
(/"0 HEWLETT
PACKARD

HP 82441A

FORTH/Assembler ROM

Owner’s Manual

For the HP-71

Printed in Singapore

(fi/” HEWLETT
PACKARD

HP 82441A

FORTH/Assembler ROM

Owner’s Manual

For the HP-71

April 1984

82441-90001

Introducing the FORTH/Assembler ROM

The FORTH/Assembler ROM provides an extended software development environment for the HP-71. It

contains the following major features:

e A FORTH operating system. This system allows you to write application programs for the HP-71 in

FORTH, with a significant advantage in speed over programs written in BASIC. The FORTH operat-

ing system coexists with the native HP-71 BASIC operating system, so you can switch between the

BASIC and FORTH environments without program or data loss and without having to reconfigure

the HP-71. Programs written in either language can execute routines written in the other language.

HP-71 FORTH includes string and floating-point operations.

e An assembler. This assembler, written in FORTH, provides nearly the same command set as the

assembler used to develop the HP-71 operating system. You can use it to create HP-71 binary files,

LEX files to extend the BASIC language, or FORTH primitives.

e A text editor. The editor enables you to create and edit text files, which can be used as source files for

BASIC, FORTH, or assembly language programs, or for many purposes unrelated to programming.

° Remote keyboard capability. By using the BASIC keyword && 1 1% (along with the keyword

LAY IS= provided in the HP 82401A HP-IL Interface) you can use a terminal as an external

keyboard and dlsplay

Contents

How To Use This Manual7

Section 1: Installing and Removing the Module 9

Section 2: The HP-71 FORTH System11

Introduction11

References11

Using FORTH on the HP-7111
Advanced FORTH and Assembly Language Programming 13

Unique Aspects of HP-71 FORTH13

Twenty-Bit FORTH13
Compilation from Files14

FORTH/BASIC Interaction16
HP-IL Operations17

General Purpose Buffers18

Foreign Language Error Messages 19

FORTH EXensions19
Floating-Point Operations19
String Operations22
Vocabularies23
Error Trapping24

FORTH Memory Organization 25
HP-71 Memory25
The FORTHRAM File26
The FORTH Dictionary31

The HP-71 File System32
File Types ..32
Structure of the File Chain34

Section 3: The Editor 37
Overview of the Editor37
Editor Commands39
The Text (T) and Insert (I) Commands ..___.... 39
The List (L) and Print (F) Commands 40
The Copy () and Move (M) Commands 40
The Delete (I) Command 41
The Search (=) and Replace (F) Commands 42

Editor Files44

Section 4: The Assembler 45
Using the Assembler45
Running the Assembler45
The Listing File46
Assembler Source Code46
Line Format46
Comments47
Labels...47
Expressions...47

Contents 5

Overview of the CPU48

Arithmetic Registers48

Control Registers50

Loading Data from Memory51

Types of Assembly51

FORTH Primitives51

LEX Files...53

Binary Files54

Assembler MNemONICS55

Branching MnemonicCs55

Test MNEMONICS56

P Register MNemMONICS57

Status MNemMONICS58

System-Control and Keyscan MnemoniCs 58

Scratch Register MNEMONICS59

Memory-Access MNeMONICS59

Load-Constants MNemMONICS60

Shift MNemoONICS60

Logical MNemMONICS60

Arithmetic MNeMONICS61

NO-Op MNEMONICS61

PSeUdO-0PS . ..62

Control PSeudo-0pS62

Constant-Generating Pseudo-0ps62

Macro-Expansion Pseudo-ops for FORTH Words 62

Macro-Expansion Pseudo-ops for LEX Files 63

Macro-Expansion Pseudo-ops for BIN Files 64

Appendix A: Care, Warranty, and Service Information 65

Care of the Module65

Limited One-Year Warranty65

SBIVICE.67

When You Need Help70

Appendix B: Error Messages71

FORTH MeESSAQeso71

Assembler MeSSages74

Editor Messages77

Appendix C: BASIC Keywords79

Appendix D: FORTH Words99

NOtatioN100

BrrOrS.100

FORTH GIOSSAry101

Subject Index147

BASIC Keywords by Category151

FORTH Words by CategoryInside Back Cover

How To Use This Manual

This manual assumes that you have some experience with FORTH or with assembly language. It docu-

ments all operations in the FORTH/Assembler ROM in a reference-oriented manner—you can read the

sections that interest you without reading the entire manual.

e If you plan to use FORTH without writing new primitives, read section 2, “The HP-71 FORTH Sys-

tem” and refer to appendix D, “FORTH Words.”

e If you plan to create new FORTH primitives, you will also need to read section 4, “The Assembler.”

e For an index to FORTH words grouped by function, refer to the inside back cover.

e If you plan to create BIN or LEX files, read section 4, “The Assembler.”

e Because both the FORTH system and the assembler use text files for input, read section 3, “The

Editor,” to learn how to create and edit text files.

e For reference information about any BASIC keyword in the FORTH/Assembler ROM—whether

involving FORTH,the editor, or the assembler—refer to appendix C, “BASIC Keywords.”

Section 1

Installing and Removing the Module

You can plug the module into any of the four ports on the front edge of the HP-71.

CAUTIONS

e Be sure to turn off the HP-71 (press [f][ON]) before you install or remove any module.

e Whenever you remove one module to make a port available for another module, be sure to turn the

HP-71 on and off while the port is empty before you install the new module.

e Do not place fingers, tools, or other foreign objects into any port. Such actions can cause minor

electrical shocks, interfere with pacemaker devices worn by some persons, and damage port contacts

and internal circuitry.
To insert the module, hold the HP-71 with the keyboard facing up

and the module with the label facing up, and then push the module

into the port until it snaps into place. Be sure to observe the

precautions described above.

To remove the module, use your fingernails to grasp the module by the lip on the bottom of its front edge,

and then pull the module straight out of the port. Install a blank module in the port to protect its

contacts.

Section 2

The HP-71 FORTH System

Introduction

The FORTH/Assembler ROM contains a FORTH system tailored to the HP-71. The advantages of

FORTH over BASIC are speed and complete access to the machine. Programs can be written in FORTH,

in BASIC, or in both, making use of the best features of each language/system.

FORTH secondaries (words constructed from existing FORTH words) can be compiled from key-

board input or from text files created by the editor. The editor is discussed in section 3. In addition,

FORTH primitives (words written in machine code) can be created by the assembler, which is discussed in

section 4.

The word set of the HP-71 FORTH kernel is similar to that defined in the FORTH-83 Standard. This

section describes their differences in “Unique Aspects of HP-71 FORTH,” which covers enhancements

and methods of implementation that are machine-related, and in “FORTH Extentions,” which covers

enhancements not directly tied to the HP-71. For the complete definition of any FORTH word, standard

or nonstandard, refer to appendix D.

References

This section doesn’t contain the complete FORTH-83 Standard or tutorial information about FORTH;

you can find such material in the following books. You will need to keep in mind the unique aspects of

HP-71 FORTH as you read these books.

e Brodie, Leo. Starting FORTH. Englewood Cliffs, N.J.: Prentice-Hall, 1981. An effective and entertain-

ing introduction to FORTH.

e FORTH-83 Standard. Mountain View, Ca.: FORTH Standards Team, 1983.

e Haydon, Glen B. All About FORTH: An Annotated FORTH Glossary. Second edition. Mountain View,

Ca.: Mourtain View Press, 1983. Some definitions in this manual are borrowed from Dr. Haydon’s

book.

Using FORTH on the HP-71

Entering and Exiting FORTH. To enter the FORTH environment from the standard HP-71 BASIC

environment, type the BASIC keyword FiiF TH and press LINE]. The computer then displays the

FORTH sign-on message HF~-71 FIETH and the version. To exit the FORTH environment, type the

FORTH word E*%E and press LINE].

11

12 Section 2: The HP-71 FORTH System

The RAM-based portion of the FORTH system, including user-added dictionary words, is contained in an

HP-71 file named FORTHRAM. When you exit FORTH, either by executing EYE or by pressing the

key, the contents of the FORTHRAM file are preserved. Thus the FORTH environment will be in

the same state when you reenter as when you exited. If you turn off the HP-71 from the FORTH environ-

ment, it will return directly to the FORTH environment when you turn it on. If you purge the

FORTHRAM file from the BASIC environment, a new FORTHRAM file will be created when you next

execute FI1ETH.

User Prompts. If you press while the HF -7 1 FIFETH prompt is displayed, FORTH will dis-

play 0k« & . The 0Findicates that FORTH is ready to accept input, and the & indicates how many

items are on the data stack. If you then type 1 = = [ENDLINE], the FORTH system will display

Ok« 3 r You can suppress the [kl message by storing a non-zero value into the user variable

OKFLG.

Line-editing Keys. All of the HP-71 line-editing keys are functional while in the FORTH environment.

Pressing while entering a line will clear the display and leave only the blinking cursor.

Key Redefinitions. The FORTH system duplicates the BASIC method of handling redefined keys. You

can switch in and out of user mode while in FORTH, but you must be in the BASIC environment (or use

EAZICH) to redefine keys.

The Command Stack. The HP-71 command stack is available in FORTH. It operates just as in BASIC,

except that in FORTH you can enter the Command Stack just by pressing any of the up- or down-arrow

keys—you don’t need to press (9](ENDLINE] first.

Exceptions and the Key. Because the FORTH system can run a program for an indefinite time,

it must occasionally check whether a system exception has occurred. FORTH checks for exceptions when

it executes : (semicolon) in a secondary and before it branches in a loop structure. If an exception has

occured, FORTH issues the exception poll. An exception can be a service request from the HP-71’s in-

ternal timers or from other devices, or can result from pressing the key.

Pressing stops the execution of any FORTH word (except HP-IL words, which require pressing

twice). Once the FORTH environment recognizes that has been pressed, it executes the

system equivalent of HEFET to reset the data and return stacks and to restart the FORTH outer loop

(the FORTH system user interface).

Errors. If an error occurs in the FORTH system, all files are closed and an error message is displayed.

FORTH error messages sound a tone and preface all errors with FTH EFFE:. FORTH error numbers and

messages are available through the BASIC keywords EFFH and ERRME,

If an error occurs in a BASIC O/S subroutine called by the FORTH system, the error message appears as

EFFE: rather than FTH ERF:.

Section 2: The HP-71 FORTH System 13

Advanced FORTH and Assembly Language Programming

This manual contains sufficient information for you to write new FORTH primitives and secondaries.

However, if you wish to write FORTH primitives that interact with the native HP-71 operating system, or

write HP-71 LEX or binary files, you will need to refer to the HP-71 Software Internal Design Specifica-

tion (IDS). It comprises three volumes with the following part numbers:

Volume Description Part Number

I Detailed Design Description 00071-90068

I Module Interface Documentation 00071-90069

I Source Code Listing 00071-90070

Other detailed documents that you may find useful are:

Description Part Number

HP-71 Hardware Design Specification 00071-90071

HP-71 HP-IL Detailed Design Description 82401-90023

Unique Aspects of HP-71 FORTH

Twenty-Bit FORTH

Most FORTH systems are implemented on byte-oriented machines with 16-bit addresses. The HP-71, in

contrast, is a nibble-oriented machine with 20-bit addresses. To allow access to the entire 1M-nibble ad-

dress space and to achieve maximum speed, FORTH on the HP-71 is a 20-bit implementation. That is,

the data and return stacks are 20 bits wide, and the addresses on those stacks are 20-bit absolute ad-

dresses. All quantities on the stacks are 20-bit quantities, regardless of whether a one-byte or 20-bit

operation is performed. Unused high-order nibbles are zero or are expected to be zero.

HP-71 FORTH conforms to the FORTH-83 Standard in intent but, because of the nature of the HP-71

CPU, not exactly in effect. The funtionality of the Standard required word set, plus selected words from

the extension word sets, are provided in HP-71 FORTH. In most cases, the HP-71 uses the same word

names as the Standard. You can determine the behavior of particular HP-71 words compared with their

Standard counterparts according to the following general guidelines.

14 Section 2: The HP-71 FORTH System

e For operations that deal with bytes (such as i@, CHMIWVE, and FILL), the Standard names are re-

tained for HP-71 FORTH words. Such words will produce the same result as the corresponding Stan-

dard words. In several cases analogous words that deal with nibble quantities are also provided; they

are listed below in “Nibble and Byte Words.”

e For operations that deal with cells (such as +, i, and COHZTHMT), the Standard names are retained

for HP-71 FORTH words. Such words will produce the same result as the corresponding Standard

words, except that the quantities manipulated by the words are 20 bits long instead of 16.

e For operations that don’t translate well to the HP-71 (with its continuous memory and multiple-file

system), the Standard names are replaced for HP-71 FORTH words. For example, L. iF [(load from a

numbered screen) is replaced by LOALDF (load from a named text file), and EXFECT (read up to a

specified number of characters) is replaced by E=FECZTS (read up to 96 characters).

The table below lists those words that HP-71 FORTH adds to the Standard word set to perform nibble

operations, together with their byte-oriented counterparts.

Nibble and Byte Words

Nibble Word Action Byte Word Action

HALLOT Allot n nibbles. ALLOT Allot n bytes.

HFILL Fill n nibbles. FILL Fill n bytes.

B Fetch one nibble. i Fetch one byte.

B ! Store one nibble. o Store one byte.

OE Move n nibbles. Move n bytes.

ROV E » Move up n nibbles. Move up n bytes.

ot Increment address by 5 =+ Increment address by

(one cell). 2 (one byte).

o Decrement address by = Decrement address by

5 (one cell). 2 (one byte).

Compilation from Files

FORTH compiles new words into the dictionary from “screens” as well as from the keyboard. In tra-

ditional versions of FORTH, a screen is a 1K-byte block on a mass storage device (16 lines of 64 bytes

each).

Screens. In HP-71 FORTH, a “screen” is a standard HP-71 text file. Each text file consists of a series of

text strings of variable length, with each text string preceded by a two-byte length field. The file is ter-

minated by a two-byte marker, FFFF. The editor, described in section 3, can create source screens for

FORTH. The name of a screen must be a legal HP-71 file name. The maximum size line that FORTH will

process is 96 bytes, which corresponds to the logical display size.

LOADF. The Standard word LA is replaced in HP-71 FORTH by LiZALF. The inputs to LOADF are

two 20-bit numbers: the length of the character string specifying the file to be loaded and the address of

this string. LOADF calls HP-71 routines to open, read, and close the file. These routines, in turn, inter-

face to the HP-IL module if it is present, so that screens can reside on HP-IL mass storage devices as well

as in HP-71 memory.

Section 2: The HP-71 FORTH System 15

FIB Entries. Executing L HIF opens the screen file and creates a file information block (FIB) entry in a

system buffer called the FIB general purpose buffer. The FIB entry identifies the file and indicates

whether the file is in RAM or on mass storage. (If the file is on mass storage, the FIB entry is linked to a

system buffer called an I/O buffer that identifies the file.) A file-information-block number (FIB#) identify-

ing the FIB entry is stored into the FORTH user variable Z_FEF I E(screen FIB#) to specify the active

file.

Mass Memory Buffers. When a file is loaded, its FIB# and the first line of the file are read into a mass

memory buffer. There are three mass memory buffers, used in rotation. The contents of the buffer are

interpreted until the null at the end of the line (placed there by the FORTH system) is reached. The

FORTH word iiE[then determines whether this is the end of the active file and, if not, reads the next

line from the file into the same mass memory buffer. Each mass memory buffer has the following format.

Format of a FORTH Mass Memory Buffer

FIB# Line# Byte count Data 2 Nulls

1 byte 5 nibbles 2 bytes Up to 96 bytes 2 bytes

L.OFDF can save the information necessary to return to the file it is currently interpreting, so L IFDF

commands can be nested.

Mass Memory. A user can LIHF a file from cassette or disk directly into the FORTH dictionary

without first storing the file in RAM. The file will be interpreted a line at a time by reading the line into

a FORTH mass memory buffer. However, a file stored on a magnetic card must be read into RAM before

it can be loaded into the FORTH dictionary or edited.

File Words

e | 1F[IF accepts input from a specified file rather than the keyboard. Words are executed and defi-

nitions are compiled into the user dictionary. The file may exist in RAM or on mass storage.

L. 10K reads a specified line of the active file into a mass memory buffer and returns the address of

the first data byte in the mass memory buffer.

e ULIZEF closes a specified file.

e EIF returns a true flag if the end of the active file has been reached, a false flag if not.

e +[1LIF returns the address of the next available buffer.

e IFEHMF opens a FIB entry for a specified file.

e UL IIZEALL closes all open files.

 e FIRET is a user variable containing the address of the first mass memory buffer in memory.

e .IMIT is a user variable containing the address of the first byte beyond the mass-memory-buffer

area.

e FEEL is a user variable containing the address of the mass memory buffer last used.

e i%E is a user variable containing the address of the mass memory buffer to use next.

16 Section 2: The HP-71 FORTH System

e SCRFIE is a user variable containing the either the FIB# of the active file being interpreted by

LOADF or else 0.

e ELEis a user variable containing either the line number of the file being interpreted by LOADF or

else 0 (input from keyboard).

e | IME# is a user variable containing the line number being loaded from the file specified by SCRFIB.

FORTH/BASIC Interaction

The FORTH/Assembler ROM enables you to temporarily enter the FORTH environment from within the

BASIC environment, and vice versa, to take advantage of features of one system while operating from the

other. If you press while in a temporary environment, you will be returned to the original

environment.

BASIC to FORTH. There are four programmable BASIC keywords that access the FORTH

environment.

e FIIETH: is a BASIC statement, returning no result.

e FIURTHF is a BASIC numeric function that returns the contents of the X-register in the FORTH

floating-point stack.

e FIIETHI is a BASIC numeric function that returns the number on the top of the FORTH data stack,

dropping that value from the stack.

e FFETH# is a BASIC string function that returns the string specified by the address and character

count on the top of the FORTH data stack, dropping those two values from the stack.

FORTHF, FORTHI, and FORETH# read data from the FORTH environment into BASIC variables with-

out executing any portion of the FORTH system (although F1ETHI and FIETH# alter the data-stack

pointer). FOFETH!, however, enables you to transfer BASIC data to the FORTH environment and to

execute any FORTH words before automatically returning to BASIC.

To execute FORTH operations from the BASIC environment, you use the keyword F ik THfollowed by

a command string plus up to 14 additional parameters. The optional parameters can be any combination

of strings or numeric quantities. The numeric quantities will be pushed onto the FORTH data stack as

single-length numbers; strings will be specified on the stack by their addresses and character counts.

FOFTH: first pushes the optional parameters onto the data stack and then executes the command string.

The command string can contain any sequence of FORTH words and parameters, just like input you

would enter from the keyboard.

Examples.

H¥F FORETHE®

o FORTHI

T = THH CFORETHF

FORTH= "OREOF SWAF TYFE DEFTH ", 18,28, =52, "H 1T oo
t

For additional details, refer to appendix C, “BASIC Keywords.”

FORTH to BASIC. There are four FORTH words that pass a string (specified on the data stack) to the

BASIC system for execution. The string contains BASIC keywords and parameters. The FORTH words

call the appropriate BASIC routines to parse and execute the string, as if it were typed to BASIC from the

keyboard.

Section 2: The HP-71 FORTH System 17

e Eri% 10+ passes a string containing BASIC statements to the BASIC system for parsing and execu-

tion. It returns no value to the FORTH environment. EA = I can alter the value of BASIC vari-

ables. If the string begins with a line number, it will be added to the current BASIC edit file. The

string can also call BASIC programs. When the BASIC interpreter finishes, it issues a poll that allows

the FORTH system to regain control. If an error occurs, the BASIC system reports the error to the

user, and FORTH runs the system equivalent of the A#EFR T word.

e BFHZICF passes a string containing a numeric expression to the BASIC system for evaluation. It

returns the value of the numeric expression to the X-register in the FORTH floating-point stack.

e BFZ I passes a string containing a numeric expression to the BASIC system for evaluation. It

returns the value of the numeric expression to the FORTH data stack.

e BIFZ I¥ passes a string containing a string expression to the BASIC system for evaluation. It re-

turns the resulting string to the PAD area and the address and character count to the data stack. The

resulting string is truncated to 255 characters if it exceeds this length.

Examples.

ERSICH

" BERSICI

n $FI1" EASICF
! EAsSTCE

* EFIY OBASIC

i FOHLEY BHSIOH

SICF

"OBRASICI

" BRSICF

The FORTH/BASIC interface is not reentrant. That is, operations in one environment that are called

from the other environment can’t exercise the original environment, except to return data. In particular:

e The string passed to the BASIC environment by £~ %I can’t contain the keyword F1FETH:. How-

ever, FIUETH#, FORTHI, FORETHF are allowed.

e The FORTH command string that is the first argument of F ik THcan’t contain the FORTH word

EASICH. However, ERSICE, BEASICI, and EASZICF are allowed.

Applications that respect these two rules will work as long as operations in one environment respect the

integrity of the other. For example, don’t F1E random data into the FORTHRAM file from BASIC or

write over the BASIC environment pointers from FORTH.

HP-IL Operations

To enable controller applications to take advantage of FORTH’s speed, the FORTH kernel includes

FORTH equivalents of the BASIC statements EHTEFRand TUTFLUT. Additional HP-IL functionality in

the FORTH environment can be gained by using the FORTH-to-BASIC words. For example,

OSTHTIES® BERZICI returns to the integer data stack a value describing the loop status.

The FORTH word EHTEF instructs the HP 82401A HP-IL Interface to receive data from an HP-IL

device. The HP-IL module puts the bytes received into a temporary location (the HP-71 math stack). The

FORTH system then moves the bytes into an address specified by the user when executing ENTER. The

byte count and the address of the data are always returned to the user.

18 Section 2: The HP-71 FORTH System

If BASIC system flag —23 is set, EHTEF terminates when it receives an End of Transmission message.

Otherwise, EHTEF continues to request data until its end condition is satisfied. The end condition can be

either the reception of a specified number of bytes or of a particular byte value.

The FORTH word CLUTFUT instructs the HP 82401A HP-IL Interface to send data to an HP-IL device.

The user supplies a byte count and the address of the data to be output.

Two FORTH user variables, FEIMARE"Yand SECOHOAEY, specify the intended device for OLITFLUT and

EMTEFR. Default contents of the variables are 1 for FEIMAEY and 0 for SECOHIAREY. The user must

ensure that these variables are properly set up before executing EHTER or DLUTFLUT.

General Purpose Buffers

Large applications may require blocks of temporary storage that are not a part of the FORTH dictionary

space. The HP-71 BASIC O/S provides such temporary storage in the form of general purpose buffers. A

maximum of 512 buffers can each contain a maximum of 4095 nibbles, provided that there is enough

RAM present to allocate to the buffer. The FORTH/Assembler ROM provides five words to make, find,

expand, contract and destory these buffers.

General purpose buffers are maintained at the end of the file chain. The last general purpose buffer is

followed by two zero bytes, signifying the end of the general purpose buffer chain. A general purpose

buffer has a seven-nibble header field followed by the data space.

Update Buffer ID Data length Data

1 nibble 3 nibbles 3 nibbles Up to 4095 nibbles

The update nibble is used by the operating system. Refer to the HP-71 Software IDS for a description.

Temporary buffers are allocated buffer ID’s in the range of EO0 to FFF. Because memory contents can

move, shifting the position of the buffer, you must use the buffer ID to find the current location of the

buffer each time you use it.

General purpose buffers are normally purged by the operating system at coldstart, power on, and during

execution of FREE FORT and CLAIM FORFET. However, you can mark one buffer to be retained even

during these operations by storing its buffer ID into the FORTH user variable VARID. (The assembler

uses this variable to save a buffer.)

The following FORTH words deal with general purpose buffers.

e MAKEEF creates a general purpose buffer of a specified size.

e FIMDEF finds the current address of a specified general purpose buffer.

EILLEF deletes a specified general purpose buffer.

e EFEF expands a specified general purpose buffer by a specified number of nibbles.

e CIIHEF contracts a specified general purpose buffer by a specified number of nibbles.

Section 2: The HP-71 FORTH System 19

Foreign Language Error Messages

FORTH allows a LEX file to substitute alternative error messages (such as foreign language messages) for

its own messages. When a FORTH error occurs, the FORTH system puts together an error number with

its LEX ID (47;() and calls the BASIC O/S warning routine. The warning routine allows insertions into

the error message. For instance, when FORTH cannot find a word typed in by the user, it gives the

message: FTH EFEF: ®:d not recoanized. A foreign language LEX file can trap the warning

poll and, if the LEX ID of the message is that of the FORTH/Assembler ROM,can substitute its own ID.

This causes the message presented to the user to come from the foreign language LEX file rather than

from the FORTH/Assembler ROM. Refer to the IDS for more information.

FORTH Extensions

Floating-Point Operations

The HP-71 FORTH system includes an HP-RPN-style floating-point stack (X-, Y-, Z-, T-, and LAST X

registers). There are FORTH words to manipulate the stack and to use the HP-71 math routines for

floating-point operations. There are also FORTH words to create floating-point variables and constants,

to fetch and store floating-point numbers, and to display floating-point numbers.

FORTH stores floating-point numbers in the same format as the BASIC system. Each register contains 16

nibbles, as shown below.

<« Greater addresses =

15 14 3 2 0

S Mantissa Exponent

A
Implied decimal point

Sign. The sign nibble (labeled “S” above) contains 0 for a positive number and 9 for a negative number.

Mantissa. The 12-digit mantissa has an implied decimal point after the most significant digit. The man-

tissa is not necessarily normalized—that is, it can contain leading zeros to effectively extend the range of

the exponent. This field may contain non-numeric data when the register contains an Inf or NaN.

Exponent. The three-digit exponent E is expressed in tens complement, —499 < E < 499, with the

most significant digit in nibble 2. The exponent field is also used to indicate an Inf or NaN: F00 indicates

Inf (which may be positive or negative), FO1 indicates a quiet NaN, and F02 indicates a signaling NaN.

20 Section 2: The HP-71 FORTH System

The following diagram shows how the number —8.23601 E—312 is stored in a register.

15 14 3 2 0

918 2 3 6 0 1 0 0O OO O O)| 6 8 8

For more information about the formats for floating-point numbers, refer to the HP-71 IDS.

A floating-point number is identified in HP-71 FORTH input by the presence of a decimal point. When

IMTERFRET doesn’t identify a character sequence in the input stream as a FORTH word, HUMEEFR

checks the sequence for a decimal point. If there is no decimal point, HLMEEFEtreats it as a potential

single- or double-length number. (Many FORTH systems identify double-length numbers by the presence

of ., ., :, -, or a non-leading —. HP-71 FORTH wuses only ., :, and .- to identify double-length

numbers.)

If the sequence contains a decimal point, the entire sequence is passed to the BASIC O/S routine

corresponding to the keyword ''HL for evaluation. If the sequence can be evaluated, the result is pushed

onto the floating-point stack. “Can be evaluated” means that the character sequence is any valid BASIC

numeric expression, which may include literal numbers and BASIC numeric variables. For example, the

sequence 18#=ZIHCZE,. » entered in the FORTH environment will return the value 5 to the floating-

point X-register (assuming that the current HP-71 angular mode is degrees). Similarly, 1 . #T 1 will return

the current value of the BASIC variable T1 to the X-register.

A side effect of the automatic floating-point expression evaluation is that attempted execution or compila-

tion of unrecognized words containing decimal points will result in the BASIC message

ERFE:0ata Tupe. For example, entering an undefined word % ZHEL causes the FORTH message

FTH ERE:#YZAEC not recognized, but entering the =42 . AET will cause the BASIC message

ERFE:Oata Tupe because of the decimal point.

Floating-point trigonometric functions use the current HP-71 angular mode. FORTH words are provided

to switch the mode between degrees and radians. If the mode is set in FORTH, then subsequent BASIC

operations will use that mode, and vice versa. Similarly, the floating-point display mode is common to

FORTH and BASIC. Floating-point numbers are converted for output (F ., F=TF#) in decimal according

to the current display mode, which can be set from FORTH or BASIC.

The names of several floating-point operations are prefaced with ”F” to distinguish them from operations

with similar names. In the following description, x is the contents of the X-register, y is the contents of

the Y-register, and so on. All floating-point arithmetic operations return the result to the X-register.

Floating-point Words

e [+ returns y + «x.

e [~ returns y — «x.

e ¥ returns y X «x.

e .- returns y =+ «x.

Section 2: The HP-71 FORTH System 21

w5 returns x2.

e 1™ returns 10%.

e = Ireturns the sine of x.

e1% returns the cosine of x.

e THHIreturns the tangent of x.

e [returns e*

e | -returns the reciprocal of x.

e ZIIET returns the square root of x.

e Y returns y*.

e L zT returns log;, of x.

e |returns the natural log of x.

e HTHHM returns the arc tangent of x.

e H=TH returns the arc sine of x

1%z returns the arc cosine of x.

e (1M rolls down the stack (“down” in the HP-RPN sense).

e FLIF rolls up the stack (“up” in the HP-RPN sense).

e' swaps x and y.

e i, v, Z, T, and L return the address of the corresponding floating-point register.

e LHZTH pushes the contents of the LAST X register onto the floating-point stack.

e FEHTEFRpushes the contents of the X-register onto the floating-point stack.

° - fetches a floating-point number from the address on top of the data stack and pushes it onto the
fioatlng-point stack.

e = T1! stores x into the address on top of the data stack.

e . displays x without altering the floating-point stack.

o FiHEIHELE creates a floating-point variable in the FORTH dictionary.

o FLIUIMZTHMT creates a floating-point constant in the FORTH dictionary.

o MmAT, WiYT, MAVT, M=YT, M#YT, ¥o=v7 and #>=%7 perform the specified test and, if true,
push a true flag (—1) onto data stack; or if false, pusha false flag (0) onto data stack.

e IEREET sets the active angular mode to degrees.

e RADTHME sets the active angular mode to radians.

eD, FIH EHMG, and S1 set the display format.

22 Section 2: The HP-71 FORTH System

String Operations

HP-71 FORTH includes words to create string constants, string variables, and string arrays; to compare

strings; to manipulate portions of strings (substrings); and to match string patterns. A string is stored in

memory in the following format.

Format of a String in Memory

Maximum Current Character string

length length (left-justified)

1 byte 1 byte Maximum-length bytes

A string in memory is usually represented on the stack by a pair of values: an address and a character

count (count on top). The address is the location of the first character of the string in memory, and the

character count is the current length. This is the format expected by the standard word 7% FE.

Occasionally a “counted string” in memory is represented on the stack simply by an address. The address

is the location of the string’s length byte, which is followed in memory by the string’s characters. This is

the format expected by the standard word HUMEEF.

String constants are created by the word ", which puts the maximum-length byte, the current-length byte,

and the string in the pad (system scratch space). String constants are thus very temporary—don’t type in

two string constants followed by a comparison operator, because the second will have been created on top

of the first. String constants are used mainly to set the values of string variables, but you can also use

them with other functions as long as you notice when the pad is being overwritten.

String variables are dictionary entries much like numeric variables. At the PFA are the maximum-length

and current-length bytes followed by the string. The code field contains the address of code that returns

to the stack the address of the first character (PFA + 4) and the current length.

String variable arrays are similar to single variables, but the first two bytes at the PFA indicate the maxi-

mum length of each element and the number of elements in the array. Next come the strings, each in the

format described above: maximum length, current length, string. The nth element is accessed by typing

n array name; the CFA points to code that returns the address and count of this element, which can be

manipulated just like a regular string variable or constant.

String Words

e ' creates a temporary string.

e H=returns the ASCII code for the first character in a string.

e LHF# returns a temporary string of length 1 for a specified ASCII code.

EHDO# creates a temporary substring from the last part of a string.

e FZTK# converts the number in the X-register to a string.

Section 2: The HP-71 FORTH System 23

o LEFTH¥ creates a temporary substring from the first part of a string.

o [1F <EH returns the maximum allocated length of a string.

e HIIL L # creates a temporary string of zero length.

e 1% returns the position within a string of a substring.

o I ZHT# creates a temporary substring of specified length from the last part of a string.

e %= returns a true flag if two strings are equal, a false flag if not.

e I < returns a true flag if string; < string,, a false flag if not.

e = ! stores string; into strings.

e % <% adds a copy of one string to the end of another string.

e =i adds a copy of one string to the beginning of another string.

e LIMIWE stores a string at a specified address.

e ZTE¥ converts a double number into a string.

e TR IMG creates a string variable.

o LTHIMEG-HAREFEHRY creates a string-array variable.

e ZlIE ¥ creates a temporary substring from the middle part of a string.

Vocabularies

The HP-71 FORTH vocabulary structure is a tree-like structure. Every vocabulary contains the word

FIRETH, which sets the FORTH vocabulary as the CURRENT vocabulary (to which subsequent new

words will be added). This is because FIF: TH is the first word in the FORTH vocabulary, and all vocabu-

laries eventually chain back to the FORTH vocabulary. The following example creates a vocabulary called

NEW.

WOCHBULARY HEWM

HEW DEFIHITIONS

In the first line, WICHELILARE"Ycreates a new vocabulary called NEW. This entry, NEW, is entered into

the current vocabulary, which is the FORTH vocabulary. Execution of HEL in the second line makes

NEW the CONTEXT vocabulary (in which searches for words begin). DEFIHITIHE sets the CUR-

RENT vocabulary to be the same as the CONTEXT vocabulary. To continue the example:

LR

WOCHBEULAREY HEWEERE

HEWER DEFIMITIOM:

WOED

24 Section 2: The HP-71 FORTH System

Now three vocabularies exist: FORTH, NEW, and NEWER. Suppose that iD= is added to the NEW

vocabulary, and HIF[4 is added to the FORTH vocabulary. The diagram below shows the result.

FORTH

V:NEW » WORD1

WORD4 V:NEWER » WORD2

WORD3

oIf either NEW or NEWER is the CONTEXT vocabulary, the word search won’t find HiE14 in the

FORTH vocabulary. If NEWER is the CONTEXT vocabulary, the word search won’t find HZEDE in

NEW, but it will find HFELO1. In terms of the diagram, the word search proceeds in vocabularies other

than the CONTEXT vocabulary by moving leftward and upward, never rightward or downward.

It is important to realize that, while FZETH can be reached from any vocabulary, the converse is not

always true. HEIl! can be found when FORTH, NEW, or NEWER is the CONTEXT vocabulary, but

HEMEFRcan be found only when NEW or NEWER is the CONTEXT vocabulary.

Whenever an error occurs, FORTH becomes both the CONTEXT and CURRENT vocabulary.

Error Trapping

When an error occurs during execution of a FORTH word, a system routine equivalent to HECRET or

HEORET" is executed. Normally, these routines will reset the data and return stacks and return to the

outer interpreter loop for new input. However, HP-71 FORTH provides an error-trapping facility that can

allow FORTH execution to continue after an error.

The user variable ONERR contains the CFA of a word to execute when an error occurs. The system abort

routines check the contents of ONERR; if ONERR contains zero, the routines will exit normally through

21T T, If the value of ONERR is non-zero, execution will be transferred to the address contained in

ONERR. The stacks are not reset, so the error routine has a chance to recover some or all of the state of

the systerm at the time of the error. (The words AECIRET and REZIRET" don’t respect the setting of

ONERR.)

Section 2: The HP-71 FORTH System 25

FORTH Memory Organization

HP-71 Memory

The diagram below shows a map of the HP-71 memory with the FORTH/Assembler ROM installed.

S SoFt—ConFigured

| | Internal & Plug—in

RAM

00000 4fi]LOW

j
i

i System ROM !

| |
ZDODG; ~ ——

i Memory Mapped I1/0 |

; and Display RAM ‘

PFA00 F—————— =—
| . . |
| Operating System RAM | Hard—Conf i gurad RAM

E Configuration Buffer !

ee|

f FORTHRAM File |
30000 ¢ - o ;L_——_

‘

'

|
|

|

|
38000] HP-71B Intarnal RAM End

IRAM & Plug—in ROM

ECO0F--==== === === —— = — — — —

Hard—ConFigured FORTH ROM g File Boundaries L

FDODO k—_fl_—_—_——--——_————‘_——-—_—_} PhySiCOI BOU!’]dOf“iQS

Reserved for Debugger

FFCOD-~= = = — — — — — — — — — |—

ConFigurotion Reserve Area

FF FFF ee] H I GH

26 Section 2: The HP-71 FORTH System

The FORTH/Assembler ROM uses addresses in three regions:

e Hard-configured ROM, from E0000 to EFFFF. The hard-configured ROM contains the FORTH

operating system, the built-in FORTH dictionary, and the assembler.

e Soft-configured ROM. This is a 16K-byte module that contains the editor, all BASIC keywords in the

FORTH/Assembler ROM, and the initialization routines for the FORTH environment.

e The FORTHRAM file. This file is stored in user memory and contains the changeable parts of the

FORTH system—user variables, user dictionary, and so on. When the FORTH system is active,

FORTHRAM will always be the first file in user memory.

The FORTHRAM File

When FOETH or FORTHH is executed, a file called FORTHRAM is created (unless it exists already).

FORTHRAM contains both the FORTH system’s status information and all words added by users.

FORTH has been assigned LIF file types E218 and E219. When the FORTH/Assembler ROM is plugged

in and a CHATHLL is executed, the FORTH system intercepts the file-type poll and displays i ™

instead of the numeric file type for FORTHRAM. Initially FORTHRAM contains about 3K bytes. You

can enlarge the file (to expand the dictionary) or contract the file (at the expense of the dictionary), but

only after the entire 3K-byte file exists.

To re-enter FORTH when FORTHRAM is no longer the first file in memory, 37 bytes are required to

swap the file back into the first position. If there is not enough memory, an error message is displayed.

Copying FORTHRAM. You can rename, copy, and purge FORTHRAM using HP-71 BASIC file com-

mands. This enables you to have multiple versions of the FORTH system, each containing a different user

dictionary. When you have multiple FORTH files, the file currently named FORTHRAM will be the

active FORTH file when you enter the FORTH environment. Also, if you make backup copies of your

FORTH system, you can restore your system following a memory loss (common when programming in

FORTH) by reloading a FORTHRAM file from mass storage rather than by recompiling the dictionary.

The FORTH/Assembler ROM is not required to copy the FORTHRAM file out to mass storage, but it is

required to copy FORTHRAM back into RAM.

Contents of FORTHRAM. The diagram on the opposite page shows the structure of FORTHRAM. At

the beginning of the file are 37 nibbles of system overhead—file name, file type, link to next file, and so

on. Next is the address of the FORTHRAM file; when the FORTH system is re-entered, this address

indicates whether FORTHRAM has been moved. Next is up to 101 bytes of unused space, depending on

FORTHRAM'’s starting address. Enough space is added to ensure that FORTHRAM’s data begins at

2FAFD.

Starting at 2FAFD is the housekeeping information needed to save the FORTH pointers when a system

routine alters all of the CPU registers. At 2FB11 starts the block of FORTH system variables called “user

variables.” The floating-point stack follows the user variables in the file. The user dictionary space starts

above the floating-point stack. When the FORTHRAM file is created, 2K bytes (the minimum required by

the FORTH standard) are allocated for dictionary entries. The data stack is deep enough to hold a mini-

mum of 40 entries. The return stack and the Terminal Input Buffer share 200 bytes, of which a maximum

of 98 bytes can be used by the Terminal Input Buffer (keyboard entry is limited to 96 characters, and

FORTH appends 2 null characters for its own use). The mass memory buffers are allocated 312 bytes.

ADDRESS

2FAFD

2FB11

2FBCO

2FC80

3007C

30F0C

3117C

Section 2: The HP-71 FORTH System 27

FORTHRAM File Structure

POINTER

File Header (37 nibbles)

Start—-of-File Address (5 nibbles)

Unused Space (up to 202 nibbles)

________________________ 4

Pointer Save Area

FORTH Active Flag

———————————————————————— {<<— SPO

User Variables

————————————————————————— < L

Floating—Point Stack

Dictionary

|

v <<— HERE

PAD (floats after Dictionary) <— PAD

/fi <<— SPE

Data Stack

————————————————————————— <— TIB
Terminal Input Buffer

% <<— RP@

Return Stack

————————————————————————— <— FIRST

Mass Memory Buffers

(3 @ 208 nibbles)

<— LIMIT @

28 Section 2: The HP-71 FORTH System

The tables below show the details of a newly created FORTHRAM file. Although the FORTHRAM file is

always the first file in user memory, its starting address varies according to the length of the HP-71

configuration buffers, which precede FORTHRAM in memory. The current address of the start of the file

can be found by executing

RODOFE#CFORTHREAM ' » in BASIC, or

" FORTHEAM" FIHDOF in FORTH.

System Save Area

Address Contents

2FAFD Data-stack pointer save.

2FB02 Return-stack pointer save.

2FB07 Instruction pointer save.

2FBOC FORTH active flag.

User Variables

oe
2FB11 Pointer to bottom of data stack. mioor SR &

2FB16 Pointer to bottom of return stack. REEE

2FB1B Pointer to TIB. TI

2FB20 Next buffer. zE i

2FB25 Most recent mass storage buffer. FREW @

2FB2A First mass storage buffer. FIRST &

2FB2F End of FORTHRAM + 1. LIMIT @

2FB34 Vocabulary link.

2FB39 Buffer record size.

2FB3E Number of characters in TIB. #TIE &

2FB43 Maximum word-name length. WIDTH &=

2FB48 Warning mode. WHEM =2

2FB4D Enable/disable ikin GHLITT. OkFLG @

2FB52 Line number in current LOHLF file. BLE &=

(Reset when load error occurs.)

2FB57 Offset in TIB. IH @

2FB5C Number of characters read by EXFECT2E. SFAM @

2FB61 FIB# of active LOALDF file. SCREFIE @

2FB66 Address of CONTEXT vocabulary. COMHTEXT &=

Section 2: The HP-71 FORTH System

User Variables (continued)

FORTH Words

Address Contents To Return Contents

2FB6B Address of CURRENT vocabulary. CURREHT @

2FB70 Compilation flag. ZTHTE &

2FB75 Current base. ERoE @

2FB7A Number type indicator.

2FB7F Unused. Available for user programming.

2FB84 Current position of stack. (Used by compiler.)

2FB89 Pointer to last character in display string.

2FB8E FOREGET boundary. FEMOE @

2FB93 Next available nibble in dictionary.

2FB98 Buffer size in nibbles.

2FB9D Line number in current L HDEF file. LIME# @&

(Preserved after load error.)

2FBA2 Return address for BASIC keywords.

2FBA7 Reserved for HP-IL use.

2FBAC Secondary HP-IL address. ECOMDOAREY ®

2FBB1 Primary HP-IL address. FREIMAREY @

2FBB6 On-error execution address. OHERRE @

2FBBB Error-occurence flag.

Floating-Point Stack Registers

FORTH Words

Address Contents To Return Value

to X-register

2FBCO LAST X register. LREC

2FBDO X-register. R

2FBEO Y-register. ROL

2FBFO Z-register. £ ROL

2FCO00 T-register. T ROL

2FC10 System use. (Eight bytes for file name.)

29

30 Section 2: The HP-71 FORTH System

Vectored Execution Addresses

Address Contents

2FC20 IMTERFEET

2FC25 CREEATE

2FC2A HIIMEEF

2FC2F . (comma)

2FC34 =, (c-comma)

2FC39 AHLLOT

2FC3E For xxx 1=n't wrigue message.

Assembler User Variables

FORTH Words

Address Contents To Return Contents

2FC43 ID of buffer to preserve. WHETD &=

2FC48 Page length. FAGESIZE @

2FC4D Name of listing file. LISTIMNG

2FC79- System use.

2FC8C

User Dictionary and Above

FORTH Words
A
ddress Contents To Return Contents

2FC8D FORTH word. FORTH Z2- -1

TEARVERSE S5-

2FCB1 Start of first user-defined word. (Addresses

above 2FCB1 are variable.)

2FCB1* End of dictionary. (Next available nibble.) HERE

2FDOB* Pad. (Floats after dictionary.) FRO

30D7C* Top of data stack. SR

30D7Ct Bottom of data stack = Start of TIB. SE, SRS E or TIE

30FOCt Bottom of return stack = Start of first mass FF& &

storage buffer. FIRZT @

3117Ct First nibble after FORTHRAM. LIMIT

* Changes when words are compiled or executed.

t Changes when ROor ZHR IHE is executed.

Section 2: The HP-71 FORTH System 31

The FORTH Dictionary

When you type in a word to be executed or when the system compiles a word from a source file, FORTH

must search through its dictionary to find the word and its execution address. HP-71 FORTH searches

the RAM part of the dictionary first (the user dictionary) and then the ROM part (the built-in FORTH

words). Words in ROM are arranged according to word length to minimize the search time. The length of

the target word is used as an index into a jump table so that, for example, only the list of three-character

words are searched for a three-character word. A test is also made to ensure that the word is not longer

than the longest word in the ROM portion of the dictionary.

As an example of an entry in the dictionary, the structure of a FORTH primitive C MY E is shown below.

Although this word is in the ROM dictionary, its structure is typical of words in either the ROM or RAM

parts of the dictionary.

Structure of a Word

Field Address Contents

Link LFA = E3AEE E3AA6

Name NFA = E3AF3 5834D4F4655C

Code CFA E3AFF E3B04

Parameter PFA = E3B04 code
Link Field. The contents of the link field (E3AA6) point to the name field of the previous dictionary

entry.

Name Field. The first byte of the name field, 85, is 10000101 in binary (note that the byte’s two nibbles

are reversed, with “5” stored at a smaller address than “8”). The byte’s high-order bit is set to indicate the

start of the name field, and the second bit is clear to indicate that the word is not immediate. The third

bit (the smudge bit, set during compilation of a secondary to prevent the word being used in its own

definition) is clear. The five low-order bits have a value of 5 to indicate that the name is five characters

long; the maximum length is 31 characters. The second and subsequent bytes in the name field are the

ASCII representation of the word’s name, with the high bit of the last character is set to indicate the end

of the name field. Here the last character is “E” with ASCII value 01000101, so the binary value 11000101

is stored (with nibbles reversed) as 5C.

Code Field. Because CFiOVE is a primitive, the code field contains this word’s PFA, E3B04, so that the

code in the parameter field will be executed. In a secondary, the code field contains the address of the run-

time code of :, which nests the FORTH program pointer down one level.

Parameter Field. Because [:[11\/E is a primitive, the parameter field contains executable code. In a

secondary, the parameter field contains the CFAs of the words that make up the secondary.

32 Section 2: The HP-71 FORTH System

The ROM-based dictionary contains all of the built-in FORTH words except F JF TH, which is always the

first word in the RAM-based dictionary. To speed compilation, the FORTH system doesn’t search the

entire ROM-based dictionary. The ROM-based dictionary is composed of 13 separate linked lists, with

each list containing words of a specific length, so the FORTH system searches only the list for the appro-

priate word length.

At E0000 is a jump table with 13 entries. Each entry contains a pointer to the beginning of the word list

for words of a specific length, from 0 through 12 characters. To illustrate this structure, a word "L I =T

appears below that will display all words in the ROM dictionary. Note that the pointer initially indicates

the list of one-character words.

HE =

VWILTZT EBBEa5

o1 0o

OUF =

BEEGIH DUF

COUMT 1F AMD 1-

OUF =R 2% ZWHARF DUF :R

+ CEVF AMD E: R

TvFE EMIT CR Z- @& 70OUF 4=

LHTIL

o+ oo DREOF

The HP-71 File System

The HP-71 contains a 64K-byte operating system kernel that starts at address 00000. The kernel per-

forms various control functions and contains the BASIC interpreter. External software may be added to

the machine in the form of files that the kernal interprets or executes directly. These files may be directly

plugged into the machine through ROM or RAM modules, or copied into the machine from external media

such as cards or tape.

File Types

The following file types are directly supported by the HP-71 mainframe. OEM software developers may

support other file types by first reserving the file type with Hewlett-Packard and then including the

appropriate poll handlers in a LEX file. Each file type is identified by a 16-bit value that conforms to

Hewlett-Packard’s Logical Interchange Format for Mass Media.

Section 2: The HP-71 FORTH System 33

When HP-71 files are stored on external media, file security and privacy are encoded, if applicable, in the

numeric file type as shown in the chart below. When files are stored in memory, privacy and security are

encoded in the flags field of the file header, and the file type stored in the file header is always the normal

file type.

Numeric File Type

Type Description Normal Secure Private E)ge:lt;te

BASIC Tokenized BASIC program. E214 E215 E216 E217

BIN HP-71 machine language. E204 E205 E206 E207

DATA Fixed data. EOFO EOF1 n/a n/a

LEX Language extension. E208 E209 E20A E20B

KEY Key assignment. E20C E20D n/a n/a

SDATA Stream data. EODO n/a n/a n/a

TEXT ASCII text, in LIF Type 1 format. 0001 EOD5 n/a n/a

FORTH FORTHRAM file. E218 E219 n/a n/a

Four of these file types are program files: BASIC, BIN (Binary), LEX (Language Extension), and

FORTH. BASIC files may be developed on the HP-71 using the built-in BASIC interpreter. BIN, LEX,

and FORTH files may be developed on the HP-71 using the FORTH/Assembler ROM.

Types of Program Files

Type Format Method of Invocation Mode of Execution

BASIC Tokenized BASIC statements. RUN or CALL command. Interpretation.

BIN Machine language (binary). RUN or CALL command. Direct execution.

LEX Language extension file; adds Through its added BA- Direct execution.

BASIC keywords, messages, SIC keywords and by

and functional extensions; polls from operating sys-

written in machine language. tem.

FORTH FORTH vocabulary. Through FORTH inter- Threaded inter-

preter. pretation.

34 Section 2: The HP-71 FORTH System

Structure of the File Chain

The HP-71 maintains a file area in main RAM that is composed of a linked list, or chain, of file entries.

(Each plug-in ROM module and independent RAM contains its own file chain.) At the beginning of each

file entry is a file header. The file header contains identifying information about the file along with the

link to the next file entry in the chain. The end of the chain is marked by a zero byte. Each file header

contains the following fields:

Fields in a File Header

Field Size

File name 16 nibbles

File type 4 nibbles

Flag 1 nibble

Copy Code 1 nibble

Creation Time 4 nibbles

Creation Date 6 nibbles

Link 5 nibbles
File Name. The file-name field contains the eight-character file name in ASCII,filled with blanks to the

right (high memory).

File Type. The file-type field contains a four-digit hex integer, listed in the “File Types” table above.

Flag. The flag field contains four system flags. The two bits in the low end of the flag field indicate file

protection. When set, the lower of the two bits indicates a file is SECURE; the higher of the two bits

indicates a file is PRIVATE. The remaining two bits of the flag field are unused.

File Header-Flags

Low High

L Private

Secure

Copy Code. The copy-code field indicates the file attributes neccessary for external copying.

Section 2: The HP-71 FORTH System 35

Creation Time and Creation Date. The creation-time and creation-date fields represent the time and
date in BCD. The time field contains four nibbles; the minutes are in the low byte, and the houris in the
high byte. The date field contains six nibbles; the day is represented in the low byte, the month in the
next byte, and the year in the high byte. For example, the internal representation of 03:45 on December
16, 1981, would be as follows:

Time Date
A A

Low [5(4|3|0|6|1[2]1]| 18] High

Link. The link field contains the offset to the next file (header) in memory.

Section 3

The Editor

The FORTH/Assembler ROM editor enables you to create, modify, copy, list, and print text files. These

files are suitable source files for the FORTH system and the assembler. This section describes the editor’s

operation in three parts:

e “Overview of the Editor” describes how to enter and exit the editor, the two types of editor com-

mands, and editor operations other than commands.

e “Editor Commands” describes the specific commands that act on the edit file.

e “Editor Files” describes files used in the editor’s operation.

Additional material related to the editor appears in the appendixes. Appendix B, “Error Messages,” in-

cludes the error messages generated by the editor. Appendix C, “BASIC Keywords,” includes the editor

keywords DELETE, EOTEXT, FILESZR, INSERTH, MSCE FEFLACE#, SCROLL, and SEARCH,

which you can use in your own BASIC programs.

Also in the keyword dictionary is the BASIC keyword HEYEUORED I%. Used in conjunction with

DISFLAY 1%, EEYEOARED IZ allows almost any terminal (or computer acting as a terminal emulator)

to be an extension of the HP-71 keyboard and display. Although this keyword isn’t strictly a part of the

editor, a full-size keyboard can greatly aid text input.

Overview of the Editor

The editor is a BASIC program; when you enter the editor, the HP-71 ##& ;i annunciator appears. You
can enter the editor directly from the FORTH environment by using &

will run the editor on a file named SCREEN. When you exit the editor, the HP-71 will automatically

return to FORTH. Here is a FORTH word that you might find useful:

11T, the editor will open the file SCREEN for editing. When you exit the editor, the

display will show L ==zdima . .. while the FORTH system compiles the contents of SCREEN into the

dictionary.

To enter the editor from BASIC, type ELTEXT filename (ENDLINE]. The editor opens that file for

editing or, if filename is a new name, creates a new file with that name. The display then shows

n. Cmcl:, where line n is the current line in the file. Line numbers, which begin with 1, are for

reference only; they aren’t stored in the file. If you’re at the end of the file, the current line is indicated by

37

38 Section 3: The Editor

When the Cmd: prompt is displayed, you can:

Display the Current Line. To temporarily display the current line, hold down the key. When

you release the key, the Cmd: prompt returns.

Move to A Different Line. There are three methods for moving to a different line:

e To move to any line in a file, enter the line number and press [END LINE]. For example, to move to line

2, enter = [END LINE |.

e To move to the previous line (smaller line number), press [(¢]. To move to the following line (larger

line number), press [+].

e To move to the beginning of a file, press [9])(*]. To move to the end of a file, press (9](¥].

Display the File Name. If you press when the line 1 is the current line, the editor will display the

name of the edit file. To display the file name from any place in the file, hold down (f](+]. When you

release [+], the Cmd: prompt returns.

Execute a Command. The editor commands, each of which is described in detail below, fall into two

classes:

e The commands T (Text) and I (Insert) are used for entering text. Once you execute the Text or

Insert command, the editor remains in Text or Insert mode until you press or [ATTN]; only then

will the Tl prompt return.

e All other editor commands perform specific operations, after which the Cm:i: prompt returns

automatically.

Exit the Editor. To end the editing session, enter £ [ENDLINE]. The editor closes the edit file and

displays [lorie: filename. If you decide not to keep this file, purge it following the instructions in sec-

tion 6 of the HP-71 Owner’s Manual.

When you call the editor, a copy of your own redefined keyboard is stored and the editor’s key redefi-

nitions are added to yours. Unless the editor keys are the same keys you’ve redefined, your redefined keys

are still available to you while the editor is active. When you exit the editor, the combined redefined

keyboard is purged and your own redefined keyboard is restored.

To override a key assignment, use the [9)(1_USER] key. This will deactivate USER mode for the next key

pressed. Note that if you enter the editor from FORTH, disable USER mode, and then either press

or cause any error, the HP-71 will immediately return to the FORTH environment, leaving the current

edit file in a corrupted state.

Section 3: The Editor 39

Editor Commands

You can enter the following editor commands whenever the Cil : prompt is displayed. Some editor com-

mands require parameters such as line numbers or a file name. These parameters are identified in syntax

diagrams for each command. Any default values for parameters are given after the syntax diagram. In the

syntax diagrams:

e Items [enclosed in square brackets] are optional parameters. Some optional parameters are nested

within others. This indicates that the parameter in the outer pair of brackets must be present before

the parameter in the inner pair can be included.

e Items shown in [T MATEI X text must appear exactly as shown (although either upper or lower

case is acceptable).

e There are two substitute characters that can be used for any line-number parameter. A period (.)

indicates the current line, and the pound sign (#) indicates the last line in the file.

e Two adjacent numeric parameters must be separated by a space or comma. No separation is required

between a numeric parameter and an alphabetic parameter.

The Text (7) and Insert (1) Commands

[line number] T

[line number] 1
Default value: line number = current line

The Text command is your primary means of adding text to the edit file. When you enter Text mode, the

current line appears in the display with the cursor at the beginning of the line. Modify the current line as

desired (using the standard HP-71 editing keys) and then press [ENDLINE]. The editor stores these

changes to the current line and then makes the following line the current line, displaying it to start the

cycle again.

The Insert command permits you to add a line or a series of lines into the middle of a file. When you

enter Insert mode, the current line is displayed until you press a key. Type in the text for the new line

(using the standard HP-71 editing keys) and press LINE]. The editor inserts the new line into the file,

just before the current line, and then displays the next line number as the new current line. (The text for

the new current line is the same as before; only its line number changes.) Flag one is on to indicate that

you are in Insert mode.

Either Text mode or Insert mode work equally well for entering text at the end of a file. In either mode,

text is stored in the file only when you press LINE]. If you make changes or enter text and then move

to another line (by using or [(¢]) before you press LINE], no changes or text will be stored.

To exit from Text or Insert mode, press or [ATTN].

40 Section 3: The Editor

The List (L.) and Print (F) Commands

[beginning line number [ending line number]] L [number of lines][]

[beginning line number [ending line number]] F [number of lines][]
Default values: beginning line number = current line

ending line number = last line

The List and Print commands are similar. List causes the specified lines of text to be displayed consec-

utively on the current display device (usually the display window or a monitor). If you have an HP 82401A

HP-IL Interface installed and a printer assigned, Print causes the specified lines to be printed. When no

printer is present, Print responds like List.

After listing or printing, the current line will be the line after the ending line number. The following

examples show some List and Print commands with parameters:

L. List from the current line to the end of the file.

Lol List from the current line to the end of the file, or just 10 lines, whichever

comes first.

9L M List from line 3 to line 9 with line numbers.

1 LaaH List, with line numbers, the entire file or the first 20 lines, whichever comes

first.

F Print from the current line to the end of the file.

CFEH Print five lines starting at the current line, with line numbers.

1F H Print the entire file with line numbers.

The Copy (i) and Move (i1) Commands

[beginning line number [ending line number]] [filename]

[beginning line number [ending line number]] 1 [filename]
Default values (Edit file): beginning line number = current line

ending line number = beginning line number

(Other file): beginning line number = line 1

ending line number = last line

Section 3: The Editor 41

The Copy command permits you to copy one or more lines from one place in the file to another place in

the file. You can also copy part of another file into your edit file. Copy always inserts the copied text

before the current line. The Move command is similar to the Copy command but deletes the text in the

original location.

If no filename is specified, the indicated lines come from the edit file. If a filename is specified, the in-

dicated lines come from the specified file. You can’t copy or move a block of text that includes the current

line, unless the current line is the first or last line of the block of text.

The ok ima . . . message is displayed when you copy or move text.

Here are some examples of the Copy and Move commands:

o Duplicate the current line.

i Copy line 5 and insert it before the current line.

s Move lines 3 through 9 from within the edit file and insert them before the

current line, then delete the original lines 3 through 9.

Copy the file ZHT and insert the lines before the current line.

SED ABC Copy lines 20 through the last line of the file ABC and insert the lines before

the current line in the edit file.

The Delete (1) Command

[beginning line number [ending line number]] i [filename [+]]

Default values: beginning line number = current line

ending line number = beginning line number

The Delete command deletes one or more lines from the edit file. You can place the deleted lines into a

new file or, using the + option, append the lines to an existing file. When you execute Delete with line

number parameters specifying more than one line, the message i to delste™ Y.oH: will appear.

You must answer % before the editor will complete the deletion. If you answer 4, the Command Prompt

returns.

The ok irmg . . . message is displayed when you use Delete.

The following examples show some uses of the Delete command:

X Delete the current line.

Te E2h Delete lines 12 through 32.

4 5 0 CACHE Delete lines 4 through 9 and store them in a new file called CACHE.

210 ARCHWV+ Delete lines 2 through 21 and append them to the end of a file called ARCHV.

You can not purge a file while you are in the editor, but you can delete all of the text and leave an empty

file. Refer to section 6 of the HP-71 Owner’s Manual for instructions on how to purge a file.

42 Section 3: The Editor

The Search (=) and Replace (FF) Commands

[beginning line number [ending line number]][*'] = .~string1[]

Default values: beginning line number = current line + 1

ending line number = last line

[beginning line number [ending line number]][*] F .~string1 .- string2[]

Default values: beginning line number = current line

ending line number = beginning line

The Search and Replace commands allow you to search through a file for a certain string of characters

stringl. If you use a Search command, the first line containing stringl becomes the current line. If you use

a Replace command, all occurrences of stringl are replaced by string2, and the last line containing stringl

becomes the current line. If either command can’t find stringl, it displays Mot Fourd.

These commands search the specified lines in the edit file for the string indicated between the slashes (.¢).

These slashes act as delimiters, marking the string’s boundaries. If you need .- as a normal character in

your search string, you can use any other character (except a blank space) as the delimiter. The first non-

blank character after the command = or Fis the delimiter. The last delimiter is optional unless another

command follows this command.

Search and Replace can distinguish between uppercase and lowercase letters. For example, a search for the

string i a—k will not find the string lacl.

The following examples show some Search commands and Replace commands with parameters:

Sodack From the next line through the end of the file, search for the first occurrence of

the string “Jack.”

207 s..dil11 From line 3 through line 7, search for the string “Jill.”

Fomatodog.- Replace all occurences of “cat” with “dog” on the current line.

4 VR-catodog On lines 4 through 7, replace -all occurences of “cat” with “dog.”

FdZ44328 On the current line, replace all occurences of “3/4” with “3/8.” The character #

is used as the delimiter so that slashes may occur in the strings.

CHEmeet o From the current line to the end of the file, replace “meet” with the null string

(that is, delete “meet”).

If the replacement string2 causes the line to be longer than 96 characters, the editor will redimension

variables, causing a slight delay.

Section 3: The Editor 43

Response Option. You can more closely control the Search and Replace commands by including the

option in the command string. With this option the editor stops with each match to stringl and waits for

you to respond. The display shows the following information:

e The number of the line containing the matching string.

e The number of the column in which the first letter of the matching string occurs.

e A backslash (-) delimiter.

e Some of the line, beginning with the matching string.

e A slash (.-) delimiter.

e A question mark (%) indicating that a response is expected.

Responding to a Search command, your options are:

e Press to stop the search at this match and make this line the current line.

e Press [N] to search for the next occurrence of the string.

e Press (@] to quit the search and return to the previous current line.

Responding to a Replace command, your options are:

e Press to replace this occurence of stringl with string2 and search for the next occurrence of

stringl.

e Press to leave this occurence of stringl intact and search for the next occurrence of stringl.

e Press (Q] to quit the replacement search and make the last line where replacement occured the cur-

rent line (or return to the previous current line if no replacements occurred).

If you press any other key (except (ATTN]), the display will show %.-t .-7 to indicate that only Y, N or

Q are permitted as responses. If you press [ATTN], the Cmi<i: prompt returns.

The Replace command can result in lines longer than 96 characters. If this occurs while you’re using the =

option, you can scroll through only a 96-character substring that contains that search string, not through

the whole line.

Defining Patterns in Strings. Five characters (., &, #, ™, and #) can have special meanings when

you're defining strings. To switch these characters to their special meanings, place a backslash (-, as-

signed to (f][/]) in the string; to return these characters to their normal meanings, place a second

backslash in the string. (The string’s final delimiter also returns the characters to their normal meanings.)

Any of these five characters appearing between the two backslashes will be given their special meaning.

The five characters, their special meanings and some examples of their uses are described in the following

paragraphs:

e The period (.) represents any character, and so is called a wild-card character. When the editor

searches for a matching string, any character can be in those positions where you put a period.

Example. F.-HAEC- . . ~oEecheck I0#.- will replace the occurrences of ABC followed by any

three characters, such as AEC22% AECzuz, or HELD wz, with the string Fecheck I1D#.

I0# has the same effect; the second backslash is not needed because the

end of stringl stops the special-meaning feature, and the ending slash is optional for string2.

BoorBED- o wREecheck

44 Section 3: The Editor

e The commercial “at” symbol (i) represents any number of wild-card characters. Because the program

starts searching for the end of the string at the end of the line, the longest match possible is found.

Example. F -AEC- 2~ C0OE-Fecheck I0#. will replace any string that begins with ABC and

ends with CDE, such as AEC1ZZC0OE, ABCCOE, or AEBCIZ zzzCDE, with the string

Fecheck ILD#H.

e The ampersand (%) represents the text that matches stringl; it is used in a Replace command to

insert the actual string that matched stringl (which may include wild cards) into string2.

Example. F .- HE . .~ &0EF .- searches for the string ABwildcard and appends the string DEF to it.

If ABC is found, the new string will be ABCDEF.

e The up-arrow () represents the beginning of a line. As the first character in a string, it specifies that

a matching string must be at the beginning of a line. If the up-arrow isn’t the first character in the

string, it has its normal meaning.

Example. F .- "~ HAEL.-COE .- will search for the string ABC only at the beginning of a line. If ABC

appears anywhere else in the line, a match will not be made.

Example. Suppose you have loaded a text file from the HP-75 into your HP-71. Now you want to

delete the four-digit line numbers that the HP-75 put at the beginning of every line.

L#FE -~... ... tells your HP-71 to search, from line 1 to the end of the file, for any four charac-

ters at the beginning of the line, and replace them with nothing (delete them).

e The dollar sign (#) represents the end of a line. As the last character in a string, it specifies that a

matching string must be at the end a line. If the dollar sign isn’t the last character in the string, it has

its normal meaning.

Example. F -AEC- ¥C0E will search for the string ABC only at the end of a line. If ABC appears

anywhere else in the line, it will be ignored. A second backslash is not needed after the $ because the

dollar sign is at the end of stringl.

If you need to search for a string containing a backslash character as part of the text, you don’t want

Search and Replace to see the backslash as a switch. The solution is to use two sequential backslashes.

The editor will interpret --as a single backslash character, not as a switch.

Editor Files

The editor uses several files in its operation. The names of these files must not be used as the names of

files in the HP-71 user memory, because the HP-71 first searches its own memory before searching the

plug-in modules. The following list gives the name of each file in the module, along with a brief descrip-

tion of the file.

EQOTE=T The editor BASIC language program.

EOLE= A LEX file containing the assembly level support for the editor, including the

BASIC keywords.

EOEE"Y! The editor keys file.

EOUEEY A temporary keys file created by the editor in main memory to store your

user defined keys while the editor is running. When you exit the editor, these

keys again become current.

Section 4

The Assembler

The FORTH/Assembler ROM contains an assembler that enables you to write assembly language exten-

sions to the FORTH system or to the BASIC operating system. The assembler provides access to the

complete HP-71 CPU instruction set through source code mnemonics that are nearly identical to those of

the assembler used to produce the HP-71 BASIC operating system, as listed in the HP-71 IDS.

The assembler is invoked from the FORTH environment by the word A= =EMELE, which is preceded by a

string specifying the name of the assembler source file. The source file is an HP-71 text file, which you

can create using the editor described in section 3. The output of the assembler can be either new FORTH

words, which are placed directly into the FORTH dictionary, or HP-71 language extension (LEX) or

binary (BIN) files, which are loaded automatically into the HP-71 file chain. The type of assembler output

is specified by pseudo-ops included in the source file. The assembler can also produce an optional assem-

bly listing, which is directed to an HP-71 file or to a listing device on HP-IL.

This section gives the rules for using the assembler, describes the HP-71 CPU, shows some sample source

files for the three types of assembly, and finally describes the assembler’s mnemonics and pseudo-ops.

Using the Assembler

Running the Assembler

The assembler is run while in the FORTH system by typing:

* source-file specifier” HzZZEMELE

The source-file specifier can include a mass storage device specifier. You can’t run the assembler from

BASIC (using FIFETH:) because the assembler uses EF= I,

There is no intermediate link operation. The assembler acts as a loader, creating absolute modules that

are ready to execute. New FORTH primitives go directly into the FORTHRAM dictionary. LEX and BIN

files go directly into the file chain in RAM.

While the assembler is running, the display will show FAZZ 1 or FAZZ & to indi-

cate the assembly’s progress. A dot . is added to the display as each source line is processed. If you

press while the assembler is active, the assembler will halt and prompt you with the mes-

sage AEORT [+¥.-H1 7 If you now press [Y], the assembly will terminate, and the message

azsembler abor ted will be displayed. If you press any other key, the assembly will resume.

45

46 Section 4: The Assembler

The Listing File

There are two variables in the FORTH system that control the listing file. The first variable, LISTING, is

a string variable containing the listing-file specifier. To set this variable, type:

" listing-file specifier' LIZTIHG =1

The listing-file specifier can be the name of an HP-71 text file, the HP-IL device specifier of a printer or

display device, or the null string. If you specify a file name, the listing will be output to a RAM file, which

you can list or edit using the editor. If you specify an HP-IL device, the listing will be output to that

device as the assembly proceeds. If you specify the null string, no listing is created.

The second variable, PAGESIZE, is a numeric variable containing the number of lines per page in the

listing file. That is, if PAGESIZE contains the value n, a form feed (character code 12) will be sent to the

listing file or device after every n lines. The default value of PAGESIZE is 56.

Assembler Source Code

The text file containing source code for the assembler, which you create with the editor, must have the

following form:

Output Pseudo-op

C<;de

ElilD

The output pseudo-op must be FIIETH, LE, or EIH, to determine whether the assembler output will be

FORTH primitives, a LEX file, or a BIN file. The pseudo-op EH[indicates the end of the source code.

The code portion of the file consists of any number of text lines, each containing one or more of the

following items: label, mnemonic, modifier, pseudo-op, expression, comment. These items and the general

line format are discussed below.

Line Format

The following template is the recommended column alignment for items in a source-file line. However, the

assembler is “free format,” requiring only a space to delimit the fields. The maximum length for a label is

6 characters (extra characters are ignored); for a mnemonic, 6 characters; and for a modifier, 50 charac-

ters. To distinguish mnemonics generated by pseudo-ops from your source mnemonics, an assembly listing

will indent the former to column 3.

label mnemonic modifier comments

)))))
1 8 15 24 80

Section 4: The Assembler 47

Comments

Text that follows a complete instruction—a mnemonic and any required modifiers—is a comment. If the

first non-blank character in a line is a star (%), the entire line is a comment. All other text is considered

part of an instruction.

Labels

Labels can contain up to six characters. All alphanumeric characters are allowed, as are all special charac-

ters except commas, spaces, and right parentheses. The first character cannot be sharp (#), single quote

('), minus sign (-), left parenthesis, star (%), or the digits 0 through 9. Leading equal signs (=) are

ignored, so that =FFE[l and FREL are the same label. There is no case folding. A label must begin in

column 1 or 2; otherwise it will be interpreted as a mnemonic. The restricted label F i .=« is automati-

cally generated after the last line of source in LEX and BIN files; if you enter this label in your source

file, the assembly aborts.

Expressions

Expressions can contain labels, the location-counter value, constants, and operators. Any expression en-

closed in parentheses can be nested within a larger expression, with up to three levels of nesting.

Labels. Legal label names are described above. When a label is used within a larger expression, paren-

theses are required to delineate it: A1l ~ 1% is a label but ¢ A1i »~1& is an expression.

Location-Counter Value. A star (#) in an expression represents the value of the location counter at the

beginning of the current instruction.

Constants. The numeric value of a constant can be expressed in decimal, hexadecimal, or ASCII. Some

instructions require a constant of a particular type; those instructions are listed under the required type of

constant.

e Decimal constants can’t exceed 1,048,575. Example: 23434.

e Hexadecimal constants must be preceded by the sharp (#) character and can’t exceed FFFFF. Exam-

ple: # 1 FF . Hexadecimal constants are required with i.ZHE ¥ and HIEHE . (Leading # is optional

when hexadecimal constant is required.)

e ASCII constants must be enclosed within single quotes and can contain one or two characters, .

Example: 'AE' (equals 4142,5). ASCII constants are required with L CH%C and HIERSZE,

Operators. There are seven operators, listed below in descending order of precedence. Operators on the

same level of precedence are executed left to right in the expression.

-~ (Unary minus)

% (Logical AND) i (Logical OR).

F (Multiplication) - (Integer division)

+ (Addition) ~ (Subtraction)

48 Section 4: The Assembler

The HP-71 CPU is a proprietary CPU optimized for high-accuracy BCD math and low power consump-

tion. The data path is four bits wide. Memory is accessed in four-bit quantities, called “nibbles” or “nibs.”

Overview of the CPU

Addresses are 20 bits, yielding a physical address space of 512K bytes or 1M nibbles.

There are two types of registers on the CPU: arithmetic registers, used for data transfers and arithmetic

operations; and control registers, used for program and system control.

Arithmetic Registers

The arithmetic registers comprise the carry flag, the working registers A, B,

registers RO, R1, R2, R3, and R4.

Arithmetic Registers

C, and D, and the scratch

Name Description Size (bits)

Carry

RO

R1

R2

R3

R4

Carry flag, adjusted by calculations and tests. During a

calculation the carry flag is set if the calculation overflows

or borrows; otherwise the carry flag is cleared. During a

test the carry flag is set if the test is true; otherwise the

carry flag is cleared.

Working register, used for shifts, tests, and arithmetic.

Also used for memory access and for exchange with

scratch registers and data-pointer registers.

Working register, used for shifts, tests, and arithmetic.

Most powerful working register, used for shifts, tests, and

arithmetic. Also used for memory access, bus access,

loading constants, and exchange with scratch registers,

data-pointer registers, the pointer register, the hardware

return stack, and status bits.

Least powerful working register, used for shifts, tests,

and arithmetic.

Scratch register. Used for exchange with A or C register.

Scratch register. Used for exchange with A or C register.

Scratch register. Used for exchange with A or C register.

Scratch register. Used for exchange with A or C register.

Scratch register. Used for exchange with A or C register.

However, the HP-71 interrupt system uses the five low-

order nibbles, effectively making the entire A field unavail-

able.

64

64

64

64

64

64

64

64

64

Section 4: The Assembler 49

Subfields of the working registers may be manipulated by field selection. The possible field selections

range from the entire register to any single nibble of the register. Certain subfields are designed for use in

BCD calculations; others are used for data access or general data manipulation. The following diagram

shows the seven fixed fields within a 16-nibble working register.

Fixed Fields within a Working Register

 A) =

 S < M > XS =B»

-«— X —»

There is a one-nibble CPU pointer (the P register, described under “Control Registers”) that can indicate

any nibble in a working register. This allows two variable fields to be defined: the indicated nibble alone,

or that nibble along with all lower nibbles (to the right). This makes a total of nine fields, listed below.

Fields within a Working Register

Name Nibbles Description

1-0 Exponent or byte.

X 2-0 Exponent and sign.

XS 2 Exponent sign.

A 4-0 Address.

W 15-0 Full word.

M 14-3 Mantissa.

S 15 Sign.

P P At pointer.

WP P-0 Word through pointer.

50 Section 4: The Assembler

Control Registers

The following table describes the CPU’s control registers. The two data-pointer registers, DO and D1,

contain pointers to memory used for all memory access.

Control Registers

Name Description Size (bits)

PC Program counter. 20

RSTK Eight-level subroutine-return stack. 20

ST Program-status flags. 16

SB Sticky bit. 1

SR Service Request bit. 1

MP Module Pulled bit. 1

XM External Module Missing bit. 1

P Pointer register. Points to a nibble in the 4

working registers. Used with field selection

and Load Constant mnemonics.

DO Data-pointer register. Used with register A 20

or C during memory access.

D1 Data-pointer register. Used with register A 20

or C during memory access.

ouT Keyscan/write-only output register. Used 12

by system; other uses limited.

IN Keyscan/read-only input register. Used by 16

system; other uses limited.
Subroutine Return Stack. Return addresses are stored on an eight-level LIFO hardware stack. Sub-

routine call and return instructions automatically push and pop addresses on this stack. If a ninth address

is pushed onto the stack, the oldest address will be lost and will be replaced by zero when it is eventually

popped from the stack. Because the memory-reset code of the operating system resides at address 00000,

excessive nesting of subroutine calls will cause a memory reset.

Note: Because interrupt processing requires one level of the hardware return stack, code that exe-

cutes with interrupts enabled must not use more than seven levels of return addresses on that stack.

Otherwise, an interrupt may eventually result in a memory reset.

Section 4: The Assembler 51

Loading Data from Memory

When memory is read into a register, the CPU places the lowest-addressed nibble in the lowest-order

nibble of the register. The nibbles in a CPU register are numbered right-to-left, from least significant to

most significant. For example, if the data in memory shown below is read into a CPU register, the data in

the register will be arranged as shown.

Address Contents CPU Register

1000 5 8 7 6 5

1001 6

1002 7 15 C. 3 2 1 0

1003 8

When data is written to memory from a register, the CPU places the least significant nibble of the register

in the lowest nibble of the addressed memory location. For example, if the data in the register shown

above is written to memory, the data in memory will be arranged as shown.

Types of Assembly

To indicate whether to assemble a FORTH primitive, a LEX file, or a BIN file, the first line of the source

file must contain a FIIRETH, LE=, or EIH pseudo-op. The sample files below illustrate each type of

assembly.

FORTH Primitives

FORTH primitives must maintain three FORTH-system pointers. These pointers are the instruction

pointer (different from the CPU hardware program counter), the data-stack pointer, and the return-stack

pointer. They are maintained in the following CPU registers.

FORTH-System Pointers in CPU Registers

CPU Register FORTH-System Pointer

DO Instruction Pointer

D1 Data-Stack Pointer

A field in B Return-Stack Pointer
Because the FORTH return stack is a software stack, it isn’t limited to the seven levels of the CPU

hardware stack .

52 Section 4: The Assembler

In FORTH, stacks grow down in memory. Therefore, to push an item onto the

decrement the data-stack pointer by 5 before storing the item on the stack:

¥

¥

O1=01-

ORTL=C

¥
I
n
o
o
n

M
e

L= OAT1 T
NODi=01+ %5

End all FORTH primitives with

Sample FORTH Assembly.

FOETH

WORED

¥

+ i

n
o
I

IA=H+C

OAT1=H

ETHCC

EGL

¥

¥

¥

WORDT '

¥

H=DOAT1

Di=01+

F=

t

LCoo

¥

CORE:

¥

ODATE=AH 1

¥

COEE X

¥

ETHCC

EHD

I

OSECHT #-EZFE

OIsF!

v
7 .

oo DEFPCHT

Stack push:

Oecrement stack pointer

A ofisldframo
t

o

Store e

dat ztack,=

Stack pop:

Fead top 11

aistL2

=1

F
T

Increment ! e

i b T

RTNCC (return and clear the carry flag).

it

menord polnt

parameter on

Imcrement

FORTH

T

[}(
.

%
fo

os
d

«

-
y

into the B fisld of regist

L

[

Conty

OWitk ot

b
y

o
t

o
-

1 —
+ p
o

]

g

interi

Constant instructi

Load

=

1

th |{
|

L o
+iz- 1
l

Exc

Folnter

o
v

L & n
l

oe .

ribbl i -Copd
by DB,

B

original

tio

O

charnge

values,

Feturm the

flark the

inmer loop,

ernd of the f

i

o
+

e T

1
i

oo
t

o
f

data stack, you should

R ~ tm TR

- 1 - "
Tileid Ot L

corde fisld for

the Contents of

i o PR
THne 11

~remerts the

TH dats =tac

rols

as

sequsnt Load

=% of

SRCOHT.

th the dztas

i

"

Section 4: The Assembler 53

LEX Files

Although LEX files usually define new BASIC keywords, they can also answer system polls or define
message tables. After assembling a LEX file you must turn the HP-71 off and then on again. This reg-
isters the LEX file in the system’s LEX entry buffer for keyword checking and poll handling. For a full
description of LEX files and their uses, refer to the HP-71 IDS.

Two sample LEX files appear below. The first is a poll handler, the second defines a keyword. Note that
both files begin with the pseudo-ops LEX, I, ME3, and FIILL; this sequence is required for all LEX
files.

Sample Poll-Handler LEX File. The following LEX file will intercept the configuration poll and save
the general purpose buffer whose ID is #E01.

LE! FROLLY = an gt oz LEX file ramed "POLL.C

In #5500 £ =i 10 of S0

MEG & iz g tzble im thiszs LEH file
FOLL FOLHMD Jur paoll s3ins 2% the label FOLHHD
EMOTHET Mark e end of the BASIC keuword tables. In this

¥ CEse ineres sre no tablez, but

¥ iz 2111l required

#EG1 Define 3 label for the I of the buffsr to zZave,
B #11EFF Detfine = lzbel for the smt poimt oof 2

¥ Fogtine, T oo by

¥ mofy i cated in the

d of regiszter O
E i #FE Uefine 2z label for the o Foll

Uefine 2 label for the start of the poll- Wer 1ng

% Foutine

=ETHE Zet the ari 1o mods to

F= i Set pointer register 1o Load

£ i

LOoZy pCOMFG “f register |

COMFIG lzg iz =z=et

COMFIG a3 oidtime to

¥ = i s poll

Loo3y BUFHUM L Id flow-aorder thre of regizter O

Witk the 108 of the buffer

COSBEVL I-0ORES Czll the =suster st ine tTooE TEm froon

F g this b The sutine Clears the

53 .

==t Ext it

54 Section 4: The Assembler

Sample Keyword LEX File. The following LEX file defines a BASIC function THE that returns the

number 1.

LE "WEYMWORD' Declare an assemblyg of a LEX file mamed "EEYWORED.®

10 5S0 Thi= LE® file haz an IO of 50.

'
'—fl

’-‘

M= H There 1=z no meszade table in thiszs LE= ¥115=

FOLL i There iz rno poll handler in this LEX ile,

FHETH1 EU #OF 216 Oefine a label for the entry point of a sSdstemn

¥ Foutine, This sustem routinse Felurns a numeric

¥ parameter to the math stack.

EHTREY FHCT Thi=z keguord iz coded at the lakel FHOT.

CHAE #F Thiz keuword iz a BASIC function, indicated by 3

1¥ characterization = of F .

EEY "OHE! This keguword iz called "OHE.®

TOKEH 1 This kegword hasz tokern 1. The LER ID# and token

¥ Uriquely define sach BHES

=1

= beguword,

EHOTET Mark the end of the BARS

B

o kegword tables.

bHIBHEX &8 The minimum and ma<imum nunber of parameters o

¥ thizs function 1z zZero

FHCT Define = lakel for the =start of the code {for the

keguord OHE.

Fiut a floatirng-point 1% inmto register D

C=8 b Clear a2ll digits in register O

F= 14 Set the pointer reglister to the mosi-sigrnificant

¥ digit im the mantissa

LCHEX 1 Load the most-zsianificant digit im register L=

¥ marntiszza field with 3 hes 1

COVLHG FHETHI Send the result La:i to the Susten.

EHD Mark the end of the source file fopticonal

Note the pseudo-ops EHTE", CHAR, KE"Y, and TOkKEH; these are required for each keyword in a LEX

file. When there are multiple keywords in an assembly, the EHTFE"Yand CHFAFEpseudo-ops for the first

keyword come first, followed by the EHTFE% and CHHARFEpseudo-ops for the second keyword, and so on.

Afterthe EHTE" and CHAF pseudo-ops for the final keyword come the K E' and TEH pseudo-ops for

the first keyword, followed by the kE*%and TZEEH pseudo-ops for the second keyword, and so on.

Binary Files

Binary files are program files coded in assembly language. They can be executed like BASIC programs by

using FIUH, CHAIHM, or CALL. They usually run faster than comparable BASIC programs and, unlike

BASIC programs, can refer to system entry points.

Section 4: The Assembler 55

Sample Binary Program. This binary program displays HEL L.

BIH "HELLO! Oeclare an azssembly of 3 birarg file called "HELLO,"

CHARIH -1 There are no subprogram=s in thiz file., EBinary

¥ subprograms are described in the HRF-71 ID0S,

EFZOSF EQU #E1CBE Detine a label for the entry point of 3 sustem

¥ Foutine, The sustem routine displags the string in

¥ memord that starts 2t DATL and ends with =

¥ character #FF,

EHOBIH EOL '3 o
t

-
]

T
y
o I Oefine a lakel for the entry point of the suztem

t¥ Foutine that ends =2 binarg program,

* The code immediztely follows the pseudo-ops.

CosUE FOF Thiz line, combirned with C=FRSTE (lakeled FOFPY, puts

¥ the address of the following =tring into the A

¥ field of regizster

HIEBRZC 0 The =strin

v
I
C
T
v
L -

i

e !
[T
1

1Ll
™
e

™
in

HIBHES DBRGFF Carriage return, line feed, end-of-string mark .

FIOF C=ESTE Fop the return address Juwhich iz the addresz of the

¥ preceding string? into the A field of register O

Di=C Copy the string 'z addreszz to 01,

COsBEYL BFZOSF Call the =sugstem routine to displag the String

¥ Folnted to ba 01

GOVLHG EHOBIH The cCcorrect way 1o exit b

EHDO Mark the esnd of

1 fard prodran,= i1

f the source file Joptionall,

Assembler Mnemonics

The assembler mnemonics are listed below in condensed form, grouped by function. A list of all mnemon-

ics (listed in ASCII order) with their opcodes and cycle times appears in the HP-71 Software IDS.

Branching Mnemonics

GOTO Mnemonics. In the following mnemonics,

e offset is the distance in nibbles to the specified label.

GOTO label Short goto (—2047 < offset < 2048).

GOlabel Short goto if carry (—127 < offset < 128).

GOHC label Short goto if no carry (—127 < offset < 128).

GOLOMG label Long goto (—32766 < offset < 32769).

GOVLHG label Very long goto (to absolute address).

GOYES label Short goto if test true (—128 < offset < 127).

(Used only with test mnemonics.)

56 Section 4: The Assembler

GOSUB Mnemonics. In the following mnemonics,

e offset is the distance in nibbles to the specified label.

SOSIUE label Short gosub (—2044 < offset < 2051).

COSUEBL label Long gosub (—32762 < offset < 32773).

COSEVL label Very long gosub (to absolute address).

Return Mnemonics.

F:TH Return.

ETHSC Return and set carry.

ETHCD Return and clear carry.

FETHSM Return and set External Module Missing bit.

FTI Return from interrupt (enable interrupts).

FTHC Return if carry set.

FTHHLC Return if no carry set.

ETHYES Return if test true.

Test Mnemonics

(Used only with test mnemonics.)

Each test mnemonic must be followed with a 0% ES or B THYES mnemonic. The test mnemonic and the

G0YES or RTHYES mnemonic combine to generate a single opcode. Each test will set the carry flag if

true, or clear the carry flag if false.

Register Tests. In the following mnemonics,

e (r,s) = (A, B), (A, C), (B, A), (B,), (C, A), (C, B), (C, D), or (D, C).

ofs = AP WP, XS, X, S, M, B, or W.

Tr=s fs Is fs field of r equal to fs field of s?

Tris fs Is fs field of r not equal to fs field of s?

Tr=6 fs Is fs field of r equal to zero?

Tree fs Is fs field of r not equal to zero?

Tr-s fs Is fs field of r greater than fs field of s?

“ris fs Is fs field of r less than fs field of s?

“rr=s fs Is fs field of r greater than or equal to fs field of s?

Tri=s fs Is fs field of r less than or equal to fs field of s?

Section 4: The Assembler 57

Pointer Tests. In the following mnemonics,

e n is an expression whose hex value is from 0 through F.

TF=on Is P register equal to n?

TF# N Is P register not equal to n?

Program-Status Tests. In the following mnemonics,

e n is an expression whose hex value is from 0 through F.

TET=E n Is bit n in ST equal to 0?

TET=1 n Is bit n in ST equal to 1?

TETHG n Is bit n in ST not equal to 0?

TETHL n Is bit n in ST not equal to 1?

Hardware-Status Tests.

TEM=8 Is the External Module Missing bit clear?

Is the Sticky bit clear?

TERE=A Is the Service Request bit clear?

T= Is the Module Pulled bit clear?

P Register Mnemonics

In the following mnemonics,

e n is an expression whose hex value is from 0 through F.

Note that the C register is the only working register used with the P register. During those operations that

involve a calculation, the carry flag is set if the calculation overflows or borrows; otherwise the carry flag

is cleared.

F= n Set P register to n.

Pk Increment P register.

Pe] Decrement P register.

R] Add P register plus one to A field in C. Arithmetic is hexadecimal.

CFES n Exchange P register with nibble n in C.

F=0 n Copy nibble n in C to P register.

C=F n Copy P register to nibble n in C.

58

Status Mnemonics

In the following mnemonics,

Section 4: The Assembler

e n is an expression whose hex value is from 0 through F.

Set bit n in ST to 0.

Set bit n in ST to 1.

Exchange X field in C and bits 0 through 11 in ST.

Copy bits 0 through 11 in ST into X field in C.

Copy X field in C into bits 0 through 11 in ST.

Clear bits 0 through 11 in ST.

Clear Sticky bit (SB).

Clear Service Request (SR) bit.

Clear Module Pulled (MP) bit.

Clear External Module Missing (XM) bit.

Clear SB, SR, MP, and XM bits.

System-Control and Keyscan Mnemonics

The first four mnemonics below are useful for most programmers. The remaining mnemonics are used by

the system and have limited general use; for details, refer to the HP-71 IDS and the HP-71 Hardware

Specification.

SETHE =

=ETOELD

C=RSTE

FoSTE=C

COHF TG

LHCHFG

FEZET

ELSTr

SHUTOH

C=10

SRERT

IHTOFF

ITHTOH

DT=C

Set arithmetic mode to hexadecimal.

Set arithmetic mode to decimal.

Pop return stack into A field in C.

Push A field in C onto return stack.

Configure.

Unconfigure.

Send Reset command to system bus.

Send Bus Command C to system bus.

Stop here.

Request ID (A field in C).

Sets service request bit if service has has been requested. Nibble 0 in C

shows what bit(s) are pulled high.

Disable interrupts (doesn’t affect ON-key or module-pulled interrupts).

Enable interrupts.

Copy X field in C into OUT.

Copy nibble 0 of C into OUT.

Copy IN into nibbles 0 through 3 in A.

Copy IN into nibbles 0 through 3 in C.

Section 4: The Assembler 59

Scratch Register Mnemonics

In the following mnemonics,

er = A orC.

e ss = RO, R1, R2, R3, or R4.

rssk=

r o SS

SS o r

Exchange r and ss.

Copy ss into r.

Copy r into ss.

Memory-Access Mnemonics

Data-Pointer Mnemonics. In the following mnemonics,

er = A orC.

e ss = DO or D1.

e n is an expression whose hex value is from 0 through F.

e nnnnn is an expression whose hex value is from 0 through FFFFF.

During those operations that involve a calculation, the carry flag is set if the calculation overflows or

borrows; otherwise the carry flag is cleared.

rssk

rssi

ss=<1 nnnnn

ss=1 %% nnnnn

Exchange A field in r with ss.

Exchange nibbles 0 through 3 in r with ss.

Copy A field in r into ss.

Copy nibbles 0 through 3 in r into ss.

Increment ss by n.

Decrement ss by n.

Load ss with two nibbles from nnnnn.

Load ss with four nibbles from nnnnn.

Load ss with nnnnn.

Data-Transfer Mnemonics. In the following mnemonics,

er = A orC.

efs = AP, WP, XS, X,S, M, B, W (or a number n from 1 through 16).

r=0HTE fs

r=0HT1 fs

DHTE=r fs

DHTL=r fs

Copy data at address contained in DO into fs field in r (or into nibble 0

through nibble n — 1 in r).

Copy data at address contained in D1 into fs field in r (or into nibble 0

through nibble n — 1 in r).

Copy data in fs field in r (or in nibble 0 through nibble n — 1 in r) to address

contained in DO.

Copy data in fs field in r (or in nibble 0 through nibble n — 1 in r) to address

contained in D1.

60 Section 4: The Assembler

Load-Constants Mnemonics

In the following mnemonics,

e h is a hex digit.

e | is an integer from 1 through 5.

e nnnnn is an expression with hex value from 0 through FFFFF.

e ¢ is an ASCII character.

LCHE= h...h Load up to 16 hex digits into C. The least significant digit is loaded at the

pointer position; more significant digits are loaded into higher positions,

wrapping around from nibble 15 to nibble 0.

LLCCi» nnnnn Load i hex digits from the value of nnnnn into C. The least significant digit

is loaded at the pointer position; more significant digits are loaded into

higher positions, wrapping around from nibble 15 to nibble 0.

— i
t

I i
1

i O 9] Load up to eight ASCII characters into C. The least significant nibble of the

low-order character is loaded at the pointer position; more significant nib-

bles are loaded into higher positions, wrapping around from nibble 15 to nib-

ble 0. For example, LCAZT 'HE ' is equivalent to LITHER 4142,

Shift Mnemonics

In the following mnemonics,

er = AB,C, orD.

efs = AP, WP, XS, X, S, M, B, or W.

Non-circular shift operations shift in zeros. If any shift-right operation, circular or non-circular, moves a

non-zero nibble or bit from the right end of a register or field, the Sticky bit SB is set. The Sticky bit is

cleared only by a SE=& or ZLEHZT instruction.

r=gFe Shift r right by one bit.

rel Shift r left by one nibble (circular).

refc Shift r right by one nibble (circular).

r=l fs Shift fs field in r left by one nibble.

rs=g fs Shift fs field in r right by one nibble.

Logical Mnemonics

These mnemonics are summarized below, using the following variables:

e (r,s) = (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C).

efs = AP, WP XS, X, S, M, B, or W.

r=ris fs fs field in r AND fs field in s into fs field in r.

r=r's fs fs field in r OR fs field in s into fs field in r.

Section 4: The Assembler 61

Arithmetic Mnemonics

Arithmetic results depend on the current arithmetic mode. In hexadecimal mode (set by =E THE), nibble

values range from 0 through F. In decimal mode (set by ZE TLEL), nibble values range from 0 through 9,

and arithmetic is BCD arithmetic.

There are two groups of arithmetic mnemonics. In the first group (general), almost all combinations of the

four working registers are possible; in the second group (restricted), only a few combinations are possible.

During those operations that involve a calculation, the carry flag is set if the calculation overflows or

borrows; otherwise the carry flag is cleared.

General Arithmetic Mnemonics. In the following mnemonics,

e (r, s) = (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C).

ofs = AP WP XS, X, S, M, B, or W.

r=r+s fs

s=r+s fs

r=s fs

s=r fs

rskz = fs

Set fs field in r to zero.

Double fs field in r (shift left by one bit).

Increment fs field in r by 1.

Decrement fs field in r by 1.

Tens complement or twos complement, depending on arithmetic mode, of fs

field in r. Clears Carry if argument =0; sets Carry otherwise.

Nines complement or ones complement, depending on arithmetic mode, of fs

field in r. Clears Carry.

Sum fs field in r and fs field in s into fs field in r.

Sum fs field in r and fs field in s into fs field in s.

Copy fs field in s into fs field in r.

Copy fs field in r into fs field in s.

Exchange fs field in r and fs field in s.

Restricted Arithmetic Mnemonics. In the following mnemonics,

e (r, s) = (A, B), (B, C), (C, A), or (D, C).

ofs = AP, WP XS, X, S, M, B, or W.

r=r—-s fs

r=s-r fs

s=8~r fs

No-op Mnemonics

MO E

HF

FOFE

Difference of fs field in r and fs field in s into fs field in r.

Difference of fs field in s and fs field in r into fs field in r.

Difference of fs field in s and fs field in r into fs field in s.

Three-nibble no-op.

Four-nibble no-op.

Five-nibble no-op.

62 Section 4: The Assembler

Pseudo-ops

Control Pseudo-ops

EJECT

EHE

label E 111 expression

LI=T OMsLIST OFF

=TITLE subtitle

TITLE title

Generate a form feed in the assembly listing.

Mark the end of the assembly source file. Any characters in the file

following EHL are ignored by the assembler. This pseudo-op is optional.

Define label to have the value of expression. All references to label will

have this value; label can’t be redefined in a later part of the program.

Send/suppress output to the listing file. (Limited RAM may require a

shortened listing file.)

Force a new page and put subtitle at the top of each page of the listing

file, just underneath the title. The text for subtitle can contain up to 40

characters.

Put title at the beginning of each page of the listing file. The text for

title can contain up to 40 characters.

Constant-Generating Pseudo-ops

E== expression

LM Gexpression

HIEARZC ‘'chars'

HIEHE= h ... h

FEL Cit expression

Evaluate expression and generate that number of zero nibbles.

Evaluate expression and generate an absolute constant of length i nib-

bles, 1 < i < 5.

Generate the specified ASCII characters, with the two nibbles within

each byte reversed. The modifier field may specify up to eight charac-

ters. (The result is the same if each character is placed in its own

HIEARZC pseudo-op.)

Generate up to sixteen hexadecimal nibbles.

Evaluate expression and generate a constant (relative to the current

location-counter value) of length ¢ nibbles, 1 < i < 5.

Macro-Expansion Pseudo-ops for FORTH Words

FORTH

MOED 'name'’

WOREDT 'name'’

Assemble a new FORTH primitive. This pseudo-op must be the first

line in the file.

Define a FORTH primitive called name. The assembly code that defines

name should directly follow the L1FE[pseudo-op.

Define an immediate FORTH primitive called name. The assembly code

that defines name should directly follow the H1FI pseudo-op.

Section 4: The Assembler 63

Macro-Expansion Pseudo-ops for LEX Files

LE® "name'

I byte

Mzlabel

Fill.l. label

ERHTEY label

LHHEE A

Assemble a new LEX file called name. This pseudo-op must be the first

line in the source file. The LEX file will have the correct header. The

intial data for this file is defined by the I[i, M=, and FLL pseudo-

ops, which must be present in that order.

Define the LEX ID of this LEX file. The byte is placed in the appro-

priate data field. This pseudo-op is required when the L_E pseudo-op is

used.

Define the beginning of this LEX file’s message table. 1=will place

label in the appropriate field. This pseudo-op is required when the L.E

pseudo-op is used. If there is no message table, enter M= §.

Define the beginning of this LEX file’s poll-handling routine. FL L

will place label in the appropriate field. This pseudo-op is required when

the LEpseudo-op is used. If there is no poll-handling routine, enter

FOLL &,

Begin the definition of a BASIC keyword. Each keyword requires four

pseudo-ops: EMTEY, CHAR, KEY, and TOKEH.

Because of the structure of the LEX file’s keyword tables, these pseudo-

ops require a particular order. For example, the following assembly-

language header defines two keywords, kEY 1 and KEY 2.

EHMTEY labell The code for the first keyword begins at labell.

CHAR = The first keyword is legal for keyboard execu-

tion and after THEH . . . ELZE.

EMTEY label2 The code for the second keyword begins at

label2.

CHAE #F The second keyword is a function.

EEY "HEYLS The first keyword is invoked with “KEY1” in

BASIC.

TOREH 1 The first keyword has token 1.

KEY THEYZY The second keyword is invoked with “KEY2”

in BASIC.

TOEEH Z The second keyword has token 2.

EMOTET Mark the end of the keyword tables.

Describe the type of BASIC keyword. Each EHTErequires a

corresponding CHFFE, which places a “characterization nibble” in the

keyword tables. The characterization nibble defines BASIC keywords as

follows.

64 Section 4: The Assembler

FEY 'name'’

TOEEH number

EHOTHT

Values for the Characterization Nibble

Value Type of keyword

Keyboard execution.

Legal after THERM... ELZE.

Begin BASIC (legal as first keyword in a statement).

15 Function.

Other values for the characterization nibble define combinations of the

above types. For example, a characterization nibble of 5 defines a keyword

that is legal for keyboard execution and after THEHM . . . ELZE. For details

about the characterization nibble, refer to the HP-71 IDS.

Define the name that will evoke the keyword in BASIC. When there are

multiple keywords in one LEX file, the names of the keywords must be in

alphabetic order. There is one exception: the name ’abc’ is not before the

name ‘abcd’. If the first characters are the same, the longer text must come

first. Otherwise, the BASIC operating system will never find the longer

keyword.

Define the token number of the keyword most recently named (by &E).

When there are multiple keywords in one LEX file, their token numbers

must be in ascending order. T 1k EH places the token number in the keyword

tables.

Mark the end of the keyword tables. This pseudo-op follows the EHTE™,

CHAFR, EEY, and TOEEH pseudo-ops when a keyword is defined, or it marks

their absence if no keyword is defined.

Macro-Expansion Pseudo-ops for BIN Files

EIHM 'name'

CHAHIH ' label

Assemble a BIN file called name. This pseudo-op must be the first line in

the source file. EIH creates the file header; the user must create the

subheader using the CHH Ipseudo-op.

Create a 12-nibble subheader containing a subprogram and label chains. If

there are no subprograms, enter CHFRIH ~1.

Appendix A

Care, Warranty, and Service Information

Care of the Module

The HP-71 FORTH/Assembler ROM does not require maintenance. However, there are several precau-

tions, listed below, that you should observe.

CAUTIONS

e Do not place fingers, tools, or other objects into the plug-in ports. Damage to plug-in module contacts

and the computer’s internal circuitry may result.

e Turn of the computer (press [f](OFF]) before installing or removing a plug-in module.

e If a module jams when inserted into a port, it may be upside down. Attempting to force it further may

result in damage to the computer or the module.

e Handle the plug-in modules very carefully while they are out of the computer. Do not insert any ob-

jects in the module connector socket. Always keep a blank module in the computer port when a

module is not installed. Failure to observe these cautions may result in damage to the module or the

computer.

Limited One-Year Warranty

What We Will Do

The HP 82441A FORTH/Assembler ROM is warranted by Hewlett-Packard against defects in materials

and workmanship affecting electronic and mechanical performance, but not software content, for one year

from the date of original purchase. If you sell your unit or give it as a gift, the warranty is transferred to

the new owner and remains in effect for the original one-year period. During the warranty period, we will

repair or, at our option, replace at no charge a product that proves to be defective, provided you return the

product, shipping prepaid, to a Hewlett-Packard service center.

65

66 Appendix A: Care, Warranty, and Service Information

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of

service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.

ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED

TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or

countries do not allow limitations on how long an implied warranty lasts, so the above limitation may not

apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR

CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclusion or

limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to

you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to

state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a

consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be deter-

mined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard

shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard dealer

or a Hewlett-Packard sales and service office. Should you be unable to contact them, please contact:

e In the United States:

Hewlett-Packard

Personal Computer Group

Customer Support

11000 Wolfe Road

Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

Appendix A: Care, Warranty, and Service Information 67

e In Europe:

Hewlett-Packard S.A.

150, route du Nant-d’Avril

P.O. Box CH-1217 Meyrin 2

Geneva

Switzerland

Telephone: (022) 83 81 11

Note: Do not send units to this address for repair.

e In other countries:

Hewlett-Packard Intercontinental

3495 Deer Creek Rd.

Palo Alto, California 94304

U.S.A.

Telephone: (415) 857-1501

Note: Do not send units to this address for repair.

Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may have

your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit is under

warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt at

any service center. This is an average time and could vary depending upon the time of year and the work

load at the service center. The total time you are without your unit will depend largely on the shipping

time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is located

in Corvallis, Oregon:

Hewlett-Packard Company

Service Department

P.O. Box 999

Corvallis, Oregon 97339, U.S.A.

or

1030 N.E. Circle Blvd.

Corvallis, Oregon 97330, U.S.A.

Telephone: (503) 757-2000

68 Appendix A: Care, Warranty, and Service Information

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer

where you purchased your unit.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H.

Kleinrechner-Service

Wagramerstrasse-Lieblgasse 1

A-1220 Wien (Vienna)

Telephone: (0222) 23 65 11

BELGIUM

HEWLETT-PACKARD BELGIUM SA/NV

Woluwedal 100

B-1200 Brussels

Telephone: (02) 762 32 00

DENMARK

HEWLETT-PACKARD A/S

Datavej 52

DK-3460 Birkerod (Copenhagen)

Telephone: (02) 81 66 40

EASTERN EUROPE

Refer to the address listed under Austria.

FINLAND

HEWLETT-PACKARD OY

Revontulentie 7

SF-02100 Espoo 10 (Helsinki)

Telephone: (90) 455 02 11

FRANCE

HEWLETT-PACKARD FRANCE

Division Informatique Personnelle

S.A.V. Calculateurs de Poche

F-91947 Les Ulis Cedex

Telephone: (6) 907 78 25

GERMANY

HEWLETT-PACKARD GmbH

Kleinrechner-Service

Vertriebszentrale

Berner Strasse 117

Postfach 560 140

D-6000 Frankfurt 56

Telephone: (611) 50041

ITALY

HEWLETT-PACKARD ITALIANA S.P.A.

Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

I-20063 Cernusco Sul Naviglio (Milan)

Telephone: (2) 90 36 91

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V.

Van Heuven Goedhartlaan 121

NL-1181 KK Amstelveen (Amsterdam)

P.O. Box 667

Telephone: (020) 472021

International Service Information

NORWAY

HEWLETT-PACKARD NORGE A/S

P.O. Box 34

Oesterndalen 18

N-1345 Oesteraas (Oslo)

Telephone: (2) 17 11 80

SPAIN

HEWLETT-PACKARD ESPANOLA S.A.

Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

SWEDEN

HEWLETT-PACKARD SVERIGE AB

Skalholtsgatan 9, Kista

Box 19

S-163 93 Spanga (Stockholm)

Telephone: (08) 750 2000

SWITZERLAND

HEWLETT-PACKARD (SCHWEIZ) AG

Kleinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057) 31 21 11

UNITED KINGDOM

HEWLETT-PACKARD Ltd

King Street Lane

GB-Winnersh, Wokingham

Berkshire RG11 5AR

Telephone: (0734) 784 774

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you

bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is available

in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local Hewlett-

Packard service center to see if service is available for it. If service is unavailable, please ship the unit to

the address listed above under Obtaining Repair Service in the United States. A list of service centers for

other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and

materials. In the United States, the full charge is subject to the customer’s local sales tax. In European

countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable. All

such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered by the fixed repair charges. In these

situations, repair charges will be individually determined based on time and materials.

Appendix A: Care, Warranty, and Service Information 69

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period of

90 days from date of service.

Shipping Instructions

Should your unit require service, return it with the following items:

e A completed Service Card, including a description of the problem.

e A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of purchase

date should be packaged in adequate protective packaging to prevent in-transit damage. Such damage is

not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the shipment to

the service center. The packaged unit should be shipped to the nearest Hewlett-Packard designated collec-

tion point or service center. Contact your dealer for assistance. (If you are not in the country where you

originally purchased the unit, refer to “International Service Information” above.)

Whether the unit is under warranty or not,it is your responsibility to pay shipping charges for delivery to

the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-of-

warranty repairs in the United States and some other countries, the unit is returned C.0.D. (covering

shipping costs and the service charge).

Further Information

Circuitry and designs are proprietary to Hewlett-Packard, and service manuals are not available to cus-

tomers. Should other problems or questions arise regarding repairs, please call your nearest Hewlett-

Packard service center.

70 Appendix A: Care, Warranty, and Service Information

When You Need Help

Hewlett-Packard is committed to providing after-sale support to its customers. To this end, our customer

support department has established phone numbers that you can call if you have questions about this

product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call the

toll-free number below:

(800) FOR-HPPC

(800 367-4772)

Technical Assistance. For technical assistance with your product, call the number below:

(503) 754-6666

For either product information or technical assistance, you can also write to:

Hewlett-Packard

Personal Computer Group

Customer Communications

11000 Wolfe Road

Cupertino, CA 95014

Appendix B

Error Messages

The error messages listed in the following tables relate only to FORTH/Assembler ROM operations. For

other error or warning messages, refer to the HP-71 Reference Manual.

This appendix contains four listings:

1. An alphabetical listing of FORTH error messages with their corresponding error numbers. You can

use the error’s number to look up the error in the next listing.

2. A numerical listing of FORTH error messages with a description of each error condition.

3. An alphabetical listing of assembler messages with a description of each message.

4. An alphabetical listing of editor messages with a description of each message.

FORTH Messages

Alphabetical Listing of FORTH Messages

Message Number

Fotr e i

=irirng wWwon 't f

72 Appendix B: Error Messages

Numerical Listing of FORTH Messages with Descriptions

Error -
Message and Condition

Number g

47002 — Mot Found

The argument to ' (tick) isn’t in the dictionary. Check the spelling of the word.

47003 o endilng

The definition being compiled from a text file is unfinished. Put in an ending semicolon.

47004 fooending

. L or © isn’t matched by an ending parenthesis. Put in an ending parenthesis.

47005 o ending "

. or " isn’t matched by an ending double quote. Put in an ending double quote.

47006 argaument < 1

A word that expects positive integers finds negative numbers or zero on the stack. Ensure

the proper values on the stack.

47007 definition not finished

The stack’s size at the end of a word doesn’t equal its size at the start. Review the control

structures and immediate words used in the definition.

47008 dictionarg full

The dictionary space in FORTHRAM is used up. Use FOREGET or GREO.

47009 Ccomplle only

A compile-time word is used at run time. Check word usage in definitions.

47010 HF-IL error

Something is wrong related to the HP-IL interface. Check that the HP-IL interface is plugged

into the HP-71; check the integrity of the loop.

47011 attempted to redetine null

A colon (starting a colon definition) is the only input received from the keyboard; or

WoRD "' or MOREDI ' ' appears in a primitive assembly. Fatal to assembly. You can’t

redefine the null word in FORTH.

47013 i protected dictionary

The argument for FORGET is below FENCE (or in ROM). Reset FENCE.

47014 emptd =tack

A word expecting stack parameters finds the stack empty. Provide stack parameters.

47015 full =tack

The space in FORTHRAM for the data stack is used up. Use GFL to enlarge FORTHRAM

oruse FOFGET to make space in FORTHRAM.

47016 ot recognlzed

The input is neither an existing word nor a number. Check the spelling of the word; check

the CONTEXT vocabulary.

47017 conditionals not paired

A control-structure word (such as THEH) appears without the preceding word (such as

IF). Supply the missing word.

Appendix B: Error Messages 73

Error -
Number Message and Condition

47018 FOETHEAM f1le mnot in place

FORETHI, FORETHF, or FOETH® is attempted when the FORTHRAM file hasn’t been cre-

ated or has moved. Use FETH or FOETH! to enter FORTH and then exit.

47019 Imvalid Filespec

The argument to F IMOF is an illegal file specifier. Supply a valid file specifier.

47043 address not inside a3 +file

HOULZTF is given an address not properly within a file, such as the address of a file

header. Check the address of the file.

47046 bad parameters

A string word finds an out-of-range value on the stack, such as a character-position param-

eter of 20 for a string only 10 characters long. Check the stack value.

47052 Contlguration

An oversized configuration buffer or an erroneous pointer to that buffer prevents the

FORTHRAM file from occupying its required location. This will never occur under normal

circumstances. Remove a LEX file from RAM or remove a module.

47053 ztrimg won't Fit

A string is too long for the specified variable. Check the size of the variable.

47054 ot i ocurrent wocabularyg

The argument for FOREGET isn’t in the CURRENT vocabulary. Check the spelling of the

word and the CURRENT vocabulary.

47055 cannot load

The file is open, doesn’t exist, etc. Check the file’s status.

47059 v OO before LEAVE

LERYE is used outside a Liti-loop. Use LEHVE only inside a ii-loop.

47060 illegal CAHSE siructure

EMOCAHSE isn’'t preceded by valid CH=ZE ... OF ... EMDOF structure. Check the com-

plete control structure.

47063 BAZIC not re-sentrant

ERZICH is used in an argument to FETH:. Eliminate such usage.

47064 FORTH rot re-—entrant

FIORETH® is used in an argument to EAZ I, or in a program or user-defined function

executed from EAZ I, BEAZICI, or ERZICF. Eliminate such usage.

74 Appendix B: Error Messages

Assembler Messages

azzembler aboaor ted

User has aborted the assembler.

attempted 1o redefine null

A colon (starting a colon definition) is the only input received from the keyboard; or LIELD ' ' or

WORDI '' appears in a primitive assembly. Fatal to assembly. You can’t redefine the null word in

FORTH.

Carnnot open soudurce f1le

The argument to AZSEMELE is invalid, missing, or the file is open. Fatal to assembly. Check that the

source file is a text file in RAM or on tape.

cannot resolwe e Juate

The evaluation of the equate differs between the first and second passes. Check that all parts of the

expression can be evaluated during the first pass.

dictionarg full

The dictionary space in FORTHRAM is used up. Use FOREGET or GREOM.

duplicate lakbel

An existing label name is used again. Recall that labels of more than six characters are defined by the

first six characters. Rename the duplicate label.

excess characiers in expreszsion

An expression contains too many characters. Check that the expression is stated correctly.

COYES or ETHYE:Z required

A test instruction isn’t followed by a GOYE= or ETHYE = instruction. The test and branch instructions

appear to be separate but combine to form one instruction. Supply the missing GO%ES or ETHYES

instruction.

illegal dp arithmetic wvalue

An illegal value is used in data-pointer arithmetic. Check that the value of the modifier field is from 1

through 16.

1lleaal espression

An expression has illegal syntax or is too complicated. Check the syntax, the levels of parentheses, and

the number of operations.

illegal pointer position

The pointer register is set to or tested for an illegal value. Check that the value of the modifier field is

from O through 15.

1llegal =tatus b1t

The status bits are set to or tested for an illegal value. Check that the value of the modifier field is from

0 through 15.

Appendix B: Error Messages 75

illegal transfer walue

An illegal value is used in data transfer. Check that the modifier field contains a valid word select or a

number from 1 through 16.

illegal word zelect

The modifier field isn’t a valid word select. Valid entries are: A, B, M, P, S, W, WP, X, and XS.

irvalid filemame specitfiser

The filename specifier following a LE: or EIMH pseudo-op isn’t a valid filename. Fatal to assembly.

Refer to the HP-71 Owner’s Manual for valid filenames.

Irmwalid Filespec

The argument to F IMHOF is an illegal file specifier. Supply a valid file specifier.

irwalid listimg argument

The modifier field of L I =T is neither [iti nor ZFF. Check that the modifier is uppercase.

irmwalid listing file

The contents of LISTING are invalid, or listing file equals source file. Fatal to assembly. Set LISTING to

HLIL L # for no listing, to an HP-IL device for a listing to that device, or to a RAM filename for a listing to

that text file.

irwalid quoted =tring

One or both single quotes are missing from a quoted string or quoted constant.

dump or walue too larae

A relative jump is too great, or the value of a constant requires more nibbles than the instruction can

generate. Use a mnemonic for a longer jump, or check the value of the constant.

Tistirmg +1le fu4ll

There is no space in RAM for more of the listing file. Move the listing and source files out of RAM, or

move other files to external storage.

listirng file mot TESRT

The file specified in LISTING already exists and isn’t an HP-71 text file. Fatal to assembly. Provide a

different file specifier.

A right parenthesis is missing. Supply right parenthesis.

mizszing-silleasl label

lllegal characters appear in a label, or a label required for an EiiL!l instruction is missing. Check that a

legal label is present.

missingsmultiple $1le tupe

The first line in the source file isn’t LE <, EIH, or FOETH (fatal to assembly); or one of these pseudo-

ops appears a second time; or any pseudo-op of the wrong type appears (such as LOFD within a LEX

file). Check that the source file begins with a LE, EIH, or FOETH pseudo-op and contains pseudo-

ops suitable for that type of file.

76 Appendix B: Error Messages

heeds prewlious test 1nstructiion

A COYES or ETHYES instruction appears without a preceding test instruction. The test and branch

instructions appear to be separate but combine to form one instruction. Supply the missing test

instruction.

non-—hexadecimal digit present

The modifier field contains illegal characters. Use only hex digits 0 through F.

fiot enougab memord for assembler

There is insufficient space in RAM for the required assembler variables, files, or operations. Fatal to

assembly. Put the listing file to an HP-IL device; move the source file (or other files) to external storage.

pageslize too =mall

PAGESIZE is set to less than 8. Fatal to assembly. Set PAGESIZE to 8 or greater.

resztricted label FileMd exizt=

The user has placed this restricted label in the source file. Fatal to assembly. Choose a different label.

=dmbol table full

There is no space in RAM for more symbols. Fatal to assembly. Move listing file or source file out of

RAM.

too mand HAHSCII chars present

The modifier field contains more than eight ASCII characters. Use no more than eight ASCII characters.

too mang hex digilits present

The modifier field contains more than 16 hex digits. Use no more than 16 hex digits.

unkrnown opcode

The opcode isn’t recognized. Check that the opcode is spelled correctly, in uppercase letters, and prop-

erly placed in an opcode field.

Unrecoganlized label

An undefined label appears within an expression. Check whether parentheses are required to separate

the label from an operator.

Wwarmning: word not ounique

name in HOED 'name' is already present in the FORTH dictionary.

Appendix B: Error Messages 77

Editor Messages

DOHE

The editor has been exited.

File Esxists: ____

The file specified to receive deleted lines already exists. Use the + option, or choose a different

filename.

Imsufticient Memory

There is insufficient memory for the operation being performed. If other operations requiring less mem-

ory can be performed, the ": prompt returns to the display. If no further operations are possible, the

editor is exited. Purge a file or execute DEZTROY HALL.

ITrwalid File Tupes: __

The file specified in the command string must be a text file.

Iriwalid FParam:

The editor doesn’t recognize the parameter portion of a command string. Review the command’s

syntax.

Lime Too Lonag

The line of text is longer than 96 characters, which is not allowed in text mode.

Cwmcdy

The editor doesn’t recognize the letter as a valid command. The valid commands are c, d, e, f, h, i, |, m,

p, rs, and t.

bork 1ra . ..

The editor is executing a command.

Appendix C

BASIC Keywords

Introduction

This Appendix describes the BASIC keywords added to the HP-71 when the FORTH/Assembler ROM is

plugged in. The keywords fall into three categories:

BASIC-to-FORTH Editor Remote Keyboard

FORETH DELETE# ESCHFE

FORETHF EOTEST EEYEOARED I=

FORTHF FILESZIE FESET ESCHFES

FORETHI ITMZEETH

FORTHH MoSGE

FREFLACEH#

SCREOLL

“EHRECH

Organization

Entries in this appendix are arranged in alphabetical order. The same format is used for every keyword

entry so that you can quickly find the information you need. The format is similar to that used in the

HP-71 Reference Manual—refer to that manual for additional details.

Each keyword entry provides the following information for the keyword:

e Keyword name. Shows the basic keyword.

e Purpose. Gives a one-line summary of the operation that the keyword performs.

e Keyword type. Identifies the keyword as a statement or as a function. (None of the keywords are

operators.)

e Execution options. Indicates situations in which you can execute the keyword:

e From the keyboard.

e In CALC mode.

e After THEHM or ELZE inan IF ... THEHM ... ELZE statement.

e While the HP-71 is operating as an HP-IL device (not as controller). This is given only for

HP-IL words.

79

80 Appendix C: BASIC Keywords

e Syntax diagram. Defines the required and optional components within the statement or function

for proper syntax. Parameters shown within brackets are optional. Parameters shown in a vertical

stack are alternatives.

e Examples. Illustrates and explains some ways that the keyword can be used, and shows some pos-

sible syntax variations.

e Input parameters. Defines the parameters used in the syntax diagram, gives their default values (if

applicable), and lists restrictions on parameter values or structure. (This heading isn’t included for

keywords that use no parameters.)

e Operation. Gives a detailed description of the keyword’s operation and other information that’s use-

ful for learning and using the keyword.

¢ Related keywords. Lists other keywords that either influence the results of the subject keyword or

else are similar in function.

Appendix C: BASIC Keywords 81

DELETE#

Deletes one record from a text file.

B Statement B Keyboard Execution

[} Function [J CALC Mode

L] Operator B IF...THEN...ELSE

-

CELETE# channel number . record number

Example

DELETE# 5,14 Deletes the 14th record from the text file currently

assigned to channel #5.

Input Parameters

Item Description Restrictions

channel number Numeric expression rounded to an integer. 1 through 255.

record number Numeric expression rounded to an integer.

Operation

The DELETE# keyword deletes the specified record from the text file assigned to the specified channel

number. Record numbers always begin at 0, so line number 1 is record number 0.

The channel number and the record number can be expressions. DELETE # rounds each of the resulting

values to an integer.

DELETE# returns an error message if the assigned file is external, protected, or not a text file.

Related Keywords

Hoo IGH#E, THSERTH, FEFLACE#, F1I

82 Appendix C: BASIC Keywords

EDTEXT

Invokes the text editor.

B Statement B Keyboard Execution

[J Function (J CALC Mode

[J Operator B IF...THEN...ELSE

EOTE®T file specifier[. command string]

Examples

EOTEST SCEEEH Runs the editor program, with ZZFEEH as the edit

file.

EOTE=T SCREEH, L Runs the editor program, with ZZREEHM as the edit

file. Begins by listing the file to the display device.

Input Parameters

Item Description Restrictions

file specifier String expression or unquoted string. File must be in

RAM or IRAM.

command string See description of editor command strings in section 3.

Operation

The ELTET keyword starts the editor program. The optional command string permits you to have the

editor begin immediate execution of editor commands that appear in the command string.

An error can cause the editor program to terminate without going through its normal exit path. If you are

running the editor from another BASIC program, or from the FORTH environment, you can check for

this situation by using OIZF# to read the display contents. If the result is other than

Oore: <filename’, then you will know that the editor has encountered a fatal error, the edit file

may be in a corrupt state, and the editor key assignments may still be active. For example, from the

FORTH environment, you can type the sequence

" EOTE=T =ZCREEH" BRSICH " DISF$EY BRSICH DROFP B -182530

to edit the file ZCFEEH. When the editor terminates, a true flag will be pushed on the stack if the editor

terminated normally (here we are checking the numerical equivalent of the first three characters on the

display to see if they match “Don”, which translates to —102588).

Related Keywords

HESIGH#, DELETE#, REFLACE#, FILESZE

Appendix C: BASIC Keywords 83

ESCAPE

Adds or modifies an escape-sequence key specification in the current KEYEOARED I35key map buffer.

B Statement B Keyboard Execution

[J Function [J CALC Mode

(] Operator B IF...THEN...ELSE

B Device Operation

EmiiHFE string . key number

Example

ESCAFE "R, 43 Specifies that the escape sequence (ESC)A received

from the EEYEOARED I% device will be changed to

key code 43.

ESCARE "AY .0 Cancels the (ESC)A assignment.

Input Parameters

Item Description Restrictions

string String expression. Only the first

character is used.

key number Keycode. 0 through 168.

Operation

EZ{HAFE specifies that a particular one-character escape sequence (the escape character ASCII 27 fol-

lowed by a single character) received by the HP-71 from the current KEYEZAED 1% device will be re-

placed by an HP-71 keycode in the key buffer input. EZCHFE requires two parameters, a one-character

string and a numeric keycode. The string specifies the escape sequence; the number indicates the

corresponding keycode. '

The first execution of ESZHFE creates a special HP-71 buffer that specifies the mapping of escape se-

quences received from a KEYEDARRED I3 device to HP-71 keycodes. Each subsequent use of EZCHFE

will add a new character/key code mapping, or modify an existing one, in the buffer. You can clear the

buffer completely by executing FEZET EZCHFE. The buffer will be cleared if you turn on the HP-71

when the FORTH/Assembler ROM is not installed.

84 Appendix C: BASIC Keywords

ESCAPE (continued)

A mapping of an escape sequence created with EZCHAFE can be cancelled by assigning keycode 0 to the

character:

ESCHFE '"character" .

removes the entry for character from the keymap buffer.

As an example of the use of EZCHFE, suppose that you have connected a terminal to the HP-71 through

the HP 82164A HP-IL/RS232 interface. On many terminals the cursor up, down, right, and left keys

transmit the escape sequences (ESC)A, (ESC)B, (ESC)C, and (ESC)D, respectively. The following pro-

gram will cause these sequences to map to the corresponding cursor keys on the HP-71, when the terminal

is the KEYEOARD I% device:

10 RESET ESCAPE Purges any former key map buffer.

20 ESCAPE “A”",50 Maps (ESC)A to cursor-up key (50).

30 ESCAPE “B",51 Maps (ESC)B to cursor-down key (51).

40 ESCAPE “C",48 Maps (ESC)C to cursor-right key (48).

50 ESCAPE “D",47 Maps (ESC)A to cursor-left key (47).

60 END

Related Keywords

FEYEORRED Iz, RESET ESCHFE

Appendix C: BASIC Keywords 85

FILESZR

Returns the number of records in a text file.

UJ Statement B Keyboard Execution

B Function (J CALC Mode

(] Operator B IF..THEN...ELSE

FILEZZR dfilename
Example

A=ILESZRCYSCREER ™ Sets the variable i equal to the number of records in

the text file SCREEEH.

Input Parameters

Item Description Restrictions

file name String expression or quoted string. Can not include a

device specifier or

CARD.

Operation

The FILEZZE keyword returns the number of records in the file specified, if that file exists. If the file

does not exist, or the operation fails for any other reason, a negative number is returned. The absolute

value of the negative number is the error number of the error that caused the function to fail.

Related Keywords

IMzZERTH, DELETE#, REFLACE#

86 Appendix C: BASIC Keywords

FORTH

Transfers HP-71 operation to the FORTH environment.

B Statement B Keyboard Execution

U Function J CALC Mode

(] Operator [J IF...THEN...ELSE

FORTH

Operation

Keyboard execution of FIOETH (it is not programmable) causes the HP-71 to exit the BASIC operating

system environment and transfer control to the FORTH environment. The message HF -7 1 FORETH 1H

is displayed. Subsequent keyboard input is interpreted by the FORTH outer interpreter.

If the HP-71 is turned off while FORTH is active, it will automatically reenter the FORTH environment

when the HP-71 is turned back on.

Execution of the FORTH word E*%E will return the HP-71 to BASIC.

Because of the complete access to the HP-71 memory space provided by FORTH, it is quite possible for a

FORTH program to store inappropriate data into HP-71 operating system RAM. In many cases, this will

cause a memory lost condition. Following a memory loss, the HP-71 will return to the BASIC

environment.

Related Keywords

FORTHE®, FORETHF, FOETHI, FORTHX

Appendix C: BASIC Keywords 87

FORTH$

Returns to a BASIC string variable the contents of a string defined in the FORTH environment by an

address and character count on the FORTH data stack.

[J Statement B Keyboard Execution

B Function J CALC Mode

L] Operator B IF...THEN...ELSE

FORTHE

Examples

HE=FORETHSE Returns the value of the FORTH string to the

BASIC variable ##.

CE=CFLFORTHSE Concatenates the FORTH string to #.

Operation

FIRETH# reads a string specified by the address and character count on the FORTH data stack and

returns its value to a BASIC string variable. The contents of the FORTH data stack must already have

been established prior to execution of F 1k TH#%. If there are fewer than two values on the data stack when

FIORETHE is executed, an error will occur, producing the message FTH ERFE:zmptu stack.

When FIETH# is executed, two values are dropped from the top of the FORTH data stack. There is no

other effect on the FORTH environment. If the FORTHRAM file does not exist, the message

FTH ERE:FORTHEAM mot in place will be displayed.

Related Keywords

FORTH, FORTHF, FORTHI, FORTHH

88 Appendix C: BASIC Keywords

FORTHF

Returns the contents of the FORTH floating-point X-register to a BASIC numeric variable.

0J Statement B Keyboard Execution

B Function B CALC Mode

L) Operator B IF..THEN...ELSE

FORTHF

Examples

H=FORETHF Copies the contents of the FORTH X-register to the

BASIC variable .

A=IHCFORTHF Computes the sine of the contents of the X-register

and places the result in the BASIC variable ::.

FORTH='" A" BARASICF FHORED' Copies the BASIC variable # to the FORTH

E=FORETHF X-register, then executes a FORTH word FLIOFE,

and returns the resulting value from the X-register

to the BASIC variable E.

Operation

FLORETHF allows floating-point numeric data in the FORTH environment to be accessed from the BASIC

environment. F0F THF copies the contents of the FORTH floating X-register to a BASIC numeric vari-

able. The contents of the FORTH floating—point stack remain unchanged, and there is no other effect on

the FORTH environment.

The FORTH environment can be configured prior to execution of FIETHF through the keyword

FORTH=. If the FORTHRAM file does not exist, the message FTH ERE:FORETHREAM

ot in place will be displayed.

Related Keywords

FORTH, FORETH®, FORETHI, FORETH=

Appendix C: BASIC Keywords 89

Returns the top value from the FORTH data stack to a BASIC numeric variable.

[J Statement B Keyboard Execution

B Function B CALC Mode

L) Operator B IF...THEN...ELSE

FORETHI

Examples

I=FORTHI Moves the top value from the FORTH data stack to

the BASIC variable 1.

I=FORTHI™Z Computes the square of the value on the FORTH

data stack and places the result in the BASIC vari-

able I.

FORTH='" I" BASICI FHORD® Copies the BASIC variable I to the FORTH data

E=FORTHI stack, then executes a FORTH word FHOFED, and

returns the resulting top value from the data stack to

the BASIC variable E.

Operation

FOFETHI allows values contained on the FORTH data stack to be accessed from the BASIC environment.

FORETHI moves the value on the top of the FORTH data stack to a BASIC numeric variable. The value is

dropped from the data stack, but there is no other effect on the FORTH environment.

If there are no values on the data stack when FIORETHI is executed, an error will occur, producing the

message FTH EFRE:=mpta =tack. The FORTH environment can be configured prior to execution of

FORTHF through the keyword FIORTHM. If the FORTHEAM file does not exist, the message

FTH EREE:FORETHEAM mnot im place will be displayed.

Related Keywords

FORTH, FORETH®, FORTHF, FOETH=

90 Appendix C: BASIC Keywords

FORTHX

Executes a FORTH command string.

B Statement B Keyboard Execution

[J Function [J CALC Mode

L) Operator B IF..THEN...ELSE

FOETH=" command string"[. parameter list]

Example

FORTH: "DOREOF + . TYFE CE", Push onto the FORTH data stack the address and

"Hello",1,2,32 character count of the string “Hello,” and the values

1, 2, and 3; then execute the FORTH words OIEOF,

+ ., TYFE, and CF.

Input Parameters

Item Description Restrictions

command string String expression. Contains valid

FORTH words.

parameter list Numeric expressions and string expressions, separated by Maximum of 14

commas. parameters.

Operation

The FORTHkeyword allows you to execute FORTH routines from the BASIC environment. The op-

tional parameter list is a list of up to 14 string or numeric expressions, separated by commas. Each item in

the list is pushed onto the FORTH data stack: numbers as single length numbers, and strings each as two

numbers representing the address and character count of the string. After the parameters are placed on

the stack, the sequence of FORTH words specified in the command string is executed, following which

control is returned to the BASIC environment.

EFASICH can not be included in the command list—the FORTH/BASIC interface does not permit re-

entrant execution.

The strings passed to FORTH in the parameter list are created in temporary memory. FORTH words can

copy those strings to FORTH string variables, or concatenate them to existing strings, but you should not

attempt to write other strings to the addresses of the temporary FF TH! strings.

Related Keywords

FORETH, FORETH#, FOETHF, FOETHI

Appendix C: BASIC Keywords 91

INSERT#

Inserts one record into a text file.

B Statement B Keyboard Execution

(] Function [J CALC Mode

(] Operator B IF...THEN.. ELSE

=14 channel number . record number : new record

Example

Mol o thers’ Inserts the string “Hello there” into the file cur-

rently assigned to channel #5, as record 14. The for-

mer record 14 becomes record 15.

Input Parameters

Item Description Restrictions

channel number Numeric expression rounded to an integer. 1 through 255.

record number Numeric expression rounded to an integer.

new record String expression.

Operation

The It # keyword inserts the new record at the record number in the file assigned to the specified

channel number. The new record is an HP-71 string expression. The channel number and the record

number can be expressions. Record numbers always begin at 0, so line number 1 is record number 0.

THEZERTH rounds each of the resulting values to an integer.

The new record is inserted ahead of the record previously numbered at the record number. The former

record, and all subsequent records, have their records numbers incremented incremented by 1.

 “# returns an error message if the assigned file is external, protected, or not a text file.

Related Keywords

92 Appendix C: BASIC Keywords

KEYBOARD IS

Assigns one HP-IL device to be used as an external keyboard.

B Statement B Keyboard Execution

UJ Function J CALC Mode

(] Operator B IF...THEN...ELSE

[J Device Operation

device specifier

[IHILL

FEYEOARED I3 [:]#

M HULL T
i [:]* i

Examples

FEYEOARED IS RESZ2ZZ0Z0 Assigns the second HP-IL/RS232 Interface to be the

FEYEOARED I3 device.

FEYBEORRED I35 % Deactivates any FEYEORRED 1% assignment.

Input Parameters

Item Description Restrictions

device specifier See standard description in HP-IL Interface Owner’'s None

Manual.
Operation

The EEYEOARD I% statement assigns one HP-IL device to act as a remote keyboard for the HP-71.

That is, whenever the HP-71 is expecting keyboard input, it will check the EEYENARED I% device to

determine if the device has data available. If so, the data will be read into the HP-71 key buffer, and

executed as if it had been entered from the HP-71 keyboard. The HP-71 keyboard continues to function

normally. Input can be mixed from the HP-71 keyboard and the remote keyboard.

KEYEOARED I% is deactivated by either of the statements KEYEDARD 1% HULL or

EEYBEOARD IS %,

While EEYEOARED I% is active, the HP-71 is continually transmitting on HP-IL. This results in an

increase in power consumption, even while the HP-71 is apparently idle. It is recommended that you

connect the AC adapter to the HP-71 to conserve battery life while you are using KEYEOARD 15 for

remote input.

Appendix C: BASIC Keywords 93

KEYBOARD |S (continued)

If the loop is broken while KEVEOARED 1% is active, press twice to restore HP-71 operation.

When the loop is restored, execute FEZET HFIL, reinitialize the keyboard device, and execute

FEYVEOARED IS again.

By making OIZFLAY 1% and KEYECOARED IS assignments to the same HP-IL device (usually an

interface class device), almost any terminal, or computer acting as a terminal emulator, can be used as an

extension of the HP-71 keyboard and display. Most HP-71 operations can be executed from the terminal

just as if they were keyed in directly on the HP-71. If you set Flag —21, the automatic loop power down

that occurs when the HP-71 turns itself off will be disabled, so that the KEYEOJRRED I3 device can turn

the HP-71 on remotely.

For proper operation of KEYEIARRED I3, the designated device must be enabled to set HP-IL service

requests when it has data available. You can refer to the owner’s manual for an HP-IL device to deter-

mine how to enable the device. For example, the following sequence will set up the HP 82164A HP-

IL/RS232 Interface for use as the KEYEDIARED I3 device:

FEMOTE @ OUTRFUT REzzZ2z"sSE@:sEZ:;" @B LOCAL @ DOTHFOMODOSFOLL

P REDZEAE ALETEE D

The remote mode command SEO disables any current service request mode on the interface; SE3 sets the

interface for service request on data available. The status read (=FL L) shows any error condition—the

[ITH# formats the device status in hexadecimal. A normal status will show the friendly “A1” as the last

byte.

All characters received from the KEVEIARED 1% device are placed directly into the key buffer, with the

following two exceptions:

»
1. “Control characters,” i.e., characters corresponding to ASCII codes from 0 through 31, are generated

on the HP-71 by pressing the [9](CTRL combination followed by another character. The latter charac-

ter determines the output character according to its ASCII code: the control character will have the

ASCII value 64 less than the keyed character. For example, character 1 is generated by pressing

(9](cTRL] A (A=ASCII 65). KEVEOARED I3 makes the same translation of control characters to

keyboard characters. Control characters received from the KEvEDIARED I35device are replaced in the

key buffer by two keycodes—key 158 ([9](CTRL]) plus an additional keycode to specify the control

character according to the mapping just described.

2. One-character escape sequences (the escape character ASCII 27 followed by one additional character),

which can optionally be replaced in the input stream by user-specified HP-71 keycodes. Through use

of the EZCHFE keyword, the user can map such escape sequences into arbitrary HP-71 keys (such as

ON or the command stack) from the remote keyboard. (Notice, however, that remote execution of the

ON key will not interrupt the HP-71 unless it is expecting keyboard input.) For a complete explana-

tion of this feature, refer to the documentation of the EZCHFE keyword.

Related Keywords

E=CHFE, FEZET EzCHFE, DISFLAY IS, FRIMTER IZ

94 Appendix C: BASIC Keywords

MSG$

Returns the message string corresponding to a specified error number.

[J Statement B Keyboard Execution

B Function [J CALC Mode

L] Operator B IF..THEN...ELSE

[M=5% < error number :

HE=MZGFOSED Places the message string associated with error #58

into the string variable H#.

Input Parameters

Item Description Restrictions

error number Numeric expression. Valid error number.

Operation

The M=% keyword provides access to the error message strings generated by the HP-71 operating sys-

tem, the FORTH/Assembler ROM, or any other LEX file. MZ 5% n> returns the string corresponding to

the nth error.

M=% 1s a generalization of the keyword EFF1#, which returns the message string associated with the

most recent error.

Related Keywords

EREEM, ERFEL, EREMF

Appendix C: BASIC Keywords 95

REPLACE#

Replaces one record in a text file.

B Statement B Keyboard Execution

[J Function [1 CALC Mode

L) Operator B IF..THEN...ELSE

FEFILLACZE$# channel number , record number : new record

Example

FEFLACE# 5,14 "Hello there" Replaces the 14th record in the text file currently as-

signed to channel #5, with the string “Hello there”.

Input Parameters

Item Description Restrictions

channel number Numeric expression rounded to an integer. 1 through 255.

record number Numeric expression rounded to an integer.

new record String expression.

Operation

The FEFLHACE# keyword replaces a specified record, in the text file assigned to the specified channel

number, with a new record. The new record is an HP-71 string expression. The channel number and the

record number can be expressions. Record numbers always begin at 0, so line number 1 is record number

0. FEFLHACE# rounds each of the resulting values to an integer.

FEFLACE# returns an error message if the assigned file is external, protected, or not a text file.

Related Keywords

Hoo TG DELETEH, IMSERTH, FILEZZE

96 Appendix C: BASIC Keywords

RESET ESCAPE

Purges any existing key-map buffer created by the ESCHFE keyword.

B Statement B Keyboard Execution

(J Function [J CALC Mode

(] Operator B IF..THEN...ELSE

B Device Operation

FEZET EZCHFE

Related Keywords

FEYBEORED IZ, ESCHPE

Appendix C: BASIC Keywords 97

SCROLL

Scrolls the display to a position and waits for a key to be pressed.

B Statement B Keyboard Execution

[J Function [J] CALC Mode

() Operator B IF..THEN...ELSE

=UREOLL position

Example

DISF "Hello there’ B SCOROLL 4 Display the string “Hello there,” with the fourth

character in the string as the first character in the

display, so that the display shows “lo there.”

Input Parameters

Item Description Restrictions

position Numeric expression rounded to an integer. 1 through 96.

Operation

The =&1. keyword enables you to display a string, under program control, that can be scrolled from

the keyboard. Execution of Zi:FL L causes the current display string to shift so that the character in the

position specified by the numeric expression is the leftmost character in the display. Execution halts, so

that a user can press the left- and right-arrow keys to scroll the display. Execution resumes when any

other key is pressed (the pressed keycode is placed in the key buffer). The number input with =RDL

must be greater than zero.

98 Appendix C: BASIC Keywords

SEARCH

Finds a string in a text file.

[J Statement B Keyboard Execution

B Function [J CALC Mode

(] Operator B IF..THEN...ELSE

=EHRFCH search string . column number . begin line . end line , channel :

Example

A=nEARCHO"He 1 1ao® 0 o
t

L L

|

CaL L Ee 2 Searches the file assigned to channel #2 for the

string “Hello.” The search starts in column 5, line 1,

and extends through line 99.

Input Parameters

Item Description Restrictions

search string String expression. 1 through 9999.

column number Numeric expression rounded to an integer. 1 through 9999

begin line Numeric expression rounded to an integer. 1 through 9999

end line Numeric expression rounded to an integer. 1 through 9999

channel Numeric expression rounded to an integer. 1 through 255

Operation

The ZEAFELZH keyword enables you to determine the location of a specified string within an HP-71 text

file. If the search is successful, ZEAFCH returns a value in the format nnn.ccclll, where nnn is the record

number, ccc is the column number, and [l is the length of the matched string. If the search is unsuccessful,

zero is returned.

The search string can be any string expression, and the other parameters can be any numeric expression.

Each input value is rounded to an integer. A zero is returned for an empty file.

Related Keywords

IMSZERTH, DELETE#, FEEFLACE#

Appendix D

FORTH Words

This appendix describes all FORTH words in the FORTH/Assembler ROM. The words appear in ASCII

order. For a discussion of nonstandard FORTH operations, refer to section 2, “The HP-71 FORTH

System.” For a listing of all FORTH words grouped by functional category, refer to the inside back cover

of this manual.

Each entry shows the word, its pronunciation, its use of the data stack, and a brief description of the

word’s operation. A word E “FMFLE might have the following entry:

EXAMPLE (Example) ny n, = ng

Perform the specified operation on n, and n,, replacing them on the data stack with the result ns. (Before

stack.)

Some descriptions begin with “COMPILE” or “IMMEDIATE.” These indicate the following:

e COMPILE indicates that the word is intended for use only during compilation. Direct execution of

the word can give meaningless or dangerous results; where appropriate, a

FiH ERE: compile onlwyg error occurs.

e IMMEDIATE indicates that the word is executed, rather than compiled, when encountered during

compilation.

99

100 Appendix D: FORTH Words

Notation

The stack-use diagrams use the following variables to represent various types of data.

Definition of Stack Variables

Variable Type of Data

n A signed (twos complement) 20-bit integer.

un An unsigned 20-bit integer.

d A signed (twos complement) 40-bit integer.

ud An unsigned 40-bit integer.

flag A signed (twos complement) 20-bit value, either —1 (true) or O

(false).

c A 20-bit value whose two low-order nibbles represent an ASCII

character.

adadr A 20-bit address.

count A 20-bit value whose two low-order nibbles represent the number

of characters in a string.

str A 40-bit value comprising addr and count. Count is on top and

tells how many characters are to be found at adar.
Errors

Many FORTH words require one or more parameters on the data stack. When a word is executed with too

few parameters on the stack, unpredictable errors will occur. The error message

FTH EFFE: emptw =tack might be displayed, but only after the operation is carried out on spurious

parameters. These spurious parameters come from the terminal input buffer (TIB), which resides above

the data stack. If a result is returned, it will be written into the TIB, and an error message like

FTH ERERE: =4Yzat not recoanized occurs when FORTH tries to interpret this result as a

character string containing FORTH words and data.

FORTH is similar to assembly language in its lack of user protection. In most cases FORTH will attempt

to perform the specified operation, even if the operation will cause a Memory Lost condition. For instance,

it is easy to write a FORTH loop that pushes a value onto the data stack 1,000,000 times. Execution of

this loop will overwrite the user dictionary, the FORTH system variables, and the BASIC O/S variables.

Eventually the machine will be too confused to continue and will perform a cold start. In other cases you

might need to perform an IMHIT 32to recover normal HP-71 operation.

Appendix D: FORTH Words 101

FORTH Glossary

! (Store) n addr -

Store n at addr.

(Quote) - Str

Used in the form: " ccc™

IMMEDIATE. In execute mode: Take the characters ccc, terminated by the next *, from the input

stream, and store them in a temporary string variable at the PAD. The string variable’s header shows a

maximum length of 80 characters or the current length, whichever is greater. Any other word that returns

another temporary string will wipe out the first string.

In compile mode: Compile into the dictionary the runtime address of ", two bytes for the length of the

string ccc (maximum length = current length), and the string itself. A string must be contained on a

single line of a source file.

(Sharp) ud; - ud,

Used in the form: <4 d$$#H #>-

Divide ud; by EFZE, convert the remainder to an ASCII character, place this character in an output

string, and return the quotient ud,. Used in pictured output conversion; refer to < #.

> (Sharp-greater) ud - addr n

End pictured output conversion. #drops ud and returns the text address and character count. (These

are suitable inputs for T%FE.)

#S (Sharp-s) ud - 0 0

Convert ud into digits (as by repeated execution of #), adding each digit to the pictured numeric-output

text until the remainder is zero. A single zero is added to the output if ud = 0. Used between < # and # .

#TIB (Number-t-i-b) -~ addr

Return the address of the variable #TIB, which contains the number of bytes in the terminal input buffer.

Set by GHIERY.

102 Appendix D: FORTH Words

’ (Tick) ~ addr

Used in the form: ' name

Return the CFA of name.

'STREAM (Tick-stream) -~ adar

Return the address of the next character in the input stream.

((Paren) -

Used in the form: i ccc:

IMMEDIATE. Consider the characters ccc, delimited by , as a comment to be ignored by the text inter-

preter. The blank following ¢ is not part of ccc. © may be freely used while interpreting or compiling. A

comment must be contained on a single line of a source file.

* (Times) ny n, - ng

Return the arithmetic product of n; and n..

X/ (Times-divide) ny n, ng - n,

Multiply n; and ns, divide the result by nj, and return the quotient ny. The product of n; and ny is

maintained as an intermediate 40-bit value for greater precision in the division.

*/MOD (Times-divide-mod) ny n, ng = n, ns

Multiply n; and n,, divide the result by nj, and return the remainder n, and the quotient ns. The product
of n; and ny is maintained as an intermediate 40-bit value for greater precision in the division.

Appendix D: FORTH Words 103

+ (Plus) ny np = ng

Return the arithmetic sum of n; and n,.

+! (Plus-store) n addr -

Add n to the 20-bit value at addr.

+ BUF (Plus-Buff) addr; - addr, flag

Advance the mass-storage-buffer address (addr;) to the address of the next buffer (addry). +ELIFreturns a

false flag if addr, is the address of the buffer currently pointed to by F&E'/; otherwise, +ELIF returns a

true flag.

’ (Comma) n -

Used in the form: 1=34

Allot five nibbles and store n in the dictionary.

- (Minus) ny n, = nj

Subtract n, from n; and return the difference ns.

—TRAILING (Dash-trailing) addr count; - addr count,

Adjust the character count of the text beginning at addr to exclude trailing blanks.

(Dot) n -

Convert n according to EAZE and display the result in a free-field format with one trailing blank. Display

a minus sign if n is negative.

104 Appendix D: FORTH Words

(Dot-quote) -

Used in the form: " oeee"

COMPILE, IMMEDIATE. Compile the characters ccc, delimited by ", so that later execution will trans-

mit ccc to the current display device. The blank following . " is not part of ccc. A string must be con-

tained on a single line of a source file.

K| (Dot-paren) -

Used in the form: . L oceen

IMMEDIATE. Display the characters ccc, delimited by . The blank following . : is not part of ccc. A

string must be contained on a single line of a source file.

.S (Dot-S) -

Print the contents of the stack as unsigned integers, starting with the top of the stack. . = doesn’t alter

the stack.

/ (Divide) ny no = ng

Divide n; by ns, and return the quotient ns. Division by 0 always yields 0.

[MOD (Divide-mod) ny n, = ns ng

Divide n; by n,, and return the remainder n; and quotient ny.

0 (Zero) - 0

Return the constant 0.

0< (Zero-less) n - flag

Return a true flag if n < 0; otherwise, return a false flag.

Appendix D: FORTH Words 105

0= (Zero-equals) n - flag

Return a true flag if n = 0; otherwise, return a false flag.

0> (Zero-greater) n - flag

Return a true flag if n > 0; otherwise, return a false flag.

1 (One) - 1

Return the constant 1.

1+ (One-plus) n - n+f1

Increment n by 1.

1-— (One-minus) n - n—1

Decrement n by 1.

1/X (Reciprocal-of-X) -

Divide 1.0 by the contents of the X-register. 1 .-places the result in the X-register and the original value

of x in the LAST X register.

10X (10-to-the-X)

Raise 10 to the power contained in the X-register. &™places the result in the X-register and the

original value of x in the LAST X register.

2 (Two)

Return the constant 2.

106 Appendix D: FORTH Words

2%k (Two-times) n - 2n

Return the product of n and 2.

2+ (Two-plus) n - n+2

Increment n by 2.

2— (Two-minus) n - n-—-2

Decrement n by 2.

2/ (Two-divide) n - nf2

Divide n by 2 and return the result. =.- produces n/2 by shifting n one bit to the right and extending the

sign bit.

2DROP (Two-drop) d -

Drop the double number (or two single numbers) on the top of the data stack.

2DUP (Two-dup) dy - dy d

Duplicate the double number (or pair of single numbers) on the top of the data stack.

20VER (Two-over) d d, - dy d, d,

Make a copy of the second double number (or third and fourth single numbers) on the data stack.

Appendix D: FORTH Words 107

2SWAP (Two-swap)

d1 d2 - d2 d1

Reverse the order of the two double numbers on the top of data stack.

3 (Three) - 3

Return the constant 3.

4N@ (Four-n-fetch) addr - n

Return the four-nibble (two-byte) quantity located at addr.

5+ (Five-plus) n - n+5

Increment n by 5.

5— (Five-minus) n - n-5

Decrement n by 5.

(Colon) -

Used in the form: name . . .

Create a word definition for name in the compilation vocabulary and set compilation state. The search

order is changed so that the first vocabulary in the search order is replaced by the compilation vocabulary.

The compilation vocabulary is unchanged. The text from the input stream is subsequently compiled. name

is called a colon definition. The newly created word definition for name cannot be found in the dictionary

until the corresponding : is successfully processed.

’ (Semicolon)

Used in the form: name . . .

IMMEDIATE, COMPILE. Stop compilation of a colon definition. : compiles E=IT into the dictionary,

clears the smudge bit (so that this colon definition can be found in the dictionary), and sets execute state.

108 Appendix D: FORTH Words

< (Less-than) ny n, - flag

Return a true flag if n; < no; otherwise, return a false flag.

< # (Less-sharp) -

Initialize pictured numeric output. The words < #, #, #=HOL D, S1GH, and #» can specify the conver-

sion of a double number into an ASCII-character string stored in right-to-left order.

<> (Not-equal) ny n, - flag

Return a true flag if n; # no; otherwise, return a false flag.

= (Equals) ny n, - flag

Return a true flag if n; = ngy; otherwise, return a false flag.

> (Greater-than) ny no, - flag

Return a true flag if n; > no; otherwise, return a false flag.

>BODY (To-body) addr, - addr,

Return the PFA (addr;) of the word whose CFA is addr,. (addry = addr; + 5.)

>IN (To-in) -~ addr

Return the address of the variable >IN, which contains the current offset within the input stream. The

offset is expressed in nibbles and points to the first position past the first blank.

>R (To-R) n -

COMPILE. Transfer n to the return stack.

Appendix D: FORTH Words 109

(Question-mark) addr -

 HEX EFCCS 7Used in the form:

1 and the . (dot) format.Display the number at addr using the current &

?2COMP (Query-comp)

 Ccomeplle ol message if not in compile mode.FTH ERE:COMPILE. Issue a F1

?DUP (Query-dup) n - n (n

 Duplicate n if n # 0.

?STACK (Query-stack) -

Issue a FTH E i tu = tack message if the stack pointer is above the bottom of the stack; or

issue a TH 11 =t=zck message if the stack pointer has grown into the pad.

?TERMINAL (Query-terminal) ~ flag

 Return a true flag if a key has been pressed and placed in the key buffer; otherwise, return a false flag.

@ (Fetch) addr - n

Return the number stored at addr.

ABORT (Abort) -

 Reset the data and return stacks, close all files, set execution mode, set FiiF TH as the current and con-

text vocabulary, and return control to the terminal.

110 Appendix D: FORTH Words

ABORT* (Abort-quote) flag -

Used in the form: : name ... HEORET" cecc" ...

COMPILE, IMMEDIATE. If flag is true, display the character string ccc (delimited by *) and execute

FEDET; otherwise, drop the flag and continue execution. The character string must be contained on a

single line of a source file.

ABS (Absolute) n - Inl

Return the absolute value of n.

ACOS (A-cos) -

Calculate the arc cosine of the contents of the X-register, according to the currently active angular mode.

FI0% places the result in the X-register and the original value of x in the LAST X register.

ADJUSTF (Adjust-f) addr n - flag

Adjust a file by n nibbles, starting at addr and moving toward greater addresses, and return a true flag if

successful or a false flag if not. A !LIZTF enlarges the file for positive n or shrinks the file for negative n.

ALLOT (Allot) n -

Add n bytes to the parameter field of the most recently defined word (regardless of the ClLiFFEEHNT and

COMTE =T vocabularies).

AND (And) ny ny, - ng

Return the bit-by-bit AND of n; and n,.

ASC (Ascii) str - n

Return the ASCII value of the first character in the string specified by str.

Appendix D: FORTH Words 111

ASIN (A-sine) -

Calculate the arc sine of the contents of the X-register, according to the currently active angular mode.

f% I Hplaces the result in the X-register and the original value of x in the LAST X register.

ASSEMBLE (Assemble) str -

Assemble the file whose name is specified by str. SZZEMELE uses EAZILH

HEsEMEBLE from BASIC.

., so you can’t call

ATAN (A-tan) -

Calculate the arc tangent of the contents of the X-register, according to the currently active angular mode.

MTHH places the result in the X-register and the original value of x in the LAST X register.

BASE (Base) ~ addr

Return the address of the variable BASE, which contains the current numeric-conversion base.

BASICS$ (Basic-dollar) stry - stry

Used in the form: * #HF? BEHS

Return the current value of a BASIC string expression (specified by str) to the pad as a FORTH string

(specified by strs.)

BASICF (Basic-f) str -

Used in the form: ¥ #*" BHSICF

ORISHEY BHRESICF

=BA EASICF

YOTIME® BHSICF

Return the current value of a BASIC numeric expression (specified by str) to the FORTH X-register,

lifting the floating-point stack.

112 Appendix D: FORTH Words

BASICI (Basic-i) str = n

Used in the form: " H" EASI

HE

Return the current value of a BASIC numeric expression (specified by str). An overflow error occurs if the

variable’s value exceeds FFFFF.

BASICX (Basic-x) str -

Used in the form: " EUH 'J0OE'Y BASI

" BEEFR" BASICH

"OH=FI" EBHSICH

"1a GISF A" BAST .18

Pass a string (specified by str) to the BASIC system for parsing and editing/execution, and then return to

FORTH.

BEGIN . . . UNTIL -

Used in the form: ... EEGIH actions flag UHTIL

IMMEDIATE, COMPILE. Execute actions and test flag; if flag is false, repeat; if flag is true, skip to the

word following LIHTIL.

BEGIN . . . WHILE . . . REPEAT ~

Used in the form: ... EEGIH actions; flag HWHILE actions, FEEFEHA

IMMEDIATE, COMPILE. Execute actions; and test flag; if flag is true, execute actions, and repeat; if flag

is false, skip to the word following FEFEHAT.

BL (Blank) - c

Return 32,(, the ASCII value for a space or blank.

Appendix D: FORTH Words 113

BLK (B-1-k) ~ addr

Return the address of the variable BLK, which contains the number of the line being interpreted from the

active file. The value of BLK is an unsigned number; if it is zero, the input stream is taken from the

keyboard device.

BLOCK (Block) n - addr

Return the address of the first byte in the mass-storage-buffer copy of line n in the active file. If line n

hasn’t already been copied from the file (in RAM or on mass storage) into a mass storage buffer, B[1k

does so.

BYE (Bye) -

Exit the FORTH environment and return control to the BASIC environent.

C! (C-store) n addr -

Store the two low-order nibbles of n at addr.

C, (C-comma) n -

MLLT one byte and store the two low-order nibbles of n at HERE,

C@ (C-fetch) addr - byte

Return the contents of the byte at addr. The three high-order nibbles of the five-nibble stack entry are 0.

C@+ (C-at-plus) stry - str, ¢

Return c, the first character in the string specified by strq, and stry, where addry = addr, + 2 and count,

= count; — 1. If count; = 0, ¢ = 0 and stry = strl.

114 Appendix D: FORTH Words

CASE .. . OF . . . ENDOF . . . (case Statements) n -

ENDCASE

Used in the form: ... CHESE

ny F actions; EHDOOF actionsy’

n, IF actions, EMOOF actionsy’

ny F actionsy EHOOF actionss’

'E.H .D CHEE

IMMEDIATE, COMPILE. Starting with the first case statement (i = 1):

o If n = n;, drop n, execute actions;, and skip to the word following EHIICHZE.

o If n # n;, execute actions; and examine the next case statement. (If there are no more case state-

ments, drop n and skip to the word following EHOCHZE). Note that each optional actions; can alter

the value of n (the number on the top of the stack) tested by the next case statement.

CHR$ (Char-dollar) n - str

Convert the two low-order nibbles of n into an ASCII character and place it in a string specified by str.

The string is a temporary string of length 1, located on the pad.

CHS (Change-sign) -

Replace x, the contents of the X-register, with —x.

CLOSEALL (Close-all) -

Close all open files (that is, files with an open FIB entry).

CLOSEF (Close-f) n -

Close the file whose FIB# is n.

CMOVE (C-move) addr, addr, un -

Move un bytes, first moving the byte at addr; to addr, and finally moving the byte at addr; + 2(un — 1)

to addry + 2(un — 1). If un = 0, nothing is moved.

Appendix D: FORTH Words 115

CMOVE> (C-move-up) addry addr, un -

Move un bytes, first moving the byte at addr; + 2(un — 1) to addry, + 2(un — 1) and finally moving the

byte at addr; to addry. If un = 0, nothing is moved.

COMPILE (Compile) -

Used in the form: : name, ... COMFILE names . . .

COMPILE. Compile the CFA of namey when name; is executed. Typically name; is an immediate word

and name, is not; CMF ILE ensures that name, is compiled, not executed, when name,; is encountered in
a new definition.

CONBF (Con-buff) ny n, - flag

Contract by n; nibbles the general-purpose buffer whose ID# is ny, and return a true flag; or return a false

flag if such a buffer doesn’t exist. If the specified buffer contains fewer than n; nibbles, Z{1HEF contracts

it to 0 nibbles. n; must not exceed FFF.

CONSTANT (Constant) n -

Used in the form: n COMHSTHET name

Create a dictionary entry for name, placing n in its parameter field. Later execution of name will return n.

CONTEXT (Context) ~ addr

Return the address of the variable CONTEXT, which specifies which vocabulary to search first during

interpretation of the input stream. (Word searches through successive parent vocabularies are discussed in

section 2.)

CONVERT (Convert) d, addr, - d, addr,

Accumulate the string of digits beginning at addr; + 2 into the double number d;, and return the result d,
and the address addry of the next non-digit character. For each character that is a valid digit in EAZE,

COHWERT converts the digit into a number, multiplies the current double number (initially d;) by

FASE, and adds the converted digit to the current double number. When COHWERT encounters a non-

digit character, it returns the current double number and the non-digit character’s address.

116 Appendix D: FORTH Words

COS (Cos) -

Calculate the cosine of the contents of the X-register, according to the currently active angular mode.

1% places the result in the X-register and the original value of x in the LAST X register.

COUNT (Count) addr; - addr, n

Return the address (addry) of the first character, and the character count (n), of the counted string begin-

ning at addr;. The first byte at addr; must contain the character count n. The following diagram shows

the parameters for a three-character text string:

Address Contents

addry, » 1000 3 -

addr, » 1002 A

1004 B

1006 C

CR (C-r) -

Send a carriage-return and line-feed to the current display device.

CREATE (Create) -

Used in the form: CEEHRTE name

Create a standard dictionary entry for name without allotting any parameter-field memory. Later execu-

tion of name will return name’s PFA. Words that use ZREERTE directly are called defining words.

CREATEF (Create-f) str n - addr

str n - false

Create a text file in RAM whose name is specified by str and that contains n nibbles. If successful,

CREATEF returns the address of the beginning of the file header (which contains the file name); other-

wise, it returns a false flag. If the specified string exceeds eight characters, the file name will be the first

eight characters.

Appendix D: FORTH Words 117

CRLF (C-r-1-f) - str

Return str specifying the two-character string constant containing the ASCII characters carriage-return

and line-feed. This string can be concatenated with other strings for use with words such as DLITFUT,

CURRENT (Current) -~ addr

Return the address of the variable CURRENT, which specifies the vocabulary to receive new word

definitions.

D+ (D-plus) di d = dj

Return the arithmetic sum of d; and d,.

D— (D-minus) di d, - dj

Subtract d, from d; and return the difference ds.

D. (D-dot) d -

Display d according to BASE in a free-field format, with a leading minus sign if d is negative.

D.R (D-dot-R) d n -

Display d (according to BASE) right-justified in a field n characters wide.

D< (D-less-than) d, d, = flag

Return a true flag if d; < dy; return a false flag otherwise.

DABS (D-abs) di - ld

Return the absolute value of d.

118 Appendix D: FORTH Words

DECIMAL (Decimal) -

Set the input-output numeric conversion EHRZE to ten.

DEFINITIONS (Definitions) -

Set the CLIEFEMT vocabulary to match the COHTET vocabulary.

DEGREES (Degrees) -

Select DEZREES angular mode.

DEPTH (Depth) - n

Return n, the number of items on the data stack (not counting n itself).

DIGIT (Digit) c ny = n, true
¢ ny - false

If ¢ is a valid digit in base n;, return that digit’s binary value (n,) and a true flag; otherwise, return a false

flag.

DLITERAL (D-literal) d -

COMPILE, IMMEDIATE. Compile d into the word being defined, such that d will be returned when the

word is executed.

DNEGATE (D-negate) d - —d

Return the twos complement of a double number d.

Appendix D: FORTH Words 119

DO ... +LOOP (Do, Plus-loop) ny n, -

Used in the form: ... OO actions n +LO0OF . ..

COMPILE, IMMEDIATE. Execute a definite loop, each time incrementing the loop index by n. [l moves

n, (the loop limit) and ny (the initial value of the loop index) to the return stack, with n, on top, and then

executes actions. +L 0F increments the index by n (which can be negative) and repeats actions, until the

index is incremented across the boundary between n — 1 and n. For example,

te 1 [0 actions 1 +LOOF

will execute actions nine times, with values of the index from 1 through 9; and

-18 -1 0[O0 actions —1 +LO0OF

will execute actions ten times, with values of the index from —1 through —10. 0. . . +L 00F may be

nested within control structures.

DO ... LOOP e n, -

Used in the form: . .. [} actions L OOF . ..

COMPILE, IMMEDIATE. Execute a definite loop, each time incrementing the loop index by 1. 1} moves

n; (the loop limit) and n, (the initial value of the loop index) to the return stack, with ny on top, and then

executes actions. L.701F increments the index by 1 and repeats actions, until the index is incremented from

n — 1ton. 0 ... LJ0F may be nested within control structures.

DOES> (Does)

Used in the form: : pname ... CEERTE ... DOES>

COMPILE, IMMEDIATE. Define the run-time action of a word created by a defining word. [I{IE%>

marks the termination of the defining part of the defining word name and begins the definition of the

run-time action for words that will later be defined by name.

DROP (Drop) n -

Drop the top number from the stack.

DUP (Dup) n - nn

Return a second copy of the top number on the stack.

120 Appendix D: FORTH Words

EMIT (Emit) c -

Transmit the character ¢ to the current display device.

ENCLOSE (Enclose) addr ¢ - addr ny n, ns

Examine the string that begins at addr, and return:

e n,, the nibble offset from addr to the first character that doesn’t match the delimiter character c.

® n,, the nibble offset from addr to the first delimiter character c¢ that follows non-delimiter characters
in the string.

® nj, the nibble offset from addr to the first unexamined character.

An ASCII null is treated as an unconditional delimiter.

END$ (End-dollar) stry n = stro

Create a temporary string (specified by stry) consisting of the nth character and all subsequent characters

in the string specified by str;. (F I ZHT# is similar but takes substring length, not character position, for a

parameter.)

ENG (Engineering) n -

Select engineering display mode with n + 1 significant digits displayed, for 0 < n < 11.

ENTER (Enter) addr n, - addr n,
addr ny ¢ 0 - addr n,

Receive up to n; bytes of data from the HP-IL device whose address is specified by FFEIMHEY and

SECOMDOARY, and store the data at addr and above (greater addresses). EHTEFRleaves addr on the

stack and returns ny, the actual number of characters received. Executing EHTEFR requires the

HP 82401A HP-IL Interface.

There are two options for termination in addition to the limit of n; characters:

o If system flag —23 is set, EHTEF will terminate when an End Of Transmission message is received.

e If the argument on the top of the stack is 0, EHTEF interprets the second argument on the stack to

be a character and will terminate when an incoming character matches this character. This option is

effective only when system flag —23 is clear.

Appendix D: FORTH Words 121

EOF (E-o-f) ~ flag

Return a true flag if there are no more records in the active file; otherwise, return a false flag. EIF

examines the record length of the next record in the file specified by the FIE# in SCRF IE. It assumes

that the current pointer into the file is pointing at the next record length and that the file is a text file.

EXECUTE (Execute) addr -

Execute the dictionary entry whose CFA is on the stack.

EXIT (Exit) -

COMPILE. Terminate execution. Don’t use E: 1T within a [loop.

EXPBF (Expand-buff) ny n, = flag

Expand by n,; nibbles the general-purpose buffer whose ID# is n,, and return a true flag; or return a false

flag if such a buffer doesn’t exist, if the resulting size would exceed 2K bytes, if there is insufficient

memory, or if n; is negative. n; must not exceed FFF.

EXPECT96 (Expect-96) addr -

Accept 96 characters from the keyboard (or fewer characters followed by [ENDLINE]), append two null
bytes, and store the result at addr and above (greater addresses). E#FELTalso copies the text into the

Command Stack.

E~X (E-to-the-x) -

Raise e to the power contained in the X-register. £ "places the result in the X-register and the original

value of x in the LAST X register.

122 Appendix D: FORTH Words

F> (F-times) -

Multiply the contents of the X- and Y-registers. F# drops the stack (duplicating T into Z), then places

the result in the X-register and the original value of x in the LAST X register.

F+ (F-plus) -

Add the contents of the X- and Y-registers. F + drops the stack (duplicating T into Z), then places the

result in the X-register and the original value of x in the LAST X register.

F— (F-minus) -

Subtract the contents of the X-register from the contents of the Y-register. F ~ drops the stack (duplicat-

ing T into Z), then places the result in the X-register and the original value of x in the LAST X register.

F. (F-dot) -

Display the contents of the X-register according to the currently active display format. ¥ . doesn’t alter

the contents of the X-register.

F/ (F-divide) -

Divide the contents of the Y-register by the contents of the X-register. F .- drops the stack (duplicating T

into Z), then places the result in the X-register and the original value of x in the LAST X register.

FABS (F-abs) -

Take the absolute value of the contents of the X-register. F A E= places the result in the X-register and the

original value of x in the LAST X register.

FCONSTANT (F-constant) -

Used in the form: floating-point number FZOHZTHHT name

Create a dictionary entry for name. When name is later executed, the value that was in the X-register

when name was created is placed in the X-register, lifting the floating-point stack.

Appendix D: FORTH Words 123

FDROP (F-drop) -

Copy the contents of the Y-register into the X-register, the contents of the Z-register into the Y-register,

and the contents of the T-register into the Z-register. The previous contents of the X-register are lost.

FENCE (Fence) -~ addr

Return the address of the variable FENCE, which contains the address below which the dictionary is

protected from FIOEGET,

FENTER (F-enter) -

Copy the contents of the Z-register into the T-register, the contents of the Y-register into the Z-register,

and the contents of the X-register into the Y-register. The previous contents of the T-register are lost.

FILL (Fill) addr un byte -

Fill memory from addr through addr + (2un — 1) with un copies of byte. ¥ Ii has no effect if un = 0.

FIND (Find) addr, = addr, n

Search the dictionary (in the currently active search order) for the word contained in the counted string at

addry. If the word is found, F I returns the word’s CFA (= addry) and either n = 1 (if the word is

immediate) or n = —1 (if the word isn’t immediate). If the word isn’t found, ¥ I Mreturns addr, = addr,

and n = 0.

FINDBF (Find-buff) n - addr
n - false

Return the start-of-data address in the general-purpose buffer whose ID# is n, or return a false flag if

such a buffer doesn’t exist.

124 Appendix D: FORTH Words

FINDF (Find-f) str - adadr

str - false
Search main RAM for the file whose name is specified by str, and return either the address of the begin-

ning of the file header (if successful) or a false flag (if not). If the specified string exceeds eight characters,

FIHOF considers only the first eight characters.

FIRST (First) -~ addr

Return the address of the variable FIRST, which contains the address of the first (lowest addressed) mass

storage buffer in the FORTHRAM file.

FIX (Fix) n -

Select fixed-point display mode with n decimal places, 0 < n < 11.

FLITERAL (F-literal) -

IMMEDIATE, COMPILE. Compile the value x (the contents of the X-register) into the dictionary. When

the colon definition is later executed, x will be placed in the X-register, lifting the floating-point stack.

FLUSH (Flush) -

Unassign all mass storage buffers.

FORGET (Forget) -

Used in the form: FUORGET name

Delete from the dictionary name (which must be in the search order that begins with the CURREEHT

vocabulary) and all words added to the dictionary after name (regardless of their vocabulary). Failure to

find name in the search order that begins with the CIUEREHMT vocabulary is an error condition.

Appendix D: FORTH Words 125

FORTH (Forth) -

Set the CONTEXT vocabulary to FORTH, the name of the first vocabulary in RAM. Because all vocabu-

laries ultimately chain to the FORTH vocabulary, the word F iR TH can be found regardless of the CON-

TEXT vocabulary.

FP (F-p) -

Take the fractional part of the contents of the X-register. FF places the result in the X-register and the

original value of x in the LAST X register.

FSTR$ (F-string-dollar) - Str

Create a string (specified by str) that represents the contents of the X-register.

FTOI (F-to-i) - n

Convert x (the contents of the X-register) to an integer and return it to the data stack. If Ix| > FFFFF, an

overflow error occurs. F T1 I takes the absolute value of x, rounds it to the nearest integer, and converts it

to a five-nibble value. If x was positive, F T2 I returns this result; if x was negative, F T{1I returns the

twos complement of this result.

FVARIABLE (F-variable) -

Used in the form: FUHEIHRELE name

Create a dictionary entry for name, and allocate eight bytes for its parameter field. Subsequent execution

of name will return name’s PFA. This parameter field will hold the contents of the variable, which must

be initialized by the application that creates it.

GROW (Grow) n - flag

Enlarge the user dictionary by n nibbles and return a true flag; or if there is insufficient memory, return a

false flag (without enlarging the dictionary).

126 Appendix D: FORTH Words

H. (H-dot) un -

Display un in base 16 as an unsigned number with one trailing blank.

HERE (Here) -~ adadr

Return the address of the next available dictionary location.

HEX (Hex) -

Set EASE to sixteen.

HOLD (Hold) c -

Insert character ¢ into a pictured numeric output string. Used between <# and #:.

Used in the form: ... OO ... I ... LOgrF

COMPILE, IMMEDIATE. Return the current value of the Lii-loop index.

IF ... THEN flag -

Used in the form: ... IF actions THEH

COMPILE, IMMEDIATE. Execute actions if and only if flag is true. IF ... THEH conditionals may be

nested.

IF...THEN ... ELSE flag -

Used in the form: ... IF actions; ELZE actions, THEH

COMPILE, IMMEDIATE. Execute actions; if and only if flag is true; execute actions, if and only if flag is

false. IF ... ELZE ... THEH conditionals may be nested within control structures.

Appendix D: FORTH Words 127

IMMEDIATE (Immediate) -

Mark the most recent dictionary entry as a word to be executed, not compiled, when encountered during

compilation.

INTERPRET (Interpret) -

Interpret the input stream to its end, beginning at the offset contained in I. The input stream comes

from the TIB (if EL ¥contains 0) or from the mass storage buffer containing the nth line of the active file

(if L. ¥contains n.)

IP (I-p) -

Take the integer part of the contents of the X-register. IFplaces the result in the X-register and the

original value of x in the LAST X register.

ITOF (I-to-f) n -

Convert n into a floating-point number and place it in the X-register, lifting the floating-point stack.

J (J) -~ n

Used in the form: ... [o JOOF G0

COMPILE, IMMEDIATE. Return the index of the next outer loop. Used within nested [1. . . L0F

structures.

KEY (Key) - c

Return the low-order seven bits of the ASCII value of the next key pressed. If the key buffer is empty, wait

for a key to be pressed.

KILLBF (Kill-buff) n - flag

Delete the general-purpose buffer whose ID# is n, and return a true flag; or return a false flag if no such

buffer exists.

128 Appendix D: FORTH Words

L (L) -~ addr

Return the address of the floating-point LAST X register.

LASTX (Last-x) -

Lift the floating-point stack and copy the contents of the LAST X register into the X-register.

LATEST (Latest) ~ addr

Return the NFA of the most recent word in the CUEREEHMT vocabulary.

LEAVE (Leave) -

COMPILE, IMMEDIATE. Skip to the word after the next L JF or +LI0F. LESVE terminates the loop

and discards the control parameters. Used only within a 0 . . . LOOF or +L{I0F construct.

LEFTS (Left-dollar) stry n - sty

Create a temporary string (specified by stry) consisting of the first n characters in the string specified by

stry.

LIMIT (Limit) -~ addr

Return the address of the variable LIMIT, which contains the first address beyond the mass-storage-buffer

area.

LINE# (Line-number) -~ addr

Return the address of the variable LINE#, which contains the number of the line being loaded from the

active file (specified by SCRFIB).

Appendix D: FORTH Words 129

LISTING (Listing) -~ str

Return str specifying the contents of the string variable LISTING, which identifies the file or device to

which the assembler will direct its output. LI =T IHG can contain up to 20 characters.

LITERAL (Literal) n -

COMPILE, IMMEDIATE. Compile n into the word being defined, such that n will be returned when the

word is executed.

LN (Natural log) -

Calculate the natural log (base e) of the contents of the X-register. Lt places the result in the X-register

and the original value of x in the LAST X register.

LOADF (Load-f) str -

Interpret the entire file specified by str. If the file cannot be opened for any reason (doesn’t exist, wrong

type, already opened, etc.), LA CF will give the error message FTH ERFE: filename carnrmot load.

LGT (Log-ten) -

Calculate the common log (base 10) of the contents of the X-register. L. =T places the result in the X-

register and the original value of x in the LAST X register.

Mk (Mixed-multiply) ny n, - d

Return the double-number product d of two single numbers n; and n,. All numbers are signed.

M/ (Mixed-divide) d ny = ny, ng

Divide the double number d by the single number n{, and return the single-number remainder n, and the

single-number quotient n3. All numbers are signed.

130 Appendix D: FORTH Words

M/MOD (Mixed-divide-mod) udy uny - un, ud,

Divide the double number ud; by the single number un;, and return the single-number remainder un, and

the double-number quotient ud,. All numbers are unsigned.

MAKEBF (Make-buff) n - addr ID# true

n - false

Create a buffer n nibbles long and return a true flag, the buffer ID#, and the address of the beginning of

data area in the buffer; or if unsuccessful (not enough memory, no free buffer ID#s), return a false flag. n

cannot exceed 4095

MAX (Max) ny n, - ng

Return the greater of n; and n..

MAXLEN (Max-length) str = n

Return the maximum length (that is, bytes of memory allotted in the dictionary) for the string specified

by str.

MIN (Min) ny n, = ng

Return the smaller of n; and n..

MOD (Mod) ny n, - n

Divide n; by ns, and return the remainder n; with the same sign as n;.

N@ (N-fetch) addr - n

Return the contents of the nibble at addr. The four high-order nibbles of n are zeros.

Appendix D: FORTH Words 131

N! (N-store) n addr -

Store at addr the low-order nibble of n.

NALLOT (N-allot) n -

Add n nibbles to the parameter field of the most recently defined word (regardless of the CLIEFEMT and

COMTEST vocabularies).

NEGATE (Negate) n - —n

Return the twos complement of n.

NFILL (N-fill) addr un n -

Fill memory from addr through addr + (un — 1) with un copies of the low-order nibble in n. HF I LLhas

no effect if un = 0.

NMOVE (N-move) addr, addr, un -

Move un nibbles, first moving the nibble at addr; to addr, and finally moving the nibble at addr; + (un
— 1) to addry + (un — 1). HMOWE has no effect if un = 0.

NMOVE > (N-move-up) addry addr, un -

Move un nibbles, first moving the nibble at addr; + (un — 1) to addry + (un — 1) and finally moving the

nibble at addr; to addry. M4E: has no effect if un = 0.

NOT (Not) ny - n,

Return the ones complement (true Boolean NOT) of n;.

132 Appendix D: FORTH Words

NULLS (Null-dollar) - str

Create a temporary string (specified by str) in the pad, with maximum length = 80 and current length =

0.

NUMBER (Number) addr - d
addr -

Examine the counted string at addr and convert it into a double number d.

e If the string contains a decimal point, HLIMEEF tries to convert it into a floating-point number and

place it in the X-register, lifting the floating-point stack. If the string contains a decimal point but is

not a legal floating-point number, a [zt = Tw4Jp= error occurs.

e If the string does not contain a decimal point, HIIMEEFtries to convert it into an integer number and

return it to the data stack. If the string 1isn’t a legal integer, a

FTH EEE: HUMEEE not recoganized error occurs.

OKFLG (Okay-flag) -~ addr

Return the address of the variable OKFLG. If the value of OKFLG is 0, the &'k ¢ n * message is shown

when the FORTH system is ready for input; otherwise, the message is suppressed.

ONERR (On-error) -~ adar

Return the address of the variable ONERR, which contains the CFA of the user’s error routine. The value

of ONERR is checked when a FORTH-system error occurs. If the value of ONERR is zero, the error is

processed by the system’s error routine. If the value of ONERR is not zero, control is transferred instead

to the user’s error routine. The stacks are not reset. The BASIC keywords FiF TH and FiiFE THset the

value of ONERR to zero.

OPENF (Open-f) str - t

str - str f

Open an FIB for the file whose name is specified by str, and store the FIB# into =i FF I E. If successful,

OFEHMF returns a true flag. If the file was empty or there was a problem in opening the file, JFENF

returns str and a false flag.

Appendix D: FORTH Words 133

OR (Or) ny np, = ng

Return the bit-by-bit inclusive OR of n; and n,.

OUTPUT (Output) addr n -

Sendnbytes stored at addr through addr + 2(n — 1), to the HP-IL device whose address is specified by

FEIMARY and SECOHDAEY. Executing ZUTFUT requires the HP 82401A HP-IL Interface.

OVER (Over) ny nNo = Ny No Ny

Return a copy of the second number on the stack.

PAD (Pad) ~ adadr

Return the address of the pad, which is a scratch area used to hold character strings for intermediate

processing.

PAGESIZE (Pagesize) -~ addr

Return the address of the variable PAGESIZE, which contains the number of printed lines per page for

the assembler listing. The default value is 56; the minimum value is 8.

PICK (Pick) ny - n

Return a copy of the n;-th entry on the data stack (not counting n; itself). For example, 1 FICkKis

equivalent to [IliF, and & F Ikis equivalent to THER.

POS (Pos) stry stry = n
stry str, —- false

Search the string specified by str, for a substring that matches the string specified by str{, and return the

position of the first character in the matching substring (or a false flag if there is no matching substring).

134 Appendix D: FORTH Words

PREV (Prev) -~ addr

Return the address of the variable PREV, which contains the address of the most recently referenced mass

storage buffer.

PRIMARY (Primary) ~ addr

Return the address of the variable PRIMARY, which specifies an HP-IL address. The valid range for

PRIMARY is 0 through 31, and the default value is 1. (The contents of PRIMARY and SECONDARY

specify which HP-IL device to use with EHTEFRand 2UTFUT, If system flag —22 is clear, the contents of

PRIMARY alone specify a simple address; if system flag —22 is set, the contents of PRIMARY and

SECONDARY specify an extended address.)

QUERY (Query) -

Accept characters from the current keyboard until 96 characters are received or an character is
encountered, and store them in the TIB. ZUERE"Ysets # T I Eto the value of ZF#HH,

QUIT (Quit) -

Clear the return stack, set execution mode, and return control to the keyboard. No message is displayed.

R> (R-from) - n

COMPILE. Remove n from the top of the return stack and return a copy to the data stack.

R@ (R-fetch) - n

COMPILE. Return a copy of the number on the top of the return stack.

RADIANS (Radians) -

Select FADIAMSE angular mode.

Appendix D: FORTH Words 135

RCL (Recall) addr -

Lift the floating-point stack and place in the X-register the floating-point number found at addr.

RDN (Roll-down) -

Roll down the floating-point stack. F [t copies from the T-register into the Z-register, from the Z-register

into the Y-register, from the Y-register into the X-register, and from the X-register into the T-register.

RIGHTS (Right-dollar) stry n - stry

Create a temporary string (specified by stry) consisting of the last (rightmost) n characters in the string

specified by stry. (EHID# is similar but takes character position, not substring length, for a parameter.)

ROLL (Roll) n -

Move the nth entry on the data stack(not counting n itself) to the top of the stack. For example,

& EOLL is equivalent to ZHAF, and 2 FEZLL is equivalent to RT.

ROT (F?Ote) ny no nz =+ nNpo N3 Ny

Rotate the top three entries on the data stack, bringing the deepest to the top of the stack.

RP! (R-p-store) -

Reset the return stack to 0 addresses.

RP@ (R-p-fetch) -~ addr

Return the current value of the return-stack pointer.

136 Appendix D: FORTH Words

RPO (R-p-zero) ~ addr

Return the address of the system variable RP0O, which contains the address of the bottom of the return

stack. (The bottom of the return stack has a greater address than the top.)

RUP (Roll-Up) -

Roll up the floating-point stack. FLIF copies from the X-register into the Y-register, from the Y-register

into the Z-register, from the Z-register into the T-register, and from the T-register into the X-register.

S! (S-store) stry str, -

Store the contents of the string specified by str; into the string specified by strs.

S—>D (Sign-extend) n - d

Return a signed double number d with the same value and sign as the signed single number n.

SO (S-zero) ~ addr

Return the address of the bottom of the data stack.

S< (S-less) stry str, — flag

Return a true flag if the string specified by str; is “less than” the string specified by stry, or a false flag if

not. = < first compares the ASCII values of the first characters; if they are equal, it then compares the

second characters, and so on. AEL is defined to be less than AEC L.

S<& (S-left-concatenate) stry strp - strg

Append the contents of the string specified by stry to the end of the string specified by str;, and return

strs, the address and length of the resulting string. The address ofstrs is the address of stry; the length of

stry is the combined length of str; and stry. If the concatenation would exceed str;’s maximum length, no
concatenation occurs and stry = str;. Either str; or stry can specify a temporary string in the pad. The -

sign indicates that the left string will contain the result of the concatenation.

Appendix D: FORTH Words 137

S= (S-equals) stry str, - flag

Return a true flag if the two strings are equal, or a false flag if not. == compares only the current length

and contents of the strings, not the maximum length or old contents stored beyond current length.

S>& (S-right-concatenate) stry Stro, -+ Strg

Append the contents of the string specified by stry to the end of the string specified by str;, and return

stry, the address and length of the resulting string. The address of strs is the address of stry; the length of

stry is the combined length of str; and stry. If the concatenation would exceed stry’s maximum length, no
concatenation occurs and stry = stry. Either str; or str, can specify a temporary string in the pad. The >

sign indicates that the right string will contain the result of the concatenation.

SCI (Scientific) n -

Select scientific display mode with n + 1 significant digits displayed, 0 < n < 11.

SCRFIB (Screen-f-i-b) -~ addr

Return the address of the variable SCRFIB, which contains the FIB# of the currently active file (or O if no

file is being loaded).

SECONDARY (Secondary) -~ addr

Return the address of the variable SECONDARY, which specifies the extended portion of an HP-IL ad-

dress. The valid range for SECONDARY is from 0 through 31, and the default value is 0. (The contents of

PRIMARY and SECONDARY specify which HP-IL device to use with EHTEFRand QUTFLT. If system

flag —22 is clear, the contents of PRIMARY specify a simple address; if system flag —22 is set, the

contents of PRIMARY and SECONDARY specify an extended address.)

SHRINK (Shrink) n - flag

Shrink the user’s dictionary space (and consequently the FORTHRAM file) by n nibbles, and return a

true flag; or return a false flag if there are fewer than n free nibbles in the dictionary.

138 Appendix D: FORTH Words

SIGN (Sign) n=

Insert the ASCII minus sign - into the pictured numeric output string if n is negative. Used between -#

and # .

SIN (Sine) -

Calculate the sine of the contents of the X-register, according to the currently active angular mode. = I H

places the result in the X-register and the original value of x in the LAST X register.

SMOVE (S-move) str addr -

Store at addr and above (greater addresses) the characters in the string specified by str.

SMUDGE (Smudge) -

Toggle the smudge bit in the latest definition’s name field.

SP! (S-p-store) -

Reset the data stack to O items.

SPO (S-p-zero) -~ addr

Return the address of the system variable SP0O, which contains the address of the bottom of the data

stack. (The address of the bottom of the data stack is greater than the address of the top.)

SP@ (S-P-fetch) -~ addr

Return addr, the address of the top of the data stack before ZF @& was executed.

SPACE (Space) -

Transmit an ASCII space to the current display device.

Appendix D: FORTH Words 139

SPACES (Spaces) n -

Transmit n spaces to the current display device. Take no action for n < 0.

SPAN (Span) ~ addr

Return the address of the variable SPAN, which contains the count of characters actually read by the last

execution of E=FELCTHE,

SQRT (Square-root) -

Calculate the square root of the contents of the X-register. =k T places the result in the X-register and

the original value of x in the LAST X register.

STATE (State) -~ addr

Return the address of the variable STATE, which contains a non-zero value if compilation is occurring (or

zero 1if not).

STD (Standard) -

Select the BASIC standard display format.

STO (Store) addr -

Store the contents of the X-register at addr.

STR$ (String-dollar) d - str

Convert the number d into a temporary string in the pad, specified by str.

140 Appendix D: FORTH Words

STRING (String) n -

Used in the form: n =STEIMHEG name.

Create a dictionary entry for name, allotting one byte for a maximum-length field (value = n), one byte

for a current-length field (value = 0), and n bytes for the string characters.

STRING-ARRAY (String-array) ny ny, -

Used in the form: ny n, STEIMHG-AEREAY name

Create a dictionary entry for name, allotting one byte for the maximum-length field (value = n;), one

byte for the dimension field (value = n,), and (n; + 2) bytes each for ny string-array elements.

STRIHG-ARREAY fills in the maximum-length (value = n;) and current-length (value = 0) fields for

each string-array element.

Later execution of n name will return str,, the address and current length of the nth element of the string

array.

SUB$ (Sub-dollar) stry ny n, - stry

Create a temporary string (specified by stry) consisting of the n;th through noth characters in the string

specified by str;.

SWAP (Swap) ny n, = n, n

Exchange the top two entries on the data stack.

SYNTAXF (Syntax-f) str - flag

Return a true flag if the string specified by str is a valid HP-71 file name, or return a false flag if not. If

the specified string exceeds eight characters, =% HTHF checks only the first eight characters.

T (T) -~ adar

Return the address of the floating-point T-register.

Appendix D: FORTH Words 141

TAN (Tan) -

Calculate the tangent of the contents of the X-register, according to the currently active angular mode.

TrH places the result in the X-register and the original value of x in the LAST X register.

TIB (T-i-b) -~ adadr

Return the address of the terminal input buffer. The terminal input buffer can hold up to 96 characters.

TOGGLE (Toggle) addr n; -

Replace ny (the contents at addr) with the bit-by-bit logical value of (n; XOR n,).

TRAVERSE (Traverse) addr; n - addr,

Return the address of the opposite end (length byte or last character) of a definition’s name field.

e If n = 1, addr; is the address of the length byte, and addr, is address of the last character.

e If n = —1, addr; is the address of the last character, and addr, is the address of the length byte.

e If n doesn’t equal 1 or —1, addr; = addr,.

TYPE (Type) addr n -

Transmit n characters, found at addr through addr + (2n — 1), to the current display device. TFE

transmits no characters for n < 0.

U. (U-dot) un -

Display un (according to BASE) as an unsigned number in a free-field format with one trailing blank.

U< (U-less-than) uny un, - flag

Return a true flag if un,; < un,, or return a false flag if not.

142 Appendix D: FORTH Words

UM (U-m-times) uny un, - ud

Return the double-number product ud of two single numbers un; and un,y. All numbers are unsigned.

UM/MOD (U-m-divide-mod) ud, uny - un, ung

Divide the double number ud; by the single number un;, and return the single-number remainder un, and
the single-number quotient uns. All numbers are unsigned.

USE (Use) -~ addr

Return the address of the variable USE, which contains the address of the next mass storage buffer avail-

able for use.

VAL (Val) str - d

str -
Convert the string specified by str into a number.

o If the string contains a decimal point, /HL tries to convert it into a floating-point number and place

it in the X-register, lifting the floating-point stack. If the string contains a decimal point but is not a

legal floating-point number, a D'zt =z Tups error occurs.

e If the string does not contain a decimal point, /AL tries to convert it into an integer number and

return it to the data stack. If the string is not a legal integer, a

FTH ERRFE: VHL not recognilzed error occurs.

VARIABLE (Variable) -

Used in the form: YWHRIAELE name

Create a dictionary entry for name, allotting five nibbles for its parameter field. Later execution of name

will return name’s PFA. This parameter field will hold the contents of the variable, which must be initial-

ized by the application that created it.

VARID (Var-i-d) ~ adar

Return the address of the variable VARID, in which the assembler stores the ID# of the general-purpose

buffer that it uses. If the value of VARID is non-zero, the FORTH system will preserve the buffer with

that ID#.

Appendix D: FORTH Words 143

VOCABULARY (Vocabulary) -

Used in the form: VOCHEULARY name

Create (in the CLIEFEEHMT vocabulary) a dictionary entry for name that begins a new linked list of dic-

tionary entries. Later execution of name will select name as the ZIHTE X T vocabulary. (Vocabularies are

discussed in section 2.)

WARN (Warn) -~ addr

Return the address of the variable WARN. If WARN contains a non-zero value, compiling a new word

whose name matches an existing word causes a name i=t:i't uriigus message to be displayed; if

WARN contains 0, the message is suppressed.

WIDTH (Width) -~ addr

Return the address of the variable WIDTH, which determines the maximum allowable length for the

name of a word. The valid range for WIDTH 1is from 1 through 31.

WORD (Word) c - addr

Receive characters from the input stream until the non-zero delimiting character ¢ is encountered or the

input stream is exhausted, and store the characters in a counted string at addr. {1FD ignores leading

delimiters. If the input stream is exhausted as WORD is called, a zero-length string results.

X (X) -~ addr

Return the address of the floating-point X-register.

X<>Y (X-exchange-y) -

Exchange the contents of the X- and Y-registers.

144 Appendix D: FORTH Words

X#Y? X<=Y? Floating-point Comparisons -~ flag

X<Y? X=0?

X=Y? X>=Y?

X>Y?
Compare the contents of the X- and Y-registers, and return a true flag if the test is true or a false flag if

not. The tests don’t alter the contents of the X- and Y-registers.

XOR (X-or) ny n, - ng

Return the bit-by-bit exclusive OR of n; and n,.

X*2 (X-squared) -

Calculate the square of the contents of the X-register. "z places the result in the X-register and the

original value of x in the LAST X register.

Y (Y) - adadr

Return the address of the floating-point Y-register.

Y*X (Y-to-the-x) -

Raise the contents of the Y-register to the power contained in the X-register. ¥ places the result in the

X-register and the original value of x in the LAST X register.

Z 2) - addr

Return the address of the floating-point Z-register.

[(Left-bracket) -

IMMEDIATE. Suspend compilation. Subsequent text from the input stream will be executed.

Appendix D: FORTH Words 145

[’] (Bracket-tick) -

Used in the form: : name; ... [T '3 name, . ..

COMPILE, IMMEDIATE. Compile the CFA of name, as a literal. An error occurs if name, is not found
in the currently active search order. Later execution of name; will return name,’s CFA.

[COMPILE] (Bracket-compile) -

Used in the form: ... CCOMFILED name . . .

IMMEDIATE, COMPILE. Compile name, even if name is an IHMMEDIIATE word.

] (Right-bracket) -

Resume compilation. Subsequent text from the input stream is compiled.

Subject Index

Page numbers in bold type indicate primary references; page numbers in regular type indicate secondary

references.

A

Aborting the assembler, 45
Address space, HP-71, 13
Angular mode, 20
Arithmetic mnemonics, 61
Arithmetic mode, 58
Arithmetic registers in CPU, 48
Arrays, string variable, 22
Assembler

aborting the, 45
comments in source file, 47

constants in expressions, 47
expressions in source file, 47
form of source file, 46
format of source line, 46

labels in source file, 47
listing file for, 46
pagesize of listing, 46
running the, 45
user variables for, 30

Assistance, technical, 70

key
aborting the assembler, 45
clearing the display, 12
stopping execution, 12
with remote keyboard, 95

B
BASIC operating system, reference for, 13
BASIC/FORTH interaction, 16-17, 86-90
Battery life, conserving, 94
Binary (BIN) files, 54, 64

Buffer
general purpose, 18
mass memory, 15

C
Card, magnetic, 15
Carry flag, 48, 57, 59, 61
CFA, 31
Characterization nibble, 63-64
Code field, 31
Command stack, 12
Comments, in assembler source, 47
Compilation from files, 14
Compile-only words, 99
Constant-generating pseudo-ops, 62

Constants, in assembler expressions, 47
Control characters, 95
Control pseudo-ops, 62
Control registers in CPU, 50
Copy command, 40-41
Counted string, 22
CPU, FORTH use of, 51

147

D

Data-pointer mnemonics, 59

Data-transfer mnemonics, 59
Delete command

in BASIC, 81
in editor, 41

Dictionary, 30, 31-32
ROM-based, 32

Display, scrolling the, 97

E

Editor, 37-44, 82
files used by, 44

Entering the FORTH environment, 11
Entering text, 39
Entry, in FORTH dictionary, 31
Error

messages, 19, 71-77, 92

trapping, 24
Errors, 12, 100

Escape sequences, 83-84, 95

Exiting the FORTH environment, 11
Expressions, in assembler source file, 47
External keyboard, 83-84, 94—-95

F

FIB, 15
Fields, in CPU registers, 49
File chain, HP-71, 34-35
File header, 34-35
File information block, 15
File type, HP-71, 32
Files
number of records in, 85
types of, HP-71, 32

used by editor, 44
used as screen, 14

Flag, in FORTH, 100
Flag —21, 95
Flag —23, 18
Floating-point operations, 19-21
Floating-point stack registers, 29
Foreign language error messages, 19
Format of assembler source file, 46

FORTH-83 Standard, 13
FORTH/BASIC interaction, 16-17, 86-90
FORTHRAM, 26-30

copying, 26

G

General purpose buffers, 18
GOSUB mnemonics, 56

GOTO mnemonics, 55

148 Subject Index

H

Hardware-status tests, 57
Header, HP-71 files, 34-35
HP-71

arithmetic registers, 48
control registers, 50
file chain, 34-35
file headers, 34—-35
file types, 32
memory map, 25
operating system, reference for, 13

HP-IL, 17, 94-95

I,J

Immediate words, 31, 99
Insert command

in BASIC, 91
in editor, 39

Installing the module, 9
Interrupts, 50

K

Key assignments
in editor, 38
in FORTH, 12

L

Labels, in assembler source file, 47
LEX file, 19, 53-54, 63-64
LFA, 31
Line format, for assembler source file, 46

Link field, 31
List command, 40
Listing, assembler, 46
Load-constants mnemonics, 60
Loading data from memory, 51
Logical mnemonics, 60

M

Macro-expansion pseudo-ops
for BIN files, 64

for FORTH words, 62
for LEX files, 63-64

Magnetic card, 15
Mass memory buffers, 15
Mass storage, loading screens from, 14
Memory, loading data from, 51
Memory-access mnemonics, 59

Messages
explanation of, 71-77
corresponding to error number, 92

Move command, 40—41

N
Name field, 31
NFA, 31
No-op mnemonics, 61
Numeric file types, 33

o

'k message, 12

Operators, in assembler expressions, 47

P, Q
P register, 49-50
mnemonics, 57

Pad, 22, 27, 30
Pagesize, of assembler listing, 46
Parameter field, 31
Patterns in strings, defining, 43
PFA, 31
Pointer tests, 57

Port, 9, 65

Power consumption, 94
Primitive, FORTH, 11, 31, 51, 62
Print command, 40
Product information, 70
Program files, types of, 33
Program-status tests, 57
Pseudo-ops, 62—-64

R

Records, number in a text file, 85
Registers in CPU

arithmetic, 48
control, 50

fields in, 49
tests on, 56

Remote keyboard, 83-84, 94-95
Removing the module, 9
Repair, 67-69
Replace command

in BASIC, 93
in editor, 42—44

Return mnemonics, 56

Return stack
in CPU, 50
in FORTH, 51

ROM-based dictionary, 32

S

SB (Sticky bit), 50, 58, 60
Scratch register mnemonics, 59
Screen, 14
Scrolling the display, 97
Search command

in BASIC, 98
in editor, 42—44

Secondary, FORTH, 11, 31
Service, 67-69
Shift mnemonics, 60
Shipping, 69
Smudge bit, 31
Stack-use diagrams, 100
Status mnemonics, 58
Sticky bit, 50, 58, 60
String variables, 22
Strings

counted, 22
defining patterns in, 43
operations on, 22-23
represented on the stack, 22

Subroutine return stack, in CPU, 50
Support, technical, 70
System save area, 28

T

Technical assistance, 70

Temporary environment, 16
Test mnemonics, 56-57
Text command, 39
Text editor, 37—44
Text file
number of records in, 85
used as screen, 14

Trigonometric functions, 20

U

Subject Index 149

\Y

Vectored execution addresses, 30
WLTET, 32

Vocabularies, 23—-24

W, X, YZ

User dictionary, 30

User mode

in editor, 38
in FORTH, 12

User variables, 28—29

Warranty, 65-67
Wild-card character, 43-44
Word, in FORTH dictionary, 31

BASIC Keywords by Category

This list shows all BASIC keywords by functional category. All BASIC keywords and their defininitions

appear in appendix C, in alphabetic order.

Keyword

Description

BASIC to FORTH

FrORTH

FORTHE

FrRTHF

FORTHI

FORTH

Editor

DELETE#

EOTEST

FILESZR

[HEERT#

Mo F

FEFLACE#

SOROLL

SEARCH

Remote Keyboard

ESCAFE

EEVEOARD IS

FEZET ESCAFE

Transfers HP-71 operation to the FORTH environment.

Returns to a BASIC string variable the contents of a string in the FORTH

enivronment.

Returns to a BASIC numeric variable the contents of the FORTH floating-point

X-register.

Returns to a BASIC numeric variable the value on the top of the FORTH data

stack.

Executes a FORTH command string.

Deletes one record from a text file.

Invokes the text editor.

Returns the number of records in a text file.

Inserts one record into a text file.

Returns the message string corresponding to a specified error number.

Replaces one record in a text file.

Scrolls the display and waits for a key to be pressed.

Finds a string in a text file.

Adds or modifies an escape-sequence key specification in the key-map buffer.

Assigns one HP-IL device to be used as an external keyboard.

Purges any existing key-map buffer created by the E=Z{HFE keyword.

151

FORTH Words by Category

This list shows all FORTH words by functional category. Some words appear in more than one category.

All FORTH words and their defininitions appear in appendix D, sorted by name in ASCII order.

General Files

Dictionary Management

ALLOT
COMTEST
CURREHT
ODEFIMITIONS
FEHCE
FORGET
FORTH
GROL
HERE
HALLOT
FARD
SHREIHE
VOCABLLARY

HECORET

[

ODECTIMAL
ODECREES
ODEFTH
EXECUTE
FIMD
HE =
LATEST
QUIT
FADIAMS
TIE
TOGGLE
TEAVERSE

BASIC System Access

EASICE
EAZICF
EASICI
EASICH

Control Structures

EEGIM .. 0 UHTIL

EEGIM ... MHILE

... FEFERT

CHZE ... OF. . EHDOF

... EMDCREE

oo ... +L0O0OF

Lo oL LOoF

IF ... THEH

IF ... THEH

... ELZE

LEARVE

Memory

|

4l
3B

!

o
@
i
e

|

[

IS

CHOVE
CHOVE >
FILL

H !
H @

HFILL

HIOWE
HFOVE =

FCL
5

SHMOVE
=T0O

Interpretation

IMTERFEET

Return Stack

xR

I

File Manipulations

i

R

R

FF!

FFG

FFE

Defining Words
b
k
T

o
o

I
D
n |

._
.,
l

m
EI
I =

General Purpose

-

o Buffers

FOOMSTAMT COHEF
FUARIAELE E
STRIHG e
STRIHNG-ARER =
WARIAELE [

F

I OI

LITERHA

SHUDOGE

Assembler

ASSEMELE

Input/Output Arithmetic Stack User Variables

Constants Single Length

& *

g

P

T
l
o
l
5
0

Numeric-Input

Conversion

Numeric Output

i
L
L
o

Floating Point

Character Input L
T

Character Output
T BT

Single Length

OROF
DR

OUVER

FICE

oL

FOT

T
1

3
O
O

T
— N

I
R

SHAF

Double Length

ZOROF
Z0OUR

Floating Point

FOROF

FEMTER

LAST S

RO
R

Comparisons

#TIE

s IH

EHLE

ELLE

LIMIT

LIHE#

LT TIHG

LG

Single Length

£

Sk
B

Double Length

0

Floating Point

String Words

How To Use This Manual (page 7)

Installing and Removing the Module (page 9)

The HP-71 FORTH System (page 11)

The Editor (page 37)

The Assembler (page 45)

Care, Warranty, and Service Information (page 65)

Error Messages (page 71)

BASIC Keywords (page 79)

FORTH Words (page 99)

BASIC Keywords by Category (page 151)

FORTH Words by Category (inside back cover)

O
Q
u
W
»
R
O
M

[fi] HEWLETT
8 PACKARD

Portable Computer Division
1000 N.E. Circle Bivd., Corvallis, OR 97330, U.S.A.

European Headquarters

150, Route Du Nant-D’Avril

P.O. Box, CH-1217 Meyrin 2

Geneva-Switzerland

82441-90001 English

HP-United Kingdom

(Pinewood)

GB-Nine Mile Ride, Wokingham

Berkshire RG11 3LL

Printed in Singapore 4/84

	Cover
	Contents
	How To Use This Manual
	Section 1: Installing and Removing the Module
	Section 2: The HP-71 FORTH System
	Introduction
	References
	Using FORTH on the HP-71
	Advanced FORTH and Assembly Language Programming

	Unique Aspects of HP-71 FORTH
	Twenty-Bit FORTH
	Compilation from Files
	FORTH/BASIC Interaction
	HP-IL Operations
	General Purpose Buffers
	Foreign Language Error Messages

	FORTH Extensions
	Floating-Point Operations
	String Operations
	Vocabularies
	Error Trapping

	FORTH Memory Organization
	HP-71 Memory
	The FORTHRAM File
	The FORTH Dictionary

	The HP-71 File System
	File Types
	Structure of the File Chain

	Section 3: The Editor
	Overview of the Editor
	Editor Commands
	The Text (T) and Insert (I) Commands
	The List (L) and Print (P) Commands
	The Copy (C) and Move (M) Commands
	The Delete (D) Command
	The Search (S) and Replace (R) Commands

	Editor Files

	Section 4: The Assembler
	Using the Assembler
	Running the Assembler
	The Listing File
	Assembler Source Code
	Line Format
	Comments
	Labels
	Expressions

	Overview of the CPU
	Arithmetic Registers
	Control Registers
	Loading Data from Memory

	Types of Assembly
	FORTH Primitives
	LEX Files
	Binary Files

	Assembler Mnemonics
	Branching Mnemonics
	Test Mnemonics
	P Register Mnemonics
	Status Mnemonics
	System-Control and Keyscan Mnemonics
	Scratch Register Mnemonics
	Memory-Access Mnemonics
	Load-Constants Mnemonics
	Shift Mnemonics
	Logical Mnemonics
	Arithmetic Mnemonics
	No-op Mnemonics

	Pseudo-ops
	Control Pseudo-ops
	Constant-Generating Pseudo-ops
	Macro-Expansion Pseudo-ops for FORTH Words
	Macro-Expansion Pseudo-ops for LEX Files
	Macro-Expansion Pseudo-ops for BIN Files

	Appendix A: Care, Warranty, and Service Information
	Care of the Module
	Limited One-Year Warranty
	Service
	When You Need Help

	Appendix B: Error Messages
	FORTH Messages
	Assembler Messages
	Editor Messages

	Appendix C: BASIC Keywords
	Appendix D: FORTH Words
	Notation
	Errors
	FORTH Glossary

	Subject Index
	BASIC Keywords by Category
	FORTH Words by Category

