HP 95LX Developer’s Guide

Copyright Hewlett-Packard Company 1991
All rights reserved

1st Revision
August 30, 1991

Notice

This manual and the software described herein are provided "as is” and are subject
to change without notice. Hewlett-Packard Company makes no warranty of any
kind with regard to this manual or the software described herein, including, but not
limited to, the implied merchantability and fitness for a particular purpose.
Hewlett-Packard Co. shall not be liable for any errors or for incidental or
consequential damages in connection with the furnishing, performance, or use of
this manual or the software described herein.

Copyright Hewlett-Packard Co. 1991. All rights reserved. Reproduction,
adaptation, or translation of this manual, including any programs, is prohibited
without prior written permission of Hewlett-Packard Company, except as allowed
under copyright laws.

Corvallis Division
1000 NE Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Preliminary Draft May 1, 1991
1st Revision August 30,1991

Important Note to Software Developers

Hewilett-Packard is committed to making your current and future
development efforts as easy as possible. In keeping with this commitment,
Hewlett-Packard recommends that developers avoid using HP 95LX
hardware specific features for I/0. Software written using HP 95LX
hardware specific features is very likely not to run on future HP product.

HP 951X Technical Information

Table of Contents:

10.

11.

12.

13.

14.

ISV Developer’s Overview

Off-the-Shelf Development Tools

HP 95LX DOS

HP 95LX BIOS ERS

File Specifications for HP 95LX Built-in Applications
HP 95LX Memory Management

HP 95LX Low-Level Graphics Support

HP 9SLX System Manager Operation and Programmer’s Guide
HP 951X System Manager Services Reference

From Software Design to Ordering ROM Cards
"Hopper’ HP 95LX System Controller ERS

HP 95LX Wired Serial and Infrared I/O ERS
Custom Artwork

PC Card Standard (PCMCIA 1.0)

Pages

1-1to 14
2-1

3-1

1 to 104
4-1 to 4-9
6-1to 6-2
7-1t0 7-21
7-1t0 7-18
8-1to 8-60
10-1 to 10-7
1to 80
1to 15
14-1

1 to 102

ISV Developer’s Overview

#»4—

The information contained in this notebook is intended for Independent Software Vendor
(ISV) use in planning of software development or adaptation tasks. It is hoped that this
information will provide you with enough details about the Jaguar platform in order to
formulate a strategy for adapting your product to the HP 95LX.

Levels of Adaptation

Most programs intended to run on The HP 95LX will require or at least benefit from being
modified to conform to The HP 95LX hardware. Assuming that this has been considered, the
next consideration is how the software will run on The HP 95LX. The The HP 95LX platform
provides three options in this area:

1. Run from RAM as an independent DOS program. Such a program would be compiled and
linked with standard DOS tools and would be loaded and executed by DOS exactly as on a
standard PC.

There are several distribution options for these programs. All that is required for execution
is that they reside on a The HP 95LX disk. Hence they could be down loaded to The

HP 95LX’s internal disk from a PC or a modem connection, or they could be distributed
on a plug-in ROM card which has been formatted as a disk.

This is the simplest execution option. However it may be the least RAM efficient and it
will not be integrated with The HP 95LX’s built-in applications.

2. Run as an independent ROM executable XIP (eXecute In Place) program. Such a program
would be distributed on a ROM card and at execution time would bank switch its code
into the CPU address space using The HP 95LX’s bank switching capabilities.

The advantage of this over option 1 is greater RAM efficiency. There is still no integration
with the built-in applications.

This level of adaptation will require the code to be ROMable, will require the use of
special software tools to prepare the ROM image and will require the program to use The
HP 95LX’s bank switching services. The necessary tools and services are not completely
described in this document, but will be defined in the developer’s kit. See the “Memory
Management” chapter for more information on XIP.

3. Run under the System Manager. Such a program will be called System-Manager-compliant
and can be either RAM executable or XIP.

Under this option, the program has access to the same set of services that are used by the
built-in applications. For example, this enables the program to share a non-preemptive
multitasking environment with the built-in applications so that the user can conveniently
switch between tasks.

DRAFT ISV Developer’s Overview 1-1
4/12/91 14:25

The “System Manager Guide” and “System Manager Reference” sections deal with writing
System-Manager-compliant applications.

The HP 95LX Hardware Overview

The HP 95LX is a Palmtop PC which is very PC compatible except in areas which have been
customized to obtain its small size or to support large amounts of memory. These areas are
highlighted here.

Display

The HP 95LX’s physical display is 40 characters by 16 lines in text mode. This display is a
window into an MDA standard 80 character by 25 line display RAM. While there is provision
for windowing the physical display around the larger display RAM, it is expected that most
software development for The HP 95LX will include customization to a 40 by 16 screen.

The HP 95LX’s display also has a (non-standard) graphics mode which has pixel dimensions
of 240 columns by 128 rows.

Character Font

The HP 95LX character fonts are stored in ROM. Codepage 850 was used since it contains
international characters. This was chosen to facilitate the localization of the product.
Developers should be aware that the standard for PC’s in codepage 437 which contains line
drawing characters.

Keyboard

The HP 95LX’s keyboard is shown in figure 1. See the BIOS Int 9h documentation for the
scan/ASCII codes corresponding to each key.

Memory Structure

The HP 95LX has more “logical” memory (i.e., memory residing on memory chips) than can
be accommodated in the 1 megabyte “physical” address space of the CPU. Bank switching is
used to access the additional memory. For example, Figure 2 shows that bank switching is
used to access the code for the built-in applications and to access the memory on a plug-in
card. See the “Memory Management” chapter for more information.

Plug-in Cards

The HP 95LX has one plug-in card slot which accommodates a PCMCIA/JEIDA standard
memory card. This card slot is somewhat analogous to a floppy disk drive on a standard PC.
There are two main types of cards.

One is a battery-backed RAM card which is formatted as a RAM disk. This type of card is
analogous to a floppy disk. RAM cards will be available in 128K and 512K byte sizes.

The other is a ROM card which contains application software. This card could be formatted
as a disk in which case it would be analogous to a read-only disk. A ROM card can also

1-2 ISV Developer’s Overview DRAFT
4/12/91 14:25

contain XIP software designed to be bank switched into CPU address space rather than
accessed as a disk file. ROM cards will be available 1 and 2 megabyte sizes.

The HP 95LX Software Overview

Built-in Applications

The HP 95LX features eight built-in applications: Lotus 1-2-3, HP calculator, Memo, Phone
Book, Appointment Book, Terminal Emulator, Filer, and Setup. These applications are
accessed by pressing their corresponding key, see figure 1.

System Manager

The System Manager is the control program which runs the built-in and other
System-Manager-compliant applications.

All the built-in applications execute from ROM under the direction of the System Manager.
Briefly, when an application’s key is pressed, the System Manager deactivates any current
application, performs any necessary bank switching to access the code for the requested
application and starts up the new application. This is termed non-preemptive multitasking
since that application being deactivated gets a chance to “clean up” before losing control.

See “System Manager Guide” and “System Manager Reference” for more information.

DOS

The HP 95LX uses Microsoft DOS 3.22. This version of DOS was chosen because it executes
from ROM leaving the maximum amount of RAM available for applications.

The DOS kernel functions are always available and provide access to the DOS command
processor. However, since the emphasis of The HP 95LX is on applications, The HP 95LX
does not contain the full set of DOS external commands. See the “DOS” chapter for notes on
how DOS has been customized for The HP 95LX.

BIOS

The HP 95LX contains a ROM BIOS layer which provides the standard interface as well as
many extensions to support The HP 95LX specific hardware. See the “BIOS” chapter for
details.

Disks

The HP 95LX’s disk support is patterned after that of a PC which has an internal hard disk
drive and one floppy disk drive.

The HP 95LX'’s internal disk, which is named C:, is a combination RAM/ROM disk. The
ROM disk portion contains a variety of files such as help files for the built-in applications and
utility programs such as FORMAT. The RAM disk portion contains user files and resides in
system RAM. The size of the RAM disk is user settable using the “Setup” application.

DRAFT ISV Developer’s Overview 1-3
4/12/91 14:25

The HP 95LX uses plug-in battery-backed RAM cards formatted as RAM disks for its
“floppy” disks. The plug-in port is the A: (or B:) drive, analogous to a single floppy drive on a

PC.

1-4 ISV Developer’s Overview DRAFT
4/12/91 14:25

2

Off-the-Shelf Development Tools

Since the HP 95LX runs Microsoft DOS version 3.22, compilers, assemblers, and debuggers
compatible with this version of DOS can be used to develop software for the HP 95LX. Some
development packages such a Turbo-C from Borland support remote debugging over a serial
interface. This configuration works on the HP 95LX and is very useful for certain types of
software development.

Since the HP 95LX is a relatively small PC, users of off-the-shelf tools should make certain
they understand what overhead is built into the use of their tools. Two examples follow:

m Run time support libraries sometimes include modules that are not needed by the main
program.

» Users building HP 95LX system-manager-compliant programs need to be aware of any
library initialization code their package automatically includes in programs they build.
Much of this sort of initialization code is incompatible with the HP 95LX System Manager.
Steps can usually be taken to use library routines that do not require initialization.

DRAFT Off-the-Shelf Development Tools 2-1
4/12/91 14:23 '

HP 95LX DOS

Introduction
The HP 95LX contains the primary components of ROM-executable MS-DOS 3.22.

More specifically, the HP 95LX contains the DOS Kernel and the command processor, but
only a few external commands.

Generally speaking, DOS works the same on the HP 95LX as it would on a standard PC
(except for the missing external commands). For this reason, these notes discuss only the
differences between the operation of MS-DOS 3.22 on the HP 95LX and DOS’s operation
on a standard PC.

DOS Boot Sequence

On a standard PC, DOS boots off disk and runs from RAM. On the HP 95LX, DOS boots
out of ROM and runs from ROM. Thus on the HP 95LX DOS, RAM requirements are greatly
reduced since only DOS data is stored in RAM.

There is no provision on the HP 95LX to boot from disk. However, a disk can contain
CONFIG.SYS and AUTOEXEC.BAT files—see below.

DOS Initialization

On a standard PC, DOS makes the boot disk drive the default drive and searches the root
directory of that drive for a CONFIG.SYS file.

On the HP 95LX, DOS initialization has been changed to first search for CONFIG.SYS on
the A: drive and, if not found, to search on the C: drive. If CONFIG.SYS is found on the A:
drive, then that CONFIG.SYS is processed and A: is made the default drive. In this case,
any CONFIF.SYS that is on the C: drive will not be processed. If CONFIG.SYS is not found
on the A: drive, then C: is made the default drive and any CONFIG.SYS found there will be
processed.

The DOS EXEC Function

In ROM-executable MS-DOS 3.22, the EXEC function has been extended to first search a
table of ROM-executable programs before searching disk in case the program name has no
drive path specified.

On the HP95LX, the table contains the two names COMMAND and $SYSMGR. The
COMMAND program is the DOS command processor and the $SYSMGR program is the
System Manager.

DRAFT . HP 95LX DOS 3-1
4/13/91 08:08

The Default Shell

On standard DOS systems, the default shell is COMMAND.COM. On the HP 95LX,
COMMAND.COM is the System Manager.

The System Manager is the program that directs execution of the built-in and special add-on
applications. The HP 95LX System Manager does not process any AUTOEXEC.BAT files.

The DOS Command Processor

COMMAND.COM is available in the HP 95LX, but is not normally run at initialization
time since DOS goes directly to the System Manager shell. There are two ways to access the
command processor:

1. Invoke the command processor from within the System Manager program.
2. Change the shell to the command processor by including the line
SHELL=COMMAND /P
in the CONFIG.SYS file and reboot.

This causes DOS to go directly to COMMAND.COM — the System Manager is not
invoked and the built-in application keys will not be active. The commands that are
available are the internal command processor commands, any external programs on disk,
and the two ROMed program commands listed above.

One use of this method is to get access to DOS in order to perform some custom
initialization and then run the System Manager using the $SYSMGR command.

Disk-Resident External Commands

The HP 95LX contains two external commands, COMMAND.COM and CHKDSK.EXE,
which reside in the root directory of the ROM disk.

The COMMAND.COM program is only a stub that invokes the actual command processor
residing in ROM. This stub is provided in case some program accesses the command processor
by its full name (including extension). As mentioned above, COMMAND (without path or
extension) will be executed directly from ROM.

CHKDSK is the standard DOS check disk command.

The HP 95LX also contains DEBUG.EXE in a hidden directory called _SYS. This directory is
off the root of the ROM disk. This is the standard DOD DEBUG program.

International Support

MS-DOS 3.22 supports the COUNTRY= configuration parameter and DOS calls that allow
tailoring DOS and applications to local language characteristics. Some of this information
depends on the the PC’s character set. DOS 3.22 supports only code page 437 (switchable
code pages start with DOS 3.3). Since the HP 95LX uses code page 850, the country-specific
information in HP 95LX DOS has been updated to match code page 850.

Note however that the international support that is built into the System Manager does not
use these DOS capabilities.

3-2 HP 95LX DOS DRAFT
4/13/91 08:08

JAGUAR BIOS

External Reference Specification

Version 2.02

May 1, 1991

Hewlett-Packard Company

Overview

This is the specification of the Jaguar ROM Basic Input/Output System (BIOS). The BIOS provides
the lowest level of software: support for- applications running on Jaguar. This specification describes in
detail the implementation of the Jaguar BIOS. The Jaguar BIOS is designed to be completely
compatible with IBM’s new version of the PC-XT. In addition to the PC-XT BIOS functions, the
Jaguar BIOS includes a small number of BIOS functions which are compatible with the IBM-AT

The Jaguar BIOS is based upon an XT level BIOS source code obtained from Phoenix Software
Associates (PSA). The code HP purchased from PSA was written to-be:compatible with the IBM PC-
XT of pre-April 1986 vintage, i.e. before the introduction of a new version of the XT with the
enhanced keyboard. Te our knowledge, the PSA XT code received by HP was written by Phoenix
without infringing on any of IBM’s copyrights to the XT BIOS code. In the same spirit, HP has added
and modified the code without copyright infringement.

Jaguar Hardware set

Jaguar is an Information Management Calculator. It features an 8088 processor and hardware set that
is moderately compatible with an IBM-XT. Differences between Jaguar and XT hardware are listed
below:

o Jaguar has a smaller display than a XT. The jaguar display size is 40 x 16 (text) or 240 x 128 dots
(graphics) vs XT’s monochrome display size of 80 x 25 (text) or 320 x 200 dots (CGA graphics).
The Display RAM in Jaguar is the same size as that of an XT with a Monochrome Display
Adapter(4K bytes). Also, there is provision to window around in the display RAM, so the user can
see the contents of all 4K of RAM.

o Jaguar’s display cursor size control is different from that of an IBM-XT.
o Jaguar has no mechanical disk. Instead there is a built-in RAM disk.
o Jaguar has a different keyboard layout from the IBM-XT.

o Jaguar’s keyboard management is different from the IBM-XT. Keyboard Scans are implemented in
software in Jaguar, while they are performed by an 8048 microcontroller in a XT. However, the
Jaguar keyboard interrupt service routine will emulate the 8048.

« Jaguar supports plug-in ROMs.
« Jaguar supports plug-in RAMs. All memory in plug-in RAM will be used as RAM disk.

o Jaguar is switched ON or OFF under software control. This is compared to an XT which is
switched ON or OFF by a hardware switch that controls power to the entire machine.

o Jaguar has LCD contrast adjustment under software control. This is fundamentally different from
XT brightness control, which is done with a potentiometer adjustment.

« Jaguar does not support a parallel printer. However, it does support a serial printer which uses
XON-XOFF flow control.

o Jaguar supports only one serial port UART. However the serial channel can be directed either to
the IR or wired serial port.

o Jaguar RAM is 8 bits wide. There is no parity bit, as in the IBM-XT.
o Jaguars hardware interrupt set is not identical in function to an XT.

Changes to PSA Code

The following changes were made to the PSA code. This list is just touches on the major changes. To
obtain more information on the changes made, refer to the chapter on the BIOS Interrupts or go
straight to the BIOS source code.

-<Reset Vector>

Int 02

Int 05

Int 06

Int 08

Int 09

Int 0A

Int 0B

Int 0D

Int OE

Int OF

Int 10

Overview

Power On Code was changed so that turning the machine on causes the
machine to return to the application that was running before the system was
powered down.

Nonmaskable interrupt (NMI).
This is invoked in the IBM-XT when a RAM parity error occurs. It is
invoked on Jaguar by either a Low Battery or Module Pulled event.

Print Screen Interrupt.
This prints the contents of the active display window only, not the contents of
the entire display memory as in the IBM-XT.

Low Power Hook
This interrupt is called by the system:

Just before going to light sleep.
Just after awakening from light sleep.

Just before going to deep sleep.

Just after awakening from deep sleep.

Timer hardware service.
The timer service was modified to add display window control and battery
level checks.

Keyboard interrupt.

Int 09 was modified to support Char key translations, Mute key translations
and the ALT-NUMPAD code was modified to work with top row number
keys instead of number pad keys.

Miscellaneous interrupt.
This is a reserved interrupt in the IBM-XT.

Keyboard and touch panel hardware interrupt.

In Jaguar, hardware keyboard interrupt in Jaguar is INT Bh, not INT 09.
INT 0Bh code debounces pressed keys and places key code in the keycode
register (I/O address 60h). Then it invokes the INT 09 service routine.
NOTE: INT 0Bh is the COM2 interrupt in the IBM-XT.

HOPPER IR Interrupt

‘This is the fixed disk interrupt in the IBM-XT.

External XINT pin hardware interrupt routine.
This is diskette interrupt in the IBM-XT.

HOPPER RTC interrupt.
This is the LPT1 interrupt in the IBM-XT.

Video Services
Changed CGA functions to maintain a moderate degree of compatibility.
Left MDA functions intact.

Overview

Int 13

Int 14

Int 15

Int 16

Int 17

Int 19

Int 1A

Int 1E

Int 1F

Disk services.
Modified to work-with a RAM disk.

Serial Port Services.

Removed waits for DSR and CTS set when sending a character. Removed
wait for DSR set when receiving a character. The receive character service
changes the serial port interrupt vector to point to a dummy interrupt service
routine (just an IRET).

System services (Cassette control in now defunct XT)
Just about all of Int 15 is new. Keyboard translation hook (Int 15 function

4F)

Keyboard Services.
Modified to trap [ON] key press while machine is running. Also invokes light
sleep code.

Printer services

Modified to work with a serial printer. It implements the XON-XOFF
handshake in Jaguar. These services change the serial port vector to point to
a serial service routine that handles XON-XOFF handshakes.

Boot service
Now boots DOS from ROM.

Time of day services ,
Added support of real time clock, including the capability of setting an alarm.
The alarm is capable of turning on power to the unit.

Set to a dummy IRET.
This is the disk parameter table in the IBM-XT.

Graphics character table pointer
This points to a code page 850 font for characters 80h - FFh.

The following PSA interrupt handlers were not modified:

Int 11
Int 12
Int 14
Int 1B
Int 1C

Int 1D

Equipment check service

Get memory size service

Serial port service

Keyboard break default handler

Timer tick default handler (how can you change an IRET?)

Video parameter table

Overview

BIOS RAM Definition

BIOS RAM Definition
This chapter describes how memory is organized and used by the BIOS.

00000h
Interrupt Vectors
00400h
BIOS Data Area
00600h
DOS Data Area
001000b
Memory Mapped Display RAM
02000h
DOS Data Area
(Variable)*
Disk Operating System (DOS)
(Variable)*
Application Program Area
(Variable)*
RAM Disk Portion of Drive C:
80000h
Unused
A0000h
OS Functions
B000Oh
MDA RAM
B1000h
Unused
C0000h
Two 64KB Page Frames
E0000h
Four 16KB Page Frame
F0000h
BIOS ROM
FFFFFh

* Size of the Disk Operating System area varies since optional drivers
and buffers may occupy variable amounts of RAM.

Interrupt Vector Table. The interrupt vector table is in the address range from 0:0000h through 0:3ffh.
Vectors used by BIOS are initialized by the BIOS initialization code.

The table below lists the interrupt vector assignments and identifies each interrupt by function and -
type. The interrupts consist of four types: services, ISRs, hooks, and tables:

« A service is an application program callable interrupt. Such interrupts provide functions that an
application can call by using the appropriate Int instruction.

BIOS RAM Definition

e An ISR is a hardware interrupt.service routine. These routines should not be called from
applications since unpredictable results may occur.

o A hook is an interrupt service routine provided for applications to optionally take over.

» A table is a pointer to a table of data bytes.

Int Address Function Type

» Range (Hex)
00h 000-003 Divide by Zero Hook
01h 004-007 Single Step Hook
02h 008-00B NMI Interrupt Hook
03h 00C-00F Breakpoint Hook
04h 010-013 Arithmetic Overflow Hook
05h 014-017 Print Screen Service
06h 018-01B Low Power Hook Hook
07h 01C-01F Reserved Hook
08h 020-023 IRQO, Timer0 Hardware Interrupt ISR
0%h 024-027 IRQ1, PC Compatible Keyboard Interrupt ISR
O0Ah 028-02B IRQ2, HOPPER Miscellaneous Interrupt ISR
0Bh 02C-02F IRQ3, HOPPER keyboard & touch panel interrupt - Hook
O0Ch 030-033 IRQ4, HOPPER UART interrupt Hook
0Dh 034-037 IRQS5, HOPPER IR input interrupt ISR
OEh 038-03B IRQ6, HOPPER XINT pin interrupt ISR
OFh 03C-03F IRQ7, HOPPER RTC interrupt ISR
10h 040-043 Video Services Service
11h 044-047 Equipment Check Service
12h 048-04B Memory Size Service
13h 04C-04F Flexible Disk Services Service
14h 050-053 Serial Port Services Service
15h 054-057 System Functions Service
16h 058-05B Keyboard Services Service
17h 05C-0SF Dummy Return -
18h 060-063 Reserved -
19h 064-067 Boot Service
1Ah 068-06B Time-of-Day Services Service
1Bh 06C-06F Keyboard Break Hook
1Ch 070-073 Timer Tick Hook
1Dh 074-077 Video Parameter Table Pointer Table
1Eh 078-07B Flexible Disk Parameter Table Pointer Table
1Fh 07C-07F Graphics Character Table Pointer Table
20h-3Fh 080-0FF Reserved for DOS -
40h-45h 100-127 Reserved -
4Ah 128-12B Alarm Interrupt Hook
4Bh-5Fh 12C-17F Reserved -
60h-61h 180-187 System Manager Interrupts
62h 188-18B Reserved
63h 18C-18F XIP Services
64h-6Fh 190-1BF Reserved -
70h 1C0-1C3 Real-Time Clock Interrupt ISR
71h-FOh 1C4-3C3 Reserved -
F1h-FFh 3C4-3FF Not Used -

Most Jaguar interrupts have the same function as the corresponding PSA interrupt. (p 28 of Phoenix
6

BIOS RAM Definition

manual). Interrupts with different functions from the PSA BIOS definition are shown in the following
table:

Int Jaguar IBM-XT Type IRQ
(Hex) Function Function
02h Low Batt & Module Pulled RAM Parity Errors Non-Maskable NMI
06h Low Power Hook Reserved Hook
0%h Keyboard Keyboard Hardware* 1
0Ah Miscellaneous Reserved Hardware 2
0Bh Kbd & Touch Panel COM2 Hardware 3
O0Dh IR Input Hard Disk Hardware 5
OEh XINT pin Floppy Disk Hardware 6
OFh RTC LPT Hardware 7

*|NT 0h is a hardware interrupt in the IBM XT, but it is invoked by software in Jaguar. After an INT OBh, software scans and
debounces the keyboard and writes the keycode to the keycode register (60h). Then it invokes INT 09h.

BIOS Data Area. The BIOS data area is also set up by the BIOS initialization code. Jaguar RAM
definitions are similar to PSA XT BIOS definitions, except as noted below.

BIOS RAM Definition

BIOS Data Area Definitions
Length
Address (Bytes) _ Description
40:00h 8 1/0 address of up to 4 serial communications ports
40h:08h 6 1/0 address of up to 3 parallel-ports. Set to all 00s in Jaguar.
40h:0Eh 2 Not used
40h:10h 2 Equipment variable, where:
bit definition
15-14 Number of printer adapters
13-12 Reserved
119 Number of RS-232 Adapters
8 Reserved
7-6 Number of disk drives where
00b=1 drive
01b=2 drives
54 |Initial video mode (11b in Jaguar)
32 Installed Memory Size (11 = at least 256k installed)
1 1 if Math coprocessor installed
0 1Hdiskinstalied
40h:12h 1 Reserved
40h:13h 2 Installed memory in Kilobytes
40h:15h 2 Reserved
40h:17h 1 Keyboard flag 1, where:
bit definition
7 1=Insert active
6 1=Caps Lock active
§ 1=Num Lock active
4 1=S8croll Lock active
3 1=Altpressed
2 1=Ctrl pressed
1 1=Left shift pressed
0 1=Right shift pressed
40h:18h 1 Keyboard flag 2, where:
bit definition
7 1=insert pressed
6 1=Caps Lock pressed
§ 1=Num Lock pressed
4 1=Scroll Lock Pressed
3 1=Ctrl-Num Lock state active
2 1=Sys Req pressed
1 1=Left Alt pressed
0 1=Left Ctrl pressed
40h:19h 1 Alt-key, keypad buffer
40h:1Ah 2 Key buffer read pointer
40h:1Ch 2 Key butfer write pointer

BIOS RAM Definition

BIOS Data Area Definitions, continued

Length
Address (Bytes) _ Description
40h:1Eh 32 Key buffer (16 words)
40h:3Eh 1 Floppy recalibrate status (not used in Jaguar)
40h:3Fh 1 Floppy motor status (not used in Jaguar)
40h:40h 1 Floppy motor time-out count (not used in Jaguar)
40h:41h 1 Disk status retum code where:
bit definition
7 1=Drive not ready
6 1=geek srror occurred
5 1=disk ctrr failed
40 Error codes, where:
00h =No error
0O1h=lllegal function was requested
02h=Address mark not found
03h=Write protect efror
04h=Sector not found
06h=Drive door was opened
08h=DMA overrun error (not used in Jaguar)
09h=DMA boundary error (not used in Jaguar)
0Ch=Media type unknown
10h=CRC failed on disk read ‘
40h:42h 7 ~Floppy controller status and command bytes (not used in Jaguar)
40h:49h 1 Video mode setting
40h:4Ah 2 Number of columns on screen
40h:4Ch 2 Video buffer length (bytes)
40h:4Eh 1 Offset address of current display page
40h:50h 16 Cursor coordinates for 8 pages. Two bytes each page.
First byte of each pair is column, second byte is row. (0,0) is
upper left corner of screen.
40h:60h 2 Cursor size. 1st byte=end scan line, 2nd byte=start scan line
40h:62h 1 Current display page number
40h:63h 2 Base |/O address of video controller
40h:65h 1 Display controller mode select register copy
40h:66h 1 Display controller pallette register copy
40h:67h 4 Reserved
40h:6Bh 4 Reserved
40h:6Ch 4 Timer count - number of ticks since midnight
40h:70h 1 24 hour rollover flag
40h:71h 1 Ctri-Brk flag (bit 7=1 : <Ctrl> <Break> pressed)

BIOS RAM Definition

BIOS Data Area Definitions, continued

Length
‘ Address (Bytes) Description
40h:72h 2 Warm start flag: 1234h means warmstart
40h:74h 1 Hard disk status (not used in Jaguar)
40h:75n 1 Number of hard drives (set to 0 in Jaguar)
40h:76h 1 Hard disk control byte copy (not used in Jaguar)
40h:77h 1 Hard disk controller port offset (not used in Jaguar)
40h:78h 3 Parallel printer time-out table. Ports 0-2.
40h:7Bh 1 Halt Value. Used for return time out count of
Int 15h service 41h
40h:7Ch 4 Serial port time-out table. Ports 0-3. (Only port 1 used in Jaguar)
40h:80h 2 Offset of Key buffer
40h:82h 2 Offset of first byte after key buffer
40h:84h 1 Number of video rows -1 EGA mode. (not used in Jaguar)
40h:85h 2 Character height EGA mode. (not used in Jaguar)
40h:87h 1 Video control bits EGA mode (not used in Jaguar)
40h:88h 1 EGA/VGA switch data(not used in Jaguar)
40h:89h 1 EGA/VGA control bits(not used in Jaguar)
40h:8Ah 1 Index into DCC table VGA mode (not used in Jaguar)
40h:8Bh 1 Last floppy data rate selected (not used in Jaguar)
40h:8Ch 1 Hard disk controller status copy (not used in Jaguar)
40h:8Dh 1 Hard disk error status copy (not used in Jaguar)
40h:8Eh 1 Hard disk interrupt flag (not used in Jaguar)
40h:8Fh 1 Hard disk controlier flag (not used in Jaguar)
40h:90h 2 Floppy drive 0/1 media state (not used in Jaguar)
40h:92h 2 Floppy drive 0/1 operation state (not used in Jaguar)
40h:94h 2 Floppy drive 0/1 track number (not used in Jaguar)
40h:96h 1 Keyboard flag 3 (not used in Jaguar)

10

BIOS RAM Definition

BIOS Data Area Definitions, continued

Length
‘ Address (Bytes) | Description
[40h:97h 1 | Keyboard LED flag (not used In Jaguar)
40h:98h 4 Vector to user wait flag (not used in Jaguar)
40h:9Ch 4 User wait count (low word, high word order) (not used in Jaguar)
40h:A0h 1 Wait active flag (not used in Jaguar)
40h:Ath 2 Number of timer ticks until display timeout
40h:A3h 2 Display time out reset value.
40h:A5h 1 Printer status flag
40h:A6h 1 Cursor movement flag
40h:A7h 1 Card Detect Register Copy
40h:A8h 4 Pointer to table of EGA pointers (not used in Jaguar)
40h:ACh 2 CPU register checksum
40h:AEh 2 User RAM checksum
40h:Boh 2 Hopper register checksum
40h:B2h 2 Stack Segment register save location
40h:B4h 2 Stack Pointer register save location
40h:B6h 2 Day Counter. This word contains the count of times the software
clock at 40h:06Ch has been set to zero.
40h:Bsh 1 RTC century value in bed.
40h:Boh 1 RTC year value in bed
40h:BAh 1 RTC month value in bed
40h:BBh 1 RTC day of month value in bed
40h:BCh 1 RTC hour value in bed
40h:BDh 1 RTC minute value in bed
40h:BEh 1 RTC second value in bed
40h:BFh 1 RTC daylight savings time flag
40h:COh 1 RTC alarm hour value in bed
40h:Cih 1 RTC alarm minute value value in bed
40n:C2h 1 RTC alarm second value value in bcd
40h:C3h 1 RTC alarm status
40h:Céh 1 NCE[1] RAM FLAG where:
32 Indicates 2048 kbytes
16 indicates 1024 kbytes
08 indicates 512 kbytes
04 indicates 256 kbytes
02 indicates 128 kbytes
01 indicates 64 kbytes
00 indicates 0 kbytes

11

BIOS RAM Definition

BIOS Data Area Definitions, continued

Length
Address (Bytes) _ Description
40h:C4h 2 RTC timer value. Last value written to RTC register.
40h:C7h 1 NCE[2] RAM FLAG where:
32 indicates 2048 kbytes
16 indicates 1024 kbytes
08 indicates 512 kbytes
04 indicates 256 kbytes
02 indicates 128 kbytes
01 indicates 64 kbytes
00 indicates 0 kbytes
ff indicates NCE[2] is ROM
40h:Csh 1 Low Battery Flags
40h:Coh 1 Voltage Reference value
40h:CAh 2 Keyboard output register copy
40h:CCh 1 Port Locked & System Manager Media Changed flags where:
bit 7 set indicates port 1 locked
bit 6 set indicates port 0 locked
bits 2-5 unused
bit 1 set indicates port 1 media changed
bit 0 set indicates port 0 media changed
40h:CDh 1 Shift annunciator flag
40h:CEh 8 Shift annunciator save location
40h:D6h 1 Unused
40h:D7h 11 OLD BIT MAP - last bit map collected by INT Obh
40h:E2h 22 Keyboard work area
40h:F8gh 1 Last key pressed
40h:Fg9h 1 Key repeat counter.
40h:FAh 1 Miscellaneous Key flags.
40h:FBh 1 Mute key flags
40h:FCh 1 Number of 33 msec ticks after key press before key repeat starts.
40h:FDh 1 Number of 33 msec ticks between 'keys’ during typematic key repeat.
40h:FEh 1 Unused.
40h:100h 1 Print screen status byte where:
00h=No Print Screen activity
01h=Print Screen operation in progress
fth=Previous Print Screen operation failed.

Jaguar BIOS ID Block

Jaguar BIOS ID Block

The BIOS ROM contains a block of information which encodes the identification of the machine, and.
indicates the date the BIOS was created. The BIOS ID Block begins at FFFF:5.

FFFF:5 Date of bios release formatted as MM/DD/YY (8 bytes)
FFFF:D Unused

FFFF:E System model id (FEh for jaguar)

FFFF:F Unused

Battery Check

Battery Check

There are two batteries in Jaguar: the Main battery and the: Backup Battery. In addition, each RAM
card has a battery.

Checks are performed on each battery to detect low voltage. If a battery is has low voltage, the
approprate message is shown. The low battery messages are shown below:

« MAIN BATTERY LOW
¢« BACKUP BATTERY LOW
e CARD BATTERY LOW

Main Battery.

The main battery is checked at power on and once per minute while Jagaur is running. If the battery is
low, the MAIN BATTERY LOW message is displayed each time jaguar is powered on. Also, if the
battery drops below 2.0 volts while the machine is running, the LOW MAIN BATTERY message is
displayed the first time the voltage is found below this threshold. The thresholds for the main battery
are shown below.

2.5 Volts LOW MAIN BATTERY message disabled.
2.0 Volts LOW MAIN BATTERY message enabled.
1.8 Volts System Shutdown to backup mode.

In other words, the LOW MAIN BATTERY message is disabled until the voltage drops below 2.0
volts. Once the message is enabled, it will be displayed each time jaguar is powered on. The message
is disabled if the main battery voltage goes above 2.5 volts.

If the main battery voltage drops below 1.8 volts, the hardware causes a system shut down to backup
mode. '

Backup Battery.

The backup battery status is checked and displayed only at power on. The voltage from the backup
battery is passed through a voltage divider, so the thresholds measured by the Hopper Chip are shifted
downwards. The thresholds are shown below:

TERMINAL VOLTAGE

VOLTAGE DIVIDER OUTPUT
3.05 Volts 2.77 Volts LOW BACKUP BATTERY message disabled.
2.78 Volts 2.49 Volts LOW BACKUP BATTERY message enabled.

The LOW BATTERY BATTERY message is disabled until the backup battery terminal voltage drops
below 2.78 volts. Once the message is enabled, it will be displayed each time jaguar is powered on until
the terminal voltage goes above 3.05 volts.

14

Battery Check

Card Battery.
The card battery status is tested and displayed only at power on. The thresholds are shown below:

2.60 Volts LOW CARD BATTERY message disabled.
2.40 Volts LOW CARD BATTERY message enabled.

15

Power Management

Power Management

Jaguar is unique among HP CMOS calculators because power to the CPU is completely shut off when
the machine is turned off. This means that the CPU registers are reset to default values whenever the
machine is turned on. Furthermore the CPU starts executing instructions at a different address when
it is powered on, compared to where it was running when it was powered off.

However, it is desirable from the user’s viewpoint to be able to turn the machine off, then later turn it
on and have it continue in the same application that was previously running. - The purpose -of the power
management code is to perform that function. In addition, the power management code performs a
number of quick checks to verify that the saved CPU registers, Hopper Memory Management
registers, USER RAM and Built-In RAM DISK were not corrupted while power was off. If any of
these were corrupted, the power management code will perform either a warm start or a cold start.

Power OFF. Deep Sleep is invoked when any of the following events occur:
o [ON] pressed when machine is ON.
o System Timer timed out because machine was idle during timeout interval.
¢ Very Low Battery Interrupt occurred.
o Application program invoked INT 15h function 42h.

The Power Down Code behavior is described by the following flowcharts:

16

Power Management

C User Presses (ON] while machine is running)

l INT 09 pues [ON] keyoode in key bufter |

Appiication Requests or Tests for next key code)
next key code (Int 16h services 00, 01, 10k, 11h

| INT 16 cheeks keyeode I

Is it

il

res

C "Idic’ in light sleep longer thwa display timeout interval)

| Save CPU State |
[oo |

‘ Compute Hopper IO Port Register Checksum |

|

l Comprte User RAM Checksum |

|

Compnate plug-in card checksums if card present
and set or clear fiags to indi whether card

|

This is the normal power down sequence. All CPU registers except SS.and SP are saved on the user’s
stack. SS and SP are saved in the BIOS data. Checksums are computed for stack area containing the
CPU registers, the Hopper memory configuration registers and user RAM. These are saved for. use
when the machine is powered back on. The checksums of built-in RAM disk and plug-in RAM disk are
computed each time the disk is written to.

Normal Power Up Behavior. The code that handles power on is accessed by the reset vector
(OFFFFh:0000h). This is invoked when the ON key is pressed while the machine is off.

17

Power Management

Warm Start Behavior. Warm Start is normally invoked by [CTRL][ALT][DEL]. It is also invoked if
the user ram is found to be corrupted during normal power on initialization. It initializes User RAM,
then invokes int 19h bootstrap loader.

Cold Start Behavior. Cold Start is invoked by [Shift]| CTRL][ON] or, if the Built-In RAM disk is
found to be corrupted during normal power on. It initializes the User RAM and built in RAM DISK,
but not the plug-in RAM DISK. The user is prompted to specify whether or not to blow away the in
the built-in RAM disk. After all initializations are done, cold start invokes int 19h bootstrap loader.

Initialization Flow Charts. The following flow charts describe the behavior of Jaguar during Normal
Power On, Warm Start and Cold Start:

(ON key pressed with display off) C Resl Time Clock Interrupt)

18

Power Management

Power OnC

19

Power Management

Compare plug-in card state with the state
of cards recorded during previous power-off

yes
print message:
Card pulled from locked port.

Press apy key to warm start
[

Wait for key]

|

Update System Manager Mecia Change Flags a5 sppropriate | (Warm Start)

I

Informa INT 13h of any media changes |

I

C Power OnD)

Power Management

l marcm(mwrm)J
C Backto:eeplleep)

no
Wakeup enabled

?

Turn on display

’ Sve Int (including INT 4Ak if RTC)

|

]

|

Restare CPU registers 4]

|Servic=RTCIu(indudinglNT4Ahll
|

(mmemi)

21

22

Cmee)
r lnitial.izel!lOSJ

Init DOS Clock

r Display Phoenix, Lotus, HP Copyright Mrgs

|
r Take INT 13h Vector |

I
| “Search for RAM Disk |

Power Management

[bx = max(128K,min{calc._memize bice_memsize))

e

Power Management

f Prompt: Blow Away Disk? l

User
no
yes?
r bios_memsize =calc_memsize J

[bios_memsize =tstsiza J

o]

==

23

Int 02h

Int 02h - Nonmaskable Interrupt

The hardware nonmaskable interrupt is invoked when either a module pulled or low battery évcnt
occurs. The Nonmaskable Interrupt routine handles these two events:

Low Battery If a low battery event occurs, Jaguar goes to deep sleep as quickly as possible. The
checksums for User RAM, CPU registers, and hopper registers are not computed. A warm start will
always occur on the next wake up after a low battery shut down.

Module Pulled Interrupt. The behavior of the module pulled event depends on whether the machine
is in deep sleep or not. If the machine is in deep sleep, the module pulled interrupt is disabled, and the
module pulled event is not detected until the next time the machine powers on. If the machine is not in
deep sleep (i.e. CPU running or in light sleep), then an interrupt is generated.

The behavior of the nonmaskable interrupt code is shown in the following flow charts:

24

Int 02h

-

Power up the baciup battery

==

C ‘Warm Start at wakeup

)

25

Int 02h

Print Message:
No Stack for NMI

Compare plug-in card state with
with state before interrupt

Print Message:
Card pulled from locked part

Print message:
Press any key 1o warm start

wait for key

26

Update Sy Mangager Media Changed Flags
as appropriate
l
Inform INT 13h of any medis changes |
1
Restore CPU state J

Int 05h

Int 05h - Print Screen Interrupt

This interrupt executes the BIOS print screen function, causing the current screen contents to-be
written to serial printer port 0. The cursor position is saved before the operation is begun, and
-restored once the printout is complete. The Print Screen service routine can be initiated by either
pressing the [Print Screen] key on the keyboard, or by issuing an Int 05h in a program. When executed,
the Print Screen service routine updates a status byte at address 40h:100h. ‘The-value .of this byte is

interpreted as follows:

« 00h No Print Screen activity.
o 01h A Print Screen operation is in progress.
o FFh The previous Print Screen operation terminated with an error.
The Print Screen routine is not re-entrant. Additional Print Screen calls are ignored while a Print

Screen operation is in progress. This prevents multiple screen printouts from being queued (for
example, if the [Print Screen] key is quickly pressed more than once).

Print screen prints .characters in the active display window. It will not print the entire contents of
display memory.

27

Int 06h

Int 06h - Low Power Hook
This interrupt is called by the system:
—. Just before entering deep slecp. (AH=0).

— Just after leaving deep sleep. (AH=1). When this hook is called, the value in AL indicates the
cause of the wakeup:

AL WAKEUP CAUSE
1
2
4

ON key press

UART wake up -

Real Time Clock Alarm
8 XINT wake up ‘

Just before entering light sleep. (AH=2).
Just after leaving light sleep. (AH=3).

28

Int 08h

Int 08h - Timer Hardware Interrupt

A periodic hardware timer interrupt occurs on hardware interrupt level 0 (IRQO) at a rate of 18.2 times
per seccond. IRQO maps to interrupt vector 08b. The BIOS interrupt service routine for Int 08h
performs-several housekeeping duties for the BIOS. As part of the routine, Int 1Ch (Timer Tick) is
called for each hardware timer interrupt. -If an application needs a periodic interrupt,.it should take
over the Timer Tick interrupt hook (Int 1Ch). (The default Int 1Ch service routine is just an iret.) The
application program should not attempt to take over the Int 08h service routine directly. The timer tick
interrupt service routine does the following:

« Increments the BIOS software clock in the double word at 40:6C. If the count equals 1800BOh then
the count at 40:6C is reset and the rollover flag at 40:70 is set to 1.

o The Timer Tick Int 1Ch is called, so that a user routine can obtain a periodic call. The default
handler for Int 1C is just a dummy IRET in the BIOS.

« When control is returned from Int 1C resets the 8259 programmable interrupt controller and
enables interrupts.

» “The timer routine handles automatic windowing of the display. If the hardware indicates that the
cursor has moved, the timer routine attempts to move the display window so it contains the cursor.

« The timer routine is decrements two counters that measure. the time until display timeout (deep
sleep) and the next battery measurement. However, the timer routine does not invoke either the
deep sleep code or the battery measurement code. This is done by the light sieep code (Int 16h)
when the display timeout timer or battery measurement timer has counted down to 0.

¢ The routine returns with an IRET

29

Int 09h

Int 0%h - Keyboard Translate Interrupt

Three interrupt service routines are used to input keyboard data and to .process .scancodes --Int 0Bh,
Int 09h and Int 16h.

« Int OBh is invoked when a-key is pressed. It performs.a software scan of the keyboard and
computes the scan code each time a key is pressed or released. It places the scan code in an I/O
port (060h) and invokes the Int 09h service routine.

« Int 09h obtains a single byte scancode from I/O port 060h and translates it into a two-byte key
code based on the state of the control, shift and alt keys. It puts the two byte code in the keybuffer.

« Int 16h reads the two byte key code from the buffer. When key information is desired, the operating
system or an application calls Int 16h, which returns the key codes in a register.

The BIOS interrupt service routine for Int 09h processes the incoming scancode as follows:
1. The routine reads the scancode from the keyboard I/O port (060h)

2. The routine calls the Keyboard Translation Hook function (Int 15h, AH = 4Fh). An application
can take over this hook and insert its own handler. If this call returns with carry clear, Int 09h
stops processing and returns. If carry is set, Int 05h proceeds with step 3.

3. The routine checks for a Break. If the Break is detected, Int 09h clears the keyboard input buffer
and calls Int 1Bh. (A "dummy" scancode of "00h/00h" is entered into the keyboard input buffer.)

4. The Int 05h routine translates the scancode and enters the scancode and its ASCII equivalent
into the keyboard input buffer. Some scancodes have no ASCII equivalent. In this case Int 0Sh
does one of the following:

« Discard the scancode (enter no data into the keyboard input buffer). If [Shift], [Ctrl], [Alt],
[Caps Lock], [Char] or [Scroll Lock] is detected, the state of the keyboard is updated, but the
scancode is discarded.

« Enter a two-byte pair "00h/XXh" into the keyboard input buffer. "XXh" may be the original
scancode, or it may be a translated hexadecimal code for the key or key combination pressed.

Once a scancode/ASCII pair has been entered into the keyboard input buffer, an application can read
the data by calling Int 16h.

Char Key The [Char] works like a special function key which changes the operation of the alphabet
keys. If the Char function is active, several alphabet keys return non-English characters. See the
character code tables at the end of this section for a list of character codes returned when Char
function is active.

The [Char] key also activates "Mute’ functions. These- are special key sequences that return many non-
English charaters. See the table of mute functions at the end of this section.

The [Char] key is *sticky’. Pressing and releasing [Char] causes the Char function to stay on. Pressing
and releasing a second time causes the Char function to turn off. If the Char state is on but the Char
key is released, then pressing and releasing any other key causes the Char state to turn off. The sticky
Char is hard coded. There is no user option to disable the sticky Char.

Sticky Shift. The [Shift] key is also "sticky’. It works much like the Char key. Pressing and releasing
[Shift] causes the shift state to stay on. Pressing and releasing a second time causes the shift state to
turn off. If the shift state is on but the shift key is released, then pressing and releasing any other key
causes the shift state to turn off.

30

Int 09h

When the Shift key is released and the Shift State is ON, an annunciator is displayed in the lower right
portion of the display. The annunciator is removed on the next key press.

Key Cap Legends. The following diagram shows key cap legends for the Jaguar Keyboard.

ESC TAB Fl P2 3 F4 F5 F6 F7 2 » F10 1 ON/C
—— —
FILER | | OCOMM | | APPT | {PHONE| | MEMO 13 . () < DEL - { -
x

Q w B R T Y 18) 1 o P 7 8 9 /
A S D F G H J K L 4 5 6 .
CTRL YA X C Vv B N M ENTER 1 2 3 -
Shit ALT CHAR , @ MENU Shift 0 = +

Scancode Conversion Tables. Int 09h translates scancodes to ASCII character codes or other
hexadecimal codes as shown in the tables below. The first table shows scancodes returned when the
Char function is OFF. The second table shows scancodes returned when the Char function is ON. For
each scancode, the tables give the equivalent character codes for each keyboard state: normal, shifted,
[Ctr]] active, and [Alt] active. If a scancode has an ASCII equivalent, the ASCII character is returned
in register AL. If a converted code of the form "xxh/00" is shown, a zero value is returned in register
AL to indicate that there is no ASCII value for the key combination. BIOS Int 16h returns the value
"XXh" in register AH.

Note: Some shifted characters on Jaguar are non-shifted on standard IBM keyboards.and some non-
shifted characters on Jaguar are shifted on standard IBM keyboards. For example,
e [(is non-shifted on Jaguar and shifted on IBM
« [Home] is shifted on Jagnar and non-shifted on IBM.
On these non-compatible key mappings, Int 0Bh will force the status of the shift bits in 40h:17h to

the state used by a compatible keyboard, regardless of the actual state of the shift keys. For
example:

o [(1 is reported to Int 09k as a shifted character even though it is non-shifted on Jaguar.

3

Int 09h

« [Home] is reported to Int 09h as a non-shifted character even though it is shifted on Jaguar.

In IBM compatible machines, the [Shift], [Ctrl], and [Alt] keys effect the interpretation -of a
scancode with ascending priority. That is, the [Alt] key has the highest priority. If [Alt] is pressed,
the [Shift] and [Ctrl] keys have no effect. Likewise, if [Ctrl] is pressed, the [Shift] key has no affect.
The only valid combination involving both [Ctrl] and [Alt] is the Warm Start sequence
[CTRLJ[ALT][DEL].

'In Jaguar, however, there are some valid combinations of [Shift] and [Ctr]]. In particular:

32

o [Shift][Ctrl][PGUP] yields the compatible keycode for [Ctrl][PGUP]

o [Shift][Ctr]][HOME] yields the compatible keycode for [Ctr][HOME]
o [Shift][Ctr]][PGDN] yields the compatible keycode for [Ctrl][PGDN]
o [Shift][Ctrl][END] yields the compatible keycode for [Ctrl][END]

o [Shift}[Ctrl][[] yields the compatible keycode for [Ctrl][[]

o [Shift][Ctrl][]] yields the compatible keycode for [Ctrl][]]

Int 05h

SCANCODE TABLE WHEN CHAR FUNCTION IS OFF

KEY LEGEND
Normal *Shifted
ESC PrtScr
TAB
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
PGUPt
ON/OFF ON/OFF
FILER SETUP
COMM 1
APPT -
PHONE !
MEMO #
123 $
X+ &
(t |
)i \
<-- <--
DEL INSt
— HOME}
l PGDNi
- END{
Q
W
E
R
T
Y
U
I
0]
P
7 it
8 It
9 {
/ }

SCANCODE
Normal Shifted
01 37
OF OF
3B 3B
3C 3C
3D 3D
3E 3E
3F 3F
40 40
41 41
42 42
43 43
44 44
48 49
70 70
72 71
73 29
74 29
75 02
76 04
77 05
8 08
0A 2B
0B 2B
OE 0E
53 52
4B 47
50 51
4D 4F
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
08 1A
09 1B
0A 1A
35 1B

Normal

ah/al

01/1B
OF/09
3B/00
3C/00
3D/00
3E/00
3F/90
40/00
41/00
42/00
43/00
44/00
48/00

A8/00
AC/00
B0/00
B4/00
B8/00
BC/00
C0/00

0A/28
0B/29
0E/08
53/00
4B /00
50,00
4D /00
10/71
11/77
12/65
13/72
14/74
15/79
16/75
17/69
18/6F
19/70
08/37
09/38
0A/39
35/2F

t Character Code reported to INT 0Sh as a shifted character.
1 Character Code reported to INT 08h as an unshifted character.

CHARACTER CODES (hex)
Shifted

ah/al

PrtScr
OF /00
54/00
55/00
56/00
57/00
58/00
59/00
5A /00
5B/00
5C/00
5D/00
49/00

A4/00
29/60
29/7E
02/21
04/23
05/24
08/26

2B/7C
2B/5C
0E/08
52/00
47/00
51/00
4F/00
10/51
11/57
12/45
13/52
14/54
15/59
16/55
17/49
18/4F
19/50
1A/5B
1B/5D
1A/7B
1B/7D

Control
ah/al

01/1B
94/00
SE/00
SF/00
60/00
61/00
62/00
63/00
64/00
65/00
66,00
67/00
8D/00
A2/00
AE/00
B2/00
B6/00
BA/00
BE/00
C2/00
C6/00

BREAK
93/00
73/00
91/00
74/00
10/11
11/17
12/05
13/12
14/14
15/19
16/15
17/09
18 /0F
19/10

Alt
~.ah/al

AS5/00
68/00
69/00
6A/00
6B/00
6C/00
6D/00
6E/00
6F/00
70/00
71/00

AB/00
AF/00
B3/00
B7/00
BB/00
BF/00
C3/00

80/00
81/00
0E/00

10/00
11/00
12/00
13/00
14/00
15/00
16/00
17/00
18/00
19/00

Shift+ Control
ah/al .

94/00
5E/00
5F/00
60/00
61/00
62/00
63/00
64/00
65/00
66/00
67/00
84/00

AA/00

2B/1C
2B/1C
BREAK
92/00
77/00
76,/00
75/00
10/11
11/17
12/05
13/12
14/14
15/19
16/15
17/09
18/0F
19/10
1A/1B
1B/1D
1A/1B
1B/1D

33

KEY LEGEND
Normal Shifted
A
S
D
F
G
H
J
K
L
4 i
5 :
6 g
* "
CTRL
Z
X
C
A%
B
N
M
ENTER
1 <
2 >
3 ?
Shift
ALT
Char
<space>
’ +
@t @
MENU
Shift
0 CAPS}
SCRL}
+ %

SCANCODE TABLE WHEN CHAR FUNCTION IS OFF

SCANCODE

Normal

SREEREYSSSRBRERREEE

31
32
iC
02
03
04
4A
2A
38
79
39
33
03
7A
36
0B
34
0D
4E

Shifted

SERENERRRNRRRERREER

31
32
1C
33
K
35
07
2A
38
79
39
33
03
TA
36
3A
46
oC
06

Normal
ah/al

1E/61
1F/73
20/64
21/66
22/67
23/68
24/6A
25/6B
26/6C
05/34
06/35
07/36
37/2A

2C/7A
2D/78
2E/63
2F/76
30/62
31/6E
32/6D
1C/0D
02/31
03/32
04/33
4A/2D

39/20
33/2C
03/40
C8/00

0B/30
34/2E
0D/3D
4E/2B

t Character Code reported to INT 0gh as a shifted character.
t Character Code reported to INT 0Sh as an unshifted character.

34

CHARACTER CODES (hex)
Shifted Control

ah/al

1E/41
1F/53
20/44
21/46
22/47
23/48
24/4A
25/4B
26/4C
27/3B
27/3A
28/27
28/22

2C/5A
2D/58
2E/43
2F/56
30/42
31/4E
32/4D
1C/0D
33/3C
34/3E
35/3F
07/5E

39/20
33/2C
03/40
C9/00

0C/SF
06/25

ah/al

1E/01
1F/13
20/04
21/06
2/07
23/08
24/0A
25/0B
26/0C

07/1E
96/00

2C/1A
2D/18
2E/03
2F/16
30/02
31/0E
32/0D
1C/0A

03/00

8E/00

39/20

03/00
CA/00

90/00

Alt
ah/al

1E/00
1F/00
20/00
21/00
22/00
23/00
24/00
25/00
26/00

37/00

2C/00
2D /00
2E/00
2F/00
30/00
31/00
32/00
1C/00

39/20
33/00
79/00
CB/00

34/00
83/00

Int 09h

Shift+ Control
ah/al

1E/01
1F/13
20/04
21/06
22/07
23/08
24/0A
25/0B
26/0C

2C/1A
2D/18
2E/03
2F/16
30/02
31/0E
32/0D
1C/0A

07/1E

39/20
03/00
CA/00

BREAK
0C/1F

Int 05h

SCANCODE TABLE WHEN CHAR FUNCTION IS ON

CHARACTER CODES (hex)
KEY LEGEND SCANCODE Normal Shifted Control Alt Shift+ Control

Normal ‘Shifted Normal Shifted ah/al ah/al ah/al ah/al . ah/al
ESC PrtScr 01 37 01/1B PrtScr 01/1B
TAB OF OF OF/09 0F/00 94/00 94/00
F1 3B 3B DB/00 F4/00 SE/00 5E/00
F2 3C 3C DC/00 F5/00 5F/00 69/00 SF/00
F3 3D 3D DD/00 F6/00 60/00 6A /00 60/00
F4 3E 3E DE/00 F7/00 61/00 6B/00 61/00
F5 3F 3F DF/00 F8/00 62/00 6C/00 62/00
F6 40 40 E0/00 F9/00 63/00 6D /00 63/00
F7 41 41 E1/00 FA /00 64/00 6E/00 64/00
F8 42 42 E2/00 FB/00 65/00 6F/00 65/00
Fo 43 43 E3/00 FC/00 66/00 70/00 66/00
F10 44 44 E4/00 FD/00 67/00 71/00 67/00
t PGUP 48 49 48/00 49/00 8D /00 84/00
ON/OFF ON/OFF 70 70 A2/00
FILER SETUP 72 71 AE/00 AB/00 AA/00
COMM 4 73 29 04/EF 29/60 B2/00
APPT - 74 29 05/F9 29/7E B6/00
PHONE ! 75 02 06/AD 02/AD BA/00 B7/00
MEMO # 76 04 07/EE 04/23 BE/00 BB/00
123 $ T 05 08/B8 05/24 C2/00 BF/00
;_‘ & 78 08 09/A9 08/26 C6/00 C3/00
@ | 0A 2B 0A/DD 2B/IC 80/00 2B/1C
)i \t 0B 2B 0B/29 2B/5C 81/00 2B/1C
<e- <-- 0E 0E 0E/08 0E/08 BREAK O0OE/00 BREAK
DEL INSt 53 52 53/00 52/00 93/00 92/00
- HOME} 4B 47 4B/00 47/00 73/00 77/00
l PGDNt 50 51 50/00 51/00 91/00 76/00
— END} 4D 4F 4D/00 4F/00 74/00 75/00
Q 10 10 10/A6 10/A6 10/11 10/00 10/11
w 11 11 11/A7 11/A7 11/17 11/17
E 12 12 12/91 12/92 12/05 12/05
R 13 13 L 11223 kg
T 14 14 ko (2211}
Y 15 15 kg e kRk
U 16 16 [21113 shkkE
I 17 17 L1111} ek
o) 18 18 18/9B 18/9D 18/0F 18/00 18/0F
P 19 19 19/E7 19/E8 19/10 19/00 19/10
7 It 08 1A 08/AC 1A/5B 1A/1B
8 It 09 1B 09/AB 1B/5D 1B/1D
9 { 0A 1A 0A/F3 1A/TB 1A/1B
/ } 35 1B 35/F6 1B/7D 1B/1D

t Character Code reported to INT 08h as a shifted character.
ssese Mute function enabled.
t Character Code reported to INT 0Sh as an unshifted character.

35

KEY LEGEND

Normal

“’N“EZZU’<ONN§ soLAEREIQMO)
~

Shift
ALT
Char
<space>

@
MENU

Shift
0

+

Shifted Normal

PTRE

>NV A

+
@

CAPSt
SCRL}

%

SCANCODE TABLE WHEN CHAR FUNCTION IS ON

SCANCODE

SEEEBEUSSARRRBREREHEA

H
NUBILETIRISALR

36
0B
K
0D
4E

Shifted

SREEERERENNRRRBNREER

31
32
1C
33
34
35
07
2A
38
79
39
33
03
TA
36
3A
46
oC
06

Normal
ah/al

1E/86
1F/E1
20/D0
21/9F
22/CF
23/BE
24/24
25/BD
26/9C
05/34
06/35
07/36
37/9E

2C/F4
2D/F8
2E/87
2F/F5
30/FE
31/D5
32/E6
1C/0D
02/AE
03/AF
04/A8
4A/FO

39/20
33/F7
03/40

0B/30
34/FA
0D/F2
4E/F1

1 Character Code reported to iNT 08h as a shifted character.
1 Character Code reported to INT 0Sh as an unshifted character.

36

CHARACTER CODES (hex)
Shifted Control

ah/al

1E/8F
1F/E1
20/D1
21/9F
22/CF
23/BE
24/24
25/BD
26/9C
27/3B
27/3A
28/27
28/22

2C/F4
2D/F8
2E/80
2F/F5
30/FE
31/D5
32/E6
1C/0D
33/FB
34/FD
35/FC
07/5E

39/20
33/F7
03/40
C9/00

0C/5F
06/25

ah/al

1E/01
1F/13
20/04
21/06
2/07
23/08
24/0A
25/0B
26/0C

07/1E
96,00

2C/1A
2D/18
2E/03
2F/16
30/02
31/0E
32/0D
1C/0A

03/00

8E/00

39/20

03/00
CA/00

90/00

Alt
ah/al

20/00
21/00
22/00
23/00
2400
25/00
26/00

37/00

2E/00
2F/00
30/00
31/00

32/00

1C/00

39/20
33/00
79/00
CB/00

34/00
83/00

Int 0%h

Shift+Control
ah/al

1E/01
1F/13
20/04
21/06
22/07
23/08
24/0A
25/0B
26/0C

2C/1A
2D/18
2E/03
2F/16
30/02
31/0E
32/0D
1C/0A

07/1E

39/20
03/00
CA/00

BREAK
0C/1F

Int 05h

MUTE KEY SEQUENCES
CHARACTER CODES (hex)
Normal Shifted
KEY SEQUENCE ah/al ah/al
[Char]fr][z] 1E/A0 1E/BS
[Char][r][e] 12/82 12/90
[Char][r][i] 17/A1 17/D6
[Char][r]{o] 18/A2 18/E0
[Char][r][u] 16/A3 16/ES
[Char][r][y] 15/EC 15/ED
[Char][r][n] 31/6E 31/4E
[Char][t][a] 1E/85 1E/B7
[Char][t]{e] 12/8A 12/D4
[Char][t]i] 17/8D 17/DE
[Char][t][o] 18/95 18/E3
[Char][t][u] 16/97 16/EB
[Char][t]{y] 15/79 15/59
[Char][t][n] 31/6E 31/4E
[Char][y][a] 1E/83 1E/B6
[Char]{yl[e] 12/88 12/D2
[Char][y][i] 17/8C 17/D7
[Char][y][o] 18/93 18/E2
[Char][y][u] 16/96 16/EA
[Char][ylly] 15/79 15/59
[Char][y][n] 31/6E 31/4E
[Char]{u]{a] 1E/84 1E/8E
[Char][u][e] 12/89 12/D3
[Char][u][i] 17/8B 17/D8
[Char][u][o] 18/94 18/99
[Char][u]}[u] 16/81 16/9A
[Char][u]{y] 15/98 15/59
[Char][u][n] 31/6E 31/4E
[Char][i][a] 1E/C6 1E/C7
[Char][i][e] 12/65 12/45
[Char][i]{i} 17/69 17/49
[Char][i]{o] 18/E4 18/E5
[Char][i][u] 16/75 16/55
[Char][i][y] 15/79 15/59
[Char][i}[n] 31/A4 31/AS

37

38

Int 05h

The following table gives Jaguar key sequences to obtain character codes 80h through Offh. Most
characters are assigned to a [CHAR] sequence. However the drawing characters are not; they must
be entered via [ALT] [decimal keycode] sequences.

Note that some [CHAR] sequences require the [SHIFT] key to be pressed. In these sequences, the
[CHAR] and [SHIFT] keys may be pressed in either order, [CHAR] first or [SHIFT] first.

Int 05h

Character Code (hex) Character Name Key Sequence
80h C cedilla [CHAR][SHIFT][C]
81h u diaresis [CHAR][U][u]
82h ¢ acute [CHAR][R][e]
83h a circumflex [CHAR][Y][a]
84h a diaresis [CHAR][U][a]
85h a grave [CHAR][T]{a]
86h aring [CHAR][a]

‘87h ¢ cedilla [CHAR][c]

88h ¢ circumflex [CHAR][Y][e]

89h ¢ diaresis [CHAR]}[U]{¢]

8Ah ¢ grave [CHAR][T][¢]

8Bh i diaresis [CHAR][U][i]

8Ch i circumflex [CHARJ[Y]G]

8Dh i grave [CHAR][T][i]

8Eh A diaresis [CHAR][SHIFT]{U]{A]
8Fh Aring [CHAR][SHIFT][A]
90h E acute [CHAR][SHIFT]{R](E]
91h a ligature [CHAR][e]

92h A ligature [CHAR][SHIFT](E]
93h o circumflex [CHAR][Y][o]

%h o diaresis [CHAR][U][0]

95h o grave [CHAR][T]io]

96h u circumflex [CHAR][Y][u]

97h u grave [CHAR][T][u]

98h y diaresis [CHAR][U]ly]

99h O diaresis [CHAR][SHIFT][U}{O]
9Ah U diaresis [CHARJ[SHIFT][U][U]
9Bh o with oblique stroke | [CHAR][o]

9Ch Pound [CHAR][L)

9Dh O with oblique stroke | [CHARJ[SHIFT][O]
9Eh multiply sign [CHAR]["]

9Fh Guilder [CHAR][F]

39

40

Character Code (hex) Character Name Key Sequence
ACh a acute [CHAR][R]{a]
Alh iacute [CHAR][R][i]
A2h o acute [CHAR]{R}[o]
A3h u acute [CHAR][R][u]
Adh n tilde [CHAR]{T][n]
ASh N tilde [CHARJ[SHIFT]T][N]
A6h Feminine ordinal [CHAR][q]
ATh Masculine ordinal [CHAR}[w}
ABh upside down ? [CHAR][3]
ASh registered trademark sign [CHAR][HP CALC]
AAh [ALT]1](7][0]
ABh 1/2 [CHAR](8]
ACh 1/4 [CHAR][7]
ADh upside down ! [CHAR]}{PHONE]
AEh Left French quote [CHAR](1]
AFh Right French Quote [CHAR][2]
BOh [ALT][1]{7]16]
Blh [ALTI((7)7)
B2h [ALT](1](7]i8]
B3h [ALT](1](7]{9]
B4h [ALT][1](8](0]
BSh A acute [CHAR][SHIFT][R}[A]
Bsh A circumflex [CHARJ{SHIFT}[Y][A]
B7h A grave [CHAR]{SHIFT][T](A]
B8h copyright sign [CHAR][LOTUS 123]
B9h [ALT][1][8](5]
BAh [ALT][1)8}(6]
BBh [ALT][1]{8](7]
BCh [ALT][1](8](8]
BDh Cents sign [CHARJ[K]
BEh Yen sign [CHAR]JH]
BFh [ALT][1}(9](1]

Int 05h

Int 09h

Character Code (hex) Character Name Key Sequence
COh [ALT](1][9][2]
Clh [ALT](1][3](3])
C2h [ALT](1](9](4]
C3h [ALT][1]{9}(5]
C4h [ALT][1][9](6]
CSh [ALT][1]5)(7)
Céh a tilde [CHAR][T][a]
Ch A tilde [CHAR][SHIFT][T][A]
C8h [ALT][2){0}{0]
Coh [ALT][2][0](1]
CAh [ALT][2]{0]{2]
CBh [ALT]2](0](3]
CCh [ALT]2]{0}{4]
CDh [ALT][2][0](5]
CEh [ALT]2]{0]{6)
CFh general currency sign | [CHAR][G]
DOh lower case eth [CHAR])[d]
Dih upper case eth [CHAR]{SHIFT}{D]
D2h E circumflex [CHAR][SHIFT][Y][E]
D3h E diaresis [CHAR][SHIFT][U]{E]
D4h E grave [CHAR][SHIFT][T][E]
D5h i without dot {CHAR][N]
Dé6h I acute [CHAR][SHIFT][R][T]}
D7h I circumflex [CHAR][SHIFT][Y][]
D8h I diaresis [CHAR][SHIFTJ{U][T]
DSh [ALT](2){1](7]
DAh [ALT][2][1}(8]
DBh [ALT}2](1]1%]
DCh [ALT](2][2])(0)
DDh broken vertical bar [CHAR]J[(
DEh I grave [CHAR]ISHIFT](T][I]
DFh [ALT2112113]

41

42

Character Code (hex) Character Name Key Sequence
EOh O acute [CHAR)[SHIFT}[R][O]
Elh sharp s [CHAR][S]

E2h O circumflex [CHAR)[SHIFT][Y][O]
E3h O grave [CHAR][SHIFT|(T][O]
E4h o tilde [CHAR][T][0]

ESh O tilde [CHARJ[SHIFT]T}(O]
E6h mu [CHAR]M]

ETh Lower case thorn [CHAR][P]

ESh Upper case thorn [CHAR][SHIFT][P]
E% U acute [CHAR}[SHIFT][R]{U]
EAh U circumflex [CHAR][SHIFT][Y][U]
EBh U grave [CHAR][SHIFT][T][U]
ECh y acute [CHAR][R][Y] i
EDh Y acute [CHAR][SHIFT][R][Y]
EEh ordinal indicator [CHARJMEMO]

EFh acute [CHAR][COMM]

FOh minus sign [CHAR]}[-]

Flh plus/minus [CHARJ{+]

F2h subscript = [CHAR][=]

F3h 3/4 [CHAR][9]

F4h Paragraph sign [CHAR][Z]

F5h Section sign [CHAR][V]

F6h divide sign [CHAR][/]

F7h [CHAR](,]

Fgh degree sign [CHAR][X]

F9h umlaut [CHAR]J[APPT]

FAh middlie dot . [CHAR][.]

FBh superscript 1 [CHAR]}[SHIFT][1]
FCh superscript 3 [CHARJ[{SHIFT][3]
FDh superscript 2 [CHAR][SHIFT][2]
FEh block [CHAR][B]

FFh [ALT][2)(5}{5]

Int 0%5h

Int OAh

Int 0Ah - Miscellaneous Hardware Interrupt

The Miscellaneous Interrupt services the following hardware interrupts:
o Timer 1 interrupt

 Display Cursor Update Request

Timer 1 interrupt. The timerl interrupt is used to implement keyboard peeks if a key is down. It
repeatedly causes keyboard scans to determine which key is pressed. When the key board changes
state it issues an INT 09 indicating a new key is down or up.

Display Cursor Update Request Interrupt. This interrupt is normally disabled. The display cursor
update request is detected by polling in the Timer 0 interrupt routine (INT 08h).

43

Int 0Bh

Int 0Bh - Keyboard Hardware Interrupt

Int OBh is invoked when a key is pressed. It performs a software scan and debounce delay of the
keyboard to detect any newly pressed or released keys. If a key is newly pressed, it sets a bit which .
causes timerl interrupts to call the keyscan code, thereby implementing periodic keyboard peeks.
Whenever a key is newly pressed or released, it computes its one byte scan code and places it inanI/O
port (060h). Then it invokes the Int 09h service routine, which is the IBM compatible keyboard
hardware interrupt.

44

Int OFh

Int OFh - Real-Time Clock Interrupt

The real-time clock hardware interrupt is intended to implement a software real time clock. The
interrupt can be set to wake up the CPU at time intervals of 1 second up to 9.1 hours.

45

Int 10h

Int 10h - Video Services Interrupt

The video services control the display. These services provide a number- of standard functions for
setting the mode of the display, writing characters and dots to the display, and controlling character
attributes. Int 10h supports two modes:

o Mode 07: 80 x 25 monochrome alphanumeric. Mode 7 is compatible with the industry-standard
Monochrome Display Adapter (MDA).

« Modé 20h: 240 x 128 Graphics mode. Mode 20h is a unique graphics mode not compatible with any
IBM mode.

To set the desired mode, use the Set Mode function (Int 10h, AH = 00h). The power-on default is
Mode 7.

Alphanumeric Mode 7 The physical size of Jaguar’s display is smaller than a standard display (40 x 16
vs 80 x 25). However, the Jaguar display RAM is the same size as the industry standard MDA (4K
bytes). There is provision to window around in the display RAM, so the user can see the contents of all
4K of display memory.

Windowing is done by the BIOS to keep the cursor always in view. When the cursor is moved, the
hardware causes an INT 0Ah to occur. The Interupt 0Ah service routine sets bit 5 of the CurFlag byte
in the bios data area to indicate a cursor movement has recently occurred. The Timer 0O interrupt
service routine always shifts CurFlag left one bit position. This effectively debounces the CurFlag byte.
If the shift results in CF set and CurFlag = 0, it indicates the cursor has been moving, but is now quiet.
Timer 0 recognizes this state and moves the display window so it contains the cursor.

When configured for mode 7, the display memory is organized into cells containing 2 bytes each. Byte
0 of each cell contains the 8 bit character code and byte 1 defines the display attributes for that
character. Character cells are arranged in rows of 80 cells each, and there are 25 rows of cells. There is
only one 80 x 25 page of text. The base address of display memory is B000Oh.

Cell0 Cell 1 Cell 79
0B0000h .o Row 0
0BO0OACHh “e Row1l
0BOOFOCh “ Row 24

The attribute byte has the following bit definitions:

46

Int 10h

Foreground field

Intensity bit
0 (unused)

Background field

Blink bit
0=No Blink
1=Blink

Only four foreground and background field combinations are useful:

Background Foreground Definition
Field (Hex) Field(Hex)
0 0 White on white (does not display)
0 1 Underlined characters
0 7 Normal video (black characters on a white background)
7 0 Inverse video (white characters on a black background)

Graphics Mode 20h The graphics mode (mode 20h) is used to display either graphics or alpha
information. When the display is in graphics mode, each bit in display memory is mapped to a display
pixel. The base address of display memory is at 0BOOOOh.

0 1 1Dh
0B000Oh |7|6(5{4]|3]|2|1|0 Row0
0B0OO1Eh .. Rowl
0BO0OEE2h .o Row 127

Within each byte of display memory, bit 7 maps to the left most pixel and bit 0 maps to the right most
pixel. The upper left pixel of the display is bit 7 of 0B000Ch.

47

Int 10h

Video Services The Video Services are described below. Specify the desired function code in register
AH (or AX), with additional parameters passed in other registers as indicated in the table.

e AH = 00h Set Mode

This. function sets the display mode. The new mode is. determined by the value passed.in the AL
register.

Input: AH = 00h.
AL = 07h = 80 char x 25 char monochrome adapter mode.
20h = 240 pixel x 128 pixel graphics mode.
Output: None. The mode is changed in the BIOS and hardware.
The screen is cleared as a side effect of changing
the mode.
Error conditions: None.

Registers modified: AX.
AH = 01h Set Cursor Size

This function sets the size of the cursor displayed in the alphanumeric display modes. Each
character cell in the alphanumeric display modes is eight scan lines high. The cursor size is defined
by specifying the starting scan line within the character cell. The scan lines are numbered from 0
(top of cell) to 7 (bottom). The ending scan line is always fixed at 7. The size of the cursor is
defined by passing the starting scan line in register CH. The default value is CH=7. If bit 5 of CH
is set to "1", the cursor will be suppressed. In graphics mode bit 5 is automatically set, thus no
cursor is displayed.

NOTE: This is slightly different from 100% IBM compatible displays where the both the starting
and ending scan lines for the cursor can be defined. In these displays, the BIOS accepts the starting
scan line in AH and ending scan line in AL.

Input: AH = 01h.

CH = Starting scan line.
Output: None.
Error conditions: None.

Registers modified: AX.
AH = (02h Set Cursor Position

This function sets the cursor position to the specified row and column address on the specified
page. For Jaguar, the display page should be set to 0 in either graphics or text mode. This function
applies to-both text and graphics modes. In graphics mode, the cursor is invisible, but is used to
define a position on the screen.

Input: AH = 02h.
BH = Display page number.
DH = Row address of cursor (0 - 24 for alpha, 0 - 15 for grahics).
DL = Column address of cursor (0 - 79 for alpha, 0 - 39 for graphics).
Output: None.
Error conditions: None.
Registers modified: AX.

e AH = 03h Read Cursor Position

48

This function returns the current address and size of the cursor on the specified page. For Jaguar,

Int 10h

the display page should be set to 0 for either graphics or text mode.

Input: AH = 03h.
BH = Display page number.
Output: CH = Starting scan line of the cursor.

CL = Ending scan line of the cursor.
DH = Row address of the cursor (0 - 24 for alpha, 0 - 15 for graphics).
DL = Column address of the cursor (0 - 79 for alpha, 0 - 39 for graphics).
Error conditions: None.
Registers modified: AX, CX, and DX.

e AH = 04h Read Light Pen Position

This function returns the current state and position of a light pen. Since Jaguar does not support a
light pen, the function always returns AH = 0 to indicate the light pen is not activated.

Input: AH = 04h.
Output: AH = Light pen state (0 = not activated).
Error conditions: None.

Registers modified: AX.
+ AH = 05h Set Active Display Page

This function sets the active display page. In Jaguar, the only allowed display page is 0.

Input: AH = 05h.

AL = Page number: Must be 0.
Output: None.
Error conditions: None.

Registers modified: AX.
s AH = 06h Scroll Rectangle Up

This function scrolls the contents of a window up a specified number of lines. The window is
defined by the row and column addresses specified in the CX and DX registers. The number of
lines to be scrolled is passed in register AL. If AL is set to "0", the entire window is blanked.

NOTE: This video service function operates only display RAM. It is performed regardless of the
position of the video cursor and has nothing to do with the windowing done in the background to
keep the cursor always in view in the 40 x 16 LCD.

Input: AH = 06h.
AL = Number of lines to scroll (0 = blanks entire scroll area).
BH = Attribute of blanked lines (alpha mode) or
Fill character for blanked lines (graphics mode)
CH = Row address of character in upper left corner of window.
CL = Column address of character in upper left corner of window.
DH = Row address of character in lower right corner of window.
DL = Column address of character in lower right corner of window.
Output: None.
Error conditions: None.
Registers modified: AX.

o AH = 07h Scroll Rectangle Down

49

Int 10h

This function scrolls the contents of a window down a specified number of lines. The window is
defined by the row and column addresses specified in the CX and DX registers. The number of
lines to be scrolled is passed in register AL. If AL is set to "0", the entire window is blanked.

NOTE: This video service function operates only display RAM. It is performed regardless of the
position of the video cursor and has nothing to do with the windowing done in the background to
keep the cursor always in view in the 40 x 16 LCD.

Input: AH = 07h.

AL = Number of lines to scroll (0 = blanks entire scroll area).

BH = Attribute of blanked lines (alpha mode) or

Fill character for blanked lines (graphics mode)

CH = Row address of character in upper left corner of window.

CL = Column address of character in upper left corner of window.

DH = Row address of character in lower right corner of window.

DL = Column address of character in lower right corner of window.
Output: None.

‘Error conditions: None.

Registers modified: AX.

¢ AH = 08h Read Character and Attribute at Cursor Position

50

If the display is in alphanumeric mode, this function returns the character and attribute bytes at the
current cursor location. If the display is in graphics mode, the BIOS attempts to match the bit
pattern at the cursor position with a character pattern from the graphics-character font resident in
the BIOS ROM. If it finds a match, the character is returned in AL. If no match is found, AL is
set to zero. No attribute is returned when in graphics mode. The display page must be 0 for alpha
mode. Display page is a don’t care for graphics mode.

Input: AH = 08h.

BH = Page number (must be 0 alpha mode; don’t care for graphics mode)
Output: AH = Attribute byte (valid for alphanumeric modes).

AL = Character.
Error conditions: AL = 00h if in graphics mode and no match was

found for the current cursor position.
Registers modified: AX,

AH = 05h Write Character and Attribute at Cursor Position

If the display is in alphanumeric mode, this function writes character and attribute bytes at the
current cursor location. The value in BL determines the character attributes.

If the display is in graphics mode, no page number is required and the value in BH is ignored. The
attribute byte in BL has different meaning in graphics mode. If bit 7 of BL is set, an exclusive OR
(XOR) of the pixel data is performed with existing display data. If bit 7 is clear, the pixel data
overwrites the existing display data.

For both the alphanumeric and graphics modes, more than one copy of a single character (with
attribute) can be written to the display. Specify the number of copies desired in register CX. In
alphanumeric mode this function will cause line wrap and screen wrap to occur if too many
characters are specified. In graphics mode no wrap-around will occur.

Int 10h

Input:

Output:
Error conditions:
Registers modified:

AH = 0%h.
AL = Character to write.
BH = Page number; must be 0 in alpha mode; not used in graphics mode
BL = Attribute byte if in alphanumeric mode
(Bit 7 set means XOR pixel data if in graphics mode)
CX = Number of characters to write.
None.
None.
AX.

e AH = 0Ah Write Character at Cursor Position

This function writes a character to the current cursor location, but leaves the attribute byte at that
location unchanged. The function is otherwise identical to function 09h (Write Character and
Attribute at Cursor Position).

Input:

Output:
Error conditions:
Registers modified:

AH = 0AhL.

AL = Character to write.

BH = Page number (must be 0 for alpha mode; not used in graphics mode).
CX = Number of characters to write.

None.

None.

AX.

¢ AH = 0Bh Set Color Palette

Since Jaguar’s LCD does not support color, this function has no effect.
e AH = 0Ch Write Pixel

This function writes a pixel on the screen. If bit 7 of register AL is set, an exclusive OR (XOR) is
performed on the current pixel value in display memory and the bit value given in bit 0 of register
AL. If bit 7 is clear, bit 0 of AL is written as the new pixel value.

Input:

Output:
Error conditions:
Registers modified:

AH = 0Ch.
AL = Pixel value:
Bit 7.

If "1, XOR current value with bit 0.
If "0", replace current value with value given by bit 0.
Bit 0: Pixel value
CX = Horizontal pixel address.
DX = Vertical pixel address.
None.
None.
AX.

« AH = O0Dh Read Pixel

This function returns the value of the specified pixel.

51

52

Int 10h

Input: AH = 0Dh.
CX = Horizontal pixel address.
DX = Vertical pixel address.
Output: AL = value of pixel (0 or 1)
Error conditions: None.
Registers modified: AX.

AH = OEh Write Teletype Character

This function writes a character to the display memory, then advances the cursor one location. At -
the end of a line, the cursor will wrap to the start of the next line. At the end of the screen, the
BIOS will scroll the screen up one line, blank a line at the bottom of the screen, and place the
cursor at the start of that line. Four characters have special interpretations: Line Feed (0Ah),
Carriage Return (0Dh), Backspace (08h), and Bell (07h). The BIOS performs the appropriate
actions when it senses these characters. When in alphanumeric mode, the current screen attributes
are unchanged.

Input: AH = 0Eh.

AL = Character.
Output: None.
Error conditions: None.

Registers modified: AX.
AH = 0Fh Get Video State and Mode

This function returns the current state of the display, including the current mode, number of
characters per line, and current display page. Refer to the Set Mode function (AH = 00h) for a
description of the modes.

Input: AH = OFh.

Output: AH = Number of characters per line.
AL = Current mode.
BH = Current display page.

Error conditions: None.

Registers modified: AX.

AH = 10h Reserved

AH = 12h Reserved

AX = 1300h Write String, Global Attribute

This function writes a string with one global attribute. After the write is complete, the cursor is

restored to its original position on the screen. This function uses the Write Teletype Character
function (Int 10h, AH = 0Eh) to place the characters in display memory.

Int 10h

Input: AX = 1300h.
BH = Display page number.
BL = String attribute byte.
(Bit 7 set means XOR pixel data if in graphics mode)
CX = Length of string.
DH = Row address of first character.
DL = Column address of first character.
ES:BP = Pointer to start of string.
Format of string is: Char, Char, ...
Output: None (display memory is updated).
Error conditions: "None.
Registers modified: AX.

e AX = 1301h Write String, Global Attribute, Move Cursor

This function operates in the same way as function AX = 1300h, except that once the operation is
complete, it moves the cursor to the character cell following the last character written.

Input:
AX = 1301h.
BH = Display page number.
BL = String attribute byte.
(Bit 7 set means XOR pixel data if in graphics mode)
CX = Length of string.
DH = Row address of first character.
DL = Column address of first character.
ES:BP = Pointer to start of string,
Format of string is: Char, Char, ...
Output: None (display memory is updated).
Error conditions: None.
Registers modified: AX.

e AX = 1302h Write String, Individual Attributes

This function operates like function AX = 1300h, except that it writes each character in a string
with its own attribute. After the write is complete, the cursor is restored to its original position on
the screen.

Input: AX = 1302h.

BH = Display page number.

CX = Length of string.

DH = Row address of first character.

DL = Column address of first character.

ES:BP = Pointer to start of string.

Format of string is: Char, Attr, Char, Attr ...

Output: None (display memory is updated).
Error conditions: None.
Registers modified: AX.

e AX = 1303h Write String, Individual Attributes, Move Cursor

This function operates in the same way as function AX = 1302h, except that once the operation is
complete, it moves the cursor to the character cell following the last character written.

53

54

Input:

Output:
Error. conditions:
Registers modified:

AX = 1303h.

BH = Display page number.

CX = Length of string,

DH = Row address of first character.
DL = Column address of first character.
ES:BP = Pointer to start of string.

Format of string is: Char, Attr, Char, Attr ...

None (display memory is updated).
None.
AX,

Int 10h

Int 11h

Int 11h - Equipment Check Interrupt

The BIOS returns a copy of its internal equipment list in the ax register. The list is compiled in the

word at 40:10.

Input: AH = 11h

Output: AH :

7 6|54)3 1(0
AL:
7({6|5|41}3 1|0
Error conditions: None.
Registers modified: AX

(Reserved)

Number of serial ports installed
Game adapter installed
(Reserved)

Number of printer adapters installed

One or more flexible disk drives installed
Numeric coprocessor installed

Memory size (11 on Jaguar indicates at least 256K)

Initial video mode
01 = 40-column color
10 = 80-column color
11 = 80-column black and white

Number of flexible dxsk dnves (1f bit 0 = 1)
(00=101=210= = 4)

55

Int 12h

Int 12h - Memory Size Interrupt

The Int 12h service, when executed, returns the number of 1K byte blocks of system RAM in register
AX. Note that the number returned is the amount of user RAM found in the system during the
power-on and initialization process. It does not include any expanded RAM that may be present.

The current Jaguar design has 512K bytes of memory built in as standard equipment. This can be
increased by adding a plug-in RAM card. No method is currently provided to disable a portion of
the 512K RAM. The number returned by Int 12h is approximately 512K minus the number of
Kbytes in the RAM portion of the drive C: Edisk.

Note An application can use this service to determine the total amount of user RAM in the system.

However, this service does not indicate how much RAM is available (“free”) for running
applications.

56

Int 13h

Int 13h - Disk Services Interrupt

The Int 13h services provide low-level support of the Built-In and Plug-In RAM disks. These services
directly access the memory addresses that comprise the RAM Disks, and are responsible for bank
selection of the Plug-In RAM disk. They are also responsible for maintaining a table that contains a
checksum of each sector in the disks.

The Int 13h services provide the ability to read, write, and verify sectors. The services also perform the
formatting of tracks on a disk, and provide a number of functions to obtain status information about
the disks. Many of the functions are not relevant to a RAM disk, but are included to maintain

compatibility with the IBM XT.

The disk parameter tables are provided for compatibility reasons. There are two tables, one for plug-in
disks (drives a: and b:) and one for the built-in ROM-RAM disk. The table for drives a: and b: is
pointed to by the Int 1Eh vector. The table for drive c: is pointed to by the Int 41h vector.

The default tables, provided in the BIOS ROM, are described below.

Plug-In Disk Parameter Table (Drives A: and B:)

Offset Bytes Definition
00h 1 FDC Specify command: step rate and head unload time.
01h 1 FDC Specify command: head load time and DMA mode.
03h 1 Bytes per sector: 0 = 128, 1 = 256, 2 =512, 3 = 1024.
04h 1 Last sector number on track.
05h 1 read /write gap length between sectors.
06h 1 Data length for read /write operations.
07h 1 Format gap length between sectors.
08h 1 Format filler byte for sectors.
0Sh 1 Head-settle time after seek command, in milliseconds.
0Ah 1 Motor-start time in 1/8-second units.
Built-In Disk Parameter Table (Drive C:)
Offset Bytes Definition
00h 2 Number of Cylinders
02h 1 Number of Heads
03h 2 Reserved(0)
05h 2 Starting write pre-comp cylinder (0)
07h 1 Max ECC burst ien (0)
08h 1 Control Byte (0COh)
0%h 3 Reserved (0,0,0)
0Ch 2 Landing zone (0)
OEh 1 Sectors/Track (10h)
OFh 1 Reserved (0)

The Disk Services interrupt (Int 13h) functions are described in the table below. Specify the desired
function code in register AH, with additional parameters passed in other registers as indicated in the

table.

57

58

Int 13h

AH = 00h Reset Disk System

This function does nothing in Jaguar. It is provided for compatibility reasons.

Input: AH = 00h.

Output: AH = Return disk drive status
See Function 01 below.

Error conditions: As indicated in AH

Registers modified: AX, status

AH = 01h Read Status of Last Operation

This function returns the error status code that resulted from the last disk operation (00h is
returned if the last operation was successful).

The function returns with carry clear, even if a non-zero value is returned (indicating an error).

The return codes are defined in the table below.

Disk Return Codes .
Value Error

04h Requested sector could not be found.

10h Checksum error encountered on disk read.

80h Invalid Drive
Input: AH = 01h.
Output: AL = Return status of last disk operation.

AH=20

Registers modified: AX, status

AH = 02h Read Disk Sectors

Based on the supplied parameters, one or more sectors are transferred from the disk into a data
buffer in system RAM. Application programs must ensure that the data area provided is large .
enough to contain the requested data.

Int 13h

Input:

Output:

Error conditions:

-Registers.modified:

AH = 02h.

AL = Number of sectors(1-16)

CH = bits 0-7 of track number (0-max track)

CL bits 6-7: bits 8-9 of track number

CL bits 0-5: Sector number(1-16)

DH = Head number (always 0)

DL = Drive number (1 for drive c:,0 for drive a:,2 for drive d:,etc)

ES:BX = Pointer to buffer in which to put the data read
from the disk.

AH = Return status (refer function 01)
AL = Number of sectors read.

Carry flag is not set if the operation was successful.
Carry flag is set on an error condition.

AX, Status.

« AH = 03h Write Disk Sectors

This function is very similar to the Read Disk Sectors function, except that it writes data from the
data buffer to a disk. See the description of Read Disk Sectors (above) for more details.

Input:

Output:

Error conditions:

Registers modified:

AH = 03h.

AL = Number of sectors (1-16)

CH = bits 0-7 of track number (0-max track)

CL bits 6-7: bits 8-9 of track number

CL bits 0-5: Sector number(1-16)

DH = Head number (0 for drive c:)

DL = Drive unit number.

ES:BX = Pointer to buffer from which to write data to the disk.

AH = Return status (refer to function 01)
AL = Number of sectors written.

Carry flag is not set if the operation
was successful. Carry flag is set on an error condition.

AX, Status.

¢ AH = 04h Verify Disk Sectors

This function performs a read function without transferring any data. This function insures that the
track, head, and sector can be located on the disk, and that the data in the sector can be read. The
description of the Read Disk Sectors function is applicable, except that no data is transferred. The
number of sectors verified is returned in AL.

59

Int 13h

Input: AH = 04h.
AL = Number of sectors.
CH = bits 0-7 of track number (0-max track)
CL bits 6-7: bits 8-9 of track number
CL bits 0-5: Sector number(1-16)
DH = Head number.
DL = Drive unit number.

Output: AH = Return status (refer to function 01)
AL = Number of sectors verified.

Error conditions: Carry flag is not set if the operation was successful.
Carry flag is set on an error condition.

Registers modified: AX, Status.

e AH = 05h Format a Track

This function is a NOP on Jaguar.

Input: AH = 05h.

Output: AH = Return status (Always 0)
Error conditions: None

Registers modified: AH, Status.

o AH = 08h Get Drive Parameters

This function returns a set of disk drive parameters for the drive unit number specified in register
DL. These parameters reflect the recommended formatting parameters for the drive.

The register pair ES:DI, if valid, points to a disk parameter table that contains the values
recommended for use in formatting the disk drive.

If this function is called with a hard disk drive unit number specified in DL (That is, the drive unit
number is greater or equal to 80h), the function sets the carry flag and sets AH to 01h, indicating a
bad device number.

60

Int 13h

Input: AH = 08h.
DL = Drive unit number.

Output: If a drive exists for the drive unit
number:
AX = 00h.
BH = 00h.
BL = Drive type code: Always 0 for Jaguar
CH = bits 0-7 of max track number
CL bits 6-7: bits 8-9 of max track number
'CL bits 0-5: Sectors per track (10h)
DH Maximum head number (0)
DL = Number of disk drives in the system (01)
ES:DI = Pointer to disk parameter
table.

Error conditions: If specified drive does not exist returns Carry Set and AH =80h

Registers modified: AX, BX, CX, DX, DI, ES.

o AH = 15h Get Disk Drive Type

This function returns the disk drive type code for the specified device.

Input: AH = 15h.
DL = Drive unit number.

Output: AH = Disk drive code:
00h = No drive present.
01h = Plug-In disk present, no disk change line available.
02h = Plug-In disk present, disk change line is available.
03h = built-in disk
CX:DX = number of fixed disk sectors

Error conditions: Carry flag set on any
error.

Registers modified: AH, Status.

e AH = 16h Disk Change Status

This function reports the status of the Disk Change line of the specified disk drive.

61

Int 13h
Input: AH = 16h.
DL = Drive unit number (0 - 1).
Output: AH = 00h if Disk not changed.
AH = 01h and carry flag is set if value in DL is invalid.
AH = 06h and carry flag is set if Disk changed.
Error conditions: As given in AH (refer to function 01)

Registers modified: AH, Status.

« AX = OFF00h Modify RAM-ROM DISK (Drive C:) RAM Partition

This function changes the size of the drive ¢: ram partition to BX kbytes.

Input: AH = 0ffh.

AL = 00h

DL = 1h

BX = #kbytes to allocate to RAM portion of Disk (default=384 if BX=0)
Output: BX = -1h if insufficient memory

BX = 1h if RAM disk too full for shrink
BX = 0h if successful

Error conditions: As given in BX

Registers modified: AX, BX, Status

« AX = OFF01h Initialize RAM-ROM DISK (Drive C:)

This function initializes drive c:

62

Int 13h

Input: AH = 0ffh.
AL = 01h
DL = 1h
BX = #kbytes to allocate to RAM Disk (default=384 if BX=0)
CL = # root directory sectors (16 dir entries/sector)
(0 = use default of 4 sectors)
CH = init data sectors flag
(1= clear to 0’s, 0= leave alone)

Output: BX = -1h if insufficient memory
BX = remaining user memory in kbytes if successful

Error conditions: As given in BX

Registers modified: AX, BX, Status.

« AX = FD0O Find logical page and offset for “filename”

Input: AX = FDO0O0
ES:BX = address of filename. The filename is an array
of 11 bytes, with the primary portion of the
filename in the first 8 bytes (blank-filled)
and the filename extension in the last 3 bytes

(blank-filled).
DL = BIOS drive # (0=A, 2=D, 3=E, 4=F) (drive C is
not supported).
Output: if NC: BX = 16K logical page, CX = offset in that 16K page
if CY: filename was not found

o AX = FDO1 Set checksums/flags for cards in Ports 0 and 1

Input: DL=0
Output: nothing

o AX = FD02 Check checksums/flags for cards in Ports 0 and 1

Input: DL=90

Output: AL Bit 0=0 if no change for PORT 0
Bit 1=0 if no change for PORT 1
Bit 2-7=0

Int 14h

Int 14h - Serial Port Services Interrupt

This service provides IBM-XT compatible support for the serial port. BIOS serial port operations are
performed only in a polled mode. While Jaguar hardware supports serial port interrupts, the BIOS
provides no support for interrupt-driven serial operations. However, an application program can
provide interrupt-driven support by writing directly to the serial port hardware.

The Serial Port Services interrupt (Int 14h) functions are described in the table below. Specify the
desired function code in register AH, with additional parameters passed in other registers as indicated
in the table.

« AH = 00h Initialize Serial Port Parameters

This service sets the baud rate, parity, number of stop bits, and character frame size for the
specified serial port. Register AL is used to pass the serial port initialization parameters for the Int
14h, AH = 00h function, as shown in figure below:

Input: AH = 00h.
DX = Serial port number (Always 0 in Jaguar).
AL = Parameters as shown below:

716|543 2}|1;°0

.

Frame size
10 = Seven-bit character frame
11 = Eight-bit character frame

Stop bits
0 = One stop bit
1 = Two stop bits

Parity
00"= None
01 = Odd
10 = None
11 = Even

Baud rate
000 = 110 baud
001 = 150 baud
010 = 300 baud
011 = 600 baud
100 = 1200 baud
101 = 2400 baud
110 = 4800 baud
111 = 9600 baud

Int 14h

Output: AH : Serial Port Status

716[5]4 32|10

Data ready

Overrun error

Parity error

Framing error

Break detected

Transmit buffer register empty

Transmit shift register empty

Timeout

Error conditions:; Timeout error (bit 7) is set in AH if DX is not
in range.

Registers modified: AX.
s AH = 01h Transmit One Character

This function transmits one character through the serial port. the function waits until the UART
transmit buffer is empty, then transmits the character by loading it into the buffer.

When transmitting a character, the BIOS service routine loops until the serial port indicates that it

can transmit the character. If the port does not indicate that it is ready within a timeout period, the
function returns a timeout error.

Input: AH = (01h.

AL = Character to transmit.

DX = Serial port number (Always 0 in Jaguar)
Output: AH = Status as described for ‘Initialize Serial Port Function 00’
Error conditions: Timeout is indicated by setting bit 7 in AH.

Registers modified: AH.
e AH = 02h Receive One Character

This function returns the character received by the serial port. The function waits until the serial
port reports that a character has been received, then reads the serial port status register and reports

65

66

Int 14h

any error conditions that may have occurred. The character is returned in AL. NOTE: This

function changes the serial port interrupt vector to point to a dummy interrupt service routine
(IRET) at 0f000h:0ff53h.

Input: AH = 02h.
DX = Serial port number (Always 0 in Jaguar).

Output: AH = Status as described for ’Initialize Serial Port Function 00’
except that only bits 7, 4, 3, 2, and 1 are reported.
AL = Character received (valid only if AH = 0).

Error conditions: If AH is non-zero, an error has occurred and the
character in AL should be discarded. 1fbit 7 is set
in AH, a timeout occurred, and the other bits in AH
may not be valid.

Registers modified: AX.

AH = 03h Get Serial Port Status

This function reports the status of the serial port and the modem-control lines connected to the
serial adapter.

Input: AH = 03h.
DX = Serial port number (Always 0 for Jaguar)

Output: AH = Status as described for *Initialize Serial Port Function 00’
Error conditions: Timeout error set in AH if DX is not in range.

Registers modified: AX.

Int 1Sh

Int 15h - System Functions Interrupt

The Int 15h system functions provide a number of general services not related to a particular hardware
function in Jaguar.

The Int 15h system functions are described in the table below. Specify the desired function code-in
register AH, with additional parameters passed in other registers as indicated in the table.

Function 4Fh is found universally in all late model PCs, and allows applications to translate keys easily.
Function C0 provides a pointer to a system description table which describes the machine. This table
and function is also new, and present across the IBM PC line, including the PS/2 machines.

Note: If a call is made to a function code not listed in the table, Int 15h will return with AH = 86h and
the carry flag set, indicating an error.

e AH = 00h, 01h, 02h, 03h, 04h Cassette Functions.
These functions are mentioned for compatibility reasons. Jaguar does not support the cassette
drive. Register AH is set to 86h the carry flag is set to indicate an error.
Input: AH = 00h, 01h, 02h or 03h

QOutput: AH =86h and CF set to indicate an error

¢ AH = 41h WAIT UNTIL EVENT FUNCTION
This function tests a specified byte in either System RAM or in I/O space. If the test is true, the
function returns. If the test is false, the function goes into light sleep. A hardware interrupt or
NonMaskable Interrupt will then wake up the processor. Control is returned to the calling routine
if the specified condition becomes true.
There are two timeouts involved with this function:

- Return timeout:

The calling routine can specify a return timeout value in BL. The return timeout can vary
between 1 and 255 55msec intervals. If BL=0, return timeout is disabled.

If return timeout is enabled and the interval is exceeded, the function will return to the caller

with carry set. The timeout value is stored in the BIOS data segment at 40:7b. The timer0
interrupt decrements this timeout value.

~ Display timeout:
This timeout is specified by invoking INT 15h service 46h. If the display timeout period is

exceeded, Jaguar will go to deep sleep. Upon subsequent wakeup, it will return to the caller
with carry set, just as if a return timeout had occurred.

67

Int 15h

Input: AH=41h
AL=Type of test to perform:

00h - Wait for any interrupt (just goes to light sleep

until next interrupt)
01h - Compare RAM byte with BH, return when equal to BH
02h - Compare RAM byte with BH, return when not equal to BH
03h - Test RAM byte with BH mask, return when not equalto 0
04h - Test RAM byte with BH mask, return when equalto 0
10h - Wait for any interrupt (just goes to light sleep

until next interrupt)
11h - Compare I/O byte with BH, return when not equal
12h - Compare 1/0 byte with BH, return when equal
13h - Test I/O byte with BH, return when not equal to 0
14h - Test I/O byte with BH, return when equal to 0

BH = Value or mask

BL=Timeout value in 55ms intervals. 0=timeout disabled
Plus Either:

ES:DI=Pointer to byte in memory to test (AL=1-4)

DX =1/0 port (AL=11h-14h)

Output: Carry Clear if test is true
Carry Set if timeout occurred or invalid test type in AL

Registers modified: AX,Status

e AH = 42h Deep Sleep

This function implements deep sleep. Jaguar remains in deep sleep until one of the following
events:
o ON key is pressed.

« Five characters are received by the serial port within approximately 1.5 seconds of each other
and there is at most one framing or parity error.

o XINT line is asserted for 50 ms.
o Real Time Clock wake up alarm occurs.

When a wake up occurs, the machine exits from this service and returns to the calling program.

Input: AH = 42h.

Registers modified: none

s AH = 45h (DE)ACTIVATE Window keys and Cursor Tracking

This function controls whether ALT-ARROW keys and ALT-SHIFT-ARROW keys will cause
window movements as well as whether cursor tracking is enabled.

Int 15h

Input: AH = 45h,

AL= 0: Enables ALT-ARROW key windowing, Enables cursor tracking
= 1: Disable ALT-ARROW key windowing, Disables cursor tracking
= 2 : Enables ALT-ARROW key windowing, Disables cursor tracking
= 3 : Disables ALT-ARROW key windowing, Enables cursor tracking
> 3: No Operation

Output: Windowing and cursor tracking enabled or disabled according to AL

Registers modified: none

o AH = 46h Set Display Timeout

This function enables display timeout and sets its interval. Display timeout occurs occurs only in
light sleep. See INT 15h service 41h.

Input: AH = 46h.
BX = 1-65535 : time out interval in 55 msec increments
=0 : Display timeout disabled
Output: None

Registers modified: none

e AH = 47h Set/Read Contrast Register

This function sets or reads the contrast register. The range of permissible values is 0 - Ofh. The
highest display contrast corresponds to a value of Ofh.

Input: AH = 47h.
AL = Subfunction
=0 - Set Contrast value in BL
=1 - Read Contrast value and return it in AL
BL = 0-0fh : Contrast value (If AL=0)
> 0fh : Contrast value set to Oth

Output: AL = contrast value if AL was 1 at entry

Registers modified: AX

o AH = 48h Set Digital Beeper Volume

69

Int 15h

Input: AH = 48h.
AL = 0-3 : Digital Beep Volume Setting (0=quietest)
> 3 : Volume set to loudest setting
Output: None

Registers modified: none

AH = 4%h Set RS-232 Channel

This function sets the RS-232 Channel to either WIRE or IR. If IR mode is selected, the UART
baud rate is changed to 2400 baud.

Input: AH = 49h.
AL = Oh: WIRE (default)
AL = 1h:IR

AL > 1h : No Operation
Output: None

Registers modified: none

o AH = 4Ah Set RS-232 Power

70

This function turns power to RS232 device on or off.

Input: AH = 4Ah.
AL = Oh : RS232 power turned off
AL = 1h : RS232 power turned on
AL > 1h: No Operation

Output: None

Registers modified: none

AH = 4Bh Init BIOS Time

This service loads time from the RTC and checks for a valid value. If the RTC contains an illegal
value (such as seconds count more than 59), the double word at 40h:6ch is cleared to 0 and the
service returns with CF=1. Otherwise, the time value from the RTC is converted to the number of
182 Hz ticks since midnight. This is stored in the double word at 40h:6ch and the service returns
with CF=0.

Int 15h

Input: AH = 4Bh.
Output: CF=0 if successful
CF=1 if failed

Registers modified: none

e AX = 4C00h Select Keyboard

This function is a NOP in the current version of jaguar. Future versions will employ it to select the
keyboard types.

Input: AX = 4C00h.
BX = keyboard code

= 0008h FINLAND

= 0010h FRANCE

= 0020h GERMANY
= 0040h ITALY

= 0200h PORTUGUL
= 0400h SPAIN

= 0800h SWEDEN

= 8000h US

Output: ah=0ffh if more than one keyboard requested or
keyboard type is not supported
ah=000h if keyboard successfully selected

Registers modified: ax
e AX =4C01h Return Selected Keyboard Type

This function returns the selected keyboard type.

Ioput: AX = 4C01h.
Output: AX = selected keyboard type

= 0008h FINLAND

= 0010h FRANCE

= 0020h GERMANY
= 0040h ITALY

= 0200h PORTUGUL
= 0400h SPAIN

= 0800h SWEDEN

= 8000h US

Registers modified: AX
e AX =4C02h Return Available Keyboard Types
This function returns the types of keyboards available. The return code in AX is the sum of
keyboard codes listed in service 4c01h. For example, a return code of AX=8001h would indicate
71

Int 15h

that US and BELGIUM keyboards are supported.

Input: AX = 4C02h.
Output: AX = available keyboard type(s)

Registers modified: AX

e AX =4C10h Select Language

This function is used to tell the BIOS whether the selected language is English or Non-English.

Input: AX = 4C10h.
BL = Language

= 00h English
> 00h Non-English

Output: none
Registers modified: ax

e AX = 4C11h Return Language Type

This function returns the selected language type.

Input: AX = 4Cl11h.

Output: AL = selected language type
= 00h English
= 01h Non-English

Registers modified: AX

o AH = 4Dh Return Model Specific Information

Returns Model Specific Information

Input: AH = 4Dh.
AL = Dé4h

Output: BH ="H’
BL =P’

CH = Family type (1)
CL = Model type (1)
DL = Code Revision (0)
Registers modified: AX, BX, CX, DX
e AH = 4Eh Enable Light Sleep In Key Test
Enables or disables light sleep in key test. If light sleep is disabled, the display time out (shut

down) is also disabled. This function should be used with caution since it is possible for the
batteries to run down if light sleep in key test is disabled indefinitely.

72

Int 1Sh

Input: AH = 4Eh,
AL = 00h - light sleep disabled, display time out disabled.
AL = 01h - light sleep enabled
AL > 01h - nop

Output: Light sleep enabled or disabled depending on value of AL at entry.

Registers modified: none
e AH = 4Fh Keyboard Translation Hook

The Keyboard Hardware interrupt (Int 09h) service routine calls this function once for each
scancode received. It does so after it obtains the scancode from the keyboard shift register, but
before it does any processing on the scancode. This call is provided so that an application can take
over the function 4Fh "hook" to perform special processing or translation of the key. If the
application service routine clears the carry before it returns to the Int 09h routine, the Int 05h
routine will discard the scancode. If the carry is set, the Int 09h routine will continue with its
normal processing. When the Int Sh Keyboard Interrupt service routine issues an Int 15h function
4Fh, the stack frame is set as shown below upon entry to the 4Fh function:

Saved Flags
Saved CS

Saved IP from Int 9h
Saved AX
Saved BX
Saved CX
Saved DX

Saved SI
Saved DI
Saved DS
Saved ES
Saved Flags
Saved CS
SP — Saved IP (from Int 15h)

Input: AH = 4Fh.
AL = Scancode obtained from I/O port 60h.
DS = 40h (from Int 09h).

Output: none

Registers modified: none

e AH = 50h Measure Battery

This function measures the voltage of the specified battery. The return value in AX is in the range
from 0-255 if the battery measurement was successfully taken. A return value of 255 represents 5.0

73

e AH = COh

74

Int 15h

volts and 0 represents 0.0 volts. If an error occurred (such as battery voltage was-too noisy to
measure) then AX =0ffffh on exit.

Input:

Output:

Registers modified:

AH = 50h.

AL = Battery to measure
= 00 for system battery
= 01 for backup battery

AX = Measured value (0-255) 0=0 volts, 255=5 volts
= Offffh if error occured

AX

Get Pointer to System Description Table

This function returns a pointer to the System Description Table (SDT) for Jaguar.

Input:
Output:

Error conditions:
Registers modified:

AH = COh.

AH = 00h.

ES:BX = Pointer to the System Description Table.
None.

AH, BX, ES.

The SDT provides an eight byte description of the BIOS capabilities:

ES:BX —

08h No. of bytes in SDT (LSB)
00h No. of bytes in SDT (MSB)
FBh ID Byte

00h Secondary ID Byte

01h BIOS ROM Version

30h Parameter Byte*

00h Reserved

00h Reserved

00h Reserved

00h Reserved

Int 15h

*The parameter byte describes certain hardware and BIOS features:

Reserved

Keyboard Translation Hook (Int
10;1-}";:J 4Fh) implemented (Int 158,

Real-time clock in system

AT-style cascaded interrupt controller

DMA channel 3 is used by BIOS

Jaguar returns 30h as its parameter byte. This indicates that it does not use DMA channel 3 and
does not have a cascaded interrupt controller, but it does have a real-time clock and supports the
Keyboard Translation Hook function.

75

Int 16h

Int 16h - Keyboard Services Interrupt

Int 16h is used to access character information in the keyboard buffer. Each character is stored in the
buffer as a two-byte pair by Int 09h. Normally, one byte is the scancode for the character and the other
byte is the equivalent ASCII character code. When key information is desired, the operating system or
an application calls Int 16h, which reads the scancode and character code from the buffer and returns
them. The scancode is returned in AH; the ASCII character code, in AL.

Light Sleep. Int 16h services 0, 1, 10h, 11h and 13h invoke light sleep. This is a low power mode that
greatly improves battery life. In addition, light sleep code handles Shift annunciator updates and
performs battery checks and display timeouts as scheduled by their respective counters.

The low power state is exited by any hardware interrupt. When an interrupt occurs, it is serviced and
control is passed back to the INT 16h code. The longest interval that can occur between successive
interrupts is 55 msecs, which is the period of the 18.2 Hz timer. Thus the longest interval that the
machine can be in low power mode is 55 msecs.

When light sleep is exited, control is passed back to INT 16h code. The behavior of the INT 16h code
depends on which service was called by the application. If service 0 or 10h was called, the INT 16h
code checks to see if a keycode was placed in the key buffer. If no keycode is found, it quickly returns
to light sleep and low power mode.

If service 1 or 11h was called, the behavior is to check the status of the key buffer (key code present or
absent) and return to the caller.

An application that calls service 0 or 10h will save power because the machine quickly goes back t'o
light sleep after each timer interrupt. The percentage of time that the machine is low power mode is
above 98%.

An application that repeatedly tests for a key down by calling INT 16h services 1 or 11h will get some
power savings, because the machine goes to low power mode on each call to INT 16h. However, the
percentage of time the CPU is in low power mode will be lower than that of INT 16h services Oh or
10h. For this reason, it is recommended that services 0 or 10h be used whenever possible.

Scancode processing. The scancodes for some keys do not have an ASCII equivalent. Int 05h
processes such scancodes in one of the following ways, depending on the key:

« Int 09h may discard the scancode (no data is entered into the keyboard input buffer). For example,
if a scancode for a keyboard state-defining key ([Shift], [CtrI], [Alt], [Caps Lock], [Num Lock], or
[Scroll Lock]) is received, the state of the keyboard is updated, but the scancode is discarded.

« Int 09h may enter a two-byte pair "00h/XXh" into the keyboard input buffer. "XXh" may ‘be fhe
original scancode, or it may be a translated hexadecimal code for the key or key combination
pressed. Int 16h returns "XXh" in register AH and "00h" in register AL.

« Int 05h may enter a two-byte pair "EOh/XXh" into the keyboard input buffer. This occurs if tlfe
received scancode "XXh" is prefixed with "EOh". Int 16h returns *XXh" in register AH and "EOb" in
register AL.

If the [ON] key is pressed with the machine running, INT 16 invokes deep sleep. No key code is
returned to the calling routine.

There are some non-compatible keys on jaguar. These include UTIL, FILER, COMM, APPT,
76

Int 16h

PHONE, MEMO, LOTUS 123 and HP CALC. There are special key codes for these keys, which are
not part of the IBM compatible key code set. These key codes are passed on to the calling application
the same as ‘compatible key codes‘. See the keycode table in the INT 09 section for a complete list of
jaguar key codes.

The Keyboard Services interrupt (Int 16h) functions are described below. Specify the desired function
code in register AH, with additional parameters passed in other registers as indicated in the table.

Note: Int 16h functions 00h and O1h discard scancode values greater than 84h. These extended
scancodes can only be read with Int 16h functions 11h and 12h.

COMPATIBILITY:

The IBM KEYBXX utilities perform the following test to determine if the BIOS supports function 10h,
11h, and 12h;

mov AH, 92h
Int 16h
cmp AH, 80h

ja NoExtendedSupport

Therefore Jaguar Int 16h service must make sure that AH is decremented by 12h when an invalid
function code greater than 12h is passed to the service.

e AH = 00h Read Character From Keyboard Input Buffer

This function attempts to read a character from the keyboard input buffer. Each character is stored
in the buffer as a two-byte pair consisting of the scancode and its ASCII equivalent. If a
scancode /ASCII pair is available, it is removed from the buffer and returned in AX. Note that this
function cannot return scancode values greater than 84h. Use function 10h for the extended
scancodes. The function waits until a scancode/ASCII pair is present in the keyboard input buffer.
Except for hardware interrupts, no other processing occurs until a key is pressed on the keyboard.

Input: AH = 00h.
Output: AH = Scancode.
AL = ASCII character code, or
00h for a special scancode.
Error conditions: None.

Registers Modified: AX.

e AH = 01h Report If Character Available

This function examines the keyboard input buffer to see if a scancode/ASCII pair is available. If a
pair is available, it is returned without removing it from the buffer. The function returns
immediately, regardless of whether a scancode/ASCII pair is available. This function does not
recognize scancode values above 84h. Use function 11h for the extended scancodes.

71

Int 16h

Input: AH = 01h.
Output: Zero flag is clear if character is available:
AH = Scancode.
AL = ASCH character code, or
00h for a special scancode.
Zero flag is set if no characters are available:
AX is indeterminate.
Error conditions: None.
Registers modified: AX, Status.
e AH = 02h Get Shift Status

78

This function returns the shift status as defined below:

Input: AH = 02h.
Output: AL = Shift status bits as follows:
7/6 (5|43 |2|1]0

Unused
Left [Shift] key pressed
[Ctr]] key pressed
[Alt] key pressed
Scroll Lock state active
Num Lock state active
Caps Lock state active
Insert state active

Error conditions: None.

Registers modified: AX.

Int 16h

e AH = 03h

Set Typematic Rate and Key Delay

This function sets the typematic rate and delay between key press and when key repeat takes effect.

Input:

Output:
Error conditions:

Registers Modified:

AH = 03h

AL = 05h Set typematic rate

BH = 00h - 03h for delays of 250ms, 500ms, 750ms, or 1s
BL = 00h - 1Fh for typematic rates of 30cps down to 2cps

BL=00h -> 30cps
BL=01h -> 30cps
BL=02h -> 30cps
BL=03h -> 30cps
BL=04h -> 30cps
BL=05h -> 30cps
BL=06h -> 30cps
BL=07h -> 30cps
BL=08h -> 15cps
BL=09h -> 15cps
BL=0ah -> 15cps
BL=0bh -> 15cps
BL=0ch -> 10cps
BL=0dh -> 10cps
BL=0eh -> 10cps
BL=0fh -> 10cps

None
None.

BL=10h -> 7.5cps
BL=11h -> 7.5¢cps
BL=12h -> 6.0cps
BL=13h -> 6.0cps
BL=14h -> 5.0cps
BL=15h -> 5.0cps
BL=16h -> 43cps
BL=17h -> 4.3cps
BL=18h -> 3.7cps
BL=19h -> 3.3cps
BL=1ah -> 3.0cps
BL=1bh -> 2.7¢cps
BL=1ch -> 2.5cps
BL=1dh -> 2.3cps
BL=1eh -> 2.1cps
BL=1fh -> 2.0cps

AH = 05h Write Character to Keyboard Input Buffer

This function writes the character code and scancode in CX to the keyboard input buffer. The
character and scancode are placed at the end of the buffer. The function will return an error status

if the buffer is full.

Input:

Output:

Error conditions:
Registers modified:

AH = 10h Extended Read Character From Keyboard Input Buffer

AH = 05h.

CH = Scancode to write to buffer.

CL = ASCII character code to write to buffer, or

00h for a special scancode, or
EOh for an extended scancode.
AL = 00h if the write succeeded.

AL = 01h if the write failed due to a full buffer.

The write will fail if the buffer is full.

AX.

This function, like function 00h, attempts to read a character from the keyboard input buffer.
However, function 10h can read both standard scancodes and the mew extended scanches.
Function 10h reads characters just like function 00h, but scancode values above 84h are recognized.

79

80

Int 16h

If a scancode/ASCII pair is available, it is removed from the buffer and returned in AX. The
function waits until a scancode/ASCII pair is present in the keyboard input buffer. Except for
hardware interrupts, no other processing occurs until a key is pressed on the keyboard.

Input: AH = 10h.
Output: AH = Scancode.
AL = ASCI character code, or
00h for a special scancode, or
EOh for an extended scancode.
Error conditions: None.

Registers Modified: AX,

AH = 11h Extended Report if Character Available

This function, like function 01h, examines the keyboard input buffer to see if a scancode /ASCII pair
is available. However, function 11h recognizes scancode values above 84h. Thus, it can read the
extended scancodes. If a scancode/ASCII pair is available, it is returned without removing it from
the buffer. The function returns immediately, regardless of whether a scancode/ASCI pair is
available.

Input: AH = 11h.
Output: Zero flag is clear if character is available:
AH = Scancode.

AL = ASCII character code, or
00h for a special scancode, or
EOh for an extended scancode.

Zero flag is set if no characters are available:
AX is indeterminate.
Error conditions: None.
Registers modified: AX, Status.

AH = 12h Get Extended Keyboard Status

This function returns an extended shift status byte in AH. The byte returned in AL is the same as
that returned by function 02h.

Int 16h

Input:
Output:

AH = 12h.

AH = Status bits as follows:

Left [Ctrl] key depressed
Left [Alt] key depressed
Unused

Unused

[Scroll Lock] key depressed
Unused

[Caps Lock] key depressed

Unused

AL = Status bits as follows:

1

Error conditions:
Registers modified:

None.

AX.

Right [Shift] key pressed
Unused

[Ctr]] key pressed

[Alt] key pressed

Scroll Lock state active
Num Lock state active
Caps Lock state active

Insert state active

81

82

Int 16h

AH = 13h Wait for keyboard event

This function waits until a key has been pressed or the keyboard shift flags change. If a new key
code is found in the key buffer, it returns with ZF=0 and AX=key code/ascii code for the key. If
any of the keyboard shift flags change, it returns with ZF=1 and AX =shift flags.

This routine times out after 9 timer ticks (4950. seconds) and returns even if there have been no
keyboard events. If timeout occurrs, the routine returns with ZF=1 and AX =shift flags.

Input: AH = 13h
BX = current keyboard shift flags (same format as service 12h)
Output: Zero flag is clear if character is available:
AH = Scancode.
AL = ASCII character code, or
00h for a special scancode, or

EOh for an extended scancode.

Zero flag is set if timeout or keyboard flags changed.
AX is loaded with the keyboard flags as described in service 12h.

Error conditions: None.
Registers Modified: AX, flags

Int 17h

Int 17h - Printer Services Interrupt

The Int 17h service routine supports one serial printer. This is different from the standard PC-XT bios
where Int 17h drives a set of up to three parallel printers. However, it is similar to the situation when
the DOS command

MODE LPT1:=COM1:

is used to redirect LPT1 output of a PC to a serial printer. In this case, MS-DOS redirects the INT 17h
interrupt vector to point to an interrupt service routine that supports a serial printer.

This service performs several general tests before performing a specified function. It checks to make
sure that the port number requested is in the range (0 - 1). It also checks the value of the function
requested to make sure it is in range (0 - 2). If any of the tests fail, the service will set AH to 29h and
return. The carry flag is not affected by any of the functions.

The printer timeout values are stored at 40h:78h.

The Printer Services interrupt (Int 17h) functions are described below. Specify the desired function
code in register AH, with additional parameters passed in other registers as indicated in the table.

NOTE: The printer services change the serial port interrupt vector (INT 0Ch) to point to its own serial
port interrupt service routine.

o AH = 00h Write a Byte to a serial Printer

This function checks to see whether an XOFF character has been received. If no XOFF was
received, the routine writes a byte to the serial port and returns.

If an XOFF was received, it waits until an XON is received, or the timeout period is elapsed. If the
XON is received before the timeout period elapsed, the routine writes a byte of data to a serial
printer port and returns. If the timeout period is elapsed before an XON is received, the routine
simply returns with bit 0 of AH set.

Int 17h

Input: AH = 00h.
AL = Data byte to be written.
DX = Port number (0 - 1).
utput: AH = Printer status as shown below
Registers modified: AH.

Time-out

Unused

Unused

1/0 Error

Printer Selected

Out of Paper

Acknowledged

Printer not busy

Error conditions: None.
Registers modified: AX.
e AH = 01h Initialize Printer

This function initializes a serial printer port. It clears the XOFF received flag. It does not set the
baud rate or parity. This should be done with INT 14h function 00.

Input: AH = 01h.
DX = Port number (0 - 1).
Output: AH = Printer status (see function AH=00h)

Registers modified: AH.

e AH = 02h Get Printer Status

This function returns the status of the specified serial printer port.

Int 17h

Input:
Output:
Error conditions: As indicated in AH.

Registers modified: AH.

AH = 02h.
DX = Port number (0 - 1).
AH = Status byte (see function AH =00h).

85

Int 19h

Int 19h - Boot Interrupt

This service boots the MS-DOS operating system.

86

Int 1Ah

Int 1Ah - Time-of-Day Services

The Time-of-Day services provide access to the real-time clock and the BIOS clock. The BIOS clock is
a software tool that is incremented by the Int 08h service routine once every timer "tick" (hardware

timer interrupt). This occurs 18.2065 times per second. The software clock consists of a count of the
timer "ticks."

The Time-of-Day Services interrupt (Int 1Ah) functions are described below. Specify the desired
function code in register AH, with additional parameters passed in other registers as indicated in the
table. If an unsupported function is requested, Int 1Ah will return with the carry flag set.

COMPATIBILITY: For compatibility, the Int 1A services does the following:
o Immediately enable interrupts upon entry into the Int 1A services.

o All functions in the 1Ah set of services return via a RET 2 instruction.
o Interrupts are NOT be disabled while processing functions 0 and 1.

e AH = 00h Read the Current Clock Count

This function returns the number of BIOS clock ticks since midnight. If AL is non-zero, the
application should increment the date by one day.

Input: AH = 00h.
Output: AH = (0Ch.
CX = Timer "tick" count, most significant word.
DX = Timer "tick" count, least significant word.
AL is nonzero if the timer has not been read in 24 hours.
The carry flag is cleared in the Status register.
Error conditions: None.

Registers modified: AX, CX, DX, Status.
e AH = (01h Set Current Clock Count

This function sets the number of timer "ticks" in the software clock.

Input: AH = (1h.
CX = Timer "tick" count, most significant word.
DX = Timer "tick” count, least significant word.

Output: AH = 00h.
The carry flag is cleared in the Status register.
Error conditions: None.

Registers modified: AH, Status.

e AH = 02h Read the Time From the Real-Time Clock

This function reads the time from the real-time clock (RTC).

87

Int 1Ah

Input: AH = 02h.
Output: AH = 00h.

CH = Hours in BCD.

CL = Minutes in BCD.

DH = Seconds in BCD.

The carry flag is cleared if the RTC is operating.
Error conditions: The carry flag is set if the RTC is not operating.
Registers modified: AX, CX, DX, Status.

e AH = 03h Set the Time in the Real-Time Clock

This function sets the time in the real-time clock.

Input: AH = 03h.
CH = Hours in BCD.
CL = Minutes in BCD.
DH = Seconds in BCD.
DL = 01h if daylight saving time.

00h if standard time.
The carry flag is cleared in the Status register.
Output: AH = 00h.
Error conditions: None.

Registers modified: AX, Status.
« AH = 04h Read Date From the Real-Time Clock

This function reads the date from the real-time clock.

Input: AH = 04h.
Output: AH = 00h.
DL = Day in BCD.
DH = Month in BCD.
CL = Year in BCD.
CH = Century:
19 if 20th century.
20 if 21st century.
Error conditions: Carry flag set if the real-time clock is not operating,
otherwise the carry flag is cleared.
Registers modified: AX, CX, DX, Status.

e« AH = 05h Set Date in Real-Time Clock

This function sets the date in the real-time clock.

Int 1Ah

Input: AH = 05h.
DL = Day in BCD.
DH = Month in BCD.
CL = Year in BCD.

CH = Century:
19 if 20th century.
20 if 21st century.
The carry flag is cleared in the Status register.
Output: AH = 00h.
Error conditions: None.

Registers modified: AX, Status.
AH = 06h Set Alarm

This function sets the alarm to generate an Int 4Ah at the specified time. The user must place a
pointer to an appropriate interrupt handling routine in the Int 4Ah vector. The alarm will reoccur

every 24 hours if not reset using AH = 07h.

Input: AH = 06h.
CH = Hours in BCD.
CL = Minutes in BCD.
DH = Seconds in BCD.

Output: AH = 00h.

Error conditions: Carry flag set if the alarm is already set or the
real-time clock is not operating, otherwise the carry
flag is cleared.

Registers modified: AX, Status.

AH = 07h Reset Alarm

This function resets the alarm hardware and clears any pending alarm. (An alarm, when set, will
reoccur every 24 hours until it is reset.)

Input: AH = (07h.
Output: AH = 00h.

The carry flag is cleared in the Status register.
Error conditions: None.

Registers modified: AX, Status.

AH = 08h Set Alarm to Power-On the System

This function sets an alarm in the real-time clock. When the alarm time is reached with the system
in the powered-down state, the system powers on and boots. If the system is powered on when the

alarm time is reached, the alarm interrupt routine will issue an Int 4Ah. The Int 4Ah call is made
as if the alarm had been set up by Int 1Ah function 06h.

89

Int 1Ah

Input: AH = 08h.
CH = Hours in BCD.
CL = Minutes in BCD.
DH = Seconds in BCD.

Output: AH = 00h.
Error conditions: Carry flag set if the alarm is already set or the
real-time clock is nct operating.

Registers modified: AX, Status.

AH = 0%h Get the Current Alarm Setting

This function returns the alarm setting currently in the real-time clock.

Input: AH = 0%h.
Output: CH = Hours in BCD.
CL = Minutes in BCD.
DH = Seconds in BCD.
DL = Status of the alarm:
00h: The alarm is not enabled.
01h: The alarm is enabled but will not power on
the system.
02h: The alarm is enabled and will power on the
system.
Error conditions: The carry flag is set if the real-time clock is not
operating. Otherwise, the carry flag is cleared.
Registers modified: AX, CX, DX, Status.

AH = 0Ah Read Day Counter

The BIOS maintains a count of the number of times the software clock has accumulated 24 hours
worth of timer "ticks.” This variable allows an application to determine how many days have passed
since it last read the date.

Input: AH = 0Ah

Output: AH = 00h.
CX = Day count (number of times the software clock has
overflowed). The carry flag is cleared in the Status
register.

Error conditions: None.

Registers modified: AX, CX, Status.

AH = 0Bh Write Day Counter

This function writes CX into the day counter.

Input: AH = 0Bh.

CX = Value to write to the day counter.
Output: AH = 00h.

The carry flag is cleared in the Status register.
Error conditions: None.

Registers modified: AX, Status.

Int 1Bh

Int 1Bh - Keyboard Break Interrupt

The Keyboard Break interrupt is called when [Ctrl] [Break] is pressed. It is called from the
Keyboard Hardware interrupt (Int 09h) via an Int 1Bh instruction. Applications may chain into the
Keyboard Break interrupt. Interrupts are enabled when Int 1Bh is called. (The BIOS points the Int
1Bh vector to an Iret instruction.) Just prior to calling Int 1Bh, the Int 09h routine clears the
keyboard buffer. When the Int 1Bh routine returns, the Int 09h routine puts the pseudo
scancode/ASCII pair "00h/00h" into the keyboard buffer, then returns.

When the Int 1Bh routine is entered, the BIOS has established a stack frame as shown below;

Saved Flags
Saved CS

Saved IP from Int 9h
Saved AX
Saved BX
Saved CX
Saved DX

Saved SI
Saved DI
Saved DS
Saved ES
Saved Flags
Saved CS
SP - Saved IP (from Int 1Bh)

The register contents are as shown below when Int 1Bh is called:

AH: Undefined

AL: Break scancode (46h)

BX: copy of Keyboard buffer read pointer word at 40h:1Ah
DS: 40h

ES: Undefined

91

Int 1Ch

Int 1Ch - Timer Tick Interrupt

The Timer Tick interrupt is called from the Timer Hardware interrupt (Int 08h) via an Int 1Ch
instruction. The interrupt is called every time the hardware timer issues an interrupt (a timer "tick”).
This occurs at a nominal rate of 182 Hz (once every 55 ms). Applications may chain into the Timer
Tick interrupt. Interrupts are enabled when the Int 1Ch is issued. (The BIOS points the Int 1Ch
vector to an Iret instruction,) When the Int 1Ch routine is entered, the BIOS has established a stack
frame as shown below:

Saved Flags
Saved CS
Saved IP from Int 8h
Saved DS
Saved AX
Saved DX
Saved Flags
Saved CS
SP — Saved IP (from Int 1Ch)

The register contents are as shown below when Int 1Ch is called:

AX, BX, CX, DX, BP, SI, DI: contain undefined values
DS: 40h
ES: Undefined

92

Int 1Dh

Int 1Dh - Video Parameter Table Pointer

Int 1Dh is a pointer to a video parameter table. This table contains parameters used to initialize the
display controller for a particular display mode. The modes are described in the section on Int 10. The
video parameter table is structured into fields as shown below: :

Field Length Definition

(Bytes)

16 Alphanumeric 40 x 25 initialization parameters.
16 Alphanumeric 80 x 25 initialization parameters.
16 Graphics initialization parameters.

16 Monochrome 80 x 25 initialization parameters.
8* Video buffer size.

8 Number of columns for each video mode.

8 Video mode parameter bytes.

*The video buffer size field consists of 4 two-byte words.

The initialization parameters can be used to set up the horizontal and vertical size of the display, and to
establish the cursor size and position.

The video buffer size parameter can set the size of the graphics buffer for the graphics modes. This
parameter should not be used in monochrome mode 7.

The number of columns parameter can be used to indicate the number of columns to display. This
parameter can be used for subsequent display address calculations.

The video mode parameter bytes are written to the display hardware to set it up appropriately for a
given mode.

93

Int 1Fh

Int 1Fh - Graphics Character Table Pointer

This is a pointer to the font table for Code Page 850 characters 128 thru 255. Each character in the
character table is defined by eight bytes. The first byte defines eight dots along the top row of the
character. The next byte defines eight dots along the next row down, and so on. The character is
defined as an 5-by-7 font.

For example, this is the bit representation for the A acute character taken out of the font file:

DB 02H,004H,00EH,011H,01FH,011H,0118,0008 ; Char B6: A acute

.IXX.
A SN ¢
.XXXXX
X ... X
B G <

s e we we we we we we

The BIOS also has a built in character font table for Code Page 850 characters from OOh through
7Fh. There is no interrupt vector pointing to this table, but it is fixed in location at 0f000h:0fa6eh.

94

Int 4Ah

Int 4Ah - User Alarm Interrupt

Int 4Ah is called from the real-time clock interrupt service routine (Int 70h) when an interrupt is issued
by an alarm. Applications may chain into this interrupt so that they may be alerted when an alarm is
active. (The BIOS points the Int 4Ah vector to an Iret instruction.) When the Int 4Ah routine is
entered, the BIOS has established a stack frame as shown below:

Saved Flags
Saved CS
Saved IP from Int 70h
Saved DS
Saved AX
Saved DI
Saved DX
Saved Flags
Saved CS
SP — Saved IP (from Int 4Ah)

The register contents are as shown below when Int 4Ah is called:

AL = 0Dh

AH, BX, CX, DX, BP, SI, DI: contain undefined values
DS: 40h

ES: Undefined

95

Int 63h

Int 63h - eXecute In Place (XIP) Services Interrupt

The Int 63h XIP services provide low-level program location and bank switching capabilities which can
be used to run code directly from a plug-in ROM card.

Plug-in card ports 0 and 1 are supported. However, since Jaguar has only one card port, a custom card
or a custom extender board would be required to access two cards. When a PCMCIA standard card is
inserted into Jaguar, that card resides in Port 0.

The term "logical page" will refer to memory in a plug-in card and the term "physical page" will refer to
memory in the address space of the CPU.

Memory on a plug-in card is viewed as a sequence of 16 KB logical pages. The logical pages start on
successive 16 KB boundaries starting with logical page 0 which starts at card physical address 0.

Jaguar has four 16 KB physical pages and two 64 KB physical pages. The physical page numbers,
starting addresses, and sizes are:

Physical Page Number | Starting Address Size
3 EC000 16 KB
2 E8000 16 KB
1 EA000 16 KB
0 E0000 16 KB
8 D0000 64 KB
4 C0000 64 KB

The XIP Services interrupt (Int 63h) functions are described in the table below. Specify the desired
function code in register AH, with additional parameters passed in other registers as indicated in the
table.

o AH = 80h Return File Location and Lock Card Port

This function searches the root directory of plug-in card drives A, D, E, and F (in that order) for
the specified file. If the file is found, the card port containing the file is locked.

This function is intended to be used by an XIP loader program to locate an XIP program on a
plug-in ROM card. If successful, the port is locked which means that a warm start will result if the
card is removed prior to unlocking the port. Thus, the program is assured that the logical pages
containing the file are available for mapping until the program explicitly unmaps the pages and
unlocks the port.

96

Int 63h

Input: AH = 80h.
ES:BX = Pointer to an 11 byte buffer containing the file name in
the same format as used in a DOS disk directory. That is, the file
name left justified and blank filled in bytes O through 7 and the
extension left justified and blank filled in bytes 8 through 10.

Output: AH = Return status
00h = Success
A2h = File not found
BX = logical page which contains the beginning of the file
CX = offset from beginning of logical page to beginning of file
DX = port number of card that contains the file

Error conditions: As given in AH

Registers modified: AH, BX, CX, DX

o AH = 81h Unlock Card Port

- This function unlocks a card port which has been previously locked by function 80h. Prior to
unlocking, all the mapped pages of the port must be unmapped.

This function is intended to be used by the XIP loader’s exit processing so that the card port will be
available for use by other programs.

Input: AH = 81h.
DX = port number to unlock

Output: AH = Return status
00h = Success
AOh = Invalid port number
Alh = Port not locked
A3h = Port has mapped pages

Error conditions: As given in AH

Registers modified: AH

o AH = 82h Map/Unmap Card Port Pages

This function maps a logical page from a plug-in card memory into the physical address page
frames. This function operates on 16 KB pages when requested to map into physical pages 0, 1, 2,
or 3, and operates on 64 KB pages when requested to map into physical pages 4 or 8.

For physical page numbers 4 and 8, the logical page number must be a multiple of 4 so that the
logical page starts on a 64 KB boundary. In this case four consecutive logical pages are mapped
into the C or D bank corresponding to physical pages 4 or 8, respectively.

This function can also unmap physical pages, which makes the previously mapped logical pages
inaccessible for reading or writing. You unmap a physical page by setting its associated logical page
to FFFFh.

Int 63h

This function is intended to be used by the XIP loader to map XIP code and data into CPU address
space for execution. It is subsequently used to unmap card pages prior to unlocking a port.

Input: AH = 82h.
AL = Physical page number, 0,1,2,3,4,0r 8
BX = Logical page number
DX = Port number

Output: AH = Return Status
00b = Success
8Ah = Invalid logical page number (physical page is 4 or 8, but
logical page is not a multiple of 4)
8Bh = Invalid physical page number
AOh = Invalid port number
A1lh = Port not locked

Error conditions: As givenin AH

Registers modified: AH

o AH = 83h Get/Set Page Map
This function is composed of four subfunctions which perform general saving and restoring of the
page mapping state. The state is saved to or restored from a save array provided in the calling
program. One of these subfunctions is used to determine the required length for the array.

These functions are intended to be used to save or restore Jaguar's page map state as a unit; the
internal representation of the page map state should not be manipulated.

o AX = 8300h Get Page Map Subfunction

Input: AX = 8300h

ES:DI = pointer to destination save array
Output: AH = Return Status

00h = Success

Registers modified: AH

« AX = 8301h Set Page Map Subfunction

Input: AX = 8301h

DS:SI = pointer to source save array
Output: AH = Return Status

00h = Success

Registers modified: AH

98

Int 63h

e AX = 8302 Get and Set Page Map Subfunction

Input:

Output:

Registers modified: AH

AX = 8302h
ES:DI = pointer to destination save array
DS:SI = pointer to source save array

AH = Return Status
00h = Success

o AX = 8303 Get Size of Page Map Save Array Subfunction

Input:

Output:

Registers modified: AH

AX = 8303h.

AH = Return Status
00h = Success
AL = Save array size in bytes

Appendix A
Appendix A - Compatibility Issues

BIOS Special Compatible Subroutine The following code fragment must be present at the address
indicated for compatibility with the Industry Standard.

: This subroutine must be placed here for compatibility.

FO00:E00D 204942 AND [BX+DI+42],CL

F000:E010 4D DEC BP
F000:E011 C3 RET
F000:E00D DB 20h, 49h, 42h,4Dh ;" IBM"

Compatibility Addresses The table below shows the compatible entry points and data table addresses
which the Jaguar BIOS system supports.

Int RomEntry Type Function

FO00:E0O5B code Reset

FO00:E2C3 code Nonmaskable Interrupt

FO00:E6F2 code Boot

FOO0:E729 data Baud rate divisor table

14 FO00:E739 code Serial

16 FO00:E82E code Keyboard

09 FO00:E987 code Keyboard interrupt service routine

13 FO00:EC59 code Disk

OE TFO00:EF57 code Disk int svc routine (Not used in Jaguar)

-- FOOO:EFC7 data Disk parameter table (Not found in J aguar)

17 FO00:EFD2 code Printer

10 FO000:F065 code Video

1D F000:FOA4 code Video parameter table

12 F000:F841 code Memory size

11 FOO0:F84D code Equipment check

15 FO00:F859 code System functions

- FOOO:FAGE data Character table (lower 128 chars only)

1A FO00:FE6E code Time and date

08 FO00:FEA5 code Timer interrupt service routine

- FOOO:FEF3 data Interrupt Vector Table

- FO00:FF23 data Default Interrupt handler
Handles interrupts not specifically
handled by the BIOS.

- FOO0:FF53 data DummyIRET

05 FOO0:FF54 code Print screen

- FOOO:FFF0 code Hardware reset point

- FO00:FFF5 data BIOS date stamp

- FOOO:FFFE data Hardware ID byte

"B 8

100

Appendix B

Appendix B - BIOS Messages

The following is a list of messages display by the BIOS. Most messages will be localized (translated)

to foriegn languages, but a few messages will not be localized.

Messages which will be localized to foriegn languages
CR,LF,"RAM Disk Corrupted"

CR,LF,"Initialize RAM Disk? Enter Y or N: "
CR,LF,"Initializing RAM Disk",CR,LF

" MAIN BATTERY LOW "

" BACKUP BATTERY LOW *

" CARD BATTERY LOW "

"Exiting Backup Mode",CR,LF

CR,LF,"Card changed in locked port."
CR,LF,"No stack for NMI."

CR,LF,"Press any key to warm start ..."
CR,LF,"All files on drive C: will be erased!"

CR,LF,"Continue? Enter Y or N:"

Messages which will not be localized
"(C)Copyright Lotus Development Corp 1990 cr,If
"(C)Copyright Hewlett-Packard 1990",cr If
"Copyright 1984,1985" cr,If,

" Phoenix Software Associates Ltd",CR,LF

"Version @.QA.02",CR,LF

101

Appendix C

Appendix C - PASSWORD

TECHNICAL DETAILS

The Jaguar password is implemented in a fairly simple fashion. At three places in the main BIOS,
there are calls to password routines:

1. At the beginning of the routine which places Jaguar into DeepSleep mode, a check is made to
see if the ALT-ON key press is the cause and, if so, a call is made to the ALTON_PWD
routine which, if a password is defined, scts a flag which says that the unit is "ALTON-locked".

2. At the end of the routine which brings Jaguar out of DeepSleep mode, a call is made to the
CHK_PWD routine which checks two flags, the "ALTON-locked" flag and the "AUTO-locked"
flag. If either is set then the display is scrambled and the password is required from the user.
If the password fails, the unit is put back to sleep, otherwise the display is unscrambled, the
"ALTON-locked" flag is cleared, and the unit is brought fully awake and available for use.

3. At the beginning of the COLDSTART routine (which gets control at CTRL-ALT-DEL and
SHIFT-CTRL-ON) a call is made to the CHK_PWD routine, as described above in 2). If the
password fails, the unit does not go to sleep (since it’s not easily and cleanly done at that point
by a simple call), but continues to loop on password entry until the password is entered
correctly.

There is also some special code in the INT 16 functions for handling special cases involving an
unattended wakeup by an alarm,

Additionally, a PASSWORD command is provided which implements the setting of the password,
the setting/clearing of the "ALTON-lock" flag, and the clearing of the "PASSWORD-defined" flag
(deleting the password).

The hope is that there is NO way to bypass the password, except to remove the main and backup
batteries from the unit (thus loosing the contents of the drive C: RAM disk).

USER’S PERSPECTIVE

There is a built-in command PASSWORD, which allows the user to set, change, and remove a
password. It can also be used to set and clear an AUTO-LOCK mode. When in AUTO-LOCK
mode, *ANY* time the unit turns off, or is re-booted, the password is required before the display
contents can be viewed, or the computer used. When not in AUTO-LOCK mode (in MANUAL
mode), the password is ONLY required if the user turns the unit off by holding down the ALT key,
and then pressing and releasing the ON key. This "locks" the unit, requiring the password upon
wakeup.

To set the password, you must go to DOS (by closing all applicat- ions, entering the filer, pressing
MENU, and selecting System). Then, at the DOS prompt, type

PASSWORD

followed by the ENTER key. You will be prompted:
102

Appendix C

Enter new password:
At this point you should type in your password, which can consist of from 1 to 12 alphanumeric
characters (ASCII values from 32 through 255). Control characters are not allowed and will abort
password entry. After typing in your password, press ENTER. You will now be prompted:

Verify new password:

You should re-enter your password at this point and press ENTER. If the two passwords don’t
match, it will not be accepted, the password will not be set, and you will see the message:

Verify failed. Password unchanged.
Otherwise, the password will not be set, and you will see:
Password changed.

You may now turn the unit off AND secure it by pressing ALT-ON. When turned on again, most of
the display will be blank, with a small box in the center containing the characters:

pwd:
At this point, you can turn the unit back off, type in a password and press ENTER, or do nothing.
If the password is not typed correctly, the unit will beep and turn itself off. If you re-boot with
CTRL-ALT-DEL or SHIFT-CTRL-ON, you will still be prompted for the password. At that point, if
the password is not typed correctly, the unit will beep, but will NOT turn off.
When a unit is turned on after having been secured from graphics mode, the display will be
scrambled and look like a TV screen after the station has gone off the air, but will have the *pwd:’
message in a box in the center of the display.
After a password has been specified, it can be changed by going to DOS and typing:

PASSWORD
You will be prompted:

Enter old password:
You will need to correctly enter your old password before being allowed to change the password.
This prevents an unauthorized person from changing your password without your knowledge,
prevent- ing you from accessing your own machine. After your old password has been correctly
entered, the new password is then entered in the same fashion as the first password (as documented
above).
To enable AUTO-LOCK, go to DOS and type:

PASSWORD /A
(A’ for Automatic.) To disable AUTO-LOCK, type:

PASSWORD /M

('M’ for Manual.) To completely remove password protection, type:
103

Appendix C

PASSWORD /D

(D’ for Delete.) Hence, the complete syntax for the PASSWORD command would look something
like:

PASSWORD [/A | /M | /D]

If the machine has been shut off with password protection enabled, it can be awakened by a key
press, an alarm (set in the appointment book), or a series of characters arriving over the serial cable.
If the cause of the awakening is an alarm or serial characters, the unit will *beep’ for approximately
four seconds or until a key is pressed. You must still enter the password correctly before being able
to use the unit. No keys are discarded, so if the unit is beeping, just start typing the password and
the beeping will stop after the first key press.

If the cause of the awakening was an alarm, the appointment book will display it’s alarm message
and start beeping immediately after the password has been entered.

If an alarm goes off and the user does not press any keys for about 15 seconds, the password code
will allow execution to continue on into the main system so that the next alarm can be set, but the
keyboard is locked out during this period, maintaining the systems security.

It should be recommended to the user that he set up a password, whether it’s used or not, simply to
prevent a malicious person from setting an unknown password that would lock the user out of his
own machine. If the password LOCK is left in "manual” mode (the default) then the password will
never intrude itself unless the user requests it (by pressing ALT-ON).

104

File Specifications for
HP 95LX Built-in Applications

HP 95LX Appointment Book File Format

The HP 95LX Appointment Book file is structured as a file-identification record, followed
by a settings record, followed by a variable number of data records, and terminated by an
end-of-file record. There are multiple types of data records corresponding to the different
types of appointment book entries.

The formats of these appointment book records is described in the following tables. In the
descriptions, the type int refers to a two-byte integer stored least significant byte first, the
type swpint refers to a two-byte integer stored most significant byte first, the type char refers
to a one-byte integer, and the type ASCII refers to a string of ASCII characters.

HP 95LX Appointment Book File Identification Record

Byte Offset Name Type Contents
0 ProductCode int -1 (FFh, FFh).
2 ReleaseNum int 1 (01h, O0h).
4 FileType char 1 (01h).

HP 95LX Appointment Book Settings Record

Byte Ofiset Name Type Contents
0 StartTime int Daily display start time as the number of
minutes past midnight.
2 Granularity int Daily display time line granularity in minutes.
4 AlarmEnable char 1= on, 0= off.
5 LeadTime char Alarm default lead time in minutes.
6 CarryForward char To do carry forward default: 1 = on, 0 = off.

File Specifications for 4-1
HP 95LX Built-in Applications

HP 95LX Appointment Book Daily Data Record

Byte Offset Name Type Contents

0 RecordType char 1 (01h).

1 RecordLength int = Number of bytes in the remainder of this data
record — see note 1.

3 ApptState char See note 2.

4 Year char Year counting from 1900.

5 Month char Month, 1 —12.

6 Day char Day, 1 — 3l.

7 StartTime swpint Start time in minutes since midnight.

9 EndTime int End time in minutes since midnight.

11 LeadTime char Alarm lead time in minutes, 0 — 30.

12 ApptLength char Length of appointment text in bytes.

13 NoteLength int Length of note text in bytes.

15 ApptText ASCII Appointment text — see note 4 below.

15+ApptLength NoteText ASCII Note text where the null character is used as the

line terminator — see note 5 below.

4-2 File Specifications for

HP 95LX Buiit-in Applications

HP 95LX Appointment Book Weekly Data Record

Byte Offset Name Type Contents
0 RecordType char 2 (02h).
1 RecordLength int Number of bytes in the remainder of this data
record — see note 1.
3 ApptState char See note 2.
4 DayOfWeek char Day of week, 1 = Sun., ... , 7=Sat.
5 StartTime swpint Start time in minutes since midnight.
7 StartYear char Start year counting from 1900.
8 StartMonth char Start month, 1 — 12.
9 StartDay char Start day, 1 — 31.
10 EndTime int End time in minutes since midnight.
12 EndYear char End year counting from 1900.
13 EndMonth char End month, 1 — 12.
14 EndDay char End day, 1 — 31.
15 LeadTime char Alarm lead time in minutes, 0 — 30.
16 ApptLength char Length of appointment text in byte.s
17 NoteLength int Length of note text in bytes — see note 5 below.
19 ApptText ASCII Appointment text — see note 4 below.
19+ApptLength NoteText ASCII Note text where the null character is used as the

line terminator — see note 5 below.

File Specifications for 4-3
HP 95LX Buiit-in Applications

HP 95LX Appointment Book Monthly by Date Data Record

Byte Offset Name Type Contents
RecordType - char 3 (03h).
RecordLength int Number of bytes in the remainder of this data
record — see note 1.
3 ApptState char See note 2.
4 DayOfMonth char Day of month, 1 — 31.
5 StartTime swpint Start time in minutes since midnight.
7 StartYear char Start year counting from 1900.
8 StartMonth char Start month, 1 — 12.
9 StartDay char Start day, 1 — 31.
10 EndTime int End time in minutes since midnight.
12 EndYear char End year counting from 1900.
13 EndMonth char End month, 1 — 12,
14 EndDay char End day, 1 — 31.
15 LeadTime char Alarm lead time in minutes, 0 — 30.
16 ApptLength char Length of appointment text in bytes.
17 NoteLength int Length of note text in bytes.
19 ApptText ASCII Appointment text — see note 4 below.
19+-ApptLength NoteText ASCIH Note text where the null character is used as the

liae terminator — see note 5 below.

4-4 File Specifications for
HP 95LX Built-in Applications

HP 95LX Appointment Book Monthly by Position Data Record

Byte Offset Name Type Contents
0 Record Type char 4 (04h).
1 RecordLength int Number of bytes in the remainder of this data
record — see note 1.
3 ApptState char See note 2.
4 WeekOfMonth char Week of month, 1 — 5.
5 DayOfWeek char Day of week, 1 = Sun., ... , 7 = Sat.
6 StartTime swpint Start time in minutes since midnight.
8 StartYear char Start year counting from 1900.
9 StartMonth char Start month, 1 — 12.
10 StartDay char Start day, 1 — 31.
11 EndTime int End time in minutes since midnight.
13 EndYear char End year counting from 1900.
14 EndMonth char End month, 1 — 12.
15 EndDay char End day, 1 — 31.
16 LeadTime char Alarm lead time in minutes, 0 — 30.
17 ApptLength char Length of appointment text in bytes.
18 NoteLength int Length of note text in bytes.
20 ApptText ASCII Appointment text — see note 4 below.
20+ApptLength NoteText ASCIl Note text where the null character is used as the

line terminator — see note 5 below.

File Specifications for 4-5
HP 95LX Built-in Applications

HP 95LX Appointment Book Yearly Data Record

Byte Offset Name Type Contents
0 RecordType char 5 (05h).
1 RecordLength int Number of bytes in the remainder of this data
record — see note 1.
3 ApptState char See note 2.
4 MonthOfYear char Month of year, 1 = Jan,, ... ,12= Dec.
5 DayOfMonth char Day of month, 1 — 31.
6 StartTime swpint Start time in minutes since midnight.
8 StartYear char Start year counting from 1900.
9 StartMonth char Start month, 1 — 12.
10 StartDay char Start day, 1 — 31.
11 EndTime int End time in minutes since midnight.
13 EndYear char End year counting from 1900.
14 EndMonth char End month, 1 —12.
15 EndDay char End day, 1 — 31.
16 LeadTime char Alarm lead time in minutes, 0 — 30.
17 ApptLength char Length of appointment text in bytes.
18 NoteLength int Length of note text in bytes.
20 ApptText ASCII Appointment text — see note 4 below.
20+ApptLength NoteText ASCII Note text where the null character is used as the
line terminator — see note 5 below.

4-6 File Specifications for

HP 95LX Built-in Applications

HP 95LX Appointment Book To Do Data Record

Byte Offset Name Type Contents
RecordType char 6 (06h).
RecordLength int Number of bytes in the remainder of this data
record — see note 1.
3 ToDoState char See note 3.
4 Priority char Priority, 1 — 9.
5 StartYear char Start year counting from 1900.
6 StartMonth char Start month, 1 — 12.
7 StartDay char Start day, 1 — 31.
8 CheckOff Year char Check off year counting from 1900; 0 indicates
not checked off.
9 CheckOffMonth char Check off month, 1 — 12; 0 indicates not checked
off.
10 CheckOffDay char Cﬁl.mck off day, 1 — 31; 0 indicates not checked
off.
11 ToDoLength char Length of to do text in bytes.
12 NoteLength int Length of note text in bytes.
14 ToDoText ASCII To do text — see note 4 below.
14+ToDoLength NoteText ASCII Note text where the null character is used as the

line terminator — see note 5 below.

File Specifications for 4-7
HP 95LX Bulit-in Applications

HP 95LX Appointment Book End of File Record

Byte Offset Name Type Contents
0 RecordType char 50 (32h).
1 RecordLength int 0 (00h, 00h).
Notes:

1. Files created by the Appointment Book application may contain some padding following
the last field of some data records. Hence, the RecordLength field must be used to
determine the start of the next record. Appointment book files created by other programs
do not require any padding.

2. ApptState has several bit fields. Only bit 0 is meaningful to software processing an
appointment book file. Bit 0 being set or cleared corresponds to the alarm being enabled or
disabled. Programs creating Appointment book files should clear all bits, except perhaps
bit 0.

3. ToDoState has two one-bit bit fields. Bit 0 being set or cleared corresponds to ‘carry
forward’ being enabled or disabled for this todo item. Bit 1 being set or cleared
corresponds to the doto being checked off or not checked off.

4. Appointment and ToDo texts are each limited to a maximun of 27 charatcers.

5. Note text is limited to a maximum of 11 lines of 39 characters per line (not counting the
line terminator).

HP 95LX Phone Book File Format

An HP 95LX Phone Book file is structured as a file-identification record, followed by a
variable number of phone book data records, and terminated by an end-of-file record. Each
data record contains the information for one phone book entry.

The formats of these phone book records is described in the following tables. In the
descriptions, the type int refers to a two-byte integer stored least significant byte first,
the type char refers to a one-byte integer, and the type ASCII refers to a string of ASCII
characters.

HP 95LX Phone Book File Identification Record

Byte Offset Name Type Contents
0 ProductCode int -2 (FEh, FFh).
2 ReleaseNum int 1(01h, 00h).
4 FileType char 3 (03h).

4-8 File Specifications for
HP 95LX Built-in Applications

HP 95LX Phone Book Data Record

Byte Offset Name Type Contents
0 RecordType char 1 (01h).
1 RecordLength int Number of bytes in the remainder of this data
record — see NOTE below.
3 NameLength char Length of name text in bytes.
4 NumberLength char Length on number text in bytes.
) AddressLength int Length of address text in bytes.
7 NameText ASCII Name text, 30 characters maximum.
74+NameLength NumberText ASCII Number text, 30 characters maximum.
7-+NameLength+ AddressText ASCIl Address text where the null character is used as
NumberLength the line terminator. Addresses are limited to a
maximum of 8 lines of 39 characters per line (not
counting the line terminator).

HP 95LX Phone Book End of File Record

Byte Offset Name Type Contents
0 RecordType char 2 (02h).
1 RecordLength int 0 (0Oh, 00h).
Note Files created by the Phone Book application may contain some padding
i following the last field of some data records. Hence, you must use the
w RecordLength field to determine the start of the next record.

Phone book files created by other programs do not require any padding.

File Specifications for 4-9
HP 95LX Built-in Applications

HP 95LX Memory Management

Introduction

This chapter discusses ROM-executable XIP programs for the HP 95LX plug-in ROM cards.

The definition of the HP 95LX hardware is now complete, but software tools and support
services are not. Since there are no standards for creating XIP software in the DOS
environment, some of the eventual tools and services may depend on the needs of ISVs.

The PCMCIA is currently working on standards for XIP software. As of this printing, they
have agreed on a basic level of hardware support. This level of support is built into the HP
95LX.

Bank Switch Areas

The HP 95LX hardware supports bank switching of plug-in card memory into the CPU
address space as follows:

Start Length Contents

C0000h | 64K Page | Selectable on 64K boundary

DO0000h | 64K Page | Selectable on 64K boundary
E0000h | 16K Page | Selectable on 16K boundary

E4000h | 16K Page | Selectable on 16K boundary
E8000h | 16K Page | Selectable on 16K boundary
ECO000h | 16K Page | Selectable on 16K boundary

For ease of reference,
s The two 64K sections in the C and D blocks are designated as “code pages.”

Code pages are selectable on 64K boundaries—64K portions of the plug-in card that fall on
64K boundaries can be mapped into either the C or D block of the CPU address space.

m The four 16K sections in the E block are designated as “data pages.”

Data pages are selectable on 16K boundaries—16K portions of the plug-in card that fall on
64K boundaries can be mapped into any of the 16K subdivisions of the E block of the CPU
address space.

DRAFT HP 95LX Memory Management 6-1
4/12/91 14:18

ROM Card Structure

Applications using XIP will be distributed on a ROM card that the user inserts in the
HP 95LX’s plug-in card slot.

Plug-in ROM cards typically contain a ROM-disk structure at their beginnings. ROM disks
each contain a stub program that is used to start the XIP program. Many applications will
have additional files that they desire to access through DOS. These typically include help files,
example files, and other files of application-specific data. All such files will be placed on the
ROM disk that is accessible to the HP 95LX as the A: drive.

In addition to its ROM-disk portion, a plug-in ROM card may contain blocks of
ROM-executable code intended to be bank switched into the code pages mentioned above.

XIP Program Execution

For an independent XIP program, the stub program that resides on the ROM disk will be
loaded and executed as a standard DOS origram. The stub program perform the necessary
bank switching to access its code blocks.

For a System-Manager-compliant application, the stub program will be loaded by the System
Manager.

XIP Bank Switching Services
The two fundamental services provided in the HP 95LX are:

1. A service that returns the card address of the XIP code. The stub program calls this
service to determine the logical addrress of the XIP code it desires to accress.

2. A service that bank switches a logical page of the plug-in card into a physical code or data
page on the HP 95LX.

XIP Tools
Additional tools that we expect to provide in the full Developer’s Kit are:

» ROM disk image builder that takes as input a collection of files and outputs a binary image
of 2 ROM disk that can be included at the beginning of the plug-in ROM card.

s Locator tools that prepare XIP code to execute from the HP 95LX’s code pages.

s ROM image builder that combibes the ROM disk image with any blocks of XIP code to
create a complete ROM image.

s Example stub programs that perform bank switching and other control functions typically
needed by applications.

6-2 HP 95LX Memory Management DRAFT
4/12/91 14:18

HP 95LX Low-Level Graphics Support

Introduction

The package of low-level routines built into the HP 95LX that are available for use by
applications programs support these functions:

1. Set Video Mode (Set the display to alpha or graphics mode.)

2. Set Fill Mask
3. Graphics Settings (Get information about current graphics settings.)
4. Set Logical Origin (Specify origin to which all graphics operations relate.)
5. Set Clip Region (Specify coordinates of upper-left and lower-right corners of a rectangle.)
6. Draw Rectangle (Specify diagonally opposite corners of a rectangle.)
7. Draw Line
8. Plot Point
9. Move Pen
10. Set Pen Color
11. Set Replacement Rule (Specify how pen color combines with pixel color when plotting.)
12. Set Line-type
13. Read Point (How to read the color value of a point.)
14. Read Area (Reads rectangular area of display into specified buffer.)
15. Write Area (Writes to rectangular area of display from specified buffer.)

16. Write Text (Writes specified text to specified location of display.)

All of the routines which plot to the display always obey the current logical origin, clip region,
pen color, replacement rule, and (where appropriate) line-type and fill-mask.

The pen color can be 0 or 1.

The replacement rule can be one of FORCE, AND, OR, or XOR. Writing a rectangular image
can optionally invert the image before applying the specified replacement rule. Writing an
image is different from all other plotting in that it uses an argument as the replacement rule
rather than the current replacement rule.

The line-type is a 16-bit value whose bits are used repeatedly when drawing a line or an
outlined rectangle.

DRAFT HP 95LX Low-Level Graphics Support 7-1
4/11/91 13:58

The fill-mask is an 8-byte value which specifies an 8-bit by 8-bit rectangular mask which is
used repeatedly when drawing a pattern-filled rectangle.

The general process to do graphics is:
1. Set the display mode to graphics.

9. Set the desired pen color, replacement rule, linetype, fillmask, logical origin, and clip
region, if different than the default values set by the set-mode function.

3. Perform the desired drawing using the attributes setup by step 2).
4. Repeat steps 2) and 3) until done.
5. Set the display mode back to alpha.

The graphics routines are accessed through software iaterrupt 5F (hex). The required
arguments are loaded into specific CPU registers, the requested function number is loaded into
the AH register, and then an INT 5Fh instruction is executed. Unless otherwise stated, all
functions preserve ALL registers except for AX.

X-coordinates always get larger (miore positive) when moving to the right on the display.
Y-coordinates always get larger when moving down (towards the bottom) on the display. The
default origin is in the top-left corner of the display.

Although the interface is designed primarily as an assembly language interface, it is simple to
write an assembly language module that can provide a library of corresponding functions to a
C program. A sample is provided below.

7-2 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

Set Video Mode
This routine forces the current video mode to alpha or graphics and clears the display.
Entry conditions:

AH=0

AL = requested mode:

07h = alpha (system manager compliant).
20h = graphics (system manager compliant).
87h = alpha (non-system manager).

AOh = graphics (non-system manager).

Sub-functions 07h and 20h call the System Manager routine to change video modes, thus
letting the System Manager know that the display has changed modes and the display
contents destroyed. This is important for any applications which are intended to be
system-manager compliant.

Subfunctions 87h and AOh call the BIOS directly in order to change display modes,

thus by-passing the System Manager. These should be used by programs that are NOT
system-manager compliant, so that they will function correctly whether the system was
booted into the system manager or if it was booted straight into DOS (by placing a SHELL=
command in a CONFIG.SYS file).

After a SET_MODE call to change to graphics, the defaults are:

Operation Coordinates
Logical origin (0, 0)
Clip region (0, 0) thru (239, 127)
Pen location (0, 0)
Pen color 1
Replacement ruleFORCE
Line-type OFFFFh
Fill mask OFFh,0FFh,0FFh,0FFh,0FFh,0FFh,0FFh,0FFh

Sample assembly code:

mov ax,0020h ; set mode to GRAPHICS
int 5fh

mov ax,0007h ; set mode to ALPHA
int 5fh

DRAFT HP 95LX Low-Level Graphics Support 7-3
4/11/91 13:58

Set Fill Mask
This routine sets the eight-byte fill mask used by DRAW_RECTANGLE when pattern-filling.

Entry conditions:

AH=1
ES:DI = address of 8 bytes of fillmask.

The defatlt fillmask after a mode set to graphics is eight bytes of 0ffh (which would result in a
solid-fill).

The fillmask is always aligned with the byte boundaries of the displaymemory, and it is then
clipped by the rectangle being drawn. This means that as the rectangle is shifted bit-by-bit,
the pattern appears to exist on a plane behind the rectangle, and that the rectangle is a
moving window onto that plane. It’s tough to describe, and a little experimentation should
make it plain.

Sample assembly code:

fmaskl db 055h, Oaah, 055h, Oaah, 055h, Oaah, 055h, Oaah

assume es:dgroup

lea di,fmaskl
mov ah,1
int 5fh : set fillmask pattern to FMASKI1
7-4 HP 95LX Low-Level Graphics Support DRAFT

4/11/91 13:58

Get Current Graphics Information
This routine returns current information about the state of the graphics functions.

Entry conditions:

AH =2
ES:DI = address of a 36-byte long buffer into which the graphics information
will be placed.

At exit from this function, the buffer contents will be:

Offset Size Description
1-byte CURRENT VIDEO MODE
1-byte DEFAULT VIDEO MODE
l-word WIDTH OF DISPLAY IN PIXELS
l-word HEIGHT OF DISPLAY IN PIXELS
l-word CURRENT X-LOCATION OF PEN
l-word CURRENT Y-LOCATION OF PEN
l-word CURRENT LINE-TYPE
12 l-word CURRENT REPLACEMENT RULE
14 l-word CURRENT PEN COLOR
16 l-word CURRENT X-MINIMUM OF CLIP REGION
18 l-word CURRENT X-MAXIMUM OF CLIP REGION
20 l-word CURRENT Y-MINIMUM OF CLIP REGION
22 l-word CURRENT Y-MAXIMUM OF CLIP REGION
24 l-word CURRENT X-LOCATION OF LOGICAL ORIGIN
26 l-word CURRENT Y-LOCATION OF LOGICAL ORIGIN
28-35 8-bytes CURRENT FILL MASK (for rectangle fill)

[y
o WD e O

At exit:
DX:AX = address of the 36-byte long buffer (for return to C).

Sample assembly code:

infobuf label byte
curmode db ?
defmode db ?
dspwidth dw ?

dspheight dw ?

curpenx dw ?

curpeny dw ?
curlinetype dw ?

curreprule dw ?

curpen dw ?
curclipminx dw ?
curclipmaxx dw 7
curclipminy dw ?
curclipmaxy dw ?
curlogorgx dw ?

DRAFT HP 95LX Low-Level Graphics Support 7-5

4/11/91 13:58

curlogorgy
curfmask

assume
lea
mov
int

Set Logical Origin

dw ?
db 8 dup

es:dgroup
di,infobuf
ah,2

5fh

O

; read currentvideo info into infobuf

This routine sets the logical origin in terms of absolute screen pixels, regardless of previous
settings of the logical origin or clip region. The (X,Y) of the logical origin may be specified
off of the actual physical screen (ie, negative values or greater than (239, 127). All other
coordinate arguments in this graphics system are relative to the logical origin, including those
used to specify the clip region.

SET LOGICAL ORIGIN resets the CLIP REGION to the entire physical display (0,0) to
(239,127). So, if clip_region is used, it must be set AFTER the set_logical_origin.

The default logical origin after a mode set is (0,0).

Entry conditions:

AH =3
CX = x coordinate
DX = y coordinate

Sample assembly code:

mov
mov
mov
int

ah,3

cx,120 ; move log org to approximately the
dx,64 ; center of the display

5th

7-6 HP 95LX Low-Level Graphics Support

DRAFT
4/11/91 13:58

Set Clip Region

This routine sets the coordinates of the upper-left and lower-right corners of the clip rectangle.

All reading/writing of the display in this graphics system is limited (clipped) by the current

CLIP REGION.

Default after mode set is (0,0) and (239,127).

Entry conditions:

AH =4

CX = x-minimum coordinate
DX = y-minimum coordinate
SI = x-maximum coordinate

DI = y-maximum coordinate

Sample assembly code:

mov
mov
mov
mov
mov
int

DRAFT
4/11/91 13:58

ah,4
cx,120
dx,0
51,239
dx,127
5fh

; clip (limit) all drawing to the
; right half of the display

HP 95LX Low-Level Graphics Support 7-7

Draw Rectangle

This routine draws a rectangle which has two diagonally opposite corners at the current
pen location and (CX,DX). Hence, you will usually first do a MOVE_PEN, then a
DRAW_RECTANGLE. ALL rectangle draws obey the current replacement rule. The pen
location is left at the starting location (it is not changed).

If the rectangle drawn is just an outline, it is drawn using the current line-type. If the
rectangle drawn is pattern-filled, it uses the current fill-mask. In all cases the current pen
color and replacement rule are used.

Entry conditions:

AH =5
AL = fill flag 0O==outline, current linetype and pen color.
1==solid fill, current pen color.
==pattern fill, current fillmask and pen color.

CX = x-coordinate of second corner of rectangle.
DX = y-coordinate of second corner of rectangle.

Sample assembly code:

mov ah,8 : move pen to (50,74)
mov cx,50
mov dx,74
int 5fh
mov ah,5
mov al,1 : solidfill rectangle to (101, 99)
mov cx,101
mov dx,99
int 5fh
7-8 HP 95LX Low-Level Graphics Support DRAFT

4/11/91 13:58

Draw Line

This routine draws a line from the current pen location to (CX,DX) using the current

pen color, linetype, and replacement rule. The pen location is left at the end point. If
another DRAW_LINE is executed after the first without an intervening MOVE_PEN, the
starting point is not plotted. This is to avoid the problem of drawing connecting lines with a
replacement rule of XOR. Since the starting point of the second line is the same as the ending
point of the first line, it would get plotted twice, which in XOR mode is the same as not
plotting it at all.

Entry conditions:

AH=6
CX = x-coordinate of end point.
DX = y-coordinate of end point.

Sample assembly code:

mov ah,6

mov cx,21

mov dx,10 ; draw from current pen location
int 5fh ; to (21, 10)

Plot Point

This routine moves the current pen location to CX,DX and plots a single point there using the
current pen color and replacement rule.

Entry conditions:

AH =7
CX = x-coordinate of point.
DX = y-coordinate of point.

Sample assembly code:

mov ah,7
mov cx,239 ; plot point at (239, 127)
mov dx,127
int 5fh
DRAFT HP 95LX Low-Level Graphics Support 7-9

4/11/91 13:58

Move Pen

This routine moves the current pen location to (CX,DX). The default location after a mode
set is (0,0).

Entry conditions:

AH=28
CX = x-coordinate.
DX = y-coordinate.

Sample assembly code:

mov ah,8

mov cx,22 : move pen to (22, 44)
mov dx,44

int 5fh

Set Pen Color

This routine sets the current pen color to 0 or 1. The default after a mode set is 1 (black).

Entry conditions:

AH =9
AL = new pen color (0 for white or 1 for black)

Sample assembly code:

mov ah,9
mov al,0 . set pen color to white (0)
it 5fh
7-10 HP 95LX Low-Level Graphics Support DRAFT

4/11/91 13:58

Set Replacement Rule

The replacement rule controls how the current pen color is combined with the existing color
of a pixel on the display when performing any plotting function (except WRITE_AREA,
which has its own replacement rule specified with each call). If the current replacement rule is
FORCE then the resulting color of a pixel is equal to the current pen color at the time of the
plotting action. For the other three replacement rules (AND, OR, and XOR), the resulting
color is the logical operation between the current screen pixel color and the current pen color.

The default replacement rule after a mode set is 0 (FORCE).

Entry conditions:

AH = 10 (0Ah)
AL = new replacement rule ==FORCE
1==AND
==0R
3==XOR
Sample assembly code:
mov ah,10
mov al,3 ; set replacement rule to XOR
int 5fh

Set Line Type

This is a 16-bit value that is repeated over and over as each pixel of a line or an outlined
rectangle is drawn. 0xFFFF will cause solid lines to be drawn. The default after a mode set is
0xFFFF (solid line).

Entry conditions:

AH =11
(0Bh) CX = new line type

Sample assembly code:

mov ah,11
mov ¢x,0c440h ; set line type to XX000X000X000000
int 5fh
DRAFT HP 95LX Low-Level Graphics Support 7-11

4/11/91 13:58

Read Point

This routine returns AX==the color (0 for white, 1 for black) of the requested point. The
current pen location is not modified.

Entry conditions:

AH = 12 (0Ch)
CX = x-location of point to read.
DX = y-location of point to read.

Sample assembly code:

mov ah,12

mov cx,49 ; read point (49,57)
mov dx,57

int 5fh

Read Area (get image)

This routine reads a rectangular area of the display into the specified buffer. There is an
8-byte header at the beginning (specifying number of planes, number of bits/pixel, width of
image, and height of image. The first two are always equal to 1 on the HP 95LX.

The size needed for the buffer is: 8 + ((x2-x1+8)/8) * (y2-y1+1) bytes.

The diagonally opposite corner points (x1, y1) and (x2, y2) are included in the read area. Bits
with a value of 0 are added to the right end of each row of pixels (if necessary) to fill out an
integral number of bytes of data for that row. The image is always left justified within the
buffer regardless of its byte-alignment on the display.

Entry conditions:

AH = 13 (0Dh)

CX = x-coordinate of corner 1.
DX = y-coordinate of corner 1.
SI = x-coordinate of corner 2.
BP = y-coordinate of corner 2.

ES:DI = address of buffer for image.

Sample assembly code:

tmpbuf db '56 dup (?)

assume es:dgroup

mov ah,13
nov cx,24
mov dx,55
mov si,41 : read a rectangular area of the screen
mov bp,70 ; from (24,55) thru (41,70) into
lea di,tmpbuf ;’tmpbuf’
int 5fh
7-12 HP 95LX Low-Level Graphics Support DRAFT

4/11/91 13:58

Write Area (put image)

This writes to a rectangular area of the display from a specified buffer. The buffer should have
the same eight-byte header described in READ_AREA (above). This call is different from

all other “write”-type calls in that it specifies its own replacement rule rather than using the
“current” replacement rule. It expands upon the replacement rule types by allowing the image
to be inverted before being combined in the usual fashion (according to FORCE, AND, OR,
or XOR) with the display contents. This does not modify the contents of the buffer. If the
entire image doesn’t fit on the display, none of it is drawn.

Entry conditions:

AH = 14 (0Eh)
AL = replacement rule

Sample assembly code:

0 FORCE
1 AND

2 OR

3 XOR

4 invert image and then FORCE
5 invert image and then AND

6 invert image and then OR

7 invert image and then XOR
CX = x-location of top-left corner of image destination.
DX = y-location of top-left corner of image destination.
ES:DI = address of image.

tmpbuf db

assume es:dgroup
mov ah,14

mov al,7

mov cx,133
mov dx,66

lea di,tmpbuf

DRAFT
4/11/91 13:58

56 dun (?)

; invert, then XOR

: put image "tmpbuf’ at (133,66)

HP 95LX Low-Level Graphics Support 7-13

Write Text

This routine writes the specified text (all 256 chars are legal EXCEPT 0) to the specified
location, horizontally or rotated 90 degrees counter-clockwise from horizontal, using the BIOS
6x8 font, the current pen color and replacement rule. The specified location (CX, DX) is

the top-left corner of the text string, or if the rotate flag is non-zero, the string is rotated 90
degrees counterclockwise about the point (CX, DX) (such that it is now the bottom-left corner
of the text).

Entry conditions:

AH = 15 (0Fh)

AL = rotate flag.

CX = x-coordinate of top-left corner of first character.
DX = y-coordinate of top-left corner of first character.
ES:DI = address of null-terminated string.

Sample assembly code:

txtstr db “This is a test”,0

assume es:dgroup

mov ah,15
mov al,0 ; plot text horizontally.
mov cx,124
mov dx,37 ; at (124, 37)
lea di,txtstr
int 5fh
7-14 HP 95LX Low-Level Graphics Support DRAFT

4/11/91 13:58

Sample assembly language module of C-callable functions

; Graphics interface module for calling The HP 95LX graphies from C programs.
: Copyright 1990 Hewlett Packard Company. All rights reserved.
; Author: Everett Kaser August 14, 1990.

.MODEL LARGE,C

.CODE

assume ds:nothing
; G_Mode(int BiosVideoMode);

G_Mode PROC BiosVideoMode:word
mov ax,BiosVideoMode

xor ah,ah

int 5fh

ret

G_Mode endp

; GFillMask(maskptr);

G_FillMask PROC uses ES DI, maskptr:dword
les di,maskptr

mov ah,1

int 5fh

ret

G_FillMask endp

; _GetInfo(G_INFO *gp);

G_GetInfo PROC uses ES DI, gp:dword
les di,gp

mov ah,2

int 5fh

ret G_GetInfo endp

; G_LorgA(int x, int y);

G_LorgA PROC x:word, y:word
mov CX,x

mov dx.y

mov ah,3

int 5fth

ret

G_LorgA endp

DRAFT HP 95LX Low-Level Graphics Support 7-15
4/11/91 13:58

: G_ClipL(int xmin, int ymin, int xmax, int ymax);

G_ClipL. PROC uses SI DI, xmin:word, ymin:word, xmax:word, ymax:word
mov cX,Xmin

mov dx,ymin

mov si,xmax

mov di,ymax

mov ah,4

int 5fh

ret

G_ClipL endp

; G_Rect(int x, int y, int fillflag);

G_Rect PROC x:word, y:word, fill:word
mov CX,X

mov dx,y

mov ax,fill

mov ah,5

int 5fh

ret

G_Rect endp

; G_Draw(int x, int y);

G_Draw PROC x:word, y:word
mov ¢X,X

mov dx,y

mov ah,6

int 5fh

ret

G_Draw endp

; G_Point(int x, int y);
G_Point PROC x:word, y:word

mov ¢X,X
mov dx,y
mov ah,7

int 5fh

ret

G_Point endp

; G_Move(int x, int y);

G_Move PROC x:word, y:word
mov cx,X

mov dx,y

mov ah,8

int 5fh

ret

G_Move endp

7-16 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

; G_ColorSel(int color);

G_ColorSel PROC color:word
mov ax,color

mov ah,9

int 5th

ret

G_ColorSel endp

: G_RepRule(int rrule);

G_RepRule PROC rrule:word
mov ax,rrule

mov ah,0ah

int 5th

ret

G_RepRule endp

; G_LineType(int ltype);

G_LineType PROC ltype:word
mov cx,ltype

mov ah,0bh

int 5fh

ret

G_LineType endp

: G_PointRead(int x, int y);

G_PointRead PROC x:word, y:word
mov cX;X

mov dx,y

mov ah,0ch

int 5fh

ret

G_PointRead endp

. G_ImageGet(int x1, int y1, int x2, int y2, char far *image);

G_ImageGet PROC uses ES 5I DI, x1 :word, y1:word, x2:word, y2:word, image:dword
mov cx,x1

mov dx,y1

mov si,x2

les di,image

mov bp,y2

mov ah,0dh

int 5fh

ret

G_ImageGet endp

DRAFT HP 95LX Low-Level Graphics Support 7-17
4/11/91 13:58

; G_ImagePut(int x, int y, char far *image, int replacerule);

G_ImagePut PROC uses ES DI, x:word, y:word, image:dword, reprule:word
mov cx,x

mov dx,y

les di,image

mov ax,reprule

mov ah,0eh

int 5fh

ret

G_ImagePut endp

; G_Text(int x, int y, char far *string, rotflag);

G_Text PROC uses DS ES SI DI, x:word, y:word, string:dword, rotflag:word
mov ax,rotflag

mov cX,X

mov dx,y

les di,string

mov ah,0fh

int 5fh

ret

G_Text endp

@curseg ends
end

7-18 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

Sample Header File for Use with C Programs.
/* Definitions */

#tdefine G_LALPHA 0x07
#define G_GRAPHICS 0x20
#tdefine G_.FORCE 0
#define G_LAND 1
#define G_OR 2
#tdefine G_ZXOR 3
#define G_INOTFORCE 4
#tdefine G_INOTAND 5
#tdefine G_LNOTOR 6
#tdefine G_ZINOTXOR 7
#define G_.OUTLINE 0
#tdefine G_SOLIDFILL 1
#define G_PATTERNFILL 2
#define MINCOLOR 0
#define MAXCOLOR 1

/* Structures */

typedef struct g_info {

unsigned char vidmode;

unsigned char defmode;

unsigned int xpixels;

unsigned int ypixels;

int xloc;

int yloc;

unsigned int linetype;

int rrule;

unsigned int color;

int xclipmin;

int yclipmin;

int xclipmax;

int yclipmax;

int xlorg;

int ylorg;

unsigned char fillmask/[8];

} G_INFO;

DRAFT HP 95LX Low-Level Graphics Support 7-19

4/11/91 13:58

/* Graphics library function definitions. (Al x,y locations relative to current logical origin
unless specified otherwise.) */

void far cdecl

G_INFO far * cdecl

void far cdecl
void far edecl
void far cdecl
void far cdecl
void far cdecl
void far cdecl
void far cdecl
void far cdecl
int far cdecl

void far cdecl
void far cdecl
void far cdecl
void far cdecl
void far cdecl

G_Mode(int);

G_GetInfo(G-INFO far *);
G_ColorSel(int);
G_RepRule(unsigned int});
G_LineType(unsigned int);
G_FillMask(unsigned char far *);
G_LorgA(int, int);

G_ClipL(int, int, int, int);
G_Move(int, int);

G_Point(int, int);

G_PointRead(int, int);

G_Draw(int, int);

G_Rect(int, int, int);
G_ImageGet(int, int, int, int, char far *);
G_ImagePut(int, int, char far *, int);
G._Text(int, int, char far *, int);

*/

/*

/**** G_MODE(mode): mode = {G_TEXT | G_.GRAPHICS} changes the display mode to

text or graphics. */

/**** G_GETINFO(GraphInfoPtr): GraphlnfoPtr is a far pointer to a buffer of the
programmer’s choosing where the graphics information will be copied. See the typedef for
the G_INFO structure in this file for the contents of the buffer. */

*/
*/

*/
*/

/**** G_COLORSEL(color): color = 0 or 1 sets the current pen to “color” */

/**** G_REPRULE(reprule): reprule = {G_FORCE | GLAND | G-OR | G_XOR} sets the
current replacement rule for all other drawing (except for G_ImagePut, which specifies its
own replacement rule). */

/**** G_LINETYPE(linetype): linetype = a 16-bit image that is repeated while drawing

lines and G_OUTLINE’d rectangles. Bits that are 1 cause the current pen color to be plotted
using the current replacement rule.Bits that are 0 are not plotted and leave the display

un-modified. */

/**** G_FILLMASK (buffer): buffer is a far pointer to an 8-byte array which specifies the
fillmask to use when doing drawings of rectangles with a fillflag of G_PATTERNFILL. Every
bit that is a 1 will cause a point of the current color to be plotted. Every bit that is a 0 will
cause that “point” of the display to be undisturbed. */

/* ¥/
J***¥* G_LORGA(x,y): x,y = -32768 to +32767 sets the logical origin (0,0) to be located
at the absolute screen coordinate specified by x,y. */

7-20 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

/***¥* G_CLIPL(x1, y1, x2, y2): x1,y1,x2,y2 = -32768 to +32767 sets the current clip
boundary to the rectangle whose diagonally opposite corners are specified by the absolute
screen coordinates equal to the x1,yl and x2,y2 offsets from the current logical origin.*/

/* K
[*¥*** G_LMOVE(x, y): x,y = -32768 to +32767 causes logical pen to be moved to “x,y” */

[**** G_POINT(x,y): x,y = -32768 to +32767 plots a point of the current pen color with
the current replacement rule at “x,y” unless “x,y” is outside the current clip limits. */

J**** G_POINTREAD(x,y): x,y = -32768 to +32767 reads the color of the point located at
x,y and returns that as the value of the function. */

[¥¥** G_DRAW(x,y): X,y = -32768 to +32767 draws a line of the current pen color with the
current replacement rule and the current linetype from the current pen location to “x,y”;
only those points lying within the clip limits are actually plotted. */

/*¥*** G_RECT(x,y,fillflag): x,y = -32768 to +32767 fillflag = {G_OUTLINE |
G_SOLIDFILL | G_PATTERNFILL} draws a rectangle with diagonally opposite corners at
the current pen location and at “x,y”, using the current pen color and replacement rule. The
“type” of rectangle drawn is determined by fillflag. I fillflag==G_OUTLINE, the outline of
a rectangle is drawn, using the current linetype. If fillflag==G_SOLIDFILL, a solid, filled
rectangle of the current color is drawn. If fillflag==G_PATTERNFILL, a pattern filled
rectangle of the current color is drawn, using the current fill mask. */

/* */
/***¥* G_IMAGEGET(x1, y1, x2, y2, buffer): x1,y1,x2,y2 = -32768 to +32767.
If both points x1,y1 and x2,y2 are within the current clip boundary, the display image

bounded by the rectangle whose diagonally opposite corners are x1,y1 and x2,y2 is read into
the bytes pointed to by “buffer”.

NOTE: for G_ImageGet(), the required size of "buffer’ is (on The HP 95LX):
8 + ((x2-x1+8)/8) * (y2-y1+1) bytes */

/***¥* G_IMAGEPUT(x, y, buffer, reprule): x,y = -32768 to 432767 reprule = {G_FORCE

| GLAND | G_.OR | G.XOR | G_INOTFORCE | G_INOTAND | G-NOTOR | GANOTXOR}
If x,y and the un-specified bottom-right corner of the image are within the clip boundary, the
image from “buffer” is drawn on the display using reprule as the replacement rule. (For the
“NOT?” replacement rules, the image is color-inverted first, then placed on the display using
the “rest” of the replacement rule.) */

/* */
[¥*+* G_TEXT(x,y,buffer,rotflag): x,y = -32768 to +32767, rotflag = 0 or 1 draws the string

pointed to by “buffer” on the display at the specified location x,y using the current font. If
rotflag = 0, it’s drawn horizontally, else it’s rotated 90 degrees counterclockwise. * /

DRAFT HP 95LX Low-Level Graphics Support 7-21
4/11/91 13:58

HP 95LX System Manager Operation
and Programmer’s Guide

Overview

The System Manager is a layer of control and services that resides between the operating
system (MS-DOS) and the built-in applications on the HP 95LX. In addition to the built-in
applications, the System Manager supports external applications that conform to the
programming conventions discussed in this chapter. External applications that run under the
System Manager will be called “System-Manager-compliant” applications to differentiate them
from programs that run directly under MS-DOS.

A PC version of the System Manager is also used by the Connectivity Pack so that System
Manager compliant applications can, usually with no or only minor changes, also run as a
component of the Connectivity Pack.

The System Manager provides two basic functions:
1. Application control (includes launching and task swapping).

2. Common services for basic user-interface constructs, file /O, memory management, and
system requests.

This chapter provides general information for developing System-Manager-compliant
applications: The information ranges from the general principals of System-Manager operation
to a template for a System-Manager-compliant application written in C. See chapter 8 for
descriptions of the services available to System-Manager-compliant applications.

System Manager Operation

The System Manager reads all keyboard input so that when an application’s hot key is
pressed, the System Manager can start that application. When no other applications are
active, the System Manager displays the owner-information screen (which can be thought of as
the default application).

System Manager Execution

The System Manager is the default shell. That is, it is the program that is started by
MS-DOS at boot time and it always remains resident in memory. The System Manager does
NOT process AUTOEXEC.BAT on startup.

If desired, the shell can be changed to the standard MS-DOS command processor. This is
done by creating a config.sys file containing the command “SHELL=COMMAND /P” and
rebooting. If this is done, the system will boot directly into MS-DOS, the System Manager
will not be running, and the built-in applications will not be available. The /P parameter
causes COMMAND to be a permanent shell and also causes COMMAND to process any
AUTOEXEC.BAT file.

HP 95LX System Manager Operation 7-1
and Programmer’s Guide

After booting directly into DOS, the System Manager can be invoked by the command
$SYSMGR. There is no way to exit the System Manager, however you can spawn a DOS shell
using the Filer’s System command or by running COMMAND.COM from the Filer.

Task Management

First, consider the case where an application is being selected and no applications are
currently active (i.e., the owner-information screen is showing).

When the System Manager starts an application, it loads the application into memory,
sets up the segment registers, and transfers control to the application’s entry point. For
built-in applications (that run from ROM), the load step involves allocating enough system
RAM for the application’s data and copying the initialized data from ROM to RAM. For
loading external applications, the System Manager must also allocate system RAM for the
application’s code. In this case, both the code and initialized data are read from disk into
memory.

Once started, an application enters an event loop where it calls the System Manager m_event
or m_nevent function to get the next key stroke or other event. Once started, an application
will be called open until it calls the System Manager m_fini function, which is normally when
the user quits the application. An open application will be called active if it has control and

inactive if another application has control.

Now, consider the case where an application is being selected but a different application is
currently active. In this case, the System Manager not only needs to load and launch the new
application, but also needs to deactivate the previous application.

When switching to a new application, the System Manager sends a deactivate event to the
current application, which changes its status from active to inactive, and then starts the new
one. If there is insuificient memory to load the new application, the System Manager displays
a low memory close down screen and gives the user the chance to terminate one of the open
applications. Once there is sufficent memory, the new application is loaded and launched,
while the data for the previously open applications remain in memory.

Special handling of the code space is required for external applications. Only one external
application’s code is kept in memory at any one time, so if the new application is an
external application and another external application is open, this code space (after possible
expansion) is reused for the code of the new external application.

Note Whenever there is an external application open, the external application code
space is not reduced in size because there must always be enough code space
to restart any of the open (but inactive) external applications.

Memory Management

The System Manager is responsible for efficiently managing memory for
System-Manager-compliant applications.

For example, to prevent memory fragmentation, an inactive application’s data space may be
moved in memory as other applications are launched and exited. This means that applications
should not save the DS value in memory unless the application is prepared to modify the DS
value in case its data segment has been moved.

7-2 HP 95LX System Manager Operation
and Programmer’s Guide

As another example, the code space is overlaid for all external applications. This means that
the code for an inactive external application will not be in memory if any other external
application has been subsequently activated. This implies that variable data should not be
stored in the code segment.

TSRS, Interrupt Vectors, and the System Manager

TSRs are DOS programs that terminate but stay resident in memory. There are two ways
that DOS can be accessed on the HP 95LX. One way is to change the DOS shell from
$SYSMGR to COMMAND as mentioned above. The other way is to run a DOS command
from the Filer or from the DOS command line accessed via the Filer’s System function. Thus,
there are two environments in which to run TSRs.

Running TSRs from the Filer has two drawbacks. One is memory fragmentation due to the
hole left by COMMAND’s data when the TSR terminates. This memory may or may not be
usable by the System Manager. A more important drawback is that the System Manager may
not be able to run an external application, after a TSR has been installed from the Filer. This
is because the System Manager needs to expand a memory block in order to load the external
application’s code and the TSR may block this expansion.

Consequently, we generally recommend that TSRs be run before starting the System Manager.
The TSRs can be started from an AUTOEXEC.BAT file which, if terminated with the
$SYSMGR command, will start the System Manager. This technique permanently ties up
memory for COMMAND’s data; but, since this is below the System Manager, it does not
cause memory fragmentation.

TSR’s usually make use of some interrupt vectors. The System Manager takes over some
interrupt vectors without “chaining” onto the previous owner. This means that a TSR that
is loaded first may not get control when it expects to if the System Manager has taken the
TSR’s interrupt. Thus, it is necessary to know which interrupts are used by the System
Manager.

The interrupts taken by the System Manager are:

Int OSh Print screen.

Int 06h HP 95LX specific BIOS service used to signal entering and
leaving sleep modes.

Int OCh COM1 serial port interrupts.

Int 1Bh Ctrl-Break interrupt. The System Manager saves the original
value and restores it before accessing DOS from the Filer.

Int 4Ah User alarm. Called by BIOS when real-time clock alarm goes off.

Int 60h Used for calls to System Manager services.

Int 61h Used by the System Manager to load its DS register.

In addition, the System Manager chains into Int 1Ch, the user timer tick interrupt.
Finally, Int 62h is used by the HP 95LX’s Calculator application.

HP 95LX System Manager Operation 7-3
and Programmer’s Guide

External Application Support

The System Manager supports adding external applications via entries in an apname.lst

file. External applications can reside either on the C: drive or on a plug-in card. External
applications have the file name extension EXM that distinguishes them from DOS applications
that typically have the EXE extension.

The creation of EXM files is discussed in “Building Applications” below.

The total number of external applications, including those on the C: drive and the plug-in
card, is limited to eight.

The APNAME.LST File

Each record in apname.lst contains registration information on one external application. The
format of each record is:

filespec,hotkey,name(carriage return)

where

filespec is the complete drive, path, and file name of the executable file
for the application. Note that the filespec must not be longer than 28
characters.

hotkey is the four hex digits of the scan/ASCII code for the application’s
hotkey. Refer to the Int 09h section in chapter 5 for a table of
scan/ASCII codes. Char modified keys cannot be used for hot keys.

name is the application name that will be displayed in the System Manager
low memory close out screen. name can be up to 12 characters long.

Applications on the C: Drive

At startup, the System Manager checks for the presence of the file C:\-DAT\APNAME.LST.
If the file exists, the applications listed in it are added to the System Manager task table as
external applications.

This provides the opportunity to register applications that reside on the C: drive. All entries
in C:_.DAT\APNAME.LST should start with C:.

Applications on a Plug-in Card

The System Manager contains support for automatic registration of external applications that
reside on a plug-in card. The general situation is that when a card is inserted, the System
Manager checks for the presence of the file A:\APNAME.LST. If the file is found, its entries
are added to the System Manager task table as (possibly additional) external applications.
Likewise, when the card is removed, the entries are removed from the task table. However,
there are special situations that can occur if a plug-in card application is “missing” due to its
card being removed while while the application was open.

7-4 HP 95LX System Manager Operation
and Programmer’s Guide

Suppose a card containing an open external application is removed. In this case, the System
Manager will not remove the card’s applications from the task table and will refuse to register
any applications from other cards that might be inserted.

Should reloading the missing application’s code become necessary, an error condition exists
since the code cannot be found. Reloading would be necessary, for example, if a second
external application residing on the C: drive is run and then the missing application’s hot key
is pressed.

A distinctive beep is issued to signify various “missing application” conditions as follows:

s When any card is inserted. If this card is the missing application’s card, then that
application is again available for use. If this is a different card, then the beep is a warning
that there is an open application from a previous card and that any applications that might
be on this card have not been registered.

s When the hot key for a missing application is pressed.

s When other applications are exited causing the missing application to become the current
application. In this case, the missing application will be skipped, allowing the next
application on the stack to be restarted. In addition, the missing application will be hidden
on the active task list so that it will be skipped in the future.

m When the application is selected from the low-memory close down menu. In this case, the
application will remain on the menu, but it cannot be closed down until its card is plugged

in again.

HP 95LX System Manager Operation 7-5
and Programmer’s Guide

Access to Services

Accessing Services from the C Programming Language
C-language applications access services by calling the functions as listed in chapter 8.

Fach source file containing services calls must include the header file interfac.h which contains
macro definitions for each service. The macro expands the call to be a call to a common
System Service request function. In addition, the macro adds a service number to the
argument list and casts near pointers to far pointers as appropriate.

For example, the m_disp call in the source
#include “interfac.h”
int row,col,style,ostyle;
char *str;
m_disp(x,-y,str,strlen(str),style,ostyle);
expands to
c_service(F_M_DISP x,y,(void far *)str,strlen(str),style,ostyle);
where
F_M_DISP is the function code for m_disp and is defined in interfac.h.

The function c_service is provided in the object module esve.obj and converts the call into a
software interrupt that transfers control to the System Manager dispatch table.

Accessing Services from Assembler

Assembler programs access the services by pushing any required arguments on the stack and
then using the SMCALL macro to “call” the service. The required arguments can be found in

chapter 8.
For example, usage of m_disp might appear as:

include interfac.mac

push dx : ostyle (not actually used)
push dx ; style

push cx ; string length

push ds ; string segment

push si ; string offset

push ax ; column

push bx ; TOW

SMCALL F_M_DISP ; display the string

add sp,14 : remove arguments from stack

7-6 HP 95LX System Manager Operation
and Programmer’s Guide

There are three things to note in this example:

m The arguments are pushed in left to right order as is done by the C compiler.

u Pointers are passed as far pointers. See interfac.h for argument specifics where, in general,
pointers are cast as far pointers.

a The function numbers such as F_M_DISP and the SMCALL macro can be found in
interfac.mac.

HP 95LX System Manager Operation 7-7
and Programmer’s Guide

Application Considerations

RAM Versus XIP Execution

RAM execution refers to having the application code load into RAM at run time. XIP
(eXecute In Place) refers to having the application code run directly from ROM. All the
built-in applications are XIP while external applications can be either strictly RAM or a
combination of RAM and XIP.

The System Manager does not directly support external XIP applications. That is, the
System Manager loads both the code and data for EXM files into RAM. However, an EXM
program can in turn use the XIP services provided in Int 63h to launch an XIP program. In
this senario, the EXM program acts as a loader for the XIP portion of the program.

Since the XIP loader is a small amount of code, an application done as XIP will require less
RAM for execution than if it was done as RAM-executable. However, the card containing an
XIP application must not be removed while that application is active. Doing so will force a
system warm start.

Application Initialization and Termination

All Syster: Manager applications must call the System Manager functions m_init and m_fini
on startup and termination, respectively.

Note m_fini never returns and hence plays a role analogous to the DOS terminate
process function.
Event Handling

The System Manager implements non-preemptive multitasking for System-Manager-compliant
applications. Hence, compliant applications are event driven and must make timely calls to
the m_event or m_nevent function to receive keyboard input and other events.

Ths System Manager reports key strokes for normal keys, but reports a deactivate event when
another application’s hot key is pressed. In response to a deactivate event, the application

is expected to do any necessary housekeeping to prepare for suspension and then request

the next event. The next event, which will be an activate event, will not be returned until
this application is activated again. Activation can occur for several reasons; for example,

the application’s hot key is pressed, all subsequently activated applications are quit, or the
application has been selected for termination from the low memory close out menu.

In response to an activate event, the application must redraw its screen. For RAM efficiency,
it is recommended that applications have a means of redisplaying the screen from primary
data, rather than by saving a copy of display memory.

7-8 HP 95LX System Manager Operation
and Programmer’s Guide

The System Manager may also return a termination event at any time. The application is
required to respond to this as if the user issued a quit command, with any user-interface
variations needed to make clear what is happening. For example, if an editor is being
terminated and its buffer has been modified, the user should be prompted to save the file.

If possible, when an application terminates, it should save its state information in a file.
When it is subsequently relaunched, it can inspect the file and reconstruct its state prior to
termination.

The example at the end of this chapter shows the code for a typical event loop.

Interruptible Processes

An “interruptible process” within a program is one which the user can interrupt by pressing
a key. An example of an interruptible process is function plotting in the built-in calculator
application.

During an interruptible process, the program must periodically check the keyboard to see if
the user has requested interruption. The HP 95LX BIOS uses keyboard checks as an occasion
to go into light sleep. This is done as a power saving feature and is only done when running
on batteries. In many cases keyboard checks are only done when a program is otherwise

idle. In these cases going into light sleep does not affect performance and is an effective

way to conserve batteries. However, during an interruptible process, going to light sleep can
substantially slow down the process.

The BIOS provides a service (Int 15h, function 4Eh) which controls whether light sleep will be
entered during a key test. This function should be used to disable going to light sleep during
an interruptible process and then to reenable going to light sleep after the process is complete.
Care must be taken to be sure and reenable light sleep for power conservation reasons. The
code fragment below shows an interruptible process which can be terminated by the ESC key
or by Cntl-Break. Included are routines which disable and enable going to light sleep during a
key press.

HP 95LX System Manager Operation 7-9
and Programmer’s Guide

/* --- s/

m_lock(); /% disable task swapping and thus ensure that we
cannot exit without getting a chance to reenable
light sleep */
disable_light_sleep();
while (1) {
/* one iteration of interruptible process goes here x/

/* check for key */
m_nevent (&appevent);
if (appevent.kind == E_BREAK)
break;
if (appevent.kind == E_KEY) {
m_event (Zappevent) ;
if (appevent.data == ESCkey)
break;
else
m_beep();
}
}
enable_light_sleep();
m_unlock(); /* reenable task swapping */

L ettt */
void disable_light_sleep(void)
{
-asm {
mov ax,4e00h
int 15h
}
}
[hemmmmceceemmemmmmmecesemsemmemomesseCSessoooCooSSSeSmSomSoSoSSSSTRoeTT x/
void enable_light_sleep(void)
{
-asm {
mov ax,4e01h
int 15h
}
}
[Hmmmmmemmmmm e e e e e e oS e oS SCSSS S mSS oSS SST S eSTT */

7-10 HP 95LX System Manager Operation
and Programmer’s Guide

Using Standard C Library Functions

Our general recommendation is: If the System Manager provides a given service, that service
should be used instead of using a C-library function. This ensures compatability and reduces
the application’s code size.

Some specific points to note are:

m Keyboard input must be obtained only by the use of the System Manager m_event or
m_nevent functions.

s Dynamic memory allocations must be done only by the use of the System Manager m_alloc
or m_alloc_large functions, or by using DOS services directly. Standard C library memory
management functions should not be used.

m Elementary C Library routines such as strlen and atoi can be used.

® System Manager file I/O uses a FILE structure that is not compatible with the FILE
structure defined in Microsoft C stdio.h. Use care with including stdio.h and, in particular,
don’t include both fileio.h and stdio.h in the same module.

m The standard C library startup code is not used with System-Manager-compliant
applications. This may affect the use of some types of C Library functions.

Using DOS and BIOS Services Directly

Our general recommendation is: If the System Manager provides a given service, it should be
used instead of going directly to a DOS or BIOS function. This insures compatibility and also
reduces the application’s code size. In particular, keyboard input must be obtained only by
the use of the System Manager m_event or m_nevent functions.

HP 95LX System Manager Operation 7-11
and Programmer’s Guide

Memory Model Conventions

External System-Manager-compliant applications must be small model programs.
Specifically,

m Less than 64 KB of code.

= Less than 64 KB of preallocated data including the stack.

If larger code is required, the program must be made Execute-In-Place (XIP).

Additional data space, up to available memory, can be dynamically allocated using the System
Manager m_alloc or m.alloc_large functions.

Data Pointer Considerations

As mentioned previously, the System Manager may move an application’s data space under
certain circumstances and in particular when an application is inactive. If only DS relative
NEAR pointers are used, then this is not a problem since the System Manager will set up

DS properly prior to activating the application. If FAR data pointers are used, then the
application needs to fix these pointers each time the System Manager moves its data segment.

Startup Considerations

The special C-language program-startup situations for System-Manager-compliant applications
are:

m Applications must link with a special version of the C-language startup code, ert0.obj. This
version is needed because the System Manager launch mechanism has already performed the
tasks performed by the normal C-language startup code.

s The command-line and environment variables, argc, argv, and envp, are not available.

Compiling and Linking Conventions

Three rules must be followed when compiling and linking System-Manager-compliant
applications:
1. Applications must be compiled with the /Gs option to eliminate stack checking.

2. There must be at least 256 bytes of application stack space available for System Manager
use whenever a System Manager service is called.

3. Applications must link with the System Manager services interface module, esve.obj. This
module contains the c_service function that performs the software interrupt to transfer
control to the System Manager services jump table.

7-12 HP 95LX System Manager Operation
and Programmer’s Guide

Building Applications

Development Tools

Compllers, Assemblers, and Linkers

We recommend that System-Manager-compliant applications be built using Microsoft’s C 5.1
(or later version) compiler or the Microsoft 5.1 (or later version) assembler. The recommended
linker is the Microsoft linker which is compatible with your compiler and assembler. The
output from these tools is an EXE file.

EXE to EXM Utliity

A utility program, E2M, is provided to convert the EXE file produced by the linker to an
EXM program that can be loaded by the System Manager. See the example below.

Checkout Using Tkernel

Tkernel is a DOS TSR version of the System Manager that runs on a standard PC. While
there are limitations, extensive development can be done on many applications using tkernel.
When applicable, tkernel provides the fastest checkout and debugging environment for System

Manager compliant applications.

Tkernel takes over Int 60h and processes System-Manager-function calls in a manner very
similar to that on an actual HP 95LX. The HP 95LX screen will be simulated by a 40
character by 16-line region in the center of the PC screen.

Some special aspects of using tkernel are:

® When using tkernel, your application runs as a standard DOS application and a standard
debugger can usually be used.

m Task switching and other interactions among applications cannot be tested because only one
task runs at a time under tkernel.

@ Since the HP 95LX’s MENU key is not on a PC keyboard, some other key must be used.
It is suggested that your application respond to both the F11 key (scan/ASCII code =
0x8500) and the MENU key in the same way. This enables the F11 key to be used as the
MENU key under tkernel. To enable this to work on PC’s which don’t have an F11 key,
tkernel converts Alt-F10 to the F11 key code so either F11 or Alt-F10 can be used as the

MENU key.

Graphics Checkout Using TSRGraph

In a manner analogous to tkernel, TSRgraph.com is a DOS TSR which provides access to
the HP 95LX’s graphics routines on a PC. TSRgraph can be installed either before or after
tkernel. Successive executions of TSRgraph switch between installing it and deinstalling it.

HP 85LX System Manager Operation 7-13
and Programmer’s Guide

Example

Simple System Manager Program

The following listing is a template for a System-Manager-compliant application.

/% ,
* SMEELLO.C - Small example of a System Manager compliant program.
*/

#define TRUE 1
#define FALSE O

#include "..\headers\interfac.h"
#include "..\headers\event.h"

/* function prototypes */

void app.init(void);

void app._term(void);

void app_awake(void);

void app_sleep(void);

void app._break(void);

int app_key(void);

void app_display(char *msg);

/* global variables */
EViNT appevent;

void main(void)

{
int done = FALSE;

m_init(); /* init call to system manager */
app_init(); /* application initialization */

/* event loop */
do {
m_event (2appevent) ; /* get next event */
switch (appevent.kind) {
case E_ACTIV:
app.awake(); /* reactivate app */
break;
case E_DEACT:
app.sleep(); /* prepare for suspension */
break;
case E_TERM:
done = TRUE; /* being terminated */
break;

7-14 HP 95LX System Manager Operation
and Programmer’s Guide

case E_BREAK:
app.break() ; /* app ctrl-break handler */
break;

case E_KEY:
done = app_key(); /* process key */
break;

}

}

while (!done);

app.term(); /% application termination */
m_£ini(); /% terminate call to system manager, never returns */

}

/* .- - ceececcscccnccccccccsncneconn */
void app_init(void)
/*
* Initialize application
*/
{

app.display("app.init");

void app.term(void)
/*
* Terminate application

*/

[¥=emmemrcecccncaan - ———- e x/
void app_awake(void)
/%
* Reactivates application after suspension.
*/
{
app.display("app.awake");

void app_display(char *msg)
{

char usage_str[] = "press q to exit ...";

m_setmode(1); /* set text mode */
drawbox("SM Hello");

m_disp(1,5,msg,strlen(msg),0,0);
m_disp(3,5,usage_str,strlen(usage.str),1,0);

HP 95LX System Manager Operation 7-15
and Programmer’s Guide

void app.sleep(void)
/*
* Prepares application for suspension.

*/

void app.break(void)
/%
* Application control-break handler.
*/
{
}
/%=~ --- -- */
int app._key(void)
/*
» Application keystroke processor.
*
* Returns TRUE if user has requested termination, else returns FALSE.
*/
{

if (appevent.data == ’q’) {
return TRUE;
}
else {
m_beep(); /* signal error */
return FALSE;

7-16 HP 95LX System Mariager Operation
and Programmer’s Guide

Make File for Bullding EXE and EXM Files

Below is an nmake make file that will build both a tkernel and an HP 95LX version of the
example program. The tkernel version is called smhello.exe and the HP 95LX version is called
smhello.exm.

This file as well as object modules esvc.obj and ert0.obj are provided in the developer’s kit.
all: smhello.exe smhello.exm

HP 95LX version

smhello.exm: jsmhello.exe
..\tools\e2m jsmhello
copy jsmhello.exm smhello.exm
del jsmhello.exm

jsmhello.exe: jsmhello.obj
link €<<jsmhello.lnk
/M /NOE /NOI jsmhello.obj+..\tools\csvc.obj+..\tools\crt0.obj
jsmhello.exe
jsmhello.map;
<<NOKEEP

jsmhello.obj: smhello.c
¢l /c /AS /Gs /Fojsmhello.obj smhello.c

tkernel version

smhello.exe: smhello.obj
link €<<smhello.lnk
/M /NOE /NOI smhello.obj+..\tools\csvc.obj
smhello.exe
smhello.map;
<<NOKEEP

smhello.obj: smhello.c
cl /c /AS /Fosmhello.obj smhello.c
Running SMHELLO Under Tkernel
To run SMHELLO under tkernel, use the commands

tkernel
smhello

If tkernel is executed when tkernel is already loaded, you are asked if you want to uninstall it.

If desired, the smhello command can be replaced with a command which runs smhello.exe
from a debugger.

HP 95LX System Manager Operation 7-17
and Programmer’s Guide

Running SMHELLO on the HP 95LX

Download smhello.exm to the root directory of the C: drive on the HP 95LX and
using Memo, create or modify the file C:\.DAT\APNAME.LST to include the line
C:\SMHELLO.EXM,C300,SMHello

Now reboot the system.

At this point, the hot key Alt-CALC is assigned to the SMHELLO program.

7-18 HP 95LX System Manager Operation
and Programmer’s Guide

HP 95LX System Manager Services Reference

This chapter describes the HP 95LX System-Manager services that are available to any
System-Manager-compliant application.

Overview

The HP 95LX System-Manager Services provide a simple, memory-effective means by which
all HP 95LX System-Manager-compliant applications can share a set of library functions.
These services simplify development of HP 95LX applications and maximize memory
efficiency.

Because System-Manager Services are inherently viewed as a set of subroutine calls made

by applications, the services described herein are specified as ’C’ Language function calls.
Services are grouped by functionality, and each group has a brief operational overview,
description of any data structures required by the group, and specifications for each function.
Individual function descriptions include parameter conventions, return values, and a functional
synopsis.

The functional areas are:

m Event Services.

s Menu Services.

m File Menu Services.

m Screen Services.

s Editing Services.

m File Services.

m Process Management Services.
s Clipboard Services.

m Sound Services.

m Memory Management Services.
w Date/Time Services.

m Printer Services.

m Configuration Services.

s Communications Services.

m Miscellaneous Services.

s Resource Services.

s Help Services.

m Collating Services.

s 1-2-3 Bridge Services.

These services are described in the following sections of this chapter.

HP 95LX System Manager Services Reference 8-1

Header Files

Header files are used for macro and structure definitions. All functional areas require the
inclusion of interface.h for C modules or interfac.mac for assembler modules.

Some functional areas also require.the inclusion of additional header files as follows:

Service Class C Program Assembler Program
Event event.h event.mac
Menu menu.h menu.mac
File Menu fmenu.h fmenu.mac
Editing edit.h smedit.mac
Clipboard cbcodes.h cbecodes.mac
File I/0 fileio.h filio.mac
Date/Time smtime.h smtime.mac
Configuration settings.h settings.mac
Communication comio.h comio.mac
Bridge bridge.h bridge.mac
Misc me-error.h m.error.mac

A Note on C-Language Function Prototypes

The header files do not contain function prototypes for the services. Instead, interfac.h
contains macro definitions that expand System-Manager-service calls into calls to a single
service-dispatch routine.

Hence, if a service is accidentally called with the incorrect number of parameters, it will not
match the macro and the compiler will issue a warning about too few or not enough actual
parameters for the macro.

However, if a service is accidentally called with an incorrect argument type but with the
correct number of parameters, this may not be caught by the compiler due to the lack of a
function prototype.

The following functions in interfac.h are not usable by applications:

com._timer_addr com-timer_count_addr
InitCom m.appcount
m_app-name m-common_open
m_day_trigger m.disable_macros
m_enable_macros m-fall_printer
m.get_settings m.ram_iv.info
m_reboot m.set_daterule

m.set _settings m_spawnarg

m.sys.rsrc_addr

A Note on Far Versus Near Pointers in Service Calls from C

All pointers in System-Manager-service calls are far pointers. However, the service macros
contain casts of pointer arguments to far pointers. Consequently, near pointers can be used for
data in cases where the compiler can supply the segment value due to the cast.

8-2 HP 95LX System Manager Services Reference

Event Services

While active, applications should poll the System Manager’s event functions to get input from
the user, and dispatch according to the type of event reported and the current state of the
application (doing a menu, editing text, etc.). Keystrokes are translated for both applications
(CP 850) and 123 (LICS and function key flags). Event information is passed through the
structure of type EVENT, which is defined below.

typedef struct {

enum event_kind kind; /* event kind code defined below */
unsigned int data; /* For ASCII keys, this is just the ASCII

code in the low byte. For non-ASCII keys,
the scan code is in the high byte and the
low byte is zero. */

unsigned char scan; /* scan code from BIOS */
unsigned char shifts; /* shifts register, when function returns */

/* not necessarily when key struck =/

unsigned int lics; /* LICS translation of keystroke */
unsigned char fkey_num; /#* function key number for 123 only x/

void far =bridge;
} EVENT;

/* pointer to 123 bridge data structure */

The meanings of the event_kind codes are:

Code Meaning

E_ACTIV Application receiving the event has just been activated or
reactivated. This should be taken as a signal to (re)display
in the active state.

E_ALARM.DAY The application’s daily chance to set an alarm.

E_ALARM_EXP The application’s alarm has expired.

E_BREAK Control-Break detected.
shifts reports current stat of the keyboard shift flags.

E_BRIDGE Event reported only to 123 when a bridge service is requested.
Pointer to data is found in bridge field.

E_DEACT Application receiving this event is about to be deactivated.
It is given the opportunity to prepare for an inactive state
that will begin following the next m_event call.

E_GROW A request to 123 to grow.

E_KEY Keystroke available to application.

data contains the CP 850 ASCII value.

scan contains the keyboard scan code.

lics contains the LICS interpretation of the keystroke.
fkey.num contains the function key code used by 123.
shifts reports the current state of keyboard shift flags, not
necessarily the state of the shifts when key was struck.

HP 95LX System Manager Services Reference 8-3

Code Meaning

E_NONE No event available.
' shifts reports current state of keyboard shift flags
(immediately before control is returned).

E_SHRINK A request to 123 to shrink.

E.TERM Application receiving the event is about to be terminated.
It should respond to this event as if {MENU,Quit} had been
entered from the top level.

An application may interact with the user and make calls to
m_event as necessary. It should ultimately make a call to
m_fini() to give up control, or to m_no_fini() if the user has
indicated a desire to abort the shutdown process.

E_.TIMECHANGE Indicates that the system date or time has been changed.

Applications using the event services must include the header files event.h and interfac.h.

m_event

void m_event (eventptr);
EVENT far *eveniptr;

Transfers control to the System Manager until a reportable event has occurred or until a
timeout period of approximately 0.5 seconds has elapsed. The event is reported in *eventptr
and is taken out of the system queue.

In the event of a timeout, E_ZNONE will be reported. This gives applications the opportunity
to redisplay the current time.

m-_filush_kb
void m_flush_kb();

Flushes the keyboard queue. Control is returned when the queue is empty.

m_nevent

void m_nevent(eventptr);
EVENT far *eventplr;

Transfers control to the System Manager. If no event has occurred, E_NONE will be reported.
The event is reported in *eventptr.

If the event is an E_KEY event, the event is not removed from the system queue. However,
all other events, such as activation and deactivation events are only reported once, despite the
fact that m_nevent() has been called.

8-4 HP 95LX System Manager Services Reference

m.no_fini

void m_no_fini(eventpir);
EVENT far *evenipir;

H, in response to an E_TERM event, an application discerns that the user wishes to abort
the shutdown procedure, it should call m_no_fini(). This call will release the system locks
(allowing context switching) and break the shutdown sequence. The application making the
call will continue to be the active application.

An event structure must be passed, but its fields will be undefined on return, and may be
safely ignored.

m_sh_status
int m_sh_status();

Gets the current status of the keyboard shift flags. Return value is same as value returned by
BIOS (Int 16h, Service 2).

m_yield

void m_yield(eventptr);
EVENT far =*eventptr;

Voluntary suspension of an application. When called, the application is placed at the end of
the application stack, and the active state reverts to the next application. Control will not
return to the caller of m_yield until some external action causes it to be made active again

(generally, user request via hotkey).

The return value will be the same as if the application had made an m_event() call and had
been suspended; that is, the expected event type on return is E_ACTIV.

"HP 95LX System Manager Services Reference 8-5

Menu Services

All applications should use the menuing system provided by the System Manager. The menu
system uses the 1-2-3-styled two-line menu bar (where the top line contains keywords to all
of the options available at a particular decision branch and the second line displays a long
message corresponding to the currently highlighted option). Because of the screeen space
constraints, the two lines are used for keywords, and no long prompts are supported.

There is an option which supports a prompted menu, in which the top line is 2 constant
prompt (it does not change as the item selection changes) and the second line is filled with
keywords.

Menus are used by calling menu_setup() to fill a data structure of type MENUDATA.
menu_on() should be called when the menu becomes active; menu_off() when menu selection
has been made. The application should repeatedly call menu_key() and menu_dis() while
keystrokes are available or until the user has gelected an item or aborted the process. Note
that process events (i.e., non-keystrokes) should be handled without calls to menu_dis().

The definition for the structure MENUDATA is:

typedef struct {
/* define the menu display storage area */
/* the intent is to have one string per display line to make display
management easier */

char menu_text [MAX_MENU][MAX_MWID]; /* menu display storage area */

int menu_count; /* number of keywords */

int menu_highlight; /* index of hightlighted item */
/* -1.for no highlight */

/* flag indicating special mode with single prompt on top line x/

int menu_tprompt; /% 0 ==> no */

/* define the menu information table */

char menu_line [MAX_KWDS]; /* which line of menu this word is on x/

char menu_offset [MAX_KWDS]; /% offset of this keyword in the string */

char menu_length [MAX_KWDS]; /* length of this keyword */

char menu_letter [MAX_KWDS]; /+ first letter of this keyword */

/* store the pointers to the long prompts */

unsigned menu_prompt[MAX_KWDS]; /* DS-relative offsets... */

} MENUDATA;

Applications using the menu services must include the header files menu.h and interfac.h.

menu_dis

void menu_dis(m);
MENUDATA far *m;

Displays the menu, when appropriate, with any necessary highlighting.

8-6 HP 95LX System Manager Services Reference

menu_key

int menu_key(m, keystroke, presult);
MENUDATA far *m;

int keystroke;

int far spresult;

Given the keystroke, updates the menu display and returns the index of the selected item (if
any). The routine determines the appropriate action for any arbitrary keystroke. keystroke
should be the value returned in the data field of the event structure.

Sets *presult to —1 if no final selection has been made, otherwise to the index of the selected
item.

Returns 0.

menu.off

void menu_off(m);
MENUDATA far *m;

Deactivates menu management, removes highlight.

menu.on

void menu_on(m);
MENUDATA far *m;

Activates menu management and highlights first item in list.

menu_setup

int menu_setup(m, keywords, keyword_count, double_space, top_prompt,
tprompt_len, long_prompts)

MENUDATA far *m;

char far skeywords;

int keyword_count;

int double_space;

char far *tiop_prompt;

int tprompt_len;

char far *long_prompts;

Builds a menu structure to be used later.

m points to a structure of type MENUDATA to be filled in by the procedure. keywords
points to a series of null-terminated strings which make up the keywords of the menu. The
first character of the second word directly follows the null terminator of the first, and so on.
keyword_count indicates the number of keywords present. double_space indicates whether one
(value of 0) or two (value of 1) spaces will be displayed between menu items. The spacing
argument is taken as a recommendation: single spacing will be used if it keeps all items on the
top line or if the second line is filled.

HP 95LX System Manager Services Reference 8-7

For normal menus, *top_prompt will be NULL, and tprompt_len will be 0. In that case,
long_prompts points to an array of pointers (all relative to the constant resource segment)
to the long prompts for the menu. There must be a one-to-one correspondence between long
prompts and keywords.

Note Long prompts are not supported and long_prompts will be ignored on the

d HP 95LX.

Special menus with top-line prompts are created by setting *top_prompt and tprompt_len.

Returns 0.

8-8 HP 95LX System Manager Services Reference

File Menu Services

File-Menu services provide a flexible method for file name selection. The services can display a
list of file names from which the user can make a selection by moving a cursor to the desired

name and pressing (ENTER).

The list of file names can be selected by means of a wild card. A common usage is to display
all the file names that have the application-specific extension.

The services make use of three structures: FMENU, FILEINFO, and EDITDATA. FMENU
and FILEINFO are described below; EDITDATA is described in the Editing Services section.

The FMENU structure is:
typedef struct {

/*=--Members to be Initialized by the Application---%/

char far #fm_path; /* base directory name C:\DATA\ */

char far *fm_pattern; /* file pattern, e.g. *.WK1 %/

FILEINFO far *fm_buffer; /* workspace for file list (hold infos) */
int fm_buf_size; /* size of the buffer in bytes */

int fm_startline,fm_startcol; /% starting row,col */

int fm_numlines,fm_numcols; /* number of lines and columns */

int fm_filesperline; /* number of files displayed across */

/*---Members thst are initialized by the File Menu Services---#/

int fm_firstedit; /% 0 if first edit char, else multi line */
int fm_filesinbuf; /* number of files in list */

int fm_maxfinbuf; /* maximum number of files buffer holds */
int fm_topfile; /* file at top of list */

int fm_curselect; /* index of the file highlight #*/

int fm_oldselect; /* index of file to un-highlight =/

int fm_focus; /* 1 = fmenu, 2 = edit */

} FMENU;

HP 95LX System Manager Services Reference 8-9

As indicated by the comments, some elements of this structure are to be initialized by the
application. This initialization must occur prior to the call to fmenu_init. These elements are:

fm_path

fm_pattern

fm_buffer

fm_buf_size

fm_startline

fm_startcol

fm_numlines

fm_muncols

fm_filesperline

Pointer to null-terminated name of directory that is to be searched for files.
For examole, C:_-DAT.

Pointer to null-terminated string that contains a file name or a wild-card-file
pattern. For example, *.WK1.

Pointer to an array of FILEINFO structures (see below) that will be used to
hold the file names that match the file pattern. The number of elements in
this array is the total number of files that can be displayed by the File-Menu
Services. Thus, choosing the size of this array is a tradeoff between memory
usage for this array and how many files are supported.

Size in bytes of file-name list pointed to by fm_buffer.
If NFILES is the number of elements in fm_buffer, fm_buf_size is NFILES *
sizeof(FILEINFO).

Number of lines on the display where the file-menu prompt will appear. The
file list will start on the next line down. As with the Screen Services, the top
line is the number —3. A common value is —2 which leaves the top line free
for a prompt such as “File to open.”

Leftmost column to be used by the file-menu display. A common value is 0.

Number of lines to be used by the file-menu display, including the
file-menu-prompt line. A common value is 13, which, together with the top
line for a general prompt and the bottom two lines for softkey labels will use
all lines of the display.

Number of columns to be used by the file-menu display. A common value is
40 which uses all columns of the display.

Number of file names to be displayed on each line across the screen.
A common value is 3 given that fm _numcols is 40.

In addition, a common usage employs a file-selection prompt identifying the file to be selected
(for example, “File to open:”). This prompt is inserted in the EDITDATA structure prior to

calling fmenu_init.

8-10 HP 95LX System Manager Services Reference

There are four EDITDATA structure elements to be initialized as follows:

prompt_window Should be set to 1.

promtp_line_length Should be set to 0.

message_line Should point to the desired prompt string.
message._line_length The length of the prompt string.

The FILEINFO structure is:
typedef struct {

char fi_attr; /* file attribute */
int f£i_time; /* time modified */
int fi_date; /* date modified */
long fi_size; /* file length */
char fi_name[13] /* £ile name */

} FILEINFO;

The FILEINFO structure is used internally by the File-Menu Services and is not intended to
be manipulated directly by the application.

Applications using the File-Menu Services must include the header files fmenu.h, edit.h, and
interfac.h.

fmenu_dis

int fmenu_dis(fmenu_data, edit_data) ;
FMENU far *fmenu_data;
EDITDATA far #edit_data;

Redisplays the current file-menu screen. fmenu_data and edit_data are pointers to the same
FMENU and EDITDATA structures that were used in the call to fmenu_init.

fmenu_init

int fmenu_init(fmenu_data,edit_data,name,namelen,mazlen);
FMENU far *fmenu_dala;

EDITDATA far *name;

char far *name;

int namelen;

int mazlen;

Initializes the File-Selection-Menu Services and displays the File-Selection menu. fmenu_data
points to an FMENTU structure that has been initialized by the application as shown above.
edil_data points to an EDITDATA structure that is normally initialized with a file-selection
prompt as described above. name points to a null-terminated string that can be a file name, a
pattern, or a null string. If name is a file name or pattern, fmenu_init will present this name
on the prompt line and will not display the names of files that match fm_pattern. If name is a
null string, fmenu_init displays fm_pattern on the prompt line and displays the names of files
that match this pattern. namelen is the length of the name string.

HP 95LX System Manager Services Reference 8-11

The mazlen must be present, but is not used. We recommend that you set mazlen to zero.

Returns RET_OK normally; else returns RET_BADFILE, RET_BADDIR, or
RET_BADDRIVE if there is a problem with name. I such an error results, 2 common
recourse is to use the null string for name. This causes the File-Menu Services to use the file
pattern contained in fm_pattern, which should specify an existing directory.

fmenu_key

int fmenu_key(fmenu_data,edit_data,key) ;

FMENU far *fmenu_data;

EDITDATA far *edit_data;

int key;
Processes a keystroke that is entered while the File-Menu Service is active. fmenu_data and
edit_data are pointers to the same FMENU and EDITDATA structures that were used in the
call to fmenu_init.

key is the value of the keystroke as returned in event.data by the Event Services.

The return values defined in fmenu.h are:

RET_UNKNOWN key was unknown by fmenu_key.

RET_OK key was procsssed by fmenu_key,
just call fmenu.dis.

RET_BAD key was known by fmenu_key,

but was invalid (for example, pgdn off list).
RET_REDISPLAY redisplay application area before calling fmenu_dis.
RET_ACCEPT user made a file selection, the filename is in the
edit_bufrer element of the EDITDATA structure
pointed to by edii_data.
RET_ABORT user aborted operation.

fmenu_off

int fmenu_off (fmenu_data,edit_data);
FMENU far *fmenu._data;
EDITDATA far *edit_data;

Clears the portions of the screen that were used by the File-Menu Services. fmenu_data and
edit_data are pointers to the same FMENU and EDITDATA structures that were used in the

call to fmenu_init.
Returns RET_OK.

8-12 HP 95LX System Manager Services Reference

Screen Services

Accessing the user display is done through the following functions. All row and column values
given relative to the top-left corner of the application’s active window; that is, (0,0) are the
coordinates of the first character that may be drawn in the applications window.

In the HP 95LX, position (0,0) corresponds to the first column in the fourth row. Negative
row coordinates can be used to access the first three rows of the HP 95LX screen; for example,
the top row is —3.

Applications using the screen services must include the header file interfac.h.

m.chrattr

m_chrattr (buffer,len) ;
char far sbhuffer;
int len;

Returns the characters and attributes starting from the top left corner of the screen.
len character/attribute pairs are put into buffer.

m_chrinv

m_chrinv(row, col,nchars) ;
int row,col,nchars;

Invert the attributes for nchars, starting at the screen location specified by row and col.

m_chrrvrt

m_chrrvrt(row, col, buf,len) ;
int row,col,len;
char far =buf;

Restore attributes on display. buf is a pointer to an array of characters, which are the saved
attributes to be restored. len tells how many characters are to be restored. row and col tell
which characters to restore.

m.clear

m_clear (row, col, nrows, ncols) ;
int row, col, nrows,ncols;

Clears a rectangular region where row and col specify the top-left corner and nrows and ncols
specify the dimensions.

m_dirty_sync
void m_dirty_sync(void);

HP 95LX System Manager Services Reference 8-13

Causes an immediately redisplay of the virtual display buffer. This function is called
automatically at the beginning of m_event (and m_nevent).

m_disp

m. disp(row, col, str, len, style, ostyle) ;
irt row,col,len, style,ostyle;
ci:ar far »sir;

Displays sir of length len at row and col, with the attribute style. The ostyle parameter is
required, but is not used. The valid values for style are:

Style MDA Attribute Description
0 07h Normal
1 70h Inverse
4 01lh Underlined
8 87h Normal Blink
9 FoOh Inverse and Blink
12 81h Underline and Blink

m_disp puts the string into a virtual display buffer and does not write the string to the
physical displey. The changes to the virtual display buffer are written to the physical display
each time the application requests the next event. The m_dirty_sync function should be used
if it is desired to update the physical display immediately after an m._disp call (as might be
the case during debugging).

m-getmode
int m_getmode(void);

Returns the current display mode, 1=text or 2=graphics.

m.rows._cols
int m_rows_cols();

Returns number of rows in high byte, number of columns in low byte.

m_scroll

m_scroll (row, col, nrows, ncols, offset) ;
int row, col, nrows, ncols, offset;

Scrolls vertically the rectangular region where row and col specify the top-left corner, nrows
and ncols specify the dimensions, and offset is the number of lines to scroll.

8-14 HP 95LX System Manager Services Reference

m_setcur

void m_setcur(rouw,col);
int row,col;

Sets the cursor position to the row and column coordinates specified by row and col.
The cursor can be turned off by moving it to an off-screen location; for example, use
m_setcur(0,-1).

m.setmode

void m_setmode(mode);
int mode;

Sets the display mode to text (mode=1) or graphics (mode=2) and clears the display.

m_xchg

m_xchg(row, col, nrows, ncols, region) ;
int row, col, nrows,ncols;
char far *region;

Copies the information in region into the rectanguiar region on the screen whose top-left
coordinates are row and col, and whose dimensions are nrows and ncols.

HP 95LX System Manager Services Reference 8-15

Editing Services

The System Manager provides general purpose editing facilities that should be used by all
applications. Single-line editing is done by filling a structure of type EDITDATA by calling
EDIT.INI() or EDIT_TOP(), and then by repeatedly calling EDIT_KEY() and EDIT_DIS()
until the editing is terminated (generally when a CR is struck), which will be signalled by
EDIT_KEY().

The EDITDATA structure is defined as follows:

typedef struct {

int edit_length; /* current length of the edit buffer */
char first_time; /* flag for special processing on first char */
char spec_flags; /* bit O is tab handling */

int prompt_window; /* whether this belongs to prpt. Windows/
char far *message_line; /* the top line message for prompt */

int message_line_length; /* length of message_line */

char far sprompt_line; /* second line of prompt window */

int prompt._line_length; /* length of prompt_line */

char edit_buffer[80] /* work space */

int line_array[2]; /* to be passed to mdit structure L7
MDITDATA mdit; /* multi-line struct, to hold more info */

int e_dispcols;
} EDITDATA;

The width of the edit buffer may exceed the width of the display window, up to 78 characters.
Horizontal scrolling is handled by the services.

Multi-line editing is done similarly, but with calls to the mdit_*() series of functions. Tte
multi-line editor allows the buffer to exceed the capacity of its display window, up to some
length fixed at initialization.

The MDITDATA structure is defined as follows:

typedef struct {

char far *m_buffer; /* user supplied edit buffer */

int m_length; /* length of buffer */

int m_pos; /* current cursor position */

int m_row, m_col; /* location of edit area */

int m_nrovws,m_ncols; /* dimensions of logical edit area */

int m_yoff,m_disprows; /* log.top line of display;lines of display*/

char m_ccol; /* cursor column */

char m_modified; /* 1 if buffer has been changed *x/

char m_xoff; /* 1st disp. col (for ticker fields only) =/

char wrapflag /* word wrap enable flag */

int far *m_line; /* caller supplied buffer for line starts x/
/+ must be at least m_nrows+l long */

int markon; /* marking is currently active flag */

char spec_flag;

int markst; /* offset of start of marked regiom, inclusive */

int markend; /* offset of end of regionm, inclusive */

int m_dispcols; /* displayable columns */

} MDITDATA;

8-16 HP 95LX System Manager Services Reference

The m_nrows field specifies the number of rows in the buffer. m_disprows specifies the
number of rows displayed on the screen.

Applications using the editing services must include the header files edit.h and interfac.h.

edit.dis

int edit_dis(e);
EDITDATA far =e;

Displays the edit area, defined in e, on the screen.
Returns 0

edit_init

edit_init(e,ini_buf, ini_len, maz_len,display_line,display_col) ;
EDITDATA far x*e; :

char far *ini_buf;

int ini_len,display.line,display_col, maz_len;

Sets up the structure e for single line editing at an arbitrary location. ini_buf points to a
string of length ini_len, which is the default value for the edit field. This buffer must be in
the application’s data segment. maz_len indicates the maximum width of the field. dislay_line
and display_col provides coordinates for the first character of the field.

Calls edit_dis() to display the field.

Returns 0.

edit_key

int edit_key(e, keystroke, presult) ;
EDITDATA far =*e;

int keystroke;

int far =*presult;

Processes keystroke in the context of e; that is, it does the work of inserting characters, etc,
for the edit field. keystroke is the value returned in event.data by the Event Services.

Sets *presult to 1 if editing has been completed, otherwise, sets *presult to 0.

Returns 0.

edit_top

int edit_top(e,ini buf,ini_buf_len, maz_len,linel,lenl,line2,len?);
EDITDATA far =e;

char far xlinel;

char far *line?;

char far *ini_buf;

int ini_buf_len;

int leni;

int len2;

int maz_len;

HP 95LX System Manager Services Reference 8-17

Sets up the structure e for single line editing. The field will be edited on the top line of the
application’s menu area if it occupies only one line; otherwise, it is edited on the second line of
the menu area. The first character of the edit field will follow the last character of the prompt
string (line2).

ini_buf points to a string of length ini_buf_len, which is the default value for the edit

field. This buffer must be located in the application’s data segment. maz_len indicates the
maximum width of the field. linel, of length leni, will be displayed as a message. line2, of
length len2, will be displayed as the user prompt.

Calls edit.dis() to display the field.
Returns 0.

mdit_cutmark

void mdit_cutmark(mp);
MDITDATA far *mp;

Deletes the characters included in the marked region. If an application wants to save the
contents of marked region, it should copy the data prior to making the cutmark call. The
offsets for the start and end of the region are maintained in the markst and markend fields of
the MDITDATA structure. Applications should note that if markend == m._length, the last
character should be ignored.

The marking mode is ended after successful completion of this function.

mdit_dis

void mdit_dis(mp);
MDITDATA far *mp;

Displays the current contents of the edit field pointed to by mp and updates the cursor
position.

mdit_fil

mdit_£il(mp,fp);
MDITDATA far *mp;
FILE far *fp;

Writes the buffer in mp to the open file associated with fp. No attempt is made to reposition
the write pointer of the file.

Returns 0 if successful; otherwise, returns the error code reported by m_write().

8-18 HP 95LX System Manager Services Reference

mdit_ini
void mdit_ini(mp,row, col, nrows, ncols, buf, len, wrapflag, disprows, line_array) ;
MDITDATA far *mp;
int row, col, nrows,ncols, len;
char far =buf;
int wrapflag;
int disprows;
int far xline_array;
Initializes the structure mp for multi-line editing. row and col establish the top-left corner of
the edit region; nrows and ncols establish the dimensions of the logical edit region. The caller

must provide the buffer through buf, which must be located in the application’s data segment.
Its length is specified in len, and the maximum length is 32767.

m_nrows specifies the number of rows in the edit buffer, while m_disprows specifies the
number of screen rows that are displayed; that is, the latter defines the size of the region on

the screen.
wrapflag, if nonzero, enables word wrapping.

line_array provides the mdit functions a buffer in which to store line offsets for each row. It
must be at least (m_nrows+1)*sizeof(int) bytes long, and must be located in the application’s
data segment.

To use mdit functions without vertical scrolling, m_disprows must equal m_nrows.
Applications must also provide the buffer space for line_array.

Returns 0

mdit_ins_str

int mdit_ins_str(mp,str,len);

MDITDATA far *mp;

char far *stir;

int len;
Allows entry of multiple characters into the edit buffer. Screen will be updated after all
characters have been inserted.

mdit_key

int mdit_key(mp, keystroke) ;
MDITDATA far *mp;
int keystroke;

Processes keystroke in the context of mp; that is, it does the work of inserting characters, etc,
for the edit field. keystroke is the value returned in event.data by the Event Services.

H marking mode is in effect, only cursor movement keys will be accepted.

HP 95LX System Manager Services Reference 8-19

The cursor movement keys are as follows:

UP ARROW Move to previous line, same column if possible.
DOWN ARROW Move to next line, same column if possible.
LEFT ARROW Move to previous character.

RIGHT ARROW Move to next charcter.

HOME First column of current line

END Last column of current line

CONTROL HOME First character of buffer.

CONTROL END Last character of buffer.

CONTROL LEFT ARROW Beginning of previous word.
CONTROL RIGHT ARROW Beginning of next word.

The following keys also have special meanings:

BACKSPACE Delete character to left of cursor
DELETE Delete character under cursor.
CONTROL ENTER Delete characters from cursor to end of line.
CONTROL BACKSPACE Delete word to left of cursor.
TAB Insert spaces from current position to next tab
stop.
Returns 0.
mdit_mark

void mdit_mark(mp);
MDITDATA far *mp;

Invokes the multi-line editor’s marking mode. While marking is active, only cursor movement
keys are accepted by mdit_key(). The current cursor position becomes the anchor, and the
user may select text before or after the anchor, but the anchor cannot be moved.

An application may inspect or copy the text in the marked region by observing the current
values in the markst and markend fields of the MDITDATA structure.

This function causes the display to be updated showing the initial marked region (1 character)
in inverse video.
mdit_unmark

void mdit_unmark(mp);
MDITDATA far *mp;

Ends the multi-line editor’s marking mode. This function has no other effect on the
MDITDATA structure, but it will redisplay the text without the marking attributes.

8-20 HP 95LX System Manager Services Reference

File Services

Operations on disk files are done through the following set of calls. Refer to the include file
fileio.h for information on the structures and m_error.h for error codes used by the File
Services.

Caution The FILE Services use a FILE structure that is not compatible with the FILE
structure defined in a Standard C Library include file, stdio.h. Modules using
0 the System Manager File Services must not include stdio.h.

Applications may use either buffered and unbuffered operations. If only unbuffered operations
are used, then the structure NBFILE can be used in place of FILE to save the RAM that
would be used for the file buffer.

Applications that use File Services must include the header files fileio.h and interfac.h, and
may want to include m_error.h for file-error codes.

m_close

int m_close(fp);
FILE far #jp;

Closes the file associated with fp.

Returns 0 if successful, otherwise, returns an error code.

m_copydt

void m_copydt(fpsrc,fpdest);
FILE far =*fpsrc;
FILE far =fpdest;

Copies the date and time modified values from fpsrc to fpdest, both of which must refer to
files opened through System-Manager-file services.

m_create

m_create(fp, filespec, len, sys, nobuf) ;
FILE far xfp;

char far =filespec;

int len;

int sys;

int nobuf;

Creates a new file to be identified by filespec. len is the length of filespec. sys is not used and
should be zero. If nobuf is set, no buffering will be performed.

The file will be created and opened only if it does not already exist.

If successful, the values in fp will be updated and 0 will be returned. Otherwise, an error code
will be returned.

HP 95LX System Manager Services Reference 8-21

m_delete

int m_delete(bp,len,sys);

char far *bp;

int len;

int sys;
Deletes the file specified by bp. len is the length of of the string pointed to by bp. sys is not
used and should be set to zero.

Returns 0 if successful, otherwise, returns an error code.

m_fcreat

m_fcreat(fp, filespec, len, sys, nobuf ;
FILE far *fp;

char far *filespec;

int len;

int sys;

int nobuf;

Creates a new file identified by filespec. len is the length of filespec. sys is not used and
should be set to zero. If nobuf is nonzero, no buffering will be performed.

Any existing file matching the filespec will be truncated.

If successful, the values in fp will be updated and 0 will be returned. Otherwise, an error code
will be returned.

m_fdate

m_fdate(fpl,lpl);
FILE far *fpl;
char far =ipl;

For the file referenced by fp1, return the time and date values in *Ipl.

m_getattr

m_getattr(bp,len, sys, attr) ;
char far *bp;

int len;

int sys;

unsigned far =xatir;

For the file specified by bp, returns in attr the file attributes as returned by DOS. len is the
length of the file specification. sys is not used and should be set to zero.

8-22 HP 95LX System Manager Services Reference

m_getdir

int m_get_dir(drive,bp,lenp);
char drive;

char far *bp;

int far =lenp;

Builds in bp the current directory for the specified drive. The returned path includes the drive
designator (for example, “c:”). *lenp contains the length of the string returned in bp.

Returns 0.

m_getdrv

int m_getdrv(drivep);
char far =*drivep;

Sets *drivep to the drive letter of the current default drive. Reported values start at ‘A’.

Returns 0 if successful, otherwise, returns an error code.

m_getfdt

void m_getfdt(fp,dateval);
FILE far xfp;
long far *dateval;

Gets the last modification date/time of the file fp and returns it in *dateval. The format of
dateval is that of the date/time stamp in a DOS directory entry.

m._get_sysdir

m_get_sysdir(bp);
char far *bp;

Copies into *bp the system directory path. On the HP 95LX, the system-directory path is
C:_DAT\. On the Connectivity Pack, the system-directory path is controlled by the PIMS
environment variable with default of C:\CPACK\.

m.ident

int m_ident(bp, len, sys, typep) ;
char far =bp;

int len;

int sys;

int far *iypep;

Sets *typep to indicate the file type of the file whose name is pointed to by bp. len indicates
the length of the filename stored in bp. sys is not used and should be set to zero.

The file type is set to 1 for a file, set to 2 for a directory, set to 3 for a device, or set to 0 if
filename is not found.

Returns 0 if successful, otherwise, returns an error code.

HP 95LX System Manager Services Reference 8-23

m.match

int m_match(matchp, flagp) ;
MATCH far *matchp;
int far =flagp;

For the matchp structure set up by m_setpat(), find the next matching file name. *flagp is set
to nonzero when a match is found; otherwise, *flagp is set to zero.

Returns 0 under normal conditions; returns a nonzero error code with flagp set to 0 when an
error other than no more matches is encountered.

m._mkdir

int m_mkdir(bp,len,sys);
char far =bp;

int len;

int sys;

Creates the directory specified in the string bp, where len is the length of bp. sys is not used
and should be set to zero.

Returns 0 if successful, otherwise, returns an error code.

m._open

int m_open(/fp, filespec, len, sys, nobuf) ;
FILE far *fp;

char far *filespec;

int len;

int sys;

int nobuf;

Opens an existing file identified by filespec. len is the length of filespec. sys is not used and
should be set to zero. If nobuf is nonzero, no buffering will be performed.

If successful, the values in fp will be updated and 0 will be returned; otherwise, an error code
will be returned.

m._openro

int m_openro(fp, filespec,len, sys, nobuf) ;
FILE far *fp;

char far xfilespec;

int len;

int sys;

int nobuf;

Opens an existing file identified by filespec in read-only mode. len is the length of filespec. sys
is not used and should be set to 0. If nobuf is nonzero, no buffering will be performed.

If successful, the values in fp will be updated and 0 will be returned. Otherwise, an error code
will be returned.

8-24 HP 95LX System Manager Services Reference

m_putfdt

void m_putfdt(fp,dateval);
FILE far =jp;
long dateval;

Sets the last modification date/time of the file fp to dateval. The format of dateval is that of
the date/time stamp in a DOS directory entry.

m_read

m_read(fp, buffer,len,lenp) ;
FILE far *fp;

char far *buffer;

int len;

int far =lenpf;

Reads up to len bytes of data from the I/O stream fp into the memory pointed to by buffer.
*lenp tells how many bytes were actually read. If *lenp != len and the returned value is zero,
the end-of-file has been reached.

Returns 0 if successful, otherwise, returns an error code.

m.rename

int m_rename(bpl,lenl,sysl,bp2,len2, sys?2) ;
char far *bpIl;

char far *bp2;

int lenl;

int sysl;

int len2;

int sys2;

Rename the file specified by the name pointed to by bp! to the name pointed to by bp2. leni
and len2 are the lengths of the filenames pointed to by bp! and bp2 respectively. sys! and
sys2 are not used and should be set to zero.

Returns O if successful, otherwise returns an error code.

m_rmdir

int m_rmdir(bp,len,sys) ;
char far *bp;

int len;

int sys;

Removes the directory specified in the string bp, where len is the length of bp. sys is not used
and should be set to zero.

Returns O if successful, otherwise, returns an error code.

HP 95LX System Manager Services Reference 8-25

m.seek

m_seek(fp, mode, seek) ;
FILE far *fp;

int mode;

leng seek;

Sets the current position in the file associated with fp. seek is the signed-byte offset of where
to set the position, relative to the value of mode. Modes defined in fileio.h are:

Mode Meaning
seek_beginning Offset from start of file.
seek_current Offset from current position.
seek_end Offset from end of file.

m.setattr

m_setattr(bp,len, sys,attr) ;
char far *bp;

int len;

int sys;

int atlr;

For the file specified by bp, sets the file attributes to attr. len is the length of the file
specification. sys is not used and should be set to zero.

m_setdir

int m_setdir(bp,len);
char far *bp;
int len;

Given the path bp of length len, sets the current directory for the drive included in the path.

Returns 0 if successful; otherwise, returns an error code.

m_setdrv

int m_setdrv(drive);
char drive;

Sets the default drive to drive. Drive values should start with ’A’.

Returns 0 if successful, otherwise returns an error code.

8-26 HP 95LX System Manager Services Reference

m_setpat

m_setpat (matchp, bp, len, sys) ;
MATCH far #*maichp;

char far *bp;

int len;

int sys;

Builds the MATCH structure used for seaching for files with the m._match() function. bp .is
the pattern to match, including any path information. len specifies the length of bp. sys is
not used and should be set to zero.

m_tell

int m_tell(fp, seekp) ;
FILE far xfp;
long far *seekp;

Sets *seekp to the current position in the file associated with fp.

Returns 0 if successful, otherwise, returns an error code.

m.volume

void m_volume(bp,sizep) ;
char far *bp;
long far *sizep;

Sets bp to the name of the current volume and sets *sizep to the amount of freespace available
on that volume.
m_write

m_write(fp, buffer,len);
FILE far *fp;

char far sbuffer;

int len;

Writes len bytes of data to the I/O stream fp from the memory pointed to by buffer.

Returns 0 if successful, otherwise, returns an error code.

HP 95LX System Manager Services Reference 8-27

Process Management Services

m_fini
void m_fini(void);

Signals to the System Manager that the current application is done. Control is never returned
to the application.

m_init
void m_init(void);
Must be called by the application’s main entry point.

m_lock
void m_lock(void);

Increments the system lock count, which prevents interruption of the currently running
application while it is nonzero. That is, it causes other applications’ hot keys to be ignored.

This could be used, for example, to prevent a task switch until after an error message is
acknowledged by the user.

m_reg-app-name

m_reg_app.name(appname) ;
char far *appname;

Records the null-terminated string pointed to by appname as the name of the application.
The application name is used in the low memory closeout screen. The third field in the
APNAME.LST entry provides an initial name for external applications. Internal applications
use this function to record their names.

m_spawn

int m_spawn(command_str,command_len, sysflag, prompt_str) ;
char far *command_str;

int command_len;

int sysflag;

char far *prompt_sir;

command._str points to the string that will be passed to COMMAND.COM for execution.
command._str must be terminated with a carriage return ("\r’ = 0x0d). command_len is the
length of command_str.

sysflag can be 0 or 2. Applications should set sysflag to 0; value 2 is reserved for internal
System-Manager use. When sysflsg is set to 0, the calling application must be the only open
application. When sysflag is set to 2, the spawn will be attempted even if other applications
are open.

8-28 HP 95LX System Manager Services Reference

prompt_str points to a null-terminated string that will be displayed by the System Manager at
the top of the screen prior to invoking the program.

Returns 0 if successful; 513 if another application is active; otherwise, a DOS error code as
returned by EXEC (INT 21h, AH = 4bh).

m_unlock
void m_unlock(void);

Decrements the system lock count. If calls are not nested, allows the system to take control
from the current application. ‘

HP 95LX System Manager Services Reference 8-29

Clipboard Services

The following functions provide a generic means of passing information between applications.
In the current form, applications can only get or put information onto the clipboard; there is
no provision for forcing information through to another application. Data on the clipboard is
named, however. Applications can therefore establish regimes of communication as needed.

The default representation of data is that of “TEXT". All applications using the clipboard

at all should write a “TEXT” representation, and read a “TEXT” representation if no other
known representations are found. Data in the “TEXT” form should be ASCII characters, with
a lone carriage return (0x0d) used to mark the end of each line.

Clipboard return codes are contained in cbeodes.h.

m.cb_read

m_cb_read(indez, offset, data, length) ;
char far *data;

int indez;

unsigned int length,offset;

Reads length bytes into date from the representation associated with indez. offset indicates
the starting offset in the clipboard buffer from which data will be read.

m_cb_write

m_cb_write(data, length) ;
char far *data;
unsigned int length;

Writes length bytes from data to the representation opened by m_new_rep(). The maximun
length of a single call to m_cb_write is 1024. Multiples calls may be made to m_cb_write() if
needed.

m_close_cb

int m_close_cb();

Attempts to close the clipboard and allow other applications to claim it. Returns 0 if
successful; returns -1 if the clipboard is not currently open.

m_fini_rep;
m_fini_rep(void);

Signals the clipboard that no further data will be sent for the current representation.

8-30 HP 85LX System Manager Services Reference

m-new_rep

m_new_rep(rep_name) ;
char far *rep.name;

Prepares the clipboard to receive a representation under the name rep_name. Multiple
representations of the same data may be copied to the clipboard.

m_open_cb
" int m_open.cb(void);

Attempts to claim the clipboard and lock out requests from other applications. Returns 0 if
succest fully claimed, otherwise returns a nonzero value.

m.rep-index

int m_rep._index(name,indez, length) ;
char far *name;

int far *indez;

unsigned int far *length;

Gets the indez and length of a representation, given a name. Returns 0 with pointers updated
if successful; otherwise, returns an error code.

Applications attempting to respond to a Paste command should call this function with the
appropriate representation name (“TEXT” as default).

m.rep_-name
m_rep_name (indez, name, length) ;
int indez;
char far *name;
unsigned int far *length;

Gets the name and length of a representation, given an indez. Returns 0 with pointers
updated if successful; otherwise, returns an error code.

m_reset_cb

m_reset_cb(author) ;
char far =author;

Clears the contents of the clipboard and establishes the current application, specified by the
string author, as the creator of clipboard contents. Applications should attempt to use a
unique string for this value. Returns 0 if successful; returns -1 if there is an error.

HP 95LX System Manager Services Reference 8-31

Sound Services

These services are used to signal the user through the system speaker.

m.asound

void m_asound(indez) ;
int indez;

Generates one of several various sound patterns, as specified by indez. There are currently
seven (0-6) supported patterns. The first four are used to generate tones for 1-2-3, the
remaining three are more complicated alarm sounds.

m_beep
void m_beep(void);

General purpose sound for error alerts.

m_soundoff
void m_soundoff(void);

Turns off the current sound. If the speaker is on when this function is called, the sound will
actually continue until the next BIOS clock tick.

m_thud
void m_thud(void);

Generally used when a user’s keystroke cannot be interpreted in the current application state.

8-32 HP 95LX System Manager Services Reference

Memory Management Services

When an application is invoked, the System Manager must provide the RAM space indicated
in the application’s image structure. This amount of memory should be sufficient for ordinary
uses of the application.

There are limited instances when more RAM is required, at which point the application calls
m_alloc() or m_alloc_large() to expand the size of its data area. If successful, the application’s
data area may have been moved by the System Manager. Consequently, applications must

be careful to not store the current data segment or to update these stored values after
memory-allocation calls.

Dynamic memory allocation is implemented by resizing the memory block belonging to the
application. The new buffer will therefore begin at the previous end of the memory block.
Calls to release memory are translated into requests to shrink the memory block to the
specified level. These services should not be confused with the functions malloc() and free().

DOS memory allocation services are also available. However, it is likely that all DOS
memory will have been consumed by 1-2-3, and memory will be available only by using the
System-Manager’s memory-management services.

m_alloc

void near * m_alloc(ezpsize);
unsigned int ezpsize;

Attempts to expand the data space occupied by the accesory by ezpsize bytes. If successful,
the return value will be the offset (near address) of the new buffer. The function returns 0
on failure. Failure may be caused by a request which would grow the applications total data
space beyond 64K or by an exhaustion of system memory.

If ezpsize is not a multiple of 16 (the size of a paragraph), it will be rounded up to the next
multiple.

m_alloc_large

void near * m_alloc(ezp_paras);
unsigned int ezp._paras;

Attempts to expand the data space occupied by the accesory by ezp_paras paragraphs (16
byte units). If successful, the return value will be the paragraph offset from the beginning of
the application’s data segment. The function returns 0 on failure.

This function must be used with care, since it is possible to claim space that cannot be
accessed through the DS register (> 64K). Since the entire data space of the application may
be moved during certain System Manager calls, the application must be.careful either not to
store any segment values that may become invalid or to update these stored values after any
time that the data segment may have moved.

HP 95LX System Manager Services Reference 8-33

m_free

unsigned int m_free(pir);
void near *pir;

Shrinks the data space claimed by the application by releasing all memory beyond ptr.
Applications should make sure that the value of ptr is above or equal to the first value
returned by m_alloc().

m_free_large

void m_free_large(paras);
unsigned int paras;

Shrinks the data space claimed by the application beginning at paras that is the paragraph
offset from the beginning of the application’s data segment. Applications must make sure that
the value of paras is above or equal to the first value returned by m.alloc_large().

8-34 HP 95LX System Manager Services Reference

Date/Time Services

There are three subsets of date and time services. Primarily, there are calls to get and set

the system time and to get the system-wide display format. Secondly, there are alarm calls,
which are primarily used by the Appointment Book and Watch applications. Finally, there are
stopwatch functions used by the Watch.

The date and time information is maintained in the following structure:

typedef struct {

char dt_order; /* month-day-year order, O = MDY, 1 = DMY, 2 = YMD */
char dt_dsep; /* date separator */
char dt_tsep; /* time seperator */
cahr dt_24_br; /* nonzero means 24 hour time */
} DTINFO;

The following structure is used to schedule alarms:

typedef struct {
char a_hour; /% time of alarm */
char a_minute;
char a_second;

char a_pad; /* supplied by caller */
int a_interval; /* reschedule interval (seconds) */
char a_use_seconds; /* are seconds significant */
char a_sound; /* alarm sound */
char message[ALARM_MSG_LEN]; /* message displayed when alarm goes off*/
char owner; /% task id of owner */
char special; /* apps own use for sub-class/
char extra[ALARM_EXTRA_LEN); /* apps own use for specific data */
} ALARNM;

This final structure is used to represent the actual time and date:

typedef struct {

int dt_year; /* year in the range of 1980, to 2116 x/
char dt_month; /% Jan == 1 %/

char dt_date; /* ist == 1 %/

char dt._day; /* Day of week, 0->6; otherwise unknown */

char dt_hour;

char dt_minute;

char dt_second;

cahr dt_hundreth;
} DTM;

HP 95LX System Manager Services Reference 8-35

m_alarm

m_alarm(alarmp, type) ;
ALARM far xglarmp;
unsigned int Ilype;

Sets an alarm as defined in the ALARM structure pointed to by alarm and associates it with
the application-determined alarm type.

m_dtinfo

m_dtinfo(dtp);
DTINFO far *dip;

Fills in the DTINFO structure pointed to by dtp with a special time and date information as
described below. Due to the special nature of this information, m_dtinfo() should probably
not be used.

The information returned in dtp does not have complete separator information. The current
separator information is stored in the settings structure (see the Configuration Services
section). In that structure, there are two separators for both date and time, to provide for
fiexibility of localization. Only the first character is copied into the DTINFO structure by
m-_dtinfo(). It is probably easier for applications to get these fields directly from the settings
structure.

These values are not based on the date and time settings selected in the SETUP utility.
Rather, they are part of the localization done when the user selects his country at very cold
boot. The values are used exclusively to format date and time values in the Filer’s directory
directory listings. They should match what a localized version of DOS would display in
response to the DIR command.

m_getdtm

m_getdtm(dimp) ;
DTM far *dtmp;

Returns the system date/time in the DTM structure pointed to by dimp.

m_get_sw

m_get_sw(start_time, elapsed_time, onflag) ;
TIME far =*start_time;

TIME far *elapsed_time;

char far *onflag;

Copies contents of system manager buffers and variables into those supplied by the
application.

8-36 HP 95LX System Manager Services Reference

m_get_timer

m_get_timer (stari_time, elapsed_time, onflag) ;
DTM far sstari_iime;

DTM far selapsed_time;

ctar far *onflag;

Copies cortents of System Manager buffers and variables into those supplied by the
application.

m.parse_date

int m_parse_date(rule,input,dim);
int rule;

char far *input;

DTM far =dim;

Parses a null-terminated input string accoring to rule, and fills in the day, date, week, and
year fields of the DTM structure pointed to by dtm (the time of day fields are unaffected).
Unspecified fields that do not cause parsing errors are set to 0.

The available rules (found in settings.h) are:

- rule appropriate to currently selected system date format.

- DR_DMY_LIM - date, month, year and year must be in limited range.
- DR_MDY_LIM - month, date, year and year must be in limited range.
DR_YMD_LIM - year, month, date and year must be in limited range.
- DR_MD - just month and date.

- DR_DM - just date and month

- DR_MY_LIM - month and year and year must be in limited range.

DN d WN = O
]

Years with the rules above must be in the range of 1900 to 2099. Two-digit input of
years is assumed to be in the range of 1980 to 2079. For parsing of arbitrary years, OR
DR_ANY_YEAR (0x8) onto the rule code.

Returns 0 if parsing is successful, nonzero if input is improperly formatted or invalid value.

m_parse_time

int m_parse_time(rule,input,dtm);
int rule;

char far xinput;

DTM far *dim;

Parses a null-terminated input string accoring to rule, and fills in the hour, minute, second,
and hundredth fields of the DTM structure pointed to by dtm (the date fields are unaffected).
Unspecified fields that do not cause parsing errors are set to 0.

HP 95LX System Manager Services Reference 8-37

The available rules (found in settings.h) are:

0 = rule appropriate to currently selected system time format.
1 - TM_H_M_S_P = 12 hour clock, with optional am/pm specifier.
2 - TM_H_M_S+24 = 24 hour clock.

3 - TM_HM_S_24 = 24 hour clock with hours and minutes together.
4 - TM_H_M_S_C_24 = 24 hour clock to hundredth resolution.

5 - TM_H_M_P = 12 hour clock, without seconds.

6 - TM_H_M_24 = 24 hour clock, without seconds.

7

- TM_HM_24 = 24 hour clock with hours minutes together, without seconds.

Returns 0 if parsing is successful, nonzero if input is improperly formatted or invalid value.

m_posttime
void m_posttime(void);

Gets the current time and writes it to the display in the standard location.

m_setdtm

m_setdtm(dimp) ;
DTM far *dimp;

Sets the system date/time with the contents of the DTM structure pointed to by dtmp.

m_start_sw

m_start_sw(time) ;
TIME far *iime;

Saves the starting time specified in the TIME structure pointed to by time in a system
manager buffer and sets the System-Manager-stopwatch flag to on.

m_stop_sw

m_stop.sw(time) ;
TIME far *tlime;

Saves the current elapsed time, as calculated by an application and stored in the TIME
structure pointed to by time, in a System-Manager buffer and sets the stopwatch flag to off.

m_start_timer

m_start_timer(start_dim);
DTM far #*start_dim;

Saves the starting time specified in the DTM structure pointed to by start_dtm in a
System-Manager buffer and sets the System-Manager-timer flag to on.

8-38 HP 95LX System Manager Services Reference

m_stop_timer

m_stop_timer (elapsed-time) ;
DTM far =elapsed_time;

Saves the current elapsed time, as calculated by an application and contained in the DTM
structure pointed to by elapsed_time, in a System Manager buffer and sets the timer flag to
off.

m_tell_anytime

char far tm_tell_anytime(content,mw,col,dtinfo,dtm);
int content;

int row;

int col;

DTINFO far *dtinfo;

DTM far *dim;

Formats the date or time contained in the structure pointed to by dim, according to content.
Returns a pointer to a System Manager buffer containing the formatted time. The content
parameter uses the same values as with m_telltime(). row, col, and dtinfo are ignored, but are
currently left in to preserve existing calls.

m_telltime

m_telltime(content, row, col) ;
int content,row, col;

Displays the current date or time, according to content, at the given row and column
coordinates. The current system date and time formats are used.

The defined content values are as follows:

0 = date only

1 = time only

2 = date and time

3 = date prefixed with day of week.
m_xalarm

m_xalarm(type) ;
unsigned int type;

Kills all alarms of the application-defined type.

HP 95LX System Manager Services Reference 8-39

Printer Services

The printer services manage communications with and translation of characters for specific
printer types. The active printer is selected through SETUP. That selection is used to contr_ol
access tables for special characters and print-control sequences.

m_close_printer
void m_close_printer(void);

Any remaining characters are flushed to the printer, and the printer channel is closed.

m_init_printer
unsigned int m_init_printer(void);

The printer tables are initialized for the selected printer. This call does not initialize the
communications channel. It is intended to be called from 1-2-3 and SETUP only. Other
applications should use m_open_printer. A segment value is returned which is used by 1-2-3
to access printer information in a standard format.

m_open_printer
void m_open_printer(void);

Prepares the communications channel to converse with the printer. The printer baud rate is
established and the printer tables are set to the selected device.

m_trans_printer

int m_trans_printer(ch, bp);
char ch;
char far *bp;

This routine should be used by applications that wish to do their own printer
communications. The CP850 character passed as ch is converted to the sequence required
by the selected printer to produce the equivalent character. The resulting sequence is placed
in the buffer pointed to by bp. This buffer must be at least 48 bytes long. The number of
characters in the buffer is returned by this routine. That number will always be greater than
zero.

m_write_printer

int m_write_printer(bp,len);
char far =bp;
unsigned int len;

The string pointed to by bp is sent to the printer. The string is expected to be composed of
CP850 characters and of length len. Any special sequences required to produce the specified
characters on the output are supplied by this routine.

This routine does not add a carriage return (0x0d), line feed (0x0a) pair for terminating a line
so these should be included in the string as desired.

8-40 HP 95LX System Manager Services Reference

Configuration Services

Various System Manager settings are maintained in RAM in a SETTINGS structure. The
functions in this section provide access to this information.

Applications using these services must include settings.h and interfac.h.

See settings.h for the definition of the SETTINGS structure as well as the manifest constants
which specify the values that may be found in the structure.

m._get_settings_addr
SETTINGS far *m_get_settings_addr(void);

Returns a pointer to the System Manager’s settings structure. Applications other than
SETUP should never change any values in this structure, but should use this only to enquire
about system settings.

HP 95LX System Manager Services Reference 8-41

Communications Services
The Communication Services provide access to the serial port.

Applications using the Communications Services must include comio.h and interfac.h.

ComAnswer

int ComAnswer (handle, mode) ;
com_handle hkandle;
int mode;

Put the modem/com line in answer mode. handle identifies the port to which the modem is
connected. The only valid value for mode is COM_ANS_NOWAIT.

Returns 0 if successful; otherwise returns an error code.

ComBreak

int ComBreak(handle,duration);
com_handle handle;
int duration;

Sends a break to the port associated with handle. The break state will be held for duration
milliseconds.

Returns 0 if successful, otherwise, returns an error code.

ComClose

int ComClose(handle);
com_handle handle;

Closes the communication port associated with handle.

Returns 0 if successful, otherwise, returns an error code.

ComCommand

int ComCommand(handle,cmd,cmdlen) ;
com_handle handle;

char far *cmd;

int cmdlen;

Sends the modem specific command pointed to by ¢md to the modem attached to the port
associated with handle, where cmdlen is the length of the command.

The modem will be put into command state and the command will be sent verbatim.
No translation will occur.

The transmit queue associated with handle will be flushed before the command is sent.
To ensure that all data is sent, use ComXmitting() before sending the command.

Returns 0 if successful, otherwise, returns an error code.

8-42 HP 95LX System Manager Services Reference

ComConfigure

int ComConfigure(port, IRQnum,IObase, modem, permfiag) ;
int port;

int IRQnum;

int IObase;

int modem;

i=t permflag;

Note There is no need for this routine to be called on the HP 95LX, since there is
1 only one COM port, and one configuration that may be used.

Configures the communications port where JRQnum is the interrupt-request number, JObase
is the base address of the port in I/O space, and modem is the modem type.

If permflag is nonzero, the information will be entered into the COM driver’s permanent
database, otherwise it will not be permanent.

Returns 0 if successful, otherwise, returns an error code.

CombDial

int ComDial{(handle,number) ;
com_handle handle;
char far *number;

Dials the nimber contained in number on the modem associated with handle.
number includes punctuation and/or commas and the number will be dialed according to the
modem’s specifications. For example, ’,’s cause a delay.

Returns 0 if successful, otherwise, returns an error code.

ComForceXoff

int ComForceXoff (handle);
com_handle handle;

Forces XOFF state on the port associated with handle.

Returns 0 if successful, otherwise, returns an error code.

ComForceXon

int ComForceXon(handle);
com_handle handle;

Forces XON state on the port associated with handle.

Returns 0 if successful, otherwise, returns an error code.

HP 95LX System Manager Services Reference 8-43

ComHangUp

int ComHangUp(handle);
com_handle handle;

Hangs up phone on the modem attached to the port associated with handle. The transmit
queue associated with handle will be flushed before the command is sent. To ensure that all
data is sent, use ComXmitting() before sending the hang-up command.

Returns 0 if successful, otherwise, returns an error code.

ComHayesCommand

int ComHayesCommand(handle,cmd,cmdlen);
com_handle handle;

char far *cmd;

int emdlen;

Sends the Hayes command pointed to by cmd to the modem attached to the port associated
with handle, where cmdlen is the length of the command.

The transmit queue associated with handle will be flushed before the command is sent. To
ensure that all data is sent, use ComXmitting() before sending the command.

Returns 0 if successful, otherwise, returns an error code.

ComGet

int ComGet (handle, settings) ;
com_handle handle;
com_settings far *settings;

Gets the communications settings for the port associated with handle. These settings are
returned in the structure pointed to by settings.

Returns 0 if successful, otherwise, returns an error code.

ComGetModem

int ComGetModem(handle);
com_handle handle;

If successful, returns the modem type for the port associated with handle, otherwise,
returns an error code. If successful, the returned value is eéither COM_MDM_NONE or
COM_MDM._HAYES indicating either no modem or Hayes-compatible modem, respectively.

8-44 HP 95LX System Manager Services Reference

ComOpen

int Combpen(handle.part);
com_handle far *handle;
int port;

Opens the communication port specified by port and returns a handle in the location given
by handle. The returned handle is associated with this port and is used in subsequent
communications function calls.

Returns 0 if successful, otherwise, returns an error code.

ComQryErr

int ComQryErr(handle);
com_handle handle;

Returns the error status of the port associated with handle. A return value of 0 indicates no
error. Possible nonzero error values are E_OVERN, E_PARITY, E_FRAME, etc.

Use of ComStatus is preferred over use of ComQryErr.

ComQryRxQue

int ComQryRxQue(handle, size, free) ;
com_handle handle;

int far *size;

int far =*free;

Queries the status of the receive queue for the port associated with handle. Sets the location
specified by size to the total queue size and sets the location specified by free to the number
of free bytes in the queue.

Returns 0 if successful, otherwise, returns an error code.

ComQryTxQue

int ComQryTxQue(handle,size, free);
com_handle handle;

int far *size;

int far =free;

Queries the status of the transmit queue for the port associated with handle. Sets the location
specified by size to the total queue size and sets the location specified by free to the number
of free bytes in the queue.

Returns O if successful, otherwise, returns an error code.

HP 95LX System Manager Services Reference 8-45

ComReceiveBytes

int ComReceiveBytes(handle,data,datalen);
com_handle handle;

char far xdata;

int far =datalen;

Receives bytes from the port associated with handle. The data is received in the location
specified by data up to a maximum of datalen bytes. On return, datalen is set to the number
of bytes actually received, which can be zero.

Returns 0 if successful, otherwise, returns an error code.

ComReset

int ComReset (handle, reset) ;
com_handle handle;
int reset;

Resets the port associated with handle in accordance with the reset options specified in reset.
reset uses bit values to indicate what is to be reset. The constants listed below can be OR’d
together to create the desired reset actions.

Action if Bit is Set
Line is reset.
Transmit buffer is flushed.
Recieve buffer is flushed.
Modem is reset.
Receiver’s °S state is reset.
Transmitter’s S state is reset.

Constant
COM_RESET._LINE
COM_RESET_TXB
COM_RESET_RXB
COM_RESET_MODEM
COM_RESET_RXFLOW
COM_RESET_TXFLOW

m.ucown—-og.

Always returns 0.

ComSendBytes

int ComSendBytes(handle,data, option,datalen) ;
com_handle handle;
char far *data;
int option;
int far =datalen;
Queues datalen bytes of data pointed to by data for transmission over the port associated

with handle. control uses bit values to indicate queuing options. The constants listed below
can be OR'd together to create the desired actions.

Constant Bit Action if Bit is Set

COM_CTL_-WHOLE 0 Do not queue any data unless all
datalen bytes will fit in the
output queue.

COM_CTL_SETRCV 1 Turn receiver on after sending
data.

8-46 HP 95LX System Manager Services Reference

If COM_CTL_WHOLE is not specified, partial data may be queued and several calls to
ComSendBytes may be required to complete sending all the data.

Hf successful, returns 0 and stores the number of bytes queued for transmision in the location
specified by datalen. If not successful, an error code is returned. In particular, E_NOFIT will
be returned if COM_CTL_WHOLE was specified and there is not enough free space in the
transmit queue to fit the data. In this case, the value pointed to by datalen will be set to zero.

ComSet

int ComSet(handle,settings) ;
com_handle handle;
com_settings far *settings;

Sets the communications settings for the port associated with handle to the values contained
in the structure pointed to by settings.

Note that the values used may differ from what is specified in the structure. For instance,
if IR is used, HALF-DUPLEX is forced, baud rate is limited to 2400, and FLOW control is
turned off. On return the passed structure will have the settings that are actually being used.

Returns 0 if successful, otherwise, returns an error code.

ComSetDtr

int ComSetDtr(handle, state);
com_handle handle;
int state;

Sets the DTR state on the port associated with handle. H state is zero, DTR will be set OFF,
else DTR will be set ON.

ComStatus

int ComStatus(handle);
com_handle handle;

Returns the error status of the port associated with handle. A return value of 0 indicates no
error. Possible nonzero error values are E_.OVERN, E_PARITY, E_FRAME, etc.

ComXmitting

int ComXmitting(handle);
com_handle handle;

Tests the transmitting status on the port associated with handle.

Returns 0 if nothing is being transmitted, else returns a nonzero value.

HP 85LX System Manager Services Reference 8-47

Miscellaneous Services

drawbox

void drawbox(bozr_name);
char far *boz_name;

May be used to display the application name on draw the double line seperating the menu
area from the data window. The application name to be dieplayed is pointed to by boz_name.
The display is cleared before the box is drawn.

m._errmsg

void m_errmsg(code, bp,len,lenp) ;
int code;

char far =bp;

int len;

int far *lenp;

Returns the string which serves as the error message for the code passed in code. String is
copied into buffer pointed to by bp, whose maximum length is specified by len. The actual
length of the returned string is returned in *lenp.

If an error message is not found for the given code, the string “Error n” is generated.

Actual codes are listed in m_error.h.

message

void message(strl,lenl,str2,len?);
char far =sirl;

char far *sir2;

int lenl;

int len2;

Displays one or two lines of text in the menu area of the application window. The string
pointed to by strl is displayed on the first line and the string pointed to by srt2 is displayed
on the second line. len! and len?2 give the lengths of the strings strl and str2, respectively.
Strings that are wider than the display area will be truncated.

When message is called, the screen hidden by the message box is saved by the System
Manager, and will be restored by a call to msg-off().

Generally speaking, applications should lock the system (m_lock()) until the message is
cleared by the user.

8-48 HP 95LX System Manager Services Reference

message3

void message3(strl,lenl,str2, len2,str8,lend) ;
char far *sirl;

char far »sir2;

char far *strS;

int lenl;

int len2

int len$;

Similar to message() except that it supports three lines of text.

msg-_off
void msg_off(void);

Clears the message posted by a prior call to message() or message-3() and restores the text
that was covered by the message box.

m_form_ft

char far *m_form_£ft(dim);
DTM far *dim;

Given the time and date in the DTM structure pointed to by dtm, returns a pointer to a
null-terminated string in the format described above, suitable for display in a directory listing.

Note The contents of the buffer will be destroyed by the next call to any of the
' date and time formatting functions (made by the caller), so it should be used
w immediately.

This function is used by the Filer to format the date and time used in its directory listings.

showname

void showname(boz.name) ;
char far *boz_name;

Displays boz_name on the menu line of the application’s window.

HP 95LX System Manager Services Reference 8-49

Resource Services

The Resource Services are only applicable to the built-in applications.

8-50 HP 95LX System Manager Services Reference

Help Services
At this time, the Help Services are only applicable to the built-in applications.

HP 95LX System Manager Services Reference 8-51

Collating Services

The System Manager provides character and string comparison functions which may be used
to sort items. These comparisons are more useful than those based solely on the machine’s
character set.

m-col_cpsearch

int m_col_cpsearch(spir,slen,dptr,dlen,dir);
char far =spir;

int slen;

char far »dptr;

int dlen;

int dir;

The data string of length dlen pointed to by dptr is searched for the search string of length
slen pointed to by sptr. The search is in a forward direction if dir = —1, and backwards if dir
= +1. The search comparison follows the same rules as for m_col_cpstr.

If found, returns the offset of the beginning of the search string within the data string. If not
found, returns 0.

m_col_cpstr

int m_col_cpstr(strl,lenl,str2,len?);
char far =sirl;

int lenl;

char far =sir2;

int leng;

Compates the supplied code page 850 string of length lenI pointed to by str! with the code
page 850 string of length len2 pointed to by str2. Comparison is case- and accent-insensitive:
characters a, A, and i are considered equivalent. Graphical characters also all evaluate
together.

Returns:
0 if the strings are equal
+1 if string 1 precedes string 2
-1 if string 2 precedes string 1
m_col_init

void m_col_init(void);

Initializes internal pointers in accordance with the global sort selection. These are used by the
LICS comparison routines.

8-52 HP 95LX System Manager Services Reference

m-_col_tolower

void m_col_tolower(sptr,len);
char far =*spir;
int len;

The code page 850 string of length len pointed to by sptr is scanned through its length, and
any upper case characters found are converted to their lower-case equivalents.

m.col_toupper

void m_col_toupper (sptr,len);
char far *spir;
int len;

The code page 850 string of length len pointed to by sptr is scanned through its length, and
any lower case characters found are converted to their upper case equivalents.

HP 95LX System Manager Services Reference 8-53

1-2-3 Bridge Services

The System Manager includes a bridge function, with a set of subfunctions, which allow
applications to communicate with 1-2-3.

Applications using the bridge services must include bridge.h.

Applications prepare a bridge parameter block (see below) and make a call to the bridge
service. The system manager confirms that 1-2-3 is loaded and performs a context-switch

so that the applicaiton is deactivated (but not notified, since it is generating the bridge
request) and 1-2-3 is reactivated with a Bridge-Request Event, that contains a pointer to the
application-supplied parameter block.

1-2-3 then performs the requested action and signals the System Manager that the service
has been completed. 1-2-3 is fully responsible for the values returned in the parameter block
(except for —1 in the retcode that indicates that 1-2-3 is not loaded). The System Manager
then switches control back to the application.

In general, the application should repaint its screen when it regains control.

The bridge parameter block definition is:

typedef BRIDGE_BP {

int bpb_funcode; /* function code */

int bpb._retcode; /* return value */

char bpb_rangename[16]; /* ASCIIZ name of range */

int bpb_startcol; /* column coordinates of range start */

int bpb_startrow; /* row coordinates of range start */

int bpb_endcol; /* column coordinates of range end */

int bpb_endrow; /* row coordinates of range end */

int bpb_order; /* order (row or col first) of range data */
int bpb_bufsize; /* size in bytes of supplied buffer */

char near *bpb_buffer; /* buffer for prompt and range data (must be

located in same seg. as the struct) */
} BRIDGE_BP;

Range specification (used even for a single cell) is stored in the bpb_startcol, bpb_startrow,
bpb_endcol, and bpb_endrow fields of the bridge-parameter block. Coordinates are zero based
so that the cell Al is stored as COL=0, ROW=0.

If the range is to be accessed by name, the name is stored as an ASCIIZ string in the
bpb_rangename field.

Applications and 1-2-3 exchange cell contents using a buffer composed of variable length cell
records. The records contain a single byte type followed by a type specific body. The cells are
in the order declared by a flag passed with the get/set functions.

8-54 HP 95LX System Manager Services Reference

The following cell types are defined:

Type Code Type Body Length
B Blank 0
I Integer 2
N Float 8
S ASCIIZ String variable
F Formula variable

bridge_serv

void bridge_serv(bpd);
BRIDGE_BP far *bpb;

The bridge services are used by setting a function code in the bridge parameter block and
then calling bridge_serv. The valid function codes are described below.
bridge_test

This function should be called before using any other services to ensure that 1-2-3 is loaded
and ready to receive bridge calls.

INPUT:
bpb_funcode BRIDGE_TEST (0)
OUTPUT:
bpb_retcode 1 if 1-2-3 is loaded and safe for bridge services
0 if 1-2-3 is loaded, but busy.
—1 if 1-2-3 is not loaded.

bridge_getrange

This function switches to 1-2-3 POINT mode, for user to select range. Range can be entered
by painting, or by name. Pressing the NAMES key (F3) will switch to NAMES mode,
allowing the user to select by name.

INPUT:
bpb_funcode BRIDGE_GETRANGE (1)
bpb_buffer ASCIIZ string containing user prompt.
bpb_order The range edit is controlled by the following

bitflags:
1 = BRIDGE_GETRANGE_EDITOLD
2 = BRIDGE_GETRANGE_STARTANCHORED
4 = BRIDGE_GETRANGE_SHOWHIDDEN

HP 95LX System Manager Services Reference 8-55

OUTPUT:

bpb_retcode

bpb_rangename

bpb_startcol
bpb_startrow
bpb_endcol
bpb_endrow

bridge_getrange_addr

If directed to EDITOLD, then getrange edits the
range in startcol..., else starts at the current
cursor position. '

If STARTANCHORED then getrange begins with an
ancored range, else single cell.

If SHOWHIDDEN, then 1-2-3 will show hidden columns
hidden with /wch, else will hide those columns.

1 if successful
0 if user entered ESC, thus aborting selection.

-1 if 1-2-3 is not loaded.

ASCIIZ string is used selected by name, else ’\0’

Coordinates of selected range.

This function returns the current coordinates for a named range.

INPUT:
bpb_funcode
bpb_rangename

OUTPUT:

bpb_retcode

bpb_startcol
bpb_startrow
bpb_endcol
bpb_endrow

BRIDGE_GETRANGE_ADDR (2)

ASCIIZ string containing range name.

1 if successful
0 if range name not found.
-1 if 1-2-3 is not loaded.

Coordinates of selected range.

8-56 HP 95LX System Manager Services Reference

bridge_setrange_addr

This function sets the coordinates for a named range. If the range name already exists, its
coordinates will be replaced. If the range does not already exist, it will be created.

INPUT:
bpb_funcode BRIDGE_SETRANGE_ADDR (3)
bpb_rangename ASCIIZ string containing range name.
bpb_startcol Coordinates of selected range.
bpb_startrow
bpb_endcol
bpb_endrow

OUTPUT:

if successful

i
0 if failed (not enough room in 123 or invalid values)
—1 if 1-2-3 is not loaded.

bpb_retcode

bridge_getrange_data

This function gets the data associated with a range of cells, which must be specified through
coordinates. The data is exported from 1-2-3 into the client supplied buffer (bpb_buffer).
Cells are copied until the entire range is exported, or the buffer overflows. The data is a
stream of cell records that must be parsed by the client.

INPUT:
bpb_funcode BRIDGE_GETRANGE_DATA (4)
bpb_startcol Coordinates of range.
bpb_startrow
bpb_endcol
bpb_endrow
bpb_order Row order = 0 (ai1,bi,a2,b2,etc)
Column order = 1 (a1,a2,bi,b2,etc)
bpb_bufsize Size in bytes of client supplied buffer.
bpb_buffer Pointer to client supplied buffer. Segment must
be the same as that of the bpb structure itself,
which must be in the client’s data segment.
OUTPUT:
bpb_retcode Number of cells returned in buffer.
0 may indicate error in argument specification.
—1 if 1-2-3 not loaded,
bpb_buffer Stream of cell records.

HP 95LX System Manager Services Reference 8-57

bridge_setrange_data

This function sets the contents of a cell or range. The data is imported to 1-2-3 from the
bpb_buffer field. The entire range must be contained in the RDB. The data is a stream of cell
records which will be parsed by 1-2-3. '

INPUT:
bpb_funcode
bpb_startcol
bpb_startrow
bpb_endcol
bpb_endrow

bpb_order

bpb_bufsize

bpb_buffer

OUTPUT:

bpb_retcode

bridge_recalc

BRIDGE_SETRANGE_DATA (5)

Coordinates of range.

Row order = 0 (al,a2,b1,b2,etc)
column order = 1 (al,bl,a2,b2,etc).

Size in bytes of the cell stream found in
bpb_buffer.

Pointer to client supplied buffer. Segment must
be the same as that of the bpb structure itself,
which must be in the client’s data segment. Data
must be a stream of cells to be parsed by 1-2-3.

number of cells successfully entered. Any number

less than the full range indicates error, probably
inadequate memory or invalid range specification.

—1 if 1-2-3 not loaded.

This function tells 1-2-3 to recalculate the current worksheet.

INPUT:
bpb_funcode
QUTPUT:

bpb_retcode

BRIDGE_RECALC (6)

1 if successful
0 if error
—1 if 1-2-3 is not loaded.

8-58 HP 95LX System Manager Services Reference

bridge_get_cursor
This function gets the cell coordinates of the cursor.

INPUT:
bpb_funcode BRIDGE_GET_CURSOR (7)
OUTPUT:
bpb_startcol Coordinates of cursor.
bpb_startrow
bpb_retcode 1 if successful.

0 if error.

~?1 if 1-2-3 is not loaded.

bridge_set_cursor

This function sets the cell coordinates for the cursor.

INPUT:
bpb_funcode BRIDGE_SET.CURSOR (8)
bpb_startcol Coordinates for cursor.
bpb._startrow

OUTPUT:
bpb_retcode 1 if successful

0 if error
—1 if 1-2-3 is not loaded.

bridge_redisplay
This function causes 1-2-3 to redisplay the worksheet, but does not redisplay the control panel
or status area.

INPUT:

bpb_funcode BRIDGE_REDISPLAY (9)
OUTPUT:

bpb._retcode 1 if successful

0 if error
~1 if 1-2-3 is not loaded.

HP 95LX System Manager Services Reference 8-59

bridge_celitype
This function returns the cell type of the specified cell.

INPUT:
bpb_funcode BRIDGE_CELLTYPE (10)
bpb_startcol Coordinates of cell.
bpb_startrow

OUTPUT:
bpb_retcode 'B? if blank

’I? if integer

'N? if float

'S’ if ASCIIZ string
'F? if formula

bridge_calctype
This function returns the current calc type of 1-2-3.

INPUT:

bpb_funcode BRIDGE_CALCYTPE(11)
OUTPUT:

bpb_retcode 0 if 1-2-3 in manual mode.

—1 if 1-2-3 in automatic mode.

8-60 HP 95LX System Manager Services Reference

10

From Software Design to Ordering ROM Cards

6

HP Supplied Development Tools

The purpose of this section is to introduce some tools Hewlett Packard is making available to
help with the development of HP 95LX software. The tools are discussed in the order they
would be used during the software development process. This process includes the following
steps:

1. Prepare the program and data files.

2. If the program is to be system management compliant, the RAM resident protion needs to
be converted from .EXE form to .EXM form.

3. If the program is to execute in place in ROM, the .EXM form will need to be converted to
.XIP form and an .EXM loader will need to be created.

4. Finally, all the files needed for the ROM card will need to be combined into a ROM image
file.

This is the all-inclusive process, and many applications can be prepared using only a

subset of the steps. For example, if the application is to run under DOS and not be
System-Manager-compliant then it does not need to set up an event handler that uses
System-Manager routines. Or if your application will run in RAM like most PC applications
then you will not need to convert your .EXE file to a .XIP file.

Power-Saving Suggestions

The HP 95LX has a low-power mode that greatly extends battery life. This is an idle state

that the computer enters whenever you invoke INT 16h to test for a keypress (services 1 or
11h) or GET key (services 0 or 10h).

idie State

When TEST for a keypress is called, the computer enters the idle state until the next
hardware interrupt. Noemally, this is the 18.2 Hz timer, that interrupts every 55 msecs.
However, it could be any other hardware interrupt. Assuming that the timer interrupt is what
causes the computer to exit from its idle state, the TEST for key routine can last at most for
55 msecs.

DRAFT From Software Design to Ordering ROM Cards 10-1
4/13/91 11:00

If an application program has a main loop that does some processing and then TESTs for
a key down, the computer will automatically enter its idle state on each pass through the
loop. The percentage of time the HP 95LX spends in the idle state depends on the amount
processing apart from the TEST for key. To optimize battery life, you should minimize
processing time in the program’s main loop.

If GET key is called and no key is in the buffer, the HP 95LX enters its idle state almost
continuously until a key is pressed.

Caution The idle state is suppressed for 110 msecs (two timer ticks) after a screen
cursor movement or BIOS call to write to the display. Consequently, do
‘ not include these operations in the main loop of your program if you desire

low-power mode.

Serial Port Power

HP 95LX battery life can be extended by approximately 10% by simply turning off power to
the serial port—use Interrupt 15h service 4Ah. When serial port power is turned off, the HP
95LX can receive characters from the serial port, but it can not send characters.

Prepare the program and data files.

The fist steps of a software project involve defining a project that will meet the users needs
and will be compatible with the constraints of the target hardware. After the project has
been defined and the design has been developed you will want to start writing the software.
For small applications that will run in the HP 95LX’s RAM you can proceed by compiling
and linking software on your PC and downloading the .EXE file to your HP 95LX. For larger
programs that will eventually run XIP from a ROM card, you will want to use a product like
Soft-ICE from Nu-Mega and emulate the software on your PC. The output from this precess
will be an .EXE file and whatever datafiles are needed to run the program.

For system manager compliant software, you should take time to develop a good design to
handle keyboard events, memory management and display output. All this activity should
go through the system manager to DOS and the BIOS. It should be done by in a central top
level area of your program. The smhello.c program included with the developer’s software
demonstrates one such method of interfacing the system manager to your applacation.

Important HP 95LX Considerations

1. Since the RAM of the HP 95 LX is limited, avoid linking in libraries that include unused
entries.

2. Many C libraries cause startup or initialization code to be included in the final program.
System manager application writers should avoid such libraries since such initialization
code is usually incompatible with the HP 95LX system manager.

10-2 From Software Design to Ordering ROM Cards DRAFT
4/13/91 11:00

Converting from .EXE to .EXM

Standard .EXE files must be converted to standard .EXM files before they can be successfully
loaded and run by the system manager. This conversion can be most easily made by using the
E9M.EXE available in the HP 95LX Software Developer’s package.

In order for the system manager to link your application to a hot key, you must include a line
in your apname.lst file that points to the appropriate .EXM file. The format for each entry in
your apname.lst file is:

path with file name, hot key scan code, identification string

For example, you could use the following entry to associate the smhello program with the
Alt-S hot key:

c:\smhello.exm,1400,Hello Program

Converting Files from .EXM or .EXE to .XIP

If your application is to execute in place on a ROM card it must be converted to a standard
XIP file. Hewlett Packard is providing tools to support this conversion. For system manager
compliant applications this tool is called _ eze; for DOS applications it is called

_ere. These tools are also available in the software developer’s package.

In addition to the .XIP file these tools create the source code for a stub program. The stub
program needs to be included on your ROM card. The stub program will need to be edited
to incluce the eventual ROM address of your .XIP program. Then it will need to be compiled
and linked to create an .EXE file. For system manager compliant applications it should be
converted to an .EXM file. The purposes of the .EXE or .EXM file are to provide these
services:

1. File manager (.EXM case) or DOS (.EXE case) run your application by starting up the
stub program. In particular, it is the stub program that should be listed in the apname.lst

file.

2. The stub program will bank switch the .XIP file into high memory and set registers so the
XIP program will run successfully.

3. For system manager compliant applications the stub program should be the top level
handler of keyboard, memory allocation, and display events.

The constraints on the .XIP program include:

1. The .XIP file must start on a 64K byte boundary on the ROM card. As mentioned the
ROM address needs to be coded in the stub program. It also needs to be communicated to
the ROM CARD File Ssytem Builder described in the next section.

9. The .XIP file cannot exceed 192K bytes.

DRAFT From Software Design to Ordering ROM Cards 10-3
4/13/91 11:00

ROM Image Builder

Purpose

The ROM Card File System Builder (ROMCFS) creates an image of a file system that can
be placed on a Plug-in ROM card. The card can then be used as a file system or drive when
plugged into the HP 95LX.

ROMCEFS is invoked: ROMCFS directory

Where directory contains a configuration file (ROMIMAGE.CFG) and all files to be placed on
the ROM card. <directory> may contain nested subdirectories that will also be added to the
ROM card.

Glossary of Terms

Term Explanation
PCMCIA Personal Computer Memory Card International Association PCMCIA
provides standards for memory card header information (see CIS in this
glossary).
CIS Card Information Structure. First sector on a device containing

information based on the PCMCIA standard.

constrained file A file that needs to start on a certain boundary. Usually one that will be
mapped into RAM.

device The hardware being created. For example, EPROM or OTP.

ROMCFS ROM Card File System. An image of a file system to be placed on a
device. The device can then be treated as a file system or another drive on
certain products.

Overview

ROMCFS reads a configuration file. Using the configuration information it creates a file
that is the image of a file system. Through subsequent means the image can be placed on a
programmable device.

The directory specified on the command-line (see USAGE above) becomes the root directory
on the file system. Any sub-directories are also added to the file system. When complete, the
file system will contain:

1. PCMCIA CIS

2. boot sector

3. two File Allocation Tables (FAT)
4

. root directory

10-4 From Software Design to Ordering ROM Cards DRAFT
4/13/91 11:00

5. files and sub-directories

Subsequent sections in this document may imply that the output of ROMCEFS is a device
with a file system on it; however, ROMCFS only creates a DOS file which is an image of a
file system. The newly created file is suitable for transfering to a programmable device using

other me.ns.

The Configuration File for ROMCFS

The configuration file co

ntains keywords and parameters. The keyword and associated

parameter are separated by one or more spaces or tabs. Some reasonability checking is done

on the parameters. Incongruities are listed on stdout. By design most of these are flagged as
WARNING and processing continues. This allows the creation of some non-standard devices.
Any error marked ERROR causes termination of the process.

Keywords and Parameters

being created.

Keyword Description Default Required
ROM_SIZE Size in Kbytes of the ROM being created. 0 R
RAM_SIZE Size in Kbytes of the RAM being created. 0
RAM_OFFSET Offset to the beginning of RAM from 0. ROM_SIZE
DEVICE_SIZE Size in Kbytes of the device being created; ROM_SIZE+

e.g., 1024 for a 1MB device. RAM_SIZE
ROM_NAME Variable length name to be placed in the CIS.
DEVICE_TYPE R
Kind of device being
created:
EPROM, OTR etc.
DEVICE_SPEED Speed of the device being created: e.g., 250 ns R
VENDOR Vendor’s name
MACHINE_CODE | Code for the machine for which the device is 0

<file> <bounds>

Name of a file that is to be placed on a specific
boundary.

DRAFT
4/13/91 11:00

From Software Design to Ordering ROM Cards 10-5

Required Keywords and Parameters
The following keywords and parameters are required as the very minimum.
ROM_SIZE n

where n is the size of the ROM in Kbytes. Minimum value according to PCMCIA standards
is 512. The maximum is 256 MB (specified 262144 for Kbytes). The HP 95LX accepts a
maximum size of 2MB.

DEVICE_SPEED s

If the speed is| then s is
250 nsec 1
200 nsec
150 nsec
100 nsec

S]

DEVICE_TYPE t

If the device is a then t is
masked ROM 1
OTP (One-time Programmable ROM)
EPROM
EEPROM
Flash EPROM

[0 O U

Optional Keywords and Parameters
DEVICE_SIZE n

n is specified in Kbytes. DEVICE_SIZE is assumed to be the sum of ROM_SIZE and
RAM_SIZE. RAM_SIZE n n is the size in Kbytes of RAM to be added to the device. The
RAM is not actually added; the value is placed in the CIS. RAM_OFFSET n n is the offset
from the beginning of the device to the start of RAM. For RAM_SIZE > 0, RAM is assumed
to start immediately following ROM. ROM_NAME string string is the name of the ROM to
be placed in the CIS. Any ASCII character is valid. Maximum length is 60. VENDOR string
string is the name of the company or individual producing the ROM code. Maximum size is
25.

MACHINE_CODE ¢

If the machine is | then c is
HP95LX 0

The default machine code is: 0.

filename b

filename is the name of a file in the root directory; b is the boundary specified in Kbytes on
which filename is to be located on the device. filename is placed at the first appropriate

glﬁlﬁldm#%ﬁﬂi&bé%ﬁ%“ék&%ﬁ@em Eupsigrs for the entire file. Multiple DRAFT

ename-boundary combinations can occur (maximum 64) in the configuration ﬁlﬁs /91 11:00

These constrained files are placed on the device before any others.

Processing Specifics

The ROM Card File System builder uses the configuration file ROMIMAGE.CFG and user
files to build ROMIMAGE.ROM: a DOS file containing the image of a file system.

ROMCFS changes directories to the one specified on the command-line. It expects to find the
configuartion file ROMIMAGE.CFG.

Some validation on the keywords and associated parameters is done. Incongruities result in
either warnings or errors written to stdout. Warning messages are prefaced by “WARNING”
and are non-fatal. Warnings usually result in the software making an assumption. Review
these messages to insure that the desired value has been obtained. Error messages are
preceded by “ERROR” and cause ROMCFS to terminate.

Appropriate sizes are calculated for the root directory and FATs based on the contents of the
directory to be processed.

Any constrained files found in the configuration must exist in the current directory. At
this point the current directory will become the root directory on the new file system. The
constrained files are sorted by boundary in descending sequence. Each constained file is
written to the file system at the first appropriate boundary and in contiguous clusters.

After processing constrained files, ROMCFS does a “find” on the current directory. All files
excluding ROMIMAGE.CFG, ROMIMAGE.ROM and constrained files are added to the file
system. These files and sub-directories may be fragmented into 512-byte clusters to optimize
the file system space.

Once the contents of the current directory have been added to the file system, contents of
sub-directories are added.

ROMCFS extends the file system to the specified ROM_SIZE padding with zeros.
A checksum is computed on the entire ROM image and added to the CIS header.

Each time ROMCFS is run, it will re-build ROMIMAGE.ROM. All other contents of the
user-supplied directory are unaltered.

Ordering ROM'’s from Epson

It is the ROM file image that needs to be transferred to ROM cards. Epson America should
be contacted directly for instructions on ordering ROM’s. Their Hewlett Packard ISV
coordinator is:

David Rifkin

Epson America

20770 Madrona Avenue
Torrence, California 90509-2842 Telephone: (213) 782-5315

DRAFT From Software Design to Ordering ROM Cards 10-7
4/13/91 11:00

'HOPPER'
95LX SYSTEM CONTROLLER
External Reference Specification

Version 1.01

HEWLETT~-PACKARD COMPANY

April 30, 1991

CONTENTS

INTRODUCTION.-.......l.lc.t..c..'-loocoo-oo.o-.o-..ou-.-----oo
BLOCK DIAGRAM........n-c.--oonooo.-oo.o-o......nlo-o-.o.o-o...

PIN OUT-...o.o.u..oo..-c.-.o--o-o-.l-oo---o.-.no..-o-....o.o--

3-1 PIN Description.-..--..-o-.-...---.-...-..........---.-

ADDRESS SUMMARY . ..cscccescasacsssssoscccssacscsssscasscseconce
Programmable Interrupt Controller (8259
Compatible)..ccceeeeecesacosooosasccccassasnncncsoncccs
Programmable Interval Timer (8254 Compatible)..........
Programmable Peripheral Interface (Emulates 8255)......
MDA Adapter (PC MDA Compatible)...c.cccceccccccccccnecs
Serial Port (8250 Compatable UART).....ccecccccccnccccs
Display Controller (HOPPER SpeCificC).cececcccsecccnanes
Real Time Clock (HOPPER specifiC).ccececccccccccccccnces
Miscellaneous Registers (HOPPER specific).cceiceccceces
HCPPER Memory Configuration and Bank Switching.........

N

el
WNHRBRG vodouibhwwdNn RO

BUS INTERFACE. . ccccscssascssvsssassossssossassossssccnsssceccs
Display Address RemMapping.....ccececcccccscccancsscccs
Internal Chip SelectS....ccccocececsssccccscccsoncccsccs
External Chip SelectsS...cceescececccccsccccccccccccncee
5.3.1 Wait State Registers 27
5.3.2 Start Address Registers 27
5.4 Write Enable BitS...cecceeeesseccssscsccssscsanconcasnce
5.4.1 Device Size Registers 28
5.5 Bank SWitChing....e.ceeeeeececcscscoccacccccccccanaccnes
5.5.1 BANK C and BANK D 29
BANK EO through BANK E3 29
Limitations 30
Bank Control Registers 30
Example 31
ake Over ROM/EPROMS....cccseccccccscsscscsccsscsccsccs

oo SbhaaBBRE DM

oo,
bdwN

5
5
5
5
T

HOPPER DISPIAY CONTROLIER. :cccovecssooscscsccsssccccscacscnccccse
6.1 Display Timing and Control Registers.........ccecceeccee
6.1.1 MDA Registers 32
6.1.2 HOPPER Display Control Registers 35
2 System Memory Interface.....cceseeccceccaccccecvonceccs
6.2.1 Display Memory Organization 37 '
3 Display Data Generation.......ccceeccvcaccccncccncoccns
4 CUTrSOY GeneratiON...cecsscecsssssssccssscscsccssccasssce
5 Display Blank MOAE...:cceecessnsnsscsoscccascnnrocnccns
Y
1
2

BoARD CONTROL.l...ll..'.l'.....l...'....l.ll.l.'l...l.....'
Keyboard Hardware....cceeeeececeacecconasccccccnnccccss
Software Control..ccveecececsesssssscsessscncnccccccccccncs

w

(o« IR S S

12
13
14
17
17
18
22

24
25
25
26
27

28

31

32
32

7.3 Hardware Reset-o.ll...o-o'.n-..ooo-on---...o...-.-u'..-

CARD DETECTION. c e ccccsoescsesssssscsscscsssssoscsasasnsocsscssoscsese
8.1 Card Detect Register......ccceeeuececcsccccseccscncnscns
8.2 Special Considerations......ccceeeeenccccccccrcncccccns

SERTIAL COMMUNICATTION. c c et escosvcessassocsccsssccssssascscsnscsscssscsoe
9.1 UAR T e e e o cooscoscsscscacncscssossssssssnsscsssscosncssssscssscasss
9.2 IR Communication..ccceeceeccecocscscsascsacsocnscacsscossasse

9.2.1 REDEYE format 48

9.2.2 Software Controlled Mode 49

9.2.3 Modulated Mode 49

9.2.4 IR UART Modes 49

INTERRUPT CONTROL.¢ccvocevvcesscooscsscsssscscssscsssscscsscsscscesnae
10.1 8259 Interrupt SOUrCeS..c.cccceceesscscccscsccncsccccccns
10.2 Non-Maskable Interrupt...cccceccecccscccccsssscscecscons
10.3 Interrupt Source Register.......ccccacevcceccccascccccns
10.4 WaKe=UpPS.coesssseecscoscssosssssssssaccsoscsssssssscccccce
10.5 Enabling InterruptS...ccccceececccssscscsscscccssssccsccs
10.6 Special Considerations.....cecceeeeeccoccccccevocscsces

PROGRAMMABLE INTERVAL TIMER..:.:cccocosscsscncsosssoscnsscccssane
11.1 TIMERO . :coceoeosacsosssesanoscsassasassscscsacssscsncssscosscss
11.2 PTIMER]l.:.cectocscsonososscscassonssasssnsnossocacsocssscsncsocas
11.3 TIMERZ . cececsasosoosasossssosssscssannssssnscssscacsecnscsscsos
11.4 Timer Operation in Light Sleep....ccccesceccccccscccscs

REAL TIME CLOCK TIMER: c e ccssesosssccscscsssscsnssssssnssssacsscocse
12.1 Furictional DescriptiON...cccececcccccccsesscccccscccccs
12.2 Special Considerations......ccceeecccsccccccccacscscecs
12.3 Pre-Divider OUutputS...cceeeeecccsscraccsscccccccvsoscncs

PC COMPATABLE I/0 REGISTERS.:cccesecccecscscccsocasacsssscncnoscns

CRYSTALOSCILLATORS.Q......lll.....l.l...I...I.I.I.....l..l..'
14.1 Low Frequency Oscillator.....cccceeeecccccccscssccccces
14.2 High Frequency Oscillator......ccceeceseeccccccscccccce

CIIOCK GENERATOR'....o-..onQ.looo...-.o.aoo....t.o.-...no.ooo.o

TOUCH PANEL CONTROLLER....I....I..O.I‘.........l.............l.
16.1 The A/D Converter Interface (ADCONT)...ccccecacccccccne
16.2 Touch Panel Control (TPCONT)..:.ceescaaccccosccascccccecs

TONE GENERATOR.......II.....‘Il.'..............."...‘l.......
17.1 Hardware Description....cccceceecceecccsscascccscnscccnse
17.2 Software ContrOl..ceceesesossscancsscsscsansossnsscscoacscsos

POWER MANAGEMENT............l...‘.I.'..'..-.'...'...l.........'
18.1 Static Test ConditioN.:eceececeereetsccsscescesoscssanssssncs

- ii -

42

43
43
44

45
45
45

18.2
18.3
18.4
18.5
18.6
18.7

Deep SleeP..cceeeeesacsccssnsosscnssaccascacssccscosancnse
Light SleeP.ccsececcssssasecsscsanenccssssssccnnsasccns
Operating...ccecececesssesccecsaccncnaassssscccncccccans
BACKUP: ceseeseeecscasosssossccssssossscsassosscnssossccscnssocs
System ResetS....cceeeeccccctcncccccccccocsccccaccnnens
System Control Register........cceeceiiecrccccccccencnee

CONTRAST CONTROL VOLTAGE GENERATOR:::cccceceoccocccecccccnccns

SPECIAL, HARDWARE CONSIDERATIONS AND HOPPER REV C..ccocvcecccne
Pseudo-Static RAMs and the CPU Halt Instruction........
Pseudo-Static RAMs and Hardware Reset......ccccccececee
DisSplay CUISOT...ccccesssecsssssccncssasscsscccscccnsns
TX OULPUL.ccoceeeecssascacscnssocccasocascscsscsocacanncnas
Timer WaKeUPS:. .eoeoeevesoecsoscsssscsosscssasascscscscnas
Interrupt Source Register (ISR)....ceceeccececccercocee
The ON KeY.:coeseseososcossescaasssssassosasscsccscconcscse
RDY Timing..eceeeeeeeceaesscocssecsesoasssccssaccsscccs
Speaker POWEXr—DOWN...:cceeossccccsossscesssoncaccnssscs
Keyboard Precharge and Reset.......coceeccceccccccncens

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9
20.10
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18

uP8250
UP8250
upP8250
UP8250
UP8250
UP8250
UP8250
UP8250

LOCKUP e eeeseoseassassosacsccssccssnsscsccssasanscs
Parity Enable.....cceceeecescscccesaccasnasccccns
Interrupts and Interrupt ID Register....cecccvee
Receiver Error BitS...ccceeescecrscessscccncscsscs
Modem Status Register.......ccceeeeseccccccennes
Break ReSet..cccesccescsscsssascssscscoscccsoscscenes
Line Status Register......cccceeeeesccecccccacnns
Receiver Buffer Register......c.ceeececccccances

TESTING..;..ll‘.l‘.'.........'l..'.II.I.l'....ll'.....l....l'.

- iii -

LIST OF FIGURES

Figure 2.1. HOPPER Block Diagram 0.12......cccececcccecccce: 3
Figure 5.1. Bus Interface Block Diagram....cceececesscccecs. 24

Figure 15.1. Clock Generator Block Diagram.....ceceeecesccees D59

- iv -

CHAPTER 1
INTRODUCTION

This document contains a description of the 'HOPPER' IC. This
chip is designed to be used in conjunction with an 8o0c88 CPU, a
1LCD module, and ROM/RAM chips, to implement a system with a
moderate degree of PC compatibility. This chip is divided into
the following functional areas:

1. An 8088 CPU Bus Interface. This block contains the
functionallity of the 8288 BUS CONTROLLER plus address
latches, address/data transceivers, and internal/external
chip enable decoding. The internal chip enable decoder
supports programable address configuration for 5 external
ROM/RAM devices.

2. A Display Controller capable of controlling an LCD module of
up to 16 lines by 40 characters. The Display Controller
supports a movable window into the 25 line by 80 character
MDA standard. It also supports non-standard bit-mapped
graphics of up to 128 rows by 240 columns.

3. A Keyboard Controller that interfaces directly to a keyboard
switch matrix of up to 8 rows by 16 columns plus a separate,
dedicated ON key. PC compatible key codes are generated by
the BIOS.

4. A card Detect Register that contains information on the
presence and write protect status of up to 2 plug-in cards.

5. RS232 and infrared (IR) serial ports supporting
communication via an 8250 compatible UART. IR communication
with the REDEYE printer and HP calculators is also
supported.

6. - An 8259 compatible Programmable Interrupt Controller (PIC).

7. An 8254 compatible Programmable Interval Timer (PIT).

8. A Real Time Clock timer used by software to keep track of
time and date and to implement alarms.

9. A set of PC compatable I/O registers for system
configuration.

HOPPER ERS 1.01 Page 1

10.

11.

12.

13.

14.

15.

16.

A low frequency (32.768KHz) quartz-crystal oscillator.

A high frequency (5.37MHz or 10.74MHz) quartz-crystal
oscillator.

A Clock Generator that uses the output of the high frequency
oscillator (HFO) to generate clocks for the CPU, the PIT,and
the UART.

A Touch Panel Controller which includes an 8-bit A/D
converter. This A/D converter is also used to monitor the
voltage levels of up to 4 battery inputs.

An analog Tone Generator which includes an 8-bit D/A
converter.

A Power Management circuit that controls the external
switching power supply regulator. This external supply
operates in low power, high power, and backup power modes.
The power management block also includes a Power-On Reset
(POR) circuit.

A Contrast Control Voltage generator to control the external
ILCD voltage generation. This circuit consists simple
resistive network used to impliment a 4 bit D/A.

A chapter has been dedicated to each of these functional areas.

Also

included are chapters describing the chip BLOCK DIAGRAM, the

chip PIN OUT, the I/O ADDRESSING, and TESTING.

Page 2

HOPPER ERS 1.01

CHAPTER 2
BLOCK DIAGRAM

The following is a simplified block diagram of the HOPPER chip. -

Figure 2.1.

RE222

display module

power susply

(112
CPU cleck
92KHz asc

$/712nKz esc

touch wranel

spoaker

conirast centrol

reset

HOPPER ERS 1.01

HOPPER Block Diagram 0.12

infrarec reauest/ CPU cru tru nultiplexed
1/0 test srant reset status address addrsdala
2 l ij 12 s
17,
5 Lo
S .
1,0 ig2s5e spB288 —r— chis enables
2 cantrl CUART) bus
) interface ——J urite onadle
——%uul-u(enable
h——l.lt-nu.r
» display '{?,f;
—— controller clock
sp8254
CPLIT)
4
—_—
clock pouwer
2 generator management ——
2
touch tone sp8259
controiler generator CPIC)
P) RS I ST
3 B-bit adc g-bit dac Scru tatr
2 —>Hn}
&——— external interrurt
keyboard io card 2
cvoen controller regs detecgt 7 fron caras
1
g 3 & d [ON)-key
battery vdd Ok colunns rows
voliages

Page

CHAPTER 3

PIN OUT
3.1 PIN Description
PIN # TYPE DESCRIPTION
Power Supply:
VDD 7 I Power Supply: 4.5 to 5.5 Volts.
GND 4 I Ground: 0 Volts.
AVDD 2 I Analog Power Supply.
AGND 2 I Analog ground.

80Cc88 Interface:

CLK
NS[0:2]
AD[0:7]
MA[8:11)
AP[12:15]
AS[16:19]
INTR

NMI

NRGO
PRES

Page 4

1

S 00 W

N

I/0
I
1/0
1/0

OO O H H

1/0

System clock.
Processor status.
Multiplexed address/data lines.

System address lines. Source either from
CPU or from HOPPER.

Processor address lines.

Multiplexed address/status lines.
Interrupt request.

Non-Maskable interrupt. Caused by either
NVDDOK = 1 or a change on the CDT[0:1]
inputs.

Request/Grant pin for bus hold requests
(required by display controller to take
control of AD[0:7)] and MA[8:11]).

Processor reset.

HOPPER ERS 1.01

System RAM/ROM Interface:

MA[0:7] 8
MA[12:20] 9
NWE 1
NCE[O] 1
NCE[1] 1
NCE[2] 1
NCE[4:5] 2
NOE 1
RDY 1
CDT[0:1] 2

o

0

o O 0O O O O

1/0

LSB's of system address; normally latched
from AD[O0:7].

MSB's of system address. Four of these 8
bits are required to remap 4K portions of
the system RAM, the others are. latched
from AS[16:19].

Read/Write enable; active low.

Internal ROM chip enable; active low.
Internal RAM chip enable; active low.
Internal ROM/RAM chip enable; active low.
Plug-in ROM/RAM chip enables; active low.
output enable; active low. This pin also
provides refresh timing for pseudo-static
RAMs.

High true ready input from external memory
devices. If this pad is pulled low during
a memory access, CLK will be held high.
There is a resistive pullup on this pad.

card detects; sense NWPOUT (Write protect
output) of plug-in cards.

External LCD Row/Col Drivers:

DVEN 1
¥YD 1
LOAD 1
DF 1
cp 1
DD[0:3] 4

HOPPER ERS 1.01

o

O O O O

Display blanking output. This signal is
actually a general purpose output used to
control the display module's high voltage
supply in JAGUAR.

Data for row driver.

Parallel load pulse.

Frame inversion signal.

Clock pulse. Data is shifted on the fall
of this signal.

Data to display column drivers.

Page 5

Keyboard:
KBO[0:15]
KBI[0:7]
ON

Other:
BAT[0:3]

NVDDOK

ACIN

BUP

SOFF

IOFF

TPH[0:1]
TPL[0:1]
SPK[0:1]

ccv

IRO
IRI
RX
TX

Page 6

16

=N NN

I e

I/0
1/0

O H H O

Keyboard drive.
Keyboard sense.

ON key input.

Analog battery voltage inputs (main
batteries, backup battery, and 2 card
batteries).

Low true Vdd OK input from external power
supply. If this 1line goes high in
operating or light sleep a NMI will be
issued. It it is high at any other time

it will force the system into backup mode.

Input from the external power supply
indicating that the AC adapter is plugged
in.

Backup; driven high to force the external

power supply into backup mode.

System power off; driven high to turn off
power to CPU, Display, ROM, and Card.

I/0 power off; driven high to turn off
power to IR receiver chip.

Touch panel lines. Driven high or float.
Touch panel lines. Driven low or float.
Differential speaker driver pins.

Contrast control voltage. This is a high
impedance analog voltage output between
GND and VDD.

LED output driver.

Infrared input sensor.

Serial in.

Serial out.

HOPPER ERS 1.01

1/0
1/0

5.369318MHz quartz crystal connections.
32.768KHz quartz crystal connections.

External interrupt; pulling XINT high will
wake the system if asleep and cause an

interrupt. This is a wired-or input with
a passive pulldown.

Take over; if NTKO is shorted to ground by
a plug-in card, all system ROM accesses
(NCE[0]) will be redirected to NCE[4].

Test mode input; pulled low to force the
part into test mode.

Reset; active low.

HXI, HXO 2
LXI, LXO 2
XINT 1l
NTKO 1
NTEST 1
NRES 1l
TOTAL 132

HOPPER ERS 1.01

Page 7

CHAPTER 4
I/O ADDRESS SUMMARY

The following is a summary of the HOPPER I/O addresses. Where at
all possible the I/O addresses are compatible with the original
IBM PC.

4.1 Programmable Interrupt Controller (8259 Compatible)

I/0 R/W
Address Mode Description

0020h R PIC Interrupt Request/In-Service Registers
programmed by Operation Command Word 3 (OCW3):

Interrupt Request Register, where:
bits 7-0 =0 no active request for the
corresponding interrupt line
=1 active request for the corresponding
interrupt line

Interrupt In-Service Register, where:
bits 7-0 =0 the corresponding interrupt line is
not currently being serviced
=1 the corresponding interrupt line is
currently being serviced

0020h W PIC Initialization Command Word 1 (ICW1l) when bit
4 is one:

bits 7-5 =0 not used

bit 4 =1 required to select this command word
bit 3 =0 edge triggered mode

bit 2 =1 not used

bit 1 =1 single mode (no ICW3 needed)

bit 0 =1 ICW4 needed

Page 8 HOPPER ERS 1.01

I/0 R/W
Address Mode Description

0021h W PIC ICW2 and ICW4 in sequential order after ICW1l
written to Port 0020h:

ICW2, where:

bit 7-3 =00001 address lines A7-A3 of base vector
address for interrupt controller

bit 2-0 =0 reserved ‘

ICW4, where:

bits 7-5 = not used

bits 4 = no special fully nested mode

bits 3-2 =11 buffered mode/master

bit 1 = normal EOI

bit © = 8086/8088 mode

0021h R/W PIC interrupt mask register (OCWl), where:

bit 7 = enable HOPPER RTC interrupt

bit 6 = enable HOPPER XINT pin interrupt

bit 5 = enable HOPPER IR input interrupt

bit 4 = enable UART interrupt

bit 3 = enable HOPPER keyboard and touch
panel interrupts

bit 2 =0 enable miscellaneous HOPPER
interrupts

bit 1 =0 enable PC compatible keyboard
interrupt (checked by BIOS)

bit O =0 enable timer0 interrupt

0020h W PIC OCW2 when bit 4 is zero and bit 3 1is zero,
where:

bits 7-5 =000 rotate in automatic EOI mode (clear)
=001 non-specific EOI
=010 no operation
=011 specific EOI
=100 rotate in automatic EOI command
(set)
=101 rotate on non-specific EOI command
=110 set priority command
=111 rotate on specific EOI command
bits 3-4 =00 required to select this command word
bits 2-0 interrupt request to which the
command applies

HOPPER ERS 1.01 Page 9

I/0 R/W
Address Mode Description

0020h W PIC OCW3 when bit 4 is zero and bit 3 1is one,
where:

bit 7 =0 reserved
bits 6-5 =00 no operation
=01 no operation
=10 reset special mask
=11 set special mask
bits 4-3 =01 required to select this command word
bit 2 =0 no poll command
=1 poll command
bits 1-0 =00 no operation
=01 no operation
=10 read interrupt request register on
next read at Port 20h .
bits 1-0 =11 read interrupt in-service register
on next read at Port 20h

Page 10 HOPPER ERS 1.01

4.2 Programmable Interval Timer (8254 Compatible)

I/0
Address

0040h
0041h
0042h

0043h

R/W
Mode Description

R/W PIT counter 0
R/W PIT counter 1

R/W PIT counter 2

W PIT control word, where:

bits 7-6 =00
=01
=10
=11
bits 5-4 =00
=01
=10
=11l

bits 3-1 =000
=001
=x10
=x11
=100
=101

bit 0 =

HOPPER ERS 1.01

select Counter 0
select counter 1
select counter 2

read back command
counter latch command
read/write counter bits 0-7 only
read/write counter bits 8-15 only

read/write counter bits 0-7

then
mode
mode
mode
mode
mode
mode

bits 8-15
select
select
select
select
select
select

b WNOEFO

binary counter 16 bits
BCD counter

first,

Page 11

4.3 Programmable Peripheral Interface (Emulates 8255)

The HOPPER chip does not contain a PPI as such. Instead it
contains a group of 3 I/O registers that are configured to behave
as the PC's PPI. These registers are referred to as the PC

compatible I/O Registers. The definitions of the configuration
switch bits should be chosen to be PC compatible.

I/0 R/W
Address ModeDescription

0060h R/W PPI Input Port A:

If port 0061h bit7=0:
bits 7-0 scratch location for keyboard scan code

If port 0061h bit7=1:
bits 7-0 scratch location for SWl configuration
switch settings
0061h R/W PPI Output Port B:

bit 7 =0 read/write keyboard scratch byte (0060h)
=1 read/write SW1l scratch byte (0060h)

bit 6 =0 disable keyboard
bit 5 =0 ignored, reads 0 (enable I/O check)
bit 4 =0 ignored, reads 0 (enable RAM parity check)
bit 3 =0 read high switch (0062h)
=1 read low switch (0062h)
bit 2 =0 ignored, always reads O
bit 1 =1 enable speaker data
bit 0 =1 enable timer 2 gate (to speaker)

0062h R/W PPI Input Port C:

bits 7-6 =0 unused (read only)
bit 5 timer 2 output (read only)
bit 4 =0 unused (read only)

If port 0061h bit 3=0:
bits 3-0 scratch 1location for 4 MSBs of SwW2
configuration switches

If port 0061h bit 3=1:

bits 3-0 scratch 1location for 4 LSBs of sSw2
configuration switches

Page 12 ‘ HOPPER ERS 1.01

4.4 MDA Adapter (PC MDA Compatible)

I/0 R/W
Address Mode

03B4h 1Y

03B5h R/W
03B8h R/W
03BAh R

HOPPER ERS 1.01

Description

MDA Index register (only OAh, OEh,
supported)

Indexed MDA registers
MDA mode control register

MDA status register

and OFh

Page 13

4.5 Serial Port (8250 Compatable UART)

I/0 R/W
Address Mode Description

03F8h W UART transmitter holding register, which contains
the character to be sent. Bit 0, the least
significant bit, is sent first.

bits 7-0 contains data bits 7-0 when Divisor
Latch Access Bit (DLAB) = 0 (O3FBh)

03F8h R UART receiver buffer register, which contains the
received character.

bits 7-0 contains data bits 7-0 when DLAB=0

03F8h R/W UART divisor latch, low byte. Both divisor 1latch
registers store the baud rate divisor.

bits 7-0 bits 7-0 of divisor when DLAB=1
03F9h R/W UART divisor latch, high byte, where:

bits 7-0 bits 15-8 of divisor, when DLAB=1
03F9h R/W UART interrupt enable register when DLAB = 0.

Allows the four controller interrupts to enable

the chip interrupt output signal.

bits 7-4 =0 reserved

bit 3 =1 not used (modem status interrupt
enable)

bit 2 =] receiver 1line status interrupt
enable

bit 1 =1 transmitter holding register empty
interrupt enable

bit 0 =1 received data available interrupt
enable

Page 14 HOPPER ERS 1.01

I/0 R/W
Address Mode Description

03FAh R UART interrupt ID register. Information about a
pending interrupt is stored here. When ID
register is addressed, the highest priority
interrupt is held and no other interrupts are
acknowledged until the CPU services that
interrupt.

bits 7-3 =0 reserved

bits 2-1 Identity of the pending interrupt with
the highest priority
=11 receiver 1line status interrupt:
highest priority

=10 received data available: second
priority _

=01 transmitter holding register: third
priority

=00 invalid (modem status interrupt)

bit 0 =0 interrupt pending, contents of

register can be used as a pointer
to the appropriate interrupt
service routine

=1 no interrupt pending

03FBh R/W UART Line Control Register, where:

bit 7 =0 Receiver buffer, transmitter
holding or interrupt enable
register access (DLAB)
bit 7 =1 divisor latch access
bit 6 =] set break enabled (output = space)
bit 5 stick parity
bit 4 =0 odd parity
= even parity
bit 3 = parity enable
bit 2 = 1 stop bit
= 1.5 stop bits if bits 1-0 = 00,

else 2 stop bits
bits 1-0 =00 5 bit word length
=01 6 bit word length
=10 7 bit word length
=11 8 bit word length

HOPPER ERS 1.01 Page 15

I/0 R/W
Address Mode Description

03FCh R/W UART Modem Control Register (modem control is not
implemented)

bits 7-4 =0 reserved
bit 3 =1 enable UART interrupt
bits 2-0 =0 reserved

03FDh R UART Line Status Register, where:

bit 7 = reserved

bit 6 = transmitter shift and holding
registers empty

bit 5 =1 transmitter holding register is
empty

bit 4 = break interrupt

bit 3 = framing error

bit 2 = parity error

bit 1 = overrun error

bit 0 = data ready

03FEh R UART Modem Status Register (modem status is not
implemented, these bits are hard-programmed to
always return the values shown)

bit 7 =0 Carrier Detect (changed to read a
one on Rev C)

bit 6 =0

bit 5 =0 Data-Set-Ready (changed to read a
one on Rev C)

bit 4 =0 Clear-To-Send (changed to read a

one on Rev C)
bits 3-0 =0

03FFh R/W UART scratch pad register

Page 16 HOPPER ERS 1.01

4.6 Display Controller (HOPPER specific)

I/0
Address
D300h

D301h

D302h

D303h

D304h

D305h

R/W

Mode Description

R/W bits 7-0

R/W bits 7-4
bits 3-0

w bit 7
bits 6-0

w bits 7-6
bits 5-0

w bit 7
bits 6-0

R/W bits 7-4
bits 3
bit 2
bit 1
bit 0

LSBs of display window
pointer

unused
MSBs of display window
pointer

unused
window row size offset

unused
horizontal window size

unused
vertical window size

row time control
unused

=0 display blank
=1 display on

=0 alpha mode

=1 graphics mode

4.7 Real Time Clock (HOPPER specific)

I/0
Address

D306h

D307h

R/W

Mode Description

R/W bits 7-0

R/W bits 7-0

HOPPER ERS 1.01

start address

start address

bits 7-0 of the 16-bit counter value

bits 15-8 of the 16-bit counter value

Page 17

4.8 Miscellaneous Registers (HOPPER specific)

I/0
Address

E300h

E301h

E302h

Page 18

R/W
Mode

R/W

R/W

R/W

Description

Test Mode Register

bit
bit
bit
bit
bit

Wb o

bit
bit

=N

bit 0

First

bit

o

[d

rf
ORHNWRUGON

bit

Second

bit
bit
bit

bit
bit
bit
bit
bit

orNbDWAE OON

reserved

state of AMPPD for test (read only)
(Rev C only)

enable watchdog circuit (Rev C only)
state of ACIN pad (read only)

force PIT clock to run in light sleep
(normally enabled only when CPU is
running)

force HOPPER output disable test mode
should be set if a 10.74MHz crystal is
used (not supported at this time)
reset has occured; this bit will be
cleared by a system reset; it is
initialized to a one by a warmstart

Byte of System Control Register

RTC interrupt/wakeup enable

XINT pad interrupt/wakeup enable

IR circuit interrupt/wakeup enable
UART interrupt/wakeup enable

unused

I/0 on

CPU shutdown (set only)

writing a one twice in succession will
cause a reset (write only)

of System Control Register

touch panel interrupt/wakeup enable
keyboard interrupt/wakeup enable

low voltage RX pad interrupt/wakeup
enable

display cursor interrupt/wakeup enable
module pulled interrupt/wakeup enable
low power interrupt/wakeup enable
timer 1 interrupt/wakeup enable

timer 0 interrupt/wakeup enable

HOPPER ERS 1.01

I/0 R/W

Address Mode Description

E303h R/W Interrupt Source Register (read/clear only)

request

display cursor update request

inserted (read
inserted (read
enabled (read
enabled (read

only)
only)
only)
only)

every millisecond

bit 7 =1 touch panel interrupt
bit 6 =1 keyboard service
bit 5 =1 low voltage RX interrupt
bit 4 =1
bit 3 =] module pulled interrupt
bit 2 =1 low power interrupt
bit 1 =1 timer 1 interrupt
bit 0 unused
E304h R/W Card Detect Register
bit 7 =1 port 1 has card
bit 6 =1 port 0 has card
bit 5 =1 port 1 is write
bit 4 =1 port O is write
bits 3-2 unused
bit 1 =1 update bits 7-4
(write only)
bit O =1 update bits 7-4

only)

continuously

E305h W Tone Buffer Register (D/A value)

E306h R A/D Value Register (0 = 0O Volt

E307h R/W A/D Control Register (ADCONT)

bits 7-6
bit 5
bit 4
bit 3
bits 2-0

HOPPER ERS 1.01

=1
=1
=0
Input
=000
=001
=010
=011
=100
=101
=110
=111

unused

(write

s, 255 = 5 Volts)

conversion completed (read only)
start conversion (write only)

power down mode
Voltage Channel
system battery
backup battery
port 1 battery
port 2 battery
touch pad x-axis
touch pad x-axis
touch pad y-axis
touch pad y-axis

(write only)
Select, where:

low side
high side
low side
high side

Page 19

I/0 R/W
Address Mode

E308h R/W
E309h R/W
E30Ah R/W
E30Bh R/W

Page 20

Control Register (TPCONT)

unused

indicates pad has been touched in
standby mode (read only)

touch pad interrupt enabled

unselected axis is precharged to ground
select y-axis

select x-axis

touch panel precharge mode

touch panel standby mode

/ Contrast Register (TCCONT)

D[A value for contrast control voltage
pin

digital beeper volumn control (0 =
min, 3 = max)

tone circuit power down mode

tone buffer empty (read only)

IR Format Register (IRFMAT)

Description
Touch Panel
bits 7-6
bit 5 =1
bit 4 =1
bit 3 =1
bit 2 =0
=]
bit 1 =1
bit 0 =1
Tone Control
bits 4-7
bits 3-2
bit 1 =0
bit 0 =1
bit 7 =
bit 6 =
bit 5 =
bit 4 =
bit 3 =
bit 2 =
bit 1 =
bit © =

IR Transnit

bit 7

bit 6 =1

bit 5 =1

bit 4-3

bit 2 =1

bit 1 =0
=]

bit 0 =1

disables IR pad current regulation
enable LED buffer empty interrupt
LED buffer full (read only)

single pulse transmission mode
multiple pulse transmission mode
modulate using 32.768KHz

modulate using baud rate generator
IR UART communication mode
modulated communication mode
REDEYE transmit mode

/ Receive Register

state of the IRI pin (read only)

enable IR interrupt on IRI =1

IR event has occurred, must be cleared
by software

unused

gate output when in modulated
communication mode

transmit "off" half-bit in REDEYE
format

transmit "on" half-bit in REDEYE format
turn on LED driver, used for software
controlled transmissions

HOPPER ERS 1.01

I/0 R/W
Address Mode Description

E30Dh W Writing anything to this location will end
keyboard precharge

E30Eh W Low byte of keyboard output register (KBO[0-7])
E30Fh w High byte of keyboard output register (KBO[8-15])
E30Eh R Keyboard input register (KBI[0:7])

E30Fh R bits 7-1 =0 unused

bit 0 state of [ON] key

HOPPER ERS 1.01 Page 21

4.9 HOPPER Memory Configuration and Bank Switching

I/0 R/W
Address Mode Description
F300h R/W bit 7 unused
bits 6-5 2-bit NCE[2] wait state value
bits 4-3 2-bit NCE[1] wait state value
bits 2-0 3-bit NCE[0] wait state value
F301h R/W bits 7-5 3-bit NCE[5] wait state value
bits 4-2 3-bit NCE[4] wait state value
bits 1-0 reserved
F302h R/W bits 7-1 NCE[2] starting address (MSBs)
bit 0 unused
F303h R/W bits 7-1 reserved
bit 0 unused
F304h R/W bits 7-1 NCE[4] starting address (MSBs)
bit O unused
F305h R/W bits 7-1 NCE[5] starting address (MSBs)
bit 0 unused
F308h R/W bit 7 =0 NCE[0] write protected (default)
bits 6-0 unused
F309h R/W bit 7 =] NCE[1l] write enabled (default)
bits 6-1 NCE[1] size register
bit © unused
F30Ah R/W bit 7 =0 NCE[2] write protected (default)
bits 6-1 NCE[2] size register
bit 0 unused
F30Bh R/W bits 7-1 reserved
bit O unused
F30Ch R/W bit 7 unused
bits 6-1 NCE[{4] size register
bit 0 unused
F30Dh R/W bit 7 unused
bits 6-1 NCE(5] size register
bit O unused

Page 22 HOPPER ERS 1.01

I/0
Address

F310h

F311h

F312h

F313h

F314h

F315h

F316h

F317h

F318h

F319h

F31Fh

HOPPER

R/W
Mode

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

ERS 1.

Description

bits 7-1 Bank EO frame select (MSBs of device
address)

bit 0 unused

bits 7-3 unused

bits 2-0 Bank EO device select
=000 select NCE[O0] (ROM)
=001 select NCE[1l] (system RAM)
=010 select NCE[2] (system RAM/ROM)
=011 reserved
=100 select NCE[4] (slot 0)
=101 select NCE[5] (slot 1)

bits 7-1 Bank E1 frame select (MSBs of device
address)

bit 0 unused

bits 7-3 unused

bits 2-0 Bank E1 device select (see F311h)

bits 7-1 Bank E2 frame select (MSBs of device
address)

bit © unused

bits 7-3 unused

bits 2-0 Bank E2 device select (see F311lh)

bits 7-1 Bank E3 frame select (MSBs of device
address)

bit ©0 unused

bits 7-3 unused

bits 2-0 Bank E3 device select (see F311h)

bits 7-3 Bank C frame select (MSBs of device
address)

bits 2-0 Bank C device select (see F311h)

7
2
bits 7-3
bits 2

7

bits

o1

BANK D frame select (MSBs of device
address) '
BANK D device select (see F311lh)

MDA buffer address mapping register (MSBs
of NCE[1] device address)

Page 23

CHAPTER 5
CPU BUS INTERFACE

The HOPPER chip includes a CPU Bus Interface block that generates
internal address and data busses, internal and external device
select signals, as well as read/write and other control signals.
This section includes an Intel 8288 compatible Bus Controller. A
block diagram of the Bus Interface follows.

Figure 5.1. Bus Interface Block Diagram

DRCC
from Displav Controller
NE[012] =iy Other Cantrot > 0 K [0t 1]
o 1 8288
] .
LEOs A 7
DEN
12-914¢
Tri-Gtate
RLE [L, Butfer
DIR
ADLO: 7Y € —> [D{08:7)
8-8it :[
francor
e to UART, PIC, PIT, PFI,
A=) nsas nag1zieal and HOPPER registers
—p
¢ cou Display Addr
rom Renapper
------------ ——) 1RCO! 5]
e-Bit
Lateh 5 [0SELLO! 7]
Progrannable
I Chip Select P
OIR Generator
HALRILLY € 1818112
4a-Bit
fFrancvr
APLL24¢18)
0E
—
ASt16119)
4-8it
Lalch
A 4 L Vv
AD(O®:?7) MALB111) NCECQ:S) HALO:7)
to EXTERNAL RAM/RON MAL12:28)

Page 24 HOPPER ERS 1.01

The 8288 compatible bus controller latches and decodes the status
lines, S[0:2], from the 80C88 CPU. Its outputs include memory
read/write signals, I/O register read/write signals, as well as
control signals for the address latches, data bus transceivers,
and PIC.

The address lines can be sourced from either the CPU or from the
Display Controller. The Display Controller will gain control of
the CPU address bus using the Grant/Request seguence. It will
then act as a bus controller to read up to 80 bytes of display
data from system memory into its refresh buffer.

5.1 Display Address Remapping

The data for the display is stored in the device connected to
NCE[1] (system RAM) at the device address 1nnXXXh, where "nn" is
the value stored in the 8-bit MDA buffer address register located
at I/0 location F31Fh. The display data can be accessed at either
the MDA address space or at it's actual address.

When the 5 most significant bits of the CPU address are pointing
into the 32KB MDA address space starting at BO0O0Oh, the display
address remapper replaces these address bits with the contents of
its 8-bit display address register (with MA[20]=1). The contents
of this register is always used when addresses are being sourced
from the Display Controller. The display address register must be
initilized to point into a 4KB section of RAM (NCE[1l]) as defined
by the external chip select configuration.

5.2 Internal Chip Selects

The I/0 Select logic decodes 6 device select signals for the
internal I/0 registers. The addresses within which these select
signals are active are hard programmed as follows:

SIGNAL I/0 ADDRESS DESCRIPTION

IOSEL[O0] 0020h-0021h PIC (8259)

IOSEL[1] 0040h-0043h PIT (8254)

IOSEL[2] 0060h-0063h Miscellaneous PC compatible IO
registers.

IOSEL[3] 03BOh-03BFh MDA registers

IOSEL[4]) 03F8h=-03FFh UART (8250)

IOSEL([5] D300h-D307h HOPPER display control and real
time clock.

IOSEL[6] E300h-E30Fh Miscellaneous HOPPER
control/status.

JOSEL[7] F300h-F31Fh HOPPER memory configuration and

bank switching.

HOPPER ERS 1.01 Page 25

5.3 External Chip Selects
SIGNAL FUNCTIONAL DESCRIPTION

NCE[O0] ROM chip select. It is hard- addressed (non-
programmable) at two separate address ranges of
64KB each. The top 64KB of the ROM chip is
addressed at FO0O00Oh to FFFFFh. The next 64KB of
the ROM chip is addressed at A0000h to AFFFFh.
The remaining portion of a ROM that is larger
than 128KB can be accessed using bank switching
as described in the next section.

NCE[1] RAM chip select with a starting address of
00000h. The size is programmable from 8KB to
512KB (6-bits) and defaults to 8KB on reset.
The 4KB display data buffer is stored in this

device.

NCE[2] RAM/ROM chip select intended for built-in
memory. The size registers are programmable to
any power of 2 from 8KB to 512KB (6-bits). The

7-bit starting addresses must be programmed to
an address that is a multiple of the size.

NCE[3] Reserved for future expansion.
NCE[4:5)] RAM/ROM chip selects intended for either built-
in or plug-in memory. The size registers

associated with these chip selects are
programmable to any power of 2 from 8KB to 512KB
(6-bits). The 7-bit starting addresses may be
programmed to any 8KB boundary. This requires 2
7-bit adders.

Unused upper-order address lines are driven high during an access.
This means that the accesses will be made to the upper portion of
devices that are larger than their configured size. The remaining
portion can be accessed via bank switching as described in the
following section. The upper portion was chosen since plug-in's
with both RAM and ROM configure the RAM in upper addresses. This
RAM can be used to extend system memory and the ROM can then be
accessed via bank switching.

If 2 chip select configurations are programmed to overlap at some
addresses, the 1lowered number chip select takes precedence.
Therefore, in order for NCE[2:5] to be generated, the starting
address register for each must be configured (written to) after a
system reset.

Page 26 HOPPER ERS 1.01

5.3.1 Wait State Registers

The number of wait states required by each device can be
programmed using the Wait State Regiters. This register defaults
to the maximum number of wait states and should be programmed to
maximize the system performance allowed by the access speeds of
the devices present.

Reset

Addr Bits Signal Value Comments

F300h [0-2] NCE[O0] 111b 0 to 7 wait states
[3-4] NCE[1] 11b 0 to 3 wait states
[5-6] NCE[2] 11b 0 to 3 wait states

(7] unused X

F301h [0-1] unused XX reserved .
[2-4] NCE[4] 111b 0 to 7 wait states
[5-7] NCE[5] 111b 0 to 7 wait states

5.3.2 Start Address Registers

The Start Address Registers specify the 7 MSBs of the CPU address
(A13 to Al19) at which the device address 0 is mapped. Address.blt
20 is always a one except when using bank switching as described
later in this chapter. The LSB of these registers 1s not used.

Reset

Addr Signal Value Comments

- NCE[O0] EOh non-programable ROM start

- NCE[1] 00h non-programable RAM start
F302h NCE[2] 00h must be a multiple of the size
F303h none XXh reserved
F304h NCE[4] o0h any 8KB boundary
F305h NCE[5] 00h any 8KB boundary

5.4 Write Enable Bits

The MSB of the the Device Size Registers described in the
following section serve as write enable bits for the NCE[O0]
through NCE[2] signals. NCE[1] defaults to one (enabled) . NCE{O0]
and NCE[2] default to zero (disabled). The wr}te 9nab1e for
NCE[4] and NCE[5] is controlled by the card detect circuitry. The
write enable bits should be set for RAM and clear for ROM.

HOPPER ERS 1.01 Page 27

5.4.1 Device Size Registers

The Device Size Registers specify the size of the device that is
mapped into CPU addresses. The 6-bit size may configured to any
power of 2 between 8KB and 512KB. The size value can be
calculated as a 7-bit value as follows:

Size Register Value = (Device Size / 4096) - 2
This formula will yield even values for valid size values. This

is necessary since the LSB is unused. The MSB is used as a write
enable flag as described in the previous section.

Reset
Addr Signal Value Comments
- NCE[O0] 1Eh non-programable (ROM size = 128KB)

F309h NCE[1] 8oh 8KB default with write enable bit set
F30Ah NCE[2] 00h any power of 2 from 8KB to 512KB
F30Bh none XXh reserved

F30Ch NCE[4] 00h any power of 2 from 8KB to 512KB
F30Dh NCE[5] 00h any power of 2 from 8KB to 512KB

If a device is configured with a size that is larger than its
actual size several images of the device will appear in the
allotted address space.

NOTE: After a reset, NCE[1:5] are all configured to a size of 8KB
starting at 00000h. With this configuration, only NCE[1] will be
accessed in this address range since it will take precedence over
the others.

5.5 Bank Switching

HOPPER implements a bank switching scheme that allows up to 2
MByte of memory to be addressed on each of the 6 chip enable
signals. This allows up to 12MByte to be accessed in 1MByte
address space of the 80C88 CPU.

The bank switching scheme supports two 64KB banks and four 16KB
banks. It is intended to allow support of LIM EMS 3.2 and also to
support the need for several 64KB pages of ROM code to be swapped
in and out of upper memory. Bank switching is totally independent
of the external chip select configuration defined above.

Each of the 6 banks is accessed at a fixed location in the CPU
address space. There are IO registers associated with each bank.
These registers must be initialized to specify the section of
memory that will be mapped into the bank.

Page 28 HOPPER ERS 1.01

5.5.1 BANK C and BANK D

Pages C and D of the CPU address space - (CPU addresses Cco000h to
CFFFFh and D0000 to DFFFFh) are each set up as a 64KB bank. These
banks are referred to as BANKs C and D. Each has a single 8-bit
I0 register used to select the memory mapped into the bank. The 3
LSBs (bits 0-2) of each register contain the "chip Select (CS)"
value that is used to select the device to be addressed. The 5
MSBs contain the "Frame Select (FS)" value that specifies the 5
MSBs of the 21-bit address to the device, thereby selecting a 64KB
section.

The 3-bit CS values of BANK C and D can select any of the 6
possible external memory devices. The CS value is decoded into a

chip select (NCE) as follows:

CS VALUE DEVICE SELECTED

000 NCE[0] - Built-In system ROM.

001 NCE[1] - Built in RAM hard-configured to
start at 00000h.

010 NCE[2] - Built-In ROM or RAM.

011 none - Reserved

100 NCE[4] - Plug-In slot O.

101 NCE[5] - Plug-In slot 1.

5.5.2 BANK EO through BANK E3

Page "E" of the CPU address space (E0000h to EFFFFh) is divided
into four 16K banks. These banks are referred to as BANK EO
through BANK E3. Each of these banks has 2 IO registers that
select the memory mapped into the bank. One register contains the
3 bit "chip Select (CS)" value. The other contains the 7 bit
"Frame Select (FS" value that specifies the 7 MSBs of the 21-bit
address to the device, thereby selecting a 16KB section.

The 3-bit CS values of BANK E0-3 are defined as for BANK C and D
above.

HOPPER ERS 1.01 Page 29

5.5.3 Limitations

Devices larger than 2MB (21 address bits) are not supported by
bank switching. There is also no provision to prevent one section
of memory to be accessed both in the normal CPU address space and
via bank switching.

5.5.4 Bank Control Registers
The Bank Control Registérs are read/write registers. The function

of these registers is disabled until the register has been
initilized.

Addr Name Bits Comments
F310h EO Frame Select [1-7] 7 MSBs of device address
F311lh EO Chip Select [0-2] 3-bit device select code
F312h El1 Frame Select [1-7] 7 MSBs of device address
F313h E1l Chip Select [0-2] 3-bit device select code
F314h E2 Frame Select [1-7] 7 MSBs of device address
F315h E2 Chip Select [0-2] 3-bit device select code
F316h E3 Frame Select [1-7] 7 MSBs of device address
F317h E3 Chip Select [0-2] 3-bit device select code
F318h Bank C [3-7] 5 MSBs of device address
[0-2] 3-bit device select
F31%9h Bank D [3-7] 5 MSBs of device address
[0-2] 3-bit device select
F31Fh MDA Buffer [0-7] A[12:19] of NCE[1]
device address.
A[20]=1.

Page 30 HOPPER ERS 1.01

5.5.5 Example

As an example of bank switching, assume that a 512KB ROM is tied
to NCE[O0]. The 1last pages of this ROM (ROM addresses 70000h to
7FFFFh) would be configured at F0000h to FFFFFh. The second to
the last page (ROM addresses 60000h to 6FFFFh) would be configured
at A0OOOOh to AFFFFh. If an application needs 2 contiguous "pages
beginning at ROM address 20000h, it can configure those into CPU
pages C and D. The following register settings would accomplish
this plus map the starting addresses of a plug-in in slot 0 into
the 4 sections of BANK E.

Bank C = 10h (FS=00010, CS=000)
Bank D = 18h (FS=00011, CS=000)
E0-3 Chip Select = 4h
EO Frame Select = Oh
E1 Frame Select = 1lh
E2 Frame Select = 2h
E3 Frame Select = 3h

5.6 Take Over ROM/EPROMs

The NTKO pin in the card port is normally left floating. A ROM
card or EPROM card may be manufactured as a take over device if
the NTKO pin is connected to ground. This pin is sampled each
time the system is turned on. If it is low it will cause a swap
in functicnallity between the NCE[0] and NCE[4] pads. This makes
the plug-in card look like the system ROM, and the system ROM look
like plug=-in port O.

The following rules apply to write protection :

1. The write protect switch on the plug-in card always write
protects the card (NCE[4]).

2. The write protect bit at address F308h is associated with
NCE[0] in normal operation. In take-over mode this bit is
associated with NCE[4].

3. NCE[O0] can not be hardware write-protected in take-over
mode.

HOPPER ERS 1.01 Page 31

CHAPTER 6
HOPPER DISPLAY CONTROLLER

The display controller in the HOPPER chip interfaces to off-the-
shelf LCD drivers to drive a dot matrix LCD up to 240x128 dots in
size. The actual display size to be driven is software
programmable.

The display controller is designed to be compatible with the IBM
Monochrome Display Adapter when operating in alpha mode. The IBM
MDA will display 25 lines of 80 characters each. The HOPPER
display controller supports displays up to 16 1lines of 40
characters. A means is provided to move this smaller (16x40)
window around within the full (25x80) display. The HOPPER display

controller also supports a non-standard bit-mapped graphics mode.

The major functional areas of the display controller are described
in this chapter.

6.1 Display Timing and Control Registers

This area contains all of the I/O registers necessary to be
compatible with the IBM MDA. It also contains the I/0 registers
necessary for setting the display width and height, window
location in MDA memory, and control (such as text vs. graphics
mode). The I/O registers are defined as follows:

6.1.1 MDA Registers

The following MDA registers have identical functions as those in
an IBM MDA.

I/0 R/W
Address Mode Description

03B4h W Address index register for 6845 CRTC used in MDA
mode.

Page 32 HOPPER ERS 1.01

03B5h 1 6845 data register for transfer of data to
internal 6845 register pointed to by the address
index register.

03B8h w MDA CRT control register:

bit 3 video enable bit
bit 5 Enable blink bit

03BAh R MDA CRT status register:

bit O Horizontal drive status
bit 3 video data status

HOPPER ERS 1.01 ' Page 33

The following internal 6845 registers are implemented. Except
where noted, their function is identical to the original 6845
registers.

6845 R/W
Register ModeDescription
R10 W Cursor definition register:
bits 0-4 Cursor start: Defines the starting

scan line of the alpha cursor. If
value is equal to or greater than
7, cursor is an underline. Cursor
end register is not implemented.
Cursor end is always row 7.

bits 5-6 Cursor control: Enables or disables
cursor.
bit 7 not used

R14 R/W Cursor address register:
bits 0-5 high order bits of cursor address
bits 6-7 not used

R15 R/W Cursor address register:

bits 0-7 low order bits of cursor address

Page 34 HOPPER ERS 1.01

6.1.2 HOPPER Display Control Registers

The following are

controller.

I/0 R/W
Address Mode

D300h R/W

D301h R/W

D302h W

D303h 1)

HOPPER ERS 1.01

Description

registers

unique to the HOPPER display

window Start Address

bits 7-0

LSBs of display window start
address pointer. Window start
address points to the character in
MDA memory which is to appear in
the wupper, left corner of the
HOPPER display.

window Start Address

bits 7-4
bits 3-0

unused
MSBs of display window start
address pointer. Window start

address points to the character in
MDA memory which is to appear in
the upper, 1left corner of the
HOPPER display.

Wwindow Row Size Offset

bit 7
bits 6-0

unused

Text Mode: For 40 character
display, value should be 80. This
will add 40 characters (81 bytes)
to end of current row address to
obtain address for beginning of
next row.

Graphics Mode: Can be set to any
desired number of bytes. If
contiguous memory is desired, value
should be one.

Horizontal Window Size

bits 7-6
bits 5-0

unused

Text Mode: Contains the number of
characters (minus 1) to be
displayed. For a 40 character

display, value should be 39.

Graphics Mode: Contains the number
of 16-bit words (minus 1) to be
displayed. For a 240 column
display, value should be 14.

Page 35

I/0 R/W
Address Mode Description

D304h W Vertical Window Size

bit 7 unused
bits 6-0 Contains number of scan lines (minus 1)
in display. For a 128 1line (16

character) display, value should be 127.

D305h R/W Row Time Control
bits 7-4 Value in register determines the time to
update one row in the display. The
combination of the value in this
register and the vertical window size
register determines the refresh rate of
the display. The contents of bits 7-4
make up a constant named RT. The system
LFO clock (32768 Hz) is divided by RT to
obtain a start of new row clock. The
value of RT is determined as follows:
Bit 7 is the most significant bit, bit 5
is the least significant bit. If bit 4
is set, 1/2 will be added to the value
of Bits 7-5 to determine the value of
RT. RT is set to 3.5 after a hard

reset.
bit 3 unused
bit 2 =1 Display is active and not blanked.
=0 Display is active but blanked.
bit 1 =1 Display refresh is on.
=0 Display refresh is off.
bit 0 =0 alpha mode

=1 graphics mode

Page 36 HOPPER ERS 1.01

6.2 System Memory Interface

The display memory is physically located in system memory. This
section of the display controller acts 1like a dedicated DMA
controller in that it will request the system bus, drive the
system address bus, buffer one row of display refresh data, and
then release the bus.

At the beginning of each row time, the display controller will
request the system bus from the cpu if necessary. In graphics
mode this occurs every row. In alpha mode, this is only necessary
every 8 rows since the data represents ascii characters which are
implemented in an 8-row high font. After the bus is granted, Fhe
display controller will begin accessing system memory and filling
the refresh buffer until the horizontal window size is reached.
The display controller will then release the bus back to the cpu.

At this time, the data will be read from the refresh buffer and
shifted to the external column drivers.

The major function of the system memory interface is to generate
the system memory addresses from which the display data 1s
obtained. For the first row in the display, the first address 1S
loaded from the window start address register. This address 1s
incremented for each succesive memory access until the horizontal
window size is reached. The window row size offset is then added
to the current adéress to obtain the first address for the next
row. Each of the remaining rows in the display are refreshed 1in
the same manner.

In order to keep the degradation of system performance down, the
system memory interface runs at the HFO clock frequency. The
memory access time is two HFO clock cycles.

6.2.1 Display Memory Organization

There are 4K bytes of system memory reserved for display memory.
The display memory is organized differently depending on whether
the display is in alpha or graphics mode.

In alpha mode, the memory is organized into character cells
containing two bytes each. Byte 0 of each cell contains an 8 bit
character code and byte 1 contains attribute information for that
character. The character cells are arranged in rows of 80 cells
(160 bytes) each with a total of 25 rows.

In graphics mode, each bit in display memory corresponds to a

HOPPER ERS 1.01 Page 37

pixel on the display. The first byte corresponds to the 8 pixels
on the left side of the first row of the display. The next byte
corresponds to the next 8 pixels on the first row, etc. Within a
byte, bit 7 maps to the left most pixel and bit 0 maps to the
right most pixel.

6.3 Display Data Generation

Oonce the display refresh buffer is filled, the display data must
be generated from the buffer.

In alpha mode, the first byte of data in a word is used to address
a character rom containing 256 characters in a 6x8 character cell.
The output of the character rom is the 6 bits of data used to
build the current row of the addressed character. The second
byte in the buffer contains attribute information and modifies the
character as follows:

Page 38 HOPPER ERS 1.01

BIT:7-0 DESCRIPTION
b000x000 No display

b0o0o0x001 Underline character

b000x111 Normal characters.

b111x000 Inverse video characters.

b: If set, character will blink.
X Intensity bit, ignored.

The character blink (and cursor blink) rate is set by the VSCLK
(Very Slow CLK) signal from the timer block. The blink rate is
not software adjustable.

In graphics mode, the data in the refresh buffer is shifted out to
the column pads with no modification. No attributes of any kind
are supported.

6.4 Cursor Generation

In alpha mode, the cursor is controlled and generated in the same
way that the 6845 CRTC generates a cursor. The cursor address is
contained-in two registers. This address corresponds to the
character location where the cursor will appear. The starting
scan line for the cursor can be adjusted by writing to the cursor

start register. Since the character cell is 8 scan lines deep,
this register can contain a value from 0 to 7. The 6845 also has
a register to set the cursor end. In the HOPPER display

controller, the cursor end is always set in hardware to line 7 or
the bottom line in the character cell.

Cursor blink is enabled/disabled by two bits in the cursor start
register as described above.

6.5 Display Blank Mode

The display blank bit in HOPPER at address D305h goes directly to
a pad on HOPPER. In the 95LX system, it is being used to provide
a way to blank the display by turning off the external display

drivers. The display controller is still active and refreshing the
display. The purpose of this bit is to provide a way to power-up

HOPPER ERS 1.01 Page 39

and power-down the display module while preventing any high-
voltage dc bias on the ICD. To power-up the module, software
should wait at least 1ms after turning on the DON bit before
enabling this bit. On power-down, the display should be blanked
at least 1ms before the DON bit is cleared.

This mode can also be used to save some power during data

communications or other activities where the CPU must be powered
on but the display need not be visible to the user.

Page 40 HOPPER ERS 1.01

CHAPTER 7
KEYBOARD CONTROL

The HOPPER IC contains a keyboard control block. This block along
with the proper software control will enable a PC compatible
keyboard to be implemented. The keyboard consists of a 16 by 8
matrix of output lines and input lines. When a key is depressed,
one input line is shorted to one output line. To sense this
connection the output line must be driven high and the input line
pulled low by a weak pull down. The connected input 1line will
then be pulled high by the output line. &all control of keyboard
scans is done by software.

7.1 Keyboard Hardware

The keyboard hardware contained in the HOPPER chip consists of an

(3

input ~register, output register, and precharge control circuit.
Each bit in the output register controls one output keyboard line.
When this bit is set to one, the keyboard line must be pulled high
by a strong pullup. If a zero output is desired, the keyboard
line must first be precharged low and then helc there by a weak
pulldown. The pulldown must be weak to limit the current that can
occur if two output lines become shorted together. This could
happen if two keys on the same input line are pressed at the same
time. The input lines must first be precharged low by the strong
pulldown and then held there by the pulldown resistor. If a key
is pressed, the line will then be pulled high by the corresponding
output line. The weak pulldown in the input pad can be disable by
setting OD to a 1 for test purposes.

7.2 Software Control

The output register bits are located at register addresses
E30Eh(low order 8 bits) and E30Fh(high order 8 bits). The input
register bits are located at register address E30Eh. The status
of the ON key can be read as bit 0 of register address F30Fh.

A keyboard precharge will occur anytime the ouput register is
written. This precharge lasts until ended by a write to address
E30Dh.

When all keys are up, the keyboard should be placed in standby

HOPPER ERS 1.01 Page 41

.mode. To do this, software should write the appropriate value,
normally all ones, to the output register; wait an appropriate
amount of time for precharge; then write any value to address
E30Dh to end precharge. Once in standby mode, an interrupt will
occur when a key is pressed.

After a key is pressed, a keyboard scan must be executed. To do
this, each output bit must be driven high one at a time and the
state of the input register checked at each bit. A software
keyboard interrupt (09h) must then be generated after the proper
keycode has been placed in the keycode register (address 60h).
The keyboard must be continually scanned at a determined interval
until all keys have been released. This must be done to determine
if more keys have been depressed or if a key has been released.
If a key has been pressed or released, a proper interrupt must be
generated as before. After all keys are released, the keyboard
again can be placed in Standby mode.

Keyboard interrupts must be enabled by setting bit 6 of 061h in
the PPI.

7.3 Hardware Reset

The keyboard hardware will also enable a hardware reset of the
system. To initiate a hardware reset, three input lines, KBI[6],
KBI[7], and ON, must be pulled high at the same time. These three
lines will be debounced in hardware to prevent stray resets from
occuring. Software will have no control over this feature,
although they will be able to read these keys seperately. When
these keys are all pressed simultaneously, the machine will be
reset.

Page 42 HOPPER ERS 1.01

CHAPTER 8
CARD DETECTION

The Card Detect Circuit (CDR block) uses the CDT{0:1] pins to
sample the write protect outputs of plug-in cards. It can
determine if a card is plugged in and if it is writable. A low
level on the CDT pins indicates that a card is present and
writable, a high indicates that a card is present and write
protected, and a float indicates that no card is present. When
enabled the card detect circuit cycles through floating the CTD
pads, passively driving them low, and passively driving them high
to determine the states of the pads.

8.1 cCard Detect Register

A one byte I/O register located AT E304h controls the circuit and
shows its status:

. Reset R/W
Bit Value Mode Description

(0] - W RCDT - Run Card Detect. If RCDT and ECDT
are set then the card detect logic runs
continuously, updating its status every
122usS. This mode is intended to be used
while the CPU is running. In this mode
the CDT pads are fighting with a cards
write protect output 30uS every 122uS.

[1] - 1) ECDT - Enable Card detect. If only ECDT
is set then the card detect logic runs
updating its status every 1lmS. This mode
is inteded to be used in light sleep. In
this mode the CDT pads are fighting with
a cards write protect output no more then
30uS every millisecond.

(2] - W RSTMP - Reset Module Pulled. Writing a
one to this bit will reset the module
pulled condition. This should be done
each time a module pulled interrupt
occurs.

[3] X - unused

HOPPER ERS 1.01 Page 43

[4)] 0 R POW - High when port 0 is writable. When
low all writes to NCE[4] are disabled.

(5] o R P1W - High when port 1 is writable. When
low all writes to NCE[5] are disabled.

[6] 0 R POC - High when port 0 has a card
inserted.

(7] 0 R P1C - High when port 1 has a card
inserted.

The moduled pulled interrupt status bit, MPI, is located in the
interrupt status register. When enabled, the card detect logic
will set this bit and cause an IRQ2 interrupt when it senses any
change in the card status (i.e. any change in the states of POW,
P1W, POC, or P1C bits). Since this interrupt is shared with other
sections, the MPI bit must be read to determine if the card detect
was the source of the interrupt. The MPI bit must be cleared
before another interrupt will occur.

8.2 Special Considerations

1. The status bits (P1C etc) are initialized to zero.
Therefore, a spurious module pulled interrupt will be

generated if a card is already plugged in when the circuit is
first enabled. :

2. When the system enters deep sleep power is removed from the
card ports. This will cause the the CDT pad to transition
from pulled high to pulled low if connected to a card that is

write protected. A spurious interrupt will occur if the card
detect circuit is enabled.

3. If a single card contains both RAM and ROM, the RAM chip
enable should be tied to the pin normally used for card
enable. Thus writes can be disabled to the RAM. However,
since an auxillary chip enable pin must be used for the ROM
chip enable, ROM writes must be disabled using the write
enable bit for the corresponding chip enable.

Page 44 HOPPER ERS 1.01

CHAPTER 9
SERIAL COMMUNICATION

The serial communication portion of the HOPPER 1IC contains both
wired RS232 and IR transmit and receive capabilities. The RS232
UART ports use an 8250 cell to control transmit and receive. The
IRO output port can be used for two types of communication, IR
transmit and REDEYE. REDEYE is wused to transmit data to an
infrared REDEYE printer port. The IR communications portion uses
both the IRO output to transmit and the IRI input pin to receive
data. These ports are used for wireless communication using
infrared 1light. The 8250 and the IR ports can be used
simultaneously to implement a wireless infrared UART mode.

9.1 UART

The serial UART block is implemented using an 8250 compatible
macro cell. A 1.8 MHz clock will be supplied for operation of
this block. The UART is addressed from 3F8h to 3FFh. RS232 drive
and receive circuits are be provided off chip.

The 1.8MHz UART clock is available in operating and light sleep
modes. The UART clock should be disabled to save power when the
UART is not in use. This is done by setting the 8250 baud rate
divisor to zero.

9.2 IR Communication

The IR communication block enables the HOPPER IC to have wireless
communication using an external infrared LED and IR receive
circuit. The IR communication block supports 5 seperate
communication formats. These formats are REDEYE, Software
controlled communication, Modulated communication, IR UART with
both single pulse and multiple pulse communication. To control
the IR transmission of these formats, the hardware uses 2 control
registers, the IRCNT register and the IRFMAT register. The IRFMAT
register at I/O register address E30Ah contains control bits that
choose which format is chosen for IR communication. These bits
are as follows:

HOPPER ERS 1.01 Page 45

Description

Bit Name
0 RED

1 MDLTE
2 IRURT
3 MDSEL
4 PMOD

5 LBF

Page 46

This bit when set activates REDEYE transmit
mode. It turns on the REDEYE transmit
hardware and sets it to a state where it 1is
waiting for input from software.

This bit when set activates Modulated
communication mode. It turns on the
modulation source and allows the MDLD bit in
the IRCNT register to control the output of a
modulated waveform.

This bit when set activates IR UART
communication mode. This bit disconnects the
8250 from the RS232 pins and connects it to
the IR communication block. Software after
setting the PMOD and MDSEL bits in this
register, Jjust transmits and receives using
8250 as though it were connected to the RS232
ports.

This bit is used to select the modulation
source for both IR UART mode and Modulation
communication mode. 1If this bit is 0, the
32kHz 1low frequency clock is chosen as the
modulation source. If it is set to 1, th
8250 baud rate generator 16x clock is used
for the modulation source. This allows the
modulation source to be set a 38kHz to be
remote control compatible.

This bit is used in IR UART mode to select
between single pulse transmission and
multiple pulse transmittion. If it is set to
0, a single pulse of duration equal to a half
cycle time of the modulation source will be
transmitted for a 0 output bit. If it is set
to 1, a pulse train of the modulation
frequency will be used to transmit a O.

Led Buffer Full. This bit is used in REDEYE
mode to indicate that the contents of the LBR
bit have not yet been transmitted and should
not be written at this time. Writing to the
LBR automatically sets this bit. This bit is
cleared when the LBR is transferred to the
REDEYE formatter.

HOPPER ERS 1.01

6 ELBE Enable Interrupt on LBR bit Empty (LBF
clear). If this bit is set and LBF 1s clear,
an IR interrupt will occur.

7 UNREG This bit is used to test the HPIRO pad.
Setting it high disables regulation of the
pad current.

The IRCNT register at I/O register address E30Bh contains bits
that are used to transmit a bit or waveform out on the IRO pad.
The IRCNT register also allows software to receive IR data in any
gfllthe formats that can be transmitted. The contents are as
ollows:

Bit Name Description

0 LED This bit 1s used to turn on the IR LED
connected to the HPIRO pad. It is used for
software controlled IR transmission. When it
is set to a 1, the IR LED is turned on.

1 LBR This bit contains the half-bit to be
transmitted in REDEYE format. Write a one to
send an "on" half-bit or write a zero to send
an "off" half-bit.

2 MDLD This bit is used for software to output a
serial waveform to be modulated by the chosen
modulation source. This allows compatibility
with remote control format.

5 IRE IR Event. This bit is set by a 1logic low
voltage on the IRI pin. It is set to
indicate that an IR event has occurred. Once
set, software must reset this bit.

6 EIRI Enable IR interrupt. An IR interrupt will
occur if this bit and the IRE bit are both
set.

7 IRI IR Input pin. This bit allows software to

monitor the state of the IRI pin. It is a
read only bit.

Using the last three bits, software can receive each of the
transmission formats described later. Also, if IR UART mode is
set, software can receive data using the 8250 the same as it would
in RS232 mode.

HOPPER ERS 1.01 Page 47

9.2.1 REDEYE format

The REDEYE portion consists of the RED, LBF, and ELBE bits in the
IRFMAT register, the LBR bit in the IRCNT register, the REDEYE
formatter, and the IRO LED pin. The LED pin has an open drain
device and thus may be driven low or tristated only. When driven
low the drain current is somewhat regulated by a feedback circuit.
The LBF and LBR bits form a double buffered handshake mechanism
that allow automatic REDEYE half-bit formatting and pacing. An

interrupt mechanism is provided to indicate completion of each
half-bit.

The REDEYE printer requires 15-bit frames of a precise format.
Each bit of the frame consists of two half-bits. The duration of
each half-bit is 14 cycles of the 32768 KkHz crystal oscillator.
The half-bit is considered to be "on" if the LED is pulsed 6-8
times (out of the 14 possible) at the 32768 kHz rate. HOPPER's

REDEYE port uses 8 pulses. The format of a complete REDEYE frame
is shown below:

Start-bits Three half-bits "on-on-on".
Hamming-bits Four pairs of half-bits.
Data-bits Eight pairs of half-bits. Each of the

four hamming and eight data bits are
encoded with two half-bits. A "one" data
or hamming bit is encoded by "on-off" and
a zero is encoded by "off-on".

Stop-bits Three half-bits "off-off-off". This is
’ the minimum idle time required between
frames.

The ELBE, RED, LBF, and LBR bits are cleared at reset. The REDEYE
port also uses a formatter which is turned off whenever RED is
cleared. Software initiates a half-bit transmission by writing a
bit to LBR. This automatically sets the LBF flags in IRFMAT
register and starts the state machine. The state machine
transfers the bit from LBR into the formatter and clears LBF. If
ELBE is set, this will cause an IR interrupt indicating that it is
safe to write the next half-bit to LBR. The state machine then
times the half-bit for 14 counts of the 32768 Hz crystal
oscillator. If the bit in the formatter is a one, the LED is
pulsed for the first eight of the 14 counts. Otherwise the LED is
left off. If after the 14 counts LBF is clear, the state machine
will return to its idle state of waiting for LBF. Otherwise it
will immediately transfer the next half-bit and start timing it.

When LBF is clear and ELBE is set, an IR interrupt will occur.
When the state machine clears LBF, software has 13 counts of the
oscillator to write the next bit to LBR. Otherwise the length of
the half-bits will not be correct.

Page 48 HOPPER ERS 1.01

Through-put:

32768 /14 = 2340.6 baud (half-bits/sec)

32768 /28 = 1170.3 bps (bits/sec)
REDEYE Frame Length:

1.5 start + 4 Hamming + 8 data + 1.5 stop = 15 bits
REDEYE Thru-put:

1170.3 /15 = 78.02 cps

9.2.2 Software Controlled Mode

The LED bit in IRCNT register is provided for software generated
IR formats. This bit is OR-ed with the output of the REDEYE
formatter, and the other IR format outputs. Therefore, two IR
formats may not be used simultaneously.

Due to LED current limitations, the LED output driver duty cycle
must be limited to a time average of 29%. The duty cycle is
automatically limited to 1/2 x 8/14 or 28.6% Dby the REDEYE
formatter. The format of a full REDEYE frame yields a duty-cycle
of only 14.3%. If a different format is used (by using the LED
bit) software must limit the duty-cycle.

9.2.3 Modulated Mode

The MDLOD bit in the IRCNT register can be used by software to
output any custom modulated waveform desired. To output a
wavefornm, software must first set the MDLTE bit in the IRFMAT
register and choose the modulation source using the MDSEL bit. If
the 8250 baud rate 16x clock is chosen, its frequency must be set
to the desired modulation frequency. once this has been
accomplished, software can set and clear the MDLD bit at desired
to emulate the envelope of the output waveform. Whenever MDLD is
one, pulses will be output of a 50% duty cycle for the given
modulation source. As before, care must be taken not to exceed
the 29% communication duty cycle.

9.2.4 IR UART Modes

The 8250 may be used for half duplex IR communication of 1limited
baud rate. To use this mode the IRURT bit must be set in the
IRFMAT register. When this bit is set, the 8250 is disconnected
from +the RS232 ports and connected to the IR communication block.
When using this mode, software must first choose the transmission
format. The two possible formats are single pulse mode and
multiple pulse mode. If the PMOD bit is 0, single pulse mode is
chosen. In this mode, a single pulse of one half cycle of the

HOPPER ERS 1.01 Page 49

modulation source is transmitted for a 0. In multiple pulse mode,
a train of pulses of the modulation source is transmitted for a O.
In both modes, a 1 is transmitted as no pulses. As in Modulated
mode, the modulation source again must be chosen. If the baud
rate of 2400 baud is chosen, choosing the 8250 16x clock will give

you a modulation rate of 38 KkHz.

After this is set up, software can use the 8250 to communicate as
though it were still connected to the RS232 ports.

Page 50 HOPPER ERS 1.01

CHAPTER 10
INTERRUPT CONTROL

The HOPPER interrupt control circuitry includes a - Intel 8259
compatible Programmable Interrupt Controller (PIC) and additional
support circuitry. The support circuitry is located in the PWR
block and provides wakeup timing and interrupt enable bits. For
additional information on these features please see the chapter
entitled "POWER MANAGEMENT".

10.1 8259 Interrupt Sources

The 8259 PIC supports 8 vectored priority interrupts. These
interrupt sources are defined as follows:
INPUT INT SOURCE
IRQO 08h PIT Timer 0 (same as PC).
IRQ1 09h Unused (PC Keyboard). INT09h calls are made
by the BIOS for PC compatibility.
IRQ2 O0Ah Timer 1, display cursor update request, low
voltage RX pad input (PC reserved).
IRQ3 0Bh Keyboard and Touch Panel (PC COoM2) .
IRQ4 och UART (PC COM1).
IRQ5 ODh IR input (XT fixed disk).
IRQ6 OEh External XINT pin (PC diskette).
IRQ7 OFh Real Time Clock timer underflow (PC LPT1).

The 8259 will default to this interrupt
vector if the signal requesting interrupt
has gone away before the interrupt
acknowledge cycle. These spurious
interrupts should be handled gracefully.

HOPPER ERS 1.01 Page 51

10.2 Non-Maskable Interrupt

Low Power Interrupt (LPI) and Module Pulled Interrupt (MPI) will
cause a CPU NMI to occur. ' The NMI service code must do a deep
sleep shutdown immediately if the LPI bit of the Interrupt Source
Register is set. If the MPI bit is set, it should be immediately
cleared to re-enable NMIs. This is necessary since the NMI occurs
on a rising edge.

10.3 Interrupt Source Register

The interrupt source register (ISR) is provided in order to allow
software to individually identify and acknowledge interrupts that
are shared among several sources.

The individual bits of the ISR will be set when an interrupt is
requested from its corresponding interrupt source. Another
interrupt will not occur from this source until the bit has been
cleared by writing a zero.

Writing a one to an ISR bit will have no effect. This is an
important feature. To avoid missing interrupts when writing to
the ISR, all bits that are not to be affected should be written to
a one.

The interrupt source register is physically located in the PWR
block and is mapped at I/0 address E303h.

Reset R/W

Bit Value Mode Description

[0] X - unused

[1] 0 R/W TI1 - TIMER 1 interrupt.

[2] 0 R/W ILPI - Low power interrupt.

[3] 0 R/W MPI - Module pulled interrupt.

[4] 0 R/W DCI - Display cursor update request.
(5] 0 R/W RXI - Low voltage RX pad interrupt.
[6] 0 R/W KBI - Keyboard service request.

(7] o R/W TPI - Touch Panel interrupt.

Page 52 HOPPER ERS 1.01

10.4 Wake-Ups

All interrupt sources that are active in deep sleep or light sleep
can cause the CPU to wake up to service the interrupt. This
feature is discussed in the chapter entitled "POWER MANAGEMENT".

10.5 Enabling Interrupts

Each interrupt source has a separate enable bit. This is
discussed in the chapter entitled "POWER MANAGEMENT".

10.6 Special Considerations

1. The XINT pad can be enabled to cause a wake~up. However
this signal must still be high when the CPU is up and
running (50ms hardware delay plus software delay) in order
to be recognized. This constraint actually applies to all

_non-shared interrupts, IRQ4 through IRQ7, since. they are not
latched by the ISR.

HOPPER ERS 1.01 Page 53

CHAPTER 11
PROGRAMMABLE INTERVAL TIMER

The HOPPER Programable Interval Timer (PIT). is complete}y
compatible with the Intel 8254. It contains 3 independent 16-bit
counters.

11.1 TIMERO

The PC dedicates TIMERO to generating time of day interrupts every
54.9 milliseconds. The HOPPER implimentation of TIMERO is the
same as on the PC.

SIGNAL CONNECTION

CLKO 1.193182MHz (nominal)
GATEO VDD (always enabled)
ouTo IRQO

11.2 TIMER1

The PC dedicates TIMER1 to generating DMA requests for dynamic RAM
refresh. This is not needed in a HOPPER system. In the HOPPER
system TIMER1 is a general purpose timer. 1It's output 1s or'ed
with other sources to cause an IRQ2 interrupt. It is intended to
be used for generating keyscan interrupts (see the chapter
entitled KEYBOARD).

SIGNAL CONNECTION

CLK1 1.193182MHz (nominal)
GATE1l VDD (always enabled)
ouT1 causes IRQ2 interrupt

Page 54 HOPPER ERS 1.01

11.3 TIMER2

The HOPPER connection of TIMER2 is the same as on the PC.

SIGNAL CONNECTION

CLK2 1.193182MHz (nominal)

GATE2 Bit-0 of port 61h

ouT2 Tone generation circuit and bit-5

of port 62h

11.4 Timer Operation in Light Sleep'

In order to save power, the 1.19MHz timer clock is normally
stopped anytime the system is in light sleep. This can be avoided
by setting bit 3 of E300h, LST. The timer clock does not operate
in deep sleep.

HOPPER ERS 1.01 Page 55

CHAPTER 12
REAL TIME CLOCK TIMER

12.1 Functional Description

The REAL TIME CLOCK (RTC) TIMER consists of a 16 bit
read/writeable counter that is decremented once per second. The
HOPPER 32.768KHz crystal oscillator generates frequency is divided
by a 15 bit pre-divider to produce the 1H2 timer clock. This
clock is accurate to approximately 2 minutes per month.

The RTC timer is always enabled to run. A reset will clear the
timer value and pre-divider to all zeros.

A level 7 interrupt (INT OFh) will occur anytime the timer's most
significant bit (MSB) is a one. This will occur when the timer
‘underflows. A wakeup will occur prior to the interrupt if the
system is in 1light or deep sleep. The timer will continue to
decrement after underflow. The maximum time that can be set is
2~15 seconds or 9.1 hours.

12.2 Special Considerations

Special care is taken in the circuit design to prevent timer
values from being corrupted by a decrement occurring during reads
and writes. Even so, it is recommended that all read values be
verified against a second read, and all write values be verified

by a read.

12.3 Pre-Divider Outputs
The following signals are taken off of the timer pre-divider:

1. F16KHZ - Interrupt timing in IRCOM, KBD, and TOUCH. D/A
sample output control in TONE.

2. F1KHZ State timing in CDR (Card Detect).

Power-up delay in PWR and debounce in KBD.

3. F128HZ
4. F1l6HZ - Amp power down control in TONE
Cursor blink in DISP.

5. F1lHZ

Page 56 HOPPER ERS 1.01

CHAPTER 13
PC COMPATABLE I/O REGISTERS

The_I/o Register block contains 3-bytes of PC compatable I/O
registers (8255 PPI). These registers are defined as follows:

PORT BIT(S)

60h 0-7

61h 0

62h 0-3

MODE
R/W

R/W

R/W
R/W

R/W
R/W

R/W
R/W
R/W
R/W

R/W

HOPPER ERS 1.01

DESCRIPTION

If port 61h bit7=0 : Scratch location for
keyboard scan code (see chapter entitled
KEYBOARD) .

If port 61h bit7=1 : Scratch location for SW1
configuration switch settings.

TIMER 2 gate.

Speaker data (see chapter entitled TONE
GENERATOR) .

Ignored, always reads O.

Select source/destination for port 62h Dbits
0-3

Ignored, always read O.
0 = disable keyboard
Select source/destination for port 60h

If port 61 bit3=0 : Scratch location for 4
MSBs of SW2 switch settings.

If port 61 bit3=1 : Scratch location for 4
1SBs of SW2 switch settings.

Unused (reads 0).
TIMER 2 output.

Unused (read 0).

Page 57

CHAPTER 14
CRYSTAL OSCILLATORS

The HOPPER chip includes a 2 crystal oscillators. Each require a
pair of 20pF loading capaciters as well as a quartz crystal of the
appropriate frequency.

14.1 Low Frequency Oscillator

The low frequency oscillator operates at 32.768KHz and is used to
generate timing for the real time clock, the card detect circuit,
and the display controller. The low frequency oscillator can not
be disabled.

14.2 High Frequency Oscillator

The high frequency oscillator is used to generate system timing
for the CPU and peripherals. It will accept either a 5.37MHz or a
10.74MHz quartz crystal. The high frequency oscillator is active
in light sleep and in operating mode.

NOTE: Operation with a 10.74MHz crystal is not supported at this
time.

Page 58 HOPPER ERS 1.01

CHAPTER 15
CLOCK GENERATOR

The Clock Generator takes as its inputs the output of the High
Frequency Oscillator, HFO, and also the speed control bit, SPD.
It outputs several clock frequencies that are used by different
portions of the HOPPER chip. The following is a block diagram of
the clock generator circuitry.

Figure 15.1. Clock Generator Block Diagram

$.369,10.739MH2 5 CCLK
fron Osc to CPU

Output 2 pulses 1.193MH2)TCLK
9 to TINERB,2

out of

; e outeut 11 psuzls-s_M_)tJCLsn”
o p—
5'369""14>rzobisnlauo
Touch, Tone
SPD
Signal Where Used Hopper Freq PC Freq Error
CCLK CPU, DISPlay, 5.369318MHz / 4.7727MHz +12.5% /
Bus InterFace 10.738636MHz +125%
TCLK TIMERO, 2 1.193182MHz 1.193182MHz 0%
UCLK UART 1.845703MHz 1.8432MHz +0.14%
HFO DISPlay, TOUCH, 5.369318MHz n/a
TONE
LFO RTC 32.768KHz n/a

HOPPER ERS 1.01 Page 59

The HOPPER chip will accept either a 5.369318MH2 (5.37MHz) or a
10.738636MHz (10.74MHz) crystal. The SPD bit must be initialized
to a “"zero" for a 5.37MHz crystal or a "one" for a 10.74MH2
crystal. This initialization must occur before using the display,
timers, UART, touch, or tone circuits.

NOTE: Operation with a 10.74MHz crystal is not supported at this
time.

Page 60 HOPPER ERS 1.01

CHAPTER 16
TOUCH PANEL CONTROLLER

The HOPPER IC includes an analog touch panel interface that
consists ‘of- an A/D converter and touch panel control registers.
In order to provide a simple and flexible circuit, the burden of
controlling the touch panel and the A/D converter is placed on
software.

The touch panel control circuit consists of 2 resistive sheets of
material. The x-axis sheet is connected on the left and right
ends and the y-axis sheet is connected on the top and bottom.
These 4 connections are wired to the TPL{0:1] and TPH[O:1] pads gf
the HOPPER IC. The x-axis position of a finger or stylus that is
touching the panel is determined by driving one side of the x-axis
sheet to VDD and the other to ground. Both sides of the Yy-axis
sheet are precharged to ground and then released. The voltage
that appears on the y-axis sheet is measured using the A/D
converter and corresponds to the x-axis position of the touch.
The y-axis position is determined in a similar manner by driving
the y-axis and using the x-axis to sense voltage.

16.1 The A/D Converter Interface (ADCONT)

Software is given control of the A/D converter through the use of
the control bits in the ADCONT register at I/O address E307h. The
contents of the register are as follows:

Signal Bits Type Description

CHSO,1,2 0,1,2 R/W Analog Input Channel Select
PWUP 3 R/W Power up the A/D .

START 4 R/W Start an A/D conversion

STA 5 R A/D converter Status

Before using the A/D, it should be turned on by setting the PWUP
bit to 1. Using the CHS0-2 bits, software can choose between the
8 possible analog input channels to do the A/D conversion on. To
start an A/D conversion, the START bit must be set. During the
first twenty clock cycles after the START bit is set, the A/D does
a sample and hold of the chosen input channel. The START bit
should be cleared previously when the channel is selected. The
STA bit will be set when the conversion is finished. The
conversion including the sample and hold takes a total of 130

HOPPER ERS 1.01 Page 61

clock cycles. The digital output value can then be read at I/O
address E306h. When the A/D is not being used, it should be
powered down by resetting the PWUP bit to 0. When the system is
reset, the A/D will also be reset and all of the bits in the
ADCONT register set to 0.

The analog input channels are as follows:

Signal Channel Description

BAT[O0] 0 System Battery Voltage
BAT[1)] 1 Backup Battery Voltage
BAT[2] 2 Card Battery Voltage
BAT[3] 3 Card 2 Battery Voltage
TPL[O] 4 Touch pad X-axis low side
TPH[O] 5 Touch pad X-axis high side
TPL([1] 6 Touch pad Y-axis low side
TPH[1)] 7 Touch pad Y-axis high side

16.2 Touch Panel Control (TPCONT)

The touch panel control circuit has 6 possible modes. They are:
1) off; 2) standby; 3) precharge x-axis; 4) precharge y-axis; 5)
measure x-axis; and 6) measure y-axis. These modes are completely
under software control and are set by the TPCONT register at I/O
address E308h. The individual bits of this register are defined as
follows:

Bit Name Description

0 STDBY Touch panel standby mode. When this bit
is set the entire touch panel is treated
as a single switch. In this mode the
TUCH status bit will go high if the
panel is touched. This will also cause
an interrupt if <the ETINT bit is set.
This is a zero-power state as 1long as
the panel is not being touched. The
panel should be precharged by setting
both the STDBY bit and the TPPC bit for
several microseconds before entering
standby mode. The SELX bit has no
effect on this mode.

Page 62 HOPPER ERS 1.01

1 TPPC Touch panel precharge mode. If the
STDBY bit is not set, the axis chosen to
be measured by the SELX bit is connected
from VDD to Ground. The panel must be
precharged for several microseconds
before making an A/D measurement. In
STDBY mode, this bit pulls one axis high
and the other low for precharge.

2 SELX Select X bit. The x-axis is selected
for measurement if this bit is set. The
y-axis is selected if it is clear.

3 PULLO This bit allows the axis opposite that
chosen for measurement to be pulled to
ground. This could be used to decide if
a reading is valid, ie. a (0,0) reading
is a no touch reading. This bit only
has effect in an active precharge mode.

4 ETINT Enable Touch Pad Interrupt. If this bit
is set and the touch pad is in Standby
mode, an interrupt will occur if the pad
is touched. ~

5 TUCH Read Only. Indicates that the pad has
been touched in Standby mode.

When the pad is not in use it should be shut down by writing
XXXX00 to the TPCONT register. Before taking a touch pad reading,
the SELX bit must be set to the appropriate value for the axis
that is desired. The Touch pad should then be precharged for a
predetermined amount of time by setting the TPPC bit to one. The
ADCONT register must also be set up to read the appropriate analog
input channel by setting the CHS bits. After the precharge time
has passed, the START bit in the ADCONT register must be set to
start the A/D conversion. Twenty clock cycles after the START bit
is set and the A/D is finished with its sample and hold, the TPPC
is automatically cleared shutting off the Touch pad. This is
accomplish with the use of a 5-bit counter in the TPCONT register
and allows the A/D time for the sample and hold portion of the
conversion process.

When not actively reading the Touch pad, software can wait for the
pad to Dbe touched by placing the pad in standby mode. Before
entering Standby mode, a Standby precharge must first occur. To
do this, software must set both the STDBY and TPPC bits in the
TPCONT register. After precharging for a given amount of time,
the TPPC bit is cleared and the pad is now in Standby mode. When

HOPPER ERS 1.01 Page 63

the pad is touched, the TUCH bit will be set to a one, and if the
ETINT bit is set, a Touch pad interrupt will occur. Software can
then take a Touch pad reading.

Warning! - Because the Touchpad uses a considerable amount of
power, it should be shut off when not in use.

Page 64 HOPPER ERS 1.01

CHAPTER 17
TONE GENERATOR

17.1 Hardware Description

The tone block on the HOPPER IC consists of digital control
circuits and registers to control a D/A converter and a
differential output amplifier. This block allows the HOPPER chip
to output custom sounds and speech using an external piezo
speaker. To output a sound waveform, software must write a series
of digital values representing the waveform to the D/A. The D/A
converts the digital values to analog voltages at a conversion
rate of 16kHz. This allows the waveforms to contain frequencies
up to 8kHz which is satisfactory for speech. After the D/A has
used a value it signals software that it is ready for another
value by setting the DAMT bit. The output voltage is converted to
a differential voltage by the output amplifier and output to the
external piezo. The D/A converter and output amplifier can be
powered down when not in use by resetting the PWRDN bit to save on
current consumption. The hardware will detect a digital beep to

power up the amplifier and will power it down after the beep
finishes.

There is also a digitally produced sound signal that is
multiplexed with the analog speaker outputs. This will be used as
a backup plan in case the analog portion of hopper is unusable.
This signal will be the output of counter 2 ORed with port Bl.
The signal to be output to the piezo is selected by default. If
the D/A converter is powered up by setting the PWRDN bit, the
analog waveform is chosen. The volume of the digital signal can
be controlled using the DVAL bits in the TCCONT register. These
two bits allow 4 levels of volume control for the digital output
signals, 3 being the loudest. The analog waveform can be
controlled by scaling the analog values that are written to the
D/A buffer.

The DAMT and PWRDN are located in the TCCONT register at 1I/0
address E309h. The DVAL bits to control the digital volume are
also located in this register as well as the CVAL bits for the
CVGEN block. The register contents are as follows:

HOPPER ERS 1.01 Page 65

Name Bit Description

DAMT 0 Set to 1 when D/A Buffer is empty, read only

PWRDN 1 Powers down the D/A and analog buffer when reset to 0
DVAL[0:1]2,3 Volume control for the digital tone signal
CVAL[0:3]4-7 Voltage selector value for CVGEN

17.2 Software Control

During tone output generation, software must write one sample
value to the D/A buffer register every 6lus. This buffer is
located at I/O address E305h. This timing restriction may require
that all values be stored in RAM beforehand and just rewritten to
the D/A buffer during tone output. The DAMT bit will be set to 1
when the hardware is ready for another sample value and otherwise
be set to 0. Software must poll the DAMT bit before it writes to

the D/A buffer.

Before outputing an analog waveform software should write a 7Fh to
the D/A buffer, a differential 0, and then set the PWRDN bit to
turn the D/A on. Digital sample values for the analog signal can
then be written to the D/A. A 1 second sound requires 16384 bytes
to be written to the D/A buffer sequentially. At the end of each
tone, the PWRDN bit must be reset to turn off the D/A converter.

Page 66 HOPPER ERS 1.01

CHAPTER 18
POWER MANAGEMENT

The power management circuitry controls the transitions between
the following system modes:

EXTERNAL
Mode SUPPLY CPU DISPLAY TIMER HFO LFO
Static - OFF OFF OFF OFF OFF
Deep Sleep Low Power OFF OFF ON OFF ON
Light Sleep Hi Power OFF ON ON ON ON
Operating Hi Power ON ON ON ON ON
Backup Backup OFF OFF OFF OFF ON

18.1 Static Test Condition

The static test condition is entered only during test. This mode
in used to measure static leakage current. In this mode the part
has been reset and no clocks are being driven. The low frequency
ocsillator (LFO) is held inactive externally.

18.2 Deep Sleep

Deep sleep is entered from operating mode when software sets the
SHT bit with the DON bit cleared. The DON bit is described in the
chapter entitled "HOPPER DISPLAY CONTROLLER". In deep sleep the
SOFF pad is driven high causing the external supply to operate in
low power mode. The system will exit deep sleep and begin
operating when an enabled interrupt is received from either: 1)
the ON key; 2) Keyboard input; 3) RTC underflow; 4) the external
interrupt pad, XINT, being pulled high; or 5) a rising edge on the
RX pad (UART interrupt input).

18.3 Light Sleep
Light sleep is entered from operating mode when software sets the
SHT bit with the DON bit set. The external supply continues to

operate in high power mode in light sleep. Any enabled interrupt
source will exit light sleep to operating.

HOPPER ERS 1.01 Page 67

18.4 Operating

Operating mode can be entered from either of the other two modes.
If it 1is being entered from deep sleep then the HOPPER chip will
hold off the CPU in reset for 35ms after requesting high power
(SOFF=0) from the external supply. The 35ms delay is generated 1in
the RTC pre-divider. Folowing this delay the CPU will begin
operation at the reset vector (ffffOh) with interrupts disabled by
the CPU reset.

When software is finished processing, it may exit operating mode
and enter either 1light sleep or deep sleep. Light sleep 1s
entered by setting the SHT bit. Deep sleep is entered by leSt
clearing the DON bit, then setting the SHT bit. The CPU will
prefetch several instructions following the instruction that sets
the SHT bit. This requires that several NOP instructions follow
setting the SHT bit. When operating mode is again entered,
hardware will clear the SHT bit. It is up to software to control
the state of the DON bit.

18.5 Backup

When the external power supply senses that VDD is too low it will
drive the NVDDOK line high. This will cause an NMI if the system
is in light sleep or operating modes. Software will use this NMI
to quickly shutdown the system. When the system is in deep sleep
or in the process of powering up with NVDDOK high it will
immediately enter backup mode. In backup mode the BUP output 1s
driven high switching the external supply to the backup battery.
The system will remain in backup mode until the ON key is pressed.

If NVDDOK does not go low within 50ms of entering backup mode, or
if NVDDOK goes low at some time following the 50ms delay, the BUP
line will be driven low switching the external supply back to the
main batteries. The system is still in backup mode however and
will stay there until NVDDOK goes low.

The hopper chip will ignore the state of the NVDDOK signal if the
ACIN signal is high indicating an AC adapter is plugged in. Both
NVDDOK and ACIN are deglitched internally using the 32KHz
oscillator.

18.6 System Resets
The HOPPER chip will be reset when:

1. Power is first applied (Power-On-Reset (POR) circuit), or a

logic low 1level is driven on the NRES pad. This reset will
be held until NVDDOK=0.

Page 68 HOPPER ERS 1.01

2. The RST bit is set twice in succession.

3. The keyboard circuitry senses that the ON pad, KBI[6], and
KBI[7] are all high for a 7.8ms debounce time (ON/SHIFT/CNTRL
keys depressed).

A reset will cause the system to:

1. Execute the power-up segence if asleep,
2. Reset the CPU, and
3. Enter operating mode.

18.7 System Control Register

The 2-byte System Control Register controls the system mode and
also contains the interrupt enable bits that allow individual
interrupt sources to be enabled or disabled. If an interrupt is
disabled it will not cause a CPU interrupt and will not cause a
wakeup. If enabled, all interrupt sources will cause a wakeup
from 1light sleep or deep sleep. In order to cause a wakeup, the
wakeup scurce must be valid for 50us. After a wakeup, the system
will ignore shutdown attempts for 1l5us.

The first byte of the System Control Register is located at E30l1h
and is defined as follows:

Reset R/W
Bit Value Mode Description

[0] - W RST - Reset. Writing a one to this bit
twice in succession will cause the system
to reset.

[1)] 0 W SHT - CPU shutdown. Setting this bit

will stop clocks to the CPU. The system
will enter light sleep mode if the DON
bit is set and will enter deep sleep mode
if the DON bit is clear. This bit is set
only, it is automatically cleared by a
wakeup.

[2] 0 R/W ION - I/0 On. This bit controls the
power to the IR receiver chip and
possibly to the RS232 transmitter.

[3] X - unused

(4] 0 R/W UTE - UART interrupt/wakeup enable.

HOPPER ERS 1.01 Page 69

(5] 0 R/W IRE - IR circuit interrupt/wakeup

enable.

[6] 0 R/W EXE - External (XINT pad)
interrupt/wakeup enable.

[7] 0 R/W RTCE - Real Time Clock interrupt/wakeup
enable.

Page 70 HOPPER ERS 1.01

The second byte of the System Control Register is located at E302h
and is defined as follows:

Bit
(ol
(1]
[2]
(3]
(4]

(5]

(6l
(71

Reset
Value

0

0
0
0
0

HOPPER ERS 1.01

R/W

Mode Description

R/W
R/W
R/W
R/W
R/W

R/W

R/W
R/W

TOE - Timer 0 interrupt/wakeup enable.
T1E - Timer 1 interrupt/wakeup enable.
LPE - Low power interrupt/wakeup enable.

MPE - Module pulled interrupt enable.

DCE - Display cursor update request
interrupt enable.

RXE - RX pad low voltage
interrupt/wakeup enable. This bit should
be set when the supply voltage is reduced
in deep sleep and a wakeup is desired
when activity is detected on the serial
port. It is necessary to select an input
device with the proper threshold on the
RX pad.

KBE - Keyboard interrupt/wakeup enable.
TPE =~ Touch panel interrupt/wakeup
enable.

Page 71

CHAPTER 19
CONTRAST CONTROL VOLTAGE GENERATOR

The Contrast Control Voltage (CCV) Generator is a simple 4-bit D/A
converter. An analog conversion of the 4-bit CCV register value
is output on the CCV pin anytime that the display is on (DON=1l).
This analog voltage is used by the external LCD voltage generation
circuitry to control the drive 1levels on the display panel.
Variations in these drive levels affect the apparent darkness or
"contrast" of the LCD to compensate for variations in the LCD
material and for differing viewing angles. Thus the CCV allows
the user to adjust the contrast of the display under software
control.

The CCV Generator circuit consists of a simple resistive ladder.
The output pin is high impedance and should not drive a DC load.

Page 72 HOPPER ERS 1.01

CHAPTER 20
SPECIAL HARDWARE CONSIDERATIONS AND HOPPER REV C

This chapter is intended to detail several hardware features that
need special consideration when using the HOPPER IC. Most of the
shortcomings discussed here have been addressed in a revised
version of the HOPPER IC. This revised version is referred to as
Rev C. It is schedulea to be phased into production in the fall
of 1991.

20.1 Pseudo~Static RAMs and the CPU Halt Instruction

When the CPU is being clocked (run mode), HOPPER issues an
automatic refresh cycle during the start of each CPU cycle. This
refresh cycle is necessary for pseudo-static RAMs to maintain
data. Unfortunately this means that if the CPU stops issuing new
cycles, as it does when a halt instruction is executed, no refresh
cycles will occur. The RAM specification states that 2048 refresh
cycles must occur each 32ms. In normal operation, 2048 refresh
cycles will occur about every 7ms (this figure was calculated
assuming that the average instruction is 16 clock cycles long).
Therefore, if the CPU is halted for more than about 25ms, the RAM
refresh specification will be violated.

In actual practice, our experience has been that most pseudo-
static RAM parts will maintain data for several seconds with no
refresh cycles. However, this cannot be guaranteed. It is
preferable that no halt instructions be used. If they are used,
the halt must be ended with an interrupt well under the 25ms time
limit.

Rev C of the HOPPER IC includes a "WATCHDOG" circuit. When
enabled by setting bit 5 of IO location E300h, this circuit will
attempt a system shutdown if no refresh cycle occurs in 3.5 to 4.5
nms. If this shutdown is successful, it will put the PSRAMs into
self-refresh. The only known way for this to occur is if
refreshes were suspended by the execution of a HALT instruction.
This shutdown will be transparent to software since HOPPER will
wake-up on the first enabled interrupt. This interrupt will also
terminate the HALT.

After attempting to set the shutdown bit, the WATCHDOG circuit
continues to watch for PSRAM refresh. If a refresh does not occur
in another 2 ms, a hardware reset will be initiated. Holding the
RDY line low for several milliseconds is the only known way of

HOPPER ERS 1.01 Page 73

causing this reset. Holding the RDY line low will not allow a
successful shutdown since CLK is stopped.

20.2 Pseudo-Static RAMs and Hardware Reset

HOPPER is defined such that if the KBI[6:7] and ON pads are all
driven high a hardware reset will occur. This corresponds to
hitting the [SHIFT] [CTRL] [ON] keys on the 953LX. A hardware
reset will also occur if the NRST pad is pulled low.

The hardware resets are asynchronous with HOPPER chip-
enable/output-enable timing and therefore can cause glitches on
these signals. This may corrupt user memory since pseudo-static
RAMs are sensitive to glitches on either chip-enable or output-
enable.

In actual use, the user RAM appears to be fairly insensitive to
corruption caused by hardware resets. The RAM based operating
system seems to be much more sensitive, probably because it 1is
being chip enabled more often. But since the output-enable signal
is common to all RAMs, a part can be corrupted even if it is not
being accessed when a reset occurs..

The ability to cause a hardware reset from the keyboard is a very
useful and powerful feature. But users should be warned that it
is only to be used as a last resort, and it may corrupt memory.
Software should never be written that will intentionally hang the
system and require the user to do a hardware reset.

Rev C of the HOPPER IC includes circuitry that will attempt to
synchronize the start of most hardware resets. This circuitry
provides a window of 60us during which a synchronous reset will be
initiated if memory timing allows. If memory timing is such that
a synchronous reset did not occur during this window, an
asynchronous reset will be initiated. Asynchronous resets should
only occur in deep sleep. This change will prevent corruption of
PSRAMs due to all hardware resets except for those initiated by
pulling the NRES pad low.

20.3 Display Cursor

The display cursor will disappear in an area of dots that are all
on. This is because the cursor is defined as turning dots on.
HOPPER Rev C will define the cursor as inverting the normal dot
data. This will allow it to be always visible.

HOPPER Rev C also has a small change to provide MDA compatibility
for some illegal attribute bytes.

Page 74 HOPPER ERS 1.01

20.4 TX Output

The TX output is normally driven high even during deep sleep. (TX
is the invert of TXD). This causes a high current condition in
the 95LX since the power to the TX buffer is removed in deep
sleep. In order to prevent this, software is required to send a
break after turning IO off and before deep sleep shutdown. This
break is never seen outside of the product since turning IO off
tristates the TX buffer. On wakeup, the break should be removed
before turning IO on. On HOPPER Rev C this problem is solved 1in

hardware by forcing TX low in deep sleep.

Another problem with the TX output is that it is forced 1low when
IR UART mode is selected. This will be interpreted as a break by
any device that may be connected to the serial port. Some
printers will print a garbage character in response to a break.
There is no software workaround for this problem. HOPPER Rev C
will hold TX high when IR UART mode is selected.

20.5 Timer Wakeups

A standard PC BIOS will set up TIMERO in Mode 3. This causes the
timer output to be a square wave. If this timer output is enabled
to cause wakeups, the HOPPER system will be unable to shutdoyn
whenever the timer output is high, which is 50% of the time. This
causes a large increase in current while the system is idle. The
same problem exists with TIMER1 wakeups.

The 95LX BIOS works around this problem by setting up TIMERO in
Mode 0. When the 55ms count expires, the interrupt routine
calculates a new count value and reloads TIMERO. This works, but
causes problems for PC applications that expect TIMERO to be in
Mode 3.

HOPPER Rev C will solve this problem by making the TIMERO/TIMER1
wakeups edge sensitive. Edge sensitive in this case is defined as
meaning that timer wakeups are disabled if they are active when a
wakeup occurs. They are re-enabled when the request goes inactive.

20.6 Interrupt Source Register (ISR)

Bits in the ISR (E303h) are set only after the 45ms power-up
delay. This makes it possible for a wakeup source such as the
serial port to cause a wakeup and then go inactive before setting
the appropriate bit in the ISR. It is therefore sometimes very
difficult for software to determine the cause of the wakeup.
HOPPER Rev C solves this problem by allowing bits in the ISR to be
set immediately.

HOPPER ERS 1.01 Page 75

20.7 The ON Key

It is impossible to shutdown while the ON key is being held down.
This is considered a problem only for low-power conditions. There
is no software workaround for this problem. HOPPER Rev C solves
this problem by making ON key wakeups edge sensitive.

Another problem with the ON key is that it may cause a wakeup,
then be released before software can read its status due to the
45ms power-up delay. The Rev C fix to the ISR discussed above
does not solve this problem since keyboard wakeups must be
disabled in deep sleep. When keyboard wakeups are disabled, the
ON key is the only key that will cause wakeup. This problem is
solved on Rev C by latching the ONKEY bit (E30Fh bit 0). This bit
is cleared only if the ON key is up when it is read.

20.8 RDY Timing

A timing problem in the HOPPER IC requires that the RDY pin be
constrained to go inactive (low) after the fall of one of the chip
enables. HOPPER Rev C fixes this timing problem and will allow
RDY to go inactive at any time.

20.9 Speaker Power-Down

The HOPPER IC includes circuitry that will automatically power-up
the beeper amplifiers whenever activity is sensed on the PC
compatible speaker output. The amplifiers are powered-down after
up to 125ms of inactivity. If a shutdown occurs while the
amplifiers are powered-up, the system will be left in a very high
power mode. This problem requires software to delay 125ms after
the ON key is pressed before shutting down.

HOPPER Rev C forces the amplifiers off in deep sleep.

20.10 Keyboard Precharge and Reset

The keyboard reset feature ([ON]-[SHIFT]-[CTRL]) is disabled while
the keyboard is in precharge. Keyboard precharge is initiated
anytime the keyboard output register is written (E30Eh-E30Fh). It
is terminated by a write to E30Dh.

HOPPER Rev C does not address this problemn.

Page 76 HOPPER ERS 1.01

20.11 UP8250 Lockup

Writes to the UP8250 Line Control Register (LCR) during receive
and transmit operations can result in lockup and/or incorrect data
reception or transmission. To prevent this, software must follow
these steps:

1. Clear IR UART communication mode (E30Ah bit 2 <- 0).

2. If the baud rate divisor is zero, change it to a non-zero
value.

3. Wait for transmitter empty (03FDh bit 6 = 1).

4. Enable RX pad interrupts (E302h bit 5 <- 1). Then wait for
at least one full frame time with no RX interrupts. This
frame time will vary according to the number of data bits,
parity, and stop bits. Worst case is 12 bits at 300 baud =
a0oms. TIf an RX interrupt is received during this time, the
wait time should start over. (The RX interrupt is on IRQ2

and will set E303h bit 5).

5. The Line Control register (03FBh) must now be written within
5 bit times. Worst case is 115.2K baud = 43us.

HOPPER Rev C solves this problem by buffering new values that are
written to the LCR. These new values become active only on word
boundaries.

20.12 UP8250 Parity Enable

Changing UP8250 parity from disabled to enabled will cause the
receiver to corrupt the next character as well as the error flags
associated it. This problem is fixed on Rev C HOPPER.

20.13 UP8250 Interrupts and Interrupt ID Register

The Interrupt ID Register (IIR) is synchronized with the 16X UART
clock. This causes delays in the setting and clearing of the IIR
bits. This in turn causes numerous problems for software that is
interfacing with the IIR register. There is also a bug that will
allow a false indication of receiver line status interrupt (110).

It is recommended that software avoid using bits 1 and 2 of the
IIR to determine the interrupt source. The Line Status Register
should be used instead to determine the source of interrupts.
Also, in order to avoid missing interrupts, the interrupt handling

routine should not return until bit 0 of the IIR is set indicating
no pending interrupts.

HOPPER ERS 1.01 Page 77

The IRR and interrupt logic has been redesigned for Rev C HOPPER.
The redesigned circuit is compatible with a standard 8250. During
this redesign, it was decided not to attempt to issue new edges on
the interrupt signal each time there is a new interrupt source.
This is compatible with both the Intel 8250A and the National
16450. It requires that the interrupt handling routine service
all interrupts before returning.

20.14 UP8250 Receiver Error Bits

The receiver error bits (OE, FE, BI, and PE) are reset by the next
received word. This is not compatible with the 8250A. On Rev C
HOPPER these bits are reset only when the Line status Register
(LCR) is read.

Also, the parity error bit (PE) is updated when the parity bit is
received. on Rev C HOPPER, this bit is updated on the stop bit
along with the other LCR bits.

20.15 UP8250 Modem Status Register

The Modem Status Register always reads OOh. It was determined
that bits 4 (clear-to-send), 5 (data-set-ready), and 7 (recelve
line signal detect) should be high. Jagaur's DOS service routines
pretend that these bits are always high. Software that reads the
hardware directly, however, may not work. On Rev C HOPPER these

bits will always be set.

20.16 UP8250 Break Reset

When a BREAK condition occurs, the UART receiver is shutdown until
the Line Status Register is read clearing the BI bit. On a
standard 8250, the receiver will receive a new character
regardless of whether or not the BI bit has been serviced. Rev C
HOPPER will fix this compatibility problem.

20.17 UP8250 Line Status Register

Continuous polling of the Line Status Register may causgllrgceiver
errors to be missed. Rev C HOPPER eliminates this possibility.
20.18 UP8250 Receiver Buffer Register

Reading the Receiver Buffer Register (RBR) after the full word has

been received, but before the stop bit has been received will
result in loss of the previous data with no Overrun Error

Page 78 HOPPER ERS 1.01

reported. HOPPER Rev C will fix this problem by not updating the
RBR until the stop bit is received.

HOPPER ERS 1.01 Page 79

CHAPTER 21
TESTING

A test pad has been included to force the part into test mode.
‘The following sections are be implemented as macro-cells and are
tested using the appropriate off-the-shelf test program:

© 8288 compatible BUS CONTROLLER

¢ 8254 compatible PIT

® 8259 compatible PIC
The remaining blocks are tested using custom test programs.
A output disable (OD) mode is implimented for testing of input

leakage on pads with resistive pullups/pulldowns. When the OD bit
has been set, these pins will resistive elements are disabled.

Page 80 HOPPER ERS 1.01

HPISLX
WIRED SERIAL AND INFRARED 1/0
EXTERNAL REFERENCE SPECIFICATION

HEWLETT-PACKARD

April 11, 1991

CONTENTS

INTRODUCTION

RS232 COMPATIBLE SERIAL PORT

Protocol

Hardware

Software

BIOS control

Direct Register Control

IR 1/0 SERIAL PORT

Protocol

Hardware

Software

OTHER IR COMMUNICATION

REDEYE Format

Software Controlled Mode

Modulated Output Mode

Modulated IR UART Output Mode

hRRrBREBEE VU

INTRODUCTION

The HP9SLX contains several 1/O capabilities. These include an R§232 compatible wired serial port
and a two way wireless infrared port. This document contains a brief description of the hardware, the
supporting software, and the communications formats used. This document is not a complete
description of all of the HP9SLX features. It is not guarantced to be 100% accurate as hardware and
software changes may be made after its release. It will, although, address most of the issues involved in
using the HP9SLX 1/0 capabilities.

RS232 COMPATIBLE SERIAL PORT

Protocol

The serial protocol used in HP9SLX is the standard asynchronous serial protocol used in the PC. It
consists of three signal connections; RXD, Receive Data, TXD, Transmit Data, and SGND, Signal
Ground. Each data word is preceded by a start bit, which is a spacing condition for one serial bit time.
Each word is followed by at least 1 stop bit, which is a marking condition for one bit time. When the
transmitter is idle, the transmit line is held at a marking condition.

The wired serial port voltage levels are -4.5 Volts for a logic level °1’ or marking condition and 4.5 volts
for a logic level °0’ or spacing condition. These are consistent with the RS232 standard for wired
communication. When powered down, the serial transmit line will be held to ground. HP9SLX
interprets this as a marking condition as will most R§232 receivers.

Hardware

The HP9SLX serial port hardware includes an 8250 compatible UART, an SN75C198 transmitter chip,
and a discrete level shifting receiver portion. A block diagram of the serial hardware is shown below.
The SN75C198 is an RS232 transmitter that converts a CMOS logic level to the appropriate positive
and negative voltages used for the serial port. The receiver section is used to convert the positive and
negative RS232 voltages to CMOS compatible voltage levels. The 8250 compatible UART controls all
serial communication and interfaces to the rest of the HP9SLX system. Using the UART, the baud
rate is set, the word length of 5, 6, 7, or 8 bits is chosen, and parity error detection can be used.
Although the hardware will support baud rates up to 115.2k baud, the wired link is not guaranteed to
work for all applications above 20k baud. For optimum performance, a short cable, less than 3 meters,
should be used.

Serial Hardware

SN75C198 ™™
RS232 ™
Transmitter

Software

Software control of the serial port can be accomplished by writing to the appropriate hardware
registers or through BIOS routines.

BIOS control

There are several software interrupt functions provided in the BIOS for serial port control. Itis

recommended that applications use the BIOS routines to control the serial port. Here is a summary of
these functions.

Int15h

Set Serial Channel

This function sets the HP9SLX serial channel to either Wired or IR. If IR mode is selected,
the UART baud rate is changed to 2400 baud.

Input: AH = 4%h
AL = Oh: Wired
=1h:IR
> 1h : No Operation
Output: None
Registers modified: None

Set RS232 Power

This function turns power to the RS232 transmitter and IR receiver on or off.
Input: AH = 4Ah
AL = Oh : Power off

= 1h : Power on
> 1h: No Operation

Output: None

Registers modified: None

INT 14h

Initialize Serial Port Parameters
This service sets the baud rate, parity, number of stop bits, and character frame size for the
specified serial port.
Input: AH = 00h

DX = Serial port number (Always 0 in HP9SLX)
AL = Parameters shown below

Output:

Bit

Description

=
—
-

7-5

43

10

Baud rate

000 = 110 baud
001 = 150 baud
010 = 300 baud
011 = 600 baud
100 = 1200 baud
101 = 2400 baud
110 = 4800 baud
111 = 9600 baud
Parity

00 = None

01 = Odd

10 = None

11 = Even

Stop bits

0 = One stop bit
1 = Two stop bits
Frame size

10 = 7 bit word
11 = 8 bit word

AH = Serial port status

Description

O=NWLRELON

Timeout

Transmit shift register empty
Transmit buffer register empty
Break detect

Framing error

Parity error

Overrun error

Data ready

AL = Modem Status (Modem Control not implemented
in HP95LX)
This will always be returned as BOh.

Bit Description

Receive Line Signal Detect

Ring Indicator

Data Set Ready

Clear to Send

Delta Receive Line Signal detect
Trailing edge Ring Detect

Delta Data Set Ready

Delta Clear Send

O NVNWHBULAN

Registers modified: AX
Transmit One Character

This function transmits one character through the serial port. It waits until the UART
transmit buffer is empty, then transmits the given character.

Input: AH = 01h
AL = Character to transmit
DX = Serial port number (Always 0 in HP95LX)
Output: AH = Serial port status (same a previous function)
Registers modified: AH
Receive One Character

This functions returns the character received by the serial port. It waits until the serial port
reports that a character has been reccived, then reads character and the serial port status.

Input AH = 02h
DX = Serial port number (Always 0 in HP95LX)

Output: AH = Serial port status (only bits 7,4,3,2, 1 as before)
AL = Character received

Registers modified: AX

Get Serial Port Status
This function reports the status of the serial port.

Input: AH = 03h
DX = Serial port number (Always 0 in HP95LX)

Output: AH = Serial port status (same as Initialize function)

Registers modified: AX

Direct Register Control

Serial communication in HP9SLX can also be accomplished by writing directly to the hardware
registers that control the communication functions. The first important register is located at 1/0
address E301h. Bit 2 of this System Control Register is used to turn the RS232 transmitter and the IR
receiver on and off. By setting bit 2, power is turned on to these devices. The other bits in this register
control various other system functions so bit 2 should be ORed with the contents of the register. When
the HP9SLX is in DOS, the FILER, or COMM application, bit 2 of E301h will be set. To chose
between IR mode and wired mode, the register at 1/0 address E30Ah is used. To select wired serial
communication, a Oh must be written to this register.

The rest of the serial registers are used to control the 8250 compatible UART. There functions are
equivalent to those for the UART in the PC. The registers are as follows:

1/0 Address 3F8h
DLAB = 0

w UART Transmitter Holding Register
Contains the character to be sent.

R UART Receiver Buffer Register
Contains received character

DLAB = 1

R/W UART Divisor Latch- Low Byte
Contains the low order byte of the baud rate divisor

1/0 Address 3F9h

DLAB =0

R/W UART Interrupt Enable Register
Allows enable and disable of UART interrupt sources

bit 7-4
bit3
bit 2
bit1

bit 0

DLAB =1

=0
=1
=1
=0
=1
=0
=1
=0

reserved

not used

Enable receiver line status interrupt
Disable

Enable transmitter holding register empty interrupt
Disable

Enable received data available interrupt

Disable

R/W UART Divisor Latch- High Byte
Contains high-order byte of UART baud rate divisor.

1/0 Address 3FAh

R UART Interrupt ID Register
Contains information about interrupts pending. Only the highest priority

interrupt is indicated.

bits 7-3 =0 Reserved

bits2-1 =11 Receiver line status interrupt: Highest priority
=10 Received data available: Second priority
=01 Transmitter holding register empty: Third priority
=00 Invalid

bit0 =1 No interrupt pending
=0 Interrupt pending

1/0 Address 3FBh
R/W UART Line Control Register

bit7 =1 DLAB: sclect divisor latch access
=0 select receiver buffer, transmit holding reg, and interrupt enable
reg access
bit6 =1 Set break enabled
bits =1 Stick parity enabled
bitd =1 Even parity
=0 0dd parity
bit3 =1 Parity enabled
bit2 =1 2 stop bits, 1.5 if 5 bit word
=0 1 stop bit
bits1-0 =11 8 bit word length
=10 7 bit word length
=01 6 bit word length
=00 5 bit word length

1/0 Address 3FCh

R/W UART Modem Control Register
Modem control is not implemented

bit7-4 =0 reserved
bit3 =1 Enable UART interrupt
bits 2-0 =0 reserved

1/0 Address 3FDh
R UART Line Status Register

bit7 =0 reserved

bit6 =1 Transmitter empty

bit5 =1 Transmitter holding register empty
bit4d =1 Break interrupt

bitd3 =1 Framing error

bit2 =1 Parity error

bit1 =1 Overrun error

bit0 =1 Data ready

1/0 Address 3FEh

R UART Modem Status Register
Modem control is not implemented

bits 7-0 =BOh reserved REV C Hopper
=00h reserved REV B Hopper-(Early production HP95SLX)

1/0 Address 3FFh

R/W UART Scratch Pad Register

The baud rate divisor should be chosen as follows:

Baud rate Divisor
300 180h
600 COh
1200 60h
2400 30h
4800 18h
9600 0Ch
19200 06h

R ERIAL PORT

Protocol

The HP9SLX IR 1/0 port is a half-duplex serial port using infrared light as a communication channel.
The port is capable of communicating at 2400 baud using any of the available word modes used for the
‘wired serial port. The mark state, logic level 1, is indicated by no transmission. The space state, logic
level 0, is transmitted by a single 30 msecond IR pulse per bit. A bit time at 2400 baud is 416
mseconds. An example IR I/0 frame is shown below.

IR Frame
strt | Data Bits :Stop
bt , ' bit
0 : 1 0 1 0 0 . 1 . 1T 0 : 1
T O O
] H : :]
aumd & K1 i H | L * L] A A
’ Iﬂcucl
30 us
puise
Hardware

The HP9SLXIR 1/0 hardware block diagram is shown below.

IR I/O Hardware
B %
‘ »m
Tranemitter
2250
Cormp atithe
UART
il "
”"': af Receiver | %

The UART used is the same UART used for wired serial communication. When IR 1/0 mode is
chosen, the UART is disconnected from the wired serial port and connected to the IR 1/O port. The
wired TX line will be held in the marking condition, spacing condition in early production HP93LXS, to
indicate that the serial port is idle. The wired serial RX line is just ignored. The UART is used to

10

transmit and receive the serial data streams. The output of the UART is converted to the IR output
protocol and then converted to light by turning an infrared LED on and off. The LED transmits at a
wavelength of 940nm. The infrared receiver uses a photo diode to detect the incoming IR light. The
light pulse is transformed into a CMOS level digital pulse by the IR receiver. The IR format decoder
then generates the appropriate serial bit stream which is sent to the UART. Due to reflections, the IR

serial port receives everything that it transmits. This must be taken into account in software.

Software

Software control of the HP9SLX IR 1/0 port is very similar to the wired serial port. All of the BIOS
routines support IR as well as serial. The baud rate must be sct to 2400 as higher baud rates are not
functional. To turn on power to the IR receiver either Int 15h can be used as shown previously, or bit 2
of the register at I/O address E301h can be set directly. Again, the other bits of this register should be
left alone. To select the IR 1/0 port, software Int 15h can be used as shown previously. Again, it is
recommended that the BIOS routines be used to set up the port. The IR port can also be chosen by
writing a 04h directly to the register at 1/O address E30Ah.

After the port is chosen and powered up, the UART can be used to transmit and receive as it was used

in the RS232 wired serial port. The only issue to keep in mind is that the IR 1/0 port will receive
everything it sends.

11

OTHER IR COMMUNICATION

The IR communication hardware of HP9SLX also supports three other IR communication modes.
These modes are REDEYE, software controlled communication, and modulated output mode. These
formats are all software controlled using the IRFMAT register and the IRCNT register. The IRFMAT
register is located at 1/O address E30Ah and contains control bits to choose the IR communication
format. The IRCNT register is located at I/O address E30Bh and is used to transmit a bit or wave
form to the LED or monitor the IR receiver. The registers contents are as follows:

IRFMAT Register
1/0 Address E30Ah
Bit Name Description
0 RED This bit activates REDEYE transmit mode when set.
1 MDLTE This bit activates Modulated output mode when set.
2 IRURT This bit chooses the IR 1/0 port when set.
3 MDSEL This bit chooses whether the 32kHz clock or the Baud rate divisor 16x

clock is used as a modulation source for both Modulated output and
UART modes. If set, the baud rate divisor 16x clock is chosen.

4 PMOD This bit chooses whether or not the UART mode uses a single pulse
or modulated output. If set, the output from the UART sends out 6
pulses instead of 1 for a space or logic 0 bit.

5 LBF LED Buffer Full. This bit is used in REDEYE mode to indicate that
the contents of LBR have not yet been transmitted. Writing to LBR
sets this bit.

6 ELBE Enable Interrupt on LBR bit Empty. If this bit is set, an interrupt will
occur if LBF is cleared

7 UNREG This bit should never be set. It may cause hardware damage.

NOTE: Only one of bits 0-2 should be set at a time.

IRCNT Register

1/0 Address E30Bh
Bit Name Description
0 LED This bit is used to turn on the IR LED. When set the LED is turned
on. Care should be taken to avoid setting this bit for long periods of
time or hardware damage may occur.
1 LBR This bit contains the half-bit to be transmitted in REDEYE format. A
one will send an ’on’ half-bit
2 MDLD This bit is used to turn on and off the modulated LED output in
- | Modulated output mode (MDLTE=1). When set, a modulated
waveform is output.
34 Undefined
5 IRE IR Event. This bit is st by an input pulse from the IR recciver to
indicate that an IR event has occurred. It must be reset by writing a
0’ to it.
6 EIRI Enable IR Interrupt. If this bit is set, an IR interrupt will occur when
the IRI bit is set.
7 IRI IR Input pin. This allow the output of the IR receiver to be
monitored. It is a read only bit

ED Format

The REDEYE portion of the HP9SLX had not yet been fully tested as of the writing of this document
and therefore is not guaranteed to function completely. The hardware consists of the RED, LBF and
ELBE bits in the IRFMAT register and the LBR bit in the IRCNT register. The REDEYE format
consists of 15 bit frames of a precise format. Each bit of the frame consists of two half-bits. The
“duration of each half-bit is 427 mseconds. The half-bit is considered *on’ if the LED is pulsed 6-8 times
during the half-bit time. HP9SLX uses 8 pulses. The pulscs and all of the timing is generated by using
the 32,768 Hz oscillator. Each bit is encoded for transmission. A one is encoded as two half-bits, the
first one ’on’ and the second *off. A zero is transmitted by an *off-on’ sequence. Each frame contains:

Start-bits Three half-bits *on-on-on’
Hamming bits Four bits for error correction
Data bits Eight data bits

Stop bits Three half-bits 'off-off-off

The format of a complete REDEYE frame is as follows:

REDEYE Frame

Start Error Correction Bits

M1 HS

3

000wy

|

Ty
esassess Q)
sssessnnny
cooemas
LY T Y

! 854 us
& puises / l I
S2icHz 50% duty cycle 427 v
t
i
' . | Stop
1 ' '
1 ' ' : ' v LSB | tie >=3
1 7Y ¢ ¢ @ v @ v 0 v 0 |
R ' N A e T
T ' 1 1 i ¢ s ¢ |
1 H ' ' 1 : ' : ' 1

W W W WU

To enter REDEYE mode, the RED bit must be set. All REDEYE frames must be generated by
software. All that the hardware is designed to do is output half-bits. REDEYE transmission is
initiated by a write to the LBR bit. This sets the LBF flag and starts the half-bit transmission. The bit
in LBR is transferred to the formatter and the LBF bit is cleared. This indicates that it is safe to write
another half-bit to the LBR. If the ELBE bit is set, this will cause an interrupt. After a full balf-bit
transmission time, if the LBF is clear, the output will remain idle. Otherwise, the next half-bit will
immediately be transmitted. After LBF is cleared, there are 396 mseconds in which to write the next
half-bit to LBR avoid REDEYE transmission errors.

ftwar ntrolled M

The LED bit in the IRCNT is provided for software generated IR output formats. Due to LED
current limitations, the duty cycle of this wave form should be limited to a time average of 29%.

Software can also monitor the IR receiver to receive incoming data. This can be done using the IRE,
IRI, and EIRI bits in the IRCNT register. The IR pulses into the receiver can be stretched by as much
as 300 ms from the end of light transmission, so this must be taken into account by the software.

Modulated Output Mode

A Modulated output mode is provided and can be used to output any custom modulated wave form
desired. To choose Modulated mode, the MDLTE bit in the IRFMAT register must be set. Two
different modulation sources are available. The 32,768 Hz clock can be used, as well as the baud rate
16x clock. The MDSEL bit is set to a 1 to select the baud rate 16x clock. Otherwise, the 32768 Hz

14

cock is used. If the baud rate 16x clock is chosen, the baud rate must be set in the UART to obtain the
desired modulation frequency. If a baud rate of 2400 is chosen the modulation frequency is 38.4 kHz.
After these bits have been initialized, the MDLD bit in the IRCNT register is used to output
modulated signals. Whenever the MDLD bit is set to a one, a the LED is modulated by the
modulation source. The output of the modulation source will be a 50% duty cycle if the 32kHz clock is
used. If the baud rate divisor 16x clock is used, the on time for each pulse will be 3.25 ms. Care must
be taken not to exceed a 29% communication duty cycle.

lat M

The IR UART function, described previously as it is used for the IR 1/0 port, can also use modulated
output mode. In this mode, 6 pulses of the modulation source will be sent out instead of a single pulse.
To select this output mode, the PMOD bit in the IRFMAT register must be set along with the IRURT
bit. The modulation source is again chosen using the MDSEL bit. The 8250 compatible UART is
again used to output data as in the IR 1/0 port. An output waveform is shown below.

Modulated IR UART Output Frame

Start Data Bits Stop
bit bit
0

Ty w N W N)
o on > > =B -
-h

f

@ puses
of
moduistion souce

14

Custom Artwork

Keyboard Overlay

Custom overlays can be made for the HP 95LX. They can be made to either lay over the
standard overlay, or the can be made to stick on permanently. Northern Engraving does the
standard keyboard overlays. They use a tool that was supplied by Hewlett Packard. They
are willing to manufacture custom overlays using this tool for Hewlett Packard approved
Independent Software Vendors. They are able to generate custom artwork to vendor
specifications, or they can use artwork supplied by the vendor.

If you are interested in custom overlays for your HP 95LX| application, then you should
contact:

Richard Kirby

Hewlett Packard

1000 NE Circle Blvd.
Corvallis, Oregon 97330
Telephone: (503) 750-2360

IC Cards

If required, Epson can provide custom artwork printed on the IC cards. Information on
submitting artwork designs to Epson is included in the materials that should be obtained
directly from Epson America. To get materials from Epson, contact:

David Rifkin

Epson America

20770 Madrona Avenue

Torrence, California 90509-2842

Alternatively, labels or silkscreening can be applied to the cards after they have been delivered
from Epson.

DRAFT Custom Artwork 14-1
4/13/91 10:59

PC CARD
STANDARD

Release 1.0

August 1990

A

Personal Computer Memory Card International Association
PCMCIA

Copynght 1990 Pesonal Computer Memary Card International Association. All Rights reserved.

THI5 DOCUMENT MAY NOT BE COPIED, MODIFIED OR DISTRIBUTED, EXCEPT THAT MEMBERS OF PCMCIA MAY
COPY THIS DOCUMENT FOR DISTRIBUTUTION AND USE WITHIN THEIR ORGANISATIONS PROVIDED THE
DOCUMENT IS COPIED IN ITS ENTIRETY AND ALL COPYRIGHT AND OTHER NOTICES CONTAINED IN THE
ORIGINAL ARE REPRODUCED IN EACH COPY.

m—

—

THIS DOCUMENT CONTAINS MATERIAL COPYRIGHTED BY JAPAN ELECTRONIC INDUSTRY DEVELOPMENT
ASSOCIATION (EIDA).

1989 - 90 Officers
Chairman: President:
John Reimer Jim Prelack
Fujitsu Microelectronics Inc. Lotus Development
Marketing Committee: Standards Committee:
Neal Chandra Daniel Chen
Poget Computer Mitsubishi Electronics America

Initial Release
2nd Revision
3rd Revision
4th Revision
Release 1.0

REVISIONS

27 March 1990
4 May 1990

14 June 1990

12 July 1990

21 August 1990

Standards Committee

* Committee Co-chair

1989 - 1990

Committee Chairman:

Daniel Chen Mitsubishi Electronics America
Task Force Chair:

Terry Moore Databook

Stan Sharp ITT Cannon

Mike Dryfoos Microsoft

Reneé Bader Poget Computer
Committee Members:

Art Lesh AMP

Ken Jacobsen Atari Corporation

Hidemaru Sato Citizen Systems

Don Vendetti DataI/O

Chuck Brewer Digital Research

Chris Walke Dupont Electronics

Richard Vincent Epson

* Joel Urban Fujitsu Components
Phil Ackerly Fujitsu Microelectronics
Howard Honig Hewlett Packard, Corvallis Division
Tony Wutka IBM
Kurt Robinson Intel
Bill Claff Lotus
Roger Fearing Microlytics
Tom Cruise Molex International
Jim Clayton Motorola, Inc.

* Ray Salas NEC Technologies
Jeffrey Glacchetti Shigma/Fujisoku
Ching Jeng Silicon Storage Technology, Inc.
Mark Cummings SRI
Steve Gross SunDisk Corp.

Brady Le Blanc Techworks
Daniel Baudouin Texas Instruments
Avram Grossman Toshiba

PREFACE

An extraordinary ammount of progress has taken place over the past twelve months in the development
and growth of memory card technology. With the formation of the PCMCIA in mid-1989, a focus for the
computer industry's interest in this memory card technology was created and work was begun on this
standard.

The handful of companies who joined last year are now surrounded by dozens of additional member
companies who are adding their collective interest and energy to the effort to standardize this memory
card technology. The current PCMCIA membership consists of a wide variety of large and small
companies, based in the United States, Europe, Japan and other countries. Participating in the creation of
the standard were companies representing computer manufacturers, software suppliers, system
integrators, hardware manufacturers and semiconductor memory card manufacturers.

This initial Release 1.0 of the PCMCIA standard, entitled PC Card Standard, reflects the effort and
perseverence of many individuals who have spent countless late nights and air-miles in the effort to
create this document. Special thanks to Daniel Chen, PCMCIA Technical Committee chair, and to all of
the sub-committee chairpeople who contributed a disproportionately large amount of time and effort.

This standard has been created by the PCMCIA with the cooperation of the Japanese Electronic Industry
Development Association (JEIDA).

Future releases of this standard will provide for additional capabilities beyond those supported by this
initial release

Board of Directors
PCMCIA
August 1990

INTRODUCTION

Among the many applications of 1.C. memory cards, oneof the most appealing is to use them to replace slow,
fragile, bulky and power-wasting magnetic disk drives. This standard describes a family of memory
standards used as mass-storage devices in computer systems.

The intent of this standard is not to impose a single philosophy on all card applications. Rather, we want
to develop a standard that willk:

@ Be appropriate (in its minimal form) for use with very small memory cards for example, appliance
memory modules.

® Allow the use of different formats for recording data. The marketplace will decide which format
becomes predominant.

@ Recognize the legitimate requirements of specialized applications, and establish means by which
OEMs can develop new data formats for their specific applications.

PCMCIA PC CARD STANDARD

August 21, 1990
CONTENTS
Page
1.0 GENERAL 10
20 SCOPE 10
3.0 CARD PHYSICAL DIMENSIONS 11
4.0 CARD INTERFACE 27
4.0 Memory Card Features 29
4.1 Signal Description 29
4.2 Operating Conditions 32
43 Memory Function 32
44 Timing Function 36
4.5 Electrical Interface 39
4.6 Card Detect 40
4.7 Battery Voltage Detect 40
4.8 Power-up and Power-down 41
49 Future Tasks 42
5.0 CARD METAFORMAT 43
5.1 The Standard #“
5.2 Basic Compatibility (Layer 1) 49
5.3 Data Recording Formats (Layer 2) 65
54 Data Organization (Layer 3) 80
5.5 System-Specific Standards (Layer 4) 82
5.6 Compatibility Issues 86
6.0 FAT FILE SYSTEM 89
7.0 EXECUTE IN PLACE 93
APPENDIX 1- Metafont Glossary 96
APPENDIX 2~ Hot/Cold Insertion Removal 100
APPENDIX 3 — Recommended Testing Method for Hot-Insertion and Removal 102

=OWVWENOUNEWN -

b pud

LIST OF TABLES

IC Memory Card Dimensions

Host Connector Pin Configuration

l;:atum %f PCMCIAS ;‘;ﬁ‘%’y Card
emory and ersion

Operating yC.'ziensditions

Main Memory Read Function for all of Memory
Main Memory Write Function for S , EEPROM and Single
Main Memory Write Function for OTPROM, EPROM and

Attribute Memory Read Function

Attribute Memory Write Function for SRAM and Single S
Attribute Memory Write Function for OTPROM, EPROM,

FLASH-EEPROM and EEPROM
Write Protect Functions

Main Memory Read Timing Sspeciﬁcation for all types of Memory
pecification SRAM
Attribute Memory Read Timing Specification for all types of Memory

Main Memory Write Timing

Electrical Interface

Batterey Voltage Detect
Power-up/Power-down Timing

Tuple Format

Tuple Codes

Null Control Tuple

Long Link Tuple

Link Target Tuple

No-Link tuple

End-of-List Control Tuple

Checksum Tuple

Alternate Language String Tuple
Device Information Tuples

Device ID

Device Sreed Codes

Extended Device Speed Codes

Device Type Codes

Level 1 Version / Product Information Tuple
The JEDEC Identifier Tuples

Level-2 Information Tuple

Card Initialization Date Tuple

Battery Replacement Date Tuple
Format Tuple

Format Type Codes

Error Detection Type Codes

Format Tuple for Disk-like Regions
Error Detection Format Summary
Format Tugle for Memory-like Regions
Geometry Tuple

Byte Order Tuple

Byte Order Codes

Byte Mapping Codes

Data Organization Tuple

Data Organization Codes

DOS Boot-Block Structure

Extended BPB

Boot Record Format for Small Partitions
Boot Record Format for Large Partitions

ly EEPROM
Supply EEPROM,

Page
26
26
29
29
32
3

y FLASH Card 33

M
M4
34

35
35
36
36
37
39
40
41
49
50
53
53
54
54
55
56
57
59
60
60
61

o
bt

CEPEPBYYJIFJAIIIISERES

O 0 N 0N e W N -

[
o

1
12
13
14
15
16

LIST OF FIGURES

TYPE I PC Card Package Dimensions

TYPE I PC Card Package Dimensions
TYPEIPC

TYPENIPC

Thickness of Label

Card Connector Socket

Connector

PC Memory Card Contact Pins

Recommended Right Angle Connector PCB Footprint
Recommended Straight Connector PCB Footprint
Memory Card Guide

Read Timing Chart

Write Timing Chart (WE control)

Write Timing Chart (CE control)

Card Detect

Power-up/Power-down Timing

PCMCIA PC CARD STANDARD

24
24

37
38
38
40
41

August 21, 1990

General/Scope

1.0 General

The PC Card system design guideline is endorsed by PCMCIA member companies as well as Japan
Electronic Industry Development Association (JEIDA).

20 Scope

This design guideline details mechanical, electrical interface, host interface protocol, and data
format of a parallel type IC card assembly.

-10-

PCMCIA PC CARD STANDARD
August 21, 1990

SECTION 3
CARD PHYSICAL DIMENSIONS

-11 -

Card Physical Dimensions

[

EE E EE

E

Card Physical Dimensions

This section of the specification defines the card physical outline dimensions, connector system,
connector reliability, connector durability and PC card guidance system.

Card Dimensions
Two types of PC Cards are specified within this specification. The two typesare Type I (see Figure 1)
and Type Il (see Figure 2). The Typeland Type Il PC Cards differ in thickness. The Type I PC Card

is prefered and the TypelI PCCard isoptional. The Typell PCCard thicknessis greater in the substrate
area (see Figures 2 & 4)

The PC Card dimensions for the Type I and Type II are shown in Table 1.

The connector location and pin numbers for the Type Iand Type II PC Cards are shown in Figures 1
and 2.

The PC Card polarization technique and dimensions are shown in Figures 1 and 2. A mismated PC
Card and connector shall withstand a minimum 22 pounds (10Kg) static load without damage to the
PC Card or connector.

The PC Card must be opaque (non see-through).

Write P Switch (WPS)

3.15.1 The WPS, if installed, shall be located to the right of the PC Card centerline when viewed from
the end opposite the connector (see Figures 1,2,3 & 4).

3.1.5.2 The write protected position of the WPS shall be the far right position. The write protected
switch position shall be indicated by an arrowand either "Write Protect” or "Protect” indicated.
The arrow and indication may be indicated in the PC Card end as shown in Figures1,2,3 &
4, on the bottom cover as indicated in Figure 5 or on both the end and bottom cover.

Battery Location

3.1.6.]1 The battery, if installed, shall be located to the left of the PC Card centerline when viewed from
the end opposite the connector (see Figures 1,2,3 & 4).

3.1.6.2 The battery holder, if installed, should be designed so that the positive (+) side of the battery
faces the top surface.

-12-

PCMCIA PC CARD STANDARD
August 21, 1990

3:1.7 Label

s

E EEE

KEE

229

3:.1.7.] The thickness of the label, if used, (see Figure 5) shall not cause the PC Card to exceed the
thickness specified in Table 1.

2.1.7.2 Thelabel, if used, must withstand any environmental test specified by PCCard specifications.

2:1.7.3 The JEIDA and PCMCIA logo location is shown in Figure 5. The JEIDA and PCMCIA logos
may be displayed on the label if authorized by the respective organizations.

Connector

The PC Card interconnect system specified shall be a 68 position 2 piece pin and socket. The socket
contacts shall be on the PC Card memory card connector.

The socket contacts are located on the PC Card as shown in Figures 123 & 4.
The PC Card connector socket shall be configured as shown in Figure 6.

The PC Card connector socket layout shall match the host pin connector socket layout as shown in
Figure 7.

Host Connector

The host pin connector shall be a 68 pin connector. The host pin connector opening polarization and
pin location shall be as shown in Figure 7.

The host connector pin configuration is shown in Figure 8.
The host pin lengths are shown in Table 2.

The socket and pins contact area outermost plating shall be Gold or other plated materials which are
compatible with Gold and meet the requirements specified in Paragraph 3.4.1.

The recommended host connector PCB footprints for the right angle connector (Figure 9) and the
straight connector (Figure 10) are shown without mounting or hardware hole locations.

The interconnect system shall pass all requirements of Paragraph 3.4.0 (Connector reliability) and
Paragraph 3.5.0 (Connector durability).

3_.2J_Qltisrecommended,ifaconnectoreiectormechmismisused,d\econnectormechanismpassall

3.3.0
331

232

requirements, as applicable in Paragraphs 3.4.0 and 3.5.0 for reliability and durability.
PC Card Guidance (see Figure 11).

The PC Card shall be guided by the host connector for a minimum distance of .197" (5.0) before
engagement.

To ensure alignment of the PC Card to connectors, the PC Card should be guided for a minimum
distance of 1.570" (40.0) before engagement.

-13 -

Card Physical Dimensions

The interconnect system is specified in Paragraph 3.2.0 shall meet or exceed all reliability test

requirements of this paragraph.
No. Item Standard Testing
341 1. Office Guaranteed number of See Paragraph 35.1
Mechanical Environment Insertions/Ejections
Performance 10,000 MIN.
2. Harsh Guaranteed number of See Paragraph 35.2
Environment Insertions/Ejections
5,000 MIN.
3. Total insertion | 8.8 lbs (4Kg) MAX. Insert and extract at speed of
force 1" (25mm)/min
4. Total pulling 1.5 1bs (.68Kg) MIN. Insert and extract at speed of
force 1" (25mm)/min
5. Single pin .022 Ibs (10gr) MIN. Pull the gauge pin shown at left
pulling force at speed of 1" (25mm)/min.
. R b Gauge pin's surface must be
wiped clean of dirt and
0.0165 + 0.005 (0.42) lubrication oil.
Gauge:
Material - Tool making steel
Hardness - HRC = 50 to 55
6. Pin holding 2.2 1bs (1Kgs) MAX. Push pins on the axis at spced of
force 1" (25mm)/min
7. Vibration a. No mechanical MIL-STD-202F
and high defects should occur METHOD 204B,
frequency on the parts. Test condition B (15G peak),
b. Must not cause 10Hz 2000Hz;
current interruption See detail 1
of 100ns or more.
8. Shock a. No mechanical MIL-STD-202F
defects should occur METHOD 213B,
on the parts. Acceleration 50G,
b. Must not cause Standard holding time 6 ms,
current interruption semisine wave;
of 100ns or more. See detail 1

-14 -

PCMCIA PC CARD STANDARD

August 21,1990
No. Item Standard Testing
42 1. Contact a. Initially 40 mQ MAX. MIL-STD-1344A
Electrical resistance b. After test 20 mQ MAX. METHOD 3002.1
Performance (low level) Open voltage < 20 mV
Test current 1 mA
2. Withstandable | a. No shorting or other MIL-STD-202F
voltage damages when 500 Vrms METHOD 301
AC is applied for 1 minute
b. Current leakage 1 mA MAX.
3. Insulation a. Initially 1,000MQ MIN. MIL-STD-202F
resistance b. After test 100MQ MIN. METHOD 302
measure within 1 minute
after applying 500 V DC
4. Current 0.5 A per pin
capacity
5. Insulation UL94V 0 equivalent
material
243 1. Operating Operating temperature:
Environ- environment -20°C to +60°C
mental Relative humidity:
Performance 95% MAX.
(Non-condensing)
2. Storage Storage temperature:
environment -40°C to +70°C
Relative humidity:
95% MAX.
(Non-condensing)

-15 -

Card Physical Dimensions

No. Item Standard Testing
344 1. Moisture Contact resistance MIL-STD-202F
Environ- resistance 34.2.1b. METHOD 106E
mental Insulation resistance (excluding vibration); 10 cycles
Resistance 3.4.23b. (1 cycle = 24 hours)
with connectors engaged.
2. Terminal No physical damage should MIL-STD-202F
shock occur during testing. METHOD 107G
Contact resistance Test cond. A, -55°C to +85°C
3.4.2.1b. 5 cycles (1 cycle = 1 hour)
Insulation resistance with connectors engaged.
34.23.b.
3. Durability Contact resistance MIL-STD-202F
(High 34.2.1b. METHOD 108A
temperature) Test cond. B, 85°C, 250 hours
with connectors engaged
4. Cold Contact resistance JIS C 5021, -55°C, 96 hours
resistance 34.2.1b. with connectors engaged
5. Humidity Contact resistance MIL-STD-202F
(normal 34.2.1b. METHOD 103B
condition) Insulation resistance Test cond. B, 40°C, 90 to 95% RH
34.23.b. with connectors engaged.
6. Hydrogen Contact resistance JEIDA 38 3ppm
sulfide 34.2.1b. 40°C, approx 80% RH
96 hours, with connectors
engaged
7. Salt water No harmful corrosion MIL-STD-202F
spray (to contact performance) METHOD 101D
should occur on the pin Test cond. B, Concentration 5%
and socket contacts. 35°C, 48 hours, with connectors

disengaged.

-16-

PCMCIA PC CARD STANDARD
August 21, 1990

The interconnect system as specified in Paragraph 3.2.0 shall meet or exceed all durability require-
ments of this paragraph.

Test conditions for the mate/unmate cycles are:
Cycle rate 400-600 cycles per hour
Temperature 15 to 35°C (59 to 95°F)
Relative Humidity 30-80%

Barometric pressure 24-31 inches of Mercury

The office environment is defined in ELA-364A as class 1.1 - year round air conditioning (non-
filtered) with humidity control.

Test Sequence
Contact Resistance per test method 3.4.2.1.A
Mate and unmate the connector for a total of 10,000 cycles
Contact Resistance per test method 3.4.2.1.B

_ The harsh environment is defined in EIA-364A as class 1.3 - no air conditioning, no humidity
control with normal heating and ventilation.

Contact Resistance per test method 3.4.2.1.A

Mate and unmate the connector 1,000 cycles TOTAL CYCLES = 1,000
Humidity Resistance per test method 3.4.4.5 (1 cycle =24hours)
Mate and unmate the connector 1,000 cycles TOTAL CYCLES = 2,000
Humidity Resistance per test method 3.4.4.5 (1 cycle =24hours)
Mate and unmate the connector 3,000 cycles TOTAL CYCLES = 5,000
Humidity Resistance per test method 3.4.4.5 (1 cycle =24hours)
Hydrogen Sulfide test per method 3.4.4.6

Contact Resistance per test method 3.4.2.1.B

-17 -

PCMCIA PC CARD STANDARD

August 21,1990
e e =)
3.378
3.362
SUBSTRATE AREA (ggsg)

AN N N N . N N N NI N

NN N N N N NN N X

N\

/ . oo
.394
IVTERC Ny/ /yz / (10.00) MIN 1
) 0 | |

A

263
CONNECTOR 2X (.',-,o)- =t
2.130 —~ —2x 38 N \160
i |
. .098
.04l 5§3.90 . 2x MAX —=d |
.037 gg'., (2.50)

/\\ RECOMENDED BATTERY LOCATION. THE BATTERY HOLDER SHOULD BE
DESIGNED SO THAT THE POSITIVE SIDE OF THE BATTERY IS UP.

2. THE | C MEMORY CARD SHALL BE OPAQUE (NON SEE THRU)

Fig 2. TYPE I PC Card Package Dimensions

-19 -

Card Physical Dimensions

Fig3. TYPEIPC

Figd. TYPEIIPC

«-20-

PCMCIA PC CARD STANDARD

CONNECTOR END

S

A «=m PROTECT " | JEIDA/PCMCIA (LOGO)

2.968
(75.39

.8B6
(47.90) MAX

g IF WRITE PROTECT SWITCH INSTALLED

OTHER REGULATORY LOGOS.

NOTE: Labels must withstand all environmental tests as specified.

Fig5. PC Card Label

221 -

August 21, 1990

MAX

Card Physical Dimensions

_l ‘ 037
1 10.94) MIN

PIN INSERTION
Fig 6. Card Connector Socket

1.65
r——— (a.9) REF ‘

o
=
.
*
Sae |
&= 1 Lo
LI'{ '.37 PlTCH

£
£
-6 H-
| 14

PIN LAYOUT
2 ROW - 68 PINS
.037
—i1e 033 03
42 (8:32) 4
36) (':3
360)
3.45
. .| 34 ﬂ
T =
Tou_] s =
045 e
I8 2033 o
(0.95)
2,38 0.85
2,132
(3439
54,15
ERONT VIEW

Fig 7. Connector

-22-

PCMCIA PC CARD STANDARD
August 21,1990

mm]pﬁw

06 10°
0. 50)
020 0.40

(0.5) MAX ——=

.098

(2.5) ~=
MIN
L

NOTE: Length "L" given in Table 2.

Fig 8. PC Card Contact Pins

Card Physical Dimensions

INSERT CARD

36

!
225
1 EamrEF

q4_//’*;:f;t:::::::::::f:::::::::%;%;%j] qu.ég

*33 1.955
}%225 . (i333)
654 (i28) |
()

Fig 9. Recommended Right Angle Connector PCB Footprint

*33

e -9 """"""""""""""""""""""""" "9 9 225
/ @ Q—--mermr—ecmeme— . (S. 7:S)REF
e e-
\ 1 _ 1
*36 3xx955\
ISC
1.654
1.648
(42.0!) '
41,81

Fig 10. Recommended Straight Connector PCB Footprint

-24 -

PCMCIA PC CARD STANDARD
August 21, 1990

|

£\

t
l394
ao.oo‘) MIN

Lnun
P
-3

-
7

i
[N |

1

A

J3
43
4
4

("4 A

3
1?5)

(

IT IS RECOMENDED THAT THE | C MEMORY CARD BE GUIDED FOR A MIN
DISTANCE OF 1.570 (40.0).

& THE CONNECTOR MUST GUIDE THE | C MEMORY CARD FOR A MIN
DISTANCE OF 197 (5.0) BEFORE ENGAGEMENT.

MAX PIN LENGTH .20I (5.1
Fig 11. PC Card Guide Guidance

Card Physical Dimensions

INTERCONNECT | SUBSTRATE
LENGTH WIDTH AREA AREA. A\
(85.6 £0.20) | (54.0 20.10) | (.65 £0.06) | (.65 £0.08)
3.370 +.008 | 2.26 +.004 | .065 £.002 098
TYPEU | (85.6 $0.20) | (54.0 £0.0) | (.65 £0.06) (2.5) MAX
NOTES:

/\ INTERCONNECT AREA AND SUBSTRATE AREA THICKNESS ARE SPECIFIED FROM
THE IC MEMORY CARD CENTER LINE TO EITHER THE TOP OR BOTTON SURFACE

2. MILLIMETERS ARE IN PARENTHESES ().

Table 1 PC Card Dimensions

PIN TYPE | PINLENGTH (L) | PIN®
pETECT | a2 (3+€) 36, 67
GENERAL ::23 (2'.?55) oTH%thple
Poner | 5 (3s) | shses

Table 2 Host Connector Pin Configuration

-26-

PCMCIA PC CARD STANDARD
August 21, 1990

SECTION 4
CARD INTERFACE

«27 -

Card Interface

4. CARD INTERFACE RESERVED PINS

PCMCIA MEMORY CARD PIN ASSIGNMENTS

Pin: Signal i VO ' Functlon | H=- Pin| Signal |VO| Function +-
1| GND ! Ground 35 | GND Ground
2! D3 vO| Databit3 36 | CDt O | Card detect -
3| D4 rvoj Databité 37 | DU vO| Databit 11
4 ;, D5 VO 1 Databit$ 38 | D12 vO| Databit 12
5 D8 ! vO| Databité 39 | D13 YO Databit 13
6 | D7 | WO Databit? 40 | D14 VO | Databit 14
7 | CE1 | V| Card enable - 41 | D15 vO| Databit 1S
8 ! A10 1 | | Address bit 10 42 | CE2 { | Cardenable -
9 | OE | | Output snable - 43 | RFSH ~ i | Refresh
10 | A1l i | Address bit 11 44 | RFU Reserved
11 i A9 1 ' Address bit9 45 | RFU Reserved
12 | A8 | i Address bit 8 I 46 | A17 | | Addressbit 17
13 | A13 | | | Address bit 13 g 47 | A18 1 | Address bit 18
14 | A14 i | Agdress bit 14 i 48 | A9 t | Address bit 19
15 | WE/PGM | | | Write enable | - 49 | A20 | | Address bit 20
16 | RDY/BSY | O | Readybusy (EEPROM) | +/- 50 | A21 { | Address bit 21
17 | Vée 51 vee
18 | vpp! 52 | Vpp2
19 | A8 | | Address bit 16 53 | A22 | | Address bit 22
20 | A1S5 | | Address bit 15 84 | AJ | | Address bit23
21 A12 | | Address bit 12 55 | A24 | | Address bit 24
2 | A7 | | Address bit7 56 | A25 | | Address bit 25
23 | A6 | | Addressbit6 57 | RFU Reserved
24 | AS | | Address bt 5 . 58 | RFU Reserved
25 | M | | Addressbit4 5¢ | RFU Reserved
26 | A3 | | Addressbit3 60 | RFU Reserved
27 | A2 | | Addressbit2 61 | REG { | Register select -
28 | Al 1 | Address bit 1 62 | BvD2 O | Battery vottage detect 2
29 | AD | | Address bit0 63 | BVDY O | Battery voltage detect 1
30 | DO 1O | Databit0 64 | D8 yO! Databit8
a1 | D1 1O | Databit1 65 | D9 vO| Databit®
32 | D2 VO | Databit2 68 | D10 VO | Databit10
23 | WP O | Write protect + 67 | CD2 O | Card detect -
34 | GND ' Ground 68 | GND Ground

NOTE: Active "low" signals are indicated by —(minus).
Active "high® signalis are inficated by +(pius).

PCMCIA PC CARD STANDARD

August 21,1990
4.0 MEMORY CARD FEATURES
Itern Feature
Access Random Access
Data Bus Bus 16 bits/8 bits
Memory Types MaskROM, OTPROM, EPROM, EEPROM, Flash-EPROM, SRAM
Memory Capacity 64MB (A0-A25) maximum '
REG function Attribute Memory for storing card identification
Table 3 Features of PCMCIA Memory Card
401 Memory Types and Speed Version
Memory Type Speed Version
250ns 200ns 150ns 100ns
SRAM defined defined defined defined
MaskROM, OTPROM, EPROM not
EEPROM, Flash-EPROM defined defined defined defined

Table 4 Memory Types and Speed Version

4.1 SIGNAL DESCRIPTION
Signals on the PCMCIA interface are considered asserted, (+) within the range 2.0 to 5.25 volts and
negated, (-) within the range of 0.0 to 0.5 volts. All signals are considered to be active when the
line is asserted; (+) unless the signal name is preceded by the minus sign, (-) when it shall be
considered active when the line is negated.
All signals are grouped under 4 classifications, I (Input) O (Output) I/0 (Bidirectional) and R
(Reserved). Input signals are those driven by the host and Output signals are those driven by the
Memory Card
All pins identified as ground shall be connected to signal ground at the host. Signal pins identified
as Reserved shall have no connection at the host.
The data path to the memory card, is 16 bits wide and consists of signals D0-D15. The card
supports an address bus, of 26 bits, (A0-A25) giving a maximum addressing range of 64

megabytes,

411 Address BUS (AQ-A25)
Signals A0 through A25 are address bus lines driven by the host which enable direct ad-
dressing of up to 64 megabytes of memory on the card. Signal A0 is not used in word
access mode. Signal A25 is the most significant bit. Bit number and significance decrease
downward to AQ.

412 Data BUS (D0-D15)
Signals DO through D15 constitute the bidirectional data bus. The most significant bit is
D15. Bit number and significance decrease downward to DO.

-29 -

Card Interface

4.1.3

417

Card Enable (CE1 & -CE2)
The -CE1 and -CE2 lines are active-low card enable signals driven by the host; -CE1 is used

to enable even bytes, -CE2 for odd bytes. A multiplexing scheme based on A0, -CE1 and
-CE2 allows 8 bit hosts to access all data on D0..D7 if desired. See table 6.

Reference Section 4.3.1 for additional information regarding (Main Memory Read Function-
ality).

Qutput Enable (-OF)

The -OE line is the active-low signal driven by the host which is used to gate read data from
the memory card. Memory cards incorporating static RAM fall into two categories: cards
for which the -OE signal must be deasserted during write operations, and cards that do not
use the -OE signal during Write operations and allow the signal to be in either state.

ri -WE/-
The -WE/-PGM signal is driven by the host and used for gating Write data to the memory

card. This line is also used for memory cards employing programmable memory technolo-
gies. See Section 5 for identification of programmable memory technology cards.

Ready/Busy (+RDY/-BSY)

The +RDY/-BSY line, is driven low by the memory card to indicate that the memory card
circuits are busy, and unable to accept a data transfer operation. The +RDY/-BSY signal is
set low when the card is busy processing a previous write command. The signal +RDY/
-BSY is set high (+), when the memory card is ready to accept a new data transfer com-
mand. The Host memory card socket must provide a pull-up resistor. See Table 16, Electri-
cal Interface.

Card Detect ((CD1 & -CD2)

The -CD1 and -CD2 signals provide for Pproper memory card insertion detection, and have
been positioned at opposite ends of the connector to facilitate the detection process. The
signals are connected to ground internally on the memory card; thus they will be forced
low whenever a card is placed in a host socket. The host socket interface circuitry shall
provide 10K pull-up resistors to Vcc on each of these signal pins.

Write Protect (+WP)

The WP output signal is used to reflect the status of the Write Protect switch on the mem-
ory card. If the memory card Write Protect switch is present, this signal will be asserted by
the card when the switch is enabled, and deasserted when the switch is disabled. If the
memory card has no Write Protect switch, the card will connect this line to ground or Ve,
depending on the condition of the card memory. If the card can always be written, the pin
will be connected to ground. If the card is permanently Write Protected, the pin will be
connected to Vcc.

419

PCMCIA PC CARD STANDARD
August 21,1990

The -REG signal is kept inactive, (+) for all normal accesses to what is known as the Main
Memory of the card. When this signal is active, () access is limited to Attribute Memory.
Attribute Memory is a separately accessed section of memory on the card and is generally
used to record card capacity and other configuration and attribute information. Main
Memory is used to store user data.

The timing of Attribute Memory may be different than that of Main Memory, refer to
manufacturer’s specifications for details. When Attribute Memory is accessed, only data
signals DO-D7 are valid and signals D8-D15 shall be ignored. Signals -CE1 and -CE2 and
A0 are still valid, but it is only possible to select even addresses, (a combination of -CE1/
-CE2/ A0 that requests an odd byte will resultin invalid data on the bus. Ref. Table 9.

For those PC memory cards that do not havea section reserved for Attribute Memory, all
Main Memory addresses shall begin with address (hex) OH and proceed for a minimum of
16 kilobytes of contiguous space.

Battery Voltage Detect (BVD] & BVD2)

The signals, BVD1 and BVD2 are generated by the memory card, as an indication of the
condition of the battery on the memory card.

Both signals are kept asserted when the battery is in good condition. When BVD2 is ne-
gated while BVD1 s still asserted, the battery is in a warning condition and should be
replaced, although data integrity on the card is still assured. If BVD1 is negated with BVD2
either asserted or negated, the battery is no longer serviceable and data is lost. (Ref. Table
17.)

Program Voltages (VPP1 & VPP2)

The VPP1 and VPP2 signals supply program voltages for programmable memory opera-
tion. These pins are to be connected to Vcc when VPP1 or VPP2 are not active and are not
being used for altering programmable memory. Refer to section 5 and the Card Informa-
tion Structure for more information on the characteristics of VPP1 and VPP2.

1 I n

The VCC and GND input pins have been placed at symmetrical positions on the memory
card to provide safety in the case of an inverted card insertion. Two power pins and four
ground pins are employed to reduce the impedance between the memory card and the
system.

231 -

Card Interface

4113 Refresh (RFSH)

Intended use is for pseudostatic SRAMS (PSRAM). Will be more clearly defined for use by
a future version of this standard.

Several pins have been identified as Reserved for Future Use. Neither memory cards, nor
Host systems shall make any electrical connections to these pins.

4.2 OPERATING CONDITIONS

Item Symbol IEEE Symbol Conditions

Operating Voltage VCC 5V=5%

Signal Interface Level - TTL or CMOS Level

Table 5 Operating Conditions

4.3 MEMORY FUNCTION

430

43.1

in Mem ion

This section describes operations of Main Memory Area.

ain Memorv R nction

The memory card can be configured with different types of memory devices, (such as
SRAM, MaskROM, etc.). Among all types however, the Read function shares common
signal state sequencing.

To access “‘Main Memory”’, the signal -REG shall be kept inactive and the signal -OE shall
be active during the Read cycle. Signals -CE1 & -CE2 control the activation of the Memory
Card and A0 control byte ordering on the data bus lines D0-D15. Table 6 shows the signal
states and data bus validity for the Read functions described below.

When both -CE1 and -CE2 are inactive, the card is in standby mode. When either -CE1 or

-CE2 become active, (low) the memory card is activated and ready for data transfers.
When -CE1 is active and -CE2 is not active, Byte Access mode is enabled (8-bit transfers).
Both the even-byte data and odd- byte data outputs will be valid in data bus lines D0-D7.
The selection of an even-byte or an odd-byte is controlled by signal A0.

When using word access (16-bit transfers), both <CE1 and -CE2 are active (low), and the
even-byte data and odd-byte data outputs are valid in data bus lines D0-D15. During
Word mode, signal A0 is ignored.

Odd-byte Only access is enabled by -CE1 being inactive and -CE2 active. During Odd-byte
Only access, only data lines D8-D15 contain valid data and address signal A0 is ignored.

-32-

PCMCIA PC CARD STANDARD

August 21,1990
Function Mode .REG | -CE2| -CE1 | A0 | -OE | -WE | VPP2 | VPP1 | D15-D8 D7-D0
Standby Mode X H|H |X X X | v€C | VC€C | High-Z | High-Z
Byte Access (8bits) H H| L L L H | VCC | VCC | High-Z | Even-Byte
H H|L |[Hj{L H | VvCC | vCC | High-Z | Odd-Byte
Word Access (16bits) H L L X L H | vccC | VCC |Odd-Byte| Even-Byte
| Odd-Byte Only Access | H L|H|X L H | VCC | VCC |Odd-Byte| High-Z

Table 6 Main Memory Read Function for all types of Memory

During Write mode, the function of signals -REG, -CE1, -CE2 and A0 are the same as in the
Read mode.

During Write mode, Signal -OE must be kept inactive, and signal -WE /-PGM is active. The
Memory Card can perform Write operations in 3 modes: Byte access, Word access, and

Odd-byte Only access. Refer to Table 7 for signal states and data bus validity for Main
Memory Write modes.

Function Mode .REG |-CE2{-CE1 |A0 | -OE |-WE | VPP2 | VPP1 D15-D8 | D7-DO
Standby Mode X H|H |X]| X X | v€C | V€CC | XXX XXX
Byte Access (8bits) H H|L L H L |vec]vec| XxX |Even-Byte
H H|L [(H|H L {vec|vec| XXX |Odd-Byte
Word Access (16bits) H L L X | H L | v€C | VCC |Odd-Byte |Even-Byte
Odd-Byte Only Access | H L|H [X]|H L | vCC| VCC |Odd-Byte| XXX

Table 7 Main Memory Write Fux{ction for SRAM, EEPROM and Single Supply FLASH Card

433

N -

During the Program function, signals -REG, -CE1, -CE2, A0, -OE, and -WE/-PGM are the
same as in the Main Memory Write function for SRAM Cards. In addition, 3 access modes
are supported as in the Read and Write functions. Refer to Table 8 for signal states and bus
validity regarding the explanations below. :
In Byte access Program mode, when A0 is asserted, VPP2 shall be at the programing volt-
age level and VPP1 inactive. Conversely, when A0 is negated, VPP1 shall be at the pro-

g voltage level and VPP2 shall be inactive. For Odd-byte Only access mode, VPP2
shall be at the programing voltage level and VPP1 inactive, (A0 is not used).

When Word access mode is used, both VPP1 and VPP2 are kept at the programing voltage
level.

.33 -

Card Interface

Function Mode REG |CE2 |CE1 | A0 [OE [WE| VPP2 VPP1 | D15-D8 | D7-D0
Write Inhibit X |H|H]|X|X]|X [VCCorVPP|VCCorVPP| XXX XXX
Byte Access (8bits) H|H|L|L|H|L]| vcc VPP XXX |Even-Byte
H|H|L |H|H|L VPP vce XXX |Odd-Byte
Word Access(16bits) | H | L { L | X |H]|L VPP VPP |Odd-Byte |[Even-Byte
{ Odd-ByteOnly Access| H | L | H [X [H |L VPP VCC |Odd-Byte| XXX

Table 8 Main Memory Write Function for OTPROM, EPROM and FLASH EPROM
434 Attribute Memory Function

Attribute Memory is an optional space intended for storing memory card identification and
configuration information, and does not require a large address space. Attribute Memory
is limited to 8-bit wide access for economic reasons.

Attribute Memory Read Function

For the Attribute Memory Read function, signals -REG and -OE must be active during the
cycle. Asin the Main Memory Read function, the signals -CE1 and -CE2 control the even-
byte and odd-byte address, but only even-byte data is valid during the Register function.
Refer to Table 9 for signal states and bus validity for the Attribute Memory Read function.

Function Mode REG (CE2 |{CE1 | A0 | OE | WE | VPP2 { VPP1 | D15-D8 | D7-D0
Standby Mode X | H H X X X | VCC | VCC | High-Z | High-Z-
Byte Access (8bits) L |H L L L H | VCC | VCC | High-Z |Even-Byte
L |H L H L H | VCC | VCC | High-Z [Not Valid
Byte Access (16bits) L |L L X L H | VCC | VCC |Not Valid [Even-Byte
Odd-Byte Only Access L |L H X L H | VCC | VCC |Not Valid | High-Z
Table 9 Attribute Memory Read Function
4.36 ibute M ion for rd and Sin uppl r

While writing Attribute Memory, signals -REG and -WE/-PGM must be kept active for the
entire cycle while the signal -OE is kept inactive for the entire cycle. See Table 10 for signal
states and bus validity for the Attribute Memory Write function.

Function Mode REG |CE2 [CE1{ Ao | OE | WE | vPP2 | vPP1 [D15-D8 | D7-Do
Standby Mode X |H |H| x| x| x {vee|vee | xox XXX
Byte Access (8bits) LIH JLjL|H| L |[vec|[vec | v [EvenByte

L|H |L|H|H]| L |veec|vee | xxx XXX
| Byte Access (16bits) LiL Ll x| H]|] L [vec|vcc | xxx |EvenByte
Odd-ByteOnlyAccess | L |L |H | x | H| L |vee|vee | xxx XXX

Table 10 Attribute Memory Write Function for SRAM and Single Supply EEPROM

-34-

PCMCIA PC CARD STANDARD
August 21,1990

437 i Write Functi
The Program function for OTPROM and Dual Supply EEPROM Cards is the same as the

Write function for SRAM Cards except for the functionality of VPP1 and VPP2. VPP1 and
VPP?2 are activated as shown in Table 11 for the write function for OTPROM and Dual Sup-

ply EEPROM Cards.
Function Mode G |CE2 |CE1|AO |OE |WE| VPP2 VPP1 D15-D8 | D7-DO
Write Inhibit X |H |H |[Xx|X]X|VCCorVPP VCCorVPP| XXX - XXX
1 Byte Access (8bits) L|H|L|L|H|L vCC VPP XXX | Even-Byte
| L{H|L|H|H|L vCcC vCC XXX XXX
Byte Access (16bits) L|L |LI|{X|H|L VPP VPP XXX | Even-Byte
Odd-ByteOnly Access| L | L | H XJH|L VPP vCC XXX XXX

Table 11 Attribute Memory Write Function for OTPROM, EPROM, Dual Supply EEPROM,
FLASH-EEPROM and EEPROM

| Memory Writeability |Symbol | WP WP | Minimum Card Information Contents
Combinations on Card Switch | Signal| Related to Write Protect

Always Writeable A None | Low | No WP Information Needed - Memory follows WP
signal which is always Low (Not Protected).
Optionally the Card info may specify all devices as
Always writeable.

Never Writeable N None | High | No WP Information Needed - Memory follows WP
signal which is always High (Protected).
Optionally the Card info may specify all devices as

Never writeable.
Switch Controlled S Protect | High | No WP Information Needed - Memory follows WP
No prot | Low | signal.
Always/Never AN None | Low | Card info must specify devices (addresses) which

ignore the WP signal and are Never writeable.
The remaining devices follow the WP signal and
are therefore Always writeable.

Always/Switch AS Protect | High | Card info must specify both devices (addresses)
which override the WP signal and are Always

No prot| Low | writeable as well as the devices which override the
WP signal and are Never writeable.

Never/Switch NS Protect | High | Card info must specify devices (addresses) which

ignore the WP signal and are Never writeable.
Noprot| Low | The remaining devices follow the WP signal.

Always/Never ANS Protect | High | Card info must specify both devices (addresses)
Switch which override the WP signal and are Always

No prot| Low writeable as well as the devices which override the
WP signal and are Never writeable, The remaining
devices follow the WP signal

Table 12 Write Protect Functions

.35 -

Card Interface

4.4 TIMING FUNCTIONS

This section describes Main Memory Access Timing.

441 Main M Read Timing for all M
There are several types of Memory Cards: SRAM, OTPROM, etc., and within a memory
card, several types of memory devices may be mounted. To maintain compatibility among
several types of memory, read timing specifications are common. The read timing specifica-

tions are shown in Table 13.
Speed Version 250ns 200ns 150ns 100ns
Item Symbal IEEE Symbal Min [Max [Min [Max [Min [Max [Min {Max [Min| Max
Read Cyde Time teR tAVAV 250 200 150 100
Address Access Time ta(A) tAVQV 250 200 150 100
Card Enable Access Time ta(C® tELQV 250 200 150 100
_| Output Enable Access Time ta (OE) tGLQV 125 100 75 50
Output Disable Time from CE | t dis (CE) t EHQX 100 90 75 50
Output Disable Time from OE | t dis (OB tGHQZ 100 9% 75 50
Output Enable Time from CE | t en (CE) t ELONZ 5 s 5 5
Output Enable Time from OE | t en (OF) tGLONZ 5 5
Data Valid from Add Change | tv(A) t AXQX 0 0 0 0

Table 13 Main Memory Read Timing Specification for all types of Memory

44.2 Write Timing for SRAM Card
Write Timing Specs are shown in Table 14.

Speed Version 250ns 200ns 150ns 100ns
Item Symbol IEEE Symbol Min | Max [Min |Max {Min [Max {Min [Max |Min {Max
Write Cycle Time tew tAVAV 250 200 150 100
Write Pulse Width tw (WE) t WLWH 150 120 80 60
Address Setup Time tsu (A) tAVWL 30 20 20 10 |
Address Setup Time for WE tsu (A-WEH) | tAVWH 180 140 100 70
Card Enable Setup Time for WE | tsu (CE-WEH) | t ELWH 180 140 100 70
Data Setup Time for WE tsu D-WEH) | tDVWH 80 60 50 40
Data Hold Time th (D) t WMDX 30 30 20 15
Write Recover Time t rec (WE) t WMAX 30 30 20 15
Output Disable Time from WE | tdis (WE) tWLQZ 100 90 75 50
Output Disable Time from OF | tdis (OF) tGHQZ 100 90 75 50
Output Ensble Time from WE | ten (WE) t WHQNZ

Output Enable Time from OE | ten (OF) tGLONZ 5 5

Output Enable Setup from OE | tsu (OE-WE) | tGHWL 10 10 10 10
Output Enable Hold fom OE | tH (OE-WE) | tWHGL 10 10 10 10

Table 14 Main Memory Write Timing Specification SRAM

-36-

443

PCMCIA PC CARD STANDARD
August 21, 1990

ain M Write Timing for OTPROM, EPROM, and P

The programming specification of various memory devices are not standardized. More-
over, programming specifications may vary among different generations of the same
device. Because of this situation, it is not practical to set standardized programming specifi-
cations for these memory cards.

ibu Read Timi ifi

The Attribute Memory’s access time is defined as 300ns. Detailed timing specifications are
shown in Table 15.

Speed Version 300ns
Item Symbol IEEE Symbol Min | Max
Read Cycle Time tcR t AVAV 300
Address Access Time ta (A) tAVQV 300
Card Enable Access Time ta (CE) tELQV 300
Output Enable Access Time ta (OE) tGLQV 150
Output Disable Time from CE tdis (CE) t EHQZ 100
Output Disable Time from OE tdis (OE) | tGHQZ 100
Output Enable Time fromCE | ten (CE) t ELONZ 5

Output Enable Time from OE ten (OE) t GLQNZ 5

Data Valid from Add Change tv (A) t AXQX 0

Table 15 Attribute Memory Read Timing Specification for all types of Memory

' 1R -l
An
L 1a{A) ty(A)=*
GE Znote ta(CE) —= 7 nore s)

n(CE) "l Wis(CE)
— (o}
oF /Zn::o}e::}}:%' ta(CP) 7 NOTE 12 7

%
" ton{OE) l‘-'dlo(o -
ol —

Note 12:The hatched portion may be either high or low.
Note 13:WE is high.
Note 14: Output Load = 1 TTL + 100pf

Fig 12. Read Timing Diagram

-37 -

Card Interface

k 1W a 1

" SN

'.U (CE-WEH) ———
CE \ NOTE15 DY, NoTE 15 4
e 154 (A-WEH) el
OF
tau (A) W OWE) tryc (WE)
WE
— teu (OE-WE) —t! |e—1y(0EWE)
— 15 (D- — -:r'— th (D)
Dn(Din) {_DATA INPUT ESTABLISHED
tais(WE)* — ten (OF)
tdis(OE) - ten (WE)*

Do(Dout) F

* Apply to cards for which -OE may be either (high or low) active or inactive during write operations.
Note 15: The hatched portion may be either high or low.
Note 16: When the data I/0 pin s in the output state, no signals shall be applied to the data pins (D0- D15) by the system.

Fig 13. Write Timing Diagram (WE control)

l 1W |

A, "p{t
tgu (A
su (A) e trac(WE) ’I
— - tsu (CE-WEH) =
CE
—
th(D)
tau (D-WEH) =1 |
Dp(Din) DATA INPUT ESTABLISHED

Note 17: OE must be high C"H").
Note 18: The hatched portion may be either high ("H") or low ("L").
Note 19: When the data I/0 pin is in the output state, a reverse phase signal should not be applied to it.

Fig 14. Write Timing Diagram(CE control)

-38-

4.5 ELECTRICAL INTERFACE

Electrical specifications must be maintained to insure data reliability.

The Memory card operating voltage for Vcc is 4.75 to 525 DC. Interface signal levels are
compatible with standard TTL or CMOS.

PCMCIA PC CARD STANDARD

August 21,1990

[Item Signal Card Host Card Output
Format
Control Signal CEl pull-up to VCC R > 10K ohms
CE2
REG
OE pull-up to VCC R > 10K ohms
WE/PGM
RDY/BSY pull-up
RFSH NC NC not defined
Address A0-A25 pull-down R > 100K ohms*®
Data Bus D0-D15 pull-down R > 100K ohms*
Card Detect CcD1 connected to GND in the card pull-up
CcD2
Reserved Pin RFU NC NC
Battery/Detect BVD1 pull-up | asserted or
BVD2 NOTE1 | deasserted
Table 16 Electrical Interface
*Resistor is optional
NOTE 1: For implementation of BVD1 only type system.
The Memory Card’s maximum address space is 64M Bytes. The address bus is defined in
A0-A25 with A0 being the LSB and A25 the MSB. Address bit AO is a "don't care” when

card is in word access mode.
In case of SRAM without Attribute Memory, address decoding is recommended as follows:
1. Minimum memory unit 16KB

2. Memory address starts from 00h
3. Memory units exist continuously.

-39 -

Card Interface

4.6 CARD DETECT

The Memory Card provides the means to allow the system to detect when the card is inserted or
removed. Signal lines CD1 and CD2 are connected to GND in the card. A pull-up resistor must be
connected to CD1 and CD2 on the system side.

Vee
A q % : CD1
Vee
g —<] % <
N

T

: cD2
DATA PROCESSING MEMORY CARD
EQUIPMENT

Fig. 15. Card Detect

4.7 BATTERY VOLTAGE DETECT

When using SRAM Cards, it is critical for data integrity of the system to be able to determine the
status of the on-card battery. The SRAM card provides two status signals for this purpose: BVD1 and
BVD2. The Memory Card contains one or two OP-AMPs and one or two reference voltages. The
Memory Card compares the battery voltage with the reference voltages. Battery status is expressed
on 2 digital signal lines, BVD1 and BVD2. If signal BVD2 isn’t supported, BVD2 is held to Vec
through a pull-up resistor by the card.

BVD1 (#63) | BVD2 (#62)| COMMENT

H H ‘GREEN' Battery Operational

H L 'YELLOW' Battery should be replaced. Data is OK.

L H '‘RED' Battery & Data integrity is not guaranteed.
L L 'RED' Battery & Data integrity is not guaranteed.*

Table 17 Battery Voltage Detect
* If BVD2 is not supported, BVD2 is held to VCC and only one reference voltage is required..

-40-

PCMCIA PC CARD STANDARD

August 21,1990
4.8 POWER-UP AND POWER-DOWN
wn Timin
To retain data in the SRAM Card during power-up or power-down cycles, a timing specifi-
cation is defined as follows.
Value
Item Symbol Condition Min Max Unit
.CE signal level®? Vi (CE) 0V< VCC<2.0V 0 ViMAX |V
2.0V< VCC<VIH VCC-0.1 | VIMAX
VIH < VCC VIH ViMAX
CE Setup Time tsu (VCQ) 20 ms
CE Recover Time t rec (VCC) 0.001 ms
VCC Rising Time*? tpr 10%—>90% of (VCC +5%) 0.1 300 ms
VCC Falling Time™ t pf 90% of (VCC -5%)~>10% 3.0 300 ms

ViMAX means Absolute Maximum Voltage for Input
in the period of 0V £ VCC < 2.0V, Vi (CE) is only 0V~ViIMAX
3 The tprand tpf are defined as "linear waveform” in the period of 10% to 90% or vice-versa,
Even if the waveform is not “linear waveform”, its rising and falling time must be met this specification.

Table 18 Power-up/Power-down Timing

VccMIN means Minimum Operating Voitage.

tor — vee

VeeMl
ce (. pa—
VIH
v
P ———— CE 1 ,CEZ
Vee tpt
VeoMIN]
trec >
VIH
v
CE1, CE2 >

Fig. 16 Power-up/Power-down Timing

-41 -

Card Interface

This spedification does not intend to guarantee retention of data stored into memory cards
conforming to this spedification. The conditions in the preceding tables show the minimum
requirements to ensure data retention. Card vendors and system vendors may have to ne-
gotiate with each other to determine the detailed method of guaranteeing data retention for
specific memory card models.

Supplement

The data retention capability of the memory card during insertion/removal with power
active depends on the individual Memory Card model, manufacturer’s environmental
specifications, and other conditions. Therefore, there is no guarantee of data retention
during insertion/removal with power active. Appendix 2 provides technical reference
information on a suggested circuit for insertion/removal with power active.

4.9 FUTURE TASKS and REMARKS

49.1

Insertion/Removal with Power Active

PCMCIA has recognized the market need for insertion/removal of the card with power
active. PCMCIA has been discussing this issue but has not yet achieved concensus on a
specification which would guarantee data retention during insertion/removal with power
active. PCMCIA will continue to discuss this issue at future meetings.

¢ rdjzation of EPROM a M

Programming specifications for EPROM and EEPROM are not standardized at the device
level yet. The programming voltage, timing, and other conditions vary with individual
vendors. Due to this situation, it is impossible to standardize at the memory card level.
PCMCIA desires device vendors to standardize their programming voltage, timing, and

other conditions. The memory card committee will continue to work towards a standard

memory card which is easy to use and reliable.

Wide Operating Voltage

There is a large potential market of memory cards for battery powered equipment. Low
voltage operation is urgently needed by this market. To respond to these needs, PCMCIA
is investigating means by which low voltage memories can be supported by the standard.

1/0 Functionalit
PCMCIA is working on defining a standard 1/0 function. This I/0 functionality will allow
a variety of 1/0 cards, such as communications cards or disk emulation cards, to be imple-
mented. The PCMCIA committee has set fall ‘90 as the target date by which it will have a
draft of the I/0 standard.

-42-

PCMCIA PC CARD STANDARD
August 21, 1990

SECTION 5
CARD METAFORMAT

-43 -

Card Metaformat

51

[X)
.

The Meta Format

21.1 Goals of This Standard
The following goals guided the development of this standard.

We want to be able to support several different file system formats on the card, both DOS compat-
ible and other file systems (e.g., XENIX). We also want to support applications such as data -
storage for VCRs or musical instruments, which might not use any traditional file system to record
their data. At the same time, we’d like for any computer system to be able to look someplace on a
card and determine such things as the card’s overall size, type and other low-level information.

Given the wide potential scope of applications for memory cards, the ability to read non-DOS
cards on DOS-based systems will be of significant value to users.

The ability to detect that a given card is formatted (though perhaps not readable by the computer
which the card is plugged into) is particularly valuable in that it allows system designers to protect
users against common mistakes. We could prompt the user during the format routine if we detect
that the card is (for example) already formatted as a data storage card for a VCR.

Because application requirements differ, we want to be able to support various low-level data
recording strategies (akin to physical formatting for floppies). These strategies would include
sequential recording of blocks of bytes with no error checking; sequential recording of blocks of
bytes with embedded error checking (CRC codes); sequential recording of bytes with separate
error checking (e.g., non-sequential checksum bytes); or sequential non-blocked recording of bytes.

For compatibility with existing operating systems and application programs, we’d like to be able to
cater to those environments that believe that all media are organized in a disk-like way: with
sectors, tracks and cylinders. On the other hand, we want to support those environments that -
simply address media as sequences of blocks.

We want to be able to support cards that include directly-executable ROM images, and cards that
include a mixture of directly-executable images and DOS file systems.

We want to be able to support cards for the DOS environment that include programs that can be
directly executed from ROM, or executed from RAM in the usual fashion, depending on the
capabilities of the computer system.

The standard should be reasonably general, and should allow for future expansion without major
rewrites of existing software. At the same time, for common (MS-DOS) environments, we don’t
want to impose excessive generality.

PCMCIA PC CARD STANDARD
August 21,1990

Our goals include the ability to handle numerous somewhat incompatible data-recording formats and data
organizations. Taking our cue from networking standards, we have structured the overall standard as a
hierarchy of layers. Each layer has a number, which increases as the level of abstraction gets higher.

The layers are:

0. The Physical Layer is the lowest layer of possible standardization. This layer specifies the form
factor and electrical characteristics of memory cards.

1. The Basic Compatibility Layer specifies a minimal level of card data organization. To be compat-
ible at this level, we merely require that each card contain a small card information structure (“CIS”).
This structure contains certain level-1 information, primarily some fundamental information about
the devices used to construct the card: size, speed, and so forth. In addition, this structure con-
tains information on how the card is organized at levels 2, 3,and 4.

The information contained in the card information structure is commonly called the metaformat.
A card can comply at level 1 without being required to comply at any higher level; thus, this is an
open standard. Cards that comply only at level 1 need not reserve space for the higher-level
information.

The CIS can be thought of as being separate from the data recorded on the media. Under DOS,
only the BIOS (or device driver) would be aware of its existence.

The information block must be recorded someplace that can be easily found by low-level software.
This standard requires that the primary CIS be recorded in attribute memory, starting at address
zero.!

For flexibility, the CIS can be extended into common memory. This allows application parameters
to be changed by the user, yet attribute memory can be read-only (therefore cheaper).

At this level, the standard defines two kinds of information:
1.1 Data structures and concepts used by all layers of this standard.
1.2 Physical device information.

2. The Data Recording Format Layer specifies how the data on the card is organized at the lowest
level. This layer is analogous to the physical format of a floppy disk.

The use of a traditional DOS file system or boot block is NOT specified (or required) for compati-
bility at level 2.

! The metaformat standard is also applicable to non-standard card technologies that do not provide for a separate
attribute memory. See Section 5.6.4, page 87.

.45 -

Card Metaformat

Specific formats supported are:
® Blocked, Unchecked ~ the bytes are recorded in blocks with no error checking.

® Blocked, Checksummed — the bytes are recorded in blocks with checksums for error check-
ing.

® Blocked, with CRC - the bytes are recorded in blocks with CRC codes for error checking.

® Unblocked - individual bytes of the card may be accessed or modified by software directly
at random. The bytes are recorded in a way that does not correspond to a disk organization.
The Flash file system uses cards in an unblocked way.

3. The Data Organization Layer specifies how the data is logically organized on the card. Possibili-
ties are:

® DOS (or other operating system) file systém.
® Flash file system.
® Execute-in-place ROM image.
® Application-specific organization.
A DO file system can be used with any of the appropriate (blocked) level 2 organizations.

4. The System-Specific Layer defines standards that by their nature are specific to a particular oper-
ating environment.

4.1 The DOS Direct-Execution Standard defines a standardized way of preparing DOS-executable
images on ROM cards. Programs that conform to this standard will execute correctly on any
system that can read the ROM card; in addition, the programs will directly execute from the
ROM card on those systems that support direct execution.

PCMCIA PC CARD STANDARD
August 21, 1990

513 Vendar-Specific Informati

Vendor-specific information allows card and software vendors to implement proprietary functions while re-
maining within the general framework of this standard.

Vendor-specific information comes in two kinds:

® Vendor-specific fields are areas reserved in the data structures for free use by vendors. These
fields have no meaning to the standard software.

® Vendor-specific codes are encoding values reserved to represent non-standard values in standard
fields. In the absence of other information, standard software must interpret vendor-specific codes
as meaning “the information in this field is not specified.”

The card-manufacturer field in the CIS givesknowledgeable system software enoughinformation tointerpret
vendor-specific fields and code values in the card physical-description tuples.

Similarly, the OEM and INFO fields in the CISTPL_VERS_2 tuple give knowledgeable system software
enough information to interpret vendor-specific fields and code values in the card logical format tuples.

A system will not, in general, be able to interpret all possible vendor-specific fields or code values. This
standard requires the following behavior.when a system encounters an unrecognized vendor-specific field.

@ If the unrecognized field itself is vendor-spedific, the system shall ignore that field.

@ If a standard field contains an unrecognized vendor-specific code, the system must refuse to
_perform any operation that requires the information encoded in that field.

-47 -

This page intentionally left blank.

-48 -

PCMCIA PC CARD STANDARD
August 21,1990

5.2 Basic Compatibility (Layer1)

This layer is the cornerstone of the standard. Any card that complies with this standard shall have at least
a rudimentary card information structure (referred to as the #C1S") recorded starting at address zero of the
card’s attribute memory space.

The card information structure is a variable-length linked list of data blocks known as tuples. All tuples have
the format shown in table 19.

Byte 7 6 5 4 3 2 1 0
0 TPL_CODE Tuple code: CISTPL_xxx; see table 2.
1 TPL_LINK Offset to next tuple in list. This can be viewed as the

number of additional bytes in tuple, excluding this byte.
(n)

2.n Bytes specific to this tuple.

Table 19 Tuple Format
Byte 0 of each tuple contains a tuple code. A tuple code of FFh is a special mark, indicating that there are no
more tuples in the list. Byte 1 of each tuple contains a link to the next tuple in the list. If the link field is zero,
then the tuple body is empty. If the link field contains FFh, then this tuple is the last tuple in the list.
There are thus two ways of marking the end of the tuple list: a tuple code of FFh, or a tuple link of FFh.

@ If a tuple code of FFh marks end-of-list, and the list is stored in writeable memory, it will be easy to
add additional items to the list.

® If the list is stored in read-only memory, a tuple link of FFh conserves memory space.
System software must use the link field to validate tuples. No tuple can be longer than (2 + value of link field)
bytes long. Some tuples provide a termination or stop byte that marks the end of the tuple. In this case, the

tuple can effectively be shorter than the value implied by its link field. However, software must not scan
beyond the implied length of the tuple, even ifa termination byte has not been seen.

-49 -

Card Metaformat

The following tuple codes are defined:

Code Name Description

0 CISTPL_NULL Null tuple - ignore.

1 CISTPL_DEVICE The device information tuple (common memory).

2-7 (Reserved for future, upwards compatible versions
of the device information tuple)

8-0Fh (Reserved for future, incompatible versions of the
device information tuple.)

10h CISTPL_CHECKSUM The checksum control tuple.

11h CISTPL_LONGLINK_A The long-link control tuple (to attribute memory).

12h CISTPL_LONGLINK_C The long-link control tuple (to common memory).

13h CISTPL_LINKTARGET The link-target control tuple

14h CISTPL_NO_LINK The no-link control tuple

15h CISTPL_VERS_1 Level 1 version / product-information tuple.

16h CISTPL_ALTSTR The alternate-language string tuple.

17h CISTPL_DEVICE_A Attribute memory device information.

18h CISTPL_JEDEC_C JEDEC programming information for common
memory

19h CISTPL_JEDEC_A JEDEC programming information for attribute
memory

1Ah-3Fh (Reserved for future standardization.)

40h CISTPL_VERS_2 The level-2 version tuple.

41h CISTPL_FORMAT The format tuple

42h CISTPL_GEOMETRY The geometry tuple. Only allowed for disk-like
formats.

43h CISTPL_BYTEORDER The byte-order tuple. Only allowed for memory-
like formats.

44h CISTPL_DATE The card initialization date and time tuple.

45h CISTPL_BATTERY The card battery-replacement date and time.

46h CISTPL_ORG The data organization tuple.

47h-7Fh (reserved for future standardization)

80h-FEh Vendor-spedific.

FFh CISTPL_END The end-of-list tuple

Table 20 Tuple Codes

Note to Implementors: Itis anticipated that the CIS will be written once, when the card is formatted, and then
rarely (if ever) updated. The standard is not designed to allow incremental updating of the CIS on
Flash media. On EEPROM devices that require the CIS to be erased occasionally (for example when
a Flash-type file system is reorganized), we suggest that a buffer-page strategy be used, with an
appropriate utility that can recover from a power-failure,

Note to Implementors: Most implementations will be limited to reading cards of a specific format, oratmost
of a few different formats. Thus, many combinations of values available in the tuples will be non-
portable. We suggest that implementors restrict themselves to the suggested formats presented in
section 5.3.3.

-50-

PCMCIA PC CARD STANDARD
August 21, 1990

Within tuples, all multi-byte numericdata shall be recorded inlittle-endian order; thatis, the least-significant
byte of a data item shall be stored in the first byte of a given field.

Within tuples, all character data shall be stored in the natural order; thatis, the first character of the field shall
be stored in the first byte of the field. Fixed length character fields shall be padded with null characters, if

necessary.

Ifa card has a data-path wider than 8 bits, we mustassign a byte order tothe data path, atleast for fields within
the CIS that are recorded in common memory space.? This standard requires that the low-order byte of word
0 be used to record byte 0 of the CIS. Ascendingbytes of each word shall be used to record bytes sequentially
from the CIS; when the first word is filled, the same process shall be repeated on subsequent words until the
entire CIS is recorded. On Intel-family machines, this byte order is equivalent to the native order; other
machines may need to reorder the bytes when reading or writing the CIS.

The basic compatibility layer does not impose any particular byte order on non-header portions of the card.
However, some data-format layers will impose further requirements.

PC Cards have two address spaces: attribute memory space and common memory space. The electrical
specification for PCCards requires thatinformation be placed only inevenbyte addresses of attribute memory
space; the contents of odd byte addresses of attribute memory space are not defined.

For simplicity, this specification describes the tuples of the metaformat as if the bytes of each tuple were
recorded consecutively. When a tuple is recorded in common memory space, the bytes will indeed be
recorded consecutively; but when a tuple is recorded in attribute memory space, the data will be recorded
in even bytes only.

Link fields of tuples stored in attribute memory space are handled as follows. If only the even bytes are read
and the tuples are copied into system memory, packed into consecutive bytes, the link fields shall be set
appropriately for byte addressing. This means that the link field values are conceptually the same, whether
a tuple resides in common memory or in attribute memory:.

2 At present, attribute memory is byte-wide only; only the even bytes are present.

.51 -

Card Metaformat

For cost reasons, many ROM cards will notimplement a separate attribute memory space. Regardless of the
state of the /REG line, memory cycles will always access common memory. These cards will provide an
attribute-memory-style CIS starting at byte zero of the card, and recorded in even bytes only. I, for space
reasons, the manufacturer wants to switch to acommon-memory-style CIS (packed into ascending bytes), a
long-link to common memory shall be embedded in the CIS. The targetaddress of thislong-link must be non-
zero, and the common-memory CIS will be stored immediately following the attribute-memory CIS.

It’s important to distinguish between attribute memory space and attribute memory. All PC Cards will have
attribute memory space, accessed by asserting the /REG pin. Some PC Cards will, inaddition, have attribute
memory; in this case, the contents of location 0 in attribute memory space will be different and distinct from
the contents of location 0 in common memory space. However, 1nany PC Cards (e.g., ROM cards) will not
have attribute memory distinct from common memory; in this case, reads from a given location in attribute
memory space will return the same data as reads from the same location in common memory space. Data
being accessed from attribute memory space must be stored in the even bytes only, even if attribute memory
is not distinct from common memory. Regardless of the presence or absence of attribute memory, the CIS for
PC Cards always begins at location 0 of attribute memory space.

This standard allows attribute information to be stored both in attribute memory space and common memory
space. Tuples stored in common memory space are recorded byte sequentially; both the even and the odd
bytes of the card are used to record data.

Note that the use of odd bytes to represent tuple data is controlled by the logical address space the tuple
resides in, not by the type of memory actually used torecord the tuple. If the tuple is intended to be accessed
via attribute memory space, it must be stored only in the evenbytes; if it's intended tobe accessed viacommon
memory space, it must be stored in even and odd bytes.

-52-

PCMCIA PC CARD STANDARD
August 21,1990

525 Control Tuples

The null control tuple is simply a placeholder. Ithasa non-standard form: it consists solely of the code
byte.

Byte 7 6 5 4 3 2 1 0

0 TPL_CODE CISTPL_NULL (00h): ignore this tuple.

Table 21 The Null Control Tuple

Software shall ignore these tuples. The next tuple begins at the next byte in sequence.

. Thelong-link tuplesareused tojump fromone tuple chain toanother, beyond the limits of the 1-byte link field.

The target tuple chain may be in attribute memory space or common memory space, as indicated by the tuple
code.

Byte 7 6 5 4 3 2 1 0
0 TPL_CODE Long-link tuple code (CISTPL_LONGLINK_A, 11h; or
CISTPL_LONGLINK_C, 12h)
1 TPL_LINK Link to next tuple (at least 4).
2.5 TPLL_ADDR target address; stored as an unsigned long, low-order
byte first.

Table 22 Long Link Tuple

The tuple code byte selects the new address space: CISTPL_LONGLINK_A indicates that the target is in
attribute memory space; CISTPL_LONGLINK_C indicates common memory space.

A given tuple chain shall contain at most one long-link tuple. The long-link tuple need not appear as the last
tuple in a given chain; the entire chain containing the long-link tuple will be processed before the link is
honored.

Software shall verify that the Long-Link tuple points to a Link-Target tuple before processing the targetchain.

Because a Long-Link tuple may point to uninitialized RAM, it's important that software simply reject target
tuple chains that don’t begin with a Link-Target tuple.

-53 -

Card Metaformat

Thelink-target tuple is used for robustness. Every long-link tuple must point to a valid link-target tuple. The
link target tuple has one principal field: the string “CIS”. The link field of the link-target should always point
to the next byte after the link-target tuple. Processing software is required to check that the link-target tuple
is correct before deciding to process the linked list of tuples at the new target address.

Byte 7 6 5 4 3 2 1 0
0 TPL_CODE CISTPL_LINKTARGET (13h)
1 TPL_LINK Link to next tuple (at least 3).
2 TPLTG_TAG ““C"”(43h)
3 1" (48h)
4 *§"(53h)
Table 23 Link Target Tuple

5254 TheNo-Link Control Tuple

The attribute-memory CIS of a RAM Card must be kept small for economic reasons. To save attribu‘e
memory space, processing softw:.re shall assi me the presence of a (CISTPL_LONGLINK_C,0L) tupleasp..

of the primary tuple chain - the tuple chain which starts at address 0 of attribute memory space. Tl.s
assumption can be overridden by placing an explicit long-link tuple in the attribute-memory CIS. To preve t

software from trying to execute any long-link operations, the card manufacturer can place a (NO-LINK) tuf -
in the attribute-memory CIS.

Byte 7 6 5 4 | 3 2 1 0
0 TPL_CODE CISTPL_NO_LINK (14h)
1 TPL_LINK Link to next tuple (may be zero).

Table 24 No-Link Tuple
Note that the body of this tuple is always empty.

A given tuple chain shall contain at most one NO-LINK control tuple. No-link tuples and long-link tuples are
mutually exclusive: a given chain may contain either a no-link tuple or a long-link tuple but not both.

PCMCIA PC CARD STANDARD
August 21,1990

The End-of-list control tuple marks the end of a tuple chain. It has a non-standard form, consisting solely of
the code byte.

Byte 7 6 5 4 3 2 1 0

0 TPL_CODE CISTPL_END (FFh): end of this tuple chain.

Table 25 The End-of-List Control Tuple

Upon encountering this tuple, system software shall take one of the following actions:

If a long-link tuple was encountered previously in this chain, continue tuple processing at the
location specified in the long-link tuple.

If a no-link tuple was encountered previously in this chain, no tuples remain to be processed.

If processing the primary CIS tuple chain (the list starting at address 0 in attribute memory
space), and neither a long-link nor a no-link tuple were seen in this chain, then continue tuple
processing as if a long-link to address 0 of common memory space was encountered.

If processing and tuple chain other than the primary CIS tuple chain, and no long-link tuple was
seen in this chain, then no tuples remain to be processed.

-55 -

Card Metaformat

For additional reliability, the CIS can contain one or more checksum tuples. This tuple has three fields: the
relative address of the block of CIS memory to be checked; the length of the block of CIS memory to be
checked; and the expected checksum. The checksum algorithm is a straight mouulo-256 sum. Relative
addressing is used to make the CIS as a whole position-independent. The checksum tuple can only validate
memory in its own address space.

Byte 7 6 5 4 3 2 1 0
0 TPL_CODE CISTPL_CHECKSUM (10h)
1 TPL_LINK Link to next tuple (at least 5).

2.3 TPLCKS_ADDR offset to region to be checksummed, stored LSB first.

4.5 TPLCKS_LEN length of region to be checksummed, given LSB first.

6 TPLCKS_CS the checksum of the region.

Table 26 Checksum Tuple

The checksum is calculated by summing the bytes of the selected region, modulo 256. The result must match
the value stored in byte 6 of the Checksum Tuple.

TPLCKS_ADDR contains the offset of the region tobe checksummed, relative to the start address of this tuple.
The address is a signed, 2 byte integer. Negative values indicate locztions prior to the checksum tuple;
positive values indicate locations after the checksum tuple. The exact interpretation depends on the address
space containing the tuplr.

TPLCKS_LEN contains the number of bytes to be checksummed, expressed as an unsigned, 2 byte integer.

If the tuple appears in common memory space, the checksum is calculated in the obvious way: simplt add the
contents of TPLCKS_ADDR (as a signed integer) to the base address of the tuple, yielding the target address.
Starting at the target address, form the algebraic sum of all the bytes included in the range. Then compare
the low-order 8 bits of this sum to the value stored in TPLCKS_CS. If identical, then the region of tuple
memory covered by the checksum passes the checksum test.

If the tuple appears in attribute memory space, then things are a bit more complicated. Again, we choose to
- record the data structures in sucha way as to minimize the differences betweenattribute spacerepresentation.
and common memory representation. To form the target address, add (2 * offset) to the base byte target
address of the tuple. Then form the algebraic sum of the even bytes in the address range [target, target + 2
'.l'l!’i.né‘tlé -ésl, ignoring the odd bytes. Compare the low-order 8 bits of this sum to the value stored in

PCMCIA PC CARD STANDARD
August 21, 1990

5257 The National-Language String Tuple

Several tuples contain character strings, which are intended to be displayed to the user under some circum-
stances. Someinternational applications need the ability to store strings for a number of different languages.
Rather than having various languages used in the tuples, this standard provides Alternate-String tuples.
Strings in the primary tuples are always recorded in ISO 646 IRV code, using characters in the range
{20h..7Eh). Alternate-String tuples contain two kinds of information: a code representing the language (an
1SO-standard escape sequence), and a series of strings. These strings are tobe positionally substituted for the
primary strings when operating in that language environment.

Byte 7 6 5 4 3 2 1 0
0 TPL_CODE CISTPL_ALTSTR (16h)
1 TPL_LINK Link to next tuple (at least p-1).

2.m-1 TPLALTSTR_ESC 1SO-standard escape sequence to select the character
set for these strings. Indicates which character set is
associated with these strings. The leading ESCAPE
is not recorded.

Terminated by a NUL (00h).

A special escape sequence denotes the PC Extended-
ASCII character set; see appendix

m..n-1 Alternate string 1; translation for first string in most
recent non-ALTSTR tuple. Terminated by 00h.

n..o-1 Alternate string 2; translation for second string in
most recent non-ALTSTR tuple. Terminated by OOh.

Etc.

P FFh - marks end of strings.

Table 27 Alternate Language String Tuple

This standard requires system software to be carefully coded in order to prevent incompatibilities from
system to system. This section presents some specific recommendations.

@ The routine that reads a given tuple should be coded to start by examining the tuple code. If the
tuple code is not recognized by the routine (e.g., if the code is vendor specific or represents an
extension under a future standard), then the tuple should be ignored. 1f the code is not recognized,
it is safe to read the code byte and the link byte: other bytes within the tuple may represent active
registers.

.57 -

Card Metaformat

® If the tuple code is known, and if the tuple does not contain active registers (which is the case for
all standard tuples), then the routine should copy bytes into a buffer in main storage. Bytes should
be copied from the code byte up to the last byte before the next tuple. If the link field is FFh
(meaning end-of-list) then a maximum of 257 bytes should be copied from the card to the main
store: the code byte, the link byte and 255 byte of potential tuple data.

® When processing a long-link tuple, software should merely record the target address and address
space; it should not validate the target address, nor should it immediately begin processing of
tuples from the target address. Similarly, when a no-link tuple is found, that fact should be re-
corded for later.

Long-link and no-link tuples should be processed when the end of the tuple chain is encountered.
At that time, if a long-link is to be processed, software should validate the target address (by
checking for a link-target tuple) and begin processing the target chain if it appears to be valid.

® Along-link that points to an invalid tuple chain should not usually cause any diagnostic messages
to be displayed to the user. This situation may result from an unititialized card, from a card which
was-initialized for some unanticipated use, or from data being corrupted. Since only the last
mentioned case merits a diagnostic message, it is better to assume either that the card is uninitial-
ized or that it is initialized in some unconforming way.

-58.-

PCMCIA PC CARD STANDARD
August 21,1990

526 Basic Compatibility Tupl

The device information tuples contain information about the devices on the card. The tuples contain device
speed, device size, device type, and address space layout information for either attribute memory space or
cummon memory space, as determined by the tuple code. Adevice information tuple for common memory
space (CISTPL_DEVICE, 01h) must be the first tuple in attribute memory. The device-information tuple for
attribute memory is optional. :

Byte 7 6 5 4 3 2 1 0

0 TPL_CODE CISTPL_DEVICE (01h) or CISTPL_DEVICE_A (17h)
1 TPL_LINK Link to next tuple (at least m-1).

Device Info 1 (2 or more bytes)

Device Info 2 (2 or more bytes)

(etc.)

Device Info n (2 or more bytes)

m FFh (marks end of device info field).

Table 28 Device Information Tuples

The tuple code CISTPL_DEVICE indicates that this tuple describes common memory space; the code
CISTPL_DEVICE_A indicates that this tuple describes register memory space.

The device-information tuples are composed of a sequence of device info fields. Each info field is further
composed of two variable-length sequences of bytes: the device ID and the devicesize. Each info field defines

the characteristics of a group of addresses in the appropriate memory space.

-59 -

Card Metaformat

5.2.6.1.2 Device ID
The device ID indicates the device type and the access time for a block of memory.
Byte 7 6 5 4 3 2 1 0
0 Device Type Code WPS Device Speed
1 Extended Device Speed (if Device Speed Code equals Eh, otherwise
omitted)
2 Additional Extended Device Speed (if bit 7 of Extended Device Speed
is 1, otherwise omitted)
3 Extended Device Type (if Device Type Code equals Eh, otherwise
omitted).
Table 29 Device ID

The WPS bit, if clear, indicates that the write protect switch is in control of this device.

If the device speed/type byte is 00h, the effect is unspecified. If the device size information is valid, the
address range shall be treated as a NULL device.

If the device speed /type byte is FFh, it shall be treated as an end marker.

Bits 0 through 3, and one or two optional additional bytes, represent the speed of the devices associated with
this part of the address space. The device speed field contains one of the following values:

Code Name Meaning

Oh (Reserved - do not use)
1h DSPEED_250NS 250 nsec

2h DSPEED_200NS 200 nsec

3h DSPEED_150NS 150 nsec

4h DSPEED_100NS 100 nsec

S5h-6h (Reserved)

7h DSPEED_EXT use extended speed byte.

Table 30 Device Speed Codes
The extended speed byte has the following layout:

7 6 5 4 3 2 1 0

EXT Speed Mantissa Speed Exponent

If the extended speed byte is zero, then the byte should be ignored.

The EXT bit, if set,
presently defined. However,

PCMCIA PC CARD STANDARD
August 21,1990

indicates that an additional extended speed byte follows. The meaning of that byte is not
the string of extended speed bytes may be arbitrarily long: it extends through

(and including) the first byte that has bit 7 reset.

.The extended device Speed Mantissa and Exponent specify the speed of the device, as follows:

Mantissa:

Oh
1h
2h
3h
4h
Sh
6h
7h
8h
9h
Ah
Bh
Ch
Dh
Eh
Fh

Reserved
1.0
1.2
13
15
20
25
30
35
40
45
5.0
55
6.0
7.0
8.0

Exponent Part:
Oh 1 nsec
1h 10 nsec
2h 100 nsec
3h 1 microsec
4h 10 psec
S5h 100 psec
6h 1 msec
7h 10 msec

Table 31 Extended Device Speed Codes

5.26.1.4 DeviceID Type Fiel
Bits 4 through? of byte 0of thedevice speed /id sequenceindicate thedevice type. Thefollowing devicetypes

are defined:
Code Name Meaning
0 DTYPE_NULL No device. Generally used to designate a hole in the
address space. If used, speed field should be set to Fh.
1 DTYPE_ROM Masked ROM
2 DTYPE_OTPROM One-time programmable PROM
3 DTYPE_EPROM UV EPROM.
4 DTYPE_EEPROM EEPROM
5 DTYPE_FLASH Flash EPROM
6 DTYPE_SRAM Static RAM
7 DTYPE_DRAM Dynamic RAM.
8-Ch (reserved for future use)
Dh DTYPE_IO 1/0 Device
Eh DTYPE_EXTEND Extended type follows.
Fh (reserved for future use)

The extended device type, if spec

Table 32 Device Type Codes

ified, is reserved for future use. Bit7, if set, indicates that the next byte is

also an extended type byte. The chain of extended type bytes can continueindefinitely. The end is marked by
an extended device type byte with bit 7 reset.

-61 -

Card Metaformat

- Following the device speed /type information within a Device ID structure is a device size byte.
7 6 5 4 3 2 1 0
of address units - 1 Size Code

'f the device-size byte is zero, then it is not valid; in this case, this device ID block should be ignored.
Otherwise, bits 0 through 2 indicate the address units used-to describe this part of the address space:

Code Units Max Size

0 512 bytes 16K

1 2K 64K

2 8K 256K

3 32K M

4 128K 4M

5 512K 16M

6 2M 64M

7 8M 256M

Bits 3 through 7 represent the number of address units: a code of zero indicates 1 unit; a code of 1 indicates
2 units; and so forth.

If the device-size byte is FFh, then this entry should be treated as an end marker for the device information
tuple. The device type and speed information encoded for this entry should be ignored.

] 1 Version / Produ ion Tupl

‘This tuple contains level-1 version compliance and card-manufacturer information.

Byte 7 6 5 4 3 2 1 0
0 TPL_CODE CISTPL_VERS_1 (15h).

1 TPL_LINK Link to next tuple (at least m-1).

2 TPLLV1_MAJOR major version number (04h)
3

4

TPLLV1_MINORminor version number (00h)

TPLLVI_INFO Product information string: name of the manufacturer,
terminated by 00h.

Name of product, terminated by 00h.

Additional product information, in text; terminated
by 00h. Suggested use: lot number.

Additional product information, in text; terminated
by 00h. Suggested use: programming conditions.

m FFh: marks end of list.

Table 33 Level 1 Version / Product Information Tuple

-62-

PCMCIA PC CARD STANDARD
August 21,1990

This optional tuple is provided for cards containing programmable devices. It provides an array of k
entries, where k is the number of distinct entries in the device information tuple (codes O1h or 17h).
There's a one to one correspondence between JEDEC identifier entries in this tuple and device informa-
tion entries in the device-information tuple.

Byte 7 6 5 4 3 2 1 | o
0 TPL_CODE Format tuple code (CISTPL_JEDEC_C,18h, or
CISTBL_JEDEC _A,19h).
1 TPL_LINK Link to next tuple (at least m-1).
2.3 JEDEC identifier for first device-info entry.
4.5 JEDEC identifier for second device-info entry (if needed).
6.m JEDEC identifiers for remaining device-info entries (if needed)

Table 34 The JEDEC Identifier Tuples

The TPL_CODE field indicates which device information tuple the JEDEC identifier tuple corresponds to. If
the value is 18h (CISTPL_JEDEC_C), this tuple corresponds to the common-memory device information
tuple (CISTPL_DEVICE). If the value is 19h (CISTPL_JEDEC_A), this tuple corresponds to the attribute-
memory device information tuple (CISTPL_DEVICE_A).

JEDEC identifiers consist of two bytes. The first byteis the device manufacturer ID, as assigned by JEDEC
committee JC-42.3. This byte if valid must always have an odd number of bits set true. The MBS (bit 7) of
the byte is i1sed as a parity bit to ensure that this constraint is met. The values of 0 and FFh are illegal JEDEC
identifiers; such values are used to indicate "no JEDEC identifier for this device” and "end of JEDEC identifier
list" respectively.

The second byte contains manufacturer-specific information, representing device type, programming algo-
rithm, and so forth. If the manufacturer ID is 00h, then this byte is reserved and should be set to zero.

It's intended that JEDEC identifiers will only be provided for device-info entries that indicate some kind of
programmabledevice. Forall otherentries, the corresponding JEDEC identifier field shall beabsent(i.e.,after
the FFh byte that marks the end of the list) or set to 00h.

Examples:

If a card consists of four FooBar 27C512 devices, whose JEDEC identifier is (hypothetically) (manufacturer:
40h, device ID:15h), then the header block might be laid out as follows:

/reglO: (CISTPL_DEVICE,
/reg(2): /*link*/ 2,
/regld): /*type/speed*/ DTYPE_OTPROM | DSPEED_250NS,
/regl6l: /*size: units/exp*/ ((1<<3) | 4)
)
/regl8): (CISTPL_JEDEC_C, /*18h*/
/reg(10): /*link*/ OFFh, /*(end of list)*/
/regl12}: /*manufacturer ID*/ 40h,

-63 -

Card Metaformat

/reg(14]): /*mfr's info*/ 15h,
/reg(16]: /*end of tuple*/ FFh

(]

(In the above example, the size byte indicates that 2 x 128K bytes are available, for a total of 256K. Pro-
gramming software would use the JEDEC information to determine that in fact 4 64K x 8 devices are
present; since JEIDA V4 / PCMCIA cards are always 16 bits wide, programming software could therefore
deduce the the organization of the card).

The following tuples might be used to describe a card with 256K of OTPROM and 16 Kbytes RAM. In
this example, RAM occupies locations [0..03FFFh], and ROM occupies locations [20000h..SFFFFh] (for ease
of decoding).

/reglO): (CISTPL_DEVICE,
/regl2]: /*link*/ 6,
/regld): /*type/speed*/ DTYPE_SRAM | DSPEED_100NS,
/regl6): /*size: units/exp*/ ((1<<3) 1 2)
/regl8]: /*type/speed*/ DTYPE_NULL | DSPEED_NONE,
/regl10) /*size: units/exp*/ ((1<<3) | 2)
/regl12): /*type/speed*/ DTYPE_OTPROM | DSPEED_250NS,
/regl14}): /*size: units/exp*/ ((1<<3) | 4)
)
/regl16]: (CISTPL_JEDEC_C,
/reg[18}): /*link*/ OFFh, /*(end of list)*/
/reg(20): /*RAM: no code*/ 0,
/regl22]: /*no info*/ 0,
/regl24]: /*hole: no code*/ 0,
/reg(26]): /*no info*/ 0,
/regl28): /*manufacturer ID*/ 40h,
/regl30): /*mfr's info*/ 15h,
/reg(32]): /*end of tuple*/ FFh

)

Note that place holders were left in the CISTPL_JEDEC tuple corresponding to the RAM and hole entries
in the device tuple.

Cards that only comply with the basic compatibility layer of this standard need only contain the basic device
information tuple for the common memory space. Cards that comply with one of the data format standards
listed in section 5.3.3 will need to supply additional information as specified in that section. In many cases,
an implementation will need only to verify that certain subfields in specific tuples are compatible with its
requirements.

PCMCIA PC CARD STANDARD
August 21, 1990

5.3 Data Recording Formats (Layer 2)

This level defines the data-recording format for the card. If none of the layer-2 headers are present, software
should assume that the card is organized as an unchecked sequence of bytes.

Card data-recording formats fall into two categories:

@ Disk-like: the card consists of a number of blocks of data, where each block consists of a fixed
number of bytes. These blocks correspond to the sectors of rotating disk drives. Conceptually;an
entire block must be updated if any byte in the block is to be changed.

@ Memory-like: the card is treated as a sequence of directly-addressable bytes of data.

Formats are further categorized according to how errorchecking is performed. This standard recognizes 3
basic possibilities:

® unchecked: no data checking is performed at the data format layer.

@ checked with in-line codes: data checking is performed by the data format layer using check codes.
‘The check code for a given block is recorded immediately after the block.

® checked with out-of-line codes: data checking is performed by the format layer using check codes.
The check code for a given block is recorded in a special table that resides separately from the data
blocks.

@ checked over entire partition: data checking is performed only over the complete partition.

This standard recognizes two kinds of check codes: arithmetic checksum and CRC. Arithmetic checksums
are typically one or two bytes long; CRCs are always two bytes long.

When cards with 16-bitor wider data paths are used to record byte data, it's necessary to specify how the
bytes of the data card correspond to sequential bytes of data. In this standard, all disk-like organizations
require that bytes be assigned to words with the lowest byte address mapping to the least-significant byte of
the word, and subsequent byte addresses mapping to increasingly significant bytes.

Memory-like formats also require that the byte mapping be specified. For maximum flexibility, both little-
endian and big-endian byte orders are supported.

Card Metaformat

The tuples listed in the following subsections provide generic information about how the card is intended to
be used.

Thelevel 2 information tuple serves to introduce information pertaining to the logical organization of the data
on the card. The layout of the level-2 tuple is shown in table 35.

Byte 7 6 5 4 3 2 1 0
0 TPL_CODE Code value indicating that this is the level-2 tuple
(CISTPL_VERS_2, 40h).
1 TPL_LINK Link to next tuple (at least m-1).
2 TPLLV2_VERS structure version (00h).
3 TPLLV2_COMPLY level of compliance claimed.

4.5 TPLLV2_DINDEX byte address of first data byte in card (LSB first).

6..7 TPLLV2_RSV6, TPLLV2_RSV7 reserved; must be zero.

8.9 TPLLV2_VSPECS, TPLLV2_VSPEC9 vendor-specific bytes.

10 TPLLV2_NHDR Number of copies of CIS present on the device.

11.k TPLLV2_OEM Vendor of software that formatted card (ASCII, variable
length, terminated with a NUL (00h).

k+l.m TPLLV2_INFO Informational message about the card (ASCII, variable
length, terminated with a NUL (00h).

Table 35 Level-2 Information Tuple
TPLLV2_VERS represents the standardization version of the tuple. This byte should always be zero.

TPLLV2_COMPLY indicates the claimed degree of compliance with this standard. At presence, this should
always be zero.

TPLLV2_DINDEX specifies the address of the first data byte on the card. Setting this non-zero reserves bytes
at the begining of common memory. Note that the first data byte on the card must always be somewhere in
the first 64 Kbytes of the card. This field should be consistent with information provided in the format tuple
(if that tuple is present).

PCMCIA PC CARD STANDARD
August 21,1990

TPLLV2_NHDR specifies the number of copies of the CIS that are presenton thecard. For compatibility with
this standard, this value should be 1. This field will allow automated recovery in the face of various error
conditions.

TPLLV2_OEM specifies the vendor of the machine or format program that formatted the card. Thisisa text
string, terminated by a NUL byte (00h). The value of TPLLV2_OEM, combined with the value of
TPLLV2_INFO, determines how vendor-specific fields in the level-2 tuples are to be interpreted.? For
alternate languages, CISTPL_ALTSTR tuples may follow this tuple, specifying the string value to be
substituted when using alternate languages.

TPLLV2_INFO contains a text message, terminated by a NUL byte (00h). This message is intended to be
displayed to users by acomputer whenever the host needs to describe the type of card that'sin the drive. For
alternate languages, CISTPL_ALTSTR tuples may follow this tuple, specifying the string value to be
substituted when using alternate languages.

Note to Implementors: if the computer system’s format routine determines that the card is already
formatted, it will display a mess.: like:

Caution! This card contains data for <info>, from <vendor>.
The contents of the information field should be chosen appropriately. For example, a VCR setupcard

fora VCR by Shrdlu Electronics might have <info>as “Model 9770 VCR"; the <vendor> field would
be ““Shrdlu”.

The characters used in TPLLV2_INFOand TPLLV2_OEM shall be chosen from the printing 7-bit ISO 646 IRV
set (codes 20h through 7Eh, inclusive).

TPLLV2_RSV6 and TPLLV2_RSV7 are reserved for use in future versions of this standard. They shall be set
to zero.

TPLLV2_VSPECS and TPLLV2_VSPEC? are vendor specific. If not used, they shall be set to zero.

3 The PCMCIA will maintain a registry of vendor names.

-67 -

Card Metaformat

5312 The Card Initiaization Date Tuple (CISTPL DATE

This optional tuple indicates the date and time at which the card was formatted. Its format is given in table
36.

Byte 7 6 5 4 3 2 1 0
0 TPL_CODE Initialization-date tuple code (CISTPL_DATE, 44h).
1 TPL_LINK Link to neit tuple (at least 4).
2 TPLDATE_TIME:
MMM, SSS
3 HHH MMM,
4 TPLDATE_DAY:
MON_ DAY
5 YYYY _ MON,,

Table 36 Card Initialization Date Tuple

Bytes 2-3 (TPLDATE_TIME) indicate the time at which the card was initialized; it should be considered to be
a 16-bit number, stored LSB first.

The field HHH contains the hour at ‘shich the card was initialized; it is a number between 0 and
23.

The field MMM contains the minute at which the card was initialized; it is a number between 0 and
59.

The field SSS represents the two-second interval at which the card was initialized; it is a binary
number between 0 and 29. To convert SSS to seconds, it should be multiplied by two.

Bytes 4-5 (TPLDATE_DAY) indicate the date the card was initialized; it should be considered to be a 16-bit
number, stored LSB first.

The field YYYY represents the year; it is a binary number between 0 and 127, with 0 representing
the year 1980.

The field MON represents the month; it is a binary number between 1 and 12, with 1 representing
January.

The field DAY represents the day; it is a binary number between 1 and 31.

If the date and time components of the date are both zero, this should be taken as an indication that the date
and time were unknown when the card was first initialized.

PCMCIA PC CARD STANDARD
August 21,1990

5313 The Battery-Replacement Date Tuple (CISTPL BATTERY)

This optional tuple shall be present only cards with battery-backed storage. Itindicates the dateat which the
battery was replaced, and the date at which the battery is expected to need replacement. Its format is given
in table 37.

Byte 7 6 5 4 3 2 1 | o
0 TPL_CODE Initialization-date tuple code (CISTPL_BATTERY, 45h).
1 TPL_LINK Link to next tuple (at least 4)
2 TPLBATT_RDAY:
MON,, DAY
3 YYYY MON,,
4 TPLBATT_XDAY:
MON, DAY
5 YYYY MON,,

Table 37 Battery Replacement Date Tuple

Bytes 2-3 (TPLBATT_RDAY)indicate thedateon which the battery was lastreplaced; it should be considered
to be a 16-bit number, stored LSB first. This field has the same interpretation as the field TPLDATE_DAY

(page 68).

Bytes 4-5 (TPLBATT_XDAY, “expiration day”’) indicate the date on which the battery should be replaced.
This field has the same format as TPLBATT_RDAY.

If either field is zero, it indicates that the corresponding date was not known when the tuple was recorded.

All information about the data-recording format for a given card is given in special tuples in the Card
Information Structure. Each card that conforms to layer two of this standard shall contain atleast one format
tuple, defining how the data is recorded on the card.

If the format is disk-like, the format tuple may be followed by a geometry tuple. This tuple indicates the
cylinder, track and sectorlayout for operating environments that need to treatall mass-storage devicesin that
way.

If the format is memory-like, the format tuple may be followed by a byte-order tuple. The byte-order tuple

specifies two independent (butrelated) parameters: how multi-byte numbers are recorded on themedia,and
(for cards with 16-bit or wider data-paths) the assignment of byte addresses within each word.

-69 -

Card Metaformat

2:32.1 The Format Tuple (CISTPL FORMAT)

The format tuple defines the data recording format for a region (usually all) of a card. Its layoutis shownin
table 38.

Byte 7 6 5 4 3 2 1 0

0 TPL_CODE Format tuple code (CISTPL_FORMAT, 41h).

1 TPL_LINK Link to next tuple (n-1: at least 12, typically 20)

2 TPLFMT_TYPE Format type code (TPLFMTTYPE_xxx); see table 39.

3 TPLFMT_EDC

RFU Error Detection Code type. EDC Length
4-7 TPLFMT_OFFSET — Byte address of the first data byte in this partition.
8-11 TPLFMT_NBYTES — Number of data bytes in this partition.
12-n Additional information, interpreted based on value of
TPLFMT_TYPE.

Table 38 Format Tuple

Each format tuple implicitly begins a partition tuple set. Subsequent geometry, byte order, and data
organization tuples are implicitly associated with the immediately pruvious format tuple.

Byte one of the tuple specifies the link to the next tuple, and therefore (implicitly) the length of this tuple. Two
ranges of values are permitted. Normally, the value will be at least 20 (014h); however, if the format tuple
is specifying a memory-like format, the value may be as little as 12 (0Ch), as bytes 13 through 21 must be zero
for memory-like formats. If the partition does not use error-detecting codes, then the TPLFMT_EDCLOC
field may be omitted.

-70-

PCMCIA PC CARD STANDARD
August 21,1990

Byte two of the tuple (TPLFMT_TYPE) specifies the kind of format used for this partition. The permitted

values for this field are given in table 39.

0 TPLFMTTYPE_DISK | This partition uses a disk-like format.

1 TPLFMTTYPE_MEM | This partition uses a memory-like format.
2-7Fh (reserved for future standardization.)
80h-FFh | TPLFMTTYPE_VS This partition uses a vendor-specific format.

Byte 3 (TPLFMT_EDC) specifies the

Table 39 Format Type Codes

error-detection method, and the length of the error-detection code. Byte

3is generally only meaningful for disk-like formats. Bit7 is reserved; it must be zero. Bits3-6 specify theerror-

detection code. The legal valuesare givenintable17. Bits 0-2 (TPLFMT_EDCLEN) specify thelengthinbytes

of the error-detection code; this is 2 number between 0 and 7. The legal values for the length field are
-determined by the error-detection method in use.

. Memory-like regions may use the PCC method of error detection.

Code

Name

Descript

0

TPLFMTEDC_NONE

No error-detection code is used. If the length field is
non-zero, space will be reserved for the check code, but no
checking will be performed.

TPLFMTEDC_CKSUM

An arithmetic checksum is used to check the data. The
length field must be 1 if this code is selected. See section
5.3.2.1.1 for details in calculating the checksum.

TPLFMTEDC_CRC

A cydlical redundancy check is used to check the data. The
length field must be 2 if this code is selected. The CRC value
is always recorded low-order byte first; see section 5.3.2.1.2
for details.

TPLFMTEDC_PCC

An arithmetic checksum is used to check the data; however,
a single checksum is provided for the entire data partition.
This technique is intended for use with static data on ROM
or OTPROM cards.

The PCC code itself is recorded in byte 18 of the tuple (field
TPLFMT_EDCLOC, byte 0).

The length field must be 1 if this option is selected.

4-7h

(Reserved for future standardization.)

8h-Fh

TPLFMTEDC_VS

A vendor-specific method of error checking is used.

Table 40 Error Detection Type Codes

Card Metaformat

The code in TPLFMT_EDC only specifies the method to be used to verify data integrity. To determine
whetherthecodeis tobeinterleaved with the data or stored ina separatetable, the valuein TPLFMT_EDCLOC
must be consulted.

Bytes 4-7 (TPLFMT_OFFSET) specify the absolute byte address of the first data byte governed by this tuple.
The value is stored as a 32-bit quantity, LSB first.

Bytes 8-11 (TPLFMT_NBYTES) specify the number of bytes in the partition, including (if present) the error-
detection codes. The value is stored as a 32-bit quantity, LSB first.

When the TPLFMT_TYPE field of the format tuple has the value TPLFMT_DISK, bytes 12 through 21 of the
tuple are interpreted as shown below.

Byte 7 6 5 4 3 2 1 0

12-13 TPLFMT_BKSZ Block size. For unblocked formats, this value should be
0. This field corresponds to the number of data
bytes/sector. The value in this field must be a power of
2.

14-17 TPLFMT_NBLOCKS Number of data blocks in this partition.

18-21 TPLFMT_EDCLOC Location of the error-detection code. If zero, the
error detection code is interleaved with the data blocks.
If non-zero, the error-detection code is stored in a
linear table starting at the specified address on the card.

If using PCC, the first byte of this field contains the
check code: bytes 19-21 must be zero if present.

Table 41 Format Tuple for Disk-like Regions

Bytes 12-13 (TPLFMT_BKSZ) specify the number of data bytes in each block in the partition. This value does
notinclude error check bytes. The valuein this field must be a power of 2 between 128 and 2048; this standard
recommends that 512 be used wherever possible. The value is stored as a 16-bit quantity, LSB first.

Bytes 14-17 (TPLFMT_NBLOCKS) specify the number of data blocks in the partition. This value is stored as
a 32-bit quantity, LSB first. The quantity:

TPLFMT_NBLOCKS - (TPLFMT_BKSZ + TPLFMT_EDCLEN)
shall be less than or equal to TPLFMT_NBYTES.

PCMCIA PC CARD STANDARD
August 21,1990

Bytes 18-21 (TPLFMT_EDCLOC) specify where the error-detection codes are stored. This value is stored as
a32-bit quantity, LSB first. If the value stored in this location is zero, or if this field is not present, then codes
(if present) are interleaved with the data blocks, with the code for a given data block following immediately
after that block. If the value stored in this location is non-zero, it shall be the address of the first byte of the
error-detection code table. This table shall be an array of values, with TPLFMT_NBLOCKS entries,
containing the error-detection codes for each datablock. Each entry in the table shall be TPLFMT_EDCLEN
byteslong. The valuestored in TPLFMT_EDCLOC shall be atleast TPLFMT OFFSET, and shall benogreater

than TPLEMT_OFFSET + TPLFMT_NBYTES - (TPLFMT_EDCLEN - TPLFMT_NBLOCKS).*

1£ PCC error checking is selected, then the TPLFMT_EDCLOC field isused toadd the actual LRCvalue, rather
than pointing to the cell that holds the PCC.

The bit TPLFMI'_EDC_RI-'U is reserved for future use and shall always be zero.

Table 42 summarizes some possible error-detection strategies.

EDC EDC

TPLFMTEDC_NONE 0 0 No error checking is performed; no room is re-
served for error-detection tables. The data blocks
are recorded sequentially.

TPLFMTEDC_NONE 2 0 No error checking is performed; but room is re-
served for a two-byte error-detection code after
each data block.

TPLFMTEDC_NONE 1 NON-Zero No error checking is performed; but room is re-
served for an out-of-line table of error- detection
codes, with one byte per data block. The data
blocks themselves are recorded contiguously.

TPLFMTEDC_CKSUM 1 NON-2ero Data is checked using a one-byte arithmetic
checksum of the data. The checksum is stored in
an out-of-line table. The data blocks themselves
are recorded contiguously.

TPLFMTEDC_CRC 2 0 Data is checked using SDLC CRC codes. The
check-code for a data block is stored immediately
following the data block.

TPLFMTEDC_PCC 1 special Entire partition is checked using a one byte arith-
metic checksum. The checksum is stored in the
TPLFMT_EDCLOC field of the tuple itself.

Table 42 Error Detection Format Summary

¢ In other words, the table must be entirely contained in the range of bytes between TPLFMT_OFFSET and
TPLFMT_OFFSET + TPLFMT_NBYTES - 1. Since the first data byte of block O resides at TPLFMT_OFFSET, the
standard requires that the EDC table appear after all the data blocks in the partition. The standard does not require
that the table occur immediately after the last block, nor does it preclude use of spare space for vendor-specific
purposes.

.73 -

Card Metaformat

When the TPLFMT_TYPE field of the format tuple has the value TPLFMT_MEM, bytes 12 through 21 of the
tuple are interpreted as shown below.

Byte 7 6 5 4 3 2 1 0
12 TPLFMT_FLAGS Various flags
(reserved) AUTO | ADDR
13 (reserved; must be zero)

14.17 TPLFMT_ADDRESS Physical address at which this memory partition
should be mapped, if so indicated by TPLFMT_FLAG.
Four bytes, stored LSB first.

18..21 TPLFMT_EDCLOC Error-detection code location, with same meaning as
for disk-like regions. Used for PCC checking only; byte
18 holds the check value, and bytes 19..21 mustbe zeroor
omitted.

Table 43 Format Tuple for Memory-like Regions

As with the format tuple for disk-like regions, zero bytes at the end of the format tuple for memory-like

regions may be omitted; to do this, the next tuple must begin immediately after the last non-zero byte in the
format tuple.

Byte 12 (TPLFMT_FLAGS) contains several control bits.

® Bit 0 (TPLFMTFLAGS_ADDR), if set, indicates that bytes 14-17 (TPLFMT_ADDRESS) represent a

physical address to be associated with the first byte of this region. If clear, bytes 14-17 do not
represent a physical address.

® Bit1 (TPLFMTFLAGS_AUTO), tells the system whether to automatically map the region into
memory when the card is inserted (or at system start-up). If set, the systern should attempt to map
the region into memory; if TPLFMTFLAGS_ADDR is set, the system should attempt to map the
code at the specified address. A system shall ignore these field if it cannot perform the specified
mapping; it may also, at the designer’s option, ignore these fields even if it could perform the
mapping.

Byte 13 is reserved, and must be set to zero if present.
Bytes 14 through 17 (TPLFMT_ADDRESS) represent the physical address at which the partition should be

mapped into the host's address space. For 80x86-family machines, this is a linear address, not a segment/
offset address. If the flag TPLFMTFLAGS_ADDR is not set, then this field is reserved and must be zero.

-74-

PCMCIA PC CARD STANDARD
August 21,1990

NOTE TO IMPLEMENTORS: A system can be fully with this standard and not honor these fields. The
automatic mapping feature is not intended for general purpose use or for building interchangeable
BIOS extensions for general purpose systems. The automatic mapping feature of this standard is
included for use in low-cost embedded systems, and is not intended as a general execute-in-place
specification. Many important issues are deliberately notaddressed by this partof the standard, such
as what to do when the card is removed, or how to resolve conflicts when cards in different sockets
both need to be mapped to a specific physical address. Itis anticipated that general purpose DOS-
based systems will ignore these fields.

Bytes 18-21 (TPLFMT_EDCLOC) have the same meaning for memory-likeregions that they have for disk-like

regions. A memory-like region has only two options for error checking: none or PCC. Therefore, if this field

is used, byte 18 contains the check code, and bytes 19-21 are reserved and must be zero.

Arithmetic checksums shall be computed by summing together all the data bytes of the block using eight-bit
twos-complement addition, ignoring any oveérflow that occurs. The resulting sum shall be stored in an
external table (for block-by-block checksum) or in the format tuple itself (for PCC checking).®

53.2.14 CRC Eror-Detection Codes

CRC codes shall be computed using the SDLC algorithm.* In this algorithm, the data to be checked is
considered asa serial bitstream, with the low-order bitof the first byte taken as thefirstbitof the stream. This
bit stream is conceptually taken as the coefficients of a polynomial in xn, where nis the number of bits in the
stream, and where the first bit is the coefficient of the term in x*' This polynomial is divided (modulo 2) by
the polynomial x'¢ + x'2 + x* + 1, leaving a remainder of order 15 or less.” The one’s complement of this
rernainder is the error check code; it is recorded with the complemented coefficient of x'S as its least-
significant bit, and with the complemented coefficient of x’ as its most-significant bit.

The SDLC CRC has a convenient property: when the check code is appended to the data stream, and the
algorithm is run on the result, the remainder will always be x12+ x! + x19 4+ x$+x* +x* +x' + x? (assuming that
neither the data nor the CRC have been corrupted).

Despite its complicated formal definition, the SDLC CRC is quite easy to compute both in hardware and in
software. Commercially available chips (such as the Fairchild 9401) can compute the CRC directly from a
serial data stream. There are several well known methods for computing the CRC one byte at a time using
a lookup table. Even so, computing a CRC in software is somewhat slower than computing a simple
checksum.

Within a disk-like partition, cards with data-paths wider than 16 bits shall be byte mapped with the lowest
byte address of each word corresponding to the least-significant byte of that word, and with increasing byte
addresses corresponding to increasingly significant bytes.

$ This method has the disadvantage that the checksum of a block of zero data is also zero; however, itis consistent with
current practice. We don'tanticipate thatimplementors will want to interleave checksums and data; if that's desired,
the standard should introduce another error-detection code type, one’s complement of checksum.

¢ Also known as CRC-CCITT or HDLC CRC.

7 Asanadditional refinement, the initial remainder is set to all ones, rather than all zeroes; this causes the CRC code
for a block of all zeroes to be non-zero.

.75 -

Card Metaformat

This tuple shall only appear in partition tuples for disk-like partitions. It provides instructions to those
operating systems that require that all mass-storage devices be divided into cylinders, tracks and sectors.

Byte 7 6 5 4 3 2 1 0
0 TPL_CODE Geometry tuple code (CISTPL_GEOMETRY, 42h).
1 TPL_LINK Link to next tuple. (at least 4)

2 TFLGEO_SPT Sectors per track.
3 TPLGEO_TPC Tracks per cylinder.
4.5 TPLGEO_NCYL Number of cylinders, total.

Table 44 Geometry Tuple

Byte 2 (TPLGEO_SPT) specifies the number of sectors per simulated track on the memory card. Thisisa
number between 1 and 255. A value of zero is not permitted.

Byte 3 (TPLGEO_TPC) specifies the number of tracks per simulated cylinder on the device. This is a number
between 1 and 255. A value of zero is not permitted.

Bytes 4-5 (TPLGEO_NCYL) specify the number of simulated cylinders on the device. This is a number
between 1 and 65535, stored as a 16-bit integer, LSB first.*

The product
TPLGEO_NCYL - TPLGEO_TPC - TPLGEO_SPT

shall be less than or equal to the number of blocks recorded in field TPLFMT_NBLOCKS of the format tuple
(section 5.3.2.1.1 page 72).

This value is one greater than the same quantity as represented by the PC BIOS. This standard records the number
of simulated cylinders; the PC BIOS records the maximum cylinder number. Since cylinder numbers on the PC start
at zero, the maximum cylinder number on the PC is one less than the number of cylinders.

-76 -

PCMCIA PC CARD STANDARD
August 21,1990

5323 The Byte-Order Tuple (CISTPL BYTEORDER)

This tuple shall only appear in a partition tuple set fora memory-like partition. It specifies two parameters:
the order for multi-byte data, and the order in which bytes map into words (for 16-bit or wider cards).

Byte | 7 6 5 ' 3 2 1 0
0 TPL_CODE Tuple code (CISTPL_BYTEORDER, 43h).
1 TPL_LINK Link to next tuple; should be at least 2.
2 TPLBYTE_ORDER Byte order code: see table 42.
3 TPLBYTE_MAP Byte mapping code: see table 43.

Table 45 Byte Order Tuple

Byte 2 (TPLBYTE_ORDER) specifies the byte order for multi-byte numeric data. Symbolic codes for this field
begin with the text “TPLBYTEORD_", and are listed in table 46.

Code Name Description

0 TPLBYTEORD_LOW | Specifies that multi-byte numeric data is recorded in
little-endian order. .

1 TPLBYTEORD_HIGH | Specifies that multi-byte numeric data is recorded in
big-endian order.

2-7Fh Reserved for future standardization.

80h-FFh | TPLBYTEORD_VS Vendor-specific.

Table 46 Byte Order Codes

Byte 3 (TPLBYTE_MAP) - =~ -‘fies the byte mappi * - for 16-bit or wider cards. Symbolic codes for this field

begin with the text “TP!

MAP_”, and are li>: din table 47.

0 TPLBYTEMAP_LOW | Specifies that byte 0 of a word is the least-significant byte
(multi-byte cards).

1 TPLBYTEMAP_HIGH | Specifies that byte 0 of a word is the most-significant byte
(multi-byte cards).

2-7Fh Reserved for future standardization.

80h-FFh | TPLBYTEMAP_VS Vendor-spedific.

Table 47 Byte Mapping Codes

Card Metaformat

If a byte-order tuple is not present, the data shall be recorded using little-endian byte order (TPLBYTEORD_LOW),
and shall be mapped with byte 0 of each word corresponding to the least-significant byte (TPLBYTEMAP_LOW).

For applications involving DOS file systems, little-endian byte order and low-to-high byte mapping are
mandatory.

This standard allows great flexibility in adjusting the card format to meet specific requirements. -For
simplicity, this standard further specifies recommended formats - formats which are expected to be commonly
used.

® Generic - the bytes are recorded in 512-byte blocks with no error checking; the first data byte of
the card appears at byte address 512 (200h).

@ Single-byte checksum format — the bytes are recorded in 512-byte blocks, with a separate region
reserved for error-checking codes, and with a sector buffer.

® Two-byte Embedded CRC format - the bytes are recorded in 512-byte blocks, with each block
followed by a 16-bit CRC.

@ Raw byte format — the bytes are recorded sequentially in an unblocked form.

In order to maintain a reasonable degree of interchangeability, this standard recommends that all layer-2
conforming implementations be able to read and write generic-format cards.

When animpiementation is presented with a card whose format is not supported by that implementation, the
implementation shall refuse to write on the card, except to reinitialize it. If the basic format is not supported
by the implementation at all, the implementation shall return an error to applications whenever they attempt
toaccess the card. The implementation may allow read-only access toa card whose basic format is supported
but whose error-detecting code is not. For example, an implementation that only supports the creation of
generic-format cards could allow single-byte~checksum cards to be read, by ignoring the checksum bytes.
With a little more sophistication, the implementation could also allow embedded-CRC format cards to be
read.

PCMCIA PC CARD STANDARD
August 21, 1990

Layer 2 allows a card to have multiple partitions, with each partition having its own data-recording format.
In this case, there shall be one Format Tuple (section 5.3.2.1, page 70) in the Card Information Structure for
each partition on thecard. The additional tuples that refer only toa given partition shall appear immediately
following the format tuple that defines the partition.

An implementation is not required to support multiple partitionsona single card. When presented witha
card with multiple partitions, an implementation may:

® Only allow access to the first partition (if supported)
@ Scan the CIS for the first partition type of a supported type, and only allow access to that partition.
® Deny access to the card.

Note to Implementors: We anticipate that for most applications, only 1 or 2 regions will be required. (Two

regions would be used by a ROM card that contained both executable ROM images and a DOS file
system).

Card Metaformat

5.4 Data Organization (Layer 3)

This layer defines the data organization of a particular partition on a memory card. At this level, the
possibilities become manifold. Some examples are:

® A partition can contain a DOS file system (or a file system for some other operating system). This
can be used with any disk-like level 2 format.

@ A partition can contain a FlaSh file system (used with memory-like formats).
® A partition can use a vendor-specific organization.
@® A partition can use an application-specific organization.

Layer 3 of this standard provides an unambiguous means of specifying the organization of the partition.

54.1 Data Organization Tuples
All information about the organization of a given partition is given in special tuples in the Card Information

Structure. Each card that conforms to layer three of this standard shall contain at least one data-organization
tuple for each partition defined on the card.

At present, the data-organization tuple is the only tuple defined by layer three.

54.1.1 The Organization Tuple (CISTPL ORG)

The Organization Tuple appears in the list of partition-specific tuples that follows each format tuple. It has
the format shown in table 48.

Byte 7 6 5 4 3 2 1 0
0 TPL_CODE Tuple code for this tuple. (CISTPL_ORG, 46h)
1 TPL_LINK Link to next tuple (at least n-1).
2 TPLORG_TYPE Data organization code
3.n TPLORG_DESC Text description of this organization, terminated by 00h.

Table 48 Data Organization Tuple

-80-

PCMCIA PC CARD STANDARD
August 21,1990

Byte 2 (TPLORG_TYPE) specifies the type of data organization in use. The possible values of this byte are
given in table 49.

Code Name Description

0 TPLORGTYPE_FS This partition contains a file system. The description
field specifies the file system type and version.

1 TPLORGTYPE_APP This partition contains application-specific information.
The description field specifies the application name
and version.

2 TPLORGTYPE_ROMCODE | This partition contains executable code images. The

description field. The description field specifies the
name and version of the organization scheme.

3-7Fh (Reserved for future standardization.)
80h-FFh TPLORGTYPE_VS This partition uses a vendor-specific organization.
- The contents of the description field are vendor-
specific.

Table 49 Data Organization Codes

Bytes 3 through the end of the tuple (TPLORG_DESC) contain a NUL-terminated ASCII-text description of
the organization. For file system organizations, this field should specify the file system type. This field shall
contain only characters in the printing ASCII set, 020h through 07Eh. (For international use, one or more
CISTPL_ALTSTR tuples can follow this tuple.)

For DOS file systems, TPLORG_TYPE shall contain TPLORGTYPE_FS,and TPLORG_DESC shall contain the
string “DOS”. For FlaSh file systems, TPLORG_TYPE shall contain TPLORGTYPE_FS, and TPLORG_DESC
shall contain the string ‘FlaSh”.

The intent of this field is two-fold.

® For operating systems with sufficient flexibility, it allows the appropriate file-system driver to be
selected based on the value of this field.

@ Ifa card cannot be read due to software incompatibilities, a utility program can display the con-

tents of this field along with other card information to inform the user as to what kind of informa-
tion is really on the card.

-81 -

Card Metaformat

5.5 System-Specific Standards (Layer 4)
Layer four of this standard specifies things that are only relevant in certain operating environments. At
present, all layer-four standards are specific to the DOS environment. The following DOS-specific standards
are defined:

® Aninterchange format for cards formatted with the DOs file system (section 5.5.1).

® A standard for directly-executable programs (specified in a separate document).

® A standard for interpreting older cards formatted without the Card Information Structure (section
5.5.3).

551 Interchangeable Card Format

This standard would be of little use if it did not allow the free interchange of information between DOs
systems. Rather than limiting all DOS implementations to a single format, this standard requires that all
implementations support the following format in addition to any other formats.
The Interchangeable card format has the following characteristics:
Layer 1: the card information structure shall contain at least a device information tuple.
Layer 2: the card information structure shall contain the following tuples.
1. Level-2 information tuple, with the following fields set.
® TPLLV2_COMPLY shall be 0.
® TPLLV2_NHDRshall be 1, indicating that only one copy of the CIS is present.
® TPLLV2_VSPECS and TPLLV2_VSPECS shall be zero.
2. Asingle format tuple. This tuple shall indicate that the partition uses a disk-like format with
512-byte blocks. It shall further indicate that the card uses no error detection code, that the
EDC length is zero, and that the first data byte of the card appears at byte 512, or higher, of the
card. This tuple shall indicate that the partition covers all but the first 512 bytes of the card,
and that there are (partition_size / 512) blocks in the partition.
In addition, the CIS may optionally contain the following tuples:

® A single geometry tuple. If present, this tuple shall contain information that matches the in-
formation presented in the boot block BPB.

® A single card-initialization date tuple.
® Asingle battery-replacement date tuple.
Layer 3: the card shall contain a DOS-compatible file system. The boot sector shall be recorded in data
block zero (that is to say, starting at byte 512 of the card). The BPB in the boot sector shall describe

the geometry of the file system in any convenient fashion. This standard recommends that geome-
try parameters be set to appropriate powers of two.

-82-

PCMCIA PC CARD STANDARD
August 21,1990

552 ExecutenPlace

The proposed format for cards supporting direct execution of application programs from the card (““execute
in place”) is described in a separate document.

553 Interpreting Cards Without Card Information Structures
Some existing systems use RAM cards with a pseudo-floppy organization.
Pseudo-floppy cards have the following format

A series of contiguous logical sectors, as viewed by MS-DOS

The BIOS sector addressing scheme (head, cylinder, sector) is mapped one-to-one to the logical
sectors

The logical sectors are arranged exactly as in the case of a floppy disk, i.e. the first is the BOOT SEC-
TOR, then come a variable number of FILE ALLOCATION TABLE (FAT) sectors, thena number of
ROOT DIRECTORY sectors, and finally the card is filled up with DATA sectors

Sectors are a standard MS-DOS size: 128, 256 or 512 bytes; 512 byte sectors are the standard default,
since this allows room for executable code in the first (BOOT) sector

The BOOT sector is defined exactly as for a floppy; it thus contains the BIOS Parameter Block (BPB),
and thus a definition of the number of bytes per sector, number of copies of the FAT etc.

The boot sector would typically be 512 bytes, if it needs to contain bootstrap code as well as the BPB.
- Otherwise, it could be as small as 128 bytes. However, the first 30 to 50 bytesof the bootstrap sectorare always

recorded in a standard format.
The first three bytes of the boot sector are reserved for a short or a near jump:

E9 XX XX
or
EB XX 90

This gives us a simple way to detect a pseudo-floppy boot block. There then follows the BIOS Parameter
Block.

The format of the boot-sector header is shown in tables 47 and 48, below.

Note: The information in these tables is controlled by DOS; the data formats are
included here only for reference.

Card Metaformat

Byte 5 4 3 2 1 0
0-2 Short or near jump: 0E9h XX XX or OEBh XX 090h.
3-0Ah System ID (OEM name and version) (8 bytes)
0Bh-0Ch Bytes per sector (2 bytes)
0Dh Sectors per cluster
OEh-OFh # reserved sectors
10h Number of FATs
11h-12h # root directory entries
13h-14h # sectors in logical volume
15h Media Descriptor Byte
16h-17h # sectors per FAT
18h-19h # sectors per track
1Ah-1Bh number of heads
1Ch-1Dh # hidden sectors

Table 50 DOS Boot-Block Structure

With DOS 4.0 and later, the following additional fields are defined:

1Eh-1Fh # hidden sectors (most significant word)
20h-23h # sectors in logical volume (4 bytes)

24h Physical drive number

25h Reserved

26h Extended boot signature (29h)
27h-2Ah Volume ID (binary) (4 bytes)
2Bh-35h Volume label (11 bytes)
36h-3Dh Reserved (8 bytes)

Table 51 Extended BPB

-84-

PCMCIA PC CARD STANDARD
August 21,1990

The BPB and Header Information

The information in the BPB can be accessed by the device driver, whether embedded in the ROM BIOS, or
external to the BIOS, or separately loaded as an MS-DOS Installable Device Driver. In this way, differing
configurations of ROM BIOS to Logical Sector Mappings can be used; a card can have “multiple heads”, for
instance.

5532 Handling PseudoFloppies in a Conforming

Pseudo-floppies can easily be handled from within a conforming system, if the following procedure is
followed during card-insertion processing:

1. Read the first byte of attribute memory. If it is O1h, process the CIS from attribute memory in the
ordinary way. If all metaformat information is present in attribute memory, or in common mem-
ory as specified by the attribute memory, then this is not a pseudo-floppy. If a CIS is present in
attribute memory, but no layer-2 information is present, or if no CIS is present, proceed to step 2.

2. Read the first few bytes from the card’s common memory (starting at physical address 0) into a
local buffer.

3. Compare the first five bytes of the buffer to the CIS link-target tuple signature (13h, xx, “CIs",
where xx is a link value in the range [03h, FEh]). If they match, then this card has the CIS metafor-
mat structure in RAM (and probably has no attribute memory); use the ordinary processing rules.
Otherwise, no CIS is present at all; proceed to step 4.

4. Compare the first three bytes of the buffer to the DOS boot block signature: 0E9h, XXh, XXh, or
OEBh, XXh, 90h. If it matches, assume that this is a DOS-format pseudo-floppy. Extract the rele-
vant geometry and block-size information from the BPB, assume that there is no error detection,
and assume that the card consists of a single data partition encompassing the number of blocks
indicated in the BPB.

-85 -

Card Metaformat

5.6. Compatibility Issues

5.6.1 Buffer Pages

Some vendors use a buffer page to improve the reliability of memory cards in the face of power failures. This
standard does not directly provide a means for specifying the location of the buffer page. Space can easily
be reserved for a buffer page by proper adjustment of the values in the format tuple. If needed, a vendor-
spexific tuple can be added to specify the location of the buffer page within the partition.

Use of a CIS does not require a special (non-DOS) format utility in the common case where the entire card is
to be formatted as a DOS file system. For example, the memory card BIOS could determine all the relevant
information (including the pseudo-disk geometry) using information that is passed to the BIOS format
function, and transparently construct the CIS during the format operation. DOS is unaware of the existence
of the CIS; when it reads block 0 of the disk, the BIOS returns the first user-accessible block.

For multi-format cards, a special format utility is required, in order to get the proper partition information
in the CIS.

PCMCIA PC CARD STANDARD
August 21,1990

The intent of this standard is that existing BIOS and DOS driver software be easy to migrate to the new
standard. This process involves making the following modifications to system software:

1.

The existing software should be examined to determine how its data layout corresponds to the
options presented by this standard.

From this, design a standard CIS which describes how the data is presently laid out;- however,
move everything up (for example, by 512 bytes) to leave room for the CIS at the front of the card.
Place a copy of this CIS in the code for the BIOS or driver.

Modify the driver or BIOS to check for a CIS signature whenever a card may have been changed.

@ If the card has a CIS signature, do a byte-by-byte comparison of the CIS on the card with the
CIS in the BIOS or driver code. If the CIS matches, seta flag indicating thata ‘standard-
conforming card’ is installed. If the CIS does not match, set a different flag indicating that
an card with an unsupported format is installed.

@ For flexibility, the comparison operation could ignore device-information tuples and (possi-
bly) the partition length field of the format tuple. It could also be structured to allow the
tuples to appear in any order.

@ If the card does not have a CIS signature, assume that it is an old-style card. Set a flag indicat-
ing that a supported, non-conforming card is installed. »
Whenever 1/0 is performed, check the flags.

@ If an unsupported card is installed, return an error.

® If a supported non-conforming card is installed, convert the block address to the byte address
just as you did previously.

@ If a supported conforming card is installed, convert the block address to the on-card byte
address just as you did previously; then add 512 (or whatever base address you decided on
in step 2).

Using the address you've just calculated, perform the 1/O operation.

Itis possible to use the metaformat portion of this standard to organize data, even in the absence of attribute
memory support. To do so, we recommend the following adaption:

Format the card so that a card information structure begins at location zero on the card; make the first
tupleaLINK_TARGET tuple. This gives softwarea reasonably unambiguous way to determine whether
the card is formatted or not.

-87 -

This page is intentionally left blank

PCMCIA PC CARD STANDARD
August 21, 1990

SECTION 6
FAT FILE SYSTEM

-89 -

FAT File System

6. FAT FILE SYSTEM
61 Introduction

This section describes the essential elements of how the DO% :
on IC memory cards. This is not a full description of the FA" ..
assumed the reader is familiar with this technology.

The FAT file system is the default data transfer standard rc:-
recognized that the FAT does not make the most efficient us:
for all types of memory technology. However, it does offer a far:.
compatible data structure requiring little system software ove
suited for specific technologies or applications will be incorp-

a later date.

Supporting FAT on IC cards

FAT file systems will be contained within partitions on IC mc.
described by the PCMCIA metaformat; the metaformat will in:
identify partitions as FAT partitions. The card device driver v
the partition as a block device to DOS. The partition will b< .
sector 0 beginning at the first address within the partition.

The logical format of a FAT partition is described by the B>
standard DOS data structure. It is incorporated into the bo
partition. Two different formats are supported, one for part:
partitions greater than or equal to 32Mb. Note that DOS33 a-
larger than 32Mb.

Offset Size Contents
+00 3 ID (Jump instruction to t
It must be EBh,xxh, 90h c: .
+03 . 8 OEM name and version
+0B 2 Bytes per sector
+0D 1 Sectors per allocation un
+0E 2 Reserved sectors count
+10 1 Numbers of FATs BPB
+11 2 Numbers of root direct-
+13 2 Numbers of sectors in i.
+15 1 Media descriptor
+16 2 Numbers of sectors pe- ™
+18 2 Sectors per track
+1A 2 Numbers of heads
+1C 2 Numbers of hidden secte
+1E 22h Reserved for future use
+40 - Bootstrap code etc.

Table 52 Boot Record Format for Small P:-

-90-

PCMCIA PC CARD STANDARD
August 21,1990

Contents

| ID (Jump instruction to boot cord)
? It must be EBh,xxh 90h or E9h,xxh,xxh

OEM name and version
Bytes per sector
Sectors per allocation unit

| Reserved sectors count
| Numbers of FATs BPB
Numbers of root directory entries
Numbers of sectors in logical image
Media descriptor
Numbers of sectors per FAT
| Sectors per track
Numbers of heads
i Numbers of hidden sectors
~ Number of logical sectors
Reserved section and bootstrap code

' Record Format for Large Partitions
.:sed, the image size at offset 13his set to 0, and the alternative field at

:lues chosen for sectors per track and number of heads be powers of
by the device driver. It is also recommended that the media
-~ avoid conflicts with older versions of DOS.

AT file systems must be structured as standard DOS block device
~uests from DOS in terms of sectors and tracks; they must be prepared
tophysical card addresses, based on the geometry parameters defined

-2 cards with a variety of logical formats, and should be prepared to
-nan being tied to a specific format.

-91 -

This page is intentionally left blank

-92-

PCMCIA PC CARD STANDARD
August 21, 1990

SECTION 7
EXECUTE IN PLACE

-93 -

Execute In Place

7. EXECUTEIN PLACE

71

General

Common program executiori in MS-DOS computers occurs in system RAM space. These
programs are often time loaded from magnetic media based 1/0 devices such as floppy disks,
hard disks, or tape drives. Programs stored in an IC memory card can be executed directly
when appropriate mapping methods are employed. This committee recognised this need and
provided methods for program eXecution-In-Place (XIP). A framed window memory paging
structure is used.

"A” "Bll "C"

16 Koyte
|
| |

16 Kbyte This region is divisible This region is divisible

64 Kbyte 64 Kbyte down to 2 Kbyte 64 Kbyte down 10 2 Kbyte
frame frame spages frame pages

| 16 Kbyte
} 16 Kbyte
I ——

1. Three regions ("frames") of 64 Kbytes are defined.

2. These three regions are not required to be contiguous to each other.
3. Within each region the 64 Kbytes must be contiguous.

4. One region must be subdivided into four pages of 16 Kbytes each.

5. The other regions may be "single pages" of 64 Kbytes, or they may be subdivided into pages
as small as 2 Kbytes.

6. There is no specific requirement to implement any of the regions in hardware. Software
emulation and "copying" schemes are acceptable.

7. Software vendors may assume that the frame “"A" is implemented in hardware to optimize
performance. They may further assume that regions "B" and "C" may be implemented by
"copying", which would make it desirable to place the root overlay or other infrequently
paged code in regions "B"and "C".

8. All API (Application Programmer Interface) issues including definition of read-only pages
are left to a later release.

-94 -

PCMCIA PC CARD STANDARD
August 21,1990

APPENDICES

-95 .

APPENDIX 1
Metaformat Glossary

attribute memory: PCMCIA/JEIDA standard memory cards provide a separate memory address space for
recording fundamental card information. This memory is intended to be used by the card
manufacturer to record basic configuration information. This memory is selected by asserting the /
REG line on the card interface. It is typically, but not necessarily, read-only.

Attribute memory space need not be physically distinct from common memory space; but it must be
logically distinct.

basic compatibility layer: The layer of this standard (layer 1) which mandates the use of a card-information
structure (CIS) at the beginning of any complying card. ‘

big-endian byte order: a means of specifying the order in which multi-byte numeric objects are recorded, when
broken into bytes. Big-endian byte order specifies that the most-significant byte shall be recorded in
the lowest byte address; bytes of decreasing significance shall be recorded sequentially in subsequent
bytes. Cf. little-endian byte order.

block: for disk-like data formats, a block is the fixed-length sequence of bytes. In such formats, data must
usually be read or written as a series of one or more blocks.

byte: in this standard, a byte is eight bits.

bytemapping: the sequencein whichbyte data is recorded on cards. For 8-bitmemory cards, the byte mapping
is one-to-one, and not at issue for standardization. For 16-bit and wider cards, the byte mapping
within words of the card is arbitrary, and so is governed by this staxdard. - ‘

buffer page: a region of memory on a card used to improve reliability when updating a card. A buffer page
typically includes an indication of the region of the card being updated, an image of the desired value
for the region of the card, and a flag that indicates that the buffer pageis valid. If power fails while
a card is being updated, the buffer page can be used to automatically complete the transfer when
power is restored.

Card Information Structure: a data structure written at the beginning of every card that complies with this
standard, containing information about the formatting and organization of the data on the card.

checksum: an arithmetic error-checking code for data recording based on summing the bytes of data to be
checked. Checksums are frequently used by systems that perform error-checking in software.

CIS: card information structure.

common memory: PCMCIA /JEIDA standard cards provide two memory address spaces. The term “‘common
memory” denotes the primary address space, containing the memory used for application data
storage. See also attribute memory.

CRC: cyclical redundancy check.

cyclical redundancy check: an error-checking code for data recording based on bitwise polynomial division of
the data bytes to be checked. As used in this standard, refers to the 16-bit SDLC version of this code,

using the polynomial x'¢+ x'2+ x*+ 1, with the check-register initialized to all ones. CRCsare typically
used by systems that perform error-checking in hardware.

-96-

PCMCIA PC CARD STANDARD
August 21,1990

cylinder: a unitof disk organization. A diskis typically viewed asa collection of cylinders. Eachcylinderon
a disk is divided into tracks; each track is further divided into sectors. Typically, all of the sectors
within a cylinder can be accessed without moving the arm of the disk. See sector.

data organization: thelogical organization of dataona card, independent of the data-recording format. The
data organization of a memory card will almost always be some kind of file system.

data organization layer: the layer of this standard covering the data organization of the card.

datz-recording format: the organization of a memory card into sequences of bytes thatare updated or accessed
by a single logical operation. The data-recording format of a card includes such details as whether
the card’s data is organized into blocks of bytes; whether the card includes error checking codes for
each block: and so forth. The data-recording format does not specify whether a file system is used.
The data-recording format of a card is akin to the physical format of a diskette. Cf. data organization.

data recording format layer: thelayer of this standard (layer2) thatspecifies the data-recording formatofacard.

DOS: the disk operating system for 80x86 architecture systems, such as the IBM PC. DOS is available in
several different versions, which are largely compatible with.each other; the term generically
designates all of them.

EDC: error-detection code

EEPROM: Electrically-Erasable Programmable Read-Only Memory. A non-volatile memory device which
can be programmed electrically, and in which individual bytes can be erased electrically. Usually
writes and erasures are much slower than reads.

EPROM: Erasable Programmable Read-Only Memory. A memory devicé which can be programmed
electrically, and erased in bulk by some means, usually by exposure to ultraviolet light.

error-detection code: a numeric code derived from the contents of a data block, used to determine whether the
data read from the block are probably correct. ~

file system: an operating-system specified method of structuring data on a mass-storage device. A filesystem

standard consists of a set of data structures and the rules by which those structures are interpreted.

We sometimes say that a card has a file system recorded on it; by this we mean that an operating

system utility program has placed the appropriate information on the card, allowing the card to be
interpreted and manipulated by the operating system.

Not all cards have file systems on them. Some cards are managed directly by application programs.

flash EPROM: a type of EPROM that can be electrically erased. It differs from EEPROM in that generally the
entire memory must be erased at once.

FlaSh: a trademark of Microsoft, describinga file system designed for use with UV-erasable or Flash EPROM
memory cards.

Kbyte: kilobyte. 1 Kbyte = 1024 bytes.
little-endian byteorder: ameans of specifying theorderin which multi-byte numeric objects are recorded, when
broken into bytes. Little-endian byte order specifies that the jeast-significant byte shall be recorded

in the lowest byte address; bytes of increasing significance shall be recorded sequentially in
subsequent bytes. Cf. big-endian byte order.

-97 -

ISO 646 IRV: International Standards Organisation standard number 646 (Character codes), Inteernational
Reference version. A character setvery similar to ASCII, used internationally for representing textual
information. It differs from ASCII only in that code 24h represents the international currency symbol
rather than the dollar sign ("$"). Exceptin the alternate/national string tuple, all character data shall
be represented using the printing characters from this character set.

LSB: least-significant byte.

metaormat: in this standard, the word metaformat is used to encompass the contents, layoixt, and interpre-
tation of the card information structure. ‘The PCMCIA Metaformat Standard is outlined in Section
5 of this document.

one-time programmable: A term describing memory that can be programmed to a specific value once, and
thereafter cannot be changed (or can only be revised in a limited way). One-time programmable
EPROMs are ordinary EPROMs that have been packaged in such a way that ultra-violet light cannot
be used to erase the contents of the EPROM. Such packaging is ususlly less expensive.

OTP: one-time programmable

paragraph: on Intel 80x86 family machines, a paragraph is a block of sixteen bytes, aligned on a sixteen-byte
boundary.

partition: a region of a mass storage device. In this standard, partitions are used to allow a single card to
contain two different kinds of data; for example, a card might contain a normal DOS file system in
one partition, and directly-executable ROM images in another partition. Most RAM cards will
contain only a single partition that contains all the usable storage of the device.

partition check code: A simple method of verifying the contents of an entire partition. A checksumis computed
by summing together all the data bytes of the partition; this sum is compared to a value stored in the
format tuple that defines the partition. This method is typically used for partitions that change
relatively infrequently, such as data partitions in OTP memory.

PCC: partition check code

PSP: program-segment prefix. Under DOS, the PSP is the primary data structure for a process, containing
its command line, information about exception handling, and so forth.

reserved: Asused in this standard, a reserved field or code valueis setaside for use in future standardization.
Vendors shall not use reserved fields or code values for any purpose except compliance with future
versions of this standard.

sector: Asused in thisstandard, a sector is the fundamental data storage unit of a disk. A sector is the smallest
unit of data that can be individually read or updated. Disk sectors correspond to memory card
blocks.

TPL: abbreviation used in symbolic codes to represent the word ““tuple”.

TSR: acronym for terminate-and-stay-resident. Under DOS, a TSR is a program that is loaded semi-
permanently into memory, extending the system'’s functionality.

tuple: in this standard, a tuple is a block that appears in the Card Information Structure. Tuples are used to

record various items of information about the card layout. All tuples have acommon format, shown
in Table 19, page 49.

-98 -

PCMCIA PC CARD STANDARD
August 21, 1990

vendor specific: in this standard, this term indicates bits, fields, or code values that are specific toa particular
vendor and are not defined by this standard. This standard further distinguishes two kinds of
vendor: the card manufacturer, and the supplier of the card data contents.

word: as used in this standard, a word is the smallest addressable unit of a given card. Eight-bit cards have

eight-bit words composed of one byte; 16-bit cards have 16-bit words, composed of two bytes; and
so forth.

APPENDIX 2

Hot/Cold Insertion Removal
How to retain the data stored into memory cards depends on system conditions and environments etc.

There are many cases of insertion and removal. This table shows whether data is retained and system
design requirements for data retention under major system conditions.

System Side Data Remark
Power {Conditions |CE |Retention

1| Cold Insertion | OV - - YES |Refer to Table 18 for the power-up sequence
2| Cold Removal | OV - - YES |Referto Table 18 for the power-down sequence
3 | Warm Insertion | Ve Hi-z "H'| YES nditi I guaranteein: nti

1. Place buffer between system and card.

2. Control signal (/CE) from system biased to
Vec and be High-Z.

3. In the card, /CE is turned High by internal
pull-up resistor on the /CE before the buffer
enable is disabled.

4. System Vcc is forced from card when in-
serted into system. In such case, system Vcc
must maintain the certain voltage.

5. Utilizing 2 CD pins, system enables buffer
and then accesses to card after detecting the
completion of card insertion.

Dj n r ing inser-

tion

Thereis nodisturbance to system because there

are buffers between system and card and the
buffers are enabled after card is ready.

4 | Warm Removal Hi-z "H"| YES iti I i a

1. Place buffer between system and card.

2. Control signal (/CE) from system biased to
Vcc and High-Z.

3. In the card, /CE is turned High by internal
pull-up resistor on the /CE until the buffer
enable signal is enabled.

4. Utilizing 2 CD pins, system stops accessing
to card and then disables the buffer before
card is completely removed from system.
isturban r uring r

moval

There is no disturbance to system because there

are buffers between system and card and the

buffers are disabled before card is removed.

-100 -

PCMCIA PC CARD STANDARD
August 21,1990

System Side Data Remark
Power | Conditions | CE | Retention

5 | Hot Insertion | Vec Active "L" | NO
Effective pin length differences cannot be used
totell the system thata card isbeing inserted. A
detect means other than pin length must be
used for incoming cards.

6 | Hot Removal |Vce Active "L" |NO
Utilizing card insertion detect by effective pin
length difference (0.28mm) of CD pins or me-
chanical inter-lock system, the system should
prevent this from happening by forcing CE high
whenever either CD pin signals card not-pres-
ent.

-101 -

	Cover
	Table of Contents
	1. ISV Developer's Overview
	Levels of Adaptation
	The HP 95LX Hardware Overview
	The HP 95LX Software Overview

	2. Off-the-Shelf Development Tools
	3. HP 95LX DOS
	4. HP 95LX BIOS ERS
	Overview
	BIOS RAM Definition
	Jaguar BIOS ID Block
	Battery Check
	Power Management
	Int 02h - Nonmaskable Interrupt
	Int 05h - Print Screen Interrupt
	Int 06h - Low Power Hook
	Int 08h - Timer Hardware Interrupt
	Int 09h - Keyboard Translate Interrupt
	Int 0Ah - Miscellaneous Hardware Interrupt
	Int 0Bh - Keyboard Hardware Interrupt
	Int 0Fh - Real-Time Clock Interrupt
	Int 10h - Video Services Interrupt
	Int 11h - Equipment Check Interrupt
	Int 12h - Memory Size Interrupt
	Int 13h - Disk Services Interrupt
	Int 14h - Serial Port Services Interrupt
	Int 15h - System Functions Interrupt
	Int 16h - Keyboard Services Interrupt
	Int 17h - Printer Services Interrupt
	Int 19h - Boot Interrupt
	Int 1Ah - Time-of-Day Services
	Int 1Bh - Keyboard Break Interrupt
	Int 1Ch - Timer Tick Interrupt
	Int 1Dh - Video Parameter Table Pointer
	Int 1Fh - Graphics Character Table Pointer
	Int 4Ah - User Alarm Interrupt
	Int 63h - eXecute In Place (XIP) Services Interrupt
	Appendix A - Compatibility Issues
	Appendix B - BIOS Messages
	Appendix C - PASSWORD

	5. File Specifications for HP 95LX Built-in Applications
	HP 95LX Appointment Book File Format
	HP 95LX Phone Book File Format

	6. HP 95LX Memory Management
	7. HP 95LX Low-Level Graphics Support
	Introduction
	Sample assembly language module of C-callable functions
	Sample Header File for Use with C Programs

	8. HP 95LX System Manager Operation and Programmer's Guide
	Overview
	System Manager Operation
	External Application Support
	Access to Services
	Application Considerations
	Building Applications

	9. HP 95LX System Manager Services Reference
	Overview
	Header Files
	Event Services
	Menu Services
	File Menu Services
	Screen Services
	Editing Services
	File Services
	Process Management Services
	Clipboard Services
	Sound Services
	Memory Management Services
	Date/Time Services
	Printer Services
	Configuration Services
	Communications Services
	Miscellaneous Services
	Resource Services
	Help Services
	Collating Services
	1-2-3 Bridge Services

	10. From Software Design to Ordering ROM Cards
	HP Supplied Development Tools
	Converting Files from .EXM or .EXE to .XIP
	ROM Image Builder
	Ordering ROM’s from Epson

	11. 'Hopper' HP 95LX System Controller ERS
	Contents
	1. Introduction
	2. Block Diagram
	3. Pin Out
	3.1 PIN Description

	4. I/O Address Summary
	4.1 Programmable Interrupt Controller (8259 Compatible)
	4.2 Programmable Interval Timer (8254 Compatible)
	4.3 Programmable Peripheral Interface (Emulates 8255)
	4.4 MDA Adapter (PC MDA Compatible)
	4.5 Serial Port (8250 compatible UART)
	4.6 Display Controller (HOPPER specific)
	4.7 Real Time Clock (HOPPER specific)
	4.8 Miscellaneous Registers (HOPPER specific)
	4.9 HOPPER Memory Configuration and Bank Switching

	5. CPU Bus Interface
	5.1 Display Address Remapping
	5.2 Internal Chip Selects
	5.3 External Chip Selects
	5.3.1 Wait State Registers
	5.3.2 Start Address Registers

	5.4 Write Enable Bits
	5.4.1 Device Size Registers

	5.5 Bank Switching
	5.5.1 Bank C and Bank D
	5.5.2 Bank E0 through Bank E3
	5.5.3 Limitations
	5.5.4 Bank Control Registers
	5.5.5 Example

	5.6 Take Over ROM/EPROMs

	6. HOPPER Display Controller
	6.1 Display Timing and Control Registers
	6.1.1 MDA Registers
	6.1.2 HOPPER Display Control Registers

	6.2 System Memory Interface
	6.2.1 Display Memory Organization

	6.3 Display Data Generation
	6.4 Cursor Generation
	6.5 Display Blank Mode

	7. Keyboard Control
	7.1 Keyboard Hardware
	7.2 Software Control
	7.3 Hardware Reset

	8. Card Detection
	8.1 Card Detect Register
	8.2 Special Considerations

	9. Serial Communication
	9.1 UART
	9.2 IR Communication
	9.2.1 REDEYE format
	9.2.2 Software Controlled Mode
	9.2.3 Modulated Mode
	9.2.4 IR UART Modes

	10. Interrupt Control
	10.1 8259 Interrupt Sources
	10.2 Non-Maskable Interrupt
	10.3 Interrupt Source Register
	10.4 Wake-Ups
	10.5 Enabling Interrupts
	10.6 Special Considerations

	11. Programmable Interval Timer
	11.1 TIMER0
	11.2 TIMER1
	11.3 TIMER2
	11.4 Timer Operation in Light Sleep

	12. Real Time Clock Timer
	12.1 Functional Description
	12.2 Special Considerations
	12.3 Pre-Divider outputs

	13. PC Compatible I/O Registers
	14. Crystal Oscillators
	14.1 Low Frequency Oscillator
	14.2 High Frequency Oscillator

	15. Clock Generator
	16. Touch Panel Controller
	16.1 The A/D Converter Interface (ADCONT)
	16.2 Touch Panel Control (TPCONT)

	17. Tone Generator
	17.1 Hardware Description
	17.2 Software Control

	18. Power Management
	18.1 Static Test Condition
	18.2 Deep Sleep
	18.3 Light Sleep
	18.4 Operating
	18.5 Backup
	18.6 System Resets
	18.7 System Control Register

	19. Contrast Control Voltage Generator
	20. Special Hardware Considerations and HOPPER Rev C
	20.1 Pseudo-Static RAMs and the CPU Halt Instruction
	20.2 Pseudo-Static RAMs and Hardware Reset
	20.3 Display Cursor
	20.4 TX Output
	20.5 Timer Wakeups
	20.6 Interrupt Source Register (ISR)
	20.7 The ON Key
	20.8 RDY Timing
	20.9 Speaker Power-Down
	20.10 Keyboard Precharge and Reset
	20.11 UP8250 Lockup
	20.12 UP8250 Parity Enable
	20.13 UP8250 Interrupts and Interrupt ID Register
	20.14 UP8250 Receiver Error Bits
	20.15 UP8250 Modem Status Register
	20.16 UP8250 Break Reset
	20.17 UP8250 Line Status Register
	20.18 UP8250 Receiver Buffer Register

	21. Testing

	12. HP 95LX Wired Serial and Infrared I/O ERS
	Contents
	Introduction
	RS232 Compatible Serial Port
	Protocol
	Hardware
	Software
	BIOS control
	Direct Register Control

	IR I/O Serial Port
	Protocol
	Hardware
	Software

	Other IR Communication
	REDEYE Format
	Software Controlled Mode
	Modulated Output Mode
	Modulated IR UART Output Mode

	13. Custom Artwork
	14. PC Card Standard (PCMCIA 1.0)
	Revisions
	Preface
	Introduction
	Contents
	1.0 General
	2.0 Scope
	3.0 Card Physical Dimensions
	4.0 Card Interface
	4.0 Memory Card Features
	4.1 Signal Description
	4.2 Operating Conditions
	4.3 Memory Function
	4.4 Timing Function
	4.5 Electrical Interface
	4.6 Card Detect
	4.7 Battery Voltage Detect
	4.8 Power-up and Power-down
	4.9 Future Tasks

	5.0 Card Metaformat
	5.1 The Standard
	5.2 Basic Compatibility (Layer 1)
	5.3 Data Recording Formats (Layer 2)
	5.4 Data Organization (Layer 3)
	5.5 System-Specific Standards (Layer 4)
	5.6 Compatibility Issues

	6.0 FAT File System
	7.0 Execute In Place
	Appendix 1 - Metafont Glossary
	Appendix 2 - Hot/Cold Insertion Removal
	Appendix 3 - Recommended Testing Method for Hot-Insertion and Removal

