
HEWLETT-PACKARD
* . o

Technical Reference Manual

Handheld Industrial

Computer

HP-94 Handheld Industrial

Computer
L I

Technical

Reference Manual

flf HEWLETT
PACKARD

Edition 1 February 1987

Reorder Number

82521-90001

 I

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not lim-

ited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-

Packard shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability ofits software on equipment thatis
not furnished by Hewlett-Packard.

Copyright © Hewlett-Packard Company, 1985, 1986.

This document contains proprietary information, which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another language
without the prior written consent of Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

Epson RTC-58321 Data Sheet © Epson America, Inc., 1986.
All rights reserved. Reprinted by permission.

Hitachi HD61102A Data Sheet © Hitachi America, Ltd. 1986

All rights reserved, reprinted by permission

Ms®-DOS is a US. registered trademark of Microsoft Corp.

NEC uPD70108 (V20) Data Sheet © NEC Electronics, Inc., 1985.

All rights reserved. Reprinted by permission.

OKI MSMB82C51A Data Sheet © OKI Semiconductor, Inc., 1984.

All rights reserved. Reprinted by permission.

Smartmodem™ is a trademark of Hayes Microcomputer Products, Inc.

UNIX®is a registered trademark of AT&T in the U.S.A. and other countries.

Portable Computer Division

1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History Edition 1 February 1987 Mfg. No. 82521-90002

Contents

‘
l

o) -+ Y
introduction to the Technical Reference Manual

Operating System

|
-
t
|

Introduction to the Operating System

Chapter 1
R
O

N
N
=
=

w
h

w
h

w
h

=
b

¢

o
k

w
h

w
d

)
w
h

b
k
b

Memory Management

Hardware Overview
Software Overview
Memory Organization
Reserved Scratch Space
Directory Table
File System

Data Files
Free Space
Scratch Areas
Logical ROMs
System ROM

Memory Integrity Verification

Chapter 2

2-1

2-2

2-5

2-8

2-10

Program Execution

Running Programs
Cold Start and Warm Start
Ending Programs
Program Structure
Program Restrictions

 I

Chapter 3

3-1
33
3-4
3-5
3-7

3-10
3-12
3-14
3-16

User-Defined Handlers

Handler Structure
Channel Input and Output
Types of Handlers
Handler Information Table
Passing Parameters to Handlers

Handler Linkage Routines
Handler Routine Descriptions
CLOSE
10CTL

3-20
3-22
3-25
3-27
3-28
3-29
3-31
3-33

OPEN
POWERON
READ
RSVD2
RSVD3
TERM
WARM
WRITE

 |

Chapter 4

a1
41
4-2
4-3
4-1
4-6
4-8
4-9

a-11
4-12
a-14
4-16
419
4-21
4-23
425
4-27
4-29
4-30
4-32
4-35
4-36
4-37
4-39
4-41
4-43
4-45

Operating System Functions

Operating System Function Usage
Operating System Function Descriptions
BEEP

BUFFER_STATUS

CLOSE
CREATE

CURSOR
DELETE

DISPLAY_ERROR
END_PROGRAM
FINDFILE
FIND_NEXT
GET_CHAR
GET_LINE
GET_MEM
MEM_CONFIG
OPEN

PUT_CHAR
PUT_LINE
READ
RELMEM
ROOM
SEEK
SET_INTR
TIMEOQUT
TIME_DATE
WRITE

]

Chapter 5

5-2
5-3
5-5

Hardware Control and Status Registers

Main Control and Status Registers
Interrupt Control and Status Registers
Copies of Write-Only Control Registers

]

Chapter 6 CPU

Chapter 7

7-1

Interrupt Controllier

Procedure for Using a Hardware Interrupt
Interrupt Control and Status Registers
When the Operating System Disables Interrupts

7-3
7-5
7-6

T

Operating System Functions

Chapter 8 Keyboard

8-1 Keyboard Shift Status
8-2 Display Backlight Control
8-2 KeyBuffer
8-2 Waiting for a Key
8-3 Keyboard Scanning
8-5 Keyboard Control and Status Registers
8-6 Operating System Functions

R

Chapter 9 Display

9-1 Display Backlight Control
9-2 LCD Controllers
9-2 Writing Dots to the Display
9-2 Display Control and Status Registers
9-3 Writing Charactersto the Display
9-4 Operating System Functions
9-5 User-Defined Characters

I

Chapter 10 Serial Port

10-1 Signal Levels
10-1 Enabling or Disabling the Serial Port
10-2 Initializing the Serial Port

10-2 Processing the Serial Port Data Received Interrupt

10-2 Serial Port Control and Status Registers
10-5 Built-in Serial Port Handler
10-9 Operating System Functions

Chapter 11 Bar Code Port

11-1 Bar Code Port Power and Transition Detection
11-1 Bar Code Timer
11-1 Initializing the Bar Code Port
11-2 Processing the Bar Code Port Transition Interrupt
11-2 Bar Code Port Timing Constraints
11-3 Bar Code Port Control and Status Registers

]

Chapter 12 Timers

12-1 System Timer
12-3 Bar Code Timer
12-4 Timer Control and Status Registers
12-7 Operating System Functions

L]

Chapter 13 Power Switch

13-1 Power Control and Status Registers
13-2 Operating System Functions

|

Chapter 14 Batteries

14-1 Main Nickel-Cadmium Battery Pack
14-2 Backup Lithium Batteries - -
14-2 Battery Control and Status Registers
14-4 Operating System Functions

|

Chapter 15 Real-Time Clock

15-1 Real-Time Clock Control and Status Registers
15-1 Operating System Functions

I

Chapter 16 Beeper

16-1 Beeper Control and Status Registers
16-2 Operating System Functions

Chapter 17 Reset Switch

Chapter 18

18-1
18-1
18-1
18-2
18-2

Part 2

Other Hardware

Read/Write Memory (RAM)
System ROM

Custom Gate Array
Earphone Jack
External Bus Connector

BASIC Interpreter

Introduction to the BASIC Interpreter

Chapter 1 BASIC Program and Data Structure

BASIC Program Organization
BASIC Program Outline
Intermediate Code

Operand Codes
Variable Area

Data Structure

Control Information Save Area

Chapter 2 Operation Stacks

Operation Stack Area
Control Stack
Numeric Operation Stack
Character Operation Stack
Parameter Table (only for %CALL)

Chapter 3

3-1
3-2
3-6

Assembly Language Subprograms (Keywords)

Program Structure
BASIC Call and Return

Access to BASIC Interpreter Ultility Routines

 &5

Chapter 4 BASIC Interpreter Utility Routines

BASIC Interpreter Utility Routine Descriptions
ERROR
GETARG
IOERR

SADD

SDIvV
SETARG
SMUL
SNEG
SPOW
SSUB
TOBIN

TOREAL

Chapter 5 1/0 Statements and Handlers

Input Keywords (GET #, INPUT #, INPUTS)
Output Keywords (PRINT #, PRINT # . .. USING, PUT #)

Hardware Specifications

Introduction to the Hardware Specifications

Chapter 1 Electrical Specifications

Chapter 2 Mechanical Specifications

Physical Specifications
Serial Port Connector Specifications
Bar Code Port Connector Specifications
Memory Port Connector Specifications
External Bus Connector Specifications
Earphone Connector Specifications
Battery Pack Connector Specifications

&

Chapter 3 Environmental Specifications

Accessory Specifications

40K RAM Card Specifications
ROM/EPROM Card Specifications
Battery Pack Specifications
Recharger Specifications
Level Converter Specifications
Cables
Bar Code Readers

Chapter 4

4-1
4-2
4-3
4-4
4-5
4-7

4-10

A

Chapter 5 Data Sheets

NEC pPD70108 (V20) Microprocessor Data Sheet

OKI MSM82C51A UART Data Sheet

Hitachi HD61102A LCD Column Driver Data Sheet

Epson RTC-58321 Real-Time Clock Data Sheet

Appendixes

A-3

A-4

A-6

A-7

A-8

A-9

A-10

A-11

A-12

A-13

Resident Debugger

Command Syntax

X
u
m
o
g
r
—
o
u
o

Errors

Keyboard Layout

Roman-8 Character Set

Display Control Characters

F-1

G-1

H-1

J-1

K-1

L-1

1-7

L-14

M-2
M-3
M-5
M-8
M-10
M-14
M-18
M-20
M-22
M-34
M-36
M-38
M-40
M-42
M-44
M-46
M-49
M-51

Memory Map

Control and Status Register Addresses

Hardware Interrupts

Operating System Functions

BASIC Interpreter Utility Routines

Program Resource Allocation

Hewlett-Packard Bar Code Handlers

HNBC Low-Level Handler for Bar Code Port

HNSP Low-Level Handler for Serial Port

HNWN High-Level Handler for Bar Code Handlers

Disc-Based Utility Routines

Utility Routine Descriptions
BLINK.ASM
EQUATES.ASM
FINDOS.ASM
INTERNAL.ASM
IOABORT.ASM
IOWAIT.ASM

ISOPEN.ASM

LLHLINKG.ASM
NOIOWAIT.ASM

READCTRL.ASM
READINTR.ASM
SCANKYBD.ASM
SETCTRLASM
SETINTR.ASM

VERSION.ASM
XIOCTL.ASM
XTIMEOUT.ASM

lllustrations

Part 1 Operating System

3-13

5-2
5-3
5-4
5-5

7-3

7-4

7-5

7-5

8-1
8-3

Figure 1. HP-94 Hardware Block Diagram

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.
Figure 1-10.
Figure 1-11.
Figure 1-12.
Figure 1-13.
Figure 1-14.
Figure 1-15.
Figure 1-16.
Figure 1-17.

Figure 2-1.
Figure 2-2.
Figure 2-3.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.

Figure 8-1.
Figure 8-2.

Memory Map of the HP-94
Memory Map of Main Memory
Memory Map of the HP82411A 40K RAM Card
Memory Map of Reserved Scratch Space
Directory Table Header Contents
Directory Table Entry Contents
File Movement During Data File Expansion
Example of Data File Expansion
Use of Free Space in Main Memory
Defining Scratch Area Data Structure
Blocking a Released Scratch Area
Coalescing Adjacent Released Scratch Areas
Memory Map of the HP82412A ROM/EPROM Card
Possible Logical ROM Configurations
Memory Map of a 32K Logical ROM in Directory 2
HP82412A ROM/EPROM Card Circuit Board
Memory Map of the System ROM

Program Headers
BASIC Keyword Structure
Defining Scratch Area Data Structure

Handler Header and Jump Table
Relationship Between High- and Low-Level Handlers

Example of Reading Handler Information Table Entries

Register Save Area

Main Control Register
Main Status Register
Interrupt Control Register
Interrupt Status Register

Interrupt Control Register
Interrupt Status Register
Interrupt Clear Register
End of Interrupt Register

HP-94 Keyboard
HP-94 Keycodes

8-5
8-6

9-1
9-3
9-3
9-3

10-3

10-3

10-3

10-3

10-4

10-4

10-4

10-7

10-8

10-8

11-3

11-4

11-4

11-4

11-4

11-5

11-5

11-5

11-5

11-6

12-4

12-4

12-5

12-5

12-5

12-6

12-6

12-6

12-6

12-6

13-2
13-2
13-2
13-2

14-3
14-3

Figure 8-3.
Figure 8-4.

Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.

Keyboard Control Register
Keyboard Status Register

6 x 8 Character Cell
Keyboard Control Register
Right LCD Driver Data Register
Left LCD Driver Data Register

Interrupt Control Register
Interrupt Status Register
Interrupt Clear Register
Baud Rate Clock Value Register
Main Control Register
Main Status Register
Serial Port Data Register
Baud Rate - Parameter Byte 1
Data Format - Parameter Byte 2

Figure 10-10. Terminate Character - Parameter Byte 3

Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 114,
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.

Interrupt Control Register
Interrupt Status Register
Interrupt Clear Register
Bar Code Timer Data Register
Bar Code Timer Data Register
Bar Code Timer Control Register
Bar Code Timer Value Capture Register
Bar Code Timer Clear Register
Main Control Register

Figure 11-10. Main Status Register

Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12-8.
Figure 12-9.

Interrupt Control Register
Interrupt Status Register
Interrupt Clear Register
System Timer Data Register
System Timer Control Register
Bar Code Timer Data Register
Bar Code Timer Data Register
Bar Code Timer Control Register
Bar Code Timer Value Capture Register

Figure 12-10. Bar Code Timer Clear Register

Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4,

Figure 14-1.
Figure 14-2.

Interrupt Control Register
Interrupt Status Register
Interrupt Clear Register
Power Control Register

Interrupt Control Register
Interrupt Status Register

14-3

14-4

16-1

Part 2

Figure 14-3. Interrupt Clear Register
Figure 14-4. Main Status Register

Figure 16-1. Main Control Register

BASIC Interpreter

1-1

1-2

1-2

1-3

1-3

1-6

1-7

1-8

1-8

1-10

1-10

1-11

1-12

1-13

1-13

1-14

1-14

1-15

1-15

1-16

2-1

2-2

2-2

2-3

2-4

2-5

2-5

2-6

2-6

2-7

2-7

2-8

2-8

3-1
3-3
3-3
3-5

Figure 1-1. BASIC Program Organization
Figure 1-2. Program Header
Figure 1-3. Program Code
Figure 1-4. Variable Descriptor Table
Figure 1-5. Variable Descriptor Type Byte
Figure 1-6. Variable Reference
Figure 1-7. Parametersin the Variable Descriptor Table

Figure 1-8. Line Reference
Figure 1-9. DATA Statement Linking
Figure 1-10. Variable Area Allocation

Figure 1-11. Allocating and Releasing Variable Areas

Figure 1-12. Program Code and Variables

Figure 1-13. BASIC Program and Variable Relationships

Figure 1-14. Real Numeric Data in the Variable Area

Figure 1-15. Integer Numeric Data in the Variable Area

Figure 1-16. Character Data in the Variable Area

Figure 1-17. Array Data in the Variable Area

Figure 1-18. Array Data Example: DIM A(2,3)

Figure 1-19. Array Data Example: OPTION BASE 0 : DIM B3$6(4)

Figure 1-20. Format of the Control Information Save Area

Figure 2-1. Operation Stack Area
Figure 2-2. Control Stack Operation

Figure 2-3. Control Stack During Subprogram Execution

Figure 2-4. GOSUB Control Element

Figure 2-5. FOR...NEXT Control Element

Figure 2-6. Numeric Operation Stack

Figure 2-7. Real Numeric Data on the Numeric Operation Stack

Figure 2-8. Integer Numeric Data on the Numeric Operation Stack

Figure 2-9. Numeric Operation Stack Example: A + B* C— D

Figure 2-10. Character Operation Stack

Figure 2-11. Character Operation Stack Example: “ABC” + “DE”

Figure 2-12. Parameter Table Format
Figure 2-13. Parameter Table Type Byte

Figure 3-1. Assembly Language Subprogram Structure

Figure 3-2. Parameter Table Format

Figure 3-3. Parameter Table Type Byte

Figure 3-4. %CALL Example: Calling an Assembly Language Subprogram

Part 3

Figure 4-1. GETARG Parameter Processing
Figure 4-2. GETARG Result Flags (Register CL)
Figure 4-3. SETARG Parameter Processing

Hardware Specifications

N
Appendixes

Figure 1. HP-94 Hardware Block Diagram

Figure F-1. Memory Map of the HP-94

Figure L-1. HNBC Valid Data Flag — Parameter Byte 1
Figure L-2, HNBC Baud Rate — Parameter Byte 2
Figure L-3. HNBC Parity ~ Parameter Byte 3
Figure L-4. HNBC Key Abort ~ Parameter Byte 4
Figure L-5. HNBC Good Read Beep — Parameter Byte 5
Figure L.-6. HNBC Terminate Character — Parameter Byte 6
Figure L-7. HNSP Valid Data Flag — Parameter Byte 1
Figure L-8. HNSP Baud Rate ~ Parameter Byte 2
Figure 1.-9. HNSP Parity — Parameter Byte 3
Figure L-10. HNSP Key Abort — Parameter Byte 4
Figure L-11. HNSP Good Read Beep — Parameter Byte 5
Figure L-12. HNSP Terminate Character — Parameter Byte 6
Figure 1.-13. HNWN Valid Data Flag — Parameter Byte 1
Figure L-14. HNWN Escape Sequences — Parameter Byte 2

Figure L-15. Serial Port Configuration Escape Sequence

Part1

Tables

Operating System

6-2

7-1

7-2

7-3

7-6

8-4
8-5
8-6

9-3
9-4
9-5

10-2

Table 1-1.

Table 1-2.

Table 1-3.

Table 1-4.

Table 1-5.

Table 1-6.

Table 1-7.

Table 1-8.

Table 1-9.

Table 2-1.

Table 2-2.

Table 2-3.

Table 2-4.

Table 3-1.

Table 3-2.

Table 3-3.

Table 3-4.

Table 3-5.

Table 3-6.

Table 5-1.

Table 5-2.

Table 6-1.

Table 7-1.

Table 7-2.

Table 7-3.

Table 7-4.

Table 8-1.

Table 8-2.

Table 8-3.

Table 9-1.

Table 9-2.

Table 9-3.

HP-94 Memory Configurations
Summary of Memory Information
Directory Table Sizes
Addresses for All Logical ROM Sizes in Directories 1-4
Different Organizations of a 96K Application
Placing a 96K Application Into Three 32K ICs
Placing a 96K Application Into Two 64K ICs
Memory Integrity Errors
Configuration Map for Valid Memory Configurations

HP-94 Status at Cold and Warm Start

Cold Start Status of BASIC Programs
Ending a Program With END_PROGRAM or FAR RET

HP-94 Status in Command Mode

Channel Number Assignments
Handler Information Table Entries

Interpreting the Valid Data Flag
Register Usage By Handler Linkage Routines
Reserved IOCTL Function Codes

Functions Allowed in POWERON Routine

I/0 Addresses for Control and Status Registers
Copies of Primary Control Registers

Intel 8088 and NEC V20 Instruction Mnemonics

HP-94 Hardware Interrupts
Using Hardware Interrupts
Interrupt Control and Status Registers
Interrupt-Related Operating System Functions

ASCII Characters and Keycodes for Each Key
Keyboard Control and Status Registers
Keyboard-Related Operating System Functions

Display Control and Status Registers
Display Control Characters
Display-Related Operating System Functions

Table 10-1. Serial Port Control and Status Registers

10-4

10-6

10-7

10-7

10-9

10-9

11-3

12-1

12-1

12-4

12-7

13-1

13-2

14-1

14-3

14-4

15-1

15-1

16-1

16-2

Part 2

Table 10-2.

Table 10-3.

Table 10-4.

Table 10-5.

Table 10-6.

Table 10-7.

Table 11-1.

Table 12-1.

Table 12-2.

Table 12-3,

Table 12-4.

Table 13-1.

Table 13-2.

Table 14-1.

Table 14-2.

Table 14-3.

Table 15-1.

Table 15-2.

Table 16-1.

Table 16-2.

Baud Rate Clock Values

Behavior of Built-in Serial Port Handler

Errors Reported by Built-In Serial Port Handler
Built-in Serial Port Handler Baud Rate Values

Control Line Behavior

Serial Port-Related Operating System Functions

Bar Code Port Control and Status Registers

HP-94 Timers
Events Checked By System Timer Interrupt Routine
Timer Control and Status Registers
Timer-Related Operating System Functions

Power Control and Status Registers
Power Switch-Related Operating System Functions

Activities Halted During Default Low Battery Behavior
Battery Control and Status Registers
Battery-Related Operating System Functions

Real-Time Clock Control and Status Registers
Real-Time Clock-Related Operating System Functions

Beeper Control and Status Registers
Beeper-Related Operating System Functions

BASIC Interpreter

Part 3

Table 1-1.

Table 1-2.

Table 1-3.

Table 1-4.

Table 4-1.

Table 4-2.

Table 5-1.

Table 5-2.

Variable Descriptor Length Byte
Intermediate Code
Intermediate Code Groups
Operand Codes

Codes for ERROR Utility Routine
GETARG Result Flag (Register CL)

Response of Input Keywords to Handler-Generated Errors
Response of Output Keywords to Handler-Generated Errors

Hardware Specifications

Table 1-1. Principal Integrated Circuits
Table 1-2. Electrical Specifications

2-1

2-2

2-2

2-2

2-3

2-4

2-6

3-1

41
4-2
4-2
4-3
4-5
4-6
4-6
4-7
4-8
4-8
4-9
49

4-10
411

Appendixes

Table 2-1.

Table 2-2.

Table 2-3.

Table 2-4.

Table 2-5.

Table 2-6.

Table 2-7.

Table 3-1.

Table 4-1.

Table 4-2.

Table 4-3.

Table 4-4.

Table 4-5.

Table 4-6.

Table 4-7.

Table 4-8.

Table 4-9.

Physical Specifications
Serial Port Connector Pin Assignments
Serial Port Mating Connectors
Bar Code Port Connector Pin Assignments
Bar Code Port Mating Connectors
Memory Port Connector Pin Assignments
External Bus Connector Pin Assignments

Environmental Specifications

HP-94 Hardware Accessories
ROM and EPROM Specifications
ROM and EPROM Manufacturers
HP82430A Rechargeable Battery Pack Specifications
HP82431 Recharger Specifications
HP82470A RS-232-C Level Converter Pin Assignments
Line Receivers That Do Not Require Level Converter
HP-94 to Modem Cable
HP-94 to Printer Cable

Table 4-10. HP-94 to Level Converter Cable

Table 4-11. HP-94 to Vectra Cable
Table 4-12. Vectra or IBM PC/AT to Level Converter Cable
Table 4-13. IBM PC or PC/XT to Level Converter Cable
Table 4-14. HP-94 Serial Port to Smart Wand Cable

A-1

A-2

B-2
B-3

C-1

E-1

G-1

Table A-1.

Table A-2.

Table B-1.

Table B-2.

Table C-1.

Table E-1.

Table G-1.

Table H-1.

Resident Debugger Commands
Resident Debugger Keyboard Map

Operating System Errors
BASIC Interpreter Errors

ASCII Characters and Keycodes for Each Key

Display Control Characters

1/0 Addresses for Control and Status Registers

HP-94 Hardware Interrupts

Table I-1. Operating System Function List

Table J-1. BASIC Interpreter Utility Routine List

K-1

K-2

L-2

L-3

L-4

L-§

L-6

L-7

L-9

L-10

L-11

L-11

L-14

L-15

L-16

L-18

L-19

L-19

L-21

M-1

M-14

M-15

M-15

M-22

Table K-1.

Table K-2.

Table L-1.

Table L-2.

Table L-3.

Table L-4.

Table L-5.

Table L-6.

Table L-7.

Table L-8.

Table L-9.

Table L-10.

Table L-11.

Table L-12.

Table L-13.

Table L-14.

Table L-15.

Table L-16.

Table L-17.

Table M-1.

Table M-2.

Table M-3.

Table M-4,

Table M-5.

Error Number Usage
Hewlett-Packard Handler Resource Usage

HNBC Statistics
Behavior of HNBC

Errors Reported by HNBC
HNBC Baud Rate Values
HNBC Parity Values
HNSP Statistics
Behavior of HNSP
Errors Reported by HNSP
HNSP Baud Rate Values
HNSP Parity Values
HNWN Statistics
Behavior of HNWN
Errors Reported by HNWN
Beeps From HNWN for Smart Wand Escape Sequences
Smart Wand Baud Rate
Smart Wand Parity Values
Status Request Escape Sequence Parameter

Utility Routines on Technical Reference Manual Disc
Low Battery Interrupt Routine Behavior During 1/0
Power Switch Interrupt Routine Behavior During 1/0
Timeout Interrupt Routine Behavior During I/0
Handler Linkage Routine List

Introduction to the Technical Reference Manual

The HP-94 Technical Reference Manual provides software and hardware reference information about

the HP-94 Handheld Industrial Computer. This information should allow software developers to write

assembly language programs for controlling the HP-94 hardware resources, and hardware developers

to design accessories that connect to the machine. This manual assumes a certain level of familiarity

with the HP-94 and 8088 assembly language programming, and that the user will be using Microsoft

assembly language development tools (MASM and LINK) or their equivalents. It is a supplement to

the HP 82520A HP-94 Software Development System (SDS), which includes other information neces-

sary to fully understand the product, as well as software utilities needed to convert and transfer assem-

bly language programs to the machine. The manualis divided into four major parts:

s Operating System

m BASIC Interpreter

s Hardware Specifications

m Appendixes

The first section describes the built-in operating system, which manages and provides programmatic

access to the HP-94 hardware: memory, interrupt system, keyboard, display and backlight, serial port,

bar code port, internal timers, power switch and power control, low battery detection, real-time clock,

and beeper. This section includes topics such as memory management, program execution, writing

user-defined handlers (device drivers) for controlling the serial and bar code ports, and using operating

system functions to simplify hardware control from assembly language programs.

The second section describes the internal operation of the built-in BASIC interpreter, which provides

the ability to execute BASIC programs that were developed on a development system computer using

the HP-94 SDS. This section does not discuss the syntax of the BASIC language, or the operation of

each BASIC keyword; that information is contained in the BASIC Language Reference Manual. Instead,

the section discusses the structure and operation of BASIC programs, data structure of BASIC vari-

ables, writing new BASIC keywords, and using BASIC interpreter utility routines to simplify the

interaction of BASIC and assembly language programs.

The third section contains hardware specifications for the HP-94 in four categories: electrical (voltage

and current levels, HP-94 operating conditions), mechanical (dimensions and connector pinouts),

environmental (conditions under which the HP-94 will perform properly), and accessory (electrical and

mechanical characteristics of plug-in cards, level converter, cables, etc.).

The final section is appendixes containing summaries of reference information for developers. This

includes documentation for the utility subroutines on the disc with this manual, and for the built-in

assembly language debugger.

Introduction to the Technical Reference Manual 1

Part 1

Operating System

Introduction to the Operating System

This section of the HP-94 Technical Reference Manual describes the built-in operating system, which

manages and provides programmatic access to the HP-94 hardware. This section includes topics such

as memory management, program execution, writing user-defined handlers (device drivers) for con-

trolling the serial and bar code ports, and using operating system functions to simplify hardware control

from assembly language programs.

This section also describes the HP-94 hardware: what major hardware elements are present in the

machine, what they do, and how to operate them under software control. The major hardware ele-

mentsare as follows:

m System ROM

m Read/Write Memory (RAM)

m Control and Status Registers

m CPU

m Interrupt Controller

m Keyboard

m Display with Electroluminescent Backlight

Serial Port

Bar Code Port

m Timers

m Power Switch

m Nickel-Cadmium (NiCd) Battery Pack

m Lithium Backup Batteries

m Real-Time Clock

m Beeper

m Reset Switch

All these items will be discussed in subsequent chapters. The following is a block diagram showing the

major hardware elements and their relationships.

introduction to the Operating System 1

Memory Management

Chapter 1

Contents

Memory Management

Hardware Overview
Software Overview
Memory Organization

Main Memory
40K RAM Card
ROM/EPROM Card

Reserved Scratch Space
Directory Table
File System

File Names
File Types

Erasing and Loading Files
Reserved File Names
Maximum NumberofFiles

Data Files
File Size
Size Increment
End-of-Data Address
File Access Pointer
Deleting Data Files
Interrupts During File Operations
File Expansion Example

Free Space

Usage in Command Mode
Usage at Run Time ’

Scratch Areas
Allocating Scratch Areas
Releasing Scratch Areas
Number of Scratch Areas
Optimum Memory Use With Scratch Areas

Logical ROMs
Logical Structure of the ROM/EPROM Card
Combining Logical ROMsof Different Sizes
Selecting a Logical ROM Size
Physical Layout of the ROM/EPROM Card
Selecting an IC Size
Placing Logical ROMs Into Physical ICs

System ROM
Memory Integrity Verification

Checksums Computed at Power Off
Memory Integrity Tests at Power On

b

Memory Management

This chapter describes memory in the HP-94:its possible configurations, how it is organized, and the

memory management software.

 A

Hardware Overview

The HP-94 is available in three memory configurations: HP-94D with 64K RAM, HP-94E with 128K

RAM, and HP-94F with 256K RAM.Inside the 94 is a single slot for optional memory accessories. The

94D and 94E allow either the HP 82411A 40K RAM Card or HP 82412A ROM/EPROM Card (hold-

ing 32 to 128K of ROM or EPROM) to be plugged in. In addition, the 94E can be expanded to 256K

(equivalent to a 94F) with the HP 82410A 128K Memory Board (service upgrade only), which also

occupies the accessory slot. The 94F cannot be expanded. The following table summarizes HP-94

memory configurations.

Table 1-1. HP-94 Memory Configurations

Built-In 40K RAM ROM/EPROM 128K Memory

Machine RAM Card Aliowed Card Allowed Board Allowed

HP-94D 64K Yes Yes No

HP-94E 128K Yes Yes Yes

HP-94F 256K No No No

The maximum total user memory in the HP-94, RAM and ROM/EPROM combined, is 256K. This

limit is imposed by both hardware and software.

]

Software Overview

The memory management software in the HP-94 provides a directory structure for major contiguous

blocks of memory, such as built-in memory and plug-in memory (RAM and ROM/EPROM cards).

Within each directory isa file system that supports four differentfile types and files in RAM or ROM.

BASIC programs (type B), assembly language programs (type A), and user-defined 1/O port handlers

(type H) execute in place, whether in RAM or ROM. Datafiles (type D) can be created and deleted

dynamically while programs are running, and expand when written to in fixed- or variable-length incre-

ments. The operating system also provides for allocation and release of scratch areas, and verifies

memory integrity using checksums at poweroff and power on.

Memory Management 1-1

[

Memory Organization

HP-94 memory is organized into contiguous blocks called directories. The directories fall into three
major categories: main memory (built-in memory plus the 128K memory board), plug-in memory
(40K RAM and ROM/EPROM cards), and system ROM (built-in operating system and BASIC inter-
preter). Each block of memory has a fixed-length table at the beginning that describes each file in that
block of memory. Since the directory table is fixed-length, the maximum number offiles that the direc-
tory can contain is also fixed. The directory table also identifies what type of memory it is (main,
plug-in RAM,plug-in ROM) and how much memory is encompassed by the directory. Below is a table
summarizing important information about HP-94 memory. followed by a memory map that shows the
organization of all memory in the HP-94. Note that in the map, the main memory RAM quantities
include the RAM for the smaller memory configurations, and the ". . ." indicates unused address space.

Table 1-2. Summary of Memory Information

Name of Memory Directory Max. No. Min. System
Memory Area Size Number(s) of Files Overhead

Main Memory 64K 0 63 3.5K*
128K 0 63 3.5K*

256K 0 127 45K*

40K RAM Card 40K 1 31 0.5K

ROM/EPROM Card 32K 1-4 31 0.5K
64K 1-3 31 0.5K

96K 1-2 63 1K
128K 1 63 1K

* If a BASIC program is running, there will be an additional 2K used by the BASIC interpreter, plus
space for the data in the BASIC program variables.

1-2 Memory Management

FFFFFh

32K Built-In
System ROM

F8000h

3FFFFh 3FFFFh

32K Piug-In
ROM/EPROM

38000h

32K Plug-In
ROM/EPROM

256K Built-In
RAM (HP-94F) 30000h

32K Plug-In
ROM/EPROM

29FFFh
28000h

40K Plug-in 32K Plug-In
RAM ROM/EPROM

20000h 20000h 20000h
40K RAM Card ROM/EPROM Card

128K Built-In
RAM (HP-94E)

10000h

64K Built-In
RAM (HP-94D)
 00000h

» Main Memory

Figure 1-1. Memory Map of the HP-94

Memory Management 1-3

Main Memory
Main memory is the first major block of memory, and is called directory 0. It can be 64, 128, or 256K,
depending on the memory configuration (94D, 94E, or 94F). Even though the 128K memory board that
is used in the 94F or added to the 94E occupies the accessory slot, it is still treated as main memory
because it cannot be installed or removed by the user the way the plug-in cards can. The number of
files main memory can contain are 63, 63, and 127 respectively for the three memory configurations.

Below is a map of main memory. The pointers on the right side of the memory map correspond to seg-
ment addresses maintained in the directory table header (the first entry in the directory table), and will
be discussed under "Directory Table".

256K: (3FFF:000F) 3FFFFh
128K: (1FFF:000F) 1FFFFh

64K: (OFFF:000F) OFFFFh End of Main Memory

Scratch Areas

End of Free Space Pointer

Free Space

Start of Free Space Pointer

Data
Files

End of Program Files Pointer

Program
Files

256K: (0120:0000) 01200h
64K or 128K: (00E0:0000) 00EQCH Start of Files Pointer

Directory Table

(00A0:0000) 00AQ0N Start of Directory Table

Reserved
Scratch Space (0000:0000) 00000h Start of Reserved Scratch Space

Figure 1-2. Memory Map of Main Memory

1-4 Memory Management

The major blocks of memory shown in the memory map are described briefly below. They will each be
the subject of a separate section ofthis chapter.

m Reserved Scratch Space
This area contains the interrupt vectors for the hardware and software interrupts for the CPU.
This area is also used by the operating system to maintain information about the currentstate of
the 94, and for pointers into that information. This area comprises 2.5K of the system overhead.

m Directory Table
This block describes main memory and all the files contained in it. Files begin immediately after
the end of the directory table. This area comprises 1K or 2K of the system overhead, depending on
the memory configuration.

m Program Files
This block is where all non-datafiles are stored; that is, file types A, B, and H. All program files

appear first in the file system. The size of this block changes while programs are loaded, but does
not expand or contract at run time.

m Data Files
This block is where data files are stored. Data files expand by allocating memory from free space,
expanding toward higher addresses. When data files are deleted, all their space is returned to the
free space area.

m Free Space

This block is the pool of available memory from which data files are created and expanded and
scratch areas are allocated.

m Scratch Areas
Scratch areas are requested by the built-in BASIC interpreter and by user-written assembly
language programs and handlers, and are created by allocating memory from free space, building
toward lower addresses. When scratch areas are released, they are returned to free space. Scratch
areas are only created in main memory, regardless of which directory contains the program
requesting the scratch area. They comprise any additional system overhead requirements.

40K RAM Card

The HP 82411A 40K RAM card is one ofthe two types of plug-in memory, and is called directory 1. It
is 40K long, and can contain a maximum of31 files. The organization of the RAM card is a subset of
the main memory organization — it contains only a directory table, files, and free space. No scratch
areas are available, since scratch areas are only allocated in main memory.

Here is a memory map of the 40K RAM card. The pointers on the right side of the map have the same
meaning as for main memory.

Memory Management 1-5

(2A00:0000) 2A000h
(29FF:000F) 29FFFh

(2020:0000) 20200h

(2000:0000) 20000h

Free Space

Data

Files

Program
Files

 Directory Table

End of Free Space Pointer
End of 40K RAM Card

Start of Free Space Pointer

End of Program Files Pointer

Start of Files Pointer

Start of Directory Table

Figure 1-3. Memory Map of the HP 82411A 40K RAM Card

The major blocks of memory shown in the memory map are described below.

m Directory Table
This block describes the RAM card and all the files contained in it. Files begin immediately after
the end of the directory table. This area comprises the 0.5K RAM card overhead.

m Program Files
This block is where all non-data files are stored; that is, file types A, B, and H. All program files

appear first in the file system. The size of this block changes while programs are loaded, but does
not expand or contract at run time.

m Data Files

This block is where data files are stored. Data files expand by allocating memory from free space,
expanding toward higher addresses. When data files are deleted, all their space is returned to the
free space area.

m Free Space

This block is the pool of available memory from which data files are created and expanded.

1-6 Memory Management

ROM/EPROM Card

The HP 82412A ROM/EPROM card isthe other type of plug-in memory, and can contain directories

1 through 4. Files can be put in ROM or EPROM in blocks of four different sizes: 32, 64, 96, and 128K.

The number of files each block can contain is 31, 31, 63, or 63 respectively, depending on the ROM or

EPROM size. The memory map of the ROM/EPROM card will be discussed in detail under "Logical

ROMs" (a logical ROM is a ROM in one of the different possible sizes, not necessarily related to the

physical IC size actually placed on the ROM/EPROM card).

The organization of each of the four directories within the ROM/EPROM cardis similar to the RAM

card. They each contain only a directory table, files, and free space. No scratch areas are available,

since scratch areas are only allocated in main memory (and could not be allocated in ROM or

EPROM anyway).

The memory map of an individual ROM within the ROM/EPROM card is essentially the sameas for

the 40K RAM card. Unlike the RAM card, data files can only be read — they cannot be created,

deleted, or written to. Also,the free space in a ROM or EPROM cannot be used.

The pointers that are shown on the RAM card memory map have the same meaning for an individual

ROM or EPROM,buttheir values vary depending on the size and directory number of the ROM. This

will also be discussed in "Logical ROMs".

|

Reserved Scratch Space

The reserved scratch spaceis the first 2.5K of main memory. The first 0.5K contains interrupt vectors

for CPU, hardware, and software interrupts. It also contains pointers to the next 2K, which is the

operating system scratch space. Here is a memory map of the reserved scratch space. The "..." indi-

cates unused interrupt vector locations.

Memory Management 1-7

(O0A0:0000) 00AOOH

(0020:0000) 00200h

(0016:003E) 0019Eh

(0016:0000) 00160h

(0000:015C) 0015Ch

(0000:0158) 00158h

(0000:0154) 00154h

(0000:0150) 00150h

(0000:014C) 0014Ch

(0000:0148) 00148h

(0000:0144) 00144h

(0000:0140) 00140h

(0000:0074) 00074h

(0000:0070) 00070h

(0000:006C) 0006Ch

(0000:0068) 00068h

(0000:0010) 00010h

(0000:000C) 0000Ch

(0000:0008) 00008h

(0000:0004) 00004h

(0000:0000) 00000h

OS Scratch Space

OS Pointer Table

Interrupt Type 57h

interrupt Type 56h

interrupt Type 55h

Interrupt Type 54h

Interrupt Type 53h

Interrupt Type 52h

interrupt Type 51h

Interrupt Type 50h

Interrupt Type 1Ch

Interrupt Type 1Ah

Breakpoint

NMI

Single Step
 Zero Divide

Start of Directory Table

Start of OS Scratch Space

End of OS Pointer Table

Start of OS Pointer Table

Start of Hardware Interrupt Vectors

End of Software Interrupt Vectors

Start of Software Interrupt Vectors

End of Dedicated Interrupt Vectors

Start of Dedicated Interrupt Vectors

Figure 1-4. Memory Map of Reserved Scratch Space

1-8 Memory Management

The major items in the reserved scratch space are described below. The information at the end of each

description are the chapters or appendixes where further information can be found about that inter-

rupt. General information about the hardware interrupts (types 50h-57h) is in the "Interrupt Con-

troller" chapter.

= Zero Divide
Dedicated interrupt vector for divide-by-zero condition. Points to the same location as the break-

point interrupt vector (appendix A).

m Single Step
Dedicated single step interrupt vector used for single-stepping the resident debugger (appendix A).

m NMI

Dedicated non-maskable interrupt vector used to invoke the resident debugger. Points to the same

location as the breakpoint interrupt vector (appendix A).

= Breakpoint
Dedicated breakpoint interrupt vector used for breakpoints in the resident debugger (appendix A).

m Interrupt Type 1Ah
Software interrupt vector used to invoke the operating system functions (chapter 4).

w Interrupt Type 1Ch
Software interrupt vector used for the one-second background timer (chapter 12).

w Interrupt Type 50h
Hardware interrupt vector for system timer (chapter 12).

m Interrupt Type 51h
Hardware interrupt vector for bar code port timer (chapters 11 and 12).

m Interrupt Type 52h
Hardware interrupt vector for bar code port transitions (chapter 11).

m Interrupt Type 53h
Hardwareinterrupt vector for serial port (82C51 data received) (chapter 10).

m Interrupt Type 54h
Hardware interrupt vector for low main battery voltage (chapter 14).

m Interrupt Type 55h
Hardwareinterrupt vector for power switch pressed (chapter 13).

m Interrupt Type 56h
Reserved hardware interrupt vector 1 (chapter 7).

m Interrupt Type 57h
Reserved hardware interrupt vector 2 (chapter 7).

= OS Pointer Table
These are pointers to various parts of the operating system scratch space. The main pointer of
interest to assembly language programmers is the one that points to the handler information table.
Referto the "User-Defined Handlers" chapter for details.

m OS Scratch Space
This is the space in which the operating system keeps important information about the current state
of the HP-94. This area is 2K long. The operating system stack is in this area. It varies in length as
it is used, up to a maximum of approximately 600 bytes.

Memory Management 1-9

CAUTION The operating system does not initialize or use the overflow interrupt (dedicated
interrupt vector 04h, at address 04h * 4 = 00010h). A program that uses the INTO

instruction (interrupt on overflow) mustinitialize this interrupt vector to a location in
its own program space.

 |

Directory Table

The directory table is organized as a series of 16-byte entries, one per file. The first entry is the direc-
tory table header. It identifies the directory, the type of memory (main memory, 40K RAM card, or
ROM/EPROM card), and the total amount of memory encompassed by the directory. The header also
contains the pointers shown on the memory maps. Since all memory areas start and end on paragraph
boundaries (a paragraph is a block of 16 bytes), pointers are stored in the directory table as segment
addresses only.

The contents of the directory table header are shown below. The numbers on the left are hex offsets
relative to the start of the header.

10h

OEh

0Ch

0Ah

08h

06h

05h

00h

Figure 1-5. Directory Table Header Contents

Refer to the memory maps to see the areas of memory that the pointers referto.

1-10 Memory Management

Directory Table
Checksum

End of Free

Space Pointer

Start of Free

Space Pointer

End of Program
Files Pointer

Start of

Files Pointer

Directory
Type
 Directory

identifier

s Directory Identifier

The directory identifier always contains the characters X DIR*. The operating system uses this to

help verify memory integrity.

m Directory Type
The directory type is the character M for main memory, A for a 40K RAM card, or O for a

ROM/EPROM card.

m Start of Files Pointer

This segment address points past the end of the directory table, and is the beginning of all files.

Program files always appear first in the file system.

= End of Program Files Pointer

This segment address points past the end of the program files, which is the beginning of the data

files. Nothing below this address within the directory will moveat runtime.

m Start of Free Space Pointer
This segment address points past the end of the data files, which is the beginning of the free space.

Free space is used for data files and scratch areas in main memory, for data files only in a RAM

card, and is not available for use in a ROM or EPROM.,

m End of Free Space Pointer

This segment address points past the end of free space. For main memory,it also marks the begin-

ning of scratch areas available for assembly language programmers. If no scratch areas have been

allocated, this pointer points past the last byte in main memory — to 1000:0000 (64K), 2000:0000

(128K), or 4000:0000 (256K).

For the 40K RAM card, this pointer points past the end of the card, since there are no scratch

areas. For the same reason, in a ROM,this pointer points past the end of the logical ROM.

= Directory Table Checksum
This is where the checksum ofthe directory table is saved when the machine is turned off.

The other entries in the directory table identify the different files. The contents of the directory table

entries for files is shown below. Again, the numbers are hex offsets from the start ofthe entry.

Memory Management 1-11

 10h

File

Checksum
OEh

Size

Increment

oCh

End-of-Data

Address
09h

Start
Address

07h

File

Size

05h

File

Type

04h

File

Name

00h
Figure 1-6. Directory Table Entry Contents

= File Name

Thisis the name of the file. File names are 1-4 characters long, padded with blanks. If the file had
a checksum error at power on, the high bit is set in the first character of the file name (except in
ROM files). If a directory table entry is unused,the first byte of this field is set to null (00h).

m File Type
This is either an A, B, D, or H.

m File Size

This is the current length ofthe file in paragraphs. All files are padded with nulls (00h) to the
nearest paragraph boundary.

wm Start Address
This segment address is the location where the file starts.

® End-of-Data (EOD) Address
For data files, this is the offset of the end-of-data within the file, relative to the start of the file. For

program files, this is a pointer to the end of the program, which may not be the end of the file
because of the null padding. The EOD address is a 24-bit value stored as a two-byte offset and a
one-byte segment (low word followed by high byte).

m Size Increment

For data files,this is the expansion increment, in paragraphs, used when data is written past the
end-of-file. It is O for program files in RAM and for all files in ROM.

1-12 Memory Management

m File Checksum

This is where the checksum ofthe file is saved when the machine is turned off.

The space reserved for the directory table is fixed-length, and varies with the total amount of memory.

Because the first entry is always reserved for the directory table header, there will be space for one less

user file than the size of the directory table would otherwise indicate. The directory sizes and number

offiles available are shown below.

Table 1-3. Directory Table Sizes

Name of Memory Directory Number

Memory Area Size Table Size of Files

Main Memory 64K 1K 63
128K 1K 63

256K 2K 127

40K RAM Card 40K 0.5K 31

ROM/EPROM Card 32K 0.5K 31

64K 0.5K 31
96K 1K 63
128K 1K 63

 R

File System

The HP-94 file system allows for multiple files of different types to coexist simultaneously. Userfiles

can reside in any ofthe five user directories (0-4), whether RAM or ROM.

File Names

Each file is identified by a 1-4 character name. File names are composed of uppercase alphabetic

characters and numbers only, and must start with a letter. A file name can only exist once in any direc-

tory. It is not possible to have the same name but a different type in the same directory. However, the

samefile name can exist in different directories, with either the same or different type.

File Types

There are four possible file types:

m Assembly Language Program — Type A

Assembly language programs are either new BASIC keywords, invoked with the %CALL state-

ment, or are entire assembly language applications.

= BASIC Program — Type B

BASIC programs are a collection of "tokens" that are can be executed by the BASIC interpreter.

They are produced by HXC from a BASfile during the file conversion process.

Memory Management 1-13

m Data File — Type D
Datafiles are simply contiguous blocks of memory.

m» User-Defined Handler — Type H
A handler is a special assembly language program that controls the I/O ports, such as the serial and
bar code ports. It has a structure similar in concept to a UNIX or MS-DOS device driver.

Erasing and Loading Files

When files are erased from command mode with the E (erase) operating system command, their
memory is returned to free space, and files higher in memory move down to fill in the hole. Whenfiles
are loaded with the C (copy) operating system command, existing files with the same name are erased
first, and the memory they occupied is reclaimed for other uses. Then memory for the new file is allo-
cated from free space (assuming there is enough room). This ensures that neither file space nor free
space are fragmented while erasing or loading files. When data files are deleted with the DELETE
function (14h), the memory they occupied is also reclaimed.

Reserved File Names

There are four files with reserved names that must not be used for anything except their current use:

m SYBI — built-in BASIC interpreter

m SYBD — BASIC debugger

m SYFT — user-defined font

@ SYOS — built-in operating system

When the BASIC interpreter searches for user-defined keywords with $CALL, the 12 built-in key-
words starting with SY will be not be overridden by new keyword files of the same name (SYAL,
SYBP, SYEL, SYER, SYIN, SYLB, SYPO, SYPT, SYRS, SYRT, SYSW, and SYTO).

In general, Hewlett-Packard uses SY as the first two characters of all its assembly language utilities,
and HN as the first two characters of all its user-defined handlers. If you use file namesstarting with
SY or handler names starting with HN, you may have a name conflict. Consequently, you should not
use namesstarting with those characters.

Maximum Number of Files

The maximum numberoffiles that can be placed in any directory was indicated in "Memory Organiza-
tion" and "Directory Table". The maximum total number of files would occur in a 94D or 94E with a
ROM/EPROM card containing four 32K ROMs — 63 files for main memory plus 4 * 31 files for the
ROM/EPROM card, for a total of 187 files.

1-14 Memory Management

 I

Data Files

Datafiles are contiguous blocks of memory with a 1-4 character file name name, and file type D. They

have no explicit record structure associated with them — it is the responsibility of the application pro-

gram to impose any record structure needed, and read and write data from the appropriate position

within the file. They always appear after all program files in whichever directory the data file resides

— between the end of program files pointer and thestart of free space pointer.

Data files are created using the CREATE function (11h). When a data file is created, the space

requested is taken from free space at the end of the current data files, the directory table header

pointers are adjusted, and one entry in the directory table is used to identify the file. Once a file is

created, it must be opened with the OPEN function (OFh) before data can be read or written. Data

files are automatically closed at cold start. Datafiles that were open when the machine was turned off

remain open at warm start.

Data files have two characteristics that are defined by the program that creates them (file size and size

increment) and two that are defined automatically (end-of-data address (EOD) andfile access pointer).

File Size

This is the initial size of the file, which is the amount of memory that will be reserved for the file when

it is created. It is specified in paragraphs and ranges from 0000h to FFFFh (although the maximum file

size is limited by available memory). The space used for the file is automatically initialized to all nulls

(00h). A file size of 0 means that the file initially occupies no space, even though the directory table

entry still exists to identify the file.

Data files cannot be created in a ROM or EPROM,or in any read-only directory (main memory or the

40K RAM card may be set to be read-only if a checksum error occurred in their directory tables at

power on).

Datafiles can also be created on the development system. Like all developmentsystem files, they are

converted to Intel MDS format by HXC for transmission to the 94. When nofile size is specified,

HXC automatically sets it to the actual file size on the developmentsystem, rounded up to the nearest

paragraph boundary. The 0 to 15 bytes needed to pad the file are automatically set to nulls (00h).

For RAM datafiles, HXC allows specifying a file size that is larger than the actual size. That way a file

could be defined to have a certain amount of data in it, and a fixed amount of unused space in thefile.

This option is not available for ROM datafiles, since a program cannot write to unused space in a

ROM or EPROM.

Size Increment

This is the expansion increment used to increase the file size when the WRITE function (13h)

attempts to write past the end ofthe file (that is, when the currentfile size is exceeded). It is specified

in paragraphs, and ranges from 0000h to FFFFh (although the maximum expansion is limited by avail-

able memory). When a program writes to a data file, and there is no room for the data being written,

the operating system will attempt to expand the file by the numberof size increments needed, and then

the data will be written to the file. For example, a file with a size increment of three (3) paragraphs

will expand by as many three-paragraph blocks of memory (48 bytes) as needed to accommodate the

Memory Management 1-15

data being written.

Note that the 94 may run out of memory during any of the expansions, leaving a file that has been
expanded, but not enough to hold the data to be written. In this situation, no data will be written to the

file — data is only written to a file if there is enough room for all it.

When a data file expands,all data files higher in memory move up to accommodate the increased file
size. This is illustrated below.

High Addresses

Free Space
N5-X Bytes

Free Space
N5 Bytes

Data File 4
N4 Bytes

Data File 4

N4 Bytes Data File 3
N3 Bytes

Data File 3
N3 Bytes

Data File 2

N2 +X Bytes
Data File 2

N2 Bytes

Data File 1 Data File 1

N1 Bytes N1 Bytes

Low Addresses

Before File 2 Expanded After File 2 Expanded

Figure 1-7. File Movement During Data File Expansion

Expansion space added to the file is automatically initialized to all nulls (00h). A size increment of 0
means no expansion will take place — the file will never grow pastits allocated size. A size increment
of 0 can be specified for any RAM datafile; HXC automatically sets it to 0 for ROM data files, since
they cannot expand.

1-16 Memory Management

File writes are not buffered — they immediately modify the file, provided space is available.

End-of-Data Address

The EOD address is a pointerin the directory table to the location in the datafile just past the last byte

of data. It is usually not equal to the end of the file (EOF) because files always end on a paragraph

boundary. For datafiles from the development system, HXC sets the EOD address pastthe last byte of

data, even if there is padding to the paragraph boundary or unused space specified beyond the actual

file size.

Every time a file write operation writes data past the current EOD or EOF, the EOD is automatically

adjusted to reflect the new end-of-data location.

File Access Pointer

This is the single pointer to the current read/write position in the file. The pointeris set to 0 (the start

of the file) when the file is opened, and is updated after every file read or write operation. Every time a

read or write occurs, the pointer is changed to point past the last byte read or written. Subsequent file

read or write operations will begin reading or writing from that updated position. The pointer can be

explicitly moved to an arbitrary position between the start of the file and the EOD, or set to the EOD

by using the SEEK function (15h). Moves beyond the EOD give an error. It is also possible to force

the EOD to be equal to the current file access pointer by performing a zero-length write using the

WRITE function (13h). This renders any data after that point inaccessible, but does not collapse the

file.

Deleting Data Files

Data files are deleted with the DELETE function (14h), and must be open before they can be deleted.

When data files are deleted, all the space occupied by the file is returned to free space. All datafiles

higher in memory move down to fill in the hole. The file space is then available for new datafile crea-

tion, datafile expansion, or scratch area allocation.

interrupts During File Operations

The power switch and low battery interrupts are disabled during file create, read, write, and delete
operations, so they are guaranteed to complete and not be corrupted (unless the reset switch is pressed
or the machine turns off automatically because of very low battery). The interrupts are reenabled after
the file operation is completed. This disabling and enabling does not change the interrupt status
defined by the SETINTR function (OAh). What it does is defer the processing (or ignoring) of those
interrupts until after the file operation has been completed.

The system timeout only occurs during read operations for channels 0-4 and read/write operations for
channels 1-4, so it will not occur during file operations, which use channels 5-15.

Memory Management 1-17

File Expansion Example

Assume a data file exists with a current size of 2 paragraphs (32 bytes) and a size increment of 3 para-
graphs (48 bytes). The file already contains 25 bytes of data, leaving the EOD at offset 25 relative to
the start of the file (the first byte of the file is at offset 0, and the EOD points past the last byte of
data). For this example, assume thefile access pointeris also at EOD.

When a program tries to write 66 bytes at the file access pointer, there is no room — there are only 7
bytes available. The amount of space required is 66 - 7 = 59 bytes, or 4 paragraphs. Since the size
incrementis 3, two expansions of 3 paragraphs each will be performed, with a resulting file size of 2 +
2 * 3 = 8 paragraphs (128 bytes). Once the expansion has been completed, the data will be written. The
EOD (and the file access pointer) will be moved to offset 25 + 66 = 91, leaving 37 bytes of unused
space available at the end. This change to the data file is illustrated below (both decimal and hex
offsets are shown).

128 (80h) New EOF
Unused Space
37 Bytes (25h)

91 (5Bh) New EOD

Old +New Data
32 (20h) Oid EOF 25+66=91 Bytes (5Bh)

Unused Space
7 Bytes (07h)

25 (19h) Old EOD
Old Data

25 Bytes (19h)
0 (00h) File Start 0 (00h) File Start

Before File Expanded After File Expanded

Figure 1-8. Example of Data File Expansion

If the file access pointer had been at the start of the file before the write operation, only a single 3-
paragraph expansion would have been needed to accommodate 66 - 32 = 34 bytes.

 .

Free Space

Free space is the pool of available memory from which datafiles are created and expanded in RAM
(main memory and 40K RAM card) and scratch areas are allocated (main memory only). Free space
is not available for any use in a ROM or EPROM. It starts at the start of free space pointer in any
directory, which is the end of all data files, and ends at the end of free space pointer, which will be at
the end ofthe directory (for main memory only, it could also be at the start of the scratch areas).

1-18 Memory Management

In any directory, data files are created and expand by allocating the required memory from the bottom

of free space, expanding toward higher addresses. In main memory, scratch areas are created by allo-

cating the required memory from the top of free space, building toward lower addresses, as shown

below.

High Addresses End of Main Memory

Scratch Areas

End of Free Space Pointer

Free Space

T Start of Free Space Pointer

Data Files

Low Addresses End of Program Files Pointer

Figure 1-9. Use of Free Space in Main Memory

When the free space goesto zero from either direction, the 94 is out of memory. No data files can be

created or expanded, and no more scratch areas can be allocated. The ROOM function (0Eh) reports

the amount of free space in any directory; in main memory,it will take into account any existing scratch

areas.

Usage in Command Mode

Whenever the operating system enters command mode, all scratch areas in main memory are elim-
inated, allowing the free space in directory 0 to extend to the end of main memory. The available
memory for all directories is then just the size of the free space.

When any RAM file is erased with the E (erase) command, the space occupied by that file is returned

to free space, and all files higher in memory, regardless of type, are moved down to fill in the hole.

When a new file is loaded using the C (copy) command, a previously existing file with the same name is
erased, and the memory it occupied is reclaimed. Then space for the new file is allocated from free

space, and the new file is loaded. Ifthe file loaded is a program file,all files above the end of program

files pointer are moved up to make room for the program.If the file loaded is a datafile,it is added at
the end ofthe existing data files, and other files do not need to move.

Memory Management 1-19

Usage at Run Time

During a running program, there may be scratch areas allocated in main memory, so free space in
directory 0 extends only up to the start of the scratch areas. The available memory for other directories
is still just the size of the free space.

At run time, program files do not move — only data files and scratch areas interact with free space at
run time. When a RAM data file is deleted programmatically, the space occupied by that file is
returned to free space, and all data files higher in memory are moved down to fill in the hole. When a
new data file is created programmatically, its memory is allocated from free space at the end of the
existing data files. When a data file expands because of a write past its end-of-file, the expansion space
is allocated from free space, and all data files higher in memory are moved up to make room for the
expandedfile.

When a scratch area is created, its memory is allocated from free space. When scratch areas are
released, their memory is returned to free space only if the area is adjacent to the top of free space.
See "Releasing Scratch Areas” for more details.

T

Scratch Areas

Scratch areas are blocks of memory that a program can reserve for its own use. The built-in BASIC
interpreter allocates scratch areas to hold BASIC program variables and subprogram calling informa-
tion. User-written assembly language programs and user-defined handlers can allocate scratch areas
for parameters, status, configuration information, buffer space, space for data returned by operating
system functions, or whatever other purpose is required.

Allocating Scratch Areas

The operating system GETMEM function (0Bh) provides the ability to allocate scratch areas in sizes
from 0001h to FFFFh paragraphs (although the maximum expansion is limited by available memory),
and returns the segment address of the scratch area. Scratch areas are allocated in main memory only,
regardless of which directory contains the program requesting the scratch area: directories 0-4, RAM
or ROM. Scratch areas start at the end of main memory and use the space required from free space,
building down toward lower addresses. They can also use previously-released scratch areas that have
not been returned to free space. This will be discussed later.

Scratch areas are automatically initialized to all nulls. They are all released at cold start, but are
preserved at warm start.

When a handler allocates a scratch area during its OPEN routine, the operating system saves the
scratch area address in a table based on the channel number of the handler. When the other routines
in the handler are called (such as READ, WRITE,etc.), the operating system passes the scratch area
address to the routine. (The handler must save this address in the handler information table if it will
be needed for an interrupt service routine.)

If a handler allocates more than one scratch area, only the address of the last one allocated will be
saved and automatically passed to handler routines. Therefore, when multiple scratch areas are allo-
cated by a handler, the allocation order is important. A handler can allocate scratch areas so that the
last one allocated is the one whose address should be passed to handler routines. Alternatively, the

1-20 Memory Management

handler can call GETMEM with the channel numberset to 0, and the operating system will not save

that scratch area address or pass it to handler routines.

When an assembly language program allocates scratch areas,it is responsible for keeping track of the

locations ofits scratch areas. The operating system saves scratch area addresses only for user-defined

handlers.

The assembler provides the ability to define the offsets within an external scratch area using the SEG-

MENT AT directive, as shown below.

SCR_AREA segment at O :Addresses start at 0

PARAM1 db 6 dup(?) ;First parameter needs 6 bytes

PARAM2 db 00 ;Second parameter needs a byte

PARAM3 dw 0000 ;Third parameter needs a word

SCR_AREA ends

Figure 1-10. Defining Scratch Area Data Structure

The SEGMENT AT directive provides an address template that can be imposed on the scratch area.

SEGMENT AT causes no code to be generated for the uninitialized data defined within that program

segment (in this case, the SCR_AREA segment).

Releasing Scratch Areas

Scratch areas are released using the REL,MEM function (0Ch). The program supplies the address of

the scratch area to be released. An error will occur if the program tries to release a scratch area that

does not exist by supplying an address that does not point to any defined scratch area.

When a scratch areais released, the operating system will attempt to return the area to free space. This

can only occur if the scratch area is adjacent to free space. Consequently, it may not be possible to

return a scratch area to free space because of the order that the scratch areas wereallocated.

For example,if a handler is opened in a BASIC subprogram, and allocates a scratch area, the area will

be adjacentto free space, and will be lower in memory than the scratch area allocated by the subpro-

gram for its variables. When the subprogram ends, the scratch area used for its variables will be

released, but will not be returned to free space. Itis blocked from being adjacentto free space because

of the handler’s scratch area. This area is flagged as a free block, available for scratch area allocation,

but not for data file creation or expansion sinceit is not part offree space.

In the diagram below, scratch area 3 was allocated for variables for a BASIC subprogram, and scratch

area 4 by a handler.

Memory Management 1-21

High Addresses

Scratch Area 1 Scratch Area 1
N1 Bytes N1 Bytes

Scratch Area 2 Scratch Area 2

N2 Bytes N2 Bytes

Scratch Area 3 Free Block 1

N3 Bytes N3 Bytes

Scratch Area 4 Scratch Area 4

N4 Bytes N4 Bytes

Free Space Free Space

Low Addresses
Before Area 3 Released After Area 3 Released

Figure 1-11. Blocking a Released Scratch Area

Scratch area 4 prevents released scratch area 3 from being returned to free space. Scratch area 3
becomes the first free block. It will not be returned to free space until scratch area 4 is released.

To allow this newly-available free block to be reused, regardless of the order in which scratch areas
were allocated and released, it will be combined with any adjacent free blocks formed when other
trapped scratch areas were released. This coalescing process attempts to form a few large available free
blocks, rather than many small ones. Thisis illustrated below.

1-22 Memory Management

High Addresses

Scratch Area 1 Scratch Area 1

N1 Bytes N1 Bytes

Scratch Area 2

N2 Bytes
Free Block 1

N2+ N3 Bytes

Free Block 1

N3 Bytes

Scratch Area 4 Scratch Area 4

N4 Bytes N4 Bytes

Free Space Free Space

Low Addresses

Before Area 2 Released After Area 2 Released

Figure 1-12. Coalescing Adjacent Released Scratch Areas

When scratch area 2 is released, it forms a new free block that cannot be returned to free space. The

coalescing process combines this new block with free block 1 that already exists, forming a single free

block whose size is the sum of the two smaller blocks. This keeps the number of free blocks to a

minimum, since the operating system can only keep track of 20 free blocks.

Subsequent allocation of new scratch areas will use the first free block that is large enough among all

those available before allocating additional memory from free space. Only as much of the free block

will be used asis required. The remainder will be flagged as a smaller free block.

Data files cannot use free blocks until they are returned to free space — only scratch areas can reuse

free blocks. Consequently, free space can go to zero and leave no room for data files creation or

expansion, even though there may be free blocks available for reuse when allocating scratch areas.

There is no facility to pack the free blocks together, since many tables and handlers keep track of the

segment address of the their scratch areas. Only allocation and release of scratch areas in careful order

can help prevent fragmentation of free blocks.

After the coalescing has been completed, if there is an available free block adjacentto free space,it is

returned to free space for other uses (data file allocation and expansion or new scratch area allocation

when the availablefree blocks are not large enough).

Memory Management 1-23

When the 94 cold starts,all scratch areas and free blocks are automatically returned to free space. This
will occur the next time the machine is turned on after a program calls the END_PROGRAM function
(00h) and specifies a subsequent cold start. This also occurs whenever the operating system enters
command mode, whether because of a program error or because of an explicit call to
END_PROGRAM. If a program calls ENDPROGRAM and specifies a subsequent warm start, all
scratch areas and free blocks are preserved the next time the machine is turned on.

Number of Scratch Areas

A maximum of 34 scratch areas can be allocated in main memory. An error will occur when a scratch
area is allocated if 34 scratch areas are already in use.

The BASIC interpreter allocates scratch areas for its own use, for BASIC variables, and for control
information. In this sense, the BASIC interpreter can be thought of as another assembly language pro-
gram, using the facilities within the operating system for scratch space management.

When a BASIC main program is run, two scratch areas are allocated immediately:

= One scratch area for the BASIC interpreter scratch space (2K long).

® One scratch area for the BASIC program variables. The length of this area is shown as "Variable
Space Required" in the BMP file produced by HXC (although the length is rounded up to the
nearest paragraph boundary). This area will not be allocated in the case of a BASIC main program
with no variables.

This leaves a total of 32 scratch areas available for other uses. After that, every time a BASIC subpro-
gram is called with the CALL statement, two scratch areas are allocated:

® One scratch area for the control information save area that contains information passed between
programs (32 bytes).

® One scratch area for the BASIC subprogram variables (length shown in the BMP file, not allocated
if no variables).

This is why BASIC subprograms can only be nested a maximum of 16 levels deep — scratch area allo-
cation limits permit 32 scratch areas beyond those used for the main program.

Fewer scratch areas may actually be available for BASIC subprogram nesting, since user-defined
handlers and assembly language programs can allocate scratch areas also. A high-level and low-level
handler combination, for example, may have three scratch areas allocated between them: one for
configuration passing and two for scratch and buffer space (one for each handler). Assembly language
programs generally allocate one scratch area for scratch and buffer space, but may allocate a second
one for configuration passing to handlers. Consequently, BASIC subprogram nesting may be restricted
to less than 16 levels,

Optimum Memory Use With Scratch Areas

To allow the most efficient use of memory, scratch areas should be allocated and released in such a
way that they do not block other scratch areas from being returned to free space. Long-term scratch
areas that must remain in place throughout program execution (such as handler scratch areas) should
be allocated when the program begins executing. Short-term scratch areas should be released as soon
as they are not needed.

1-24 Memory Management

This is particularly important for BASIC programs. BASIC programs should attempt to do tasks that

allocate long-term scratch areas in the main program, rather than in subprograms, where they will trap

short-term subprogram-related scratch areas. Whenever possible, tasks requiring short-term scratch

space should be isolated within a subprogram.

I

Logical ROMs

The HP 82412A ROM/EPROM card accommodates ROMs or EPROMs of different sizes: 32, 64, 96,

or 128K. These different sizes are considered to be "logical ROMs" for two reasons:

m A logical ROM ofsize N does not have to contain N bytes of program and datafiles; it can contain

less than N bytes. For example, a 64K logical ROM may only contain 44K of program and data

files.

m A logical ROM of size N does not have to be placed in a ROM or EPROM integrated circuit (IC)

of size N. For example, a 96K logical ROM can be contained in either three 32K ICs or two 64K

ICs.

Logical Structure of the ROM/EPROM Card

Below is a memory map of the ROM/EPROM card.

(3FFF:000F) 3FFFFh End of ROM/EPROM Card

Directory 4

(3800:0000) 38000h Start of Directory 4

Directory 3

(3000:0000) 30000h Start of Directory 3

Directory 2

(2800:0000) 28000h Start of Directory 2

Directory 1

(2000:0000) 20000h Start of Directory 1

Figure 1-13. Memory Map of the HP 82412A ROM/EPROM Card

This memory map illustrates an important aspect of logical ROMs. Each directory begins on a 32K

address boundary within the ROM/EPROM card address space (20000h to 3FFFFh). Each logical

ROM is assigned a directory number corresponding to the 32K address boundary where the ROM will

start. A logical ROM larger than 32K will span more than one 32K block of addresses. The pointers in

Memory Management 1-25

the directory table header created by HXC will reflect that the starting address is on a 32K boundary,
and that the logical ROM space for large ROMs spans multiple 32K blocks. (For ROMs that span
more than one directory, the directory number specified when the ROM is created is the starting direc-
tory number.)

For example, a 96K logical ROM starting at directory 1 will span directories 1, 2, and 3, leaving one
32K block of addresses, directory 4, available for a single 32K logical ROM. Similarly, a 64K logical
ROM starting at directory 3 will span directories 3 and 4, leaving two 32K block of addresses, direc-
tories 1 and 2, available. These can be filled by either another 64K logical ROM starting at directory 1,
or two 32K logical ROMs, one starting at directory 1, and the otherstarting at directory 2. A 96K logi-
cal ROM could notstart at directory 3, nor could a 64K logical ROM start at directory 4, because they
would have to span into a 32K block of addresses not available to the ROM/EPROM card.

Combining Logical ROMs of Different Sizes

Logical ROMs of different sizes can be combined in many different ways, subject to the following res-
trictions:

m The total number of logical ROMs cannot exceed four.

m The total number ofdirectories spanned by all the logical ROMs cannot exceed four.

m The total space required by all logical ROMs, regardless of the amount of code they contain, can-
not exceed 128K.

This is illustrated by the following diagram, which shows the possible logical ROM combinations for
filling 128K of ROM space. Of course, a ROM/EPROM card does not have to be full — thatis,it
can contain fewer than four logical ROMs, span fewer than four directories, and contain less than 128K
total ROM.

1-26 Memory Management

Directory 1

|

Directory 2

|

Directory 3

|

Directory 4

32K 32K 32K 32K

32K 32K 64K

32K 64K 32K

32K 96K

64K 32K 32K

64K 64K

96K 32K

128K

Figure 1-14. Possible Logical ROM Configurations

The memory map of an individual ROM within the ROM/EPROM card is essentially the same as for

the 40K RAM card. The major difference is the values of the pointers — these can vary depending on

the starting directory number,the directory table size, and the logical ROM size. Below is a memory

map of a 32K logical ROM starting at directory 2.

Memory Management 1-27

(3000:0000) 30000h End of Free Space Pointer

(2FFF:000F) 2FFFFh End of Logical ROM

Free Space

Start of Free Space Pointer

Data
Files

End of Program Files Pointer

Program
Files

(2820:0000) 28200h Start of Files Pointer

Directory Table

{(2800:0000) 28000h Start of Directory Table

Figure 1-15. Memory Map of a 32K Logical ROM in Directory 2

Rather than provide memory maps for all the possible logical ROMsin directories 1-4, the addresses
of the start and end of the logical ROM andfor the start of program files (end of directory table) are
shown in the following table.

Table 1-4. Addresses for All Logical ROM Sizes in Directories 1-4

Logical Directory Start of Start of Program End of Free
ROM Size Number Logical ROM Files Pointer Space Pointer

32K 1 2000:0000 2020:0000 2800:0000

2 2800:0000 2820:0000 3000:0000
3 3000:0000 3020:0000 3800:0000
4 3800:0000 3820:0000 4000:0000

64K 1 2000:0000 2020:0000 3000:0000
2 2800:0000 2820:0000 3800:0000

3 3000:0000 3020:0000 4000:0000

96K 1 2000:0000 2040:0000 3800:0000
2 2800:0000 2840:0000 4000:0000

128K 1 2000:0000 2040:0000 4000:0000
1-28 Memory Management

Selecting a Logical ROM Size

From the different possible logical ROM sizes, select those best for a specific application based on its

particular needs. Someof the itemsto consider are the total number of program and data files needed,

maximum file size, total ROM space required for directory tables (which decreases available ROM for

the application), and segmentation of codeinto blocks of differentsizes. Below is a comparison of the

differences in organizing a 96K application in three different ways: three 32K ROMs, one 64K ROM

and one 32K ROM,or one 96K ROM.

Table 1-5. Different Organizations of a 96K Application

Logical Total Number

|

Maximum

|

Directory Table Segmentation

ROM Sizes of Files File Size Overhead Required

332K ROMs 3*31 =93 31.5K 3*5=15K three separate groups of
files that each fit in 32K

1 64K ROM + 31 + 31 = 62 63.5K, 5+ 5=1K one group offiles that

1 32K ROM 31.5K fits in 64K and one group
of files that fits in 32K

1 96K ROM 63 95K 1K none

The same reasoning can be applied to other size applications and other logical ROM choices. The

results of this analysis should be matched up against the requirements of the application to select the

best way to organizeit.

ROM and EPROM IC selection is another factor to consider, and will be discussed later.

Physical Layout of the ROM/EPROM Card,

The ROM/EPROM card contains a circuit board with three sockets on it for ROM or EPROM ICs.

The sockets can accommodate either 32K ICs or 64K ICs (a jumper on the board selects which IC size

is being used). Different IC sizes cannot be mixed and matched — the board can hold either up to

three 32K ICs or up to two 64K ICs. A diagram of the card is shown below.

Memory Management 1-29

Alignment Holes

Socket
Socket Socket

. 1]

32K/64K Jumper

 [
T

Figure 1-16. HP 82412A ROM/EPROM Card Circuit Board

The socketed jumper on the board selects between 32K ICs and 64K ICs. Underneath the jumperare
the legends and [512], meaning 256 Kbits (32 Kbytes) or 512 Kbits (64 Kbytes). To select the 32K
ICs, insert the jumper so its solid metal strips connect jumper pins whose mating holes on the board
are marked with the symbol. (Thisis the configuration shown in the diagram.) To select 64K ICs,
insert the jumperto use the holes marked with the [§12] symbol.

Each socket on the board begins on a 32K address boundary within the ROM/EPROM card address
space corresponding to the 32K blocks of address space in which logical ROMs reside. Socket 1
corresponds to directory 1, 2 to 2, and 3 to 3. A 32K IC can therefore be placed in any socket on the
board (1, 2, or 3). A 64K IC will span more than one 32K block of addresses. Consequently, 64K ICs
can be placed only in sockets 1 and 3. Placing a 64K IC in socket 3 gives access to the fourth 32K block
of addresses — this is the "fourth" socket on the boardfor directory 4.

This means that using 32K ICs, 96K of physical ROM space is the maximum available, and using 64K
ICs,the full 128K is available.

Selecting an IC Size

The directory numbers selected for the different logical ROMs will depend on where the logical ROMs
will be placed on the board in the ROM/EPROM card. Some of that will depend on which IC size is
chosen. The following items should be considered when making an IC size selection:

= Application size

m Price

Availability

Correctelectrical specifications

Supported by EPROM programmer (EPROMsonly)

Refer to the "Hardware Specifications” for information about electrical and environmental
specifications and manufacturersfor the different IC sizes.

1-30 Memory Management

Placing Logical ROMs Into Physical ICs

In addition to the previous restrictions on combining logical ROMs, and the fact that IC sizes cannot

be mixed, there is one more restriction that applies when placing logical ROM:sinto physical ICs: the

physical IC must be placed in the socket on the board which corresponds to the directory numberfor

the logical ROM contained in that IC.

Logical ROMs and physical ICs can both span 32K address boundaries, but this spanning is indepen-

dent of each other (with the above restriction). This fact yields two important results. First, a logical

ROM can cross physical IC boundaries; if it could not, logical ROMs larger than 32K would not be

possible. Second,it does not matter what part of a logical ROM occupiesa given physical IC as long as

the logical ROM’s starting directory number corresponds with the socket it occupies on the board, and

the different pieces of the logical ROM arekeptin the proper order.

Continuing the previous example of a 96K application, below are the ways that the logical ROMs could

be placed in physical ICs. Each row of the tables represents a different way to place the particular logi-

cal ROM in the ICs.

Table 1-6. Placing a 96K Application Into Three 32K ICs

Which Part of Which Part of Which Part of

Logical Logical ROM Put in

|

Logical ROM Put Iin

|

Logical ROM Put In

ROM Sizes

|

32K IC In Socket 1 32K IC Iin Socket 2 32K IC In Socket 3

3 32K ROMs one entire one entire one entire

32K ROM 32K ROM 32K ROM

1 64K ROM+ first half of last half of entire

1 32K ROM 64K ROM 64K ROM 32K ROM

entire first half of last half of

32K ROM 64K ROM 64K ROM

1 96K ROM first third of middle third of last third of

96K ROM 96K ROM 96K ROM

Memory Management 1-31

Table 1-7. Placing a 96K Application Into Two 64K ICs

Which Part of Which Part of

Logical Logical ROM Put In Logical ROM Put In
ROM Sizes 64K IC In Socket 1 64K IC In Socket 3

First Haif of IC Last Half of IC First Haif of IC Last Half of IC

3 32K ROMs one entire one entire one entire

32K ROM 32K ROM 32K ROM

one entire onhe entire one entire

32K ROM 32K ROM 32K ROM

one entire one entire one entire

32K ROM 32K ROM 32K ROM

one entire one entire one entire

32K ROM 32K ROM 32K ROM

1 64K ROM + first half of last half of entire
1 32K ROM 64K ROM 64K ROM 32K ROM

first haif of last half of entire

64K ROM 64K ROM 32K ROM

entire first half of last half of

32K ROM 64K ROM 64K ROM

first half of last half of entire

64K ROM 64K ROM 32K ROM

entire first half of last half of

32K ROM 64K ROM 64K ROM

entire first half of last halif of

32K ROM 64K ROM 64K ROM

1 96K ROM first third of middle third of last third of

96K ROM 96K ROM 96K ROM

first third of middie third of last third of

96K ROM 96K ROM 96K ROM

Asthe tables indicate, the segmentation of an application across logical ROM boundaries has no bear-
ing on the way the ROMs are segmented to fit into physical ICs, as long as the starting directory
number corresponds with the socket number, and the different pieces of the logical ROM are keptin
the proper order.

The same reasoning can be applied to other size applications and other logical ROM choices. The
results of this analysis should be matched up against the requirements of the application to select the
best way to organize it.

 |

System ROM

The system ROM is 32K of EPROM locatedin directory 5 in the upper 32K of the CPU addressspace.
While this directory can be examined in command mode,it cannot be referenced by number or by any
of its files during a running program. During a running program, the OPEN, FINDFILE, and
FINDNEXT functions (OFh, 16h, and 17h) will only find files in directories 0-4. The system ROM

1-32 Memory Management

contains four major blocks, shown in the memory map below.

(FFFF:000F) FFFFFh End of System ROM

Character Set

(FFC3:0000) FFC30h Start of Character Set

Operating
System

(FC00:0000) FCO00h Start of Operating System

BASIC
Interpreter

(F803:0000) F8030h Start of BASIC Interpreter

Directory Table

(F800:0000) F8000h Start of Directory Table
Figure 1-17. Memory Map of the System ROM

= Directory Table
This contains only three entries: directory table header, BASIC interpreterfile entry (SYBI), and

operating system file entry (SYOS).

m BASIC Interpreter
This is file SYBT.

m Operating System
This is file SYOS.

m Character Set
This is the dot pattern for the Roman-8 character set.

|

Memory Integrity Verification

The operating system computes and saves checksums of various areas of memory when the 94 is turned

off. 'When the 94 is turned back on, the checksums are recomputed and compared with the saved

values. Any changes indicate that memory integrity has not been preserved, and an error message is

issued. Checksums are computed such that the sum of all words in the block being verified, plus the

Memory Management 1-33

checksum, will equal zero.

The major blocks of memory for which checksum errors are reported are directory tables, files,
reserved scratch space, and free space. In addition, a checksum is made of the system ROM, and the
reserved scratch space is tested extensively. These operations are discussed below.

Checksums Computed at Power Off

At power off, checksums for all RAM areas (main memory and 40K RAM card) are computed and
saved. Checksums for ROM/EPROM card are not computed, since they are fixed in ROM, but they
are saved in the reserved scratch space for comparison at power on. The system ROM checksum is
also not computed.

Memory Integrity Tests at Power On

At power on, the operating system checks the main NiCd battery voltage. If it is below the low battery
interrupt level, the machine is immediately turned off. If the voltage is OK, integrity tests are per-
formed in the order shown in the following table. If any ofthe first three tests fail, the machine will not
enter command mode. If any of the other tests fail, the machine will enter command mode and issue an
error message. Any program run at that time will cold start.

Table 1-8. Memory Integrity Errors

Integrity Test Main Memory 40K RAM Card ROM/EPROM
Performed Error Error Card Error

System ROM low beep — —
Checksum

Reserved Scratch high beep - —
Space Read/Write

Valid RAM high beep and — —
Configuration memory map

Directory Table 212 and 213 and —
Header Consistency require I0 require I1

Reserved Scratch 214 — —
Space Checksum *

Free Space 215 — —
Checksum *

Directory Table 212 and 213 and 213
Checksums * make type O make type O

File 216 and 217 and 217
Checksums * set MSB of name set MSB of name

* Not computed at power off or power on if power turned off by pressing the reset switch or by
automatic turn-off 2-5 minutes after the low battery interrupt.

These tests and their results are described below.

1-34 Memory Management

m System ROM Checksum
If the stored checksum in the system ROM does not match the computed checksum, the operating

system will issue a continuous low tone beep, and will not enter command mode.

m Reserved Scratch Space Read/Write

If every byte in the reserved scratch space cannot be read and written, the operating system will

issue a continuous high tone beep, and will not enter command mode.

m Valid RAM Configuration
The RAM configuration is checked by reading and writing the first word of every RAM IC. If

there is any other configuration of built-in RAM than 64K, 128K, 256K, or the RAM card has other

than 40K, the operating system will issue a continuous high tone beep, and will not enter command

mode.

In addition, a memory configuration map will be displayed indicating the incorrect RAM ICs. The

map is in the form "Error " followed by eight hex characters. The bits in each character represent

individual RAM ICs. Reading from right to left, each bit will be a 1 if the IC was present, and a 0 if

the IC was not present. For example,

Error FFFFFFDF

indicates that the sixth RAM IC was not present (the last 8 bits of the map are 11011111). Shown

below is what the memory configuration map would be if the different configurations were correct.

(These patterns will never appear, because only an incorrect pattern will be displayed.)

Table 1-9. Configuration Map for Valid Memory Configurations

Memory Configuration Map if
Configuration Configuration Correct

64K Error OOOOOOFF

128K Error OOOOFFFF

256K Errorx. FFFFFFFF

64K+ 40K RAM Card Error O001FOOFF

128K + 40K RAM Card Error OO1FFFFF
After this test, the operating system will check the keyboard. If any keys are down other than

and , the machine will turn back off immediately. This is to prevent accidental turn
on (while in a full briefcase, for example).

= Directory Table Header Consistency
This verifies the consistency of the directory table headers for main memory and the 40K RAM

card. The *DIR* directory identifier must be intact and the different pointers must point to suc-

cessively higher addresses. If not, error 212 or 213 is issued, and the directory table is flagged such

that the user mustinitialize the directory with the I (initialize) command (I0 or I1). This also

occursif the size of main memory has changed (by adding or removing the 128K memory board).

m Reserved Scratch Space Checksum
This is the checksum of the interrupt vector area and the operating system scratch space. If this
checksum error occurred, error 214 will be issued.

m Free Space Checksum
This is the checksum of the free space (and scratch areas, if any) — everything higher in main
memory than the end of free space pointer. If this checksum error occurred, error 215 will be

issued.

Memory Management 1-35

= Directory Table Checksums
These are the checksums of the directory tables in any directory. If a directory table checksum
error occurred for main memory or the 40K RAM card, error 212 or 213 will be issued, and the

directory type in the directory table header will be changed to O (ROM directory). This makes the
directory read-only, allowing the data to be retrieved, but not changed. To make the directory table
type M or A again, the user must initialize the directory with the I command (I0 or I1) after
retrieving any desired data.

For the ROM/EPROM card, only the error (213) will be issued — the directory type is already
type O. Any checksum error in a ROM or EPROM (especially an EPROM) implies that the IC
had one or more bits change state, and the IC should be replaced.

The operating system recognizes that a card has been plugged in or removed, or that ROMs were
changed on the ROM/EPROM card, because the number and contents of the directory tables has
changed. When these conditions occur, they will not cause a checksum error, but will cause the

machine to cold start.

m File Checksums

These are the individual checksums for eachfile in any directory. If a file checksum error occurred
for main memory or a RAM card, the MSB of the first character of the file name will be set. This
will cause the file names to be displayed with a leading asterisk (*) when the D (directory) or M
(memory) operating system commands are executed. If a file name has already been flagged as
being corrupted,its checksum will not be computed at power on.

If a file checksum error occurred in a ROM/EPROM card,the file name will not be altered, so no
asterisk will appear when using the D or M commands. Any checksum error in a ROM or EPROM
(especially an EPROM) implies that the IC has had one or more bits change state, and the IC
should be replaced.

Even with the MSB set in the file name, all normal file operations can still be performed: open,
close, read, write, delete,find, execute, etc. All these operations are risky (especially running cor-
rupted programs) because the state of the file is unknown. Unless the program or the user has the
ability to reconstruct corrupted data, the safest action would be to erase the corrupted files and
either replace them (program files) or recreate them (datafiles).

After all memory integrity tests have been performed, the operating system checks the lithium backup
battery voltages. If the voltages are too low, the machine will enter command mode, and issue error
210 (main memory) and/or 211 (128K memory board or 40K RAM card).

1-36 Memory Management

2

Program Execution

Chapter 2

Contents

2-1

2-1

2-1

2-1

2-2

2-2

2-4

2-4

2-4

2-5

2-35

2-6

2-8

2-8

2-9

2-10

2-10

2-11

2-11

Program Execution

Running Programs

Autostart

In-Place Execution of Programs
Behavior at Run Time
Behavior of Reserved Files

Cold Start and Warm Start
When Cold Start Occurs
When Warm Start Occurs
Operating System Activities During Cold Start
Operating System Activities During Warm Start

Ending Programs
Operating System Activities When Entering Command Mode

Program Structure
Program Headers
BASIC Keyword Structure

Program Restrictions
Valid EXE Format
Use of Operating System Stack
Programs in ROM or EPROM

2

Program Execution

This chapter describes program execution in the HP-94: behavior at run time, cold start and warm

start, program structure, and restrictions.

S

Running Programs

Program files are any of the non-data files — file types A, B, or H. They can reside in RAM or

ROM/EPROM, and have some characteristics that are described here. Details on new BASIC key-

words (type A) and user-defined handlers (type H) are in the BASIC interpreter and handler sections

of this manual. BASIC programs are discussed in the BASIC interpreter section of this manual, as well

as in the BASIC Language Reference Manual.

Autostart

When the HP-94 cold starts (discussed later), the operating system will automatically run the first file

called MAIN that it finds. It searches directories 0-4 in ascending order, and if the first MAIN file

encountered is type A or type B,it will be run;if not, an error will be issued. This search order allows

a MAIN program in directory 0 (main memory) to override a MATINfile in directories 1-4 (40K RAM

card or ROM/EPROM card).

Programs can also be run using the S (start) operating system command. Programs run with S will

always cold start.

Iin-Place Execution of Programs

Program files are executed in place, regardless of where they are located in memory. Programs in

ROM do not have to be copied into RAM before being executed. Space for BASIC program variables

and scratch areas for assembly language programs and handlers are allocated from main memory,

regardless of which directory the program residesin.

Behavior at Run Time

Program files always appear first in the file system for each directory, as illustrated in the memory

maps. This placement occurs regardless of the order in whichfiles are loaded. The C (copy) command

ensures that all RAM-based program files are located before any data files. HXC ensures the same

condition for ROM-based programs.

This is important because program files do not move at run time. All files lower in memory than the

Program Execution 2-1

end of program files pointer will not move at run time. However, because the order programs are
loaded may vary, it is not known until run time exactly where each file may be located (and therefore
what the initial CS will be). There is no segment fixup performed as is true for MS-DOS programs.
Consequently, all references to addresses within program files must be relative to the start of the file
— there can be no far calls or far jumps. This is particularly important for assembly language pro-
grams; HXBASIC and HXC handle this for BASIC programs.

Data files, however, can move at run time, since they can expand and be deleted. Since the operating
system assumes that programs do not move at run time, data files must appear after all program files
s0 that data file expansion and deletion will not change the location of programs.

Behavior of Reserved Files

There are four files with reserved names that must not be used for anything except their current use:

m SYBI — built-in BASIC interpreter
If this file is run with the S (start) command, the operating system will immediately return to com-
mand mode.

m SYBD — BASIC debugger
If this file is run with the S command, the operating system will immediately return to command
mode (with the side effects shown in Table 2-3 for a FAR RET).

m SYFT — user-defined font

If this file is run with the S command, the data in the file will be treated as code, which will have

unpredictable (and possibly harmful) side effects.

m SYOS — built-in operating system
If this file is run with the S command, the operating system will immediately turn the machine off.

When the BASIC interpreter searches for user-defined keywords with $CALL, the 12 built-in key-
words starting with new keywordfiles of the same name SY will be not be overridden by new keyword
files of the same name (SYAL, SYBP, SYEL, SYER, SYIN, SYLB, SYPO, SYPT, SYRS,
SYRT, SYSW, and SYTO).

1

Cold Start and Warm Start

The HP-94 supports two methods of running programs when the machine is turned on: cold start and
warm start. The fundamentaldifference is where the program starts running,

Atcold start, the program starts running at the beginning. All conditions are reset to their default state.
At warm start, the program continues running from the point at which it turned the power off. Most
conditions are preserved in the state they were in while the program was previously running, although a
few are reset to their default state. The warm start state is seen by user-defined handlers when their
WARM routines are called.

The details of what state the machine is in at cold and warm start are described below. Notice that
there are several itemsat the beginning of the table that behave identically, regardless of cold or warm
start. This is particularly important for handlers. In the WARM routine of a handler, the handler must
restore 1/O devices to their required state (power, interrupt vector addresses, and interrupt
enable/disable status) since they are always set to their default state, even at cold start.

2-2 Program Execution

Table 2-1. HP-94 Status at Cold and Warm Start

item Status at Cold Start Status at Warm Start

Display Cleared Cleared

input/Output Halted Halted

Interrupt Vector Addresses Set to Default * Set to Default *

Interrupt Enable/Disable Status Set to Default ¢ Set to Default

Copy of Main Control Register 00h 00h

Copy of Interrupt Control Register 3tht 31tht

Serial Port Power Off Off

Built-in Serial Port Buffer Cleared Cleared

Bar Code Port Power Off Off

Bar Code Port Transitions Disabled Disabled

Key Buffer Cleared Cleared

Beeper Turned Off Turned Off

User-Defined Characters Available Available

Access to Directory 5 Disabled Disabled

MAIN Program Starts at Beginning —

Current Program — Restarts at Power Off Point

System Timeout Value 120 s Unchanged

Display Backlight Timeout Value 120 s Unchanged

Display Backlight Turned Off Unchanged

Cursor Status On Unchanged

Cursor Type Underline Unchanged

Keyboard Status Unshifted Unchanged

Low Battery Behavior Halt Program With Error 200

|

Unchanged

Power Switch Behavior Turn Off Machine Unchanged

Timeout Behavior Turn Off Machine Unchanged

Allocated Scratch Areas Returned to Free Space Preserved

Available Free Blocks Returned to Free Space Preserved

BASIC Variable Contents Lost . Preserved

Open Data Files Closed Left Open

File Access Pointers Reset to Zero Unchanged

Handler Information Tabie Cleared Unchanged

Open Channei 1-4 Handlers Closed Left Open

Channel 1-4 Handler Configurations

|

Lost Preserved {

Channel 1-4 Buffers Lost Preserved

Open Built-In Serial Port Handler Closed Left Open, Serial Port On

Built-In Serial Port Configuration Set to Default § Unchanged

Stack Pointer Points to OS Stack Unchanged
 * System timer (50h), serial port data (53h), low main battery voltage (54h), power switch {55h), operating system func-

tion (1Ah), user timer (1Ch), and dedicated (00h-03h) interrupt vectors all point to their operating system interrupt ser-

vice routines. All others point to a dummy FAR RET.

t System timer, low main battery voltage, and power switch interrupts are enabled. All others are disabled.

t Exact warm start behavior depends on user-defined handier. The handier must restore the |/O device to its proper

state (power, interrupt vector addresses, and interrupt enable/disable status).

§ 9600 baud, 7ES, XON/XOFF enabled, no terminate character, null strip disabled.

Program Execution 2-3

When Cold Start Occurs

The 94 will cold start a program under the following conditions:

m After default power off, either because the machine timed out or because the program turned it off
with the END_PROGRAM function (00h) and specified cold start.

m After pressing the reset switch.

m After the automatic power off occurs 2-5 minutes after low battery interrupt.

m If any memory integrity error occurred at power on.

m After entering command mode, either when a program ends or by pressing [CLEAR| and [ENTER] at
power on.

If the program is run using the S (start) operating system command.

m If main memory size changes (128K memory board added or removed).

If 40K RAM card changed to ROM/EPROM card,or vice-versa.

If number orsize of directories in ROM/EPROM card changed.

When Warm Start Occurs

The 94 will warm start the program if the program turned the machine off with the ENDPROGRAM
function and specified warm start, and none of the cold start conditions occurred.

Operating System Activities During Cold Start

When the 94 cold starts, it begins by performing the normal power-on initialization (check memory
integrity, determine memory configuration, etc.). The operating system looks for a file called MAIN by
searching directories 0-4 in ascending order. If MAIN exists, the status defined in the previous table is
set. If no MAIN file is found, or if MAIN is not type A or B, the machine cannot autostart, so it enters

command mode.

If MAIN is type A, the operating system does a FAR CALLto the main entry point of the program —
the segment address of the start of the program and an offset of 6 (past the end of the program
header). This implies that an assembly language program can end with a FAR RET — see the section
on "Ending Programs" for further information.

If MAIN is type B,it will be executed by the BASIC interpreter. The operating system searchesfor a
BASIC interpreter (SYBI) in directories 0-5 in ascending order. Error 100 is issued if none is found,
or if the one found is not type A. Once the interpreter is found, controlis transferred to it. It allocates
and initializes its scratch area and the variable space required by the program, sets default values for
various BASIC program conditions (shown below), and begins interpreting the program.

2-4 Program Execution

Table 2-2. Cold Start Status of BASIC Programs

item Initial Status

BASIC Numeric Variables and Arrays

|

Setto zero

BASIC String Variables and Arrays Set to null string

SYEL Value 120 seconds

SYER Value Error trapping disabled

SYLB Value Default low battery behavior

SYRS Value * 9600 baud, 7ES, XON/XOFF enabled, no ter-

minate character, null strip disabled

SYSW Value Default power switch/timeout behavior

SYTO Value 120 seconds

* These values override any values specified by the B (baud) operating system command.
Operating System Activities During Warm Start

When the 94 warm starts, it begins by performing the normal power-on initialization (check memory

integrity, determine memory configuration, etc.) and exccutes the WARM routines of any open

handlers. Then the operating system transfers control to where the program was running when the

power was turned off, and the program continues running.

I

Ending Programs

Assembly language programs can end in one of two ways. They can either turn the power off, or they

can leave the power on and enter command mode. Command modeis where the user can type operat-

ing system commands such as C (copy) or D (directory), and is usually reached by turning on the

machine on while holding down the and keys.

The END_PROGRAM function (00h) is used to end a program and turn the power off, specifying that

the next power on be cold or warm start. For warm start, the CPU registers are saved on the operating

system stack for use when the machine next turns on. If the program has used the operating system

stack for its own data, the data will be destroyed when the CPU registers are saved. Therefore, a pro-

gram cannot specify warm start unless it uses its own stack. If it specifies warm start while using the

operating system stack, END_PROGRAM will issue error 219 and enter command mode.

There are two ways to enter command mode from a program. The first way is with a FAR RET, since

the program was executed with a FAR CALL. The second way is to use the END_PROGRAM func-

tion, specifying to enter command mode. There are subtle differences in the operating system behavior

with these two approaches, summarized below.

Program Execution 2-5

Because of these differences, the ENDPROGRAM function is the preferred method of ending a pro-
gram and entering command mode.

Table 2-3. Ending a Program With END_PROGRAM or FAR RET

Behavior Using Behavior Using

Item END_PROGRAM FAR RET

CPU interrupt Flag Set (STI) Unchanged
Access to Directory 5 Enabled Disabled
Open Files Closed Not Closed
Handler CLOSE Routines Called Not Called *

enabled. * The handler will have no opportunity to restore interrupt vectors or status. Power will be
continue to be supplied to the serial port, level converter, and bar code port if they were

Operating System Activities When Entering Command Mode

When the operating system enters command mode,it initializes certain things to their default values, as
shown below.

2-6 Program Execution

Table 2-4. HP-94 Status in Command Mode

item Status

Input/Output Halted *

Interrupt Vector Addresses Unchanged *

Interrupt Enable/Disable Status Unchanged *

Copy of Main Control Register Unchanged *

Copy of interrupt Control Register Unchanged *

Serial Port Power Off *

Built-in Serial Port Buffer Cleared

Bar Code Port Power Off *

Bar Code Port Transitions Disabled *

Key Buffer Unchanged

Beeper Unchanged

User-Defined Characters Not Available

Access to Directory 5 Enabled t

System Timeout Value 120 s

Display Backlight Timeout Value 120 s

Display Backlight Turned Off

Cursor Status On

Cursor Type Block

Keyboard Status Shifted

Low Battery Behavior Halt Program With Error 200

Power Switch Behavior Turn Off Machine

Timeout Behavior Turn Off Machine

Allocated Scratch Areas Returned to Free Space

Available Free Blocks Returned to Free Space

BASIC Variable Contents Lost
Open Data Files Closed

File Access Pointers Reset to Zero

Handler Information Table Cleared
Open Channel 1-4 Handlers Closed
Channel 1-4 Handler Configurations |Lost
Channel 1-4 Buffers Lost
Open Built-in Serial Port Handler Closed t

Built-In Serial Port Configuration Set to Defauilt §

Stack Pointer Points to OS Stack

* Whether or not these conditions are true depends on the what the program does

before it ends and the behavior of the CLOSE routines in any user-defined

handlers in use (assuming the routines are called before the program ends). The

CLOSE routines will be executed automatically when entering command mode

with the END_PROGRAM function (rather than a FAR RET).

t Only if the END_PROGRAM function was used to enter command mode (rather

than a FAR RET).

1 9600 baud, 7ES, XON/XOFF enabled, no terminate character, nuli strip disabled.

Program Execution 2-7

15

Program Structure

The three different types of programs (types A, B, and H) have a simple structure consisting of a pro-
gram header followed by the code. Assembly language programs (type A) have a six-byte header, then
the executable code. Handlers (type H programs) have a six-byte header, a jump vector table, then the
code pointed to by each of the jump vectors. BASIC programs (type B) have a 16-byte header, then the
program tokens.

Program Headers

Assembly langnage programs start with a six-byte header, shown below with hex offsets on the left side.
Note that the order ofthis illustration is with the lowest offset at the top, which is the order the entries
would be placed in the source code for the handler.

00h 00h 00h

Program Length Program Length Program Length
(with header) (with header) (with header)

2 Bytes 2 Bytes 2 Bytes

02h 02h 02h

Internal Handler
Entry Point (Undefined) Identifier
2 Bytes 2 Bytes 2 Bytes

04h 04h 04h

Version Version Version
Number Number Number
2 Bytes 2 Bytes 2 Bytes

06h 06h 06h
Header For New Header For Assy. Header For User-
BASIC Keyword Lang. Program Defined Handler

Figure 2-1. Program Headers

There are three fields in the header:

m Program Length

This field is the length of the program, including the length ofthe headeritself.

m Internal Entry Point
For type A programs that are new BASIC keywords,this field is the offset of the processing block
relative to the start of the program. This assumes a particular BASIC keyword structure which will
be described shortly. If a BASIC keyword does not use this structure, this field can be set to point
to the first byte after the header, to a dummy FAR RET instruction, or be used for other purposes.

2-8 Program Execution

® (Undefined)
For type A programs that are not BASIC keywords, the place to start executing the program is

immediately after the header, so the value ofthe internal entry pointfield does not matter — it will

never be called by another program. It can therefore either be set to point to the first byte after the

header, to a dummy FAR RET instruction, or be used for other purposes.

m Handler Identifier

The second field in the header has a slightly different meaning for handlers. It contains a two-

character identifier thatis returned by the identify handler I/O control function (00h).

m Version Number
This is used for revision control by the programmer. It is a two-byte binary number representing a

decimal fraction of the form ILFF, where the II is the integer part of the version, and the FF is the

fractional part of the version. The statement VERSION dw 0103h would designate a version

number of 1.03, and the statement VERSION dw 0212h would define version 2.18 of the software.

This can also be defined in decimal as db 18,2, wherethe fractional part precedes the integer part.

Fortype A programs, the program code starts after the header. For type H programs, the jump vector

table that follows the header defines the locationsof the executable code.

BASIC Keyword Structure

BASIC keywords can be written so that they are accessible from both BASIC and assembly language

programs. This requires a keyword structure in which there are two distinct blocks: an I/O block in

which all interaction with BASIC variables occurs, and a processing block in which the function of the

keyword is implemented. Once the 1/0 block has read and validated the supplied variables, it calls the

processing block. When the processing block is done,it returnsits results to the I/0 block, which then

places them in BASIC variables as appropriate. This structure is shown below.

Program Header
Main Entry Point
(FAR CALLed by $CALL)

Internal Entry Point
(FAR CALLed by assembly
language programs)

CALL Input/Output Block

Processing Block RET

Figure 2-2. BASIC Keyword Structure

The internal entry point in the program header would point to the start of the processing block. This

allows both BASIC and assembly language programs access to the functionality implemented by the

keyword. BASIC programs execute new keywords with $CALL, which FAR CALLs the main entry

point at the end of the header. Assembly language programs execute the processing block only via the

internal entry point. They find the program, read the internal entry point from the header, set up

appropriate parameters, and FAR CALL the processing block.

Program Execution 2-9

Errors should be reported differently depending on which entry point is called. If the main entry point
is called (which implies the keyword was called by a BASIC program), non-numeric errors should be
reported using the ERROR BASIC interpreter utility routine (offset 34h). This will cause a non-
numeric error to be issued by the BASIC interpreter, and the BASIC program will halt. If the internal
entry pointis called (which implies the keyword wascalled by an assembly language program), numeric
errors should be returned in the AL register (00h if no errors).

The main entry point of a BASIC keyword can also be called from command mode with the S com-
mand. This condition should be recognized by BASIC keywords. If the keyword was called from a
BASIC program using $CALL, the CS register will be the same as the DS register. If the keyword
was called from command mode with the S command, the CS register will be different than the DS
register.

There are two possible ways to handle this condition. One approach is for the keyword to end immedi-
ately if the keyword is called from command mode. Another approach is to implement an
input/output block for interacting with command mode, analogous to the input/output block for
interacting with the BASIC interpreter.

 |

Program Restrictions

Programs can start on any paragraph boundary, depending on where the program was loaded and what
other files were loaded or deleted. Once they begin to run, they do not move — there is no run-time
relocation. Consequently, there should be no far calls or jumps to absolute addresses in type A or H
programs. (HXBASIC and HXC ensure this for type B programs.)

Valid EXE Format

When EXEfiles are created, they should not contain any MS-DOS-style relocation entries. HXC will
reject any EXE file if it contains a relocation table. An EXE file, to be accepted by HXC, must have
the following characteristics:

m EXEfile size of 512 bytes or greater.

m Valid EXE identifier.

m 512-byte header.

= No relocation entries,

m Initial CS =0000h.

It is recommended that sourcefiles use byte alignment by specifying SEGMENT BYTE atthe beginning
of each program segment. The assembler’s default alignmentis on paragraph boundaries, causing each
object file to be padded with 1-15 bytes. Byte alignmenteliminates this unused space. HXC will pad the
entire EXE file only once, not once for each object file.

2-10 Program Execution

Use of Operating System Stack

A program can use the operating system stack forits own use. Thestack variesin length, depending on

how the program was called (from the operating system or from another program), up to a maximum

of approximately 600 bytes. If a program turns off the machine and specifies a subsequent warm start

(see "Cold Start and Warm Start"), it must not use the operating system stack. The ENDPROGRAM

function (00b) will issue error 219 if the program is using the operating system stack. Consequently, if

a program wants to use the warm start option,it must putits stack in its own data space.

Programs in ROM or EPROM

Programs can be in RAM or ROM,and execute in place in either location. ROM programs have addi-

tional restrictions. There can be no data space in the code itself if the program is to have the option of

running in ROM. The operating system provides scratch area allocation and release functions to allow

ROM programs to get needed data space.

The assembler provides the ability to define the offsets within an external scratch area using the SEG-

MENT AT directive, as shown below.

SCR_AREA segment at O ;Addresses start at 0

PARAM1 db 6 dup(?) ;First parameter needs 6 bytes

PARAM2 db 00 ;Second parameter needs a byte

PARAM3 dw 0000 ;Third parameter needs a word

SCR_AREA ends

Figure 2-3. Defining Scratch Area Data Structure

The SEGMENT AT directive provides an address template that can be imposed on the scratch area.

SEGMENT AT causes no code to be generated for the uninitialized data defined within that program

segment (in this case, the SCR_AREA segment).

Program Execution 2-11

3

User-Defined Handlers

Chapter 3

Contents

3-1

3-1

3-1

3-3

3-4

3-4

3-4

3-4

3-4

3-5

3-6

3-6

3-6

3-7

3-7

3-7

3-8

3-8

3-9

3-10

3-10

3-12

3-12

3-13

3-14

3-16

3-17

3-20

3-22

3-23

3-25

3-27

3-28

3-29

3-31

3-33

User-Defined Handlers

Handler Structure
Program Header
Jump Table

Channel Input and Qutput
File Search Order

Types of Handlers
Low-Level Handlers
High-Level Handlers
Who Calls Handler Routines

Handler Information Table
Table Usage While Handlers Are Closed
Table Usage While Handlers Are Open
Table Entry Offsets
Reading and Setting the Handler Information Table

Passing Parameters to Handlers
Passing Parametersin a Parameter Scratch Area
Verifying Parameter Area Existence
Validating the Contents of the Parameter Scratch Area
Passing Parameters After the Handler Name
Restrictions on In-Line Parameters

Handler Linkage Routines
Handler Routine Descriptions

Registers Passed to Handler Routines
High-Level Handler Behavior With Unused Registers

CLOSE
IOCTL

Reserved IOCTL Functions
OPEN
POWERON

HP-94 Status During POWERON Routine
READ

RSVD2

RSVD3
TERM
WARM
WRITE

3

User-Defined Handlers

User-defined handlers, or handlers for short, allow BASIC or assembly language programs simple

access to the HP-94 1/O ports — the devices associated with channels 1-4. In particular, user-defined

handlers can be written for the serial port (channel 1) and bar code port (channel 2); channels 3 and 4

are reserved, and currently have no 1/O port associated with them. Handlers are assembly language

program files that are assembled and linked into EXE files on the development system. Then they are

processed by HXC andgiven file type H before being copied into the HP-94.

Handlers are similar in concept to UNIX or MS-DOS device drivers. They are a collection of routines

to handle variousactivities associated with I/O devices, such as initializing the port for use, reading and

writing data to it, and releasing control of the port. Handlers have a special structure that allows the

individual routines to be called, either from BASIC or assembly language, solely by supplying the name

of the handler being used when the channel is opened.

This chapter will discuss handler organization in general, how handlers interact with the channel-

oriented input and output of the HP-94, the different types of handlers, passing configuration parame-

ters and registers to handler routines, and what tasks handler routines perform.

™

Handler Structure

Handlers contain three major components: the program header, the jump table, and the executable

code for each of the handler routines. L

Program Header

Handlers,like all assembly language programs,start with a six-byte header. The first two bytes are the

length of the handler, including the header. The next two bytes are a two-character handler identifier

thatis returned by handlers that implement function 00h of the IOCTL routine (discussedlater). The

last two bytes of the header are the software version number. It is a two-byte binary number represent-

ing a decimal fraction of the form ILFF, where the II is the integer part of the version, and the FF is

the fractional part of the version. The statement VERSION dw 0103h would designate a version

number of 1.03, and the statement VERSION dw 0212h would define version 2.18 of the software.

This can also be defined in decimal as db 18,2, where the fractional part precedes the integer part.

Jump Table

Immediately following the headeris a jump table with 10 entries of three bytes each. Each entry con-

tains a JMP instruction to one of the handler routines. Each routine must end with a FAR RET. The

header and jump table, showing the order in which the jump table must appear in the program, is

shown below. The hex offsets from the start of the program are along theleft side. Note that the order

User-Defined Handlers 3-1

of this illustration is with the lowest offset at the top, which is the order the entries would be placedin
the source code for the handler.

00h

Program Header
02h

Handier Identifier

04h

Version Number

06h

JMP to OPEN Routine

0%h

JMP to CLOSE Routine
0Ch

JMP to READ Routine

OFh

JMP to WRITE Routine

12h

JMP to WARM Routine

15h

JMP to TERM Routine

18h

JMP to POWERON Routine

1Bh

JMP to IOCTL Routine
1Eh

JMP to RSVD2 Routine

21h

JMP to RSVD3 Routine

24h

Figure 3-1. Handler Header and Jump Table

The purpose ofthe different handler routines are listed briefly below.

m OPEN Routine — initializes the port.

m CLOSE Routine — releases control of the port.

s READ Routine — reads data coming into the port.

m WRITE Routine — writes data to the port.

m WARM Routine — allows reinitialization of the port at warm start.

= TERM Routine — allows I/O to be terminated because of the power switch or low battery.

= POWERON Routine — allowsinitialization at machine power-on.

a TOCTL Routine — controls actions of handler.

a RSVDZ2 Routine — for future use.

m RSVD3 Routine — for future use.

3-2 User-Defined Handlers

Entries in the jump table are required for all handler routines. However, not all handlers will imple-

mentall routines. If a routine is not implemented, the jump table entry should just JMP to a dummy

FAR RET.

There is no jump table entry for the handler’s interrupt service routine. The address of that routine is

placed in the appropriate interrupt vectorin the reserved scratch space. For details on using interrupts,

refer to the "Interrupt Controller" chapter.

Thetasks performed by the different handler routines will be discussed later in this chapter. The next

sections will describe general information relevantto all handlers and handler routines.

I

Channel Input and Output

The HP-94 operating system performs input and output through 16 different logical channels, each of

which is associated with different physical devices. The channels being used for 1/O are defined by

opening them. From an assembly language program, this is done with the OPEN function (0Fh); from

a BASIC program, this is done with the OPEN # statement (which calls the OPEN function). Both

the OPENfunction and the OPEN # statement take the channel number to open and a file name as

their parameters. The table below summarizes the uses of the 16 logical channels, and the meaning of

the file name for the different channels.

Table 3-1. Channel Number Assignments

Channel Physical File Name

Number Device Meaning

0 Console * Ignored

1 Serial Port Name of User-Defined Handler (Type H)

2 Bar Code Port

|

Name of User-Defined Handler (Type H)

34 Reserved Name of User-Defined Handler (Type H)

5-156 Data Files Name of Data File (Type D)

* The console is the keyboard for input operations and the display for output operations.
Below is more information aboutthe different channels.

m Channel 0
The console is always opened by the operating system. A program can specify a file name as a

parameter when opening channel 0, but the name will be ignored — user-defined handlers for

channel 0 are not allowed.

® Channel 1
The built-in serial port handler is specified by supplying the null string (") for the file name. If a

user-defined device handler name is supplied and no such handler exists in memory, the default

handler will be used.

m Channels 2-4

Thereis no default handler for these channels. If the null string is used as the file name, or there is

no handler in memory matching the file name supplied, an error will be reported.

User-Defined Handlers 3-3

& Channels 5-15
When a data file is opened,thefile access pointer is reset to the start of the file. Only one channel
at a time can be assigned to a single file. Multiple channels cannot be open to the samefile simul-
taneously.

Once a channel has been opened, an error will occur if it is reopened without first being closed.

File Search Order

The OPEN function will search for the specified file name in directories 0-4 in ascending order.If the
file name includes a directory number (e.g., "1 : HNBC"), only that directory will be searched. If the
file name is found, but is an illegal type, (not type H for channels 1-4, or not type D for channels 5-15),
an error will be issued. If it is a legal type,it will be opened.

Types of Handlers

There are two types of handlers: high-level and low-level. These support the concept of layered
software, in which successively higher layers become more hardware-independent.

Low-Level Handlers

Low-level handlers interact only with the I/O port hardware. They take care of the characteristics of
the I/0O port on the HP-94 only. An example of this is HNBC, a low-level bar code port handler sup-
plied with the HP-94 Software Development System that does low-level 1/O with the bar code port.
Low-level handlers usually include one or more interrupt service routines for the hardware interrupts
associated with the 1/0 port.

High-Level Handlers

High-level handlers interact only with low-level handlers, not with the 1/O port hardware. They take
care of the characteristics of the external device connected to the port, but not of the port itself. An
example of this is HNWN, a high-level handler that handles the device-specific features of Hewlett-
Packard Smart Wands, but relies on the low-level handlers HNBC or HNSP to perform port-specific
activities. High-level handlers do not have interrupt service routines because they do not interact
directly with the hardware.

Who Calls Handler Routines

The routines in both types of handlers can be called by operating system functions, which in turn are
called by BASIC 1/O keywords, assembly language programs, or by the operating system itself. If a
high- and low-level handler pair are being used, the operating system will think that only the high-level
handler is open. All communication between the two handlers is performed by the high-level handler
using handler linkage routines. These routines are described later in this chapter, and are available as
an include file that can be included with the high-level handler source code (discussed in the appen-
dixes).

3-4 User-Defined Handlers

The relationship betweenall the layers of software used for 1/O is shown below.

BASIC1/0 Assembly Language Operating

Keywords Programs System

Operating System Functions

High-Level Handler
Interacts With Low-Level Handler

Low-Level Handler

Interacts With |/O Port Hardware

Figure 3-2. Relationship Between High- and Low-Level Handlers

As this diagram indicates,all that is required to perform I1/O to a port is a low-level handler. It is not

necessary to have or use a high-level handler. If external devices will be used with unique characteris-

tics better accommodated on a driver level than an application level (so the application is more device-

independent), then a high-level handler may also be necessary.

Because the high-level handler is totally dependent on the low-level handler to actually move data

through the I/O port, high-level handlers cannot stand alone. A low-level handler can be used by itself,

but a high-level handler must be used as part of a high- and low-level handler pair.

 A

Handler Information Table

There is a table in the operating system scratch space where handlers keep information about scratch

area locations. The table contains five two-byte entries, each of which is associated with a specific

channel and has a different meaning depending on whether the handleris closed or open.

User-Defined Handlers 3-5

Table 3-2. Handler Information Table Entries

Entry Which Meaning While Meaning While Used By Which
Offset Channel Handler Closed Handler Open Interrupt

00h Bar Code Port None Low-Level Handler Bar Code
Scratch Area Address Timer (51h)

02h Serial Port Parameter Low-Level Handler Serial Port Data
Scratch Area Address Scratch Area Address Received (53h)

04h Bar Code Port Parameter Low-Level Handler Bar Code Port
Scratch Area Address Scratch Area Address Transition (52h)

06h Channel 3 Parameter Low-Level Handler Reserved 1 (56h)
Scratch Area Address Scratch Area Address

08h Channel 4 Parameter Low-Level Handler Reserved 2 (57h)
Scratch Area Address Scratch Area Address

Table Usage While Handlers Are Closed

When a handleris closed, the handler information table is used for the segment address of the parame-
ter scratch area for that channel. When the OPEN routine in either a high- or low-level handler is
called, it looks at the appropriate table entry to determine if the parameter scratch area exists and if
the information it containsis valid. The procedure for doing this will be discussed later.

Table Usage While Handlers Are Open

Every time a routine in an open handleris called, the operating system automatically passes the seg-
ment address of the handler’s scratch area to the routine in the DS register. However, the operating
system cannot do this when an interrupt causes the handler’s interrupt service routine to be executed.
To allow the interrupt service routine to locate the scratch area, the handler information table is used
for the address of the low-level handler’s scratch area. This is done only when the handleris open,for
this is the only time thatinterrupts will be enabled for the handler.

After verifying its parameters, the low-level handler’s OPEN routine must save the parameter scratch
area address in the handler’s scratch area, and place the handler’s scratch area address in that table
entry. When the handler is closed, the low-level handler CLOSE routine must restore the original
parameter scratch area address in that table entry.

Table Entry Offsets

The handler information table entry offsets for a particular handler are 2 * the handler channel number.
Once the handler is open, the entry is read during the handler interrupt service routine. This means
that each handler can have one hardware interrupt associated with it. This is not true for the bar code
port, since it has both a transition interrupt and a timerinterrupt. The primary interrupt for the bar
code port is the transition interrupt since it occurs on every transition, so it is associated with the entry
for channel 2. The bar code port timerinterrupt uses the first entry in the table at offset 0.

3-6 User-Defined Handlers

Reading and Setting the Handler Information Table

The handler information table is located in the first 10 bytes (5 words) of the operating system scratch

space. Using the operating system pointer to locate the scratch space (described in the appendix), the

following code will take the channel number in AL and load the table entry for that channel into ES:

mov si,16h :get segment address of OS pointers

mov ds,si ;put in segment register

xor ah,ah ;clear ah

mov si,ax ;put channel number in si

shl si,1 :2 * channel number

mov ds,ds: [0000h] ;get the segment address of 0S scratch space

mov es,word ptr ds:{sil ;get this channel's table entry

Figure 3-3. Example of Reading Handler Iinformation Table Entries

™

Passing Parameters to Handlers

Parameters are passed to a handler mainly to define its operating configuration (such as baud rate for

the serial port). The handler uses them to set its configuration when its OPEN routine is called.

Parameters can be passed in one of two ways when the handler is opened:

m The parameters can be placed in a parameter scratch area. This can be done from a BASIC pro-

gram with a separate keyword (such as the SYBC keyword that defines parameters for HNBC), or

from an assembly language program that allocates and initializes the parameter scratch area before

opening the handler. This is the approach used for passing parameters to Hewlett-Packard

handlers.

m The parameters can be placed after the handler namethat is passed to the OPEN function or the

OPEN # statement (e.g, "LLHN 9600, 7ES"). Thohandler OPEN routine then parses the

parameters from the name string.

Regardless of which approach is used to pass parameters, the low-level handler must save a copy of

them in its scratch area. This is needed by the TOCTL routine of the handler.

Passing Parameters in a Parameter Scratch Area

A parameter scratch area is a one-paragraph scratch area. The upper 8 bytes (bytes 08h-0Fh) are

reserved for high-level handler parameters, and the lower 8 bytes (bytes 00h-07h) are reserved for

low-level handler parameters. The first byte of each half is used as a valid data flag (discussed shortly)

to indicate the validity of the parameters. This leaves 7 bytes available for parameters for each high-

and low-level handler.

Handlers verify two aspects of configuration parameters:first, that the parameter scratch area exists,

and second,thatit contains valid configuration information.

User-Defined Handlers 3-7

Verifying Parameter Area Existence

High- and low-level handlers determine if the parameter area exists by reading the handler information
table entry for that channel. If the entry is zero, there is no parameter scratch area for the handler. The
handler should then allocate a one-paragraph parameter scratch area and place its address in the table
entry. If the entry is non-zero, the entry contains the segment address of a parameter scratch area that
already exists.

It is important that the address of the parameter area put in the handler information table actually
point to a scratch area. If an assembly language program opens a handler and passes it parameters, the
address put in the table must not point to parameters on the program’s stack, or to fixed parameters
embedded in the program code. This is because if the stack vanishes or the program moves, the
address in the handler information table will no longer point to valid parameters.

CAUTION When a handler is open, the entry in the handler information table will be the
scratch area address of the handler, not of the parameter scratch area (see
“Handler Information Table"). If a separate configuration program is run after the
handler is open, it could misinterpret the handler information table entry, and
modify the handler scratch area by mistake. Configuration programs should
check if the handler is open before examining the handler information table. See
the appendixes for a utility routine that determines if a channel is open or not.

Validating the Contents of the Parameter Scratch Area

High- and low-level handlers validate the contents of the parameter scratch area by looking at the first
byte in their respective parts of the area (upper 8 bytes for high-level handlers, lower 8 bytes for low-
level handlers). This first byte is a valid data flag that is unique for each handler associated with a par-
ticular channel. The valid data flag is set to zero when the scratch area is allocated because the operat-
ing system initializes all scratch areas to zero (00h). Theflag is then set to a value either by a handler,
by the program calling the handler, or by a configuration keyword. The action that a handler should
take for different values of the valid data flag is shown below.

3-8 User-Defined Handlers

Table 3-3. interpreting the Valid Data Flag

Value High-Level Low-Level

of Flag Handler Action Handler Action

Zero Put correct valid data flag

|

Put correct valid data flag

and default high-evel

|

and default low-level

handler configuration in

|

handler configuration in

upper 8 bytes of parameter

|

lower 8 bytes of parameter

scratch area. scratch area.

Correct for Handler

|

Use these parameters to

|

Use these parameters to

define highdevel handler

|

define low-level handler

configuration. configuration.

Any Other Value Return an error, since the

|

Return an error, since the

parameters are not valid for

|

parameters are not valid for

this handler. this handler.

Handlers should use values for the valid data flag in the range 01h-7Fh. Hewlett-Packard uses values in

the range 80h-FFh forits handlers, and 00h is reserved because it indicates uninitialized parameters.

Refer to the "Program Resource Allocation” appendix for information about reserving a valid data flag

that will not conflict with any other flag in use.

Passing Parameters After the Handler Name

If parameters are passed in-line with the handler name, the handler’s OPEN routine must parse and

interpret the handler names and parameters. When the handler OPEN routine executes, ES : BX

points to the start of the entire handler name string. The routine can skip past the handler name in the

string to find the beginning of the parameters, and parse them into whatever internal form is required

for the handler. The syntax of the name string is as follows:

High-level handler name

® One or more spaces

Semicolon

One or more spaces

Low-level handler name

One or more spaces

High-level handler parameters separated by commas

m Low-level handler parameters separated by commas

= Ending null (00h)

This results in handler and parameterstrings that look like the following examples:

User-Defined Handlers 3-9

"HNLL 7,2" Low-level handler with parameters
"HNHL 1,3;HNLL 7,2" High- and low-level handlers with parameters
"1:HNHL 1,3;1:HNLL 7,2" Same but with directory numbers
"HNHL ; HNLL" High- and low-level handlers with no parameters

Restrictions on In-Line Parameters

m If the OPEN # statement is used, the maximum length of the handler names and parametersis
255 characters.

m The OPEN # statement uppercases all characters in the name string, so the name string in OPEN
#1,"11lhn 7es" will be passed as "LLHN 7ES". If a handler that accepts in-line parame-
ters will be opened with the OPEN # statement, the parameters should not be case-sensitive.

m If a high-level handlerthat accepts in-line parameterscalls a low-level handler that accepts parame-
ters in a parameter scratch area (such as Hewlett-Packard handlers), the high-level handler must
parse its in-line parameters and put them in the form expected by the low-level handler. Then it
must create a parameter scratch area, place the parameters in it, and modify the handler informa-
tion table before calling the low-level handler.

 1™

Handler Linkage Routines

If a high- and low-level handler pair are being used, the operating system will think that only the high-
level handleris open. All communication between high- and low-level handlers is performed by the
high-level handler using handler linkage routines. These routines are available as an include file that
can be included with the high-level handler source code (discussed in the appendixes).

Each handler routine has a corresponding linkage routine that it uses to call the low-level handler. To
use the linkage routines, load appropriate values into the registers, put the channel number in AL, and
FAR CALLthe routine by name. The activities of each high-level handler routine before and after cal-
ling the linkage routine will be discussed shortly.

The linkage routines are designed to mimic the way the operating system calls handler routines. A
low-level handler will not be able to distinguish that it is being called by a high-level handler rather
than by the operating system. Like the operating system, the caller’s registers (in this case, the high-
level handler’s) are saved in a register save area on the stack when the low-level handler is called.
Upon return, the registers are popped off in exactly the same manner. This means that low-level
handlers must return the error code in AL (00h if no errors), and all other register values in the
appropriate location in the register save area.

Below is a summary of the registers passed to and returned bythe linkage routines.

3-10 User-Defined Handlers

Table 3-4. Register Usage By Handler Linkage Routines

Routine Registers Passed Registers Returned

Name Register Contents Register Contents

LLHCLOSE AL Channel numberto close AL Error code

LILH IOCTL AL Channel number AL Error code

- AH IOCTLfunction code Others Asdefined by routine
Others As defined by routine

LLHOPEN AL Channel number to open AL Error code
ES Segment address of low-

level handler name to open
BX Offset address of low-

level handler name to open

LLH READ AL Channel numberto read AL Error code

- cX Number of bytes to read cX Number of bytes
actually read

ES Segment address of
read buffer

BX Offset address of
read buffer

LLH_RSVD2 AL Channel number AL Error code

Others Not yet defined Others Not yet defined

LLH_RSVD3 AL Channel number AL Error code
Others Not yet defined Others Not yet defined

LLH_TERM AL Channel number AL Error code
AH* Cause of termination

1 =power switch

0=Ilow battery

LLHWARM AL Channel number AL Error code

LLHWRITE AL Channel numberto write AL Error code
CX Number of bytes to write CcX Number of bytes

actually written

ES Segment address of
write buffer

BX Offset address of
write buffer

All (supplied DSt Segment address of low- BP Unchanged from value

automatically) level handler scratch area passed to routine
BP Stack offset address of

register save area
DI Destroyed
 * The TERM routine for high- and low-levei handlers will receive the cause of the termination in AL. A high-level handler

must move this value into AH and place the channel number in AL before calling LLH_TERM. LLH_TERM will swap
them back, thereby passing the cause of the termination to the low-level handler in AL.

t Not passed to LLH_OPEN routine.

User-Defined Handlers 3-11

 .|

Handler Routine Descriptions

Handler routine descriptions consist ofthe following:

m A brief description of the routine,

= A summary of the parameters passed to the routine.

® A summary of the parameters that the routine must return,

s Details on when the routine is called.

= Supplementary notes and cautions on the use and behavior of the routine.

Registers Passed to Handler Routines

Handler routines are called by the analogous operating system functions. For example, the READ
function will FAR CALL the READ routine in the handler that is open to the channel being read.
When handler routinesare called, either by the operating system or by handler linkage routines,all the
registers values that were passed to the operating system function will be passed to the handler routine,
with the following exceptions:

m The DS register contains the segment address of the handler scratch area (except for the OPEN
routine).

m The BP register contains the offset on the stack where all the caller’s registers were saved.

= The DT register is destroyed.

All the caller’s original registers are saved in a register save area on the stack. When the handler rou-
tine ends (with a FAR RET), the caller (operating system function or handler linkage routine) will
automatically pop all the saved registers off the stack except AL, which is used to return error codes,
and BP, which must be unchanged from the value passed to the routine. Consequently, if a handler
wants to return a value in a register other than AL or BP,it cannot just put the value in the register —
the register will be lost when the saved register copies are popped off the stack. Instead, the handler
routine must place valuesto be returned into the register save area on the stack.

The orderthat the registers are saved on the stack is shown below, with the hex offsets on the left.

3-12 User-Defined Handlers

18h

Flags Register
16h

CS Register

14h

IP Register
12h

BP Register
10h

ES Register
OEh

DS Register
0Ch

DI Register
0Ah

SI Register

08h
DX Register

06h
CX Register

04h
BX Register

02h
AX Register

00h SS:BP

Figure 3-4. Register Save Area

CAUTION Do notalter values in the register save area except those that the handler routine

is required to change. Some registers are critical to the proper operation of the

calling routines, and changing them can have significant, detrimental side effects

(including loss of data).

High-Level Handler Behavior With Unused Registers

Routines in high-level handlers must return to their callers all registers returned by the low-level

handler, evenif the high-level handler doesn’t use or modify any of those registers. The reason is that

even if the high-level handler doesn’t care about the contents of a particular register, the register may

be important to the caller.

This is particularly true of the TOCTL routine, in which the high-level handler may just pass through,

unmodified, low-level handler IOCTL requests from an application. If the high-level handler does not

similarly pass back the results from the low-level handler, the caller will not see them.

User-Defined Handlers 3-13

CLOSE

The CLOSE routine in a handler is where the I/O port and the external device are shut down, and
control of the port is released by the handler.

Passed to routine:

AL Channel numberto close.

Routine must return:

AL=00h Successful close.

>00h Error code.

BP Unchanged from value passed to routine.

When routine is called:

m By the CLOSE function (10h) if a high- or low-level handler name was specified when the handler
was opened. The CLOSE function can be invoked either by the BASIC CLOSE # statement or
by an assembly language program.

m By a high-level handler using the LLH_CLOSE linkage routine.

® When a program ends and returns to command mode by calling the ENDPROGRAM function
(00h), the operating system closesall open handlersby calling their CLOSE routines.

Notes:

m Registers specified by the caller of the CLOSE function or the LLHCLOSE linkage routine are
passed to the handler CLOSE routine with the following exceptions:

DS Set to the segment addressofthe scratch area allocated by the handler.

BP Pointsto the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Cautions:

m When returning to command mode, the operating system calls the CLOSE routines of all open
handlers to close them, but does not set AL to the channel number being used. Make sure AL is
set to the channel number before calling LLH_CLOSE, or the linkage routine will not call the
low-level handler CLOSE routine properly.

If the high-level handler is only valid for one channel, that valid channel number can be placed in
AL before calling LLH_CLOSE. If the high-level handler can be used for more than one chan-
nel, the channel number being used should have been saved in the handler’s scratch area byits
OPENroutine.

3-14 User-Defined Handlers

...CLOSE

Activities of routine:

High-Level Handler
Activities

Low-Level Handler

Activities

Perform device-specific shut down activi-
ties.

Disable hardware interrupts for the 1/0 port.

Call low-level handier with LLHCLOSE
linkage routine (see caution below).

Disable and power down the |/O port.

Release high-level handler scratch area.

Restore original hardware interrupt vectors
for the i/0 port.

Return an error code if the routine failed

(0Ch if no errors).

Restore parameter scratch area address
from the low-level handler scratch area into

the handler information table.

 Deallocate low-level handler scratch area.
 Return an error code if the routine failed

(00h if no errors).

User-Defined Handlers

3-15

I0OCTL

The IOCTL (I/O control) routine in a low-level handler allows a program to control the handler
operation after the handler has already been opened. This is in addition to providing the handler
configuration parameters at open time. High-level handler TOCTL routines only call their low-level
handler, since most external devices are controlled by command sequences embedded in data sent to
them (via the WRITE function).

Passed to routine: *

AH TOCTL function code.

AL Channel number.

Routine must return; *

AL=00h Successful.

>00h Error code.

BP Unchanged from value passed to routine.

AH ¢ As defined by routine (return in register save area, offset 00h)

BX ¢ As defined by routine (return in register save area, offset 02h)

CX+¢ As defined by routine (return in register save area, offset 04h)

DX ¢ Asdefined by routine (return in register save area, offset 06h)

SIt As defined by routine (return in register save area, offset 08h)

DI ¢ As defined by routine (return in register save area, offset 0Ah)

ESt As defined by routine (return in register save area, offset 0Eh)

When routine is called:

® By a high-level handler using the LLHTOCTL linkage routine.

® By an assembly language program using the TOCTL utility routine (see the appendixes). If a
high-level handler is called,it passes the call on to the low-level handler by calling LLH_TOCTL.

m Not called by the operating system. TOCTL is one of the three reserved handler routines whose
use was not defined until after the operating system was developed; the others are RSVD2 and
RSVD3.

Notes:

m Registers specified by the caller of the LLH_TOCTL linkage routine or the IOCTL utility rou-
tine are passed on to the low-level handler IOCTL routine with the following exceptions:

* Because each handler implements different handler control functions within its IOCTL routine, other register requirements
are defined by the handleritself.

t Returned byhigh-level handler only.

3-16 User-Defined Handlers

...1IOCTL

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all

returned values except AL must be put.

DI Destroyed.

m Routines in high-level handlers must return to their callers all registers returned by the low-level

handler, even if the high-level handler doesn’t use or modify any of those registers. The reason is

that even if the high-level handler doesn’t care about the contents of a particular register, the regis-

ter may be important to the caller. This is particularly true of the JOCTL routine, in which the

high-level handler may just pass through, unmodified, low-level handler TOCTL requests from an

application. If the high-level handler does not similarly pass back the results from the low-level

handler,the caller will not see them.

Cautions:

m The high-level handler must not change the DS register in the register save area from the caller.

Doing so may cause the caller to use the wrong scratch area.

Activities of routine:

High-Level Handler
Activities

Low-Level Handler

Activities

Call low-level handler with LLHIOCTL
linkage routine.

Perform low-level handler control activities.

Return any registers (in the register save
area) that may have been used by the low-
level handler routine to the caller.

Return an error code if the routine failed orif
a function code was passed that the handier
does not implement (00h if no errors).

Return an error code if the routine failed

(00h if no errors).

Reserved 1I0CTL Functions

Certain 1/O control functions have been assigned fixed function codes 00h-06h. Each handler may

implement additional functions; refer to the documentation for the particular handler of interest for

details. The "Program Resource Allocation” appendix indicates other function codes that have been

reserved by other handlers. The fixed function codes are listed below in numeric order.

= IDENTIFY (Function 0Ch) .

The IDENTIFY function returns two pieces of information to identify handlers: the handler

identifier (bytes 2 and 3 of the program header) in CX (byte 2 in CH, byte 3 in CL), and the ver-

sion number in DX (DH=integer part, DL=fractional part). Hewlett-Packard handlers also return

the characters "HP" in BX (BH="H", BL="P"),

m GET CONFIG (Function 01h)
The GETCONFIG function returns the address of the current configuration in ES: DX. Refer

to the documentation for each handler for details on the format of the configuration.

User-Defined Handlers 3-17

...IOCTL

The configuration that is returned should be the one saved in the handler’s scratch area during its
OPEN routine. If the CHANGECONFIG function has changed the configuration, the changes
would have been made to the saved copy, not the original configuration in the parameter scratch
area.

= CHANGECONFIG (Function 02h)
The CHANGE_CONFIG function changes the current handler (and possibly port) configuration
while the handleris open. The address of the new configuration is passed in ES : DX. Refer to the
documentation for each handler for details on the format of the configuration.

The configuration that is altered should be the one saved in the handler’s scratch area during its
OPEN routine. The reason is that configuration changes while the handler is open should not
affect the original status defined while it was closed. If a program has initialized a parameter
scratch area with certain values prior to opening the handler, the program expects that set of
parameters to be unchanged the next time the handler is opened.

m RECEIVE_STATUS (Function 03h)

The RECEIVESTATUS function returns the number of bytes in the receive buffer in CX.

m RECEIVEFLUSH (Function 04h)
The RECEIVE_FLUSH flushes the receive buffer.

m SENDSTATUS (Function 05h)
The SEND_STATUS function returns the number of bytes in the send buffer in CX.

m SENDFLUSH (Function 06h)

The SENDFLUSH flushes the send buffer.

The register usage for these functions is summarized below. The AH register is set to the function
code, and the AL register is set to the channel number. Like all handler routines, all the registers
returned by these functions must be placed in the register save area except AL (for error codes) and
BP (which must be unchanged from the value passed to the routine).

3-18 User-Defined Handlers

...10CTL

Table 3-5. Reserved IOCTL Function Codes

Function Registers Passed Registers Returned

Name Register Contents Register Contents

CHANGE_CONFIG AH 02h AL Error code
(00h if no errors)

AL Channel number
ES Segment address

of configuration

DX Offset address
of configuration

GET_CONFIG AH 0th AL 00h
AL Channel number ES Segment address

of configuration

DX Offset address
of configuration

IDENTIFY AH 00h AL 00h
AL Channel number BX "HP" *

CcX Handler identifier

DX Version number

RECEIVE_FLUSH AH 04h AL Error code
(ooh if no errors)

AL Channel number - Receive buffer cleared

RECEIVE_STATUS AH 03h AL 00h
AL Channel number CcX Number of bytes

in receive buffer

SENDFLUSH AH 06h AL Error code
(00h if no errors)

AL Channel number - Send buffer cleared

SEND_STATUS AH 05h AL 00h
AL Channel number CX Numberof bytes

in send buffer
 * Returned by Hewlett-Packard handlers.

User-Defined Handlers 3-19

OPEN

The OPEN routine in a handler is where the 1/O port and the external device are initialized and
readied for I/0.

Passed to routine:

AL Channel number to open.

ES Segment address of handler namestring to open.

BX Offset address of handler namestring to open.

DS Segment address of parameter area (built-in serial port handler only).

DX Number of bytes to write.

Routine must return:

AL=00h Successful open.

>00h Error code.

BP Unchanged from value passed to routine.

When routine is called:

By the OPEN function if the caller invoking the function specifies a high- or low-level handler
name. The OPEN function can be invoked either by the BASIC OPEN # statement or by an
assembly language program.

By a high-level handler using the LLH_OPENlinkage routine.

Notes:

Registers specified by the caller of the OPEN function or the LI.HOPEN linkage routine are
passed to the handler OPENroutine with the following exceptions:

BP Points to the offset on the stack whereall the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Handlers allocate one or two scratch areas in their OPEN routine: the parameter scratch area for
parameter passing (if not already allocated), and the handler scratch area for its pointers, buffers,
etc. The operating system saves the handler’s scratch area address in an internal table based on the
channel number of the handler (this is not the same as the handler information table). When the
other routines in the handler are called (such as READ, WRITE, etc.), the operating system reads
the appropriate scratch area address from this internal table, and passesit to the routine.

If a handler allocates more than one scratch area, only the address of the last one allocated will be
saved and automatically passed to handler routines. Therefore, when multiple scratch areas are
allocated by a handler, the allocation order is important. A handler can allocate scratch areas so
that the last one allocated is the one whose address should be passed to handler routines. Alterna-
tively, the handler can call GETMEM with the channel number set to 0, and the operating system
will not save that scratch area address or passit to handler routines.

3-20 User-Defined Handliers

...OPEN

Activities of routine:

High-Level Handler
Activities

Low-Level Handler

Activities

Verify that the channel being opened to is
correct for this handler.

Read and verify configuration parameters.
If passed in parameter scratch area, use the
handler information table and the valid data
flag. If passed in-line with the name string,
parse the parameters from the string, and
convert to the form required by the handler.

Read and verify configuration parameters.
If passed in parameter scratch area, use the
handler information table and the valid data
flag. If passed in-line with the name string,
parse the parameters from the string, and
convert to the form required by the handier.

Allocate and initialize parameter scratch
area if necessary.

Allocate and initialize parameter scratch
area if necessary.

Allocate low-evel handler scratch area for

port-specific needs.

Allocate high-level handler scratch area for
device-specific needs.

Save channel number the handler is opened
to in the high-level handler scratch area.
This will be needed by the CLOSE, TERM,
and WARM routines. *

Save parameter scratch area address from

the handler information table in the low-level
handler scratch area. This will be needed by
the CLOSE routine.

Change handler name pointer (ES : BX) to
point to the start of the low-level handler
name. Skip past the directory number and
colon, if any, and any in-line parameters to

find the low-level handler name. Return an

error if there is no low-level handler name.

Save parameters from the parameter
scratch area in the low-level handler scratch

area. This will be needed by the TOCTL
routine.

Save the low-level handler scratch area

address in the handler information table.

This will be needed by the interrupt service
routine.

Call low-level handler with LLH_OPEN link-
age routine. Return an error if no low-level
handler with that name exists.

Perform device-specific initialization activi-
ties.

Take over hardware interrupt vectors for the
/0 port, and save the previous vector
address in the low-level handler scratch

area.

Return an error code if the routine failed

(ooh if no errors).

Initialize the 1/0 port and provide power to
it.

Enable hardware interruptsfor the 1/0 port.
 Return an error code if the routine failed

(00h if no errors).
 * This is only necessary if the high-level handier can be used for more than one channel, such as HNWN. If the

handier can be used for only one channel, that channel number need not be saved, since it will always be known.

User-Defined Handlers

3-21

POWERON

The POWERONroutine allows a handler to perform device or port initialization when the machine is
turned on, even if the handler is not open.

Passed to routine:

Nothing, *

Routine must return:

Nothing, *

When routine is called:

® Only when the HP-94 is turned on, after all memory integrity checks have been performed, and all
battery voltages have been tested. All handlers, whether open or closed, will have their POWERON
routine executed at that time. This includes the low-level handler of a high- and low-level handler
pair, even though the operating system thinks that only the high-level handler of the pair is open.
For this reason, there is no LLH_POWERON linkage routine.

® Not executed if the machine enters command mode because of a memory integrity error or because
the and keys are held down. (Thelatter prevents an erroneous POWERONroutine
from permanently preventing access to command mode.) This means that if the machine autostarts
MAIN, POWERON will have been executed, but if MAINis run from command mode using the S
(start) command, POWERON will not have been executed. POWERON will not have been exe-
cuted if the program is always started from command mode (e.g., SCOLL to start a program called
COLL).

Notes:

m If a high-level handler wants to perform device-specific power-on initialization, it must be done
after a low-level handler performs port-specific power-on initialization, or the 1/0 port may not
allow accessto the device. The POWERON routinesare called in each handler, open or closed, in
directories 0-4 in ascending order. Within each directory, handlers are called in ascending directory
table entry order. This implies that the low-level handler’s POWERON routine would have to be
called before the high-level handler’s. This will only occur if the low-level handler appears earlier
in the same directory as the high-level handler, or in a lower-numbered directory than the high-
level handler.

= HP-94 status during the POWERON routine is discussed later.

Cautions:

m Power-on initialization of the HP-94 can be completely altered, with significant, detrimental side
effects (including loss or alteration of existing data) if the POWERONroutine changes any of the
registers that are passed to it. It is therefore imperative that the POWERON routine save and
restore any registersthatit uses.

* Unlike all other handler routines, no registers are saved before calling POWERON, orrestored upon its exit. No registers
are passed to the routine, nor are any values expected to be returned by it.

3-22 User-Defined Handlers

...POWERON

Activities of routine:

High-Level Handler
Activities

Low-Level Handler

Activities

Save any registers used by routine. Save any registers used by routine.

Perform device-specific power-on initializa-
tion activities.

Perform port-specific power-on initialization

activities.

Restore original registers. Restore original registers.
HP-94 Status During POWERON Routine

The machine status when the POWERON routine is called is identical to the status at warm start, even

if the machine was turned off with cold start specified, with the following exceptions:

m The status of user-defined characters is unchanged. If the machine was turned off during a running

program, they will be available (assuming they were present in the machine) during the POWERON

routine. If the machine was turned off by pressing the power switch in command mode, they will

not be available during POWERON routine.

m Access to directory 5 is enabled. Thisis the only time when a program is running that directory 5 is

accessible.

= The display backlight will be off.

After the POWERON routine is called, the operating system will perform either cold start or warm

start initialization, depending on how the machine was turned off. If it should cold start, the cold start

status is set, and program MAIN will be autostarted. User-defined characters are located and made

available if they exist, access to directory 5 is disabled, and the backlight remains off. If it should warm

start, the warm status is left unchanged, and the program continues running at its power-off point.

User-defined characters are left in their warm start state, access to directory 5 is disabled, and the

backlightis turned on if it was on when the machine turned off.

Because the cold or warm status is set after POWERON is called, some operating system functions can-

not be used in the routine. For example, if the machine is going to cold start, all open datafiles will be

closed. If a file was opened during the POWERON routine, it will be closed immediately during cold

start initialization. Here is a list of the operating system functions that can be used in the POWERON

routine:

User-Defined Handlers 3-23

...POWERON

Table 3-6. Functions Allowed in POWERON Routine

Function Function

Name Number

BEEP 07h

BUFFER_STATUS 06h

CURSOR 05h

DISPLAYERROR 18h

FINDFILE 16h

FINDNEXT 17h

GET_CHAR 01h

GET_LINE 02h

MEMCONFIG 0Dh

PUT_CHAR 03h

PUTLINE 04h

ROOM OEh

SET_INTR OAh

TIMEOUT 09h

TIMEDATE 08h

3-24 User-Defined Handlers

READ

The READ routine in a handler is where the data coming into the I/O port is read and returned to the

caller.

Passed to routine:

AL Channel numberto read.

CX Number ofbytes to read.

ES Segment address of read buffer.

BX Offset address of read buffer.

Routine must return:

AL=00h Successful read.

>00h Error code.

BP Unchanged from value passed to routine.

CX The number of bytes actually read (return in register save area, offset 04h).

When routine is called:

m By the READ function if a high- or low-level handler name was specified when the handler was

opened. The READ function can be invoked either by the BASIC GET #, INPUT # or

INPUTS statements, or by an assembly language program.

m By a high-level handler using the LLH_READlinkage routine.

Notes:

m Registers specified by the caller of the READ function or the LLHREAD linkage routine are
passed to the handler READ routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Pointsto the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Cautions:

m The number of bytes to read must not be greater than the actual read buffer length (although it can

be less).

User-Defined Handlers 3-25

...READ

Activities of routine:

High-Level Handler
Activities

Low-Level Handler

Activities

Call low-level handler with LLH_READlink-
age routine. The read buffer specified can
be either the caller's buffer or one in the
handler's scratch area.

Enable the system timeout. *

Perform device-specific read activities.

- Monitor . system events (system timeout,

power switch, and low battery) while waiting
for incoming data. *

Transfer the data from the high-level
handler's buffer (if any) into the caller's read
buffer (but no more than the iow-level
handler returned).

Read the data from the 1/0 port.

Return the actual number of bytes read, and
an error code if the routine failed (00h if no
errors).

Transfer the data from the low-level
handler’s buffer (in its scratch area) into the
caller's read buffer (but no more than the
caller requested).

Disable the system timeout. *

 Return the actual humber of bytes read, and
an error code if the routine failed (00h if no
errors).
 * Refer to the appendixes for information about a utility routine to do this.

3-26 User-Defined Handlers

RSVD2

The RSVD2 routine in a handler is the second routine reserved for future use, the first (with a use

now assigned) being TOCTL, and the third being RSVD3.

Passed to routine: *

AL Channel number.

Routine must return: *

AL=00h Successful write.

>00h Error code.

BP Unchanged from value passed to routine.

When routine is called:

® By a high-level handler using the LLH_RSVD2 linkage routine.

m Not called by the operating system or by any utility routines.

Notes:

m Registers specified by the caller of the LLH_RSVD2 linkage routine are passed on to the handler

RSVD2 routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all

returned values except AL must be put.

DI Destroyed.

Activities of routine: *

High-Level Handler Low-Level Handler

Activities Activities

Call low-level handier with LLH_RSVD2 Return an error code if the routine failed

linkage routine. (00h if no errors).

Return an error code if the routine failed

(00h if no errors).

* Because these routines have not yet been defined, other register requirements and activities may be defined at a later date.

User-Defined Handlers 3-27

RSVD3

The RSVD3 routine in a handleris the third routine reserved for future use,the first (with a use now
assigned) being TOCTL, and the second being RSVD2.

Passed to routine: *

AL Channel number.

Routine must return: *

AL=00h Successful write.

>00h Error code.

BP Unchanged from value passed to routine.

When routine is called:

® By a high-level handler using the LLH_RSVD3 linkage routine.

= Not called by the operating system or by anyutility routines.

Notes:

m Registers specified by the caller of the LLH_RSVD3 linkage routine are passed on to the handler
RSVD3 routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Pointsto the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Activities of routine: *

High-Level Handler Low-Level Handler
Activities Activities

Call low-level handler with LLH_RSVD2 Return an error code if the routine failed
linkage routine. (00h if no errors).

Return an error code if the routine failed

(00h if no errors).

* Because these routines have not yet been defined, other register requirements and activities may be defined at a later date.

3-28 User-Defined Handlers

TERM

The TERM routine in a handler is used to halt I/O in progress when low battery or power switch inter-

rupts occur.

Passed to routine:

AL Cause of termination (0=1ow battery, 1=power switch pressed).

Routine must return:

AL=00h Successful.

>00h Error code.

BP Unchanged from value passed to routine.

When routine is called:

m By the operating system when low battery occurs.

m By the operating system when the power switch is pressed, unless the program disabled the power

switch using the SET_INTR function (0Ah).

m By a high-level handler using the LLH_TERM linkage routine.

m Not called by the operating system when the system timeout occurs. Since each handler must moni-

tor the system timeout itself, that handler will be the only one waiting on 1/O when the timeout

expires. Consequently, it is the only one that needsto terminate I/O.

Notes:

m Registers specified by the caller of the TERM function or the LLH_TERM linkage routine are
passed on to the handler TERM routine with the following exceptions:

DS Set to the segment address ofthe scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Cautions:

m When low battery or power switch occurs, the operating system calls the TERM routines of all open
handlers, but does not set AL to the channel number being used. Instead,it sets AL to the cause of
the termination (0=1low battery, 1=power switch). Place the cause of the termination into AH, and
make sure AL is set to the channel number before calling LLH_TERM, or the linkage routine will
not call the low-level handler TERM routine properly LLHTERM will swap the values so that
the low-level handler’s TERM routine will receive the cause ofthe termination in AL. -

If the high-level handler is only valid for one channel, that valid channel number can be placed in
AL before calling LLH_TERM. If the high-level handler can beused for more than one channel;- -
the channel number being used should have been saved in the handler’s scratch area by its OPEN

routine.

User-Defined Handlers 3-29

...TERM

Activities of routine:

High-Level Handler Low-Level Handler
Activities Activities

Call low-level handler with LLH TERM link- Hait 1/O in progress.
 ageroutine (see caution below). Clean up Incomplete data.

 Perform device-specific termination activi-
ties Return an error code if the routine failed

(00h if no errors).

 Return an error code if the routine failed

(00h if no errors).

3-30 User-Defined Handlers

WARM

The WARM routine in a handler is where the I/O port and the external device are reinitialized to their

openstate and readied for 1/O when the HP-94 warm starts.

Passed to routine:

AL Channel number.

Routine must return:

AL=00h Successful.

>00h Error code.

BP Unchanged from value passed to routine.

When routine is called:

m By the operating system when the HP-94 turns on with a warm start, after the POWERON routine

has been called. The WARM routines of any high- or low-level handlers that were open at poweroff

are called after the operating system performs all memory integrity tests and sets all warm start

status, just before returning control to the program that turned the power off. Refer to the "Pro-

gram Execution" chapter for details on machine status at warm start.

m By a high-level handler using the LLH_WARM linkage routine.

Notes:

m Registers specified by the caller of the WARM function or the LLH_WARM linkage routine are
passed to the handler WARM routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Pointsto the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Cautions:

®m At warm start, the operating system calls the WARM routines of all open handlers, but does not set
AL to the channel number being used. Make sure AL is set to the channel number before calling
LLH_WARM,or the linkage routine will not call the low-level handler WARM routine properly.

If the high-level handler is only valid for one channel, that valid channel number can be placed in
AL before calling LLH_WARM. If the high-level handler can be used for more than one channel,
the channel number being used should have been saved in the handler’s scratch area by its OPEN

routine.

User-Defined Handlers 3-31

..-WARM

Activities of routine:

High-Level Handler
Activities

Low-Level Handler

Activities *
 Call low-ievel handler with LLH_WARMlink-
age routine (see caution below).

Perform device-specific initialization activi-
ties.

Take over hardware interrupt vectors for the
1/O port, and save the previous vector
addresses in the low-level handler scratch
area.

Return an error code if the routine failed

(00h if no errors).

Initialize the 1/0O port and provide power to
it.

Enable hardware interrupts for the 1/0 port.
 Return an error code if the routine faifed

(00h if no errors).

3-32

* The status of 1/0O devices at warm start is the same as at cold start. It is the responsibility of the handler to
restore 1/O devicesto their proper state (power, interrupt vector addresses, and interrupt enable/disable status).

User-Defined Handlers

WRITE

The WRITE routine in a handler is where the data is sent out the I/O port to the external device.

Passed to routine:

AL Channel number to write.

CcX Number of bytes to write.

ES Segment address of write buffer.

BX Offset address of write buffer.

Routine must return:

AL=00h Successful write.

>00h Error code.

BP Unchanged from value passed to routine.

CX The number of bytes actually written (return in register save area, offset 04h).

When routine is called:

m By the WRITE function (13h) if a high- or low-level handler name was specified when the handler

was opened. The WRITE function can be invoked either by the BASIC PRINT #, PRINT

#...USING or PUT # statements, or by an assembly language program.

® By a high-level handler using the LLH_WRITE linkage routine.

Notes:

m Registers specified by the caller of the WRITE function or the LLH_WRITE linkage routine are

passed to the handler WRITE routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all

returned values except AL must be put.

DI Destroyed.

Cautions:

m The number of bytes to write must not be greater than the actual write buffer length (although it

can be less).

User-Defined Handlers 3-33

---WRITE

Activities of routine:

High-Level Handler
Activities

Low-Level Handler

Activities

1 Perform device-specific write activities. Enable the system timeout. *

Call low-level handler with LLHWRITE
linkage routine. The write buffer specified
can be either the caller’s buffer or one in the

handler’'s scratch area.

Monitor system events (system timeout,
powerswitch, and low battery) while output-
ting data. *

Return the actual number of bytes written,
and an error code if the routine failed (00h if

no errors).

Write the data to the 1/0 port.

Disable the system timeout. *

 Return the actual number of bytes written,

and an error code if the routine failed (00h if
no errors).
 * Refer to the appendixes for information about a utility routine to do this.

3-34 User-Defined Handlers

4

Operating System Functions

Chapter 4

Contents

a1
a1
a1
42
4-3
44
4-6
48
4-9

4-11
4-12
4-14
4-16
4-19
8-21
4-23
4-25
4-27
4-29
4-30
4-32
4-35
4-36
4-37
4-39
441
4-43
4-45

Operating System Functions

Operating System Function Usage
Operating System Function Descriptions

Registers Passed to Operating System Functions
BEEP
BUFFER_STATUS
CLOSE
CREATE
CURSOR
DELETE
DISPLAY_ERROR

END_PROGRAM
FINDFILE
FIND_NEXT
GET_CHAR
GET_LINE
GET_MEM
MEM_CONFIG
OPEN
PUT_CHAR
PUT_LINE
READ
RELMEM
ROOM
SEEK
SET_INTR
TIMEOUT
TIME_DATE
WRITE

4

Operating System Functions

This chapter describes the operating system functions. These functions allow assembly language pro-

" grams to simplify the interaction between assembly language programs and the HP-94 hardware:

memory, keyboard, display (and display backlight), serial port, bar code port, power switch, low battery

detection, real-time clock, and beeper. The BASIC interpreter also uses these functions to provide

analogous capability to BASIC language programs.

 I

Operating System Function Usage

Operating system functions are called by the following procedure:

= Load function code into register AH.

m Load any other function parametersinto the corresponding registers.

m Issue a software interrupt 1Ah.

When functions end, they pass results back in the registerslisted in the function descriptions.

I

Operating System Function Descriptions

Function descriptions consist of:

® A brief description of the operating system function.

m A summary of the function call parameters.

m A summary of the function return parameters including any possible returned error codes.

m Supplementary notes and cautions on the use and behavior of the function.

m A list of related operating system functions.

m An example of the use of the operating system function. These examples are provided only to illus-

trate typical use of the various functions. Several of the examples contain data scratch areas

embedded in the code, and consequently will only work if executed in RAM — they will not run in

ROM or EPROM.

Registers Passed to Operating System Functions

Each operating system function saves the contents of all the registers passed to it, and returns those

values to the caller when the function ends. The only registers altered by the functions are those that

explicitly return particular values to the caller — all other registers will retain their original values.

AL is always used to return error codes.

Operating System Functions 4-1

BEEP

Beep a high or low tone for a specified duration.

Call with:

AH=07h BEEP function code.

AL=00h Low tone.

=01h High tone.

BL Length oftone in 0.1 second units (0.1 - 25.5 seconds).

Returns:

Nothing,

Notes:

® When AL is greater than 01h, no action is performed.

Cautions:

= As soon as BEEP starts the beeper, the application program will continue to run; thatis, the pro-
gram does not wait for the beep to finish before resuming execution.

= BEEP can be called while the beeperis beeping. If the tone specified is different than the tonein
progress, beeping will continue at the high tone and duration - the high tone and its duration will
always take precedence, regardless of the order in which the tones are spec1flcd If the tone
specified is the same as the tone in progress, beeping will continue at either the remaining duration
or the new duration, whicheveris longer.

Related functions:

None.

Example:

The following example will do a one-second low beep.

BEEP equ
LOTONE equ
HITONE equ

int

07h
00h
01h

ah, BEEP
al,LOTONE
bt, 10
1Ah

4-2 Operating System Functions

;BEEP function code

;BEEP function code

;low tone...

;for 1 second

;beep it.

BUFFER_STATUS

Get the number of bytes in or flush either the key buffer or the receive buffer for the built-in serial port

handler.

Call with:

AH=06h BUFFER_STATUS function code.

AL=00h Flush key buffer.

=01h Get the number ofbytesin the key buffer.

=02h Flush the receive buffer for the built-in serial port handler.

=03h Get the number of bytes in the receive buffer for the built-in serial port

handler.

Returns:

DL Number of bytes in the key buffer (AL=01h) or the receive buffer for the

built-in serial port handler (AL=03h).

Notes:

® The operations performed when AL is 02h or 03h only apply to the buffer for the built-in serial port

handler. For user-defined serial port handlers with their own buffers, these operations will not

work.

= When AL is greater than 03h, no action is performed.

Related functions:

GET_CHAR, GETLINE, READ

Example:

The following example will flush any charactersin the key buffer and serial port receive buffer.

BUFFER_STATUS equ 06h sBUFFER_STATUS function code

KBD_FLUSH equ 0Ch
KBD_STAT equ 01h

SER_FLUSH equ 02h

SER_STAT equ 03h

; initialize the key buffer and serial port receive buffer

mov ah,BUFFER_STATUS ;BUFFER_STATUS function code

mov al,KBD_FLUSH

int 1Ah ;s flush keyboard buffer

mov al,SER_FLUSH

int 1Ah ;flush serial port receive buffer

Operating System Functions 4-3

CLOSE

Close and release an open channel.

Call with:

AH=10h CLOSEfunction code.

AL Channel numberto close.

Returns:

AL=00h Successful close.

=65h (101) Illegal parameter.

=69h (105) Channel not open.

Notes:

When closing channels 1 - 4, CLOSE will transfer control to the CLOSE routine of the user-
defined handler specified when the channel was opened. The same registers passed to the CLOSE
function will be passed to the user-defined handler CLOSE routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Pointsto the offset on the stack where all the caller’s registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Refer to the "User-Defined Handlers" chapter for details.

m When closing channels 1 - 4 and the user-defined handler has returned from its CLOSE routine,
the handler will no longer be in control of the device.

= Once a channelis closed, it may not be accessed until it is reopened.

Cautions:

= This function may not be called from the POWERONroutine of a handler.

Related functions:

CREATE, DELETE, OPEN, READ, SEEK, WRITE

4-4 Operating System Functions

...CLOSE

Example:

The following example procedure will close a file.

CLOSE

close

fclose

equ 10h

fclose -- close an open file

call with:

proc
mov
int

or
ret
endp

al = channel #

near
ah, CLOSE
1Ah

al,al

;CLOSE function code

;CLOSE function code

;close the file

;set status for caller

Operating System Functions 4-5

CREATE

Allocateinitial storage for a data file and build the directory table entry forthefile.

Call with:

AH=11h CREATE function code.

ES Segment address offile name to create.

BX Offset addressof file nameto create.

cX Initial allocated size in paragraphs.

DX Size increment in paragraphs.

Returns:

AL=00h Successful create.

=65h (101) Hlegal parameter.

=66h (102) Directory does not exist.

=68h (104) Too manyfiles. The directory is full.

=6Ch (108) File already exists.

=6Dh (109) Read-only access.

=6Fh (111) No room forfile.

CX Start segment address of thefile.

BX Available free space in paragraphs (when AL=6Fh).

Notes:

Thefile name must be uppercase.

The file name must be terminated by either a null (00h) or a space (20h).

Wild card characters are not allowed in the file name.

If the file name is longer than 4 characters, only the first 4 characters (plus a leading directory
number and colon, if any) will be used.

If the file name contains a directory specifier, the file will be created in that directory. If the file
name does not contain a directory specifier, the file will be created in directory 0 (main memory).

The size incrementis the expansion increment used when datais written past the end-of-file.

CREATE will fail if an attempt is made to create a data file in a ROM or EPROM.

A data file must be opened before it can be written to or read from.

Allocated file space is automatically initialized to nulls (00h).

If there is not enough free space in the directory to create a file with the specified number of para-
graphs, CREATE will return 6Fh (111) in AL along with the number of available paragraphs in
BX.

4-6 Operating System Functions

...CREATE

Cautions:

m This function may not be called from the POWERON routine of a handler.

Related functions:

CLOSE, DELETE, OPEN, READ, SEEK, WRITE

Example:

The following example procedure will create a file.

CREATE equ 11h :CREATE function code

fcreate -- create a file7

i
; call with:

; bx = offset address of file name buffer

; cx = initial size in paragraphs

; dx = size increment in paragraphs

[]

fcreate proc near
mov ah,CREATE ;CREATE function code

push cs ;segment address of file name to ES

pop es
int 1Ah ;create the file

or al,al :set status for caller

ret

fcreate endp

Operating System Functions 4-7

CURSOR

Move the display cursor or obtain its current position.

Call with:

AH=05h CURSORfunction code.

AL=00h Get the current display cursor position.

=01h Move the display cursor.

CL Cursor column position 0 - 19 (for move cursor).

CH Cursor row position 0 - 3 (for move cursor).

Returns:

CL Current cursor column position 0 - 20 (for get cursor).

CH Current cursor row position 0 - 3 (for get cursor).

Notes:

m When AL is greater then 01h, no action is performed.

= When an attempt is made to move the cursor outside the range of the display window, no action is
performed.

m When a character is displayed in the last column of the display, the cursor will remain in that
column until another characteris displayed. In this case,it is considered to be in column position
20.

Related functions:

PUT_CHAR, PUTLINE

Example:

The following example will move the cursor to column 0 of the currentline.

CURSOR equ 05h sCURSOR function code

mov ah, CURSOR ;CURSOR function code

mov al,00h ;to get current cursor position

int 1Ah ;get cursor position
mov cl,00h ;set to column 0
mov al,0th ;to set cursor position
int 1Ah ;and set the new position

4-8 Operating System Functions

DELETE

Delete a currently open data file. The area occupied by the file will be returned to the free space in

the directory containing the file.

Call with:

AH=14h DELETE function code.

AL Channel number of the open file to delete.

Returns:

AL=00h Successful delete.

=65h (101) Illegal parameter. This error will also occur for deletes of channels 0 - 4.

=69h (105) Channel not open.

=6Dh (109) Read-only file.

=6Eh (110) Access restricted.

Notes:

m The released area is merged with the other free spacein the directory each time file is deleted.

m An automatic CLOSE occurs after a DELETE.

Cautions:

m This function may not be called from the POWERON routine of a handler.

Related functions:

CLOSE, CREATE, OPEN, READ, SEEK, WRITE

Operating System Functions 4-9

...DELETE

Example:

The following example will delete a file by first opening and then deleting it.

DELETE
OPEN

equ
equ

14h ;DELETE function code

OFh ;OPEN function code

ah,OPEN ;OPEN function code
al,5 ;use channel 5

ds ;put fname segment address into ES

es
; fname address offset into BX

bx,offset byte ptr fname

1Ah ;open the file
al,al ;successful open?

open_err ;no -- handle the open error
ah,DELETE ;DELETE function code

al,5 ; the open channet

1Ah ;delete the file

al,al ;successful delete?

‘del_err ;no -- handle the delete error

4-10 Operating System Functions

DISPLAY_ERROR
—

Display the specified numeric error code. The displayed message will be of the form Error nnn,

where nnn is the decimal value of the error code.

Call with:

AH=18h DISPLAYERRORfunction code.

AL Error code.

Returns:

Nothing,

Notes:

m The error numberin the displayed message will always be three decimal digits. For error codes less

than 64h (100), leading zeroes will be added.

m Before displaying an error message the cursor is moved to the first column of the next line in the

display. After displaying the message, the cursor will be placed in the first column to the right of

the error message.

m A beep will occur when the error messageis displayed.

Related functions:

None.

Example:

The following example will display error 101 (illegal parameter).

DISPLAY_ERROR equ 18h ;DISPLAY_ERROR function code

mov ah,DISPLAY_ERROR ;DISPLAY_ERROR function code

mov al,101 ;illegal parameter error code

int 1Ah ;and display the error message

Operating System Functions 4-11

END_PROGRAM

Terminate an application program. The application program can turn off the HP-94, specifying either
cold or warm start at the next power on, or return to command mode.

Call with:

AH=00h END_PROGRAM function code.

AL=00h Cold start.

=01h Warm start.

>01h End application program and enter command mode.

Returns:

Nothing.

Notes:

m When cold start is selected, the HP-94 will be turned off. When poweris turned back on, the pro-
gram MATN will be run if it exists, or command mode will be entered.

®m When warm start is selected, all registers and flags will be stored by the HP-94 before turning off
power. When power is turned back on, the registers and flags will be restored and program execu-
tion resumed.

Cautions:

®m Warm start may not be used by an application program which uses the HP-94 operating system’s
stack. An application which is initialized from command mode must allocate its own stack area in
order to do a warm start END_PROGRAM. If a warm start is attempted using the operating
system’s stack, error 219 will be generated and control will return to command mode.

® This function may not be called from the POWERON routise of a handler.

= A FAR RET can also be used to end a program, but there are some subtle side effects. Refer to
"Program Execution" for details.

Related functions:

None.

4-12 Operating System Functions

...END_PROGRAM

Example:

The following example will end the program and return to command mode.

END_PROGRAM
COLDSTART

WARMSTART
CMDMODE

equ
equ
equ
equ

00h ;END_PROGRAM function code

00h
0th
02h

ah,END_PROGRAM ;END_PROGRAM function code

al,CMDMODE :to enter command mode

1Ah

Operating System Functions 4-13

FIND_FILE

Find the first file to match a file name pattern. Wild card characters may beincluded in the file name.

Call with:

AH=16h FIND_FILE function code.

ES Segment address ofthe search file name.

BX Offset address of the search file name.

DS Segment address of the file information buffer.

DX Offset addressof the file information buffer.

Returns:

AL=00h Successful FINDFILE.

=65h (101) Illegal parameter.

=66h (102) Directory does not exist.

=67h (103) File not found.

CX Segment addressof the directory table entry for the matched file.

DX Offset addressof the directory table entry for the matchedfile.

Notes:

m The search file name must be uppercase.

m There is one wild card character, “*”, which matches any character at that position and all subse-
quent positionsin the file name.

m If the search file name contains a directory specifier, only that directory will be searched. If it does
not contain a directory specifier, directories 0 - 4 will be searched in ascending order. The system
directory (directory 5) will not be searched by FINDFILE.

m If the file name is longer than 4 characters, only the first 4 characters will be used.

® The file information buffer consists of 14 bytes formatted as follows:

Bytes Data

00h-06h |Name of first file found which
matches the search file name.

07h File type

08h - 0Sh Start segment address of thefile

0OAh -0Bh |Low word of the end-of-data address

0Ch High byte of the end-of-data address

0Dh NUL (00h)

4-14 Operating System Functions

...FIND_FILE

File names are of the form “d : name” where “d”is the directory number and “name”is the 1 -

4 byte file name terminated by a null (00h).

Related functions:

FINDNEXT

Example:

The following example will search for the first file which matches a specific file name. It is part of the

example included with the FIND_NEXT function. Since the code contains a scratch buffer and the

file information buffer, it will not work in ROM.

FINDFILE equ 16h ;FIND_FILE function code

mov ah,FIND_FILE ;FIND_FILE function code

push cs ;ES:BX address of scratch buffer

pop es
mov bx,offset buffer

push cs ;DS:DX address of file info buffer

pop ds
mov dx,offset fbuffer
int 1Ah ;find the first file
call errchk ;check for error

buffer db BUFSIZ+1 dup (?) ;read buffer
;must be in RAM

fouffer db 14 dup (?) ;find filename dest buffer
;must be in RAM

Operating System Functions 4-15

FIND_NEXT

Find the next file to match a file name pattern set up by a FIND_FILE function call.

Call with:

AH=17h FINDNEXT function code.

Returns:

AL=00h Successful FINDNEXT.

=67h (103) File not found.

CcX Segment address of the directory table entry for the matched file.

DX Offset address of the directory table entry for the matched file.

Notes:

® The format of the file information buffer is the same as that of the FINDFILE function.

m The FINDFILE function must be executed before FINDNEXT.

= FINDNEXT will return data in the area specified by the last FINDFILE function call.

Cautions:

m FINDNEXT will search only in the directory in which FINDFILE found the first matching
file name.

Related functions:

FINDFILE

Example:

The following example will promptfor a file name and use FIND_FILE and FINDNEXT tofind
and display all the files which match that file name. Since the code contains a scratch buffer and the
file information buffer,it will not work in ROM,

GET_CHAR equ 01h ;GET_CHAR function code
ECHO equ 00h
NOECHO equ 01h
GET_LINE equ 02h ;GET_LINE function code
PUT_LINE equ O4h ;PUT_LINE function code
FIND_FILE equ 16h ;FIND_FILE function code
FIND_NEXT equ 17h ;FIND_NEXT function code
DISPLAY_ERROR equ 18h ;DISPLAY_ERROR function code
BUFSIZ equ 80

code segment

assume cs:code,ds:code

prog proc far
start:

dw prgmend-start

dw 0006h ;offset of internal entry point

db 0100h ;version 1.00

push cs ;set DS to CS

pop ds

4-16 Operating System Functions

...FIND_NEXT

dots01:

nodot:

loop01:

pause01:

exit:

prog

; display "DIR> " prompt
mov bx,offset DIR

call puts
; get name of file

mov bx,offset buffer
mov al,BUFSIZ

catl gets
call errchk
; null out the terminating CR
sub dh,dh ;clear out dh

mov di,dx ;and put it into di
mov byte ptr buffer{di],00h;null out last byte
: go through buffer and substitute ":' for ".V

sub dx,dx ;clear out dx
mov di,dx ;and put it into di

mov al,byte ptr buffer[dil;get the next character

cmp al,n." ;is it a dot?

jne nodot ;no, dontt swap it

mov al," ;get a ":"

mov byte ptr bufferl[dil,al;and save it

inc di ;increment di
or al,al ;is al nutl?

jne dots01 ;no, check next byte

mov ah,FIND_FILE ;FIND_FILE function code
push cs ;ES:BX address of buffer

pop es
mov bx,offset buffer

mov dx,offset fbuffer ;DS:DX address of file info buffer

int 1Ah ;find the first file
call errchk ;check for error
mov byte ptr lent,5 ;reset display line counter

dec byte ptr lent ; decrement line counter

jne pause01 ;not 0 -- don't pause
mov ah,GET_CHAR ;GET_CHAR function code

mov al ,NOECHO ;don't echo
int 1Ah ;get a character
mov byte ptr lent,é4 ;reset the counter (less this line)

cmp dL,m." ;was it a dot?
jne pause01 ;no -- leave the counter as is

mov byte ptr lent,1 ;only 1 line

; display file name from fbuffer

mov bx,offset CRLF ;display a cr/lf

call puts
mov bx,offset fbuffer
call puts
mov ah, FIND_NEXT ;FIND_NEXT function code
int 1Ah ;find the next file
or atl,al sreturned a 0?
je Loop01 :yes -- display the file (if found)

mov al,GET_CHAR ;GET_CHAR function code
mov ah,NOECHO ;don't echo

int 1Ah ;wait for a key

ret ;if no more files, done.

endp

Operating System Functions 4-17

...FIND_NEXT
 I

puts proc

mov
push

pop
int
ret

puts endp

gets proc

mov
push

pop
int
ret

gets endp

errchk proc

or
je

mov
int
add

jmp
errret:

ret

errchk endp

tent db
DIR db

CRLF db
buffer db

fbuffer db

prgmend:

code ends

end

near

ah,PUT_LINE
cSs

es

1Ah

near
ah,GET_LINE
cs
es
1Ah

near
al,al

errret
ah,DISPLAY_ERROR

1Ah
sp,2
exit

?

“DIR> ", OFh,00N
0Dh, 0Ah, 00h

BUFSIZ2+1 dup (?)

14 dup (?)

4-18 Operating System Functions

;PUT_LINE function code
;segment address of buffer to ES

;display it

sGET_LINE function code
;CS to ES

;get a line

;return code 0?
;yes -- just return

;DISPLAY_ERROR function code
;display the error message

;pull off the near return address
;terminate program

;prompt, alpha mode

;er/Lf

;read buffer
;must be in RAM

;find filename dest buffer

;must be in RAM

GET_CHAR

Get one character from the key buffer and optionally echo it to the display.

Call with:

AH=01h GETCHAR function code.

AL=00h Echo the character being read.

>00h Do not echo the character being read.

Returns:

AL=00h Successful read.

=76h (118) Timeout. A timeout occurred before a key was pressed.

=77h (119) Power switch pressed.

=C8h (200) Low battery.

DL Character read from the key buffer and optionally echoed to the display.

Notes:

m Whenthe key buffer is empty, GETCHAR will waitfor a key.

m The key cannot be read.

m The keys ,[=], and , return the codes 18h, 7Fh, and ODh respectively. They are

never echoed to the display, nor are any control codes (00h-1Fh) or user-defined characters (80h-

8Fh),thefirst 16 of which correspond to user-defined keys.

m The following behavior only applies when echoing to the display: When a character is echoed to

the last column of a line in the display, the cursor will remain over that character. The display will

be scrolled, if necessary, and the cursor movedto the first column of the next line before echoing

the next character.

Related functions:

BUFFER_STATUS, GET_LINE

Operating System Functions 4-19

...GET_CHAR

Example:

The following example will wait for the key to be pressed.

GET_CHAR equ 0th
ECHO equ 0Ch
NOECHO equ 01h

entwait:

mov ah,GET_CHAR

mov al ,NOECHO
int 1Ah
or al,al

jne rd_err

cmp dl,0Dh
jne entwait

4-20 Operating System Functions

;GET_CHAR function code

JGET_CHAR function code
;don't echo the character read

;read a character

;read error (al <> 0)?

;yes -- process read error
; [ENTER] key?
;no -- wait for another key

GET_LINE

Get a characterstring from the keyboard buffer and echo it to the display.

Call with:

AH=02h GET_LINE function code.

AL Maximum number of bytesto read (1 - 255 bytes).

ES Segment address of the read buffer.

BX Offset addressof the read buffer.

Returns:

AL=00h Successful read.

=76h (118) Timeout. A timeout occurred before a key was pressed.

=77h (119) Power switch pressed.

=C8h (200) Low battery.

DL Number of characters read from keyboard buffer.

Notes:

m If the key buffer does not contain an ,GETLINE will wait until is pressed.

m The terminating will not be echoed to the display. The cursor will be left at the column to
the right of the character before the .

m The buffer must contain enough space for the maximum number of bytes to read (register AL), as

well as one byte for the terminating .

m The character count returned in DL does not include the terminating .

m The buffer returned by GETLINE will contain the terminating (ODh).

® When AL characters have been read and [ENTER] has not been pressed, subsequent characters will
be discarded, and a low beep issued, until [ENTER] is pressed.

m GETLINE processes [~]and separately. If there are any characters in the buffer, will
remove the last character from the input buffer, erase the character from the display and move the

display cursor back one character position. will clear the entire input buffer and erase the
entire input line from the display.

m When a characteris displayed in the last column of a line in the display, the cursor will remain over

that character. The display will be scrolled,if necessary, and the cursor moveto the first column of

the next line before displaying the next character.

m If timeout, power switch, or low battery interrupts occur, the buffer will contain any characters
already entered. The DL register will contain the number of characters actually read.

Cautions:

m GET_LINE will not check for wraparound of the read buffer’s offset address.

Operating System Functions 4-21

...GET_LINE

Related functions:

BUFFERSTATUS, GET_CHAR

Example:

The following example will read in a 20-character string. Since the code contains the read buffer for
GET_LINE,it will not work in ROM.

GET_LINE equ 02h ;GET_LINE function code
BUFSIZ equ 20
buffer db BUFSIZ+1 dup (?2) ;must be in RAM

mov ah,GET_LINE ;GET_LINE function code
mov al ,BUFS1Z ;size of buffer
push ds ;set ES to DS

pop es
mov bx,offset buffer ;buffer offset to BX

int 1Ah ;read string

or al,al ;read error (al <> 0)?

jne rd_err ;yes -- process read error

4-22 Operating System Functions

GET_MEM

Allocate a scratch area of memory.

Call with:

AH=0Bh GET_MEM function code.

AL Channel numberif the request is being made by a handler.

=00h If the request is not being made by a handler.

BX Size of the requested area in paragraphs.

Returns:

AL=00h Successful allocation.

=65h (101) Illegal parameter. Invalid channel number.

=6Eh (110) Accessrestricted. No scratch areas available or main memory notinitialized.

=71h (113) No room for scratch area.

CcX Segment address of scratch area.

DX Length in paragraphs of scratch area.

Notes:

® A maximum of 34 scratch areas may be allocated.

m Scratch memory is automatically initialized to nulls (00h).

= Handlers should set AL to the channel number to which they are open, or to zero, depending on

whether or not they want the operating system to pass this scratch area address to all their routines.

See the "User-Defined Handlers" chapter for details.

Cautions:

m This function may not be called from the POWERON routine of a handler.

Related functions:

REL_MEM

Operating System Functions 4-23

...GET_MEM

Example:

The following example will allocate a 10-paragraph (160-byte) scratch area.

GET_MEM equ
SCRSIZ equ

0Bh ;GET_MEM function code

OAh ;scratch area size (10 paragraphs)

ah,GET_MEM ;GET_MEM function code
al,00h scallied by an application (not a handler)

bx,SCRS1Z ;size of scratch area

1Ah

al,al ;error?

get_mem_err ;yes -- handle it

CX=segment address of scratch area initialized to nulls
DX=length of allocated scratch area (0Ah)

4-24 Operating System Functions

MEM_CONFIG

Get the current memory configuration of the HP-94.

MEMCONFIG returns 5 bytes of configuration information.Bytcs 0 - 4 describe the contents of

directories 0 - 4 respectively as follows.

Value MeaninHex |ASCII 9
00h NUL No memory installed

4Dh M Main memory

41h A 40K RAM card

4Fh O ROM/EPROM card

Call with:

AH=0Dh MEM_CONFIG function code.

ES Segment address of the 5-byte configuration buffer.

BX Offset address of the 5-byte configuration buffer.

Returns:

AL Number of directories with memory installed. This value is the same as the

numberof bytesin the configuration buffer which contain a non-zero value.

Related functions:

ROOM

Operating System Functions 4-25

...MEM_CONFIG

Example:

The following program will display the number of installed directories followed by the type of each
directory. Since the code contains the configuration buffer, it will not work in ROM.

MEM_CONF1G

PUT_CHAR

END_PROGRAM

CMDMODE

code

mem

start:

mem01:

notzero:

prgmend:

code

equ
equ
equ
equ
segment
assume
proc

dw

dw

dw

endp
ends

end

0Dh
03h
00h
02h

cs:code,ds:code

far

prgmend-start
0006h
0100h

ax,cs
ds, ax

es,ax
bx,offset membuf

ah,MEM_CONFIG

1Ah
al’u0u

ah,PUT_CHAR
1Ah
al'u:u

ah,PUT_CHAR
1Ah

ax,offset membuf
di,ax

cx,5

al,byte ptr I[dil
al,00h
notzero
al'll.ll

ah,03h
1Ah
di
memQ1

ah,END_PROGRAM

al,CMDMODE

1Ah

5 dup (?)

4-26 Operating System Functions

sMEM_CONFIG function code
7PUT_CHAR function code
;END_PROGRAM function code

;offset of internal entry point

;version 1.00

;set DS to CS

;set ES to segment addr of membuf

;set BX to offset addr of membuf

;MEM_CONFIG function code
;get it

sturn al into a number

;PUT_CHAR function code
;display it

;display a ":»

;set DI to offset addr of membuf

;number of bytes to check

;get it

;is it OOh?

;no, leave it alone

;change it to a v-#

;PUT_CHAR function code
;display it

;increment offset (DI)
;and do the next character
;enter command mode

;must be in RAM

OPEN

Open a datafile or handler and assign it to a specific channel.

Call with:

AH=0Fh OPEN function code.

AL Channel number to open.

ES Segment address of file or handler namestring to open.

BX Offset address offile or handler name string to open.

DS Segment address of parameter area (built-in serial port handler only).

DX Offset address of parameter area (built-in serial port handler only).

Returns:

AL=00h Successful open.

=65h (101) Illegal parameter.

=66h (102) Directory does not exist.

=67h (103) File or handler not found.

=6Ah (106) Channelalready open.

=6Bh (107) File or handler already open.

=6Eh (110) Accessrestricted. The specified file is not a data file or handler.

CX Segment addressofthe data file or handler.

Notes:

m The OPEN function will search for the file (type D) or handler (type H) with the specified namein
directories 0 - 4 in ascending order,or only in a specified directory (e.g., "2 : ABCD").

m Channel 0 (keyboard for read operations, display for write operations) is always open. If channel 0

is opened, AL will always return zero. The handler name string is ignored when opening channel 0.

m When opening channels 1 - 4, if the handler is not found, or if a null string was specified as the

handler name, the default handler will be used. For channel 1, the default handler is the built-in

serial port handler. For channels 2 - 4, there is no built-in handler, and the OPEN function will

report error 65h.

Once the handler is found (either user-defined or built-in), the OPEN function will transfer control

to the OPENroutine of the handler. The handler will then become associated with the device, and

the CLOSE, READ, and WRITE functions will transfer control to the CLOSE, READ, and

WRITE routines of the handler. The same registers passed to the OPEN function will be passed

to the user-defined handler OPEN routine with the following exceptions:

BP Points to the offset on the stack where all the caller’s registers are saved and where all

returned values except AL must be put.

DI Destroyed.

Referto the "User-Defined Handlers" chapterfor details.

Operating System Functions 4-27

...OPEN

m If the name string is longer than 4 characters, only the first 4 characters (plus a leading directory
number and colon, if any) will be used by the OPEN function. The entire handler name string
(pointed to by ES : BX) will be passed to the OPEN routine of user-defined handlers. This name
string can include a high- and low-level handler pair (such as "HNWN ; HNBC"),or in-line param-
etersif the handler allows them (e.g., "RSHN 9600, 7ES").

Alphabetic characters in the namestring must be uppercase.

The file or handler name part of the name string must be terminated by either a null (00h) or a
space (20h).

The wild card character “*”is not allowed in the file or handler name part of the name string,

The parameter area address (DS : DX) is only used when the built-in serial port handler is opened.
The meanings of the parameters are defined in the "Serial Port" chapter. Refer to the "User-
Defined Handlers" chapter for a discussion of passing configuration parameters to user-defined
handlers using the handler information table.

Cautions:

= This function may not be called from the POWERONroutine of a handler.

Related functions:

CLOSE, CREATE, DELETE, READ, SEEK, WRITE

Example:

The following example will open the serial port (channel 1) with the built-in handler.

OPEN equ OEh ;OPEN function code

spmode db 1 ;9600 baud

db 00001101b ;XON/XOFF, 7 bits, even parity,

;1 stop, null strip disabled
db 0Dh ;terminate on CR

nutl db 00h ;the null string

mov ah,OPEN ;OPEN function code

mov al,1 ;serial port channel
push cs ;use default handler (ES:BX = null string)
pop es
mov bx,offset null

push cs ;DS:DX = port config buffer

pop ds
mov dx,offset spmode

int 1Ah ;open the port
or al,al ;error?

jne open_err ;yes -- process the error

4-28 Operating System Functions

PUT_CHAR

Display one character on the display and move the cursor one columnto the right.

Call with:

AH=03h PUT_CHAR function code.

AL Character to display.

Returns:

Nothing.

Notes:

m When a character is written to the last column of a line in the display, the cursor will remain over

that character. The display will be scrolled, if necessary, and the cursor moved to the first column

of the next line before writing the next character.

Cautions:

m While processing the display control character that homes the cursor and clears the screen (OCh),

interrupts are disabled for ~45 ms. This time may be important to serial and bar code port

handlers.

Related functions:

CURSOR, PUT_LINE

Example:

The following example will turn on the backlight, change the keyboard into alpha mode and display a

prompt character.

PUT_CHAR equ 03h ;PUT_CHAR function code

ELON equ 1Eh

ELOFF equ 1Fh
ALPHMODE equ OFh
NUMMODE equ OEh

mov ah,PUT_CHAR ;PUT_CHAR function code

mov al [ELON ;turn on backiight

int 1Ah
mov al ,ALPHMODE ;alpha mode keyboard

int 1Ah
mov al,"»" ;prompt character

int 1Ah

Operating System Functions 4-29

PUT_LINE

Display a character string on the display.

Call with:

AH=04h PUTLINE function code.

ES Segment address of the write string,

BX Offset address of the write string.

" Returns:

Nothing,

Notes:

® The write string must be terminated with a null character (00h); the null will not be displayed. Any
other ASCII character, including display control characters, may be embedded in the string.

m When a character is written to the last column of a line in the display, the cursor will remain over
that character. The display will be scrolled, if necessary, and the cursor moved to the first column
of the next line before writing the next character.

Cautions:

= While processing the display control character that homes the cursor and clears the screen (0Ch),
interrupts are disabled for ~45 ms. This time may be important to serial and bar code port
handlers.

m PUT_LINE will not check for wraparound of the write buffer’s offset address.

Related functions:

CURSOR, PUT_CHAR

4-30 Operating System Functions

...PUT_LINE

Example:

The following program will display the message “Hello world”.

PUT_LINE
END_PROGRAM

CMDMODE

code

hiwortd

start:

prgmend:

hiworld

msg

code

equ
equ
equ
segment
assume
proc

dw

dw

dw

push

pop

push

ends

04h ;PUT_LINE function code
00h ;END_PROGRAM function code

02h

cs:code,ds:code

far

prgmend-start
0006h ;offset of internal entry point
0100h ;version 1.00

cs ;set DS to CS

ds

ah,PUT_LINE ;PUT_LINE function code
ds ;set ES to DS

es
bx,offset msg ;buffer offset to BX

1Ah ;write string to LCD

ah,END_PROGRAM ;enter command mode

al ,CMDMODE
1Ah

ijel lo worid",0Dh,0Ah,00h

Operating System Functions 4-31

READ

Read data from an open channel.

Call with:

AH=12h READ function code.

AL Channel number to read.

CX Number of bytes to read.

ES Segment address of read buffer.

BX Offset address ofread buffer.

Returns:

AL=00h Successful read.

=65h (101) Illegal parameter.

=69h (105) Channel not open.

=73h (115) Short record detected.

=74h (116) * Terminate character detected.

=75h (117) End of data.

=76h (118) Timeout. A timeout occurred before the read was completed.

=77h (119)+ Power switch pressed.

=C8h (200)t Low battery.

=C%1(201)t Receive buffer overflow.

=CAh (202) * Parity error.

=CBh (203) * Overrun error.

=CCh (204) * Parity and overrun error.

=CDh (205) * Framing error.

=CEh (206) * Framing and parity error.

=CFh (207) * Framing and overrun error.

=DOh (208) * Framing, overrun and parity error.

cX The number of bytes actually read.

* Can only occur when reading from channels 1 - 4. Whether these errors occur for a user-defined handler depends on the
handier.

1 Can only occur when reading from channels 0 - 4. Whetherthese errors occur for a user-defined handler depends on the
handler.

4-32 Operating System Functions

...READ

Notes:

m When reading data from channels 1 - 4, READ will transfer control to the READ routine of the

user-defined handler specified when the channel was opened. The same registers passed to the

READ function will be passed to the user-defined handler READ routine with the following excep-

tions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Pointsto the offset on the stack where all the caller’s registers are saved and where all

returned values except AL must be put.

DI Destroyed.

Refer to the "User-Defined Handlers" chapter for details.

m Timeout, power switch and low battery will cause reads from channels 0 - 4 to be aborted, but will

notinterrupt reads from channels 5 - 15. Device 1/O will be halted by these conditions, but file

1/0O will always be completed (unless the reset switch is pressed or the machine turns off automati-

cally because of very low battery).

m When reading data from the keyboard (channel 0), no echoing to the display will occur. All keys

pressed (except will be returned, unlike the GET_CHAR and GET_LINE functions. The

number of bytes to read determines when READ will end, whether or not the key was

pressed.

® When reading data from the built-in serial port handler (channel 1), if a terminate character was

specified when the channel was opened, READ will stop if the terminate character is received even

though the full read count has not been reached. The terminate character will be placed in the read

buffer, but it will not be included in the returned read length, and error 74h will be reported.

m When reading data from a file (channels 5 - 15), data is read from the currentfile access pointer

position. After the read is complete,the file access pointer is advanced by the size of the data read.

m Error 65h will occur if the number of bytes to read would cause the read buffer’s offset address to

wraparound.

Related functions:

CLOSE, CREATE, DELETE, OPEN, SEEK, WRITE

Cautions:

m This function may not be called from the POWERON routine of a handler.

m The number of bytes to read must not be greater than the actual read buffer length (althoughit can

be less).

Operating System Functions 4-33

..-.READ
 L

Example:

The following example will read from a channel.

READ equ 12h ;READ function code

fread -- read a channel into a buffer

call with:
;

; al = channel #

; ¢x = number of bytes to read

; es = segment address of read buffer

; bx = offset address of read buffer

fread proc near

mov ah,READ ;READ function code

int 1Ah ;read the channel
or al,al ;set status for caller

ret
fread endp

4-34 Operating System Functions

REL_MEM

Release a scratch area obtained via GETMEM.

Call with:

AH=0Ch REL_MEM function code.

cX Segment address of scratch area to release.

Returns:

AL=00h Successful release.

=6Eh (110) Access restricted. No free blocks available.

=72h (114) Scratch area does not exist. Scratch area address does not correspond to a

currently allocated scratch area.

Cautions:

m This function may not be called from the POWERON routine of a handler.

Related functions:

GET_MEM

Example:

Thefollowing example will free a the scratch area addressed by the current extra data segment (ES).

REL_MEM equ 0Bh ;REL_MEM function code

mov cx,es ;segment address of scratch area into cx

mov ah,REL_MEM ;REL_MEM function code

int 1Ah
or al,al ;error?

jne rel_mem_err :yes -- handle it

Operating System Functions 4-35

ROOM

Identify available room in a directory.

Call with:

AH=0Eh ROOM function code.

AL Directory number (0 - 4).

Returns:

AL=00h Successful request.

=65h (101) Illegal parameter. Invalid directory number.

=66h (102) Directory does notexist.

BX The available directory free space in paragraphs.

CcX Segment address of directory table.

DX Total memory in directory in paragraphs, not including directory table.

Notes:

Related functions:

MEM_CONFIG

Example:

The following example will get the remaining space in main memory.

ROOM equ

mov
int

4@
8

m
e

w
e

w
e

w
2

0bh ;ROOM function code

al,0 ;directory 0

ah, ROOM ;ROOM function code

1Ah

BX=available free space in paragraphs
CX=segment address of directory table

DX=total memory in directory 0 in paragraphs

4-36 Operating System Functions

SEEK

Move thefile access pointer of an open file, or get the current pointer position.

Call with:

AH=15h SEEKfunction code.

AL Channel number.

BL=00h Read the currentfile access pointer position.

=01h Seekrelative to the start of thefile.

=02h Set the file access pointer to EOD.

CX High byte of 24-bit seek offset — CH ignored (for BL.=00h or 01h).

DX Low word of 24-bit seek offset (for BLi=00h or 01h).

Returns:

AL=00h Successful seek.

=65h (101) Illegal parameter. This error will also occur for seeks on channels 0 - 4.

=69 (105) Channel not open.

cX High byte of the current 24-bit file access pointer (CH alwaysset to zero).

DX Low word ofthe current 24-bit file access pointer.

Notes:

m Seeks past EOD will generate error 65h.

m The 24-bit seek offset and file access pointer are relative to the start of the file. The first byte of

the file has a seek offset and file access pointer position of 0.

w The file access pointeris set to 0 when the file is opened.

Cautions:

m This function may not be called from the POWERON routine of a handler.

Related functions:

CLOSE, CREATE, DELETE, OPEN, READ, WRITE

Operating System Functions 4-37

...SEEK

Example:

The following example will seek to EOD to get the current true file size.

SEEK equ
channel db

int
or
jne

w
a

w
e

wm
a

w
e

15h
5

ah, SEEK
al,channel
bl,02h
1Ah
al,al
seek_err

4-38 Operating System Functions

;SEEK function code

;channel to seek on

;channel to seek on

;SEEK to EOD
;SEEK...

;SEEK error?

;yes, process it.

CX,DX now contain the exact number of bytes in the file,
regardless of padding to the nearest paragraph boundary.

SET_INTR

Two system interrupts may put under program control — the power switch/system timeout and low

battery interrupt. In addition, the power switch interrupt may be disabled or enabled.

Call with:

AH=0Ah SET_INTRfunction code.

AL=00h Define a power switch/system timeout interrupt routine.

=01h Define a low battery interrupt routine.

=02h Disable the power switch interrupt.

>02h Enable the power switch interrupt.

BX The data segment to be used for the interrupt routine. This value will be

loaded into DS before the interrupt routine is activated (for AL=00h or 01h).

CcX Segment address ofinterrupt routine (for AL=00h or 01h).

DX Offset address of interrupt routine (for AL=00h or 01h).

Returns:

Nothing.

Notes:

m An interrupt can be restoredto its default behavior by calling SET_INTR with both CX=00h and

DX =00h.

m When the power switch/timeout interrupt routineis called, the AL register will be set to 76h (118)

if a timeout occurred, or 77h (119) if the power switch was pressed.

Cautions:

m The offset address specified in DX must be non-zero for the operating system to properly interpret

the existence of user-defined interrupt routines.

Related functions:

None.

Operating System Functions 4-39

...SET_INTR

Example:

The following example will set up a power switch interrupt routine.

SET_INTR equ

psint proc

psint endp

0Ah

ax,ds

bx, ax

ax,cs
cX,ax
dx,offset psint
ah,SET_INTR
al,00h
1Ah

far

4-40 Operating System Functions

;SET_INTR function code

;put DS in BX

;put CS in CX

;put routine offset into DX
sSET_INTR function code

;set power switch interrupt routine

;set it

;power switch interrupt routine

; interrupt routine for
; power switch goes here

;return from interrupt

TIMEOUT

Set the display backlight timeout and system timeout intervals. The timeouts may be as short as 1

second, as long as 1800 seconds, or disabled.

Call with:

AH=0% TIMEOUT function code.

AL=00h Set the display backlight timeoutinterval.

=01h Set the system timeout interval.

BX Number of seconds to set timeout to (1 - 1800). A value of 0 may be used to

disable the timeout completely, in which case the backlight will never turn off
or the system will never timeout (turnitself off).

Returns:

Nothing.

Notes:

m The initial value at cold start for both timeout intervals is 120 seconds.

m If AL is greater then 01h, no action is performed.

m If BX is greater than 1800 (0708h), no action is performed.

m Setting the display backlight timeout only sets the interval — it does not turn on the backlight. The

backlightis turned on programmatically by writing the display control character 1Eh to the display.

Cautions:

m Leaving the backlight on continuously or for long periods of time (greater than 5 minutes) will

reduce thelife of the backlight.

m If the backlight is on and a new timeout interval is set, the backlight must be turned off (either pro-
grammatically or by timeout) before the new timeout interval will be in effect.

Related functions:

None.

Operating System Functions 4-41

...TIMEOUT

Example:

The following example will set the display backlight timeout interval to 3 minutes, and disable the sys-
tem timeout.

TIMEOUT equ 0%h

mov ah, TIMEOUT
mov al,00h
mov dx, 180
int 1Ah
mov al,01h
mov dx, 00h
int 1Ah

4-42 Operating System Functions

;TIMEOUT function code

;TIMEOUT function code
;display backlight timeout
;3 minutes (180 seconds)
;set it

;system timeout interval

;disable timeout

;set it

TIME_DATE

Read or set the time and date of the real-time clock. The time and date is read into or set from a 17-

byte fixed-length buffer. The format of the bufferis:

MM/DD/YY,hh:mm:ss

Symbol Value Range Symbol Value Range

MM Month 01-12 hh Hour 00-23

DD Date 01-31 mm Minute 00-59

YY Year 00-99 sS Second 00-59

Call with:

AH=08h TIME_DATE function code.

AL=00h Set time and date.

=01h Read time and date.

ES Segment addressofthe time and date buffer.

BX Offset address of the time and date buffer.

Returns:

Nothing.

Notes:

s When AL is greater than 01h, no action is performed.

Cautions:

® The validity of the time and date is not checked. If times and dates are set outside the above ranges,
the clock wil be set to unpredictable values.

Related functions:

None.

Operating System Functions 4-43

...TIME_DATE

Example:

The following program will read the current time and date and write it to the display. Since the code
contains the read buffer for TIME_DATE,it will not work in ROM.

TIME_DATE

PUT_LINE
END_PROGRAM

CMDMODE

TDBUFLEN

code

mem

start:

buffer

prgmend:

code

int

int

08h
04h
00h
02h
17

cs:code,ds:code

far

prgmend-start

0006h
0100h

ax,cs
ds, ax

ah, TIME_DATE

al,01h
ds

es
bx,offset buffer

1Ah
ah,PUT_LINE
1Ah

ah,END_PROGRAM
al , CMDMODE
1Ah

TDBUFLEN dup (?)
0Dh, 0Ah, 00h

4-44 Operating System Functions

;TIME_DATE function code
;PUT_LINE function code

;END_PROGRAM function code

;offset of internal entry point

;version 1.00

;set DS to CS

s TIME_DATE function code
;get date

;set ES to DS

;get the time and date
;PUT_LINE function code

;display it

;enter command mode

;must be in RAM

WRITE

Write data to an open channel.

Call with:

AH=13h WRITE function code.

AL Channel numberto write.

CX Number of bytes to write.

ES Segment address of write buffer.

BX Offset address of write buffer.

Returns:

AL=00h Successful write.

=65h (101) Illegal parameter.

=69h (105) Channel not open.

=6Dh (109) Read-only access.

=70h (112) No room to expandfile.

=76h (118) * Timeout. A timeout occurred before the write was completed.

=77h (119) * Power switch pressed.

=C8h (200) * Low battery.

=DAh (218) * Lost connection while transmitting. The Clear to Send (CTS) control line was

lowered.

cX The number of bytes actually written.

Notes:

m When writing data to channels 1 - 4, WRITE will transfer control to the WRITE routine of the

user-defined handler specified when the channel was opened. The same registers passed to the

WRITE function will be passed to the user-defined handler WRITE routine with the following

exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller’s registers are saved and where all

returned values except AL must be put.

DI Destroyed.

Referto the "User-Defined Handlers" chapter for details.

* Can only occur when writing to channels 1 - 4. Whether these errors occur for a user-defined handler depends on the

handler.

Operating System Functions 4-45

-..-WRITE

= Timeout, power switch and low battery will cause writes to channels 1 - 4 to be aborted, but will not
interrupt writes to channels S - 15. Device I/O will be halted by these conditions, butfile I/0O will
always be completed (unless the reset switch is pressed or the machine turns off automatically
because of very low battery).

m When writing data to the built-in serial port handler (channel 1), if a terminate character was
specified, the terminate character will be written after writing the data in the write buffer.

m When writing data to a file (channels 5 - 15), data is written from the currentfile access pointer
position. After the write is complete, the file access pointer is advanced by the size of the buffer
written.

m A write of 0 bytes to a data file will cause the EOD to be set equal to the current file access
pointer. This has the effect of truncating the data in the file to the current pointer position, even
though the file size will remain unchanged.

m Error 65h will occur if the number of bytes to write would cause the write buffer’s offset address to
wraparound.

Cautions:

m This function may not be called from the POWERONroutine of a handler.

m The number of bytes to write must not be greater than the actual write buffer length (although it
can be less).

Related functions:

CLOSE, CREATE, DELETE, OPEN, READ, SEEK

Example:

The following program will append one data file to another. If the destination file does not exist,it will
be created. The program illustrates the use of the OPEN, CLOSE, CREATE, READ, WRITE and

SEEK functions. Since the code contains the buffer address and length,it will not work in ROM.

GET_LINE equ 02h ;GET_LINE function code
PUT_CHAR equ 03h ;PUT_CHAR function code
PUT_LINE equ 04h sPUT_LINE function code
GET_MEM equ 08h ;GET_MEM function code
REL_MEM equ OCh sREL_MEM function code
OPEN equ OFh ;OPEN function code
CLOSE equ 10h ;CLOSE function code
CREATE equ 11h ;CREATE function code
READ equ 12h sREAD function code
WRITE equ 13h sWRITE function code
SEEK equ 15h ;SEEK function code
DISPLAY_ERROR equ 18h ;DISPLAY_ERROR function code

BUFSIZ equ 4 ;4 paragraphs

code segment

assume cs:code,ds:code

prog proc far
start:

dw prgmend-start

4-46 Operating System Functions

-.-WRITE

crbig:

crfile:

dw

dw

push

pop

0006h ;offset of internal entry point
0100h ;version 1.00

cs ;set DS to CS
ds

; initialize storage

sub

mov

ax, ax ;clear AX

word ptr bufaddr,ax ;and clear buffer address

; allocate buffer memory

mov
mov
call

call

mov
mov
shi

mov

push

pop
mov
call

call

call

mov
call

call

push

pop
mov

call

call

call

call

cmp

bx,BUFS1Z ;size of buffer to allocate

al,0 ;not associated with a handler
alloc ;allocate memory

errchk ;call error check
word ptr bufaddr,cx ;store away buffer address
cl,4 ;turn buffer size from paragraphs to bytes

dx,cl

word ptr buflen,dx ;store away buffer length

cs ;ES:BX address of “From" message

es
bx,offset FROM
puts
gets
errchk
al, 15 ;channel number for input file

fopen ;open the file

errchk

cs ;ES:BX address of “To" message

es
bx,offset TO

puts
gets
errchk

ah, SEEK ;SEEK function code

al,15 ;infile channel
bl,02h ;seek to EOD

1Ah ;seek to EOD to find file size

;(could also use FIND_FILE)
cX,CcX ;is the file big (> 64k) (cx > 0)?

crbig :yes -- use a default big size

dx, 15 ;to round up # of paragraphs
crbig ;if we had a carry it is big file

cl,4 ;shift dx &4 bits right
dx,cl ;to turn from bytes to paragraphs
cx,dx sinitial size allocation to dx

dx, 1 ;size increment
crfile ;and create the file

cx,1000h ;file is >= 10000h bytes (64K) long
dx, 10h ;use a large increment

ax,word ptr bufaddr ;segment address of buffer

es,ax ;to ES

bx, bx ;offset address of buffer
fcreate ;create the file if it does not exist

al,6Ch ;file already exist?

Operating System Functions 4-47

---WRITE

nocrerr:

loop:

norderr:

closefiles:

errexit:

errexitl:

dsperr:

je

or
call

sub

int

int
push

pop

call

call

sub

push
mov
call

push

mov

call

or
jz

nocrerr

al,al

errchk

bx, bx

al, 14
fopen
errexiti

ah, SEEK
al,15
bl,01h
cx,cx
dx,dx

1Ah
al,14
bl,02h
1Ah
cs
es
bx,offset CRLF

puts

ax,word ptr bufaddr
es,ax
bx, bx

cx,word ptr buflen
al,15
fread

al,73h

norderr

al,75h
closefiles
al,al

errexit

al, 14
furite
errexit

ah,PUT_CHAR
al UL

1Ah
Loop

al,al

ax
al,14
fclose

ax

ax
al,15

fclose

ax

al,al
noerr
ah,DISPLAY_ERROR

4-48 Operating System Functions

;ignore the error

;set status for caller

;check for any other create errors

;offset address of buffer

;(clobbered by CREATE)

;channel number for outfile

;open the file
;error -- close infile
;SEEK function code

;channel number for infile
;seek absolute
;to start of file (000000h)

;seek to start of infile

;channel number for outfile

;seek to EOD

;seek to EOD to append to outfile

;ES:BX address of CRLF

;ES:BX buffer address

;offset of buffer is 0
;buffer size

;infile channel #

;read infile

;short record error?

;not an error
;EOD?

;yes -- finish up
;any other read error?
;yes -- exit

;outfile channel #

;write outfile (rest already set up)

;error? -- exit

;PUT_CHAR function code

;display a u.»

;no error (al=0)

;close both infile and outfile

;save error code

;joutfile channel #

;close the file (ignore error code)

;restore error code

;only close infile

;save error code

;infile channel #

;close the file (ignore error code)

;jrestore error code

;error?

;no -- don't display an error message

;DISPLAY_ERROR function code

---WRITE

noerr:

nofree:

prog

m
e

w
e

w
e

w
e

w
p

w
e

puts

puts

ets@
s
e

“
u

w
e

w
y

w
e

w
e

okbuffer:

dot loop:

int 1Ah :display it

mov cx,word ptr bufaddr ;get segment address of buffer

or cX,cX ;=0?
jz nofree ;yes -- no buffer to free

call free :free the buffer

ret ;exit program

endp

puts -- write a line to the LCD

call with:
es = segment address of string

bx = offset address of string

proc near
mov ah,PUT_LINE ;PUT_LINE function code

int 1Ah ;display it

ret

endp

gets -- Read a line from the keyboard into buffer.
Turn trailing CR into a NUL.

Turn '.' into ':!

call with:

nothing.

proc near
mov ax,word ptr bufaddr ;get segment address of buffer

mov es,ax ;set ES to it
sub bx, bx ;offset address to buffer
mov ax,word ptr buflen ;size in bytes

or ah,ah ;bigger than 256?

jnz okbuffer ;no -- we will use the actual size

mov al,255

dec al ; leave room for the CR

mov ah,GET_LINE ;GET_LINE function code
int 1Ah :get string

or al,at ;set status for caller

jnz getsret serror? -- return now

; save away registers
push ax
push cx

push dx
push di
sub dh,dh ;clear high byte of dh

add dx, bx ;address of last byte

mov di,dx ;length to index register
mov byte ptr es:[di],00h;null out CR

; change '.' to ':!

mov di, bx ;offset of string into offset register

mov ah,es: [di] ;get the next character

cmp ah, u.v ;is it a dot?

jne nodot ;no -- don't change it.

Operating System Functions 4-49

---WRITE
 |

mov ah,":n ;replace it with a %:»
mov es: [dil,ah

nodot:

inc di

or ah, ah ;is it a NUL (end of string)

jnz dotloop
; restore registers

pop di
pop dx
pop cx
pop ax

getsret:

or al,al ;set status for caller

ret

gets endp

errchk proc near

or al,al ;return code 0?

jnz err01 ;yes -- display an error

ret ;no -- just return

err01:

add sp,2 ;pull off the near return address

jmp dsperr ;display the error & exit program
errchk endp

Q)
S

S
e

%
o

m
s

a
y

w
0

lloc

ree

free

i
h
e

m
a

N
y

W
i
%

W
y

w
e

w
a

W
y

§

alloc -- allocate a scratch area

call with:

al = channel number for handler, 0 for others

bx = size of area in paragraphs

proc near

mov ah,GET_MEM ;GET_MEM function code
int 1Ah ;allocate scratch area

or al,al ;set status for caller

ret

endp

free -- free a scratch area

call with:

¢x = segment address of scratch area

proc near

mov ah,REL_MEM sREL_MEM function code

int 1Ah ;release scratch area

or al,al ;set status for caller

ret

endp

fopen -- open a file

call with:

al = channel #

es = segment address of file name buffer

bx = offset address of file name buffer
dx = offset address of parameter area

(built-in serial port only)

proc near

4-50 Operating System Functions

...WRITE

P
N

T
R
T
R

AL
T
R
T
R

-
m
e

W
e

W
4

w
2

w
n

w
y

w
2

w
e

mov ah,OPEN ;OPEN function code

int 1Ah ;open the file
or al,al ;set status for caller

ret
endp

fclose -- close an open file

call with:

al = channel #

proc near
mov ah,CLOSE ;CLOSE function code

int 1Ah ;close the file

or al,al ;set status for caller

ret
endp

fcreate -- create a file

call with:
es = segment address of file name buffer

bx = offset address of file name buffer
cx = initial size in paragraphs
dx = size increment in paragraphs

proc near
mov ah,CREATE :CREATE function code

int 1Ah ;create the file

or al,al ;set status for caller

ret
endp

fread -- read a channel into a buffer

call with:

al = channel #
cx = number of bytes to read

es = segment address of read buffer

bx = offset address of read buffer

proc near
mov ah,READ ;READ function code
int 1Ah :read the channel

or al,al :set status for caller

ret
endp

furite -- write a buffer into a channel

call with:

al = channel #
cx = number of bytes to write

es = segment address of write buffer

bx = offset address of write buffer

proc near
mov ah,WRITE :WRITE function code

int 1Ah ;write the buffer
or al,al ;set status for caller

Operating System Functions 4-51

...WRITE

[

ret

furite endp

FROM db “From: ",0Fh,00h
TO db 0Dh,0Ah,"To: ",0Fh,00h
CRLF db ODh,0Ah, 00h
bufaddr dw ? ;must be in RAM

buflen dw ? ;must be in RAM

prgmend:

code ends

end

4-52 Operating System Functions

5

Hardware Control and Status Registers
A

Contents
 T

Chapter 5

5-2
5-3
5-5

Hardware Control and Status Registers

Main Control and Status Registers
Interrupt Control and Status Registers
Copies of Write-Only Control Registers

S

Hardware Control and Status Registers

The HP-94 has control and status registers that allow a program to control the various hardware dev-

ices and determine their status. The control and status registers are in the CPU 1/O space, so pro-

gramsinteract with them using the IN and OUT instructions. The details of these registers are dis-

cussed in the appropriate device chapters. The table below summarizes the 1/0 addresses for all the

control and status registers.

Table 5-1. 1/0 Addresses for Control and Status Registers

12h Right LCD Driver Control
12h Right LCD Driver Status
13h Right LCD Driver Data

14h Left LCD Driver Control

1/0 Register Read/

Address Name Write

00h interrupt Control w

00h Interrupt Status R

0th Interrupt Clear w

0th End of Interrupt R

02h System Timer Data R/W

03h System Timer Control W

04h Bar Code Timer Data (lower 8 bits) R/W

05h Bar Code Timer Data (upper4 bits) R/W

06h Bar Code Timer Control w

07h Bar Code Timer Value Capture w

08h Bar Code Timer Clear w

0Ah Baud Rate Clock Value w

0Bh Main Control W

0Bh Main Status R

0Ch Real-Time Clock Control W

oCh Real-Time Clock Status/Data R

OEh Keyboard Control w

OEh Keyboard Status R

10h Serial Port Data R/W

11h Serial Port Control w

11h Serial Port Status R

W
R

R/W
W

14h Left LCD Driver Status R

15h Left LCD Driver Data R/W

1Bh Power Control W

Hardware Control and Status Registers 5-1

Two primary control registers are particularly important to programs: the main control register (0Bh)
and the interrupt control register (00h),

 T

Main Control and Status Registers

The main control and status registers are at I/O address 0Bh. The uses of these registers to control
specific hardware devices and determine their status are discussed in the appropriate device chapters.
All the uses ofthese registers are summarized below.

7 6 5 4 3 2 1 0

X| X X

LTJ_ 11: Low Tone
Beeper Control 01: High Tone

00: Off

 Serial Port [1: Enable

 Power Control 0: Disable

Bar Code Port 1: Enable

Power Control 0: Disable Bar Code Port 1: Enable

Transition Control 0: Disable

X = don't care

Figure 5-1. Main Control Register (/0 Address 0Bh, Write)

5-2 Hardware Control and Status Registers

1: Light
0: Dark

 L Bar Code Port Status {

 1: Not Detected
Carrier Detect Status [0: Detected

 Main Memory 1: Voltage OK
Backup Battery Status |0: Low Voltage Memory Board or RAM Card |1: Voltage OK
Backup Battery Status 0: Low Voltage 1: Voltage OK

0: Low Voltage
Main Battery Status [

X = ignore

Figure 5-2. Main Status Register (1/O Address 0Bh, Read)

 N

Interrupt Control and Status Registers

The interrupt control and status registers are at I/O address 00h. The uses of these registers to enable

specific hardware interrupts and determine which interrupts occurred are discussed in the "Interrupt

Controller” chapter. All the uses of these registers are summarized below.

Hardware Control and Status Registers 5-3

 . System TimerInterrupt [

5-4

1: Enable

0: Disable

. 1: Enable
Bar Code TimerInterrupt |:0: Disable

Bar Code Port 1: Enable
Transition Interrupt 0: Disable

Serial Port Data 1: Enable

Received Interrupt 0: Disable

Low Main Battery 1: Enable
Voltage Interrupt 0: Disable

1: Enable
Power Switch Interrupt [0- Disable

1: Enable
Reserved Interrupt 1 [0- Disable

1: Enable
Reserved Interrupt 2 {0: Disable

Figure 5-3. Interrupt Control Register (1/0O Address 00h, Write)

Hardware Control and Status Registers

1: Interrupted
0: Did Not Interrupt

 L System Timerinterrupt 1i

 1: Interrupted
Bar Code Timer Interrupt [0: Did Notinterrupt

 Bar Code Port 1: Interrupted
Transition Interrupt |0: Did Not Interrupt Serial Port Data 1: Interrupted
Received Interrupt |0: Did Not Interrupt Low Main Battery |1: Interrupted
Voltage Interrupt 0: Did Not Interrupt

1: Interrupted
0: Did Not Interrupt Power Switch Interrupt [1: Interrupted

0: Did Not Interrupt
Reserved Interrupt1 [1: Interrupted

0: Did Not Interrupt Reserved Interrupt 2 [

Figure 5-4. Interrupt Status Register (1/O Address 00h, Read)

-

Copies of Write-Only Control Registers

Control of the HP-94 1/O devices and interrupts is accomplished by using two primary control regis-

ters: the main control register and the interrupt control register. These are both write-only as far as

controlling the devices and interrupts is concerned, and reading them back yields different results.

Reading the main control register obtains other hardware status, and reading the interrupt control

register indicates which interrupt occurred.

To allow the operating system and assembly language programs to know what status was set using

these two registers, the operating system writes a copy of the register values to two locations in the

operating system scratch space. When hardware or interrupt status is changed, the operating system

uses the following procedure to ensure that hardware devices or interrupts unaffected by the change

remain in their current state:

m Read the copy of the register being changed.

m Change the bits neededto cause the status to change.

m Write the updated value back to its original location.

= Output the updated value to the control register.

When a program uses the operating system functions and utility routines, these copies will be updated

automatically. If a program changes the device or interrupt status independent of the operating system,

Hardware Control and Status Registers 5-5

it is the program’s responsibility to mimic the operating system action. That is, the program must
make the change correctly while preserving the state of unaffected devices, and must update the copies
of the control registers for use by the operating system and other programs.

The status of these registers at cold and warm start is shown below. Refer to appendix L for informa-
tion about the utility subroutines for reading and saving copies of the control registers.

Table 5-2. Copies of Primary Control Registers

Control 1/0 Initial Meaning of Utility
Register Name Address Value Initial Value Subroutines

Main Control 0Bh 00h Beeper off, serial READCTRL.ASM
port power off, bar SETCTRL.ASM
code port power off,
bar code port transi-
tions disabled

Interrupt Control 00h 31h System timer, low READINTR.ASM
battery, and power SETINTR.ASM
switch interrupts
enabled

5-6 Hardware Control and Status Registers

CPU

6

CPU

The HP-94 CPU is the NEC uPD70108 (V20) microprocessor. This is a CMOS microprocessor that is

compatible with the Intel 8088 and provides a standby mode for reduced power consumption. Pro-
grams written for the 8088 can be run on the V20 with no modifications.

The V20 provides a superset of the 8088 instruction set. Some 8088 instructions have been enhanced,
and new instructions have been added. All the changes are described in the CPU data sheet in the
"Hardware Specifications”. The enhancements and additions are only available if NEC assembly
language developmenttools are used. Contact NEC for information on these if using the V20 features
is important to your applications.

The HP-94 CPU runs at an operating frequency of 3.6864 MHz, which is 0.27 us/clock cycle. Note,
however, that the V20 instruction timing is different than the 8088 instruction timing. The V20 timing
should be used whenever determining the number of clock cycles for specific operations. The instruc-
tion timing is shown in the CPU data sheet using NEC mnemonics. These are similar but not identical
to 8088 mnemonics, as shown in the next table.

CPU 6-1

Table 6-1. Intel 8088 and NEC V20 Instruction Mnemonics

intel NEC intel NEC intel NEC Intel NEC

8088 V20 8088 V20 8088 V20 8088 V20

AAA ADJBA JA BH Jz BE.BZ REPE REPE

AAD CVvIDB JAE BNC,BNL LAHF MOV REPZ REPZ

AAM CVTBD JB BC,BL LDS MOV REPNE REPNE

AAS ADJBS JBE BNH LEA LDEA REPNZ REPNZ

ADC ADDC JC BC,BL LES MOV RET RET

ADD ADD Jexz BCWZ LOCK BUSLOCK ROL ROL

AND AND JE BE,BZ LODS LDM ROR ROR

CALL CALL JG BGT LODSB LDM SAHF MOV

CBW CVTBW JGE BGE LODSW LDM SAL SHL

CLC CLR1 JL BLT LOOP DBNZ SAR SHRA

CLD CLR1 JLE BLE LOOPE DBNZE SBB SUBC

cu DI JMP BR LOOPNE DBNZNE SCAS CMPM

CMC NOT1 JNA BNH LOOPNZ DBNZNE SCASB CMPM

CMP CMP JNAE BC,BL LOOPZ DBNZE SCASW CMPM

CMPS CMPBK JNB BNC,BNL MOV MOV SHL SHL

CMPSB CMPBK JNBE BH MOVS MOVBK SHR SHR

CMPSW CMPBK JNC BNC,BNL MOVSB MOVBK STC SET1

CWD CVTWL JNE BNE,BNZ MOvsSw MOVBK STD SET1

DAA ADJ4A JNG BLE MUL MULU ST El

DAS ADJ4S JNGE BLT NEG NEG STOS ST™M

DEC DEC JNL BGE NOP NOP STOSB ST™M

DIV DIVU JNLE BGT NOT NOT STOSW ST™

ESC FPO1 JNO BNV OR OR suB SuB

HLT HALT JINP BPO ouT ouT TEST TEST

DIV DIV JNS BP POP POP WAIT POLL

IMUL MUL JINZ BNE,BNZ POPF POP XCHG XCH

IN IN Jo BV PUSH PUSH XLAT TRANS

INC INC JP BPE PUSHF PUSH XOR XOR

INT BRK JPE BPE RCL ROLC

INTO BRKV JPO B8PO RCR RORC

IRET RETI Js BN REP REP

62 CPU

7

Interrupt Controller

Contents

Chapter 7

7-1

7-3

7-5

7-6

Interrupt Controller

Procedure for Using a Hardware Interrupt
Interrupt Control and Status Registers
When the Operating System Disables Interrupts
Operating System Functions

7

Interrupt Controller

The HP-94 interrupt controller receives interrupt requests from eight different HP-94 hardware dev-

ices. It prioritizes these interrupts, and informs the CPU of the highest priority interrupt. The CPU

then locates the interrupt vector for that interrupt and transfers control to the interrupt service routine.

The hardwareinterrupts and their priority are shown below:

Table 7-1. HP-94 Hardware Interrupts

Interrupt interrupt
Type Name

50h System Timer Highest
51h Bar Code Timer
52h Bar Code Port Transition \L

53h Serial Port Data Received .

54h Low Main Battery Voltage Interrupt Priority

55h Power Switch \L
56h Reserved Interrupt 1
57h Reserved Interrupt 2 Lowest

Information about the behavior of interrupt service routines for the different hardware devices are in

the appropriate device chapters.

At both cold and warm start,the system timer,serial port data received, low main battery voltage, and

power switch interrupt vectors all point to their operating system interrupt service routines. They are

all enabled except for the serial port data received interrupt. The other hardware interrupt vectors

point to a dummy interrupt service routine which clears the interrupt, reads the end of interrupt regis-

ter, and returns (with an {RET). Reserved interrupts 1 and 2 are for future use.

™

Procedure for Using a Hardware Interrupt

There are four control registers available for controlling interrupt behavior:

m Interrupt Control Register
This is used to enable or disable any of the hardware interrupts.

m Interrupt Status Register

This indicates which hardware devices have issued interrupt requests. The interrupt status register

will indicate that an interrupt request occurred even if the interrupt was disabled. This is useful for

polling device status.

Interrupt Controller 7-1

m Interrupt Clear Register
Once a hardware interrupt has occurred, another interrupt of the same type will not be processed
by the interrupt controller until that interrupt has been cleared.

w End of Interrupt Register
This is read at the end of an interrupt service routine to allow the interrupt controller to generate
new interrupts of any type.

There are several things that must be done to use a hardware interrupt. Some must be done when the
interruptis initialized, and others during an interrupt service routine. These are summarized below:

Table 7-2. Using Hardware Interrupts

Control or Required Required
Action Status During In Service

Register Used Initialization Routine

Disable interrupt Interrupt Control No * No
Take Overinterrupt Vector — Yes No
Enable Interrupt Interrupt Control Yes No
Set CPU Interrupt Flag (STl) — Yes Not

Verify Interrupt Source Interrupt Status No No *
Clear Interrupt Interrupt Clear No * Yes
Read End of Interrupt Register End of Interrupt No * Yes
Return from Interrupt (IRET) — No Yes

* Not required, but can be done as defensive programming. For example,it is unlikely when enabling an interrupt that
a previous interrupt request of the same type is present, requiring that the interrupt be cleared before it can occur
again. The same reasoning can be applied to the other items that reference this footnote.

t Set automatically by IRET.
When taking over an interrupt, the interrupt vector location is the two words starting at address T * 4,
where T is the interrupt type. This is at addresses 00140h-0015Ch for the hardware interrupts. The
instruction pointer (IP) offset of the interrupt service routine should be stored at the first word, and
the code segment (CS) address of the routine should be stored at the second word.

The existing interrupt vector should be saved when the interruptis taken over, then restored when the
program gives up the interrupt.

If the interrupt service routine is in a user-defined handler, the program should save the segment
address of the handler scratch area in the handler information table. See the "User-Defined Handlers"
chapter for details.

Software interrupt 1Ah for calling operating system functions is discussed in the "Operating System
Functions" chapter, and software interrupt 1Ch for the background timer is discussed in the "Timers"
chapter.

7-2 Interrupt Controller

-

interrupt Control and Status Registers

Theinterrupt control and status registers are shown below. A copy of the main interrupt control regis-

ter is maintained in the operating system scratch space for reference. Refer to the "Hardware Control

and Status Registers" chapter for further information.

Table 7-3. Iinterrupt Control and Status Registers

Register 1/0 Bits Read/

Name Address Used Write

interrupt Control 00h 0-7 W

Interrupt Status 0Ch 0-7 R

Interrupt Clear 01h 0-7 w

End of interrupt 0th None R

. 1: Enable
L System Timer interrupt { 0- Disable

. 1: Enable
Bar Code TimerInterrupt [0: Disable

Bar Code Port 1: Enable
Transition interrupt O: Disable Serial Port Data 1: Enable
Received Interrupt 0: Disable Low Main Battery |1: Enable
Voltage Interrupt 0: Disable 1: Enable

0: Disable
 Power Switch Interrupt [

1: Enable

0: Disable

1: Enable

0: Disable

 Reserved interrupt 1 { Reserved Interrupt 2 [

Figure 7-1. Interrupt Control Register (/O Address 00h, Write)

interrupt Controller 7-3

 L System TimerInterrupt [

7-4

1: Interrupted
0: Did NotInterrupt

1: interrupted
Bar Code TimerInterrupt [0: Did Not Interrupt

Bar Code Port 1: Interrupted
Transition Interrupt 0: Did Not Interrupt

Serial Port Data 1: Interrupted
Received Interrupt 0: Did NotInterrupt

Low Main Battery 1: Interrupted
Voltage Interrupt 0: Did Not Interrupt

1: Interrupted
Power Switch Interrupt [0: Did NotInterrupt

1: Interrupted
Reserved Interrupt 1 {0: Did Not Interrupt

1: Interrupted

Reserved Interrupt 2 [O: Did Not Interrupt

Figure 7-2. Interrupt Status Register (1/0 Address 00h, Read)

Interrupt Controller

1: Leave Unchanged

L System Timer interrupt [0- Clear

 Bar Code Timer Interrupt [1: Leave Unchanged

0: Clear

Bar Code Port 1: Leave Unchanged
Transition Interrupt |0: Clear Serial Port Data 1: Leave Unchanged
Received Interrupt |0: Clear Low Main Battery |1: Leave Unchanged
Voltage Interrupt 0: Clear 1: Leave Unchanged

0: Clear Power Switch Interrupt [1: Leave Unchanged
0: Clear

Reserved Interrupt 1 [1: Leave Unchanged

0: Clear
Reserved Interrupt 2 [

Figure 7-3. Interrupt Clear Register (/O Address 01h, Write)

X = ignore

Figure 7-4. End of Interrupt Register (1/0 Address 01h, Read)

 |

When the Operating System Disables Interrupts

The operating system disables interrupts by clearing the CPU interrupt flag (CLI) at two times that

may be important to time-critical interrupt service routines:

m While processing the display control character that homesthe cursor and clears the screen (OCh),

interrupts are disabled for ~45 ms. This may be important for serial and bar code port handlers.

m While checking to see if the beeper needs to be turned off, interrupts are disabled for ~50 us. This

may be important for bar code port handlers.

interrupt Controller 7-5

[

Operating System Functions

The interrupt software implements the following operating system functions:

Table 7-4. Interrupt-Related Operating System Functions

Function Function

Name Code

TIMEOUT 09h

SET_INTR 0Ah

7-6 Interrupt Controller

8

Keyboard

Chapter 8

Contents

8-1
8-2
8-2
8-2
8-3
8-5
8-5
8-6

Keyboard

Keyboard Shift Status
Display Backlight Control
Key Buffer
Waiting for a Key
Keyboard Scanning

Keyboard Scanning at Turn On
Keyboard Control and Status Registers
Operating System Functions

8

Keyboard
I

The HP-94 keyboard has 34 keys, arranged as shown below.

Power Switch

Reset Switch Contrast

/

*A B C D _ SHIFT

f1 7 13 f4 #

E F G H i d CLEAR

15 16 7 7 s 9

K L M N 0 P —
18 9 10 4 5 6

Q R S T U v E

f11 12 f13 1 2 3 N

T

W X Y Z SPACE| E

14 f15 16 0 00 - R

Figure 8-1. HP-94 Keyboard

 I

Keyboard Shift Status

The symbols on the upperleft corner of each key are in orange and can be entered when the keyboard
is shifted. The symbols on the lowerright corner of each key are in white and can be entered when the
keyboard is unshifted. Keys with only one centered symbol are in white and can be entered whether
the keyboard is shifted or not.

Keyboard 8-1

The keys labelled f1 through f16 are the user-defined keys, and have no predefined action associated
with them. When the keyboard is unshifted, they return ASCII 80h-8Fh which corresponds to the first
16 user-defined characters (see the "Display” chapter for details).

The key toggles between unshifted and shifted keys. The keyboard shift status is indicated by
the shape of the cursor. An underscore cursor indicates unshifted (white keys), and a block cursor indi-
cates shifted (orange keys).

 L

Display Backlight Control

The key controls the display backlight. If the key is held down for one second,the display
backlight will be turned on (or off if it was already on). When the backlight is toggled by holding down

for one second, the keyboard status and cursor type will be unchanged.

The backlight will turn off automatically after two minutes (120 seconds). This timeout can be set
under program control between 0 (never turn off) and 1800 seconds. The display backlight can be
turned on or off from a program by writing the appropriate display control character to the display:
1Eh turns on the backlight, and 1Fh turns off the backlight. The keyboard control register has a bit to
turn on and off the backlight.

CAUTION Leaving the display backlight on continuously or for long periods of time (greater
than 5 minutes) will reduce the life of the backlight.

 I

Key Buffer

There is an eight-character key buffer where the ASCII equivalents of each scanned key (not the key-
codes) are placed. A short, low tone beep will be issued when a key is placed in the key buffer (note
that this beep cannot be disabled). A long, high tone beep will be issued when a key is pressed after
the buffer is full — the key will be discarded. When the key is pressed, it is processed for
changing keyboard shift status and the backlight control, but is not placed in the key buffer.

 I

Waiting for a Key

While waiting for a key to be pressed, the keyboard software puts the CPU into its standby mode to
save power, and monitors the system timeout. The timeout is restarted every time a key is pressed.
When the timeout expires, the default behavior is to turn the machine off. If a program has defined a
power switch/timeout interrupt routine using the SETINTR function (0Ah), that routine will be
executed with a FAR CALL when the timeout expires. This will only occur in a running program, not in
command mode.

8-2 Keyboard

S

Keyboard Scanning

The keyboard is scanned by the operating system software every 5 ms. Keys are debounced for 25 ms.

When a key has been held down for 675 ms,it begins to repeat every 115 ms until it is released.

The keyboard control register has a bit for each column to be scanned. The keyboard is scanned by

clearing the bit corresponding to the column to be scanned, and reading the keyboard status register to

see which row(s) have a key down. If a key is down,the bit corresponding to that row will be set. The

correspondence between the keyboard and the bits in the keyboard control and status registers are

shown below.

Keyboard Control Register (I/O Address OEh, Write)

7 6 5 4 3 2 1 0

, . 1: Off
Display Backlight {0: On 0

1 Keyboard Status
2 Register

{1/0 Address
3 OEh, Read)

4

Figure 8-2. HP-94 Keycodes

If multiple columns are selected for scanning, the program will not be able to distinguish which key was

pressed. It will only be able to identify that a key in a particular row was held down.

The operating system scans the keyboard columns from right to left, and checks the rows from top to

bottom. The first key found down in that scanning sequence will be reported as a keycode (shown

above in hex). Other keys to the left or below the first key found will be ignored (the {CLEAR| and

sequence to enter command mode is scanned as a special case). The keycode will be translated

into an ASCII character according to the keyboard shift status and the following keyboard map.

Keyboard 8-3

Table 8-1. ASCII Characters and Keycodes for Each Key

Shifted Shifted Unshifted Unshifted
Key (orange) Character Key (white) Character Keycode

A (41h) (unmarked) user-defined (80h) 01h

B (42h) (unmarked) user-defined (81h) o6h

C (43h) (unmarked) user-defined (82h) 0Bh
D] D (44h) (unmarked) user-defined (83h) 10h

(E] E (45h) (unmarked) user-defined (84h) 02h

F (46h) (unmarked) user-defined (85h) 07h

[G] G (47h) (unmarked) user-defined (86h) 0Ch

H (48h) 7 (37h) 11h
i | (49h) 8 (38h) 16h

J (4Ah) (9] 9 (39h) 1Bh

K (4Bh) (unmarked) user-defined (87h) 03h

L (4Ch) (unmarked) user-defined (88h) 08h

M] M (4Dh) (unmarked) user-defined (83h) 0Dh
[N] N (4Eh) [4] 4 (34h) 12h
o] O (4Fh) (5] 5 (35h) 17h

[P P (50h) 6] 6 (36h) 1Ch
Q] Q (51h) (unmarked) user-defined (8Ah) 04h

[R] R (52h) (unmarked) user-defined (8Bh) 0sh
S (53h) (unmarked) user-defined (8Ch) OEh

[T T (54h) 1 (31h) 13h
U (55h) 2] 2 (32h) 18h

V] V (56h) [3) 3 (33h) 1Dh
(W] W (57h) (unmarked) user-defined (8Dh) 05h

X (58h) (unmarked) user-defined (8Eh) 0Ah
Y (59h) (unmarked) user-defined (8Fh) OFh

F3 Z (5Ah) (0] 0 (30h) 14h

[*] * (2Ah) [#] # (23h) 15h
(space) (20h) 00 (30h 30h) 19h

= — (2Dh) = — (2Dh) 1Ah
LJ . (2Eh) 0 . (2Eh) 1Eh

(SHIFT] (none) (none) 1Fh

[CLEAR] (CAN) (18h) (CAN) (18h) 20h
(DEL) (7Fh) (DEL) (7Fh) 21h

ENTER (CR) (0Dh) ENTER (CR) (0Dh) 22h

Referto the appendixes for a utility routine that scans the keyboard and returns the keycode of the first

Keyboard Scanning at Turn On

When the machine turns on, the operating system checks the keyboard after performing the first three

memory integrity checks (system ROM checksum, reserved scratch space read/write, and valid RAM

configuration). If any keys are down other than and , the machine will turn back off

immediately. Thisis to prevent accidental turn on (while in a full briefcase,for example).

Keyboard Control and Status Registers

The keyboard control and statusregisters are summarized below.

Table 8-2. Keyboard Control and Status Registers

Register
i/O Bits Head/

Name Address

|

Used Write

Keyboard Control
OEh o 7

Keyboard Status
OEh A "

7 6 5 4 3 2 1 0

Column 7 Select [é g;:gzded

Column 6 Select [8 g;teiggc"ed

coum s s[155255
Column 4 Select —; g;teiggaed

Column 3 Select _(1) g;;it‘:'gc‘ed

-
Column 1 Select :(1) g;figgmed

Display Backlight Control [(1) or

Figure 8-3. Keyboard Control Register (1/0 Address OEh, Write)

Keyboard 8-5

7 6 4 1 0

X{X|o0

—— Row 1 Scan

Row 2 Scan

Row 3 Scan

—— Row 4 Scan

Row 5 Scan

X = ignore

Figure 8-4. Keyboard Status Register (1/O Address OEh, Read)

i
O
-

O
-

O
—

 O-
Q
O
= : Key Down

: No Key Down

: Key Down

: No Key Down

: Key Down
: No Key Down

: Key Down
: No Key Down

: Key Down
: No Key Down

Operating System Functions

The keyboard software implements the following operating system functions:

Table 8-3. Keyboard-Related Operating System Functions

Keyboard

Function Function

Name Code

GET_CHAR 0th

GET_LINE 02h

PUT_CHAR 03h

PUT_LINE 04h

BUFFER_STATUS 06h

READ 12h

Display

Chapter 9

Contents

9-1

9-2

9-2

9-2

9-3

9-4

9-5

9-5

9-6

Display

Display Backlight Control
LCD Controllers
Writing Dotsto the Display
Display Control and Status Registers
Writing Charactersto the Display
Operating System Functions
User-Defined Characters

Structure of SYFT Font Definition File
Relationship to User-Defined Keys

9

Display
(™

The HP-94 has a liquid crystal display (LCD) with an electroluminescent backlight. The display is a

continuous dot-matrix of 120 columns and 32 rows, yielding 4 lines of 20 characters each, where each

character is in a 6 x 8 character cell. The built-in Roman-8 character set places characters in a 5 x 8

cell, leaving the right column of the 6 x 8 cell blank. It uses the eighth dot for descenders only. The

orientation of a character cell is shown below. The filled-in boxes are the dot positions used by the

built-in character set.

7 6 5§ 4 3 2 1 0

 8 dots

L
l
l
l
l
l
l
l
l

(
I
I
I
I
I
I
I
I

Column Dot Definition For 1: On
6 dots

User-Defined Characters 0: Off

Figure 9-1. 6 x 8 Character Cell

All characters are mapped upside-down. The upper dot of a column of a characteris bit 0 of the byte

containing the bit pattern for that column. There are 6 bytes per character, one per column from left

to right.

 I

Display Backlight Control

The key controls the display backlight. If the key is held down for one second, the display

backlight will be turned on (or off if it was already on). When the backlightis toggled by holding down

for one second, the keyboard status and cursor type will be unchanged.

Display 9-1

The backlight will turn off automatically after two minutes (120 seconds). This timeout can be set
under program control between 0 (never turn off) and 1800 seconds. The display backlight can be
turned on or off from a program by writing the appropriate display control character to the display:
1Eh turns on the backlight, and 1Fh turns off the backlight. The keyboard control register has a bit to
turn on and off the backlight.

CAUTION Leaving the display backlight on continuously or for long periods of time (greater
than 5 minutes) will reduce the life of the backlight.

 1

LCD Controliers

There are three LCD controllers. The row driver is a Hitachi HD61103A. It is not accessible to
software — the rows are driven automatically by the hardware.

The column driveris a Hitachi HD61102A. Since the column driver can only support 64 columns, two
are used. The left half driver controls columns 0-63 (counting from the left), and the right half driver
controls column 64-119. Columns 120-127 are ignored. The details of the column driver hardware,
operation, and usage are described in the Hitachi HD61102A data sheet in the "Hardware
Specifications".

 A

Writing Dots to the Display

Programs writing directly to the display hardware can write an 8-dot pattern to any column in the LCD.
As with characters, the dots in the column being written are represented upside-down in the byte con-
taining that dot pattern. A program cannot write individual dots to the display — the display control
registers only allow writing columns of data. (Since a program can read individual columnsof data,it
could read a column, change a dot, and write the column back. This would havethe effect of writing an
individual dot.)

 L

Display Control and Status Registers

The display control and status registers are shown below.

9-2 Display

Table 9-1. Display Control and Status Registers

Register iI/0 Bits Read/

Name Address Used Write

Keyboard Control OEh 7 w

Right LCD Driver Control 12h 0-7* w

Right LCD Driver Status 12h 0-7* R

Right LCD Driver Data 13h 0-7 R/W

Left LCD Driver Control 14h 0-7* w

Left LCD Driver Status 14h 0-7* R

Left LCD Driver Data 15h 0-7 R/W

* For the meaning of the bits in these registers, refer to the Hitachi HDE1102A data

sheet in the "Hardware Specifications".

1: Off

0: On
 Display Backlight Control [

Figure 9-2. Keyboard Control Register (1/0O Address OEh, Write)

Figure 9-4. Left LCD Driver Data Register (1/0 Address 15h, Read/Write)

 A

Writing Characters to the Display

The display software performs the generation of characters from the built-in Roman-8 character set.

The first half of the character set (characters 00h-7Fh) consists of standard U.S. ASCII characters. The

second half (80h-FFh) contains special characters, including those used by other languages. The

display software also displays user-defined characters in the range 80h-9Fh. These will be discussed

shortly.

Cursor shape, status, movement, and blinking is also controlled by the display software. The cursor

shape is a block to represent shifted keyboard status and an underline to represent unshifted status.

The cursor can be either on or off. When on,it is blinked every 500 ms (0.5 s).

Display 9-3

Power switch and low battery interrupts can occur while writing data to the display using operating sys-
tem functions. The system timeout does not occur when writing to the display (channel 0).

The display software processes display control codes for the following actions:

Table 9-2. Display Control Characters

Hex Value Meaning

01h (SOH) Turn on cursor.
02h (STX) Turn off cursor.
06h (ACK) High tone beep for 0.5 second.
07h (BEL) Low tone beep for 0.5 second.
08h (BS) Move cursor left one column. When the cursor reaches the left

end of the line, it will back up to the right end of the previousline.
When the cursor reaches the top left corner, backspace will have

no effect.

0Ah (LF) Move cursor down one line. If the cursor is on the bottom line, the
display contents will scroll up one line.

0Bh (VT) Clear every character from the cursor position to the end of the
current line. The cursor position will be unchanged.

0Ch (FF) Move cursor to upperleft corner and clear the display.

0Dh (CR) Move cursor to left end of current line.
OEh (SO) Change keyboard to numeric mode (underline cursor).
OFh (SI) Change keyboard to alpha mode (block cursor).
1Eh (RS) Turn on display backlight.
1Fh (US) Turn off display backlight.

Control codes not listed in this table are ignored — thatis, no character is displayed for those codes.

NOTE While processing the display control character that homes the cursor and clears the
screen (OCh), interrupts are disabled for ~45 ms. This time may be important to
serial and bar code port handlers.

 Y

Operating System Functions

The display software implements the following operating system functions:

9-4 Display

Table 9-3. Display-Related Operating System Functions

Function Function

Name Code

PUT_CHAR 03h

PUT_LINE 04h

CURSOR 05h

WRITE 13h

DISPLAYERROR 18h

]

User-Defined Characters

The HP-94 allows the font for 32 characters to be redefined: character codes 80h-9Fh, the control

codes for the upper 128 characters of the built-in Roman-8 character set. The operating system will

use these redefined characters only when a program is running — they will not be used in command

mode. When a program is executed (either with the S (start) command or by autostarting), the

operating system searches for a type A font definition file named SYFT. If this file is found, and is the

correct type, then the dot pattern for characters 80h-9Fh will be taken from it. If SYFT does not exist,

characters in that range will be displayed as blanks.

Character mapping will occur whenever characters 80h-OFh are displayed on the LCD using the

PUT_CHAR and PUT_LINE functions, or the WRITE function for channel 0 (functions 03h, 04h,

and 13h). PUTCHAR and PUT_LINE are used by the BASIC I/O keywords PRINT, PRINT

USING, PRINT #, PRINT #...USING, and PUT #.

Structure of SYFT Font Definition File

The SYFT font file must contain definitions for 32 characters. If it does not, some characters will be

constructed from the contents of the file immediately following SYFT (higher in memory). While this

will not have any harmful side effects,it is unlikely to provide useful characters. Unlike type A pro-

gram files, SYFT does not require a program header.

Thereare six bytes per character in SYFT, one for each ofthe six columnsof data to be defined in the

character’s 6 x 8 character cell. All six bytes can be used for dot information. The built-in Roman-8

character set leaves the rightmost column of each character blank to provide intercharacter spacing,

but that is not required.

All characters are mapped upside-down. The upper dot of a column of a characteris bit 0 of the byte

containing the byte for that column. This is illustrated in the earlier picture of a 6 x 8 charactercell.

To create SYFT, enter the dot patterns (upside-down) into an assembly language source file, then

assemble and link the file. Run HXC on the resulting EXE file, specifying file type A and handheld

file name SYFT.

Display 9-5

Relationship to User-Defined Keys

The HP-94 has 16 keys which have no predefined use: the alphabetic keys whose unshifted keycaps
(lower right corner) are unmarked. These are shown as f7-f716 on the keyboard layout in the "Key-
board" chapter, and correspond to character codes 80h-8Fh, half of the control codes for the upper 128
characters of the built-in Roman-8 characterset.

Whether or not these keys cause the corresponding user-defined character to be echoed to the display
depends on which operating system function was used to read the keyboard. GET_CHAR and READ
for channel 0 (functions 01h and 12h) do not echo user-defined characters, while GET_LINE (02h)
does. The only BASIC I/O statements that echo to the display while accepting keyboard input are
INPUT and INPUT #, and they both use GETLINE.

Even when echoing of keyboard input occurs, it will still track the behavior of user-defined characters
— that is, echoed as blanks if no SYFT exists or if the machine is in command mode, and echoed as

user-defined characters if SYFT exists and a program is running,

9-6 Display

10

Serial Port

Contents
 R

Chapter 10 Serial Port

10-1 Signal Levels
10-1 Enabling or Disabling the Serial Port
10-2 Initializing the Serial Port
10-2 Processing the Serial Port Data Received Interrupt
10-2 Serial Port Control and Status Registers
10-5 Built-in Serial Port Handler
10-5 Built-in Serial Port Handler Capabilities
10-7 Parameters at OPEN Time
10-8 Control Line Behavior
10-9 Operating System Functions

10

Serial Port

The HP-94 serial port is a read/write port controlled by an OKI MSM82C51A Universal Asynchro-

nous Receiver Transmitter (UART). This is a CMOS UART compatible with the Intel 8251A. (It is

actually a USART, but the 94 does not provide the additional hardware needed for synchronous opera-

tion.) The details of the UART hardware, operation, and usage are described in the Oki MSM82CS51A

data sheetin the "Hardware Specifications” elsewhere in this manual.

 O

Signal Levels

The serial port signal levels are 0 to V, (~0-5) volts. Not all devices can operate at those levels, and

mayrequire the HP 82470A RS-232-C Level Converter. The converter changes the 0 to V,, signal lev-

els into +9 to -9 volts for those devices that require it. Refer to the "Hardware Specifications" for

details on the signal levels as well as the connector pinouts for the serial port and the level converter.

 |

Enabling or Disabling the Serial Port

The 82C51 can be enabled or disabled under software control. Poweris supplied to the level converter

only when it is enabled; it is only at this time that serial port has any power consumption. When the

82C51 is enabled, the 94 provides a baud rate clock at 16 times the desired baud rate. Before a pro-

gram transmits or receives with the 82C51, the UART must be set in 16x mode. When the 82C51 has

received an entire byte of serial data (including the start and stop bits) and checked for errors (parity,

framing, and UART overrun), the serial port data received interrupt (type 53h) will be issued.

(Y

Initializing the Serial Port

Below are the things that must be done to initialize the serial port in the OPEN routine of a user-

defined serial port handler.

m Take over the existing serial port interrupt vector.

m Set the baud rate clock value.

m Turn on powerto the serial port, and wait 60 msto allow the level converter to power up. This

turn-on delay may not accommodate the turn-on or reset time required by the RS-232 device con-

nected to the serial port.

(Note: when turning off the serial port, the CLOSE routine should wait 60 ms after the 82C51 is

disabled to allow signals to stabilize.)

= Reset the 82C51, and setit to the desired initial state.

Serial Port 10-1

= Enable the serial port interrupt.

]

Processing the Serial Port Data Received Interrupt

When the data received interrupt occurs, the following actions should be taken by the interrupt service
routine. These are in addition to whatever data processing is done in the routine, and to normal inter-
rupt routine overhead such as reading the end of interrupt register.

m Check if an 82C51 error occurred. If so, clear it.

m Read the data from the serial port data register.

NOTE While processing the display control character that homes the cursor and clears the
screen (OCh), interrupts are disabled for ~45 ms. This time may be important to
serial port handlers.

 0

Serial Port Control and Status Registers

Theserial port control and status registers are summarized below.

Table 10-1. Serial Port Control and Status Registers

Register 1/0 Bits Read/
Name Address Used Write

Interrupt Control 00h 3 W
Interrupt Status 0oh 3 R
Interrupt Clear 0th 3 W

Baud Rate Clock Value 0Ah 0-2 w

Main Control 0Bh 2 W
Main Status 0Bh 2 R

Serial Port Data 10h 0-7 R/W
Serial Port Control 11h 0-7* w
Serial Port Status 11h 0-7* R

* For the meaning of the bits in these registers, refer to the Oki MSM82C51A data
sheet in the "Hardware Specifications".

10-2 Serial Port

Serial Port Data 1: Enable
Received interrupt |0: Disable

Figure 10-1. Interrupt Control Register (/O Address 00h, Write)

Serial Port Data 1: Interrupted
Received Interrupt |0: Did Not Interrupt

Figure 10-2. Interrupt Status Register (I/0 Address 00h, Read)

Serial Port Data 1: Leave Unchanged
Received Interrupt |0: Clear

Figure 10-3. Interrupt Clear Register (1/O Address 01h, Write)

tBaud Rate (see table for meaning)

X = don'’t care

Figure 10-4. Baud Rate Clock Value Register (/0 Address OAh, Write)

Serial Port 10-3

Table 10-2. Baud Rate Clock Values

Baud Rate Baud Frequency
Clock Value Rate (kHz) *

0 19200 ¢ 307.2

1 9600 153.6

2 4800 76.8

3 2400 38.4

4 1200 19.2

5 600 9.6

6 300 4.8

7 150 24

* The actual clock frequency is 16 times the desired baud rate.

t Available but not supported.

 Serial Port 1: Enable

Power Control 0: Disable

X = don'’t care

Figure 10-5. Main Control Register (I/O Address 0Bh, Write)

 1: Not Detected
Carrier Detect Status [0: Detected

X = ignore

Figure 10-6. Main Status Register (I/O Address 0Bh, Read)

Figure 10-7. Serial Port Data Register (I/O Address 10h, Read/Write)

10-4 Serial Port

T

Built-In Serial Port Handler

Thebuilt-in serial port handleris the one used when the serial port is opened and the null string (")

is provided as the handler name. This handler is always used by the C (copy) operating system com-

mand and by the resident debugger when using the serial port as the console, even when user-defined

handlers are available. The handler is designed for use with general serial devices that do not perform

hardware handshaking.

Built-In Serial Port Handler Capabilities

The built-in serial port handler provides the following capabilities:

m Full Duplex Communications
Two-way simultaneous communications.

m Received-Data Buffering
Received datais placed in a 64-byte buffer. There is no transmit buffer.

m Speeds
Speeds can be set from 150 to 9600 baud (19200 baudis available but not supported).

m Data Bits
Seven oreight.

m Parity
0dd,even, or no parity.

m Stop Bits
One or two stop bits.

m XON/XOFF Software Handshaking

When enabled,this option allows received XON (11h) and XOFF (13h) charactersto start and stop

HP-94 transmissions, and causes XON and XOFF characters to be sent to start and stop host

transmissions.

m Null Stripping
When enabled, this option causes any received NUL characters (00h) to be stripped from and not

counted as received data, and not placed in the receive buffer.

= Terminate Character Control

When defined, a received terminate character will end the wait for a fixed-length block of data,

even if all the data has not been received. A terminate character will be sent after sending every

block of data.

s Control Lines
RTS and DTR are raised when the serial port handler is opened, and lowered when the handler is

closed. CTS is monitored indirectly by checking if the TXRDY status bit in the 82C51 goes high

within three byte-times after attempting to transmit a byte. In addition, Vi (switched V) is sup-

plied to powerthe level converter when the handleris opened, and not supplied when the handleris

closed.

The table below describes how the built-in serial port handler behaves. It shows the action taken by

the handler routines as well as during its interrupt service routine, not including normal handler activi-

ties described in the "User-Defined Handlers" chapter. Note that certain actions, such as sending an

XON or responding to a received terminate character, will only occurif the appropriate options were

enabled when the handler was opened.

Serial Port 10-5

Table 10-3. Behavior of Built-In Serial Port Handler

Routine Activities

CLOSE Complete transmission of current byte
Disable interrupt 53h
Flush receive buffer
Lower RTS and DTR
Wait 60 ms for signals to stabilize
Disable 82C51 and turn off powerto serial port

TOCTL Do nothing

OPEN Flush receive buffer
Enable 82C51 and supply power to level converter
Wait 60 ms for level converter turn on
Initialize operating configuration *
Raise RTS and DTR
Enable interrupt type 53h
Send single XON
Ignore parity, framing, overrun, and receive buffer overflow errors

POWERON Do nothing

READ Monitor and report low battery, power switch, and timeout errors
Report errors detected in interrupt service routine

Send XON when receive buffer emptied
End and report error 74h (116) if terminate character detected
Return data from receive buffer

RSVD2 Do nothing

RSVD3 Do nothing

TERM Do nothing

WARM Perform all OPEN routine activities except sending XON

WRITE Monitor and report low battery, powerswitch, and timeout errors t
Monitor CTS indirectly and report error DAh (218)if lost
Write data to 82C51
Send terminate character at end of data

Interrupt

Service Monitor parity, framing, overrun, and receive buffer overflow errors
Read data from 82C51 and accumulate data into receive buffer
Disable transmission when XOFF received
Enable transmission when XON received

Send XOFF for each byte when buffer 3/4 full
Strip nulls (00h)
 * Baud rate, data format, XON/XOFF handshaking, null stripping, and terminate character.
t System timeout restarts after each byte received or transmitted.

The errors reported by the built-in serial port handler are shown in the following table.

10-6 Serial Port

Table 10-4. Errors Reported by Built-In Serial Port Handler

Routine Errors

CLOSE None

JOCTL None

OPEN 65h

POWERON None

READ 74h,76h,77h,C8h,C9h,CAh,CBh,CCh,CDh,CEh,CFh,DOh

RSVD2 None

RSVD3 None

TERM None

WARM None

WRITE 76h,77h,C8h,DAQ

interrupt Coh,CAh,CBh,CCh,CDh,CEh,CFh,DOh

Service * t Detected by interrupt service routine, but reported by READ routine.

Parameters at OPEN Time

When the built-in serial port handler is opened, DS : DX must point to a three-byte parameter area.

The meanings of the parameters are shown below.In these figures,the offsets are from DS : DX.

4 3 2 1 0

0|0 |0

L—‘j—— Baud Rate (see table for meaning)

Figure 10-8. Baud Rate — Parameter Byte 1 (Offset 00h)

Table 10-5. Built-In Serial Port Handler Baud Rate Values

Baud Rate

19200 *
9600
4800
2400
1200
600
300
150

* Available but not supported.

VYalue

 N
s
W
N
—
-
O

Serial Port 10-7

 L XON/XOFF Handshaking {

X = don’t care

1: Enabled

0: Disabled

, 1:8
Data Bits [0: 7

1: Enabled
Parity Checking [0- Disabled

. 1: Even
Parity Type * [0: Odd

. 1:2
Stop Bits [0:]

Null Stripping [(1) E?i%fie%

Figure 10-9. Data Format — Parameter Byte 2 (Offset 01h)

The default values for the parameters are 01h (9600 baud), 0Dh (XON/XOFF enabled, 7 data bits,
parity checking enabled, even parity, one stop bit, and null stripping disabled), and 00h (no terminate
character).

Control Line Behavior

The 82C51 can monitor or control only a subset of the standard RS-232 control lines. Ofthose lines
not monitored, one can be monitored indirectly, and one can be monitored using other HP-94
hardware. Notall these hardware capabilities are actually used by the built-in serial port handler. The
usage is summarized below.

Figure 10-10. Terminate Character { — Parameter Byte 3 (Offset 02h)

* The parity type is ignored if parity checking is disabled.

t To disable use of the terminate character, setit to zero.

10-8 Serial Port

Table 10-6. Control Line Behavior

Control Line Monitored or Monitored or

Controlled By Controlled By

Symbol Name Hardware Built-in Handler

CTS clear to send monitored * monitored *

DSR data set ready monitored not monitored

DCD data carrier detect monitored not monitored

RTS request to send controlled controlled

DTR data terminal ready controlled controlied

* Monitored indirectly by checking if the TxRDY status bit in the 82C51 goes high within three

byte-timesafter attempting to transmit a byte.
A user-defined serial port handler could use all the lines supported by the hardware. Refer to the

"User-Defined Handlers" chapter for details on bow to write a user-defined serial port handler.

Whenthe serial portis disabled, the control lines are turned off (set to 0 volts).

Y

Operating System Functions

The serial port software implements the following operating system functions:

Table 10-7. Serial Port-Related Operating System Functions

Function Function

Name Code

BUFFER_STATUS 06h

OPEN OFh

CLOSE 10h

READ 12h

WRITE 13h

Serial Port 10-9

11

Bar Code Port

Contents

Chapter 11

11-1

11-1

11-1

11-2

11-2

11-3

Bar Code Port

Bar Code Port Power and Transition Detection
Bar Code Timer
Initializing the Bar Code Port
Processing the Bar Code Port Transition Interrupt
Bar Code Port Timing Constraints
Bar Code Port Control and Status Registers

11

Bar Code Port
T

The HP-94 bar code portis a read-only port designed to connect to bar code scanning devices such as

wands. The port provides power to the external device. Interrupt control, timing for light and dark

transitions, and light or dark state is available to programs reading bar code data.

]

Bar Code Port Power and Transition Detection

The main control register is used to enable powerto the bar code port (and to the device attached to

it) and, independently, to enable transition detection at the port. Once the port is powered and detect-

ing transitions, interrupt type 52h will be issued whenever a transition occurs at the port — either

light-to-dark or dark-to-light. When the interrupt occurs, the light or darkstate is indicated by reading

the main status register.

b

Bar Code Timer

The bar code timer is a 12-bit count-up timer with a 26 us interval. This resolution allows timing inter-

vals from 26 us to 106.7 ms. Becauseit is a count-up timer, it must be set using the complementof the

desired number of intervals. When the timer overflows (counts up to zero), interrupt type 51h is gen-

erated. Thisis usually used to indicate the end of a scan.

When the timer reaches zero, it is automatically reset to its starting value and restarted. If the count

value hasto be set to a specific value, the timer must be stopped first. Unlike the system timer, the bar

code timer can be reset to zero while it is still running,

When the bar code port transition interrupt occurs, the timer value can be captured (i.c., placed in the

timer data registers where it can be read) to indicate how long the bar code port has been at the

current state. Then the timer can be reset to zero to continue counting up for the next transition. The

value can be captured while the timeris still running,

I

Initializing the Bar Code Port

Below are the things that must be doneto initialize the bar code port.

m Take over the existing bar code port transition and timer interrupt vectors.

= Turn on power to the bar code port, and enable transition detection.

m Set the bar code timer to the desired initial value (or clear it), and start the timer.

m Enable the bar code port transition and timerinterrupts.

Some of the initialization activities will be done in the OPEN routine of a bar code port handler, while

Bar Code Port 11-1

others will be done in the READ routine. This will be discussed shortly.

 T

Processing the Bar Code Port Transition Interrupt

Whenthe transition interrupt occurs, the following actions should be taken by the interrupt service rou-
tine. These are in addition to whatever data processing is done in the routine and to normal interrupt
routine overhead such as reading the end of interrupt register.

= Capture the current timervalue into the timer data registers (04h and 05h) by writing to the timer
value capture register (07h).

m Read the captured timer data from the timer dataregisters.

m Reset the timer to the desired value. If it is a specific value, stop the timer with the timer control
register (06h), set the values, and restart it. If it is only necessary to clear the timer, do so by writing
to the timerclear register (08h).

m Determineif the state after the transition is light or dark by reading the main status register (0Bh).

 ™

Bar Code Port Timing Constraints

The bar code port transition interrupt occurs on every transition. This requires an order of magnitude
more processing time than the serial port, since its interrupt occurs only after the 82C51 has received
10-12 transitions (bits) of serial data. Experience has shown that it is unlikely that a bar code port
handler can be run "in the background"to simply fill a receive buffer. When other interrupts occur, the
CPU interrupt flag will be cleared while the corresponding interrupt service routine executes. This
results in periods of time when bar code port transition interrupts occur but cannot be processed, and
therefore may be missed.

To deal effectively with these timing constraints, a bar code port handler should only process bar code
data during its READ routine. The transition and timer interrupts should only be enabled then, and
certain other interrupts should be disabled to prevent transitions from being missed. The machine
should essentially become dedicated to the sole task of reading bar code transitions for the duration of
the READ operation. This is in contrast to a serial port handler, which can run "in the background",
save data in its receive buffer when interrupts occur, and return the data in the buffer when its READ
routine is called.

The particular interrupts that should be disabled are the system timer (50h) and serial port data
received (53h). The latter has the side effect that data cannot be received by the serial port while bar
code labels are being scanned. The former has the side effectthat the events paced by the system timer
will not occur for the period of time that the timer interrupt is disabled. Referto the "Timers" chapter
for details. There are utility routines available to perform some of these tasks (scan keyboard and
blink cursor) without clearing the CPU interrupt flag. Refer to the appendixes for details.

The low main battery voltage (54h) and power switch (55h) interrupts should remain enabled, since
those events need to be monitored by the handler to determineif it should abort a read operation.

11-2 Bar Code Port

NOTE While processing the display control character that homes the cursor and clears the

screen (OCh), interrupts are disabled for ~45 ms. While checking to see if the beeper

needs to be turned off, interrupts are disabled for ~50 us. These times may be impor-

tant to bar code port handlers.

R

Bar Code Port Control and Status Registers

The bar code port control and status registers are shown below.

Table 11-1. Bar Code Port Control and Status Registers

Register 1/0 Bits Read/

Name Address Used Write

interrupt Control 00h 1-2 w

Interrupt Status 00h 1-2 R

Interrupt Clear 01h 1-2 w

Bar Code Timer Data 04h 0-7 R/W

Bar Code Timer Data 05h 0-3 R/W

Bar Code Timer Control 06h 0 w

Bar Code Timer Value Capture 07h None w

Bar Code Timer Clear 08h None w

Main Control 0Bh 34 w

Main Status 0Bh 0 R

. 1: Enable
Bar Code TimerInterrupt [0: Disable

Bar Code Port 1: Enable
Transition Interrupt O: Disable

Figure 11-1. Interrupt Control Register (1/O Address 00h, Write)

Bar Code Port 11-3

 1: Interrupted
Bar Code TimerInterrupt [0: Did Not Interrupt

 Bar Code Port 1: Interrupted
Transition Interrupt 0: Did Not Interrupt

Figure 11-2. Interrupt Status Register (/0O Address 00h, Read)

 Bar Code TimerInterrupt [1: Leave Unchanged

0: Clear

Bar Code Port 1: Leave Unchanged
Transition Interrupt 0: Clear

Figure 11-3. Interrupt Clear Register (1/0 Address 01h, Write)

Figure 11-4. Bar Code Timer Data Register * (1/0 Address 04h, Read/Write)

7 6 5 4 3 2 1 0

XX X|X

X = ignore

Figure 11-5. Bar Code Timer Data Register { (1/0 Address 05h, Read/Write)

* Lower 8 bits of the 12-bijt timer value.

t Upper4 bits of 12-bit timer value.

11-4 Bar Code Port

X = don’t care

1: Start L Start/Stop [0_ Stop

Figure 11-6. Bar Code Timer Control Register (1/O Address 06h, Write)

X = don’t care

Figure 11-7. Bar Code Timer Value Capture Register (I/0 Address 07h, Write)

X

X

X = don't care

Figure 11-8. Bar Code Timer Clear Register (I/O Address 08h, Write)

X = don't care

Bar Code Port 1: Enable

Power Control 0: Disable

Bar Code Port 1: Enable

Transition Control 0: Disable

Figure 11-9. Main Control Register (1/0 Address 0Bh, Write)

Bar Code Port 11-5

 1: Light
L Bar Code Port Status [0- Dark

X = ignore

Figure 11-10. Main Status Register (/O Address 0Bh, Read)

11-6 Bar Code Port

12

Timers

Chapter 12

Contents

12-1

12-2

12-2

12-3

12-3

12-4

12-7

Timers

System Timer
System Timeout
Display Backlight Timeout
Background Timer

Bar Code Timer
Timer Control and Status Registers
Operating System Functions

12

Timers

S

The HP-94 has two timers available other than the real-time clock: the system timer and the bar code

timer. These use a different time base than the real-time clock, and their accuracy is +0.1%.

Table 12-1. HP-94 Timers

Timer No. of Time Timer

|

Overflow

|

Overflow

|

Maximum

Name Bits interval

|

Type interval Interrupt Time

System 8 0.417ms up 5ms 50h 106.7 ms

Bar Code 12 26 us up —* 51h 106.7 ms

* Not defined by the operating system. Defined only by bar code port handler.

System Timer

The system timeris an 8-bit count-up timer with an interval of 0.417 ms. It is initialized to -12 (-0Ch),

so it overflows (counts up to zero) every S ms (12 * 0417 = 5 ms, complemented because it is a count-

up timer). When the system timer overflows,interrupt type 50h is generated. This interrupt is used to

pace six different events in the operating system, shown below. While these events are checked and

appropriate action is taken, interrupts are enabled except during the beeper event.

Table 12-2. Events Checked By System Timer Interrupt Routine

Timing How Often How Often

Event Event Checked Action Taken

Scan Keyboard 5ms Put keyinto key buffer after 25 ms debounce

Start key repeatif keystill down after 675 ms

Repeat key every 115 ms

Turn Off Beeper 10 ms Turn beeperoff after current beep time expires

Blink Cursor 100 ms Blink cursor every 500 ms

System Timeout 1s Tumn off machine or execute user-defined

power switch/timeout routine after current

system timeout expires

Display Backlight 1s Turn off backlight after current backlight

Timeout timeout expires

Background Timer 1s Execute background timer interrupt routine

every1s

Timers

12-1

NOTE While the beeperis checked to see if it needs to be turned off, interrupts are disabled
for ~50 ps. This time may be important to bar code port handlers.

System Timeout

The system timeoutis the time after which the machine will automatically turn off. It can be set from
0-1800 seconds using the TIMEOUT function (09h). The timeout is in effect while the machine is
waiting for keyboard input or for data to be received at the serial or bar code ports. It will abort read
operations from channels 0-4 and write operations to channels 1-4. It will not abort create, read, write,
or delete operations for channels 5-15. The operating system will take one of the following actions
when the system timeout expires:

m Turn off the HP-94.
This is the default behaviorif the program has not defined a power switch/timeout routine using
the SET_INTR function (OAh). The next time the machine is turned on, it will cold start.

® Execute the user-defined power switch/timeoutinterrupt routine.
If the program has defined a power switch/timeout routine with SETINTR, that routine will be
executed with a FAR CALL (and therefore must end with a FAR RET). The AL register will be set
to 76h, the timeout error, and the DS register will be set to the value specified when SETINTR
was called. This will only occur during a running program, not in command mode. When timeouts
are monitored during I/O by a user-defined handler, the handler must execute the user-defined
interrupt routine.

m Ignore the system timeout.
If the program has disabled the system timeout by setting the timeout value to 0 with TIMEOUT,
the operating system will ignore the system timeout.

The TERM routine of any open user-defined handlers will not be executed. Since each handler must
monitor the system timeoutitself, that handler will be the only one waiting on 1/0 when the timeout
expires. Consequently,it is the only onethat needsto terminate I/0.

Display Backlight Timeout

The display backlight timeoutis the time after which the machine will automatically turn off the display
backlight. This timeout is in effect whenever the backlight is on. It can be set from 0-1800 seconds
using the TTMEOUT function.

Whenthe display control codeis processed to turn on or off the display backlight, the operating system
controls the backlight state when keyboard scanning is done. If the system timer is disabled, no scan-
ning is done, so the backlight will not be controlled. If a program disables the system timer, it must
turn on the backlight explicitly using the keyboard control register, and then turn the backlight off
explicitly after the timeout expires.

12-2 Timers

CAUTION Leaving the display backlight on continuously or for long periods of time (greater
than 5 minutes) will reducethe life of the backlight.

Background Timer

The background timer is a one-second heartbeat timer that the machine provides for assembly

language programsto use. Once a second, the operating system will issue a FAR CALLto the address in

interrupt vector 1Ch, the background timer interrupt.

To take over the background timer interrupt, the program must do the following:

m Read the background timer interrupt vector (address 1Ch * 4 = 00070h), and save it in the

program’s scratch area.

m Write the address of the program’s background timerinterrupt routine into the vector location. The

instruction pointer (IP) offset should be stored at the first word, and the code segment (CS)

address should be stored at the second word.

To use the background timer interrupt, the program must do the following:

®m When the interrupt routineis called, perform whatever processing is necessary.

m At the end of the routine, execute a FAR JMP to the address of the previous background timer

interrupt routine.

The FAR JMP has the effect of daisy-chaining all the background timer interrupt routines together,

allowing different programs to share the same interrupt. The last routine in the chain is the default

routine, which is simply a FAR RET to end the aggregate background timer interrupt.

If the background timer does not provide enough resolution (1 second) for the program, the program

can take over the system timer interrupt (vector at address 50h * 4 = 00140h) in the same manner

(save the current interrupt vector, and FAR JMP to it at the end of the interrupt routine). This will
provide a 5 ms timing resolution.

CAUTION The background timer routine must not clear the CPU interrupt flag (CLI). Doing
so may cause interrupts from hardware devices to be delayed long enough that
time-critical interrupt service routines (for open user-defined handlers) may miss
their data.

|

Bar Code Timer

The second timeris the bar code timer, a 12-bit count-up timer with an interval of 26 us. It is reserved
for use by bar code port handlers, so it is never initialized to any value by the operating system. Like
the system timer, it must be set using the complement of the desired number of intervals. When it
overflows, interrupt type 51h is generated.

When either timer reaches zero, the timer is automatically reset to its starting value and restarted. If

Timers 12-3

the count value has to be set to a specific value, the timer must be stopped first. The bar code timer
can beresetto zero or haveits current value captured whileit is still running,

 N

Timer Control and Status Registers

The timer control and status registers are shown below.

Table 12-3. Timer Control and Status Registers

Register 1/0 Bits Read/
Name Address Used Write

Interrupt Control 00h 0-1 w
Interrupt Status 0Ch 0-1 R
Interrupt Clear 01h 0-1 W

System Timer Data 02h 0-7 R/W
System Timer Control 03h 0 w
Bar Code Timer Data 04h 0-7 R/W
Bar Code Timer Data 05h 0-3 R/W
Bar Code Timer Control 06h 0 w
Bar Code Timer Value Capture 07h None W
Bar Code Timer Clear 08h None W

 1: Enable

0: Disable
 System Timer Interrupt [

 1: Enable
L—- Bar Code Timer Interrupt { 0: Disable

Figure 12-1. Interrupt Control Register (/O Address 00h, Write)

1: Interrupted

0: Did Notinterrupt
 —— System Timer Interrupt [

 1: Interrupted
Bar Code TimerInterrupt { 0: Did NotInterrupt

Figure 12-2. Interrupt Status Register (I/O Address 00h, Read)

12-4 Timers

1: Leave Unchanged
0: Clear

 L System Timer interrupt [

 1: Leave Unchanged
Bar Code TimerInterrupt [0: Clear

Figure 12-3. Interrupt Clear Register (/O Address 01h, Write)

 1: Start
L Start/Stop [0_ Stop

X = don't care

Figure 12-5. System Timer Control Register (1/0O Address 03h, Write)

Timers 12-5

XX XX

X = ignore

Figure 12-7. Bar Code Timer Data Register { (I/O Address 05h, Read/Write)

1. Start

0: Stop
 L Start/Stop [

X = don't care

Figure 12-8. Bar Code Timer Control Register (I/O Address 06h, Write)

X |X XXX X]|X]X

X = don’t care

Figure 12-9. Bar Code Timer Value Capture Register (1/0 Address 07h, Write)

X|X |X[X]X]|X

X = don'’t care

Figure 12-10. Bar Code Timer Clear Register (1/0 Address 08h, Write)

* Lower 8 bits of the 12-bit timer value.

t Upper 4 bits of 12-bit timer value.

12-6 Timers

A

Operating System Functions

The timersoftware implements the following operating system functions:

Table 12-4. Timer-Related Operating System Functions

Function Function

Name Code

TIMEOUT 09h
SET_INTR 0Ah

Timers 12-7

13

Power Switch

Contents

Chapter 13

13-1

13-2

Power Switch

Power Control and Status Registers
Operating System Functions

13

Power Switch

The HP-94 powerswitch provides software control for turning the machine off. When the HP-94 is off,

pressing the power switch turns the machine on. When the machine is on, pressing the power switch

generates interrupt type 55h. The power switch interrupt will abort read operations from channels 0-4

and write operations to channels 1-4. It will not abort create, read, write, or delete operations for

channels 5-15. The operating system will take one of the following actions in response to this interrupt:

m Turn off the HP-94.

This is the default behavior if the program has not defined a power switch/timeout interrupt rou-

tine using the SETINTR function (OAh). The next time the machine turns on,it will cold start.

m Execute the user-defined power switch/timeout routine.

If the program has defined a power switch/timeout interrupt routine with SET_INTR,that rou-

tine will be executed with a FAR CALL (and therefore must end with a FAR RET). The AL register

will be set to 77h, the power switch error, and the DS register will be set to the value specified

when SET_INTR was called. This only occurs when the power switch is pressed during a running

program, not in command mode.

m Ignore the power switch.
If the program has disabled the power switch with SETINTR, the operating system will respond

to the interrupt but take no action, thereby ignoring the power switch.

In the first two cases, the TERM routine of any open user-defined handlers will be executed before the

action is taken.

To turn the machine off, the operating system writes to the power control register.

Power Control and Status Registers

The power control and status registers are shown below.

Table 13-1. Power Control and Status Registers

Register i/0 Bits Read/
Name Address Used Write

interrupt Control 00h 5 w
interrupt Status 00h 5 R
interrupt Clear 01h 5 w

Power Control 1Bh None w

Power Switch 13-1

 1: Enable

0: Disable
 Power Switch Interrupt [

Figure 13-1. Interrupt Control Register (1/0 Address 00h, Write)

 1: Interrupted
0: Did NotInterrupt

 Power Switch Interrupt [

Figure 13-2. Interrupt Status Register (/O Address 00h, Read)

 1: Leave Unchanged
0: Clear

 Power Switch Interrupt {

Figure 13-3. Interrupt Clear Register (1/O Address 01h, Write)

X = don’t care

Figure 13-4. Power Control Register (/O Address 1Bh, Write)

 1

Operating System Functions

The power switch software implements the following operating system functions:

Table 13-2. Power Switch-Related Operating System Functions

Function Function

Name Code

END_PROGRAM 00h
SET_INTR OAh

13-2 Power Switch

14

Batteries

Contents
]

Chapter 14

14-1
14-2
14-2
14-4

Batteries

Main Nickel-Cadmium Battery Pack
Backup Lithium Batteries
Battery Control and Status Registers
Operating System Functions

14

Batteries

The HP-94 contains two types of batteries: nickel-cadmium batteries as the main power source, and

lithium batteries for memory backup. Details about the characteristics of these batteries is in the

"Hardware Specifications" elsewhere in this manual.

|

Main Nickel-Cadmium Battery Pack

The main power source for the machineis a rechargeable nickel-cadmium (NiCd) battery pack with a

nominal capacity of 900 mAh. The machine operating voltage (which is slightly below the battery pack

voltage) is continuously checked by the low battery detection circuitry whenever the machine is on.

When the operating voltage drops to 4.6 + 0.05 volts or below, interrupt type 54h is generated. The

low battery interrupt will abort read operations from channels 0-4 and write operations to channels 1-4.

It will not abort create, read, write, or delete operations for channels 5-15. The operating system will

take one of the following actions in response to this interrupt:

m Halt all machine activities, issue error 200, and wait for the user to press the power switch to turn

the machine off.
This is the default behavior if the program has not defined a low battery interrupt routine using the

SETINTR function (OAh). The following activities are halted:

Table 14-1. Activities Halted During Default Low Battery Behavior

Activity Action

or Device Taken

Cursor Turned Off
Interrupts Disabled
System Timer Turned Off
Bar Code Timer Turned Off

Beeper Turned Off
Keyboard Disabled
Display Backlight Turned Off
Serial Port Disabled
Serial Port Power Turned Off
Bar Code Power Turned Off
Bar Code Transitions Disabled

The next time the machine is turned on, it will cold start.

= Exccute the user-defined low battery routine.
If the program has defined a low battery interrupt routine with SETINTR, that routine will be
executed with a FAR CALL (and therefore must end with a FAR RET). The DS register will be set
to the value specified when SET_INTR was called. This only occurs during a running program,

Batteries 14-1

not in command mode.

In both cases, the TERM routine of any open user-defined handlers will be executed before the action
is taken. SETINTR does not allow disabling the low battery interrupt.

The low battery interrupt only occurs once, when the main battery voltage drops below 4.6 volts. At
that point, the program has 2-5 minutes left before the battery voltage drops so low that the machine
turnsitself off automatically without warning. The low battery interrupt will not occur again until the
machine has been turned off and back on. If the battery remains below 4.6 volts while the 94 is off, the
machine will not turn back on again until the battery has been recharged enough to bring its voltage
above that level (~4.8 volts). (The machine actually turns on, but the operating system turns it off
before any memory integrity tests are performed if the voltage is too low.)

The actual amount of time available depends on what is happening when the low battery condition
occurs. For example, the display backlight takes more power, as does the HP 82470A RS-232-C Level
Converter (if one is connected to the serial port), so less operating time will be available if these are
on. The time also depends on how much the battery was charged during its last charging cycle, the
ambient temperature, and many other factors. Because the remaining operating time is variable, the
program should respond to the low battery interrupt as rapidly as possible by ending its activities (shut
off I/O and powered devices, complete file updates that were in progress, etc.), notifying the user that
it is necessary to recharge the main battery, and turning the power off.

If the program continues operating until the machine turnsitself off automatically, the effect is as if the
reset switch was pressed. No data in data files will be lost, since the backupbatteries will keep memory
intact, but the machine will cold start the next timeit is turned on. This means that any data in program
variables or scratch areasthat did not get saved in a data file will be lost.

 .

Backup Lithium Batteries

The backup power source is user-replaceable 3-volt lithium backup batteries, CR-2032 or equivalent.
There is one lithium battery for each major block of RAM: one for the first 64 or 128K (which also
backs up the real-time clock), one for the 128K memory board, and one for the 40K RAM card. The
mainframe lithium batteries are accessible through the back cover, and the RAM card battery is under
a cover on the card. These batteries are only used to preserve the contents of memory when the main
NiCd battery pack is completely discharged or disconnected (and there is no recharger connected).
They are not used when other power sourcesare available to preserve memory.

Their state is checked and reported only when the machine is turned on, after all memory integrity
tests are performed. Error 210 is reported at power on to indicate low voltage (2.7 volts) of the battery
for thefirst 64 or 128K, while error 211 is reported for the memory board or RAM card battery. Both
errors will be reported if both batteries need replacing.

 R

Battery Control and Status Registers

The battery control and status registers are shown below.

14-2 Batteries

Table 14-2. Battery Control and Status Registers

Register 1/0 Bits Read/
Name Address Used Write

Interrupt Control 00h 4 w

Interrupt Status 00h 4 R
Interrupt Clear 01h 4 w

Main Status 0Bh 4-6 R

Low Main Battery 1: Enable

0: DisableVoltage Interrupt

Figure 14-1. Interrupt Control Register (1/0 Address 00h, Write)

Low Main Battery |:1: Interrupted
Voltage Interrupt 0: Did Notinterrupt

Figure 14-2. Interrupt Status Register (I/O Address 00h, Read)

Voltage Interrupt 0: Clear
Low Main Battery [1: Leave Unchanged

Figure 14-3. Interrupt Clear Register (/O Address 01h, Write)

Batteries 14-3

 Main Memory 1: Voltage OK
Backup Battery Status 0: Low Voltage

Memory Board or RAM Card 1: Voltage OK
Backup Battery Status 0: Low Voltage

 1: Voltage OK

0: Low Voltage
 Main Battery Status [

X = ignore

Figure 14-4. Main Status Register (1/0O Address 0Bh, Read)

 .

Operating System Functions

The battery software implements the following operating system functions:

Table 14-3. Battery-Related Operating System Functions

Function Function

Name Code

SETINTR 0Ah

14-4 Batteries

15

Real-Time Clock
I

Contents
 Y

Chapter 15 Real-Time Clock

15-1 Real-Time Clock Control and Status Registers
15-1 Operating System Functions

15

Real-Time Clock
FSBm

The HP-94 contains an Epson RTC-58321 real-time clock. Its quartz crystal operatesat 32768 Hz, and

is backed up by the main memory lithium backup battery if the main NiCd battery is completely

discharged or removed. The clock has a one-second resolution, and is accurate to +50 ppm (~2

minutes/month). The clock supports time, date, and day-of-week functions, but the clock software in

the operating system only supports time and date, as well as the T (fime) operating system command.

Leap years are accommodated automatically. The details of the real-time clock hardware, operation,

and usage are described in the Epson RTC-58321 data sheetin the "Hardware Specifications".

The operating system provides the TIME_DATE function (08h) to set or read the time and date. No

syntax checking is performed on the time and date when they are set. It is the responsibility of the

application program to ensure that the time and date are in the proper format when they are set.

I

Real-Time Clock Control and Status Registers

The real-time clock control and statusregisters are shown below.

Table 15-1. Real-Time Clock Control and Status Registers

Register i/0 Bits Read/
Name Address Used Write

Real-Time Clock Control/Data 0Ch 0-7* w

Real-Time Clock Status/Data 0Ch 0-4* R

* For the meaning of the bits in these registers, refer to the Epson RTC-58321 data

sheet in the "Hardware Specifications".

[

Operating System Functions

The real-time clock software implements the following operating system functions:

Table 15-2. Real-Time Clock-Related Operating System Functions

Function Function

Name Code

TIMEDATE 08h

Real-Time Clock 15-1

16

Beeper

Contents

Chapter 16

16-1

16-2

Beeper

Beeper Control and Status Registers
Operating System Functions

16

Beeper

The HP-94 beeperis a piezoelectric buzzerthat is turned on and off using the main controlregister. If

a program turns the beeper on explicitly, it is responsible for turningit off as well after the appropriate

duration. If a program uses the operating system BEEP function (07h), the operating system will turn

the beeperoff automatically after the specified time has elapsed.

The BEEP function allows specifying beep durations from 0.1 to 25.5 seconds, and either high or low

tones. It can be called while the beeper is beeping. If the tone specified is different than the tone in

progress, beeping will continue at the high tone and duration — the high tone and its duration will

take precedence regardless of the order in which the tones were specified. If the tone specified is the

same as the tone in progress, beeping will continueat either the remaining duration or the new dura-

tion, whichever is longer.

|

Beeper Control and Status Registers

The beeper control and status registers are shown below.

Table 16-1. Beeper Control and Status Registers

Register 1/0 Bits Read/
Name Address Used Write

Main Control 0Bh 0-1 W

7 6 5 4 3 2 1

X| X X

t 11: Low Tone
Beeper Control 01: High Tone

00: Off

X = don’t care

Figure 16-1. Main Control Register (1/O Address 0Bh, Write)

Beeper 16-1

 |

Operating System Functions

The beeper software implements the following operating system functions:

Table 16-2. Beeper-Related Operating System Functions

Function Function

Name Code

BEEP 07h

16-2 Beeper

17

Reset Switch

17

Reset Switch

The HP-94 has a small reset switch to the left of the power switch. Since the power switch is under

program control, it is possible for a program to inadvertently prevent the user from turning off the

machine. The reset switch is provided to accommodate this situation.

The reset switch is a hardware power off, not a software power off. When the reset switch is pressed,

the machine is turned off immediately. No data in datafiles will be lost, since the backup batteries will

keep memory intact, but the machine will cold start the next timeit is turned on. This means that any

data in program variables or scratch areas that did not get saved in a datafile will be lost.

The TERM routine of any open user-defined handlers will not be executed, and no power-off check-

sums will be computed. The next time the machine is turned on,it will not compute power-on check-

sums (although the other memory integrity tests will be performed).

Reset Switch 17-1

18

Other Hardware

Chapter 18

Contents

18-1

18-1

18-1

18-2

18-2

Other Hardware

Read/Write Memory (RAM)
System ROM
Custom Gate Array
Earphone Jack
External Bus Connector

18

Other Hardware

The HP-94 has some other hardware elements that will be discussed here: read/write memory

(RAM), system ROM,custom gate array, earphone jack and external bus connector.

|

Read/Write Memory (RAM)

HP-94 read/write memory is Toshiba TC5565FL-15L CMOS static RAM (8K x 8). Refer to the

"Memory Management" chapter for a detailed description of the memory organization. Major

hardware blocks of memory are backed up by user-replaceable lithium backup batteries; refer to the

"Batteries" chapter for details.

T

System ROM

The HP-94 has 32K of EPROM located in the upper 32K of the CPU address space. The system ROM

contains all the HP-94 built-in software. Refer to the "Memory Management" chapter for a detailed

description of the system ROM organization.

.

Custom Gate Array

The HP-94 contains a proprietary Hitachi 611224 custom gate array that combines what would other-

wise be several separate integrated circuits (ICs). The following is a list of the major hardware facilities

provided by the gate array:

m Interrupt controller for HP-94 hardware interrupts.

m Hardware control registers (except for keyboard, display, and 82C51).

= Power off control.

m System timer.

m Serial port power and baud rate clock.

= Bar code port power control, transition detection, and timer.

m Real-time clock control.

& Beeper tone.

m Chip select address decoding.

= Address/data bus latches.

m Status of data carrier detect (DCD) controlline.

Other Hardware 18-1

 I

Earphone Jack

The earphone jack accepts any standard earphone with a 3.5 mm plug. It allows the user of the
machine to hear the beeper (particularly for applications using bar code) in noisy environments.

 T

External Bus Connector

The external bus connector is located on the underside of the HP-94 behind a hard plastic port cover.
It brings out all lines from the internal system bus. Details about the external bus connector (pin
assignments, voltages, currents, and logic levels are described in the "Hardware Specifications".

18-2 Other Hardware

Part 2

BASIC Interpreter

BASIC Program and Data Structure

Chapter 1

Contents

1-1

1-2

1-4

1-4

1-6

1-9

1-13

1-13

1-13

1-14

1-14

1-15

1-16

BASIC Program and Data Structure

BASIC Program Organization
BASIC Program Outline
Intermediate Code

Operand Codes
Explanation of Operand Codes

Variable Area

Data Structure

Real Numeric Data

Integer Numeric Data
Character Data

Array Data

Array Examples
Control Information Save Area

e
k

BASIC Program and Data Structure

BASIC application programs (type B) are interpreted by the HP-94 BASIC interpreter (SYBI). The

BASIC application program may be in either RAM or ROM.

.|

BASIC Program Organization

The following figure shows the organization of a BASIC program.

<— Paragraph boundary

Program Header

Program Code

Variable Descriptor Table
Figure 1-1. BASIC Program Organization

A variable area is necessary to execute a BASIC program. A control information save area is necessary

when a CALL statement or an interrupt process routine is executed. The variable area and the control

information save area are dynamically allocated in main memory.

BASIC Program and Data Structure 1-1

 I

BASIC Program Outline

BASIC programs start with a 10h byte program header. The contents of the header are shown below
with hex offsets listed on the left side and a brief description on the right. The program code and vari-
able descriptor table are also shown to illustrate their location and size.

00h
Program Size 10h+t+v

02h
identifier “BP”

04h
Size of the variable area In paragraphs

06h
Variable Descriptor Table Address|10h + t

08h
First DATA Statement Offset |0 when no DATA statements

0Ah
OPTION BASE Information |0when OPTION BASE O, otherwise 1

0Ch
Program Name Four characters

10h
Program Code t bytes

10h + t

Variable Descriptor Table v bytes
10h+t+v

Figure 1-2. Program Header

The following figure shows the organization of the BASIC program code.

Length {Line Number Code eol
(1 byte)] (2 bytes) (n bytes) (1 byte)

eof
Figure 1-3. Program Code

The information contained in a line of program codeis:

m Length: number of bytes in a line = 1 + 2 + n + 1 (must be less than 256).

m Line Number: 0 through 32767 (0000h through 7FFFh, least significant 8 bits first).

m col (end ofline) and eof (end offile) are the NUL character (00h).

m Somelines, such as comments, generate no program code.

1-2 BASIC Program and Data Structure

Type Length Segment Address Offset Address

(1 byte) (1 byte) (2 bytes) (1 byte)

Figure 1-4. Variable Descriptor Table

Thevariable descriptor table contains information about the type, length, and address of each variable.

Thefigure above illustrates the table organization. The meanings ofthefields are as follows:

= Type:

7 6 5 4 3 2 1 0

0

arameter [1: formal parameter
P | 0: not formal parameter

. [1: integer
bin | O: real

[1: character
character .

| 0: numeric

arra [1: array variable
y | 0: simple variable

Figure 1-5. Variable Descriptor Type Byte

m Length:
Table 1-1. Variable Descriptor Length Byte

Type Length in Bytes

Integer 2

Real 8

Character Dimensioned size (default 8)

Parameter 5*

Array Size of one array element

* This entry points to another descriptor entry which contains the actual informa-

tion for the variable.

m Segment Address, Offset Address:

The segment address and offset address are a pointer to the variable data in the user variable area.

Theyare relative to the start of the variable area. The first byte of the segment address field con-

tains the least significant 8 bits of the segment address. The offset address contains values in the

range 00h through OFh. When the parameter bit is 1, the segment and offset addresses are the

address of the variable descriptor entry for the parameter.

BASIC Program and Data Structure 1-3

Intermediate Code

Codes interpreted by the HP-94 BASIC interpreter are called intermediate code.

Table 1-2. Intermediate Code

Ox|ix|2x| 3x 4x |5x|6x 7x 8x 9x Ax |Bx|{Cx|{Dx|Ex|{Fx

x0|eol >=|LET GET SQR |FiXs |DMS

x1 <=|GOTO |PUT EXP |FIX9 |ARD

x2 bin <>|GOSUB |PARAM LOG |MAX |ADS

X3 |ral > |RETURN {%CALL TAB LGT [MIN |FIXE

x4 |chr < |FOR DEF XOR SGN |RND |TIM

X5 |var , |NEXT |READ %CURSOR|ABS |EOF |Pi

X6 |prm i |IF DATA %HOME |[INT |INPUT$|VER

X7 |fnc : |ON RESTORE %DEL LEN [TOD$ |KEY

X8lext [(|# |[DIM AND iDX |SIN HEX$

x9iiin |) INPUT OR NUM |COS |SIZE

xXAl{adr |+ PRINT NOT COD |TAN

xB - CALL TO STR$ |ASN

XC |rem ** END STEP CHR$ |ACS

xD * FORMAT USING ASCS$ |ATN

xE / OPEN MSG MOD |FRC
xF = CLOSE SPACE FIX0 |RAD

Note: A blank entry in the table indicates an unused code.

Table 1-3. Intermediate Code Groups

Code Group Range of Codes

Operand 00h ——17h

Delimiter 18h —— 2Fh

Statement 30h ——47h

Optional Word 73h —— 7Fh

Function 80h —— Agh

Operand Codes

The symbols and formats for the various members of the operand code group are listed below.

1-4

BASIC Program and Data Structure

Table 1-4. Operand Codes

Code |Symbol Format Comments

00h eol NUL End of line

02h bin m Integer constant

03h ral [ral |real char string [NUL] [Real type constant

04h chr

|

chr [charstring [NUL| |Character constant

05h var Variable

06h prm [prm

[ADRS

(L),

(H)|

User-defined function parameter

07h fnc

[

fnc

JADRS

(L),

(H)|

User-defined function

The ADRS after var, prm, and fnc is the
appropriate position in the variable descrip-

tor table

08h ext [ext |external procedure name [NUL] |Entry name (CALL and $CALL)

0gh lin

[

fin

JADDR

(L),

(H)|

Text line address reference

lin is used by FORMAT, GOTO, GOSUB,

and USING.

The ADDR after lin is the relative offset to
anotherline.

0Ah adr Address of next DATA statement

The ADDR after adr is the relative position

from the start of the program.

0Ch rem

|

rem |charstring [NUL| |Skipped during execution rem is used for the data in DATA statements

or the format information in FORMAT state-

ments.

BASIC Program and Data Structure 1-5

Explanation of Operand Codes

The meaning of each operand code is as follows:

m eol (end of line)

This indicates the end of a line in a program. Multiple statements within the line are separated
with a colon (2), character code 27h.

= bin (integer constant)

This indicates the following two bytes are an integer constant (-32768 through 32767). The first
byte is the least significant 8 bits.

m ral (real constant)

This indicates a real constant which is stored as a character string. Only positive numbers are
stored in this format. Negative numbers are expressed as a unary expression.

eg -123.4 — -~ ral 12 3. 4NUL

m chr (character constant)

This indicates a character string. It does not include the double quotation marks which specify the
beginning and end of a character string. Two successive double quotation marks (" ") indicate a
double quote (™). Two successive ampersands (&&) indicate an ampersand (&). An ampersand
(&) followed by two hexadecimal digits represents a single byte with that hexadecimal value.

m var (variable)

The two bytes following var are the offset from the start ofthe variable descriptor table to the vari-
able descriptor table entry. The first byte is the least significant 8 bits.

Start of variable descriptor table—

 Offset—
type|length|segment} offset

L. H

 (00h through OFh)—

Figure 1-6. Variable Reference

1-6 BASIC Program and Data Structure

m prm (user-defined function parameter name)

The prm operand code is used for parameters in subprograms and user-defined functions.

The two bytes following prm are the offset from the start of the variable descriptortable to the vari-

able descriptor table entry. The first byteis the least significant 8 bits.

The variable descriptor table entry has a type = 01h (‘parameter’) and length = 05h. The seg-

ment and offset values are relative to the start of the variable area. The variable area indicated by

the variable descriptor table entry contains a variable descriptor table entry which has the correct

type and length for the parameter. The segment and offset values in the latter entry are set to the

actual address of the variable (ot an offset from the start of the variable area).

typellength| segment |offset
oth| o5h |(L), (H)

 (in variable area)

 type|length

Figure 1-7. Parameters in the Variable Descriptor Table

m fnc (user-defined function)

The two bytes following fnc are the offset from the start of the variable descriptor table to the vari-

able descriptor table entry. The first byte is the least significant 8 bits.

Thevariable descriptor table entry segment address field is the offset from the start of the program

to the user-defined function definition. The final byte of this entry (offset) is 00h.

If the definition contains one or more arguments, the segment addressfield points to the first argu-

ment. If the definition does mot contain an argument, the segment address field points to the

equals sign (=) which follows the definition.

DEF FNA=T

DEF FNA(¥,Y)=

m ext (external program name)

The subprogram name for CALL and $CALL is indicated with ext.

BASIC Program and Data Structure 1-7

m lin (line reference)

The two bytes following lin are an offset to the start of a line. The first byte is the least significant 8
bits. The offsetis relative to the byte following the offset (the third byte following lin).

lin

offset

L), H)

m adr (address reference)

!

The start ofthe referenced line is (o) + offset

Figure 1-8. Line Reference

The adr operand code is used in DATA statements.

Program Header

L | H

First DATA statementl rem DATA |NUL[adr] L] H] eol]

Address

|

[rem DATA |NUL‘ adr[L [H [eol]

Last DATA statement| rem | DATA]NUL] adr] ooh] 0oh] eol]

Figure 1-9. DATA Statement Linking

An adr of 0000h indicates the end of the DATA chain.

= rem (non-executed statement)

The rem operand code indicates character strings for the FORMAT and DATA statements.

A line with the rem operand code is not executed.

1-8 BASIC Program and Data Structure

 L

Variable Area

The variable area is allocated in main memory when BASIC program execution begins. It is released

when execution ends.

The variable area is allocated or released as a block. The size of the variable area to be allocated is

available in the variable area size field of the BASIC program header. The variable area is not allo-

cated if the variable area size field is zero.

BASIC Program Main Memory

Size of variable area (a)

a variable area

Program Code

Variable Descriptor Table

Figure 1-10. Variable Area Allocation

An example of the process of allocating and releasing variable areas is shown in the following figure.

The example illustrates the main program (MAIN) calling a second program (program B), which in

turn calls a third program (program C). Program C ends, returning control to program B. Program B

also ends, returning control to MAIN. MAIN then ends, returning to command mode.

The control information save areas which are allocated between each variable area are omitted in this

figure.

BASIC Program and Data Structure 1-9

MATIN (step 1) Program B Program C

CALL B (step2) CALL C (step 3)

END (step 6) END (step 5) END (step 4)

Step 1. Start of MAIN Step 2. Start of Program B Step 3. Start of Program C

execution execution by CALL B execution by CALL C

Program C variable area

Program B variable area Program B variable area

MATIN variable area MATIN variable area MAIN variable area

Step 4. Completion of

Step 5. Completion of

Program C by END Program B by END

Program B variable area

MATIN variable area MATIN variable area

Step 6. Completion of
MAIN by END

Figure 1-11. Allocating and Releasing Variable Areas

The relationship between the program code, variable descriptortable, and variable area is shown in the
following figure.

1-10 BASIC Program and Data Structure

 start

Program Code Variable Area

(start+ segment):offset

 ~J] variable data l

Variable Descriptor Table

 ' type | length |segment| offset F

Figure 1-12. Program Code and Variables

The meaning of the itemsin italics is listed below.

m var
Operand code for a variable

m address
Relative address in the variable descriptor table

= fype

variable type

= Jength
variable or array elementlength

= segment
variable segment addressrelative to start

m offset
variable offset address relative to start

m start

Start of variable area (determined at CALL time)

m variable data

Current value of the variable

BASIC Program and Data Structure 1-11

An example showing several statements in a BASIC program helps clarify the relationship between

program code and variables.

Program Code
BASIC Program Length Line# ————— Code

10 DIM A(2),BCDSS len,, 10 |DIM|var 0 (l....leal
20 LET A(1)=0
30 LET BCD$="ABC"

len,, 20 |LET|var 0 (l.... g

Variable Descriptor Table

Type Length Segment Offset

leny, 30 |LET|var| 5 [=|....|eol

eof

A(2)|08h| o8h 0oooh oOh

BCD$| 04h 05h 0001h 03h

DIM, LET, (, and = are in intermediate code.

Variable Area
Array Information

0th 0002h |A (1) [8bytes]|A(2) [8 bytes]

 BCDS$[5 bytes]

Figure 1-13. BASIC Program and Variable Relationships

1-12 BASIC Program and Data Structure

]

Data Structure

There are three data types — real numeric data, integer numeric data, and character data. In addi-

tion, each of the data types can be collected into an array. Information about the array is stored

preceding the elements in the array. The data in an array is stored consecutively.

Real Numeric Data

The format for real numeric data in the variable area is shown below.

1 byte Mantissa part — 7 bytes (14 BCD digits)

7..10

 L Position of (implied) mantissa decimal point
1 bit - sign of mantissa: 0 for positive, 1 for negative
7 bits - exponent value

Figure 1-14. Real Numeric Data in the Variable Area

Th% exponentis in two’s complement (binary). Exponent values -64 through 63 indicate 10°* through

10%,

Integer Numeric Data

Integers are stored as two bytes in both the variable area and data files; the first byte contains the most

significant 8 bits, and the second byte contains the least significant 8 bits. The range of an integeris

-32768 through 32767.

high low

Figure 1-15. Integer Numeric Data in the Variable Area

BASIC Program and Data Structure 1-13

Character Data

The format for character data in the variable area is shown below.

n-byte area

Figure 1-16. Character Data in the Variable Area

The default value for n is 8. A DIM statement can be used to assign values 1 through 255 to n. The
value of n is in the variable descriptor table.

If the character string has fewer than n bytes, a NUL (00h) is stored following the last character of the
string,

Only the first nn characters assigned to a character string are stored — excess characters are discarded.

Array Data

— 1 2 * #dimensions e,*e,*...*e, *elementlength [— size in bytes

e, e |-.-] e, Array elements

l— #dimensions
<— Array information —> <— Array data—

Figure 1-17. Array Data in the Variable Area

The maximum size of an array is 65535 (FFFFh) bytes, including both the array information and the
array data. The number of dimensions must be in the range 1 through 255.

In the array information, e, is the number of elements in that dimension. For OPTION BASE O,
the numberof elements is the array’s upper bound plus 1. Each e, is stored with the least significant 8
bits in the first byte and the most significant 8 bits in the second byte.

Array elements are stored in row-major order (the right-most subscript varies most rapidly).

1-14 BASIC Program and Data Structure

Array Examples

The following two examples show how the array information and data would be stored in memory.

Example: DIM A(2,3)

00h 0th 03h 05h 0Dh 15h

02h| 0002h

;

0003h A(l,1) A(1,2)

15h 1Dh 25h

A(1,3) A(2,1)

25h 1Dh 35h

A(2,2) A(2,3)

Figure 1-18. Array Data Example: DIM A(2,3)

Example: OPTION BASE 0:DIM B$6(4)

00h 01h 03h 0%h OFh 15h 1Bh 21h

0th| 0005h B$(0) BS$ (1) BS$(2) BS$(3) BS (4)

L Note that this is the number of elements in this subscript.

Figure 1-19. Array Data Example: OPTION BASE 0 : DIM B$6(4)

BASIC Program and Data Structure 1-15

Control Information Save Area

The control information save area is used to save the control information of the currently executing
program when a subprogram is called with the CALL statement or when an interrupt causes a jump to
an interrupt routine.

The control information save area is allocated in main memory when a CALL statement or interrupt
occurs. The control information for the currently executing program is saved in the save area. When
the subprogram ends (END) or the interrupt routine ends ($CALL SYRT), the information is
restored to the BASIC interpreter control area.

Link to previous control information (0 for main program)

1 if SYER active, 0 if not

Copy of parameter biock entry from $CALL SYER

Figure 1-20. Format of the Control Information Save Area

0Ch

Saved control information pointer
02h

Saved segment of BASIC program
04h

Saved SPTR
06h

Saved segment of Variable Area
08h

Saved SP value for IOERR
0Ah

Saved offset to current program line
0Ch

Saved offset to current program byte
OEh

Saved offset to DATA statement
10h

Saved SYER flag
12h

Saved error variable information

(5 bytes)
16h

Unused (2 bytes)
18h

Saved offset to SYSW interruptline
1Ah

Saved offset to SYLB interruptline
1Ch

Unused

(4 bytes)
20h

1-16 BASIC Program and Data Structure

2

Operation Stacks

Chapter 2

Contents

2-1

2-2

2-3

2-4

2-5

2-5

2-6

2-6

2-7

2-7

2-8

Operation Stacks

Operation Stack Area
Control Stack
GOSUB Control Element
FOR ... NEXT Control Element

Numeric Operation Stack
Real Numeric Data
Integer Numeric Data
Numeric Operation Stack Example

Character Operation Stack
Character Operation Stack Example

Parameter Table (only for %CALL)

2

Operation Stacks

The operation stack areais used for:

m Control stack

= Numeric operation stack

m Character operation stack

m Parametertable entries (for ¥CALL)

A

Operation Stack Area

Parameters which are passed by value (constants and expressions) are evaluated, and the result of the

expression is stored in the operation stack area.

The character operation stack pointer is CPTR, and the numeric operation stack pointer is SPTR.

Parameter taile fnlI for $CALL)

Character operation stack

 [BP].CPTR—
250h bytes

[BP] .SPTR— -
Numeric operation stack

Control stack

Figure 2-1. Operation Stack Area

Operation Stacks 2-1

Control Stack

The control stack i1s used to maintain address and variable information for GOSUB and
FOR...NEXT loops.

[BP].SPTR—
(Numeric operation stack)

Control element n

 Direction of stack growth

Control element 3

Control element 2

Control element 1

00h

Figure 2-2. Control Stack Operation

[BP] .SPTR—

(Subprogram numeric operation stack)

Subprogram control elements

00h

{Main program parameters passed by value)
a—>

Main program control elements

00h

Figure 2-3. Control Stack During Subprogram Execution

Notes:

m o is the SPTR value saved in the control information save area.

m Control stack usage for an interrupt routineis the same as for a subprogram.

= Control elements consist of GOSUB return information and FOR . . . NEXT loop information.

m There is no pointer which separates the numeric operation stack from the control stack.

2-2 Operation Stacks

GOSUB Control Element

The GOSUB control element block size is 05h bytes.

Code line address:

Code address:

00h

01h

03h

0sh

Type (01h)

Codeline address (LPTR)

 Code address

Figure 2-4. GOSUB Control Element

The start of the code line containing the GOSUB statement.

The address of the eol or eos which follows the GOSUB statement.

Operation Stacks 2-3

FOR .. . NEXT Control Element

The FOR. .. NEXT control element block size is 18h bytes.

00h
Type (8Xh)

0th
Code line address (LPTR)

03h
Code address

05h
Control variable segment offset

08h
STEP value (real or integer) [8 bytes]

10h

TO value (real or integer) [8 bytes]
18h

Figure 2-5. FOR ... NEXT Control Element

Type (8Xh): Indicates the control variable type (80h = real, 82h = integer).

Code line address: The start of the code line containing the FOR statement.

Code address: The address of the eol or eos which follows the FOR statement.

Control variable address: The segment:offset address of the control variable for the FOR ... NEXT
loop. The offset is a single byte.

STEP value: The value to be added to the control variable when the NEXT statementis
executed. The type of the STEP value matches the type of the control
variable (integer or real).

TO value: The value to which the control variable is compared (after adding the
STEP value) when the NEXT statementis executed. The type of the TO
value matches the type of the control variable (integer or real).

The FOR ... NEXT control element is removed from the control stack by the NEXT statement when
the loop terminates. If the FOR loop is exited with a GOTO statement, the control elementis left on
the control stack. The FOR statement searches the control stack for FOR loop control elements
before creating a new element. If there is a FOR loop control element with the same variable name,
that control element is reused.

2-4 Operation Stacks

 A

Numeric Operation Stack

Numeric parameters passed by value to subprograms are stored on the nusmeric operation stack
(including any character values passed by value). The parameter table coatains pointers to these
values.

The SPTR and CPTR pointers are compared when pushing a value onio the stack, If SPTR <

CPTR, there is an overflow, and "Error MOoccurs.

Numeric values on the stack are always 8 bytes, whether reaf or integer Type. An integer vaiue on the
stack starts with two bytes of 0Ch,

SPTR—*

Valuen [Direction of stack growth

Value 2

Value 1

Corntrot stack

Figure 2.6. Numeric Operation Stack

Real Numeric Data

The format for real sumeric data on the numeric operation stack is shown below.

1 byte Mantissa part — 7 bytes {14 BCD dights) k
7.1 0

| | l | E | E |

‘ b Position of (mplied) mantissa decimal point
1 bit - sign of mantissa: 0 for positive, 1 for negative

7 bits - exponent valie

Figure 2-7. Real Numeric Data on the Numeric Operation Stack

The exponentis in two's complement (binary). Exposent values -64 throngh 63 indicate 10%* through

109,

Operation Siacks 2-5

Integer Numeric Data

The range of an integer value is -32768 through 32767.

l

 |
00 00 00

I

|
00 0O

00

l
low high

|

Numeric Operation Stack Example

A+B*C—D (S meansSPTR)

Figure 2-8. Integer Numeric Data on the Numeric Operation Stack

0. Initial 1.| StackA, 2.| Stack B, 3.| StackC, 4, Call

state Update S Update S Update S SMUL
s—>

C
sS—>

B B
sS—>

A A A
sS—>

5. 6. Call 7. 8. Assignthe 9. Sameas
SADD results to D, initial state

S Update S
B*C

s—>

A A+B*C
sS—

Figure 2-9. Numeric Operation Stack Example:A + B*C— D

2-6 Operation Stacks

Character Operation Stack

The character operation stack is used by character operators as a temporary storage arca.

The SPTR and CPTR pointers are compared when pushing a value onto the stack. If CPTR >

SPTR, there is an overflow, and “Error MO” occurs.

A 00h byte must always be written at the byte pointed to by CPTR.

BASIC Control area

 CPTR—
00h Direction of stack growth

Figure 2-10. Character Operation Stack

Character Operation Stack Example

"ABC"+"DE"

1) "ABC" 2) +"DE"

A A

B B

C C

CPTR—
00h D

E
CPTR—

00h

Figure 2-11. Character Operation Stack Example: “ABC” + “DE”

Operation Stacks 2-7

Parameter Table (only for %CALL)

The operation stack area is used by $¥CALL for the parameter table and for parameters passed by
value.

1 byte 1 byte 2 bytes 1 byte
ES:BX—

Type Length Segment Offset Information forthe first argument

Information for the nth argument

FFh
Figure 2-12. Parameter Table Format

The meanings of the fields in the parameter table are as follows:

= Type:

7 6 5 4 3 2 1 0

6(0]O0}oO

bin 1: integer

0: real

1: character

character [0: numeric [1: array variable
Larray

0: simple variable or array element

Figure 2-13. Parameter Table Type Byte

Arrays are passed to subprograms with subscript "*".

DIM XYZ (10)

$CALL ABC(XYZ(*)) : REM pass the entire XYZ array

Numeric and string expressions (including constants) are evaluated by ¥CALL. Numeric values
are put on the numeric operation stack as real numbers even if they could be expressed as an
integer. String characters are moved from the character operation stack to the numeric operation
stack before the subprogram is called.

2-8 Operation Stacks

® Length:

Type Length in bytes

integer 2
Real 8
Character

|

Dimensioned size (default is 8)

Array Size of one array element

m Segment Address, Offset Address:

The segment address and offset address contain the actual address of the variable’s data area. This

is different than in the variable descriptor table, where the address is relative to the start of the vari-

able descriptortable.

The segment address is a two-byte field; the offset address is a one-byte field with values 00h

through OFh.

Operation Stacks 2-9

3

Assembly Language Subprograms (Keywords)

Chapter 3

Contents

3-1
3-2
3-2
3-3
3-5
3-6
3-6
3-8

Assembly Language Subprograms (Keywords)

Program Structure
BASIC Call and Return

BASIC Interpreter %CALL Procedure
Parameter Table Format
%CALL Example
Assembly Language Subprogram Return to BASIC

Access to BASIC Interpreter Utility Routines
Using a Ultility from an Assembly Language Subprogram

3

Assembly Language Subprograms (Keywords)

An assembly language subprogram (also called a keyword) is called with the $CALL statement.

The following assembly language subprograms are built into the HP-94: SYAL, SYBP, SYEL,

SYER, SYIN, SYLB, SYPO, SYPT, SYRS, SYRT, SYSW, and SYTO.

In addition, SYBD, SYBI, SYFT, and SYOS are reserved file names which must not be used for

assembly language subprograms.

For assembly language subprograms which are not built into the HP-94, the file name is the subpro-

gram name. In general, Hewlett-Packard uses SY as the first two characters ofits assembly language

files, and HN asthe first two characters of its user-defined handlers. Names starting with SY and HN

should not be used.

Assembly language subprograms must be written so that they can be executed in ROM.

This chapter assumes an understanding of HP-94 program structure. Refer to the "Program Execu-

tion" chapter in Part 1, "Operating System".

 A

Program Structure

An assembly language program has a six-byte header followed by the program code. This structure is

shown below with hex offsets indicated on the left side.

00h <—Paragraph boundary
Program length (len)

02h

Internal entry point
04h

Version number
06h <—%CALL entry point

BASIC entry point
(program code)

lenr—>

Figure 3-1. Assembly Language Subprogram Structure

See the "Program Execution” chapter in Part 1, "Operating System" for more information.

Assembly Language Subprograms (Keywords) 3-1

 1

BASIC Call and Return

A BASIC program calls an assembly language program with the $CALL statement. When the assem-
bly language routine finishes executing, a FAR RET is used to return to the BASIC interpreter.

BASIC Interpreter %CALL Procedure

The BASIC interpreter calls the assembly language subprogram atits entry point with a FAR CALL.

Contents of the CPU registers when an assembly language subprogram is called:

BASIC Interpreter Scratch Area
«—SS,ES

Parametertable

Control area

System stack (996 bytes available)

Return address

«—BX

<—BP

«—SI
This area is available to the subprogram

«—SP
Return to $CALL statement (FAR RET)

Assembly Language Subprogram
00h

Program header
06h

Program code
The direction flag is clear (CLD).

Interrupts are enabled (STI).

«—CS,DS

<«—IP

AX contains the value of SPTR before ¥CALL built the parameter table (not needed unless the sub-
program uses IOERR; sce TOERR for more information and an example).

The contents of registers which are not shown are not defined.

3-2 Assembly Language Subprograms (Keywords)

Parameter Table Format

1 byte 1byte 2 bytes 1 byte

ES:BX—

Type

|

Length Segment Offset Information for the first argument

Information for the nth argument

FFh

Figure 3-2. Parameter Table Format

The meanings of the fields in the parametertable are as follows:

8 Type:

7 6 5 4 3 2 1

ojo0}lo0}0 0

 . 1: integer
bin [0: real

 1: character

character [0: numeric array { 1: array variable
0: simple variable or array element

Figure 3-3. Parameter Table Type Byte

Arrays are passed to subprograms with subscript "*".

DIM XYZ(10)

%CA.L.L. ABC(XYZ(*)) : REM pass the entire XYZ array

Numeric and string expressions (including constants) are evaluated by $CALL. Numeric values

are put on the numeric operation stack as real numbers even if they could be expressed as an

integer. String characters are moved from the character operation stack to the numeric operation

stack before the subprogram is called.

Assembly Language Subprograms (Keywords) 3-3

m Length:

Type Length in bytes

Integer 2
Real 8
Character Dimensioned size (default is 8)
Array Size of one array element

m Segment Address, Offset Address:

The segment address and offset address contain the actual address of the variable’s data area. This
is different than in the variable descriptor table, where the address is relative to the start of the vari-
able descriptor table.

The segment address is a two-byte field; the offset address is a one-byte field with values 00h
through OFh.

3-4 Assembly Language Subprograms (Keywords)

%CALL Example

10 INTEGER C
20 DIM A(10),BS$5,C(3,2)
30 D=1

100 $CALL AB(A(*),B$,C(1,2),D)

When line 100 is executed, $CALL creates a parameter table (shown below) in the operation stack

area and passes a pointerto it in ES : BX.

Assumethat the BASIC variable area segment address is 1F00h.

Parameter Table

Low-High

ES:BX—
08h

|

08h 1Fo1h

|

01h {<—A(*) (points to an entire array)

04h |05h 1FO6h 04h [<—BS$S

o2h |02h| 1Fooh

|

07h |[¢<—C(1,2) (pointsto one element)

00h |08h 1F06h 0oh |[€<—D

FFh

Variable Area

l1F00:07

1F00:00—

o2h| 0003n

|

o0002h

|

C(1,1)

|

C(1,2)

|

C@1)

|

CR2)

|

CB1)

|

CB.2)
1F01:01—>

01h| 000Ah A(1) (8 bytes) A(10) (8 bytes)

1F06:04—>

B$ (5 bytes)
1F06.09—

D (8 bytes)

Figure 3-4. %CALL Example: Calling an Assembly Language Subprogram

Note: The values in jtalics are array information.

Assembly Language Subprograms (Keywords) 3-5

Assembly Language Subprogram Return to BASIC

When an assembly language subprogram returns to the BASIC program that called it, the following
conditions should exist.

® The SS, BP, and SP registers must have the same value as when the assembly language subpro-
gram was called.

m The direction flag must be clear (CLD instruction).

® Interrupts must be enabled (STinstruction).

m A FAR RET must be used to return to the BASIC Interpreter.

 R

Access to BASIC Interpreter Utility Routines

This section describes how to access BASIC Interpreter utility routines for decimal math, stack mani-
pulation, number conversion, and parameter processing from an assembly language program.

In the following table, CSEGis the segment address of the BASIC interpreter.

An assembly language subprogram can easily determine the value of CSEG by examining the return
stack. The word at SS : SP+2 is the segment address of the BASIC interpreter.

The regular entry point of the BASIC interpreter is CSEG:0. If the interpreter is called at CSEG: 6
(as the operating system S command does), it immediately returns to the operating system.

If an error is detected by a BASIC interpreter utility routine, either the ERROR routine or the
IOERR routine is called. The line number and the program name displayed in the error message
point to the $CALL keyword.

3-6 Assembly Language Subprograms (Keywords)

CSEG:00h

02h

04h

06h

08h

O0Ah

oCh

OEh

10h

12h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

40h

44h

51h

BASIC Interpreter Code

JMP CSEG:51h (interpreterstart)

identifier "I P"

Release No. Version No.

JMP CSEG:44h (Exitto O.S.)

Data part size (paragraphs)

Operation stack size (bytes)

Control area size (bytes)

offset from SS : BP to SPTR

offset from SS: BPto CPTR

offset from SS : BPto SYSSTK

BASIC Interpreter Scratch Area

«—85:0

Operation stack (250h)
<—S8S:BP

Control area (1C0h)
<~—S85:S1T

System stack (3F0h)
<—S8S:5P

JMP SADD (FAR RET)

JMP SSUB (FAR RET)

JMP SMUL (FAR RET)

JMP SDIV (FAR RET)

JMP SPOW (FAR RET)

JMP SNEG (FAR RET)

JMP TOREAL (FAR RET)

JMP TOBIN (FAR RET)

JMP ERROR (FAR RET)

JMP TOERR (FAR RET)

JMP GETARG (FAR RET)

JMP SETARG (FAR RET)

EXIT (returns to the operating system)
 BASIC Interpreter code

NOTE

The scratch area is allocated
in main memory by the BASIC
interpreter after a cold start.

Assembly Language Subprograms (Keywords) 3-7

Using a Utility from an Assembly Language Subprogram

Many of the utility routines require their data to be on the numeric operation stack. The numeric
operation stack pointer (SPTR) must be set up to use these routines.

BASIC Interpreter Control area Operation stack
code segment
 SS:BpP—

CSEG:0Eh—>

Offset to SPTR —

data on stack

The SPTR address relative to BP is stored in the BASIC interpreter header at location CSEG:0Eh.

See the "Operation Stack” section for more information about using the numeric operation stack.

3-8 Assembly Language Subprograms (Keywords)

4

BASIC Interpreter Utility Routines

Chapter 4

Contents

4-1

4-1

4-2

4-3

4-5

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

BASIC Interpreter Utility Routines

BASIC Interpreter Utility Routine Descriptions
Registers Passed to BASIC Interpreter Utility Routines

ERROR

GETARG
IOERR
SADD

SDIV
SETARG

SMUL
SNEG
SPOW
SSUB
TOBIN

TOREAL

4

BASIC Interpreter Utility Routines

This chapter describes the BASIC interpreter utility routines. These utilities allow assembly language

subprograms to use the decimal math routines in the BASIC interpreter and simplify the passing of

parameters between BASIC programs and assembly language subprograms. Utility routines are also

available for reporting errors detected in the assembly language subprograms and for converting

between real and integer data.

]

BASIC Interpreter Utility Routine Descriptions

BASIC interpreter utility routine descriptions consist of the following:

m A brief description of the routine.

= The calling sequence for the routine.

m Notes on the use and behavior of the routine.

m A summary of the parameters passed to the routine and the parameters that the routine must

return.

Registers Passed to BASIC Interpreter Utility Routines

The BASIC interpreter utility routines all expect BP to point to the BASIC interpreter control area.

Other registers which are expected are mentioned in the “Input:” section for each routine.

BASIC Interpreter Utility Routines 4-1

ERROR

Display an error message and return to the operating system command mode.

Calling sequence:

FAR CALL CSEG:34h

Notes:

= If the code in AL is notin the table below, the code is displayed as three decimal digits.

= ERRORreturns to command mode after displaying the message.

Input: Output:

AL = code Error CC nnnnn pppp
(See table below) CC: Characters corresponding to the code

nnnnn: Error line number

PPPP: Program name

Table 4-1. Codes for ERROR Utility Routine

Hex |Decimal|(CC Meaning

01h 1 SY Syntax error
02h 2 TY |Data type mismatch

03h 3 CN Conversion error
04h 4 RT [RETURN or SYRT error

05h 5 DT |Data error
06h 6 ILlllegal argument
07h 7 BR Branch destination error

08h 8 MO [Memory overflow
09h 9 NF Program not found
0Ah 10 AR |Array subscript error
0Bh 11 CO Conversion overflow
0Ch 12 EP |Missing END statement
0Dh 13 DO Decimal overfiow
0OEh 14 IR |{Insufficient RAM
OFh 15 FN |lllegal DEF FN statement
10h 16 UM {Unmatched number of arguments
11h 17 BM BASIC interpreter malfunction
12h 18 LN Nonexistent line
13h 19 IS [lllegal statement

4-2 BASIC Interpreter Utility Routines

GETARG

Convert a numeric parameter from $CALL into a binary value and return the value.

Calling sequence:

FAR CALL CSEG:3Ch

Notes:

m If the parameteris an array oris of character type, Error TY occurs.

m If there is no parameter (type = FFh), Error UM occurs.

m If the parameteris negative and a negative numberis not allowed, Error IL occurs.

m If the parameteris out of range, Error IL occurs. The valid range depends on the contents of

register CL, as shown in this table:

Table 4-2. GETARG Result Flag (Register CL)

CL Length Positive/Negative| Range of values

0 word (16 bits) positive or zero only 0 through 32767

1 |double word (32 bits)| positive or zero only 0 through 2311

2 word negative allowed |-32768 through 32767

3 double word negative allowed -231 through 2311

Input: Output:

If destination is a word:

AX = binary value
DX = (undefined)

If destination is double word:

ES : BX points to a parametertable entry
CL is the flag byte (see below)

Parameter Table Entry

1 byte 1byte 2bytes 1 byte AX = low word of binary value

ES:BX— DX = high word of binary value

Type |Length|Segment| Offset

Absolute address

Data

Figure 4-1. GETARG Parameter Processing

BASIC Interpreter Utility Routines 4-3

...GETARG

 1: double word

0: single word
L Length [

 1: negative allowed
Positive/Negative [0: positive or zero only

Figure 4-2. GETARG Resuit Flags (Register CL)

4-4 BASIC Interpreter Utility Routines

I0ERR

If error trapping (¥CALL SYER)is notin effect, display an error message and return to the operat-

ing system command mode.

Calling sequence:

FAR CALL CSEG:38h

Notes:

m Assembly language subprograms must set up certain registers before calling IOERR. Sec the

example program below to set up these registers.

m If error trapping (¥CALL SYER)is in effect, the error numbervariable is set to the error code.

BASIC execution resumes at the next line (not statement) of the BASIC program. IOERR does

not return to the assembly language routine which called it.

m If error trapping ($CALL SYER) is not in effect, a call to TOERR has the same effect as a call

to ERROR.

Input: Output:

AL = code Error NNN nnnnn pppp

(See Appendix B) NNN: Error code (3 decimal digits)

BP, SS, and SP unchanged from ¥CALL nnnnn: Error line number

SPTR restored (value was in AX after $CALL) PPPP: Program name

TOERR_OFFSET equ 038h
SPTR_OFFSET equ OEh

MYSEG

EXAMPLE
START:
PROG_SIZE
ASM_ENTRY_ADR
VERSION

i

START_ASM:

;
i
i
JMP_I10ERR:

segment public 'MYSEG'

assume cs:MYSEG

proc

dw
dw

dw

push

cld
sti

pop
pop
pop
push

mov
push

mov

far

FINISH-START

offset START_ASM
0100h

ax

*kkkkd® (yser's code omitted here) **¥x**

; Version 1.00

This is an outline of an assembly-language subprogram which shows how

to save and restore the value of SPTR before a call to IOERR.

; Save SPTR value on stack

; AL contains the error code for IOERR

dx
cX
es
es
cx, IOERR_OFFSET

cx
si,es:SPTR_OFFSET

“
e

®m
a
W

we
W
y
W

1

Needed only if code executed a STD

Needed only if code executed a CLI

: Recall SPTR value to DX from stack

Drop BASIC interpreter offset
Pop BASIC interpreter segment (CSEG)

Push CSEG for IOERR entry

Push offset for IOERR entry

SI = offset of SPTR

BASIC iInterpreter Utility Routines 4-5

...I10ERR

mov ss: [bp+si),dx
ret

’

NORMAL_RETURN:

pop dx
ret

EXAMPLE endp
FINISH:
MYSEG ends

end

4-6 BASIC Interpreter Utility Routines

.
r
.
2

Restore SPTR

Junp to IOERR

Throw away (unused) SPTR value
Return to BASIC interpreter

SADD

Add two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:14h

Notes:

m The numbers can be either real numbers or integers. The result is an integer only if both numbers

wereintegers, and the result fits in an integer.

m SADD does not use the operation stack as a scratch area.

Input: Output:

SPTR—
S2

SPTR—
S1 S1+82

S1, S2: numeric values S1+S2: numeric value

BASIC Interpreter Utility Routines 4-7

SDIV

Divide two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:20h

Notes:

®m The numbers can be either real numbers or integers. The result is always a real number.

m SDIV uses the operation stack as a scratch area.

Input: Output:

(used by SDIV)
SPTR—

S2
SPTR—

S1 S1/S2

S1, S2: numeric values S1/S2: numeric real value

4-8 BASIC Interpreter Utility Routines

SETARG

SETARG converts a binary value into the type of a numeric parameter from $CALL (either real or

integer) and stores the value into the parameter.

Calling sequence:

FAR CALL CSEG:40h

Notes:

m AX contains the binary value (-32768 through 32767).

m If there is no parameter (type = FFh), Error UM occurs.

m If the parameteris an array oris of character type, Error TY occurs.

m SETARG uses 8 bytes of the operation stack as a scratch area.

Input: Output:

AX is a binary value Contents of AX placed in parameter.

ES : BX points to a parameter table entry

Parameter Table Entry
1byte 1byte 2bytes 1byte

ES:BX—

Type |Length|Segment| Offset

Absolute address

AX = binary value— Data

Figure 4-3. SETARG Parameter Processing

BASIC Interpreter Utility Routines 4-9

SMUL
S

Multiply two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:1Ch

Notes:

m The numbers can be either real numbers or integers. The result is an integer only if both numbers
were integers, and the resultfits in an integer.

m SMUL uses the operation stack as a scratch area.

Input: Output:

(used by SMUL)
SPTR—

S2

SPTR—
S1 S1*S2

S1, S2: numeric values S1*S2: numeric value

4-10 BASIC Interpreter Utility Routines

SNEG

Change the sign of a number on the operation stack.

Calling sequence:

FAR CALL CSEG:28h

Notes:

= The number can be either a real number or an integer. The result is an integer if the number was

an integer.

m SNEG does not use the operation stack as a scratch area.

Input: Output:

SPTR— SPTR—
S1 -S1

S1: numeric values =S 1: numeric value

BASIC Interpreter Utility Routines 4-11

SPOW

Exponential operation for two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:24h

Notes:

m The numbers can be either real numbersor integers. The result is always a real number.

m SPOW uses the operation stack as a scratch area.

Input:

(used by SPOW)
SPTR—

S2

S1
S1, S2: numeric values

Output:

SPTR—

s152 : numeric real value

4-12 BASIC Interpreter Utility Routines

SSuB

Subtract two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:18h

Notes:

= The numbers can be either real numbersor integers. The result is an integer only if both numbers

were integers, and the resultfits in an integer.

m SSUB does not use the operation stack as a scratch area.

Input: Output:

SPTR—
S2

SPTR—
S1 S§1-82

S1, S2: numeric values S§1-52: numeric value

BASIC Interpreter Utility Routines 4-13

TOBIN

Convert a number at SS : BX to an integer.

Calling sequence:

FAR CALL CSEG:30h

Notes:

m The value is left unchanged if SS : BX pointsto an integer.

= The fractional part of the real number,if any,is truncated.

m An error occurs if the real number is not within the range -32768 through 32767.

= TOBIN does not use the operation stack as a scratch area.

Input: Output:

SS:BX— SS:BX—
S1 S1

S1: numeric real or integer data S1: numeric integer data

4-14 BASIC Interpreter Utility Routines

TOREAL

I

Convert an integer or real number at SS : BX to a real number.

Calling sequence:

FAR CALL CSEG:2Ch

Notes:

m TOREAL does not use the operation stack as a scratch area.

Input: Output:

SS:BX— SS:BX—
S1 S1

S1: numeric real or integer data

S 1: numeric real data

BASIC Interpreter Utility Routines 4-15

5

1/0 Statement and Handlers

Contents
 I

Chapter 5 1/0 Statement and Handlers

5-1 Input Keywords (GET #, INPUT #, INPUTS$)
5-4 Output Keywords (PRINT #, PRINT # . .. USING, PUT #)

S

1/0 Statements and Handlers
I

The BASIC Reference Manual has tables associated with the BASIC 1/O keywords (GET #,

INPUT #, INPUTS, PRINT #, PRINT # ... USING, and PUT #) which describe the

interaction between the keywords and the built-in handlers for channels 1 through 4. This chapter

describes the interactions between these BASIC keywords and user-defined handlers for channels 1

through 4.

T

input Keywords (GET #, INPUT #, INPUTS)

GET #, INPUT #, and INPUTS all process incoming data in a different way.

m GET # reads data directly into the input variables.

s INPUT # reads data into a 256-byte internal buffer, then copies the data to the input variables.

m INPUTS reads data and places it on the character stack. The data is then copied to the variable

with the BASIC assignment operation.

The following table summarizes how each of the input keywords responds to conditions generated by

user-defined handlers.

1/0 Statements and Handlers 5-1

5-2

Table 5-1. Response of Input Keywords to Handler-Generated Errors

Condition GET # INPUT # INPUTS

R received.

Character from ter-

minate characterstring
received.

Short record detected

(error 115).

Terminate character

detected (error 116).

End of data (error
117).

Timeout (error 118).

Power switch pressed

(error 119).

Low battery (error
200).

Errors 201-208.

N/A.

N/A.

Ends input for that
variable.

Ends input for that
variable.

Ends input for that
variable. *

Input aborted.

Input aborted.

input aborted.

input aborted.

Characters received

from the device

(except the R'r) are
placed in the input
variable. Input is
aborted if no other

characters were

received.

N/A.

The short read error
generates a garbage
byte, and the error is
ignored (input opera-
tion for that variable
not ended).

Ignored (input opera-
tion for that variable
not ended).

Characters read up to
the EOD are placed in
the input variable.
Input is aborted if no
characters were
received before the
EOD.

input aborted.

input aborted.

Input aborted.

Input aborted.

N/A.

Characters received
from the device
(including the ter-
minate character) are
placed in the input
variable.

Ignored (input opera-
tion not ended).

Ignored (input opera-
tion not ended).

Ignored (input opera-
tion not ended). *

Input aborted.

Input aborted.

Input aborted.

Input aborted.

* The behavior of GET # and INPUTS is altered if INPUT # has been used with the channel and the last INPUT #
aborted input due to an EOD.

m GET # is not affected except that program execution continues on the next line of the program (not the next
statement, if GET # is in a multistatement line).

= INPUT$ will abort input after reading one character. Program execution continues on the next line of the program
{not the next statement, if INPUTS is in a muiltistatement line).

1/0 Statements and Handlers

When input is aborted, program execution continues on the next line of the program (not on the next

statement,if the GET #, INPUT #, or INPUTS statementis in a multistatementline).

“Input aborted” has different meanings for GET #, INPUT #,and INPUTS.

GET #:

INPUT #:

INPUTS:

The input operation has been interrupted. When inputis aborted, the input operation is

ended, and any characters received up to that point are placed in the input variable.

This may result in part of the previous value of the variable being overwritten. All sub-

sequent variablesin the input list are unchanged. This is in contrast to INPUT # and

INPUTS, in which any received data for that variable is discarded.

When input is aborted because of a numeric error, the I/O length reported by SYIN is

set to the number of bytes actually received up to that point, since that data has already

been placed in the input variable.

No data has been received or the input operation has been interrupted. When input is

aborted, the input operation is ended, and any characters received up to that point are

discarded. The current input variable and all subsequent variables in the input list are

left unchanged (note that variables prior to the one at which input was aborted will

already have been changed). This is in contrast to GET #, in which any received data

for that variable is saved.

Wheninputis aborted because of a numeric error, the I/0O length reported by SYIN is

set to 0, since no data is placed in the input variable.

No data has been received or the input operation has been interrupted. When input is

aborted, the input operation is ended, and any characters received up to that point are

discarded. The input variableis left unchanged. This is in contrast to GET #, in which

any received datais saved and the variables are set to 0 or the null string.

When input is aborted because of a numeric error, the 1/0 length reported by SYIN is

set to 0, since no data is placed in the input variable.

1/0 Statements and Handlers 5-3

Output Keywords (PRINT #, PRINT # . . . USING, PUT #)

This table summarizes how each of the output keywords (PRINT #, PRINT # ...
PUT #) responds to errors generated by user-defined handlers.

Table 5-2. Response of Output Keywords to Handler-Generated Errors

Condition PRINT # PRINT # . . . USING PUT #

Timeout (error 118). Output aborted. Output aborted. Output aborted.

Power switch pressed |Output aborted. Output aborted. Output aborted.
(error 119).

Low battery (error Output aborted. Output aborted. Output aborted.
200).
Errors 201-208. Output aborted. Output aborted. Output aborted.

Lost connection while |Output aborted. Output aborted. Output aborted.
transmitting (error
218).

USING,

“Output aborted” means that the output operation has been interrupted. When output is aborted, the
output operation is ended. Subsequent variables in the output list are not output.

When output is aborted, program execution continues on the next line of the program (not on the next
statement, if PRINT #, PRINT # ... USING,or PUT # isina multistatement line).

When output is aborted because of a numeric error, the I/O length reported by SYIN is set to the
number of bytes actually sent up to that point, since that data has already been written to the device.

5-4 1/0 Statements and Handlers

Part 3

Hardware Specifications

Introduction to the Hardware Specifications

The purpose of this section of the Technical Reference Manualis to provide enough information for a

developerto test a system configuration using the HP-94 and accessoriesin typical usage. There are

four major topics:

s Electrical Specifications

This provides voltage and current levels and specific integrated circuit (IC) information for some of

the system ICs.

m Mechanical Specifications
This includes HP-94 dimensions and information about connector types and pin assignments.

m Environmental Specifications
This provides temperature, humidity, and other environmental information about the HP-94

operating environment.

m Accessory Specifications
This discusses the principal accessories currently available for the HP-94.

In addition, for reference by developers, data sheets are provided for four of the ICs used in the
machine.

Disclaimer

Hewlett-Packard makes no warranty of any kind with regard"t‘o this material, including, but not lim-

ited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-

Packard shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

The information contained in this documentis subject to change without notice.

System Block Diagram

On the next page is a block diagram of the HP-94 hardware.

Introduction to the Hardware Specifications 1

= ~ - ~

System Bus CPU (—m |y . Oock_|

Key Keyboard |

Matrix Control Le.vovomf L Real-Time

_____ Custom Glock I
Gate I

(->d

Dispiay Array Beeper

Backlight B pe l

\l/ ———Le Earphone Jack
Display |f=---+

Displ
spiay Control feoo.;m |

BarGode | Bar Gode Port
Interface

System < ------- |
ROM ----------------------> |

F-----------~---3%= Serial [&—
ial Port

bt dorseninnnisiyT interface —19 Serial Po

— Power

Control ‘

NiCd
+ RechBattery l charger

I

| Lithium Lithium

| Battery Battery

Lithiumn Legend: g"d::l |
Batt T Rey Data cwereeeens r- > 40K RAM

\L ‘ L Card

v64K Buih-ln KETs raaanennnny)Trnd l- : i

RAM TTSt--+3> 128K Memory
64K Built-in ISs1LoX..> Board

RAM e oo] Vo

| y oe ROM/EPROM
L— —J :_ _——— Card
e

External Bus

2

Figure 1. HP-94 Hardware Block Diagram

Introduction to the Hardware Specifications

Electrical Specifications

Electrical Specifications

This section provides the basic electrical specifications for the HP-94. Specific bus timing information

is not provided. This information is available in the manufacturer’s specifications for the individual

components. The principal ICs used in the HP-94 are shown below.

Table 1-1. Principal Integrated Circuits

iC Manufacturer

|

Part Number

Microprocessor * NEC uPD70108 (V20)

RAM Toshiba TC5565FL-15L

EPROM Toshiba TCs57256D-20

LCD Column Driver *

|

Hitachi HD61102A

LCD Row Driver Hitachi HD61103A

UART * OKl MSM82C51A

Real-Time Clock * Epson RTC-58321

Custom Gate Array Hitachi 611224

* Refer to the data sheets for these devices,

Electrical Specifications

Specific questions relating to the use of these ICs or their specifications should be directed to the IC

manufacturer.

1-1

Table 1-2. Electrical Specifications

Parameter Symbol| Min Typical Max Units Comments

=Operating Voltage Vee 4.50 480 6.00 Vdc Varies as batteries vary

Operating Current lee 60 20 mA Running
35 50 mA Waiting for a key

Operating Frequency Fop 3.6864 MHz *

Display Backlight Iy 20 mA When backlight on
Current

Standby Current lsp 30 100 uA For HP-84F (256K
RAM): T=25°C

Battery Pack Capacity 900 mAh HP 82430A Recharge-
able NiCd Battery Pack

Low Battery Detect Vini 4.55 460 465 Vde Discharging {voltage
Level — NiCd decreasing)

4.70 475 480 Vdc Charging (voltage
increasing)

Low Battery Detect Vi 2.65 270 275 Vde
Level — Lithium

Reset Detect Level Vist 4.35 440 445 Vdc

V¢ Cutoff Level Veu 3.80 4.20 Vdc

~Serial Port s 250 mA For Vg=Vo,0.1V
Source Current

Serial Port Maximum Viom -15 +15 Vdc t
Input Voltage

Serial Port input Vin {0.8 V¢ vdc t
Logic Levels Vi 0.15V,. Vdc

Serial Port Output Vo Vee0.2 Vee Vdc 1
Logic Levels Voo 0 0.2 Vvdc

Serial Port linm +10 HA Vin=V¢c or GND
Input Current +3.5 mA V=215V

HP 82470A Level he 25 mA When active with a std.
Converter Current RS-232-C load at 9600

baud and V,.=6.0 V

Bar Code Port loer 175 mA For Vper=Vec-0.1V
Source Current

Bar Code Port Input Vi |0.75 V. Vee Vdc CMOS 40H004
Logic Levels (Voper) Vi 0 0.15V, Vdc inverting buffer

Bar Code Port [+1 uA Input logic 1 §
Input Current 6 mA Input logic 0 §

* Voltage and timing specifications associated with the external bus and memory port are established by the CPU vol-
tage and timing specifications. Please refer to the NEC uPD70108 data sheet.

t The HP-94 has a special input protection circuit using a 4.7 volt zener diode clamp that keeps the input voltage less
than 4.7 volts and greater than -0.6 volts. Input signals between 0 and V. will not be modified.

$ The output drivers are CMOS 40H004 inverting buffers that drive only between GND and V. voltage levels.

§ The bar code port input (Vo) drives a 40H004 inverting buffer with a 1 k2 pullup resistor.

1-2 Electrical Specifications

2

Mechanical Specifications

Contents

Chapter 2

2-1

2-1

2-2

2-3

2-5

2-7

2-7

Mechanical Specifications

Physical Specifications
Serial Port Connector Specifications
Bar Code Port Connector Specifications
Memory Port Connector Specifications
External Bus Connector Specifications
Earphone Connector Specifications
Battery Pack Connector Specifications

2

Mechanical Specifications

This chapter describes mechanical specifications for the HP-94 and its connectors.

3

Physical Specifications

Below are the physical specifications for the HP-94.

Table 2-1. Physical Specifications

Parameter Value Units Comments

Height 16.0 cm 6.3in
Width 16.5 cm 6.5in

Thickness 3.7 cm 1.4in

Weight 686-745* g 1.5-161b
* The weight varies depending on the memory configuration. Minimum is for the
HP-94D, and maximum is for the HP-Q4E with an HP 82412A ROM/EPROM

Card containing three 27C256 EPROMs.

]

Serial Port Connector Specifications

The serial port connector is a 15-pin D-type female connector. The connector’s attachment bolts use
4-40 x 1/4" slotted-head screws; note thatit is not necessary to secure cables to the machine using these
bolts. The following tables provide serial port connector pin assignments and information about mat-
ing connectors for the serial port.

Mechanical Specifications 2-1

Table 2-2. Serial Port Connector Pin Assignments

Pin Number Symbol Signal Name

Housing FG Frame Ground
1 NC Not Connected
2 ™D Transmitted Data

3 RxD Received Data

4 RTS Request To Send
5 CTS Clear To Send
6 DSR Data Set Ready
7 SG Signal Ground
8 DCD Data Carrier Detect

9 Vis Switched V.

10 Vien * Alternate Recharger Input

11 GND Recharger Ground Return
12-14 NC Not Connected

15 DTR Data Terminal Ready

* The specifications for Vrch to aliow charging of the NiCd battery pack
using this pin are the same values as the output voltage and current

specifications of the HP 82431A recharger.

Table 2-3. Serial Port Mating Connectors

Manufacturer |Part Number

TRW DAM 15P

Amphenol 17-20150-1

JAE DAC 15P

ITT Cannon DA-15P

L o

Bar Code Port Connector Specifications

The bar code port uses a 6-pin, 240° circular DIN connector. Either a 5-pin or 6-pin mating connector
can be used on the bar code reader since pin 6 is not connected at the bar code port. The following
tables provide bar code port connector pin assignments and information about mating connectors for
the bar code port.

Table 2-4. Bar Code Port Connector Pin Assignments

Pin Number

|

Symbol Signal Name

1 Voer Switched V.
2 Vober Input From Barcode Reader
3 GND * |Signal Ground
4-6 NC Not Connected

* The connector housing is attached to signal ground.
2-2 Mechanical Specifications

Table 2-5. Bar Code Port Mating Connectors

Manufacturer Part Number

Switchcraft 12BL5M

Switchcraft 12BL6M

ITT Cannon 46005F

ITT Cannon 46006

TRW 014-00016-5

TRW 014-00024-1

SMK DIN45322

Memory Port Connector Specifications

The memory port connector is inside the back cover of the HP-94, and is where the 40K RAM card,
ROM/EPROM card, and 128K memory board connect to the machine. It is a Burndy PSE36C-2 36-
pin PCB edge connector. The pin assignment is shown below.

Mechanical Specifications 2-3

Table 2-6. Memory Port Connector Pin Assignments

Pin Symbol Signal Name

1 GND Ground
2 RD Read
3 WR Write
4 Csv System reset
5 A0 Address bit 0

6 Al Address bit 1

7 A2 Address bit 2

8 A3 Address bit 3

9 A4 Address bit 4

10 A5 Address bit 5

11 AB Address bit 6

12 A7 Address bit 7

13 A8 Address bit 8

14 A9 Address bit 9

15 A10 Address bit 10

16 At1 Address bit 11

17 A12 Address bit 12

18 A13 Address bit 13
19 Al4 Address bit 14
20 A15 Address bit 15
21 CSMC1 * Memory card chip select 1
22 CSMC2+ Memory card chip select 2
23 ADO Address/data bit 0
24 AD1 Address/data bit 1
25 AD2 Address/data bit 2
26 AD3 Address/data bit 3
27 AD4 Address/data bit 4
28 AD5 Address/data bit 5
29 AD6 Address/data bit 6
30 AD7 Address/data bit 7
31 csv System reset

32 Vi NiCd battery voltage (output)
33 Vies Lithium battery voltage (input)
34 Vag Recharger DC voltage (output)
35 V Supply voltagecC

36 GND Ground

* CSMCT1 is activewhen A1g,A18, and A16 = 0 and A17 = 1
(CSMC1 = A19-A18-A17-A16).

t CSMC2 is activewhenA19 and A18 = 0, and A17 and A16
= 1 (CSMC2 = A19-A18:A17:A16).

2-4 Mechanical Specifications

 N

External Bus Connector Specifications

The external bus connector is located on the underside of the HP-94 behind a hard plastic port cover.

The connector is a JAE PICL-40S-ST. Connection to the external bus connector can be made using a

JAE PICL-40P-ST connector. The pin assignment is shown in the following table. Pin 1 is marked on

the connector body. The odd-numbered pins are on the outer row (toward the outer edge of the HP-94

case), and the even-numbered pins are on the inner row.

Mechanical Specifications 2-5

Table 2-7. External Bus Connector Pin Assignments

Pin Symbol Signal Name

1 Vi NiCd battery voltage
2 Vni NiCd battery voltage
3 Vee Supply voltage
4 GND Ground
5 NC Not connected
6 NC Not connected
7 NC Not connected
8 DT/R Buffer read/write
9 DEBUG Connected to ground
10 NC No connection
11 IRQFK Reserved interrupt request 2

12 IRQPR Reserved interrupt request 1
13 I0/M 10/Memory
14 ALE Address latch enable
15 CLK CPU clock
16 AS16 Address/status bit 16
17 AS17 Address/status bit 17
18 AS18 Address/status bit 18
19 AS19 Address/status bit 19
20 RESET System clocked reset
21 ADO Address/data bit 0
22 AD1 Address/data bit 1
23 AD2 Address/data bit 2
24 AD3 Address/data bit 3
25 AD4 Address/data bit 4
26 AD5 Address/data bit 5
27 AD6 Address/data bit 6
28 AD7 Address/data bit 7
29 A15 Address bit 15
30 Al4 Address bit 14
31 A13 Address bit 13
32 A12 Address bit 12
33 A1 Address bit 11
34 A10 Address bit 10
35 A9 Address bit 9
36 A8 Addressbit 8
37 WR Write
38 RD Read
39 GND Ground
40 GND Ground

2-6 Mechanical Specifications

R

Earphone Connector Specifications

The earphone jack accepts a 3.5 mm miniature plug, with an overall length of less than 12 mm. A 0.125

inch diameter miniature plug will also fit, but will tend to have a lower insertion and removal force.

Most standard earphones will connect properly to the HP-94 both mechanically and electrically. Some

variation in audio output volume will occur between various earphone manufacturers.

™

Battery Pack Connector Specifications

The battery pack uses two AMP 42827-1 brass contacts. The HP-94 mates these contacts with custom

nickel-plated brass pins that are 2.31 mm (0.091 in) nominal diameter, 6.3 mm (0.25 in) long, and 6.0

mm (0.24 in) center spacing.

Mechanical Specifications 2-7

3

Environmental Specifications

3

Environmental Specifications

Below are the environmental specifications for the HP-94.

Table 3-1. Environmental Specifications

Parameter Min Max Units Comments

Operating Temperature 0 55 °C +321t0 131 °F

Storage Temperature -40 65 °C -40to 149 °F

Operating Humidity 0 95 %RH At 40 °C

Vibration 3.4 g rms, 5 to 500 Hz random vibration, 10

minutes per axis

Swept sine, 1 g, 5 to 500 Hz, 10 minutes dwell at
resonance

Shock 3 ms, 1/2 sine wave, 228 g, 6 axes

Environmental Specifications 3-1

4

Accessory Specifications

Chapter 4

Contents

4-1

4-2

4-3

4-4

4-4

4-5

4-6

4-7

4-7

4-8

4-8

4-9

4-9

4-10

4-10

4-10

Accessory Specifications

40K RAM Card Specifications
ROM/EPROM Card Specifications
Battery Pack Specifications

Guidelines for Using Rechargeable Batteries
Recharger Specifications
Level Converter Specifications

When to Use the Level Converter
Cables
Modem Cable
Printer Cable
Level Converter Cable
Vectra Cable
Vectra or IBM PC/AT to Level Converter Cable
IBM PC or PC/XT to Level Converter Cable

Bar Code Readers
Connecting the Serial Port to a Smart Wand

4

Accessory Specifications

The principal HP-94 hardware accessories (at the time of printing) are listed below. This accessory list

does notinclude any software documentation, development tools, or utilities. For a complete list of all

HP-94 accessories and support items, please refer to the current HP-94 price list, available at all HP

sales offices. This chapter will describe only accessorieslisted in the table below.

Table 4-1. HP-94 Hardware Accessories

Model No. Description

HP 82411A
HP 82412A
HP 82430A
HP 82431A
HP 82431AB *
HP 82431AG *
HP 82431AU *
HP 82470A
HP 82433A
HP 82434A
HP 82435A
HP 82436A
HP 24542G
HP 17255D
HP 39961D
HP 39963D
HP 39965D

40K RAM Card
32K-128K ROM/EPROM Card
Rechargeable NiCd Battery Pack
U.S./Canada Recharger
Europe Recharger
Australia Recharger
U.K. Recharger
RS-232-C Level Converter
HP-94 to Modem Cable
HP-94 to Printer Cable
HP-94 to Level Converter Cable
HP-94 to Vectra Cable
Vectra or IBM PC/AT to Level Converter Cable
IBM PC or PC/XT to Level Converter Cable
Smart Wand - Low Resolution
Smart Wand - General Purpose
Smart Wand - High Resolution
 * The foreign versions of the recharger (Europe, Australia, and U.K) are not

available at the time this document was printed.

40K RAM Card Specifications

Pin assignments for the HP 82411A 40K RAM Card are described in the "Mechanical Specifications”

chapter. The RAM card uses the same Toshiba RAM (TC5565FL-15L) as is used in the HP-94. A

CR-2032 (or equivalent) lithium battery is required to provide battery backup for the RAM card.

Accessory Specifications 4-1

 [

ROM/EPROM Card Specifications

Pin assignments for the HP 82412A ROM/EPROM Card are described in the "Mechanical
Specifications" chapter.

The ROM/EPROM Card has sockets for up to three 32 Kbyte (256 Kbit) ROMs or EPROMs, or up
to two 64 Kbyte (512 Kbit) ROMs or EPROMsortheir equivalents. There is a socketed jumper on the
card that allows selection ofthe different sizes. The generic names for these ICs are 27C256 for the 32
Kbyte and 27C512 for the 64 Kbyte ICs. The CMOS version of the ROMs or EPROMs must be used.
The NMOS versions require more current than is guaranteed by the HP-94. The EPROMs cannot be
programmed while in the ROM/EPROM card, but must be programmed in an external EPROM pro-
grammer.

A list of the required specificationsis provided below to assist in selecting the appropriate parts.

Table 4-2. ROM and EPROM Specifications

Parameter Min Max Units Comments

Operating Voltage 4.5 5.5 Vdc 6.0 V is recommended *
Operating Temperature -10 +65 °C +14 t0 149 °F
Access Time 250 ns All parts < 250 ns

* Several manufacturers (including Intel) offer EPROMs with extended operating voltage range.

The manufacturers that make correct size ROMs and EPROMs for use with the ROM/EPROM card
and their part designations as of this printing are listed below. You should verify operating voltage,
temperature, and speed with the manufacturer before making a final selection.

Table 4-3. ROM and EPROM Manufacturers

32K IC 64K IC

Manufacturer

EPROM ROM EPROM ROM

Advanced Micro Devices Am27C256 — Am27C512 —

Fujitsu MBM27C256 MB83256 MBM27C512 MB83512

Hitachi HN27C256 HN613256P — —

intel 27C256 — 27C512 —

Motorola MCM67256 — MCM67512

National Semiconductor NMC27C256 — NMC27C512 —
NEC uPD27C256 uPD23C256E pPD27C512 pPD23C512
Texas Instruments TMS27C256 TMS47C256 TMS27C512 TMS47C512

Toshiba TC57256 TMM53257P — —

4-2 Accessory Specifications

]

Battery Pack Specifications

The HP-94 uses the HP 82430A Rechargeable Battery Pack. When fully charged, the battery pack has

approximately 900 milliamp-hours (mAh) of usable charge. The battery pack is charged whenever an

HP 82431 recharger (HP 82431A/AB/AG/AU) is connected to the HP-94. Charging times and

currents when charged using one of the HP 82431 rechargers are shown below.

Table 4-4. HP 82430A Rechargeable Battery Pack Specifications

Parameter Symbol Min Typical Max Units Comments

Capacity 900 mAh

Charging Time Ten 6 10 14 hr *

Charging Current len 150 t mA Pack attached
to HP-94

Charging Current len 200t mA Pack detached
from HP-94

* The battery pack charging time is independent of HP-94 operating mode. Sufficient currentis provided to operate the

HP-94 and its principal accessories as well as fully charge the battery pack.

Charging times in excess of 18 hours are not recommended. Extended charging time may reduce the iife of the bat-

tery pack. It is recommended that periodic "deep discharge - full recharge” cycles be performed to insure that max-

imum life and charge retention performance of the battery pack is maintained.

t The battery is connected to the recharger through a 2.7 2 current-limiting resistor in series with a Schottky blocking

diode. The actual charging current will vary as the battery pack voltage increases from the discharged state to the full

charged state.

1 Charging at currents greater than 200 mA for extended periods of time may damage the battery pack.

The battery pack contains four 2/3 C NiCd batteries completely enclosed in a detachable battery hous-

ing. All NiCd batteries are capable of extremely high short circuit currents. A thermal protector is

built into the battery pack to prevent a constant short circuit condition. Since this circuit is

temperature-sensitive, ambient conditions at or aboveits 75 °C temperature rating will cause a tem-

porary open circuit in the battery pack. The HP-94 will then behave asif no battery pack is connected.

When the short circuit or high temperature condition is removed, the battery pack short circuit protec-

tor will again close and the battery pack will continue normal operation.

WARNING Never connect multiple battery packs in paraliel while charging.
Each individual pack should be blocked with a diode to prevent
short circuit current from a failed cell from flowing into good cells

of other packs.

The battery pack connector specifications are described in the "Mechanical Specifications” chapter.

Accessory Specifications 4-3

Guidelines for Using Rechargeable Batteries

The following is usage information and cautions about using rechargeable batteries.

CAUTION To avoid damageto the handheld computer, use only the batteries and recharger
designated by Hewlett-Packard for the computer. Also, do not aliow the batteries
to discharge beyond their available capacity — recharge as soon as possible
after the low battery indication appears. Allowing rechargeable batteries to
discharge beyond their maximum limit can damage the batteries.

m Recharging batteries before they are low may eventually decrease their charging capacity.

m Do not overcharge the batteries by allowing them to recharge for longer than the recommended
time. Shorter charging times will reduce the operating time before recharging is required, but will
not harm the batteries.

m Do not leave the recharger permanently connected to the machine. Doing so decreases the useful
life of the batteries.

m Do not use the recharger if it appears to have loose contacts, a cracked housing, or a damaged cord.

m Properly dispose of the batteries when they no longer adequately hold a charge or when they
appear damaged.

WARNING To prevent injury, keep all batteries out of the reach of children
and properly dispose of exhausted batteries. Do not mutilate or

puncture batteries, and do not dispose of them in fire. Exposure to

excessive heat can cause release of toxic fumes or explosion.

1

Recharger Specifications

The HP 82431 Recharger (HP 82431A/AB/AG/AU) supplies charging current to the HP-94’s NiCd
battery pack. The recharger is designed to supply sufficient current to charge the batteries even while
the HP-94 is operating.

4-4 Accessory Specifications

Table 4-5. HP 82431 Recharger Specifications

Parameter Symbol Min Typical Max Units Comments

Input Voltage Vac 108 120 132 Vac HP 82431A
198 220 242 Vac HP 82431AB

216 240 264 Vac HP 82431AG/AU

Input Current lac 80 mA HP 82431A
40 mA HP 82431AB/AG/AU

input Frequency P 57.5 60 625 Hz HP 82431A
47.5 50 55 Hz HP 82431AB/AG/AU

Output Voltage Vieh 6.2 6.7 Vdc

Output Current ben 400 mA *

* Refer to "Battery Pack Specifications" for details about the charging current actually supplied to the battery pack.

I

Level Converter Specifications

The HP-94 serial port outputs CMOS logic levels (refer to "Electrical Specifications”). Some RS-232

devices require that proper RS-232 voltage levels be provided for their serial interfaces to operate

properly. These devices require the use of the HP 82470A RS-232-C Level Converter.

The level converter modifies the 0 to V. voltage level outputs from the HP-94 serial port to +9 V EIA

RS-232-C voltage levels. Additionally, the level converter’s 25-pin connector inputs and outputs meet

all RS-232 timing and load specifications. RS-232 voltage level inputs to the level converter’s 25-pin

connector are internally shifted to the 0 to V, range the HP-94 expects, and then are output to the

HP-94 using the 15-pin connector.

When the serial port is disabled, the control lines are turned off (set to 0 volts). This is different than

most AC-powered serial devices, in which the controllines are high (-3 volts orless) because the serial

port is powered whenever the deviceis on.

Connection is made between the HP-94 and the level converter using an HP 82435A 1/4 meter cable.

The level converter is powered by the HP-94 using pin 9 ofthe serial port (V,s). The output voltage Vs

is activated under program control when the serial port is enabled (refer to the "Serial Port" chapter in

the operating system section of this manual). Typical power consumption by the level converter is 25

mA when active with a standard RS-232-C load at 9600 baud and V. = 6.0 volts (Vs=Vc-0.1 V).

Below are the pin assignments for both the 15- and 25-pin connectors on the level converter.

Accessory Specifications 4-5

Table 4-6. HP 82470A RS-232-C Level Converter Pin Assignments

25-Pin Female Connector 15-Pin Female Connector

Signal Name Symbol Pin No. Pin No. Symbol HP-94 Signal Name

Frame Ground FG Housing Housing FG Frame Ground
Transmitted Data TxD 2 2 TxD Transmitted Data

Received Data RxD 3 3 RxD Received Data
Request To Send RTS 4 4 RTS Request To Send
Clear To Send CTs 5 5 CTS Clear To Send
Data Set Ready DSR 6 6 DSR Data Set Ready
Signal Ground SG 7 7 SG Signal Ground
Data Carrier Detect DCD 8 8 DCD Data Carrier Detect

Not Connected NC 9 9 Vis Switched V. *
Data Terminal Ready DTR 20 15 DTR Data Terminal Ready

* HP 82470A level converter power.

When to Use the Level Converter

RS-232-C specifications require that input signal levels at the input of a device be greater than +3 or
less than -3 volts. RS-232 output voltages experience a greater voltage swing to prevent signal degrada-
tion and line noise from interfering with communication signals. However, many available line
receivers do not actually require voltage swings of these levels. The HP-94 system can take advantage
of this by not requiring that the level converter be used when communicating with these devices.

The HP-94 will switch its RS-232 outputs between CMOS logic levels, where V. will be between 4.5
and 6.0 volts. This provides logic low levels of less than 0.2 volts and logic high levels of greater than
V0.2 volts. Thus, any line receiver that will respond with high-to-low and low-to-high transitions in
this range of logic 0/1 values will not need to have true RS-232 levels atits inputs to properly detect the
logic level.

The line receivers that can communicate directly with the HP-94 (that is, no level converter required)
arelisted below. Certain parts listed must be operated in the specified mode or configuration, so spe-
cial attention must be paid to the comments.

Table 4-7. Line Receivers That Do Not Require Level Converter

Part Number Manufacturer Comments

1489 National Semiconductor Response (threshold) control must be open
Motorola *

75189 Texas Instruments -1 Response (threshold) control must be open
75154 Texas Instruments Response (threshold) control must be open
MAX232 Maxim
MC145406 Motorola
74HC14 many manufacturers

* 1489-compatible parts from other manufacturers will also work.
4-6 Accessory Specifications

CAUTION When using the HP-94 system without a level converter, special care must be

taken to ensure that the interconnection cables are sufficiently short to prevent

signal degradation. It is recommended that all communications cable for use with

the HP-94 that do not use the level converter be less than 3 meters in length.

|

Cables

There are several cables available to allow configuration of the HP-94 in a system. The connections for

each of these cables are provided in the tables that follow in this section. Cable lengths are 1 meter

unless specified otherwise.

Modem Cable

The HP 82433A cable is used to connect the HP-94 to modems that do not require a level converter. It

is specifically designed for use with Hayes Smartmodems, but is usable with many other modemsas

well.

Table 4-8. HP-94 to Modem Cable

HP-94 Modem

15-Pin Male Connector 25-Pin Male Connector

Signal Name Symbol Pin No. Pin No. Symbol Direction

Frame Ground FG Housing Housing AA N/A
Transmitted Data TxD 2 2 BA To Modem

Received Data RxD 3 3 BB From Modem

Request To Send RTS 4 4 CA* To Modem

Clear To Send CTS 5 5 CB From Modem

Data Set Ready DSR 6 6 cC From Modem

Signal Ground SG 7 7 AB N/A
Data Carrier Detect DCD 8 8 CF From Modem
Data Terminal Ready DTR 15 20 CD To Modem

* Hayes Smartmodems do not implement this line.

The HP-94 has receive all the necessary approvals for connecting to modems in the U.S. Some coun-

tries require that the product andits interface cable be approved prior to connecting to a modem.

Contact your local Hewlett-Packard sales office to verify that the HP-94 is approved for your specific

location.

Accessory Specifications 4-7

Printer Cable

The HP 82434A cable is used to connect the HP-94 to RS-232-C printers that do not require a level
converter. It is specifically designed for use with Hewlett-Packard ThinkJet printers (HP 2225D), but is
usable with many other printers as well.

Table 4-9. HP-94 to Printer Cable

HP-94
15-Pin Male Connector

Printer

25-Pin Male Connector

Signal Name Symbol Pin No. Pin No. Symbol Signal Name

Frame Ground FG Housing Housing AA Protective Ground
Transmitted Data TxD 2 3 BB Received Data
Received Data RxD 3 2 BA Transmitted Data
Request To Send RTS 4 5 CB * Clear To Send
Clear To Send CTS 5 4 CA Request To Send
Data Set Ready DSR 6 20 CD Data Terminal Ready
Signal Ground SG 7 7 AB Signal Ground * Many printers (including the Hewlett-Packard ThinkJet) do not implement this line.

Level Converter Cable

When using the level converter, an HP 82435A 1/4-meter cable is required. This cable provides a
straight-through connection between the HP-94 and the level converter.

Table 4-10. HP-94 to Level Converter Cable

HP-94

15-Pin Male Connector
Level Converter

15-Pin Female Connector

| Signal Name Symbol Pin No. Pin No. Symbol Signal Name

FrameGround FG Housing Housing FG Frame Ground
Transmitted Data TxD 2 2 TxD Transmitted Data
Received Data RxD 3 3 RxD Received Data
Request To Send RTS 4 4 RTS Request To Send
Clear To Send CTS 5 5 CTS Clear To Send
Data Set Ready DSR 6 6 DSR Data Set Ready
Signal Ground SG 7 7 SG Signal Ground
Data Carrier Detect DCD 8 8 DCD Data Carrier Detect
Switched V. Vie * 9 9 Vi * Switched V.

Data Terminal Ready DTR 15 15 DTR Data Terminal Ready * HP 82470A level converter power.

4-8 Accessory Specifications

Vectra Cable

The HP 82436A 2-meter cable is used whenever direct communication between the HP-94 and a 9-pin

serial port on an HP Vectra personal computer. Each of the two Vectra serial interfaces has one 9-pin

port: the HP 24540A Serial/Parallel Interface, and the HP 24541A Dual Serial Interface. HP supplies

no cables that connect the HP-94 directly to the 25-pin port on the Vectra Dual Serial Interface.

Table 4-11. HP-94 to Vectra Cable

Vectra HP-94

9-Pin Female Connector 15-Pin Male Connector

L Signal Name Symbol Pin No. Pin No. Symbol Signal Name

Protective Ground AA Housing™ Housing FG Frame Ground

Received Data BB 2 2 TxD Transmitted Data

Transmitted Data BA 3 3 RxD Received Data
Data Terminal Ready CD 4 5* CTS Clear to Send
Data Terminal Ready CD 4 6* DSR Data Set Ready
Signal Ground AB 5 7 SG Signal Ground
Data Set Ready cC 6* 15 DTR Data Terminal Ready

Clear to Send CB 8* 15 DTR Data Terminal Ready

* Pins 6 and 8 are tied together on the 9-pin connector, and pins 5 and 6 aretied together on the 15-pin connector.
Vectra or IBM PC/AT to Level Converter Cable

The HP-94 can communicate directly with the HP Vectra computer through the HP 82436A cable,
without using a level converter. For applications that require extended cable lengths or desire the level
converter option, the HP 24542G Serial Printer/Plotter Cable can be used. When communicating with
the IBM PC/AT, a level converter is required, and this cable must be used. The level converteris then

connected to the HP-94 using the HP 82435A cable.

Table 4-12. Vectra or IBM PC/AT to Level Converter Cable

Vectra or IBM PC/AT Level Converter
9-Pin Female Connector 25-Pin Male Connector

Signal Name Symbol Pin No. Pin No. Symbol Signal Name

Protective Ground AA Housing Housing FG Frame Ground
Data Carrier Detect CF 1 4 RTS Request To Send
Received Data BB 2 2 TxD Transmitted Data
Transmitted Data BA 3 3 RxD Received Data
Data Terminal Ready CD 4 5* CTS Clear To Send
Data Terminal Ready CD 4 6* DSR Data Set Ready
Signal Ground AB 5 7 SG Signal Ground
Data Set Ready cC 6* 20 DTR Data Terminal Ready
Request To Send CA 7 8 DCD Data Carrier Detect
Clear To Send cB 8* 20 DTR Data Terminal Ready

* Pins 6 and 8 are tied together on the 9-pin connector, and pins 5 and 6 are tied together on the 25-pin connector.

Accessory Specifications 4-9

IBM PC or PC/XT to Level Converter Cable

When using an IBM PC or PC/XT to communicate with the HP-94, a level converteris required. The
HP 17255D cable connects the 25-pin IBM serial port connector to the 25-pin connector on the level
converter. The level converteris then connected to the HP-94 using the HP 82435A cable.

Table 4-13. IBM PC or PC/XT to Level Converter Cable

IBM PC or PC/XT Level Converter
25-Pin Female Connector 25-Pin Male Connector

Signal Name Symbol Pin No. Pin No. Symbol Signal Name

Frame Ground FG Housing * Housing * FG Frame Ground
Transmitted Data TxD 2 3 RxD Received Data
Received Data RxD 3 2 TxD Transmitted Data
Clear To Send CTS 51 20 DTR Data Terminal Ready
Data Set Ready DSR 61 20 DTR Data Terminal Ready
Signal Ground SG 7 7 SG Signal Ground
Data Terminal Ready DTR 20 5% CTS Clear To Send
Data Terminal Ready DTR 20 61 DSR Data Set Ready

* Pin 1 is connected to frame ground (housing) on both connectors.

t Pins 5 and 6 are tied together on both connectors.
 T

Bar Code Readers

The primary bar code readers for the HP-94 are the three HP Smart Wands: HP 39961D (low resolu-
tion), HP 39963D (general purpose), and HP 39965D (high resolution). Contact your sales office for
complete literature and specifications for these wands.

Connecting the Serial Port to a Smart Wand

HP Smart Wands can be configured in one of two ways:

m By scanning bar code configuration menus (optical configuration)

m By sending configuration escape sequences to the Smart Wand

When a Smart Wand is connected to the bar code port, only the first approach is available because the
bar code port is read-only. The second approach is available if the Smart Wand can be connected to
the serial port. To support this use, Hewlett-Packard supplies a low-level bar code handler with the
HP-94 Software Development System called HNSP that allows "smart" bar code scanning devices to be
connected to the serial port.

HP Smart Wands are supplied with a 5-pin, 240° circular DIN connector, but at this printing are not
available with a 15-pin D-type connector that would connectto the serial port. Below are the connec-
tions for a cable that will connect the serial port to a Smart Wand. This cable is not available from
Hewlett-Packard — the connections are provided to allow a developer to make the cable.

4-10 Accessory Specifications

Table 4-14. HP-94 Serial Port to Smart Wand Cable

HP-94 Smart Wand

15-Pin Male Connector 5-Pin or 6-Pin Female Connector

Signal Name Symbol

|

Pin No. Pin No. Symbol Signal Name

Frame Ground FG

|

Housing *

||

Housing * FG Frame Ground

Transmitted Data TxD 2 4 RxD Received Data

Received Data RxD 3 2 TxD Transmitted Data

Request To Send RTS 41 — NC Not Connected

Clear To Send CTS 51 — NC Not Connected

Signal Ground SG 7 3 SG Signal Ground

Switched V¢ Vs 9 1 Vst Switched V.
 t HP Smart Wand power.

* The shield or braid must be connected to frame ground (housing).

1 Pins 4 and 5 are tied together on the 15-pin connector.

Accessory Specifications 4-11

S

Data Sheets

5

Data Sheets

This chapter contains copies of manufacturer’s data sheets for the following four ICs:

m NEC uPD70108 (V20) Microprocessor

m OKI MSMB82C51A Universal Asynchronous Receiver Transmitter (UART)

m Hitachi HD61102A LCD Column Driver

m Epson RTC-58321 Real-Time Clock

These data sheets provide reference information for developers whose application interacts directly

with the IC, independent of the HP-94 operating system. Refer to the appropriate chapters in the

"Operating System" for information about how these ICs are used in the HP-94, what I/O control

registers are associated with each IC, and what built-in software is available already to control them.

Data Sheets 5-1

]

NEC xPD70108 (V20) Microprocessor Data Sheet

NEC yPD70108 (V20)
] HIGH-PERFORMANCE

NEC Electronics Inc. 16-BIT MICROPROCESSOR

Revision 3 November 1985

Description . Ordering Information

TheuPD70108 (V20) isa CMOS 16-bit microprocessor

with internal 16-bit architecture and an 8-bit external

data bus. TheuPD70108 instruction setis a superset of

theuPD8086/8088; however, mnemonics and execution

times are different. The uPD70108 additionally has a

powerful instruction set including bit processing,

packed BCD operations, and high-speed multiplication/

division operations. The uPD70108 can also execute

the entire 8080 instruction set and comes with a

standby mode that significantly reduces power con-

sumption. Itis software-compatible with the uPD70116

16-bit microprocessor.

Features

O Minimum instruction execution time: 250 ns

(at 8 MHz)
O Maximum addressable memory: 1 Mbyte

O Abundant memory addressing modes
0 14 x 16-bit register set
0 101 instructions
O Instruction set is a superset of uPD8086/8088

instruction set

O Bit, byte, word, and block operations
O Bit field operation instructions

[Packed BCD instructions
O Multiplication/division instruction execution

time: 4 us to 6 us (at 8 MHz)

0O High-speed block transfer instructions:
1 Mbyte/s (at 8 MHz)

0O High-speed calculation of effective addresses:

2 clock cycles in any addressing mode

0 Maskable (INT) and nonmaskable (NMI)
interrupt inputs

{7 IEEE-796 bus compatible interface

03 8080 emulation mode
0O CMOS technology
0O Low-power consumption
O Low-power standby mode
[J Single power supply
0 5 MHz, 8 MHz or 10 MHz clock

Part Max Fregquency

Number Package Type of Operation

uPD70108C-5 40-pin plastic DIP 5 MHz

uPD70108C-8 40-pin plastic DIP 8 MHz

uPD70108D-5 40-pin ceramic DIP 5 MHz

uPD70108D-8 40-pin ceramic DIP 8 MHz

uPD70108D-10 40-pin ceramic DIP 10 MKz

pPD70108G-5 52-pin flat pack 5 MHz

#PD70108G-8 52-pin flat pack 8 MHz

uPD70108L-5 44-pin PLCC 5 MHz

#PD70108L.-8 44-pin PLCC 8 MHz

Pin Configurations

40-Pin Plastic DIP/Cerdip

-/
ic] 0[] voo

A 2 397 Ass

A3 38[] Ave/PSo
Az [: 4 37 A1/PSy

A s 36 [AwPS2
Ao s 35[] A1p/PS3
Al 7 34 LBS, [HIGH]
Ml s 33[) siG

AD; [9 8 32[] RD

ADg [J10 § 31 [] HLDRG [RQ/AKG]

ADs []11 g 30 [] HLDAK [RG/AK]
ADg (312 26 7] WR [BUSLOCK)]

AD; [J13 287 10/M [BS2)

AD; 14 27 [] BUFR/W (BS4)

ADy []15 26 [] BUFEN [BS,]

ADg []16 257 ASTB {QSg]

NMI (17 24 [] INTAK {QS1)

INT [J18 23[] POLL

CLK (19 2210 reaDY

aNo [J20 21| RESET
83-000102A

uPD70108 (V20) NEC

Pin Configurations (cont)

44-Pin Plastic Leadless Chip Carrier (PLCC)

Pin ldentification

A NC

Ag Ar1y/PS3

Ag LBSg [HIGH]

AD7 /G

ADg AD

ADs HLORQ {AT/AK)

ADsg MLDAK (RO/AKY)

AD3 WRSUSLOCK)

AD2 10/Ni [BS2}

ADy BUFA/W [BS1)

ADg BSUFEN (830)

iN
TA
K
Q
8
]

AS
TB

[Q
Sq

]

83-001872A

52-Pin Plastic Miniflat

g o

(i B EEgif
25 g 2 g e c &

LRLY
aooaonoononnnna

(" s2 40
AwPS21 39 ASTB [QSq)

A17/PS¢ (] INTAR [QS1)

A1e/PSo [POLL

AD1s] READY

vooT RESET

Voo C] GND

GND[4PD70108 GND

GND] NC

tc] GND

Ave] CcLK

A1z [INT

A1z NMI

A 13 7 NC
_1¢ 26

dguttuutuguuuy
$:725595§§44¢

83-001871A

No. Symbot Direction Function

1 Ic* Internally connected

2-8 Aqg-Ag Out Address bus, middle bits

9-16 AD7-ADg InfOut Address/data bus

17 NMI In Nonmaskable interrupt

input

18 INT In Maskable interrupt input

19 CLK In Clock input

20 GND Ground potential

21 RESET In Reset input

22 READY In Ready input

23 POLL In Poll input

24 INTAK (QS4) Out Interrupt acknowledge

output (queue status bit

1 output)

25 ASTB (QSg) Out Address strobe output

(queue status bit 0
output)

26 BUFEN (BSg) Qut Buffer enable output

(busstatus bit 0 output)

27 BUFR/W (BS) Out Buffer read/write output
{bus status bit 1 output)

28 10/M (BS;) Out Access is 1/0 or memory
{bus status bit 2 output)

29 WR (BUSLOCK) Out Write strobe output (bus
lock output)

30 HLDAK (RG/AKy) Out Holdacknowledge output,
(In/0ut) (bus hold request input/

acknowledge output 1)

31 HLDRQ (RG/AKg) In Hold request input (bus
(In/Qut) hold request input/

acknowledge output 0)

32 RD Out Read strobe output

33 s/iG In Smail-scale/large-scale

system input

34 LBSg (HIGH) Out Latched busstatus output
0 (always high in

large-scale systems)

35-38 A49/PS3- Out Address bus,high bits or
A46/PSq processorstatus output

39 Asg Out Address bus, bit 15

40 Vpp Power supply
 Notes: " IC should be connected to ground.

Where pins have different functions in small- and large-

scale systems, the large-scale system pin symbol and
function are in parentheses.

Unused input pins should be tied to ground or Vpg to
minimize power dissipation and prevent the flow of poten-
tially harmful currents.

uPD70108 (V20)

Block Diagram

 (- L
Sub Data Bus [16)

Py A1s/PSp — A19/PS2

As — Ass
Bus

Butter
ADg — ADy

ADM

LSBg _
BUFEN (BSq], BUFR/W [BS:]

9 10/M |BS)

ASTB[QS;], INTAK |QS1)
RD. WR [BUSLOCK]

ps B
Status

S$S
Control

DS l«—— s/LG

DS+
tea——— READY

- RESET

PFP |e—— POLL

op

TEMP
—_

T-State Bus Hold «— HLORQ [RQ/AK,]
Qo Q4 Control Control | HLDAK [AG/AK])

Q2 Q;

Cycle Interrupt I Nmi
Decision Controt INT

| Bus
Queue Standby Control

Le | Contro! Contro! CLK .
Unit

pc l {BCU]

AW L"’__“_—‘,‘__—____‘_____'__—

aw Execution

Unit

cw Ettective Address [EXU]

1 Generator

ow —
X

1Y

s
B8P

-

SP E- Microinstruction .
1 @ 15) Microinstruction

‘ % Storage
©
o

e
2

TC =

TA %
sShiifter ~ ;

T8 -
®
aQ
® Microsequence

g Control
3
o

) Instruction Decoder

.

Main Data Bus [16]
83-000072C

uPD70108 (V20) NEC

Pin Functions

Some pins of the uPD70108 have different functions

according to whether the microprocessor is used in a

small- or large-scale system. Other pins function the

same way in either type of system.

A5 - Ag [Address Bus]
For small- and large-scale systems.

The CPU uses these pins to output the middle 8 bits of
the 20-bit address data. They are three-state outputs

and become high impedance during hold acknowledge.

AD7 - ADg [Address/Data Bus]
For small- and large-scale systems.

The CPU uses these pins as the time-muiltiplexed

address and data bus. When high, an AD bit is a one;
when low, an AD bit is a zero. This bus contains the
lower 8 bits of the 20-bit address during T1 of the bus
cycle and is used as an 8-bit data bus during T2, T3,

and T4 of the bus cycle.

Sixteen-bitdatal/Ois performed in two steps. The low

byte is sent first, followed by the high byte. The ad-

dress/data bus is a three-state bus and can be ata high
or low level during standby mode. The bus will be high
impedance during hold and interrupt acknowledge.

NMI [Nonmaskable Interrupt]
For small- and large-scale systems.

This pin is used to input nonmaskable interrupt

requests. NMI cannot be masked by software. This

input is positive edge triggered and must be held high
for five clocks to guarantee recognition. Actual inter-

rupt processing begins, however, after completion of

the instruction in progress.

The contents of interrupt vector 2 determine the

starting address for the interrupt-servicing routine.

Note that a hold request will be accepted even during
NMI acknowledge.

This interrupt will cause the uPD70108 to exit the
standby mode.

INT [Maskable Interrupt]
For small- and large-scale systems.

This pin is an interrupt request that can be masked by
software.

INT is active high level and is sensed during the last
clock of the instruction. The interrupt will be accepted

if the interrupt enable flag IE is set. The CPU outputs
the INTAK signal to inform external devices that the
interrupt request has been granted. INT must be

asserted until the interrupt acknowledge is returned.

If NM! and INT interrupts occur at the same time, NM|
has higher priority than INT and INT cannot be

accepted. A hold request will be accepted during INT
acknowledge.

This interrupt causes the uPD70108 to exit the standby

mode.

CLK [Clock]
For small- and large-scale systems.

This pin is used for external clock input.

RESET [Reset]
For small- and large-scale systems.

This pin is used for the CPU reset signal. it is an active
high level. input of this signal has priority over all other
operations. After the reset signal input returns to a low
level, the CPU begins execution of the program starting
at address FFFFOH.

In addition to causing normal CPU start, RESET input
will cause the uPD70108 to exit the standby mode.

READY [Ready]
For small- and large-scale systems.

When the memory or I/0 device being accessed
cannot complete data read or write within the CPU
basic access time, it can generate a CPU wait state
(Tw) by setting this signal to inactive (low level) and

requesting a read/write cycie delay.

I1f the READYsignal is active (high level) during either
the T3 or Tw state, the CPU will not generate a wait
state.

POLL [Poll]
For small- and large-scale systems.

The CPU checksthis input upon execution of the POLL
instruction. If the inputis low, then execution continues.

If the input is high, the CPU will check the POLL input
every five clock cycles until the input becomes low

again.

The POLL and READY functions are used to syn-
chronize CPU program execution with the operation of

external devices.

RD [Read Strobe]
For small- and large-scale systems.

The CPU outputs this strobe signal during data read

from an 1/0 device or memory. The |IO/M signal is used

to select between I/0 and memory.

The three-state output is held high during standby

mode and enters the high-impedance state during hold
acknowledge.

S/LG [Small/Large]
For small- and large-scale systems.

This signal determines the operation mode of the CPU.

This signalis fixed at either a high or low level. When

NEC uPD70108 (V20)

this signal is a high level, the CPU will operate insmall-

scale system mode, and when low,in the large-scale

system mode. A small-scale system will have at most

one bus master such as a DMA controller device on the

bus. A large-scale system can have more than one bus

master accessing the bus as well as the CPU.

Pins 24 to 31 and pin 34 function differently depending

on the operating mode of the CPU. Separate nomencla-

ture is adopted for these signals in the two operating

modes.

Function

Pin No. $/16-high 8/(6-low

24 INTAK 0S4

25 ASTB QSg

26 BUFEN BSg

27 BUFR/W BS4

28 10/M BS;

29 WR BUSLOCK

30 HLDAK RG/AK,

31 HLDRQ RO/AKy

A LBSq Always high

INTAK [Interrupt Acknowledge]

For small-scale systems.

The CPU generates the INTAK signal low when it

accepts an INT signal.

The interrupting device synchronizes with this signal and

outputs the interrupt vector to the CPU via the databus

(AD7 - ADg).

ASTB [Address Strobe]
For small-scale systems.

The CPU outputs this strobe signal to latch address

information at an externallatch.

ASTB is held at a iow level during standby mode and

hold acknowledge.

BUFEN [Buffer Enable]
For small-scale systems.

This is used as the output enable signal for an external

bidirectional butfer. The CPU generates this signal during

data transfer operations with external memory or

1/0 devices or during input of an interrupt vector.

This three-state output is held high during standby

mode and enters the high-impedancestate during hold

acknowledge.

BUFR/W [Buffer Read/Write]
For smali-scale systems.

The output of this signal determines the direction of

data transfer with an external bidirectional buffer. A

high output causes transmission from the CPU to the

external device; a low signal causes data transfer from

the external device to the CPU.

BUFK/W is a three-state output and becomes high

impedance during hold acknowledge.

10/M [10/Memory)
For small-scale systems.

The CPU generates this signal to specify either 1/0

access or memory access. A high-level output specifies

I/0 and a low-level signal specifies memory.

10/M’s output is three state and becomes high

impedance during hold acknowledge.

WR [Write Strobe]
For small-scale systems.

The CPU generatesthis strobe signai during data write

to an I/O device or memory. Selection of either 1/0 or

memory is performed by the 10/M signal.

This three-state output is held high during standby

mode and enters the high-impedance state during hold

acknowledge.

HLDAK [Hold Acknowledge]
For small-scale systems.

The HLDAK signal is used to indicate that the CPU

accepts the hold request signal (HLDRQ). When this

signal is a high level, the address bus, address/data

bus, and the control lines become high impedance.

HLDRAQ [Hold Request]
For small-scale systems.

This input signal is used by external devices to request

the CPU to release the address bus, address/data bus,

and the control bus.

LBSg [Latched Bus Status 0]

For small-scale systems.

The CPU uses this signal along with the 10/M and

BUFR/W signals to inform an external device what the

current bus cycle is.

10/M BUFR/W 1LBS; Bus Cycle

0 0 0 Program fetch

1

0

1

0

1

0

1

Memory read

Memory write

Passive state

Interrupt acknowiedge

1/0 read

110 write

Halt

0 ¢

0 1

0 1

1 0

1 0

1 1

1 1

uPD70108 (V20) NEC

A19/PS3-A1g/PSp [Address Bus/Processor Status)
For small- and large-scale systems.

These pins are time multiplexed to operate as an

address bus and as processor status signals.

When used as the address bus, these pins are the high 4

bits of the 20-bit memory address. During 1/0 access,
all 4 bits output data 0.

The processor status signals are provided for both

memory and I/O use. PS; is always 0 in the native mode
and 1 in 8080 emulation mode. The interrupt enable

flag (1E) is pin on pin PS,. Pins PS; and PSgindicate which
memory segment is being accessed.

Ay7/PS; Ag/PSg Segment

0 0 Data segment1

0 1 Stack segment

1 0 Program segment

1 1 Data segment 0

The output of these pins is three state and becomes

high impedance during hold acknowledge.

QS+, QS [Queue Status)
For large-scale systems.

The CPU uses these signals to allow external devices,

such as the floating-point arithmetic processor chip,

(#PD72091) to monitor the status of the internal CPU

instruction queue.

08, 08y instruction Queue Status

0 ¢ NOP (queue does not change)

0 1 First byte of instruction

1 0 Flush queue

1 1 Subsequent bytes of instruction

The instruction queuestatus indicated by these signals

is the status when the execution unit (EXU) accesses

the instruction queue. The data output from these pins

is therefore valid only for one clock cycle immediately

following queue access. These status signals are
provided so that the floating-point processor chip can

monitor the CPU’s program execution status and

synchronize its operation with the CPU when control is

passed to it by the FPO (Floating Point Operation)
instructions.

BS; - BSg [Bus Status]
For large-scale systems.

The CPU uses these status signals to allow an external

bus controller to monitor what the current bus cycleiis.

The external bus controller decodes these signals and

generates the control signals required to perform

access of the memory or I/O device.

6

Bus Cycle

interrupt acknowledge

1/0 read

170 write

Halt

Program fetch

Memory read

Memory write

Bs;
0

0

0

0

1

1

1

1 -
R

I
O

|
|
|
l

a
l
O
o
l
O

_
.
o
_
.
o
_
.
c
,
_
.
o
f

Passive state

The output of these signals is three state and becomes

high impedance during hold acknowledge.

BUSLOCK [Bus Lock]
For large-scale systems.

The CPU uses this signal to secure the bus while
executing the instruction immediately foliowing the

BUSLOCK prefix instruction, or during an interrupt
acknowledge cycle. ltis a status signal to the other bus
masters in a multiprocessor system, inhibiting them
from using the system bus during this time.

The output of this signal is three state and becomes
high impedance during hold acknowledge. BUSLOCK
is high during standby mode except if the HALT

instruction has a BUSLOCK prefix.

RG/AK4, RQ/AKq [Hold Request/Acknowledge]
For large-scale systems.

These pins function as bus hold request inputs (RQ)

and as bus hold acknowledge outputs (AK). RQ/AKg
has a higher priority than RQ/AKj.

These pins have three-state outputs with on-chip pull-

up resistors which keep the pin at a high level when the

output is high impedance.

Vpp [Power Supply]
For small- and large-scale systems.

This pin is used for the +5 V power supply.

GND [Ground]
For small- and large-scale systems.

This pin is used for ground.

IC {Internally Connected]
This pin is used for tests performed at the factory by
NEC. The uPD70108 is used with this pin at ground
potential.

NEC

uPD70108 (V20)

Absolute Maximum Ratings Capacitance

Ta=+25°C Ta = +25°C, Vpp =0V

Power supply voltage, Vpp —05Vto+7.0V Limits Test

Powerdissipation, PDmax 05w Parameter Symbol Min Max Uit Conditions

Input voltage, V) —-05VtoVpp+03V Input capacitance C 15 oF {;: =1 Msz A

CLK input voltage, Vi —05VtoVpp 10V 1/0 capacitance Cio 15 pF re';t':‘r?;zutr: 0 ;\)/lns

Output voitage, Vg —05VtoVpp+03V

Operating temperature, Topt —40°C to +85°C

Storage temperature, Tg1g —65°C to +150°C

Comment: Exposing the device to stresses above those listed in

Absolute Maximum Ratings could cause permanent damage. The

device is not meant to be operated under conditions outside the

limits described in the operational sections of this specification.

Exposure to absolute maximum rating conditions for extended

periods may affect device retiability.

DC Characteristics
uPD70108-5, Tp = —40°C to +85°C, Vpp =+5V £ 10%

pPD70108-8, uPD70108-10, T = —10°C to +70°C, Vpp = +5V £ 5%

Limits Test

Parameter Symbol Min Typ Max Unit Conditions

Input voltage high ViH 22 Vpp+0.3 v

Input voitage low Vi -0.5 0.8 v

CLK input voltage high VKH 39 Vpp+10 v

CLK input voltage low Vi —05 06 v

Output voltage high VoH 0.7 x Vpp v igy = —400 A

Output voltage low VoL 0.4 v lo,=25mA

Input leakage current high LK 10 uA Vi=Vpp

Input leakage current low I —-10 uA Vi=0V

Output leakage current high ILoH 10 uh Vo= Vpp

Output leakage current low oL -10 uA Vo=0V

70108-5 30 60 mA Normal operation

5 MHz 5 10 mA Standby mode

Supply current ip 70108-8 45 80 mA Normal operation

8 MHz 6 12 mA Standby mode

70108-10 60 100 mA Normal operation

10 MHz 7 14 mA Standby mode

uPD70108 (V20) NEC

AC Characteristics
uPD70108-5, Ty = —40°C to +85°C, Vpp = +5 V £+ 10%
uPD70108-8, uPD70108-10,T = —10°C to +70°C, Vpp =+5V £ 5%

uPD70108-5 #PO70108-8 4POT0108-10

Parameter Symbol Min Max Min Max Min Max Unit Conditions

Smali/Large Scale

Clock cycle tovk 200 500 125 500 100 500 ns

Clock pulse width high tkkH 69 4 41 ns V=30V

Clock puise width low kKL 90 60 49 ns VkL=15V

Clock rise time kR 10 8 5 ns 15Vto 30V

Clock fall time txe 10 7 5 ns 30Vtoi1s5V

READYinactive setup to CLK{ tSRYLK -8 -8 -10 ns

READY inactive hold after CLK! tukryH 0 20 20 ns

READYactive setup to CLK? tSRYHK tkkL — 8 tkkL — 8 tkxL —10 ns

READY active hold after CLKt tHKRYL % 20 20 ns

Data setup time to CLK | tspK 30 20 10 ns

Data hold time after CLK tHKD 10 : 10 10 ns

NML, INT, POLL setup time ts1K 30 15 15 ns
to CLK !

Input rise time (except CLK) tir 20 20 20 ns 08Vto22V

Input fall time (except CLK) Yt 12 12 12 ns 22Vt 08V

Output rise time tor 20 20 20 ns 08Vto22V

Output fall time tor 12 12 12 ns 22Vto 08V

Small Scale

Address delay time from CLK tpKA 10 90 10 60 10 48 ns

Address hold time from CLK tHka 10 10 10 ns

PS delay time from CLK { tpkp 10 %0 10 60 10 50 ns

PS float delay time from CLK trxp 10 80 10 60 10 50 ns

Address setup time to ASTB ! tsAST tykL~ 60 txkL — 30 tykL — 30 ns

éfzrfss tioat delay time from tFKA tHka 80 tHKA 60 tHKA 50 ns Cy = 100 pF

ASTB t delay time from CLK | tOKSTH 80 50 40 ns

ASTB ! delay time from CLK 1 tDKSTL 85 55 45 ns

ASTB width high tsTsT tkkL — 20 tkx — 10 tkx, — 10 ns

Address hold time from ASTB | tHsTA tkky — 10 tkkw — 10 tkkn —10 ns

NEC uPD70108 (V20)

AC Characteristics (cont)
pPD70108-5, Ta= —40°C to +85°C, Vpp=+5V < 10%

uPD70108-8, uPD70108-10, Ta = —10°C to +70°C, Vpp = +5V + 5%

uPD70108-5 #PB70108-8 4PD70108-10

Parameter Symbol Min Max Min Max Min Max Unit Conditions

Small Scale (cont)

Control delay time from CLK toKeT 10 110 10 65 10 55 ns

Address fioat to RD! tAFRL 0 0 0 ns

RO ! detay time from CLK { tDKRL 10 165 10 80 10 70 ns

RD 1 delay time from CLK | tDKRH 10 150 10 80 10 60 ns

Address delay time from RD 1 tpRHA vk — 45 toyk — 40 toyk — 35 ns

RD width low tRR 2tcyk—T75 2tcyk—50 2tcyk—40 ns C_=100pF

Data output delay time from oKD 10 90 10 60 10 50 ns

CLK

Data float delay time from trkD 10 80 10 60 10 50 ns

CLK |

WR width low tww 2tcyk—60 2tcyk—40 2teyk—35 ns

HLDRQ setup time to CLK ! tsHOK 35 20 20 ns

HLDAK delay time from CLK | tDKHA 10 160 10 100 10 60 ns

Large Scale

Address delay time from CLK toka 10 90 10 60 10 48 ns

Address hold time from CLK THKA 10 10 10 ns

PS delay time from CLK | tokp 10 % 10 60 10 50 ns

PS fioat delay time from CLK ! tekp 10 80 10 60 10 50 ns

lc\flgrfss float delay time from trka tHKA 80 tHKA 501”‘ tHkA 50 ns

Address delay time from RD ! tDRHA toyk — 45 toyk — 40 toyk —35 ns

ASTB delay time from BS | toesT 15 15 15 ns

BS | delay time from CLK 1DKBL 10 110 10 60 10 50 ns

BS 1 delay time from CLK ¢ tDKBH 10 130 10 65 10 50 ns

RD | delay time from address tDAFRL 0 0 : 0 ns CL=100pF

fioat

RD | delay time from CLK { tDKRL 10 165 10 80 10 70 ns

AD ! delay time from CLK | tOKRH 10 150 10 80 10 60 ns

RD width low trR 2cyK—75 2tcyk—50 2tcyk—40 ns

Date output delay time from tpxp 10 90 10 60 10 50 ns

CLK

Data float delay time from trxD 10 80 10 60 10 50 ns

CLK?

AK delay time from CLK { tDKAK 70 50 40 ns

RO setup time to CLK 1 tSROK 20 10 9 ns

RQ hold time after CLK tHKRQ 40 30 20 ns

wPD70108 (V20) NEC

Timing Waveforms

POLL
NMLINT
ey™\

—

POLL, NML,INT Input Timing

Tn

CLK

tsic
—

 —

e

™ T4

CLK

_‘ 'NKI:V_L

'snvm(

T
 \

BUSLOCK

AC Test Input Waveform [Except CLK] Clock Timing

24y 2.2V 2.2v

08V 0.8V

AC Output Test Points CLK

2.2V 2.2V

=
0.8v 0.8V

49-000238A

Wait {[Ready] Timing BUSLOCK Output Timing

49-000240A

10

NEC uPD70108 (V20)

Timing Waveforms (cont)

Read Timing [Small Scale]

Write Timing [Small Scale)

0s,- Qs X

texa

A1s- Ag A 49-000243A

T4 ™ T2 T3 T4

oL o L..T__/—_./}; iu_.

A/PS, - A/PS, - Address Status
A,/PS, /PS, Frogen

LBS, LBs,

toka—| t=— - "loxb _,_tr';“_"

AD,- AD, AD, - AD, Ad Dats Output E

tgagy |- ;"mu !

ASTE ASTB /R [

"" to-tusTa] |.._
toxeT— == toxct

BUFEN
UFEN f

BUFR'W
BUFR/'Wf

_

_.'n:gr _.‘DKCY

- -
f———tww

10/M 108 x x

A,-A, mch X ok
49.00024°A S

Read Timing [Large Scale] Write Timing [Large Scale]

14 T T2 T3 T4 T4 T T2 T3 T4

e N\ aNNNN
— oty Exp :

tpg(‘-u

o

—] 4 lg—

A1/PS;- = ' A1/PS3 -
A11 PSe Address Program Status — A‘1‘/Ps’o Address Program Status —

toka— |

L8So LBSo

] |-ty teox - tox t,

toxa-+]" > “'tt:: - tetuo }_ toxa1 =~ _“I ‘le: - FK—D

AD; - ADo k A Dets input AD7 - ADg =m——q AddressJ Data Output i

ASTB ""»omu"I— ASTB

(71068 (11088 / \

Output) \ Output) J_

-] te-lpgst toxen i——

BS: - BSo Bus Status 7 8Ss, - 8BSy Bus Status

-.to.(.:‘r '] r+loarnc = |=toxnn

) N i esi-a80 X X X X JC

 X
43-0002444A

Ais- As x

11

uPD70108 (V20)

Timing Waveforms (cont)

Interrupt Acknowiedge Timing

T T2 T3 T4 T T2 T3 n

ho-texa teon F=-typ

AD,- AD, —

toxcr—e tokcr—e e

INTAK \ /

—=f |*toxcr —= t*toxer '

BUFEN ‘\t / \ /

 — tDKA

BU K * /

49-0000+58

Hold Request/Acknowledge Timing [Small Scale]} ror2

Ztoyr —] x ::vx

cLK /—_

'SNQK ™ 'SNQK

HLDRQ _j‘—]

tokra1 te— toxma -—‘ +

HLDAK j‘___{

- r—lnu

. 0108 Externai Master j——@

®:A/PS,-A/PS8, A, -A,AD, - AD,, RD, LBS,, 10/M, BUFR/W, WA BUFEN

46000506

12

NEC 1PD70108 (V20)

Timing Waveforms (cont)

Bus Request/Acknowledge Timing [Large Scale]

 70108 input 70108

- 70108

cLK m
t,

| Zteyx —‘1 Shox .—l‘ovux

—= ttoxax — l-tuxno
Pulse 1 Puise 2

RQ/AK e oK

3

® AJPS, - A,/PS,A, - A, AD, - AD,, BS, - BS,, RD, BUSLOCK

—

2tevk

NN\

49 00C2i6E

13

uPD70108 (V20) NEC

Register Configuration

Program Counter [PC]

The program counter is a 16-bit binary counter that

contains the segment offset address of the next

instruction which the EXU is to execute.

The PC increments each time the microprogram fetches

an instruction from the instruction queue. A new

location valueis loaded into the PC each time a branch,

call, return, or break instruction is executed. At this

time, the contents of the PC are the same as the

Prefetch Pointer (PFP).

Prefetch Pointer [PFP]

The prefetch pointer (PFP) is a 16-bit binary counter

which contains a segment offset which is used to

calculate a program memory address that the bus

control unit (BCU) uses to prefetch the next byte for

the instruction queue. The contents of PFP are an

offset from the PS (Program Segment) register.

The PFPisincremented each time the BCU prefetches

an instruction from the program memory. A new

location will be loaded into the PFP whenever a branch,

call, return, or break instruction is executed. At that

time the contents of the PFP will be the same as those

of the PC {Program Counter).

Segment Registers [PS, S$S, DSy, and DS4]

The memory addresses accessed by the uPD70108 are

divided into 64K-byte logical segments. The starting
(base) address of each segment is specified by a 16-bit

segment register, and the offset from this starting

address is specified by the contents of another register

or by the effective address.

These are the four types of segment registers used.

Segment Register Default Offset

PS (Program Segment) PFP

SS (Stack Segment)

DS(Data Segment 0) IX, effective address

DS¢ (Data Segment 1) Y

SP, effective address

Generai-Purpose Registers [AW, BW, CW, and DW)]

There are four 16-bit general-purpose registers. Each

one can be used as one 16-bit register or as two 8-bit

registers by dividing them into their high and low bytes
(AH, AL, BH, BL, CH, CL, DH, DL).

Each register is also used as a default register for

processing specific instructions. The default assign-

ments are:

AW: Word multiplication/division, word 1/0, data

conversion

14

AL: Byte multiplication/division, byte I/0, BCD

rotation, data conversion, transiation

AH: Byte multiplication/division

BW: Translation

CW: Loop control branch, repeat prefix

CL: Shift instructions, rototation instructions,

BCD operations

DW: Word multiplication/division, indirect

addressing 1/0

Pointers [SP, BP] and Index Registers [IX, Y]

These registers serve as base pointers or index registers
when accessing the memory using based addressing,

indexed addressing, or based indexed addressing.

These registers can also be used for data transfer and

arithmetic and logical operations in the same manner

as the general-purpose registers. They cannot be used

as 8-bit registers.

Also, each of these registers acts as a default register
for specific operations. The default assignments are:

SP: Stack operations

iIX: Block transfer (source), BCD string operations

IY: Blocktransfer (destination), BCD string operations

Program Status Word [PSW]

The program status word consists of the following six

status and four control fiags.

Status Flags

® V (Overflow)

Control Flags

e MD (Mode)

® S (Sign) ® DIR (Direction)
® Z (Zero) ® |E (Interrupt Enable)

® AC (Auxiliary Carry) ¢ BRK (Break)

® P (Parity)

® CY (Carry)

When the PSW is pushed on the stack, the word images
of the various flags are as shown here.

PSW

15 14 13 12 11 10 9 8 76 5 4 3 210

M 1 1 1 V. DI BSZO0OAOPT1C
D I ER c Y

R K

The status flags are set and reset depending upon the

result of each type of instruction executed.

Instructions are provided to set, reset, and complement

the CY flag directly.

Other instructions set and reset the control flags and

control the operation of the CPU.

NEC

High-Speed Execution of Instructions

This section highlights the major architectural features

that enhance the performance of the uPD70108.

e Dual data bus in EXU

e Effective address generator

e 16/32-bit temporary registers/shifters (TA, TB)

® 16-bit loop counter

e PC and PFP

Dual Data Bus Method

To reduce the number of processing steps for in-

struction execution, the dual data bus method has

been adopted for the uPD70108 (figure 1). The two

data buses (the main data bus and the subdata bus) are

both 16 bits wide. For addition/subtraction and logical

and comparison operations, processing time has been

speeded up some 30% over single-bus systems.

Figure 1. Dual Data Buses

~") ")

<:: \—/

1% 16

) = ()registers/shifters

ALY

/ U
Subdata bus Main dsta bus

83-000103A

uPD70108 (V20)

Example

ADD AW,BW ;AW «— AW+ BW

Single Bus Dual Bus

Step 1 TA — AW

Step 2 TB «— BW

Step3AW «— TA+TB

Effective Address Generator

This circuit (figure 2) performs high-speed processing to

calculate effective addresses for accessing memory.

Calculating an effective address by the microprogram-

ming method normally requires 5 to 12 clock cycles.

This circuit requires only two clock cycles for

addresses to be generated for any addressing mode.

Thus, processing is several times faster.

TA — AW, TB — BW
AW — TA + TB

Figure 2. Effective Address Generator

First and second byte of instruction

mod rim

y

EA Generator

Effective address
83-000104A

16/32-Bit Temporary Registers/Shifters [TA, TB]

These 16-bit temporary registers/shifters (TA, TB)

are provided for muitiplication/division and shift/

rotation instructions.

These circuits have decreased the execution time of

multiplication/division instructions. In fact, these

instructions can be executed about four times faster

than with the microprogramming method.

TA + TB: 32-bit temporary register/shifter for multi-

plication and division instructions.

TB: 16-bit temporary register/shifter for shift/rotation

instructions.

15

uPD70108 (V20) NEC

Loop Counter {LC]

This counteris used to count the number of loops fora

primitive block transfer instruction controlled by a

repeat prefix instruction and the number of shifts that

will be performed for a muitiple bit shift/rotation in-

struction.

The processing performed for a multiple bit rotation of
a register is shown below. The average speed is
approximately doubled over the microprogram method.

Example

RORC AW, CL

Microprogram method LC method

8+ (4x5)=28clocks 7+ 5=12clocks

Program Counter and Prefetch Pointer [PC and PFP]

TheuPD70108 microprocessor has a program counter,

(PC) which addresses the program memory location of

the instruction to be executed next, and a prefetch

pointer(PFP), which addresses the program memory

location to be accessed next. Both functions are

provided in hardware. A time saving of several clocks

is realized for branch, call, return, and break instruction

execution, compared with microprocessors that have

only one instruction pointer.

Enhanced Instructions

in addition to the uPD8088/86 instructions, the

©PD70108 has the following enhanced instructions.

;CL=5

Instruction Function

PUSH imm Pushes immediate data onto stack

PUSHR Pushes 8 general registers onto stack

POPR Pops 8 generalregisters from stack

MUL imm Executes 16-bit multiply of register or memory contents
by immediate data

SHL imm8 Shifts/rotates register or memory by immediate
SHR imm8 value
SHRA imm8

ROL imm8
ROR imm8
ROLC imm8
RORC imm8

CHKIND Checks array index against designated boundaries

INM Moves a string from an {/0 port to memory

ouT™ Moves a string from memory to an /0 port

PREPARE Allocates anarea for a stack frame and copies previous
frame pointers

DISPOSE Frees the current stack frame on a procedure exit

16

Enhanced Stack Operation Instructions

PUSH imm

This instruction allows immediate data to be pushed

onto the stack.

PUSH R/POP R

These instructions allow the contents of the eight

general registers to be pushed onto or popped from

the stack with a single instruction.

Enhanced Multiplication Instructions

MUL reg16, imm16/MUL mem16, imm16

These instructions allow the contents of a register or
memory location to be 16-bit multiplied by immediate

data.

Enhanced Shift and Rotate Instructions

SHL reg, imm8/SHR reg, imm8/SHRA reg, imm8

These instructions allow the contents of a register to be
shifted by the numberof bits defined by the immediate

data.

ROL reg, imm8/ROR reg, imm8/ROLC reg, imm8/
RORC reg, imm8

These instructions allow the contents of a register to be

rotated by the number of bits defined by the immediate

data.

Check Array Boundary Instruction

CHKIND reg16, mem32

This instruction is used to verify that index values

pointing to the elements of an array data structure are
within the defined range. The lower limit of the array

should be in memory location mem32, the upper limit

inmem32+ 2. Ifthe index value inreg16 is not between
these limits when CHKIND is executed, a BRK 5 will
occur. This causes a jump to the location in interrupt

vector 5.

Block 1/0 Instructions

OUTM DW,src-block/INM dst-block, DW

These instructions are used to output or input a string
to or from memory, when preceded by a repeat prefix.

Stack Frame Instructions

PREPARE imm16, imm8

This instruction is used to generate the stack frames
required by block-structured languages, such as

PASCAL and Ada. The stack frame consists of two
areas. One area has a pointer that points to another

frame which has variables that the current frame can

access. The otheris alocal variable area for the current

procedure.

NEC uPD70108 (V20)

DISPOSE

This instruction releases the last stack frame generated

by the PREPARE instruction. It returns the stack and

base pointers to the values they had before the

PREPARE instruction was used to call a procedure.

Unique Instructions

in addition to the uPD8088/86 instructions and the

enhanced instructions, the uPD70108 has the following

unigue instructions.

Instruction Function

INS Insert bit field

EXT Extract bit field

ADDA4S Adds packed decimal strings

SuUB4S Subtracts one packed decimal string from another

CMP4S Compares two packed decimal strings

ROL4 Rotates one BCDdigit teft through AL lower 4 bits

ROR4 Rotates one BCD digit right through AL lower4 bits

TESTH Tests a specified bit and sets/resets Z flag

NOT1 Inverts a specified bit

CLR1 Clears a specified bit

SET1 Sets a specified bit

REPC Repeats next instruction until CY flag is cleared

REPNC Repeats next instruction until CY fiag is set

FP02 Additional fioating point processorcall

Figure3. BitField Insertion

Variable Length Bit Field Operation Instructions

This category has two instructions: INS (Insert Bit

Field) and EXT (Extract Bit Field). These instructions

are highly effective for computer graphics and high-

level languages. They can, for example, be used tor

data structures such as packed arrays and record type

data used in PASCAL.

INS reg8, reg8/INS reg8, imm4

This instruction (figure 3) transfers low bits from the

16-bit AW register (the number of bits is specified by

the second operand) to the memory location specified

by the segment base (DSregister) plus the byte offset

(1Y register). The starting bit position within this byteis

specified as an offset by the lower 4-bits of the first

operand.

After each complete data transfer, the |Y register and

the register specified by the first operand are auto-

matically updated to point to the next bit field.

Either immediate data or a register may specify the

numberofbits transferred (second operand). Because

the maximum transferable bit length is 16-bits, only the

lower4-bits of the specified register (00H to OFR) will

be valid.

Bit field data may overlap the byte boundary of memory.

15

| Bitlength
e

- //

l Bit oftset Byte offset (1Y)

)
)] l =

¢ 7 T | e (

:) / i | Memory

Efi | L : 7‘(‘ l g(

! 1 1 1
Byte boundary Segment base (DS1)

83-000106A

17

NEC 1PD70108 (V20)

EXT reg8, reg8/EXT reg8, imm4

This instruction (figure 4) loads to the AW register the

bit field data whose bit length is specified by the

second operand of the instruction from the memory
location thatis specified by the DSO segment register

(segment base), the IX index register (byte offset), and

the lower 4-bits of the first operand (bit offset).

After the transfer is complete, the IX register and the
lower 4-bits of the first operand are automaticaliy
updated to point to the next bit field.

Either immediate data or a register may be specified for

the second operand. Because the maximum trans-

ferrable bit length is 16 bits, however, only the lower

4-bits of the specified register (OH to OFH) will be valid.

Bit field data may overlap the byte boundary of memory.

Packed BCD Operation Instructions

The instructions described here process packed BCD

data either as strings (ADDA4S, SUB4S, CMP4S) or
byte-format operands (ROR4, ROL4). Packed BCD

strings may be from 1 to 254 digits in length.

When the number of digits is even, the zero and carry
flags will be set according to the result of the operation.
When the number of digits is odd, the zero and carry

flags may not be set correctly in this case, (CL = odd),

the zero flag will not be set unless the upper4 bits of the

highest byte are all zero. The carry flag will not be set

unless there is a carry out of the upper 4 bits of the

highest byte. When CL is odd, the contents of the upper

4 bits of the highest byte of the result are undefined.

Figure 4. Bit Field Extraction

ADDA4S

This instruction adds the packed BCD string addressed

by the IX index register to the packed BCD string
addressed by the IY index register, and stores the

result in the string addressed by the 1Y register. The

length of the string (number of BCD digits) is specified
by the CL register, and the result of the operation will
affect the overflow flag (V), the carry flag (CY), and
zero flag (Z).

BCD string (Y, CL) « BCD string (1Y, CL) + BCD

string (1X, CL)

SUB4S

This instruction subtracts the packed BCD string
addressed by the IX index register from the packed
BCD string addressed by the |Y register, and stores the

result in the string addressed by the Y register. The
length of the string (number of BCD digits)is specified

by the CL register, and the result of the operation will
affect the overflow flag (V), the carry flag (CY), and

zero flag (2).

BCD string (lY, CL) «— BCD string (IY, CL) — BCD
String (1X, CL)

CMP4S

This instruction performs the same operation as

SUBA4S except that the result is not stored and only the
overflow (V), carry flags (CY) and zero flag (Z) are

affected.

BCD string (1Y, CL) — BCD string (1X, CL)

Bit length Bitoffset | Byte offset (IX) _

- {¢ {
3 T] mAi x

‘ 7// ‘|; ' i$;)

' ' ?
Byte Boundary Segment base (DS0)

15 0

w o)]/ 83-0001078

18

NEC wPD70108 (V20)

ROL4

This instruction (figure 5) treats the byte data of the

register or memory directly specified by the instruction

byte as BCD data and uses the lower 4-bits of the AL

register (AL) to rotate that data one BCD digit to the

left.

Figure 5. BCD Rotate Left (ROL4)

7 AL o

83-000108A

ROR4

This instruction (figure 6) treats the byte data of the

register or memory directly specified by the instruction

byte as BCD data and uses the lower 4-bits of the AL

register (ALy) to rotate that data one BCD digit to the

right.

Figure 6. BCD Rotate Right (ROR4)

7 AL 0

Upper Lower Upper Lower

4 bits 4bits 4bits 4 bits

 83-000109A

Bit Manipulation Instructions

TEST1

This instruction tests a specific bit in a register or

memory location. f the bitis 1, the Zflag is reset to 0.If

the bit is 0, the Z flag is set to 1.

NOT1

This instruction inverts a specific bit in a register or

memory location.

CLRt

This instruction clears a specific bit in a register or

memory location.

SET1

This instruction sets a specific bit in a register or

memory location.

Repeat Prefix Instructions

REPC

This instruction causes the uPD70108 to repeat the

following primitive block transfer instruction until the

CY flag becomes cleared or the CW register becomes

zero.

REPNC

This instruction causes the uPD70108 to repeat the

following primitive block transfer instruction until the

CY flag becomes set or the CW registeris decremented

to zero.

Floating Point Instruction

FPO2

This instruction is in addition to the pPD8088/86

floating point instruction, FPO1. These instructions

are covered in a later section.

Mode Operation Instructions

The uPD70108 has two operating modes (figure 7).

One is the native mode which executes uPD8088/86,

enhanced and unique instructions. The other is the

8080 emulation mode in which the instruction set of the

uPDB8080AF is emulated. A mode flag (MD) is provided

to select between these two modes. Native mode is

selected when MD is 1 and emulation mode when MD is

0. MD is set and reset, directly and indirectly, by

executing the mode manipulation instructions.

Two instructions are provided to switch operation from

the native mode to the emulation mode and back:

BRKEM (Break for Emulation), and RETEM (Return

from Emulation).

Two instructions are used to switch from the emulation

modeto the native mode and back: CALLN (Call Native

Routine), and RET!I (Return from Interrupt).

The system will return from the 8080 emulation mode

to the native mode when the RESET signal is present,

or when an external interrupt (NMI or INT) is present.

Figure 7. V20 Modes

HOLD REQ/HOLD ACK
——n.

|
8088/86
Enhanced
and Unique

Instruction Set

Native Mode

RESET, NMi, or INT and IE

Halt

INT and {D idie at
10% Power

Standby
e Mode

HOLD REQ/HOLD ACK

se e

8080 Emulation E

8080 Mode
83-000775A

19

1PD70108 (V20) NEC

BRKEM imm38

This is the basic instruction used to start the 8080

emulation mode. This instruction operates exactly the

same as the BRK instruction, except that BRKEM
resets the mode flag (MD) to 0. PSW, PS, and PC are
saved to the stack. MD is then reset and the interrupt vector

specified by the operand imm8 of this command is

loaded into PS and PC.

The instruction codes of the interrupt processing
routinejumped to are then fetched. Then the CPU
executes these codes as uPDB080AF instructions.

in 8080 emulation mode, registers and flags of the
uPDB8O80AF are performed by the following registers
and flags of the uPD70108.

«PD70108

«PDBOBOAF

Registers: A AL

B CH

C CL

D DH

E DL

H BH

L BL

SpP BP

PC PC

Flags: C cy

AC AC

Inthe native mode, SPis used for the stack pointer. Inthe

8080 emulation modethis function is performed by BP.

This use of independent stack pointers allows indepen-

dent stack areas to be secured for each mode and

keeps the stack of one of the modes from being
destroyed by an erroneous stack operation in the other

mode.

The SP, IX, IY and AH registers and the four segment
registers (PS, SS, DSy, and DS,) used in the native
mode are not affected by operations in 8080 emuiation

mode.

In the 8080 emulation mode, the segment register for

instructions is determined by the PS register (set

automatically by the interrupt vector) and the segment

register for data is the DSy register (set by the

programmer immediately before the 8080 emulation

mode is entered).

it is prohibited to nest BRKEM instructions.

20

RETEM [no operand]

When RETEM is executed in 8080 emulation mode

(interpreted by the CPU as a uPD8080AF instruction),

the CPU restores PS, PC, and PSW (as it would when
returning from an interrupt processing routine), and

returns to the native mode. At the same time, the

contents of the mode flag (MD) which was saved to the
stack by the BRKEM instruction, is restoredtoMD =1.

The CPU is set to the native mode.

CALLN imm8

This instruction makes it possible to call the native

mode subroutines from the 8080 emulation mode. To

return from subroutine to the emulation mode, the

RET! instruction is used. ’

The processing performed when this instruction is

executed in the 8080 emulation mode(it is interpreted

by the CPU as uPD8080AF instruction), is similar to
that performed when a BRK instruction is executed in the

native mode. The imm8 operand specifies an interrupt

vector type. The contents of PS, PC, and PSW are

pushed on the stack and an MD fiag value of O is saved.
The mode flag is set to 1 and the interrupt vector
specified by the operand is loaded into PS and PC.

RET! [no operand]

This is a general-purpose instruction used to return

from interrupt routines entered by the BRK instruction

or by an external interrupt in the native mode. When

this instruction is executed at the end of a subroutine

entered by the execution of the CALLN instruction, the

operation that restores PS, PC, and PSW is exactly the
same as the native mode execution. When PSW is

restored, however, the 8080 emulation mode value of

the mode flag (MD) is restored, the CPU is set in
emulation mode, and all subsequent instructions are

interpreted and executed as uPD8080AF instructions.

RETlis also used to return from an interrupt procedure

initiated by an NMI or INT interrupt in the emulation

mode.

Floating Point Operation Chip
Instructions

FPO1 fp-op, mem/FPO2 fp-op, mem

These instructions are used for the external floating
point processor. The floating point operation is passed

to the floating point processor when the CPU fetches

one of these instructions. From this point the CPU
performs only the necessary auxiliary processing

(effective address calculation, generation of physical

addresses, and start-up of the memory read cycle).

NEC uPD70108 (V20)

The floating point processor always monitors the

instructions fetched by the CPU. When itinterprets one

as an instruction to itself, it performs the appropriate

processing. At this time, the floating point processor

chip uses either the address alone or both the address

and read data of the memory read cycle executed by the

CPU. This difference in the data used depends on

which of these instructions is executed.

Note: During the memory read cycle initiated by the CPU for FPO1

or FPO2 execution, the CPU does not accept any read data

on the data bus from memory. Although the CPU generates

the memory address, the data is used by the fioating point

processor.

interrupt Operation

The interrupts used in the uPD70108 can be divided

into two types: interrupts generated by external inter-

rupt requests and interrupts generated by software

processing. These are the classifications.

External Interrupts

(a) NMl input (nonmaskable)

(b) INT input (maskable)

Software Processing

As the result of instruction execution

— When a divide error occurs during execution

of the DIV or DIVU instruction

— When a memory-boundary-over error is detected

by the CHKIND instruction

Conditional break instruction

— When V = 1 during execution of the BRKV

instruction

Unconditional break instructions

— 1-byte break instruction: BRK3

— 2-byte break instruction: BRK imm8

Filag processing

— When stack operations are used to set the

BRK fiag

8080 Emulation mode instructions

— BRKEM imm8

— CALLN imm8

Interrupt Vectors

Starting addresses for interrupt processing routines

are either determined automatically by a single location

of the interrupt vector table or selected each time

interrupt processing is entered.

The interrupt vector table is shown in figure 8. The

table uses 1K bytes of memory addresses 000H to

3FFH and can store starting address data for a

maximum of 256 vectors (4 bytes per vector).

The corresponding interrupt sources for vectors 0

to 5 are predetermined and vectors 6to 31are reserved.

These vectors consequently cannot be used for

general applications.

The BRKEM instruction and CALLN instruction (in the

emulation mode) and the INT input are available for

general applications for vectors 32 to 255.

Asingle interrupt vector is made up of 4 bytes (figure 9).

The 2 bytes in the low addresses of memory are

loaded into PC as the offset, and the high 2 bytes are

loaded into PS as the base address. The bytes are

combined in reverse order. The lower-order bytes in

the vector become the most significant bytes in the PC

and PS, and the higher-order bytes become the least

significant bytes.

Figure 8. Interrupt Vector Table

000H
—[

Vector0 Divide Error l

004K
|

Vector1 Break Flag |

008H
Vector2 NMI input

00CH
Dedicated

Vector3 BRK 3 Instruction

010H
Vector4 BRKYV Instruction

014H
‘

Vector 5 CHKIND instruction 5

018K - —

Vector 6

Reserved

07CH

Vector 31

080H

Vector32 Genersl Use

e BRK imm8 Instruction

* BRKEM Instruction

3FCH
© INT input [External}

Vector 225 ® CALLN instruction

83-000°" 14

Figure 9. Interrupt Vector 0

Vector 0
T

000H ! 001H

+
002+ : 003H

PS «— (003H, 002H)
PC — (001H, 000H)

83-0001124
21

wPD70108 (V20) NEC

Based on this format, the contents of each vector

shouid be initialized at the beginning of the program.

The basic steps to jump to an interrupt processing

routine are now shown.

(SP-1,SP-2) «— PSW
(SP-3,SP-4) — PS
(SP-5,SP-6) «— PC
SP~SP-6 ,
IE «— 0, BRK «- 0, MD « 1
PS <« vector high bytes
PC « vector low bytes

Standby Function

The uPD70108 has a standby mode to reduce power

consumption during program wait states. This mode is

set by the HALT instruction in both the native and the
emulation mode.

Inthe standby mode, the internal clockis supplied only

to those circuits related to functions required to

release this mode and bus hold control functions. As a

result, power consumption can be reduced to 1/10 the

level of normal operation in either native or emulation

mode.

The standby mode is released by inputting a RESET

signal or an external interrupt (NMI, INT).

The bus hold function is effective during standby

mode. The CPU returns to standby mode when the bus

hold request is removed.

During standby mode, all control outputs are disabled

and the addres/data bus will be at either high or low
levels.

Instruction Set

The following tables briefly describe the uPD70108's
instruction set.

O Operation and Operand Types - defines abbrevia-

tions used in the Instruction Set table.
0 Flag Operations - defines the sybols used to describe

flag operations.

0O Memory Addressing - shows how mem and mod

combinations specify memory addressing modes.

O Selection of 8- and 16-Bit Registers - shows how

reg and W select a register when mod = 111.
O Selection of Segment Registers - shows how sreg

selects a segment register.

O Instruction Set - showsthe instruction mnemonics,

their effect, their operation codes the number of

bytes in the instruction, the number of clocks

required for execution, and the effect on the

uPD70108 flags.

22

Operation and Operand Types

identifier Description

reg 8- or 16-bit general-purpose register

reg8 8-bit general-purpose register

reg16 16-bit general-purpose register

dmem 8- or 16-bit direct memory location

mem 8- or 16-bit memory location

mem8 8-bit memory location

mem16 16-bit memory location

mem32 32-bit memory location

imm Constant (0 to FFFFH)

imm16 Constant (0 to FFFFH)

imm8 Constant (0 to FFH)

imm4 Constant (0 to FH)

imm3 Constant (0 to 7)

acc AW or AL register

sreg Segmentregister

src-table Name of 256-byte transiation table

src-block Name of block addressed by the IX register

dst-block Name of block addressed by the IY register

near-proc Procedure within the current program

segment

far-proc Procedure located in another program

segment

near-label Labelin the current program segment

short-label Label between —128 and +127 bytes from the

end of instruction

far-label Label in another program segment

memptr1é Word containing the offset of the memory

location within the current program segment
to which controlis to be transferred

memptr32 Double word containing the offset and

segment base address of the memory

location to which controlis to be transferred

regptr16 16-bit register containing the offset of the

memory location within the program
segment to which control is to be transferred

pop-value Numberof bytes of the stack to be discarded

(0 to 64K bytes, usually even addresses)

fp-op Immediate data to identify the instruction

code of the external floating point operation

NEC uPD70108 (V20)

Operation and Operand Types (cont) Operation and Operand Types (cont)

identifier Description identifier Description

R Register set tmpcy Temporary carry flag (1 bit)

w Word/byte field (0 to 1) seg immediate segment data (16 bits)

reg Registerfield {000 to 111) offset immediate offset data (16 bits)

mem Memory field (000 to 111) -« Transfer direction

mod Mode field (00 to 10) + Addition

SwW When S:W = 01 or 11, data = 16 bits. Atall - Subtraction

other times, data = 8 bits. X Multiplication

X, XXX, YYY, 272 Data to identi?y the ?nstrqction pode_of the = Division

external floating point arithmetic chip

AW Accumulator (16 bits) % Modulo

AH Accumulator (high byte) AND Logical product

AL Accumulator (low byte) OR Logical sum

BW BW register (16 bits) XOR Exclusive logical sum

CW CW register (16 bits) XXH Two-digit hexadecimal value

L CW register (low byte) XXXXH Four-digit hexadecimal value

DW DW register (16 bits) Flag Operations

SP Stack pointer (16 bits) Wentifier Description

PC Program counter (16 bits) (blank) No change

PSW Program status word (16 bits) 0 Cleared to 0

IX Index register (source) (16 bits) 1 Set to 1

Y Index register (destination) (16 bits) X Set or cleared according to the result

PS Program segment register (16 bits) u Undefined

SS Stack segment register (16 bits) R Value saved earlier is restored

DSg Data segment 0 register (16 bits)

DSy Data segment1 register (16 bits) Memory Addressing

AC Auxiliary carry flag
mod

cy Carry flag mem . 00 o1 10

Parity flag 000 . BW+IX BW + IX + disp8 BW + IX + disp16

Sign flag 001 BW+IY BW + IY + disp§ BW + 1Y + disp16

Zero flag 010 BP+IX BP + IX + disp8 BP + IX + disp16

DIR Direction flag 011 BP+1Y BP + 1Y + disp8 BP +!Y + disp16

It Interrupt enable flag 100 X IX + disp8 IX + disp16

v Overflow flag 101 VY 1Y + disp8 IY + disp16

BRK Break flag 110 Direct address BP + disp8 BP + disp16

MD Mode flag 111 BW BW + disp8 BW + disp16

(. Values in parentheses are memory contents

disp Displacement (8 or 16 bits)

ext-disp8 16-bit displacement (sign-extension byte

+ 8-bit displacement)

temp Temporary register (8/16/32 bits)

23

vPD70108 (V20) NEC

Selection of 8- and 16-Bit Reglsters (mod 11)

reg w=0 w=1

000 AL AW

001 CL cw

010 DL Dw

on BL BW

100 AH SP

101 CH BP

110 DH IX

m BH Iy

Selection of Segment Registers

sreg

00 0S4

01 PS

10 SS

1 DSg

24

The table on the following pages shows the instruction

set.

At“No. of Clocks,” for instructions referencing memory
operands, the left side of the slash (/) is the number of
clocks for byte operands and the right side is for word

operands. For conditional control transfer instructions,

the left side of the slash (/) is the number of clocks if a
control transfer takes place. The right side is the
number of clocks when no control transfer or branch
occurs. Some instructions show a range of clock
times, separated by a hyphen. The execution time of

these instructions varies from the minimum value to

the maximum, depending on the operands invoived.

“No. of Clocks"”includes these times:

® Decoding
o Effective address generation

® Operand fetch
® Execution

It assumes that the instruction bytes have been pre-

fetched.

25

M
o
V

LD
EA

T
R
A
N
S

X
C
H

RE
PC

R
E
P
N
C

O
p
e
r
a
n
d

re
g,

re
g

m
e
m
,

re
g

re
g,
m
e
m

m
e
m
,
i
m
m

re
g,
i
m
m

ac
c,
d
m
e
m

Op
er
at
io
n

re
g
<
—

re
g

(
m
e
m
)
«
—

re
g

re
g
«<
—
{
m
e
m
)

(
m
e
m
)
«
—
i
m
m

re
g
«—
—
i
m
m

W
h
e
n
W
=

0
A
L
«
—
(
d
m
e
m
)

W
h
e
n
W
=

1
A
H
«
—
(
d
m
e
m
+

1)
,
A
L
«
—
(
d
m
e
m
)

O
p
e
r
a
t
i
o
n
C
o
d
e

7
6

%5
4
3
2

Da
ts

Tr
an

si
er

in
st

ru
ct

io
ns

1 1 1 1 1 1

0 oo || o

0 0 0 0 1 1

0 0 0 0 1 0

-—v-v—o;o

clojo |~

I (=

1
1

m
o
d

m
o
d

m
o
d

5
4
3
2
1
0

0

re
g

re
g

re
g 0
0

re
g

m
e
m

m
e
m

m
e
m

Me
.
of

Gl
oc
ks

9/
13

1
/
1
5

11
/1
5

10
/1
4

No
.
of

By
te
s

AC
CY

V
P

8
2

2
4

2
4

3
6

2
3

d
m
e
n
,
ac
c

W
h
e
n
W
=

0
(
d
m
e
m
)

<«
—
A
L

W
h
e
n
W
=

1
(
d
m
e
m
+

1)
«
—

AH
,
(
d
m
e
m
)
<
—
A
L

o

[==]

o

9/
13

sr
eg
,
re
g1
6

sr
eg
,
m
e
m
1
6

re
g1
6,

sr
eg

me
m1
6,

sr
eg

DS
0,

re
g1
6,

m
e
m
3
2

sr
eg

«
—

re
g1
6
sr
eg

:
SS
,
DS
O,

D
S
1

sr
eg

<—
—
(
m
e
m
1
6
)

sr
eg

:
SS
,
DS
O,

D
S
1

re
g1
6
«
—

sr
eg

(
m
e
m
1
6
)
«
—

sr
eg

re
g1

6
«
—
(
m
e
m
3
2
)

DS
O
«
—
(
m
e
m
3
2
+

2)

— = -1

oo |~

o|loiojo |©

o |lo|lo|jeo|@

— |-l |

|y |==

-l—-|lo|l©Ci@

oclojojo |

m
o
d

1
1

m
o
d

m
o
d

oclojeoje

sr
eg

sr
eg

sr
eg

sr
eg

re
g

re
g

m
e
m

re
g

m
e
m

m
e
m

11
/1

5

10
/1
4

18
/2
6

2-
4

2-
4

2
4

DS
1,

re
g1
6,

m
e
m
3
2

re
g1

6
«
—
(
m
e
m
3
2
)

D
S
t
«
—
(
m
e
m
3
2
+

2)

o

m
o
d

re
g

m
e
m

18
/2
6

2-
4

AH
,
P
S
W

PS
W,

A
H

re
g1

6,
m
e
m
1
6

sr
c-
ta
bl
e

re
g,

re
g

A
H
«
—
S
,
Z
,

x,
AC
,

x,
P,

x,
C
Y

S
,
Z
x
,
A
C
,
x
,
P
,
x
,
C
Y
«
—
A
H

re
g1
6
«
—
m
e
m
1
6

’

A
L
<

(
B
W
+

AL
)

re
q
«
—

re
g

m
o
d

re
g

re
g

m
e
m

re
g

NiMmiT |DM

X
X

X

X
X

X

me
m,
r
e
g

or
re
g,
m
e
m

(
m
e
m
)
«
—

re
g

—l—l—_-l—f|

oloje|—|@|@

oloco|lojloco|lo|©

-l |10 |@

-l|

—_— |l

-l |+|+

-loj~|~|=2|=

m
o
d

re
g

m
e
m

16
/2
6

A
W
,

re
g1
6

or
re
g1
6,
A
W

A
W
«
—

re
g1
6

tr
an
sf
er

in
st
ru
ct
io
n

is
ex
ec
ut
ed

a
n
d
C
W

is

d
e
c
r
e
m
e
n
t
e
d
(—

1)
.
I

th
er
e

is
a
wa
it
in
g

in
te
rr
up
t,

it
is

pr
oc
es
se
d.

W
h
e
n
C
Y
#

1,e
x
i
t
th
e

lo
op
.

Wh
il
e
C
W
#

0,
th
e
ne
xt

by
te

of
th
e
pr
im
it
iv
e
bl
oc
k

tr
an
sf
er

in
st
ru
ct
io
n

is
ex
ec
ut
ed

a
n
d
C
W

is

d
e
c
r
e
m
e
n
t
e
d
(
—

1)
.

If
th
er
e

is
a
wa
it
in
g

in
te
rr
up
t,

it
is

pr
oc
es
se
d.

W
h
e
n
C
Y
>

0,
ex
it

th
e

lo
op
.

1 0
1

0
1

Re
pe
at

Pr
ef
ix
es

Wh
il
e
C
W
#

0,
th
e
ne
xt

by
te

of
th
e
pr
im
it
iv
e
bl
oc
k

1
1 1

re
g 0 0

1

 uPD70108 (V20)

26

M
a
e
m
o
n
i
c

RE
P

RE
PE

RE
PZ

O
p
e
r
a
n
d

O
p
e
r
a
t
i
o
n
C
o
d
e

Op
er

at
io

n
7
6

5
4

3
2
1
0
7
6
5
4
3
2
1
0

Re
pe
at

Pr
ef

ix
es

(c
on
t)

Wh
il
e
C
W
#

0,
th

e
ne
xt

by
te

of
th

e
pr
im
it
iv
e
bl

oc
k

1
1
1
1
0
0
1
1

tr
an
sf
er

in
st
ru
ct
io
n

is
ex

ec
ut

ed
a
n
d
C
W

is
d
e
c
r
e
m
e
n
t
e
d
(—

1)
.

If
th
er
e

is
a
wa
it
in
g

in
te

rr
up

t,
it

is
pr
oc
es
se
d.

If
th
e
pr

im
it

iv
e
bl

oc
k
tr

an
sf

er
in
st
ru
ct
io
n

is
C
M
P
B
K

or
C
M
P
M

a
n
d
Z
#

1,
ex
it

th
e

lo
op

.

N
o
.
of

C
l
o
c
k
s

N
o
.
of

F
l
a
g
s

By
te
s

A
C

C
Y

V
P

8
2

RE
PN
E

R
E
P
N
Z

M
O
V
B
K

ds
t-

bl
oc

k,
sr

c-
bl

oc
k

Wh
il
e
C
W
#

0,
th

e
ne
xt

by
te

of
th
e
pr

im
it

iv
e
bl

oc
k

1
1
1
1
0
0
1
0

tr
an
sf
er

in
st
ru
ct
io
n

is
ex

ec
ut

ed
a
n
d
C
W

is
d
e
c
r
e
m
e
n
t
e
d
(
—

1)
.

If
th
er
e

is
a
wa
it
in
g

in
te

rr
up

t,
i
t

is
pr

oc
es

se
d.

If
th

e
pr

im
it

iv
e
bl
oc
k
tr

an
sf

er
in
st
ru
ct
io
n

is
C
M
P
B
K

or
C
M
P
M

a
n
d
Z
=

0,
ex

it
th

e
lo
op
.

Pr
im

it
iv

e
Bl
oc
k
Tr
an
sf
er

In
st

ru
ct

io
ns

W
h
e
n
W
=
0

(I
Y)
«
—

(I
X)

1
0
1
0
0
1
0

W
D
I
R
=
0
:
1
X
e

I
X
+

1,
1Y
«
—

1Y
+

1
D
I
R
=
1
:
1
X
«
—
I
X
—
1
,
1
Y
=

1Y
-
1

W
h
e
n
W
=
1
(
I
Y
+

1,
1Y

)
«
—

(I
X
+

1,
1X
)

D
I
R
=
0
:
1
X
«
—
I
X
+
2
,
1
Y
«
—
Y
+
2

D
I
R
=
1
I
X
*
—
I
X
-
2
,
1
Y
1
Y

-
2

1
1
+

8n

1
1
+

16
n

C
M
P
B
K

sr
c-

bl
oc

k,
ds
t-
bl
oc
k

W
h
e
n
W
=
0

(I
X)
—

(1
Y)

1
0
1
0
0
1
1

W
D
I
R
=
0
:
1
X
«
—
I
X
+
1
,
1
«
1
Y
+

1
D
R
=
1
1
X
—
I
X
—
-
1
1
Y
—
1
¥
Y
-
1

W
h
e
n
W
=
1
(
I
X
+
1
,
I
X
)
—

(I
Y
+

1,
1Y

)
D
I
R
=
0
:
1
X
«
—
I
X
+
2
,
1
Y
«
—

1Y
+
2

D
R
=
1
I
X
*
+
—
I
X
—
-
2
,
1
Y
«
—
¥
-
2

7
+

14
n

7
+
2
2
n

X
X

X
X

C
M
P
M

ds
t-
bl
oc
k

W
h
e
n
W
=
0
A
L
—

(I
Y)

1
0
1
0
1
1
1

W
D
R
=
0
:
1
Y
«
—
1
Y
+
1
,
D
I
R
=
1
1
Y
—

1Y
-
1

W
h
e
n
W
=
1
A
W
—

(I
Y
+

1,
1Y

)
D
R
=
0
:
1
Y
«
—
Y
+
2
,
D
I
R
=
1
1
Y
—

Y
-
2

7
+

10
n

7
+

14
n

X
X

X
X

L
D
M

sr
c-
bl
oc
k

W
h
e
n
W
=

0
A
L
<
«

(I
X)

1
0
1
0
1
1
0

W
D
I
R
=
0
:
1
X
«
—
I
X
+

1;
DI

R=
1:

IX
«
—

IX
—

1
W
h
e
n
W
=
1
A
W
«
—

(I
X
+

1,
IX

)
DI
R=
0:
I1
X
<
=
I
X
+
2
;
D
I
R
=
1
:
I
X
«
—
I
X
-
2

7
+
9
n

7
+

13
n

S
T
™

IN
S

ds
t-
bl
oc
k

re
g8
,
re

g8

W
h
e
n
W
=
0

(I
Y)
«
—
A
L

1
0
1
0
1
0
1

W
D
I
R
=
0
:
1
Y
«
—
1
Y
+

1,
D
I
R
=
1
:
1
Y
«
—

1Y
-

1
W
h
e
n
W
=
1
(
I
Y
+

1,
1Y

)
«
—
A
W

D
I
R
=
0
:
1
Y
«
—
Y
+
2
;
D
I
R
=
1
1
Y
«
—
Y
-
2

Bi
t
Fi
el
d
Tr
an
sf
er

In
st

ru
ct

io
ns

16
-B
it

fi
el
d
«
—
A
W

0
0
0
0
1
t

1
1
1
0
0
1
1
0
0
T
G
O
0
1

re
g

re
g

n:
n
u
m
b
e
r

of
tr
an
sf
er
s

7
+
4
n

7
+
8
n

35
-1
33

re
g8
,
i
m
m
4

16
-B
it

fi
el
d
«
—
A
W

1
1
1
0
0
1
1
1
0
0
1

1 0
1

1
0

re
g

-—0

0 0
35
-1
33

 ~PD70108 (V20)

EX
T

O
p
e
r
a
n
d

re
g8
,
re
g8

O
p
e
r
a
t
i
o
n

A
W
«
—

16
-B
it
fi
el
d

O
p
e
r
a
t
i
o
n
C
o
d
e

7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
8
0

Bi
t
Fi
el
d
Tr
an
sf
er

In
st

ru
ct

io
ns

{c
on
t)

0
0
6
0
0
1
1

1
re
g

1
1
0
0

1

re
g

1
0
0

1
1

N
o
.
of

C
l
o
c
k
s

34
-5
9

F
i
a
g
s

By
te
s

AC
CY

V
P

8
2

re
g8
,
i
m
m
4

ac
c,

i
m
m
8

A
W
<

16
-B
it
fi
el
d

W
h
e
n
W
=

0
A
L
«
—

(i
mm
8)

1 0
0
0
0

1

1
1
0
0

1/
0
In

st
ru

ct
io

ns

1
1
1
0
0
1

-o

W
h
e
n
W
=

1
A
H
«
—
(
i
m
m
8
+

1)
,
A
L
<
—

(i
mm
8)

1
1
0
0
1

re
g

0
w

1
1
0
1
1

34
-5
9

9/
13

ac
c,
D
W

W
h
e
n
W
=
0
A
L
«
—

(D
W)

W
h
e
n
W
=

1
A
H
«
—
(
D
W
+

1)
,
A
L
«
—
(D
W)

8/
12

o
u
T

i
m
m
8
,
ac
c

W
h
e
n
W
=

0
(i
mm
8)
<

A
L

W
h
e
n
W
=

1
(i
mm
8
+

1)
«
—

AH
,
(i
mm
8)

«—
—
A
L

1
W

8/
12

D
W
,
ac
c

W
h
e
n
W
=

0
(D
W)

«
—
A
L

W
h
e
n
W
=

1
(
D
W
+

1)
«—
—
AH
,
(D
W)

«
—
A
L

1
W

8/
12

IN
M

ds
t-
bl
oc
k,
D
W

W
h
e
n
W
=

0
(I
Y)
«
—

(D
W)

Pr
im

it
iv

e
1/
0
In

st
ru

ct
io

ns

0
1
1
0
1
1

D
I
R
=
0
:

1Y
«
—
I
Y
+
1
,
D
I
R
=
1
:
1
Y
—

1Y
-
1

W
h
e
n
W
=
1
(
I
Y
+

1,
1Y
)
«
—
(
D
W
+

1,
DW
)

D
I
R
=
0
:
1
Y
—

Y
+
2
,
D
I
R
=
1
:
1
Y
—

1Y
-
2

9
+

8n

9
+

16
n

ou
UT
M

A
D
D

DW
,
s
r
c
-
b
l
o
c
k

re
g,

re
g

W
h
e
n
W
=

0
(D
W)

«
—

(I
X)

0
1
1
0
1
1

D
I
R
=
0
:
I
X
+
—
I
X
+
1
;
D
I
R
=
1
I
X
«
—
I
X
-
1

W
h
e
n
W
=
1
(
D
W
+

1,
D
W
)
«
—

(I
X
+

1,
1X
)

D
I
R
=
0
:
I
X
—
I
X
+
2
,
D
I
R
=
1
.
I
1
X
«
—
I
X
—
-
2

re
g
«
—

re
g
+

re
g

P

Ad
dl
tl
on
/s
fib
lr
ar
.t
lo
n
In
st
ru
ct
io
ns

0
0
O
0
O
0
O
O
U

0

1
W

n:
n
u
m
b
e
r

of
tr
an
sf
er
s re

g
re
g

9
+

8n

9
+

16
n

>

»

x

me
m,

re
g

(
m
e
m
)
«
—
(
m
e
m
)
+

re
g

m
o
d

re
g

m
e
m

16
/2
4

re
g,
m
e
m

re
g
«
—

re
g
+
(m
em
)

m
o
d

re
g

m
e
m

11
/1
5

| x| X

x |x

re
g,
i
m
m

re
g
<
—

re
g
+
i
m
m

1
1
0

0
0

re
g

x| x| x

x

»x |x| x

m
e
m
,
i
m
m

(
m
e
m
)

<«
—
(
m
e
m
)
+
i
m
m

m
o
d

O
0

0
m
e
m

18
/2

6

ac
c,

i
m
m

W
h
e
n
W
=
0
A
L
«
—
A
L
+
i
m
m

W
h
e
n
W
=

1
A
W
«
—
A
W
+
i
m
m

-l v o

oclojojlo|O |~

0
0

0

0
0

0

0
0

0

0
0

0

0
0

0

oie |i~ o

0 0 0 0 0

|||z |Z =

x |x| x

X |o |x| x| x| X

A
D
D
C

re
g,

re
g

re
g
«
—

re
g
+

re
g
+
C
Y

re
g

re
g

me
m,
r
e
g

(
m
e
m
)
<
—
(
m
e
m
)
+

re
g
+
C
Y

re
g

m
e
m

16
/2
4

x| x

re
g,
m
e
m

re
qg
«
—

re
g
+
(
m
e
m
)
+
C
Y

re
g

m
e
m

11
/1

5

re
g,
i
m
m

re
g
«—
—
re
g
+
i
m
m
+
C
Y

S| e
EIE|~

]
1
0

re
g

m
e
m
,
i
m
m

(
m
e
m
)
«
—
(
m
e
m
)
+
i
m
m
+
C
Y

- o|-|lvWv

ool |Cc|o

oo | o |@

—{—|- o]

olololo |©

olo| e |o |«

cliloto |« |™

zliziz = |2

m
o
d

0
1

0
m
e
m

18
/2
6

X |x| x| X} x

27

 uPD70108 (V20)

28

A
D
D
C

O
p
e
r
a
n
d

ac
c,

i
m
m

O
p
e
r
a
t
i
o
n

W
h
e
n
W
=
0
A
L
«
—
A
L
+
i
m
m
+
C
Y

W
h
e
n
W
=
1
A
W
«
—
A
W
+
i
m
m
+
C
Y

O
p
e
r
a
t
i
o
n
C
o
d
e

7
6

5
4
3
2
1
0

Ad
di

ti
on

/S
ub

tr
ac

ti
on

In
st

ru
ct

io
ns

(c
on
t)

0
0
0

1
0

7
6

5
4

3
2

1
0

1
0

=

No
.
of

Cl
oc

ks
N
o
.
of

B
y
t
e
s

A
C

2-
3

F
l
a
g
s

c
Y

vo
pe

S
u
B

S
u
s
C

A
D
D
4
S

re
g,

re
g

m
e
m
,
r
e
g

re
g,
m
e
m

re
g,
i
m
m

m
e
m
,
i
m
m

ac
c,

i
m
m

re
g,

re
g

m
e
m
,
r
e
g

re
g,
m
e
m

re
g,
i
m
m

m
e
m
,
i
m
m

ac
c,

i
m
m

re
g
<
—

re
g
—

re
g

(
m
e
m
)
<
—
(
m
e
m
)
—

re
g

re
g
<—

—
re
g
—
(
m
e
m
)

re
g
«
—

re
g
—
i
m
m

(
m
e
m
)
<
—
(
m
e
m
)
—
i
m
m

W
h
e
n
W
=
0
A
L

«—
—
A
L
-
i
m
m

W
h
e
n
W
=
1
A
W
«
—
A
W
—
i
m
m

re
g
«—
—
re

g
—

re
g
—
C
Y

(
m
e
m
)
«
—
(
m
e
m
)
—

re
g
—
C
Y

re
g
«<
—
re
g
—
(m
em

)
—
CY

re
g
«<

—
re

g
—
i
m
m
—
C
Y

(
m
e
m
)
«
—
(
m
e
m
)
—
i
m
m
—
C
Y

W
h
e
n
W
=
0
A
L

«<
—
A
L
—
i
m
m
—
C
Y

W
h
e
n
W
=
1
A
W
«
—
A
W
-
i
m
m
—
C
Y

ds
t
B
C
D

st
ri

ng
«
—

ds
t
B
C
D

st
ri

ng
+

sr
c
B
C
D

st
ri

ng

-l OO

ool |o O

cleio|mir~|O

OO ocojlo|jojo

olclojlo|o|©@

|||

Ololciolo|{O -l o]~

-l oo~ - OO

B
C
D

Op
er
at
io
n
in
st
ru
ct
io
ns

0
0
0

0
1

1
1

re
g

re
g

m
o
d

re
g

m
e
m

m
o
d

re
g

m
e
m

1
0

1
re

g

1
0

1
m
o
d

m
e
m

o0 o0 |~

iz (2|2

~lo|~in|lw|io

1
1

re
g

re
g

m
o
d

re
g

m
e
m

m
o
d

re
g

m
e
m

0
1

1
re

g

0
1
1

m
o
d

m
e
m

ol |~

iz

—|lej~-ln|ln|o

1
1
1
0
0
1
0
0
0
0
0

16
/2
4

11
/1
5

18
/2
6

16
/2

4

11
/1
5

18
/2
6

7
+

19
n

24 24 34 36 23 2-
4

2-
4

3
4

3-
6

2-
3

XX poX x| X X x| x| x| x

x [> |> X X x| x| x| x

X pox XXX X x| x| x| x| x

XX x| x| x| X x| x| x| x| X

x X X x X X joxX X x

X X} X >

Su
UB

4S
ds
t
B
C
D

st
ri
ng
<
—

ds
t
B
C
D

st
ri

ng
—

sr
c
B
C
D

st
ri

ng
1
0
0
1
0
0
0
1
0

7
+

19
n

C
M
P
4
S

RO
L4

re
g8

ds
t
B
C
D

st
ri

ng
—

sr
c
B
C
D

st
ri
ng

A
L

0
re

g

[
a.

]-
—-
I

Up
pe
r
4
bi
ts

I
Lt
nn
ub
!:
]-
—«
I

-~

~—

-—
1
1
1
0
0
1
0
0
1
1
0

n:
n
u
m
b
e
r

of
B
C
D

di
gi

ts
di
vi
de
d
by

2

1
1
1
0
0
1
0
1
0
0
0

re
g

7
+

19
n

25

m
e
m
8

~

A
L

0
0

o
(
o
[
}

oo

m
o
d

oo

-

1
1
1

m
e
m
0
0
1
0
1
0
0
0

28
3
5

RO
R4

re
g8

T
e

-~

1
1 re

g
1
0
0
1
0
1
0
1
0

29

m
e
m
8

0
m
e
m

I
A
L
L
j
*
'
l

U
p
p
e
r
4

bi
ts

l
L
W
‘
M
S
H

i

0
0

m
o
d

oo

-—

1
1 m
e
m
1
0
0
1
0
1
0
1
0

33
3
5

uPD70108 (V20)

29

IN
C

DE
C

M
u
L
U

O
p
e
r
a
m
d

re
g8

O
p
e
r
a
t
i
o
n
C
o
d
e

7
6

5
4

3
2
1
0
7
8

O
p
e
r
a
t
i
o
n

In
cr
em
en
t/
Oe
cr
em
en
t

In
st
ru
ct
io
ns

{c
on
t)

re
g8

«
—

re
g8
+

1
1t
1
1
1

1
1
0
1
1

2

re
g

No
.o

f
Ne

.o
f

Cl
oc

ks
By

te
s

AC
CY

V
P

m
e
m

{
m
e
m
)
«
—
(
m
e
m
)
+

1
1
1

W
m
o
d

m
e
m

16
/2
4

2
4

»

re
g1
6

re
g8

re
g8

«
—
r
e
g
8
—

1

re
g

1
1
0
1
1

re
g

*

m
e
m

1
1
1

re
g1
6
«
—

re
g1
6
+

1
0

0
0

1
1
1

1
1
1

(
m
e
m
)

<«
—
(
m
e
m
)
—

1
1
1

W
m
o
d

m
e
m

16
/2
4

2-
4

re
g1
6

re
g8

1

1
1

1
0

1
1

1
1

1
0

0
1

Mu
lt
ip
li
ca
ti
on

In
st

ru
ct

io
ns

A
W
«
—
A
L

x
re
g8

1
1
1
1
0

A
H
=
0
:
C
Y
«
0
,
V
<
+
0

A
H
#
0
:
C
Y
«
—

1,
V
1

re
g1
6
«
—

re
g1

6
—

1
0

re
g

re
g

21
-2
2

o [x| x| x| X| X

x| x| X |X

X |x| x| x| X

x [x| x| x| x| X

x| x| X

m
e
m
8

A
W
«
—
A
L
x
(m
em
8)

1
1
1
1
0

A
H
=
0
:
C
Y
«
—
0
,
V
0

A
H
#
0
:
C
Y
«
—

1,
V
1

1
1
0

m
o
d

m
e
m

27
-2
8

2
4

re
g1

6
DW
,
A
W
«
—
A
W

x
re

g1
6

1
1
1
1
0

D
W
=
0
:
C
Y
«
0
,
V
0

D
W
#
0
:
C
Y
«
—

1,
V
«
—
1

re
g

m
e
m
1
6

DW
,
A
W
«
—
A
W

x
(m
em
16
)

1
1
1
1
0

D
W
=
0
:
C
Y
«
—
0
,
V
<
—
2
0

D
W
#
0
:
C
Y
«
—

1,
V
1

1
1

1
m
o
d

m
e
m

2
4

M
U
L

re
g8

A
W
<
«
A
L

x
re
g8

:

A
H
=
A
L
si

gn
ex
pa
ns
io
n:

C
Y
<
0
,
V
«
—
0

A
H
>
A
L

si
gn

ex
pa
ns
io
n:

C
Y
«
—

1
,
V
«
—
1

re
g

33
-3

9

m
e
m
8

A
W
«
—
A
L
x
{
m
e
m
8
)

1
1
1
1
0

A
H
=
A
L

si
gn

ex
pa
ns
io
n:

C
Y
«
—
0
,
V
«
—

0

A
H
»
A
L
si
gn

ex
pa

ns
io

n;
C
Y
«
—

1
,
V
«
—

1

1
1

0
m
o
d

m
e
m

39
-4
5

2
4

re
g1
6

DW
,
A
W
«
—
A
W

x
re
g1
6

1
1
1
1
0

D
W
=
A
W

si
gn

ex
pa

ns
io

n;
C
Y
«
—
0
,
V
«
—

0

D
W
=
A
W

si
gn

ex
pa

ns
io

n:
C
Y
«
—

1
,
V
«
—
1

re
g

41
-4
7

m
e
m
1
6

DW
,
A
W
«
—
A
W

x
{m
em
16
)

1
1
1
1
0

D
W
=
A
W

si
gn

ex
pa
ns
io
n:

C
Y
«
—
0
,
V
«
—

0

D
W
#
A
W

si
gn

ex
pa

ns
io

n:
C
Y
«
—

1
,
V
«
—

1

1
1

1
m
o
d

m
e
m

51
-5
7

2
4

re
g1

6,
(r
eg
16
,)

i
m
m
8

re
g1
6
«
—

re
g1
6
x
i
m
m
8

0
1
1
0
1

Pr
od
uc
t
<

16
bi
ts
:
C
Y

«<
—
0
,
V
«
—
0

Pr
od
uc
t
>

16
bi
ts
:
C
Y
«
—

1
,
V
«
—
1

re
g

re
g

28
-3
4

re
g1

6,

m
e
m
1
6
,

i
m
m
8

re
g1
6
«
—
(
m
e
m
1
6
)
x
i
m
m
8

0
1
1
0
1

Pr
od
uc
t
<

16
bi
ts
:C
Y
«—
—
0
,
V
«
—
0

Pr
od
uc
t
>

16
bi

ts
:
C
Y
«
—

1
,
V
«
—

1

0
1

1
m
o
d

re
g

m
e
m

38
-4
4

 uPD70108 (V20)

W o

M
a
e
m
o
n
i
c

O
p
e
r
a
n
d

O
p
e
r
a
t
i
o
n

O
p
e
r
a
t
i
o
n
C
o
d
e

7
6

5
4

3
2

7
6

5
4
3
2
1

N
o
.
of

C
l
o
c
k
s

N
o
.
of

F
l
a
g
s

By
te

s
A
C

C
Y

V
P

S
2

Mu
lt

ip
li

ca
ti

on
In

st
ru

ct
io

ns
{c
on
t)

M
U
L

re
g1
6,

(r
eg
16
,)

i
m
m
1
6

re
g1

6
«
—

re
g1

6
x
i
m
m
1
6

Pr
od

uc
t
<

16
bi

ts
:
C
Y
«
—
0
,
V
<
0

Pr
od

uc
t
>

16
bi

ts
:
C
Y
«
—

1
,
V
«
—

1

0
1
1
0
1
0

re
g

re
g

36
-4
2

re
g1

6,
m
e
m
1
6
,

i
m
m
1
6

re
g1

6
«
—
(
m
e
m
1
6
)

x
i
m
m
1
6

Pr
od
uc
t
<

16
bi

ts
:
C
Y
«
—
0
,
V
«
—

0

Pr
od
uc
t
>

16
bi

ts
:
C
Y
«
—

1
,
V
«
—

{

0
1
1
0
1
0

m
o
d

re
g

m
e
m

46
-5
2

Un
si

gn
ed

Di
vi
si
on

In
st

ru
ct

io
ns

D
i
v
u

re
g8

t
e
m
p
«
—
A
W

W
h
e
n
t
e
m
p
=

re
g8
>

F
F
H

(
S
P
—
1
,
8
P
—

2)
«
—
P
S
W
,
(S

P
—
3
,
S
P
—

4)
«<
—
P
S

(
S
P
—
5
,
S
P
—
6
)
«
—
P
C
,
S
P
«
—
S
P
—
-
6

IE
«
—

0,
B
R
K
«
—

0,
P
S
«
—

(3
,
2)

,
P
C
«
—

(1
,
0)

Al
l
ot

he
r
ti

me
s

A
H

<«
—
t
e
m
p
%

re
g8
,
A
L
«
—
t
e
m
p

-+
re

g8

1
1
1
1
0

1
0

re
g

19

m
e
m
8

t
e
m
p
«
—
A
W

W
h
e
n
t
e
m
p

<+
(
m
e
m
8
)
>

F
F
H

(
S
P
—
1
,
5
P
—
2
)
«
—
P
S
W
,
(
S
P
—
3
,
5
P
—
4
)
«
—
P
S

(
S
P
—
5
,
S
P
—
6
)
«
—
P
C
,
S
P
«
—
S
P
-
6

IE
«
—

0,
B
R
K
«
—

0,
P
S
«
—

(3
,
2)
,
P
C
<

(1
,0
)

Al
l
ot

he
r
ti
me
s

A
H
«
—
t
e
m
p
%

(m
em

8)
,
A
L
«
—
t
e
m
p

-+
(
m
e
m
8
)

1
1
1
1
0

m
o
d

1
1

0
m
e
m

25
2
4

u
u
v

u
u

re
g1
6

t
e
m
p
«
—
A
W

W
h
e
n
t
e
m
p

<+
re
g1
6
>

F
F
F
F
H

(
S
P
—
1
,
S
P
—

2)
«
—
PS

W,
(S

P
—
3,

SP
—

4)
«
—
PS

(S
P—

5,
S5

P
—
6
)
«
—
PC

,S
P
«
—
S
P
—
6

(E
«
—

0,
B
R
K
«
—

0,
PS

«
—

(3
,2

),
PC

«
—

(1
,0
)

Al
l
ot

he
r
ti

me
s

A
H
«
—
t
e
m
p
%

re
g1

6,
A
L
«
—
t
e
m
p
+

re
g1
6

1
1
1
1
0

1
0

re
g

25
u
u
u
u

m
e
m
1
6

te
mp

«
—
A
W

W
h
e
n
t
e
m
p

-+
(
m
e
m
1
6
)
>
F
F
F
F
H

(
S
P
—
1
,
5
P
—
2
)

«—
—
PS
W,

(
S
P
—
3
,
S
P
—

4)
<
«

PS
(
S
P
—
5
,
S
P
—
6
)
«
—
P
C
,
S
P
«
—
S
P
—
6

IE
«
—

0,
B
R
K
«
—

0,
PS

«
—

(3
,

2)
,
PC

«
—

(1
,0
)

Al
l
ot

he
r
ti
me
s

A
H
«
—
t
e
m
p
%

(m
em

16
),

A
L

<«
—
t
e
m
p
-
(
m
e
m
1
6
)

1
1
1
1
0

m
o
d

1
0

m
e
m

35
2
4

u
u
u
u

Si
gn

ed
Di
vi
sl
on

In
st

ru
ct

io
ns

oI
v

re
g8

t
e
m
p
«
—
A
W

W
h
e
n
te

mp
=

re
g8
>

0
an
d
te
mp

+
re

g8
>
7F

H
or

te
mp

+
re

g8
<

0
an
d
te
mp

<
re

g8
<
0
-
7
F
H
—

1
(S

P
—
1
,
S
P
—

2)
«
—

PS
W,
(
S
P
—

3,
SP

—
4)
«
—
PS

(
S
P
—
5
,
5
P
—
6
)
«
—
PC
,S
P
«
—
~
S
P
—
6

IE
«
—

0,
B
R
K
«
—

0,
PS

«
—

(3
,2

),
PC

«
—

(1
,0
)

Al
l
ot

he
r
ti
me
s

A
H
«
—
t
e
m
p
% r
e
g
8
,
A
L
«
—
t
e
m
p

=+
re
g8

1
1
1
1
0
1
1
0
1
1
1

1
1

re
g

23
-3
4

u
u

u
u

 uPD70108 (V20)

31

DI
V

O
p
e
r
a
n
d

m
e
m
8

O
p
e
r
a
t
i
o
n

O
p
e
r
a
t
i
o
n
C
o
d
e

7
6

5
4
3
2
1
0
1
7
6
5
3
%
4
3
2
1
0

Si
gn
ed

Di
vi
si
on

In
st

ru
ct

io
ns

{c
on

t)

1
1
1
1
0
1
1
0

m
o
d

1
1

1
m
e
m

t
e
m
p
«
—
A
W

W
h
e
n
t
e
m
p
<
(
m
e
m
8
)
>

0
a
n
d
(
m
e
m
8
)
>
7
F
H

or

t
e
m
p
<
(
m
e
m
8
)
<

0
a
n
d

t
e
m
p

<+
(
m
e
m
8
)
<
0
-
7
F
H
—

1

(
S
P
—
1
,
S
P
—
2
)
«
—
P
S
W
,
(S
P
—
3
,
5
P
—
4
)
«
—
P
S

(
S
P
—
5
,
S
P
—
6
)
«
—
P
C
,
S
P
«
—
S
P
—
6

{E
«—

—
0,
BR
K
«
—

0,
PS

«
—

(3
,
2)
,
PC

«
—

(1
,0
)

Al
l
ot
he
r
ti

me
s

A
H
«
—
t
e
m
p
%

(m
em
8)
,
A
L
«
—
t
e
m
p

-+
(
m
e
m
8
)

No
.
of

Cl
oc

ks

35
-4
0

No
.
of

Fl
ag

s
By
te
s

A
C

C
Y

V
P

8
2

2
4

U
U

U
u

v
u

re
g1
6

t
e
m
p
«
—
A
W

W
h
e
n
t
e
m
p
=

re
g1
6
>

0
a
n
d
re
g1
6
>
7
F
F
F
H

or

t
e
m
p

<+
re

g1
6
<

0
a
n
d

t
e
m
p
+

re
g1
6
<
0

-
7
F
F
F
H
—

1

(
S
P
—
1
,
S
P
—

2)
«
—
PS
W,

(S
P
—
3
,
5
P
—
4
)
«
—
P
S

(S
P
—
5
,
SP

—
6)
«
—

PC
,
SP

«
—
SP

-
6

{E
«
—

0,
B
R
K
«
—

0,
PS

«
—

(3
,2
),

PC
«—
(1
,0
)

Al
l
ot
he
r
ti
me
s

A
H
«
—
te
mp
%

re
g1
6,

A
L
<
—
te
mp

+
re
g
16

1
1
1

1
0
1

1
1
1
1
1

1
1

re
g

38
-4
3

u
u

u
u

m
e
m
1
i
6

t
e
m
p
«
—
A
W

W
h
e
n
t
e
m
p
<
(
m
e
m
1
6
)
>

0
a
n
d
(
m
e
m
1
6
)
>
7
F
F
F
H

or
t
e
m
p
=
(
m
e
m
1
6
)
<
0
a
n
d
t
e
m
p
+
(
m
e
m
1
6
)

<
0
-
7
F
F
F
H
—
1

(
S
P
—
1
,
S
P
—
2
)
«
—
PS
W,

(S
P
—
3
,
5
P
—
4
)
«
—
P
S

(S
P
—
5
,
SP

—
6)
«
—

PC
,
SP

«
—
SP
-
6

1E
«
—

0,
B
R
K
«
—

0,
PS

«
—

(3
,2
),

PC
«
—

(1
,0
)

Al
l
ot
he
r
ti
me
s

.

A
H
«
—
t
e
m
p
%

(m
em
16
),

A
L
<
—
t
e
m
p
=
(
m
e
m
1
6
)

1
1
1
1
0
1

1
i

m
o
d

1
1

1
m
e
m

48
-5

3
2
4

u
U

U
U
u
u

A
D
J
B
A

B
C
D

Ad
ju
st

In
st

ru
ct

io
ns

W
h
e
n
(A

L
A
N
D
OF
H)
>
9

or
A
C
=
1
,

A
L
«
—
A
L
+

6,
A
H
«
—
A
H
+

1,
A
C
<

1,

C
Y

«<
—
AC

,
A
L

«—
—
A
L
A
N
D
OF
H

0
0
1
1
0
1

1

A
D
J
4
A

W
h
e
n
(A
L
A
N
D
OF
H)
>
9

or
A
C
=
1
,

A
L
«
—
A
L
+
6
,
C
Y
«
—
C
Y
O
R
A
C
,
A
C
«

1,

W
h
e
n
A
L
>

9F
H,

or
C
Y
=
1

A
L

«—
—
A
L
+

60
H,

C
Y
<
1

0
0
1
0
0
1

A
D
J
B
S

W
h
e
n
(A

L
A
N
D
OF
H)
>
9

or
A
C
=
1
,

A
L
<
—
A
L
—
6
,
A
H
«
—
A
H
—
1
,
A
C
<
1
,

CY
<

AC
,
A
L

«—
—
A
L
A
N
D
OF
H

0
0
1
1
1
1

AD
J4
S

W
h
e
n

(A
L
A
N
D
OF
H)

>
9
0
r
A
C
=
1
,

AL
«
—
A
L
—
6
,
C
Y
«
—
CY

O
R
AC
,
A
C
«
—

1

W
h
e
n
AL
>
9F
H

or
CY

=
1

A
L
<
~
A
L
—

60
H,

CY
«
—
1

0
0
1
0
1
1

1

 uPD70108 (V20)

32

O
p
e
r
a
n
d

O
p
e
r
a
t
i
o
n

O
p
e
r
a
t
i
o
n
C
o
d
e

7
6

5
4

3

Da
ta

Co
nv

er
si

on
In

st
ru

ct
io

ns

2
7
6

5
4

3
2

N
o
.
of

Cl
oc
ks

N
o
.
o
f

F
l
a
g
s

By
te
s

A
C

C
Y

V
P

8
2

C
v
i
B
D

c
v
i
b
a

A
H
«
—
A
L
+
0A

H,
AL

«
—
A
L
%
0
A
H

A
H
«
—

0,
AL

«
—
A
H

x
0
A
H
+
A
L

1
1
0
1
0

1
1
0
1
0

0
0
0
O
C
G
1
D
0
1
0

0
0
0
0
1
0
1
0

15 7

Uu
x

x
X

Uu
x

x
Xx

C
V
T
B
W

W
h
e
n
A
L
<

80
H,

A
H
—

0,
al
l
ot

he
r
ti
me
s
A
H
<
—
F
F
H

2

C
V
T
W
L

C
M
P

N
O
T

re
g,

re
g

m
e
m
,
r
e
g

re
g,
m
e
m

re
g,
i
m
m

m
e
m
,
i
m
m

W
h
e
n
A
L
<

80
00
H,
D
W
«
—

0,
al
l
ot

he
r
ti

me
s
D
W
«
—
F
F
F
F
H

re
g
—

re
g

(
m
e
m
)
—

re
g

re
g
—
(
m
e
m
)

re
g
—
i
m
m

(
m
e
m
)
—
i
m
m

Co
mp

ar
is

on
In

st
ru

ct
io

ns

0
1

1
1

m
o
d

m
o
d

1
1

m
o
d

re
q

re
g

re
g

1
1
1

1
1
1

re
g

m
e
m

m
e
m

re
g

m
e
m

45 1
/
1
5

11
/1
5

13
/1
7

x X X

x| x| X X

ac
c,

i
m
m

re
g

W
h
e
n
W

=
0
,
A
L
—
i
m
m

W
h
e
n
W

=
1
,
A
W
—
i
m
m

re
g
«
—

re
g

i OO e

1

0
1
1

0
1
1

0
0
0

0
0
0

0
1

1

Qjr= |0

Co
mp

le
me

nt
In

st
ru

ct
io

ns

1
1
1

eIV |o

oloIoc|cjo |~

zlIzIzz2|z=

r
e
g

1 ox x| x| x| x

XX} X x| x| X

® X1 x| x| x| X

X x|} X x| x| x

I
o~

m
e
m

{m
em
)
<

(M
em

)
1

m
o
d

m
e
m

16
/2
4

2
4

N
E
G

TE
ST

re
g

re
g
«
—

re
g
+

1
1
1

re
g

m
e
m

re
g,

re
g

(m
em

)
«
—
(m
em

)
+

1

re
g
A
N
D

re
g

1
1

1
1
1
1

1
1

1
1

Lo
gi
ca
l
Op
er
at
io
n

In
st

ru
ct

io
ns

1
0
0
0
0

¢

1
0 0 0

— v =] e

| =] -

/| 2
m
o
d

S |ojr~|r

-

ojloc|lo|o

r
e
g

m
e
m

re
g

16
/2
4

2
4

x
X

X
X

x
x

m
e
m
,

re
g

or
re

g,
m
e
m

(
m
e
m
)
A
N
D

re
g

1
0
0
0
0

re
g

m
e
m

10
/1
4

2
4

u
0

0
x

x
x

re
g,
im

m
re
g
A
N
D
i
m
m

re
g

3
4

u
0

0
x

x
x

m
e
m
,
i
m
m

(
m
e
m
)
A
N
D
i
m
m

=

m
e
m

11
/1
5

3
6

u
0

0
x

x
x

ac
c,

i
m
m

W
h
e
n
W

=
0
,
A
L
A
N
D
i
m
m
8

W
h
e
n
W
=

1,
A
W
A
N
D
i
m
m
8

-—

o

-—

o

-—

=]

=

2
3

x

x

x

(=]

o

2

A
N
D

re
g,

r
e
g

re
g
«
—

re
g
A
N
D

re
g

re
g

re
g

m
e
m
,

re
g

{
m
e
m
)
<
—
(
m
e
m
)
A
N
D

re
g

m
o
d

re
g

m
e
m

16
/2
4

2
4

re
g,
m
e
m

re
g
<
—

re
g
A
N
D
(
m
e
m
)

m
o
d

re
g

m
e
m

1
/
1
5

2
4

re
g,
i
m
m

re
g
«<

—
re
g
A
N
D
i
m
m

1
1
1
0
0

re
g

m
e
m
,
i
m
m

(
m
e
m
)
«
—
(
m
e
m
)
A
N
D
i
m
m

m
o
d
1
0
0

m
e
m

18
/2
6

X X x| xXi X

3-
6

ac
e,

i
m
m

W
h
e
n
W
=

0,
A
L
«
—
A
L
A
N
D
i
m
m
8

W
h
e
n
W
=

1,
A
W
«
—
A
W
A
N
D
i
m
m
1
6

||l

ool | o|o

O O v

c|lo|lojo|olo

oo | O

il

cC il |o |~

Tz |22 |=

X EX ox x| x| x

X Pox x| x| X! X

oIl ol

oI |lolo|lo|o

S| 3| 3|3 =313

2
3

 #PD70108 (V20)

33

OR

O
p
e
r
a
m
d

re
g,

re
g

me
m,
re
g

O
p
e
r
a
t
i
o
n

re
g
«—

—
re

g
O
R

re
g

(
m
e
m
)
«
—
(
m
e
m
)
O
R

re
g

O
p
e
r
a
t
i
o
n
C
o
d
e

7
6

5
4
3
2
1

Lo
gi
ca
l
Op
er
at
io
n
In

st
ru

ct
io

ns
(c
on
t)

0
0

0
0

1

0
7
6
5
4
3
2
1
8
0

1
1

m
o
d

re
q

re
g

re
g

m
e
m

No
.
of

C
l
o
c
k
s

16
/2
4

No
.
of

By
te
s

A
C

C
Y

V
P

2
4

>

re
g,
m
e
m

re
g
«—
—
re
g
O
R
(
m
e
m
)

m
o
d

re
g

m
e
m

11
/1
5

24
»

>

x |X

re
g,
i
m
m

re
g
«
—

re
g
O
R
i
m
m

1
1

0
o

1
re

g
3
4

m
e
m
,
i
m
m

(
m
e
m
)
<

(
m
e
m
)
O
R
i
m
m

m
o
d
0
0

1
m
e
m

18
/2

6
3
6

ac
c,

i
m
m

W
h
e
n
W
=

0,
A
L
«
—
A
L
O
R
i
m
m
8

W
h
e
n
W
=

1,
A
W
«
—
A
W
O
R
i
m
m
1
6

oo~ ||©@

oo |

0 0 0 0 0

0 0 0 0 0

clojo|lclo ™~

-—_ |||

-lo|lrjOo OO

T2\ E|®

2-
3

i3] >|>

ool oo |@

ol |lo|o|eo

»x |x| X

x |x| x

X
O
R

TE
ST
H

re
g,

re
g

re
g
«
—

re
g
X
O
R

re
g

1
1

re
g

re
g

»

me
m,

re
g

(
m
e
m
)
«
—
(
m
e
m
)
X
O
R

re
g

m
o
d

re
g

m
e
m

16
/2
4

2-
4

re
g,
m
e
m

re
g
<
—

re
g
X
O
R
(
m
e
m
)

m
o
d

re
g

m
e
m

11
/1
5

2
4

re
g,
i
m
m

re
g
«
—

re
g
X
O
R
i
m
m

1
1

1
1

0
re

g

> |X §x| X

m
e
m
,
i
m
m

(
m
e
m
)

<«
—
(
m
e
m
)
X
O
R
i
m
m

m
o
d
1
1

0
m
e
m

18
/2
6

36

ac
c,

i
m
m

re
g8

,
C
L

W
h
e
n
W

=
0
,
A
L

«<
—
A
L
X
O
R
i
m
m
8

W
h
e
n
W

=
1
,
A
W
«
—
A
W
X
O
R
i
m
m
1
6

re
g8

bi
tn
o.
C
L
=
0
:
Z
«
—
1

re
g8
b
i
t
n
o
.
C
L
=
1
:
Z
«
0

Bi
t
Op
er
at
io
n

In
st

ru
ct

io
ns

oc|leoejo|mi= 10

ol|lo|loloco|o|©

—_l—-l—lo|lo|~

-l |~

o oo |~

oclo|o|jleolo o

2
n
d

lb
yt
e'

ol O

||| |=

3r
d
by
te
*

1
 r 0

0
0

1
0
0

0
0

0
re
g

2-
3

S|l =

olojo|leio O

olblojojo|je

x x| x| x

»x |x| x| x| xi X

m
e
m
8
,
C
L

{m
em
8)

b
i
t
n
o
.
C
L
=
0
:
Z
<
1

{
m
e
m
8
)

bi
tn
o.
C
L
=
1
:
Z
0

m
e
m

12

re
g1
6,

C
L

re
g1
6
bi
tn
o.
C
L
=
0
:
Z
«
—

1

re
gl
6b
it
no
.
C
L
=
1
:
Z
«
—
9
0

re
g

m
e
m
1
6
,
C
L

(
m
e
m
1
6
)

bi
tn
o.

C
L
=
0
:

Z
«
—
1

(
m
e
m
1
6
)
bi
tn
o.

C
L
=
1
:
7
Z
<
0

m
e
m

16
3
5

re
g8
,
i
m
m
3

re
g8

bi
tn
o.

i
m
m
3
=
0
:
Z
«
—

1

re
g8

bi
tn
o.

i
m
m
3
=
1
:
Z
«
—

0

re
g

m
e
m
8
,
i
m
m
3

(
m
e
m
8
)

bi
t
no
.
i
m
m
3
=
0
:
Z
«
—

1

(
m
e
m
8
)

bi
t
no
.
i
m
m
3
=
1
:
Z
«
0

m
e
m

13
4-

6

re
g1
6,

i
m
m
4

re
g1
6

bi
t
no

.
i
m
m
4
=
0
:
Z
«
—

1

re
g1
6
bi
tn
o.

im
md
4
=
1
:
Z
<
0

re
g

m
e
m
1
6
,
i
m
m
4

{
m
e
m
1
6
)

bi
t
no
.
i
m
m
4
=

0:
Z
«
—
1

(
m
e
m
1
6
)

bi
t
no
.
i
m
m
4
=
1
:
Z
«
—

0

0
1
1
0

1

2n
d
by
te
*

*N
ot
e:

Fi
rs
t
by
te
=
O
F
H1

m
o
d

g
1

0
0

I

3r
d
by
te
*

0
m
e
m

17

 uPD70108 (V20)

w H

O
p
e
r
a
n
d

O
p
e
r
a
t
i
o
n
C
o
d
e

O
p
e
r
a
t
i
o
n

7
6

5
4

3
2

1
0
7
1
7
6

N
o
.
of

5
4

3
2

1
0

C
l
o
c
k
s

N
o
.
of

F
l
a
g
s

B
y
t
e
s

A
C

C
Y

V
P

S
2

Bi
t
Op
er
at
io
n
In

st
ru

ct
io

ns
{c
on
t)

NO
T1

CL
R1

re
g8
,
C
L

2n
d

lb
yt
e'

3r
d
by
te
*

1
 =

re
g8

bi
t
no
.
CL

«
—

re
g8

bi
t
no
.
CL

0

-—

~—

1

0
re
g

4

m
e
m
8
,
C
L

(
m
e
m
8
)

bi
t
no
.
C
L
«
—
(
m
e
m
8
)

bi
t
no
.
C
L

m
e
m

18

re
g1

6,
C
L

re
g1
6

bi
t
no
.

CL
.
«
—

re
g1
6

bi
t
no
.
C
L

-~

~—

re
g

4

m
e
m
i
6
,
C
L

(
m
e
m
1
6
)

bi
t
no
.
C
L
«
—
(
m
e
m
1
6
)

bi
t
no
.
C
L

°
S
£

m
e
m

26

re
g8
,
i
m
m
3

re
g8

bi
t
no
.
i
m
m
3

<«
—
re
g8

bi
t
no
.
i
m
m
3

~—

~—

re
g

5

m
e
m
8
,
i
m
m
3

(m
em
38
)

bi
t
no
.
i
m
m
3
«
—
(
m
e
m
8
)

bi
t
no
.
i
m
m
3

©
S
£

m
e
m

19

re
g1
6,

i
m
m
4

re
g1
6

bi
t
no
.
i
m
m
4
«
—

(r
eg
16
)

bi
t
no

.
i
m
m
4

~—

re
g

5

m
e
m
1
6
,
i
m
m
4

©
o
E

Fco—v—cov—v—

i ||| -

v e e = e

— |l =] |

Clolooio|cojlolo

Sl jo|lo|©

0 0 0 1 1 1 1

- |o
©
E

(
m
e
m
1
6
)

bi
t
no
.
i
m
m
4
<
—
(
m
e
m
1
6
)

bi
t
no
.
i
m
m
4

OQCQQOOCJ

]

T

2n
d
by
te
*

*N
ot

e:
Fi
rs
t
by

te
=
O
F
H

CcClojlojo|c|o|lo

Cloclololoilojo|©

oIl |o|OC

m
e
m

27

1

3r
d
by
te
*

cY
y

re
g8
,
C
L

CY
«
—
C
Y

1
1
1
1
0
1
0
1

2n
d

by
te
*

1
3r
dl
by
te
'
 .

re
g8

bi
t
no
.
C
L
«
—

0
0

0
re

g
5

m
e
m
8
,
C
L

(
m
e
m
8
)

bi
tn
o.

C
L
—

0
m
e
m

14

re
g1
6,

C
L

re
g1
6

bi
t
no
.
C
L
«
—

0
re
g

5

m
e
m
1
6
,
C
L

(
m
e
m
1
6
)

bi
t
no
.
C
L
«
—

0
m
e
m

22

re
g8
,
i
m
m
3

re
g8

bi
t
no
.
i
m
m
3
«
—

0
re
g

6

m
e
m
8
,
i
m
m
3

re
g1
6,

i
m
m
4

(
m
e
m
8
)

bi
t
no
.
i
m
m
3
«
—

0

re
g1
6

bi
t
no
.
i
m
m
4
«
—

0

m
e
m

15

re
g

6

m
e
m
1
6
,
i
m
m
4

— |||

IOl

— [l]| -

©C oclo|lo|jojlojlo o

O Icjloic|loio|loclo

Cilo|lo oo/ |olo

0 0 0 1 1 1 1
(
m
e
m
1
6
)

bi
t
no
.
i
m
m
4
«
—

0

T
2
n
d
by

te
*

*N
ot

e:
Fi
rs
t
by
te
=
O
F
H

Ol |olo

Cc o0 oo |oloio

O I oOIcjojiooio|o

m
e
m

27

T

3r
d
by
te
*

cY
CY
0

1
1
1
1
1
0
0
0

DI
R

DI
R
«
—
0

1
1
1
1
1
1
0
0

 uPD70108 (V20)

35

O
p
e
r
a
n
d

O
p
e
r
a
t
i
o
n

O
p
e
r
a
t
i
o
n
C
o
d
e

7
6

5
4

3
2

2
1

No
.
of

Fl
ag
s

By
te
s

A
C

C
Y

V
P

S
Z

Bi
t
Op
er
at
io
n
In

st
ru

ct
io

ns
[c
on
t)

SE
T1

re
g8
,
C
L

re
g8

bi
t
no
.
C
L
«
—
1

0
0

0
1

0
re

g
4

3

m
e
m
8
,
C
L

(
m
e
m
8
)

bi
t
no
.
C
L

«—
—

1
m
e
m

3
5

re
g1
6,

C
L

re
g1
6

bi
t
no

.
C
L
«
—

1
re

g

m
e
m
i
6
,
C
L

(
m
e
m
1
6
)

bi
t
no

.
C
L
«
—

1
m
e
m

3
5

re
g8
,
i
m
m
3

re
g8

bi
t
no
.
i
m
m
3
«
—

1
re

g

m
e
m
8
,
i
m
m
3

(
m
e
m
8
)

bi
t
no
.
i
m
m
3
«
—

1
m
o
d

m
e
m

46

re
g1
6,

i
m
m
4

re
g1
6

bi
t
no

.
i
m
m
4
«
—

1
re
g

m
e
m
1
6
,
i
m
m
4

(
m
e
m
1
6
)

bi
t
no
.
i
m
m
4
«
—

1

ocolo|oleo|lojo |

oclo|lojojolol@

ool |clolo

— =]

0 0 ¢ 1 1 1 1

-l ——l— ||

T

2
n
d
by
te
*

*N
ot

e:
Fi
rs
t
by

te
=
O
F
H

clolcjoo|lo|e o

clo|lojlo|lojole|o

clojlojo|le|lo|loje

o
o
e

olo|~|~lojlol~i—

m
o
d

ocolololojlcolo|e|@

T
3r
d
by
te
*

m
e
m

46

cY
CY
«
1

1
1

1
1
1
0
0
1

DI
R

DI
R
«
—
1

1
1

1
1

1
1

0
1

Sh
if
t
In
st
ru
ct
io
ns

S
H
L

re
g,

1
C
Y
«
—
M
S
B

of
re
g,

re
g
«
—

re
g
x
2

W
h
e
n
M
S
B

of
re

g
#

CY
,
V
«
—

1

W
h
e
n
M
S
B

of
re
g
=
C
Y
,
V
«
—
0

1
1

0
1

0
0

w
i
1
t
i
t
1
1
0

re
g

m
e
m
,
1

C
Y

«—
—
M
S
B

of
(m
em
),

(
m
e
m
)
<
—
(
m
e
m
)

x
2

W
h
e
n
M
S
B

of
(
m
e
m
)
#

CY
,
V
«
—

1

W
h
e
n
M
S
B

of
(
m
e
m
)
=
C
Y
,
V
«
—
0

0
0
W
m
o
d

1
0

m
e
m

16
/2
4

2
4

U
X

X
X

X
X

re
g,

C
L

te
mp

«
—

CL
,
wh

il
e
te
mp
>

0,
re

pe
at

th
is

op
er
at
io
n,

C
Y
<
—
M
S
B

of
re
g,

re
g
<

re
g
x

2,
t
e
m
p
<

t
e
m
p
—

1

1
re

g
7
+
n

m
e
m
,
C
L

t
e
m
p
<
«

CL
,
wh
il
e
t
e
m
p
#

0,

re
pe
at

th
is

op
er

at
io

n,
C
Y
<
—
M
S
B

of
(m
em
),

(
m
e
m
)
<

(
m
e
m
)

x
2,
t
e
m
p

<«
—
t
e
m
p
—

1

0
1
W
m
o
d

1
0O

m
e
m

19
/2
7
+
n

2
4

U
X

U
X

X
X

re
g,

i
m
m
8

t
e
m
p
«
—

i
m
m
8
,
wh
il
e
t
e
m
p
#

0,

re
pe
at

th
is

op
er

at
io

n,
C
Y

«<
—
M
S
B

of
re
g,

re
g
<«

—
re

g
x

2,
t
e
m
p
«
—
t
e
m
p
—

1

0
0

re
g

7
+
n

m
e
m
,
i
m
m
8

t
e
m
p
<

i
m
m
8
,
wh
il
e
t
e
m
p
#

0,

re
pe
at

th
is

op
er
at
io
n,

C
Y
<
—
M
S
B

of
(m
em
),

(
m
e
m
)
«
—
(
m
e
m
)

x
2,

t
e
m
p
«
—
t
e
m
p
—

1

0
0
W

m
o
d

1
O

n:
n
u
m
b
e
r

of
sh
if
ts

m
e
m

19
/2
7
+
n
3

u
x

u
x

x
x

S
H
R

re
g,

1
C
Y
«
—
L
S
B

of
re
g,

re
g
«
—

re
g
+

2

W
h
e
n
M
S
B

of
re
g
»

bi
t
fo
ll
ow
in
g
M
S
B

of
re
g:

V
«
—

1

W
h
e
n
M
S
B

of
re

g
=

bi
t
fo
ll
ow
in
g
M
S
B

of
re
g:
V
1
0

0
0
W
1
1

1
0

re
g

 uPD70108 (V20)

36

Op
er

at
io

n
C
o
d
e

No
.o
f

No
.o
f

Fl
ag
s

M
n
e
m
o
n
i
c

O
p
e
r
a
n
d

O
p
e
r
a
t
i
o
n

7
6

5
4

3
2

1
0
7
8
6
5
4
3
2
1
0

C
l
o
c
k
s

B
y
t
e
s

A
C

C
Y

V
P

Sh
if

t
In

st
ru

ct
io

ns
{c

on
t)

S
H
R

m
e
m
,
1

C
Y
«
—
L
S
B

of
(m
em
),

(
m
e
m
)
«
—
(
m
e
m
)
~

2
1
1
0
1
0
0
0

W
m
o
d

1
0

1
m
e
m

16
/2
4

2
4

u
X

X
Xx

W
h
e
n
M
S
B

of
(
m
e
m
)
#

bi
t
fo
ll
ow
in
g
M
S
B

of
(m
em
):

V
<
«

1
W
h
e
n
M
S
B

of
(
m
e
m
)
=

bi
t
fo

ll
ow

in
g
M
S
B

of
(m

em
).

V
«
—

0

re
g,

C
L

t
e
m
p
<
—

CL
,
wh
il
e
t
e
m
p
#

0,
1
1
0
1
0
0
0
W
T
1
T
1
1
0
1

re
g

7
+
n

2
U

X
u

X
re

pe
at
t
h
i
s

op
er
at
io
n,

C
Y
«
—
L
S
B

of
re
g,

re
g
<

re
g
-

2,
t
e
m
p
«
—
t
e
m
p
—

1

m
e
m
,
C
L

t
e
m
p
<
«

CL
,
wh
il
e
t
e
m
p
#

0,
1
1
0
1
0
0
1

W
m
o
e
d

1
0
1

m
e
m

1
9
/
2
7
+
n

2
4

u
x

u
Xx

re
pe
at

th
is

op
er

at
io

n,
C
Y
<
—
L
S
B

of
(m
em
),

(
m
e
m
)
«
—
(
m
e
m
)
=

2,
t
e
m
p
«
—
t
e
m
p
—

1

uPD70108 (V20)

re
g,

i
m
m
8

t
e
m
p
<
—

i
m
m
8
,
wh
il
e
t
e
m
p
=

0,
1
1
0
0
0
0
0
W
1
T
1
t

1
0
1

re
g

7
+
n

3
u

x
u

X
re
pe
at

th
is

op
er

at
io

n,
C
Y
<
—
L
S
B

of
re
g,

re
g
«
—

re
g
=

2,
t
e
m
p
«
—
t
e
m
p
—

1

5
U

x
u

Xx
m
e
m
,
i
m
m
8

t
e
m
p

«<
—
i
m
m
8
,

wh
il
e
t
e
m
p
#

0,
1
1
0
0
0
0
0

W
m
o
d

1
0
1

m
e
m

1
9
/
2
7
+
n

3
re
pe
at

th
is

op
er
at
io
n,

C
Y
<

L
S
B

of
(m
em
),

’
(
m
e
m
)
«
—
(
m
e
m
)
+

2,
t
e
m
p
<
«
t
e
m
p
—

1
n:

n
u
m
b
e
r

of
sh

if
ts

S
H
R
A

re
g,

1
C
Y
«
—
1
S
B
o
f
r
e
g
,
r
e
g
«
—
r
e
g
~
2
,
V
«
—
0

1
1
0
1
0
0
0
W
1
T

1
1
1
1

re
g

2
2

u
x

0
x

M
S
B

of
op
er
an
d
do

es
no
t
ch
an
ge

m
e
m
,

1
C
Y
«
—
L
S
B

of
(m
em
),

(
m
e
m
)

<—
—
(
m
e
m
)
+

2,
1
1
0
1
0
0
0

W
m
o
e
d

1
1

1
m
e
m

16
/2
4

2
4

u
x

0
x

V
«
—

0,
M
S
B

of
o
p
e
r
a
n
d
d
o
e
s
no
t
c
h
a
n
g
e

re
g,

C
L

t
e
m
p
<
«

CL
,
wh
il
e
t
e
m
p

5=
0,

1
1
0
1
0
0
1

W
1
1

1
1
1

re
g

7
+
n

2
Uu

x
U

Xx
re
pe
at

th
is

op
er

at
io

n,
C
Y
«
—
L
S
B

of
re
g,

re
g
«—

—
re
g

-+
2,

t
e
m
p

<«
—
t
e
m
p
—

1
M
S
B

of
o
p
e
r
a
n
d
d
o
e
s
no
t
c
h
a
n
g
e

m
e
m
,
CL

te
mp

<
—

CL
,
wh

il
e
te
mp
5

0,
1
1
0
1
0
0
1

W
m
o
d

1
1
1

m
e
m

19
/2
7+
n

2
4

u
X

u
Xx

re
pe

at
th

is
op

er
at

io
n,

C
Y
«
—
LS
B

of
(m
em
),

(
m
e
m
)
«
—
(
m
e
m
)
+

2,
t
e
m
p
<

t
e
m
p
—

1
M
S
B

of
o
p
e
r
a
n
d
d
o
e
s

no
t
c
h
a
n
g
e

re
g,

i
m
m
8

t
e
m
p
«
—

i
m
m
8
,
wh
il
e
t
e
m
p
»

0,
1
1
0
0
0
0
0

W
1
1

1
1

1
re

g
7
+
n

3
U

X
U

X
re
pe
at

th
is

op
er
at
io
n,

C
Y
<
«
L
S
B

of
re
g,

re
g
«<

—
re
g
+

2,
t
e
m
p
«
—
t
e
m
p
—

1
M
S
B

of
o
p
e
r
a
n
d
d
o
e
s
no
t
c
h
a
n
g
e

m
e
m
,
i
m
m
8

t
e
m
p

«<
—
i
m
m
8
,
wh
il
e
t
e
m
p
=

0,
1
1
0
0
0
0
0

W
m
o
d

1
t

1
m
e
m

1
9
/
2
7
+
n

3
5

u
x

u
x

re
pe
at

th
is

op
er
at
io
n,

C
Y
«
—
L
S
B

of
(m
em
),

(
m
e
m
)
<
—
(
m
e
m
)
+

2,
t
e
m
p

«+
—
t
e
m
p
—

1
M
S
B

of
op
er
an
d
do
es

no
t
ch
an
ge

n:
nu

mb
er

of
sh
if
ts

37

RO
L

R
O
R

O
p
e
r
a
n
d

re
g,

1

m
e
m
,

1

O
p
e
r
a
t
i
o
n

C
Y
«
—
M
S
B

of
re
g,

re
g
«
—

re
g
x
2
+
CY

M
S
B

of
re
g
#

CY
.
V
«
—

1
M
S
B
o
f
r
e
g
=
C
Y
:
V
0

C
Y
<
«
M
S
B

of
(m
em
),

(
m
e
m
)
«
—
(
m
e
m
)

x
2
+
C
Y

M
S
B

of
(
m
e
m
)
#

CY
:
V
«
—

1

M
S
B

of
(
m
e
m
)
=
C
Y
:
V
«
—
0

O
p
e
r
a
t
i
o
n
C
o
d
e

7
8
6
5
4
3
2
1
0
1
7
6
3

Ro
ta
ti
on

In
st
ru
ct
io
ns

1
1
0
1

o
o
w
1
1
0

0
0

W
m
o
d

0

2
1 re
g

m
e
m

No
.
of

Cl
oc
ks

16
/2
4

No
.
of

Fl
ag
s

By
te
s

AC
CY

V
P

8
2

2-
4

X
X

re
g,

C
L

t
e
m
p
«
—

CL
,
wh
il
e
t
e
m
p
#

0,

re
pe
at

th
is

op
er
at
io
n,

C
Y
«
—
M
S
B

of
re
g,

re
g
«
—
r
e
g
x
2
+
C
Y

t
e
m
p
«
—
t
e
m
p
—

1

o
1
w
1
1
6
0

re
g

7
+
n

m
e
m
,
C
L

t
e
m
p
«
—

CL
,
wh
il
e
t
e
m
p
#

0,

re
pe
at

th
is

op
er
at
io
n,

C
Y
«
—
M
S
B

of
(m
em
),

(
m
e
m
)

<«
—
(
m
e
m
)

x
2
+
C
Y

t
e
m
p
«
—
t
e
m
p
—

1

0
1

W
m
o
d

0
re
g

19
/2
7+
n

2
4

X
u

re
g,
i
m
m
8

t
e
m
p
<

i
m
m
8
,
wh
il
e
t
e
m
p
=
0
,

re
pe
at

th
is

op
er
at
io
n,

C
Y
<
—
M
S
B

of
r
e
g
,

re
g
«
—

re
g
x
2
+
C
Y

t
e
m
p
«
—
t
e
m
p
—

1

o
o
w
1
1
0

re
g

7
4
+
n

m
e
m
,
i
m
m
8

re
g,

1

te
mp
<

im
m8
,
wh
il
e
te
mp
#

0,

re
pe
at

th
is

op
er
at
io
n,

C
Y
<
—
M
S
B

of
(m
em
),

(
m
e
m
)
<
—
(
m
e
m
)

x
2
+
C
Y

t
e
m
p
<
«
t
e
m
p
—

1

C
Y
«
—
L
S
B

of
re
g,

re
g
«
—

re
g
+

2

M
S
B

of
re
g
«—
—
C
Y

’

M
S
B

of
re
g
#

bi
t
fo
ll
ow
in
g
M
S
B

of
re
g:

V.
«
—

1

M
S
B

of
re
g
=

bi
t
fo
ll
ow
in
g
M
S
B

of
re
g:

V
«<
—
0

0
0

W
m
o
d

0

n:
n
u
m
b
e
r

of
sh
if
ts

o
o
w
W
1
1
0

m
e
m

re
g

19
/2
7+
n

3
5

X
u

m
e
m
,

1
C
Y
«

L
S
B

of
(m
em
),

(
m
e
m
)
«
—
(
m
e
m
)
+

2

M
S
B

of
(
m
e
m
)
«
—
C
Y

M
S
B

of
(
m
e
m
)
#

bi
t
fo
ll
ow
in
g
M
S
B

of
(m
em
):

V
«
—
1

M
S
B

of
(
m
e
m
)
=

bi
t
fo
ll
ow
in
g
M
S
B

of
(m
em
):

V
«
—
1
0

0
0

W
m
o
d

0
m
e
m

16
/2
4

2-
4

X
X

re
g,

C
L

te
mp

<
—

CL
,
wh
il
e
te
mp
#

0,

re
pe
at

th
is

op
er
at
io
n,

C
Y
«
—
L
S
B

of
r
e
g
,

re
g
«
—

re
g
+

2,
M
S
B

of
re
g
«
—
C
Y

t
e
m
p
«
—
t
e
m
p
—

1

0
1
w
1
1
0

re
g

7
4
+
n

m
e
m
,
C
L

te
mp

<
—

CL
,
wh
il
e
te
mp
#

0,

re
pe
at

th
is

op
er
at
io
n,

C
Y
<
—
L
S
B

of
(m
em
),

{
m
e
m
)
«
—
(
m
e
m
)
+

2,
M
S
B

of
(
m
e
m
)
«
—
C
Y

t
e
m
p
«
—
t
e
m
p
—

1

0
1

W
m
o
d

0

n
:
n
u
m
b
e
r

of
sh
if
ts

m
e
m

19
/2
7+
n

 uPD70108 (V20)

38

O
p
e
r
a
n
d

O
p
e
r
a
t
i
o
n
C
o
d
e

O
p
e
r
a
t
i
o
n

7
6

5
4

3
2

1
0
1
7
6
5
3

Ro
ta
ti
on

in
st

ru
ct

io
ns

[c
on
t)

2
1

No
.o
f

No
.o
f

Cl
oc
ks

By
te
s

A
C

Fi
ag
s

c
Y

v
P

s
2

R
O
R

RO
LC

re
g,

i
m
m
8

t
e
m
p
«
—

i
m
m
8
,
wh
il
e
t
e
m
p
#

0,
1
1
0
0
0

re
pe

at
th

is
op
er
at
io
n,

C
Y
«
—
L
S
B

of
re

g,
re
g
«
—

re
g
=

2,
M
S
B

of
re
g
«
—
C
Y

t
e
m
p
<

t
e
m
p
—

1

0
0
W
I
1
1
0

re
g

7
+
n

m
e
m
,
i
m
m
8

re
g,

1

t
e
m
p
<
«

i
m
m
8
,
wh
il
e
t
e
m
p
#

0,
1
1
0
0

re
pe
at

th
is

op
er

at
io

n,
C
Y
<
—
L
S
B

of
(m
em
),

(
m
e
m
)
«
—
(
m
e
m
)
+

2
t
e
m
p
«
—
t
e
m
p
—

1

Ro
ta

te
In

st
ru

ct
io

ns

tm
pc
y
<
—

CY
,
CY
<

MS
Bo
f
r
e
g

1
1
0
1

re
g
«—
—
re

g
x
2
+
t
m
p
c
y

M
S
B
o
f
r
e
g
=
C
Y
:
V
<
0

M
S
B

of
re

g
#

CY
:
V
«
—

1

0
0

W
m
o
d

0

n:
nu
mb
er
o
f
s
h
i
f
t
s

0
0
W
1
1
0

m
e
m

re
g

19
/2
7+
n

3
5

m
e
m
,

1
t
m
p
c
y
«
—

CY
,
C
Y
«
—
M
S
B

of
(
m
e
m
)

1
1
0
1

(
m
e
m
)

<«
—
(
m
e
m
)

x
2
+
t
m
p
c
y

M
S
B

of
(
m
e
m
)
=
C
Y
:
V
«
—
0

M
S
B

of
(
m
e
m
)

#=
CY
:
V
«
—

1

0
0

W
m
o
d

0
m
e
m

16
/2
4

2
4

re
g,

C
L

te
mp

«
—

CL
,
wh
il
e
te
mp
#

0,
1
1
0
1

re
pe
at

th
is

op
er

at
io

n,
t
m
p
c
y
«
—

CY
,

C
Y
«
—
M
S
B

of
re
g,

re
g
«<
—
re

g
x
2
+
t
m
p
c
y

t
e
m
p

<«
—
t
e
m
p
—

1

re
g

7
+
n

m
e
m
,
C
L

t
e
m
p
<
—

CL
,
wh
il
e
t
e
m
p
#

0,
1
1
0
1

re
pe
at

th
is

op
er

at
io

n,
t
m
p
c
y
<
—

CY
,

C
Y

«—
—
M
S
B

of
(m
em
),

(
m
e
m
)
<
—
(
m
e
m
)
x
2
+
t
m
p
c
y

t
e
m
p
«
—
t
e
m
p
—

1

0
1

W
m
o
d

0
m
e
m

19
/2
7+
n

2-
4

re
g,

i
m
m
8

t
e
m
p
«
—
i
m
m
8
,

wh
il

e
t
e
m
p
>

0,
1
1
0
0

re
pe
at

th
is

op
er

at
io

n,
t
m
p
c
y
«
—

CY
,

C
Y

«<
—
M
S
B

of
re

g,
re
g
«
—

re
g
x
2
+
tm
pc
y

t
e
m
p
«
—
t
e
m
p
—

1

0
o

W
w
W
1
1
0

re
g

7
+
n

m
e
m
,
i
m
m
8

t
e
m
p
«
—

i
m
m
8
,
wh
il
e
t
e
m
p
#

0,
1
1
0
0

re
pe
at

th
is

op
er
at
io
n,

t
m
p
c
y
«
—

CY
,

C
Y
«
—
M
S
B

of
(m
em
)

{
m
e
m
)

«<
—
(
m
e
m
)
x
2
+
t
m
p
c
y

t
e
m
p
«
—
t
e
m
p
—

1

0
0

W
m
o
d

0

n:
n
u
m
b
e
r

of
sh
if
ts

m
e
m

19
/2
7+
n

3
5

 #~PD70108 (V20)

39

R
O
R
C

O
p
e
r
a
n
d

re
g,

1

O
p
e
r
a
t
i
o
n

t
m
p
c
y
<
—

CY
,
C
Y
«
—
L
S
B

of
re
g

re
g
<

re
g
-

2,
M
S
B

of
re
g
«—
—
t
m
p
c
y

M
S
B

of
re
g
#

bi
t
fo
ll
ow
in
g
M
S
B

of
re

g:
V
«
—

1

M
S
B

of
re
g
=

bi
t
fo
ll
ow
in
g
M
S
B

of
re
g:

V
«
—

0

O
p
e
r
a
t
i
o
n
C
o
d
e

7
6

Ra
ta

te
In

st
ru

ct
io

ns
[c

on
t)

1
1

4
3
2
1

1
0
0

4
3
2
1

0
1

re
g

No
.
of

C
l
o
c
k
s

No
.
of

Fl
ag
s

By
te
s

AC
CY

V
P

S
2

m
e
m
,
1

t
m
p
c
y

«<
—
CY
,
C
Y
«
—
L
S
B

of
(
m
e
m
)

(
m
e
m
)
«
—
(
m
e
m
)

<+
2,
M
S
B

of
(
m
e
m
)
«
—
t
m
p
c
y

M
S
B

of
(
m
e
m
)
#

bi
t
fo
ll
ow
in
g
M
S
B

of
(m
em
):

V
«
—

1

M
S
B

of
(
m
e
m
)
=

bi
t
fo
ll
ow
in
g
M
S
B

of
(m
em
):
V
<
0

m
o
d

O
16
/2
4

2-
4

X
X

re
g,

C
L

t
e
m
p
<
—

CL
,
wh
il
e
t
e
m
p
#

0,

re
pe
at

th
is

op
er
at
io
n,

t
m
p
c
y
«
—

GY
,

C
Y
«
—
L
S
B

of
re
g,

re
g
«
—

re
g
+

2,

M
S
B

of
re
g
<

tm
pc
y,

te
mp

«
—
te
mp

—
1

1
1

re
g

7
+
n

m
e
m
,
C
L

t
e
m
p
«
—

CL
,
wh
il
e
t
e
m
p
#

0,

re
pe
at

th
is

op
er
at
io
n,

t
m
p
c
y
«
—

CY
,

C
Y
<

L
S
B

of
(m
em
),

(
m
e
m
)
«
—
(
m
e
m
)

<+
2

M
S
B

of
(m
em
)
<
—

tm
pc
y,

te
mp

«
—
te
mp

—
1

m
o
d

0
19
/2
7
+
n

2-
4

X
U

re
g,

i
m
m
8

t
e
m
p
«
—

i
m
m
8
,

wh
il
e
t
e
m
p
#

0

re
pe
at

th
is

op
er
at
io
n,

t
m
p
c
y
<

CY
,

C
Y

«—
—
L
S
B

of
re
g,

re
g
«
—

re
g
+

2

M
S
B

of
re

g
«—
—
tm
pc
y,

t
e
m
p
«
—
t
e
m
p
—

1

1
1

re
g

7
+
n

m
e
m
,
i
m
m
8

t
e
m
p
«
—

i
m
m
8
,
wh
il
e
t
e
m
p
#

0,

re
pe
at

th
is

op
er
at
io
n,

t
m
p
c
y

«<
—
CY
,

C
Y
«
—
L
S
B

of
(m
em
),

(
m
e
m
)
«
—
(
m
e
m
)
+

2

M
S
B

of
(
m
e
m
)
<
—

tm
pc
y,

t
e
m
p
«
—
t
e
m
p
—

1

m
o
d

0O
1

1
m
e
m

19
/2
7+
n

n:
n
u
m
b
e
r

of
sh
if
ts

3
5

X
u

Su
br
ou
ti
ne

Co
nt
ro
l

In
st
ru
ct
io
ns

C
A
L
L

ne
ar
-p
ro
c

(
S
P
—
1
,
S
P
—

2)
«
—

PC
,
SP

«
—
5P
-
2

P
C
<

P
C
+

di
sp

1
1

0
1

20

re
gp
tr
i6

(
S
P
—
~
1
,
S
P
—
2
)
«
—
P
C
,
SP

«
—
S
P
-
2

P
C

<«
—
re
gp
tr
16

1
0

re
g

18

m
e
m
p
t
r
i
6

{
S
P
—
1
,
S
P
—
2
)
«
—

PC
,
S
P
«
—
S
P
—

2

P
C
«
—

(m
em
pt
ri
6)

m
o
d

0
1

0
m
e
m

31

fa
r-
pr
oc

(
S
P
—
1
,
S
P
—
2
)
«
—

PS
,
(S

P
—
3
,
S
P
—

4)
«
—
PC

S
P
«
~
S
P
—

4,
P
S
«
—

se
g,

P
C
<

of
fs
et

29

m
e
m
p
t
r
3
2

(
S
P
—
1
,
S
P
—
2
)
«
—

PS
,
(S
P
—
3
,
5
P
—

4}
«
—
P
C

S
P
«
—
S
P
—

4,
P
S
«
—

(
m
e
m
p
t
r
3
2
+

2)
,

P
C
«
—

(m
em
pt
r3
2)

m
o
d

0
1

1
m
e
m

47
2-
4

 uPD70108 (V20)

40

M
r
e
m
o
n
i
c

O
p
e
r
a
n
d

O
p
e
r
a
t
i
o
n

Op
or
at
io
n
C
o
d
e

7
5

4
3

2

Su
br

ou
ti

ne
Ce
nt
re
l
In
st
ru
ct
io
ns

[c
on
t)

0
7
6

5
4

3
2

N
o
.
o
f

N
o
.
o
f

F
l
a
g
s

Cl
oc
ks

By
te
s

A
C

C
Y

Vv
P

8
Z

RE
T

P
U
S
H

PC
«—

(S
P +

1,
SP

),
SP

+—
SP

+
2

1
0

0
0

19

po
p-

va
lu

e
PC

«
—
(
S
P
+
1
,
5
P
)

SP
«
—
SP

+
2,
S
P
«
—
SP

+
po
p-
va
lu
e

1
0

0
0

24

PC
+—

(S
P +

1,
SP
),

PS
«—

(S
P +

3,
SP

+
2)

S
P
—
S
P
+
4

0
0
1
0

po
p-

va
lu

e

m
e
m
1
6

PC
«
—

(S
P
+1
,S
P)
,
PS

«<
—
(S

P
+
3,

5P
+

2)
S
P
«
—
S
P
+

4,
S
P
«
—
S
P
+

po
p-
va
lu
e

St
ac
k
Ma
ni
pu
la
ti
on

In
st

ru
ct

ie
ns

(S
P
—

1,
SP

—
2)
«
—

(m
em
16
),

S
P
«
—
SP

—
2

1
1

0
0
1
0

1
1
1

1
1

m
o
d

1
1

0
m
e
m

2
4

re
g1
6

sr
eg

(S
P
—
1
,
S
P
—
2
)
«
—

re
g1
6,

SP
«
—
SP

—
2

(
S
P
—

1,
S
P
—

2)
«
—

sr
eg
,
S
P
«
—
S
P
—

2

re
g

12 12

P
S
W

(S
P—
1,
SP

—2
)
«—

PS
W,

SP
«—

SP
—

2
12

P
u
s
h

re
gi
st
er
s
o
n
th

e
st
ac
k

67

= =] v

i
m
m

(S
P
—

1,
S
P
-

2)
«—
—
i
m
m

S
P
«
—
S
P
—

2,
W
h
e
n
S
=

1,
si
gn

ex
te
ns
io
n

ool o

1 0 0 1 1

0 0 0 1 1

~l—-lol®

~lo|lo|wv

olojo o

1
/

12

PO
P

m
e
m
1
6

re
g1
6

sr
eg

(m
em
16
)

«<
—
(S
P
+

1,
SP

),
SP

«
—
SP

+
2

re
g1
6
«
—

(S
P
+

1,
SP

),
SP

«
—
SP

+
2

sr
eg
<

(S
P
+

1,
SP
)
sr
eg

:
SS
,

DS
O0
,D
S
1

S
P
«
—
S
P
+
2

—

sr
eg

-

m
o
d

0
0

O
m
e
m

2 12 12

P
S
W

PS
W
<—

(S
P +

1,
SP

),
SP

«—
SP

+
2

12
R

R
R
R
R
R

R
P
o
p

re
gi
st
er
s
f
r
o
m
th

e
st
ac
k

1
75

P
R
E
P
A
R
E

i
m
m
1
6
,
i
m
m
8

Pr
ep
ar
e
n
e
w

st
ac
k
fr
am
e

i |-

Q| v *
i
m
m
8
=

0:
i
m
m
8
>

1:

0

1
1

0
0

0
1 0

1 0 0 ~—6

0 0 0

23
+

16
(
i
m
m
8
—

1)

DI
SP
OS
E

Di
sp
os
e
of

st
ac
k
f
r
a
m
e

1

Br
an
ch

In
st
ru
ct
io
n

0
0

0
0

10

B
R

ne
ar

-l
ab

el
P
C
«
—
P
C
+

di
sp

1
13

sh
or

t-
la

be
l

P
C
«
—
P
C
+

ex
t-
di
sp
8

12

re
gp
tr
i6

P
C
«
—

re
gp
tr
16

1
1
1
0
0

r
e
g

1

m
e
m
p
t
r
i
6

P
C
«
—

(m
em
pt
r1
6)

m
o
d

1
0

O
m
e
m

2
2
4

fa
r-
la
be
l

P
S
«
—

se
g,

P
C
<

of
fs
et

15

m
e
m
p
t
r
3
2

PS
<«
—
(m
em
pt
r3
2
+

2)
,
PC

«
—

(m
em
pt
r3
2)

1 1 1 1 1

= |v |=}

— = = |=

clo|ririol~

QIO ||l O |~

S|l

m
o
d

1t
0

1
m
e
m

35
2-
4

 uwPD70108 (V20)

41

M
n
r
e
m
o
n
i
c

B
v

O
p
e
r
a
n
d

sh
or
t-
la
be
l

O
p
e
r
a
t
i
o
n

Co
nd
it
ie
na
l
Br
an
ch

in
st
ru
ct
ie
ns

it
V
=
1
,
PC

«
—
PC

+
ex
t-
di
sp
8

O
p
e
r
a
t
i
o
n
C
o
d
e

7
8
6
5
4

3
2

0
1

1

0
7
6
3
5
4
3
2
1
0

No
.
of

Cl
oc

ks

14
/4

No
.
of

Fl
ag

s
By
te
s

AC
CY

V
P

8
2

B
N
V

sh
or
t-
la
be
l

it
V
=
0
,
PC

«
—
PC

+
ex
t-
di
sp
8

14
/4

BC
,
BL

sh
or
t-
la
be
!

if
CY

=
1
,
PC

«
—

PC
+

ex
t-
di
sp
8

14
/4

BN
C,

B
N
L

sh
or
t-
la
be
l

it
CY

=
0
,
PC

«
—
PC

+
ex
t-
di
sp
8

14
/4

BE
,
BZ

sh
or
t-
1a
be
l

it
Z
=
1
,
P
C
«
—
P
C
+

ex
t-
di
sp
8

14
/4

BN
E,

B
N
Z

sh
or
t-
la
be
l

it
Z
=
0
,
PC

«—
—
PC

+
ex
t-
di
sp
8

14
/4

B
N
H

sh
or
t-
la
be
l

if
C
Y
O
R
Z
=

1,
PC

«
—
PC

+
ex
t-
di
sp
8

14
/4

B
H

sh
or
t-
la
be
l

if
C
Y
O
R
Z
=
0
,
PC

«
—
PC

+
ex
t-
di
sp
8

14
/4

sh
or
t-
la
be
l

it
S
=

1,
PC

«
—
PC

+
ex
t-
di
sp
8

14
/4

8P
sh
or
t-
fa
be
l

it
S
=
0
,
P
C
«
—
P
C
+

ex
t-
di
sp
8

14
/4

BP
E

sh
or
t-
la
be
l

if
P
=
1
,
P
C
«
—
P
C
+

ex
t-
di
sp
8

14
/4

BP
O

sh
or
t-
la
be
l

if
=
0
,

P
C
«
—
P
C
+

ex
t-
di
sp
8

14
/4

BL
T

sh
or
t-
la
be
l

it
S
X
O
R
V
=
1
,
P
C
«
—
P
C
+

ex
t-
di
sp
8

14
/4

BG
E

sh
or
t-
la
be
l

if
S
X
O
R
V
=
0
,
PC

«
—
PC

+
ex
t-
di
sp
8

14
/4

BL
E

sh
or
t-
la
be
l

if
(S

X
O
R

V)
O
R
Z
=

1,
PC

«
—
PC

+
ex
t-
di
sp
8

14
/4

BG
T

sh
or
t-
la
be
l

if
(S

X
O
R

V)
O
R
Z
=

0,
PC

«
—
PC

+
ex
t-
di
sp
8

14
/4

D
B
N
Z
N
E

sh
or
t-
la
be
l

C
W
«
—
C
W
—
1

it
Z
=
0

a
n
d
C
W
0
,

P
C
«
—
P
C
+

ex
t-
di
sp
8'

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

=il ||~ ||| |

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

OOOOOOQOPPP'—
PP—FQ

OOOQPPPPOOOOPP
FV—O

OQPPOOF—OOFP
QOP—O

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
14
/5

NNNNNNNNNNNN
NNNNN

D
B
N
Z
E

sh
or
t-
la
be
l

C
W
«
—
C
W
-
1

)

if
Z
=
1
a
n
d
C
W
#

0,
P
C
<

P
C
+

ex
t-
di
sp
8

14
/5

D
B
N
Z

sh
or
t-
ia
be
l

C
W
«
—
C
W
-
1

it
C
W
#

0,
P
C
«
—
P
C
+

ex
t-
di
sp
8

13
/5

B
C
W
Z

B
R
K

sh
or
t-
la
be
l

if
C
W
=

0,
PC

«—
—
PC

+
ex
t-
di
sp
8

(S
P—

5,
5P

—
6)
«—

PG
,
SP

«—
SP

—
6

IE
«—

0,
BR
K
«—

0
PS

«—
(15

,1
4),

PC
«—

(13
,1

2)

1
1
1
0

1

In
te
rr
up
t
In
st
ru
ct
io
ns

(S
P
—

1,
SP

—
2)
«
—

PS
W,
(
S
P
—

3,
SP

—
4)
«
—

PS
,

1
0
0

13
/5 50

i
m
m
8

=
3

(S
P
—

1,
SP

—
2)
«
—

PS
W,
(
S
P
—

3,
SP

—
4)
«
—

PS
,

(S
P
—

5,
S
P
—

6}
«
—

PC
,
S
P
«
—
S
P
-

6

IE
«
—

0,
B
R
K
«
—

0

P
C
«
(
n
x
4
,
+
1
,
n
x
4
)

P
S
«
—
{
n
x
d
4
+
3
n
x
d
4
+
2
)
n
=
i
m
m
8

1
1
0
0

 uPD70108 (V20)

42

M
n
e
m
o
n
i
c

O
p
e
r
a
n
d

O
p
e
r
a
t
i
o
n
C
o
d
e

O
p
e
r
a
t
i
o
n

7
6

5
4

3
2

0
7
6

5
4
3
2
1
0

No
.
of

F
l
a
g
s

By
te
s

A
C

C
Y

V¥V
P

8§
Z

In
te

rr
up

t
In
st
ru
ct
io
ns

[c
on

t)

B
R
K
V

Wh
en

V
=1

1
1
0
0
1

(S
P
—1
,S
P
—

2)
«—

PS
W,
(S

P
—

3,
SP

—
4)
«—

PS
,

(S
P—

5,
SP

—
6)
«—

PC
, S

P
«—

SP
—

6
IE
«—

0,
BR
K
<

0
PS

«—
(19

, 1
8),

PC
«—

(17
,

16)

1
52
13

RE
TI

PC
«
—

(S
P
+

1,
SP

),
PS

«
—

(S
P
+

3,
SP

+
2)

,
1
1
0
0
1

PS
W
<

(S
P +

5,
SP

+
4),

SP
«—

SP
+
6

R
R
R
R
R
R

C
H
K
I
N
D

re
g1
6,

m
e
m
3
2

W
h
e
n
(
m
e
m
3
2
)
>

re
g1
6
or

(
m
e
m
3
2
+

2)
<

re
g1
6

(S
P
—

1,
SP

—
2)
«
—

PS
W,
(
S
P
—

3,
SP

—
4)
«
—

PS
,

(
S
P
—
5
,
S
P
—
6
)
«
—
PC
,S
P
«
—
S
P
—

6
IE
«
—

0,
B
R
K
«
—

0,
PS

«
—

(2
3,

22
),

PC
«+
—

(2
1,

20
)

0
1
1
0
0

m
o
d

re
g

m
e
m

73
-7
6/

2
4

B
R
K
E
M

i
m
m
8

(S
P
—
1
,
S
P
—

2)
«
—

PS
W,
(
S
P
—

3,
S
P
—

4)
«
—

PS
,

0
0
0
0

1
(
S
P
—
5
,
S
P
—
6
)
«
—
P
C
,
S
P
«
—
S
P
—
6

M
D
+
—

0,
P
C
“
—
(
n
x
4
+

1,
n
x

4)
,
M
D

Bi
t
Wr
it
e
En
ab
le

P
S
-
(
n
x
4
+
3
,
n
x
4
+
2
)
,
n
=
i
m
m
8

C
P
U

Co
nt

ro
l
In

st
ru

ct
io

ns

t
1
1
1
1
1

1
1

H
A
L
T

C
P
U

Ha
lt

T
1
1
1

B
U
S
L
O
C
K

B
u
s
L
o
c
k

Pr
ef
ix

F
P
O
1

fp
-o
p

N
o
Op

er
at

io
n

X
1
1
Y
Y
Y

Z
2
z
Z
2

fp
-o
p,
m
e
m

da
ta

bu
s
«
—
(
m
e
m
)

X
m
o
d

Y
Y
Y

m
e
m

2
4

FP
O2

fp
-o
p

N
o
Op
er
at
io
n

1
1
Y
Y
Y

Z
2
Z
2
1
2

fp
-o
p,
m
e
m

da
ta

bu
s
«
—
(m
em
)

X
m
o
d

Y
Y

Y
m
e
m

2
4

PO
LL

1 1 1 0 0 1

-l

il |IOlO |-

Po
lt

a
n
d
wa

it

S IO [>X|vr]w |

1
nu
mb
er

of
ti
me
s
PO

LL
pi
n

is
sa

mp
le

d

N
O
P

o

N
o
Op

er
at

io
n

1
0

0

DI

1 0 0 1 1 0 n: 0 1
I
E
+
—
0

1
1

1
0

El
IE
<
1

1
1
1
1

1 1 0 0 0 0 0

80
80

M
o
d
e

In
st

ru
ct

io
ns

R
E
T
E
M

PC
«
—

(S
P
+

1,
SP

),
PS

«
—

(S
P
+

3,
SP

+
2)
,

1
1
1
0
1

P
S
W
=
=
(S
P
+

5,
SP

+
4)
,
SP

+
—
SP

+
6,
M
D

Bi
t
Wr
it
e
Di

sa
bl

e
1
1
1
1
1
1
0
1

39
R

R
R
R
R
R

C
A
L
L
N

i
m
m
8

(
S
P
—
1
,
5
P
—

2)
«
—
P
S
W
,
(
S
P
—
3
,
S
5
P
—

4)
1
1
1
0
1

«
—
P
S
,
(
S
P
—
~
5
,
S
P
—
6
)

«—
—
PC
,
S
P
«
—
S
P
—

6
M
D
«
—
1
,
P
C
e
—
(
n
x
4
+
1
,
n
x
4
)

P
S
«
—
(
n
x
4
+
3
n
x
4
+
2
)
,
n
=
i
m
m
8

1
1
1
0
1
1
0
1

58

 uPD70108 (V20)

NEC uPD70108 (V20)

Packaging Information

40-Pin Plastic DIP Package (600 mil)

A ANAARAAARAANAAARAARR 5?5

— 4 5.72 max 226 max

J

 UV YUnUgTRIvIIvYYYy| e

AAARANARAARAARAAAAR

—C

<

eTVyvIvyYoyIvYY

ebeyoeqdip1euid-0p

(yuo3)uonyewioju]6uibeysed

omz
(ozA)sorozad”

NEC uPD70108 (V20)

Packaging Information (cont)

44-Pin Plastic Leadless Chip Carrier (PLCC) Package

(Information available in first quarter of 1986.)

45

uPD70108 (V20) NEC

Packaging Information (cont)

52-Pin Plastic Minifiat Package

 ,Pin 1index

1

-

j—m

T T

o

Hem Millimeters Inches

+.3 +.012
14.0_2 551 _gos

1203 472 £.012

1.00 +.15 .038 +.006

+.2 +.008
4 018 —004

21.0 t.4 .827 +.016

F 15 132,2 006 :%

G 2.8 max .110 max

H 332 130 +.008

| 22+2 .087 +.008

83-0018758

46

NEC 4PD70108 (V20)

Notes:

47

©PD70108 (V20)

REGIONAL SALES AND
ENGINEERING SUPPORT OFFICES

NORTHEAST
Twenty Burlington Mall Road, Suite 449
Burlington, MA 01803
TEL 617-272-1774 TWX 710-348-6515

SOUTHEAST
Radice Corporate Center

600 Corporate Drive, Suite 412

Fort Lauderdale, FL 33334

TEL 305-776-0682 TWX 759839

MIDWEST
3025 West Salt Creek Lane, Suite 300
Arfington Heights, IL 60005
TEL 312-577-9090 TWX 910-687-1492

SOUTHCENTRAL
16475 Dallas Parkway, Suite 380
Dallas, TX 75248

TEL 214-931-0641

SOUTHWEST
200 East Sandpointe, Building 8 Suite 460

Santa Ana, CA 92707

TEL 714-546-0501

NORTHWEST
10080 North Wolfe Road, SW3 Suite 360

Cupertino, CA 95014
TEL 408-446-0650

TWX 810-860-5284

TWX 759845

TLX 595497

DISTRICT OFFICES

200 Broadhollow Road, Suite 302
Route 110

Melville, NY 11747

TEL 516-423-2500 TWX 510-224-6090

Beechwood Office Park

385 South Road
Poughkeepsie, NY 12601

TEL 914-452-4747 TWX 510-248-0066

200 Perinton Hilis Office Park
Fairport, NY 14450

TEL 716-425-4580 TWX 510-100-8349

5720 Peachtree Parkway, Suite 120
Norcross, GA 30092
TEL 404-447-4409 TWX 910-997-0450

7257 Parkway Drive, Suite 109
Hanover, MD 21076
TEL 301-796-3944 TLX 759847

29200 Southfield Road, Suite 208
Southfield, Mi 48076
TEL 313-559-4242 TWX 810-224-4625

Busch Corporate Center
6480 Busch Bivd., Suite 121
Columbus, OH 43229
TEL 614-436-1778 TWX 510-101-1771

8030 Cedar Avenue South, Suite 229
Bloomington, MN 55420
TEL 612-854-4443 TWX 910-997-0726

DISTRICT OFFICES [cont]

Echelon Building 2

9430 Research Boulevard, Suite 330

Austin, TX 78759
TEL 512-346-9280

6150 Canoga Avenue, Suite 112
Woodland Hills, CA 91367

TEL 818-716-1535 TWX 559210

Lincoln Center Building
10300 S.W. Greenburg Road, Suite 540

Portland, OR 97223
TEL 503-245-1600

5445 DTC Parkway, Suite 218

Englewood, CO 80111
TEL 303-694-0041 TWX 510-600-5666

NATICK TECHNOLOGY CENTER

One Natick Executive Park

Natick, MA 01760
TEL 617-655-8833 TWX 710-386-2110

NEC
NEC Electronics Inc,
CORPORATE HEADQUARTERS

401 Ellis Street
P.0. Box 7241

Mountain View, CA 94039

TEL 415-960-6000

TWX 910-379-6985

©1985 NEC Electronics Inc./Printed in U.S.A.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent ot NEC.
Efectronics inc. The tnformation in this documentis subject to change without notice. Devices sold by NEC Electronics Inc.
are covered by the warranty and patent indemnitication provisions appearing in NEC Electronics inc. Terms and Conditions
of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by description, regarding the
information set forth herein or regarding the fresdom of the described devices trom patent infringement. NEC Efectronics
Inc. makes no warranty of merchantability orfitness for any purpose. NEC Electronics inc. assumes no responsibility for any
errors that may appearin this document. NEC Electronics inc. makes no commitment to update or to keep current the
information contained in this document.

NECEL-000010-1185
STOCK NO. 500835

 R

OKI MSM82C51A UART Data Sheet

JUNE 1984

semiconductor
MSM82CS51A
UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER
TRANSMITTER

GENERAL DESCRIPTION FEATURES
The MSMB82C51A is @8 USART (Universal Synchronous Asyn- » Wide power supply voltage range from3 Vio 6 V.
chronous Receiver Transmitter) for serial data communication « Wide temperature range from — 40°C to 85°C.

?r:e":s"r:::::c;':p:: sm:ms'ueu data from the CPU and tra * Synchn co ication upto 84K baud.receives paral ata from the an ns- L
mits seriai data. This device aiso receives senal data and trans- * Asynchronous eommumcatnon upto 38.4K baud.
mits paraiiei data to the CPU. . Tummuyo/rocuvhg operations under double buffered

The MSMB82C51A is a tully static circuit using silicon gate CMOS eonfiguuho.n.
technology. it operates on an extremely iow power supply at 100 * Error detection (parity, overrun and framing)
pA (max) of standby current by suspending af! the operations. o 28-pin DIP (MSM82C51ARS)

MSMB82C51A is functionally compatibie with the 8251A. * 32-pin flat package (MSM82C51AGSK)

FUNCTIONAL BLOCK DIAGRAM

A

DATA TRANSMIT0>-D, <:> 8US <Lr:> N BUFFER | TxD
BUFFER P-8)

)

RESET ——» gs < —— TxROY
mr *IREAD/WRITE ~ TRANSMITc/B ——={ CONTROL A CONTROL

|

>TxE&6 LOGIC 8 . : —RD —0 > fo—— T
WR ——»4 - xe
&S <

<

@
B3R —ed Z A
DTR «—do MODEM OFFER l————— BUFFER RxD
CTS —a CONTROL (S—P)

RTS «——(g

——» RxRDY

RECEIVE B
—*1 contrOL [* *

le— —» SYNDET/BD
—

H
I
L
L
I
N
S
N
V
H
L
H
I
A
I
Z
D
3
H
S
N
O
N
O
H
H
O
N
A
S
Y
S
N
O
N
O
H
H
O
N
A
S
T
Y
S
H
3
A
I
N
N

V
I
S
O
T
B
W
S
W

PIN CONFIGURATION

o2 (7] N 28] o1

DJE Zv]oo

aeol3] e
GNDE afi

DIE 24| GTR

os[¢] 7] Avs

os[7] 27558

mE i)reser

vie (5] e
waio] (9] 7=0

CSE Ehswflv

c DE Ec"'rs .

sl gsvwoer o0
RxRDY 14 EY-RDV

MSMB2C51ARS (Top View)

28 Lead Piastic DIP

o2f] O 3o

032} 37 00

a:0[3] 53 vec

~ 4] g~ ¢

GNDE Eh-—c

i o
os (7] [ars

(] e
o7[5] 24] RESET

T e
vfiE gno

s3] 7] Tuempy

~ e[4~ ¢

cofie 5} c7s
fioE ESYNDEY 80

RIRDVE ET:RDY

MSMB2CS51AGSK (Top View)

32 Leao Plastic Flat Package

FUNCTION
Outline
MSMB82C51A's functional configuration is programmed by the
software.

Operation between MSM82CS51A and CPU is executed by pro-
gram control. Table 1 shows the operation between CPU and
the device.

Table 1 Operation betwesen MSM82CS1A and CPU

CS |Cc/D |RD |WR

1 X X Data bus 3-state

0 1 1 Data bus 3-state

0 1 0 1 Status > CPU

0 1 1 0 Control word < CPU

0 0 1 Data = CPU

0 1 0 Data < CPU
it is necessary to execute a tunction-setting sequence after re-
setting on MSMB2CS51A. Fig. 1 shows the function-setting
sequence.

It the function was set. the device is ready to receive a command,
thus enabling the transter of data by setting a necessary com-

mand. reading a status and reading/writing data.

External reset

Write mode
instruction

<Rreers>t
no

Write first sync
character

no

Write second
sync character

Fig. 1 Function-Setting Sequence
(Mode Instruction Sequencs)

Conirol Words
There are two types of control words

1. Mode instruction

2. Command

1. Mode instruction
Mode instruction is used for setting the function of the
MSMB2C51A. Mode instruction will be in “wait for write” at
either internal reset or external reset. Thus writing a control
word after resetting wili be recognized as ‘mode instruction.”

items to be set by mode instruction are as follows:

« Synchronous/asynchronous mode

* Stop bit length (asynchronous mode)
* Character length

* Parity bit

+ Baud rate factor (asynchronous mode)

* internal/external synchronization (synchronous mode)

* No. of synchronous characters (synchronous mode)

The bit configuration of the mode instruction is shown in Figs.
2 and 3. in the case of synchronous mode,it is necessary to
write one- or two-sync characters.

f sync characters were written, a function will be set because
the writing of sync characters constitutes part of the mode
instruction.

D4 D¢ Ds Da Dj D2 Dy Do

Sy S, EP PEN Ly Ly B, B,

Baud rate factor

0 1 0 1

- 0 0 1 1

* As‘)z:e x 16x 64x

Character length

0 1 0 1

—_———— 0 0 1 1

5 bits 6 bits 7 bits 8 bits

Parity check

0 1 0 1

0 0 1 1

. Odd . Even
Disable parity Disable parity

Stop bit length

 0 1 0 1

*Refer to Figure 3

0 0 1 1

Inhibit 1 bit |1.5bits 2 bits
Fig. 2 Bit Configurstion of Mode Instruction (Asynchronous)

D, Dg Dg D4 D3 Dy Dy Do

SCS

|

ESD EP PEN Ly L 0 0

Character iength

 - 0 1 0 1

 0 0 1 1

5 bits 6 bits 7 bits 8 bits

Parity

0 1 0 1

0 0 1 1

. Odd . EvenDisable parity |Disable parity
Synchronous Mode

0 1

Internal |External
synchro-| synchro-
nization |nization

No. of synchronous characters

0 1

2char- |1 char-

acters acter
Fig. 3 Bit Configuration of Mode Instruction {Synchronous)

2. Command « DTR.RTS Output of data.
The command word is used for setting the operation of * Resetting of errorflag.
MSMB2CS1A.

* Sending of break characters

* internai reset

* Hunt mode (synchronous mode)

The bit contiguration of a command is shown in Fig. 4

It is possibie to write a command whenever necessary after

writing mode instruction and sync characters.

Items to be set by command are as follows:

¢ Transmit Enabie/Disable

* Receive Enable/Disable

D4 D¢ Ds Ds Dj D, 0y Do

EH IR RTS ER |SBRK RxE DTR TxEN

1....Transmit Enable

0....Disable

DTR

1—->DTR =0

0—*>DTR =1

1....Receive Enabie

0....Disable

1....Send break
- -character.

0....Normal operation

1....Reset error

flag.

0....Normal operation

ATS
1—=+RTS=0

0->RTS=1

1....Internal reset

0....Normal operation

1....Hunt mode

{Note)

0....Nomal operation
 {Nots) Search mode for synchronous

characters in synchronous mode.

Fig. 4 Bit Configuration of Command

Sistus Word
1t is possibie to see the internal status of MSMB2CS51A by reading
a status word.

The bit configuration of status word is shown in Fig. 5.

Dy Dg Ds Dy D3 D3 Dy Do
SYN-

DSR DBEI;I FE

|

OE

|

PE Lm?w nngv RTI;(Y

Partly different from

TXRDY terminal.

Refer to ‘‘Expiana-

tion of TXRDY

Terminal.”’

Same as terminal.

Refer to ’Explana-

tion of Terminals.’’

1....Parity error

1....0verrun error

1....Framing error

 Shows terminal DSR.

1..DSR =0

0...DSR = 1
Fig. 5 Bit Configuration of Status Word

(Nots) only asyn-
chrnous mode.

Stop bit cannot

be detected.

Standby Mode "
It is possibie to put MSMB2C51A in ““standby mode"for the com-
plete static configuration of CMOS

it is when the toliowing conditions have been satisfied that

MSMB2CS1A is in “standby mode.”

(1) TS terminal shall be fixed at VCC leve!

(2). Input pins other than T3, Do to D7, RD. WR and C/D shall be
fixed at VCC or GND levei(including SYNDETin external
synchronous mode)

Note: When ail outputs current are low, ICCS specification
applies

Explanation of Each Terminal

Do to D7 (1/0 terminal)

This is a bidirectional data bus which receives control words
and transmits data from the CPU and sendsthe status words
and received data to the CPU.

RESET (inpt terminal)
A "High" on this input forces the MSMB2C51A into “reset.’”

The device waits for the “‘mode instruction ™

The min reset width is six clock inputs

CLK (Input terminal)
CLK signal is used to generate internal device timing

CLK signatis independent of RXC or TXC.

However. the frequency of CLK must be greater than 30 times
the RXC and TXC at Synchronous mode and Asynchronous

" x1" mode. and must be greater than 5 times at Asynchronous
“X16" and ' x 64" mode

WR (input terminal)
This is “active low™ input terminal which receives a signa! for
writing transmit data and control words from CPU into the
MSMB2C51A

RD (tnput terminal)
This is “active low" input terminal which receives a signal for
reading receive data and status words from the MSMB2C51A

€ /D (input terminal)
This is an input terminal which receives a signal for selecting
data or command word and status word when MSM82C51A is
accessed by CPU

11 C/D = iow, data will be accessed

1t C/D = high, command word orstatus word will be accessed

€8 (Input terminal)
This is “active iow' input terminal which selects the
MSMB2CS1A.

Note The device won't be in “standby mode ' only setting 5 =
High. Refer to "Explanation of Standby Mode "

TXD (Output terminal)

This is an output for serial transmit Gata

The device is in "mark state” (high ievel) after resetting or when
transmit is disabled

Itis aiso possible to set the device in the “break state" (low level)

by a command

TXRDY (Output terminal)
This is an output which indicates that the MSMB2C51A is ready
to accept a transmit data character. But the terminal is always

atiow leve! it TS = high or the device was set in “TX disable
status” by a command

Note TXRDY of the status word indicates that transmit data
characteris receivable regardiess of CTS or command.

If the CPU writes a data character. TXRDY will be reset by the
leading edge of the WR signat

TXEMPTY (Output terminal)
This is an output terminal which indicates that the MSM82C51A
transmitted ali the characters and has no data characters to
send

in "synchronous mode,” the terminal is at high level, it transmit

data characters are no longer left (sync characters are auto-
matically transmitted).

H the CPU writes a data character, TXEMPTY will be reset by
the ieading edge of WH signal.

Nole As transmitter is disabled by setting CTS “High™ or com-
mand, data written prior to the transmitter being disabled
wili be sent out, then TXD and TXEMPTY will be “High"
Hf data is written after the transmitter is disabled, that data
is not sent out and TXE will be “High™. Atter re-enabling
the transmitter it will be sent. (Refer to Transmitter Controt
and Flag Timing Chart.)

TXE (input terminal)
This is a clock input signal which determines the transfer speed
of transmit data.

In “synchronous mode, "the baud rate will be the same as the
frequency of TXC.

In “Asynchronous mode," it is possibie to select baud rate factor

by the mode instruction.

ftcan be 1, 1/16, or 1/64 the TXC.

The falling edge of TXC shifts the serial data out of the
MSM82C51A

RXD (Input terminal)
This is a termina! which receives serial data.

RXRDY (Output terminat)

This is a terminat which indicates that MSM82C51A contains a
character that is ready to be read

I CPU reads a data character, RXRDY wiil be reset by the lead-
ing edge of the RD signal

Uniess the CPU reads a data character before the next char-
acter is received completely. the preceding data will be iost. In

such a case, the overrun error flag of the status register will be
set

RXC (Input terminal)
This is a clock input signal which determines the transier speed
of the receiver.

In “synchronous mode,” the baud rate will be the same as the
tfrequency of RXC

in “asynchronous mode." is is possible to select baud rate
factor bymode instruction

it can be 1, 1/16, 1/64 the RXC

SYNDET/BD (input or output terminal)
This is a terminal whose function changes according to the
mode.

In "internal synchronous mode,” this terminalis at high level, it
sync characters are received and synchronized. i status word is
read, the terminal will be reset.

In “external synchronous mode,” this is an input terminal

A High" on this input forces the MSM82C51A to start receiving
data characters.

in "asynchronous mode,” this 1s an output terminal which gen-
erates a’high output upon the detection of a “"break’’ character,
if the receiver data contained "“low-levei" space between stop
bits of two continuous characters. The terminal will be reset, it
RXD s at high level.

DBR (input terminal)
This is an input port for MODEM interfaces. The input status of
the terminal can be read by reading the status register.

BTR (Output terminai)
This is an output port for MODEM interfaces It is possibie to set
the status of DTR by a command

€78 (iInput terminal)
This is an input terminal for MODEM interfaces which is used for
controlling the trangmission. The terminal controls data trans-
mission if the device is set in “TX Enable” status by a command.
Data is transmittabie if the terminal is at low ievel.

RTS (Output terminal)
This is an output port for MODEM interfaces. It is possible 1o set

the status ot RTS by a command

ABSOLUTE MAXIMUM RATINGS

Parameter Symbol L Unit ConditionsMSMB2CS51ARS | MSM82CS1AGS
Power supply voitage vVee 0.5~ +7 v
input voltage VIN 05~ Ve +0.5 v With respect to GND
Output voitege Vout 0.5~ Ve +0.5 v
Storage temperature Tstg -55 ~ 150 °C —
Power dissipstion Pp 09 0.7 w Te = 25°C

OPERATING RANGE
Parameter Symbol Limits Unit

Power supply voltage vee 3~6 v
Operating temperature Top -40 ~ 85 °c

RECOMMENDED OPERATING CONDITIONS
Parameter Symbol Min, Typ. Max. Unit

Power supply voltage Vee 4.5 5 5.5 v

Operating temperature Toe -40 +25 +85 °C

“L" input volitage ViL ~0.3 +0.8 v

"H* input voitage Vin 22 Vee + 0.3 v

DC CHARACTERISTICS (vcc = 45~ 55v Ta = —40°C ~ -85°C)

Parameter Symboi Min. Typ. Max, Unit Measurement Conditions

"Loutput voltage VoL 0.45 v 1oL ~ 2 mA
“H" output voltage VOoH 37 v IoH = 400 uA

Input leakage current i -10 10 BA 0SViNSVee
Output leakage current Lo -t0 10 A 0<Vout SVee

. Asynchronous X64 duringOperating supply current Icco s mA transmiitting/receiving

All input voitage shall bely current
Standoy supely curr 'ccs 100 A fixed at VCc or GND level.

AC CHARACTERISTICS
CPU Bus interface Part

(Vcc = 45 ~ 55V, Ta = —40 ~ 85°C)

Parsmeter Symbol Min Max. Unit Remarks

Address stable before RD tAR 20 NS Note 2
Address hold time tor RD tRA 20 NS Note 2
RD puise width tRR 250 NS
Data detay from RD tRD 200 NS
RD to dsta fiost 10F 10 100 NS
Recovery time between D tRVRA 6 Tey Note 5
Address stable before WR taAw 20 NS Note 2
Address hold time for WR twa 20 NS Note 2
WR pulse width tww 250 NS
Data set-up time for WR oW 150 NS
Data hoid time for WR twD 20 NS
Recovery time between WR tRVW 6 Tey Note 4
RESET puise width TRESW Tey

Serial interface.Part

Parameter Symbol Min. Max. Unit Remarks

Main clock period tey 250 NS Note 3

Clock low time -3 90 NS

Clock high time to 120 ey~90 NS

Clock rise/tall time tR. tF 20 NS

TXD delay from falling edge of TXC 10TX 1 uS

Transmitter clock frequency

|

1X Baud fTx DC 64 Kz

16X, Baud frx DC 615 kHz Note 3

64X, Baud frx DC 615 kHz

Transmitter clock low time

|

1X Baud tTPW 13 Tey

16X, 64X Baud tTPW 2 Tey

Transmitter clock high time

|

1X Baud tTpD 15 Tey

16X, 64X Bsud tTPD 3 Tey

Receiver clock frequency 1X Baud fRX DC 64 k H2

16X Baud fRX DC 615 kHz Note 3

64X Baud fax DC 615 kHz
Receiver clock low time 1X Baud tRPW 13 Tey

16X, 64X Baud tRPW 2 Tey

Receiver clock high ume 1X Baud tRPD 15 Tey

16X, 64X Baud tRPD 3 Tey

Time from the center oflast bit to the rise TXRDY 8 Tey
of TXRDY

Z;";—i;;? the leading edge of WR to the fall 'TXROY CLEAR 400 NS

Time from the center of last bit 10 the rise tRXRDY 26 T
of RXRDY Y

Parameter Symbol Min Max. Unit Remarks

:;n;e;:on;the leading edge of RD to the tall tRXRDY CLEAR 400 NS

;r;!%r:_z SYNDET delay time from rising edge us 2 Tey

SYNDET setup time for RXC tgs 18 Tey
TXE delay time from the center of iast bit ITXEMPTY 20 Tey

:Ad(:eD:'Mw_c:mrol signa! delay time from rising we 8 ch

:g(g)eD:'M‘%mrol signal setup time for failing tcR 20 ch

:);Dss:xup time for rising edge of RXC tRXDS 1 ch
ud)

:))((DB::I:) time for falling edge of RXC tRXDH 17 Tey leve! for output and 1.5 V for input

2) Addresses are CS and C/D.
3) frx or fry < 1/(30 Tey)

fry or frx < (1/5 Tey)

1 x baud
16 x, 64 x Baud

Caution 1) AC characteristics are measured at 150 pF capacity load as an output load based on 0.8V at low level and 2.2 V at high

4) This recovery time is mode initialization only. Recovery time between command writes for Asynchronous Mode is 8 tcy
and tor Synchronous Mode is 18 ey

Write Data is aliowed only when TXRDY = 1
5) This recovery time is Status read only.

Read Data is aliowed only when RXRDY = 1.
6) Status update can have a maximum deiay of 28 clock periods from event aftecting the status

TIMING CHART
System Clock Inpast

19— 19 tcy

CLK b

Transmitter Clock and Data

R
2wasonAN

— Po—lou —'1 le—tDTX

A X

™o

Receiver Clock and Data

(AxBAUD COUNTER STARTS HERE}

 ARY OATA WIT OATABIT

AxC (1 3MO0E)

&2t neamo0€)
1

—~ile- ey k:«cy

INT SAMPLING PULSE =

Write Data Cycle (CPU — USART)

TxRDY / N

tTxROY CLEAR

___]
WR

twD

 tow
1T .

DA(TD‘;‘:‘) DON'T CARE ‘h DATA STABLE DON'T CARE

— taw twa
c/d

 s T\"w WA

Read Data Cycie (CPU « USART)

RxADY

tRXADY CLEAR

A5 !
— }c—!ao --tDF

DATA FLOAToaTaouT DATA OUT ACTIVE p—DATAFLOAT

_ tAR tRA|
¢/

 = taR tRA /-_—

10

Write Control or Output Port Cycle (CPU — USART)

DTRRTS

X
—]

tww

DATA IN
(DB)

DON'T CARE

WD
 j——tow

(_§_—___ N'T CA
% DATA STABLE Do CARE

1AW WA

c/d / N

taw twA

———‘_j___.

Read Control or input Port (CPU — USART)

DSR.CTs

te————1CR

AD

— DF

DAT(AD?\BJ} DATA FLOAT A DATA OUT ACTIVE DATA FLOAT

—-.[1AR j— —| tRA '-—

¢/ /! T\

—» AR [*—— ~—{ tRA

Transmitter Control and Flag Timing (ASYNC Mode)

€S

_ TTXEMPTY

TxRDY
ISTATUS BIT)

TxROY
PIN}

{Nose) The wave-form chart 13 based on the case of 7 br1 dets length + parity det + 2 stop bit

Wr DATA 1 Wr DATA 2

DATA CHAR

TxEMPTY

b

Wr DATA 3 Wr DATA 4

DATA CHAR 2 DATA CHAR 3 -
DATA CHAR G

S
T
A
R
T
B
T

S
T
O
P

BI
T

11

Receiver Control and Flag Timing (ASYNC Mode)

SREAK DETECT

FRAMING ERROR
ISTAYUS BiTt

OVERRUN ERROR
STATUS BIT)

AROY

cb

L]

b

RuDATA

CmaAR 2 CHAR Y OREAK AsEn Err Ay

D
A
T
A

O
I
T

P
A
M
I
T
Y
Y

s
T
O
P
B
I
T

S
T
A
R
T
M
Y

am) TheeSarm chort & Gustd on the cose of 7o It ngrh ¢ persty (91 ¢ 2eBt

Transmitter Control and Flag Timing (SYNC Mode)

T

TeEMPTY

TaADY
STATUS 1)

TaRODY
LT

cd

a a
CHAR Y CHAR 2

TA
MARKING STATE)

$N0t) The miwe-form chart & B8sad O the Cae Of 5 GBTA Dt HengEh + Parity Bit Bnd 7 SyncheORGUs Charsciors

Receiver Control and Flag Timing (SYNC Mode)

SYNDET
PN INote ¥)

SYNDET iSD)

QVERRUN
ERAORA (S8}

ARDY WIN)

co

DATA SYNC
CHAR) 1

CHAR ASSY BEGINS CHAR

JUU'IE nréqfi'r“"'s
4 £xi7 wunT MoDE

SETSYNCDET

AT
DON'T CARE e

» ' o

EXIT MUNT MODE SETSYNDET ISTATUS 8151
SETSYNDET (BTATUS BiT)

(NOSe 1) 1AMAS! 1y ACRIONL201:00 4 DISAT ON The COM OF 5 CILE b1 HAQID + Parity il St 2 syACROROUS ChraCIoTS

(NOIE 1) ERtecnsl syACh/ONanon 1 8800 0N the Cose Of § BBia Dr1 length » peesty el

12

PACKAGE SPECIFICATIONS

MSMB82C51ARS

28 LEAD PLASTIC DIP

(UNIT: mm)

38.0 MAX

28
15OO Oa1

14.2 MAX

LU OO OO OO T ST T TT
1

14

1 PIN INDEX MARK AREA

1524 - 030

06- —-
MAX

13

PACKAGE SPECIFICATIONS cont'd

MSMB2C51AGSK
32 LEAD PLASTIC FLAT PACKAGE

(UNIT: mm)

055 = 0.10

|

Rl. szmmchoooy ¥ oy |
I] \% 0° ~ 10°

OKI SEMICONDUCTOR, INC. 650 N. MARY AVENUE, SUNNYVALE, CA 94086

TELEPHONE: (408) 720-1900 TELEX (25) 910-3380508

OKI Semiconductor reserves the right to make changes in specifications at any time and without notice. The information furnished by OK! Semi-

conductor in this publication is believed to be accurate and reliable. However. no responsibility is assumed by OKI Semiconductor for its use; nor for
any intringements of patents or other rights of third parties resuiting from its use. No license is granted under any patents or patent rights of OKI.

<1984 OKi SEMICONDUCTOR 14 PRINTEDINUSA

T

Hitachi HD61102A LCD Column Driver Data Sheet

HD61102 (DOT MATRIX LIQUID CRYSTAL
GRAPHIC DISPLAY COMMON DRIVER)

HD61102 is a column (segment) driver for

dot matrix liquid crystal graphic display

systems. It stores the display data

transferred from a 8~bit micro-computer

in the internal display RAM and generates

dot matrix liquid crystal driving

signals.

Each bit data of display RAM corres- (FP-100)
ponds to ON/OFF of each dot of liquid

crystal display to provide more

flexible display.

B PIN ARRANGEMENT

As it is internally equipped with 64

output drivers for display, it is

 35 feloloryn v BE83EE
IR IRIEE] 2 EIEEER available for liquid crystal graphic

‘“‘-:C 1081. .

L} oBo
display with many dots. vee oo

VIR (7]

vint 0. . . yinL FvicThe HD61102, which is produced in the Ve [vees
Vn

V;CMOS process, can accomplish a portable s:{ B
sy 2] Yybattery drive equipment by combining . ‘:’;, v
? [Tv,a CMOS micro-computer, utilizing the - My &y

Yaef (DYliquid crystal display's lower power yog e
yal] [0v,,dissipation. vl B
\en) v1
Yar[u] [33) YesYou[T)

vy. .q . Yos[n] eMoreover it can facilitate dot matrix vz [sax] 1] vse
liquid crystal graphic display system oTTeLRIXyrrX rr s Rryconfiguration by combining the row

(common) driver HD61103A. (Top view)

HITACHI 183

HD61102

W FEATURES

® Dot matrix liquid crystal graphic display column driver incorporating

display RAM.

® RAM data direct display by internal display RAM

RAM bit data "1"cce.. ON

RAM bit data "0" OFF

e Internal display RAM address counter

preset, increment

e Display RAM capacity .eeeesvea. 512 bytes (4096 bits)

e B8-bit parallel interface

e Internal liquid crystal display driver circuit 64

e Display duty

Combination of frame control signal and data latch synchronization

signal make it possible to select out of static through an optional

duty.

e Wide range of instruction function

Display Data Read/Write, Display ON/OFF,

Set address, Set Display Start line,

Read Status '

 e Lower power dissipation during display 2mW max

 e Power supply Vec -+5V = 107

VEE 0oV ~ ~10V

e Lliquid crystal display driving level—15.5V max

e CMOS process

e 100 - pin flat plastic package (FP-100)

184 HITACHI

B ABSOLUTE MAXIMUM RATINGS
HD61102

Item Symbol Value Unit Note
Vee =0.3 ~ +7.0 v 2

Supply voltage VEE Vee =16.5 ~ Voo +0.3 3
Terminal voltage (1) v VEE -0.3 ~ Vge +0.3 v 4
Terminal voltage (2) V12 =0.3 ~ vee +0.3 v 2,5
Operating temperature

|

Topr =20 v +75 °c
Storage temperature Tstg =55 n +125 °C

(Note 1) 1LSI's may be destroyed for ever, if being used beyond the absolute

(Note 2)

(Note 3)

(Note 4)

(Note 5)

maximum ratings.

In ordinary operation, it is desirable to use them observing the
recommended operation conditions.

Using beyond these conditions may cause malfunction and poor
reliability.

All voltage values are referred to GND=OV.

Apply the same supply voltage to VEp 1 and VEE2.

Applies to VIL, V2L, V3L, V4L, VIR, V2R, V3R and V4R.

Maintain

Vee2VIL=VIR2V3L=V3R2V4L=V4R2V2L=V2R2VEE

Applies to M, FRM, CL, RST, ADC, ¢1, ¢2, CSI, CS2, sz, E, R/W,
D/I, ADC and DBONT,

HITACHI 185

HD61102

B ELECTRICAL CHARACTERISTICS
(GND=0V, VCC=4.5 ~ 5.5V, VEE=0~-10V, Ta=-20~+75°C)

.. Limit .
Item Symbol Test condition P~ typ max Unit |1

Vv -
Input "Bigh" Voltage IHC D.7xVece Vece v

VinT 2.0 - Vee v

Input "Low" voltage ViLe 0 - 10.3xVee| V
Viir o ~-{o08 |V

Output "High" voltage Voy I0H=-205pA 2.4 - - v

Output "Low'" voltage VoL I0L=1.6mA - - 10.4 v

Input leakage current IIL Vin=GNDVcc -1.0 - [+1.0 uA

Three state (OFF) 1 . _ _
input current TSL Vin=GNDVvVec 5.0 +5.0 uA

Liquid crystal supply 1 . _ _ an .
leakage current LSL Vin=VEEVVcc 2.0 +2,0 HA

: : R Vce-VEE=15V _ _ -
Driver ON resistance ON :ILOAD‘O-lmA 7.5 K?)

Icc(1) During display - - 100 HA.

Durin acces
Dissipation current Tee(2) € cycle - - 500 BA

access oo

(Note 1) Applies to M, FRM, CL, RST, ADC, ADC, ¢1 and ¢2.

(Note 2) Applies to CS1, CS2, CS3, E, R/W, D/I and DBO ~ 7.

(Note 3) Applies to DBO ™~ 7.

(Note 4) Applies to terminals except for DBO ~ 7.

(Note 5) Applies to DBO ~ 7 at high impedance.

(Note 6) Applies to VIL ~ V4L and VIR ~ V4R.

(Note 7) Applies to Y1 n Y64.

(Note B) Specified when liquid crystal display is in 1/64 duty.

Operation frequency fpyy=250 kHz (¢1 and 42 frequency)

Frame frequency fy =70 Hz (FRM frequency)

Specified in the state of

Output terminal ----- not loaded

Input level =====—---- Vig=Vec (V)

VI=GND (V)

Measured at Vcc terminal

186 HITACHI

©® INTERFACE AC CHARACTERISTICS

(1) MPU Interface

(GND=0V, Vecc=4.5 v 5.5V, VEE'O A =10V, Ta==20 ~ +75°C)

HD61102

Item Symbol min typ max Unit Note

E cycle time teve 1000 - - ns 1, 2

E high level width PWEH 450 - - ns 1, 2

E low level width Pwr-;L 450 - - ns 1, 2

E rise time tr - - 25 ns 1, 2

E fall time tf - - 25 ns 1, 2

Address setup time tAS 140 - - ns 1, 2

Address hold time tan 10 - - ns 1, 2

Data setup time tDsw 200 - - ns 1

Data delay time topR - - 320 ns 2, 3

Data hold time (Write) o 10 - - ns 1

Data hold time (Read) thHER 20 - - ns 2

(Note 1) (Note 2)

feye

E E EPWEL—- PYER —
-t b

W R/ 02,':: tys €l

oCas .l A
S1~ 3 csiv3 2 °V7 | LE
/1 D/1 0.8v/\ ;

Ty,

Fig. 1 CPU Write Timing Fig. 2 CPU Read Timing

(Note 3) DBO ~ 7 : load circuit

? RL=2.4K2

Test D fRL R =11KQ i

point C:‘-' éR ig% C =130pF (including jig capacity)
. .

il ”f? /471)4 Diodes D1 to D4 are all 152074(.

2 samEm A Fus e e A

HD511D2

(2) Clock Timing

(GRD=0V, Vee=4.5 ™ 5.5V, VEg=0 ~ -10V, Ta=20 n +75°C)

Test Limit .
Item Symbol condition min typ max Unit

$1, ¢2 cycle time teyce Fig. 3 2.5 - 20 us

$1 "Low" level width tuLel Fig. 3 625 - - ns

$2 “Low™ level width tWLd2 Fig. 3 625 - - ns

$1 "High" level width tWHS 1 Fig. 3 1875 - - ns

$2 "High" level width tWHo2 Fig. 3 1875 - - ns

$1-¢2 phase difference tD12 Fig. 3 625 - - ns

$2-¢1 phase differemce

|

tp21 Fig. 3 625 - - ns
¢1l, ¢2 rise time tr Fig. 3 - - 150 ns

¢1, ¢2 fall time tf Fig. 3 - - 150 ns

Teye .
tf Lt tWHe 1

o1 0.7Vce /)
0.3Vee

 tp21

$2

 TWLe2
Fig. 3 External Clock Waveform

188 HITACH!

(3) Display Control Timing

(GND=0V, Vee=4.5 ™ 5.5V, VEg=0 =10V, Ta==20 ~ +75°C)

HD61102

Item Symbol Egzgition min Li:;; max Unit

FRM delay time tDFRM Fig. 4 -2 - +2 us

M delay time tDM Fig. 4 -2 - +2 us

CL “Low'" level width SoLeL Fig. 4 35 - - us

CL "High" level width tWHCL Fig. 4 35 - - us

 Y
0.7Vece

0.3Vce

Fig. 4 Display Control Signal Waveform

HITACHI1 189

190 HITACHI

™+

I
n
t
e
r
f
a
c
e

c
o
n
t
r
o
l

ADC

Vee

GND —4—

VEE]l ———

VEE2——

?
r
*
-
X
Y

a
d
d
r
e
s
s

c
o
u
n
t
e
r

{
9

V
i
L

V
2
L

V
3
L

V
4
L

register

C
S
1
,
€
5
7
,
¢
c
s
3

R
/
W

b
/
1 E

D
B
O
v

D
B
7
w
s
l
a
—

b
y

-

 1/0 buffer

-
>

4

-

Instruction

Input

o~
o

4

o~

D
i
s
p
l
a
y

d
a
t
a

R
A
M

7
-
]

o™
D

4

™

register

@

g
B

]
TS

=3

Z
a
d
d
r
e
s
s

c
o
u
n
t
e
r

Output

o
)

Liquid crystal dis-

playdriver circuit

register

6
4

6
[
D
i
s
p
l
a
y

s
t
a
r
t

™
O
P

4

Nl
O IO

fi f { I 1 ! i T | '] i
—

4
0
9
6

b
i
t

| i |] |] | | I ! ! |

~|~|n[Display data latch SIBI3

l
i
n
e

r
e
g
i
s
t
e
r

D

=
©
>

4

=
O

A

]

D
i
s
p
l
a
y

O
N
/
O
F
F

V
I
R

V
2
R

V
3
R

V
4
R

-2

 R
-——¢]

 CLFRM

B BLOCK DIAGRAM

 HDE1102

 r HD61102

8 TERMINAL FUNCTIONS

Terminal |Number of 1/0 Connected Functions

name [terminals to

VCC 2 Power Power supply for intermal logic.

CND supply Recommended voltage is

GND = OV

Vee = +5V = 102

Vgg 1 2 Power Power supply for liquid crystal display

VEE 2 supply drive circuit.

Recommended power supply voltage is

Vcc - 15 to GND. Connect the same power

supply to Vggy and Vgg,.

VEE] and Vgp, are not connected each other

in the LSI.

viL, VIR 8 Power Power supply for liquid crystal display

i vt
V4L, V4R Apply the voltage specified depending on

liquid crystals within the limit of

Vgg through Vgc.

V1L(V1R), V2L(V2R)---Selection level

V3L(V3R),V4L (V4R)==-=--Non-selection level

Power supplies connected with V1L and VIR

(V2L & V2R, V3L & V3R, V4L & V4R) should

have the same voltages.

cST 3 1 |MPU Chip selection.

ggg Data can be input or output when the

terminals are in the next conditions.

% i Terminal name CS1 CS2 ' CS3!

!i Condition o e

E 1 I |MPU | Enable
! At write(R/W=L) : Data of DBO to L7

: latched at the & T EL

! é At read (R/W=H) : Data appears at DBU to

; : DB7 while E is in "High"

; | f i level.

HITACHI 191

HD61102

name

Terminal Number of

terminals
1/0

Connected

to
Functions

R/W 1 MPU Read /Write

R/W=H : Data appears at DBO to DB7 and

can be read by the CPU

When E=H, CS1, CS2=L and CS3=H.

: DBO to DB7 can accept at fall of

E when CS51, CS2=L and CS3=H.

R/W=L

D/1 MPU Data/Instruction

D/I=H : Indicates that the data of DBO

to DB7 is display data.

D/I=L : Indicates that the data of DBO

to DB7 is display control data.

Vcc/GND Adress control signal determine the relation

between Y address of display RAM and

terminals from which the data is output.

ADC=H : Y1-$0, Yb64-$63

ADC=L : Y64-%0, Y1-$63

DBODB7 1/0 MPU Data bus, three-state I1/0 common terminal

M HD61103A Switch signal to convert liquid crystal

drive waveform into AC.

FRM HD61103A Display synchronous signal (frame signal)

This signal presets the 6-bit display line

cbuntet and synchronizes a common signal

with the frame timing when the -7l signal

becomes high.

CL HD61103A Syncronous signal to latch dispiay cata.

The CL signal indicates to count up the

display output adress counter and latch the

display data at rising.

01,92 HD611034A 2-phase clock signal for internal operation.

The ¢1 and ¢2 clocks are used to perform the

operations (I/0 of display data and

execution of instructions) other than

display.

192 HITACHI

Terminal Numb?r of 1/0 Connected Functions
name |terminals to

YINY64 64 0 |[Liquid Liquid crystal display column (segment)
criptal .
display drive output.

These pins outputs light ON level when "1"

is in the display RAM, and light OFF level

with "0" in it.

Relation among output level, M and display

data (D) is as follows.

Lol
D 1]o0J110

Output I V1 l V3 I V2 I V4 l

level

RST 1 I |CPU or The following registers can be initialized

external by setting the RST signal to "Low'" level.

CR (1) ON/OFF register O set (display OFF)

(2) Display start line register (O line

set (displays from 0O line)

After releasing reset, this condition can

be changed only by the instruction.

Y 1 O Open Output terminal for test. Usually, don't

connect any lines to this terminal.

NC 2 Open Unused.terminals. Don't connect any lines

to these terminals.

(Note) "1" corresponds to "High level' in positive logic.

LAIVA FoRER 1A

HD61102

HD61102

B FUNCTION OF EACH BLOCK

® Interface Control

(1) 1/0 buffer

Data is transferred through 8 data buses (DBO ~ DB7).

DB7 MSB (Most Significant Bit)

DBO LSB (Least Significant Bit)

Data can neither be input nor output unless €CS1 to CS3 are in the

active mode. Therefore, when CS51 to CS3 are not in active mode it i

useless to switch the signals of input terminals except RSTand ADC,

namely, the internal state is maintained and no instruction excute.

Besides, pay attention to RST and ADC which operate irrespectively b

CS1 to CS3.

(2) Register -

Both input register and output register are provided to interface

MPU of which the speed is different from that of internal operation.

The selection of these registers depend on the combination of R/I an

D/I signals.

Table 1. Register Selection

D/I R/W . Operation

1 1 Reads data out bf'output register as internal operu:i..n

(display data RAM + output register)

1 0 Writes data into input register as internal operation

(input register -+ display data RAM)

0 1 Busy check. Read of status data.

0 0 Instruction
@ Input register

Input register is used to store data temporarily before writing it intc

display data RAM.

The data from MPU is written into input register, then into display ¢

RAM automatically by internal operation.

194 HITACHI

 HD61102

When CS1 to CS3 are in the active mode and D/I and R/W select the input
register as shown in Table 1, data is latched at the fall of E signal.

Output register

Output register is used to store data temporarily which is read from
display data RAM. To read out the data from output register, CS1 to CS3

should be in the active mode and both D/I and R/W should be 1. With READ
instruction, data stored in the output register is output while E is "RH"
level. Then, at the fall of E, the display data at the indicated address

is latched into the output register and the address is increased by 1.
The contents in the output register is rewritten with READ instruction,
while is held with address set instruction, etc.

Therefore, the data of the specified address can not be output with READ
instruction soon after the address is set, but can be output at the second

read of data. That is to say, one dummy read is necessary. Fig. 5 shows

the CPU read timing.

D/1 fi m

R/W l I

ML

LL

e

Address { N | N+ [N+2
0 t
r:;linsjter iData at address N | Data at address oi-i
DBOA 7 | Busy |Write Busy Read Busy Read Busy [Data read
B | check

|

address| check data ° check |data at{ check |address
N dummy) address N+1

N

Fig. 5 CPU Read Timing

HITACHI 195

HD61102

& Busy Flag

"1" of busy flag indicates that HD61102 is on the move and any instruction:
except Status Read instruction can not be accepted. The value of the busy

flag is read out on DB7 by the Status Read instruction. Make sure that the
busy flag is reset ("0") before the issue of instruction.

 Busy |

fla
8 L— T Busy —HI

1/fcLRST Busys3/fcrg

fCLK is ¢1, 92 frequency

e Display ON/OFF Flip Flop

Display ON/OFF flip flop selects one of two states, ON state and OFF state

of segments Y1 to Y64. 1In'ON state, the display data corresponding to that

in RAM is output to the segments. On the other hand, the displav data at

all segments disappear in OFF state independent of the data in RAM.

It is controlled by display ON/OFF instruction. '0' of RETcf~=21 cots the

segments in OFF state. The status of the flip flop is output to DB5 by

Status Read instruction. Display ON/OFF instruction does not influence date

in RAM. To control display data latch by this flip flop, CL signal (display

synchronous signal)- should be input correctly.

e Display Start Line Register

The register specifies a line in RAM which corresponds to the top line of

LCD panel, when displaying contents in display data RAM on the LCD panel.

It is used for scrolling of the screen.

6-bit display start line information is written into this register by displa

start line set instruction, with 'H' level of FRM signal instructing to st

the display, the information in this register is transferred to Z address

counter which controls the display address, and the Z address counter is

preset.

196 HITACHI

 HD61102

o X, Y AddressCounter

This is a 9-bit counter which designates addresses of internal display data

RAM. X address counter of upper 3 bits and Y address counter of lower 6 bits

should be set each address by respective instruction.

(1) X address counter

Ordinary register with no count functions. An address is set in by

instructions.

(2) Y address counter

An address is set in by instruction and it is increased by 1 automatically

by R/W operations of display data. The Y address counter loops the

values of 0 to 63 to count.

o Display Data RAM

Dot data for display is stored in this RAM. 1-bit data of this RAM

corresponds to light ON (data=1) and light OFF (data=0) of 1 dot in the

display panel. The correspondence between Y addresses of RAM and segment

PINs can be reversed by ADC signal.

As ADC signal controls Y address counter, a reverse of the signal during

the operation causes malfunction and destruction of the contents of register

and data of RAM. Therefore, never fail to connect ADC pin to Voe or GND

when using.

Fig. 6 shows the relations between Y address of RAM and segment pins in the

cases of ADC=1 and ADC=0. (display start line=0, 1/64 duty).

HITACK107

HD61102

LCD

display pattern

Line 0 —— -

Line 1-——

Line 2-——

X=0

Display

RAM data

X=1

X=7

Line 62 —-—-

Line 63 ——

coM1 (HD61103A X)
coM2 (HD61103A X:

— coM3 (HD61103A X!
— COM4 (HD61103A X!
— COM5 (HD61103A X!
— COM6 (HD61103A X¢

coM? (HD61103A X:
—— coMs (HD61103A X¢
L— coM9 (HD61103A X¢

~—— 1T 11— comMe2 (HD61103A,
—— com63 (HD61103A X®
—— coMes (HD61103A X¢

62| Yl63!ves 4—!1-11)61102 PIN NAME

0;i}1]1]|0]0O 0l0]|1 DEO (LSB)
1/o0j0j0]1!0 0011 DBl
1/o{0]0|1](0 0io|1 DB2
1{0i0{0]1{0 1(0]1 DB3
1/1(1]1]1]0 0|11 DB4
1{0/ofof1]0 0]0]1 L35
1j0l0]0f1]0 001 DB6
0[(oi0oiofo]o 0100 ' DB7 (MSB)
0{ojojojo]o 0fo|o I

§§§§§=

6162 63

=<— RAM Y Address
—_————

(a) ADC="1" (Connected to Vcc)

Fig. 6 Relation between RAM Data and Display

198 HITACHI

 HD61102

CoM1

coMm2
COM3

COM4

coM5

COM6

coM7

coM8

COoM9

LCD

display pattern

(HD61103A X1)
(HD61103A X2)
(HD61103A X3)

(HD61103A X4)

(HD61103A X5)
(HD61103A X6)

(HD61103A X7)

(HD61103A X8)
(HD61103A X9)

- =

LI——coM62 (D61103A X62)
_____ f—— COM63 (HD61103A X63)
e COM64 (HD61103A X64)

Y
i , eo: 29 Y3Y2)Y1 HD61102 PIN NiT

Line 0---1-0{1/1/1]010] 0/0/0]1 DBO (LSB)
Line 1-- 1j0:i0j0|1j0|-0l0j0]1 DB
Line 2—— 1i0j0jof1j/0f110(0]1 DB2

X 1jojojolljo}0l1]0]1 DT
l1i1j12{1jo} ___ _0j0[1!1 DE-

Display 1/0j0joj1;0] ___0l0|0]1 i
RAM data 1{oj0jol1][o] ___0j0joO]|l DB~

oiolojojojo; ____ 10/0j0{0 ¢—-- "I7 (SB)
j ojo[ojojojO]olojolo I

X=1
*~~__“J/”/ i e

{ f
I 11

X=7

Line 62-==t{1011i1 11001
Line 63—

5 ——
012345 616263 <+ RAM Y Address |

(b) ADC="0" (Connected to GND)

Fig. 6 Relation Between RAM Data and Display

HITACHI 199

HD61102

¢ Z Address Counter

The Z address counter generates addresses for outputting the display data

synchronized with the common signal. This counter consists of 6-bit and

counts up at the fall of CL signal. With "H" level of FRM, the contents of

the display start line register is preset at the Z counter.

e Display data Latch

The display data latch stores the display data temporarily which is output

from display data RAM to liquid crystal driving circuit.

Data is latched at the rise of CL signal. Display ON/OFF instruction

controls the data in this latch and does not influence data in display data

RAM.

e Liquid Crystal Display Driver Circuit

The combination of latched display data and M signal causes one of the 4

liquid crystal driver levels, V1, V2, V3 and V4 to be output.

e Reset

The system can be initialized by setting R5T terminal at "Low" level when

turning power ON.

1) Display-OFF

2) Set display start line register 0 line.

While RST is in Low level, any. instruction except Status Read cannot be

accepted. Therefore, Carry out other instructions after making sure that

DB4=0 (clear RESET) and DB7=0 (Ready) by Status Read instruction.

The conditions of Power Supply at initial power up are as follows.

Item Symbo1 Min. Typ Max. Unit

Reset time tesT 1.0 - - us

Rise time ty - - 200 ns
Do not fail to set the system again because

RESET during operation may destroy the data

in all the register except ON/OFF register

and in RAM.

 200 HITACHI

 HD61102

B DISPLAY CONTROL INSTRUCTIONS

® Qutline

Table 2 shows the instructions. Read/Write (R/W) signal, Data/Instruction

(D/1) signal and Data bus signal (DBO to DB7) are also called instructions

because the internal operation depends on the signals from MPU.

These explanations are detailed from the following page. Generally, there

are following three kinds of instructions.

(1) Instruction to give addresses in the internal RAM

(2) Instruction to transfer data from/to the internal RAM

(3) Other instructions

In general use, the instruction (2) are used most frequently. But, since Y

address of the internal RAM is increased by 1 automatically after writing

(reading) data, the program can be lessened. During the execution of an

instruction, the system camnot accept other instructions than Status Read

instruction. Send instructions from MPU after making sure if the busy

flag is "0", which is the proof an instruction is not being excuted.

HITACHI 201

202 HITACHI

T
a
b
l
e

2.
I
n
s
t
r
u
c
t
i
o
n
s

HD61102

 1
D
i
s
p
l
a
y

O
N
/
O
F
F

I
n
s
t
r
u
c
t
i
o
n
s

C
o
d
e

R
/
W

D
/
1

D
B
7

D
B
6

D
B
5

D
B
4
|
D
B
3

DB
2|

DB
1]

|
D
B
O

F
u
n
c
t
i
o
n
s

1
/
0

C
o
n
t
r
o
l
s

th
e

O
N
J
O
¥
F

o
f

d
i
s
p
l
a
y
.

R
A
M

d
a
t
a

a
n
d

i
n
t
e
r
n
a
l

s
t
a
t
u
s

a
r
e

n
o
t

a
f
f
e
c
t
e
d
.

1
:
0
N
,

0
:
0
F
F
.

2
D
i
s
p
l
a
y

s
t
a
r
t

1
i
n
e

1
[d

is
pl

ay
s
t
a
r
t

l
i
n
e

(
0
v
6
3
)

S
p
e
c
i
f
i
e
s

a
R
A
M

l
i
n
e

d
i
s
p
l
a
y
e
d

a
t

t
h
e

t
o
p

o
f

t
h
e

S
c
r
e
e
n
.

3
S
e
t

p
a
g
e

(
X

a
d
d
r
e
s
s
)

P
a
g
e

(
0
v
7
)

S
e
t
s

t
h
e

p
a
g
e

(X
a
d
d
r
e
s
s
)

o
f

R
A
M

at
t
h
e

p
a
g
e

(X
a
d
d
r
e
s
s
)

r
e
g
i
s
t
e
r
.

4
S
c
t

Y
a
d
d
r
e
s
s

(0
v6
3)

S
e
t
s

t
h
e

Y
a
d
d
r
e
s
s

a
t

t
h
e

Y
a
d
d
r
e
s
s

c
o
u
n
t
e
r

5
S
t
a
t
u
s

R
e
a
d

© 3w >

 ‘

o
o
l

o

R
E
S
E
T

0
O
:
n
o
r
m
a
l

R
e
a
d
s

t
h
e

s
t
a
t
u
s
.

1

O
N
/
O
F
F

1]

:
r
e
s
e
t

:
d
i
s
p
l
a
y

O
F
F

O
:
d
i
s
p
l
a
y

O
N

:
o
n

t
h
e

i
n
t
e
r
n
a
l

o
p
e
r
a
t
i
o
n

0
:

R
e
a
d
y

B
u
s
y

6
W
r
i
t
e

d
i
s
p
l
a
y

d
a
t
a

7
R
e
a
d

d
i
s
p
l
a
y

d
a
t
a

.

W
r
i
t
e
s

d
a
t
a

D
B
O

(
L
S
B
)

t
o

D
B
7

(
M
S
B
)
|
H
a
s

a
c
c
e
s
s

t
o

t
h
e

o
n

th
e

d
a
t
a

b
u
s

i
n
t
o

d
i
s
p
l
a
y

R
A
M
.

{a
dd

re
ss

o
f

t
h
e

d
i
s
p
l
a
y

 1)

/
g

R
e
a
d

D
a
t
a

R
A
M

s
p
e
c
i
f
i
e
d

i
n

A
f
t
e
r

t
h
e

R
e
a
d
s

d
a
t
a

D
B
O

(L
SB
)

to
D
B
7

(M
SB
)

f
r
o
m

t
h
e

d
i
s
p
l
a
y

R
A
M

to
t
h
e

a
d
v
a
n
c
e
.

d
a
t
a

b
u
s

a
c
c
e
s
s
,

Y
a
d
d
r
e
s
s

i
s

i
n
c
r
e
a
s
e
d

b
y

1.

B
u
s
y

t
i
m
e

v
a
r
i
e
s

w
i
t
h

t
h
e

f
r
e
q
u
e
n
c
y

(
r
C
L
K
)

o
f
1
,

a
n
d

4
2
,

Tg
us
y

+
3/
T¢
ry
)

HD61102

o Detailed Explanation

(1) Display ON/OFF

R/W D/1 DB) ~.____ DBO

Code I 0 0 0 0 1 1 1 .]- 1 1 D

= high-order-bit low-order-bit —

The display data appears when D is 1 and disappears when D is O.

Though the data is not on the screen with D=0, it remains in the

display data RAM. Therefore, you can make it appear by changing

D=0 into D=1.

(2) Display start line

R/W D/I DB7~—_ DBO

Code 0 0 1 1 A A A A A A

= high-order-bit low-order-bit —=

Z address AAAAAA (binary) of the display data RAM is set at the iisplay

start line register and displayed at the top of the screen.

Fig. 7 are the examples of display (1/64 duty) when the start line=0 n 3.

When the display duty is 1/64 or more (ex. 1/32, 1/24 etc.,, tne data

of total line number of LCD screen, from the line specified by display

start line instruction, is displayed.

HITACH!1203

HD61102

CoM60

coM61

COM62

COM63

COM64

204 HITACHI

Start line=0

Start line=2

COM1

CcoM2

COM3

CoM4

CoM5
COM6

coM?

CoM8

CoM9

COM60

COM61

COM62

coM63

COMé64

CcoM60

COM61

COM62

COM63

CoMb4

Start line=3

Fig. 7 Relation Between Start Line and Display

 HD61102

(3) Set page (X address)

R/M__D/I DB7

—

 ~——— DR

Code 0 0 1 0 1 1 1 A A A

“*— high-order-bit low-order-bit —

X address AAA (binary) of the display data RAM is set at the X address

register. After that, writing or reading to or from MPU is executed in

this specified page until the next page is set.

(4) Set Y address

RW_D/T DB7

—

~—1RO

Code 0 0 0 1 A A A-{ A A A

<« high-order-bit low-order-bit —

Y address AAAAAA (binary) of the display data RAM is set at the Y

address counter. After that, Y address counter is increased by 1

every time the data is written or read to or from MPU.

Y address

012 -~61 62 63

DBO

@ Page 0 X=290
DB7

DBO

e Page 1 X=1
DB?7

/_—_/

DBO }
e Page 6 X =6

DB7

DBO l
e Page 7 ! X =7

DB7 j

Fig. 8 Address Configuration of Display Data RAM

HITACHI 205

HD61102

(5) Status Read

RW D/I DB ~—DBO

code

|

1

|

o [eusy| o |%% freser| o] of o] oOFF

«+— high-order-bit low-order-bit —»

BUSY: When BUSY is 1, the LSI is in internal operation. No instructions

are accepted while BUSY is 1, so you should make sure that BUSY

is O before writing the next instruction.

ON/OFF: This bit shows the liquid crystal display conditions - ON

condition or OFF condition.

When ON/OFF is 1, the display is in OFF condition.

When ON/OFF is O, the display is in ON condition.

RESET: RESET=1 shows that the system is being initialized. In this

condition, any instructions except Status Read instruction cannot

be accepted.

RESET=0 shows that initializing has finished and the svstem is in

the usual operation.

(6) Write Display Data

R/W D/I DB?

—

S~ R0

Code 0 1 D D D D D D r o

L
«— high-order-bit low-order-bit —*

Writes 8-bit data DDDDDDDD (binary) into the display data RAM. Ticn

Y address is increased by 1 automatically.

(7) Read Display Data

R/W D/T DB7N~DBO

Code 1 1 D D D D D D D D

< high-order-bit low=order-bit -

206 HITACHI

 HD61102

Read our B-bit data DDDDDDDD (binary) from the display data RAM. Then

Y address is increased by 1 automatically.

One dummy read is necessary soon after the address setting. For details,
refer to the explanation of output register in "FUNCTION OF EACH BLOCK".

HITACHI 207

HD61102

B THE USAGE OF HD61102

e Interface with HD61103A (1/64 duty)

Rf g'f_]

R CR C

Vece>»——Vce X1 COM1

v1>———VIiL,VIR
v6>———V6L,V6R LCD Panel

V5 >————]VSL,V5R S g

v2>—V21,v2R 64 x 64 dots
VEE>——— VEE X64 coMé64 3

E—————GND 2 =2
U o

4

Vee HD61103A

SHL DL—Open /\—/

—{DS1 DR}—Open

DS2
¢+—{ TH Y1 -7N\~ Y64

{cL1 M M
FS CL2 CL
M/S FRM FRM Vee b——<Vee

FCS 61 1 HD61102 VIL,VIR b—<v1
STB $2 $2 V2L,V2R }——<V2

J, V3L,V3R |}—<vV3

V4L, V4R F——V4

Power supply circuit
Vee>—— ADC

GND

VEE1l,VEE2}+—~<VEE

-

—
|
C
3
1

.
_
_
_
,
(
—
:
S
"
z

—
|
C
S
3

—
=
{
R
/
W

—
—
+
{
D
/
1

—
_
—

E

—
—
i
D
B
O

~
—
1
D
B
1

—
»
1
D
B
2

»
D
B
3

—
=
{
D
B
4

—
»
{
D
B
5

-
—
»
|
D
B
6

External CR

CPU

—
-
—
—
—
—
—
e

e
e
e

—
—
—
—
—
)

o ‘R3=15.’:
< Contrast-

-10V

208 HITACHI

*=
|h
B7

HD61102

CL

FRM

$1

Input

|
|
|
|
|
|
|
|
|
|
|
|
|
|
=

-
-

]
-
]

!
'

'
'

1
'

1
'

'
'

1
'

!
a
l

'
'

1
)

'
g

'
.

'
T
,

<
t

o
.

'
'

>,
>

W
w
y

]
—
_
-
N
—
—
y

—
_
—

-
~

=
2

~
w
n

=
o

S
s

l
l
l
l
l

—
i
-
—

—
2

7
—
—
f
—
—
_
—
_
—
_
—
—
—
_
—

_
—

°
.

'
'

'
'

!
&

1
'

1
4

o
V|

B
'

'
'

'
“

@
]

@
)

'
1

'
)

°
_
fi

'
)

'
1

)
._b

-
©

S
o

>
™

=
-
—
—
=
—
—

—
_
—
-

Q
-
-

o
~

D
>

=
™-

o
S

-
_
—
—
—

—
_
—
—
—

I
!
m
fi

o
~

O
~

>
>

=
5

o
—
_
—
—
—
—
—

-
—
—

_
—

~
.
—
~
Y

o
—_—

e
e

.
u
n
u
n
fl
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
)

—
_
t
—
_
—
o

—
—

>
>

Y
I

-
~
T

3
1
"

>
>

>

~
4

—
N
e

<O
-

~
"

O
=

<
4

>
>

-

=
Q

Q
B
4

O
0

HITACH!1 209

In this

Fig. 9 LCD Driver Timing Chart (1/64 duty)

The wave forms of Y1 to Y64 outputs vary with the display data.

example, the top line of the panel lights up and other dots do not.

HD61102-

® Interface with CPU

a) Example of connection with HD6800

Al5

Al

AO

R/

HD6800
$2

DO

D7

RES

Decoder

.

 Vee—

Y
o
o
t
|
-

cs1

ts2

Cs3

HD61102

The example of connection with HD6800 series

In this decoder, addresses of HD61102 in the address area of 'D6800 are:

Read/Write of the display data

Write of display instruction

Read out of status

Therefore, you can control HD61102 by reading/writing the dats at these

addresses.

210 HITACHI

 HD61102
b) Examfile of connection with HD6801

7418154

——— ‘

P10 A YO 45T
P11 B ’El T cs2
P12 c AR Vee—{CS3
P13 D YI5—

Gl G2

(10s)scC1“—5

(R/W)sC2 R/W

P14 D/1
HD6801

HD61102

E E No.1l

P30
DBO

P31 . DB1'
1

'(Data bus) ! ;

P37 ' DB7
—_— -

® Set HD6801 in Mode 5. . the external memory area ($0100 to
P10 to P14 are used as the $01FE) to control HD61102.
output port and P30 to P37 In this case, I0S signal : “rerut
as the data bus. " from SC1 and R/W signal from SC2.

74LS154 is 4 to 16 decoder and

* For details of HD6800 and HD6801,genelate chip select signal to
refer to the each manual.make specified HD61102 active

after decoding 4 bits of P10

to P13.

* Therefore, after making the

operation possible by P10 to

P13 and specifying D/I signal

by P14, read/write from/to

HITACHI 211

HD61102

e Example of Application

HD61102 HD61102 HD61102
No.9 No.10

|

————c——" No.1l6
Y1 —Y64 Y1 ™~ Y64 Y1 ™\ Y32

COM1
COM2
COM3

!

|
~ X1 !

I—S,: X2 |
25x3 |

E<yxs COM64

LCD Panel

128 x 480 dots
- §% COMGS.
m/\

S ¢X3 cox
= |
Lw |
I X64 |

I
|
|

|
l
!

CoM128 .o

I 4 4 4

el -;
Y1 —~< Y64 Y1 —~Y64 Yi Y3z
HD61102 HD61102 fo—— Hr61102
No.1 No.2 No.8

Note) 1In this example, two HD61103A's output the equivalent waveforms.
So, stand-alone operation is possible.

COM65 to X1, COM2 and COM66 to X2, ..,

However, for the large screen display

as this example to guarantee the

212 HITACHI

display

» You had better drive jn 2

qualityv.

In this case, connect COM]

» and COM64 and COM128 to X64.

row

Appendixes

A

Resident Debugger

The ROM-resident debugger provides a way to debug application programs written in assembly
language. It offers a way to examine or modify data in memory and the CPU registers, set a break-
point, or single-stcp an assembly-language program.

The debugger is entered by typing RDB76 at the command mode prompt. The debugger
must not use interrupts, so keys are moredifficult to enter than in command mode. There is no cursor
because cursor blink requires interrupts. Note that the debugger will not time out and turn the HP-94
off.

Table A-1. Resident Debugger Commands

Command Description Page

D Display the contents of memory in hexadecimal characters. A4

G Execute code until a breakpoint. A6

I * [inputdatafroman!/O port. A-7

L t |Enter data in MDS format. A8

M Display or change the contents of memory. A9

O * |Output datato an /O port. A-10

R Display or change the contents of CPU registers. A-11

s Single-step execution of a program. A-12

X Switch the debugger console between HP-94 keyboard and serial port.| A-13

* For the | and O commands, press the [K] or [L] key respectively on the HP-84 keyboard. The command
ietter is shown in the dispiay.

t The L command can only be entered if the console is set o the serial port.
All the characters recognized by the debugger can be entered without using , including the digit
keys [0] through . Some characters are assigned to different keys because the key which has that
character printed on it is also a digit key.

Resident Debugger A-1

Table A-2. Resident Debugger Keyboard Map

Key Response

:

['

[#] +

3 I

o

Q] P

(ignored)
The ROM-resident debugger uses the HP-94 keyboard and display as the console. If the serial port is
not used by the code being debugged, the serial port can be used as a console by connecting a terminal
to the port. The port configuration is unconditionally set to 9600 baud, 7-bit data with even parity, and
one stop bit.

A-2 Resident Debugger

 L

Command Syniax

A parameter enclosed by [] is optional andmay be omitted.

Usnderlined characters are characters displayed bythe debugger.

In this chapter, the term wordmcansa 16-bit value.

Example:

To input 40:1F, press these keys:

{4)[o)(sPACE][1][F]
An address has the following format:

[SSSS:JFFFF

SSSS is the segment expression (defankt = TS register)
FFFF is the offset expression

Both segment and offset can combine hexadecimal constants or two-character register namesin addi-
tion or subtraction expressions using the + and - operators.

Imore than four hexadecimal digits are entered, only the last four digits are used.

Valid register names are AX, BX, CX,DX,SP,BP,S1, DI, CS, DS, SS, ES, IP, and FL (flags).

Examples:

41-1:145+AF isinterpreted as 40 : 1F4.

145-34+1isinterpreted25 CS:112.

IP+2 (if IP is 110h) is interpreted as C5:112.

FFF0145-34+1 is imterpreted as CS:112 (0145-34+1).

ES : BX+1 is interpreted as expected.

Resident Debugger A-3

D

Display the contents of memory.

Syntax:

D[W]address1[, address2][ENTER]

Description:

The D command displays in hexadecimal the contents of memory from address? to address2. If the
W optionis specified, the displayis grouped by words; otherwise the displayis grouped bybytes.

Console is the HP-94 keyboard/display:

The contents of memory up to a paragraph boundary (xoocxxx() are displayed. The debugger then
waits for a key to be pressed. If is pressed, the contents of the next 16 bytes of memory are
displayed. Pressing any other key terminates the D command.

Consoleis the serial port:

The contents of memory are displayed in hexadecimal. If the W optionis not specified, the correspond-
ing ASCII characters are also displayed. Pressing any key terminates the D command. That key is
then processed as a debugger command. Since software handshake characters are interpreted as keys,
a handshake character such as XOFF from a terminal will terminate the D command.

Example 1: Console is HP-94 keyboard/display; display O : 0 through 0 : 14 as bytes.

*00:0,14 ([D] [0] [SPACE] [0] [1] [1] [4] [ENTERD
0000:0000
58 0C 00 FC E1 0B
00 FC 58 OC 00 FC
58 OC 00 FC
0000:0010

88 FF 95 7F 07
-

Example 2: Console is serial port; display 0 : O through 0 : 14 as bytes.

*00:0, 14
0000:0000 58 OC 00 FC E1 0B 00 FC 58 OC 00 FC SB OC 00 fC leeeneen [...l...
0000:0010 88 FF 957FO7
.

Example 3: Console is HP-94 keyboard/display; display DS : 0 through DSt 14 as words. Assume
DS is0.

oDuDS:0,14 (o] (W] [0] (] [SPACE] [0] [] [1] [4] [ENTERD0000:00
0C5B FCOO OBE1 FCOO
0CSB FCOO OC58 FCOO

0000:0010
FF88 7F95 FFO7

-

A-4 Resident Debugger

...D

Example 4: Console is serial port; display DS : O through DS ¢ 14 as words. Assume DS is 0.

*DW DS:0,14
0000:0000 OC58 FCOO OBE1 FCOO OC5B FCOO OC5B FCOO
0000:0010 FFBB 7F95 FFO7
)

Resident Debugger A-5

G

Execute code until a breakpoint.

Syntax:

G_cccc:iiii- dd {start address][, break address][ENTER]

Description:

The G command displays in hexadecimal the contents of CS ¢ IP and the contents of the byte at that
location. If a break address is specified, a breakpointis set by writing an INT 3 (CCh) at that address.
If the INT 3 cannot be written, an error occurs. This means it is not possible to set a breakpoint in a
program in ROM. If a start address is not specified, program execution starts at CS : IP. If a start
address is specified, program execution starts at that address.

When a program reaches the breakpoint, the debugger displays the following message and waits for
another command.

BR@cecec:iiii

CcCcCc is the value ofthe current CS register.
i1iiji is the value of the current IP register.

Note that if a program never reaches the breakpoint, the INT 3 remains in the code. The debugger will
try to restore the instruction replaced by the INT 3 when the debugger is reentered. Because the pro-
gram being debugged may have moved, it is zecommended that a breakpoint not be set before return-
ing to the operating system from the debugger.

A-6 Resident Debugger

Input data from a port.

Syntax:

IW]port,

Description:

The I command inputs data from port port and displays it in hexadecimal. If the W option is specified,
one word of data is input from port and displayed; otherwise one byte of data is input from port and
displayed. Data is input from port and displayed each time a comma is entered.

Pressing [ENTER| terminates the I command.

Resident Debugger A-7

L

Enter data in MDS format.

Syntax:

L[bias)[ENTER]

Description:

The L command inputs data in MDS format and loads the data to main memory. The data is written
at the record address contained in the MDS data records added to the value of bias. The default bias

is zero. The segmentvalue can be set with a type 2 MDS record. The default segmentis zero.

The L command is available only if the console is the serial port.

The L command discards any data received until the first colon () of the MDSfile is encountered. If
the data which follows the colon is not in MDS format, the L command terminates.

A-8 Resident Debugger

Display or change the contents of memory.

Syntax:

M([W]address, Add- [new data],

Description:

The M command displays in hexadecimal the contents of memory at address. If the W option is
specified, memory is processed in words; otherwise memory is processed in bytes.

When a comma is entered, the contents of the next memory location are displayed.

Pressing terminates the M command.

If new data is specified (in hexadecimal),it is written to the memory location currently displayed. A
read-after-write check is done to ensure that the data was written correctly. If the data read back does
not match the data which was written, such as when trying to write to ROM, the M command ter-
minates.

Resident Debugger A-9

o

Output data to a port.

Syntax:

O[W]port, data[ENTER]
or
O[W]port,data,

Description:

The O command outputs data to the specified port. If the W option is specified, one word ofdata is
output to port; otherwise one byte of data is output to port.

If the O commandis entered with a trailing comma, it writes the data to the port, then prompts for new
data with a dash (=).

Pressing terminates the O command.

A-10 Resident Debugger

Display or change the contents of CPU registers.

Syntax:

R [ENTER]
or

Rregister-dddd~ [data][,][ENTER]

Description:

The R command displays the contents of CPU registers in hexadecimal.

If registeris specified, the contents of that register are displayed in hexadecimal. If data is specified
(in hexadecimal), the register is changed to that value. A comma (,) continues on to the next register,
if any; terminates the R command.

If register is not specified, the contents of all the CPU registers are displayed. The format depends on
whether the console is the HP-94 or the serial port:

Console is the HP-94 keyboard/display:

*# [ENTER]
AX=024A BX=000D
CX=1FA2 DX=DOOE
SP=07F2 BP=0250
$1=0410 DI=0015

Cs=0128 Ds=0128
$S=1F80 ES=1F80
1P=0008 FL=F206

Console is the serial port:

*R
AX=024A BX=0000 CX=1FA2 DX=000E SP=07F2 BP=0250 SI=0410
D1=0015 CS=0128 DS=0128 SS=1F80 ES=1F80 1P=0008 FL=F206
-

Resident Debugger A-11

S

Single-step execution of a program.

Syntax:

S cccc:iiii- dd [startaddress],

Description:

The S command displays the current CS:IP in hexadecimal and waits for another key. If start
address is specified, the current CS ¢ IP is set to that address.

A single instruction at the current CS : IP is executed when a comma (, is entered. The S com-
mand displays the new CS : IP and waits for another key.

Single-step execution terminates when the key is pressed.

NOTE Because the HP-94 has a timer which interrupts every 5 ms, there will almost always
be a pending interrupt when single-stepping code. Because all registers are restored
before execution, including FL, interrupts are enabled unless the FL register has
been modified to disable interrupts. When using the HP-94 keyboard, there is no key
sequence to directly type the letter L. To view the FL register using the R command,

type RIP, (RJ[K][Q][.D.

A-12 Resident Debugger

Switch the debugger console between the HP-94 keyboard and serial port.

Syntax

X

The X command switches the debugger console between the HP-94 keyboard/display and the serial
port. Several commands display information in a format which is casier to read when the console is the
serial port.

The X command displays the verification prompt "Ok ? " and waits for a key. If[Y] is entered,
the console is switched to the serial port if the console was the HP-94 keyboard/display, or to the HP-
94 keyboard/display if the console was the serial port.

When the console is switched to the serial port, the port is set to 9600 baud, even parity, 7-bit data, and
one stop bit. The debugger operates without any hardware or software handshaking. Any handshaking
characters sent by the terminal will be interpreted as keys, and will have the same effect as pressing
keys. This is especially important for the D command.

The console must not be switched to the serial port while an application program which uses the serial
port is being debugged.

CAUTION if the console is switched to the serial port which is connected to a terminal that
cannot communicate at 9600 baud, even parity, 7-bit data, and one stop bit, or if
the console is switched with no terminal attached, the only way to regain control
of the HP-94 is to press the reset switch.

Resident Debugger A-13

Errors

Errors B-1

Table B-1. Operating System Errors

Hex Decimal Meaning

64h 100* BASIC interpreter not found
65h 101 lllegal parameter
66h 102 Directory does not exist
67h 103 File not found
68h 104 Too manyfiles
69h 105 Channel not open
6Ah 106 Channel already open
6Bh 107 File already open
6Ch 108 File already exists
6Dh 109 Read-only access
6Eh 110 Access restricted
6Fh 111 No room forfile
70h 112 No room to expand file
71h 113 No room for scratch area
72h 114 Scratch area does not exist
73h 115¢ Short record detected
74h 116 ¢ Terminate character detected
75h 117+ End-of-data
76h 118 Timeout

77h 119 Power switch pressed
Csh 200 Low battery
Coh 201 Recelive buffer overfiow
CAh 202 Parity error
CBh 203 Overrun error
CCh 204 Parity and overrun error
CDh 205 Framing error
CEh 206 Framing and parity error
CFh 207 Framing and overrun error
DOh 208 Framing, overrun, and parity error
Dih 209 % Invalid MDS file received
D2h 210 * Low backup battery — main memory
D3h 211* Low backup battery — 128K memory board or 40K RAM card
D4h 212 * Checksum error — main memory directory table
Dsh 213+ Checksum error — 40K RAM or ROM/EPROM card directory table
D6h 214+ Checksum error — reserved scratch space
D7h 215 * Checksum error — main memory free space
Dsh 216 * Checksum error — main memory file
Dsh 217 * Checksum error — 40K RAM or ROM/EPROM card file
DAh 218 Lost connection while transmitting
DBh 219 ¢ Ilegal use of operating system stack

* Only reported when machine is turned on.

t Never reported by built-in BASIC keywords.

B-2 Errors

Table B-2. BASIC Interpreter Errors

Message Meaning

AR Array subscript error
BM BASIC interpreter malfunction
BR Branch destination error
CN Data conversion error
Cco Conversion overflow
DO Decimal overfiow
DT Data error
EP Missing END statement
FN llegal DEF FN statement
iL lllegal argument
IR Insufficient RAM
IS lilegal statement
LN Nonexistent line
MO Memory overfiow
NF Program not found
RT RETURN or SYRT error
sy Syntax error
TY Data type mismatch
um Unmatched number of arguments

Errors B-3

C

Keyboard Layout

Table C-1. ASCII Characters and Keycodes for Each Key

Shifted “Shifted Unshifted Unshifted
Key (orange) Character Key (white) Character Keycode

(A A (41h) (unmarked) user-defined (80h) 01h
B (42h) (unmarked) user-defined (81h) 06h
C (43h) (unmarked) user-defined (82h) 0Bh

(0] D (44h) (unmarked) user-defined (83h) 10h
3 E (45h) (unmarked) user-defined (84h) 02h
[F] F (46h) (unmarked) user-defined (85h) 07h
[G] G (47h) (unmarked) user-defined (86h) oCh
] H (48h) 7 (37h) 11h
0] I (49h) 8 (38h) 16h

J (4Ah) 9] 9 (39h) 1Bh
K] K (4Bh) (unmarked) user-defined (87h) 03h

L (4Ch) (unmarked) user-defined (88h) osh
™ M (4Dh) (unmarked) user-defined (89h) oDh
N] N (4Eh) [4 (34h) 12h
(0] O (4Fh) (5] 5 (35h) 17h
[P] P (50h) [6] 6 (36h) 1Ch
[Q (51h) (unmarked) user-defined (8Ah) 04h
[R] R (52h) (unmarked) user-defined (8Bh) 0oh
B S (53h) (unmarked) user-defined (8Ch) OEh

T (54h) 0 1 (31h) 13h
(U] U (55h) [2] 2 (32h) 18h

V (56h) [3] 3 (33h) 1Dh
(w] W (57h) (unmarked) user-defined (8Dh) 05h
x] X (58h) (unmarked) user-defined (8Eh) 0Ah

Y (59h) (unmarked) user-defined (8Fh) OFh
Z] Z (5Ah) [0] 0 (30h) 14h
Qi * (2Ah) [#] # (23h) 15h

(space) (20h) 00 (30h 30h) 19h
= — (2Dh) = — (2Dh) 1Ah
O . (2Eh) O . (2Eh) 1Eh

(none) (none) 1Fh
(CAN)(18h) (CAN) (18h) 20h
(DEL) (7Fh) (DEL) (7Fh) 21h
(CR) (0Dh) (CR) (0Dh) 22h

Keyboard Layout

C-1

D

Roman-8 Character Set

Roman-8 Character Set D-1

"ASCII Character Code ASCIl Character Code
Char.

|

Hex

|

Dec

|

Oct Binary Char.

|

Hex

|

Dec

|

Oct

|

Binary

NUL 00 0 000

|

00000000 space 20 32 040

|

00100000
SOH 01 1 001

|

00000001 1 21 33 041 00100001
STX 02 2 002

|

00000010 * 22 34 042

|

00100010
ETX 03 3 003 00000011 # 23 35 043 00100011
EOT 04 4 004

|

00000100 $ 24 36 044

|

00100100
ENQ 05 5 005 00000101 % 25 37 045 00100101
ACK 06 6 006 00000110 & 26 38 046 00100110
BEL 07 7 007 00000111 ’ 27 39 047 00100111
BS 08 8 010 00001000 (28 40 050 00101000
HT 09 9 011

|

00001001) 29 41 051

|

00101001
LF 0A 10 012

|

00001010 * 2A 42 052

|

00101010
vT 0B 11 013 00001011 + 2B 43 053 00101011
FF oC 12 014 00001100 , 2C 44 054 00101100
CR 0D 13 015 00001101 - 2D 45 055 00101101
SO OE 14 016 00001110 . 2E 46 056 00101110
Sl OF 15 017 00001111 / 2F 47 057 00101111
DLE 10 16 020 00010000 0 30 48 060 00110000
DC1 11 17 021 00010001 1 31 49 061 00110001
DC2 12 18 022 00010010 2 32 50 062 00110010
DC3 13 19 023 00010011 3 33 51 063 00110011
DC4 14 20 024 00010100 4 34 52 064 00110100
NAK 15 21 025 00010101 5 35 53 065 00110101
SYN 16 22 026 00010110 6 36 54 066 00110110
ETB 17 23 027 00010111 7 37 565 067 00110111
CAN 18 24 030 00011000 8 38 56 070 00111000
EM 19 25 031 00011001 9 39 57 071 00111001
suB 1A 26 032 00011010 : 3A 58 072 00111010
ESC iB 27 033 00011011 ; 3B 59 073 00111011
FS 1C 28 034 00011100 < 3C 60 074 00111100
GS 1D 29 035 00011101 = 3D 61 075 00111101
RS 1E 30 036 00011110 > 3E 62 076 00111110
Us 1F 31 037 00011111 ? 3F 63 077 00111111

D-2 Roman-8 Character Set

ASCIi Character Code ASCIil Character Code
Char. Hex Dec Oct Binary Char. Hex Dec Oct Binary

@ 40 64 100 01000000 60 96 140 01100000

A 41 65 101 01000001 a 61 97 141 01100001

B 42 66 102 01000010 b 62 g8 142 01100010

C 43 67 103 01000011 c 63 99 143 01100011

D 44 68 104 01000100 d 64 100 144 01100100

E 45 69 105 01000101 e 65 101 145 01100101

F 46 70 106 01000110 f 66 102 146 01100110

G 47 71 107 01000111 g 67 103 147 01100111

H 48 72 110 01001000 h 68 104 150 01101000

I 49 73 111 01001001 i 69 106 151 01101001

J 4A 74 112 01001010 i 6A 106 152 01101010

K 4B 75 113 01001011 k 6B 107 163 01101011

L 4C 76 114 01001100 { 6C 108 154 01101100

M 4D 77 115 01001101 m 6D 109 155 01101101

N 4E 78 116 01001110 n 6E 110 156 01101110

o) 4F 79 117 01001111 0 6F 111 157 01101111

P 50 80 120 01010000 p 70 112 160 01110000

Q 51 8t 121 01010001 q 71 113 161 01110001

R 52 82 122 01010010 r 72 114 162 01110010

S 53 83 123 01010011 s 73 115 163 01110011

T 54 84 124 01010100 t 74 116 164 01110100

U 55 85 125 01010101 u 75 117 165 01110101

Vv 56 86 126 01010110 v 76 118 166 01110110

w 57 87 127 01010111 w 77 119 167 01110111

X 58 88 130 01011000 X 78 120 170 01111000

Y 59 89 131 01011001 y 79 121 171 01111001

z 5A 90 132 01011010 z 7A 122 172 01111010

[5B o1 133 01011011 { 7B 123 173 01111011

\ s 92 134 01011100 | 7C 124 174 01111100
] 5D 83 135 01011101 } 7D 125 175 01111101

~ 5E 94 136 01011110 ~ 7E 126 176 01111110

_ 5F a5 137 01011111 DEL 7F 127 177 01111111

Roman-8 Character Set D-3

ASCIl ~Character Code ASCil Character Code
Char. Hex Dec Oct Binary Char. Hex Dec Oct Binary

80 128 200 10000000 space AD 160 240 10100000
81 129 201 10000001 A Al 161 241 10100001
82 130 202 10000010 A A2 162 242 10100010
83 131 203 10000011 t A3 163 243 10100011
84 132 204 10000100 E A4 164 244 10100100
85 133 205 10000101 £ A5 165 245 10100101
86 134 206 10000110 1 A8 166 246 10100110
87 135 207 10000111 { A7 167 247 10100111
88 136 210 10001000 ‘ A8 168 250 10101000
89 137 211 10001001 . A9 169 251 10101001
8A 138 212 10001010 ~ AA 170 252 10101010
88 139 213 10001011 - AB 171 253 10101011
8C 140 214 10001100 - AC 172 254 10101100
8D 141 215 10001101 U AD 173 255 10101101
8E 142 216 10001110 o AE 174 256 10101110
8F 143 217 10001111 £ AF 175 257 10101111
90 144 220 10010000 - BD 176 260 10110000
91 145 221 10010001 Y Bt 177 261 10110001
92 146 222 10010010 y B2 178 262 10110010
93 w47 223 10010011 ° B3 179 263 10110011
94 148 224 10010100 C B4 180 264 10110100
g5 149 225 10010101 ¢ B5 181 265 10110101
96 150 226 10010110 N B6 182 266 10110110
97 151 227 10010111 fi B7 183 267 10110111
98 152 230 10011000 i B8 184 270 10111000
99 153 231 10011001 & B9 185 271 10111001
9A 154 232 10011010 z BA 186 272 10111010
9B 155 233 10011011 £ BB 187 273 10111011
oC 156 234 10011100 ¥ BC 188 274 10111100
oD 157 235 10011101 § BD 189 275 10111101
9E 158 236 10011110 ¥ BE 190 276 10111110
oF 159 237 10011111 ¢ BF 191 277 10111111

D-4 Roman-8 CharacterSt

ASCIl Character Code ASCIlI Character Code

Char. Hex Dec Oct Binary Char. Hex Dec Oct Binary

& Co 192 300 11000000 A EO 224 340 11100000
8 C1 183 301 11000001 A E1 225 341 11100001
6 C2 194 302 11000010 & E2 226 342 11100010
0 C3 195 303 11000011 ® E3 227 343 11100011
& C4 196 304 11000100 a E4 228 344 11100100
é cs 197 305 11000101 f E5 229 345 11100101
6 Cs 198 306 11000110 1 E6 230 346 11100110
a C7 199 307 11000111 6 E7 231 347 11100111
a cs 200 310 11001000 0 E8 232 350 11101000
& Co9 201 311 11001001 0 E9 233 351 11101001
o CA 202 312 11001010 o EA 234 352 11101010
u CB 203 313 11001011 § EB 235 353 11101011
& CC 204 314 11001100 g EC 236 354 11101100
8 CD 205 315 11001101 U ED 237 355 11101101
6 CE 206 316 11001110 Y EE 238 356 11101110
0 CF 207 317 11001111 § EF 239 357 11101111
A Do 208 320 11010000 b FO 240 360 11110000
1 D1 209 321 11010001 b F1 241 361 11110001
o D2 210 322 11010010 . F2 242 362 11110010
£ D3 211 323 11010011 B F3 243 363 11110011
a D4 212 324 11010100 1 F4 244 364 11110100
l D5 213 325 11010101 3/ F5 245 365 11110101
o D6 214 326 11010110 - F6 246 366 11110110
® D7 215 327 11010111 1/4 F7 247 367 11110111
A D8 216 330 11011000 1/2 F8 248 370 11111000
] D9 217 331 11011001 8 F9 249 371 11111001
o] DA 218 332 11011010 e FA 250 372 11111010
0 DB 219 333 11011011 << FB 251 373 11111011
E DC 220 334 11011100 . FC 252 374 11111100
i DD 221 335 11011101 >> FD 253 375 11111101
B DE 222 336 11011110 + FE 254 376 11111110
0 DF 223 337 11011111 Y FF 255 377 11111111

Roman-8 Character Set D-S

E

Display Control Characters

Table E-1. Display Control Characters

0Ah (LF)

0Bh (VT)

0Ch (FF)
0Dh (CR)
OEh (SO)
OFh (SI)
1Eh (RS)
1Fh (US)

Hex Value Meaning

01h (SOH) Tum on cursor.
02h (STX) Turn off cursor.
06h (ACK) High tone beep for 0.5 second.
07h (BEL) Low tone beep for 0.5 second.
08h (BS) Move cursor left one column. When the cursor reaches the left

end of the line, it will back up to the right end of the previousline.
When the cursor reaches the top left corner, backspace will have
no effect.
Move cursor down oneline. If the cursoris on the bottom line, the
display contents will scroll up one line.
Clear every character from the cursor position to the end of the
current line. The cursor position will be unchanged.
Move cursor to upper left corner and clearthe display.
Move cursorto left end of current line.
Change keyboard to numeric mode (underline cursor).
Change keyboard to alpha mode (block cursor).
Turn on display backlight.
Turn off display backlight.

Display Control Characters E-1

F

Memory Map

Memory Map F-1

FFFFFh

F8000h

3FFFFh

20000h

10000h

00000h

32K Bulit-in

System ROM

256K Built-In
RAM (HP-94F)

128K Built-In
RAM (HP-94E)

 64K Built-In

RAM (HP-94D)

Main Memory

29FFFh

20000h

40K Plug-in

RAM

40K RAM Card

3FFFFh

32K Plug-In
ROM/EPROM

38000h

32K Plug-in
ROM/EPROM

30000h

32K Plug-In
ROM/EPROM

28000h

32K Plug-In
ROM/EPROM

20000h
ROM/EPROM Card

Figure F-1. Memory Map of the HP-94

F-2 Memory Map

G

Control and Status Register Addresses

Table G-1. 1/O Addresses for Control and Status Registers

1/0 Register Read/
Address Name Write

00h interrupt Control w
00h interrupt Status R
01h interrupt Clear w
0th End of Interrupt R

02h System Timer Data R/W
03h System Timer Control w

04h Bar Code Timer Data (lower8 bits) R/W
05h Bar Code Timer Data (upper 4 bits) R/W
06h Bar Code Timer Control w
07h Bar Code Timer Value Capture w
08h Bar Code Timer Clear w

0Ah Baud Rate Clock Value w

0Bh Main Control W
0Bh Main Status R

oCh Real-Time Clock Control W
0Ch Real-Time Clock Status/Data R

OEh Keyboard Control w
OEh Keyboard Status R

10h Serial Port Data R/W
11h Serial Port Control w
11h Serial Port Status R

12h Right LCD Driver Control w
12h Right LCD Driver Status R
13h Right LCD Driver Data R/W

14h Left LCD Driver Control w
14h Left LCD Driver Status R
15h Left LCD Driver Data R/W

1Bh Power Control W
Control and Status Register Addresses G-1

H

Hardware Interrupts

Table H-1. HP-94 Hardware Interrupts

Interrupt Interrupt

Type Name

50h System Timer Highest
51h Bar Code Timer
52h Bar Code Port Transition ‘L
53h Serial Port Data Recelved
54h Low Main Battery Voitage Interrupt Priority
55h Power Switch ‘L
56h Reserved Interrupt 1

57h Reserved Interrupt 2 Lowest

Hardware Interrupts H-1

Operating System Functions

Table I-1. Operating System Function List

Name Code Description
BEEP 07h Beep a high or low tone for specified duration

BUFFER_STATUS 06h Get the number of bytes in or flush either the key
buffer or the serial port handler receive buffer

CLOSE 10h Close an I/O channel
CREATE 11h Create a data file
CURSOR 05h Read or change the cursor position on the LCD

DELETE 14h Delete data file

DISPLAYERROR 18h Display numeric error
END_PROGRAM 00h Terminate the appiication program
FINDFILE 16h Find first occurrence of a file
FINDNEXT 17h Find subsequent occurrences of file

GET_CHAR 01h Geta character from key buffer
GET_LINE 02h Get a character string from the key buffer

GET_MEM 0Bh Get a scratch area of memory
MEM_CONFIG oDh Identify memory configuration
OPEN OFh Openani/O channel
PUT_CHAR 03h Display a character on the LCD

PUT_LINE 04h Display a character string on the LCD

READ 12h Read data from an I/O channel
REL_MEM 0Ch Release scratch area of memory

ROOM OEh Identify available room in a directory

SEEK 15h Move data file access pointer

SET_INTR 0Ah Define power switch or low battery interrupt rou-
tines or disable/enable the power switch interrupt

TIMEOUT 0Sh Set system or backlight timeout value

TIMEDATE 08h Set or read the time and date on the real-time clock

WRITE 13h Write data to an I/O channel

Operating System Functions 1-1

J

BASIC Interpreter Utility Routines

Table J-1. BASIC Interpreter Utility Routine List

Name Ofiset Description
ERROR 34h Display error and end program

GETARG 3Ch Convert real or integer into binary

IOERR 38h Process errors in accordance with SYER

SADD 14h Add two real numbers

SDbIV 20h Divide two real numbers

SETARG 40h Convert binary into real or integer

SMUL 1Ch Multiply two real numbers

SNEG 28h Change sign of real number

SPOW 24h Raise one real number to the power of another

SSUB 18h Subtract two real numbers

TOBIN 30h Convert integer or real into integer

TOREAL 2Ch Convert integer orreal into real

BASIC Interpreter Utility Routines J-1

K

Program Resource Allocation

There are certain resources related to assembly language programs that must be chosen carefully to
prevent conflict between different programs. Some of these resources are for any program, while others
are for user-defined handlers only. These are as follows:

a Error Numbers
These are used to report error conditions to calling BASIC or assembly language programs. BASIC
programs can report numeric or non-numeric errors, although both internally map to an error
number.

a Handler Identifier
This is returned by the IDENTIFY function of the handler TOCTL routine.

= Valid Data Flag
This is used to determine if the data in the parameter scratch area is correct for the handler being
used.

@ IOCTL Function Codes

These are the function codes for the different functions in the handler TOCTL routine.

Refer to the "User-Defined Handlers” chapter in part 1, "Operating System", for details on the last
three resources.

Below are tables summarizing usage of these resources by Hewlett-Packard programs. Remember that
Hewlett-Packard also reserves SY as the first two characters of HP assembly language program and
keyword names, and HN as the first two characters of HP handler names.

Table K-1. Error Number Usage

Error Number Range

Start End Reserved For

00h (0) 00h (0) No error
0th (1) 13h (19) BASIC interpreter
64h (100) 77h (119) Operating system
96h (150) ASh (169) HP-94 Datacomm Utilities Pac
Csh (200) DBh (219) Operating system

Program Resource Allocation

Table K-2. Hewlett-Packard Handler Resource Usage

Handler Handler Valid Data 1I0CTL
Name Identifier Flag Function Codes

HNBC BC FFh 00h-04h
HNSP SP FFh 00h-04h,80h
HNSG SG FEh 00h-04h,81h
Reserved - 80h-FDh 05h-06h

To reserve resources for a particular program, a request should be made in writing to Hewlett-
Packard. The request should indicate the resources required and their desired values. Also provide
information about the software these resources will be used for (commercial applications for general
sale, company-specific internal use only, etc.). This will help us allocate these limited resources as
efficiently as possible. Send the request to:

Hewlett-Packard Portable Computer Division
Technical Marketing Software Support Group

1000 N.E.Circle Bivd.
Corvallis, OR 97330

If the desired value is available, it will be reserved for use by the program. If not,it will be necessary to
select a different value for that resource.

K-2 Program Resource Allocation

L

Hewlett-Packard Bar Code Handlers

Hewlett-Packard supplies three bar code handlers with the HP-94 Software Development System:

= HNBC, a low-level bar code handler for the bar code port.

= HNSP, a low-level bar code handler for the serial port.

a HNWN,a high-level bar code handler for Hewlett-Packard Smart Wands (HP 39961D, HP 39963D,
and HP 39965D).

These are all supplied as EXE files, and will all execute from RAM or ROM. This appendix will dis-
cuss details of these handlers important for assembly language programmers, including statistics,
behavior of handler routines, errors, and parameter passing.

All three handlers follow the general behavior pattern described in the "User-Defined Handlers"
chapter in part 1, "Operating System", so only the specific characteristics that are unique to each
handler will be described here. This appendix assumes that the handler descriptions in the HP-94
BASIC Reference Manual have been read; that information will not be repeated here.

|

HNBC Low-Level Handler for Bar Code Port

HNBC is a low-level bar code handler for the bar code port. It is designed to allow "smart" bar code
scanning devices to be connected to the bar code port — devices which do on-board decoding of bar
code labels into ASCII, and return it as serial data. The HP-94 bar code port does not have a hardware
UARTto receive serial data, but HNBC performs the functions of a UART in software (assembling
the serial bit stream into bytes, and checking for parity and framing errors).

HNBC is designed to work with bar code devices whose electrical characteristics match those of the
HP-94 bar code port, and that send data in bursts of no more than 255 characters, with an intercharac-
ter delay (time between characters) of 1-106 ms. HNBC is only supported for Hewlett-Packard Smart
Wands (HP 39961D, HP 39963D, and HP 39965D).

HNBC Statistics

Here are pertinentstatistics for HNBC.

Hewiett-Packard Bar Code Handlers L-1

Table L-1. HNBC Statistics

item Value

Version Number 1.00
Handier Identifier BC
Valid Data Flag FFh
Length in HP-94 2151 bytes
Scratch Areas Used 1 of 288 bytes *
Handler Information Table Offsets Used 00h, 04h
Valid Channel Numbers 2

* One additional 16-byte parameter scratch area is allocated if it was
not allocated before opening the handier.

HNBC Capabilities

HNBC provides the following capabilities:

=m Read-Only Operation
Because the bar code port is read-only, no data can be written toit.

® Good Read Beep
Automatic beep on successful decoding of a bar code label.

m Key Abort
Allows a key being pressed to abort waiting for a successful scan.

s Received-Data Buffering
Received data is placed in a 255-byte buffer. There is no transmit buffer.

m Speeds
Speeds can be set from 150 to 9600 baud.

= Data Bits

Seven only.

= Parity
Zero, one, even, or odd parity.

= Stop Bits
One only. For a receive-only port, all stop bits received after the first one are treated as interchar-
acter delay.

m Terminate Character Control
When defined, a received terminate character will signal the end of the bar code data from the
scanning device.

The table below describes how HNBC behaves. It shows the action taken by the handler routines as
well as during its interrupt service routine, not including normal handler activities described in the
*User-Defined Handlers" chapter. Note that certain actions, such as beeping on a good scan or
responding to a received terminate character, will only occur if the appropriate options were enabled
when the handler was opened.

L-2 Hewlett-Packard Bar Code Handlers

Table L-2. Behavior of HNBC

Routine Activities

CLOSE Disable Interrupt 52h and restore interrupt vector
Turn off power to bar code port
Release handler scratch area

IOCTL implement the reserved TOCTL functions 00h-04h

OPEN Allocate parameter scratch area if needed
Allocate handler scratch area
Take overinterrupt 52h vector
Initialize operating configuration *
Supply powerto bar code port
Retum handler scratch area address in CX ¢

POWERON Do nothing

READ Wait for key up before accepting data
Report error CDh (205) if no bar code device connected
Discard data until none for 106 ms to avoid reading middle of iabel
Return no data and error 75h (117) if read aborted by pressing key
Monitor and report low battery, power switch, and timeout errors §
Enable interrupt 52h
Walt forfirst byte received
End read operation if no subsequent data received for 106 ms
Compute parity of received data
Report error 74h (116) If terminate character detected
Report error 75h (117) if scanned length less than requested length
Report errors detected in interrupt service routine
Issue high beep if scan successful
Return data from receive buffer

RSVD2 Do nothing

RSVD3 Do nothing

TERM Filush receive buffer

WARM Perform all OPENroutine activities except those related to scratch areas

WRITE Return error 6Dh (109).

interrupt
Service Read bar code status from main control registerfor all bits in each byte

Monitor framing and receive buffer overflow errors
Accumulate data into receive buffer
 * Baud rate, parity, key abort, good read beep, and terminate character.

1 Handiers are not required to return this, but HNBC does.

$ System timeout only monitored until first byte received. After that, no data received for 106 ms signals the
ond of the label. Consequently, all characters must be received in & burst in which the intercharacter delay
(time between characters) must be less than 106 ms.

Hewlett-Packard Bar Code Handlers L-3

CAUTION The HP-94 is unable to receive data through the serial port while the READ rou-
tine is executing. READ prevents this from happening by disabling the serial port
data received interrupt. If both the serial and bar code ports must be open simul-
taneously, programs should halt serial port input before calling the HNBC READ
routine (perhaps by sending an XOFF).

While the READ routine is executing, the background timer routine (interrupt 1Ch)
must not clear the CPU interrupt flag (CLI), write the interrupt control register
(ooh) to enable any interrupts, or issue software interrupts (such as interrupt 1Ah
for the operating system functions). Doing so may cause loss of bar code data,
resulting in parity or framing errors.

The background timer accuracy will be degraded if the baud rate of the bar code
device Is less than 2400 baud or if the device sends Its data with an intercharacter

delay of less than 1 ms.

The errors reported by HNBC are shown in the following table.

Table L-3. Errors Reported by HNBC

Routine Errors

CLOSE 6Eh

IOCTL 65h

OPEN 65h,67h,6Eh,71h

POWERON None

READ 74h,75h,76h,77h,C8h,C8h,CAh,CDh,CEh

RSVD2 None

RSVD3 None

TERM None

WARM None

WRITE 6Dh

Interrupt C9h,CDh

Service *

* Detected by interrupt service routine, but reported by READ routine.

L-4 Hewlett-Packard Bar Code Handlers

NOTE Two errors reported by the READ routine (74h, terminate character detected, and
75h, end of data) do not indicate error conditions, but signal the end of bar code data
for the BASIC GET # and INPUT # statements. Assembly language programs
using HNBC should handle these two errors differently than other errors from the
READ routine.

If READ has not transferred all the data in its receive buffer when any read error
occurs, it will flush the buffer. The next time READ is called, it will wait for a new bar

code scan.

Parameters at OPEN Time

When HNBC is opened, it looks at offset 04h of the handler information table. If the value is zero,it
allocates a one-paragraph parameter scratch area, places the default configurationin it, and places the
scratch area address in the table. If the value is non-zero,it uses the value as the segment address of
an existing parameter scratch area, and reads the configuration to usc from that scratch area. The
meanings of the parameters are shown below. In these figures, the offsets are from the start of the
parameter scratch area. A copy of these parameters are pointed to by ES:DX in the
GET_CONFIG and CHANGE_CONFIG reserved IOCTL functions (01h and 02h).

7 6 5 4 3 2 1 0

111 {t[1]1]1t 1

Figure L-1. HNBC Valid Data Flag — Parameter Byte 1 (Offset 00h)

L—i- Baud Rate (see table for meaning)

Figure L-2. HNBC Baud Rate — Parameter Byte 2 (Offset 01h)

Table L-4. HNBC Baud Rate Values

Value Baud Rate

9600
4800
2400
1200
600
300
150

 N
O
O
N
H
W
N
-

Hewlett-Packard Bar Code Handlers L-5

N o] » w N -
d

o

J—L Parity (see table for meaning)

X = don't care

Figure 1-3. HNBLC Parity — Parameter Byte 3 (Offset 02h)

Table LS. HNBC Parity Values

Value Parity
0 Zero

1 One

2 Even

3 Odd

7 6 5 4 3 2 1 0

X1 X X[X[|X]|X]|X

1: Enabled

Key Abort [o: Disabled

X = don’t care

Figure L-4. HNBC Key Abort — Parameter Byte 4 (Offset 03h)

7 6 5 4 3 2 1 0O

 1: Enabled
L— Good Read Beep [0: Disabled

X = don'’t care

Figure L-5. HNBC Good Read Beep — Parameter Byte 5 (Ofiset 04h)

7 6 5 4 3 2 1 0

Figure L-6. HNBC Terminate Character * — Parameter Byte 6 (Offset 05h)

L-6 Hewiett-Packard Bar Codes Handlers

The default values for the parameters are FFh (valid data flag), 01h (9600 baud), 00h (zero parity), 01h
(key abort enabled), 01h (good read beep enabled), and 00h (no terminate character).

 .

HNSP Low-Level Handler for Serial Port

HNSP is a low-level bar code handler for the serial port. It is designed to allow "smart" bar code scan-
ning devices to be connected to the serial port — devices which do on-board decoding of bar code
labels into ASCII, and return it as serial data.

HNSP is designed to work with bar code devices whose electrical characteristics match those of the
HP-94 serial port, and that send data in bursts of no more than 255 characters, with an intercharacter
delay (time between characters) of 0-106 ms. HNSP is only supported for Hewlett-Packard Smart
Wands (HP 39961D, HP 39963D, and HP 39965D).

HNSP Statistics

Here are pertinent statistics for HNSP.

Table L-8. HNSP Statistics

item Value

Version Number 1.00

Handler ldentifier SP

Valid Data Flag FFh
Length in HP-94 2332 bytes
Scratch Areas Used 1 of 288 bytes *
Handler iInformation Table Offsets Used 02h
Valid Channel Numbers 1

* One additional 16-byte parameter scratch area is aliocated if it was
not aliocated before opening the handier.

HNSP Capabilities

HNSP provides the following capabilities:

= Read/Write Operation
Bar code data can be read from the port, and commands and data can be written to the bar code

device. XON/XOFF handshaking is automatically used to pace transmission only.

® Good Read Beep
Automatic beep on successful decoding of a bar code label.

* To disable use of the terminate character,set it to zero.

Hewlett-Packard Bar Code Handlers L-7

» Key Abort
Allows a key being pressed to abort waiting for a successful scan.

= Received-Data Buffering
Received data is placed in a 255-byte buffer. There is no transmit buffer.

| Speeds
Speeds can be set from 150 to 9600 baud.

= Data Bits
Seven only.

= Parity
Zero, one, even, or odd parity.

= Stop Bits
One for received data like HNBC. Two for transmitted data (actually, one plus intercharacter
delay), which allows transmitting to devices that use either one or two stop bits.

® Terminate Character Control
When defined, a received terminate character will signal the end of the bar code data from the
scanning device. A terminate character will be sent after sending every block of data.

The table below describes how HNSP behaves. It shows the action taken by the handler routines as
well as during its interrupt service routine, not including normal handler activities described in the
*User-Defined Handlers” chapter. Note that certain actions, such as beeping on a good scan or
responding to a received terminate character, will only occur if the appropriate options were enabled
when the handler was opened.

L-8 Hewlett-Packard Bar Code Handlers

Table L.-7. Behavior of HNSP

Routine Activities

CLOSE Complete transmission of current byte
Disable interrupt 53h and restore interrupt vector
Lower RTS and DTR
Walt 60 ms for signals to stabllize
Disable 82C51 and turn off powerto serial port

Release handier scratch area

IOCTL implement the reserved TOCTL functions 00h-04h and 80h

OPEN Allocate parameter scratch area if needed
Allocate handler scratch area
Take overinterrupt 53h vector
Enable 82C51 and supply powerto serial port
Initialize operating configuration *
Raise RTS and DTR
Return handler scratch area address in CX ¢

POWERON Do nothing

READ Wait for key up before accepting data
Discard data until none for 106 ms to avoid reading middle of label
Retum no data and error 75h (117) if read aborted by pressing key
Monitor and report low battery, power switch, and timeout errors §
Enable interrupt 53h
Wait forfirst byte received
End read operation if no subsequent data received for 106 ms
Compulte parity of received data
Report error 74h (116) if terminate character detected
Report error 75h (117) if scanned length less than requested length
Report errors detected in interrupt service routine

Issue high beep If scan successful
Return data from receive buffer

RSVD2 Do nothing
RSVD3 Do nothing

TERM Fiush receive buffer
WARM Perform all OPEN routine activities except those related to scratch areas

WRITE Monitor and report low battery, power switch, and timeout errors
Monitor CTS indirectly and report error DA(218) if lost
Wirite data to 82C51
Send terminate character at end of data

interrupt Monitor parity, framing, overrun, and receive buffer overflow errors
Service Read data from 82C51 and accumulate data into receive buffer

Disable/enable transmission when XOFF/XON received

* Baud rate, parity, key abort, good read beep, and terminate character.

1 Handliers are not required to return this, but HNSP does.

1 System timeout only monitored until first byte received. After that, no data received for 106 ms signals the
ond of the label. Consequently, all characters must be received in a burst in which the intercharacter delay
(time bstween characters) must be less than 106 ms.

Hewlett-Packard Bar Code Handlers L-9

CAUTION While the READ routine is executing, the background timerroutine (interrupt 1Ch)
must not clear the CPU interrupt flag (CLI), write the interrupt control register
(00h) to enable any interrupts, or issue software interrupts (such as interrupt 1Ah
for the operating system functions). Doing so may cause loss of bar code data,
resulting in parity or framing errors.

The errors reported by HNSP are shown in the following table.

I

Table L-8. Errors Reported by HNSP

65h

OPEN 65h,67h, Ia

POWERO

READ 74h,75h,76h,77h,

RSVD2

RSVD3

TERM

WARM

WRITE 76h,77h,

Interrupt

Service *

* Detected by interrupt service routine, but reported by READ routine.

NOTE Two errors reported by the READ routine (74h, terminate character detected, and
75h, end of data) do not indicate error conditions, but signal the end of bar code data
for the BASIC GET # and INPUT # statements. Assembly language programs
using HNSP should handle these two errors differently than other errors from the
READroutine.

If READ has not transferred all the data in its receive buffer when any read error
occurs, it will flush the buffer. The next time READ is called, it will wait for a new bar
code scan.

Parameters at OPEN Time

When HNSP is opened, it looks at offset 02h of the handler information table. If the value is zero, it
allocates a one-paragraph parameter scratch area, places the default configuration in it, and places the
scratch arca address in the table. If the value is non-zero, it uses the value as the segment address of
an existing parameter scratch area, and reads the configuration to use from that scratch area. The

L-10 Hewlett-Packard Bar Code Handlers

meanings of the parameters are shown below. In these figures, the offsets are from the start of the
parameter scratch area. A copy of these parameters are pointed to by ES:DX in the
GET_CONFIG and CHANGE_CONFIG reserved IOCTL functions (01h and 02h).

7 6 5 4 3 2 1 0

1|11]v]v11]1i1

Figure L-7. HNSP Valid Data Flag — Parameter Byte 1 (Offset 00h)

7 6 5 4 3 2 1 0

‘__[_—i— Baud Rate (see table for meaning)

Figure L-8. HNSP Baud Rate — Parameter Byte 2 (Offset 01h)

Table L-9. HNSP Baud Rate Values

Value Baud Rate

9600
4800
2400
1200
600
300
150

N
O
N
D
B
D
W
N
=

‘_lj—- Parity (see table for meaning)

Figure L-9. HNSP Parity — Parameter Byte 3 (Offset 02h)

X = don’t care

Hewlett-Packard Bar Code Handlers L-11

Table L-10. HNSP Parity Values

Value Parity

0 Zero

1 One
2 Even

3 Odd

7 6 5 4 3 2 1 0

XIX|IX|X]|X]|X]|X

1: Enabled

~—— Key Abort [o: Disabled

X = don't care

Figure L-10. HNSP Key Abort — Parameter Byte 4 (Offset 03h)

 1: Enabled
— Good Read Beep [0, Disabled

X = don’t care

Figure L-11. HNSP Good Read Beep — Parameter Byte 5 (Offset 04h)

Figure L-12. HNSP Terminate Character * — Parameter Byte 6 (Offset 05h)

The default values for the parameters are FFh (valid data flag), 01h (9600 baud), 00h (zero parity), 01h
(key abort enabled), 01h (good read beep enabled), and 00h (no terminate character).

* To disable use of the terminate character, setit to zero.

- =12 Hewleti-Packard Bar Code Handlers

Write With Read Enabled 10CTL Function

HNSP implements an additional TOCTL function, function 80h, called WR_RD_EN (write with read
enabled). 1t is invoked by setting AH to 80h when calling the HNSP IOCTL routine, and it returns
00h in AL (no errors). This is used when requesting status from a bar code device. To request status
from a Hewlett-Packard Smart Wand, for example, a program would normally send it an escape
sequence via the WRITE routine. The Smart Wand returns its status almost immediately — before
the HNSP READ routine is ready to acceptit. The READ routine will not read this status successfully
because it ignores all data received afterit is called until a quict period of 106 ms has elapsed.

The WR_RD_EN function enables HNSP to receive data that arrives immediately after its WRITE
routine completes writing data to the bar code device. The received data is stored in a buffer and
returned to the calling program the next time the READ routineis called.

When the WR_RD_EN function is called, it enables a write with read enabled only for the next write
operation. The next time the WRITE routineis called, it will actually do two separate I/O operations:
first a write, then a read.

= The WRITE routine first performs the write operation the same wayit would for a normal write.
WRITE writes CX bytes of data starting at ES : BX out the serial port (for HP Smart Wands,this
would be the status request escape sequence).

® The WRITE routine then performs the read operation the same way it would for a normal read. It
waits until it receives the data from the serial port, or until the system timeout period expires.
Once a byte has been received, the system timeout is no longer monitored, and WRITE assumes
all data has arrived when the serial port does not receive any bytes for 106 ms.

@ After all data has arrived, the WRITE routine checks for parity and framing errors. It does not
beep, even if the beeperis enabled for normal bar code data. WRITE stores the received data in
the receive buffer.

® WRITE returns the numberof bytes actually written (nof the number of bytes read) in CX and the
error code in AL (00h if no errors). The error code is for both the write and read portions of the
operation. The calling program will not know whether the error occurred during the write or the
read, except for the context of the error message. For example, error DAh (218) can only occur
during a write, while error CAh (202) can only occur during a read.

The next time the READ routine is called, it behaves as a normal read with data already available in
the receive buffer, even though the data was actually received by the WRITE routine. The number of
bytes actually read is returned in CX, and the data is returned in the read buffer specified by the
READ caller.

The next time the WRITE routine is called, it behaves as a normal write — no write with read
enabled operation will be performed unless WR_RD_ENis called again.

Because WR_RD_ENis treated as two separate 1/0 operations, the system timeout is restarted twice.
It is started for the write operation and then stopped when the write is completed. It is then restarted
for the read operation and stopped when the read is complete. If a system timeout occurs during either
operation, AL is set to 76h (118). (For the read operation, it is only monitored until the first byte is
received. After that, no data reccived for 106 ms signals the end of the label.)

Hewlett-Packard Bar Code Handlers L-13

XON/XOFF Handshaking During WR_RD_EN

XON/XOFF handshaking is normally done only during the WRITE routine. When the write with
read enabled operation occurs, however, XON/XOFF handshaking is performed during both the write
and the read portions of the operation. If status information returned by a bar code device contains an
XON or an XOFF as legitimate data, those characters will be used to pace communications. They will
not be passed back to the caller as part of the status.

HP Smart Wands do not send XON or XOFF characters as part oftheir status information.

 (R

HNWN High-Level Handler for Bar Code Handlers

HNWN is a high-level bar code handler for cither the bar code port or the serial port. Because it is a
high-level handler, it only communicates with low-level handlers, and specifically with HNBC and
HNSP. It is designed to accommodate the unique features of Hewlett-Packard Smart Wands (HP
39961D, HP 39963D, and HP 39965D), and is only supported for these devices.

Throughout this section, there are references to features, behavior, and escape sequences sent or
recognized by the Smart Wand. Refer to the HP Smart Wand User’s Manual (part number HP 39960-
90001) for details. There are also references to configuration menus, which provide optical
configuration of the Smart Wand. This allows changing the Smart Wand’s behavior by scanning bar
code labels that are interpreted as commands, not as data. (Since the HP-94 bar code port is read-
only, commands to change configuration cannot be sent to the Smart Wandthrough the bar code port).
Refer to the Smart Wand Configuration Menus (part number HP 39960-90002) for details.

HNWN Statistics

Here are pertinent statistics for HNWN,

Table L-11. HNWN Statistics

item Value

Version Number 1.00

Handler Identifier WN

Valid Data Flag FFh
Length in HP-94 2217 bytes
Scratch Areas Used 1 of 272 bytes *
Handler Information Table Offsets Used 02h or 04h
Valid Channel Numbers fand 2
Valid Low-Level Handlers HNBC, HNSP

* One additional 16-byte parameter scratch area is aliocated if it was
not aliocated before opening the handier.

L-14 Hewlett-Packard Bar Code Handlers

HNWN Capabilities

HNWN provides the following capabilities:

= Ignorc or transmit Smart Wand escape sequences
Causes escape sequences sent by the Smart Wand whenit is in configuration mode to be sent to the
calling program. Different beeps than for normal bar code data help distinguish received
configuration escape sequences.

= Synchronize parity and baud rate of HP-94 port and Smart Wand
Allows the HP-94 serial port or bar code port to track the Smart Wand’s parity and baud rate
without closing and reopening the port.

The table below describes how HNWN behaves. It shows the action taken by the handler routines, not

including normal handler activities described in the "User-Defined Handlers” chapter. Note that cer-
tain actions, such as responding to escape sequences from the HNWN caller or from the Smart Wand,
will only occur if the appropriate options were enabled when the handler was opened. Since high-level
handlers interact with low-level handlers but not with I/O port hardware, HNWN has no interruptser-
vice routine.

Table L-12. Behavior of HNWN

Routine Activities

CLOSE Call iow4evel handler CLOSE routine
Release scratch area

IOCTL Call lowdevel handler IOCTL routine

OPEN Allocate parameter scratch area if needed
Allocate handler scratch area
Call low-level handler OPEN routine

POWERON Do nothing

READ Read data from low-level handler by calling fts READ routine
ignore or transmit escape sequences

RSVD2 Call low-level handler RSVD2 routine

RSVD3 Call low-level handler RSVD3 routine

TERM Call low-level handier TERM routine

WARM Call low-evel handler WARM routine

WRITE Parse escape sequences being sent to low-level handler
Take appropriate action for special escape sequences *
Pass data to low-evel handler by calling its WRITE routine

* Discussed later in this section.
Hewlett-Packard Bar Code Handlers L-15

NOTE HNWN cannot be used byitself — it must be used in conjunction with either HNBC
or HNSP. To open HNWN with one of the low-level handlers, use the following as
the handler name given to the BASIC OPEN # statement or the OPEN function
(OFh):

"HNWN ; HNBC"for the bar code port (channel 2)

"HNWN ; HNSP" forthe serial port (channel 1)

When the low-level handlers are copied into the HP-94, their file names must be
cither of the low-level handlers must be either HNBC or HNSP — if the file names

are different, HNWN will not be able to open them.

The errors reported by HNWN are shown in the following table. In addition, HNWN will report etrors
returned to it by either HNBC or HNSP.

Table L-13. Errors Reported by HNWN

Errors

CLOSE

IOCTL

o

POWERON

READ

RSVD2

3

WARM

Parameters at OPEN Time

When HNWN is opened, it looks in the handler information table. If it is opened to channel1, it looks
at offset 02h of the table. If it is opened to channel 2, it looks at offset 04h ofthe table. If the valueis
zero,it allocates a one-paragraph parameter scratch area, places the default configuration in it, and
places the scratch area address in the table. If the value is non-zero,it uses the value as the segment
address of an existing parameter scratch arca, and reads the configuration to use from that scratch
arca. The meanings of the parameters are shown below. In these figures, the offsets are from the start
of the parameter scratch area.

L-16 Hewliett-Packard Bar Code Handlers

7 6 5§ 4 3 2 1 0

111 (11111171

7 6 5§ 4 3 2 1 0

0: Ignore

L_ ¢ Seai [1: Transmit

Figure L-14. HHINWN Escapo;eqmm —<<aremeter Byte 2 (Offset 09h)

The default values for the parameters are FFh (valid data flag) and 86h (ignore escape sequences).

Response to Escape Sequences From Smart Wand

When the Smart Wand scans bar codes in a configuration menu, it sends one ofsix types of responses:

= Configuration Complete (fc \ *)

This is sent to signify that the Smart Wand has completed the configuration operation specified by
the menu.

m Configuration Partially Complete (% \ +)

This is sentto signify the Smart Wandhas completed a portion ofthe configuration operation. This
is sent for intermediate steps in configuration operations that require more than one scan.

m Syntax Error (k¢ \-)

This is sentto signify that the configuration menu was ont of context. This may be caused by scan-
ning configuration bar codes in the wrong order, that are the srong type, or that are numerically
out of range.

m Configuration Dump (fc * & % & \..)
This contains status information about the Smart Wand. If the Smart Wand is in HP-94 default
mode, the length ofthis status is 223 characters.

s Hard Resct Message (ready XX.X)
This messageis sent if the configuration bar code that specifies a hard reset is scanned. XX.X is
the Smart Wand’s firmware version number.

m No Read Message (user-defined, default is &'¥)
This message is sent only if the Smart Wand is enabled to send the no read message and if the
Smart Wand reads a bar code labelbut is unable to decodeit.

HNWN provides special responses only for the four escape sequences. It treats the hard reset message
and no read message the same as standard bar code data. It is the responsibility of the calling program
to provide special handling of these messages.

When escape sequences are received, HNWN will respond in one of two ways:

dHewliett-Packard Bar Code Handlers L-17

® Ignore Escape Sequences (default behavior)
If this modeis selected, HNWN will discard all strings received from the Smart Wand that begin
with & \. Thereis no beep, and the string is not passed to the calling program. This mode may be
used if it is desirable to prevent configuration messages from accidentally being interpreted by an
application as legitimate bar code data.

= Transmit Escape Sequences
In this mode HNWN will transmit to the calling program all strings received from the Smart Wand
that begin with & \. When escape scquences are received, HNWN causes the HP-94 to generate
different sounding beeps in response to the configuration mode escape sequences. These are gen-
erated only if there are no parity or framing errors when the configuration bar code was scanned,
and are generated whether or not the good read beep is enabled for normal bar code data.

Table L-14. Beeps From HNWN for Smart Wand Escape Sequences

Smart Wand Number Beep
Escape Sequence of Beeps Tone

Configuration Complete 4 High
Configuration Partially Complete 2 High
Syntax Error 4 Low

NOTE Because Code 128 bar code labels can contain any of 128 ASCII characters, it is possi-
ble (although unlikely) to encounter Code 128 labels that decode to strings beginning
with & \. If such labels are encountered, HNWN will respond to them as if they were
configuration sequences (assuming the transmit escape sequences option is being
used). Applications that may encounter this situation should use HNWN with the
ignore escape sequences option, or usc HNBC or HNSP alone (without HNWN).

Response to Escape Sequences From Calling Program

The Smart Wand will respond to a numberof escape sequences sentto it through its serial port (using
HNSP). Four ofthese also invoke special responses from HNWN:

® Serial Port Configuration (& -y n p)

m Status Request (& -yn)

® Hard Reset (c -y 1zand & E)

m Save Configuration to Non-Volatile Memory (% -y 5 2)

These may be sent to HNWN ;HNSP with the BASIC PRINT # and PUT # statements or with the
WRITE function (13h). The last three cannot be sent to the Smart Wand using HNBC since the bar
code port is read-only (the first one is handled by HNWN ;HNBC as a special case). Refer to the
"Hardware Specifications” for the pin assignments of a cable that will connect the serial port to the
Smart Wand.

L-18 Hewliett-Packard Bar Code Handlers

Serial Port Configuration Escape Sequence

The format of this escape sequence is as follows:

E.-ynp

where n is a sequence of numeric characters (30h through 39h) that specifies a decimal number
between 0 and 255. If this decimal number is converted to the equivalent binary number, the bit pattern
has the following meaning:

7 6 5 4 3 2 1 0

T T Baud Rate (see table for meaning)

1:2

0:1

 Stop Bits * [

 Parity (see table for meaning)

 1: On

0: Off

1: Enabled

0: Disabled

 Character Delay * [RTS/CTS Handshake * [

Figure L-15. Serial Port Configuration Escape Sequence

Table L-15. Smart Wand Baud Rate Values

Value Baud Rate

150
300
600
1200
2400
4800
9600

O
N
H
W
N
=
0

* Ignored byHNWN. Ouly affects Smart Wand.

Hewliett-Packard Bar Code Handlers L-19

Table L-16. Smart Wand Parity Values

Value Parity

0 Zero
1 One
2 Even

3 Odd
If the Smart Wand receives this escape sequence through its serial port, it changes its secrial
configuration as specified. For example, & - y 62 p would set the Smart Wand serial port to 9600
baud, 2 stop bits, odd parity, character delay off, and RTS/CTS handshake disabled (because 62
decimal corresponds to a bit pattern of 00111110).

The manner in which HNWN responds depends on which channel it is open to. If it is opento the serial
port (channel 1) through HNSP, HNWN sends the escape sequence on to the Smart Wand at the
current baud rate and parity. It then changes the baud rate and parity of the HP-94 serial port to the
values specified by the sequence. This causes the Smart Wand and the HP-94 to track each other’s
serial configuration. When the port configuration is changed this way, the new configuration is
assumed only for as long as the port is open. If the bar code or serial port is closed and then reopened,
it will assume the baud rate and parity specified in the parameter scratch area at the time the port is
reopened.

If HNWN is open to the bar code port (channel 2) through HNBC, HNWN changes the baud rate
and/or the parity of the port. It does not try to write the escape sequence to the bar code port,since
the port is read-only. (For this reason, the serial port configuration escape sequence is the only
sequence that may be written to HNWN ; HNBC without causing an error.) It is assumed that immedi-
ately after this sequence is sent to HNWN ; HNBC,the operator will scan a configuration bar code that
causes the Smart Wand to change parity and baud rate to match those of the HP-94. If this is not
done, all subsequent scans will result in parity or framing errors.

If it is desirable to change both baud rate and parity for the bar code port, the baud rate should be
changed first. The changes should be done as two separate operations, since each change involves
sending an escape sequence to HNWN and having the operator scan the appropriate configuration bar
code.

When the Smart Wand is powered off, then back on, it may or may not return to its default serial
- configuration. This depends on whether the Smart Wand’s serial port configuration has been saved
(discussed in "Save Configuration to Non-Volatile Memory Escape Sequence”).

Status Request Escape Sequence

This escape sequence can be used to obtain various types ofstatus from the Smart Wand. The format
is as follows:

&.yns

where n is a decimal number from 1-6. The meanings of the different values ofn are as follows:

L-20 Hewlett-Packard Bar Code Handlers

Table L-17. Status Request Escape Sequence Parameter

Value Type ofStatus Returned

1 Status message followed by &
2 Status message with selected traller
3 Message ready/not ready response

(for Single Read Mode 2)
4* Smart Wand configuration screen message
5 Serial number
6 Configuration dump ¢

*The Smart Wand responds to & -y 4 s by sending its
oonfiguration screen message, which is not usable by the HP-
94. HNWN traps this sequence, does not send it to the Smart
Wand, and returns error 65h (101).

t if the Smart Wand is in HP-94 default mode,this is 223 bytes long.

If this escape sequence is written to channel 1, it alters the behavior of HNWN ; HNSP. Normally,
HNWN ; HNSP discards all data received by the serial port unless its READ routine is called. However,
when this escape sequence is received, HNWN invokes the WR_RD_EN function of the HNSP
TOCTL routine, writes the escape sequence to HNSP, then places the status returned by the Smart
Wand in the receive buffer. The status will be returned to the calling program the next time the READ
routine is called. The beeper does not sound when the status information is received, even if beeps are

cnabled for normal bar code data.

If this escape sequence is written to channel 2, HNWN ; HNBC returns error 6Dh (109).

NOTE The status messages returned by the Smart Wand are escape sequences, and HNWN
must be configured to transmit escape sequences in order for the calling program to
receive the status messages.

Wand Hard Reset Escape Sequences

- There are two escape sequences that cause the Smart Wand to perform a hard reset. These are:

E.ytz

kE

When the Smart Wand receives one of these escape sequences, it becomes unable to parse escape
sequences for 516 ms (worst case), until the reset operation is complete. When HNWN receives either
of these escape sequences, it sends it to the Smart Wand (through HNSP only) and then waits 530 ms
before returning to the calling program or sending any more characters in the output string. This gives
the Smart Wand enough time to perform the reset operation.

Hewlett-Packard Bar Code Handlers L-21

Save Configuration to Non-Volatile Memory Escape Sequence

This escape sequence has the following format:

k.y52

It causes the Smart Wand to write its current configuration to the Smart Wand’s built-in non-volatile
memory (EEPROM). This operation requires 2.78 seconds (worst case). When HNWN receives this
escape sequence, it sends it to the Smart Wand (through HNSP only) and then waits 2.9 seconds
before returning to the calling program or sending any more characters in the output string. The HP-94
power switch is disabled during this period to prevent powering down of the HP-94 and the Smart
Wand.

CAUTION The Smart Wand must not be powered down by turning off the HP-94 while the
save configuration operation is in progress. Although the power switch is dis-
abled, the reset switch or automatic turn off after very low battery could still turn
the 94 and Smart Wand off. If this occurs, the Smart Wand may become inoper-
able, requiring that it be sent to a Hewlett-Packard service center to be restored to
proper operation.

L-22 Hewliett-Packard Bar Code Handlers

Disc-Based Utility Routines

The disc included with the HP-94 Technical Reference Manual contains 17 utility routines. These utili-
ties are include files with the extension ASM. They can be included as part of assembly language pro-
grams (using the INCLUDE assembler directive), and can be executed from either RAM or ROM.
Below is list of all the utilities.

Table M-1. Utility Routines on Technical Reference Manual Disc

File Name Description Page
BLINK.ASM * Blink the cursor M-3
EQUATES.ASM Equates for HP-94 operating system M-5
FINDOS .ASM Locate operating system file in system ROM M-8
INTERNAL.ASM Call internal entry point of BASIC keyword M-10
IOABORT.ASM Check for low battery, power switch, or timeout M-14
IOWAIT.ASM Enable 1/0 wait state M-18
ISOPEN.ASM Determine if a channel is open M-20
LLHLINKG.ASM Call low-evel handier from high-level handier M-22
NOIOWAIT.ASM Disable 1/0 walt state M-34
READCTRL.ASM Examine hardware status M-36
READINTR.ASM Examine interrupt status M-38
SCANKYBD.ASM * Check if key down M-40
SETCTRL.ASM Write to saved copy of main control register M-42
SETINTR.ASM Write to saved copy of interrupt control register M-44
VERSION.ASM * Return version of operating system or program M-46
XIOCTL.ASM Execute TOCTL routine in any handler M-49
XTIMEOUT.ASM * Execute timeout process when timeout occurs M-51

* Requires the FINDOS.ASM utility.
- These utilities were written to be assembled using the Microsoft assembler MASM. Conditional
assembly is used to allow the Hewlett-Packard copyright notice to appear in the source code, but not
be printed in the list file (extension LST). The copyright notice allows the utilities to be reproduced
for inclusion in an application or for archival purposes without prior written consent of Hewlett-
Packard.

Conditional assembly is also used for the FINDOS utility. This utility is required by the BLINK,
SCANKYBD, VERSION and XTIMEOUT utilities, and is included with each of them (using the
INCLUDE assembler directive). The conditional assembly prevents FINDOS from being included
more than once in the source file.

Disc-Based Utility Routines M-1

 L

Utility Routine Descriptions

Utility routine descriptions consist of the following;

® A brief description of the utility.

® Information on when the utility should be used.

= Program listing.

The program listings start with a comment block that describes the following:

= What the utility does.

& How to call the utility.

@ What is returned by the utility.

m Registers altered by theutility.

M-2 Disc-Based Utility Routines

BLINK.ASM

The BLINK utility in this include file blinks the cursor. Normally, the system timer interrupt service
routine causes the cursor to blink every 500 ms. However, in time-critical handlers such as for the bar
code port, the system timer may be disabled while waiting for data to be received at the port (to
prevent bar code port transition interrupts from being missed). BLINK performs the operating sys-
tem cursor blink operation when the system timeris disabled.

The BLINK utility should be called approximately every 100 ms while the handler waits for data,
thereby allowing the cursor to continue blinking. This helps prevent users from gaining the perception
of no machine activity that accompanies an idle cursor. (The 100 ms calling interval is consistent with
the frequency with which the system timer interrupt routine calls BLINK.)

BLINK uses FINDOSto find the operating system file and the start of the operating system jump
table.

Program listing:

.sfcond

i é | | |
"(c) Copyright Hewlett-Packard Company, 1987. AlL *

rights are reserved. Copying or other reproduction *
of this program for inclusion in an application or *

*

»

*
%

s

for archival purposes is permitted without the prior
uritten consent of Hewlett-Packard Compeny.%

FEREREAAEERARANTRTRTTRS

endif
.lfcond

w
6

%
o

%
8
W

W
y
W
W

»

include findos.asm

FEAAEAAREATRCARSRNRNATRNARTRbd

*
0

Name: BLINK

*
%

Version: 1.3

*
»

Description:

Call the cursor blink routine in the operating system

*
8
%

Call with:
None

L
I

Returns:

Sone

*
%
2

Registers altered:
None

*
%

Notes:

The BLINK routine is normslly called every 100 ms by the
system timer interrupt service routine, and should be called
here only when the system timer interrupt is disabled.

*
%
%
%
8

The BLINK routine decrements a count in the operating system

scratch space each time it is called. The cursor state is
changed only when the count reaches 0. When the cursor stateW

W
Y

N
P

W
Y

V
Y

V
e

W
P

N
y

N
p

V
e

V
s

V
e

W
Y

W
L

V
e
W

W
2

W
)
W

W
E

V
e

W
y

W
P

W
L

0
3

W
y

»
*

Disc-Based Utility Routines M-3

...BLINK.ASM

* is changed, the count is reset to 5.i
3]
’
.
’

BLINK proc near
push bx
push si
push ds
push es
call FINDOS

; DS is SYOS segment

s ES is operating system pointer table segment

push ds ; Push cursor blink routine segment
push es: [38h) ; Push cursor blink routine offset
mov 8i,es: [00h]
mov ds,si ; DS = operating system data segment
mov si,sp

call dword ptr ss:[si)
add $p,4
pop es
pop ds
pop si
pop bx
ret

BLINK endp

M-4 Disc-Based Utility Routines

EQUATES.ASM

The EQUATES include file is a set of symbolic names for use in writing HP-94 assembly language
programs. These include names for operating system functions, register locations in the register save
area for handler routincs, and certain operating system values and locations.

Program listing;

-sfcond
if1

™ *(c) Copyright Hewlett-Packard Company, 1985, 1987. AllL *
" rights ere reserved. Copying or other reproduction of *
* this program for inclusion in en application or for *
" archival purposes is permitted without the prior written *
v consent of Hewlett-Packard Company." *
: TEARRERRERE

endif
-lfcond

; Equate values for the WP-94

; Macros to push and pop registers in order expected by handlers
pushregs macro

pushf

push bp
push es
push ds
push di
push 8i
push dx
push cx
push bx
push ax

mov bp,sp
endn

popregs macro

pop ax
pop bx
pop 133
pop dx
pop si
pop di
pop ds
pop es

pop bp
popf
ondm

; Symbolic names for registers relative to BP

: (e.g. AXREGIBP] is the saved value of AX)

AXREG oqu 00h
ALREG oqu 00h
AHREG oqu oth
’

BXREG «qu 02h
BLREG oqu 02h
BHREG oqu 03h

Disc-Based Utility Routines M-5

...EQUATES.ASM

;
CXREG
CLREG
CHREG

i
DXREG
DLREG
DHREG

’

SIREG
DIREG
DSREG
ESREG
BPREG

OS_PTRTBL_SEG

HP-94 ADDRESSES

8
~
.

®
e
W

®
g

W
y

W
y

W
e

W
y

SCRATCH_SEG

0
~

YSROM_SEG

8
-

ENTBLSI1ZE

ESTART_STATUS

.o
W

we

g

EVENTTBL
:
OPENTBL
;
KEY_SCAN
CURSOR_BLINK
TIMEOUT
VERSION

FUNCTION CALLS

®
e

W
9

%
3

W
e
B
W

N
y

V
e

W
y

W
e

W
y

W
e
W

W
y
W

B
o
2
2
a
3
f
B
B

21
88

28
88

2
22

2
2

2
8

Example which loads AH:
Output the line pointed to by ES:BX

mov
fnt

o«qu
aqu

Déh
04h
05h

23
88

JB
8

2
B

00h

08h

0Ah

14h

18h
1Ah

24h

3Ah
3Ch

Call opersting system functions as follows:

#h,PUT_LINE
1Ah

00h
01h

M-8 Disc-Based Utility Routines

; Operating system pointer table segment

w
e

®
a

w
e
W

0S_PTRTBL_SEG is a segment wddress of a table of operating system pointers.
The contents of this table point to where the system addresses
are located. All emtries in the address table are 2-byte entries.

The values below are the offset addresses in OS_PTRTBL_SEG.

System RAM data segment

System ROM segment

Number

Offset

Offset

Offset

Offset

Offset
Offset

Offset
Offset

of open table entries

of status area in OSRAM_SEG

of maximum directory # in OSRAM_SEG
of system timer event table in OSRAM_SEG

of channel

(in
(in

¢in
(in

Each function call equate has two forme, one for directly loading
AH (mov ah,FUNCTION), the uvther for loading AX with a word value.
The form for loading AX has “x100h" appended to the base name.

uSYOS*
flsYosll

IsYos"

"SYOS"

table in OSRAM_SEG

file) of jump to key scan rou

file) of jump to cursor blink
file) of jump to timeout util

file) of system ROM version n

GET_LINE
PUT_CHAR
PUT_LINE
CURSOR
BUFFER_STATUS
BEEP
TIME_DATE
TIMEOUT
SET_INTR
GET_MEM
REL_MEM
MEM_CONFIG
ROOM
OPEN
CLOSE
CREATE
READ
WRITE
DELETE
SEEK
FIND_FILE
FIND_NEXT
DISPLAY_ERROR

o
w
r
N

w
p
g
W

®

2

END_PROGRAMx100h
GET_CHARx100h
GET_LINEx100h
PUT_CHARX100h
PUT_L INEX100h
CURSORx100h
BUFFER_STATUSx100h
BEEPX100h

TIME_DATEx100h

TIMEOUTX100h
SET_INTRx100h
GET_MEMx100h
REL_MEMx100h
MEM_CONF1Gx100h
ROOMx100h
OPENX100h

CLOSEx100h
CREATEX100h
READX100h
WRITEx100h

DELETEx100h
SEEKx100h
FIND_FILEx100h

FIND_NEXTx100h
DISPLAY_ERRORX100h

2
2
8
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
2

Example which loads AX:
Output the letter 'j! to the LCD

:

int

2
3
0
2
2
R
0
0
2
0
0
0
00
20
00
00
00
04
1

02h
03h

05h

...EQUATES.ASM

ax,PUT_CHARX100h + %jn
1Ah

0000h
0100h
0200h
0300h
0400h
0500h
0600h
0700h

Disc-Based Utility Routines M-7

FINDOS.ASM

The FINDOS utility in this include file finds the operating system (file SYOS) in the system ROM,
The FIND_FILE and FIND_NEXT functions (16h and 17h) cannot be used because running pro-
grams do not have access to directory 5, the system ROM directory. The FINDOSutility searches the
system ROM directory table to locate SYOS.

This utility is used by the BLINK, SCANKYBD, and XTIMEOUT utilities, all of which utilities call
routines whose locations are defined by a jump table at a known location in the operating system file.
It is also used by VERSION to locate the version numberat a known location.

Program listing:

Xxlist : Suppress findoshere macro listing
findoshere macro

.sfcond
if1

ARARARARRARARR

* “(c) Copyright Hewlett-Packard Company, 1987. AlL *
™ rights are reserved. Copying or other reproduction *
:* of this program for inclusion in an application or *
;* for archival purposes is permitted without the prior *
:* written consent of Hewlett-Packard Company." -
: FRRRERRRTRTRCEEAARARREANAAARAARERAARNNRARGDRARTORRY

endif
. lfcond

TABLE_SEG EQU 16h
SYSROM_SEG EQU 08h
2TRETR

o
s

;* Name: FINDOS
*

;¥ Version: 1.3
*

;* Description:

Find the start of the SYOS file

.
w
a

ws
w
e

@
*

Call with:

None

Returns:

DS = gtart of SYOS file (0 if SYOS not found)
ES = start of operating system pointer table

*
B

%
%

%
%

%
%

* Registers altered:
DS, ES

*
%

* = o " 3

1f SYOS is not found, DS = 0.

W
P

M
E

W
e

W
E
W
W

W
y

W
y

W
y
W

W
e

V
e

M
G
e

W
o
W

*

i §

FINDOS proc near

push bx
push cx

mov bx,TABLE_SEG
mov es,bx ; ES is TABLE_SEG

M-8 Disc-Based Utility Routines

FIND1:

FIND2:

NOFIND:

FIND3:

FIND4:

FINDOS

...FINDOS.ASM

bx,es: [SYSROM_SEG)

ds,bx ; DS is SYSROM_SEG
cx,ds: [06h] ; Get start of files pointer

cx,bx ; CX is number of paragraphs in directory
cX ; Account for “*DIR*" entry

bx,ds
bx

ds,bx ; DS[0] is name
ds: [2),'0'+'S'*100h ; 10S'
FIND2
“:IOJ'lslqlvl'1wh ; lsyl

FIND3

FIND1

bx,bx

ds,bx s Set DS = 0 (not found)
short FINDG

ds,ds: [7]

cX

bx

FINDOS

FINDOS eq $

; DS is SYOS segment

Disc-Based Utility Routines M-9

INTERNAL.ASM

The INTERNAL utility in this include file calls the internal entry point of a type A file. The internal
entry pointis the address at offset 02h in the file — the second pair of bytes in the program header. It
is used mainly for type A files that are new BASIC keywords, allowing access to the functionality of the
keyword without using the interaction between the keyword and the BASIC interpreter. Refer to the

“Program Exccution” chapter in part 1, "Operating System”, for details.

The INTERNAL utility calls the internal entry point with a FAR CALL, so the called program should

end with a FAR RET.

Program listing:

.sfcond
if1

NESRETARARRTRTRRR

"(c) Copyright Hewlett-Packard Company, 1987. All
rights ere reserved. Copying or other reproduction
of this program for inclusion in an application or
for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company.®

mmmmmmmmttt

endif
.lfcond

*
*
R
0

*
%

%
%

“e
%o

my
W
y

ws
W
W

*
» Name: INTERNAL

Version: 1.3

.
%

Description:

Call the internal entry point of a type "A" file

*
%

»

Call with:

$S:SP+2 = gegment address of file name
$S:SP = offset address of file name

2
N

* Returns:
* AL = Error code:
* 00h No error

65h (101) 1llegal parameter
66h (102) Invalid directory rumber
67h (103) File not found

R
8

Registers altered:

AL (if the internal entry point is called, the return

value in AL is the value returned by the internal entry
point)

*
5
%
B
0

Notes:

INTERNAL verifies that the file is type A%, and that
the internal entry point offset is within the file.

*
%

8
0
8

All registers psssed to INTERNAL are preserved for the
call to the internal entry point.

"
e

8

The address of the file name is passed on the stack so that

W
e

W
E

W
e

W
y
g

W
y

W
E

V
e
e

W
e
W

N
y

V
e

W
O

V
s

V
P

V
e

V
e

U
y

V
§

V
I

V
4

W
e

W
y
W

W
F

G
y
W

W
y

W
y

W
y

N
5

V
e
O

M-10 Disc-Based Utility Routines

all registers may be passed to the internal entry point routine

...INTERNAL.ASM

*

RRRER
L
Y
Y

FIND_FILE equ 16h
BUFFER_SIZE equ OEh

AXREG oqu 00h
ALREG equ 00h

AHREG equ 0th
[

BXREG equ 02h
BLREG equ 02h
BHREG oqu 03h

’

CXREG oqu 04h
CLREG oqu 04h
CHREG equ 05h

.

DXREG equ 06h
DLREG equ 06h
DHREG oqu 07h

SIREG oqu 08h

DIREG equ OAh
DSREG oqu 0Ch
ESREG equ OEh
BPREG equ 10h

’

FLAGREG equ 12h

REGSAVE_SIZE equ 14h

FILE_SEGMENT equ REGSAVE_SIZE+BUFFER_SIZE+4

FILE_OFFSET equ REGSAVE_SIZE+BUFFER_SIZ2E+2

pushregs macro

pushf

push bp
push es
push ds
push di
push si
push dx
push ex
push bx
push ax

mov bp, sp
endm

popregs macro
pop ax
pop bx
pop cx
pop dx
pop si
pop di
pop ds
pop es

pop bp
popf

endm

Disc-Based Utility Routines M-11

...INTERNAL.ASM
 .

INTERNAL proc near
sub sp,BUFFER_SI2E ; Reserve file information buffer

’

pushregs
lea dx, [bp+REGSAVE_SIZE]; offset of file information buffer

’

push 88

pop ds ; DS =SS
mov es,FILE_SEGMENT [bp]l
mov bx, FILE_OFFSET [bp)

; DS:DX = address of file information buffer

mov sh,FIND_FILE
int 1Ah ; 0.S. function call

;s Check for errors...

or al,al
jnz ENTRY_ERROR

; CX:DX = directory table entry of the file
push ss

pop ds
mov si,sp

lea si, [sT+REGSAVE_S1ZE]
; DS:SI = directory table entry of the file

mov al,ds: [si+07h]
cp al,"Av

jne ENTRY_NOT_A

mov cx,ds: [si+0Ch) : high byte of end-of-data address
mov dx,ds: [si+0Ah]) ; low word of end-of-data address
mov ds,ds: [si+08h] ; segment address of file
mov ax,ds: [02h) ; Internal entry point offset
cmp ax,06h ; Check for valid offset (must be >= §)
jb ENTRY_BAD
or €x,cx
jnz ENTRY_CALL
cmp ax,dx ; low word of end-of-data address
jae ENTRY_BAD

; Address is OK

; DS is segment of file
ENTRY_CALL:

mov FILE_SEGMENT [bp] ,ds ; segment of internal entry point
mov FILE_OFFSET[bpl ,ax ; offset of internal entry point
popregs ; restore all registers
add sp,BUFFER_SIZE ; discard buffer (no longer needed)
push cs
push sp ; leave room for offset of INTERNAL1Y
pushf
sub sp, 4 ; leave room for segment and offset addresses
push bp
mov bp,sp
push ax

.

; Stack relative to BP (* means not yet filled in)

’

; 10h FILE_SEGMENT

; OEh FILE_OFFSET

; OCh Caller's return address (offset)
; OAh CS (my segment)

; 08h * offset of INTERNAL1
; O6h Fleg register
; O4h * Segment of internal entry point
; 02h * Offset of internal entry point

M-12 Disc-Based Utility Routines

...INTERNAL.ASM

.

; OOh my BP
3-02h my AX

,

mov ax,offset INTERNAL1
mov [bp+08h] , ax

mov ax, [bp+10h) ; file segment address
mov [bp+4] , ax
mov ax, [bp+OEh] ; file offset address
mov [bp+2] ,ax
pop ax

pop bp
fret ; Internsl entry point ends with a FAR RET

INTERNALY:

ret 4 s NEAR RET and add 4 to SP

ENTRY_NOT_A:
ENTRY_BAD:

mov al,65h : Illegal parameter
ENTRY_ERROR:

mov bp,sp
mov ALREG{bp] ,al
popregs
add 8p,BUFFER_SIZE

ret 4 ; NEAR RET and add 4 to SP

INTERNAL endp

Disc-Based Utility Routines M-13

IOABORT.ASM

The TOABORT utility in this include file allows a handler to check for system errors that should cause
1/0O to be aborted: low battery, power switch pressed, and system timeout. TOABORT will report
errors C8h (200), 77h (119), and 76h (118) respectively for these conditions, but only if the operating
system I/O wait state has been enabled using TOWAIT. To use this during the READ or WRITE
routine, the handler would do the following;

s Enable the operating system I/O wait state by calling TOWAIT.

® Call IOABORT periodically while waiting to receive or transmit data, and check if it returns an
error code that indicates I/O should be aborted. It can be called as often as is convenient, such as
in the main READ or WRITE routine wait loop. It should be called at least every second, since
that is the system timeout resolution (although low battery or power switch may not occur exactly
on a 1 second time boundary).

= If the timeout error is reported by IOABORT,the user-defined timeout interrupt routine defined
by SET__INTR (0Ah) will not have been executed. The handler should call XTIMEOUT which
will call the user-defined timeout interrupt routine if one was defined, or turn the machine off. If
the low battery or power switch errors are reported by IOABORT, user-defined low battery or
power switch interrupt routines defined by SET_INTR (0Ah) will already have been executed.

= Abort I/O by halting the process of receiving or sending data.

m Disable the operating system 1/0 wait state by calling NOTOWAIT.

= End the READ or WRITE routine, and return the error code from IOABORTto the caller.

TOABORT must be used in conjunction with TOWAIT, which sets the operating system 1/O wait
state. The tables below show how the I/O wait state affects how each of these error conditions are
reported by IOABORT.

Table M-2. Low Battery interrupt Routine Behavior During 1/0

1/0 Wait User-Defined Detauit
State Behavior Behavior

Waiting * IOABORT reports error C8h (200). Program halted, Error 200 displayed,
User-defined low battery interrupt rou- and machine walts for power switch to
tine executed when low battery condi- be pressed to tum off.
tion occurs. ¢

Not waiting TOABORT does not report an error. Program halted, Error 200 displayed,
User-defined low battery interrupt rou- and machine waits for power switch to
tine executed when low battery condi- be pressed to tumn off.
tion occurs.

* Only if IOWAIT was called.

1 Routine has aiready been executed by the time OABORT reports the error.
M-14 Disc-Based Utility Routines

...IOABORT.ASM

Table M-3. Power Switch Interrupt Routine Behavior During 1/0

 User-defined power switch interrupt
routine executed when power switch
pressed. Interrupt routine not called if
power switch disabled.

1/0 Wait User-Defined Default
State Behavior Behavior

Waiting * IOABORT reports error 77h (119). Machine turns off. No default action
User-defined power switch interrupt taken if power switch disabled.
routine executed when power switch
pressed. 1 Error not reported and inter-
rupt routine not called i power switch
disabled.

Not waiting TOABORT does not report an error. Machine turns off.

 * Only if IOWAIT was called.

1 Routine has already been sxecuted by the time IOABORT reports the error,

Table M-4. Timeout Interrupt Routine Behavior During I/0

 User-defined timeout interrupt routine
not executed.

1/0 Wait User-Defined Default
State Behavior Behavior

Waiting * IOABORT reports error 76h (118). IOABORT reports error 76h (118).
Handler must call XTIMEOUT, which Handler must call XTIMEOUT, which
will execute user-defined timeout inter- will turn machine off. Error not
rupt routine. Error not reported if reported if timeout disabled.
timeout disabled.

Not waiting TOABORT does not report an error. IOABORT does not report an error.
No default action taken.

 * Only if IOWAIT was calied.

*
%
%
8

ws
®g

ma
%o

we
N

ws
»

.sfcond

"(c) Copyright Hewlett-Packard Compeny, 1986.
rights are reserved. Copying or other reproduction
of this program for inclusion in sn spplication or
for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company.®

endif
.lfcond

Disc-Based Utility Routines

» »
*

%

All

CTTIRRN

M-15

...lJOABORT.ASM

* Neme: IOABORT
+ Version: 1.3

o
%
o

m
g

w
e

m
e

@
y

-

Description:

»

* (designed for use by a handler while doing 1/0)
*

* Call with:
* None
»

* Returns:

* AL = Error code:
* 00h No error

* 76h (118) Timeout
7h (119) Power switch pressed
C8h (200) Low battery

Registers altered:

AL

*
%

»

Notes:

*
%

%
%
8

any errors not previously reported.

*
%
8

w
e

%
y
W

W
y

M
g

W
4

W
e

W
y

N
e

W
e

G
e

W
e

W
p

W
y
~
.
.
-

®
0
%

W
e

W
Y

W
y
W

V
e
g

W
y

W
y

W
e

@
*

TOABORT proc near

push bx
push cx
push ds
mov bx, 16h
mov ds, bx

mov bx,ds: [14h]
add bx,4

mov ds,ds: [00h)
mov al,ds: [bx]
mov cx,0FE76h
test al,0MH
jne TOABORT1
mov cx,0F7C8h
test al,08h
jne I0ABORT 1
mov cx,0EF77h
test ol,10H
jne 10ABORT1
mov cx,0FFO0h

TI0ABORT1:

and byte ptr ds: [bx],ch
mov al,cl
pop ds
pop cx

M-16 Disc-Based Utility Routines

Timeout is checked first, followed by low battery,
and finally power switch pressed; if there are multiple

error conditions, only the first one found will be
reported. Subsequent calls to IOABORT will report

IOABORT assumes that IOWAIT and NOIOWAIT are used
by the handler to set up timeout processing.

Check for any error conditions while waiting for dats

; g

; BX points to current status

stimeout?

i (yes)

; low battery?

i (yes)

;power SW off?

i(yes)

;clear flag with CH

TOABORT 13
3

...JOABORT.ASM

Disc-Based Utility Routines M-17

IOWAIT.ASM

The TOWATIT utility in this include file enables the operating system I/O wait state. This is the state
in which low battery, power switch, and timeout errors can be reported by the IOABORT utility while
handler READ or WRITE routines are waiting for 1/0.

The low battery error will occur when the operating voltage drops to 4.6 + 0.05 volts or below. The
power switch error will occur when the power switch is pressed. It will not occur if the power switch
has been disabled using the SET_INTR function (0Ah). The timeout error will occur when the
current system timeout value expires. The system timeout value is set by the TIMEOUT function
(09h), and has a default time of 120 seconds. The timeout error will not occur if the timeout has been
disabled by setting it to zero.

Whenever TOWAIT is called, it resets the timeout to the system timeout value. This allows a handler
to restart the timeout period after cach byte is sent or received by calling TOWAIT again.

When a handler READ or WRITE routine ends, it must call NOIOWAITto indicate that I/O is not

The 1/O wait state sct by TOWAIT determines how TOABORT reports these error conditions. Refer
to the TOABORT utility for details.

Program listing-

.sfcond
if1l

RAEASARANRNSNEARRARRAR

“(c) Copyright Hewlett-Packard Company, 1986. ALl
rights are reserved. Copying or other reproduction
of this program for inclusion in an application or
for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company."

TRAREERERSNRNARAARANENARERN

endi f
. lfcond

*
%
%

*
%

%
%

%

«
e

w
e

me
we

%o
wp
e

»

:ARERRERERARARRTRrTRd

;% Neme: IOMWAIT

:* Version: 1.4
*

-r
o

:* Description:
Ensble 1/0 wait state

*
%

* Call with:
None

*
@

* Returns:
None

.
8

* Registers altered:
None

@
W
e

M
u

W
e

W
e

V
e

W
e

W
y

W
y

W
y
N
o

Notes:

Ensbles timeout if timeout interval is not zero.*
8
8
8

M-18 Disc-Based Utility Routines

-..IJOWAIT.ASM

IOWAIT proc near
push ax
push bx
push si
push di

push bp
push ds

mov ax, 16h
mov ds, ax

mov bx,ds: [14h]
add bx,4 : BX points to current status
mov si,ds: [1Ah] ; System timer event control table
mov di,ds: [18h]
mov bp,di
add di,2 ; DI points to timeout interval
add bp,Obh ; BP points to timeout counter
mov ds,ds: [00h] ; DS = operating system data segment
or byte ptr ds:[bx),20h; 1/0 waiting flag set
mov ax,word ptr ds:[di] ; Read timeout interval
or ax,ax

jz 10MAITO ; No timeout if zero
mov ds: [bp] ,ax ; Timeout counter set to timeout interval
mov byte ptr ds:13[si],200 Timeout enable (1 second)

IOWAITS:

pop [

pop bp
pop di
pop si
pop bx
pop ax
ret

IOWAIT endp

Disc-Based Utility Routines M-19

ISOPEN.ASM

The ISOPENutility in this include file checks if a channel is open. The primary use of ISOPEN is
for configuration programs to determine if a handleris already open.

When a handleris closed, configuration programs create a parameter scratch area, write configuration
parameters into it, and put the scratch area address in the appropriate entry in the handler information
table. If the scratch area already exists, the handler information table entry will already point to the
scratch area, and the configuration program will write its parameters into the existing scratch area.

When a handler is open, however, the entry in the handler information table is the address of the
handler scratch area, not of the parameter scratch area. If the configuration program is run after the
handler is open, it could misinterpret the handler information table entry, and modify the handler
scratch area by mistake. ISOPEN allows configuration programs to check if the handler is open
regardless of the meaning of the entry in the handler information table. This allows configuration pro-
grams to take different action depending on whether or not the handler is open. Refer to the "User-
Defined Handlers” chapter in part 1, "Operating System", for information about using the handler
information table.

Program listing:

.sfcond
if1

ARRNEAETRAE

"(c) Copyright Hewlett-Packard Company, 1986. All -

rights are reserved. Copying or other reproduction *
of this program for inclusion in an spplication or -

*

**
%

%
%

%

for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company.*

RERARANERAEEANAANERRRARRRENETRREANERRRERRRNSRSTRRRd

endif
.lfcond

ARANTRATTNRNSTARRdAw

-

:* Name: 1SOPEN
*

:* Version: 1.3
»

;* Description:
* Check if a channel is open
»*

;* Call with:
AL = Channel rumber

.
w
e

®
e

w
e

.
%

w
0

*
«e

w
p

w
e

*
T

*
% Returns:

AL = Error code:
00h No error (channel open)
65h (101) lllegal perameter
65h (105) Channel not open

®
e
%

w
e

w
0

w
e

»
*

%
%

Registers altered:
AL

*

Notes:

w
e
e

wy
ws

we
%
N

g

M-20 Disc-Based Utility Routines

...ISOPEN.ASM

0BIT

ISOPEN

ISOPEN1:

,

I1SOPEN_ERR:

1SOPEN

J
U
T
I
T
H
H
I
T
I
L
E

- w
3
8

-
~

x o 3
33

ret

mov
mp

10h

near
ds
si
ax
si,16h
ds,si
si,ds: [0Ah)]
sh,eh
ax,si

ISOPEN_ERR
si,ds: [24h)
ds,ds: [00h)
sh,0Ch
sh
si,ax
ax
al,6%h

Size of open table
Set AH=0

Check for valid channel #

Open channel table
DS = operating system data segment
0Ch (12) bytes per open table entry
Result to AX
DS:S1 points to channel entry
Restore AN

Preload “Channe! not open®
byte ptr ds:[si],0BIT; Is channel open?
1SOPEN1

al,al

si
ds

al,65h
ISOPEN1T

-
’

-
’

Channel not open.
Channel is open. Return 00h.

Restore AH

Illegal parameter

Disc-Based Utility Routines M-21

LLHLINKG.ASM

The handler linkage routines are in LLHLINKG.ASM. This set of utilities is a single include file
that can be used as part of a high-level handler to call a low-level handler. Below is a list of all the link-
age routines.

Table M-5. Handler Linkage Routine List

Name Description

LLHCLOSE Call CLOSE routine of low-level handler
LLHIOCTL Call IOCTL routine of low-level handler
LLHOPEN Call OPEN routine of lowevel handler
LLHREAD Call READroutine of low-evel handler
LLHRSVD2 Call RSVD2 routine of low-level handler
LLH_RSVD3 Call RSVD3 routine of low-level handler
LLHTERM Call TERM routine of low-evel handler
LLHWARM Call WARM routine of low-level handler
LLHWRITE Call WRITE routine of low-level handler

All the information about the linkage routines and how to use them is in the “User-Defined Handlers"
chapter in part 1, "Operating System".

Program listing:

.sfcond
if13

L20040443422

%(c) Copyright Hewlett-Packard Company, 1986. ALl *
rights are reserved. Copying or other reproduction *
of this program for inclusion in an application or *
for archival purposes is permitted without the prior *

written consent of Hewlett-Packard Company.® **
%

%
%

%

! |

endif
.l fcond

List of functions:

LLH_OPEN - calls OPEN routine of specified handler

LLK_CLOSE - calls CLOSE routine of specified handler

LLH_READ - calls READ routine of specified handier

LLH_WRITE - calls WRITE routine of specified handler

LLH_WARM - calls WARM routine of specified handler

LLH_TERM - calls TERM routine of specified handler

LLH_IOCTL - calls 10CTL routine of specified handler

LLH_RSVWD2 - calls RSW2 routine of specified handler

®
e

%
o

W
p
M

W
e

W
e

W
E
e

B
y

W
E

W
y

W
5
W

N
y

W
e
W

N
y

V
e

W
y

LLH_RSVD3 - calls RSVD3 routine of specified handler

M-22 Disc-Based Utility Routines

-..LLHLINKG.ASM

L

:
page

AXREG equ 00h
ALREG equ 00h
AHREG equ 01h

BXREG o 02h
BLREG equ 02h
BHREG equ 03h
;
CXREG equ 04h
CLREG equ O4h
CHREG oqu 05h

DXREG oqu 06h
DLREG equ 06h
DHREG oqu 07h

;
SIREG equ 08h
DIREG equ OAh
DSREG equ 0OCh
ESREG equ OEh
BPREG equ 10h

oBIT equ 10h

save_regs macro

;
: Save registers on stack in the order used by handler catl

i
push ds

push bp
pushf
push cs
mov bp,offset RET_TO_HLH

push bp

push bp
push es

push ds
push di
push si
push dx
push X
push bx
push ax

mov bp, sp
mov 88 :BPREG [bp] ,bp

endm

restore_regs macro

i
: Pop registers off of stack and return to high-level handler

i
pop bx : Get BN into AH
mov ah,bh

pop bx
pop cx

Disc-Based Utility Routines M-23

...LLHLINKG.ASM

3
3
3
3
3

-
e
- o -

3

g
a
p
a
c
e

Name: LLH_OPEN

*
%

Version: 1.5

Description:

*
%

%

Call with:
AL = Channe! number to open¢

%
o

Wm
e

W
E

W
e

W
y

W
e

W
e

W
e

W
y

W
y

»
+

»

*

* Returns:

* AL = Error code:
* 00h No errors

*
%
8

+
%

Registers altered:

* AL
*

* Notes:
* None.

w
5

Wm
s

®
a

W
e

%
y

M
y

M
g
e

W
s

W
e

W
y
W
W
e

W
E

W
o

W
E

W
y

V
e

®

*
»

LLH_OPEN proc

save_regs

Save DI and SI for FIND_HNDLR

w
s
W

w
e

mov

mov

cmp
JL
mov
jmp

LLK_OPEN_1:

Call the OPEN routine of the low-level handler

ES:BX = Address of handler name string to open

65h (101) Illegal parameter
66h (102) Directory does not exist
67h (103) File not found
6Ah (106) Channel already open
6Eh (110) Access restricted
(any others returned by handler)

near

di,es
si,bx

Get segment addr of work area out of channel table

sl,5
LLH_OPEN_1
al,65h
short LLH_OPEN_5

bx, 16h
ds,bx
bx,ds:24h

M-24 Disc-Based Utility Routines

-
y

ARARRERREAAARERREREAAAARRECREATNCAAAAAETRERTRTRRbbbddd

Save regs on stack

Valid device channel
Yes, continue

Invalid parameter
Exit with return code in AL

Table of addresses

Get offset of open table

...LLHLINKG.ASM

mov ds,ds:00h
mov sh,0Ch ; Length of each entry in open table
mul ah ; Multiply by channel number
add bx, ax
test byte ptr ds:[bx],0BIT; 1s channel open?
jnz LLH_OPEN_2 ; Yes, continue
mov al,6%h ; Channel not open
Jwp short LLH_OPEN_5 ; Exit with return code in AL

LLH_OPEN_2:
mov cx,ds:5 [bx) ; Get stored value in open table
push ds ; Address and value of

push bx ; DS entry in open table
push ex

Set up my return address for open entry of handler

w
e
W
W

push cs
mov dx,offset LLH_OPEN_4 ; Return address this program
push dx ; Return address in DX

Set up address of handler entry on stack for IRET to branch to

call FIND_HNDLR ; Get segment address of handler

and al,al ; Any errors
je LLH_OPEN_3 ; No, continue
add sp,4 ; Yes, clean up stack
jmp short LLH_OPEN_&4 : Return with error code in AL

LLH_OPEN_3:
mov ds:08h [bx] ,cx ; Save handler CS
pushf ; Put flags for IRET
push cx ; Segment address of handler
mov bx,6 ; Offset of OPEN entry
push bx

Restore registers to the values they had when function was called

.
y

w
¢

w
3

0 - -
t

sp, 10h : Point to register values
ax
bx
cx
dx
8i
di

ds
es
bp§

3
3
3
8
3
3
8
¥
R

Branch to handler entry

e
W
W

B sp,9*2+10h ; Point to IRET addr

iret

Return to calling program with return code in AL
NOTE: it is the responsibility of the handler entry that was

just executed to set AL to sppropriate return code

w
e

%
p

W
y

®
y

w
e

w
e

; Address in DX

Disc-Based Utility Routines M-25

...LLHLINKG.ASM
]

LLH_OPEN_é4:
pop ex

pop bx
pop ds
xchg ds:05h [bx],cx

mov de:0Ah [bx],cx
LLH_OPEN_S:

restore_regs

LLH_OPEN endp
page

*
%

Name: LLH_CLOSE

*
#

Version: 1.5

*
»

Description:

*
%
8

Call with:
AL = Channel number to close*

» Returns:

AL = Error code

*
%

8

Registers altered:

AL

*
%

%

Notes:

None.»
W
i

W
e

W
5

W
e

%
e

W
e

%
o
N

S
0

W
e
W

V
e

V
e

W
P

V
e

W
Y

W
y

W
y

W
E
e

V
e

W
0

-
»

LLH_CLOSE proc near

save_regs
mov bx, 0%h
jmp CALL_HNDLR

LLH_CLOSE endp

page

Call the CLOSE routine of the low-level handler

e
w
s

s
®
s

w
p

w
p

Get the saved copy of segment address

of high-level handler's work area

Restore to open table and get

saved copy of segment address of
low-level handler's work area
Save low-level handler's work area seg

Return to high-level handler

; 3 g :

Offset of CLOSE entry
Go to handler

;"m.mm“immn”mt*itt&tttitt'fit

-
- Name: LLH_READ

Version: 1.5

»

M-26 Disc-Based Utility Routines

;
;

:* Description:
;* Call the READ routine of the low-level handler
otk
’

;¥ Call with:
;* AL = Channel number from which to read
:* CX = Nuwber of bytes to read
s* ES:BX = Address of read buffer
o
,

;* Returns:

...LLHLINKG.ASM
 L

:* AL = Error code
s* CX = Number of bytes actually read
34
’

:* Registers altered:
ALK
;Q

:* Notes:
:* None
;Q

;mmmmomm

LLH_READ proc near

save_regs
mov bx,0Ch ; Offset of READ entry
Jwp CALL_HNDLR ; Go to handler

LLH_READ endp

page
;fimmfimmmttttncttfi

:t

;* Name: LLH_WRITE
a
’

;* Version: 1.5
;'

s* Description:
;* Call the WRITE routine of the low-level handler
o
’

:* Coll with:
:* AL = Channel number to write
:* CX = Number of bytes to write
;* ES:BX = Address of write buffer
-
r

;* Returns:
;* AL = Error code
;* X = Number of bytes actually written
oW
.

:* Registers altered:
;* ALCX
;i

;* Notes:
:* None
;'

:AAEERETREERERRCETERIRPRrrrrrddddddd

LLH_WRITVE proc near

save_regs
mov bx,O0Fh ; Offset of WRITE entry

jmp CALL_MNDLR ; Go to handler

LLH_WRITE endp
page

ARTR

*

s* Name: LLH_WARM
¥
.

;% Version: 1.5
ot

;* Description:
:* Call the WARM routine of the low-level handler

Disc-Based Utility Routines M-27

...LLHLINKG.ASM

»;
;¥ Call with:
:* AL = Channel number
ol

;* Returns:
i* AL = Error code
o
’

:* Registers altered:
* AL
;t

:* Notes:
;* None

i
;

LLH_WARM proc near

save_regs
mov bx, 12h ; Offset of WARM entry
jmp CALL_HNDLR ; Go to handler

LLH_WARM endp

page
cRRETRRENERETRERTEELETRETTRARERAEATTRbRbi

*

* Name: LLH_TERM
*

* Version: 1.5
*

* Description:
* Call the TERM routine of the low-level handler

*
%

Call with:
AL = Channel number

AH = Cause of termination

*
%
8

Returns:

AL = Error code

*
*

%

Registers altered:

AL

*
%

%

Notes:
Note that entry conditions are different for LLH_TERM
than those which are seen by the low-level handler (AH, AL).
LLH_TERM moves AH (cause of terminetion) into AL before
calling the low-ievel handler.*

%
%
8

fi
i
~
‘
~

W
E

W
e

N
I

B
y
W

W
e

V
e
W

N
y

W
e

W
e
W

W
y

W
S
e
W

W
Y

W
G

V
g

W
y

W
y

W
y

W

» » - »

LLH_TERM proc near

save_regs
pop bx ; Get original AX into BX
xchg bh,bl : Exchange AK and AL
push bx ; Put back on the stack
mov bx, 15h : Offset of TERM entry
jmp CALL_WNDLR ; Go to handler

LLH_TERM endp
page

M-28 Disc-Based Utility Routines

-..LLHLINKG.ASM
 !

*

* Neme: LLH_IOCTL
*

* Version: 1.5
*

* pescription:
* Call the 10CTL routine of the low-level handler
*

* Call with:
* AL = Chanmnel rumber
* AH = JOCTL function code

* (others as defined by handler)
-

* Returns:
* AL = Error code

(others as defined by handler)

*
%
%

Registers altered:
* AL
* (others as defined by handler)
-

* Notes:
* MNone

®e
%y

Mg
W
e

We
Mo
e

%
6

he
W

B0
Ne

Be
Ve

WE
N
p

@
5
e

WP
W
P

%5
We

N
y
e

WF
W6

}
.

» 5 * *

LLH_IOCTL proc near

save_regs
mov bx, 1Bh ; Offset of IOCTL entry
jmp CALL_HNDLR ; Go to handler

LLH_lOCTL endp

page
;mm Ehddthdtdddtdtdtddtdbbtiidy

ol
®

;* Name: LLH_RSVD2

+
%

Version: 1.5

*
%

Description:
Call the RSW2 routine of the low-level handler

*
8

Call with:
AL = Channel rumber
(others as defined by handler)

[
B
B

Returns:

AL = Error code
(others as defined by handier)

*
%
9

Registers altered:

AL

(others as defined by handler)

*
%
0
8

Notes:
None

@
@5

We
W
p

W
e

G4
Mg

Wg
W

Ws
Ve

W
¢

Ve
Ve

W6
VY

VO
W
U

Ve
We

4
y

*
»

| |

Disc-Based Utility Routines M-29

...LLHLINKG.ASM

LLH_RSWD2 proc near

save_regs
mov bx, 1Eh ; Offset of RSWD2 entry
Jmp CALL_MHNDLR : Go to handler

LLH_RSVD2 endp

page

* Name: LLH_RSVD3

*

* Vergion: 1.5

*
»

Description:
Call the RSVD3 routine of the iow-level handler

*
%
8

Call with:
AL = Channel number
(others as defined by handler)

*
%
%
8

Returns:

AL = Error code
(others as defined by handler)

+*
%
%
8

Registers altered:

AL
(others as defined by handler)

*
%
%
8

Notes:

None

*
%

ARRARATEAARTARNELACARRNRNRARRIRRbby

®
E

W
2

M
L

N
e

W
y

W
E
e
W
N

W
P

N
e
U

W
P

V
G
W

N
G
W

V
P

W
P

V
e
W

N
e

W
G

W
y
W

LLH_RSVD3 proc near

save_regs

mov bx,21h ; Offset of RSVD3 entry
jmp CALL_HNDLR ; Go to handler

LLH_RSVD3 endp

page
RNRRERAAREEAAATARARERRSNATRNRRRRTRRTRR

.
»

Name: CALL_HNDLR

*
»

Version: 1.5

* Description:
Call the selected routine of the low-leve!l handler

*
»

* Call with:
AL = Channel number

BX = Offset of handler entry to call

*
B

»

* Returns:
AL = Error code

*
%

* Registers sltered:

AL»
®
a

B
e

B
e

M
y

W
e

V
e

W
y

B
E

V
e

V
e

V
e

W
e

V
e

V
e

V
e

V
e
e

N
y

@
*

M-30 Disc-Based Utility Routines

...LLHLINKG.ASM

:* Notes:

* None
*

ATARDRARRS

CALL_HNDLR proc near

Set up my return address for handler entry to return to

push cs
mov dx,offset CALL_HNDLR_EXIT; Return address this program
push dx ; Return address in DX

’

; Set up address of handler entry on stack for IRET to branch to

,

pushf ; Put flags for IRET

mov si,16h
mov ds,si
mov s8i,ds:24h ; DS:S1 point to open table
mov ds,ds:00h
mov sh,0Ch
mul ah ; Multiply channel number by length of each entry
add si,ax ; DS:SI points to table entry for this channel
mov cx,ds:0AhIsi] ; Get low-level handler's work area segment
mov 88:DSREG [bp] , cx ; Send to low-level handler
mov cx,ds:08h[si] ; Get low-level handler's CS

CALL_HNDLR_1:

push cx ; Segment address of handler
push bx ; Offset of handler entry

Restore registers to the values they had when function was called’

’

; Stack now:
: OAh (saved registers)
; 08h My CS

; O6h My IP (points to CALL_HNDLR_EXIT)

; 04h flags
; 02h low-level handler's segment address
; O0h low-level handler's offset address

.

cli
add sp,0Ah ; Point to register values
pop ax
pop bx
pop cx
pop dx
pop si
pop di
pop de
pop es

pop bp

; Branch to handler entry

sub sp,9*2+0Ah ; Point to IRET addr

fret

Return to calling program with return code in AL

Disc-Based Utility Routines M-31

...LLHLINKG.ASM

NOTE: it is the responsibility of the handier entry that was

just executed to set AL to appropriate return code
«
y

w
e
@

CALL_HNDLR_EXIT:

restore_regs ; Return to high-level handler

CALL_HNDLR endp
pege

ANTR

*

* Name: FIND_HNDLR
*

* version: 1.5
*

* Description:

* Find a handler program whose name is at DI:Sl
¢

* Call with:
* DI1:SI = Pointer to handler name
*

* Returns:
* AL = Error code

* 00h No errors

* 65h (101) Illegal parameter
* 66h (102) Directory does not exist
* 67h (103) File not found
* 6Eh (110) Access restricted
* CX = Segment address of handler
*

* Registers altered:
* AX,CX
*

* Notes:
* None
*

N
e
%

W
e

M
e

W
E

V
e

W
Y

W
E
e

N
3

V
e

N
e

W
F
W

W
y

N
y

N
y

T
y

W
P

W
E

V
e

W
5

W
y

V
e

W
y

V
o

®
p

W
e

REBAERCETENERNARSNTSNSTRROdd

FIND_HNDLR proc near

push bx
push dx
push di

push bp
push ds
push es
mov bp,sp ; Save SP
sub sp,0Eh ; Get room for file information buffer
mov bx,si ; Set ES:BX to file name address
mov es,di
mov di,sp ; Get offset address of file information buffer
push 88
pop ds ; Get segment address of file information buffer

mov sh,16h s FIND_FILE function

FIND_WNDLR1:
mov dx,di Offset address of file information buffer
int 1Ah

1f there are any errors, exit with appropriate error code

or al,al ; Any errors?

M-32 Disc-Based Utility Routines

u
e

w
e

w
e
W

FIND_MNDLR_EXIT:

FIND_HNDLR

RET_TO_HLH

RET_TO_HLH

jnz

3t

jne

xor

1
3
3
8
3
3
3

§
°Q

pop
pop
ret

endp

oC

...LLHLINKG.ASM

FIND_WNDLR_EXIT : Yes, exit with error code in AL

If this is not a handler program (type “H"), generate “Access restricted"
Get another file with same name and correct type

al ,6Eh ; “Access restricted" error code
byte ptr ss:7[di}l,"K"; Is it a handler?
FIND_HNDLR_EXIT ; No, exit with error
al,al ; Set *No error" code
cXx,$8:08h [di] ; Get gegment address of handler

sp,bp
es

ds
bp
di
dx
bx

near

Restore 8P and DS, then return to calling program

bp
ds

Disc-Based Utility Routines M-33

NOIOWAIT.ASM

The NOTOWAIT utility in this include file disables the operating system 1/0O wait state. This is the
state in which low battery, power switch, and timeout errors can be reported by the IOABORT utility
while handler READ or WRITE routines are waiting for 1/0.

The I/O wait state is enabled with TOWAIT. NOIOWAIT should be called when the handler READ
or WRITE routines end, whether the routines are ending because 1/0 is being aborted, or because of
a normal end. Refer to TOWAIT and IOABORT for further information.

Program listing:

.sfcond
if1

RAd

"(c) Copyright Hewlett-Packard Company, 1986. All *
rights are reserved. Copying or other reproduction *
of this program for inclusion in an application or *
for archival purposes is permitted without the prior *

w
e

m
e

%
o
W

W
e

w
e

W
y

*

* written consent of Hewlett-Packard Company.™ .
FRARAARAREEEERNETTRTRRRRRRERNRAR

endif
«lfcond

:

» Name: NOIOWAIT

*

* Version: 1.3

»

* Description:
Disable 1/0 wait state

*
%

%

Call with:
None

*
%

&

Returns:

None

*
»

%

Registers altered:
None

*
%

»

Notes:

None."
W

W
E

W
e

N
E

V
e
W

N
G

N
E

W
E
W

V
e

W
y

B
s
B
W
e

W
e

V
e
g

W
y

W
g
W

]

NOIOWAIT proc near

push bx
push si
push ds
mov bx, 16h
mov ds,bx

mov bx,ds: [14h]
add bx,4 ; BX points to current status
mov si,ds: [1Ah]) ; System timer event control table
mov ds,ds: [00h) ; DS = operating system data segment
and byte ptr ds:[bx],00Fh; 1/0 waiting flag clear

M-34 Disc-Based Utility Routines

-..NOIOWAIT.ASM

mov byte ptr ds:13(sil,-1; Timeout disable
pop ds
pop si
pop bx
ret

NOIOMAIT endp

Disc-Based Utility Routines M-35

READCTRL.ASM

The READCTRL utility in this include file reads the saved copy of the main control register (I/0
address 0Bh). When hardware status is changed by an assembly language program, the program must
use the following procedure to ensure that hardware devices unaffected by the change remain in their
current state:

= Read the saved copy of the main control register using READCTRL.

= Change the bits nceded to cause the hardware status to change.

® Write the updated value back to its saved location and output the updated value to the main control
register using SETCTRL.

Refer to the "Hardware Control and Status Registers" chapter in part 1, "Operating System”", for further
information.

written consent of Newlett-Packard Company.*
BERAETRRRAARNRCRNTAARETANECARNRERRNRNTRY

endif
.tfcond

Program listing:

.sfcond
if1

;.‘Q‘t‘tfi"tt'*'tt"*'**fitfi.tt'tfitfiit.t't..*tfitttt'*t*tttttttt

v “(c) Copyright Hewlett-Packard Company, 1986. All *
Fad rights are reserved. Copying or other reproduction *
:* of this program for inclusion in an application or *
o for archival purposes is permitted without the prior *
o *
e

:

:

Name: READCTRL

+
»

Version: 1.3

*
®

Description:
Read the saved copy of the main control register

(1/0 address OBh)

*
%

%
8

Call with:

None

*
*

%

Returns:

AH = Main control register value

*
%

%

Registers altered:

AN

*
¢

8

Notes:
The control register bits have the following meanings:

®
o

®
e

N
E

W
E

N
G

V
e

V
e
W

V
)

V
e

V
e

V
e

V
G

W
e
W

W
0
e
W
s

W
y

W
y

W
y

W
0

»
»

P

. ~ . o

we
%o

wp
we

»

.

*

M-36 Disc-Based Utility Routines

...READCTRL.ASM

?
>
:* . . . cescces
v - - . .
* . - . .
Hal . . . <. beeper control
* . . . 11 = low tone
:* - - . 01 = high tone
:* - . . 00 = off
. . . -
* . . .-.. serial port power control
:* . . 1 = ensble
Hd - . 0 = disable

i - .
it . «ss+.bar code port power control
" . 1 = enable

" . 0 = disable
ok

Had «....bar code port transition control
:* 1 = enable

" 0 = disable

i

READCTRL proc near

push bx
push ds
mov bx, 16h ; Get operating system pointer table

mov ds,bx
mov bx,ds: [14h]) : Get offset of status area

mov ds,ds: [00h)
inc bx
inc bx ; Point to saved copy of main control register

mov ah,ds: {bx] : Read it

pop ds
pop bx
ret

READCTRL endp

Disc-Based Utility Routines M-37

READINTR.ASM

The READINTR utility in this include file reads the saved copy of the interrupt control register (I/0
address 00h). When interrupt status is changed by an assembly language program, the program must
use the following procedure to ensure that interrupts unaffected by the change remain in their current
state:

® Read the saved copy of the interrupt control register using READINTR.

m Change the bits nceded to cause the interrupt status to change.

= Write the updated value back to its saved location and output the updated value to the interrupt
control register using SETINTR,

Refer to the "Hardware Control and Status Registers® and “Interrupt Controller” chapters in part 1,
"Operating System", for further information.

Program listing:

e
s
s

w
p

w
5

w
e
N

*
%

%
%

%

1 i ! i

®a
W5

Me
Wp

Ve
M
E

WE
Va
N

We
We
e

B4
W4
W

We
We

V
e

Ve
Ve
o
W

W0
e

N4
W

Ve
Ws
W

*
%

2
%

%
%

B
%

%
%
R

%
%
R

B
R

E
R
S

R
S
N

»

.sfcond
iftl i ! 3 ;

“(c) Copyright Hewlett-Packard Company, 1986. ALl *
rights are reserved. Copying or other reproduction *

of this program for inclusion in en spplication or -
for archival purposes is permitted without the prior *
written consent of Hewlett-Packard Company.®

endif
.lfcond s ’

Name: READINTR

Version: 1.3

Description:
Read the saved copy of the interrupt control register
(1/0 address 00h)

Call with:

Returns:

AN = interrupt control register value

Registers altered:
AR

Notes:

The interrupt control register bits have the following meanings:

(bit set to 1 -> corresponding interrupt enabled)

(bit set to 0 -> corresponding interrupt disabled)

-7 .6 .5 .4 .3 .2.1.0.

Disc-Based Utility Routines

...READINTR.ASM

P e Esr eIeI RNEs0EreEErREOSssTssRTSRRTOIERRSEETS

- - - - - - - -

.

. ... System timer interrupt

. (type 50h)

.. bar code timer interrupt

(type 51h)

.. bar code port trensition interrupt
(type 52h)

*
*

@

.. serial port data received interrupt

(type 53h)

*
%

«e« lOow main battery voltage interrupt

(type 54h)

»
#

.. power switch interrupt
(type 55h)

*
%

8

.. reserved interrupt 1

(type 56h)

*
»

* .. reserved interrupt 2

(type 57h)

W
5
g

M
o

W
s
W

W
e

W
e

W
P

W
y

W
9

W
y

W
y

W
Y
U

W
y

V
5

W
y

W
y

W
»

j
l

* 3 i *

READINTR proc near

push bx
push ds
mov bx, 16h ; Get operating system pointer table

mov ds,bx
mov bx,ds: [14h] ; Get offset of status area
mov ds,ds: [00h]
add bx,3 ; Point to saved copy of interrupt control registe
mov ah,ds: [bx]) ; Read it
pop ds
pop bx
ret

READINTR endp

Disc-Based Utility Routines M-39

SCANKYBD.ASM

The SCANKYBD utility in this include file scans the keyboard and returns the keycode ofthe first key
found down. Normally, the system timer interrupt service routine causes the keyboard to be scanned
every 5 ms. However,in time-critical handlers such as for the bar code port, the system timer may be
disabled while waiting for data to be received at the port (to prevent bar code port transition interrupts
from being missed). SCANKYBD performs the operating system keyboard scan operation when the
system timer is disabled.

The SCANKYBD utility can be called while the handler waits for data, thereby allowing the handler to
respond to keyboard input. This helps prevent users from gaining the perception of no machine activity
that accompanies no keyboard response.

The keyboard columns are scanned from right to left, and the rows from top to bottom. The first key
found down in that scanning sequence will be reported as a keycode. Other keys to the left or below the
first key found will be ignored.

The keycodes corresponding to ecach key position and the corresponding ASCII characters are
described in the "Keyboard” chapter in part 1, "Operating System".

SCANKYBD uses FINDOS to find the operating system file and the start of the operating system
jumptable.

written consent of Hewlett-Packard Company.*
REBARARTNARANARARTRN

endif
«Lfeond

Program listing:

.sfcond
if1

; RREECRAEANERAAAEAEARERENCAARERN

* %(c) Copyright Hewlett-Packard Company, 1987. All *
* rights are reserved. Copying or other reproduction *
o of this program for inclusion in an application or *
i for archival purposes is permitted without the prior *
ot *
’

i

include findos.asm

s WREEANEEARARANATARARSIATRdrd

*

* Name: SCANKY8D
o
’

:* Version: 1.3
®

’

;* Description:
* Call the operating system routine to scen the keyboard

*
»

Call with:
None

:* Returns:

AL = 0 if no key down
AL = HP-94 keycode (see chapter 8, "Keyboard", for keycode values)

-

-

.

-

.

.

-

.

-
L4

-

»
%

%
%
8

;* Registers altered:

M-40 Disc-Based Utility Routines

...SCANKYBD.ASM

AX

Notes:

The key is NOT debounced by this routine - the routine
simply reports what key is down at the present time.

L
U
K

DI
T

T
R

TR
P
R

*
%
8

SCANKYBD proc near
push bx
push si
push ds
push es
catl FINDOS

DS is SYOS segment
ES is operating system pointer table segment-

W

push ds
push es: [36h) ; Get offset of keyscan routine

mov si,es: [00h)
mov ds,si ; DS = operating system data segment
mov si,sp

call dword ptr ss:[si)
add sp,4
pop es
pop ds
pop si
pop bx
ret

SCANKYBD endp

Disc-Based Utility Routines M-41

SETCTRL.ASM

The SETCTRL utility in this include file writes a value to the location of the saved copy of the main
control register (I/O address 0Bh), then writes the value to the main control register as well. When
hardware status is changed by an assembly language program, the program must use the following pro-
cedure to ensure that hardware devices unaffected by the change remain in their current state:

= Read the saved copy of the main control register using READCTRL.

m Change the bits needed to cause the hardware status to change.

® Write the updated value back toits saved location and output the updated value to the main control
register using SETCTRL.

Refer to the "Hardware Control and Status Registers" chapter in part 1, "Operating System", for further
information.

Program listing:

.sfcond
if1| ; z §

%(c) Copyright Hewlett-Packard Company, 1986. All ¢
rights are reserved. Copying or other reproduction *
of this program for inclusion in an spplication or *

*

-

*
*

%

for archival purposes is permitted without the prior

w
e

w
E

W
e

W
e

W
y
e

w
0

*
8

* written consent of Hewlett-Packard Company.®
ARTRTAAARARRRy

endif
.tfcond

;mmmmfimmwnmmta

o
’

;* Name: SETCTRL
®

;¥ Version: 1.3
;t

;% Description:
s* Set the mail control register (1/0 address 0Bh) and its

;* saved copy to the value specified in AH
¥

;* Cell with:
;* AH = main control register value
o
’

:* Returns:
:* The main control register and its ssved copy are set
;¥ to the value in AN
otk

:* Registers altered:
:* None
;t

s* Notes:
:* The control register bits have the following meanings:
o®

.3% eecnncenee cesssssesssaceesasssssssscssssnnsssnnne
*
* .7 .6 .5 . 4 .3 .2 .1.0.

:
:
‘

M-42 Disc-Based Utllity Routines

--.SETCTRL.ASM

*
%
%
%

o
e

By
w
p

W)
%y

@p
wp

w
p

%
%

%
%

%
%

%
%

%
2
R

%
%
N

4
%
e

%
p

W
e

W
)

V
e

W
E

B
e

M
g

V
e
W

W
4

V
e

W
)

&
*

SETCTRL

SETCTRL

~
g
g
R
E
R
Y
¥
R

-
2
8

ar

... beeper control
11 = low tone
01 = high tone
00 = off

... serial port power control
1 = enable
0 = disable

.+«.bar code port power control
1 = ensble
0 = disable

.+...bar code port transition control
1 = enable
0 = disable 2

Save interrupt flag (CLI below)
Get operating system pointer table

[14h] ; Get offset of status area

L00h)

; Point to saved copy of main control register

; Get AH into AL

; Send value to saved copy location
; Send to main control register

i Restore interrupt flag

Disc-Based Utility Routines M-43

SETINTR.ASM

The SETINTR utility in this include file writes a value to the location of the saved copy of the inter-
rupt control register (I/0 address 00h), then writes the value to the interrupt control register as well.
When interruptstatus is changed by an assembly language program, the program must use the follow-
ing procedure to ensurethat interrupts unaffected by the change remain in their current state:

= Read the saved copy of the interrupt control register using READINTR.

m Change the bits needed to cause the interrupt status to change.

m Write the updated value back to its saved location and output the updated value to the interrupt
control register using SETINTR.

Refer to the "Hardware Control and Status Registers” and "Interrupt Controller” chapters in part 1,
"Operating System", for further information.

Program listing:

.sfcond
ift
RNERENAEEATEECERRTANERARARNNd

%(c) Copyright Hewlett-Packard Company, 1986. All
rights are reserved. Copying or other reproduction *

of this program for inclusion in an application or -
*

-

*
%
8 *

for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company.®

cWEARRFRAAERARNAERRREANTSRTRt

endif
.tfcond

s
w
e

%
o

w
e
W
W

w
s

»

Name: SETINTR

* Version: 1.3

*
%

Description:
Set the interrupt control register (1/0 address 00h)

and its saved copy to the value in AH

%
8
8

Call with:
AH = interrupt control register value

Returns:

The interrupt control register and its saved copy are
set to the value in AH

*
%

Registers altered:
* None
-

* Notes:
* The interrupt control register bits have the following meanings:
®

* (bit set to 1 -> corresponding interrupt enabled)
* (bit set to 0 -> corresponding interrupt disabled)
-

- [R R R RRN N RN NN RN AR R R N A NNNAN AN NN NN -

* - - - - - - - - .

* .7 .6 .5 .46 .3 .2 .1.0.0
B

W
y

W
e

W
E

V
e
W

N
P

V
e

V
Y

U
L

V
e

W
o

W
O

V
e

W
Y

W
e

W
0

W
G

N
e

W
y
W

V
s
W

G
y
W
W

W
4

W
y

M-44 Disc-Based Utility Routines

-..SETINTR.ASM

*
2% ceeiccicctcsccetscsnstscscnanscnssensensccssennes
* - -
ol: . . . - . . - .
* - -
* . - . - - . - «»s System timer interrupt
™ . - . . - . . (type 50h)
I3J: - -
Hd . . . - - - <« bar code timer interrupt
™ (type 51h)
v . . - - . .
Hal bar code port transition interrupt
Had - . - . . (type 52h)
ol: . - - . .
Had serfal port data received interrupt
™ . - . . (type 53h)
-l: - . . .
v - - lOw main battery voltage interrupt
* . - - (type 54h)
o: . - .
i . - ... power switch interrupt
i . . (type 55h)
-: . -
* . «+. Feserved interrupt 1
s> . (type 56h)
3]: .
" «+. reserved interrupt 2
Hd (type 57h)
oW

;.mmmnmmmmammcnttat*

SETINTR proc near

push ax
push bx
push ds
pushf ; Save interrupt flag (CLI below)
mov bx, 16h ; Get operating system pointer table
mov ds,bx
mov bx,ds: [14h] : Get offset of status area

mov ds,ds: [00h]
add bx,3 ; Point to saved copy of interrupt control regist

mov al,ah : Get AH into AL
cli
mov ds: [bx] ,al ; Write value to saved copy location
out 00h,al ; Write to interrupt control register
popf ; Restore interrupt flag

pop ds
pop bx
pop ax
ret

SETINTR endp

Disc-Based Utility Routines M-45

VERSION.ASM

The VERSION utility in this include file returns the version number from the specified program file
(type A, B, or H). The version numberis the two-byte value at offset 04h in the file — the third pair of
bytes in the program header. If the specified program is a handler (type H), VERSIONalso returns
the handler identifier, which is the two-byte identifier at offset 02h in the file — the second pair of
bytes in the handler header. VERSION can return the version of the system ROM instead ofthe ver-
sion of a program. The system ROM version is part of the copyright message that appears when the
machine enters command mode.

for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company." *

Program listing:

.sfcond
if1

Hal “(c) Copyright Hewlett-Packard Company, 1987. All *
v rights are reserved. Copying or other reproduction *
™ of this program for inclusion in an application or *
o »
’

; EARRRARARERNAARERRLRRAANRNIARTEARNRod

endif
.lfcond

AXREG equ 00h
ALREG equ 00h
AHREG equ 01h
i
BXREG equ 02h
BLREG equ 02h
BHREG equ 03h

CXREG equ 04h
CLREG equ 04h
CHREG equ 05h

DXREG equ 06h
DLREG oqu 06h
DHREG equ 07h

SIREG equ 08h
DIREG equ OAh
DSREG equ 0och
ESREG equ OEh
BPREG equ 10h

FIND_FILE equ 16h
BUFFER_SIZE equ OEh

pushregs macro

pushf

push bp
push es
push ds
push di
push si
push dx
push cx
push bx

M-46 Disc-Based Utility Routines

...VERSION.ASM

T

push ax

mov bp, sp
endm

popregs macro
pop ax
pop bx
pop cx
pop dx
pop si
pop di
pop ds
pop es

pop bp
popf

endm

include findos.asm

ARERERERERRARARAARARTRRIS

*
%

Name: VERSION

+
%

Version: 1.5

*
»

Description:
Return the version number of the specified file

*
%

%

Call with:
ES:BX points to a file name (see Notes, below)

»
%

%

Returns:
AL = Error code:

00h No error
65h (101) lllegal parameter
66h (102) invalid directory number
67h (103) File not found

*
%

»
*

%
%

If AL=0Ch:
DX = version (DH = integer part, DL = fractional part)
For type "HY files only:

CX = handier identifier (bytes 2 and 3 of the program header)

%
%
%
%

Registers altered:

cx,DX

*
%

»

Notes:

1f ES and BX are both zero, the version returned is that
of the system ROM (the version shown in the copyright
message which is displayed when the HP-94 enters command mode).

*
8

™
M
E
W

W
e

W
P

W
E
e

W
)

W
L

V
P

N
I

V
e

V
S

V
e

V
e

V
e

V
e

V
e
W

W
G

V
e

W
5
W

V
e

V
e

V
e

®
e
W
N

V
e

W
E

V
e
W

*
*

*

RNTNTD

VERSION proc near

pushregs
mov ax,es
add ax,bx ; Check for zero

ja VERSION_FILE

; This is for the system ROM
catl FINDOS

Disc-Based Utility Routines M-47

M-48

...VERSION.ASM

File not found

; DS is start of SYOS file, ES is start of operating system pointer table

VERSION_0S1:

.

VERSION_0S2:

’

VERSION_0S3:

VERSION_FILE:

VERSION_EXIT:

VERSION_RET:

VERSION

mov ax,ds

or ax, ax
mov al,67h
Jz VERSION_RET

mov si,es: [3Ch]
sub dx,dx
mov bx,010Ah

lodsb
sub al,'9'+1
add al,'9'+1-20"
jnc VERSION_0S2
xchg al,dh
mul bt
odd ch,al
Jmp VERSION_OS1

cmp al,'.'-100

jne VERSION_0S3
sub bh,0th
jc VERSION_EXIT

xchg dh,dl
jmp VERSION_OS1

or bh,bh
jnz VERSION_EXIT

xchg dh,dl

jm short VERSION_EXIT

sub sp,BUFFER_SIZE

push ss
pop ds
mov dx,sp
mov ah,FIND_FILE
int 1Ah
or al,al
jnz VERSION_RET

mov si,sp

mov ds,ss: [si+08h]
mov al,ss:[si+07h)
mov dx,ds: [04h)
cmp al,'H'
jne VERSION_EXIT

mov cx,ds: [02h]
mov CXREG [bp] , cx

mov DXREG [bp] ,dx
sub al,al

mov ALREG[bp] ,al

mov sp,bp
popregs
ret

endp

Disc-Based Utility Routines

s
m
s

w
e

«
e

e
e

w
e

Pointer to version
Clear out counter
Decade value and *.% flag

Not in 0...9

New sum in DH

. u (continue with fraction)
decrement “.% flag

already had “." (exit now)

Done

allocate file information buffer

0.S. function call

start segment address of the file

get file type

Fetch version from file

Fetch handler identifier

result code = 0Ch

return result code to user
restore stack pointer

XIOCTL.ASM

The XIOCTL utility in this include file allows an assembly language program to call the IOCTL rou-
tine in an open low-level handler. TOCTL routines are usually called by a high-level handler to cause
its low-level handler to take some action, such as change operating configuration or flush its receive
buffer. The XIOCTYLutility allows any application to direct the behavior of a low-level handler in the
same manner. The behavior of the TIOCTL routine is described in the "User-Defined Handlers"
chapter in part 1, "Operating System", and the "Hewlett-Packard Bar Code Handlers" appendix.

Program listing:

.sfcond
if1

RSRddd:
* ®(c) Copyright Hewlett-Packard Compeny, 1986. All *
* rights asre reserved. Copying or other reproduction *
% of this program for inclusion in an application or *
:* for archival purposes is permitted without the prior *
:* written consent of Hewlett-Packard Company.® *
;tttfif*'*ttifittitfitflfifittt*tttttitfi'fittt'fif*t*td*ttt**t.**tttt*

endif
.l fcond

sBRRRERNENEFRIAATLANSXACSEEERRAEREREAATIAATAATARTRRRd

*
%

Name: XIOCTL

.
»

Version: 1.5

*
»

Description:
Call the IOCTL routine in a handler

*
%

»

Call with:
AL = Channel number
AH = I0CTL function code
Other registers as defined by the handlier's I0CTL routine

*
%
%
%

* Returns:
* AL = Error code:
* 00h No error

6%h (105) Channel not open
Other registers as defined by the handler's 10CTL routine

*
%

»

Registers altered:

AL (handler’s AL if channel is open)
Other registers as defined by the handler’s IOCTL routine

*
%

%
%

Notes:

See the Technical Reference Manual, Part 1, chapter 3 “User-
Defined Hendlers® for more information about I10CTL.

*
*
%
8

when the 10CTL routine of the handler is called, XIOCTL also
sets up these registers:
DS = Segment address of hendler scratch area
BP = Stack offset address of register save area

@6
My
g

Be
®g
B

W
e

W
a

W
y

Wy
W
3

Ve
W

T4
We

G0
VI

Ve
Ve

W
e

Ve
V
e

®W
e
W6

W
y

We
W5

Wf
WG

WP
V
o
W

&
*
8

0BIT equ 10h
equ 20h

Disc-Based Utility Routines M-49

-..XIOCTL.ASM
 .

X10CTL proc near
pushf

push bp
push es
push ds
push di
push si
push dx
push cx
push bx
push ax

mov bp,sp
mov bx, 16h
mov ds,bx
mov bx,ds: [0Ah) ; Size of open table
cmp al,bl ; Check for valid channel #
jae XIOCTL_ERROR

mov bx,ds: [24h) ; Open channel table
mov ds,ds: [00h] ; Operating system segment
mov sh,0Ch ; OCh (12) bytes per open table entry
ml sh ; Result to AX
add bx, ax : DS:BX points to channel entry
mov ax,0{bp] ; Restore AX
mov al,byte ptr ds:[bx] ; Read channel status

and al ,0BIT+HBIT

cmp al ,0BIT+HBIT : Is channel open for a device handler?
mov al ,6%h ; Preload *Channel not open"
jne XIOCTL_END

xor al,sl
push cs
mov cx,offset XIOCTL_END

push cx ; Stack has return address for XIOCTL_END
push ds: [bx+3]
mov cx,ds: [bx+1]
add cx, 15h
push cx ; Stack has execute address for I0CTL
mov ds,ds: [bx+5] ; Load handler data segment
mov cx, 4 [bp)
mov bx, 2 [bp] ; Restore these registers
db 0CBh ; FAR RET (go to 10CTL handler)

XI1OCTL_ERROR:

mov al,65h ; lllegal parameter
XIOCTL_END:

pop bx ; (really AX contents)
mov sh,bh ; Leave AL unchanged from handler IOCTL
pop bx
pop cx
pop dx
pop si
pop di
pop ds
pop es

pop bp
popf

ret
XI0CTL endp

M-50 Disc-Based Utility Routines

XTIMEOUT.ASM

The XTIMEOUT utility in this include file executes a user-defined timeout interrupt routine if one
was defined, or turns the machine off if none was defined. It is used by a handler READ or WRITE
routine that is waiting for I/O when the IOABORT utility indicates that the timeout occurred. Refer
to JOWAIT and TIOABORT for further information.

XTIMEOUT uses FINDOS to find the operating system file and the start of the operating system
jump table.

Program listing:

.sfcond
if1!

Eh

%(c) Copyright Hewlett-Packard Company, 1987. All
rights are reserved. Copying or other reproduction
of this program for inclusion in an application or
for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company."

;nmnmmmmnatmw-nmttmttntmtt

endi f
. tfcond

*
%
2
8

*
%

%
%
8

w
p

m
e

w
5

w
a
%
W

*

include findos.asm

TRENTRERRAANREEATACRNRNARRNRTR

w
e

w
e

»

* Name: XTIMEOUT

* Version: 1.3

*
»

Description:

Execute a user-defined timeout routine, if any. If no

user-defined timeout routine is present, turn the WP-94
off (will cold start when next turned on)

*
&

%
%

8

Call with:
Nonhe

*
8

»

Returns:

None

*
%

2

Registers altered:

None

*
%

@

Notes:

1f there is no user-specified timeout routine, XTIMEOUT
does not return to the caller. The WP-94 is turned off,
ond will cold start when it is turned on again.

*
%

%
%
8

1f there is a user-specified timeout routine, it will be

executed before XTIMEOUT returns.

W
®
e
W
W

W
e

W
Y

V
e

V
e
B
W
W

V
e
W

V
F

V
e

W
)

W
y
W
B

W
L

@
5
W

W
G

%
o

W
y

@«
W

XTIMEOUT proc near

Disc-Based Utility Routines M-51

-..XTIMEOUT.ASM
 .

push bx
push si
push ds
push es
call FINDOS

: DS is SYOS segment

; ES is operating system pointer table segment
push ds

push es: [3Ah)
mov si,es: [00h)
mov ds,si
mov si,sp
call dword ptr ss:[sf]
add sp,4
pop es
pop ds
pop si
pop bx
pop ax
ret

XTIMEOUT endp

Disc-Based Utility Routines

Get offset of timeout routine

Set up operating system data segment

