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Introduction to the Technical Reference Manual

The HP-94 Technical Reference Manual provides software and hardware reference information about
the HP-94 Handheld Industrial Computer. This information should allow software developers to write
assembly language programs for controlling the HP-94 hardware resources, and hardware developers
to design accessories that connect to the machine. This manual assumes a certain level of familiarity
with the HP-94 and 8088 assembly language programming, and that the user will be using Microsoft
assembly language development tools (MASM and LINK) or their equivalents. It is a supplement to
the HP 82520A HP-94 Software Development System (SDS), which includes other information neces-
sary to fully understand the product, as well as software utilities needed to convert and transfer assem-
bly language programs to the machine. The manual is divided into four major parts:

s Qperating System

m BASIC Interpreter

m Hardware Specifications
m Appendixes

The first section describes the built-in operating system, which manages and provides programmatic
access to the HP-94 hardware: memory, interrupt system, keyboard, display and backlight, serial port,
bar code port, internal timers, power switch and power control, low battery detection, real-time clock,
and beeper. This section includes topics such as memory management, program execution, writing
user-defined handlers (device drivers) for controlling the serial and bar code ports, and using operating
system functions to simplify hardware control from assembly language programs.

The second section describes the internal operation of the built-in BASIC interpreter, which provides
the ability to execute BASIC programs that were developed on a development system computer using
the HP-94 SDS. This section does not discuss the syntax of the BASIC language, or the operation of
each BASIC keyword; that information is contained in the BASIC Language Reference Manual. Instead,
the section discusses the structure and operation of BASIC programs, data structure of BASIC vari-
ables, writing new BASIC keywords, and using BASIC interpreter utility routines to simplify the
interaction of BASIC and assembly language programs.

The third section contains hardware specifications for the HP-94 in four categories: electrical (voltage
and current levels, HP-94 operating conditions), mechanical (dimensions and connector pinouts),
environmental (conditions under which the HP-94 will perform properly), and accessory (electrical and
mechanical characteristics of plug-in cards, level converter, cables, etc.).

The final section is appendixes containing summaries of reference information for developers. This

includes documentation for the utility subroutines on the disc with this manual, and for the built-in
assembly language debugger.

Introduction to the Technical Reference Manual 1






Part 1

Operating System







Introduction to the Operating System

This section of the HP-94 Technical Reference Manual describes the built-in operating system, which
manages and provides programmatic access to the HP-94 hardware. This section includes topics such
as memory management, program execution, writing user-defined handlers (device drivers) for con-
trolling the serial and bar code ports, and using operating system functions to simplify hardware control
from assembly language programs.

This section also describes the HP-94 hardware: what major hardware elements are present in the
machine, what they do, and how to operate them under software control. The major hardware ele-
ments are as follows:

m System ROM

m Read/Write Memory (RAM)

m Control and Status Registers

m CPU

m Interrupt Controller

m Keyboard

m Display with Electroluminescent Backlight
Serial Port

Bar Code Port

m Timers

m Power Switch

m Nickel-Cadmium (NiCd) Battery Pack
m Lithium Backup Batteries

m Real-Time Clock

= Beeper

m Reset Switch

All these items will be discussed in subsequent chapters. The following is a block diagram showing the
major hardware elements and their relationships.

introduction to the Operating System 1
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Memory Management

This chapter describes memory in the HP-94: its possible configurations, how it is organized, and the
memory management software.

I
Hardware Overview

The HP-94 is available in three memory configurations: HP-94D with 64K RAM, HP-94E with 128K
RAM, and HP-94F with 256K RAM. Inside the 94 is a single slot for optional memory accessories. The
94D and 94E allow either the HP 82411A 40K RAM Card or HP 82412A ROM/EPROM Card (hold-
ing 32 to 128K of ROM or EPROM) to be plugged in. In addition, the 94E can be expanded to 256K
(equivalent to a 94F) with the HP 82410A 128K Memory Board (service upgrade only), which also
occupies the accessory slot. The 94F cannot be expanded. The following table summarizes HP-94
memory configurations.

Table 1-1. HP-94 Memory Configurations

Built-In 40K RAM ROM/EPROM 128K Memory

Machine RAM Card Aliowed Card Allowed Board Allowed
HP-94D 64K Yes Yes No
HP-94E 128K Yes Yes Yes
HP-94F 256K No No No

The maximum total user memory in the HP-94, RAM and ROM/EPROM combined, is 256K. This
limit is imposed by both hardware and software.

1
Software Overview

The memory management software in the HP-94 provides a directory structure for major contiguous
blocks of memory, such as built-in memory and plug-in memory (RAM and ROM/EPROM cards).
Within each directory is a file system that supports four different file types and files in RAM or ROM.
BASIC programs (type B), assembly language programs (type A), and user-defined 1/O port handlers
(type H) execute in place, whether in RAM or ROM. Data files (type D) can be created and deleted
dynamically while programs are running, and expand when written to in fixed- or variable-length incre-
ments. The operating system also provides for allocation and release of scratch areas, and verifies
memory integrity using checksums at power off and power on.

Memory Management 1-1



Memory Organization

HP-94 memory is organized into contiguous blocks called directories. The directories fall into three
major categories: main memory (built-in memory plus the 128K memory board), plug-in memory
(40K RAM and ROM/EPROM cards), and system ROM (built-in operating system and BASIC inter-
preter). Each block of memory has a fixed-length table at the beginning that describes each file in that
block of memory. Since the directory table is fixed-length, the maximum number of files that the direc-
tory can contain is also fixed. The directory table also identifies what type of memory it is (main,
plug-in RAM, plug-in ROM) and how much memory is encompassed by the directory. Below is a table
summarizing important information about HP-94 memory. followed by a memory map that shows the
organization of all memory in the HP-94. Note that in the map, the main memory RAM quantities
include the RAM for the smaller memory configurations, and the ". . ." indicates unused address space.

Table 1-2. Summary of Memory Information

Name of Memory | Directory | Max. No. | Min. System
Memory Area Size Number(s) of Files Overhead
Main Memory 64K 0 63 3.5K*
128K 0 63 3.5K*
256K 0 127 45K*
40K RAM Card 40K 1 31 0.5K
ROM/EPROM Card 32K 1-4 31 0.5K
64K 1-3 31 0.5K
96K 1-2 63 1K
128K 1 63 1K
* If a BASIC program is running, there will be an additional 2K used by the BASIC interpreter, plus
space for the data in the BASIC program variables.
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FFFFFh

32K Built-In
System ROM
F8000h
3FFFFh 3FFFFh
32K Piug-In
ROM/EPROM
38000h
32K Plug-In
ROM/EPROM
256K Built-In
RAM (HP-94F) 30000h
32K Plug-In
ROM/EPROM
29FFFh
28000h
40K Plug-in 32K Plug-In
RAM ROM/EPROM
20000h 20000h 20000h
40K RAM Card ROM/EPROM Card
128K Built-In
RAM (HP-94E)
10000h
64K Built-In
RAM (HP-94D)

00000h
» Main Memory

Figure 1-1. Memory Map of the HP-94

Memory Management 1-3



Main Memory

Main memory is the first major block of memory, and is called directory 0. It can be 64, 128, or 256K,
depending on the memory configuration (94D, 94E, or 94F). Even though the 128K memory board that
is used in the 94F or added to the 94E occupies the accessory slot, it is still treated as main memory
because it cannot be installed or removed by the user the way the plug-in cards can. The number of
files main memory can contain are 63, 63, and 127 respectively for the three memory configurations.

Below is a map of main memory. The pointers on the right side of the memory map correspond to seg-
ment addresses maintained in the directory table header (the first entry in the directory table), and will
be discussed under "Directory Table".

256K: (3FFF:000F) 3FFFFh
128K: (1FFF:000F) 1FFFFh

64K: (OFFF:000F) OFFFFh End of Main Memory
Scratch Areas
End of Free Space Pointer
Free Space
Start of Free Space Pointer
Data
Files
End of Program Files Pointer
Program
Files
256K: (0120:0000) 01200h
64K or 128K: (00E0:0000) 00EQCH Start of Files Pointer
Directory Table
(00A0:0000) 00AQ0N Start of Directory Table
Reserved
Scratch Space

(0000:0000) 00000h Start of Reserved Scratch Space

Figure 1-2. Memory Map of Main Memory
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The major blocks of memory shown in the memory map are described briefly below. They will each be
the subject of a separate section of this chapter.

m Reserved Scratch Space
This area contains the interrupt vectors for the hardware and software interrupts for the CPU.
This area is also used by the operating system to maintain information about the current state of
the 94, and for pointers into that information. This area comprises 2.5K of the system overhead.

m Directory Table
This block describes main memory and all the files contained in it. Files begin immediately after
the end of the directory table. This area comprises 1K or 2K of the system overhead, depending on
the memory configuration.

m Program Files
This block is where all non-data files are stored; that is, file types A, B, and H. All program files
appear first in the file system. The size of this block changes while programs are loaded, but does
not expand or contract at run time.

m Data Files
This block is where data files are stored. Data files expand by allocating memory from free space,
expanding toward higher addresses. When data files are deleted, all their space is returned to the
free space area.

m Free Space
This block is the pool of available memory from which data files are created and expanded and
scratch areas are allocated.

m Scratch Areas
Scratch areas are requested by the built-in BASIC interpreter and by user-written assembly
language programs and handlers, and are created by allocating memory from free space, building
toward lower addresses. When scratch areas are released, they are returned to free space. Scratch
areas are only created in main memory, regardless of which directory contains the program
requesting the scratch area. They comprise any additional system overhead requirements.

40K RAM Card

The HP 82411A 40K RAM card is one of the two types of plug-in memory, and is called directory 1. It
is 40K long, and can contain a maximum of 31 files. The organization of the RAM card is a subset of
the main memory organization — it contains only a directory table, files, and free space. No scratch
areas are available, since scratch areas are only allocated in main memory.

Here is a memory map of the 40K RAM card. The pointers on the right side of the map have the same
meaning as for main memory.
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(2A00:0000) 2A000h
(29FF:000F) 29FFFh

(2020:0000) 20200h

(2000:0000) 20000h

Free Space

Data
Files

Program
Files

Directory Table

End of Free Space Pointer
End of 40K RAM Card

Start of Free Space Pointer

End of Program Files Pointer

Start of Files Pointer

Start of Directory Table

Figure 1-3. Memory Map of the HP 82411A 40K RAM Card

The major blocks of memory shown in the memory map are de$cribed below.

m Directory Table

This block describes the RAM card and all the files contained in it. Files begin immediately after

the end of the directory table. This area comprises the 0.5K RAM card overhead.

m Program Files

This block is where all non-data files are stored; that is, file types A, B, and H. All program files
appear first in the file system. The size of this block changes while programs are loaded, but does
not expand or contract at run time.

m Data Files

This block is where data files are stored. Data files expand by allocating memory from free space,
expanding toward higher addresses. When data files are deleted, all their space is returned to the

free space area.

s Free Space

This block is the pool of available memory from which data files are created and expanded.
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ROM/EPROM Card

The HP 82412A ROM/EPROM card is the other type of plug-in memory, and can contain directories
1 through 4. Files can be put in ROM or EPROM in blocks of four different sizes: 32, 64, 96, and 128K.
The number of files each block can contain is 31, 31, 63, or 63 respectively, depending on the ROM or
EPROM size. The memory map of the ROM/EPROM card will be discussed in detail under "Logical
ROMs" (a logical ROM is a ROM in one of the different possible sizes, not necessarily related to the
physical IC size actually placed on the ROM/EPROM card).

The organization of each of the four directories within the ROM/EPROM card is similar to the RAM
card. They each contain only a directory table, files, and free space. No scratch areas are available,
since scratch areas are only allocated in main memory (and could not be allocated in ROM or
EPROM anyway).

The memory map of an individual ROM within the ROM/EPROM card is essentially the same as for
the 40K RAM card. Unlike the RAM card, data files can only be read — they cannot be created,
deleted, or written to. Also, the free space in a ROM or EPROM cannot be used.

The pointers that are shown on the RAM card memory map have the same meaning for an individual
ROM or EPROM, but their values vary depending on the size and directory number of the ROM. This
will also be discussed in "Logical ROMs".

|
Reserved Scratch Space

The reserved scratch space is the first 2.5K of main memory. The first 0.5K contains interrupt vectors
for CPU, hardware, and software interrupts. It also contains pointers to the next 2K, which is the
operating system scratch space. Here is a memory map of the reserved scratch space. The "..." indi-
cates unused interrupt vector locations.
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1-8

(00A0:0000) 00ADOh Start of Directory Table

OS Scratch Space
(0020:0000) 00200h Start of OS Scratch Space
(0016:003E) 0019Eh End of OS Pointer Table
OS Pointer Table
(0016:0000) 00160h Start of OS Pointer Table
Interrupt Type 57h
(0000:015C) 0015Ch
interrupt Type 56h
(0000:0158) 00158h
Interrupt Type 55h
(0000:0154) 00154h
Interrupt Type 54h
(0000:0150) 00150h
Interrupt Type 53h
(0000:014C) 0014Ch
Interrupt Type 52h
(0000:0148) 00148h
Interrupt Type 51h
(0000:0144) 00144h
Interrupt Type 50h
(0000:0140) 00140h Start of Hardware Interrupt Vectors
(0000:0074) 00074h End of Software Interrupt Vectors
Interrupt Type 1Ch
(0000:0070) 00070h
(0000:006C) 0006Ch
Interrupt Type 1Ah
(0000:0068) 00068h Start of Software Interrupt Vectors
(0000:0010) 00010h End of Dedicated interrupt Vectors
Breakpoint
(0000:000C) 0000Ch
NMI
(0000:0008) 00008h
Single Step
(0000:0004) 00004h
Zero Divide
(0000:0000) 00000h Start of Dedicated Interrupt Vectors

Figure 1-4. Memory Map of Reserved Scratch Space
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The major items in the reserved scratch space are described below. The information at the end of each
description are the chapters or appendixes where further information can be found about that inter-
rupt. General information about the hardware interrupts (types 50h-57h) is in the "Interrupt Con-
troller" chapter.

= Zero Divide
Dedicated interrupt vector for divide-by-zero condition. Points to the same location as the break-
point interrupt vector (appendix A).

m Single Step
Dedicated single step interrupt vector used for single-stepping the resident debugger (appendix A).

m NMI
Dedicated non-maskable interrupt vector used to invoke the resident debugger. Points to the same
location as the breakpoint interrupt vector (appendix A).

= Breakpoint
Dedicated breakpoint interrupt vector used for breakpoints in the resident debugger (appendix A).

m Interrupt Type 1Ah
Software interrupt vector used to invoke the operating system functions (chapter 4).

w Interrupt Type 1Ch
Software interrupt vector used for the one-second background timer (chapter 12).

w Interrupt Type 50h
Hardware interrupt vector for system timer (chapter 12).

m Interrupt Type 51h
Hardware interrupt vector for bar code port timer (chapters 11 and 12).

m Interrupt Type 52h
Hardware interrupt vector for bar code port transitions (chapter 11).

m Interrupt Type 53h
Hardware interrupt vector for serial port (82C51 data received) (chapter 10).

m Interrupt Type 54h
Hardware interrupt vector for low main battery voltage (chapter 14).

m Interrupt Type 55h
Hardware interrupt vector for power switch pressed (chapter 13).

m Interrupt Type 56h
Reserved hardware interrupt vector 1 (chapter 7).

m Interrupt Type 57h
Reserved hardware interrupt vector 2 (chapter 7).

= OS Pointer Table
These are pointers to various parts of the operating system scratch space. The main pointer of
interest to assembly language programmers is the one that points to the handler information table.
Refer to the "User-Defined Handlers" chapter for details.

m OS Scratch Space
This is the space in which the operating system keeps important information about the current state
of the HP-94. This area is 2K long. The operating system stack is in this area. It varies in length as
it is used, up to a maximum of approximately 600 bytes.
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CAUTION The operating system does not initialize or use the overflow interrupt (dedicated
interrupt vector 04h, at address 04h * 4 = 00010h). A program that uses the INTO
instruction (interrupt on overflow) must initialize this interrupt vector to a location in
its own program space.

|
Directory Table

The directory table is organized as a series of 16-byte entries, one per file. The first entry is the direc-
tory table header. It identifies the directory, the type of memory (main memory, 40K RAM card, or
ROM/EPROM card), and the total amount of memory encompassed by the directory. The header also
contains the pointers shown on the memory maps. Since all memory areas start and end on paragraph
boundaries (a paragraph is a block of 16 bytes), pointers are stored in the directory table as segment

addresses only.

The contents of the directory table header are shown below. The numbers on the left are hex offsets

relative to the start of the header.

10h

OEh

0Ch

0Ah

08h

06h

05h

00h

Figure 1-5. Directory Table Header Contents

Refer to the memory maps to see the areas of memory that the pointers refer to.
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s Directory Identifier
The directory identifier always contains the characters X DIR*. The operating system uses this to
help verify memory integrity.

= Directory Type
The directory type is the character M for main memory, A for a 40K RAM card, or O for a
ROM/EPROM card.

m Start of Files Pointer
This segment address points past the end of the directory table, and is the beginning of all files.
Program files always appear first in the file system.

= End of Program Files Pointer
This segment address points past the end of the program files, which is the beginning of the data
files. Nothing below this address within the directory will move at runtime.

m Start of Free Space Pointer
This segment address points past the end of the data files, which is the beginning of the free space.
Free space is used for data files and scratch areas in main memory, for data files only in a RAM
card, and is not available for use in a ROM or EPROM.,

m End of Free Space Pointer
This segment address points past the end of free space. For main memory, it also marks the begin-
ning of scratch areas available for assembly language programmers. If no scratch areas have been
allocated, this pointer points past the last byte in main memory — to 1000:0000 (64K), 2000:0000
(128K), or 4000:0000 (256K).

For the 40K RAM card, this pointer points past the end of the card, since there are no scratch
areas. For the same reason, in a ROM, this pointer points past the end of the logical ROM.

s Directory Table Checksum
This is where the checksum of the directory table is saved when the machine is turned off.

The other entries in the directory table identify the different files. The contents of the directory table
entries for files is shown below. Again, the numbers are hex offsets from the start of the entry.
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10h

File
Checksum
OEh
Size
Increment
oCh
End-of-Data
Address
09h
Start
Address
07h
File
Size
05h
File
Type
04h
File
Name
00h

Figure 1-6. Directory Table Entry Contents

= File Name
This is the name of the file. File names are 1-4 characters long, padded with blanks. If the file had
a checksum error at power on, the high bit is set in the first character of the file name (except in
ROM files). If a directory table entry is unused, the first byte of this field is set to null (00h).

m File Type
This is either an A, B, D, or H.

m File Size
This is the current length of the file in paragraphs. All files are padded with nulls (00h) to the
nearest paragraph boundary.

wm Start Address
This segment address is the location where the file starts.

® End-of-Data (EOD) Address
For data files, this is the offset of the end-of-data within the file, relative to the start of the file. For
program files, this is a pointer to the end of the program, which may not be the end of the file
because of the null padding. The EOD address is a 24-bit value stored as a two-byte offset and a
one-byte segment (low word followed by high byte).

m Size Increment
For data files, this is the expansion increment, in paragraphs, used when data is written past the
end-of-file. It is O for program files in RAM and for all files in ROM.
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m File Checksum
This is where the checksum of the file is saved when the machine is turned off.

The space reserved for the directory table is fixed-length, and varies with the total amount of memory.
Because the first entry is always reserved for the directory table header, there will be space for one less
user file than the size of the directory table would otherwise indicate. The directory sizes and number
of files available are shown below.

Table 1-3. Directory Table Sizes

Name of Memory Directory Number
Memory Area Size Table Size of Files
Main Memory 64K 1K 63
128K 1K 63
256K 2K 127
40K RAM Card 40K 0.5K 31
ROM/EPROM Card 32K 0.5K 31
64K 0.5K 31
96K 1K 63
128K 1K 63

R
File System

The HP-94 file system allows for multiple files of different types to coexist simultaneously. User files
can reside in any of the five user directories (0-4), whether RAM or ROM.

File Names

Each file is identified by a 1-4 character name. File names are composed of uppercase alphabetic
characters and numbers only, and must start with a letter. A file name can only exist once in any direc-
tory. It is not possible to have the same name but a different type in the same directory. However, the
same file name can exist in different directories, with either the same or different type.

File Types
There are four possible file types:
m Assembly Language Program — Type A

Assembly language programs are either new BASIC keywords, invoked with the %CALL state-
ment, or are entire assembly language applications.

= BASIC Program — Type B

BASIC programs are a collection of "tokens" that are can be executed by the BASIC interpreter.
They are produced by HXC from a BAS file during the file conversion process.
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m Data File — Type D
Data files are simply contiguous blocks of memory.

m User-Defined Handler — Type H
A handler is a special assembly language program that controls the I/O ports, such as the serial and
bar code ports. It has a structure similar in concept to a UNIX or MS-DOS device driver.

Erasing and Loading Files

When files are erased from command mode with the E (erase) operating system command, their
memory is returned to free space, and files higher in memory move down to fill in the hole. When files
are loaded with the C (copy) operating system command, existing files with the same name are erased
first, and the memory they occupied is reclaimed for other uses. Then memory for the new file is allo-
cated from free space (assuming there is enough room). This ensures that neither file space nor free
space are fragmented while erasing or loading files. When data files are deleted with the DELETE
function (14h), the memory they occupied is also reclaimed.

Reserved File Names
There are four files with reserved names that must not be used for anything except their current use:
m SYBI — built-in BASIC interpreter
m SYBD — BASIC debugger
m SYFT — user-defined font
@ SYOS — built-in operating system

When the BASIC interpreter searches for user-defined keywords with $CALL, the 12 built-in key-
words starting with SY will be not be overridden by new keyword files of the same name (SYAL,
SYBP, SYEL, SYER, SYIN, SYLB, SYPO, SYPT, SYRS, SYRT, SYSW, and SYTO).

In general, Hewlett-Packard uses SY as the first two characters of all its assembly language utilities,
and HN as the first two characters of all its user-defined handlers. If you use file names starting with
SY or handler names starting with HN, you may have a name conflict. Consequently, you should not
use names starting with those characters.

Maximum Number of Files

The maximum number of files that can be placed in any directory was indicated in "Memory Organiza-
tion" and "Directory Table". The maximum total number of files would occur in a 94D or 94E with a
ROM/EPROM card containing four 32K ROMs — 63 files for main memory plus 4 * 31 files for the
ROM/EPROM card, for a total of 187 files.
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I
Data Files

Data files are contiguous blocks of memory with a 1-4 character file name name, and file type D. They
have no explicit record structure associated with them — it is the responsibility of the application pro-
gram to impose any record structure needed, and read and write data from the appropriate position
within the file. They always appear after all program files in whichever directory the data file resides
— between the end of program files pointer and the start of free space pointer.

Data files are created using the CREATE function (11h). When a data file is created, the space
requested is taken from free space at the end of the current data files, the directory table header
pointers are adjusted, and one entry in the directory table is used to identify the file. Once a file is
created, it must be opened with the OPEN function (OFh) before data can be read or written. Data
files are automatically closed at cold start. Data files that were open when the machine was turned off
remain open at warm start.

Data files have two characteristics that are defined by the program that creates them (file size and size
increment) and two that are defined automatically (end-of-data address (EOD) and file access pointer).

File Size

This is the initial size of the file, which is the amount of memory that will be reserved for the file when
it is created. It is specified in paragraphs and ranges from 0000h to FFFFh (although the maximum file
size is limited by available memory). The space used for the file is automatically initialized to all nulls
(00h). A file size of 0 means that the file initially occupies no space, even though the directory table
entry still exists to identify the file.

Data files cannot be created in a ROM or EPROM, or in any read-only directory (main memory or the
40K RAM card may be set to be read-only if a checksum error occurred in their directory tables at
power on).

Data files can also be created on the development system. Like all development system files, they are
converted to Intel MDS format by HXC for transmission to the 94. When no file size is specified,
HXC automatically sets it to the actual file size on the development system, rounded up to the nearest
paragraph boundary. The 0 to 15 bytes needed to pad the file are automatically set to nulls (00h).

For RAM data files, HXC allows specifying a file size that is larger than the actual size. That way a file
could be defined to have a certain amount of data in it, and a fixed amount of unused space in the file.

This option is not available for ROM data files, since a program cannot write to unused space in a
ROM or EPROM.

Size Increment

This is the expansion increment used to increase the file size when the WRITE function (13h)
attempts to write past the end of the file (that is, when the current file size is exceeded). It is specified
in paragraphs, and ranges from 0000h to FFFFh (although the maximum expansion is limited by avail-
able memory). When a program writes to a data file, and there is no room for the data being written,
the operating system will attempt to expand the file by the number of size increments needed, and then
the data will be written to the file. For example, a file with a size increment of three (3) paragraphs
will expand by as many three-paragraph blocks of memory (48 bytes) as needed to accommodate the
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data being written.

Note that the 94 may run out of memory during any of the expansions, leaving a file that has been
expanded, but not enough to hold the data to be written. In this situation, no data will be written to the
file — data is only written to a file if there is enough room for all it.

When a data file expands, all data files higher in memory move up to accommodate the increased file
size. This is illustrated below.

High Addresses
Free Space
N5-X Bytes
Free Space
N5 Bytes
Data File 4
N4 Bytes
Data File 4
N4 Bytes Data File 3
N3 Bytes
Data File 3
N3 Bytes
Data File 2
N2 +X Bytes
Data File 2
N2 Bytes
Data File 1 Data File 1
N1 Bytes N1 Bytes
Low Addresses
Before File 2 Expanded After File 2 Expanded

Figure 1-7. File Movement During Data File Expansion

Expansion space added to the file is automatically initialized to all nulls (00h). A size increment of 0
means no expansion will take place — the file will never grow past its allocated size. A size increment
of 0 can be specified for any RAM data file; HXC automatically sets it to 0 for ROM data files, since
they cannot expand.
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File writes are not buffered — they immediately modify the file, provided space is available.

End-of-Data Address

The EOD address is a pointer in the directory table to the location in the data file just past the last byte
of data. It is usually not equal to the end of the file (EOF) because files always end on a paragraph
boundary. For data files from the development system, HXC sets the EOD address past the last byte of
data, even if there is padding to the paragraph boundary or unused space specified beyond the actual
file size.

Every time a file write operation writes data past the current EOD or EOF, the EOD is automatically
adjusted to reflect the new end-of-data location.

File Access Pointer

This is the single pointer to the current read/write position in the file. The pointer is set to 0 (the start
of the file) when the file is opened, and is updated after every file read or write operation. Every time a
read or write occurs, the pointer is changed to point past the last byte read or written. Subsequent file
read or write operations will begin reading or writing from that updated position. The pointer can be
explicitly moved to an arbitrary position between the start of the file and the EOD, or set to the EOD
by using the SEEK function (15h). Moves beyond the EOD give an error. It is also possible to force
the EOD to be equal to the current file access pointer by performing a zero-length write using the
WRITE function (13h). This renders any data after that point inaccessible, but does not collapse the
file.

Deleting Data Files

Data files are deleted with the DELETE function (14h), and must be open before they can be deleted.
When data files are deleted, all the space occupied by the file is returned to free space. All data files
higher in memory move down to fill in the hole. The file space is then available for new data file crea-
tion, data file expansion, or scratch area allocation.

interrupts During File Operations

The power switch and low battery interrupts are disabled during file create, read, write, and delete
operations, so they are guaranteed to complete and not be corrupted (unless the reset switch is pressed
or the machine turns off automatically because of very low battery). The interrupts are reenabled after
the file operation is completed. This disabling and enabling does not change the interrupt status
defined by the SET INTR function (OAh). What it does is defer the processing (or ignoring) of those
interrupts until after the file operation has been completed.

The system timeout only occurs during read operations for channels 0-4 and read/write operations for
channels 1-4, so it will not occur during file operations, which use channels 5-15.
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File Expansion Example

Assume a data file exists with a current size of 2 paragraphs (32 bytes) and a size increment of 3 para-
graphs (48 bytes). The file already contains 25 bytes of data, leaving the EOD at offset 25 relative to
the start of the file (the first byte of the file is at offset 0, and the EOD points past the last byte of
data). For this example, assume the file access pointer is also at EOD.

When a program tries to write 66 bytes at the file access pointer, there is no room — there are only 7
bytes available. The amount of space required is 66 - 7 = 59 bytes, or 4 paragraphs. Since the size
increment is 3, two expansions of 3 paragraphs each will be performed, with a resulting file size of 2 +
2 * 3 = 8 paragraphs (128 bytes). Once the expansion has been completed, the data will be written. The
EOD (and the file access pointer) will be moved to offset 25 + 66 = 91, leaving 37 bytes of unused
space available at the end. This change to the data file is illustrated below (both decimal and hex
offsets are shown).

128 (80h) New EOF
Unused Space
37 Bytes (25h)
91 (5Bh) New EOD
Old + New Data
32 (20h) Oid EOF 25+66=91 Bytes (5Bh)
Unused Space
7 Bytes (07h)
25 (19h) Old EOD
Old Data
25 Bytes (19h)
0 (00h) File Start 0 (00h) File Start
Before File Expanded After File Expanded

Figure 1-8. Example of Data File Expansion

If the file access pointer had been at the start of the file before the write operation, only a single 3-
paragraph expansion would have been needed to accommodate 66 - 32 = 34 bytes.

-
Free Space

Free space is the pool of available memory from which data files are created and expanded in RAM
(main memory and 40K RAM card) and scratch areas are allocated (main memory only). Free space
is not available for any use in a ROM or EPROM. It starts at the start of free space pointer in any
directory, which is the end of all data files, and ends at the end of free space pointer, which will be at
the end of the directory (for main memory only, it could also be at the start of the scratch areas).
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In any directory, data files are created and expand by allocating the required memory from the bottom
of free space, expanding toward higher addresses. In main memory, scratch areas are created by allo-
cating the required memory from the top of free space, building toward lower addresses, as shown
below.

High Addresses End of Main Memory

Scratch Areas

End of Free Space Pointer

Free Space
T Start of Free Space Pointer
Data Files
Low Addresses End of Program Files Pointer

Figure 1-9. Use of Free Space in Main Memory

When the free space goes to zero from either direction, the 94 is out of memory. No data files can be
created or expanded, and no more scratch areas can be allocated. The ROOM function (0Eh) reports
the amount of free space in any directory; in main memory, it will take into account any existing scratch
areas.

Usage in Command Mode

Whenever the operating system enters command mode, all scratch areas in main memory are elim-
inated, allowing the free space in directory 0 to extend to the end of main memory. The available
memory for all directories is then just the size of the free space.

When any RAM file is erased with the E (erase) command, the space occupied by that file is returned
to free space, and all files higher in memory, regardless of type, are moved down to fill in the hole.
When a new file is loaded using the C (copy) command, a previously existing file with the same name is
erased, and the memory it occupied is reclaimed. Then space for the new file is allocated from free
space, and the new file is loaded. If the file loaded is a program file, all files above the end of program
files pointer are moved up to make room for the program. If the file loaded is a data file, it is added at
the end of the existing data files, and other files do not need to move.
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Usage at Run Time

During a running program, there may be scratch areas allocated in main memory, so free space in
directory 0 extends only up to the start of the scratch areas. The available memory for other directories
is still just the size of the free space.

At run time, program files do not move — only data files and scratch areas interact with free space at
run time. When a RAM data file is deleted programmatically, the space occupied by that file is
returned to free space, and all data files higher in memory are moved down to fill in the hole. When a
new data file is created programmatically, its memory is allocated from free space at the end of the
existing data files. When a data file expands because of a write past its end-of-file, the expansion space
is allocated from free space, and all data files higher in memory are moved up to make room for the
expanded file.

When a scratch area is created, its memory is allocated from free space. When scratch areas are
released, their memory is returned to free space only if the area is adjacent to the top of free space.
See "Releasing Scratch Areas” for more details.

T
Scratch Areas

Scratch areas are blocks of memory that a program can reserve for its own use. The built-in BASIC
interpreter allocates scratch areas to hold BASIC program variables and subprogram calling informa-
tion. User-written assembly language programs and user-defined handlers can allocate scratch areas
for parameters, status, configuration information, buffer space, space for data returned by operating
system functions, or whatever other purpose is required.

Allocating Scratch Areas

The operating system GET MEM function (0Bh) provides the ability to allocate scratch areas in sizes
from 0001h to FFFFh paragraphs (although the maximum expansion is limited by available memory),
and returns the segment address of the scratch area. Scratch areas are allocated in main memory only,
regardless of which directory contains the program requesting the scratch area: directories 0-4, RAM
or ROM. Scratch areas start at the end of main memory and use the space required from free space,
building down toward lower addresses. They can also use previously-released scratch areas that have
not been returned to free space. This will be discussed later.

Scratch areas are automatically initialized to all nulls. They are all released at cold start, but are
preserved at warm start.

When a handler allocates a scratch area during its OPEN routine, the operating system saves the
scratch area address in a table based on the channel number of the handler. When the other routines
in the handler are called (such as READ, WRITE, etc.), the operating system passes the scratch area
address to the routine. (The handler must save this address in the handler information table if it will
be needed for an interrupt service routine.)

If a handler allocates more than one scratch area, only the address of the last one allocated will be
saved and automatically passed to handler routines. Therefore, when multiple scratch areas are allo-
cated by a handler, the allocation order is important. A handler can allocate scratch areas so that the
last one allocated is the one whose address should be passed to handler routines. Alternatively, the
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handler can call GET MEM with the channel number set to 0, and the operating system will not save
that scratch area address or pass it to handler routines.

When an assembly language program allocates scratch areas, it is responsible for keeping track of the
locations of its scratch areas. The operating system saves scratch area addresses only for user-defined
handlers.

The assembler provides the ability to define the offsets within an external scratch area using the SEG-
MENT AT directive, as shown below.

SCR_AREA segment at O :Addresses start at 0

PARAM1 db 6 dup(?) ;First parameter needs 6 bytes
PARAM2 db 00 ;Second parameter needs a byte
PARAM3 dw 0000 ;Third parameter needs a word
SCR_AREA ends

Figure 1-10. Defining Scratch Area Data Structure

The SEGMENT AT directive provides an address template that can be imposed on the scratch area.
SEGMENT AT causes no code to be generated for the uninitialized data defined within that program
segment (in this case, the SCR_AREA segment).

Releasing Scratch Areas

Scratch areas are released using the REL, MEM function (0Ch). The program supplies the address of
the scratch area to be released. An error will occur if the program tries to release a scratch area that
does not exist by supplying an address that does not point to any defined scratch area.

When a scratch area is released, the operating system will attempt to return the area to free space. This
can only occur if the scratch area is adjacent to free space. Consequently, it may not be possible to
return a scratch area to free space because of the order that the scratch areas were allocated.

For example, if a handler is opened in a BASIC subprogram, and allocates a scratch area, the area will
be adjacent to free space, and will be lower in memory than the scratch area allocated by the subpro-
gram for its variables. When the subprogram ends, the scratch area used for its variables will be
released, but will not be returned to free space. It is blocked from being adjacent to free space because
of the handler’s scratch area. This area is flagged as a free block, available for scratch area allocation,
but not for data file creation or expansion since it is not part of free space.

In the diagram below, scratch area 3 was allocated for variables for a BASIC subprogram, and scratch
area 4 by a handler.
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High Addresses

Scratch Area 1 Scratch Area 1
N1 Bytes N1 Bytes
Scratch Area 2 Scratch Area 2
N2 Bytes N2 Bytes

Scratch Area 3 Free Block 1
N3 Bytes N3 Bytes
Scratch Area 4 Scratch Area 4
N4 Bytes N4 Bytes
Free Space Free Space

Low Addresses

Before Area 3 Released After Area 3 Released

Figure 1-11. Blocking a Released Scratch Area

Scratch area 4 prevents released scratch area 3 from being returned to free space. Scratch area 3
becomes the first free block. It will not be returned to free space until scratch area 4 is released.

To allow this newly-available free block to be reused, regardless of the order in which scratch areas
were allocated and released, it will be combined with any adjacent free blocks formed when other
trapped scratch areas were released. This coalescing process attempts to form a few large available free
blocks, rather than many small ones. This is illustrated below.
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High Addresses

Scratch Area 1 Scratch Area 1
N1 Bytes N1 Bytes
Scratch Area 2
N2 Bytes
Free Block 1
N2+ N3 Bytes
Free Block 1
N3 Bytes
Scratch Area 4 Scratch Area 4
N4 Bytes N4 Bytes
Free Space Free Space
Low Addresses
Before Area 2 Released After Area 2 Released

Figure 1-12. Coalescing Adjacent Released Scratch Areas

When scratch area 2 is released, it forms a new free block that cannot be returned to free space. The
coalescing process combines this new block with free block 1 that already exists, forming a single free
block whose size is the sum of the two smaller blocks. This keeps the number of free blocks to a
minimum, since the operating system can only keep track of 20 free blocks.

Subsequent allocation of new scratch areas will use the first free block that is large enough among all
those available before allocating additional memory from free space. Only as much of the free block
will be used as is required. The remainder will be flagged as a smaller free block.

Data files cannot use free blocks until they are returned to free space — only scratch areas can reuse
free blocks. Consequently, free space can go to zero and leave no room for data files creation or
expansion, even though there may be free blocks available for reuse when allocating scratch areas.

There is no facility to pack the free blocks together, since many tables and handlers keep track of the
segment address of the their scratch areas. Only allocation and release of scratch areas in careful order
can help prevent fragmentation of free blocks.

After the coalescing has been completed, if there is an available free block adjacent to free space, it is

returned to free space for other uses (data file allocation and expansion or new scratch area allocation
when the available free blocks are not large enough).
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When the 94 cold starts, all scratch areas and free blocks are automatically returned to free space. This
will occur the next time the machine is turned on after a program calls the END _PROGRAM function
(00h) and specifies a subsequent cold start. This also occurs whenever the operating system enters
command mode, whether because of a program error or because of an explicit call to
END_PROGRAM. If a program calls END _PROGRAM and specifies a subsequent warm start, all
scratch areas and free blocks are preserved the next time the machine is turned on.

Number of Scratch Areas

A maximum of 34 scratch areas can be allocated in main memory. An error will occur when a scratch
area is allocated if 34 scratch areas are already in use.

The BASIC interpreter allocates scratch areas for its own use, for BASIC variables, and for control
information. In this sense, the BASIC interpreter can be thought of as another assembly language pro-
gram, using the facilities within the operating system for scratch space management.

When a BASIC main program is run, two scratch areas are allocated immediately:
= One scratch area for the BASIC interpreter scratch space (2K long).

® One scratch area for the BASIC program variables. The length of this area is shown as "Variable
Space Required" in the BMP file produced by HXC (although the length is rounded up to the
nearest paragraph boundary). This area will not be allocated in the case of a BASIC main program
with no variables.

This leaves a total of 32 scratch areas available for other uses. After that, every time a BASIC subpro-
gram is called with the CALL statement, two scratch areas are allocated:

® One scratch area for the control information save area that contains information passed between
programs (32 bytes).

m One scratch area for the BASIC subprogram variables (length shown in the BMP file, not allocated
if no variables).

This is why BASIC subprograms can only be nested a maximum of 16 levels deep — scratch area allo-
cation limits permit 32 scratch areas beyond those used for the main program.

Fewer scratch areas may actually be available for BASIC subprogram nesting, since user-defined
handlers and assembly language programs can allocate scratch areas also. A high-level and low-level
handler combination, for example, may have three scratch areas allocated between them: one for
configuration passing and two for scratch and buffer space (one for each handler). Assembly language
programs generally allocate one scratch area for scratch and buffer space, but may allocate a second
one for configuration passing to handlers. Consequently, BASIC subprogram nesting may be restricted
to less than 16 levels.

Optimum Memory Use With Scratch Areas

To allow the most efficient use of memory, scratch areas should be allocated and released in such a
way that they do not block other scratch areas from being returned to free space. Long-term scratch
areas that must remain in place throughout program execution (such as handler scratch areas) should
be allocated when the program begins executing. Short-term scratch areas should be released as soon
as they are not needed.
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This is particularly important for BASIC programs. BASIC programs should attempt to do tasks that
allocate long-term scratch areas in the main program, rather than in subprograms, where they will trap
short-term subprogram-related scratch areas. Whenever possible, tasks requiring short-term scratch
space should be isolated within a subprogram.

-
Logical ROMs

The HP 82412A ROM/EPROM card accommodates ROMs or EPROMs of different sizes: 32, 64, 96,
or 128K. These different sizes are considered to be "logical ROMs" for two reasons:

m A logical ROM of size N does not have to contain N bytes of program and data files; it can contain
less than N bytes. For example, a 64K logical ROM may only contain 44K of program and data
files.

m A logical ROM of size N does not have to be placed in a ROM or EPROM integrated circuit (IC)
of size N. For example, a 96K logical ROM can be contained in either three 32K ICs or two 64K
ICs.

Logical Structure of the ROM/EPROM Card
Below is a memory map of the ROM/EPROM card.

(3FFF:000F) 3FFFFh End of ROM/EPROM Card

Directory 4

(3800:0000) 38000h Start of Directory 4
Directory 3

(3000:0000) 30000h Start of Directory 3
Directory 2

(2800:0000) 28000h Start of Directory 2
Directory 1

(2000:0000) 20000h Start of Directory 1

Figure 1-13. Memory Map of the HP 82412A ROM/EPROM Card

This memory map illustrates an important aspect of logical ROMs. Each directory begins on a 32K
address boundary within the ROM/EPROM card address space (20000h to 3FFFFh). Each logical
ROM is assigned a directory number corresponding to the 32K address boundary where the ROM will
start. A logical ROM larger than 32K will span more than one 32K block of addresses. The pointers in
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the directory table header created by HXC will reflect that the starting address is on a 32K boundary,
and that the logical ROM space for large ROMs spans multiple 32K blocks. (For ROMs that span
more than one directory, the directory number specified when the ROM is created is the starting direc-
tory number.)

For example, a 96K logical ROM starting at directory 1 will span directories 1, 2, and 3, leaving one
32K block of addresses, directory 4, available for a single 32K logical ROM. Similarly, a 64K logical
ROM starting at directory 3 will span directories 3 and 4, leaving two 32K block of addresses, direc-
tories 1 and 2, available. These can be filled by either another 64K logical ROM starting at directory 1,
or two 32K logical ROMs, one starting at directory 1, and the other starting at directory 2. A 96K logi-
cal ROM could not start at directory 3, nor could a 64K logical ROM start at directory 4, because they
would have to span into a 32K block of addresses not available to the ROM/EPROM card.

Combining Logical ROMs of Different Sizes

Logical ROMs of different sizes can be combined in many different ways, subject to the following res-
trictions:

m The total number of logical ROMs cannot exceed four.
m The total number of directories spanned by all the logical ROMs cannot exceed four.

m The total space required by all logical ROMs, regardless of the amount of code they contain, can-
not exceed 128K.

This is illustrated by the following diagram, which shows the possible logical ROM combinations for
filling 128K of ROM space. Of course, a ROM/EPROM card does not have to be full — that is, it
can contain fewer than four logical ROMs, span fewer than four directories, and contain less than 128K
total ROM.
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Directory 1 | Directory 2 | Directory 3 | Directory 4
32K 32K 32K 32K
32K 32K 64K
32K 64K 32K
32K 96K
64K 32K 32K
64K 64K
96K 32K
128K

Figure 1-14. Possible Logical ROM Configurations

The memory map of an individual ROM within the ROM/EPROM card is essentially the same as for
the 40K RAM card. The major difference is the values of the pointers — these can vary depending on
the starting directory number, the directory table size, and the logical ROM size. Below is a memory
map of a 32K logical ROM starting at directory 2.
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(3000:0000) 30000h End of Free Space Pointer

(2FFF:000F) 2FFFFh End of Logical ROM
Free Space
Start of Free Space Pointer
Data
Files
End of Program Files Pointer
Program
Files
(2820:0000) 28200h Start of Files Pointer
Directory Table
{(2800:0000) 28000h Start of Directory Table

Figure 1-15. Memory Map of a 32K Logical ROM in Directory 2

Rather than provide memory maps for all the possible logical ROMs in directories 1-4, the addresses
of the start and end of the logical ROM and for the start of program files (end of directory table) are
shown in the following table.

Table 1-4. Addresses for All Logical ROM Sizes in Directories 1-4

Logical Directory Start of Start of Program End of Free
ROM Size | Number Logical ROM Files Pointer Space Pointer
32K 1 2000:0000 2020:0000 2800:0000

2 2800:0000 2820:0000 3000:0000
3 3000:0000 3020:0000 3800:0000
4 3800:0000 3820:0000 4000:0000
64K 1 2000:0000 2020:0000 3000:0000
2 2800:0000 2820:0000 3800:0000
3 3000:0000 3020:0000 4000:0000
96K 1 2000:0000 2040:0000 3800:0000
2 2800:0000 2840:0000 4000:0000
128K 1 2000:0000 2040:0000 4000:0000
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Selecting a Logical ROM Size

From the different possible logical ROM sizes, select those best for a specific application based on its
particular needs. Some of the items to consider are the total number of program and data files needed,
maximum file size, total ROM space required for directory tables (which decreases available ROM for
the application), and segmentation of code into blocks of different sizes. Below is a comparison of the
differences in organizing a 96K application in three different ways: three 32K ROMs, one 64K ROM
and one 32K ROM, or one 96K ROM.

Table 1-5. Different Organizations of a 96K Application

Logical Total Number | Maximum | Directory Table Segmentation
ROM Sizes of Files File Size Overhead Required
332K ROMs 3*31 =93 31.5K 3*5=15K three separate groups of
files that each fit in 32K
1 64K ROM + 31 + 31 =62 63.5K, 5+ 5=1K one group of files that
1 32K ROM 31.5K fits in 64K and one group
of files that fits in 32K
1 96K ROM 63 95K 1K none

The same reasoning can be applied to other size applications and other logical ROM choices. The
results of this analysis should be matched up against the requirements of the application to select the
best way to organize it.

ROM and EPROM IC selection is another factor to consider, and will be discussed later.

Physical Layout of the ROM/EPROM Card,

The ROM/EPROM card contains a circuit board with three sockets on it for ROM or EPROM ICs.
The sockets can accommodate either 32K ICs or 64K ICs (a jumper on the board selects which IC size
is being used). Different IC sizes cannot be mixed and matched — the board can hold either up to
three 32K ICs or up to two 64K ICs. A diagram of the card is shown below.
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Alignment Holes

Socket
Socket Socket

. 1]

32K/64K Jumper

[T

Figure 1-16. HP 82412A ROM/EPROM Card Circuit Board

The socketed jumper on the board selects between 32K ICs and 64K ICs. Underneath the jumper are
the legends and [512], meaning 256 Kbits (32 Kbytes) or 512 Kbits (64 Kbytes). To select the 32K
ICs, insert the jumper so its solid metal strips connect jumper pins whose mating holes on the board
are marked with the symbol. (This is the configuration shown in the diagram.) To select 64K ICs,
insert the jumper to use the holes marked with the [§12] symbol.

Each socket on the board begins on a 32K address boundary within the ROM/EPROM card address
space corresponding to the 32K blocks of address space in which logical ROMs reside. Socket 1
corresponds to directory 1, 2 to 2, and 3 to 3. A 32K IC can therefore be placed in any socket on the
board (1, 2, or 3). A 64K IC will span more than one 32K block of addresses. Consequently, 64K ICs
can be placed only in sockets 1 and 3. Placing a 64K IC in socket 3 gives access to the fourth 32K block
of addresses — this is the "fourth" socket on the board for directory 4.

This means that using 32K ICs, 96K of physical ROM space is the maximum available, and using 64K
ICs, the full 128K is available.

Selecting an IC Size

The directory numbers selected for the different logical ROMs will depend on where the logical ROMs
will be placed on the board in the ROM/EPROM card. Some of that will depend on which IC size is
chosen. The following items should be considered when making an IC size selection:

= Application size
m Price

Availability

Correct electrical specifications

Supported by EPROM programmer (EPROMs only)

Refer to the "Hardware Specifications” for information about electrical and environmental
specifications and manufacturers for the different IC sizes.
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Placing Logical ROMs Into Physical ICs

In addition to the previous restrictions on combining logical ROMs, and the fact that IC sizes cannot
be mixed, there is one more restriction that applies when placing logical ROM:s into physical ICs: the
physical IC must be placed in the socket on the board which corresponds to the directory number for
the logical ROM contained in that IC.

Logical ROMs and physical ICs can both span 32K address boundaries, but this spanning is indepen-
dent of each other (with the above restriction). This fact yields two important results. First, a logical
ROM can cross physical IC boundaries; if it could not, logical ROMs larger than 32K would not be
possible. Second, it does not matter what part of a logical ROM occupies a given physical IC as long as
the logical ROM’s starting directory number corresponds with the socket it occupies on the board, and
the different pieces of the logical ROM are kept in the proper order.

Continuing the previous example of a 96K application, below are the ways that the logical ROMs could

be placed in physical ICs. Each row of the tables represents a different way to place the particular logi-
cal ROM in the ICs.

Table 1-6. Placing a 96K Application Into Three 32K ICs

Which Part of Which Part of Which Part of
Logical Logical ROM Put in | Logical ROM Put in | Logical ROM Put In
ROM Sizes | 32K IC In Socket 1 32K IC in Socket 2 32K IC In Socket 3
3 32K ROMs one entire one entire one entire
32K ROM 32K ROM 32K ROM
1 64K ROM+ first half of last half of entire
1 32K ROM 64K ROM 64K ROM 32K ROM
entire first half of last half of
32K ROM 64K ROM 64K ROM
1 96K ROM first third of middle third of last third of
96K ROM 96K ROM 96K ROM
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Table 1-7. Placing a 96K Application Into Two 64K ICs

Which Part of Which Part of
Logical Logical ROM Put In Logical ROM Put In
ROM Sizes 64K IC In Socket 1 64K IC In Socket 3
First Haif of IC | Last Half of IC | First Haif of IC | Last Half of IC
3 32K ROMs one entire one entire one entire
32K ROM 32K ROM 32K ROM
one entire one entire one entire
32K ROM 32K ROM 32K ROM
one entire one entire one entire
32K ROM 32K ROM 32K ROM
one entire one entire one entire
32K ROM 32K ROM 32K ROM
1 64K ROM + first half of last half of entire
1 32K ROM 64K ROM 64K ROM 32K ROM
first haif of last half of entire
64K ROM 64K ROM 32K ROM
entire first half of last half of
32K ROM 64K ROM 64K ROM
first half of last half of entire
64K ROM 64K ROM 32K ROM
entire first half of last half of
32K ROM 64K ROM 64K ROM
entire first half of last halif of
32K ROM 64K ROM 64K ROM
1 96K ROM first third of middle third of last third of
96K ROM 96K ROM 96K ROM
first third of middie third of last third of
96K ROM 96K ROM 96K ROM

As the tables indicate, the segmentation of an application across logical ROM boundaries has no bear-
ing on the way the ROMs are segmented to fit into physical ICs, as long as the starting directory
number corresponds with the socket number, and the different pieces of the logical ROM are kept in
the proper order.

The same reasoning can be applied to other size applications and other logical ROM choices. The
results of this analysis should be matched up against the requirements of the application to select the
best way to organize it.

|
System ROM

The system ROM is 32K of EPROM located in directory 5 in the upper 32K of the CPU address space.
While this directory can be examined in command mode, it cannot be referenced by number or by any
of its files during a running program. During a running program, the OPEN, FIND FILE, and
FIND NEXT functions (OFh, 16h, and 17h) will only find files in directories 0-4. The system ROM
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contains four major blocks, shown in the memory map below.

(FFFF:000F) FFFFFh End of System ROM
Character Set
(FFC3:0000) FFC30h Start of Character Set
Operating
System
(FC00:0000) FCO00h Start of Operating System
BASIC
Interpreter
(F803:0000) F8030h Start of BASIC Interpreter
Directory Table
(F800:0000) F8000h Start of Directory Table

Figure 1-17. Memory Map of the System ROM

= Directory Table
This contains only three entries: directory table header, BASIC interpreter file entry (SYBI), and
operating system file entry (SYOS).

m BASIC Interpreter
This is file SYBI.

m Operating System
This is file SYOS.

m Character Set
This is the dot pattern for the Roman-8 character set.

S
Memory Integrity Verification

The operating system computes and saves checksums of various areas of memory when the 94 is turned
off. When the 94 is turned back on, the checksums are recomputed and compared with the saved
values. Any changes indicate that memory integrity has not been preserved, and an error message is
issued. Checksums are computed such that the sum of all words in the block being verified, plus the
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checksum, will equal zero.

The major blocks of memory for which checksum errors are reported are directory tables, files,
reserved scratch space, and free space. In addition, a checksum is made of the system ROM, and the
reserved scratch space is tested extensively. These operations are discussed below.

Checksums Computed at Power Off

At power off, checksums for all RAM areas (main memory and 40K RAM card) are computed and
saved. Checksums for ROM/EPROM card are not computed, since they are fixed in ROM, but they
are saved in the reserved scratch space for comparison at power on. The system ROM checksum is
also not computed.

Memory Integrity Tests at Power On

At power on, the operating system checks the main NiCd battery voltage. If it is below the low battery
interrupt level, the machine is immediately turned off. If the voltage is OK, integrity tests are per-
formed in the order shown in the following table. If any of the first three tests fail, the machine will not
enter command mode. If any of the other tests fail, the machine will enter command mode and issue an
error message. Any program run at that time will cold start.

Table 1-8. Memory Integrity Errors

Integrity Test Main Memory 40K RAM Card ROM/EPROM
Performed Error Error Card Error

System ROM low beep — —
Checksum
Reserved Scratch high beep - —
Space Read /Write
Valid RAM high beep and — —

| Configuration memory map

[ Directory Table 212 and 213 and —
Header Consistency require I0 require I1
Reserved Scratch 214 — —
Space Checksum *
Free Space 215 — —
Checksum *
Directory Table 212 and 213 and 213
Checksums * make type O make type O
File 216 and 217 and 217
Checksums * set MSB of name | set MSB of name

* Not computed at power off or power on if power turned off by pressing the reset switch or by

automatic turn-off 2-5 minutes after the low battery interrupt.

These tests and their results are described below.
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m System ROM Checksum
If the stored checksum in the system ROM does not match the computed checksum, the operating
system will issue a continuous low tone beep, and will not enter command mode.

m Reserved Scratch Space Read/Write
If every byte in the reserved scratch space cannot be read and written, the operating system will
issue a continuous high tone beep, and will not enter command mode.

m Valid RAM Configuration
The RAM configuration is checked by reading and writing the first word of every RAM IC. If
there is any other configuration of built-in RAM than 64K, 128K, 256K, or the RAM card has other
than 40K, the operating system will issue a continuous high tone beep, and will not enter command
mode.

In addition, a memory configuration map will be displayed indicating the incorrect RAM ICs. The
map is in the form "Error " followed by eight hex characters. The bits in each character represent
individual RAM ICs. Reading from right to left, each bit will be a 1 if the IC was present, and a 0 if
the IC was not present. For example,

Error FFFFFFDF

indicates that the sixth RAM IC was not present (the last 8 bits of the map are 11011111). Shown
below is what the memory configuration map would be if the different configurations were correct.
(These patterns will never appear, because only an incorrect pattern will be displayed.)

Table 1-9. Configuration Map for Valid Memory Configurations

Memory Configuration Map if
Configuration Configuration Correct
64K Error OOOOOOFF
128K Error OOOOFFFF
256K Error. FFFFFFFF
64K + 40K RAM Card Error O01FOOFF
128K + 40K RAM Card Error OO1FFFFF

After this test, the operating system will check the keyboard. If any keys are down other than
[CLEAR] and [ENTER], the machine will turn back off immediately. This is to prevent accidental turn
on (while in a full briefcase, for example).

= Directory Table Header Consistency
This verifies the consistency of the directory table headers for main memory and the 40K RAM
card. The *DIR* directory identifier must be intact and the different pointers must point to suc-
cessively higher addresses. If not, error 212 or 213 is issued, and the directory table is flagged such
that the user must initialize the directory with the I (initialize) command (I0 or I1). This also
occurs if the size of main memory has changed (by adding or removing the 128K memory board).

m Reserved Scratch Space Checksum
This is the checksum of the interrupt vector area and the operating system scratch space. If this
checksum error occurred, error 214 will be issued.

m Free Space Checksum
This is the checksum of the free space (and scratch areas, if any) — everything higher in main
memory than the end of free space pointer. If this checksum error occurred, error 215 will be
issued.
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= Directory Table Checksums
These are the checksums of the directory tables in any directory. If a directory table checksum
error occurred for main memory or the 40K RAM card, error 212 or 213 will be issued, and the
directory type in the directory table header will be changed to O (ROM directory). This makes the
directory read-only, allowing the data to be retrieved, but not changed. To make the directory table
type M or A again, the user must initialize the directory with the I command (I0 or I1) after
retrieving any desired data.

For the ROM/EPROM card, only the error (213) will be issued — the directory type is already
type O. Any checksum error in a ROM or EPROM (especially an EPROM) implies that the IC
had one or more bits change state, and the IC should be replaced.

The operating system recognizes that a card has been plugged in or removed, or that ROMs were
changed on the ROM/EPROM card, because the number and contents of the directory tables has
changed. When these conditions occur, they will not cause a checksum error, but will cause the
machine to cold start.

m File Checksums
These are the individual checksums for each file in any directory. If a file checksum error occurred
for main memory or a RAM card, the MSB of the first character of the file name will be set. This
will cause the file names to be displayed with a leading asterisk (*) when the D (directory) or M
(memory) operating system commands are executed. If a file name has already been flagged as
being corrupted, its checksum will not be computed at power on.

If a file checksum error occurred in a ROM/EPROM card, the file name will not be altered, so no
asterisk will appear when using the D or M commands. Any checksum error in a ROM or EPROM
(especially an EPROM) implies that the IC has had one or more bits change state, and the IC
should be replaced.

Even with the MSB set in the file name, all normal file operations can still be performed: open,
close, read, write, delete, find, execute, etc. All these operations are risky (especially running cor-
rupted programs) because the state of the file is unknown. Unless the program or the user has the
ability to reconstruct corrupted data, the safest action would be to erase the corrupted files and
either replace them (program files) or recreate them (data files).

After all memory integrity tests have been performed, the operating system checks the lithium backup
battery voltages. If the voltages are too low, the machine will enter command mode, and issue error
210 (main memory) and/or 211 (128K memory board or 40K RAM card).
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Program Execution

This chapter describes program execution in the HP-94: behavior at run time, cold start and warm
start, program structure, and restrictions.

_
Running Programs

Program files are any of the non-data files — file types A, B, or H. They can reside in RAM or
ROM/EPROM, and have some characteristics that are described here. Details on new BASIC key-
words (type A) and user-defined handlers (type H) are in the BASIC interpreter and handler sections
of this manual. BASIC programs are discussed in the BASIC interpreter section of this manual, as well
as in the BASIC Language Reference Manual.

Autostart

When the HP-94 cold starts (discussed later), the operating system will automatically run the first file
called MAIN that it finds. It searches directories 0-4 in ascending order, and if the first MAIN file
encountered is type A or type B, it will be run; if not, an error will be issued. This search order allows
a MAIN program in directory 0 (main memory) to override a MATIN file in directories 1-4 (40K RAM
card or ROM/EPROM card).

Programs can also be run using the S (start) operating system command. Programs run with S will
always cold start.

Iin-Place Execution of Programs

Program files are executed in place, regardless of where they are located in memory. Programs in
ROM do not have to be copied into RAM before being executed. Space for BASIC program variables
and scratch areas for assembly language programs and handlers are allocated from main memory,
regardless of which directory the program resides in.

Behavior at Run Time

Program files always appear first in the file system for each directory, as illustrated in the memory
maps. This placement occurs regardless of the order in which files are loaded. The C (copy) command
ensures that all RAM-based program files are located before any data files. HXC ensures the same
condition for ROM-based programs.

This is important because program files do not move at run time. All files lower in memory than the
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end of program files pointer will not move at run time. However, because the order programs are
loaded may vary, it is not known until run time exactly where each file may be located (and therefore
what the initial CS will be). There is no segment fixup performed as is true for MS-DOS programs.
Consequently, all references to addresses within program files must be relative to the start of the file
— there can be no far calls or far jumps. This is particularly important for assembly language pro-
grams; HXBASIC and HXC handle this for BASIC programs.

Data files, however, can move at run time, since they can expand and be deleted. Since the operating
system assumes that programs do not move at run time, data files must appear after all program files
so that data file expansion and deletion will not change the location of programs.

Behavior of Reserved Files
There are four files with reserved names that must not be used for anything except their current use:

m SYBI — built-in BASIC interpreter
If this file is run with the S (start) command, the operating system will immediately return to com-
mand mode.

m SYBD — BASIC debugger
If this file is run with the S command, the operating system will immediately return to command
mode (with the side effects shown in Table 2-3 for a FAR RET).

m SYFT — user-defined font
If this file is run with the S command, the data in the file will be treated as code, which will have
unpredictable (and possibly harmful) side effects.

m SYOS — built-in operating system
If this file is run with the S command, the operating system will immediately turn the machine off,

When the BASIC interpreter searches for user-defined keywords with $CALL, the 12 built-in key-
words starting with new keyword files of the same name SY will be not be overridden by new keyword
files of the same name (SYAL, SYBP, SYEL, SYER, SYIN, SYLB, SYPO, SYPT, SYRS,
SYRT, SYSW, and SYTO).

1
Cold Start and Warm Start

The HP-94 supports two methods of running programs when the machine is turned on: cold start and
warm start. The fundamental difference is where the program starts running,

At cold start, the program starts running at the beginning. All conditions are reset to their default state.
At warm start, the program continues running from the point at which it turned the power off. Most
conditions are preserved in the state they were in while the program was previously running, although a
few are reset to their default state. The warm start state is seen by user-defined handlers when their
WARM routines are called.

The details of what state the machine is in at cold and warm start are described below. Notice that
there are several items at the beginning of the table that behave identically, regardless of cold or warm
start. This is particularly important for handlers. In the WARM routine of a handler, the handler must
restore I/O devices to their required state (power, interrupt vector addresses, and interrupt
enable/disable status) since they are always set to their default state, even at cold start.
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Table 2-1. HP-94 Status at Cold and Warm Start

item Status at Cold Start Status at Warm Start
Display Cleared Cleared
input/Output Halted Halted
Interrupt Vector Addresses Set to Default * Set to Default *
Interrupt Enable/Disable Status Set to Default ¢ Set to Default
Copy of Main Control Register 00h 00h
Copy of Interrupt Control Register 3tht 31ht
Serial Port Power Off Off
Built-in Serial Port Buffer Cieared Cleared
Bar Code Port Power Off Off
Bar Code Port Transitions Disabled Disabled
Key Buffer Cleared Cleared
Beeper Turned Off Turned Off
User-Defined Characters Available Available
Access to Directory 5 Disabled Disabled
MAIN Program Starts at Beginning —
Current Program — Restarts at Power Off Point
System Timeout Value 120 s Unchanged
Display Backlight Timeout Value 120 s Unchanged
Display Backlight Turned Off Unchanged
Cursor Status On Unchanged
Cursor Type Underline Unchanged
Keyboard Status Unshifted Unchanged
Low Battery Behavior Halt Program With Error 200 | Unchanged
Power Switch Behavior Turn Off Machine Unchanged
Timeout Behavior Turn Off Machine Unchanged
Allocated Scratch Areas Returned to Free Space Preserved
Available Free Blocks Returned to Free Space Preserved
BASIC Variable Contents Lost ) Preserved
Open Data Files Closed Left Open
File Access Pointers Reset to Zero Unchanged
Handler Information Table Cleared Unchanged
Open Channei 1-4 Handlers Closed Left Openi
Channel 1-4 Handler Configurations | Lost Preserved {
Channel 1-4 Buffers Lost Preserved
Open Built-In Serial Port Handler Closed Left Open, Serial Port On
Built-In Serial Port Configuration Set to Default § Unchanged
Stack Pointer Points to OS Stack Unchanged

* System timer (50h), serial port data (53h), low main battery voltage (54h), power switch {55h), operating system func-
tion (1Ah), user timer (1Ch), and dedicated (00h-03h} interrupt vectors all point to their operating system interrupt ser-
vice routines. All others point to a dummy FAR RET.

t System timer, low main battery voltage, and power switch interrupts are enabled. All others are disabled.

t Exact warm start behavior depends on user-defined handier. The handier must restore the |/O device to its proper
state (power, interrupt vector addresses, and interrupt enable/disable status).

§ 9600 baud, 7ES, XON/XOFF enabled, no terminate character, null strip disabled.
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When Cold Start Occurs
The 94 will cold start a program under the following conditions:

m After default power off, either because the machine timed out or because the program turned it off
with the END_PROGRAM function (00h) and specified cold start.

m After pressing the reset switch.
m After the automatic power off occurs 2-5 minutes after low battery interrupt.

= If any memory integrity error occurred at power on.

m After entering command mode, either when a program ends or by pressing [CLEAR] and [ENTER] at
power on.

If the program is run using the S (start) operating system command.

m If main memory size changes (128K memory board added or removed).
If 40K RAM card changed to ROM/EPROM card, or vice-versa.

If number or size of directories in ROM/EPROM card changed.

When Warm Start Occurs

The 94 will warm start the program if the program turned the machine off with the END PROGRAM
function and specified warm start, and none of the cold start conditions occurred.

Operating System Activities During Cold Start

When the 94 cold starts, it begins by performing the normal power-on initialization (check memory
integrity, determine memory configuration, etc.). The operating system looks for a file called MAIN by
searching directories 0-4 in ascending order. If MAIN exists, the status defined in the previous table is
set. If no MAIN file is found, or if MAIN is not type A or B, the machine cannot autostart, so it enters
command mode.

If MAIN is type A, the operating system does a FAR CALL to the main entry point of the program —
the segment address of the start of the program and an offset of 6 (past the end of the program
header). This implies that an assembly language program can end with a FAR RET — see the section
on "Ending Programs" for further information.

If MAIN is type B, it will be executed by the BASIC interpreter. The operating system searches for a
BASIC interpreter (SYBI) in directories 0-5 in ascending order. Error 100 is issued if none is found,
or if the one found is not type A. Once the interpreter is found, control is transferred to it. It allocates
and initializes its scratch area and the variable space required by the program, sets default values for
various BASIC program conditions (shown below), and begins interpreting the program.
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Table 2-2. Cold Start Status of BASIC Programs

item Initial Status
BASIC Numeric Variables and Arrays | Setto zero
BASIC String Variables and Arrays Set to null string
SYEL Value 120 seconds
SYER Value Error trapping disabled
SYLB Value Default low battery behavior
SYRS Value * 9600 baud, 7ES, XON/XOFF enabled, no ter-
minate character, null strip disabled
SYSW Value Default power switch/timeout behavior
SYTO Value 120 seconds

* These values override any values specified by the B (baud) operating system command.

Operating System Activities During Warm Start

When the 94 warm starts, it begins by performing the normal power-on initialization (check memory
integrity, determine memory configuration, etc.) and exccutes the WARM routines of any open
handlers. Then the operating system transfers control to where the program was running when the
power was turned off, and the program continues running.

- __________mm
Ending Programs

Assembly language programs can end in one of two ways. They can either turn the power off, or they
can leave the power on and enter command mode. Command mode is where the user can type operat-
ing system commands such as C (copy) or D (directory), and is usually reached by turning on the
machine on while holding down the [CLEAR]| and [ENTER] keys.

The END_PROGRAM function (00h) is used to end a program and turn the power off, specifying that
the next power on be cold or warm start. For warm start, the CPU registers are saved on the operating
system stack for use when the machine next turns on. If the program has used the operating system
stack for its own data, the data will be destroyed when the CPU registers are saved. Therefore, a pro-
gram cannot specify warm start unless it uses its own stack. If it specifies warm start while using the
operating system stack, END_PROGRAM will issue error 219 and enter command mode.

There are two ways to enter command mode from a program. The first way is with a FAR RET, since
the program was executed with a FAR CALL. The second way is to use the END_PROGRAM func-
tion, specifying to enter command mode. There are subtle differences in the operating system behavior
with these two approaches, summarized below.
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Because of these differences, the END PROGRAM function is the preferred method of ending a pro-
gram and entering command mode.

Table 2-3. Ending a Program With END_PROGRAM or FAR RET

Behavior Using

Behavior Using

Item END_PROGRAM FAR RET
CPU interrupt Flag Set (STI) Unchanged
Access to Directory 5 Enabled Disabled
Open Files Closed Not Closed
Handler CLOSE Routines Called Not Called *

enabled.

* The handler will have no opportunity to restore interrupt vectors or status. Power will be
continue to be supplied to the serial port, level converter, and bar code port if they were

Operating System Activities When Entering Command Mode

When the operating system enters command mode, it initializes certain things to their default values, as

shown below.
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Table 2-4. HP-94 Status in Command Mode

item Status

Input/Output Halted *

Interrupt Vector Addresses Unchanged *

Interrupt Enable/Disable Status Unchanged *

Copy of Main Control Register Unchanged *

Copy of interrupt Control Register Unchanged *

Serial Port Power Off *

Built-in Serial Port Buffer Cleared

Bar Code Port Power Off *

Bar Code Port Transitions Disabled *

Key Buffer Unchanged

Beeper Unchanged

User-Defined Characters Not Available

Access to Directory 5 Enabled t

System Timeout Value 120 s

Display Backlight Timeout Value 120 s

Display Backlight Turned Off

Cursor Status On

Cursor Type Block

Keyboard Status Shifted

Low Battery Behavior Halt Program With Error 200

Power Switch Behavior Turn Off Machine

Timeout Behavior Turn Off Machine

Allocated Scratch Areas Returned to Free Space

Available Free Blocks Returned to Free Space

BASIC Variable Contents Lost

Open Data Files Closed

File Access Pointers Reset to Zero

Handler Information Table Cleared

Open Channel 1-4 Handlers Closed

Channel 1-4 Handler Configurations | Lost

Channel 1-4 Buffers Lost

Open Built-in Serial Port Handler Closed t

Built-In Serial Port Configuration Set to Defauilt §

Stack Pointer Points to OS Stack

* Whether or not these conditions are true depends on the what the program does
before it ends and the behavior of the CLOSE routines in any user-defined
handlers in use (assuming the routines are called before the program ends). The
CLOSE routines will be executed automatically when entering command mode
with the END_PROGRAM function (rather than a FAR RET).

t Only if the END_PROGRAM function was used to enter command mode (rather
than a FAR RET).

1 9600 baud, 7ES, XON/XOFF enabled, no terminate character, nuli strip disabled.
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Program Structure

The three different types of programs (types A, B, and H) have a simple structure consisting of a pro-
gram header followed by the code. Assembly language programs (type A) have a six-byte header, then
the executable code. Handlers (type H programs) have a six-byte header, a jump vector table, then the
code pointed to by each of the jump vectors. BASIC programs (type B) have a 16-byte header, then the
program tokens.

Program Headers

Assembly language programs start with a six-byte header, shown below with hex offsets on the left side.
Note that the order of this illustration is with the lowest offset at the top, which is the order the entries
would be placed in the source code for the handler.

00h 00h 00h
Program Length Program Length Program Length
(with header) (with header) (with header)
2 Bytes 2 Bytes 2 Bytes
02h 02h 02h
Internal Handler
Entry Point (Undefined) Identifier
2 Bytes 2 Bytes 2 Bytes
04h 04h 04h
Version Version Version
Number Number Number
2 Bytes 2 Bytes 2 Bytes
06h 06h 06h
Header For New Header For Assy. Header For User-

BASIC Keyword

Lang. Program

Defined Handler

Figure 2-1. Program Headers

There are three fields in the header:

m Program Length
This field is the length of the program, including the length of the header itself.

m Internal Entry Point
For type A programs that are new BASIC keywords, this field is the offset of the processing block
relative to the start of the program. This assumes a particular BASIC keyword structure which will
be described shortly. If a BASIC keyword does not use this structure, this field can be set to point
to the first byte after the header, to a dummy FAR RET instruction, or be used for other purposes.
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® (Undefined)
For type A programs that are not BASIC keywords, the place to start executing the program is
immediately after the header, so the value of the internal entry point field does not matter — it will
never be called by another program. It can therefore either be set to point to the first byte after the
header, to a dummy FAR RET instruction, or be used for other purposes.

m Handler Identifier
The second field in the header has a slightly different meaning for handlers. It contains a two-
character identifier that is returned by the identify handler I/O control function (00h).

= Version Number
This is used for revision control by the programmer. It is a two-byte binary number representing a
decimal fraction of the form ILFF, where the II is the integer part of the version, and the FF is the
fractional part of the version. The statement VERSION dw 0103h would designate a version
number of 1.03, and the statement VERSION dw 0212h would define version 2.18 of the software.
This can also be defined in decimal as db 18,2, where the fractional part precedes the integer part.

For type A programs, the program code starts after the header. For type H programs, the jump vector
table that follows the header defines the locations of the executable code.

BASIC Keyword Structure

BASIC keywords can be written so that they are accessible from both BASIC and assembly language
programs. This requires a keyword structure in which there are two distinct blocks: an I/O block in
which all interaction with BASIC variables occurs, and a processing block in which the function of the
keyword is implemented. Once the 1/O block has read and validated the supplied variables, it calls the
processing block. When the processing block is done, it returns its results to the I/0 block, which then
places them in BASIC variables as appropriate. This structure is shown below.

Program Header
Main Entry Point
(FAR CALLed by $CALL)

Internal Entry Point
(FAR CALLed by assembly
language programs)

CALL Input/Output Block

Processing Block

RET

Figure 2-2. BASIC Keyword Structure

The internal entry point in the program header would point to the start of the processing block. This
allows both BASIC and assembly language programs access to the functionality implemented by the
keyword. BASIC programs execute new keywords with $CALL, which FAR CALLs the main entry
point at the end of the header. Assembly language programs execute the processing block only via the
internal entry point. They find the program, read the internal entry point from the header, set up
appropriate parameters, and FAR CALL the processing block.
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Errors should be reported differently depending on which entry point is called. If the main entry point
is called (which implies the keyword was called by a BASIC program), non-numeric errors should be
reported using the ERROR BASIC interpreter utility routine (offset 34h). This will cause a non-
numeric error to be issued by the BASIC interpreter, and the BASIC program will halt. If the internal
entry point is called (which implies the keyword was called by an assembly language program), numeric
errors should be returned in the AL register (00h if no errors).

The main entry point of a BASIC keyword can also be called from command mode with the S com-
mand. This condition should be recognized by BASIC keywords. If the keyword was called from a
BASIC program using $CALL, the CS register will be the same as the DS register. If the keyword
was called from command mode with the S command, the CS register will be different than the DS
register.

There are two possible ways to handle this condition. One approach is for the keyword to end immedi-
ately if the keyword is called from command mode. Another approach is to implement an
input/output block for interacting with command mode, analogous to the input/output block for
interacting with the BASIC interpreter.

|
Program Restrictions

Programs can start on any paragraph boundary, depending on where the program was loaded and what
other files were loaded or deleted. Once they begin to run, they do not move — there is no run-time
relocation. Consequently, there should be no far calls or jumps to absolute addresses in type A or H
programs. (HXBASIC and HXC ensure this for type B programs.)

Valid EXE Format

When EXE files are created, they should not contain any MS-DOS-style relocation entries. HXC will
reject any EXE file if it contains a relocation table. An EXE file, to be accepted by HXC, must have
the following characteristics:

m EXE file size of 512 bytes or greater.
m Valid EXE identifier.

m 512-byte header.

= No relocation entries.

m Initial CS =0000h.

It is recommended that source files use byte alignment by specifying SEGMENT BYTE at the beginning
of each program segment. The assembler’s default alignment is on paragraph boundaries, causing each
object file to be padded with 1-15 bytes. Byte alignment eliminates this unused space. HXC will pad the
entire EXE file only once, not once for each object file.
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Use of Operating System Stack

A program can use the operating system stack for its own use. The stack varies in length, depending on
how the program was called (from the operating system or from another program), up to a maximum
of approximately 600 bytes. If a program turns off the machine and specifies a subsequent warm start
(see "Cold Start and Warm Start"), it must not use the operating system stack. The END PROGRAM
function (00b) will issue error 219 if the program is using the operating system stack. Consequently, if
a program wants to use the warm start option, it must put its stack in its own data space.

Programs in ROM or EPROM

Programs can be in RAM or ROM, and execute in place in either location. ROM programs have addi-
tional restrictions. There can be no data space in the code itself if the program is to have the option of
running in ROM. The operating system provides scratch area allocation and release functions to allow
ROM programs to get needed data space.

The assembler provides the ability to define the offsets within an external scratch area using the SEG-
MENT AT directive, as shown below.

SCR_AREA segment at O ;Addresses start at 0

PARAM1 db 6 dup(?) ;First parameter needs 6 bytes
PARAM2 db 00 ;Second parameter needs a byte
PARAM3 dw 0000 ;Third parameter needs a word
SCR_AREA ends

Figure 2-3. Defining Scratch Area Data Structure

The SEGMENT AT directive provides an address template that can be imposed on the scratch area.
SEGMENT AT causes no code to be generated for the uninitialized data defined within that program
segment (in this case, the SCR_AREA segment).
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User-Defined Handlers

User-defined handlers, or handlers for short, allow BASIC or assembly language programs simple
access to the HP-94 1/O ports — the devices associated with channels 1-4. In particular, user-defined
handlers can be written for the serial port (channel 1) and bar code port (channel 2); channels 3 and 4
are reserved, and currently have no 1/O port associated with them. Handlers are assembly language
program files that are assembled and linked into EXE files on the development system. Then they are
processed by HXC and given file type H before being copied into the HP-94.

Handlers are similar in concept to UNIX or MS-DOS device drivers. They are a collection of routines
to handle various activities associated with I/O devices, such as initializing the port for use, reading and
writing data to it, and releasing control of the port. Handlers have a special structure that allows the
individual routines to be called, either from BASIC or assembly language, solely by supplying the name
of the handler being used when the channel is opened.

This chapter will discuss handler organization in general, how handlers interact with the channel-
oriented input and output of the HP-94, the different types of handlers, passing configuration parame-
ters and registers to handler routines, and what tasks handler routines perform.

™
Handler Structure

Handlers contain three major components: the program header, the jump table, and the executable
code for each of the handler routines. L

Program Header

Handlers, like all assembly language programs, start with a six-byte header. The first two bytes are the
length of the handler, including the header. The next two bytes are a two-character handler identifier
that is returned by handlers that implement function 00h of the IOCTL routine (discussed later). The
last two bytes of the header are the software version number. It is a two-byte binary number represent-
ing a decimal fraction of the form ILFF, where the II is the integer part of the version, and the FF is
the fractional part of the version. The statement VERSION dw 0103h would designate a version
number of 1.03, and the statement VERSION dw 0212h would define version 2.18 of the software.
This can also be defined in decimal as db 18,2, where the fractional part precedes the integer part.

Jump Table

Immediately following the header is a jump table with 10 entries of three bytes each. Each entry con-
tains a JMP instruction to one of the handler routines. Each routine must end with a FAR RET. The
header and jump table, showing the order in which the jump table must appear in the program, is
shown below. The hex offsets from the start of the program are along the left side. Note that the order
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of this illustration is with the lowest offset at the top, which is the order the entries would be placed in
the source code for the handler.

00h
Program Header
02h
Handier Identifier
04h
Version Number
06h
JMP to OPEN Routine
0%h
JMP to CLOSE Routine
0Ch
JMP to READ Routine
OFh
JMP to WRITE Routine
12h
JMP to WARM Routine
15h
JMP to TERM Routine
18h
JMP to POWERON Routine
1Bh
JMP to IOCTL Routine
1Eh
JMP to RSVD2 Routine
21h
JMP to RSVD3 Routine
24h

Figure 3-1. Handler Header and Jump Table

The purpose of the different handler routines are listed briefly below.
m OPEN Routine — initializes the port.
m CLOSE Routine — releases control of the port.
® READ Routine — reads data coming into the port.
m WRITE Routine — writes data to the port.
m WARM Routine — allows reinitialization of the port at warm start.
m TERM Routine — allows I/O to be terminated because of the power switch or low battery.
= POWERON Routine — allows initialization at machine power-on.
a TIOCTL Routine — controls actions of handler.
a RSVDZ2 Routine — for future use.
m RSVD3 Routine — for future use.
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Entries in the jump table are required for all handler routines. However, not all handlers will imple-
ment all routines. If a routine is not implemented, the jump table entry should just JMP to a dummy
FAR RET.

There is no jump table entry for the handler’s interrupt service routine. The address of that routine is
placed in the appropriate interrupt vector in the reserved scratch space. For details on using interrupts,
refer to the "Interrupt Controller" chapter.

The tasks performed by the different handler routines will be discussed later in this chapter. The next
sections will describe general information relevant to all handlers and handler routines.

&
Channel Input and Output

The HP-94 operating system performs input and output through 16 different logical channels, each of
which is associated with different physical devices. The channels being used for 1/O are defined by
opening them. From an assembly language program, this is done with the OPEN function (0Fh); from
a BASIC program, this is done with the OPEN # statement (which calls the OPEN function). Both
the OPEN function and the OPEN # statement take the channel number to open and a file name as
their parameters. The table below summarizes the uses of the 16 logical channels, and the meaning of
the file name for the different channels.

Table 3-1. Channel Number Assignments

Channel Physical File Name
Number Device Meaning
0 Console * Ignored
1 Serial Port Name of User-Defined Handler (Type H)
2 Bar Code Port | Name of User-Defined Handler (Type H)
34 Reserved Name of User-Defined Handler (Type H)
5-156 Data Files Name of Data File (Type D)
* The console is the keyboard for input operations and the display for output operations.

Below is more information about the different channels.

m Channel 0
The console is always opened by the operating system. A program can specify a file name as a
parameter when opening channel 0, but the name will be ignored — user-defined handlers for
channel 0 are not allowed.

w Channel 1
The built-in serial port handler is specified by supplying the null string (") for the file name. If a
user-defined device handler name is supplied and no such handler exists in memory, the default
handler will be used.

m Channels 2-4

There is no default handler for these channels. If the null string is used as the file name, or there is
no handler in memory matching the file name supplied, an error will be reported.
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& Channels 5-15
When a data file is opened, the file access pointer is reset to the start of the file. Only one channel
at a time can be assigned to a single file. Multiple channels cannot be open to the same file simul-
taneously.

Once a channel has been opened, an error will occur if it is reopened without first being closed.

File Search Order

The OPEN function will search for the specified file name in directories 0-4 in ascending order. If the
file name includes a directory number (e.g., "1 : HNBC"), only that directory will be searched. If the
file name is found, but is an illegal type, (not type H for channels 1-4, or not type D for channels 5-15),
an error will be issued. If it is a legal type, it will be opened.

e
Types of Handlers

There are two types of handlers: high-level and low-level. These support the concept of layered
software, in which successively higher layers become more hardware-independent.

Low-Level Handlers

Low-level handlers interact only with the I/O port hardware. They take care of the characteristics of
the I/0O port on the HP-94 only. An example of this is HNBC, a low-level bar code port handler sup-
plied with the HP-94 Software Development System that does low-level 1/O with the bar code port.
Low-level handlers usually include one or more interrupt service routines for the hardware interrupts
associated with the 1/0 port.

High-Level Handlers

High-level handlers interact only with low-level handlers, not with the 1/O port hardware. They take
care of the characteristics of the external device connected to the port, but not of the port itself. An
example of this is HNWN, a high-level handler that handles the device-specific features of Hewlett-
Packard Smart Wands, but relies on the low-level handlers HNBC or HNSP to perform port-specific
activities. High-level handlers do not have interrupt service routines because they do not interact
directly with the hardware.

Who Calls Handler Routines

The routines in both types of handlers can be called by operating system functions, which in turn are
called by BASIC 1/O keywords, assembly language programs, or by the operating system itself. If a
high- and low-level handler pair are being used, the operating system will think that only the high-level
handler is open. All communication between the two handlers is performed by the high-level handler
using handler linkage routines. These routines are described later in this chapter, and are available as
an include file that can be included with the high-level handler source code (discussed in the appen-
dixes).
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The relationship between all the layers of software used for 1/O is shown below.

BASIC1/0 Assembly Language Operating
Keywords Programs System

Operating System Functions

High-Level Handler
Interacts With Low-Level Handler

Low-Level Handler
Interacts With |/O Port Hardware

Figure 3-2. Relationship Between High- and Low-Level Handlers

As this diagram indicates, all that is required to perform I/O to a port is a low-level handler. It is not
necessary to have or use a high-level handler. If external devices will be used with unique characteris-
tics better accommodated on a driver level than an application level (so the application is more device-
independent), then a high-level handler may also be necessary.

Because the high-level handler is totally dependent on the low-level handler to actually move data
through the I/O port, high-level handlers cannot stand alone. A low-level handler can be used by itself,
but a high-level handler must be used as part of a high- and low-level handler pair.

S
Handler Information Table

There is a table in the operating system scratch space where handlers keep information about scratch
area locations. The table contains five two-byte entries, each of which is associated with a specific
channel and has a different meaning depending on whether the handler is closed or open.
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Table 3-2. Handler Information Table Entries

Entry Which Meaning While Meaning While Used By Which
Offset Channel Handler Closed Handler Open Interrupt
00h Bar Code Port | None Low-Level Handler Bar Code
Scratch Area Address | Timer (51h)
02h Serial Port Parameter Low-Level Handler Serial Port Data
Scratch Area Address | Scratch Area Address | Received (53h)
04h Bar Code Port | Parameter Low-Level Handler Bar Code Port
Scratch Area Address | Scratch Area Address | Transition (52h)
06h Channel 3 Parameter Low-Level Handler Reserved 1 (56h)
Scratch Area Address | Scratch Area Address
08h Channel 4 Parameter Low-Level Handler Reserved 2 (57h)
Scratch Area Address | Scratch Area Address

Table Usage While Handlers Are Closed

When a handler is closed, the handler information table is used for the segment address of the parame-
ter scratch area for that channel. When the OPEN routine in either a high- or low-level handler is
called, it looks at the appropriate table entry to determine if the parameter scratch area exists and if
the information it contains is valid. The procedure for doing this will be discussed later.

Table Usage While Handlers Are Open

Every time a routine in an open handler is called, the operating system automatically passes the seg-
ment address of the handler’s scratch area to the routine in the DS register. However, the operating
system cannot do this when an interrupt causes the handler’s interrupt service routine to be executed.
To allow the interrupt service routine to locate the scratch area, the handler information table is used
for the address of the low-level handler’s scratch area. This is done only when the handler is open, for
this is the only time that interrupts will be enabled for the handler.

After verifying its parameters, the low-level handler’s OPEN routine must save the parameter scratch
area address in the handler’s scratch area, and place the handler’s scratch area address in that table
entry. When the handler is closed, the low-level handler CLOSE routine must restore the original
parameter scratch area address in that table entry.

Table Entry Offsets

The handler information table entry offsets for a particular handler are 2 * the handler channel number.
Once the handler is open, the entry is read during the handler interrupt service routine. This means
that each handler can have one hardware interrupt associated with it. This is not true for the bar code
port, since it has both a transition interrupt and a timer interrupt. The primary interrupt for the bar
code port is the transition interrupt since it occurs on every transition, so it is associated with the entry
for channel 2. The bar code port timer interrupt uses the first entry in the table at offset 0.

3-6 User-Defined Handlers



Reading and Setting the Handler Information Table

The handler information table is located in the first 10 bytes (5 words) of the operating system scratch
space. Using the operating system pointer to locate the scratch space (described in the appendix), the
following code will take the channel number in AL and load the table entry for that channel into ES:

mov si,16h :get segment address of OS pointers

mov ds,si ;put in segment register

xor ah,ah ;clear ah

mov si,ax ;put channel number in si

shl si,1 :2 * channel number

mov ds,ds: [0000h] ;get the segment address of 0S scratch space
mov es,word ptr ds:{sil ;get this channel's table entry

Figure 3-3. Example of Reading Handler Information Table Entries

=
Passing Parameters to Handlers

Parameters are passed to a handler mainly to define its operating configuration (such as baud rate for
the serial port). The handler uses them to set its configuration when its OPEN routine is called.
Parameters can be passed in one of two ways when the handler is opened:

m The parameters can be placed in a parameter scratch area. This can be done from a BASIC pro-
gram with a separate keyword (such as the SYBC keyword that defines parameters for HNBC), or
from an assembly language program that allocates and initializes the parameter scratch area before
opening the handler. This is the approach used for passing parameters to Hewlett-Packard
handlers.

m The parameters can be placed after the handler name that is passed to the OPEN function or the
OPEN # statement (e.g, "LLHN 9600, 7ES"). Thohandler OPEN routine then parses the
parameters from the name string.

Regardless of which approach is used to pass parameters, the low-level handler must save a copy of
them in its scratch area. This is needed by the TOCTL routine of the handler.

Passing Parameters in a Parameter Scratch Area

A parameter scratch area is a one-paragraph scratch area. The upper 8 bytes (bytes 08h-OFh) are
reserved for high-level handler parameters, and the lower 8 bytes (bytes 00h-07h) are reserved for
low-level handler parameters. The first byte of each half is used as a valid data flag (discussed shortly)
to indicate the validity of the parameters. This leaves 7 bytes available for parameters for each high-
and low-level handler.

Handlers verify two aspects of configuration parameters: first, that the parameter scratch area exists,
and second, that it contains valid configuration information.
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Verifying Parameter Area Existence

High- and low-level handlers determine if the parameter area exists by reading the handler information
table entry for that channel. If the entry is zero, there is no parameter scratch area for the handler. The
handler should then allocate a one-paragraph parameter scratch area and place its address in the table
entry. If the entry is non-zero, the entry contains the segment address of a parameter scratch area that
already exists.

It is important that the address of the parameter area put in the handler information table actually
point to a scratch area. If an assembly language program opens a handler and passes it parameters, the
address put in the table must not point to parameters on the program’s stack, or to fixed parameters
embedded in the program code. This is because if the stack vanishes or the program moves, the
address in the handler information table will no longer point to valid parameters.

CAUTION When a handler is open, the entry in the handler information table will be the
scratch area address of the handler, not of the parameter scratch area (see
“Handler Information Table"). If a separate configuration program is run after the
handler is open, it could misinterpret the handler information table entry, and
modify the handler scratch area by mistake. Configuration programs should
check if the handler is open before examining the handler information table. See
the appendixes for a utility routine that determines if a channel is open or not.

Validating the Contents of the Parameter Scratch Area

High- and low-level handlers validate the contents of the parameter scratch area by looking at the first
byte in their respective parts of the area (upper 8 bytes for high-level handlers, lower 8 bytes for low-
level handlers). This first byte is a valid data flag that is unique for each handler associated with a par-
ticular channel. The valid data flag is set to zero when the scratch area is allocated because the operat-
ing system initializes all scratch areas to zero (00h). The flag is then set to a value either by a handler,
by the program calling the handler, or by a configuration keyword. The action that a handler should
take for different values of the valid data flag is shown below.
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Table 3-3. Interpreting the Valid Data Flag

Value High-Level Low-Level
of Flag Handler Action Handler Action

Zero Put correct valid data flag | Put correct valid data flag
and default high-evel | and default low-level
handler configuration in | handler configuration in
upper 8 bytes of parameter | lower 8 bytes of parameter
scratch area. scratch area.

Correct for Handler | Use these parameters to | Use these parameters to
define highdevel handler | define low-level handler
configuration. configuration.

Any Other Value Return an error, since the | Return an error, since the
parameters are not valid for | parameters are not valid for
this handler. this handler.

Handlers should use values for the valid data flag in the range 01h-7Fh. Hewlett-Packard uses values in
the range 80h-FFh for its handlers, and 00h is reserved because it indicates uninitialized parameters.
Refer to the "Program Resource Allocation” appendix for information about reserving a valid data flag
that will not conflict with any other flag in use.

Passing Parameters After the Handler Name

If parameters are passed in-line with the handler name, the handler’s OPEN routine must parse and
interpret the handler names and parameters. When the handler OPEN routine executes, ES : BX
points to the start of the entire handler name string. The routine can skip past the handler name in the
string to find the beginning of the parameters, and parse them into whatever internal form is required
for the handler. The syntax of the name string is as follows:

High-level handler name

® One or more spaces

Semicolon
One or more spaces

Low-level handler name

One or more spaces

High-level handler parameters separated by commas

m Low-level handler parameters separated by commas

= Ending null (00h)

This results in handler and parameter strings that look like the following examples:
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"HNLL 7,2" Low-level handler with parameters

"HNHL 1,3;HNLL 7,2" High- and low-level handlers with parameters
"1:HNHL 1,3;1:HNLL 7,2" Same but with directory numbers
"HNHL ; HNLL" High- and low-level handlers with no parameters

Restrictions on In-Line Parameters

m If the OPEN # statement is used, the maximum length of the handler names and parameters is
255 characters.

m The OPEN # statement uppercases all characters in the name string, so the name string in OPEN
#1,"11hn 7es" will be passed as "LLHN 7ES". If a handler that accepts in-line parame-
ters will be opened with the OPEN  # statement, the parameters should not be case-sensitive.

m If a high-level handler that accepts in-line parameters calls a low-level handler that accepts parame-
ters in a parameter scratch area (such as Hewlett-Packard handlers), the high-level handler must
parse its in-line parameters and put them in the form expected by the low-level handler. Then it
must create a parameter scratch area, place the parameters in it, and modify the handler informa-
tion table before calling the low-level handler.

. _________________________ 3
Handler Linkage Routines

If a high- and low-level handler pair are being used, the operating system will think that only the high-
level handler is open. All communication between high- and low-level handlers is performed by the
high-level handler using handler linkage routines. These routines are available as an include file that
can be included with the high-level handler source code (discussed in the appendixes).

Each handler routine has a corresponding linkage routine that it uses to call the low-level handler. To
use the linkage routines, load appropriate values into the registers, put the channel number in AL, and
FAR CALL the routine by name. The activities of each high-level handler routine before and after cal-
ling the linkage routine will be discussed shortly.

The linkage routines are designed to mimic the way the operating system calls handler routines. A
low-level handler will not be able to distinguish that it is being called by a high-level handler rather
than by the operating system. Like the operating system, the caller’s registers (in this case, the high-
level handler’s) are saved in a register save area on the stack when the low-level handler is called.
Upon return, the registers are popped off in exactly the same manner. This means that low-level
handlers must return the error code in AL (00h if no errors), and all other register values in the
appropriate location in the register save area.

Below is a summary of the registers passed to and returned by the linkage routines.
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Table 3-4. Register Usage By Handler Linkage Routines

Routine Registers Passed Registers Returned
Name Register Contents Register Contents
LLH CLOSE AL Channel number to close AL Error code
LLH IOCTL AL Channel number AL Error code
- AH IOCTL function code Others | Asdefined by routine
Others As defined by routine
LLH OPEN AL Channel number to open AL Error code
ES Segment address of low-
level handler name to open
BX Offset address of low-
level handler name to open
LLH READ AL Channel number to read AL Error code
- cX Number of bytes to read cX Number of bytes
actually read
ES Segment address of
read buffer
BX Offset address of
read buffer
LLH_RSVD2 AL Channel number AL Error code
Others Not yet defined Others Not yet defined
LLH_RSVD3 AL Channel number AL Error code
Others Not yet defined Others Not yet defined
LLH_TERM AL Channel number AL Error code

AH* Cause of termination
1 =power switch

0=Ilow battery
LLH_ WARM AL Channel number AL Error code
LLH WRITE AL Channel number to write AL Error code
CX Number of bytes to write CcX Number of bytes
actually written
ES Segment address of
write buffer
BX Offset address of
write buffer
All (supplied DSt | Segment address of low- BP Unchanged from value
automatically) level handler scratch area passed to routine
BP Stack offset address of
register save area
DI Destroyed

* The TERM routine for high- and low-levei handlers will receive the cause of the termination in AL. A high-level handler
must move this value into AH and place the channel number in AL before calling LLH_TERM. LLH_TERM will swap
them back, thereby passing the cause of the termination to the low-level handler in AL.

t Not passed to LLH_OPEN routine.
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Handler Routine Descriptions
Handler routine descriptions consist of the following:
m A brief description of the routine,
= A summary of the parameters passed to the routine.
® A summary of the parameters that the routine must return,
s Details on when the routine is called.

= Supplementary notes and cautions on the use and behavior of the routine.

Registers Passed to Handler Routines

Handler routines are called by the analogous operating system functions. For example, the READ
function will FAR CALL the READ routine in the handler that is open to the channel being read.
When handler routines are called, either by the operating system or by handler linkage routines, all the
registers values that were passed to the operating system function will be passed to the handler routine,
with the following exceptions:

m The DS register contains the segment address of the handler scratch area (except for the OPEN
routine).

m The BP register contains the offset on the stack where all the caller’s registers were saved.

m The DT register is destroyed.

All the caller’s original registers are saved in a register save area on the stack. When the handler rou-
tine ends (with a FAR RET), the caller (operating system function or handler linkage routine) will
automatically pop all the saved registers off the stack except AL, which is used to return error codes,
and BP, which must be unchanged from the value passed to the routine. Consequently, if a handler
wants to return a value in a register other than AL or BP, it cannot just put the value in the register —
the register will be lost when the saved register copies are popped off the stack. Instead, the handler
routine must place values to be returned into the register save area on the stack.

The order that the registers are saved on the stack is shown below, with the hex offsets on the left.
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18h

Flags Register

16h

CS Register
14h

IP Register
12h

BP Register
10h

ES Register
OEh

DS Register
0Ch

DI Register
0Ah

SI Register
08h

DX Register
06h

CX Register
04h

BX Register
02h

AX Register
00h SS:BP

Figure 3-4. Register Save Area

CAUTION Do not alter values in the register save area except those that the handler routine
is required to change. Some registers are critical to the proper operation of the
calling routines, and changing them can have significant, detrimental side effects
(including loss of data).

High-Level Handler Behavior With Unused Registers

Routines in high-level handlers must return to their callers all registers returned by the low-level
handler, even if the high-level handler doesn’t use or modify any of those registers. The reason is that
even if the high-level handler doesn’t care about the contents of a particular register, the register may
be important to the caller.

This is particularly true of the TOCTL routine, in which the high-level handler may just pass through,

unmodified, low-level handler IOCTL requests from an application. If the high-level handler does not
similarly pass back the results from the low-level handler, the caller will not see them.
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CLOSE

The CLOSE routine in a handler is where the I/O port and the external device are shut down, and
control of the port is released by the handler.

Passed to routine:

AL Channel number to close.

Routine must return:

AL=00h Successful close.
>00h Error code.
BP Unchanged from value passed to routine.

When routine is called:

m By the CLOSE function (10h) if a high- or low-level handler name was specified when the handler
was opened. The CLOSE function can be invoked either by the BASIC CLOSE # statement or
by an assembly language program.

m By a high-level handler using the LLH_CLOSE linkage routine.

m When a program ends and returns to command mode by calling the END PROGRAM function
(00h), the operating system closes all open handlers by calling their CLOSE routines.

Notes:

m Registers specified by the caller of the CLOSE function or the LLH CLOSE linkage routine are
passed to the handler CLOSE routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Cautions:

m When returning to command mode, the operating system calls the CLOSE routines of all open
handlers to close them, but does not set AL to the channel number being used. Make sure AL is
set to the channel number before calling LLH_CLOSE, or the linkage routine will not call the
low-level handler CLOSE routine properly.

If the high-level handler is only valid for one channel, that valid channel number can be placed in
AL before calling LLH _CLOSE. If the high-level handler can be used for more than one chan-
nel, the channel number being used should have been saved in the handler’s scratch area by its
OPEN routine.
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...CLOSE

Activities of routine:

High-Level Handler
Activities

Low-Level Handler
Activities

Perform device-specific shut down activi-
ties.

Disable hardware interrupts for the 1/0 pont.

Call low-level handier with LLH CLOSE
linkage routine (see caution below).

Disable and power down the | /O port.

Release high-level handler scratch area.

Restore original hardware interrupt vectors
for the i/0 port.

Return an error code if the routine failed
(0Ch if no errors).

Restore parameter scratch area address
from the low-level handler scratch area into
the handler information table.

Deallocate low-level handler scratch area.

Return an error code if the routine failed
(00h if no errors).
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I0CTL

The IOCTL (I/O control) routine in a low-level handler allows a program to control the handler
operation after the handler has already been opened. This is in addition to providing the handler
configuration parameters at open time. High-level handler TOCTL routines only call their low-level
handler, since most external devices are controlled by command sequences embedded in data sent to
them (via the WRITE f