(’6/” HEWLETT

PACKARD

HP 82490A

HP-41 Translator Pac

Owner’'s Manual

For the HP-71

[40 HEWLETT

PACKARD

HP 82490A
HP-41 Translator Pac

Owner’s Manual

For the HP-71

January 1985

Developed and written for Hewlett-Packard by
Dr. William C. Wickes

82490-90001

Printed in U.S.A. © Hewlett-Packard Company 1985

Introducing the HP-41 Translator Pac

The HP 82490A HP-41 Translator Pac consists of:

e The HP-41 Translator Pac module, which contains a system of programs for the HP-71 designed to
allow you to convert programs written for the HP-41 for use on the HP-71. You can then run the
“translated” programs on your HP-71, taking advantage of the HP-71’s enhanced speed and accuracy.

e A keyboard overlay, designed to customize your HP-71 keyboard for use with the HP-41 Translator
Pac.
With the HP-41 module installed in your HP-71, you can:

e Use the HP-71 as an HP-41 calculator for keyboard operations and program execution. All HP-41
calculator features, including the alpha register, are available from the HP-71 keyboard.

e Write programs on the HP-71 in HP-41 user-programming language.

e Transfer programs automatically from the HP-41 to the HP-71 via HP-IL. (This requires HP-IL
modules for both calculators.)

o Extend the HP-41 user language, either by adding HP-41 extension module functions not included in

the HP-41 Translator Pac, or by adding new functions of your own design.

In short, the HP-41 Translator Pac allows you to retain the calculator and programming features of the
HP-41, and to use your HP-41 programs, as you move into the more sophisticated and powerful world of
the HP-71.

The HP-41 function set included in the HP-41 Translator Pac includes:

e All functions built into the HP-41C and HP-41CV calculators.

e Additional numeric, flag, and alpha data manipulation functions from the HP-41CX and the
HP 82180A Extended Functions/Memory Module.

e All of the HP-IL printer functions from the HP 82160A HP-IL Module for the HP-41 except the
special graphics functions.

Not included in the HP-41 Translator Pac are the time (TIME is included), date, stopwatch, alarm, and
extended memory functions from the HP-41CX, or any other functions from HP-41 extension modules.

Introduction 4

Any HP-41 program that uses functions included in the pac can be translated and run on the HP-71.
HP-41 programs and keyboard operations that are executed on the HP-71 yield the same results as those
obtained with the HP-41, except that:

e The HP-71 provides two additional mantissa digits and and one more exponent digit than the HP-41.
This affects both the accuracy of numeric results and the allowed range of numbers.

e Unlike the HP-41, The HP-41 Translator Pac does not provide the ability to choose the digit sepa-
rator and radix format.

e There are some differences in keyboard entry methods that arise from the different keyboards of the
two computers and from the somewhat different styles of RPN arithmetic associated with HP-71
FORTH and the HP-41.

Appendix E contains a list of the HP-41 functions provided by the HP-41 Translator Pac, and description
of the differences between the HP-41 and the HP-41 Translator Pac.

The HP-41 Translator Pac is based on a FORTH language system built into the pac. FORTH is a com-
puter language that shares many characteristics with the HP-41 user-programming language, but is more
widely recognized and applied to a greater variety of computers. You do not need to learn FORTH to use
the HP-41 translator, but programmers familiar with FORTH can use the system to write HP-71 applica-
tions entirely in FORTH.

Contents

How To Use This Manual 9
Section 1: Getting Started 1
Installing and Removing the HP-41 Translator Pac Module 1
What the HP-41 Translator Pac Does e 12
Starting the Emulator 12
A RISt Try o 12
Continuing Your Reading i 15
Section 2: HP-41 Operation in Detail 17
INtrOdUCHION . .. 17
ENVIrONMeNtS . . 17
Entering and Exiting the HP-41 Environment 19
Initializing the HP-41 Emulator 20
Exiting the HP-41 Environment 21
Saving and Duplicating the HP-41 Environment 21
HP-41 Keyboard Calculations 22
Keyboard Differences 22
Executing HP-41 FUnCtioNS 23
Emulator Display FUNCHIONS 23
Replacing the Z, #, and | Characters 24
Entering Numbers 24
Multiple ENtries 25
Evaluating Input 26
Emulator Stack Lift 26
Two-Part FUNCLIONS 28
Simulating HP-41 Keystrokes With the USER Keyboard 28
Evaluating BASIC Numeric EXPressions 30
Using BASIC variables 31
Alpha Mode 32
Program EXeCUtiON e 34
Running Programs 34
Pausing a Program From the Keyboard 35
Program Halts and Pauses 35
Program Errors 35
Clearing Programs 36
Cataloging Programs 36
Section 3: Writing and Translating HP-41 Programs 37
INtrodUCHION . . o 37
The Translation ProCess 37
Writing HP-41 Programs 38
Using TRANS AT 41
Halting Translation 43
TRANSAT Errors 43
Loading Intermediate Programs In the HP-41 Environment 44

6 Contents
Halting Program Loading 45
Transferring Programs from an HP-41 Using READ41 45
READAT EITOISo 46
HP-71 Memory Usage 47
Creating New FUNCLIONS 47
Section 4: The Editor 51
Overview of the Editor 51
Editor Commands 53
The Text (T) and Insert (I) Commands 53
The List (I.) and Print (F) Commands 54
The Copy (Z) and Move (f1) Commands 54
The Delete (L) Command 55
The Search (=) and Replace (F) Commands 56
Editor Files 58
SUDIOULINES 59
Section 5: The HP-71 FORTH System 61
INtrodUCHION . . .o 61
RefereNCeS 61
Using FORTH on the HP-71 61
Unique Aspects of HP-71 FORTH 63
Twenty-Bit FORTH 63
Compilation from Files 64
FORTH/BASIC Interaction e e 65
HP-IL Operations 67
General Purpose BUffers 67
FORTH EXtENSIONS 68
Floating-Point Operations 68
String Operations 7
Vocabularies 72
The HP-41 Environment 73
Relation to the HP-71 FORTH/Assembler ROM 74
Error Trapping o 74
FORTH Memory Organization e 75
HP-71 MeMOrY . . .o 75
The FTHATRAM File 76
The FORTH Dictionary 80
The HP-71 File System 81
File TYPeS 82
Structure of the File Chain 83
Appendix A: Care, Warranty, and Service Information 85
Care of the Module 85
Limited One-Year Warranty 85
S IVICE . . 87
When You Need Help 90
Appendix B: Error Messages 91
FORTH MESSAQgESsottt e e e e 91
Editor MeSSages 95

Appendix C: BASIC Keywords 97

Contents 7

Appendix D: FORTH Words 113
NOtatioN . . . 114
ErTOrS 114
FORTH GIOSSary e 115

Appendix E: Summary of HP-41 Emulator Features 167
HP-41 FUNCHIONS 167
General Differences Between the HP-41 and the Emulator 168

Mathematical EXCEptiONS e 168
Extended Register and Numeric Label Range 169
Trigonometric Modes 169
Display Formatting—Flags 28 and 29 169
Automatic Execution—Flag 11 169
Function-Specific Differences 169
Access to Other ENVIFONMENtS 176

Appendix F: Guidelines for Running HP-41 Programs on the HP-71 179

Transferring HP-41 Programs 179
Directly Transferring an HP-41 Program e 179
Transferring a Program From Mass Storage 180
Entering a Program From the Keyboard 180

HP-41 Program Instructions and Keystrokes 180
Program Description 180
User INStrUCtiONS 181
Program Examples and Results 183
Data Registers, Status Messages, and Flags i 183
Converting HP-41 Key Assignments i 184

Subject Index 187

BASIC Keywords by Category 191

FORTH Words by Category Inside Back Cover

How to Use This Manual

This manual contains information you need in order to use the HP-41 Translator Pac. You will need to
read portions of this manual if:

® You are familiar with the HP-71, but have little or no programming experience on the HP-41. For
example, you may want to use the HP-41 Translator Pac to translate and run HP-41 programs pur-
chased from the Users’ Library.

e You want to use your HP-71 as an RPN calculator.

e You are familiar with both the HP-41 and the HP-71, and have written or acquired HP-41 programs
you wish to translate and run on the HP-71.

If you will be using the HP-41 Translator Pac to run purchased HP-41 programs, you do not need to read
this manual cover-to-cover. If you are not familiar with operation of the HP-41, you should read appendix
F before continuing with your reading. Appendix F, plus the instructions accompanying your purchased
programs, may contain enough information to run those programs. At times, you may need to refer to
portions of this manual for additional information about differences between the HP-71 and the HP-41,
but you will not need a complete understanding of how the translator works.

Sections 1 through 5, and appendixes A through E assume that you are familiar with the general operation
of both the HP-71 and HP-41. The use of an HP-41 is not required, but since the HP-41 Translator Pac
emulates HP-41 operation on the HP-71, we assume that you are accustomed to using the HP-41. If you
will be translating your own HP-41 programs, or if you intend to use your HP-71 as an RPN calculator,
you will need to carefully read the appropriate sections:

e Sections 1 and 2 describe the HP-41 features provided by the pac. Section 1 shows you how to install
the HP-41 module and enter the HP-41 “environment,” where the HP-71 behaves like (emulates) an
RPN calculator. It then guides you through several examples using the HP-41 “emulator.” Section 2
covers the HP-41 emulator in greater detail.

e Section 3 descibes how to use the pac to transfer HP-41 programs written on the HP-41 to the HP-71.

In addition, section 3, describes how to run HP-41 user-language programs written using the HP-71
Text Editor.

e Section 4 describes how to use the HP-71 Text Editor to write or edit HP-41 user-language programs
for running on the HP-71.

e Section 5 is intended for users familiar with the FORTH language. It describes the FORTH system
that underlies the HP-41 emulator. This is a complete FORTH system; with it, you can extend the
emulator function set, write HP-71 applications entirely in FORTH, or write programs that mix
routines written in BASIC and FORTH. Section 5 does not provide a FORTH tutorial, but does list
some standard references for programmers who wish to learn about the language.

10 How to Use This Manual

There are also several appendixes for your reference:

i

e Appendix A, “Owner’s Information,” includes warranty and service information.

e Appendix B contains descriptions of error messages.
e Appendix C describes the BASIC keywords added to the HP-71 BASIC language by the pac.

e Appendix D contains an alphabetical list of the FORTH words included in the built-in FORTH
dictionary.

e Appendix E “Summary of the HP-41 Emulator Features,” describes the HP-41 functions and capabili-
ties that are included in the emulator, and lists the general and specific differences between emulator
functions and their HP-41 equivalents.

e If you are not familiar with the HP-41, Appendix F will get you started in translating and running
HP-41 programs.

If you intend to use the HP-41 Translator Pac to transfer programs from the HP-41 to the HP-71 via
HP-IL, you must know how to install the HP-IL modules into the two computers. If your system includes
peripheral devices such as printers and mass storage devices, you will need to know how to connect them.
If necessary, refer to the owner’s manuals for the interfaces and devices for further instructions.

Section 1

Getting Started

Installing and Removing the HP-41 Translator Pac Module

The HP-41 Translator Pac module can be plugged into any of the four ports on the front edge of the
HP-71.

CAUTIONS

e Be sure to turn off the HP-71 (press before installing or removing a module.

e Whenever you remove a module to make a port available for another module, be sure to turn the
HP-71 on and then off while the port is empty before installing the new module.

e Do not place fingers, tools, or other foreign objects into any of the ports. Such actions could result
in minor electrical shock hazard and interference with pacemaker devices worn by some persons.
Damage to port contacts and internal circuitry could also result.

e Never install the HP 82490A HP-41 Translator Pac module and the HP 82441A FORTH/Assembler
ROM module into the HP-71 at the same time. The presence of both modules can cause the system
to operate incorrectly.

To insert the module, hold the HP-71 with the keyboard facing up
and the module with the label facing up. Push the module into the
port until it snaps into place. Be sure to observe the precautions
described above.

To remove the module, use your fingernails to grasp the module by the lip on the bottom of its front edge.
Pull the module straight out of the port. Install a blank module in the port to protect its contacts.

1

12 Getting Started

What the HP-41 Translator Pac Does

The HP-41 capabilities provided by the HP-41 Translator Pac fall into two categories:

e The HP-41 emulator enables the HP-71 to recognize all HP-41 keyboard operations and program
execution commands, and provides the HP-41 RPN arithmetic stack, data and alpha registers, and
user flags. The HP-71 key file kE* =4 1 makes the HP-71 respond to keystrokes in a key-per-function
manner very similar to the actual HP-41.

e The HP-41 translator consists of two BASIC programs, REEAL41 and TEAMHS4 1. READG 1 trans-
fers HP-41 programs in HP-41 memory to text files in HP-71 memory via HP-IL. TE#AHZ4 1 trans-
lates HP-71 text files containing HP-41 user language programs (created either by FEF 4 1 or with
the text editor) into a form suitable for loading into the HP-41 emulator program memory. TF M4 1
also loads translated programs into emulator memory, where they are ready to run.

Starting the Emulator

Follow this procedure to start the emulator. Steps #2 and #3 are optional; they are included here so you
can follow along with the examples in this section.

1. Turn on the HP-71 with the HP-41 Translator Pac module installed in any port.

2. Type F1: 4 to set the display format to four decimal places to the right of the decimal
point.

3. If USER mode is active, press to disable USER mode for now.
4. Type HF4 1 (END LINE]. The system displays:
HFE-41 EMULATOR 1A
to indicate that you have entered the HP-41 environment.
5. If this is the first time you have activated the emulator, the system displays the prompt:
SIZEC max, nnm 37

asking you to input the number of HP-41 data registers you wish to create. This can be any number in
the range 1 through nnn. For now, type:

185 (END LINE

are using the emulator for the first time.

A First Try

Now you’re ready to try some HP-41 keyboard operations. You will see that the emulator approximates
the HP-41 closely, but there are differences arising from the different keyboards and capabilities of the
two calculators.

Starting with something simple, let’s try adding 1 plus 2, and multiplying the result by 3. On the HP-41,
you would press:

i ENETY A EY E Y

to see the result = . @@ G5, Moreover, you would see intermediate results in the X-register after pressing

and (+].

Getting Started 13

There is no key on the HP-71. In fact, the HP-41 keyboard and the HP-71 keyboard are so
fundamentally different that the HP-41 Translator Pac emulates only the “spirit” of the HP-41 arithmetic
style, and does not attempt to mimic exact key-by-key sequences. To see what this means, type:

(1)(spc](2)(sPc](+](sPC](3](SPC](+](END LINE]

on one line. Pressing displays the result =
of operations is identical in both the HP-41 and the HP-71 key sequences, but the actual keystrokes
differ. The idea here is that you will perform HP-41 RPN arithmetic on the HP-71 in a manner that takes
advantage of the capabilities of the HP-71, particularly its ability to remember and execute a sequence of
commands all together. Emulation of the HP-41 stack is discussed in much more detail in Section 2. The
HP-71 keystroke sequence above is less efficient than its HP-41 counterpart because you must type spaces
to separate each command or number entered, plus the final (END LINE]. However, you can use key assign-
ments to make the HP-41/HP-71 correspondence even closer. Type i £% %4 1 [(END LINE]. This causes the
file i1 included in the HP-41 Translator Pac to be merged into the HP-71 keys file. Press f-(USER]
to activate USER mode.

&, just as on the HP-41. Notice that the order

Now try the arithmetic example again:

HP-71 Emulator HP-41
Keystrokes Display Keystrokes Display
1 1_
1.0000 1.0000
2% 2
3.0000 3.0000
3 3_

(] 9.0000 (x) 9.0000

In this example, the HP-71 key plays the role of the HP-41 key; otherwise the opera-
tions and results are the same on both calculators.

Another HP-41 key not present on the HP-71 keyboard is the key. There are three ways to ac-
tivate ALPHA mode:

* Type
e Type # ([9)(4))
e When the | i file is the current keys file and USER mode is active, press [f]J(END LINE].

The HP-71 AC annuciator is displayed to indicate that the alpha keyboard is now active. The rest of the
display is blank, because the alpha register is empty. Press the key:

to enter the letter H into the alpha register. The _ prompt indicates that subsequent keystrokes will be
appended to the alpha string just as on the HP-41. Press [E](L]{L][0](X]:

14 Getting Started

Too many characters? Press the («] key:

Now, press to display:

and press to execute-the # stores the alpha data
1 into the X-register. Note that the append prompt has disappeared. If you press another character
i disappears, and the new character is displayed followed by an append prompt. To re-

", press the key, which plays the role of the HP-41

= function. Executing

key now,
store the append mode without deleting
append key.

To return to execute mode, press [END LINE]. The AC annunciator turns off, and i remains in the

display (the contents of the X-register).

Try a few more familiar HP-41 operations. (You might wish to turn off USER mode to avoid activating
assigned keys not yet discussed.) In general, executing a function involves typing out the HP-41 function
name and parameters you wish to try and pressing [END _LINE]. The HP-71 alphanumeric keyboard allows
you to type the function names without using ALPHA mode. For example, compute the sine of 90°:

Keystrokes Display

no change Sets degrees mode.
Digit entry.

Digit entry terminated.

END LINE

Type function name.

Sine of 90°.

END LINE

When the function specifies an HP-41 register, type the function name, a space, and the register number
(or letter, for stack registers), terminating with (END LINE]. For example, to store the number 27.6 into
register 5:

Keystrokes Display

Digit entry not terminated.

Digit entry terminated.
5 Value 27.6 is stored in register 5.
Clears the X-register.
) Recalls contents of register 5.
A similar rule applies for functions such as =¥ and ¥ I
Keystrokes Display
ZF 23 Sets flag 23. The previous contents of the X-reg-

ister are displayed.

Flag 23 is set.

Display is formatted for seven decimal places.

Getting Started 15

You can type any number of functions together (always separating each command with one or more
spaces) before hitting [END LINE], up to a maximum of 96 characters in each command string. The HP-71
command stack is fully functional in the HP-41 system, so that you can recall, edit, and re-execute pre-
vious commands.

Keystrokes Display

Fld & RN g e Display is formatted for six decimal places.

4% (END LINE) 45, BREEEE Digit entry.

SIM OFIH 4 LFETL Enter command string to see the sine of 45° to
four decimal places.

A E Displays previously executed command.

SFIHE & Displays previously executed command.

Executes F I .

Returns display format to F I .

FI¥ 4 (END LINE

The power of the underlying HP-71 and the FORTH language system allow the pac to introduce addi-
tional functions that have no HP-41 counterpart. For example, type:

12 2 4 + % ZTD STHOE (END_LINE].

You will see all five registers of the RPN arithmetic stack at once:

1 2 7 05 | 4
bty
T Z2 Y X Last X

ZTO is a new HP-41 emulator function that implements the HP-71 standard display mode. = THCE is a
new function that instructs the HP-71 to display the entire RPN stack after each command line, instead
of just the X-register. The stack is displayed left-to-right, registers T = X. The LAST X register is sepa-
rated from the others by the | character.

To restore the normal X-register display, type :{iHL ¥ (END _LINE]—another new function. If you wish to
exit standard display mode, execute another display function, for example, F I 4.

Continuing Your Reading

This brief introduction presented an overview of the HP-41 emulator contained in the HP-41 Translator
Pac. The rest of this manual presents a more thorough coverage of the pac’s features:

e To learn more about how the the HP-41 emulator implements HP-41 functions, registers, and key-
strokes, read Section 2.

e To learn how to create files executable by the HP-41 emulator from HP-41 user-language programs
written using the HP-41 or the HP-71 editor, read Section 3.

e To learn how to use the HP-71 editor, read Section 4.
e If you intend to program the HP-71 in FORTH, read Section 5.

Appendixes A through E contain additional reference information. Appendix F summarizes the proce-
dures to follow for using HP-41 programs on the HP-71.

Section 2

HP-41 Operation in Detail

Introduction

This section describes how to use the HP-41 emulator to run HP-41 programs and perform RPN calcula-
tions on your HP-71. The great majority of the HP-41 functions provided by the emulator work the same
way as their HP-41 counterparts, and need no specific description here. The principal difference between
the HP-41 and the HP-41 emulator is in their user interfaces—that is, the steps you must use to execute
functions.

The HP-41 uses a key-per-function, one-function-at-a-time input style. The HP-41 emulator matches the
HP-41 in the logical sequence of operations, but takes advantage of the additional capabilities of the
HP-71 to provide a more flexible, multi-function command line method of keyboard input. For experi-
enced HP-41 users, the emulator may take a little getting used to, but you will quickly come to appreciate
the advantages of the emulator style.

Environments

With the HP-41 Translator Pac installed in the HP-71, you have at your disposal what at first may seem
a confusing variety of commands and modes. The HP-71 retains all of its normal capabilities—immediate
execute BASIC, CALC mode, BASIC program execution. The pac adds not only the HP-41 emulator and
translator programs, but also the FORTH system that supports the HP-41 functionality. As you will see,
the FORTH system and the HP-41 emulator operate somewhat differently from HP-71 BASIC.

The term environment is used to describe the various states of the HP-71. When the HP-71 is operating in
a particular environment, it interacts with the user and responds to commands in a special way
characteristic of that environment. Commands and operations from other environments are available only
indirectly or not at all. The environments available with the HP-41 Translator Pac module installed are:

e The BASIC environment. This is the standard HP-71 environment, in which you can specify
immediate-execute BASIC commands, run programs, manipulate files, make key assignments, etc.
The prompt > indicates that the HP-71 is ready for input.

e HP-71 CALC mode. The HP-41 Translator Pac does not affect the use of CALC mode.

17

18 HP-41 Operation in Detail

e The HP-41 environment. This is a new environment provided by the HP-41 Translator Pac.
When you operate the HP-71 from the HP-41 environment, the calculator mimics the display behav-
ior of an HP-41. That is, you normally see the contents of the X-register after every command or
string of commands. You can also turn on ALPHA mode to display the current contents of the alpha
register. In ALPHA mode, the full range of HP-41 alpha keys and commands are available. As on the
HP-41, error messages and the YES or NO keyboard response to test functions can temporarily re-
place the X- or alpha register display.

In the HP-41 environment, most of the pac’s built-in FORTH words are available, but BASIC com-
mands can only be executed indirectly. We will use the term emulator memory to refer to the portion
of HP-71 memory used within the HP-41 environment to contain HP-41 programs and data.

e The FORTH environment. This environment is also added to the HP-71 by the HP-41 Translator
Pac. You will not need to know FORTH to operate the HP-41 emulator, but advanced programmers
can use the FORTH environment to extend the HP-41 emulator capabilities and to program HP-71
applications in FORTH. In the FORTH environment, the message . & : replaces the BASIC
prompt . In the FORTH environment, you can type FORTH commands and program the HP-71 in
the FORTH language; the HP-71 does not recognize BASIC commands or most HP-41 functions.

The relationship between the three environments is shown in figure 2-1:

BASIC HP-71 EASIC
BASIC -
Environment
HF41 FORTH
' Y
i FORTH
HP-41 > FORTH
Emulator Environment
Environment | HF41

Figure 2-1. Keywords for Changing Environments

Each environment has two keywords that allow you to change environments, as shown by the words above
the arrows in the diagram. To move from one environment to another, type the name of the new environ-

ment followed by [END LINE].

You

keyword HF

HP-41 Operation in Detail 19

Entering and Exiting the HP-41 Environment

can enter the HP-41 environment from either the BASIC or the FORTH environments by typing the
1. The HP-71 displays the message:

indicating that you are ready to begin HP-41 operations. Whenever you enter the HP-41 environment, the

HP-

71 automatically carries out the following startup procedures:

The display mode (FIX, SCI, ENG, or STD), angular mode (DEG or RAD), and number of display
digits are set to match the current HP-71 BASIC settings.

Certain flag conditions are established (refer to table 2.1). Flags that are matched to HP-71 system
flags and user flags maintain that correspondence during operation of the emulator. For example,
clearing HP-41 flag 26 to disable HP-41 audio functions also sets HP-71 flag —2. The emulator
matches HP-41 and HP-71 user flags 0 through 7, allowing the HP-41 flags to control the HP-71
display annunciators.

Table 2-1. Flag Conditions At Startup

HP-41 Flag Number Flag Name Flag Condition

0 through 7 General purpose user flags | Matched to HP-71 user flags 0 through 7

11 Automatic Execution Cleared

22 Numeric Data Input Cleared

23 Alpha Data Input Cleared

24 Range Error Ignore Cleared

25 Error Ignore Cleared

26 Audio Enable Matched to opposite of HP-71 flag —2

27 User Keyboard Matched to flag —9

36 through 39 Number of digits Set according to display mode

42 GRAD Mode Cleared if entering from BASIC, unchanged if enter-
ing from FORTH

43 Angular Mode Matched to HP-71; set for RAD, clear for DEG

44 Continuous On Matched to HP-71 flag —3

48 Alpha Keyboard Cleared

50 Message Cleared

52 Program Running Cleared

20 HP-41 Operation in Detail

e The HP-71 math exception traps are set as follows:

Table 2-2. Math Exception Traps

Trap Value at Startup
Invalid operation 0
Division by zero 0
Overflow 0
Underflow 1
Inexact result 1

e The HP-IL system, if present, is searched for a printer device. If one or more printers are found, the
printer at the lowest HP-IL device is selected as the output device for , and the HP-41
printer functions. Flags 21 and 55 are set if a printer is present; they are cleared otherwise. If you
connect a printer on HP-IL after entering the HP-41 environment, you can activate the printer func-

tions by typing | = (END_LINE].

If you are entering the HP-41 environment for the first time, you must perform one additional initializa-
tion procedure, described next.

Initializing the HP-41 Emulator

Before you can begin calculations with the HP-41 emulator, you must instruct the HP-71 to reserve a
portion of its memory for use as HP-41 data registers. You will do this the first time you enter the HP-41
environment, and again if you have initialized the system (using the & '*.
enter the HP-41 environment.

4

1 command) and then re-

After you type HF <1 to begin using the HP-41 emulator, the message:

EMULATOR 1A

appears. If the system has not yet been initialized, it displays the prompt:

This prompt instructs you to enter the number of data registers you intend to use initially with your HP-
41 emulator. The number you enter is interpreted the same way as the parameter of the HP-41 SIZE
function; that is, the SIZE selected is one more than the greatest register number—: i
sponds to registers 0 through 99, and so forth.

HP-41 Operation in Detail 21

The number nnn shown in the prompt is the number of registers that will fit in available HP-71 memory;
each HP-41 emulator data register requires 8 bytes of user memory. There are two ways to specify the
number of registers:

e Key in the number and press (END LINE]. You may enter any number from 0 through 10000. If your
number is greater than nnn, nnn registers will be created.

e Press without a number. A default size of up to 319 registers (a maximum of 319 registers
are available with the HP-41CV/CX) will be created. If nnn is less than 319, then nnn registers will be
created.

After you have entered the SIZE, the HP-71 displays the current contents of the X-register, and is ready
to begin accepting HP-41 commands.

Exiting the HP-41 Environment

Once you have entered the HP-41 environment, you can exit to BASIC or FORTH by typing EAZIC
or FORETH [(END_LINE]. In general, your HP-41 programs and registers are preserved intact for
subsequent use when you re-enter the environment. It is, however, possible for you to alter or destroy
HP-41 programs and data by using FORTH memory access words or the BASIC function F ik E. Remem-
ber also that BASIC and the HP-41 emulator share certain user flags, and display and angular modes, so
that changing any of these in one environment will carry over into the other.

The special HP-41 emulator function guir a=41 is provided so that you can reclaim the HP-71 mem-
ory used by HP-41 programs and registers. Typing pur as41 in the HP-41 environment
causes the system to enter the FORTH environment and to purge all HP-41 programs and registers. In
addition, any FORTH words created since the HP-41 environment was initialized are purged.

If you turn the HP-71 off while in the HP-41 environment, it remains in that environment when you turn
it on again. You can turn off the HP-71 either by pressing (f][OFF], or by executing the HP-41 0FF
function. If you set flag 11 (automatic execution) and turn the HP-71 off using the IFF function, pro-
gram execution begins at the current program pointer position when you turn the HP-71 back on.

Saving and Duplicating the HP-41 Environment

The HP-41 programs and data registers, together with the FORTH dictionary, are contained in a special
HP-71 file (of type FORTH) named F TH4 1 EAM. This file is created automatically, if it is not already
present, when you enter either the HP-41 or FORTH environments from BASIC. From BASIC, you can
treat the FTH4 1 EAHM file just as you would any other file, using any of the HP-71 file commands. By
renaming F TH4 1 EAM (using the BASIC FEHAME statement), you can archive a particular version of the
file in main memory, independent RAM, or on a mass storage medium. If you rename F TH4 1 EFAF, the
system automatically creates a new file named F TH4 1 EAM when you enter the HP-41 environment.

The file currently named F TH4 1 FFf is the active file when you enter the FORTH or the HP-41 environ-
ments.

22 HP-41 Operation in Detail

HP-41 Keyboard Calculations

The HP-41 Translator Pac allows you to run programs written in HP-41 user language on your HP-71.
Since many HP-41 programs require you to perform keyboard calculations as part of their operation, the
HP-41 Translator Pac includes an HP-41 emulator that provides keyboard calculation capability. How-
ever, the emulator does not provide an exact, keystroke-for-keystroke imitiation of the HP-41. Instead,
the emulator provides a near copy of the HP-41 user interface, close enough to the original to be easy to
learn, yet changing some features and adding others to take advantage of the strengths of the HP-71. The
next several subsections discuss the major similiarities and differences between the actual HP-41 and the
emulator.

To begin with, let’s summarize the HP-41 memory features that are present in the emulator:
e An RPN arithmetic stack, with 4 working levels named X, Y, Z, and T, plus a LAST X register.
e A 24-character alpha register.

o A user-specified number of fixed data registers, each of which can store one floating-point number or
one 6-character alpha string.

e 30 user flags, numbered 0 through 29, plus additional HP-41 system flags numbered 31 through 55,
that can provide status information to programs.

e Program memory. The amount of memory used for HP-41 programs varies as you load or clear pro-
grams. All memory packing is carried out automatically by the emulator.

Keyboard Differences

The most obvious difference between the HP-41 and the HP-71 is their keyboards, which differ in the
number and layout of their keys and in the basic style of user input. The HP-41 is optimized for
key-per-function operation; functions can be executed with a single keystroke. Any function not present
on the keyboard can be assigned to a key. The alpha keyboard, which can be used for spelling out func-
tions not assigned to keys or for alpha register entry, is available only through a mode key, which disables
the normal keyboard.

The HP-71 keyboard, on the other hand, is a “block-querty” keyboard plus number pad and typing aids;
the keyboard has no default key-per-function keys. In the BASIC environment, you must spell out a
command or expression, then press (END LINE]. The [END LINE] key acts as a command terminator. When
you press it, the HP-71 processes the instruction(s) you have typed. Each line you type in must follow
strict syntax rules so that the BASIC interpreter can understand it.

HP-41 Operation in Detail 23

Executing HP-41 Functions

The HP-41 emulator offers an input style intermediate between HP-71 BASIC and the actual HP-41.
Like the HP-41, any function can be spelled out and executed by name without any special syntax. Unlike
the HP-41, however, the only built-in dedicated function key is [RUN]. For example, suppose you wish to
take the sine of the number in the X-register. On the HP-41 you press the key to see the result in X.
On the HP-71, you must type out [S]{1](N]J(END LINE]*. As you type, the display echoes each character so
that you can see what you enter. Up to the final (END LINE], you can use any of the HP-71 editing keys to
change your entry. After you press (END LINE], your entry is processed and you see the result in the
display.

The HP-41 emulator style of function execution is analogous to the HP-41 method of executing non-
keyboard functions. For example, to execute the il function on the HP-41, you must press

(XEQ](ALPHA](M](O](D]J(ALPHA]. The final keystroke acts like the HP-71 [END LINE], telling the

calculator to execute the function you have spelled out. But notice that on the HP-71, the initial

sequence is unnecessary; you just type (M][O](D](END LINE].

The emulator is case sensitive—functions must be spelled out in uppercase letters. The function
wur ged 1 is the only emulator function that uses lowercase letters.

Emulator Display Functions

Two functions are provided in the emulator that alter the normal X-register display. The new display
mode remains in effect until a new HP-41 emulator display function is executed.

Displaying the entire stack. The word = THZE causes the HP-71 to display the entire RPN stack,
including the LAST X register. The stack registers are displayed left-to-right across the display, in the
order T, Z, Y, X, and L. LAST X is separated from X by a vertical bar |. Numbers are shown in the
current display format. For example, typing:

1% 2 STRCE
CLET (END LINE]
% 4 [#] 5 (+J(END_LINE]

D |

]

displays the register contents:

,_
i
i
xn]
x]
x]
x]

I
3]
0]
]
A
Rx]
xx]

Pt
Rx]
%]

When the display exceeds 22 characters, it scrolls at the rate determined by the current HP-71 delay
setting. After the scrolling is complete, you can view any portion of the display using the left and right
cursor keys.

Displaying the alpha register. The & . function changes the display mode to display the alpha reg-
ister and the X-register, separated by vertical bar, after each HP-41 command sequence.

* Like the HP-41, the HP-71 can assign any function to a key for single keystroke operation. For example, the character sequence
ZIH can be assigned to a key. The EEv=41 file, discussed on pages 28 through 30, contains a number of assignments.

24 HP-41 Operation in Detail

Displaying the X-register only. The function =ML % restores the standard X-register display mode.

Replacing the 2, #, and | Characters

The HP-71 keyboard lacks the HP-41 characters 2, #, and . Although all three characters are in the
HP-71 character set, there are no key sequences that produce the characters unless you make special key
assignments. Rather than requiring you to dedicate keys for this purpose, the HP-41 Translator Pac re-
names all of the HP-41 functions containing these characters:

Table 2-3. Replacements for = and #

Emulator function | HP-41 function Meaning

%+ z+ Summation plus

- Z— Summation -

(I CLZ Clear statistics registers

SREG ZREG Select statistics registers

SREGT ZREG? Identify statistics registers

HEYT X#Y? x not equal to y?

AHaT X#0? x not equal to 0?

HEMHT X#NN? x not equal to contents of register nn?

Also, the HP-71 symbol : is used in place of the HP-41 append symbol, |, in alpha entry program lines.

Entering Numbers

Number entry differs significantly between the HP-41 and the HP-41 emulator. When you press the first
number key on the HP-41, you initiate a special number entry sequence. This entry sequence includes the
_ prompt to indicate the next digit position, automatic digit separators (, or .), and the ability to change
the sign of the number at any time (before you’ve pressed [EEX]) by pressing [CHS]. starts exponent
entry; you can change the sign of the exponent any time during exponent entry with [CHS].

The HP-41 emulator requires you to enter numbers by typing them exactly as they might be displayed,
terminating entry with (END_LINE]. There is no key; to enter a negative number, you must precede it
with a leading minus sign or execute “HZ after entering the number. You cannot use spaces or other digit
separators within a number.

To add an exponent to a number after typing the mantissa (with as many digits as you wish—the HP-71
will keep a maximum of 12), type the letter E, followed by — or an optional +, then up to three exponent
digits. The exponent you enter must fall in the range —499 through +499. All numbers must have a
mantissa. For example, 105 must be entered as 1EZ.

HP-41 Operation in Detalil 25

Examples:

Display (assuming FIX 4)

(No digit separators allowed)

(Mantissa missing)

Multiple Entries

The HP-41 emulator accepts any sequence of functions and numbers keyed in together, separated by
spaces and terminated by a final (END LINE]. For example, suppose you wish to evaluate the expression:

SIN <1.234 X 2>
COS(31.9)

On the HP-41, you would press the following keys:

HP-41 Keystrokes Display Meaning

2 Number entry
31.9 COS of 31.9°
(£] 2/.8490

1.234 2.3558 x 1.234
SIN SIN of 2.9070°

On the HP-41 emulator, you can choose to perform the arithmetic operations one at a time, or all at once.
The following keystrokes allow you to see each intermediate step in the calculation:

HP-41 Emulator Keystrokes Display Meaning
= Number entry
Z1.% (END _LINE] Number entry
5 COS of 31.9°
2.0000/.8490

*

Number entry
2.3558 x 1.2340
SIN of 2.9070°

26 HP-41 Operation in Detail

If you are interested only in the final result, you can key in the entire sequence on one line, using spaces
to separate entries.

2 Z1.% Co0% o~ 1,224 % SIH
When you press (END LINE], the final result 0.0507 is displayed.

Each sequence can be up to 96 characters long. Each entry in the sequence is processed from left to right.
When the sequence is complete, the final result is displayed. The entire sequence is also stored in the HP-
71 command stack, where it can be edited and re-executed.

Note: To enter the command stack, press (+] or (¥]. You do not need to press (g](CMDS] first. If you
have assigned the arrow keys to other functions, you will have to disable USER mode or use
(9J(1_UsSER] to enter the command stack.

Evaluating Input

The emulator breaks up an input sequence into separate entries, delimited by spaces. The emulator then
analyzes each entry, returning to step 1 each time an entry is successfully evaluated:

1. First, it tries to find the entry in the HP-41 and FORTH function lists. If an entry is found, the
function is executed.

2. If an entry is not found in the HP-41 or FORTH function lists, it is sent to the BASIC environment
for possible evaluation as a number or numeric expression. If the entry is a BASIC numeric ex-
pression, it is evaluated and entered into the X-register, lifting the RPN stack.

3. If the input is not a valid BASIC expression, the BASIC error message ERF :lzta Tups is dis-
played, and entry analysis ceases.

When an error occurs, any pending functions or numbers remaining in the input sequence are lost.

Emulator Stack Lift

The most important difference between the HP-41 emulator and the original HP-41 is the absence of
stack lift disable in the emulator during keyboard entry. (Stack lift disable is implemented while programs
are running.) This absence does not effect the calculation capabilities of the emulator, but it does repre-
sent a significant change for the experienced RPN calculator user.

The HP-41 and other RPN calculators do not have a special key used to terminate number entry. When
you key a number into the X-register, the digit entry prompt _ remains in the display until you press a
non-numeric key. Typically, this non-numeric key is an arithmetic operator (for example, (+]), a function
key which operates on the new number in X (for example, [SIN], (/x]), or the key. The
key is used to separate consecutive numbers that you enter into the RPN stack. It has three purposes—it
terminates number entry, copies the number into the Y-register, and disables stack lift. With stack lift
disabled, the next number you enter overwrites the X-register without lifting the stack.

HP-41 Operation in Detail 27

The HP-41 emulator always has stack lift enabled. The stack is lifted before new data is entered into the
X-register by digit entry or by a function (for example, R, TIME, FI). Digit entry is always terminated
by either [SPC]) or [END LINE]. You use when you wish to key in additional numbers or functions as a
multiple entry. Neither [SPC] nor (END _LINE] copies the contents of the X-register into the Y-register; each
successive number always raises the stack. To copy the contents of the X-register into the Y-register, use
the FCL ¥ or EMTER™ function.

Here are a few simple examples that illustrate the two methods of number entry:

HP-41 Keystrokes HP-41 Emulator Input Sequence Result

1 2 12+

3 (ENTER#] 5 (ENTER#*] 2 [+](/] IE 2o+ o

30 (SIN] 2 (+](ENTER* J[+] I8 SIM 2 o+ EHTER™ + 5L ARG

The other HP-41 functions that disable stack lift, [CLx], [(£+], and (-], are similarly altered in the emu-
lator. On the HP-71, L replaces the contents of the X-register with zero, but does not disable stack lift.
%+ and - also perform identically to their HP-41 counterparts except for the stack lift disable.

The following table summarizes replacements for [ENTER+] and [CLX]:

Table 2-4. Replacements for [ENTER+] and [CLX]

HP-41 Key HP-41 Emulator Function
e To separate two numbers, use [SPC] or [END LINE].

e To copy the X-register into the Y-register, use EHTEFE"* or R{L

CLX e To change the number in the X-register, use F:[iH, then key in the new number.
e To enter 0 into the X-register, use 0 or L .

* Be sure to include the final character when you spell out EHTEF ™, since the * character differentiates the function from
the FORTH HP-IL word EHTEF.

The absence of stack lift disable is important only for HP-41 emulator keyboard
calculations. The stack lift disabling functions behave in emulator programs exactly as they do on the
HP-41. When you write HP-41 programs on the HP-71, or transfer programs from the HP-41 to the
HP-71, the Pac’s translator automatically provides appropriate stack lift enable or disable within the
translated program. Therefore, you can run HP-41 programs exactly as they are written on the HP-41.

28 HP-41 Operation in Detail

Two-Part Functions

Certain HP-41 functions require you to specify a parameter—a number following the function name that
specifies a register number, a flag number, a tone number, or a number of display digits. To execute any of
these functions, type the function exactly as it would be displayed in an HP-41 program. That is, you type
the name of the function, a space, and the parameter number or letter. You can press to exe-
cute the function immediately, or you can type another space and continue with a series of commands or
numbers. Here are some examples:

HP-41 Keystrokes HP-41 Emulator Input Sequence
(s10] 25 ZTO 25 (END_LINE]

(XEQ][ALPHA] FIX [(ALPHA] 5 FIx 5

(REL)(J(L] RCL L

xXB 98 %< 22 (END_LINE]*

(XEQ][ALPHA] FIX [(ALPHA]I 20 FIs IHD z8 or

FIs -Z21 (negative parameter, see dis-

cussion of indirect addressing, below)

(ReLJCI(X] ROL IMO #

There are several differences between the HP-41 keystrokes and the HP-41 emulator input sequences:
e There is no need to type a leading zero when a numeric parameter is a single digit.
o On the HP-41 emulator, you are not limited to register numbers in the range 0 through 99.
e You must be certain to type a space between the function name and its parameter.

o Indirect addressing can be specified by typing IHLC before the parameter. If the parameter is a num-
ber, indirect addressing can also be specified by using a negative parameter as follows:

parameter = — (register number + 1)
For example, =70 -1 1is equivalent to =72 IMDO &, and “IEWK -4 is equivalent to

VIEW IHD Z.

In either the direct or indirect cases, you must type the entire function in a single line of input; you
cannot press between parts of the function. If you type a function name (or the name plus
IHDO) without a numeric parameter and press [END LINE], the emulator ignores the input.

Simulating HP-41 Keystrokes With the USER Keyboard

The HP-41 emulator can simulate HP-41 keystrokes using HP-71 key assignments provided by a built-in
key file named EEvZ41. KEY¥Z41 contains key assignments that enable the HP-71 keyboard to emulate
most of the HP-41 keyboard.

* Spacing here is critical. & <> 23 exchanges the contents of the X-register with the contents of Rgg. ¢
a BASIC boolean expression, returning 0 if variable < has been assigned the value 98, 1 otherwise.

HP-41 Operation in Detail

Note: To illustrate how key definitions emulate the HP-41, try redefining the key to work like its
HP-41 counterpart. From the BASIC environment (type Ei#& I if the HP-41 emulator is
active), type:

" |END_LINE .

Be sure to include the space in front of the second -+ in the expression.

Return to the HP-41 environment by typing HF ~+< 1 (END LINE], and press to activate user
mode. Now type:

Using the HP-71 &

EEs

= [END_LINE

When you press [+], you briefly see =

+ in the display before the system displays the answer,

'/ statement, you can assign any HP-41 function or input sequence to any HP-71

key. If you use an immediate-execute assignment as in the preceding example, you should include a
leading space in your key definition so that you don’t have to type a space before pressing the as-
signed key.

To activate the HEYZ41 assignments, type HEYZ41,

R

29

This HP-41 emulator function merges the
KEYZ41 file included in the HP-41 Translator Pac with any existing keys file.

To activate the user keyboard, press (fJ[USER]. The emulator is now in USER mode. Table 2-5 lists the
key assignments made by ¥ E% %41 that become active in USER mode.

Table 2-5. HP-41 Emulator User Key Assignments
HP-41 HP-71 HP-41 HP-71 HP-41 HP-71 HP-41 HP-71
Key Key Key Key Key Key Key Key
(] XEQ RTN (HJ©) 1/x
(alpha)
(numeric)
(*) GTO (1R) XsY (&
(alpha)
(numeric)
(=) (=) SF Fs?
CF FC? 5N
(=) U (1) CO8”
(simple
minus)
(+J (] (4] TAN
G MEAN (=]
Rt EEY SDEV (1) (1)(e) s
E1K2
107 (0]

30 HP-41 Operation in Detalil

The overlay provided with the HP-41 Translator Pac labels the USER mode key assignments. The key
assignments are color-coded according to the following conventions:

e To access functions printed in grey, press the unshifted key below the label.
e To access functions printed in yellow, press (f]-shifted key below the label.
e To access functions printed in blue, press the [g]-shifted key above the label.
e Red labels (BACK and APPEND) indicate these assignments are active only in ALPHA mode. To
access these functions, press the unshifted key below the label.
The following general rules apply to the USER mode keyboard:

e The arithmetic operators keys [+], (=], (], and [/] are assigned as immediate-execute keys.

e Since the [=] key is redefined as an immediate-execute key, it cannot be used to enter negative num-
bers. Therefore, the [,] key is redefined as a simple minus sign. To enter a negative number, type the
simple minus before typing the number.

e The ALPHA mode key assignments are part of the emulator itself. They are always active in the
emulator ALPHA mode, regardless of whether &% %< 1 is the current keys file. USER mode is dis-
abled when you enter ALPHA mode and reenabled when you exit ALPHA mode.

e In addition to the four ALPHA mode assignments shown on the overlay (BACK, APPEND, CLA, and
ASHF), the [¢] key (labeled RCL) executes ARCL, and the [+] key (labeled STO) executes ASTO.

e The XEQ"” and GTO" ” assignments actually enter “% and TG ") with the insert cursor point-
ing between the quotes. To execute or go to an alpha label, type the name of the label and press

(END LINE]. For example, to execute alpha label STEST, press = I (END_LINE].

The following keystrokes evaluate the numeric expression:

SIHCL 23432 -0050-31, 5903
HP-41 Emulator Keystrokes Display
z T T T
(JZt. =z (cos) (type (f)(5] for [COS)) BLEd9a
1,224 [+ S R
SIN (type (f](4] for [SIN]) g8, a5arv

Evaluating BASIC Numeric Expressions

The HP-41 emulator takes advantage of the HP-71 BASIC operating system to provide a feature that has
no counterpart in the HP-41: you can evaluate algebraic expressions directly without translating the ex-
pression to RPN keystrokes. For example, consider the expression ZIMH {1 . Z2Z4#Z -COZ0-31 .35
that we evaluated previously in RPN format. You can type in this expression exactly as it is written in
BASIC algebraic format, then press [ENDLINE]. The emulator evaluates the expression and enters the re-
sult into the X-register. Any legal BASIC expression is acceptable, as long as it contains no spaces. The
expression can contain BASIC numeric variables, and any numeric function recognized by the HP-71,
language extension files, or plug-in modules.

HP-41 Operation in Detail 31

Examples: If the USER annunciator is on, press to exit USER mode before continuing.

HP-41 Emulator Keystrokes Display

1 +Z+3Z+4 (END LINE] 18,8868

Ao IMOE B,agan
FI:3 1. BEEA (true)

[ux]

sqrilogifactil8ss0

Uppercase and lowercase letters can be used interchangeably in BASIC functions.

Using BASIC Variables

The HP-41 emulator can assign values to BASIC numeric variables and recall BASIC variables into the
X-register. If two or more variables are recalled at the same time, the values are lifted into the other stack
registers.

Recalling BASIC Variables. To recall the value of a BASIC variable into the X-register, type the name
of the variable. For example, typing:

A
recalls the value of the BASIC variable # to the X-register. Typing:
ROECDOL

recalls the value of the BASIC variable i to the T-register, & to the Z-register, = to the Y-register, and i i
to the X-register.

Assigning Values to BASIC Variables. To store the contents of the X-register into a BASIC variable,
type the name of the variable preceded by an exclamation point. For example:

45,5783 G (END LINE

places 45.6789 in the X-register and then assigns that value to variable =. The assignment can be done in
one step; for example:

1234 103

assigns the value 1234 to variable =. Two or more assignments can be made on the same line. Thus:
1234 103 4567 IR

assigns the value 1234 to %, and 4567 to F.

You can use additional features of the HP-71 BASIC environment by using the FORTH words ERZ I
and EAZICF. Refer to Appendix D.

32 HP-41 Operation in Detail

Alpha Mode

The HP-41 emulator provides a 24-character alpha register and the full set of HP-41 alpha functions.
Keyboard operations with the alpha register are virtually identical to those on the HP-41, so you only
need to learn which HP-71 keys match the HP-41 alpha keyboard.

Entering and Leaving Alpha Mode.. The emulator uses the # ([9])(4]) symbol to activate ALPHA
mode. (The # symbol is used in BASIC to identify string variables and functions, hence its choice for the
HP-41 emulator key). There are three ways to enter ALPHA mode:

e Type #
o If LEYZ41 is the active keys file, press (labeled AON on the overlay).

e Type i1t [(END LINE].

The AC annuciator indicates that the system is in ALPHA mode. The current contents of the alpha
register is displayed. If the register is empty, the display is blank.

To exit ALPHA mode at any time, press (END LINE].

The Alpha Keyboard. When ALPHA mode is active, the HP-71 alphanumeric keys act to append the
appropriate character to the current alpha register string. The cursor keys assume the roles of the special
HP-41 alpha keys. The correspondence is shown in table 2-6.

Table 2-6. Special Emulator Alpha Keys

HP-71 Key | HP-41 Key Function

append Begin append; turn on the _ prompt.

(<] (<] Delete the last character (or clear alpha register if append prompt is absent).
(9)C«) [[Clear alpha register (CLA).

EIEY none Perform ASHF without exiting alpha mode.

ARCL Recall alpha data.

ASTO Store alpha data.

RUN R/S Run program.

[ENDLINE] [ALPHA] Exit alpha mode to execution mode.

Any key not listed in the table just adds a character to the alpha string. ([ATTN], for example, displays the
character T; [9)(*] displays ; (9)(¥] displays). Characters associated with the special alpha keys listed
in the Table 2-6 are not available. All other HP-71 characters except control characters are available in
ALPHA mode, including symbols and lowercase letters. The keys associated with special characters are
listed on page 42 of the HP-71 Quick Reference Guide. Since the append key [+] is only useful when the
append prompt is absent, it generates the v character when the prompt is already present.

HP-41 Operation in Detail 33

If the append prompt _ is present, a new character is appended to the current string, and the [«] key
deletes the last character in the register.

If the append prompt is absent, pressing a character key replaces the current string with a new character
and turns on the prompt. The key turns on the append prompt without clearing the alpha register, and
the key clears the alpha register.

Certain HP-41 display characters are unique to that calculator, but are replaced on the HP-71 by ASCII
characters with the same character code but different appearance. For example, character codes 2, 3, 7
through 11, 14 through 28, 30, 31, and 102 through 125 are displayed as the “starburst” character of the
HP-41, but appear as distinct characters on the HP-71. Character code 0, which is displayed as an
overline on the HP-41, is invisible on the HP-71. In general, the numeric data associated with alpha
characters (obtained with AT, FIISH, etc.) are the same on both calculators.*

Storing and Retrieving Alpha Data. A= T and AECL can be executed from ALPHA mode in much
the same way as two-part functions are executed in execute mode. When you press in ALPHA mode,
A= T appears in the display. You must type in a register number or letter, which can be preceded by
IHDO, and then press [END LINE]. The normal alpha register display is then restored with the append
prompt off.

ARCL ([(¢])) appends the contents of the specified register to the existing contents of the alpha register. At
the end of the AECL operation, the append prompt is on.

You can enter characters into the alpha register without activating ALPHA mode. In execute mode, just
type the desired alpha string surrounded by quotes. If the first character after the leading quote mark is
~ or r, the rest of the string is appended to the current alpha register contents. For example,

"HECDO" " XEFGH"

puts the string AECDEFGH into the alpha register.

Note: You cannot have a space as the first character of a quoted string for keyboard alpha register
entry. A quote followed by a space is a FORTH function (refer to Section 5).

* When programs are transferred from the HP-41 to the HP-71 via HP-IL using FEAD4 1 (described in Section 3), character codes 10
(#), 13 (<), and 126 (Z) are automatically replaced by codes 0 (null character), 124 (1), and 28 (Z), respectively.

34 HP-41 Operation in Detail

Program Execution

Running Programs

There are three ways to run a program:
e Press (RUN].
e Type FLIH [END LINE].
o Type =EX label number or #E "alpha label" [ENDLINE].

In addition, you can use =T, EHD, or ETH to place the HP-41 program pointer at program labels or the
start of the program prior to execution. In ALPHA mode, you can begin program execution by pressing

the key.

The following table summarizes the implementation of HP-41 program execution functions on the HP-41
emulator.

Table 2-7. Program Execution on the HP-41 Emulator

HP-41 Emulator

HP-41 Keystrokes . Result

ystro Function and/or Key

R/S FLIH or Begins program execution at the current program pointer

position.

XEQ #E label number Begins program execution at the specified numeric label.
(xEQ]| register HEG IHD register Begins program execution at the label specified in a register.
number number
label | “EG "alpha label" Begins program execution at the specified alpha label.

GTO =T0O label number Moves the program pointer to the specified numeric label.
(GTO]JI register TO IMD register | Moves the program pointer to the label specified in the
number number register.
label | GTi"alpha label" Moves the program pointer to the specified alpha label.

RTN ETH Moves the program pointer to the start of the current

program.

R/S Halts the program. Use to continue execution.

Notice that alpha =T and “ET follow the syntax of HP-41 program listings. You can think of the
quotation marks surrounding the function name as representing the HP-41 key. To execute a

program on the HP-41 at LBL“BETA”, you press BETA [ALPHA]. In the emulator, you type
HEG"BETHA", substituting quotes for the key.

If you execute F It when there are no HP-41 programs present in HP-41 emulator memory, or after you
have cleared a program using L F, the HP-71 displays the error message Mo proagr am selected.
After clearing a program, you must use an alpha #E&, GTO, or CAT to position the program pointer
within an existing program before you can use FIIH.

HP-41 Operation in Detail 35

HP-41 programs loaded into HP-41 emulator memory are actually compiled FORTH words. In this form,
there are no program lines as such, so that you cannot move the program pointer to a specific HP-41
program line number, nor can you single-step through a program.

Pausing a Program From the Keyboard

Pressing while an emulator program is running halts program execution the next time one of the
following functions is encountered:

AVIEW PREOMFT STOF
EHD FzE WIEHM
GOTO ETH AE

The function is not executed before the program halts. Pressing resumes execution at that function.

If a program contains none of these functions other than a final EHL, the program cannot be halted until
execution is completed.

The IHIT 1 and IHIT Z commands also stop program execution. However, the data in the HP-41
emulator registers may be incorrect. Pressing after an IMIT 1 or IMIT & resumes program
execution, but not necessarily at the place where the program was halted.

Program Halts and Pauses

There are five HP-41 functions included in the emulator that halt or pause program execution, and permit
you to resume execution at your option. ZTOF, FEOMFT, AYIEW and W IEl operate exactly as they do
on the HP-41 (4 I1EH and A% I EN halt execution only if Flag 21 is set and Flag 55 is clear). However, FZE
differs from its HP-41 counterpart in one important respect.

The HP-41 FZE function suspends execution for one second, at which time you can enter numeric or
alpha data. Each press of an alpha key or numeric key extends the pause for one second. If you press any
other key, the program halts. The HP-41 emulator F=E function also suspends execution for one second,
but any key pressed will halt program execution, after which you must use FLil to resume.

Program Errors

The HP-41 emulator responds to errors using a combination of HP-41 error detection and HP-71 error
handling and reporting. In general, an error causes the HP-71 to beep and display an error message. If
flag 25 is clear, an error halts the program and resets the program pointer to the beginning of the current
program. If flag 25 is set, the program function causing the error is skipped. Program execution continues
(with no error message) and flag 25 is cleared.

The HP-41 emulator can generate six HP-41 error messages:

Alpha Error

Data Error
Home=xiztent

Mo Frimter
Insutfficient Memory
Mot Frogrammable

These messages are always prefixed by FTH EFEFE:, indicating that the error originated within the
FORTH system.

36 HP-41 Operation in Detail

In addition to these standard HP-41 error messages, some emulator functions can also generate more
specific and informative HP-71 BASIC errors. For example, executing L0 with —1 in the X-register
returns the error:

ERRE:LOGOneqgl

instead of the [izt= Error message used by the HP-41 emulator. (BASIC system error messages are
prefixed by EFF :.) Refer to pages 378 through 381 of the HP-71 Reference Manual for a complete list of
BASIC errors.

All emulator errors, except those caused by non-programmable keyboard operations, update HP-71 values
returned by the BASIC functions EFFH and EFFEF#. The keyboard operations that do not affect EREFH
and EREM#$ are:

e Executing A= T or AECL in ALPHA mode to a non-existent register, returning the
Homexisztent errorn

e Attempting to execute FiiF when the program pointer is not initialized, returning the
Mo Frogram Seslectsd error If this error is generated in ALPHA mode, the emulator leaves
ALPHA mode.

e Executing ZHT when emulator memory is empty, returning the Mo 41 Froar ams error.

Clearing Programs

The ZLF function removes an HP-41 program from emulator memory. The syntax is:
CLF"alpha label"

where the alpha label is contained in the program you wish to delete. Note, however, that the HP-41
emulator L F function works more like the HP-41 function PCLPS than the non-programmable CLP; that
is, it clears not only the specified program, but also all programs that were loaded after the named pro-
gram.*

When you execute L F, the system displays FHZE IHZE momentarily to remind you that the memory
used by the cleared programs is being restored for general use.

Cataloging Programs

The HP-41 emulator function ©HT works similarly to the HP-41 CAT 1 function by listing the alpha
labels contained in programs in emulator memory. There are two major differences:

e THAT does not list program EHis.
e AT lists the alpha labels in last-to-first order, the opposite of the HP-41 CAT 1 function.
AT displays each label for approximately 1 second. Pressing any key except while a label is show-

ing moves the program pointer to the label in program memory and then terminates the catalog. Pressing
terminates the catalog without moving the program pointer.

If there are no HP-41 programs in emulator memory, ©AT displays Ho 41 Froar ams.,

* Any FORTH words compiled after the named HP-41 program will also be cleared from the FORTH dictionary by CLF.

Section 3

Writing and Translating HP-41 Programs

Introduction

This section describes:

e How to write HP-41 user-language programs using the HP-71 text editor, and how to load those
programs into the HP-41 emulator memory.

e The procedure for transferring an HP-41 program directly (via HP-IL, requiring HP-IL modules for
both calculators) from HP-41 memory to the HP-71 file system, and then to emulator memory.

e How you can enhance the HP-41 user-language by creating your own new HP-41 functions.

The Translation Process

Converting an HP-41 program from its original HP-41 user-language form to a form that can be run by
the HP-41 emulator is a 3-step process. Although the programs FERLO41 and TEAMZ4 1 provided in the
HP-41 Translator Pac can carry out the entire process automatically, you should understand the purpose
and results of each step in the process so that you can make optimum use of HP-71 memory and mass
storage.

Step 1, performed in the BASIC environment, is creating an HP-41 user-language program in an HP-71
text file. You can either use the HP-71 text editor included in the pac to write the program from scratch
or copy it from an HP-41 program listing, or you can use FEAL41 to transfer a program directly from
HP-41 memory to an HP-71 text file, via HP-IL. Once the program is in a file, you can save it on a mass
storage device or on magnetic cards. At this stage, the program text looks very similar to an HP-41
printed program listing.

Step 2 is translating the contents of the HP-41 user-language text file into a form that is suitable for
loading into the HP-41 emulator memory, using the program TRFAMHS4 1. In this intermediate form, the
program is still contained in a text file that you can view or list using the text editor. However, this
version of the program contains automatic memory management instructions added by TEFAMHZ4 1, plus
modifications or replacements of certain HP-41 program lines. You should not try to edit the program in
an intermediate file. But you can store intermediate files on mass storage or magnetic tape, so that you
can eliminate the translation step the next time you want to load the program into the emulator. Step 2 is
also performed in the BASIC environment.

Step 3 can be performed from the BASIC environment, as part of TEAHZ41, or from the HP-41
environment, using the emulator function L ZAD. This last step loads the intermediate program into emu-
lator memory, where it can be run using the emulator functions #Ei or FlIH. The emulator does not
contain a program mode like that of the HP-41, so you cannot edit or list the program in its final form.

37

38 Writing and Translating HP-41 Programs

HP-41
Program in Program
HP-41 Memory Listing
HP-71 BASIC
F A _ | Program-Text
i — » File
Mass Storage
(program-text TEAMZ41
file)
TRAHZ41 | Intermediate COpY Mass
Text File in the = > Storage
HP-71 (Intermediate file)
TEAMS 41
HP-41 Emulator or LOAD
Environment [
HP-41 Emulator | L OHD
Program
Figure 3-1. The Translation Process

Writing HP-41 Programs

You can write HP-41 programs directly on the HP-71 using the HP-71 Text Editor Program (editor, for
short) included in the HP-41 Translator Pac. Using the editor, you can create new programs, much as you
would on the HP-41, or you can copy programs directly from HP-41 program listings, matching the list-

ings character-for-character, line-for-line.

The following simple HP-41 program adds 1 plus 2, and then uses the alpha register to display a labeled

result. The program is shown as it would be output in an HP-41 printer listing.

01 ¢/ BL”THREE”
02 1

03 ENTERt

04 2

05 +

06 “RESULT="
07 FIX 2

08 ARCL X

09 AVIEW

10 END

Writing and Translating HP-41 Programs 39

The following procedure creates this program on the HP-71:

1.
2.

Enter the BASIC environment.

It is recommended that you FiIFGE or FEHAME the current KE% file before using the editor to
remove all previous key assignments.

. Enter the editor by typing:

EOTEXT new file name

using any legal HP-71 file name. This creates an HP-71 text file and runs the editor program. For
example, to enter the editor for the purpose of creating a file containing program THFEE, above, type:

EOTEXT THREE
After a brief pause while the editor initializes, it displays:
Ecd, Cmd:

The Cmicd: prompt indicates that the editor is awaiting a command. E =¥ (end-of-file) indicates that
the file is empty.

. Type T to put the editor into text entry mode. In text mode, the display always shows the

current line in the file. Since the file is empty, the display is now blank.

. Key in the program. For example, the previous program is entered by typing:

LEL"THREE"
1 (END LINE]

EHTER™

+ (END_LINE]
PRESULT="

FIx = [END LINE)
ARCL
AUIEN

EHD [END LINE)

After each [END LINE], the editor stores the line you have just typed in, and moves to the next (in this
case, blank) line in the file.

Press to exit text entry mode and return the editor to command mode. The editor once again
displays the E=f . Cmad: prompt.

Type E [END LINE], to terminate the editing session. The HP-71 displays:
Dore file name

At this point, you can store the file on magnetic cards or a mass storage device, or use the program
TEAMHZ41 to translate the program into its intermediate form.

The editor provides additional features, including inserting and deleting lines, search and replace, printer
and display listings. These features are described in Section 4.

40 Writing and Translating HP-41 Programs

The translator program TFEFHZ4 1 requires that each line of the text file contains only one HP-41 pro-
gram line, and that each HP-41 program line be entirely contained on one line of the text file. As you are
entering the program, therefore, always follow the rule that one text line equals one program line. In
general, you should try to make your text file program listing look exactly like an HP-41 printer listing of
the same program (assuming that the printer was listing in manual mode with flags 15 and 16 clear). Do
not type in program line numbers, since the editor keeps track of line numbers for you. (Also, do not type
in the ¢ character that precedes labels in printer listings on the HP 82143A and HP 82162A printers.)
Some other points to keep in mind:

o HP-41 text strings in text lines or following = Tii and =E i should be enclosed in double quotes (¥), as

-1 and the quoted string are

they are in HP-41 printer listings. One or more spaces between & T or »
optional.

Examples:

e The X, #, and + characters, which are used frequently in HP-41 programs, are not available on the
HP-71 keyboard. You can include these characters in your programs either by assigning HP-71 keys
to these characters (% is CHR$(28), = is CHR$(29), and + is CHR$(127)), or by substituting standard
keyboard characters:

e In an HP-41 text line, you can substitute the character :

for the symbol immediately following the
first quotes. For example, “I-add this” becomes * : i

e HP-41 emulator programs must contain at least one global alpha label so that you can access the
program in the HP-41 environment. If you do not include an alpha label, TFF
adds a label to the beginning of the translated program. The label uses the name of the intermediate
file for its alpha characters.

.4 1 automatically

e Parameters for two-part functions must fall in the ranges:

Registers: 0 through 9999

Numeric local labels: 0 through 9999

Local alpha labels: A through J; a through e
Display formats: 0 through 11

Tones: 0 through 9

Flags (set/clear): 0 through 29

Flags (test): 0 through 55

o In addition to normal HP-41 number entry lines, certain forms carried over from the HP-67/97 are
acceptable:

Writing and Translating HP-41 Programs 11

Table 3-1. Additional Numeric Entry Lines

HP-67/97 HP-41 _ Examples
Form Emulator Equivalent
0
E 1 E
Emmm 1Emmm E1, E234
E+mmm | 1TE+mmm E+4, E+286
E—mmm | 1E—mmm E—2, E—456

e You can include comments in your file by enclosing the comments in parentheses. A comment can
follow the HP-41 function, or it can be placed on a separate text line.

Example: The following program illustrates entering an HP-41 program, with comments, into the
editor.

LBl "EinY

1. 885 tlLoop control numbepr

Eles B (Shotl ohly ohe digitd

LBL 1 T of loop:

WIEW X izplag current number 3
ESE for one second

136 B (lncrement

LTO 1 tloep if

e You do not need an EHII function at the end of your user language program file written on the editor.
If you do include one, (programs transferred from the HP-41 will always have a final EFHII), it must be
the last line of the file.

Using TRANS41

TEAMZ41 is a BASIC language program that creates a translated intermediate file from a text file
containing an HP-41 user language program (program-text file). The intermediate file is in a form suitable
for loading into the HP-41 environment. The translation is entirely automatic; you need only specify the
names of the program-text file and the intermediate file.

The instructions below describe each step of the translation process. Examples use the program-text file
THREEE created in the previous section.
1. From the BASIC environment, type:
REUM TEAMS41
The PRGM annunciator turns on, and the HP-71 prompts you for a file name:

HF-41 Frogram File?

42

2.

Writing and Translating HP-41 Programs

Type the name of the HP-41 program-text file to be translated. The file name can be any legal HP-71
file name, and can include extensions for a port number or a mass storage device. When you have

typed in the name, press (END LINE].
Example: Type THREEE (END _LINE].
In response to the prompt:
Imtermediate File?

type the name of the intermediate file that will contain the translated program. This file name can
have the extensions : MAIH or : FIOET, but mass storage files are not allowed. (If you specify a mass
storage file, the program displays FAM orilw and prompts you again). Press to terminate
the file name entry.

Example: Type THREEE I

TEAMHEZ41 creates the intermediate file by first duplicating the program-text file. (If the program-text
file is stored on a mass storage device, it is copied into RAM automatically.) If you specify the same
name (including extensions) for the intermediate file as for the program-text file, the program-text
file is overwritten (with no warning). If the file name already exists but is not the name of the pro-
gram-text file, the system beeps and displays:

File exizt=s, Furas?

Pressing (Y] purges the existing file. To save the existing file, press any other key; the system prompts
for another file name.

When the intermediate file has been created, TFEFHMZ4 1 begins the translation. During the transla-
tion, the system displays:

Tramszlating. .. nnn

where nnn is the line number in the program-text file currently being translated. The translation is
performed from the last line to the first. In the example, nnn starts at 8 and counts down to zero.

If you specified the name of a previously translated intermediate file in step 2, TRAMZ 4 1 recognizes
that the file does not need to be translated, and the HP-71 displays:

filename zlready translated
for one second, followed by:

Respond to this prompt as described in step 4.

. When the translation is complete, the HP-71 sounds a tone and displays:

where mmm is the number of bytes of HP-71 memory required to load the translated program into the
HP-41 environment (86 bytes in the example). L= a7 asks you whether you want to load the pro-
gram into the emulator or to exit TEAHMHZ41. Pressing any key except ends execution of
TEAMZ41 and displays D'ori=. You can then save the intermediate file on mass storage or magnetic
cards for use later.

. If you press in step #4, the translated program is loaded into emulator memory. (If the HP-41

environment has not been initialized, you will be prompted for data register memory size, as described
in Section 2.) When the actual loading begins, the system displays:

Lozding. . . alpha labels

Writing and Translating HP-41 Programs 43

As the program is loaded, any alpha labels present in the original program-text file are displayed. For
example, loading the example program displays:

Loading. . . THREEE

If the program contains no global label, it receives a global label identical to the name of the inter-
mediate file.

When loading is complete, the HP-71 sounds the familiar HP-41 4-tone beep, and displays Diziie |

6. If you enter the HP-41 environment after loading a program, the program pointer is positioned at the
beginning of the newly loaded program. If the program requires number entry, use the emulator to
enter the data. (Appendix F shows several examples of number entry.) The program can then be run

by typing:
FUH

Example: If you have followed along with the example program THEEE, type:

HP 41

The program THEEE is executed, displaying:

RESULT=3, 80

Halting Translation

During the translation countdown (the system is displaying T+ arzlatira. . . nnn), translation can be
stopped by pressing (ATTN]. The system displays:

Tramslating., .. Hal1?

If you respond to the prompt by pressing any key but (Y], translation resumes. If you press (Y], transla-
tion halts. The partially-translated intermediate file remains in memory. If, in step 2 of translation, you
specified the same name for the intermediate file as for the program-text file, you can restore the file to its
original contents using the editor. If you have another copy of the file, however, it is easier to purge the
partially translated file.

TRANSA41 Errors

If any errors occur during execution of TRFMHZ4 1, the HP-71 beeps and displays an appropriate BASIC
or FORTH error message. For example:

e If there is not enough memory present to perform the loading operation, the system displays:
Insufficient memnoryg
e If a line contains too many characters, the system displays:
Sirimg Owfl

with the relevant line number.

44 Writing and Translating HP-41 Programs

e If your program contains a function not included in the HP-41 emulator, or if you’ve misspelled a
function, the system displays:

ot recognilzed

with a program-text file line number.
Occasionally, you may see the warning message during loading:
Efile name ot urigue®

The warning indicates that the name of the intermediate file being loaded is identical to the name of a
previously loaded intermediate file. The message is a reminder that you may have two copies of the same
program in emulator memory.

If an error message is too long to fit in the display, it can be scrolled right and left using the cursor keys.

Loading Intermediate Programs In the HP-41 Environment

An intermediate (translated) program can be loaded into emulator memory from the HP-41 environment
using the LOAD function. The syntax for LOAD is:

LOAD file name

where file name is the name of an intermediate file. The file name can include a mass storage extension;
you can load a program directly from mass storage without first copying the intermediate file into HP-71
memory.

The LOAD function alters the contents of the stack registers if the program being loaded contains number
entry program lines.

The same errors can occur during execution of LIA[l as during the loading portion of TEAHZ41. In
addition, the message Ezd Irntermediate File can occur when attempting to load a file not cre-
ated by TEAMHZ41 if:

e The file does not exist or is not an HP-71 TEXT-type file.

e The file is not a proper intermediate file. (After L.{iF [determines that the file is a text file, it treats
the file as an ordinary FORTH source code file and attempts to execute each line in the file as if it
were typed in at the keyboard.)

* The message riot wurique is a standard FORTH warning message. Each HP-41 program compiled into emulator memory is
entered into the FORTH dictionary as a word named &file name.

Writing and Translating HP-41 Programs 45

Halting Program Loading

To halt loading of a progrm by TRFHE41 or LORD, press (ATIN]*. (The key is disabled at certain
times during loading, so you may have to press the key more than once.) When the loading operation has
been halted, the HP-71 beeps and displays:

Halted

]

The partially loaded program is cleared from emulator memory.

Transferring Programs from an HP-41 using READ41

The program FEFAL4 1, which is executed from the BASIC environment, transfers programs directly from
HP-41 memory to an HP-71 text file. Use of REA4 i requires an HP 82160A HP-IL Module for the HP-
41, and an HP 82401A HP-IL module for the HP-71. Refer to owner’s manuals for the two modules, if
necessary, for additional information.

1. To connect the HP-41 and the HP-71, install the HP-IL modules into the appropriate plug-in ports.
Then plug the cables attached to the HP-41 HP-IL module into the sockets of the HP-71 HP-IL
module. You can attach other HP-IL devices on the loop, but they must be controlled by the HP-41.

2. Place the HP-41 in manual I/O mode, using the MANIO function:
MANIO
3. Make the HP-71 the selected device:

n SELECT

where n is the HP-IL address of the HP-71, relative to the HP-41. If the HP-71 is the only device
connected to the HP-41, then n = 1.

4. Clear HP-41 flags 15 and 16 (CF 15 and CF 16) to place the HP-41 in manual printer mode. (The
HP-41 treats the HP-71 as if it were a printer device.)

5. Ready the HP-71 by typing:
RUH READS1

6. In response to the prompt:
HF-41 Frogram File?

respond by typing in the name of the program-text file that will contain the program transferred from
the HP-41. If a file by that name already exists, the HP-71 beeps and display:

File sxizts. Furages?

Pressing purges the existing file. To save the existing file, press any other key. The program will
prompt you for a new file name. When you have entered the file name, the system displays:

Feading HF-41. ..

to indicate that the HP-71 is now awaiting a transmission from the HP-41.

*IMIT 1 and IHIT 2 also halt loading, but do not leave emulator memory intact. If you have halted loading using IHIT 1 or
IHIT 2, you must reinitialize the emulator with Fur a=41.

46

7.

Writing and Translating HP-41 Programs

“Print” the HP-41 Program to the HP-71. On the HP-41, press:
[XEQ][ALPHA] PRP [ALPHA][ALPHA] label name

where /abel name is the name of any global alpha label in the HP-41 program. If you omit the /abel
name, the HP-41 sends the program currently containing the program pointer.

As the transfer takes place, the HP-71 displays each HP-41 program line as it is received from the
HP-41. If you are using an HP-41CX, or an HP-41C or CV with a HP 82182A Time Module, the time
and date are displayed on the HP-41.

When the program transfer from the HP-41 to the HP-71 is complete, the HP-71 beeps and prompts:
Tranzlzate?

If you press any key other than [Y], the HP-71 displays [iori= and execution of FEFI4 1 terminates.
If you press (Y], FEAL4 1 automatically runs TRFAHMHS4 1, entering that program at the point where
the Irmtermediate Fils? prompt is displayed. Continue at step 3 of the TRAMZ41 instruc-
tions on page 42.

READA41 Errors

Three types of errors can occur during a program transfer by FEFRL4 1:

e If a transfer halts due to a transmission interruption between the HP-41 and the HP-71, the line at

which transmission halted remains in the HP-71 display. Then, within a minute, the HP-41 displays:
Tranmsmii error
The interruption can be accidental, such as a power failure in one of the HP-IL devices or disconnec-

tion of one of the loop connectors. You can cause a deliberate interruption, by pressing the key
on the HP-71, or the key on the HP-41.

The message:
Bad HF-41 print mode

is caused by an incorrect printing mode on the HP-41. If you have forgotten to clear HP-41 flags 15
and 16, the program is transferred in a format impossible for TEFHMH% 4 1 to translate correctly. When
FEAD4E 1 detects that the transferred program is not in the required format, it stops the transmission,
beeps, generates the error, and purges the file containing the partially transferred program.

The HP-71 beeps and displays the message:
Imsutffyicient Memorwy

if it runs out of memory during the file transfer. The partially transferred program file is not purged,
since its contents may still be useful to you.

All three types of errors can leave the HP-IL loop in a indeterminate state, so that you will need to carry
out a few recovery steps to insure that a retransmission of the program will proceed properly:

1.
2.

3.

Wait until the HP-41 displays Tr arizmit erraor. Then, turn the HP-41 off.
If the HP-71 PRGM annunciator is still on, press the key twice. The HP-71 will display

HFIL EEE: HAbor ted,
Type FEZET HFIL on the HP-71.

Writing and Translating HP-41 Programs 47

4. Turn the HP-41 back on, and correct the error that caused the interruption:
e If the error was a bad HP-41 print mode, clear flags 15 and 16 on the HP-41.

o If the HP-41 displayed TEAHSZMIT ERECE and you did not press on the HP-71, there
was a loop failure. Check the HP-IL cables and the battery levels or AC power connections on all
the devices connected on the loop.

e If the error was Irizufficisnt Msmory, you will have to purge one or more files from HP-
71 memory to make room for the incoming file.

5. Start the program transfer again.

HP-71 Memory Usage

An HP-41 program translated and compiled into the HP-41 environment requires, on the average,
approximately 2.5 times as much memory in the HP-71 as its original form did in the HP-41. Although
the HP-71 memory is large enough to compensate for this increase in program size, the use of program-
text files and intermediate files by TRHMHZ4 1 makes it possible to have three separate versions of the
same program in HP-71 memory. This uses up memory rapidly.

If you have an HP-71 card reader, you can change procedures so that no more than two of these three
program forms are in HP-71 memory at the same time. If you have an HP-IL module and an HP-IL mass
storage device, only one form of a program needs to be in memory at any stage of the translation. Here are
some tips for occasions when memory space is limited:

e For the HP-71 Card Reader:
1. Copy the FTH4 1 EAH file to cards, then purge it.
2. Create your program file, and copy it to cards.
3. When you run TEfHZ4 1, use the same name for the intermediate file as for the program file.
4

. Copy FTH4 1EAHM back into memory, and use LIHD in the HP-41 environment to compile the
intermediate file into emulator memory.

e For HP-IL mass storage:
1. Copy the FTH4 1EAM file to mass storage, then purge it.
2. Create your program file, copy it to mass storage, and purge it from HP-71 memory.

3. When you run TEAHMHZ41, specify the program file with the appropriate mass storage file
specifier.

4. Copy the intermediate file to mass storage, without loading it.

5. Reload the FTH# 1 EFAHM file, and use LOALD in the HP-41 environment to load the intermediate
file directly from mass storage to emulator memory.

Creating New Functions

One of the major strengths of the FORTH language is that it can be extended. A programmer can easily
add new functions (called words in FORTH) to the language. In fact, there is no distinction between
programs and functions; the entire process of programming in FORTH consists of adding functions. The
HP-41 emulator, which is based on a FORTH language system, can also be extended. You can use
FORTH to add HP-41 functions that are missing from the emulator, or to create new functions of your
own.

48 Writing and Translating HP-41 Programs

Suppose, for example, that you are writing a program that recalls the system clock time and converts it to
seconds. On the HP-41, you would write a subroutine to perform the calculation:

LBL 01
TIME
HR
3600

*

RTN

On the HP-71, you can write the same subroutine, using the methods described previously in this section.
Or, you can use the FORTH system to write a new function to perform the entire calculation, which you
can then use in any program that you subsequently load into emulator memory.

The process for entering a new FORTH function into the emulator is:
1. Execute HF 41, if necessary, to enter the HP-41 environment.
2. Expand the FTH4 i EAH file to make room for the new function by typing:
number of nibbles #=1ZE

to make memory available for your new function (Two nibbles equal one byte.) You can add as many
nibbles as you need, within the limits of available memory. The formula for computing the number of
nibbles required by a function is:

20 + 2 x (1 4+ name length) + 5 x (number of functions in the definition)

where name length refers to the name of the new function. Usually it’s easier to expand the file by a
large amount than it is to try to determine the exact requirements in advance. After adding functions,
you can reclaim any unused space (step 4).

3. Type in the new function in the format:
: NAME function1 function2 function3 ... functionN :

where NAME is the name you choose for the new function, and function1, function2, etc., are the names
of existing HP-41 (or FORTH) functions, separated by spaces.

Example: A sample new function, which we might call =T I/E, has the following definition:

“TIME TIME HE Z&8@, % ;
The definition does not have to fit on a single line. You can press after entering any part of
the definition; the definition does not end until you type in the final ;.

You can make as many definitions as you like, depending on available memory. If you run out of
space in the FTH4 1A file, you will see the error message FTH ERF: dictiocrnarg full.
When that happens, you must execute = I ZE to expand F TH4 1 EFI. If there is not enough room in
HP-71 memory to expand the FTH4 1FFfM file as much as you specify, %I ZE returns the error
message Irnzufficiernt memord,

There are some restrictions that apply to adding new HP-41 functions using FORTH:

e Function names can be 1 through 31 characters long, and cannot contain spaces, quotes ("), or
question marks (7).

e Names should not match any existing HP-41 function names or FORTH words.

e Do not start new function names with E +, E—, or E followed by a number digit, or with I =z or
O=E.

Writing and Translating HP-41 Programs 49

e Only one-part (one byte on the HP-41) functions can be used in the definition of new functions.
You can’t use register functions, flags, tones, =TI, “EQ, etc., nor any function containing text.

o When the first function in a definition raises the (floating-point) stack (for example, TIHME,
ATOH, LAZT®), you must start the new function name with the character . Do not use as the
first character otherwise. A leading is used as a signal to the translator program so that it
knows how to handle stack lift disable situations.

4. After adding functions, you can reclaim any unused space by typing:

B == IZE (END LINE].

Section 4

The Editor

The HP-41 Pac enables you to create, modify, copy, list, and print text files. These files are suitable
source files for the FORTH system and the HP-41 emulator. This section describes the editor’s operation
in three parts:

e “Overview of the Editor” describes how to enter and exit the editor, the two types of editor com-
mands, and editor operations other than commands.

e “Editor Commands” describes the specific commands that act on the edit file.

e “Editor Files” describes files used in the editor’s operation.
Additional material related to the editor appears in the appendixes. Appendix B, “Error Messages,” in-
cludes the error messages generated by the editor. Appendix C, “BASIC Keywords,” includes the editor

keywords DELETE#, EQTEST, FILEZZE, IMSERTH, MEGE, REFLACE#, SCROLL, and SEARLCH,
which you can use in your own BASIC programs.

Overview of the Editor

The editor is a BASIC program; when you enter the editor, the HP-71 FFiz[1 annunciator appears. You
can enter the editor directly from the FORTH or HP-41 environments by using EA % I, Typing:

"OEDTEXT SCREEMH" BRSICH

runs the editor on a file named ZCREEH. When you exit the editor, the HP-71 automatically returns to
the original environment.

To enter the editor from BASIC, type ELOTE®T file name [ENDLINE]. The editor opens that file for
editing or, if file name is a new name, creates a new file with that name. The display then shows
Lirme n, ©Cmd:, where line n is the current line in the file. Line numbers, which begin with 1, are for
reference only; they aren’t stored in the file. If you have created a new file, or if you're at the end of the
file, the current line is indicated by E .

51

52 The Editor

When the Cmi: prompt is displayed, you can:

Display the Current Line. To temporarily display the current line, hold down the key. When
you release the key, the Cmici: prompt returns.

Move to A Different Line. There are three methods for moving to a different line:

e To move to any line in a file, enter the line number and press [END LINE]. For example, to move to line
2, enter = [END LINE].

e To move to the previous line (smaller line number), press [¢]. To move to the following line (larger
line number), press [¥].

e To move to the beginning of a file, press [9)[*]. To move to the end of a file, press [9](¥].

Display the File Name. If you press when the line 1 is the current line, the editor displays the name
of the edit file. To display the file name from any place in the file, hold down [f][+]. When you release [+],

the o : prompt returns.

Execute a Command. The editor commands, each of which is described in detail below, fall into two
classes:

e The commands T (Text) and I (Insert) are used for entering text. Once you execute the Text or
Insert command, the editor remains in Text or Insert mode until you press or [(ATTN]J; only then
will the Cmicl: prompt return.

e All other editor commands perform specific operations, after which the Cml: prompt returns
automatically.

Exit the Editor. To end the editing session, enter E [ENDLINE]. The editor closes the edit file and
displays [izri=: file name. If you decide not to keep this file, purge it following the instructions in
section 6 of the HP-71 Owner’s Manual.

When you call the editor, a copy of your own redefined keyboard is stored and the editor’s key redefi-
nitions are added to yours. Unless the editor keys are the same keys you’ve redefined, your redefined keys
are still available to you while the editor is active. When you exit the editor, the combined redefined
keyboard is purged and your own redefined keyboard is restored.

To override a key assignment, use the [9](1_USER] key. This will deactivate USER mode for the next key
pressed. Note that if you enter the editor from the FORTH or HP-41 environments, disable USER mode,
and then either press or cause any error, the HP-71 immediately returns to the FORTH or HP-41
environment, leaving the current edit file in a corrupted state.

The Editor 53

Editor Commands

You can enter the following editor commands whenever the i< : prompt is displayed. Some editor com-
mands require parameters such as line numbers or a file name. These parameters are identified in syntax
diagrams for each command. Any default values for parameters are given after the syntax diagram. In the
syntax diagrams:

e Items [enclosed in square brackets] are optional parameters. Some optional parameters are nested
within others. This indicates that the parameter in the outer pair of brackets must be present before
the parameter in the inner pair can be included.

e Items shown in DOT MATE I text must appear exactly as shown (although either upper or lower
case is acceptable).

e There are two substitute characters that can be used for any line-number parameter. A period (.)
indicates the current line, and the pound sign (#) indicates the last line in the file.

e Two adjacent numeric parameters must be separated by a space or comma. No separation is required
between a numeric parameter and an alphabetic parameter.

The Text (7) and Insert (1) Commands

[line number] T

[line number] I

Default value: line number = current line

The Text command is your primary means of adding text to the edit file. When you enter Text mode, the
current line appears in the display with the cursor at the beginning of the line. Modify the current line as
desired (using the standard HP-71 editing keys) and then press [ENDLINE]. The editor stores these
changes to the current line and then makes the following line the current line, displaying it to start the
cycle again.

The Insert command permits you to add a line or a series of lines into the middle of a file. When you
enter Insert mode, the current line is displayed until you press a key. Type in the text for the new line
(using the standard HP-71 editing keys) and press (END LINE]. The editor inserts the new line into the file,
just before the current line, and then displays the next line number as the new current line. (The text for
the new current line is the same as before; only its line number changes.) Flag one is on to indicate that
you are in Insert mode.

Either Text mode or Insert mode work equally well for entering text at the end of a file. In either mode,
text is stored in the file only when you press [END LINE]. If you make changes or enter text and then move
to another line (by using or [*]) before you press [(END LINE], no changes or text will be stored.

To exit from Text or Insert mode, press or [ATTN].

54 The Editor

The List (L.) and Print (F) Commands

[beginning line number [ending line number]] L. [number of lines][]

[beginning line number [ending line number]] ¥ [number of lines][}]

Default values: beginning line number = current line
ending line number = last line

The List and Print commands are similar. List causes the specified lines of text to be displayed consec-
utively on the current display device (usually the display window or a monitor). If you have an HP 82401A
HP-IL Interface installed and a printer assigned, Print causes the specified lines to be printed. When no
printer is present, Print responds like List.

After listing or printing, the current line will be the line after the ending line number. The following
examples show some List and Print commands with parameters:
L List from the current line to the end of the file.

Lia List from the current line to the end of the file, or just 10 lines, whichever
comes first.

05 LOH List from line 3 to line 9 with line numbers.

1 LzaH List, with line numbers, the entire file or the first 20 lines, whichever comes
first.

F Print from the current line to the end of the file.

T
b1
i

Print five lines starting at the current line, with line numbers.

1P H Print the entire file with line numbers.

The Copy () and Move (i1) Commands

[beginning line number [ending line number]] : [filename]

[beginning line number [ending line number]] {1 [filename]

Default values (Edit file): beginning line number = current line
ending line number = beginning line number

(Other file): beginning line number = line 1
ending line number = last line

The Editor 55

The Copy command permits you to copy one or more lines from one place in the file to another place in
the file. You can also copy part of another file into your edit file. Copy always inserts the copied text
before the current line. The Move command is similar to the Copy command but deletes the text in the
original location.

If no filename is specified, the indicated lines come from the edit file. If a filename is specified, the
indicated lines come from the specified file. You can’t copy or move a block of text that includes the
current line, unless the current line is the first or last line of the block of text.

The Waork ima. . . message is displayed when you copy or move text.

Here are some examples of the Copy and Move commands:

C Duplicate the current line.

]

Copy line 5 and insert it before the current line.

R I Move lines 3 through 9 from within the edit file and insert them before the
current line, then delete the original lines 3 through 9.

oOCAT Copy the file Zf T and insert the lines before the current line.

e © ABC Copy lines 20 through the last line of the file ABC and insert the lines before

the current line in the edit file.

The Delete (L') Command

[beginning line number [ending line number]] [t [filename [+]]

Default values: beginning line number = current line
ending line number = beginning line number

The Delete command deletes one or more lines from the edit file. You can place the deleted lines into a
new file or, using the + option, append the lines to an existing file. When you execute Delete with line
number parameters specifying more than one line, the message ik 1o delstse™ Y.-H: will appear.
You must answer ' before the editor will complete the deletion. If you answer i, the Command Prompt
returns.

The ek ira. . . message is displayed when you use Delete.

The following examples show some uses of the Delete command:

[Delete the current line.
12 Zzn Delete lines 12 through 32.
4 2 [0 CACHE Delete lines 4 through 9 and store them in a new file called CACHE.

2 ORID ARCHU+ Delete lines 2 through 21 and append them to the end of a file called ARCHV.

You can not purge a file while you are in the editor, but you can delete all of the text and leave an empty
file. Refer to section 6 of the HP-71 Owner’s Manual for instructions on how to purge a file.

56 The Editor

The Search (=) and Replace () Commands

[beginning line number [ending line number]][*] = .~ string1[]

Default values: beginning line number = current line + 1
ending line number = last line

[beginning line number [ending line number]][?] E .~string1 . string2[-]

Default values: beginning line number = current line
ending line number = beginning line

The Search and Replace commands allow you to search through a file for a certain string of characters
stringl. If you use a Search command, the first line containing stringl becomes the current line. If you use
a Replace command, all occurrences of stringl are replaced by string2, and the last line containing stringl
becomes the current line. If either command can’t find stringl, it displays Mot Faournd,

These commands search the specified lines in the edit file for the string indicated between the slashes (.).
These slashes act as delimiters, marking the string’s boundaries. If you need .- as a normal character in
your search string, you can use any other character (except a blank space) as the delimiter. The first non-
blank character after the command = or F is the delimiter. The last delimiter is optional unless another
command follows this command.

Search and Replace can distinguish between uppercase and lowercase letters. For example, a search for the
string i=ck will not find the string Jzck.
The following examples show some Search commands and Replace commands with parameters:

Sodack From the next line through the end of the file, search for the first occurrence of
the string “Jack.”

IOF omoudill From line 3 through line 7, search for the string “Jill.”
Froat-doas Replace all occurences of “cat” with “dog” on the current line.
4 TR oatodog On lines 4 through 7, replace all occurences of “cat” with “dog.”

FEZ-4%3 -3 On the current line, replace all occurences of “3/4” with “3/8.” The character i
is used as the delimiter so that slashes may occur in the strings.

CHEREmest s From the current line to the end of the file, replace “meet” with the null string
(that is, delete “meet”).

If the replacement string2 causes the line to be longer than 96 characters, the editor will redimension
variables, causing a slight delay.

The Editor 57

Response Option. You can more closely control the Search and Replace commands by including the
option in the command string. With this option the editor stops with each match to stringl and waits for
you to respond. The display shows the following information:

e The number of the line containing the matching string.

e The number of the column in which the first letter of the matching string occurs.
e A backslash (-.) delimiter.

e Some of the line, beginning with the matching string.

e A slash (.-) delimiter.

e A question mark (%) indicating that a response is expected.

Responding to a Search command, your options are:
® Press to stop the search at this match and make this line the current line.
e Press [N] to search for the next occurrence of the string.

e Press (Q] to quit the search and return to the previous current line.

Responding to a Replace command, your options are:

e Press to replace this occurence of stringl with string2 and search for the next occurrence of
stringl.

e Press [N] to leave this occurence of stringl intact and search for the next occurrence of stringl.

e Press (@] to quit the replacement search and make the last line where replacement occured the cur-
rent line (or return to the previous current line if no replacements occurred).

If you press any other key (except [ATTN]), the display will show * .-H .- ¥ to indicate that only Y, N or
Q are permitted as responses. If you press [ATTIN], the i : prompt returns.

The Replace command can result in lines longer than 96 characters. If this occurs while you’re using the =
option, you can scroll through only a 96-character substring that contains that search string, not through
the whole line.

Defining Patterns in Strings. Five characters (., &, #, ~, and #) can have special meanings when
you’re defining strings. To switch these characters to their special meanings, place a backslash (-, as-
signed to [f][/]) in the string; to return these characters to their normal meanings, place a second
backslash in the string. (The string’s final delimiter also returns the characters to their normal mean-
ings.) Any of these five characters appearing between the two backslashes will be given their special
meaning.

The five characters, their special meanings and some examples of their uses are described in the following
paragraphs:

e The period (.) represents any character, and so is called a wild-card character. When the editor
searches for a matching string, any character can be in those positions where you put a period.

Example. F-AEC~ . . . ~-Feckheck I10#.- will replace the occurrences of ABC followed by any
three characters, such as FAECZ3% AECzwz, or AELD wxz, with the string Fecheok I10D#,
FoAEBC- . .. ~FEscheck I10# has the same effect; the second backslash is not needed because the

end of stringl stops the special-meaning feature, and the ending slash is optional for string2.

58

The Editor

e The commercial “at” symbol (i) represents any number of wild-card characters. Because the program

starts searching for the end of the string at the end of the line, the longest match possible is found.

I[#.- will replace any string that begins with ABC and
DE, ABCCDE, or HMECIZ zrxzUDE, with the string

Example. F-AEC @ CDE Feoheck
ends with CDE, such as REZ1EZE
F veck DD,

IR

e The ampersand (i:) represents the text that matches stringl; it is used in a Replace command to

insert the actual string that matched stringl (which may include wild cards) into string2.

Example. F .- fE. -~ %0EF - searches for the string ABwildcard and appends the string DEF to it.
If ABC is found, the new string will be ABCDEF.

e The up-arrow () represents the beginning of a line. As the first character in a string, it specifies that

a matching string must be at the beginning of a line. If the up-arrow isn’t the first character in the
string, it has its normal meaning.

Example. F .-~ AEL.-COE - will search for the string ABC only at the beginning of a line. If ABC
appears anywhere else in the line, a match will not be made.

Example. Suppose you have loaded a text file from the HP-75 into your HP-71. Now you want to
delete the four-digit line numbers that the HP-75 put at the beginning of every line.
1#FE.~" tells your HP-71 to search, from line 1 to the end of the file, for any four charac-
ters at the beginning of the line, and replace them with nothing (delete them).

e The dollar sign (#) represents the end of a line. As the last character in a string, it specifies that a

matching string must be at the end a line. If the dollar sign isn’t the last character in the string, it has
its normal meaning.

Example. F.-AEC-# -C0DE will search for the string ABC only at the end of a line. If ABC appears
anywhere else in the line, it will be ignored. A second backslash is not needed after the $ because the
dollar sign is at the end of stringl.

If you need to search for a string containing a backslash character as part of the text, you don’t want
Search and Replace to see the backslash as a switch. The solution is to use two sequential backslashes.
The editor will interpret -. - as a single backslash character, not as a switch.

Editor Files

The editor uses several files in its operation. The names of these files must not be used as the names of
files in the HP-71 user memory, because the HP-71 first searches its own memory before searching the
plug-in modules. The following list gives the name of each file in the module, along with a brief descrip-
tion of the file.

e g o o g g

EQTEXT The editor BASIC language program.

EDLEX A LEX file containing the assembly level support for the editor, including the
BASIC keywords.

The editor keys file.

EYE A temporary keys file created by the editor in main memory to store your user
defined keys while the editor is running. When you exit the editor, these keys
again become current.

Section 5

The HP-71 FORTH System

Introduction

The HP-41 Pac contains a FORTH system tailored to the HP-71. The advantages of FORTH over BASIC
are speed and complete access to the machine. Programs can be written in FORTH, in BASIC, or in both,
making use of the best features of each language/system.

FORTH secondaries (words constructed from existing FORTH words) can be compiled from key-
board input or from text files. created by the editor. The editor is discussed in section 4.

The word set of the HP-71 FORTH kernel is similar to that defined in the FORTH-83 Standard. This
section describes their differences in “Unique Aspects of HP-71 FORTH,” which covers enhancements
and methods of implementation that are machine-related, and in “FORTH Extensions,” which covers
enhancements not directly tied to the HP-71. For the complete definition of any FORTH word, standard
or nonstandard, refer to appendix D.

References

This section doesn’t contain the complete FORTH-83 Standard or tutorial information about FORTH,;
you can find such material in the following books. You will need to keep in mind the unique aspects of
HP-71 FORTH as you read these books.

e Brodie, Leo. Starting FORTH. Englewood Cliffs, N.J.: Prentice-Hall, 1981. An effective and entertain-
ing introduction to FORTH.

e FORTH-83 Standard. Mountain View, Ca.: FORTH Standards Team, 1983.

e Haydon, Glen B. All About FORTH: An Annotated FORTH Glossary. Second edition. Mountain View,
Ca.: Mountain View Press, 1983. Some definitions in this manual are borrowed from Dr. Haydon’s
book.

Using FORTH on the HP-71
Entering and Exiting FORTH. To enter the FORTH environment, type the BASIC keyword FIIETH

and press [END LINE]. The computer displays the FORTH sign-on message HF~71 FOFETH and the ver-
sion. To exit the FORTH environment, type the FORTH word ERZIC or HF 41 and press [END LINE].

61

62 The HP-71 FORTH System

The RAM-based portion of the FORTH system, including user-added dictionary words, is contained in an
HP-71 file named FTH# 1 FFAM. When you exit FORTH, either by executing EA=IC or by pressing the
key, the contents of the FTH4 1 A file are preserved. Thus the FORTH environment will be in
the same state when you reenter as when you exited. If you turn off the HP-71 from the FORTH environ-
ment, it returns directly to the FORTH environment when you turn it on. If you purge the FTH4 1 FEAHM
file from the BASIC environment, a new F TH4 1 FAHM file will be created when you next execute FIF TH.

User Prompts. If you press while the HF -7 1 FIRETH prompt is displayed, FORTH displays
Ok + @ . The OF indicates that FORTH is ready to accept input, and the & indicates how many
items are on the data stack. If you then type 1 = = [ENDLINE], the FORTH system displays
Ok + 2 * You can suppress the [k message by storing a non-zero value into the user variable
OKFLG.

Line-editing Keys. All of the HP-71 line-editing keys are functional while in the FORTH environment.
Pressing while entering a line clears the display and leaves only the blinking cursor.

Key Redefinitions. The FORTH system duplicates the BASIC method of handling redefined keys. You
can switch in and out of user mode while in FORTH, but you must be in the BASIC environment (or use
EAZICH) to redefine keys.

The Command Stack. The HP-71 command stack is available in FORTH. It operates just as in BASIC,
except that in FORTH you can enter the Command Stack by pressing any of the up- or down-arrow
keys—you don’t need to press [9](END LINE] first.

Exceptions and the Key. Because the FORTH system can run a program for an indefinite time,
it must occasionally check whether a system exception has occurred. FORTH checks for exceptions when
it executes : (semicolon) in a secondary and before it branches in a loop structure. If an exception has
occured, FORTH issues the exception poll. An exception can be a service request from the HP-71’s in-
ternal timers or from other devices, or can result from pressing the key.

Pressing stops the execution of any FORTH word (except HP-IL words, which require pressing
twice). Once the FORTH environment recognizes that has been pressed, it executes the
system equivalent of AEIFRT to reset the data and return stacks and to restart the FORTH outer loop
(the FORTH system user interface).

Errors. If an error occurs in the FORTH system, all files are closed and an error message is displayed.
FORTH error messages sound a tone and preface all errors with FTH EFRF :. FORTH error numbers and
messages are available through the BASIC keywords EFFH and ERFM#,

If an error occurs in a BASIC O/S subroutine called by the FORTH system, the error message appears as
ERFE: rather than FTH ERF:.

The HP-71 FORTH System 63

Unique Aspects of HP-71 FORTH

Twenty-Bit FORTH

Most FORTH systems are implemented on byte-oriented machines with 16-bit addresses. The HP-71, in
contrast, is a nibble-oriented machine with 20-bit addresses. To allow access to the entire 1M-nibble ad-
dress space and to achieve maximum speed, FORTH on the HP-71 is a 20-bit implementation. That is,
the data and return stacks are 20 bits wide, and the addresses on those stacks are 20-bit absolute ad-
dresses. All quantities on the stacks are 20-bit quantities, regardless of whether a one-byte or 20-bit opera-
tion is performed. Unused high-order nibbles are zero or are expected to be zero.

HP-71 FORTH conforms to the FORTH-83 Standard in intent but, because of the nature of the HP-71
CPU, not exactly in effect. The functionality of the Standard required word set, plus selected words from
the extension word sets, are provided in HP-71 FORTH. In most cases, the HP-71 uses the same word
names as the Standard. You can determine the behavior of particular HP-71 words compared with their
Standard counterparts according to the following general guidelines:

e For operations that deal with bytes (such as £, and FIi.L), the Standard names are re-
tained for HP-71 FORTH words. Such words will produce the same result as the corresponding Stan-
dard words. In several cases analogous words that deal with nibble quantities are also provided; they
are listed below in “Nibble and Byte Words.”

e For operations that deal with cells (such as -+, i#, and), the Standard names are retained
for HP-71 FORTH words. Such words will produce the same result as the corresponding Standard

words, except that the quantities manipulated by the words are 20 bits long instead of 16.

e For operations that don’t translate well to the HP-71 (with its continuous memory and multiple-file
system), the Standard names are replaced by HP-71 FORTH words. For example, (load from a
numbered screen) is replaced by i1 F (load from a named text file), and 7 (read up to a
specified number of characters) is replaced by = (read up to 96 characters).

The table below lists those words that HP-71 FORTH adds to the Standard word set to perform nibble
operations, together with their byte-oriented counterparts.

Table 5-1. Nibble and Byte Words

Nibble Word Action Byte Word Action
Allot n nibbles. Allot n bytes.
Fill n nibbles. Fill n bytes.

Fetch one nibble. Fetch one byte.

Store one nibble. Store one byte.

Move n nibbles. Move n bytes.

Move up n nibbles. Move up n bytes.

S Increment address by 5. | &+ Increment address by
2 (one byte).

S Decrement address by | &- Decrement address by
5. 2 (one byte).

64 The HP-71 FORTH System

Compilation from Files

FORTH compiles new words into the dictionary from “screens” as well as from the keyboard. In tra-
ditional versions of FORTH, a screen is a 1K-byte block on a mass storage device (16 lines of 64 bytes
each).

Screens. In HP-71 FORTH, a “screen” is a standard HP-71 text file. Each text file consists of a series of
text strings of variable length, with each text string preceded by a two-byte length field. The file is ter-
minated by a two-byte marker, FFFF. The editor, described in section 3, can create source screens for
FORTH. The name of a screen must be a legal HP-71 file name. The maximum size line that FORTH will
process is 96 bytes, which corresponds to the logical display size.

LOADF. The Standard word L. is replaced in HP-71 FORTH by L. (i#i[iF. The inputs to L. OFALF are
two 20-bit numbers: the length of the character string specifying the file to be loaded and the address of

this string. LA DF calls HP-71 routines to open, read, and close the file. These routines, in turn, inter-
face to the HP-IL module if it is present, so that screens can reside on HP-IL mass storage devices as well
as in HP-71 memory.

FIB Entries. Executing i FF opens the screen file and creates a file information block (FIB) entry in a
system buffer called the FIB general purpose buffer. The FIB entry identifies the file and indicates
whether the file is in RAM or on mass storage. (If the file is on mass storage, the FIB entry is linked to a
system buffer called an I/O buffer that identifies the file.) A file-information-block number (FIB#) identify-
ing the FIB entry is stored into the FORTH user variable “{:FF I & (screen FIB#) to specify the active
file.

Mass Memory Buffers. When a file is loaded, its FIB# and the first line of the file are read into a mass
memory buffer. There are three mass memory buffers, used in rotation. The contents of the buffer are
interpreted until the null at the end of the line (placed there by the FORTH system) is reached. The
FORTH word iFE [then determines whether this is the end of the active file and, if not, reads the next
line from the file into the same mass memory buffer. Each mass memory buffer has the following format.

Format of a FORTH Mass Memory Buffer

FIB# Line# Byte count Data 2 Nulls

1 byte 5 nibbles 2 bytes Up to 96 bytes 2 bytes

LOADOF can save the information necessary to return to the file it is currently interpreting, so L OiFDIF
commands can be nested.

Mass Memory. A user can L.IF[IF a file from cassette or disk directly into the FORTH dictionary
without first storing the file in RAM. The file will be interpreted a line at a time by reading the line into
a FORTH mass memory buffer. However, a file stored on a magnetic card must be read into RAM before
it can be loaded into the FORTH dictionary or edited.

The HP-71 FORTH System 65

File Words

e | TIADF accepts input from a specified file rather than the keyboard. Words are executed and defi-
nitions are compiled into the user dictionary. The file may exist in RAM or on mass storage.

e EL K reads a specified line of the active file into a mass memory buffer and returns the address of
the first data byte in the mass memory buffer.

e DLIOZEF closes a specified file.
e EF returns a true flag if the end of the active file has been reached, a false flag if not.

e +ELIF returns the address of the next available buffer.

JFEMF opens a FIB entry for a specified file.
e DL OZERALL closes all open files.
e FIFEZT is a user variable containing the address of the first mass memory buffer in memory.

e L IMIT is a user variable containing the address of the first byte beyond the mass-memory-buffer
area.

e FREW is a user variable containing the address of the mass memory buffer last used.
e [IZE is a user variable containing the address of the mass memory buffer to use next.

e ZREFIE is a user variable containing either the FIB# of the active file being interpreted by LOADF
or else 0.

ELK is a user variable containing either the line number of the file being interpreted by LOADF or
else 0 (input from keyboard).

L IHE# is a user variable containing the line number being loaded from the file specified by SCRFIB.

FORTH/BASIC Interaction

The HP-41 Translator ROM enables you to temporarily enter the FORTH environment from within the
BASIC environment, and vice versa, to take advantage of features of one system while operating from the
other. If you press while in a temporary environment, you will be returned to the original
environment.

BASIC to FORTH. There are four programmable BASIC keywords that access the FORTH
environment.

e FIETHH is a BASIC statement, returning no result.

e FIETHF is a BASIC numeric function that returns the contents of the X-register in the FORTH
floating-point stack.

e FIRTHI is a BASIC numeric function that returns the number on the top of the FORTH data stack,
dropping that value from the stack.

e FIIRETH#% is a BASIC string function that returns the string specified by the address and character
count on the top of the FORTH data stack, dropping those two values from the stack.

FORTHF, FORTHI, and FORTH# read data from the FORTH environment into BASIC variables with-
out executing any portion of the FORTH system (although FURTHI and FORETH# alter the data-stack
pointer). FiiF TH:, however, enables you to transfer BASIC data to the FORTH environment and to
execute any FORTH words before automatically returning to BASIC.

66 The HP-71 FORTH System

To execute FORTH operations from the BASIC environment, you use the keyword F ik TH i followed by
a command string plus up to 14 additional parameters. The optional parameters can be any combination
of strings or numeric quantities. The numeric quantities will be pushed onto the FORTH data stack as
smgle length numbers; strings will be specified on the stack by their addresses and character counts.
{+ first pushes the optional parameters onto the data stack and then executes the command string.
The command string can contain any sequence of FORTH words and parameters, just like input you
would enter from the keyboard.

Examples.

T
it
1
T

T

For additional details, refer to appendix C, “BASIC Keywords.”

FORTH to BASIC. There are four FORTH words that pass a string (specified on the data stack) to the
BASIC system for execution. The string contains BASIC keywords and parameters. The FORTH words
call the appropriate BASIC routines to parse and execute the string, as if it were typed to BASIC from the
keyboard.

= : passes a string containing BASIC statements to the BASIC system for parsing and execu-
tion. It returns no value to the FORTH environment. E#% I can alter the value of BASIC vari-
ables. If the string begins with a line number, it will be added to the current BASIC edit file. The
string can also call BASIC programs. When the BASIC interpreter finishes, it issues a poll that allows
the FORTH system to regain control. If an error occurs, the BASIC system reports the error to the

user, and FORTH runs the system equivalent of the AEFET word.

EFRZICF passes a string containing a numeric expression to the BASIC system for evaluation. It
returns the value of the numeric expression to the X-register in the FORTH floating-point stack.

e HAZICI passes a string containing a numeric expression to the BASIC system for evaluation. It
returns the value of the numeric expression to the FORTH data stack.

e EATIC# passes a string containing a string expression to the BASIC system for evaluation. It re-
turns the resulting string to the PAD area and the address and character count to the data stack. The
resulting string is truncated to 255 characters if it exceeds this length.

Examples.

T B
ais]h_

The FORTH/BASIC interface is not reentrant. That is, operations in one environment that are called
from the other environment can’t exercise the original environment, except to return data. In particular:

e The string passed to the BASIC environment by EFZ 10 can’t contain the keyword F 0F TH:. How-
ever, FIRETHE, FORTHI, FORETHF are allowed.

e The FORTH command string that is the first argument of F{1E TH can’t contain the FORTH word
EFASICHE However, BERZICE, BASICT, and EASICF are allowed.

The HP-71 FORTH System 67

Applications that respect these two rules will work as long as operations in one environment respect the
integrity of the other. For example, don’t #iiiE random data into the FORTHRAM file from BASIC or
write over the BASIC environment pointers from FORTH.

HP-IL Operations

To enable controller applications to take advantage of FORTH’s speed, the FORTH kernel includes
FORTH equivalents of the BASIC statements and © 1T, Additional HP-IL functionality in
the FORTH environment can be gained by using the FORTH to-BASIC words. For example,
-1 returns to the integer data stack a value describing the loop status.

The FORTH word & instructs the HP 82401A HP-IL Interface to receive data from an HP-IL
device. The HP-IL module puts the bytes received into a temporary location (the HP-71 math stack). The
FORTH system then moves the bytes into an address specified by the user when executing ENTER. The
byte count and the address of the data are always returned to the user.

If BASIC system flag —23 is set, x
Otherwise, & continues to request data until its end condition is satisfied. The end condition can be
either the reception of a specified number of bytes or of a particular byte value.

' terminates when it receives an End of Transmission message.

The FORTH word i TFUT instructs the HP 82401A HP-IL Interface to send data to an HP-IL device.
The user supplies a byte count and the address of the data to be output.

Two FORTH user variables, Y and 7

. Default contents of the Varlables are 1 for !

and

, specify the intended device for
v and 0 for & v. The user must
ensure that these variables are properly set up before executing :

General Purpose Buffers

Large applications may require blocks of temporary storage that are not a part of the FORTH dictionary
space. The HP-71 BASIC O/S provides such temporary storage in the form of general purpose buffers. A
maximum of 512 buffers can each contain a maximum of 4095 nibbles, provided that there is enough
RAM present to allocate to the buffer. The FORTH dictionary provides five words to make, find, expand,
contract and destroy these buffers.

General purpose buffers are maintained at the end of the file chain. The last general purpose buffer is
followed by two zero bytes, signifying the end of the general purpose buffer chain. A general purpose
buffer has a seven-nibble header field followed by the data space.

Update | Buffer ID | Data length Data

1 nibble 3 nibbles 3 nibbles Up to 4095 nibbles

The update nibble is used by the operating system. Refer to the HP-71 Software IDS for a description.

68 The HP-71 FORTH System

Temporary buffers are allocated buffer ID’s in the range of E00 to FFF. Because memory contents can
move, shifting the position of the buffer, you must use the buffer ID to find the current location of the
buffer each time you use it.

General purpose buffers are purged by the operating system at coldstart, power on, and during execution
of FREE FORT and CLAIM FORT.
The following FORTH words deal with general purpose buffers.

e [{AKEEF creates a general purpose buffer of a specified size.

e FIHDEF finds the current address of a specified general purpose buffer.

e 1L LEF deletes a specified general purpose buffer.

e EXFEF expands a specified general purpose buffer by a specified number of nibbles.

e CiMEF contracts a specified general purpose buffer by a specified number of nibbles.

FORTH Extensions

Floating-Point Operations

The HP-71 FORTH system includes an HP-RPN-style floating-point stack (X-, Y-, Z-, T-, and LAST X
registers). There are FORTH words to manipulate the stack and to use the HP-71 math routines for
floating-point operations. There are also FORTH words to create floating-point variables and constants,
to fetch and store floating-point numbers, and to display floating-point numbers.

FORTH stores floating-point numbers in the same format as the BASIC system. Each register contains 16
nibbles, as shown below.

+« Greater addresses +
15 14 3 2 0

S Mantissa Exponent

t
Implied decimal point

Sign. The sign nibble (labeled “S” above) contains 0 for a positive number and 9 for a negative number.

Mantissa. The 12-digit mantissa has an implied decimal point after the most significant digit. The man-
tissa is not necessarily normalized—that is, it can contain leading zeros to effectively extend the range of
the exponent. This field may contain non-numeric data when the register contains an Inf or NaN.

Exponent. The three-digit exponent E is expressed in tens complement, —499 < E < 499, with the
most significant digit in nibble 2. The exponent field is also used to indicate an Inf or NaN: F0O indicates
Inf (which may be positive or negative), FO1 indicates a quiet NaN, and F02 indicates a signaling NaN.

The HP-71 FORTH System 69

The following diagram shows how the number —8.23601 E—312 is stored in a register.

15 14 3 2 0

9|18 2 3 6 01 0 0 0 O OO(6 8 8

For more information about the formats for floating-point numbers, refer to the HP-71 IDS.

A floating-point number is identified in HP-71 FORTH input by the presence of a decimal point. When
IMTERFRET doesn’t identify a character sequence in the input stream as a FORTH word,
checks the sequence for a decimal point. If there is no decimal point, Hii[MEEF treats it as a potential
single- or double-length number. (Many FORTH systems identify double-length numbers by the presence
of ., ., :, ~, or a non-leading ~. HP-71 FORTH uses only ., :, and . to identify double-length
numbers.)

If the sequence contains a decimal point, the entire sequence is passed to the BASIC O/S routine
corresponding to the keyword /il for evaluation. If the sequence can be evaluated, the result is pushed
onto the floating-point stack. “Can be evaluated” means that the character sequence is any valid BASIC
numeric expression, which may include literal numbers and BASIC numeric variables. For example, the
sequence 1E#ZIHCZH . » entered in the FORTH environment will return the value 5 to the floating-
point X-register (assuming that the current HP-71 angular mode is degrees). Similarly, i . # T i will return
the current value of the BASIC variable T1 to the X-register.

A side effect of the automatic floating-point expression evaluation is that attempted execution or compila-
tion of unrecognized words containing decimal points will result in the BASIC message
Y EZREDC causes the FORTH message
~ will cause the BASIC message

ERFE:Data Turps. For example, entering an undefined word
FTH ERR:#EYZABD not recoanized, but entering the
ERFE:Data Turpe because of the decimal point.

Floating-point trigonometric functions use the current HP-71 angular mode. FORTH words are provided
to switch the mode between degrees and radians. If the mode is set in FORTH, then subsequent BASIC
operations will use that mode, and vice versa. Similarly, the floating-point display mode is common to
FORTH and BASIC. Floating-point numbers are converted for output (F ., = T&#) in decimal according
to the current display mode, which can be set from FORTH or BASIC.

The names of several floating-point operations are prefaced with "F” to distinguish them from operations
with similar names. In the following description, x is the contents of the X-register, y is the contents of
the Y-register, and so on. All floating-point arithmetic operations return the result to the X-register.
Floating-point Words

e |+ returns y + «x.

e F— returns y — x.

e ¥ returns y X «x.

e .+ returns y + «x.

e HF Convers x from hours, minutes, seconds format (HH.MM.SSSS) to decimal hour.

e HI1S converts x from decimal hours to hours, minutes, seconds format.

70

The HP-71 FORTH System

HMZ + adds x+y in hours, minutes, seconds format.
HMZ - subtracts y—x in hours, minutes, seconds format.

CLOCHK returns the current HP-71 clock time in seconds.

18 returns 10%.

Z IH returns the sine of x.

0% returns the cosine of x.

TFHH returns the tangent of x.

E~} returns e *

E-~:-1 returns e 1-

1% returns the reciprocal of x.

ZEET returns the square root of x.

Y returns y*.

LGT returns logyg of x.

LH returns the natural log of x.

LH 1+ returns the natural log of (x+41).

ATHH returns the arc tangent of x.

A= IH returns the arc sine of x.

FAC O returns the arc cosine of x.

E0H rolls down the stack (“down” in the HP-RPN sense).
ELIF rolls up the stack (“up” in the HP-RPN sense).

= swaps x and y.

#, %, 2, T, and L return the address of the corresponding floating-point register.
LAST: pushes the contents of the LAST X register onto the floating-point stack.
FEMTEF pushes the contents of the X-register onto the floating-point stack.

FECL fetches a floating-point number from the address on top of the data stack and pushes it onto the
floating-point stack.

Z T stores x into the address on top of the data stack.
F . displays x without altering the floating-point stack.
FUWARIAELE creates a floating-point variable in the FORTH dictionary.
FCOMSTHHMT creates a floating-point constant in the FORTH dictionary.

k T, RN, AN, RS, AHYT, Ha=v7, and Hr=yT
perform the specxﬁed test and, 1f true, push true flag (—1) onto data stack; or if false, push a false
flag (0) onto data stack.

=:-:==[.'{’ * < — W= SHEAT, EET ::-:x =

)
T
A

DEGREES sets the active angular mode to degrees.
GREAD sets the active angular mode to grads.
FEHDIAMNS sets the active angular mode to radians.

ZTD, FI#, EMG, and ZC1 set the display format.

The HP-71 FORTH System 71

e [i—F converts x from degrees to radians.

e —[i converts x from radians to degrees.

e —F converts the vector (x,y) from rectangular notation to polar (r,0).

e F—F converts a vector in polar notation (x = radius, y = angle) to rectangular notation (x,y).
e * returns xy/100.

e *H returns 100((x—y)/y)

e FALT returns x!.

e [IEC converts x from decimal to octal.

e 1T converts x from octal to decimal.

String Operations
HP-71 FORTH includes words to create string constants, string variables, and string arrays; to compare

strings; to manipulate portions of strings (substrings); and to match string patterns. A string is stored in
memory in the following format.

Format of a String in Memory

Maximum | Current Character string
length length (left-justified)

1 byte 1 byte Maximum-length bytes

A string in memory is usually represented on the stack by a pair of values: an address and a character
count (count on top). The address is the location of the first character of the string in memory, and the
character count is the current length. This is the format expected by the standard word T FE.

Occasionally a “counted string” in memory is represented on the stack simply by an address. The address
is the location of the string’s length byte, which is followed in memory by the string’s characters. This is
the format expected by the standard word HIIMEEF.

String constants are created by the word ", which puts the maximum-length byte, the current-length byte,
and the string in the pad (system scratch space). String constants are thus very temporary—don’t type in
two string constants followed by a comparison operator, because the second will have been created on top
of the first. String constants are used mainly to set the values of string variables, but you can also use
them with other functions as long as you notice when the pad is being overwritten.

String variables are dictionary entries much like numeric variables. At the PFA are the maximum-length
and current-length bytes followed by the string. The code field contains the address of code that returns
to the stack the address of the first character (PFA + 4) and the current length.

String variable arrays are similar to single variables, but the first two bytes at the PFA indicate the maxi-
mum length of each element and the number of elements in the array. Next come the strings, each in the
format described above: maximum length, current length, string. The nth element is accessed by typing
n array name; the CFA points to code that returns the address and count of this element, which can be
manipulated just like a regular string variable or constant.

72 The HP-71 FORTH System

String Words

e ' creates a temporary string.
e =i returns the ASCII code for the first character in a string.

e HFE#% returns a temporary string of length 1 for a specified ASCII code.

EHDO# creates a temporary substring from the last part of a string.

e FZTE# converts the number in the X-register to a string.

e | EFT# creates a temporary substring from the first part of a string.
e MAXLEHM returns the maximum allocated length of a string.

e HIILL ¥ creates a temporary string of zero length.

e FI1= returns the position within a string of a substring.

e FIZHT# creates a temporary substring of specified length from the last part of a string.

e == returns a true flag if two strings are equal, a false flag if not.
e I < returns a true flag if string; < string,, a false flag if not.

e I | stores string; into string,.

° . adds a copy of one string to the end of another string.

Zx % adds a copy of one string to the beginning of another string.
e SHMIWE stores a string at a specified address.

e ZTE# converts a double number into a string.

e STRIMG creates a string variable.

e STRIMG-ARFHAY creates a string-array variable.

e ZUEF creates a temporary substring from the middle part of a string.

Vocabularies

The HP-71 FORTH vocabulary structure is a tree-like structure. Every vocabulary contains the word
FRETH, which sets the FORTH vocabulary as the CURRENT vocabulary (to which subsequent new
words will be added). This is because F1F: TH is the first word in the FORTH vocabulary, and all vocabu-
laries eventually chain back to the FORTH vocabulary. The following example creates a vocabulary called
NEW.

WOCABULARY HEW

HEW DEFIMITIOHNS
In the first line, W CHELLARY creates a new vocabulary called NEW. This entry, NEW, is entered into
the current vocabulary, which is the FORTH vocabulary. Execution of HE in the second line makes
NEW the CONTEXT vocabulary (in which searches for words begin). DEF IHITIOME sets the CUR-
RENT vocabulary to be the same as the CONTEXT vocabulary. To continue the example:

WORDI
VOCDABULARY HEMWEER
HEWER DEFIMITIOHS

WOREDZ

The HP-71 FORTH System 73

Now three vocabularies exist: FORTH, NEW, and NEWER. Suppose that W{FE[Z is added to the NEW
vocabulary, and HORED4 is added to the FORTH vocabulary. The diagram below shows the result.

FORTH
V:NEW > WORD1
WORD#4 V:NEWER > WORD2

WORD3

If either NEW or NEWER is the CONTEXT vocabulary, the word search won’t find H{FE[i4 in the
FORTH vocabulary. If NEWER is the CONTEXT vocabulary, the word search won’t find HIFELZ in
NEW, but it will find KR 1. In terms of the diagram, the word search proceeds in vocabularies other
than the CONTEXT vocabulary by moving leftward and upward, never rightward or downward.

It is important to realize that, while FiFETH can be reached from any vocabulary, the converse is not
always true. HEl can be found when FORTH, NEW, or NEWER is the CONTEXT vocabulary, but
HEMEF can be found only when NEW or NEWER is the CONTEXT vocabulary.

Whenever an error occurs, FORTH becomes both the CONTEXT and CURRENT vocabulary.

The HP-41 Environment

The HP-41 Environment is an extension of the FORTH system. When the F TH4 1 EAH file is created, the
user dictionary initially contains two vocabulary words: FORTH and HP-41V (the latter is part of the
former’s word set). The HP-41V vocabulary contains all HP-41 postfix functions, and HP-41 functions
that use the same name as standard FORTH words but operate differently (for example, AE=Z, S IGH,
Mo,

HP-41 is a word in the FORTH vocabulary. When it is executed, the following occurs:

e HP-41V is set as the context and current vocabulary.

e A vectored form of IHTERFRET is used, which carries out certain HP-41 emulator initializations,
and executes a vectored display word (default—display the X-register).

74 The HP-71 FORTH System

o A vectored form of HLIMEEFE is used, which sends all unrecognized input to the BASIC interpreter for
potential evaluation as floating-point expressions.

e The dictionary is checked for the existence of the word F 4 1, is used by the system as a marker. If the

word does not exist, the user is prompted for Mz:x ZIZE?™, and F41 is created in the dictionary.
Space is alloted in the FTH41FEAM file for the user-specified number of 8-byte floating-point
registers.

Each HP-41 program compiled from a text file using LOAD is entered into the dictionary with a word
name iEfile name, where file name is the name of the text file. Global and local labels are stored in the
HP-41 label buffer. For this reason, you should not remove HP-41 programs from the dictionary using
FORGET, which will delete the program but leave invalid entries in the label buffer.

When you execute FORTH from the HP-41 environment, the FORTH vocabulary is reset as the current
and context vocabulary, and the default forms of IMTERFREET and HLIMEER are restored.

Relation to the HP-71 FORTH/Assembler ROM

The FORTH system contained in the HP-41 Translator Pac is very similar to that in the HP 82441A
FORTH/Assembler ROM. The HP-41 Translator Pac does not contain an assembler, but its built-in word
set contains additional floating-point words and other HP-41 words not found in the FORTH/Assembler
ROM.

The floating point words in the HP-41 Translator Pac differ from their FORTH/Assembler ROM
counterparts in two respects:

e The HP-41 Translator Pac words will error if any of their arguments are alpha data.

e The HP-41 Translator Pac words perform a stack lift only after computation is finished, so that the
stack is unaffected if a word terminates due to an error. In the FORTH/Assembler ROM, the stack
lift is performed before the computation.

FORTH words defined from words common to both modules can be compiled into either system from a
text file containing the definitions. However, because the addresses of built-in words and user variables
are not the same in the two systems, you should not attempt to exchange files of type FORTH between
the systems. That is, a file originally created as FiikE THEF by the FORTH/Assembler module should
not be renamed as F TH4 1 REAM for use with the HP-41 Translator Pac, and vice-versa. The most likely
result of such an exchange is the Memory Los1t error

Error Trapping

When an error occurs during execution of a FORTH word, a system routine equivalent to FEDFRT or
AEORT" is executed. Normally, these routines will reset the data and return stacks and return to the
outer interpreter loop for new input. However, HP-71 FORTH provides an error-trapping facility that can
allow FORTH execution to continue after an error.

The user variable ZHEFRF contains the CFA of a word to execute when an error occurs. The system abort
routines check the contents of JHERF; if JHERR contains zero, the routines will exit normally through
GUITIT. If the value of JHEFRFE is non-zero, execution will be transferred to the address contained in
OHERFE. The stacks are not reset, so the error routine has a chance to recover some or all of the state of
the system at the time of the error.

The HP-71 FORTH System

FORTH Memory Organization

HP-71 Memory

The diagram below shows a map of the HP-71 memory with the HP-41 Translator Pac installed.

ADDRESS POINTER
File Header (37 nibbles)
Start-of-File Address (5 nibbles)
_________________ .
Unused Space (up to 202 nibbles)
2FAFD |— = = — = = — = — — — — = — — — = 4
Pointer Save Area
FORTH Active Flag
2FB11 |— == — = — — - — — — — — — — — — 1 <— SPO
User Variables
Floating-Point Stack
2FDO7 |- - —"— - - - —— - - — — - — — 4
Dictionary
1 <— HERE
PAD (floats after Dictionary) <— PAD
T -<— SP@
Data Stack
2FF29 |- - - — - - - - - — - — — — 1<=— TIB
Terminal Input Buffer
T ~ rr@
Return Stack
300B9 |- = —— - - — = - = = - = — - — 4 <— FIRST @
Mass Memory Buffers
(3 @ 208 nibbles)
3039 |- - - - - — e LMT @
HP-41 Data Registers
HP-41 Program Labels Buffer

Figure 5-1. FTH41RAM File Structure

75

76 The HP-71 FORTH System

The HP-41 Translator Pac ROM uses addresses in three regions:

e Hard-configured ROM, from E0000 to EFFFF. The hard-configured ROM contains the FORTH
operating system, the built-in FORTH dictionary, and the HP-41 emulator.

e Soft-configured ROM. This is a 16K-byte module that contains the editor, all BASIC keywords in the
HP-41 Translator ROM, and the initialization routines for the FORTH and HP-41 environments.

e The FTH4 1FEAH file. This file is stored in user memory and contains the changeable parts of the
HP-41/FORTH environments—user variables, user dictionary, and so on. When the FORTH or
HP-41 environment is active, F TH4 1 EA will always be the first file in user memory.

The FTH41RAM File

When FOETH, FORTHH, or HF4 1 is executed from the BASIC environment, a file called F TH4 1 FH
is created (unless it exists already). F TH< i EFM contains both the FORTH system’s status information
and all words added by users. FORTH has been assigned LIF file types E218 and E219. When the HP-41
Translator ROM is plugged in and a CATHLL is executed, the FORTH system intercepts the file-type
poll and displays F ik TH instead of the numeric file type for F TH4 1 EAM. Initially F TH4 1 EAM contains
about 1K byte. You can enlarge the file to provide user dictionary space after the entire 1K-byte file
exists.

There are four words in the dictionary that allow you to control the amount of dictionary space (in nib-
bles) available for new definitions:

e Eiil increases dictionary space by the number specified on the data stack.
e ZHE IHE decreases dictionary space by the number specified on the data stack.
e 1= 1 ZE sets the dictionary space equal to the number specified on the data stack.

e S IZE sets the dictionary space equal to the (integer part of the) number specified in the X-register.

To re-enter FORTH when F TH< 1 EAT is no longer the first file in memory, 37 bytes are required to swap
the file back into the first position. If there is not enough memory, an error message is displayed.

Copying FTH41FERAM. You can rename, copy, and purge FTH4 1FEFMM using HP-71 BASIC file com-
mands. This enables you to have multiple versions of the FORTH system, each containing a different user
dictionary. When you have multiple FORTH files, the file currently named F TH4 1 EAM will be the active
FORTH file when you enter the FORTH environment. Also, if you make backup copies of your FORTH
system, you can restore your system following a memory loss (common when programming in FORTH) by
reloading a F TH4 1 A file from mass storage rather than by recompiling the dictionary. The HP-41 Pac
is not required to copy the F TH4 1AM file out to mass storage, but it is required to copy F TH4 1 RAHM
back into RAM.

Contents of F TH4 1 EfM. Figure 5-1 shows the structure of F TH 1 EFAF. At the beginning of the file are
37 nibbles of system overhead—file name, file type, link to next file, and so on. Next is the address of the
FTH4 1REAHM file; when the FORTH system is re-entered, this address indicates whether F TH< 1 A1 has
been moved. Next is up to 101 bytes of unused space, depending on FTH<1FEFAM’s starting address.
Enough space is added to ensure that F TH4 1 EAM’s data begins at 2FAFD.

The HP-71 FORTH System 77

Starting at 2FAFD is the housekeeping information needed to save the FORTH pointers when a system
routine alters all of the CPU registers. At 2FB11 starts the block of FORTH system variables called “user
variables.” The floating-point stack follows the user variables in the file. The user dictionary space starts
above the floating-point stack. The data stack is deep enough to hold a minimum of 40 entries. The return
stack and the Terminal Input Buffer share 200 bytes, of which a maximum of 98 bytes can be used by the
Terminal Input Buffer (keyboard entry is limited to 96 characters, and FORTH appends 2 null characters
for its own use). The mass memory buffers are allocated 312 bytes.

The last entry in the F TH4 1 EAH file is the HP-41 label buffer, which contains the global and local labels
from all HP-41 programs contained in the FORTH dictionary. The buffer has a minimum size of 5 bytes.

The tables below show the details of a newly created FTH41RAM file. Although the FTH41RAM file is
always the first file in user memory, its starting address varies according to the length of the HP-71
configuration buffers, which precede FTH41RAM in memory. The current address of the start of the file
can be found by executing

AOOREFC 'FTH41REAM ' » in BASIC, or
" FTH41RAM" FIMDOF in FORTH.

Table 5-2. System Save Area

Address Contents

2FAFD Data-stack pointer save.
2FB02 Return-stack pointer save.
2FB07 Instruction pointer save.

2FBOC FORTH active flag.

Table 5-3. User Variables

Address Contents To ':R?:Jr: ‘g:r::’:nts
2FB11 Pointer to bottom of data stack. SEoor SFE @
2FB16 Pointer to bottom of return stack. FEFE @
2FB1B Pointer to TIB. TIE
2FB20 Next buffer. LUSE @
2FB25 Most recent mass storage buffer. FREW @
2FB2A First mass storage buffer. FIRST ©®
2FB2F End of FTH41RAM + 1. LIRMIT &=
2FB34 Vocabulary link.
2FB39 Buffer record size.
2FB3E Number of characters in TIB. #TIE @
2FB43 Maximum word-name length. WIDTH &=
2FB48 Warning mode. WHAREM @
2FB4D Enable/disable Tk in GLITT. DEFLG @

78

The HP-71 FORTH System

Table 5-3. User Variables (Continued)

Address Contents To ';toe?;: ‘(,:v:t:?:nts
2FB52 Line number in current LORDOF file. BlLE @
(Reset when load error occurs.)

2FB57 Offset in TIB. PIM @

2FB5C Number of characters read by ExFECTZa., ZFAM @

2FB61 FIB# of active LORDF file. SCREFIE B
2FB66 Address of CONTEXT vocabulary. COMTEST @
2FB6B Address of CURRENT vocabulary. CURREHT @
2FB70 Compilation flag. STAHTE @&
2FB75 Current base. BERZE &

2FB7A Number type indicator.

2FB7F Unused. Available for user programming.

2FB84 Current position of stack. (Used by compiler.)

2FB89 Pointer to last character in display string.

2FB8E FORGET boundary. FEHCE @
2FB93 Next available nibble in dictionary.

2FB98 Buffer size in nibbles.

2FB9D Line number in current L. OHDF file. LIMES# &=

(Preserved after load error.)

2FBA2 Return address for BASIC keywords.

2FBA7 Reserved for HP-IL use.

2FBAC Secondary HP-IL address. SECOMOARY @
2FBB1 Primary HP-IL address. FEIMAEY @&
2FBB6 On-error execution address. OHERR @
2FBBB Error-occurence flag.

Table 5-4. Floating-Point Stack Registers
FORTH Words
Address Contents To Return Value
to X-register

2FBCO LAST X register. L RCL

2FBDO0 X-register. ECL

2FBEO Y-register. YoORCL

2FBFO Z-register. = RCL

2FCO00 T-register. T RCL

2FC10 System use. (Eight bytes for file name.)

The HP-71 FORTH System

Table 5-5. Vectored Execution Addresses

Address Contents

2FC20 IHTERFEET

2FC25 CRERATE

2FC2A HUMEBER

2FC2F . (comma)

2FC34 ., (c-comma)

2FC39 ALLOT

2FC3E For xxx i=r'1t wuriigus message.

Table 5-6. HP-41 Emulator User Variables

Address Contents

2FC43 Emulator active flag

2FC48 HP-41 program pointer and return stack
2FC70 HP-41 flags

2FC80 Alpha register

2FCE4 Maximum register number or SIZE —1
2FCE9 Sigma register number

2FCEE Vector to HP-41 display word

2FCF3 HP-41 program return stack level pointer
2FCF8 Scratch area

2FCO02 FORTH program status

79

80 The HP-71 FORTH System

Table 5-7. User Dictionary and Above

Address

Contents

FORTH Words
To Return Contents

2FDO7
2FD2B

2FD54
2FD5F

2FD5F*
2FDB9*
2FF29t
2FF29¢t
300B9t

30329t

FORTH word.
HP-41V vocabulary word.

HP-41V null word.

Start of first user-defined word. (Addresses
above 2FCB1 are variable.)

End of dictionary. (Next available nibble.)
Pad. (Floats after dictionary.)

Top of data stack.

Bottom of data stack = Start of TIB.

Bottom of return stack = Start of first mass
storage buffer.

HP-41 data registers and labels buffer.

* Changes when words are compiled.
1t Changes when & !

r SHE

k. is executed.

The FORTH Dictionary

When you type in a word to be executed or when the system compiles a word from a source file, FORTH
must search through its dictionary to find the word and its execution address. HP-71 FORTH searches
the RAM part of the dictionary first (the user dictionary) and then the ROM part (the built-in FORTH
words). Words in ROM are arranged according to word length to minimize the search time. The length of
the target word is used as an index into a jump table so that, for example, only the list of three-character
words are searched for a three-character word. A test is also made to ensure that the word is not longer

than the longest word in the ROM portion of the dictionary.

As an example of an entry in the dictionary, the structure of a FORTH primitive { i
Although this word is in the ROM dictionary, its structure is typical of words in either the ROM or RAM
parts of the dictionary.

Link Field (LFA). The contents of the link field (E43AA) point to the name field of the previous dic-

tionary entry.

Table 5-8. Structure of a Word

Code CFA = E4403 | E4408

Parameter | PFA = E3B04 | code

Field Address Contents
Link LFA = E43F2 | E43AA
Name NFA = E43F7 | 5834D4F4655C

£ is shown below.

The HP-71 FORTH System 81

Name Field (NFA). The first byte of the name field, 85, is 10000101 in binary (note that the byte’s two
nibbles are reversed, with “5” stored at a smaller address than “8”). The byte’s high-order bit is set to
indicate the start of the name field, and the second bit is clear to indicate that the word is not immediate.
The third bit (the smudge bit, set during compilation of a secondary to prevent the word being used in its
own definition) is clear. The five low-order bits have a value of 5 to indicate that the name is five charac-
ters long; the maximum length is 31 characters. The second and subsequent bytes in the name field are
the ASCII representation of the word’s name, with the high bit of the last character is set to indicate the
end of the name field. Here the last character is “E” with ASCII value 01000101, so the binary value
11000101 is stored (with nibbles reversed) as 5C.

Code Field (CFA). Because ¢ /¥ 1s a primitive, the code field contains this word’s PFA, E4408, so
that the code in the parameter field will be executed. In a secondary, the code field contains the address of
the run-time code of :, which nests the FORTH program pointer down one level.

Parameter Field (PFA). Because !
In a secondary, the parameter field contains the CFAs of the words that make up the secondary.

is a primitive, the parameter field contains executable code.

The ROM-based dictionary contains all of the built-in FORTH words except i, which is always the
first word in the RAM-based dictionary. To speed compilation, the FORTH system doesn’t search the

entire ROM-based dictionary. The ROM-based dictionary is composed of 13 separate linked lists, with
each list containing words of a specific length, so the FORTH system searches only the list for the appro-

priate word length.

At E0000 is a jump table with 13 entries. Each entry contains a pointer to the beginning of the word hst
for words of a specific length, from 0 through 12 characters. To illustrate this structure, a word “/i. I %7
appears below that will display all words in the ROM dictionary. Note that the pointer initially 1ndlcates
the list of one-character words.

The HP-71 File System

The HP-71 contains a 64K-byte operating system kernel that starts at address 00000. The kernel per-
forms various control functions and contains the BASIC interpreter. External software may be added to
the machine in the form of files that the kernal interprets or executes directly. These files may be directly
plugged into the machine through ROM or RAM modules, or copied into the machine from external me-
dia such as cards or tape.

82 The HP-71 FORTH System

File Types

The following file types are directly supported by the HP-71 mainframe. OEM software developers may
support other file types by first reserving the file type with Hewlett-Packard and then including the
appropriate poll handlers in a LEX file. Each file type is identified by a 16-bit value that conforms to
Hewlett-Packard’s Logical Interchange Format for Mass Media.

When HP-71 files are stored on external media, file security and privacy are encoded, if applicable, in the
numeric file type as shown in the chart below. When files are stored in memory, privacy and security are
encoded in the flags field of the file header, and the file type stored in the file header is always the normal

file type.

Table 5-9. Numeric File Type

Type Description Normal | Secure | Private Execute
Only
BASIC | Tokenized BASIC program. E214 E215 E216 E217
BIN HP-71 machine language. E204 E205 E206 E207
DATA Fixed data. EOFO EOF1 n/a n/a
LEX Language extension. E208 E209 E20A E20B
KEY Key assignment. E20C E20D n/a n/a
SDATA | Stream data. EODO n/a n/a n/a
TEXT ASCII text, in LIF Type 1 format. | 0001 EOD5 n/a n/a
FORTH | FORTH file. E218 E219 n/a n/a

Four of these file types are program files: BASIC, BIN (Binary), LEX (Language Extension), and
FORTH. BASIC files can be developed on the HP-71 using the built-in BASIC interpreter. FORTH files
can be developed using the HP-41 Translator ROM. BIN, LEX, and FORTH files can be developed on
the HP-71 using the FORTH/Assembler ROM.

Table 5-10. Types of Program Files

Type

Format

Method of Invocation

Mode of Execution

BASIC
BIN
LEX

FORTH

Tokenized BASIC statements.
Machine language (binary).

Language extension file; adds
BASIC keywords, messages,
and functional extensions;

written in machine language.

FORTH vocabulary.

RUN or CALL command.
RUN or CALL command.

Through its added BASIC
keywords and by polls
from operating system.

Through FORTH inter-
preter.

Interpretation.
Direct execution.

Direct execution.

Threaded inter-
pretation.

The HP-71 FORTH System 83

Structure of the File Chain

The HP-71 maintains a file area in main RAM that is composed of a linked list, or chain, of file entries.
(Each plug-in ROM module and independent RAM contains its own file chain.) At the beginning of each
file entry is a file header. The file header contains identifying information about the file along with the
link to the next file entry in the chain. The end of the chain is marked by a zero byte. Each file header
contains the following fields:

Table 5-11. Fields in a File Header

Field Size
File name 16 nibbles
File type 4 nibbles
Flag 1 nibble
Copy Code 1 nibble
Creation Time 4 nibbles
Creation Date 6 nibbles
Link 5 nibbles

File Name. The file-name field contains the eight-character file name in ASCII, filled with blanks to the
right (high memory).

File Type. The file-type field contains a four-digit hex integer, listed in the “File Types” table above.

Flag. The flag field contains four system flags. The two bits in the low end of the flag field indicate file
protection. When set, the lower of the two bits indicates a file is SECURE; the higher of the two bits
indicates a file is PRIVATE. The remaining two bits of the flag field are unused.

File Header-Flags

Low High

T_ Private

Secure

Copy Code. The copy-code field indicates the file attributes neccessary for external copying.

84 The HP-71 FORTH System

Creation Time and Creation Date. The creation-time and creation-date fields represent the time and
date in BCD. The time field contains four nibbles; the minutes are in the low byte, and the hour is in the
high byte. The date field contains six nibbles; the day is represented in the low byte, the month in the
next byte, and the year in the high byte. For example, the internal representation of 03:45 on December
16, 1981, would be as follows:

Time Date

A A

Low (5430|612]1|1] 8] High

Link. The link field contains the offset to the next file (header) in memory.

Appendix A

Care, Warranty, and Service Information

Care of the Module

The HP 82490A HP-41 Translator Pac module does not require maintenance. However, there are several
precautions, listed below, that you should observe.

CAUTIONS

e Do not place fingers, tools, or other objects into the plug-in ports. Damage to plug-in module contacts
and the computer’s internal circuitry may result.

e Turn off the computer (press [f]J[OFF]) before installing or removing a plug-in module.

e If a module jams when inserted into a port, it may be upside down. Attempting to force it further may
result in damage to the computer or the module.

e Handle the plug-in modules very carefully while they are out of the computer. Do not insert any ob-
jects in the module connector socket. Always keep a blank module in the computer port when a
module is not installed. Failure to observe these cautions may result in damage to the module or the
computer.

Limited One-Year Warranty

What We Will Do

The HP-41 Translator Pac module is warranted by Hewlett-Packard against defects in materials and
workmanship affecting electronic and mechanical performance, but not software content, for one year
from the date of original purchase. If you sell your unit or give it as a gift, the warranty is transferred to
the new owner and remains in effect for the original one-year period. During the warranty period, we will
repair or, at our option, replace at no charge a product that proves to be defective, provided you return the
product, shipping prepaid, to a Hewlett-Packard service center.

85

86 Care, Warranty, and Service Information

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of
service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.
ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED
TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or
countries do not allow limitations on how long an implied warranty lasts, so the above limitation may not
apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR
CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclusion or
limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to
you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to
state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a
consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be deter-
mined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard
shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard dealer
or a Hewlett-Packard sales and service office. Should you be unable to contact them, please contact:

e In the United States:

Hewlett-Packard
Personal Computer Group
Customer Support
11000 Wolfe Road
Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

Care, Warranty, and Service Information 87

e In Europe:

Hewlett-Packard S.A.
150, route du Nant-d’Avril
P.O. Box CH-1217 Meyrin 2
Geneva
Switzerland
Telephone: (022) 83 81 11

Note: Do not send units to this address for repair.

e In other countries:
Hewlett-Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, California 94304
U.S.A.
Telephone: (415) 857-1501

Note: Do not send units to this address for repair.

Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may have
your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit is under
warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt at
any service center. This is an average time and could vary depending upon the time of year and the work
load at the service center. The total time you are without your unit will depend largely on the shipping
time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is located
in Corvallis, Oregon:

Hewlett-Packard Company
Service Department

P.O. Box 999
Corvallis, Oregon 97339, U.S.A.
or
1030 N.E. Circle Blvd.
Corvallis, Oregon 97330, U.S.A.

Telephone: (503) 757-2000

88 Care, Warranty, and Service Information

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer
where you purchased your unit.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H.
Kleinrechner-Service
Wagramerstrasse-Lieblgasse 1
A-1220 Wien (Vienna)

Telephone: (0222) 23 65 11

BELGIUM

HEWLETT-PACKARD BELGIUM SA/NV
Woluwedal 100

B-1200 Brussels

Telephone: (02) 762 32 00

DENMARK
HEWLETT-PACKARD A/S
Datavej 52

DK-3460 Birkerod (Copenhagen)
Telephone: (02) 81 66 40

EASTERN EUROPE

Refer to the address listed under Austria.

FINLAND
HEWLETT-PACKARD OY
Revontulentie 7

SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 455 02 11

FRANCE

HEWLETT-PACKARD FRANCE
Division Informatique Personnelle
S.A.V. Calculateurs de Poche
F-91947 Les Ulis Cedex
Telephone: (6) 907 78 25

GERMANY
HEWLETT-PACKARD GmbH
Kleinrechner-Service
Vertriebszentrale

Berner Strasse 117
Postfach 560 140

D-6000 Frankfurt 56
Telephone: (611) 50041

ITALY

HEWLETT-PACKARD ITALIANA S.P.A.
Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

1-20063 Cernusco Sul Naviglio (Milan)
Telephone: (2) 90 36 91

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V.

Van Heuven Goedhartlaan 121
NL-1181 KK Amstelveen (Amsterdam)
P.O. Box 667

Telephone: (020) 472021

International Service Information

NORWAY

HEWLETT-PACKARD NORGE A/S
P.O. Box 34

Oesterndalen 18

N-1345 Oesteraas (Oslo)
Telephone: (2) 17 11 80

SPAIN

HEWLETT-PACKARD ESPANOLA S.A.
Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

SWEDEN

HEWLETT-PACKARD SVERIGE AB
Skalholtsgatan 9, Kista

Box 19

S-163 93 Spanga (Stockholm)
Telephone: (08) 750 2000

SWITZERLAND
HEWLETT-PACKARD (SCHWEIZ) AG
Kleinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057) 31 21 11

UNITED KINGDOM
HEWLETT-PACKARD Ltd
King Street Lane
GB-Winnersh, Wokingham
Berkshire RG11 5AR
Telephone: (0734) 784 774

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you
bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is available
in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local Hewlett-
Packard service center to see if service is available for it. If service is unavailable, please ship the unit to
the address listed above under Obtaining Repair Service in the United States. A list of service centers for
other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and
materials. In the United States, the full charge is subject to the customer’s local sales tax. In European
countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable. All
such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered by the fixed repair charges. In these
situations, repair charges will be individually determined based on time and materials.

Care, Warranty, and Service Information 89

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period of
90 days from date of service.

Shipping Instructions

Should your unit require service, return it with the following items:
e A completed Service Card, including a description of the problem.

e A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of purchase
date should be packaged in adequate protective packaging to prevent in-transit damage. Such damage is
not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the shipment to
the service center. The packaged unit should be shipped to the nearest Hewlett-Packard designated collec-
tion point or service center. Contact your dealer for assistance. (If you are not in the country where you
originally purchased the unit, refer to “International Service Information” above.)

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery to
the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-of-
warranty repairs in the United States and some other countries, the unit is returned C.O.D. (covering
shipping costs and the service charge).

Further Information

Circuitry and designs are proprietary to Hewlett-Packard, and service manuals are not available to cus-
tomers. Should other problems or questions arise regarding repairs, please call your nearest Hewlett-
Packard service center.

90 Care, Warranty, and Service Information

When You Need Help

Hewlett-Packard is committed to providing after-sale support to its customers. To this end, our customer
support department has established phone numbers that you can call if you have questions about this
product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call the
toll-free number below:

(800) FOR-HPPC
(800 367-4772)

Technical Assistance. For technical assistance with your product, call the number below:

(503) 757-2004

For either product information or technical assistance, you can also write to:

Hewlett-Packard
Portable Computer Division
Customer Technical Support

1000 N.E. Circle Blvd.
Corvallis, OR 97330

Appendix B

Error Messages

The error messages listed in the following tables relate only to HP-41 Translator Pac operations. For
other error or warning messages, refer to the HP-71 Reference Manual.
This appendix contains three listings:

1. An alphabetical listing of HP-41/FORTH error messages with their corresponding error numbers.
You can use the error’s number to look up the error in the next listing.

2. A numerical listing of HP-41/FORTH error messages with a description of each error condition.

3. An alphabetical listing of editor messages with a description of each message.

FORTH Messages

Alphabetical Listing of HP-41/FORTH Messages

Message Number
Addreszs Hot Inside a File oo 47084
FLlEha Data 47096
= RN T T A O 47070
Attempted to Eedefine Hull oo 47075
Badd P ar ame i or S 47086
EBASIC Mot REe—armtr amt 47094
Carmmot Lo am 47090
Comp il le Ol 47073
Conditionals Mot Faired oo 47081
I T =TT Y o TP 47087
D mt a EF F Or 47099
Oetfimition Mot Finished oo e 47071
Dictimmarg Ful l o 47072
E et S aTh 47078
FORTH Mot R ormtr amt e 47095
FTH41RAM File Hot in Flace o e 47082
T O S el 47079
HE = T B m Oy 47074
Tllegal CHSE Srr o iUl S 47092
I Protected Dict iomar g 47077
Izt ficient Mlamor g 47097
I al id F il e o m o 47083
Mo OO0 Before LERME 47091
o Erdd i mig 47069
Fm B mig 47068
T Y I = 47067
T R A= T 47098
Mo P L B 47100

91

92 Error Messages

Alphabetical Listing of HP-41/FORTH Messages (Continued)

Message Number

Bt F oo 47066

Hot in Current Yocabul arg 47089
Hot Proarammab le o 47101
Mot Recoamimed 47080
Strima Wom 't F ot 47088

Numerical Listing of HP-41/FORTH Messages with Descriptions

Error -
Number Message and Condition
47066 — Mot Found
The argument to ' (tick) isn’t in the dictionary. Check the spelling of the word.
47067 Mo Ending
The definition being compiled from a text file is unfinished. Put in an ending semicolon.
47068 Ho Ending &
. or © isn't matched by an ending parenthesis. Put in an ending parenthesis.
47069 Mo Ending "
. " or " isn’t matched by an ending double quote. Put in an ending double quote.
47070 Argument < 1
A word that expects positive integers finds negative numbers or zero on the stack. Ensure
the proper values on the stack.
47071 Oefinition Mot Finished
The stack’s size at the end of a word doesn’t equal its size at the start. Review the control
structures and immediate words used in the definition.
47072 Dictiornarg Full
The dictionary space in FTH41RAM is used up. Use FORGET or GROL.
47073 Compile Only
A compile-time word is used at run time. Check word usage in definitions.
47074 HF-IL Ervror
Something is wrong related to the HP-IL interface. Check that the HP-IL interface is plugged
into the HP-71; check the integrity of the loop.
47075 Attempied to Eedefine Hull
A colon (starting a colon definition) is the only input received from the keyboard; or
WORED ' or WORDI '' appears in a primitive assembly. Fatal to assembly. You can’t
redefine the null word in FORTH.
47077 Iri Protected Dictionary
The argument for FORGET is below FENCE (or in ROM). Reset FENCE.
47078 Empty Stack
A word expecting stack parameters finds the stack empty. Provide stack parameters.
47079 Full Stack
The space in FTH41RAM for the data stack is used up. Use GFR Il to enlarge FTH41RAM
or use FORZET to make space in FTH41RAM.

Error Messages

Error -
Number Message and Condition
47080 Mot
The input is neither an existing word nor a number. Check the spelling of the word; check
the CONTEXT vocabulary.
47081 - !
A control-structure word (such as T appears without the preceding word (such as
[¥). Supply the missing word.
47082 FTH4IREAM Fils Hot in Flacs
: L, FOETHF, or S attempted when the FTH41RAM file hasn’t been cre-
ated or has moved. Use Horf I+ to enter FORTH and then exit.
47083 ; i
The argument to | - is an illegal file specifier. Supply a valid file specifier.
47084 P = t
- is given an address not properly within a file, such as the address of a file
header. Check the address of the file.
47086
A string word finds an out-of-range value on the stack, such as a character-position param-
eter of 20 for a string only 10 characters long. Check the stack value.
47087 P
An oversized configuration buffer or an erroneous pointer to that buffer prevents the
FORTHRAM file from occupying its required location. This will never occur under normal
circumstances. Remove a LEX file from RAM or remove a module.
47088
A string is too long for the specified variable. Check the size of the variable.
47089 i o g
The argument for isn’t in the CURRENT vocabulary. Check the spelling of the
word and the CURRENT vocabulary.
47090
The file is open, doesn’t exist, etc. Check the file’s status.
47091 e LEAVE
is used outside a [iti-loop. Use - only inside a Liii-loop.
47092
isn’t preceded by valld i structure. Check the com-
pIete control structure.
47094
#. Eliminate such usage.
47095
Hi s used in an argument to & or in a program or user-defined function
executed from EFE I ~. Eliminate such usage.
47096
Alpha data was used for a function requiring numeric input.
47097

There is |nsuff|C|ent memory avallable to increase the FORTH dictionary by the amount
specified with = ; or to load a file into HP-41 emulator
memory. Refer to Creating New Functlons on page 47 for instructions on increasing the size
of the i file.

93

94 Error Messages

Error -
t
Number Message and Condition
47098 Homewsistent
A register used by an HP-41 register function, or a label specified with T or =E, does
not exist. Check the function syntax; compare numeric labels to =1 ZE .
47099 Dzata Error
An invalid parameter is supplied for an HP-41 function:
Function: Condition:
TOHE x> 9
FIX, SCI, EMG x> 11
AROT, POSA, aTOR, H<5F x > 255
CLEGH, FEREGH x>999
STOFLAG x not obtained with ECLFLHAG
x > 43 if y was obtained RCLFLAG
AEMHE, m=HHET, HIHHT, ®<=HHT, y contains alpha data other than “X”, “Y”, “Z”,
HEHHT, RE=HH “T", or “L".
S+, S X, Y, or any of the summation registers con-
tains Inf or NaN
ooT Ikl > 68719476735 or x is a non-integer or
NaN.
DEC Wl > 777777777777, x is a non-integer or
NaN, or x contains a non-octal digit.
47100 Ho Frimter
An HP-41 printer function is executed when flag 55 is clear, indicating that no printer is
present. Check printer connection and status of flag 55 (F=% 55).
47101 Mot Proarammable

LOAD is executed with an intermediate file containing one of the functions: HF 41, CLF,
LopD, RUM, or FREIMTEE.

Error Messages

Editor Messages

OOMHE
The editor has been exited.

File Exists: ____
The file specified to receive deleted lines already exists. Use the =+ option, or choose a different
filename.

Insufficient Memory
There is insufficient memory for the operation being performed. If other operations requiring less mem-
ory can be performed, the Cicd @ prompt returns to the display. If no further operations are possible, the
editor is exited. Purge a file or execute DE=TROY HALL.

Irwalid File Tupe:
The file specified in the command string must be a text file.

Irwalid Faram:

The editor doesn’t recognize the parameter portion of a command string. Review the command’s
syntax.

Line Too Long
The line of text is longer than 96 characters, which is not allowed in text mode.

Cmedy
The editor doesn’t recognize the letter as a valid command. The valid commands are c, d, e, f, h, i, |, m,
p, r, s, and t.

Morkinag. ..
The editor is executing a command.

95

Appendix C

BASIC Keywords

Introduction

This appendix describes the BASIC keywords added to the HP-71 when the HP-41 Translator Pac mod-
ule is plugged in. The keywords fall into three categories:

BASIC-to-FORTH Editor BASIC/FORTH-to-HP-41

FORTH ODELETE# HF41
FORTHS® EOTEST
FORTHF FILESZER
FORTHI IHSERTH
FORTHS: MEGE
REFLACE#
SCREOLL
SEARCH
Organization

Entries in this appendix are arranged in alphabetical order. The same format is used for every keyword
entry so that you can quickly find the information you need. The format is similar to that used in the
HP-71 Reference Manual—refer to that manual for additional details.

Each keyword entry provides the following information for the keyword:
e Keyword name. Shows the basic keyword.

e Purpose. Gives a one-line summary of the operation that the keyword performs.

o Keyword type. Identifies the keyword as a statement or as a function. (None of the keywords are
operators.)

o Execution options. Indicates situations in which you can execute the keyword:
e From the keyboard.
e In CALC mode.
e After THEH or ELZE in an IF ... THEH ... ELZE statement.

e While the HP-71 is operating as an HP-IL device (not as controller). This is given only for
HP-IL words.

97

98 BASIC Keywords

e Syntax diagram. Defines the required and optional components within the statement or function
for proper syntax. Parameters shown within brackets are optional. Parameters shown in a vertical
stack are alternatives.

o Examples. Illustrates and explains some ways that the keyword can be used, and shows some pos-
sible syntax variations.

e Input parameters. Defines the parameters used in the syntax diagram, gives their default values (if
applicable), and lists restrictions on parameter values or structure. (This heading isn’t included for
keywords that use no parameters.)

e Operation. Gives a detailed description of the keyword’s operation and other information that’s use-
ful for learning and using the keyword.

¢ Related keywords. Lists other keywords that either influence the results of the subject keyword or
else are similar in function.

BASIC Keywords 99

DELETE#

Deletes one record from a text file.

B Statement B Keyboard Execution
0 Function 0 CALC Mode
O Operator B |F..THEN...ELSE

DELETE# channel number . record number

DELETE# 5,14 Deletes the 14th record from the text file currently
assigned to channel #5.

Input Parameters

Item Description Restrictions
channel number Numeric expression rounded to an integer. 1 through 255.
record number Numeric expression rounded to an integer.
Operation

The DELETE# keyword deletes the specified record from the text file assigned to the specified channel
number. Record numbers always begin at 0, so line number 1 is record number 0.

The channel number and the record number can be expressions. IELETE# rounds each of the resulting
values to an integer.

DELETE# returns an error message if the assigned file is external, protected, or not a text file.

Related Keywords

ASSIGH#, THSERTH, REFLACE#, FILESER

100 BASIC Keywords

EDTEXT

Invokes the text editor.

B Statement B Keyboard Execution
O Function 0 CALC Mode
[J Operator B IF..THEN...ELSE

EOTEXT file specifier[. command string]

Examples

EOTEXT SCREEH Runs the editor program, with ZCREEEH as the edit
file.

EOTEXT SCREEEH. L Runs the editor program, with SCFEEH as the edit

file. Begins by listing the file to the display device.

Input Parameters

Item Description Restrictions
file specifier String expression or unquoted string. File must be in
RAM or IRAM.
command string See description of editor command strings in section 3.
Operation

The EQOTE T keyword starts the editor program. The optional command string permits you to have the
editor begin immediate execution of editor commands that appear in the command string.

An error can cause the editor program to terminate without going through its normal exit path. If you are
running the editor from another BASIC program, or from the FORTH or HP-41 environments, you can
check for this situation by using DIZF# to read the display contents. If the result is other than
Dome: <filername’, then you will know that the editor has encountered a fatal error, the edit file
may be in a corrupt state, and the editor key assignments may still be active. For example, from the
FORTH environment, you can type the sequence

" EOTEST SCREEEM® BARASICH " DISPEY BASICY OROFP B —-1E55825 =

to edit the file ZCREEH. When the editor terminates, a true flag will be pushed on the stack if the editor
terminated normally (here we are checking the numerical equivalent of the first three characters on the
display to see if they match “Don”, which translates to —102588).

Related Keywords

ARSSIGH#, DELETE#, FEFLACE#, FILESZR

Returns the number of records in a text file.

BASIC Keywords 101

FILESZR

0 Statement B Keyboard Execution
B Function O CALC Mode

O Operator B |F..THEN...ELSE
FILESZR dfilename:

Input Parameters

Sets the variable = equal to the number of records in
the text file SCREEH.

Item Description Restrictions
file name String expression or quoted string. Can not include a
device specifier or
CARD.
Operation

The F I

f——
| i

F keyword returns the number of records in the file specified, if that file exists. If the file

does not exist, or the operation fails for any other reason, a negative number is returned. The absolute
value of the negative number is the error number of the error that caused the function to fail.

Related Keywords

IMSERETH, DELETE#®, REFLACES#

102 BASIC Keywords

FORTH

Transfers HP-71 operation to the FORTH environment.

B Statement B Keyboard Execution
O Function 0 CALC Mode
O Operator U IF..THEN...ELSE
FORTH

Operation

Keyboard execution of FiiFTH (it is not programmable) causes the HP-71 to exit the BASIC or HP-41
environments and transfer control to the FORTH environment. The message HF~71 FOETH 1A is
displayed. Subsequent keyboard input is interpreted by the FORTH outer interpreter.

If the HP-71 is turned off while FORTH is active, it will automatically reenter the FORTH environment
when the HP-71 is turned back on.

Execution of the FORTH word E*%'E will return the HP-71 to BASIC.

Because of the complete access to the HP-71 memory space provided by FORTH, it is quite possible for a
FORTH program to store inappropriate data into HP-71 operating system RAM. In many cases, this will
cause a memory lost condition. Following a memory loss, the HP-71 will return to the BASIC
environment.

Related Keywords

FORTHE, FORTHF, FORTHI, FORTH:

BASIC Keywords 103

FORTHS

Returns to a BASIC string variable the contents of a string defined in the FORTH environment by an
address and character count on the FORTH data stack.

O Statement B Keyboard Execution
B Function O CALC Mode
O Operator B |F..THEN...ELSE
FORTHS
Examples
FE=FORTHSF Returns the value of the FORTH string to the
BASIC variable i#.
CE=CELFORTHE Concatenates the FORTH string to #.
Operation

FIRETH#% reads a string specified by the address and character count on the FORTH data stack and
returns its value to a BASIC string variable. The contents of the FORTH data stack must already have
been established prior to execution of F 1R TH#. If there are fewer than two values on the data stack when
FIRETH# is executed, an error will occur, producing the message FTH EFRRE:emptw stack,

When FORETH# is executed, two values are dropped from the top of the FORTH data stack. There is no
other effect on the FORTH environment. If the FTH41RAM file does not exist or is not positioned prop-
erly, the message FTH EREFE:FTH41EAM rnot in placs is displayed.

Related Keywords

FORTH, FORTHF, FORTHI, FORTHH

104 BASIC Keywords
FORTHF

Returns the contents of the FORTH floating—point X-register to a BASIC numeric variable.

0 Statement B Keyboard Execution
B Function B CALC Mode
0 Operator B |F..THEN...ELSE
FORETHF
Examples
H=FORTHF Copies the contents of the FORTH X-register to the
BASIC variable .
=S IHIFORTHF » Computes the sine of the contents of the X-register
and places the result in the BASIC variable .
FORTHH 'Y AY BRSICF FHORD! Copies the BASIC variable # to the FORTH
E=FORTHF X-register, then executes a FORTH word FiiiR,
and returns the resulting value from the X-register
to the BASIC variable .
Operation

FRETHF allows floating-point numeric data in the FORTH environment to be accessed from the BASIC
environment. FIETHF copies the contents of the FORTH floating X-register to a BASIC numeric vari-
able. The contents of the FORTH floating—point stack remain unchanged, and there is no other effect on
the FORTH environment.

FORETHH., If the FTH41RAM file does not exist or is not positioned properly, the message
FTH ERE:FTH41REAM rnot in place is displayed.

Related Keywords

FORTH, FORTHE, FORTHI, FORTHH

BASIC Keywords 105
FORTHI

Returns the top value from the FORTH data stack to a BASIC numeric variable.

O Statement B Keyboard Execution
M Function B CALC Mode
[J Operator B IF..THEN...ELSE

Moves the top value from the FORTH data stack to
the BASIC variable I.

Computes the square of the value on the FORTH
data stack and places the result in the BASIC vari-
able I.

FUORD? Copies the BASIC variable I to the FORTH data
stack, then executes a FORTH word FiiELD, and
returns the resulting top value from the data stack to
the BASIC variable E.

Operation

F{iRTHI allows values contained on the FORTH data stack to be accessed from the BASIC environment.
0 {1 moves the value on the top of the FORTH data stack to a BASIC numeric variable. The value is
dropped from the data stack, but there is no other effect on the FORTH environment.

oy

If there are no values on the data stack when FIiFTHI is executed, an error will occur, producing the

=R i

message FTH ERE: . The FORTH environment can be configured prior to execution of
F{iRETHF through the keyword FOR ;. If the FTH4 1 A file does not exist or is not positioned prop-
erly, the message FTH ERRE:FTH41 1 not im places is displayed.

Related Keywords

FORTH,

THE, FOR

106 BASIC Keywords

FORTHX

Executes a FORTH command string.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B |F..THEN...ELSE

FORTHY command string [. parameter list]

Example
FORTHH "OROF + . TYFE CE"“, Push onto the FORTH data stack the address and
THellob, 1,2,3 character count of the string “Hello,” and the values

1, 2, and 3; then execute the FORTH words IR F,
+, ., TYFE, and CF.

Input Parameters

Item Description Restrictions
command string String expression. Contains valid
FORTH words.
parameter list Numeric expressions and string expressions, separated by | Maximum of 14
commas. parameters.
Operation

The FORETH: keyword allows you to execute FORTH routines from the BASIC environment. The op-
tional parameter list is a list of up to 14 string or numeric expressions, separated by commas. Each item in
the list is pushed onto the FORTH data stack: numbers as single length numbers, and strings each as two
numbers representing the address and character count of the string. After the parameters are placed on
the stack, the sequence of FORTH words specified in the command string is executed, following which
control is returned to the BASIC environment.

EAZICH can not be included in the command list—the FORTH/BASIC interface does not permit re-
entrant execution.

The strings passed to FORTH in the parameter list are created in temporary memory. FORTH words can
copy those strings to FORTH string variables, or concatenate them to existing strings, but you should not
attempt to write other strings to the addresses of the temporary F ik TH: strings.

Related Keywords

FORETH, FORTHE, FORETHF, FORTHI

BASIC Keywords 107

HP41

Transfers HP-71 operation to the HP-41 environment.

B Statement B Keyboard Execution
O Function J CALC Mode
[J Operator U IF..THEN...ELSE
HF 41

Operation

Keyboard execution of HF< 1 (it is not programmable) causes the HP-71 to exit the BASIC operating
system environment and transfer control to the HP-41 environment. The message HF -
41 Ewmulator 1A Is displayed. Subsequent keyboard input is interpreted by the FORTH outer
interpreter.

If the HP-71 is turned off while FORTH is active, it will automatically reenter the HP-41 environment
when the HP-71 is turned back on.

Executing EfiZ 1L returns the HP-71 to BASIC.

Related Keywords

FORTH, FORTH#, FORTHF, FORTHI, FORTHX

108 BASIC Keywords

INSERT #

Inserts one record into a text file.

B Statement B Keyboard Execution
O Function 0 CALC Mode
O Operator B IF.. THEN...ELSE

ITHZERETH# channel number . record number : new record

Example

ld i tHello there® Inserts the string “Hello there” into the file cur-
rently assigned to channel #5, as record 14. The for-
mer record 14 becomes record 15.

Input Parameters

Item Description Restrictions
channel number Numeric expression rounded to an integer. 1 through 255.
record number Numeric expression rounded to an integer.
new record String expression.
Operation

The IHZEFRT# keyword inserts the new record at the record number in the file assigned to the specified
channel number. The new record is an HP-71 string expression. The channel number and the record
number can be expressions. Record numbers always begin at 0, so line number 1 is record number O.
ET# rounds each of the resulting values to an integer.

The new record is inserted ahead of the record previously numbered at the record number. The former
record, and all subsequent records, have their records numbers incremented incremented by 1.

FT# returns an error message if the assigned file is external, protected, or not a text file.

Related Keywords

Returns the message string corresponding to a specified error number.

BASIC Keywords 109

MSG$

[J Statement
B Function
O Operator

B Keyboard Execution
0 CALC Mode
M IF..THEN...ELSE

MZG#E Cerror number

Input Parameters

Places the message string associated with error #58

into the string variable F#.

Item

Description

Restrictions

error number

Numeric expression.

Valid error number.

Operation

The M=% keyword provides access to the error message strings generated by the HP-71 operating sys-
tem, the HP-41 Translator ROM, or any other LEX file. M= =% {n: returns the string corresponding to

the nth error.

MEZ# is a generalization of the keyword EFF %, which returns the message string associated with the

most recent error.

Related Keywords

ERREHM, EREL, ERENE

Ly, &

110 BASIC Keywords

REPLACE#

Replaces one record in a text file.

B Statement B Keyboard Execution
O Function 0 CALC Mode
J Operator B |F..THEN...ELSE

EEFLACE# channel number . record number ;: new record

Example

FEFLACE®# S,14:"Hello there® Replaces the 14th record in the text file currently as-
signed to channel #5, with the string “Hello there”.

Input Parameters

Item Description Restrictions
channel number Numeric expression rounded to an integer. 1 through 255.
record number Numeric expression rounded to an integer.
new record String expression.
Operation

The REFLACE# keyword replaces a specified record, in the text file assigned to the specified channel
number, with a new record. The new record is an HP-71 string expression. The channel number and the
record number can be expressions. Record numbers always begin at 0, so line number 1 is record number
0. REFLACE# rounds each of the resulting values to an integer.

FEFILACE# returns an error message if the assigned file is external, protected, or not a text file.

Related Keywords

ASSIGHS, DELETES, IHNSERTH, FILESER

BASIC Keywords 111

SCROLL

Scrolls the display to a position and waits for a key to be pressed.

B Statement B Keyboard Execution
UJ Function J CALC Mode
0O Operator B |F..THEN...ELSE
ZOREOLL position

Example

DISF "Hello there' @ SCROLL 4

L A

Input Parameters

Display the string “Hello there,” with the fourth
character in the string as the first character in the
display, so that the display shows “lo there.”

Item Description Restrictions
position Numeric expression rounded to an integer. 1 through 96.
Operation
The ZCEZLL keyword enables you to display a string, under program control, that can be scrolled from

the keyboard. Execution of ZiZF Il L causes the current display string to shift so that the character in the
position specified by the numeric expression is the leftmost character in the display. Execution halts, so
that a user can press the left- and right-arrow keys to scroll the display. Execution resumes when any
other key is pressed (the pressed keycode is placed in the key buffer). The number input with ZCREOLL
must be greater than zero.

112 BASIC Keywords

SEARCH

Finds a string in a text file.

O Statement B Keyboard Execution
B Function 0 CALC Mode
L] Operator B |IF..THEN...ELSE

SERECH Csearch string . column number . begin line . end line . channel

Example

Searches the file assigned to channel #2 for the
string “Hello.” The search starts in column 5, line 1,
and extends through line 99.

Input Parameters

Item Description Restrictions
search string String expression.
column number Numeric expression rounded to an integer. 1 through 9999
begin line Numeric expression rounded to an integer. 0 through 9999
end line Numeric expression rounded to an integer. 0 through 9999
channel Numeric expression rounded to an integer. 1 through 255
Operation

The ZErRFEDH keyword enables you to determine the location of a specified string within an HP-71 text
file. If the search is successful, =E AR H returns a value in the format nnn.ccclll, where nnn is the record
number, ccc is the column number, and ll] is the length of the matched string. If the search is unsuccessful,
zero is returned.

The search string can be any string expression, and the other parameters can be any numeric expression.
Each input value is rounded to an integer. A zero is returned for an empty file.

Related Keywords

Pl
i

T

i
—q
T
fi< 4

Appendix D

FORTH Words

This appendix describes all FORTH words in the HP-41 Pac. The words appear in ASCII order. Each
entry shows the word, its pronunciation, its use of the data stack, and a brief description of the word’s
operation. A word E #FAMFLE might have the following entry:

EXAMPLE (Example) ny ny, - n3

Perform the specified operation on n; and n,, replacing them on the data stack with the result n. (Before
EXAMFLE is executed, ny is on the top of the stack. After ExFRMFLE is executed, ng is on the top of the
stack.)

Some descriptions categorize words as COMPILE, IMMEDIATE, FORTH, or HP-41. These indicate the

following:

e COMPILE indicates that the word is intended for use only during compilation. Direct execution of
the word can give meaningless or dangerous results; where appropriate, a
FTH ERE: compile onlwy error occurs.

e IMMEDIATE indicates that the word is executed, rather than compiled, when encountered during
compilation.

e FORTH indicates that this word (or version of the word), is available in the FORTH vocabulary, but
not in the HP41V vocabulary.

e HP-41 indicates that his word (or version of the word) is available only in the HP41V vocabulary, and
not in the FORTH vocabulary.

If no categories are specified, the word works as described in both the FORTH and HP-41 environments.

Note: The HP-41 vocabulary contains many HP-41 functions that depend on special data structures
existing only in the HP-41 environment. These functions are not considered proper FORTH words,
and therefore are not included in this appendix. Refer to appendix E for a list of all HP-41 functions.

113

114 FORTH Words

Notation

The stack-use diagrams use the following variables to represent various types of data.

Definition of Stack Variables

Variable Type of Data

n A signed (twos complement) 20-bit integer.

un An unsigned 20-bit integer.

d A signed (twos complement) 40-bit integer.

ud An unsigned 40-bit integer.

flag A signed (twos complement) 20-bit value, either —1 (true) or 0
(false).

c A 20-bit value whose two low-order nibbles represent an ASCII
character.

addr A 20-bit address.

count A 20-bit value whose two low-order nibbles represent the number
of characters in a string.

str A 40-bit value comprising addr and count. Count is on top and
tells how many characters are to be found at addr.

Errors

Many FORTH words require one or more parameters on the data stack. When a word is executed with too
few parameters on the stack, unpredictable errors will occur. The error message

FTH EREE: esmpty =1ack might be displayed, but only after the operation is carried out on spurious
parameters. These spurious parameters come from the terminal input buffer (TIB), which resides above
the data stack. If a result is returned, it will be written into the TIB, and an error message like

FTH ERE: =Y¥zat rnot recoanized occurs when FORTH tries to interpret this result as a
character string containing FORTH words and data.

FORTH is similar to assembly language in its lack of user protection. In most cases FORTH will attempt
to perform a specified operation, even if the operation will cause a FMzmorw Lozt condition. For in-
stance, it is easy to write a FORTH loop that pushes a value onto the data stack 1,000,000 times. Execu-
tion of this loop will overwrite the user dictionary, the FORTH system variables, and the BASIC O/S
variables Eventually the machine will be too confused to continue and will perform a cold start. In other
cases you might need to perform an IHIT 3 to recover normal HP-71 operation.

FORTH Words 115

FORTH Glossary

! (Store) n addr -

Store n at addr.

“ (Quote) - str

Used in the form: " ccc*

IMMEDIATE. In execute mode: Take the characters ccc, terminated by the next “, from the input
stream, and store them in a temporary string variable at the PAD. The string variable’s header shows a
maximum length of 80 characters or the current length, whichever is greater. Any other word that returns
another temporary string will wipe out the first string.

In compile mode: Compile into the dictionary the runtime address of ", two bytes for the length of the
string ccc (maximum length = current length), and the string itself. A string must be contained on a
single line of a source file.

(Sharp) ud, - wudy

Used in the form: <# #$### #>-

Divide ud; by EAZE, convert the remainder to an ASCII character, place this character in an output
string, and return the quotient udy. Used in pictured output conversion; refer to «#.

#> (Sharp-greater) ud - addr n

End pictured output conversion. #: drops ud and returns the text address and character count. (These
are suitable inputs for T FE.)

#S (Sharp-s) ud - 0 0

Convert ud into digits (as by repeated execution of #), adding each digit to the pictured numeric-output
text until the remainder is zero. A single zero is added to the output if ud = 0. Used between < # and #.

#TIB (Number-t-i-b) -~ addr

Return the address of the variable #T1IB, which contains the number of bytes in the terminal input buffer.
Set by ZLUERY.

116 FORTH Words

’ (Tick) -~ addr

Used in the form: ' name

Return the CFA of name.

'STREAM (Tick-stream) -~ adadr

Return the address of the next character in the input stream.

% (Percent) -

Replace x with x%y/100. The original value of x is saved in the LAST X register.

%CH (Percent change) -

Replace x with 100%(x—2y)/y. The original value of x is saved in the LAST X register.

((Paren) -

Used in the form: ¢ ccc:

IMMEDIATE. Consider the characters ccc, delimited by , as a comment to be ignored by the text inter-
preter. The blank following © is not part of ccc. © may be freely used while interpreting or compiling. A
comment must be contained on a single line of a source file.

* (Times) ny ny - ng

FORTH: Return the arithmetic product of n; and n,.

k (Times) -

HP-41: Execute F*.

FORTH Words 117

k/ (Times-divide)

ny

np

n3 -

Ny

Multiply n; and ny, divide the result by ns, and return the quotient n,. The product of n; and ny is
maintained as an intermediate 40-bit value for greater precision in the division.

*/MOD (Times-divide-mod)

ny np, ng

= N4 Dng

Multiply n; and ny, divide the result by ns, and return the remainder n, and the quotient ns. The product

of n; and n, is maintained as an intermediate 40-bit value for greater precision in the division.

+ (Plus) ny np; = ng
FORTH: Return the arithmetic sum of n; and n,.

+ (Plus) -
HP-41: Execute F+.

+! (Plus-store) n addr -
Add n to the 20-bit value at addr.

+BUF (Plus-Buff) addr; - addr, flag

Advance the mass-storage-buffer address (addr) to the address of the next buffer (addry). +EIF returns a
false flag if addry is the address of the buffer currently pointed to by FFE.; otherwise, +ELIF returns a

true flag.

118 FORTH Words

’ (Comma) n -

Used in the form: 1234

Allot five nibbles and store n in the dictionary.

- (Minus) ny np = ng

FORTH: Subtract ny from n; and return the difference ns.

- (Minus) -

HP-41: Execute F—.

—TRAILING Dash-trailing addr count{ ~addr countse

Adjust the character count of the text beginning at addr to exclude trailing blanks.

(Dot) n-

Convert n according to EAZE and display the result in a free-field format with one trailing blank. Display
a minus sign if n is negative.

(Dot-quote) -

Used in the form: . 'teceet

COMPILE, IMMEDIATE: Compile the characters ccc, delimited by ", so that later execution will trans-
mit ccc to the current display device. The blank following . " is not part of ccc. A string must be con-
tained of a single line of a source file.

FORTH Words 119

K| (Dot-paren) -

Used in the form: . @ ccc:

IMMEDIATE: Display the characters ccc, delimited by :. The blank following . i is not part of ccc. A
string must be contained on a single line of a source file.

.S (Dot-S) -
Print the contents of the stack as unsigned integers, starting with the top of the stack. . = doesn’t alter
the stack.

/ (Divide) ny n, - ng

FORTH: Divide n; by n,, and return the quotient ns. Division by 0 always yields 0.

/ (Divide) -

HP-41: Execute F/.

/MOD (Divide-mod) ny ny, = nz ny

Divide n; by ny, and return the remainder ny and quotient n,.

0 (Zero) - 0

FORTH: Return the constant 0.

0 (Zero) -

HP-41: Lift the floating-point stack, place 0 into the X-register, and set number entry flag 22.

0< (Zero-less) n - flag

Return a true flag if n < 0; otherwise, return a false flag.

120 FORTH Words

1/X (Reciprocal-of-X) -

Divide 1.0 by the contents of the X-register. i - places the result in the X-register and the original value
of x in the LAST X register.

10~X (10-to-the-X) -

Raise 10 to the power contained in the X-register. 1% ™ places the result in the X-register and the
original value of x in the LAST X register.

2 (Two) - 2

FORTH: Return the constant 2.

2 (Two) -

HP-41: Lift the floating-point stack, place 2 into the X-register, and set number entry flag 22.

2% (Two-times) n - 2n

Return the product of n and 2.

2+ (Two-plus) n - n+2

Increment n by 2.

2— (Two-minus) n - n-2

Decrement n by 2.

2/ (Two-divide) n - nf2

Divide n by 2 and return the result. = .- produces n/2 by shifting n one bit to the right and extending the
sign bit.

FORTH Words 121

2DROP (Two-drop) d -

Drop the double number (or two single numbers) on the top of the data stack.

2DUP (Two-dup) dy - dy d,

Duplicate the double number (or pair of single numbers) on the top of the data stack.

20VER (Two-over) dy d, = d; dp d4

Make a copy of the second double number (or third and fourth single numbers) on the data stack.

2SWAP (Two-swap) dy dy = dy d

Reverse the order of the two double numbers on the top of data stack.

3 (Three) - 3

FORTH: Return the constant 3.

3 (Three) -

HP-41: Lift the floating-point stack, place 3 into the X-register, and set number entry flag 22.

AN@ (Four-n-fetch) addr - n

Return the four-nibble (two-byte) quantity located at addr.

5+ (Five-plus) n - n+5

Increment n by 5.

122 FORTH Words

5— (Five-minus) n - n-=5

Decrement n by 5.

(Colon) -

Used in the form: : name . ..

Create a word definition for name in the compilation vocabulary and set compilation state. The search
order is changed so that the first vocabulary in the search order is replaced by the compilation vocabulary.
The compilation vocabulary is unchanged. The text from the input stream is subsequently compiled. name
is called a colon definition. The newly created word definition for name cannot be found in the dictionary
until the corresponding : is successfully processed.

; (Semicolon) -

Used in the form: : name . ..

IMMEDIATE, COMPILE. Stop compilation of a colon definition. ; compiles E<IT into the dictionary,
clears the smudge bit (so that this colon definition can be found in the dictionary), and sets execute state.

< (Less-than) ny np, - flag

Return a true flag if ny < no; otherwise, return a false flag.

<# (Less-sharp) -

Initialize pictured numeric output. The words «#, #, #%, HOL D, SI1GH, and #> can specify the conver-
sion of a double number into an ASCII-character string stored in right-to-left order.

<> (Not-equal) ny n, - flag

Return a true flag if n; # no; otherwise, return a false flag.

FORTH Words 123

= (Equals) ny np - flag

Return a true flag if n; = ny; otherwise, return a false flag.

> (Greater-than) ny n, - flag

Return a true flag if n; > no; otherwise, return a false flag.

>BODY (To-body) addr, - addr,

Return the PFA (addry) of the word whose CFA is addry. (addry = addr; + 5.)

>IN (To-in) - addr

Return the address of the variable >IN, which contains the current offset within the input stream. The
offset is expressed in nibbles and points to the first position past the first blank.

>R (To-R) n -

COMPILE. Transfer n to the return stack.

? (Question-mark) addr -

Used in the form: HE: ZFCCES 7

Display the number at addr using the current EFAZE and the . (dot) format.

2COMP (Query-comp) -
COMPILE. Issue a FTH ERF: compile onlwy message if not in compile mode.
?DUP (Query-dup) n - n (n

Duplicate n if n # 0.

124 FORTH Words

?STACK (Query-stack) -

Issue a FTH ERF: =mpty =tack message if the stack pointer is above the bottom of the stack; or
issue a FTH EFRF: full =tack message if the stack pointer has grown into the pad.

?TERMINAL (Query-terminal) -~ flag

Return a true flag if a key has been pressed and placed in the key buffer; otherwise, return a false flag.

@ (Fetch) addr - n

Return the number stored at addr.

ABORT (Abort) -

Reset the data and return stacks, close all files, set execution mode, set FiiF TH as the current and con-
text vocabulary, and return control to the terminal.

ABORT* (Abort-quote) flag -

Used in the form: : name ... REOETY ccc" ...

COMPILE, IMMEDIATE. If flag is true, display the character string ccc (delimited by ") and execute
AEDORT; otherwise, drop the flag and continue execution. The character string must be contained on a
single line of a source file.

ABS (Absolute) n - Inl

FORTH: Return the absolute value of n.

ABS (Absolute) -

HP-41: Execute FABS.

FORTH Words 125

ACOS (A-cos) -

Calculate the arc cosine of the contents of the X-register, according to the currently active angular mode.
AC0% places the result in the X-register and the original value of x in the LAST X register.

ADJUSTF (Adjust-f) addr n - flag

Adjust a file by n nibbles, starting at addr and moving toward greater addresses, and return a true flag if
successful or a false flag if not. A[I.1IETF enlarges the file for positive n or shrinks the file for negative n.

ALLOT (Allot) n -

Add n bytes to the parameter field of the most recently defined word (regardless of the CLIEREHT and
COMTE ST vocabularies).

AND (And) ny n, = ng

Return the bit-by-bit AND of n; and n,.

ASC (Ascii) str = n

Return the ASCII value of the first character in the string specified by str.

ASIN (A-sine) -

Calculate the arc sine of the contents of the X-register, according to the currently active angular mode.
A% IH places the result in the X-register and the original value of x in the LAST X register.

ATAN (A-tan) -

Calculate the arc tangent of the contents of the X-register, according to the currently active angular mode.
ATHAH places the result in the X-register and the original value of x in the LAST X register.

BASE (Base) -~ addr

Return the address of the variable BASE, which contains the current numeric-conversion base.

126 FORTH Words

BASIC (Basic) -

Exit the FORTH or HP-41 environments, and enter the BASIC environment.

BASIC$ (Basic-dollar) stry = strp

Used in the form: " HE" BRSICE
"ORFCLL.EIY BASICE

Return the current value of a BASIC string expression (specified by str;) to the pad as a FORTH string
(specified by strs.)

BASICF (Basic-f) str -

Used in the form: " A" EBARASICF
"ORL-ASY BARSICF
"ORSEFPIY BASICF
" TIME" BARSICF

Return the current value of a BASIC numeric expression (specified by str) to the FORTH X-register,
lifting the floating-point stack.

BASICI (Basic-i) str = n

Used in the form: " A" BRSICI

Return the current value of a BASIC numeric expression (specified by str). An overflow error occurs if the
variable’s value exceeds FFFFF.

BASICX (Basic-x) str -

Used in the form: " RUM 'JOE'" BASICH
" BEEF" BASICH
" A=FI" BASICH
" 1@ DISF A" BASICH

Pass a string (specified by str) to the BASIC system for parsing and editing/execution, and then return to
FORTH.

FORTH Words 127

BEEP (Beep) -

HP-41: Sound the HP-41 4-tone beep.

BEGIN . . . UNTIL -

Used in the form: ... EEGIH actions flag UHTIL

IMMEDIATE, COMPILE: Execute actions and test flag; if flag is false, repeat; if flag is true, skip to the
word following LIHTIL.

BEGIN ... WHILE . . . REPEAT -

Used in the form: ... EEGIHM actions; flag WHILE actions, FEFERT

IMMEDIATE, COMPILE: Execute actions; and test flag; if flag is true, execute actions, and repeat; if flag
is false, skip to the word following FEFEAT.

BL (Blank) - c

Return 32, the ASCII value for a space or blank.

BLK (B-I-k) -~ addr

Return the address of the variable BLK, which contains the number of the line being interpreted from the
active file. The value of BLK is an unsigned number; if it is zero, the input stream is taken from the
keyboard device.

BLOCK (Block) n - addr

Return the address of the first byte in the mass-storage-buffer copy of line n in the active file. If line n
hasn’t already been copied from the file (in RAM or on mass storage) into a mass storage buffer, EL I CE
does so.

BYE (Bye) -

Exit the FORTH or HP-41 environment and return control to the BASIC environent.

128 FORTH Words

C!

(C-store) n addr -

Store the two low-order nibbles of n at addr.

C, (C-comma) n -
ALLOT one byte and store the two low-order nibbles of n at HERE.
C@ (C-fetch) addr - byte

Return the contents of the byte at addr. The three high-order nibbles of the five-nibble stack entry are 0.

Co+ (C-at-plus)

stry = stry ¢

Return ¢, the first character in the string specified by str, and stry, where addr,

= addr; + 2 and count,
= count; — 1. If count; = 0, ¢ = 0 and stry = strl.

CASE .. . OF . . . ENDOF . . . (case Statements) n -
ENDCASE
Used in the form: ... CHESE

ny 0F actionsy EHLF actionsy
n, 0F actions, EHLF actionsy
ng CF actionsy EMIGF actionsy’

IMMEDIATE, COMPILE. Starting with the first case statement (i = 1):

e If n = n;, drop n, execute actions;, and skip to the word following EHIITASE,

e If n # n;, execute actions; and examine the next case statement. (If there are no more case state-
ments, drop n and skip to the word following EHICZF%E). Note that each optional actions; can alter
the value of n (the number on the top of the stack) tested by the next case statement.

CHIRP

Sound the HP-71 error beep.

FORTH Words 129

CHR$ (Char-dollar) n - str

Convert the two low-order nibbles of n into an ASCII character and place it in a string specified by str.
The string is a temporary string of length 1, located on the pad.

CHS (Change-sign) -

Replace x, the contents of the X-register, with —x.

CLKEYS (Clear keys) -

Purge the current HP-71 keys file. (CLEEY S uses BERSILH).

CLOCK (Clock) -

Place the current HP-71 clock time into the X-register, lifting the floating-point stack.

CLST (Clear-stack) -

Replace x, y, 2, and t (the contents of the X-, Y-, Z-, and T-registers) with 0.

CLX (Clear x) -

Replace x, the contents of the X-register, with 0.

CLOSEALL (Close-all) -

Close all open files (that is, files with an open FIB entry).

CLOSEF (Close-f) n -

Close the file whose FIB# is n.

130 FORTH Words

CMOVE (C-move) addry addr, un -

Move un bytes, first moving the byte at addr; to addr, and finally moving the byte at addr; + 2(un — 1)
to addry + 2(un — 1). If un = 0, nothing is moved.

CMOVE > (C-move-up) addr, addr, un -

Move un bytes, first moving the byte at addr; + 2(un — 1) to addry + 2(un — 1) and finally moving the
byte at addr; to addry. If un = 0, nothing is moved.

COMPILE (Compile) -

Used in the form: : name; ... COMFILE name, . . .

COMPILE. Compile the CFA of namey, when name, is executed. Typically name; is an immediate word
and name, is not; COFF ILE ensures that name, is compiled, not executed, when name; is encountered in
a new definition.

CONBF (Con-buff) ny np, - flag

Contract by n; nibbles the general-purpose buffer whose ID# is ny, and return a true flag; or return a false
flag if such a buffer doesn’t exist. If the specified buffer contains fewer than n; nibbles, CiiHEF contracts
it to 0 nibbles. n; must not exceed FFF.

CONSTANT (Constant) n -

Used in the form: n COMSTHHT name

Create a dictionary entry for name, placing n in its parameter field. Later execution of name will return n.

CONTEXT (Context) -~ addr

Return the address of the variable CONTEXT, which specifies which vocabulary to search first during
interpretation of the input stream. (Word searches through successive parent vocabularies are discussed in
section 2.)

FORTH Words 131

CONVERT (Convert) d, addr, - d, addr,

Accumulate the string of digits beginning at addr; + 2 into the double number d;, and return the result d,
and the address addry of the next non-digit character. For each character that is a valid digit in EASE,
{/ERT converts the digit into a number, multiplies the current double number (initially d;) by
EAZE, and adds the converted digit to the current double number. When iHEFR T encounters a non-
digit character, it returns the current double number and the non-digit character’s address.

CcoOSs (Cos) -

Calculate the cosine of the contents of the X-register, according to the currently active angular mode.
1% places the result in the X-register and the original value of x in the LAST X register.

COUNT (Count) addr, - addr, n

Return the address (addrs) of the first character, and the character count (n), of the counted string begin-

ning at addr;. The first byte at addr; must contain the character count n. The following diagram shows
the parameters for a three-character text string:

Address Contents

addry - 1000 3 “n
addr, - 1002 A
1004 B
1006 C
CR (C-r) -

Send a carriage-return and line-feed to the current display device.

CREATE (Create) -

Used in the form: CEERTE name

Create a standard dictionary entry for name without allotting any parameter-field memory. Later execu-
tion of name will return name’s PFA. Words that use CRERTE directly are called defining words.

132 FORTH Words

CREATEF (Create-f) str n - addr

str n - false

Create a text file in RAM whose name is specified by str and that contains n nibbles. If successful,
CEEATEF returns the address of the beginning of the file header (which contains the file name); other-
wise, it returns a false flag. If the specified string exceeds eight characters, the file name will be the first
eight characters.

CRLF (C-r-I-f) -~ str

Return str specifying the two-character string constant containing the ASCII characters carriage-return
and line-feed. This string can be concatenated with other strings for use with words such as TLUTFLIT.

CURRENT (Current) -~ addr

Return the address of the variable CURRENT, which specifies the vocabulary to receive new word
definitions.

D+ (D-plus) dy dy = dj

Return the arithmetic sum of d; and ds.

D-— (D-minus) dy d, - dj

Subtract dy from d; and return the difference d.

D-R (Degrees-to-radians) -

Replace x with wx/180. The original value of x is saved in the LAST X register.

D. (D-dot) d -

Display d according to BASE in a free-field format, with a leading minus sign if d is negative.

FORTH Words

133

D.R (D-dot-R)

Display d (according to BASE) right-justified in a field n characters wide.

D< (D-less-than)

dy do, - flag

Return a true flag if d; < dy; return a false flag otherwise.

DABS (D-abs)

d; - Idi

Return the absolute value of d.

DEC

(To decimal)

Convert x as an octal number to decimal form, where x is an integer in the range — 7777777777777 < x <
+ 777777777777, containing no digits 8 or 9. The original value of x is saved in the LAST X register.

DECIMAL

(Decimal)

Set the input-output numeric conversion EAZE to ten.

DEFINITIONS

(Definitions)

Set the CUIFREEHNT vocabulary to match the COHTE =T vocabulary.

DEG (Degrees)

HP-41: Set degrees trigonometric mode. Clear HP-41 user flags 42 and 43.

DEGREES (Degrees)

Select degrees trigonometric mode.

134 FORTH Words

DEPTH (Depth) - n

Return n, the number of items on the data stack (not counting n itself).

DIGIT (Digit) c ny - n, true
¢ ny - false

If c is a valid digit in base nq, return that digit’s binary value (ny) and a true flag; otherwise, return a false
flag.

DLITERAL (D-literal) d -

COMPILE, IMMEDIATE. Compile d into the word being defined, such that d will be returned when the
word is executed.

DNEGATE (D-negate) d - —d

Return the twos complement of a double number d.

DO ... +LOOP (Do, Plus-loop) ny n, -

Used in the form: ... i1 actions n +LO0F ..

COMPILE, IMMEDIATE. Execute a definite loop, each time incrementing the loop index by n. [1* moves

n; (the loop limit) and ny (the initial value of the loop index) to the return stack, with n, on top, and then
executes actions. +LJiF increments the index by n (which can be negative) and repeats actions, until the
index is incremented across the boundary between n — 1 and n. For example,

ig 1 D0 actions 1 +LGOOF
will execute actions nine times, with values of the index from 1 through 9; and
-1i& -1 [0 actions —1 +LO0OF

will execute actions ten times, with values of the index from —1 through —10. &7 . . . +LO0F may be
nested within control structures.

FORTH Words 135

DO ... LOOP ny ny ~

Used in the form: ... i actions LOOF ...
COMPILE, IMMEDIATE. Execute a definite loop, each time incrementing the loop index by 1. I} moves

ny (the loop limit) and ny (the initial value of the loop index) to the return stack, with n, on top, and then
executes actions. L. CF increments the index by 1 and repeats actions, until the index is incremented from

n — 1ton. ... LO0OF may be nested within control structures.
DOES > (Does)
Used in the form: : npame ... CEEATE ... DOES: ...

COMPILE, IMMEDIATE. Define the run-time action of a word created by a defining word. CIiliE S
marks the termination of the defining part of the defining word name and begins the definition of the
run-time action for words that will later be defined by name.

DROP (Drop) n -

Drop the top number from the stack.

DSIZE (D-size) n-

Makes n nibbles available for definitions in the user dictionary.

DUP (Dup) n - nn

Return a second copy of the top number on the stack.

EMIT (Emit) c -

Transmit the character ¢ to the current display device.

136 FORTH Words

ENCLOSE (Enclose) addr ¢ - addr ny n, ng

Examine the string that begins at addr, and return:
e n,, the nibble offset from addr to the first character that doesn’t match the delimiter character c.

® 1o, the nibble offset from addr to the first delimiter character ¢ that follows non-delimiter characters
in the string.

e ng, the nibble offset from addr to the first unexamined character.

An ASCII null is treated as an unconditional delimiter.

END$ (End-dollar) stry n - sty

Create a temporary string (specified by stry) consisting of the nth character and all subsequent characters
in the string specified by str;. (£ I ZHT# is similar but takes substring length, not character position, for a
parameter.)

ENG (Engineering) n -

Select engineering display mode with n + 1 significant digits displayed, for 0 < n < 11.

ENG (Engineering) -

HP-41, IMMEDIATE: Used in form EHi: n. Select engineering display mode with n+ 7 significant digits
displayed, for 0<<n<11. Affects HP-41 display and digit flags (user flags 36 through 41).

ENTER (Enter) addr n, - addr n,
addr ny ¢ 0 - addr n,

; = leaves addr on the
stack and returns ny, the actual number of characters received. Executmg EH % requires the
HP 82401A HP-IL Interface.

There are two options for termination in addition to the limit of n; characters:

o If system flag —23 is set, EHTEFR will terminate when an End Of Transmission message is received.

e If the argument on the top of the stack is 0, EMHTEFR interprets the second argument on the stack to
be a character and will terminate when an incoming character matches this character. This option is
effective only when system flag —23 is clear.

FORTH Words 137

ENTER” (Enter) -

HP-41: Execute FENTER.

EOF (E-0-f) -~ flag

Return a true flag if there are no more records in the active file; otherwise, return a false flag. E{iF
examines the record length of the next record in the file specified by the FIE# in SCFEF IE. It assumes
that the current pointer into the file is pointing at the next record length and that the file is a text file.

EXECUTE (Execute) addr -

Execute the dictionary entry whose CFA is on the stack.

EXIT (Exit) -

COMPILE. Terminate execution. Don’t use E: 1T within a I loop.

EXPBF (Expand-buff) ny n, - flag

Expand by n; nibbles the general-purpose buffer whose ID# is ny, and return a true flag; or return a false
flag if such a buffer doesn’t exist, if the resulting size would exceed 2K bytes, if there is insufficient
memory, or if n; is negative. n; must not exceed FFF.

EXPECT96 (Expect-96) addr -

Accept 96 characters from the keyboard (or fewer characters followed by [ENDLINE]), append two null
bytes, and store the result at addr and above (greater addresses). E=FET = also copies the text into the
Command Stack.

E~X (E-to-the-x) -

Raise e to the power contained in the X-register. £ places the result in the X-register and the original
value of x in the LAST X register.

138 FORTH Words

E*X—-1 (E-to-the (x—1)) -

Raise e to the power computed by subtracting 1 from the contents of the X-register.

F (F-times) -

Multiply the contents of the X- and Y-registers. F# drops the stack (duplicating T into Z), then places
the result in the X-register and the original value of x in the LAST X register.

F+ (F-plus) -

Add the contents of the X- and Y-registers. F + drops the stack (duplicating T into Z), then places the
result in the X-register and the original value of x in the LAST X register.

F— (F-minus) -

Subtract the contents of the X-register from the contents of the Y-register. F — drops the stack (duplicat-
ing T into Z), then places the result in the X-register and the original value of x in the LAST X register.

F. (F-dot) -

Display the contents of the X-register according to the currently active display format. F . doesn’t alter
the contents of the X-register.

F/ (F-divide) -

Divide the contents of the Y-register by the contents of the X-register. F .- drops the stack (duplicating T
into Z), then places the result in the X-register and the original value of x in the LAST X register.

FABS (F-abs) -

Take the absolute value of the contents of the X-register. F AE = places the result in the X-register and the
original value of x in the LAST X register.

FORTH Words 139

FACT (Factorial) -

Replace x with x! (x must be an integer). The original value of x is saved in the LAST X register.

FCONSTANT (F-constant) -

Used in the form: floating-point number FCOHZTHMHT name

Create a dictionary entry for name. When name is later executed, the value that was in the X-register
when name was created is placed in the X-register, lifting the floating-point stack.

FDROP (F-drop) -

Copy the contents of the Y-register into the X-register, the contents of the Z-register into the Y-register,
and the contents of the T-register into the Z-register. The previous contents of the X-register are lost.

FENCE (Fence) -~ addr

Return the address of the variable FENCE, which contains the address below which the dictionary is
protected from FIiEGET.

FENTER (F-enter) -

Copy the contents of the Z-register into the T-register, the contents of the Y-register into the Z-register,
and the contents of the X-register into the Y-register. The previous contents of the T-register are lost.

FILL (Fill) addr un byte -

Fill memory from addr through addr + (2un — 1) with un copies of byte. F I .L has no effect if un = 0.

FIND (Find) addr, = addr, n

Search the dictionary (in the currently active search order) for the word contained in the counted string at
addry. If the word is found, F IH[returns the word’s CFA (= addry) and either n = 1 (if the word is
immediate) or n = —1 (if the word isn’t immediate). If the word isn’t found, F I MLl returns addry = addr;
and n = 0.

140 FORTH Words

FINDBF (Find-buff) n - addr

n - false

Return the start-of-data address in the general-purpose buffer whose ID# is n, or return a false flag if
such a buffer doesn’t exist.

FINDF (Find-f) str - addr

str - false

Search main RAM for the file whose name is specified by str, and return either the address of the begin-
ning of the file header (if successful) or a false flag (if not). If the specified string exceeds eight characters,
FIHDOF considers only the first eight characters.

FIRST (First) -~ addr

Return the address of the variable FIRST, which contains the address of the first (lowest addressed) mass
storage buffer in the FORTHRAM file.

FIX (Fix) n -

FORTH: Select fixed-point display mode with n decimal places, 0 < n < 11.

FIX (Fix) -

HP-41, IMMEDIATE: Used in form F I n to select fixed point display mode. Affects HP-41 display and
digits flags (user flags 36 through 41).

FLITERAL (F-literal) -

IMMEDIATE, COMPILE. Compile the value x (the contents of the X-register) into the dictionary. When
the colon definition is later executed, x will be placed in the X-register, lifting the floating-point stack.

FLUSH (Flush) -

Unassign all mass storage buffers.

FORTH Words 141

FORGET (Forget) -

Used in the form: FOREGET name

Delete from the dictionary name (which must be in the search order that begins with the CLURREHT
vocabulary) and all words added to the dictionary after name (regardless of their vocabulary). Failure to
find name in the search order that begins with the CURREMT vocabulary is an error condition.

FORTH (Forth) -

FORTH, IMMEDIATE: Set the CONTEXT vocabulary to FORTH, the name of the first vocabulary in
RAM. Because all vocabularies ultimately chain to the FORTH vocabulary, the word F1ETH can be
found regardless of the CONTEXT vocabulary.

FORTH (Forth) -

HP-41: Exit the HP-41 environment to the FORTH environment. Restore the default NUMBER and
INTERPRET, clear the HP-41 active variable, and make FORTH the CONTEXT vocabulary.

FP (F-p) ~

Take the fractional part of the contents of the X-register. FF places the result in the X-register and the
original value of x in the LAST X register.

FRC (Frac) -

HP-41: Alternate spelling for FP, above.

FSTR$ (F-string-dollar) - str

Create a string (specified by str) that represents the contents of the X-register.

FTOI (F-to-i) - n

Convert x (the contents of the X-register) to an integer and return it to the data stack. If Ix| > FFFFF, an
overflow error occurs. F T(1 I takes the absolute value of x, rounds it to the nearest integer, and converts it
to a five-nibble value. If x was positive, F T2 I returns this result; if x was negative, F T3 I returns the
twos complement of this result.

142 FORTH Words

FVARIABLE (F-variable) -

Used in the form: FYWAEIAELE name

Create a dictionary entry for name, and allocate eight bytes for its parameter field. Subsequent execution
of name will return name’s PFA. This parameter field will hold the contents of the variable, which must
be initialized by the application that creates it.

GRAD (Grads) -

Set grads trigonometric mode (set HP-41 user flag 42 and clear flag 43).

GROW (Grow) n - flag

Enlarge the user dictionary by n nibbles and return a true flag; or if there is insufficient memory, return a
false flag (without enlarging the dictionary).

H. (H-dot) un -

Display un in base 16 as an unsigned number with one trailing blank.

HERE (Here) -~ addr

Return the address of the next available dictionary location.

HEX (Hex) -

Set EAZE to sixteen.

HMS (Hours-minutes-seconds) -

Convert x from decimal hours to hours-minutes-seconds (hh.mmssss) format.

FORTH Words 143

HMS + (Hours-minutes-seconds -
plus)

Replace x with x+y, where x, y, and x4y are in hours-minutes-seconds (hh.mmssss) format, dropping the
floating-point stack. x is saved in the LAST X register.

HMS — (Hours-minutes-seconds -
minus)

Replace x with y-x, where x, y, and y-x are in hours-minutes-seconds (hh.mmssss) format, dropping the
floating-point stack. x is saved in the LAST X register.

HOLD (Hold) c -

Insert character ¢ into a pictured numeric output string. Used between - # and #:.

HP41 (HP-41) -

IMMEDIATE: Enter the HP-41 environment. Select HP41V as the context and current vocabularies, re-
place the default NUMBER and INTERPRET with HP-41 versions, create HP-41 data registers word
R41 (if necessary, set decimal mode, initialize HP-41 user flags, set math exception traps to HP-41 default
values.

HP41V (HP-41V) -

Set the context vocabulary to HP41V.

HR (Hours) -

Convert x from hh:mmssss (hours-minutes-seconds) format to decimal hours.

Used in the form: ... OO ... I ... LOOF

FORTH, COMPILE, IMMEDIATE: Return the current value of the [Ii-loop index.

144 FORTH Words

| () -

HP-41: Place the value of the BASIC variable I into the X-register, lifting the floating-point stack.

IF...THEN flag -

Used in the form: ... IF actions THEH

COMPILE, IMMEDIATE. Execute actions if and only if flag is true. IF ... THEH conditionals may be
nested.

IF...THEN ... ELSE flag -

Used in the form: ... IF actions; ELZE actions, THEHM

COMPILE, IMMEDIATE. Execute actions; if and only if flag is true; execute actions, if and only if flag is
false. IF ... ELZE ... THEH conditionals may be nested within control structures.

IMMEDIATE (Immediate) -

Mark the most recent dictionary entry as a word to be executed, not compiled, when encountered during
compilation.

INT (Int) -

HP-41: Alternate spelling for IP, below.

INTERPRET (Interpret) -

Interpret the input stream to its end, beginning at the offset contained in » IH. The input stream comes
from the TIB (if EL contains 0) or from the mass storage buffer containing the nth line of the active file
(if EL¥ contains n.)

P (I-p) ~

Take the integer part of the contents of the X-register. IF places the result in the X-register and the
original value of x in the LAST X register.

FORTH Words 145

ITOF (I-to-f) n -

Convert n into a floating-point number and place it in the X-register, lifting the floating-point stack.

J (J) - n

Used in the form: ... Do .0 Do 0 LOooF L LOOR

FORTH, COMPILE, IMMEDIATE. Return the index of the next outer loop. Used within nested [iil . . .
LO0OF structures.

J) -

HP-41: Place the value of the BASIC variable .! into the X-register, lifting the floating-point stack.

KEY (Key) - c

Return the low-order seven bits of the ASCII value of the next key pressed. If the key buffer is empty, wait
for a key to be pressed.

KILLBF (Kill-buff) n - flag

Delete the general-purpose buffer whose ID# is n, and return a true flag; or return a false flag if no such
buffer exists.

L (L) - addr

FORTH: Return the address of the floating-point LAST X register.

L (L) -

HP-41: Place the value of the BASIC variable L. into the X-register, lifting the floating-point stack.

LASTX (Last-x) -

Lift the floating-point stack and copy the contents of the LAST X register into the X-register.

146 FORTH Words

LATEST (Latest) -~ addr

Return the NFA of the most recent word in the CLIEFREHMHT vocabulary.

LEAVE (Leave) -

COMPILE, IMMEDIATE: Skip to the word after the next L 1F or +L00F. LEAVE terminates the loop
and discards the control parameters. Used only within a [. . . LOOF or +L00F construct.

LEFT$ (Left-dollar) stry n ~ sty

Create a temporary string (specified by stry) consisting of the first n characters in the string specified by
stry.

LGT (Log-ten) -

Calculate the common log (base 10) of the contents of the X-register. L.zT places the result in the X-
register and the original value of x in the LAST X register.

LIMIT (Limit) -~ addr

Return the address of the variable LIMIT, which contains the first address beyond the mass-storage-buffer
area.

LINE # (Line-number) -~ addr

Return the address of the variable LINE#, which contains the number of the line being loaded from the
active file (specified by SCRFIB).

LITERAL (Literal) n -

COMPILE, IMMEDIATE: Compile n into the word being defined, such that n will be returned when the
word is executed.

FORTH Words 147

LN (Natural log) -

Calculate the natural log (base e) of the contents of the X-register. L places the result in the X-register
and the original value of x in the LAST X register.

LN1+X -

Replace x with the natural log of (1+x). The original value of x is saved in the LAST X register.

LOAD (Load) -

HP-41, IMMEDIATE: Used in the form LD file name. Compile an HP-41 program contained in the
intermediate text file named file name. Not programmable.

LOADF (Load-f) str -

Interpret the entire file specified by str. If the file cannot be opened for any reason (doesn’t exist, wrong
type, already opened, etc.), LOALOF will give the error message FTH ERFE: filename cannot load,

LOG (Log) -

HP-41: Alternate spelling for LGT, above.

Mx (Mixed-multiply) ny n, - d

Return the double-number product d of two single numbers n; and n,. All numbers are signed.

M/ (Mixed-divide) d ny = n, ng

Divide the double number d by the single number n,, and return the single-number remainder n, and the
single-number quotient n3. All numbers are signed.

148 FORTH Words

M/MOD (Mixed-divide-mod) udy uny - un, udy

Divide the double number ud; by the single number un;, and return the single-number remainder un, and
the double-number quotient ud,. All numbers are unsigned.

MAKEBF (Make-buff) n - addr ID# true
n - false

Create a buffer n nibbles long and return a true flag, the buffer ID#, and the address of the beginning of
data area in the buffer; or if unsuccessful (not enough memory, no free buffer ID#s), return a false flag. n
cannot exceed 4095y,

MAX (Max) ny n, - ng

Return the greater of n; and n,.

MAXLEN (Max-length) str - n

Return the maximum length (that is, bytes of memory allotted in the dictionary) for the string specified
by str.

MIN (Min) ny ny - ng

Return the smaller of n; and n,.

MOD (Mod) ny ny - ng

FORTH: Divide n; by ny, and return the remainder ng with the same sign as n;.

MOD (Mod) -

HP-41: Replace x with y MOD(x), dropping the floating-point stack.

FORTH Words 149

N@ (N-fetch) addr - n

Return the contents of the nibble at addr. The four high-order nibbles of n are zeros.

N! (N-store) n addr -

Store at addr the low-order nibble of n.

NALLOT (N-allot) n -

Add n nibbles to the parameter field of the most recently defined word (regardless of the CLIFREEHT and
COMTE T vocabularies).

NEGATE (Negate) n - —n

Return the twos complement of n.

NFILL (N-fill) addr un n -

Fill memory from addr through addr + (un — 1) with un copies of the low-order nibble in n. HF ILL has
no effect if un = 0.

NMOVE (N-move) addr, addr, un -

Move un nibbles, first moving the nibble at addr; to addr, and finally moving the nibble at addr; + (un
— 1) to addry + (un — 1). HMIWE has no effect if un = 0.

NMOVE > (N-move-up) addr, addr, un -

Move un nibbles, first moving the nibble at addr; + (un — 1) to addry + (un — 1) and finally moving the
nibble at addr; to addry. HMIOWE > has no effect if un = 0.

NOP (No-op) -

“No operation” FORTH secondary (: HIF ;).

150 FORTH Words

NOT (Not) ny - n,

Return the ones complement (true Boolean NOT) of n;.

NULL$ (Null-dollar) -~ str

Create a temporary string (specified by str) in the pad, with maximum length = 80 and current length =
0.

NUMBER (Number) addr - d
adar -

Examine the counted string at addr and convert it into a double number d.

e If the string contains a decimal point, HLIMEEF tries to convert it into a floating-point number and
place it in the X-register, lifting the floating-point stack. If the string contains a decimal point but is
not a legal floating-point number, a [lzta Tupe error occurs.

o If the string does not contain a decimal point, HIIMEEF tries to convert it into an integer number and
return it to the data stack. If the string isn’t a legal integer, a
FTH ERE: HUMEEERE not recognized error occurs.

OCT (To octal) -

Convert x from a decimal integer to octal digits. x must be an integer in the range —68719476735 < x <
+68719476735. The original value of x is saved in the LAST X register.

OKFLG (Okay-flag) -~ adadr

Return the address of the variable OKFLG. If the value of OKFLG is 0, the Ik ¢ n* message is shown
when the FORTH system is ready for input; otherwise, the message is suppressed.

ON (On) -

HP-41: Set continuous on mode. Set HP-41 flag 44 and system flag —3.

FORTH Words 151

ONERR (On-error) -~ addr

Return the address of the variable ONERR, which contains the CFA of the user’s error routine. The value
of ONERR is checked when a FORTH-system error occurs. If the value of ONERR is zero, the error is
processed by the system’s error routine. If the value of ONERR is not zero, control is transferred instead
to the user’s error routine. The stacks are not reset. The BASIC keywords FFETH and FIFETH: set the
value of ONERR to zero.

OPENF (Open-f) str - t

str - str f

Open an FIB for the file whose name is specified by str, and store the FIB# into ZZEF I E. If successful,
OFEHF returns a true flag. If the file was empty or there was a problem in opening the file, OFEHMF
returns str and a false flag.

OR (Or) ny n, - ng

Return the bit-by-bit inclusive OR of n; and n,.

OUTPUT (Output) addr n -

Send n bytes, stored at addr through addr + 2(n — 1), to the HP-IL device whose address is specified by
FRIMARY and SECOMDOARY. Executing OUTFUT requires the HP 82401A HP-IL Interface.

OVER (Over) ny n, = ny ny, n

Return a copy of the second number on the stack.

P-R (Polar-to-rectangular) -

Replace the contents of the X- and Y-registers (x = radius, y = angle) with the equivalent vector (x,y)
expressed in rectangular coordinates, according to the current angular mode. The original value of x is
saved in the LAST X register.

PAD (Pad) -~ addr

Return the address of the pad, which is a scratch area used to hold character strings for intermediate
processing.

152 FORTH Words

Pl (Pi) -

Lift the floating-point stack, and place a 12-digit representation of = into the X-register.

PICK (Pick) ny - n,

Return a copy of the n;-th entry on the data stack (not counting n, itself). For example, 1 FILCE is
equivalent to [ILiF, and Z FICE is equivalent to OVER.

POS (Pos) stry str, = n
stry str, - false

Search the string specified by stry for a substring that matches the string specified by str;, and return the
position of the first character in the matching substring (or a false flag if there is no matching substring).

PREV (Prev) -~ addr

Return the address of the variable PREV, which contains the address of the most recently referenced mass
storage buffer.

PRIMARY (Primary) -~ addr

Return the address of the variable PRIMARY, which specifies an HP-IL address. The valid range for
PRIMARY is 0 through 31, and the default value is 1. (The contents of PRIMARY and SECONDARY
specify which HP-IL device to use with EHTEF and 0LITFUT, If system flag —22 is clear, the contents of
PRIMARY alone specify a simple address; if system flag --22 is set, the contents of PRIMARY and
SECONDARY specify an extended address.)

QUERY (Query) -

Accept characters from the current keyboard until 96 characters are received or an character is
encountered, and store them in the TIB. GZUER" sets # TIE to the value of SFFH.

QUIT (Quit) -

Clear the return stack, set execution mode, and return control to the keyboard. No message is displayed.

FORTH Words 153

R-D (Radians-to-degrees) -

Replace x with 180*x/w. The original value of x is saved in the LAST register.

R-P (Rectangular-to-polar) -

Replace the contents (x,y) of the X- and Y-registers with the equivalent vector (x = radius, y = angle)
expressed in polar coordinates, according to the current angular mode. The original value of x is saved in
the LAST X register.

R> (R-from) - n

COMPILE: Remove n from the top of the return stack and return a copy to the data stack.

R@ (R-fetch) - n

COMPILE: Return a copy of the number on the top of the return stack.

RAD (Radians) -

HP-41: Set radians trigonometric mode. Set user flag 43 and clear flag 42.

RADIANS (Radians) -

Select FALIAMS angular mode.

RCL (Recall) addr -

FORTH: Lift the floating-point stack and place in the X-register the floating-point number found at addr.

154 FORTH Words

RDN (Roll-down) -

Roll down the floating-point stack. Rt copies from the T-register into the Z-register, from the Z-register
into the Y-register, from the Y-register into the X-register, and from the X-register into the T-register.

RIGHT$ (Right-dollar) stry n - stry

Create a temporary string (specified by stry) consisting of the last (rightmost) n characters in the string
specified by str{. (EHD# is similar but takes character position, not substring length, for a parameter.)

ROLL (Roll) n -

Move the nth entry on the data stack (not counting n itself) to the top of the stack. For example,

Z ROLL is equivalent to ZHAF, and 2 EOLL is equivalent to EOT.

ROOM (Room) -n

Return the current number of nibbles available for words in the dictionary.

ROT (Rote) ny nop nz = nNo Nz Ny

Rotate the top three entries on the data stack, bringing the deepest to the top of the stack.

RP! (R-p-store) -

Reset the return stack to 0 addresses.

RP@ (R-p-fetch) - addr

Return the current value of the return-stack pointer.

RPO (R-p-zero) -~ adadr

Return the address of the system variable RP0, which contains the address of the bottom of the return
stack. (The bottom of the return stack has a greater address than the top.)

FORTH Words 155

RUP (Roll-Up) -

Roll up the floating-point stack. FLiF copies from the X-register into the Y-register, from the Y-register
into the Z-register, from the Z-register into the T-register, and from the T-register into the X-register.

R~ Roll-up) -

HP-41: Alternate spelling for RUP, below.

S! (S-store) stry str, -

Store the contents of the string specified by str; into the string specified by strs.

S—>D (Sign-extend) n - d

Return a signed double number d with the same value and sign as the signed single number n.

SO (S-zero) -~ addr

Return the address of the bottom of the data stack.

S< (S-less) stry str, - flag

Return a true flag if the string specified by str; is “less than” the string specified by stry, or a false flag if
not. %« first compares the ASCII values of the first characters; if they are equal, it then compares the
second characters, and so on. AE is defined to be less than AECL.

S<& (S-left-concatenate) stry strp, - strg

Append the contents of the string specified by str, to the end of the string specified by str;, and return
strs, the address and length of the resulting string. The address of strs is the address of stry; the length of
stry is the combined length of str; and stry. If the concatenation would exceed str;’s maximum length, no

concatenation occurs and str3 = stry. Either str; or strg can specify a temporary string in the pad. The <
sign indicates that the left string will contain the result of the concatenation.

156 FORTH Words

S= (S-equals) stry str, - flag

Return a true flag if the two strings are equal, or a false flag if not. 5= compares only the current length
and contents of the strings, not the maximum length or old contents stored beyond current length.

S>& (S-right-concatenate) stry str, - Strg

Append the contents of the string specified by stry to the end of the string specified by str;, and return
strs, the address and length of the resulting string. The address of strq is the address of stry; the length of
stry is the combined length of str; and stry. If the concatenation would exceed stry’s maximum length, no

concatenation occurs and strg = str,. Either str; or str, can specify a temporary string in the pad. The
sign indicates that the right string will contain the result of the concatenation.

SCI (Scientific) n -

FORTH: Select scientific display mode with n + 1 significant digits displayed, 0 < n < 11.

SCI (Scientific) -

HP-41, IMMEDIATE: Used in form =i 1 n. Affects HP-41 display and digits flags (user flags 36 through
41).

SCRFIB (Screen-f-i-b) -~ addr

Return the address of the variable SCRFIB, which contains the FIB# of the currently active file (or 0 if no
file is being loaded).

SECONDARY (Secondary) -~ addr

Return the address of the variable SECONDARY, which specifies the extended portion of an HP-IL ad-
dress. The valid range for SECONDARY is from 0 through 31, and the default value is 0. (The contents of
PRIMARY and SECONDARY specify which HP-IL device to use with EHTEFR and QLUTFUT. If system
flag —22 is clear, the contents of PRIMARY specify a simple address; if system flag —22 is set, the
contents of PRIMARY and SECONDARY specify an extended address.)

FORTH Words 157

SHRINK (Shrink) n - flag

Shrink the user’s dictionary space (and consequently the FTH41RAM file) by n nibbles, and return a true
flag; or return a false flag if there are fewer than n free nibbles in the dictionary.

SIGN (Sign) n -

FORTH: Insert the ASCII minus sign — into the pictured numeric output string if n is negative. Used
between < # and #:.

SIGN Sign) -

HP-41: Replace x with +1 if x is positive or zero, —1 if x is negative, 0 if x is alpha data, NaN if x is
NaN. The original value of x is saved in the LAST X register.

SIN (Sine) -

Calculate the sine of the contents of the X-register, according to the currently active angular mode. = IH
places the result in the X-register and the original value of x in the LAST X register.

SMOVE (S-move) str addr -

Store at addr and above (greater addresses) the characters in the string specified by str.

SMUDGE (Smudge) -

Toggle the smudge bit in the latest definition’s name field.

SP! (S-p-store) -

Reset the data stack to O items.

SPO (S-p-zero) -~ addr

Return the address of the system variable SP0O, which contains the address of the bottom of the data
stack. (The address of the bottom of the data stack is greater than the address of the top.)

158 FORTH Words

SP@ (S-P-fetch) -~ addr

Return addr, the address of the top of the data stack before ZF i was executed.

SPACE (Space) -

Transmit an ASCII space to the current display device.

SPACES (Spaces) n -

Transmit n spaces to the current display device. Take no action for n < 0.

SPAN (Span) -~ addr

Return the address of the variable SPAN, which contains the count of characters actually read by the last

execution of ExFECTRE,

SQRT (Square-root) -

Calculate the square root of the contents of the X-register. ZFE T places the result in the X-register and

the original value of x in the LAST X register.

ST. (Stack dot) -

HP-41: Display the contents of the floating-point stack, in the format T Z Y X | L.

STATE (State) -~ addr

Return the address of the variable STATE, which contains a non-zero value if compilation is occurring (or

zero if not).

FORTH Words 159

STD (Standard) -

Select the BASIC standard display format.

STO (Store) addr -

Store the contents of the X-register at addr.

STR$ (String-dollar) d - str

Convert the number d into a temporary string in the pad, specified by str.

STRING (String) n -

Used in the form: n =TEIHGE name.

Create a dictionary entry for name, allotting one byte for a maximum-length field (value = n), one byte
for a current-length field (value = 0), and n bytes for the string characters.

STRING-ARRAY (String-array) ny n, -

Used in the form: ny n, STREIMG-AEEARY name

Create a dictionary entry for name, allotting one byte for the maximum-length field (value = n;), one
byte for the dimension field (value = ny), and (n; + 2) bytes each for ny string-array elements.
ZTRIHG-ARREAY fills in the maximum-length (value = n;) and current-length (value = 0) fields for
each string-array element.

Later execution of n name will return str,,, the address and current length of the nth element of the string
array.

SUB$ (Sub-dollar) stry ny ny - stry

Create a temporary string (specified by str;) consisting of the nith through noth characters in the string
specified by stry.

160 FORTH Words

SWAP (Swap) ny ny = ny n

Exchange the top two entries on the data stack.

SYNTAXF (Syntax-f) str - flag

Return a true flag if the string specified by str is a valid HP-71 file name, or return a false flag if not. If
the specified string exceeds eight characters, =" HTH=F checks only the first eight characters.

T (T) -~ addr

FORTH: Return the address of the floating-point T-register.

T (T) -

HP-41: Return the value of the BASIC variable T to the X-register, raising the floating-point stack.

TAN (Tan) -

Calculate the tangent of the contents of the X-register, according to the currently active angular mode.
THH places the result in the X-register and the original value of x in the LAST X register.

TIB (T-i-b) -~ addr

Return the address of the terminal input buffer. The terminal input buffer can hold up to 96 characters.

TIME (Time) -

HP-41: Lift the floating point stack, and place the current reading of the HP-71 system clock, in
H.MMSS format, into the X-register. Also, display the time in hh:mm:ss format (unless an HP-41 pro-
gram is running).

FORTH Words 161

TOGGLE (Toggle) addr n, -

Replace n, (the contents at addr) with the bit-by-bit logical value of (n; XOR ny).

TRAVERSE (Traverse) addr, n - addr,

Return the address of the opposite end (length byte or last character) of a definition’s name field.
e If n = 1, addr; is the address of the length byte, and addr, is address of the last character.
e If n = —1, addr; is the address of the last character, and addr, is the address of the length byte.

o If n doesn’t equal 1 or —1, addr, = addr,.

TYPE (Type) addr n -

Transmit n characters, found at addr through addr + (2n — 1), to the current display device. T%FE
transmits no characters for n < 0.

U. (U-dot) un -

Display un (according to BASE) as an unsigned number in a free-field format with one trailing blank.

U< (U-less-than) uny un, - flag

Return a true flag if un; < un,, or return a false flag if not.

UM (U-m-times) uny un, - ud

Return the double-number product ud of two single numbers un; and un,. All numbers are unsigned.

UM/MOD (U-m-divide-mod) udy uny - un, ung

Divide the double number ud; by the single number un;, and return the single-number remainder un, and
the single-number quotient ung. All numbers are unsigned.

162 FORTH Words

USE (Use) -~ addr

Return the address of the variable USE, which contains the address of the next mass storage buffer avail-
able for use.

VAL (Val) str - d

str -

Convert the string specified by str into a number.

e If the string contains a decimal point, /AL tries to convert it into a floating-point number and place
it in the X-register, lifting the floating-point stack. If the string contains a decimal point but is not a
legal floating-point number, a [lzta TwEs error occurs.

e If the string does not contain a decimal point, ‘/FL tries to convert it into an integer number and
return it to the data stack. If the string 1is not a legal integer, a

FTH ERE: VAL rnot recoanized error occurs.
VARIABLE (Variable) -
Used in the form: WHAREIARELE name

Create a dictionary entry for name, allotting five nibbles for its parameter field. Later execution of name
will return name’s PFA. This parameter field will hold the contents of the variable, which must be initial-
ized by the application that created it.

VOCABULARY (Vocabulary) -

Used in the form: WOCHEBULAREY name

Create (in the CLIEREEMT vocabulary) a dictionary entry for name that begins a new linked list of dic-
tionary entries. Later execution of name will select name as the ZI1HTE =T vocabulary. (Vocabularies are
discussed in section 2.)

WARN (Warn) -~ adadr

Return the address of the variable WARN. If WARN contains a non-zero value, compiling a new word
whose name matches an existing word causes a name iz=r't urigues message to be displayed; if
WARN contains 0, the message is suppressed.

FORTH Words 163

WIDTH (Width) -~ addr

Return the address of the variable WIDTH, which determines the maximum allowable length for the
name of a word. The valid range for WIDTH is from 1 through 31.

WORD (Word) c - adadr

Receive characters from the input stream until the non-zero delimiting character c is encountered or the
input stream is exhausted, and store the characters in a counted string at addr. 1R ignores leading
delimiters. If the input stream is exhausted as WORD is called, a zero-length string results.

X (X) ~ adar

FORTH: Return the address of the floating-point X-register.

X (X) -

HP-41: Return the value of the BASIC variable to the X-register, raising the floating-point stack.

X<>Y (X-exchange-y) -

Exchange the contents of the X- and Y-registers.

X#Y? X<=Y? -~ flag
X<Y? X=0?

X=Y? X>=Y?

X#Y? X>0? Floating-point Comparisons

X+#0? X<=0?

X>0? X#0?

X>=0?

Compare the contents of the X- and Y-registers, and return a true flag if the test is true or a false flag if
not. The tests don’t alter the contents of the X- and Y-registers.

164 FORTH Words

XOR (X-or) ny n, = ng

Return the bit-by-bit exclusive OR of n; and n,.

XSIZE (X-size) -

Make x nibbles available for definitions in the user dictionary, where x id obtained from the X-register.

X2 (X-squared) -

Calculate the square of the contents of the X-register. = places the result in the X-register and the
original value of x in the LAST X register.

Y (Y) - addr

FORTH: Return the address of the floating-point Y-register.

Y (v) -

HP-41: Return the value of the BASIC variable ' to the X-register, raising the floating-point stack.

Y~AX (Y-to-the-x) -

xxxxxxx

X-register and the original value of x in the LAST X register.

z 2) - addr

FORTH: Return the address of the floating-point Z-register.

Y4 (2) -

Return the value of the BASIC variable T to the X-register, raising the floating-point stack.

FORTH Words 165

[(Left-bracket) -

IMMEDIATE: Suspend compilation. Subsequent text from the input stream will be executed.

'] (Bracket-tick) -

Used in the form: : namey; ... [L'1 name, ...

COMPILE, IMMEDIATE: Compile the CFA of namey as a literal. An error occurs if namesy is not found
in the currently active search order. Later execution of name; will return name,’s CFA.

[COMPILE] (Bracket-compile) -

Used in the form: ... CCOMFILED name . . .

IMMEDIATE, COMPILE: Compile name, even if name is an IMHEDIATE word.

] (Right-bracket) -

Resume compilation. Subsequent text from the input stream is compiled.

Appendix E

Summary of the HP-41 Emulator Features

This appendix describes the HP-41 functions and capabilities that are included in the HP-41 Translator
Pac, plus the general and specific differences in operation and results that you can expect between the
emulator and the HP-41 itself.

HP-41 Functions

The basic function set included in the HP-41 emulator is the entire set of programmable functions con-
tained in the HP-41C/CV calculator. In addition, the emulator includes certain functions from the HP-
41CX and the HP 82160A HP-IL Module, listed below. In general, any HP-41 program that uses only the
functions listed here can be executed by the emulator, with numerical results and alpha displays essen-
tially identical to those obtained with the HP-41.

The following list of functions details the match between the HP-41 emulator and the HP-41CX. The
function categories are taken from the Function Tables in the HP-41CX Owner’s Manual Volume II.

e System/Format Functions. All functions included except: CLK12, CLK24, CLKT, CLKTD, DMY,
MDY, PASN.

e Clearing Functions. Function included: CLD, CLKEYS, CLP, CLRG, CLRGX, CLZ, CLST, CLX. Func-
tions omitted: CLALMA, CLALMX, CLFL, CLRALMS, DELCHR, DELREC, PCLPS, PURFL, DEL.

e Stack/Data Register Functions. All functions included.
e Numeric Functions. All functions included.

¢ Extended Memory Functions. No functions. In effect, extended program memory is provided by
the HP-71 file system.

e Time Functions. TIME is included.

e Editing Functions. Functions included: ON, OFF, SIZE, PSIZE, CAT, and CLP. All HP-41 program
editing is done through the HP-71 Editor. ASN is replaced by the normal HP-71 key assignment
method. PACK is performed automatically. SST and BST are available only in program editing.

e Functions that Direct Program Execution. All functions included, except CLOCK and GETP. The
comparison functions X>=Y? and X>=0? are present in the emulator, but not in the HP-41CX.

e Alpha Functions. Functions included: ALENG, ANUM, AOFF, AON, ARCL, AROT, ASHF, ASTO,
ATOX, AVIEW, CLA, POSA, PROMPT, XTOA. Functions omitted: ADATE, ATIME, ATIME24, ARCLREC,
GETREC.

e Interactive Functions. Functions included: ADV, BEEP, PROMPT, PSE, TONE. Functions omitted:
GETKEY, GETKEYX.

e Printer Functions. The following functions are included from the HP-41 HP-IL Module, which are
not present in the HP-41CX: ACA, ACCHR, ACX, PRA, PRBUF, PRFLAGS, PRREG, PRREGX, PRZ,
PRSTK, PRX, SKPCHR. Printer control with flags 21 and 55 is the same as with the HP-41. The
printer control provided by HP-41 flags 12 (double wide), 13 (lowercase), and 15 and 16 (printer
mode) is not implemented in the emulator.

167

168 Summary of the HP-41 Emulator Features

General Differences Between the HP-41 and the Emulator

Although the emulator usually duplicates the operation of the HP-41 in programs and calculations, there
are several general differences between the HP-41 and the HP-41 emulator that can affect results. The
most obvious differences are in the keyboards and user interface, as described in Section 2. You must
consider the absence of HP-41 stack lift disable when you perform keyboard arithmetic, but programs
written with HP-41 stack lift disable functions operate identically on the HP-71 and the HP-41 (with the

In addition, there are some subtle differences. The most pervasive of these is the different numerical
accuracies of the HP-71 and the HP-41. Specifically, the HP-71 represents numbers with a 12-digit man-
tissa, and 3-digit exponent (dynamic range between 107590 and 105%0), compared to the 10-digit mantissa
and 2-digit exponent (range 107100 to 10100) of the HP-41. Internally, the HP-71 performs calculations
with a 16-digit mantissa and 5-digit exponent, compared to the 14-digit mantissa and 3-digit exponent
used by the HP-41. In general, calculations performed with the HP-41 emulator will be more accurate
than the same operations performed on the HP-41. In some circumstances, this difference in numerical
accuracy can produce dramatically different results in programs. For example, a program that causes a
range error on the HP-41 with a result greater than 9.999999999E99 produces no error when run on the
HP-71 unless the result exceeds 9.99999999999E499. Many HP-41 game programs use pseudo-random
number routines that give different results when translated to the HP-71 because of the extra two man-
tissa digits provided by HP-71.

Mathematical Exceptions

The HP-71 provides a more sophisticated capability for handling special mathematical errors than the
HP-41. The HP-71 mathematical exception treatment is preserved in the HP-41 emulator floating-point
functions. From the BASIC environment, you can set the various exception traps to specify the system
response to exceptions. However, some of these traps are altered when you enter the HP-41 environment.

When you type HF 41 to enter the HP-41 environment, the INX and UNF traps are each set to value 1 to
suppress the associated error messages that have no HP-41 counterpart. (You can choose to suppress
warning messages, which do not halt program or function execution, by setting HP-71 system flag —1 in
the BASIC environment.) The OVF (overflow) and IVL (invalid operation) traps are set to value 0 to
produce errors analogous to the HP-41 DATA ERROR and OUT OF RANGE errors.

The state of the OVF (overflow) trap is controlled by HP-41 flag 24 (range error ignore), which is cleared
initially. When flag 24 is cleared, this trap is set to value 0, which causes errors when the overflow excep-
tions occur. When flag 24 is set, the trap is set to value 1, which returns the FMAXREEFRL value
(£9.99999999999E499) for functions that cause an overflow, with a warning message if flag —1 is clear.

The DVZ (division-by-zero) trap is initially set to 0, so that functions causing this exception return an
error. In the HP-41 emulator, this includes actual division by 0, LOG(0), LN(0), and TAN(90) (degrees).
This is not strictly consistent with the HP-41, since TAN(90°) on the HP-41 is not an error.

You can override the emulator default trap settings from within the HP-41 environment by using the
function EAZ IC Y to execute the BASIC trap functions. For example, to set the [i'/Z trap to value 1, type:

COTRARPCDVZ 1Y BRSICH

When you set the DVZ trap to 1, division by 0, LOG(0), LN(0), and TAN(90°) return MFA=FEFRAL.

Summary of the HP-41 Emulator Features 169

Extended Register and Numeric Label Range

The HP-41 emulator is capable of addressing 10,000 data registers (limited by available memory), num-
bered 0 through 9999. All of the two-part emulator functions that include a register number accept a
4-digit number—you are not limited to register numbers 0 through 99 for direct addressing. This does not
affect programs translated from the HP-41, but you can use the full range of registers in programs you
write on the HP-71 in HP-41 user language. (The functions CL.FEG: and FEREGH are exceptions; they
are restricted to registers 0 through 999.)

Similarly, you can use numeric labels in the range LEL & through LEL =599,

Trigonometric Modes

The HP-71 operating system does not provide a grads trigonometric mode, nor the corresponding annun-
ciator. The HP-41/FORTH grads mode is provided through extensions of the trigonometric functions, but
it is not a “global” mode in the same sense as the degrees and radians modes. Grads mode is determined
within the HP-41/FORTH environment, as it is on the HP-41, by HP-41 flag 42. Grads mode is active
when flag 42 is set, and inactive when flag 42 is clear. Since the HP-41 trigonometric mode is matched to
the current HP-71 mode when you enter the HP-41/FORTH environment, you must reset grads mode any
time you leave and then re-enter the HP-41/FORTH environment.

Display Formatting—Flags 28 and 29

The HP-71 does not provide any radix option or number digits separators. Therefore, the formatting
effects of flags 28 and 29, particularly with respect to the alpha strings produced by FF L, are not re-
produced in the HP-41 emulator.

Automatic Execution—Flag 11

The HP-41 automatic execution feature, controlled by flag 11, is available in the HP-41 emulator. How-
ever, to obtain automatic program execution when you turn the HP-71 on, you must turn the calculator
off using the ZFF function executed from the keyboard or by a program.

Function-Specific Differences

The following is a list of all HP-41 emulator functions. Where appropriate, a description is included of
how a function may work differently from the corresponding HP-41 function, other than the general dif-
ferences that are described previously. If a particular function is listed only by name, its operation is the
same as desribed in the HP-41 owner’s manual.

Table E-1. HP-41 Functions Included in the HP-41 Emulator

+ Plus.
- Minus.
Multiplied by.
Divided by.
1o Reciprocal.
Common exponential.

170 Summary of the HP-41 Emulator Features

Table E-1. HP-41 Functions Included in the HP-41 Emulator (Continued)

ALEMG
AMHLM

AVIEM
EEEF

CAT

oF

CHE
CLA

cLo
CLEEYE

Absolute value.

Accumulate alpha into print buffer.
Accumulate character specified in X.
Accumulate X in print buffer.

Arc cosine.

Advance. Because of the variety of printers that can be connected to the HP-71,
ADV will not print the contents of the print buffer right justified. Its action will be the
same as PRBUF.

Alpha length.

Alpha number. AHLI is the only emulator function that cannot be guaranteed to
reproduce the stack-lift behavior of its HP-41 counterpart. This is because the stack
effect of AHLIIM is indeterminate. When the alpha register contains a number, FHLITM
raises the stack; otherwise, it has no effect at all. The translation program
TEAMEZ41 can not predict the stack behavior of FHLIM. If there is a number in the
alpha register, AHLI[M works the same as it does on the HP-41. If there is no number
in the alpha register, AL performs a stack roll down (F:[it). Furthermore, AL
only recognizes numbers in HP-71 format. That is, digit separators are not allowed,
and the period is the only acceptable radix.

Alpha mode off.
Alpha mode on.
Alpha recall.
Alpha rotate.
Alpha shift.

Arc sine.

Alpha store.
Arc tangent.
Alpha to X.
Alpha view.
Beeper.

Catalog. The ZAT function is similar to the HP-41 user program catalog function
CAT 1. CHT lists the alpha labels currently in emulator memory, in last-to-first order
(reversed from the HP-41). Program END’s are not listed. Each label is displayed for
approximately 1 second; if you press any key (don’t use [ATTN]) during a label dis-
play, the program pointer will be positioned at that label. If you let ZH T run uninter-
rupted, the program pointer will not move. The message Ho HF—~41 proar ams
indicates that no programs are currently loaded in emulator memory.

Clear flag.
Change sign.
Clear alpha.
Clear display.

Clear user key assignments. If there is no keys file, CLKEYS will return the warning
MEM: File Hot Found.

Summary of the HP-41 Emulator Features 171

Table E-1. HP-41 Functions Included in the HP-41 Emulator (Continued)

CLF Clear program. This function performs the function of the HP-41 CLP, but has an
effect more like the function PCLPS. That is, CLP clears not only the program
containing the specified alpha label, but also all programs (and any FORTH words)
compiled after the specified program. The correct syntax is CLF "label name" . The
final quote is required only if there are any spaces in the label name, or if additional
functions follow the CLP command in the input command line.

CLEG Clear registers.

CLEGH Clear registers by X. Data Error if xi>999.

CLE Clear summations.

CLET Clear stack.

Clw Clear X. L executed at the keyboard is equivalent to typing &. It enters 0 into the

X-register, lifting the stack. A subsequent number will not overwrite the 0, but in-
stead lifts it into the Y-register. If you wish to clear a number from the X-register and
replace it with another, use F [instead of L .

Cos Cosine.
0-k Degrees to radians.
DEC Decimal. The range of the DEC function is extended to 12-digit octal integers be-

tween —777777777777 and +777777777777. In addition to fractional inputs, NaN
and Inf will generate Data Error, regardless of trap settings.

DEG Degrees mode.

D=E Decrement and skip if less than or equal. If executed from the keyboard, DIE L dis-
plays "E= if the skip condition is not true, M otherwise.

EHD End of program.

EMG Engineering mode. The acceptable range for EH is extended to EHG 11.

EHTEER™ EHTER™ is equivalent to FCL . It does not disable stack lift. Its most common

use on the HP-41 is to separate consecutive number entries—this is not necessary
on the HP-71, as you can terminate number entry with [SPC] or (END LINE].

B Natural exponential.

E"e-1 Natural exponential for arguments close to zero.

FRCT Factorial. The maximum input to the FAC T function is 253 on the HP-71, compared
to 69 on the HP-41.

Fow Flag clear?

Fowo Flag clear?—clear flag.

FIs Fixed point mode. The acceptable range for F I is extended to FI: 11.

FRC Fractional part.

Foe Flag set?

Ferid Flag set?—clear flag.

GREAD Grad mode. GRAD sets user flag 42, and clears flag 43, as on the HP-41, but no

GRAD annuniciator is available. If you enter the BASIC environment after setting
grad mode, the HP-71 will revert to degrees mode. Grad mode is cleared in favor of
degrees mode or radians mode when you reenter the FORTH or HP-41
environments.

172 Summary of the HP-41 Emulator Features

Table E-1. HP-41 Functions Included in the HP-41 Emulator (Continued)

CTO
HHME
HHMS +
CEES
HF:
IHT

|

m T bl
Dixl [}
—

LH
LHL+5
LG
MEAH

o
ocT

OFF

M

HMICH

FI

FOSH

FEH
FREELUF
FEFLAGS
FREEYED

FREOMPT

Go to. GTO. and GTO.. are not recognized by the emulator.
To hours-minutes-seconds.

Hours-minutes-seconds plus.

Hours-minutes seconds minus.

To decimal hours.

Integer part. Can also be spelled IF.

Increment and skip if greater.

Recall from L register.

Label. LBL has no effect when executed from the keyboard. If you type, for exam-
ple, LBL 22 [END LINE], the LBL is ignored, and 22 is entered into the X-register.

Natural logarithm.

Natural logarithm for arguments close to 1.

Common logarithm.

Means of summations. MERH can produce the following errors:
e Alpha [Data, if any of the six statistics registers contains alpha data.
e Irmwalid Ara,if N (the number of data entries) is zero.
e ztaz Errar, if any of the six statistic registers contain Inf or NaN.

y mod x.

To octal. The range of the 0T function is extended to integers in the range
-68719476735 to +68719476735. Inf or Nan in the X-register generates
Data Error, regardless of trap settings.

Turn off computer.

Continuous on mode. ON sets flag -3 as well as user flag 44. The former sets HP-71
continuous on mode; the latter ensures that HP-41 programs can test the mode
normally.

Polar-to-rectangular. Produces the IVL exception if y = Inf.
Percent.

Percent change.

Pl returns a 12-digit representation of pi.

Position in alpha.

Print alpha.

Print buffer.

Print flags and modes.

Print keys file. FREE" % executes the BASIC operation FLL.IZT KEYE. If there is
no keys file, fatal error EEFE: Fils Mot Fournd ocours.

Stop and display alpha.

Summary of the HP-41 Emulator Features 173

Table E-1. HP-41 Functions Included in the HP-41 Emulator (Continued)

R0
E-F
b
ECL
FCOLFLAG
RO
REEGHOVE
REGSHAF

EHDO

FETH

bl bn]
+

[y
b
et

Print registers.

Print registers by X. Data Error is IxI>999.
Print summation registers.

Print stack.

Print X.

Pause. Pressing any key during a pause halts program execution, which can be re-

sumed with [RUN].

Programmable =1 :ZE.

Roll up. You can use either spelling for this function.
Radians to degrees.

Rectangular to polar. Produces the IVL exception if x and y are Inf.
Radians mode.

Recall register.

Recall flags.

Roll down.

Register move.

Register swap.

Round. FEHI is extended to accomodate the = T[I format, and the F I, =1, and
EHEG formats up to 12 display digits. Attempting to round Inf or NaN produces the
OATA EREDOE message.

Return.
Summation plus.
Summation minus.
Scientific notation. The acceptable range for i1 is extended to SCI 11.
Standard deviations. SDEV can produce the following errors:
e Alpkz Data, if any of the six statistics registers contains alpha data.
e Irvwalid FArg.,if N (the number of data entries) is 0 or 1.
e [imta Error, if any of the statictic registers contains Inf or NaN.
Set flag.
Skip characters.
Summation register set.
Return address of first summation register.
Sign.
Sine.
Set size.
Return current size.

Square root.

174 Summary of the HP-41 Emulator Features

Table E-1. HP-41 Functions Included in the HP-41 Emulator (Continued)

ST+ Store plus
ST~ Store minus
STH Store multiply.
ST Store divide.
STO Store into register.
STOFLAG Store flags.
STOF Stop program execution.
THH Tangent.
TIME Time.
TOHE Tone.
WIEH View register.
w2 X-squared.

=[7

H=HH?

MMM
Mo=HHTE
WM

s =HH T

HEHMT or HeHHT

Use either form.

Not present in the HP-41.

Use either form.

Not present in the HP-41.

Use either form.

X exchange.

X exchange flags.

Summary of the HP-41 Emulator Features 175

Table E-1. HP-41 Functions Included in the HP-41 Emulator (Continued)

X exchange Y.

Execute.

X to alpha. XTOA works the same way as on the HP-41, but some characters pro-
duced in the alpha register on the HP-71 may differ from those on the HP-41. Refer
to the owner’s manuals for the character codes for each calculator.

Y to the X power.

Table E-2. Functions Unique to the Emulator

k3 Alpha mode. Activate alpha mode.

Load into the alpha register the characters following a space after #*, up to but not

including the next *. For example, #" H 1" places the characters HEL L1 into
the alpha register.
L I Alpha and X-register display mode. Execute . after each HP-41 command line is

completed.

Alpha and X register display. Display the alpha register and the X-register in the for-
mat alpha register | X-register.

Enter BASIC environment.

FORETH Enter FORTH environment.

FEEYZ41 Merge the k. =4 1 file with the current HP-71 keys file.

LaAD file name . | Compile the program in the text file named file name into emulator memory. The
key is disabled during execution of L il

urgedl Purge HP-41 environment. Clear all HP-41 programs and data registers. Exit to
FORTH environment.

Initialize printer flags. Search for an HP-IL printer (or PRINTER IS device) and set flags
55 and 21 if found, clear otherwise.

R Begin program execution at the current program pointer position. Not programmable.

=T, Stack display. Display the entire RPN stack, in the format: TZ Y X | L

X-register display. Following each operation, display the X-register.

Note: The functions =—F, = +kF, EMTERE"F, and & f are special versions of &, =+,
EMTER™, and B L. These special functions are used for translating HP-41 programs. Do not in-
clude these special functions in your HP-41 programs. When executed from the keyboard, the special
functions perform the same operation as their standard counterparts.

The #EF function is another special translator function. It has no keyboard use. Executing :
the keyboard generates the message =t : DA i

176 Summary of the HP-41 Emulator Features

Access to Other Environments

The HP-41 emulator allows you to use features of the BASIC and FORTH environments without leaving
the HP-41 environment. This feature is derived from the fact that the HP-41 environment is actually a
subset of the FORTH language system, which is designed to provide two-way interaction with the BASIC
operating system.

The FORTH words ER= I and EASICF enable you to send commands to the BASIC interpreter, and
to return numeric data from BASIC to the HP-41 floating-point stack. The syntax for these functions is:

" command string" EARZICH

numeric expression EHRZICF

Notice the required space between the first quotes and the beginning of the command string or the numeric
expression.

EAZICH sends the command string to the BASIC interpreter, which executes the commands, then re-
turns control to the HP-41 environment. For example, to determine the amount of HP-71 memory avail-
able, you can type

" MEM" BRASICH

The display shows the current available memory, in bytes, for the duration of the current delay setting,
and then returns to the X-register display.

Examples:

"ODELAY @,8" BRSICH Change the delay setting to 0,0.
TOCOFY DATA TO TAFE"ERASICH Copy the file DATH to a cassette drive
"OOAT ALLY BRSICH List current HP-71 files.

EFSICF returns the value of the numeric expression to the X-register, lifting the stack.
Example: To enter the amount of available memory into the X-register, execute:
OMEMY BREICF
The BASIC keyword F IR THF is the reverse of ERS I LF—it reads the current value from the X-register

into the BASIC environment. Using FURETHF and EARSICF together enables you to use BASIC opera-
tions on HP-41 data.

Summary of the HP-41 Emulator Features 177

Example: The following statement uses the BASIC ZEIL function to compute the smallest integer
greater than or equal to the value in the X-register, and then place that value into the X-register:

"OCEILCFORTHFX" BRSICF

All of the HP-41 Pac’s built-in FORTH dictionary words can be executed directly from the HP-41
environment. You should be aware, however, that the HP-41 emulator uses a vectored form of the word
HUMEER; all numeric entries are sent to the floating-point stack instead of to the integer data stack,
unless the number contains a double-length indicator (. or .-). In addition the words &, 1, =, and Z are
redefined to floating point versions. In general, you should usually use the FORTH environment for
FORTH operations. You can access HP-41 commands in FORTH by selecting the HP-41 vocabulary
named HP-41V.

Appendix F
Guidelines for Running HP-41 Programs
on the HP-71

This appendix summarizes how to use the HP-41 Translator Pac to run programs written for the HP-41
(for example, Users’ Library programs that were written for the HP-41). The major topics covered are:

e Transferring your HP-41 program to the HP-71.

e Running the program. Instructions for running the program on the HP-41 may describe keystrokes
that are done somewhat differently when running the program on the HP-71.

Transferring HP-41 Programs

There are three ways to enter an HP-41 program into the HP-71. You can:
e Directly transfer the program from HP-41 memory using HP-IL.

e Transfer the program from a mass storage medium (magnetic cards, tape, or flexible disc) to the HP-
71.

e Type the program into the HP-71 using an HP-41 printed program listing.

The following instructions summarize the steps described in section 3 of this manual.

Directly Transferring an HP-41 Program

To directly transfer a program from HP-41 memory to the HP-71:
1 Connect both calculators together using their HP-IL modules.

2. Use the FEALI4 1 program to read the HP-41 program from HP-41 memory into the HP-71 as a text
file. Follow steps 1 through 8 on pages 45 and 46.

3. When you’ve completed step #8 of the REAI4 1 instructions, continue with steps 3 through 5 of the
TEHAHMS4 1 instructions on pages 42 and 43. Don’t run the program, though, until you’ve read the rest
of appendix F.

179

180 Guidelines for Running HP-41 Programs on the HP-71

Transferring a Program From Mass Storage

The program to be transferred from mass storage must be in the form of a program-text file. A program-
text file is an HP-71 text file containing an HP-41 program (for example, a file created by the text editor
containing an HP-41 program listing). Users’ Library HP-41 programs ordered specifically for the HP-71
are recorded on the mass storage medium in program-text file format. However, HP-41 programs recorded
by the HP-41 on magnetic cards, tapes, or flexible discs cannot be used—those programs must be loaded
into the HP-41 and transferred as described above.

To transfer an HP-41 program-text file from mass storage to the HP-71:

la.

1b.

3.

If the program is recorded on tape or a flexible disc, connect the HP-71 to the mass storage
device using HP-IL.

If the program is recorded on HP-71 magnetic cards, copy it from the cards to HP-71 memory
by typing:

COFY CARD TO file name

. Follow steps 1 through 5 for running the TEFAHMZ4 1 program, on pages 41 through 43. If you copied

your program from HP-71 magnetic cards to HP-71 memory, be sure to use the file name you used in
step 1b, above. If you are using an HP-IL cassette drive or disc drive, make sure you use the appro-

priate file specifier in response to the TEAMHZ41 prompt HF-41 Fraogram File?.
Read the rest of Appendix F before running the program.

Entering a Program From the Keyboard

1.
2.

Run the HP-71 text editor, using steps 1 through 4 on page 39 to prepare to type in the program.

Type the HP-41 program by copying the program listing line-by- line, without line numbers. (Refer to
pages 40 and 41, if necessary, for additional information.)

Follow steps 1 through 5 for running the TRAH =41 program, on pages 41 through 43.
Read the rest of Appendix F before running the program.

HP-41 Program Instructions and Keystrokes

HP-41 program instructions, such as instructions included with HP Users’ Library programs, contain:

e A program description.

e User instructions—step-by-step keystrokes for program execution.

e Examples and results.

e Documentation of the program’s use of data registers, status messages, and flags.

e A list of HP-41 key assignments made by the program.

Program Description

The program description will be the same for the two calculators.

Guidelines for Running HP-41 Program on the HP-71 181

User Instructions

To execute an HP-41 program on the HP-71, you must perform the same step-by-step operations as de-
scribed in the program documentation. However, the actual keystrokes may be somewhat different for the
HP-71 due to the different keyboards of the two calculators. In addition, different program authors use
different conventions in their documentation to describe HP-41 keystrokes. So, the guidelines described
here may need to be adapted to the instructions for your program.

Use the following general rules to convert HP-41 keystroke instructions:

Initializing the Size. Most HP-41 programs require you to set the number of data registers to a mini-
mum SIZE. On the HP-71, you type:

SIZE nnn
where nnn is the number (1,2, or 3 digits) specified by the program instructions.

Starting the Program. HP-41 programs are referenced by global and local labels within the programs.
Global labels, consisting of alphanumeric strings, can be called at any time using the =T or #E func-
tions. Local labels, consisting of numbers 00 through 99, uppercase letters A through J, or lowercase let-
ters a through e, can only be called when the HP-41 program pointer is positioned within the program
containing the label.

The =T function positions the program pointer at a program label. You can then begin program execu-

tion at that position by pressing or by typing FLH [END LINE]. The “E& function is equivalent to
=T followed by [RUN]; it moves the program pointer to the specified label and begins execution at that
position.

For a global label, the conversion from HP-41 keystrokes to HP-71 keystrokes is:

HP-41 Keystrokes HP-71 Keystrokes

(GTO][ALPHA] label [ALPHA] | =T 11" label™
(XEQ][ALPHA] label [ALPHA] | #“E i Jabel*
R/S or RLIH

For the HP-71 keystrokes, quotation marks substitute for the key. There must not be a space
between the =T or »ED and the quoted string naming the label.

Examples:

ALPHA] STD [ALPHA] becomes GTO"=TO" [END LINE
XEQ][ALPH A ecomes AEG"ZTO" [END LINE
STD (ALPHA] b AEQ"STD" (END_LINE]

182 Guidelines for Running HP-41 Programs on the HP-71

For local labels, use the following conversion:

HP-41 Keystrokes HP-71 Keystrokes
number GTO number
number “E& number

(GTO)[ALPHA] letter [ALPHA] | =T letter
(XEQ][ALPHA] letter [ALPHA] | “ETL letter

Examples:
56 becomes T S&

(XEQ](ALPHA] A [ALPHA] becomes =Ei! F [(END LINE]

For additional information about program labels, refer to page 34.

Number Entry. When instructions involve entering a single number, type the number in HP-71 format
(for example, 1224 .5, —4%, 5£, 2ZE~12). Terminate number entry by pressing [SPC] or [END LINE]. If
the HP-41 program requires you to enter two or more numbers separated by [ENTER], on the HP-71 you
can type the numbers together on the same line, separated by spaces. Do not use EHTEFE ™ to separate
numbers on the HP-71; using EHTEFE ™ duplicates the entry and can cause the program to not work
properly.

Examples:

1.234 becomes 1 .ZZd

1.2 (CHs] 34 [EEX] 27 [R/S] becomes -1.ZZ4EZ7 [RUN]
4.567 (ENTER#] 7.89 [R/S] becomes 4 .5&7 7.&8% (RUN]
89 (ENTER+] 97 [ENTER+] 101 [R/S] becomes =3 27 1&1
65 becomes £5 EMTEFR™ [RUN

In the last example, above, is used to duplicate the entry 65, rather than to separate numbers; on
the HP-71, the emulator EHTEF ™ function is used.

For additional information about number entry and used of EHTEF ™, refer to pages 24 through 27.

Alpha Entry. The only difference between alpha mode on the HP-41 and the HP-71 is the way alpha
mode is entered and exited.

HP-41
Operation -
p i Keystrokes HP-71 Keystrokes

Entering alpha mode three methods:
&
AOH
(in USER mode with EEY %4 1 the active keys file)

Exiting alpha mode [ALPHA] (END LINE]

Refer to table 2-6 on page 32 for a list of keys active in alpha mode.

Guidelines for Running HP-41 Program on the HP-71 183

Executing Functions. Some HP-41 programs require you to execute functions. In general, to execute a
function on the HP-71, type in the function name (with any parameters) as it appears in the program
instructions or program listing.

Examples:

SIN becomes = IH

99 becomes EHTO 23
FS?C 21 becomes FZ7C 21
SCl 9 becomes SCI 3

Refer to pages 23 through 28 for additional information on HP-41 emulator functions.

Program Examples and Results

HP-41 programs transferred to the HP-71 usually produce the same numerical and display results on both
calculators. You should normally be able to follow step-by-step examples included with the HP-41 pro-
gram instructions, and see results as described. However, there are some features of the HP-71 that can
produce different results. Here is a brief summary (refer to Appendix E for a more complete discussion):

e Numerical results are computed with more accuracy on the HP-71 than on the HP-41. This can cause
some results to differ in the last decimal place. For example, evaluating the expression

(V2)2 -2
produces different results on the HP-41 and HP-71:

Calculator Keystrokes Results
HP-41 2 (enTert =)JB>2) 2 (=] | —1.00 —09
HP-71 2 OSRRT =2 D - -1.8888E-11

One answer is 100 times the other, yet the results are effectively the same.

e Alpha displays may differ because of the absence of digit separators and a radix choice on the HP-71.
Also, certain special HP-41 characters appear as different characters on the HP-71.

e The HP-71 handles errors with more sophistication than the HP-41. This can result in different error
messages, and in some cases, different results, depending on the settings of the HP-71 IEEE
mathematical exception traps.

Examples of cases where programs run correctly on the HP-71, and yet do not produce the same example
results, occur frequently in games programs that use random numbers to control the “play” of the game.
Such routines typically are very sensitive to the number of digits used by the calculator in its computa-
tion. While the HP-41 game will play correctly on the HP-71, sample plays will very likely not follow the
program examples exactly.

Data Registers, Status Messages, and Flags

Use of data registers, status messages, and flags are the same on both calculators.

184 Guidelines for Running HP-41 Programs on the HP-71

Converting HP-41 Key Assignments

HP-41 programs can have two kinds of “built-in” key assignments:

e Global key assignments. If the HP-41 is in USER mode when a program is loaded from magnetic
cards or mass storage, global label assignments stored within the program are automatically activated.

e Automatic assignment of local alpha labels. Pressing a key in either of the two top rows on the
HP-41, or a shifted key in the top row, automatically executes the local alpha label corresponding to
the key’s alpha mode character.

Neither of these types of automatic assignments can be transferred to the HP-71. If the instructions for
an HP-41 program assume that these key assignments are active, you must translate the instruction key-
strokes into the appropriate “E[function. For example, an HP-41 program instruction might tell you to
press the key, which on the HP-41 would cause execution at the local label B. On the HP-71, you

must type “EX E (END _LINE].

Use the following table to interpret instructions using local label assignments:

HP-41 Key | Local Label | HP-71 Keystrokes
A AER A
B HER B
Cc HER
D HEQ O
E SER E
F HEROF
G AER G
SIN H HER H
I HER T
J HE@
=] a HER a3
) b AER b
=) c HER o
[(K0S d HEQ o
) e HEQ e

For global label assignments, no standard conversion is possible, since the programmer can assign any
label to any key. The program instructions should include a list of the global label assignments, and you
must substitute the approriate “E function for each assignment. For example, if the program expects
LBL“PROG" to be assigned to the key, you must type “E@"FROG" when the instructions
call for pressing [TAN].

Guidelines for Running HP-41 Program on the HP-71 185

You can make HP-71 keys assignments that mimic any of the HP-41 key assignments (refer to pages 28
and 29). For example, if you wish the HP-71 (E] key to correspond to the HP-41 [E] key (actually, the
key), type:

KEY"E", " HEQ E" (in the BASIC environment)
or:

OREY'E', ' MER E'Y BRASICH (in the HP-41 environment)
To assign the [=] key to execute the program PROG, type:

KEY'='," HER'FROG™! (in the BASIC environment)

Because of the special use of quotes by the HP-41 system, this assignment can be made conveniently only
from the BASIC environment.

Subject Index

Page numbers in bold type indicate primary references.

A

AC annunciator, 13
Adding text to files, 53
Address space, HP-71, 63
Addresses, FORTH, 75
Alpha annunciator, 13
Alpha data, storing and retrieving, 33
Alpha entry, during program execution, 182
Alpha functions, 167
Alpha keyboard, 32-33
Alpha labels

executing, 30

catalog of, 36
ALPHA mode, 18, 32-33

append prompt, 33

display characters, 33

entering, 13, 32

exiting, 32

keys active in, 30
Alpha register, 12

displaying, 23

size of, 22
Angular mode, 19, 69
Apend symbol, 24

in alpha mode, 33
ARCL function, 33, 36
Assistance, technical, 90
ASTO function, 14, 33, 36
key

clearing the display, 62

in alpha mode, 32

stopping execution, 62
Automatic execution, 169
AVIEW function, 35

B

BASIC environment, 17

entering, 66-67

exiting, 65-66

loading programs from, 44
BASIC expressions, 30
BASIC file type, 82
BASIC trap functions, 168
BASIC variables, 30, 31
BASIC words, for entering FORTH, 65-66
BASIC$ word, 66
BASIC/FORTH interaction, 65-67
BASICF word, 66, 176
BASICI word, 66
BASICX, 51, 66, 176
BIN file type, 82
BLK word, 65
BLOCK word, 65
+BUF word, 65
Buffers

mass memory, 64

general purpose, 67-68
Bytes, operations with, 63

187

C

CALC mode, 17
Card reader, using, 47

Cards, magnetic, transferring a program from, 180

CAT function, 36
Cells, operations with, 63
CFA, 81
CLOSEALL word, 65
CLOSEF word, 65
CLP function, 36
CLX function, replacement for, 27
Code field, 81
Command stack, 15, 62

entering, 26
Command string, maximum length, 15
Comments, in user-language programs, 41
Compilation from files, 64
Compile-only words, 113
CONBF word, 68
Conserving memory, 47
CONTEXT vocabulary, 72-73
Copy command, 54-55
Copy-code field, 83
Counted string, 71
Creating functions, 47-49
Creation-date field, 84
Creation-time field, 84
CURRENT vocabulary, 72-73

D

Data registers, 12

number of, 20-21, 181
Data types, in FORTH, 116
Default trap settings, overriding, 168
Delete command, in editor, 55
DELETE# statement, in BASIC, 99
Dictionary, FORTH, 80-81
Directory, of HP-41 alpha labels, 36
Disabling stack lift, 26-27
Display characters, in alpha mode, 33
Display formats, allowable, 40
Display formatting, 169
Display functions, 23-24
Display modes, 15

at startup, 19
Display scrolling, 23
DVZ trap, 168

E

Editor, 51-58
files used by, 58
error messages, 95
EDKEYS file, 58
EDLEX file, 58
EDTEXT statement, 39, 51, 100

188 Subject Index

EDUKEYS file, 58 Floating-point stack, 49
Emulator Floating-point words, 69-71
definition, 12 FORTH
display functions, 23-24 addresses, 75
initialization, 20 creating new functions, 47-49
stack lift, 26-27 dictionary, 80-81
starting, 12 environment, 18, 65-66
unique to HP-71, 175 errors, 114
memory, 12 file type, 82
operation, 17-36 interaction with BASIC, 65-67
END function, 35, 41 memory organization, 75-81
ENTER word, 67 statement, in BASIC, 102
ENTER” function, 27 words, 113-165
key, replacement for, 27 FORTH/Assembler ROM, 74
Entering text, 53 FORTHF function, in BASIC, 65-66, 104
Entering the FORTH environment, 19, 61, 65—-66 FORTHI function, in BASIC, 65-66, 105
Entry, in FORTH dictionary, 80 FORTHX statement, in BASIC, 65-66, 106
Environments, 17-21 FORTHS$ function, 65-66, 103
access to, 176-177 FTH41RAM file, 75-80, 103, 104, 105
BASIC, 17 copying, 76
changing, 18 definition of, 21
FORTH, 18 enlarging, 48
HP-41, 18 Functions
EOF word, 65 execution of, 182
ERRMS$ function, 36 creating, 47-49
ERRN function, 36 display, 23-24
Error messages, 91-95 HP-41, present in the emulator, 167, 169-175
editor, 95 naming, 48-49
HP-41/FORTH, 91-95 spelling, 23
Error trapping, 74 two-part, 28
Errors
during input sequence, 26 G
,FORTH» 114 General purpose buffers, 67-68
in programs, 35-36 Global alpha label, 40
mat.h, 20) Global key assignments, 184
during translation, 43-44 Global labels 74, 181
Exiting the FORTH environment, 61 Glossary, FORTH, 115-165
Exiting the HP-41 environment, 21 Graphics functions, 3
Exiting the text editor, 52 GTO function, 30, 34, 40
EXPECT96 command, 63
Exponent H
range of, 24

Halting a program, 35
Hard-configured ROM, 76

HP Users’ Library, 180
HP-41/FORTH errors, 91-95
HP-41 environment, 18, 73-74

digits, 4

entry, 24
Extended memory functions, 3
Extended registers, 169

F entering, 19-21
- exiting, 21
FIB entries, 64 HP-41 functions, 3, 167, 169-175

File chain, HP-71, 83-84

1 HP-41 programs
File header, 83-84

running, 43

F}le header-ﬂz'igs, 83 transferring, 179-180

File information block, 64 translating, 37-38, 41-44

File name, displaying in editor, 52 writing on the HP-71, 38-41

File-name ﬁeld,_83 ' HP-41 statement, 18-19, 107

FILESZR function, in BASIC, 101 HP-41, transferring programs from, 45-47
File system, HP-71, 81-84 HP-41 vocabulary, 113

File types, HP-71, 82 HP-67/97, 40-41

File-type field, 83 HP-IL

File words, in FORTH, 65 at emulator startup, 20
FINDBF word, 68 functions, 3
FIRST word, 65 operations, in FORTH, 67
Flag field, 83
Flags 11, 12, 169

28 and 29, 169

at startup, 19

parameters, allowable, 40
Floating-point operations, 68-71

Subject Index 189

I Messages, error, 20, 35-36, 43-44, 91-95
Immediate execute words, 113 MOD function, 23
Module

Immediate words, 81
Indirect addressing, 28
Information about products, 90

installing, 11
removing, 11

INIT 1 command, 35 Move command, 54-55
INIT 2 command, 35 MSG$ function, 109
Initializing the emulator, 12, 20
Input sequence, 26 N
Insert command, in editor, 53 Name field, 81
INSERT# statement, in BASIC, 108 Naming functions, 48-49
Installing the module, 11 NFA, 81
Intermediate file, 37, 42 Number entry, 24-25
INX trap, 168 during program execution, 182
Number representation, 168
K Numeric file types, 82
Key assignments, 184 Numeric labels, 40, 169
Keyboard Numerical accuracy, 183
alpha, 32-33
differences between HP-71 and HP-41, 22 o
calculations, 22-34 OPENF word, 65
program entry, 180 Opening an editor file, 51
KEY statement, 29 Operating system, HP-71, 81
KEYS file, deactivating while in text editor, 39 OUTPUT word, 67
KEYS41 file, 13, 28-30 Overflow, string, 43
KILLBF word, 68 Overlay, using, 30
OVF trap, 168
L
Labels, alpha, 30 3
Labels, global, 74 Packing files, 36
Labels, local, 74 PAD area, 66
LEX file type, 82 Parameter Field, 81
LFA, 80 Parameters, in editor commands, 53
LIMIT word, 65 Pattern definition, in Search and Replace, 57-58
Line numbers in programs, 40 Pausing a program, 35
LINE# word, 65 PFA, 81
Link field, 80, 84 Pointer, program, 34
List command, 54 POKE function, 21
LOAD command, 38, 42-43, 44—-45 PREV word, 65
LOADF command, 63, 64, 65 PRIMARY word, 67
Loading Primitive, FORTH, 61, 80
errors during, 43 Print command, 54
halting, 45 Printer flags, during READ41, 45
intermediate files, 42-44 Printer functions, 167
program from HP-41, 44 Printing subroutines, 59
Local key assignments, 184 Product information, 90
Local labels, 74 Program
allowable, 40 errors, 35-36
executing, 181 execution, 34
file types, 82
M halting, 35
Magnetic cards line numbers, 40
during translation, 37 memory for HP-41 programs, 22
transferring a program from, 180 pausing, 35
pointer, 34

Magnetic tape .
transferring a program from, 180 PROMPT function, 35
used during translation, 37 PSE function, 35

MAKEBF word, 68 purg(?41 command, 20, 21

MANIO function, 45 Purging files, 55

Mantissa digits, 4

Mass memory, in FORTH, 64

Mass memory buffers, 64

Mass storage
transferring a program from, 180
used during translation, 37
using, 47

Mathematical exception traps, 19, 183

Memory
for HP-41 programs, 22
FORTH, 75-81
usage, 47

190 Subject Index

R T
READA41, 12, 37, 38, 45-47 Tape, magnetic, transferring a program from, 180
errors, 46-47 Technical assistance, 90
Recalling BASIC variables, 31 Temporary buffers, 68
Records, number in a text file, 101 Text command, in editor, 53
Register Text editor, 38, 51-59
alpha, 12 entering, 39
floating-point, 68 exiting, 39
Registers Text entry mode, 39
allowable, 20-21, 40 Text strings in user-language programs, 40
data, 12 TIME function, 3
Removing the module, 11 TRANSA41, 12, 37, 38
RENAME statement, 21 Transferring HP-41 programs, 45—47, 179-180
Replace command, 56-57 Translating H-41 programs, 37-38, 41-44
REPLACE# statement, in BASIC, 110 Translation
Representation of numbers, 168 errors, 43-44
Retrieving alpha data, 33 halting, 43
RPN stack, 12 Translator, definition, 12
displaying, 23 Transmit error, 47
viewing, 15 Traps, in BASIC, 168
Running HP-41 programs, 34, 43 Trigonometric modes, 169
Twenty-bit FORTH, 63
S Two-part functions, 28
Screen, definition in FORTH, 64
SCRFIB word, 65 Y
SCROLL statement, in BASIC, 111 UNF trap, 168
Scrolling of display, 23, 111 Update nibble, 67
Search command, in editor 56-58 USE word, 65
SEARCH function, in BASIC, 112 User flags, 12, 22
Secondary, FORTH, 61 at startup, 19
SECONDARY word, 67 USER keyboard, 28-30
Service, 87-89 User-language program, translating 37-38, 41-44
Shipping, 89 USER mode, 13
Sigma character, 40 in editor, 52
Sign change, 24 in FORTH, 62
SIZE function, 12, 20-21 Users’ Library, 9, 180
Smudge bit, 81
Soft-configured ROM, 76 \'
Spelling functions, 23 Variable assignments, 31
Stack . . Variables
floating-point, 49 BASIC, 30, 31
lift, 26-27 stack, 114
variables, 114 string, 71
Starting the emulator, 12, 19-21 VIEW function, 35
Statistical functions, 24, 40 Vocabularies, 72’_73
STD function, 15
STOP function, 35 w
Storing alpha data, 33

Warranty, 65-67
Wild-card character, 57-58
Word structure in FORTH, 31

String
constants, 71
delimiters, in Search and Replace, 56

: Words
71-72 . .
ggfi:agll:; S'y71 floating-point, 69-71
words, 7 1 string, 71
Strings, defining patterns in, 57 X

Subroutines, in editor, 59
XEQ function, 30, 34, 40
XONLY function, 24

BASIC Keywords by Category

This list shows all BASIC keywords by functional category. All BASIC keywords and their defininitions
appear in appendix C, in alphabetic order.

Keyword Description

BASIC to FORTH

FORTH Transfers HP-71 operation to the FORTH environment.

FORTHE Returns to a BASIC string variable the contents of a string in the FORTH
enivronment.

FORTHF Returns to a BASIC numeric variable the contents of the FORTH floating-point X-
register.

FORTHI Returns to a BASIC numeric variable the value on the top of the FORTH data
stack.

FORTHS Executes a FORTH command string.

Editor
ODELETE# Deletes one record from a text file.
EODTEST Invokes the text editor.

Returns the number of records in a text file.
Inserts one record into a text file.
Returns the message string corresponding to a specified error number.

Replaces one record in a text file.

Scrolls the display and waits for a key to be pressed.

SEARCH Finds a string in a text file.
BASIC/FORTH to HP-41
HF41 Transfers HP-71 operation to the HP-41 environment.

191

FORTH Words by Category

This list shows all FORTH words by functional category. Some words appear in more than one category.
All FORTH words and their defininitions appear in appendix D, sorted by name in ASCII order.

General

Dictionary Management
ALLOT
COMTE=RT
CURREEHT
DEFIMITIONS
ODEIZE
FEHCE
FORGET
FORTH
GRON
HEFRE
HALLOT
FARO

RO
SHETHE
VOCHEULARY
HAETZE
System
=EOOY
FETARCE
AEORT
AEORET™
ASSEMELE
EYE
CHIRF
CLOCE
DECIMAL
OEG
ODEGREES
ODEFTH
EHEG
EXECUTE
FIHMO
GRAD

HE
LATE=ST
QUIT

EARDO
EADIAMES
S0

TIE
TOGGLE
TRAVERSE

Control Structures

EEGIM ... UHTIL

BEGIH ... WHILE
... REFERT

CHSZE ... 0OF. .. EHDOOF
... EHOCAHSE

oo ... +L0O0p

oo ... LOOF

IF ... THEH

IF ... THEH
...ELSE

LEARVE

Memory
!

+!

G HIE

L -

)

o
+

CHOVE
CHOVE >
FILL
M1

Mz
MFILL
MHOVE
MHOUE >
FCL

SHMOVE
STO
Interpretation

INTERFRET

BASIC System Access
EASIC

HP-41 Access
HF41
HF411

Return Stack
R

N
F
FiE
FF 1
FFa
FFE

Defining Words

COMZTAMT
CREATE

E=IT
FOOMSTAMT
FURRIARELE
STRIHG
STREIMG-ARERY
VARTHELE

Compilation

TCOMEP
C,
COMPILE
DLITERAL
OOES
FLITERAL
IMMEDIATE
LITERRAL
HOF
SHUDGE
STHTE

C

CL'1
CCOMPILED
1

Files

File Manipulations

CLOSEALL
CLOSEF
CREATEF
EOF
FINDF
FLUSH
LOADF
OFEMF
SYHTANF

General Purpose
Buffers
COMHEF
EXFEF
FIHDOEF
EILLEF
MAEEEF

Arithmetic
Single Length

+

et

EOTHIDon Ln

m

G 1T

Pl e B Ar]
T
-
m

Double Length

U mion

Floating Point

; +
HFE -
HE
iF
ITOF
LET

LH

LH1 +3

LG
Moo
ocT

Logical

Stack
Manipulations

Single Length

DEFTH

FOROF
FEMTER

Comparisons
Single Length

IR RN]

o

Input/Output

Constants

ElL
Numeric-Input
Conversion
ERSE

HUMEBER

Numeric Output

Number Formatting
#

#
#E
“H#
EHG
FIX
HOLD
=T
STGH
=T

Character Input
STERMIMAL

Character Output
=TEATLIHG

CR
EMIT
BFACE
SRFACES
TYFE
HP-IL
EHTER
OUTFUT
FRIMARY

User Variables

LIME#
OEFLG

WHREH

WIDTH

Pd -0

String Words

CHEF
CRELF
EHDE
FoTRF
LEFT#
MALEHR
HULLFE
FOs
EIGHTE

o |

How To Use This Manual (page 9)

Getting Started (page 11)

HP-41 Operation in Detail (page 17)

Writing and Translating HP-41 Programs (page 37)
The Editor (page 51)

The HP-41 FORTH System (page 61)

Care, Warranty, and Service Information (page 85)

Error Messages (page 91)

BASIC Keywords (page 97)

FORTH Words (page 113)

Summary of HP-41 Emulator Features (page 167)

Guidelines for Running HP-41 Programs on the HP-71 (page 179)

Subject Index (page 187)
BASIC Keywords by Category (page 191)
FORTH Words by Category (inside back cover)

nTmooQwr» aRhwbd2

(ﬁﬁ HEWLETT

PACKARD

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

European Headquarters HP-United Kingdom
150, Route Du Nant-D’Avril (Pinewood)
P.O. Box, CH-1217 Meyrin 2 GB-Nine Mile Ride, Wokingham
Geneva-Switzerland Berkshire RG11 3LL

82490-90001 English Printed in Singapore 1/85

	Cover
	Contents
	How To Use This Manual
	Section 1: Getting Started
	Installing and Removing the HP-41 Translator Pac Module
	What the HP-41 Translator Pac Does
	Starting the Emulator
	A First Try
	Continuing Your Reading

	Section 2: HP-41 Operation in Detail
	Introduction
	Environments
	Entering and Exiting the HP-41 Environment
	Initializing the HP-41 Emulator
	Exiting the HP-41 Environment
	Saving and Duplicating the HP-41 Environment

	HP-41 Keyboard Calculations
	Keyboard Differences
	Executing HP-41 Functions
	Emulator Display Functions
	Replacing the Σ, ≠, and ⱶ Characters
	Entering Numbers
	Multiple Entries
	Evaluating Input
	Emulator Stack Lift
	Two-Part Functions
	Simulating HP-41 Keystrokes With the USER Keyboard
	Evaluating BASIC Numeric Expressions
	Using BASIC variables
	Alpha Mode

	Program Execution
	Running Programs
	Pausing a Program From the Keyboard
	Program Halts and Pauses

	Program Errors
	Clearing Programs
	Cataloging Programs

	Section 3: Writing and Translating HP-41 Programs
	Introduction
	The Translation Process
	Writing HP-41 Programs
	Using TRANS41
	Halting Translation
	TRANS41 Errors
	Loading Intermediate Programs In the HP-41 Environment
	Halting Program Loading
	Transferring Programs from an HP-41 Using READ41
	READ41 Errors
	HP-71 Memory Usage
	Creating New Functions

	Section 4: The Editor
	Overview of the Editor
	Editor Commands
	The Text (T) and Insert (I) Commands
	The List (L) and Print (P) Commands
	The Copy (C) and Move (M) Commands
	The Delete (D) Command
	The Search (S) and Replace (R) Commands

	Editor Files
	Subroutines

	Section 5: The HP-71 FORTH System
	Introduction
	References
	Using FORTH on the HP-71

	Unique Aspects of HP-71 FORTH
	Twenty-Bit FORTH
	Compilation from Files
	FORTH/BASIC Interaction
	HP-IL Operations
	General Purpose Buffers

	FORTH Extensions
	Floating-Point Operations
	String Operations
	Vocabularies
	The HP-41 Environment
	Relation to the HP-71 FORTH/Assembler ROM
	Error Trapping

	FORTH Memory Organization
	HP-71 Memory
	The FTH41RAM File
	The FORTH Dictionary

	The HP-71 File System
	File Types
	Structure of the File Chain

	Appendix A: Care, Warranty, and Service Information
	Care of the Module
	Limited One-Year Warranty
	Service
	When You Need Help

	Appendix B: Error Messages
	FORTH Messages
	Editor Messages

	Appendix C: BASIC Keywords
	Appendix D: FORTH Words
	Notation
	Errors
	FORTH Glossary

	Appendix E: Summary of HP-41 Emulator Features
	HP-41 Functions
	General Differences Between the HP-41 and the Emulator
	Mathematical Exceptions
	Extended Register and Numeric Label Range
	Trigonometric Modes
	Display Formatting—Flags 28 and 29
	Automatic Execution—Flag 11
	Function-Specific Differences

	Access to Other Environments

	Appendix F: Guidelines for Running HP-41 Programs on the HP-71
	Transferring HP-41 Programs
	Directly Transferring an HP-41 Program
	Transferring a Program From Mass Storage
	Entering a Program From the Keyboard

	HP-41 Program Instructions and Keystrokes
	Program Description
	User Instructions
	Program Examples and Results
	Data Registers, Status Messages, and Flags
	Converting HP-41 Key Assignments

	Subject Index
	BASIC Keywords by Category
	FORTH Words by Category

