HP-97 PROGRAMMABLE PRINTING CALCULATOR SERVICE MANUAL

(分)
HEWLETT PACKARD

HP-97
Programmable Printing Calculator

SERVICE MANUAL
Section Page
I GENERAL INFORMATION
1-1. Introduction 1-1
1-5. Description 1-1
1-7. Compatibility 1-1
1-10. Identification 1-2
1-13. Standard Accessories 1-3
1-15. Optional Accessories 1-3
II THEORY OF OPERATION
2-1. HP-97 Logic 2-1
2-3. Display 2-2
2-10. Performing a Function 2-4
2-13. Timing 2-4
2-17. Program and Data ROM 2-5
2-20. Printer 2-6
2-25. Print Head Drivers 2-7
2-27. Printer Motor Control 2-7
2-32. Print Intensity Control 2-8
2-35. Card Reader 2-8
2-40. Power Supply 2-9
2-44. Battery Charging 2-10
2-46. Power-On Reset 2-10
III ASSEMBLY-LEVEL MAINTENANCE
3-1. Introduction 3-1
3-6. Recommended Tools and Fixtures 3-2
3-7. Individual Key Sequence Tests 3-2
3-9. Full Operational Test 3-6
3-12. Initial Test 3-7
3-14. Program Memory Test 3-7
3-16. Functional Test 3-8
3-18. Keyboard Test 3-10
3-21. Diagnostic Test 3-12
3-28. HP-97 Assembly Removal and Replacement Procedures 3-14
Section
Page
IV COMPONENT-LEVEL MAINTENANCE
4-1. Introduction 4-1
4-3. Recommended Tools and Fixtures 4-1
4-4. Logic PCA Troubleshooting 4-2
4-6. Power Supply Troubleshooting 4-2
4-8. Faulty Function Verification and Repair 4-2
4-10. Logic PCA Operational Test 4-8
4-12. Initial Test 4-8
4-14. Program Memory Test 4-8
4-16. Functional Test 4-12
4-21. Printer Assembly Maintenance 4-21
4-24. Printer Mechanical Maintenance 4-21
4-26. Printer Electrical Maintenance 4-24
4-28. Keyboard Troubleshooting 4-26
4-30. Display Troubleshooting 4-26
4-34. Cathode Driver IC Replacement 4-27
4-35. Card Reader Troubleshooting 4-30
V ACCESSORIES
5-1. Introduction 5-1
5-3. HP 82033A Battery Pack 5-1
5-5. AC Adapter/Recharger 5-1
5-12. HP 82044A Security Cable and Lock 5-2
5-13. HP 82037A Reserve Power Pack 5-2
VI REPLACEABLE PARTS
6-1. Introduction 6-1
6-5. Ordering Information 6-1
Appendix A IMPROPER OPERATIONS
Appendix B SYMBOLS AND ABBREVIATIONS
Appendix C SERVICE CARDS
C-1. Introduction C-1

Contents
Section Page
C-6. Program Memory Test Program Card C-2
C-9. Functional Test Program Card C-2
C-12. Data Card 1 C-4
C-15. Data Card 2 C-4
C-17. Diagnostic Test Program Cards C-5
Appendix D SERVICE NOTES
Illustrations
Figure Title Page
1-1. HP-97 Keyboard and Memory 1-6
2-1. HP-97 Block Diagram 2-1
2-2. LED Digit 2-2
2-3. LED Display Format 2-3
2-4. SYNC and Display Timing 2-3
2-5. Timing Diagram 2-5
2-6. Print Head 2-6
2-7. Printed Character 2-7
2-8. HP-97 Power Supply Circuit 2-9
2-9. Over-Voltage Circuit 2-10
2-10. Battery Charging Circuit 2-11
2-11. Power-On Reset Circuit 2-11
4-1. Faulty Function Verification and Repair 4-3
4-2. Program Memory Test 4-9
4-3. IC Replacement Flowchart, Functional Test 4-15
4-4. Logic PCA (A1) Component Location Diagram 4-19
4-5. Logic PCA (A1) Schematic Diagram 4-19
4-6. CR5 and CR6 Anode Waveforms 4-20
4-7. 1 and 2 Waveforms 4-20
4-8. SYNC Waveform 4-20
4-9. RCD and STR Waveforms 4-20
4-10. Printer PCA Lead Location 4-22
4-11. Print Head Cable Removal 4-22
4-12. Print Head Cable Insertion 4-22
4-13. Print Head Cable Contacts 4-22
4-14. Head Carriage Home Position 4-23
4-15. FWD Waveform 4-24
4-16. STB Waveform 4-24
4-17. Printer PCA (A4A1) Component Location Diagram 4-25
4-18. Printer PCA (A4A1) Schematic Diagram 4-25
Figure Title Page
4-19. LED Digit 4-26
4-20. Display Problems 4-26
4-21. Keyboard PCA (A2A1) Component Location Diagram 4-29
4-22. Keyboard PCA (A2A1) Schematic Diagram 4-29
4-23. Card Reader Switch Adjustment Screws and Test Points 4-31
4-24. WA and WB Waveforms 4-31
4-25. RA and RB Waveforms 4-31
4-26. Card Reader PCA (A3A1) Component Location Diagram 4-33
4-27. Card Reader PCA (A3A1) Schematic Diagram 4-33
5-1. HP 82033A Battery Pack 5-1
5-2. AC Adapter/Rechargers 5-2
5-3. HP 82037A Reserve Power Pack 5-3
5-4. Reserve Power Pack Schematic Diagram 5-4
6-1. HP-97 Exploded View 6-3
6-2. Printer Assembly Exploded View 6-7
6-3. Card Reader Exploded View 6-8
B-1. Symbol Identification B-1
C-1. Program Memory Test Program C-2

Tables

Table Title Page
1-1. Specifications 1-4
3-1. Individual Key Sequence Tests 3-3
3-2. Initial Test 3-7
3-3. Program Memory Test 3-8
3-4. Functional Test 3-8
3-5. Keyboard Test 3-11
3-6. Diagnostic Test, Part One 3-13
3-7. Diagnostic Test, Part Two 3-14
3-8. Assembly-Level Troubleshooting Procedure 3-24
4-1. Faulty Function Repair 4-4
4-2. Initial Test 4-10
4-3. ROM Contents 4-10
4-4. Functional Test 4-12
4-5. IC Replacement, Calculator Halted or Looping 4-16
4-6. IC Replacement, Error Display 4-17
4-7. Logic PCA (A1) Replaceable Parts 4-18
4-8. Printer PCA (A4A1) Replaceable Parts 4-25
4-9. Missing Digit Troubleshooting 4-27
4-10. Cathode Driver Resistor Selection Chart 4-28
4-11. Keyboard PCA (A2A1) Replaceable Parts 4-29
4-12. Card Reader PCA (A3A1) Replaceable Parts 4-33
4-13. Logic PCA Troubleshooting Procedure 4-34
4-14. Printer PCA Troubleshooting Procedure 4-38
4-15. Card Reader Troubleshooting Procedure 4-42
5-1. AC Adapter/Rechargers 5-2
6-1. HP-97 Replaceable Parts 6-2
6-2. Keyboard Assembly (A2) Replaceable Parts 6-4
6-3. Printer Assembly (A4) Replaceable Parts 6-6
6-4. Card Reader Assembly (A3) Replaceable Parts 6-8
B-1. Reference Designations and Abbreviations B-2
C-1. Functional Test Program C-3
C-2. Data Card 2 C-4
C-3. Diagnostic Test Program, Part One C-6
C-4. Diagnostic Test Program, Part Two C-7

General Information

1-1. INTRODUCTION

1-2. This manual contains the information needed to troubleshoot, disassemble and reassemble, repair, and test the HP-97 Programmable Printing Calculator.(See figure 1-1).

1-3. The repair process for this calculator is broken up into two parts, assembly-level and component-level repairs. Basic operating information, specifications, theory of operation, and maintenance information are included.

1-4. This section contains basic information and specifications for the HP-97. Improper operations leading to an error display are listed in appendix A. For operating instructions refer to the owner's handbook.

1-5. DESCRIPTION

1-6. The HP-97 is a fully programmable, desktop printing calculator. Mechanically, the HP-97 is essentially similar to the HP-91, with the addition of a card reader.

1-7. COMPATIBILITY

1-8. The HP-97 is compatible with the HP-67: programs recorded on a magnetic card from HP-67 can be loaded into and executed on an HP-97, and vice versa.

1-9. Programs recorded on a magnetic card from an HP-65 cannot be loaded into an HP-97; however, most programs written for an HP-65 can be manually entered into an HP-97 via the keyboard. Most programs written on an HP-97 can be used in an HP-41C/HP-41CV; however, the converse is not true.

1-10. IDENTIFICATION

1-11. The serial number of the calculator is used for identification and warranty determination. It is located just above the battery door as the bottom of the calculator faces you. The format is described below:

Calculator Identification

1-12. The serial numbers located on the battery and on the ac adapter/ recharger are used to determine the week the unit was fully charged and the date of manufacture, respectively. The format for each is described below.

Battery Charge Date

```
1516
    i------------------------Neear of of charging
```

 \(1-2\)

AC Adapter/Recharger
 Manufacture Date

```
15 12
-- --
    i---------------Month manufactured
|-----------------Year manufactured (1960 + 15 = 1975)
```

1-13. STANDARD ACCESSORIES

1-14. The HP-97 comes complete with each of the following accessories:

* Carrying Case
* AC Adapter/Recharger
* Owner's Handbook
* Battery Pack
* Printer Paper (two rolls)
* Standard Pac
* Programming Pad

1-15. OPTIONAL ACCESSORIES
1-16. The following items are optional accessories to the HP-97 and as such are sold separately:

* HP 82044A Security Cable
* HP 82037A Reserve Power Pack
* Pocket Card Holder (part number 00097-13142)

Table 1-1. Specifications

Table 1-1. Specifications (Continued)

Display * Rounding to last displayed digit. Internal operations are calculated with 10 digits. * Numeric and decimal point: Eight segment, light-emitting diode (LED). Digit and decimal point are contained within a single eight-segment LED. * 15-digit display including two sign digits. * Minimum/maximum display number: +-1 X 10^{99} to $+-9.999999999 \times 10^{99}$.	Other: "Error" written on display when improper operation is attempted (see appendix A). "Crd" written on display when card is expected. Environmental Specifications * Operating: 0 to 45 C (32 to 113 F) with paper, 5% to 95% relative humidity. * Charging: 15 to 40 C (59 to 104 F) * Calculator Storage: -40 to 55 C (-40 to 131 F). * Paper Storage: -40 to 30 C (-40 to 86 F) ; less than 60% relative humidity. Note: Avoid exposure to direct sunlight or artificial light sources for extended periods; keep in box or appropriate container.

Automatic Memory Stack

Registers
$\mathbf{T} \ldots \ldots \ldots \ldots \ldots .0 .0 .00$
$\mathbf{Z} \ldots \ldots \ldots \ldots \ldots \ldots 0.0 .00$
$\mathbf{Y} \ldots \ldots \ldots \ldots$
0.00

Addressable Storage Registers
Primary Registers

Protected
Secondary Registers
(i) Address

Program Memory

000	
001	51
002	51
003	51
004	51
005	51
220	51
221	51
222	51
223	51
224	51

Figure 1-1. HP-97 Keyboard and Memory

Theory of Operation

2-1. HP-97 LOGIC

2-2. The main functional components e. PIK (printer interface control of the HP-97 as shown in figure 2-1 and keyboard buffer).
are:
f. Printer assembly
a. Display
b. Power supply
g. ROM's (read only memories).
h. Anode buffers.
c. Keyboard.
d. ACT (arithmetic, control, and timing).
i. Cathode driver.
j. CRC (card reader chip).
k. Card Reader Assembly.

Figure 2-1. HP-97 Block Diagram

2-3. DISPLAY
2-4. The display consists of a 15-digit light emitting diode (LED) module plus a low battery indicator which are controlled in part by each of the following components:
a. ACT.
b. ROM 0 .
c. Anode buffers.
d. Cathode driver.

2-5. Each digit consists of seven LED segments with an additional segment for the decimal, which makes eight segments, sequentially lettered a through h as shown below.

Figure 2-2. LED Digit

2-6. Since the display is a scanned diode array, both its anode and cathode must be driven in order for the segment to light. All cathodes of each digit are tied together, as shown in figure 2-3. When a cathode
driver transistor is turned on, any segment of that digit may light; the segment that lights will now be determined by which anode driver transistor is switched on. As an example, if all cathode driver transistors were switched on along with the a-segment anode driver, the a-segment of all digits across the display would light.

Figure 2-3. LED Display Format

Figure 2-4. SYNC and Display Timing

2-7. By sequentially switching on each cathode driver, only one digit at a time is actually lit. This happens too fast though for the eye to detect. Each cathode driver transistor is sequentially switched on by the strobe (STR) signal provided by the display ROM (ROM \varnothing) and reset by reset cathode driver (RCD), which is provided by the ACT. (See figure 2-4.)

2-8. The display of the HP-97 requires a large amount of current. Though the display ROM decodes the display information given on the IS bus by the ACT to switch on the current anodes, it alone is not capable of handling the large amount of current. Anode buffer $U 3$ and $U 4$ are used for this purpose.

2-9. Every cathode driver in the display that is switched on returns to ground that corresponding cathode line in the keyboard buffer U4 (PIK) which will decode and store up to seven keycodes. This allows the operator to press keys very quickly without waiting for the calculator to catch up. The PIK will also hold each keycode for a short period to negate the effects of key bounce.

2-10. PERFORMING A FUNCTION

2-11. Before a key is pressed the ACT is continually asking, "Has a key been pressed?" If the ACT is not tied up in controlling a calculation, and a key has been pressed, it will service that key code and the display will return. (The display is blanked out during printing to conserve power.)

2-12. The ACT services a key code by first requesting the key code corresponding to the key that was pressed, from the PIK. The PIK returns that code to the ACT via the DATA line. The ACT finally will put the address code on the instruction address (IS) bus. This address goes to the ROM's that will now send back to the ACT the specific instructions of how to perform that function and at the same time instruct the PIK as to what function to print. The ACT will then perform that function on the numbers in the display; the printer will print (when the print mode switch is set to TRACE) the function name and the result of that operation.

2-13. TIMING
2-14. The ACT circuit produces two signals for timing purposes: SYNC for the ROM's, PIK, and CRC, and RCD for the PIK and cathode driver. Along with the connection through the SYNC line, the ACT is connected to the ROM's and PIK by the IS (instruction address) bus. The IS bus instructs the data storage IC to store data sent on the data line from the ACT, and to send data back to the ACT on the same DATA line. Figure 2-5 shows the timing relationship between the SYNC, DATA, and IS pulses.

Figure 2-5. Timing Diagram

2-15. In addition to being used to synchronize the system, SYNC is also used to gate the 10-bit instruction that appears on IS at bit times $t 46$ through t55. During this time, SYNC distinguishes instructions from addresses. Following an "IF" instruction on the IS bus, the subsequent SYNC pulse is suppressed to allow a 10-bit address to be sent on the IS bus.

2-16. At bit times t16 through t28, the IS line carries a 12-bit instruction address from the ACT to the five ROMs, while display information is carried from the ACT to the ROM during bit times to through t7. At bit times t0 through t3, a digit is carried from the ACT to the ROM's for decoding and display. On the following word time, the next digit is sent out. Sign, decimal point, and blanking information for the number is carried to the ROM 0 during bit times $t 4$ through $t 7$.

2-17. PROGRAM AND DATA ROM

2-18. The ROM (read-only memory) consist of five ROMs each containing 1 K microprogrammed instructions that are used by the CPU to execute the specified operations. Most operations require instructions stored in more than one ROM. However, only one ROM is accessed at any time. When the ROM address register in each ROM receives a 10-bit address on the ISA line, the decoder in each ROM uses the four most significant bits of the addresa to determine if the addressed location is in that ROM. The proper ROM is enabled and transmits the addressed instruction on the ISA line; the remaining ROMs are disabled. A timing circuit in each ROM synchronizes the ROM's operation with the system timing using the $\Phi 1, \Phi 2$, and SYNC
signals from the ACT. 224 program steps of 8 bits each are stored in ROMS $1,2,3$, and 5 , which contain program memory.

2-19. Data is stored in the 24 storage registers of 56 bits each located in ROMs 1, 2, 3, and 5. ROM 1 is the primary register; ROM 6 is the secondary register.

2-20. PRINTER
2-21. The printer used in the HP-97 employs a very hot source (print head resistors) in close contact with heat sensitive paper. This paper changes color in the area of heat contact.

2-22. The print head contains seven small resistors (each about 10 ohms) that heat up when current is passed through them. Figure 2-6 shows the print head and resistors.

2-23. The head is mechanically moved across the paper by a lead-screw mechanism (see figure 6-2). By passing current through the appropriate head resistor at the correct time, as the head moves across the paper, characters are thermally printed (see figure 2-7).

2-24. Notice the slight slant of each character. This is done to decrease instaneous current demands. The printer/interface and keyboard buffer (PIK) is responsible for this operation. The PIK also controls print intensity, line width, and motor movement commands.

Figure 2-6. Print Head

2-25. Print Head Drivers
2-26. Each head resistor requires approximately 0.5 A of current to adequately print on the heat sensitive paper. NPN transistors Q1 through Q7, driven by the PIK, act as switches to supply the head resistors with the required current and also to reduce the drive requirements from the PIK.

Figure 2-7. Printed Character

2-27. Printer Motor Control

2-28. A small dc motor provides the mechanical power through the action of the lead-screw and gears to move the print head. Current for the motor is controlled by the on and off action of six driver transistors Q9 through Q14.

2-29. When the PIK gives the command to move forward, transistors Q11, Q14, and Q9 turn on. Transistors Q12, Q13, and Q10 turn on to reverse the direction of head travel.

2-30. Braking action is produced by shorting the dc motor windings; when Q8 is turned on, it shorts the windings and Q10 provides a signal ground for the base current from Q8.

2-31. The printed line width and character-to-character spacing is determined by the speed of the dc motor. To control the speed of the motor, U4 samples the output voltage generated by the motor when the driver transistors are turned off and the motor is coasting. Contained within U4 is
a set of comparators, A1 through A4. A1 compares the motor output voltage with a reference voltage derived within U5. If the motor is going too slow, its output voltage will be less than the reference voltage. The A1
comparator instructs the PIK to speed up the motor. The PIK then changes the FWD signal pulse width to accomplish this. This operation occurs only during forward head movement. If the head is moving too fast, again the comparator output will change and the FWD signal pulse width will change to compensate.

2-32. Print Intensity Control
2-33. To maintain uniform print contrast, each head resistor must be energized to the same temperature, independent of battery voltage changes.

2-34. The remaining comparators in U4, along with the resistor network in U5, produce the variable duty-cycle signal STB, which is nominally 10 kHz . The STB signal will change its duty-cycle to keep its rms value constant and thus print intensity constant. By changing the value of R8, the nominal duty-cycle of STB can be changed to adjust print intensity.

2-35. CARD READER
2-36. When a card is inserted into the card reader, the motor switch is closed, grounding the MTRS signal. This signal is fed to the CRC, which tells the microprocessor (contained in the ROM's and ACT) that a card is in the card reader. The microprocessor in response tells the CRC to turn on the card reader motor. The CRC then grounds the MOTOR signal to the sense amp, which supplies power to the motor. The motor turns a roller, which passes the card through the card reader.

2-37. When the leading end of the card reaches the card reader head, the head switch is closed, grounding the HDS signal. For a read operation, flux transitions on the card are picked up by the head, amplified and converted to digital levels by the sense amp, buffered by the ACT, and then passes to the appropriate data storage registers. For a write operation this process is reversed. The microprocessor informs the CRC whether the operation is a read or write.

2-38. Information is recorded as a flux transition onto two tracks on each edge of the card. A header at the beginning of both tracks indicates whether the information on the card is a program or data. If the card contains a program, this header also contains flag and display format information and indicates whether side 1 or side 2 of the program is being read/written. At the end of the tracks is a checksum, which is used by the microprocessor to check for errors in reading. If an error is so detected, the microprocessor generates an "Error" display.

2-39. During a write operation, the CRC interrogates the write protect switch when the head switch closes to determine if the card has a clipped corner. If so, the CRC inhibits the write operation and informs the microprocessor, which generates an "Error" display.

Figure 2-8. HP-97 Power Supply Circuit

2-40. POWER SUPPLY

2-41. Quick-charge nickel-cadmium batteries are the primary power source for the HP-97. The +5.0 nominal battery voltage is converted to +6.25 Vdc and to -12.0 Vdc by the transistor inverter circuit shown in figure 2-8.

2-42. Transistor Q2 and toroidal transformer T 1 form the basic inverter circuit. With feedback from winding A, Q2 oscillates at a frequency of approximately 20.0 kHz . Winding B of T1 forms the transformer primary from which VSS is derived; CR5 rectifies and C4 filters the voltage from winding B. The voltage from winding C is rectified, filtered, and doubled by the combined actions of C1, C2, CR6, and CR7 to produce the output voltage VGG. Voltage regulation of VSS is provided by controlling the frequency of oscillation of Q2 through the combined action of zener diode CR9 and transistor Q3.

2-43. An over-voltage circuit consisting of Q4, Q5, and R8 through R10, as shown in figure 2-9, prevents VB (battery voltage) from rising above VSS. When VB approaches VSS, CR10 conducts, turning on transistors Q4 and Q5. Current is drawn from the battery through R10 until VB falls below VSS.

Figure 2-9. Over-Voltage Circuit

2-44. BATTERY CHARGING

2-45. Figure 2-10 illustrates the battery charging circuitry. The ac adapter/recharger is a transformer that drops the line voltage to 12.8 Vac at the input terminals of the calculator. Diodes CR1 through CR4 rectify the alternating current, and the resistor $R 4$ limits the dc current applied to the batteries. When the ON-OFF switch is turned ON, limiting resistor R 3 is shunted, and the dc voltage is applied directly to the battery pack and the calculator power supply. Transistor Q1 turns on during periods of high display current demands.

Note: The calculator will not be damaged by connecting the ac adapter/ recharger to the input terminals when the batteries are removed; however, it will not operate correctly until the batteries have been reinstalled.

2-46. POWER-ON RESET

2-47. To ensure that the logic contained within the ACT comes up in the correct logic state when power is applied to the HP-97, a power-on reset circuit is included. (See figure 2-11.)

2-48. When the power is applied, Q1 is turned off. VSS rises and the voltage across C3 also rises, resetting the ACT. If VB drops a certain level below VSS, Q1 turns on and discharges C3, forcing the ACT to reset again. This sequence repeats until VB and VSS are stable, thereby eliminating the effect of ON-OFF switch contact noise.

Figure 2-10. Battery Charging Circuit

Figure 2-11. Power-On Reset Circuit

Assembly-Level Maintenance

3-1. INTRODUCTION
3-2. This section includes procedures for:
a. Isolating any calculator malfunction to a replaceable assembly.
b. Disassembling the calculator to permit the faulty assembly to be replaced.
c. Replacing either the faulty assembly or certain associated components that can be replaced without desoldering.

3-3. The HP-97 Assembly-Level Troubleshooting Procedure (table 3-8) lists the step-by-step procedures for isolating a malfunction to a replaceable assembly. Refer to the HP-97 Exploded View (figure 6-1) and the HP-97 Assembly Removal and Replacement Procedures (paragraph 3-28) for aid in replacing the faulty assembly. (CAUTION: Be sure that the bench setup for trouble analysis has adequate electrostatic protection; otherwise, IC's may be damaged).

3-4. If a calculator is received with a complaint regarding only a particular inoperable function, refer to the individual key sequence tests (table 3-1) for verifying and correcting the malfunction.

3-5. After known malfunctions have been corrected and the calculator reassembled, perform the full operational test (paragraph 3-9) to ensure that all capabilities of the calculator are functioning correctly.

3-6. RECOMMENDED TOOLS AND FIXTURES

HP PART/MODEL NUMBER	DESCRIPTION
$6040-0297$	
$8700-0003$	Silicone Lubricant
$8700-0006$	X-acto Knife
$8710-0026$	X-acto Knife Blade
$8710-0549$	Tweezers
$8730-0008$	Needle-Nose Pliers
$8730-0020$	Small Flat-Blade Screwdriver
$8500-0232$	Phillips Screwdriver
T-155321	T.F. FREON
T-155239	Holding Nest
T-155435	HP-97 Card Reader Installation Tool
$00091-92137-97$	HP-91/97 Field Service Connector Tool
ET 9613-91-M	Sequence PROM Assembly
ET 9613-91-A	Fold Apart Tester
ET 9610	Automatic Tester Option
(See appendix C.)	Test System Mainframe
(See appendix C.)	Program Memory Test Program Card
(See appendix C.)	Functional Test Program Card
(See appendix C.)	Data Card 1
(See appendix C.)	Data Card 2
(See appendix C.)	Diagnostic Test, Part One, Program Card
	Diagnostic Test, Part Two, Program Card

3-7. INDIVIDUAL KEY SEQUENCE TESTS

3-8. Listed in table 3-1 are sequences of keystrokes that may be used to check for properly functioning HP-97 operations. If the calculator' display or printout does not agree with the entry in the appropriate column, the operation is not functioning properly, and the logic PCA and/or keyboard should be replaced. However, in some cases proper functioning with the indicated keystrokes does not guarantee that the operation functions properly with other acceptable key sequences. Therefore, if a calculator is received for repair with a particular operational key sequence that does not perform properly, this key sequence should be used to verify the complaint rather than the key sequence in table 3-1. After performing the key sequence test(s), return to step 13 in table 3-8.

Table 3-1. Individual Key Sequence Tests
a. Switch the calculator ON .
b. Perform the indicated keystrokes.
c. Compare the calculator display to the entry under DISPLAY and PRINT.
d. To check more than one operation (or set of related operations), switch the calculator OFF and then ON before entering the next key sequence.

OPERATION	KEYSTROKES	DISPLAY	
digit entry	5	5.	
CHS	5 CHS	-5.	
CLx	5 CLX	0.00	
\sqrt{x}	(2) 5	5.00	
x^{2}	[5] x^{2}	25.00	
1/x	[51/x	0.20	
R		5.00	
回		5.00	
ENTER	5 ENTERA CLIX R	5.00	
\pm	(5) ENTER ${ }^{2} \boldsymbol{+}$	7.00	
\square	[5 ENTERA $2-$	3.00	
\pm	[5 ENTERA $2 \times$	10.00	
\square		2.50	
DSP	DSPP [4]	0.0000	
Scl	(1) 2 3 Scl	1.23	02
FIX	(1) [2] 3 SCI FIX	123.00	
ENG	(1) 3 [$0^{\text {ENG }}$	1.23	03
EEX	EEX 9	1.	09
x $x=1$		5.00	
		0.40	
LASTX	(5) 1×1 LAST x	5.00	
RND	(120 3 4 6	12.3456	
	DSP \square^{1} TRND	12.35	
	DSP [4]	12.3500	
ABS	5 CHS 18 ABS	5.00	
INT	(1203415	12.00	
FRAC		0.34	
N	510	120.00	
T	0 T0	3.14	
\%	150 ENTER 66	9.00	
\% CH		170.	
	$8 \% \mathrm{CH}$	13.33	
(10+		0.79 57.30	
SIN	3 3 (1) SIN	0.50	
Sin-1	-5 5 Sin	30.00	
cos	$60^{0} \mathrm{cos}$	0.50	
COS^{-1}	- 5 ($\cos ^{-1}$	60.00	
tan	$44_{5} 5$ tan	1.00	
TAN-1	(1) TTAN-1	45.00	
EAD		-1.00	
		-1.00	
DEG	3 0 [PAD 1 DEG SIN	0.50	

Table 3-1. Individual Key Sequence Tests (Continued)

3-4

Table 3-1. Individual Key Sequence Tests (Continued)

Table 3-1. Individual Key Sequence Tests (continued)

OPERATION	KEYSTROKES	DISPLAY	PRINT
		5.00 (blinking) .5 5.00 Crd 5.00 0.00 1.00 5.00 0.00 2.00 6.00 10.00 5.00 5.00 1.00 001	(paper moves)

3-9. FULL OPERATIONAL TEST

3-10. The Full Operational Test is used to verify proper functioning of the assembled calculator before it is returned to the customer.

3-11. This test is comprised of the following separate tests, which should be run in the order shown.
a. Initial test
b. Program memory test.
c. Functional test.
d. Keyboard test.
e. Diagnostic test.

3－12．INITIAL TEST
3－13．To run this test：
a．Set switches as follows：

```
OFF [mm
    TRACE
    MAN [mNDNM
PRGM [m|⿴⿱冂一⿰丨丨丁心
```

b．Press the keys listed in table 3－2．After each keystroke，the calculator＇s display and printout should be identical to the numbers indicated．If so，proceed to the program memory test（paragraph 3－14）； if not，return to step 28 in table 3－8．

Table 3－2．Initial Test

KEYSTROKE	DISPLAY	PRINTOUT
（9）	9.	
1／x	0.11	9.6918
7	7.	
区	0.78	7.80
CHS	－0．78	CHS
EEX	1.00	
7	1． 07	
6	1.76	
\square	－7．777777777－77	$1 .+76$
1	－7．777777777－77	
x 21	0.00	$\mathrm{X}=1$
1	－7．777777777－77	RCLI
TAN	－1．357478307－78	TAN
1	－1．357478307－78	
TAN－1	－7．777777777－77	TAN ${ }^{-1}$
Sto	－7．777777777－77	
1	－7．777777777－77	ST01
1	－7．777777777－77	
［158］	－7．777777777－77	
1	－7．777777777－77	1521
CLX	0.00	CLX
（i）	－7．777777777－77	RCLi

3－14．PROGRAM MEMORY TEST
3－15．To run the program memory test，follow the procedures given in table 3－3．The displays indicated should be obtained．If so，proceed to the functional test（paragraph 3－16）；if not，return to step 28 in table 3－8．

Table 3-3. Program Memory Test

STEP	PROCEDURE	DISPLAY
1	OFF Millon	
2	$\text { MAN Tilice } \text { NORM }$	
3		
4	Read side 1 of program memory test card.	Crd
5	Read side 2 of program memory test card.	0.00
6	Press [8/S	222.00

3-16. FUNCTIONAL TEST
3-17. To run the functional test, follow the step-by-step procedures given in table 3-4. After each step the indicated display and/or printout should be obtained. If so, assemble the calculator and proceed to the keyboard test (paragraph 3-18); if not, return to step 28 in table 3-8.

Table 3-4. Functional Test

STEP	PROCEDURE	DISPLAY	PRINTOUT
1			
2	Press CLx	0.00	
3	Read side 1 of functional test card.	Cra	
4	Read side 2 of functional test card.	0.00000000000	
5	Switch to PRGM mode.	000	
6	Press BST	224	
7	Press ${ }^{\text {SST }}$	00100	
8	Press 1 DEL	000	
9	Press Lbl a	0012111	
10	Switch to RUN mode.	0.00000000000	
11	Press ©	$\begin{aligned} & -7.777777777-77 \\ & \text { (pause) } \end{aligned}$	
12	Feed side 1 of data card 1.	Crd Crd	

Table 3-4. Functional Test (Continued)

Table 3－4．Functional Test（Continued）

3－18．KEYBOARD TEST

3－19．This test is used to check the operation of each key on the keyboard after the calculator is assembled．

3－20．To run this test：
a．Set switches as follows：

OFF m ON

TRACE
MAN NIMN NORM
PRGM R⿴⿱冂一⿰丨丨丁口内胃 RUN
b．Enter the key sequence of table 3－5．
c．Switch operating mode to PRGM \square RUN
d．Press RTN 1 PRINT： PRGM
e. Compare resulting printout with that shown in table 3-5.
f. If printout is correct, proceed with the diagnostic test (paragraph 3-21); if not, inspect keyboard and replace if necessary, then proceed with the diagnostic test.

Table 3-5. Keyboard Test

KEYSTROKES	PRINTOUT	
FIX	Q41	Fix
SCI	800°	501
ENG	963	ENG
Printe	944	FETH
ENTER ${ }^{\text {d }}$	gus	EMTt
CHS	096	EnTt
EEX	(19)	CHS
P	808	EEX
R	EG9	\div
7	(10)	R \downarrow
8	911	7
9	812	8
区	013	9
$x \geq y$	814	x
(4)	015	$\mathrm{X}+\mathrm{Y}$
5	916	4
6	017	5
-	Q18	6
CLX	819	-
(1)	024	CLX
2)	021	i
3	92	2
\pm	023	3
0	824	+
\bigcirc	225	\square
©SP 0	925	.
R/S	427	8 E
	928	j, X
x^{2}	429	$x=$
\sqrt{x}	036	88
$\%$	Q31	$\%$
E	43.3	Σ
SIN	633	SIN
cos	034	005
TAN	035	TAN
\square	936	+ F
(i)	0.37	ECL
1	038	RCLI

Table 3-5. Keyboard Test (Continued)

KEYSTROKES	PRINTOUT	
$y^{\text {x }}$	039	${ }^{*}$
LN	940	LN
${ }^{\text {x }}$	Q4:	e^{x}
\pm	642	+ ${ }^{\prime}$
Sto A	843	Stü
RCL A	044	RCLA
LEL A	045	* LBLe
GTO A	046	GTUA
GSB A	047	GSEA
RTN	048	FTN
$1 \square^{\text {DSZ }} 1$	049	[SEI
1158	050	ISLI
A	051	65B\%
B	952	65BE
c	053	6SBC
D	054	6SEI
E	055	GEBE
R/S	056	F\%

3-21. DIAGNOSTIC TEST

3-22. This test ensures that the calculator will not fail when the user runs the diagnostic program supplied with the HP-97 Standard Pac. It checks the operation of the card reader and identifies failure-prone ROMs. The test is run in two parts: part one verifies the diagnostic test program; part two tests the data ROMs, and is required only under certain conditions.

3-23. Diagnostic Test, Part One
3-24. To verify the diagnostic test program, follow the procedures shown in table 3-6. If the indicated display or printout is not obtained, or if "Error" is displayed, return to step 13 in table 3-8. If the calculator passes part one of the test, proceed with part two, if required. Otherwise return to step 13 in table 3-8.

3-25. Diagnostic Test, Part Two
3-26. To identify failure-prone data ROMs follow the procedures shown in table 3-7. The test should be conducted at a temperature, T, that should be as close to 40 degrees C as possible. (The limits on T are Room temperature < $T<40$ degrees C.) The test should be conducted for a minimum of 4 hours and a maximum of 24 hours. (The 24 hour maximum may be exceeded if required by test conditions.) The diagnostic test, part two, is mandatory under the following conditions:
a. The logic ICs are replaced.
b. Reported failures can not be repeated.
c. No failure has been reported or is apparent.

The test may be conducted under other conditions if it is considered desirable to do so.

3-27. If the calculator fails the test, proceed to the component-level tests of paragraph 4-10. If the calculator passes the test, repeat the diagnostic test, part one.

Table 3-6. Diagnostic Test, Part One

Table 3-7. Diagnostic Test, Part Two

3-28. HP-97 ASSEMBLY REMOVAL AND REPLACEMENT PROCEDURES
3-29. The following procedures describe in detail removal and replacement of the HP-97 assemblies. Follow all directions as given, step by step, to detach and replace any HP-97 assembly. In most cases it will be necessary to perform first the previous steps as indicated.

3-30. For a list of replaceable assemblies, refer to section VI. To reassemble the HP-97, follow the removal-replacement procedures in reverse order. The removal-replacement procedures are given in the following order:
a. Battery pack removal.
b. Battery door latch removal/replacement.
c. Bottom case assembly removal.
d. Rubber feet replacement.
e. Printer assembly removal.
f. Logic printed-circuit assembly removal.
g. Support plate assembly removal.
h. Card reader assembly removal/replacement.
i. Keyboard printed-circuit assembly removal.
j. Spacers, spring strips and slide switch replacement.
k. Key and key spring replacement.

1. Paper advance switch assembly replacement.
2. Battery Pack Removal
a. Lay the calculator upside down in a support fixture, part number T-155321.
b. While grasping the sides of the calculator, place each thumb firmly over the ridged door latches as shown.
c. Slide both latches inward with thumbs until they click.

d. Place one hand under the calculator (on the keyboard) and the other hand over the battery door.
e. Rotate the calculator to the face up position and allow the battery door and battery pack to fall into your hand.

3. Battery Door Latch Removal/Replacement
a. Perform removal step 1.
b. Lift inside tab over ridge and slide latch out.
c. To replace latch, slide latch into slot until it snaps over ridge.

Note: Make certain the foam tape is securely in place on the door. It holds the battery firmly in place.
3. Bottom Case Assembly Removal
a. Perform removal/replacement procedure 1.
b. Remove the six Phillips screws as shown.
c. Lift off the bottom case.

4. Rubber Feet Removal/Replacement
a. Grasp each rubber foot firmly with needle-nose pliers.
b. Pull out firmly to remove.
c. Firmly press in new feet while being careful not to damage bottom case.
d. Cut off excess rubber.
5. Printer Assembly Removal
a. Perform removal/replacement procedures 1 and 3.
b. Remove the three printer supporting screws.
c. Carefully disconnect printer PCA from logic board.
d. Carefully lift out the printer assembly from calculator.

6. Logic Printed-Circuit Assembly Removal
a. Pull up-alternating pressure between left hand and right-on the logic PCA until it is free of the 18- and 9pin connectors on the keyboard PCA.

b. Remove the card reader cable from the connector on the logic board by inserting the large end of the connector tool (T-155435) into the connector and then pulling the cable free.

During reassembly, insert the cable together with the connector tool into the connnector; then remove the cable tool.

Note: The cable should be positioned with its contacts facing the top of the connector, and the connector tool should be positioned between these contacts and the connector.
c. Carefully disconnect the battery leads (one red/white and one red) from one side of the logic printed-circuit board, and the three paper advance switch leads (one red, one black, and one white) from the other side of the board.
d. Lift off the logic printed-circuit assembly.

7. Support Plate Assembly Removal
a. Perform removal/replacement procedures 1, 3, 5, and 6.
b. Remove the seven support plate retaining screws.
c. Lift off support plate.
d. Lift off paper cover.

8. Card Reader Assembly Removal/ Replacement
a. Perform removal/replacement procedures 1, 3, and 5 through 7.
b. Remove the three Phillips screws indicated and lift the card reader assembly off the support plate.

c. To replace the card reader assembly, first remove the card reader cable using the connector tool as in step 6b.
d. Place the card reader installation tool (part number T -155239) into the card reader cable slot as shown.
e. Place the card reader assembly onto the support plate straddling the tool as shown, and insert screws into the slots of the three feet of the card reader support.
f. Rotate the card reader assembly clockwise to position the two feet against opposite sides of the long arm of the tool.
g. Tighten the three screws while holding the card reader assembly in the position described in step f.
h. Insert the card reader cable into the connector as in step 6b.
9. Keyboard Printed-Circuit Assembly Removal
a. Perform removal/replacement procedures 1, 3, 5, 6, and 7 .
b. Apply light upward pressure to top case as shown.
c. Press inward on red display window to separate from top case.
d. Remove the two keyboard support screws.

Note: Be careful not to bend the connector and plastic guide pins that are located on the bottom.
e. Lightly press outward on the keyboard and remove.

CAUTION
Do not put any sharp bends in the display cable as it may fracture and break.
10. Spacers, Spring Strips and Slide Switch Replacement
a. Perform removal/replacement procedures 1, 3, 5, 6, 7, and 9.
b. Remove the seven Phillips retaining screws.
c. Carefully lift off circuit board.

d. Note position of guide pins and holes for the next operation.
e. Lift off upper spacers.
f. Lift off key spring strips.
g. Lift off lower spacers.
h. To replace key spring strips and spacers, carefully replace each in reverse order to that described above.
i. To replace a spring contact or slide switch, lift it out with a tweezers or needle-nose pliers as shown. When replacing a spring contact, clean it with FREON and apply a small amount of Silicone lubricant on the keyboard PCA switch contacts before reassembly.

11. Hat, Key, and Key Spring Replacement
a. Push key to be replaced so that hat is elevated.
b. Pull off hat and allow key and key spring to fall out.
c. To replace, align key and spring properly, then push the hat onto the key stem until it snaps into place.

12. Paper Advance Switch Assembly Replacement
a. Perform removal/replacement procedures 1, 3, 5, 6, and 7.
b. With needle-nose pliers firmly grasp the paper advance key, pressing the tabs on the switch cover inwards.
c. Firmly pull out to remove.
d. Remove spring.
e. With needle-nose pliers, remove switch retaining nut.
f. Replace paper advance switch assembly.

Table 3-8. Assembly Level Troubleshooting Procedure
Use this procedure to isolate a malfunction to a replaceable assembly.

STEP	ACTION

1.

a. Unplug the AC Adapter/Recharger from the calculator.
b. Measure the AC voltage at the power outlet, VIN.
c. Measure the AC voltage at the output of the Adapter/Recharger, VOUT.
d. Calculate VMIN and VMAX as follows:

For VIN=230 Vac approx.
VMIN=VIN/21.10
VMAX $=$ VIN/ 15.65

For VIN $=115$ VAC approx.
VMIN=VIN/10.55
VMAX $=$ VIN $/ 7.82$
2.
a. Connect an 11 ohm, 5%, 5W load resistor across output of the AC Adapter/Recharger.
b. Measure VOUT across the load resistor.
3.

Replace the battery pack.
(Save the old pack for future checkout.)

If VOUT is between VMIN and VMAX, go to step 2.

If VOUT is outside VMIN and VMAX, replace the AC Adapter/ Recharger. Then go to step 2.

If VOUT is between 6.2 and 7.4 Vac , and the display is blank, go to step 3.

If VOUT is less than 6.2 or more than 7.4 V replace the Adapter/Recharger. If the display is blank, go to step 3.

If the display is not blank, charge the battery for least 10 minutes, and then go to step 7.

Table 3-8. Assembly Level Troubleshooting Procedure (Continued)

STEP	ACTION
	If the display is blank, go to step 4.
4. Replace the logic PCA.	If the display is not blank, charge the battery for at least 10 minutes, and then go to step 7.
If the display is blank, go to step 5.	

5.

a. Return the original logic PCA.
b.Replace the printer assembly.

If the display is not blank, charge the battery for at least 10 minutes, and then go to step 7.

If the display is blank, go to step 6.
6.
a.Return the original printer.
b.Replace the keyboard PCA.

If the display is not blank, charge the battery for at least 10 minutes, and then go to step 7.

If the display is blank, send the calculator to Special Handling.

Table 3-8. Assembly Level Troubleshooting Procedure (Continued)

Table 3-8. Assembly Level Troubleshooting Procedure (Continued)

STEP	ACTION

11.

Read the data card 2. If the card is read correctly, Check for the following:

- "ERROR" displayed.
- card reader motor noisy.
- motor doesn't turn on.
o motor turns on but card doesn't feed.
- card feeds, but is not read correctly.
o card is not written on correctly.
- card with cutoff corner is overwritten.
o card sticks in card reader.

12.

Test individual function operation by pressing the function keys (refer to paragraph 3-7).

If the functions operate correctly, go to step 13.

If the functions do not operate correctly, replace the logic PCA and the keyboard PCA in order. Then go to step 13.
13.

Run the full operational test. (Refer to paragraph 3-9.)

If the test is satisfactory, the calculator is repaired. STOP TESTING HERE.

If the test is not satisfactory, go to step 28.

Table 3-8. Assembly Level Troubleshooting Procedure (Continued)

STEP	ACTION

14.

Replace the logic PCA
(unless it was replaced
in a previous step in which case go to step 15).
15.
a. Return the original logic PCA, if necessary.
b. Replace the keyboard PCA.
16.

Replace the logic PCA
(unless it was replaced
in a previous step in which case go to step 17).
17.

Key in -8.888888888-88.
18.

Press [PRINT x].
19.
a. Return the original logic PCA, if necessary.
b.Replace the printer assembly. Return to step 10.

Table 3-8. Assembly Level Troubleshooting Procedure (Continued)

STEP	ACTION

20.

a.Replace the defective keys.
b.Press all the keys.

If the key(s) "feel positive", return to step 11.

If the key(s) do not feel positive, go to step 21.
21.
a.Return the original key(s).
b.Replace the spring(s).
c.Press the key(s).

If the key(s) "feel positive", return to step 11.

If the key(s) do not feel positive, go to step 22.
22.
a.Return the original spring(s).
b.Replace the hat(s).
c.Press the key(s).

If the key(s) "feel positive", return to step 11.

If the key(s) do not feel positive, go to step 23.
23.
a.Return the original hat(s).
b.Replace the spacer(s).
c. Press the key(s).

If the key(s) "feel positive", return to step 11.

If the key(s) do not feel positive, go to step 24.

Table 3-8. Assembly Level Troubleshooting Procedure (Continued)
 assembly.

Table 3-8. Assembly Level Troubleshooting Procedure (Continued)

STEP	ACTION
28.	
Replace the logic PCA (unless it was replaced in a previous step in which case go to step 29).	

29.

Run the full operational
test. (Refer to paragraph 3-9.) If the operational test is satisfactory, the calculator is repaired. STOP TESTING HERE.

If the operational test is not satisfactory, go to step 30.
30.
a.Return the the original logic PCA, if necessary.
b.Replace the printer assembly.
c.Run the full operational test. (Refer to paragraph 3-9.)

If the operational test is satisfactory, the calculator is repaired.

STOP TESTING HERE.

If the operational test is not satisfactory, go to step 31.
31.
a.Return the original printer assembly.

Table 3-8. Assembly Level Troubleshooting Procedure (Continued)

STEP	ACTION
b. Replace the keyboard PCA. c.Run the full operational test. (Refer to paragraph 3-9.)	If the operational test is satisfactory, the calculator is repaired. STOP TESTING HERE. If the operational test is not satisfactory, go to step 32.
32. a.Return the original keyboard. b.Replace the card reader assembly. c.Run the full operational test. (Refer to paragraph 3-9.)	If the operational test is satisfactory, the calculator is repaired. If the operational test is not satisfactory, send the calculator to Special Handling.

Component-Level Maintenance

4-1. INTRODUCTION

4-2. This section includes procedures, schematic and assembly diagrams, and material lists for use in trouble-shooting and repairing assemblies of the HP-97 calculator. After the procedures of section III have shown a particular assembly to be malfunctioning, refer to the appropriate section below:
a. Logic printed-circuit assembly, including the power supply circuitry--paragraph 4-4.
b. Printer assembly--paragraph 4-21.
c. Keyboard assembly--paragraph 4-28.
d. Display circuitry--paragraph 4-30.
e. Card reader assembly--paragraph 4-36.

4-3. RECOMMENDED TOOLS AND FIXTURES

HP PART/MODEL NUMBER	DESCRIPTION
$0960-0062$	Continuity Tester
$6040-0329$	Lubricant
$8690-0060$	Desoldering Tool
$8690-0082$	Desoldering Tool Tip
$8690-0129$	Soldering Iron
$8690-0132$	Soldering Iron Stand
$8700-0003$	X-acto Knife
$8700-0006$	X-acto Knife Blade
$8710-0026$	Tweezers
$8710-0549$	Needle-Nose Pliers
$8730-0008$	Small Flat-Blade Screwdriver
$8730-0020$	Phillips Screwdriver
$8500-0232$	T.F. FREON
$8500-0790$	MAGNA-SEE
T-155321	Holding Nest
T-155435	HP-91/97 Field Service Connector Tool
T-155428	HP-67/97 Field Service Card Speed Gauge
00091-92137-97	Sequence PROM Assembly
* equivalent	

HP PART/MODEL NUMBER	DESCRIPTION
ET-9613-91-M	Fold Apart Tester
ET-9613-91-A	Automatic Tester Option
ET-9610	Test System Mainframe
HP 180C/1801A/1820C*	Oscilloscope. Measures pulse at 0.50 us Maximum amplitude 13 Vdc.
HP 6213C*	Power Supply. Variable output rated at
	10 Vdc at 5A. (Add a 0.1 uf ceramic capacitor across output terminals).
HP 3469B*	Multimeter. Accurate to 0.01 Vdc.
HP 10004*	Oscilloscope Probe.
---	Soft Rubber Pencil Eraser
---	Retaining Ring Applicator, 1/16"
---	Retaining Ring Applicator, 3/32"
(See appendix C.)	Program Memory Test Program Card
(See appendix C.)	Functional Test Program Card
(See appendix C.)	Data Card 1
(See appendix C.)	Data Card 2
(See appendix C.)	Diagnostic Test, Part One, Program Card
(See appendix C.)	Diagnostic Test, Part Two, Program Card
* or equivalent	

4-4. LOGIC PCA TROUBLESHOOTING

4-5. To troubleshoot and repair the logic PCA, follow the step-by-step procedures given in table 4-13. See also the logic PCA component location diagram (figure 4-9) and schematic diagram (figure 4-10).

4-6. POWER SUPPLY TROUBLESHOOTING

4-7. Troubleshooting of the power supply circuitry- which is located on the logic PCA- is included in the logic PCA troubleshooting procedure, table 4-13.

4-8. FAULTY FUNCTION VERIFICATION AND REPAIR

4-9. To verify (and repair if necessary) a suspected faulty function on the HP-97, follow the procedures of figure 4-1, which refers to table 4-1.

Table 4-1. Faulty Function Repair

OPERATION	KEYSTROKES	DISPLAY	PRINT	KEYCODE	ROM FAILURE
digit entry	5	5.		05	3, 0, 6
CHS	5 CHS	-5.		-22	3, 0
CLx	5 CLX	0.00		-51	3, 0
\sqrt{x}	(2) 5 \sqrt{x}	5.00		54	1, 3, 0
${ }^{\text {x }}$	(5) x^{2}	25.00		53	1, 3, 0
1/x	$55^{1 / x}$	0.20		52	1, 3, 0
R*	[5 Rt Rt Rt Rt	5.00		-31	3, 0
回		5.00		16-31	3, 0
ENTER4	5 ENTERA CLX R	5.00		-21	3, 0
$+$	5 ENTER 2 - +	7.00		-55	1, 3, 0
${ }^{-}$	5 ENTERA 20	3.00		-45	1, 3, 0
区	(5) ENTERA ${ }^{2} \times$	10.00		-35	1, 3, 0
\bigcirc	5 ENTERA 20	2.50		-24	1, 3, 0
DSP	DSP 4	0.0000		6304	3, 6, 0
SCI	(1) 23 S Sll	1.2302		-12	3, 1, 6, 0
FIX	(1) 2 3 SCI FIX	123.00		-11	3, 1, 6, 0
ENG	(1) 230 ENG	1.2303		-13	3, 1, 6, 0
EEX	EEX 9	1.09		-23	3, 0
x x y	(5) ENTERA (2) x<y	5.00		-41	3, 0
		0.40			
LAST ${ }^{\text {a }}$	[5] L1/x LASTX	5.00		16-63	3, 0
RND	(1) $\square^{3} 456$	12.3456		1624	1, 3, 0
	DSP 21 RND	12.35			
	DSP 4	12.3500			
\triangle ABS	5 CHS 1 ABS	5.00		1641	3, 0
INT	(1) [3 4 4 INT	12.00		1634	3, 0
FRAC		0.34		1644	3, 0
N!	$5 \square$	120.00		1652	2, 3, 0
T	$\square \square^{6}$	3.14		16-24	3, 2, 0
\%	19 5 O ENTERA 6%	9.00		55	1, 3, 0
\% CH		170.		1655	1, 3, 0
	$4 \% \mathrm{CH}$	13.33			
0×8	4 (5) $0 \rightarrow 8$	0.79		1645	2, 3, 0
$\square \rightarrow$ D	(1) \square^{1+D}	57.30		1646	2, 3, 0
SIN	$3{ }^{3} 10$ SIN	0.50		41	2, 3, 0
SIN-1	(6) 5 SIN	30.00		1641	2, 3, 0
cos	6 0 cos	0.50		42	2, 3, 0
$\cos ^{-1}$	- 5 ¢ $\cos ^{-1}$	60.00		1642	2, 3, 0
tan	45 TAN	1.00		43	2, 3, 0
TAN-1	(1) $1 T^{\text {TAN }}$	45.00		1643	2, 3, 0
EAD		-1.00		16-22	3, ACT, 0
GRD	20 0 O GRD \cos	-1.00		16-23	3, ACT, 0
DEG		0.50		16-21	3, ACT, 0
- H.MS	6®7¢ $\square^{\text {H.MS }}$	6.42		1635	1, 3, 0
H.MS \rightarrow	6 6 (4 H.MS*	6.70		1636	1, 3, 0
H.MS+		6.56 10.23		16-55	1, 3, 0

4-4

Table 4-1. Faulty Function Repair (Continued)

OPERATION	KEYSTROKES	DISPLAY	PRINT	KEYCODE	ROM FAILURE
$\stackrel{+}{ }$	3 ENTER4 4 -P	5.00		34	2, 1, 3, 0
	$x \geq y$	36.87			
\bigcirc	33^{6} [8 [ENTER4	36.87		44	2, 1, 3, 0
	$5 \rightarrow 8$	4.00			
	x $\times 1$	3.00			
e^{x}	(1) $e^{\text {x }}$	2.72		33	1, 2, 3, 0
LT	(1) e^{x} LN	1.00		32	2, 1, 3, 0
10^{x}	(3) 10^{x}	1000.00		1633	1, 2, 3, 0
L0G	2 0 (LOG	1.30		1632	2, 1, 3, 0
$y^{\text {x }}$	(2) ENTERT $88 y^{\mathbf{y}}$	256.00		31	1, 2, 3, 0
PRINTX	(1) PRINTX	1.00	1.09	-14	0 , PIK, 3
$\text { PRINT: } \text { STACK }$	(1) ENTERA 2 ENTER	2.00			
	3 ENTERA 4	4.			
	f PRINT: STACK	4.00	1.04 T		
			2.092		
			3.06 \%		
			4.60 X	16-14	$0, \mathrm{PIK}, 3$
Sto	(2) STO 5	2.00		3505	3, 0
RCL	1 CLX RCL 5	2.00		3605	3, 0
PRINT: REG	11 sto 1	1.00		16-13	0 , PIK, 3
	(2) STO 2	2.00			
	3 STO 3	3.00			
	(4) STO 4	4.00			
	1 PRINT: REG	4.00	0.008		
			1.041		
			2.08		
			3.063		
			4.008		
			$0 \cdot 69$		
			0.64 -		
			6. 140		
			Q, 94 A		
			$0.06{ }^{0}$		
			$\begin{array}{ll}0.096 \\ 0.09 & i \\ 0.09\end{array}$		
			0.00 E		
			0.040 I		
CLREG	5 STO 8 CLx RCL 8	5.00		16-53	3, 1, 0
STO +	1 ClREG CLX RCL 8	0.00			
	(8) sto 1	8.00		35-55 01	3, 1, 0
	(2) STO + (1)	2.00			
	RCL ${ }^{1}$	10.00			

Table 4-1. Faulty Function Repair (Continued)

Table 4-1. Faulty Function Repair (Continued)

4-10. LOGIC PCA OPERATIONAL TEST
4-11. This test is used to identify faulty integrated circuits on the logic PCA. It is comprised of the following separate tests, which should be run in the order shown:
a. Initial test.
b. Program memory test.
c. Functional test.

NOTE: If an integrated circuit is replaced, the diagnostic test part two must be run on the completed calculator before shipment.

4-12. INITIAL TEST

4-13. To run this test:
a. Set switches as follows:

b. Enter the key sequence of table 4-2. After each keystroke, compare the number in the calculator display to that in the DISPLAY column. If they are not the same, one of the ROM's indicated by number in the ROM FAILURE column is probably faulty. Replace these ROM's in the order indicated; after each replacement, return to the beginning of the test and run it again, replacing addtional ROM's as indicated until the number in the calculator's display agrees with that in the DISPLAY column.
c. Compare the calculator printout to the PRINTOUT column of table 4-2. If they are not identical, replace (one at a time) ROM 5, ROM 0, and the PIK chip until the proper printout is obtained when the entire initial test is run after each replacement. (ROM contents are described in table 4-3.)

4-14. PROGRAM MEMORY TEST
4-15. To run the program memory test, follow the procedures detailed in the flowchart of figure 4-2.

Figure 4-2. Program Memory Test

Table 4-2. Initial Test

KEYSTROKE	DISPLAY	ROM FAILURE	PRINTOUT
$\underline{9}$	9.	3, 6, 0	
	0.11	1, 3, 6, 0	9.818
7	7.	3, 6, 0	
\boldsymbol{x}	0.78	1, 3, 6, 0	$7.90{ }^{10}$
CHS	-0.78	3, 6, 0	CHO
EEX	1. 00	3, 6, 0	
7	1. 07	3, 6, 0	
6	1.76	3, 6, 0	
-	-7.777777777-77	1, 3, 6, 0	$1 .+76$
1	-7.777777777-77	6, 0	
x $\times 1$	0.00	3, 6, 0	\% H
1	-7.777777777-77	1,3, 6, 0	RCLi
TAN	-1.357478307-78	2, 3, 6, 0	Thin
1	-1.357478307-78	6, 6, 0	
TAN-1	-7.777777777-77	2, 3, 6, 0	TGN- ${ }^{-1}$
STO	-7.777777777-77	6, 0	
1	-7.777777777-77	3, 6, 0	ST01
1	-7.777777777-77	6, 0	
1 Sz	-7.777777777-77	6, 0	
1	-7.777777777-77	3, 1, 6, 0	ISII
CLx	0.00	3, 6, 0	CL
(i1)	-7.777777777-77	3, 1, 6, 0	RCLi

Table 4-3. ROM Contents

REFERENCE DESIGNATION	HP PART NUMBER	COMPONENT	CONTENTS
U1	* 1820-1812	ACT	STACK
	*1820-1596		LAST X
			TRIG SCRATCH
U2	*1818-0225	ROM 0	
	*1818-0267		INITIALIZES SEQUENCES/
			FUNCTIONS DISPLAY SEGMENTS
U3	1820-1751	CRC	CARD READ/WRITE
U4	1820-1723	PIK	PRINTING
	1820-1952		KEY ENTRY

Table 4-3. ROM Contents (Continued)

* Part number 1818-0267 ROM 0 must be used if American Micro-systems, Inc. part number 1820-1596 ACT is used.
** Part number 1818-0228 ROM 1 must be used with part number 1818-0226 ROM 2 only.
+ Part number 1818-0550 ROM 1 must be used with part number 1818-0551 ROM 2 only.

4-16. FUNCTIONAL TEST

4-17. To run the functional test, follow the step-by-step procedures shown in table 4-4.

4-18. When the indicated display is not obtained, replace IC's (CRC, PIK, or ROM's designated by number) one at a time. After each replacement, return to step 1 of the functional test and reiterate, replacing the indicated IC's until the proper display is obtained.

4-19. Before using data card 1 in step 12, erase it using the following procedures (to save time, a number of cards can be erased at the same time and all labeled data card 1 for use in later repairs):
a. Switch a working calculator ON.
b. Switch to PRGM mode.
c. Feed both sides of data card 1 through the card reader.

4-20. Steps 16A, 16B, and 16C are checkpoints to identify the point at which the functional test program halts or begins to loop endlessly. This location is needed to isolate the probable ROM failure, as given in table 4-5. The numbers are displayed only to indicate these checkpoints and need not be checked for accuracy; this is done internally by the functional test program.

Table 4-4. Functional Test

STEP	PROCEDURE	DISPLAY	PRINTOUT	$\begin{gathered} \text { IC } \\ \text { REPLACEMENT } \end{gathered}$
1	Set switches: off IIIIU trace MAN Trimel NORM PRGM \square run			
2	Press CLx	0.00		
3	Read side 1 of functional test card.	Crd		
4	Read side 2 of functional test card.	0.00000000000		CRC, 0
5	Switch to PRGM mode.	0.00		CRC, 1,0
6	Press EST	224		0, 5, 1, CRC
7	Press SST	00100		0, 5, 1, CRC
8	Press [DEL	000		0, 2
9	Press LEL A	0012111		0, 2, 1, 6, 5
10	Switch to RUN mode.	0.00000000000		2, 1, 0
11	Press ©	-7.777777777-77 (pause)		See Fig. 4-3

Table 4-4. Functional Test (Continued)

STEP	PROCEDURE	DISPLAY	PRINTOUT	$\begin{gathered} \text { IC } \\ \text { REPLACEMENT } \end{gathered}$
12	Feed side 1 of data card 1.	Crd		
13	Feed side 2 of data card 1.	6.00000000000 (flashing)		See Fig. 4-3
14	Again feed side 1 of data card 1.			
15	Feed side 2 of data card 1.	6.00000000000 (pause)		
		$\begin{gathered} -1.00000000000 \\ \text { (flashing) } \end{gathered}$		See Fig. 4-3
16	Read side 1 of data card 2.	$\begin{aligned} & -1.00000000000 \\ & \text { (pause) } \end{aligned}$		See Fig. 4-3
16A		$\begin{gathered} 30.88997250 \\ \text { (pause) } \end{gathered}$		See Fig. 4-3
16B		$\begin{aligned} & -2.23830328521 \\ & \text { (pause) } \end{aligned}$		See Fig. 4-3
16C		$\begin{gathered} 4.30177367027 \\ \text { (pause) } \end{gathered}$		See Fig. 4-3
			$\begin{array}{rc} -10 .-12 & * * \\ -4.444444444-44 & T \\ -7.333333333-23 & z \\ -2.222222222-22 & \\ -1.11111111-11 & x \end{array}$	
			$\begin{array}{rr} 51 . & 0 \\ -2.23836325+21 & 1 \\ 31 . & 2 \\ -2.23836395+21 & 3 \\ 4.301773676+27 & 4 \\ 0 . & 5 \\ 6 . & 6 \end{array}$	0, PIK, 3, 1
				0, PIK, 3, 1

Table 4-4. Functional Test (Continued)

*REPLACE THE INDICATED IC'S ONE AT A TIME, RETURNING TO STEP 1 OF FUNCTIONAL TEST AFTER EACH REPLACEMENT. CONTINUE REPEATING THE FUNCTIONAL TEST, REPLACING IC'S UNTIL ERROR DISPLAY IS NOT GENERATED.

NOTE: THE DIAGNOSTIC TEST, PART TWO (PARAGRAPH

3:25) MUST BE CONDUCTED ON ANY UNIT IN WHICH IC'S
HAVE BEEN REPLACED.

Figure 4-3. IC Replacement Flowchart, Functional Test

Table 4-5. IC Replacement, Calculator Halted or Looping

BETWEEN STEPS	IC REPLACEMENT*
$11 \rightarrow 16 \mathrm{~A}$	$6,3,0$
$16 \mathrm{~A} \rightarrow 16 \mathrm{~B}$	$1,3,0$
$16 \mathrm{~B} \rightarrow 16 \mathrm{C}$	$2,1,3,0$
$16 \mathrm{C} \rightarrow 16 \mathrm{D}$	$5,3,0$

*Replace the indicated IC's (designated by ROM number) one at a time, returning to step 1 of functional test after each replacement. Continue repeating the functional test, replacing IC's until proper display is obtained.

Table 4-6. IC Replacement, Error Display

DISPLAYED VALUE $^{\star \star}$	IC REPLACEMENT
-5	$5,0,3$
-4	$2,1,3,0$
-3	$1,3,0$
-2	CRC, $, 0,0,3$
-1	$1,3,0$
$10 \rightarrow 9$	6,0
$20 \rightarrow 23$	$1,3,0$
24	$3,1,0$
any other value	$3,2,1,0$

*Replace IC's (CRC, or ROM's designated by number) one at a time, returning to Step 1 of functional test after each replacement. Continue repeating the functional test, replacing the indicated IC's until "Error"' display is not generated.
**Display format for value may vary.

Table 4-7.Logic Printed-Circuit Assembly A1 (00097-60015) Replaceable Parts

REFERENCE DESIGNATION	HP PART NUMBER OLD NEW	DESCRIPTION
C1,3	0180-0575	CAPACITOR, fxd, 2.2 uf
C2	0180-2933	CAPACITOR, fxd, 68 uf
C4	0180-2615	CAPACITOR, fxd, 22uf
C5	0160-4697	CAPACITOR. fxd, 3900 pf
C6	0180-2602	CAPACITOR, fxd, 47 uf
CR1 thru CR4	1901-0704	DIODE, silicon
CR5 thru CR7, 10	1901-1098	DIODE, silicon

HP-97
Table 4-7.Logic Printed-Circuit Assembly A1 (00097-60015) Replaceable Parts (Continued)

Figure 4-4. Logic PCA (A1) (00097-60015) Component Location Diagram

Figure 4-4 (Continued). Logic PCA (A1) (00097-60001) Component Location Diagram

Fis

Figure 4-5. Logic PCA (A1) Schematic Diagram

Test points: Anodes of CR5 and CR6 Oscilloscope time base: 2 us/cm Vertical gain: $5 \mathrm{~V} / \mathrm{cm}$

Figure 4-6. CR5 and CR6 Anode Waveforms*

Test point: TP1
Time base: $0.1 \mathrm{~ms} / \mathrm{cm}$
Vertical: $2 \mathrm{~V} / \mathrm{cm}$
Figure 4-8. SYNC Waveform

Test points: TP5 ($\Phi 1$) and TP6 ($\Phi 2$) Oscilloscope time base: 1 us/cm Vertical gain: $5 \mathrm{~V} / \mathrm{cm}$
$\begin{aligned} & \text { Test points: } \text { RCD: Pin } 21 \text { of ACT (U1) } \\ & \text { STR: Pin } 11 \text { of ROM } 0 \text { (U2) }\end{aligned}$
$\begin{aligned} & \text { Test points: } \text { RCD: Pin } 21 \text { of ACT (U1) } \\ & \text { STR: Pin } 11 \text { of ROM } 0 \text { (U2) }\end{aligned}$
Time base: $0.5 \mathrm{~ms} / \mathrm{cm}$
Vertical gain: $2 \mathrm{~V} / \mathrm{cm}$
Figure 4-9. RCD and STR Waveforms*

* These waveforms are seen with an HP 182C oscilloscope, HP 1804A Vertical Ampiifier Plug-In. Vertical bandwidth 50 MHz . Calculator ON, with 0.00 in display.

4-21. PRINTER ASSEMBLY MAINTENANCE

4-22. The maintenance procedures for the HP-97 printer assembly are divided into two sections; printer mechanical maintenance and printer electrical maintenance. It is very important that the mechanical portion of the printer assembly (print head, dc motor, reed switch, head cable connector, gears and associated parts) be repaired before the mechanical and electrical portions are connected together and a print command is given. Printer mechanical assembly parts replacement is accomplished with the aid of the exploded view drawing of the assembly. (See figure 6-2).

4-23. Once the mechanical portion of the printer assembly has been repaired, reconnect the head connector, motor leads, and reed switch leads to the printer printed-circuit assembly and follow the electrical troubleshooting and adjustment procedures as outlined in table 4-14.

4-24. Printer Mechanical Maintenance
4-25. To perform printer mechanical maintenance perform the following steps:
a. Test the out-of-paper switch as follows:
(1) Remove paper from the printer and press PRINT x. The display should show "Error," and the printer should not attempt to print. If the out-of-paper switch passes this test, proceed to step b; otherwise, continue troubleshooting the problem at step (2).
(2) If the out-of-paper switch does not inhibit printing as described above, disconnect the two red leads from the printer PCA near the "0" (see figure 4-11) and insert a continuity tester between them. If the tester does not light with paper out of the printer, clean orif necessary- replace the out-of-paper switch after disassembling the printer using steps b and c and figure 6-2.
(3) If step (2) shows the out-of-paper switch to be functioning properly, disconnect the red and black leads to the paper advance switch from the logic PCA (see step 6 of the HP-97 assembly removal and replacement procedures, paragraph 3-28) and insert a continuity tester between them. If the tester does not light (when the paper advance switch is not pressed), replace the switch by following the procedures given in step 12 of the procedures referenced above, paragraph 3-28.
(4) If steps (2) and (3) show the out-of-paper switch and the paper advance switch to be functioning properly, replace ROM 0 on the logic PCA.
b. Disconnect the dc motor leads (one red and one black), out-of-paper switch leads (two red), and reed switch leads (two white) from the printer PCA. (See figure 4-10.)

CAUTION

Do not put any sharp bends in the head cable, motor leads, or reed and out-of-paper switch leads. Do not bend or scratch any printer parts. To do so would degrade printer performance.
c. Disconnect the head cable from the printer PCA by inserting the small end of the connector tool into the head connector, positioned between the connector pins and the cable, and pulling out the cable. (See figure 4-11.) To reinsert the cable, place the connector tool in the fold of the cable and carefully insert them together into the connector with the fold facing the circuit side of the board (see figure 4-12). Ensure that the cable contacts are properly aligned with the connector contacts as shown in figure 4-13. Remove the connector tool.

Figure 4-10. Printer PCA Lead Location

Figure 4-11. Print-Head Cable Removal

Figure 4-12. Print-Head Cable Insertion

Figure 4-13. Print-Head Cable Contacts
d. Visually inspect the unit for:
(1) Worn or defective gears.
(2) Broken/bent leads.
(3) Stretched or missing springs.
(4) Excessive lead-screw end-play.
(5) Excessive play in the paper advance assembly.
e. Replace any worn or defective parts.
f. When reassembling the printer, be sure to lubricate the four points indicated in figure 6-2.
g. Test the home position reed switch:
(1) Manually rotate the lead-screw until the head carriage is positioned near, but not touching, the right-hand wall as shown in figure 4-15.
(2) Connect an ohmmeter to the reed switch leads. When the head carriage is positioned near the right-hand wall as shown in figure 4-15, the ohmmeter should measure less than 1 ohm.

Figure 4-14. Head Carriage Home Position
h. Test the motor for open or shorted windings and/or open or shorted C2. Connect an ohmmeter to the dc motor leads. If the meter reads less then 9.0 ohms, carefully disconnect one lead of $C 2$ and measure again. Replace the defective capacitor/dc motor assembly if necessary.

4-26. Printer Electrical Maintenance
4-27. To test the electrical portion of the printer assembly, follow the procedures as outlined in table 4-14.

Test point: FWD (Pin 17 of XA1P1)
Time base: $2 \mathrm{~ms} / \mathrm{cm}$
Vertical gain: $1 \mathrm{~V} / \mathrm{cm}$
Figure 4-15. FWD Waveform

Test point: STB (Pin 5 of XA1P1)
Time base: 20 us/cm
Vertical gain: $1 \mathrm{~V} / \mathrm{cm}$
Figure 4-16. STB Waveform

Table 4-8.
Printer Printed-Circuit Assembly A4A1 (00097-60019) Replaceable Parts

REFERENCE DESIGNATION	HP PART NUMBER	DESCRIPTION
C1	0160-4292	CAPACITOR, fxd, $330 \mathrm{pF}, 5 \%$
C3	0180-2602	CAPACITOR, fxd, $47 \mathrm{uF}, 20 \%$
C4	0160-3456	CAPACITOR, fxd, $1000 \mathrm{pF}, 10 \%$
R1,2	0683-2015	RESISTOR, fxd, 200 ohm, 5\%
R3	0698-3155	RESISTOR, fxd, 4.64K, 1\%
R4	0683-4725	RESISTOR, fxd, 4.7K, 5\%
R5	0698-3157	RESISTOR, fxd, $19.6 \mathrm{~K}, 1 \%$
R6	0757-0288	RESISTOR, fxd, 9.09K
R7*	0698-4474	RESISTOR, fxd, $8.45 \mathrm{~K}, 1 \%, 1 / 8 \mathrm{~W}$
R7*	0757-0751	RESISTOR, fxd, $7.50 \mathrm{~K}, 1 \%$, 1/8W
R7*	0698-3226	RESISTOR, fxd, $6.49 \mathrm{~K}, 1 \%, 1 / 8 \mathrm{~W}$
R7*	0757-0200	RESISTOR, fxd, $5.62 \mathrm{~K}, 1 \%, 1 / 8 \mathrm{~W}$
R7*	0698-4444	RESISTOR, fxd, 4.87K, 1\%, 1/8W
R7*	0698-3154	RESISTOR, fxd, 4.22K, 1\%, 1/8W
R7*	0698-3496	RESISTOR, fxd, 3.57K, 1\%, 1/8W
R7*	0757-0273	RESISTOR, fxd, 3.01K, 1%, 1/8W
R7*	0757-0431	RESISTOR, fxd, 2.43K, 1%, 1/8W
R7*	0698-4430	RESISTOR, fxd, 1.91K, 1\%, 1/8W
R7*	0698-4424	RESISTOR, fxd, 1.4K, $1 \% 1 / 8 \mathrm{~W}$
R7*	0757-0422	RESISTOR, fxd, 909 ohms, 1\%, 1/8W
R8*	0698-3453	RESISTOR, fxd, 196K, 1\%, 1/8W
R8*	0757-0466	RESISTOR, fxd, 110K, 1\%, 1/8W
R8*	0757-0464	RESISTOR, fxd, 90.9K, 1\%, 1/8W
R8*	0757-0462	RESISTOR, fxd, $75.3 \mathrm{~K}, 1 \%, 1 / 8 \mathrm{~W}$
R8*	0757-0459	RESISTOR, fxd, $56.2 \mathrm{~K}, 1 \%, 1 / 8 \mathrm{~W}$
R8*	0698-3450	RESISTOR, fxd, 42.2K, 1\%, 1/8W
R8*	0757-0123	RESISTOR, fxd, $34.8 \mathrm{~K}, 1 \%$, 1/8W
Q13, 14	1853-0393	TRANSISTOR, PNP
U1,2,3	1858-0044	TRANSISTOR, quad
U4	1826-0287	INTEGRATED CIRCUIT, comparator
U5	1810-0236	NETWORK, passive
L1	9100-3850	INDUCTOR, 140 uH
J1	1251-4143	CONNECTOR, cable
J2 thru J7	$\begin{gathered} 1251-0600 \\ 00091-80001 \end{gathered}$	CONNECTOR, 1-pin male BOARD etched

Figure 4-17. Printer PCA (A4A1) Component Location Diagram

Figure 4-18. Printer PCA (A4A1) Schematic Diagram

4-28. KEYBOARD TROUBLESHOOTING

4-29. If keyboard does not respond when any key is pressed check for:
(1) Bad connection between logic board and keyboard.
(2) Bent connector pins.
(3) Bad keyboard.

If pressing a key apparently results in the entering of a function of some other key, check for bowed or damaged key spring strips.

4-30. DISPLAY TROUBLESHOOTING
4-31. Figure 4-19 shows the LED digit structure. To test, key in -8.888888888-88. Display should correspond to the numbers keyed in. Possible problems as shown in figure 4-20 are:
A. Digit overly bright or dim.
B. Digit has tendency to turn on another digit, causing ghost image to appear.
C. One digit missing segment(s).
D. All digits missing same segment(s).
E. Single digit missing. (Refer to paragraph 4-33).
F. Same segment of all digits added.
G. Segment has tendency to turn on another segment, causing ghost image to appear.

Figure 4-19. LED Digit

Figure 4-20. Display Problems

4-32. Probable causes for problems listed above are:
Problem Item
Caused By
d, f
a, b, e
c, d, e, f
d, g

ROM 0
Cathode Driver. (See paragraph 4-33)
LED Module.
Anode Buffers:
(1) Segments $a, b, c, o r d$ missing - replace U4.
(2) Segments e, f, g, or h missing - replace U3.

Bad connection to cable W1
d, e
4-33. If a digit position does not light when -8.888888888 -88 is keyed into the display, refer to table 4-9 and press the key(s) indicated following the unlit position. If the calculator display agrees with that shown, the LED display is faulty; if not the cathode driver U1 is faulty.

Table 4-9. Missing Digit Troubleshooting

DIGIT POSITION	KEY (S)	DISPLAY
1 (mantissa sign)	[2]	2.
2	[3] [0] [TAN]	0.58
3	[e^{x}]	1.00
4	[2] [ENTER] [3] [y ${ }^{\text {x }}$]	8.00
5	[0]	0.
6	[4] [\sqrt{x}]	2.00
7	[4] [1/x]	0.25
8	[4]	4.
9	[2] [ENTER] [+]	4.00
10	[0] [COS]	1.00
11	[3]	3.
12	[1]	1.
13 (exponent sign)	[2] [EEX]	2.
14	[2] [ENTER] [-]	0.00
15	[2] [ENTER] [X]	4.00

4-34. CATHODE DRIVER IC REPLACEMENT

4-35. After replacing cathode driver integrated circuit U1, a new value for resistor R2 may have to be selected. Refer to table 4-10.

Table 4-10. Cathode Driver Resistor Selection Chart

U1 Category	I	J	K
Resistor Values (kilohms)	200	330	no resistor

Table 4-11.
Keyboard Printed-Circuit Assembly A2A1 (00097-60910) Replaceable Parts

REFERENCE DESIGNATION	HP PART NUMBER	DESCRIPTION
C1*	$0180-0575$	CAPACITOR, fxd, 2.2 uf, 20\% 16V
R1	$0683-4715$	RESISTOR, fxd, 470 ohm
R2+	$0683-2045$	RESISTOR, fxd, 200K
R2+	$0684-3341$	RESISTOR, fxd, 330K
R3	$0811-3496$	RESISTOR, fxd, 8.2 ohm, 2W, fusible
R4	$0811-1674$	RESISTOR, fxd, 4.7 ohm 2W
R5	$0698-8691$	RESISTOR, fxd, 4.0 ohm 1\%
R6	$0683-1835$	RESISTOR, fxd, 18K, 5\%, 1/4W
R7	$0683-3915$	RESISTOR, fxd, 390 ohm
CR1	$1990-0450$	LED, low, battery indicator
Q1	$1853-0393$	TRANSISTOR, PNP
Q2	$1853-0446$	TRANSISTOR, PNP
Q3	$1853-0374$	TRANSISTOR, PNP
Q4	$1854-0071$	TRANSISTOR, PNP
U1	$1820-1629$	INTEGRATED CIRCUIT, cathode driver
U2	$1990-0595$	DISPLAY, numeric
U3,4	$1858-0044$	INTEGRATED CIRCUIT, quad transistors
U5	$1810-0252$	INTEGRATED CIRCUIT, resistor network
P1,2	$1251-3955$	CONNECTOR, 9-pin
W1	$8120-2206$	CABLE, 24-Conductor
	$00097-80002$	BOARD, etched

* Capacitor C1 is not on all keyboard PCAs earlier than level D. If present, it is located on the circuit side of the PCA connected between pin 16 of U 1 and ground.
+ Value of R2 is selected.

P2 $\stackrel{1}{\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet}$

Figure 4-21. Keyboard PCA (A2A1) Component Location Diagram

4-36. CARD READER TROUBLESHOOTING

4-37. To repair a malfunctioning card reader follow the troubleshooting procedure given in table 4-15. Refer to the card reader exploded view in figure 6-3 for aid in disassembly.

4-38. When removing or reinserting the card reader cable, use the HP-91/97 connector tool (part number $\mathrm{T}-155435$) as described in section $3-24$, step 6b.

4-39. Note that the HP-97 card reader is a precision electromechanical assembly comtaining several small and delicate parts, HANDLE WITH CARE! During disassembly and reassembly, be sure the card reader motor is facing upward; otherwise small parts may fall out,

4-40. Avoid excessive handling of the leaf switch contacts on the card reader frame assembly: dirt or grease on them prevents proper electrical contact. During reassembly, clean them while the head assembly is separate from the card reader support by lighly rubbing the contacts with a soft pencil eraser. Rub each only toward the end of the ccontact. If any of the switch contacts are bent, replace the leaf switch contacts rather than attempting to bend them into place.

4-41. When the card reader motor speed cannot be adjusted to within proper limits, as described in the procedures of table 4-15, the eccentric cam must be replaced and/or adjusted as follows;
a. Carefully unsolder the red motor lead from the card-read printed circuit assembly and connect a current meter between the lead and its pad.
b. Insert a card into the card reader slot until the motor engages and starts to pull the card, but do not allow the card to be pulled through.
c. Adjust the eccentric cam (see figure 6-3) until the current meter reads 180 +-20 mA.
d. Perform the fine adjustment of motor speed using the procedures of table 4-15.

Figure 4-23. Card Reader Switch Adjustment Screws and Test Points

Test points: Pins $11(\mathrm{WB})$ and $10(\mathrm{WA})$ of CRC (A1U3)

Oscilloscope time base: $2 \mathrm{msec} / \mathrm{div}$
Vertical gain: 2 V/div
Figure 4-24. WA and WB Waveforms

RB

0 -

Test points: Pins 7(RB) and 8(RA) of CRC (A1U3)

Oscilloscope time base: $2 \mathrm{msec} / \mathrm{div}$ Vertical gain: 2 V/div

Figure 4-25. RA and RB Waveforms

HP-97
Table 4-12. Card Reader Printed-Circuit Assembly (00097-60004) Replaceable Parts

REFERENCE DESIGNATION	HP PART NUMBER	DESCRIPTION
R1*	0698-3151	RESISTOR, fxd, 2.8 K
R1*	0757-0279	RESISTOR, fxd, 3.1K
R1*	0757-0433	RESISTOR, fxd, 3.32K
R1*	0698-3152	RESISTOR, fxd, 3.48 K
R1*	0757-0434	RESISTOR, fxd, 3.65K
R1*	0698-3153	RESISTOR, fxd, 3.83K
R1*	0698-5808	RESISTOR, fxd, 4.0K
R1*	0698-3154	RESISTOR, fxd, 4.22K
R1*	0698-4442	RESISTOR, fxd, 4.42K
R1*	0698-3155	RESISTOR, fxd, 4.64K
R1*	0698-4444	RESISTOR, fxd, 4.87K
R.1*	0757-0438	RESISTOR, fxd, 5.11K
R1*	0698-3258	RESISTOR, fxd, 5.36 K
R1*	0757-0200	RESISTOR, fxd, 5.62K
R1*	0698-3515	RESISTOR, fxd, 5.9K
R1*	0757-0290	RESISTOR, fxd, 6.19K
R1*	0698-3226	RESISTOR, fxd, 6.49 K
R1*	0757-0439	RESISTOR, fxd, 6.81 K
R1*	0698-4471	RESISTOR, fxd, 7.15 K
R1*	0757-0440	RESISTOR, fxd, 7.50 K
R1*	0698-3259	RESISTOR, fxd, 7.87 K
R1*	0757-0441	RESISTOR, fxd, 8.25 K
R1*	0757-0288	RESISTOR, fxd, 9.09K
R2	0757-0927	RESISTOR, fxd, 1.3K, 2%
R3	0757-0940	RESISTOR, fxd, 4.7K, 2\%
C1,2	0180-2615	CAPACITOR, fxd, 22 uf
C3	0180-2664	CAPACITOR, fxd, 3.3 uf
C4	0180-2663	CAPACITOR, fxd, 6.8 uf
CR1	1901-1098	DIODE, silicon
Q1	1854-0071	TRANSISTOR, NPN
U1	1826-0322	INTEGRATED CIRCUIT, sense amp
J1	1251-4426	CONNECTOR, 13 pin
	00097-80003	BOARD, etched

Figure 4-26. Card Reader PCA (A3A1) Component Location Diagram

Figure 4-27. Card Reader PCA (A3A1) Schematic Diagram

Table 4-13. Logic PCA Troubleshooting Procedure

STEP	ACTION
1. Set the switches as follows: OFF M ON TRACE MAN [1m NORM PRGM R RUN 2. Press [PRINT x]. 3. Test individual functions as considered necessary (refer to appropriate key sequence tests in figure 4-1 and table 4-1). 4. Run logic PCA operational test (refer to paragraph 4-10). 5. Replace, one at a time, the ROM O,PIK, and ROM 3. (Return to step 1 after each replacement.) It the display shows 0.00 and the printer prints 0.00 , go to step 3. If the display shows 0.00 , but the printer does not print 0.00 , go to step 5. If the display does not show 0.00 and the printer does not print 0.00, go to step 6. Repair individual keys as required. If the logic PCA operational test is satisfactory, the logic PCA is repaired. STOP TESTING. If not, return to step 1. When the proper display and print are obtained return to step 3.	

Table 4-13. Logic PCA Troubleshooting Procedure (Continued)

STEP	ACTION

6.

Measure VSS and VB.
If $V B$ is not between 4.4 and VSS Vdc, go to step 11.

If $V B$ is between 4.4 and VSS Vdc and VSS is between 6.0 and 6.5 Vdc , go to step 7 .

If VSS is not between 4.4 and 6.5 Vdc , go to step 15.
7.

Measure both the DC and ripple voltage of VGG.

If $V G G=0$, go to step 12.
If $0>V G G>-11 \mathrm{Vdc}$, go to step 13.

If $V G G=<-11 \mathrm{Vdc}$ and ripple on VGG > 200 mV , go to step 14.

If $V G G=<-11 \mathrm{Vdc}$ and ripple on VGG $=<200 \mathrm{mV}$, go to step 8.
8.

Check waveforms $\Phi 1, \Phi 2$, SYNC, RCD and STR (see figures 4-5 through 4-7).

If all waveforms are satisfactory, go to step 9.

If not, check for open or shorted traces. Then replace one at a time the ACT, PIK, ROM 0, CRC, ROM 1, ROM 2, ROM 3, ROM 5, ROM 6, Q1, CRS, R3, C4 and R4 until all the waveforms are correct. (Return to step 8 after each replacement.)

Table 4-13. Logic PCA Troubleshooting Procedure (Continued)

STEP	ACTION
9. Replace one at a time ROM 0,	$\begin{array}{l}\text { If the display does not show } \\ \text { ROM 1, and ROM 3, until the } \\ \text { calculator shows the proper } \\ \text { display. }\end{array}$
	$\begin{array}{l}\text { open traces and/or defective } \\ \text { discrete components, and } \\ \text { repair as required. }\end{array}$
	$\begin{array}{l}\text { If the display shows 0.00 } \\ \text { and the printer prints 0.00, } \\ \text { return to step 1 and repeat }\end{array}$
the test.	

0.00, replace the PIK. If\end{array}\right\}\)| the printer still does not |
| :--- |
| print 0.00, check for shorted |
| or open traces and/or defect- |
| ive discrete components and |
| repair as required. |

10.

Replace remaining ICs until
the printer operates satisfactorily.
11.

Check for open or shorted traces. Return to step 6.
12.

Check CR6 and CR7. Return to step 6.
13.

Replace ICs until VGG is between Return to step 6.
-11.0 and -13.0 Vdc.
14.

Check capacitors C1 and C2 and Return to step 6. diodes CR6 and CR7.
15.

Check waveforms at anodes of CR5 and CR6. (See figure 4-4.)

Return to step 1 and repeat the entire test.

Table 4-13. Logic PCA Troubleshooting Procedure (Continued)

STEP	ACTION
	If waveforms are satisfactory, and VSS > 6.5 Vdc, check Q3 and CR9. Then return to step 6. If $6.0=<\mathrm{VSS}=<6.5 \mathrm{Vdc}$ measure the ripple on VSS. If ripple is greater than 200 mV , go to step 16. If VSS < 6.0 Vdc, go to step
Check CR5, C4 and the traces between the VSS line and C4. 17. Replace ICs as required.	Repair as required. Then return to step 6. When VSS > 6.0 Vdc, return to step 6.

Table 4-14. Printer PCA Troubleshooting Procedure

STEP	ACTION
1. Switch the calculator on. Do not attempt to print until instructed to do so. 2. Set the switches as follows: OFF OM TRACE MAN N NORM PRGM R RUN 3. If the display shows 0.00 , go to step 3. If the display does not show 0.00 , replace L1 and/or C1. Then go to step 3. Switch calculator off. 4. Connect a working printer to the printer PCA. Measure the resistance of each head resistor from the head connector to ground. 5. Switch the calculator on. Press the paper advance switch. If each head resistor measures >9.0 ohms, go to step 5. If any head resistor measures < 9.0 ohms, replace the appropriate transistor pack (U2 and/ or U3) until all resistors measure > 9.0 ohms. Then go to step 5. If the paper advances, go to step 11. If not, go to step 6.	

Table 4-14. Printer PCA Troubleshooting Procedure (Continued)

STEP	ACTION
6. Turn the calculator off. Measure the resistance across the motor.	If the motor resistance is $10+-1$ ohms, go to step 7. If not, replace U2. Then go to step 7.
7. Turn the calculator on. Measure the reference voltage at U5, pin 1.	If the reference voltage is $-1+-0.025 \mathrm{Vdc}$, go to step 9. If not, replace $U 4$ and/or U5. Then go to step 8
8. Press the paper advance switch.	If the paper advances go to step 9. If not, go to step 11.
9. Check pin 17 of the board for the FWD signal.	If the signal of 1.5 millisecond duration is present, replace in order Q14, U1, Q13, R1, R2. Then go to step 11. If not, replace U5 and U4 in order until the 1.5 millisecond signal appears. Then go to step 10.

Table 4-14. Printer PCA Troubleshooting Procedure (Continued)

Table 4-14. Printer PCA Troubleshooting Procedure (Continued)

STEP	ACTION
14. Enter -8888888888-88 [SCI] 9 [PRINT x] Measure print length.	The printed line length at 5.70 volts should be 1.47 to 1.54 inches (3.73 to 3.91 cm) measured from a point 0.33 inches (0.84 cm) from the right hand wall. For longer line decrease resistance; for shorter line increase resistance. (See table 4-7.) If satisfactory, go to step 16. If not, measure the voltage on pin 1 of U5.(1.0+-0.025 Vdc) If the voltage is correct, go to step 15. If not, replace U5. Then go to step 15.
15. Replace in order $U 4$, and $R 4$ through R7.	When print length is set correctly, go to step 16.
16. Check to make sure that the head carrier does not hit the left-hand wall.	If the head carrier action is satisfactory, go to step 17. If not, replace $U 2$ and $R 4$ and check the homeswitch alignment. Then go to step 17.
17. Check line-to-line line length uniformity.	If satisfactory, the printer is repaired. If not, replace C2. The printer is then repaired.

Table 4-15. Card Reader Troubleshooting Procedure

Table 4-15. Card Reader Troubleshooting Procedure (Continued)

STEP	ACTION
6.	
Record any program on a blank card.	

7.

Hold the card with tweezers and dip in Magna-see. Allow Magna-see to dry. Measure the length of recording from the leading edge of the card. (Tool 155428 may be used.)

If the length, $L=5.7+-0.6 \mathrm{~cm}$, go to step 8.

If not, replace R1 with a value selected from table 4-10.(Each value of R1 provides for approximately 3 mm of record length.) Then return to step 6 .
8.

Try to write on a protected card.

If "ERROR" is displayed, the card reader is repaired. END OF TEST.

If not, go to step 13 and perform part b. Then return to step 6.
9.

Monitor the MTRS pin of the CRC with a voltmeter or oscilloscope. Insert a card.

If MTRS $=0$, go to step 10. If not, go to step 13.
10.

Monitor the motor pin of the CRC. Insert a card

If MOTOR $=0$, go to step 11.
If not, replace the CRC. Then go to step 12.

Table 4-15. Card Reader Troubleshooting Procedure (Continued)

STEP	ACTION
11. Monitor the voltage across the motor. Insert a card.	If the motor voltage, VM > 2V, replace the motor. Then go to step 12. If not, replace the sense amp. Then go to step 12.
12. Insert a card.	If the motor starts, return to step 2. If not, replace ROM 6. Insert a card. If the motor starts, return to step 2. If not, check the traces. Then return to step 9.
13. Perform the following procedures in sequence using an oscilloscope set to $2 \mathrm{~V} / \mathrm{div}$ vertical gain and 1 msec sweep. a. Monitor the head switch (TP11 to TP8). Turn the head switch adjusting screw until the trace goes off the screen. Then back the screw off $1 / 8$ turn. b. Monitor the protect switch (TP10 to TP8). Turn the protect switch adjusting screw until the trace goes off the screen. Then back the screw off $1 / 8$ turn.	If the oscilloscope shows clean switch action, go to step 13b. If not, see note below. If the oscilloscope shows clean switch action, go to step 13c. If not, see note below.

Table 4-15. Card Reader Troubleshooting Procedure (Continued)

STEP	ACTION
c. Monitor the motor switch (TP9 to TP8). Turn the motor switch adjusting screw until the trace goes off the screen. Then back the screw off $1 / 2$ turn.	If the oscilloscope shows clean switch action, go to step 14. NOTE After checking all three switches, if any switch did not show clean switch action, remove the PC board: o clean the contact points with a soft pencil eraser; o degrease the contacts with Freon FT or denatured alcohol. Wipe with a soft tissue. - If any of the contacts are bent, replace the whole leaf. - Reassemble the PC board. - Repeat step 13.
14. Mount the card reader on a fold-apart tester ET-9613-91M. Measure the head resistance.	Across HA -- 40 to 60 ohms; Across HB -- 40 to 60 ohms. The difference between HA and HB $=<3$ ohms. HA to ground $=>1.65$ Kohms HB to ground => 1.65 Kohms If the resistances are within limits, go to step 15. If not, replace the head. Then go to step 15.

Table 4-15. Card-Reader PCA Troubleshooting Procedure (Continued)

STEP	ACTION
15. Measure the resistance across each of the capacitors C1 and C2. 16. Monitor the RA and RB pins of the CRC while reading side 1 of data card 2.	If the resistance is > 10 kohms, go to step 16. If not, replace the capacitor(s). Then go to step 16. If RA and RB are rectangular waveforms with amplitudes at least equal to 3.0 Vdc (see figure 4-20) go to step 17. If not, replace the sense amp. and repeat step 16. If the waveforms are still not correct, replace the CRC and repeat step 16. If the waveforms are still not correct, check the traces. Then return to step 14.
Replace the CRC. 18. Read side 1 of data card 2.	If "ERROR" is not displayed, return to step 2. If so, replace ROM 6 and read side 1 of data card 2. If "ERROR" is not displayed, return to step 2. If so, check traces and discrete components. Then return to step 14.

Table 4-15. Card-Reader Troubleshooting Procedure (Continued)

5-1. INTRODUCTION

5-2. This section identifies the accessories available for use with the HP-97. Replacement is recommended except at facilities where repair is feasible.

5-3. HP 82033A BATTERY PACK

5-4. Figure 5-1 shows the HP 82033A battery pack. A checkout procedure is given in figure 3-1.

Figure 5-1. HP 82033A Battery Pack

5-5. AC ADAPTER/RECHARGER

5-6. Table 5-1 lists the various ac adapter/rechargers available for use with the HP-97. Figure 5-2 shows the plug configuration and location of the part number. A checkout procedure is given in figure 3-1.

Table 5-1. AC Adapter/Rechargers

Figure 5-2. AC Adapter/Rechargers

5-7. HP 82044A SECURITY CABLE AND LOCK
5-8. Description
5-9. Located on the back of the HP-97 is a permanently mounted slideout hasp. This hasp provides a convenient, strong point of attachment to the calculator. The use of the HP82044A security cable and lock connected to the HP-97 hasp, securely ties down the calculator to prevent theft. (See figure 5-3.)

5-10. Conditions of Replacement
5-11. Replace when cable, lock or hasp is broken.
5-12. HP does not stock replacement keys. For replacement, consult local locksmith.

5-13. HP 82037A RESERVE POWER PACK
5-14. Description
5-15. The HP 82037 Reserve Power Pack:
a. Allows spare battery recharge while calculator is in use.
b. Is especially useful where calculator is in constant field use.

Figure 5-3. HP 82037A Reserve Power Pack
c. Attaches to standard ac adapter/recharger.
d. Built-in indicator shows battery is charging. Uses standard battery pack (one supplied).
e. Allows charging extra packs for extended usage of calculator.
f. Provides extra portability around the user's facility.

5-16. Specifications
5-17. The following are specifications for the HP 82037 Reserve Power Pack:
a. Dimensions: length 4.63 inches, width 3.81 inches, height 1.38 inch.
b. Weight: $31 / 2$ ounces (including battery pack).
c. Material: High-impact plastic.
d. Battery Charging Indicator: Light-emitting diode (LED).
e. Temperature Operating Range 15 to 40 C (59 to 104 F).
f. Power Input: From ac adapter/recharger.

5-18. Service Support
5-19. Complete replacement is recommended.
5-20. Conditions of Replacement or Repair
5-21. Replace plastic parts if cracked or broken. If unit is damaged beyond repair, consider a replacement unit.

Note: Keep in mind repair cost versus that of a new unit.
5-22. Operation
5-23. Guide battery pack into reserve power pack so that the exposed metal battery contacts face the metal contacts in the reserve power pack. Plug the two-prong female connecor from an ac adapter/recharger into the bottom of the reserve power pack. Then plug the ac adapter/recharger into wall outlet.

5-24. A red light (LED) will glow when the proper connections have been made and the batteries are charging. The light does not go out when charging is complete.

Figure 5-4. Reserve Power Pack Schematic Diagram 5-4

6-1. INTRODUCTION

6-2. This section contains information pertaining to the parts used in the HP-97. Parts descriptions, quantities, HP stock numbers, reference designations (where applicable) and assembly breakdowns are given.

6-3. Symbols used in the schematics may be identified by using figure B-1. Table B-1 lists reference designations and abbreviations.

6-4. Replaceable parts for the logic PCA, printer PCA, keyboard PCA, and card reader PCA are listed for convenience alongside each appropriate schematic diagram in section IV.

6-5. ORDERING INFORMATION

6-6. To order replacement assemblies, address order or inquiry to Corporate Parts Center, Parts Center Europe, or International Operations. Specify the following information for each part ordered:
a. Calculator model and serial number.
b. Hewlett-Packard stock number for each part.
c. Description of each part.
d. Circuit reference designation (if applicable).

6-7. Assemblies listed without an HP part number are named for reference only and cannot be ordered as assembled units. If needed, the parts comprising them can be ordered individually using the part numbers given in the appropriate table.

Table 6-1. HP-97 Replaceable Parts

 INDEX NUMBER	HP PART NUMBER	DESCRIPTION	QTY
6-1			
1	00097-60015	PCA A1, logic (refer to table 4-7)	1
2	00097-60019	ASSEMBLY A2, keyboard (refer to table 6-2)	1
	8120-2301	* CABLE, wire	1
	1990-0595	* DISPLAY, light emitting diode	1
	5040-9229	* WINDOW, red	1
3	00097-60004	ASSEMBLY A3, card reader (refer to table 6-4)) 1
4	00097-60010	ASSEMBLY A4, printer (refer to table 6-4)	1
5		ASSEMBLY A5, bottom case	1
	00091-60013	* ASSEMBLY, power pack	1
	5040-9202	* CASE, bottom	1
	5040-9204	* DOOR, battery	1
	5040-9207	* FOOT	4
	5040-9440	* LATCH, battery door	2
6	00097-60907	ASSEMBLY A6, support plate	1
	1600-0525	* HASP, security	1
	5040-9206	* PLATE, support	1
	0624-0354	* SCREW, 4-20 X 0.5	2
	3050-0227	* WASHER, 0.149 ID	2
7		ASSEMBLY A7, top case	1
	00091-60016	* ASSEMBLY, paper advance switch	1
	5040-9213	* BUTTON, paper advance switch	1
	5040-9709	* CASE, top	1
	1460-1465	* SPRING, compression	1
	00092-60903	ASSEMBLY, AC input plug	1
	5040-9208	COVER, paper	1
	0400-0009	GROMMETT, vinyl	3
	82045A	PAPER, thermal 1	1/6
	0624-0354	SCREW, 4-20 X 0.5	20
	0624-0355	SCREW, 4-20 X 0.375	8
	2190-0891	WASHER	3

Figure 6-1. HP-97 Exploded View

Table 6-2. Keyboard Assembly (A2) Replaceable Parts

HP PART NUMBER	DESCRIPTION	QTY
00097-60910	PCA A2A1, keyboard,service (refer to table 4-11)	1
00097-60013	KEYBOARD	1
5040-9229	WINDOW	1
4040-1054	SPACER, large	2
4040-1086	SPACER, small	2
5020-9230	CONTACT, switch, 6-row	1
5020-9233	CONTACT, switch, 5-row	1
1460-1465	SPRING, compression	26
1460-1487	SPRING, compression	30
5040-9210	HAT, large	26
5040-9300	HAT, small	30
5040-9209	SWITCH	3
1460-1471	SPRING, switch	3
7120-5385	LABEL, ID, US	1
5040-9256	* KEY, CLx	1
5040-9257	* KEY, $\mathrm{x}><\mathrm{y}$	1
5040-9258	* KEY, EEX	1
5040-9259	* KEY, R	1
5040-9260	* KEY, CHS	1
5040-9261	* KEY, :	1
5040-9262	* KEY, X	1
5040-9263	* KEY, -	1
5040-9264	* KEY, ENTER	1
5040-9265	* KEY, PRINT x	1
5040-9266	* KEY, +	1
5040-9267	* KEY, 1	1
5040-9268	* KEY, 2	1
5040-9269	* KEY, 3	1
5040-9270	* KEY, 4	1
5040-9271	* KEY, 5	1
5040-9272	* KEY, 6	1
5040-9273	* KEY, 7	1
5040-9274	* KEY, 8	1
5040-9275	* KEY, 9	1
5040-9276	* KEY, .	1
5040-9278	* KEY, 0	1
5041-1127	* KEY, F	1
5041-1151	* KEY, Sigma Plus	1
5041-1122	* KEY, A	1
5041-1123	* KEY, B	1
5041-1124	* KEY, C	1
5041-1125	* KEY, D	1

Table 6-2. Keyboard Assembly (A2) Replaceable Parts (Continued)

HP PART NUMBER	DESCRIPTION	QTY
5041-1126	* KEY, E	1
5041-1128	* KEY, LBL	1
5041-1129	* KEY, GTO	1
5041-1130	* KEY, GSB	1
5041-1131	* KEY, RTN	1
5041-1132	* KEY, BST	1
5041-1133	* KEY, SST	1
5041-1134	* KEY, Y to the X	1
5041-1135	* KEY, LN	1
5041-1136	* KEY, E to the X	1
5041-1137	* KEY, TO P	1
5041-1138	* KEY, STO	1
5041-1139	* KEY, RCL	1
5041-1140	* KEY, SIN	1
5041-1141	* KEY, COS	1
5041-1142	* KEY, TAN	1
5041-1143	* KEY, TO R	1
5041-1144	* KEY, (I)	1
5041-1145	* KEY, I	1
5041-1146	* Key, R/S	1
5041-1147	* Key, 1/X	1
5041-1148	* Key, X Squared	1
5041-1149	* Key, X Sq Rt	1
5041-1150	* Key, Percent	1
5040-9482	* Key, DSP	1
5040-9483	* Key, ENG	1
5040-9484	* Key, FIX	1
5040-9485	* KEY, SCI	1

Table 6-3. Printer Assembly (A4) Replaceable Parts

FIGURE \& INDEX NUMBER	HP PART NUMBER	DESCRIPTION	QTY
6-2			
	00097-60019	PCA A4A1, printer (refer to table 4-8)	1
1	00091-60009	ASSEMBLY A4A2, print head	1
2	00091-60025	ASSEMBLY, head carrier	1
3	00091-60015	ASSEMBLY A4A3, motor	1
4	00091-60026	ASSEMBLY A4A4, reed switch	1
5	00091-60014	ASSEMBLY, paper feed cam	1
6	5040-8995	GEAR, lead screw	1
7	5041-1169	GEAR	1
8	5040-8997	PUSHER, platen	1
9	5040-8998	HOLDER, platen pusher	1
10	5040-8999	BAR, tear	1
11	82143-40018	HOUSING, printer	1
12	5040-9227	BUSHING	2
13	5040-9228	ROLLER, pinch	2
14	5040-9745	PLATEN, lapped	1
15	0510-0261	RING, retaining, 3/32"	7
16	0510-0810	RING, retaining, 1/16"	2
17	0515-0033	SCREW, m2 X 0.40, 5 mm	3
18	0517-0010	SCREW, 1-72 X 0.312 in.	2
19	0624-0303	SCREW, 2-28 X 0.312 in.	3
20	1460-1461	SPRING, extension	2
21	1460-1696	SPRING, pusher	2
22	1480-0436	PIN, dowel	4
23	1500-0465	SHAFT, idler	1
24	1500-0466	ROD, guide	2
25	1500-0468	SHAFT, pinch roller	1
26	1530-1872	CLAMP, head	1
27	1600-0539	CONTACT, sensor	1
28	1600-0540	SENSOR	1
29	3050-0626	WASHER, flat	1
30	5020-9234	LEAD SCREW, microsealed	1
31	0180-2598	CAPACITOR, 1 uf 207.	1

Figure 6-2. Printer Assembly Exploded View

Table 6-4 Card Reader Assembly (A3) Replaceable Parts

FIGURE \& INDEX NUMBER	HP PART NUMBER	DESCRIPTION	
$6-3$			
	$00097-60004$	PCA A3A1, card reader (refer to table 4-12)	1
	$8120-2301$	CABLE, interconnecting	1
1	$00067-60913$	ASSEMBLY, motor, service	1
2	$00065-00230$	ASSEMBLY, A3A2, head service	1
3	$00067-60910$	ASSEMBLY, drive roller, service	1
4	$5040-9479$	SUPPORT, card reader	1
5	$4040-1488$	ROLLER	1
6	$0516-0073$	SCREW, machine	2
7	$5040-9797$	CAM, eccentric	1
8	$0624-0393$	SCREW, 2-28 X 0.375	3
9	$0624-0307$	SCREW, 2-28 X 0.250	3
10	$0624-0308$	SCREW, 0-48 X 0.085	5
11	$00097-00001$	SWITCH, card reader	1
12	$1410-0848$	BEARING, ball	4
13	$1460-0558$	SPRING, side load	2

Figure 6-3. Card Reader Exploded View

Improper Operations

If you attempt a calculation containing an improper operation－say， division by zero－the calculator display will show Error．
In addition，if the Print Mode switch TRACE is set to NORM or
MAN WI⿴囗⿰丨丨⿱一⿱㇒⿵冂⿰丨丨一心1 NORM
TRACE，the word Error will be printed（unless the calculator is out of paper）．The following are improper operations：

［ \div ］		where $\mathrm{x}=0$
［ y^{x} ］		where $\mathrm{y}=0$ and $\mathrm{x}<0$
［ y^{x} ］		where $\mathrm{y}<0$ and x is non－integer
［ $\sqrt{\mathrm{x}}$ ］		where $\mathrm{x}<0$
［1／x］		where $\mathrm{x}=0$
［LOG］		where $\mathrm{x}<0$
［LN］		where $\mathrm{x}<0$
［SIN－1］		where $\|x\|$ is＞ 1
［COS－1］		where $\|x\|$ is＞ 1
［STO］［ -7		where $\mathrm{x}=0$
［ $\overline{\mathrm{x}}$ ］		where $\mathrm{n}=0$
［s］		where $\mathrm{n}=<1$
［\％CH］		where $\mathrm{y}=0$
［DSP］［（i）		where ABS（INT I）＞ 9
［STO］［（i）		where ABS（INT I）＞ 25
［RCL］［（i）		where ABS（INT I）＞ 25
［ISZ］［（i）	［DSZ］［（i）］	where ABS（INT I）＞ 25
［GTO］［（i）	［GSB］［（i）］	where－999＞INT I＞ 19

［STO］［＋］［．］，［STO］［－］［．］，［STO］［x］［．］，［STO］［：－］［．］，where magnitude of number in storage register［．］would then be larger than $9.999999999 \times 10^{99}$ ．
［STO］［＋］［（i）］，［STO］［－］［（i）］，［STO］［x］［（i）］，［STO］［rt］［（i）］，where ABS （INT I）＞25，or where magnitude of number in storage register addressed by I would be larger than 9.999999999 X 10^{99} ．

Card Reader malfunction．
［PRINT x］，PRINT：［PRGM］，PRINT：［STACK］，PRINT：［REG］，PRINT：［SPACE］，where there is no paper in calculator．

Attempting to record on a protected side of a magnetic card．

Symbols and Abbreviations

Figure B-1. Symbol Identification

Table B-1. Reference Designations and Abbreviations

REFERENCE DESIGNATIONS		
```\(\mathrm{A}=\) assembly \(B=\) motor, synchro \(\mathrm{BT}=\) battery \(C=\) capacitor \(C B=\) circuit breaker \(C R=\) diode DL = delay line DS = indicator \(\mathrm{E}=\) Misc electrical parts \(F=\) fuse FL = filter \(\mathrm{J}=\) receptacle connector```	```K = relay L = inductor M = meter P = plug connector Q = semiconducter device other than diode or integrated circuit R = resistor RT = thermistor S = switch T = transformer```	```\(\mathrm{TB}=\) terminal board \(\mathrm{TP}=\) test pointnt \(U=\) integrated circuit non-repairable assembly \(\mathrm{V}=\) vacuum tube, photocell, etc. \(\mathrm{VR}=\) voltage regulator \(\mathrm{W}=\) jumper wire \(\mathrm{X}=\) socket \(Y=\) crystal Z = tuned cavity, network```
ABBREVIATIONS		
```FA = amperes ac = alternating current Ag = silver Al = aluminum ar = as required adj= adjust assy= assembly b = base bp = bandpass bpi= bits per inch blk= black blu= blue brn= brown brs= brass Btu= British thermal unit BeCu= beryllium copper cpi= characters per inch coll= collector cw = clockwise ccw= counterclockwise cer= ceramic com= common crt= cathode-ray tube```	```gra= gray grn= green H = henries Hg = mercury hr = hour(s) Hz = hertz hdw= hardware hex= hexagon,hexagonal ID = inside diameter IF = intermediate frequency in.= inch, inches I/O= input/output int= internal incl= include(s) insul= insulation, insulated impgrg= impregnated incand= incandescent ips= inches per second k = kilo (10 to 3), kilohm```	```p = pico (10 to -12) PC = printed circuit PCA= printed-circuit assembly PWB= printed-wiring board phh= phillips head pk = peak p-p= pead-to-peak pt = point prv= peak inverse voltage PNP= positive-negative- positive pww= peak working voltage porc= porcelain posn= position(s) pozi= pozidrive rf = radio frequency rdh= round head rms= root-mean-square rww= reverse working voltage rect= rectifier r/min= revolutions per minute```


Service Cards

C-1. INTRODUCTION

C-2. The HP-97 is a powerful and complex electronic device containing many components, including nine IC's which are used by the calculator's internal programming in a sophisticated, systematic manner. Accordingly, the HP-97 is liable to malfunction due to faults in one or more of a number of components (primarily the IC's). Identifying which of these IC's is responsible for a particular malfunction can be costly (in both parts and labor) if the trial-and-error approach to troubleshooting is used on this complex calculator.

C-3. Fortunately, this inherent sophistication enables the calculator effectively to perform diagnostic trouble shooting upon itself, with the aid of suitable programmed procedures. Use of them will expedite the diagnostic process of isolating a calculator malfunction to a particular IC failure.

C-4. The following magnetic cards are required to conduct certain test procedures in this manual:
a. Program memory test program card.
b. Functional test program card.
c. Data card 1.
d. Data card 2.
e. Diagnostic test, part one, program card.
f. Diagnostic test, part two, program card.

C-5. These cards should be prepared by writing onto them, using either an HP-97 or an HP-67, the program or data given in the remainder of this appendix.

C-6. PROGRAM MEMORY TEST PROGRAM CARD

C-7. The program memory test program is used to check for improper program storage and (during component-level troubleshooting) to isolate this malfunction to a failure in one of two ROM'S.

C-8. The program memory test program card may be prepared from the listing shown in figure C-1. Steps 1 through 222 all contain the instruction ISZI.

001	ISZI
002	ISZI
003	ISZI
004	ISZI
005	ISZI
006	ISZI
007	ISZI
008	ISZI
009	ISZI
010	ISZI
011	ISZI
012	ISZI
	$*$
$*$	$*$
	*
220	ISZI
221	ISZI
222	ISZI
223	RCLI
	224
R/S	

Figure C-1. Program Memory Test Program

C-9. FUNCTIONAL TEST PROGRAM CARD
C-10. The functional test program is used to check for improperly operating functions and (during component-level troubleshooting) to isolate such malfunctions to a failure in one of the ROM's.

C-11. The functional test program card may be prepared from the listing shown in Table C-1.

Table C-1. Functional Test Program

日可1	\square	057	CF3	113	6701	169	SIN
002	CLRE	058	MRG	114	ET02	170	L06
063	9	059	PSE	115	R/S	171	\times
064	$1 / 8$	064	F3?	116	*LEL1	172	$\mathrm{X} \boldsymbol{+} \mathrm{Y}$
045	7	061	RTN	117	6T0i	173	1\%
006	x	462	6706	118	*LEL2	174	ψ^{*}
007	CHS	863	*LEL2	119	8 CH	175	TAM ${ }^{-1}$
668	EES	964	DSEI	120	$\mathrm{X}+\mathrm{Y}$	176	$\square \rightarrow$ k
009	7	065	X0 ${ }^{\text {a }}$	121	$\Sigma+$	177	D + R
016	6	066	6T0.	122	y_{4}	178	SIN
011	\doteqdot	867	$X=10$	123	$\mathrm{X}+\mathrm{Y}$	179	cos^{-1}
012	STOI	668	GTO.	124	CHS	186	J
013	2	869	XYF	125	JX	181	Y^{x}
014	4	076	GT0a	126	,	182	
015	X 1	471	F8?	127	\div	183	10^{x}
016	6584	872	ETa,	128	1%	184	\div
017	6584	873	SF1	129	Σ	185	LSTX
018	6584	874	Fi?	136	\bar{x}	186	\times
619	6SE4	075	6701	131	HMS+	187	SIN
026	658 i	876	${ }^{6} 10$.	132	5	188	LSTX
621	$6 T 02$	877	*LELI	133	LSTX	189	RAD
022	*LEL4	878	ABS	134	x	196	cos
023	GSE1	079	XSY ?	135	DSF5	191	GRAD
024	6581	680	670.	136	RNI	192	TAN-1
625	6SE1	081	X \% ${ }^{\text {a }}$	137	X Y Y	193	x
Q2e	6 681	082	6T0.	138	-	194	*
027	6SE1	083	$X=Y$?	139	FHMS	195	y^{x}
028	RTN	684	60_{0}	140		196	LN
029	*LELI	685	$x \pm 0$?	141	HMS ${ }^{\text {F }}$	197	$\rightarrow{ }^{\text {k }}$
036	stoi	686	6701	142	X $\mathrm{X}+\mathrm{H}$	198	CHS
031	FCLi	089	6T0.	143	DSPG	199	+P
032		088	*LEL1	144	RNO	269	Xti
033	$610{ }^{\circ}$	089	$P * S$	145	N!	201	\bigcirc
034	DS2I	096	RCL3	146	\times	202	SIN $^{-1}$
035	RTN	691	$\chi \pm 4$?	147	$5 \times$	203	$\mathrm{e}^{\text {x }}$
836 037	*LBL2	092		148	$\underset{\text { RCLS }}{\text { LSTX }}$	264 205	${ }_{\text {ESCL }}$ R ${ }^{\text {ch }}$
838	PSE	694	CLX	150	${ }_{\text {Lsex }}^{x}$	206	RCLE
039	WITA	895	RCL 0	151	\times	207	RCLC
046	6	096	INT	152	ST+1	298	RCLI
6^{441}	5706	097	LSTX	153	ST×1	209	ENG
642	${ }_{6 S 6} 6$	698	FRC	154	ST-1	210	PRTX
043	RCL6	899	x	155	$5 T \% 1$	211	FIS
044	$X \neq Y$?	189	FIX	156	CLX	212	FRST
645	$6 \mathrm{TO}_{6}$	101	RGD	157	RCL1	213	PREE
046	RCL2	102	k \downarrow	158	6568	214	SPC
647	RCL1	103	CLS	159	Fi	215	RCLE
448		104	R1	160	\cos	216	${ }^{x}$
${ }^{649}$	GTO.	195	ENT ${ }_{x+4}$	161	$\stackrel{R}{R+\square}$	217	R/S
659	EEX	166 167		162	${ }_{\text {cos }}^{\text {TAN }}$	218	*LELC
052	¢ 1	108	ENT \uparrow	164	St ${ }_{\text {O }}$	226	X $\mathrm{X} \mathrm{Y}^{\text {\% }}$?
053	${ }_{6 S 6}$	109	$\Sigma+$	165	CHS	221	670.
054	$x+1$	110	+	166	LN	222	DSZI
655	6702	111	\%	167	+	223	PSE
856	*LBL6	112	${ }^{\Sigma}+$	168	DEG	224	RTN

C-12. DATA CARD 1

C-13. Data card 1 is used in conjunction with the functional test and also during troubleshooting of the card reader assembly. This card is employed to check writing and reading capability and therefore should be blank when used.

C-14. A number of cards can be erased at one time for use in later repair as data card 1 using the following procedures:
a. Switch a working calculator ON.
b. Switch to PRGM mode.
c. Feed both sides of the card through the card reader.

C-15. DATA CARD 2
Table C-2. Data Card 2

REGISTER	NUMBER
0	$5.061779945+01$
1	$0.000000000+00$
2	$3.088997250+01$
3	$-2.238303285+21$
4	$4.301773670+27$
5	$0.000000000+00$
6	$0.000000000+00$
7	$0.000000000+00$
8	$0.000000000+00$
9	$0.000000000+00$
A	$-4.444444444-44$
B	$-3.333333333-33$
C	$-2.222222222-22$
D	$-1.111111111-11$
E	$0.000000000-77$
I	$-3.000000000+00$

C-16. Data card 2 is used in conjunction with the functional test. It may be prepared using the following procedures:
a. Switch a working calculator ON .

C-4
b. Enter the numbers shown in table C-2 into the indicated registers.
c. Press [f][W/DATA].
d. Feed side 1 of the card through the card reader.
e. Clip both notched corners of the card.

C-17. DIAGNOSTIC TEST PROGRAM CARDS

C-18. The diagnostic test, part one, program is used to ensure that the calculator will not fail when the user runs the diagnostic program supplied as part of the HP-97 Standard Pac.

C-19. The diagnostic test, part one, program card may be prepared from the listing shown in table C-3.

C-20. The diagnostic test, part two, program is used to identify failureprone ROMs.

C-21. The diagnostic test, part two, program card may be prepared from the listing shown in table $\mathrm{C}-4$.

Table C-3. Diagnostic Test Program, Part One

Et	WSEA	257	csee	113	NEL8	269	LSTX
[23	CPG	65	R^{+}	$1: 4$	9sz:	176	ST
03	$\mathrm{P}+5$	259	STi	$\because 5$	F1?	17.	+
Q4	ORG	660	ETN.	1.6	6709	172	K_{2}
05	EN	60:	NEEL	1.7	6705	173	csba
E0	* BLE	362	Gsbe	$1: 6$	*L5L9	174	2+R
θ^{7}	Tors	863	ST0:	110	ssa:	175	R+2
be	RC.	ES4	RCL	120	F2?	176	CSEO
06	XIV	665	$X+Y$	12:	5705	177	EEX
6 C	Fs	666	XfY ?	122	ESP2	178	2
21	- 3.2	967	RTN	23	2SP7	179	XFY
22	298:	960	6582	124	DE6	10 C	$\%$
0.3	* BL 5	669	3	25	sin	$18:$	CSBa
0.4	RCL	876	603	226	Sin-	182	298:
es	RTN.	67:	RTN	127	¢SBa	: 83	*SLi
8.6	*3Le	372	* $E_{2} 6$	29	\cos	184	RC.
8.7	RC,	073	G6E2	129	cas-1	185	stor
26	RC:	674	RCi4	:39	6SBa	186	2sz:
09	$\mathrm{XPO}^{\text {\% }}$?	875	RTN	13:	ton	187	6Tas
ace	R/S	076	6582	:32	TAN-1	:88	2
El	$s^{5}+6$	077	K+1	133	6SBa	.99	4
22	962 :	378	RTN	134	+P	960	$\mathrm{X}+1$
623	Stoc	375	6S82	135	+	99:	6SEc
024	3	086	W0?	136	658.	192	6596
225	EE\%	$88:$	6T00	:37	5 N	:93	* BLd
225	2	88	RTN	138	+4Ms	194	DSEI
22	RCO	08	* ELC_{4}	139	HMS ${ }^{\text {a }}$	-95	RCLI
228	fale	084	ISE:	146	STN-	296	$A B S$
299	8 S	Q85	gros	14	6SEa	297	570
036	TAN	086	GT05	4	106	198	2
63.	*isle	887	OSZ:	143	10^{x}	109	4
838		des	F1?	44	6sba	208	YFY?
023	-	889	GT01	:45	LN	20.	grod
034	FTN	09.	DSZI	146	e^{x}	2 C	570
055	*3-4	99:	F3?	147	658.	233	6580
036	5	092	$6{ }^{606}$	148	VX	204	9
037	7	093	6701	49	X^{2}	205	EEX
638	G530	99.	* 2 PL6	50	GSEa	206	8
039	PSE	005	usz;	$5:$	Ent	207	7
848	Gsie	096	50%	52	\dagger^{*}	206	18
94:	ENT*	097	6×07	-53	STK	295	8
848	ENG	698	5×05	-54	$\underset{Y}{1 / 8}$	212	CHS
043	PSE	699	*2L7	-55	${ }^{\text {Y }}$	211	x
[04	Rt	100	stoc	$\bigcirc 56$	GSE0	2.2	SFE
645	$\stackrel{1}{1}$	at	SF1	-57	ENT*	$2: 3$	CF:
046	K+Y	20	DSP8	258	+	2.4	553
247	$s^{\top}+7$	103	DS2:	159	LSTX	215	EAS
046	8 ± 0 ?	104	ENTA	160	-	2.5	25^{29}
249	YFio	105	6705	16.	GSBa	2.7	ENG
EP	RTN	106	3S2I	: 62	Ent	2.8	PETX
e5:	CSEe	167	Fe?	163	x	$2: 9$	SCI
052	WY?	108	*LBL5	164	LSTX	229	FRTM
453	RTN	109	052:	165	\div	221	ISP:
054	6S5e	16	F2?	166	ESEO	222	FIX
055	$\mathrm{K}=\mathrm{Y}^{\circ}$	\cdots	6708	$: 67$	IX	223	PRTK
856	RTN	12	6×05	168	FRC:	224	E/S

Table C-4. Diagnostic Test Program, Part Two

Ec:	Fes	6145	R/S	889	+P	133	$\mathrm{P}+\mathrm{O}$
Qe	0	[46	CFI	090	$\pm \mathrm{F}$	[34	GSSd
063	stou	647	SF3	991	RNO	135	EEX
Qec	*SLA	648	F3?	092	ESEO	136	2
205	GSbe	[49	Fe?	093	STN	127	$\mathrm{N}+\mathrm{Y}$
E65		GE	F/S	094	+ HMS	136	$\%$
047	ETOE	85:	529	095	HMS ${ }^{\text {a }}$	139	GSEd
068	R/5	652	F1?	096	Sin ${ }^{-1}$	46	ETOT
090	* SLE	353	F/S	1397	GSBd	14.	Res
810	+	054	SFe	898	GT06	142	*LSL7
E.:	-52i	855	F9?	899	R/S	143	RC:
2.2	RCL	856	GT04	160	*LSLE	14	$\mathrm{e}^{\text {x }}$
$0 \cdot 5$	$\mathrm{X}=\mathrm{Y}$?	85	R/S	10	LN	145	
0.4	GTU:	658	*LEL4	18	e^{x}	146	DST:
8.5	R/s	959	F2?	103	RNE	147	Grof
46	* 212	600	F/S	204	ESEd	248	2
0.7	6580	EE:	SF2	205	X^{2}	24	4
018	2	562	5×3	160	FX	-56	$\underline{1}$
019	2	de	CF2	87	ESEod	15:	6580
823	\div	des	CF3	:00	Enta	152	GSbe
22:	PSE	6 E	F2?	29	ψ^{*}	53	G5be
82	PSE	665	R/S	12	LSTX	[54	508
023	FRC	E67	F3?	-	1\%	155	F/S
$0{ }^{4} 4$	$x+6$?	069	F/S	12	Ux	156	* ${ }^{\text {BLE }}$
025	502	ese	SF3	13	RUE	15	SS:
6e	LSTX	67 C	F1?	$\because 4$	Esbd	158	RSE:
227	PRTM	87:	R/S	$\therefore 15$	ENT*	159	$\mathrm{e}^{\text {x }}$
028	gros	672	3	$\therefore 6$	+	SE	Stoi
29	R/S	E73	ε	$\therefore 17$	LSTM	$16:$	6099
QE	* 1 BL2	00^{2}	stos	$: 8$	-	: 62	Res
63:	F3?	675	6s8d	19	csso	163	*LEL9
032	F2?	676	FSE	22	Ent	Et	LN
833	F/S	677	675	12.	x	25	2
034	F0?	778	Fes	22	LSTM	166	4
[35	6 O 3	079	* ELS^{5}	23	\div	167	Xfy?
436	F/S	48 E	STN	124	csed	168	Gros
037	* ESL_{5}	00:	5 H	25	TX	69	0
036	F1?	88.	CSEd	126	FRC	270	ESEA
039	R/S	883	cos	127	LSTY	371	G6Ee
64	cra	684	cos^{-1}	128	INT	272	PSE
Et	SF:	085	658d	29	+	173	Gse
642	SF2	086	Ton	130	x^{2}	174	ETO
043	$51 ?$	687	Tot-		6seo	175	Res
944	F3?	488	6s5d	138	D, F		

APPENDIX

D
Service Notes

Number	Title
97-101 Card Reader Repair Procedures pages $4-42$ to $4-48$
$97-102$ ROM Update Policy . None	
$97-103 ~ H P-97 ~ F a i l u r e ~ S y m p t o m s ~ a n d ~ C a u s e s ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ S e c t i o n s ~ I I I ~ a n d ~ I V ~$	

Page l of 7
February 1, 1982
Supersedes:

SUBJECT: Card Reader Repair Procedures

Repair of the HP-97 card reader consists of the following tests, checks and adjustments:

1. Mount the card reader on ET-9613-91M.
2. Power-up the wedge box and using an oscilloscope, adjust the card reader in the following manner:
A. The fourth switch in the card reader is normally not used. It pressures the card against the magnetic head. The problem is a mechanical one. When the fourth switch is deflected, it bends the entire switch contact sheet and causes the head switch to make contact prematurely.

Flat side faces printer on the HP-97.

A tool cut from a plastic sheet has been developed to counter this problem. Insert the tool into the card reader exit slot before adjusting the other switches. The plastic finger on the end of the tool will activate the fourth switch (make sure it is inserted properly). This will better simulate actual operating conditions.
i. Insert the tool.
ii. Tighten the head switch screw until the head switch makes contact.
(continued...)

(...continued)

iii. Back the screw out until it makes a second contact.
iv. If it requires more than $\frac{1}{4}$ turn to make a second contact, the switch is good and should then be adjusted for normal use (with plastic tool still in place). If the margin is less than $\frac{1}{4}$ turn, then the switch should be replaced.
B. Set the scope to trigger on the AC line at a 1 millisecond sweep rate, with $2 v /$ div vertical sensitivity including the probe.
C. Put the scope probe on the head switch pick-up point. Turn the adjusting screw clockwise until the scope trace drops from 5 v to $0 v$ indicating the switch is closed. The switch should make and break clean. Any erratic action will show on the scope and indicates a dirty switch. The card reader PC board must be removed and the contact pads cleaned carefully with a soft, rubber pencil eraser; then pads and contacts are degreased with Freon TF or denatured alcohol and then cleaned with a Kimwipe. After reassembly, if the switch makes and breaks with a clean signal, back the screw out $1 / 8$ of a turn from the closed position. (NOTE: the gold coating on the pads should not be removed any more than necessary for good cleaning).

A problem may arise if a switch is bent. If it is difficult to adjust the head switch, make sure it makes contact at only one position. If it makes multiple contacts when turning the adjusting screw, the switch should be replaced.
D. Using the same technique, adjust the file protect switch and back it out 1/8 turn also.
(continued...)

(...continued)

Supersedes:
E. Adjust the motor switch last and back it out approximately $\frac{1}{2}$ turn from the contact position. (NOTE: the adjustment of the head switch can affect the location of the start bit. If the start bit on the card was made by a premature closing of the head switch due to the entire contact sheet bending, the location of the start bit will be on the extreme edge of the card or in front of the card. These situations should be detected by using Magna-See to observe the start bit location.

The switches are now adjusted.
F. Erase a blank card with a magnet. * Switch the calculator to Write Program Mode and record the blank card.
G. Dip the card in Magna-See.** Check that all four tracks are recorded. If any of the tracks are missing, check the head by trying to read a prerecorded card. Set the oscilloscope at 50 mV and 1 millisecond and check the head signals while reading a card. The same type of signal should be found on all wires except the center black ground wires. The problem can then be isolated between the head and the sense amp. Replace the defective part and continue the repair.
H. The card reader should now be electrically functional. Motor current must be adjusted and the noise of the assembly must also be adjusted to an acceptable minimum.
i. Noise is caused by:
a. Lack of lubrication.
(continued...)

(...continued)

b. Bent worm gear/bad couplers.
c. Bad drive roller and gear.
d. Bad motor bearings.

Lubrication is done by removing the motor assembly from the card reader and applying moly-disulfidé** on the thrust bearing (the hole the tip of the worm gear fits into). The motor is reinstalled and a small amount of lubrication is applied to the worm gear. This should quiet the assembly, if not, check for bad components. Once the noise is at an acceptable level, the motor current must be adjusted. Hook the motor to a power supply set at 3.5 V and measure the current drawn by the motor. By adjusting the eccentric cam on the drive roller and the motor mount screws, the current can be minimized. Using a card held in the unit, the eccentric cam can be set to give adequate card pull. This current should be around 180 ± 20 milliamperes.
I. Next adjust the motor speed by recording a card and after dipping it in Magna-See, check the record length against a speed scale. Adjust the motor speed by selecting a different R1 resistor from the list on page 4-25 of the Service Manual. Each resistor's range is about 3 mm of record length on the card. The card reader should now be repaired and a final checkout should be done by:
i. Read a program.
ii. Write this program on a blank card.
iii. Read the card that was written on.
iv. Try to write on a protected card. ("ERROR" should result).
v. Magna-See the card that was written on and check the motor speed.
(continued...)

(...continued)

Supersedes:

* Magnets can be obtained by breaking apart a defective motor assembly. The card can be erased by passing it over the flat side of the magnet.
** Part Number "8500-0790".
*** We use Dow-Corning Molykote G Paste, Cat. No. 87500-16.

3. The last problem to be discussed concerns noisy card reader motors. The thrust bearing on the end of the worm gear is designed to carry the thrust force when the motor is running. If the worm gear is pressed onto the motor very hard, the two bearing surfaces will never touch. The force will be riding entirely on the motor bearings and this causes noise. Make sure the worm gear will contact the thrust bearing by pulling it away from the motor slightly before installing it in the card reader.

If the thrust force is riding on the ball bearing at the tip of the worm gear, rather than motor thrust bearing, the current drawn by the motor will be at a minimum and the motor speed will be at a maximum. This is important when adjusting motor speed on a card reader, to insure that card thickness and condition have a minimum effect on motor speed variations. This adjustment will have a minor impact on the noise of the card reader and will enhance the long term performance.

When installing the motor, if the worm gear and coupler are pulled out a bit before installation, the force will be on the thrust bearing and the opposite motor bearing. If the worm gear is pushed towards the motor a small distance after installation, the thrust force will be entirely on the thrust bearing as is desired. This adjustment will help toward maintaining proper operation of the card reader.
(continued...)

4. Hints

A. Some of the problems that have been blamed on bad head frame assemblies are really caused by bad head switch adjustments. The head switch puts the first small mark on the card and is a big problem on card readers. Adjusting the head switch will change the position of the start bit.

B. Many card readers with slow motor speed will return to normal with proper lubrication and current adjustment.
C. Protected cards can be rerecorded by the following procedure:
i. Load the correct program into the calculator.
ii. Ground the write protect switch (Pin 15 on HP-67) (Pin 13 on HP-97).
iii. Record the program onto the protected card.

This can be done with cards that were improperly recorded and then protected. Make sure the card reader that is used is in good condition with proper motor speed and start bits. The ground connection to the write protect switch must be opened and reclosed each time that this procedure is used or it will cause error to be displayed and will not work.

> (continued...)
(...continued)
D. Often suspected misalignment of card reader head assemblies (00065-60230) has caused replacement of this part.

Production Engineering has investigated this problem and has found that the problem may be the sense amp (1826-0322). Some sense amps have been operating at marginal specifications and have caused read errors.

Please try replacing the sense amp before replacing the head assembly.

SUBJECT: 97 ROM Update Policy
Some older HP-97's have old style ROM's which cause errors in the Sin^{-1}, Cos^{-1} and LAST X functions. (See Keynote January 1977.)

To identify which ROM's are contained in the calculator perform the following key strokes:

The policy for update of old ROM's is if any customer complains about these limitations on his HP-97, replace the older ROM's with the new revised ROM's. Charge the repair to warranty.
(...continued)

The procedure to update a HP-97 is as follows:

1. Remove ROM's 1818-0226 and 1818-0228 from the logic board.
2. Replace 1818-0228 with 1818-0550. (ROM 1)
3. Replace 1818-1226 with 1818-0551. (ROM 2)
4. Reassembly the calculator and push the following keys to verify update:

$$
\sin ^{-1}
$$

LAST X

$$
\frac{\text { Display }}{1}
$$

$$
-1
$$

Make sure that the customer is informed that this update has been done. (By a form letter or message on the Repair Order (See attached sample)).

CORVALLIS DIVISION •1000 N.E. Circle Boulevard, Corvallis, Oregon 97330, Telephone 503 757-2000 TWX \# 510-596-0683

Dear Customer,

The ROM in your HP-97 has been changed to eliminate the inaccuracies found in $\mathrm{Sin}^{-1}, \operatorname{Cos}^{-1}$ of small magnitude arguments and the problems associated with inverse trig operations. This has been done at no cost to you but as part of our normal repair process.

If we can be of further assistance, please feel free to contact us.

Sincerely,

Service Representative

SUBJECT: HP-97 Failure Symptoms

Our repairpersons in Corvallis have compiled a list of Common Failures and the corresponding part that caused the problem. This list is valuable as reference on difficult repairs.

Symptoms

1. Dim display
2. Keys don't enter
3. Paper advance doesn't work
4. Display blanks when printer used
5. Freezes at end of program
6. NTO
7. CLX acts like PRINT X
8. NTO
9. Keys do not have any relationship to keycodes or keys pushed
10. Doesn't print
11. Extra segments in display
12. Will not merge data completely
13. Keyboard entries "screwed up"
14. Occasionally displays 2 zeros (one in center, one at right)
15. Flickering "F" \& "G" segments in left most digit when 1444... entered (occurs only when on charger with battery at full charge)
16. Trig functions blank display
17. Errors after 4th pass of blank card
18. Keys won't enter. Prints erratic
19. Extra decimal on turn-on. Changing to ghost number when machine used
20. After warm-up, center segment doesn't illuminate
21. "NORM" print mode same as "MAN" mode
22. Intermittent NTO
23. Paper advance too short
24. Diagnostic show 9.999999999
25. Print advance inoperative
26. Printed $0.00 * * *$ or CLX when bumped or moved
27. ON/OFF switch will not turn off
28. Won't read cards
29. Nothing enters from keyboard. Printer \& card reader inoperative

Problem Part

Q3 (keyboard PCA)
PICK
PAS wired incorrectly
Printer motor
ROM 6
ROM \varnothing
ACT
Zener diode
ROM 5
PICK
ACT
ROM 6
ROM 6
Q2 (display)

Cl (on cathode)
ROM 2
ROM 6
PICK
Short on cathode
ACT
Solder splash on CRC
Battery contact (+) loose
Reed switch
ACT
ACT
Short on PICK
Short on ON/OFF Switch
ROM 6
ROM 6
(continued...)

Symptoms

30. Lock up and display flickers
31. Display flickers
32. No keyboard entry
33. P-R gives wrong answers in GRADS
34. Turn-on gives 0000000000 .
35. Turn-on gives 0000000000.
36. Printer drives to left on turn-on
37. -0.66 --- on turn-on
38. Turn-on gives ERROR
39. Turn-on gives ERROR
40. All zeros on turn-on; printer prints one line and then stops
41. Reads cards, but won't print out program; numbers entered result in 0.00 being printed
42. After warm-up, printer fails to print and display blanks
43. XXX ENTER \uparrow : numbers appear in display, but won't print; PRINT X works
44. Turn-ons - nothing enters from keyboard, just flashes 0.00
45. Incorrect keycodes printed
46. L-1 card runs, but ends at step 216; reads cards, but won't run program, read step 001 , lists program beginning at step 007
47. L-2 errors step 039 (16 61)
48. L-2 errors step 039 (16 61)
49. L-2 errors step 059 (16 51)
50. L-2 errors step 059 (16 51)
51. L-2 errors step 221 (22 16 11)
52. After blank card inserted 4 th time-ERROR step 045 (22 16 11)
53. L-2 errors step 042 (2316 12)
54. L-2 errors step 202 (16 14)
55. Diagnostic loop displays 25.00
56. Diagnostic loop displays 35.00
57. Diagnostic loop displays 26.00
58. Diagnostic loop displays 15.00
59. Diagnostic loop displays 45.00
60. Diagnostic loop displays 44.00
61. Diagnostic loop displays 44.00
62. Incorrect keycodes
63. Incorrect keycodes and operations
64. Prints \& displays nonsense
65. NTO
66. Turn-on gives 0000000.0 (every other time

Problem Part
ROM 6
ROM 5
ROM 5
ACT
ACT
ROM 1
PICK
ACT
ACT
ROM \emptyset
ROM 1
ROM 5
PICK

CRC

ROM 6
ROM 5

ROM 6
CRC
ROM 6
ACT
CRC
ACT
ROM 6
ROM 3
ROM 3
ACT
ROM 5
ROM 2
ROM 6
ROM Ø
ROM \emptyset
ROM 2
ROM 6
ROM \emptyset
ACT
W1 (logic) missing
(continued...)
(. . .continued)

Symptoms

and program step numbers inconsistent (007, 006, 018, 115)
67. LBL D acts as LBL E
68. NTO
69. After 10 minutes calculator won't work

Problem Part

ROM 5
ACT
ACT
PICK

SUBJECT: Further Explanation of Functional Test (page 3-8 of Service Manual)

The testing of a repaired calculator involves testing as many of the functions of the calculator as possible. This is accomplished with the three-card test that was included in the service manual. This service note is intended to further explain this test. The test consists of four cards:

Test Card 1 (T.C. 1) Blank Card
Test Card 2 (T.C. 2) Test Card 3 (T.C. 3)

The first card is a memory test. It checks all 224 locations of memory to make sure they can be programmed and executed. It also verifies the card reader can read cards. The display should read 222.00.

The second card starts a new sequence of tests. After reading T.C. 2, switch to Program mode and push: SST, BST, F, Delete, LBL, A. This tests the ability of the calculator to be programmed from the keyboard. After returning to Run mode, push A . The calculator will run, then flash -7.777777777-77, and then ask for a card. Feed in the blank card on both sides. The calculator is writing data onto the card. The calculator will then begin to flash 6.000000000.00. While the display is flashing, read the card that was just recorded. This tests the ability of the calculator to read a card that was written by the same calculator.

The display will now flash -1.000000000.00. While the display is flashing, read T.C. 3. This is a one-sided card that contains data. The flags are also being tested during these read loops. The test will now continue and the printer will print out. This tests the ability of the printer to print.
(continued...)
(...continued)

Supersedes:

The display will show -8.8888888888-88 which allows inspection of all LED segments. Switch to Program mode and press: GTO . 200
f Print Prgm
As the program is being printed, switch to Trace mode. This tests the interrogation of the switches. After the printer stops, try to record a protected card (any one will do). Switch to Run mode, clear the error and the display should show all segments again. This test is very quick and does a good job of a final test on the calculator. It does not replace the Data Store test or Heat Run-type tests.

Corvallis Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

