[/ cacicaro

HP 82480A

For the HP-71

Notice

Hewlett-Packard Company makes no express or implied warranty with regard to the key-
stroke procedures and program material offered or their merchantability or their fitness for
any particular purpose. The keystroke procedures and program material are made avail-
able solely on an “as is” basis, and the entire risk as to their quality and performance is
with the user. Should the keystroke procedures or program material prove defective, the
user (and not Hewlett-Packard Company nor any other party) shall bear the entire cost of
all necessary correction and all incidental or consequential damages. Hewlett-Packard
Company shall not be liable for any incidental or consequential damages in connection
with or arising out of the furnishing, use, or performance of the keystroke procedures or
program material.

Printed in Singapore

A ciciaro

Math Pac

Owner’s Manual

For Use With the HP-71

March 1984

82480-90001

© Hewlett-Packard Company 1984

Introducing the Math Pac

The Math Pac is a set of powerful tools for solving a wide range of mathematical, scientific, and en-
gineering problems. These tools are provided in the convenient and flexible form of BASIC keywords.
Once the math module is plugged into your HP-71 Computer, these keywords are instantly available:
no program to load, no waiting. You can use these keywords in any program as often as needed; you
avoid the restrictions that would apply to program calls and save the memory that subroutines would
require.

The Math Pac adds the following capabilities to your HP-71.

Complex variables and arrays.

Advanced real- and complex-valued functions.

Real and complex array operations.

Solutions to systems of equations.

Roots of polynomial equations and user-defined functions.
Numerical integration.

Finite Fourier transform.

Contents

How To Use This Manual 9
Section 1: Installing and Removing the Module 13
Section 2: Base Conversions 15
Binary, Octal, and Hexadecimal Representations 15
Base Conversion Functions (EW AL, BESTEFE) o 15
Examples 16
Additional Information 17
Section 3: Complex Variables 19
Complex Data Typeso i 19
Declaring Complex Variables (ZOMFLER, COMFLES SHORT) 19
Complex Number Operations (i, », FEFT, IMFT) 21
Other Complex Operations (Z0 .) ... 22
EXampIEs 23
Section 4: Real Scalar Functions 27
Hyperbolic Functions (= IHH, TOZH, TAMHH, AZTHH,
ACOSH, ATHMHH) 27
Other Functions Performing Calculations
(GAMMA, LOGZ, SCALELBR) 28
Integer Round (IROUMD) oo 30
Functions Providing Information (HAH#*, HEIGHEOR, TYFE) 30
Examples 31
Section 5: Complex Functions and Operations 35
Operators (+, =, &, «,) 35
Logarithmic Functions (LG, EXF) ..o o 37
Trigonometric and Hyperbolic Functions
(5IH, COE, TAKM, SIHH, COSH, TAMH) .. 38
Polar/Retangular Conversions (FOLAE, FECT) o ... 40
General Functions (SGET, SGH, ABS, ARG, COMJ, PROJ) oo o0 0L 40
Relational Operators (=, <, &, #, &) 43
Examples 43
Additional Information 48

.................................... 51

Assignments (=, =0, COM, TOH, ZER) 51
Array Input (ITHFLT) o 53
Array Output (DI SF, PEIMT, DISF USIHG, FEINT WSIHG) 54
Examples 56
.. 63

Operators (==, +, —, "%, & TEM ®) 63
Examples 66
............................. 69

Determinant Functions (DET, DETL) 69
Array Norms (CHORM, RHORM, FHOREM) 70
Inner Product (CIOT) ..o 71
Subscript Bounds (LEHD, LEHD) 71
Examples 72
................... 77

Operations (I MW, TEHM) .. . 77
Solving a System of Equations (5%'3) 78
Examples ... 79
Additional Information 86
.. 89

Keywords (FHEOOT, FUAR, FUALLUE, FGUESS) 89
Examples 91
Additional Information 94
, nerical Integration 101
Keywords (IMTEGREAL, IWAR, IWALUE, TBOUND) 101
Examples ... 105
Additional Information 109
.......................... 119

Keyword (FEOT) .o 119
Example ... 120
Additional Information 121
: Finite Fourier Transform — 133
Keyword (FLIR) o 133
Example 135

Additional Information 136

6

Contents

Appendix A: Owner’s Information 143
Installing and Removing the Math Pac Module 143
Limited One-Year Warranty i 143
SBIVICE .. 145
When You Need Help 148

Appendix B: Memory Requirements 149

Appendix C: Error Conditions 151
Math Pac Error Messagest 151
HP-71 Error MESSagesttt 153

Appendix D: Attention Key Actions 155
Array Output Statements 155
Other MAT Statements 155
Scalar-Valued Array Functions 156

Appendix E: Numeric Exceptions and the IEEE Proposal 157
Introduction 157
Real Scalar FUNCLIONS i 158
Complex Functions and Operations 160
Array Functions and Operations 171
Other Math Pac Functions 174

Keyword Index 176

This manual assumes that you are generally familiar with the operation of your HP-71 Computer,
especially how to create, edit, store, and run programs. You should also understand the mathematical
basis for the operations you will be performing. Because the keywords in the Math Pac cover such a
wide range of mathematical subjects, we cannot provide much tutorial information on the mathematical
concepts involved.

The keywords in the Math Pac are independent of one another, so you may deal with only the
keywords that specifically interest you. Each section in this manual contains information on keywords
of a particular mathematical type—complex functions and operations, array arithmetic, and so on. All
keywords described after section 5 (except FHREDIOT and IMTEZRHAL) use arrays in their operation.
For an introduction to arrays, as used with the HP-71, read sections 3 and 14 of the HP-71 Owner’s
Manual.

Variable Declarations

The examples and programs in the Math Pac assume all variables are simple real unless otherwise
declared. If an ERF:[atz Tupe occurs as you execute an example or program, declare as FEAL any
variable not otherwise declared and continue operation.

The Math Pac refers to two types of arrays, vectors and matrices. As used in this manual, the term
vector identifies a singly-subscripted array, and matrix identifies a doubly-subscripted array. A sub-
script must be a real numeric expression. At run time, a subscript expression is rounded to an integer.
The value of this integer must be in the range [0,65535] (OFTIOH ERZE &) or [1,65535]
(OFTIOH BASE 1), Of course, in virtually all cases, available memory will determine the largest
subscript you can use.

An array can be one of five data types: FEAL, SHORET, IMTEGER, COMPLEX, or COMFPLE: SHORT
(refer to section 3 for a description of COMFLE and COMFLE: ZHORET). Math Pac MAT statements
will not change the declared type of an array; for example, when the values from a FEHAL array are
assigned to a SHORET or IHTEZEFR array, the values are rounded as they are stored into that array.

10 How to Use This Manual

Array Redimensioning

Some Math Pac keywords allow you to optionally redimension an array. This is called explicit
redimensioning. Other keywords automatically redimension result arrays, if possible, to accomodate the
number of elements generated by the keyword’s action. This is called implicit redimensioning. The kind
of array redimensioning performed by a keyword, explicit or implicit, is stated in each keyword’s
description.

Explicit redimensioning occurs when an array’s size and subscript count is changed according to the
number and value of new subscripts supplied by you. For example, if A is a 3 X 4 EEFL type matrix,
then the HP-71 statement FEAL At 2 explicitly redimensions A to be a 3 dlmensmnal vector. Note
that explicit redimensioning allows arrays to be changed from vectors to matrices and vice-versa. Ex-
plicit redimensioning also re-evaluates IF T I0iH ERZE; that is, resets the lower bound of an array’s
subscripts if the F TIOH EAZE setting has changed.

Implicit redimensioning occurs only in Math Pac operations of the form
MAT result array = operation (operand array(s)).

Implicit redimensioning only changes an array’s size. It does not allow changes between vectors and
matrices, nor does it re-evaluate TOF T IOH ERSE.

Keyword Description

Within each section you will find a description of each keyword name, function, syntax, and operation
in the following format.

KEYWORD NAME Function That the Keyword Performs

Syntax

Legal data types and numeric values for use with this keyword.

Description of the values returned by this keyword and the details of the keyword’s operation.

Keyword Name. This is the way the keyword will be referenced elsewhere in the manual. It is usually
a mnemonic of the function that the keyword performs. In most cases the name must be embedded in a
longer statement that includes arguments, parentheses, and so on; the name by itself usually isn’t an
acceptable BASIC statement.

Several keywords have names that are identical to names of keywords already present in your HP-71—
like [11%F, +, and #. The syntax in which such a name is embedded indicates which operation to
perform. All operations available to you in the HP-71 itself are still available, unaffected by the pres-
ence of the Math Pac.

Syntax. This is a description of the acceptable BASIC statements in which the keyword’s name can
be embedded. The following conventions are used throughout the manual in describing the syntax of a
keyword.

Typographical Item Interpretation

OOT MATRI= Words in dot matrix (like COMFLEX) can be entered in lowercase or upper-
case letters. The examples in this manual show statements, functions, and op-

erators entered in UFFERCHSE.

italic Items in italics are the variables or parameters you supply, such as X in the
SIHHCX statement.

bold Variables in bold type represent arrays.

[Square brackets enclose optional items. For instance, MAT A=IL0H[:X,Y]

indicates the redimensioning subscripts X and Y are optional.
stacked items When items are placed one above the other, one and only one must be chosen.

An ellipsis indicates that the optional items within the brackets can be re-
peated. For instance, MAT IHFLT A[.B]... indicates that MAT IHFLUT re-
quires at least one array variable, and may accept several, with the array
variables separated by commas.

Legal Data Types and Numeric Values. This information, in the same box as the syntax, describes
the types and ranges of arguments for the keyword that are acceptable to the Math Pac. Use this
information to avoid generating errors and to isolate the cause of those that do occur. This is not a
mathematical definition of the domain of the function that the keyword computes.

Values Returned and Details of Operation. This information, in the box just below the syntax
box, describes how the keyword works, tells what values the keyword returns, states whether array
redimensioning (if any) is explicit or implicit, and states whether or not the keyword is usable in CALC
mode.

Included in each section are a number of examples illustrating the use of the keywords in the section.
To try an example yourself, type in the statements given in the Input/Result column using either
upper- or lowercase, ending each line with with an (END LINE]. After you complete a line, the display of
your HP-71 should look like the display shown in the Input/Result column following the line—pro-
vided that you have set your HP-71 operating conditions as indicated below.

e All operating conditions should be set as listed in the reference manual in the Systems
Characteristics Section under the topic Reset Conditions, except for those whose settings follow.

® Set line width to 22 by entering L IOTH =z (ENDLINE].

e Set ELFAY so that each display in a sequence of displays, often produced by a single statement,
will remain visible long enough to be read and understood. The [EL A" statement is described in
The HP-71 Reference Manual and section 1 of the HP-71 Owner’s Manual. In each you’ll find
descriptions of how you can control the length of time each display remains visible. For the display
of array elements, you may find a DELFAY & setting useful. This causes each display to remain

until any key, such as (END LINE], is pressed.

Additional Information

Some sections in the Math Pac include additional information to help you make effective use of the
more sophisticated operations. If you would like still more information, you can refer to the HP-15C
Advanced Functions Handbook. Although the Math Pac differs from the HP-15C Advanced Pro-
grammable Scientific Calculator in its operation and capabilities, much of the information in the
HP-15C Advanced Functions Handbook applies to the Math Pac. Such information includes techniques
to increase the effectiveness of equation-solving algorithms, integration algorithms, matrix operations,
system solutions, and accuracy of numerical calculations.

Section 1
Installing and Removing the Module

The Math Pac module can be plugged into any of the four ports on the front edge of the computer.

CAUTIONS
* Be sure to turn off the HP-71 (press (] (OFF]) before installing or removing the module.

¢ If you have removed a module to make a port available for the math module, before installing the
math module, turn the computer on and then off to reset internal pointers.

¢ Do not place fingers, tools, or other objects into any of the ports. Such actions could result in minor
electrical shock hazard and interference with pacemaker devices worn by some persons. Damage
to port contacts and internal circuitry could also result.

¢ If a module jams when inserted into a port, it may be upside down. Attempting to force it further
may result in damage to the computer or the module.

* Handle the plug-in modules very carefully while they are out of the computer. Do not insert any
objects in the module connecter socket. Always keep a blank module in the computer’s port when
a module is not installed. Failure to observe these cautions may result in damage to the module or
the computer.

To insert the Math Pac module, orient it so that the label is
right-side up, hold the computer with the keyboard facing up, and
push in the module until it snaps into place. During this opera-
tion be sure to observe the precautions described above.

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the
module and pull the module straight out of the port. Install a blank module in the port to protect the

contacts inside.

13

Section 2
Base Conversions

Binary, Octal, and Hexadecimal Representations

The operations in this section allow your HP-71 to recognize and manipulate numbers expressed in
number systems other than decimal (base 10).

Because the HP-71 assumes that any real number stored in a numeric variable or entered from the
keyboard is a decimal number, you must enter and store every non-decimal number as a character
string. In particular, if you store the number in a variable, the variable’s name must end with “$”; if
you enter the number from the keyboard, it must be enclosed in quotes.

In the tables below, S$ will represent a binary, octal, or hexadecimal string or string expression.

e A binary string consists entirely of 0’s and 1’s, and represents a number in the base 2 number
system. A binary string expression is a string expression whose value is a binary string.

e An octal string consists entirely of 0’s, 1’s, ..., 6’s, and 7’s, and represents a number in the base 8
number system. An octal string expression is a string expression whose value is an octal string.

e A hexadecimal string consists of 0’s, ..., 9’s, A’s, ..., and F’s (the letters may be either uppercase or
lowercase), and this string represents a number in the base 16 number system. A hexadecimal string
expression is a string expression whose value is a hexadecimal string.

Base Conversion Functions

BVAL Binary, Octal, or Hexadecimal to Decimal Conversion

BLWALCSE, N

where S$ is a binary string expression whose value is not greater than
1110100011010100101001010000111111111111 (binary), and N is a numeric expression whose
rounded integer value is 2;

or S$ is an octal string expression whose value is not greater than 16432451207777 (octal), and N is a
numeric expression whose rounded integer value is 8;

or S$ is a hexadecimal string expression whose value is not greater than E8D4A50FFF (hexadecimal),
and N is a numeric expression whose rounded integer value is 16.

15

BVAL (continued)

Converts a string expression S$ representing a number expressed in base N into the equivalent decimal
number. The value of the decimal equivalent can’t exceed 999,999,999,999 (decimal).

Not usable in CALC mode.

BSTR$

ESTRFOX. N

Decimal to Binary, Octal, or Hexadecimal Conversion

where X is a numeric expression, 0 < X < 999,999,999,999.5, and N is a numeric expression whose

rounded integer value is 2, 8, or 16.

Converts the rounded integer value of X (decimal) into the equivalent base N string.

When N = 16, returns uppercase A, ..., F.

Not usable in CALC mode.

Input/Result
SSALCTIEIET, 2

T

111" [ENDLINE
AL CE$ 2 [ENDLINE

EUALCEFLESF, 20 (ENDLINE

a
PR

BETRECE, 20

oot
oot

The decimal value of 1010 (binary).

”

The decimal value of the binary string “1111.

The decimal value of the binary string
“11111111.”

The binary representation of 3 (decimal).

LTE, gD

11ig The octal representation of 72 (decimal).

The binary representation of AF1C8
(hexadecimal).

The octal sum of 14772 (octal) and 570 (octal).

Three considerations determined the range of acceptable parameters for the base conversion keywords.
The keywords give the exact answer for any integer in the range of acceptable parameters.

The keywords are inverses of one another, so that composition in either direction is the identity
transformation for integers.

The integers from 0 through 999,999,999,999 form the largest block of consecutive non-negative
integers that the HP-71 can display in integer format.

Section 3

Complex Variables

Complex Data Types

The operations in this section allow your HP-71 to declare, recognize and manipulate complex num-
bers. These operations include:
® Declaration of complex variables and arrays using COMFLEX and COMFLEX ZHOET statements.
¢ Extension of HP-71 variable assignment and the FE %= function to the complex case.

® Extension of HP-71 IMAGE format strings to include complex fields

® Conversion of real numbers to complex.

Declaring Complex Variables

COMPLEX Complex Variable Creation with 12-Digit Precision

COMPLERX variable list

where the syntax is the same as that used for FEAL, SHOET, and IMHTEZER keywords. That is, each
variable in the variable list has the form numeric variable [dim 1 [, dim 2]], and dim 1 and dim 2 are

real numeric expressions.

Not usable in CALC mode.

COMPLEX SHORT Complex Variable Creation with 5-Digit Precision

COMPLER SHORT variable list

where the syntax is the same as that used for FERL, SHOET, and ITHTEGER keywords. That is, each
variable in the variable list has the form numeric variable [dim 1 [, dim 2]:], and dim 1 and dim 2 are
real numeric expressions.

Not usable in CALC mode.

19

COMPLE® and COMFLE® SHORET both allocate memory for variables and arrays. If the array or
varlable does not already exist, creation occurs upon execution of the T{FFLE

IFLE® or
COMPLE® SHORT statement, and all variables and array elements are initialized to (0 0). The
dimension limits of arrays are evaluated at creation time. The lowest numbered subscript in any

dimension is 0 or 1, depending upon the 0FTI0H ERSE setting when the array is created.

A # statement redimensions existing arrays if they are type =, but does not
reinitialize them to (0,0). Similarly, a COMFLER SHORET statement redimensions ex1st1ng arrays if
they are type COFFLEX SHORET, but does not reinitialize them to (0,0). If an array is being ex-

panded, then all newly-created elements will be initialized. Redimensioning does preserve the sequence
of elements within an array, but not necessarily the elements’ positions within an array. Refer to the
HP-71 Owner’s Manual, section 3, under the topic Declaring Arrays (Liiit

IHTEGER), for more information.

& and

The following table indicates the conditions that apply to T
ables and arrays.

COMPLES and COMPLEY = T Numeric Variables
Initial value 0, 0)

Numeric precision

COMPLE . 12 decimal digits
COMPLE: SHORT 5 decimal digits
Exponent range +499
Maximum number of array dimensions 2
Maximum dimension limit 65535
Simple variable memory usage (bytes)
COMPLEX 25.5
COMFLES SHORT 18.5
Array memory usage (bytes)
COMPLER 16 * (dim 1 — option base + 1)
» (dim 2 — option base + 1) + 9.5
COMPLEY SHOET 9 » (dim 1 — option base + 1)

= (dim 2 — option base + 1) + 9.5

Section 3: Complex Variables 21

Complex Number Operations

(,) Real to Complex Conversion

XY

where X and Y are real- or complex-valued numeric expressions.

This is the way the HP-71 recognizes a complex number: as an ordered pair of real numbers. Since (X,Y)
is defined as (real part of X, real part of Y), if either X or Y is complex, (X,Y) is not necessarily equivalent
to X + iY.

Can be used in CALC mode.

REPT Real Part of Complex Number

$Z

where Z is a real- or complex-valued numeric expression.

Returns the real part (first component) of Z. If Z is real, FEFT<Z: = Z.

Can be used in CALC mode.

IMPT Imaginary Part of Complex Number

METOZ:

]

where Z is a real- or complex-valued numeric expression.

Returns the imaginary part (second component) of Z. If Z is real, IMFT«Z: = 0.

Can be used in CALC mode.

22 Section 3: Complex Variables

Other Complex Operations

The Math Pac allows extension of many operations of the HP-71 to the complex case. These include
numeric functions such as = IH, #, etc., as described in section 5. Other extensions are the ability to
assign values to complex variables created by a COMFLE: or COMFLE® ZHIOET statement, execution
of the REZ function when the last result is complex, and so on. In other words, when the Math Pac
module is plugged in, the HP-71 can operate with complex numbers in much the same way that it
operates with real numbers.

An important feature provided by the Math Pac is the extension of IMAGE format strings to include
complex field specifiers. This extension is described below. Refer to the IMAE keyword entry in the
HP-71 Reference Manual for additional information on format strings.

C(,) Complex Field in an IMAGE String

[n]Z < format string

where n is an optional multiplier.

Causes a complex expression ina D I=F or FREIMT output list to be formatted according to the format
string. The real part is formatted first and the imaginary part second. On output, the number is enclosed
in parentheses, with the real and imaginary parts separated by a comma. The comma is sent out when
the second numeric field is encountered.

The format string may not include:
e A carriage control symbol (#).
e String fields.
¢ Imbedded complex format strings.

The format string must include two and only two numeric specifiers, but no special restrictions (other
than those stated above) are placed on non-numeric specifiers.

Not usable in CALC mode.

Complex expressions in a OIZF LUZIMG or FRIMT LS IHEG output list may only be formatted by a
complex field in the IMAGE list. Likewise, real expressions in a DI 5F S IHE or FREINT USIHG
output list may not be formatted by a complex field in the IMFAZE list.

COMPLEX, COMPLEX SHORT, (,), REPT, IMPT

Input/Result
ALL

;

Insures that none of the variables and arrays in
the following statements exist. If one did exist, it
would not be initialized to (0,0) when the vari-
able or array declaration statement is executed.

Creates a complex variable, a complex vector,
and a complex matrlx The variable Z and all ele-
ments of the arrays i1 and i are 1n1t1allzed to
(0,0).

Creates a complex short array and a complex
short variable. ¥ and all elements of © are initial-
ized to (0,0).

Assigns the complex number 1 + 5i to Z.

The HP-71 representation of the complex num-
ber 1 + 5i.

Assigns the real number # to the complex array
element /¢ K

Displays two array element values.

Complex element . 1 was assigned

CE L8 at its creat1on Since the real number 3z
was assigned to a complex element it becomes
the complex number %, & .

Assigns (1,3) to

Displays the complex number *.

24 Section 3: Complex Variables

RES Displays the value of the most recently executed
or displayed numeric expresion, which in this case
is complex.

(1,33

REFTCY i IMFTOY S

Complex IMAGE Fields

Input/Result

5 STD @ COMPLEX Y

10 Y=(69.14,—12.7)

20 DISP USING 100; Y

30 DISP USING 200; Y,Y

40 DISP USING 300; Y,Y

50 DISP USING 400; Y,Y,Y

60 DISP USING “C(DDD,DDDY’;Y
100 IMAGE C(2D.2D,4D.2D"")

200 IMAGE C(4Z,XXX,4%),/,C(4Z,XXX4%)
300 IMAGE C(B,K‘i"),X,C(*,4%.2DE)
400 IMAGE 3C(2(DDD,XX))

RUN

fEE, 14, 12,7810 Line 100 IMAGE display.
CARED L=k 1E Line 200 IMAGE display.

Section 3: Complex Variables 25

Line 300 IMAGE display.

Line 400 IMAZE display.

Line 60 display.

Section 4

Real Scalar Functions

Hyperbolic Functions

The functions = IHH, C0%H, and TAMH (described below) are also defined for complex arguments. See

section 5.

SINH Hyperbolic Sine
SIMHOX

where X is a real-valued numeric expression, [X| < 1151.98569368

Can be used in CALC mode.

COSH Hyperbolic Cosine

COSHOX

where X is a real-valued numeric expression, [X| < 1151.98569368

Can be used in CALC mode.

TANH Hyperbolic Tangent

THHHOX

where X is a real-valued numeric expression.

Can be used in CALC mode.

27

ASINH Inverse Hyperbolic Sine

where X is a real-valued numeric expression.

Can be used in CALC mode.

ACOSH Inverse Hyperbolic Cosine

where X is a real-valued numeric expression, X > 1.

Can be used in CALC mode.

ATANH Inverse Hyperbolic Tangent
FTHMHOX
where X is a real-valued numeric expression, —1 < X < 1.

Can be used in CALC mode.

GAMMA Gamma Function
GRMMACX?
where X is a real-valued numeric expression whose range is defined as follows:

X not equal to zero or a negative integer.

—253 < X < 254.1190554375.

Within the range —263 < X < —258, certain values of X cause ZHA[MIMA© X to underflow as indicated
by the graph of GAMMA XX,

For X < —263, [GAMMA lIZXZI'| < MIMRERAL, so GHMMA X will always underflow here.

GAMMA (continued)

If X equals a positive integer, GHIMFACX: = FROTOX =13,
In general, ZAMMACX: = [(X), defined for X > 0 as

(o]
X)= | e lat
'x) J; e
and defined for other values of X by analytic continuation.

Can be used in CALC mode.

LOG2 Base 2 Logarithm

(X

where X is a real-valued numeric expression, X > 0.

. Y- In(X
L Xy o= | X) = -LL
09,(X) n2)
Can be used in CALC mode.
SCALE10 Power of Ten Scaling

where X is a real-valued numeric expression and P is a real numeric expression that must evaluate to an
integer value.

Multiplies X by 10 raised to the power P by adding P to the exponent of X. You will find =
useful in preventing intermediate underflows and overflows in long chain calculations.

Can be used in CALC mode.

30 Section 4: Real Scalar Functions

Integer Round

IROUND Round to Integer

TROUMDOOX

where X is a real-valued numeric expression.

Rounds X to an integer using the current OF T IGH EOLMHD setting.

Can be used in CALC mode.

Functions Providing Information

NANS Not-a-Number Diagnostic Information

MAME XD

where X is a real-valued numeric expression.

Returns a string representing the error number contained in its = argument; that is, the number of
the error that caused the =t to be created. The string returned is of the same form as the number
returned by the EFFH function (refer to the HP-71 Reference Manual). However, the LEX identification
number is 0 for all H=ts created by Math Pac functions since the Math Pac uses only HP-71 error
messages when creating H =z Hs.

If X is not a H=ti, then MAMF CX returns a null string.

Not usable in CALC mode.

NEIGHBOR Nearest Machine Number

HEIGHEBOREOX, Y

where X and Y are real-valued numeric expressions.

Returns the nearest machine-representable number to X in the direction toward Y. This is the machine
successor (or predecessor) of X depending on the relative location of Y. You will find HE I GHEDE useful
when you wish to evaluate a function in a local neighborhood of a given value.

Can be used in CALC mode.

31

TYPE Expression Type and Dimension
TYFECX™
where X is a real-, complex-, string-, or array-valued expression.

Returns an integer from 0 through 8 depending on the type and dimension of X as shown in the follow- |
ing table.

Except for string and array arguments, can be used in CALC mode.

X | TYFEOX:

Simple real (includes IHTEGER,
| SHORET, and REAL simple
| variables.) 5
| Simple complex (includes COMFLE ™
| and COMFLEX SHORT simple
| variables.) 1
Simple string =
| IMTEGER array 2
. OET array 4
| KEAL array
| COMPLE® SHORT array ‘ &
|

| COMFLES array
| String array o

COSH, SINH, ATANH, ACOSH
Input/Result

+ [END LINE Hyperbolic cosine of a numeric constant.

LOG2, IROUND

Input/Result
“1E

UMD HEFF (ENDLINE)

4, 53 | [END LINE

EOUMD POS [ENDLINE

Hyperbolic sine of a numeric expression.

Inverse hyperbolic tangent of a numeric ex-
pression with a numeric variable.

Inverse hyperbolic cosine of a numeric
expression.

Logarithm (base 2) of a numeric expression.

Rounds to the nearest integer (the nearest even
integer in case of a tie).

Rounds to the nearest larger integer.

NANS$, NEIGHBOR, TYPE

Input/Result
H=TRARPCIVL 22

© IHF

Sets trap value = for IiL.. Refer to the HP-71
Reference Manual for information on the TFE#HF
function.

Trap value Z for I'/L. causes a warning, not an
error, to be given when the invalid operation
SZIMCIHF Y is executed.

The invalid operation assigns izi4 (Not-a-
Number) to i, since 1%L has a trap value of &

The message number associated with the value
F oz identifies the I : 2 message.

The nearest machine number to I in the direc-
tion toward .

The nearest machine number to I in the direc-
tion toward -

The nearest machine number to
direction toward 1

34 Section 4: Real Scalar Functions

i)
o
im
H
bR
el

1L EEEOSO99999FE-53 The nearest machine number to 1 . 34
in the direction toward &.

=y
. 2o M
S TYFECI D TYPEC) ; TYPECED

o 14 | END LINE

5] & = & The numbers returned by 7% FE identify the
type and dimension of each of the expressions.

l
ot

Section 5

Many useful functions are defined for complex as well as real arguments. The Math Pac allows you to
use many HP-71 keywords for both complex and real arguments. In addition, this section describes
other keywords defined specifically for complex operations.

All the functions and operations described in this section (except FE =, # , and the relational

operators) return a complex-type result.

With the exception of the FEZ T function, all complex numbers Z and W are assumed to be in rectan-
gular, not polar, form.

The two-dimensional nature of these functions precludes giving simple bounds for the arguments that
will avoid underflow and overflow messages.

+ Addition
Z+W
where Z and/or W are complex-valued numeric expressions.

Can be used in CALC mode.

— Unary Minus

where Z is a complex-valued numeric expression.

Can be used in CALC mode.

35

36 Section 5: Complex Functions and Operations

Subtraction

Z-W

where Z and/or W are complex-valued numeric expressions.

Can be used in CALC mode.

*

Multiplication

ZEW

where Z and/or W are complex-valued numeric expressions.

Can be used in CALC mode.

Division

Z-W

where Z and/or W are complex-valued numeric expressions, W = (0,0).

Can be used in CALC mode.

Exponentiation

where Z and/or W are complex-valued numeric expressions.

Returns the principal value of Z¥ = V'@,

Can be used in CALC mode.

LOG Natural Logarithm

LOGoCZy or LMIZ:

where Z is a complex-valued numeric expression, Z # (0,0).

If Z = x + iy, and R (cos 6 + i sin 6) is the polar representation of Z, then
LOZdZ: = InR + if.

where —7 < 6 < = (radian measure).

Can be used in CALC mode.

EXP Exponential

EWFoZ
where Z is a complex-valued numeric expression.
If Z = x + iy, then
ExFiZy = e ™% = ¢ (cosy + isin y).
where y is taken to be radian measure.

Can be used in CALC mode.

All trigonometric calculations take their arguments to be in radian measure regardless of the angular

setting.

SIN
SIHOZ:
where Z is a complex-valued numeric expression.

If Z = x + iy, then
IMOZY = sin (x + iy) = sin x cosh y + i cos x sinh y.

Can be used in CALC mode.

Ccos

02

where Z is a complex-valued numeric expression.

If Z = x + iy, then
Lo oZy = cos (x + iy) = cos x cosh y — i sin x sinh y.

Can be used in CALC mode.

where Z is a complex-valued numeric expression.
If Z = x + iy, then

sin (x + iy) sin x cos x + i sinh y cosh y

THHOZ: = tan (x + iy) = =
() cos (x + iy) sinh?y + cos®x

Can be used in CALC mode.

Sine

Cosine

Tangent

Section 5: Complex Functions and Operations 39

SINH

Hyperbolic Sine

IHROZE

where Z is a complex-valued numeric expression.

If Z = x + iy, then
IHMHOZ: = sinh(x + iy) = (=) sin (—=y + ix).

pin]

Can be used in CALC mode.

Hyperbolic Cosine

where Z is a complex-valued numeric expression.

If Z = x + iy, then
COZHOZY = cosh (x + iy) = cos (—y + ix).

Can be used in CALC mode.

TANH

Hyperbolic Tangent

THHHOZ

where Z is a complex-valued numeric expression.

If Z = x + iy, then

Can be used in CALC mode.

TEHHIZY = tanh (x + iy) = (—i) tan (—y + ix).

40 Section 5: Complex Functions and Operations

Polar/Rectangular Conversions

Rectangular to Polar Conversion

POLAR

FOLARCZ:

where Z is a real- or complex-valued numeric expression.

If Z = x + iy, and R (cos § + i sin 6) is the polar representation of Z, then
FOLARCZ: = (R, 6)
The angle 6 is expressed in degrees (—180 < 6 < 180) or radians (—= < f# < =) according to the

current angular setting.

Can be used in CALC mode.

Polar to Rectangular Conversion

RECT

FECTCZ

where Z is a real- or complex-valued numeric expression.

FELCT is the only keyword in this section that assumes its argument Z to be in polar form.

If Z = (R,6), where R (cos 6 + i sin 6) is the polar representation of the complex number x + iy, then
FECTCZY = x + iy

The angle 6 is taken to be in degrees or radians according to the current angular setting.

Can be used in CALC mode.

General Functions
Square Root

SQRT

TeZs or SHECZ:

where Z is a complex-valued numeric expression.

Returns the complex principal value of the square root of Z.

Can be used in CALC mode.

where Z is a complex-valued numeric expression.

Returns the unit vector in the direction of Z; that is,

where Z = x + iy.
If Z = (0,0),
Can be used in CALC mode.

ABS

where Z is a complex-valued numeric expression.

If Z = x + iy, then
AESOZE = |x +iy| = Vx® 4+ y?

Z : always returns real type.

Can be used in CALC mode.

Unit Vector

Absolute Value

42 Section 5: Complex Functions and Operations

ARG Argument

AREGOZ:

where Z is a real- or complex-valued numeric expression.

If Z =x + iy and R (cos 6 + i sin 6) is the polar representation of Z, then
AREGOZY = 0.

The angle 6 is expressed in degrees (—180 < 6 < 180) or radians (—= < f <) according to the
current angular setting.

s Z 3 always returns real type.

Can be used in CALC mode.

CONJ Complex Conjugate

SO OZD

where Z is a real- or complex-valued numeric expression.

If Z = x + iy, then

COMJCZE = x — iy

17 Zs always returns the same type (real or complex) as Z.

Can be used in CALC mode.

PROJ Projective Infinity

FROJCZS

where Z is a real- or complex-valued numeric expression.

If Z = x + iy, then
FROJCZY = Z if AEBZCZY # Inf
or
FEOLIZy = Inf + 00 if AESCZy = Inf.
Can be used in CALC mode.

Relational Operators

=’ <! >! #’?

Z comparison operator W

Section

5: Complex Functions and Operations 43

Equal or Unordered

where Z and/or W are complex-valued numeric expressions.

this case).

Suppose Z = x + iyand W = u + iv.

[

Any comparison that contains < or

Can be used in CALC mode.

When at least one of two expressions is complex valued, only two comparison results are possible:
either the expressions are equal or they are unordered (or unequal, which is equivalent to unordered in

| If x = uandy = v, then any comparison that contains = is true (that is, evaluates to 1).
| If x # u or y # v, then any comparison that contains # or is true.

without * or # produces an exception.

Examples
+, —, *! /
Input/Result
STD @ COMPLEX Z.H
Z=id4, 50 B W=(-3,20
Z+ld

il R T

ZHZ N+

n
i

Z -1 [END LINE

=4

¢o Eud o4, 5% [ENDLINE

R B

o
m
Z
o
L
z
m

~, LOG, EXP

Input/Result

43, % (END LINE

ot
fu
m
P4
)
[
Z
m

@, EE4T .1 18T

4 oy
1, =

SIN, TAN, COSH

Input/Result

< (END LINE]
21, 20 [ENDLINE]

P
T
i

oot

oot
ER R

ABS, ARG, CONJ, PROJ

Input/Result
R

The fourth quadrant angle § measured in radi-
ans, which is the argument of the complex num-
ber 3 — 7i.

46 Section 5: Complex Functions and

STD @ COMJOoLl, 203

Operations

;—;
I
[

FROJOO=Inf, —Infrd

CInf @D

FREOJCOL, 23 [ENDLINE

POLAR, RECT, SGN

Input/Result

ZTO
DEGREES
FOLARC~12

R

x
s

F1%4 (ENDLINE
FOLARCCE, 433 (ENDLINE

1
fx]
oy
XA
fx]
pony
R
L0
ot
(%]
bl
ot

FADIAHS
RECTCo-S,FIodan

Rectangular to polar conversion for a real
argument.

The absolute value (r) is 1 and the argument (6)
is 128 degrees.

Rectangular to polar conversion for a complex
argument.

The absolute value (r) is & . &6 and the argu-

ment () is 53 . 1381 degrees.

Polar to rectangular conversion for a complex
argument. The absolute value (r) is 5 and the
argument (f) is —3w/4 radians. Since the R
given is negative, this is the reflection of the polar
point (5,P1/4) through the origin.

C-3 5355, -3 53550 The real part (x) and the imaginary part (y) are
both —73 . 5355,

SQRT, LOG

Note the behavior of ZiZFET and L= at the branch cut. Refer to the discussion of branches under the
“Additional Information” topic below.

Input/Result
FlIwd @ SOARTCCL, 200

LOGod-E=F OS2, 83 (ENDLINE

r—
11
T

Al
i
fex]
m
2z
o
L
P4
m

48 Section 5: Complex Functions and Operations

Additional Information

In general, the inverse of a function f(z)—denoted f~1(z)—has more than one value for any argument z.
However, the Math Pac calculates the single principal value, which lies in the part of the range defined
as the principal branch of the inverse function f~1(2).

The left-hand graph in each figure represents the cut domain of the inverse function; the right-hand
graph shows the range of the principal branch. The blue and the black lines in the left-hand graph are
mapped, under the inverse function, to the corresponding blue and black lines in the right-hand graph.

SQRT

Vz =\r éPfor —r <0 <n

| 0 0
774777TTTTTTI] i N ;
/ ~
\ / § /
\ . / § /
. v/ NP
~N - _ |- P %/ -
=

z w=\z

Section 5: Complex Functions and Operations 49

LOG
LN(z) =Inr+iffor —r <6<

1

/ g N e 1

/ A 1 |

/ PR \ I |

,f fool \1 | o |

//////////}(/// / /’ : :

\\ ~ -7 / | |

N , / | |

N P [|
R e //////////V/////////1//////////

z w = LN(2)

The principal branch of w? is derived from that of the log function and the equation:
w?® = exp (z LN w),
where LN denotes the single-valued function.

To determine all values of the inverse function, use the expressions below to derive these values from
the principal values calculated by the Math Pac. In these expressions, K = 0, =1, +2, and so on, and
uppercase letters denote single-valued functions.

/2 = =SQR(2) In(z) = LN(z) + 2wik w? = we?rike

Section 6

Array Input and Output

The keywords in this section enable you to:

e Fill an array with values.

e Display or print values already in an array.

Assignments

= Simple Assignment

MAT A=B

where A and B are both vectors or both matrices.

Array B may be either real or complex type.

If B is complex, then A must be complex.

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to

zero.

Implicitly redimensions A to be the same size as B, and assigns the value of every element in B to the
corresponding element in A.

To halt operation, press twice.
Not usable in CALC mode.

51

52 Section 6: Array Input and Output

= () Numeric Expression Assignment

where X is either a real- or complex-valued numeric expression.

If X is complex, then array A must be complex type.

If X is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to
zero.

Assigns X to all elements of A. Array A is not redimensioned.

To halt operation, press twice.
Not usable in CALC mode.

CON Constant Array

A [“X[.Y] %]

where A is either a real- or complex-type array, and the optional redimensioning subscripts X and Y are
real-valued numeric expressions. X and Y are rounded to the nearest integer just as are subscripts in
4 statements.

Assigns the real value one to all elements of A. If redimensioning subscript(s) are provided, A is explicitly
redimensioned according to the number and value of those subcripts.

Not usable in CALC mode.

IDN Identity Matrix

F[EX. Y]

where A is a real- or complex-type array and where the optional redimensioning subscripts X and Y are
real-valued numeric expressions with the same rounded integer value. X and Y are rounded to the
nearest integer just as are subscripts in [I statements. If X and Y are not provided, A must be a
square matrix (it must have two equal subscripts).

If no redimensioning subscripts X and Y are provided, then A will become an identity matrix. If
redimensioning subscripts X and Y are provided, then A is explicitly redimensioned to a square matrix |
with the upper bound of each subscript equal to the rounded integer value of X and Y and then assigned |
the values of an identity matrix.

Not usable in CALC mode.

Output 53

Zero Array

| where A is either a real- or complex-type array, and the optional redimensioning subscripts X and Y are
| real-valued numeric expressions. X and Y are rounded to the nearest integer just as are subscripts in

iAssigns zero to all elements of A. If redimensioning subscript(s) are provided, A is explicitly
redimensioned according to the number and value of those subcripts.

Not usable in CALC mode.

Array Input

INPUT Assign Values from Keyboard Input

' MAT IHMFUT A [LB]..

where A (and B) are real- or complex-type array(s).

| Assigns real or complex numbers to the specified array(s). Complex values cannot be assigned to real
| array elements. MIRT IHFLUT prompts with the name of an array element and then accepts a numeric
expression from the keyboard, evaluates that expression, and assigns the result as the value of that
| element. For each array, AT IHFLIT gives prompts for the elements in row order (from left to right in
each row, from the first row to the last). If there is more than one array, they are handled in the order
| specified.

When the name of an array element is displayed, enter its value by typing in the numeric expression and
| then pressing [END LINE]. You can enter values for several consecutive elements by separating the val-
| ues with commas. When an array is filled, the remaining values are automatically entered into the next
| array. After you press [END LINE], the computer will display the name of the next element (if any) to be
| assigned a value.

54 Section 6: Array Input and Output

INPUT (continued)

In other respects, MAT IHFLUT acts as does IMHFILIT. For instance:

® The Command Stack is always active during 1A T IHFLIT execution. You can move up and down
in the Command Stack with [a], (v], (8] [(X], and [9] (Y] without first pressing (9] [CMDS].

® You can use a direct execute user-defined key to provide the response to the MAT IHFUT

prompt.
* The key sequence and the (9] key sequence are active during MAT IHFUT
execution.

* If you are making a response to a AT IMHFUT statement, but have not pressed [END LINE],
pressing once clears the typed entry, allowing another entry to be typed. If you press
twice, the HP-71 clears the entry, pauses the program, and clears the display.

Not usable in CALC mode.

rrav (iitr #
Ari ay VUuiput

To halt the operation of any of the keywords described below you need press only once.

L]

| where A (and B) are real- or complex-type array(s).

Display in Standard Format

Displays the values of the elements of the specified arrays. The values are displayed in row order. Each
| row begins on a new line; a blank line is displayed between the last row of an array and the first row of
the next array.

The choice of terminator—comma or semicolon—determines the spacing between the elements of an
array.

Terminator Spacing Between Elements

Close: Elements are separated by two spaces. A minus sign, if present,
occupies one of the two spaces.

Wide: Elements are placed in 21-column fields.

If the last array specified doesn’t have a terminator, the array will be displayed with wide spacing be-
| tween elements.

1 Not usable in CALC mode.

Section 6: Array Input and Output 55

PRINT Print in Standard Format

| MAT FRIHT A [B]...[" :I

| where A (and B) are real- or complex-type array(s).

|

- — e S - e
|

|

|

|

Prints the values of the specified arrays. Operation is identical to MAT ['IZF, except that the output is
' sent to the FREIMTEFR I%Z device, which requires HP-IL. If no FEIMTER 1% device is present, out-
| put is sent to the display, or to the HP-IL DI ZFLHAY I%Z device. Also, you can override the CR/LF
| normally generated by MAT FFIMT with the EHMOL IHE statement. EHOL IHE is described in the

HP-71 Reference Manual and in section 13 of the HP-71 Owner’s Manual.

| Not usable in CALC mode.

DISP USING

format string ;
s o A B]...
line number

where A (and B) are real- or complex-type array(s).

Display Using Custom Format

DX

Displays the values of the elements of the specified arrays in a format determined by the format string or

-

for information about &I %F Lz IHEG, format strings, 1 statements, and their results).

If any array is complex type, the corresponding field specifier in the format string or IHAGE statement
must be a complex field specifier. Refer to the description of the complex field specifier (Z < . *) in
section 3, page 22.

The values are displayed in row order. Each row begins on a new line; a blank line is displayed between
the last row of an array and the first row of the next array.

| The terminators between the arrays—commas or semicolons—serve only to separate the arrays and |

have no effect on the display format. 5

The Math Pac must be plugged in to FE LI © a program containing a

11 [line |
number] statement; otherwise, the line number will not be correctly updated. ‘

Not usable in CALC mode.

56 section 6: Array Input and

PRINT USING Print Using Custom Format

format string ; .
AT PREINT USIHG A BJ..
line number H

where A (and B) are real- or complex-type array(s).

Operation is identical to MAT DIZF LESIHG, except that the output is sent to the |
device which requires HP-IL. If no FEIMTER 1% device is present, output is sent to the display, or to
the HP-IL DIZFLAY I% device. Also, you can override the CR/LF normally generated by
MAT FEINT UZIHG with the EHDOL IHE statement. EHIILIHE is described in the HP-71 Ref- |
erence Manual and in section 13 of the HP-71 Owner’s Manual. ‘

Not usable in CALC mode.
Examples

With the optional delay of & or larger (infinite line replacement delay), you press (or any
other key) to display the next line. So you can control how long each array row is displayed.

CON, IDN, ZER, DISP

Input/Result
OQFTION ERASE 1 @ STOD
ODIM ACZ, 32, B0 B is dimensioned to be a one element vector.

COMPLER Co18, 280
MAT A=I10H

MAT DISF A Displays the identity matrix A with close spacing
between the elements.

1 e o
S T
|

MAT E=ZER:Z, 23

MAT DISF B

[
BooA
MAT C=COMOZ, 25
MAT DISF o
L N & D A = L O &
L N & L A = A =
L N & LA & DA N &
INPUT
Input/Result
OFTION BRSE 1
OIM RO2, 30, BO3D
OFTIOH BASE @
COMPLER CozZ, 10
MAT IMFUT ALE,C

Aol 137 B

1,&.%,4 [ENDLINE

Redimensions B from a one-element vector to a
2 X 2 matrix and assigns to it a zero array.

Redimensions C and assigns to it a constant
array.

Declares C to be a 3 X 2 complex array (remem-
ber we are in JFTIOH EASE).

Prompts for the first element’s value.

More than one value can be entered.

Prompts for the fifth element’s value.

58

Section 6: Array Input and Output

5, &, 7 [ENDLINE
BEozat B
=, =, 15 |ENDLINE
CoE,1aT W
1,2,05,8%,¢7, % (ENDLINE
R R |
HHEM | END LINE
=T @ MAT DISF H:EBE:C: [ENDLINE

prs}

Ty

Enters values for the last two
elements of A and the first element of B.

Enters values for the last two elements of B and
the first element of the complex array C.

Enters values for the next four elements of C.

Enters “not a number” for the last element of C.

Displays each array in sequence, with a blank
line between each.

DISP USING

Input/Result

10 OPTION BASE 1 @ INTEGER A(5,5)
15 WIDTH 22 @ DELAY 8

20 COMPLEX SHORT Z(3,4)
25 MAT A=IDN @ MAT Z=((4,5))

30 MAT DISP USING ‘DDD,ZZZ’;A,A

35 MAT DISP USING ‘#,D’;A @ DISP 4

40 MAT DISP USING 100;Z
45 DELAY 1
100 IMAGE C(K,2D, ")

Causes the output to appear in the display as

shown below. After each display, press
to produce next display.

Assigns the identity matrix to A and the

complex number 7 4.5 to every element of Z.

This format string consists of two field
specifiers, OO0 and ZZZ. Each element of A is
displayed according to these field specifiers used
repeatedly until all elements have been displayed.
The final element of A is displayed according to
OO0, Then a blank line is displayed, followed by
another display of all elements of A. The field
specifier ZZZ (the next specifier in the format
string) is used to format the display of the first
element during this second display of A.

The # symbol supresses the automatic end-of-
line sequence (CR/LF) following the display of A.
This causes 4 to be displayed on the same line
as the last element of A.

The IMAGE statement must use the =, * form
to format the display of a complex array. The
parentheses must contain two numeric field
specifiers.

60 Section 6: Array Input and Output

RUN

,_

fx]
=
KA
o

fx]
-
KX

The ' format symbol replaces leading zeros with
blanks. Since A is an identity matrix, element
(1,1) is 1. Therefore the two leading zeros are
replaced with blanks, and element (1,1) is dis-
played as 1. The Z format symbol fills each
leading zero with &, so element (1,2) is displayed
as AEE. The remaining elements, in row order,
are displayed according to the format string
OO0, ZZZ used repeatedly.

—
i
[y
Ry
—
ex)
—
hex}

After the last (fifth) element of the first row is
displayed, an end-of-line sequence (carriage re-
turn, line feed) is sent, causing the display of
element (2,1) to start a new line.

T
ot
T
ok
)
Lt
.
)
A
]
ok
T
ot
]
A
T
!
]
A
=
Lt

ot

The field specifier [0 formats the display of
the last element of A, causing the display of 1.

2

T

R
7t
b
[ux}

o

R

-
RN

T
R
-
)
i
o
!
oy
P}
-
e}
-
X
A
R
—
)
o
Ry

i

X

D

X

s

X

oo o
T
OO
K

[icn

X

[

X

[

X

-

b
—
T T

Following the display of the last element of the
last row, a second end-of-line sequence is sent,

causing the display of a blank line between the
two displays of array A.

FE AREE GOE0 Since the variable list following the format
string in line 30 is H . M, array A is displayed
twice. This time, element (1,1) is displayed
according to the field specifier ZZ 2, since 1[I0
was used just above for the last element of A
during the first display of this array.

AEEL BEee @ Since this is the display of the last array in the

ARE AAR1T BEE6 variable list of line 30, no blank line is displayed,

aanE BeEl & even though this display line ends with the last

RGO ARG BE6] element of the last row of A.

.,..
fx}
=
fn]
-
x)
=
i}

= T
DA
—
=,
kN

o
o
3

T b

,..
ot
kA
-

% T Ao B o B S

=
2% N i B

fxi

=

FR I

I

T T T

Since the portion of the format string of line 35
that controls character display consists only of [,
the elements of each row of A are displayed with
no extra characters or spaces.

The # symbol in the format string of line 35
supresses the end-of-line sequence normally sent
after the display of the final row of the last array
in the variable list.

The symbol E in the format string of line 100
specifies a compact field, resulting in the display
of no leading or trailing blanks. This symbol
controls the display format of the real part of
each (identical) element of Z. The display of the
imaginary part of each element is controlled by
Z[. Since the imaginary part, =, consists of only
one digit, a leading blank is displayed. The com-
plex image specification ¢ * causes the display
of the parentheses and comma.

The display of each row is ended with an end-of-
line sequence, so each new row starts a new dis-
play line.

Section 7

Array Arithmetic

The keywords in this section perform arithmetic operations on arrays. The dimensions of the operand
arrays must be compatible with the particular operation, as discussed below.

e For addition and subtraction, the operand arrays must both be vectors or both be matrices, and
they must have the same number of rows and the same number of columns. In this case we will say
that the arrays are conformable for addition.

e For multiplication of two arrays, the first array must be a matrix, while the second array can be a
matrix or a vector. The number of columns of the first array must be equal to the number of rows
of the second array. If these conditions are satisfied, we will say that the arrays are conformable for
multiplication.

e For transpose multiplication of two arrays, the first array must be a matrix, while the second array
can be a matrix or a vector. The number of rows of the first array must be equal to the number of
rows of the second array. If these conditions are satisfied, we will say that the arrays are con-
formable for transpose multiplication.

Operators

= Negation

where A and B are both vectors or both matrices.

Array B may be either real or complex type.

If B is complex, then A must be complex.

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to
zero.

Implicitly redimensions A to be the same size as B and assigns to each element of A the negative of the
corresponding element of B.

To halt operation, press twice.
Not usable in CALC mode.

63

+ Addition
MAT A=B+C

where A, B, and C are all vectors or all matrices, and B and C are conformable for addition.

Arrays B and C may be either real or complex type.

If either B or C is complex, then A must be complex.

If both B and C are real, then A may be real or complex; if complex, all imaginary parts of all elements in
| A are set to zero.

Implicitly redimensions A to be the same size as B and C, and assigns to each element of A the sum of
the values of the corresponding elements of B and C.

| To halt operation, press twice.
Not usable in CALC mode.

Subtraction

| where A, B, and C are all vectors or all matrices, and B and C are conformable for addition.

| Arrays B and C may be either real or complex type.

| If either B or C is complex, then A must be complex.

| If both B and C are real, then A may be real or complex; if complex, all imaginary parts of all elements in |
| A are set to zero.

| Implicitly redimensions A to be the same size as B and C, and assigns to each element of A the dif- 3
| ference of the values of the corresponding elements of B and C.

| To halt operation, press twice.
| Not usable in CALC mode.

()% Multiplication by a Scalar

1T A=< X2 4B

where A and B are both vectors or both matrices and X is a numeric expression.

Array B may be either real or complex type and expression X may be either real or complex valued.

If either B or X is complex, then A must be complex.

If both B and X are real, then A may be real or complex; if complex, all imaginary parts of all elements in
A are set to zero.

Implicitly redimensions A to be the same size as B and assigns to each element of A the product of the
value of X and the value of the corresponding element of B.

To halt operation, press twice.
Not usable in CALC mode.

X Matrix Multiplication

where B is a matrix, A and C are both vectors or both matrices, and B and C are conformable for
multiplication.

Arrays B and C may be either real or complex type.

If either B or C is complex, then A must be complex.

If both B and C are real, then A may be real or complex; if complex, all imaginary parts of all elements in
A are set to zero.

Implicitly redimensions A to have the same number of rows as B and the same number of columns as C.
The values of the elements of A are determined by the usual rules of matrix multiplication.

To halt operation, press twice.
Not usable in CALC mode.

66 Section 7: Array Arithmetic

TRN x Transpose Multiplication

MAT A= TREHOB:#C

where B is a matrix, A and C are both vectors or both matrices, and B and C are conformable for
transpose multiplication.

Arrays B and C may be either real or complex type.

If either B or C is complex, then A must be complex.

A are set to zero.

number of columns as C.

The result of this operation is the same as if the transpose of B (or the conjugate transpose of B, if B is

tiplication rules so that B does not have to be explicitly transposed prior to the multiplication.
To halt operation, press twice.
| Not usable in CALC mode.

+, %, ()%, TRN *
Input/Result
OFTIOHW EASE 1 @ =TO (ENDLINE)

REAL AcC2, 20, BCZ, 40
COMPLE® SHORT CoZ, 12,0022, EC3D

MAT A=I0OHCZ, 23
MAT C=o03, 40 0%A C is redimensioned to 2 X 2 and every element

of C is assigned the product of the complex num-

ber ©Z, 4 and the corresponding
element of A.

MAT DOISF O

[|

N The array C.

o
(RS]

—
X
R |

b

If both B and C are real, then A may be real or complex; if complex, all imaginary parts of all elements in

Implicitly redimensions A to have the same number of rows as the number of columns in B and the same ;

complex type) was computed and then post-multiplied by C. However, the Math Pac uses special mul- |

MAT A=COM @ MAT C=C+A (ENDLINE)

MAT DISF

b
—
kY

E O

T
FAN

MAT E=A%A (ENDLINE]

MAT DISF B

v

Pt [

MAT IHFUT DO (ENDLINE]

Doles B

ClL 2, 03 40
MAT E=TREHC &0

MAT DISF E

C holds the array sum of A and C. No
redimensioning is necessary since C is already the
correct size.

The array C.

B is redimensioned to 2 X 2 to hold the matrix
product A%A.

The array B.

E is redimensioned to be a 2 element vector to
hold the product of the conjugate transpose of C
and the vector D.

The array E.

Section 8

Scalar-Valued Array Functions

The keywords in this section are functions that use real- or complex-type arrays as arguments (except
[IET uses only real arrays) and give a real number as a value (except [iliT can give either a real or
complex number). Like other HP-71 functions, they may be used alone or in combination with other
functions to produce numeric expressions.

Determinant Functions

DET Determinant

A

where A is a square real-type matrix.

Returns the determinant of the matrix A.
To halt operation, press twice.

Not usable in CALC mode.

DETL Determinant of Last Matrix

DETL or DET

Returns the determinant of the last real-type matrix that was:

e Inverted in a MAT . . . IH\ statement (described in section 9).

e Used as the first argument of a MAT . . . Z¥= statement (described in section 9).
[IETL retains its value (even if the HP-71 is turned off) until another MAT . . . THY (with a real type
argument) or a MHAT . . . =%'5 (with a real type first argument) is executed.

Not usable in CALC mode.

69

CNORM One-Norm (Column Norm)

EMOA:
where A is a real- or complex-type array.

Returns the maximum value (over all columns of A) of the sums of the absolute values of all elements in |
a column. Refer to the keyword description for HE =, page 41 in section 5, for the definition of the
absolute value of a complex number.

To halt operation, press twice.
Not usable in CALC mode.

RNORM Infinity Norm (Row Norm)

A
where A is a real- or complex-type array.

Returns the maximum value (over all rows of A) of the sums of the absolute values of all elements in a
row. Refer to the keyword description for AE %, page 41 in section 5, for the definition of the absolute
value of a complex number.

To halt operation, press twice.
Not usable in CALC mode.

FNORM Frobenius (Euclidean) Norm

A
where A is a real- or complex-type array.

Returns the square root of the sum of the squares of the absolute values of all elements of A. Refer to
the keyword description for AEZ, page 41 in section 5, for the definition of the absolute value of a
complex number.

To halt operation, press twice.
Not usable in CALC mode.

Section 8: Scalar Valued Array Functions 71
Inner Product

DOT Inner (Dot) Product

DOoToX, Y

where X and Y are real- or complex-type vectors with the same number of elements.

Returns XY, the inner product of X and Y. If both X and Y are real, then the result is real. If either X or Y
is complex, then the result is complex.

If X is a complex vector, then the complex conjugates of the elements of X are used to compute the
inner product.

To halt operation, press twice.

Not usable in CALC mode.

Subscript Bounds

The following functions are useful in keeping track of array option base, number of dimensions, and
size in each dimension, since these quantities may change when variables are dimensioned and
redimensioned.

UBND Subscript Upper Bound

A N or llE

ACAL NG

where A is a real- or complex-type array and N is a numeric expression whose rounded integer value is 1
or 2.

Returns the upper bound of the Nth (first or second) subscript of A. If A is a vector, i
-1.

Not usable in CALC mode.

72 Section 8: Scalar Valued Array Function

LBND Subscript Lower Bound

| |
where A is a real- or complex-type array and N is a numeric expression whose rounded integer value is 1
| or 2. Z
Returns the COFTIOH EAZE setting in effect when A was last dimensioned. If A is a vector, |
LEHOOR, 2 = —1.

LEMDCA, N or LEOUHDOCA, N

Not usable in CALC mode.

Examples

DET, DOT

Input/Result

OFTION BARZE 1
OIM ACLE, 183
MAT A=I0H

MAT A=o-32%A Assigns = to each diagonal element; all other
elements remain zero.

DETCAD Displays the determinant of A.

LR

MAT FA=I0HC3, 33

MAT A=C20%A Assigns = to each diagonal element; all other
elements remain zero.

MAT A=IHWCA D Computes the inverse of A.

DET Displays the determinant of the last real matrix
inverted in a MAT. .. IHW statement or used as
the first argument of a MAT . . . %% % statement.

Refer to pages 77-79 in section 9 for definitions of
IHY and S5,

ODIM AC1GE: B0 1@ (ENDLINE]
MAT A=i320
MAT E=C0OH
ODOToA, B2

[l

COMPLEY Col@on
MAT C=q01,230

ODOToZ, A (ENDLINE

CEE, -4

Section 8: Scalar Valued Array Functions

Assigns Z to each element of A.
Assigns one to each element of B.

Displays the inner product of A and B.

Assigns the complex number © 1,2 to each
element of C.

Displays the inner product (a complex number)
of C and A.

RNORM, CNORM, FNORM, UBND, LBND

Input/Result

OFTION BARSE 1
DIM AC3, S0
MAT A=C0H
REHORMOA?

Assigns 1 to each element of A.

Displays the row norm of A.

73

74 Section 8

COMFLER SHORT A2, 40
MAT IHFUT A

Aol 127 &

Cl.2n, 03,4y, 05, 80, 07, 80,09, 180

1l 12y, 013, 04,015, 180

FEHORMOA Displays the row norm of A.
FELVEILIZAELVE

CHORMOA? Displays the column norm of A.
Iz heleheelzz

FHORMOA Displays the Frobenius norm of A.
IR LETVEISRZLLV

COMPLER B2

HEHDOA, 1 UBHD R, 20 First, displays the upper bound of A’s first sub-
script, then displays the upper bound of A’s sec-
ond subscript.

fel
-
o

UEHDOE, Lo UBEHDOE, 25 First, displays the upper bound of B’s first sub-
script, then attempts to display the upper bound
of B’s second subscript. Since B has only one
subscript, UEHDOCE , 23 returns — 1.

Section 8: Scalar Valued Array Functions 75

2 -1

LEHDOCA, 12 Displays the OF TIOH EASE setting when A
was last dimensioned.

Section 9

INV Matrix Inverse
MAT A=IHW B>

where A is a matrix and B is a square matrix.
Array B may be either real or complex type.
If B is complex, then A must be complex.

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to 5
zero.

Implicitly redimensions A to be the same size as B and assigns to A the value of the matrix inverse of B. |

To halt operation, press twice.

Not usable in CALC mode.

TRN Matrix Transpose or Matrix Conjugate Transpose

A=TEMNIB:

where A and B are matrices.
Array B may be either real or complex type.
If B is complex, then A must be complex.

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to
zero.

Implicitly redimensions A to be the same size as the matrix transpose of B. If B is real, assigns to A the |
value of the matrix transpose of B. If B is complex, assigns to A the values of the matrix conjugate
transpose of B.

To halt operation, press twice.

Not usable in CALC mode. i

77

78 Section 9: Inverse, Transpose and System Solution

Solving a System of Equations

The Math Pac provides a quick and accurate way to solve a system of linear equations involving real or
complex coefficients. The first step in using this capability is to translate the system of equations into a
triple of arrays: the result array, the coefficient array, and the constant array. The result array corre-
sponds to the variables in the equations; the coefficient array holds the values of the coefficients of the
variables; the constant array holds the values of the constants in the equations. For example, if you
wanted to solve the system of equations

5x + 3y + 22 = 4
x+y+ 32=14
6x + 4y + 92 =1

then the result array would correspond to the array

=

the coefficient array would be

and the constant array would be

If we denote the result array by X, the coefficient array by A, and the constant array by B, then th
system of equations can be written in matrix notation as AX=B. This is the form assumed by the =% =
keyword.

tion 79

SYS System Solution

where A is a square matrix, X and B are both vectors or both matrices, and A and B are conformable for
multiplication. Refer to the beginning of section 7, page 63, for a definition of “conformable for
multiplication.” [

Arrays A and B may be either real or complex type.

If either A or B is complex, then X must be complex.

If both A and B are real, then X may be real or complex; if complex, all imaginary parts of all elements in |
X are set to zero. |

Implicitly redimensions X to be the same size as B and assigns to X the computed solution to the matrix
equation AX=B.

To halt operation, press twice.

Not usable in CAl C mode 5

INV, TRN

Input/Result

OFTIOH BASE 1
ODIM AC3, 30
MAT FA=I10H

MAT A=o20EA Assigns Z to all diagonal elements of A. All other
elements are zero.

MAT A=IHYCAD
MAT OISF A Displays the inverse of A.

-
PR
LI
O T

.,_

b
o,

T

80 Section 9: Inverse, Transpose and System Solution

OIM CoZ, 20
MAT C=C0H Assigns one to all elements of C.
MAT DISF O Displays C

DIM Doz, 20

MAT DO=TREHIC? Computes the transpose of C and redimensions
D to be a 2 X 3 matrix.

MAT DIZF D Displays the transpose of C.

COMPLE: SHORT DOZ2, 30, 003,30
MAT D=o01, 230 Assigns the complex value 1.2 to all ele-
ments of D.

MAT DOISF O

L R L R L R The complex matrix D.
U L D
MAT O=TREHD: Redimensions D to 3 X 2 and assigns D the
value of its conjugate transpose.
MAT DISF O
*Iﬁ - . - The conjugate transpose of D.

e ke e
H

foa T

—
i

[IOUNE KR

MAT IHFUT

T,ol,2%, 02,182 (ENDLINE

cl, 1,08, 3y, 0-5, 14 [ENDLINE

1l 1L 0B, S, 08, 280
MAT DISF

AT D= THW OO

MAT DISF D

The complex matrix C.

Redimensions D to 3 X 3 and assigns to D the
value of the matrix inverse of C.

The inverse of the complex matrix C is the
matrix

10+1 —2+61 —3-—2i
9—3i 8 —3—2i
—2+21 —1-2i 1

81

82 Section 9: Inverse, Transpose and System Solution

SYS

To solve the system of equations given on page 78, namely,
5x + 3y + 2z = 4
x +y + 3z =14
6x + 4y + 92 =1

we could use the following keystrokes.

Input/Result

=T [(END LINE
{x L, HOE, 3 [ENDLINE

A
14,1 (ENDLINE Assigns values to the elements of B.
g
] 1 lﬁ
T.6,4, 5 Assigns values to the elements of A.
Displays the values of the result array elements.

Il
NR R

Although in typical applications the result array X and constant array B are each one column arrays,
%% % does not restrict these arrays to only one column. This allows you, for example, to simultaneously
solve any number of different systems, limited only by memory, of n equations in n unknowns, provided
that the coefficients in each systems of equations are identical. The following example illustrates this
use of = E.

Example. Your company’s Publications Manager wants to determine the cost factors used by her two
outside printers. She knows that each printer estimates jobs based on the number of pages and the
number of photographs, plus a fixed setup charge. Given the three estimates from each printer shown
below, write a program that calculates their cost per page, cost per photograph, and setup charge.

—

Total Cost

[Job Number of Number of .
|| Pages | Photographs | ointer A | Printer B |
1 273 35 | $5835.00 | $7362.50 |

2 | 150 | 8 | $3240.00 | $4085.00 |

3 | 124 19 | $2775.00 | $3517.50 |

We need to solve the following system of equations for two sets of cost estimates.
273x; + 35x9 + x3 = cost;
1560x; + 8xy9 + x3 = costy
124x; + 19x9 + x5 = costy

These equations can be represented in matrix notation as AX = B, where:

o A is the coefficient matrix, having the number of pages in its first column, the number of photo-
graphs in its second column, and the number of setup charges (one for each job) in its third col-
umn. Each row contains this data for a different job.

¢ B is the constant array. Each row contains cost estimates for one job from the two printers; each
column contains one printer’s cost estimates for the three jobs.

o X is the result array, having the unknown cost factors x;, xo, and x5 in its rows. x; is the cost per
page, xo is the cost per photograph, and x5 is the setup charge. Since we are solving two systems,
the constant array is a two-column matrix. So the result array must also be a matrix; that is, it
should be declared with two dimensions. (Its size, if not the same size as that of the constant array
B, will automatically be redimensioned to the size of B when the %7 % statement is executed). Each
column will contain the cost factors for one printer.

84

10 OPTION BASE 1
20 DIM A(3,3).X(3,2),B(3,2)

30 DATA 273,35,1 Specifications for job 1.
40 DATA 150,8,1 Specifications for job 2.
50 DATA 124,191 Specifications for job 3.
60 DATA 5835,7362.5 Estimates for job 1.

70 DATA 3240,4085 Estimates for job 2.

80 DATA 2775,3517.5 Estimates for job 3.

90 READ A,B

100 MAT X=SYS(A,B)

110 DISP USING ‘9A,3X,9A,/’;
‘PRINTER A’,'PRINTER B’

120 MAT DISP USING ‘X3D.2D,6X,

3D.2D’;X
RUN
FEIMNTER A FRIMTER E
ae 25,88 Cost per page.
IS P Cost per photograph.
SEEL a8 275,88 Setup charge.
Example. This example demonstrates the usefulness of =% % in the solution of circuit analysis prob-

lems. In the circuit shown below, the impedances of the components are indicated in complex form. We
will determine the complex representation of the currents I; and Is.

Z;,=10

This system can be represented by the complex matrix equation

10+200i —200i |1, 5
—200i (200—30)i | | L, 0

or AX =B

Here is a program that solves for I; and I,.

10 OPTION BASE 1 @ STD

20 COMPLEX SHORT A(2,2),X(2) If either A or B is complex, X must be complex.
30 DIM B(2)

40 MAT INPUT AB

50 MAT X=SYS(A,B)

60 MAT DISP X

RUN

FEGY I8, -ZER, Assigns values to the elements of A.

Assigns values to the elements of B.

AAA: mnal Infe +y - o]
Additional Information

The Math Pac operations DET <A, MAT B=IMHV{Ax, and HAT X=: ©A.B:, where A is a real-
type square matrix, all use the LU decomposition of A as an intermediary step. The method used to
generate the LU decomposition of A is a compact Crout factorization with partial pivoting and ex-
tended precision arithmetic. The LU decomposition of A can be represented by the equation PA = LU,
where

e L is a lower triangular matrix—it has values of zero for all elements above the diagonal.

» U is an upper triangular martix—it has values of zero for all elements below the diagonal—with
values of one for all elements on the diagonal.

e P is a permutation matrix representing the row interchanges in the matrix A resulting from partial
pivoting.

The factorization PA = LU is valid for any non-singular matrix A. However, special attention is paid to
matrices A that are singular or “machine singular.” In this case, the LU decomposition is changed by an
amount that is usually small in comparison with roundoff error. In the absence of underflow or over-
flow, the resulting LU decomposition of A will be close, in norm, to the exact LU decomposition of
another matrix A’, where A’ is close in norm to A.

Consider the matrix shown below.
1 3 0

0 0 1
666666666667 2 0

Although this matrix is very nearly singular, it can be successfully inverted using the

Input/Result
OFTION BARZE I
ACE, 30, BO3, 30

section 9: Inverse, Transpose and System Solution 87

-7 . 2. B [ENDLINE A now represents the matrix given above.

B is now the computed inverse of A.

Displays the identity matrix B, which is the
product of the matrix A and its computed inverse.

.
=
ot

T e
P A

The %% % keyword solves the matrix equation AX = B for X in several stages. First, the LU decompo-
sition of A is found to give PA = LU.

Using PA = LU, the equivalent problem is to solve LUX = PB for X. This is done by solving LY = PB
for Y (forward substitution) and then solving UX = Y for X (backward substitution). This value for X is
used as a first approximation to the desired solution in a process of iterative refinement, which pro-
duces the final result.

In many cases, the Math Pac will arrive at a correct solution even if the coefficient array is singular (so
that the formula X = A~IB is invalid). This feature allows you to use &
determined systems of equations.

% to solve under- and over-

For an under-determined system (more variables than equations), the coefficient array will have fewer rows
than columns. To find a solution using &

e Append enough rows of zeros to the bottom of your coeffieient array to make it square.

e Append corresponding rows of zeros to the constant array.
You can now use these arrays with the =% % keyword to find a solution to the original system.

For an overdetermined system (more equations than variables), the coefficient array will have fewer columns
than rows. To find a solution using =% =:

o Append enough columns of zeros on the right of your coefficient array to make it square.

» Be sure that your result array is dimensioned to have at least as many rows as the new coefficient array
has columns.

o Add enough zeros on the bottom of your constant array to ensure conformability.

You can now use these arrays with the %% keyword to find a solution to the original system. Only those

elements in the result array that correspond to your original variables will be meaningful.

For both under- and overdeterminded systems the coefficient array is singular, so you should check the re-
sults returned by =% to see if they satisfy the original equation.

If A is a complex type square matrix, then MAT C=IH.{A* and MAT X=3%S:A,B> use the same
techniques as above, with the arrays A and B replaced by equivalent real-type partitioned forms.

The =% keyword can also be used for inverting a square matrix A. MAT X=Z4YZ <A, B will return
the inverse of A if B is chosen to be the identity matrix. This technique is more accurate and generally
faster than MAT X=IH. A, but it requires more memory for its operation. (Refer to appendix B for
information about memory requirements).

Section 10
Solving f(x) = 0

Keywords

You can use the keywords in this section to help you determine the solutions or minima of equations of
from one to five real variables.

Throughout most of this section, the operation of these keywords will be described for a one-variable
function. Multi-variable functions are covered under the topic Nesting Rules.

The keyword FHEDIT can be used from the keyboard or inside a program to find the value of x for
which f(x) is zero or a minimum, provided the keyboard line or program contains the definition of the
function.

The keywords Z are provided to help you use ¥ T and to interpret its re-
sults. Since all three keywords are numeric-valued functions, they can be used alone or in combination
represents
7. It also contains the most recent guess generated

the variable in the function being solved by ¥
by an executing FHEOIIT,

FNROOT

— e — ——

Function Root

|

Seeks a real root of the function F, starting with the two guesses A and B. These guesses can be equal,
but if so, one is immediately perturbed. ‘

Returns the first value found that is one of the following:
1. An exact root of the specified function.

. An approximation to a root of the specified function, correct to 12 digits.

. In a region where the specified function is constant.

2
3. An approximation to a local minimum of the absolute value of the specified function.
4
5

| E—

. +9.99999999999E499 if the search for a root led beyond the range of representable numbers.

89

FNROOT (continued)

Not usable in CALC mode. Refer to page 97 for more information about FHFE QI T and CALC mode.

Refer to pages 97-99 for information about FHFEDOT nesting and about the interactions between
FHREOOT and and between FHEOOT and user-defined functions.

FVAR Function Variable

Represents the variable x in f(x), the variable whose value FHEDDT seeks.
Also returns the most current guess generated by a running FHEDOT.

Can be used in CALC mode.

FVALUE Function Value

P

Returns the value of the function F (the third argument of FHFE {13 T) at the result generated by the most
recently completed FHEDGT.
FiUFLLUE retains its value, even if your HP-71 is turned off, until FHEZZIT is again completed.

| Can be used in CALC mode.

FGUESS Previous Estimate of Function Root

FLUESE

Returns the next-to-last value tried as a solution in the most recently completed FHF
|

| FGUE:

T statement.

= retains its value, even if your HP-71 is turned off, until FHEIGT is again executed.

| Can be used in CALC mode.

1 10: Solving f(x) 0 91

I as follows:

By checking the values of F'./ALUE and FZUEZ S, you can interpret the result of F i

o If FUARLUE = 0, the result of FHEIDT is an exact root and the result of FGUESS will be a
number close to the root.

o If the result of FHEDIT and the result of Fizl1E %% differ only in the twelfth significant digit, and
Fumi e and FOFGUESS s have opposite signs, these two numbers surround the exact root.

FuplLUE and the value of the
function at F = UE.: = are equal, these results 11e in a region where FHF is constant.

To solve an equation for a particular variable, use this procedure:
1. Write the equation to be solved in the form f(x) = 0.

2. Substitute the keyword FiiFiF everywhere for the variable you wish to solve for in the formula
defining f(x).

3. Use the defining formula for f(x) as the third argument for Fi

4. Choose two initial guesses (which may be equal) and use these as the first two arguments for
: 71T. Even if only one initial guess is used, use it for both A and B, since ¥ 1T always
requires three arguments.

Examples

Solving x2 = 2 (FHEOOT, F

11

The following six examples illustrate various ways T and : can be used to solve the equa-
tion x2 = 2. Initial guesses of 1 and = are used. The first and sixth examples show the solution.

Example One.

Input/Result
""" R Z-Z0 T can be used from the keyboard as well
as in a program.
P14E
Example Two.
10 DISP FNROOT(COS(0),LOG2(4), The initial guesses can be expressions.

FVAR"2—2)
20 DISP ‘FVALUE =';FVALUE

Example Three.

10 DEF FNG=FVAR"2—-2
20 DISP FNROOT(1,2,FNG)

30 DISP ‘FVALUE='";FVALUE

Example Four.

10 DEF FNF(X)=X"2—-2
20 DISP FNROOT(1,2,FNF(FVAR))

30 DISP ‘FVALUE=";FVALUE

Example Five.

10 DEF FNH

20 FNH=FVAR"2-2

30 END DEF

40 DISP FNROOT(1,2,FNH)
50 DISP ‘FVALUE=';FVALUE

Example Six.

10 DEF FNJ(X)

20 FNJ=X"2—2

30 END DEF

40 DEF FNF(X)=2%X

50 DISP FNROOT(1,FNF(1),FNJ(FVAR))

60 DISP ‘FVALUE =';FVALUE

Input/Result
RUN

The third argument of FHE T can be an
expression or a reference to a user-defined
function.

FL/AR can appear in the user-defined functlon
as above, or in the third argument of

The user-defined function can consist of one or
several lines.

The first or second arguments of F
be references to user-defined functions.

The solution for x2 = 2.

Section 10: Solving f(x) = 0 93

o o, o

Solving log (x) = e/x (FHEOOT, FUALLE, FYAR, Fil

L)

To solve log(x) = e/x, we first write the equation in the form f(x) = 0. This can be done by subtracting
e/x from both sides of the equation, yielding log(x) — e¢/x = 0. We can rewrite this in the equivalent
but slightly more convenient form x log(x) — e = 0. Since the left-hand side of this equation is un-
defined for x <= 0, and we can’t guarantee that the search for a root will not venture into this region,
we will consider instead the equation |x| log|x| — e = 0. This equation has exactly the same positive
solution(s) as the first equation, but this equation makes sense for both positive and negative (but non-
zero) numbers. The program below includes a user-defined function that computes the left-hand side of
this equation, and uses FHEOT to find a solution of the equation.

10 STD

20 DEF FNF(X) This user-defined function computes the left-
hand side of the equation.

30 FNF =ABS(X)kLOG(ABS(X))—EXP(1)

40 END DEF

50 INPUT A,B These will be the initial guesses.
60 R=FNROOT(A,B,FNF(FVAR))

70 DISP ‘R =';R

80 DISP ‘FNF(R) =';FVALUE

90 DISP ‘FGUESS=";FGUESS

To use the program we must decide on initial guesses. Although the initial guesses need not be in
increasing order, or even distinct, a choice of initial guesses that surround a root will produce results
more quickly in general. Noting that if |F'/FE | <1 then F » will be negative and if ¥/ FiF is
large (say, 100) then FHF ¢ FUHE * will be positive, we can choose .5 and 100 for our initial guesses.

1 &% [END LINE], which

Key in the program and it, and when prompted with 7 respond with .
supplies the initial guesses. The computer will then display

T

Since FHF iR * = £, the value given is an exact root for FHF.

94 Section 10: Solving f(x)

Additional Information

Choosing Initial Estimates

When you use FHEDIT to find roots of equations, the initial estimates determine where the search for
a root will begin. If the two estimates surround an odd number of roots (signified by their function
values having opposite signs), then FHE1:T will find a root between the estimates quite rapidly. If the
function values at the two estimates do not differ in sign, then FHFED{IT must search for a region
where a root lies. Selecting initial estimates as near a root as possible will tend to speed up this search.
If you merely want to explore the behavior of the function near the initial etimates (such as to deter-
mine if there are any roots or extreme points nearby), then specify any estimates you like.

Another thing to consider is the range in which the equation is meaningful. In solving f(x) = 0, the
variable x may only have a limited range in which it is conceptually meaningful as a solution. In this
case, it is reasonable to choose initial estimates within this range. Frequently an equation that is ap-
plicable to a real problem has, in addition to the desired solution, other roots that are physically
meaningless. These usually occur because the equation being analyzed is appropriate only between
certain limits of the wvariable. You should recognize this restriction and interpret the results
accordingly.

Interpreting Results

; 17T always evaluates the function at the value returned, as described above. This enables you to
1nterpret the results. There are two possibilities: the value of the function at the value returned by

" is not close to 0.

I in close to 0; or the value of the function at the value returned by ¥]
It is up to you to decide how close is close enough to consider the value a root

If the function value is too large, then the information returned by the keyword F: :, together
with information already considered, is sufficient to determine the general behavior of the function in
the region. For example, suppose that FHETT is used to find a root of a function—say, f(x)—and the
value returned is r. If |': VHL nE| is too large to consider r a root, then there are several possibilities.

If and f(F zLJEZ %) have the same sign, then r is either an approximation to a local minimum
of [f(x)l or in a region where the graph of f(x) is horizontal.

95

Case a Case b

In the two cases above, FHEZIT sees no tendency of f(x) to decrease in absolute value, and so to cross
the x-axis. It will then try to approximate a local extreme point, if any. This approximation can be
resolved to further precision by further executions of FHEIIT, using r and FZUESS as initial es-
timates. Repeated execution of FHEZIOT in this manner will converge to the extreme point in many
cases. The idea is that FHREDOT can be used to find local extreme points, or the information about
where the extreme points are can be used to re-direct the search elsewhere, in hope of finding a root.

When |FuALUE . - and f(F 2)
have different signs. In this case it would appear that there is a root between, because for the function
to change signs it should cross the x-axis. Typically, when FHET finds two guesses on opposite sides
of the x-axis, it only stops after it has resolved them to two consecutive machine numbers. In this case
there is no machine representable number between r and F Z. Thus, the behavior of the function
cannot be determined between r and F i1 .. To interpret such results, you should be aware of these
situations.

Case 1 Case 2 Case 3

96 Section 10: Solving f(x) 0

In case 1, r and FZLESS are the best approximations to the root that are representable on the ma-
chine. Case 2 looks exactly the same to FHFEIT, but there is no root—there is a jump discontinuity
1nstead In case 3 there is a pole, which can look hke a root if a guess on each side of the pole is found.
FHEOOT returns information in FGUESS and the FUWALUE to help you isolate situations where
convergence is to a pole.

Decreasing Execution Time

The exponent range of your HP-71 is +499 (except when TFFF : = 2, which effectively extends
the negative exponent range to —510). This allows for sensitive observatlon of the behavior of a func-
tion, even very close to a root. FHEIIT takes advantage of this dynamic range by not accepting a
guess as a root until the function value underflows, is zero, or two consecutive machine representable
numbers that bracket a root are found. The cost of this precision is that, occasionally, it may take quite
a while to obtain such precision. If this high degree of sensitivity is not required, then you may wish to
set a smaller tolerance. For example, you may only need to know a place where the function is less than
1E—20. This is accomplished in your function definition by checking the value of the function before
assigning it to the function variable and setting the function variable to zero if the computed value is
smaller than the desired tolerance. For example, suppose you wanted to find any root of f(x) = x%, and
|f(x)] <= 1E—32 is acceptable as a root. Here is a program you can use.

19 STD

20 DEF FNF(X) Multiline function definition of f(x) = x*.

30 F=X"4

40 IF F<=1.E—32 THEN FNF=0 ELSE Checks error tolerance and sets the function

FNF=F value accordingly.

50 END DEF

60 DISP FNROOT(2,3,FNF(FVAR)) Computes and displays the root.

70 DISP FVALUE Displays the function value at the root.
Input/Result
RUN

In this example, if the tolerance technique were not used, execution would last much longer. This is
because the computed function will not underflow until x is very small, since the root is at zero and the
distribution of machine-representable numbers is very dense close to zero. So F " has a lot of
guesses to try before finding one it can accept as a root.

Section 10: Solving f(x) = 0 97

An alternate approach to decreasing execution time is to translate the function so that the root is not
so near zero, compute the root of the translated function, then translate the root back. This will de-
crease the time to find roots of certain functions with roots close to zero, but will generally decrease
the accuracy of the roots found. Here is a sample program for f(x) = x*.

10 SR

20 DEF FNF(X)=(X—1)"4 This is x* translated by 1.

30 R=FNROOT(3,4,FNF(FVAR)) Computes the root.

40 DISP R—1 Translates the root back and displays the root

and function value.
50 DISP FVALUE

Finally, there is a technique that may improve the speed and accuracy of FHEIIT. Any equation is
typically one of an infinite family of equivalent equations with the same roots. However, some may be
easier to solve than others. For example, the two equations f(x) = 0 and exp(f(x)) — 1 = 0 have the
same real roots, but one is almost always easier to solve. When f(x) = x* — 6x — 1, the first is easier;
but when f(x) = In(x* — 6x —1), then the second is easier. While FHF 10T has been designed to
provide accurate results for a wide range of problems, it is worthwhile to be aware of such possibilities.

Suspending FHECCT With

If none of the arguments of FHE (1T contain multi-line user-defined function calls, pressi
not terminate the action of FHEI{IT until intermediate results are saved. In particular,

return and save the current Fi/#F as though it were a root, it will save the previous guess as |
and it will save the value of f(x) at the current F

as the value of FU/ &L LiE. Only then will the

action of FHEIT stop.

If, on the other hand, there are one or more multi-line user-defined functions as arguments for

17T (that is, if the calculation of F 13T involves several BASIC program lines), [ATTN] will be
1gnored until a multi-line user-defined functlon is called. Execution will then halt at a line of one of the
user-defined functions. This gives you the ability to examine relevent values, such as the current value
of ¥ T if you wish.

=, then continue the execution of FHEIIT

In addition, if there are multi-line user-defined functions as arguments for i ", then fatal errors
within the user-defined function do not destroy the FHEZ{1T environment, giving you the exact same
correct and continue capability as with any other HP-71 call to multi-line user-defined functions.

CALC Mode

You cannot execute FHEDIDT directly or indirectly in CALC mode. For instance, suppose your current
file contains a single-line user-defined function ¥ ¥ whose definition contains an F iT keyword. If
you attempt to execute FHF in CALC mode, an error will result.

98 Section 10: Solving f(x) 0

Nesting Rules

If the third argument F of FHEDTT defines a formula whose evaluation encounters another FHEDDT
keyword, we say that the two FHEDIIT keywords are nested. Up to five FHEI{iT keywords can be
nested in this way.

As an example of FHFIIT nesting, consider the following program that solves f(x,y) = x2 + y? — 2x
— 2y + 2 for x and y.

10.STD
20 DEE ENE(X.Y)= X022 L Y02 2KX —-2%Y 42 Defines the function whose solution is sought.
30 DEF FNG(X) Lines 30 through 60 define a one variable
40 R=FNROOT(—4,4,FNF(X,FVAR)) function f(x) that receives a fixed x value (FiFF)
50 FNG=FVALUE from line 70.
60 END DEF
70 DISP FNROOT(—3,3,FNG(FVAR));R If this FHECDOT function receives a nonzero
result from line 50, it selects another x value for
the FHEDDT in line 40 to try. If it receives a
zero result, a solution for f(x,y) is found.
Input/Result
RUN
i HEGHIEIEnnn The x and y values returned by the ¥ !
function in line 70. The x value is dlsplayed on
the left.
The closest FHEDIIT comes to the true y value, one, is . #3333 3323525 since these x and y values

satisfy the objectlve of FHEIDIT. This objective is to find x and y values for which the computed value
of f(x,y) is zero.

FRAELE END LINE

£ These values for x and y when used in f(x,y) give
£ as the result.

Section 10: Solving f(x) 0 99

A common use for FHEOOT nesting is determining minima. To demonstrate this application, we’ll
modify the above function f(x,y) by adding one to the expression, thereby ensuring that the function
has no solution, since the paraboloid represented by the modified function no longer intersects the xy
plane. The only program modification is in line 20:

20 DEF FNF(X,)Y)=X"2+Y"2—2%X—2%Y +3

All other program lines are unchanged.

The earlier nested FFHEZIOT program required about 20 seconds to reach a solution. Since F
takes special care to make sure a true minimum is found, the modified program requires about 31/2
minutes to find and display the x and y values whose use in f(x,y) result in a function minimum.
Input/Result

RUN

o

s
.
i

i
o
x5

The x and y values that give a minimum for the
modified function.

Displays the value given by the modified func-
tion using these x and y values.

There is no need to wait the full 3%2 minutes for a result. As explained on page 97, you can suspend an
executing FHEOOT function and then display interim results. If two consecutive inspections of interim
results show insignificant change, you might wish to accept them as having satisfactory accuracy.

Use of User-Defined Functions

If the third argument of an FHEXOIT function evaluates any user-defined function, then you must
execute the F " function as a program statement, not from the keyboard. Also, if is
suspended while executing, you cannot execute a user-defined function from the keyboard, in either
BASIC or CALC mode.

Section 11

Numerical Integration

Keywords

You can use the keywords in this section to evaluate the integral of a function of from one to five
variables between definite limits to an accuracy of your choosing.

Throughout most of this section, the operation of these keywords will be described for a one-variable
function. Multi-variable functions are covered under the topic Nesting Rules - Volume Integration,
pages 109-110.

The keyword I ‘At can be used from the keyboard or inside a program to calculate the integral
of the function, provided the keyboard line or program contains the function definition.

The keywords I EIHD and IWFALIUE give you additional flexibility in the evaluation of the integrals.

., TEOLHD, and TWALLUE are numeric-valued, so they can be used alone or in combination
w1th other functions and varlables to form numeric expressions. A fourth keyword, I
the variable (or one of the variables) of integration in the function belng 1ntegrated by {
also contains the most recent sampling point used by an executing I i

|NTEGRAL Deflnlte Integral

| IHTEGRALCA,B,E,F

| where A, B, E, and F are real numeric expressions.

i

2 Returns an approximation to the integral from A to B of F. The relative error E (rounded to the range 1E-
| 12<=E<=1) indicates the accuracy of F and is used to calculate the acceptable error in the
| approximation of the integral.

| This integral approximation can be:
e An approximation to the integral that is as accurate as the relative error E would allow.

e The last of 16 approximations to the integral, which have sampled the integrand at 65535 points
without meeting the convergence criterion.

e The best current approximation to the integral returned when is pressed and when F does
not call a multi-line user-defined function.

101

102 Section 11: Numerical Integratior

INTEGRAL (continued)

IMTEGERL generates a sequence of increasingly accurate approximations to the definite integral. If |
three successive approximations are within the acceptable error of each other—the first is close to the
second and the second is close to the third—they are considered to have converged and the third |
approximation is returned as the value of the definite integral. If a total of 16 approximations are cal- |
culated without converging, the sixteenth is returned.

Not usable in CALC mode. Refer to page 111 for more information about IHTEGREAL and CALC mode. |

Refer to pages 109-111 for information about IHTEGREHAL nesting (volume integration) and about the |
interactions between IHTEGREAL and and between IHTEGFRAL and user-defined functions.

IVAR Integration Variable

Represents the variable of integration in the formula defining F, the last argument of !

Also contains the most recent sampling point used by a running I

Can be used in CALC mode.

L

IVALUE Last Result of INTEGRAL

Returns the last approximation computed by the I il. keyword. If the key was pressed
or the operation of IHTEGEFML was otherwise interrupted, then returns the value of the
current approximation to the integral. Otherwise, I & returns the same value that
last returned.

- retains its value (even if your HP-71 is turned off) until another
Can be used in CALC mode.

.. is computed.

Section 11: Numerical Integration 103

IBOUND Error Approximation for INTEGRAL

| TEOUHD

Returns the final absolute error estimate for the definite integral most recently computed
IMTEGREAL.

o A positive value for IELIMHD means that the approximations converged.

o A negative value for IEQUMHD means that the approximations didn’t converge, so that the ve

Like IWALUE, IEBCOUHD retains its value (even if the HP-71 is turned off) until another I HTEZREHL
computed. Unlike I\ HLLIE, the value of IEZLIMHI has no relation to the current approximation to
integral if the operation of IHTEGFRHAL is interrupted.

‘ Can be used in CALC mode.

returned by IHTEGREAL may not be representative of the true value.

To integrate a function between bounds, you can follow these steps:

1.

Write down an expression that represents the function to be integrated.

2. Substitute the keyword I'/AF everywhere in the expression for the variable of integration.
3.
4

. Use the lower and upper bounds of integration as the first and second arguments A and B of

Use this expression as the fourth argument F of IHTEGREAL.

IHTEGEHAL, respectively.
Choose a value for the third argument E of IHTEGEAL that represents an estimate of the relative
error in the computation of the integrand. Any value for E is always rounded to the range
[IE—12,1]. Thus, E should satisfy, after rounding
TRUE INTEGRAND — COMPUTED INTEGRAND)| <=E
|COMPUTED INTEGRAND|

Since IMTEGFAL has no way of knowing what the true value of the function is intended to be,
only you can supply this estimate. For many purely mathematical functions (% 1IH, EiF, poly-
nomials, etc.) and modest limits of integration, full 12 digit accuracy can be returned so that a

value for E around 1E-12 should be suitable.

104 Section 11: Numerical Integration

The operation of IHTELEF! i can be described more precisely as follows.

1. Based on a relative error of E for the specified function, the computer calculates an error tolerance
for the integral of the specified function. If f(X) is the “true” function that F approximates, then
choose E such that

F— (X0 _
]

for all X in the interval of integration. Your input for E is rounded to the range 1IE—12<E<1.

E

For example, if F is derived from experimental data with N significant digits, let E equal 10~ N,

2. The computer calculates a sequence of approximations I, to the integral of the specified function.
The difference between successive approximations is compared to the error tolerance for the
integral.

3. A value for the integral is returned when

e The approximations I;, have converged. Convergence is determined using J,, defined as the kth
approximation to the integral of Ex|F| over the same interval of integration. J, represents the
error inherent in the computation of I,.

The approximations I, are judged to have converged to I, if

[— Ip_q|<Jy

for k = n — 1 and k = n. The value of I, is then returned by

; a positive value for

or when

e The computer has evaluated I; through I;¢4 but the convergence criterion is still not met. I;4 is
then returned by [HTEGEFL; a negative value for the error estimate will be returned by

R

Examples

Section 11: Numerical Integration 105

Integrating f(x) = x2—2 (IHTEGRAL, [VAR)

The following six examples illustrate various ways IHTEZREAL and I4HF can be used to integrate the
function x2 — 2 from 1 to Z. The first and sixth examples show the solution.

Example One.

Input/Result

IHTEGRALCL, 2, 1E-11, IUAR"Z-23

Example Two.

10 DISP INTEGRAL(COS(0),LOG2(4),
1E—11,IVAR2—2)

Example Three.

10 DEF FNG=IVAR"2—-2
20 DISP INTEGRAL(1,2,1E—11,FNG)

Example Four.

10 DEF FNF(X)=X"2—2
20 DISP INTEGRAL(1,2,1E—11,FNF(IVAR))

Example Five.

10 DEF FNH

20 FNH=IVAR"2—-2

30 END DEF

40 DISP INTEGRAL(1,2,1E—11,FNH)

IMTEGEHAL can be used from the keyboard as
well as in a program.

The limits of integration can be expressions.

The fourth argument of IHTEZEAL can be an
expression or a reference to a user-defined
function.

IWHE can appear in the user-defined function,
as above, or in the fourth argument of
THTEGRERAL.

The user-defined function can consist of one or
several lines.

106 Section 11: Numerical Integration

Example Six.

10 DEF FNJ(X)
20 ENJ=X02—2

30 END DEF

40 DEF FNF(X)=2%X

50 DISP INTEGRAL(1,FNF(1),1E—11, The first, second or third arguments of
FNJ(IVAR)) IHTEGREAL can be references to user-defined

functlons.
60 DISP IBOUND

Input/Result
RUN

The resulting integral.

The absolute error estimate for the resulting
integral. Since it’s positive, the approximations
converged.

Integrating f(x) = e —2 (I H’

)

This example features I'/fii.iIE. This function returns the most recent integration approximation and
is updated even whlle the execution of IHTEGEML is in progress After the execution of I
is completed, Iiifi

You can watch the progress of integral approximations by displaying

£ during the execution of
H L.. This is demonstrated by the following program, which integrates the function e*—2 from
one to three. The error bound used is 1E-12.

10 Y=IVALUE Y = value of I'HLLIE when program starts
(assumes I'ALLIEZ is set from a previous
IHTEGERAL).

20 DEF FNF(X)
30 IF IVALUE=Y THEN 50 Displays I%FALLE only if it has changed.

Section 11: Numerical Integration 107

40 DISP IVALUE @ Y=IVALUE
50 FNF=EXP(X)—2
60 END DEF

70 DISP INTEGRAL(1,3,.000000000001,
FNF(IVAR))

Input/Result
RUN

First displayed value of :

Last displayed value of I
Value of I

Integrating f(x) = exp(x3+4x2+x+1) (I
i)

To find the integral from O to 1 of the function

f(x) = exp(x® + 4x* + x + 1)

you can use the following program.

10 DEF FNF(X)=EXP(X"3+4%X"2+X+1) The user-defined function ¥}

20 INPUT E Gets the relative error we expect in
compared with f.

30 DISP ‘Integrating’

40 X=INTEGRAL(0,1,E,FNF(IVAR))
50 BEEP

60 DISP ‘Integral =";X

70 DISP ‘The approx. error =’

80 DISP IBOUND

108 Section 11: Numerical Integration

After you key in the program, run it using the following keystrokes.

Input/Result
RUN
T OB The prompt to enter the relative error of the
function.
TE~5 Although our function is accurate to one part in

1012, we can say that it is less accurate (in this
case, one part in 10°) so that the computation
will finish more quickly.

Integarating

The value of the integral is 104.2911 + (1.04 X
1073).

184, 2310372 IWALUE gives the value of the last computed
integral.
Integrating C(T) = a + bT (IHTEGRAL, IWAR, TEOLHD)

You can use IHTEGREFML to compute the amount of heat required to heat one gram of gas at a constant
volume from one temperature to another. The amount of heat needed, @, is given by the formula

Q= [e ar
T1

where C(T) is the specific heat of the gas as a function of temperature, T'1 is the starting temperature,

and T2 is the final temperature.

If C(T) = a + bT, where a and b are experimentally determined to be a = 1.023E~2 and b = 2.384E 2
with four significant digits, then we can compute the relative error of C(7T) to be approximately 5E —4.
The program below prompts you for the initial and final temperature in degrees Kelvin and then com-
putes the heat needed to raise the temperature of the gas from the initial to the final temperature.

rical Integration 109

10 DEF FNC(T)=.01023+.02384%T The user-defined function that calculates the
specific heat.

20 INPUT ‘Initial, final T (K)?’;T1,T2

30 DISP ‘Integrating’

40 Q=INTEGRAL(T1,T2,.0005,FNC(IVAR)) Computes the integral.

50 DISP ‘Heat needed =’;Q;'+ —’;IBOUND Displays the answer and the approximate error.

To find the heat needed to raise the temperature from 300°K to 310°K, type in the program and use the
following keystrokes.

Input/Result
RUN

resded = FZ2.2143

£~ » ~t AN
yrmation

Nesting Rules—Volume Integration

If the fourth argument F of IMTEZRAL defines a formula whose evaluation encounters another
IHTEGRAL keyword, we say the two IHTEGREFAL keywords are nested. Up to five IMTEGEFAL
keywords can be nested in this way. A program that nests two IHTEZERL keywords can determine
volumes.

As an example of IHTEGREAL nesting, consider the following program that integrates f(x,y), where
f(x,y) = x* + 2y, over the square 0 < x < 1, 0 < y < 1. That is, the program evaluates

fo ! fO 'fx, y)dydx.

110 Section 11: Numerical Integration

10 DEF FNF(X,Y)=X"2+2%Y

20 DEF FNG(X)=INTEGRAL(0,1,1E—6,
FNF(X,IVAR))

30 INTEGRAL(0,1,1E—6,FNG(IVAR))

Input/Result
RUN

The following example demonstrates the use of IF

fo i fo ¥ sin(x) dxdy

Input/Result

FADIAMS
IHTEGEARLCB,PI -2, 1E-
ITHTEGEARLCE, IVAR, 1E-

SIHCIVARY

Defines the function whose integral is sought.

For each value of i, integrates a slice parallel to
the y-axis.

Sums all of the contributions from the slices
parallel to the y-axis.

The volume returned by the I
tion in line 30.

. func-

The answer is exact even though
predicts six correct digits.

only

to evaluate the integral

Note that the first
able of the outside

is the integration vari-

The true answer is 7/2 — 1 (approximately
.5707963268).

Section 11: Numerical Integration 111

Suspending IHTEZERL With

If none of the arguments of IHTEGRAL contain multi-line user-defined function calls, pressing (ATTN]
w111 not terminate the action of IMTEGREAL until intermediate values are saved. In particular,
ZRAL will save and return the current I FLLIE as though it were the integral, and will make
negatlve the current value of IEDiLiFII. Only then will the action of It .. stop.

If on the other hand, there are one or more multi-line user-defined functions as arguments for
1 5L (that is, if the calculation of IHTEGERL involves several BASIC program lines),
w1ll be ignored until a multi-line user- deﬁned function is called. Execution will then halt at a line of
one of the user-defined functions. This gives you the ability to examine relevent values, such as the
current value of I iJE, then continue the execution of I

L. if you wish.

In addition, if there are multi-line user-defined functions as arguments for IHT i, then fatal
errors within the user-defined function do not destroy the IH 1. environment, glvmg you the
exact same correct and continue capability as with any other HP-71 call to multi-line user-defined
functions.

CALC Mode

You cannot execute I 7T :#1L. directly or indirectly in CALC mode. For instance, suppose your cur-
rent file contains a smgle-hne user-defined function ~ whose definition contains an !
keyword. If you attempt to execute ¥ ¥ from CALC mode, an error will result.

Use of User-Defined Functions

If the fourth argument of an IMTEGREAL function evaluates any user-defined function, then you must
execute the THTEGRHAL function as a program statement, not from the keyboard. Also, if IHTEGREAL

is suspended while executing, you cannot execute a user-defined function from the keyboard, in either
BASIC or CALC mode.

Overview of Numerical Integration

Numerical integration schemes generally sample the function to be integrated at a number of points in
the interval of integration. The calculated integral is simply a weighted average of the function values
at these sample points. Since a definite integral is really an average value of a function over an infinite
number of points, numerical integration can produce accurate results only when the points sampled are
truly representative of the function’s behavior.

If the sample points are close together and the function does not change rapidly between two consec-
utive sample points, then the numerical integration will give reliable results. On the other hand,
numerical integration will not produce good answers on a function whose values vary wildly over a
domain that is small in comparison with the region of integration. Other errors that can affect the
result of a numerical integration include the round-off errors typical of any floating point computation
and errors in the procedure that computes the function to be integrated.

Handling Numerical Error

The IHTEGRHAL keyword requires specification of an error tolerance E for its operation. This error
tolerance is taken to be the relative error of the computed function as compared with the “true” func-
tion to be integrated. The error tolerance is used to define a ribbon around the computed function and
the “true” function should then lie inside this ribbon. If the “true” function is f(x) and the computed
function is F(x), then

F(x) — Error (x) < f(x) < F(x) + Error (x)

where Error (x) is half the width of the ribbon at x.

We can then conclude that
b b b
["fx)dx = [Fx) dx + [Error (x) dx
a a a

where the third integral is just half the area of the ribbon—that is, integrating the computed function
instead of the actual function can introduce an error no greater than half the area of the ribbon.
IHTEGEAL estimates this error while computing the integral, IECLIHD gives you access to the
estimate.

ection 11: Numerical Integration 113

Choosing the Error Tolerance

The accuracy of the computed function depends on three factors:
e The accuracy of empirical constants in the function.
o The degree to which the function may accurately describe a physical situation.

e The round-off error introduced when the function is computed.

Functions like cos(x — sinx) are purely mathematical functions. This means that the functions contain
no empirical constants, and neither the variables nor the limits of integration represent any actual
physical quantities. For such functions you can specify as small an error tolerance as desired, provided
the function is calculated within that error tolerance (despite round-off) by the BASIC function. Of
course, due to the trade-off between accuracy and computation time, you may choose not to specify the
smallest possible error tolerance. Any specified error tolerance is rounded to the range [IE—12, 1].

When the integrand relates to an actual physical situation, there are additional considerations. In these
cases, you must ask yourself whether the accuracy you would like in the computed integral is justified
by the accuracy of the integrand. For example, if the function contains empirical constants that
approximate the actual constants to three digits, then it may not make sense to specify an error tol-
erance smaller than 1E—3.

An equally important consideration, however, is that nearly every function relating to a physical situa-
tion is inherently inaccurate because it is only a mathematical model of an actual process or event. A
mathematical model is typically an approximation that ignores the effects of factors judged to be in-
significant in comparison with the factors in the model.

For example, the equation s = s’ — (.5)gt%, which gives the height s of a falling body when dropped
from an initial height §’, ignores the variation with altitude of g, the acceleration due to gravity.
Mathematical descriptions of the physical world can provide results of only limited accuracy. If you
calculated an integral with an accuracy greater than your model can support, then you would not be
justified in using the calculated value to its full (apparent) accuracy. It makes sense to supply an error
tolerance that reflects any inaccuracies in the function, or the IHTEGFEHL keyword will waste time
computing to a level of accuracy that may be meaningless. Further, the value returned by IECOLIHD
may not be significant.

If f(x) is a function relating to a physical situation, its inaccuracy due to round-off is typically very
small compared to the inaccuracy in modelling the situation. If f(x) is a purely mathematical function,
then its accuracy is limited only by round-off error. Precisely determining the relative error in the
computation of such a function generally requires a complicated analysis. In practice, its effects are
determined through experience rather than analysis.

114 Section 11: Numerical Integration

Handling Difficult Integrals

Integrating on Subintervals. A function whose values change substantially with small changes in
its argument will likely require many more points than one whose values change only slightly. This is
because the behavior of the function must be adequately represented by the sampling. If a function is
changing more rapidly in some subintervals of the interval of integration than in others, you can sub-
divide the interval and integrate the function separately on the smaller intervals. Then the integral
over the whole interval is the sum of the integrals over all the subintervals, and the error of the integral
is the sum of the errors of the integrals over the subintervals.

The algorithm used by IHTEGFEHAL makes a reasonable decision during execution of how many points
to sample, based on the behavior of the specified integrand on a particular interval. When the interval
of integration is split up, each subinterval can be handled according to the function behavior on that
subinterval alone. This results in greater speed and precision.

For example, to integrate f(x) = (x2 + 1E—12)" from x = —3 to x = 5 using an error tolerance of
1E—12, it speeds up execution to subdivide the interval at x = 0, where f(x) has a sharp bend in its
graph. Because f(x) is very smooth on the subintervals (—3, 0) and (0, 5), the integrals over these
subintervals can be evaluated quickly.

[P fwdx= [fwds+ [fx) de
-3 EPRA 0
The following program computes this integral on the two subintervals and then combines the results.

10 DEF FNF(X)=SQR(X*X+1E—12) We will use % rather than = because %}
is more accurate. An analogous situation generally
occurs for any integer power of a variable.

20 I=INTEGRAL(—3,0,1E—12,FNF(IVAR)) Integrate over the first subinterval.

30 E=IBOUND Save the error to add in later.

40 DISP ‘“Integral =",

50 DISP I+INTEGRAL(0,5,1E—12,FNF(IVAR)) The sum of the first and second integrals.

60 DISP “Error =";E + IBOUND Compute the relative error by adding the two
errors together.

You can run this program by keying it in and then pressing [RUN]. The following will then appear in
the display.

Irtearal = 17

Error = ,B08R0008881T

When the interval is subdivided, IHTEZEAL computes the answer in a few seconds. Without subdivid-
ing the interval, execution may take a long time.

Subdividing the interval of integration is also useful for functions with a singularity in the interval.
The singularity may consist of one or more points where the function is undefined or has a sharp
corner point.

For example, the integral

dx J‘Q dx
1

2 dx o 1
J(; P may be split into fo x— 1) + x— 1)

to avoid evaluating the function at x = 1, where it is undefined. You can now integrate the function on
each subinterval because x = 1 is an endpoint of each subinterval, and I . does not sample at
an endpoint.

Similarly, the function \/|x — 1|, has a sharp corner point at x = 1.

Vx|

Suppose you need to integrate this function from 0 to 2. You can increase the speed and accuracy of the
computation by integrating separately on the subintervals (0, 1) and (1, 2), because tLe function is
smooth on each of these subintervals.

Transformation of Variables. A second method of handling difficult integrands is by transforming
the variable. When the variable in a definite integral is transformed, the resulting definite integral may
be easier to compute numerically. Consider the integral

1
J‘ < vV 1) dx
0 x — 1 In x
The derivative of the integrand approaches infinity as x approaches 0, as shown on the left below. The

substitution x = u? stretches the x-axis and causes the function to be better behaved, as shown on the
right.

116 Section 11: Numerical Int

. 0.1+
0.1 \\ 2u? u
w + NHu —1) Inu
. vx 1
! x — 1 In x
—
1 ‘
0—+ 'ﬁ } X 0~ Fu
0 0 1

You can now evaluate the integral that results from this substitution:

J‘l < 2u? u)d
— u.
0 \(u+ Du—1) In u
(Do not replace (u + 1)(u — 1) with u? — 1; as u approaches 1, u?> — 1 loses half of its digits to
roundoff, yielding a final result that is too large.)

As a second case requiring substitution, consider the following function. Its graph has a long tail
stretching much farther than the main body (where most of the area is).

I S
4+ 10"

Section 11: Numerical Integration 117

Although a very thin tail may be truncated without greatly degrading accuracy, this function has too
wide a tail to ignore when calculating

ff dx
~t x* + 107"

if t is large. In general, the compressing substitution x = b tan u maps the entire real line into (—7/2,
w/2) and maps subsets of the real line into subsets of (—=/2, 7/2). For b = 1E—5 the substitution
becomes x = 1E—5 tan u and the integral becomes

tan !(t/b)
10° d
J;an' Y(—t/b) u

which is readily computed for very large ¢.

This compressing substitution is also a standard way to deal with infinite intervals. For example,

i =

In some cases the tail can be chopped off. Consider the function exp (—x2). This functions underflows
(that is, gives a result of zero in machine arithmetic) for x > 34. Thus,

© 2 34 2
f e Ydx = f e Ydx
0 0

Therefore, when dealing with infinite integrals you can cut off the tail if it is insignificant, but you
should use a compressing substitution if it is not.

118 Section 11: Numerical Integration

About the Algorithm

The Math Pac uses a Romberg method for accumulating the value of an integral. Several refinements
make it more effective. Instead of equally spaced samples, which can introduce a kind of resonance or
aliasing that produces misleading results when the integrand is periodic, i. uses samples
that are spaced nonuniformly. Their spacing can be demonstrated by substituting

3
X=——u—

b
3 .
5 u 1ntoJ; f(x)dx

b |

and then spacing u uniformly. Besides suppressing resonance, the substitution has two additional bene-
fits. First, no sample need be taken from either endpoint of the interval of integration unless the inter-
val is so small that points in the interval round to an endpoint. As a result, an integral like

J‘l sin x dx
0 X

will not be interrupted by division by zero at an endpoint. Second, [+ TE:FEL can integrate functions
whose slope is infinite at an endpoint. Such functlons are encountered when calculating the area en-
closed by a smooth closed curve like x* + f2(x) =

In addition, IHTEGREAL uses extended precision. Internally, sums are accumulated in 15-digit num-
bers. This allows thousands of samples to be accumulated, if necessary, without losing any more signifi-
cance to round-off than is lost within your function.

During the computation, IHTEGREFAL generates a sequence of iterates that are increasingly accurate
estimates of the actual value of the integral. It also estimates the width of the error ribbon at each
iterate. IHTEGREAL stops only after three successive iterates are within the computed error of each
other or after 16 iterations have been performed without this criterion being met.

In the latter case the function will have been sampled at 65,535 points. The value returned by
TEGUMD will be the negative of the computed error to signify that the returned value of the
i is likely not within the error tolerance of the actual value. Typically, you should then split
up the interval of integration into smaller subintervals and integrate the function over each of the
subintervals. The integral over the original interval will then be the sum of the integrals over the
subintervals. In this way, up to 65,535 points can be sampled on each subinterval, thus computing the
integral to greater precision.

In summary, It Fril has been designed to return reliable results rapidly and in a convenient,
easy-to-use fashion. The above theoretical considerations discuss problems with numerical integration
in general. The IHTEZERL keyword is capable of handling even difficult integrals with relative ease.

Section 12
Finding Roots of Polynomials

Keyword

The keyword in this section finds all solutions—both real and complex—of P(x) = 0, where P is a
polynomial of your choice with real coefficients. If P is a polynomial of degree n there will be n (not
necessarily distinct) solutions of this equation, so this keyword resembles an array operation in its
format.

To use this keyword to find the solutions of the equation P(x) = 0, where
P(x) = ax" + a,_x" 1 + ... + aix + q

first store the coefficients a,, a,_1, ..., a® in a real-type array with n + 1 elements in all. They should
be stored in the order indicated above, with the coefficient of the highest power first and the constant
term last. Aside from the total number of elements in the array, which indicates to the Math Pac the
degree of the polynomial, the dimensions of the array are irrelevant. For example, the arrays

6 5 4
[6’ 5) 47 35 27 1]9 5 4 3 y and
3 2 1

N W A~ Ot O

Ll
all can represent the fifth degree polynomial

6x° + 5x* + 4x3 + 3x2 + 2x + 1.

The array in which you wish the resulting roots to be stored must be complex type to accept complex
roots. If the polynomial whose roots are sought has degree N, and if the result array is a vector, it will
be redimensioned to have N elements. If the result array is a matrix, it will be redimensioned to have
N rows and one column.

The degree of the polynomial whose roots you can find is limited only by the amount of memory you
have available.

119

120 Section 12: Finding Roots of Polynomials

PROOT Roots of a Polynomial

MAT R=FREOOTOPX

where P is a real vector or matrix with N + 1 elements, where N = degree of polynomial whose roots
are sought, and R is a complex vector or matrix.

If R is a vector, implicitly redimensions R to have N elements. If R is a matrix, implicitly redimensions R to
have N rows and one column. R will be assigned the (complex) values of the solutions of the equation
P(x) = 0 (where P is the polynomial of degree N whose coefficients are the values of the elements of P).

To halt operation, press twice.
Not usable in CALC mode.

Example
The following example finds all roots of the polynomial

5Z% — 45Z° + 2257Z% — 425Z° + 170Z% + 370Z — 500

1

ROT 0 Creates real vector for coefficients.
LE® EBol@n Creates complex vector for roots.
A

1
i

First redimensions the vector B to have six ele-
ments, just large enough to contain the six (com-
plex) roots of the six-degree polynomial. Then
finds all roots and stores them in B.

Section 12: Finding Roots of Polynomials 121

MAT DISF E Displays all roots.
D R
cl.-13
(1,00
CELED
DRCINE
(F, -4

Additional Information

There are several methods of gauging the accuracy of the calculated roots. The first method is to cal-
culate the value of the polynomial at the alleged root, and compare this value with zero. Although quite
straightforward in theory, this has a number of drawbacks in practice. It may easily happen that the
root calculated is the closest machine-representable number to a true root, but because the polynomial
has such a large value for its derivative at this root, the value of the polynomial at the calculated root is
very large. A simple example of this phenomenon is given by the polynomial 1E20x2 — 2E20. A true
root is \/7, a calculated root is 1.41421356237, which is the machine-representable number closest to
\/ 2. However, the value of the polynomial at this approximation to the square root of 2 is
—1,000,000,000, a number that seems very far from zero.

Another drawback of the above method is that because of the limited precision available in any numeri-
cal calculation, the roundoff errors that occur in the calculation of the polynomial value may com-
pletely eliminate the significance of the difference between the calculated value and zero. This is
especially true when the polynomial is of large degree, has coefficients widely varying in size, or has
roots of high multiplicity.

A second method of gauging the accuracy of the calculated roots is to attempt to reconstruct the poly-
nomial from these roots. If the reconstructed polynomial closely resembles the original, the roots are
then judged to be accurate. This technique is less sensitive to the problems that affect the polynomial
evaluation method. Of course, this method does not give information on the accuracy of an individual
root.

The program below asks you for a polynomial and calculates the roots of that polynomial using the
FREOOT keyword. If you wish, the program will also calculate the reconstructed coefficients from the
calculated roots. In addition, if desired, the program will compute the value of the polynomial at either
a calculated root or any other real or complex value.

Lines 10 through 200 drive the program and use the FE T function to calculate the roots of the given
polynomial. Lines 210 through 250 comprise the subroutine that evaluates the polynomial at any real or
complex point. Horner’s method is used.

122 Section 12

Finding Roots of Polynomia

Lines 260 through 410 comprise the subroutine that reconstructs the coefficients from the calculated
roots. Starting with the polynomial 1, the subroutine successively multiplies the polynomial by the
linear factors (Z — R), where R is a calculated real root, or by the quadratic Z2 — 2REPT(R) +
ABS(R)2, where R is a calculated complex root. (Note that CONJ(R) will also be a calculated root).

10 OPTION BASE 0 @ INTEGER D,E
@ DIM U$[4] @ DELAY 1 @ WIDTH 96

20 INPUT “DEGREE? ";D
30 DIM P(D),C(D) @ COMPLEX R(D—1)

40 DISP “ENTER COEFFICIENTS ”
@ MAT INPUT P

50 DISP “WORKING..."
60 MAT R=PROOT(P)

70 DISP “THE ROOTS ARE” @ DELAY 8 @
MAT DISP R @ DELAY 1

80 U$=KEY$ @ INPUT
“RECONSTRUCT? (Y/N) ";U$

90 IF UPRC$(U$)=“Y" THEN GOSUB 260
ELSE 110

100 DISP “RCON COEFFICIENTS ARE” @
DELAY 8 @ MAT DISP C @ DELAY 1

110 U$=KEY$ @ INPUT
“EVALUATION? (Y/N) ";U$

120 IF UPRC$(U$)#“Y” THEN 190
ELSE COMPLEX Z

130 INPUT “AT A ROOT? (Y/N) ";U$

140 IF UPRC$(U$)#“Y” THEN INPUT
“VALUE? ”;Z @ GOTO 160

O is the degree of the polynomial.

Array P will contain the coefficients of the
polynomial in the order given previously, array R
will contain the calculated roots, and array C
will contain the reconstructed coefficients.

Enter the coefficients. The leading coefficient
should be nonzero for the program to work
properly.

Calculates the roots and stores them in array R.

Displays the calculated roots. To continue the
program after each root is displayed, press

(ENDLINE].

If you wish, the program will reconstruct the
coefficients from the calculated roots.

The subroutine starting at line 260 performs the
reconstruction and stores the reconstructed
coefficients in array C.

Displays the reconstructed coefficients. To
continue the program after each display, press
(END LINE].

If you wish, the program will evaluate the
polynomial at a root or at any other point.

The complex variable Z will hold the polynomial
value.

The point may be either real or complex.

150 DISP USING ‘#,“WHICH ROOT
(1..”,K."y";D @ INPUT E
@ Z=R(E—1)

160 GOSUB 210 @ DISP “POLYNOMIAL
VALUE IS” @ DELAY 8 @ DISP Z @
DELAY 1

170 U$=KEY$ @ INPUT
“ANOTHER VALUE? (Y/N) ";U$

180 IF UPRC$(U$)="Y" THEN 130
190 INPUT “ANOTHER POLY? (Y/N) ";U$

200 IF UPRC$(U$)="“Y" THEN 20 ELSE STOP
210 COMPLEX B @ B=P(0)

220 FOR K=1TO D

230 B=P(K)+2Z*B

240 NEXT K

250 Z=B (@ DESTROY B @ RETURN
260 DISP “WORKING...”

270 MAT C=ZER @ C(D)=1

280 FOR L=1TO D

290 IF IMPT(R(L—1))#0 THEN 340

300 FOR K=D—L TO D—1

310 C(K)=C(K+1)—C(K)*REPT(R(L—1))
320 NEXT K

330 C(D)= —C(D)*REPT(R(L—1)) @ GOTO
400

340 REAL B @ B=REPT(R(L—1))*2
+IMPT(R(L—1))*2

350 FOR K=D—L—1 TO D—2

123

Input the number of the root where you want
the polynomial evaluated.

The subroutine beginning at line 210 evaluates
the polynomial at the given point or root. This
value is then displayed. To continue, press

(END LINE].

The program will evaluate the polynomial again
if you wish.

You can choose to start the program over again
with a new polynomial.

The polynomial evaluation subroutine uses
Horner’s method.

This line begins the coefficient reconstruction
subroutine. Some rounding error may accumulate
during reconstruction, so even if the roots are
exact, the reconstructed coefficients may not
exactly coincide with the original coefficients.
Creates polynomial 1 in array C.

We use each calculated root in turn.

Lines 300 through 330 multiply the current
reconstructed polynomial by a linear factor.

Lines 340 through 390 multiply the current
reconstructed polynomial by a quadratic factor.

124 Section 12: Finding Roots of Polynomials

360 C(K)=C(K+2)—2%REPT(R(L—1))

*C(K+1)+B*C(K)

370 NEXT K

380 C(D—1)= —2*%REPT(R(L—1))*C(K+1)
+B*C(K)

390 C(D)=B*C(D) @ L=L+1

400 NEXT L

410 MAT C=(P(0)*C @ DESTROY B
@ RETURN

We increment L since we multiplied the
polynomial by both the complex root and its
complex conjugate.

The reconstructed polynomial has leading
coefficient 1 and so must be adjusted if the
original leading coefficient was not 1.

Example. If we wanted to find and evaluate the roots of the polynomial

A I N S L S I A

we would run the program using the following keystrokes.

Input/Result
RUN
B
DEFFICIEH

1.1, 1,1,1,1,1[ENDLINE

THE EOOTz AEREE

(B

125

The display scrolls to display the imaginary part

of the first root.

The real part of the first root.

The imaginary part of the second root.

The real part of the second root.

Display the last four roots in the same way. These displayed roots are:

Third root: -
Fourth root: ¢
Fifth root: « . &

Sixth root: ¢

After the last root is displayed, continue the program by pressing [END LINE].

Input/Result

Any response but % or :i is interpreted as “no.”

126 Section 12: Finding Roots of Polynomials

RCOOM COEFFICIEMTS REE

1 The coefficient of the x8 term.
R R The coefficient of the x° term.

Display the remaining five coefficients in the same way. These displayed coefficients are:
Coefficient of x* term: 1

Coefficient of x3 term: . 33333333335

Coefficient of x2 term: 1

Coefficient of x! term: . &3 33333355

Coefficient of x0 term: 1

After the last coefficient is displayed, continue the program by pressing [END LINE].

Input/Result

EVALURTIONT <Y HY B

AT A ROOTT OY¥oHY B

WMHICH ROOT <1, .87 B

1 [END LINE

FOLYHOMIAL

WALUE I

—
[x]

L7 S2E-

133

(END LINE]

AHOTHER MALUE?D oY M2

 (END LINE]

AT A ROOT?

EreHY B

i | END LINE

VALUEY B

C- &, .5 | ENDLINE

FOLYHOMIAL

VALLE IS

e R T R

eoeloel ol F el ol g

e
b}
i
b}
et
g

(END LINE]

AMOTHER WALUET oYM

i | END LINE

AMOTHER FOLYT (%Mo

H (END LINE]

Section 12: Finding Roots of Polynomials

Continues the program.

Ends the program.

127

About the Algorithm

The Math Pac finds the roots of polynomials using Laguerre’s method, which is an iterative process.
The Laguerre step at the iterate Z, for the polynomial P(Z) of degree N is

—NP(Z,)
P(Z) + (N — 1? (P(Z))* = N (N — 1) P(Z,) P"(Z)]"

The sign in the denominator is chosen to give the Laguerre step of smaller magnitude. Polynomials or
their quotients of degree < 3 are solved using the quadratic formula or linear factorization.

Laguerre’s method is cubically convergent to isolated zeros and linearly convergent to zeros of mul-
tiplicity greater than one.

The " function is global in the sense that the user is not required to supply either an initial guess
or a stopping criterion; in other words, no prior knowledge of the location of the roots is assumed. The
T function always attempts to begin its search (iteration) at the origin of the complex plane. An
annulus in the plane known to contain the smallest magnitude root of the current (original or quotient)
polynomial is constructed about the origin (using five theoretical bounds) and the initial Laguerre step
is rejected if it exceeds the upper limit of this annulus. In this case, a spiral search from the lower
radius of the annulus in the direction of the rejected initial step is begun until a suitable initial iterate
is found.

Once the iteration process has successfully started, circles around each iterate are constructed (using
two theoretical bounds) that are known to bound the root closest to that iterate; the Laguerre step size
is constantly tested against the radii of these circles and modification of the step is made when it is
deemed to be too large or when the polynomial value does not decrease in the direction of the step. For
this reason, the roots are normally found in order of increasing magnitude, thus minimizing the
roundoff errors resulting from deflation.

Evaluation of the polynomial and its derivatives at a real iterate is exactly Horner’s method.
Evaluation at a complex iterate is a modification of Horner’s method that saves approximately half of
the multiplications. This modification takes advantage of the fact that the Horner recurrence is sym-
metric with respect to complex conjugation.

11T uses a sophisticated technique to determine when an approximation Z, should be accepted as a
root As the polynomial is being evaluated at Z,, a bound for the evaluation roundoff error is also being
computed. If the polynomial value is less than this bound, Z, is accepted as a root. Z, can also be
accepted as a root if the value of the polynomial is decreasing but the size of the Laguerre step has
become negligible. Before an approximation Z, is used in an evaluation, its imaginary part is set to zero
if this part is small compared to the step size. This improves performance, since real-number
evaluations are faster than complex evaluations. If the Laguerre step size has become negligible but the
polynomial is not decreasing, then the message FEIOT f: ir = is reported and the computation
stops. This is expected never to occur in practice.

of Polynomials 129

As the polynomial is being evaluated, the coefficients of the quotient polynomial (by either a linear or
quadratic factor corresponding to the Z;) are also computed. When an approximation Zy, is accepted as
a root, this quotient polynomial becomes the polynomial whose roots are sought, and the process begins
again.

Multiple Zeros

No polynomial rootfinder, including FEOOT, can consistently locate zeros of high multiplicity with
arbitrary accuracy. The general rule-of-thumb for FRIOT is that for multiple or nearly-multiple zeros,
resolution of the root is approximately 12/K significant digits, where K is the multiplicity of the root.

Accuracy

FREOOT s criterion for accuracy is that the coefficients of the polynomial reconstructed from the cal-
culated roots should closely resemble the original coefficients.

We will illustrate F'F:i107T’s performance with isolated zeros using the 100th degree polynomial

100
P2Z) = > zF
k=0

Of the 200 real and imaginary components of the calculated roots, about half were found to 12 digit
accuracy. Of the rest, the error did not exceed a few counts in the 12th digit.

The polynomial (Z + 1)20 with all 20 roots equal to —1 was solved by FEZT to yield the following

roots.
(—.997874038627,0)
(—.934656570635,0)
(—.947080146258,—.160105886062)
(—.947080146258,.160105886062)
(—.678701343788,—6.24034855342E — 2)
(—.678701343788,6.24034855342E — 2)
(—.815082852233,—.270565874916)
(—.815082852233,.270565874916)
(—.725960092383,—.178602450179)
(—.725960092383,.178602450179)
(—.934932478844,—.326980158732)
(—.934932478844,.326980158732)
(—1.06905713438,—.337946194292)
(—1.06905713438,.337946194292)
(—1.19977533452,—.295162714497)

(—1.19977533452,.295162714497)
(—1.30383056467,—.200016185042)
(—1.30383056467,.200016185042)
(—1.3593147483,7.00833934259E — 2)
(—1.3593147483,—7.00833934259E — 2)

The roots appear inherently inaccurate due to the high multiplicity of —1 as a root. Between 0 and 1
correct digits were expected, even though the first zero found was better than this. However, the re-
constructed coefficients are very close and are shown below (rounded to 12 digits).

Original Reconstructed
Coefficients Coefficients

1 1

20 20

190 190.000000001
1140 1140

4845 4845.00000003
15504 15504

38760 38760.0000003
77520 77520.0000007

125970 125970.000001
167960 167960.000002
184756 184756.000002
167960 167960.000003
125970 125970.000002

77520 77520.0000015
38760 38760.0000009
15504 15504.0000004
4845 4845.00000011
1140 1140.00000004
190 | 190.000000042
20 20.0000000344

1 1.00000001018

Time Performance

The speed of the FRITT function is illustrated in the following table. The times given are those re-
quired to calculate all the roots of the polynomial

N
P(Z) = > ZF
k=0
for values of N given in the Degree column.

Note that times are approximate.

Degree | Time (sec)

3 3

5 6
10 22
15 42
20 142
30 168
50 568
70 1060

100 2101

Section 13

Finite Fourier Transform

Keyword

The finite Fourier transform is a key step in solving many problems in mathematics, physics, and
engineering, such as problems in signal processing and differential equations.

Given a set of N complex data points Z, Z,,..., Zy_1, the finite Fourier transform will return another
set of N complex values Wy, W,..., Wxn_,, such that for k = 0, 1,..., N — 1,

N—1 . .
Z, = j;o W, <cos—27rN—kJ+ isinerkj>

The W’s then represent the complex amplitudes of the various frequency components of the signal
represented by the data points. The values for the W’s are given by the formula

! —2rkj —2mkj
W, = 1/N kgo z, (cos —N *isin T’)

This formula holds for any number of data points. The Math Pac uses the Cooley-Tukey algorithm and
the internal language of the HP-71 to achieve excellent speed and accuracy in the calculation of the
finite Fourier transform. This requires, however, that N be an integral power of 2; for example, 2, 4, 8,
16, 32, 64, and 128 are all acceptable values for the number of complex data points.

To use the finite Fourier transform, store your complex data points Z,..., Zy_; as successive elements
of an N-element complex array with Z, as the first element, Z; as the second element, and so on. Aside
from the total number of elements in the array, which indicates to the Math Pac the number of com-
plex data points, the dimensions of the array are irrelevant. For example, each of the following eight-
element arrays

133

134 Section 13: Finite Fourier Transform

(1,2)
(3,4)
(5,6)
(7,8)
(9,10)
(11,12)
(13,14)
(15,16)

[12 G4
5.6) (18)
9,10) (11,12)

| (1319) (1516)

12 B4 (686 (78)
(9,100 (11,12) (13,14) (15,16)

[(1,2) (34) (56) (1.8) (9.10) (11,12) (13,14) (15,16)]

can represent the set of input data points
1(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16) }

The array in which you wish the transformed data to be stored must be complex type. If the number of
input data points is N, and if the result array is a vector, it will be redimensioned to have N elements.
If the result array is a matrix, it will be redimensioned to have N rows and one column. The results of
the finite Fourier transform W,,...,Wy_; will be returned with the complex values stored in successive
elements of this N-element complex result array—the same form as the data points.

The number of data points you can use is limited only by the amount of available memory and by the
requirement that the number of data points be a non-negative integral power of 2.

FOUR Finite Fourier Transform

MAT W=FOURCZ2

where Z is an N-element complex array, either a vector or matrix, N is the number of complex data |
points, which must be a non-negative integer power of 2, and W is a complex array, either a vector or |
matrix. .

If W is a vector, implicitly redimensions W to have N elements; if W is a matrix, implicitly redimensions W f
to have N rows and one column. W will be assigned the complex values of the finite Fourier transform of ’

the data points represented by Z.
To halt operation, press twice.
Not usable in CALC mode. 1

The following example computes the finite Fourier transform of the input data set ((1,2), (3,4), (5,6),
(7,8), (9,10), (11,12), (13,14), (15,16)).

10 OPTION BASE 1

20 COMPLEX SHORT A(8),B(1,2) A contains the data set, and B, after
redimensioning, contains the transform of the
data.

30 MAT INPUT A
40 MAT B=FOUR(A)
50 MAT DISP B

RUN

136 Section 13: Finite Fourier Transform

Additional Information

Time Performance

The approximate time required by Fii{¥ to return the transform, based on the number of data points,
is shown in this table.

Number of | Transform Time
Data Points (Seconds)
1 0.07
2 0.11
4 0.26
8 0.75
16 1.9
32 4.7
64 11
128 25
256 55
512 120
1024 260
2048 558

Transform 137

Relation Between the Finite and Continuous Fourier Transform

The finite Fourier transform is most often used as an approximation to the continuous (infinite) Fou-
rier transform. To understand in what sense it is an approximation, and to understand the effects of
various choices to be made in using this approximation, it is most useful to have the direct relationship
between the continuous and finite transforms.

If Z(x) is a complex valued function, its continuous Fourier transform is defined to be
W = [7 Z(x) exp(—2mifr) dx

If we have a set of N complex data points Z;, Z;,..., Zy_; given by sampling the function Z at N
equally spaced points

Zy = Z(xg + kAx) for k =0,1,..., N — 1,

and then find the finite Fourier transform W,, W,..., Wy _; of this data set, we can relate these values
to the values of the continuous Fourier transform W(f) as follows. For k = 0,..., N — 1,

W, = (r/N) W(k/NAx) where r = exp(—2mwix,).

W is a “smeared” version of the true continuous Fourier transform W. To get W from W, you must
average W in two important but very different ways. The first type of averaging that occurs can be
described by defining a new function A(f) intermediate between W and W.

A(f) = kﬁZ W(f + k/Ax)

This says that the value of A at a point f is equal to the sum of the values of W at all points that are
integer multiples of the limiting frequency 1/Ax away from f. In particular, if W consists of a small
bump centered at the origin, then A will consist of an infinite sequence of bumps spaced 1/Ax units
apart. This is the aspect of the finite Fourier transform that gives rise to aliasing: any frequency that
occurs in W (that is, W has a nonzero value there) will give rise to a nonzero value for A (and also W)
somewhere in the interval [0, 1/Ax] no matter what the original frequency was. For this reason, you
should choose Ax small enough so that 1/Ax is larger than the distance between the largest and small-
est f’s that you suspect will occur in W. Since most functions occuring in actual situations (and all
real-valued functions) have continuous Fourier transforms that are roughly symmetric about the origin,
if a frequency f, occurs in W, it is likely that —f, also occurs in W. For the finite Fourier transform to
contain both frequencies without aliasing, 1/Ax must be larger than 2f,. If we define the largest fre-
quency occuring in W as Af, we can express the no-aliasing requirement as AfAx < 1/2.

138 Section 13: Finite Fourier Transform

The second type of averaging that occurs when going between W and W is much more local in nature
than the first. It results in a loss of frequency resolution in W as compared with W; more precisely,

W = (Nax) f “ sinc(eNAx) A(f — g) dg

lifa =0,
where sinc(a) = sin (ra)
——— otherwise.
Ta

Since sinc (gNAx) consists primarily of a bump with width inversely proportional to NAx, W is more
blurred (compared to W) for smaller values of NAx. This is not a serious problem unless W has a large
value at a frequency that is not a multiple of the fundamental frequency N/Ax. In this case, the “side
lobes” of the sinc function become evident in W. This can be reduced somewhat by multiplying the
data values Z, by a smoothing function G(k) before taking the finite Fourier transform. This results in
an averaging function that has smaller side lobes than the sinc function. One example of such a func-
tion is the Hanning function G(k) = (1/2)(1 — cos(2wk/N)).

Inverse Finite Fourier Transform

Many applications of the finite Fourier transform involve taking the transform of a set of data points,
operating on the transformed value<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>