
[cacknro

HP 82484A

Curve Fitting Pac

Owner’'s Manual

For the HP-71

Notice

Hewlett-Packard Company makes no express or implied warranty with regard to the key-

stroke procedures and program material offered or their merchantability or their fitness for

any particular purpose. The keystroke procedures and program material are made avail-

able solely on an “as is” basis, and the entire risk as to their quality and performance is

with the user. Should the keystroke procedures or program material prove defective, the

user (and not Hewlett-Packard Company nor any other party) shall bear the entire cost of

all necessary correction and all incidental or consequential damages. Hewlett-Packard

Company shall not be liable for any incidental or consequential damages in connection

with or arising out of the furnishing, use, or performance of the keystroke procedures or

program material.

(/A caciaro

Curve Fitting Pac

Owner’s Manual

For Use With the HP-71

March 1984

82484-90001

Printed in Singapore © Hewlett-Packard Company 1984

Introducing the Curve Fitting Pac

The HP 82484A Curve Fitting Pac is a powerful tool that enables you to perform functions that are not

common to portable computing devices. The Curve Fitting Pac permits you to:

e Fit a general model function (linear or non-linear) to a set of data using the :F I T program.

® Determine local maxima and minima of a large class of real-valued functions using the

HFTIMIZE program.

The Curve Fitting Pac allows you to quickly and easily choose a model,fit a curve to your data, choose

another model, and fit the curve again—all in a matter of seconds.

Features of the pac include:

e A matrix editor that makes entering and editing data easy.

e A built-in library of commonly-used fit models.

e The ability to store data and then retrieve it for later use.

e The ability to direct all intermediate and final results to a peripheral printer.

Contents

How to Use This Manuale 9

Section 1: Getting Started1

Installing and Removing the Curve Fitting Module 1

What the Curve Fitting Pac Does12

UsiNg LFLT12

OVeIVIBW.12

Flow Chart of CFIT Menuse13

LFIT Example: Stock Predicting14

Using T FT LM Lo20

OVIVIBW.20

Flow Chart of OFTIMIZE Menusi 20

DFTIMIZE Example: A Big BOX22

Section 2: Curve Fitting27

INtrodUCHiON27

Running the Curve Fit Program28

Working with [lat aoo28

The Data Format29

Giving Weights to Data29

Entering Data From the Keyboard (kkdd)29

Loading Data From a File (Loadd)30

Saving Data to a File (Sawa)..o30

Printing the Data (Fr 1rit)...31

Editing the Data31

Editing an Element32

Moving Around the Array32

Fitting the Curve36

Specifying the Model37

Editing the Parameters37

Options From the Fit Menu37

Performing the Fit39

Getting the Results40

Contents 5

ACFITEXample ...o40
Setting Up the Problem41
Entering the Data42
Saving the Data44
Specifying the Model Subprogram 44
Editing the Controls46
Getting the Results47
Evaluating the Model51

Interpreting the Results53

Section 3: Optimizing a Function55
Introduction55

Creating the Function Subprogram55

Running the DFTIMIZE Program55

Specifying the Subprogram56

Editing the Variables56

Options From the Optimize Menu56

Testing the Function57

Editing the Controls57

Performing the Optimization 58

Getting the Results60

A Word on Gradient61

Appendix A: Owner’s Information63

Limited One-Year Warranty63

SIVICE . .o64

When You Need HelpeBT

Appendix B: Error and Status Messages 69

BASIC Error Messages69

Binary Error Messages70

Appendix C: Numerical Methods75

Fletcher-Powell Method75

Line Search76

Function Optimization80

Gradient Approximation81

Application to CF I T.84

Minimizing Chi Square84

Difficult Cases84

The Inability to Meet Convergence Criteria 85

Sampling Outside the Intended Domain 85

Constrained Optimization 85

6 Contents

Appendix D: User-Accessible Routines 87

Subprogram Description and Calling Syntax 87

The FF Subprogram87

The GEADF Subprogram88

The FIT Subprogram89

The CSE Subprogram...91

The GEHRDOM Subprogram92

The FLOLY Subprogram93

The LIH Subprogram93

The FCEHTIHTI Subprogram94

Calling Relationships97

Subprograms Called by FF97

Subprograms Called by F I T98

Memory Requirements98

Buffer and Calling Overhead98

Variable Memory99

KeYWOrdS . ..100

EE TWA LT100

I100

Appendix E: Library Subprograms101

Appendix F: Applications File Format (HPAF) 105

Header Information106

Data Records106

Descriptor BIOCK106

The Curve Fitting Files107

Appendix G: Creating Your Own Model or Function Subprogram 109

Writing a Model or Function Subprogram 109

Standard Subprogram Syntax 110

Speed and ACCUFACYttt 111

Important Interface Assumptions 111

Example Subprogram for OF TIMIZE113

Example Subprogram for CF I T...114

Appendix H: File Names Used in This Pac 117

Appendix I: Glossary119

How to Use This Manual

The information in this manual assumes that you have read sections 1, 6, 8, 9, and 11-14 in your HP-71

Owner’s Manual and that you are familiar with the following HP-71 operations: keyboard operation,

file operations, writing and running simple subprograms, manipulating data, using flags, and correcting

error conditions. In addition, if you plan to use a printer with this pac, you should know how to install

and use a printer using the HP 82401A HP-IL Interface.

This manual is both a learning and reference tool. Read through section 1, “Getting Started,” for an

overview of what the Curve Fitting Pac can do. Then read section 2, “Curve Fitting,” or section 3,

“Optimizing a Function,” depending on which application you want to use first. Later, if you need

descriptions or reminders on how parts of the programs work, you can use these sections for reference.

At the end of section 2, you will find “A ©F I T Example.” This is a comprehensive example for you to

key in to get familiar with the main program features.

There are also several appendixes for your reference:

y
o Appendix A, “Owner’s Information,” includes warranty and service information.

o Appendix B is “Error and Status Messages.” If ZFIT or FTIMIZE cannot carry out an opera-

tion, an error message will be generated. Refer to this appendix for an explanation of the messages

the Curve Fitting Pac can generate.

o Appendix C, “Numerical Methods,” describes the mathematics used in this pac and discusses situa-

tions that are difficult for the program to handle.

o Appendix D is “User-Accessible Routines.” Here you will find the subprograms in the pac that you

can access and how they interface with the main programs and each other.

o Appendix E is “Library Subprograms.” ZF I T provides a library of model subprograms for some

commonly used models. Refer to this appendix for a list of these subprograms.

o Appendix F, “Applications File Format (HPAF),” describes the special format that this HP-71

application uses to store fit data.

e Appendix G is “Creating Your Own Model or Function Subprogram.” You’ll find information on

syntax, calling relationships, and memory requirements, plus two examples of typical user-written

subprograms here.

o Appendix H is a list of the file names used by the programs in this pac.

» Appendix I is a short glossary of terms used in this manual.

At the end of the manual is a complete subject index.

9

Section 1

Getting Started

Installing and Removing the Curve Fitting Module

The curve fitting module can be plugged into any of the four ports on the front edge of the HP-71.

CAUTIONS

* Be sure to turn off the HP-71 (press (ON]) before installing or removing any module.

* Whenever you remove a module to make a port available for another module, be sure to turn the

HP-71 on and then off while the port is empty before installing the new module.

* Do not place fingers, tools, or other foreign objects into any of the ports. Such actions could result

in minor electrical shock hazard and interference with pacemaker devices worn by some persons.

Damage to port contacts and internal circuitry could also result.
To insert the curve fitting module, orient it so that the label is

right-side up, hold the HP-71 with the keyboard facing up, and

push in the module until it snaps into place. During this operation

be sure to observe the precautions described above.

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the

module and pull the module straight out of the port. Install a blank module in the port to protect the

contacts inside.

1

12 Section 1: Getting Started

What the Curve Fitting Pac Does

The Curve Fitting Pac provides two main capabilities:

® The ability to fit a general model function (linear or non-linear) with up to 20 unknown parameters

to a set of data.

® The ability to determine local minima (or maxima) of a large class of real-valued functions with up

to 20 variables.

Both of these applications are based on the implementation of a powerful algorithm introduced by R.

Fletcher and M.J.D. Powell. The method is known as the Fletcher-Powell Method (hereafter referred to

as the FP Method) and is explained in detail in appendix C.

A printer or a video display is not required to use this pac since all data and output can be directed to

the HP-71 display. You probably will find a printer or video display useful, however, for viewing large

amounts of stored data as well as intermediate and final results. If you have an HP 82401A HP-IL

Interface and a compatible printer or video display, the programs will print (or display) the output in

an easily understood format. If you want a printer or video display and don’t have one, contact your

authorized Hewlett-Packard dealer for information on printers, video displays, and the HP 82401A

HP-IL Interface.

Overview

When you run the program F I T, there are six main steps to go through to fit a curve to your data:

1. Create a model subprogram (or select one from the built-in library of model subprograms).

2. Enter the data points and optionally save them in a file.

3. Specify the name and location of your model subprogram.

4. Specify an initial guess for the model parameters.

5. Optionally do one or more of the following:

¢ Compute the Chi Square value using the current model parameters.

¢ Edit the model parameters.

¢ Edit the program control values.

6. Fit the curve.

Section 1: Getting Started 13

Flow Chart of i I T Menus

What follows is a flow chart of the steps involved in and the menus associated with the curve fitting

procedure.

MAIN MENU

 DATA MENU

FIT MENU
Ml Frms=r—"{ f=q =

i 1 '
‘—E;j=n [Faw # cor AL 1 I Edit Parameters

Results

 —x
tj(%ulanon

COHVERGED [ITEF‘HTIDH LIMIT_'l,_h___._

[7:—.. seoonrezulrs o H-"] [Fauze onresults

4
nrezult

- - —

Final report Final report

14 Section 1: Getting Started

.F IT Example: Stock Predicting

Without worrying too much about the meaning of all the keystrokes, key in this example and see how

easily ZF I T fits a curve to a set of data. What you will do in this example is:

1. Enter a set of data into a working array.

. Enter an additional row of data to be evaluated but not used for the fit.

. Save the data in a file.

2

3

4. Fit the curve and get the results.

5 . Evaluate the model to predict the value of the unknown dependent variable corresponding to the

data entered in step 2.

Example: The asking price for three stock issues was recorded at the close of trading on six successive

Fridays and is given in the following table. Assuming the linear relationship Y = aA + bB + ¢ between

the stock prices, what value can you expect for the price Y when A = 42.5 and B = 28?

Week Stock A Stock B Stock Y Weight

1 37.125 24.0 73.25 1
2 34.0 26.5 63.0 1
3 40.0 27.375 72.5 1
4 39.625 29.0 71.0 1
5 38.0 29.0 66.875 1
6 41.0 30.875 72.0 1
7* 42.5 28.0 ? Inf

* This row is the interpolate row. The weight of “Inf” causes this

row to be ignored in the fit process.

The main menu.

You need to enter data from the keyboard, so
press (D] to access the Data menu.

The Data menu.

Input/Result

(0]

Press to select keyboard entry.

Input/Result

i

2

 3

Section 1: Getting Started 15

In this example there are two independent vari-
ables (A and B).

There are seven data points, including the
interpolate.

The program branches to the editor and displays
the first element of the first row of the array. All
the values in the array default to 0 (except the
weights, which default to 1).

Enter the correct value of the first element from

the table—stock A, week 1.

The next element of the same row of the array is
displayed. You can accept the default by pressing

=4

FELEE

END LINE |, or you can enter another value.

Enter the value of the second element from the

table—stock B, week 1.

The program steps through the array one element
at a time.

Enter the value of the third element from the ta-
ble—stock Y, week 1.

The last element in this row of the array (the
weight) is displayed for editing.

Press to select the default weight of 1.

The first element in the second row of the array is
displayed.

16 Section 1: Getting Started

Input/Result

I

i o 1.

&3

WMoz, da=1

i

foo
est

e

i oo e
t

485

o

2

......
<

Enter the value for stock A, week 2.

The program will continue to step through each
element of the entire array.

Enter the value for stock B, week 2.

Enter the value for stock Y, week 2.

The weight for the second row is displayed.

Use the default weight of 1. Continue to enter the
values from the table as the program calls for
them.

The program prompts for the first element in the
last row (the interpolate row).

The value of stock A to be used to solve for the

unknown value of stock Y.

The value of stock B to be used to solve for the

unknown value of stock Y.

This is the unknown value we are looking for.

Let it default to zero.

The weight for the interpolate is displayed.

While holding down the [g] key, type in
This gives this row a weight of infinity, thus effec-

tively eliminating it from the fit process.

Section 1: Getting Started 17

Input/Result

The program has gone through the entire array
and wraps back to the first element.

(@) Press this key to exit the editor and return to the
main menu.

(D] Select the [izt=z option to display the Data
menu.

o 5 Fi 1

Press to start the process for saving data to a
file.

i sv B The program prompts for the file name to save

the data into.

R Save it into a file called = 7Tk

The program displays a message while the file is

- being created and the data copied to it. Then the
main menu reappears.

Press to start the fitting process.

S T E The program prompts for the name of the model
subprogram.

is the built-in linear model subprogram.

B Now i I T asks for the name of the file that the
subprogram is in.

IH is in the library file F IT!

18 Section 1: Getting Started

Input/Result

3

Fepar i Y RGET

The model has three parameters (a, b, and c).

Asks for a guess for the value of the first
parameter.

Since you probably have no idea, use the default
of 0. Do the same for the other parameters.

After the last guess is entered, the program dis-
plays the Fit menu.

Press to fit the curve.

For this example you do not need to edit the pro-
gram controls; you can use the defaults.

The program asks if you want to view an itera-

tion-by-iteration progress report.

Press for no.

Input/Result

Morking., ..

1 1Grdly 5. 8ee31E+881

2 1 Grdly 1,23V E5E+8080

COMVWERGED

Faugze orn resuyultzoy M7

Chimag: 204243831 E+088

Farosrt 22 18g

Fordly 4,788l 2E-808

Frolo 1.29252801235E+008

Fozoar—-1, 23226232 140E+8005

FoE 2L RAVETVERSAZE +BA]

ol ar—3 8741_4UUUEHE

BoZa -2, 28127 AEEE-GEE

GiEB:~1=BBEDDDIDDE~flfl

CEq Mdl Frms Fit Quit?

(M)

Fow # (o HILIZTE

"""

Section 1: Getting Started 19

Assuming you don’t have a printer or video dis-
play attached, the norm of the gradient at each
iteration is displayed. (If you do have a printer or
video display attached, the results are output as
shown in the example in section 2, on pages
47-49.)

After the program converges, press to
continue and see the results.

Press to pause between each result. This al-
lows you to scroll through the results at a
comfortable pace. Just press when you
want to go on to the next one.

As you scroll through the results, notice that

Fols POz and F 22 give you the values for

a, b, and ¢ in your linear model. G1, G020,
and =31 are the partials of Chi Square with re-
spect to the model parameters. The other
information will be described later.

Since your ultimate goal is to get the predicted
value for stock Y, press [M]to begin evaluating the
model at your interpolate.

The program asks if you want to evaluate one row
or all rows.

Evaluate row 7, the row with your unknown stock
price.

20 Section 1: Getting Started

Input/Result

The model predicts 77.85 for stock Y.o i i 1

] S
-]

L L i
n
L S i iB

=g Mdl Frm=s Fit it

(Q) Exit the curve fitting routine.

Oatas Edit Fitit

(Q) Quit the program.

Do

So, assuming a linear relationship Y = aA + bB + ¢ between stock prices, and given a price for stock

A of 42.5 and stock B of 28, you can predict the price of stock Y to be 77.85, or 7774.

Using i 1T1M1k

Overview

When you run the 0FTIMIZE program to find local minima or local maxima, you go through a pro-

cess similar to that for ZF I T. You must:

— . Create a subprogram for the function you want to optimize.

2. Specify the name and location of the function subprogram.

3. Make an initial guess for the variables.

4. Test your guess (optional).

5 . Optimize the function.

Flow Chart of IFTIMIZE Menus

What follows is a flow chart of the steps involved in and the menus associated with the optimizing

procedure.

Section 1: Getting Started 21

FUN OFTIMIZE

Subipr o

File name?

How mand wari1ablesz™

Fam namne’

OPTIMIZE MENU

{ Test Edit et Bl }-__—fl

I wEnT I r Edit Contraols oYM7 J L

Fercentagae”

Gradient Limit?

Iterations™

 caress report CVHODT
Calculation

IVCEIN'-JERGED l ITERATIOHN LIHILI

.‘.
&

ze on resultaoy oH? J

22 Section 1: Getting Started

FTINMIZE Example: A Big Box

Key in this 0FTIMIZE example in the same way that you did for the ©:F I T example. In running this

example, you will go through the five steps as outlined above.

Example: You are designing a box that will be used to mail widgets. You want the box to have dimen-

sions that yield the largest volume while still being acceptable to your local carrier. The postal restric-

tions stipulate that the sum of the length and girth (perimeter of cross section) cannot exceed 100

centimeters. What is the maximum volume for your box and what are the dimensions?

w

Considering the postal restrictions and since you have maximum volume when the length and girth

sum to 100, you can use these equations:

L + 2W + 2H) < 100

V = WHL

V(W,H) = WH(100 — 2H — 2W)

= 100WH — 2WH? — 2W?H

All dimensions must be greater than 0, so you can impose the additional constraints

O<W+H<5B50, W>0,H>0

Section 1: Getting Started 23

First, type ECIT EXAMFLES and press LINE], and then enter the following subprogram called
eland store it in a file named EXAMFLEZ. (For information on writing and storing subprograms,

review section 12, “Subprograms and User-Defined Functions,’

g =ZURE BOXCR

SE W=ROoly o

2 M=HEHEOLE

48 GOl i=2FHE

DEOLOZi=2FRS

s BEHD OSUE

’
in your HP-71 Owner’s Manual.)

Now enter the following keystrokes and see how easy OFTIMIZE is to use.

Input/Result

e e

GFTIMIZE [ENDLINE)

SdbEr oor .

am mame VB

T 78

MU ariakbles

=

&

Run the program.

The program prompts for the name of your
subprogram.

Prompts for the file where the subprogram is
found.

DFTIMIZE prompts for the number of variables
in your function.

Use the default of 2. Line 30 of the subprogram

Ei1shows that W and H are the two variables.

The program prompts for an initial guess for the
value of W. Line 20 of the subprogram identifies
W as the first variable, %/ 7 1 *, and H as the sec-

ond variable, '/7

You don’t know what the value is, but go ahead
and guess 5.

Prompts for a guess for H.

Guess 6 for H.

24 Section 1: Getting Started

Input/Result

Teszt Edit Opt Cuait?

Fo= 2248

Te=zt Edit Opt Quit?

Edit Comtrols oYM7

MIM or MASimize™MIH

MH

 Bound estimate™d

TEEE

F_! F-' F's !g oS lj | I-!.' l-_] x ";x

After you enter the last guess, ZFTIMIZE dis-
plays the Optimize menu.

Press to evaluate V(5,6). Evaluating the func-
tion at the current guess gives you the associated
value of the function at that point.

Return to the Optimize menu to prepare to enter
the optimization routine.

Select the optimization routine.

Asks if you want to edit the controls.

Yes. You must edit the controls for this problem
and all maximization problems because the pro-
gram defaults to minimization.

Asks if you want to minimize or maximize (the
default is to minimize).

Prompts for the bound estimate.

It’s at least 2340, so guess 3000.

The program asks if you want to have the gradi-
ent approximated for you.

Lines 40 and 50 in your subprogram do this for
you, so you don’t need the program to do it.

Input/Result

Gradient limit?. 88l

i1 1 T l
” i

Fepor t OM

E+Bad

E+aid

E-gid
E-0@s

Section 1: Getting Started 25

Use the default limit to stop iterating.

Use the default.

Use the default to set the upper limit on the num-

ber of iterations.

The program asks if you want a progress report
for each iteration ([Y] or (N]) or if you want to
return to the Optimize menu ([Q)).

When you press or the program starts it-
erating. You hear a beep every time the sub-

program is accessed from the main program.

At this point, you see the norm of the gradient for
each iteration followed by the bERGETD
message, displayed when the program converges.

Press [END LINE to continue.

The program asks if you want to pause between
each result.

Press so you can scroll through the results at a

comfortable pace using LINE], assuming you
don’t have a printer or display monitor attached.

(If you do have a printer or video display at-

tached, you won’t see this prompt. Printed results

for this problem are shown on page 61.)

26 Section 1: Getting Started

Input/Result

Fruoal: S 2ESIEREeE 08

Paradl o FLodeZzlatE-GGa4d

Holoy 1 oeeeee@d4eYE R0

WiZyr 1 eEseeeSERE+A6 1

e r -4 25V 182844 E -84

Golar—m, 12877544 E-004

==t Eodit Opt Huilt™

Oore

Scroll through the output by pressing
after each result. ¥z 1 1s the maximum volume,

P2 odl 1s the norm of the gradient (used in the
determination by the program to stop iterating),

i1 1 1s the value of W, %/ < =+ is the value of H,

201 and ¢ Z 1 are the partials of V with re-
spect to W and H. After the last item is displayed,
you return to the Optimize menu.

Press [Q] to quit the program.

When you take the results for V, W and H, and then solve for L in the equation V = WHL, you have

all the dimensions for your box. Your desired box size is 16.6667 by 16.6667 by 33.3333 centimeters

with a volume of 9259.259 cubic centimeters.

Section 2

Curve Fitting

Introduction

The¥ I T program allows you to enter your data into an array, store the array in a DATA file, retrieve

the array from the file, and edit the data. Then, you can fit the data to a curve, examine the results,

and optionally choose another model for another fit. Many common fit models reside in built-in library

files, making specification of your model as simple as providing the name of the subprogram and the

name of the built-in library file in which it resides. (Refer to appendix E for information on the library

files. If you find that you need to write the model subprogram yourself, refer to appendix G, “Creating

Your Own Model or Function Subprogram.”)

F I T permits you to fit a model function (specified in a subprogram) to a set of data. The program

uses the FP Method* to minimize the Chi Square function associated with your model and the data set

(for details of the FP method, refer to appendix C, page 75). The number of independent variables (n)

and the number of data points in your data set (m) is limited only by the amount of available memory

in your system. The number of parameters (k) in your model is limited to 20.

The model function you specify is represented by F = F(X(),P()) where X() is a vector of length n

and P() is a vector of length k for which there are k unknown parameters. For example, the model

function might be a simple third-order polynomial. In this case, you can represent the unknown param-

eters (coefficients) by a vector of length 4 and the vector of independent variables reduces to a simple

scalar value (in this case there is only 1 independent variable).

Model: P; + P,X + P3X? + P,X?

PR 3 e dld be T Ty e R eN O t

If you make 12 observations (collect 12 data points) for the above example, your data array will be 12

by 3 (with 3 being derived from n + 2), and the 4 parameters to be determined are the coefficients of

the polynomial model.

* As mentioned in section 1, the method used is the “Fletcher-Powell Method,” abbreviated here and throughout the remainder of

the manual as the “FP Method.”

27

28 Section 2: Curve Fitting

Running the Curve Fit Program

When you first run ZF I T, by typing F/H ©CFIT [ENDLINE], the main menu is displayed:

O ta EBEdit Fit Bhagit?i i

The curve fit program is divided into three major parts. They are accessed from the main menu and are

entitled 'zt =, E-dit, and Fit. The other option available in the main menu (i1 1) allows you to

quit the program.

Note: If you exit the program by any means other than the i1 t option, certain system functions

are not maintained (for example, flag settings, rounding mode, and option base).

The [zt = part of the CF I T program contains commands for entering data points from the keyboard

or from a file, saving entered data to a file, and printing the data array. The E:ii t part contains an

editor for examining or modifying the data points. The F it part contains the procedure for curve

fitting. Each part is called from and returns to the main menu. The material that follows describes

each of the three parts.

Working With izt s

[ztallows you to enter data points from either the keyboard or a data file. You can also save the

data points in a file and, using the Fr i+t option, print the data points.

From the main menu you press [D] to display the Data menu:

Flbd Load Sawve Friot?

All of the [zt = options are selected from this menu.

If you don’t want to use any of the [zt = options, you can press (Q] to return to the main menu.

Section 2: Curve Fitting 29

The Data Format

The data items consist of n independent variables, a dependent value, and a weight signifying the

confidence level. These items are stored in an array of m data points (rows) and n + 2 columns.

For example, this 4 by 8 array represents a data set with 4 observations and 6 independent variables.

X1 X X3 Xig Xi5 Xie Y17 Wig

Xo1 Xop Xog Xpy Xps Xpg Yp7 Woyg

X31 X3o X33 X34 X5 Xz Y37 Wiy

Xg1 Xyp Xz Xyg Xgp Xyp Yg7 Wyg

Giving Weights to Data

When CFIT creates a data array, each row has an associated column for the relative weight of that

data. Data points given relatively small weights are considered “reliable,” while those given relatively

large weights are considered less reliable. When you give weights to data points, the value of the

weights should be equal to the standard deviations of the dependent variables.

A reasonable approach to weighting is to use any reliable information you have regarding the true

standard deviation as the weight. In the absence of any such information, use 1.

Note: Do not use 0 as a weight. The Chi Square calculation involves a division by the weight.

Using O results in a math error producing either .-z=r o or &.-& as an error message.

Entering Data From the Keyboard (i i)

If you want to enter a new set of data from the keyboard, follow the instructions below. This set of

instructions, as well as other sets in this manual, follow a format that gives the step number, the

display you will see, and the instructions on what to do to complete the step.

Step Display Instructions

1 Fhbd Load Sawe Fript? Press to start the process of creating a data set from
the keyboard.

Enter the number of independent variables. Two col-
umns will be added to this number to form the internal
array: one for the dependent variable y; and one for the
weighting factor w;. Any data already in an array will be
destroyed when you create a new array.

T

i] e
t

]2 Hoo of 1ndpt

3 Moo of data pointz7B Enter the number of rows (data points) in the array.

4 sl 1T The program branches to the editor and displays the
first element in the data array.

30 Section 2: Curve Fitting

At this point the array has been created with all elements set to zero and the weights set to one. When

you use the keyboard to enter the values of the elements, you simply edit their initial settings. The

procedure for editing an element is shown in “Editing the Data,” starting on page 31.

Loading Data From a File (i=)

If the data already exists in a file, you can load the data into an array by following the procedure below.

Step Display Instructions

1 Bl Load Sawve Frimt? Press to load a data set from a file.

2 Clear data (Y-HIT If you have data in the array, the i.:: =zoption can ap-
pend new data items to the existing set. If you wish to
append the new data to the array, press [N]. To clear out
the array, press [Y]. If no data is in the array when the
Load option is selected, this question will not appear.

3 LORD: File rameTB Enter the name of the data file. The file must be format-

ted as an HPAF file. For detailed information on the
HPAF format, refer to appendix F. If a mass storage de-
vice is used, the file name must include the device
specification (for example FIIHTE THFE),

4 Loading . .. The program loads the file and then returns to the main
menu.

Saving Data to a File (&&)

Once the data is entered,it is often a good idea to save it to a file for future use. Instructions on how to

do this come next.

Step Display Instructions

1 e Load Save Pript? Press to save the current array of data in an HPAF

file.

Enter the name of the file to write into. The file may
reside either in RAM or on a mass storage device. If a
mass storage device is used, the file name must 1nclude
the device specifier (for example «<F{iIHT=).

The program will create an HPAF file w1th the datain
it.

i i
l e i
t

3 Dwerwrite file oYM7 If a file already exists with the name you supplied, the
program will ask if you wish to overwrite it. If you press

(N], the program will again prompt for the file name. If
you press (Y], the program overwrites the previous file.

4 Sawing . .. The program saves the data and then returns to the
main menu.

Section 2: Curve Fitting 31

Printing the Data (F+ i+ 1)

Once the data is entered, you can also get a printed copy of the data array (assuming you have a printer

attached). The procedure below explains how.

Step Display Instructions

1 B Losd Save Print? Press (P] to print the data. The CurveFlttmg Pac will
send the data array to the current FFIHTER 15
device.

2 Frimtimg. .. While printing is in progress, this message is displayed.

If your HP-IL compatible printer is an 80-column printer, the output will be formatted as follows:

B z
eOAO OEDD]

This example is a printout of the data used in the comprehensive ZF I T example starting on page 40.

Note: If your printer prints using a narrow field, like the HP 82162A Thermal Printer, the printout

will be formatted in easily read columns.

After the data has been printed, the program returns to the main menu.

Editing the Data

41+ allows you to enter and modify arrays of data used by ¥ I 7. This part of ©F I T is selected

from the main menu by pressing (E] .

When you enter the array editor, the first display you see contains the value of the first element in the

array:

i rm=mpnnn

The display consists of three items:

» A letter giving the type of element displayed: for an independent variable, % for a dependent

variable, and i{ for a weight.

* A pair of numbers in parentheses giving you the row and column address of the current element.

¢ The current value of the element.

32 Section 2: Curve Fitting

Editing an Element

All of the HP-71 line editing features (such as [>], (<], (1/R], [BACK], [-CHAR], and the command stack)
are available in the array editor. If you are unfamiliar with how these features are used, refer to section

1, “Getting Started,” in your HP-71 Owner’s Manual.

Any time an element is visible it may be edited and the new value entered into the array. The element

is edited by typing over the current value, and it is entered by pressing LINE]. All unassigned

elements in a row are displayed as & except for the last one. The last element (the weighting for the

observation) defaults to 1.

When you edit an element, you can use both numbers and numeric expressions for the value of an

element. For instance, ¢ 1 +%0F ¢ 2%5~ Is just as acceptable as # for an entered value.

Moving Around the Array

When the editor is running, a number of keys have been redefined to help you move about within the

array and to help you insert or delete rows and columns. These keys are broken into the following

groups:

¢ The direction keys for moving through the array ([(w], (D], (Xx], and [A]).

¢ The command keys for manipulating columns and rows ([U], (0], [M], and [F)).

e The endline direction keys ([S] in combination with the direction keys).

¢ The quit key ([Q)).

The following representation of the keyboard shows the keys that are redefined when you are in the

array editor.

JWEEEODHLUUHOBE
Quit Ur

Column

HEPOEEOEODAE

ajolslolelolofalo)s
Cotumn I

N

E

OEMEUOELUL

Section 2: Curve Fitting 33

The Direction Keys. The direction keys are found in the cross on the keyboard diagram. You can use

the direction keys in combination with the key to move anywhere in the array. Once you get to the

row and column you want, you can examine the contents of the element at that location and/or modify
it.

The (W], (D], [X], and keys are respectively the up, right, down, and left keys. These keys move you

through the array one element at a time in the corresponding direction as shown in the following table.

Starting Element Key Direction Destination

X(3,3) up X(2,3)
X(3,3) D) right X(3,4)
X(3,3) down X(4,3)
X(3,3) left X(3,2)

You can move to one of the boundaries of the array by pressing the key and a direction key. You can

think of the as standing for the word “far.”

e The (D] and move to the far right and far left boundaries of the array.

e The and move far up and far down to the boundaries of the array.

All the direction keys will move across the boundaries to “wrap around” to the opposite side of the

array. For example, in a 4 by 8 array, if you start at< 1 . i » and press [f][D], you will go to ki« i, &

(the far-right side of the array). Then, if you press [D], you will see =+ 1. 1 again.

Note: If you are in the editor and want to enter an expression using letters that have been re-

defined, you must hold down the (9] key while typing the letters. For example, since the key

has been redefined as the =i Tcommand, you can only enter a weight as i r:+ by holding down

(9] and typing ir:f.

The Command Keys. The command keys can be associated with their gold, shifted functions on the

HP-71 keyboard. The command keys and their functions are as follows:

e The key selects the [1EFine column command.

e The (0] key selects the #i{i command.

e The key selects the [IEL ETE command.

e The key selects the &71 command.

The i Fine column command is used to assign values to the columns. It can be very useful when you

want to enter data with a constant interval between points (for example, every year from 1954 to 1984

or 10-degree steps from 30 degrees to 120 degrees Fahrenheit). To do so:

34 Section 2: Curve Fitting

1. Press (U], at which time the program prompts

e gy 1T
T.*::‘;—':0

1 +
5 1

1

iPt

2. Enterthe column to fill, the starting value, and the step size, separated by commas. After the

information has been entered, the program returns to regular editing.

Like all the keyboard commands, the define command can be used at any time while you are in the

editor, regardless of where you are in the array. Also, if you get into this command accidently, press [Q]

to return to regular editing.

The *

1. Press (0], at which time the program prompts

command makes it easy to add a row or column to the array. To do so:

""""i Lo laudmen ™

2. Do one of the following:

o Press (R] to add a row to the array; the program will display

with one more than the total number of rows (data points) as the default address for the new

TOW.

o Press to add a column to the array; the program will display

with one more than the total number of independent variables as the default address for the
new column.

o Press (@] to exit the command. The program will return to regular editing.

3. Enter the address of the new row or column. If the address coincides with an existing row or

column, the array will open to create a space. The new row or column will be filled with default
values.

If you add a row or column at the address of an existing row or column, the existing row or column

address (and all those rows or column addresses beyond it) increases by one. For example,if you enter

a new row at row 3, the old row 3 becomes row 4, row 4 becomes row 5, and so on.

 The [iE

1. Press [M], at which time the program prompts

£ TE command is used to delete a row or column from the array. To do so:

Lol udmey

Section 2: Curve Fitting 35

2. Do one of the following:

» Press (R] to delete a row from the array; the program will display

with the current row as the default.

® Press to delete a column from the array; the program will display

with the current column as the default.

* Press (@] to exit the command. The program will return to regular editing.

3. Enter the address of the row or column to delete. The program will display

or

Delete ool oo 0% sHIT

4. Press for yes to delete, or for no to exit.

After the deletion, the program returns to regular editing at the last displayed element or, if the

corresponding row or column or a row or column before it was deleted, to an element near the pre-

viously displayed element. If all rows or columns are deleted you will return to the main menu.

 The i

1. Press (F], at which time the program prompts

 1 command allows you to move directly to a specific element in the array. To do so:

2. Enter the row and column address of the element in the array. After the address is entered, the

program displays the the element for review or edit.

Endline Direction. After the key is pressed to enter an updated value into an array, the
next array element is displayed for editing. The direction the program moves to display the next ele-

ment is called the endline direction. The endline direction is set with the key, the key in the middle

of the direction keys.

The default direction is to the right, so that when is pressed the next element to the right is
displayed. The first element in the next row is displayed after you enter the value in the right-most

column. Using the default endline direction, you can easily input your data into a matrix by editing

each element and pressing [END LINE].

36 Section 2: Curve Fitting

There are three possible endline directions:

o To the right: This is set by pressing for set endline direction followed by the right direction key,

(o].
e Down the columns: This is set by pressing followed by the down direction key, [X].

¢ No motion: This is set by pressing followed by again. This will cause the same element to be

displayed after pressing LINE].

When you press (S], the program will display

Direction: O,#,% or 07

At this point, you can press [D], [X], or [S], depending on the endline direction you want. You can also

press (Q] if you want to escape the command. When you press one of these endline direction keys, the

program sets the endline direction and returns you to the last element displayed. The following table

summarizes the effects of setting the endline direction.

Direction Endline Current Element After

Keys Direction Element Pressing Endline

(D] Right. X(3,3) X(3,4)
Down. X(3,3) X(4,3)
No motion. X(3,3) X(3,3)

Exiting the Editor. To exit (quit) the array editor press the [Q] key. This will return you to the main

menu. This, too, can be used regardless of where you are in the array.

Fitting the Curve

Once your data has been entered and, optionally, saved in a file, you are ready to fit the curve. The

F it procedure involves:

Specifying the model.

Editing the parameters.

Optionally evaluating Chi Square with respect to the current model parameters.

Optionally evaluating the model at one or more points.

Optionally editing the program controls.

S
O
k

W
N

Performing the fit.

Each of these steps will be described next.

Section 2: Curve Fitting 37

Specifying the Model

The first step in the process is to specify the model subprogram to the ZF I T program. This is done as

shown below:

Step Display Instructions

1 Dtz Edit Fit Buit? From the main menu, press to begin curve fitting.

2 Subprogaram name”H Enter the model subprogram name to be called by
CFIT.

3 File rame™B8 Enter the name of the file containing the subprogram.

4 Moo of Model Farms=7E Enter the number of parameters in the model.

Every model, whether preprogrammed in the Curve Fitting Pac or written by you, has a given number

of model parameters (k) and independent variables (n). Make sure that the number entered in step 4

agrees with the actual number in your model subprogram. If the number entered is too small, you will

probably get an error when the model is evaluated. If the number is too large, you will get incorrect

results.

Editing the Parameters

After you enter the number of parameters in your model, the program prompts for the value of the first

parameter in the initial guess. You can edit each parameter as outlined below:

Step Display Instructions

1 FoloaTie Enter the first parameter in the initial guess. The first
time you run the program, the parameters default to O.

2 FozoaTE If there are more parameters to be entered, the program
will prompt for them. Edit the remaining parameters as
in step 1.

3 C=q Mdl Frms Fit 2uit?™ Once you have edited the last parameter, the program
displays the Fit menu.

Options From the Fit Menu

Once you access the Fit menu, you can evaluate Chi Square at the current guess by pressing (C], eval-

uate the model by pressing (M], edit the parameters by pressing [P], fit the curve by pressing [F], or

quit and return to the main menu by pressing [Q]. The first three of these choices ([C], (M], and [P])
are optional within the curve fitting process.

Evaluating Chi Square. If you press to evaluate Chi Square the program will display

w3 mnnn

You then press to return to the Fit menu.

38 Section 2: Curve Fitting

Evaluating the Model. To evaluate the model at any row (using current model parameters), follow

the instructions detailed below.

Step Display
i~ o ond £ e me

1 Ce=ag Mdl Frm i

Instructions

Press to evaluate the model.

Enter the row to be evaluated, or enter to evaluate
the model at all points. After the program evaluates the
model at the appropriate row(s), the results will be
printed or displayed and the program will return to the
Fit menu.

Editing the Program Controls. Before a curve is actually fit to your data, you can edit the program

controls as shown below:

Step Display

6a

6b

i

Instructions

Press to start the procedure for fitting the curve.

Press if you want to edit the controls that affect the
numerical calculation, or if you want to proceed with
the calculation using the current controls. If you enter
(N] at this point, the procedure continues at step 10.

If you have reason to believe the minimum Chi Square
exceeds a given positive value, enter the value here to
improve program performance. The default estimate is
Zero.

If your model subprogram includes the gradient calcula-
tion (all of the models in the library do), press [N] and
pick up the procedure at step 7. If it’s necessary to
approximate the gradient, press (Y]. (For information on

the gradient and how it is used in this pac, refer to sec-
tion 3, page 61.)

Press (P] if you want to use a percentage of the param-
eters for Delta. If you want to use a specific constant for
Delta, press [C]. (If you are unfamiliar with how Delta is

used to approximate the gradient, refer to appendix C,
page 82 for details.)

Enter the constant for Delta, or use the default value.

Enter the percentage for Delta, or use the default value.

Enter the gradient limit, or use the default. This limit,

compared with the norm of the gradient at each iterate,
is the criteria used to determine convergence.

Section 2: Curve Fitting 39

Step Display Instructions

L Enter the maximum number of tries to be made in the

line search routine. The default number of tries is 10.
(For details on the line search routine, refer to appendix
C, page 76.)

9 Iterations?25 Enter the maximum number of iterations to be made in
the attempt to converge. The calculation will normally
converge in less than 25 iterations, so, for convenience,

the default is 25.

8 Line =zearch trie=z?l

Performing the Fit

If you chose not to edit the program controls, or if you have completed editing them, you are ready to

have the program perform the actual fit. CF I T makes its fit by finding the local minima of the Chi

Square function. The “absolute best fit” may not be found. Instead, ©F I T may converge to a “local

best fit.” (This situation is most likely to occur when you’re using models containing periodic func-

tions.) When the program prompts to determine if you want a progress report, it is ready to fit a curve

to your data.

Step Display Instructions

10 Frogress report CYHEIY At each iteration, Chi Square, the gradient norm, the
parameters, and the gradient of Chi Square can be
output. If this information is desired, press [Y]. This
information is sent to the current FEIMTER I3 de-
vice. The default is to display the iterate number and
the gradient norm on the current DI SFLHAY 1% de-
vice. If you get to this point and decide that you don’t
want to go through with the calculation, press (@] and
the program will return to the Fit menu.

If you don’t want a progress report, press [N]; the program will start iterating and you will see the

display

HE [Grdl: n.nnnnnE nnn

For each iteration, the program will display the iterate number and the norm of the gradient.

If you do want a progress report (if you press [Y]) and don’t have a printer attached, you will see the

display

40 Section 2: Curve Fitting

If you press in response to this prompt, the program will stop between each result until is
pressed. If you do not want to stop (if you press [N]), you will see the progress report at the current

DELAY rate. Either way, the program starts iterating at this point and, if you have a printer attached,

the progress report will be printed.

For an example of what the printed progress report looks like, refer to pages 47-49.

Getting the Results

Once the program has completed the required iterations, it will have converged or it will have reached

the iteration limit without converging.

If the program did not converge, you will see the following:

Step Display Instructions

1 ITERATION LIMIT Press to go to the next display.

2 More iterationsoyHiT Press to continue iterating (starting from the last
iteration) with the same number of iterations as speci-
fied in the program controls, or press to print the
results.

Note: You may also see a numeric computation message, such as FIT EREFE =~

Tries=s » Limit. If this happens, press to return to the Fit menu.

If the program did converge, you will see:

Step Display Instructions

1 COHVERGED Press to continue.

2 Fause on resultzI(¥-H>7 Press if you want to use to step through
the results, or press if you want the results output at
the current DELY rate. You will not see this prompt if
you have a printer attached.

As with the progress report, the final results will be sent to the current FEIMTEFR I% device. To see

an example of printed final results, refer to page 49.

After the results have been printed, the program returns to the main menu.

A i+ 1T Example

The material that follows is a comprehensive £ F I T example for you to key in. This exampleuses many

of the data entry, editing, and functlon evaluatlon features avallablein th1s pac It alsouses ! , one

results.

There are eight main steps to go through in this example. You will:

Enter data into a working array.

Save this data into an HPAF DATA file.

Supply control information.

Get the fit results.

Evaluate the model at the extra point.

S
l
A

e
i

Interpret the results.

Setting Up the Problem

Add another data point to the array for evaluation.

Supply the name of the model subprogram from the library.

Example: Suppose you have taken the data in the following table.

No. X Y w

1 5 34.8 .85

2 10 134.7 .85

3 14 159.3 .85

4 18 156.9 .85

5 24 132.2 .85

6 30 117.4 .85

7 35 1325 .85

8 41 186.6 .85

9 50 342.2 .85

Section 2: Curve Fitting 41

What are the coefficients of the fourth degree polynomial that best fit this data, and what is the value

predicted by the model at X = 277

Notice that the weights have all been given a value of .85. In this example you can assume that the

standard deviation of the dependent variable (Y) is .85 and that it does not vary as a function of the

independent variable (X).

42 Section 2: Curve Fitting

Entering the Data

As the first step in this example, enter the data as follows:

Input/Result

RUM CFIT

Data Edit Fit Quit?

Fid Load Save Print?

H 7,] 'F 1 1 lj e 1 S "::' .

1

Mo, of data points7TE

“+ |END LINE

1.12=0@R

= [END LINE

FOl =0

4.8

. =5 [END LINE

Run the program.

The main menu.

You need to enter the data...

from the keyboard.

The program prompts for the number of indepen-
dent variables in the problem.

There is only one dependent variable in this
example, X.

The program prompts for the number of data
points (or rows) in the table.

There nine rows in the table.

The program asks for the value of the first ele-
ment in the first row.

Enter the appropriate value for the element from
the table.

Asks for the value of the second element in the

first row.

Asks for the value of the third element in the first

TOW.

Enter the weight for row 1.

Input/Result

i ™ RN

L3d. 7

CE

Al 1a=5

Section 2: Curve Fitting 43

Asks for the value of the first element in the sec-

ond row.

Enter the first value in the second row of the pre-
vious table.

Enter the second value in the second row.

Enter the weight for row 2. Continue entering the
data in the same manner for all the rows as the

program prompts for the values.

The program asks for the value of the first ele-
ment in the last row.

Asks for the second value in the last row.

Asks for the weight for the last row.

The editor wraps around from the last element in
the array to the first element in the array.

Press the (@] key to exit the editor and return to
the main menu.

44 Section 2: Curve Fitting

Saving the Data

The second step in this problem involves saving the data to a file.

Input/Result

Data EBEdit Fiit Guait?

(]

Flhd Load Dave Frimt?

SHVE: File mame™B

FOLYDOATH

mastlrd L.

Dats Edit Fit fuit?
Specifying the Model Subprogram

Go to the Data menu.

Save the data to a file named...

After saving the data to a file, the program re-
turns to the main menu. (A printout of the data

used in this example is shown on page 31.)

o

The third thing to do is to specify the model subprogram to ZF I 7.

Input/Result

SubiEroaram nameT

FOLY

Start the curve fitting process.

Asks for the name of the model subprogram.

Supply the name ilsince your polynomial
function is covered by this library subprogram.
(Fii% is the built-in model subprogram that
handles all polynomials through degree 19.)

Input/Result

g Pt ooy 33

Hiem o

i i

=

Section 2: Curve Fitting 45

Asks for the file where the subprogram can be
found.

is found in the built-in library file

Asks for the number of parameters.

There are five coefficients in a fourth-degree
polynomial.

Asks for an initial guess for the first parameter.
The program will go through all five parameters
to allow you to supply an initial guess for each
one.

Enter the default value of 0 since you have no
idea what the true value is. Do the same for the
remaining parameters.

46 Section 2: Curve Fitting

Editing the Controls

Now you need to go through the process of editing the program controls.

Input/Result

Czg Mdl Frms Fit Suitr? The Fit menu.

Press (F].

Erdit comtrols o9M7 The program asks if you want to edit the controls.

Yes. You need to edit the controls for this problem
because the default gradient limit is unreasonable
and, if used, eventually produces an error con-
dition involving the gradient limit.

Mivn ChiSg estimate™d Asks for the minimum Chi Square estimate.

You have no idea, so use the default value.

Fppros, arad oYHaT Asks if you want the program to approximate the
gradient.

(N] No, because the subprogram calculates it.

Gradient limit7?.001 Asks for the gradient limit, which is the criteria
used by the program to determine convergence.

1.oEs Enter 1.00 as the gradient limit. Do not use the
default here; it is unrealistic for this problem.

Lirme search trises?i@ Asks for the limit on line search tries per
iteration.

Use the default.

TterationsTo5 Asks for the limit on the number of iterations.

Use the default.

Input/Result

Frogress report CYHEOXT

Getting the Results

Section 2: Curve Fitting 47

Asks if you want an iteration-by-iteration
progress report showing intermediate results.

When you see the previous display, you are ready to get results.

Input/Result

ITmitial veal e

Chi—square =

Gradient NMorm

&3

S7IB20. TIERLLH4

BIAEEE10501 .56

Press for yes to see a progress report. After
you press (Y], assuming you have a printer at-
tached, the program prints the results. If you
don’t have a printer attached, the results will be
displayed as in the example in section 1, starting
on page 14. Assuming your printer is an 80-col-
umn printer, your intermediate and final results
will be formatted as follows:

M. Farameter Gracdient

1 O, DOOOOQOE00D —. B&HAOI1TEAODE

2 o, QOOOOOEAQQO -1.181129E+005

= O, OOO0O0DE+O00 —d | AEEEYTE+DOE
4 Q) OOODOOOEA+QOQ0) =1 . 876959E+008

& D)y DOOOODED00 =&, EZ8 1408+008

48 Section 2: Curve Fitting

ITteration: 1

Chi—-square = 1204355, 2101

Gradient Norm = 9042003,

Farameter

7O7581E-011

My .

1

2 8.516494E-010
3 T 21 R90FE-D0E
4
=
.

1.

Ge 043386005

REERTVSED06

lteration: 2

e 2oy

Chi—-square 852858, 1

112017Gradient Morm

NG .

1 1
~y

e W

it .

el

Far ameter

61 5609E-0046

7EGEEGEOO

QEDIHTE-OD4

7EB7HAEDO

O5H1642E-004

+ 3

Tteration: 3

Chi—squerre = 13502, 10228

Gradient Norm = 1074.981i

M. Farametor

1 1o Z05722E~-002

2 1.4710688E001

A 1. 27 19Z39E4+000

812725-002

7. 04064004

4
=
)

96

BL697

Gradient

1.87887%

*3,180130F+OO4

-5, 7H8EARE+D0%

-, 01261 E+D06

o VL EAOOSa. (-)J—-.. v

SO0

Se&HOE8

W 62547

Gradient

=1 . 140853E+003

-1 .. Z285068E+004

=1, 110427E+QOS

7. 14EE9 1 E+OOD

=1 . ODBD48E+OOD

Oé

22404

Gracient

-1 . 887293E+001

-1 OS51068E+0073

1. 233103E+002

-, 1 Z1E54E+000

3.9‘PROE-0]

ITteratiaons 4

Chi-sguare =

Gradient Morm =

No. Farameter

1 A0 101776E+000

2 1.735832E+001

A ~5.e 776H100E—-00]

4 g.998385E-004

S 1.2921139E-004

ITteration: 9

Chi-square =

Gradient Morm =

Farameter

1 1. 791837E+002

= G.747584E+001

A =5. 270084E+000

4 7. 048645E-002

& -4, 780277E~004

Chi-square =

Fercentage goodness of

Section 2: Curve Fitting

4051300713527

475.4024658%544

Gradient

4, 272603E4+001

=7 a6 199B6E+QOQO0

4,422028E-001

-9, 5EI8EIOE~-OO0X

e HP2280E-002

2. 64992479158

» O5EBE1069542

Gradient

=2 B17995E-007

=1 . 08E907E—-0Q05

—4, 47869PE-004

=1.9210917E-002

-8.526168E-001

2004992479158

it = 45,500

Gradiernt Norm = 8352831069542

Mo . Farameter

-1.791857E+002

5. 747584E+001

e B70084E+OO0

7048645E002

—-i 780977E-0040
i
b
=

¢ S

Gradient

-2, 81795E~-007

=1 L. O82F0DT7E-DO5

-4, 428699E-004

=1 .910917E-0D02

-8.526168E-001

49

50 Section 2: Curve Fitting

For each iteration you are given

¢ I—the current iteration (guess) number.

e Py, ..., Ps—the model parameters (or polynomial coefficients).

dx*/dP, ..., dx*/0Ps;—the gradient vector at (P;, Py,..., P5).

ChiSq—the value of Chi Square at (P, Ps, ..., Ps).

|Grd|—the gradient norm (measures the flatness of Chi Square).

Notice that after five iterations the Chi Square value was reduced from the initial value of 373,820.73 to

3.64992479158 (where convergence occurred). The final coefficients make the fourth degree polynomial

look like this:

F(X) = P, + PoX + P3X? + P,X3 + P;X*

o I —1.791857 E2

P, = 5.747584 E1

Py = —3.270084 E0

P, = 17.048645 E—2

= —4.780977 E—4~
a

|

The following graph shows the nine data points and the polynomial function determined above.

 350

T T T T T T T T T T T T T T T m

TEEee.UUSUeU

DBb.......................... ...

ZEEbTOTL .__.,-'i:

: : B

feab.BTeSRLULRoL

: g T E L
: . "-——__E__.--"

1aao SL See .

EB -

o Ll P . 1 1 1 ! 1 1 1

Section 2: Curve Fitting 51

With the results, you also get something called percentage goodness of fit, which has the value 45.50.
This number can be used in the interpretation of the results, which is discussed after the model
evaluation.

Evaluating the Model

Now that you have the results of the fit, continue on with the example by adding a row and then

evaluating the model at X = 27 to answer the original question: “What is the value predicted by the

model at X = 277"

Input/Result

C=g Mdl Frms Fit Ouit?

(Q]

Data Edit Fit St

1.o1a=5

)

OOy Fow o Coluamn®

(R]

Aol mew row at?16

After printing the results, the program returns to
the Fit menu.

Press [Q] to return to the main menu.

Press to access the data editor.

The program enters the array at the first element.

The letter O has been redefined as the FHi[I com-
mand. (Refer to page 32 for a description of the
redefined keys.)

Asks if you want to add a row or column.

Add a row.

Asks where to add the new row. The program de-
faults to one more than the current number of

TOWS.

Use the default to make the new row number 10.

52 Section 2: Curve Fitting

Input/Result

Morking. ..

Auld, 1 =08

27 [ENDLINE]

TRlE,Zr=0

END LINE

Wolm, 20=1

(9] irif [ENDLINE]

Dhats Edit Fit Quit?

Subprogram namePPOLY

File rname?FITLIE

o, of Model Farme?s

Filao=179, 185656734
Fiza? 57, 4752354764
Fr3as-3, BFEEEIT4REE
Fids? BTA4EE452053
FiSav-d4 FPERSTTAZSESE -4

A new row is added to the array with default
values.

X =27

Use the default value since this number is not

used in the evaluation.

The default weight.

While holding the (9] key down, type it:+. This
gives this row a weight of infinity. With this
weight, the row will not be considered in the curve
fitting process.

Exit the editor and return to the main menu.

Access the Fit menu by scrolling through the sub-
program and parameter prompts using the

(ENDLINE] key.

Section 2: Curve Fitting 53

Input/Result

=g Mdl Frm=s Fi1t Ouait?

Press [M] to start the process for evaluating the
model.

Fow # cor ALLTE The program asks for the row number to be eval-
uated (or if all rows are to be evaluated).

16 Row 10.

G F o= 122, 8743773398 The function value at X = 27.
END LINE Press [END LINE to return to the Fit menu.

=g Mdl Frms Fit Ouit?

Damts Editr Fit Dgit?

Interpreting the Results

An important point about the program is that achieving convergence does not necessarily mean that the

model you have chosen is appropriate. ZF I T merely tries to come up with the best solution for the

model you have chosen. You can see from the graph on page 50 that the model chosen for this example

is a good one. However, in the general case, where graphs may be inappropriate, statistics, specifically

the Chi Square value, can be used to determine the acceptability of the model.

Assuming the dependent variables are normally distributed with standard deviations equal to the

weights, and assuming the modelfits your data well, the value identified by the program as Chi Square

will be x%(v) distributed. The degrees of freedom (the number of data points minus the number of

54 Section 2: Curve Fitting

parameters) is v. (The mean value of a x%(v) distributed variable is ».) In this example the Chi Square

value is 3.6499 and there are 4 degrees of freedom (9 data points minus 5 parameters). In general, if the

above assumptions are satisfied, you can expect Chi Square to be close to the mean value v.

Assuming the weights are valid, an unreasonably large value for Chi Square probably means that the

model selected is inappropriate for the data.

The determination of “unreasonable” is usually made beforehand based on how much risk you are

willing to take of rejecting a model when it is truly appropriate. For example, assume you are willing to

take a risk of 10% of rejecting a valid model based on the previous criteria. You would see from Chi

Square tables that 90% of the time a x*(4) (Chi Square with 4 degrees of freedom) distributed variable

will be less than 7.78. Consequently, you would reject the model if the computed value exceeded this.

Since 3.6499 is less than 7.78, you cannot reject the model for this example on that basis. In other

words, the model for this example is reasonable.

Because of the utility of the Chi Square statistic in evaluating the validity of the model, the BASIC

subprogram FIZEMTIZHI has been built into the Curve Fitting Pac. This program eliminates the need

to refer to Chi Square tables. FCEHTCHI accepts values for U, the upper limit, and V, the degrees of

freedom, and returns P, the probability that a Chi Square distributed variable is less than U.

CFIT calls FCEMTIZHI, passing it U (the value identified by ©F I T as Chi Square) and V (the num-

ber of data points minus the number of model parameters) and obtaining in return the probability, P.

The value identified by CF I T as the percentage goodness of fit is 100 X (1 — P). This is the percent-

age of time that a Chi Square distributed variable with V degrees of freedom would exceed the F I T

value. If the percentage goodness of fit is less than your acceptable risk percentage (in this example,

10%), you would reject the model. Since the 45.50 returned by the program in this example is greater

than 10, you have no reason to reject the model at the 10% significance level.

Section 3

Optimizing a Function

Introduction

Optimization is a term used to describe a class of problems in which the objective is to find the mini-

mum or maximum value of a specified function. Often, the interest is focused on the behavior of the

function in a particular region. Thus the goal becomes one of finding a local minimum or maximum.

The TFTIMIZE program uses the FP Method to determine local minima or maxima for real-valued

functions whose gradient vectors can be defined analytically at each point. The functions can have up

to 20 variables.

Remember, the process you go through in 0FTIMIZE involves:

1. Creating a subprogram for the function you want to optimize.

2. Running OFTIMIZE and specifying the name and location of your function subprogram to

OQFTIMIZE.

3. Making an initial guess for the variables.

4. Optionally:

¢ Evaluating your function at the current variables.

* Editing the current variables.

¢ Editing the program control values.

5. Optimizing the function.

Creating the Function Subprogram

Before you run the program, you need to create a subprogram for your function and have it in memory.

For information on creating the required subprogram, refer to appendix G, “Creating Your Own Model

or Function Subprogram.”

Running the i~ 7 [1.k Program

FTIMIZE may be invoked through either a FiIH command or a “HLL command from another

program.

You run OFTIMIZE by typing FiUH OFTIMIZE (ENDLINE].

55

56 Section 3: Optimizing a Function

Specifying the Subprogram

Specifying the name and location of your function subprogram is the first step in JFT IIZE. The set

of instructions that follow, as well as other sets in this section, are formatted to give the step number,

the display you will see, and the instructions on what to do to complete the step.

Step Display Instructions

1 Subprogram nameTR® When you run OFTIMIZE, this is the first display you
see. Enter the name of the function subprogram to be
called.

2 File rname™H Enter the name of the file containing the subprogram.

3 How mang wariables?Z Enter the number of independent variables (the default
1s).

Make sure that your entry for the number of variables agrees with the number of variables actually in

your function subprogram. If the number entered is too small, you will probably get an error when the

function is evaluated. If the number is too large, you will get incorrect results.

Editing the Variables

After you enter the number of variables, the program displays the first variable for editing. You can

enter (or edit) the values by stepping through each variable. As in :F I T, all the features of line editing

in the HP-71 are available for use. (For more information on the keys used in line editing, refer to

“Keyboard Operation” in section 1 of your HP-71 Owner’s Manual.)

Step Display Instructions

1 Vol aTa Enter the value of the first variable in the initial guess.
Notice that the variables in the first guess default to

zZero.

2 Wozara Enter the second variable. The program will prompt for
the remaining variables in a similar manner. When you
enter the last variable, the program will display the Op-
timize menu.

Options From the Optimize Menu

This 1s the Optimize menu:

Te=zt EBEdit Opt Shagit?

From it you can evaluate (test) your function at the current guess, edit the variables again, optimize

(minimize or maximize) the function, or quit the program.

Section 3: Optimizing a Function 57

Testing the Function

To test the function using the current variables, follow the steps outlined below.

Step Display Instructions

1 Tezt Edit Opt Guit? Press (T].

2 F=nnn The program evaluates the function at the current vari-
ables and displays the result. Press to return
to the Optimize menu.

Editing the Controls

Once you have specified your subprogram, entered your variable values, and optionally tested your

function, you are ready to optimize. Before you actually start the optimization, though, you have the

option of editing the controls that affect the numerical calculations. The steps to do this are shown

next.

Step Display Instructions

1 Tezt Edit Opt Suit? Press (0].

2 Eodit controls OM7 Press if you want to edit the controls that affect the
numerical calculation, or [N] if you want to proceed with
the calculation using the current controls. If you enter
[N] at this point, the procedure continues at step 11.

3 MIM or MASimizeTMIN Enter It if you want to minimize the function, or
M if you want to maximize it. The default is to mini-
mize it.

4 suned estimateth Enter the bound estimate (lower bound for minimizing

and upper bound for maximizing). A good estimate of
the bound can help the program to converge sooner than
it otherwise would. The default is to &,

5 Approx, grad (YH>7 If your subprogram includes the gradient calculation,
press [N] and pick up the procedure at step 8. If you
want the gradient approximated automatically, press [Y].

6 Cormst. or Fercent{0OF»7 Press [P]if you want to use a percentage of the param-

eters for Delta. If you want to use a specific constant for
Delta, press (C]. (Refer to appendix C for details on how
Delta is used to approximate the gradient.)

7a Comstant T 00081 Enter the constant for Delta, or use the default value.

Enter the percentage for Delta, or use the default value.J T il
i -

i ¥ +

il
i
L 1

i

o o

8 Gradient limit?. 881 Enter the gradient limit, or use the default. This limit,

compared with the norm of the gradient at each iterate,
is the criterion used to determine convergence.

58 Section 3: Optimizing a Function

Step

10

Display

Lime search frisestlo

ITterations" 25

Performing the Optimization

Instructions

Enter the maximum number of tries to be made in the

line search routine. The default number of tries i1s 10.

(For details on the line search routine, refer to appendix

D.)

Enter the maximum number of iterations to be made in
the attempt to converge. The calculation will normally
converge in less than 25 iterations, so, for convenience,

the default is 25.

If you chose not to edit the program controls, or if you completed editing them, you are ready to have

the program perform the actual optimization. Remember that &iF T I/ IZE searches for a local mini-

mum (or maximum). The absolute minimum (or maximum) may not be found. This is especially true

for functions which have many critical points.

When the program prompts to determine if you want a progress report, it is ready to optimize your

function.

Step Display

11 Frogress repor i CTHG T
Instructions

At each iteration, the current value of the variables, the

function value, the gradient of the function, and the
norm of the gradient can be output. If this information
is desired, press (Y]. This information is sent to the cur-
rent FEIMTER I% device. The default is to display the
iterate number and the gradient norm on the current
DIZFLAY I% device. If you get to this point and de-
cide that you don’t want to go through with the calcula-
tion, press [Q]. The program will return to the Optimize
menu.

If you don’t want a progress report, press [N]; the program will start iterating and you will see the

display

FGrodl n.nnnnn&. nnn

For each iteration, the program displays the iterate number and the norm of the gradient.

If you do want a progress report (if you press [Y]), and if you have no printer attached, you will see the

display

Fauyze Pey

Section 3: Optimizing a Function 59

If you press in response to this prompt, the program will stop between each result until LINE]mis

pressed. If you do not want to stop, press [N] to see the progress report at the current {iF L % rate.

Either way, the program starts iterating at this point and, if you have a printer attached, the progress

report will be printed.

The report will look like this if you are using an 80-column printer:

Imitial values:

Furnction value =Z2740

Gradient Morm =5S24, 7515469498

Mo Variable Gradient

1 S DOQOOOOEDO 4, Q0000Q0L

2 &0 QOOODDEDD SE00O0D0E+DOR)i

Tteratiaon: 1

Furnction valwuwe =9247% 85779216

Gradient Norin =32,2275686002756

Mo Mar-iable Gradient

1 Lo 725057E+001 e QEOEOBOE+GO]

o 1. 597326E+001 S"uVA7 LIE+DO]

ITteration:

Fumnction value =925H., 244332081

Gradiernt Norm =153, 1880683955

NGy Var it akble Gradient

1 1.46805309E+001 -;.074“@*F+D01

& 1.6711258E+001 « A42000

60 Section 3: Optimizing a Function

ITteration: 3

Function value =9259 25892476

Gradient Norm =.161895444179

NG . Variable Gradient

i 1.866421E4+001] 4. 5262450058

- 1w &E7OEEERDD] =1 S54395E001

Iteration: 4

Function value =Q259, 2EQIHQNH

Gradient Norm =1.119234775669E-1

Mo . Variabhle Gradient

1 1.6866868E+001 =L 1931 E5E-004

2 1 e bb6656E7EFO0] & S85QEHE-O04

This example of a printed progress report is the progress report from “A Big Box,” the OFTIMIZE

example in section 1, starting on page 22.

Getting the Results

Once the program has completed the required iterations, two situations can occur. Either the program

will have converged or it will have reached the iteration limit without converging.

If the program did not converge, you will see the following:

Step Display Instructions

1 ITERATION LIMIT Press to go to the next display.

2 More 1terationsiy-Ha? Press to continue iterating (starting from the last
iteration) with the same number of iterations as speci-
fied in the program controls, or press [N] to return to
the optimize menu.

Note: You may also see a numeric computation message, such as FIT ERFR=~

Tris= » Limit. If this happens, press to return to the Optimize menu.

If the program did converge, you will see:

Step Display

1 COMVERGED

2 Fauze on resultsoy - MHaw

As with the progress report, the final results will be sent to the current FRIHTEFR

Section 3: Optimizing a Function 61

Instructions

Press [END LINE to continue.

Press if you want to use to step through
the results, or press [N] if you want the results output at
the current DEL A% rate. You will not see this prompt if
you have a printer attached.

I% device. The

report will be printed like this if you are using an 80-column printer:

Function value =9259 " |..\)

Gradient Norm =1.1193247

No. VYariable

1 1 .&666668E+001

2 1.6E6667E+00]

These printed results are the results from

After the results are printed, the program

A Word on Gradient

xr'*z-)r.x::"r) "u
W

TEESIE~T

Gradient

-9, 193138E~Q0D4

~& . A8ESQEHBE~-QO04

“OFTIMIZE Example: A Big Box” starting on page 22.

will return to the Optimize menu.

Since the gradient is an integral part of the optimizing process, a discussion of what the gradient is and

how it is used in the FP Method is presented here.

For the function

F(X) = F(xl, X9y, X3y veey xk)

the gradient of F, denoted by VF, is defined by

GF/axl

GF/GxQ

VF(X) = 0F/dxy

aF/axk

62 Section 3: Optimizing a Function

Notice that the gradient of F is a vector whose length (number of elements) equals the number of

variables. The components of VF(X) are the partial derivatives of F with respect to each coordinate.

The negative of the gradient vector gives the direction of steepest descent (that is, the way in which X

should be changed in order to cause the most rapid decrease in F(X)).

You might think that the most viable approach for obtaining the next estimate for the location of a

minimum for F is to proceed some distance from the current estimate X = (x;, Xo, ..., x;) in the direc-

tion indicated by the negative of VF(X). Indeed this technique (Steepest Descent) is in common use.

However, this is not always a good strategy in that it can produce very slow convergence when the

estimates get close to the desired location. The FP Method largely overcomes this difficulty by appro-

priately modifying the gradient vector to obtain a more productive search direction. For additional

details of the FP Method, refer to “Fletcher-Powell Method” in appendix C.

Appendix A

Owner’s Information

Limited One-Year Warranty

What We Will Do

The HP-71 Curve Fitting Pac is warranted by Hewlett-Packard against defects in materials and

workmanship affecting electronic and mechanical performance, but not software content, for one year

from the date of original purchase. If you sell your unit or give it as a gift, the warranty is transferred

to the new owner and remains in effect for the original one-year period. During the warranty period, we

will repair or, at our option, replace at no charge a product that proves to be defective, provided you

return the product, shipping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of

service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.

ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIM-

ITED TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states,

provinces, or countries do not allow limitations on how long an implied warranty lasts, so the above

limitation may not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE

LIABLE FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow

the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion

may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state

to state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a

consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be

determined by statute.

63

64 Appendix A: Owner’s Information

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard

shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard

dealer or a Hewlett-Packard sales and service office. Should you be unable to contact them, please

contact:

¢ In the United States:

Hewlett-Packard

Personal Computer Group

Customer Communications

11000 Wolfe Road

Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

¢ In Europe:

Hewlett-Packard S.A.

150, route du Nant-d’Avril

P.O. Box CH-1217 Meyrin 2

Geneva

Switzerland

Telephone: (022) 83 81 11

Note: Do not send units to this address for repair.

¢ In other countries:

Hewlett-Packard Intercontinental

3495 Deer Creek Rd.

Palo Alto, California 94304

U.S.A.

Telephone: (415) 857-1501

Note: Do not send units to this address for repair.

Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may

have your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit

is under warranty or not. There is a charge for repairs after the one-year warranty period.

Appendix A: Owner’s Information 65

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt
at any service center. This is an average time and could vary depending upon the time of year and the
work load at the service center. The total time you are without your unit will depend largely on the
shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is lo-

cated in Corvallis, Oregon:

P.O. Box 999

Corvallis, Oregon 97339, U.S.A.

Hewlett-Packard Company

Service Department

or

Telephone: (503) 757-2000

Obtaining Repair Service in Europe

1030 N.E. Circle Blvd.

Corvallis, Oregon 97330, U.S.A.

Service centers are maintained at the following locations. For countries not listed, contact the dealer

where you purchased your unit.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H.

Kleinrechner-Service

Wagramerstrasse-Lieblgasse 1

A-1220 Wien (Vienna)

Telephone: (0222) 23 65 11

EASTERN EUROPE

Refer to the address listed under Austria.

GERMANY

HEWLETT-PACKARD GmbH

Kleinrechner-Service

Vertriebszentrale

Berner Strasse 117

Postfach 560 140

D-6000 Frankfurt 56

Telephone: (611) 50041

NORWAY

HEWLETT-PACKARD NORGE A/S

P.O. Box 34

Oesterndalen 18

N-1345 Qesteraas (Oslo)

Telephone: (2) 17 11 80

SWITZERLAND

HEWLETT-PACKARD (SCHWEIZ) AG

Kleinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057) 31 21 11

BELGIUM

HEWLETT-PACKARD BELGIUM SA/NV

Woluwedal 100

B-1200 Brussels

Telephone: (02) 762 32 00

FINLAND

HEWLETT-PACKARD OY

Revontulentie 7

SF-02100 Espoo 10 (Helsinki)

Telephone: (90) 455 02 11

ITALY
HEWLETT-PACKARD ITALIANA S.P.A.

Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

1-20063 Cernusco Sul Naviglio (Milan)

Telephone: (2) 90 36 91

SPAIN
HEWLETT-PACKARD ESPANOLA S.A.

Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

UNITED KINGDOM

HEWLETT-PACKARD Ltd

King Street Lane

GB-Winnersh, Wokingham

Berkshire RG11 5AR

Telephone: (0734) 784 774

DENMARK

HEWLETT-PACKARD A/S

Datavej 52

DK-3460 Birkerod (Copenhagen)

Telephone: (02) 81 66 40

FRANCE

HEWLETT-PACKARD FRANCE

Division Informatique Personnelle

S.A.V. Calculateurs de Poche

F-91947 Les Ulis Cedex

Telephone: (6) 907 78 25

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V.

Van Heuven Goedhartlaan 121

NL-1181 KK Amstelveen (Amsterdam)

P.O. Box 667

Telephone: (020) 472021

SWEDEN

HEWLETT-PACKARD SVERIGE AB

Skalholtsgatan 9, Kista

Box 19

S-163 93 Spanga (Stockholm)

Telephone: (08) 750 2000

66 Appendix A: Owner’s Information

International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you

bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is avail-

able in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local

Hewlett-Packard service center to see if service is available for it. If service is unavailable, please ship

the unit to the address listed above under Obtaining Repair Service in the United States. A list of

service centers for other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and

materials. In the United States, the full charge is subject to the customer’s local sales tax. In European

countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable.

All such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered by the fixed repair charges. In these

situations, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period

of 90 days from date of service.

Shipping Instructions

Should your unit require service, return it with the following items:

® A completed Service Card, including a description of the problem.

® A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of pur-

chase date should be packaged in adequate protective packaging to prevent in-transit damage. Such

damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the

shipment to the service center. The packaged unit should be shipped to the nearest Hewlett-Packard

designated collection point or service center. Contact your dealer for assistance. (If you are not in the

country where you originally purchased the unit, refer to International Service Information above.)

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery

to the Hewlett-Packard service center.

Appendix A: Owner’s Information 67

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-

of-warranty repairs in the United States and some other countries, the unit is returned C.0.D. (cover-

ing shipping costs and the service charge).

Further Information

Circuitry and designs are proprietary to Hewlett-Packard, and service manuals are not available to

customers. Should other problems or questions arise regarding repairs, please call your nearest Hewlett-

Packard service center.

When You Need Help

Hewlett-Packard is committed to providing after-sale support to all of its customers. To this end, our

customer support department has established phone numbers that you can call if you have questions

about this product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call:

(800) FOR-HPPC

(800 367-4772)

Technical Assistance. For technical assistance with your product, call the number below:

(503) 754-6666

For either product information or technical assistance, you can also write to:

Hewlett Packard

Personal Computer Group

Customer Communications

11000 Wolfe Road

Cupertino, CA 95014

Appendix B

Error and Status Messages

The Curve Fitting Pac programs return certain messages under specific conditions. Some of these are

merely status messages, while others occur in response to an error. An incorrectly typed or constructed

command will produce an error message. An error in a subprogram may produce an error message and

halt execution of the program.

Several of the error messages are related to the amount of available memory. CFIT and OFTIMIZE

contain tests for low memory conditions—conditions that would otherwise suspend program execution.

If you encounter an error or warning that refers to low memory conditions, you should interrupt the

program by pressing [ATTN], catalog the memory files, and purge unneeded files to make more memory

available. You can then press to proceed with the program.

BASIC Error Messages

The following is a list, in alphabetical order, of the error and status messages produced within the

BASIC programs. Refer to page 117 for a list of the BASIC programs in this pac.

Message and Condition

Do

The program has ended. The HP-71 is now ready for the next task.

EFROR: 1 <= k <= 2@

The number of unknowns must be between 1 and 20.

ERREOR: H < 1
The number of independent variables and data points must be positive.

EREREOE: Hddre=z=s

The given array element in a =0Tcommand does not exist.

EFRORE: Arrag Too Larage

There is not enough memory to hold the new data array (or enlarge the existing data array).

EFREOE: Data Format

The file being read is not a properly formatted HPAF file.
69

70 Appendix B: Error and Status Messages

Message and Condition

ERFEOR: File Mot Found

The file specified in a load operation or the file containing the named subprogram could not be found.

ERREORE: HFIL
An error was encountered when trying to print to an HP-IL device.

ERRORE: Illeaal ChiSg

The given Chi Square estimate is invalid.

ERROE: Illegal Delta

The given Delta is invalid.

ERFEORE: ITterations < 2

You must allow at least two iterations.

ERREORE: Limit <=
The gradient limit must be positive.

EREEORE: Mo Data

There is no data. Data may be entered with the keyboard or load option.

EREOE: Mo Frinmter

There is no printer on HP-IL.

EREORE: Horne=zistent LCol

The given column in the AOD or DELETE command does not exist.

EREOE: MHonexisztent Eow

The given row in the DELETE command does not exist.

ERECOE: Mot Encugh Mem

There is not enough memory to edit the data, or there is not enough memory to run the program.

ERECORE: Mot HFAF File
The data file specified for a LA is not in the HPAF format.

EREOE: # 0Ff Columns

The file being added to the data array has a different number of columns than the array.

EREOE: FCEMTCHI Failed
The calculation of the percentage goodness of fit failed.

EREOE: SUE Mot Found

The subprogram could not be found.

Appendix B: Error and Status Messages 71

Message and Condition

EREREOE: Tries < Z

You must allow at least two line search tries.

EREECOE: You MHeesed 1 REow

The data array must contain at least one row.

EREEORE: You Heed 2 Cols

There must be at least three columns in the data array—allowing for one independent variable, the
dependent variable, and the weight.

EREOR od SUBFROGEAM
The subprogram cannot be called successfully.

WEH: Oea. Freedom < 1

The PCENTCHI calculation is meaningless for degrees of freedom less than 1.
Binary Error Messages

This next listing is the error messages that can be produced when an error is detected and reported

from within one of the FI TL I Ebinary subprograms that you can call. In addition to displaying the

error or warning message, the subprogram passes back a condition code in the last variable that appears

in the calling statement. The condition code will agree in magnitude with EFFH, but will additionally

indicate whether the exceptional event was treated as a warning or error. A negative condition code

indicates warning and a positive condition code indicates error. The occurrence of such a warning or

error will not be detected by an 0l EFRFIF statement and will not halt a running program. Con-

sequently, it is usually best to test the condition code immediately after a call to any of the binary

subprograms provided in this pac. CFIT and OFTIMIZE do this automatically for you.

If CFIT or JFTIMIZE do encounter an error, the programs pause and the SUSP annunciator ap-

pears. The program can be continued by pressing [f][CONT].

Note: Normal exits (including warnings and errors) will deallocate the scratch memory (system

buffers) used by the binary subprograms making this memory available for other uses.

However, there are four exceptional events that are treated differently than the description above. If

the subprogram is unable to assign a value to the condition code variable (errors 3015, 3016, and 3017),

the error message is displayed as usual, but you will not be returned to the calling environment. In-

stead, the current file will be FITL IE and the environment will be that of the subprogram that de-

tected the error. These errors are detected before any scratch memory is allocated. To recover, type

EHDSZUE from the keyboard to return to the calling environment.

72 Appendix B: Error and Status Messages

A similar situation occurs if there is an attempt to display an error or warning and there is insufficient

memory to do so. In this case the original error or warning message is replaced by the error message

ERE: Insufficient Memoryg, Kxecution is halted with FITLIB as the current file and the lo-

cal environment as that of the subprogram that attempted the error or warning message. In this last

case, any scratch memory currently in use will not automatically be deallocated. You can recapture this

memory by executing the keyword F ILLELUFF, which explicitly deallocates all three of the system

buffers that are utilized by this application.

These four exceptional events are, in normal use, extremely unlikely. In fact, the JFTIMIFF and

{2F I T programs protect you from the condition code errors by internal dimensioning and value check-

ing. The insufficient memory error is not excluded but is unlikely since the error messages are short. If

you are short of memory, it is far more likely that you will see the error FI T ERE~«Hn Foom which

indicates lack of memory to create required system buffers or to execute one of the many calls made by

the binary subprograms to other subprograms.

Binary Error Listing

Errors and warnings detected by the binary subprograms are preceded by “F I T” with a “~~” appearing

where the line number is normally displayed. The following table lists the error messages that can be

produced within the binary subprograms.

Condition
Message and Condition

Code

3001 FIT EEE~~Abor ted

The key was pressed during the execution of FIT, FF, or S0,

3002 FIT EREE~~Faz=z By Yalue

A parameter that must be passed by reference to one of the binary subprograms has

been passed by value.

3003 FIT EERE=~Mat Hot Sqr
The FP matrix must be a square matrix.

3004 FIT EREE~~Taoo Mang Yars

The number of unknowns (k) exceeds 20, or a matrix which should have length k is too

large.

3005 FIT EEE~~Bad Dimernzion

At least one of the arrays passed to a binary subprogram has the wrong length.

3006 FIT EER~=Ho Eoom
Insufficient memory to execute the binary subprogram.

Appendix B: Error and Status Messages 73

Condition
' Message and Condition

Code

3007 FIT ERE~~Complesx Mat
An array passed to one of the binary subprograms is of COMPLEX type.

3008 FIT ERE~~Complex Var

An argument to one of the binary subprograms is of COMPLEX type.

3009 FIT ERRE~~Ho Buffer

An expected system buffer was not found after return from a call.

3010 FIT ERE~~Tries > Limit
The number of attempts within line search exceeded the supplied limit with no detect-

able improvement.

—3010 FIT MEH~~Tries > Limit

The number of attempts within line search exceeded the supplied limit but with

improvement in the current iterate.

3011 FIT ERE~~Grad Oelta=d

The parameter used to approximate the gradient in GFEALOF or ZREALDM is 0.

3012 FIT ERE~~Int Tupe \ar

An argument to one of the binary subprograms is of INTEGER type.

3013 FIT ERE~~Int Tupe Mat
A matrix argument to one of the binary subprograms is of INTEGER type.

—3014 FIT WEH~~Gradient=0
The matrix argument used to pass the current gradient is zero.

3015* FIT ERE~~CC-Int Tupse Yar

The condition code variable is of INTEGER type.

3016* FIT ERE~~CC-Faz=z EBu Yalus
The condition code has been passed by value.

3017* FIT ERE~~CC-Comple: Var

The condition code variable is of COMPLEX type.

 * These values are not assigned to the condition code variable. However, EF:FH will have these values.

74 Appendix B: Error and Status Messages

Condition Message and Condition
Code

3018 FIT ERE~~HaMH or Inf
A H=aH or Irif is encountered as a computed result or as an argument where

disallowed.

—3019 FIT MEH~~Grad F+dF=F
An attempt has been made to approximate the gradient with a value of Delta too small

to effect a change in one of the parameters. In this case, at least one of the partials

being approximated will erroneously be zero because of roundoff error.

3020 FIT ERRE~~U=zer
A user function or model subprogram has set the condition code variable to 3020.

—3020 FIT WEHM~~U=zer
A user function or model subprogram has set the condition code variable to —3020.

Condition Code Messages 3020 and —3020

The last two messages, 3020 and — 3020, need a little more discussion to understand them completely.

These messages provide a mechanism for handling an error or warning detected within a model or

function subprogram you write. If the value of the condition code variable is established as 3020, the

error is displayed and the program halts just as with other error messages generated within the binary

subprograms. (If the value is established as —3020, the warning is displayed and the program

continues.)

If the condition code variable (C) is established as H=zH, an error (message 3018) is generated. If the

condition code is unchanged by the subprogram, its value upon exit remains zero and the calling pro-

gram assumes normal processing has taken place and continues execution. Other nonzero values for the

condition code variable assume an error if C>0, or warning if C<0, and that a message has already

been displayed.

Appendix C

Numerical Methods

Fletcher-Powell Method

Both ©FI7T and OFTIMIZE use an algorithm commonly referred to in this manual as the Fletcher-

Powell (FP) Method*. This algorithm accepts a function F(X) = F(x,,x,,...,x;) with k variables and an

initial guess P = (p;,py,. .-,pk)T for the location of a local minimum, and then produces the next guess

P = (p/,p)s---, pk’)T. The manner in which this is accomplished is described next.

A k by k square matrix H is first initialized as the identity matrix. The use of the matrix H and the

manner in which it is modified after each new guess distinguishes this method from other similar

methods.

The negative gradient of F at the current iterate (—VF(P)) is computed. This vector gives the direction

of steepest descent at P. A unit search direction S = (31,32,...,sk)7 is established via

S = —H(VF(P))

This vector is then normalized to the unit vector S via

S=S8/15]

Notice that initially H is the identity matrix, hence the direction for the first iterate is simply the

direction of steepest descent. In theory it can be shown that the matrix H remains symmetric positive

definite throughout the entire process and, consequently, that the function is always “decreasing” near

P in the direction given by S.t

* R. Fletcher and M.J.D. Powell, “A Rapidly Convergent Descent Method for Minimization,” Computer Journal, July 1963, pages

163-168.

t In practice, the modifications made to H can introduce roundoff errors, thus permitting H to lose these desirable properties and

forcing a “restart” procedure to be employed in which H is reinitialized as the identity.

75

76 Appendix C: Numerical Methods

After a useful direction S from the current iterate P has been established, the next iterate is defined as

P'= P+t x S for some appropriate choice of a positive scalar ¢t. Thus P’ lies on the ray emanating

from P in the direction S.

The task that remains is the determination of an appropriate value for ¢t. This task, commonly called

line search, is not part of the FP Method. Various line search techniques are in common use. The one

employed in this pac uses a modified cubic fit along the search ray. Details of the line search algorithm

are given after the FP method is fully described. For now, observe that the value of ¢t should be such

that F'is minimized near P in the direction S. This observation implies that line search is equivalent to

minimization of a function of a single variable ¢t. The function to be minimized is

h(t) = F(P + tS)

After an appropriate value of ¢ has been obtained, the iterate P’ is computed and the matrix H is

updated as follows: (Notice that the denominators in the expressions for A and B are scalars.)

R=P — P R=AP (k by 1)

QR=G-G; Q=A(VF) (kbyl)
H=H+ A —B

The k by k matrices A & B are computed as follows:

A = (RRT)/(RTQ)
B = (HQQ"H) / (QTHQ)

Line Search

As previously mentioned, the object of the line search is the minimization of the function h(t). Before

launching into the explanation of the algorithm, you’ll need to know some notational conventions.

Notice again the function to be minimized:

h(t) = F(P + tS)

P is the current iterate and S is the search direction. The algorithm will selectively sample h at various

values of t. Assuming selected values of t at ¢t = ¢, t;, and ¢y, let us denote h(t,) by h, h(t;) by h; and

h(ty) by hy. Similarly, let us denote the slopes h'(¢y), h’(¢;), and h'(ty) by my, m;, and ms, respectively.

Observe that given values t, t;, and ¢y, the determination of h, h;, and h, can be obtained directly thru

a AL Lto the subprogram that represents the function F. The values of m;, m;, and m, are computed
via:

m; = (VF(P + ,8))TS; for i = 0,1,2

What we have on entry to the line search algorithm is P, the current iterate, S, the search direction

(from the FP algorithm), and L, the estimated functional lower bound.

Appendix C: Numerical Methods

The first step in the algorithm is to compute m(and ensure that m, < 0. If this is not the case, the FP

matrix H is reset to the identity and a new search direction S is determined. (This guarantees a new

value of m(such that m; < 0 with equality only if the norm of the gradient is 0.)

Then, the algorithm initializes t, = 0 (corresponding to P’ = P), and determines a value ¢, in such a

manner that we expect the interval (¢y,t;) to be a good search interval for the function h. More specifi-

cally, if hy < L (this corresponds to a bad guess at L), L is first reset to hy + (m(/2). Notice that mis
less than 0; therefore, the new value of L is less than h,,.

ty = MIN [—2(hy — L)/mj ,1]
This choice for t; deserves some explanation. The value given by t' = —2(h, — L)/m, is quite reason-

able assuming that we are “close” to the minimum and L is a “good” guess at the minimum functional

value. Near the minimum the second order terms in the Taylor expansion dominate, and h can be

approximated by a quadratic. With these assumptions, t’ is the location of the minimum of the qua-

dratic that agrees with h (both value and derivative) at 0 and has minimum value L.

However, if the choice of L is not good, or if we are not close to the minimum, the search interval is

restrained to maintain selective sampling near the current iterate by limiting the value of t,. The value

of 1 for this restraint is suggested by the literature and seems adequate in practice.

Now h, and m, are evaluated (the value of h and h’ at ¢5).

The four values that we now have, hy, ho, m,, m,, are sufficient to fit a cubic to h, determine the

location of the minimum of the cubic and use this as a guess for t.

Roughly speaking that is what the algorithm does. However, in practice it is generally more productive

to move at least one of the endpoints in the search interval (¢j,¢;) and try again, unless my > 0

(corresponding to a sign change in the derivative of h). There are various cases to consider that depend

on the sign of my (and the value of h, relative to hj if my, < 0). These cases are illustrated by the

following sketches and descriptions of the action of the algorithm in each case.

77

78 Appendix C: Numerical Methods

Case 1: my > 0. This is the desirable case.

In this case the algorithm performs the cu-

bic fit obtaining a value ¢; that is an es-

timate of the location of the minimum of A.

In the equation

Z = 3(h0 — hz)/(tQ — to) + my + mo

the cubic degenerates to a quadratic if

2Z + my + mgy = 0. In this case:

tl = to + mo(tQ - tO)/(2Z + 2m0)

Otherwise

W = \/Z* — mym,

p=(m, + W—2)/CW + m, — m)

Also

by =ty — ulty —)

Case 2: my < 0, hy > hg. In this case the

algorithm changes the search interval to

(to, (tg + t9)/2). This reduces the search

interval by 1/2. Thus, the algorithms resets

to to (ty + ty)/2 and repeats from the

evaluation of hy and m,. It also increments a

counter that keeps track of the attempts to

achieve case 1.

Appendix C: Numerical Methods 79

Case 3: my = 0, hy < hy. In this case, the h
algorithm returns from the line search with

P = Py =P + t,S

Case 4: my, < 0, hy < hj. In this case the

algorithm changes the search interval to

(to, ty + 2(ty — tg)). This expands the search

interval by a factor of 2. Thus the algorithm

sets ty = ty and doubles the search interval

size. It also, as in case 2, increments the

counter that keeps track of the attempts to

achieve case 1 and repeats from the

evaluation of hy and m,.

After an attempt at a cubic fit (from case 1), you have a quite reasonable choice t; for the location of

the minimum for A.

If the fit was a success, t; is the location where the cubic polynomial, which agrees with h (in both

value and derivative) at the search interval endpoints, achieves it’s minimum value. If ¢; does not lie

within the search interval, it is reset to the interval midpoint before the process continues

(t; = (ty + t2)/2).

You have no guarantee at this point that ¢; is actually an improvement (h; is smaller) over the values

at the endpoints of the search interval. Thus the next step is to evaluate h; and m;.

80 Appendix C: Numerical Methods

If h; < MIN(hy, hy), the algorithm returns from the line search with P’ = P + t;S. Notice here that

the algorithm does not spend time attempting to improve the value of ¢;. In this type of application,

determining the precise location of the minimum of h (especially for early iterations) is not nearly as

impertant as minimizing the number of function evaluations per iteration. Thus, the line search al-

gorithm attempts to produce an improved iterate and return quickly to the FP portion of the algorithm

where a new search direction is selected.

If, however, h; is not less than MIN(h, hy), the algorithm does one of three things:

® If m; <0, hy = hy: It contracts the search interval to (¢, (t, + t3)/2), increments the failure count,

and repeats from the evaluation of hy, m..

e If m; <0, h; < hy: It contracts the search interval to (¢;,ty) (sets t, = t;), increments the failure

count, and retries the cubic fit.

e If m; = 0: It contracts the search interval to (ty,t;) (sets ty = t;), increments the failure count, and

retries the cubic fit.

Throughout the process, the failure count is getting incremented if progress is not being made. This

value is checked against a user-supplied limit (TFE IEZ=) each time it is incremented. If it ever exceeds

the limit, and the line search algorithm is unable to return with a new iterate that is “better” than the

one on entry, a fatal error results. Here “better” means that a smaller (assuming the application is

minimization) function value results (or the same function value with a smaller value for the magnitude

of m).

Function Optimization

The FP Method and line search algorithms can be applied directly to the problem of optimizing a

function. Although the FP Method is a minimization algorithm, it can also be used to maximize a

function. This is due to the fact that local minima (maxima) for a function F are local maxima (min-

ima) for the function —F.

Thus one approach to using the ZFTIMIZE program to maximize a function would be to provide the

negative of the desired function. This would require you to change the subprogram that encodes the

function during searches for critical points.

M= or FIIH?

However, the user interface to the numerical algorithms is friendlier than that. You need only indicate

that you want to find the maximum when prompted by the program. The interface will then set or clear

the appropriate user flag that is examined at the time that F is evaluated. If appropriate, the value of F

(and it’s gradient) will be negated based on the value in this control flag. This control flag is user flag

number 61.

Appendix C: Numerical Methods 81

Gradient

You can optionally indicate that you want the gradient of your function (or model) approximated. This

is also implemented in the user interface through the use of a user flag that is examined at the time the

function (or model) is evaluated. This flag is user flag number 62. The user interface responds to your

preference by setting or clearing this flag.

However, you should be aware that the use of this friendly feature to approximate the gradient can

make the program run significantly slower. Information on gradient approximation follows.

Gradient Approximation

If you are unable to compute the gradient in the subprogram that you use to specify your function (or

model, if your application is curve fitting), you can have the gradient approximated for you. This can be

very convenient, but has speed and accuracy considerations that you should be aware of.

Speed

Let’s take an example using CF I T, assuming 20 data points and the model function given by

F o= FILEFZIHNORPZ2Y¥S) + FEIFERFO—-#2

If the gradient is to be approximated, at least k + 1 calls (k = number of parameters) to the model

function will be necessary to obtain the value for F and it’s approximated gradient. In the above exam-

ple, k = 3 and four calls are necessary. One call establishes the function value F. Three additional calls

are necessary to evaluate F near P() in the three coordinate directions. For example, the approxima-

tion of the first coordinate in the gradient requires

F(P, + ¢, P,,P;),X) — F
€

 dF/oP, =

for some appropriately small non-zero value . Consequently, four calls to the model are required where

only one would be required if the gradient were computed in closed form within the subprogram.

If this example is carried a bit further, the impact on speed can be seen more clearly. The function to be

minimized is the Chi Square function that is associated with the model. The Chi Square function needs

to call the model subprogram 20 times, each time obtaining both a model value and the gradient of the

model to produce the Chi Square function value and it’s gradient. If the gradient of F must be approxi-

mated, at least eighty (4 X 20) calls to the model subprogram are required to achieve each value of Chi

Square and it’s gradient. Examination of the line search algorithm shows that generally at least two

functional evaluations will take place (and often more) for each iteration.

At the minimum then, for 20 data points, 160 calls will be made to the model function per iteration.

This compares to 40 calls if the model gradient is supplied within the subprogram.

82 Appendix C: Numerical Methods

Most of the computation time will be spent within your BASIC subprogram. Consequently, anything

you do within this subprogram to effect speed improvements (including the evaluation of the gradient

in closed form) can have a significant impact on the total speed of the program.

Accuracy

One of the drawbacks to the approximation of the gradient is that the difference quotients can be a

source of significant error. To illustrate, when the values in the numerator of the following equation are

sufficiently close,

F(P, + ¢ P,,P,),X) — F
€

 dF/oP, =

their difference can produce 0 when the actual value can be quite large. The value entered in ©F I T and

OFTIMIZE as the constant or percentage is referred to here as Delta. If flag 63 is clear (Delta =

constant), the value of € is Delta. If flag 63 is set (Delta = percent), ¢ is the specified percentage of the

parameter P as shown below:

| P x (Delta/100) if P # 0
€~ | Delta/100 if P =0

The main sources of error in the previous equation are the calculation of P; + ¢ and the difference that

appears in the numerator. Both of these sources of error can require special handling to avoid

1naccuracy.

To illustrate these errors, consider the box example on page 22. The first line of the following table

shows the result if VV(W, H) is computed at W = H = 16.66664 within the subprogram by a direct call

to the given box subprogram. The value in line 1 is the exact value of the gradient vector and is useful

for purposes of comparison with the results presented in the lines of the table representing gradient

approximation (lines 2, 3, and 4). These last three lines were obtained by calls to the subprogram

GREADF with flag 63 (relative approximation) set and with the indicated values for Delta.

VV(W,H) = (9V/OW,dV/oH)"

Delta (%) AV/OW AV/oH

(actual value) 2.66666240000 E—3 2.66666240000 E—3
0.001 —3.06000489601 E—3 —3.06000489601 E—3
0.0001 1.80000288000 E—3 1.80000288000 E—3
0.00001 0 0

Appendix C: Numerical Methods 83

This table illustrates some of the pitfalls that can beset the unwary user of gradient approximation.

The previous equation shows the first coordinate (dV/dW) of VV(W, H) is computed as

ovV. ~ V(W+ ¢H) — V(W,H)
~

ow €

where ¢ = W X (D/100). In this case the basic problem can be traced to the fact that the point (W, H)

1s \'/ery close to the local maxima at (W, H) = (560/3,50/3).

H

L
/ ;?j" Secant Line

‘E

W+ eHb ____J@gwu)

[/ w

v

V(W+ €,H)
V(W,H)

The thing to realize here is that the secant line joining the points (W, H, V(W,H)) to (W + ¢,

H, V(W + ¢, H)) is being used to approximate the partial of V with respect to W. As in the two-

dimensional case, where a secant is often used to approximate the derivative of a function, the choice

of € can become critical near local minima or maxima.

In fact, if € is too large, the secant line can become a poor approximation and yield unsatisfactory

results (as in the second and third lines of the table). If ¢ is too small, the function may be unable to

distinguish between (W, H) and (W + ¢, H) due to roundoff error in the functional evaluation. In this

case, the difference quotient becomes zero (as in the fourth line of the table).

If possible, compute the gradient within your subprogram—especially if you need extremely accurate

results.

84 Appendix C: Numerical Methods

Application to ©:F i1

The FP Method and line search algorithms described previously can be applied directly to a curve fit

problem. This is true because there is a binary subprogram named i in the file FITL IE that

computes Chi Square (and it’s gradient) of the user’s model and data set. This subprogram, as well as

others in the file F I TL IE, can be called from the keyboard and called from within user-written pro-

grams. For information on :Z# and other user-accessible routines, refer to appendix D.

Minimizing Chi Square

F 1T attempts to fit your data by minimizing the Chi Square function associated with your data set

and the specified model.

The Chi Square function associated with the model F=F(X(),P()) at the current parameter iterate

P() is defined by

XA(P() = X [(F, = Y)/W,]
i=1

(1) Chi Square Function

Where F; denotes F = F(X(),P()) with X() the ith row in the Data Set. Y, is the dependent variable

and W; is the weight.

Ix*(P()) m (F.—Y) dF,
= 2 X —_— X ——

oP; i; W’ ob;

(2) Gradient Chi Square Function

With equal weights, equation (1) corresponds to the function that is minimized in the usual least

squares method. Equation (2) provides the gradient of the Chi Square function in terms of the gradient

of the model. Observe that there is no requirement that the model be linear. Indeed the model function

may be quite general.

Difficult Cases

In addition to the difficulties associated with gradient approximation (refer to page 81 for information),

there are areas where you may experience difficulty in obtaining the desired results. In some cases the

difficulty can be avoided or its impact minimized. Three of these situations are described below. The

information is not designed to provide a general solution to all the problems you might encounter, but

to give you some ideas as to how to go about solving problems.

Appendix C: Numerical Methods 85

The Inability to Meet Convergence Criteria

The nature of the function being optimized (or the nature of Chi Square in ©F I T) and the limits of

machine precision can combine to keep the gradient norm from becoming sufficiently small to meet the

convergence criteria used by JFTIMIZE and CFIT.

It is not unusual for the current iterate to be very close to the desired result, yet still have a reasonably

large value for the norm of the gradient. This makes the selection of the limiting value used by ZF I T

and OF TIMIZE to detect convergence somewhat arbitrary. For this reason, you are given the ability in

both CFIT and OFTIMIZE to change the value for the gradient limit by editing the program controls.

A good strategy is to start with the gradient limit large, and, after convergence, reduce the limit and

continue in an attempt to get closer to the desired result.

The error message

FIT ERE~~TEIEZ > LIMIT

often indicates that, because of machine precision and because of the nature of the function, the cur-

rent iterate cannot be improved.

Sampling Outside the Intended Domain

An attempt to minimize the function F(x,y) = (x — 3)* + \/(x — y) without special precautions will

almost certainly result in sampling the subprogram for F' at some point for which x < y. This, in turn,

will result in the math error =0'F¢ +v=g . The solution for this type of problem depends on the nature

of the function. For this example, probably the most simple solution involves the realization that you

can replace the \/(x — y) with (x — y)? without altering the solution.

Constrained Optimization

Some functions are subject to equality and inequality constraints. For example, a function to minimize

such as F(x,y) = (x — 3)2 + (y — 2)? can be subject to the constraint G(x,y) = x + y — 4 = 0 or, pos-

sibly, x + y — 4 < 0.

In simple cases like this the equality constraints can be used to solve for one variable in terms of the

others. Substitution into the object function F will then eliminate one or more variables, and then the

resulting function can be minimized.

Inequality constraints, such as G(x,y) < 0, are often handled by the use of a penalty function. One or

more terms can be added to F to penalize samples taken from the wrong or undesirable region. For

example:

H(x,y) = F(x,y) + R/G(x,y)
=(@x=3'+ -2 +R/(x+y—9

86 Appendix C: Numerical Methods

A minimum for H when R = 1 can be found using 0FTIMIZE. By successively reducing R in small

steps and by using the value obtained from the previous solution as an initial guess, you will obtain

solutions which converge to the answer (x,y) = (2.5,1.5) where F(x,y) = 0.5. This type of procedure

could even be “automated” by storing the updated value of R in a file that would be read by your

subprogram for H.

Appendix D

User-Accessible Routines

This appendix describes the numerical subprograms that are available in the file ¥ I 71I, their syn-

tax, their calling relationships, and their memory requirements. Also, there is information describing

the BASIC subprogram that produces the value of the Chi Square distribution function as well as

information on two BASIC keywords, KE¥HAIT# and K ILLEUFF, which reside in ¥ 1 TLEx.

Subprogram Description and Calling Syntax

Whatis described here is the required syntax in a ©HL L statement to the user-accessible subprograms.

Of course, the actual variable names that you choose are immaterial. What is important is that the

number, type and location of the arguments agree with the specifications that follow. In the case of the

array parameters, the dimensions must be consistent with the problem. For example, the length (the

number of elements) of the array B() that appears in the call to % must equal the number of un-

known parameters.

While none of the binary subprograms are base option dependent, ©F I T and ©/F T I# I ZErequire base

option 1.

The F Subprogram

Functional Description. Performs one iteration of the FP method and the line search (described in
g

appendix C) upon the function specified by the subprogram 1 # located in the file Az #.

CHLL FROALE, AR, B, 003, 0, E,Fo, 5, G, H, 1,22 IH FITLIEi

Inputs:

“11% - Name of the subprogram encoding the function.

f=% - Name of the file that contains the subprogram.

E ¢ » - Current iterate.

-« » - Gradient at the current iterate.

i - Delta for gradient approximation (if flag 62 set).

E - Function value at the current iterate.

. » - FP matrix.

- - Line search iteration limit.

H - Estimate at functional bound.

T
y

87

88 Appendix D: User-Accessible Routines

Control Flags:

61 62 63

Set MAX Approx dP = %

Clear MIN No Approx dP = Constant

Outputs:

B+ - New iterate.

i« » - Gradient at the new iterate.

E - Function value at the new iterate.

Fi, - Updated FP matrix.

H - Updated bound estimate if original “bad.”

I - Norm of the gradient.

= - The condition code.

Comments: If the function has k vari- Array Length
ables, the arrays must have dimensions B() k
that produce the lengths shown at C() k
right. F(,) k by k

The FP subprogram samples the user’s subprogram that encodes the function to be optimized by calls

of the form:

CALL ALECESY, 0oy, E, T IH ADE

The subprogram FP uses the results of such calls as described under “Fletcher-Powell Method,” in

appendix C.

The GEFADF Subprogram

Functional Description: Produces an approximate gradient vector I« associated with the function

specified by the subprogram 1 # that appears in the file #:#.

CHLL GEADFORlIF, AZ2F . BOo, Cox, DE 20 IH FITLIE

Inputs:

F1# - Name of the subprogram encoding the function.

Mz % - Name of the file that contains the subprogram.

2 ¢ » - Current iterate for the unknown parameters.

{1 - Delta for gradient approximation.

Appendix D: User-Accessible Routines 89

Control Flags:

61 62 63

Set not used not used dP = %

Clear not used not used dP = Constant
Outputs:

>+ » - Approximated gradient at E« .

E - Function value at E . .

Z - The condition code.

Comments: An error is returned if Array Length
D = 0. B() k

C() k

The jth coordinate, c;, is evaluated by the formula:

o = Flbyby,. b+ ¢, b) = Flbyby,.b, b))
J

€

F is the function whose gradient is being approximated. ¢ = D if flag 63 is clear. If flag 63 is set,

e = b(D/100) or D/100 if b, = 0.

The ZFRADF subprogram is called by FP in the case where the gradient is to be approximated. The

function subprogram must have the syntax that corresponds to the following call:

CARLL ALFCBC COx, E, 2 IH HZE

The function subprogram A1 # will be called £ + 1 times to accomplish the stated objective.

The 1T Subprogram

Functional Description: Performs one iteration of the FP Method and the line search upon the Chi

Square function associated with the specified model and data set.

CHLL FITORLFE AZFE, 0, 0, @0y, Boy, Cox D EFOo, oG HT 2 IH FITLIE

90 Appendix D: User-Accessible Routines

Inputs:

1% - Name of the subprogram encoding the model.

Hz#%- Name of the file containing the model subprogram.

4 . 7 - Data array.

=i+ - Scratch array.

¢ 3 - Current iterate for the unknown parameters.

:< » - Gradient at the current iterate.

[1 - Delta for gradient approximation (if FLA &2 set).

i - Chi Square value at the current iterate.

Fio .- FP matrix.

i+ - Line search iteration limit.

H - Estimate at functional bound.

Control Flags:

61 62 63

Set MAX Approx dP = %

Clear MIN No Approx dP = Constant

Outputs:

B¢- New iterate.

¢+ - Gradient at the new iterate.

- Chi Square function value at the new iterate.

¢, - Updated FP matrix.

H - Updated bound estimate if original “bad.”

I - Norm of the gradient (usual norm).
o

7 - The condition code.

m

Comments: Fi A4 £ 1 should be Array Length
clear (set equal to 0) so that the Chi J(,) mby (n+2)
Square function is minimized. If the X() n+ 2
model has k parameters, n independent k
variables, and there are m data points, () k

the arrays must have the lengths F(,) k by k

shown at right.

ow

The ¥ 17T subprogram calls the C =i subprogram which in turn makes calls to the model subprogram

in order to achieve it’s task—performing one iteration of the FP algorithm applied to the Chi Square

function associated with the user’s model. The calls made by ¥ 17 to =i have the form:

CHLL ODROHLE, RZF 0, HOy B0 D0y D E T

The subprogram FIT uses the results of such calls as described in “Fletcher-Powell Method,” in
appendix C.

Appendix D: User-Accessible Routines 91

Functional Description: Evaluates the Chi Square function and its gradient associated with the

specified model and data set at E« .

L CS0oAlE HEE, Jo o wmoyBoyDo DL ESSY I FITLIE

Inputs:

f1#%- Name of the model subprogram.

©2#% - Name of the file that contains the model subprogram.

4. - Data array.

=i+ - Scratch array.

k¢ » - Parameter array.

i - Delta for gradient approximation (if FL A&2 set).

Control Flags:

61 62 63

Set not used Approx dP = %
Clear not used No Approx dP = Constant

Outputs:

i« » - The gradient of Chi Square at £« .

& - The value of Chi Square at E < .

Z - The condition code.

Comments: If the model has k param- Array Length
eters, n independent variables, and B() k

there are m data points, the arrays X() n-+ 2

must have the lengths shown at right. J(,) mby (n+ 2

)C(k

The ¢+ variable is used by =i to successively load in rows of the data array and execute calls to

the user’s model subprogram via:

O RIECBRCY H D0y B Sy TR HEE

The results of each such call are used to update sums kept for the values of Chi Square and it’s gradi-

ent.

92 Appendix D: User-Accessible Routines

The :EAIM Subprogram

Functional Description: Produces an approximate gradient vector i« for the model function 1 %

in file A#.

CHLL GREADMOALE, AZE, sBOx,Cox OB, 20

Inputs:

1% - Name of the subprogram encoding the model.

A% - Name of the file that contains the model subprogram.

¢ 1 - Scratch Variable used to pass row data to model.

E < 3 - Current Iterate for the unknown parameters.

{1 - Delta for gradient approximation.

Control Flags:

61 62 63

Set not used not used dP = %

Clear not used not used dP = Constant

Outputs:

i » - Approximated gradient at E« .

E - Model value at E1 .

Z - The condition code.

Comments: An error is returned if Array Length

D = 0. X() n+2
B() k
C() k

The jth coordinate, c;, is evaluated by the formula:

F(bl,bz,...,bj + 6.by Xy, X005 X,) — F(bl,b2,...,bj,...bk; X1y Xoyeee s Xp,)
c; =j

€

F is the model whose gradient is being approximated. ¢ = D if flag 63 is clear. If flag 63 is set,

e = b,(D/100) or D/100 if b; = 0.

The GREFADM subprogram is called by © =& in the case where the gradient of Chi Square is to be

approximated. The model subprogram must have syntax corresponding to thei L:

CHLL RIFCBC =0y, 00,B, 2 IH HIF

Appendix D: User-Accessible Routines 93

The model subprogram # i # will be called £ + I times by & 1 to approximate the gradient of the

model at a particular fixed row of the data array. The gradient of Chi Square is approximated by

repeating this process m times (once for each data point or row in the array) and summing the results.

A call to =i with the gradient of the model to be approximated will result in m X (k + 1) calls to

the model subprogram.

The Fiil.¥ Subprogram

Functional Description: Computes £, the polynomial value at x, and i< *, the gradient with respect

to the coefficients. The degree (up to 19) is determined by array sizes, and the evaluation proceeds by

Horner’s method.

CELL POLY OB ROyDoy B 2y IH FITLIE

Where ¥ and ¢ 3 are returned as:

E=0b,+byx+bx*+ ...+ bx""

C()=(1,x 2% ..., 2"1)

Inputs:

B - Coefficients (by,b,,...,b0.).

40- ().

Outputs:

< » - Gradient with respect to coefficients.

E - Polynomial value.

7 - The condition code.

Comments: Array Length

X() =1
B() k
C() k

The L. ISubprogram

Functional Description: Contains linear models of up to order 19.

CALL LIMGEC D, #er, 0oy, E, 2y IH FITLIE

Where E and ¢ : are returned as:

E =bx; + byxy + ...by _ x4 1) T by

C() = (xla x2> cey x(kfl)v 1)

94 Appendix D: User-Accessible Routines

Inputs:

11 - Independent variables (k - 1 of them), dependent variable (Y), and weight (W).

B¢+ - Linear coefficients (k of them).

Outputs:

-¢ » - gradient.

E - Linear value E.

Z - The condition code.

Comments: The array i : is as- Array Length
sumed to contain Y and W even X() k+1
though these values are not used by B() k

C() k

The FUEMTOHI Subprogram

Functional Description: Evaluates the Chi Square distribution function, P(x,v).

CHLL FOEHTCOHICE M. P, 20

Inputs:

- Value of Chi Square.

' - Degrees of freedom. (%' must be a positive integer.)

Outputs:

F - Percentage of Chi Square distribution less than the given Chi Square value (for the given

degrees of freedom). The value returned is rounded to the third decimal place.

£ - Error code (0 = okay, nonzero = error).

Appendix D: User-Accessible Routines 95

Comments: The Chi Square density function is really a family of curves—one for each positive degree

of freedom. The cumulative distribution function is the area under the curve from zero to a given value

of Chi Square.

P(x)

If x <0, then P = 0.

If v = 40, then the value of P is computed by using a quick approximation.

Let

o — (abs@)/v)'" — (1-2/(9))
V(2/(9v))

Let ND be the normal distribution function. Its value at x can be approximated as follows:

p=5(1+dx+dx’ + dpx’ + dx' + dix” + dx’)1

d, = .0498673470
dy = .0211410061
ds = 0032776263
d, = .0000380036
ds = .0000488906
ds = .0000053830

96 Appendix D: User-Accessible Routines

If x>0, ND(x) =p. If x <0, ND(x) =1 — p.

Finally, P(x,v) can be defined as:

P(x,v) = ND(x)

This approximation is derived from the assumption that the Chi Square distribution for large degrees

of freedom can be modeled by the normal distribution function with appropriate mapping of the

domain.*

If v < 40 and x > 80, then P(x,v) = 1 which is accurate to the required three digits.

If v < 40 and x < 80, the value of P is computed using the following finite series:t

If v is odd:

P _ ND \/__ \/2_ (v-1)/2 (\/;)(21'-1)
(x,v) = 2X (Vx) — 1+ V(2/7) X exp(-x/2) X 2:1 TX3x5.. X 21

Where ND(x) equals the left tail normal distribution computed according to the formula used

previously.

If v is even: 1 (v-2)/2 0 C) 2i l
P(x,v) = 1 — exp(-x/2) X-l 1+ > >=4 2x4><6...><2il

* For information refer to the Handbook of Mathematical Functions by Abramowitz and Stegun, National Bureau of Standards,

1968, equations 26.2.19 and 26.4.14.

+ Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1968, equations 26.4.4 and 26.4.5.

Appendix D: User-Accessible Routines 97

Calling Relationships

The subprograms in the file FITLIE (FF, FIT, 0o, GEADF, GEADM, FOLY, and L IH) are called

from within CFIT and JFTIMIZE and also call each other. The following diagrams show the

relationships between these subprograms. Arrows pointing down in the diagrams represent calls (mul-

tiple calls where indicated) to the lower level subprograms.

Subprograms Called by - F

Optimization

FE FLAG 62 SET

FLAG 62 CLEAR CRADE

i

User (k+ 1 timeS)

Subprogram

Flags 61, 62, and 63 are inputs acting as control flags, and k is the number of function variables.

The user subprogram computes the function value and the gradient of the target function. If the gradi-

ent is to be approximated, a call to ZFFALF replaces a call to the user subprogram. The syntax for a

call to the user subprogram is as follows:

CHLL RAlFOBC , COx, E, 2,0 IH HZE

The variables in the call are described in the discussion of FF, starting on page 87.

98 Appendix D: User-Accessible Routines

Subprograms Called by FIT

Curve Fitting

s ~ FLAG 62 SET

(m times)

FLAG 62 CLEAR

GREADM

(m times)

\ k + 1 times) Binary Models

Model et CoT
Subprogram L -

Flags 61, 62, and 63 are inputs acting as control flags, k is the number of unknown model parameters,

and m is the number of data points.

The model subprogram (either user-written or provided in ROM) computes the model value and the

gradient of the model with respect to the unknown parameters for a given data point. F I T functions in

much the same way as FF, except that the target subprogram for minimization is not the user sub-

program, but is =, If the model gradient is to be approximated, calls to GFEA replace the calls to

the model. The syntax for any model subprogram is identical to that for FiIL % and L IH.

Memory Requirements

There are seven binary subprograms in FITL IE. These subprograms are called by the programs

CFIT and OFTIMIZE, but you can also call them from the keyboard or within your own program.

What follows is information on the buffer and calling overhead associated with each routine and

information on memory requirements for variable storage.

Buffer and Calling Overhead

Five of the seven binary subprograms create workspace buffers in main memory at execution time. The

buffers are deallocated on exit, releasing this memory back to your system. Overhead memory is re-

quired by the operating system for each subprogram CFL L. The buffer size (including header) and

calling overhead are provided in the following table. The buffer size is a function of the number of

unknowns (k), and the overhead is a function of the sum of the lengths (j) of the two string arguments

in the call.

Appendix D: User-Accessible Routines 99

Buffer and Calling Overhead

A Buffer Size Call Overhead
Routine Buffer (Nibbles*) (Nibbles*) Total Bytes

FF bFIT 318 + 189k 301 + 2j (619 + 189k + 2j)/2

FIT bFIT 318 + 189k 339 + 2j (657 + 189k + 2j)/2

s bCHISQ 108 + 21k 263 + 2 (371 + 21k + 2j)/2

CEADF bGRAD 95 + 21k 225 + 2§ (320 + 21k + 2j)/2

SEADM bGRAD 54 + 21k 244 + 2§ (298 + 21k + 2j)/2

FOLY, LIHM None 0 179 179/2

and other
ZFIT models

JFTIMIZE None 0 160 160/2

subprograms

* One nibble is equal to Y2 byte of memory.

Notice that FF and F I T share the same buffer, as do GFADIF and GFEHADM. Also, more than one buffer

can be active at any given time. After a call to F I T, if the model gradient is to be approximated, all

three buffers will be simultaneously active.

Variable Memory

In addition to the overhead associated with setting up a local environment within the subprogram,

memory is required for the variables that appear as arguments in the calling statement. The amount of

memory required for a numeric variable depends on the number of elements (n) in the variable (n =1

for a simple numeric variable). The amount of memory required for a string variable depends on the

length (I) of the string. The following table shows the memory requirements for variable storage.

Variable Storage

Type of Variable Memory Required (Nibbles)

Real 19 + 16(n)

Short 19 + 9(n)

String 23 + 2(/)

100 Appendix D: User-Accessible Routines

As an example, consider a two-dimensional Real array that is 20 by 5 (has 100 elements). This array

would require

19 4+ 16(100) = 1619 nibbles

which is a little less than 810 bytes of memory.

Keywords

There are two keywords in FITLE:: KEYMAIT and KILLEUFF. Torun ©FIT and OFTIMIFE

from memory (without the module plugged in), you must have several other files including F I TiLE

and FITLIE in memory as well.

REYHRITE

When the K EYIAIT# function is executed, the HP-71 goes into a low power consumption state until

a key is pressed and then returns the key name. This is similar to KEY .

EILLEUFF

If a binary subprogram does not normally terminate when it encounters a low memory condition, the

scratch memory allocated to it may not be deallocated. In this rare circumstance, the scratch memory

can be reclaimed by executing K ILLELIFF.

Appendix E

Library Subprograms

In order to provide easy specification of the more commonly used fit models to iZF I T, a collection of

subprograms that correspond to these models has been placed in built-in library files in this pac. The

functions in the library files cannot be used in the ZFTIMIZE program because [iFTIMIZE and

i2F 17Trequire different syntax (the number of parameters in the CFilL L to the subprograms differ).

If your model corresponds to one of the subprograms in one of the library files, you need not write a

BASIC subprogram for it. When the program prompts you, you need only provide the name of the

model subprogram that already exists. When you use the built-in models, remember that all models

provided in this pac compute the model gradient as well as the model value.

Note: The built-in models with trigonometric functions put your HP-71 into radians mode.

The file FITLIE contains two subprograms, FIIL% and L IH, that provide all the polynomial and

linear models of one variable that ZF I T can handle (a maximum of 20 model parameters). Appendix

D, “User-Accessible Routines,” contains information on FIL% and L IH, starting on page 93. Also,

there are 46 additional models in the file MODEL =. These are described in the following table. In the

model functions, a represents the first parameter (P(1)) in the equation, b the second (P(2)), and so on.

When you are using these models, don’t forget that ©F I T makes its fit by finding the local minima of

the Chi Square function. The “absolute best fit” may not be found. Instead, :F I T may converge to a

“local best fit.” This situation is most likely when you’re using models containing periodic functions.

101

102 Appendix E: Library Subprograms

Set of Models Supplied in Pac

No. No. of Model Name Description Model FunctionParams

1 2 OFFARAE Parabola through origin. y = ax + bx?

2 1 ORELIME Line through origin. y = ax

3 2 HYFEFR Hyperbola. y =a + b/x

4 3 “HYFEFR Second-order hyperbola. y =a + b/x + c/x2

5 2 FOMEFR Power. y = ax?

6 3 OFOHER Offset power. y =a + bx°®

7 4 FONERZ 2 term power. y = ax® + cx?

8 6 FOWERZ 3 term power. y =ax® + cx? + ex!

9 2 MFOWER Modified power. y = ab”

10 3 OMFOHER Offset modified power. y = a + bc*

11 2 FLIME Reciprocalline. y = 1/(@ + bx)

12 3 LOGISTIC Logistic. y = a/(1 + bc")

13 2 ROOT Root. y = abl!

14 2 SUFERGED Super geometric. y = ax\®

15 2 FTEED Root geometric. y = ax{b)

16 3 LIMHYFEF Linear hyperbolic. y =ax + b + c/x

17 2 FHYFER Reciprocal hyperbola. y = x/(@a + bx)

18 2 Esk Exponential. y = a exp(bx)

19 2 HE = F Asymptotic exponential. y = a(1 — exp(bx))

20 3 DE=F Double exponential. y = a (exp(bx) — exp(cx))

Appendix E: Library Subprograms

Set of Models Supplied in Pac

103

No. P':::.ar?\g Model Name Description Model Function

21 2 FTE=F Root exponential. y = a exp(b/x)

22 2 LIHE=F Linear exponential. y = ax exp(bx)

23 3 Lo Logarithmic. y = a + blin(cx)

24 3 FLOG Reciprocal logarithmic. y = 1/(@ + b In(cx))

25 3 HOERL Hoerl function. y = ab*x°

26 3 FTHOERL Root Hoerl function. y = ab!'Mx¢

27 3 HORMD Normal distribution. y = aexp((x — b)?/c)

28 3 LOGHORMD Log-normal distribution. y = a exp((In(x)— b)?/c)

29 3 EETAD Beta distribution. y = ax’(1 —x)°

30 3 GCAMMAD Gamma distribution. y = a(x/b)° exp(x/b)

31 3 CRUCHYD Cauchy distribution. y = 1/(a(x + b)2+c)

32 3 m ITHL Sinusoid. y = asin(b + cx)

33 4 Cs T HL Offset sinusoid. y =asin(b + cx) + d

34 3 CO= THLU Cosinusoid. y = a cos(b + cx)

35 4 o0 THU Offset cosinusoid. y = acosb + cx) + d

104 Appendix E: Library Subprograms

Set of Models Supplied in Pac

No. of

No. Params Model Name Description Model Function

36 3 =mIHFE 2 term sine Fourier. y = b + ¢ sin(ax)

37 4 = IHFE 3 term sine Fourier. y = b + c¢ sin(ax) + d sin(2ax)

38 5 = IHF4 4 term sine Fourier. y = b + ¢ sin(ax) + d sin(2ax) + e sin(3ax)

39 3 CosFz 2 term cosine Fourier. y = b + c cos(ax)

40 4 COsFE 3 term cosine Fourier. y = b + ¢ cos(ax) + d cos(2ax)

41 5 COsF4g 4 term cosine Fourier. y = b + ¢ cos(ax) + d cos(2ax)

+ e cos(3ax)

42 4 FOUREIEEZ 2 term Fourier. y = b/2 + c cos(ax) + d sin(ax)

43 6 FOURTIERZ 3 term Fourier. y = b/2 + ¢ cos(ax) + d sin(ax)

+ e cos(2ax) + f sin(2ax)

44 8 FOURETEE4 4 term Fourier. y = b/2 + ¢ cos(ax) + d sin(ax)

+ e cos(2ax) + f sin(2ax)
+ g cos(3ax) + h sin(3ax)

45 3 COEH Hyperbolic cosine. y = a + cosh(b + cx)

46 3 SECH Hyperbolic cosecant. y = a + sech(b + cx)

Suppose you suspect that the data you want to fit a curve to tends to a parabola through the origin.

Rather than immediately setting out to create a model function for a parabola through the origin, you

should look through the table above. The table shows that the model function has been written for you

and is called COFFARAE in the file MODEL =. So, you don’t have to write any BASIC routines. Instead,

when the curve fit program asks for the name of the model and the file, you type CFFAFEHE and
MODELS, respectively.

The HP-71 Curve Fitting Pac stores data in files according to a prescribed format. This format, the

applications file format (HPAF), is intended to allow exchange of data between various programs. The

format provides room for information that describes the structure of the data so that various programs

Appendix F

Applications File Format (HPAF)

may make use of and exchange the data.

HPATFfiles are of type DATA, and may reside in either the HP-71 memory or a mass storage device.

The HPAF files are composed of three major sections—the header, the data records, and an optional

descriptor block. An example of such a file is described in the following table.

Record Contents Description

0 “HPAFNNS” Type string: two numbers, one string.

1 4 There are four records of data.

2 12 The descriptor block starts at 12.

3 77,9.3,"RED” First data record.

4 78,9.4,“BLUE” Second data record.

5 81.5,10.3,“GREEN" Third data record.

6 82.9,10.4,“GREEN” Last data record.

Empty data records.

Empty data records.

12 “TEMP”,1,“KELVIN” Descriptor block.

“COLNAMS”,3,“TEMP”
“VISCOSITY”,“COLOR”

105

106 Appendix F: Applications File Format (HPAF)

Header Information

The header must contain the following items:

Record Description

0 Record 0 contains a type string. The first four characters indicate the file is an HPAF
file. The remaining characters describe the number of data items in each record and
their type. For example, in “HPAFNNS” the characters “NNS” indicate that there are

three items in each record (the first two are numbers and the third a string).

1 Record 1 contains the number of data records that contain information. This number

can be less than the total number of available records (allowing room for additional

records to be added later followed by the optional descriptor block).

2 2 contains the record number of the optional descriptor block. If no descriptor block is

present, this number should be zero.
Data Records

The data records start at record 3 and must end before the descriptor block. Note that all data items

for each record must fit within each logical record so that any record can be accessed randomly. To

compute the optimal logical record length for the file, remember that each number written in the

record occupies 8 bytes, and each string occupies 3 bytes plus the number of bytes in the string. For

example, if each record is going to hold two numbers and a ten character string, the record length must

be at least 2 X 8 + 3 4+ 10, or 29 bytes. For more information about creating data files, refer to “Data

Files,” in section 14 of the HP-71 Owner’s Manual.

Descriptor Block

The descriptor block is optional. If present, the descriptor block must come after the data records, and

record 2 must contain the record number of the first item in the block. Information in the descriptor

block consists of tags, which identify the type of information that follows; followed by the number of

items associated with the tag; followed by the items themselves.

TAG,number of items,item one,item two...

The information in the descriptor block can be written serially, or, if the logical record size is suf-

ficiently large, written one tag to a record. In either case, the descriptor block must be able to be read

serially.

Appendix F: Applications File Format (HPAF) 107

For example, to describe the names of the columns and the fact that the units are in degrees Kelvin, the

descriptor block for the above file might look like this:

Record File Contents Comments

67 “‘COLNAMS",3,“TEMP”,“VISCOSITY",“"DENSITY”, Column names: Temp, viscosity, dénsity.

“XYOFFSET",2,4, — 3, X-Y offset: (4, — 3).

“DEGREES”,1,“"KELVIN” Information on units: Degrees Kelvin.

EOF

The Curve Fitting Files

The HP-71 Curve Fitting Pac can read any HPAF file. String-type data items will be ignored auto-

matically. For instance, if a file has a string NSSNSNN, columns 1, 4, 6, and 7 will be considered the

first, second, third, and fourth columns in the data array for the ZF I T program. The first and second

columns would be interpreted as the independent variables, the third column as the dependent variable,

and the fourth column as the weight.

When writing to a data file, CF I T generates no descriptor block, so the record number in record 2 is

set to zero.

Appendix G

Creating Your Own Model or Function Subprogram

This appendix contains information on the use of subprograms that you can write for both function

representation in OFTIMIZE and model representation in ZF I 7.

Writing a Model or Function Subprogram

The purpose of these subprograms is to compute the value of a function and its gradient given certain

inputs. The inputs vary depending on which program calls your subprogram. If OF TIMIZE calls it, the

input is an array containing the values of the function’s variables. If CF I T calls it, the input is two

arrays, one containing a set of parameters and the other containing data. Because the inputs differ

between the two programs, there are differences in the subprogram each requires. However, in both

cases the output is a function value and gradient vector.

The steps you follow to write a subprogram are the same whether you are writing it for CFIT or

OFTIMIZE. The steps are as follows:

Write the equation describing your function in the form of

dependent variable = function of independent variables and parameters.

If possible, write the partial derivatives with respect to the unknowns. (The unknowns are the

variables in OFTIMIZE and the parameters in CFIT.)

Optionally modify the equations in order to make execution faster.

Associate the symbols in your equation with the variables in the standard subprogram syntax for

your application (either CFIT or OFTIMIZE).

Write the subprogram.

Design and add any special error checking or other features you want.

Check your work and verify your subprogram by using it on a sample problem with known input

and output values for comparison.

109

110 Appendix G: Creating Your Own Model or Function Subprogram

Standard Subprogram Syntax

Here is the standard syntax for user subprograms called by any of the programs in this pac.

For OFTIMIZE:

SUE namer Foo G0,

For CFIT:

FoCo

Variables Use

Inputs:

Froo

Outputs:

Goo

F
The current value of the variables.

The gradient of the function at the current variables.

The function value.

The condition code.

B nametRiy L

Variables Use

Inputs:

Fooo

Outputs:

G

The current value of the model parameters.

The independent variables. (The dimension must also

allow for the dependent variable and the weight.)

The model gradient with respect to the unknown
parameters.

The model value.

The condition code.

Appendix G: Creating Your Own Model or Function Subprogram 111

Speed and Accuracy

Gradient

Including the gradient calculation in your subprogram is optional—the main programs can approximate

the gradient for you. However,if you can include the gradient calculation in your subprogram, you can

improve performance of your subprogram in terms of both speed and accuracy. For an explanation of

how the FP Method uses the gradient calculation, refer to “A Word on Gradient,” page 61.

Note:If you write your own subprogram for a trigonometric function and include the gradient

calculation, you need to make sure that your subprogram agrees with the machine setting of de-

grees or radians. It's usually best to declare in your subprogram which mode you want. Also, when

you get your results, be sure to interpret them according to the mode the machine is in.

Speed Tricks

Anything you can do to increase the execution speed of your subprogram is helpful (especially on long,

time consuming problems) due to the number of times CF I T and OF TIMIZE call a subprogram in the

iteration process. A list of a few time-saving tricks follows, and, with experience, you may develop your

own techniques to extend the list given here.

» Substitute multiplication for exponentiation when possible (for example, use A #f rather than A=).

» Examine the equations for F and G() to see if computing all or part of them in a different order

will reduce the total number of math operations.

o If a group of operations occurs repeatedly in your subprogram, calculate it once and assign it to

some intermediate variable, then use that variable in place of the operations.

Important Interface Assumptions

Condition Code

The condition code variable (C) allows a user-written subprogram to indicate that something has gone

wrong. The programs in this pac always set C equal to zero before calling a user-written subprogram

and always test it on return. If the condition code is found to be zero, it indicates there were no excep-

tional events; if it is found to be positive, it indicates an error; and if it is found to be negative, it

indicates a warning. Refer to appendix B, starting on page 69, for more information on the relationship

between condition codes and error messages.

112 Appendix G: Creating Your Own Model or Function Subprogram

Option Base and Option Round

Both CFIT and COFTIMIZE require you to write your subprogram assuming the base option for

dimensioning arraysis set to 1 and the rounding option is set to OFTIIH ROUHD HEAFE(the default

rounding mode).

What You Should Not Do

What follows is a short list of items that you should avoid doing in your subprograms.

You should not change the values of inputs to your subprogram unless you restore the original values

on exit.

The gradient approximation routines assume that the point at which the gradient is being approxi-

mated does not change through several calls to your subprogram. If a change to the P() or X()

variables is made within your subprogram, these routines will not return correct results.

You should not change certain flag values unless you restore the original values on exit.

Flags 61, 62, and 63 are inputs to some of the computational routines, specifically ZREADF,

CREADM, S, FIT, and FF. Also, flags 57-60 are used by JFTIMIZE and ZF I 7. (Although flags

57-63 are used by the curve fitting programs, their original values are restored when the programs

end.) If changed within your subprogram and not restored prior to exit, they may give you erro-

neous results.

You should not make certain recursive calls.

Recursive calls are calls to subprograms with passed parameters that will cause it, or something it

calls, to call your subprogram.

Some of the binary subprograms in the file F I TL I Eare not recursive since they use a dedicated

buffer for intermediate computations. These are GFEALOF, GRADM, Z50, FF, and FIT. For exam-

ple, it is acceptable for your subprogram to call FiIL " to evaluate a polynomial, but your sub-

program (IZLE) in your file (IMYF ILE) should not execute the call

CHLL GEAROFC"MYSUER" , "MYFILE"POy, GO, F, 20

This recursive situation has no useful value and will eventually result in an insufficient memory

error as the two programs keep calling each other indefinitely.

Appendix G: Creating Your Own Model or Function Subprogram 113

Example Subprogram for i 7i1 FE
s

The steps to go through in the process of developing a subprogram for {iF T i1 ZF are outlined next in

the form of an example.

Function

Fl(a,b) = a® — 2ab + 2b?

Gradient

VFL(ab) = [2(a — b)]
4b — 2a

Subprogram

Sub FLOFCr, GO0, FL 00
}

P
e

ITE OGCLAERECRCLI-FORN
HOGCR i ERERCRY-G01 0
e EMDTUER

ogo
n

g -
i

. 1

Variable Usage

Variable Use

i

| F=F el s P ol 28R LR oDy +2EPR ERR
i T

< The current value of the variables (a and b).

=71 The gradient of F1 at the current variables.

F The function value.

C The condition code.

Comments

A few comments about the subprogram are listed below:

e The computation in line 40 saves one multiplication over the more straight-forward alternative

(GoFa=ddP oz —248P 010,

e This example does not include error handling within the subprogram. However, even this simple

subprogram can encounter exceptional conditions with certain arguments (for example, overflow

and underflow).

e The function F1 achieves its minimum value of 0 at a = b = 0. (You might want to try this exam-

ple with GFTIMIZE.)

114 Appendix G: Creating Your Own Model or Function Subprogram

Example Subprogram for i:i- i

The steps to go through in the process of developing a subprogram for ZF I T are outlined next in the

form of an example.

Model

P(V)=Cx VN

PVN = C describes the pressure-volume relationship of a certain system during heating. The model

equation was derived from this equation by rewriting it to get the dependent variable alone on the left.

The independent variable is V, the dependent variable is P, and the values of N and C are model

parameters to be determined based on data collected for P as a function of V.

Gradient

oP/aC vVP(C,N) = |:8P/0N :| - [— LN(V) x P(V) :|

Subprogram

18 Sub PRESSURECR O, WOx, GOy, F, 0o
OGO aEEOL=R bWHEepL Er]

i FromoB
elMeae L gF | -RO RR

=0 EHOSUE

Variable Usage

Variable Use

i+ The current value of the model parameters (C and N).

@ * The independent variables (V).

=< The model gradient with respect to the unknown parameters.

F The model value.

i The condition code.

Appendix G: Creating Your Own Model or Function Subprogram 115

Comments

A few comments about the subprogram are listed below:

® The order of computation within the subprogram requires only one exponential evaluation, thus

providing for faster execution.

® This example does not include error handling within the subprogram (with reasonable data, excep-

tional conditions are not likely).

® One approach to minimize the pain of translating your variables into those used by your sub-

program follows:

1. Declare variables you want to use within your subprogram.

2. Assign to your own variables those input values passed in through the parameter list.

3. Perform the necessary computations using your variables.

4. Store the results into the output parameters as required.

For a good example of this approach, refer to the “Big Box” example on page 22. In this example,

the computations were done with the declared variables W and H.

® Because it differs from the previous subprogram only in the sign of P(2), you could have used the

subprogram FL EF in the library file M[1E L= for the model. All you would need to do to use it is

negate the value returned for P(2) when you get the results. Don’t forget the built-in models!

¢ Actually, with two reliable observations, (Vy, P,) and (V,, P,), this problem can be solved directly

and has the solution shown here:

In(V,/V))
=———— (=P x V"

In(P,/P,) ‘ ‘

Often, however, a good fit over a range of observations will result in a curve that more accurately

reflects your entire data set than that obtained by a direct solution using limited data.

Appendix H

File Names Used in This Pac

This appendix contains a list of the file names used in this pac. All of these files except one can be

copied to main memory, assuming you have enough memory available. (Zwurw=F i+t is the only file

that cannot be copied.) Most of these files are in ROM and, since your HP-71 searches main RAM first

when it looks for a file name, be sure to not have any files with the following names in main RAM

when you are using the curve fitting module.

File Name

CurweF1t

CFIT

OFTIMIZE

MODEL=

FOCEHTICHI

FITLER

FITLIE

LFEEYZ

WSEREEYS*

CFREEYS*

File Type

LEX

BASIC

BASIC

BASIC

BASIC

LEX

BIN

KEY

KEY

KEY

Description

Contains the pac identifier.

Contains the program for curve fitting.

Contains the program for optimizing.

Contains the BASIC curve fitting models supplied by the pac.

Evaluates the left tail of the Chi Square density function.

Contains the keywords KEVHAIT# and kILELFF, the message

table used by the binary subprograms, and a routine that saves

scratch memory used by the pac when your machine is turned off.

Contains all binary user-accessible subprograms.

Contains key definitions for the ©F I T array editor.

Saves previously user-defined keys while the pac is running.

Contains a copy in RAM of CFEEYZ,

* A reserved file name created in RAM when ©F IT is running. If you already have a file with this name in RAM, it will be

destroyed when you run CFIT.

117

Appendix |

Glossary

A,B

bound estimate: A control input to ZFIT and JFTIMIZE that estimates a local minimum or maxi-

mum value for the function to be optimized. This value is used in the line search algorithm, and,if

chosen appropriately, can improve performance.

C

Chi Square (x?): The function whose value is the sum, over all data, of the squares of the weighted

differences (Y — F)/W of the dependent variables Y and the model F. If the Y’s are normally

distributed with mean F and variance W2, then Chi Square is x%(v) distributed with » (the number

of data points minus the number of model parameters) degrees of freedom.

condition code: A value assigned to the condition code variable.

condition code variable: A variable passed by reference to a subprogram for the purpose of indicat-

ing to the calling program the nature of any exceptional event encountered during execution of the

subprogram.

controls: The set of inputs used by the computational routines called by ©FI7T and JFTIMIZE.

converge: The condition in which the graph of the function being optimized is “sufficiently flat” as

measured by the gradient norm to stop the iteration process.

DE

Delta: A control input to ZF I T, used in gradient approximation. It is described in :F I T as a “con-
stant” or “percentage.”

dependent variable: The measured or Y value that depends on the independent variables (X’s) in

the data set.

F

Fletcher-Powell Method: An optimization algorithm introduced by R. Fletcher and M. J. D. Powell.

119

120 Appendix |: Glossary

G

gradient: Given a function F(p;,ps,...,ps), the gradient of F' is a vector-valued function whose value

at (py,py,...,pr) is the vector having the partial derivatives of F' with respect to the variables

(py,P9,---,pr) as coordinates.

gradient norm: With a gradient vector (g,,8,,...,8,), the gradient norm is \/(gl2 + g7+ ... +g7).

This value appears in ©F I7T and GFTIMIZE output identified as |i¢<.

H

HPAF format: Hewlett-Packard Application File format. It refers to a standard DATA file format

used by HP-71 application pacs.

L,J,K

independent variable: A variable controlled by the experimenter. It usually represents a variable

whose value is selected rather than measured.

iterate: A value produced by an iterative method.

iteration: The step number in an iterative method (for example, the 12th iteration).

iterative method: A method that determines a succession of values where each successive value is

dependent on one or more of the previous values.

L

line search: The algorithmic attempt to minimize a function of one or more variables restricted to a

particular direction (for example, the attempt to minimize Z = X? + Y2 + (Y — 3)? along the line
Y=X+1).

M,N

model function: A function F = F(x,xo,...,%,; P1,P9,---,Pr) of n + k variables. The p’s are param-

eters to be determined to best fit the data. The x’s are the independent variables in the data. Model

functions are represented in the pac by subprograms.

O

optimize: The attempt to locate critical points of a function—in particular, local maxima and

minima.

Appendix |: Glossary 121

P,Q,R

parameter: One of the unknown values that determine the model. The task of ZF I Tis to produce

the “best” values for the model parameters.

percentage goodness of fit: A model evaluation aid equal to 100 X (1 — P) where P is the value

returned by the subprogram FCEHTCHI. Under appropriate conditions this value may be used as

a model rejection criterion.

S,T,U

scalar: A numeric value. It is used to distinguish numeric values from vectors.

scratch memory: The memory used by the numeric computation routines (binary subprograms) to

store arguments and intermediate results during the computations.

VvV

vector: A vector of length k is an ordered list (pq,ps,...,pr). In this pac, the list elements are scalar

values.

W,X,Y,Z

weight: A value associated with a data point to provide greater or lesser significance to the point in

the curve fit process. Relatively large weights correspond to low significance. In order for percent-

age goodness of fit to have statistical significance, the weights should equal the standard deviations

of the dependent variables.

Index

Page numbers in bold indicate primary reference; page numbers in regular type indicate secondary

references.

A

Add command, 33, 34, 51-52
Applications file format, 105-107
Approximating the gradient, 24, 46, 81-83

B

Base option, 87, 112

BASIC error messages, 69-71
Big box example, 22-26, 60
Binary error messages, 71-74
Bound estimate, 24, 57
Built-in library files. See Library

C

Calling relationships, 97-98
Cautions, 11
CFIT, 8, 12, 27, 84, 117

examples, 14-20, 40-53
menus (flow chart), 13
results, 40, 47-49

Chi Square, 29, 37, 50, 53-54, 81, 84
density function, 95, 117

Command keys, 32, 33
Condition code, 71, 74, 111
Controls. See Program controls
Convergence, 38, 40, 46, 60-61, 62, 85
Creating a subprogram

for CFIT, 109, 114
for OFTIMIZE, 20, 55, 109, 113
syntax, 110
what not to do, 112
7=subprogram, 91, 98

123

D

Data
editing, 31
entry

from a file (L==d), 17, 30

from the keyboard (kt:d), 14, 29, 41
format, 29
printing, 31
saving, 17, 30, 44

weighting, 29, 31, 52
Data array, 29, 32
Data menu, 14, 17, 28, 44

Define column command, 33-34
Delete command, 33, 34-35
Delta, 38, 57, 82
Difficult cases, 84-85
Direction keys, 32, 33

E

Editing
elements, 32, 37, 56
parameters/variables. See Editing elements
program controls

for CFIT, 24, 38, 46

for JFTIMIZE, 55, 57-58

Editor, 3, 15, 31
Exiting the, 36

Endline direction, 32, 35
Entering data. See Data entry
Error messages, 69-74

Evaluating a function, 55, See also Testing a
function

Evaluating a model, 19, 38
Exiting the program, 20, 28, 53

124 Index

F

File names used in pac, 117
Fit menu, 18, 37, 46, 51

Fit procedure, 14, 36, 41
FIT subprogram, 89-90, 98
FITLE®, 100, 117

FITLIE, 17, 44, 71, 87, 97, 101, 117
Fletcher-Powell Method, 12, 27, 55, 61-62, 75-76, 84
FP Method. See Fletcher-Powell Method
FF subprogram, 87, 97
Function

creation, 55, 109
optimization, 80
testing, 57

G

Goto command, 33, 35
ZFEADOF subprogram, 88, 97
Gradient, 61-62, 81, 83
Gradient approximation, 24, 46, 81-83
Accuracy of, 82, 111
Speed of, 81, 111

Gradient limit, 46, 71
Gradient norm, 38, 50, 58, 85
ZFHADM subprogram, 92, 98

H-I

Horner’s method, 93
HPAF. See Applications file format
HP-IL connection, 12
HP-71 Owner’s Manual, 9, 23, 32, 56, 106
int as a weight, 16, 33, 52
Interpreting the results, 53-54

K

FEMARIT#, 100

Keyboard, redefined, 32
EILLEUFF, 72, 100

L

Loading data (L= ad), 30
Library, 3, 27, 38, 101
L IH subprogram, 17, 93
Line search, 39, 58, 76-77, 84
Local best fit, 101
Local minima/maxima, 20, 39, 55, 80, 101

M

Main menu, 14, 28
Matrix editor. See Editor
Memory requirements, 98-100
Menus,
CFIT, flow chart, 13
OFTIMIZE, flow chart, 21

Messages, error and status, 69-74
Model evaluation, 19, 38, 51-53
Model specification, 17, 37, 44
MODELS, 101, 117

O

Optimization of a function, 80
OFTIMIZE, 3, 20, 55

OFTIMIZE example, 22-26

Optimize menu, 24, 56
JFTIMIZE menus (flow chart), 21

Option base, 87, 112
Option round, 112
Output

for CFIT, 40, 47-49
for JFTIMIZE, 25-26, 59-61

P

FCEMTICHI, 54, 94-96, 117
Penalty function, 85
Percentage goodness of fit, 51, 54
FioLY subprogram, 44, 93
Printed output. See Output
Printer connection, 12
Product information, 67
Program controls, 24, 38, 44

Program exit, 20, 28, 53
Progress report

for CFIT, 39

for OFTIMIZE, 58-60

Q-R
Quit key (@), 32, 36, 39
Redefined keyboard, 32
Repair services, 65-66

S

Saving data (= aw=), 17, 30, 44
Service

centers European, 65
centers U.S., 65
international, 66
repair charge, 66
shipping instructions, 66
warranty, 66

Speed tricks, 111
Status messages, 69-74
Steepest descent, 62, 75
Subprograms,

Creating,
for CFIT, 109-110
for OFTIMIZE, 20, 55, 109-110

Specifying,
for CFIT, 17, 37, 44
for OFTIMIZE, 20, 23, 56

Index

T-U-V

125

Technical assistance, 67
Testing a function, 57
User-Accessible routines, 87
Video display connection, 12

W

Warranty, 63
Service, 66

Weights, 29, 31

as if, 16, 33, 51

How To Use This Manual (page 9)

Getting Started (page 11)

Curve Fitting (page 27)

Optimizing a Function (page 55)

Owner’s Information (page 63)

Error and Status Messages (page 69)

Numerical Methods (page 75)

User-Accessible Routines (page 87)

Library Subprograms (page 101)

Applications File Format (HPAF) (page 105)

Creating Your Own Function or Model Subprogram (page 109)

File Names Used in This Pac (page 117)

Glossary (page 119)~
T
O
I
M
O
O
W
E

w
w
n
2

(fi] HEWLETT

¥8 PACKARD

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

European Headquarters HP-United Kingdom

150, Route du Nant-D’Avril (Pinewood)

P.O. Box, CH-1217 Meyrin 2 GB-Nine Mile Ride, Wokingham
Geneva - Switzerland Berkshire RG11 3LL

82484-90001 English Printed in Singapore 3/84

	Cover
	Contents
	How to Use This Manual
	Section 1: Getting Started
	Installing and Removing the Curve Fitting Module
	What the Curve Fitting Pac Does
	Using CFIT
	Overview
	Flow Chart of CFIT Menus
	CFIT Example: Stock Predicting

	Using OPTIMIZE
	Overview
	Flow Chart of OPTIMIZE Menus
	OPTIMIZE Example: A Big Box

	Section 2: Curve Fitting
	Introduction
	Running the Curve Fit Program
	Working with Data
	The Data Format
	Giving Weights to Data
	Entering Data From the Keyboard (Kbd)
	Loading Data From a File (Load)
	Saving Data to a File (Save)
	Printing the Data (Print)

	Editing the Data
	Editing an Element
	Moving Around the Array

	Fitting the Curve
	Specifying the Model
	Editing the Parameters
	Options From the Fit Menu
	Performing the Fit
	Getting the Results

	A CFIT Example
	Setting Up the Problem
	Entering the Data
	Saving the Data
	Specifying the Model Subprogram
	Editing the Controls
	Getting the Results
	Evaluating the Model
	Interpreting the Results

	Section 3: Optimizing a Function
	Introduction
	Creating the Function Subprogram
	Running the OPTIMIZE Program
	Specifying the Subprogram
	Editing the Variables
	Options From the Optimize Menu
	Testing the Function
	Editing the Controls
	Performing the Optimization
	Getting the Results

	A Word on Gradient

	Appendix A: Owner’s Information
	Limited One-Year Warranty
	Service
	When You Need Help

	Appendix B: Error and Status Messages
	BASIC Error Messages
	Binary Error Messages

	Appendix C: Numerical Methods
	Fletcher-Powell Method
	Line Search
	Function Optimization
	Gradient Approximation
	Application to CFIT
	Minimizing Chi Square
	Difficult Cases
	The Inability to Meet Convergence Criteria
	Sampling Outside the Intended Domain
	Constrained Optimization

	Appendix D: User-Accessible Routines
	Subprogram Description and Calling Syntax
	The FP Subprogram
	The GRADF Subprogram
	The FIT Subprogram
	The CSQ Subprogram
	The GRADM Subprogram
	The POLY Subprogram
	The LIN Subprogram
	The PCENTCHI Subprogram

	Calling Relationships
	Subprograms Called by FP
	Subprograms Called by FIT

	Memory Requirements
	Buffer and Calling Overhead
	Variable Memory

	Keywords
	KEYWAIT$
	KILLBUFF

	Appendix E: Library Subprograms
	Appendix F: Applications File Format (HPAF)
	Header Information
	Data Records
	Descriptor Block
	The Curve Fitting Files

	Appendix G: Creating Your Own Model or Function Subprogram
	Writing a Model or Function Subprogram
	Standard Subprogram Syntax
	Speed and Accuracy
	Important Interface Assumptions
	Example Subprogram for OPTIMIZE
	Example Subprogram for CFIT

	Appendix H: File Names Used in This Pac
	Appendix I: Glossary
	Index

