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Introducing the Math Pac

The Math Pac is a set of powerful tools for solving a wide range of mathematical, scientific, and en-

gineering problems. These tools are provided in the convenient and flexible form of BASIC keywords.

Once the math module is plugged into your HP-71 Computer, these keywords are instantly available:

no program to load, no waiting. You can use these keywords in any program as often as needed; you

avoid the restrictions that would apply to program calls and save the memory that subroutines would

require.

The Math Pac adds the following capabilities to your HP-71.

® Complex variables and arrays.

¢ Advanced real- and complex-valued functions.

® Real and complex array operations.

® Solutions to systems of equations.

® Roots of polynomial equations and user-defined functions.

® Numerical integration.

Finite Fourier transform.
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How To Use This Manual

This manual assumes that you are generally familiar with the operation of your HP-71 Computer,

especially how to create, edit, store, and run programs. You should also understand the mathematical

basis for the operations you will be performing. Because the keywords in the Math Pac cover such a

wide range of mathematical subjects, we cannot provide much tutorial information on the mathematical

concepts involved.

The keywords in the Math Pac are independent of one another, so you may deal with only the

keywords that specifically interest you. Each section in this manual contains information on keywords

of a particular mathematical type—complex functions and operations, array arithmetic, and so on. All

keywords described after section 5 (except FHEIOT and IMTEZREHAL) use arrays in their operation.

For an introduction to arrays, as used with the HP-71, read sections 3 and 14 of the HP-71 Owner’s

Manual.

Variable Declarations

The examples and programs in the Math Pac assume all variables are simple real unless otherwise

declared. If an EFF :Data Tupe occurs as you execute an example or program, declare as FEAL any

variable not otherwise declared and continue operation.

Array Types

The Math Pac refers to two types of arrays, vectors and matrices. As used in this manual, the term

vector identifies a singly-subscripted array, and matrix identifies a doubly-subscripted array. A sub-

script must be a real numeric expression. At run time, a subscript expression is rounded to an integer.

The value of this integer must be in the range [0,65535] (OFTIOH EARZE ) or [1,65535]

(ODFTIOHM EASE 1). Of course, in virtually all cases, available memory will determine the largest

subscript you can use.

An array can be one of five data types: FEAL, SHOET, IMTEGER, COMFLEX, or COMFLE: SHORT

(refer to section 3 for a description of COMFLEand COMFLEX SHOET). Math Pac 1A T statements

will not change the declared type of an array; for example, when the values from a FEFRL array are

assigned to a ZHRET or IHTEGEFRarray, the values are rounded as they are stored into that array.
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Array Redimensioning

Some Math Pac keywords allow you to optionally redimension an array. This is called explicit

redimensioning. Other keywords automatically redimension result arrays,if possible, to accomodate the

number of elements generated by the keyword’s action. This is called implicit redimensioning. The kind

of array redimensioning performed by a keyword, explicit or implicit, is stated in each keyword’s

description.

Explicit redimensioning occurs when an array’s size and subscript count is changed according to the

number and value of new subscripts supplied by you. For example, if A is a 3 X 4 EEFL type matrix,

then the HP-71 statement EEHAL A« 2explicitly redimensions A to be a 3 dimensional vector. Note

that explicit redimensioning allows arrays to be changed from vectors to matrices and vice-versa. Ex-

plicit redimensioning also re-evaluates TF TI0H EAZE; that is, resets the lower bound of an array’s

subscripts if the OFTI0OH ERSE setting has changed.

Implicit redimensioning occurs only in Math Pac operations of the form

MAT result array = operation (operand array(s)).

Implicit redimensioning only changes an array’s size. It does not allow changes between vectors and

matrices, nor does it re-evaluate OF T I0H EBASE.

Keyword Description

Within each section you will find a description of each keyword name, function, syntax, and operation

in the following format.

KEYWORD NAME Function That the Keyword Performs
 

Syntax

Legal data types and numeric values for use with this keyword.

 

 Description of the values returned by this keyword and the details of the keyword’s operation.  
 

Keyword Name. This is the way the keyword will be referenced elsewhere in the manual. It is usually

a mnemonic of the function that the keyword performs. In most cases the name must be embedded in a

longer statement that includes arguments, parentheses, and so on; the name by itself usually isn’t an

acceptable BASIC statement.

Several keywords have names that are identical to names of keywords already present in your HP-71—

like 11 %F) + and #. The syntax in which such a name is embedded indicates which operation to

perform. All operations available to you in the HP-71 itself are still available, unaffected by the pres-

ence of the Math Pac.
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Syntax. This is a description of the acceptable BASIC statements in which the keyword’s name can

be embedded. The following conventions are used throughout the manual in describing the syntax of a

keyword.

Typographical Item Interpretation

DOT MATREI= Words in dot matrix (like COMFLE) can be entered in lowercase or upper-

case letters. The examples in this manual show statements, functions, and op-

erators entered in UFFERCHSE.

italic Items in italics are the variables or parameters you supply, such as X in the

SIMHHOXstatement.

bold Variables in bold type represent arrays.

[] Square brackets enclose optional items. For instance, MAT A=I0H[X, Y]

indicates the redimensioning subscripts X and Y are optional.

stacked items When items are placed one above the other, one and only one must be chosen.

An ellipsis indicates that the optional items within the brackets can be re-

peated. For instance, MAT IHFIIT A[.B]... indicates that MAT IHFLT re-

quires at least one array variable, and may accept several, with the array

variables separated by commas.

Legal Data Types and Numeric Values. This information, in the same box as the syntax, describes

the types and ranges of arguments for the keyword that are acceptable to the Math Pac. Use this

information to avoid generating errors and to isolate the cause of those that do occur. This is not a

mathematical definition of the domain of the function that the keyword computes.

Values Returned and Details of Operation. This information, in the box just below the syntax

box, describes how the keyword works, tells what values the keyword returns, states whether array

redimensioning (if any) is explicit or implicit, and states whether or not the keyword is usable in CALC

mode.

Examples

Included in each section are a number of examples illustrating the use of the keywords in the section.

To try an example yourself, type in the statements given in the Input/Result column using either

upper- or lowercase, ending each line with with an LINE]. After you complete a line, the display of
your HP-71 should look like the display shown in the Input/Result column following the line—pro-

vided that you have set your HP-71 operating conditions as indicated below.
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e All operating conditions should be set as listed in the reference manual in the Systems

Characteristics Section under the topic Reset Conditions, except for those whose settings follow.

¢ Set line width to 22 by entering WIDTH =2 (ENDLINE].

e Set DELFAY so that each display in a sequence of displays, often produced by a single statement,

will remain visible long enough to be read and understood. The [IEL Astatement is described in

The HP-71 Reference Manual and section 1 of the HP-71 Owner’s Manual. In each you’ll find

descriptions of how you can control the length of time each display remains visible. For the display

of array elements, you may find a DEL A" & setting useful. This causes each display to remain

until any key, such as [END LINE], is pressed.

Additional Information

Some sections in the Math Pac include additional information to help you make effective use of the

more sophisticated operations. If you would like still more information, you can refer to the HP-15C

Advanced Functions Handbook. Although the Math Pac differs from the HP-15C Advanced Pro-

grammable Scientific Calculator in its operation and capabilities, much of the information in the

HP-15C Advanced Functions Handbook applies to the Math Pac. Such information includes techniques

to increase the effectiveness of equation-solving algorithms, integration algorithms, matrix operations,

system solutions, and accuracy of numerical calculations.



Section 1

Installing and Removing the Module

The Math Pac module can be plugged into any of the four ports on the front edge of the computer.

 

CAUTIONS

* Be sure to turn off the HP-71 (press (f] [OFF]) before installing or removing the module.

 If you have removed a module to make a port available for the math module, before installing the

math module, turn the computer on and then off to reset internal pointers.

¢ Do not place fingers, tools, or other objects into any of the ports. Such actions could result in minor

electrical shock hazard and interference with pacemaker devices worn by some persons. Damage

to port contacts and internal circuitry could also result.

¢ If a module jams when inserted into a port, it may be upside down. Attempting to force it further

may result in damage to the computer or the module.

¢ Handle the plug-in modules very carefully while they are out of the computer. Do not insert any

objects in the module connecter socket. Always keep a blank module in the computer’s port when

a module is not installed. Failure to observe these cautions may result in damage to the module or

the computer.   
 

To insert the Math Pac module, orient it so that the label is

right-side up, hold the computer with the keyboard facing up, and

push in the module until it snaps into place. During this opera-

tion be sure to observe the precautions described above.

 

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the

module and pull the module straight out of the port. Install a blank module in the port to protect the

contacts inside.
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Section 2

Base Conversions

Binary, Octal, and Hexadecimal Representations

The operations in this section allow your HP-71 to recognize and manipulate numbers expressed in

number systems other than decimal (base 10).

Because the HP-71 assumes that any real number stored in a numeric variable or entered from the

keyboard is a decimal number, you must enter and store every non-decimal number as a character

string. In particular, if you store the number in a variable, the variable’s name must end with “$”; if

you enter the number from the keyboard, it must be enclosed in quotes.

In the tables below, S$§ will represent a binary, octal, or hexadecimal string or string expression.

e A binary string consists entirely of 0’s and 1’s, and represents a number in the base 2 number

system. A binary string expression is a string expression whose value is a binary string.

e An octal string consists entirely of 0’s, 1’s, ..., 6’s, and 7’s, and represents a number in the base 8

number system. An octal string expression is a string expression whose value is an octal string.

e A hexadecimal string consists of 0’s, ..., 9’s, A’s, ..., and F’s (the letters may be either uppercase or

lowercase), and this string represents a number in the base 16 number system. A hexadecimal string

expression is a string expression whose value is a hexadecimal string.

Base Conversion Functions

BVAL Binary, Octal, or Hexadecimal to Decimal Conversion
 

EVALISS. N

where S$ is a binary string expression whose value is not greater than

1110100011010100101001010000111111111111 (binary), and N is a numeric expression whose

rounded integer value is 2;

or S$ is an octal string expression whose value is not greater than 16432451207777 (octal), and N is a

numeric expression whose rounded integer value is 8;

or S$ is a hexadecimal string expression whose value is not greater than E8BD4A50FFF (hexadecimal),

and N is a numeric expression whose rounded integer value is 16.  
 

15
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BVAL (continued)

 

Not usable in CALC mode. 

Converts a string expression S$ representing a number expressed in base N into the equivalent decimal

number. The value of the decimal equivalent can’t exceed 999,999,999,999 (decimal).

 
 

BSTRS Decimal to Binary, Octal, or Hexadecimal Conversion

 

EZTEFOX, N2

where X is a numeric expression, 0 < X < 999,999,999,999.5, and N is a numeric expression whose

rounded integer value is 2, 8, or 16.

 

Not usable in CALC mode. When N = 16, returns uppercase A, ..., F.

Converts the rounded integer value of X (decimal) into the equivalent base N string.

 

Examples

Input/Result

EMELOTIElEa" 20 ENDLINE

 

fou
ee! o
o !

  
 

HE="1111" ENDLINE

EUWAHLOBES, 23 [ENDLINE

 

foo
net

e

h

  
 

EUVHLOBEFLES, 20 ENDLINE

 

1 £
h

  
 

BETRECE, 20

 

  
 

The decimal value of 1010 (binary).

The decimal value of the binary string “1111.”

The decimal value of the binary string
“11111111.

The binary representation of 3 (decimal).

 



 

  
 

RECEVALOTAFLICEY [ 1ad, 25
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The octal representation of 72 (decimal).

The binary representation of AF1C8
(hexadecimal).

The octal sum of 14772 (octal) and 570 (octal).

Three considerations determined the range of acceptable parameters for the base conversion keywords.

o The keywords give the exact answer for any integer in the range of acceptable parameters.

o The keywords are inverses of one another, so that composition in either direction is the identity

transformation for integers.

o The integers from O through 999,999,999,999 form the largest block of consecutive non-negative

integers that the HP-71 can display in integer format.





Section 3

Complex Variables

Complex Data Types

The operations in this section allow your HP-71 to declare, recognize and manipulate complex num-

bers. These operations include:

® Declaration of complex variables and arrays using COMFLE S and COMFLE SHORET statements.

¢ Extension of HP-71 variable assignment and the FEZ= function to the complex case.

* Extension of HP-71 IMAZE format strings to include complex fields

® Conversion of real numbers to complex.

Declaring Complex Variables

COMPLEX Complex Variable Creation with 12-Digit Precision
 

COMRPLE R variable list

where the syntax is the same as that used for FEAL, “HOET, and IHTEGER keywords. That is, each

variable in the variable list has the form numeric variable [ dim 1 [. dim 2] ], and dim 1 and dim 2 are

real numeric expressions.

 

Not usable in CALC mode.   
 

COMPLEX SHORT Complex Variable Creation with 5-Digit Precision
 

COMPLES =SHORET variable list

where the syntax is the same as that used for EEAL, SHOET, and THTEGEERkeywords. That is, each

variable in the variable list has the form numeric variable [+ dim 1 [, dim 2]:], and dim 1 and dim 2 are

real numeric expressions.

  Not usable in CALC mode. 
 

19



20 Section 3: Complex Variables

COMPLES and COMPLEY SHORT both allocate memory for variables and arrays. If the array or

varlable does not already exist, creation occurs upon execution of the TMFLEX or

COMPFLES SHORT statement, and all variables and array elements are initialized to (0,0). The

dimension limits of arrays are evaluated at creation time. The lowest numbered subscript in any

dimension is 0 or 1, depending upon the 0FT I EFASE setting when the array is created.

A COMFLEX statement redimensions existing arrays if they are type C{ifMFLE:, but does not

reinitialize them to (0,0). Similarly, a COMFLE: ZHOFET statement redimensions existing arrays if

they are type COMFLEX SHOET, but does not reinitialize them to (0,0). If an array is being ex-

panded, then all newly-created elements will be initialized. Redimensioning does preserve the sequence

of elements within an array, but not necessarily the elements’ positions within an array. Refer to the

HP-71 Owner’s Manual, section 3, under the topic Declaring Arrays (i1l '

HTEGER), for more information.

  

   The following table indicates the conditions that apply to i ~# and HOET vari-

ables and arrays.

COMPLE® and COMPLER SHOET Numeric Variables

Initial value (0, 0)

Numeric precision

COMPLE= 12 decimal digits

COMPLE: SHORT 5 decimal digits

Exponent range +499

Maximum number of array dimensions 2

Maximum dimension limit 65535

Simple variable memory usage (bytes)

COMPLE® 25.5

COMPLER SHORET 18.5

Array memory usage (bytes)

COMPLE® 16 = (dim 1 — option base + 1)

« (dim 2 — option base + 1) + 9.5

COMFLEX SHORET 9 » (dim 1 — option base + 1)

= (dim 2 — option base + 1) + 9.5
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Complex Number Operations

(,) Real to Complex Conversion
 

XYz

where X and Y are real- or complex-valued numeric expressions.
 

This is the way the HP-71 recognizes a complex number: as an ordered pair of real numbers. Since (X,Y)

is defined as (real part of X, real part of Y), if either X or Y is complex, (X,Y) is not necessarily equivalent

to X + iY.

Can be used in CALC mode.    
REPT Real Part of Complex Number
 

 

where Z is a real- or complex-valued numeric expression.
 

Returns the real part (first component) of Z. If Z is real, EEFT«Z: = Z.

Can be used in CALC mode.    
IMPT Imaginary Part of Complex Number
 

THFTZ:

where Z is a real- or complex-valued numeric expression.
 

Returns the imaginary part (second component) of Z. If Z is real, I1FTiZ: = 0.

Can be used in CALC mode.    
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Other Complex Operations

The Math Pac allows extension of many operations of the HP-71 to the complex case. These include

numeric functions such as = IH, #, etc., as described in section 5. Other extensions are the ability to

assign values to complex variables created by a COMFLEor COMFLE SHIOET statement, execution

of the REZ function when the last result is complex, and so on. In other words, when the Math Pac

module is plugged in, the HP-71 can operate with complex numbers in much the same way that it

operates with real numbers.

An important feature provided by the Math Pac is the extension of IFMAZE format strings to include

complex field specifiers. This extension is described below. Refer to the IFZE keyword entry in the

HP-71 Reference Manual for additional information on format strings.

C(,) Complex Field in an IMAGE String
 

[n]i: < format string

where n is an optional multiplier.
 

Causes a complex expressionina DN I=F or FEIMT output list to be formatted according to the format

string. The real part is formatted first and the imaginary part second. On output, the number is enclosed

in parentheses, with the real and imaginary parts separated by a comma. The comma is sent out when

the second numeric field is encountered.

The format string may not include:

e A carriage control symbol (#).

e String fields.

¢ Imbedded complex format strings.

The format string must include two and only two numeric specifiers, but no special restrictions (other

than those stated above) are placed on non-numeric specifiers.

Not usable in CALC mode.   
Complex expressions in a NI SF USIHG or FEIMT S IHG output list may only be formatted by a

complex field in the IMAGE list. Likewise, real expressions in a DI =F LS IHG or FEINT USIHG

output list may not be formatted by a complex field in the IMHAGE list.
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COMPLEX, COMPLEX SHORT, (,), REPT, IMPT

Input/Result

STROY

  

 

  
 

o E

 

  
 

 

.......

  
 

Insures that none of the variables and arrays in
the following statements exist. If one did exist, it

would not be initialized to (0,0) when the vari-

able or array declaration statement is executed.

Creates a complex variable, a complex vector,
and a complex matrix. The variable = and all ele-
ments of the arrays {1 and '/ are initialized to
(0,0).

Creates a complex short array and a complex
short variable. * and all elements of I are initial-

ized to (0,0).

Assigns the complex number 1 + 5i to Z.

The HP-71 representation of the complex num-
ber 1 + 5i.

Assigns the real number Z to the complex array
element . CE

Displays two array element values.

Complex element . 1+ was assigned
eoat its creatlon Since the real number =

was assigned to a complexelement it becomes
the complex number %, & .

Assigns (1,3) to ', since (1,3) is

  

Displays the complex number *



24 Section 3: Complex Variables

FE= END LINE

 

vl a3

  
 

REFTSY SIMPTOW S
 

  
 

Complex IMAGE Fields

Input/Result

5 STD @ COMPLEX Y
10 Y=(69.14,—12.7)
20 DISP USING 100; Y
30 DISP USING 200; Y,Y
40 DISP USING 300; Y,Y
50 DISP USING 400; Y,Y,Y
60 DISP USING “C(DDD,DDDY’;Y
100 IMAGE C(2D.2D,4D.2D"")

200 IMAGE C(4Z,XXX,4%),/,C(4Z,XXX4%)
300 IMAGE C(B,K"i"),X,C(*,4%.2DE)
400 IMAGE 3C(2(DDD,XX))

RUN

 

   

Displays the value of the most recently executed
or displayed numeric expresion, which in this case
is complex.

Line 100 IHMAGE display.
Line 200 IMAGE display.



 

 

 

 

  

cE.-12.0710 o 12V 8uE-

Bl

voes =124  »i &3 -1

A aDogR -132 2

e, -130   

Section 3: Complex Variables

Line 300 IMAGE display.

Line 400 IMAGE display.

Line 60 display.

25





 

Section 4

Real Scalar Functions

Hyperbolic Functions

 

The functions = IHH, Z0%H, and TAHH (described below) are also defined for complex arguments. See

section 5.

SINH Hyperbolic Sine

STHHOX

where X is a real-valued numeric expression, [X| < 1151.98569368
 

Can be used in CALC mode.  
 

COSH Hyperbolic Cosine
 

COSHOX

where X is a real-valued numeric expression, |X| < 1151.98569368
 

Can be used in CALC mode.  
 

TANH Hyperbolic Tangent
 

where X is a real-valued numeric expression.
 

Can be used in CALC mode.  
 

27
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ASINH Inverse Hyperbolic Sine
 

HD IHHOX

where X is a real-valued numeric expression.
 

Can be used in CALC mode.  
 

ACOSH Inverse Hyperbolic Cosine
 

HCOmHOX

where X is a real-valued numeric expression, X > 1.

 

Can be used in CALC mode.  
 

ATANH Inverse Hyperbolic Tangent
 

where X is a real-valued numeric expression, —1 < X < 1.
 

Can be used in CALC mode.  
 

Other Functions Performing Calculations

GAMMA Gamma Function
 

GHMMACX

where X is a real-valued numeric expression whose range is defined as follows:

X not equal to zero or a negative integer.

—253 < X < 254.1190554375.

Within the range —263 < X < —253, certain values of X cause :HFIMA X to underflow as indicated

by the graph of GHMMHACX .

For X < —263, |IZ~'HH fTECX I:'| < MIHMEEAL, so GHIMMACX* will always underflow here.  
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GAMMA (continued)
 

If X equals a positive integer, GRFMHACX: = FROTOX—15.

In general, GRFMACXT = " (X), defined for X > 0 as

TX) = Lw%—%—wt

and defined for other values of X by analytic continuation.

Can be used in CALC mode. 
 

 
LOG2 Base 2 Logarithm
 

GEOXD

where X is a real-valued numeric expression, X > 0.

 

  
 

. In(X)
LOmEoXs = | X) = _J_0g,(X) @)

Can be used in CALC mode.

SCALE10 Power of Ten Scaling
 

ECALELACX, P

where X is a real-valued numeric expression and P is a real numeric expression that must evaluate to an

integer value.
 

Multiplies X by 10 raised to the power P by adding P to the exponent of X. You will find ZCHLELS

useful in preventing intermediate underflows and overflows in long chain calculations.

Can be used in CALC mode.  
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Integer Round

IROUND Round to Integer
 

TROUHDOX

where X is a real-valued numeric expression.
 

Rounds X to an integer using the current OF T I0OH EOLUMHD setting.

Can be used in CALC mode.  
 

Functions Providing Information

NANS$ Not-a-Number Diagnostic Information
 

FAMEOX:

where X is a real-valued numeric expression.
 

Returns a string representing the error number contained in its iz argument; that is, the number of

the error that caused the H=H to be created. The string returned is of the same form as the number

returned by the EFFH function (refer to the HP-71 Reference Manual). However, the LEX identification

number is 0 for all H=HMs created by Math Pac functions since the Math Pac uses only HP-71 error

messages when creating H zahis.

If X is not a HaH, then HAME X returns a null string.

Not usable in CALC mode.  
 

NEIGHBOR Nearest Machine Number
 

METGHEBOROX, Y

where X and Y are real-valued numeric expressions.
 

Returns the nearest machine-representable number to X in the direction toward Y. This is the machine

successor (or predecessor) of X depending on the relative location of Y. You will find HE I ZHETE useful

when you wish to evaluate a function in a local neighborhood of a given value.

Can be used in CALC mode.  
 



TYPE
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Expression Type and Dimension
 

TYFECX:

where X is a real-, complex-, string-, or array-valued expression.
 

ing table.

 
Returns an integer from 0 through 8 depending on the type and dimension of X as shown in the follow-

Except for string and array arguments, can be used in CALC mode.  
 

Examples

 

X
 

 

Simple real (includes [HTEGER,
ZHOET, and EEHL simple

variables.)

Simple complex (includes OFLE -
and COMFLEX SHOET simple
variables.)

Simple string

IMTEGEERarray

=HOET array

FEHL array

COMPLES SHORET array

COMFLER array

String array  
- e

  
COSH, SINH, ATANH, ACOSH

Input/Result

 

Hyperbolic cosine of a numeric constant.
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mIMHOL -2+

 

  
 

= [(END LINE
STHMHC L - SER O3

  

 

247203028

  
 

 

 

  
 

LOG2, IROUND

Input/Result

 

 

  
 

 

JURDE MEHE END LINE

TEOUHDGZE4 ., 50
 

  
 

ROUMDO POS

{034 T [END LINE  
 

 
 

Hyperbolic sine of a numeric expression.

Inverse hyperbolic tangent of a numeric ex-
pression with a numeric variable.

Inverse hyperbolic cosine of a numeric
expression.

Logarithm (base 2) of a numeric expression.

Rounds to the nearest integer (the nearest even

integer in case of a tie).

Rounds to the nearest larger integer.



NAN$, NEIGHBOR, TYPE

Input/Result

M=TRAFCIVL, 20

eIH O THE * [END LINE

 

bR Imwalid Hrag
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Sets trap value = for Iil.. Refer to the HP-71
Reference Manual for information on the TEHF
function.

Trap value = for 1%/l causes a warning, not an
error, to be given when the invalid operation
SIHCIHF D Is executed.

 

The invalid operation assigns =i (Not-a-

Number) to i, since I% Lhas a trap value of .

The message number associated with the value
M=k identifies thevzl icl Fira message.

 

The nearest machine number to i in the direc-

tion toward .

The nearest machine number to i in the direc-

tion toward - 1 .

 

The nearest machine number to i

direction toward i
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SER DL JOE, m0

E 2.
CEryTYRFECI TRFECA P TYRFECD 2

Bl
 

  
 

o i
}

S ™ i
i
y

La
d

The nearest machine number to

in the direction toward &i.

The numbers returned by 7% FE identify the
type and dimension of each of the expressions.
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Complex Functions and Operations

Many useful functions are defined for complex as well as real arguments. The Math Pac allows you to

use many HP-71 keywords for both complex and real arguments. In addition, this section describes

other keywords defined specifically for complex operations.

All the functions and operations described in this section (except FE =, #EG, DoH.1 and the relational

operators) return a complex-type result.

With the exception of the FEC T function, all complex numbers Z and W are assumed to be in rectan-

gular, not polar, form.

The two-dimensional nature of these functions precludes giving simple bounds for the arguments that

will avoid underflow and overflow messages.

Operators

+ Addition
 

Z+W

where Z and/or W are complex-valued numeric expressions.
 

Can be used in CALC mode.    
— Unary Minus
 

..... Z

where Z is a complex-valued numeric expression.
 

Can be used in CALC mode.    

35
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- Subtraction
 

Z-W

where Z and/or W are complex-valued numeric expressions.
 

 Can be used in CALC mode.  
 

% Multiplication
 

ZiW

where Z and/or W are complex-valued numeric expressions.
 

Can be used in CALC mode.  
 

/ Division
 

Z-W

where Z and/or W are complex-valued numeric expressions, W + (0,0).
 

Can be used in CALC mode.  
 

Exponentiation
 

Z"W

where Z and/or W are complex-valued numeric expressions.
 

Returns the principal value of Z¥ = ¢"'"@),
Can be used in CALC mode.  
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Logarithmic Functions

LOG Natural Logarithm
 

LOGoZy or LHOZ:

where Z is a complex-valued numeric expression, Z # (0,0).
 

If Z = x + iy, and R (cos 6 + i sin ) is the polar representation of Z, then

LOGoZy = InR + 6.

where —n < 6 < = (radian measure).

Can be used in CALC mode.   
 

EXP Exponential
 

ExFoZ

where Z is a complex-valued numeric expression.

 

If Z = x + iy, then

ExFiZy = e 1t= e¥(cosy + isin y).

where y is taken to be radian measure.

Can be used in CALC mode.   
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Trigonometric and Hyperbolic Functions

All trigonometric calculations take their arguments to be in radian measure regardless of the angular

setting.

 

 

  
 

 

 

  
 

 

SIN Sine

SIHCZ:

where Z is a complex-valued numeric expression.

If Z = x + iy, then

ZIMOZ: = sin (x + iy) = sin x cosh y + i cos x sinh y.

Can be used in CALC mode.

COS Cosine

COndZn

where Z is a complex-valued numeric expression.

If Z = x + iy, then

CimaZy = cos (x + jy) = cos x cosh y — i sin x sinh y.

Can be used in CALC mode.

TAN Tangent

THHOZ:

where Z is a complex-valued numeric expression.

 

If Z = x + iy, then

TAMIZY = tan (x + iy) = sin (x + iy) _ sin x cos x + i sinh y cosh y

T cos (x + iy) sinh?y + cos?x

Can be used in CALC mode.  
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Hyperbolic Sine
 

where Z is a complex-valued numeric expression.
 

 
If Z = x + iy, then

SZIMHOZ: = sinh(x + iy) = (—i) sin (—y + ix).

Can be used in CALC mode.  
 

Hyperbolic Cosine

 

where Z is a complex-valued numeric expression.
 

 
If Z = x + iy, then

COEmHOZY = cosh (x + iy) = cos (—y + ix).

Can be used in CALC mode.  
 

TANH Hyperbolic Tangent
 

TEHHHCZ?

where Z is a complex-valued numeric expression.
 

 
If Z = x + iy, then

TEHHOZY = tanh (x + iy) = (—i) tan (—y + ix).

Can be used in CALC mode.  
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Polar/Rectangular Conversions

POLAR Rectangular to Polar Conversion
 

FOLHRCZS

where Z is a real- or complex-valued numeric expression.
 

If Z = x + iy, and R (cos 6 + i sin 6) is the polar representation of Z, then

FOLARCZY = (R, 0)

The angle 60 is expressed in degrees (—180 < # < 180) or radians (—= < f < ) according to the

current angular setting.

Can be used in CALC mode.   
 

RECT Polar to Rectangular Conversion
 

FECTCZ:

where Z is a real- or complex-valued numeric expression.
 

FECT is the only keyword in this section that assumes its argument Z to be in polar form.

If Z = (R,0), where R (cos 6 + i sin #) is the polar representation of the complex number x + iy, then

RECTIZY = x + iy

The angle 6 is taken to be in degrees or radians according to the current angular setting.

Can be used in CALC mode. 
 

General Functions

SQRT Square Root
 

mEETOZY or SHE Ly

where Z is a complex-valued numeric expression.

 

 

Returns the complex principal value of the square root of Z.

Can be used in CALC mode.  
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Unit Vector

 

where Z is a complex-valued numeric expression.

 
Returns the unit vector in the direction of Z; that is,

Z . x+y

—IX"}"I}/‘ - \/X2+y2

oHoZ

where Z = x + iy.

If Z = (0,0), then Zi:HeZ: = Z.  Can be used in CALC mode. 
 

Absolute ValueABS

 
7

 

where Z is a complex-valued numeric expression.

 
If Z = x + iy, then

RESCZy = |x +iy| = VX2 + y?

iSO Zs always returns real type.
  

 Can be used in CALC mode. 
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ARG Argument
 

where Z is a real- or complex-valued numeric expression.
 

If Z = x + iy and R (cos 8 + i sin ) is the polar representation of Z, then

ARGOZY = 0.

The angle 0 is expressed in degrees (—180 < # < 180) or radians (—= < f < =) according to the

current angular setting.

HEGOZY always returns real type.

Can be used in CALC mode.  
 

CONJ Complex Conjugate
 

SRZ

where Z is a real- or complex-valued numeric expression.
 

If Z = x + iy, then

COHACZE = x — dy

 

1.10Z always returns the same type (real or complex) as Z.

Can be used in CALC mode.  
 

PROJ Projective Infinity
 

FROJCZS

where Z is a real- or complex-valued numeric expression.
 

If Z = x + iy, then

FROIZY =27 if AESCZy #+ Ind

or

FROICZy = Inf + 00 if HESZOZy = Inf.

Can be used in CALC mode.  
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Relational Operators

=, <, >, #? Equal or Unordered
 

Z comparison operator W

where Z and/or W are complex-valued numeric expressions.
 

When at least one of two expressions is complex valued, only two comparison results are possible:

either the expressions are equal or they are unordered (or unequal, which is equivalent to unordered in

this case).

Suppose Z = x + iyand W = u + iv.

If x = u and y = v, then any comparison that contains = is true (that is, evaluates to 1).

If x # u or y # v, then any comparison that contains # or *' is true.

Any comparison that contains - or : without ' or # produces an exception.

Can be used in CALC mode.  
 

Examples

+’ T *! /

Input/Result

STD @ COMFLEX Z.W
Z=id5 B W=o-3F,20
<+ END LINE

 

$1, 7
   
B+l +]
 

i i  
 

2
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(L ErECSB

 

-
O el A

 
 

cl,23-02, 4[ENDLINE

 

 
 

ZoUEG

 

R T
e - o

 
 

~, LOG, EXP

Input/Result

(33,4308, %3(ENDLINE

 

 

D . [
LA A STR

 
 

eGOlEu
 

FE AP R 5Ai o
o

i roc
t!

i
i
l  
 

 

-1 1312, 2.47170

 
 

 

 

 



 

SIN, TAN, COSH

Input/Result

i
toiZlL 2

 

 

........

  
 

 

 

 

 

  
 

ABS, ARG, CONJ, PROJ

Input/Result

  

    

 

 

  
 

 

% [ENDLINE]

 

  
 

        MREGOOE, ~F 50 (ENDLINE]
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The fourth quadrant angle # measured in radi-
ans, which is the argument of the complex num-

ber 3 — T7i.
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STD @ COMJOOL, 200
 

   

 

   

 

01, -2

FROJCO=-Inf, ~Intors

CInf, B0

FROJOOL, 250

ol2

   

POLAR, RECT, SGN

Input/Result

BT
DEGREES

FOLARC-13

 

   
FIsd
FOLARCCE 400

 

CoLEEEeD3, 128l

   
FADIAHS

RECTOO-5, FIodid

Rectangular to polar conversion for a real
argument.

The absolute value (r) is 1 and the argument (0)

is 1 degrees.

Rectangular to polar conversion for a complex
argument.

The absolute value (r) is & . &£ and the argu-
ment (0) is 573. 1 281 degrees.

Polar to rectangular conversion for a complex
argument. The absolute value (r) is 5 and the
argument (0) is —3n/4 radians. Since the R

given is negative, this is the reflection of the polar
point (5,PI1/4) through the origin.
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CSETE The real part (x) and the imaginary part (y) are
both -3, 355,   

 

K
] ) i .} fo
te R . K
] .} f
—

   

SQRT, LOG

Note the behavior of ZZFET and L 25 at the branch cut. Refer to the discussion of branches under the

“Additional Information” topic below.

Input/Result

FIMd B SQETCOL, 200
 

L EVER, B, VB

  
SORETOO~168, 830
 

R EBEE, 4, BaEE   
SEETOO-16, -8 33 [ENDLINE

 

CELBEEE, -4 BREE

   
LOGOo-ExF oSl B35 [ENDLINE

 

chLEgeR, 3, 141e

   
LOGOO~ERF OS5y, ~83 3 [ENDLINE

 

Ln L EgEe -3 14180

   



48 Section 5: Complex Functions and Operations

Additional Information

In general, the inverse of a function f(z)—denoted f~1(z)—has more than one value for any argument z.

However, the Math Pac calculates the single principal value, which lies in the part of the range defined

as the principal branch of the inverse function f~1(2).

The illustrations that follow show the principal branches that the Math Pac uses for =0iFE Tand L. 1.

The left-hand graph in each figure represents the cut domain of the inverse function; the right-hand

graph shows the range of the principal branch. The blue and the black lines in the left-hand graph are

mapped, under the inverse function, to the corresponding blue and black lines in the right-hand graph.

SQRT

Vz = V\r efor —r <9 <

o

 

  

N 2 I s
T
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LOG

LN(z) = Inr+iffor —n <0 <

 .

 

'
| |

| |

| !

I |

0 g l { 0o
| |

| |

| |

l |

I  ST //////////lt/////(1IITNITTTTTT

z w = LN(2)

The principal branch of w? is derived from that of the log function and the equation:

w?* = exp (z LN w),

where LN denotes the single-valued function.

To determine all values of the inverse function, use the expressions below to derive these values from

the principal values calculated by the Math Pac. In these expressions, &k = 0, +1, +2, and so on, and

uppercase letters denote single-valued functions.

\/z = £SQR(2) In(z) = LN(z2) + 2nik w? = wre?mikz
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Array Input and Output

The keywords in this section enable you to:

¢ Fill an array with values.

¢ Display or print values already in an array.

Assignments

= Simple Assignment

 

MHT A=B

where A and B are both vectors or both matrices.

Array B may be either real or complex type.

If B is complex, then A must be complex.

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to

zero.
 

Implicitly redimensions A to be the same size as B, and assigns the value of every element in B to the

corresponding element in A.

To halt operation, press twice.

Not usable in CALC mode.   

51
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= () Numeric Expression Assignment

 

FHT A=oX

where X is either a real- or complex-valued numeric expression.

If X is complex, then array A must be complex type.

If X is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to

zero.
 

Assigns X to all elements of A. Array A is not redimensioned.

To halt operation, press twice.

Not usable in CALC mode.  
 

CON Constant Array
 

AT A=

 

X [LY] #]

where A is either a real- or complex-type array, and the optional redimensioning subscripts X and Y are

real-valued numeric expressions. X and Y are rounded to the nearest integer just as are subscripts in

111t statements.

 

 

Assigns the real value one to all elements of A. If redimensioning subscript(s) are provided, A is explicitly

redimensioned according to the number and value of those subcripts.

Not usable in CALC mode.  
 

IDN Identity Matrix
 

MAT A=TOH [X, Y]

where A is a real- or complex-type array and where the optional redimensioning subscripts X and Y are

real-valued numeric expressions with the same rounded integer value. X and Y are rounded to the

nearest integer just as are subscripts in i Istatements. If X and Y are not provided, A must be a

square matrix (it must have two equal subscripts).

 

If no redimensioning subscripts X and Y are provided, then A will become an identity matrix. If

redimensioning subscripts X and Y are provided, then A is explicitly redimensioned to a square matrix

with the upper bound of each subscript equal to the rounded integer value of X and Y and then assigned

the values of an identity matrix.

Not usable in CALC mode.  
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ZER Zero Array

 

 

where A is either a real- or complex-type array, and the optional redimensioning subscripts X and Y are

real-valued numeric expressions. X and Y are rounded to the nearest integer just as are subscripts in

Li1statements.

 

 

Assigns zero to all elements of A. If redimensioning subscript(s) are provided, A is explicitly

redimensioned according to the number and value of those subcripts.

Not usable in CALC mode.  
 

Array Input

INPUT Assign Values from Keyboard Input
 

MAT THFUT A [, B]..

where A (and B) are real- or complex-type array(s).

 

 

Assigns real or complex numbers to the specified array(s). Complex values cannot be assigned to real

array elements. AT ITHFLIT prompts with the name of an array element and then accepts a numeric

expression from the keyboard, evaluates that expression, and assigns the result as the value of that

element. For each array, AT IHFLIT gives prompts for the elements in row order (from left to right in

each row, from the first row to the last). If there is more than one array, they are handled in the order

specified.

When the name of an array element is displayed, enterits value by typing in the numeric expression and

then pressing LINE]. You can enter values for several consecutive elements by separating the val-
ues with commas. When an array is filled, the remaining values are automatically entered into the next

array. After you press LINE ], the computer will display the name of the next element (if any) to be
assigned a value.  
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INPUT (continued)
 

In other respects, MAT IHFLUT acts as does IHFLIT. For instance:

®* The Command Stack is always active during AT IHFLUT execution. You can move up and down

in the Command Stack with (A], (v], (9] (X], and (9] [¥] without first pressing (9] [CMDS].

® You can use a direct execute user-defined key to provide the response to the MHAT IHFUT

prompt.

* The key sequence and the (9] key sequence are active during MAT IHFUT
execution.

® If you are making a response to a MAT IHFLUT statement, but have not pressed LINE],
pressing once clears the typed entry, allowing another entry to be typed. If you press
twice, the HP-71 clears the entry, pauses the program, and clears the display.

Not usable in CALC mode.   
Array Output

To halt the operation of any of the keywords described below you need press only once.

DISP Display in Standard Format

where A (and B) are real- or complex-type array(s).

 

 

Displays the values of the elements of the specified arrays. The values are displayed in row order. Each

row begins on a new line; a blank line is displayed between the last row of an array and the first row of

the next array.

The choice of terminator—comma or semicolon—determines the spacing between the elements of an

array.

Terminator Spacing Between Elements

Close: Elements are separated by two spaces. A minus sign, if present,

occupies one of the two spaces.

Wide: Elements are placed in 21-column fields.

If the last array specified doesn’t have a terminator, the array will be displayed with wide spacing be-

tween elements.

Not usable in CALC mode.   
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PRINT Print in Standard Format

MAT FRIMT A [ B:I...[ " ]

where A (and B) are real- or complex-type array(s).

 

 

Prints the values of the specified arrays. Operation is identical to M1AT ['IZF, except that the output is

sent to the FEIMTEFE 1= device, which requires HP-IL. If no FEIHMTEFR I%Zdevice is present, out-

put is sent to the display, or to the HP-IL DI =FLAY I% device. Also, you can override the CR/LF

normally generated by MAT FEIHT with the EHOL IHE statement. EHIL IHE is described in the

HP-71 Reference Manual and in section 13 of the HP-71 Owner’s Manual.

Not usable in CALC mode.   
DISP USING Display Using Custom Format

format string :

line number ;

where A (and B) are real- or complex-type array(s).

 

[

 

Displays the values of the elements of the specified arrays in a format determined by the format string or

by the specified I~ :E statement identified by the line number. (Refer to the HP-71 Reference Manual

for information about & I =F Lz IHEG, format strings, IFHGE statements, and their results).

If any array is complex type, the corresponding field specifier in the format string or IMHGE statement

must be a complex field specifier. Refer to the description of the complex field specifier (=, *) in

section 3, page 22.

The values are displayed in row order. Each row begins on a new line; a blank line is displayed between

the last row of an array and the first row of the next array.

The terminators between the arrays—commas or semicolons—serve only to separate the arrays and

have no effect on the display format.

LS THG [line

number] statement; otherwise, the line number will not be correctly updated.

Not usable in CALC mode.    
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PRINT USING Print Using Custom Format

format string :
MET FPEIMT USTHG P A B|..

line number ;

where A (and B) are real- or complex-type array(s).

 

 

Operation is identical to FHT 1= T
FOSIHEG, except that the output is sent to the | BoOLE

device which requires HPIL.If no FEIMTEE I% deviceis present, output is sent to thedlsp|ay, or to

the HP-IL DIZFLAY I% device. Also, you can override the CR/LF normally generated by

MAT FEINT USIHG with the EHDL IHE statement. BRIIHE is described in the HP-71 Ref-

erence Manual and in section 13 of the HP-71 Owner’s Manual.

 

Not usable in CALC mode.  
 

Examples

With the optional delay of & or larger (infinite line replacement delay), you press (or any

other key) to display the next line. So you can control how long each array row is displayed.

CON, IDN, ZER, DISP

 

Input/Result

OFTIOW BASE 1 @ STO

OIM ACE, 20, BOL B is dimensioned to be a one element vector.

COMPLEX CO18, 2853

MAT A=I10H

MAT DISF A Displays the identity matrix A with close spacing
between the elements.

1 k1 &

,
_
.
,
_
.

ve
ed
e’

 P
en

el
e’

— T
e —
‘
.
.
J
.

 
 



MAT B=ZERCZ, 20

MAT DISF B
 

   

 

   

BB
Boo

MAT C=C0M03, 30

MAT DIsF o

L 5 clL e clL B

Cl.Ex 1, @y 01,6
clL B cl, el o1,

INPUT

Input/Result

OFTION BRSE 1

DIM FAO2, 30, Bo3o

OFTIOH BEASE @

COMPLE= Co2, 10

MAT IHFUT ALE,C
 

   
1,23, 4
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Redimensions B from a one-element vector to a

2 X 2 matrix and assigns to it a zero array.

Redimensions C and assigns to it a constant
array.

Declares C to be a 3 X 2 complex array (remem-
ber we are in JFTIOH EARSE &),

Prompts for the first element’s value.

More than one value can be entered.

Prompts for the fifth element’s value.



58 Section 6: Array Input and Output

BT Enters values for the last two
elements of A and the first element of B.

n .

 

   
Enters values for the last two elements of B and

the first element of the complex array C.

i
t

L o
t

i
t

m Z O C Z m

 

  
 

 

  
 

 

SR, 1T B

1,2, 08,80, 07,80 Enters values for the next four elements of C.

CozZ 1l B

HF H Enters “not a number” for the last element of C.

STO @ MAT DISF A:E:C; Displays each array in sequence, with a blank
line between each.

 

- ee
de
ce
s

ii
l

- = o ]    



DISP USING

Input/Result

10 OPTION BASE 1 @ INTEGER A(5,5)

15 WIDTH 22 @ DELAY 8

20 COMPLEX SHORT Z(3,4)

25 MAT A=IDN @ MAT Z=((4,5))

30 MAT DISP USING ‘DDD,ZZZ’;AA

35 MAT DISP USING ‘#,D’;A @ DISP 4

40 MAT DISP USING 100;Z
45 DELAY 1
100 IMAGE C(K,2D,"1")
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Causes the output to appear in the display as
shown below. After each display, press
to produce next display.

Assigns the identity matrix to A and the
=complex number 4 .5to every element of Z.

This format string consists of two field
specifiers, D00 and ZZZ. Each element of A is
displayed according to these field specifiers used
repeatedly until all elements have been displayed.
The final element of A is displayed according to
OO0, Then a blank line is displayed, followed by
another display of all elements of A. The field
specifier £ZZ (the next specifier in the format
string) is used to format the display of the first
element during this second display of A.

The # symbol supresses the automatic end-of-
line sequence (CR/LF) following the display of A.
This causes # to be displayed on the same line
as the last element of A.

The IMAGE statement must use the &« . * form
to format the display of a complex array. The
parentheses must contain two numeric field
specifiers.
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The ' format symbol replaces leading zeros with
blanks. Since A is an identity matrix, element
(1,1) is 1. Therefore the two leading zeros are

replaced with blanks, and element (1,1) is dis-

played as 1. The Z format symbol fills each
leading zero with &, so element (1,2) is displayed
as HEE, The remaining elements, in row order,
are displayed according to the format string
oo, ZZZ used repeatedly.

After the last (fifth) element of the first row is

displayed, an end-of-line sequence (carriage re-
turn, line feed) is sent, causing the display of
element (2,1) to start a new line.

The field specifier DL formats the display of
the last element of A, causing the display of 1.

Following the display of the last element of the
last row, a second end-of-line sequence is sent,

causing the display of a blank line between the
two displays of array A.

Since the variable list following the format
string in line 30 is H . A, array A is displayed
twice. This time, element (1,1) is displayed

according to the field specifier &=, since [
was used just above for the last element of A
during the first display of this array.

Since this is the display of the last array in the
variable list of line 30, no blank line is displayed,
even though this display line ends with the last
element of the last row of A.
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Since the portion of the format string of line 35
that controls character display consists only of [I,
the elements of each row of A are displayed with
no extra characters or spaces.

The # symbol in the format string of line 35
supresses the end-of-line sequence normally sent
after the display of the final row of the last array
in the variable list.

The symbol k. in the format string of line 100
specifies a compact field, resulting in the display
of no leading or trailing blanks. This symbol
controls the display format of the real part of
each (identical) element of Z. The display of the
imaginary part of each element is controlled by
Z[1. Since the imaginary part, =, consists of only
one digit, a leading blank is displayed. The com-
plex image specification ¢ * causes the display

of the parentheses and comma.

The display of each row is ended with an end-of-
line sequence, so each new row starts a new dis-
play line.





Section 7

Array Arithmetic

The keywords in this section perform arithmetic operations on arrays. The dimensions of the operand

arrays must be compatible with the particular operation, as discussed below.

e For addition and subtraction, the operand arrays must both be vectors or both be matrices, and

they must have the same number of rows and the same number of columns. In this case we will say

that the arrays are conformable for addition.

* For multiplication of two arrays, the first array must be a matrix, while the second array can be a

matrix or a vector. The number of columns of the first array must be equal to the number of rows

of the second array. If these conditions are satisfied, we will say that the arrays are conformable for

multiplication.

¢ For transpose multiplication of two arrays, the first array must be a matrix, while the second array

can be a matrix or a vector. The number of rows of the first array must be equal to the number of

rows of the second array. If these conditions are satisfied, we will say that the arrays are con-

formable for transpose multiplication.

Operators

= — Negation
 

T A=-B

where A and B are both vectors or both matrices.

Array B may be either real or complex type.

If B is complex, then A must be complex.

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to

zero.
 

Implicitly redimensions A to be the same size as B and assigns to each element of A the negative of the

corresponding element of B.

To halt operation, press twice.

Not usable in CALC mode.  
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+ Addition

 

MAT A=B+C

where A, B, and C are all vectors or all matrices, and B and C are conformable for addition.

Arrays B and C may be either real or complex type.

If either B or C is complex, then A must be complex.

If both B and C are real, then A may be real or complex; if complex, all imaginary parts of all elements in

A are set to zero.
 

Implicitly redimensions A to be the same size as B and C, and assigns to each element of A the sum of

the values of the corresponding elements of B and C.

To halt operation, press twice.

Not usable in CALC mode.  
 

Subtraction
 

MAT A=B-C

where A, B, and C are all vectors or all matrices, and B and C are conformable for addition.

Arrays B and C may be either real or complex type.

If either B or C is complex, then A must be complex.

If both B and C are real, then A may be real or complex; if complex, all imaginary parts of all elements in

A are set to zero.
 

Implicitly redimensions A to be the same size as B and C, and assigns to each element of A the dif-

ference of the values of the corresponding elements of B and C.

To halt operation, press twice.

Not usable in CALC mode.  
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()% Multiplication by a Scalar
 

MAT A=1X1#B

where A and B are both vectors or both matrices and X is a numeric expression.

Array B may be either real or complex type and expression X may be either real or complex valued.

If either B or X is complex, then A must be complex.

If both B and X are real, then A may be real or complex; if complex, all imaginary parts of all elements in

A are set to zero.
 

Implicitly redimensions A to be the same size as B and assigns to each element of A the product of the

value of X and the value of the corresponding element of B.

To halt operation, press twice.

Not usable in CALC mode.   
X Matrix Multiplication
 

 

where B is a matrix, A and C are both vectors or both matrices, and B and C are conformable for

multiplication.

Arrays B and C may be either real or complex type.

If either B or C is complex, then A must be complex.

If both B and C are real, then A may be real or complex; if complex, all imaginary parts of all elements in

A are set to zero.
 

Implicitly redimensions A to have the same number of rows as B and the same number of columns as C.

The values of the elements of A are determined by the usual rules of matrix multiplication.

To halt operation, press twice.

Not usable in CALC mode.   
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TRN * Transpose Multiplication

 

MAT A= TEHIBX#C

where B is a matrix, A and C are both vectors or both matrices, and B and C are conformable for

transpose multiplication.

Arrays B and C may be either real or complex type.

If either B or C is complex, then A must be complex.

If both B and C are real, then A may be real or complex; if complex, all imaginary parts of all elements in

A are set to zero.
 

Implicitly redimensions A to have the same number of rows as the number of columns in B and the same

number of columns as C.

The result of this operation is the same as if the transpose of B (or the conjugate transpose of B, if B is

complex type) was computed and then post-multiplied by C. However, the Math Pac uses special mul-

tiplication rules so that B does not have to be explicitly transposed prior to the multiplication.

To halt operation, press twice.

Not usable in CALC mode.  
 

Examples

+, X%, ()%, TRN *

Input/Result

OFTIOH BARASE 1 = =TO

FEAL A2, 23, BO3, 40

COMPLE: SHORT CoZ, 1y, 0020, ECSs

MAT A=I0OHCZ, 20

MAT C=003, 43 0 %A

MAT DIsF O

 

  
 

C is redimensioned to 2 X 2 and every element
of C is assigned the product of the complex num-
ber %, 4> and the corresponding
element of A.

The array C.



 

MAT A=COM ® MAT C=C+H (ENDLINE]

MAT DISF O

g clLED

L T g

   
MAT EBE=M*A

MAT DOI=F B

 

[
[

o

   
MAT IHFUT O
 

Lot

   
LR,4

MAT E=TREHCCHED

MAT OISE
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i

fl
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C holds the array sum of A and C. No
redimensioning is necessary since C is already the
correct size.

The array C.

B is redimensioned to 2 X 2 to hold the matrix

product A*A.

The array B.

E is redimensioned to be a 2 element vector to
hold the product of the conjugate transpose of C
and the vector D.

The array E.





Section 8

Scalar-Valued Array Functions

The keywords in this section are functions that use real- or complex-type arrays as arguments (except

[IET uses only real arrays) and give a real number as a value (except [T can give either a real or

complex number). Like other HP-71 functions, they may be used alone or in combination with other

functions to produce numeric expressions.

Determinant Functions

DET Determinant
 

where A is a square real-type matrix.
 

Returns the determinant of the matrix A.

To halt operation, press twice.

Not usable in CALC mode.  
 

DETL Determinant of Last Matrix
 

DETL or DET

 

Returns the determinant of the last real-type matrix that was:

e Inverted ina MAT . . . IH. statement (described in section 9).

e Used as the first argument of a MAT . . . 5%'% statement (described in section 9).

DETL retains its value (even if the HP-71 is turned off) until another MHT . . . TH' (with a real type

argument) or a MAT . . . =%% (with a real type first argument) is executed.

Not usable in CALC mode.  
 

69



70 Section 8: Scalar Valued Array Functions

Array Norms

CNORM One-Norm (Column Norm)
 

CROEMOAS

where A is a real- or complex-type array.
 

Returns the maximum value (over all columns of A) of the sums of the absolute values of all elements in

a column. Refer to the keyword description for HE =, page 41 in section 5, for the definition of the

absolute value of a complex number.

To halt operation, press twice.

Not usable in CALC mode.    
RNORM Infinity Norm (Row Norm)
 

EHORMCAS

where A is a real- or complex-type array.
 

Returns the maximum value (over all rows of A) of the sums of the absolute values of all elements in a

row. Refer to the keyword description for HE =, page 41 in section 5, for the definition of the absolute

value of a complex number.

To halt operation, press twice.

Not usable in CALC mode.    
FNORM Frobenius (Euclidean) Norm
 

 

MOA

where A is a real- or complex-type array.
 

Returns the square root of the sum of the squares of the absolute values of all elements of A. Refer to

the keyword description for HE=, page 41 in section 5, for the definition of the absolute value of a

complex number.

To halt operation, press twice.

Not usable in CALC mode.   



Section 8: Scalar Valued Array Functions 71

Inner Product

DOT Inner (Dot) Product
 

where X and Y are real- or complex-type vectors with the same number of elements.
 

Returns XeY, the inner product of X and Y. If both X and Y are real, then the result is real. If either X or Y

is complex, then the result is complex.

If X is a complex vector, then the complex conjugates of the elements of X are used to compute the

inner product.

To halt operation, press twice.

Not usable in CALC mode.   
 

Subscript Bounds

The following functions are useful in keeping track of array option base, number of dimensions, and

size in each dimension, since these quantities may change when variables are dimensioned and

redimensioned.

UBND Subscript Upper Bound
 

  EALNG or LUEDUHDCA, N

where A is a real- or complex-type array and N is a numeric expression whose rounded integer value is 1

or 2.
 

 

Returns the upper bound of the Nth (first or second) subscript of A. If A is a vector, LiE

—1.

Not usable in CALC mode.    
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LBND Subscript Lower Bound

 

LEMOCA Nor LEOUMDOCA, N2

or 2.

where A is a real- or complex-type array and N is a numeric expression whose rounded integer value is 1

 

LEMOOAR, 2 = —1.

Not usable in CALC mode. 
Returns the OFTIOHM EARZE setting in effect when A was last dimensioned. If A is a vector,

 
 

Examples

DET, DOT

Input/Result

OFTION BASE 1

OIM Acla, 1a:

MAT A=I0H

MAT FA=:-Z3%A

DETCAS
 

  
 

MAT A=I0HCE, 33

MAT FA=¢23%A (ENDLINE]

MAT A=THWCAD

DET LINE]

Assigns —Z to each diagonal element; all other
elements remain zero.

Displays the determinant of A.

Assigns = to each diagonal element; all other
elements remain zero.

Computes the inverse of A.

Displays the determinant of the last real matrix
inverted in a MAT . . . IHY statement or used as
the first argument of a MHAT . . . 5%% statement.

Refer to pages 77-79 in section 9 for definitions of
IHY and =% E.



 

i

   
ODIM AC1@,EBC183 (ENDLINE]

MAT A=0Z3

MAT B=COH

OOTCR, B
 

=

   
COMPLES CO1@3

MAT C=q01, 20

DOTOC, Al
 

(I, —40
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Assigns = to each element of A.

Assigns one to each element of B.

Displays the inner product of A and B.

Assigns the complex number 7 1.z to each
element of C.

Displays the inner product (a complex number)
of C and A.

RNORM, CNORM, FNORM, UBND, LBND

Input/Result

OFTION EBASE 1

DIM ACE, 50

MAT A=C0H

FHORMA
 

  
 

Assigns 1 to each element of A.

Displays the row norm of A.
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COMPLE® SHORT  AOZ, 40

MAT THMFUT A
 

  
 

 

   

 

  
 

 

Hol, 1% @

clLE, 03, d 05, e, 0V, B, 05,180

cll iEy, 013 140,015, 10

FHOREMCA Displays the row norm of A.

YELOVERLE0a1 Y

CHORMOA S Displays the column norm of A.

2o oelEnhEnlzs

FHORMOA S Displays the Frobenius norm of A.

AE EeyEloR211Y  
 

COMPLER BOZED

DEHDOOA, Lo UBHDOAR, 20 First, displays the upper bound of A’s first sub-
script, then displays the upper bound of A’s sec-
ond subscript.

 

   
HEHDCE, 10 UBHDCE, 20 First, displays the upper bound of B’s first sub-

script, then attempts to display the upper bound
of B’s second subscript. Since B has only one
subscript, UEHDOCE , 2+ returns — 1.
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2 -1

 
EASE setting when A Displays the OFTIOHLEMDCA, 13

was last dimensioned.

 

  
 





 

Section 9

Inverse, Transpose and System Solution

Operations

INV Matrix Inverse
 

MAT A=IHVB

where A is a matrix and B is a square matrix.

Array B may be either real or complex type.

If B is complex, then A must be complex.

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to

zero.
 

Implicitly redimensions A to be the same size as B and assigns to A the value of the matrix inverse of B.

To halt operation, press twice.

Not usable in CALC mode.   
TRN Matrix Transpose or Matrix Conjugate Transpose
 

MET A=TEH{B?

where A and B are matrices.

Array B may be either real or complex type.

If B is complex, then A must be complex.

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to

zero.
 

Implicitly redimensions A to be the same size as the matrix transpose of B. If B is real, assigns to A the

value of the matrix transpose of B. If B is complex, assigns to A the values of the matrix conjugate

transpose of B.

To halt operation, press twice.

Not usable in CALC mode.  
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Solving a System of Equations

The Math Pac provides a quick and accurate way to solve a system of linear equations involving real or

complex coefficients. The first step in using this capability is to translate the system of equations into a

triple of arrays: the result array, the coefficient array, and the constant array. The result array corre-

sponds to the variables in the equations; the coefficient array holds the values of the coefficients of the

variables; the constant array holds the values of the constants in the equations. For example, if you

wanted to solve the system of equations

5x + 3y + 2z = 4

x +y + 3z =14

6x + 4y + 92 = 1

then the result array would correspond to the array

the coefficient array would be

and the constant array would be

14

If we denote the result array by X, the coefficient array by A, and the constant array by B, then the

system of equations can be written in matrix notation as AX=B. This is the form assumed by the =% %

keyword.
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SYS System Solution
 

where A is a square matrix, X and B are both vectors or both matrices, and A and B are conformable for

multiplication. Refer to the beginning of section 7, page 63, for a definition of “conformable for

multiplication.”

Arrays A and B may be either real or complex type.

If either A or B is complex, then X must be complex.

If both A and B are real, then X may be real or complex; if complex, all imaginary parts of all elements in

X are set to zero.
 

Implicitly redimensions X to be the same size as B and assigns to X the computed solution to the matrix

equation AX=B.

To halt operation, press twice.

Not usable in CALC mode   
Examples

INV, TRN

Input/Result

OFTION EBRSE 1

OIM AOE, 30

MAT FA=10OH

MAT A=< 1A Assigns = to all diagonal elements of A. All other
elements are zero.

MAT H=THYA

MAT DISF A Displays the inverse of A.
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C=C0H Assigns one to all elements of C.

 

  
 

O=TRHCD Computes the transpose of C and redimensions
D to be a 2 X 3 matrix.

 

  
 

OIM oz, 20

MAT

MAT DISF O Displays C

1 1

1

1 1

OIm Doz, 2o

MAT

MAT DISF D Displays the transpose of C.

1 1 1

1 1 1

COMPLE: SHORT DoZ2, 33,003,320

FAT D=o0l, 20

MAT DISF D
 

 

o r'
x:

l
r'

l_
:l

 
 

MAT O=TREHIDO:>

MAT DISF O
 

 fo
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Assigns the complex value © 1,2 to all ele-
ments of D.

3 The complex matrix D.

Redimensions D to 3 X 2 and assigns D the
value of its conjugate transpose.

o The conjugate transpose of D.



MAT IHFUT = (ENDLINE]
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1.01,2%,02,18 ([ENDLINE

 

   
. =5, 1473 ENDLINE

 

   
C1.1x, 0@, 5, 08, 2850

 

MAT DISF O

el e pl, 2 ce, e

D R AA

Ce-D 1

el1 R, DD

C-E ZED 

The complex matrix C.

  
AT D=THW OO ENDLINE

MAT DISF O

Redimensions D to 3 X 3 and assigns to D the
value of the matrix inverse of C.

 

16,13 (=260
(=3, =E0
(E, =30
T LRSE-11,80

(=3, =E0
C-ELED O=1,-E0
cl.-1.1esz2E-115%

The inverse of the complex matrix C is the
matrix

10+1 —2461 —3—21

9—31 81 —3—21

—2421 —1—21 1   
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SYS

To solve the system of equations given on page 78, namely,

we could use the following keystrokes.

  

BERASE 1 B =TD

Br LBOEN L ACE, 30

 

  
 

g

 

  
 

L6, 4,3

UL B    
 

 

   

5x + 3y + 2z = 4

x +y + 3z = 14

6x + 4y + 9z = 1

Assigns values to the elements of B.

Assigns values to the elements of A.

Displays the values of the result array elements.

I

N
R
o
R

Although in typical applications the result array X and constant array B are each one column arrays,

=% % does not restrict these arrays to only one column. This allows you, for example, to simultaneously

solve any number of different systems, limited only by memory, of n equations in n unknowns, provided

that the coefficients in each systems of equations are identical. The following example illustrates this

use of &% &,
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Example. Your company’s Publications Manager wants to determine the cost factors used by her two

outside printers. She knows that each printer estimates jobs based on the number of pages and the

number of photographs, plus a fixed setup charge. Given the three estimates from each printer shown

below, write a program that calculates their cost per page, cost per photograph, and setup charge.

 

 

 

Job Number of Number of Total Cost

Pages Photographs Printer A Printer B

1 273 35 $5835.00 $7362.50
2 150 8 $3240.00 $4085.00
3 124 19 $2775.00 $3517.50       

We need to solve the following systemof equations for two sets of cost estimates.

273x; + 35x9 + x3 = costy

150x; + 8xy + x3 = costy

124x; + 19x9 + x3 = costg

These equations can be represented in matrix notation as AX = B, where:

» A is the coefficient matrix, having the number of pages in its first column, the number of photo-

graphs in its second column, and the number of setup charges (one for each job) in its third col-

umn. Each row contains this data for a different job.

¢ B is the constant array. Each row contains cost estimates for one job from the two printers; each

column contains one printer’s cost estimates for the three jobs.

e X is the result array, having the unknown cost factors x;, x9, and x5 in its rows. x; is the cost per

page, x, is the cost per photograph, and x5 is the setup charge. Since we are solving two systems,

the constant array is a two-column matrix. So the result array must also be a matrix; that is, it

should be declared with two dimensions. (Its size, if not the same size as that of the constant array

B, will automatically be redimensioned to the size of B when the %7 %statement is executed). Each

column will contain the cost factors for one printer.
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10 OPTION BASE 1
20 DIM A(3,3),X(3,2),B(3,2)
30 DATA 273,35,1
40 DATA 150,8,1
50 DATA 124,19,1
60 DATA 5835,7362.5
70 DATA 3240,4085
80 DATA 2775,3517.5
90 READ A,B
100 MAT X=SYS(A,B)
110 DISP USING ‘9A,3X,9A,/’;

‘PRINTER A’,'PRINTER B’

120 MAT DISP USING ‘X3D.2D,6X,

3D.2D";X

 

  
 

Specifications for job 1.

Specifications for job 2.

Specifications for job 3.

Estimates for job 1.

Estimates for job 2.

Estimates for job 3.

RUN

FEIMTER H FEIMTER

"""YL SEL AR Cost per page.

""" £ 7LoEa Cost per photograph.

SRGINRLES 7S a8 Setup charge.

Example. This example demonstrates the usefulness of =%% in the solution of circuit analysis prob-

lems. In the circuit shown below, the impedances of the components are indicated in complex form. We

will determine the complex representation of the currents I; and Is.
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This system can be represented by the complex matrix equation

1042000  —200i ||1I, 5

—200i  (200—30)i L, 0

or AX = B

Here is a program that solves for I; and Is.

10 OPTION BASE 1 @ STD

20 COMPLEX SHORT A(2,2),X(2) If either A or B is complex, X must be complex.

30 DIM B(2)

40 MAT INPUT AB

50 MAT X=SYS(A,B)

60 MAT DISP X

RUN

 

  
 

ot o
t

p
—

i
t

. e
t i Assigns values to the elements of A..
.
L
‘

— x5j i i  
 

  
 

Assigns values to the elements of B.
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Additional Information

The Math Pac operations DET A, MAT B=IHV <A, and MAT X=ZvZ:¢A,.Bx, where A is a real-

type square matrix, all use the LU decomposition of A as an intermediary step. The method used to

generate the LU decomposition of A is a compact Crout factorization with partial pivoting and ex-

tended precision arithmetic. The LU decomposition of A can be represented by the equation PA = LU,

where

e L is a lower triangular matrix—it has values of zero for all elements above the diagonal.

¢ U is an upper triangular martix—it has values of zero for all elements below the diagonal—with

values of one for all elements on the diagonal.

¢ P is a permutation matrix representing the row interchanges in the matrix A resulting from partial

pivoting.

The factorization PA = LU is valid for any non-singular matrix A. However, special attention is paid to

matrices A that are singular or “machine singular.” In this case, the LU decomposition is changed by an

amount that is usually small in comparison with roundoff error. In the absence of underflow or over-

flow, the resulting LU decomposition of A will be close, in norm, to the exact LU decomposition of

another matrix A’, where A’ is close in norm to A.

Consider the matrix shown below.

1 3 0

0 0 1

666666666667 2 0

Although this matrix is very nearly singular, it can be successfully inverted using the I/ keyword:

Input/Result

GFTIOH BRSE 1

 

 

  
 

1.3,8,.8,.8,1 ENDLINE
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7.2 .58 [ENDLINE A now represents the matrix given above.

E=IHUA [ENDLINE B is now the computed inverse of A.

E=EFH [END LINE

-
i 1

i m pd O ~ Z m Displays the identity matrix B, which is the
product of the matrix A and its computed inverse.

 

   
The %%% keyword solves the matrix equation AX = B for X in several stages. First, the LU decompo-

sition of A is found to give PA = LU.

Using PA = LU, the equivalent problem is to solve LUX = PB for X. This is done by solving LY = PB

for Y (forward substitution) and then solving UX = Y for X (backward substitution). This value for X is

used as a first approximation to the desired solution in a process of iterative refinement, which pro-

duces the final result.

In many cases, the Math Pac will arrive at a correct solution even if the coefficient array is singular (so

that the formula X = A~ !B is invalid). This feature allows you to use %%% to solve under- and over-

determined systems of equations.

For an under-determined system (more variables than equations), the coefficient array will have fewer rows

than columns. To find a solution using =% =:

» Append enough rows of zeros to the bottom of your coeffieient array to make it square.

¢ Append corresponding rows of zeros to the constant array.

You can now use these arrays with the =% %keyword to find a solution to the original system.

For an overdetermined system (more equations than variables), the coefficient array will have fewer columns

than rows. To find a solution using =% i:

¢ Append enough columns of zeros on the right of your coefficient array to make it square.

» Be sure that your result array is dimensioned to have at least as many rows as the new coefficient array

has columns.

¢ Add enough zeros on the bottom of your constant array to ensure conformability.

You can now use these arrays with the =% % keyword to find a solution to the original system. Only those

elements in the result array that correspond to your original variables will be meaningful.
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For both under- and overdeterminded systems the coefficient array is singular, so you should check the re-

sults returned by =% %to see if they satisfy the original equation.

If A is a complex type square matrix, then MAT C=IHWA and MAT X=Z4YZCA,Bx use the same

techniques as above, with the arrays A and B replaced by equivalent real-type partitioned forms.

The =% keyword can also be used for inverting a square matrix A. AT X=3Z%%CA, B will return

the inverse of A if B is chosen to be the identity matrix. This technique is more accurate and generally

faster than MAT X=IH. A, but it requires more memory for its operation. (Refer to appendix B for

information about memory requirements).



Section 10

Solving f(x)

Keywords

You can use the keywords in this section to help you determine the solutions or minima of equations of

from one to five real variables.

Throughout most of this section, the operation of these keywords will be described for a one-variable

function. Multi-variable functions are covered under the topic Nesting Rules.

The keyword FrE{i{iT can be used from the keyboard or inside a program to find the value of x for

which f(x) is zero or a minimum, provided the keyboard line or program contains the definition of the

function.

P

The keywords Fiifi liE and FGLUES are provided to help you use FHEDT and to interpret its re-

sults. Since all three keywords are numeric-valued functions, they can be used aloneor in combination

with other functions and variables to form numericexpressmns A fourth keyword, ¥/, represents

the variable in the function being solved by F+HE (1T, It also contains the most recentguess generated
1Tby an executing FHEIIT,

   

FNROOT Function Root
 

 

Seeks a real root of the function F, starting with the two guesses A and B. These guesses can be equal,

but if so, one is immediately perturbed.

Returns the first value found that is one of the following:

1. An exact root of the specified function.

An approximation to a root of the specified function, correct to 12 digits.

. An approximation to a local minimum of the absolute value of the specified function.

. In a region where the specified function is constant.

o
A

W
N

. +9.99999999999E499 if the search for a root led beyond the range of representable numbers.    
89
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FNROOT (continued)
 

Not usable in CALC mode. Refer to page 97 for more information about FHFEDOT and CALC mode.

Refer to pages 97-99 for information about FHEOOT nesting and about the interactions between

FHEOOT and and between FHFEDOOT and user-defined functions.  
 

FVAR Function Variable
 

FUHAE

 

Represents the variable x in f(x), the variable whose value FHEDIT seeks.

Also returns the most current guess generated by a running FHEDIT.

Can be used in CALC mode.  
 

FVALUE Function Value
 

 

Returns the value of the function F (the third argument of FFHE11 T) at the result generated by the most

recently completed FHEDGT.

FUHLUE retains its value, even if your HP-71 is turned off, until FHEDGT is again completed.

Can be used in CALC mode.  
 

FGUESS Previous Estimate of Function Root
 

 

Returns the next-to-last value tried as a solution in the most recently completed k7T statement.

FilE ST retains its value, even if your HP-71 is turned off, until FHEDGT is again executed.

Can be used in CALC mode.   
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kg
iBy checking the values of F' AL IIE and FGZUE S, you can interpret the result of FHEDIT as follows:

o If FUALIE = 0, the result of FHEZIIT Is an exact root and the result of FLilESE

number close to the root.

o If the result of FHEZTT and the result of F=IIE == differ only in the twelfth significant digit, and

FUALUE and FCFZUESS » have opposite signs, these two numbers surround the exact root.

e If the result of FHEDITT and the result of FEUESE differ, but FuHL LUE and the value of the

function at FZLIEZ S are equal, these results lie in a region where FHF is constant.

  

will be a

P
    

 

To solve an equation for a particular variable, use this procedure:

1. Write the equation to be solved in the form f(x) = 0.

2. Substitute the keyword F'/#F everywhere for the variable you wish to solve for in the formula

defining f(x).
eT

3. Use the defining formula for f(x) as the third argument for FHEZIT,

4. Choose two initial guesses (which may be equal) and use these as the first two arguments for

FrEG0T. Even if only one initial guess is used, use it for both A and B, since FHEDIT always

requiresthree arguments.

 

Examples

Solving x2 = 2 (FHEOQOT, FURLUE, FUAR)

 

The following six examples illustrate various ways i HF Qi Fi'fiF can be used to solve the equa-

tion x2 = 2. Initial guesses of 1 and & are used. The first and sixth examples show the solution.

Example One.

Input/Result

T can be used from the keyboard as well
as in a program.

  

 

   
Example Two.

10 DISP FNROOT(COS(0),LOG2(4), The initial guesses can be expressions.

FVAR"2—2)

20 DISP ‘FVALUE =’;FVALUE
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Example Three.

10 DEF FNG=FVAR"2—2

20 DISP FNROOT(1,2,FNG)

30 DISP ‘FVALUE=";FVALUE

Example Four.

10 DEF FNF(X)=X"2—2

20 DISP FNROOT(1,2,FNF(FVAR))

30 DISP ‘FVALUE=";FVALUE

Example Five.

10 DEF FNH

20 FNH=FVAR"2—-2

30 END DEF

40 DISP FNROOT(1,2,FNH)

50 DISP ‘FVALUE=";FVALUE

Example Six.

10 DEF FNJ(X)
20 FNJ=X"2—2

30 END DEF

40 DEF FNF(X)=2%X

50 DISP FNROOT(1,FNF(1),FNJ(FVAR))

60 DISP ‘FVALUE =’;FVALUE

Input/Result

RUN

 

1. 41421356238

   

The third argument of FHEC{IT can be an
expression or a reference to a user-defined
function.

Fi/FE can appear in the user-defined function,
as above, or in the third argument of FHEIIT.

The user-defined function can consist of one or

several lines.

The first or second arguments of F i1
be references to user-defined functions.

 

The solution for x2 = 2.
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Solving log (x) = e/x (FHEOOT, FUALUE, FUAR, FGUESS)
To solve log(x) = e/x, we first write the equation in the form f(x) = 0. This can be done by subtracting

e/x from both sides of the equation, yielding log(x) — e/x = 0. We can rewrite this in the equivalent

but slightly more convenient form x log(x) — e = 0. Since the left-hand side of this equation is un-

defined for x <= 0, and we can’t guarantee that the search for a root will not venture into this region,

we will consider instead the equation |x| log|x| — e = 0. This equation has exactly the same positive

solution(s) as the first equation, but this equation makes sense for both positive and negative (but non-

zero) numbers. The program below includes a user-defined function that computes the left-hand side of

this equation, and uses FHFEZIOT to find a solution of the equation.

10 STD

20 DEF FNF(X) This user-defined function computes the left-
hand side of the equation.

30 FNF = ABS(X)kLOG(ABS(X))—EXP(1)

40 END DEF

50 INPUT A,B These will be the initial guesses.

60 R=FNROOT(A,B,FNF(FVAR))
70 DISP ‘R =";R

80 DISP ‘FNF(R) ='";FVALUE

90 DISP ‘FGUESS=";FGUESS

To use the program we must decide on initial guesses. Although the initial guesses need not be in

increasing order, or even distinct, a choice ofinitial guesses that surround a root will produce results

more quickly in general. Noting that if |F . #F | <1 then FHF ¢ FUHE» will be negative and if FU/FF is

large (say, 100) then FHHF ¢ Fi/fFE * will be positive, we can choose .5 and 100 for our initial guesses.

Key in the program and it, and when prompted with = respond with . %, i &% LINE ], which
supplies the initial guesses. The computer will then display

 

 

   
Since FHFR = &, the value given is an exact root for FHF.
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Additional Information

Choosing Initial Estimates

When you use FHEDIT to find roots of equations, the initial estimates determine where the search for

a root will begin. If the two estimates surround an odd number of roots (signified by their function

values having opposite signs), then FHEZIT will find a root between the estimates quite rapidly. If the

function values at the two estimates do not differ in sign, then FHEZIT must search for a region

where a root lies. Selecting initial estimates as near a root as possible will tend to speed up this search.

If you merely want to explore the behavior of the function near the initial etimates (such as to deter-

mine if there are any roots or extreme points nearby), then specify any estimates you like.

Another thing to consider is the range in which the equation is meaningful. In solving f(x) = 0, the

variable x may only have a limited range in which it is conceptually meaningful as a solution. In this

case, it is reasonable to choose initial estimates within this range. Frequently an equation that is ap-

plicable to a real problem has, in addition to the desired solution, other roots that are physically

meaningless. These usually occur because the equation being analyzed is appropriate only between

certain limits of the variable. You should recognize this restriction and interpret the results

accordingly.

Interpreting Results

RHECOOT always evaluates the function at the value returned, as described above. This enables you to

1nterpret the results. There are two possibilities: the value of the functlonatthe value returned by

T 1s not close to 0.R. 1T in close to 0; or the value of the function at the value returned by ¥

It is up to you to decide how close is close enough to consider the value a root

  

If the function value is too large, then the information returned by the keyword FiiE S5, together

with information already considered, is sufficient to determine the general behav1orofthe functlonin

the region. For example, suppose that FE(T is used to find a root of a function—say, f(x)—and the

value returned is r. If |F/fL.LIE| is too large to consider r a root, then there are several possibilities.

  

If Fu/ALUE and f(FGLESS) have the same sign, then r is either an approximation to a local minimum

of [f(x)| or in a region where the graph of f(x) is horizontal.
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4 <
+  

Case a Case b

In the two cases above, FHFEIT sees no tendency of f(x) to decrease in absolute value, and so to cross

the x-axis. It will then try to approximate a local extreme point, if any. This approximation can be

resolved to further precision by further executions of FHFEIIT, using r and FZLUESS as initial es-

timates. Repeated execution of FHFEZZIT in this manner will converge to the extreme point in many

cases. The idea is that FHEDIT can be used to find local extreme points, or the information about

where the extreme points are can be used to re-direct the search elsewhere, in hope of finding a root.

When |FiU HLUE JUE and f(F& 5E)
have dlfferent signs. In this case it would appear that thereis a root between because for thefunctlon

to change signs it should cross the x-axis. Typically, when F#HE{1 T finds two guesses on opposite sides

of the x-axis, it only stops after it has resolved them to two consecutive machine numbers. In this case

there is no machine representable number between r and ¥ =1!E %%, Thus, the behavior of the function

cannot be determined between r and F:iiE %%, To interpret such results, you should be aware of these

situations.

 

      

  

  

  - -
Case 1 Case 2 Case 3
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In case 1, r and FZIIESS are the best approximations to the root that are representable on the ma-

chine. Case 2 looks exactly the same to FHEIIT, but there is no root—there is a jump discontinuity

instead. In case 3 there is a pole, which can look like a root if a guess on each side of the pole is found.

FHEOOT returns information in FGUESS and the FUHLIUE to help you isolate situations where

convergence is to a pole.

Decreasing Execution Time

The exponent range of your HP-71 is +499 (except when TEHF £ LiHF @ = 2, which effectively extends

the negative exponent range to —510). This allows for sensitive observation of the behavior of a func-

tion, even very close to a root. FHFEI1T takes advantage of this dynamic range by not accepting a

guess as a root until the function value underflows, is zero, or two consecutive machine representable

numbers that bracket a root are found. The cost of this precision is that, occasionally, it may take quite

a while to obtain such precision. If this high degree of sensitivity is not required, then you may wish to

set a smaller tolerance. For example, you may only need to know a place where the function is less than

1E—20. This is accomplished in your function definition by checking the value of the function before

assigning it to the function variable and setting the function variable to zero if the computed value is

smaller than the desired tolerance. For example, suppose you wanted to find any root of f(x) = x*, and

|f(x)] <= 1E—32 is acceptable as a root. Here is a program you can use.

10 STD

20 DEF FNF(X) Multiline function definition of f(x) = x*.

30 F=X"4
40 IF F<=1.E—32 THEN FNF=0 ELSE Checks error tolerance and sets the function

FNF=F value accordingly.

50 END DEF

60 DISP FNROOT(2,3,FNF(FVAR)) Computes and displays the root.

70 DISP FVALUE Displays the function value at the root.

Input/Result

RUN
 

 

   
In this example, if the tolerance technique were not used, execution would last much longer. This is

because the computed function will not underflow until x is very small, since the root is at zero and the

distribution of machine-representable numbers is very dense close to zero. So FrEii7T has a lot of

guesses to try before finding one it can accept as a root.
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An alternate approach to decreasing execution time is to translate the function so that the root is not

so near zero, compute the root of the translated function, then translate the root back. This will de-

crease the time to find roots of certain functions with roots close to zero, but will generally decrease

the accuracy of the roots found. Here is a sample program for f(x) = x*.

10 1D

20 DEF FNF(X)=(X—1)*4 This is x* translated by 1.

30 R=FNROOT(3,4,FNF(FVAR)) Computes the root.

40 DISP R—1 Translates the root back and displays the root
and function value.

50 DISP FVALUE

Finally, there is a technique that may improve the speed and accuracy of FHEIIT. Any equation is

typically one of an infinite family of equivalent equations with the same roots. However, some may be

easier to solve than others. For example, the two equations f(x) = 0 and exp(f(x)) — 1 = 0 have the

same real roots, but one is almost always easier to solve. When f(x) = x* — 6x — 1, the first is easier;

but when f(x) = In(x* — 6x —1), then the second is easier. While FHFEI1T has been designed to

provide accurate results for a wide range of problems,it is worthwhile to be aware of such possibilities.

Suspending FHEDLT With

If none of the arguments of FE 11T contain multi-line user-defined function calls, pressing will

not terminate the action of FHHFE{1{iT until intermediate results are saved. In particular, ¥ will

return and save the current '/#iFas though it were a root, it will save theprev1ous guess as ! L

and it w111save the value of f(x) at the current Fi/FF as the value of Fi/#L iiE. Only then W111 the

action of FHEITT stop.

   

  

If, on the other hand, there are one or more multi-line user-defined functions as arguments for

F 1T (that is, if the calculation of FHEIT involves several BASIC program lines), (ATTN] will be

ignored untll a multi-line user-defined functlonis called. Execution will then halt at a line of one of the

user-defined functions. This gives you the ability to examine relevent values, such as the current value

of FiFiF, then continue the execution of FHEIIT if you wish.

  

In addition, if there are multi-line user-defined functionsasarguments for ¥t I, then fatal errors

within the user-defined function do not destroy the FHE{1T environment, giving you the exact same

correct and continue capability as with any other HP71 call to multi-line user-defined functions.

CALC Mode

You cannot execute FHEDIT directly or 1nd1rect1yin CALC mode. For instance, suppose your current

file contains a single-hneuser-defined function F ¥ whose definition contains an f 1T keyword. If
f"L!you attempt to execute FHF in CALC mode, an error will result.
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Nesting Rules

If the third argument F of FHEDDIT defines a formula whose evaluation encounters another FHEZIDT

keyword, we say that the two FHEIIT keywords are nested. Up to five FHEIIT keywords can be

nested in this way.

As an example of FHFT nesting, consider the following program that solves f(x,y) = x? + y® — 2x

— 2y + 2 for x and y.

 

   

10.5TD

20 DEF FNF(X,Y)=X"2+Y"2—2%X —~2%Y +2 Defines the function whose solution is sought.

30 DEF FNG(X) Lines 30 through 60 define a one variable
40 R=FNROOT(—4,4,FNF(X,FVAR)) function f(x) that receives a fixed x value (F'i#F)

50 FNG=FVALUE from line 70.

60 END DEF

70 DISP FNROOT(—3,3,FNG(FVAR));R If this FHEDDT function receives a nonzero
result from line 50, it selects another x value for

the FHEDOT in line 40 to try. If it receives a
zero result, a solution for f(x,y) is found.

Input/Result

RUN

TDDDD The x and y values returned by the FMHEDIIT
function in line 70. The x value is dlsplayedon
the left.

The closest FHEDDT comes to the true y value, one, is . #3322 3393555 since these x and y values

satisfy the objective of FIHE 1T, This objective is to find x and y values for which the computed value

offx,y) 1S zero.

WAL UE
 

£ These values for x and y when used in f(x,y) give
1 as the result.   
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A common use for FHEDIT nesting is determining minima. To demonstrate this application, we’ll

modify the above function f(x,y) by adding one to the expression, thereby ensuring that the function

has no solution, since the paraboloid represented by the modified function no longer intersects the xy

plane. The only program modification is in line 20:

20 DEF FNF(X,Y)=X"2+ Y2 —2%X —2%Y +3

All other program lines are unchanged.

The earlier nested FHEZIT program required about 20 seconds to reach a solution. Since FHEDOT

takes special care to make sure a true minimum is found, the modified program requires about 3V

minutes to find and display the x and y values whose use in f(x,y) result in a function minimum.

 

 

   
 

Input/Result

RUN

TSI SED 1, AGER The x and y values that give a minimum for the
Aiddd4q modified function.

ALUE Displays the value given by the modified func-
tion using these x and y values.

 

   
There is no need to wait the full 3% minutes for a result. As explained on page 97, you can suspend an

executing FHEDIT function and then display interim results. If two consecutive inspections of interim

results show insignificant change, you might wish to accept them as having satisfactory accuracy.

Use of User-Defined Functions

If the third argument of an FHEDIIT function evaluates any user-defined function, then you must

execute the FHEDZIT function as a program statement, not from the keyboard. Also, if ¥ T 1s

suspended while executlng, you cannot execute a user-defined function from the keyboard in elther

BASIC or CALC mode.
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Numerical Integration

Keywords

You can use the keywords in this section to evaluate the integral of a function of from one to five

variables between definite limits to an accuracy of your choosing.

Throughout most of this section, the operation of these keywords will be described for a one-variable

function. Multi-variable functions are covered under the topic Nesting Rules - Volume Integration,

pages 109-110.

The keyword [ HTEGREAL can be used from the keyboard or inside a program to calculate the integral

of the function, provided the keyboard line or program contains the function definition.

The keywords IE é:i*M and IWHLUE give you additional flexibility in the evaluation of the integrals.

EGREAL, IBOUMD, and 4 AL LUE are numeric-valued, so they can be used aloneor in combination

w1th other functlonsand variables to form numeric expressions. A fourth keyword, ! :

the variable (or one of the variables) of integration in the function bemg 1ntegrated byP

also contains the most recent sampling point used by an executing I

   

INTEGRAL Definite Integral
 

IMTEGEALCA, B, E, F2

where A, B, E, and F are real numeric expressions.
 

Returns an approximation to the integral from A to B of F. The relative error E (rounded to the range 1E-

12<=E<=1) indicates the accuracy of F and is used to calculate the acceptable error in the

approximation of the integral.

This integral approximation can be:

¢ An approximation to the integral that is as accurate as the relative error E would allow.

e The last of 16 approximations to the integral, which have sampled the integrand at 65535 points

without meeting the convergence criterion.

e The best current approximation to the integral returned when is pressed and when F does
not call a multi-line user-defined function.    

101
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INTEGRAL (continued)
 

IHTEGREHAL generates a sequence of increasingly accurate approximations to the definite integral. If

three successive approximations are within the acceptable error of each other—the first is close to the

second and the second is close to the third—they are considered to have converged and the third

approximation is returned as the value of the definite integral. If a total of 16 approximations are cal-

culated without converging, the sixteenth is returned.

Not usable in CALC mode. Refer to page 111 for more information about I HTEZEAL and CALC mode.

Refer to pages 109-111 for information about IHTEZEHRL nesting (volume integration) and about the

interactions between IHTEZREAL and and between IHTEGRFAL and user-defined functions.    
IVAR Integration Variable
 

 

 

Represents the variable of integration in the formula defining F, the last argument of I+

 

Also contains the most recent sampling point used by a running IH7TEG

Can be used in CALC mode.    
IVALUE Last Result of INTEGRAL
 

 

T oL
Returns the last approximation computed by the I7TEi:E! keyword If the(ATTN] key was pressed

or the operation of IMHTELEHL was otherwise mterrupted then 1iiHiLIE returns the value of the

current approximation to the integral. Otherwise, I%/HiLiE returns thesame value that [ HTELE

last returned.

    

YU retains its value (even if your HP-71 is turned off) until another It Hi. is computed.

Can be used in CALC mode.    
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IBOUND Error Approximation for INTEGRAL
 

TEOUHD

 

 

Returns the final absolute error estimate for the definite integral most recently computed

IMTEGERL.

« A positive value for IELIFHD means that the approximations converged.

« A negative value for IEIUMD means that the approximations didn’t converge, so that the ve

Like It HLLUE, IEGUND retains its value (even if the HP-71 is turned off) until another I HTEGREML

computed. Unlike I%HLLIE, the value of IECLIMD has no relation to the current approximation to

integral if the operation of IHTEGRHAL is interrupted.

Can be used in CALC mode.

returned by IHTEGEHRL may not be representative of the true value.

 
 

To integrate a function between bounds, you can follow these steps:

1.

2. Substitute the keyword I'/fiF: everywhere in the expression for the variable of integration.

3.

4. Use the lower and upper bounds of integration as the first and second arguments A and B of

Write down an expression that represents the function to be integrated.

Use this expression as the fourth argument F of IHTEGZERAL.

IMTEGEHAL, respectively.

Choose a value for the third argument E of IHTEGREHL that represents an estimate of the relative

error in the computation of the integrand. Any value for E is always rounded to the range

[IE—12,1]. Thus, E should satisfy, after rounding

|TRUE INTEGRAND — COMPUTED INTEGRAND| - g

|COMPUTED INTEGRAND|
 

Since IHMTEGFEFAL has no way of knowing what the true value of the function is intended to be,

only you can supply this estimate. For many purely mathematical functions (%I, E:F, poly-

nomials, etc.) and modest limits of integration, full 12 digit accuracy can be returned so that a

value for E around 1E-12 should be suitable.
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i. and IEO

 

The operation of IHTEL i1 can be described more precisely as follows.

1. Based on a relative error of E for the specified function, the computer calculates an error tolerance

for the integral of the specified function. If f(X) is the “true” function that F' approximates, then

choose E such that

|F — f(X)]

IFl
for all X in the interval of integration. Your input for E is rounded to the range 1IE—12<FE<]1.

< FE

For example, if F is derived from experimental data with N significant digits, let E equal 10—,

2. The computer calculates a sequence of approximations I to the integral of the specified function.

The difference between successive approximations is compared to the error tolerance for the

integral.

3. A value for the integral is returned when

e The approximations I, have converged. Convergence is determined using J,, defined as the kth

approximation to the integral of E+|/F|over the same interval of integration. J), represents the

error inherent in the computation of I.

The approximations I, are judged to have converged to [, if

I, — I|<J}

 

for k = n — 1 and k& = n. The value of Iisthenreturned by I il.; a positive value for

the error estimate will be returned by It

 

or when

e The computer has evaluated I; through I,5 but the convergence criterion is still not met. 14 is

then returned by IHTEZEFAL; a negative value for the error estimate will be returned by
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Integrating f(x) = x2—2 (IHTEGRAL, IVAR)

The following six examples illustrate various ways IHTEGEAL and 14 FAFEcan be used to integrate the

function x2 — 2 from 1 to Z. The first and sixth examples show the solution.

Example One.

Input/Result

IHTEGRALCL, 2, 1E-11, IVAR"Z-2)

 

aeeg sesap sessp sesey seeey sesep sesmy sesey seemp sesmy seeey
3 4 4 4 4 4 4 g g

  
 

Example Two.

10 DISP INTEGRAL(COS(0),LOG2(4),
1E—11,IVAR"2-2)

Example Three.

10 DEF FNG=IVAR"2—2

20 DISP INTEGRAL(1,2,1E—11,FNG)

Example Four.

10 DEF FNF(X)=X"2—2
20 DISP INTEGRAL(1,2,1E—11,FNF(IVAR))

Example Five.

10 DEF FNH

20 FNH=IVAR"2 -2

30 END DEF

40 DISP INTEGRAL(1,2,1E—11,FNH)

IMTEGEAL can be used from the keyboard as
well as in a program.

The limits of integration can be expressions.

The fourth argument of IHTEGEFML can be an
expression or a reference to a user-defined

function.

IWHE can appear in the user-defined function,
as above, or in the fourth argument of
ITHTEGERL.

The user-defined function can consist of one or

several lines.
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Example Six.

10 DEF FNJ(X)
20 FNJ=X"2—2
30 END DEF

40 DEF FNF(X)=2%X
50 DISP INTEGRAL(1,FNF(1),1E—11, The first, second or third arguments of

FNJ(IVAR)) IHMTEGREAL can be references to user-defined
functions.

60 DISP IBOUND

Input/Result

RUN

 

 REEEEEEIIIT The resulting integral.

 

 

The absolute error estimate for the resulting
integral. Since it’s positive, the approximations

 

  
 

converged.

Integrating f(x) = e—2 (IHTEGRAL, IWAR, TWALUE)
This example features I'iri. LiE. This functlon returns the most recent integration approxxmatlon and

 

is updated even whlle the executlon of IMTEZREHML Is 1n progress After the execution of IH7TE:!

is completed, I'/#LLIE returns the sameValue returned by IHTE LRI

  

Youcanwatch the progress of integral approximations by displaying I:/#i..iF during the execution of

THTI ~1.. This is demonstrated by the following program, which 1ntegrates the function e*—2 from

one to three. The error bound used is 1E-12.

 

10 Y=IVALUE % = value of IHLIIE when program starts

(assumes IALIIES is set from a previous
INTEGEAL).

20 DEF FNF(X)

30 IF IVALUE=Y THEN 50 Displays WAL LIE only if it has changed.
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40 DISP IVALUE @ Y=IVALUE

50 FNF=EXP(X)—2

60 END DEF

70 DISP INTEGRAL(1,3,.000000000001,
FNF(IVAR))

Input/Result

RUN

 

First displayed value of I%/i#iiLif,

Last displayed value of Iiifiik,

Value of [ HTEGEML

 

   
Integrating f(x) = exp(x3+4x24+x+1) (IHTEGEAL, VAR, [BEOUHD,

To find the integral from O to 1 of the function

f(x) = exp(x® + 4x% + x + 1)

you can use the following program.

10 DEF FNF(X)=EXP(X"3+4%X"2+ X +1) The user-defined function FHE.

20 INPUT E Gets the relative error we expect in FHFas

compared with f.

30 DISP ‘Integrating’

40 X=INTEGRAL(0,1,E,FNF(IVAR))

50 BEEP

60 DISP ‘Integral =’;X

70 DISP ‘The approx. error =’

80 DISP IBOUND
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After you key in the program, run it using the following keystrokes.

 

  
 

Input/Result

RUN

T OB The prompt to enter the relative error of the
function.

1E~5 Although our function is accurate to one part in
1012, we can say that it is less accurate (in this

case, one part in 10°) so that the computation
will finish more quickly.

 

Imtearating

 

 

  
 

 

  
 

Irtegral =

T4, 291a37228

The appro=. error =

P oadzeisnd323 The value of the integral is 104.2911 + (1.04 X

1073).

TUALUE

Tad, 29183722 IWALUE gives the value of the last computed
integral.

Integrating C(T) = a + bT (IHMTEGEHRL, TVAE, ITEBOLIND)

You can use IHTEGREFAL to compute the amount of heat required to heat one gram of gas at a constant

volume from one temperature to another. The amount of heat needed, @, is given by the formula

Q- [o ar
where C(T) is the specific heat of the gas as a function of temperature, T'1 is the starting temperature,

and T2 is the final temperature.

If C(T) = a + bT, where a and b are experimentally determined to be a = 1.023E~2 and b = 2.384E2

with four significant digits, then we can compute the relative error of C(T) to be approximately 5E —4.

The program below prompts you for the initial and final temperature in degrees Kelvin and then com-

putes the heat needed to raise the temperature of the gas from the initial to the final temperature.
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10 DEF FNC(T)=.01023+.02384%T The user-defined function that calculates the
specific heat.

20 INPUT ‘Initial, final T (K)?";T1,T2

30 DISP ‘Integrating’

40 Q=INTEGRAL(T1,T2,.0005,FNC(IVAR)) Computes the integral.

50 DISP ‘Heat needed =';Q;'+ —";IBOUND Displays the answer and the approximate error.

To find the heat needed to raise the temperature from 300°K to 310°K, type in the program and use the

following keystrokes.

Input/Result

RUN

 

Imitial, +fimnal T CRE37E

   

 

Intearsating

Heat neesded = 72,8143

e BEES4B871E   
 

Additional Information

Nesting Rules—Volume Integration

If the fourth argument F of IHMTEZEFAL defines a formula whose evaluation encounters another

IMTEGREAL keyword, we say the two IHMTEGRHAL keywords are nested. Up to five IHTEGERAL

keywords can be nested in this way. A program that nests two [HTEZEFML keywords can determine

volumes.

As an example of IHTEZFFAL nesting, consider the following program that integrates f(x,y), where

f(x,y) = x2 + 2y, over the square 0 < x < 1, 0 < y < 1. That is, the program evaluates

folfolf(x, y)dydx.
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10 DEF FNF(X,Y)=X"2+42%Y Defines the function whose integral is sought.

20 DEF FNG(X)=INTEGRAL(0,1,1E—6, For each value of i, integrates a slice parallel to
FNF(X,IVAR)) the y-axis.

30 INTEGRAL(0,1,1E—6,FNG(IVAR)) Sums all of the contributions from the slices
parallel to the y-axis.

Input/Result

RUN

 

 

The volume returned by the Iii7TE
tion in line 30.

 

  
 

 

 

 

The answer is exact even though
predicts six correct digits.

i1 only

  
 

  
The following example demonstrates the use of IHTEZERL to evaluate the integral

LW/QJ;y sin(x) dxdy

Input/Result

FADIAMS

IMTEGRALCR , FI-2, 1E-

ITHTEGEARL R, TVWAR, 1E-

STHCTWAR D 2

 

Note that the first is the integration vari-
able of the outside I#TE &R

 

 

 

  
 

 

 

 

The true answer is 7/2 — 1 (approximately
.5707963268). 
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Suspending IHTEGERL With [ATIN]

If none of the arguments of IHTEZRAL contain multi-line user-defined function calls, pressing [ATTN]
w1ll not terminate the action of IMTEGEAL until intermediate values are saved. In particular,

FHTEGEAL will save and return the current I'FHLLIEas though it werethe integral, and will make

negatlve the current value of IEZLiHI. Only then will the action of I EGEAL stop.

If, on the other hand, there are one or more multi-line user-defined functions as arguments for

TR iL. (that is, if the calculation of IHTEGEAL involves several BASIC program lines),

will be ignored until a multi-line user-defined function is called. Execution will then halt at a line of

one of the user-defined functions. This gives you the ability to examine relevent values, such as the

current value of I'i#1IE, then continue the execution of I} #L 1f you wish.

   

i, then fatal

il environment, g1v1ng you the

exact same correct and continue capability as with any other HP-71 call to multi-line user-defined

functions.

In addition, if there are multi-line user-defined functions as arguments for IHTI

errors within the user-defined function do not destroy the IHTE
   

CALC Mode

 

  
 You cannot execute IHTEGREFML directly or indirectly in CALC mode. For instance, suppose your cur-

rent file contains a single-line user-defined function ¥HF ,

 

= whose definition contains an I

keyword. If you attempt to execute FHF from CALC mode, an error will result.

 

Use of User-Defined Functions

If the fourth argument of an IHTEGEHRL function evaluates any user-defined function, then you must

execute the I HTEGRAL function as a program statement, not from the keyboard. Also, if IHTEGREAL

is suspended while executing, you cannot execute a user-defined function from the keyboard, in either

BASIC or CALC mode.

Overview of Numerical Integration

Numerical integration schemes generally sample the function to be integrated at a number of points in

the interval of integration. The calculated integral is simply a weighted average of the function values

at these sample points. Since a definite integral is really an average value of a function over an infinite

number of points, numerical integration can produce accurate results only when the points sampled are

truly representative of the function’s behavior.
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If the sample points are close together and the function does not change rapidly between two consec-

utive sample points, then the numerical integration will give reliable results. On the other hand,

numerical integration will not produce good answers on a function whose values vary wildly over a

domain that is small in comparison with the region of integration. Other errors that can affect the

result of a numerical integration include the round-off errors typical of any floating point computation

and errors in the procedure that computes the function to be integrated.

Handling Numerical Error

The IMTEGREAL keyword requires specification of an error tolerance E for its operation. This error

tolerance is taken to be the relative error of the computed function as compared with the “true” func-

tion to be integrated. The error tolerance is used to define a ribbon around the computed function and

the “true” function should then lie inside this ribbon. If the “true” function is f(x) and the computed

function is F(x), then

F(x) — Error (x) < f(x) < F(x) + Error (x)

where Error (x) is half the width of the ribbon at x.

 
 

 

 
We can then conclude that

b b b

f flx) dx = f F(x) dx + f Error (x) dx
a a a

where the third integral is just half the area of the ribbon—that is, integrating the computed function

instead of the actual function can introduce an error no greater than half the area of the ribbon.

IMTEGEAL estimates this error while computing the integral; IEOUND gives you access to the

estimate.
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Choosing the Error Tolerance

The accuracy of the computed function depends on three factors:

o The accuracy of empirical constants in the function.

e The degree to which the function may accurately describe a physical situation.

e The round-off error introduced when the function is computed.

Functions like cos(x — sinx) are purely mathematical functions. This means that the functions contain

no empirical constants, and neither the variables nor the limits of integration represent any actual

physical quantities. For such functions you can specify as small an error tolerance as desired, provided

the function is calculated within that error tolerance (despite round-off) by the BASIC function. Of

course, due to the trade-off between accuracy and computation time, you may choose not to specify the

smallest possible error tolerance. Any specified error tolerance is rounded to the range [1IE—12, 1].

When the integrand relates to an actual physical situation, there are additional considerations. In these

cases, you must ask yourself whether the accuracy you would like in the computed integral is justified

by the accuracy of the integrand. For example, if the function contains empirical constants that

approximate the actual constants to three digits, then it may not make sense to specify an error tol-

erance smaller than 1E—3.

An equally important consideration, however, is that nearly every function relating to a physical situa-

tion is inherently inaccurate because it is only a mathematical model of an actual process or event. A

mathematical model is typically an approximation that ignores the effects of factors judged to be in-

significant in comparison with the factors in the model.

For example, the equation s = s’ — (.5)gt?, which gives the height s of a falling body when dropped

from an initial height s/, ignores the variation with altitude of g, the acceleration due to gravity.

Mathematical descriptions of the physical world can provide results of only limited accuracy. If you

calculated an integral with an accuracy greater than your model can support, then you would not be

justified in using the calculated value to its full (apparent) accuracy. It makes sense to supply an error

tolerance that reflects any inaccuracies in the function, or the IHTEGZREAL keyword will waste time

computing to a level of accuracy that may be meaningless. Further, the value returned by IELI

may not be significant.

If f(x) is a function relating to a physical situation, its inaccuracy due to round-off is typically very

small compared to the inaccuracy in modelling the situation. If f(x) is a purely mathematical function,

then its accuracy is limited only by round-off error. Precisely determining the relative error in the

computation of such a function generally requires a complicated analysis. In practice, its effects are

determined through experience rather than analysis.
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Handling Difficult Integrals

Integrating on Subintervals. A function whose values change substantially with small changes in

its argument will likely require many more points than one whose values change only slightly. This is

because the behavior of the function must be adequately represented by the sampling. If a function is

changing more rapidly in some subintervals of the interval of integration than in others, you can sub-

divide the interval and integrate the function separately on the smaller intervals. Then the integral

over the whole interval is the sum of the integrals over all the subintervals, and the error of the integral

is the sum of the errors of the integrals over the subintervals.

The algorithm used by IHTEGFHAL makes a reasonable decision during execution of how many points

to sample, based on the behavior of the specified integrand on a particular interval. When the interval

of integration is split up, each subinterval can be handled according to the function behavior on that

subinterval alone. This results in greater speed and precision.

For example, to integrate f(x) = (x2 + 1E—12)" from x = —3 to x = 5 using an error tolerance of

1E—12, it speeds up execution to subdivide the interval at x = 0, where f(x) has a sharp bend in its

graph. Because f(x) is very smooth on the subintervals (—3, 0) and (0, 5), the integrals over these

subintervals can be evaluated quickly.

[P fwdx= [ fo)ds+ [ o d
-3 * -3 0

The following program computes this integral on the two subintervals and then combines the results.

10 DEF FNF(X)=SQR(X*X+1E—12) We will use #: rather than ™z because :#5
is more accurate. An analogous situation generally
occurs for any integer power of a variable.

20 I=INTEGRAL(—3,0,1E—12,FNF(IVAR)) Integrate over the first subinterval.

30 E=IBOUND Save the error to add in later.

40 DISP “Integral =";

50 DISP I+INTEGRAL(0,5,1E—12FNF(IVAR)) The sum of the first and second integrals.

60 DISP “Error =";E + IBOUND Compute the relative error by adding the two
errors together.

You can run this program by keying it in and then pressing [RUN]. The following will then appear in

the display.

 

Intearal = 17

Error = 0000088888817
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When the interval is subdivided, I HTE&FEAL computes the answer in a few seconds. Without subdivid-

ing the interval, execution may take a long time.

Subdividing the interval of integration is also useful for functions with a singularity in the interval.

The singularity may consist of one or more points where the function is undefined or has a sharp

corner point.

For example, the integral

2 dx . 1 dx 2 dx
J(; x_ 1) may be split into J(; x — 1° + J; x — 1)

to avoid evaluating the function at x = 1, where it is undefined. You can now integrate the function on

each subinterval because x = 1 is an endpoint of each subinterval, and I {. does not sample at

an endpoint.

 

Similarly, the function \/|x — 1|, has a sharp corner point at x = 1.

E

 
Suppose you need to integrate this function from 0 to 2. You can increase the speed and accuracy of the

computation by integrating separately on the subintervals (0, 1) and (1, 2), because tLe function is

smooth on each of these subintervals.

Transformation of Variables. A second method of handling difficult integrands is by transforming

the variable. When the variable in a definite integral is transformed, the resulting definite integral may

be easier to compute numerically. Consider the integral

1f ( vx 1 ) dx

0 x — 1 In x

The derivative of the integrand approaches infinity as x approaches 0, as shown on the left below. The

substitution x = u? stretches the x-axis and causes the function to be better behaved, as shown on the

right.
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0.1+
2

0.1 2u -4
b+ NHYu —1) Inu

I - O/,\U

0 0 1

You can now evaluate the integral that results from this substitution:

J‘l ( 2u? u )d
— u.

0 \(u+ I)(u — 1) In u

(Do not replace (u + 1)(u — 1) with u? — 1; as u approaches 1, u? — 1 loses half of its digits to
roundoff, yielding a final result that is too large.)

 

As a second case requiring substitution, consider the following function. Its graph has a long tail

stretching much farther than the main body (where most of the area is).
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Although a very thin tail may be truncated without greatly degrading accuracy, this function has too

wide a tail to ignore when calculating

ft dx
t 24100

if t is large. In general, the compressing substitution x = b tan u maps the entire real line into (— /2,

7/2) and maps subsets of the real line into subsets of (—=x/2, w/2). For b = 1E—5 the substitution

becomes x = 1E—5 tan u and the integral becomes

tan '(¢/b)
10°

Jt‘an “H(—t/b)

which is readily computed for very large t.

This compressing substitution is also a standard way to deal with infinite intervals. For example,

o dx o 5 7r/2

J‘Oc x2 + 10710 10 J~—7r/2 du

In some cases the tail can be chopped off. Consider the function exp (—x?). This functions underflows

(that is, gives a result of zero in machine arithmetic) for x > 34. Thus,

2 342

f e Tdx = f e “dx
0 0

Therefore, when dealing with infinite integrals you can cut off the tail if it is insignificant, but you

should use a compressing substitution if it is not.
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About the Algorithm

The Math Pac uses a Romberg method for accumulating the value of an integral. Several refinements

make it more effective. Instead of equally spaced samples, which can introduce a kind of resonance or

aliasing that produces misleading results when the integrand is periodic, IHTEZFEML uses samples

that are spaced nonuniformly. Their spacing can be demonstrated by substituting

3 1 5. b
= —u — — u’ into dX 9 5 in L f(x)dx

and then spacing u uniformly. Besides suppressing resonance, the substitution has two additional bene-

fits. First, no sample need be taken from either endpoint of the interval of integration unless the inter-

val is so small that points in the interval round to an endpoint. As a result, an integral like

fl sin x dx

0 X

will not be interrupted by division by zero at an endpoint. Second, I7TE ~i. can integrate functions

whose slope is infinite at an endpoint. Such functions are encountered when calculating the area en-

closed by a smooth closed curve like x? + f2(x) = R.

 

In addition, IHTEGERL uses extended precision. Internally, sums are accumulated in 15-digit num-

bers. This allows thousands of samples to be accumulated, if necessary, without losing any more signifi-

cance to round-off than is lost within your function.

During the computation, IHTEGREFL generates a sequence of iterates that are increasingly accurate

estimates of the actual value of the integral. It also estimates the width of the error ribbon at each

iterate. IHTEGEML stops only after three successive iterates are within the computed error of each

other or after 16 iterations have been performed without this criterion being met.

In the latter case the function will have been sampled at 65,535 points. The value returned by

{1 will be the negative of the computed error to signify that the returned value of the

IMTEGEHAL 1s likely not within the error tolerance of the actual value. Typically, you should then split

upthe1nterval of integration into smaller subintervals and integrate the function over each of the

subintervals. The integral over the original interval will then be the sum of the integrals over the

subintervals. In this way, up to 65,535 points can be sampled on each subinterval, thus computing the

integral to greater precision.

  

In summary, [HTEZERL has been designed to return reliable results rapidly and in a convenient,

easy-to-use fashion. The above theoretical considerations discuss problems with numerical integration

in general. The IHTEZREAL keyword is capable of handling even difficult integrals with relative ease.
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Finding Roots of Polynomials

Keyword

The keyword in this section finds all solutions—both real and complex—of P(x) = 0, where P is a

polynomial of your choice with real coefficients. If P is a polynomial of degree n there will be n (not

necessarily distinct) solutions of this equation, so this keyword resembles an array operation in its

format.

To use this keyword to find the solutions of the equation P(x) = 0, where

P(x) = a,x" + ap,_1x" 1 4+ ... + a;x + q

first store the coefficients a,, a,,_1, ..., a® in a real-type array with n + 1 elements in all. They should

be stored in the order indicated above, with the coefficient of the highest power first and the constant

term last. Aside from the total number of elements in the array, which indicates to the Math Pac the

degree of the polynomial, the dimensions of the array are irrelevant. For example, the arrays

6 5 4

[6a 5) 4’ 3’ 29 1], 5 4 3 y and

3 2 1

N
W

s
~

O
O

  
all can represent the fifth degree polynomial

6x° + 5x* + 4x3 + 3x% + 2x + 1.

The array in which you wish the resulting roots to be stored must be complex type to accept complex

roots. If the polynomial whose roots are sought has degree N, and if the result array is a vector, it will

be redimensioned to have N elements. If the result array is a matrix, it will be redimensioned to have

N rows and one column.

The degree of the polynomial whose roots you can find is limited only by the amount of memory you

have available.

119
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PROOT Roots of a Polynomial
 

MAT R=FEOOTIP2

where P is a real vector or matrix with N + 1 elements, where N = degree of polynomial whose roots

are sought, and R is a complex vector or matrix.
 

If R is a vector, implicitly redimensions R to have N elements. If R is a matrix, implicitly redimensions R to

have N rows and one column. R will be assigned the (complex) values of the solutions of the equation

P(x) = 0 (where P is the polynomial of degree N whose coefficients are the values of the elements of P).

To halt operation, press twice.

Not usable in CALC mode. 
 

Example

The following example finds all roots of the polynomial

5Z6 — 457° + 22574 — 42573 + 170Z%2 + 370Z — 500   
T Creates real vector for coefficients.

Ex Bol@ Creates complex vector for roots.

 

   

i f i1

fo
rt
e 1

K
] 8 - .0
1£ Wk B TED TRl g

P Bl a2l lb Ml e b

MET BE=RREOOTOA: First redimensions the vector B to have six ele-
ments, just large enough to contain the six (com-
plex) roots of the six-degree polynomial. Then
finds all roots and stores them in B.
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MAT DISF E [(ENDLINE Displays all roots.
 

  
 

Additional Information

There are several methods of gauging the accuracy of the calculated roots. The first method is to cal-

culate the value of the polynomial at the alleged root, and compare this value with zero. Although quite

straightforward in theory, this has a number of drawbacks in practice. It may easily happen that the

root calculated is the closest machine-representable number to a true root, but because the polynomial

has such a large value for its derivative at this root, the value of the polynomial at the calculated root is

very large. A simple example of this phenomenon is given by the polynomial 1E20x2 — 2E20. A true

root is 2a calculated root is 1.41421356237, which is the machine-representable number closest to

2. However, the value of the polynomial at this approximation to the square root of 2 is

—1,000,000,000, a number that seems very far from zero.

Another drawback of the above method is that because of the limited precision available in any numeri-

cal calculation, the roundoff errors that occur in the calculation of the polynomial value may com-

pletely eliminate the significance of the difference between the calculated value and zero. This is

especially true when the polynomial is of large degree, has coefficients widely varying in size, or has

roots of high multiplicity.

A second method of gauging the accuracy of the calculated roots is to attempt to reconstruct the poly-

nomial from these roots. If the reconstructed polynomial closely resembles the original, the roots are

then judged to be accurate. This technique is less sensitive to the problems that affect the polynomial

evaluation method. Of course, this method does not give information on the accuracy of an individual

root.

The program below asks you for a polynomial and calculates the roots of that polynomial using the

FEOOT keyword. If you wish, the program will also calculate the reconstructed coefficients from the

calculated roots. In addition, if desired, the program will compute the value of the polynomial at either

a calculated root or any other real or complex value.

   
  1T function to calculate the roots of the given

polynomial. Lines 210 through 250 comprise the subroutine that evaluates the polynomial at any real or

complex point. Horner’s method is used.
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Lines 260 through 410 comprise the subroutine that reconstructs the coefficients from the calculated

roots. Starting with the polynomial 1, the subroutine successively multiplies the polynomial by the

linear factors (Z — R), where R is a calculated real root, or by the quadratic Z2 — 2REPT(R) +

ABS(R)2, where R is a calculated complex root. (Note that CONJ(R) will also be a calculated root).

10 OPTION BASE 0 @ INTEGER D,E
@ DIM U$[4] @ DELAY 1 @ WIDTH 96

20 INPUT “DEGREE? ";D

30 DIM P(D),C(D) @ COMPLEX R(D—1)

40 DISP “ENTER COEFFICIENTS ”
@ MAT INPUT P

50 DISP “WORKING..."

60 MAT R=PROOT(P)

70 DISP “THE ROOTS ARE” @ DELAY 8 @
MAT DISP R @ DELAY 1

80 U$=KEY$ @ INPUT
“RECONSTRUCT? (Y/N) ”;U$

90 IF UPRC$(U$)="Y" THEN GOSUB 260
ELSE 110

100 DISP “RCON COEFFICIENTS ARE’ @
DELAY 8 @ MAT DISP C @ DELAY 1

110 U$=KEY$ @ INPUT
“EVALUATION? (Y/N) ":U$

120 IF UPRC$(U$)#“Y” THEN 190
ELSE COMPLEX Z

130 INPUT “AT A ROOT? (Y/N) ";U$

140 IF UPRC$(U$)#“Y” THEN INPUT
“VALUE? ";Z @ GOTO 160

0 is the degree of the polynomial.

Array P will contain the coefficients of the
polynomial in the order given previously, array R
will contain the calculated roots, and array C
will contain the reconstructed coefficients.

Enter the coefficients. The leading coefficient
should be nonzero for the program to work
properly.

Calculates the roots and stores them in array R.

Displays the calculated roots. To continue the
program after each root is displayed, press

LINE].
If you wish, the program will reconstruct the
coefficients from the calculated roots.

The subroutine starting at line 260 performs the
reconstruction and stores the reconstructed
coefficients in array C.

Displays the reconstructed coefficients. To
continue the program after each display, press

LINE].
If you wish, the program will evaluate the
polynomial at a root or at any other point.

-y .

The complex variable Z will hold the polynomial
value.

The point may be either real or complex.



150 DISP USING ‘#,“WHICH ROOT
(1.."K,":D @ INPUT E
@ Z=R(E—1)

160 GOSUB 210 @ DISP “POLYNOMIAL
VALUE IS” @ DELAY 8 @ DISP Z @
DELAY 1

170 U$=KEY$ @ INPUT
“ANOTHER VALUE? (Y/N) ";U$

180 IF UPRC$(U$)="Y” THEN 130

190 INPUT “ANOTHER POLY? (Y/N) ":U$

200 IF UPRC$(U$)="Y" THEN 20 ELSE STOP

210 COMPLEX B @ B=P(0)

220 FOR K=1 TO D
230 B=P(K)+Z*B
240 NEXT K
250 Z=B @ DESTROY B @ RETURN
260 DISP “WORKING...”

270 MAT C=ZER @ C(D)=1

280 FOR L=1 TO D

290 IF IMPT(R(L—1))#0 THEN 340
300 FOR K=D—L TO D—1

310 C(K)=C(K+1)—C(K)*REPT(R(L—1))
320 NEXT K

330 C(D)= —C(D)*REPT(R(L—1)) @ GOTO
400

340 REAL B @ B=REPT(R(L—1))"2
+IMPT(R(L—1))*2

350 FOR K=D—-L-1TO D—-2
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Input the number of the root where you want
the polynomial evaluated.

The subroutine beginning at line 210 evaluates
the polynomial at the given point or root. This
value is then displayed. To continue, press

LINE].
The program will evaluate the polynomial again
if you wish.

You can choose to start the program over again
with a new polynomial.

The polynomial evaluation subroutine uses
Horner’s method.

This line begins the coefficient reconstruction
subroutine. Some rounding error may accumulate
during reconstruction, so even if the roots are
exact, the reconstructed coefficients may not
exactly coincide with the original coefficients.

Creates polynomial 1 in array C.

We use each calculated root in turn.

Lines 300 through 330 multiply the current
reconstructed polynomial by a linear factor.

Lines 340 through 390 multiply the current
reconstructed polynomial by a quadratic factor.
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360 C(K)=C(K+2)—2%REPT(R(L—1))
*C(K+ 1)+ B*C(K)

370 NEXT K
380 C(D—1)= —2%REPT(R(L—1))kC(K+1)

+B*C(K)
390 C(D)=B*C(D) @ L=L+1

400 NEXT L

410 MAT C=(P(0))*C @ DESTROY B
@ RETURN

We increment L since we multiplied the
polynomial by both the complex root and its
complex conjugate.

The reconstructed polynomial has leading
coefficient 1 and so must be adjusted if the
original leading coefficient was not 1.

Example. If we wanted to find and evaluate the roots of the polynomial

W+ + ot 3+ X2+ x4

we would run the program using the following keystrokes.

Input/Result

RUN

 

   
5
 

 

 

   
 

   



 

 

 

   
 

   

 

ZEEEAGIINNG, -, 07

i A nx"i i”*
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The display scrolls to display the imaginary part
of the first root.

The real part of the first root.

The imaginary part of the second root.

The real part of the second root.

Display the last four roots in the same way. These displayed roots are:

Third root: : -

Fourth root: « -

Fifth root: « . &ZZamzo@lials, FRlelldez2dans

Sixth root: « . &5

 

After the last root is displayed, continue the program by pressing LINE].

Input/Result

 

 

   
" [ENDLINE]
 

 

   

Any response but ¥ or i is interpreted as “no.”



126 Section 12: Finding Roots of Polynomials

 

ROOM COEFFICIEMT: AEE

 

 

   
 

i The coefficient of the x® term.

L EEOGaagaan The coefficient of the x° term.   
Display the remaining five coefficients in the same way. These displayed coefficients are:

Coefficient of x* term: 1

Coefficient of x3 term: . 35333335355

Coefficient of x2 term: 1

Coefficient of x! term: . Z%25323235355

Coefficient of x term: 1

After the last coefficient is displayed, continue the program by pressing LINE].

Input/Result

 

EVALUATIONT oYMy B

 

 

HT W ROOTY OY-MY B   
 

WHICH REOOT fro
oct

e

!
T
; .

i

  
 



1 END LINE

 FOLYHOMIAL WRLUE IXS

 
 cEL -V B2E-130  
 (ENDLINE]

 HHOTHER WARLUES oY

 
T

 

  (ENDLINE]

 HT A REOOT?

 
(oMY B

 

 i END LINE

 VAHLUEY B
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Continues the program.

 

 ©-= ., .23 ENDLINE ]

 FOLYHOMIAL

 
 ; ey ey e

el i 2l b el el  
 (ENDLINE]

 HHOTHER WRLUET

 
b

 

 H (ENDLINE]

 HHOTHER POLYY

 
Y

 
Ends the program. 4 [ENDLINE]
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About the Algorithm

The Math Pac finds the roots of polynomials using Laguerre’s method, which is an iterative process.

The Laguerre step at the iterate Z, for the polynomial P(Z) of degree N is

—NP(Z,)

P(Z,) + [(N — 1)* (P"(Z))* — N (N — 1) P(Z,) P"(Z,)]"

The sign in the denominator is chosen to give the Laguerre step of smaller magnitude. Polynomials or

their quotients of degree < 3 are solved using the quadratic formula or linear factorization.

 

Laguerre’s method is cubically convergent to isolated zeros and linearly convergent to zeros of mul-

tiplicity greater than one.

The &3 7T function is global in the sense that the user is not required to supply either an initial guess

or a stopplng criterion; in other words, no prior knowledge of the location of the roots is assumed. The

2007 function always attempts to begin its search (iteration) at the origin of the complex plane. An

annulusin the plane known to contain the smallest magnitude root of the current (original or quotient)

polynomial is constructed about the origin (using five theoretical bounds) and the initial Laguerre step

is rejected if it exceeds the upper limit of this annulus. In this case, a spiral search from the lower

radius of the annulus in the direction of the rejected initial step is begun until a suitable initial iterate

is found.

  

Once the iteration process has successfully started, circles around each iterate are constructed (using

two theoretical bounds) that are known to bound the root closest to that iterate; the Laguerre step size

is constantly tested against the radii of these circles and modification of the step is made when it is

deemed to be too large or when the polynomial value does not decrease in the direction of the step. For

this reason, the roots are normally found in order of increasing magnitude, thus minimizing the

roundoff errors resulting from deflation.

Evaluation of the polynomial and its derivatives at a real iterate is exactly Horner’s method.

Evaluation at a complex iterate is a modification of Horner’s method that saves approximately half of

the multiplications. This modification takes advantage of the fact that the Horner recurrence is sym-

metric with respect to complex conjugation.

 

FE{I0T uses a sophisticated technique to determine when an approximation Z, should be accepted as a

root As the polynomial is being evaluated at Z,, a bound for the evaluation roundoff error is also being

computed. If the polynomial value is less than this bound, Z, is accepted as a root. Z, can also be

accepted as a root if the value of the polynomial is decreasing but the size of the Laguerre step has

become negligible. Before an approximation Z, is used in an evaluation, its imaginary part is set to zero

if this part is small compared to the step size. This improves performance, since real-number

evaluations are faster than complex evaluations. If the Laguerre step size has become negligible but the

polynomial is not decreasing, then the message FFEI{1T =i lur e is reported and the computation

stops. This is expected never to occur in practice.



Section 12: Finding Roots of Polynomials 129

As the polynomial is being evaluated, the coefficients of the quotient polynomial (by either a linear or

quadratic factor corresponding to the Z,) are also computed. When an approximation Zj is accepted as

a root, this quotient polynomial becomes the polynomial whose roots are sought, and the process begins

again.

Multiple Zeros

No polynomial rootfinder, including FFE0T, can consistently locate zeros of high multiplicity with

arbitrary accuracy. The general rule-of-thumb for FFE1T is that for multiple or nearly-multiple zeros,

resolution of the root is approximately 12/K significant digits, where K is the multiplicity of the root.

Accuracy

FREO0OT s criterion for accuracy is that the coefficients of the polynomial reconstructed from the cal-

culated roots should closely resemble the original coefficients.

We will illustrate FF 00Ts performance with isolated zeros using the 100th degree polynomial

100

P2Z) = > ZF
k=0

Of the 200 real and imaginary components of the calculated roots, about half were found to 12 digit

accuracy. Of the rest, the error did not exceed a few counts in the 12th digit.

The polynomial (Z + 1)20 with all 20 roots equal to —1 was solved by FEICT to yield the following

roots.

(—.997874038627,0)

(—.934656570635,0)

(—.947080146258,—.160105886062)

(—.947080146258,.160105886062)

(—.678701343788,—6.24034855342E — 2)

(—.678701343788,6.24034855342E — 2)

(—.815082852233,—.270565874916)

(—.815082852233,.270565874916)

(—.725960092383,—.178602450179)

(—.725960092383,.178602450179)

(—.934932478844,—.326980158732)

(—.934932478844,.326980158732)

(—1.06905713438, —.337946194292)

(—1.06905713438,.337946194292)

(—1.19977533452,—.295162714497)
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(—1.19977533452,.295162714497)

(—1.30383056467,—.200016185042)

(—1.30383056467,.200016185042)

(—1.3593147483,7.00833934259E— 2)

(—1.3593147483,—7.00833934259E — 2)

The roots appear inherently inaccurate due to the high multiplicity of —1 as a root. Between 0 and 1

correct digits were expected, even though the first zero found was better than this. However, the re-

constructed coefficients are very close and are shown below (rounded to 12 digits).

 

 

 

Original Reconstructed

Coefficients Coefficients

1 1

20 20

190 190.000000001

1140 1140

4845 4845.00000003

15504 15504

38760 38760.0000003

77520 77520.0000007

125970 125970.000001

167960 167960.000002

184756 184756.000002

167960 167960.000003

125970 125970.000002

77520 77520.0000015

38760 38760.0000009

15504 15504.0000004

4845 4845.00000011

1140 1140.00000004

190 190.000000042

20 20.0000000344

1 1.00000001018   



Section 12: Finding Roots of Polynomials 131

Time Performance

The speed of the FR1T function is illustrated in the following table. The times given are those re-

quired to calculate all the roots of the polynomial

N
PZz) = > Z*

k=0

for values of N given in the Degree column.

Note that times are approximate.

 

 
Degree Time (sec)

3 3
5 6

10 22
15 42
20 142
30 168
50 568
70 1060

100 2101    





Section 13

Finite Fourier Transform

Keyword

The finite Fourier transform is a key step in solving many problems in mathematics, physics, and

engineering, such as problems in signal processing and differential equations.

Given a set of N complex data points Z,, Z,,..., Zn_1, the finite Fourier transform will return another

set of N complex values W,, W,,..., Wx_,, such that for k = 0, 1,..., N — 1,

N-1 : :
Z, = jé:() W, (cosszflJr isinz—xg—>

The W’s then represent the complex amplitudes of the various frequency components of the signal

represented by the data points. The values for the W’s are given by the formula

Nt —Orkj —rkj
W, = 1/N kgo Z, (cos —NWL + i sin TWJ)

This formula holds for any number of data points. The Math Pac uses the Cooley-Tukey algorithm and

the internal language of the HP-71 to achieve excellent speed and accuracy in the calculation of the

finite Fourier transform. This requires, however, that N be an integral power of 2; for example, 2, 4, 8,

16, 32, 64, and 128 are all acceptable values for the number of complex data points.

To use the finite Fourier transform, store your complex data points Z,,..., Zn_; as successive elements

of an N-element complex array with Z as the first element, Z, as the second element, and so on. Aside

from the total number of elements in the array, which indicates to the Math Pac the number of com-

plex data points, the dimensions of the array are irrelevant. For example, each of the following eight-

element arrays

133



134 Section 13: Finite Fourier Transform

(1,2) |
(3.4)
(5,6)
(7,8)
(9,10)

(11,12)

(13,14)

(15,16)  
(1,2) (3,4)

(5,6) (7,8)

(9,10) (11,12)

(13,14) (15,16)

(2)  (34)  (56) (7.8

(9,10) (11,12) (13,14) (15,16)

[(1,2) 34) (56) (7.8) (9.10) (11,12) (13.14) (15,16)]

can represent the set of input data points

{(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16) |

The array in which you wish the transformed data to be stored must be complex type. If the number of

input data points is N, and if the result array is a vector, it will be redimensioned to have N elements.

If the result array is a matrix, it will be redimensioned to have N rows and one column. The results of

the finite Fourier transform W,,..., Wy_; will be returned with the complex values stored in successive

elements of this N-element complex result array—the same form as the data points.

The number of data points you can use is limited only by the amount of available memory and by the

requirement that the number of data points be a non-negative integral power of 2.



Section 13: Finite Fourier Transform 135

FOUR Finite Fourier Transform
 

MAT W=FOLURECZ?

where Z is an N-element complex array, either a vector or matrix, N is the number of complex data

points, which must be a non-negative integer power of 2, and W is a complex array, either a vector or

matrix.
 

If W is a vector, implicitly redimensions W to have N elements; if W is a matrix, implicitly redimensions W

to have N rows and one column. W will be assigned the complex values of the finite Fourier transform of

the data points represented by Z.

To halt operation, press twice.

Not usable in CALC mode.   
 

Example

The following example computes the finite Fourier transform of the input data set ((1,2), (3,4), (5,6),

(7,8), (9,10), (11,12), (13,14), (15,16)).

10 OPTION BASE 1

20 COMPLEX SHORT A(8),B(1,2) A contains the data set, and B, after
redimensioning, contains the transform of the
data.

30 MAT INPUT A
40 MAT B=FOUR(A)

50 MAT DISP B

RUN
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Cl LRy, 0E 4 0Bey, 07 8,059,183

cil L iEY 01 E 14y 015, e

END LINE

Zoddidz 1 41450

M0

 

  
 

Additional Information

Time Performance

The approximate time required by F1l!F to return the transform, based on the number of data points,

is shown in this table.

 

 

Number of Transform Time

Data Points (Seconds)

1 0.07

2 0.11

4 0.26

8 0.75

16 1.9

32 4.7

64 11

128 25

256 55

512 120

1024 260

2048 558    
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Relation Between the Finite and Continuous Fourier Transform

The finite Fourier transform is most often used as an approximation to the continuous (infinite) Fou-

rier transform. To understand in what sense it is an approximation, and to understand the effects of

various choices to be made in using this approximation, it is most useful to have the direct relationship

between the continuous and finite transforms.

If Z(x) is a complex valued function, its continuous Fourier transform is defined to be

W = |7 Z(x) exp(—2rifr) dx

If we have a set of N complex data points Z,, Z,..., Zy_; given by sampling the function Z at N

equally spaced points

Zy = Z(xg + kAx) for k = 0,1, ..., N — 1,

and then find the finite Fourier transform W,, W,,..., Wy_, of this data set, we can relate these values

to the values of the continuous Fourier transform W(f) as follows. For ¢ = 0,..., N — 1,

W, = (r/N) W(k/NAx) where r = exp(—2wix;).

W is a “smeared” version of the true continuous Fourier transform W. To get W from W, you must

average W in two important but very different ways. The first type of averaging that occurs can be

described by defining a new function A(f) intermediate between W and W.

A(f) = kz W(f + k/Ax)

This says that the value of A at a point f is equal to the sum of the values of W at all points that are

integer multiples of the limiting frequency 1/Ax away from f. In particular, if W consists of a small

bump centered at the origin, then A will consist of an infinite sequence of bumps spaced 1/Ax units

apart. This is the aspect of the finite Fourier transform that gives rise to aliasing: any frequency that

occurs in W (that is, W has a nonzero value there) will give rise to a nonzero value for A (and also W)

somewhere in the interval [0, 1/Ax] no matter what the original frequency was. For this reason, you

should choose Ax small enough so that 1/Ax is larger than the distance between the largest and small-

est f’s that you suspect will occur in W. Since most functions occuring in actual situations (and all

real-valued functions) have continuous Fourier transforms that are roughly symmetric about the origin,

if a frequency f, occurs in W, it is likely that —f, also occurs in W. For the finite Fourier transform to

contain both frequencies without aliasing, 1/Ax must be larger than 2f,. If we define the largest fre-

quency occuring in W as Af, we can express the no-aliasing requirement as AfAx < 1/2.
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The second type of averaging that occurs when going between W and W is much more local in nature

than the first. It results in a loss of frequency resolution in W as compared with W; more precisely,

W(H = (NAx) f* sinc(gNAx) A(f — g) dg

lifa =0,

where sinc(a) = sin (ra)

————— otherwise.
Ta

Since sinc (gNAx) consists primarily of a bump with width inversely proportional to NAx, W is more

blurred (compared to W) for smaller values of NAx. This is not a serious problem unless W has a large

value at a frequency that is not a multiple of the fundamental frequency N/Ax. In this case, the “side

lobes” of the sinc function become evident in W. This can be reduced somewhat by multiplying the

data values Z, by a smoothing function G(k) before taking the finite Fourier transform. This results in

an averaging function that has smaller side lobes than the sinc function. One example of such a func-

tion is the Hanning function G(k) = (1/2)(1 — cos(2wk/N)).

Inverse Finite Fourier Transform

Many applications of the finite Fourier transform involve taking the transform of a set of data points,

operating on the transformed values (for example, increasing or decreasing the amplitudes), and then

retransforming the data using the inverse Fourier transform defined by

 
N—1 : :

Zy, = j;o W; <cos 27rNk] + i sin 2”—1\?>

You can also use the F iLIF keyword to compute the inverse finite Fourier transform in a simple way. If

W is an N-element complex array for which you want the inverse finite Fourier transform:

1. Redimension W to have N rows and one column (if W is an array with only one column, then no

redimensioning is necessary).

2. Take the transpose (TF M) of W. This produces the complex conjugate of W, without changing the

order of the elements.

3. Take the finite Fourier transform of the result.

4. Take the transpose of the result of the finite Fourier transform and scalar multiply this result by

N. This will produce the inverse finite Fourier transform of the original array.
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Example. This illustrates an application of the finite Fourier transform, and shows the procedure for

obtaining the inverse finite Fourier transform.

Suppose we want to find the steady state solution Z(x) of the inhomogeneous differential equation

Z"(x) + 3Z'(x) + 12Z(x) = P(x)

where P(x) is a function for which we have sampling data. If we denote the (continuous) Fourier trans-

form of any function @ by @, by taking the Fourier transform of the above equation we arrive at

—f2Z(H + 3ifZ(H + 12Z(H = P(f).

Solving this equation algebraically we obtain

3 — P(f)
D= Tr T 3if

If we can get a good approximation of P, we can easily calculate the right hand side of this equation.

From this result we can obtain the solution to the original equation by taking the inverse Fourier

transform.

For simplicity, we will assume that the equation has been scaled so the P(x) has unit period, and that

the highest frequency component of P is (approximately) 30 times the fundamental frequency. Sam-

pling P 64 times in one period will then suffice to avoid aliasing.

Rather than prompt the user for 64 complex data points representing the sampling of P, the program

below uses a relatively simple function for P, although you could use values from any other source

equally well.

10 OPTION BASE 1

20 COMPLEX P(64),Q(64,1),Z(1,64) P will contain the data points representing the
sampling of P. Q will represent P and eventually
P/(—f2? + 3if + 12). Z will represent the solution
to the differential equation.

30 COMPLEX T T 1s a complex scalar for use in the complex
division.

40 DISP “Working; please wait.”

50 RADIANS
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60 FOR I=1 TO 64
70 R=PI%I1/32
80 P(I)=( 6000%COS(3%R)*SIN(7.5%R)*

COS(5.5%R) , 4000%COS(13%R)+
3500%SIN(11%R) )

90 NEXT |

100 MAT Q=FOUR(P)

110 FOR F=-31 TO 32

120 J=MOD(F,64)+1

130 T=(—F*2+12,3%F)

140 Q(J,1)=QJ,1)/T
150 NEXT F
160 MAT Q=TRN(Q)

170 MAT Z=FOUR(Q)
180 MAT Z=TRN(2)

190 MAT Z=(64)%Z

200 COMPLEX Z(64,1)

210 DISP “The values are”

220 MAT DISP USiG
“X,C(MDDD.D,MDDD.DY’;Z

This is the sampling routine that assigns to P
the values of the complex-valued functions
represented by the right-hand side of line 80,
sampled at 64 equally spaced points.

Q now represents P.

F represents the frequency variable and spans
the full range of frequencies, positiveand
negative, that we expect to occur in P.

.| represents the number of the element in the Q
array where the amplitude of the frequency F is
stored.

T will be the denominator of the complex
fraction.

Q now represents P/(—f2 + 3if + 12).

This starts the procedure that assigns the values
of the inverse Fourier transform to Z. The
transpose is used here to take the conjugate of Q.

The transpose is used here for conjugation as
well.

The values displayed will represent the complex
values of the steady state solution of the
differential equation sampled at 64 equally
spaced points in one period.
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Fourier Sine/Cosine Series

There is another transform closely related to the finite Fourier transform that is applicable when the

data points Z, are purely real (that is, their imaginary parts are equal to zero). This is the Fourier

series transformation, which takes a set of 2N (real) data points Z, Z,, ..., Zon_ and returns a set of

2N + 1 real values Ay, Ay, ...,An, By, ..., By with the property that

 Ay N 27k 2njk
Z, = — + A:. cos —— + B: sin :
o2 j-; J 2N J 2N

If Wy, Wy, ..., Wyn_1 are the complex values of the finite Fourier transform of the real data points

Zy, ..., Zyn—_1, then the Fourier series values are given by

A; = 2REPT(W))  forj = 0, ..., N—1,

B; = —2IMPT(W;) forj =1,..., N.
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Owner’s Information

Installing and Removing the Math Pac Module

The math module can be plugged into any one of the four ROM ports on the front edge of the

computer.

 

CAUTIONS

o Be sure to turn off the HP-71 (press [f] [OFF]) before installing or removing the module.

¢ If you have removed a module to make a port available for the math module, before installing the

math module, turn the computer on and then off to reset internal pointers.

o Do not place fingers, tools, or other objects into any of the ports. Such actions could result in minor

electircal shock hazard and interference with pacemaker devices worn by some persons. Damage

to port contacts and internal circuitry could also result.

« If a module jams when inserted into a port, it may be upside down. Attempting to force it further

may result in damage to the computer or the module.

o Handle the plug-in modules very carefully while they are out of the computer. Do not insert any

objects in the module connecter socket. Always keep a blank module in the computer port when a

module is not installed. Failure to observe these cautions may result in damage to the module or

the computer.  
 

Limited One-Year Warranty

What We Will Do

The Math Pac is warranted by Hewlett-Packard against defects in materials and workmanship affect-

ing electronic and mechanical performance, but not software content, for one year from the date of

original purchase. If you sell your unit or give it as a gift, the warranty is transferred to the new owner

and remains in effect for the original one-year period. During the warranty period, we will repair or, at

our option, replace at no charge a product that proves to be defective, provided you return the product,

shipping prepaid, to a Hewlett-Packard service center.

143
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What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of

service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.

ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED

TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces,

or countries don’t allow limitations on how long an implied warranty lasts, so the above limitation may

not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE

FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclu-

sion or limitation of incidental or consequential damages, so the above limitation may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which may vary from

state to state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a

consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be

determined by statute.

Obligation To Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard

shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard

dealer or a Hewlett-Packard sales and service office. Should you be unable to contact them, please

contact:

o In the United States:

Hewlett-Packard Company

Personal Computer Group

Customer Communications

11000 Wolfe Road

Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)
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¢ In Europe:

Hewlett-Packard S.A.

150, route du Nant-d’Avril

P.O. Box CH-1217 Meyrin 2

Geneva

Switzerland

Telephone: (022) 83 81 11

Note: Do not send products to this address for repair.

¢ In other countries:

Hewlett-Packard Intercontinental

3495 Deer Creek Rd.

Palo Alto, CA 94304

U.S.A.

Telephone: (415) 857-1501

Note: Do not send products to this address for repair.

Service

Service Centers

Hewlett-Packard maintains service centers in most major countries throughout the world. You may

have your product repaired at a Hewlett-Packard service center any time it needs service, whether the

unit is under warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard computer products normally are repaired and reshipped within five (5) working days

of receipt at any service center. This is an average time and could vary depending on the time of year

and work load at the service center. The total time you are without you product will depend largely on

the shipping time.
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Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational devices is lo-

cated in Corvallis, Oregon:

Hewlett-Packard Company

Service Department

P.O. Box 999

Corvallis, OR 97339, U.S.A.

or

1030 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Telephone: (503) 757-2000

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer

where you purchased your unit.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H.

Kleinrechner-Service

Wagramerstrasse-Lieblgasse 1

A-1220 Wien (Vienna)

Telephone: (0222) 23 65 11

BELGIUM

HEWLETT-PACKARD BELGIUM SA/NV

Woluwedal 100

B-1200 Brussels

Telephone: (02) 762 32 00

DENMARK

HEWLETT-PACKARD A/S

Datavej 52

DK-3460 Birkerod (Copenhagen)

Telephone: (02) 81 66 40

EASTERN EUROPE

Refer to the address listed under Austria.

FINLAND

HEWLETT-PACKARD OY

Revontulentie 7

SF-02100 Espoo 10 (Helsinki)

Telephone: (90) 455 02 11

FRANCE

HEWLETT-PACKARD FRANCE

Division Informatique Personnelle

S.A.V. Calculateurs de Poche

F-91947 Les Ulis Cedex

Telephone: (6) 907 78 25

GERMANY

HEWLETT-PACKARD GmbH

Kleinrechner-Service

Vertriebszentrale

Berner Strasse 117

Postfach 560 140

D-6000 Frankfurt 56

Telephone: (611) 50041

ITALY

HEWLETT-PACKARD ITALIANA S.P.A.

Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

1-20063 Cernusco Sul Naviglio (Milan)

Telephone: (2) 90 36 91

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V.

Van Heuven Goedhartlaan 121

N-1181 KK Amstelveen (Amsterdam)

P.O. Box 667

Telephone: (020) 472021

NORWAY

HEWLETT-PACKARD NORGE A/S

P.O. Box 34

Oesterndalen 18

N-1345 Oesteraas (Oslo)

Telephone: (2) 17 11 80

SPAIN

HEWLETT-PACKARD ESPANOLA S.A.

Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

SWEDEN

HEWLETT-PACKARD SVERIGE AB

Skalholtsgatan 9, Kista

Box 19

S-163 93 Spanga (Stockholm)

Telephone: (08) 750 20 00

SWITZERLAND

HEWLETT-PACKARD (SCHWEIZ) AG

Kleinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057) 31 21 11

UNITED KINGDOM

HEWLETT-PACKARD Ltd

King Street Lane

GB-Winnersh, Wokingham

Berkshire RG11 5AR

Telephone: (0734) 784 774
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International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you

bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is avail-

able in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local

Hewlett-Packard service center to see if service is available for it. If service is unavailable, please ship

the unit to the address listed above under Obtaining Repair Service in the United States. A list of

service centers for other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and

materials. In the United States, the full charge is subject to the customer’s local sales tax.

Computer products damaged by accident or misuse are not covered by the fixed repair charge. In these

cases, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period

of 90 days from date of service.

Shipping Instructions

Should your product require service, return it with the following items:

¢ A completed Service Card, including a description of the problem.

® A sales receipt or other documentary proof of purchase date if the one-year warranty has not

expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of pur-

chase date should be packaged in adequate protective packaging to prevent in-transit damage. Such

damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the

shipment to the service center. The packaged product should be shipped to the nearest Hewlett-

Packard designated collection point or service center. Contact your dealer for assistance.
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Whether the product is under warranty or not, it is your responsibility to pay shipping charges for

delivery to the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the product with postage prepaid. On

out-of-warranty repairs in the United States and some other countries, the product is returned C.0.D.

(covering shipping costs and the service charge).

Further Information

Service contracts are not available. Computer products circuitry and design are proprietary to Hewlett-

Packard, and service manuals are not available to customers. Should other problems or questions arise

regarding repairs, please call your nearest Hewlett-Packard service center

When You Need Help

Hewlett-Packard is committed to providing after-sale support to its customers. To this end, our cus-

tomer support department has established phone numbers that you can call if you have questions about

this product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call the

toll-free number below:

(800) FOR-HPPC

(800 367-4772)

Technical Assistance. For technical assistance with your product, call the number below:

(503) 754-6666

For either product information or technical assistance, you can also write to:

Hewlett-Packard Company

Personal Computer Group

Customer Communications

11000 Wolfe Road

Cupertino, CA 95014



Appendix B

Memory Requirements

The Math Pac reserves 43.5 bytes of read/write memory for its own uses. In addition, small amounts of

memory are temporarily used for routine overhead purposes. Significant amounts of memory can be

used to declare complex variables and arrays (see page 20), and to redimension arrays to a larger size,

but this memory usage is easily determined. This appendix lists the amounts of tempory memory used

by other Math Pac operations.

 

Item Memory Required For Operation
 

 

Matrix operations

DETCAS

MAT FEIWNT W=IHG

MAT DIZF USIHG

MAT IHMFUT

MAT A=A¥A
MAT A=A%¥B
MAT A=B%*A

MAT A=TEHCAIFA
MAT A=TEHCAX¥B
MAT A=TEHCBI*A  

2N(4N + 1) bytes, where A is an N x N matrix.

14 bytes.

14 bytes.

40 bytes.

Requires additional memory only if an operand array is used for the result
array. If the product (that is, the redimensioned array A) is M x N (for vec-
tors, let N = 1), then the memory required is:
3MN bytes, if A is type IMTEGEE.
45MN bytes, if A is type ZHLOET.
8MN bytes, if A is type FEAL.
OMN bytes, if A is type COMFLEX SHORET,
16MN bytes, if A is type COMFLE =.

Requires additional memory only if an operand array is used for the result

array. If the product (that is, the redimensioned array A) is M x N (for vec-

tors, let N = 1), then the memory required is:

3MN bytes, if Ais type INTEGEE.
4.5MN bytes, if A is type ZHORET.
8MN bytes, if A is type FEAL.
OMN bytes, if Ais type COMFLEX ZHORET.
16MN bytes, if A is type COMFLE =.
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Item Memory Required For Operation

 

MAT B=IHWCAZ

MAT A=TEMHCAZ

MAT B=FREOOTCAZ

MAT B=FOURCA>

FHEODOT

IMTEGEAL  

Ais N x N.
If Ais REAL, SHORT or IMNTEGEFRand B is FEHL:

4N bytes.
If Ais FEAL, SHORT or IMTEGEFRand B is not FEAL:

4N(2N + 1) bytes.
If Ais COMFLE® or COMFLEX SHORET:
8N(4N + 1) bytes.

Ais N x N and B is N x P (for vectors, let P = 1).
If A is FEAL, SHORT, or IMTEGERE and B is FEHL, ZHOET, or

IMTEGEE:
4N(2N + 4P + 1) bytes.

If A is EEAL, ZHORET, or IMTEGEFR and B is COMFLEX or

COMPLEY SHORT:
4N(2N + 8P + 1) bytes.

If Ais COMFLE® or COMFLEY SHORT:
8N(4N + 4P + 1) bytes.

If AisM x Nand IMTEGEFE:
MN/2 bytes.

If operand and result matrix are different, or if A is not INTEZEFR, no extra

memory is needed.

A represents an Nth degree polynomial.
21N + 261 bytes.

A contains N elements.
If Bis COMFPLEX SHORET:
16N bytes.

If Bis COMFLE Ytype, no extra memory is needed.

112.5 bytes if FHEOOT is not nested.
96.5 additional bytes for each level of nesting.

208.5 bytes if IMTEGFHL is not nested.
192.5 additional bytes for each level of nesting.
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Error Conditions

The Math Pac reports two classes of error messages.

¢ Math Pac error messages. These have a LEX ID number of 2. These error messages are explained

in the first table.

* HP-71 error messages that are reported by Math Pac functions. These have a LEX ID number of

0. These error messages are explained in the second table.

Math Pac Error Messages
 

Number Error Message and Condition
 

1

  

#HOIMS

e OOTCA,.B»: A or B is a matrix.

e OETCA», MAT B=IHWCAY, MAT B=TEHCAX, MAT A=I0H,

MAT X==4YSCA,Y>X: AorBis a vector.

MATA=IDOMC/?: only one redimensioning subscript specified.

MATA=operation . operand array(s) *: number of subscripts of A is not the same as the

number of subscripts required for the result of the operation.

Hot Squars

e DETCAs, MAT A=ID0H, MAT B=IHVCA: MAT X=Z%ZCA,.,BX: Ais a matrix but
the number of rows of A is not equal to the number of columns.

o MAT A=IDOHCj.jrii # j.   
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Number Error Message and Condition
 

  

Contormability

e MAT A=B+C, MAT A=B-C: B and C are not conformable for addition (the number of

rows are unequal or the number of columns are unequal)

o MAT A=B#C: B and C are not conformable for multiplication (B is a vector or the num-

ber of columns of B is not equal to the number of rows of C).

e MAT A=TEHIB:#¥C: B and C are not conformable for transpose multiplication (B is a

vector or the number of rows of B is not equal to the number of rows of C).

e MAT X=54%3ZOA,BX: Although A is a square matrix, A and B are not conformable for
multiplication.

o OOTCA,BX: Although A and B are vectors, the number of elements of A is not equal to
the number of elements of B.

Farameter Eedim

e The result array of a MfHT statement is a subprogram parameter. The statement requires

array redimensioning, which changes the number of array elements.

He=ztinga Error

e More than five FHEOOT or INTEZREHL keywords are nested.

Fogbd FH 1in FHEOOTS-IMTEGEAL

e Attempting to execute FHFECOT or INTEZFEHAL from the keyboard in BASIC mode,
and the function whose root or integral is sought is a user-defined function.

o Attempting to execute a user-defined function from the keyboard while an FHEDIT or

IHTEGZEARL execution is suspended during the evaluation of the function whose root or

integral is sought.

Function Interrupted

e Interrupting DET A, CHORMCAY, RHORMCAY, FHOEMCAY or DOTCA,BY by
pressing twice.

Ead Hrrag Siz T

o MAT B=FOLURETAL where the number of elements of A is not a non-negative integral
power of two.

e MAT B=FEOOTCAZX where A has only one element.

FROOT Failure

e FROOT failed to find a root.
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Number Error Message and Condition

10 CAMMA=InT

e GAMMACX® where X is a non-positive integer.

11 HTHMHC +—1 3

o ATHMHC1 > or HTHMHH-1 2

No Imitialization

error » The Math ROM cannot initialize due to insufficient memory. This ROM requires 43.5
number bytes of user memory forits own use. This memory must be available before plugging in

the module.  
 

HP-71 Error Messages
 

 

 

Number Error Message and Condition

11 Inwvalid Hrag

e EMALCB$. R, ESZTREFCX,R: The rounded integer value of R is not equalto 2, 8, or
16.

e BEVAL “B$,R: B$ is not a valid string representation of a number in base R.

e BESTE*CX.,R»: The rounded integer value of X is not in the interval [0,1E12).

e BEVAL CB$.R: The decimal equivalent of B$ exceeds 999,999,999,999.

o LEHMDCA, NI, UEHDOCA,NX: The rounded integer value of N is not equal to 1 or 2.

¢ An illegal subscript has been used in a MAT COM, MAT I0OH, MAT ZER,
COMFLES, or COMFLE® SHOET statement.

24 Insufficient Memoryg

* Appendix B gives the memory requirements for various Math Pac operations.

31 Data Tupe e A scalar (real or complex) has been used where an array is required or vice-versa.

* A complex type (scalar or array) has been used where a real type (scalar or array) is

required or vice-versa.  
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Number Error Message and Condition

32 Ho Data

o Attempting to execute DETL before the first completion of MHT . . . I H'\' with a real-

type argument or MAT . . . %% with a real-type first argument.

o Attempting to execute FWALILE or FEZUEZZ before the first completion of an
FHEOOT keyword.

o Attempting to execute I''HLUE or IECOUIHDO before any INTEGREHAL keyword has

completed the first evaluation of the function whose integral is sought.

o Attempting to execute F''AF while no FHEDOT is evaluating the function whose root is
sought.

o Attempting to execute I''AF while no INTEZFEHL is evaluating the function whose
integral is sought.

46 Imwalid WSIHG

o Formatting a real expression with a complex IIMHAZE field or vice-versa.

79 Illegal Context

o Attempting to execute IMTEGEAL or FHEDOT from CALC mode in any way except
by direct execution.

80 Imwvalid Parameter  e MAT IHMFUT attempts to execute an expression in the MAT IHFLUT response line
where that expression calls a user-defined function.
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Attention Key Actions

The way operates during the execution of each the following three keywords is described on the

referenced page.

MAT IHFUT Refer to page 54.

FHEOOT Refer to page 97.

IMTEGEAL Refer to page 111.

The keywords listed below in this appendix can be aborted by pressing the key once or twice.

Array Output Statements

All Math Pac array output statements (M~T DI%F/FEINT[UZIHE]) can be halted at any time by

pressing once.

Other i+ 7Statements

The followingT statements may be halted at any time by pressing twice.

MHET result = [—] operand

MAT result = operand +/-/% operand

MET result = © scalar @ [# operand]

MHT result = 1MVoperand :

FAET result = ==« operand . operand :

FAT result = TEMY operand :[% operand |

MET result = FLUED operand

FET result = FEOOTC operand
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Suppose a lengthy program contained a MAT IH!\' statement. Suppose further that you wished to

abort this program. You press once, and the program does not halt (the SUSP annunciator does

not turn on). This tells you that the MAT IH\' statement may be executing, and gives you a chance to

wait for the result of this MAT IH'' execution, or to abort the MAT IHY execution and the program

immediately by pressing a second time. In this way the “press twice” rule gives a user

more control over program and statement suspension.

Pressing once during execution of MAT IHY would suspend the program in the usual way after

this statement is completed.

Scalar-Valued Array Functions

The following scalar-valued array functions can be halted at any time by pressing twice.

DETY operand

LT operand . operand

FHOREMS operand

CHOREMC operand

FHOEMC operand

The benefits provided by this “press twice” rule are the same as those described above. However,
only an error can halt the execution of an expression, so when you press twice to halt any of the
above functions, the HP-71 will display the error message Furictiorn Imterrupted
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Numeric Exceptions and the IEEE Proposal

Introduction

This appendix will discuss IEEE exception handling by Math Pac functions and operations, including

computation with =t and I+ f arguments, exception flag setting, handling of out-of-range arguments,

error or warning messages, and default values for I'/L and ['/Z exceptions. The HP-71 reference

manual discusses the IEEE proposal for handling math exceptions. Math Pac functions, when appro-

priate, will set the exception flags I'/L, DWE, OUF, LUMF, and I+and report errors or warnings (with

default results returned) according to the TRHF settings for each of these flags. You can refer to the

appropriate sections of this manual for definitions and/or computational formulas for many of the

functions described here.

No exception flags are set by any of the keywords in sections 2 or 3 of this manual, or by Math Pac

keywords T%FE, - (negation of complex numbers), COH., COH, I0OH, FEER,

MAT DISF/PREIMTUSIHG], LEHD, UBHD, DETL, FUYAR, FURLUE, FGUESS) TVAR, TUVALUE,

and IECLUHD, Remember that exception flags IR, D4F, and LIHF may be set when values are

rounded to fit the destination type, such as, for example, assigning «MA=FEAL . MAXFEEAL > to a

COMPLER SHOET variable or executing MAT A=B where A is IHTEZEFR type and B contains ele-

ments greater than 99999.

Aside from exceptions occurring during rounding, the statements MAT A=B, AT A=-B,

MAT A=TREHIB», and MAT A=¢X» set only the I%l exception flag (reporting message

Zimmaled Op) and only when Ais IHTEGEFRtype and either B contains, or X is, a signaling H zH.

This is because IHTEGEFRvariables can contain only quiet, not signaling, i =ts. The same applies to

MET ITHFUT.

 

The cases given for each of the keywords in the tables which follow are evaluated in order from top to

bottom.

Note: Throughout this appendix, # represents any argument.
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Real Scalar Functions

These functions are described in section 4 of this manual. Any signaling i =t argument sets 1%/l and

reports message Sigrialed Op;if TRAFCIVL > = 2, then this Hal becomes quiet and the opera-

tion can continue. With the exception of the H =¥ function, any quiet=zargument returns a HzH

result with no exception flags set. (Aside from signaling H! arguments, the functions I & LHD and

Hab# set no exception flags).

Real Hyperbolic Sine (ZIHHX)
 

Argument X Result
 

+Imt

+0

*  
X; no exception flags set.
X; no exception flags set.
IH* set; LUMF, OWF set as appropriate.
 

Real Hyperbolic Cosine (C"=H X 1)
 

 

  

Argument X Result

+Inf |X]; no exception flags set.
+0 1; no exception flags set.

* IH= set; OWF set as appropriate.
 

Real Hyperbolic Tangent (THMHH“X)
 

 

 

Argument X Result

+Int ZZHCXT; no exception flags set.
+0 X
% IH= set; LIMF set as appropriate.
 

Real Hyperbolic Arc Sine (FSIHHX)
 

 

  

Argument X Result

+Irmf X; no exception flags set.

+0 X; no exception flags set.
* IHset; LIMF set as appropriate.
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Real Hyperbolic Arc Cosine (HCOZH X)

 

Argument X Result

 

It

X <1
1

-t   
X; no exception flags set.
IVL set; MaH result; message Irwalid Arg.

0; no exception flags set.
IHx set.  
 

Real Hyperbolic Arc Tangent (ATAHHCX)
 

 

   
 

 

 

   
 

 

 

Argument X Result

|X| > 1 IWL set; MaHMresult; message Iriwalid FAra.
|X| =1 OWZ set; message ATHMHC +-1 .

SEHOXY X Inf resultif TRAFCDOWZ Y = 2.
ZGHOXY X MAXEEARL result with IHH set if TREAF(OWZ Y = 1,

+0 X; no exception flags set.
* IHx set; LIMF set as appropriate.

Base 2 Logarithm (LJZ2 40X )

Argument X Result

It X; no exception flags set.
X <0 IV set; MaHl result; message LG Crieg .
+0 OWZ set; message LG @y,

—Irnf resultif TRAFIDWVZ Y = 2.
—MAXEEAL result with THsetif TRAFIOWVZ Y = 1.

1 0; no exception flags set.
* IHH set.

Gamma Function (GAMMACX)

Argument X Result

It X; no exception flags set.
+0 OWE set; message GARMMA=THF.

X < 0 and integral

CLAZZOXY X Ind result if TRAFDOV 2.
CLASSX X MA=EEAL result with IH: setif TRAFCOWVZ Y =1,

DU set; message GHMMA=THF.

—Irnf resultif TRAFCDWVZ Y = 2.
—MA=EEAL result with IHx setif TRAF OV

ITHset for all X not in the set

{1, 2, ..., 18}; LIMF, OWF set as appropriate.

= 1.  
 

 



160 Appendix E: Numeric Exceptions and the |IEEE Proposal

Nearest Machine Number (HE ICHEORE (X, YY)

 

 

 

Arguments

Result
X Y

X=Y X=Y X; UHF, THH setif TRAFCUMFY # 2and 0 < |X| < EFE.
MA=REEAL It Y; no exception flags set.

—HMHASEEARL —Inf Y; no exception flags set.
+Inmt * SGHOXY x MA=EEHL; no exception flags set.

+0 * SEHOYY X MIMEERL; UHF, ITHE set if TRAFCUNFS # 2.
MIMREAL +0 0; no exception flags set.
—MIMEERL %0 —0; no exception flags set.
* * LUHF, THH setif HEIGHEOROX, Y| < EFS and TRAFCLUMF Y # 2,     
 

Power of Ten Scaling (ZCHLE1IECX,NX)

 

 

 

Arguments

Result

X N

* non-integer 1%L set; Mzl result; message Iriwalic FHra.
+Imt —Int IV set; Mah result; message I+ Hid.

0 It IV set; Mah result; message I+ #ii.

+ Ird * X; no exception flags set.
* — It =EHOX® x 0; no exception flags set.

* Tt SGHOX® x Imd; no exception flags set.
* Y TH=, OUWF) UMF set as appropriate.     
 

Complex Functions and Operations

These functions are described in section 5 of this manual. For extensions of HP-71 and Math Pac
functlons to complex arguments (+, ~, #, -, " LG, E=F, SIH, CO5, TAMN, SIHH, CTOSH, THHH,

HET, SGH, ABE, =, 4, », 7, and #), only the complex case 1s discussed here For the functlons

B,RECT, HF iz, and FE.!, computation at a real argument X is equivalent to computation at

thecomplex argument (X, 0).

  

Any signaling H =argument (including real and imaginary parts of complex arguments) sets Il and

reports message = isrialed Oppif TREAFCIVL > = 2, then this M=l becomes quiet and the opera-

tion can continue. In the following discussion, all references to izhs are to quiet Hzbis.
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The following terms are used:

® Complex denotes complex DATA type.

Real denotes real DATA type (e.g., (3, 0) is complex and 3 is real).

CHaH denotes any complex number with at least one FH =i component.

e CIf denotes any complex number whose magnitude is I+ f; that is, any complex number with at

least one + I+:¥ component.

CZERO denotes any complex number whose magnitude is 0.

Arg(Z) denotes the argument of Z, that is, the infinitely precise value of the Math Pac function

HEGOZD,

|Z| denotes the magnitude of Z.

® The complex variables Z and W will also be denoted by (x, y) and (u, v) respectively.

+, — (Addition and Subtraction)

For real a and complex Z,a + Z = (a £ x,y)and Z + a = (x *+ a, y). For complex Zand W, Z + W

= (x x u y £ v). I'VL is set and message I+~f -1t is reported if any componentwise addition or

subtraction is equivalent to Irif — Irf; a HaH is returned for the corresponding result component.

Otherwise, IH:, OWF, and LIMF are set for each result component as appropriate.

# (Multiplication)

For real a and complex Z,a X Z = Z X a = (ax, ay). 1L is set and message I{£ is reported if

any componentwise multiplication is equivalent to (+Ir+) X (£0); a Mzl is returned for the

corresponding result component. Otherwise, I, {1\/F, and UiFHF are set for each result component as

appropriate.
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For complex Z and W, Z x W is given by the table below.

Complex x Complex Multiplication (Z « W)
 

 

 

    
 

Arguments
Resuit

Z w

CHaH * cHakM, HaMH»; no exception flags set.

* CHaH wHaH,HaM»; no exception flags set.

Cinft CZERO I\'L set; tHaM,HaMH? result; message It FE.

CZERO CInf IWVL set; ©HaM, HakM >y result; message Itif #6.

Clinft * FECTCCInf, Arg(Z) + Arg(W): »; no exception flags set.

* Cinft FECTCCInf, Arg(Z) + Arg(W): ; no exception flags set.

* * (xu — yv, xv + yu); ITH=, OUVF, LUHF set for each result component as

appropriate.

- (Division)

For real a and complex Z, Z/a = (x/a, y/a). I'/l. is set and message © .& is reported if any

componentwise division is equivalent to (+0)/(+0); a M=zt is returned for the corresponding result

component. I/l is set and message I+t .~ I+ is reported if any componentwise division is equivalent

to(£Irt)/(x1Irf); aHaH is returned for the corresponding result component. {1/ is set and mes-

sage -~ Z=r o is reported if any componentwise division is equivalent to T/(+0) where T is neither a

Hak, £1nf,or £0; Irf of the appropriate sign is returned for the corresponding result component if

TEAFCDWVESY = 2; MAYEEAL of the appropriate sign is returned with Itset for the corresponding

result component if TEAF COWE s = 1. Otherwise, I Hi, 04 F, and LiHF are set for each result compo-

nent as appropriate.

For complex Z, we define the following. If Z = CZERO, then 1/Z is defined to be (ZL A%(x) X Iwf,

~5GH(y)). If Z = CIrn{, then 1/Z is defined to be (ZGH(x) X 0, =ZGH(y) X 0).
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For real a and complex Z, a/Z is given by the table below.

Real/Complex Division (a / Z)

 

 

 

  

Arguments
Result

a Zz

Mzt * cHak, HaH>; no exception flags set.

* CHaH cHakl, HaM; no exception flags set.

+Inf CInf IV set; oHaM, HaM > result; message Ivif -~ Inif

+0 CZERO I'\'L set; tHaM,HaHresult; message & ..

+Int CZERO Z:H(a) X (1/Z) (real x complex multiplication); no exception flags set.

* CZERO 0O''Z set; message .~ Z=r .

a x (1/2) (real x complex multiplication) result if TEAF (0WZ 3 = 2.

a X (1/2) (real x complex multiplication) result with + I+ result component

replaced by +MA=FEEAL and IH: setif TRAFCOWZ» = 1.

* Clnf a x (1/2) (real x complex multiplication); no exception flags set.

+Inmt # a x cioHdcZy (real X complex multiplication); I%'L set and message It f%
reported if any componentwise multiplication is equivalent to (£ I+:f) x (£0); a

Hat is returned for the corresponding result component. Otherwise, no excep-

tion flags set.

% * @/1Z1?) x CoMJdoZs (real X complex multiplication); IH:, OWF, LUMF set for

each result component as appropriate.  
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For complex Z and W, W/Z is given by the table below.

Complex /| Complex Division (W/Z)
 

 

 

   

Arguments
Result

w Z

CHaH * HaM,HaH*; no exception flags set.

* CHaH vHah,HaMHr; no exception flags set.

CZERO CZERO I''L set; ©HaM,H=aHMH> result; message & ..

Clint Clnft IVL set; “HaM,HaH > result; message Irif .~ Inf.

Clnt CZERO W x (1/2) (complex x complex multiplication); no exception flags set.

* CZERO O\'Z set; message .~ Zet .
W x (1/Z) (complex x complex multiplication) result if TRAF COWZ 2 = 2.

W x (1/Z) (complex x complex multiplication) result with = I+ { result compo-

nent(s) replaced by +MAXFEAL and IHx setif TRAFCOWZ Y = 1.

* Clinf W x (1/Z) (complex x complex multiplication); no exception flags set.

* * (W x COHJdeZ3)/|Z]2 (complex x complex multiplication and complex/real di-
vision); I M=, OWF, LIHF set for each result component as appropriate.
 

For complex Z, f(Z) is given for the specified functions by the following tables.

Complex Sine (ZIH©ZY)
 

 

  

Argument Z Result

CHaH vHakl, HaMH»; no exception flags set.

(xInf, %) IVL set; “Hak,HaH > result; message Irnwalid Hra.

(&, £Int) FECTCCInf, Arg((sin(x), S:HCyrcos(x))* »; no exception flags set.

* IH=, OUWF, LUHF set for each result component as appropriate.
 

Complex Hyperbolic Sine (S IMHH:Z>)
 

 

  

Argument Z Result

CHaH tHaM, HaH>; no exception flags set.

(x, £Int) IVL set; “HakM,HaH» result; message Irwalid Hra.

(£Inf, %) FECTCCInt . Arg((55H v x1cos(y), sin(y)): ; no exception flags set.

* IH=, OWF, UHF set for each result component as appropriate.
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Complex Cosine (C1=0Z)

165

 

 

* 

Argument Z Result

CHaH cHaM, HatH»; no exception flags set.

(£Inf, %) IVL set; ©HakM,HaM> result; message Irwalid Ara.

(%, £Int) FECTCCImt, Arg((cos(x), —=GHCyrsin(x))* *; no exception flags set.

 IH=, OWF, UHF set for each result component as appropriate.
 

Complex Hyperbolic Cosine (Z1=HZ)

 
 

 

    
 

 

Argument Z Result

CHaH cHak, HatH; no exception flags set.

(x, £Int) IVL set; ©MakM,HaM> result; message Irnwalid Arag.

(£Inf, %) FECTCCInt . Arg((cos(y), =GHixsin(y))* »; no exception flags set.

* ITH=, OWF, LUHF set for each result component as appropriate.

Complex Tangent (THHZ)

Argument Z Result

CHaH cHak . Hakl¥; no exception flags set.

(£Inf, £Inft) cEL, ZEMOys 3; no exception flags set.

(£Irt, %) IVL set; ©HaM, HaM>» result; message I+iwalid Hra.

(%, £Int) GHOsin(x)cos(x) + &, SGH Ty35 no exception flags set.

* IH=, OWF, LIHF set for each result component as appropriate.   
Complex Hyperbolic Tangent (THHMHHZ})
 

 

 

Argument Z Result

CHaH tHaM, Hak; no exception flags set.

(£Inf, £Inft) coEHOx s, —83; no exception flags set.

(%, £Int) IVL set; tMaM, MaM result; message Irwalid Hra.

(£Irmt, %) CEGH Xy, SEHCsin(y)cos(y) +6 15 no exception flags set.

* ITH=, OWF, LUHF set for each result component as appropriate.   
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Absolute Value (RE="ZX)

 

 

  
 

 

 

Argument Z Result

CHaH Hat; no exception flags set.

Clnf I+ f; no exception flags set.

* IH=, OWF, LIHF set as appropriate.

Argument (ARG CZY)

Argument Z Result

CHaH Hat; no exception flags set.

Clef It o 45 degrees or w/4 radians; IH: set if radian mode.

Tt Int 135 degrees or 3«/4 radians; IH: set if radian mode.

Clmt ., ~-Imt o

C=Irmf,-Intn

*  
—45 degrees or — /4 radians; IHset if radian mode.

—135 degrees or —3x/4 radians; Ikset if radian mode.

AMGLE Cx,yr; IHH, UHF set as appropriate.

 

Projective Infinity (FFO.1:02Z7)

 

 

*  

Argument Z Result

CHaH cHak, HatH>; no exception flags set.

Clnf “Irnf,B2; noexception flags set.

Z; IUMF, IH* set for any component whose magnitude is between 0 and EF= if
TEAFCUHF Y # 2.

 

 

 

*  
Unit Vector (=GHEZY)

Argument Z Result

CHaH i HMak, HaM; no exception flags set.

CZERO Z; no exception flags set.

(£Irmf, £Inf) KECTCOL, Arg(Z)s »; TH= set.

(£Irmt, %) CEGHOxD ,SGH Oy 83 no exception flags set.

(%, =Int) CEGHOx B, SGH Oy35 no exception flags set.

IH=, LUHF set for each result component as appropriate.
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Square Root (ZRETCZY)

Argument Z Result

CHaH cHaH ., HaH>; no exception flags set.

Cinft FECTCCInt . Arg(Z)- 2; no exception flags set.

* IH=, UHF set for each result component as appropriate.

Rectangular to Polar Conversion (FOLHAFR©Z )

Argument Z Result

* CHEZCZYARG OZy v THE, OWF, UHF set for each result component as

appropriate.

Polar to Rectangular Conversion (RECT Z)
—

Argument Z Result

CHah o Mak, HaM; no exception flags set.

(£Inf, £Inf) CSCGHOXxXEInt .82, no exception flags set.

(0, £In¥) (x, x); no exception flags set.

(&, £Int) IWL set; ©MaM,Hak>» result; message Irnwalid HAra.

(£Int, %) (acos(y),bsin(y)); no exception flags set;

  
_ {x if cos(y) # 0

SEHOx T if cos(y) = 0

and
b — {x if sin(y) # 0

SGEHOx > if sin(y) = 0

(xcos(y),xsin(y)); IH:, LIHF set for each result component as appropriate.   
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Natural Logarithm (L= 2Z %)
 

 

Argument Z Result

CHah cHaM, HaH»; no exception flags set.

CZERO OWE set; message LG E .
C=Int, ARGOCZY» resultif TREAFCOWZY = 2.
C-MAXEEAL ARG CZ Y » result with THsetif TRAFCDWE Y = 1.

Clnt cInmf HREGOCZY 3 ITHE set for the result imaginary part as appropriate.

* IH, UHF set for each result component as appropriate.    
 

Exponential (E<F©Z>)
 

 

Argument Z Result

CHaH cHMak, HaM>; no exception flags set.

(=Irnf, £Inf¥) T, B; no exception flags set.

(I, £Inf) cInt . B2; no exception flags set.

(%, £Inft) IWL set; tHaM,HaM> result; message I+riwalid HAra.

(—Irnf, %) (0 x cos(y),0 x sin(y)); I set for each result component as appropriate.

(I, %) FECZToZ>»; no exception flags set.

* IH=, OWF, LIHF set for each result component as appropriate.     
Relational Operators

When comparing two values, at least one of which is complex, any numeric comparison operator

containing + or » without * or # sets I''L and reports message Uriotr dered, If TRAFCIWVL Y = 2,

then a result of 0 or 1 will be returned based on the presence of the comparison operator =, that is, Z

v=W,Z >= W,and Z <>= Waretrueifandonlyif x = uandy =v;Z < W,Z > W,and Z <> W are

always false.
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~ (Exponentiation)

Before W ~ Z is computed, the following peliminary actions are taken:

1. If either W or Z is real then, for the purposes of the computation, it becomes complex with 0

imaginary part.

2. If either Wor Z is a CHat, then a result of ©HzH , HaH > is returned with no exception flags set.

3. For the purposes of the computation, W and Z are then converted to a canonical form representa-

tion defined as follows: if one part of a complex number is + I+ f while the other part is finite,

then the canonical form representation replaces the finite part by +0 (that is, preserves its sign);

otherwise, the complex number is already said to be in canonical form. For example, &, I+ f

and (-1Irf,~E> are the canonical form representations of & .7, Inf» and ¢-Inf .-

MA=FEAL » respectively. In what follows, W and Z are assumed to be in canonical form.

For W = CZERO, W - Z is given by the table below.

Exponention (W ~ Z): W = CZERO
 

 

Argument Z Result

x>0 CEGH ex D, B no exception flags set.

x <0 0w set; message BHeg.
CEGH ex¥ Inf B0 result if TREAFCOVE Y = 2.
CEGH Utx P EMASEEAL , 83 result with THsetif TEARF OOV= 1.

x = 0and y = 0 No exception flags set; message && reported; default result of © 1, &returned

if TRAFCIWL Y # 0.

x=0andy # 0 I'L set; tHaH,HakH? result; message Irwalid Hra.     
For y #+= 0, W = Z is given by the table below.

Exponention (W ~ Z):y + 0
 

 

 

Arguments

Result

w Z

(1, £0) Clnft IWL set; tMab, HaM? result; message 1~ 1mf.

Y * EAFCZELOGCW2 Y (complex X complex multiplication). If Z#L QG cWa

equals (=0, + I+ +), then this quantity is not in the domain of ExF and

IWL is set, «HaM, Hall is returned, and message Itiwazlid Hra is
reported. Otherwise, IH:, 0OWF, and LiMF are set for each result compo-

nent as appropriate.     
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Fory = 0 and v # 0, W ~ Z is given by the table below.

Exponention (W “ Z): y = 0 and v+ 0
 

 

 

Arguments
Result

w Z

w| =1 Clnf IVL set; tHaM, Hakresult; message Irwalid HAra.

Clinft CZERO No exception flags set; message I “& reported; default result of « 1, &%
returned if TRAFCIWL Y # 0.

* * EsFox#LOGCW3: (real = complex multiplication); IH:, OUF, LIHF set for
each result component as appropriate.    
 

Fory = 0and v = 0, W ™ Z is given by the table below.

Exponention (W ~ Z):y = 0andv =0
 

Arguments
 Result

w Z
 

u==xInf x=20 No exception flags set; message It ~& reported; default result of <1, &
returned if TEAFCIWLY # 0.

u= =+1 Clnf IVL set; “HaM, HaM? result; message 1" 1rf.

* Clnft “|lu|™x., & ; no exception flags set.

* * EAFOx¥L0OGIWI 1 (real X complex multiplication); IH:=, 0OWF, LIMF set for

each result component as appropriate.    
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Array Functions and Operations

These functions are described in sections 7, 8, and 9 of this manual. Refer to the previous discussion for

definitions of CZERO, CI+ f, complex, etc.

CHOREMCAY , EMHOEMCAL

If Ais M x N (for vectors take N = 1), then

CHORMOAY = MAX0 3Z |a| RHORMOAY = 1<Mf“2XMZ |a|

If any element of A is a signaling H=zH (including either part ofcomplex array elements), then each

function sets I/l and reports message Zigrialed Op, If TRAFCIVL > = 2, the result is a quiet

F .zwith no other elements processed.

If any element of A i1s a quiet i zH (1nclud1ng either part of complex array elements), then eachfunc-

tion sets I'/i. and reports message Lirioir cier oy a Mat result is returned. Otherwise, IHi, 21U F, and
LIMF are setfor the result as approprlate.

FHORMOA?

If Ais M X N (for vectors take N = 1), then

FHORMIAY =

 

(ii ,-é |aij|2>

If any element of A is a signaling !4 =H (including either part of complex array elements), then I is

set and message = izrialed (g is reported. If TRHFC IUL » = 2, the result is a quiet M=with no

other elements processed.

Quiet i zhis pass through with no exception flags set. Otherwise, I, i\F and LiFHF are set for the

result as appropriate.
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OOTCA, B
If A and B are N-element vectors, then

N
DOTCA.Bx = > ab,

i=1

(If either A or B is complex, refer to the definitions of complex addition and multiplication given

previously). If any element of A or B is a signaling H=zH (including either part of complex array ele-

ments), then 4L is set with message Zigrzled Op. If, in any term in the above expression, +0 or

CZERO is multiplied by +Irf or CIr+, then I\ is set with message If#E. If, in the above

expression, the summation executes an addition equivalent to Irif — I+, then IVl is set with

message [rif—1r+t.

If only one I.'L exception occurs, that message is reported. If more than one I'/lL. exception occurs,

the particular message(s) reported depends upon the order and type of exception that occurs. If

TEAFCIVL > = 2, the result is either a real Hal or a complex value with one or two Mzt compo-

nents. Quiet i =Hs pass through with no exception flags set. Otherwise, I, (1%/F, and LIHF are set for

the result, or each result component, as appropriate.

MAT C=A%*B

If Ais M x N and Bis N X P (for vectors take P=1), then

N

Cj = Z a;by;
k=1

(If either A or B is complex, refer to the definitions of complex addition and multiplication given

previously). Since each result element is derived from an inner product, exception handling is the same

as that forT« A, B>, applied to each result element separately.

MAT C=TEHIAXEB

If Ais M X N and B is M x P (for vectors take P=1), then

M —

Cj = Z akibkj

(If either A or B is complex, refer to the definitions of complex addition and multiplication given

previously).

Since each result element is derived from an inner product, exception handling is the same as that for

3 T<A,B>, applied to each result element separately.
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MAT C=A+B
All elements of C are computed separately as

(If either A or B is complex, refer to the definitions of complex addition and subtraction given pre-

viously).

If any element of A or B is a signaling H=zH (including either part of complex array elements), then

Ti/i. 1s set and message Ziarzled Ois reported. If TREARFCIWL Y = 2, the corresponding result

element or component becomes a quiet iz and the operation continues. Quiet Hzis pass through

with no exception flags set.

T4/1s set and message IrifI ¥ is reported if any addition or subtraction (or componentwise addi-

tion or subtraction) is equivalent to I+ — Ir+#; a HzH is returned for the corresponding result
Telement or component. Otherwise, I, 1/Fand LiFHF are set for each result element or component

as appropriate.

MAT B=isi#A
All elements of B are computed separately as

bij = saij

(If either s or A is complex, refer to the definition of complex multiplication given prev1ously) If s (or

either part of s, if s is complex) is a signaling =, then 1%/is set and message Zigraled Op is

reported if any element of A is a signaling 1 aH (1nclud1ng either part of complex array elements), then

/1. 1s set and message S izmialed O is reported. In either event, if - FoIuls = 2, these

ris become quiet and the operation continues. Quiet i =ts pass through w1thno exception flags set.

 

141 is set and message Ir:if % is reported if, during the computation of any result element, +0 or

CZERO is multiplied by + I+ or CIr#. If TERF{IWVL » = 2, the corresponding result elementis

 

either a real =i or a complex value with one or two=zt components. Otherwise, I, 14F, and

LIHF are set for each result element or component as appropriate.

ToAX, MAT C=IHUCAX, MAT C=5YvS(A,B)
Due to the intricate algorithmic basis of these three operations, exception handling is complex; only a

summary is provided here.

If any element of A or B is a signalingP (1nclud1ngelther part of complex array elements), then

i1 1s set and message = iwrial e - 1s reported. If TEFHF < I» = 2, the corresponding element

or component becomes a quiet iz and the operation contmues Qulet Hzbs pass through with no

exception flags set.
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(1WF, UHF, and IHare set for each result element as appropriate and may also be set at intermediate

stages of the computation (especially &i'/F when A is (machine) singular). I%'l. may also be set with

any of the following messages reported: I+ #&, I+if~Inf, and/or I+ .1+ ¥. These messages are

only possible due to a + I+:¥ in A or B or an intermediate overflow becoming =+ I:+; in the latter case

they may be suppressed by setting TFEHAF « 1./F * = 1 before the computation.

Other Math Pac Functions

T

Special cases for the FET function are handled first. These are H=tis, Irifs, or leading and trailing

zeros in the coefficient array.

 

Fzts are handled first. If any coefficient is a=z, then every element of the result array becomes

oMz, Hab with no exception flags set and the function is complete. (Signaling =} coefficients do

not set TR,

 

Iri¥s are dealt with next. If any coefficient is + I+ ¥, then every finite coefficient will become zero and

the computation falls through to handle leading and trailing zeros.

Leading zeros are handled next. Every leading zero coefficient will produce a root at « Ir:i¢ . Isif

with no exception flags set. The next coefficient then becomes the leading coefficient and the process

loops. Every such root stored decrements the degree of the polynomial; the function is complete if the

degree becomes zero.

Trailing zeros are handled next. Every trailing zero coefficient will produce a root at ¢ £ . &with no

exception flags set. The second to the last coefficient then becomes the trailing coefficient and the

process loops. Every such root stored decrements the degree of the polynomial and the function is

complete if the degree becomes zero.

At this point, the degree of the polynomial is positive and either all (remaining) coefficients are finite,

in which case the roots of the (reduced) polynimial will be found, or the leading and trailing coefficients

are both + I+ +. In the latter case, at least two of the original coefficients were + It and factorlza-

tion does not make sense; if the (new) degree of the polynomial is D, then D roots atCHab, Habl oare

stored into the result array and the function is complete; every such root stored sets I%/i. and reports

message Iriwvalic Fra.

   

Except for the above special cases, 1%/ and LiMF are set for every result array component as appro-

priate with I always set.
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R

As with the FEIDT function, special cases for the F1liF function are handled first. These are H =t

and I+ ¢ components in the data array.

Habls are handled first. If any component of any data array element is a =t then every element of

the result array becomes Hazb, Mzt with no exception flags set and the function is complete.

(Signaling =i components do not set I.iL).

T
Ir:+¥s are dealt with next. If any component of any data array element is + I+, then every result

element becomes I+ . I+ with no exception flags set and the function is complete.

Except for the above special cases, {1'/F and Li[HF are set for every result array component as appro-

priate with i always set unless the data array was identically zero.

FHEOOT and THTEGRAL
e

i (signaling or quiet) results during the evaluation of any of the arguments of FHEDIIT or

: 4L, then error Iriwzlicd Fra is reported; no exception flags are set and this error halts

the computatlon
  

e ol

 

     

Ingeneral any value of+ I+ resulting from the evaluation of any of the arguments of 13T or

Pk 11, becomes *Hr“EERL for the purposes of the computation. I, {1WF and LiMHF are set

for the result as approprlate

Remember that FHEDDT looks at the value of TEHF {UHF: to decide whether or not to search the

P = 2 when the

 

range of denormallzed numbers for a root. This region is searched only if 7

17 function is started.
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Keyword Page Description

HE= 41 Absolute value of a complex number.

ACOEH 28 Inverse hyperbolic cosine.

HE LG 41  Argument of a complex number.

H=THH 28 Inverse hyperbolic sine.

ATHMHH 28 Inverse hyperbolic tangent.

EXTESF 16  Decimal to binary/octal/hexadecimal conversion.

ELHL 15  Binary/octal/hexadecimal to decimal conversion.

oo, 22 Complex IMHAGE field.

SR 70  One-norm (column norm) of an array.

COMPLE= 19  Complex variable creation.

COMPLE: SHORET 19  Complex short variable creation.

Do 21 Conversion, real to complex.

COH 42 Complex conjugate.

COs 38 Complex cosine.

CosH 27  Hyperbolic cosine.

CoEH 39 Complex hyperbolic cosine.

DET 69 Determinant of a matrix.

DET (no operand) 69 Determinant of last real matrix used as operand of Ior first

operand of =%,

DETL 69 Same as [IET (no operand).

oo 71 Dot (inner) product.

E s 37 Complex exponential (€4)
FGUESS 90 Second-best guess to value returned by last FHEDIT,

FHOEM 70  Frobenius norm.

FHEOOT 89 Rootfinding for functions.

FUALLE 90 Functional value of last FHELDOT.

FUAE 90 \Variable to solve for in FHEDOT.

GAMMA 28 Gamma function.

TEOUHD 103  Uncertainty of last THTEGREHL.

IMET 21 Imaginary part of complex number.

IMTEGEARL 101 Integration of functions.

TEOUHD 30 Integer round.
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L

Keyword Page Description

IVHLUE 102  Current approximation to an IMNTEZREAL.

IVAE 102  Variable of integration in IMTEGREHAL.

LEHD 72  Array subscript lower bound.

LEOLHD 72 Same as LEHD.

LG 37  Complex natural logarithm.

LoGe 29 Log base 2.

MAT DIZF 54  Array display (unformatted).

MAT DISF USIHG 55  Array display (formatted).

MAT IHFUT 53 Interactive array input.

MAT . . COH 52  Constant array with redimensioning.

MAT . . I0OH 52 Identity matrix with redimensioning.

MAT . .. ZER 53  Zero array with redimensioning.

MAT . . . ZERED 53 Same as MAT . . .ZEF.

MAT . . .FEIHT 55  Array printing (unformatted).

MAT FEIMT WSIHG 56  Array printing (formatted).

MAT = 51 Array copying (simple assignment).

MAT =- 63  Array negation.

MAT =. ..+ 64  Array addition.

MAT =...- 64  Array subtraction.

MAT =...% 65  Array multiplication.

MAT =103 52  Scalar to array assignment (numeric expression assignment).

MAT =0 2¥ 65  Scalar multiplication.

MHAT = FOUE 135  Finite Fourier Transform.

MAT = TIHW 77  Matrix inversion.

MAT FROOT 120  Polynomial rootfinding.

MAT = SY3 79  System solution.

MAT = TEH 77  Transpose or conjugate transpose.

MAT = TEH. .. #* 66  Transpose or conjugate transpose multiply.

MAMF 30 H=aH diagnostic function.

HETGHEOR 30  Successor/predecessor function.

FOLAR 40 Rectangular to polar conversion.

FRO 42  Conversion of complex infinities to projective infinities.

RECT 40 Polar to rectangular conversion.

FEFT 21 Real part of complex number.

RO 70 Infinity (row) norm of an array.

sCHLELS 29  Exponent scaling function.

SEH 41 Complex unit vector.

=IH 38 Complex sine.  
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Keyword Page Description

= IHH 27  Hyperbolic sine.

= IHH 39 Complex hyperbolic sine.

SRR 40 Complex square root.

SERET 40 Same as ZiHE.

THH 38 Complex tangent.

THHH 27  Hyperbolic tangent.

THHH 39 Complex hyperbolic tangent.

TvFE 31  Data type function.

LEHD 71 Array subscript upper bound.

LIECUHD 71 Same as IEHL.

+ 35 Complex addition.

- 35 Complex unary minus.

- 36 Complex subtraction.

¥ 36 Complex multiplication.

' 36 Complex division.

36 Complex exponentiation (Z%)

43 Complex relational operators.   
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