
HEWLETT-PACKARD
* . °

Software Development System
BASIC Reference Manual

HP-94 Handheld Industrial

Computer

Software Development System
BASIC Reference Manual

A5ackaro

Edition 1 December 1986

Reorder Number

82520-90001

I

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not lim-

ited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-

Packard shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use orreliability of its software on equipment thatis
not furnished by Hewlett-Packard.

o Copyright 1986, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another language
withoutthe prior written consent of Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

MSis a registered trademark of Microsoft Corporation.

Portable Computer Division

1000 N.E. Circle Blvd.

Corvallis, OR 97330 U.S.A.

Printing History Edition 1 December 1986 Mfg. No. 82520-90002

Contents

]

Chapter 1

-
h
b

§

Introduction

About This Manual
Some BASIC Programming Information

]

Chapter 2 Keyword Dictionary

Appendixes

A-1

B-1

- C-1
D-1

E-1

Keyword Summary
Numeric and Non-Numeric Errors
Keyboard Layout
Roman-8 Character Set
Display Control Characters

Introduction

This BASIC Reference Manual provides programming reference material for the HP-94 Handheld

Industrial Computer. The manual is divided into the following three chapters:

m The Introduction provides fundamental programming information and general information that

applies to all of the BASIC keywords.

m The Keyword Dictionary defines all of the BASIC keywords and includes syntax diagrams to

illustrate their use.

= The Appendixes contain a keywordlist with a one-line summary of their use, reference tables for

errors, keyboard layout, the on-board character set, and the display control codes.

]

About This Manual

Take a few minutesto study the following paragraphs which define the formats and conventions used

in this manual. They may notall conform to your previous experience.

Keyword Descriptions

Each keyword is defined by a description of the keyword, a syntax diagram showing pictorially how

the keyword is used, and a table listing parameters andtheir allowable ranges that may be used with

the keyword. Examples of the use of keywords and related keywordsare listed.

Legend

The following legend appears at the top of each keyword page:

[J Exists in Development System

[0 Works Same in Development System

O Allowedin IF...THEN

If the squareis filled in (W), the statement in the legend applies to the keyword.

Exists in Development System. Keywords that exist in the development system are imple-

mented in the HXBASIC Program Development Utility (see the Utilities Reference Manual for

details about the utility). If this square is notfilled in, the keyword exists only in the handheld. In

some cases, the keyword description will instruct you to download an assembly-language subroutine or

device handlerto the handheld (using the utilities HXC and HXCOPY) before you can use the par-

ticular keyword.

Introduction 1-1

Works Same In Development System. As you will note, not all keywords behave in the same

way on both the development system and the HP-94 computers.If this is the case, the description of

the keyword will contain a section called “Differences Between Development System and Handheld”

that lists the differences of which you should be particularly aware.

Allowed in IF...THEN. Keywords with this feature can be includedin IF. . .THEN state-

ments. See the IF...THEN statement for details.

The Syntax Diagram

The syntax diagram describes pictorially how to assemble a proper expression, statement, or command

using the keyword. Itemsenclosed in ovals,circles, and rectangles are the elements of the expressions,

statements, and commands.

 -(})N

file name

 directory

' l size l
incremsnt

Format Conventions. The shapes in the syntax diagrams follow the these conventions:

m The elements enclosed in ovals are keywords that must be typed in exactly as shown, except that

uppercase and lowercase letters may be used interchangeably.

m The elements enclosed in circles are punctuation and keys that must be typed in exactly as shown.

m The elements enclosed in rectangles are parameters which are described in the table. Generally,

uppercase and lowercase letters are NOT interchangeable.

The elements are connected into paths by arrows. Starting at the left of the diagram, you may follow

any path in the direction indicated by the associated arrows. You must, however, end at the far right of

the diagram. If several pathsexist around one or more elements, each of the pathsis optional; you

should follow the path that does what you wantto do. For example, the following are all valid state-

ments:

$CALL SYAL ("PDAT")

$CALL SYAL ("PDAT",100)

$CALL SYAL ("PDAT",100,5)

Many optional elements have default valueslisted in the table of parameters. Line numbers and line

labels are not shown in syntax diagrams.

Spaces. You may use one or more spaces between elements shown connected by an arrow. Con-

secutive ovals must have at least one space separating them. You may NOT use spaces between ele-

ments shown next to each other on a path without an arrow connecting them.

1-2 introduction

Table of Parameters

The table describes each parameter used in the syntax diagram. When the parameter is required to

assume values within a specified range, that rangeislisted. A dash (“—) indicates no range restric-

tions.

Syntax Guidelines

Syntax is the way that instructions must be types so they can be understood by the computer. The fol-

lowing conventions are used throughout this manual.

COMMANDS Words in courier type (like DEF FN) represent commands and

keywords that should be typed exactly as shown. The same type is

also used to indicate sample statements and other computer output.

parameters Itemsin italics are parameters you supply, such as the date

MM/DD/YY to the TODS function.

non-printable characters Non-printable control characters are represented by a two-letter

icon. Common characters and their representationsare:

Carriage Return ~®

Line Feed -'¥

Escape -

keystrokes This manual represents keystrokes in two ways:

m Keystrokes that display characters are generally indicated by
those characters. For example, * means “Press the and
*] keys.”

m Keystrokes that do not display charactersare represented by a
keyshape ([]) printed with the key’s symbol as shown on the
keyboard.

 |

Some BASIC Programming Information

Study the following paragraphs to make sure you understand the BASIC programming information

they contain. It may not always conform to your previous experience.

Files

The following information describes the characteristics offiles:

File Names. File names on the handheld are restricted to four alphanumeric charactersin length,
the first of which must be an alphabetic character. Names beginning with SY are reserved for system

files.

Introduction 1-3

File Types. There are four types offiles:

= A - assembly language programs

m B - BASIC language programs

m D - datafiles

m H - device handlers

Autostart. When the HP-94 is turned on, any program (file type A or B) named MAIN will

start running automatically. Directories 0 through 4 (see below) are searched in ascending order and

the first program found with the name MAIN will be executed.

Directories. There are six directories in the HP-94:

m Directory 0 refers to the main memory (64K for the HP-94D, 128K for the HP-94E, or 256K for the

HP-94F).

m Directory 1 refers to plug-in memory (either the HP82411A 40KB RAM Card or the HP82412A

ROM/EPROM Card).

w Directories 2-4 refer to additional plug-in read-only memory (on the HP82412A ROM/EPROM

Card).

m Directory 5 contains the built-in software (HP-94 operating system and BASIC interpreter).

A directory can be specified with a file name in the format directory : filename (for example,

0:TEST, 1:DAT). When BASIC programs access files with OPEN # or SYAL, they can use

the file name with or without the directory number. CALLand %CALL do not allow directory

numbers.

Program Lines

Line Length. The maximum number of characters that can be entered as a BASIC line is 127. This

includes the line number and any embedded blank spaces.

Line Numbers and Line Labels. Every line in a program must be preceded by a uniqueline

number - an integerin the range 0 through 32,767. The line number may be followed by a an optional

line label. Letters, numbers, spaces and underscores may be used in labels. Label names are enclosed

in brackets ([]). There is no limit to the number of characters in a label. To reference the label

Finished, write, for example,
300 IF X<5 GOTO [Finished]

To include the label Finished online 800, write
800 [Finished] END

Multistatement Lines. A multistatementline contains two or more BASIC statements joined by

the “:” character. If GOTO branching occursin the middle of a line, the remaining statements on

the line are not executed. Like single-statementlines, multistatement lines are limited to 127 charac-

ters.

1-4 Iintroduction

Constants

Constants used in programs are divided into the following three types:

Real Constant. This is a number within the range: 0% <x< 10%%3 It is treated as 8-byte data

and can beassigned to a real variable (described below).

Real constants can be specified with either of the following types of notation:

m Floating - Indicated by a real numberof up to 14 digits. Examples are:
1.234, -0.2345, 10000000

m Scientific — Indicated by a real number with a positive or negative mantissa of up to 14 digits, and a

positive or negative exponent of up to two digits. Examplesare:

1.23E12, -5.687E-12

Integer Constant. This is an integer with the range -32,768 < x < 32,767. It is treated as 2- byte

data and can be assignedto either an integer variable or a real variable (described below). It is pro-

cessed according to the type of variable to which it is assigned.

Literal. This is a character string made up of 1-byte characters. It must be enclosed within double

quotation marks and can be assigned to a string variable (described below).

Examples: "RFF", "1234" (This is not the same as the numerical value 1,234.)

If you wish to use a double quote (") or an & in a characterstring, you must use two double quotes or

two &s. For example, the string RF"F is represented by "RF""F" and A&B is represented by

"A&&B".

Anycharacter can be represented by an & followed by a two-digit hexadecimal value for the ASCII

code (for example “&10”). This is particularly useful for including control codes in strings sent to the

display.

Variables

BASIC uses the following variable types:

= Simple numeric: real or integer (default = real)

m Numeric array: real or integer (default = real)

Dimensions: There can be up to 255 dimensions for numeric arrays. Any array is limited to a max-

imum of 65,535 bytes.
The lower bound of array subscripts can be set using the OPTION BASE command. The max-

imum upper bound is 32,767.

m Simple string: Maximum string length: 255 (default = 8)

m String array: Maximum element length: 255 (default = 8)

Dimensions: There can be up to 255 dimensions for string arrays. Any array is limited to a max-

imum of 65,535 bytes. :

The lower bound of array subscripts can be set using the OPTION BASE command. The max-

imum upper bound is 32,767.

String variables are differentiated from numeric variables by using a dollar sign ($) as the final charac-

terin all string variable names. Variable names can be up to 32 characters long. Any sequence of

letters, numbers, and underscore characters can be used, except that the first character must be a

letter. Variable names must be different from BASIC keyword names.

introduction 1-5

NOTE Uppercase and lowercaseletters are not interchangeable in variable names.

While long variable names take up space in the BASIC program entered using HXBASIC, the

namesare removed by HXC so that they take no space on the handheld.

Real-to-Integer Conversion

When a real constant or variable is assigned to an integer variable or interpreted as an integer bya

BASIC keyword, the fractional partis dropped (for example, -1.9 becomes -1 and +1.9 becomes +1).

This manual refers to this process as truncation. A conversion error will occur if the real number being

converted is outside the range of integers.

Comments

Comments may be added to the program by using the REM statement. For example:

400 REM This is a comment

Anything written on the line after REM is considered part of the comment; therefore, REMs should

be the last statement on a multistatementline.

Numeric Operators

Thefollowing table shows the numeric operators,in order of precedence:

Numeric Operators

Operation Symbol

Exponentiation **

Muitiplication or Division *or /

Addition or Subtraction +or -

In a calculation, operations inside parentheses take precedence.

1-6 Introduction

String Operators

There is only one string operator, the plus-sign (+). It is used for string concatenation.

Relational Operators

The following table shows the relational operators:

Relational Operators

Operation Symbol

Equal =

Greater than >

Greater than or equal to >=

Less than <

Less than or equal to <=

Not equal <>
Relational operators always return -1 for true and O for false. Relational operators can be included in

logical expressions using AND, NOT, OR,and XOR, and in numeric and string expressions.

Numeric and String Expressions

Numeric expressions are combinations of operators, BASIC functions, variables, and constants in stan-

dard BASIC (algebraic) notation which, when executed, return a single numeric results. String expres-

sions are similar in concept, but return a single string result.

Introduction 1-7

2

BASIC Keyword Dictionary

BASIC Keyword Dictionary 2-1

2-2 BASIC Keyword Dictionary

ABS

Exists in Development System B
Works Same in Development System B

Allowedin IF...THEN R

The ABS function returns the absolute value of the numeric argument.

numeric
argument

item Description Range

 numeric argument numeric expression —

Examples

PositiveValue=ABS (Value)
PRINT ABS(Variable)

Related Keywords

SGN

BASIC Keyword Dictionary 2-3

ACS

W Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The ACS function returns the arccosine of the numeric argumentas a real numberin the range 0

through 180 degrees.

numeric
argument

Item Description Range

 numeric argument numeric expression -1 through 1

Examples

Theta=ACS (Y)
PRINT ACS(.5)

Related Keywords

ADS, ARD, ASN, ATN, COS, DMS, PI, RAD, SIN, TAN

2-4 BASIC Keyword Dictionary

ADS

Exists in Development System N
Works Same in Development System R

Allowedin IF...THEN X

The ADS function interprets the numeric argumentas an angle measured in degrees, minutes, and

seconds and returns the value of the angle in decimal degrees.

(os —(V QD

Rtem ‘Description Range

numeric argument numeric expression —

Examples

Decdeg=ADS (Degminsec)
IF ADS(TIM)<ADS (start)+ADS(.0005) GOTO 100

Description

The formatof the argument is DD . MMSSx00000¢ as shown in the table below.

Item Description Range

DD Degrees. —
MM Minutes. -
SS Integer seconds. —
xx Fractional seconds —

ADS can also be used to convert hours, minutes, and seconds into decimal hours.

Related Keywords

DMS, TIM

BASIC Keyword Dictionary 2-5

AND

R Exists in Development System
B Works Same in Development System
M Allowedin IF...THEN

The AND operator returns the bit-by-bit AND ofthe binary representation of the operands.

—-| operand]—-(AMJH operand J——

Item Description Range

operand numeric expression -32,768 through +32,767

Examples

IF S<>0 AND P<>0 THEN GOSUB 400
S=J (1) AND J(2) "

Description

The operands are truncated to integers represented as two’s-complement. Theresults of each bit-by-bit

AND are used to construct the integer result. Each bit is computed according the following truth table:

Bit-by-Bit AND

Operand 1 Operand 2 Resuit

0 0 0

0 1 0

1 0 0

1 1 1

Relational operators (=,<,>,<=,>=, <>) always return -1 for true and 0 for false. The bit-by-bit

AND ofthese results will always be 0 or -1.

2-6 BASIC Keyword Dictionary

...AND

Related Keywords

NOT, OR, XOR

BASIC Keyword Dictionary 2-7

ARD

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The ARD function interprets the numeric argument as an angle measured in radians, and returns the
value ofthe angle in decimal degrees.

(80 O—+ srgimerse =)

tem Description Range

 numeric argument numeric expression —_

Examples

Degrees=ARD (Radians)
PRINT ARD(PI*B)

Related Keywords

ACS, ADS, ASN, ATN, COS, DMS, PI, RAD, SIN, TAN

2-8 BASIC Keyword Dictionary

ASCS$

Exists in Development System B
Works Same in Development System O

Allowedin IF...THEN =

The ASC$ function converts a numeric value into a string character according to the built-in character

set and the user-defined characters.

numeric
argument

item Description Range

numeric argument numeric expression, truncated -32,767 through +32,767

to an integer and modulo 256 to
evaluate within the range 0
through 255

Examples

PRINT A;B;ASCS$(13):C
IF STRS$(AS,X,1)=ASCS$(10) GOTO 300

Description

ASCS can be used to include non-displayable characters in strings. Refer to the keyword description

for PRINT for a description of display control characters.

An ampersand and the hex representation of a character, &xx, can also be used to include non-

displayable characters in a string. An ampersanditself can be included in strings as ASCS (38),

&26,0or &&. A quotation mark can be included in strings as ASC$ (34), &22,or "". ANUL

character can only be included in a string as ASC$ (0) ; &00 is not allowed in a string. Because the '

NUL character is used to terminate strings, if you create a string with a NUL somewhere before the

end of the string, all charactersafter the NUL will be ignored.

Differences Between Development System and Handheld. The handheld uses the

Roman-8 character set. The development system may use either the Roman-8 or the IBM-compatible

character sets as set by the HXCHRSET utility described in chapter 5 of the Utlities Reference

Manual. The difference between the two character sets occurs in the control codes (ASCS (0)

through ASCS (31)) and in the upper half ofthe character set (ASC$ (128) through

ASC$ (255)).

BASIC Keyword Dictionary 2-9

...ASC$

Related Keywords

CcoD

2-10 BASIC Keyword Dictionary

ASN

Exists in Development System
Works Same in Development System

Allowedin IF...THEN

The ASN function returns the arcsine of the numeric argument as a real number in the range -90

through +90 degrees.

numeric
argument

Item Description

numeric argument numeric expression -1 through 1

Examples

Theta=ASN(.5)
PRINT ASN (X*Y)

Related Keywords

ACS, ADS, ARD, ATN, COS, DMS, PI, RAD, SIN, TAN

BASIC Keyword Dictionary 2-11

ATN

B Exists in Development System
M Works Same in Development System
B Allowedin IF...THEN

The ATN function returns the arctangent of the numeric argument as a real numberin the range -90

through 90 degrees.

numeric o
argument

Item Description Range

numeric argument numeric expression —

Examples

Theta=ATN (1)
PRINT ATN(A)

Related Keywords

ACS, ADS, ARD, ASN, COS, DMS, PI, RAD, SIN, TAN

2-12 BASIC Keyword Dictionary

CALL

Exists in Development System R
Works Same in Development System M

Allowedin TF...THEN o

The CALL statementtransfers program execution to the specified subprogram and, optionally, passes
parameters into the subprogram.

CALL IUD:::gPII o

o
Lo

° passed by
reference

D ezovalue

item Description Range

subprogram name unquoted name of BASIC sub- any valid file name (directory
program number not allowed)

variable name name of a simple numeric or any valid name
string variable

subscript numeric expression, truncated 0 through 32,767
to an integer

numeric constant numeric expression that can —
contain digits 0 through 9, plus

or minus sign, a decimal point,
and exponential notation

literal string constant -

expression numeric orstring expression —

BASIC Keyword Dictionary 2-13

...CALL

Examples

CALL EJCT

CALL MENU (Number,String$,Array$(*),Element$(3,7))
CALL SUB1 (3,"test",4.7,(X),(Elem$(3,7)),A*B/2,STRS$(A$,4,5))

Description

The CALL statement searches for the designated subprogram. Execution begins when the subprogram

is found. Directories 0 through 4 are searched in ascending order.

There are two ways to pass parameters between the calling (sub)program and the called subprogram:

m Parameters can be passed by reference (as illustrated in the second example). The declared preci-
sion of numeric variables accompanies them into the subprogram. Changesin the values assigned

to the variables are returned to the calling program. Entire arrays or individual array elements can

be passed this way.

= Parameters can be passed by value (as illustrated in the third example). Changes in the values
assignedto the variables are local to the subprogram; they are not transferred back to the calling
program. Individual variables or elements of arrays can be passed this wayif enclosed in
parentheses; entire arrays cannot be passed by value unless they are specified element by element.
Numeric and string expressions are only passed by value.

Parameters are passed in the order in which they appear,left to right. The CALL statement must con-
tain the same number and type of parameters as the PARAM statementof the subprogram it calls.

Recursive calls are allowed; a subprogram can call itself. Subprograms can be nested a maximum of 16
levels deep (32 if the subprograms use neither local variables nor parameters). This is limited by the
number ofscratch areas available for programs to use. User-defined assembly language programs or
device handlers may use some of these scratch areas, thereby limiting the subprogram nesting limit.

When END is executed, program execution returns to the statement immediately following the
CALL (on the same line,if the CALL is in a multistatementline). CALL cannot be executed in the
interrupt-processing routines defined by SYLB or SYSW.

NOTE The name of the subprogram being called is the same as the name ofthe file
containing the program. Changing the file name (through HXC, for
example) can cause the calling program notto find the subprogram.

Related Keywords

END, PARAM

2-14 BASIC Keyword Dictionary

%CALL

Exists in Development System R
Works Same in Development System (I

Allowedin IF...THEN =&

The $CALL statement executes the specified assembly-language subprogram and, optionally, passes

parametersto the keyword.

XCALL Kk enyaw:er d o

(e
\'J* N

| variable }
name)

.' passed by referent

constant

eO
passed by valuee

Item Description Range

subprogram name unquoted name of assembly- any valid file name (directory
language subroutine number not allowed)

variable name name of a simple numeric or any valid name
string variable

subscript numeric expression, truncated 0 through 32,767
to an integer

numeric constant numeric expression that can —

contain digits 0 through 9, plus
or minus sign, a decimal point,
and exponential notation

literal string constant —
expression numeric or string expression —

BASIC Keyword Dictionary 2-15

.-.%CALL

Examples

%CALL INIT

$CALL PRPT("Name",3) -
$CALL MENU (Number,STRINGS,Array$(*),Element$(3,7))
$CALL SUB1 (3,"test",4.7,(X),(Elem(3,7)),A*B/2,STRS(AS$,4,5))

Description

The $CALL statement searches for the designated assembly language program file (type A). See the
introduction of this manual for a list of HP-94 file types. Execution begins when the subprogram is
found. Directories 0-4 are searched in ascending order. Built-in keywords are not overridden by
%CALL. Do not give your your assembly-language subroutine the name SYRS,for instance.

There are two ways to pass parameters between the calling program and the subprogram.

= Parameters can be passed by reference (as illustrated in the second example). The declared preci-
sion of numeric variables accompanies them into the subprogram. Changesin the values assigned
to the variables are returned to the calling program. Entire arrays or individual array elements can
be passed this way.

m Parameters can be passed by value (as illustrated in the third example). Changes in the values
assigned to the variables are /local to the subprogram; they are not transferred back to the calling
program. Individual elements of arrays can be passed this way; entire arrays cannot be passed by
value unless they are specified element by element. Numeric and string expressions are only passed
by value,

Parameters are passed in the order in which they appear,left to right.

The system keywords SYAL through SYTO are examples of assembly language subprograms exe-
cuted by ¥CALL. The reference section in this manual for each of the keywords specifies which
parameters can be passed by reference and which can be called by value.

NOTE The name of the subprogram being called is the same as the name ofthe file contain-
ing the program. Changing the file name (through HXC,for example) can cause the
calling program notto find the subroutine.

Differences Between Development System and Handheld. Assembly-language subpro-
grams for the development system must be in a file whose extension is LIB and which has a different
assembly language header than in the handheld’stype A file. Refer to the Technical Reference
Manualfor details.

2-16 BASIC Keyword Dictionary

...%CALL

Related Keywords

CALL

BASIC Keyword Dictionary 2-17

CHR$

M Exists in Development System
M Works Same in Development System
M Allowedin IF...THEN

The CHRS function evaluates the numeric argument and returns the string representation of the argu-

ment in standard number format.

numeric
srgument

item Description Range

 numeric argument numeric expression —_

Examples

amount$="$"+CHRS (D)
PRINT #1,CHRS (Xcoordinate)

Description

CHRS returns the string representation of the numeric argument. Thestring returned has a leading

blank and a minus sign if the argument is negative. Numbers between -1 and 1 have a leading zero

preceding the decimal point. Numbers in exponential notation have E+ or E- between the mantissa

and the exponent. The expression CHRS (1.732) willreturn“ 1.732”. CHR$ (-.698)

will return “ =0.698".

Related Keywords

NUM

2-18 BASIC Keyword Dictionary

CLOSE #

Exists in Development System M
Works Same in Development System N

Allowedin IF...THEN =

The CLOSE # statement closes a device or data file.

m
(Do)

item Description Range

channel number numeric expression, truncated to an integer 0 through 15

Examples

CLOSE #5
IF EOF(file) THEN CLOSE #file, %DEL
CLOSE #1

Description

CLOSE # ends the association between a device or datafile and the channel number previously

assigned to it by an OPEN # statement. The meaning of each channel number is defined in the table

below.

Channel Number Meaning

0 console (keyboard and display)

1 serial port

2 bar-code port

34 reserved for future use

5-156 data file

The $DEL option deletes the data file associated with the channel number. The $DEL option cannot

be used for channels 0-4.

BASIC Keyword Dictionary 2-19

...CLOSE #

CLOSE #1 turns off powerto the serial port and to the HP 82470A RS-232C Level Converter (if
one is connected to the serial port).

CAUTION Do not use the statement CLOSE #0 on the development system. It will lock up
HXBASIC. On the handheld, CLOSE #0 has no effect.

Bar-Code Data. Closing the port to which a bar-code deviceis attached will power down the dev-
ice. The HP Smart Wand will power down 240 milliseconds after the port has been closed.

The code segment below illustrates a reset of the HP Smart Wand. It powers down the device, pauses
for 240 milliseconds, and then restores power to the Smart Wand.

100
200
210
300

CLOSE #2
FOR I=1 to 160 : NEXT I
REM LOOP WAITS 240 MSECS IF I IS AN INTEGER
OPEN #2, "HNBC"

Related Keywords

OPEN #

2-20 BASIC Keyword Dictionary

CcOD

Exists in Development System B
Works Same in Development System O

Allowedin IF...THEN =R

The COD numeric function returns the decimal value ofthe first character in the string argument.

string
argument

Item Description Range

string argument string expression —

Examples

X=COD(String$)
IF COD(A$)=32 GOTO [Skip]

Description

The value returned is in the range 0 through 255. When the argumentis the null string, COD returns 0.

Differences Between Development System and Handheld. The handheld uses the
Roman-8 character set. The development system may use either the Roman-8 or the IBM-compatible
character sets as set by the HXCHRSET utility described in chapter 5 ofthe Utilities Reference
Manual. The difference between the two character sets occurs in the control codes (ASCS (0)

through ASCS$ (31)) and in the upper half of the character set (ASCS (128) through
ASCS$ (255)).

Related Keywords

ASCS

BASIC Keyword Dictionary 2-21

COS

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The COS function interprets the numeric argumentas an angle measured in degrees, and returns the

cosine of the angle.

numeric(s —(O Q)

Item Description Range

numeric argument numeric expression —

Examples

Y=COS (Angle)
X=R*COS (Theta)

RelatedKeywords

ACS, ADS, ARD, ASN, ATN, DMS, PI, RAD, SIN, TAN

2-22 BASIC Keyword Dictionary

DATA

Exists in Development System ®
Works Same in Development System M

Allowedin IF...THEN O

The DATA statement contains numeric and/or string data which is assigned to program variables

listed in one or more READ statements.

(DATA F‘ I

’ numeric ‘
constant

o literal 0

item Description Range

numeric constant a numeric expression that can contain digits 0 —
through 9, plus or minus sign, a decimal point,
and exponential notation

literal string constant —

Examples

DATA 2,4,6,8
DATA ABC,2.5E20,DEF,3," leading spaces"

Description

A program can contain any number of DATA statements. The statementis declaratory, and extra data
is ignored if there are no corresponding READ variables. A data pointeris used to access data items. A
(sub)program’s read operationsstart with the first item in the lowest-numbered DATA statement.
When all data items in a DATA statement have been read, the pointer movesto the next-higher num-

bered DATA statement.

When a READ statement accesses a DATA statementfor a numeric variable assignment, the data con-
stant must be a numeric value. When the READ statement is assigning a value to a string variable, the
DATA statement can contain a numeric value, an unquoted string, or a quoted string; a numeric value

is interpreted asa literal containing digits. Quotation marksare regarded as string delimiters, and are
not part of the string. Strings delimited by quotation marks, however, can contain commas and leading

BASIC Keyword Dictionary 2-23

...DATA

andtrailing blanks.

Quotation marks around literals are optional and are not part of the assignment. String data delimited

by quotation marks can include any character,including leading andtrailing blanks, commas, non-

displayable characters (using &xx, as in DATA " &06"), quotation marks (using double quotes,as in

DATA """")and ampersands (using &&,as in DATA "&&").

If the keywordis not followed by a numeric constantorliteral, the statementis interpreted as DATA

" (null string).

When a READ statement is successful (there is a DATA statement containing a data item of the

proper type), execution proceeds to the next statement after the READ (on the sameline, if the READ

is in a multistatement line). When a READstatement attempts to read pastthe last data item in the

program, execution proceeds to the next line after the READ, and the previous value of the variable

being read into remains unchanged. This is similar to the input aborted condition that occurs for the

INPUT statement.

Subprograms maintain their own data pointers. When a subprogram is being executed, READ state-

ments access DATA statements within the subprogram,starting with the lowest-numbered DATA

statementin the subprogram. When program execution returnsto the calling program, read operations

resume where they left off before the subprogram was called.

NOTE DATA statements can be included in multistatementlines only if there are BASIC

statements preceding DATA. Anything after a DATA statement in a multistatement

line will be treated as unquotedstring data. For this reason, comments using the REM

statement cannot be added to DATA statements.

An interrupt-processing routine defined by SYLB or SYSW has a separate READ data pointer than

the one used in the non-interrupt portion of the program. All DATA statements are treated identically,

regardless of where they appear in the program (interrupt routine or non-interrupt routine). When the

READ statementis executed in an interrupt-processing routine,it will start reading at the first DATA

statement in the program, regardless how many data items had been read before the interrupt routine

was executed. When the interrupt routine ends, subsequent READ statements in the non-interrupt

portion of the program will continue reading DATA statements as if the interrupt routine had not been

executed. That is, reading will start after the last data item read before the interrupt routine was exe-

cuted. In an interrupt routine, RESTORE will affect the interrupt routine’s data pointer indepen-

dently of the non-interrupt routine’s data pointer.

Related Keywords

READ, RESTORE, SYLB, SYSW

2-24 BASIC Keyword Dictionary

DEF FN

Exists in Development System M
Works Same in Development System H

Allowedin IF...THEN O

The DEF FN statement defines a single-line user-defined function and its formal parameters.

numeric - numeric

function name expression

evariable name

string . - string
function name expression

.|variable name

item Description Range

numeric function name name of the user-defined any valid simple numeric
function variable name

simple variable name name of a simple numeric or array element not allowed
string variable

numeric expression (see introduction) —

string function name name of the user-defined any valid simple string vari-
function able name

string expression (see introduction) -

Examples

DEF FNCube (Number)=Number#*#*3
PRINT FNCube(Side)

DEF FNname$ (X$,start)=STRS (X$,start,IDX(XS$," ")-start)
PRINT #1, A(1l) ;FNname$ (answer$, 3)

BASIC Keyword Dictionary 2-25

...DEF FN

Description

A maximum of 255 parameters can be passed into the function subject to the 127-characters-per-line

limit of HXBASIC. The formal parameterslisted in the DEF FN statement must match the actual

parameterslisted in the calling FN statement in number and type (numeric versus string). The actual

parameters are passed into the user-defined function by value. All program variables (except those

whose namesare the same as formal function parameters) are available in the user-defined function.

If a formal parameter has the same name as a variable in the using program, then any reference to that

variable in the function will point to the formal parameter.

DEF FN is a declaratory statement;it is ignored if the function is not referenced. It must appear in

the program before any FN statements that invoke the function.

Function definitions are local to the program or subprogram in which they are located.

CAUTION Do not use recursive user-defined functions. A recursive user-defined function will

never terminate, and will require that you reset the handheld (by pressing the reset

switch) or the development system (by pressing [Att] at the same
time), whicheveris executing the function.

The FN keyword must be in all capital letters.

Related Keywords

FN

2-26 BASIC Keyword Dictionary

DIM

Exists in Development System W
Works Same in Development System =

Allowedin IF...THEN 0O

The DIM statement allocates memory for real and integer numeric arrays, string variables, and string

arrays.

(N
o/

numeric
arrsy name

string
variable name

?

string . upper I
length bound

Item Description Range

numeric array name name of a numeric array any valid name

upper bound integer constant 1 through 32,767

string variable name name of a simple string variable any valid name

string length integer constant 1 through 255

Examples
DIM A(300),B(2,50),C$20
DIM D$30(25),ES$7(3,3)

INTEGER IntegerArrayl,IntegerArray?
DIM IntegerArrayl(10),IntegerArray2(5,3)

BASIC Keyword Dictionary 2-27

...DIM

Description

A program can contain any number of DIM statements. Only INTEGER, OPTION BASE,

PARAM, and REM can appear before DIM.

There can be up to 255 dimensions for numeric or string arrays subject to the 127-characters-per-line

limit of HXBASIC. Any array is limited to a maximum of 65,535 bytes.

The default lower bound of the array is 1. The OPTION BASE statementis used to set the lower

bound equal to 0.

DIM must be executed before any of the elements of an array are referenced. There is no automatic

dimensioning of arrays. If an element is referenced before the array is dimensioned, an error will

occur.If a string variable is referenced before the string length is dimensioned, the default string length

is 8.

A variable can be dimensioned only once within a program; an attemptto dimension a variable that has

already been dimensioned causes an error.

The dimension(s) of a variable are global, known to the program and any subprograms to which the

variable is passed.

All numeric variables are real unless declared integer with an INTEGER statement.

NOTE Pay special attention to the syntax used for dimensioning strings and string arrays -

the dimensioned length immediately after the variable name, and then the array

bounds in parentheses. This is different than in many BASIC languages.

Thefollowing tables provide reference information about the different BASIC variable types. Under

“Memory Usage”for arrays, the total number of elements is the product of the number of elements in

each dimension of the array. If the statement OPTION BASE O appears, the number of elements

in each dimension is the specified upperlimit plus 1. Because memory is allocated inparagraphs, or

blocks of 16 bytes, the total memory required for all variables and arrays in a program will be the cal-

culated memory usage rounded up to the next higher 16-byte boundary.

2-28 BASIC Keyword Dictionary

...DIM

Real Numeric Variables

Description Value

Initial Value 0

Numeric Precision 14 Decimal Digits

Exponent Range -64to +63

Maximum Array Size (bytes) {65,535

Maximum No. of Dimensions 255

Maximum No. of Elements (8,191 (1 dimension) to 8,128 (255 dimensions)

Memory Usage (bytes)

Simple Variable 8

Array 8 * (no. of elements) + 2 * (no. of dimensions) + 1

Integer Numeric Variables

Description Value

Initial Value 0

Range -32,768 to +32,767

Maximum Array Size (bytes) (65,535

Maximum No. of Dimensions 255

Maximum No. of Elements {32,766 (1 dimension) to 32,512 (255 dimensions)

Memory Usage (bytes)

Simple Variable 2

Array 2 * (no. of elements) + 2 * (no. of dimensions) + 1

BASIC Keyword Dictionary 2-29

...DIM

String Variables

Possible Maximum Length

Character Range

Maximum Array Size (bytes)

Maximum No. of Dimensions

Maximum No. of Elements

Memory Usage (bytes)

Simple Variable

Array

Description Value

Initial Value null string

Defauit Maximum Length 8 characters

255 characters

Any ASCII character (01-FFh) except null (00h),
which marks the end ofthe string

65,535

255

32,767 (1 dimension, character length
1) to 254 (255 dimensions, character length 255)

dimensioned length

(dimensioned length) * (no. of elements) + 2 * (no.
of dimensions) + 1

Related Keywords

INTEGER, OPTION BASE, PARAM

2-30 BASIC Keyword Dictionary

DMS

Exists in Development System M
Works Same in Development System M

Allowedin IF...THEN =

The DMS function interprets the numeric argument as an angle measured in decimal degrees, and

returns the value of the angle in degrees, minutes, and seconds.

numeric
argument

Description

 numeric argument numeric expression

Examples

Degminsec=DMS (Decdegq)
Newtime=DMS (ADS (0ldtime)+ADS (.0005))

Description

The format of the value returned is DD . MMSSx00000¢ as shown in the table below.

DMS can also be used to convert decimal hours into hours, minutes, and seconds.

Related Keywords

ADS,TIM

Item Description Range

DD Degrees. -
MM Minutes. —

SS Integer seconds. —
X0 Fractional seconds —

BASIC Keyword Dictionary 2-31

END

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The END statement returns program execution to the calling (sub)program or halts main program exe-

cution.

Examples

END
IF A<O0 THEN PRINT "Done" : END

Description

When END is executed in a subprogram, program execution resumes at the statementin the calling

program that immediately follows the CALL statement. Local variable space required by the sub-

program is released. When ENDis executed in a main program, program execution halts.

The END statement can appear anywhere in a program. More than one END statementis allowed.

END is required as the lastline of a program or subprogram unless the lastline is either GOTO,

RETURN, or $¥CALL SYRT.

NOTE If the END statementis executed in an interrupt-processing routine defined by

SYLB or SYSW,the program or subprogram will end and return control back to the

operating system (not to the calling (sub)program).

Related Keywords

CALL

2-32 BASIC Keyword Dictionary

EOF

Exists in Development System W
Works Same in Development System M

Allowedin IF...THEN N

The EOF function returns a value indicating the current data access status.

channel
number

item Description Range

channel number numeric expression, truncated to an integer 5 through 15

Examples

IF EOF(5) THEN PRINT ES$
ON EOF (channel)+2 GOTO 50,100

Description

EOF examinesthe data file associated with the specified channel number. If the most recent serial or

random access read operation did not read past either the end of the data in the file (EOD) or the end

ofthefile itself (EOF), EOF returns 0 (false). If the most recent serial or random access read opera-

tion did read beyond either EOD or EOF, EOF returns -1 (true).

The value returned by EOF does not change because of any operations except serial or random reads

(serial reads using GET #, INPUT #, or INPUTS;random reads using GET #).

Related Keywords

GET #, INPUT #, INPUTS

BASIC Keyword Dictionary 2-33

EXP

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The EXP function returns the natural (base ¢) antilogarithm by raising e to the power of the argument.

numeric
argument

item Description Range

 numeric argument numeric expression —

Examples

K=A*EXP (-E/RT)
PRINT A;EXP(A)

Related Keywords

LGT, LOG

2-34 BASIC Keyword Dictionary

FIX0

Exists in Development System W
Works Same in Development System B

Allowedin IF...THEN =

The FIXO function returns the numeric argument, rounded down zero to the specified number of

digits after the decimal point.

FIX numeric number of
0 argument fractional digits

Item ’ Description Range

numeric argument numeric expression —

number of fractional digits numeric expression, 0 through 63

truncated to an integer

Examples

Y=FIX0(1/3,4)
PRINT FIXO(X,N)

Description

Regardless of the argumentsto this function, the maximum number ofsignificant digitsis 14.

Numbers are rounded towards zero, so negative numbers become “less negative.” FIX0 (=1.5)

will return -1.

For numbers with negative exponents, the number offractional digits for rounding purposes may be

greater than 14 because the value of the argument isrelative to the decimal point of the unexponen-

tiated representation of the number to be rounded. For example, to round 0.000087854321 (or

8.7654321E-5) down at thedigit “4”, use FIX0(0.000087654321,9). The parameter 9 is

the sum of the absolute value of the negative exponent (5) and the desired numberof fractional digits

(4)-

Related Keywords

FIXS,FIX9,FIXE

BASIC Keyword Dictionary 2-35

FIX5

‘B Exists in Development System
B Works Same in Development System
H Allowedin IF...THEN

The FIXS function returns the numeric argument, rounded off to the nearest value at the specified

numberof digits after the decimal point.

FIXS numeric number of
argument fractional digits

" Item Description Range

numeric argument numeric expression —

number of fractional digits numeric expression, 0 through 63

truncated to an integer

Examples

Y=FIX5(1/3,4)
PRINT FIXS (X,N)

Description

FIX5 examines digit n+1 after the decimal point, where n is the numberof fractional digits specified.

If digit n +1is 4 or less, FIX5 rounds the argument down. If digit n +1is 5 or greater, FIX5

rounds the argument up.

Regardless of the arguments to this function, the maximum number ofsignificant digits is 14.

For numbers with negative exponents, the numberoffractional digits for rounding purposes may be

greater than 14 because the value of the argumentis relative to the decimal point of the unexponen-

tiated representation of the numberto be rounded. For example, to round 0.000087854321 (or

8.7654321E-5) at the digit “4”, use FIX5 (0.000087654321,9). The parameter 9 is the sum

of the absolute value of the negative exponent (5) and the desired number of fractional digits (4).

2-36 BASIC Keyword Dictionary

...FIX5

Related Keywords

FIXO0,FIX9,FIXE

BASIC Keyword Dictionary 2-37

FIX9

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The FIX9 function returns the numeric argument, rounded up to the specified number of digits after

the decimal point.

FIxg numeric number of
argument fractional digits

item Description Range

numeric argument numeric expression —

number of fractional digits numeric expression, 0 through 63
truncated to an integer

Examples

Y=FIX9(1/3,4)
PRINT FIX9 (X,N)

Description {

Regardless of the argumentsto this function, the maximum numberofsignificant digitsis 14.

Numbers are rounded away from zero, so negative numbers become “more negative.”
FIX9(-1.5) will return-2.

For numbers with negative exponents, the number offractional digits for rounding purposes may be
greater than 13 because the value of the argumentis relative to the decimal point of the unexponen-
tiated representation of the numberto be rounded. For example, to round 0.000087854321 (or

8.7654321E-5) up at the digit “4”, use FIX9 (0.000087654321,9). The parameter 9 is the

sum of the absolute value of the negative exponent (5) and the desired number offractional digits (4).

Related Keywords

FIXO0,FIX5,FIXE

2-38 BASIC Keyword Dictionary

FIXE

Exists in Development System B
Works Same in Development System H

Allowedin IF...THEN =

The FIXE function returns the numeric argument, treated as a numberin scientific notation, whose

mantissa is rounded off to the nearest value with the specified number of digits after the decimal point.

numeric
argument

number of
digits

item Description Range

numeric argument numeric expression —

number of digits numeric expression, 0 through 63
truncated to an integer

Examples

=FIXE(1/3,4)
PRINT FIXE(X,N)

Description

FIXE treats the argument as a numberin scientific notation and examines digit 7+ after the decimal

point, where n is the numberof digits specified. If digit n+11is 4 or less, FIXE rounds the argument
down. If digit n+1is 5 or greater, FIXE rounds the argument up.

If the number of digits is greater than or equal to 13, FIXE returns the argument

unchanged.

Related Keywords

FIXO0, FIX5, FIX9

BASIC Keyword Dictionary 2-39

FN

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The FN keywordis a prefix used before the name of a user-defined function to identify a call to the

function. Optional parameters in parentheses are passed to the function. The function returns a value

used by the expression containing the function call.

function

name

 O
variable

name

 I | subscript I

numeric
constant

9 literal o g_________.IEHEHHII________J

L

Item Description

function name

variable name

subscript

name of the user-defined function

name of a simple numeric orstring
variable

numeric expression, truncated to an

integer

any valid simple numeric or

string variable name

any valid name

0 through 32,767

2-40 BASIC Keyword Dictionary

...FN

Item Description Range

numeric constant numeric expression that can contain —
digits 0 through 9, plus or minus
sign, a decimal point, and exponen-

tial notation

literal string constant —

expression numeric or string expression —

Examples

Y=FNInverse/A
B$=A$+FNstar$

Description

When FN invokes a user-defined function, the function type (numeric versus string) must match the
context of the expression invoking the function. For example, the value returned by a string function
cannot be assigned to a numeric variable.

The definition of the invoked function (DEF FN statement) must precede the use of the function.

The parameters passed into a user-defined function by FN must match the DEF FN parameterlist in
number and type (numeric versus string). The parameters are passed by value. Numeric and string
variables, elements of numeric and string arrays, substrings, numeric constants and literals, and
numeric and string expressions can be passed to a function.

CAUTION Do not use recursive user-defined functions. A recursive user-defined function will
never terminate, and will require that you reset the handheld (by pressing the reset
switch) or the development system (by pressing at the same time),
whicheveris executing the function.

The FN keyword must be in all capital letters.

Related Keywords

DEF FN

BASIC Keyword Dictionary 2-41

FOR...NEXT

B Exists in Development System
B Works Same in Development System
® Allowedin IF...THEN

The FOR and NEXT statements together comprise a program loop that is repeated until a loop

counter passes a specified value.

counter value value | o
stepSTEP

loop
counter

item Description Range

loop counter simple numeric variable name array element not allowed

initial wvalue numeric expression —

final value numeric expression —

step size numeric expression (default=1) -

Examples

FOR Counter=1 TO 100

PRINT Counter

NEXT Counter

FOR I=N TO N+M STEP stepsize
A(I)= .592*ABS(I**3)

IF A(I)>X GOTO 400

PRINT I; A(I)
NEXT I

Description

The FOR statement defines the beginning of the loop,sets the loop counter equal to the initial value,

and stores the final value and step size. Each time the NEXT statementis executed, the loop counteris

2-42 BASIC Keyword Dictionary

...FOR...NEXT

incremented (or decremented, in the case of a negative step value) by the step value and then com-
pared to the final value. If the final value has not been passed, program executionis transferred to the
statement immediately following the FORstatement. If the final value has been passed, program exe-
cution continues with the line immediately following the NEXT statement. (The loop counteris not
equal to the final value when the loop has been ended.)

NOTE Because the loop counteris not tested until after the NEXT statement is executed
(see flowchart), the loop is always executed once, even if the loop counterinitial value

is already past the final value. For example, a loop beginning with the statement FOR
I=3 TO 5 STEP -.3 will be executed once with I equal to 3. When the
NEXT I statement is executed, I will be decremented by 0.3, and the loop will ter-
minate (with I equal to 2.7), since 2.7 is already past (less than) the final value 5.

If the loop counter has been declared as INTEGER, the loop counter control values
(initial value, final value, and step size) will be truncated to integers. This may result
in unexpected behavior. For the previous example (FOR I=3 TO 5 STEP
=.3), if I has been declared INTEGER, thestep size will be truncated to 0, and

the loop will never terminate. .

The loop can be ended by unconditional or conditional branching; the loop counterretainsits current
value. The loop may be re-entered in the body of the loop or at the FOR statement. Entering a loop at
the FOR statementreinitializes the loop counter.

The FOR statementstores the loop counter, final value, and step size, and these values remain
unchanged for the loop until the FOR statementis executed again. When the loop counter,final value,
andstep size are numeric expressions containing variables, the values ofthose variables can be changed
within the loop without affecting how many times the loop is executed. However, changing the value of
the loop counter within the loop can affect how many times the loop is executed. The loop counter can
be used in expressions defining the initial value, final value, and step size.

Each FOR statement can have one, and only one, matching NEXT statement. When FOR. . . NEXT
loops are nested, one loop must be contained entirely within another.

Related Keywords

None.

BASIC Keyword Dictionary 2-43

...FOR...NEXT

FOR Statement
loop counter = initial value

Store final value and step size

Body of Loop

NEXT Statement
loop counter = loop counter +

step size

Is

loop counter
past final

value?

Statement following
NEXT

2-44 BASIC Keyword Dictionary

FORMAT

Exists in Development System ®
Works Same in Development System R

Allowedin IF...THEN =

The FORMAT statement specifies a format string referenced by PRINT USING and PRINT #

. . .USING. The format string contains one or more field specifiers that describe the formatof the

data to be output.

(Ospecifier
#single space

-
;__.@__.

——(0)—

-
()

[1
;_.@_.

;_.@_.

+

usingle space

BASIC Keyword Dictionary 2-45

...FORMAT

item Description Range

field specifier one or more format —
specifier characters

literal string cannot contain format
specifier characters

Examples

FORMAT ##,###4
FORMAT Price= $$S$.##%
FORMAT +++ ——-

Description

The format string begins after the first space after the keyword FORMAT. The format string consists
of one or morefield specifiers placed together in the format string. Items in a PRINT USING or
PRINT #...USING statement are paired with their corresponding field specifiers from left to
right. Certain field specifiers do not use a PRINT or PRINT # item (for example,a literal).

A field specifier consists of one or moreformat specifiers. The format specifiers within a field specifier
describe the format of one output item. Items can be numeric or string expressions.

The end ofa field specifier is defined as the place within the format string where two different format
specifiers are placed adjacent to one another. Exceptions to this rule are the format specifiers $, ,, ',
AAAA., +, and =, which can be interpreted as part of another field specifier. If the format string is

exhausted before the entire list of items is output, the format string is reused from the beginning. Extra
field specifiers are ignored.

For numeric fields, if a field specifieris larger than the item, the numberis right-justified in the field.
A format overflow occurs when a numeric item requires more digit spacesto the left of the decimal
point than are specified. The overflow causes the field specifier (not the associated numeric item) to be
output. If a numeric item contains more decimal places than the field specifier, the numberis trun-
cated tofit the field. No rounding occurs in displaying numeric items.

Forstring items,if a field specifier is larger than the item, the item is left-justified in the field. If a
string item requires more character spaces than are specified, the field is filled with the left-most char-
acters ofthe item. The right-most characters that do notfit in the print field are not printed. Notice
that you can put literals in a FORMAT statement, but you cannotputfield or format specifiers in a
PRINT USING or PRINT #...USING statement. This is different than many BASIC

languages.

FORMAT statements are declaratory; they are ignored if they are not referenced.

2-46 BASIC Keyword Dictionary

...FORMAT

The table below describes each format specifier.

Format Specifiers for PRINT USING and PRINT #.. .USING

Format Specifier

(space)

#

AAAA

$

literal

, (comma)

! (single quote)

. {period)

Outputs a blank space.

String character position or numeric digit position to left or right of the
radix symbol.If the field to the left of the radix is larger than the number,
the numberis right-justified with leading blanks. You must supply a # for
the sign position for negative numbers. Numbers between -1 and 1 must

have at least one # to the left of the radix. # is the only format specifier
that can specify a string character position.

Digit position to left of the radix symbol. If the field to the left of the radix is
larger than the number, the numberis right-justified with leading zeros.

Digit position to left of the radix symbol. If the field to the left of the radix is
larger than the number, the numberis right-justified with leading asterisks.

Exponential format; exponent consists of character E with a sign and two
digits. ~ characters in excess of fourare treated as a literal; fewer than
four cause an error. You must precede the exponential format with one
for the sign position of the number, and one # for each digit of the
mantissa to be displayed.

Digit position to left of the radix symbol. If the field to the left of the radix is
larger than the number, $ is right-justified with leading blanks.

String consisting of any characters that are not image specifiers.

Digit separator; places a comma in that position. Comma is output only if
digits on both sides of the separator are output.

Digit separator; places a single quote in that position. Quote is output only
if digits on both sides of the separator are output.

Radix symbol; specifies a decimal point and places a period in that posi-
tion. Period is output only if digits on both sides of the separator are out-

put.

Sign and digit position to left of radix symbol; outputs = if negative, + if
positive. If the field to the left of the radix is larger than the number, sign
is right-justified with leading blanks.

Sign and digit position to left of radix symbol; outputs - if negative, blank
if positive. If the field to the left of the radix is larger than the number, sign
is right-justified with leading blanks.

Related Keywords

PRINT USING, PRINT #...USING

BASIC Keyword Dictionary 2-47

FRC

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The FRC function returns the fractional part of the numeric argument. The function returns a value

between -1 and 1. A negative argument returns a negative value.

numeric
argument

Item Description

 numeric argument numeric expression

Examples

Y=FRC (X+1.23)
IF FRC(X)=0 THEN PRINT "X is an integer"

Related Keywords

INT

2-48 BASIC Keyword Dictionary

GET #

Exists in Development System #
Works Same in Development System O

Allowedin IF...THEN =

The GET # statement inputs items from the specified device or datafile.

(N

[— 1
e

GET # umber >hame-

Item Description Range

channel number numeric expression, truncated to an integer 0 through 15

record number numeric expression, truncated to an integer 1 through 32,767

variable name name of a simple numeric or string variable any valid name

subscript numeric expression, truncated to an integer 0 through 32,767

Exampies

GET #5 Height, Width, Length
GET #channel Stats(*)
GET #chno,recno Potential, Unit$
GEt #1 barcode$

Description

The GET # statement inputs data from the device or data file associated with the specified channel
number. All devices (except channel 0) and data files must be opened with OPEN # before they can
be accessed with GET #. When a data file is opened, an associated file access pointeris positioned at
the beginning ofthe file. The counterpart to GET # for output operations is PUT #.

GET # inputs data until each variable in the input list is “full”’; that is, until the numberof bytes
defined by the type of each variable has been input. For example, GET # inputs 10 bytes of data to
fill a simple string variable dimensioned to 10 characters. See the section on bar-code data for an
exception to this rule. The table below shows the size of each type of variable.

BASIC Keyword Dictionary 2-49

...GET #

Sizes of Different Variables

Variable Type Size (bytes)

Real variable 8

Integer variable 2

String variable dimensioned length

Real array 8 * (number of elements in each dimension)

Integer array 2 * (number of elements in each dimension)

String array (dimensioned length) * (number of elements in each dimension)
An entire array can be input by including the * subscript option with a variable name. Only one aster-

isk is required regardless of the number of dimensions of the array.

If inputis from a data file, the optional record number determines whether serial or random access will

be performed. The record number has meaning only when reading from datafiles.

Serial Access. When the record number is omitted, serial access is performed. Each record is read

from the locationin the file immediately after the previous record (seriaily).

Random Access. When the record number is included, random accessis performed. Each record

is read from the location in the file specified by the record number (randomly).

When the GET # statementis executed, thefile pointeris positioned to (record size) * (record number

- 1) bytes from the beginning ofthe file, where record size is the total size (in bytes) of all the variables

in the input list.

CAUTION The definition of a record is totally arbitrary; GET # does not look for end-of-
record markers within a data file, nor does its counterpart for writing, PUT #,

place any end-of-record markersin a file. Therefore, the application program is

responsible for maintaining a suitable data file structure. The way data will be read
is dependent solely on the lengths of the variables in the input list, regardiess of
how the data was originally written to the file.

As each input variable is processed, the file access pointer advances beyond the current data item to

the next byte in the file. When input ends, the access pointer remains positioned after the last data item

read. Subsequentfile I/O statements that perform serial access continue reading data from or writing

data to that position.

Because file access is controlled by the lengths of the variables in the inputlist, the simplest data file

structure will have records that are the samefixed length, even though an entire record may be read by

using several variables of different lengths. Fora file structure using variable-length records, careful

selection of variable lengths in different GET # or PUT # statements will move the file access

pointer to different parts of a datafile. In addition, the SYPT statement can be used to move the

2-50 BASIC Keyword Dictionary

pointer to the desired position.

...GET #

Input continues until all input variables have been assigned data, or until input ends because of one of

the conditions described in the next table.

Behavior When GET # Ends

Ending Condition
Channel 0
Behavior

Channels 1-4

Behavior

Channels 5-15

Behavior

Number of characters
defined by the size of
the input variable
received (normal condi-
tion).

Port terminate character
received (see SYBC,
SYRS, or SYSP).

EOD or EOF encoun-

tered.

Timeout (error 118).

Power switch pressed
(error 119).

Low battery (error 200).

Port errors 201-208.

Key abort (see SYBC or
SYSP)

Characters typed on
the key are placed in
the input variable.

N/A.

N/A.

Input aborted.

Input aborted.

Input aborted.

N/A.

N/A.

Characters received

from the device are

placed in the input
variable.

Ends input for that
variable.

N/A.

Input aborted.

Input aborted.

Input aborted.

Input aborted.

Input aborted.

Characters read from

the file are placed in the
input variable.

N/A.

Characters read up to
the EOD or EOF are
placed in the input vari-
able. All subsequent
variables in the input list
are set to 0 or the null

string.

N/A.

N/A.

N/A.
N/A.
N/A.

 Note: N/A means the ending condition will not occur for those channels.

Input Aborted. In the abovetable, “input aborted” means that the input operation has been inter-
rupted. When input is aborted, the input operation is ended, and any characters received up to that

point are placed in the input variable. This may result in part of the previous value of the variable being

overwritten. All subsequentvariables in the inputlist are unchanged. This is in contrast to INPUT,

INPUT #, and INPUTS, in which any received data for that variable is discarded. When input is

aborted for GET #, program execution continues on the next line of the program (not on the next

statement, if GET # is in a multistatementline). When input is aborted because of a numeric error,

the I/0 length reported by $¥CALL SYIN is set to the number of bytes actually received up to that

point, since that data has already been placed in the input variable.

BASIC Keyword Dictionary 2-51

...GET #

Specifying more than one variable in the GET # statementis not recommended for channels 0
through 4. If inputis aborted for any reason, the calling program will not be able to identify which vari-
able was being loaded at the time input was aborted.

Bar-Code Data. The GET # command is the recommended keyword for reading data from a
bar-code reader. Input must be obtained from either the bar-code port (channel 2) or the serial port
(channel 1). Be sure the channel has been opened with the correct bar-code handler (see OPEN #
for details). The keywords SYBC, SYSP, and SYWN allow configuration of the port to which the

bar-code readeris connected.

The variable into which the bar-code datais loaded should be longer than the longest string expected
from the bar-code device. The longest message sent by the HP Smart Wand is its configuration dump
message (223 bytes with the default trailer string Gl). The longest standard bar code decodes to 64
ASCII characters plus any termination characters sent by the bar-code device. If the string variable is
dimensioned shorter than the data input, the bar-code handler will fill the variable and then pass con-
trol to the next statement in the program. The remaining bar-code data will be returned by the next
GET # statement to the port. If the string variable is dimensioned longer than the bar-code message
(this is the recommended procedure), the GET # statement will end after a 104 millisecond pause
occurs between characters sent from the bar-code device wand to the handheld. This behavior is
unique to the bar-code handlers supplied with the Software Development System. The built-in serial-
port handler (configured with the SYRS keyword) will wait until either the current timeout expires or
all charactersofthe input variable have been received, whichever occurs first.

Avoid bar-code labels containing null characters (ASCS (0)). The handheld uses the null character
to terminate a string. Characters following a null will be ignored by the handheld.

The handheld is unable to receive data through its serial port while it is reading data from the bar-code
port. This is true even if the OPEN statement is used for the serial port. It is recommended that only
one of the two ports be open at any given time. If both ports must be open, send an XOFF
(ASCS (19)) to the serial port before reading data from the bar-code port.

Escape sequences that may be received from the HP Smart Wand are described with the SYWN key-

word.

Differences Between Development System and Handheld. The development system
does not produce errors 118, 119, 200, or 201 through 208.

Related Keywords

INPUT #, INPUTS, PUT #,SYBC,SYIN, SYPT, SYRS, SYSP

2-52 BASIC Keyword Dictionary

GOSUB

Exists in Development System M
Works Same in Development System B

Allowedin IF...THEN =

The GOSUB statement causes program execution to branch to the the specified line and return to the
statement following the GOSUB when a RETURN is encountered.

line.l
label

Item Description Range

line number integer constant identifying a program line 0 through 32,767

line label name of a program line any valid name

Examples

GOSUB 760
GOSUB [marine]

Description

The specified line must be in the same program or subprogram as the GOSUB statement.If the
specified statement is declaratory (for example, DIM, DATA, or REM), the program branches to the
next executable statement.

When GOSUB is executed, execution of the subroutine continues until a RETURN statementis

encountered. The RETURN causes branching to the statement following the GOSUB or
ON. . .GOSUB (on the sameline, if the GOSUB or ON. . . GOSUB is in a multistatementline).

Subroutines can be recursive; i.e., a subroutine can invoke itself.

Related Keywords

GOTO,ON. . .GOSUB,ON. . .GOTO, RETURN

BASIC Keyword Dictionary 2-53

GOTO

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The GOTO statement causes program execution to branch unconditionally to the specified line.

60TO

label

Item Description Range

line number integer constant identifying a program line 0 through 32,767

line label name of a program line any valid name

Examples

GOTO 340

GOTO [Increment]
IF Happy GOTO [Smile]

Description

The specified line must be within the same program or subprogram as the GOTO statement. If the

specified statementis declaratory (for example, DIM, REM, or DATA), the program branches to the

next executable statement.

When GOTO is used as the THEN condition in an IF. . . THEN statement, the THEN keyword can

be omitted.

Related Keywords

GOSUB, IF...THEN,ON...GOSUB,ON. . .GOTO

2-54 BASIC Keyword Dictionary

HEX$

Exists in Development System ®
Works Same in Development System #

nAllowedin IF...THEN

The HEXS$ function returns a two-character string containing the base 16 representation of the
decimal argument.

numeric
argument

item ' Description

numeric argument numeric expression, truncated to an
integer and modulo 256 to evaluate
within the range 0 through 255

-32,768 through 31,767

Examples

PRINT HEX$ (COD(A$))
IF HEX$(I(5))="A4" THEN J=12

Related Keywords

None.

BASIC Keyword Dictionary 2-55

IDX

M Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The IDX function returns the position of the first character of a substring within anotherstring.

string substring _
searched searched for)

O

item Description Range

string searched string expression —

substring searched for|string expression —

occurrence numeric expression, truncated to an |-32,768 through 32,767

integer (default=1)

Examples

Index=IDX (AS$,"1")
Index2=IDX("12341234","1",2)

Index4=IDX(AS,"1",4)
PRINT STRS (choice$,IDX(choice$,answer$)+1)

Description

IDXfinds a substring within another string, and returns the position of the first character ofthe
located substring. If the substring searched for occurs in more than one place, the occurrence parame-

ter allows you to specify which occurrence is returned. IDX will then return the character position of

the specified occurrence of the substring.

If the substring searched for is the null string or is not contained within the string searched,
IDX returns 0. IDX also returns 0 if the occurrence specified is less than 1.

2-56 BASIC Keyword Dictionary

...IDX

Related Keywords

STRS

BASIC Keyword Dictionary 2-57

IF...THEN

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The IF. . . THEN statement causes conditional branching, based on the value of a reiational or
numeric expression.

 numeric
expression

relational
expression

T@—-—lstatement

line
l number l

label

item Description Range

numeric expression evaluated as true if non-zero and —
false if zero

relational expression |an expression comparing two —
numeric or string expressions using
relational operators (=, <, >, <=,
>=or <>).

statement a programmabile statement “Allowed refer to individual key-
inIF...THEN” words

line number integer constant identifying a pro- 0 through 32,767
gram line

line label name of a program line any valid name

Examples

IF SIN(Angle) THEN GOSUB [DrawLine]
IF Variable<5 GOTO 200

IF errorcode=103 THEN IF status=4 GOTO 750

2-58 BASIC Keyword Dictionary

...IF...THEN

Description

When the expression following IF evaluates as true (non-zero), the portion of the statement following

THEN is executed. When the expression following IF is false, program execution proceeds to the next

line.

When GOTO or GOSUB is used as the THEN condition in an IF. . . THEN statement, the THEN

keyword can be omitted.

THEN can be followed by:

m An executable statement. The statement must be one whose “Allowed in IF. . . THEN” square

in the legend is filled in (w). If the executable statement is a GOSUB statement, the subroutine

RETURN statementreturns execution to the statement immediately following the GOSUB (on the

same line, if the GOSUB is in a multistatement line).

m A sequence of statements concatenated with 2.

m Another IF. . .THEN statement.

Related Keywords

GOTO, GOSUB

BASIC Keyword Dictionary 2-59

INPUT

W Exists in Development System
O Works Same in Development System
N Allowedin IF...THEN

The INPUT statementis used to assign values entered from the keyboard to program variables.

(1nPUT

Item Description Range

prompt string expression -

variable name name of a simple numeric or string variable any valid name

subscript numeric expression, truncated to an integer 0 through 32,767

Examples

INPUT Height, Width, Length, Other(2,3)
INPUT MSG("Your Name: ") Name$

Description

The INPUT statement causes program execution to halt until a value has been entered from the key-
board for each input item. Inputitems are separated by pressing the key. If no prompt is
specified, INPUT displays the default prompt ? for each input item. You can edit each input item
with the and keys before pressing . When is pressed after the last input
item, program execution continues with the statement after INPUT (on the same line,if the INPUT
is in a multistatement line). If nothing was entered on the keyboard, the input variable remains
unchanged, and program execution continues on the next line of the program (see “Input Aborted”).

If a prompt is supplied with the MSG option, then the prompt string replaces ? as the input prompt for
each input item. All prompting can be suppressed by specifying a null string prompt (" "').

Individual items must match the specified INPUT variable(s) in type (numeric or string). If you
attempt to enter alphabetic characters into a numeric variable, the error prompt ? 2 will be displayed,

2-60 BASIC Keyword Dictionary

...INPUT

and you will be prompted again for the input. The input statementcan include simple numeric and
string variables and numeric and string array elements. Entries from the keyboard can include numbers

and character strings.

If no variable list is supplied, INPUT will read and echo characters from the keyboard until is
pressed. The received data will be discarded and program execution will continue.

Input continues until all input variables have been assigned data, or until input has ended because of
one of the conditions described in the next table.

Behavior When INPUT Ends

Ending Condition Behavior

key pressed Characters typed on the keyboard (except [ENTER]) are
placed in the input variable. input is aborted if nothing is
typed before is pressed.

Timeout (error 118) Input aborted.

Power switch pressed (error 119) Input aborted.

Low battery (error 200) Input aborted.

Key abort (see SYBC or SYSP) jN/A.

Input Aborted. In the above table, “input aborted” means that no data has been received or that the
input operation has been interrupted. Wheninputis aborted, the input operation is ended, and any
characters received up to that point are discarded. The current input variable and all subsequent vari-
ables in the inputlist are left unchanged (note that variables prior to the one at which input was
aborted will already have been changed.)

NOTE When input is aborted for INPUT, program execution continues on the next line of
the program (not on the next statement, if INPUT is in a multistatementline).
Notice from the table thatthis also occurs if is pressed but nothing else has
been typed on the keyboard.

When input is aborted because of a numeric error, the I/O length reported by SYIN is always set to 0,
since no data is placed in the input variable.

Differences Between Development System and Handheld. The development system
does not produce errors 118, 119, or 200.

Related Keywords

GET #, INPUT #, INPUTS, SYIN

BASIC Keyword Dictionary 2-61

INPUT #

B Exists in Development System
O Works Same in Development System
B Allowedin IF...THEN

The INPUT # statement inputs items from the specified device or datafile.

G-
EDS0LZT 0 LLE

3

e

valig only for
channel 0 G m 0

Item Description Range

channel number numeric expression, truncated to an integer 0 through 15

prompt string expression —

variable name name of a simple numeric or string variable any valid name

subscript numeric expression, truncated to an integer 0 through 32,767

Examples

INPUT #5, Height, Width, Length
INPUT #channel, Stats(Index)
INPUT #0, MSG("Number of units: ") Unit$

Description

The INPUT # statementinputs data from the device or data file associated with the specified chan-
nel number. All devices (except channel 0) and datafiles must be opened with OPEN # before they
can be accessed with INPUT #. When a data file is opened, an associated file access pointer is posi-
tioned at the beginning ofthe file. The counterpart to INPUT # for output operations is PRINT
#. (Note: INPUT #0 is equivalent to the INPUT statement. Refer to the keyword description for
INPUT for details.) '

INPUT # inputs data from a device or data file until it receives an end-of-line sequence consisting of
carriage return and line feed. If input is from a datafile, serial access only is performed. Each input
item is read from the location in the file immediately after the previous item (serially). As each input
variable is processed, thefile access pointer advances beyond the data item in the file. When input

2-62 BASIC Keyword Dictionary

.-.INPUT #

ends, the access pointer remains positioned after the last data item read. Subsequent input variables or

file I/O statements continue reading data from or writing data to that position.

If no variable list is supplied, INPUT # will read until the end-of-line sequence is received. The

received data will be discarded and program execution will continue.

Input continuesunatil all input variables have been assigned data, or until input ends because of one of

the conditions described in the next table.

Behavior When INPUT # Ends

R'f received

Port terminate char-
acter received (see
SYBC, SYRS,or
SYSP)

EOD or EOF

encountered

Timeout (error 118)

Power switch
pressed (error 119)

Low battery (error
200)
Port errors 201-208

keyboard (except the
[ENTER]) are placed in
the input variable. Input
is aborted if nothing is
typed before is
pressed.

N/A.

N/A.

N/A.

Input aborted.

Input aborted.

input aborted. N/A.

Characters received
from the device (except
the®lr) are placed in the
input variable. Input is
aborted if nothing is
received before the®'r
are received.

Iignored (input operation
for that variable not

ended).

N/A.

Input aborted.

Input aborted.

Input aborted.

Input aborted.

Channel 0 Channeis 1-4 Channels 5-15

Ending Condition Behavior Behavior Behavior

key pressed |Characters typed on the [N/A. N/A.

Characters read from

the file (except the®'r)
are placed in the input
variable. input is aborted
if there is no data to
read before the®'r are
read.

N/A.

Characters read up to
the EOD or EOF are
placed in the input vari-
able. Input is aborted if
the file access pointeris

already at the EQOD or
EOF (no data to read).

N/A.
N/A.

N/A

N/A.

BASIC Keyword Dictionary 2-63

...INPUT #

Channel 0 Channels 1-4 Channels 5-15

Ending Condition Behavior Behavior Behavior

Key abort (see N/A. Input aborted. N/A.

SYBC or SYSP)
 Note: N/A means the ending condition will not occur for those channeis.

Input Aborted. In the above table, “input aborted” means that no data has been received or that the

input operation has been interrupted. Wheninputis aborted, the input operation is ended, and any
characters received up to that point are discarded. The current input variable and all subsequent vari-

ables in the inputlist are left unchanged (note that variables prior to the one at which input was

aborted will already have been changed.) This is in contrast to GET #, in which any received data for

that variable is saved.

NOTE When input is aborted for INPUT #, program execution continues on the next line
of the program (oot on the next statement, if INPUT # is in a multistatementline).

Wheninputis aborted because of a numeric error, the I/O length reported by SYIN is set to 0, since

no data is placed in the input variable.

Bar-Code Data. INPUT # is not recommended for reading bar-code data. Use GET #
instead. Use of INPUT # can cause two problems.

The first problem might cause an infinite wait during the read operation. ~INPUT # will not end
until it receives an end-of-line sequence consisting of a carriage return and a line-feed character. If the
bar-code device configuration is changed to append a differenttrailer, INPUT # will not complete
until it receives a ®'F

The second problem might cause lost data. If the bar-code data has the end-of-line sequence &)
embedded init, INPUT # will only load the data up the the end-of-line sequence. The remaining
data will be buffered for the next INPUT # statement.

See the description of the GET # keyword for more details on reading bar-code data.

CAUTION Do not mix INPUT # with GET # or INPUTS when reading bar-code data.
Doing so may result in unexpected error conditions.

Differences Between Development System and Handheld. The development system
does not produce errors 118, 119, 200, or 201-208.

Related Keywords

GET #, INPUT, INPUTS, PRINT #,SYIN

2-64 BASIC Keyword Dictionary

INPUTS

Exists in Development System M
Works Same in Development System O

Allowedin IF...THEN =N

The INPUTS function inputs items from the specified device or data file.

number of _/\
m 0 characters —Q/

[mser| lIIIIIIIIIIIII'numoer

terminate(D—charseverstrsng

item Description Range

number of characters numeric expression, trun- 0 through 255

channel number

 terminate character string
cated to an integer

numeric expression, trun-

cated to an integer

string expression
0 through 15

4 characters maximum;

00h not allowed

Examples

I$=INPUTS$ (80, 5)
PRINT #6,INPUTS (RecLength, 5, ".!2")

Description

INPUTS inputs data from the device or datafile associated with the specified channel number. All
devices (except channel 0) and data files must be opened with OPEN # before they can be accessed
with INPUTS. When a datafile is opened, an associated file access pointeris positioned at the
beginning of the file.

INPUTS inputs data from a device or datafile until it receives the specified numberof characters or

an end-of-line sequence consisting of any one of the charactersin the terminate characterstring. If no
terminate character string is specified, INPUTS does not look for an end-of-line sequence.

BASIC Keyword Dictionary 2-65

...INPUT$

If input is from a datafile, serial access only is performed. Each input item is read from the location in

the file immediately after the previous item (serially). As the data is read, the file access pointer

advances beyond the data in the file. When input ends, the access pointer remains positioned after the

last data item read. Subsequent file I/O statements continue reading data from or writing data to that

position.

Input continues until one ofthe conditions described in the next table arises.

Behavior When INPUTS Ends

Channel 0 Channels 1-4 Channels 5-15

Ending Condition Behavior Behavior Behavior

Requested number of Characters typed on the |Characters received Characters read from

characters received

Character from the ter-
minate character string
received

Port terminate character
received (see SYBC,
SYRS, or SYSP)

EOD or EOF encountered

Timeout (error 118)

Power switch pressed
(error 119)

Low battery (error 200)

Port errors (201-208)

Key abort (see SYBC or
SYSP)

keyboard are placed in
the input variable.

Characters typed on the
keyboard (including the
terminate character) are
placed in the input vari-
able.

N/A.

N/A.

Input aborted.

Input aborted.

Input aborted.

N/A.

N/A.

from the device are
placed in the input vari-
able.

Characters received
from the device (includ-
ing the terminate char-
acter) are placed in the
input variable.

Marks the end of the

received data. The char

acter is counted as one

of the received charac-

ters, but is not placed in
the input variable.
INPUTS continues to
wait for another ending
condition to occur.

N/A.

Input aborted.

Input aborted.

Input aborted.

Input aborted.

Input aborted.

the file are placed in the
input variable.

Characters read from
the file (including the
terminate character) are
placed in the input vari-
able.

N/A.

Characters read up to
the EOD or EOF are
placed in the input vari-
able.

N/A.
N/A.

N/A.
N/A.
N/A.

 Note: N/A means the ending condition will not occur for those channeis.

2-66 BASIC Keyword Dictionary

...INPUT$

Input Aborted. In the abovetable, “input aborted” means that no data has been received or that the
input operation has beeninterrupted. When input is aborted, the input operation is ended, and any
charactersreceived up to that point are discarded. The input variable is left unchanged. This is in con-
trast to GET #, in which any received data is saved and the variables are set to 0 or the null string.

NOTE When input is aborted for INPUTS, program execution continues on the next line of
the program (not on the next statement, if INPUTS is in a multistatement line).

When input is aborted because of a numeric error, the I/O length reported by SYIN is set to 0, since
no data is placed in the input variable.

Bar-Code Data. INPUTS is not recommended for reading bar-code data. Use GET # instead.

If you do use INPUTS, be sure to use the optional terminate character string and setit equal to the

last character sent by the bar-code reader. This is normally the line-feed character (ASC$ (10) for

HP Smart Wands and is different from the terminate character used by SYBC and SYSP.

Use of INPUTS$ without the terminate character properly set can cause unpredictable results.
INPUTS will not complete until the requested number of characters has been received. If the bar
code is longer than that length, INPUT$ will return only the numberof characters of the input vari-
able. The remaining bytes will be buffered for the next read statement to the port. If the bar code is
shorter than the requested number of characters, INPUTS$ will not return until enough characters
have been scanned to fill the input variable. That might require several scans.

Even if the terminate character is used correctly, an additional problem can resuit. If the bar-code
character has the terminate character embedded in it, INPUT$ will only load the data up to and

~ including the terminate character. The remaining data will be buffered for the next read statementto

that port.

Differences Between Development System and Handheld. The development system

does not produce errors 118, 119, 200, or 201 through 208.

Related Keywords

GET #, INPUT, INPUT #

BASIC Keyword Dictionary 2-67

INT

M Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The INT function returns the integer part of the numeric argument.

numeric(v (O srimeme)

item Description

 numeric argument numeric expression

Examples

PRINT INT (number)
Counter=INT (X+9.6)

Related Keywords

FRC

2-68 BASIC Keyword Dictionary

INTEGER

Exists in Development System H
Works Same in Development System W

Allowedin IF...THEN O

The INTEGER statement declares integer variables and arrays.

i(INTEGER)—L"V..-T.‘:?: Rame

item Description Range

numeric variable name name of a simple numeric variable or any valid name

numeric array

Examples

INTEGER IntegerVariable

INTEGER IntegerArrayl,IntegerArray?2
DIM IntegerArrayl(10),IntegerArray2(5,3)

Description

To declare an integer array, the INTEGERstatement must precede the DIM statement. Only the
variable nameis specified in the INTEGER statement, regardless of whether the declaration is for a
simple integer or an integer array. It is the DIM statementthat actually reserves the memory for an
integer array, and the upper bounds of each dimension of the array are declared only in the
DIM statement (see the second example). The default lower bound of the array is 1. The OPTION
BASE statementis used to set the lower bound equal to 0.

When a real numberis assigned to an integer variable, the numberis truncated. Overflow occursif the
value of the number is outside the range of integers.

When variables are passed to a subprogram byreference, the precision declarations accompany the
variable into the subprogram.

BASIC Keyword Dictionary 2-69

...INTEGER

The following table provides reference information about integer numeric variables. Referto the key-
word description for DIM for information aboutall the different BASIC variable types. Under
“Memory Usage” for arrays, the total number of elementsis the product of the number of elements in
each dimension of the array. If the statement OPTION BASE O is used, the number of elements in
each dimension is the specified upper limit plus 1. Because memory is allocated inparagraphs,or
groups of 16 bytes, the total memory required will be the calculated memory usage rounded up to the
next-higher 16-byte boundary.

Integer Numeric Variables

Description Value

Initial Value 0
Range -32,768 through +32,767
Maximum Array Size (bytes) 65,535
Maximum No. of Dimensions 255
Maximum Number of Elements 32,766 (1 dimension) to 32,512 (255 dimensions)
Memory Usage (bytes)
Simple Variable 2
Array 2*(no. of elements) + 2*(no. of dimensions) +1

Related Keywords

DIM, OPTION BASE

2-70 BASIC Keyword Dictionary

KEY

Exists in Development System H
Works Same in Development System O

Allowedin IF...THEN =

The KEY function returns the number of characters currently in the key buffer or the serial port buffer.

KEY -

© ®

Item Description Range

channel number numeric expression, truncated to an integer 0 through 1
(default=0)

Examples

keybuffer$=INPUTS (KEY)
IF KEY>0 THEN keybuffer$=INPUTS (KEY)
rsbuffer$=INPUTS (KEY(1),1)

Description

Characters entered through the keyboard or serial port are first stored in the key buffer (eight charac-
ters) or serial port buffer (64 characters). KEY or KEY (0) returns the number of charactersin the
key buffer (channel 0). KEY (1) returns the number of characters in the serial port buffer (channel
1). Key works only for the built-in serial-port handler. It does not work for other handlers such as
HNSP.

The KEY function does not change the contents of the key buffer or serial port buffer. The buffers are
only cleared by reading them with either the GET #, INPUT, or INPUT # statements or the
INPUTS function. INPUTS (KEY) (or INPUTS$ (KEY(O0), 0)) will read and clear the
key buffer. INPUTS (KEY (1) ,1) will read and clear the serial port buffer for the built-in serial-
port handler.

Differences Between Development System and Handheld. On the development system,
KEY with no parameters (or KEY (0) returns the number of characters in the key buffer (although
the key buffer is 127 characters long). KEY (1) will always return 0 since there is no serial port buffer

on the development system.

BASIC Keyword Dictionary 2-71

...KEY

Related Keywords

GET #, INPUT, INPUT #, INPUTS$

2-72 BASIC Keyword Dictionary

LEN

Exists in Development System B
Works Same in Development System B

nAllowedin IF...THEN

The LEN function returns the number of charactersin the string argument.

string(L (O 2rginen |

item Description

 string argument string expression

Examples

Y=LEN (A$)
IF LEN(String$)<=10 THEN String$=String$+"/"

Description

The value returned is the current number of charactersin the string, regardless of its dimensioned
length. The length of the null string is 0.

Related Keywords

None.

BASIC Keyword Dictionary 2-73

LET

|

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The LET statement assigns values to variables. The keyword is optional.

 numeric

variable name

 string

 variable namef |

» Keyword is optional

= numeric
expression

- atring

expression

item Description

numeric variable name

subscript

numeric expression

string variable name

string expression

name of a simple numeric variable

numeric expression, truncated to an
integer

(see introduction)

name of a simple string variable

(see introduction)

any valid name

0 through 32,767

any valid name

2-74 BASIC Keyword Dictionary

...LET

Examples

LET Variable=5*X
Svariable$="ABC"+HS
LET A(2,4)=7

Description

LET assigns the numeric orstring value on the right side of the equation to the variable on the left
side. Any variables used on the right side that have not previously been assigned will have the value 0
(numeric variables) or the null string (string variables). An error will occur if array variables that have
not previously been dimensioned are referenced on either side of the equation.

A real expression is truncated when assigned to an integer variable. In this case the real expression
must evaluate to a number within the integer range or an error will occur.

The following rules apply to string assignments:

m When a string expression is assigned to a string variable, excess characters are truncated on the
right to the dimensioned size of the variable. For example,ifA$ is dimensioned to 5,

A$="abcdefgh" assigns abcde to AS.

m When the assigned expression is shorter than the dimensioned size, the remainder of the string is
filled with nulls (ASCII 00h).

Related Keywords

STRS

BASIC Keyword Dictionary 2-75

LGT

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The LGT function returns the base 10 logarithm of the argument.

numeric(ot —(O— om0V

Item Description

 numeric argument numeric expression >0

Examples

A(2)=A(1) *LGT(T)
IF LGT(X)=2 THEN PRINT X

Related Keywords

LOG

2-76 BASIC Keyword Dictionary

LOG

Exists in Development System B
Works Same in Development System B

Allowedin IF...THEN N

The LOG numeric function returns the natural (base e) logarithm of the argument.

numeric
argument

 item Description Range

numeric argument numeric expression >0

Examples

T=1/K*LOG (N1/N2)
IF LOG(A)<=2 GOTO 900

Related Keywords

EXP, LGT

BASIC Keyword Dictionary 2-77

MAX

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The MAX function compares a series of numeric arguments and returns the largest of the values.

argument

Description

 numeric argument numeric expression

Examples

Y=MAX (10, X)
Counter=INT (MAX(I,J,K,L,M,N))

Description

Thesigns of the arguments are considered. MAX (-1, -2, -3) will return -1.

Related Keywords

MIN

2-78 BASIC Keyword Dictionary

MIN

Exists in Development System W
Works Same in Development System W

Allowedin IF...THEN n

The MIN function compares a series of numeric arguments and returns the smallest of the values.

 numeric

argument

item Description Range

 numeric argument numeric expression —

Examples

Y=MIN(10,X)
Counter=INT (MIN(I,J,K,L,M,N))

Description

The signs of the arguments are considered. MIN (=1, -2 ,-3) will return -3.

Related Keywords

MAX

BASIC Keyword Dictionary 2-79

MOD

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The MOD function returns the remainder resulting from a division operation.

()OO ®

item Description Range

dividend numeric expression —

divisor numeric expression —

Examples

C=MOD(8, 3)
IF MOD(Hours,Trip)<3 GOTO 300

Description
The MOD operation is defined by the equation: MOD (A, B) = A-Bx/NT(A/B) where INT(A/B) is
the integer part of A/B. MOD (A, O) is defined as 0.

Related Keywords

None.

2-80 BASIC Keyword Dictionary

NOT

Exists in Development System W
Works Same in Development System M

Allowedin IF...THEN =

The NOT operator returns the bit-by-bit NOT of the binary representation of the operand.

o]

item Description Range

operand numeric expression -32,768 through +32,767

Examples

IF NOT P THEN GOSUB 400
S=NOT J (1)

Description
The operand is truncated to an integer represented as two’s-complement. The results of each bit-by-bit
NOT are used to construct the integer result. Each bit is computed according the following truth table.

Bit-by-Bit NOT

Operand |Resulit

0

Relational operators (=, >, <, <=, >=, and <>) always return -1 for true and 0 for false. The bit-by-

bit NOT of these results will always be 0 or -1.

Related Keywords

AND, OR, XOR, IF. ..THEN

BASIC Keyword Dictionary 2-81

NUM

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The NUM function converts a string expression containing digits into a numeric value.

string

argument

item Description Range

 string argument string expression —

Examples

C=NUM(D$)

PRINT #1,NUM(Xcoordinate$)

Description

The string can have leading blanks. The mantissa begins with the first non-blank character, which must
be a plus or minus sign, decimal point, or digit. Additional characters can be digits or a decimal point;
there can be only one decimal point per number.

If exponential notation is used, the exponent following E or e consists of an optional sign followed by
one or two digits. ‘

The argument must contain at least one digit. Embedded blanks and non-digit characters that are not
used to build an exponent terminate the number.

2-82 BASIC Keyword Dictionary

...NUM

Related Keywords

CHR$

BASIC Keyword Dictionary 2-83

ON...GOSUB/GOTO
B Exists in Development System
B Works Same in Development System -
B Allowedin IF...THEN

The ON. . . GOSUB/GOTO statements transfer program execution to one of the specified program
lines based on the value of a pointer.

C ON)——-{ pointer

item Description Range

pointer numeric expression, truncated to an integer (see Description)

line number integer constant identifying a program line 0 through 32,767

line label name of a program line any valid name

Examples

ON P(1l) GOTO 200,400,640

ON .5*Pointerl GOSUB [Subroutinel], [Subroutine2]
IF Y THEN ON Y GOTO 300,[0dd],700

Description

When the pointer evaluates to 1, execution is transferred to the first line number or line label. When
the pointer evaluates to 2, execution is transferred to the second line number/label, and so on. If the
pointer evaluates to a numberless than 1 or greater than the number ofline numbers/labels, execution
is transferred to the statement after the ON.

If the GOSUB keyword is used, execution is transferred to the specified subroutine. When the
RETURN statementof the subroutine is executed, execution branches to the statement immediately
following the ON. . . GOSUB (on the sameline, if the ON. . . GOSUB is in a multistatementline).

2-84 BASIC Keyword Dictionary

...ON...GOSUB/GOTO

Related Keywords

GOSUB, GOTO, IF. . . THEN, RETURN

BASIC Keyword Dictionary 2-85

OPEN #

B Exists in Development System
O Works Same in Development System
B Allowedin IF...THEN

The OPEN # statement opens a device or data file by assigning to it a channel number.

dinruc:bt.ir'y m

O~

item Description Range

channel number numeric expression, truncated to an integer 0 through 15

directory number non-negative integer 0 through 4

file name string expression evaluating to null string or file —
name

high=-level handler string expression evaluating to null string or the -
file name

low-level handler string expression evaluating to a file name —

Examples

OPEN #1, """

OPEN #5, "“PDATY

OPEN #channel+3, file$
OPEN #1, "HNWN;HNSP"

OPEN #2, "HNWN;HNBC"

Description

OPEN # assigns (opens) a channel number to the specified device or data file. A data file must be
created with $¥CALL SYAL or down-loaded from a host computer beforeit can be opened, and all
devices (except channel 0) and data files must be opened before they can be accessed. Once a channel
numberis assigned to a device, it remains associated with that device until the channelis closed with
the CLOSE # statement. When a data file is opened, an associated file access pointeris positioned at
the beginning of thefile.

2-86 BASIC Keyword Dictionary

...OPEN #

' The meaning of each channel numberis defined in the table below.

Channel Number Meaning

0 console (keyboard and display)

1 serial port

2 bar-code port

34 reserved for future use

5-15 data file
OPEN #1 turns on powerto the serial port and to the HP 82470A RS-232C Level Converter (if one

is connected to the serial port).

OPEN #2 turns on power to the bar-code port and to any bar-code reader attached toit.

Once a channel has been opened,it cannot be reopened withoutfirst being closed. Only one channel

at a time can be assigned to a singlefile.

The use ofthe file specified by the file name in the OPEN # statement depends on the channel

number, as defined in the table below.

Channel Number File Name Meaning

0 no meaning; console is always “open”

1-4 user-defined device handlerfile name (file type H)

5-15 data file name (file type D)
Device Handlers. A device handler is an assembly-language program that controls programmatic

access to an I/O device such as the serial or bar-code port.

For channel 1 (serial port), the built-in default device handler can be specified by supplying file name

"W (null string). If a device handler name is supplied and no such handler exists in memory, the default

handler will be used. For details on the capabilities of the built-in serial port device handler, refer to

the keyword description for SYRS. Channels 2 through 4 have no default device handlers, so opening

them to the default device (" ") will give an error.

Three bar-code handlers are supplied with the Software Development System:

m HNSP is a low-level handler for smart bar-code readers attached to the serial port. For details on

the capabilities of the handler and how to set optionsfor the handler, refer to the SYSP keyword.

m HNBC is a low-level handler for smart bar-code readers attached to the bar-code port. For details

on the capabilities of the handler and how to set options for the handler, refer to the SYBC key-

word.

BASIC Keyword Dictionary 2-87

...OPEN #

m HNWN is a high-level handler for the HP Smart Wand version 12.3 orlater.It requires one ofthe

two low-level bar-code handlers listed above. For details on the capabilities of the handler and how

to set options for the handler,refer to the SYWN keyword.

Use the command GET # for input and PUT # or PRINT # for output.

NOTE Only the default serial port handleris always residentin the handheld. If you are

using any other handlers (for example, HNWN, HNSP, or HNBC) be sure to down-

load thosefiles from the developmentsystem to the handheld. See the Utilities Refer-

ence Manual chapter 3 “HXC File Conversion Utility” and chapter 6 “HXCOPY File

Copy Utility” for details.

Differences Between Development System and Handheld. The development system

does not support directory numbers.

The developmentsystem does not support user-defined device handlers. For channel1, the file name

must be an MS-DOS device name (for example, "COM1 : ™). You cannot use the default device

handler by supplying file name " ". Use the MS-DOS command MODE to setthe serial port

configuration, since there is no SYRS keyword on the development system. HXBASTC does not per-

form XON/XOFF handshaking or receive-data buffering.

There is no equivalent for channels 2-4 on the development system,so they should not be used. On the

developmentsystem, the OPEN # statement must be be used to create a datafile since ¥CALL

SYAL is not available. (File extension DAT is supplied automatically.) OPEN #n, file$ onthe

developmentsystem is equivalent to 3CALL SYAL(file$) : OPEN #n,file$ onthe

handheld (i.e., the file size is 0 and the size incrementis 1).

On the development system, OPEN # does not cause an errorif the specified device orfile is already

open.

Related Keywords

CLOSE #,GET #, INPUT #, INPUTS, PRINT #, PRINT #...USING,PUT #,

SYAIL,SYBC, SYRS,SYSP,SYWN

2-88 BASIC Keyword Dictionary

OPTION BASE

Exists in Development System ®
Works Same in Development System W

Allowedin IF...THEN O

The OPTION BASE statementspecifies the lower bound of all arrays in a program or subprogram.

OPTION BASE

Item Description Range

lower bound integer constant (default=1) 0

Examples
OPTION BASE O

Description

If used, an OPTION BASE statement must precede all array declarations. The option base is the
lower bound of all numeric and string arrays in the program. (Upper bounds are declared in the DIM

statement.)

The option base declarationis local; the option base must be declared by any subprograms called by
the main program.

Related Keywords

DIM, INTEGER

BASIC Keyword Dictionary 2-89

OR

B Exsts in Development System
B Works Same in Development System
B Allowedin IF...THEN

The OR operatorreturns the bit-by-bit inclusive-OR ofthe binary representation of the operands.

operand OR operand

Item Description Range

operand numeric expression -32,768 through 32,767

Examples

IF S<>0 OR P<>0 THEN GOSUB 400
S=J (1) OR J(2)

Description

The operands are truncated to integers represented as two’s-complement. The results of each bit-by-bit
OR are used to construct the integer result. Each bit is computed according the following truth table.

Bit-by-Bit OR

Operand 1 Operand 2 Result

0 0 0

0 1 1

1 0 1

1 1 1

Relational operators (=, >, <, <=, >=, and <>) always return -1 for true and 0 for false. The bit-by-

bit NOT of these results will always be 0 or -1.

2-90 BASIC Keyword Dictionary

...OR

Related Keywords

AND, NOT, XOR

BASIC Keyword Dictionary 2-91

PARAM

B Exists in Development System
B Works Same in Development System
O Allowedin IF...THEN

The PARAM statementis the first statement in a subprogram. It defines the beginning of the subpro-

gram and lists the formal parameters passed into the subprogram.

o™
o/ ‘]

variable -
name

Item Description Range

variable name

|

name of a simple numeric or string variable any valid name

Examples

PARAM Xmin,Xmax,Yvar(#*),h Zvar(*)
PARAM choice$,answer$,list$(*) ,mean,stdev

Description

If a subprogram is receiving or returning parameters to the calling program,the first line of the sub-

program must be the PARAM statement. Only REM statements are allowed before PARAM. The

statement cannot be part of a multistatementline. A subprogram can contain only one PARAM state-

ment.

The variable nameslist the formal parameters passed from the calling program to the subprogram.

The parameters become associated, from left to right, with the parameterslisted in the CALL state-

ment. The variable type (simple numeric, simple string, numeric array,string array) and the number of

variables must agree with the parameters listed in the CALL statement. Entire arrays of any dimension

are designated by a pair of parentheses containing only a single asterisk after the array name (regard-

less of the number of dimensions of the array). Variables in the calling program not explicitly passed to

the subprogram are unknown to the subprogram.

2-92 BASIC Keyword Dictionary

...PARAM

The parameterlist does not include precision declarations (real or integer), nor does it specify the

dimensions of simple string variables and numeric and string arrays. The precision and dimensions of

variables passed by reference accompany them as they are passed. When a numeric expression is

passed (by value), the formal parameter to which it is passed is defined as a real number. When a

string expression is passed (by value), the formal parameter to whichit is passed is dimensioned to the

current length of the string.

Related Keywords

CALL, END

BASIC Keyword Dictionary 2-93

Pl

B Exists in Development System
B Works Same in Development System
m Allowedin IF...THEN

The PI function returns the value of .

Examples

Tangent=TAN (PI*B)
Area=PI*Diameter**2/4

Description

The exact value returned is 3.1415926535898.

Related Keywords

ACS, ADS, ARD, ASN, ATN, COS, DMS, RAD, SIN, TAN

2-94 BASIC Keyword Dictionary

PRINT

Exists in Development System M
Works Same in Development System O

Allowedin IF...THEN ®

The PRINT statement outputs the print items to the current display line.

00 (PRINT)

variable
name

 o]subscript

I numeric I

"lconstant |

OO

e~D——————of spaces

,)~ O—fzrm—~(D »
Gars)~(D—wfezrom O =0

\ »{ XHOME }

)

Description

variable name

subscript

numeric constant

literal

expression

number of spaces

name of simple numeric or string variable

numeric expression, truncated to an integer

numeric expression that can contain digits 0
through 9, plus or minus sign, a decimal point,
and exponential notation

string constant

numeric or string expression

numeric expression, truncated to an integer

any valid name

0 through 32,767

-255 through 255

BASIC Keyword Dictionary 2-95

.--.PRINT

item Description Range

column numeric expression, truncated to an integer 0 through 19

row numeric expression, truncated to an integer 0 through 3

Examples

PRINT Number; Letter$
PRINT TAB(10); AS$; "Result="; Result
PRINT %CURSOR(col, row); "Up&OD&OADown"

Description
PRINT displays numbers and strings on the display. Numeric items are displayed in standard number
format with a leading blank or minus sign. String items are displayed with no leading ortrailing blanks.

When the length of data to be displayed exceeds the maximum line length, the cursor wraps around to
the next line. When the cursor wraps around below the bottom line of the display, the entire contents
of the display scrolls up one line to create a new line at the bottom, and the top line disappears off the
top ofthe display.

Whenthe list of display itemsis exhausted, an end-of-line sequence consisting ofcarriage return and
line feed is sent to the display. The end-of-line sequence can be suppressed by including a semicolon or
comma after the last display item.

NOTE When used to separate items in the list, the comma and semicolon behave identically.
This is different than many other BASIC languages.

Display Control Functions. The functions SPACE, TAB, $CURSOR, and ¥HOME can be
included as print items, and will output spaces or position the cursoras described in the table below
(note that the cursor movement occurs even if the cursor is turned off):

2-96 BASIC Keyword Dictionary

.--.PRINT

Display Control Functions

Function Resuit

SPACE Specified number of spaces (ASCII 20h) displayed. A negative numberof

spaces outputs backspaces (ASCII 08h) to the display.

TAB Cursor moves to specified column (0-19) on currentline. Column numbers

greater than 19 are reduced MOD 20.

%CURSOR Cursor moves to specified column (0-19) and row (0-3). Column 0 is the left

column of the display; row 0 is the top line of the display. Negative column or

row coordinates are treated as 0. Column or row coordinates that exceed the

display boundaries (19 and 3) are ignored (the cursor does not move).

%HOME Cursor moves to column 0, row 0 (the top left corner of the display) and clears

the display.

Display Control Characters. Any character in the handheld’s character set can be specified with

& and its two-digit hexadecimal ASCII code within a literal (& is specified by &&). This is especially

useful for the display control characters, 01h through 1Fh. &00 (NUL) is notallowed in a string.

Because the NUL characteris used to terminate strings,if you create a string with a NUL somewhere

before the end of the string, all charactersafter the NUL will be ignored.

The table below describes each display control character used by the handheld.

Display Control Characters

Hex Value Meaning

01 (SOH) Turn on cursor.

02 (STX) Turn off cursor.

06 (ACK) High tone beep for 0.5 second.

07 (BEL) Low tone beep for 0.5 second.

08 (BS) Move cursor left one column. When the cursor reaches the left end of the line,

it will back up to the right end of the previous line. When the cursor reaches
the top left corner, backspace will have no effect.

0A (LF) Move cursor down oneline. If the cursor is on the bottom line, the display
contents will scroll up one line.

0B (VT) Clear every character from the cursor position to the end of the current line.

0C (FF) Move cursorto top left corner and clearthe display.

0D (CR) Move cursorto left end of currentline.

0E (SO) Change keyboard to numeric mode (underiine cursor).

OF (S1) Change keyboard to alpha mode (block cursor).

BASIC Keyword Dictionary

2-97

...PRINT

Hex Value Meaning

1E (RS) Turn on electroluminescent backlight.

1F (US) Tum off electroluminescent backlight.

Differences Between Development System and Handheld. Display control characters

076h and 07h sound the same beep on the development system.

The handheld uses the Roman-8 character set. The development system may use either the Roman-3

or the IBM-compatible charactersets as set by the HXCHRSET utility described in chapter 5 ofthe

Utilities Reference Manual. The difference between the two character sets occurs in the control codes

(ASCS$ (0) through ASC$ (31)) and in the upper half of the character set (ASCS$(128)

through ASC$ (255)).

Related Keywords

PRINT USING, PRINT #, PRINT #...USING

2-98 BASIC Keyword Dictionary

PRINT USING

Exists in Development System H
Works Same in Development System O

Allowedin IF...THEN

The PRINT USING statement outputs the print items to the current display line in a user-defined

format.

(e
— W

 PRINT USING

variable
name

L numeric |
constant

e1O

item Description Range

line number integer constant identifying a program line 0 through 32,767

line label name of a program line any valid name

variable name name of simple numeric or string variable any valid name

subscript numeric expression, truncated to an integer 0 through 32,767

numeric constant numeric expression that can contain digits 0 -
through 9, plus or minus sign, a decimal point,
and exponential notation.

literal string constant -

expression numeric or string expression -

BASIC Keyword Dictionary 2-99

.-.PRINT USING

Examples

PRINT USING 100 Height, Width, Length
PRINT USING [numformat] "Result:",Stats(col,row),

PRINT USING 250 a*b, STRS$(unit$, 1) , Potential

Description

PRINT USING displays numeric and string items according to the format associated with the

FORMAT statementon the specified program line. For a description of the display formats available,

refer to the keyword description for FORMAT.

Notice that you can putliterals in a FORMAT statement, but you cannot putfield or format specifiers

in a PRINT USING statement. This is different than many BASIC languages.

When the length of data to be displayed exceeds the currentline length,the cursor wraps around to the

next line. When the cursor wraps around below the bottom line of the display, the entire contents of

the display scroll up one line to create a new line at the bottom.

Whenthe list of display itemsis exhausted, an end-of-line sequence consisting of carriage return and

line feed is sent to the display. The end-of-line sequence can be suppressed by mcludmg a comma (not

a semicolon, as with PRINT) after the last display item.

Display Control Characters. Refer to the keyword description for PRINT fora list of all the

display control characters.

Differences Between Development System and Handheld. The handheld uses the

Roman-8 character set. The development system may use either the Roman-8 or the IBM-compatible

character sets as set by the HXCHRSET utility described in chaptcr 5 of the Utilities Reference

Manual. The difference between the two character sets occurs in the control codes (ASCS (0)

through ASC$ (31)) and in the upper half ofthe character set (ASC$ (128) through

ASC$(255)).

Related Keywords

FORMAT, PRINT, PRINT #, PRINT #...USING

2-100 BASIC Keyword Dictionary

PRINT #

Exists in Development System H
Works Same in Development System O

Allowedin IF...THEN ®

The PRINT # statement outputs items to the specified device or datafile.

channel
number

V2R
o/

N
-/

]verianlel
name

numeric
constant

lxter'al

number |

of spaces

G—© ®
valid only for €0 O—~=1-0

L ~(mone)— ’

item Description Range

channel number numeric expression, truncated to an integer 0 through 15

variable name name of a simple numeric or string variable any valid name

subscript numeric expression, truncated to an integer 0 through 32,767

numeric constant numeric expression that can contain digits O —
through 9, plus or minus sign, a decimal point,
and exponential notation

 literal string constant —

expression numeric or string expression —

number of spaces numeric expression, truncated to an integer -255 through 255

BASIC Keyword Dictionary 2-101

.--PRINT #

Item Description Range

column numeric expression, truncated to an integer 0 through 19

row numeric expression, truncated to an integer 0 through 3

Examples

PRINT #5, Height; Width; Length
PRINT #channel, "Result:";Stats(col,row):;
PRINT #chno, a*b; STR$(unit$,1); Potential

Description

The PRINT # statement outputs data to the device or data file associated with the specified channel

number. All devices (except channel 0) and data files must be opened with OPEN # before they can
be accessed with PRINT #. When a data file is opened, an associated file access pointeris posi-
tioned at the beginning of thefile. The counterpart to PRINT # for input operations is INPUT #.
(Note: PRINT #O is equivalent to the PRINT statement. Refer to the keyword description for
PRINT for details, including a list of display control characters.)

PRINT # outputs data from each item in the output list until the numberofbytes contained by each
item has been output. For example, PRINT # outputs as many bytes of data from a simple string
variable as are contained in the string, with no leading or trailing blanks. If the variable contains less
than the dimensioned numberof bytes, only that many bytes are output. This is in contrast to PUT 4,
which outputs the number of bytes defined by the dimensioned length ofthe string, regardless of how

many bytes the string actually contains.

Numeric items are output in standard number format with a leading blank or minus sign. This is in
contrast to PUT #, which outputs numeric variables in the form they are stored internally.

Whenthe list of output items is exhausted, an end-of-line sequence consisting of carriage return and
line feed is output. The end-of-line sequence can be suppressed byincluding a semicolon or comma

after the last output item.

NOTE When used to separate items in the list, the comma and semicolon behaveidentically.
This is different than many other BASIC languages.

If outputis to a data file, serial access only is performed. Each output item is written to the location in

the file immediately after the previous item (serially). As each output item is processed, the file access

pointer advances beyond the data item in the file. When output ends, the access pointer remains posi-

tioned after the last data item written. Subsequent file I/O statements continue reading data from or

writing data to that position.

The SPACE function can be included as an output item for all channels. SPACE outputs the

specified numberof spaces (ASCII 20h) (or backspaces (ASCII 08h), if the numberof spaces is nega-

tive). The other display control functions TAB, ¥CURSOR, and $HOME can be included as output

2-102 BASIC Keyword Dictionary

...PRINT #

items for channel 0 only. Referto the keyword description for PRINT for details on these functions.

Output continues until all output items have been written, or until output ends because of one of the

conditions described in the next table.

Behavior When PRINT # Ends

Channel 0 Channels 1-4 Channels 5-15

Ending Condition Behavior Behavior Behavior

Number of charac-

|

Characters in the|Characters in the [Characters in the output item are

ters contained in the |output item are |output itemare

|

written to the file.

output item written

|

displayed. sent to the device.

EOF encountered N/A. N/A. If the data file was created with a
size increment greater than zero,

the file will automatically expand

as long as there is room in

memory (see SYAL).

Timeout (error 118) |Output aborted. |Output aborted. |N/A.

Power switch Output aborted. |Output aborted. |N/A.

pressed (error 119) .

Low battery (error Output aborted. |Output aborted. |N/A

200)

Port errors 201-208 |N/A. Output aborted. {N/A.

Lost connection N/A Output aborted |N/A.

while transmitting
(error 218)

Note: N/A means the ending condition will not occur for those channels.

Output Aborted. In the above table, “output aborted” means that the output operation has been

interrupted. When outputis aborted, the output operation is ended. Subsequent variables in the output

list are not output.

CAUTION When output is aborted for PRINT #, program execution continues on the next

line of the program (not on the next statement, if PRINT # is in a multistatement

line). When output is aborted because of a numeric error, the I/O length reported

by SYIN is set to the numberof bytes actually sent up to that point, since that

data has already been written to the device orfile.

Bar-Code Data. Both PUT # and PRINT # can be use to send data to a bar-code reader

attached to the serial port. PRINT # is preferred because it allows string constants to be specified

as part of the statement. Be sure you have opened the channel with the bar-code handler and have

configured the channel correctly. See keywords OPEN #, SYSP, and SYWN for details.

BASIC Keyword Dictionary 2-103

.--PRINT #

NOTE The bar-code portis a read-only port, so writing data to that port will generate an

error. To write data to a bar-code reader attached to the handheld, it must be

attached to the serial port. The only exception to this rule is the port configuration

escape sequence (see below for details).

Data sentto a bar-code reader are generally configuration instructions; responses from the bar-code

device can be captured with the GET # statement. See the reference manual for the bar-code

reader you are using for details on the escape sequences and responses for the bar-code reader you are

using. When using the HNWN handler with an HP Smart Wand, however,there are two special escape

sequences that are processed by the handler: the port configuration escape sequence and the status

request escape sequence. Both are described below.

Port Configuration Escape Sequence. The port configuration escape sequence reconfigures

both the serial port and the bar-code reader. The HNWN handlerfirst sends the escape sequence to

the bar-code reader usingits current serial-port configuration and then changes the serial port to the

configuration specified.

Whensending the configuration escape sequence to the bar-code port, the handler will change only the

port; the bar-code device itself must then be changed by the operator by scanning a configuration bar

code that will set the bar-code reader to match the port configuration. Baud rate and parity should be

changed as two separate steps, each comprising a programmatic write to the bar-code port and an

operator scan of a configuration bar code.

When the HP Smart Wand is powered on and off (the OPEN # and CLOSE # keywords will do

this), it may not return to its default serial configuration. This depends on whether the Smart Wand’s

serial port configuration has been saved. See documentation of your bar-code reader for details.

The port configuration escape sequenceis a character string with the following format:
-ynP

where n is a sequence of numeric characters that specifies a decimal number between 0 and 255. Cal-
culate the number by adding the values shown in the table below for each of the options selected.

2-104 BASIC Keyword Dictionary

...PRINT #

For each option... Select one choice...

|

Add this value...

Baud rate 150 0
300 1
600 2

1,200 3
2,400 4

4,800 5
9,600 6

Stop bits* 1 0
2 8

Parity Always 0 0
Always 1 16
Even 32

Odd 48

Character delay* Off 0
On 64

RTS/CTS Handshake* Disabled 0
Enabled 128

* Option does not affect HP-94 bar-code handler. Affects bar-code reader only.
The statement PRINT #1 ASCS (27) ;"-y62P" would specify 9600 baud, 2 stop bits, odd

parity, no character delay, and no handshaking.

Status Request Escape Sequence. The status request escape sequence is a way for an appli-

cation program to obtain status information from the HP Smart Wand. It only works with the HNWN

handler. The escape sequence causes the handler to buffer the bar-code device’s response. The device

responds so rapidly that the data would be lost withoutthis feature.

NOTE For the status request escape sequence to work properly be sure that:

® You are using an HP Smart Wand connected to the serial port.

® The channel was opened with OPEN # 1 "HNWN;HNSP".

m Transfer of escape sequences are enabled with the SYWN keyword.

m AGET # statement follows the statementthat sends the status request.

The escape sequence has the format:
&-yns

where n is a numeric character from the table below. Status messages other than those in the table are

not supported.

BASIC Keyword Dictionary 2-105

.-..PRINT #

Type of Status Returned

Status message ending with a carriage return (ASCS$ (13))
Status message with selected trailer.
Message ready/not ready response for single-read mode 2.
Serial number.
Configuration dump.

 D
N

=
D

See the reference manualfor your bar-code readerfor the format of the status messages sent by the

bar-code device to the handheld. Status requests other than those in the above table are not supported.

Differences Between Development System and Handheld. The development system

does not produce errors 118, 119, 200, or 218.

The handheld uses the Roman-8 character set. The development system may use either the Roman-8

or the IBM-compatible character sets as set by the HXCHRSET utility described in chapter 5 of the

Utilities Reference Manual. The difference between the two character sets occurs in the control codes

(ASCS$ (0) through ASCS (31)) and in the upper half of the character set (ASCS (128)

through ASC$ (255)).

Related Keywords

INPUT #, PRINT, PRINT USING, PRINT #...USING, PUT #, SYAL,SYIN

2-106 BASIC Keyword Dictionary

PRINT #...USING

Exists in Development System W
Works Same in Development System [

Allowedin IF...THEN ®

The PRINT #...USING statement outputs itemsto the specified device or datafile in a user-

defined format.

channel
number

 O

variable
name

subscript

[numeric

"Lconatant |

o literal o

item Description

channel number

line number

line label

variable name

subscript

numeric constant

literal

expression

numeric expression, truncated to an integer

integer constant identifying a program line

name of a program line

name of simple numeric or string variable

numeric expression, truncated to an integer

numeric expression that can contain digits 0
through 9, plus or minus sign, a decimal point,
and exponential notation

string constant

numeric or string expression

0 through 15

0 through 32,767

any valid name

any valid name

0 through 32,767

BASIC Keyword Dictionary 2-107

..-.PRINT #...USING

Examples

PRINT #1, USING 100 Height, wWidth, Length

PRINT #channel, USING [numformat] "Result:",Stats(col,row),
PRINT #chno, USING 250 a*b, STR$(unit$,1), Potential

Description

The PRINT #...USING statement outputs data to the device or data file associated with the
specified channel number, according to the format associated with the FORMAT statement on the

specified program line. For a description of the display formats available,refer to the keyword descrip-

tion for FORMAT.

All devices (except channel 0) and data files must be opened with OPEN # before they can be

accessed with PRINT #. . .USING. When a datafile is opened, an associated file access pointer is

positioned at the beginning ofthefile. Thereis no direct counterpart to PRINT #. . .USING for

formatted input operations; the closest is INPUT #. (Note: PRINT #0,USING is equivalent to

the PRINT USING statement. Refer to the keyword description for PRINT USING for details,

including a list of display control characters.)

Notice that you can putliterals in a FORMAT statement, but you cannot put field or format specifiers

ina PRINT #...USING statement. This is different than many BASIC languages.

PRINT #...USING outputs data from each item in the output list until the number of bytes con-
tained by each item has been output. For example, PRINT #. . .USING outputs as many bytes of
data from a simple string variable as are contained in the string, with no leading or trailing blanks. If
the variable contains less than the dimensioned number of bytes, only that many bytes are output. This
is in contrast to PUT #, which outputs the number of bytes defined by the dimensioned length ofthe
string, regardless of how many bytes the string actually contains.

Numeric items are output in standard number format with a leading blank or minus sign. This is in
contrast to PUT #, which outputs numeric variables in the form they are stored internally.

Whenthelist of output items is exhausted, an end-of-line sequence consisting ofcarriage return and
line feed is output. The end-of-line sequence can be suppressed by including a comma (not a semi-
colon, as with PRINT #) after the last output item.

If outputis to a data file, serial access only is performed. Each output item is written to the location in
the file immediately after the previous item (serially). As each output item is processed,the file access

pointer advances beyond the data item in the file. When output ends, the access pointer remains posi-

tionedafter the last data item written. Subsequentfile I/O statements continue reading data from or

writing data to that position.

Output continues until all output items have been written, or until output ends because of one ofthe
conditions described in the next table.

2-108 BASIC Keyword Dictionary

...PRINT #...USING

Behavior When PRINT #...USING Ends

Channel 0 Channeils 1-4 Channels 5-15
Ending Condition Behavior Behavior Behavior

Number of charac- |Characters in the|Characters in the [Characters in the output item are
ters contained in the |output item are |output item are written to the file.

output item written displayed. sent to the device.

EOF encountered N/A. N/A. if the data file was created with a
size increment greater than zero,

the file will automatically expand
as long as there is room in
memory (see SYAL).

Timeout (error 118) {Output aborted. |Output aborted. |N/A.

Power switch Output aborted. |Output aborted. |N/A.
pressed (error 119)

Low battery (error Output aborted. |Output aborted. {N/A.

 200)

Port errors 201-208 [N/A. Output aborted. |N/A.

Lost connection IN/A. Output aborted. |N/A.
while transmitting
(error 218)
 Note: N/A means the ending condition will not occurfor those channels.

Output Aborted. In the above table, “output aborted” means that the output operation has been
interrupted. When outputis aborted, the output operation is ended. Subsequent variables in the output
list are not output.

CAUTION When output is aborted for PRINT #. . . USING, program execution contin-
ues on the next line of the program (not on the next statement, if PRINT
#. . .USING is in a multistatement line).

When output is aborted because of a numeric error,the I/O length reported by SYIN is set to the
number of bytes actually sent up to that point, since that data has already been written to the device or
file.

Differences Between Development System and Handheld. The development system
does not produce errors 118, 119, 200, or 218.

The handheld uses the Roman-8 character set. The development system may use either the Roman-8
or the IBM-compatible character sets as set by the HXCHRSET utility described in chapter 5 of the
Utilities Reference Manual. The difference between the two character sets occurs in the control codes
(ASCS (0) through ASCS (31)) and in the upper half of the character set (ASC$ (128)
through ASCS (255)).

BASIC Keyword Dictionary 2-109

...PRINT #...USING

Related Keywords

FORMAT, INPUT #, PRINT, PRINT USING, PRINT #,PUT #,SYAL SYIN

2-110 BASIC Keyword Dictionary

PUT #

Exists in Development System W
Works Same in Development System O

Allowedin IF...THEN =

The PUT # statement outputs itemsto the specified device or data file.

variable

channel
number

 .H'

item Description Range

channel number numeric expression, truncated to an integer 0 through 15

record number numeric expression, truncated to an integer 1 through 32,767

variable name name of a simple numeric or string variable any valid name

subscript numeric expression, truncated to an integer 0 through 32,767

Examples

PUT #5 Height, wWidth, Length
PUT #channel Stats(*)
PUT #chno,recno Potential, Unit$

Description

The PUT # statement outputs data to the device or datafile associated with the specified channel
number. All devices (except channel 0) and data files must be opened with OPEN # before they can
be accessed with PUT #. When a data file is opened, an associated file access pointer is positioned at
the beginning ofthe file. The counterpart to PUT # for input operations is GET #.

BASIC Keyword Dictionary 2-111

...PUT #

PUT # outputs data from each variable in the output list until the numberof bytes defined by the

type of each variable has been output. For example, PUT # outputs 10 bytes of data from a simple

string variable dimensioned to 10 characters.If there are actually less than 10 characters in the string,

nulls are output for the remaining number of bytes. This is in contrast to PRINT # and PRINT

#...USING, which output only the number of charactersin the string, regardless ofits dimensioned

length.

Numeric variables are output in the form they are stored internally; for example, an integeris output as

two bytes of binary data. This is in contrast to PRINT # and PRINT #. . .USING, which output

numeric items in readable form. The table below shows the size of each type of variable.

Sizes of Different Variables

Variable Type Size (bytes)

Real variable 8

Integer variable 2

String variable dimensioned length

Real array 8 * (number of elements in each dimension)

Integer array 2 * (number of elements in each dimension)

String array (dimensioned length) * (number of elements in each dimension)

An entire array (with any number of dimensions) can be output by specifying a single asterisk (*) as a

subscript after the variable name.

If output is to a datafile, access will be serial unless the optional record numberis specified. When the

record number is included, random access will be performed. The record number has meaning only

when accessing data files.

Serial Access. When the record numberis omitted, serial access is performed. Each record is writ-

ten to the location in the file immediately after the previous record (serially).

Random Access. When the record numberis included, random access is performed. Each record

is read from the locationin thefile specified by the record number (randomly).

When the PUT # statementis executed, the file pointeris positioned to (record size) * (record number

- 1) bytes from the beginning ofthe file, where record size is the total size (in bytes) of all the variables

in the outputlist. Note that the definition of a record is totally arbitrary; PUT # does not place any

end-of-record markersin a file, nor does its counterpart for reading, GET #, look for end-of-record

markers within a data file. Therefore, the application program is responsible for maintaining a suitable

datafile structure. The way data will be written is dependent solely on the lengths of the variables in

the outputlist.

As each output variable is processed, the file access pointer advances beyond the data item to the next

2-112 BASIC Keyword Dictionary

...PUT #

record position in the file. When output ends, the access pointer remains positioned after the last data

item written. Subsequentfile I/O statements that perform serial access continue reading data from or

writing data to that position.

Because file access is controlled by the lengths of the variables in the outputlist, the simplest data file

structure will have records that are the samefixed length, even though an entire record may be written

by using several variables of different lengths. Fora file structure using variable-length records, careful

selection of variable lengths in different PUT # or PUT # statements will move the file access
pointerto different parts of a data file. In addition, the SYPT statement can be used to movethe

pointerto the desired position.

Output continuesuntil all output variables have been written, or until output ends because of one of
the conditions described in the next table.

Behavior When PUT # Ends

Channel 0 Channels 1-4 Channels 5-15
Ending Condition Behavior Behavior Behavior

Number of charac- |Characters inthe |Characters inthe |Characters in the output variable
ters defined by the |output variable are output variable are|are written to the file.
size of the output displayed. sent to the device.

variable written

EOF encountered N/A. N/A. if the data file was created with a
size increment greater than zero,

the file will automatically expand
as long as there is room in
memory (see SYAL).

Timeout (error 118) |Output aborted. [Output aborted. [N/A.

Power switch Output aborted. |Output aborted. {N/A.
pressed (error 119)

Low battery (error Output aborted. |Output aborted. |N/A
200)

Port errors 201-208 |N/A. Output aborted. |N/A.

Lost connection N/A. Output aborted. |{N/A.
while transmitting

(error 218)

Note: N/A means the ending condition will not occur for those channels.

Output Aborted. In the above table, “output aborted” means that the output operation has been
interrupted. When outputis aborted, the output operation is ended. Subsequentvariablesin the output
list are not output.

BASIC Keyword Dictionary 2-113

...PUT #

When output is aborted for PUT #, program execution continues on the next line of the program (not

on the next statement, if PUT # is in a multistatementline).

When output is aborted because of a numeric error, the I/O length reported by SYIN is set to the

numberof bytes actually sent up to that point, since that data has already been written to the device or

file.

Bar-Code Data. Both PUT # and PRINT # can be use to send data to a bar-code reader

attached to the serial port. PRINT # is preferred becauseit allows string constants to be specified

as part of the statement. The PRINT # keyword includes a detailed discussion on writing data to

bar-code readers.

Differences Between Development System and Handheld. The development system

does not produce errors 118, 119, 200, or 218.

NOTE The bar-code portis a read-only port, so writing data to that port will generate an

error. To write data to a bar-code reader attached to the handheld,it must be

attached to the serial port. The only exception to this rule is the port configuration

escape sequence (see below for details).

Related Keywords

GET #, INPUT #, INPUTS, PRINT #, PRINT #...USING, PRINTS, SYAL,

SYIN, SYPT

2-114 BASIC Keyword Dictionary

RAD

Exists in Development System N
Works Same in Development System B

Allowedin IF...THEN =

The RADfunction interprets the numeric argumentas an angle measured in degrees, and returns the

value of the angle in radians.

numeric
argument

Item Description Range

numeric argument numeric expression -

Examples

Radians=RAD (Degrees)
PRINT RAD(90)

Related Keywords

ACS, ADS, ARD, ASN, ATN, COS, DMS, PI, SIN, TAN

BASIC Keyword Dictionary 2-115

READ

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The READ statement reads numeric and/or string constants from one or more DATA statements and
assigns those values to program variables.

=]

subscript

numeric
READ variable name

string
variable name

subscript

Item Description Range

numeric variable name name of a simple numeric variable any valid name

string variable name |name of a simple string variable any valid name

subscript numeric expression, truncated to an 0 through 32,767
integer

Examples

READ Variablel,Variable2$
READ A(1,2),B,CS$,ES$(4)

Description
READuses a data pointer to indicate the data item to be read. When program execution begins, the
data pointeris positioned atthe first item in the lowest-numbered DATA statement. When the datalist
in a particular DATA statementis exhausted, the pointer moves to the next-higher numbered DATA
statement.

2-116 BASIC Keyword Dictionary

...READ

When a READ statementis successful (there is a DATA statement containing a data item of the

proper type), execution proceeds to the next statementafter the READ (on the same line,if the

READ is in a multistatement line). When a READ statement attempts to read past the last data item

in the program, execution proceeds to the next /ine after the READ, and the previous value ofthe vari-

able being read into remains unchanged. This is similar to the input aborted condition that occurs for

the INPUT statement.

When the READ statementis assigning a value to a string variable, the DATA statement can contain a

numeric value, an unquoted string, or a quoted string; a numeric value is interpreted as an unquoted

string containing digits. READ will treat anything after a DATA statement in a multistatement line as

unquoted string data.

The order in which DATA statements are used can be changed using the RESTORE statement.

Each subprogram has its own data pointer, and can use only its own DATA statements. When a sub-

program is called, its first READ statement uses the first DATA statement in that subprogram. When

execution returnsto a calling program, the calling program resumes use of its own data pointerstarting

from the pointer’s last position.

An interrupt-processing routine defined by SYLB or SYSW has a separate READ data pointer than

the one used in the non-interrupt portion of the program. All DATA statements are treated identically,

regardless of where they appear in the program (interrupt routine or non-interrupt routine). When the

READ statementis executed in an interrupt-processing routine,it will start reading at the first DATA

statement in the program, regardless how many data items had been read before the interrupt routine

was executed. When the interrupt routine ends, subsequent READ statements in the non-interrupt

portion of the program will continue reading DATA statements as if the interrupt routine had not been

executed. Thatis, reading will start after the last data item read before the interrupt routine was exe-

cuted.

In an interrupt routine, RESTORE will affect the interrupt routine’s data pointer independently of the

non-interrupt routine’s data pointer.

Related Keywords

DATA, RESTORE, SYLB, SYSW

BASIC Keyword Dictionary 2-117

REM

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The REM statement allows comments in a program.

I| literal I

Item Description Range

literal string constant —

Examples

REM Written 11/17/86
REM

PRINT "Select menu item" : REM User must choose from menu

Description

The REM statement can be used anywhere after the line number or after a : 'in a multistatementline;
all characters following REM are considered to be part of the comment.

A REM statement in a multistatement line should be the last statement in the line, since subsequent
characters will not be executed evenif they look like legitimate BASIC statements.

Related Keywords

None.

2-118 BASIC Keyword Dictionary

RESTORE

Exists in Development System =
Works Same in Development System M

Allowedin IF...THEN =

The RESTORE statementspecifies that the first DATA statement will be accessed by the next READ

operation.

Examples

RESTORE

Description
After RESTORE is executed, the next READ statement will read starting at the first item in the
lowest-numbered DATA statement located in the same program or subprogram. When that data state-
ment has been used, the data pointer moves to the next-higher numbered DATA statement. If there
are no DATA statements in the program or subprogram, RESTORE has no effect.

An interrupt-processing routine has a separate READ data pointer than the one used in the non-
interrupt portion of the program. All DATA statements are treated identically, regardless of where
they appear in the program (interrupt routine or non-interrupt routine). When the READ statementis
executed in an interrupt-processing routine, it will start reading at the first DATA statement in the pro-
gram, regardless how many data items had been read before the interrupt routine was executed. When
the interrupt routine ends, subsequent READ statementsin the non-interrupt portion of the program
will continue reading DATA statements as if the interrupt routine had not been executed. Thatis,
reading will start after the last data item read before the interrupt routine was executed.

In an interrupt routine, RESTORE will affect the interrupt routine’s data pointer independently of the

non-interrupt routine’s data pointer.

Related Keywords

DATA, READ, SYLB, SYSW

BASIC Keyword Dictionary 2-119

RETURN

B Exists in Development System
H Works Same in Development System
B Allowedin IF...THEN

The RETURN statementis used within a subroutine to cause branching to the statementfollowing the

invoking GOSUB.

Examples

RETURN
IF A>360 THEN A=360 : RETURN

Description

When an invoking GOSUB (or ON. . . GOSUB) is embedded in a multistatement line, RETURN
returns program execution to the statement immediately following the GOSUB (or ON. . . GOSUB).

For interrupt routines, ¥CALL SYRT performs a function similar to RETURN. The two keywords

are not interchangeable, however.

Related Keywords

GOSUB, ON. . .GOSUB, SYRT

2-120 BASIC Keyword Dictionary

RND

Exists in Development System N
Works Same in Development System ®

Allowedin IF...THEN =

The RND function returns a pseudorandom number as a decimal fraction greater than or equal to 0

and less than 1.

o> -
(O 2eee=

Item Description Range

seed numeric expression (default=0) —

Examples

IF RND>.5 THEN PRINT "Heads"
Seed=RND(0)

Description
The sequence of pseudorandom numbersreturned depends on the seed. Using the same seed causes

RNDto generate the sameseries of numbers. A seed of 0 (RND (0)) produces random numbers

based on the value ofthe real-time clock. You should execute RND once with a seed to establish the

starting seed value (either one you specify or one based on the real-time clock). Subsequent uses of

RND without a seed will return random numbers based on that starting seed.

The seed is global, and is passed between the main program and any subprogram(s).

Related Keywords

None.

BASIC Keyword Dictionary 2-121

SGN

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The SGN function returns 1 if the numeric argumentis positive, -1 if the argumentis negative, and 0 if
the argumentis 0.

numeric
argument

Item Description Range

numeric argument numeric expression —

Examples

IF SGN(Y)=1 THEN GOSUB 400
Root=SGN (X) *SQR (ABS (X))

Related Keywords

ABS

2-122 BASIC Keyword Dictionary

SIN

Exists in Development System W
Works Same in Development System H

Allowedin IF...THEN =N

The SIN function interprets the numeric argument as an angle measured in degrees, and returns the

sine of the angle.

numeric
argument

Item Description Range

numeric argument numeric expression —

Examples

SineX = SIN(X)
If SIN(Theta)=1 THEN PRINT "Theta equals 90 degrees"

Related Keywords

ACS, ADS, ARD, ASN, ATN, COS, DMS, PI, RAD, TAN

BASIC Keyword Dictionary 2-123

SIZE

B Exists in Development System
O Works Same in Development System
B Allowedin IF...THEN

The SIZE function returns the amount of available memory in bytes.

()

Examples

PRINT SIZE
IF SIZE+subusage<1000 THEN PRINT "Not enough room"

Description

The available memory in the handheld is a dynamic quantity. When BASIC-language subprograms are
called, local variable spaceis allocated; that memory is released when the subprograms end. Datafiles
can expand or be deleted. Device handlers (such as for the serial port or the bar-code port) may allo-
cate some memory when they are opened and release it when they are closed. Assembly-language sub-
programs mayallocate some memory on a temporary or permanent basis when they are executed.

Consequently, the value returned by SIZE will only be valid as long as there are no operations occur-
ring that allocate or release memory. SIZE should be used immediately before the amountof avail-
able memory is required in a calculation, and known worst case memory usage should be accounted for
to ensure that predictions based on available memory are accurate.

Differences Between Development System and Handheld. On the developmentsystem,
SIZE returns the amount of available memory in the BASIC workspace. When subprograms are
called, they are loaded into the workspace, but they are not deleted when the subprogram ends. Data
files can expand on the development system disc, but this expansion will not affect the available
memory in the workspace. Because of these differences, SIZE will only provide meaningful informa-
tion to the program when the program is running on the handheld.

Related Keywords

None.

2-124 BASIC Keyword Dictionary

SQR

Exists in Development System
Works Same in Development System

Allowedin IF...THEN

The SQR function returns the square root of the numeric argument. Negative arguments return an
error.

item Description Range

numeric argument numeric expression >0

Examples

PRINT SQR(X)
C=SQR (A**2+B**2)

Related Keywords

None.

BASIC Keyword Dictionary 2-125

STR$
 I

B Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The STRS statement extracts substrings or assigns values to substrings.

string
 STRS (O variable name[™[

beginning
position

number of
characters

(1)
%

string
expression

item Description

subscript

beginning position

 string expression

string variable name

number of characters

name of a simple string variable

numeric expression, truncated

to an integer

numeric expression, truncated
to an integer

numeric expression, truncated
to an integer (default=to end of
string)

(see glossary)

any valid name

0 through 32,767

-32,768 through +32,767

-32,768 through +32,767

Examples

A$=STRS (BS$, 2)
STRS$ (choice$ (i), 8,3)="ABC"
STRS (Name$, IDX (Name$," ")+1)=STRS$(blank$,1,LEN(valid$))

2-126 BASIC Keyword Dictionary

...STR$

Description

When STRS is used as a function in a string expression,it returns a substring of the string variable
from the beginning position for the number of characters specified. If the number of charactersis not
specified, the number of characters from the beginning position to the end of the string is used. When
on the left side of an assignmentstatement, STRS assigns the string value (or result of the string
expression) on the right side of the statementto the variable specified in the STRS function, from the
beginning position for the number of charactersspecified (or to the end ofthe string).

The following rules apply to string assignments:

m When a string expression is assigned to a string variable, excess characters are truncated to the
dimensionedsize of the variable. For example,ifA$ is dimensioned to 5, A$="abcdefgh"

assigns abcdeto AS.

® When the assigned expression is shorter than the dimensioned size, the remainderof the string is
filled with nulls (ASCII 00h).

The following rules apply to substring assignments:

@ When a string expression is assigned to a substring, excess charactersare truncated to the number
of characters in the substring. For example, STRS (A$,n, 2) ="abcde" assigns ab to posi-
tions 7 and n+ 7 of AS. '

® When the assigned expression is shorter than the substring size, the assignment only changes the
number of characters in the expression. The remainder of the charactersin the substring before
the assignment was performed are unchanged. For example,if A$ contains “hello there”,
STRS (AS$, 3,6)="ab" changes A$ to “heabo there”.

®m When a substring reference contains only the beginning position, characters are entered into the
string starting at that position and continue to be entered until all characters are assigned or string
is full. For example, STRS (AS$,n)="grs" assigns rs to character positions n, n+ 7, and
n+2.

m If the beginning position is greater than the length ofthe string variable (butstill within the dimen-
sioned size), spaces (ASCII 20h) are filled from the end ofthe string to the beginning position of
the substring. For example,if A$ is dimensioned to 20 and contains “hello there”,
STRS (A$,15,2)="ab" changes ASto “hello there ab”,

m If the beginning position is greater than the dimensioned size of the string variable, or if the
number of characters is zero, no assignment is performed.

Related Keywords

IDX, LET

BASIC Keyword Dictionary 2-127

SYAL

O Exists in Development System
O Works Same in Development System
B Allowedin IF...THEN

The $CALL SYAL (ALlocate data file) statement creates a data file and optionally specifies the
beginning file size and size increment.

file name @

_

O

item Description Range

file name string expression —

directory number non-negative integer 0 through 1

file size numeric expression, truncated to an integer 0 through 32,767

size increment numeric expression, truncated to an integer 0 through 32,767

Examples

$CALL SYAL("PDAT")
%CALL SYAL(filename, 100, 10)
%$CALL SYAL("O:MLPB", 200)

Description

Thefile size and size increment values are in paragraphs, or blocks of 16 bytes. The file size indicates
the size ofthe file when it is first created. The size increment indicates the increment used to increase
the file size when a write operation attempts to write past the end ofthefile (that is, when the current
file size is exceeded). For example, a size increment of three (3) means that when the file size is
exceeded, the file will expand by as many three-paragraph increments (48 bytes) as are needed to
accommodate the data being addedto the file.

2-128 BASIC Keyword Dictionary

...SYAL

If the file size is not specified, it defaults to 0. If the size increment is not specified, it defaults to 1. A

newly-created datafile is automaticallyinitialized to all nulls. New space addedto the file (as defined
by the size increment) is also initialized to all nulls.

$CALL SYAL only creates a datafile. To be accessed, a datafile must be opened with OPEN #.

Differences Between Development System and Handheld. SYAL is not implemented
on the development system.

Related Keywords

CLOSE #,0PEN #

BASIC Keyword Dictionary 2-129

SYBC
 T

O Exists in Development System
0O Works Same in Development System
B Allowedin IF...THEN

The ¥CALL SYBC (set bar-code port configuration) statement sets the data communications
configuration used by the bar-code port (channel 2).

ED~GD D e~ OGO

key

sbort |=(")—{ beep enavie (O~

Item Description

baud rate specifier

parity specifier

key-abort specifier

beep-enable specifier

terminate character

numeric expression, truncated to an integer

numeric expression, truncated to an integer

numeric expression, truncated to an integer

numeric expression, truncated to an integer

string expression consisting of one character

1 through 7

0 through 3

0 through 1

0 through 1

Examples

$CALL SYBC(7,2,1,0)
%$CALL SYBC(baud,parity, keyabort,beepenable,terminators$)

Description

$CALL SYBC sets data communications configuration of the bar-code port by specifying the baud
rate, parity, key abort option, beep enable, and terminate character with specifiers defined in the tables
on this and the following pages. If the data communications configuration is not defined by a $¥CALL
SYBC statement,it defaults to 9600 baud, 0 parity, good-read beep enabled, key abort enabled, and no

2-130 BASIC Keyword Dictionary

...SYBC

terminate character (equivalent to $¥CALL SYBC(1,0,1,1,"")).

The data communications configuration used by the bar-code port is the one in effect before the bar-
code portis opened. Therefore, ¥CALL SYBC should be executed before OPEN #2.

The default data communications configuration is independent ofthe configuration set by the B (baud
rate) operating system command. If you have used the B command, it will have no effect on the
behavior of the bar-code port when running a BASIC program.

Baud Rate Specifier. The baud rate specifiers for the bar-code port follow the same convention
as those for the serial port. Options are:

Specifier Baud Rate

1 (default) 9600

2 4800

3 2400

4 1200

5 600

6 300

7 150

Parity Specifier. Four parity options are available:

Specifier Parity

0 (default) 0 parity

1 1 parity
2 even parity

3 odd parity

Key-Abort Specifier. The key-abort feature is designed to simplify handling of unreadable bar-
codes. It enables the application program to allow for keyboard entry of what is usually bar-code infor-
mation.

If key abort is enabled, pressing a key will end input from the bar-code port and return control to the
application program. The character for the key pressed will be in the key buffer. The value of the
input variable differs whether the GET # or INPUT # statement was used. With GET #, the
string variable is loaded with the null string. With INPUT #, the variable’s contents remains whatit
was before the INPUT # statement was executed.

BASIC Keyword Dictionary 2-131

...SYBC

Specifier Key Abort

0 Key abort disabled

1 (default) Key abort enabled
The five-step procedure outlined below provides a way for the application program to check whether a
key abort has occurred. It works for both GET # and INPUT #.

L

2.

3.

Invoke error trapping using the ¥CALL SYER statement.

Set the error-number variable to 0.

Set the input variable to the null string, This is required for INPUT #, but optional for
GET #.

Read the data using GET # or INPUT #.

Check the input and error-number variables. If the input variable is null and the error-number
variable is 0, then bar-code entry was aborted from the keyboard.

Beep-Enable Specifier. If beep is enabled, the HP-94 will sound whenit receives data from the
bar code port.

Specifier Good-Read Beep

0 good-read beep disabled

1 (default) good-read beep enabied

Terminate Character. The optional terminate character specifies what character will signal the
end of incoming data. The terminate character can be any character except null (ASCII 00h); specify-
ing the null character or a null string is equivalent to having no terminate character. If no terminate
characteris specified, a delay of 104 milliseconds after receipt of a character ends the input operation.

NOTE The command SYBC and its associated handler HNBC are not alwaysresident in the
handheld. Be sure to down-load these files from the development system to the han-
dheld if you are using them. See the Utilities Reference Manual chapter 3 “HXC File
Conversion Ultility” and chapter 6 “HXCOPY File Copy Utility” for details.

The bar-code handler for the bar-code port (HNBC) will not work with so-called
“dumb” bar-code devices (devices that return only a pulse train oflight and dark tran-
sitions).

HNBC will return error 205 if it is waiting for bar-code data and the bar-code device
becomes disconnected.

2-132 BASIC Keyword Dictionary

...SYBC

Differences Between Development System and Handheld. SYBC is not implemented

on the development system.

Related Keywords

CLOSE #,0PEN #,SYSP, SYWN

BASIC Keyword Dictionary 2-133

SYBP

O Exists in Development System
DO Works Same in Development System
W Allowedin IF...THEN

The $CALL SYBP statement produces an audible tone.

duration

item Description Range

duration numeric expression, truncated to an integer and -32,768 through +32,767
modulo 256 to evaluate within the range 0

through 255

tone numeric expression, truncated to an integer 0 through 1

: (default=0)

Examples

$CALL SYBP(15)
$CALL SYBP(5,1)

Description

The duration is in tenths of seconds,allowing a range of 0.1 through 25.5 seconds. There are two tones:
0 specifies the low tone (approximately 600 Hz), and 1 specifies the high tone (approximately 1200 Hz).

Tones for 0.5 seconds can also be generated by including display control codes in strings sentto the
display with the PRINT, PRINT USING, PRINT # O USING, INPUT MSG, and
INPUT #0, MSG statements. Sending an ASCII 07h to the display (with ASC$ (7) or &07)
produces a low tone, and sending an ASCII 06h to the display (with ASCS$ (6) or &06) produces a
high tone.

As soon as $CALL SYBP starts the beeper, the BASIC program then continuesto run; that is, the
program does not wait for the beep to finish before resuming execution. Consequently, ¥CALL
SYBP can be executed again while the beeper is beeping. If the tone specified is different than the
tone in progress, beeping will continue at the high tone and duration. The high tone and its duration
will always take precedence, regardless ofthe order in which the tones are specified. If the new tone is
the same as the tone in progress, beeping will continue at either the remaining duration or the new
duration, whichever is longer.

2-134 BASIC Keyword Dictionary

.-..SYBP

Differences Between Development System and Handheld. SYBP is not implemented

on the development system.

Related Keywords

INPUT, INPUT #, PRINT, PRINT #, PRINT USING, PRINT #...USING

BASIC Keyword Dictionary 2-135

SYEL

O Exists in Development System
O Works Same in Development System
B Allowedin IF...THEN

The $CALL SYEL (ElectroLuminescent backlight timeout) statement sets the time period after
which the electroluminescent display backlight will be turned off automatically.

D)~ —~O—~Z -0

item Description Range

timeout value numeric expression, truncated to an integer 0 through 1,800
(default=120).

Examples

$CALL SYEL(15)
$CALL SYEL(O)

Description

The timeout value is defined to be the time period after which the electroluminescent backlight will be
turned off automatically. The timeout value is in seconds, allowing a range of 1 second to 30 minutes. A
timeout value of 0 specifies that the backlight will never turn off. If the backlight timeout is not
specified by ¥CALL SYEL, the timeout value defaults to 120 seconds (two minutes).

SYEL does not turn the backlight on or off - it only sets the duration of the automatic turn off of the
backlight. To turn on the backlight, use the display control character 1Eh (e.g., PRINT "&1E";),
or hold down the key for one second. To turn off the backlight, use the display control charac-
ter 1Fh (e.g., PRINT "&1F";), or let the backlight turn off automatically.

CAUTION Leaving the backlight on continuously or for long periods of time (greater than 5
minutes) will reduce the life of the backlight.

If the backlight is on when SYEL is executed, the backlight must be turned off (or turn itself off
automatically after the previous timeout expires) before the new timeout will be in effect.

2-136 BASIC Keyword Dictionary

.-.SYEL

Differences Between Development System and Handheld. SYEL is not implemented
on the development system.

Related Keywords

SYTO

BASIC Keyword Dictionary 2-137

SYER

O Exists in Development System
O Works Same in Development System
B Allowedin IF...THEN

The $CALL SYER (ERror number) statement enables error trapping for numeric errors or restores

default error processing.

 XCALL o specifier r =@—>

O variable

Item Description Range

specifier numeric expression, truncated to an integer. [0 through 1

error-number variablejnumeric variable any valid name

Examples

%$CALL SYER(O, error)
$CALL SYER(1)

Description

The specifier can have two values, defined in the table below.

SYER Specifiers

Specifier Meaning

0 Causes numeric errors to be ignored, and assigns the error numberto the
error-number variable

1 Causes numeric errors to be processed normally.
The handheld can produce two types of errors: numeric and non-numeric. Numeric errorsare errors
identified by a three-digit number, and non-numeric errors by two alphabetic characters. The most
important distinction between numeric and non-numeric errorsis that numeric errors can be trapped
under program control, whereas non-numeric errors cannot be trapped.

2-138 BASIC Keyword Dictionary

...SYER

Numeric Errors. When no alternate behavior has been specified for error processing, numeric

errors cause the BASIC program to halt. Control returns to the operating system with the message

Error NNN LLLLL PPPP, where NNN is the error number, LLLLL is the BASIC program

line number, and PPPP is the name of the BASIC program or subprogram in which the error

occurred. The SYERstatement can specify that these errors be ignored, so that program execution

continues uninterrupted. Some numeric errors (for example, error 200 low battery) need additional

setup to avoid halting the program. When a numeric error does occur after ¥CALL SYER with

specifier 0 has been executed, the error numberis assigned to the error-number variable, allowing pro-

grammatic error handling or error trapping. The program name, line number, channel number, and

1/0 length of the most recent error can be determined with the SYIN statement.

Before executing a statement that may cause a numeric error, set the error numbervariable to 0. After
the statementis executed, if the variableis still 0, no error occurred. If the variable is not 0, its contents

will be the error number.

The error-number variable will always contain the value of the most recent numeric error. If a state-
ment causes an error, and the program does not check for the error, the variable may be misinter-
preted later(i.e., a subsequent statement does not produce an error when one is expected, but the
error number variablestill contains the error from the previous error-causing statement). Be sure to
set the error-numbervariable to 0 before the statement ofinterest, and check the variable immediately
afterwards to avoid losing its information. If the program traps errors, but fails to check if they
occurred, errors could be missed.

The error-processing behavior defined by SYERis local to the program in which it is specified.
%CALL SYER with specifier 0 must be called in each subprogram in orderto enable error trapping

for that subprogram.

Non-Numeric Errors. SYERhas no effect on non-numeric errors. These errors always cause the
program to halt, and return control to the operating system with the message Error MM LLLLL
PPPP, where MM is the error message, LLLLL is the BASIC program line number, and PPPP is the
name of the BASIC program or subprogram in which the error occurred.

Refer to the error appendix for a list of all numeric and non-numeric errors.

Error Trapping and Interrupt Routines. ¥CALL SYLBand %CALL SYSW specify the
location of interrupt routines that will be executed when low battery, power switch, or timeoutinter-
rupts occur. These routines will only be executed if §CALL SYER with specifier 0 has been exe-
cuted in the program or subprogram which defines the interrupt routine (contains the defining $¥CALL
SYLBor %CALL SYSW). For error trapping to be enabled within the interrupt routineitself,
%CALL SYER must also be executed in the interrupt routine.

The interrupt routines may be in a different program than the one executing when the interrupt occurs.
To allow examining the error numberin such an interrupt routine, the error-number variable should be
passed (by reference) to different subprograms as a parameter when the subprogram is CALLed. That
way any changesto the error-number variable in a subprogram will be indicated in any calling program
that passed the variable.

Referto the keyword descriptions of SYSW and SYLB for more information on interrupt routines.

BASIC Keyword Dictionary 2-139

...SYER

Differences Between Development System and Handheld. SYER is not implemented
on the development system.

Related Keywords

SYIN, SYLB, SYSW, SYTO

2-140 BASIC Keyword Dictionary

SYIN

Exists in Development System O
Works Same in Development System O

Allowedin IF...THEN =

The $CALL SYIN (error INformation) statement returns, through the reference parameters, infor-
mation about the most recent numeric error.

item Description Range

program name variable string variable any valid name

line number variable numeric variable any valid name

channel number variable numeric variable any valid name

I/0 length variable numeric variable any valid name

Examples

$CALL SYIN (badprog$)
$CALL SYIN(badprog$, badline, badchannel)
$CALL SYIN(interprog$, interline, interchannel, interlength)

BASIC Keyword Dictionary 2-141

.-.SYIN

Description

The $CALL SYIN statementassigns to the program name variable the file name of the BASIC pro-
gram or subprogram that was executing when the most recent numeric error occurred. $CALL
SYINassigns to the optional line number variable the BASIC line number where the error occurred.

The optional channel number variable receives the channel number that was being used when the error
occurred. If the error occurred while an 1/0 statement was executing for channels 0-4 (GET #,
INPUT, INPUT #, INPUTS, PRINT #, PRINT #...USING,or PUT #),the channel
number saved will be for the appropriate device or file. If no 1/0O was occurring when the error
occurred, the channel number variable will be set to 0.

If the error occurred during the GET #, PRINT #, PRINT #...USING, or PUT # state-
ments for channels 0-4, ¥CALL SYIN assigns to the optional I/O length variable the number of
bytes of data that had been input or output up to that point. By the time the error occursfor these
statements, those bytes will have been input (placed in the input variable) or output. If the error
occurred for any other I/O statement, the I/O length will be 0 because the data received for that vari-
able will have been discarded. In all cases, the 1/O length will accurately reflect either the number of
bytes input (placed in the input variable) or the number of bytes output when the error occurred.

The I/0 length is accurate only for the variable that was being processed when the error occurred. If
an I/O statement has more than one variable in its variable list, there is no way to tell which variable

was being processed when the error occurred.

If no error has occurred before §CALL SYIN is executed, the values assigned default to zero and
the null string,

For details on how the different I/O statements behave when they end because of an error, refer to the
keyword description for each keyword.

Differences Between Development System and Handheld. SYIN is not implemented
on the development system.

Related Keywords

GET #, INPUT, INPUT #, INPUTS, PRINT #, PRINT #...USING, PUT #, SYER,
SYLB, SYSW, SYTO

2-142 BASIC Keyword Dictionary

SYLB

Exists in Development System O
Works Same in Development System O

Allowedin TF...THEN ®

The $CALL SYLB (Low Battery behavior) statement specifies program behavior when a low bat-
tery condition occurs and error-trapping is enabled.

item Description Range

specifier numeric expression, truncated to an integer 0 through 1

line number numeric expression, truncated to an integer 0 through 32,767

Examples

$CALL SYLB(0, 1000)

$CALL SYLB(1)
$CALL SYLB(0, lineno)

Description

The default behavior when a low battery condition occursis for the handheld to stop whatit is doing as
quickly as possible. It halts any running program, shuts off the power to I/O devices such as the serial
and bar code ports, turns off the electroluminescent display backlight, stops blinking the cursor and
scanning the keyboard, and displays the message Error 200. The handheld will then wait for the
power switch to be pressed to turn the machine off. The next time the power switch is pressed to turn
the handheld on, it will cold start (refer to SYPO for details).

%CALL SYLB specifies alternate behavior for a low battery condition by identifying the location of a
routine to process interrupts caused by a low battery. This routine will be executed when the handheld
is already on and the main (NiCd) battery voltage drops below a certain level. (If the main battery is
below that voltage level while the handheld is off, the machine will not turn back on until the battery
has been charged enough to bring its voitage above thatlevel.)

BASIC Keyword Dictionary 2-143

...SYLB

When the low battery condition occurs,it causes an error and, if error-trapping is enabled by $¥CALL
SYER, causes program execution to branch to the specified interrupt-processing routine. The SYLB
specifier determines the behavior during program execution when the low battery occurs. The specifier
can have two values, defined in the table below. Unlike the power switch and timeout, processing of
low battery cannot be disabled.It is always enabled (although it may only take the default action).

SYLB Specifiers

Specifier

0

Defines an interrupt-processing routine starting at the specified line number. When the low
battery occurs, the program will complete the current BASIC statement (notline), and
transfer control to this interrupt-processing routine. If I/O is occurring for channels 0-4, 1/0
will be aborted when the interrupt occurs. If 1/O is occurring for channels 5-15, the current
I/0 statement will complete its operation (unless the battery is totally exhausted).

Cancels the specified interrupt-processing routine. Restores low battery behavior to either
the last behavior defined by the a previous calling program or to the default behavior.

The I/O statementsthat can be interrupted during I/O to channels 0-4 are INPUT, INPUT #,
INPUTS,GET #, PRINT #, PRINT #...USING,and PUT #.

When the low battery interrupt routine begins to execute, nothing will have changed (except that I/O
to channels 0-4 will have been aborted). That is, the devices and files will still be open, the display
backlight will still be on, the cursor will still be blinking, and the keyboard will still be scanned.

Error Trapping and Interrupt Routines. $CALL SYLB defines the location of interrupt
routine that will be executed when low battery occurs. This routine will be executed only if ¥CALL
SYER with specifier 0 has been executed in the program or subprogram which defines the interrupt rou-
tine (contains the defining ¥CALL SYLB). The following table shows the behavior of low battery
depending on whether SYLB and SYER are used together.

SYLB and SYER Interaction

Usage Low Battery Behavior

SYER only

SYLB only

Neither SYLB or SYER|Program halts with Error 200.

Both SYLB and SYER |Program execution transfers to the interrupt-processing routine. If 1/0

Program halts with Error 200.

Program halts with Error 200.

to channels 0-4 was interrupted, error number variable set to 200, and
SYIN variables updated.

2-144 BASIC Keyword Dictionary

...SYLB

Forerror trapping to be enabled within the interrupt routine itself, $CALL SYER with specifier 0
must also be executed in the interrupt routine.

The error number variable is always local to the currently executing program or subprogram (in this
case, the interrupted program). To allow examining the error numberin an interrupt routine thatis in
a different program than the interrupted program (see next topic), the error number variable should be
passed by reference to different subprograms as a parameter when the subprogram is CALLed. That
way any changesto the error variable in a subprogram will be indicated in any calling program that
passed the variable.

Global and Local Control. SYLB provides both global and local control of the behavior of the
power switch and timeout. Global control occurs when an interrupt-processing routineis defined in the
main program. This routine will be in effect whenever the main program or any subprogram it calls is
executing. Local control occurs when a subprogram defines a new interrupt-processing routine. The
new routine will be in effect for that subprogram and for any subprogramsit calls, until the subprogram
cancels the interrupt routine (with specifier 1) or the subprogram ends. Then the low battery behavior
will revert back to either the last behavior defined by a previous calling program (which may be the
global behavior), or to the default behavior if no previous caller has defined an interrupt routine.

This local-versus-global controlis true no matter how deep subprograms are nested. Thatis, an
interrupt-processing routine in a calling program is no longer in effect when the called subprogram
definesits own interrupt-processing routine, but is reactivated when the subprogram cancels its routine
or ends.

Automatic Power Off After Low Battery. The low battery condition only occurs once, when
the main (NiCd) battery voltage drops below a certain level. At that point, the program has two to five
(2-5) minutesleft before the battery voltage drops so low that the handheld turns itself off automati-
cally without warning. (The low battery condition will not occur again until the handheld has been
turned off and back on after the battery has been recharged enough to raise its voltage above the low
battery level.)

The actual amount of time available depends on what is happening when the low battery condition
occurs. For example, the display backlight takes more power, as does the HP 82470A RS-232C Level
Converter (if one is connected to the serial port), so less operating time will be available if these are
on. The time also depends on how much the battery was charged during its last charging cycle, the
ambient temperature, and many other factors. Because the remaining operating time is variable, the
program should respond to the low battery interrupt as rapidly as possible by ending its activity grace-
fully (complete file updates that were in progress, etc.), notifying the user that it is necessary to
recharge the main battery, and turning the power off with $CALL SYPO.

If the program continues operating until the handheld turns itself off automatically, the effect is as if
the reset switch was pressed. No data in data files will be lost, since the memory backup batteries will
keep memory intact, but the handheld will cold start the next time it is turned on. This means that any
data in program variables that did not get saved in a data file will be lost.

Distinguishing Between Low Battery and Power Switch. An interrupt-processing routine
can determine which event started its execution by looking at the error variable. However, the variable
will be set to the low battery error, 200, only when I/O to channels 0-4 is interrupted. If low battery
occurs during execution of non-1/O BASIC statements,it is not considered an error condition, so the
error variable will not be changed from its current value. Consequently, the value in the error variable
may not give a true indication of whether or not low battery occurred.

BASIC Keyword Dictionary 2-145

...SYLB

Note: the power switch interrupt has the same characteristics as the low battery interrupt. It can occur
at any timein a program, and will only be considered an error (and thus set the error variable to the
power switch error, 119) if 1/O to channels 0-4 is interrupted. It is recommended that you define the
low battery interrupt routine to be the different than the power switch interrupt routine if you need to
distinguish which event caused the interrupt.

Data File Integrity. When a low battery interrupt occurs during execution of non-I/O BASIC
statements, the current statement will finish executing before controlis transferred to the interrupt-
processing routine. Only BASIC statements performing I/O to channels 0-4 will be interrupted, and
will not complete their I/O, because of low battery interrupts (aborted 1/0 is discussed in the keyword
descriptions for the 1/0 statements). If data is being written into a file, the write operation will be com-
pleted before the interrupt routine begins to execute. You do not have to worry aboutfiles being cor-
rupted because of a partially-completed (interrupted)file write operation.

However, you do have to worry aboutfiles being properly updated if the program executesseveral file
write statements, and the interrupt occurs before all the statements have been completed. In that situa-
tion,if the program turns off the machine and specifies a subsequent cold start ($CALL
SYPO (0)), the file update will be incomplete. For this reason, you may want to write your applica-
tion so that it completes the file update operation before turning off the power. (At a subsequent warm
start, the program will continue execution, and can then complete the file update process with no loss
of file integrity.)

Behavior During Interrupt-Processing Routines. The global control of the low battery
means that program execution will transferto the interrupt-processing routine even if the interrupt
occurs in a different subprogram than the one containing the interrupt routine. Because this is effectively a

subroutine call that can cross program boundaries, RETURN cannot be used to return from theinter-
rupt routine to the program that was executing when the interrupt occurred. Instead, ¥CALL SYRT

must be used to return from the interrupt routine.

The CALL statement will give an errorif it is used within an interrupt-processing routine. If the END
statementis executed in an interrupt-processing routine, the program or subprogram will end and
return control back to the operating system (notto the calling (sub)program).

With the previous exceptions, any BASIC statement can be executed in an interrupt routine, including
$CALL SYLB (and $CALL SYSW) with any specifier. Once the interrupt routine ends, any sub-
sequent interrupt will be processed according to conditions defined by the most recently executed

SYLB statement.

New interrupts can still occur while an interrupt-processing routine is executing. However, they do not
cause that or any other interrupt routine (such as power switch) to be executed. During execution of
non-I1/O BASIC statements in an interrupt routine, new interrupts are not processed until the interrupt
routine ends. Because ofthis, interrupt routines should be as short as possible.

During I/0 to channels 0-4 in an interrupt routine, new interrupts still cause I/O to be aborted and the
error numbervariable to be changed, but the interrupt routineitself is not reexecuted. (Recall that for
this to occur, $CALL SYER with specifier 0 must also be executed in the interrupt routine.)

An interrupt-processing routine has a separate READ data pointer than the one used in the non-
interrupt portion of the program. All DATA statementsare treated identically, regardless of where
they appear in the program (interrupt routine or non-interrupt routine). When the READ statementis
executed in an interrupt-processing routine, it will start reading at the first DATA statement in the pro-
gram, regardless how many data items had been read before the interrupt routine was executed. When

2-146 BASIC Keyword Dictionary

SYPO

O Exists in Development System
O Works Same in Development System
B Allowedin IF...THEN

The $CALL SYPO (Power Off) statement programmatically turns off the handheld.

DGO (D

item Description Range

specifier numeric expression, truncated to an integer 0 through 1

Examples

$CALL SYPO(warm)
$CALL SYPO(0)

Description

The specifier indicates the manner in which the current program should bestarted the next time the
powerswitch is pressed to turn the handheld on. Specifier 0 causes the handheld to cold start the pro-
gram called MAIN from the beginning; specifier 1 causes the handheld to warm start the current pro-
gram from the statement following the ¥CALL SYPO statement. The meanings of the terms cold
start and warm start are defined in the following table:

2-148 BASIC Keyword Dictionary

...SYPO

Handheld Restart Behavior

Cold Start (defauit) Warm Start

Display cleared

1/0 haited

Key buffer and serial port buffer cleared

Program named MAIN restarts from beginning

All data files closed

Serial, bar-code and expansion ports closed

Electroluminescent backlight turned off

BASIC variable contents lost

Allocated scratch space for assembly language pro-

grams reclaimed

Cursor turned on as blinking underline ()

Keyboard set to numeric mode (unshifted)

Electroluminescent backlight timeout value set to
120 seconds

Power switch behavior set to defaulit

Handheld timeout value set to 120 seconds

Low battery behavior set to default

Display cleared (same as cold start)

1/0 halted (same as cold start)

Key buffer and serial port buffer cleared (same as
cold start)

Current program restarts from statementafter
%$CALL SYPO

Previously open data files remain open

Previously open serial, bar-code and expansion
ports remain open

Electroluminescent backlight remains on

BASIC variable contents preserved

Allocated scratch space for assembly language pr¢
grams preserved

Cursor status unchanged

Keyboard status unchanged

Electroluminescent backlight timeout value
unchanged

Power switch behavior unchanged

Handheid timeout value unchanged

Low battery behavior unchanged

Cold start behavior is provided to completely restart an application from the beginning. Warm start
behavior is provided to continue an application from where it was interrupted. For most applications,
the only aspect that must be restored after a warm start is the contents of the display and continuation
of 1/0,if appropriate.

If the restart behavior is not specified by a $CALL SYPO statement,it defaults to cold start
behavior.

Differences Between Development System and Handheld. SYPO is not implemented
on the development system.

Related Keywords

SYLB, SYSW

BASIC Keyword Dictionary 2-149

SYPT

O Exists in Development System
00 Works Same in Development System
B Allowedin IF...THEN

The $CALL SYPT (set PoinTer) statementsets the data file pointer of the specified channel.

channel
number

item Description Range

channel number numeric expression, truncated to an integer 5 through 15

offset numeric expression 0 throughP

Examples

$CALL SYPT(channel)
%$CALL SYPT(15, position)

Description

The data file pointer affected is the one associated with the data file specified by the channel number.
The data file must have been OPEN ed before SYPT can move the pointer.

If no offset is included, the data file pointeris set to the end of the data in the file (EOD), which may

also be the end ofthefile itself (EOF). If an offset is included, the data file pointeris set to the
number of bytes specified by the offset from the beginning ofthe file (offset is relative to 0).

$CALL SYPT will give an error if the specified offset is beyond EOD.

Differences Between Development System and Handheld. SYPT is not implemented

on the development system.

Related Keywords

EOF,GET #, INPUT #, INPUT$, OPEN #, PRINT #, PRINT #...USING,PUT #

2-150 BASIC Keyword Dictionary

The $CALL SYRS (set RS-232 configuration) statement sets the data communications

SYRS

Exists in Development System [0
Works Same in Development System O

Allowedin IF...THEN =H

configuration used bythe built-in serial-port handler.

baud rate handshakexeALL——=((sves O—{z5ez, —(—{seecitter —()

data format
specifier

null strip
specifier)

terminate
character

item Description

baud rate specifier

handshake specifier

data format specifier

null strip specifier

terminate character

numeric expression, truncated to an integer

numeric expression, truncated to an integer

numeric expression, truncated to an integer

numeric expression, truncated to an integer

string expression consisting of one character

1 through 7

0 through 1

0 through 15

0 through 1

Examplies

$CALL SYRS(4,1,11,0)
$CALL SYRS (baud,handshake,dataformat,nullstrip,terminators$)

Description

%CALL SYRS sets serial data communications configuration by specifying the baud rate, handshake,
data format, and null strip behavior with specifiers defined in the tables on this and the following
pages. If the data communications configuration is not defined by a ¥CALL SYRS statement,it
defaults to 9600 baud, XON/XOFF enabled, seven data bits, one stop bit, even parity, null strip

BASIC Keyword Dictionary 2-151

...SYRS

disabled, and no terminate character (equivalent to ¥CALL SYRS(1,1,6,0)).

The data communications configuration used by the serial port is the one in effect when the serial port
is opened. Therefore, ¥CALL SYRS should be executed before OPEN #1.

The default data communications configuration is independent ofthe configuration set by the B (baud
rate) operating system command. If you have used the B command,it will have no effect on the
behavior of the serial port when running a BASIC program.

NOTE The $CALL SYRS statementis for use only with the built-in serial port handler. If
your OPEN # statement specifies a different serial port handler, use an assembly-
language configuration subprogram for that handler. If you are using the bar-code
serial port handler, use ¥CALL SYSP for configuring the serial port.

Baud Rate Specifier

Specifier Baud Rate

1 (default) 9600

2 4800

3 2400

4 1200

5 600

6 300

7 150

Handshake Specifier

Specifier Handshake

0 XON/XOFF disabled

1 (default) XON/XOFF enabled

2-152 BASIC Keyword Dictionary

Data Format Specifier

..-SYRS

Specifier Word Length (bits) Stop Bits Parity

0 7 1 none

1 8 1 none

2 7 1 odd

3 8 1 odd

4 7 1 none

5 8 1 none

6 (default) 7 1 even

7 8 1 even

8 7 2 none

9 8 2 none

10 7 2 odd

11 8 2 odd

12 7 2 none

13 8 2 none

14 7 2 even

15 8 2 even

Note: the duplicates in the table are correct - specifier 0 matches specifier 4, 1 matches 5, 8

matches 12, and 9 matches 13.

For 7-bit data only, specifiers 1 and 5 are equivalent to a word length of 7, 1 stop bit, and O’s parity. For
7-bit data only, specifiers 8 and 12 are equivalent to a word length of 7, 1 stop bit, and 1’s parity.

Null Strip Specifier

Specifier Null Strip

0 (default)

1
null strip disabled

null strip enabled

When the null strip specifier is 1 (enable), null characters (ASCII 00h) are removed from the received

data stream.

The optional terminate character specifies what character will signal the end of incoming data, thereby
allowing variable length data input. The terminate character can be any character except null (ASCII
00h); specifying the null character or a null string is equivalent to having no terminate character.

The terminate characteris also appended to each item output by PRINT # and PRINT

#. . .USING. The optional end-of-line sequence sent by PRINT # and PRINT #...USING
(carriage return-line feed) is considered a separate item,so a terminate characteris sentafter that

BASIC Keyword Dictionary 2-153

...SYRS

sequence as well.

Serial Port Operation. If XON/XOFF handshaking is enabled,the handheld will take the follow-

ing actions: A single XON character (DC1,11h) will be transmitted when the serial portis opened

(with OPEN #1,""). One XOFF (DC3, 13h) will be sent for every character received in the 64-byte

receive buffer, starting when 48 bytes have been received. A single XON will be sent when the han-

dheld has read all the received data from the buffer. HXBASIC does not perform XON/XOFF

handshaking or receive-data buffering.

The hardware lines used by the default serial port device handler are RTS (request to send), DTR

(data terminal ready), and CTS (clear to send). When the serial port is opened, RTS and DTR are

raised. In addition, Vcc is supplied to power the HP 82470A RS-232C Level Converter. When the serial

portis closed (with CLOSE #1), RTS and DTR are lowered, and Ve is no longer supplied.

The handheld will not transmit data unless CTS has been raised by the external device. Error 218

will be reported if CTS remains low while attempting to transmit to indicate no device connected to the

handheld. Error 218 will also be reported if CTS drops in the middle of a transmission to indi-

cate a lost connection.

Thebuilt-in serial port handler uses full-duplex operation. Because of the way RTSis controlled, half-

duplex is not available with the built-in handler. Half-duplex operation is possible with an alternate

device handler that uses RTS to control the communication direction (see below).

The hardware in the handheld has the ability to control RTS and DTR, and to monitor CTS, DSR

(data set ready), and DCD (data carrier detect). The default serial port software does not take advan-

tage of this hardware to monitor DSR or DCD, nor doesit provide control for RTS and DTR other

than described above. An alternate serial port handler could be written in assembly language that pro-

vides the ability to observe or ignore any or all ofthese lines, using whatever convention is required by

the devices connected to the serial port. Refer to the Technical Reference Manual for details on writing

device handlers and controlling and monitoring the serial port controllines.

Differences Between Development System and Handheld. SYRSis not implemented

on the development system.

NOTE Do not use SYRS for bar-code readersattached to the serial port. Use SYSP
instead.

Related Keywords

CLOSE #,0PEN #

2-154 BASIC Keyword Dictionary

SYRT

Exists in Development System 0O
Works Same in Development System O

Allowedin IF...THEN =

The $CALL SYRT (interrupt ReTurn) statement resumes execution of an interrupted program at
the statement (or line) after the last one completed before the interrupt occurred.

D))

Examples

%$CALL SYRT

Description

$CALL SYRT is used to end an interrupt routine that specifies behavior for low battery, power
switch, or timeout. When one ofthese conditions occurs, the interrupt-processing routine defined by
the %CALL SYLBor $CALL SYSW statements will be executed. When ¥CALL SYRTis
executed to end the interrupt routine, control will transfer to the statementafter the last one completed
before the interrupt occurred (on the same line,if the interrupt occurred in a multistatementline).
However,if one ofthese events occurred during I/O to channels 0-4, the 1/0 is aborted. $¥CALL
SYRT will then transfer controlto the line (not statement) after the one which was interrupted. Refer
to the keyword descriptionsfor the I/O statements (INPUT, INPUT #, INPUTS, GET #,
PRINT #,PRINT #...USING,and PUT #) for a discussion of aborted 1/O.

Because the low battery or power switch interrupts can occur anywhere in a program (i.e., during I/O
or not), control will transfer to either the next statement or the next line after the interrupted line.
Since timeouts can only occur during I/O to channels 0-4, control will always transfer to the next line
after the interrupted line.

Differences Between Development System and Handheld. SYRT is not implemented
on the development system.

Related Keywords

RETURN, SYLB, SYSW

BASIC Keyword Dictionary 2-155

SYSP

O Exists in Development System
O Works Same in Development System
B Allowedin IF...THEN

The $CALL SYSP (set serialport configuration) statementsets the data communications
configuration used by the serial port (channel 1) for use with a bar-code reader.

ED~ED O~ e~ O—~GmD)—~0O
abort (" bese ensb1e —()—~

item Description Range

baud rate specifier numeric expression, truncated to an integer 1 through 7

parity specifier numeric expression, truncated to an integer 0 through 3

key-abort specifier numeric expression, truncated to an integer 0 through 1

beep-enable specifier |numeric expression, truncated to an integer 0 through 1

terminate character string expression consisting of one character —

Examples

$CALL SYSP(7,2,1,0)
$CALL SYSP(baud,parity,keyabort,beepenable,terminators$)

Description

$CALL SYSP sets data communications configuration of the serial port by specifying the baud rate,

parity, key abort option, beep enable, and terminate character with specifiers defined in the tables on

this and the following pages. If the data communications configuration is not defined by a $¥CALL
SYSP statement,it defaults to 9600 baud, 0 parity, good-read beep enabled, key abort enabled, and no

2-156 BASIC Keyword Dictionary

...SYSP

terminate character (equivalent to ¥CALL SYSP(1,0,1,1," *)). The handler allows opera-

tion with devices configured for either one or two stop bits.

NOTE The $CALL SYSP statementis for use only with the HNSP serial port handler.

If your OPEN # statementspecifies a different serial port handler, use an

assembly-language configuration subprogram for that handler. If you are using the

default serial port handler, use ¥CALL SYRS instead.

The data communications configuration used by the serial port is the one in effect before the serial

port is opened. Therefore, §CALL SYSP should be executed before OPEN #1.

The default data communications configuration is independent of the configuration set by the B (baud

rate) operating system command. If you have used the B command,it will have no effect on the

behavior ofthe serial port when running a BASIC program.

Baud Rate Specifier. The baud rate specifiers for the serial port follow the same convention as

those for the serial port. Options are:

Specifier Baud Rate

1 (default) 9600

2 4800

3 2400

4 1200

5 600

6 300

7 150

Parity Specifier. Four parity options are available:

Specifier Parity

0 (default) 0 parity

1 1 parity
2 even parity

3 odd parity

Key-Abort Specifier. The key-abort feature is designed to simplify handling of unreadable bar-

codes. It enables the application program to allow for keyboard entry of whatis usually bar-codeinfor-

mation.

BASIC Keyword Dictionary 2-157

...SYSP

Specifier Key Abort

0 Key abort disabled

1 (default) Key abort enabled
If key abort is enabled, pressing a key causes input from the bar-code port to end and control to return
to the application program. The character for the key pressed will be in the key buffer. The value of
the variable input differs whether the GET # or INPUT # statement was used. With GET #, the
string variable is loaded with the null string. With INPUT #, the variable’s contents remains whatit
was before the INPUT # statement was executed.

Thefive-step procedure outlined below provides a way for the application program to check whether a
key abort has occurred. It works for both GET # and INPUT #.

1. Invoke error trapping using the ¥CALL SYER statement.

2. Set the error-number variable to 0.

3. Set the inputvariable to the null string. This is required for INPUT #, but optional for
GET #.

4. Read the data using GET # or INPUT #.

Check the input and error-number variables. If the input variable is null and the error-number
variable is 0, then bar-code entry was aborted from the keyboard.

The handheld will not transmit data unless CTS has been raised by the external device. Error 218
will be reported if CTS remains low while attempting to transmit to indicate no device connected to the
handheld. Error 218 will also be reported if CTS drops in the middle of a transmission to indi-
cate a lost connection.

Beep-Enable Specifier. If beep is enabled, the HP-94 will sound whenit receives data from the
serial port.

Specifier Good-Read Beep

0 good-read beep disabled

1 (default) good-read beep enabled

Terminate Character. The optional terminate character specifies what character will signal the
end of incoming data. The terminate character can be any character except null (ASCII 00h); specify-
ing the null character or a null string is equivalent to having no terminate character. If no terminate
characteris specified, a delay of 104 milliseconds after receipt of a character ends the input operation.

The terminate characteris also appended to each item output by PRINT # and
PRINT #...USING. The optional end-of-line sequence sent by PRINT # and
PRINT #...USING (') is considered a separate item, so a terminate characteris sent after
that sequence as well.

2-158 BASIC Keyword Dictionary

...SYSP

NOTE Unlike SYRS and the built-in serial port handler, the command SYSP and its asso-
ciated handler HNSP are notresidentin the handheld. Be sure to down-load these
files from the development system to the handheld. See the Utilities Reference
Manual chapter 3 “HXC File Conversion Utility” and chapter 6 “HXCOPY File
Copy Utility” for details.

The bar-code handler for the serial port, HNSP will not work with so-called “dumb”
bar-code devices (devices that return only a pulse train of light and darktransitions).

Differences Between Development System and Handheld. SYSP is not implemented

on the development system.

Related Keywords

CLOSE #,0PEN #,SYBC, SYWN

BASIC Keyword Dictionary 2-159

SYSW

O Exists in Development System
D Works Same in Development System
B Allowedin IF...THEN

The $CALL SYSW (power SWitch behavior) statement specifies program behavior when the

key is pressed or a timeout occurs.

specifier

item Description Range

specifier numeric expression, truncated to an integer. 0 through 3

line number numeric expression, truncated to an integer. 0 through 32,767

Examples

%$CALL SYSW(0, 1000)

$CALL SYSW(behavior)
$CALL SYSW(0, lineno)

Description

The default behavior when the power switch (key) is pressed or when timeout occursis for
the handheld to turn off. The next time the power switch is pressed to turn on the handheld,it will cold
start (refer to SYPO for details). ¥CALL SYSW specifies alternate behavior for the power switch
and timeout. This alternate behavior will take effect when the handheld is already on and the power
switch is pressed or the timeout occurs. (The effect of the power switch when the handheld is already
off is eitherto cold start or warm start the machine, depending on how the handheld was turned off.)

When $CALL SYSW is used to specify a routine to process interrupts caused by the power switch or
timeout, either event causes an error and,if error-trapping is enabled by ¥CALL SYER, causes pro-
gram execution to branch to the specified interrupt-processing routine. The SYSW specifier deter-
mines the behavior during program execution when the power switch is pressed or a timeout occurs.
The specifier can have four values, defined in the table below.

2-160 BASIC Keyword Dictionary

...SYSW

SYSW Specifiers

Specifier

0 Defines an interrupt-processing routine starting at the specified line number. When
the power switch is pressed (unless disabled) or a timeout occurs (unless disabled),
the program will complete the current BASIC statement (notline), and transfer control
to this interrupt-processing routine.if 1/0O is occurring for channels 0-4, I/O will be
aborted when the interrupt occurs.

Canceis the specified interrupt-processing routine. Restores power switch and
timeout behaviorto either the last behavior defined by a previous calling program or
to the default behavior (unless disabled).

Disables the power switch. The power switch is ignored when pressed, but a timeout

(unless disabled)is still processed by the specified interrupt-processing routine (or
the default behavior).

3 Enables the power switch. Restores its behavior as defined by the specified
interrupt-processing routine (or the default behavior).

The 1/O statements that can be interrupted during I/0O to channels 0-4 are INPUT, INPUT #,

INPUTS,GET #, PRINT #, PRINT #...USING,and PUT #.

Error Trapping and Interrupt Routines. $CALL SYSW defines the location of an interrupt
routine that will be executed when the power switch is pressed or timeout occurs. This routine will
only be executed if ¥CALL SYER with specifier 0 has been executed in the program or subprogram
which defines the interrupt routine (contains the defining $CALL SYSW). The following table shows
the behavior of the power switch and timeout depending on whether SYSW and SYER are used

together.

SYSW and SYER Interaction

Usage Power Switch Behavior Timeout Behavior

Neither SYSW nor SYER |Handheld turns off. Handheld turns off.

SYER only Handheld turns off. Handheld turns off.

SYSW only Program halts with Error 119. Program haits with Exrror 118.

Both SYSWand SYER |Program execution transfers to the Program execution transfers to the

interrupt-processing routine. if 1/0 to
channels 0-4 was interrupted, error
numbervariable set to 119, and
SYIN variables updated.

interrupt-processing routine. Error

number variable always set to 118,

and SYIN variables always updated.

BASIC Keyword Dictionary 2-161

...SYSW

For error trapping to be enabled within the interrupt routine itself, $CALL SYER with specifier 0

must also be executed in the interrupt routine. If it is not, the behavior of the power switch and timeout

during the routine will be identical to the “SYSW only” behavior in the previous table.

The error number variable is always local to the currently executing program or subprogram (in this

case, the interrupted program). To allow examining the error number in an interrupt routine that is in

a different program than the interrupted program (see next topic), the error number variable should be

passed (by reference) to different subprograms as a parameter when the subprogram is CALLed. That

way any changes to the error variable in a subprogram will be indicated in any calling program that

passed the variable.

Global and Local Control. SYSW provides both global and local control of the behavior of the

power switch and timeout. Global control occurs when an interrupt-processing routine is defined in the

main program. This routine will be in effect whenever the main program or any subprogram it calls is

executing. Local control occurs when a subprogram defines a new interrupt-processing routine. The

new routine will be in effect for that subprogram and for any subprogramsit calls. When the subpro-

gram ends, the power-switch and time-out behaviors revert to those in effect before the subprogram

was called.

This local-versus-global controlis true no matter how deep subprograms are nested. Thatis, an
interrupt-processing routine in a calling program is no longerin effect when the called subprogram
defines its own interrupt-processing routine, butis reactivated when the subprogram cancels its routine

or ends.

Interaction Between Power Switch and Timeout. The power switch and timeout interrupts

both cause the same interrupt routine to be executed. This is because frequently the desired behavior

will be the same for both situations. If the user tries to turn the handheld off (power switch), orif the

handheld tries to turn itself off (timeout), the program can treat both events identically. For example,

when waiting for keyboard input, either event could cause the program to save certain data or status,
and use $¥CALL SYPO to turn the machine off, perhaps specifying a subsequent warm start to allow
the user to return to the previousactivities.

Distinguishing Between Power Switch and Timeout. An interrupt-processing routine can
determine which event started its execution by looking at the error variable. However, the variable will
be set to the power switch error, 119, only when 1/O to channels 0-4 is interrupted. If the power switch
is pressed during execution of non-1/O BASIC statements,it is not considered an error condition, so
the error variable will not be changed from its current value. Consequently, the value in the error vari-
able may not give a true indication of whether or not the power switch was pressed.

Similarly, the error variable will only be set to the timeout error, 118, if a timeout interrupted 1/0 to

channels 0-4. Unlike the power switch, which can be pressed at any point in a BASIC program and still
transfer control to the interrupt routine, I/O to channels 0-4 is the only condition in which a timeout

can occur. Therefore,the best wayto distinguish which event invoked the interrupt routine is to check

if the error variable is set to the timeout error, 118. If so, timeout occurred. If not, the power switch

was pressed, since that is the only other event that can transfer control to the interrupt routine.

Note: the low battery interrupt has the same characteristics as the power switch interrupt. It can occur

at any time in a program, and will only be considered an error (and thus set the error variable to the

low battery error, 200) if I/O to channels 0-4 is interrupted. It is recommended that you define the low

battery interrupt routine to be different than the powerswitch interrupt routine if you need to distin-

guish which event caused the interrupt.

2-162 BASIC Keyword Dictionary

...SYSW

Disabling the Power Switch or Timeout. There aresituations in which the power switch and
timeout need to be enabled and disabled independently of each other. For example, the program may
want to ensure that certain critical operations (such as updating importantfiles or data communica-
tions) do not get interrupted by the user pressing the power switch. To allow this additional power
switch control, specifier 2 disables the power switch, and specifier 3 enables the switch again.

The timeout will still be in effect while the power switch is disabled. This can be used in situations (par-
ticularly data communications) where there is no keyboard input, but other 1/0 is occurring, suchas to
the serial port. The program can use the timeout to monitor long 1/O operations with a local
interrupt-processing routine, and the power switch will not have any effect.

If it is desired to prevent the handheld from turningitself off, the timeout can be disabled with $CALL
SYTO (0) . The power switch will still be in effect while the timeout is disabled, allowing the user the

option of turning off the machine (depending on the whether or notthere is an interrupt-processing
routine defined for the power switch). The timeout can be enabled by providing a timeout value. The
default timeout is 120 seconds (two minutes), set by ¥CALL SYTO(120).

Both the power switch and timeout can be disabled, so the machine will neither respond to the power
switch or turn itself off. While either or both events are disabled, you can still define or cancel the

interrupt-processing routine with specifiers 0 or 1. The last behavior of the power switch or timeout
will take effect when either the power switch or timeout are enabled again, even if the behavior was
changed while the events were disabled.

When the power switch is disabled, particularly during program development and debugging, you may
not be able to turn the handheld off. Just use a pencil or paper clip to push the reset switch (the small
hole next to the power switch). The next time the handheld turns on after being turned off by the reset
switch, it will cold start.

Data File Integrity. When a power switch or timeout interrupt occurs during execution of non-1/O
BASIC statements, the current statement will finish executing before controlis transferred to the
interrupt-processing routine. Only BASIC statements performing I/0 to channels 0-4 will be inter-
rupted, and will not complete their /O, because of power switch or timeoutinterrupts (aborted I/0 is
discussed in the keyword descriptions for the I/O statements). If data is being written into a file, the
write operation will be completed before the interrupt routine begins to execute. You do not have to
worry about files being corrupted because of a partially-completed (interrupted) file write operation.

However, you do have to worry aboutfiles being properly updated if the program executes several file
write statements, and the interrupt occurs before all the statements have been completed. In that situa-
tion,if the program turns off the machine and specifies a subsequent cold start ($CALL
SYPO (0)), thefile update will be incomplete. Forthis reason, you may want to write your applica-
tion so that it completes the file update operation before turning off the power, or to disable the power
switch during critical file updates. (At a subsequent warm start, the program will continue execution,
and can then completethe file update process with no loss of file integrity.)

Behavior During Interrupt-Processing Routines. The global control of the power switch
and timeout means that program execution will transfer to the interrupt-processing routine even if the
interrupt occurs in a different subprogram than the one containing the interrupt routine. Becausethis is

effectively a subroutine call that can cross program boundaries, RETURN cannot be used to return
from the interrupt routine to the program that was executing when the interrupt occurred. Instead,
%$CALL SYRT must be used to return from the interrupt routine.

BASIC Keyword Dictionary 2-163

...SYSW

The CALL statement will give an errorif it is used within an interrupt-processing routine. If the END

statementis executed in an interrupt-processing routine, the program or subprogram will end and

return control back to the operating system (notto the calling (sub)program).

With the previous exceptions, any BASIC statement can be executed in an interrupt routine,including

$CALL SYSW (and $¥CALL SYLB) with any specifier. Once the interrupt routine ends, any sub-

sequentinterrupt will be processed according to conditions defined by the most recently executed

SYSW statement. New interrupts can still occur while an interrupt-processing routine is executing.

However, they do not cause that or any otherinterrupt routine (such as power switch) to be executed.

During execution of non-I/O BASIC statements in an interrupt routine, new interrupts are not pro-

cessed until the interrupt routine ends. Because ofthis, interrupt routines should be as short as possi-

ble.

During execution of I/O statements to channels 0-4 in an interrupt routine, new interrupts still cause

1/0 to be aborted and the error number variable to be changed, but the interrupt routineitself is not

reexecuted. (Recall thatfor this to occur, $¥CALL SYER with specifier 0 must also be executed in

the interrupt routine.)

An interrupt-processing routine has a separate READ data pointer than the one used in the non-

interrupt portion of the program. All DATA statements are treated identically, regardless of where

they appear in the program (interrupt routine or non-interrupt routine). When the READ statementis

executed in an interrupt-processing routine,it will start reading at the first DATA statementin the pro-

gram,regardless of how many data items had been read before the interrupt routine was executed.

Whenthe interrupt routine ends, subsequent READ statements in the non-interrupt portion of the

program will continue reading DATA statements as if the interrupt routine had not been executed.

Thatis, reading will start after the last data item read before the interrupt routine was executed.

In an interrupt routine, RESTORE will affect the interrupt routine’s data pointer independently of the

non-interrupt routine’s data pointer.

CAUTION The line number specified by $CALL SYSW with specifier 0 will not be renum-

bered by the HXBASIC R (renumber) command. if you renumber your program,

make sure you update the SYSW line number(or the value placed in the variable

used for the line number).

Differences Between Development System and Handheld. SYSW is not implemented

on the development system.

Related Keywords

DATA, GET #, INPUT, INPUT #, INPUTS, PRINT #, PRINT #...USING,

PUT #,READ, SYER,SYIN,SYLB,SYPO, SYRT, SYTO

2-164 BASIC Keyword Dictionary

SYTO

Exists in Development System O
Works Same in Development System O

Allowedin IF...THEN =

The $CALL SYTO (TimeOut) statementsets the time period of inactivity after which the handheld

is turned off.

DGO O

item Description Range

timeout value numeric expression, truncated to an integer. 0 through 1,800

Examples

$CALL SYTO(0)
$CALL SYTO(60)

Description

For the purpose of measuring the timeout period, inactivity is defined as the state where the handheld
is waiting for keyboard or bar-code port input or serial port input or output. The timeout value is in
seconds, allowing a range of 1 second to 30 minutes. A timeout value of 0 specifies that timeoutis dis-
abled; the handheld will wait indefinitely for input. If no other timeout valueis specified by a $CALL
SYTO statement, the timeout value defaults to 120 seconds (two minutes).

When no alternate timeout behavior has been specified by the ¥CALL SYSW statement, timeout
causes the handheld to turn off, then to cold start when the power switch is pressed. ¥CALL SYSW
specifies alternate behavior for the power switch and, unless timeout has been disabled, for timeout

also. Refer to the keyword description for SYSW for complete details.

Differences Between Development System and Handheld. SYTO is not implemented
on the development system.

Related Keywords

SYEL, SYSW

BASIC Keyword Dictionary 2-165

SYWN

O Exists in Development System
O Works Same in Development System
B Allowedin IF...THEN

The $CALL SYWN (set WaNd configuration) statement sets the configuration used for the HP

Smart Wand.

(oa—(sr (O~ apectfier (O mimer’ ()

Item Description Range

escape specifier numeric expression, truncated to an integer 0 through 1

channel number numeric expression, truncated to an integer 1 through 2

Examples

$CALL SYWN(1,2)

$CALL SYWN (escape_yes,channel)

Description

$CALL SYWN sets options to the high-level handler for the HP Smart Wand. This handler works
onlyif the bar-code device contains HP Smart Wand firmware version 12.3 or later and the handheld’s
operating system is version 1.03 or later. It will not work with other smart bar-code devices nor will it
work with “dumb” wands (wands that return only a pulse train of light and dark transitions). The high-
level smart wand handler can utilize either the bar-code port or the serial port.

The primary purpose of the high-level handler for the HP Smart Wand is to provide special processing
of escape sequences sent by the Smart Wand to the handheld.

2-166 BASIC Keyword Dictionary

...SYWN

The options used by the high-level handler are the onesin effect when the port is opened. Therefore,

$CALL SYWN should be executed before OPEN #.

Escape Specifier. The escape specifier controls whether escape sequences sent by the Smart

Wand to the handheld will be passed to the calling program. If escape is turned off, the handheld will

ignore all strings that begin with “E\”. Thereis no beep and the string sequence is not passed to the

application program. This mode may be used to prevent configuration messages from getting into the

handheld’s data files.

Specifier Escape Sequences

0 (default) escape sequences disabled

1 escape sequences enabled

If escape sequences are enabled, strings beginning with «Ec\” are transmitted to the calling program.

The following HP Smart Wand escape sequences are supported.

Escape Sequence Beep Sound

Configuration complete

(e*)

Configuration partially
complete (fc\+).

Syntax error (fc\~)

Configuration dump
E*RFe [...] ®lF)

Hard-Reset Message
(ready w.v)

No-read message
(user-defined, default is
&)

Smart Wand has completed the
configuration operation specified by the
bar code.

Smart Wand has completed a portion of
the configuration operation. This is sent
for intermediate steps in configuration
operations requiring more than one
scan.

Configuration menu was out of context.
This may be caused by scanning
configuration bar codes in the wrong
order,that are of the wrong type, or that
are numerically out of range.

Status information about the Smart

Wand.

The configuration bar code specifying a
hard reset has been scanned.

The Smart Wand is unable to decode the
bar code and no-read message is
enabled.

4 high-pitched beeps

2 high-pitched beeps

4 low-pitched beeps

These beeps will sound whether or not beeps are enabled using SYBC or SYSP.

Channel Number. This numeric expression specifies to which port the bar-code readeris con-

nected.

BASIC Keyword Dictionary 2-167

.--SYWN

-

Specifier Channel

1 serial port

2 bar-code port

NOTE Unlike SYRS and the built-in serial port handler, the command SYSP and its asso-

ciated handler HNSP are notresident in the handheld. Be sure to down-load these

files from the developmentsystem to the handheld. See the Utilities Reference

Manual chapter 3 “HXC File Conversion Utility” and chapter 6 “HXCOPY File

Copy Utility” for details.

The bar-code handler for the serial port, HNSP will not work with so-called “dumb”

bar-code devices (devices that return only a pulse train of light and dark transitions).

Differences Between Development System and Handheld. SYWN is not implemented

on the development system.

Related Keywords

CLOSE #,0PEN #,SYBC,SYSP

2-168 BASIC Keyword Dictionary

TAN

~ Exists in Development System ®&
Works Same in Development System M

Allowedin IF...THEN =

The TAN function interprets the numeric argument as an angle measured in degrees, and returns the

tangent of the angle.

numeric© Q)

item Description Range

 numeric argument numeric expression —

Examples

Tangent=TAN (Theta)
Vertical=Horizontal*TAN (x)

Related Keywords

ACS, ADS, ARD, ASN, ATN, COS, DMS, PI, RAD, SIN

BASIC Keyword Dictionary 2-169

TIM

W Exists in Development System
B Works Same in Development System
B Allowedin IF...THEN

The TIM function returns the current time or sets the time for the real-time clock.

TIM -

numeric(=)

Item Description Range

numeric argument numeric expression. See description below.

Examples

C=ADS (TIM)
IF ADS(TIM)<ADS (start)+ADS(.0005) GOTO 100

Description

Invoking TIM without an argument returns the current time from the real-time clock.

Passing an argument to TIM will cause the function to set the time.

The format of the argument and value returned is a floating point numberin the format HH.MMSS as
shown in the table below.

Item Description Range

HH |Hours in 24-hour clock format. |0 through 24
MM |Minutes. 00 through 59
SS |Seconds. 00 through 59

Related Keywords

ADS, DMS, TOD$S

2-170 BASIC Keyword Dictionary

TODS$

Exists in Development System M
Works Same in Development System O

Allowedin IF...THEN =

The TODS function returns the current time and date from the real-time clock, or sets the time and

date.

@ T

atring

item Description Range

date string string expression in the form MM: 01 through 12; DD:
MM/DD/YY (month/day/year) 01 through 31; YY: 00

through 99

time string string expression in the form HH: 00 through 23; MM:
HH : MM : SS (hour:minute:second) 00 through 59; SS: 00

through 59

date/time string string expression in the form same as for date string
MM/DD/YYHH:MM:SS and time string

Examples

TOD$="11/17/85" REM Set the date
TODS$="15:25:30" : REM Set the time
TOD$="11/17/85,15:25:30" : REM Set the date and time
Today$=TODS$: REM Read the date and time

’
s

BASIC Keyword Dictionary 2-171

...TOD$

Description

TODS either sets or reads the real-time clock. To set the clock, either a date string, time string, or
date/time string must be supplied as the argument. To read the clock, TOD$ returns a 17-character
date/time string. Either the TODS$ function or the string returned by it can be used like any string vari-
able: assigned to another string variable, supplied to functions or statements that accept string argu-
ments, etc.

Differences Between Development System and Handheld. On the development system,
the clock is set the same wayas on the handheld. Whenthe clock is read, however, the date/time string

is 22 characters longinstead of 17, and includes the day of the weekin the following format:
MM/DD/YY (DOW) , HH: MM :SS, where DOW is a three-character abbreviation for the day of the
week (SUN, MON, TUE, WED, THU, FRI,or SAT).

NOTE The difference in date/time string lengths is a useful debugging tool that allows a pro-
gram to determine which machine it is running on. Programs running on the develop-
ment system can branch around statementsthat the development system does not
support, or execute statements that perform similar functions.

Related Keywords

TIM

2-172 BASIC Keyword Dictionary

VER

Exists in Development System ®
Works Same in Development System W

Allowedin IF...THEN =

The VER function verifies that a string contains only specific characters.

stringQer —=(O—={.er 0358 () legal character
string

Item Description

string verified

legal character string
string expression

string expression

Examples

Badposition=VER(A$,"1234567890")
IF VER(AS$,"ABCDEFGH") THEN PRINT "Illegal input"

Description

If the string verified contains only charactersthat are in the legal characterstring, VERreturns 0. If
the string verified contains charactersthat are not in the legal characterstring, VER returns the posi-
tion ofthe first such character. VER (" ", A$) always returns 0; VER (A$, "") returns 1 (0 if AS
is the null string).

Related Keywords

STRS

BASIC Keyword Dictionary 2-173

XOR

B Exists in Development System
M Works Same in Development System
B Allowedin IF...THEN

The XOR operatorreturns the bit-by-bit exclusive-OR ofthe binary representation of the operands.

——.{ operandHXM)—-{ operand }———

item Description Range

operand numeric expression -32,768 through +32,767

Examples

IF S<>0 XOR P<>0 THEN GOSUB 400
S=J (1) XOR J(2)

Description

The operands are truncated to integers represented as two’s-complement. The results of each bit-by-bit

XORare used to construct the integer result. Each bit is computed according the following truth table.

Bit-by-Bit XOR

Operand 1 Operand 2 Result

0 0 0

0 1 1

1 0 1

1 1 0
Relational operators (=, <, >, <=, >=, <>) always return -1 for true and 0 for false. The bit-by-bit

XOR of these results will always be 0 or -1.

Related Keywords

AND, NOT, OR

2-174 BASIC Keyword Dictionary

.-.XOR

BASIC Keyword Dictionary 2-175

A

BASIC Keyword Summary

Keyword Summary Page

ABS Absolute value. 2-3

ACS Arccosine (1st or 2nd quadrant). 2-4

ADS Converts a value from degrees, minutes and seconds into 2-5

decimal degrees.

AND Bit-by-bit AND of two values. 26

ARD Converts an angle from radians to degrees. 2-8

ASCS Interprets a numeric value as a character code and returns the 2-9

character.

ASN Arcsine (1st or 4th quadrant). 2-11

ATN Arctangent (1st or 4th quadrant.) 2-12

CALL Calls a subprogram and optionally passes parameters. 2-13

%CALL Calls an assembly language program and optionally passes 2-15

parameters.

CHR$S Returns the string equivalent of a value. 2-18

CLOSE # Closes a device orfile. 2-19

coD Returns decimal code of first character in string. 2-21

cos Cosine. 2-22
DATA Specifies data items for READ. 2-23

DEF FN Defines a user-defined function. 2-25

DIM Reserves memory for arrays and strings. 2-27

DMS Converts a value from decimal degrees into degrees, minutes, 2-31

and seconds.

END Returns program execution to the calling (sub)program, or 2-32

halts main program execution.

EOF Detects the end-of-file. 2-33

EXP e* 2-34

FIXO0 Rounds a fraction down. 2-35

FIX5 Rounds a fraction off. 2-36

FIXS Rounds a fraction up. 2-38

BASIC Keyword Summary A-1

Keyword Summary (continued)

Keyword Summary Page

FIXE Rounds off the mantissa of a number in scientific notation. 2-39

FN User-defined function call. 2-40

FOR. . .NEXT Defines a FOR. . . NEXT loop. 2-42

FORMAT Provides formats for PRINT USINGand PRINT 2-45

#...USING.

FRC Fractional part of a number. 2-48

GET # Inputs data from a device orfile into program variables. 2-49

GOSUB Causes branching to a subroutine. 2-53

GOTO Causes branching to a statement. 2-54

HEXS$ Converts decimal value to a two-characterstring containing its 2-55

hexadecimal representation.

IDX Position of a character in a string. 2-56

IF...THEN Causes conditional branching. 2-58

INPUT inputs data from the keyboard into program variables. 2-60

INPUT # Inputs data from a device orfile into program variables. 2-62

INPUTS Inputs data from a device orfile into program variables. 265

INT Integer part of a number. 2-68

INTEGER Declares variables and arrays to be integers. 2-69

KEY Number of bytes in the key buffer or serial port buffer. 2-71

LEN Length of a string. 2-73

LET Variable assignment. 2-74

LGT Log to the base 10. 2-76

LOG Log to the base e. 2-77

MAX Larger of a group of values. 2-78

MIN Smaller of a group of values. 2-79

MOD Modulo operator; remainder of division. 2-80

NOT Bit-by-bit NOT of a value. 2-81

NUM Numeric equivalent of a string. 2-82

ON...GOSUB/GOTO Computed GOSUB and GOTO. 2-84

OPEN # Opens a device orfile for reading or writing. 2-86

OPTION BASE Declares lower bound of 0 for array variables. 2-89

OR Bit-by-bit OR of two values. 2-90

PARAM First statement of a subprogram; defines the formal parame- 2-92

ters.

PI ~ 2-94

PRINT Displays items on the display. 2-95

A-2 BASIC Keyword Summary

Keyword Summary (continued)

Keyword Summary Page

PRINT USING Displays items on the display in user-defined format 2-99

PRINT # Outputs items to a device orfile. 2-101

PRINT #...USING Outputs items to a device orfile in user-defined format. 2-107

PUT # Outputs items to a device orfile. 2-111

RAD Converts angle from degrees into radians. 2-115

READ Reads items from DATA statements. 2-116

REM Program comment. 2-118

RESTORE Resets pointer for DATA statements. 2-119

RETURN Transfers control from a subroutine to the statementfollowing 2-120

the calling GOSUB.

RND Random number. 2-121

SGN Sign of a number. 2-122

SIN Sine. 2-123

SIZE Amount of available memory. 2-124

SQR Square root. 2-125

STRS Extracts substring. 2-126

SYAL Creates a data file. 2-128

SYBC Sets bar-code port configuration for HNBC. 2-130

SYBP Produces an audible tone. 2-134

SYEL Sets timeout value for electroluminescent display backlight. 2-136

SYER Establishes the variable where error numbers will be placed. 2-138

SYIN Program name, line number, channel number, and 1/0 length 2-141

of most recent etror.

SYLB Establishes location of low battery interrupt routine. 2-143

SYPO Powers off the computer. 2-148

SYPT Moves the data pointer within a data file. 2-150

SYRS Sets serial port configuration for default handler. 2-151

SYRT Transfers control from an interrupt routine to the statement foli- 2-155
lowing the statement where the interrupt occurred.

SYSP Sets serial port configuration for HNSP. 2-156

SYSW Establishes location of power switch and timeout interrupt rou- 2-160

tines.

SYTO Sets timeout value. 2-165

SYWN Sets configuration for HP Smart Wand handler HNWN. 2-166

TAN Tangent. 2-169

BASIC Keyword Summary A-3

Keyword Summary (continued)

Keyword Summary Page

TIM Sets orreturns the current time in HH.MMSS format. 2-170

TODS Setsorreturns the time and date in MM/DD/YY,HH:MM:SS 2-171

format.

VER Verifies that a string contains only specific characters. 2-173

XOR Bit-by-bit exclusive-OR of two values. 2-174

A-4 BASIC Keyword Summary

Numeric and Non-Numeric Errors

The handheld can produce two types of errors: numeric and non-numeric. Numeric errors are errors

identified by a three-digit number, and non-numeric errors by two alphabetic characters. The most

important distinction between numeric and non-numeric errorsis that numeric errors can be trapped

under program control, whereas non-numeric errors cannot be trapped.

Numeric Errors. When no alternate behavior has been specified for error processing, numeric

errors cause the BASIC program to halt. Control returns to the operating system with the message

Exrror NNN LLLLL PPPP, where NNN is the error number, LLLLL is the BASIC program line

number and PPPP is the name of the BASIC program or subprogram in which the error occurred. The

SYER statement can specify that these errors be ignored, so that program execution continues

uninterrupted. After CALL SYER with specifier 0 has been executed, when a numeric error does

occur, its error numberis assigned to the error number variable, allowing programmatic error handling

or error trapping. The program name,line number, channel number, and 1/0 length ofthe most

recent error can be determined with the SYIN statement.

Non-Numeric Errors. SYER has no effect on non-numeric errors. These errors always cause the

program to halt, and return control to the operating system with the message Exror MM LLLLL

PPPP, where MM is the error message, LLLLL is the BASIC program line number, and PPPP is the

name of the BASIC program or subprogram in which the error occurred. The tables on the

subsequent pages list all the numeric and non-numeric errors.

Numeric and Non-Numeric Errors B-1

Numeric Errors (from Operating System)

Number Meaning

100* BASIC interpreter not found.
101 lllegal parameter.
102 Directory does notexist.
103 File not found.
104 Too many files.
105 Channel not open.
106 Channel already open.
107 File already open.
108 File already exists.
109 Read-only access.
110 Access restricted.
111 No room forfile.

112 No room to expand file.

113 No room for scratch area.

114 Scratch area does not exist.
115¢ Short record detected.

116t Terminate character detected.

117¢ End of data.
118 Timeout.

119 Power switch pressed.

200 Low battery.
201 Receive buffer overflow.

202 Parity error.
203 Overrun error.
204 Parity and overrun error.

205 Framing error.
206 Framing and parity error.

207 Framing and overrun error.

208 Framing, overrun, and parity error.

209t Invalid MDSfile received.

210* Low backup battery — main memory.

211* Low backup battery — 128K memory board or 40K RAM card.

212* Checksum error — main memory directory table.

213* Checksum error - 40K RAM or ROM/EPROM card directory table.

214> Checksum error - reserved scratch space.

215* Checksum error — main memory free space.

216* Checksum error — main memory file.

217* Checksum error — 40K RAM or ROM/EPROM card file.

218 Lost connection while transmitting.

219 llegal use of operating system stack.

* Only reported when handheld is being turned on.

t Never reported by built-in BASIC keywords.

B-2 Numeric and Non-Numeric Errors

Non-Numeric Errors (from BASIC Interpreter)

AR
BM
BR
CN
CcO
DO
DT
EP
FN
iL
IR
IS
LN
MO
NF
RT
SY
TY
UM

Array subscript error
BASIC interpreter malfunction
Branch destination error

Data conversion error
Conversion overflow
Decimal overflow
Data error
Missing END statement
llegal DEF FN statement
lllegal argument
Insufficient RAM
lllegal statement

Nonexistent line

Memory overflow

Program not found
RETURN or SYRT error

Syntax error
Data type mismatch

Unmatched number of arguments

Numeric and Non-Numeric Errors B-3

C

Keyboard Layout

The handheld allows the font for 32 characters to be redefined: character codes 128-159 (or 80h-9Fh),
the control codes for the upper 128 characters of the character set. Refer to the HP-94 Technical
Reference Manual for details on creating user-defined characters.

The handheld also allows 16 keysto be redefined: character codes 128-143 (or 80h-8Fh), the first 16
control codesfor the upper 128 characters of the character set. Normally, when one of these keysis
pressed, the handheld displays a blank character.If there is a user-defined characterfor the code
corresponding to that key, the handheld will display the user-defined character instead. The handheld
will echo user-defined characters when the corresponding keys are pressed only during a running
program. It will echo a blank character when those keys are pressed while using the operating system

commands.

Keyboard Layout C-1

C-2

ASCII Characters Associated With Each Key

Shifted Shifted Unshifted Unshifted

Key (orange) Character Key (white) Character

A (41h) (unmarked) user-def. (80h)

B (42h) (unmarked) user-def. (81h)

C (43h) (unmarked) user-def. (82h)

(0] D (44h) (unmarked) user-def. (83h)

(E] E (45h) (unmarked) user-def. (84h)

F (46h) (unmarked) user-def. (85h)

G (47h) (unmarked) user-def. (86h)

] H (48h) 7 (37h)
1 I (49h) 8 (38h)

J (4Ah) B 9 (39h)
K (4Bh) (unmarked) user-def. (87h)

L (4Ch) (unmarked) user-def. (88h)

(M] M (4Dh) (unmarked) user-def. (89h)

W) N (4Eh) 4] 4 (34h)
0] O (4Fh) 5] 5 (35h)
[P] P (50h) (6] 6 (36h)

[Q] Q (51h) (unmarked) user-def. (8Ah)

[R] R (52h) (unmarked) user-def. (8Bh)

(s] S (53h) (unmarked) user-def. (8Ch)

T (54h) 0 1 (31h)

U (55h) 2] 2 (32h)
V (56h) 3 3 (33h)
W (57h) (unmarked) user-def. (8Dh)

X (58h) (unmarked) user-def. (8Eh)

Y (59h) (unmarked) user-def. (8Fh)

Z (5Ah) [0 0 (30h)
(delete) (7Fh) (delete) (7Fh)

(car. ret.) (ODh) (car. ret.) (ODh)

(control-X) (18h) (control-X) (18h)

(space) (20h) (dbl 0) (30h 30h)

] * (2Ah) # # (23h)

B - (2Dh) [- (2Dh)
0 . (2Eh) 0 . (2Eh)

Keyboard Layout

D

Roman-8 Character Set

The Roman-8 characterset consists of the standard U.S. ASCII character set and the Roman

Extension character set. Each characterin the set is assigned a character code with a decimal value

from 0 through 255. The system uses these codes for identifying characters. Characters are normally

produced from the keyboard by pressing the corresponding keys. (Refer to appendix C for the

keyboard layout.)

The first half of the Roman-8 character set (decimal values 0 through 127, the U.S. ASCII character

set) is identical to the standard character set used on many other computersystems. The second half

(decimal values 128 through 255) contains special characters, including those used by other languages.

The Roman-8 character set is shown in the tables on the following pages.

The handheld allows the font for 32 characters to be redefined (character codes 128 through 159-the

control codes for the upper 128 characters of the character set). The development system does not

support user-defined characters. When character codesin the user-defined range are used, the

development system will always map them to blanks, and the handheld will map them to user-defined

characters.

The handheld uses the Roman-8 character set. The development system may use either the Roman-8

or the IBM-compatible character sets as set by the HXCHRSET utility described in chapter 5 of the

Utilities Reference Manual. The difference between the two character sets occursin the control codes

(ASC$ (0) through ASCS (31)) and in the upperhalf of the character set (ASCS (128)

through ASCS$ (255)).

Roman-8 Character Set D-1

US ASCII Character Set

Character Code

Character Code

ASCII ASCIl

Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex

NUL 0 00000000 000 OO space 32 00100000 040 20

SOH 1 00000001 001 O1 ! 33 00100001 041 21

STX 2 00000010 002 02 " 34 00100010 042 22

ETX 3 00000011 003 03 # 35 00100011 043 23

EOT 4 00000100 004 04 $ 36 00100100 044 24

ENQ 5 00000101 005 05 “ 37 00100101 045 25

ACK 6 00000110 006 06 & 38 00100110 046 26

BEL 7 00000111 007 07 ! 39 00100111 047 27

BS 8 00001000 010 08 ¢ 40 00101000 050 28

HT 9 00001001 011 09) 41 00101001 051 29

LF 10 00001010 012 OA * 42 00101010 052 2A

vT 11 00001011 013 OB + 43 00101011 053 2B

FF 12 00001100 014 OC ; 44 00101100 054 2C

CR 13 00001101 015 OD - 45 00101101 055 2D

SO 14 00001110 016 OE . 46 00101110 056 2E

] 15 00001111 017 OF / 47 00101111 057 2F

DLE 16 00010000 020 10 g 48 00110000 060 30

DC1 17 00010001 021 11 1 49 00110001 061 31

DC2 18 00010010 022 12 2 50 00110010 062 32

DC3 19 00010011 023 13 3 51 00110011 063 33

DC4 20 00010100 024 14 4 52 00110100 064 34

NAK 21 00010101 025 15 5 53 00110101 065 35

SYNC 22 00010110 026 16 6 54 00110110 066 36

ETB 23 00010111 027 17 7 55 00110111 067 37

CAN 24 00011000 030 18 8 56 00111000 070 38

EM 25 00011001 031 19 9 57 00111001 071 39

SuB 26 00011010 032 1A : 58 00111010 072 3A

ESC 27 00011011 033 1B 3 59 00111011 073 3B

FS 28 00011100 034 1C < 60 00111100 074 3C

GS 29 00011101 035 1D = 61 00111101 075 3D

RS 30 00011110 036 1E > 62 00111110 076 3E

us 31 00011111 037 1F ? 63 00111111 077 3F

D-2 Roman-8 Character Set

US ASCII Character Set (Continued)

Character Code Character Code
ASCli ASCIl

Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex

@ 64 01000000 100 40 ' 96 01100000 140 60

A 65 01000001 101 41 a 97 01100001 141 61

B 66 01000010 102 42 b 98 01100010 142 62

C 67 01000011 103 43 c 99 01100011 143 63

D 68 01000100 104 44 d 100 01100100 144 64

E 69 01000101 105 45 e 101 01100101 145 65

F 70 01000110 106 46 f 102 01100110 146 66

G 71 01000111 107 47 g 103 01100111 147 67

H 72 01001000 110 48 h 104 01101000 150 68

I 73 01001001 111 49 i 105 01101001 151 69

J 74 01001010 112 4A J 106 01101010 152 6A

K 75 01001011 113 4B k 107 01101011 153 6B

L 76 01001100 114 4C 1 108 01101100 154 6C

M 77 01001101 115 4D m 109 01101101 155 6D

N 78 01001110 116 4E n 110 01101110 156 6E

0 79 01001111 117 4F o 111 01101111 157 6F

P 80 01010000 120 50 P 112 01110000 160 70

Q 81 01010001 121 51 q 113 01110001 161 71

R 82 01010010 122 52 r 114 01110010 162 72

S 83 01010011 123 53 s 115 01110011 163 73

T 84 01010100 124 54 t 116 01110100 164 74

u 85 01010101 125 55 u 117 01110101 165 75

v 86 01010110 126 56 v 118 01110110 166 76

W 87 01010111 127 57 W 119 01110111 167 77

*® 88 01011000 130 58 X 120 01111000 170 78

Y 89 01011001 131 59 y 121 01111001 171 79

z 80 01011010 132 5A z 122 01111010 172 7A

C 91 01011011 133 5B { 123 01111011 173 7B

~ 92 01011100 134 5C | 124 01111100 174 7C

] 93 01011101 135 5D } 125 01111101 175 7D

~ 94 01011110 136 5E ~ 126 01111110 176 7E

- 95 01011111 137 5F DEL 127 O1111111 177 7F

Roman-8 Character Set D-3

Roman Extension Character Set

Character Code

Character Code

Char. Char.

Dec Binary Oct Hex Dec Binary Oct Hex

128 10000000 200 80 space 160 10100000 240 AO
129 10000001 201 81 A 161 10100001 241 A1
130 10000010 202 82 A 162 10100010 242 A2
131 10000011 203 83 E 163 10100011 243 A3
132 10000100 204 84 E 164 10100100 244 A4
133 10000101 205 85 E 165 10100101 245 A5
134 10000110 206 86 i 166 10100110 246 A6
135 10000111 207 87 I 167 10100111 247 A7
136 10001000 210 88 ‘ 168 10101000 250 A8
137 10001001 211 89 * 169 10101001 251 A9
138 10001010 212 8A . 170 10101010 252 AA
139 10001011 213 8B 171 10101011 253 AB
140 10001100 214 8C ~ 172 10101100 254 AC
141 10001101 215 8D U 173 10101101 255 AD
142 10001110 216 8E 0 174 10101110 256 AE
143 10001111 217 SF £ 175 10101111 257 AF
144 10010000 220 90 - 176 10110000 260 BO
145 10010001 221 91 ¥ 177 10110001 261 Bf
146 10010010 222 92 g 178 10110010 262 B2
147 10010011 223 93 ° 179 10110011 263 B3
148 10010100 224 94 ¢ 180 10110100 264 B4
149 10010101 225 95 ¢ 181 10110101 265 B5
150 10010110 226 96 A 182 10110110 266 B6
151 10010111 227 97 A 183 10110111 267 B7
152 10011000 230 98 i 184 10111000 270 B8
153 10011001 231 99 & 185 10111001 271 B9
154 10011010 232 9A 0 186 10111010 272 BA
155 10011011 233 9B £ 187 10111011 273 BB
156 10011100 234 9C ¥ 188 10111100 274 BC
157 10011101 235 9D § 189 10111101 275 BD
158 10011110 236 9E § 190 10111110 276 BE
159 10011111 237 9F ¢ 191 10111111 277 BF

D-4 Roman-8 Character Set

Roman Extension Character Set (Continued)

Character Code

Character Code

Char. Char.

Dec Binary Oct Hex Dec Binary Oct Hex

3 192 11000000 300 CO A 224 11100000 340 EO
é 193 11000001 301 C1 A 225 11100001 341 E1
& 194 11000010 302 c2 a 226 11100010 342 E2
G 195 11000011 303 C3] 227 11100011 343 E3
4 196 11000100 304 C4 d 228 11100100 344 E4
é 197 11000101 305 C5 1 229 11100101 345 E5
6 198 11000110 306 C6 1 230 11100110 346 E6
U 199 11000111 307 C7 0 231 11100111 347 E7
a 200 11001000 310 C8 0 232 11101000 350 E8
& 201 11001001 311 C9 g 233 11101001 351 E9
o 202 11001010 312 CA 6 234 11101010 352 EA
U 203 11001011 313 CB § 235 11101011 353 EB
a 204 11001100 314 CC s 236 11101100 354 EC
é 205 11001101 315 CD g 237 11101101 355 ED
0 206 11001110 316 CE ¥ 238 11101110 356 EE
G 207 11001111 317 CF g 239 11101111 357 EF
A 208 11010000 320 DO P 240 11110000 360 FO
i 209 11010001 321 D1 b 241 11110001 361 F1
P 210 11010010 322 D2 - 242 11110010 362 F2
e 211 11010011 323 D3 ¥ 243 11110011 363 F3
a 212 11010100 324 D4 1 244 11110100 364 F4
1 213 11010101 325 D5 % 245 11110101 365 F5
@ 214 11010110 326 D6 - 246 11110110 366 F6
2 215 11010111 327 D7 % 247 11110111 367 F7
A 216 11011000 330 D8 ¥ 248 11111000 370 F8
1 217 11011001 331 D9 a 249 11111001 371 F9
a 218 11011010 332 DA o 250 11111010 372 FA
0 219 11011011 333 DB « 251 11111011 373 FB
E 220 11011100 334 DC - 252 11111100 374 FC
i 221 11011101 335 DD » 253 11111101 375 FD
B 222 11011110 336 DE + 254 11111110 376 FE
0 223 11011111 337 DF & 255 11111111 377 FF

Roman-8 Character Set D-5

E

Display Control Characters

The table below describes each display control character used by the handheld. Note that these
characters, as well as any character in the handheld’s character set, can be specified with & and its
two-digit hexadecimal ASCII codein a literal (& is specified by &&).

Display Control Characters

Hex Value Meaning

01 (SOH) Turn on cursor.

02 (STX) Turn off cursor.

06 (ACK) High tone beep for 0.5 second.

07 (BEL) Low tone beep for 0.5 second.

08 (BS) Move cursorleft one column. When the cursor reaches the left end

of the line, it will back up to the right end of the previous line. When
the cursor reaches the top left corner, backspace will have no

effect.

0A (LF) Move cursor down one line. If the cursor is on the bottom line, the
display contents will scroll up one line.

0B (VT) Clear every character from the cursor position to the end of the
current line.

0C (FF) Move cursorto top left corner and clear the display.

0D (CR) Move cursorto left end of current line.

0E (SO) Change keyboard to numeric mode (underline cursor).

OF (S Change keyboard to alpha mode (block cursor).

1E (RS) Turn on electroluminescent backlight.

1F (US) Tumn off electroluminescent backlight.

Display Control Characters E-1

Fi>g HEWLETT
ol PACKARD

Printed in US.A. 12/86

