED STATUS: Controller

5-24

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

DESCRIPTION: Sends out an SST with frame count of C.

5.9.5.3 Start Device ID

OPCODE: CCCC CCCC CCCC CCCC CCcC 1010

HP-IL FRAMES SENT: SDI
MAILBOX RESPONSE: none

POSSIBLE ERRORS: Device Not Ready, Illegal Status
REQUIRED STATUS: Controller

DESCRIPTION: Sends out an SDI with count of C.

5.9.5.4 Start Accessory ID

OPCODE: CCCC CCCC CCCC CCCC CCCC 1011

HP-IL FRAMES SENT: Sal
MAILBOX RESPONSE: none
POSSIBLE ERRORS: * Device Not Ready, Illegal Status
REQUIRED STATUS: Controller

DESCRIPTION: Sends out an SAI with count of C.

5.9.5.5 Pass Control

OPCODE: XXXX XXXX XXXX XXXX XXXX 1100

HP-IL FRAMES SENT: ICT
MAILBOX RESPONSE: NOP or Device Not Ready Error
POSSIBLE ERRORS: Device Not Ready, Illegal Status

REQUIRED STATUS: Controller and not Talker

DESCRIPTION: Sends out a TCT frame to the active talker
on the loop. If control is accepted by the

device, then a NOP message is sent to the HP-71 to signal
control was successfully passed. If the TCT frame was
returned then a Device Not Ready Error message is sent
to the HP-71. If control was successfully passed, then
terminate on character match mode and terminate on END
frame mode are automatically set.

5.9.5.6 Set Frame Timeout

OPCODE: TTIT TITI TTIT TTIT TITIT 1101

5-25

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmeare Specification

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none

POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets up the frame timeout to T milliseconds.
This is the amount of time to wait for a frame

to return before sending out an IDY. The power on
default value is 2 seconds. If the frame timeout value
is set to all zeros, the timeout is infinite, the 1/0 CPU
will wait forever for a frame to return and no IDYs will
be sent out.

Uhen controller, the 1/0 CPU will automatically verify
the loop is complete if a frame takes a "long time" to
return. For more information on this refer to the
section on frame timeouts.

5.9.5.7 Set Frame Count

OPCODE: CCCC CCCC CCCC cccC CCCC 1110

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: This command sets up the frame count. UWhen in
device mode the frame count is the mumber of

bytes to send to the HP-71 from the input buffer. Data
received ag a listener in device mode, stays in the
input buffer until the frame count is set to a non zero
value. A frame count of all zeros means send none
of the bytes from the input buffer. A frame count of all
F’s means send all the data from the buffer to the HP-71.

As a controller this frame count is used to specify the
rnurber of bytes which should go by in controller standby
node before the data transfer is halted. For example the
frame count may be set to 5, then if a SDA frame is sent,
the data transfer will be halted after 5 bytes. If the
frame count is set to all F’s then no frame count will
be maintained. If the frame count is set to all 0’s, the
data transfer will be halted after 1 byte.

5-26

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.9.6 Multibyte Parameter Class

5.9.6.1 Set SOT Response

5.9.6.2

OPCODE: NNNN XSAI RRRR RRRR 0011 1111

HP-IL FRAMES SENT:
MAILBOX RESPONSE:
POSSIBLE ERRORS:
REQUIRED STATUS:

none
none

none
none

DESCRIPTION: Sets up the response to a SAI, SST and SDI poll
as a device. The value to set is in R bits.

The type of poll response being set up is specified in
the SAI bits:

SAl Set Response Byte of:

100 Status
010 Accessory ID
001 Device ID

N bits specify which byte of the response to set (0-15).
Byte 0 is the length of each response. Byte 1 is the 1st
byte sent out, byte 2 is second byte, etc. RAM has been
set aside in the I/0 processor for 1 byte of accessory
ID, 2 bytes of status and 8 bytes of device ID.

If the first byte of the Status response is being set,
then the I/0 CPU’s loop SRQ bit is updated. If bit 6 of
this byte is set, then the 1/0 CPU will start requesting
service on the 100. If bit 6 of this byte is clear,
then the 1/0 CPU will stop requesting service on the
loop.

At power on all lengths and values of the responses are
zeroed. The only exception to this is the status length
which is set to 1.

Set Terminator Mode

OPCODE: XXXX XXXX SEOT 0000 0100 1111

HP-IL FRAMES SENT:
MAILBOX RESPONSE:

none

none

5-27

HP-71 HP-IL Module :3S - Volume I

I/0 Processor Firmware Specification

POSSIBLE ERRC=S: none
REQUIRED STATUS: none

DESCRIPTION: 1/0 CPU may be set up to terminate input on an
END frame and/or a character match. Using this

command these modes may be get or cleared. (An END frame
is a DATA frame with an extra bit set to indicate this is
the last byte of a data block.)
The bits which set or clear the modes are:

Bit S: If set then this command is updating the
terminate on END frame mode. When clear
this command is updating terminate on
character mode. This means that bit S
18 used to determine whether bit E or
bit T is meaningful.

Bit E: Set if terminate on END frame mode is to
be set. clear if terminate on END frame
mode is to be cleared. Valid only when
bit S is set.

Bit TI: Set if terminate on character mode is to
be set, clear if terminate on character
rode 18 to be cleared. Valid only when
S bit 18 clear.

Terminate on END frame and terminate on character match
can be enabled simultaneously during a data transfer.

5.9.6.3 Set Termimator Character

OPCODE: XXXX XXXX CCCC CCCC 0101 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets character, C, which is the character to
natch vhen in terminate on a character mode.

This character is not used unless terminate on character
natch mode is enabled. At power on this character is
set to a line feed (0A hex).

5-28

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

5.9.6.4 Set Number of IDY Timeouts

OPCODE: XXXX XXXX NNNN NNNN 0110 1111

HP-}L FRAMES SENT: none

MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: This command sets the number of IDY frames-1
sent out to verify the loop is complete.
Vhen a frame times out on the loop an IDY is

gent out to verify the loop is complete. If the IDY
returns, the 1/0 CPU again waits for the frame timeout
period. Uhen it expires, another IDY is sent out. This
command allows the HP-71 to set the number of timeout
cycles. Setting this value to 2 means there will be two
frame timeout periods and 1 IDY will be sent out on the
loop. The power on default value is 29.

5.9.6.5 Set IDY Timeout

OPCODE: XXXX XXXX TTIT TTIT 0111 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets up the IDY timeout value in milliseconds.
This is the amount of time to wait for an IDY

frame to return when sourced as controller. It is also
the time between sourcing command frames when powering
up the loop. This timeout is initialized to 25§
milliseconds at power on.

5.9.6.6 Clear Data Buffers

OPCODE: XXXX XXXX XXXX XXXX 1000 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Zeros data buffer counts and resets pointers
to start of buffers.

5-29

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

5.9.6.7 Set IDY SRQ Poll Timeout

OPCODE: XXXX XXXX TTIT TIIT 1001 1111

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets the time between sourcing IDYs when the
IDY poll is enabled. Default value is 255

milliseconds. The IDY poll is active only while the
1/0 processor is controller.

5.9.6.8 Set up Interrupt Mask

OPCODE: XXXX XXXX Ieep1IMPR1 1010 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none

POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Updates Interrupt Mask Byte. If the interrupt
mask is being set to a non zero value, then the

SRQ bit in the Interrupt Cause byte is cleared. This is
to avoid duplicate interrupts due to one SRQ. Executing
this command clears the Interrupt Occurred status bit.

5.9.6.9 Read Interrupt Cause

OPCODE: XXXX XXXX XXXX XXXX 1011 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: Contents of RAM location message
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Returns the value of the interrupt cause byte.
This byte is cleared after it is sent to the
HP-T71.

5.9.6.10 Read DDC Frame

OPCODE: XXXX XXXX XXXX XXXX 1100 1111

5-30

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: Contents of RAM location message
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Allows the HP-71 to read the last DDC frame
received. The DDC register is cleared after

the contents are sent.

5.9.6.11 Update Terminate on SRQ Mode

OPCODE: XXXX XXXX 000M 0000 1101 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS:, none
REQUIRED STATUS: none

DESCRIPTION: If M bit is set, set terminate on loop SRQ
mode, otherwise Clears terminate on loop SRQ.

This mode is active only when the I/0 CPU is controller.
If the 1/0 CPU is listener or in controller standby mode,
it will stop the data transfer with an NRD _sequence
when a SRQ is detected. Uhen the 1/0 CPU is a talker,
it will stop sending data when SRQ is detected and will
set the NRD bit in the mailbox and send the conversation
halted message to the HP-71.

5.9.6.12 Power Up the Loop

OPCODE: XXXX XXXX XXXX XXXX 1110 1111

HP-IL FRAMES SENT: NOP (50 times, until one returns),
MAILBOX RESPONSE: Status Message
POSSIBLE ERRORS: Loop Not Complete .

REQUIRED STATUS: none

DESCRIPTION: If controller and the loop is not powered up,
this command will power up the loop. The

loop is powered up by sending NOP frames (up to 50),
until one returns. The RFC frame is then sent. The
tine between sourcing command frames is the IDY
timeout value. If the loop has been successfully
powered up, the 1/0 CPU will send its current status
to the HP-71. If the loop is broken, the error bit
will be set in the mailbox.

5-31

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.9.6.13 Enable/Disable IDY Poll

OPCODE: XXXX XXXX XXXM XXXX 1111 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: If M bit is set, IDY poll is enabled, other-
wise it is disabled. This poll is executed

only when the I/0 CPU is controller. An IDY will be sent
every X msecs, if the 1/0 CPU is idle. The value of
X may be set with the SET IDY SRQ POLL TIMEOUT command.
This allows the loop to be monitored for SRQ without
having to send frames or put the loop in EAR mode.
If the IDY returns with the service request bit set,
the 1/0 CPU will flag this in the mailbox by setting
the Loop Service Request bit and by requesting service
on the HP-71 bus. The IDY Poll will be automatically
disabled at this point. If no service request is pending
then polling will contirnue until it is disabled by the
HP-71. If the loop is not yet powered up and the poll
enabled, the poll is automatically disabled.

5.9.7 Diagnostic Class

5.9.7.1 Read RAM

OPCODE: AAAA AAAA RXXP XXXX 0000 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: Contents of RAM location message
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: This command allows the HP-71 to read a byte
of the 1/0 CPU RAM. The RAM page from which

to read is specified by the RP bits in the command and
the address is in the A bits. The value read is returned
to the HP-71. This command is useful for development.

5.9.7.2 Urite RAM

OPCODE: AAAA AAAA BBBB BBBB 0001 1111

5-32

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

HP-IL FRAMES SENI: none
MAILBOX RESPONSE: Contents of RAM location message
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: This command allows the HP-71 to write to a RAM
location on page 0 (low 256 bytes). The address

is specified in the A bits and the value to write out is
specified in the B bits. After the byte is written it is
read by the I/0 CPU and the contents are sent to the
HP-71. This command is useful for development.

5.9.7.3 Self Test

OPCODE: XXXX XXXX XXXX XXXX 0010 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: Two test messages & self test results msg
POSSIBLE ERRORS: .none
REQUIRED STATUS: none

DESCRIPTION: This command tells the I/0 CPU to execute a
self test. The following two test messages are
sent to the HP-71:

1/0
high nid low handshake CPU NRD

0101 0101 1010 1010 0101 0101 1010 1XX1 0
1010 1010. 0101 0101 1010 1010 0101 1XX1 1

Then a RAM and ROM self test is performed and the results
of the test are sent to the HP-71. See the Diagnostics
class of messages from the 1/0 processor.

5.9.8 Data Class

Data from the HP-71 which is to be put in the output buffer passed
as either a triple data byte or a single data byte. One of the two
bits in the HP-71 handshake byte is set to indicate what type of
transfer it is. If it is a triple data transfer then all three
bytes in the mailbox contain a byte of data, with the low byte
being the first. If it is a single byte of data, then the data
byte is in the low byte of the mailbox.

5-33

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

5.10 Mailbox Messages from the 1/0 processor

The messages sent from the 1/0 CPU to the HP-71 are in response to
3a command the HP-71 has gent or a frame received on the loop. The
opcode is in the Mid-low nibble of the message. The opcodes are
shown in the messages following, with the low nibble of the mailbox
on the left and the high nibble on the right.

5.10.1 Frame Class

OPCODE: DDDD DDDD 1CCC XXXX XXXX XXXX

STIMULUS: Manual or scope mode and frame received
Single data frame and listener
HP-71 command: send frame and send me frame

received in response

DESCRIPTION: Frame Class is a means for the [/0 CPU to
send a frame received on the loop to the

HP-71. The C bits are the control bits and the D bits
are the data bits of the frame.

5.10.2 Device Address Class

OPCODE: SSSP PPPP 01SS XXXX XXXX XXXX

STIMULUS: HP-71 command:
Auto Address the Loop
Find the Nth Device of Type M
Increment or Read Current Device Address
Read my HP-IL Loop Address

DESCRIPTION: Device class is a means for the 1/0 CPU to
send a device address to the HP-71. The P

bits contain the primary address, the secondary address
+ 1 is in the S bits. A secondary address of zero
indicates there is no secondary address.

5.10.3 Status and Error Class

5-34

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

5.10.3.1

OPCODE:

Current 1/0 Processor Status

STLC BPUI 0001 KRXV NNNN NNNN

STIMULUS: HP-71 command:

Send Status

Read error mumber

DESCRIPTION: This message is a means to let the HP-71 know

~
C
o
w

<
>
0

N
N

a
Q
r
'
H
n

the current HP-IL status and current error
code (if any). The twelve bits of status are:

Controller Standby Mode
Set if IDY Poll is enabled or loop is in EAR mode
Set if Address Table is not valid
Interrupt Pending (set when an enabled interrupt has

occurred, cleared every time interrupt mask byte
is set)

System Controller
Talker Active
Listener
Active Controller

Locked Out Mode
Remote Mode

Data in Output Buffer
Data Available in input buffer

The error codes sent in N bits are:

r
e
e
s
e

W
w
O
V
O

N
O
O
R
E
L
W
M
N
-
L
O No error detected

No such device (HP-71 request to find a device)
Device not ready (HP-71 request to start a transfer)
Loop is not complete (IDY doesn’t return)
Frame Lost (hardware detected)
Input to Output Overrun on HP-IL hardware
Frame sent cut is not the same as frame received
Incorrect frame received, protocol violation
Frame Lost (software buffer overrun)
Illegal Status for command (e.g. not controller)
Partial Frame received
Frame Timed Out on the Loop
Illegal CURRENT Device Address or Loop is Unaddressed
Self Test Failure (set only at power on reset)

5-35

HP-71 HP-IL Module IDS - Volume I

1/0 Processor Firmware Specification

5.10.3.2 Nop

OPCODE: 0000 0000 0000 XXXX XXXX XXXX

REQUIRED STATUS: Pass control command successfully executed

DESCRIPTION: This is a handshake message only. It is sent
to the HP-71 to indicate control has been
passed successfully.

5.10.3.3 IFC Received

OPCODE: 0001 0000 0000 XXXX XXXX XXXX

REQUIRED STATUS: none

DESCRIPTION: This message is not currently used.

5.10.3.4 EOT Received

OPCODE: 001E 0000 0000 XXXX XXXX XXXX

REQUIRED STATUS: Controller and a data transfer was

terminated with an EOT.

DESCRIPTION: This message is sent to the HP-71 only when
the 1/0 processor is controller of the loop,
a data transfer was started and the transfer

was not halted by count or a terminating character
match. The E bit is set if an ETE frame was received
and clear if an ETO frame was received.

5.10.3.5 Data Transfer Halted

OPCODE: 0100 0000 0000 XXXX XXXX XXXX

REQUIRED STATUS: Controller and data transfer was stopped
due to terminate on SRQ mode or an HP-71
comnand to Send a NRD frame or Frame count

was net and the 1/0 CPU was not listener.

DESCRIPTION: Status message to indicate the data transfer
¥as halted due to Send NRD frame command or

terminate on SRQ and SRQ received or frame count met
when controller and not listener.

5-36

HP-71 HP-1IL Module IDS - Volume I
I/0 Processor Firmware Specification

5.10.4 Terminating Conditions Met

OPCODE: 0101 0000 0000 XXXX XXXX XXXX

REQUIRED STATUS: Terminate on END frame or terminate on
character match mode must be set and
matched when active listener.

DESCRIPTION: Message to indicate the terminating conditions
vere matched as listener for either END frame

or character match.

5.10.5 Diagnostics Class

5.10.5.1 Self Test Results

OPCODE: ORAO 0000 0010 XXXX XXXX XXXX

STIMULUS: HP-71 command to execute self test.

DESCRIPTION: This message reports the results of self test
command. It 18 sent in response to a self

test command from the HP-71. The ROM and RAM test
results are indicated by the R and A bits respectively.
If the bit is set then the test was successful.

5.10.5.2 RAM Value

OPCODE: Mee! MER 0011 XXXX XXXX XXXX

STIMULUS: HP-71 command received:
Read or Write Memory command received or
Read DDC or Read Interrupt Cause byte
received.

DESCRIPTION: This message returns the value of a RAM
location to the HP-71 in M bits.

5.10.6 Data Class

Data from the 1/0 CPU will come in one of 2 flavors. A single data
byte will be sent back with the opcode from the FRAME CLASS. Data
Ray also be sent as a triple data message. This message is

5-37

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

indicated by the Three Data Bytes bit get in the 1/0 CPU handshake
byte of the mailbox. The first byte is in the low byte of the
mailbox, the second byte is in the middle byte and the third byte
is in the highest addressed byte of the mailbox. The nessage
should be read from low byte to high byte. When the highest nibble
of the message is read by the HP-71, the I/O CPU’s message
available will automatically be cleared.

5.11 1/0 Processor as a Device

In device mode, the 1/0 processor retransmits frames on the loop
and keeps track of the current HP-IL status. The 1/0 processor may
be set up to request service on the HP-71 processor bus whenever
certain states become true by setting the interrupt mask byte.
When the HP-71 processor executes the SREQ? instruction, the
second least significant bit will be set if the 1/0 processor is
requesting service.

The bits in the interrupt mask are described below:

Bit Number Description

IFC received which HP-71 didn’t source
MLA received
TCT received
MIA and SDA received
Service Request on the Loop (controller)
DCL or SDC Received
GET Received

DDC ReceivedO
r
r
N
W
O

An interrupt cause byte is kept by the 1/0 CPU. Uhenever one of
above conditions is met, the corresponding bit is set in the
interrupt cause byte. This byte may be read and is cleared
automatically after it 1s read.

Whenever the interrupt mask byte is set up an AND of the mask byte
and the cause byte is executed. If the result is not zero, the 1/0
processor will request service on the HP-71 bus by setting a bit in
the mailbox. Otherwise service request will not be set until an
interrupt condition is matched. A single service request is
generated even though multiple interrupts Ray occur before the
interrupt cause byte is read.

A bit in status, Interrupt Pending, indicates that an enabled
interrupt has occurred. This bit is cleared whenever the interrupt
Rask byte is set.

This method of handling interrupts guarantees that no interrupts

5-38

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

which Ray occur while in the interrupt processing routine will be
lost, since the cause bits will continue to accumulate even after
the interrupt routine has been entered.

It is desirable for all interrupt events to accumulate except
service request. If the interrupt routine is entered due to a
service request, when the interrupt register is read, the SRQ
occurred status bit is cleared. Uhen more frames are sent out on
the loop to satisfy the SRQ, it may cause the SRQ bit in the
interrupt register to be get, If the interrupt routine exits and
enables the SRQ interrupt, another interrupt will be generated due
to the original service request. To avoid this problem, every time
the interrupt mask is set to a non zero value, the bit in the
interrupt cause byte which indicates that a SRQ was received is
Cleared.

5.11.1 HP-IL Frames and [/0 Processor’s Response

The following 1lists show all the currently defined HP-IL frames,
the value of the data dits in HEX and the response of the 1/0
processor to each frame.

5.11.1.1 Univeral Command Group Frames

NOP (10) Nop Frame. No Response.

LLO (11) Local Lockout Frame. If in remote enabled state
the Local Lockout status bit

is set.

DCL (14) Device Clear Frame. Clears input and output buffers.
All data received from the loop

and not read by the HP-71 will be lost. All data sent
from the HP-71 to the 1/0 CPU which has not been sent
out on the loop will be lost. If the DCL interrupt is
enabled, the I/0 processor will request service on the
HP-71 bus. The DCL bit will be set in the interrupt
cause register.

PPU (15) Parallel Poll Unconfigure. Disables the 1/0 CPU’s
response to a parallel
poll.

EAR (18) Enable Asynchronous Request. [1/0 CPU enters asyn-
chronous request mode.

If at any time this mode is enabled and the 1/0 CPU
is requesting service from the loop, an IDY with
service request will be sent out.

5-39

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

IFC (90) Interface Clear. Listener, Talker and Controller
status are cleared.

REN (92) Remote Enable. Remote Enabled status is set.

NRE (93) Not Remote Enable. Remote Mode, Local Lockout and
Remote Enable status bits are
cleared.

AAU (SA) Auto Address Unconfigure. 1/0 CPU’s loop address is
set to 21 (decimal).

LPD (9B) Loop Power Down. No Response.

5-40

HP-71 HP-IL Module IDS - Volume I

1/0 Processor Firmware Specification

5.11.1.2

NUL

GIL

PPD

PPE

DDL

DOT

(00)

(01)

(04)

(05)

(06)

(OF)

(8X)

Addressed Command Group Frames

Null Frame. No Response.

Go To Local. Remote Mode status is cleared if active
listener.

Selected Device Clear. If active listener, response is
the same as for a DCL frame.

Parallel Poll Disable. If active listener, the 1/0
CPU’s response to a parallel
poll is disabled.

Group Execute Trigger. If active listener and GET
interrupt is enabled then the

1/0 CPU will request service on the HP-71 bus. The GET
bit is set in the interrupt cause register.

Enable Listener NRDs. If active listener, sets
internal status, listener NRDs
are enabled.

Parallel Poll Enabled. If active listener, the I/0
CPU’g parallel poll _response 18

get up and enabled according to the X bits in the PPE
frame.

(AX-BX) Device Dependent Listener. If active listener the
frame will be saved in

the last DDC frame register. If active listener and
DDC interrupts are enabled, the I/0 CPU will request
service on the HP-71 bus. The DDC bit is set in the
interrupt cause register.

(CX-DX) Device Dependent Talker. If addressed talker the
frame will be saved in the

last DDC frame register. If addressed talker and DDC
interrupts are enabled, the 1/0 CPU will request
service on the HP-71 bus. The DDC bit is set in the
interrupt cause register.

5-41

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.11.1.3 Listener/Talker/Secondary Command Group

LAD (2X-3X) Listener Address Frame. If this is my listen

address then talker status

is cleared and active listener status is set.

If the 1/0 CPU has a secondary address and this
address matches its primary address, then an
internal flag is set to indicate my primary listen
address was just received.

If the listener active interrupt is enabled, the 1/0
CPU will request service on the HP-71 bus and the
LA bit in the interrupt cause register is set.

UNL (3F) Unlisten Frame. Clears listener status.

TAD (4X-5X) Talk Address Frame. If this address is my talk

address, then listener status
i8 cleared and active talker status is set.
If this address is not my talk address then clear
all talker status.

If the 1/0 CPU has a secondary address and the
address on the TAD frame matches its primary
address, then an internal flag is set to indicate
Ry primary talker address was just received.

UNT (SF) Untalk Frame. Clears all talker status.

SAD (6X-7X) Secondary Address Group. If the I/0 CPU doen’t have
a secondary address this

frame is ignored. If this address matches the 1/0 CPU’s
secondary address and it’s primary listener or talker
address was just received, then listener/talker status
is set. If this address does not match the 1/0 CPU’s
secondary address and Ry primary talk address was just
received, then talker status is cleared.

5-42

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.11.1.4

REC

SDI

SAl

(00)

(40)

(41)

(42)

(60)

(61)

(62)

(63)

(64)

READY Frames

Ready For Command. Retransmit frame after previous
command has been executed.

End of Transmission OK. [/0 CPU sources this frame
when active talker to

terminate a data stream. It is only sent when
instructed by the HP-71.

End of Transmission Error. 1/0 CPU sources this frame
when talker immediately

after it detects an data error. A data error occurs
when a data frame received does not match the data
frame sent out by the 1/0 CPU.

Not Ready Fpr Data. If active talker and this frame
is received, the NRD frame is

retransmitted and when the data byte sourced is
received an EOT (End of Transmission) is sent out.

Send Data Frame. If addressed talker, active talker
status is set. Any data in the

output buffer will be sent out. If talker active
interrupt is enabled, service will be requested on
the HP-71 bus and the TA bit is set in the interrupt
cause register.

Send Status. If addressed talker, current status is
sent out. Up to 2 bytes of status may

be sent. Default at power on is 1 byte of value 0.

Send Device ID. If addressed talker, current Device ID
is sent out. At power on, the 1/0

CPU’s Device ID is length 0. The HP-71 sets the Device
ID to ASCII string "HP-71" followed by a carriage
return and line feed whenever it detects an 1/0 CPU
reset.

Send Accessory ID. If addressed talker, the current
accessory ID is sent out. The 1/0

CPU does not have a accessory ID at power on. The
HP-71 sets the accessory ID to 3 whenever it detects an
1/0 processor reset.

Take Control Frame. If addressed talker, then control
of the loop is assumed. The 1/0

CPU will immediately power up the loop by sending out

5-43

HP-71 HP-IL Module IDS - Volume I
[/0 Processor Firmware Specification

a NOP frame sequence followed by a RFC in response to
to a TCT frame. If the controller interrupt is enabled,
the I/0 processor will request service on the HP-71
bus. The CA bit is set in the interrupt cause register.

* AAD (8X-9X) Auto Address Frame. If the 1/0 CPU is already auto
addressed then this frame is

ignored. If the address on the frame is 31 then the
frame is ignored. If not auto addressed and the
address is less than 31 then the [/0 CPU takes the
address on the frame for its own address, increments
the frame address by 1 and passes it on to the next
device.

* AEP (AX-BX) Auto Extended Primary Address. If the I/0 CPU is
already addressed or

has not just received an auto extended secondary
address then this frame is ignored. If this frame has
an address of 31 then it is ignored. If the 1/0 CPU
has just been assigned an auto extended secondary
address and is waiting for a primary address then
it takes this address for its primary address and
passes the frame urmodified on to the next device.

* AES (CX-DX) Auto Extended Secondary Address. If the address on

this frame is 31
of if the I/0 CPU is already auto address configured,
this frame is ignored. Otherwise, 1/0 CPU saves this
address as its secondary address, increments the frame
address and sends it on to the next device. Addressing
¥ill not be completed until the I/0 CPU receives a
primary address.

* To determine whether or not the I/0 CPU has been assigned an
address, the byte at address 35 hex (ADR-RMI-S) can be read
and bit 4 (LOOP-UNADDRESS) can be tested. If it is 0 the 1/0
processor has a valid address, if it is 1 the 1/0 CPU is not
auto addressed.

5.11.1.5 IDY Frames

IDY (XX) Identify Frame. If the 1/0 CPU is requesting service
on the loop the SRQ bit is set before
the IDY is retransmitted.

ISR (XX) Identify Frame with Service Request. No Response.

5-44

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.11.1.6 DOE Frames

DAB (XX) Data Frame.
DSR (XX) Data Frame with Service Request.
END (XX) End Frame.
ESR (XX) End frame with Service Request.

5.12

The frame in this class are processed identically.
If the I/0 CPU is not talker or listener, the frame is
simply retransmitted. If the 1/0 CPU is active talker,
the frame is error checked and the next data frame is
send out. If the I/O CPU is listener the frame is put
in the input buffer and retransmitted. If the 1/0 CPU
is requesting service on the loop, the service request
bit is set in the frame before it is retransmitted.

Additional Capabilities

By using the commands to Read and Write to the 1/0 CPU RAM and RORY,
some additional capabilities can be realized. These are the
described below:

I) Reallocation of RAM between the input and output buffers.
There are 131 bytes of RAM available for buffer
space. The default allocation is 66 bytes for the
output buffer and 65 bytes for the input buffer. The
buffers are adjacent in Remory, so that by updating
pointers, sizes and the dividing address between the
2 buffers, the sizes may be easily changed. At power on
the input "buffer is positioned in memory from address
7D hex to address BD hex and the output buffer extends
from address BE hex to FF hex.

A recommended procedure would be:

(1) Verify that both the input and output buffers
are empty. This can be accomplished by reading

5-45

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

(2)

(3)

(4)

(5)

(6)

status. Both status bits, Data Available and
Data in Output Buffer should be zero.

Update input buffer size and space bytes. This
is the only tricky part to modifying the buffer
gizes. It must be done in such a way that the
input buffer count appears to be negative. If not
the [/0 processor will detect data in the input
buffer and will begin sending it to the HP-71. Count
is calculated by subtracting the buffer space from
the buffer size. During the transition, it must
be guaranteed that the buffer space is greater than
the buffer size. Therefore follow the following
logic:

IF current input buffer size > new input buffer
gize

THEN DO
Urite new input buffer size (@74 hex)
Urite new input buffer space (@78 hex)

END
ELSE DO

Write new input buffer space (@78 hex)
Urite new input buffer size (@74 hex)

END

Set both input buffer pointers to start of input
buffer. The input pointer is in RAM at address 76
hex and the output pointer is in RAM at address 77
hex. They should be set to 7D hex.

Urite to the address (@79 hex) which holds the
dividing address between the input buffer and the
output buffer. It should be set to the value 7D
hex plus the input buffer size.

Urite to output buffer size byte (@75 hex). Update
it to the new output buffer size.

Set output buffer pointers (input pointer is at @7A
hex, output pointer is at @7B hex). They need to
be set to point anywhere in the new output buffer
area, such as the last byte in the buffer at @FF
hex.

II) Modify the point at which the 1/0 CPU NRD bit is
cleared in the mailbox. Currently the I/0 CPU NRD bit
i8 cleared whenever there are 3 bytes available in

5-46

HP-71 HP-I L Module IDS - Volume I
1/0 Processor Firmware Specification

IIT)

5.13 H

The foll
implemen

C1,

T1,

11,

the output buffer. The value of 3 is kept in a byte
of RAM called NRD-INTR-VALUE. By writing to this byte,
the point at which the NRD bit is cleared in the mailbox
is changed. This byte is at hex address 3E.

This may be ugeful in an application which wants an
interrupt on NRD bit clearing. If the value in the
NRD-INTR-VALUE is set to 50, then NRD will be cleared
only when the 1/0 CPU has 50 bytes available in the buf-
fer. So a fast master processor would only be interrupted
when the [/0 CPU has a larger amount of space available.

Use different timer prescales. Under some conditions
it may be desirable to modify the timeout period
substantially. This can be _accomplished easily by
changing the prescale rate in the timer status register
at @18 hex. The prescale value is initialized 2 places.
The first is at cold start and the second is in talker.
So as long as the I/0 CPU is not active talker, the
prescale can be modified simply by a write RAM instruction
to lengthen or shorten timeouts significantly.

P-IL Capability Subsets

owing are the list of HP-IL capablities that the 1/0 CPU
ts as specified in the HP-IL Interface Specification:

2,3,4,5,6,7 Basic controller capability, System Controller
Capability, SRQ Detect Capability, Control
Passing and Receiving Capability, Parallel
Poll Capability, Asynchronous SRQ Capability

2,3,4,6 Data Capability, Status Capability, Accessory
ID Capability, Device ID Capability, Extended
Talker Address Capability

3,4 Basic Listener Capability, Extended Addressing
Capability, Halt Data Transfer Capability

SR2 Full SRQ Capability
RL2 Basic Remote Local Capability with Lockout
AAl,2 Basic Auto Addressing Capability, Extended

Addressing Capability
PDO No Power Down Capability
PP1 Basic Parallel Poll Capability
DC2 Complete Device Clear Capability
Tl Complete Device Trigger Capability
DD1 Complete Device Dependent Capability

5-47

HP-71 HP-IL Module IDS - Volume I

I/0 Processor Firmware Specification

5.14 Mailbox Messages Opcodes

The following two tables show the opcodes of the commands from the
HP-71 and the opcodes of the messages from the [/0 processor.

OPCODE TABLE FOR COMMANDS FROM HP-71

Nib: 0 1 2 3 4 5 Command
(Opcode)

NO PARAMETER CLASS
m——— mmm me eee 0000 0000 Nop
mmmm meee cemma 0001 0000 Read Address Table
———— eee ===-C ---- 0010 0000 Request HP-IL Status
———m meee eden meee 0011 0000 End of Message
———— mmn mmee ———— 0100 0000 Clear SRQ
m——— meee meee meee 0101 0000 Set SRQ
mmm meee emme eee 0110 0000 Send Error Message
mmm meee cmem mmm 0111 0000 Enter Auto End Mode
———— eee ---R ---- 1000 0000 Go into Manual mode
Srmm m—— cons m—— 1001 0000 Go into Auto Mode
——— eee S--- ---- 1010 0000 System Controller bit
mm. —— —— —— 1011 0000 Reset Current Address
—— m—— w——— —— 1100 0000 Read Current Address
cece mmme emee ——a- 1101 0000 Increment Current Address
m——— emo mmm meee 1110 0000 Read my loop address
DDDD DDDD --LC ---- 1111 0000 Take/give loop control

FRAME CLASS
———— ———— DDDD DDDD RCCC 0001 Send a frame

SINGLE NIBBLE PARAMETER CLASS

———— -TL- ---N 0000 0010 (Un)address me as TL
a0000 0011 Power down the loop
———= ———— PPPP SSSP --SS 0100 Address P,S as talker
-——- ---- PPPP SSSP --SS 0101 Address P,S as listener
———- ---- MIM ME! NNNN 0110 Find Nth device, type M
=== memes cen ames ---S 0111 Auto address the loop

CONVERSATION CLASS
CCCC CCCC CCCC CCCC CCCC 1000 Start converation
CCCC CCCC CCCC CCC Cccce 1001 Start Status Poll

CCCC CCCC CCcCC CcccC cccce 1010 Start Device ID

CCCC CCCC CCCC cccc Cccce 1011 Start Accessory ID

mmmmm econ eee ---- 1100 Pass Control
TTIT TTIT TTIT TTIT TTIT 1101 Set Timeout value
CCCC CCCC CCCC CCC CCCC 1110 Set Frame Count

5-48

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

NNNN -SAl RRRR BRRRR 0011

———— m= SEOT 0000 0100

————eee- CCCC CcCcC 0101

———— meee NNNN NNNN 0110

a TTIT TTIT 0111

mess mmm= emee eee 1000

———————- TTIT TTIT 1001
———— ea Mme Meet 1010

S=== mme= cme eee- 1011

Sem mmem meee —ee- 1100

———— —eea 000M 0000 1101

s=== rome seme eea- 1110

———— e——- -—-M ---- 1111

AAAA AAAA R--P ---- 0000

AAAA AAAA BBBB BBBB 0001

se== mmmm semen eee- 0010

DDDD DDDD DDDD DDDD DDDD

OPCODE TABLE FOR MESSAGES

Nib: A B C D E
(Opcode)

DDDD DDDD 1CCC ---- -———-

SSSP PPPP 01SS ---- ———

STLC BPUI 0001 KR-V NNNN

0000 0000 0000 ---- ———

0001 0000 0000 ---- ————

001E 0000 0000 ---- -———-
0100 0000 0000 ---- -———

0101 0000 0000 ---- ———-

ORAO 0000 0010 ---- -———-

Meee! Meee 0011 ---- ————

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

1111
1111
1111
DDDD

MULTIBYTE PARAMETER CLASS
Set SOT response
Set terminator mode
Set terminator character
Set number of IDY timeouts
Set IDY timeout value
Clear data buffers
Set IDY Poll timeout
Set up interrupt mask
Read interrupt cause
Read DDC frame
Terminate on loop SRQ
Power up the loop
Enable/Disable IDY Poll

DIAGNCSTICS MESSAGE CLASS
Read Memory
Urite Memory
Self Test

BATA CLASS

FROM 1/0 PROCESSOR

5-49

FRAME CLASS
Frame Received
Device Address Class

STATUS/ERROR CLASS

1/0 Processor Status
Nop

IFC Received
EOT Received
Data Transfer Halted
Terminating Conditions met

DIAGNOSTICS CLASS
Self Test Results
RAM Value

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

Pr er rr ccrrrr rrcrc ccrccrccCcawwewwwwwww--—+

| HP-IL POLL HANDLERS | CHAPTER 6

+Por rr rrcrrrrccrctrccccccacacaomwoowwwwwa

6.1 Overview

The HP-IL ROM extends many of the file-related keywords in the
HP-71 to allow access to HP-IL devices. This is implemented by
answering polls which the HP-71 mainframes sends out. (Please
refer to the mainframe IDS for details on the polling process.)

The HP-IL ROM answers 30 polls to perform various tasks on HP-IL.
These poll handlers implement a predefined function no matter who
issues the poll. An assembly language program can issue a poll
which the HP-IL ROM handles for access to the HP-IL loop.

Of the 30 poll handlers in the HP-IL ROM, we estimate only half of
them are useful to an applications programmer for general 1/0
functions. A list of these poll handlers is in the following
section. The rest of the poll handlers are needed to complete the
I/0 functions of the HP-71. This chapter includes a list of all
the polls the HP-IL ROM handles, along with a description of the
poll handler, the name of the handler in the HP-IL ROM and the poll

uRber.

6.1.1 Output and Input of data

pPRICL - Print class poll handler
Sets up a device for receiving data and returns the
address of a handler which will actually output the
data.

PPRTIS - PRINT device poll handler
Sets up the PRINT device (defined by PRINTER IS) for
receiving data and returns the address of a routine
which will do the printing.

PENTER - Input data from the loop.
Given a device address, this poll handler will enter
data from the device and save the data on the stack.

6-1

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.1.2 Files on a nass memory device

PCATS - Returns the catalog information of a file.

PCREAT -

pCOPYx -

PFINDF -

PESPCx -

PPURGE -

PRDCBEF -

PRDNBT -

PRNAME -

PEPROT -

DURCBF -

Creates a file in a mass memory device.

Transfers a file to or from an HP-IL device.

Search for a file in a given mass memory device.

Search for a file by a given file specifier.

Purge a file from a mass memory device.

Read a record of the file into an system buffer.

Urite current record out and read in next record.

Rename a file in a mass memory device.

Secure or make private a file in mass memory device.

Urite the system buffer out to the record in a file.

6.1.3 Parse and Decompile

PDEVCp -

pPFILDC -

PESPCp -

Parse an HP-IL device specifier.

Decompile an HP-IL device specifier.

Parse a file specifier.

6.1.4 Initialization and addressing the loop

PCLDST - Initialize standard output devices.

PDSUNK - Wakeup if HP-IL Mailbox requesting service.

PPUROF - Power down the loop.

6-2

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.2 pCAT - CAT execution poll handler

Poll Name: pCAT - CAT execution poll handler

Name of Handler: hCAT

Type: POLL (poll #06)

Purpose:
Execute the CAT statement for an HP-IL mass memory device

6.3 pCATS - CATS function poll handler

Poll Name: pCAT$ - CATS function poll handler

Name of Handler: CATS

Type: POLL (poll #07)

Purpose:
.Execute the CAT$ function for a HP-IL mass memory device.

6.4 pCLDST - Cold start poll handler

Poll Name: pCLDST

Name of Handler: PILCST

Type: FPOLL (poll #FF)

Purpose: }
1. Create the HP-IL save buffer (bPILSV). The existence of this

buffer indicates the HP-IL module already initialized.
2. Initialize all the mailboxes found.

*Set IDY time out to S0 msecs.
®*Set up accessory ID and device ID.

6-3

HP-71 HP-IL Module IDS - Volume I
HP-1L Poll Interfaces

3. Initialize DISPLAY IS and PRINTER IS devices.
*Write O3F1FFF to IS-DSP. This says the display device is
unassigned but defaults to the 1st device in the loop with
an accessory ID of 3X.

*Jrite 02F1FFF to IS-PRT. This says the print device is
unassigned but defaults to the 1st device in the loop with
an accessory ID of 2X.

4. Set ENTER terminating character to Line-Feed character (0A).

6.5 pCONFG - Configuration poll handler

Poll Name: pCONEG - Configuration poll

Name of Handler: PILCNF

Type: FPOLL (poll #FB)

Purpose:
1. Search for the HP-IL save buffer (bPILSV), do the following

if the buffer not found:
*Create the HP-IL save buffer. The existence of this buffer
indicates the HP-IL module already initialized.

*Initialize standard output device to DISPLAY IS DISPLAY,
PRINTER IS PRINTER.

*Set terminate character to line-feed for ENTER.
Search for the DISPLAY and PRINTER device.
Reclaim the ASSIGN IO buffer and device specifier buffer.
If there is a display device asgigned, write the display
routine address to system RAM.

L
O
N

6.6 pCOPYx - COPY execution poll handler

Poll Name: pCOPYz - COPY execution poll

Name of Handler: hCOPY=x

Type: POLL (poll #08)

Purpose:
Handler for the execution of COPY statement.

6-4

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.7 pCREAT - Create a file in a mass memory device

Poll Name: pCREAT - Create a file in a mass memory device

Name of Handler: hCREAT

Type: POLL (poll #09)

Purpose:

Create a new file in a HP-IL mass memory device.

6.8 pDEVCp - Parse an HP-IL device specifier

Poll Name: pDEVCp - Device parse poll handler.

Name of Handler: DEVSPp

Type: POLL (poll #01)

Purpose:

Parse an HP-1L device specifier.

6.9 pDIDST - Store device gpecifier information

Poll Name: pDIDST - Store device specifier information

Name of Handler: hDIDST

Type: POLL (poll #0A)

Purpoee:
Store device specifier information to a given RAM location.
Save this information when the device is found.

6-5

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.10

The specifier information is saved, so if the loop is
reconfigured, a search for the device can be repeated.

POSUNK - Deep Sleep Wakeup poll handler

Poll Name: pDSUNK - Deep Sleep Wakeup -- no key down

Name of Handler: PILUNK

Type: FPOLL (poll #FE)

6.11

The HP-IL module is capable of requesting service on the
HP-71 bus. But HP-IL is not the only device which can
request service on the HP-71 bus. The Timer or the
keyboard may request service too.

Any time the HP-71 detects a service request and it is not
because a key is down, it will issue this Poll to give
other LEX files, like the HP-IL ROM, a chance to respond to
it’s service request.

The purpose of this poll handler is to cause the HP-71 to
wake up from deep sleep. The only thing this handler will
do is set the ATIN key hit flag to 1. This will cause
the HP-71 to wakeup from deep sleep. After the HP-71 wakes
up, it will discover that there is a service request pending.
It will then issue the Service Request poll. The HP-IL
ROM will actually process the service request during the
Service Request poll.

PENTER - Enter data from HP-IL

Poll Nape: PpENTER - Enter data from HP-IL

Name of Handler: hENTER

Type: POLL (poll #12)

Purpose:

6-6

HP-71 HP-IL Module IDS - Volume I

HP-IL Poll Interfaces

To read data from HP-IL and put it on the math stack.

6.12 DpEXCPT - Exception poll handler

Poll Name: pEXCPT - Exception poll handler.

Name of Handler: hEXCPT

Type: FPOLL (poll #F8)

Purpose:

Perform ON INTR end-of-line branch. The interrupt mask is
setup by the ENABLE INIR statement. When an interrupt event
occurs, the HP-IL module will request service from the HP-71.
The HP-71 will in turn issue the service request poll.
When the HP-IL module responds to the service request poll,
it only sets the "Exception" flag (S12) and then returns to
the mainframe immediately. At the end of each statement
execution, the mainframe will check the "Exception" flag.
If it is set, the mainframe will issue the Exception poll.
This poll handler will verify the interrupt condition again
and take the end-of-line branch if possible. If the branch
can’t be taken, this handler will set the "Exception"
flag again and return. Setting the Exception flag on return
will cause the HP-71 to issue another Exception poll at the
end of next statement execution.

The following conditions will cause the end-of-line branch
to become pending (it can not be taken immediately):

1. No ON INIR been executed or OFF INTR been executed.

2. HP-71 is not running a progranm.
3. The last statement executed is not at the end of a line.

6.13 pFILDC - Decompile an HP-IL device gpecifier

Poll Name: pFILDC - Decompile an HP-IL device spec

Name of Handler: PILDC

6-7

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

Type: POLL (poll #02)

Purpose:
Decompile an HP-IL device spec stored as literal
Input strean:

ct

or «<tX> <num expr> [(<mm expr>)]
Or <Ium expr>
or <tLITRL> <literal data> [(<mum expr> }]
or <tSEMIC> <volume label»

Output text:
*

or :%X<rum expr> [(<mm expr>)]
Or :<MUR expr>
or :<literal data> [(<mm expr»)]
or .<volume label»

6.14 pFINDF - Find a file in an HP-IL device

Poll Name: pFINDF - Find a file in an HP-IL device

Name of Handler: hFINDF

Type: POLL (poll #17)

Purpose:
Find a specified file in a given mass memory device.

6.15 PpFPROT - Secure a file or make a file private

Poll Name: pFPROT - File protect handler

Name of Handler: hFPROT

Type: POLL (poll #0B)

Purpose:
Execute the SECURE/PRIVATE statement for a file in an HP-IL
device.

6-8

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.16 PESPCp - Parse a file specifier

Poll Name: PpFSPCp - File spec parse

Name of Handler: FILSPp

Type: POLL (poll #04)

Purpose:

6.17

Parse a file specifier that contains HP-IL device specifier.

File specifier syntax:
Input stream:

<gtring expression»
or [<file name>] : <device specifier»
or [<file name>] . <volume label>
Token output:

<gstring expression»
or <tLITRL> [<file name>] <tCOLON> <device specifier»
or <tLITRL> [<file name>] <tSEMIC> <volume label>

PFSPCx - Find a file from the file specifier

Poll Name: pFSPCx - File spec execute

Name of Handler: FILSPx

Type: POLL (poll #05)

Purpose:

Find the file from the file specifier.

6-9

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.18 PIMXQT - IMAGE execution poll handler

Poll Name: pIMXQT - IMAGE execution starts

Name of Handler: ENTUSG

Type: FPOLL (poll #1D)

Purpose:

6.19

Handle the poll to do formatted input for ENTER USING.
This poll is issued by the execution of USING. This is
the hook for a LEX file to use the IMAGE parse routine
in the mainframe to do formatted input or output.
The execution of ENTER will jump back into the USING routine
in the mainframe to parse the IMAGE, if the statement is
ENTER USING. The USING routine vill parse the IMAGE string
first then issue this poll to see if any LEX file
wants to continue from that point.
The HP-IL ROM always answers this poll and checks if the
statement executing it is ENTER. If it is, the HP-IL ROM
will take over from that point.
This handler does not return to the caller via a "RIN"
it does a direct jump back to "USGrst" in the USING code.

PKYDF - Key definition poll handler

Poll Name: pKYDF - Key definition poll

Name of Handler: hKYDF

Type: FPOLL (poll #1B)

Purpose:
Catch the key definition poll to execute a BASIC command
received from the Loop.

Yhen a key is pressed on the keyboard, the HP-71 saves the
keycode in the key buffer first, then processes the key code
when it is idle. When it processes the key code, it issues
this poll first to see if any LEX file wants to define the
key code.
This is the hook used by HP-IL to execute a BASIC command.

6-10

HP-71 HP-IL Module IDS - Volume I

HP-IL Poll Interfaces

6.20

When the HP-IL module receives data in remote mode, it will
wipe out the key buffer and put a single key code into the
key buffer. This key code won’t be recognized by the HP-71.
Moments later when the HP-IL module responds to the key def
poll, it will read the ASCII string into a system buffer and
get the key buffer pointer to point to the system buffer.
This will cause the BASIC command from the loop to be
parsed and executed.

PINLP - Main loop poll handler

Poll Name: pMNLP - Main loop

Name of Handler: PILMLP

Type: POLL (poll #FA)

Purpose:

6.21

Restore the display device if it was turned off by hitting
the ATIN key ONCE while displaying.

This poll is issued by the Main loop every time it is ready
to display the cursor character.

The purpose of this handler is to restore the display device
if it is offed by the ATIN key. The user doesn’t have to
do a RESTORE IO to restore the display device once it is
turned off by the ATIN key.

pPRICL - Print class poll handler

Poll Name: pPRICL - Print class poll handler

Name of Handler: hPRICL

Type: POLL (poll #0E)

Purpose:
This is the poll handler that can be used to output data
to a device other than the standard output device.
This poll handler will set the device up for receiving

6-11

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

data and return an address of a routine which will actually
do output the data (the routine name is "PRASCI").

6.22 pPRTIS - PRINT device poll handler

Poll Name: pPRTIS - PRINT device poll handler

Name of Handler: PRTIS

Type: POLL (poll #0F)

Purpose:
Sets up PRINT device for receiving data and returns the
address of the routine which will actually do the printing.
The PRINT device is defined by the PRINTER IS statement.

6.23 pPUROF - Power-off poll handler

Poll Name: pPUROF- Power-off poll handler

Name of Handler: PILPOF

Type: FPOLL (poll #FC)

Purpose:

1. Sets device codes (DISPLAY, PRINTER) to power off
values to allow restart on next usage.

2. Sends power-down message to all HP-IL modules if the
HP-IL module is not in marmual or device mode and flag
-21 is clear.

6.24 PPURGE - Purge a file in a mass memory device

Poll Name: pDPURGE - Purge a file in a mass memory device

6-12

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

Name of Handler: hPURGE

Type: POLL (poll #10)

Purpose:

6.25

Purge a file in a mass memory device. If the file
is opened to the File Information Buffer (F1B),
the file start field in the FIB is zeroed. The caller
should call the routine "PUGFIB" in mainframe to purge
the FIB entry.

DPRDCBF - Read a record from a mass memory device

Poll Name: pRDCBF - Read current record from mass RENOTY

Name of Handler: hRDCB?

Type: FPOLL (poll #18)

Purpose:
Read a record (256 bytes) from a mass memory device
into a system buffer.

This routine is designed to work with a file on a
Rass memory device. The file has to be opened to the
File Information Buffer (FIB) first. This can be done
by the ASSIGN & statement. The FIB will contain informa-
tion about the file such as the current file pointer and
the file size. For a file on a mass memory device, there
is a system buffer associated with the file (also done
by the ASSIGN # statement).

This poll handler can be used to read on a given record
nurber from a file into the associated system buffer.
The record this poll handler will read is the record
pointed to by the current file pointer in the FIB. i
The FIB also contains the system buffer mmber associated
with this file.
(Refer to HP-71 IDS for details about the FIB)

Uhen this routine is exitted, the file access nibble
in the FIB is Zeroed, and the current file pointer is
not changed.

6-13

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.26 pRONBF - Urite current, read next record

Poll Name: pRDNBF - Urite current record and read next record.

Name of Handler: hRINBF

Type: FPOLL (poll #19)

Purpose:
Uhen writing or reading from a file system buffer and the end
of the system buffer is reached, execute this poll. It will
write the system buffer out to the file if necessary and read
in the next record of the file into the system buffer.

This routine is designed to work with a file on a
Rass memory device. The file has to be opened to the
File Information Buffer (FIB) first. This can be done
by the ASSIGN # statement. The FIB will contain information
about the file such as the current file pointer and
the file size. For a file on a mass memory device, there
is a system buffer associated with the file (also done
by the ASSIGN # statement).

Vhen opening a file, the first record (256 bytes) of the
file is read into the associated system buffer. All accesses
to the file are directly written to or read from the 1/0
buffer. Uhen accesses reach the end of the system buffer, the
next record will be read into the system buffer. If the data
in the current system buffer has been altered, it will be
written back to the file before the next record is
read in.

To use this poll, the caller only needs to pass the FIB
entry address of the file. This routine will check if
it needs to write the system buffer back out to the file
first, and then read in the next record.

6.27 DRNAME - Rename a file in a mass memory device

Poll Name: pRNAME - Rename

6-14

HP-71 HP-IL Module IDS - Volume I

HP-IL Poll Interfaces

Name of Handler: hRENAM

Type: POLL (poll #11)

Purpose:

Rename a file in an HP-IL mass memory device.

6.28 DSREQ - Service request poll handler

Poll Name: pSREQ - Service Request poll handler

Name of Handler: PILSRQ

Type: FPOLL (poll #F9)

Purpose:

The HP-IL module is capable of requesting service from
the HP-71. But the Timer and Card Reader may also request
service. Uhen the HP-71 detects a service request
and it is not by the Timer or Card Reader, it will issue
this poll to give the plug-in module a chance to service
the request. This is how the HP-IL gets control from the
mRainframe.

The HP-IL module will request service in two cases:
1. An interrupt event occurs and it matches the interrupt

Rask set up by the ENABLE INIR statement.

In this case, the service request poll handler will only
get the "Exception" flag (S12) and return. The End-of-
Line branch will be carried out by the Exception poll
handler.

2. Receiving data from the loop while the HP-IL module is
a device in the loop.

In this case, the service request poll handler will
only generate a “funny” key code in the key buffer,
that subsequently will cause the keyboard routine
to issue the "KYDF" (key define) poll. Execution of the
BASIC command will be carried out in the KYDF poll
handler.

6-15

HP-71 HP-IL Module IDS - Volume I

HP-IL Poll Interfaces

6.29 pVERS - Version code poll handler

Poll Name: pVER$ - Version code poll handler

Name of Handler: hVER$

Type: FPOLL (poll #00)

Purpose:
To show the presence of the HP-IL module and add the
revision code to the VERS function.

6.30 DURCBF - Urite a record to a mass memory device

Poll Name: pURCBF - Urite system buffer to current record

Name of Handler: hURCBF

Type: FPOLL (poll #1A)

Purpose:
According to the FIB, write the file system buffer to where
it came from in a mass memory device. Buffer contents,
current position and record address in FIB are not
changed by this operation.

This routine is designed to work with a file in a
mass memory device. The file has to be opened to the
File Information Buffer (FIB) first. This can be done
by the ASSIGN # statement. The FIB will contain information
about the file such as the current file pointer and
the file size, For a file in a mass memory device, there
is be a system buffer associated with the file (also done
by the ASSIGN # statement).

To use this poll, the caller only needs to pass the FIB
entry address of the file. This routine will find the
system buffer and write it back to the proper place in the
file. The difference between this poll handler and the
“PRDNBE™ is that this routine will not automatically
read in the next record to the system buffer.

6-16

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

On exitting this routine the file access nib in the FIB
is set to zero and the system buffer contents and the file
pointer in the FIB are not changed.

6.31 pZERPG - Zero program information poll handler

Poll Name: pZERPG - Zero program poll

Name of Handler: hZERPG

Type: POLL (poll #F7)

Purpose:
Zero interrupt mask.

This poll is issued when zero program information due to
an END, ENDALL, EDIT, Program Edit.

6-17

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

+

| HP-IL ROM UTILITY ROUTINES | CHAPTER 7 I
|
+

PrrmcmePrrr ccrnccacncmccacaccCemGaeae—o-oo

7.1 Overview

This chapter describes the utility routines in the HP-IL ROM. The
second section describes the JUMPER routine, which is used to
access the utility routines. The following sections describe
utility routines which are contained in the HP-IL ROM which may be
used by other applications.

Please note that ONLY those routines described in this chapter are
guaranteed to reside at the entry addresses given. These are the
only supported entry points in the HP-IL ROM. There are Rany more
utility routines in the HP-IL ROM which are not described in this
section. These utility routines may not reside at the sane
location in the HP-IL ROM from one version of code to the next.
Therefore to insure that any code developed is compatible with all
future releases of the HP-IL ROM, access only those entry points
described in this chapter.

7.2 How to call a utility routine

Since the HP-IL ROM is a soft configured ROM, its actual address is
defined at configuration time. Therefore, a utility routine in the
HP-IL ROM can not be called by a direct GOSBVL. To access a
routine in the HP-IL ROM, first determine the actual starting
address of the HP-IL ROM from the configuration tables. Then add
the offset of the routine in the HP-IL ROM to the true starting
address of the HP-IL ROM, to get the actual address of the routine
in the HP-IL ROM.

The following JUMPER routine is designed to make this whole process
easier. This routine will search the configuration tables to
determine the address of the HP-IL ROM. It adds the offset of the
routine to the actual address of the HP-IL ROM and then jumpe to
this address.

The JUMPER routine can be included with any LEX files or ROMs which
vant to access utilities in the HP-IL ROM. The source code for the
routine is given below.

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

~
F
I
L
E
R
E
E
E
E
E
E
R
E
R
L
E
E
E
E
E
R
L
E
E
L
E
E
E
R
L
E
I
E
E
I
E
S
L
E
E
E
S
I
L
L
L
S

.2.1 JUMPER routine

Name: JUMPER - Jump to a routine in HP-IL ROM

Category: ADDCAL

Purpose:

By giving the offset of a routine entry from the HP-IL
ROM LEX table, this routine will find the absolute start
address of the HP-IL ROM and do an indirect jump to
gpecified routine.

Entry:

RSTK points to the 5-nibble offset from the start of
the HP-IL ROM LEX table to the desired entry point.

Exit:
HP-IL ROM LEX file found:

Jumps to desired routine with all CPU registers pre-
served, including carry and mode (DEC/HEX), with the
exception of SB ("Sticky Bit")
Execution will continue following the 5 nibble offset.

HP-IL ROM LEX file not found:

Junps directly to MFERR with error "XWORD Not Found"

Calls: 1/0END

Inclusive: SNAPBF[44:0]

Stk lvls: 2 (I1/0FND)

NOTE: 1) Stk lvls are used only within this routine and do
not apply to the destination routine (ie the use
is only a transient usage within this routine, and
nothing remains on RSTK when this routine jumps to
the target routine except whatever was on the RSTK
on entry to this routine)

2) The proper way to get up the RSTK as needed for
the entry conditions to this routine:

{Assembly code preceding the call}

GOSUBL =JUMPER
CON(5) ({target addr})-({target LEX table addr})

7-2

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

{Continue with assembly code here}
1
3
1
s

*

=JUMPER
*

* Save D1, C[u], A(W], B[A], P, carry, and mode in SNAPBF
* (Total size of SNAPBF is 16+16+5+5+5, or 47 nibbles. This
x routine uses 45 of those nibbles)

RSTK=C
CD1EX
D1=(5) =SNAPBF

DAT1=C A Urite D1 @ SNAPBF
D1=(2) (=SNAPBF)+5
C=RSTK

DAT1=C U Urite C(U] @ SNAPBF + 5
D1=(4) (=SNAPBF)+21
DAT1=A ¥ Urite A(U] @ SNAPBF + 21
D1=(2) (=SNAPBF)+37
C=B A

CPEX 5 Save P @ SNAPBF + 42
P= 6
C=0 P
GONC JUMPOS C(6]="0" means carry clear
C=C-1 P C(6]#"0" means carry set

JUMPOS5 P= 7
C=0 P
C=C-1 P C[7]="9" means decimal mode
DAT1=C 8 Urite B[A],P,Carry,mode@SNAPBF+37
SETHEX Force HEX mode for I/0FND

»

* Now A[U],B[A],C[U],P and D1 are available for use
*

p= 0
LC(3) =bLEX Find the LEX buffer
GOSBVL =1/0FND
GONC JUMP90 Not there!! (Error)

»

* Found the LEX duffer...D1 points to it
*

* Search the LEX buffer for the HP-IL ROM LEX ID
»

LC(2) =LEXPIL C[B] = HP-IL ROM LEX ID
B=C A B(B] = HP-IL ROM LEX ID
A=0 A
AzA+1 A A(B] = Token # within HP-IL ROM

7-3

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

JUMP10

»*

C=DAT1 6
2€=0 B
GOYES JUMP90
?B4C B
GOYES JuMP20

End of LEX buffer?
Yes. ..exit
Right ID?
No...try next one

* LEX ID number matches...check if the token # is in the range
*

CSR ¥
CSR A
20<C B
GOYES JUMP20
CSR A
CSR A
C=C-A B
GONC JUMP30
D1=D1+ 11
GONC JuMP10

LC(4) =eXWORD

GOVLNG =BSERR

C(3:0] is now the token range
Too small?
Yes. ..keep looking

If no carry, token # is in range
In range. ..process offset

Not in range...goto next LEX entry
Go always

“XUORD Not Found"

Do NOT return to caller if error

the requested LEX table

D1=D1+ 6
C=DAT1 A
B=C A

Point to address of main table
Read the address of table into C
Put address of table into B[A]

* Now get offset from main table start from the RSTK pointer
*

»*

C=RSTK
D1=C
D1=D1+ 5
CD1EX
RSTK=C
C=DAT1 A
C=C+B A
RSTK=C

Get address of offset...

...1nto D1
Skip the offset field

Put return address back on RSIK
Read offset from main table
Add address of main table
Push desired address onto RSIK

* Now restore the registers and jump to the routine
#*

D1=(5) (=SNAPBF)+21
A=DAT1 §
D1=D1+ 16
C=DAT1 8
B=C A
P= 7
C=C+1 P

Position to A{U] value save area
Restore A[W]
Position to carry/mode/B{A] save

Restore B[A]
Check node

If carry, hex mode

7-4

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

GOC JUMPS0

SETDEC No carry = DEC mode
JUMPS0 P= 6

8 P
GOYES JUMP60O Set carry if C[7]#0

JUMP60 P=C 5 Restore P from C[5]
D1=(4) (=SNAPBF)+5 Position back to C[W] save area
C=DAT1 ¥ Restore C[U]
D1=(2) =SNAPBF Position to D1 save area
RSTK=C (Temporarily save C[A] on RSTK)
C=DAT1 A

D1=C Restore D1
C=RSTK (Restore C[A] from RSTK)
RIN Jump to the routine
END

7.3 Data Input and Output routines

PRASCI - Character outputting routine.

PREND - Closing part of the PRASCI routine.

REDCHR - Character inputting routine.

7.3.1 PRASCI - Character outputting routine.

Name: PRASCI - Send ASCII characters to the loop

Entry Offset: OFEA Hex

Purpose:
Send the ASCII characters to the loop (already set up)

Entry:
MBOX" points to the degired mailbox
A[A] contains the length of the string in bytes
D(A] is the start address of the string

Exit:
If loop error, jumps to ERRORX
P=0
D1 positioned following last character sent

Calls: GETMBX,URITIT,TSAVDO,TRESDO, < ERRORX>

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

Inclusive: A[A],C,D1,P,FUNCDO,ST(8,3:0]

Stk lvls: 3 (pushed DO;WRITIT) (pushed DO;TRESDO)

7.3.2 PREND - Closing part of the PRASCI routine.

Name: PREND - Clean up the loop after PRINT/OUTPUT

Entry Offset: 1022 Hex

Purpose:

Clean up the loop after a PRINT/OUTPUT sequence

Entry:
Device(s) are addressed as listener(s)
MBOX" points to the mailbox used

Exit:
DO points to the mailbox used
Carry clear (P may be non-zero)

Calls: D1=SRO, SAVEIT, UTLEND

Inclusive: A,B,C,D,R2,R3,D0,D1,P,ST[3:0]

Stk lvls: 4 (UTLEND) (SAVEIT)

7.3.3 REDCHR - Character inputting routines.

Name: REDCHR - Read characters from the loop i
Name: RED-LF Read characters from the loop until <Lf>|

Name: SKP-LF - Read & discard characters from the loop
Name: REDCO0 - Read characters from the loop until <Lf>
Name: RDSTO01 - Read characters from the loop to stack

Entry Offeet: REDCHR - 2262 Hex

RED-LF - 224F Hex

SKP-LF - 2248 Hex

REDCO0 - 2252 Hex

RDSTO01 - 226C Hex

Purpose:

Read data from the loop onto the stack

7-6

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Entry:
REDCHR, REDC00 , RED-LF,SKP-LF only:
The 7 nibble device specifier is stored on the bottom

(highest address) of the math stack.
RDSTO1 only:

R1[6:0] is the 7-nibble device specifier

(All entries)

D1 points to current top of math stack. Data read will
be stored on top of stack (last character placed at
lowest address)

Available memory on stack will be checked.

SS (BytCnt):
1:Read a specified number of characters

A[A] is the number of characters to read
0:Terminate by END frame or terminating char match

A(B] is the terminating character

S6 (Trash):
1:Ignore the data which is read
0:Save the data which is read on the stack

S7 (ChrTrp):
1:Detect a special character in incoming data

B[B] is the character to be detected
If B[3:2]=00, ignore the character;
otherwise replace the character with B[3:2]

0:No special character processing

If system flag -23 is set:
Terminate by ETO, terminating character is ignored

If SS (BytCnt)=0, S6 (Trash) =0, and S-R0-3(0]>2 (the
destination is a string), then R3[A] is the maximum
number of chars to read before interrupting the
conversation with an NRD. R3[S] must not be "F“.

If S5 (BytCnt)=1 or S6 (Trash)=1, then flag -23 has
no effect other than to terminate on an ETO instead
of the terminator character.

If { S-R0O-3(0]<=2 (not string dest) and S5 (BytCnt)=0)}
or { in device mode (not controller) },
then flag -23 has no effect (it is ignored).

Exit:

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

HEX mode.
XM=0.

Carry clear:

D1 points to the last character read
Number of chars read=(FORSTK)-D1
S4 (Memerr)s=0

Carry set:
S4 (Memerr)=1: Insufficient memory (Need to load eMEM)
S4 (Memerr)=0: P,C[0] is the error code

Calls: FSTK-7,SFLAG?, STGART , CHKSTK , GETDev , CLMODE,, CS=TYP,
PUTC, SETTRM, PUTEEC, YIML , PUTE, GETX, FRAME- , CLMDUT

Uses:
Inclusive: A,B[15:14,B],C,D([15:13,5:0],R1,R2,D0,D1,P,ST([7:0]

Stk lvls: 4 (START)

NOTE: B(B] is modified only if an error has occurred

7.4 Display routines

BDISPJ - Character-oriented display routine

7.4.1 BDISPJ - Character-oriented display routine

Name: BDISPJ - HP-IL Character-oriented display routine

Entry Offset: 3542 Hex

Purpose:

Routine to display characters on HP-IL devices

Entry:
A(B] is a data byte
HEX mode

Exit:
A[B] is the data byte from entry
Display status bits restored
HEX mode, carry clear

Calls: CHKASN, SETLP , FNDMBX , START , GTYPE,MTYL, FINDA,

7-8

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

GETMBX,WRITIT, SENDIT, SENDI +, PUTD, PUTX, END,
MOVCUR, MOVCU+, DO=CUR, DOGCUR, Clear?SendBf,
BLANKC, LCleft, DSPCL?

Uses.......

Exclusive: A[15:2],B(U],C(u],D[A], DO,
Inclusive: A[15:2],Blu),cll,'0(15: 13],D(5: 01,00,

Stk lvls: 4 (START)

NOTE:
Does not alter A[B], returns (DSPSTA+3) in STatus bits

7.5 Mass memory routines

BLDCAT Build catalog entry given directory entry.

CHKMAS - Check if a device is a mass memory device.

DSPCAT - Display a CAT test string.

ENDTAP

-

Clean up the loop after mass memory action.

FINDFL Find file on mass memory device.

FORMAT - Format medium in the gpecified drive.

GDIRST - Locate the start of directory and get its length
on a mass memory device.

GEIDIR - Get the Nth entry in a tape directory.

INITFL - Initialize a file in a mass memory device.

LSTENT ,NXTENT - Move to the last/next directory entry.

MOVEFL Move a file between two devices.

NXTENT - Move to next directory entry.

NEWFIL - Create a file on mass memory device.

READR® - Read a specified record from a mass memory device.

SEEKA - Seek to a record.

SEEKRD Seek for a record, then read ijt.

7-9

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

TSTAT - Check the tape drive’s status.

URITE# - Urite to a specified record.

7.5.1 BLDCAT - Build CAT text from directory entry.

Name: BLDCAT - Build CAT text, given directory entry

Entry Offset: 6300 Hex

Purpose:
Build the CAT[$] string on the [MATH] stack, using the
directory entry in SCRTICH[63:0]

Entry:

SCRICH contains the directory entry for the file

Exit:
Carry clear, CAT text on stack, AVMEME at CAT text

Calls: D1@AVE,TSAVDO , BLANKC, SWAPO1,GT2BYT , FTYPF# HTODX,
WRTASC, GETBYT, GT2BY0 , A-MULT , TRESDO

Exclusive: A(¥],B(¥],C[u],D(S],R0,D1,P
Inclusive: A[4],B[u),C(u],D[S].RO,D1.P,FUNCDO

Stk lvls: 3 (FTYPF#)

7.5.2 CHKMAS - Check for mass memory type device.

Name: CHKMAS - Check if D(X] is mass storage device

Entry Offset: 425C Hex

Purpose:

Check if a device (at D[X]) is mass storage

Entry:
D(X] is device address
DO points to the mailbox

Exit:
Carry clear:

7-10

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Device is mass storage (Acc ID=#10),
Carry set:

Not mass storage OR loop error
(P, C[0] are error code - if P= =ePIL, C[0]=eDTYPE,
than C(1] is device class, A[B] is full Acc ID)

Calls: GIYPE

Exclusive: c(v],p
Inclusive: A[A],C(V¥],P,ST[3:0]

Stk lvls: 3 (GIYPE)

7.5.3 DSPCAT - Display a CAT text string.

Name: DSPCAT - Display a CAT text string from @ D1

Entry Offset: 6571 Hex

Purpose:
Send 40 bytes (starting at D1) to the display

Entry:

D1 @ start of data

Exit:
P=0

Calls: DO=FRO, SUAPO1,CKINE- , SEND20 , CURSFL , CRLEND

Inclusive: A-D,R0,D0,D1,all FUNCxx except FUNCRO , STMTRO, P

Stk lvls: 5 (CURSFL)

7.5.4 ENDTAP - Loop clean up after mass mem action.

Name: ENDTAP - Clean up the loop after mass mem action

Entry Offset: 44D9 Hex

Purpose:
Check status of a drive, rewind it, and unaddress all
talkers and listeners

7-11

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Entry:

D[X] is device address
DO points to the mailbox

Exit:
Carry clear:

P=0, all OK
Carry set:

Error...P, C[0] are error code

Calls: TSTAT,MTYL, DOL, <UTLEND>

Exclusive: C[U¥],P,ST[3:0]
Inclusive: C[W],P,ST([3:0]

Stk lvls: 3 (TSTAT)

7.5.5 TFINDFL - Find file on mass storage device.

Name: FINDFL - Set up loop, get a directory entry
Name: FINDEF+ - Set up loop, get directory entry (MS)
Name: FINDEX - Find a file on a mass storage device

Entry Offset: FINDFL - 469F Hex

FINDF+ - 46A6 Hex
FINDFX - 4732 Hex

Purpose:

Find file on external device (for FINDF+ and FINDFx,
the device rust be a mass storage device)

Entry:

FINDEL, FINDF+:
First 8 characters in A[U], last 2 in RO[3:0]
D{A] is device address (set up by FILSPx poll handler)

FINDFx:
D(X] is mass storage device address
DO points to the mailbox
First 8 chars of name in RO, last 2 in R1[3:0]

Exit:
Carry clear:

File directory entry in =SCRTCH([32]
A(A] is starting record (A(4]=0)
C[A] is number of records (C[4]=0)
D1 points to file type

HP-71 HP-IL Module IDS - Volume I
HP-1L Utility Routines

B[3:0] is directory pointer for file (B[3:1] is
record number, B(0] is entry within record)

Carry set:
P=0: Names don’t match (same conditions as carry clear)
P#0: Error (P, C[0] are error code)

Calls: START, CHKBIT,CHKMAe , YIML, D1=SCR, READSU , CPYSe,
FINDFx --> GETDR! NXTEN+ |CSRCS, CSLCS GETDIR, GETZER

Uses......
Exclusive: A,B,C, D1,P, ST(S]
Inclusive: A, B, Cc ,D[15: 5], D1, P SCRTCH (63: 0],ST(5:0]

Stk lvls: 5 (GEIDR!)

7.5.6 FORMAT - Format medium in the specified drive.

Name: FORMAT - Format medium in specified drive

Entry Offset: 4291 Hex

Purpose:
Format medium in specified drive (initialize it)

Entry:
BO contains vol label ([11:0]), # of entries ([15:12])
Drive address is in D(X]
D(X] (lower five bits) = device’s primary address
D(X] (middle five bits) = device’s secondary adrs(0 if none)
D(X] (top 2 bits) = Loop # (0 is loop #1)

DO points to the mailbox

Exit:
Carry clear:

P=0, drive is rewinding (successful formatting)
Carry set:

Error (P, C[0] are error code)

Calls: DDL, DDT, READI3,WRITIT, PRIMSGA, CLLOOP, CLEARN,
MIYL, YTHL,TSTAT, SEEXA, PUTALR, PUIDX, PUTD, PUTE,
GETD, ChKEOT, DA1urt D1=SCR, E- >SCR, PUTDIR,
CSLCA |CSLCS,, CSRCS,ASLC4 _ASRCS , YHDHMS <ENDTAP>

Uses:
Exclusive: A,B,C,D,R0, R2,D1,P
Inclusive: A,’B, C, D, RO R1,R2 D1,P,SCRTCH(63:0],ST(8:0)’

Stk lvls: 4 (CLEARR)

7-13

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.5.7 GDIRST - Locate the start, length of directory

Name: GDIRST - Get directory start and information

Entry Offset: 4843 Hex

Purpose:
Locate the start of directory (and length) on mass mem
and return both to the caller

Entry:
D(X] contains the drive address
DO points to the mailbox

Exit:
Carry clear:

B(U] contains:
Directory start pointer in [3:0], [15:12]
Start of data area in [7:4]
Zero in [11:8]

D(V] contains:
Drive address in [A] (No change)
Number of directory records in [8:5]
Address of LAST data record + 1 [12:9]
Zero in [15:13]

Carry set:
Error (P, C[0] are error code)

Calls: SEEKA, Dd tRd, READSC, D1=SCR, GETALR, ASLC9, ASRCH,
GETZER, (GDIRSY) ,ASRCS, CSRCB, ASRC3, ASLC3, CSLC4

Uses.......
Exclusive: A,B,C,D[15:5],D1,P

A,

Inclusive: A,B,C,D[15:5],D1,P,SCRICH[63:0],ST(3:0]

3Stk lvls: (SEEKA) (GDIRSB)

7.5.8 GEIDIR - Get the Nth entry in a tape directory.

Name: GEIDI! - Get first directory entry from drive
Name: GEIDIR - Get the next directory entry from drive
Name: GEIDR" - Get the next directory entry @ B[3:0]
Name: GEIDR® - Get the next directory entry @ A[3:0]

7-14

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

Name: GETDR+ - Get the next directory entry @ A[S]

Entry Offset: GEIDR! - 47D7 Hex
GETIDR" - 47DE Hex
GEIDR+ - 47F9 Hex
GEIDIR - 4820 Hex

GETDR# - 47E0 Hex

Purpose:

GEIDR!: Get the first entry in an LIF directory
GETDR": Get the B[3:0]th entry in an LIF directory
GETDR#: Get the A[3:0]th entry in an LIF directory
GETIDR+: Get the A[S] entry in the current record
GEIDIR: Get the next entry in an LIF directory

Entry:

D(X] is the drive address
DO points to the mailbox
GEIDIR: Drive is addressed as talker, me as listener
GETDR": B([3:0] is the directory entry #
GETDR#: A(3:0] is the directory entry #
GETDR+: A[S] is tHe directory offset nibble in record

Exit:
Carry clear:

Directory entry in =SCRTCH[32]
AU] is first 8 chars of filename
D1 points past first 8 chars of filename

Carry set:
Error (P, C[0] are error code)

Calls: GDIRST, SEEKA, DDT, MIYL, PUTD, YIML, TSTATA , READSC,
D1=SCR

Exclusive: A, C, P
Inclusive: A,B,C,D(15:5],P,SCRTCH[63:0],ST[4:0]

Stk lvls: GETIDR!: 4 (GDIRST)
Stk lvls: GETDR": 3 (SEEKA) (TSTATA)
Stk lvls: GETDR#: 3 (SEEKA) (TSTATA)
Stk lvls: GEIDR+: 3 (TSTATA)

Stk lvls: GEIDIR: 3 (TSTATA)

7.5.9 INITFL - Initialize a file

Name: INITFL - Initialize a file on external device

7-15

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Entry Offset: 68E4 Hex

Purpose:

Initialize an external file after creation

Entry:
R1(S] = Create code of the file
Tape is positioned at the start of the file data area
R2[A] is # of sectors in the file

Exit:
Carry clear:
The file will be filled with zeros or all FP’s
Create code = 2 - filled with zeros
Otherwise - filled with all FF’s

Carry set:
Error...P, C[0] are error code

Calls: SENDIT

Uses:

Exclusive: A[W],C[u¥],D1, FUNCR1[15:0],P
Inclusive: A(U],C[y¥],D1,ST([3:0],FUNCR1(15:0],P

Stk lvls: 2 (SENDIT)

7.5.10 LSTENT ,NXTENT - Move to directory entry.

Name: NXTENT - Move to next directory entry
Name: LSTENT - Move to previous directory entry

Entry Offset: NXTENT - 4A1E Hex
LSTENT - 4A34 Hex

Purpose:
Increment/decrement to next/last directory entry

Entry:
C{3:0] is the current entry

Exit:
C[3:0] is next/last entry
P=0
Carry set if crossed record boundary, else clear

Calls: None

Uses.......

7-16

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Inclusive: C(3:0],P

Stk lvls: 0

7.5.11 MOVEFL - Move a file between two devices

Name: MOVEFL - Move a file between two HP-IL devices

Entry Offset: 4571 Hex

Purpoee:

Move a block of "records" from one HP-IL device to
another

Entry:

R1[A] = device addr of destination device (from FILSPx)
B2{A] = device addr of source device (from FILSPx)
R3[A] = record address of destination if mass mem
B[A] = record address of source if mass mem
R3[9:5] = number of records to copy

Exit:
P#0!
Carry clear: OK
Carry set: error (P, C[0] are error code)

Calls: CSLC5,D1=AVE, CSRC10,CSLC10, START, GETDev , SEEKA,
CHKBIT, DdtRd, READSU, D1@AVS, CSRC5,MYL, DDL, ASRC10
URITIT,hCPYSe,ASRCS,YTML

Exclusive: A[V],C[V],D(A],R3(14:10],R4,D0,1 1,P,ST(4:0]
Inclusive: A[u],C[v],D[¥],B3(14:10],R4,D0,

D
D1,P,ST[8],ST[4:0]

Stk lvls: 3 (SEEKA) (hCPYSs)

Detail:
COUNTS is R3[14:10] - #

COUNTID is R4[9:5] |
COUNTR is R4[14:10] - ¢

COUNT is R3[9:5] - 8

f records this transfer
f records already finished
f records remaining
f records to move (total)0

0
0
0

7-17

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

7.5.12 NEUFIL - Create a file on mass memory device.

Name: NEUFIL - create a file on mass memory device

Entry Offset: NEWFIL - 4A65 Hex
NEUFI+ - 4A49 Hex

Purpose:
Create a nev file on a medium, given a pointer to the
file data and all info needed to create the directory
entry. If NEUFIL is called by CREATE, the file will be
initialized according to its create code.

Entry:
ST(=sOVERU]=1 if overwrite existing file, 0 if error on

existing file
D(X] is device address (D[B]=0 if LOOP)
RO is first 8 chars of name
R4(15:12] is last 2 chars of name
R1[5:0] is new file size in bytes
R1[9:6] is new file type
R1[14:10] is new file data start (RAM address)

(If zero, don’t copy any file...check CCode)
R1(15] = 0 if called by COPY with device spec,

“F* if called by COPY with LOOP or non-mass storage
device (D[B]#0 means non-mass storage device)

create code if called by CREATE
R2[7:0] is data for implementation bytes ([B] is first

byte of implementation field...byte 28)
(R2(B] is FIRST byte of implementation info)

NEWFIL:

DO points to the mailbox

Exit:
Carry clear:

P=0, R3 is file information (B[W] internally):
[3:0]: Current directory pointer (of no value)
[7:4]: Pointer to start of data area for file
[11:8]: Pointer to old directory location (if found)
[15:12]: Pointer to new directory location of file

Rl is unchanged from entry conditions
(If R1(S]="F" and R1[B]#"00" then R1(5:2] has been

incremented, R1[B]=0)
The file has been created on the rnass storage mredium

Carry set:

Error (P,C[0] are error code)

Calls: START, CHKBIT, GDIRST, SEEKA , DdtRd, READSC, GT2BYT,

7-18

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

NXTENT, PT2BYT, YMDHMS , MTYL, <ENDTAP>, I /OFND, PURFIB,
FTYPE® , CHKSEC, CHKSIZ, PUGFIB , NEWE80 NEWFS4,,NEWF90,
NEWE.O GETEX, D1=SCR, F->SCR’
CSRC3;4 $5;8;9; 12,ASRC4 ,CSLC3;4;5;8;12

NEWF80 -->v ASRC4;8,CSRC2;3;12,CSLC3, YMDHMS, PT2BYT, Dd1Pwr,
SEEKA MIYL, DDL, PUTD, PUTC, D1=SCR’

NEWES4 -->v PT2BYT |CSLC2; 6, MIYL, GT2BYT, CSRC13
PUTDR# -->v SEEKA , MTYL
NEWF90 -->v Dd1Pwr,DDL,PUTD
PUIDIR ---> DDL,D1=SCR,<NEWF.3>

NEVE.0 -->v CSRC4;10,SEEKA,MIYL, DDL, <INITFL>
NEVF.3 ---> WRITIT,GETST, PUTC, <TSTAT>

Exclusive: A,B,C,D,RO,R2,R3,R4,D00,D1,P
Inclusive: A,B,C,D,R0,R2,R3,R4,D0,D1,P,SCRICH([63:0],ST[8, 4:0]

Stk lvls: 5 (PUGFIB) (Only if deleting FIB entry:file existed)
Stk lvls: 4 (GDIRST) (NEWF80; YMDHMS)

Detail:
Consolidates into one pass through the directory the

following actions for mass storage:
1. Find the file on the medium (if present)
2. Find a space on the medium sufficient to hold

the file, giving preference to the place
it was before (if found in 1.)

3. Purge the old directory entry, if not using
same entry for new file

4. Urite the new directory entry

5S. Copy the file to the data area of the medium

7.5.13 READR® - Read specified record from mass mem

Name: READR# - Read a record from mass mem into RAM

Entry Offset: 44FF Hex

Purpose:
Read a specific record number

Entry:
D1 points to the destination buffer
A[3:0] contains the record mmber
D(X] contains the drive address

7-19

71 HP-IL Module IDS - Volume I
I

HP-

HP-IL Utility Routines

DO points to the mailbox

Exit:
Carry clear: OK (P=0)
Carry set: Error (P, C[0] are error code)

Calls: TSTAT,SEEKA, DdtRd, DDT, READSU, <TSTATA>

Uses.......
Exclusive: cll, ©P
Inclusive: A(V],C(¥],D1,P,ST(3:0]

Stk lvls: 3 (TSTAT)

Note: This routine will always read the device status first
and ignore any device error that is reported initially

7.5.14 SEEKA - Seek a record.

Name: SEEKA - Seek a record (record # in A[3:0])
Name: SEEKB - Seek record (drive=1listener,me=talker)

Entry Offset: SEEKA - 4232 Hex
SEEKB - 4239 Hex

Purpose:
Seek to the specified record

Entry:
SEEKA: Desired record # is in A(3:0]
SEEKB: Desired record # is in A[3:0], drive is talker,

[an listener
Drive address in D(X]
DO points to the mailbox

Exit:
Carry clear:

Drive is talker, I am listener, P=0
Carry set:

Error (P,C(0] are error code)

Calls: MTYL, DDL, PUTD, <TSTAT>

Exclusive: C(¥],P
Inclusive: C(U],P,ST(3:0]

Stk lvls: 2 (MIYL) <TSTAI>

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.5.15 SEEKRD - Seek for a record, then read it.

Name: SEEKRD - Seek to a record, then read it

Entry Offset: 62D8 Hex

Purpose:
Seek a record on the mass memory device and read it

Entry:

C(3:1] is the record # desired
DO points to the mailbox
D(X] is the device address

Exit:
Carry clear:

P=0, record has been read into buffer 0 of device
Carry set: Error (P=error #)

Error (P,C[0] are the error code)

Calls: TSTAT, SEERA, DDT,TSTATA

Exclusive: A[A],C(V],P
Inclusive: A[A],C(¥],P

Stk lvls: 3 (TSTAT) (SEEKA) (TSTATA)

7.5.16 TSTAT - Check the tape drive’s status.

Name: TSTAT,TSTATA - Check the drive status

Entry Offset: TSTAT - 41FE Hex

TSTATA - 4205 Hex

Purpose:

Check status of mass storage device

Entry:

D(X] contains the address of the drive
DO points to the mailbox

Exit:

7-21

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

Carry clear:
Drive is addressed as a talker
Status in C[B]

Carry set:
Error (P, C[(0] are error code)

Calls: YIML,PUTE,GEID (YIML only for TSTAT)

Exclusive: C[U],P
Inclusive: C(W],P,ST[3:0]

Stk lvls: 2 (YIML;PUTC) (GETID;GET)

7.5.17 URITE# - Urite to a specified record.

Name: URITE# - Write to a specific record

Entry Offset: 453F Hex

Purpose:

Urite to a specific record on a mass mem device

Entry:

D1 points to the input buffer
A[3:0] contains the record mmber to be written
D(X] contains the drive address
DO points to the mailbox

Exit:
Carry clear if OK (P=0)
Carry set if error (P, C[0] are error code)

Calls: TSTAT, SEEKA ,MIYL,Dd1urt, DDL, WRITIT

Exclusive: A[A], P
Inclusive: A[A],C[u],D1,P,ST(8],ST(3:0]

Stk lvls: 3 (TSTAT)

Note: This routine always reads the device status first and
ignores any initial device error.

Device

CHKRAIO

CHRASN

DEVPAR

FXQPIL

GADDR

GADRRYM

GADRST

GEIDID

GETID

GETLPs

GETPIL

GIYPE

GIYPST

PROCDUY

PROCLT

PROCST

SAVEIT

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

searching routines

Check if a string is an ASSIGN WORD.

Check a HP-IL standard output device assigmment.

Decodes parsed device specifier, returns address.

Get file name from program memory.

Given a device specifier, finds address of the device.

Get HP-IL address from program memory.

Get address from stack.

Fetch the device ID from a statement.

Get device word off the math stack.

Get the device ID from a device.

Get loop specifier, check mailbox status.

Get and evaluate an HP-IL file specifier.

Get hex value of 1 byte.

Get the accessory ID of a device.

Get device type from stack.

Process device word.

Process a device specifier from a literal.

Process a device specifier from a string expression.

Check if the string is a RESERVED WORD.

Save standard output device descriptor entry.

Build standard output device descriptor string.

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.6.1 CHKAIO - Check if a string is an ASSIGN WORD.

Name: CHKAIO - Check if device is an ASSIGN WORD

Entry Offset: 4086 Hex

Purpose:

Check if a string is an ASSIGN WORD (if so, return
its value)

Entry:

B contains a string (B[B] is the first character, any
unused characters are #00)

Exit:
P=0
Carry set if buffer not found or not an ASSIGN WORD
Carry clear if found...address in C[X]

Calls: CSLCS, ASRCS, I /OFND

Exclusive: a[u],C[V],P
Inclusive: A[W],C(¥],P

Stk lvls: 1 (I/OEND)(CSLCS) (ASRCS)

7.6.2 CHKASN - Check an HP-IL device assignment.

Name: CHKASN - Check if an HP-IL assigmment is active

Entry Offset: 3CS57 Hex

Purpose:
Check if the assigment is none, HP-IL, or "other"
(If "OFF"ed, returns as if no assigmment)

Entry:
C[6:0] is the assigment table value

Exit:
Carry set if not assigned/not HP-IL/"OFF"ed/LOOP/NULL
Carry clear if assigned...B[U],C(X] set up for START

If C[S]<>0, this is a FIND (Address unknown)

7-24

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Calls: [/OEND

Exclusive: B[W],C(¥],P
Inclusive: B(W],C(¥],P

Stk lvls: 2 (pushed D1;1/0FND)

7.6.3 DEVPAR - Parse a device specifier.

Name: DEVPAR - Parse a device specifier on the stack
Name: DEVPRS - Parse a string device spec on stack

Entry Offset: DEVPAR - 1BF0 Hex
DEVPRS - 1C36 Hex

Purpose:
Decode a device parameter (for functions which accept
one parameter, either string or mumeric, for device
gpecifier)

Entry:
P=0

DEVPAR:
D1 points to the parameter on stack

DEVPRS:
D1 points to string header (String is reversed)
ST(sSTK) =1

Exit:
FUNCDO contains the calling routine’s DO value
Carry clear: OK...D(X] is address (0 if not found)

D1 set up for 1 numeric parameter return
Carry set: Error...P, C[0] set up for ERRORX

Calls: TSAVDO, POPIN, GADRRM, REVPOP, <DEVPRS>
DEVPRS : TSAVD1, GETDI X, TRESD1

Inclusive: A,B,C,D,R0-R3,D1,P,FUNCDO,FUNCD1,MLEFFLG, ST(7, 4:0]

Stk lvls: 3 (GEIDIX - two levels saved in RO)

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

7.6.4 FXQPIL - Get the file name from program memory.

Name: FXQPIL - Get a file name from memory (file spec)

Entry Offset: 734F Hex

Purpose:

Fetch a filename from program memory

Entry:

Exit conditions from GETSTR
(ST[sSTK]=0: literal in memory, =1:string on stack)
(P=0)

Exit:
DO/D1 set to first non-character item
Carry clear (filename found):

RO[W] is the first 8 chars, A[3:0] the last 2
(Both are blank-filled)

Carry set (no filename found):
A,RO are zeroed

Calls: FXQPrm , FXQPne

Uses.......
Exclusive: A(U], c(¥],Ro, P
Inclusive: A(W],B(V¥],C[u],R0,D0,D1,P

Stk lvls: 3 (FXQPm)

Algorithm:
Check if literal and no file name; if so, return zero
Get the first 8 chars; put in RO; if reached end, set
A[3:0]=\ \, return

Get last 2 chars; put in A[3:0]; return

7.6.5 GADDR - Find the address of a device on loop.

Name: GADDR - Get the address of a device from loop

Entry Offset: OS8FF Hex

Purpose:

Get device address, given search information for the

7-26

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

device

Entry:

DO points to the HP-IL mailbox
D(B] is the search type (#1F,3F,5F,7F, SF)

#1F: (Device type) -B(B] is accessory ID
#3F: (Device ID) -B[U] is device ID
#5F: (Volume label)-B(W] is the label
#7F: (Null) -B(U] is "don’t care"
#9F: (LOOP) -B(¥] is “don’t care"

D(2] is the sequence mumber
D(3] is the loop number
D(S]=0 (for search type at exit)

Exit:
Carry clear:

HP-IL handshake in ST(3:0]
Device address, (mailbox #)*1024 in D[X]
D(S] is search type (1=device type, 2=device ID,

3=volume label, 4=NULL,5=LOOP)
D(3] is sequence number (was in D[2] at entry)

Carry set: P, C[S] are error code

Calls: PUTGF+ ,UNLPUT, PUTC+ , GETERR, GET1D, PUTGE- , UNT,
TSTAT, SEEKA , DDT, TSTATA , READRG,ASRC4 , MTYL , DDL

Exclusive: A[A],C(u],D[15:14],D(5:0]
Inclusive: A[W],C[V],D[15:13],D[5:0]

(If volume label, blankfi

,P
,P,ST(3:0]
11s B[W],uses B[15:12])

Stk lvls: 3 (GETID) (TSTAT) (SEEKA)

7.6.6 GADRRM - Get HP-IL address from program REnory.

Name: GADRRM - Get HP-IL address from program memory
Name: GADRR+ - Get HP-IL address from stack value

Entry Offset: GADRRM - 3FAB Hex

GADRR+ - 3FBA Hex

Purpose:
Get an HP-IL address from program memory

Entry:
ST(8STK)=0: DO points to the expression in program mem
ST(sSTK)=1: A(U] contains a floating mumber

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Exit:

Carry clear: C[X] is the HP-IL address, P=0
Carry set: Error (P is error #)

Calls: EXPEX+ ,RESTST,AVM+ 16, GHEXB+

Uses.......

Exclusive: A,B,C,D, P
Inclusive: A,B,C,D,RO,R1,R2,R3,R4,D0,D1,P, FUNCxx

Stk lvls: 5 (EXPEX+)

7.6.7 GADRST - Get address from string on math stack.

Name: GADRST - Get address from stack

Entry Offset: 7064 Hex

Purpose:

Similar to GIYPST, except that the first 2 digits
after the decimal point, if any, are used as the
secondary address

Entry:
D1 @ first character
D[A] @ end of spec

Exit:
Carry clear:

C(X] is address
D1 @ first unused character
Skips trailing digits
P=0

Carry set:

P, C[0] are error code

Calls: NXTCHR, BAKCHR, RANGEN , DTOH, CSRC2

Exclusive: A,B,C, P
Inclusive: A,B,C,D1,P

Stk lvls: 1 (NXTCHR) (BAKCHR) (RANGEN) (DTOH) (CSRC2)

Algorithm:
Read a mmber from the stack until non-digit OR full;

7-28

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Check if "."...if not, return
Get another number from the stack (2 digits)
Combine the two numbers as one address, return

7.6.8 GEIDID - Fetch the device ID

Name: GEIDID - Get device ID (specifier)
Name: GEIDIX - Get device ID (String expr on stack)

Entry Offset: GEIDID - 6D84 Hex
GEIDIX - 6DA2 Hex

Purpose: . . Lo.
GETDID fetches a device ID, given DO pointing to the
ID in program memory

Entry:
DO points to the ID in program memory

Exit:
Carry clear: Address/type in D(X], device type/ID in B

If D(X]=0, then device id = “" OR *
P=0
FUNCDO contains the DO value after evaluating ID

Carry set: error, P=error number

Calls: GETSTR, PROCLT,NXICHR, BAKCHR, Procst,TSAVDO , START

Inclusive: A-D,RO-R4,D0,D1,P,STMID1(3:0],STMIR1, FUNCxx,ST [11:0]

Stk lvls: GEIDID: 6 (GETSTR)

Stk lvls: GEIDIX: 4 (PROCST)

7.6.9 GEIDVY - Get device word off the math stack

Name: GETDVY - Get device word

Entry Offset: 7133 Hex

Purpose: .] i
Get a device word, given a pointer to the word

Entry:

7-29

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

ST(=sSTK)=0:
DO points to first letter of device word in memory

ST(=sSTK)=1:
D1 points to first letter of device word on stack
D[A] points to the end of the specifier

Exit:
Carry clear:

Device word in B(W], zero-filled, first letter in B(B]
P=0, carry clear if no error
DO/D1 @ next character

Carry set:

Error (P, C[0] are error code)

Calls: NXTCHR, BAKCHR , UCRANG, RANGEN

Uges.......
Exclusive: B[V], P
Inclusive: A[A],B[W],C(A],D0,D1,P (sSTK=0: DO; sSTK=1: D1)

Stk lvls: 2 (UCRANG)

7.6.10 GETID - Get the device ID for a device.

Name: GETID - Read 8 bytes data into A after YTMLL
Name: READRG - Read 8 bytes data into the A register
Name: GETID+ - Read 8 bytes data into A after YIML

Entry Offset: GETID - 680E Hex
READRG - 6805 Hex

GETIDe+ - 67FA Hex

Purpose:

Read up to 8 bytes of data from a device and put it
into A[U] (GETID and GETID+ strip Cr and trailing
characters)

Entry:
D(X] is address of the device
DO @ mailbox

READRG: Conversation is already set up

Exit:
Carry clear:

Up to 8 bytes in A[U], mmber of bytes in D[S]
P=0

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

Carry set:
Error (other than device not ready)
P,C[0]= Error #

Calls: YTML(GETID+) ,YTMLL(GETID) , PUTE, GETX, FRAME-

Exclusive: A[U],C(u],D[S],D(13],P
Inclusive: A(U],clu],'o(s],'D(13], P

Stk lvls: 2 (YIMLL)(YIML) (READRG uses only 1 level)

7.6.11 GETLPs - Get loop number, check status.

Name: GETLPs - Get (optional) loop #, check status

Entry Offset: 1D15 Hex

Purpose:
Check if a loop number was passed to a function; if
so, get that mailbox, else get first mailbox.
Check the status of the mailbox (reset?, etc)

Entry:
P=0

D1 points to the top of the gtack
C(S] is the parameter count (0 or 1)
If C[S]=1, there is a mmeric value on top of the stack

Exit:
Carry clear:

P=0

DO points to the Railbox
Mailbox status in C[X]
D1 at (new) top of stack (loop mmber is popped off)
FUNCDO contains the caller’s DO

Carry set:

Error (P, C[0] are the error code)

Calls: TSAVDO, POP1N, GHEXB+ , < ENDCHK >

Inclusive: A,B,C,D,R0,D0,D1,P, FUNCDO,ST[3:0]

Stk lvls: 2 (TSAVDO) (GHEXB+) (<FNDCHK>)

7-31

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.6.12 GETPIL - Extract file name & device 1D, acc ID

Name: GETIPIL - Evaluate an HP-IL file specifier
Name: GEIPl+ - Get an HP-IL file specifier from stack

Entry Offset: GEIPIL - 6EOB Hex

GETIPI+ - 6E14 Hex

Purpose:

This routine extracts the file name and the device
and returns with the device type/device ID in BW],
address/type in D[X]

Entry:
DO points to the file specifier in program memory

Exit:
ST(sDevOK) set if device spec was ok, else clear
Carry clear:

Filename in RO, R4[15:12]
Device type in B[X]/B(U], address in D[X]
If address = X00, then this is a * or a ""
AVMEME collapsed back to starting point

Carry set:
Error (P,C[0] are error code)

Calls: GETSTR, FXQPIL ,NXTCHR, PROCLT , PROCST,ASRC4 | D1=AVS,

D1@AVE,CSRC12,GETDIS,ASLC12

Uses.......

Inclusive: A-D,RO-R4,D0,D1,P,STMID1(3:0] , STMIR1, ST (sDevOK),

FUNCxx

Stk lvls: 6 (GEISTR)

7.6.13 GHEXBI, GIYPRM - Get hex value from 1 byte.

Name: GIYPRM - Get one-byte hex value from literal
Name: GIYPR+ - Clear status bits 11:0, GIYPRM
Name: GHEXBT - Pop number off stack, get hex byte value
Name: GHEXB+ - Use A[U] as value, convert to hex byte

Entry Offset: GIYPRM - 3FP6E Hex

GIYPRe - 3F6C Hex

7-32

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

GHEXBT - J3F7D Hex
GHEXB+ - JF81 Hex

Purpose:
Given DO pointing to a mumeric expression in program
memory, return the HEX value of the expression

Entry:

ST(sSTK)=0: DO points to the expression
ST(sSTK)=1: A[U] contains a floating number

Exit:
If carry clear, B(B] is the HEX type, B[4:2]=0,P=0,
C[B]=(DevIyp), C[XS]=0

If carry set, error (P=type)

Calls: EXPEX+,RESTST,AVM+16, FLTTH

Uses.......

Exclusive: A,B, C, P
Inclusive: A.B,C.D,RO,R1,R2,R3,R4,D0,D1,P, FUNCxx

Stk lvls: 5 (EXPEXe)

7.6.14 GIYPE - Get the accessory ID of a device.

Name: GIYPE - Get the device type (Acc id) from loop

Entry Offset: OBFF Hex

Purpose:

Get the accessory id of a device (address in D[X])

Entry:

DO points to the HP-IL mailbox
D(X] contains the address of the device to be checked

Exit:
Carry clear:

P=0

Device type in A[B] (if 2 byte response, A[3:2] is
first byte received, A[B] is second)

If device does not respond to Acc ID, A[A]=0
Carry set: error (P, C(0] are error code)

Calls: YIML, PUTE, PUTGE

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

Exclusive: A[A],C[¥],P
Inclusive: A[A],C(W],P,ST(3:0]

Stk lvls: 2 (YIML) (PUTGF)

7.6.15 GIYPST - Get device type (acc ID) from stack.

Name: GIYPST - Get type from stack

Entry Offset: 6FF3 Hex

Purpose:

Given a pointer to the start of the type, return the
numeric value of the type

Entry:

D1 @ first digit of type
D(A] @ end of specifier

Exit:
Carry clear:
Type in B(X], D1 @ first unused item
C(X]=(=DevTyp)
P=0

Carry set:
error (P, C(0] are error code)

Calls: NXTCHR, BAKCHR, DTOH , RANGEN

Exclusive: A(uU],B(¥],C(¥], P
Inclusive: A[U],B(¥],C[u],D1,P

Stk lvls: 1 (NXTCHR) (BAKCHR) (DTOH) (RANGEN)

7.6.16 PROCDU - Process device word.

Name: PROCDN - Process device word

Entry Offset: 7180 Hex

Purpose:
Given a device word in BU], figure out what it is
(ASSIGN WORD, RESERVED WORD, NULL, LOOP, DEVICE ID)

HP-71 HP-IL Module IDS - Volume |

HP-IL Utility Routines

Entry:
B(U] contains the device word

Exit:
P=0
Carry set if sequence mumber is permissable after this
Carry clear if sequence number is not permissable

Calls: CHKAIO, ROMIYP, (PROUsD)

Uses.......

Exclusive: clul,p
Inclusive: A[A],B[B],C[V],P

Stk lvls: 2 (CHKAIO) (ROMIYP)

Detail:
Try in following order: ASSIGN YORD, RESERVED WORD,

NULL,LOOP, (other=DEVICE ID)

7.6.17 PROCLT - Process literal.

Name: PROCLT - Process literal device spec

Entry Offset: 71CE Hex

Purpose: i
Given a pointer to a device spec in REerOry, process it!

Entry:
DO @ device spec

Erit:

Carry clear:
P=0

Device type/device id in B[X]/B(U]
IF device type="#*" * or "" THEN C[X]=0
ELSEIF address THEN CX] is address+loop*1024
ELSEIF LOOP then C[X] is “9F"+1oop*4096
ELSEIF NULL then C[B] is "7F"

ELSEIF volume label THEN C(X] is "S5F"+1loop*4096
ELSEIF device type THEN C[X] is “3F"+1loop*4096
ELSEIF device ID THEN C(X] is “1F" +1loop*4096

Carry set:

Error (P, C(0] are error code)

Calls: NXTCHR, BAKCHR, GETDVW, PROCTM, SAVEAC, EXPEX+,
GHEXBT, GADRR+ RESTST, SAVEZC, RESTD1, REST2C

7-35

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

~ Exclusive: A,B,C, R1,R2, Do, P
Inclusive: A,B,C,D,RO,R1,R2,R3,R4,D0,D1,P,STMID1[3:0],STMIR],

FUNCxx, all RAM available to FCNS

Stk lvls: 4 (EXPEX+ {saves a level on GOSUB stack first})

7.6.18 PROCST - Process a string device specifier

Name: PROCST - Process string device specifier

Entry Offset: 6EBB Hex

Purpose:
Process a device specifier from a string expression

Entry:
ST (sSTK) =1
RO(U], R4[15:12] are filename
D1 points to next item of string
D[A] is the end of the string
HEXMODE

Exit:
Carry set if error (P,C[0] are error number)
Carry clear:

P=0
Device type/device id in B[X]/B([V]
IF device type="%** *or "“ THEN C(X]=0
ELSEIF address, THEN C[X] is address+loop¥*1024
ELSEIF LOOP, THEN C(X] is "9F"+loop*4096
ELSEIF NULL, THEN C(B] is "7F"
ELSEIF volume label THEN C[X] is “SF"+1loop*4096
ELSEIF device type THEN C(X] is "3F"+loop*4096
ELSEIF device id THEN C[X] is "1F"+loop*4096

Calls: NXTCHR, BAKCHR,UCRANG, GETDVW,, PROCDM , GTYPST , GADRST

Exclusive: A(¥],B(¥],C[V],R1,R2, P
Inclusive: A(Y],B[u],C[u],R1,R2,D1,P

Stk lvls: 3 (GEIDW)

7-36

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.6.19 ROMIYP - Check if a string is a reserved word.

Name: ROMIYP - Check if device is a RESERVED UORD

Entry Offset: 40D2 Hex

Purpose:

Check if the string in B[U] is a RESERVED WORD; if so,
return the value that corresponds to that word

Entry:
B contains the string (B(B] is the first character)

Exit:
P=0
Carry clear: B(B] is the device type; B[XS]=0
Carry set: not found

Calls: None

Inclusive: B[A],C(U],P (B[A] only if found)

Stk lvls: 1 (Internal call) (internal push)

7.6.20 SAVEIT - Save device descriptor entry.

Name: SAVEIT - Save device info at (D1) (7 nibbles)

Entry Offset: 3DB6 Hex

Purpose:
Save device descripter entry @ D1

Entry:
D1 @ destination entry
B,C are exit conditions of SETUP

Exit:
Carry clear, P=0 (Error exits directly)

Calls: CSRC3;4;5,CSLC4; 9, 1/0ALL, I /OFSC, I /0DAL

Uses.......
Exclusive: A,B,C,D,R2,R3,00,D1,P

7-37

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

Inclusive: A,B,C,D,R2,R3,D0,D1,P

Stk lvls: 3 (I/OALL)(I/ODAL)

Algorithm:
Check if entry will fit in 7 nibbles:
If will not fit, goto SAVEI1

SAVEIO:Read old entry; write new entry

If old entry used buffer, deallocate the buffer
RINCC

SAVEI1l:Create a buffer for the entry
Urite the entry

Build the info for the 7 nibble field
Goto SAVEIO

7.6.21 SEIUP - Build a recall string in C[6:0].

Name: SETUP - Given info from START, set up C[6:0]

Entry Offset: 3D33 Hex

Purpose:

Build a recall string in C[6:0] (carry set if buffer
required to store this)

Entry:
D is the info returned from START

D(X] is address, (loop #) * 1024
D[S] is type (0=address, 1=device type, 2=device ID,
3=volume label, 4:=:NULL, 5=LOOP)

D(3] is sequence # for types 1 and 2
B is as returned from START

Exit:
C[6:0] is the information to put into an IS-xxx entry
P=0
C[S]=0 if entry will fit in IS-xxx, else C[S]#0

Calls: CSLCS, CSRC4, CSLC3

Inclusive: C[¥],P

Stk lvls: 1 (CSLCS) (CSRC4) (CSLC3)

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

7.7 Loop addressing routines

CHKSET - Check if a Mailbox has been reset and initialize it.

LISTEN - Address a device as listener.

MIYL - Address me as talker, one listener.

RESTOR - Clears offed status of standard output devices.

RESTRT - Set to research addresses of standard output devices.

START - Set up entry conditions for the loop.

UTLEND Unaddress talker & listener, clean up.

YIML - Address a talker, me as listener.

7.7.1 CHKSET - Check if this Mailbox has been reset.

Name: CHKSET - Check if this mailbox has been reset
Name: CHKST+ - Set up this mailbox after reset

Entry Offset: CHKSET - 3149 Hex
CHKST+ - 3160 Hex

Purpose:

Check if this mailbox has been reset...if so, set up
device ID and accessory ID

Entry:
DO @ mailbox

Exit:
DO pointing to mailbox
Carry clear:

All OK (If mailbox had been reset, it has been set up)
Carry set:

Error...P, C[0] are error code

Calls: PUTC, PUTE

Exclusive: A(¥],C[¥],P

7-39

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Inclusive: A[V],C[y¥],P

Stk lvls: 1 (PUIC)(PUTE)

Detail:
Check if RESET bit is set...if not, return, carry clear
Set IDY timeout = 50 mS
Set Accessory ID = (mSETAI)
Set Device ID = (VDEVID)ACr&Lf

7.7.2 LISTEN - Address a device as listener.

Name: LISTEN - Address D(X] as listener |
Name: ULYL - Unaddress listeners, address D(X] as Listener

Entry Offset: LISTEN - 0CSC Hex
ULYL - 0CSS Hex

Purpose:

Unaddress all listeners, address D[X] as listener

Entry:

Desired listener address in D(X]
DO points to mailbox

Exit:
Carry clear: OK, P=0
Carry set: error (P=error #)

Calls: PUTC

Inclusive: C(¥],P,ST[3:0]

Stk lvls: 1 (PUTC)

7.7.3 MIYL - Address me as talker, one listener.

Name: MIYL - Unaddress listeners, me talk, D[X] listen
Name: MIYLL- Address me as talker, D(X] as listener

Entry Offset: MIYL - 0C83 Hex
MIYLL - OCBA Hex

Purpoee:

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Address me as talker, D(X] as listener

Entry:
D(X] is the address of the device to be listener
DO points to mailbox

Exit:

Carry clear: OK, P=0
Carry set: error (Ps=error code)

Calls: UNLPUT, LISTEN, <PUTC>

Inclusive: C(W],P,ST[3:0]

Stk lvls: 1 (UNLPUT) (LISTEN)

7.7.4 RESTOR - Reactive all devices.

Name: RESTOR - Clear "OFFED" bits in IS table entries

Entry Offset: 3ESC Hex

Purpose:
Reactivate all devices (clear their OFFED bdits)

Entry:
Nothing

Exit:
Carry clear

Calls: Nothing

Uses..... .o
Inclusive: C[XS],DO

Stk lvls: 1 (Internal GOSUB)

NOTE: Does not alter P!

7.7.5 RESTRT - Restart all HP-IL devices.

Name: RESTRT - Restart all HP-IL devices (readdress)

7-41

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

Entry Offset: 2FF8 Hex

Purpose:
Restart all device addresses in the HP-IL system

(set to search for address at next access)

Entry:

P=0, HEXMODE

Exit:
P=0
Carry clear

Calls: RESTRs, CSRCS, CSLCS, F1BOEF

Exclusive: c(u],po,P
Inclusive: A[U],C(u],Do,P

Stk lvls: 2 (FIBOFF)

7.7.6 START - Set up entry conditions for the loop.

Name: START - Set up entry conditions for the loop
Name: START+ - Set up loop information (loop # in C[S])
Name: START- - Set up loop (loop # in C(S], sReadd=1)

Entry Offset: START - O7E8 Hex
START+ - O7EE Hex
START- - 07F1 Hex

Purpose:

Set up the loop, given the device specifier

Entry:
D[3:0] contains the device address (if known).

If the address is not known, D[B]=#1F/3F/SE/7F/9F
#1F: (DevTyp) B(X] is the accessory ID
#3F: (DevID) B(W] is the device ID
#5F: (Vollbl) B(W] is the volume label
#7F: (Null) B(U] is "don’t care"
#9F: (Loop) B[U] is "don’t care"
D(2] is the sequence rumber for #1F and #3F

If D(X] is an address, bits 8 and 9 are the mailbox #
If D(X] is not an address, D[3] is the mailbox #

Exit:
Carry clear:

7-42

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Device address in D[X] (+mailbox™1024)
D(S] is 0 if address given, 1 if device type,

2 if device ID, 3 if volume label, 4 if NULL,
5 if LOOP

Sets DO to the HP-IL mailbox
ST(sReadd) set if loop was readdressed, else clear

Carry set:
Error (P, C[0] are error code)

Calls: SETLP, ENDCH- , GETDev , PUTGE- , PUTE,, GETERR, GEIST,
SFLAG?, RESTRT, GETMBX SUAPO1, 1/0END

Exclusive: c(v],p(15 1], Do,P
Inclusive: A[W],C(W],'D(15: 13],p(s: 0],D0,P

Stk lvls: 3 (RESTRT) (ENDCH-)<GADDR>

,ST[4]
ST[4:0]

Algorithm:
START: Derive loop # from D(X] (into C[S]) (SETLP)
START+:Set flag (sReadd) to not force readdressing
START-:Find mailbox, check for reset, OFFED (ENDCH-)

Check if controller.. .if so, goto STARTn
Check if NULL, LOOP, or zero (if not, error)
goto START3

(Controller)
STARTn:

If force readdressing (sReadd=1)
then send IFC to power up the loop
else send power up the loop message (NOP frame)

STARTS:Check if error powering up the loop (GETERR)
START! :Get 1/0 CPU status bits

If sReadd=1 then goto START?

If loop is unconfigured (sUNCNF)
then

If (eupress readdress)=1 then goto START2
Set all internal addresses=unknown (RESTRT)
Set DO to mailbox address (GETMBX)

goto START3

(Readdressing the loop)
STARTZ2:

Set all internal addresses=unknown (RESTRT)
If (extended address flag=0) or

(an ASSIGNIO is active)
then readdress the loop, primary only
else readdress the loop, extended addresses

Send readdress message, get result (PUTGE-)
If address not returned by 1/0 CPU then error

(Check the device specifier)

7-43

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

START3:If not (find device)
then return (all OK)
else goto GADDR (Get device address)

7.7.7 UTLEND - Unaddress talker & listener, clean up.

Name: UTLEND - Unaddress talkersilisteners, clean up
Name: ENDEN - Clean up the loop, preserve C[W] in RO

Entry Offset: UTLEND - 07CC Hex
ENDEN - 07CO Hex

Purpose:

Clean up after accessing a loop

Entry:

MBOX” points to the mailbox used by this routine

Exit:
Carry clear:

DO at last mailbox used before call
ENDST: Jumps to NXTSIM
ENDEN: Restores value of C[U] (saved at entry)
UTLEND: First unaddress talkers/listeners, then END

Carry set:
Error (P, C[0] are error code)

Calls: END:GETMBX
ENDST : END

UTLEND: UNT , UNLPUT
ENDEN:UTLEND

Inclusive: C[W],D0,P,ST(3:0]

Stk lvls: END: 0 <«GETMBX>
Stk lvls: ENDST: 1 (END)
Stk lvls: UTLEND: 1 (UNT) (UNLPUT)<END>

Stk lvls: [ENDEN: 2 (UTLEND)

7.7.8 YIML - Address a talker, me as listener.

Nare: YIML - "You" (D(X]) talk, "me" listen

Entry Offset: O0OC9B Hex

HP-71 HP-1L Module IDS - Volume I
HP-IL Utility Routines

Purpose:

Address D(X] as talker, me as listener

Entry:

DO points to mailbox
D(X] contains the address of the device to be talker

Exit:
Carry clear: P=0
Carry set: Error # in P

Calls: UNLPUT, PUIC, <PUTC=D>

Inclusive: C[U],P,ST[3:0]

Stk lvls: 1 (UNLPUT) (PUTC)

7.8 Communicating with 1/0 CPU routines

CHESTS - Check Mailbox status and clear error mailbox bit.

DDL,DDI- Send a device dependent command to loop.

ENDMBX - Find an HP-IL Mailbox in configuration table.

FRAMEE - HP-IL frame encode from ASCII to 11 bit value.

FRAME+ - Evaluate an HP-IL MB message, return message type.

GET - Get a message from Mailbox.

GEID - Get data.

GETDev - Check if the HP-IL module is in device mode.

GETERR, GEIST - Get error/status from 1/0 CPU.

GETHSS - Get 2 handshake nibbles from a Mailbox.

GEIST - Get Mailbox status

GEIMBX - Get the HP-IL Mailbox addrees from RAM, put it in DO.

GEIX - Fast data input routine.

7-45

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

GFIYPE

GLOOP#

PRMSGA

PUTARL

PUTDX

PUTE

PUTEN

PUTGF

PUTX

READIT

SENDIT

SETLP

WURITIT

Get frame type from RAM.

Get loop # from RAM (if one present).

Print message contained in C-reg to loop.

Put message in A register to loop.

Put a command (4 nibs) to the Mailbox.

Put a single data byte to the loop.

Put multiple data bytes to Mailbox filling with zeros.

Put an extended message (6 nibs) to Mailbox.

Send message to Mailbox, ignore error bit.

Send 2 byte message to Mailbox, read response message.

Send 3 bytes of data to the loop.

Read data bytes from the loop.

Send 1 or 2 character sequence to the loop.

Determine loop number for FNDMBX routine.

Output data to loop from RAM.

7.8.1 CHKSTS - Check Mailbox status, error, etc.

Name:

Name:

Nane:

Entry Offset:

Purpose:

CHKSTS - Check 1/0 CPU status, errors, etc
INDCHK - Find a mailbox, CHKSTS
ENDCH- - Check OFFED, Find a mailbox, CHKSTS

CHKSTS = 0B8F Hex
ENDCHK = OB86 Hex
ENDCH- = O0B7B Hex

Check that the status is OK for messages (1e NOT in
marual mode), clear the error bit in I/0 CPU, set/clear
bit for device/controller

Entry:

FNDCH-:C[S] is mailbox desired

7-46

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

FNDCHK:C[S] is mailbox desired
CHKSTS:D0 points to mailbox

Exit:
| Carry clear:

P=0, C(X] is 1/0 CPU status
CHKSTS: D0 unchanged

ENDCH-, ENDCHK: DO points to mailbox
Carry set: error (P, C[0] are the error #)

Calls: GETHS2 , CHKSET , GETERR, GETST , GETMBX

Uses:
Exclusive: C(x],P
Inclusive: A(W],C(W],P,ST(3:0], bit(Device) of LOOPST

Stk lvls: 2 (GETST) (GETERR) (CHKSET) (pushed status;GEIMBX)

7.8.2 DDL,DDT- Send a device dependent command.

Name: DOT - Send a Device Dependent Command
Name: DDL - Send a Device Dependent Command

Entry Offset: DDT = 6B34 Hex

DDL = 6B25 Hex

Purpose:

Send a DDL/DDT as determined by P (these routines are
only good for DDL/DDT 0-15)

Entry:
P contains the DDL/DDT mmber desired
Loop is set up
DO @ mailbox

Exit:
Same as PUTE

Calls: None

Uses:
Inclusive: C(V],sT(3:0],P

Stk lvls: 0

7-47

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.8.3 ENDMBX - Find an HP-IL Mailbox.

Name: ENDMBX - Find an HP-IL mailbox (C[S] is #)
Name: FNDMB- - Find mailbox, clear disp bits, chk OFF
Name: ENDMBD - Find an HP-IL mailbox, clear disp bits
Name: ENDMB+ - Find an HP-IL mailbox (D[A] is spec)

Entry Offset: FNDMBX = 3BEQO Hex

ENDMB- = 3BAB Hex

ENDMBD = 3BCA Hex

ENDrB+ = 3BA7 Hex

Purpose:

Search the configuration tables to find a HP-IL mailbox
(C[S] is the number of the mailbox mimus 1 - if C[S]
is 2 then find the 3rd mailbox!)

Entry:

FNDMBX , FNDMB- | FNDMBD:
C(S] is the mailbox number -1

INDMB-+:
D(A] 1s the device spec

Exit:
Carry clear: DO points to the mailbox, (MBOX") is set

to the mailbox
Carry set: Mailbox and/or configuration buffer not

found (P is the error number)

Calls: CNFEND (FNDMB+ also calls SETLP)

Uses:
Exclusive: C[W],D0,P
Inclusive: C[W],DO,P

Stk lvls: 1 (CNFEND) (SETLP)

7.8.4 FRAMEE - HP-IL frame encode.

Name: FRAMEE - Encode an HP-IL frame from its mnemonic

Entry Offset: 6B43 Hex

Purpose:

HP-IL frame encode (given the ASCII for the frame and a
value, produce the appropriate 11-bit frame)

7-48

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Entry:
C(S] is length of ASCII character string

C[S] = String length in nibbles - 1
C[13:0] is the ASCII character string
The string is right justified.
If set P to C[S], C[(P:0] is the character string.

A[B] is the value included with the frame (if none, 0)

Exit:
P=0

Carry clear: C(X] is the frame value
B(B] is the mask value for the frame
C[S] is UP length of name

Carry set: Error...not found

Calls: None

Uses:
Inclusive: B[W],C[V],P

Stk lvls: 1 (Intermal push)

7.8.5 FRAME+ FRAME- - Returns type of HP-IL message.

Name: FRAME+ - Evaluate an HP-IL message, return type
Name: FRAME- - Evaluate a message, return type (not 3data)

Entry Offset: FRAME+ = 072D Hex
FRAME- = 073B Hex

Purpose:
Parses a frame

Entry:

C[6:0] contains the input frame from GET
ST[3:0] contains the HP-IL handshake nibble

FRAME+: C[S] is the status nibble from 1/0 CPU

Exit:
Frame type in P: MNEMONIC:

0: ACKNOWLEDGE (PACK)
1: CURRENT PIL STATE (pSTATE)
2: DIAGNGSTIC (TEST RESULTS) (pDIAGR)
3: DIAGNGSTIC (LOCATION CONTENTS) (pDIAGL)
4: ADDRESS (pADCR)

7-49

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

5: IFC RECEIVED (NOT SYS CONTROLLER) (pIFC)
6: ETO RECEIVED (pEOCT)
7: CONVERSATION HALTED (COUNT, NOT L) (pHALID)
8: TERMINATOR MATCH (pTERM)
9: ETE REVEIVED (pETE)

10: UNRECOGNIZED TYPE (pUTYPE)
11: DATA/END FRAME (pDATA)
12: COMMAND RECEIVED (pOMD)
13: READY FRAME (pRDY)
14: IDY FRAME (pIDY)
15: THREE BYTE DATA TRANSFER (p3DATA)

If illegal frame or error, sets carry; else clears it

Calls: None

Uses:

Inclusive: C(S],P (C[S] only for FRAME+)

Stk lvls: 0

7.8.6 GEI,GEINE - Get a message from Mailbox.

Name: GET - Get a message from I/0 CPU }
Name: GEINE - Get a message without checking error bit

Entry Offset: GET = 6751 Hex

GEINE = 673B Hex

Purpose:

Utility to read the mailbox message

Entry:

DO points to the HP-IL mailbox

Exit:
Carry clear:

Contents of mailbox in C[7:0]
Handshake nibble in ST[3:0]
Status nibble in C[S]

Carry set:

Error (P=error mumber)

Calls: None

Uses:
Inclusive: C[¥],ST[3:0] (P only if error)

Stk lvls: 0

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

7.8.7 GEID - Get data.

Name: GETD - Get data message

Name: GETEND - Get EOT message

Entry Offset: GEID = 67C8 Hex

GETEND = 67ES Hex

Purpose:

Read a data/EOT message from 1/0 CPU

Entry:

Expecting data/EOT from the mailbox
DO points to the mailbox

Exit:
Carry clear:

Frame in C[X]
Frame type in C[S]

Carry set:

GEID: Not a data frame/aborted/error bit set
GETEND: Not an ECT frame/aborted/error bit set

Calls: GET, FRAME+

Uses:
Exclusive: C
Inclusive: C,ST(3:0] (P only if error)

Stk lvls: 1 (GET) (FRAME+)

7.8.8 GEIDev - Check if the HP-IL module is a device.

Name: GETDev - Get device status bit from LOOPST

Entry Offset: O0BSB Hex

Purpose:

Indicate whether the last call to CHKSTS found 1/0 CPU
in device or controller mode

Entry:

None

Exit;

7-51

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

LOOPST in ST[3:0)
Carry set if device, clear if controller

Calls: None

Uses:

Inclusive: ST[3:0]

Stk lvls: 1 (internal push)

7.8.9 GETERR,GEIST - Get Mailbox error/status.

Name: GETST - Get status from 1/0 CPU
Name: GETERR - Get error message from 1/0 CPU
Name: GEIST- - Read status message from mailbox with-

out checking the error bit

Entry Offset: GEIST = 6787 Hex
GETERR = 6791 Hex
GETST- = 679E Hex

Purpose:
Get status/error message from 1/0 CPU

Entry:
DO points to the HP-IL mailbox

Exit:
Carry clear: PIL status in C(X], error # in C[3]

P=0

Carry set: Error (# in P,C[0])

Calls: PUTIC+N,GEINE, FRAME+

Uses:

Exclusive: C[¥], P
Inclusive: C[W],ST[3:0],P

Stk lvls: 1 (PUTC+N)(GEINE) (FRAME)

7.8.10 GETHSS - Get 2 handshake nibbles from Mailbox.

Name: GETHSS - Get 2 handshake nibbles from 1/0 CPU

Entry Offset: 313A Hex

7-52

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Purpose:

Read the two handshake nibbles from 1/0 CPU to HP-71
and put into ST([7:0]

Entry:
DO points to HP-IL mailbox

Exit:
The two handshake nibbles from 1/0 CPU are in ST[7:0]
Carry clear

Calls: None

Uses:

Inclusive: ST(7:0]

Stk lvls: 0

7.8.11 GEIMBX - Set DO to the HP-IL Mailbox address

Name: GEIMBX - Get address of mailbox (last FNDMBX)

Entry Offset: 3B62 Hex

Purpose:
Get the HP-IL mailbox address from RAM and put it in DO

Entry:

Nothing

Exit:
C[A], DO-->Mailbox
Carry clear

Calls: None

Uses:
Inclusive: C(A],DO

Stk lvls: 0

NOTE: Does not alter P!

7.8.12 GEIX - Fast data input routine.

Name: GEIX - Fast DATA input routine

7-53

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

Entry Offset: 66B0 Hex

Purpose:
Fast data input routine...read DATA bytes as quickly
as posgible

Entry:

DO points to the mailbox
Conversation is set up and started

Exit:

If carry clear:

P=0: C[B] is a data byte
P=2: C[5:0] is three byte quantity; C[B] is first!

If carry set:
P=0: C[6:0] is message, C[S] is statusg*2
P#0: Aborted (P= =eABORT)

Calls: None

Uses:

Inclusive: C{W],P,ST[3:0]

Stk lvls: 0

7.8.13 GFIYPE - Get frame type from RAM.

Name: GFTYPE - Get frame type from RAM

Entry Offset: 2D96 Hex

Purpose:

This routine return the mnemonic of a message in a statement.
This routine is used by the SEND statement.

Entry:
DO points to string of chars (¢=7)

Exit:
A contains the string (A[S] is WP value)
Carry SET if error

Calls: CONVUC, RANGEA

Uses:

Exclusive: A(W],C[u],P,DO
Inclusive: A[W],C(u],P,DO

7-54

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Stk lvls: 2 (CONVUC)

7.8.14 GLOOP# - Get loop # from RAM (if one present).

Name: GLOOP# - Get loop # from RAM (if one present)

Entry Offset: 2D5A Hex

Purpose:

Get loop rmumber from memory

Entry:

DO points to next token

Exit:
P=0
DO points to next item on line
C(S] is loop # [0-2]
Carry set if no loop # given

Calls: GTYPRM

Inclusive: A,B,C,D,R0,R1,R2,R3,R4,D0,D1,P,ST([11:0], FUNCxx

Stk lvls: 6 (GTYPRM)

7.8.15 PRMSGA - Print message from C-reg.

Name: PRMSGA - Output message from C (uses A)

Entry Offset: OCB9 Hex

Purpose:
Output message from C (ASCII) (use A[U] to store it)

Entry:
C[W] has an ASCII string, C[B] is the first character
Message is terminated by a #00 character
DO points to mailbox

Exit:

Carry clear: OK, P=0
Carry set: error (P,C(0] are error code)

7-55

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Calls: PUTD

Inclusive: A[W¥],C[u],ST[3:0]

Stk lvls: 1 (PUTD)

Algorithm:
PRMSGA: Copy CU] to A[W]

PRMSG1:shift A[W] right twice (next char in A[B] now)
output the character in C[B] (PUTD)
if next character (A[B]) <> #00 then goto PRMSG1
return

7.8.16 PUTARL - Put data from A[U] to Mailbox.

Name: PUTARL - Put data from A[U] (Right to left)
Name: PUTALR - Put data from A{U] (Left to right)

Entry Offset: PUTARL - OE25 Hex

PUTALR - OE3D Hex

Purpose:
Output data from A[WU] to the HP-IL loop

Entry:
DO points to mailbox
I am talker on loop
P is a count of bytes to be output from A[U]
PUTARL outputs bytes starting with A[B]
PUTALR outputs bytes starting with A[15:14]

Exit:
Carry clear: P=0, all OK
Carry set: error (P, C[0] are error code)

Calls: PUTD

Exclusive: A[W],C[A],P
Inclusive: A[(u],C(u¥],P,ST(3:0]

Stk lvls: 1 (PUTD)

7-56

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.8.17 PUIC - Put a command (4 nibs) to Mailbox.

Name: PUTC+ - Put a command (1 byte) to the mailbox
Name: PUTC - Put a command (2 bytes) to the mailbox

Entry Offset: PUIC - 6B1C Hex
PUTC+ - 6B18 Hex

Purpose:

Put a command (1 or 2 bytes) to the mailbox

Entry:
DO points to the HP-IL mailbox
PUTC+: C[B] contains the command to send (1 byte)
PUIC: C[(3:0] contains the command to send (2 bytes)

Exit:
Same as PUTE

Calls: None

Uses.......

Inclusive: C(V],ST(3:0],P

Stk lvls: 0

7.8.18 PUTD - Put a single data byte to the loop.

Name: PUID - Put a single data byte on the loop

Entry Offset: 6AAE Hex

Purpose:

Send a single data byte on the loop (Check NRD first)

Entry:

C[B] contains the data byte
DO points to the HP-IL mailbox

Exit:
Handshake nibble in ST([3:0]
Carry get if error, clear if OK

Calls: None

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

Inclusive: C(W],ST(3:0]

Stk lvls: 0

7.8.19 PUTDX - Put multiple data bytes to Mailbox.

Name: PUTDX - Output multiple data bytes (P is count)

Entry Offset: OES55 Hex

Purpose:
Output data to the loop: first the contents of C[B],
then P-1 zero bytes

Entry:

DO points to mailbox
I am talker
P contains the total number of bytes to send

Exit:
P=0

Carry set if error (P is error #)

Calls: PUTD

Uses.......
Exclusive: C[A],P
Inclusive: C[¥],P,ST[3:0]

Stk lvls: 1 (PUTD)

7.8.20 PUTE - Put long message (6 nibs) to Mailbox.

Name: PUTE - Put extended message (6 nibbles)
Name: PUTEX - Put extended message (6 nibs + 2 hs)

Entry Offset: PUTE - 6ACO Hex

PUTEX - 6AC8 Hex

Purpose:

PUTE: Put extended mailbox message (given full 6 nibs)
PUTEX:Put a full message, INCLUDING HANDSHAKE!!!!

Entry:

7-58

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

PUTE: C[5:0] is message
PUTEX: C(7:0] is message
DO points to the mailbox

Exit:
Carry clear: OK (P=0 for PUTX)
Carry set: error (P=error #)

Calls: None

Inclusive: C,ST(3:0]) (PUTE sets P=0)

Stk lvls: ©

7.8.21 PUTEN - Send message to Mailbox, ignore error.

Name: PUTEN - Put message in C(5:0], don’t check error
Name: PUTCN - Put message in C[3:0], don’t check error
Name: PUTC+N - Put message in C[B], don’t check error

Entry Offset: PUTEN - 6AF1 Hex
PUTICN - BAEC Hex

PUTC+N - 6AE8 Hex

Purpose:
Put a message without checking for the I/0 CPU error
bit (otherwise same as PUTE)

Entry:
DO points to the HP-IL mailbox

PUTEN: Message in C[5:0]
PUTCN: Message in C[3:0]
PUTC+N: Message in C[B]

Exit:
Carry clear:
Handshake nibble in ST[3:0]

Carry set:
P=error #

Calls: None

Exclusive: C(V]
Inclusive: C[W],ST(3:0]

7-59

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Stk lvls: 0

7.8.22 PUIGF - Send msg to Mailbox, decode response

Name: PUIGE- - CSL A,CSL A, call PUIC, GET, FRAME.
Name: PUTGE+ - call PUTC, GET, FRAME+
Name: PUIGF - check carry, call GET, FRAME+

Entry Offset: PUTIGF- = OBE9 Hex
PUTGF+ = OBED Hex
PUIGE = OBF1 Hex

Purpose:

Save code by grouping commonly called subroutines

Entry:

DO points to mailbox
PUIGE-:C(B] is the message to send
PUTGE+:C[3:0] is the message to serd
PUIGF: Carry set 1f previous error

Exit:
DO unchanged

Carry clear: P is frame type, C[X] is frame
Carry set: Error (P, C[0] are error code)

Calls: PUTC, GET, <FRAME-+>

Inclusive: C[W],P,ST(3:0]

Stk lvls: 1 (PUTC) (GET)

7.8.23 PUTX - Send 3 bytes of data from C[5:0]

Name: PUTX - Send 3 bytes of data from C[5:0] to loop

Entry Offset: 6A02 Hex

Purpose:
Output three bytes from C[5:0] to PIL

Entry:

C(5:0] is the three data bytes (C[B] is first byte)
DO: HP-IL mailbox

7-60

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Exit:
Carry clear: done

Carry set: error (P is error #)

Calls: None

Inclusive: C[¥],ST[3:0]

Stk lvls: ©

7.8.24 READIT - Read data bytes from the loop.

Name: READIT,READSU - Read into RAM from loop

Entry Offset: READIT ~- 6649 Hex

READSU - 663D Hex

Purpose:

Read data, given a buffer to put it into, and a count
of how many bytes to enter

Entry:
DO points to mailbox
D1 points to the input buffer
A[A] is the mmber of bytes to read
A[5] is the converstion type for 1/0 CPU

READSU: C(5:0] is start message and count
READIT: the conversation is started

Exit:
Carry clear: D1 points past the last character

A(A] is zero
Carry set: Error...A[A] is the number of bytes left

in the buffer
If P= =ePIL, C[6:0], [S] is status msg

from 1/0 CPU ((S] has been doubled)
Else C[¥U] is undefined

Calls: PUTE, GETX, FRAME-

Exclusive: A[5:0],C(W],D1,P
Inclusive: A[5:0],C(¥],D1,P,ST(3:0]

7-61

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

Stk lvls: 1 (FRAME-)(GETX) (PUTE)

Algorithm:
READSC: Save conversation descriptor in A[5:0]
READS+:Start the conversation (PUTE)
READIT:If no more data to read (A[A]=0) then RINCC

Get a message from [1/0 CPU (GETX)
If not data, check the message: (FRAME-)

If EOT or terminator match, GOTO READS+
else error

(data)
If P#0 then write out 3 data bytes
else write out 1 byte

Increment D1 past data just written
GOTO READIT

7.8.25 SENDIT - Send data from B(W].

Name: SENDIT - Send a 1 or 2 char sequence from B[V]
Name: SENDI+ - Find mailbox, send a sequence of chars

Entry Offset: SENDIT - 698F Hex
SENDI+ - 6989 Hex

Purpose:
Send a sequence of 1 or 2 characters (in B[7:0])
Number of characters to send in A[A]

Entry:

A[A)=count of characters

B(7:0]=sequence (B(B]=first char, B[3:2]=second char,
B(5:4]=first char, B[7:6]=second char)

DO points to mailbox

ST(=LoopOK) set if abort on 1 ATIN, else clear

Exit:
Carry set if Attn or error, else clear
If carry set and P=0, then ATIN key hit ONCE

Calls: PUTX,PUTD,CK=ATN (SENDI+ also calls GEIMBX)

Exclusive: A[A],C(V]
Inclusive: a(a],C[u],ST(3:0]

Stk lvls: 1 (PUTX) (PUTD) (CK=AIN) (GETMBX)

7-62

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

NOTE: This routine can be speeded up SLIGHTLY...see WRITIT
documentation)

7.8.26 SETLP - Setup loop mumber for FNDMBX routine.

Name: SETLP - Set up C[S] for ENDMBX from D[A] info

Entry Offset: 3B7D Hex

Purpose:
Given D[A] set up for device search, return the loop #
minus one in C[S]

Entry:

D(A] is device info (see START documentation)

Exit:
Carry clear
P=0

Mailbox # in C[S]

Calls: None

Inclusive: C[A],C[S],P

Stk lvls: 0

7.8.27 WRITIT - Output data to loop from RAM.

Name: URITIT - Urite data from RAM to the mailbox

Entry Offset: 691A Hex

Purpose:
Output data to the I/0 CPU, given a buffer of data in
RAM and a pointer (D1) to the buffer

Entry:
DO: I/0 CPU mailbox
D1: Data buffer start
A[A]: Number of bytes of data to send from at D1
Loop is addressed, set up for this transfer
ST(=LoopOK) set if should abort on one ATIN, else clear

7-63

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Exit:
Carry clear:

Transfer complete, D1 points past end of buffer,
A[A]="000FF", P unchanged from entry

Carry set: Error - P is the error mmber, A[A] is the
nunber of data bytes not sent (may be low by up to 3)
(If Attn key hit ONCE, then carry set, P=0)

Calls: PUTX, PUTD, CK=ATN

Exclusive: A[A],C[u],D1
Inclusive: A[A],C[W],D1,ST(3:0]

Stk lvls: 1 (PUTX)(PUTD)(CK=AIN)

NOTE: this routine can be SLIGHTLY speeded up by calling
PUTX one statement later (after the CPEX 15)...at the
cost of setting P=0 unconditionally

7.9 Parse and decompile routines

DVCSPp - Device specifier parse routine.

FRASPd - Decompile a frame gpecifier.

FRASPp - Frame spec parse for HP-IL frame descriptors.

LOOP#d - Decompile optional loop mumber.

LOOP#p - Parse optional loop specifier.

NAMEp - Parse a name or device word.

PRNTSd - PRINTER IS decompile routine.

PENTSp - PRINTER IS parse routine.

7.9.1 DVCSPp - Device spec parse

Name: DVCSPp - Parse a device specifier (: optiomal)

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Entry Offset: 7925 Hex

Purpose:

Device spec parse...string expr, *, and [:] OK

Entry:

D1 points to the ASCII character string
DO points to the location where the tokens go
D(A] is the end of available memory
P=0

Exit:
DO positioned past last token output by this routine
D1 positioned past last character accepted
Carry clear
P=0

Exits through ERRORP if error

Calls: EOLCK, RESPTR, OUTBYT , CKSTR, BLANK , DVSPp, DVLBp

Inclusive: A,B,C,D[15:5],R0-R3,D0,D1,P,ST([11,10,8,7,3:0],
FUNCDO , PRMCNT [0]

Stk lvls: 5 (CKSTR)(DVSPp)

7.9.2 FRASPd - Decompile a frame specifier.

Name: FRASPd - Decompile a frame spec

Entry Offset: 7CC9 Hex

Purpose:

Frame spec decompile routine

Entry:

DO points to the output buffer
D1 points to the input buffer (tokens)
D[A] is the end of available memory
A[B] is the next token (at D1)
P=0

Exit:
A[B] is next token
Carry clear if frame spec found, set if not found
DO,D1 updated to current position

Calls: ?A=CLN,OUT1TK, RANGEA,Cutblk

7-65

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

Uses.......
Exclusive: A,C, D1
Inclusive: A,C,D0,D1

Stk lvls: 2 (OUT1TK) (Outblk)

7.9.3 FRASPp - Frame spec parse for HP-IL frames.

Name: FRASPp - Parse an HP-IL frame specifier

Entry Offset: 76D4 Hex

Purpose:

Frame spec parse for HP-IL frame descriptors

Entry:

A[B] is next character (at D1)
D1 points to the ASCII character string
DO points to the location where the tokens go
D[A] is the end of available memory
P=0

Exit:
A[B] is next item (at D1)
If carry set, not valid input (DO,D1 restored)
If carry clear, output <tCOLON><text string».

ST(StrOK) is set if string OK next, clear if not
ST(EolOK) is set if EOL is OK next, else clear
ST(ExprOK) is set if expression makes sense next

DO positioned past last token output by this routine
D1 positioned past last character accepted
P=0

Calls: UCRANG, OUTBYT, FRAMEE , OUTNBS , < BLANK >

Inclusive: A,B,C,RO,R1,P’»™

Stk lvls: 2 (UCRANG) (OUTBYT) (FRAMEE) (OUTNBS)

7.9.4 LOOP#4 - Decompile optional loop number.

Nane: LOOP#d - Decompile an optional loop #

7-66

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

Entry Offset: 7CAA Hex

Purpose:
Decompile a loop number, if any. If none present, exit
with carry set (Leaves next token in A[B])

Entry:

D1 points to the (optional) loop #
DO points to the output buffer
D(A] is the end of available memory
A[B] is the next token (at D1)

Exit:
DO,D1 positioned after the loop #, if found
A[B] is the next token
Carry set if no loop #, clear if loop # found

Calls: EXPDC+ , OUT2TC

Uses.......
Exclusive: A, C, D1
Inclusive: A,B,C,R0,R1,R2,D0,D1,P,ST[0,3,8,10,11]

Stk lvls: 5 (EXPDC+)

7.9.5 Loop#p - Parse optional loop specifier.

Name: LOOP#p - Parse an optional HP-IL loop specifier

Entry Offset: 76A7 Hex

Purpose:

Parse an optional loop mumber...if one present, output
the tokens for it

Exit:
A[B] is next char, D1 points at next character
If <loop #> found, compiled code generated

Entry:
D1 points to the ASCII character string
DO points to the location where the tokens go
D[A] is the end of available memory
P=0

Exit:

A[B] is next character (at D1)

7-67

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

DO positioned past last token output by this routine
D1 positioned past last character accepted
P=0

Carry clear

Calls: SVDOD1,0UTBYT , CKNUM, QUT1TK , RSDOD1, BLANK

Inclusive: A,B,C,D[15:5],R0-R3,D0,D1,P,ST[11,7,3:0],FUNCDO,
PRMCNT [0]

Stk lvls: 5 (CKNUM)

7.9.6 NAMEp - Parse a name or device word.

Name: NAMEDD - Skip leading blanks, parse device word
Name: NAMEp - Parse a device word (C[S] is # chars)

Entry Offset: 7998 Hex

Purpose:

Parse a device word: <letter > {<letter> | «digit >} *n

Entry:
C(S] is max mumber of characters to accept
D1 points to the ASCII character string
DO points to the location where the tokens go
D[A] is the end of available memory

Exit:
First character not used in A[B] (char @ D1)
Carry set if length exceeded or first char is a digit
A(S]=0 if no chars, #F if characters
DO positioned past last character output by this routine
D1 positioned past last character accepted
P=0

Calls: BLANK, CATCs+ ,OUT1TX

Inclusive: A[S,B],c[s,B],P,D0,D1,ST[2:1]

Stk lvls: 3 (CATC++)

7-68

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.9.7 PRNTSd - PRINTER IS decompile routine.

Name: PRNTSd - PRINTER IS decompile routine
Nanme: PACKd - PACK decompile (device spec,OUTELA)

Entry Offset: PRNISd - 7B3E Hex
PACKd - 7B4A Hex

Purpose:
Decompile the PRINTER IS/PACK statements

Entry:
D1 points to tokenized device spec
DO points to output buffer
D[A] is end of available memory, P=0

Exit:
Exits through OUTELA
Carry clear, P=0

Calls: OUT3TC, ?A=CLN, PILDC, ?A=CMA , OUTCMA , EXPRDC

Exclusive: A, C
Inclusive: A,B,C,R0,R1,R2,D0,D1,P,ST[0,3,8,10,11]

Stk lvls: 6 (PILDC)

Detail:
Decompiles 1 or more device specs (separated by

commas)

7.9.8 PRNTSp - PRINTER IS parse routine.

Name: PRNTISp - Parse the PRINTER IS statement

Entry Offset: 7468 Hex

Purpose:

Parse the PRINTER IS (and DISPLAY IS) statement

Entry:
D1 points to the ASCII character string
DO points to the location where the tokens go
D[A] is the end of available memory

7-69

HP-71 HP-IL Module IDS - Volume I

HP-IL Utility Routines

P=0

Exit:
DO positioned past the last token output by this routine
D1 positioned past the last character accepted
P=0

Exits through ERRORP if error

Calls: NTOKEN, <DVCPy*>

Uses.......

Inclusive: A,B,C,D[15:5],R0,R1,R2,D0,D1,P,ST[11,10,8,7,3:0],
FUNCDO, PRMCNT [0]

Stk lvls: 5 (DVCPy*)

7-70

HP-71 HPIL Module IDS - Volume I

A

Accessory ID, 3-2, 4-3
Address, 3-3

ASSIGN #, 3-3
ASSIN 10, 4-1, 4-2
Assign word, 3-2

BDISPJ, 7
BLDCAT, 7
bPILAI, 2-
bPILSV, 2
bSTMXQ, 2

Cassette

Extended protocol, 2-18, 2-19, 2-20
Non-externded protocol, 2-20

CAT, 3-4
cats, 3-4
CHAIN, 3-5
CHKAIO, 7-24
CHKASN, 7-24
CHKMAS, 7-10
CHKSET, 7-39
CHKST+, 7-39
CHKSTS, 7-46
CLEAR, 3-5
CONTROL OFF, 2-11, 3-6
CONTROL ON, 3-6, 4-1, 4-2
copy, 3-7, 4-4
CREATE, 3-7

DDL, 7-47
DOT, 7-47
DEVADDR, 3-8
DEVAID, 3-8
Device, 3-2
Device ID, 3-2, 4-3
Device specifier, 2-8, 3-3

decoding algoritm, 2-8
tokenization, 2-8

INDEX

Index-1

INDEX HP-71 HPIL Module IDS - Volume I

Device status, 4-3
Device type, 3-3
Device word, 3-3

reserved, 2-9
DEVPAR, 7-25
DEVPRS, 7-25
DISPLAY IS, 2-2, 2-5, 3-9
DSPCAT, 7-11
DSPSET, 2-5
DVCSPp, 7-64

E

ENABLE INTR, 2-13, 2-14, 2-15, 2-16, 3-9
ENDEN, 7-44

ENDTAP, 7-11
ENTER, 2-6, 3-10
Error

Loop Broken, 5-12
Self Test Failed, 5-8

Exception flag, 2-12, 2-14, 2-15

File
format, 4-4
transfer, 4-4

File name, 3-3
File specifier, 3-3

tokenization, 2-8
FINDEs, 7-12
FINDFL, 7-12
FINDFx, 7-12

ENDMBD, 7-48
ENDMBX, 7-48
FORMAT, 7-13
Frame timeout, 2-10, 2-18, 5-12
FRAME+, 7-49
FRAME-, 7-49
FRAMEE, 7-48
FRASPd, 7-65
FRASPp, 7-66

Index-2

HP-71 HPIL Module IDS - Volume I INDEX

FXQPIL, 7-26

G

GADDR, 7-26
GADRR+, 7-27
GADRRM, 7-27
GADRST, 7-28
GDIRST, 7-14
GET, 7-50
GETD, 7-51
GETDev, 7-51
GETDI, 7-14
GETDI®, 7-14
GETDID, 7-29
GETDIR, 7-14
GETDIX, 7-29
GETDR", 7-14
GETDR+, 7-14
GETDVW, 7-29
GETEND, 7-51
GETERR, 7-52
GETHSS, 7-52
GETID, 7-30
GETID+, 7-30
GETLPs, 7-31
GETMBX, 7-53
GEINE, 7-50
GETPI+, 7-32
GETPIL, 7-32
GETST, 7-52
GETST-, 7-52
GETX, 7-53
GFTYPE, 7-54
GHEXB+, 7-32
GHEXBT, 7-32
GLOOP#, 7-55
GIYPE, 7-33
GIYPR+, 7-32
GTYPRM, 7-32
GIYPST, 7-34

H

HP-1B interface, 4-4
HP-IL address, 3-3
HP-IL module, 1-1
HP-IL ROM, 1-1

Index-3

INDEX HP-71 HPIL Module IDS - Volume I

HP82161A
Extended protocol, 2-18, 2-19, 2-20
Non-extended protocol, 2-20

I

1/0 buffer, 2-6
1/0 CPU

addressing the loop, 5-23
data transfers, 5-24
Error Handling, 5-13
error number, 5-16, 5-35
frame timeouts, 5-12
interrupts, 5-38
loop power up, 5-31
Marual mode, 5-13
messages from HP-71, 5-14
messages to HP-71, 5-34
power on defaults, 5-8
powering down loop, 5-21
Scope mode, 5-13
Self test, 5-33
send frame message, 5-20
Service Request on HP-71 bus, 5-9
status, 5-15, 5-35
Terminating Data Transfers, 5-11

1/0 processor, 1-1
IDY timeout, 2-10, 5-12
INITFL, 7-15
Initialization sequence, 2-6
INITIALIZE, 3-10
interrupt

cause byte, 2-14, 2-15, 2-18
disable, 2-16
implementation, 2-13
mask byte, 2-14, 2-15, 2-18

IS-DSP, 2-2
[S-PRT, 2-3

J

JUMPER routine, 7-2

LIF
Extension field, 2-20
Implementation, 4-4

LISTEN, 7-40

Index-4

HP-71 HPIL Module IDS - Volume I

LOCAL, 3-11
LOCAL LOCKOUT, 3-11
Loop

addressing, 5-23
power up, 4-1, 5-8, 5-31

Loop rumber, 3-1, 3-3
LOOP#d, 7-66
LOOP#p, 7-67
LOOPST, 2-5
LSTENT, 7-16

Mailbox
Address, 2-4, 5-2
Configuration, 2-17, 5-1
Description, 5-2

MBOX, 2-4
MOVEFL, 7-17
MTYL, 7-40
MTYLL, 7-40
Multiple loops, 2-17, 3-1

NAMEp, 7-68
NAMEpb, 7-68
NEWFI+, 7-18
NEWFIL, 7-18
NXTENT, 7-16

o

OFF INTR, 2-13, 2-16
OFF 10, 2-5
ON INTR, 2-13
ONINTR, 2-1, 2-13
OUTPUT, 3-12

P

PACK, 3-12
PACKd, 7-69
PACKDIR, 3-13
PASS CONTROL, 2-11, 3-13
PCAT, 6-3
PCATS, 6-3
pCLDST, 6-3

INDEX

Index-5

INDEX

pCONEG,
pCOPYx,
PCREAT,

PDEVCp,
pDIDST,
pPDSUNK,
PENTER,
PEXCPT,
pFILDC,
PEINDE,
PFPROT,

PESPCp,
PESPCx,
pIMXQT,

6-4
6-4
6-5
6-5
6-5
6-6
6-6
2-12, 2-15, 6-7
6-7
6-8
6-8
6-9
6-9
6-10

pPKYDF, 2-13, 6-10
PMNLP, 6-11
Poll Handlers

addressing Loop, 6-2
initializing Loop, 6-2
inputting/outputting Data, 6-1
Key definition, 2-12
RASS memory, 6-2
parse/decompile, 6-2

pPRICL,
PPRTIS,
pPURGE,
pPPUROE,
PRASCI,
PRDCBE,
PRDNBE,

6-11
6-12
6-12
6-12
7-5
6-13
6-14

PREND, 7-6
Primary
PRINTER

PRIVATE,
PRMSGA,
PRNAME
PRNTSA,
PRNTSP,
PROCDM,
PROCLT,
Procst,

address, 3-3
IS, 2-3, 3-14
3-14

7-55
6-14
7-69
7-69
7-34
7-35
7-36

DSREQ, 2-14, 6-15
PURGE, 3-15
PUTALR,
PUTARL,

7-56
7-56

PUTC, 7-57
PUTCs,
PUTCN,

7-57
7-59

PUTON, 7-59
PUTD, 7- 57
PUTDX, 7-58
PUTE, 7-

Index-6

58

HP-71 HPIL Module IDS - Volume I

HP-71 HPIL Module IDS - Volume I

PUTEN, 7-59
PUTEX, 7-58
PUIGE, 7-60
PUIGF+, 7-60
PUIGF-, 7-60
PUTX, 7-60
PVERS, 6-16
PURCBE, 6-16
DPZERPG, 6-17

RAM usage, 2-1
DSPSET, 2-5
IS-DSP, 2-2
[S-PRT, 2-3
LOOPST, 2-5
MBOX™, 2-4
ONINTR, 2-1, 2-13
TERCHR, 2-6

RDSTO1, 7-6
READDDC, 3-15
READINTR, 2-13, 2-15, 3-16
READIT, 7-61
READR®, 7-19
READRG, 7-30
READSU, 7-61
RED-LE, 7-6
REDCO0O, 7-6
REDCHR, 7-6
REMOTE, 3-16
Remote commands, 2-11, 2-13
RENAME, 3-17
REQUEST, 2-16, 2-17, 3-17
RESET HPIL, 3-18
RESTOR, 7-41
RESTORE 10, 2-5, 3-18, 4-1, 4-2
RESTRT, 7-41
ROMIYP, 7-37
RS232 interface, 4-4
RUN, 3-19

S

SAVEIT, 7-37
Secondary address, 3-3
SECURE, 3-19
SEEKA, 7-20
SEEKB, 7-20
SEEKRD, 7-21

INDEX

Index-7

INDEX

SEND, 3-20
SENDI+, 7-62
SENDIT, 7-62
Sequence number, 3-3
Service request, 2-11, 2-14, 2-16,
SETLP, 7-63
SETUP, 7-38
SKP-LF, 7-6
SPOLL, 3-20
STANDBY, 2-10, 3-21
START, 7-42
START+, 7-42
START-, 7-42
STATUS, 3-21
Syntax

loop number, 3-2
multiple loops, 3-1

System buffer
bPILAI, 2-7
bPILSV, 2-6
bSTMXQ, 2-7
IS-DSP, 2-2
IS-PRT, 2-3

System buffer usage, 2-6

T

TERCHR, 2-6
Timeout period, 2-10
Timeouts, 2-10
TRANSFORM, 3-22
TRIGGER, 3-22
TSTAT, 7-21
TSTATA, 7-21

u

ULYL, 7-40
UNSECURE, 3-23
Utility routines

data Input/Output, 7-5
device searching, 7-23
display, 7-8
1/0 CPU communication, 7-45
loop addressing routines, 7-39
Rass memory, 7-9
parse and decompile, 7-64

UTLEND, 7-44

Index-8

HP-71 HPIL Module IDS - Volume I

5-6, 5-7, 5-9, 6-15

HP-71 HPIL Module IDS - Volume I

Vv

Verify interval, 2-10
Volume label, 3-3

u

URITE#, 7-22
URITIT, 7-63

YTML, 7-44

INDEX

Index-9

European Headquarters

150, Route du Nant-D'Avril

P.O. Box, CH-1217 Meyrin 2

Geneva-Switzeriand

82401-90023 English

Ky HEWLETT
PACKARD

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

HP-United Kingdom

(Pinewood)

GB-Nine Mile Ride, Wokingham

Berkshire RG11 3LL

Printed in U.S.A. 5/84

	Cover
	Table of Contents
	1. How to Use This Document
	2. Internal Design Notes
	2.1 System RAM usage
	2.1.1 ON INTR address
	2.1.2 DISPLAY IS assignment
	2.1.3 PRINTER IS assignment
	2.1.4 Last mailbox address
	2.1.5 HP-IL loop status
	2.1.6 Display device status
	2.1.7 ENTER terminating character

	2.2 System Buffer usage
	2.2.1 HP-IL save buffer
	2.2.2 ASSIGN IO System Buffer
	2.2.3 HP-IL Statement Execution Buffer

	2.3 Decoding a device specifier
	2.3.1 How file and device specifiers are tokenized
	2.3.2 Reserved device word table

	2.4 HP-IL ROM and Mailbox interface
	2.4.1 How frame timeouts are implemented
	2.4.2 Interpreting data when in remote mode

	2.5 How interrupts are implemented
	2.5.1 Disabling interrupts

	2.6 HP-71 Requesting Service in Device Mode
	2.7 Implementing Multiple Loops
	2.7.1 Status Information Allocation

	2.8 How to find out the capacity of a mass memory device
	2.8.1 When the HP-IL ROM uses extended HP82161A

	3. Extended Command Syntax
	3.1 Loop Number Specifier
	3.2 Syntax Identifier Definitions
	3.3 ASSIGN #
	3.4 CAT
	3.5 CATS
	3.6 CHAIN
	3.7 CLEAR
	3.8 CONTROL OFF
	3.9 CONTROL ON
	3.10 COPY
	3.11 CREATE
	3.12 DEVADDR
	3.13 DEVAID
	3.14 DISPLAY IS
	3.15 ENABLE INTR
	3.16 ENTER
	3.17 INITIALIZE
	3.18 LOCAL
	3.19 LOCAL LOCKOUT
	3.20 OUTPUT
	3.21 PACK
	3.22 PACKDIR
	3.23 PASS CONTROL
	3.24 PRINTER IS
	3.25 PRIVATE
	3.26 PURGE
	3.27 READDOC
	3.28 READINTR
	3.29 REMOTE
	3.30 RENAME
	3.31 REQUEST
	3.32 RESET HPIL
	3.33 RESTORE 10
	3.34 RUN
	3.35 SECURE
	3.36 SEND
	3.37 SPOLL
	3.38 STANDBY
	3.39 STATUS
	3.40 TRANSFORM
	3.41 TRIGGER
	3.42 UNSECURE

	4. Loop Operation and File Transfers
	4.1 How the HP-71 powers up the loop
	4.2 How the loop is addressed
	4.3 How the HP-71 searches for a device by Device ID
	4.4 How the HP-71 searches for a device by Accessory ID
	4.5 How the HP-71 reads a devices status (serial poll)
	4.6 How to move files between computers and the HP-71

	5. I/O Processor Firmware Specification
	5.1 Basic Description
	5.2 I/O Processor Configuration
	5.2.1 HP-IL Capabilities
	5.2.2 Mailbox Description
	5.2.2.1 HP-71 Low Handshake Nibble
	5.2.2.2 HP-71 High Handshake Nibble
	5.2.2.3 I/O CPU Low Handshake Nibble
	5.2.2.4 I/O CPU High Handshake Nibble

	5.3 Power On Sequence
	5.3.1 Powering Up the Loop

	5.4 Service Request on the HP-71 Bus
	5.4.1 Power On Service Request
	5.4.2 Data Available Service Request
	5.4.3 Interrupt Service Request
	5.4.4 Loop Service Request

	5.5 Terminating Data Transfers
	5.6 Frame Timeouts
	5.7 Error Handling
	5.8 Manual and Scope Modes
	5.9 Mailbox Messages From HP-71
	5.9.1 No Parameter Class
	5.9.1.1 Nop
	5.9.1.2 Read Address Table
	5.9.1.3 Request I/O Processor Status
	5.9.1.4 End Of Message
	5.9.1.5 Clear SRA
	5.9.1.6 Set SRQ
	5.9.1.7 Send Error Message
	5.9.1.8 Enter Auto End Mode
	5.9.1.9 Go Into Manual Mode
	5.9.1.10 Go Into Auto Mode
	5.9.1.11 Update System Controller Bit
	5.9.1.12 Reset CURRENT Address
	5.9.1.13 Read CURRENT Address
	5.9.1.14 Increment CURRENT Address
	5.9.1.15 Read My HP-IL Loop Address
	5.9.1.16 Take/Give loop Control

	5.9.2 Frame Class
	5.9.2.1 Send Frame

	5.9.3 Single Nibble Parameter Class
	5.9.3.1 Address/Unaddress me as TL
	5.9.3.2 Power Down Loop

	5.9.4 Address Class
	5.9.4.1 Address P,S as Talker
	5.9.4.2 Address P,S as Listener
	5.9.4.3 Find Nth Device of Type M
	5.9.4.4 Auto Address the Loop

	5.9.5 Conversation Class
	5.9.5.1 Start Data Transfer
	5.9.5.2 Start Status Poll
	5.9.5.3 Start Device ID
	5.9.5.4 Start Accessory ID
	5.9.5.5 Pass Control
	5.9.5.6 Set Frame Timeout
	5.9.5.7 Set frame Count

	5.9.6 Multibyte Parameter Class
	5.9.6.1 Set SOT Response
	5.9.6.2 Set Terminator Mode
	5.9.6.3 Set Terminator Character
	5.9.6.4 Set Number of IDY Timeouts
	5.9.6.5 Set IDY Timeout
	5.9.6.6 Clear Data Buffers
	5.9.6.7 Set IDY SRQ Poll Timeout
	5.9.6.8 Setup Interrupt Mask
	5.9.6.9 Read Interrupt Cause
	5.9.6.10 Read DDC Frame
	5.9.6.11 Update Terminate on SRQ Mode
	5.9.6.12 Power Up the Loop
	5.9.6.13 Enable/Disable IDY Poll

	5.9.7 Diagnostic Class
	5.9.7.1 Read RAM
	5.9.7.2 Write RAM
	5.9.7.3 Self Test

	5.9.8 Data Class

	5.10 Mailbox Messages from the I/O processor
	5.10.1 Frame Class
	5.10.2 Device Address Class
	5.10.3 Status and Error Class
	5.10.3.1 Current I/O Processor Status
	5.10.3.2 NOP
	5.10.3.3 IFC Received
	5.10.3.4 EOT Received
	5.10.3.5 Data Transfer Halted

	5.10.4 Terminating Conditions Met
	5.10.5 Diagnostics Class
	5.10.5.1 Self Test Results
	5.10.5.2 RAM Value

	5.10.6 Data Class

	5.11 I/O Processor as a Device
	5.11.1 HP-IL Frames and I/O Processor8 Response
	5.11.1.1 Universal Command Group Frames
	5.11.1.2 Addressed Command Group Frames
	5.11.1.3 Listener/Talker/Secondary Command Group
	5.11.1.4 READY Frames
	5.11.1.5 IDY Frames
	5.11.1.6 DOE Frames

	5.12 Additional Capabilities
	5.13 HP-IL Capability Subsets
	5.14 Mailbox Messages Opcodes

	6. HP-IL Poll Handlers
	6.1 Overview
	6.1.1 Output and Input of data
	6.1.2 Files on a mass memory device
	6.1.3 Parse and Decompile
	6.1.4 Initialization and addressing the loop

	6.2 pCAT - CAT execution poll handler
	6.3 pCATS - CATS function poll handler
	6.4 pCLDST - Cold start poll handler
	6.5 pCONFG - Configuration poll handler
	6.6 pCOPYx - COPY execution poll handler
	6.7 pCREAT - Create a file in a mass memory device
	6.8 pDEVCp - Parse an HP-IL device specifier
	6.9 pDIDST - Store device specifier information
	6.10 pDSUNK - Deep Sleep Wakeup poll handler
	6.11 pENTER - Enter data from HP-IL
	6.12 pEXCPT - Exception poll handler
	6.13 pFILDC - Decompile an HP-IL device specifier
	6.14 pFINDF - Find a file in an HP-IL device
	6.15 pFPROT - Secure a file or make a file private
	6.16 pFSPCp - Parse a file specifier
	6.17 pFSPCx - Find a file from the file specifier
	6.18 pIMXQT - IMAGE execution poll handler
	6.19 pKYDF - Key definition poll handler
	6.20 pMNLP - Main loop poll handler
	6.21 pPRICL - Print class poll handler
	6.22 pPRTIS - PRINT device poll handler
	6.23 pPUROF - Power-off poll handler
	6.24 pPURGE - Purge a file in a mass memory device
	6.25 pRDCBF - Read a record from a mass memory device
	6.26 pRDNBF - Urite current, read next record
	6.27 pRNAME - Rename a file in a mass memory device
	6.28 pSREQ - Service request poll handler
	6.29 pVER$ - Version code poll handler
	6.30 pURCBF - Write a record to a mass memory device
	6.31 pZERPG - Zero program information poll handler

	7. HP-IL ROM Utility Routines
	7.1 Overview
	7.2 How to call a utility routine
	7.2.1 JUMPER routine

	7.3 Data Input and Output routines
	7.3.1 PRASCI - Character outputting routine
	7.3.2 PREND - Closing part of the PRASCI routine
	7.3.3 REDCHR - Character inputting routines

	7.4 Display routines
	7.4.1 BDISPJ - Character-oriented display routine

	7.5 Mass memory routines
	7.5.1 BLDCAT - Build CAT text from directory entry
	7.5.2 CHKMAS - Check for mass memory type device
	7.5.3 DSPCAT - Display a CAT text string
	7.5.4 ENDIAP - Loop clean up after mass mem action
	7.5.5 FINDEL - Find file on mass storage device
	7.5.6 FORMAT - Format medium in the specified drive
	7.5.7 GDIRST - Locate the start, length of directory
	7.5.8 GEIDIR - Get the Nth entry in a tape directory
	7.5.9 INITFL - Initialize a file
	7.5.10 LSTENTNXTENT - Move to directory entry
	7.5.11 MOVEFL - Move a file between two devices
	7.5.12 NEWFIL - Create a file on mass memory device
	7.5.13 READR# - Read specified record from mass mem
	7.5.14 SEEKA - Seek a record
	7.5.15 SEEKRD - Seek for a record, then read it
	7.5.16 TSTAT - Check the tape drives status
	7.5.17 WRITE# - Write to a specified record

	7.6 Device searching routines
	7.6.1 CHKAIO - Check if a string is an ASSIGN WORD
	7.6.2 CHKASN - Check an HP-IL device assignment
	7.6.3 DEVPAR - Parse a device specifier
	7.6.4 FXQPIL - Get the file name from program memory
	7.6.5 GADDR - Find the address of a device on loop
	7.6.6 GADRRM - Get HP-IL address from program memory
	7.6.7 GADRST - Get address from string on math stack
	7.6.8 GEIDID - Fetch the device ID
	7.6.9 GETDVYW - Get device word off the math stack
	7.6.10 GETID - Get the device ID for a device
	7.6.11 GETLPs - Get loop number, check status
	7.6.12 GETPIL - Extract file name & device ID, acc I
	7.6.13 GHEXBT, GIYPRM - Get hex value from 1 byte
	7.6.14 GIYPE - Get the accessory ID of a device
	7.6.15 GIYPST - Get device type (acc ID) from stack
	7.6.16 PROCDY - Process device word
	7.6.17 PROCLT - Process literal
	7.6.18 PROCST - Process a string device specifier
	7.6.19 ROMIYP - Check if a string is a reserved word
	7.6.20 SAVEIT - Save device descriptor entry
	7.6.21 SETUP - Build a recall string in C[6:0]

	7.7 Loop addressing routines
	7.7.1 CHKSET - Check if this Mailbox has been reset
	7.7.2 LISTEN - Address a device as listener
	7.7.3 MIYL - Address me as talker, one listener
	7.7.4 RESTOR - Reactive all devices
	7.7.5 RESTRT - Restart all HP-IL devices
	7.7.6 START - Set up entry conditions for the loop
	7.7.7 UTLEND - Unaddress talker & listener, Clean up
	7.7.8 YIML - Address a talker, me as listener

	7.8 Communicating with I/O CPU routines
	7.8.1 CHKSTS - Check Mailbox status, error, etc
	7.8.2 DDL,DDT - Send a device dependent command
	7.8.3 ENDMBX - Find an HP-IL Mailbox
	7.8.4 FRAMEE - HP-IL frame encode
	7.8.5 FRAME+, FRAME- - Returns type of HP-IL message
	7.8.6 GET,GEINE - Get a message from Mailbox
	7.8.7 GETD - Get data
	7.8.8 GETDev - Check if the HP-IL module is a device
	7.8.9 GETERR, GEIST - Get Mailbox error/status
	7.8.10 GETHSS - Get 2 handshake nibbles from Mailbox
	7.8.11 GEIMBX - Set DO to the HP-IL Mailbox address
	7.8.12 GETX - Fast data input routine
	7.8.13 GFTYPE - Get frame type from RAM
	7.8.14 GLOOP# - Get loop # from RAM (if one present)
	7.8.15 PRIMSGA - Print message from C-reg
	7.8.16 PUTARL - Put data from A[W] to Mailbox
	7.8.17 PUTC - Put a command (4 nibs) to Mailbox
	7.8.18 PUTD - Put a single data byte to the loop
	7.8.19 PUTDX - Put multiple data bytes to Mailbox
	7.8.20 PUTE - Put long message (6 nibs) to Mailbox
	7.8.21 PUTEN - Send message to Mailbox, ignore error
	7.8.22 PUIGF - Send msg to Mailbox, decode response
	7.8.23 PUTX - Send 3 bytes of data from C[5:0]
	7.8.24 READIT - Read data bytes from the loop
	7.8.25 SENDIT - Send data from B[W]
	7.8.26 SETLP - Setup loop number for FNDMBX routine
	7.8.27 URITIT - Output data to loop from RAM

	7.9 Parse and decompile routines
	7.9.1 DVCSPp - Device spec parse
	7.9.2 FRASPd - Decompile a frame specifier
	7.9.3 FRASPp - Frame spec parse for HP-IL frames
	7.9.4 LOOP#d - Decompile optional loop number
	7.9.5 Loop#p - Parse optional loop specifier
	7.9.6 NAMEp - Parse a name or device word
	7.9.7 PRNISA - PRINTER IS decompile routine
	7.9.8 PRNTSp - PRINTER IS parse routine

	Index

