
V7240-71-7

TRANSLATOR PAC
PROGRAMMER'S TOOLKIT

FOR THE HP-71B WITH THE TRANSLATOR PAC

USER'S MANUAL

BY WILLIAM C. WICKS

 

 

Tius program has beeo verieo Only with 1espect 10 the NUMENCal exampie piven in Program Descnpron I User accepts and uses this program matenal AT HIS OWN RISK in reaance solety upon fus own

N3IPECHON Of the Program Maledl and withOu! resance UPON any rEpresentaton or CESCNPLON CONCermng the Program Maleral

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND W1TH REGARD TO THIS PROGRAM MATERIAL INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL

DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING USE OR PERFORMANCE OF THIS PROGRAM MATERIAL

  





Translator Pac Programmer's Toolkit

For the HP-71 with the HP 82490A Translator Pac

User's Manual

by wWilliam C. Wickes





N

=
O
o
W
N

2.1.1
2.1.2
eco

N
D
Y c

2
2
2
2 S

w
N
-
e

2.2.5

RODUCTION. . cccceoesscccsssccssssnse .
Loading TPPT into the HP-7l1l.......
FORTH Termlnology............ cens
Nomenclature ConventionS....eeee..
Controlllng Output Display Duratlo
Printer Output....ccvveveeieeeeeeeees .
Further Reading....ceeeeesecccccccccns

CONTENTS

n

GRAM LISTING AND DECOMPILATION.::eeeeeese

Listing HP-4]1 ProgramS.ccccecccccccscss
Program Listing Format 2-1
Listing Program Labels. 2-4

piling FORTH WOXdS.::eeeeeeeeeeeas
The Link Field 2-5
The Name Field 2-5
The Code Field 2-5
The Parameter Field 2-6
2.2.4.1 Vocabularies 2
2.2.4.2 Secondaries 2-
FORTH Decompiler Words

-7
7
2-9

TRACED EXECUTION OF PROGRAMS AND WORDS.....
3.1 Setting the Trace Word...::eeeeeeeccees
3.2 Traced

3.2.1
3.2.2
3.2.3
Traced

3.3.1
3.3.2
3.3.3
3.3.4

3.4 Timing

Execution of HP-41 Programs....
GTO. and PP 3-3

Single-Stepping 3-4
Break-step Execution with TRUN.
Execution of FORTH Secondaries.
Begin Words 3-7
Continue Words 3-8
Single-Step Examples 3-10
Break-Step Examples 3-12
Execution...eeeeeeecceoconnnnns

EXTENDING THE HP-41 LANGUAGE..:cccceecsoocos
4.1 VocabularieS.....cseeecceccsccsssscscss
4.2 Headerless Words and HEAD..:.ceeeeoeos
4.3 Creating New Prefix Register

FUNCL1ONS.ceeeeeeessosssossssossccsasasas
Creating New Conditional Functions....

Extending TRANS4l...ccceececcssscasscsns

4.4

4.5 Creating New Display Functions........
4.6
4.7 Real-Time Creation of HP-41 Programs..

TPPT DICTIONARY.:.ceoeceecoosss
ALBLS [ => Jeveeeeceeaneennaeens
BP [ => Qddress Jeeoseessosssee
BREAK { word breakpoint }...

H
H
H
T
H
H
H

O
O
\
N

N
N

I o

N |
o

w
W
W
w
w

|
N

b
i
1
t

w
N
-

D

D
S
B
S

|
|

=

W
N
V

O
O
J
O
o
>

o
o
, l



CFL [number => J.eeeso
CONT { breakpoint }...
DBACK:. ¢ eoesosososcncsse
END.vveveosososnonnnns
FINISH:. ceeceoecesocnnss
FL? [ number =-> flag ]
FSCRATCH [ =-> address
GTO. { address }eeeess
HEAD { address name }.
ISST [ =-> address J...
LBLS: ceeeesescscscncns
LIST { number }...eees
LISTN [ number => ]..
NAME [ address => J.eos.
NAMES [ address => strin
PAUSE ( time }..eeeeee
PAUSELEN [ =-> address
PP.cecececsoscccccnccns
PRGM.:coceeescesccssccs
PRINT { word }e.eeeeees
PRP ( label }.ceeesee
Seeesevscsvsessssscccas
SFL [ number => J]....
SST . eeececscsccscscns
SSTO:.vceececcocossosss
SSTA.:ceeeecoccsccses
SSTD:.:ceeeosccsscnsse
SSTU.:ceeoosscssonsss
STACKS.eceesccsscccss
TEMPS [ -> string ]..
TRACE { word }eeeecee
TRACEOFF.¢cccececccses
TRACEON. cccceeccecccsns
TRACEWORD [ => address
TRUN { breakpoint }...
TRUNA ( breakpoint }..
UN: { word }eeeeceecos
UN:A [ address => J...
UN:C [ address => ] ..
VLIST :eeeeeossoscocssse
WAIT . .eceeeosocssccssse

Software Support......

]

]

°

°

°

o

L]

.

o

e

.

°

o

°

°

o
°

°
®

°
o

e
o

°
o

e
o

o
°

o
°

o
o

o
o

o
°

e
e

o
°

L
Q

°
o

o
°

o
°

o
o

.
°

°
o

o
e

°
e

e
o

°
°

o
e

°
*

°
o

°
°

®
e

o
o

.
o

°
o

o
®

o
e
—
d

o
°

o
°

e
°

o
o

e

)

°
e

®
]

o
°

e
o

®
e

o
o

o
o

°
o

o
o

o
o

e
o

°
*

o
o

o
°

°
°

°
.

o
°

e
°

o
°

®
o

o

P
O

O
T
O
T
O
T
O
T
O
T
O
T
U
T
O
T
O
N
O
T
O
T
O
I
T
O
T
U
T
O
T
O
T
O
Y
T
T

|
1 e
l

|
C
O
V
V
V
O
V
R
P
O
P
E
B
I
N
I
I
N
I
A
N
A
N
A
A
V
U
I
V
L
I
U
L
I
A
B
E
R
P
R
L
W
W
W
W



Translator Pac Programmer's Toolkit

For the HP-71 with the HP 82490A Translator Pac

User's Manual

by william C. Wickes

l. INTRODUCTION

The Translator Pac Programmer's Toolkit, or TPPT for
short, 1is a set of extensions to the HP 82490A HP-41 Translator
Pac, that provides an enhanced programming capability for the HP-
41 and FORTH languages. With the TPPT word set, you can:

¢ List (decompile) FORTH words and HP-41 programs.

® Single-step FORTH words and HP-41 programs.

® Set breakpoints to halt program/word execution at specified
places.

® Run HP-41 programs in "trace" mode.

¢ Time program/word execution.

® Write HP-41 programs from within the HP-41] environment,
bypassing the translation stage.

Once you have loaded the TPPT into your HP-71, you can use
it as a permanent extension to the HP-41] and FORTH capabilities
provided by the Translator Pac. Or you can use it only for
program development--once an HP-41 program or set of FORTH words
is perfected, you can 1load the new words or program into a
FTH41RAM file without the TPPT.

1.1 Loading TPPT into the HP-71.

The TPPT file is an HP-71 file of type FORTH, that you use
by simply making it the current FTH41lRAM file:

From HP-IL mass storage:

COPY TPPT:TAPE TO FTH41RAM

From cards:

COPY CARD TO FTH41RAM



From memory:

RENAME TPPT TO FTH41lRAM

If you already have a FTH41RAM file in memory, you will have to
PURGE or RENAME it prior to executing any of these instructions.

The TPPT file is a precompiled FTH41lRAM file, to which you
can add your own HP-41 programs and/or FORTH words. With the TPPT
file installed as the current FTH41RAM file, you can enter the
FORTH or HP-41 environments as usual with the Translator Pac. The
normal FTH41RAM dictionary structure is altered in the TPPT file,
so that most of the file's functions (all except the real-time
HP-41 program defining words PRGM and END) are available in both
the HP-41 and the FORTH environments. This is accomplished by
changing the links of the FORTH and HP41lV words so that HP41lV is
placed ahead of the TPPT words in the search order.

1.2 FORTH Terminology

The Translator Pac was designed to provide HP-41 keyboard
operation and program execution on the HP-71, without requiring
you to understand the 1low-level design of the translator or
anything of the FORTH 1language that underlies the HP-41
environment. Similarly, you can use the HP-41] programming tools
included in TPPT without knowing FORTH. However, if you wish to
make your own customizations to the HP-41] emulator, or to use the
FORTH tools, you should have a working knowledge of FORTH
programming.

On many occasions in this manual, we will mix certain
FORTH and HP-41 terminology. If you're an HP-41l programmer
unfamiliar with FORTH (or vice-versa), here's a brief summary of
the concepts we'll be using.

In HP-41 programming, the terms function, program, and
program line are used frequently:

® A function is a built-in (or plug-in) keyword that the HP-41
recognizes--when included in a program, it is listed by name,
with no XEQ prefix. Most HP-41 functions are postfix,
meaning that they expect any arguments to be present on the
floating-point stack, the alpha register, etc., before the
functions are executed. Postfix functions are all "one-byte"
or "one-part" functions in the HP-41. HP-41 multi-byte
functions are prefix functions, where the function name (RCL,
STO, XEQ"", SF, etc.) is augmented by an argument--a register
number, label number, or alpha string--that must follow the
function name.



® A program line consists of a single function that has been
"compiled" into program memory. (Number entry lines have no
explicit function associated with them, but the numbers can
be viewed as the arguments to an invisible number entry
function.) When you view a program line in the HP-41, a 1line
number is displayed in front of the function name, but the
line number is not part of the program 1line--it is re-
computed each time you switch to program mode.

® A program is an ordered collection of program lines that is
intended to be executed as a unit. Programs are invoked by
name using the XEQ'"'" or GTO"" functions. The HP-41 maintains
a "program pointer," that indicates the memory address of the
next program line to be executed. The program pointer is
updated after each program line while a program is running.
Also, you can set the program pointer to any program line by
using GTO or GTO..

In FORTH there is no distinction between programs and
functions. All programming consists of creating "words," which
are named, individually executable functions. A word can be
written in assembly language, like HP-41 functions, or it can be
defined as a collection, called a "secondary," of previously
defined words, analogous to an HP-41] program. But there is no
analog to the HP-41] program line--once a word is compiled, its
internal structure is normally inaccessible.

FORTH program memory is a linked list of words called the
"dictionary.". The dictionary can be subdivided into
"vocabularies", which are independent 1linked 1lists. In the
Translator Pac dictionary, HP-41 words, and all user-added
programs, are collected in the HP41V vocabulary.

The FORTH equivalent of the HP-41 program pointer is the
"inner interpreter pointer." The inner interpreter is the
"engine" that keeps the FORTH system running. The inner
interpreter pointer points to the next FORTH word to be executed,
which may also be considered as the first word in a 1list of
pending words. Each word can itself be a list of words (i.e., it
is a secondary)--the FORTH return stack saves values of the
interpreter pointer when execution is nested down any number of
levels into secondaries of secondaries of ....

In this manual, we will use the term word as a generic
term that includes HP-41 functions and ordinary FORTH words. We
will use the terms function and program when we want to refer
specifically to HP-41] programming. An HP-41 program in the
emulator is structured very like a FORTH secondary--it is a 1list
of words to be executed successively by the inner interpreter.
The inner interpreter pointer serves as the HP-41] program pointer
when a program is executing; when the program halts, the current



value of the pointer is saved (in a variable we will also refer to
as the HP-41 program pointer) so that the inner interpreter can
continue ordinary FORTH execution.

1.3 Nomenclature Conventions

Throughout this manual, we will use a few simple
conventions:

1. FORTH words are normally described by specifying their use
of the FORTH stack, also called the data stack, parameter
stack, or integer stack. We will specify stack use in the
following format:

SAMPLE [itemn ... item2 iteml =-> item'm ... item'2 item'1l]

where SAMPLE is the FORTH word being defined, and iteml
through itemn are the objects required on the stack (iteml
on top) before execution of S8AMPLE. item'l through item'm
are left on the stack after execution.

2. Certain FORTH and TPPT words use a prefix syntax, that is,
they require input from the keyboard to follow the word
name. For example, the word CREATE takes the name of a new
dictionary entry from the keyboard. We will indicate this
kind of syntax by enclosing the required keyboard input
items in braces { }. CREATE, then, would be listed with the
the syntax CREATE (wordname}, to indicate that CREATE
takes the next string from the keyboard input stream as the
name for the new dictionary entry. If a single item needs
more than one word to represent it, we will join the words
with hyphens to avoid confusion with multiple-item lists.

3. The typeface used in specifying input and output indicates
the fixed or variable nature of the input or output:

¢ Boldface print specifies functions, words, commands,
etc., where the form of the input or output is fixed.

® JTtalics indicates variable input and output, where an
item specified in italics is replaced in actual use by
a specific value or text. For example, the a single
line of an HP-41 program listing, for example, would be
described in the format

address function

which indicates that there are two items in each 1line
of output: first, the memory address, then the name of
the function.



Thus in the example CREATE (wordname), CREATE is a specific
FORTH word, and is shown in boldface, whereas wordname
represents a varying user input.

4. HP-71 keys are indicated by square brackets around the Kkey
name in boldface, e.g., [ENDLINE].

5. HP-71 memory addresses will usually be listed in hexadecimal
(base 16), for a more compact representation (5 digits
instead of 6 in decimal). In HP-41 program listings,
however, we will use decimal, since that is the normal base
for the HP-41 environment.

1.4 Controlling Output Display Duration

When a FORTH word sends text or numerical results to the
HP-71 display, the result remains in the display until it is
superceded by another display (such as the OK { n )} message).
When words display many successive results, the displays may flash
by too rapidly to be read. For this reason, any TPPT words that
output more than one line of displayed results execute the TPPT
word WAIT (analogous to BASIC WAIT) after each new display, which,
besides extending the duration of the display by a user-specified
amount, allows you to suspend execution and single-step through
each successive display.

You can set the duration of the delay produced by WAIT by
using the word PAUSE (time)}, where time is in milliseconds. For
example, PAUSE 1000 causes each TPPT word to display each of its
results for one second, PAUSE 500 for one half second, etc. In
addition to the effect of WAIT, the duration and scrolling of
displays 1longer than 22 characters are affected by the current
HP-71 delay setting (through the BASIC keyword DELAY, which you
can execute from the FORTH or HP41l environments using BASICX).

During the paused display produced by WAIT, you can
suspend further execution by pressing any HP-71 key. Then the
keyboard is active as follows:

® [ATTN] aborts the current word and returns to the normal
FORTH/HP-41 keyboard mode.

® The left- and right-cursor keys scroll the display.

¢ The down-cursor key resumes execution of the current word,
but insures that execution will halt again at the next output
display. Successive use of down-cursor thus allows you to
"single-step" through a multi-display word.



® Any other key resumes normal execution.

1.5 Printer Output

All TPPT words that return visible results normally direct
their output to the LCD display and the current HP-71 DISPLAY IS
device. By using the TPPT word PRINT, however, you can cause all
display output of any FORTH word to be printed on an HP-IL printer
connected to the HP-71.

PRINT is used in the form PRINT {(display-word}, where
display-word 1is any FORTH word that produces displayed output.
During execution of display-word, the current HP-71 PRINTER IS
device is also set as the DISPLAY IS8 device. When display-word
has finished executing, the DISPLAY IS setting is returned to its
original setting. For example,

PRINT F.

will print the current contents of the floating-point X-register,
and

PRINT UN: ROOM

will print the decompiled (see Section 2.2) listing of the word
ROOM.

If any error occurs during execution of PRINT, or you press the
[ATTN] Kkey, the HP-71 will display Halted. You can press [ERRM]
to read the error message associated with the error.

[Note: PRINT sets ONERR to point to a recovery routine that will
restore the DISPLAY I8 device 1in case an error occurs during
execution of display-word. If you have defined a display-word
that itself resets ONERR, you can include the TPPT word DBACK in
the associated error handling word to also restore the display.
Or you can execute DBACK from the keyboard (note: DBACK also
stores 0 in ONERR).]

1.6 Further Reading

® In Section 2, we begin the discussion of the major TPPT
features by describing the methods of listing HP-41 programs
and decompiling FORTH words

¢ Section 3 describes traced execution (single-stepping and
breakpoint execution) and a method of timing HP-41 programs
and FORTH words.



¢ In Section 4, we introduce some methods of extending the HP-
41 1language through adding new HP-41] functions to the
emulator capability set. We also describe a method of
writing HP-41 programs without using TRANS41l. You will need
at least a rudimentary knowledge of FORTH programming
techniques to use this material.

¢ Section 5 is an alphabetical listing of the words added to
the Translator Pac's FORTH/HP-41 dictionary by the TPPT.
Each word is listed with its stack use and other arguments,
plus a short description of its operation and a section
number reference for further explanation.





2. PROGRAM LISTING AND DECOMPILATION

HP-41 programs and FORTH words in the FORTH dictionary are
"compiled," that is, user-readable program "source" code has been
replaced with FORTH execution addresses and data. The TPPT
contains several FORTH words that will "decompile" programs and
words, converting the stored addresses and data to readable text
that will closely resemble the original program source code.

We will begin by describing the method of obtaining HP-41
program listings in section 2.1. 1In section 2.2, we will describe
the words for decompilation of various types of FORTH words.

2.1 Listing HP-41 Programs

The TPPT provides three HP-41 program listing words. PRP
and LIST are modeled on their HP-41 pointerparts PRP and LIST.
The third word, LISTN, is just a postfix version of LIST. They
are used in the following forms:

PRP (alpha-label-name}"

LIST {number-of-lines)

LISTN [ number-of-lines => ]

(A space is required between PRP and the first character of the
label name. The final " is required only if additional words
follow in the command line.) In addition, the words LBLS and ALBLS
list the current contents of the HP-41 labels buffer.

2.1.1 Program Listing Format

PRP {( label } lists the entire program containing the
specified alpha 1label. LIST { number } (or number LISTN) lists
number lines, starting at the current HP-41 program pointer,
stopping at the program END if it is encountered before the full
number of lines is listed. LIST 0 will 1list from the current
program pointer to the END of the program. (You can move the
program pointer to the start of a program by using RTN or END; to
a program label wusing GTO or GTO""; or to an arbitrary program
line using the TPPT function GTO. described in Section 3.2.1.)

The output of PRP or LIST is very similar to HP-41l printer
program listings. The principal difference is the substitution of
HP-71 memory addresses for HP-41 program line numbers. For
listing and debugging purposes, the memory addresses can be used
just like HP-41 program line numbers; the memory addresses have
the additional advantage of allowing you to use FORTH words such



as @ and ! for viewing or replacing compiled code.

Numbers in number entry lines are listed in the current
floating-point display format. STD format is probably the best
format for program listing, since you will see all the significant
digits of a number.

One other difference arises from the fact that program
labels are stored separately from the programs. This results in
program listings showing the 1labels without "line numbers"
(addresses). Note that when you execute GTO label or GTO"label",
the program pointer is positioned to the program line that follows
the label.

Numeric and local alpha GTO (the following applies to XEQ
also) lines are listed in either of these formats:

GTO label

or

GTO label at address

where label is the number or letter of the target label. When a
GTO 1line 1is executed in a running program, the compiled label
number is replaced by the label address. If you 1list a program
after it has been executed, the GTO line is shown with the at
address extension, which shows the precise destination of the GTO.

When you read 1listings obtained with PRP, you should
remember that the translator program TRANS41 makes certain changes
to an HP-41 program during translation. These changes show up as
differences between your original program text file version of the
program and the listing of the program you obtain with PRP.
Specifically:

¢ HP-41 program text lines are translated as the FORTH word A"
followed by a counted string representing the text (similar
to the FORTH word ."). The program 1line "TEXT" 1is thus
listed by PRP as A" TEXT".

® The functions ENTER~, CLX, 8+ and 8-, which disable stack
lift in the HP-41, are replaced by appropriate functions that
produce the same effects as stack lift disable. The choice
of a replacement for one of these functions depends on
whether the immediately following program 1line contains a
function that normally raises the stack. For example, if CLX
is followed by RCL 1, it 1is replaced in the translated
program by RDN, whereas if it is followed by 8IN, it is left
as CLX, which is actually equivalent to RDN 0. A third
version of CLX, named CLXR, 1s required when the next line is



RCL with a stack argument, such as RCL X, RCL T, or RCL IND
Z. Table I lists the replacements for each stack-lift disable
function for each of the three possible program situations.

Table T. Substitutions for Stack-Lift Disabkle Functions

 

Original Function Next Line:

 

Stgck No.stack RCL X,Y,2,T,L
Railise Railse or RCL IND X,Y,2,T,L

CLX RDN CLX CLXR

ENTER~* NOP ENTER* ENTER”R

s+ 84D 8+ 8+R

8- 8-D 8- 8-R

 

Here is a sample output from PRP:

*LBL'"SUMF"
210883
210912
210917
210938
*LBL 1
210959
210980
210990
210995
211000
211005
211010
211015
211035
211045
211050
211069
211079
211089
211094

The final entry shows that
HP-41 return stack), will
the program,

A" COUNTING"
AVIEW
l.1
0

1l

RCL 2
INT
+

LASTX
*

+

ISG Y
GTO 1

BEEP
A" SUM ="

FIX O
ARCL X

PROMPT
END to 210883

at 210959

the END, when executed (with an empty
put the program pointer at the start of

address 210883.



2.1.2 Listing Program Labels.

HP41 program labels are stored in a special "labels
buffer" at the end of the FTH41lRAM file. You can list the
contents of the buffer using LBLS or ALBLS. LBLS lists all of the
local labels and END's. Each label is displayed in the format

LBL number address

where number is the 1label number (or 1letter for 1local alpha
labels), and address is the program address corresponding to the
label. The labels and END's are listed in order of increasing
program address.

ALBLS lists the alpha labels in catalog order, i.e., in
order of decreasing program address. Each is listed in the format

LBL"text" address

2.2 Decompiling FORTH Words.

The FORTH decompiler words provided in the TPPT are UN:
{wordname}, UN:A, and UN:C. The latter two are subfunctions of
UN:, so a discussion of UN: will also cover the other two
functions.

The basic purpose of UN: is to provide you with a "map" of
a dictionary word, that shows you not only the memory location and
structure of the word, but also allows you to determine the
original source code definition of the word. UN: is most useful
for secondaries (hence the name "uncolon," implying a reversal of
the colon compiling process), providing, in effect, a "program"
listing, for reference during debugging and single stepping.

When you execute UN: {wordname}, the following output is
sent to the display (the duration of each successive display is
determined by the latest PAUSE value--see Section 1.4):

LFA: addr Link: previous-NFA to previous-wordname
NFA: addr nibbles
CFA: addr prologue-addr prologue-name parameters

where the items in italics are derived from the word being
decompiled. Following these three lines is additional output that
depends on the type of word being decompiled.



2.2.1 The Link Field

The first line of output from UN: is

LFA: addr Link: previous-NFA to previous-wordname

where addr is the memory address of the link field, and previous-
NFA is the contents of the link field, a pointer to the name field
of the preceding word in the same vocabulary. Previous-wordname
is the name of that preceding word.

2.2.2 The Name Field

Following the link field, the next line output by UN: is
the name field, in the format

NFA: addr count wordname

where addr is the address of the name field, count 1is the count
byte (displayed in hexadecimal), and wordname is the text of the
name. The 3 most significant bits of the count byte of the name
field are used as follows:

--The first is always set to value 1 to indicate the start of the
name field.

--The second is 1 for an immediate word, O otherwise.

--The third is the so-called smudge bit, which is set during
compilation of a word to prevent it from being compiled within its
own definition, allowing redefinition of a word using the same
name.

The 5 least significant bits of the count byte encode the
number of characters in the word name. The last character byte of
the name field also has its most significant bit set to 1 to
indicate the end of the name field. The most significant bit set
on the first and last bytes allows the name field to be traversed
in either direction.

2.2.3 The Code Field

The code field is displayed after the name field, in the
format

CFA: addr prologue-name parameters

addr is the code field address. Prologue-name is the name of the
"prologue," i.e., the assembly language code that constitutes the



CPU-executable portion of the word. The code field contains the
address of the prologue. Parameters consists of extra information
that varies according to the prologue type.

In HP-71 FORTH with the TPPT extensions, there are four categories
of prologue addresses:

1. If the prologue address stored in the code field of a word
is the same as the parameter field address, then the word is
an assembly 1language primitive. UN: will return the
prologue name "Primitive" (parameters will be blank).

2., If a word was created by a new defining word containing the
CREATE...DOES>... sequence, the prologue address is the
address in the defining word just after the DOES>. In this
case, UN: will return a prologue name "DOES>", and
parameters will be "at run-time-addr." Run-time-addr points
to the run-time code for the decompiled word, which is
contained in the defining word after the DOES>.

3. If the word is a headerless FORTH system word that has been
assigned a name by the TPPT defining word HEAD (see Section
4.2), the prologue-name 1is given as Remote CFA, and
parameters will be the code field address of the headerless
word.

4. If a word was created by one of the built-in FORTH defining
words, the name of the original defining word will be given
as the prologue name. Table II gives a list of the defining
words, and any associated parameters. If the word is either
a string or string-array word, parameters shows the string
dimension(s) 1in brackets [ ]. For simple strings, the
dimension is the maximum number of characters the string can
hold. For string arrays, the dimensions are shown in the
form [n x m], where n is the number of elements in the
array, and m 1is the maximum number of characters in each
element.

5. If the prologue does not belong to one of the preceding four
categories, UN: will report the prologue name "Unknown."

2.2.4 The Parameter Field

For all word types except vocabulary words and
secondaries, the last entry in the decompiled output has the form

End at address.

Address is the address of the first nibble of the 1link field of
the word immediately following in the dictionary.



Table II. Translator Pac Prologues

 

 

Prologue Addr Defining Word Parameters

E77B0 :

E77C5 CONSTANT value

E77D9 FCONSTANT value

E7803 VARIABLE or CREATE

E78F6 VOCABULARY

E7816 STRING dimension
E748D STRING-ARRAY dimensions

 

2.2.4.1 Vocabularies

The parameter field of a vocabulary word contains a pointer to the
name field of the 1latest word added to the corresponding
vocabulary, and a vocabulary link field. All vocabularies are
linked together by their vocabulary link fields. The contents of
each such field points to the same field in the chronologically
previous vocabulary word. UN: decompiles the parameter field of a
vocabulary word like this:

addrl Latest: latest-word-NFA latest-word-name

addr2 Prev. Voc.: previous-voc.-link previous=-voc.=-name

Addrl and addr2 are the addresses of each entry in the vocabulary
word's parameter field. Latest-word-NFA is the NFA of the latest
word created in that vocabulary; latest-word-name 1is its name.
Previous-voc.-name 1is the name of the last vocabulary word that
was created prior to the vocabulary word being decompiled;
previous-voc.-link 1is the address of the prior vocabulary's
vocabulary link field.

2.2.4.2 Secondaries

For secondaries, the parameter field is decompiled as a 1list of
the words that comprise the secondary word's definition. Each
entry in the list has the form

addr cfa wordname

where addr is the address in the decompiled word's parameter
field, and «cfa is the contents of that address. Each cfa is the
code field address of one of the words that comprises the
decompiled word's definition. Wordname 1identifies by name the
word corresponding to cfa.

For most words, wordname is just the dictionary name of



the compiled word. There are two types of exceptions: immediate
words that are compiled into a secondary along with data, and
branch words. For the immediate words, the name is supplemented
or replaced by an explicit display of the data, as shown in Table
III.

Table III. Wordnames for Decompiled Immediate Words

 

 

Form in Definition Compiled cfa wordname Example

(literal) nnnnn E2083 nnnnn 12345

(floating point
literal)

sm. mmmmmmmmmmmmEeee E2AB3 sm. mmmmmmmmmmmEeee 1.234E25
(in current display

format )

" text" EO69B " text" " Hello"

I text" EOFAF " text" ." There"

ABORT" text" E612D ABORT" text" ABORT" Errorxr"

 

There are many system utility words contained in the
Translator Pac ROM, plus several additional included in the TPPT
file, that are compiled without name and link fields so that they
are not available for ordinary programming. If you decompile a
ROM word or a TPPT word that contains one of these "headerless"
words in its definition, wordname is replaced by Headerless.

Branch words, which cause the interpreter pointer to Jjump
to a new 1location, are compiled with the jump distance compiled
immediately following the cfa. The wordname for branch words
consists of the name of the word followed by to destination, where
destination is the address where execution will resume after the
branch.

The branch words are of three types, flag conditional,
loop conditional, and unconditional branches. The flag
conditional branch words, which test a flag on the stack to
determine whether to branch or not, are OF, IF, WHILE, and UNTIL.
The compiled cfa for all four words is E6628, so the decompiler
must determine which wordname to report by examining the context
of the branch. This latter process is not foolproof; when program
structures are nested in certain ways, a wordname may be reported
that differs from the original word definition. Moreover, OF 1is
decompiled as the sequence



OVER

IF to destination
DROP

Nevertheless, the execution flow described by the decompilation
will be unambiguous.

LOOP and +LOOP are the 1loop conditional branch words,
which branch or not depending on the loop parameters stored on the
return stack. The decompilation of these words is unambiguous.

The unconditional branch words are ELSE, ENDOF, LEAVE and
REPEAT, which compile as word address E663B. As in the case of the
flag conditional branch words, the decompiler determines which
wordname to report from the context of the branch. Unfortunately,
it is not straightforward to distinguish ENDOF from ELSE, so ENDOF
is decompiled as ELSE. Like OF, LEAVE is actually compiled as
four words, and is decompiled as

R>

R>

2DROP

ELSE to destination.

Finally, the words BEGIN and THEN have no compiled
representation at all, and SO are not detected during
decompilation.

2.2.5 FORTH Decompiler Words

Here are the definitions of the FORTH decompile words:

® UN: {(wordname}. Decompile the link field, name field, and
code field of a dictionary word identified by wordname. For
secondaries, decompile the parameter field, stopping at
semicolon. For vocabularies, display the vocabulary linking
parameters. For other words, report the address of the end
of the word, i.e., the link field of the next word in the
dictionary.

® UN:A [ addr =-> ]. Decompile part of the parameter field of
a secondary, starting at a specified address. If addr does
not contain a valid code field address, return the error
message Invalid Address.

® UN:C [ cfa =-> ]. Decompile the code field of a dictionary
word 1identified by its cfa. For secondaries, also decompile
the parameter field, stopping at semicolon.



To illustrate the output of the decompiler words, consider
a sample word compiled as follows:

¢ WORD IF .' YES'" ELSE " NO" THEN 12345 0 DO LEAVE LOOP ;

The command UN: WORD would then produce this output:

LFA: 33690 Link: 3367C
NFA: 33695 84 WORD
CFA: 3369F E77BO :
336A4 E6628 IF to 336CS
336AE EOFAF ." YES"
336BB E663B ELSE to 336D2
336C5 EO69B " NO"
336D2 E2083 12345
336DC EO2EB 0
336E1 E2096 DO
336E6 EOAAS5 R>
336EB EOAAS R>
336F0 E3FA7 2DROP
336F5 E663B ELSE to 33709
336FF E4925 LOOP to 336E6
33709 E797E ;

(If we had executed ' WORD UN:C, we would have the same output,
starting with the CFA line. Or to decompile, for example, only
from 336E6 to 33709, we could have executed 336E6 UN:A.) The
starting address 33690 is arbitrarily chosen for the example. The
following points illustrate various features of the decompiler:

® IF to 336C5 is the decompilation of the consecutive 5-nibble
quantities E6628 0001C compiled at address 336A4. The former
is the execution address of IF; the latter is the offset to
the THEN (measured from the location of the offset).

¢ The literal 12345 is compiled as E2083 12345.

¢ The display string ." YES", shown as EOFAF ." YES", is
compiled as EOFAF followed by the counted string: 1 byte (3)
for the length then 3 character bytes.

® The string " NO" is compiled as E069B followed by 1 byte for
maximum length (2), 1 byte for current length (2), and 3
character bytes. Note that this is a normal string variable
format, so it is possible to use string words like 8!, 8<%,
and 8>& to change the contents of the compiled string.

¢ LEAVE is compiled as R> R> 2DROP ELSE. The decompilation of
ELSE shows the jump will be to 33709, to the next word after
LOOP.



® LOOP to 336E6 shows that the jump caused by LOOP will be to
336E6, the first word after the DO.

If you have a printer available, you can direct the output of the
decompiler words to the printer using PRINT (see Section 1.5), as
in

PRINT UN: WORD
336E6 PRINT UN:A





3. TRACED EXECUTION OF PROGRAMS AND WORDS

The Translator Pac was designed primarily for execution of
existing HP-41 programs, not for HP-41 program development. It
does not provide any means of tracing program execution, or any
other form of debugging tools. Similarly, the underlying FORTH
system does not include any such tools; you can find coding errors
only through trial-and-error execution, or source code review.

The TPPT supplies a set of words that enable '"traced
execution" of both FORTH words and HP-41 programs. Before
explaining the methods of traced execution in the following
sections, we need to introduce several definitions:

® Traced execution =--a collective term meaning either single-
step or break-step execution, where execution of compiled
words and programs can begin and end at user-specified points
in the code that differ from normal FORTH and HP-41 entry and
exit points.

® Test-word --the FORTH secondary or HP41] program whose
operation we are probing with traced execution.

® Single-step --execute the next word in the definition of a
test-word.

® Break-step --execute continuously one or more words in the
definition of a test-word, up to a breakpoint or to the end
of the test-word.

® Breakpoint --the address at which execution of a test-word
is to halt.

® Next-word =--the "next" word to be executed when traced

execution 1is resumed. The next-word pointer is a stored
variable that indicates where traced execution is to resume.

® Trace-word =--the FORTH word, typically a display word, that
is automatically executed at each halt in traced execution.

3.1 8etting the Trace Word

All of the traced execution words complete their operation
by executing (unless instructed not to) a trace-word that you can
specify. The trace-word is usually a word that displays data or
status information. The trace-word thus provides you with an
automatic means of checking the progress of the traced execution
of a test-word.



You can select any FORTH word to be the trace-word by
using the TPPT word TRACE (trace-word). For example, if you wish
to monitor the X-register during traced execution, you can type

TRACE F. [ENDLINE]

When you first load the TPPT FTH41RAM file, the trace-word is 8.,
which 1is a TPPT word that displays the contents of the FORTH data
stack.

Special cases of TRACE are:

TRACE XONLY --display the X-register after each step.

TRACE A,X --make A/X the trace-word.

TRACE STACK --make ST. the trace-word.

The word TRACEOFF suppresses execution of the trace-word; TRACEON
restores it.

The traced execution words STEP and S8ST precede a single-
step execution by displaying the word (or program step) about to
be executed. TRACEOFF suppresses this preliminary display as well
as the trace-word. If you want to display the word to be
executed, but do not wish the trace-word to follow after each
step, you can execute TRACE NOP TRACEON. This situation is often
desirable when you are working in the HP-41 environment, where the
outer interpreter also executes a display word.

[Note to FORTH programmers: The trace-word is identified by the
cfa stored in a TPPT variable named TRACEWORD. That is, each
traced execution word ends with the sequence TRACEWORD @ EXECUTE. ]

3.2 Traced Execution of HP-41 Programs

Four words are provided in the TPPT for traced execution of
HP-41 programs: S8ST (Single-STep), 8STA (Single-STep Alpha), TRUN
{breakpoint} (Traced-RUN), and TRUNA (breakpoint} (Traced-RUN
Alpha). S8STA and TRUNA are identical to the corresponding
shorter-named words except that they begin by setting HP-41 ALPHA
mode. So we will concentrate on the description of S8ST and TRUN.

For sake of illustration, we will wuse the following HP-41
program:

01 LBLY“TEST"
02 FIX 3
03 1.005
04 8TO 01



05 LBL 01
06 RCL 01
07 INT
08 "LATEST="
09 ARCL X
10 ISG 01
11 GTO 01
12 END

After translating and loading this program, we execute PRP TEST
which gives us a listing with addresses replacing line numbers:

*LBL"TEST"
212320 FIX 3
212330 1.005
212351 8TO 1
*LBL 1
212361 RCL 1
212371 INT
212376 A" LATEST="
212397 ARCL X
212407 AVIEW
212412 ISG 1
212432 GTO 1
212442 END to 212320

We will refer to this listing in the next sections. Remember
that the addresses shown are typical; if you enter ths program
into your HP-71, it will most likely start at a different address
than that shown.

3.2.1 GTO. and PP

To support the HP-41 traced execution words, the TPPT
includes the HP-41 keyboard function GTO. {address}, and a new
function, PP. GTO. allows you to set the HP-41 program pointer
to any point in a program, where address plays the role of the
program line number. You can use PRP or LIST to list the program
(test-word) with its address/line numbers.

PP displays the current value of the program pointer, which
allows you to determine where program execution will begin when
you press [RUN] or use any of the traced execution words.



3.2.2 Single-Stepping

88T operates in a manner very similar to its HP-41
counterpart. That is, 8ST executes the program line indicated by
the program pointer, and advances the program pointer to the next
line. If you have executed TRACEON, S8ST will also display the
line before it is executed, the analog of holding the [88T] key
down momentarily on the HP-41.

There are two separate displays that follow S8ST. First,
after 88T 1is executed, the current trace-word 1is executed
(assuming that you have used TRACEON). Then, when any remaining
words that follow 8ST in the command line have been executed, the
normal HP-41 display word is executed. You can choose any words
to be the trace-word and display word, (since both are FORTH
vectored execution words):

® To set the trace-word, use TRACE (trace-word}.

® To suppress the trace-word display, while preserving the
program line display, use TRACE NOP.

® To set the HP-41 display word, use

' display-word 195822 FTOI !,

or execute one of the built-in words XONLY, STACK, or A,X.

Let's try single-stepping the sample progranm. For the
example, execute TRACE NOP, to suppress any trace-word display.
Then put the program pointer at the start of the program with
either GTO"TEST" or GTO. 212320. Then, the first 8ST gives the
display

FIX 3 1.234

where 1.234 is the number that happened to be in the X-register
when we started. Notice that although the program pointer was
apparently pointing to the LBL"TEST" shown in the program listing,
the 1label is not displayed when we single-step. This is because
program labels are not stored with the program (the program
listing functions show the 1labels just for completeness in the
listings).

Another S8ST yields:

1.005 1.005

The first 1.005 is the program line; the second is the display of
the resulting contents of the X-register. A series of 8ST's gives
these displays:



STO 1 1.005
RCL 1 1.005

(Again, the LBL 1 is not displayed.)
INT 1.000

A" LATEST=" 1.000

ARCL X 1.000

AVIEW LATEST=1.000

AVIEW sets the HP-41 message flag (flag 50), which prevents the
normal X-register display. If we were using a trace-word, its
action would also be suppressed by the message flag.

Two more 8ST's:

ISG 1 1.000
GTO 1 1.000

This brings us back to 212361, the first line after the LBL 1. In
this example, we are assuming that the program has not been run
before--the GTO is still compiled with the 1label number rather
than the label address. If we single-step until we reach the GTO
line again, the display will show:

GTO 1 at 212361 2.000

The at 212361 indicates that the program now contains an 1label
address rather than the label number, to reduce execution time.
8ST retrieves the label number for clarity in the single-step
display.

If you single-step the HP-41 function AON, ALPHA mode will be
activated, and the trace-word and HP-41 display word will not be
executed. The display will show the current ALPHA register
contents, and the ALPHA keys will be active. To single-step
further, however, you will have to exit ALPHA mode so that you can
type S8ST [ENDLINE]. But if the program requires ALPHA mode to be
active while it is running, to give the correct results (it might,
for example, make a program branch dependent on the value of the
alpha flag 48), substitute 8STA for S8ST. S8STA turns on alpha
mode, then executes ordinary S8ST.

The functions CLXR, ENTER~R, 8+R, and 8-R, are peculiar
functions used by TRANS41 to replace occurrences of CLX, ENTER*,
8+, and 8-, respectively, that follow RCL stack in a program (see
Section 2.1.1 and Table 1I). Stack represents any of the stack
register names (IND) X, Y, 2, T, or L. The functions are peculiar
in that when they are executed, they automatically perform the
subsequent RCL, then skip to the program 1line after the RCL.
Although this effect is unnoticeable in normal program execution,
you should be aware that single-stepping any of these functions
will also perform the RCL in the same step, leaving the program



pointer at the program line following the RCL.

3.2.3 Break-step Execution with TRUN.

TRUN {breakpoint) provides the analog of HP-41 operation with
a printer set to TRACE mode. That is, you can run a program
continuously, while obtaining a displayed or printed record of the
effect of each program line as it executes. With TRUN, you can
(optionally) specify a breakpoint, so that the program will halt
at the specified line, which does not have to be a normal program
halt word. You can duplicate all display output from TRUN on an
HP-IL printer by preceding each use of TRUN (or TRUNA) with PRINT.

If TRUN halts at a breakpoint when alpha mode is active, the
traceword display will supercede the normal alpha register
display. Hit [<=-] (back-arrow) to restore the alpha display. If
you wish then to resume traced execution, execute TRUNA, which
sets ALPHA mode then proceeds with ordinary TRUN.

If you have executed TRACEON, TRUN will cause each program
line, and its corresponding trace-word output, to be displayed as
it is executed. The duration of each display is determined by the
value of time set by the most recent use of PAUSE {(time}. If you
press a key during the paused display (see Section 1.4), execution
will be suspended and you can scroll the display using the left-
and right-cursor keys. Any other key resumes normal execution of
TRUN, except the down-cursor key, which causes TRUN to suspend
after the next program 1line. The down-cursor then acts, in
effect, as an 88T Kkey.

To obtain the same displayed results from our sample program
as we did in the preceding section using 8ST, we can use

GTO'"TEST'" TRACEON TRACE XONLY TRUN.

Or we might want to halt just after LBL 1 on each pass through the
loop, without seeing each program line displayed:

GTO"TEST TRACEOFF TRUN 212361

With repeated use of TRUN, we see:

1.005
LATEST=1.000
1.000
LATEST=2.000
2.000
LATEST=3.000
3.000
LATEST=4.000



4.000
LATEST=5.000
5.000

3.3 Traced Execution of FORTH Secondaries.

As defined at the beginning of Section 3, traced execution
implies executing a portion of the compiled definition of a FORTH
secondary word. When you execute a secondary normally, the inner
interpreter pointer is placed at the start of the word's parameter
field. The interpreter then proceeds through the parameter field,
usually eventually encountering the semicolon at the end of the
parameter field, which ends execution of the word. The word, of
course, may include other secondaries in its definition, so that
the interpreter pointer threads its way up and down through
various nested "levels" of execution. By "level" we mean a series
of compiled word addresses that are executed at a constant return
stack depth. To go "up" a level means to remove one address from
the return stack; "down" a level means to add one address to the
return stack. We will use the term "top-level" to refer to the
actual contents of a secondary's parameter field, which correspond
to the original source code definition of the word.

With traced execution, you can terminate execution of a
test-word at points in its definition other than normal FORTH
exits like semicolon. When traced execution halts, it saves the
value of interpreter pointer, which indicates the address of the
"next" word to execute, as the next-word pointer, so that you can
resume execution of the test-word at a later time. It also saves
the current return stack depth (both are saved within the variable
ISST).

FORTH traced execution words are of two types: begin words
and continue words. The begin words are BREAK and STEP; one of
these must be used to start traced execution of a test-word.
Continue words (88T, S8STU, S8STD, SSTO, CONT, FINISH) are used to
continue traced execution of the test-word after BREAK or STEP has

halted.

3.3.1 Begin Words

Traced execution of a FORTH secondary is initiated by
either of the TPPT words BREAK (test-word} {(address) or STEP
{test-word}, where test-word is a secondary. Both words create a
special environment (within the dictionary variable ISST) for
traced execution, which contains a new FORTH return stack, the
next-word pointer, and additional pointers. The alternate return
stack used during traced execution allows you to single step words
like DO, R>, etc, that put data other than return addresses on the



return stack. If this data were left on the normal return stack,
a system crash would result when traced execution halts.

After creating the trace environment, S8TEP single-steps
the first word in the test-word's parameter field. Once you have
executed S8TEP, you can use any of the continue words to further
execution through the test-word.

BREAK (word)} {address}) also starts traced execution of a
test-word at the first word in the test-word's parameter field.
But rather than halting after the first word is finished, BREAK
continues executing through the test-word until the (inner)
interpreter pointer reaches address, or the end of the test-word.
When the traced execution halts at the breakpoint, the trace-word
is executed. Then you can use any of the continue words for
further traced execution of the same test-word. You can omit the
address entry following BREAK, as long as you follow word with
[ENDLINE]. If you don't specify a breakpoint, BREAK will halt at
the previous value for the breakpoint, or at the end of the test-
word.

BREAK tests address to see if it is a wvalid breakpoint,
i.e., that 1its contents are the code field address of a FORTH
word. If not, BREAK aborts with the message Invalid Address. The
breakpoint does not have to fall within the parameter field of the
test-word. You can specify a breakpoint within any secondary that
is executed during execution of the test-word. Then, for example,
you can single step through a word that has been called by
another, with the stacks set appropriately.

The breakpoint address is saved in the TPPT variable BP. You
can also set the breakpoint by typing

address BP ! [ENDLINE].

3.3.2 Continue Words

Continue words are intended to resume traced execution of
a test-word that has been initiated by BREAK or STEP. Each of the
words resumes at the word indicated by the next-word pointer. The
various continue words differ from each other in the criteria they
use to determine where to halt next. "Single-step" words check
the return stack depth after each execution of the inner
interpreter, and halt when that depth reaches a particular 1level.
"Break-step" words halt when the intepreter pointer reaches the
breakpoint, or the end of the test-word (recognized as a semicolon
executed at the return stack level corresponding to the top level
of the test-word), whichever comes first.

The continue words, with their halt criteria, are:



¢ 88T (Single step): Halt when the return stack 1level equals
the level saved when traced execution last halted. Repeated
use of 8ST effectively single-steps through a definition at a
constant 1level. Note: when a word 1like R> or DO, that
affects the return stack depth, is single-stepped, the saved
depth is incremented or decremented prior to the actual
single step. This preserves the sense of single stepping
through a word's definition essentially in the order you
would expect from the original source code.

® 88TD (Single step down): Assuming that the next-word is a
secondary, execute only the first word in the definition of
the next-word. Then subsequent 88T's will step through the
remainder of the definition, one return stack level deeper
than prior to the 88TD. If the next-word is not a secondary,
display the reminder message (Primary) and then execute a
normal S8ST.

® 88TU (Single step up): If the next-word is in the top 1level
definition of the test-word, display the reminder message
(Top), then do a normal 88T. But if the next-word is down
one or more levels, in the definition of a secondary executed
by the test-word, complete execution of that secondary and
return to the word that called the secondary for subsequent
single-stepping.

® 8STO (Single step to level 0): Complete execution of all
secondaries below the top-level of the test-word, so that
subsequent 88T's will step through the remainder of the
test-word's top-level definition.

® CONT ({address) (Continue) : Resume continuous traced
execution, halting at the breakpoint address. If address is
omitted, use the current breakpoint.

¢ FINISH: Complete execution of the test-word through its
final semicolon. FINISH sets the current breakpoint to
address 0, which is equivalent to no breakpoint, since the
inner interpreter should never reach address 0.

To illustrate the operation of the traced execution words,
let us create the following sample words:

¢ WORD2.2 WORD2.2.1 WORD2.2.2 WORD 2.2.3 ;

¢ WORD2 WORD2.l1l WORD2.2 WORD2.3

¢ TEST WORD1l WORD2 WORD3 ;

UN: would then decompile these words as follows:

3-9



LFA : 33E7E Link: 33E68 to WORD3
NFA: 33E83 84 TEST
CFA: 33E8D E77BO :
33E92 33E2F WORD1
33E97 3EE4A WORD2
33E9C 33E74 WORD3
33EAl E797E ;

LFA: 33E39 Link: 33E23 to WORD1
NFA: 33E3E 85 WORD2
CFA 33E4A E77BO :
33E4F 33DC7 WORD2.1
33E54 33DE6 WORD2.2
33E59 33El4 WORD2.3
33E5E E797E ;

LFA: 33DD1 Link: 33DB7 to WORD2.1l
NFA: 33DD6 87 WORD2.2
CFA: 33DE6 E77BO :
33DEB 33D43 WORD2.2.1
33DFO0 33D66 WORD2.2.2
33DF5 33D89 WORD2.2.3
33DFA E797E ;

Here, of course, the addresses (shown in hexadecimal) are
typical, but will vary according to actual memory contents.

We will take TEST as our test-word. Before single-stepping,
we will execute

TRACE 8. TRACEON 1 OKFLG !

to make 8. the active trace-word, and to suppress the OK { n })
message. 8. displays the current stack contents between square
brackets [ ]. Since our sample words don't have a specified
effect on the stack, we will wuse the notation [ word ] to
represent the stack contents after word is executed.

3.3.3 Single-Step Examples

To single-step TEST, we start by executing

STEP TEST

The HP-71 responds with the display

WORD1 [ WORD1 ]

We have executed WORD1l, the first word in TEST's parameter field,

w | 10



leaving the gquantities represented by WORD1 on the stack. The
next-word pointer has the value 33E97 (which you can check by
executing 1ISST ?), which points to the second entry in TEST's
definition.

If we now execute 8ST, the interpreter runs until the return
stack 1is at the same 1level as it was when WORD1l was executed.
That is, all of WORD2 is executed, making the display

WORD2 [ WORD2 ]

Two more S8ST's then yield the displays

WORD3 [ WORD3 ]

¢ Word End

The last display indicates that we have come to a semicolon at the
current return 1level, which in this case is the end of the test-
word. Any additional 88T's will Jjust repeat the ; Word End
message.

Let's suppose now that instead of single-stepping through
TEST at its "top" level, we wish to investigate the behavior of
WORD2, that it exhibits when it is executed by TEST. Then rather
than using 8ST after the initial S8TEP TEST, we can execute 8STD,
which gives the display

WORD2 [ WORD1 ]

Notice that WORDl1l's output is still on the stack--we haven't
actually begun to execute WORD2 yet. The next-word pointer now
has the value 33E4F, pointing to the first entry (WORD2.1) in
WORD2's parameter field. Now S8ST executes WORD2.1

WORD2.1 [ WORD2.1 ]

If we 8STD again:

WORD2.2 [ WORD2.1 ]

and the next-word pointer points to the start of the parameter
field of WORD2.2, which in turn contains the word WORD2.2.1.
Successive 88T's from here will work through WORD2.2.1, WORD2.2.2,
and WORD2.2.3, resulting in the Word End message at the semicolon
terminating WORD2.2. On the other hand, at any point during the
single-stepping of WORD2.2 (including when the next-word pointer
indicates the final semicolon), we could execute 8STU. This would
have the effect of decrementing the stored return level, so that
execution will proceed through the completion of WORD2.2, 1leaving
[ WORD2.2 ] on the stack, and the next-word pointer at 33E59, at

w | 11



the WORD2.3 entry in WORD2's definition. Another 8STU completes
execution of WORD2, returning back to the top level of TEST.

Another option is the use of 88T0, which resets the return
level to the original test-word and thus completes execution of
all nested secondaries at levels below the top level of the test-
word.

Here's an example of single-stepping an actual word. ROOM is
a (ROM dictionary) word that returns the number of nibbles
currently available in the user dictionary. We start with STEP
ROOM, then execute a series of 8ST's to produce the outputs (8. is
still the trace-word, and we are in hex mode):

Display Remarks

SPO [ 2FB11 ] Address of stack bottom pointer
Q [ 3419E ] Address of stack bottom
HERE [ 3419E 33EDA ] End of user dictionary
- [ 2C4 ] Dictionary space
1CA [ 2C4 1CA ] Unavailable space

[- FA ] Net available space
; Word End

3.3.4 Break-Step Examples

In the preceding section, we 1looked at the process of
single-stepping through a test-word, at various return stack
levels. Now let's see how we can execute arbitrary portions of a
word, without regard to return stack level. Suppose, for example,
that we want to examine the stack as it appears during execution
of our test-word TEST, at the point where WORD2 has completed and
WORD3 is about to execute. We can use BREAK to halt execution at
that point, without having to single-step from the start of TEST.

As described earlier, BREAK is used in the form BREAK (word)}
{breakpoint}. So we execute BREAK TEST 33E9C, which halts
execution of TEST at 33E9C, just prior to the WORD3 entry in
TEST's definition. BREAK doesn't display the next-word name when
traced execution begins (as the single-step words do), so we see
only the display

[ WORD2 ]

From here, we can use any of the single-step words to probe
subsequent portions of the test-word. Or, we can use CONT
{breakpoint)} to resume break-step execution up to a new



breakpoint. FINISH also resumes execution, but sets the
breakpoint to address zero, which ensures that the remainder of
the test-word will be executed up to its final semicolon.

Note that the breakpoint set with BREAK or CONT does not have
to be in the top-level definition of the test-word. If we want,
for example, to halt WORD at the WORD2.2.2 entry in WORD2.2, we
use BREAK TEST 33DFO. Then a subsequent 8ST will execute
WORD2.2.2.

If you don't specify (breakpoint) with CONT (or with BREAK),
the 1last breakpoint set remains active. Thus, for example, you
can halt at the same point on successive passes through repeated
code contained within a DO...LOOP construct, by specifying a
breakpoint within the loop with BREAK, then using CONT each time
you want to advance once through the loop.

Break-step execution runs at about 2/3 the speed of normal
FORTH execution. The decrease in speed is due to the extra steps
in the inner interpreter, which check for the breakpoint and for
the end of the test word.

Warning: Do not attempt traced execution of any word
that contains, at any level of definition, any of the
dictionary resizing words GROW, SHRINK, DSIZE, or XSIZE.
When the dictionary size is changed by these words, the
normal return stack area moves. If this occurs during
traced execution, the stored values of the return stack
pointers, which are needed for restoration of normal
execution, will be invalid--Memory Lost 1is the
inevitable result. Since the resizing words are
primarily used from the keyboard (no other built-in word
calls any of the four), this is not a serious limitation
on the utility of traced execution.

3.4 Timing Execution

You can determine the execution time of any FORTH word or
HP-41 program by wusing the TPPT word TIMED {(word)}. TIMED reads
the HP-71 system clock before and after the execution of word,
then subtracts the two clock readings and displays the difference,
in seconds. (The result remains in the X-register.) The result is
accurate to about 0.01 seconds, which is the accuracy with which
the system clock can be read.

If you are timing an HP-41 program, or any FORTH word that
uses the floating-point stack, you should be aware that TIMED
lifts, then drops the stack once on input, so that the contents of
the T-register are lost before word begins to execute. Similarly,



when word is done, TIMED lifts the stack twice and drops it once,
so that the X-, Y-, and Z-register outputs of word are raised to
the Y-, Z-, and T-registers, respectively, and any T-register
output is lost.

Examples:

FORTH:

DECIMAL : EMPTYLOOP 1000 0 DO LOOP ;

TIMED EMPTYLOOP gives the result 0.59 seconds.

HP41:

GTO"TEST'' TIMED RUN,

where TEST is the example program used in the previous section,
shows the result 1.15 seconds.

w | 14



4. EXTENDING THE HP-41] LANGUAGE

(In this section, it will be presumed that you have a
working knowledge of FORTH programming.)

An important advantage of the Translator Pac's use of a
FORTH language system to implement HP-41 emulation on the HP-71 is
that you can add new HP-41 functions to the emulator by writing
them in FORTH. Once an new function has been added to the HP-41
function set, it is indistinguishable in execution style from any
of the built-in functions. No analog to XEQ"" is required to use
a new function.

As described in the Translator Pac Owner's Manual, pages
47-49, any number of postfix HP-41 functions, or FORTH words, can
be combined into new functions using a standard FORTH secondary
colon definition:

¢ NAME wordl word2 ... wordN ;

Here wordl ... wordn, and hence NAME, are presumed to be "simple"
postfix functions (i.e., they do not take a register or label
argument as do the prefix functions like RCL n or LBL n). There
are restrictions on the characters in NAME that arise from
conventions expected by the translator program TRANS41:

® NAME can't contain spaces, quotes, or question marks, which
TRANS41 assumes to indicate prefix functions, text functions,
and conditionals, respectively.

® If the first character of NAME is ~, TRANS41l assumes that
execution of NAME lifts the floating-point stack.

& NAME can't start with E+, E-, E followed by a number digit,
ISG , or DSE.

¢ NAME should not end with ", which identifies a standard HP-41
text function.

The reason that postfix functions should not generally
be included in new function definitions is that the resulting
functions will not execute properly from the keyboard. All of the
Translator Pac's built-in prefix functions check the program
running flag 52 to determine whether to obtain their arguments
from the keyboard (flag 52 clear) or from the compiled program
(flag 52 set). Suppose we want to create a new function A“RCL1
that combines RCL 1 into a single word:

¢ “RCL1 RCL 1 ;



If ~RCL1 is compiled into a program it will work correctly when
the program is run. But if you use it from the keyboard, the RCL
takes the next string from the keyboard as the register number.
If that doesn't cause an error (i.e., the next string is a valid
register number), the interpreter pointer then points at the
compiled register number (1) following the RCL. What happens next
depends on the contents of memory address 00001--in this case
there 1is no apparent effect, but for arbitrary register numbers,
anything, up to memory loss, can result.

4.1 Vocabularies

As described in the Translator Pac manual, the FTH41RAM
file is (initially) organized into two vocabularies. The FORTH
vocabulary contains the built-in FORTH system words, and any HP-41
words that can be considered as ordinary FORTH words, i.e., they
are postfix words that do not depend on any special memory
structures other than the stacks. The HP41lV vocabulary contains
the remaining HP-41 words, especially the prefix words, and any
user programs.

The HP41lV vocabulary word is contained in the FORTH
vocabulary, so that most built-in FORTH words are available even
when HP41V is the context vocabulary. The only FORTH words that
are not available are the words that have identically-named
entries in the HP41V vocabulary (like sTO, RCL, O, 1, 2, 3, X,
etc.) that are found first in a dictionary search.

When you create new HP-41 words, you should enter them
into the HP41lV vocabulary by executing HP41lV DEFINITIONS before
defining the new word. However, matters are complicated by the
duplication of word names in the two vocabularies, so that you may
have to change context after the word definition has begun to
insure that the desired version of a duplicated word is compiled.

Even changing contexts requires care. In the HP41lV
vocabulary, there is a version of the word FORTH that is intended
for use to exit the HP-41 environment. Among other things, this
version of FORTH, which is not an immediate word, executes FORTH
DEFINITIONS, where the latter FORTH is the original vocabulary
word. You should not execute the HP41lV version of FORTH during
compilation of an HP41lV vocabulary word, since an error during
compilation will then 1leave the dictionary in a corrupt state.
For this reason, the TPPT includes the word FORTHV, which is
immediate, that you can use to set the context to FORTH during
compilation. For example,

HP41V DEFINITIONS : ANUMO FORTHV 0 HP41lV ANUM ;

compiles an HP41lV word that puts O on the data stack, then



executes ANUM.

In the following sections, we will describe how to
create new prefix words and other types of HP41l functions. But
first, we will introduce a new TPPT word, HEAD, that provides a
convenient, code efficient method of including headerless
Translator Pac words in your new function definitions.

4.2 Headerless Words and HEAD.

There is a large number of "headerless" utility words
contained in the Translator Pac built-in dictionary. That is, the
link fields and name fields of these words are absent, so that you
can not include the words by name in secondary definitions. You
can, assuming that you know the code field address c¢fa of a
headerless word, include it in a definition with either

cfa EXECUTE

or

[ cfa , ]

These constructions lead to rather cryptic source code, so if you
use a particular headerless word often, it is convenient to give
it a name:

¢ name cfa EXECUTE ;

or

¢ name [ cfa , ] 2

The TPPT defining word HEAD provides a third method of
assigning a name to a headerless word, that is more code efficient
and faster executing than these two. HEAD uses the syntax

HEAD ( cfa name }

HEAD creates a dictionary entry with name in the name field, and a
parameter field consisting only of cfa. The code field points to
a special prologue that adds one level of indirection to ordinary
FORTH execution. That 1is, the prologue moves the CPU program
pointer to the prologue of the headerless word, indicated by the
contents of the cfa which itself is stored in the original word's
parameter field.

For example, the headerless word that returns an HP-41
register address (after checking for its existence) has its code
field at EB177.



HEAD EB177 NTHREG

creates the word NTHREG [ n -> addr ], which takes a register
number n from the data stack and returns the memory address of the
register (or the Nonexistent error if the nth register does not
exist.) The stack registers L, X, Y, Z, and T correspond to n=
10000, 10001, 10002, 10003, and 10004 (decimal), respectively.
n<0 indicates indirect register access, i.e., the addr returned is
the address of the register whose number is stored in register n-
1.

By using NTHREG, we can create the 4“RCL1 function
described at the start of Section 4:

¢ “RCL1 FORTHV 1 HP41lV NTHREG FORTHV RCL ;

We have to go back and forth between context vocabularies, using
FORTHV and HP41lV, because the versions of 1 and RCL we want are in
the FORTH vocabulary, whereas NTHREG should be in the HP41lV
vocabulary.

4.3 Creating New Prefix Register Functions.

All Translator Pac prefix register functions are defined
according to this model:

¢ name GETNUM NTHREG ... ; IMMEDIATE

where NTHREG is the headerless word described in the preceding
section. The ... indicates the remainder of the definition; the
key point is that all the prefix register functions are immediate
secondary words whose definitions start with the two words GETNUM
NTHREG. GETNUM is another headerless word:

HEAD EBCEl GETNUM

For example, the (HP-41l) RCL is defined:

¢ RCL GETNUM NTHREG FORTHV RCL ; IMMEDIATE

where the RCL inside the definition is the postfix version
contained in the FORTH vocabulary, that takes an address from the
data stack and pushes the 8 byte quantity stored at that address
onto the floating-point stack.

GETNUM is the key to all prefix functions. It executes
as follows:



® In program running mode (flag 52 set), return to the data
stack the number from the program address on the top of the
return stack, and increment that return address by 5.

® In execute mode (flag 52 clear), get the next string
delimited by spaces from the keyboard.

® If the string is null, drop one address from the return
stack (to terminate execution of the word that called
GETNUM) and exit.

® If the string is not null (if it is "IND", set a flag to
indicate indirection, and get the next string from the
keyboard) :

¢ If it is a letter L, X, ¥, Z, or T, return to the
data stack the register number 10000, 10001, 10002,
10003, or 10004 (decimal), respectively.

® If it is a letter in the range A - J or a - e,
return the register number

10000 + ASCII value of letter

® If it is not a letter L, X, ¥, 2, T, A - J, or a -
e, use NUMBER to return the numeric value of the
string (or error if not a number).

® If the IND flag was set, negate the register number
on the stack and subtract 1.

® If compile mode is active, compile the word that called
GETNUM, followed by the register number that is on the
stack.

To create a new HP-41 prefix register function, you
should follow the above model. Use GETNUM NTHREG to put the
register address on the data stack, then any number of additional
words to manipulate the data at that address. Remember that such
prefix functions should only be used in HP-41 programs (at top
level), not as arbitrary FORTH words.

Table IV lists code field addresses for some postfix register
words included in the Translator Pac:

The headerless words at these addresses perform the same operation
as their prefix counterparts, but use a register address already
on the data stack rather than a register number from the keyboard
or program. Note that named postfix versions of STO and RCL are
present in the FORTH vocabulary.



Table IV. Postfix Register Words

 

 

Address Prefix Equivalent

EA634 ST#*

EAS538 8T+

EAG60E 8T~

EA65A 8T/
EB6BD X<>

 

For example, suppose we wish to define a function 2<> that works
like the standard function X<>, except that data is exchanged
between a number register and the Z-register instead of the X-
register. Here is a suitable definition:

HEAD EB6BD POSTX<>

¢ Z2<> GETNUM NTHREG FORTHV Z DUP
HP41lV POSTX<> SWAP DUP FORTHV X HP41lV <>

IF POSTX<> POSTX<>

ELSE 2DROP
THEN

s IMMEDIATE

where we have used HEAD to give the name POSTX<> to the
headerless prefix version of X<»>.

4.4 Creating New Conditional Functions

TRANS41 assumes that an HP-41] conditional function,
which it recognizes by the presence of a ? in the function name,
puts a true/false flag on the data stack. TRANS41 adds XBR jump
immediately after the conditional function in the intermediate
program file. The compiled form of XBR tests the flag, and
advances the interpreter pointer by jump nibbles if the flag is
false.

Any FORTH word you define to return a flag to the data
stack can act as an HP-41 conditional, if you include a ? in its
name to signal TRANS41l. To make a new conditional display YES or
NO when executed from the keyboard, you can include the headerless
word

HEAD E7DC9 TRUTH

TRUTH will remove a flag from the stack and display YES or NO if:



¢ The HP-41 environment is active, and

® The program running flag 52 is clear

Otherwise it does nothing, leaving the flag on the stack.

Example: Define a conditional function that tests
whether the alpha register is empty:

¢ ALPHAEMPTY? 2FC82 C@ 0= TRUTH ;

2FC82 is the address of the count byte in the alpha register
string variable at 2FC80.

Table V lists TPPT flag words that you will find wuseful
in writing new HP-41 functions. These words are present in the
Translator Pac as headerless words; they are given names in the
TPPT by use of HEAD.

Table V. TPPT Flag Words

 

 

Name ROM CFA Stack Use Operation

CFL ED511 [ n =-> ] Clear flag n

SFL E24B3 [ n => ] Set flag n

FL? ED537 [ n => flag ] Test flag n: return true
if set, false if clear.

 

n positive means an HP-41 flag; n negative means an HP-71
system flag.

The flag words listed in Table V work on HP-71 system flags =64
through -1, and HP-41 flags 0 through 62. Note that HP-41 flags O
through 7 are identical to HP-71 user flags 0 through 7.

4.5 Creating New Display Functions

You can create new HP-41] display functions that respect the
print/halt conventions of VIEW and AVIEW, as controlled by the
printer flags 21 and 55, by using the headerless Translator Pac
word we will call *VIEW:

HEAD EDOD1l *VIEW



*VIEW [ string -> ] takes a string from the data stack and TYPEs
it to the display, setting the message flag 50. It will halt
program execution or print to the current printer, according to
flags 21 and 55. Note: because *VIEW can alter the return stack,
it should only be used 1in the top 1level definition of HP-41
functions that are intended for use in HP-41 programs.

Another headerless word that is wuseful in conjunction
with *VIEW is

HEAD EBDEF REGSTRS

REGSTRS$ [ address =-> string ] converts the floating-point number
at address 1into a string (at the FORTH pad), according to the
current floating-point display mode.

Example: Define DISPX+2, which displays and prints the contents
of the X-register followed by the contents of Register 2.

DISPX+2 FORTHV 2 X HP41lV REGSTRS$ TYPE
SPACE NTHREG REGSTR$ *VIEW

.
’

If we replace the *VIEW with TYPE, we would then have a version
of DISPX+2 that can be used as an ordinary FORTH word at any level
of definition.

4.6 Extending TRANS41

The translation program TRANS41 1is designed to allow
translation of new functions as well as those included in the
Translator Pac HP-41 function set. TRANS41 makes as few changes
as possible to each line from a program-text file as it is moved
into an intermediate file--most lines are copied unchanged. To
determine whether a line needs modification, TRANS41l applies these
criteria, in order (when any criterion is met, TRANS41l handles the
line accordingly and skips the rest of the tests):

After removing comments enclosed in parentheses, and stripping
leading and trailing spaces--

1. If the line ends with ", it is assumed to contain alpha text
and is rewritten in keyboard form (no extraneous spaces) for
we, LBL"", XEQ"", or GTO""W,

2. If the line is a number entry line, it 1is rewritten into
FORTH floating-point entry form.

3. If the line contains a ? or begins with ISG or DSE, it is
identified as a conditional, and XBR jump is added.



4., If the line contains a space, it is identified as a register
function or a local label. The line is left unchanged, but
the correct compiled line length is computed.

5. If the line is a stack lift disable function ENTER~, CLX,
s+, or 8-, it 1is rewritten according to whether the
following function lifts the stack.

6. All other functions are left unchanged, and are presumed to
be postfix functions of compiled length 5 nibbles. If the
function name starts with the character #~, the function is
presumed to lift the floating-point stack.

In most cases, therefore, when you add new functions to
the HP-41 emulator vocabulary, you need only insure that the
function is named appropriately for TRANS41 to handle it properly.
However, TRANS41 does allow you to add any number of additional
tests and changes to its its program 1line translation. Before
processing any program line, TRANS4l1l calls a BASIC subprogram
named S8PEC41(AS$,K). If SPEC41 is not present, as might usually be
the case for ordinary translation, control returns to TRANS41
which then translates the line. If it 1is present, 8PEC41 can
either translate the 1line itself, or return it to TRANS41 for
translation.

When TRANS41 calls S8PEC41(A$,K), the input variables
are:

A$ = current program line string

K = 0.

When SPEC41 returns to TRANS41l, the variables should be as follows:

A$ = (un)modified program line string

K = 0 if SBPEC41 does not modify this string

= =1 to cause TRANS41l to halt with an error message

jump if S8PEC41 does modify this string.

If K = jump <> 0, then jump is the 1length, in nibbles, of the
compiled code corresponding to A$. In addition, if K <> 0, SPECA4l
should return with

¢ Flag 1 clear

® Flag 0 set if the function corresponding to A$ will raise the
floating-point stack, clear otherwise.



TRANS41 does not correctly translate HP-41] number entry
lines with no exponent digits, i.e., of the form m...m E, where
m...m are one or more mantissa digits. As an example of the wuse
of B8PEC41, here 1is a version that extends TRANS41] to handle this
type of program line:

10 SUB SPEC41(AS$,K)
20 N=NUM(A$) @ L=LEN(AS)
30 IF AS[L]<>"E" OR NOT (N=45 OR N<58

AND N>47) THEN END
40 AS=AS$[1,L-2]
50 IF POS(AS$,".")=0 THEN AS$=ASE&"."
60 K=21

70 CFLAG 1 @ SFLAG O

80 END

Line 30 tests A$ to see if it starts with a number or a - sign,
and ends with E (i.e., no exponent digits). If not, SPEC41
returns to TRANS41l, which will process A$, since K will still be
0. Line 50 adds a decimal point if it is absent. Line 60 sets K
= 21, the compiled length of a floating-point number. 1In line 70,
we set flag 0, since number entry lines raise the floating-point
stack.

4.7 Real-Time Creation of HP-41 Programs

Although use of the Translator Pac text editor and TRANS41 is
a general, safe method of creating HP-41] programs in the HP-71,
that method can be a little tedious and slow if you just want to
create a quick and dirty HP-41 test program. The TPPT words PRGM
and END allow you to create HP-41 programs directly from the HP-41
environment, bypassing the translation stage. PRGM and END act as
HP-41 analogs to the FORTH words : and ;, respectively, which mark
the beginning and end of FORTH secondary compilation.

The general format for use of these words is

PRGM (wordl word2 ... wordn} END

where wordl word 2 ... wordn is the sequence of HP-41 words that
define your program. You can intersperse any number of
[ENDLINE]'s among the words as you enter them; however, [ENDLINE]
will not <clear the display, but will only turn the cursor off.
The next key you hit will clear the display as it begins a new
line of input. If you accidentally press the [RUN] key during
program entry, it will act as [ENDLINE] if you are in the first
line of the program (i.e., PRGM is still in the edit line). 1In
subsequent lines, [RUN] will have no effect.

The price you must pay for the convenience of omitting



translation is that you must input the program words in a less
flexible format than is permitted by TRANS41. Furthermore, you
have to take over the dictionary management performed
automatically by TRANS41l--you will have to estimate the compiled
size of the program, then use XSIZE to open enough room in the
dictionary to hold the program and prevent the Dictionary Full
error.

Here are the guidelines you must follow to include the
various types of HP-41 words in a program:

® You should include at least one alpha label in your program
for subsequent reference. PRGM automatically includes an
invisible dummy label LBL"@Q@" in each program, which you can
use with GTO"", XEQ"", or CLP"™ if you neglect to include
your own label.

® GTO"label"™ and XEQ"label" must be entered with no spaces
between the GTO or XEQ and the leading .

¢® ALPHA text entered in the form "text" must not include a
leading space in the text. (A " Dby itself would be
interpreted as the FORTH ", so that the following text would
be compiled as a FORTH string.) If your text has a leading
space, use the form A" text"

& Number entry lines must be entered in FORTH floating-point
form. They must contain a decimal point, and no spaces
between the last mantissa digit and the E of the exponent, 1if
any.

® Register and local label functions must be followed by tpeir
register numbers (or IND number) on the same command line,
without any intervening [ENDLINE].

® Conditionals must be followed by the word XBR jump, where
jump 1is the compiled length, in nibbles, of the next program
line, plus 5 nibbles. Table VI 1lists the 1lengths of the
various HP-41 function types.

To illustrate these guidelines, we will enter the following HP-41
program:

01 LBL"EXAMPLE"
02 F8? 10
03 GTO"BLAZES"
04 "TEXT"
05 XEQ"SPIES"
06 1123
07 RCL IND 99
08 PI

o | 11



Table VI. Compiled Lengths of HP-41 Functions

 

 

Function Length (nibbles)

Alpha labels 5
Local labels 5

END 5

l-byte functions 10
2-byte functions 15
Conditionals 25
GTO"label" 10 + 2% (n+1)
XEQ"label" 10 + 2*(n+1l)

ntext" 10 + 2% (n+1)
 

Here n 1s the number of characters 1n label or text.

09 LBL B
10 END

We enter the program like this:

PRGM LBL"EXAMPLE' F8? 10 XBR 24 [ENDLINE]

GTOYBLAZES" "TEXT" XEQ"SPIES"™ 1123. RCL IND 99 [ENDLINE]

PI LBL B END [ENDLINE]

The placement of the [ENDLINE]'s is arbitrary, as 1long as they
don't break up multi-part functions onto separate lines. Notice
that F8? 10 is entered followed by XBR 24. The 24 is derived from
the following GTO'"BLAZES". The number n of alpha characters in
"BLAZES" is 6, so 10 + 2*(n+l) = 24.



5. TPPT DICTIONARY

This section contains an alphabetical list of the words added to
the FORTH dictionary by the TPPT. Sorted by category, the words
are:

Input/Output Variables Defining Words

DSAVE BP HEAD

GTO. FSCRATCH * PRGM

PAUSE ISST END
PC PAUSELEN

PRINT TEMPS *
8. * TRACEWORD

STACKS *
TRACE

TRACEOFF

TRACEON

VLIST *

WAIT

FORTH Decompile HP-41 Program Listing  HP-41 Flags

'*NAMES§ * ALBLS CFL
BREAK LBLS FL?
CONT LIST SFL
FINISH LISTN
NAME * PRP
NAMES§ * 88T
88T SSTA
88TO TRUN
88TD TRUNA
8STU
UN:
UN:A
UN:C

Words marked with an asterisk * are TPPT utility words included in
this dictionary, that are not described anywhere else in this
manual.

Postfix words are listed in the format

Name [ stack -> stack' ]

where stack represents the arguments Name takes from the FORTH



integer data stack, and stack' represents the items returns to the
stack by Word. All stack arguments and returned stack values for
TPPT words are single 1length integers, except those items
identified by string, which indicates a FORTH string (address and
character count).

Prefix words that expect following input from the keyboard are
listed in the format

Word { inputs )

where inputs is one or more items that Word takes from the
keyboard.

 

 

'"NAMES$ [ cfa =-> name-string ]

Return a string containing the name of the dictionary entry
identified by the code field address cfa. If there is no valid
name field preceding cfa, return the string "Headerless." If the
identified code field contains 00000, return the string "Empty."

 

ALBLS [ -> ]

Display each HP-41 alpha label and its program address. Each
display has the form

LBL"text" address

Successive displays are separated by WAIT. Section 2.1.2.

 

BP [ -> address ]

Return the address of the variable containing the current
breakpoint address. Section 3.3.1.

 



BREAK ( word breakpoint )}

Start traced execution of word, and continue until the inner
interpreter reaches the breakpoint address, or the end of word.
If no breakpoint 1is specified, wuse the current breakpoint.
Section 3.3.1.

 

CFL [number => ]

Clear flag number. A positive number identifies an HP-41 flag; a
negative number refers to an HP-71 system flag. Section 4.4.

 

CONT { breakpoint }

Continue traced-execution, starting at the address stored in the
next-word pointer. Halt at the breakpoint address, or the end of
the test-word, whichever comes first. If no breakpoint is
specified, use the current breakpoint. Section 3.3.2.

 

DBACK

Restore the previous DISPLAY IS8 device. DBACK should only be used
when preceded by PRINT { word }, where word has overwritten the
ONERR entry used by PRINT, and an error has occurred. DBACK can be
included in word's error-handling word. Section 1.5.

 

END

In compile mode, terminate compilation of an HP-41 program. When
not in compile mode, act as a normal HP-41 END. Section 4.7.

 



FINISH

Continue traced execution, starting at the address stored in the
next-word pointer, and halting at the end of the test-word.
Section 3.3.2.

 

FL? [ number => flag ]

Test flag number. Return true (-1) if flag number is set; return
false (0) otherwise. A positive number identifies an HP-41 flag;
negative number refers to an HP-71 system flag. Section 4.4.

 

FSCRATCH [ -> address ]

Return the address of a floating point variable used by TIMED for
temporary storage.

 

GTO. { address }

Place the HP-41 program pointer at address. If the contents of
address are not a valid code field address of a valid FORTH word,
return the Invalid Address message, and leave the program pointer
unchanged. Section 3.2.1.

 

HEAD ( address name )}

Create a dictionary entry with name as the name field. When name
is executed, the headerless word with its code field at address is
executed. Section 4.2.

 

5-4



ISST [ -> address ]

Return the parameter field address of a variable containing the
traced-execution pointers and return stack. The first entry at
address is the next-word pointer. IS8T @ returns the value of the
next-word pointer to the data stack. Section 3.3.1.

 

LBLS

Display the current HP-41 local labels and END's. Each entry is
displayed in the format

LBL number address

or

END address

where number is the label number or letter, and address is the
program address of the label or END. Entries are listed in order
of increasing program address. Section 2.1.2.

 

LIST { number )}

List an HP-41 program, starting at the current HP-41 program
pointer. List number 1lines, or to the program END, whichever
comes first. The program pointer advances to the next line after
the 1last 1line 1listed. LIST 0 lists from the program pointer to
the end of the program. See also LISTN. Section 2.1.

 

LISTN [ number => ]

List an HP-41 program, starting at the current HP-41 program
pointer. List number 1lines, or to the program END, whichever
comes first. The program pointer advances to the next line after
the 1last 1line listed. 0 LISTN lists from the program pointer to
the end of the program. See also LIST. Section 2.1.

 



NAME [ address => ]

Display the characters in the word name field at address. LATEST
NAME, for example, displays the name of the most recent word
created in the current vocabulary.

 

NAMES [ address =-> string ]

Return a string containing the characters in the word name field
at address.

 

PAUSE ( time )

Set time as the delay produced by WAIT, where time is expressed in
milliseconds. Section 1.4.

 

PAUSELEN [ -> address ]

Return the address of the variable PAUSELEN, that holds the number
of milliseconds that WAIT will pause execution. If PAUSELEN
contains a negative value, WAIT will suspend execution.

 

PP

Display the current contents of the HP-41] program pointer variable
at 2Fc48. Section 4.7.

 



PRGM

PRGM is used in the format

PRGM wordl word2 ... wordn END

to define an HP-41 program containing the words wordl word2
wordn. Section 4.7.

 

PRINT { word }

During execution of word, make the current PRINTER IS device the
DISPLAY IS8 device, so that any display output from word is
printed. Restore the original DISPLAY IS device when word is
finished. Section 1.5.

 

PRP ( label )}

List the HP-41 program containing the designated alpha label from
the first 1line of the program through the END. A ' must follow
the label name if any additional keyboard input precedes the next
[ENDLINE]. Section 2.1.

 

Display the current contents of the data stack, in the format

[ itemn ... item2 iteml ]

where iteml is on the top of the stack (most recently entered).

 



SFL [ number =-> ]

Set flag number. A positive number identifies an HP-41 flag;
negative number refers to an HP-71 system flag. Section 4.4.

 

88T

In the FORTH environment: Single step the current test-word,
starting at the address indicated by the next-word pointer, and
continuing until the return-stack level matches the 1level stored
at the last halt in traced-execution. Section 3.3.2.

In the HP-41 environment: Single step the HP-41 program line
indicated by the HP-41 program pointer. Section 3.2.2.

 

88TO

Resume traced execution of the current test-word, starting at the
value of the next-word pointer and halting when the return stack
level corresponds to top-level execution of the test-word.
Section 3.3.2.

 

SSTA

Set HP-41 alpha mode flag 48, then execute 8ST. Section 3.2.2.

 

8STD

Resume traced-execution of the current test-word. If the next-
word pointer indicates a secondary, halt with the next-word
pointer pointing at the first word in the parameter field of the
secondary. Otherwise, execute 88T. Section 3.3.2.

 



8STU

If the next-word pointer is below the top 1level of the current
test-word, complete execution at the current return-stack level,
then halt with the stored return stack-level decreased by one. If
execution 1s already at the top level, display (Top), and do SST
instead. Section3.3.2.

 

STACKS

Display the contents of the data stack and the floating point
stack in the format

[ data stack contents ] { floating-point stack contents })

The data stack contents are displayed in the same manner as by 8.:
the floating-point stack contents are displayed by the ROM word
8T..

 

TEMP$ [ -> string ]

Return the address and character count of the string contained in
a the string variable TEMP$, which has a maximum length of 96
characters. TEMP$ is used by the TPPT single-step and decompile
words.

 

TRACE { word )}

Make word the current trace-word to be executed at each halt in

traced execution. Section 3.1.

 



TRACEOFF

Suspend automatic trace-word execution at traced-execution halts.
Section 3.1.

 

TRACEON

Restore automatic trace-word execution at traced execution halts.
Section 3.1.

 

TRACEWORD [ =-> address ]

Return the address of the variable TRACEWORD, which hold the code
field address of the current trace-word. Section 3.1.

 

TRUN { breakpoint )}

Run an HP-41 program in trace mode, starting at the current HP-41
program pointer value and continuing up to the next program halt,
or to the breakpoint address, whichever comes first. If TRACEON
has been executed, display each program line and execute the
current trace-word after each 1line. If no breakpoint is
specified, use the current breakpoint. Section 3.2.3.

 

TRUNA { breakpoint )}

Set HP-41 alpha mode flag 48, then execute TRUN. Section 3.2.3.

 



UN: { word )

Decompile word, including the 1link field, name field, code field,
and, if possible, the parameter field. Section 2.2.5.

 

UN:A [ address => ]

Decompile part of the parameter field of a secondary, starting at
address. If address does not contain the code field address of a
valid FORTH word, abort with the error message 1Invalid Address.
Section 2.2.5.

 

UN:C [ address => ]

Decompile the code field, and (if possible) the parameter field of
the word whose code field is at address. Section 2.2.5.

 

VLIST

Display each word in the context vocabulary, starting with the
most recently created word and running up through the built-in
ROM-based dictionary.

 

WAIT

Pause execution for the amount of time stored (in milliseconds) in
the variable PAUSELEN. If a key is hit during the pause, suspend
execution to allow the display to be scrolled. See Section 1.4
for a list of the keys that are active during the halt.

 





6. 8oftware Support

As the author of the TPPT, I wish to support this software at a
level appropriate to the complexity and customer cost of the
package. To this end, I invite purchasers of the TPPT to write to
me directly if you discover bugs in the software or manual. I
also welcome any comments you may have on the quality and
usability of the TPPT. My address is:

William C. Wickes
4517 NW Queens Ave.

Corvallis OR 97330

The last page of this manual is a registration form. Please £fill
it out and send it to me with a self-addressed, stamped envelope,
so that I can notify you if there are any changes necessary for
the manual or the software.

I will try to respond to 1letters regarding bugs or other
shortcomings. However, because of the power, range, and
flexibility of the Translator Pac combined with the TPPT, and the
number of potential purchasers of the TPPT, I can not guarantee to
answer requests for programming tutorials, solutions to
programming problems, tips, or answers to questions about the
design of the Translator Pac. Correspondence of this nature is
best directed to one of the HP calculator user clubs, where it
will be given the maximum exposure to the user community. Two
such clubs are:

PPC CHHU

PO Box 9599 2545 W. Camden Pl.
Fountain Valley CA 92728-9599 Santa Ana CA 92704





Translator Pac Programmer's Toolkit

Bug Fix Procedure

Due to a compilation error, copies of the Translator Pac
Programmer's Toolkit distributed prior to July 11, 1986, contain
certain incorrect compiled addresses that prevent use of STEP, and
proper error recovery when an HP41l program is single-stepped
through a program line that causes an error.

You can permanently correct this defect by following the following
procedure.

1. In the BASIC environment, type PURGE FTH41RAM [ENDLINE].

2. Get a new copy of TPPT:

® From disk or tape:

COPY TPPT:TAPE TO FTH41lRAM

¢ From cards:

COPY CARD TO FTH41RAM

3. Switch to the FORTH environment: FORTH [ENDLINE].

4. Type:

HEX 3152E 31633 ! 31658 DUP 31AFA ! 332BE ! [ENDLINE]

31642 3163D ! 31651 3164C ! DECIMAL [ENDLINE]

5. Return to the BASIC environment: BYE [ENDLINE].

6. Save FTH41RAM as your new copy of TPPT:

COPY FTH41lRAM TO TPPT:TAPE

or

COPY FTH41RAM TO CARD




	Cover
	Contents
	1. Introduction
	1.1 Loading TPPT into the HP-71
	1.2 FORTH Terminology
	1.3 Nomenclature Conventions
	1.4 Controlling Output Display Duration
	1.5 Printer Output
	1.6 Further Reading

	2. Program Listing and Decompilation
	2.1 Listing HP-41 Programs
	2.2 Decompiling FORTH Words

	3. Traced Execution of Programs and Words
	3.1 Setting the Trace Word
	3.2 Traced Execution of HP-41 Programs
	3.3 Traced Execution of FORTH Secondaries
	3.4 Timing Execution

	4. Extending the HP-41 Language
	4.1 Vocabularies
	4.2 Headerless Words and HEAD
	4.3 Creating New Prefix Register Functions
	4.4 Creating New Conditional Functions
	4.5 Creating New Display Functions
	4.6 Extending TRANS41
	4.7 Real-Time Creation of HP-41 Programs

	5. TPPT Dictionary
	6. Software Support

