Hewlett-Packard appreciates the help offered us by the following people:

Thomas A. Gauldin, Manager
Mortgage Loan Dept.
Midwestern United Life Insurance Co.

Jacob Y. Graudenz, Vice-President
AFG Financial Systems, Inc.

Professor William Kahan
Department of Electrical Engineering and Computer Science
University of California, Berkeley

The material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of keystroke procedures or any part thereof.
Introduction

The HP-92 APPLICATIONS HANDBOOK has been designed to supplement the HP-92 OWNER’S HANDBOOK by providing a collection of key applications in the areas of real estate, investment analysis, savings and leasing, statistics, and securities. Step by step keystroke procedures and examples for over 50 problem types are explained. These procedures may be altered and combined to provide solutions to many more problems.

Whether you are a real estate professional, a securities analyst, or are involved in any field of investment analysis, you will find the HP-92 and this book invaluable for reducing your calculation time and effort in analyzing transactions. No longer are cumbersome financial tables and texts needed—the HP-92 allows you to merely press the appropriate keys and obtain your answer in seconds. In addition, the flexibility and power of the HP-92 will enable you to expand your capabilities to analyze complicated investment alternatives.

To help you in using this Handbook, and in finding the keystroke procedure applicable to your particular problem, the Table of Contents is organized by general topic areas. Each procedure in that topic area is then sub-catagorized and listed individually. For example, if you wish to find the yield to the lender on a wrap-around mortgage, just refer to Wrap-Around Mortgages under Financial Analysis in the REAL ESTATE AND INVESTMENT ANALYSIS section. Or, if you wish to fit a set of data to an appropriate curve, you will find three methods located under Curve Fitting in the STATISTICS section.

The range of applications of the HP-92 is quite large and has not been fully explored. However, we hope that this Handbook will cover the most important recurring situations that confront you.

NOTE

Unless otherwise specified, the keystroke solutions in this book are evaluated with the Print Mode switch in the MAN (manual) position. If NORM (normal) is used, calculated results may be printed on the tape by pressing PRINT X.
TABLE OF CONTENTS

Introduction ... 1
Table of Contents ... 2, 3

REAL ESTATE AND INVESTMENT ANALYSIS

Simple Mortgages
- Annual Percentage Rate Calculations with Fees .. 5
- Price of a Mortgage Traded at a Discount/Premium 7
- Yield of a Mortgage Traded at a Discount/Premium 8
- Present Value of a Mortgage-Balloon Payment One Period After Last Payment 9
- Yield of a Mortgage-Balloon Payment One Period After Last Payment 10
- Deferred Annuities .. 11

Consumer Loans
- Loans With a Constant Amount Paid Towards Principal 14
- Add-on Interest Rate Converted to APR .. 15
- APR Converted to Add-on Interest Rate .. 16
- Interest Rebate-Rule of 78’s ... 16

Depreciation
- Straight Line Depreciation ... 19
- Partial-Year Depreciation ... 19
- Declining Balance Depreciation .. 21
- Partial-Year Depreciation ... 21
- Excess Depreciation .. 22
- Crossover Point ... 23
- Sum-of-the-Years’-Digits Depreciation ... 26
- Partial-Year Depreciation ... 26
- Excess Depreciation .. 27

Financial Analysis
- Impact of Financing Alternatives .. 28
- Cash Equivalent Sales Price ... 31
- Refinancing ... 33
- Wrap-Around Mortgages .. 34
- Modified IRR-Varying Reinvestment Rate (FMRR) 41
- Rent or Buy ... 43

Equity Investment Analysis
- Equity Yield Rate ... 46
- Equity Investment Value and Present Value ... 47
- Future Sales Price and Overall Depreciation/Appreciation Rate 48

Canadian Mortgages
- Periodic Payment Amount ... 49
- Number of Periodic Payments to Fully Amortize a Mortgage 50
- Effective Interest Rate (Yield) .. 50
- Balance Remaining at End of Specified Period 51
REAL ESTATE
AND
INVESTMENT
ANALYSIS
SIMPLE MORTGAGES

ANNUAL PERCENTAGE RATE CALCULATIONS WITH FEES

Borrowers are sometimes charged fees in connection with the issuance of a mortgage, which effectively raises the interest rate. The actual amount received by the borrower (PV) is reduced, while the periodic payments remain the same. Given the life or term of the mortgage, the interest rate, the mortgage amount, and the basis of the fee charge (how the fee is calculated), the true Annual Percentage Rate may be calculated. Information is entered as follows:

1) Set the Payment Mode switch to END and press CL FIN.

2) Calculate and enter the periodic payment amount of the loan.
 a) Key in the total number of payment periods; press n.
 b) Key in the periodic interest rate; press i.
 c) Key in the mortgage amount; press PV.*
 d) To obtain the periodic payment amount press PMT.*

3) Calculate and key in the actual net amount dispersed.*
 a) If fees are stated as a percentage of the mortgage amount (points), recall the mortgage amount (RCL PV); key in the fee (percentage) rate; press % = PV.
 b) If fees are stated as a flat charge, recall the mortgage amount (RCL PV); key in the fee amount (flat charge); press = PV.
 c) If fees are stated as a percentage of the mortgage amount plus a flat charge, recall the mortgage amount (RCL PV); key in the fee (percentage) rate, press % =; key in the fee amount (flat charge); press = PV.

4) Press i to obtain the percentage rate per compounding period.

5) To obtain the annual nominal percentage rate, key in the number of periods per year, and press x.

Example 1:
A borrower is charged 2 points for the issuance of his mortgage. If the mortgage amount is $50,000 for 30 years, and the interest rate is 9% per year, with monthly payments, what annual percentage rate is the borrower paying? (1 point is equal to 1% of the mortgage amount.)

* Positive for cash received; negative for cash paid out.
Keystrokes:

BEGIN NOTE END BOND

\[\text{CL FIN} \]

30 \(\boxed{1 \ \function{12x}} \) \(\rightarrow \)

9 \(\boxed{1 \ \function{12÷}} \) \(\rightarrow \)

50000 \(\boxed{\text{CHS} \ \function{PV}} \) \(\rightarrow \)

\(\boxed{\text{PMT}} \)

\(\boxed{\text{RCL} \ \function{PV} \ 2 \ \% = \ \function{PV}} \) \(\rightarrow \)

1 \(\rightarrow \)

12 \(\boxed{x} \) \(\rightarrow \)

Outputs:

360.00 Months (into \(n \))

0.75 \% monthly interest rate (into \(i \))

-50000.00 Loan amount (into \(PV \))

402.31 Monthly payment (calculated)

-49000.00 Actual amount paid out by lender (into \(PV \))

0.77 \% monthly interest rate (calculated)

9.23 Annual percentage rate

Example 2:

Using the same information as given in Example 1, calculate the APR if the mortgage fee is $150 instead of a percentage.

Keystrokes:

BEGIN NOTE END BOND

\[\text{CL FIN} \]

30 \(\boxed{1 \ \function{12x}} \) \(\rightarrow \)

9 \(\boxed{1 \ \function{12÷}} \) \(\rightarrow \)

50000 \(\boxed{\function{PV}} \) \(\rightarrow \)

\(\boxed{\text{PMT}} \)

\(\boxed{\text{RCL} \ \function{PV} \ 150 \ - \ \function{PV}} \) \(\rightarrow \)

1 \(\rightarrow \)

12 \(\boxed{x} \) \(\rightarrow \)

Outputs:

360.00 Months (into \(n \))

0.75 \% monthly interest rate (into \(i \))

50000.00 Loan amount (into \(PV \))

-402.31 Monthly payment (calculated)

49850.00 Effective mortgage amount

0.75 Monthly interest rate (calculated)

9.03 Annual percentage rate

Example 3:

Again using the information given in Example 1, what is the APR if the mortgage fee is stated as 2 points plus $150?
Keystrokes:

BEGIN ENDNOTE BOND

30 12Χ 9 12÷

50000 PV
PMT

RCL PV 2 % =
150 PV

RCL 1 12÷

Outputs:

360.00 Months (into n)
0.75 % monthly interest rate (into i)
50000.00 Loan amount (into PV)
–402.31 Monthly payment (calculated)
48850.00 Effective mortgage amount
0.77 Monthly interest rate (calculated)
9.26 Annual percentage rate

PRICE OF A MORTGAGE TRADED AT A DISCOUNT/PREMIUM

Mortgages may be bought and/or sold at prices lower (discounted) or higher (at a premium) than the remaining balance of the loan at the time of purchase. Given the amount of the mortgage, the periodic payment, the timing and amount of the balloon or prepayment, and the desired yield rate, the price of the mortgage may be found. It should be noted that the balloon payment amount (if it exists) occurs coincident with, and does not include, the last periodic payment amount.

Information is entered as follows:

1) Set the Payment Mode switch to END and press CL FIN.
2) Key in the total number of periods until the balloon payment or prepayment occurs; press n.
3) Key in the desired periodic interest rate (yield) and press i.
4) Key in the periodic payment amount; press PMT.*
5) Key in the balloon payment amount and press FV.*
6) Press PV to obtain the purchase price of the mortgage.

Example 1:

A lender wants to induce the borrower to prepay a low interest rate loan. The interest rate is 5% with 6 years (72 payments) remaining of $137.17 and a

* Positive for cash received; negative for cash paid out.
balloon payment at the end of the sixth year of $2000. If the lender is willing to discount the future payments at 7½%, how much would the borrower need to prepay the note?

Keystrokes:

```
BEGIN  END
NOTE  BOND

72  0  7.5  $12÷  137.17
PMT  2000  FV  PV
```

Outputs:

-9210.48 Amount necessary to prepay note

Example 2:

A 9½% mortgage with 28 years remaining may be acquired which has a remaining balance of $49,350. Determine the price to pay for this mortgage if the desired annual yield is 12%. (Since the payment amount is not given, it must be calculated.)

Keystrokes:

```
BEGIN  END
NOTE  BOND

28  $12×
9.5  $12÷
49350  CHS  PV  PMT
12  $12÷
PV
```

Outputs:

336.00 Months (into n)
0.79 % monthly interest rate (into i)
420.40 Monthly payment to be received
1.00 Desired % monthly interest rate (into i)
-40555.50 Purchase price to achieve the desired yield (calculated)

YIELD OF A MORTGAGE TRADED AT A DISCOUNT/PREMIUM

The annual yield of a mortgage bought at a discount or premium may be calculated, given the original mortgage amount, interest rate, and periodic payment, as well as the number of payment periods per year, the price paid for the mortgage, and the balloon payment amount (if it exists).

Information is entered as follows:

1) Set the Payment Mode switch to END and press **CL FIN**.
2) Key in the total number of periods until the balloon payment occurs and press \(n \).

3) Key in the periodic payment amount and press \(\text{PMT} \).*

4) Key in the purchase price of the mortgage; press \(\text{PV} \).*

5) Key in the balloon payment amount and press \(\text{FV} \).*

6) Press \(\text{I} \) to obtain the yield per period.

7) Key in the number of periods per year and press \(\times \) to obtain the nominal annual yield.

Example 1:

Find the annual yield of a 7%, 21 year mortgage prepaid in full at the end of the 12\(^{th}\) year, if the mortgage amount is $100,000, the purchase price is $86,000, and equal monthly payments of $758.47 are received. The remaining balance at the end of the 12\(^{th}\) year is $60,647.67.

Keystrokes:

<table>
<thead>
<tr>
<th>BEGIN NOTE BOND</th>
<th>Outputs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(12 ; \text{12}\times)</td>
<td>144.00 Balloon payment occurs at end of 144(^{th}) month (into (n))</td>
</tr>
<tr>
<td>758.47 (\text{PMT})</td>
<td>758.47 Monthly payment received (into (\text{PMT}))</td>
</tr>
<tr>
<td>86000 (\text{CHS PV})</td>
<td>(-86000.00) Amount loaned (into (\text{PV}))</td>
</tr>
<tr>
<td>60647.67 (\text{FV} ; \text{1})</td>
<td>0.77 Percent monthly yield (calculated)</td>
</tr>
<tr>
<td>(\text{RCL} ; \text{I} ; \text{12} \div)</td>
<td>9.23 Percent annual yield</td>
</tr>
</tbody>
</table>

PRESENT VALUE OF A MORTGAGE WITH BALLOON PAYMENT ONE PERIOD AFTER LAST PAYMENT

Sometimes the balloon payment is due and payable one period after the last periodic payment in the contract maturity. If this is encountered, the present value (or purchase price) of the mortgage loan may be calculated as follows:

1) Set the Payment Mode switch to END and press \(\text{CL FIN} \).

2) Key in the total number of payment periods until the balloon payment occurs; press \(n \).

* Positive for cash received; negative for cash paid out.
3) Key in the periodic interest rate; press \(i \).
4) Key in the periodic payment amount; press \(\text{PMT} \).*
5) Key in the balloon amount, less the periodic payment amount, and press \(\text{FV} \).*
6) Press \(\text{PV} \) to obtain the present value of the mortgage.

Example 1:
A 20-year $60,000 mortgage loan with a balloon payment of $23,507.58 has monthly payments of $483.20. The balloon payment is to be made one month after the last monthly payment. What is the present worth or market value to the purchaser of the mortgage loan if he desires a 9.5% annual yield?

Keystrokes: Outputs:

\[
\begin{align*}
\text{BEGIN} & \quad \text{END} \\
\text{N} & \quad \text{BOND} \\
\text{CL} & \quad \text{FIN} \\
20 & \quad \text{ENTER} \quad 12 \quad \times \quad 1 \quad \pm \quad \begin{array}{c}
\text{p} \\
\text{n}
\end{array} \\
9.5 & \quad \div \quad 12 \quad \pm \\
483.20 & \quad \text{PMT} \\
23507.58 & \quad \text{RCL} \quad \text{PMT} \quad \mp \quad \text{FV} \\
& \quad \text{PV}
\end{align*}
\]

\[
\begin{align*}
241.00 & \quad \text{The balloon occurs at the end of the 241st month (into n)} \\
0.79 & \quad \text{Monthly interest rate (into i)} \\
483.20 & \quad \text{Monthly payment (into PMT)} \\
23024.38 & \quad \text{Adjusted balloon amount (into FV)} \\
-55352.77 & \quad \text{Present value (the amount to pay for the opportunity to receive the cash flows)}
\end{align*}
\]

YIELD OF A MORTGAGE WITH BALLOON PAYMENT ONE PERIOD AFTER LAST PAYMENT

Given the periodic payment amount, total number of periods in mortgage life, mortgage price, and the balloon payment amount which occurs one period after the last payment, the yield is calculated as follows:

1) Set the Payment Mode switch to END and press \(\text{CL} \quad \text{FIN} \).
2) Key in the total number of payment periods until the balloon payment occurs; press \(\text{n} \).
3) Key in the periodic payment amount; press \(\text{PMT} \).*

* Positive for cash received; negative for cash paid out.
4) Key in the price of the mortgage; press PV.*
5) Key in the balloon amount, less the periodic payment amount, and press FV.*
6) Press 1 to obtain the periodic yield.
7) Key in the number of periods per year and press X to obtain the annual yield.

Example 1:
What is the annual yield to the lender of a $7900 mortgage which has monthly payments of $80 for 5 years and a balloon payment of $7000 occurring one period after the last periodic payment?

Keystrokes: Outputs:
BEGIN END NOTE BOND
5 ENTER 12 X 1 + n —> 61.00 The balloon occurs at the end of the 61st payment (into n)
80 PMT —> 80.00 Monthly payment receiv ed (into PMT)
7900 CHS PV —> -7900.00 Loan amount (into PV)
7000 RCL PMT - FV —> 6920.00 Adjusted balloon payment amount received (into FV)
1 —> 0.86 Percent monthly yield (calculated)
12 X —> 10.28 Percent annual yield

DEFERRED ANNUITIES
Sometimes transactions are established where payments do not begin for a specified number of periods (the payments are deferred). To determine the present value of such an annuity, the following keystrokes may be used:
1) Set the Payment Mode switch and press CL FIN.
2) Key in the total number of payments to be made and press n.
3) Key in the periodic interest rate and press i.
4) Key in the periodic payment amount, press PMT.*

* Positive for cash received; negative for cash paid out.
5) To calculate the ‘‘deferred’’ present value of the annuity, press \(PV \).
6) Press \(STO \) \(FV \).
7) Key in the total number of periods the payments were deferred and press \(n \).
8) Key in 0 and press \(PMT \).
9) Press \(PV \) to determine today’s present value of the deferred annuity (or the amount needed today to meet the requirements of the future).

Example 1:

Your firm is responsible for the upkeep of a newly built bridge. No repairs are required until the beginning of the fourth year, when $2000 will be needed for repainting. From then on, it is estimated that $2000 will be needed at the beginning of each year for the next 26 years. You wish to establish a fund which earns 6% annually, specifically for bridge upkeep. How much do you need to deposit in the fund today to meet the upkeep requirements?

Keystrokes:

<table>
<thead>
<tr>
<th>BEGIN</th>
<th>NOTE</th>
<th>END</th>
<th>BOND</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL FIN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

27 \(n \) 6 1 2000 \(CHS \) \(PMT \) \(PV \) —> 28006.33 Value of the annuity at the end of the 3rd year

\(STO \) \(FV \) 3 \(n \) 0 \(PMT \) \(PV \) —> -23514.66 Today’s value of the annuity

Leases often call for periodic contractual adjustments of rental payments. For example, a 10-year lease may call for rentals of $2000 per year for 3 years, $2500 per year for the next 3 years, and $3000 per year for the last 4 years. This situation illustrates what is called a ‘‘step-up’’ lease. A ‘‘step-down’’ lease is similar, except that rental payments are decreased periodically according to the lease contract. Lease payments are made at the beginning of the year.

In the example cited, the rental payment stream for years 4-6 and years 7-10 are ‘‘deferred annuities,’’ as they start at some time in the future. The cash flow diagram from the investor’s viewpoint looks like this:
To find today’s present value (the amount of the investment) the following keystrokes may be used:

1) Set the Payment Mode switch to BEGIN and press [CL FIN].

2) Calculate the present value of the payments in the last time span (here, \(n_3 \)).
 a) Key in the total number of periods in the last time span and press [n].
 b) Key in the periodic discount (interest) rate and press [i].
 c) Key in the periodic payment amount; press [PMT].
 d) To calculate the present value press [PV].

3) The present value of the last group of cash flows can now be considered as a balloon payment for the next to last group of cash flows (\(n_2 \)); press [FV].

4) Calculate the present value of the payments in time span \(n_2 \) (as in step 2) and press [FV].

5) Calculate the present value of the payments in time span \(n_1 \). The display shows the present value of the entire group of cash flows.

Example 2:

A 2-year lease calls for monthly payments (at the beginning of the month) of $500 per month for the first 6 months, $600 per month for the next 12 months, and $750 per month for the last 6 months. If you wish to earn 13.5% annually on these cash flows, how much should you invest?

Keystrokes:

\[
\begin{array}{c|c|c|c|c|c|c}
\text{BEGIN} & \text{NOTE} & \text{END} & \text{CL FIN} & 6 & n & 13.5 \\
\text{CHS} & \text{FV} & 12 & n & 600 & \text{PMT} & \text{PV} \\
\text{CHS} & \text{FV} & 6 & n & 500 & \text{PMT} & \text{PV} \\
\end{array}
\]

Outputs:

\[
\begin{array}{c|c|c}
\text{PV} & -4376.69 & \text{Present value of last group of payments} \\
\text{PV} & -10602.25 & \text{Present value of last 2 groups of cash flows} \\
\text{PV} & -12831.75 & \text{Amount to invest to achieve a 13.5% yield} \\
\end{array}
\]

In some instances, the net present value technique may be used to find the present value of a deferred annuity. Refer to the Owner's Handbook for the keystroke procedure.

* Positive for cash received; negative for cash paid out.
CONSUMER LOANS

LOANS WITH A CONSTANT AMOUNT PAID TOWARDS PRINCIPAL

This type of loan is structured such that the principal is repaid in equal installments with the interest paid in addition. Therefore each periodic payment has a constant amount applied toward the principal and a varying amount of interest.

Loan Reduction Schedule

If the constant periodic payment to principal, annual interest rate, and loan amount are known, the total payment, interest portion of each payment, and remaining balance for each successive payment may be calculated as follows:

1) Key in the constant periodic payment to principal; press \texttt{STO 0}.
2) Key in periodic interest rate and press \texttt{ENTER} \texttt{ENTER} \texttt{ENTER}.
3) Key in the loan amount.
 If you wish to skip to another time period, press \texttt{ENTER}. Then key in the number of payments to be skipped, and press \texttt{RCL 0 X =}.
4) Press \texttt{x:y \%} to obtain the interest portion of the payment.
5) Press \texttt{RCL 0 +} to obtain the total payment.
6) Press \texttt{R RCL 0} to obtain the remaining balance of the loan.
7) Return to step 4 for each successive payment.

Example 1:

A $60,000 land loan at 10% interest calls for equal semi-annual principal payments over a 6-year maturity. What is the loan reduction schedule for the first year? (Constant payment to principal is $5000 semi-annually.) What is the fourth year's schedule (skip 4 payments)?

Keystrokes:

\begin{align*}
5000 & \texttt{STO 0} \\
10 & \texttt{ENTER} \texttt{2 ÷ \texttt{ENTER}} \\
 & \texttt{ENTER} \texttt{ENTER} \\
60000 & \texttt{x:y \%} \\
 & \texttt{RCL 0 +} \\
 & \texttt{R RCL 0} \\
 & \texttt{x:y \%} \\
\end{align*}

Outputs:

\begin{align*}
5.00 & \text{ Semi-annual interest rate} \\
3000.00 & \text{ First payment's interest} \\
8000.00 & \text{ Total first payment} \\
55000.00 & \text{ Remaining balance} \\
2750.00 & \text{ Second payment's interest}
\end{align*}
ADD-ON INTEREST RATE CONVERTED TO APR

An add-on interest rate determines what portion of the principal will be added on for repayment of a loan. This sum is then divided by the number of months in the loan to determine the monthly payment. For example, a 10% add-on rate for 36 months on $3000 means add one-tenth of $3000 for 3 years (300 \times 3)—usually called the "finance charge"—for a total of $3900. The monthly payment is $3900/36.

This keystroke procedure converts an add-on interest rate to an annual percentage rate when the add-on rate and number of months are known.

1) Set the Payment Mode switch to END and press \texttt{CL FIN}.
2) Key in the number of months in loan; press $\texttt{A 12}$.
3) Key in the add-on rate; press \texttt{X}.
4) Key in the amount of loan; press $\texttt{PV} * \texttt{X}y \% +$.
5) Press $\texttt{X}y = \texttt{CHS PMT}$.
6) Press $\texttt{i RCL 1 12}$ to obtain the APR.

Example 1:

Calculate the APR and monthly payment of a 5%, $1000 add-on loan which has a life of 18 months.

* Positive for cash received; negative for cash paid out.
Keystrokes:

BEGIN
NOTE
END
BOND

CL FIN

18 14 12÷ 100 PV

PMT RCL PV RCL n ÷

+ CHS 12 x

7.63 Percent add-on rate

INTEREST REBATE—RULE OF 78’s

This procedure finds the unearned interest rebate, as well as the remaining principal balance due for a prepaid consumer loan using the Rule of 78’s. The known values are the current installment number, the total number of installments for which the loan was written, and the total finance charge (amount of interest). The information is entered as follows:
1) Press **CL FIN**.
2) Key in the number of months in the loan; press **1 LIFE**.
3) Key in the total finance charge; press **1 BOOK**.
4) Key in the payment number when prepayment occurs; press **9 [N1] 9 [N2]**.
5) Press **SOYD** to obtain the unearned interest (rebate). The interest portion of the final installment is in the Y-register. (Before going to step 6, be sure that the rebate amount is in the display).
6) Key in the periodic payment amount; press **ENTER**.
7) Key in the number of installments remaining on the loan; press **X X:Y -** to obtain the amount of principal outstanding.

Example 1:

A 30-month, $1000 loan having a finance charge of $180, is being repaid at $39.33 per month. What is the rebate and balance due after the 25th regular payment?

Keystrokes:

<table>
<thead>
<tr>
<th>Outputs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.81 Rebate</td>
</tr>
<tr>
<td>190.84 Outstanding principal</td>
</tr>
</tbody>
</table>

DEPRECIATION

Depreciation is a method of allocating the cost of an asset over its useful life. Depreciation is an annual deduction from Net Operating Income before taxable income and income tax liability are figured. It is an accounting expense charged against cash income.

The three most common accounting methods are Straight Line, Declining Balance, and Sum-of-the-Years’-Digits (SOYD) depreciation. Declining balance and SOYD are methods of “accelerated” depreciation whereby higher depreciation amounts are charged in the early years of an asset’s life than with straight line depreciation.
It is important to note that land is not depreciable for income tax purposes. Therefore, the acquisition cost of improvements (buildings, fixtures, site improvements) must be separated from land value at time of property acquisition before a depreciation schedule can be calculated.

If there is an expected salvage value (frequently called the 'reversion') at the end of the useful life of the depreciable asset, the salvage value must be deducted from the asset's acquisition cost to derive the amount to be depreciated (tax basis), if the straight line or SOYD methods are to be used. Salvage value need not be subtracted from acquisition cost under the declining-balance method, but the asset may not be depreciated below the salvage value. However, for most real estate depreciation problems, salvage value is not a consideration or a legal requirement.

If accelerated depreciation is used, the difference between total depreciation charged over a given period of time and the total amount that would have been charged under straight line depreciation is called "excess depreciation." With some minor exceptions, the amount of "excess depreciation" is "recaptured" and taxed as ordinary income when the property is resold.

The following routines allow the analyst to:

1) Calculate partial-year depreciation at the beginning and end of the depreciation period.
2) Calculate "excess" depreciation at the end of any given period.
3) Calculate and identify the "crossover" period when straight line depreciation equals or exceeds accelerated depreciation, at which point it pays to switch to straight line depreciation.

To illustrate the procedures, and to show the differences resulting from the application of different depreciation methods, a continuing example will be used.

Example:

A property has just been acquired for $150,000. The purchase price is allocated between $25,000 for land and $125,000 for improvements (building). The remaining useful life of the building is agreed to be 25 years. There is no salvage value forecast at the end of the useful life of the building. Thus, the depreciable cost is $125,000. This is also the tax basis of the investment in the building.
Straight Line Depreciation

Partial-Year Depreciation, Beginning and End of Period

For income tax purposes especially, calendar-year or fiscal-year depreciation charges must be calculated. When the acquisition date (the start of the depreciation period) does not coincide with the start of the accounting year—which is usual—the amount of depreciation in the first and last accounting years must be taken as fractions of the full-year depreciation.

The keystrokes are:

1) Press \texttt{CL FIN}.

2) Calculate the amount of annual straight line depreciation (book value less salvage value all divided by life) and store in register 0.
 - Key in the starting book value and press \texttt{BOOK}.
 - Key in the salvage value and press \texttt{SALV}.
 - Key in the life of the asset and press \texttt{LIFE}.
 - Press \texttt{= STO O} to determine the annual depreciation.

3) Calculate the portion of a year from the acquisition date to the start of the next accounting year, and store in register 1.

4) Multiply the step 2 result by the step 3 result to find the first year’s depreciation.

5) Press \texttt{RCL 1 BOOK xy \textasciitilde 1 BOOK} to find the balance at the beginning of the first full accounting year.

6) Press \texttt{RCL 1 LIFE RCL 1 \textasciitilde 1 LIFE} to determine the new life of the asset.

7) Key in the starting period for the schedule; press \texttt{N1}. Key in the ending period of the schedule; press \texttt{N2}. Set the printer switch to \texttt{ALL}.

8) Press \texttt{SL} to determine the amount of depreciation during the specified period(s). The display shows the remaining depreciable value at the end of the term.

9) For the last (partial) year, press \texttt{RCL 0}; calculate the portion of the year represented by the last partial year’s depreciation; press \texttt{xy \textasciitilde} to find the end-of-period balance.

Example 1:

If the example property were bought on September 1, what is the first 5-year schedule of depreciation?
Keystrokes:

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Outputs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL MAN NORM</td>
<td></td>
</tr>
<tr>
<td>CL FIN</td>
<td></td>
</tr>
<tr>
<td>125000 I BOOK 25 I LIFE</td>
<td>5000.00 Annual depreciation</td>
</tr>
<tr>
<td>= STO 0</td>
<td>1666.67 Partial-year (4 months) depreciation</td>
</tr>
<tr>
<td>4 ENTER* 12 = STO 1 x</td>
<td></td>
</tr>
<tr>
<td>RCL 1 BOOK X^2 =</td>
<td>123333.33 Balance at end of 4 months; balance at beginning of calendar-year</td>
</tr>
<tr>
<td>RCL 1 LIFE RCL 1 =</td>
<td></td>
</tr>
<tr>
<td>1 LIFE</td>
<td>24.67 Remaining term</td>
</tr>
<tr>
<td>1 9 N1 4 3 N2</td>
<td>4.00 Last year when full amount is depreciated</td>
</tr>
<tr>
<td>MAN ALL NORM</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td></td>
</tr>
</tbody>
</table>

Amount of depreciation during years 1-4 and remaining depreciable value

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Outputs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCL 0 8 ENTER* 12 =</td>
<td>0.67</td>
</tr>
<tr>
<td>x</td>
<td>3333.33 Partial-year (8 months) depreciation</td>
</tr>
<tr>
<td>=</td>
<td>100000.00 Balance at end of 5 years</td>
</tr>
</tbody>
</table>
Declining Balance Depreciation

Partial-Year Depreciation, Beginning and End of Period

To find the amount of depreciation in the partial year at the beginning of the period, when the acquisition date is different from the beginning of the accounting year, first calculate the amount of first-year declining-balance depreciation and multiply by the percentage of a year from the acquisition date to the beginning of the first full accounting year. Then subtract that from the depreciable amount to obtain the balance at the beginning of the first full accounting year. Then apply the declining-balance routine over the income projection period, less the initial fractional-year period.

For the fractional year’s depreciation at the end of the period, calculate the applicable percentage of a year and multiply it by the last full year’s depreciation of the income projection period. Subtract that amount of depreciation from the previous year’s balance to find the balance at the end of the income projection period.

Example 1:
What is the 150% declining balance depreciation schedule for the example property over 5 years, if the property was purchased on September 1 and depreciation is charged on a calendar-year basis?

Keystrokes: Outputs:

```
125000 1 BOOK
25 = 150 % 4 ENTER
12 ÷ x
RCL 1 BOOK x 1.5 = 1 BOOK
150 9 FACT
25 1 LIFE
1 9 N1 4 9 N2
```

122500.00 Balance after 4 months
Calculation of Excess Depreciation

The steps and keystrokes are:

1) Calculate the total depreciation charged, as described in the Owner's Handbook.

2) Key in the depreciable amount, press ENTER; key in the useful life of the asset in years, press ÷; key in the number of years in the income projection period, press ×. This is the total straight line depreciation over the income projection period.

3) Press -. This is the "excess depreciation."
Example 1:
What is the excess depreciation charged on a 150% declining-balance basis for the example property over 10 years?

Keystrokes: Outputs:

```
Keystrokes: Outputs:
MAN ▼ ALL NORM
CL FIN
25 ▼ LIFE 150 9 FACT
125000 ▼ BOOK 1 9 N1 10 9 N2
DB x:y
57673.11 Total depreciation charged

RCL ▼ BOOK RCL ▼ LIFE
= RCL 9 Α N2 9 x 9 =
7673.11 Excess depreciation
```

Crossover Point
To identify the ‘‘crossover’’ point where the straight line depreciation charge on the remaining balance exceeds the declining balance depreciation charge, first calculate the schedule of declining balance depreciation. Then start comparing the straight line depreciation for the remaining useful life on the remaining balance at the beginning of each year with the declining balance charge for that year. A good starting point is the year in which declining balance depreciation first falls below annual straight line depreciation on the original depreciable amount over the entire useful life.

The crossover point is the end of the year in which the declining balance depreciation last exceeds or equals the straight line depreciation amount on the remaining balance less salvage value at the beginning of the year.

Example 1:
What is the crossover point with 150% declining balance depreciation for the example property?

Keystrokes: Outputs:

```
Keystrokes: Outputs:
MAN ▼ ALL NORM
CL FIN
25 ▼ LIFE 150 9 FACT
125000 ▼ BOOK 1 9 N1
12 9 N2 DB
CL F
25.00 LIFE
150.00 FACT
125000.00 BOOK
1.00 N1
12.00 N2 DB
```
<table>
<thead>
<tr>
<th>N</th>
<th>1.00</th>
<th>7500.00</th>
<th>DPN</th>
<th>117500.00</th>
<th>RDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>7050.00</td>
<td>DPN</td>
<td>110450.00</td>
<td>RDV</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>6627.00</td>
<td>DPN</td>
<td>103823.00</td>
<td>RDV</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>6229.38</td>
<td>DPN</td>
<td>97593.62</td>
<td>RDV</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>5855.62</td>
<td>DPN</td>
<td>91738.00</td>
<td>RDV</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>5504.28</td>
<td>DPN</td>
<td>86233.72</td>
<td>RDV</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>5174.02</td>
<td>DPN</td>
<td>81059.70</td>
<td>RDV</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>4863.58</td>
<td>DPN</td>
<td>76196.12</td>
<td>RDV</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>4571.77</td>
<td>DPN</td>
<td>71624.35</td>
<td>RDV</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>4297.46</td>
<td>DPN</td>
<td>67326.89</td>
<td>RDV</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>4039.61</td>
<td>DPN</td>
<td>63287.28</td>
<td>RDV</td>
<td></td>
</tr>
</tbody>
</table>
Start testing at year 8, where 150% declining balance depreciation is $4863.58. This is the first year in which 150% declining balance depreciation is less than the original straight line depreciation of $5000.

1) Key in the remaining balance at the beginning of the year, press ENTER.
2) Key in the remaining years of useful life at the beginning of the year, press =.

This gives the annual straight line depreciation charge on the remaining balance over the remaining useful life.

Repeat steps 1 and 2 above until the result for a given year exceeds the declining balance depreciation charge for that year in the printed schedule of declining balance depreciation.

Year 8:

81059.70 ENTER 18 = \rightarrow 4503.32

(4503.32 is less than 4863.58)

Year 9:

76196.12 ENTER 17 = \rightarrow 4482.12

(4482.12 is less than 4571.77)

Year 10:

71624.35 ENTER 16 = \rightarrow 4476.52

(4476.52 is more than 4297.46)

The "crossover" point is at the end of year 9. Depreciation in year 10 is 4297.46 which is less than 4476.52.
Sum-of-the-Years'-Digits Depreciation

Partial-Year Depreciation Beginning and End of Period

To find the amount of depreciation in the partial year at the beginning of the period, when the acquisition date is different from the beginning of the accounting year, first calculate the normal SOYD depreciation schedule. Then calculate the fraction of a year from the acquisition date to the beginning of the next accounting year (factor 1), and calculate the fraction of a year remaining from the beginning of the accounting year to the first full year of holding (factor 2). After these factors have been obtained, apply them to the normal SOYD schedule as shown below:

Normal year 1 scheduled depreciation \(\times \) factor 1

\[\text{Year 1 value} \]

Normal year 1 scheduled depreciation \(\times \) factor 2

Normal year 2 scheduled depreciation \(\times \) factor 1

\[\text{Year 2 value} \]

Normal year 2 scheduled depreciation \(\times \) factor 2

Normal year 3 scheduled depreciation \(\times \) factor 1

\[\text{Year 3 value} \]

Continue this procedure for each year. In the final year, which is one year beyond the useful life due to the partial years at the beginning and end of the schedule, the depreciation is simply:

Normal year N scheduled depreciation \(\times \) factor 2

\[\text{Year N + 1 value} \]

Example 1:

What is the SOYD depreciation schedule for the example property in the first 4 years if the property was purchased on September 1 and depreciation is charged on a calendar year basis?

Keystrokes:

```
ALL
man norm
cl fin
25 1 life 125000 1 book
1 9 n1 4 9 n2 soyd
```

Outputs:

```
CL F
25.00 life
125000.00 book
1.00 n1
4.00 n2
soyd
1.00 n
9615.36 dpn
115384.62 rdv
```
The steps and keystrokes are:

1) Calculate the total depreciation charged.

2) Recall the starting book values; recall the useful life of the asset, press \(\text{\texttt{\#}} \); recall the number of years in the income projection period, press \(\text{\texttt{\#}} \). This is the total straight line depreciation over the income projection period.

3) Press \(\text{\texttt{\#}} \). This is the "excess depreciation."

Example 1:

What is the excess depreciation charged on the example property, using SOYD depreciation over 10 years?
Crossover Point

There is no "crossover" point for SOYD depreciation schedules. At every point on the schedule, the SOYD depreciation charge exceeds the straight line depreciation charge on the remaining balance over the remaining useful life.

While it is legal to switch from SOYD to straight line depreciation at any time, it is not advantageous for the investor to do so.

FINANCIAL ANALYSIS

IMPACT OF FINANCING ALTERNATIVES

Terms of mortgage financing can and do vary. The equity investor (borrower) sometimes has a choice among two or more alternative financing packages. To select the alternative which is best for the borrower, the present value of the equity investment under each alternative financing package is calculated. The alternative which produces the highest present value of the equity investment is the one the equity investor should select.

Example:

An investor is considering the purchase of an income property for $200,000. The net operating income (NOI) is forecast at $22,000 annually. The investor plans to hold the property for 10 years, at which time the proceeds of resale are forecast to be 90% of the purchase price ($180,000). The investor is seeking a 13% rate of return on the equity investment.

The investor is considering four alternative financing plans which are available to him:

1) A 75% mortgage at 9.5% interest, with full amortization in level monthly payments over 20 years.

2) A 70% mortgage at 9.25% interest, with full amortization in level monthly payments over 20 years.
3) A 60% mortgage at 9% interest, with full amortization in level monthly payments over 20 years, plus a 15% second mortgage at 10.5% interest, with full amortization in level monthly payments over 10 years.

4) A 75% mortgage at 9.5% interest with full amortization in level monthly payments over 30 years.

Which is the best financing package for the equity investor?

Alternative 1: 75%, 20-year loan at 9.5%.

Keystrokes:

```
BEGIN END
NOTE BOND

CL FIN
200000 ENTER 75 % PV 20
9.5 12+ PMT
10 12X FV
180000 + FV
RCL PMT 12 X

22000 + PMT
10 n
50000 CHS PV
1
```

Outputs:

```
-1398.20 Monthly payment necessary to amortize the loan
-108054.34 Remaining balance at end of 10th year
71945.66 Net cash proceeds of resale
-16778.36 Annual mortgage payment
5221.64 Annual net cash flow
10.00 Total term of investment
-50000.00 Total equity investment
12.84 Percent annual yield
```

Alternative 2: 70%, 20-year loan at 9.25%

Keystrokes:

```
BEGIN END
NOTE BOND

CL FIN
20 12X 9.25 12+ 200000
ENTER 70 % PV PMT
10 12X FV
180000 + FV
RCL PMT 12 X

22000 + PMT
```

Outputs:

```
-1282.21 Monthly payment necessary to amortize the loan
-100147.33 Remaining balance at end of 10th year
79852.67 Net cash proceeds of resale
-15386.56 Annual Mortgage payment
6613.44 Annual net cash flow
```
Alternative 3: 60%, 20-year loan at 9%, plus 15%, 10-year second mortgage at 10.5%

Keystrokes:

\[
\begin{align*}
\text{BEGIN} & \quad \text{END} \\
\text{CL FIN} & \quad \text{NOT BOND} \\
10 & \div 12 \times 10.5 \div 12 \div 9 \div 12 \div 200000 & \quad -1079.67 \quad \text{Monthly payment of original mortgage} \\
\text{PMT} & \quad \text{STO} & \quad 30000.00 \quad \text{Amount of second mortgage}. \\
\text{STO} & \quad + 0 \\
10 & \div 12 \times FV & \quad 180000 \\
22000 & \quad \text{RCL} 0 \times + \text{PMT} & \quad 4186.29 \quad \text{Net annual cash flow} \\
10 & \div n & \quad 10.00 \quad \text{Total term of investment} \\
50000 & \quad \text{CHS PV} & \quad 13.19 \quad \text{Percent annual yield} \\
\end{align*}
\]

Alternative 4: 75%, 30-year loan at 9.5%

Keystrokes:

\[
\begin{align*}
\text{BEGIN} & \quad \text{END} \\
\text{CL FIN} & \quad \text{NOT BOND} \\
200000 & \quad \text{ENTER} 75 \% \text{ PV 30} & \quad -1261.28 \quad \text{Monthly payment to amortize the loan} \\
1 & \div 12 \times 9.5 \div 12 \div \text{PMT} & \quad -135311.57 \quad \text{Remaining balance at end of 10th year} \\
10 & \div 12 \times FV & \quad 180000 \\
44688.43 \quad \text{Net cash proceeds of resale} \\
\end{align*}
\]
The following table summarizes the alternatives:

<table>
<thead>
<tr>
<th>Alternative No.</th>
<th>Equity Investment</th>
<th>Annual Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$50000.00</td>
<td>12.84%</td>
</tr>
<tr>
<td>2</td>
<td>$60000.00</td>
<td>12.83%</td>
</tr>
<tr>
<td>3</td>
<td>$50000.00</td>
<td>13.19%</td>
</tr>
<tr>
<td>4</td>
<td>$50000.00</td>
<td>13.16%</td>
</tr>
</tbody>
</table>

The alternatives in order of attractiveness are:
1. 60%, 20-year loan at 9%, plus 15%, 10-year second mortgage at 10.5% (No. 3).
2. 75%, 30-year loan at 9.5% (No. 4).
3. 75%, 20-year loan at 9.5% (No. 1).
4. 70%, 20-year loan at 9.25% (No. 2).

CASH EQUIVALENT SALES PRICE

When a property is purchased with the assumption of an existing mortgage, or a purchase-money mortgage is taken back by the seller, and the mortgage interest rate is below the going market rate, the cash equivalent sales price is less than the nominal sales price. This adjustment process is useful in adjusting comparable sales data in Direct Sales Comparison Analysis.

The procedure involves calculating the monthly (periodic) payment at the below-market interest rate, and then capitalizing it at the market rate. This gives the present worth of the mortgage, which is added to the amount of equity payment to get the Cash Equivalent Sales Price.

Example 1:

A property was recently purchased for a nominal price of $60,000. The purchaser assumed the existing mortgage, which had a balance of $38,744. It had a remaining term of 20 years, with level monthly payments at 7% interest. The seller took back a $11,256 second purchase-money mortgage at 8% interest, with a maturity of 20 years (level monthly payments).

The going market interest rate is 8.75% for properties of this type. What is the cash equivalent price of this transaction?
Keystrokes: Outputs:

BEGIN END

CL FIN

20 1 12× 7 1 12→ 38744 PV
PMT STO 0

-300.38 Monthly payment on 1st mortgage

8 1 12→ 11256 CHS PV
PMT

94.15 Monthly payment on 2nd mortgage

RCL 0 = PMT

394.53 Total monthly payment

8.75 1 12→ PV

-44644.87 Present value of mortgage payments

60000 ENTER+ 38744 =

10000.00 Equity investment

11256 -

-54644.87 Cash equivalent sales price

Example 2:

The trustees of a hospital are trying to negotiate the purchase of an adjoining property. They recently had it appraised at $385,000. They have been promised a mortgage by a local bank for $335,000 at 8.5% interest, fully amortized in level monthly payments over 25 years.

The owner of the property is insisting on a purchase price of $450,000. However, he is willing to take back a $400,000 purchase-money mortgage with a 25-year term at 6% interest. The trustees are holding out for $385,000.

What advice would you give the trustees as to the appropriate course of action?

Keystrokes: Outputs:

BEGIN END

CL FIN

25 1 12× 6 1 12→

400000 PV PMT

-2577.21 Monthly purchase-money mortgage payment

8.5 1 12→ PV

320059.48 Present value of mortgage (calculated)

50000 +

370059.48 Cash equivalent sales price

Pay the nominal $450,000. The cash equivalent price is less than the appraised value.
REFINANCING

It can be mutually advantageous to both borrower and lender to refinance an existing mortgage which has an interest rate substantially below the current market rate, with a loan at a below-market rate. The borrower has the immediate use of tax-free cash, while the lender has substantially increased debt service on a relatively small cash outlay.

To find the benefits to both borrower and lender:

1) Calculate the monthly payment on the existing mortgage.
2) Calculate the monthly payment on the new mortgage.
3) Calculate the net monthly payment received by the lender (and paid by the borrower) by adding the figure found in Step 1 to the figure found in Step 2.
4) Calculate the net present value (NPV) to the lender of the net cash advanced.
5) Calculate the yield to the lender as an IRR.
6) Calculate the NPV to the borrower of the net cash advanced.

Example 1:

An investment property has an existing mortgage which originated 8 years ago with an original term of 25 years, fully amortized in level monthly payments at 6.5% interest. The current balance is $133,190.

Although the going current market interest rate is 10.5%, the lender has agreed to refinance the property with a $200,000, 17-year, level-monthly-payment loan at 9% interest.

What are the NPV and effective yield to the lender on the net amount of cash actually advanced?

What is the NPV to the borrower on this amount if he can earn a 14% equity yield rate on the net proceeds of the loan?

Keystrokes: Outputs:

BEGIN END
NOTE BOND
CL FIN
17 12X 6.5 1 12=
133190 PV PMT STO G
9 12= 200000 CHS PV
PMT

-1080.33 Monthly payment on existing mortgage
1917.61 Monthly payment on new mortgage
WRAP-AROUND MORTGAGES

A wrap-around mortgage is essentially the same as a refinancing mortgage, except that the new mortgage is granted by a different lender, who assumes the payments on the existing mortgage, which remains in full force. The new (second) mortgage is thus “wrapped around” the existing mortgage. The “wrap-around” lender advances the net difference between the new (second) mortgage and the existing mortgage in cash to the borrower, and receives as net cash flow the difference between debt service on the new (second) mortgage and debt service on the existing mortgage.

When the terms of the original mortgage and the wrap-around are the same, the procedures in calculating NPV and IRR to the lender and NPV to the borrower are exactly the same as those presented in the preceding section on Refinancing.

Example 1:

A mortgage loan on an income property has a remaining balance of $200,132.06. When the loan originated 8 years ago, it had a 20-year term with full amortization in level monthly payments at 6.75% interest.

A lender has agreed to “wrap” a $300,000 second mortgage at 9.5%, with full amortization in level monthly payments over 12 years. What is the effective yield (IRR) to the lender on net cash advanced?

Keystrokes: Output:

\[
\begin{align*}
\text{BEGIN} & \quad \text{END} \\
\text{CL FIN} & \\
20 & \quad \text{ENTER} \\
8 & \quad \times \\
(12) & \\
\end{align*}
\]

144.00 Total number of months remaining in original loan (into n)
Sometimes, the wrap-around mortgage will have a longer pay-back period than the original mortgage, or a balloon payment may exist. From the lender’s point of view, the cash flows may be represented as follows:

\[
\begin{align*}
PV_1 & \quad \text{PMT}_2 \text{ for } n_2 \text{ Years} \\
\text{(+) } & \quad \text{Balloon} \\
\text{(-) } & \quad \text{PMT}_1 \text{ for } n_1 \text{ Years} \\
PV_2 & \\
\end{align*}
\]

where:

- \(n_1 \) = number of years remaining in original mortgage
- \(\text{PMT}_1 \) = yearly payment of original mortgage
- \(PV_1 \) = remaining balance of original mortgage
- \(n_2 \) = number of years in wrap-around mortgage
- \(\text{PMT}_2 \) = yearly payment of wrap-around mortgage
- \(PV_2 \) = total amount of wrap-around mortgage
- \(\text{BAL} \) = balloon payment
Note:
While the loan payments are assumed to occur monthly, the net cash flows are considered to be on an annual basis. An annual yield is calculated to best utilize the features of the HP-92. This calculated yield is not the APR or the interest rate which would amortize the loan.

If your wrap-around mortgage problem does not lend itself to this type of yearly evaluation (i.e., 3 months of one payment amount, and 9 months of a different payment), or you wish to determine the APR (nominal yield), refer to Example 4.

Example 2:
A customer has an existing mortgage with a balance of $120,924.81, a remaining term of 17 years, and a $1002.70 monthly payment. He wishes to obtain a $250,000, 9\%\% wrap-around with 25 years of monthly payments of $2050.00 and a balloon payment at the end of the 300th month of $163,649.47. If you, as a lender, accept the proposal, what is your "annualized" rate of return?

Keystrokes: Outputs:

\[
\begin{align*}
12032.40 & \text{ CHS ENTER} \quad 24600 + \\
& \text{ STO 1 STO 2 STO 3 STO 4} \\
& \text{ STO 5 STO 6 STO 7 STO 8} \\
& \text{ STO 9 STO 0 STO 1} \\
& \text{ STO 2 STO 3 STO 4} \\
& \text{ STO 5 STO 6 STO 7} \\
& \text{ LAST X STO 8} \\
& \text{ STO 9 STO 0} \\
& \text{ STO 0 STO 0 STO 0} \\
& \text{ STO 0 STO 0 STO 0} \\
\end{align*}
\]

12567.60 Net yearly cash flow received for 17 years
Real Estate And Investment Analysis

Real Estate And Investment Analysis

The nominal yield (IRR) to the lender is actually 10.8653% (calculated with an HP-67/97 Business Decisions Pac).

A situation may arise where the wrap-around lender advances additional funds to the borrower, but the term of the wrap-around is shorter than the remaining term of the first mortgage. During the period of the wrap-around loan, the borrower’s payments will increase to reflect the amount of the new money advanced. When the wrap-around mortgage is paid off, the borrower’s monthly payment will revert back to the payment amount of the original loan for the remaining life of that loan.

The wrap-around loan payment must amortize the wrap-around loan in the specified time and leave the first mortgage intact, with the proper remaining balance on the first mortgage as though the wrap-around loan had never existed.

Example 3:

A mortgage on a development project was originally made for $1,000,000 for 25 years at an interest rate of 7 3/4%. The loan is currently 10 years old and the borrower is seeking $250,000 in additional funds. The wrap-around mortgage contract interest rate will be 9 1/4%, with monthly payments for 10 years. As an investor, what would be your rate of return if you accepted the proposal?

Keystrokes: Outputs:

BEGIN END

NOTE BOND

25 END

300.00 Term of original mort-

gage (into n)

100000 PV

100000.00 Original loan amount

(into PV)
Real Estate And Investment Analysis

-7553.29 Original monthly payment (calculated)

-7553.29 Enter the rounded monthly payment actually made (into PMT)

-802451.73 Remaining balance of original loan after 10 years (calculated)

-374722.20 Remaining balance of original loan after 20 years (calculated)

374722.20 Enter the rounded final value (into FV)

120.00 Term of wrap-around (into n)

0.77 Monthly interest rate on wrap-around (into i)

-1052451.73 Face amount of wrap-around mortgage (into PV)

11565.64 Monthly payment received (calculated)

4012.35 Net monthly payment received

-250000.00 New money (into PV)

0.00 There is no additional balloon payment (into FV)

14.86 Percent annual yield (calculated)

You may also have the situation where the remaining term of the original mortgage is not a whole year. To find the annual yield to the lender, a trial and error (iterative) approach must be used. An initial guess is entered for the periodic IRR, and the present value of the cash flows is found. By subtracting the initial cash output, the net present value is found. If the NPV is equal to 0, the initial guess is the IRR. Otherwise, adjust the "guess" and repeat the procedure until the desired accuracy is achieved. The keystrokes are:

1) Set the Payment Mode switch to END and press CL FIN.

2) Key in a "best guess" periodic internal rate of return; press i.

3) To find the present value of the original mortgage:
 a) Key in the total number of periods remaining; press n.
b) Key in the periodic payment amount; press CHS PMT. (The lender makes the payments on the original mortgage.)
c) Press PV to find the present value, then press STO 0.

4) Find the present value of the wrap-around mortgage:
 a) Key in the total number of periods in the wrap-around; press n.
 b) Key in the periodic payment received by the lender; press PMT.
 c) Key in the balloon amount (if it exists) at the end of the payback period; press FV.
 d) Press PV to find the present value.

5) Press RCL 0 + CHS to obtain the present value of the cash flows.

6) Key in the remaining balance on the original mortgage; press +.

7) Key in the total amount of the wrap-around mortgage; press = to obtain the NPV.

8) If the net present value is not equal to zero, adjust the guess and repeat steps 1-7 until the desired accuracy is obtained.

Example 4:
A customer has an existing mortgage with a balance of $125,010, a remaining term of 200 months, and a $1051.61 monthly payment. He wishes to obtain a $200,000, 9½% wrap-around with 240 monthly payments of $1681.71 and a balloon payment at the end of the 240th month of $129963.35. If you, as a lender, accept the proposal, what is your rate of return?

Keystrokes: Outputs:

Choose a 12% annual yield as the first IRR guess.

12 12÷ 1.00 % monthly IRR (into i)
200 n 200.00 Months (into n)
1051.61 CHS PMT −1051.61 Payment (into PMT)
90786.92 Present value of original mortgage at 12% annual IRR (calculated)

240.00 Months (into n)

1681.71 Payment (into PMT)

-164663.31 Present value of wrap-around at 12% annual IRR (calculated)

73876.39 Present value of the cash flows

-1113.61 Net present value

Since the NPV is negative, the IRR is too high. Choose a lower rate of return, say 11.75%, and repeat the procedure. The actual IRR is 11.8391%.

If you, as a lender, know the yield on the entire transaction, and you wish to obtain the payment amount on the wrap-around mortgage to achieve this yield, use the following procedure. Once the monthly payment is known, the borrower’s periodic interest rate may also be determined.

1) Set the Payment Mode switch to END and press CL FIN.
2) Key in the remaining term of the original mortgage and press 0.
3) Key in the desired annual yield and press 12%.
4) Key in the monthly payment to be made by the lender on the original mortgage and press CHS PMT.
5) Press PV.
6) Key in the net amount of cash advanced and press CHS PV.
7) Key in the total term of the wrap-around mortgage and press n.
8) If a balloon payment exists, key it in and press FV.
9) Press PMT to obtain the payment amount necessary to achieve the desired yield.
10) Press CHS PMT.
11) If a balloon payment exists, press RCL FV CHS FV.
12) Key in the amount of the wrap-around mortgage and press PV 1 to obtain the borrower’s periodic interest rate.
Example 5:

Your firm has determined that the yield on a wrap-around mortgage should be 12% annually. In the previous example, what monthly payment must be received to achieve this yield on a $200,000 wrap-around? What interest rate is the borrower paying?

Keystrokes:

\[\text{BEGIN END} \]

\[\text{NOTE BOND} \]

\[\text{CL FIN} \]

\[200 \ n \ 12 \ \boxed{12\%} \]

\[1051.61 \ \boxed{CHS \ \boxed{PMT \ \boxed{PV}}} \]

\[74990 \ \boxed{CHS \ \boxed{PV}} \]

\[240 \ n \ 129963.35 \ \boxed{FV} \]

\[\boxed{PMT} \]

\[1693.97 \text{ Monthly payment received by lender} \]

\[\boxed{CHS \ \boxed{PMT \ \boxed{RCL \ \boxed{FV} \ \boxed{CHS \ \boxed{FV}}} \]

\[200000 \ \boxed{PV} \ \boxed{1} \ \boxed{RCL} \ \boxed{12\%} \]

\[9.58 \text{ Annual interest paid by borrower} \]

MODIFIED IRR—VARYING REINVESTMENT RATE

(FINANCIAL MANAGEMENT RATE OF RETURN)

The traditional IRR technique assumes that all positive cash flows are reinvested at the IRR to earn compound interest over the income projection period. It also assumes that all negative cash flows are to be discounted at the IRR. This means that cash can be invested today to earn compound interest at the IRR until it is needed to cover the forecasted negative cash flows.

Neither of these assumptions is necessarily realistic or valid. It is possible to compensate for either or both by using real-market rates to discount all negative flows (including Capital Outlay) to the present at a "safe" rate that will ensure liquidity when funds are needed; and to compound all positive flows at a realistic reinvestment rate to the end of the income projection period.

This procedure results in a single (negative) present value figure, and a single future value figure as well. IRR is then found by solving for \(t \) in a compounded amount procedure.
Example 1:
Negative Cash Flows, Reinvestment of Positive Flows at IRR.

A development project requires a total capital investment (development costs) of $600,000 staged as follows: $150,000 immediately, plus $150,000 at the end of years 1-3. Net sales proceeds over a total 10-year sellout period are projected as: Year 1—$0; Year 2—$50,000; Years 3-5—$125,000; Year 6—$140,000; Year 7—$150,000; Year 8—$175,000; Year 9—$100,000; Year 10—$50,000.

What is the indicated IRR for the developer, assuming he can earn 5.5% on the money required to cover future cash outlays (negative cash flows)?

The net cash flows projected are:

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$-150,000</td>
</tr>
<tr>
<td>1</td>
<td>$-150,000</td>
</tr>
<tr>
<td>2</td>
<td>$-100,000</td>
</tr>
<tr>
<td>3</td>
<td>$-25,000</td>
</tr>
<tr>
<td>4</td>
<td>$125,000</td>
</tr>
<tr>
<td>5</td>
<td>$125,000</td>
</tr>
<tr>
<td>6</td>
<td>$140,000</td>
</tr>
<tr>
<td>7</td>
<td>$150,000</td>
</tr>
<tr>
<td>8</td>
<td>$175,000</td>
</tr>
<tr>
<td>9</td>
<td>$100,000</td>
</tr>
<tr>
<td>10</td>
<td>$50,000</td>
</tr>
</tbody>
</table>

The steps in the procedure are:

1) Calculate the present value of the negative cash flows at the "safe" rate using the NPV routine.

2) Use the figure obtained in Step 1 as the initial investment in the IRR routine; store it in Register 0.

3) Entering 0 as the cash flow for years with a negative cash flow, find the IRR.

Keystrokes: Outputs:

```
1 CLEAR
5.5 ENTER 3 n 150000 CHS STO 0
STO 1
100000 CHS STO 2
25000 CHS STO 3
1 NPV STO 0

-403315.68 Present value of negative cash flows at 5.5%
```

```
10 n
0 STO 1 STO 2 STO 3
125000 STO 4 STO 5
140000 STO 6 150000 STO 7
175000 STO 8 100000 STO 9
50000 STO 10
1 IRR

12.38 % annual rate of return
```
Example 2:
Using the cash flow figures in Example 1, what is the IRR if the "safe" rate for negative cash flows is 5.5% and the reinvestment rate for positive cash flows is 10%?

Here the keystroke procedure is slightly different. The steps are:
1) Input the positive cash flows in the appropriate storage registers and calculate the future value of the cash flows at the reinvestment rate.
2) Calculate the present value of the negative cash flows at the "safe" rate.
3) Knowing n, PV, and FV, solve for i.

Keystrokes:	Outputs:
0 | 50000.00 Cash flow in 10th year
125000 STO 4 STO 5 | 10.00 Reinvestment rate
140000 STO 6 | 10.00 Total number of cash flows
150000 STO 7 | 462317.63 Present value of cash flows
175000 STO 8 | 1199132.88 Future value of positive cash flows at 10%
100000 STO 9 | 5.50 Safe rate for negative cash flows
50000 STO 10 | -403315.68 Present value of negative cash flows at 5.5%
10 i | 11.51 % annual rate of return
10 n | 3 (Nev) 462317.63

RENT OR BUY

Frequently a tenant considers a real estate purchase as an alternative course of action. With the HP-92, it is possible to compare the financial or investment
implications of purchase vs. rental. While the final decision may rest on personal or even emotional considerations, these can be weighed against the financial realities.

Note:
For illustrative purposes, only first-year financial requirements are shown.

Example 1:
A family is renting an apartment at $285 per month will all utilities paid. Tired of paying rent with no financial results, they decide to buy a comparable house.
They have found a house priced at $39,000, on which they can obtain a 90% mortgage loan at 9% interest with a 30-year maturity (level monthly payments). Closing costs are estimated at $650. Property taxes are $1050; utilities charges (sewer and water) are $200 per year; insurance and maintenance is estimated at $850, and heating expenses at $1450.
The property is expected to follow the current trend of appreciation of 12% per year.
The family’s tax bracket is 38%, applicable to tax-deductible interest and property tax payments. The savings from which the down payment and closing charges would be taken are earning 7% interest.
From a financial point-of-view (using first year figures), is it preferable to buy or to continue to rent?

Keystrokes:

<table>
<thead>
<tr>
<th>B E G I N</th>
<th>E N D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C L</td>
<td>F I N</td>
</tr>
<tr>
<td>285</td>
<td>E N T E R</td>
</tr>
<tr>
<td>39000</td>
<td>E N T E R</td>
</tr>
<tr>
<td>650</td>
<td>+</td>
</tr>
<tr>
<td>R C L</td>
<td>0</td>
</tr>
<tr>
<td>39000</td>
<td>E N T E R</td>
</tr>
<tr>
<td>30 9</td>
<td>1 2</td>
</tr>
<tr>
<td>C H S 9</td>
<td>R N D</td>
</tr>
<tr>
<td>1 1</td>
<td>P T</td>
</tr>
<tr>
<td>A M O R T</td>
<td>x</td>
</tr>
</tbody>
</table>

Outputs:

3420.00	Annual rent
318.50	Interest on down payment and closing cost funds
3101.50	Net first-year cost of renting
35100.00	Mortgage principal
-282.42	Monthly mortgage payment
3389.04	Annual debt service
3149.28	First-year interest
Conclusion: Financially, it is preferable to purchase the house.

EQUITY INVESTMENT ANALYSIS

Equity Investment Analysis is a method of evaluating income producing real estate investment alternatives on a pretax basis. Two key factors in this type of analysis are the anticipated income stream that the property will provide and the property’s projected resale value at the end of the investment horizon. Based on this and the current price of the property, an equity yield rate can be found giving an indication of the profitability of the investment.

One of the basic equations used in real estate equity analysis relates the income stream, sales price, projected appreciation or depreciation, and amount of mortgage as follows:

\[
R = Y - MC \left\{ \begin{array}{ll}
\text{Apprec.} & \text{or} \\
\text{Deprec.} & \\
\end{array} \right. \quad \frac{1}{S_m} = \frac{\text{NOI}}{\text{Price}}
\]

Where

\begin{align*}
R &= \text{overall capitalization rate} \\
Y &= \text{equity yield rate} \\
M &= \text{mortgage to value ratio} \\
C &= \text{mortgage coefficient (imbedded in calculation)} \\
1/S_m &= \text{annual sinking fund factor for depreciation or appreciation} \\
\text{NOI} &= \text{net operating income}
\end{align*}
A brief explanation of terms frequently used in real estate analysis is given here in order to aid in understanding the problems and results more fully.*

Annual Net Cash Flow is the annual net operating income without depreciation minus the annual debt service (i.e., annual mortgage payments).

Reversion is the future sales price minus the mortgage balance at the end of the projection period.

Equity yield rate is that annual rate at which the present value of the net annual cash flows plus the present value of the equity reversion equals the equity investment value.

Equity investment value is the equity in the property at the beginning of the projection period.

Overall Capitalization Rate is the net operating income divided by the selling price.

Equity Yield Rate

Given the projection period in years, reversion amount, annual net cash flow, and equity investment value, the equity yield rate may be calculated as follows:

1) Set the Payment Mode switch to END and press **CL FIN**.
2) Key in the reversion; press **FV**.
3) Key in the number of years projection; press **n**.
4) Key in the net annual cash flow; press **PMT**.
5) Key in the equity investment value; press **CHS PV**.
6) Press **i** to obtain the equity yield rate.

Example 1:

An apartment complex is listed for $1,960,500 and has an annual net operating income of $166,315.37. The prospective buyer is considering a down payment of $572,500 and will finance the remaining $1,388,000 for 29 years at 8%. If the property appreciates a total of 20% over the next 10 years, what would the equity yield rate be?

Using calculations described in the Owner’s Handbook, it is found that the monthly mortgage payments are $10,270.45 and therefore the annual net cash flow is $43,069.97

(NOI — debt service = net cash flow).

* For further information, refer to ELLWOOD TABLES. American Institute for Real Estate Appraisers, 1970.
The remaining mortgage balance at the end of 10 years will be $1,201,922.59. To calculate the reversion at the end of the tenth year, find the future sales price and subtract the remaining balance.

Keystrokes:

```
BEGIN NOTE BOND
  1960500 ENTER 20 %
  + 2352600.00 Futuresalesprice
  1201922.59 – FV 1150677.41 Reversion
  10 n 43069.97 PMT
  572500 CHS PV i 13.00 Equity yield rate
```

Outputs:

- Future sales price: $2,352,600.00
- Reversion: $1,150,677.41
- Equity yield rate: 13.00%

Equity Investment Value and Present Value

Given the desired equity yield rate, projection period, annual net cash flow, and the reversion, this procedure solves for the equity investment value and present value of the investment (current sales price). Information is entered as follows:

1) Set the Payment Mode switch to END and press **CL FIN**.
2) Key in the reversion, press **FV**.
3) Key in the projection period in years; press **n**.
4) Key in the equity yield rate; press **i**.
5) Key in the annual net cash flow; press **PMT**.
6) Press **PV** for the equity investment value.
7) Key in the mortgage amount, press **–** to obtain the current sales price or present value.

Example 1:

An investor has some money he wants to invest in real estate. One of his alternatives is a warehouse, currently leased for 10 years, which generates $26,460 annually before debt service (NOI). Because the warehouse is located in a growth area, he estimates the property should sell for $420,000 at the end of 10 years. He can obtain an 8 1/2%, 20 year mortgage for $240,000 which would have monthly payments of $2,082.78. If his desired yield is 11% over 10 years, what would his equity investment value be and how much could he pay for the property (what is the current sales price)?
Keystrokes: Outputs:

BEGIN ENDNOTE BOND

-167984.38 Remaining loan balance after 10 years

10 12x 8.5 12+ 2082.78 CHS PMT 240000 PV

-167984.38 Remaining loan balance after 10 years

FV 10 n 11 i
26460 + PMT PV
-97393.37 Equity investment value
240000 -
-337393.37 Current sales price

Future Sales Price and Overall Depreciation/Appreciation Rate

This calculation solves for the sales price at the end of the projection period given the desired equity yield rate, annual net cash flow, equity investment value, projection period, and the mortgage balance at the end of the projection period. Information is entered as follows:

1) Set the Payment Mode switch to END and press CL FIN .
2) Key in the projection period in years; press n .
3) Key in the equity yield rate; press i .
4) Key in the annual net cash flow; press PMT .
5) Key in the equity investment value; press CHS PV .
6) Press FV to compute the reversion amount.
7) Key in the mortgage balance at the end of the projection period and press + to obtain the required future sales price.
8) Key in the purchase price, press x y i A% to obtain the overall appreciation (if the answer is positive) or depreciation (if the answer is negative).

Example 1:

A shopping center has an annual net cash flow of $14211.24. The desired equity yield rate is 14% over a 9 year period. If the current asking price is $616,000 what must the sales price at the end of year 9 be in order to achieve the desired 14% return? What overall appreciation does this represent?

(Assume 25% equity ($154,000), 25 year mortgage at 8%, monthly payment of $3,565.79, with a remaining balance of $385,522.31 at the end of year 9).
In Canada, interest is compounded semi-annually with payments made monthly. This results in a different monthly mortgage factor than is used in the United States, and is programmed into the HP-92. This difference can be handled easily on the HP-92 by the addition of a few keystrokes. For any problem requiring an input for i, the Canadian mortgage factor is calculated first and then this value is entered for i in the calculation to give the answer for Canada.

The keystrokes to calculate the Canadian mortgage factor are:

1) Press \(\text{CL FIN} \).
2) Key in 6, press \(\text{n} \).
3) Key in 200; press \(\text{PV} \).
4) Key in the annual interest rate as a percent; press \(+ \) \(\text{CHS FV} \).
5) Press \(i \).

The Canadian mortgage factor is now stored in \(i \) for future use. The examples below show how this factor is used for \(i \) in Canadian mortgage problems.

Example 1—Periodic Payment Amount

What is the monthly payment required to fully amortize a 30-year, $30,000 Canadian mortgage if the interest rate is 9%?
Keystrokes: Outputs:

BEGIN NOTE END BOND

CL FIN
6 n 200 PV
9 + CHS FV I
30 ÷ 12x
30000 PV 0 FV PMT

0.74 Canadian mortgage factor
360.00 Total monthly periods in mortgage life (into n)
-237.85 Monthly payment (calculated)

Example 2—Number of Periodic Payments to Fully Amortize a Mortgage

An investor can afford to pay $440 per month on a $56,000 Canadian mortgage. If the annual interest rate is 9\%\% , how long will it take to completely amortize this mortgage?

Keystrokes: Outputs:

BEGIN NOTE END BOND

CL FIN
6 n 200 PV
9.25 + CHS FV I
440 CHS PMT
56000 PV 0 FV n
12 ÷

0.76 Canadian monthly mortgage factor
-440.00 Monthly payment (into PMT)
436.34 Total number of monthly payments
36.36 Total years

Example 3—Effective Interest Rate (Yield)

A Canadian mortgage has monthly payments of $612.77 with a maturity of 25 years. The principal amount is $75,500. What is the annual interest rate?

Keystrokes: Outputs:

BEGIN NOTE END BOND

CL FIN
25 ÷ 12x 612.77 CHS PMT
75500 PV I
6 n 0 PMT 200 CHS PV FV +

0.72 Canadian monthly mortgage factor
8.75 Annual interest rate
Example 4—Balance Remaining at End of Specified Period

A Canadian mortgage has monthly payments of $612.77 at 8.75% interest. The principal amount is $75,500. What will be the outstanding balance remaining at the end of 10 years?

Keystrokes:

BEGIN END

NOTE BOND

6 n 200 PV

8.75 + CHS FV i

612.77 CHS PMT 10 I 12 X

75500 PV FV

Outputs:

0.72 Canadian monthly mortgage factor

-61877.18 Remaining balance outstanding at the end of 10 years
SAVINGS AND LEASING
INTEREST RATE CONVERSIONS

An annual effective rate demonstrates the effect of compounding for a full year of compounding periods at a particular periodic interest rate. The periodic interest rate to be used is determined by dividing the number of compounding periods in a year into the stated nominal interest rate. The effect is such that if the nominal rate is held constant, as the number of compounding periods per year is increased, the annual effective interest rate will increase. The ultimate or upper limit in this process is to have an infinite number of compounding periods in a year, commonly called continuous compounding.

Nominal Rate Converted to Effective Rate

Given a nominal interest rate and the number of compounding periods per year, this keystroke procedure computes the effective annual interest rate.

1) Press \texttt{CL FIN}.
2) Key in the nominal rate; press \texttt{ENTER}.
3) Key in the number of compounding periods per year; press \texttt{n} \texttt{- 1}.
4) As given key in 100; press \texttt{CHS PV}.
5) Press \texttt{FV} to obtain the effective annual interest rate.

Example 1:

What is the effective annual rate of interest if the annual nominal rate of 5\% is compounded quarterly?

Keystrokes: \hspace{1cm} Outputs:

\begin{align*}
\text{CL FIN} \\
5.25 \texttt{ENTER} 4 \texttt{n} \texttt{- 1} \rightarrow 1.31 \% \text{ quarterly interest rate} \\
100 \texttt{CHS PV FV} \rightarrow 5.35 \% \text{ effective interest rate}
\end{align*}

Effective Rate Converted to Nominal Rate

Given an effective interest rate and the number of compounding periods per year, this routine calculates the nominal interest rate.

1) Press \texttt{CL FIN}.
2) Key in the number of periods per year; press \texttt{n}.
3) Key in 100; press \texttt{PV}.
4) Key in the effective annual rate; press \texttt{+ CHS FV}.
5) Press \texttt{x} to obtain the nominal rate.
Example 1:
Find the nominal rate if the effective annual rate is 5.35% compounded quarterly.

Keystrokes: Outputs:

\[
\begin{align*}
&4 \text{ n} \quad 100 \text{ PV} \\
&5.35 \text{ + CHS FV} \text{ 1} \\
&\times \\
&5.25 \% \text{ nominal interest rate}
\end{align*}
\]

Nominal Rate Converted to Continuous Effective Rate
This procedure converts a nominal annual interest rate to the continuous effective rate.

1) Key in 1; press ENTER.
2) Key in the nominal rate; press %.
3) Press \(\Delta \% \) to obtain the continuous effective rate.

Example 1:
What is the effective rate resulting from a 5\(\frac{1}{4} \)% passbook rate with continuous compounding?

Keystrokes: Outputs:

\[
\begin{align*}
&1 \text{ ENTER} \quad 5.25 \% \\
&\times \\
&5.39 \% \text{ continuous rate}
\end{align*}
\]

SAVINGS PLANS
This section gives keystroke procedures to evaluate frequently encountered savings problems. Also included is a generalized routine to evaluate a savings plan when deposits and withdrawals are made at irregular intervals.

Initial Deposit With Periodic Deposits
Given an initial deposit into a savings account, and a series of periodic deposits coincident with the compounding period, the future value (or accumulated amount) may be calculated as follows:

1) Set the Payment Mode switch to END and press CL FIN.
2) Key in the initial investment and press CHS PV.
3) Key in the number of additional periodic deposits and press n.
4) Key in the periodic interest rate and press i.
5) Key in the periodic deposit and press \(\text{CHS PMT} \).
6) Press \(\text{FV} \) to determine the value of the account at the end of the time period.

Example 1:

You have just opened a savings account with a $200 deposit. If you deposit $50 a month, and the account earns 5\%\% \% compounded monthly, how much will you have in 3 years?

Keystrokes:

<table>
<thead>
<tr>
<th>BEGIN</th>
<th>END</th>
</tr>
</thead>
</table>

Outputs:

\[
\begin{array}{c}
\text{CL FIN} \\
200 \ \text{CHS PV} \ 3 \ 1 \ 12 \times \ 5.25 \ 1 \ 12+ \\
50 \ \text{CHS PMT FV} \\
\end{array}
\]

\[2178.94 \text{ Value of the account}\]

Note:

If the periodic deposits do not coincide with the compounding periods, the account must be evaluated in another manner. First, find the future value of the initial deposit and store it. Then use the procedure for Compounding Periods Different from Payment Periods to calculate the future value of the periodic deposits. Recall the future value of the initial deposit and add to obtain the value of the account.

Number of Periods to Deplete a Savings Account or to Reach a Specified Balance

Given the current value of a savings account, the periodic interest rate, the amount of the periodic withdrawal, and a specified balance, this procedure determines the number of periods to reach that balance (the balance is zero if the account is depleted.)

1) Set the Payment Mode switch to \(\text{END} \) and press \(\text{CL FIN} \).
2) Key in the value of the savings account and press \(\text{CHS PV} \).
3) Key in the periodic interest rate and press \(i \).
4) Key in the amount of the periodic withdrawal and press \(\text{PMT} \).
5) Key in the amount remaining in the account and press \(\text{FV} \). This step may be omitted if the account is depleted (\(\text{FV} = 0 \)).
6) Press \(\text{n} \) to determine the number of periods to reach the desired balance.
Example 1:
Your savings account presently contains $18,000 and earns 5½% compounded monthly. You wish to withdraw $300 a month until the account is depleted. How long will this take? If you wish to reduce the account to $5,000, how many withdrawals can you make?

Keystrokes: Outputs:
BEGIN END
NOTE BOND

CL FIN
18000 CHS PV 5.5 i 12= 70.32 Months
300 PMT n 5.86 Years to deplete account
12 = —— 52.95 Months
5000 FV n 4.41 Years to reduce account
to $5,000

Periodic Deposits and Withdrawals
This section is presented as a guideline for evaluating a savings plan when deposits and withdrawals occur at irregular intervals. One problem is given, and a step-by-step method for setting-up and solving the problem is presented.

Problem:
You are presently depositing $50 at the end of each month into a local savings and loan, earning 5½% compounded monthly. Your current balance is $1023.25. How much will you have accumulated in 5 months?
The cash flow diagram looks like this:

FV = ?
PV = -1023.25
The keystrokes are:

Keystrokes: Outputs:

BEGIN END
NOTE BOND
CL FIN
50 CHS PMT 5.5 12÷ 1023.25
CHS PV 5 n FV 1299.22 Amount in account

Now suppose that at the beginning of the 5th month you withdraw $80. What is the new balance?

Keystrokes: Outputs:

80 = 1219.22 New balance

You increase your monthly deposit to $65. How much will you have in 3 months?

The cash flow diagram now looks like this:

PV = -1219.22

Keystrokes: Outputs:

CHS PV 65 CHS PMT 3
n FV 1431.95 Account balance

Suppose that for 2 months you decide not to make a periodic deposit. What is the balance in the account?

PV = -1431.95

Keystrokes: Outputs:

CHS PV 2 n 0 PMT FV 1445.11 Account balance

This type of procedure may be continued for any length of time, and may be modified to meet the user's particular needs.
In financial calculations involving a series of payments equally spaced in time with periodic compounding, both periods of time are normally equal and coincident. This is an assumption built into the HP-92 pre-programming.

In savings plans however, money may become available for deposit or investment at a frequency different from the compounding frequencies offered. The HP-92 can easily be used in these calculations. However, because of the assumptions mentioned, adjustments must be made to the data so that the two periods can be considered to occur at the same time. When the compounding periods occur more frequently than payment periods, additional keystrokes adjust the compounding period interest rate to an equivalent rate for the payment period. When payments occur more frequently than compounding, the payment amount is adjusted to reflect the fact that payments earn simple interest between compounding periods.

These procedures present solutions for future value, payment amount, and number of payments for both situations of compounding periods differing from payment periods. In addition it should be noted that only annuity due (payments at the beginning of payment periods) calculations are shown since this is most common in savings plan calculations.

Compounding Periods More Frequent

When the compounding periods occur more frequently than the payment periods, it is necessary to adjust the compounding period interest rate to an equivalent interest rate for the payment period. To solve a problem requiring an input for i, the equivalent payment period interest rate is calculated first and used for i in the standard procedure for the problem.

To calculate the equivalent payment period interest rate, information is entered as follows:

1) Set the Payment Mode switch to BEGIN and press \text{CL FIN}.
2) Key in the number of compounding periods per year and press \text{STO} \text{0}.
3) Key in the number of payments (deposits) per year and press \text{+n}.
4) Key in the annual interest rate; press \text{RCL} \text{0} \text{+1}.
5) Key in 100; press \text{CHS PV FV} \text{-}.
6) Press \text{CL FIN} \text{i}.

The interest rate which corresponds to the payment period is now in register ‘i’ and you are ready to proceed.
Example 1: Solving for future value.

Starting today you make monthly deposits of $25 into an account paying 5% compounded daily (365-day basis). At the end of 7 years, how much will you receive from the account?

Keystrokes: Outputs:
BEGIN END NOTE BOND
\[
\begin{align*}
365 & \text{ STO } 0 \\
12 & \div n \\
5 & \text{ RCL } 0 \div i \\
100 & \text{ CHS PV FV} \\
+ & \text{ CL FIN } i \\
7 & (12) \div 25 \text{ CHS PMT} \\
\end{align*}
\]
\[
\begin{align*}
30.42 & \text{ Compounding/month (into n)} \\
0.01 & \text{ Interest/month (into i)} \\
0.42 & \text{ Equivalent periodic interest rate} \\
2519.61 & \text{ Future value}
\end{align*}
\]

Example 2: Solving for payment amount.

In 2 years you will need $2500. You have just opened a 5.5% savings account, compounded daily (365-day basis), where you intend to make semi-monthly deposits. What amount must you deposit each period to reach your goal?

Keystrokes: Outputs:
BEGIN END NOTE BOND
\[
\begin{align*}
365 & \text{ STO } 0 \\
24 & \div n \\
5.5 & \text{ RCL } 0 \div i \\
100 & \text{ CHS PV FV} \\
+ & \text{ CL FIN } i \\
2 & \text{ ENTER+ } 24 \times n \\
2500 & \text{ FV PMT} \\
\end{align*}
\]
\[
\begin{align*}
15.21 & \text{ Compounding/semi-month (into n)} \\
0.02 & \text{ Interest/semi-monthly (into i)} \\
0.23 & \text{ Equivalent periodic interest rate} \\
-49.22 & \text{ Amount of semi-monthly deposit}
\end{align*}
\]
Example 3: Solving for number of payment periods.

You can make weekly deposits of $10 into an account paying 5.25% compounded daily (365-day basis). How long will it take you to accumulate $1000?

Keystrokes:

```
BEGIN END
NOTE BOND
365 STO 0 7 n
5.25 RCL 0 ÷ 1
100 CHS PV FV
+ CL FIN i
10 CHS PMT 1000 FV n
52 ÷
```

Outputs:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compounding/week (into n)</td>
<td>7.00</td>
</tr>
<tr>
<td>Interest/week (into i)</td>
<td>0.01</td>
</tr>
<tr>
<td>Equivalent periodic interest rate</td>
<td>0.10</td>
</tr>
<tr>
<td>Weeks</td>
<td>95.23</td>
</tr>
<tr>
<td>Years</td>
<td>1.83</td>
</tr>
</tbody>
</table>

Payment Periods More Frequent

When the periodic payments occur more frequently than the compounding periods, the payment amount is adjusted by a payment factor. To evaluate a problem requiring an input for \(\text{PMT} \), an equivalent payment amount that can be considered to occur with the same frequency as compounding is calculated and used for \(\text{PMT} \) in the standard procedure for the problem. To solve for the periodic payment, use the standard procedure to find the equivalent payment amount and then divide by the payment factor. The procedure assumes that payments are made at the beginning of the period.

To calculate the payment factor, information is entered as follows:

1) Key in the number of payment periods per year and press \(\text{ENTER} \).
2) Key in the number of compounding periods per year; press \(\text{STO} 0 \) \(+ 1 \) \(+ \).
3) Key in the annual interest rate as a percent and press \(\text{RCL} 0 \) \(÷ 2 \) \(÷ \% \) \(+ 1 \) \(= \).

Example 1: Solving for future value.

For 3 years you make monthly deposits of $75 into an account paying 6% compounded quarterly. How much will you have accumulated at the end of that time?
Example 2: Solving for periodic payment.

For 8 years you wish to make weekly deposits in a savings account paying 5.5% compounded quarterly. What amount must you deposit each week to accumulate $6000?

Keystrokes:
BEGIN NOTE END BOND
CL FIN
8 ENTER 4 STO 1 x n
5.5 RCL 1 ÷ 1
6000 FV PMT
52 ENTER
4 STO 0 ÷ 1 + 5.5 RCL 0 ÷
2 ÷ % + 1 =

Outputs:
-150.53 Equivalent payment amount.
13.10 Payment factor
-11.49 Periodic payment

Example 3: Solving for number of payment periods.

You can make monthly deposits of $50 into an account paying 5.25% compounded quarterly. How long will it take to accumulate $1000?

Keystrokes:
BEGIN NOTE END BOND
CL FIN
12 ENTER 4 STO 0 ÷
1 + 6 RCL 0 ÷ 2 ÷ % +
1 =
75 CHS x PMT
3 RCL 0 x n
6 RCL 0 ÷ 1 FV

Outputs:
3.03 Payment factor
-227.25 Equivalent payment amount
2963.62 Balance in account
ADVANCE PAYMENTS

Payments on loans are typically made at the end of the period (in arrears). However, there are situations where payments are made in advance (leasing is a good example). Sometimes these agreements call for extra payments to be made when the transaction is closed, before the payments would normally be due.

The first procedure finds the periodic payment amount necessary to achieve a desired yield when a number of payments are made in advance. And, given the periodic payment, the second procedure calculates the periodic yield.

To calculate the payment, information is entered as follows:

1) Set the Payment Mode switch to END and press CL FIN.
2) Key in the total number of payments in the lease and press ENTER.
3) Key in the total number of payments made in advance and press STO 0 = n.
4) Key in or calculate the periodic interest rate as a percent and press i.
5) Key in 1; press CHS PMT PV RCL 0 +.
6) Key in the initial loan amount and press x key = to obtain the periodic payment to be received by the lessor.
Example 1:
Equipment worth $750 is leased for 12 months. The equipment is assumed to have no salvage value at the end of the lease. The lessee has agreed to make 3 payments at the time of closing. What monthly payment is necessary to yield the lessor 10% annually?

Keystrokes: Outputs:

\[
\text{BEGIN END} \\
\text{NOTE BOND} \\
\text{CL FIN} \\
12 \ \text{ENTER} + 3 \ \text{STO} \ 0 - n \\
10 \ 12 - 1 \ \text{CHS} \ \text{PMT} \ \text{PV} \ \text{RCL} \ 0 \\
+ \ 750 \ \times \ \text{y}^{-} \ \rightarrow \\
64.45 \ \text{Monthly payment to be received}
\]

Example 2:
In the previous example, what monthly payment is necessary to yield the lessor 10% annually if one payment is due at the time of closing?

Keystrokes: Outputs:

\[
\text{BEGIN END} \\
\text{NOTE BOND} \\
\text{CL FIN} \\
12 \ \text{ENTER} + 1 \ \text{STO} \ 0 - n \\
10 \ 12 - 1 \ \text{CHS} \ \text{PMT} \ \text{PV} \\
\text{RCL} \ 0 + \ 750 \ \times \ \text{y}^{-} \ \rightarrow \\
65.39 \ \text{Monthly payment to be received}
\]

Since this is an annuity due situation (payments at the beginning of the period) the calculation could also be done as follows:

Keystrokes: Outputs:

\[
\text{BEGIN END} \\
\text{NOTE BOND} \\
\text{CL FIN} \\
12 \ n \ 10 \ 12 - 750 \ \text{CHS} \ \text{PV} \ \text{PMT} \ \rightarrow \\
65.39 \ \text{Monthly payment to be received}
\]
To calculate the periodic yield, information is entered as follows:

1) Set the Payment Mode switch to END and press **CL FIN**.
2) Key in the total number of payments in the lease and press **ENTER**.
3) Key in the total number of payments made in advance and press **STO 0 - n**.
4) Key in the periodic payment to be received and press **PMT**.
5) Key in the total amount of the loan and press **CHS RCL 0 RCL PMT X ÷ PV**.
6) Press **i** to obtain the periodic yield.

Example 1:

A lease has been written to run for 60 months. The leased equipment has a value of $25,000 with a $600 monthly payment. The lessee has agreed to make 3 payments at the time of closing ($1800). What is the annual yield to the lessor?

Keystrokes:

Outputs:

```
BEGIN END NOTE BOND

CL FIN

60 ENTER 3 STO 0 - n
600 PMT 25000 CHS RCL 0
RCL PMT X ÷ PV i
12 X

1.44 Monthly yield
17.33 Annual yield as a %
```

Advance Payments With Residual

Situations may arise where a transaction has advance payments and a residual value (salvage value) at the end of the normal term.

To calculate the payment amount, information is entered as follows:

1) Set the Payment Mode switch to END and press **CL FIN**.
2) Key in the total number of payments and press **n**.
3) Key in or calculate the periodic interest rate and press **i**.
4) Key in the residual value and press **FV PV**.
5) Key in the loan amount and press **+ STO 0 0 FV RCL n**.
6) Key in the total number of payments made in advance and press **STO 1 - n 1 CHS PMT PV RCL 1 + RCL 0 X:Y ÷** to obtain the payment amount received by the lessor.
Example 1:
A copier worth $22,000 is to be leased for 48 months. The lessee has agreed to make 4 payments in advance, with a purchase option at the end of 48 months enabling him to buy the copier for 30% of the purchase price. What monthly payment is necessary to yield the lessor 12% annually?

Keystrokes: Outputs:

To calculate the periodic yield, an iteration (trial and error) procedure must be used. Information is entered as follows:

1) Set the Payment Mode switch to END and press CL FIN.
2) Key in the total number of payments made in advance and press STO 0.
3) Key in the total number of payments and press STO 1.
4) Key in the periodic payment amount and press STO 2.
5) Key in the loan amount and press CHS STO 3.
6) Key in the residual value and press STO 4.
7) Choose a best-guess periodic interest rate and press 1 RCL 1 n RCL 4 FV PV STO 9 to obtain the present value of the residual value at the chosen interest rate.
8) Press 0 FV RCL n RCL 0 - n RCL 2 PMT PV STO + 9 to obtain the present value of the periodic cash flows at the chosen interest rate.
9) Press \(RCL \ 3 \ RCL \ 0 \ RCL \ 2 \times + \ RCL \ 9 \ - \) to obtain the net present value (NPV) of all the cash flows at the chosen interest rate.

10) If the NPV is negative, the yield is lower than the value chosen in step 7. If the NPV is positive, the yield is higher than the value chosen in step 7.

11) Repeat steps 7-10 until the net present value is sufficiently close to zero.

Example 1:

Equipment worth $5000 is leased for 36 months, at $145 per month. The lessee has agreed to pay the first and last month’s payments in advance. At the end of the lease, the equipment may be purchased for $1500. What is the annual yield to the lessor?

![Diagram of cash flows](image)

Keystrokes:

<table>
<thead>
<tr>
<th>BEGIN</th>
<th>END</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE</td>
<td>BOND</td>
</tr>
</tbody>
</table>

\[\begin{align*}
2 \text{ (145)} & \rightarrow \quad 2.00 \text{ Number of advance payments} \\
36 & \rightarrow \quad 36.00 \text{ Total number of payments} \\
145 & \rightarrow \quad 145.00 \text{ Monthly payment} \\
5000 & \rightarrow \quad -5000.00 \text{ Amount given by lessor} \\
1500 & \rightarrow \quad 1500.00 \text{ Residual value}
\end{align*}\]

Choose 20% as the first guess of the annual yield.

\[\begin{align*}
20 \ \ 12+ & \quad \text{RCL} \ 1 \ \text{n} \ \text{RCL} \ 4 \\
0 \ \text{FV} \ \text{PV} \ \text{STO} \ 9 & \rightarrow \quad -827.30 \text{ Present value of residual} \\
\text{RCL} \ 2 \ \text{PMT} \ \text{PV} \ \text{STO} \ 9 & \rightarrow \quad -3740.39 \text{ Present value of periodic payments} \\
\text{RCL} \ 3 \ \text{RCL} \ 0 \ \text{RCL} \ 2 \times + \text{RCL} \ 9 - & \rightarrow \quad -142.31 \text{ Net present value}
\end{align*}\]

Since the NPV is negative, the yield is less than 20%; choose 18% as next guess.
The yield to the lessor is slightly higher than 18%. (It is actually 18.0978%.)
STATISTICS
CURVE FITTING

EXPONENTIAL CURVE FIT

Using the \texttt{LN} function of the HP-92, a least squares exponential curve fit may easily be calculated according to the equation \(y = Ae^{Bx} \). The exponential curve fitting technique is often used to determine the growth rate of a variable such as a stock’s value over time, when it is suspected that the performance is non-linear. The value for \(B \) is the decimal value of the continuous growth rate. For instance, assume after keying in several end-of-month price quotes for a particular stock, it is determined that the value for \(B \) is 0.10. This means that over the measured period the stock has experienced a 10\% \textit{continuous} growth rate. This decimal continuous growth rate may then be converted to an effective growth rate.

If \(B > 0 \), you will have a growth curve. If \(B < 0 \), you will have a decay curve. Examples of these are given below.

The procedure is as follows:
1) Press 1 \texttt{CLx}.
2) For each input pair of values, key in the y-value and press 1 \texttt{LN}; key in the corresponding x-value and press \texttt{e^x}.
3) After all data pairs are input, press 1 \texttt{LR} 1 \texttt{e^x} to obtain \(A \) in the equation above.
4) Press \texttt{xy} to obtain \(B \) in the equation above.
5) Press \texttt{e^x} 1 = to obtain the effective growth rate (as a decimal).
6) To obtain the correlation coefficient, press 9 1.
7) To make a y-estimate, key in the x-value, press \texttt{e^x}.
Example 1:
A stock’s price history is listed below. What effective growth rate does this represent? If the stock continues this growth rate, what is the price projected to be at the end of 1976 (year 5)?

<table>
<thead>
<tr>
<th>End of Year</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972 (1)</td>
<td>52½</td>
</tr>
<tr>
<td>1973 (2)</td>
<td>55¼</td>
</tr>
<tr>
<td>1974 (3)</td>
<td>(missing data)</td>
</tr>
<tr>
<td>1975 (4)</td>
<td>61</td>
</tr>
<tr>
<td>1976 (5)</td>
<td>?</td>
</tr>
</tbody>
</table>

Keystrokes: Outputs:
1. CLS
2. 52.5 1 LN 1 +
3. 55.25 1 LN 2 +
4. 61 1 LN 4 +
5. L.R. 1 e^x
6. 1 e^x 1 +
7. g r
8. 5 ? 1 e^x

1.00 First data pair input
2.00 Second data pair input
3.00 Third data pair input
49.96 y-intercept (A)
0.05 B
0.05 Effective growth rate
1.00 Correlation coefficient
64.14 Projected price at the end of year 5 (1976)

LOGARITHMIC CURVE FIT

If your data does not fit a line or an exponential curve, try logarithmic curve fit. This is calculated according to the equation \(y = A + B \ln(x) \), and all \(x \) values must be positive.

A typical logarithmic curve is shown below.
The procedure is as follows:

1) Press \(1 \text{ CLY} \).

2) Key in the first \(y \) value, press \(\text{ENTER} \). Key in the first \(x \)-value, press \(1 \text{ LN} \). Repeat this step for each data pair.

3) After all data pairs are input, press \(1 \text{ LR} \) to obtain \(A \) in the equation above.

4) Press \(\text{X} \times \text{Y} \) to obtain \(B \).

5) Press \(\text{G} \text{ F} \) to obtain the correlation coefficient.

6) To solve for a projected \(y \) value, key in the \(x \) value, and press \(1 \text{ LN} \).

Example 1:

A manufacturer observes declining sales of a soon-to-be obsoleted product, of which there were originally 10,000 units in inventory. The cumulative sales figures over a number of months, given below, may be fit by a logarithmic curve of the form \(y = A + B \ln x \), where \(y \) represents cumulative sales in units and \(x \) the number of months since the beginning. How many units will be sold by the end of the eighth month?

<table>
<thead>
<tr>
<th>Month</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative Sales (units)</td>
<td>1431</td>
<td>3506</td>
<td>5177</td>
<td>6658</td>
<td>7810</td>
<td>8592</td>
</tr>
</tbody>
</table>

Keystrokes:

\(1 \text{ CLY} \)
1431 \(\text{ENTER} \) 1 \(\text{LN} \)
3506 \(\text{ENTER} \) 2 \(\text{LN} \)
5177 \(\text{ENTER} \) 3 \(\text{LN} \)
6658 \(\text{ENTER} \) 4 \(\text{LN} \)
7810 \(\text{ENTER} \) 5 \(\text{LN} \)
8592 \(\text{ENTER} \) 6 \(\text{LN} \)
\(1 \text{ LR} \)
\(\text{X} \times \text{Y} \)
\(\text{G} \text{ F} \)
\(8 \text{ LN} \)

Outputs:

6.00 Six data pairs
1066.15 Value of \(A \)
4069.93 Value of \(B \)
0.99 Correlation coefficient
9529.34 Total units sold by end of eighth month
POWER CURVE FIT

Another method of analysis is the power curve or geometric curve. The equation of the power curve is \(y = Ax^B \), and the values for A and B are computed by calculations similar to linear regression. Some examples of power curves are shown below.

![Power Curve Diagrams]

The following keystrokes fit a power curve according to the equation \(\ln y = \ln A + B \ln x \):

1) Press \(\boxed{1} \ \boxed{CLx} \).

2) Key in the first \(y \)-value, press \(\boxed{1} \ \boxed{LN} \). Key in the first \(x \)-value, press \(\boxed{1} \ \boxed{LN} \ \boxed{+} \). Repeat this step for all data pairs.

3) Press \(\boxed{1} \ \boxed{L.R} \ \boxed{1} \ \boxed{e^x} \) to obtain A in the above equation.

4) Press \(XY \) to obtain B.

5) Press \(9 \ 1 \) to obtain the correlation coefficient.

6) To find a projected y, key in the \(x \)-value and press \(9 \ 1 \ 1 \ \boxed{e^x} \) to obtain y.

Example 1:

If Galileo had wished to investigate quantitatively the relationship between the time (t) for a falling object to hit the ground and the height (h) it has fallen, he might have released a rock from various levels of the Tower of Pisa (which was leaning even then) and timed its descent by counting his pulse. The following data are measurements Galileo might have made.

<table>
<thead>
<tr>
<th>t (pulses)</th>
<th>2</th>
<th>2.5</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>h (feet)</td>
<td>30</td>
<td>50</td>
<td>90</td>
<td>130</td>
<td>150</td>
</tr>
</tbody>
</table>

Find the power curve formula that best expresses \(h \) as a function of \(t \) (\(h = At^B \)).
Keystrokes: Outputs:

1 CLx
30 1 LN 2 1 LN 2+
50 1 LN 2.5 1 LN 2+
90 1 LN 3.5 1 LN 2+
130 1 LN 4 1 LN 2+
150 1 LN 4.5 1 LN 2+ → 5.00 Five data pairs
1 LR 1 Σx
→ 7.72 Value of A
x^2y
→ 1.99 Value of B
6 t
→ 1.00 Correlation coefficient

So, the formula that best expresses \(h \) as a function of \(t \) is
\[
h = 7.72t^{1.99}
\]
We know, as Galileo did not, that in fact \(h \propto t^2 \) (\(h \) is proportional to \(t^2 \)).

STANDARD ERROR OF THE MEAN

The standard error of the mean is a measure of how reliable the mean of a sample (\(x \)) is as an estimator of the mean of the population from which the sample was drawn.

To calculate the standard error of the mean:

1) Press 1 CLx.

2) If you are summing one set of numbers, key in the first number and press 2+. Continue until you have entered all of the values.

3) If you are summing two set of numbers, key in the y-value and press ENTER; key in the x-value and press 2+. Continue until you have entered all of the values.

4) Press 1 x to obtain the mean of the x-values.

5) Press 9 3 RCL 2+ 0 1 0 < = to obtain the standard error of the mean of the x-values.

6) Alternatively press 9 3 x^2y RCL 2+ 0 1 0 < = to obtain the standard error of the mean of the y-values.

Example 1:

A sample of 6 one-bedroom apartment rentals reveals that 1 rents for $190 per month unfurnished, 1 rents for $200 per month, 2 rent for $205 per month, 1 rents for $216 per month, and 1 rents for $220 per month. What are the mean monthly rental and the standard deviation? What is the standard error of the mean?
Keystrokes: Outputs:

1 CLEAR
190 200
205 205
216 220

6.00 Total number of data inputs
206.00 Average monthly rent
10.86 Standard deviation
4.43 Standard error of the mean

MEAN, STANDARD DEVIATION, STANDARD ERROR FOR GROUPED DATA

Grouped data are presented in frequency distributions to save time and effort in writing down (or entering) each observation individually. Given a set of data points

\[x_1, x_2, \ldots, x_n \]

with respective frequencies

\[f_1, f_2, \ldots, f_n \]

this procedure computes the mean, standard deviation, and standard error of the mean.

1) Press 1 CLEAR.
2) Key in the first value and press ENTER ENTER.
3) Key in the respective frequency and press STO 0 X Σ+. The display shows the number of data points entered.
4) Repeat steps 2 and 3 for each data point.
5) To calculate the mean (average) press RCL 0 STO X Σ+ RCL X Σ+ 2 1 X.
6) Press 0 8 to find the standard deviation.
7) Press RCL 0 1 X ÷ to find the standard error of the mean.

Example 1:

A survey of 266 one-bedroom apartment rentals reveals that 54 rent for $190 per month unfurnished, 32 rent for $195 per month, 88 rent for $200 per month, and 92 rent for $206 per month. What are the average monthly rental, the standard deviation, and the standard error of the mean?
CHI-SQUARE STATISTIC

The chi-square statistic means the goodness of fit between two sets of frequencies. It is used to test whether a set of observed frequencies differ from a set of expected frequencies sufficiently to reject the hypothesis under which the expected frequencies were obtained.

In other words, you are testing whether discrepancies between the observed frequencies \(O_i \) and the expected frequencies \(E_i \) are significant, or whether they may reasonably be attributed to chance. The formula generally used is:

\[
\chi^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i}
\]

If there is a close agreement between the observed and expected frequencies, \(\chi^2 \) will be small. If the agreement is poor, \(\chi^2 \) will be large.

The following keystrokes calculate the \(\chi^2 \) statistic:

1) Press CLEAR.
2) Key in the first \(O_i \) value, press ENTER.
3) Key in the first \(E_i \) value, press STO \(\times \) ENTER \(\times \) RCL \(\div \) +.
4) Repeat steps 2 and 3 for all data pairs. The \(\chi^2 \) value is displayed.
Example 1:
A suspect die from a Las Vegas casino is brought to an independent testing firm to determine its bias, if any. The die is tossed 120 times and the following results obtained.

<table>
<thead>
<tr>
<th>Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed Frequency</td>
<td>25</td>
<td>17</td>
<td>15</td>
<td>23</td>
<td>24</td>
<td>16</td>
</tr>
</tbody>
</table>

The expected frequency = 120 throws/6 sides, or E = 20 for each number, 1 thru 6. (Since E is a constant is this example, there’s no need to store it in R0 each time.)

Keystrokes: Outputs:

```
CLX ENTER+ 25 ENTER+

20 STO [D] = ENTER+ [X]

RCL [D] = +

17 ENTER+ 20 - ENTER+ [X]

15 ENTER+ 20 - ENTER+ [X]

23 ENTER+ 20 - ENTER+ [X]

24 ENTER+ 20 - ENTER+ [X]

16 ENTER+ 20 - ENTER+ [X]

RCL [D] = +

1.25

1.70

2.95

3.40

4.20

5.00 χ^2
```

The number of degrees of freedom is (n – 1). Since n = 6, the degrees of freedom = 5.

Consulting statistical tables, you look up χ^2 to a 0.05 significance level with 5 degrees of freedom, and see that χ^2_{0.05,5} = 11.07. Since χ^2 = 5 is within 11.07, we may conclude that to a 0.05 significance level (Probability = .95), the die is fair.
SECURITIES
ALPHABETICAL INDEX

<table>
<thead>
<tr>
<th>Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Support Bonds (At Maturity)</td>
<td>3</td>
</tr>
<tr>
<td>Assessment Support Bonds (Periodic)</td>
<td>1</td>
</tr>
<tr>
<td>Assessment Supported Notes</td>
<td>3</td>
</tr>
<tr>
<td>Assessment Supported Warrants</td>
<td>3</td>
</tr>
<tr>
<td>Banks for Cooperatives Debentures</td>
<td>3</td>
</tr>
<tr>
<td>Bankers' Acceptances</td>
<td>6</td>
</tr>
<tr>
<td>Certificates of Indebtedness</td>
<td>5</td>
</tr>
<tr>
<td>Certificates of Deposit</td>
<td>1, 4, 6</td>
</tr>
<tr>
<td>Commercial Paper</td>
<td>6</td>
</tr>
<tr>
<td>Commodity Credit Corporation</td>
<td>1</td>
</tr>
<tr>
<td>Corporate Bonds</td>
<td>1</td>
</tr>
<tr>
<td>Export-Import Bank Participation Certificates</td>
<td>1</td>
</tr>
<tr>
<td>Farmers Home Administration Insured Notes</td>
<td>2</td>
</tr>
<tr>
<td>Federal Home Loan Bank Notes and Bonds</td>
<td>1</td>
</tr>
<tr>
<td>Federal Housing Administration (FHA) Debentures</td>
<td>2</td>
</tr>
<tr>
<td>Federal Intermediate Credit Bank Debentures</td>
<td>1, 3</td>
</tr>
<tr>
<td>Federal Land Bank Bonds</td>
<td>1</td>
</tr>
<tr>
<td>FNMA Debentures</td>
<td>1</td>
</tr>
<tr>
<td>FNMA Short Term Notes</td>
<td>6</td>
</tr>
<tr>
<td>Foreign Bonds</td>
<td>2</td>
</tr>
<tr>
<td>GNMA Bonds and Participation Certificates</td>
<td>1</td>
</tr>
<tr>
<td>Inter-American Development Bank Bonds</td>
<td>1</td>
</tr>
<tr>
<td>International Bank for Reconstruction and Development Bonds</td>
<td>1</td>
</tr>
<tr>
<td>Merchant Marine Bonds</td>
<td>1</td>
</tr>
<tr>
<td>New Communities Act Debentures</td>
<td>1</td>
</tr>
<tr>
<td>Postal Service Bonds</td>
<td>1</td>
</tr>
<tr>
<td>Repurchase Agreements</td>
<td>4</td>
</tr>
<tr>
<td>Revenue Supported Bonds</td>
<td>1</td>
</tr>
<tr>
<td>Revenue Supported Notes</td>
<td>3</td>
</tr>
<tr>
<td>Revenue Supported Warrants</td>
<td>3</td>
</tr>
<tr>
<td>Special Supported Bonds</td>
<td>1</td>
</tr>
<tr>
<td>Special Supported Notes</td>
<td>3</td>
</tr>
<tr>
<td>Special Supported Warrants</td>
<td>3</td>
</tr>
<tr>
<td>Tax Supported Bonds (At Maturity)</td>
<td>3</td>
</tr>
<tr>
<td>Tax Supported Bonds (Periodic)</td>
<td>1</td>
</tr>
<tr>
<td>Tax Supported Warrants</td>
<td>3</td>
</tr>
<tr>
<td>Tennessee Valley Authority Bonds</td>
<td>1</td>
</tr>
<tr>
<td>Tennessee Valley Authority Notes</td>
<td>6</td>
</tr>
<tr>
<td>U.S. Treasury Bills</td>
<td>6</td>
</tr>
<tr>
<td>U.S. Treasury Bonds</td>
<td>2</td>
</tr>
<tr>
<td>U.S. Treasury Notes</td>
<td>2</td>
</tr>
<tr>
<td>U.S. Treasury Tax-Anticipation Bills</td>
<td>6</td>
</tr>
</tbody>
</table>
Note:
Remember that the issue date, settlement date, maturity date, coupon rate, price and yield are retained in separate storage registers, and do not need to be re-entered for similar problems.

Type 1: Semi-annual Coupon, 30/360 Day Basis

Examples:

To calculate price:
1) Set the Day Basis switch to 360, the Payment Mode switch to BOND, the Print Mode switch to ALL and press CL FIN.
2) Key in the settlement date, press 1 ISST.
3) Key in the maturity date and press 9 MT.
4) Key in the annual coupon rate as a percent and press 9 CPN.
5) Key in the annual yield as a percent and press YIELD.
6) Press PRICE to obtain the price and accrued interest of a semi-annual coupon, 30/360 day basis security.

Example 1:
Calculate the price of a Federal Home Loan Bank Note given the following information:
Settlement date June 20, 1977; maturity date August 30, 1978; coupon 5.65%; yield 6.84%.

Keystrokes:
Printer:

MAN ALL NORM
360 365 BEGIN END BOND

CL FIN
6.201977 1 ISST 8.301978
9 MT 5.65 9 CPN 6.84
YIELD PRICE 98.65 Price
To calculate yield:

1) Set the Day Basis switch to 360, the Payment Mode switch to BOND, the Print Mode switch to ALL and press **CL FIN**.
2) Key in the settlement date and press **1 IS.ST**.
3) Key in the maturity date and press **g MT**.
4) Key in the annual coupon rate as a percent and press **g CPN**.
5) Key in the purchase price and press **PRICE**.
6) Press **YIELD** to obtain the yield of a semi-annual coupon, 30/360 day basis security.

Example 2:

Determine the yield of a Federal Land Bank Bond given the following data:
Settlement date May 19, 1972; maturity date June 30, 1983; price 98.50; coupon 5.85%.

Keystrokes:

| Printer: |
|---|---|
| MAN | ALL | NORM |
| CL FIN | 360 | 365 |
| BEGIN | END | NOTE | BOND |

7.5191972 **1 IS.ST** 8.301983
g MT 5.85 **g CPN**
98.5 **PRICE** YIELD

6.04 Percent annual yield

Type 2: Semi-annual Coupon, Actual/Actual Day Basis

Examples:

U.S. Treasury Bonds and Notes, Farmers Home Administration Insured Notes (FHDA), Federal Housing Administration Debentures (FHA), Foreign Bonds

To calculate price:

1) Set the Day Basis switch to 365, the Payment Mode switch to BOND, the Print Mode switch to ALL, and press **CL FIN**.
2) Key in the settlement date, press **1 IS.ST**.
3) Key in the maturity date and press **g MT**.
4) Key in the annual coupon rate as a percent and press \[\text{9 CPN} \].

5) Key in the annual yield as a percent and press \[\text{YIELD} \].

6) Press \[\text{PRICE} \] to obtain the price and accrued interest of a semi-annual coupon, Actual/Actual day basis security.

Example 1:

Given the following security, find its price.

Settlement date September 17, 1976; maturity date December 15, 1976; interest 5.75%; annual yield 3.34%.

Keystrokes:

| MAN | 360 | BEGIN | 9.171976 | IS,ST | 12.151976 | 3.34 | 5.75 |
| NORM | 365 | END | CPN | MT | YLD | CPN | ST |

Printer:

| CL F |
| 9.171976 ST |
| 12.151976 MT |
| 5.75 CPN |
| 3.34 YLD |
| BOND 365 PRC |
| 1.46 AI |
| 100.57 *** |

To calculate yield:

1) Set the Day Basis switch to 365, the Payment Mode switch to BOND, the Print Mode switch to ALL, and press \[\text{CL FIN} \].

2) Key in the settlement date, press \[\text{IS,ST} \].

3) Key in the maturity date and press \[\text{MT} \].

4) Key in the annual coupon rate as a percent and press \[\text{CPN} \].

5) Key in the purchase price and press \[\text{PRICE} \].

6) Press \[\text{YIELD} \] to obtain the annual yield of a semi-annual coupon security.
Example 2:

Given the following security, find its yield.

U.S. Treasury Bond
Settlement date January 3, 1977; maturity date December 14, 1990; price 98.875 and coupon rate of 4\%.

Keystrokes:

```
MAN  ALL  NORM
360  365
BEGIN  END  BOND
CL  FIN
1.031977  IS.ST  12.141990
9  MT  4.75 9  CPN  98.875
PRICE  YIELD
```

4.86 Percent annual yield

Type 3: Interest at Maturity, 30/360 Day Basis

Examples:

Banks for Cooperatives Debentures, Federal Intermediate Credit Bank Debentures, State and Local Government Issues, Warrants

To calculate price:

1) Set the Day Basis switch to 360, the Payment Mode switch to NOTE, the Print Mode switch to ALL, and press CL FIN.
2) Key in the issue date and press ENTER.
3) Key in the settlement date and press IS.ST.
4) Key in the maturity date and press MT.
5) Key in the annual coupon rate as a percent and press CPN.
6) Key in the annual yield as a percent and press YIELD.
7) Press PRICE to obtain the price and accrued interest for both Actual/360 and 30/360 day basis.

Example 1:

Given the following security, find its price.

Banks for Cooperatives Debentures
Issued May 3, 1976; settlement date June 25, 1976; maturity date September 10, 1976; coupon 6.85\%; yield 6.97\%.
Keystrokes:

MAN \[ALL\] NORM
360 365

CL F
5.031976 ENT\[\] 6.251976
1 IS,ST 9.101976 9 MT 6.85
9 CPN 6.97 \[\] YIELD PRICE \[\] 99.96 Purchase price

To calculate yield:

1) Set the Day Basis switch to 360, the Payment Mode switch to NOTE, the Print Mode switch to ALL, and press \[CL FIN\].
2) Key in the issue date and press \[ENTER\].
3) Key in the settlement date and press \[IS,ST\].
4) Key in the maturity date and press \[MT\].
5) Key in the annual coupon rate as a percent and press \[CPN\].
6) Key in the price and press \[PRICE\].
7) Press \[YIELD\] to obtain the annual yield.

Example 2:

Given the following security, find its yield.

Banks for Cooperatives Debentures
Issued July 26, 1976; settlement date September 10, 1976; maturity date November 22, 1976; coupon 7.15%; price 99.45.

Keystrokes:

MAN \[ALL\] NORM
360 365

CL F
7.261976 ENT\[\] 9.101976
1 IS,ST 11.221976 9 MT 7.15
9 CPN 99.45 \[\] PRICE YIELD \[\] 9.87 Percent annual yield
Type 4: Interest at Maturity, Actual/360 Day Basis

Examples:
Certificates of Deposit, Repurchase Agreements

To calculate price:

1) Set the Day Basis switch to 360, the Payment Mode switch to BOND, the Print Mode switch to ALL and press CL FIN.
2) Key in the issue date and press ENTER.
3) Key in the settlement date and press IS,ST.
4) Key in the maturity date and press MT.
5) Key in the annual coupon rate as a percent and press CPN.
6) Key in the annual yield as a percent and press YLD.
7) Press PRICE to obtain the price and accrued interest for both Actual/360 and 30/360 day basis.

Example 1:
Given the following security, find its price.
Certificate of Deposit
Settlement date August 23, 1976; maturity date December 20, 1976; issue date July 6, 1976; interest rate 5.8%; yield 5.65%.

Keystrokes:

<table>
<thead>
<tr>
<th>ALL</th>
<th>MAN</th>
<th>NORM</th>
<th>360</th>
<th>365</th>
<th>BEGIN</th>
<th>NOTE</th>
<th>END</th>
<th>BOND</th>
</tr>
</thead>
</table>

CL FIN
7.061976 ENTER 8.231976 1
IS,ST 12.201976 9 MT 5.8
9 CPN 5.65 YLD PRICEd100.03 Purchase price

To calculate yield:

1) Set the Day Basis switch to 360, the Payment Mode switch to NOTE, the Print Mode switch to ALL, and press CL FIN.
2) Key in the issue date and press ENTER.
3) Key in the settlement date and press IS-ST.
4) Key in the maturity date and press MT.
5) Key in the annual coupon rate as a percent and press CPN.
6) Key in the price and press PRICE.
7) Press YIELD to obtain the annual yield.

Example 2:

Having just performed the previous example, what would be the annual yield of the Certificate of Deposit if the security was purchased for $100.00?

Keystrokes:

100 PRICE YIELD

Printer:

Note:

Since the other values are unchanged, it is not necessary to re-enter them in this calculation.

Type 5: Interest at Maturity, Actual/Actual Day Basis

Examples:

Certificates of Indebtedness

To calculate price:

1) Set the Day Basis switch to 365, the Payment Mode switch to NOTE, the Print Mode switch to ALL, and press CL FIN.
2) Key in the issue date and press ENTER.
3) Key in the settlement date and press IS-ST.
4) Key in the maturity date and press MT.
5) Key in the annual coupon rate as a percent and press CPN.
6) Key in the annual yield and press YIELD.
7) Press PRICE to obtain the purchase price and accrued interest.

Example 1:

Find the price of a Certificate of Indebtedness given the following information. 5% interest; desired yield 6.35%; settlement date June 4, 1976; issue date April 15, 1976; maturity date November 15, 1976.
To calculate yield:

1) Set the Day Basis switch to 365, the Payment Mode switch to NOTE, the Print Mode switch to ALL, and press \[CL\ FIN\].
2) Key in the issue date and press \[ENTER\].
3) Key in the settlement date and press \[IS\ ST\].
4) Key in the maturity date and press \[MT\].
5) Key in the annual coupon rate as a percent and press \[CPN\].
6) Key in the purchase price and press \[PRICE\].
7) Press \[YIELD\] to obtain the annual yield as a percent.

Example 2:

Find the yield of a Certificate of Indebtedness given the following information:
Issue date April 1, 1976; settlement date June 1, 1976; maturity date October 15, 1976; price 99.65; interest 5%.

Keystrokes:

1) Set the Day Basis switch to 365, the Payment Mode switch to NOTE, the Print Mode switch to ALL, and press \[CL\ FIN\].
2) Key in the issue date and press \[ENTER\].
3) Key in the settlement date and press \[IS\ ST\].
4) Key in the maturity date and press \[MT\].
5) Key in the annual coupon rate as a percent and press \[CPN\].
6) Key in the purchase price and press \[PRICE\].
7) Press \[YIELD\] to obtain the annual yield as a percent.
Type 6: Discount, Actual/360

Examples:
U.S. Treasury Bills, U.S. Treasury Tax-Anticipation Bills, FNMA Short Term Notes, TVA Notes, Bankers’ Acceptances, Certificates of Deposit, Commercial Paper

To calculate yield given price:
1) Set the Day Basis switch to 360, the Payment Mode switch to NOTE, the Print Mode switch to ALL, and press CL FIN.
2) Key in the settlement date and press ENTER 1 IS.ST.
3) Key in the maturity date and press 9 MT.
4) Key in the purchase price and press PRICE.
5) Press YIELD R to obtain the annual yield as a percent for both Actual/360 and 30/360 day basis.

Example 1:
Calculate the yield of the following U.S. Treasury Bill:
Settlement date September 28, 1976; maturity date August 1, 1977; price 96.27041; no coupons.

Keystrokes:
Printer:

To calculate the price and effective yield given the discount rate:
1) Set the Day Basis switch to 360, the Payment Mode switch to NOTE, the Print Mode switch to ALL, and press CL FIN.
2) Key in the settlement date and press ENTER 1 IS.ST.
3) Key in the maturity date and press 9 MT.
4) Key in the discount rate (as a percent) and press CHS 9 CPN.
5) Press \texttt{PRICE R+ R+} to find the price.

6) Press \texttt{PRICE CLX g CPN YIELD R+} to find the effective annual yield as a percent.

\textbf{Example 2:}

Calculate price and effective yield of the following U.S. Treasury Bill:

Settlement date October 8, 1976; maturity date March 21, 1977; discount rate 4.20%.

\textbf{Keystrokes:}

\begin{center}
\begin{tabular}{l}
MAN \[T norRm \\
360 \[T norRm \\
BEGIN \[T norRm \\
NOTE \[T norRm \\
END \[T norRm \\
\end{tabular}
\end{center}

\textbf{Printer:}

\begin{center}
\begin{tabular}{l}
10.081976 \texttt{ENT}\texttt{t} \\
3.211977 g MT \\
4.20 CHS g CPN \\
\texttt{PRICE R+ R+} \rightarrow 98.09 \texttt{Price} \\
\texttt{PRICE CLX g CPN} \\
\texttt{YIELD R+} \rightarrow 4.28 \text{ Percent effective annual yield}
\end{tabular}
\end{center}

\textbf{AFTER-TAX YIELD}

This procedure calculates the after-tax yield (either to maturity or some other price). For after-tax computations, the interest or coupon payments are considered income, while the difference between the bond or note face value and its purchase price is considered capital gains.
The keystrokes are:

1) Set the Day Basis switch to 365, the Payment Mode switch to BOND, the Print Mode switch to ALL, and press [CL FIN].
2) Key in the sale price; press STO 0.
3) Key in the purchase price; press STO 1 –.
4) Key in the capital gains tax rate (expressed as a percent); press % RCL 0 \(\times y \) – to obtain the after-tax proceeds from the sale.
5) Press 100 ÷ STO 0.
6) Key in the purchase date; press 1 [IS.ST].
7) Key in the assumed sell date; press 9 MT.
8) Key in the annual coupon rate (as a percent); press ENTER.
9) Key in the income tax rate (expressed as percent) and press % – RCL 0 ÷ 9 CPN.
10) Press RCL 1 RCL 0 ÷ PRICE YIELD to find the after-tax yield.

Example 1:
You can buy a 3% bond on November 1, 1976 for $70 and expect to sell it in 5 years for $90. What is your net (after-tax) yield over the 5-year period if interim coupon payments are considered as income, and your tax bracket is 50%?

(One-half of the long-term capital gain is taxable at 50%, so the tax on capital gains alone is 25%.)

Keystrokes: Outputs:

\[360 \begin{array}{c} \text{BEGIN} \\ \text{NOTE} \end{array} \begin{array}{c} \text{END} \\ \text{BOND} \end{array} \]
\[\text{CL FIN} \]
\[90 \text{ STO 0} \]
\[70 \text{ STO 1 –} \]
\[25 \% \text{ RCL 0} \times y \] – \[85.00 \text{ After-tax proceeds from sale} \]
\[100 \div \text{ STO 0} \]
\[11.011976 \text{ IS.ST} 11.011981 \]
\[9 \text{ MT} \]
\[3 \text{ ENTER} \]
\[50 \% – \text{ RCL 0} \]
\[5 \text{ CPN} \]
\[\text{RCL 1 RCL 0 –} \]
\[\text{PRICE YIELD} \]
\[5.89 \% \text{ yield after taxes} \]
OTHER
Break-even analysis is basically a technique for analyzing the relationships among fixed costs, variable costs, and income. Until the break-even point is reached, at the intersection of the total income and total cost lines, the producer operates at a loss. After the break-even point, each unit produced and sold makes a profit. Break-even analysis may be represented as follows:

![Break-even diagram](image)

Given four of these variables: fixed costs, sales price per unit, variable costs per unit, number of units sold, and gross profit, the following procedures evaluate the remaining variable. To calculate the break-even values, simply let the gross profit equal zero.

Gross Profit

1) Key in the sales price per unit, press `ENTER`.
2) Key in the variable costs per unit, press `=`.
3) Key in the number of units sold, press `x`.
4) To find the gross profit, key in the fixed costs and press `=`.

Fixed Costs

1) Key in the sales price per unit, press `ENTER`.
2) Key in the variable costs per unit, press `=`.
3) Key in the number of units sold, press `x`.
4) To find the amount of fixed costs, key in the gross profit and press `=`.
Sales Price Per Unit
1) Key in the gross profit, press ENTER.
2) Key in the fixed costs, press +.
3) Key in the number of units sold, press -.
4) To find the sales price per unit, key in the variable costs per unit and press +.

Variable Costs Per Unit
1) Key in the sales price per unit, press ENTER.
2) Key in the gross profit, press ENTER.
3) Key in the fixed costs, press +.
4) Key in the number of units sold, press -.
5) Press - to find the variable costs per unit.

Number of Units Sold
1) Key in the fixed costs, press ENTER.
2) Key in the gross profit, press +.
3) Key in the sales price per unit, press ENTER.
4) Key in the variable costs per unit, press -.
5) Press - to obtain the number of units sold.

Example 1:
The Cooper Company sells finance textbooks at $13 each. Given the costs and revenues below, how many textbooks must be sold to break-even?

Fixed costs

<table>
<thead>
<tr>
<th>Typesetting</th>
<th>$ 4,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphics production</td>
<td>5,000</td>
</tr>
<tr>
<td>Printing and binding</td>
<td>3,000</td>
</tr>
<tr>
<td>Total fixed costs</td>
<td>$12,000</td>
</tr>
</tbody>
</table>

Variable costs per copy

<table>
<thead>
<tr>
<th>Distribution</th>
<th>$ 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commissions</td>
<td>3.75</td>
</tr>
<tr>
<td>Royalties</td>
<td>2.00</td>
</tr>
<tr>
<td>Total variable costs per copy</td>
<td>$ 6.75</td>
</tr>
</tbody>
</table>

Sales price per copy

$ 13.00
The degree of operating leverage at a point is defined as the ratio of the percentage change in net operating income to the percentage change in units sold. The greatest degree of operating leverage is found near the break-even point, where a small change in sales may produce a very large increase in profits. This happens because the profits are close to zero near the break-even point. Likewise, firms with a small degree of operating leverage are operating farther from the break-even point, and they are relatively insensitive to changes in sales volume.

The necessary inputs to calculate the degree of operating leverage are fixed costs, sales price per unit, variable costs per unit, and number of units sold.

The keystrokes are:
1) Key in the sales price per unit, press \textbf{ENTER\textdagger}.
2) Key in the variable costs per unit, press -.
3) Key in the number of units, press \times \textbf{ENTER\textdagger} \textbf{ENTER\textdagger}.
4) Key in the fixed costs, press -.
5) Press - to determine the degree of operating leverage.

Example 2:
In the above example, what is the Cooper Company’s degree of operating leverage at 2000 units? At 5000 units?

Keystrokes: Outputs:
\begin{align*}
13 \text{ ENTER\textdagger} & \ 6.75 \text{ - } 2000 \times \text{ ENTER\textdagger} \text{ ENTER\textdagger} \ 12000 \\
\text{-} \text{-} & \rightarrow 25.00 \text{ This is close to the break-even point.} \\
13 \text{ ENTER\textdagger} & \ 6.75 \text{ - } 5000 \times \text{ ENTER\textdagger} \text{ ENTER\textdagger} \ 12000 \\
\text{-} \text{-} & \rightarrow 1.62 \text{ The company is farther from the break-even point and less sensitive to changes in sales volume.}
\end{align*}
APPENDICES
APPENDIX A
FINANCIAL FORMULAS

Percentage

\[\% = \frac{\text{Base (y)} \cdot \text{Rate (x)}}{100} \]

\[\Delta\% = \left(\frac{\text{New Amount (x)} - \text{Base (y)}}{\text{Base (y)}} \right) \cdot 100 \]

Compound Interest

\[n = \text{number of compounding periods} \]

\[i = \text{periodic interest rate, expressed as } \% \]

\[PV = \text{present value} \]

\[FV = \text{future value or balance} \]

\[PMT = \text{periodic payment} \]

\[\delta = \text{BEGIN/END switch position factor (0 or 1) indicating treatment of PMT; 0 corresponds to END, 1 to BEGIN.} \]

\[r = \frac{i}{100}, \text{periodic interest rate expressed as decimal} \]

\[0 = PV + (1 + r\delta) \cdot PMT \cdot \left[\frac{1 - (1 + r)^{-n}}{r} \right] + FV \cdot (1 + r)^{-n} \]

Net Present Value

\[\text{NPV} = \text{net present value of a discounted cash flow} \]

\[cf_j = \text{cash flow at period } j \]

\[\text{NPV} = cf_0 + \frac{cf_1}{(1 + r)^1} + \frac{cf_2}{(1 + r)^2} + \ldots + \frac{cf_n}{(1 + r)^n} \]

Amortization

\[P1 = \text{first period of amortization schedule} \]

\[P2 = \text{last period of amortization schedule} \]

\[INT_j = \text{amount of PMT applied to interest in period } j \]

\[PRN_j = \text{amount of PMT applied to principal in period } j \]

\[j = \text{period number} \]

\[\text{BAL}_j = \text{BAL}_{j-1} - \text{PRN}_j; \quad \text{BAL}_0 = \left| \text{PV} \right| \]
\[\text{INT}_1 = \frac{\text{PV} \cdot i}{100} \]
\[\text{PRN}_1 = \frac{\text{PMT} - \text{INT}_1}{\text{PV}} \]
\[\text{BAL}_1 = \frac{\text{PV} - \text{PRN}_1}{\text{PV}} \]
\[\vdots \]
\[\text{INT}_j = \frac{\text{BAL}_{j-1} \cdot i}{100} \]
\[\text{PRN}_j = \frac{\text{PMT} - \text{INT}_j}{\text{PV}} \]
\[\sum_{j=P1}^{P2} \text{INT}_j = \text{INT}_{P1} + \text{INT}_{P1+1} + \cdots + \text{INT}_{P2} \]
\[\sum_{j=P1}^{P2} \text{PRN}_j = \text{PRN}_{P1} + \text{PRN}_{P1+1} + \cdots + \text{PRN}_{P2} \]

Depreciation

- \(\text{LIFE} \) = asset’s depreciable life (years)
- \(\text{BOOK} \) = starting book value
- \(\text{SAL} \) = salvage value
- \(\text{N1} \) = first period of depreciation schedule
- \(\text{N2} \) = last period of depreciation schedule
- \(\text{FACT} \) = declining balance factor expressed as %
 \(j \) = period number
- \(\text{DPN}_j \) = depreciation expense during period \(j \)
- \(\text{RDV}_j \) = remaining depreciable value at end of period \(j = \text{RDV}_{j-1} - \text{DPN}_j \)
 where \(\text{RDV}_0 = \text{BOOK} - \text{SAL} \)
- \(\text{RBV}_j \) = remaining book value = \(\text{RBV}_{j-1} - \text{DPN}_j \) where \(\text{RBV}_0 = \text{BOOK} \)

Straight-Line Depreciation

\[\text{DPN}_j = \frac{\text{BOOK} - \text{SAL}}{\text{LIFE}} \text{ for } j = 1, 2, \ldots \]
Sum-of-the-Years’-Digits Depreciation

\[
SOYD = \frac{(W + 1)(W + 2F)}{2}
\]

where \(W \) = integer part of LIFE

\(F \) = fractional part of LIFE

(i.e., for a LIFE of 12.25 years \(W = 12 \) and \(F = .25 \)).

\[
DPN_j = \frac{(LIFE - j + 1)}{SOYD}(BOOK - SAL)
\]

Declining Balance Depreciation

\[
DPN_j = RBV_{j-1} \left(\frac{FACT}{100 \cdot LIFE} \right)
\]

Loans With A Constant Amount Paid Towards Principal

\(BAL_K \) = remaining balance after time period \(K \)

\(CPMT \) = constant payment to principal

\[
BAL_K = PV - (K \cdot CPMT)
\]

\(K^{th} \) payment to interest = \(i(BAL_K) = (PMT_i)_K \)

\(K^{th} \) total payment = \(CPMT + (PMT_i)_K \)

Add-On Interest Rate To APR

\(r \) = add-on rate as a decimal

\(n \) = number of monthly payments

\[
APR = 1200i, \text{ where } i \text{ is the solution in the following equation:}
\]

\[
\frac{n}{1 + \frac{n}{12} \times \frac{r}{i}} = 1 - (1 + i)^{-n}
\]

Rule of 78’s Rebate

\(PV \) = finance charge

\(I_k \) = interest charged at month \(k \)

\[
I_k = \frac{2(n - k + 1)}{n(n + 1)} PV
\]

\[
Rebate = \frac{(n - k) I_k}{2}
\]
Wrap-Around Mortgage

\[
PV_2 - PV_1 = \frac{PMT_2 \left[1 - (1+r)^{-n_2} \right]}{r} - \frac{PMT_1 \left[1 - (1+r)^{-n_1} \right]}{r} + FV(1+r)^{-n_2}
\]

Canadian Mortgages

monthly factor = \left[\left(1 + \frac{r}{2} \right)^{1/6} - 1 \right] \times 100

Compounding Periods Different From Payment Periods

\[
PMT = \frac{FV}{Z} \left[\frac{Q}{(1 + Q)^n - 1} \right]
\]

when \(P/C \leq 1 \)

\[
Q = (1 + r)^{C/P} - 1
\]

\[
Z = (1 + Q)
\]

\[
n = \text{total number of payments}
\]

when \(P/C > 1 \)

\[
Q = r
\]

\[
n = (\text{total number of payments}) \cdot C/P
\]

\[
Z = (P/C + 1) \cdot \left(\frac{Q}{2} \right) + (P/C)
\]

Advance Payments

\[
PMT = \frac{PV - FV(1 + r)^{-n}}{1 - (1+r)^{-(n-A)}} + A
\]

where:

\[
A = \text{number of payments made in advance}
\]

Linear Regression

for

\[
y = A + Bx
\]
\[B = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2} \]

\[A = \bar{y} - B\bar{x} \]

where:

\[\bar{x} = \frac{\sum x_i}{n} \quad \bar{y} = \frac{\sum y_i}{n} \]

\[R^2 = 1 - \frac{\left[\sum x_i y_i - \frac{\sum x_i \sum y_i}{n} \right]^2}{\left[\sum x_i^2 - \frac{1}{n} (\sum x_i)^2 \right] \left[\sum y_i^2 - \frac{1}{n} (\sum y_i)^2 \right]} \]

\(n = \text{number of data pairs} \)

Exponential Curve Fit

\[y = A e^{Bx} \]

\[B = \frac{\sum x_i \ln y_i - \frac{1}{n} (\sum x_i)(\sum \ln y_i)}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2} \]

\[A = \exp \left[\frac{\sum \ln y_i}{n} - B \frac{\sum x_i}{n} \right] \]

\(\hat{y} = A e^{Bx} \)

Logarithmic Curve Fit

\[y = A + B(\ln x) \]

\[= \frac{\sum y_i \ln x_i - \frac{1}{n} \sum \ln x_i \sum y_i}{\sum (\ln x_i)^2 - \frac{1}{n} (\sum \ln x_i)^2} \]

\[A = \frac{1}{n} (\sum y_i - B \sum \ln x_i) \]

\(\hat{y} = A + B(\ln x) \)
Power Curve Fit

\[y = Ax^B \quad (A > 0) \]

\[\ln y = \ln A + B \ln x \]

\[
B = \frac{\Sigma (\ln x_i)(\ln y_i) - (\Sigma \ln x_i)(\Sigma \ln y_i)}{n} \\
\quad \frac{\Sigma (\ln x_i)^2 - (\Sigma \ln x_i)^2}{n}
\]

\[A = \exp \left(\frac{\Sigma \ln y_i}{n} - B \frac{\Sigma \ln x_i}{n} \right) \]

\[\hat{y} = Ax^B \]

Standard Error of The Mean

\[s_{\bar{x}} = \frac{s_x}{\sqrt{n}} \quad s_y = \frac{s_y}{\sqrt{n}} \]

Mean, Standard Deviation, Standard Error For Grouped Data

\[\text{mean } \bar{x} = \frac{\Sigma f_i x_i}{\Sigma f_i} \]

\[\text{standard deviation } s_x = \sqrt{\frac{\Sigma f_i x_i^2 - (\Sigma f_i)\bar{x}^2}{\Sigma f_i - 1}} \]

\[\text{standard error } s_{\bar{x}} = \frac{s_x}{\sqrt{\Sigma f_i}} \]

Bonds and Notes

Reference:

\[\text{DIM/b} = \text{days between issue date and maturity date/day basis from calendar switch} \]
\[\text{DSM/b} = \text{days between settlement date and maturity date/day basis from calendar switch} \]
DIS = days between issue date and settlement date
DIS/b = DIM/b − DSM/b

E = number of days in coupon period where settlement occurs
DSC = E − DIS = days from settlement date to next six month coupon date

N = number of semi-annual coupons payable between settlement date and maturity date or call date

\[
\overline{CPN} = \frac{CPN \cdot CALL}{100}
\]

DISC = discount rate (as a percent)
CALL = redemption value per $100 par value (call price)

Types 1 and 2

Price (given yield) with 6 months or less to maturity

\[
PRICE = \frac{100 \left(CALL + \frac{CPN}{2} \right)}{100 + \left(\frac{DSM}{E} \cdot \frac{YIELD}{2} \right)} - \left[\frac{DIS}{E} \cdot \frac{CPN}{2} \right]
\]

Price (given yield) with more than 6 months to maturity.

\[
PRICE = \frac{CALL}{\left(1 + \frac{YIELD}{200}\right)^{N-1} + \frac{DSC}{E}} + \left[\sum_{K=1}^{N} \frac{CPN}{2} \left(1 + \frac{YIELD}{2}\right)^{K-1} + \frac{DSC}{E} \right] - \left[\frac{CPN}{2} \cdot \frac{DIS}{E} \right]
\]

Types 3, 4, and 5

\[
PRICE = \frac{100 \left(CALL + \overline{CPN} \cdot \frac{DIM}{b} \right)}{\left(100 + YIELD \cdot \frac{DSM}{b}\right)} - \left(\overline{CPN} \cdot \frac{DIS}{b} \right)
\]
Type 6

Price (given discount rate)

\[\text{PRICE} = (\text{CALL}) - \left(\text{DISC} \cdot \text{CALL} \cdot \frac{\text{DSM}}{b} \right) \]

Yield (given price)

\[\text{YIELD} = \left(\frac{\text{CALL} - \text{PRICE}}{\text{PRICE}} \right) \left(\frac{b}{\text{DSM}} \right) \] (100)
NOTES