Programming: The way to grow!

HP Catalog begins on page 7!

5 new Series E Calculators listed!
When you step up to programming, step up to Hewlett-Packard.

Programming can be a quantum leap in your personal capabilities. And with the special advantages you get from HP, it can be a joy.

Step up to RPN.

It uses far fewer keystrokes than algebraic, especially for those longer problems. And RPN conserves program memory because you don’t have to waste it on parentheses.

Step up to usable power.

An HP programmable uses only one line of memory for two or three keystrokes thus effectively doubling or tripling the amount of program memory you have to work with.

Step up to easy editing.

If you make a mistake or want to change your program in midstream, no problem with HP. You can single-step backward or forward, checking each step as you go, or on some models you can go directly to any location or label in your program.

Step up to Continuous Memory.

If you use one or two programs frequently, an HP calculator with Continuous Memory is a real time-saver. It saves any programs and data you’ve put in it, even when you switch the power off.

So you don’t have to re-program each time you use it.

Step up to the “smart” card reader.

The magnetic card reader in the HP-67 and HP-97 lets you load the entire program memory, or selected portions, manually or under program control. You can also load data from all registers, or selected registers, onto a card.

Step up to unparalleled owner support.

The Owner’s Handbooks are among the most complete and helpful reference books ever published for personal calculators. For HP-19C/29C owners, there are 10 Solutions Books in a variety of disciplines. For HP-67/97 owners, there are 10 Application Pacs of prerecorded magnetic cards plus 40 Solutions Books and a Users’ Library for subscribers. And Applications Books are available for most other HP calculators.

All HP programmables are fully described in the catalog section of this magazine. Order the one best suited to your needs, today.
Hewlett-Packard offers a written warranty on all of its calculators and accessories. A copy of the complete warranty statement is available upon request.

Please note, for consumer sales in the United Kingdom any warranty given shall not apply to consumer transactions and shall not affect the statutory rights of a consumer. In relation to such transactions the rights and obligations of Seller and Buyer shall be determined by statute.

Hewlett-Packard products are manufactured by Hewlett-Packard worldwide.

Published by Hewlett-Packard Company, Corvallis Division, Corvallis, Oregon, USA

Features

- Programming: The Way to Grow. 3
- Engineering for the Cold, Cruel World. 30
- The Programming Advantages of RPN. 33
- The Personal Programmers Club. 33

Catalog

- How to Use the Catalog and Buyer’s Guide 7
- Buyer’s Guide 8
- HP-37E Business Management Calculator 10
- HP-38E Advanced Financial Calculator with Programmability 11
- HP-92 Investor 12
- HP-10 Handheld Printing Calculator 14
- HP-31E Scientific Calculator 15
- HP-32E Advanced Scientific Calculator with Statistics 16
- HP-33E Programmable Scientific Calculator 17
- HP-19C Advanced Printing Programmable Calculator with Continuous Memory 18
- HP-29C Advanced Programmable Calculator with Continuous Memory 19
- HP-67 Fully-Programmable Pocket Calculator 20
- HP-97 Fully-Programmable Printing Calculator 21
- HP-67/97 Solutions Books 22
- HP-67/97 Applications Pacs 24
- The HP Calculator Accessories 26
- The HP Features and Functions Comparison Chart 28

Departments

- Letters 2
- Beyond the Call of Duty 6
Letters

Never Disappointed

While in graduate school I purchased an HP-22. Goodbye forever to HP-92? By the way, the spiral binding of the HP manuals allowing them to lay flat is worth its weight in gold!

Richard Klein
Riverton, Wyoming

After going through several calculators during the past 4 years, I finally had the good sense to buy an HP-21. The reliability, features and human engineering consistently prove its superiority even if others tout lower cost. I went that route and lost out to bouncing contacts, dim displays and useless features. By the way, the spiral binding of the HP manuals allowing them to lay flat is worth its weight in gold!

Richard G. Nichols, Staff Eng.
Vienna, Virginia

I must say I enjoyed reading your latest HP Digest. Could you please send me the first and second volumes of the Digest [1977], and inform me how I may be put on the mailing list. Indeed I've been a Hewlett-Packard fan for years, first an HP-45, then an HP-25, now an HP-67 and, needless to say, I've never been disappointed by Hewlett-Packard.

At school I know many students who have sold their previous calculators to buy Hewlett-Packard's. But I know of nobody who has ever sold their H.P. for a calculator manufactured by some other company. Keep up the good work!

Gary Irwin
Erindale College,
University of Toronto
Mississauga, Ontario

Editor's Note:
We are sorry but we cannot put international addresses on our mailing list. If you would like to receive future issues of the Digest please supply us with a U.S. address and write:
HP Digest
1000 N.E. Circle Blvd.
Corvallis, Oregon 97330
You may wish to contact your local HP representative from time to time to receive particular Digest issues.

The Natural Order of RPN

I would like to add my two cents to the RPN algebraic brouhaha as well. One of the more significant points is that algebraic notation is hardly "natural". As proof of this I point to Cajori's History of Algebraic Notations in which he shows that the current system of algebraic notation has only been finalized in the late 20's (at least in its current form in America by the American Society of Mathematicians) and my experience is that people, in general, still do not understand it. The notation is relatively obvious for someone who is trained to read the language but it is set down for the eye and logical manipulation: anyone who has done much computation would not approach calculation in such fashion. Specifically anyone who has had any experience with a large computer knows that computations must be translated into reverse Polish before they can be executed on a computer. All calculators use reverse Polish; it is just that very few give the operator the chance of handling reverse Polish directly rather than having the machine do it for you under the rubric of "natural" formulae. You have only to try an algebraic programmable to realize how backwards the language is.

Brian Fortier, FSA
West Des Moines, Iowa

I have nothing but praise for your calculators and the RPN logic system that you use. It is far superior to the algebraic logic system. The RPN system, with its automatic memory stack, really comes into its own in solving problems as they evolve from thought, such that a written equation is not before you. The fact that an operation is carried out on the entry in the display, and not necessarily on the result of all previous operations and entries, makes it possible to proceed with the solution of a problem in the order in which it evolves mentally, without the necessity of restructuring the equation before beginning. Your calculators are thus ideal for solving problems while in conference.

William N. Tuller, B.E., M.S.
New Orleans, Louisiana

Those Amazing Programmables

This summer I worked for the Alaska Division of Aviation, building an airport in the remote Eskimo village of Ambler, 35 miles north of the Arctic Circle. My supervisor brought a fancy desk top calculator as part of the laboratory equipment, but a surge in the primitive village electricity system knocked it out in the first week. How would we do the lengthy calculations needed to figure out earthquake quantities?

Unbeknownst to my supervisor, I had already worked out the necessary programs for my HP-25C, so I made the computations with ease. After a few days my supervisor forgot all about repairing the desk top calculator; he shipped it back to Fairbanks, and the HP-25C carried the load for the entire season—not only for the earthwork computations but also for the soils work and surveying.

Even after spending some hundreds of hours with the HP-25C, I am amazed by the power and versatility of my little machine. I find it extremely enjoyable to devise new programs, and look forward to stepping up to a more advanced programmable next construction season.

Ole Wik
Ambler, Alaska

Your new products are truly exciting and I feel that you could sell a lot more programmables if you had a few articles telling what they can do for you. I purchased my first programmable after using one that I borrowed for a weekend, and I asked what can it do? Now I ask what can't it do as I am doing so much more with the one that I just purchased. I operate a small business and the card programmable really saves time and gives increased accuracy on the many jobs that I assign to it.

Keep up the great work and the new products and the high standard that you have established for yourself.

Charles L. Varble, Jr.
St. Ann, MO

Contribute to Digest: The Editor would be delighted to hear of any incident or experience you may have had with an HP calculator that would be of interest to our readers. Because of space limitations, not all letters received may be used and all letters are subject to editing. Please address your contributions to Editor, HP Digest, Hewlett-Packard Company, Corvallis Division, 1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.
He had made up his mind once and for all. He was going to do it. He strides purposefully through the crowded store to the glittering display of calculators.

His head high, he approaches the woman behind the counter.

"I'd...I'd like to see something in a calculator." His throat goes dry. "A programmable calculator."

The woman smiles. "How much do you know about programming?"

His mind reels. He knows one thing. He knows it's hard. He thinks back to his college days, how long ago? Let's see...the Flying Finn, Paavo Nurmi, winning the marathon and the 5000 and 10,000 meter races in the Olympics. A table-model Philco with the sounds of the Modernaires singing Goody Goody. Yes, it's 1952...and he is in a cavernous room, gazing up at one of the world's first digital computers—a machine as big as a locomotive, its thousands of vacuum tubes aglow with an eerie light.

"One day," a professor explains, "computers like this one will free man from the drudgery of tiring, mathematical work just as the steam shovel freed him from the drudgery of physical labor."

A student raises his hand. "I've heard that, in some problem-solving situations, mathematicians using slide rules, and even abacuses, were able to beat the computer by a substantial margin. Any truth to that?"

The professor smiles weakly. "Yes, well...heh, heh. You see, before a problem can be solved on a computer, the problem must first be coded into instructions that the computer understands. The computer must be...ah...programmed. And programming is a long and tedious process."

"Real drudgery, huh?"

"Yes, drudgery...." The professor stops.

His mind reels on.

John Glenn orbits the earth. The Twist is suddenly the most popular dance in the country—and people don't even touch each other. That's right...it's 1962. And now there are seemingly hundreds of computers, each one with its own language. Should he learn SOAP, SHARE, or SCAT? FLIP, QUICK, or QUEASY? APT, SNAP, or UGLIAC? With over a hundred programming languages in use, what if he should study the wrong one?

"How much do you know about programming?" she had said.

"Uh—not much, I guess."

"Okay, then, what do you think is the most important consideration in choosing a programmable calculator?" she asks.

"Memory," he blurs. "The more memory, the better."

"Look, do you own a regular scientific calculator?"

"Of course," he says.

"Well, a programmable calculator is a lot like a scientific calculator—except that it can 'remember' a whole series of keyboard operations, and then execute them in order in a split second. With a programmable calculator you don't need any previous programming experience..."

Right up his alley!

"...because programmables don't use a 'language'—they use decimal mathematics, the same kind of decimal mathematics you're used to on your pocket calculator. Or in your high school algebra class. It's really super easy!"

"Super easy?"

"Super-easy. Look, all you do is just slide this switch to Write Program. Then you press the keys in the same order you would to solve a problem. The calculator remembers these keystrokes." She presses a few keys. "There. Now I've entered a program to convert temperature in degrees Fahrenheit to Celsius."

"Celsius?"

"Same as centigrade. Now watch. We just slide this switch back to Run, key in the Fahrenheit temperature—let's say it's 35 degrees—and press a single key."

She presses a key, and a split second later the digits 1.67 appear in red lights in the display window.

"That's the answer," she says. "Thirty-five degrees Fahrenheit is the same as one point six-seven degrees Celsius. Uh, centigrade."

"So as you can see, one of the most important criteria for a programmable calculator is its utility as a calculator. You'll want a full range of scientific, mathematical, even statistical functions if you use them. And you'll probably want RPN."

"RPN? Uh, oh. Here it comes. UGLIAC and QUEASY all over again. He tenses.

"Relax," she says. "RPN is just a way that some calculators solve a problem—a simple parenthesis-free method that, for the bulk of problems, will make programming easier and use fewer keystrokes."

"Well, what about the amount of memory?" he asks. "Isn't that important, too?"

"Of course. Generally, one keyboard operation is stored, or 'remembered', in one line of program memory. So the more program memory you have, the more operations you can store—and the longer and more powerful the programs you can write."

"But that's not the whole story. If you typically use only short- or medium-length programs, then you don't need the extra program memory offered in more expensive models of programmable calculators. And, of course, a calculator with RPN, since it's more efficient, keystroke-wise, than an algebraic calculator, makes better use of the program memory you do have."

"Another feature to look for is the merging of two or three keystrokes in a single line of memory. Some calculators, will let you place an instruction like STO + 2—where you're adding to the contents of storage register #2—in only a single line of program memory. Other calculators, though, can eat up as many as three lines of memory to record this same instruction. So you see that the amount of memory isn't as important as you might think—it's utility and efficiency are also important."

"How do I know how much memory is right for me?"
“You’ll get a pretty good idea by examining the ‘program library’ or the applications programs that come with the calculator. Compare the complexity of your own problems with the problems solved by the manufacturer-written programs. Few of the problems will actually be the same, but you can get a good idea of the type of problems the calculator can easily handle.”

He examines one of the programmable calculators arrayed before him. “Aha,” he says. “Here are STO and RCL keys for store and recall, just like on my scientific calculator.”

“That brings up another factor that you should consider in buying a programmable,” she says. “The amount of data storage that’s available. This is quite different from the number of program lines a calculator can remember. In programming, even more than in a manually-operated calculation, it’s often necessary to store a number away at one point, then recall it at another point. And that’s where data storage registers come in.”

Incredible. He has understood everything she’s been telling him. Programming doesn’t seem so difficult after all. But wait! He points to an unfamiliar key on one of the calculators. “What’s this? This GTO? He used to own a Pontiac back in ’66.”

“Aha!” she exclaims. “Now you’ve found one of the specialized functions that make a programmable calculator like this one so much more useful than merely a device that remembers keystrokes.

“That means go to. If a program is running and hits a GTO instruction, it goes to the part of the program selected by that go to. Look here...” She begins drawing on the pad again.

3
r — 4

No: 5

L » 6

Yes

7

8

9

... a conditional instruction works by asking a question—here the question is ‘Is the number in X greater than the number in Y?’ If the answer to the question is yes, the program continues with the next step of program memory. If the answer is no, the program skips a step before resuming. So if you just place a go to instruction as the next step after the conditional, like this, you can have the program make a decision.”

“Can you give me a concrete example of how I might use a conditional?”

She pauses for a moment, then starts sketching again. “Look here. Suppose you have a checking account. As long as your balance is $300 or more, you pay nothing for your checks. But as soon as your balance drops below $300, each check costs you 15¢ to write.

In this program, you’d enter the amount of the check. Before the program processed that amount, though, it would ask the question ‘Is the balance below $300?’ If the answer is no, you can see that only the amount of the check is subtracted from your balance. But if your balance is below $300, and the answer to the question is yes, the program subtracts $0.15 from the balance before subtracting the check amount.”

He is awestruck. It’s so simple. He wants to race from the store with a calculator. He wants to start programming at last! He gropes for his checkbook.

“But, wait, there are other features of programmable calculators you should know about. Features like subroutines, for example.

“A subroutine is a section of a program that you identify with a label at the beginning and a return, which you’ll usually see on the keyboard as RTN, at the end. If you have a section of code that you want to use at several places in the program, you can just define it as a subroutine, then call it up with a GSB, or go to subroutine,
you can even execute a program one line at a time using this single-step function—you can monitor each operation of the program. A back step function—BST on the keyboard—is pretty important, too, since it lets you back up in program memory.

"Another really useful editing feature, and one that becomes more important as you get into calculators with a lot of memory, is being able to go to any point in a program immediately, without having to single-step all the way. So programmables like this one..." She held up a small handheld calculator, "...let you use the go to function to get to any location in the program memory, or, if you prefer, to any label.

"Program editing features are immensely important," she adds. "Because they're the interface between the programmer and his program."

"Gee, look at this one," he says. "Is this a printer on this little pocket-sized programmable calculator?"

"Sure is," she says. "Not everyone who programs will need a printer, of course, but it's indispensable if you need a copy of masses of data and results. A printer is also a big help in the editing process, especially if it has the options either of listing every line of the program and its line number or of 'tracing' an executing program—that is, printing the input data, then the operation performed, then the next operation, then the result, and so forth on through the program. You can really examine your program with a fine-tooth comb that way!"

"Now, if I turn off one of these programmable calculators," he asks, "is my program lost? Will I have to press all those keys again to reload it every time I want to run the program?"

"There are a number of options for saving your programs," she says. "If all of your programs are really short, you might just opt for something like this keystroke programmable calculator. It remembers programs of up to 49 lines, but on this one you will have to keep a listing of your keystrokes and reenter the program every time you turn the calculator off, then on again. However, its brother, here, has Continuous Memory. A calculator with Continuous Memory is a little more expensive, but it saves any programs and data that are in it, even though you turn the power switch off. Continuous Memory is particularly good if you have one or two programs you use all the time.

"When you get a calculator with over about a hundred lines of program memory, the problem of making a mistake when keying in a long program becomes more acute. So you'll probably want to go with one of the card-programmable calculators on the market. These actually remember your programs on small magnetic cards, each about the size of a stick of gum. When you want to load a different program into the calculator, you just pass a card through a special slot, and, zip, your program is there, ready to go."

"Fear surges up in him again. "Is there any danger of...well, of breaking one of these? Or maybe getting it locked up in some kind of an endless loop?"

"You can always halt a running program with the press of a key," she says reassuringly. "As for things like reliability, quality of construction, and support, you should probably ask your colleagues and co-workers. I'm sure many of them have programmable calculators already."

"Here the main program encounters the first GSB A instruction, and it goes out to the subroutine, executes downward until it encounters the RTN, and then returns to the main program and continues. Then later on, when it hits the second GSB A, it does the same thing. As you can see, having a subroutine capability on your calculator makes your programming much more efficient, because you can call one subroutine from many different places in a program.

"More sophisticated calculators have capabilities like flags, DSZ and ISZ, and indirect addressing. Flags are conditionals of a sort—a program tests a flag and makes a decision based on whether that flag is set or cleared. DSZ and ISZ mean 'decrement, skip on zero,' and 'increment, skip on zero.' They're valuable as counters in your programs. Indirect addressing lets you use a single index register as an address for instructions like store and recall—by changing the address in the index register, you change the object of the store or recall instruction.

"These probably don't mean much to you now, but believe me, they're sure useful. And when you're ready for them, you'll find a full explanation in your owner's handbook."

"What if I want to change a program, or find out that I've made a mistake? Do I have to erase the program from the calculator and start all over again?"

"Good heavens, no! Good programmable calculators have insert/delete editing. This means you move to the point in program memory that you want to modify and insert or delete instructions as required. Having some kind of indication in the display of where you are during editing is very important, and so is the ability to get to the desired point in memory.

"Most calculators have editing features like SST, with which you can single-step through a program until you come to the spot that you want to change. In the best programmables,
Beyond the Call of Duty.

I would like to bring to your attention a small incident which happened with my HP-65. On January 5, when rushing out of the office, I put my HP-65 in my pocket—without its case—which I lost a long time ago. In Bierset, I parked my car in a very muddy road. After getting out of the car I bent down to fold up my trousers because of the mud—due to work being conducted there. Upon getting home I noticed I did not have my HP-65 anymore. On January 6, I called the police and several local authorities, after having of course searched my car, and at noon I went to check where I had parked the day before. I found the HP-65 completely buried in the mud, probably because of cars going over it since there were more than 50 of them due to a charter coming back. The ground was frozen and I had to use a hammer and a pick to dig out a block of mud with the HP-65 inside. I let it dry and in the evening I vigorously brushed the machine off. The big problem was the blocking of the card entry. I had to feed in cards for approximately 1 hour blowing into the machine after each process and finally it is now in working condition again. It records, charges normally. Unfortunately, some sand still remains inside and comes out after each use (between keys, under the battery).

The above is certainly not a treatment which should be recommended and is probably more wearing than being put into orbit or sent to the moon as I think has been done with the HP-65.

M. Legrand
Golettes, 4
4860 Pepinster
Belgium

I would like to tell you a story about my HP-25. I was doing some calculating with it on the vinyl top of my Dodge at Citizens Electronics in San Diego and forgot I left it sitting on top of the car, and drove off. Well, it stayed on the top very securely until I-5 northbound and off it went.

My heart dropped too—seeing it unprotected, bouncing all over the freeway and like a fool, I pulled off to the shoulder and "figured" (which is very difficult without my H.P.) it at least deserved a better funeral than I-5.

Anyway the DAMN thing worked. And it's been 10 months and it still is doing a great job, scratched, bruised and mistreated, but still operating.

I'm going to treat myself to an HP-19C for Xmas and send my HP-25 to Ripley's. Anyway keep up the quality. HP is the Rolls Royce of calculators.

VIR M. Klipp
US Navy
Fleet Training Group
ASW Base
San Diego, CA 92147

Boy, do they! And he is more determined than ever not to miss the programming bandwagon.

"When you buy a programmable calculator," she continues, "you'll want to consider three main points: Program capacity—how much do I need? Program retention—how will I save my programs? And printing—is it a requirement?

"Your programmable should have some useful applications programs accompanying it, so you can begin using it right away. But eventually you'll want to program it yourself. Not merely because programming will solve your everyday problems in your discipline, in a fraction of the normal time. No, not even because you'll be solving new problems, forging new solutions, expanding your mathematical horizons by leaps and bounds. No, you will be doing all of this, but that's not the real reason you'll want to program."

Now she speaks rapidly. "Do you know why you want to program?"

He shakes his head. He hasn't the faintest idea.

"For the sheer joy of programming!" she cries triumphantly. "The joy of the parent, the artist, the craftsman.

"You take a program, born weak and impotent as a dimly-realized solution. You nurture it, guide it, building, watching it grow ever stronger. Sometimes you paint with tiny strokes, a keystroke added here, a keystroke changed there. She sweeps her arm in a wide arc. "And other times you savage whole blocks of code, ripping them out of the program's very essence, then beginning anew. But always building, creating, filling the program with your own personal stamp, your own quirks and nuances. Watching the program grow stronger, patching it up, changing there."

"This...this is your canvas! Your clay! Go forth and create a masterpiece!"

Holding his programmable calculator high, he marches from the store—yes, marches—with 30-inch strides. He will be a programmer!
The 1978 Hewlett-Packard Catalog and Buyer’s Guide to Personal Calculators

The Buyer’s Guide: Pages 8-9

This guide helps you select the calculator that is right for the work you do by discussing the six basic categories of HP calculators: general purpose, preprogrammed financial, preprogrammed scientific, keystroke programmable scientific, keystroke programmable financial, and fully-programmable scientific and financial.

The Catalog: Pages 10-27

The catalog provides a description of each HP Personal Calculator with emphasis on its special capabilities and applications in meeting your requirements. Also given are physical specifications and accessories and software furnished with each unit.

Comparison Chart: Pages 28-29

This chart lists every feature and function found in all HP Personal Calculators. You will find the list extremely useful in determining specific features and functions on any unit and for making fast direct comparisons of two or more units.

How to order from this catalog:

You may order any HP Calculator by contacting your nearest HP Sales Office or HP Dealer. For the name of the one nearest you, call our Toll-Free number 800-648-4711 (in Nevada call 800-992-5710).
Almost any of the four-function calculators available today will do an adequate job of addition, subtraction, multiplication and division. However, for professional people who frequently perform arithmetical computations, the ideal handheld calculator is one that will provide all the features of standard desktop office machines. If you require a printed record of your calculations and the dependability of high-quality engineering and construction, you should take a close look at this calculator:

HP-10

Many business people are significantly extending their professional capabilities by switching from simple four-function calculators to advanced calculators. The preprogrammed calculator is an ideal step up, even for people whose skills in math and statistics are rusty or altogether lacking. With a few simple keystrokes, the preprogrammed calculator provides fast and accurate solutions to a wide range of financial and statistical problems, many involving complex computations. If you are interested in the advantages of a preprogrammed financial calculator, you should study the data on these two instruments:

HP-37E

HP-92

A preprogrammed calculator is the first advanced instrument many engineers and scientists use, and it is ideal for those whose work does not often require complex or repetitive computations. It is also often an ideal choice for engineering students who want to shorten the time required for problem solving. If you are interested in a preprogrammed scientific, you should look at the data on these two calculators:

HP-31E Scientific. Page 15.

How to select the right calculator for the work you do.

Selecting the right calculator is no longer a simple matter of equating functions, features and cost. With the wide range of advanced instruments available today, proper selection now depends largely on a careful analysis of your professional needs and—most important—your personal growth. Indeed, the selection of a calculator you feel may be somewhat in advance of your current needs can significantly speed your growth by expanding your problem-solving capabilities. The information below should make it easy for you to select the HP calculator that will do the best possible job for you.

Keystroke Programmable Scientific.

The keystroke programmable is invaluable for those who frequently deal with complex or repetitive scientific computations. A keystroke programmable can solve these problems automatically when it is programmed to do so. Then, all you have to do is key in your data and let the calculator run the entire computation. For those who use a few programs frequently, the Continuous Memory feature may be especially useful. This feature makes it possible to retain programs and data even with the calculator switched off. If keystroke programming sounds logical for you, look at the information on these three calculators.

HP-33E

HP-19C
Advanced Printing Programmable with Continuous Memory. Page 18.

HP-29C
Advanced Programmable with Continuous Memory. Page 19.

Keystroke Programmable Financial.

The financial keystroke programmable is ideal for managers, financial analysts and consultants because it offers two basic methods of problem solving. Most everyday time and money problems can be solved using the wide variety of built-in functions. For more complex and repetitive financial computations keystroke programming is particularly helpful. With keystroke programming you can save hours of time wasted in long, tedious calculation. And once a program is written into the calculator, there is no possibility of human error. If keystroke programming sounds logical for you, look at the information on this calculator.

HP-38E

Fully-Programmable Scientific & Financial.

The fully-programmable is the most powerful, flexible and comprehensive of all advanced calculators. Complex programs can be stored permanently on small magnetic cards and used in the calculator over and over again. Pre-recorded program cards are available for a number of areas such as business, math, statistics, medicine, physical science, life science and many others. If you are looking for a calculator that will provide you with maximum capability, check the data on these two instruments:

HP-67

HP-97
HP-37E New!

Business Management Calculator.

Provides an ideal combination of the financial, investment, and statistical capabilities you need in modern business.

In the tradition of the popular HP-22, Hewlett-Packard's new HP-37 is the basic calculator you need for answers to most business and financial problems such as pricing, compound interest, and trend lines. With expanded financial capabilities, valuable percent and statistical functions, and a new straightforward way of solving financial problems, the HP-37 is the ideal calculator for real estate brokers, managers, bankers, accountants, students, or people in business and management.

A New Generation of Calculators.

The HP-37 is a Hewlett-Packard Series E calculator designed to give you more functions and more ease-of-use features, at a lower price than any comparable calculator we've ever offered. It features:

- New simple and intuitive financial problem solving system.
- New easy-to-read display automatically separates thousands just as you would yourself.
- New exclusive built-in calculator test capability — and display codes to guide you in correcting your errors.
- Traditional Hewlett-Packard attention to detail.

Simple, Complete Financial Functions.

In time and money problems, all you need do is key in any three or four of the values for \(n \) (number of compounding periods), \(i \) (interest rate), \(PV \) (present value), \(FV \) (future value), and \(PMT \) (payment) — in any order — followed by the appropriate financial key. Then press the key to solve for the unknown value.

And if you want to change one of those values, you can do it with a single keystroke. Ordinary or annuity due problems can also be directly calculated at the flip of a switch. The HP-37's ability to modify the variables in a problem continuously makes it ideal for those "what if?" situations so common in business.

Easy-to-Use Cash flow Sign Convention.

With the HP-37 you can state any financial problem in a simple, intuitive manner, so you don't have to remember handbook instructions. Problems are entered in terms of cash flows. Cash outflows are negative and cash inflows are positive, both when you enter data and when you display results. With this system you can easily solve complex problems such as the yield of a loan with a balloon, the payment on a lease with a buy back option.

Amortization Schedules.

The HP-37 calculates an amortization schedule (the accumulated interest, amount paid toward principal, and the remaining balance) for any number of time periods.

Retail-Style Percent Functions.

Whether you're solving for percent, percent change or percent of total, you'll appreciate the logical, consistent operation of the HP-37. And the unique new \(\text{PRICE} \) function calculates the selling price if you know the cost and margin.

Seven User's Storage Registers.

Besides the five financial registers and the Hewlett-Packard four-register automatic memory stack, the HP-37 is equipped with seven other memories, in which you can store or recall constants, answers, or any number you want to save during your calculations.

Statistics at Your Fingertips.

For research and analysis, the HP-37 is packed with useful statistical functions. The \(\Sigma + \) key automatically accumulates the values needed to calculate the means (averages) and standard deviations for two different sets of data. A factorial function is also available.

<table>
<thead>
<tr>
<th>Physical Specifications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length: 140 mm (5.6")</td>
</tr>
<tr>
<td>Width: 75 mm (3.0")</td>
</tr>
<tr>
<td>Height: 30 mm (1.2")</td>
</tr>
<tr>
<td>Weight: 220 g (7.7 oz)</td>
</tr>
</tbody>
</table>

For a complete list of features and functions, see the Comparison Chart on pp. 28-29.

The HP-37E Business Management Calculator comes complete with:

- HP-37E Owner's Handbook
- Your HP Financial Calculator: an introduction to financial concepts and problem solving.
- Coupon for your choice of one of the following applications books:
 - Investment Analysis and Statistics Applications.
 - Real Estate Applications.
 - Lending, Savings and Leasing Applications.
- Recharger/AC adapter.
- Rechargeable battery pack.
- Soft carrying case.

Orders accepted beginning July 1, 1978.
HP-38E New!
Advanced Financial Calculator with Programmability.

An unparalleled array of built-in financial functions—plus the added value of personal programming.

The new HP-38 is a powerful financial calculator with the ability to “remember” all the keystrokes in a calculation and to repeat them over and over again at the touch of a key. It provides capabilities that are invaluable to managers, financial analysts and consultants, commercial real estate agents, and advanced business students.

A New Generation of Calculators.
The HP-38 is a Hewlett-Packard Series E calculator which gives you the same new features found in the HP-37.

Powerful Cash Flow Analysis.
The HP-38 calculates net present value (NPV) and internal rate of return (IRR) for up to 20 uneven cash flows, or for 20 groups of uneven cash flows with up to 99 cash flows in each group (a maximum of 1980 cash flows). NPV and IRR let you weigh a leasing situation against buying, balance the worth of an investment against desired yield, or compare investment alternatives.

Easy Time-and-Money Calculations.
The HP-38 offers all the financial capability of the HP-37. In addition, the HP-38 computes simple interest with the INT key.

Easy, Instant Programming.
The HP-38 is so easy to use you’ll be writing programs in minutes! With the calculator switched to Program mode with the P/R (Program/Run) key, it doesn’t execute the keystrokes but instead remembers them as you press them in order. To run the program, just switch back to Run mode with the P/R key, key in your data, and press R/S (Run/Stop). Every time you press R/S, the HP-38 executes the entire sequence of keystrokes in seconds. It’s that easy!

By programming the HP-38, you can save hours of time wasted in long, tedious calculation. And once that program is written into the calculator, there is no possibility of human error.

Double-Duty Memory.
The HP-38 shares its memory space between program memory and data memory. When the HP-38 is first turned on, it contains 8 lines of memory for your program and 20 addressable storage registers. As you write a program longer than 8 lines, memory is automatically converted from data storage to program memory (at a ratio of 1 to 7) until you’ve reached a maximum of 99 lines, with 7 storage registers remaining inviolate. And remember, any keyboard operation occupies one line of program memory even though it may take one, two or three keystrokes to perform.

A Handy 2000-Year Calendar.
The built-in HP-38 calendar can easily calculate the actual number of days between two dates on a 360- or 365-day calendar basis, day of the week, or a future or past date.

Statistics at the Press of a Key.
The HP-38 offers all the statistical capability of the HP-37 plus linear estimate of x for a known y and \bar{x} (weighted average).

Physical Specifications:
- Length: 140 mm (5.6”)
- Width: 75 mm (3.0”)
- Height: 30 mm (1.2”)
- Weight: 220 g (7.7 oz)

For a complete list of features and functions, see the Comparison Chart on pp. 28-29.

The HP-38E Advanced Financial Calculator with Programmability comes complete with:
- Your HP Financial Calculator.
- HP-38E Quick Reference Card.
- Coupon for your choice of one of the following applications books:
 - Investment Analysis and Statistics Applications;
 - Real Estate Applications;
 - Lending, Savings and Leasing Applications.
- Recharger/AC adapter
- Rechargeable battery pack
- Soft carrying case

Orders accepted beginning May 1, 1978.
Investor

Offers solutions for the professional in finance.

The HP-92 Investor is a personal-sized financial calculator that offers preprogrammed solutions for institutional investors, financial consultants, real estate analysts, loan officers, leasing salesmen, accountants and other professionals examining investment alternatives.

Invaluable printer gives you a complete record.

The quiet printer on the HP-92 gives you the answers quickly and quietly—with descriptive labels. Whether duplicating your keystrokes, printing amortization and depreciation schedules, or listing all the cash flows in an IRR problem, the HP-92 Investor gives you that indispensable hard copy for instant analysis or later perusal.

Easy-to-use cash flow sign convention.

The HP-92 Investor is remarkably easy to use. An important new design lets you state any problem in a simple, intuitive manner, so you don’t have to remember handbook instructions. Problems are entered in terms of cash flows. Cash outflows are negative and cash inflows are positive, both when you enter data and when you display results. Whether your profession calls it a mortgage with a balloon payment or a lease with a buy back (or residual), it’s the same thing to the HP-92—and you can easily solve it.

Compact and portable.

The HP-92 Investor is so small that it takes up only a corner of your desk or fits in your briefcase, ready to produce those investment answers you need—any time.

And the HP-92 is completely portable. You can operate it from its rechargeable batteries or from a convenient AC outlet.

Financial Functions That Solve Real-World Problems.

The HP-92 Investor solves complicated “real-world” problems involving compound interest, residuals and salvages, partial payments and balloons, wrap-around mortgages, even internal rates of return based upon uneven cash flows.

All you need to do is key in any three or four of the values for n (number of compounding periods), i (interest rate), PV (present value), FV (future value) and PMT (payment)—in any order—followed by the appropriate financial key. Then press the key to solve for the unknown value.

If you know n or i, you can solve any problem which can be represented by an initial value, a series of payments, and a final value—or by any two of these.

Easy Comparison of Investment Alternatives.

If you want to change any of the parameters of a financial problem, you merely key in a new value and press the appropriate key; then press any other financial key to see the effect of the change—without restating the entire problem each time.

And, because it can list the latest values for all financial elements at your command, the HP-92 Investor lets you print every investment alternative, whether for immediate comparison or later examination.

Discounted Cash Flow Analysis for 30 Uneven Cash Flows.

The HP-92 Investor calculates the net present value (NPV) and the internal rate of return (IRR) for up to 30 uneven cash flows. So you can evaluate whether to lease or buy equipment, balance the worth of an investment with uneven cash flows against desired yield, or compare investment alternatives based on their net present value.

Once the cash flows have been entered into the HP-92, you can change one or any number of them without restating the complete problem.

Amortization Schedules at the Press of a Key.

The HP-92 Investor calculates the net present value (NPV) and the internal rate of return (IRR) for up to 30 uneven cash flows. So you can evaluate whether to lease or buy equipment, balance the worth of an investment with uneven cash flows against desired yield, or compare investment alternatives based on their net present value.

Once the cash flows have been entered into the HP-92, you can change one or any number of them without restating the complete problem.
The HP-92 Investor can print a complete amortization schedule, showing each period of a fully amortized loan with the amount paid to interest, amount to principal, and the remaining balance. Or it can print a partial schedule between any two periods. Labels identify each element of the schedule, and after the last period, the schedule shows the total amount paid to both interest and principal as well as the remaining balance on the loan.

Bond and Note Computations—Quickly and Accurately.

The HP-92 Investor calculates price, yield, or accumulated interest on bills, notes, bonds, certificates, debentures, warrants, certificates of deposit, and other interest-bearing obligations—and the HP-92 meets the standards for accuracy demanded by the Securities Industry Association.

Useful Percent Functions.

The HP-92 gives you the most useful percent functions: Percent, Percent of Sum, and Percent of Change.

Three Kinds of Depreciation Schedules.

Using the HP-92 Investor, you can quickly and easily compute depreciation using the straight line, sum-of-the-years' digits, or declining balance method and you can solve for the crossover. The HP-92 can print a complete depreciation schedule for the entire life of an asset, or it can calculate the depreciation allowance for a specific period. And once you've keyed in such elements as an asset's initial (book) value or its salvage value, you can examine each type of depreciation with a single keystroke—and compare all types of depreciation without reentering data.

Powerful Statistical Functions.

The HP-92 Investor contains statistical functions for research and analysis. Both linear and non-linear trends can be closely examined, and mathematical models can be generated to make forecasts.

A Built-in Calendar.

The calendar functions of the HP-92 Investor can determine a future or past date given the number of days from a known date. It also will print the day of the week for any date, and it calculates the exact number of days between dates.

30 Storage Registers For Data.

Besides the four-register operational stack used for mathematical operations, the HP-92 Investor has 30 addressable storage registers for data storage and recall—with storage register arithmetic on 10 registers.

Common Math Functions.

The HP-92 Investor provides the most common mathematical functions like logarithms, square root, and exponentials.

Physical Specifications

- Calculator width: 22.9 cm (9.0"
- Calculator length: 20.3 cm (8.0"
- Calculator height: 6.35 cm (2.5"
- Calculator weight: 1.13 kg (40 oz)
- Recharger/AC adapter weight: 170 gm (6 oz)
- Shipping weight: 2.7 kg (5.9 lb)

Temperature Specifications

- Operating temperature range: 0° to 45°C (32°F to 113°F) with paper, 5% to 95% relative humidity.
- Charging temperature range: 15° to 40°C (59° to 104°F).
- Storage temperature range: -40° to +55°C (-40° to +131°F).

Power Specifications

- AC Power Requirements: 90-120V
- Battery: 5.0 Vdc nickel-cadmium rechargeable battery pack.
- Battery operating time: 3 to 7 hours.
- Battery charging time: Calculator off, 7 to 10 hours; calculator on, 17 hours.

For a complete list of features and functions, see the Comparison Chart on pages 28-29.

The HP-92 Investor comes complete with:

- Rechargeable battery pack
- Recharger/AC adapter
- Soft carrying case
- Illustrated Owner's Handbook
- Applications Book
- Two rolls of thermal paper
Handheld Printing Calculator

All the features of a desktop office machine—and it's pocket-sized.

Hewlett-Packard's exciting new HP-10 is up to 50% smaller and lighter than other handheld printing calculators—with all the features you'd expect to find in a desktop office machine.

Whisper-quiet thermal printer.

The HP-10 Printing Calculator gives you a printed record of all your calculations. Each function is printed with an identifying label so it's easy to see what you've done.

You can also print a display entry (to label your tapes) without including it in your total and a series of crosshatches to separate problems on the tape.

Or you can switch the printer off and use only the display.

All the functions you need.

State-of-the-art electronics and integrated circuitry have reduced the standard office machine to pocket-size—and still improved it. You get an independent memory, so a constant or separate running total is available at the press of a single key, and you don't have to reenter results in long calculations.

You also get the "add-mode" feature, which automatically positions the decimal point for keying in dollars and cents.

And you get a percent key for taxes, dividends and commissions, a total and subtotal capability, and of course, the four arithmetic keys.

Use it anywhere.

The powerful rechargeable batteries in the HP-10 let you use it anywhere—in an automobile, a taxi, or a commuter train. Stylish and unobtrusive in your office or on your desk, its small size and light weight also make it ideal for pocket or briefcase.

Office machine conveniences.

Familiar adding-machine keyboard has "click-action" keys for positive input, and is buffered so the calculator will "catch up" when you key in numbers very rapidly.

Ten clear, sharp digits are displayed for viewing in dim or bright light.

Physical Specifications:

- Length: 16.5 cm (6.5")
- Width: 8.8 cm (3.45")
- Height: 4.0 cm (1.6")
- Weight with battery pack and paper: 342 g (12.1 oz)
- Shipping weight: 1.18 kg (2.6 lb)
- Operating temperature range: 0° to 45°C (32° to 113°F)
- With paper, 5% to 95% relative humidity.
- AC Power requirements: 90-120V 50 to 60 Hz
- Battery: 5-volt quick-charge nickel-cadmium battery pack.

For a complete list of features and functions, see the Comparison Chart on pages 28-29.

The HP-10 Handheld Printing Calculator comes complete with:

- Battery pack that under normal use provides 4-7 hours operating time and fully charges in 6 to 10 hours.
- Recharger/AC adapter
- Illustrated Owner's Handbook
- Soft carrying case
- Three rolls of thermal paper (7.6 m each)
New!
Scientific Calculator.

Gives you an excellent blend of mathematical and scientific functions at a very low price.

The HP-31 has been designed in the tradition of the famed HP-35 and the popular HP-21 calculators—a basic no-nonsense machine to slice through the toughest scientific and mathematical problems with ease. And the HP-31 Scientific Calculator has great new features, together with an unparalleled combination of keyboard and display functions.

A New Generation of Calculators.

The HP-31 is a Hewlett-Packard Series E calculator designed to give you more calculating power, more ease-of-use features, at a lower price than any comparable calculator we’ve ever offered. It features:

- New easy-to-read display, automatically separates thousands just as you would yourself.
- New exclusive self-check capability, error codes and improved accuracy.
- Time proven RPN.
- Traditional Hewlett-Packard attention to detail.

Mathematical Functions.

The HP-31 has the functions you need for science or engineering. Exponentials, reciprocals, square roots, pi, and percent, all available at the press of a key. And of course, the HP-31 adds, subtracts, multiplies and divides—all with 10-digit accuracy.

Trigonometric Capability.

The HP-31 quickly and accurately computes sine, cosine, or tangent—all with a choice of decimal degrees, radians, or grads mode. And you can convert directly between degrees and radians, too.

Rectangular/Polar Conversions.

The HP-31 converts directly between rectangular coordinates (x,y) and polar coordinates (magnitude r, angle θ).

Logarithms.

Common and natural logarithms, as well as antilogarithms, are generated at the touch of a key by the HP-31.

Metric Conversions.

The HP-31 gives you instant, two-keystroke conversions between inches and millimeters, Fahrenheit and Centigrade, and pounds and kilograms.

Four Addressable Registers and LAST X.

Besides the four-register automatic memory stack, the HP-31 contains four addressable storage registers for selectively storing and recalling constants, results, or other data. And the HP-31’s LAST X register automatically stores the last value present before any calculation.

Two Display Modes.

A choice of two display modes—fixed or scientific—lets you view any number as either a full, 10-digit (or less) mantissa or as a mantissa of up to seven digits followed by a two-digit exponent of 10. No matter what display you’ve selected, the HP-31 internally maintains full 10-digit accuracy—and you can see the full 10-digit mantissa at any time by simply pressing the MANT key.

Selective Clearing Options.

You can clear the entire calculator, clear only the storage registers, or clear only the automatic memory stack.

Physical Specifications.

- Length: 140 mm (5.6”)
- Width: 75 mm (3.0”)
- Height: 30 mm (1.2”)
- Weight: 220 g (7.7 oz)

For a complete list of features and functions, see the Comparison Chart on pp. 28-29.

The HP-31E Scientific Calculator comes complete with:

- HP-31E Owner’s Handbook
- Solving Problems With Your Hewlett-Packard Calculator
- Recharger/AC adapter
- Rechargeable battery pack
- Soft carrying case

Orders accepted beginning May 1, 1978.
HP-32E
New!
Advanced Scientific Calculator with Statistics.

Gives you a powerful set of mathematical and statistical functions plus 15 addressable storage registers.

Hewlett-Packard's new HP-32 is the most powerful scientific preprogrammed calculator we've ever built. Like the classic HP-45, the HP-32 is packed with dozens of invaluable mathematical and scientific functions. But that's not all! The HP-32 has more addressable storage registers and increased statistical capability which creates an advanced scientific calculator that puts unparalleled power at your fingertips.

A New Generation of Calculators.
The HP-32 is a Hewlett-Packard Series E calculator designed to give you more calculating power, more ease-of-use features, at a lower price than any comparable calculator we've ever offered. It features:

- New easy-to-read display automatically separates thousands just as you would yourself.
- New exclusive self-check capability, error codes and improved accuracy.
- Time-proven RPN.
- Traditional Hewlett-Packard attention to detail.

Superior Statistics.
For the manager, the statistician, or anyone who must reduce and interpret data, the HP-32 gives you features never before offered on a Hewlett-Packard pocket calculator.

Normal Distribution.
The HP-32 is equipped with the normal and inverse normal distribution functions—it can compute the area under a standard normal distribution curve to the left of \(x \), and it can also compute \(x \) given the area under the curve.

Two-Variable Means and Standard Deviations.
At the press of a key you can calculate the means of two variables. And the HP-32 can also give you the sample standard deviations of those two sets of data.

Linear Regression and Linear Estimate.
The HP-32 calculator easily computes linear regression, calculating the slope and \(y \)-intercept of a least-squares line for data. And you can also calculate the correlation coefficient to measure for "goodness of fit." In addition, the HP-32 linear estimate function can actually predict new values along the line.

Data Accumulation and Correction.
\(\Sigma x \), \(\Sigma xy \), \(\Sigma x^2 \), and \(\Sigma y^2 \) in designated storage registers. Correcting a data pair is easy, too, with \(\Sigma - \).

15 Addressable Storage Registers.
To help you store and recall data, results, constants, or statistical information, the HP-32 is equipped with 15 addressable storage registers. And you can perform arithmetic on the contents of any of them. The HP-32 also has a LAST X register which automatically preserved the contents of the display present before the last operation.

Trigonometric Functions Including Hyperbolics.
Besides providing sine, cosine, and tangent and their inverses, the HP-32 also computes hyperbolic trigonometric functions (\(\sinh, \cosh, \tanh \), and their inverses).

Rectangular/Polar Conversions and Vector Arithmetic.
The HP-32 quickly converts rectangular coordinates \((x, y)\) to polar coordinates \((r, \theta)\), or vice versa. And vector arithmetic is easy using the rectangular/polar functions with the accumulation functions \(\Sigma + \) and \(\Sigma - \).

Three Display Modes.
The large numbers in the bright red LED display can be seen in fixed, scientific, or engineering mode (in engineering mode the exponent of 10 is always a multiple of three). You can always see the full 10-digit mantissa, regardless of display mode, by pressing the MANT key.

Physical Specifications.
- Length: 140 mm (5.6")
- Width: 75 mm (3.0")
- Height: 30 mm (1.2")
- Weight: 220 g (7.702)

For a complete list of features and functions, see the Comparison Chart on pp. 28-29.

The HP-32E Advanced Scientific Calculator with Statistics comes complete with:

- HP-32E Owner's Handbook
- Solving Problems with Your Hewlett-Packard Calculator.
- Recharger/AC Calculator.
- Rechargeable battery pack.
- Soft carrying case.

Orders accepted beginning July 1, 1978.
Extraordinary problem-solving power plus versatile keystroke programmability to solve repetitive problems quickly and easily.

Like its famous predecessor the popular HP-25, the new HP-33 remembers a series of keystrokes as you press them, then executes the sequence later at your command. And this ability extends the usefulness of its powerful combination of scientific functions and features.

A New Generation of Calculators.

The HP-33E is a Hewlett-Packard Series E calculator designed to give you more calculating power, more ease-of-use features, at a lower price than any comparable calculator we've ever offered. It features:

- New easy-to-read display, automatically separates thousands just as you would yourself.
- New exclusive self-check capability, error codes, and improved accuracy.
- Time-proven RPN.
- Traditional Hewlett-Packard attention to detail.

Programming is Easy.

Programming the HP-33 is simple—just switch to PRGM and press a problem-solving series of keystrokes to be remembered by the calculator. Then switch to RUN, key in any known data, and hit the R/S (run/stop) key. The HP-33 does the rest, executing those keystrokes in a few seconds, over and over as many times as you like. There's no complicated programming language to learn, no elaborate "start-up" procedures to memorize.

49 Lines of Program Memory.

The HP-33 remembers your program in a special memory—49 lines of it. And no matter whether a keyboard operation is one, two or three keystrokes, it occupies only a single line of memory, so you can easily load programs of 100 key-strokes or more.

More Programming Features.

Besides 49 lines of fully-merged program memory, the HP-33 has a variety of specialized functions to make your programming useful, powerful, and even fun.

Go To.

The GTO (go to) command transfers an executing program to a specified line of memory—permitting you to create branches and loops in your programs.

And for editing, you can also use GTO from the keyboard to go to any line number.

Powerful Decision-Making Capability.

Fundamental to the operation of even the largest computer is its ability to make a decision. The HP-33 has eight conditionals which actually compare two values and make a decision based on the outcome of the comparison.

Three Levels of Subroutines.

Using the GSB (go to subroutine) instruction, you can save memory and make your programs much more efficient. After a section of memory has been called up as a subroutine, a RTN (return) instruction then returns execution to the next line after the GSB call.

Fast, Easy Editing.

Besides being able to go to any line number with GTO, you can also use SST and BST to single-step or back-step through a program, without execution, to any point you want in program memory. Changing a program is easy, too—you just key in a new instruction and it automatically replaces the old one.

Pause.

The PAUSE function in a program actually lets you see a result or an intermediate answer for a second before resuming execution.

Eight Addressable Storage Registers.

In addition to the 49-line program memory, the four-register stack and the LAST X register the HP-33 has 8 addressable storage registers for data. And you can perform storage register arithmetic on these addressable registers, too.

Optional Applications Books

The solutions you require may already exist in the four applications books available for the HP-33. Subjects covered include mathematics, statistics, surveying, and student engineering. For a complete listing, refer to Accessories on pages 26-27.

Physical Specifications.

- Length: 140 mm (5.6"
- Width: 75 mm (3.0"
- Height: 30 mm (1.2"
- Weight: 220 g (7.7 oz)

For a complete list of features and functions, see the Comparison Chart on pp. 28-29.

The HP-33E Programmable Scientific Calculator comes complete with:

- HP-33E Owner's Handbook.
- Solving Problems With Your Hewlett-Packard Calculator.
- HP-33E Quick Reference Card.
- Recharger/AC adapter.
- Soft carrying case.

Orders accepted beginning May 1, 1978.
On or off, your programs are always there.

The HP-19C and HP-29C both have Continuous Memory capability so the programs you store are saved, ready for use, until you clear or overwrite them.

As a result you can program frequently-needed calculations once, and then perform them as often as necessary—hour after hour, day after day—without bother or lost time caused by reentering your program.

The Continuous Memory of the HP-19C and HP-29C not only retains a program, it also retains the data stored in 16 of its 30 addressable registers and the display register.

Now you can record data in the field and wait to make your final calculations until convenient. The calculators become handy notebooks to save data from previous programs for later use or keep the sum of statistical data entries while taking samples on location.

Operate them on batteries or AC.

Both calculators may be operated on batteries alone or from a convenient electrical outlet while batteries are being recharged.

Battery operating time is significantly extended since the calculators may be switched off between calculations without losing programs or data.

HP-19C's quiet thermal printer lists your programs or data.

With the HP-19C, you can list a program, the contents of the 30 addressable registers, or the contents of the automatic memory stack. And you have a complete record of all your calculations.

The printer is a valuable aid in

Create programs of 175 keystrokes—or more.

You can create your own time-saving programs to solve lengthy and repetitive problems because both the HP-19C and HP-29C let you merge keystrokes. Each function—one, two, three or four keystrokes—requires only one line of program memory. And you have 98 lines of program memory to work with.

The HP-19C and HP-29C are keystroke programmable. This means that when you press a key in PRGM mode, it is stored in program memory. There is no complicated programming language, no procedure to memorize.

Branching.

GTO Go To.

When followed by a label designator (0 through 9 or i) GTO branches program execution to the specified label.

Three levels of subroutines.

GSB Go Subroutine.

A GSB instruction followed by a label designator (0 through 9 or i) branches program execution to the label specified just as a GTO instruction does. But, using the GSB instruction, program execution is then "re-turned" automatically to the step following the GSB instruction when the next RTN (Return) instruction is executed.

Conditional Branching.

These keys allow your programs to make decisions for you by testing the values in the X- and Y-registers or by testing the value in the X-register against zero as indicated. If the data test is true, the calculator will "do" the next instruction in program memory. (Remember "Do if True") If the data test is false, program execution branches around the next instruction.
The PAUSE function interrupts program execution and displays current results for about 1 second.

Indirect Addressing.

- **GTO**
- **GSB**

These operations depend on the number in register 0. If it is positive they perform a branch (GTO i) or subroutine (GSB i) to the label specified.

Relative Addressing.

- **GTO**
- **GSB**

When the number in register 0 is a negative number, these instructions perform a rapid reverse branch (GTO i) or subroutine (GSB i) the number of lines specified by the current negative number in register 0.

Indirect control of Data Register Operations.

You can also use register 0 to specify the address of a storage register for storing and recalling data or for storage register arithmetic.

Decrement or Increment and Skip on Zero.

- **DSZ**
- **ISZ**

DSZ subtracts one from the contents of register 0, then tests for a non-zero value. As long as there is a non-zero value in register 0, the calculator performs the next instruction in program memory. When the content of register 0 equals zero, the calculator skips the next instruction.

ISZ works the same way, only register 0 is incremented rather than decremented.

PAUSE

The PAUSE function interrupts program execution and displays current results for about 1 second.

Moving to the Right Step.

- **GTO** Go To.

In order to correct or change a line in your program, you need to be able to display it quickly and easily. Pressing GTO (line number) lets you do just that, in either RUN or PRGM mode.

- **SST** Single Step.

To help find mistakes in your program, you can execute it one line at a time using the SST key in RUN mode. Or, in PRGM mode, you can use SST to step through each instruction and compare the keycodes with your program listing.

- **BST** Back Step.

In the RUN mode, press BST to display the contents of the previous line of program memory. In PRGM mode, use BST to back up one line at a time in your program.

Insert and Delete.

You can easily insert operations as needed in your program. All subsequent instructions will be “bumped” down one line in program memory for each inserted operation.

- **DEL** Delete.

When you press g DEL, the displayed instruction is erased from program memory and all subsequent instructions move upward one line.

A complete range of preprogrammed functions and features.

The HP-19C and HP-29C feature 30 addressable registers for data storage—16 with Continuous Memory.

Their preprogrammed functions include log and trig functions; rectangular/polar conversions; mean, standard deviation and statistical summations; and angle (time) conversions.

Both calculators also display fixed decimal, scientific and engineering notations.

Ten new Solutions Books for HP-19C/29C.

The solution you require may already exist in one of the ten new Solutions Books Hewlett-Packard has written for the HP-19C/29C.

Each book contains 10 to 15 programs and covers a variety of disciplines including business, engineering, mathematics, medicine, statistics, physical science, life science and other subjects. For a complete listing, refer to page 27 under Accessories.

These programs save you valuable time because no researching, programming, debugging or documenting is needed.

The HP-19C and HP-29C come complete with:

- Illustrated Owner’s Handbook and Programming Guide
- Quick Reference Card
- Applications Book
- Battery Pack
- Recharger/AC adapter
- Soft carrying case
- 2 rolls of thermal paper (HP-19C only)

HP-19C Specifications:

- Calculator length: 165 mm (6.5”)
- Calculator width: 88 mm (3.45”)
- Calculator height: 40 mm (1.6”)
- Calculator weight: 350 g (12.4 oz)
- Shipping weight: 1.4 kg (3.0 lbs)
- Operating temperature range: 0° to 45°C (32° to 113°F)
- Battery: 2.5 Vdc, quick-charge nickel-cadmium battery pack.
- Battery operating time: 4 to 7 hours.
- Paper roll length: 7.6 m (25 ft.)

HP-29C Physical Specifications:

- Calculator length: 130 mm (5.1”)
- Calculator width: 68 mm (2.7”)
- Calculator height: 30 mm (1.2”)
- Calculator weight: 170 g (6 oz.)
- Recharger weight: 141 g (5 oz.)
- Shipping weight: 680 g (1.5 lb)
- Operating temperature range: 0°C to 45°C (32°F to 113°F)
- Battery: 5 Vdc, quick-charge nickel-cadmium battery pack.
- Battery operating time: up to 15 hours in normal use.

For a complete list of features and functions, see the Comparison Chart on pages 28-29.
A major leap forward in fully-programmable personal calculators.

These are the most powerful personal calculators Hewlett-Packard has ever made. The HP-97 combines exceptional programming power—plus a battery-operated printer—all in one self-contained unit. The HP-67 provides the identical power of the HP-97 in the classic pocket size.

Exceptional power easily handles your lengthy, repetitive problems.

The HP-97/67 lets you write programs of up to 224 lines. Every function (one, two or three keystrokes) is merged to take only one line of program memory. And there are 26 data storage registers to provide the memory you need for your problems. You can record the contents of either program memory or the data storage registers on a magnetic card. Later, you can load all or part of them back into the calculator. The “smart” card reader of the HP-97/67 can handle either job. The HP-67 and HP-97 are also completely compatible. Programs recorded on one unit may be loaded and executed on the other.

So easy to use you’ll write programs the first day.

Keystroke programming makes programming the HP-97/67 as simple as pressing the keys needed to calculate answers manually. Merged operations further simplify the task (and expand memory power) by letting you see the complete operation right in the display. Because many programs require editing of some kind, we added useful features enabling you to easily review programs forward or backward, to easily jump to any line in the program, and to easily insert lines or delete them. RPN logic and the four-register automatic memory stack combine for more efficient problem solving. And RPN logic also helps when you program, because you don’t use parentheses that waste valuable program memory.

And there are no pending operations that make editing difficult. RPN lets you slide through the most complicated programs the same easy way it lets you slide through complex calculations—with complete confidence.

An unparalleled program of owner support.

You can supplement your own programs with the extensive HP program library. The Standard Application Pac, with 15 programs in various disciplines, comes free with either calculator.

To get a better idea of the capabilities of the HP-67 and HP-97 in relation to your own needs, take the time to review the programs listed in the HP Application Pacs and Solutions Books. In many cases one of our professionally programmed and documented solutions may already exist to solve your problem.

Also available are a one-year subscription to the User’s Library and a free Newsletter to keep you abreast of current information.
The HP-97 provides battery-operation and thermal printing—in one self-contained unit.

The new HP-97 Fully-Programmable Printing Calculator combines exceptional programming power and the great usefulness of a quiet thermal printer. What’s more, the HP-97 operates on batteries as well as AC—so you can have a printed record whenever and wherever you need it. In addition, there’s an extra-large display for easy readability and a buffered keyboard so data may be keyed in at high speed.

Quiet thermal printer lists your programs on tape for checking and editing.

With the HP-97, you can list a program, (line number, key mnemonic and, optionally, the keycode), contents of the automatic memory stack, or the contents of the data storage registers. And you have three printing modes to choose from.

The printer is a valuable aid in editing programs or long calculations. You don’t have to remember what you’ve done or what remains to be done. You see everything at once clearly, on tape.

Compact in design and light in weight for easy portability.

Total weight of the HP-97 without AC adapter/recharger is only 1.13 kg. (2½ pounds). It’s so small it will fit into a standard briefcase so you can take it with you, and operate it in airplanes, taxis, anywhere. For security, a built-in metal tab lets you secure it to your desk easily with a cable or bolt.

The HP-97 and HP-67 give you exceptional programming power you won’t outgrow.

“Smart” magnetic card reader.

With the magnetic card reader in both the HP-97 and the HP-67 you can load the entire program memory, or selected portions, either manually or under program control.

You can record data from all registers onto a magnetic card. You can also load every data storage register or selected registers.

When recording programs, the HP-97 and HP-67 automatically record the angular mode setting, the display setting and the status of the four flags.

10 User-definable Keys.

There are ten user-definable keys you can use for any special function you may require—such as defining portions of your program for subroutines or branches. In addition, there are ten numerical labels (LBL O thru LBL 9).

GTO GSB

You can perform a direct branch or subroutine to a label specified.

A GSB instruction can also be used within a subroutine to a depth of three levels.

Conditional Branching.

These keys allow your program to make decisions for you by testing the values in the X- and Y-registers or by testing the value in the X-register against zero as indicated.

Flags.

You can use the four flags in the calculator for tests in your programs. They can be set, cleared, or tested.

Indirect Addressing.

You can perform a direct branch or subroutine to a label specified by the current positive number in the I-register using these keys. When the number in the I-register is a negative number these instructions perform a direct branch (GTO (i)) or a subroutine (GSB (i)) backward the number of lines specified.

STO (i) RCL (i)

You can also use the I-register to specify the address of a storage register for storing and recalling data or for storage register arithmetic.

ISZ (i) DSZ (i)

You can also increment (ISZ (i)) or decrement (DSZ (i)) the contents of the storage register specified by the value in the I-register and then test against zero.

HP-97 Specifications:

- Calculator width: 226 mm (9")
- Calculator depth: 203 mm (8")
- Calculator height: 63 mm (2.5")
- Calculator weight: 1.13 kg (2.5 lb)
- Recharger weight: 268 g (9.5 oz)
- Shipping weight: 4.3 kg (9.5 lbs)
- Battery Power Requirement: 5.0 Vdc nickel cadmium rechargeable battery pack
- AC Power Requirement: 86-127 V 50 to 60 Hz
- Battery Power Requirement: 3.75 Vdc nickel cadmium rechargeable battery pack

For a complete list of features and functions, see the Comparison Chart on pages 28-29.

The HP-67/97 Fully-Programmable Calculators come complete with:

- Illustrated Owner’s Handbook and Programming Guide.
- Quick Reference Card.
- Standard Pac complete with 40 cards, card holder, and manual.
- Battery pack that under normal use provides about 3 hours of continuous operation.
- Recharger/AC adapter that lets you operate the calculator on AC while the battery pack is recharging.
- Soft carrying case.
- Programming pad.
- Users’ Library and newsletter subscription card.
- 2 rolls of thermal paper (HP-97 only).
Application Pacs

(00097-13121)
- Network Transfer Functions
 This program computes various
 transfer functions of a ladder net-
 work composed of any number of
 standard elements.
- Reactive L-Network Impedance
 Matching
 This program computes networks
 which will match any two complex
 impedances.
- Class A Transistor Amplifier Bias
 Optimization
 This program simplifies the de-
 sign of a class A transistor
 amplifier.
- Transistor Amplifier Performance
- Transistor Configuration Conversion
- Parameter Conversion: S = Y, Z, G, H
- Fourier Series
- Active Filter Design
- Butterworth or Chebyshev Filter
 Design
- Bode Plot of Butterworth and
 Chebyshev Filters
- Resistive Attenuator Design
- Smith Chart Conversions
- Transmission Line Impedance
- Microstrip Transmission Line
 Calculations
 This program computes relative
 phase velocity and characteristic
 impedance for lossless microstrip.
- Transmission Line Calculations
 This program computes the input
 impedance of lossy transmission
 line terminated in Z0.
- Unilateral Design: Figure of Merit,
 Maximum Unilateral Gain Circles
 This program computes u, Gmin,
 Gmax, G, Gmax, and G2
 from a transistor's s-parameters.
- Bilateral Design: Stability Factor,
 Maximum Gain, Optimum Matching
 This program computes the
 maximum gain available and the
 load and source reflection
 coefficients which yield the
 maximum gain.
- Bilateral Design: Gain and Stability
 Circles, Load and Source Mapping
 This program computes the
 location and radius of stability
 circles. It also computes the
 source or load reflection
 coefficient corresponding to a
 given load or source termination.

Discounted Cash Flow
- Analysis—Net Present Value
- Direct Reduction Loans—Sinking
 Fund
- Accumulated Interest/Remaining
 Balance
- Wrap-Around Mortgage
 Calculates yield of wrap-around
 mortgage.
- Constant Payment to Principal Loan
 Add-on Rate Installment Loan/Rule
 of 78’s
- Savings Plan-Leases
- Advance Payments
- Payment and yield calculations
 when additional payments are
 made in advance.
- Savings—Compounding Periods
 Different from Payment Periods
 Simple Interest/Interest
 Conversions
- Depreciation Schedules
 Straight line, SOYD, declining
 balance, and crossover between
 straight line and declining
 balance.
- Days Between Dates
- Bond Price and Yield
- Interest at Maturity/Discounted
 Securities
- Linear Regression—Exponential
 Curve Fit
 Fits a set of data points x, y to a
 straight line and a curve.
- Determines goodness of fit.
- Multiple Linear Regression
- Break-Even Analysis
 Invoicing
 Maintains net line totals, subtotal
 and grand total for invoicing.
- Payroll
 Guide for writing a payroll
 program.
- Inventory
 Guide for establishing an
 inventory program.
- Yield of groups of uneven cash
 flows.

Oxygen Saturation and Content
- Finds oxygen saturation and
 content in blood given PO2,
 PCO2, pH, and body temperature.
- Red Cell Indices
 Given hematocrit percent, red cell
 count, and hemoglobin, finds
 mean corpuscular volume, mean
 corpuscular hemoglobin, and
 mean corpuscular hemoglobin
 concentration.

Nuclear Medicine
- Total Blood Volume
- Schilling Test
 The radioisotope determination of
 vitamin B12 absorption.
- Thyroid Uptake
- Radioactive Decay Corrections
- Radioimmunoassay
 Computes least-squares
 regression line of log of net
 counts vs. log concentration,
 including regression constants,
 correlation coefficient, and
 concentration for a given count.

Statistics
- Basic Statistics
 Computes mean, standard
 deviation, standard error, and
 coefficient of variation for grouped
 and ungrouped data.
- Chi-Square Evaluation and
 Distribution
 Computes the chi-square statistic
 for goodness of fit.
- t Statistics
- t Distribution

Clinical Lab
and Nuclear Medicine Pac

(00097-13165)
- Clinical Chemistry
 Beer’s Law
 Protein Electrophoresis
 Given integration counts of a
 number of protein fractions, finds
 percentage of each.
 LDH Isoenzymes
 Given values for the five LDH
 isoenzymes, finds activity of each
 as a percent of total. Compares
 results against normal values.
 Body Surface Area
 Urea Clearance
 Creatinine Clearance
 Aromatic Fluid Assay
 Calculations for the
 spectrophotometric estimation of
 bile pigments in amniotic fluid.
 Blood Acid-Base Status
 Finds total plasma CO2, pH, and Hgb
 concentration.

- Simply Supported Beams
 Simply Supported Beams —
 Trapezoidal Loads
 Beams Fixed at Both Ends
 Beams Fixed at Both Ends—
 Trapezoidal Loads

- Propped Cantilever Beams
- Propped Cantilever Beams—
 Trapezoidal Load
- Six-span Continuous Beams
- Steel Column Formula
- Reinforced Concrete Beams
- Bolt Torque

Navigation Pac

(00097-13205)
- Estimated Time of Arrival
- Great Circle and Rhumb
 Line Navigation
- Dead Reckoning
- Velocity Triangle and Course to
 Steer
- Star Sight Planner (2 cards)
 Produces a list of available stars
 given location, date and time.
 Also gives approximate time of
 middle of morning and evening
 twilight periods.
- Almanac Interpolator
- Sun Line of Position
- Star Line of Position (7 cards)
- Bearing Line of Position
- Two-Angle Line of Position
- Fix from Two Lines of Position
- Radar Plotting Closest Point
 of Approach
- Bearing to Windward
 From measurements made on
 your boat, your speed-made-good
 and course-made-good are calcu-
 lated. Then time to the lay line
 course and speed-made-good on
 the next tack, and time to the
 mark are computed.
- Distance by Horizon Angle

Surveying Pac

(00097-13175)
- Traverse, Inverse and Sideshots
 Reduction of field traverse data
 with closure and area calculation.
- Traverse Adjustment
 Adjustment of traverses by com-
 pass rule or Cranfalt’s rule.
- Intersections
 Bearing-bearing, bearing-distance
 and distance-distance intersec-
 tions and offset from a point to a
 line.
- Curve Solutions
- Horizontal Curve Layout
- Spiral Curve Layout
- Vertical Curves and Grades
- Relection
 Solution of the “three point prob-
 lem.”
- Two Instrument Radiat Survey
- EDM Slope Reduction
- Stadia Reduction/3-Wire Leveling
- Taping Reduction/Field Angle
- Check
- Azimuth of the Sun
- Precdetermined Area
 Location of one side of a land
 parcel to enclose a specified
 area.
- Earthwork
- Coordinate Transformation

Business
Decisions Pac

(00097-13144)
- Internal Rate of Return
 Yield of a sequence of uneven
 cash flows.
- Internal Rate of Return—Groups of
 Cash Flows
 Yield of groups of uneven cash
 flows.
With HP-67/97 Application Pacs, the solutions you require may already exist. Application Pacs contain 15 to 26 preprinted prerecorded program cards, a program card holder and a manual of complete documentation. You save significant time because no researching, programming, debugging or documenting is needed.

Stat Pac

(00097-13111)

General Statistics
- Basic Statistics for Two Variables
- Factorial, Permutation, and Combination
- Moments, Skewness, and Kurtosis (For Grouped or Ungrouped Data)
- Random Number Generator
- Generate up to 500,000 different numbers.
- Histogram

Math Pac

(00097-13121)

Factors and Primes
- GCD, LCM, Decimal to Fraction
- Base Conversions
- Optimal Scale for a Graph; Plotting
- Polynomial Operations
- Solves polynomial equations up to 5th degree.
- t Distribution
- Statistics
- f(x) = 0 on an Interval
- Uses combination of bisection and secant method to guarantee
- Numerical Integration
- Trapezoidal rule and Simpson's rule for discrete case; Simpson's rule for functions known explicitly.
- Gaussian Quadrature
- Uses the six-point Gauss-Lagrange quadrature method to find integrals over finite or infinite intervals.
- Differential Equations
- Solves first- and second-order differential equations by the fourth-order Runge-Kutta method.
- Interpolations
- Linear, Lagrangian, and finite difference.
- Coordinate Transformations
- Trigometric
- Trigometric functions for harmonic, cycloidal, or parabolic profiles for linear cams with roller followers.
- Gear Force
- Computes the parameters necessary for design of harmonic, cycloidal, or parabolic profiles for linear cams with roller followers.
- Gear Force
- Computes the reaction forces resulting from torque applied to helical, bevel, and worm gears.
- Standard External Involute Spur Gear
- Computes the parameters necessary for design manufacture, and testing of standard, external, involute, spur gears.
- Belt Length
- Computes belt length around an arbitrary set of pulleys.
- Free Vibrations
- Vibration Forced by F, COSwt
- Equations of State
- Ideal gas relation plus Redlich-Kwong model of real gas behavior.
- Isentropic Flow for Ideal Gases
- Replaces isentropic flow tables for ideal gases in converging-diverging passages.
- Conduit Flow
- Heat Exchangers (2 cards)

ME Pac

(00097-13155)

Vector Statics
- Section Properties (2 cards)
- The area, centroid, and moments of an arbitrarily complex polygon may be calculated using this program.
- Stress on an Element
- Reduces data from rosette strain gage measurement and performs Mohr circle analysis.

Sodenberg's Equation for Fatigue
- Cantilever Beams
- Calculates deflection, slope, moment and shear for point, distributed, and moment loads applied to cantilever beams.
- Simply Supported Beams
- Beams Fixed at Both Ends
- Propped Cantilever Beams
- Helical Spring Design
- Performs one or two point design for helical compression springs.
- Four Bar Function Generator (2 cards)
- Program designs four bar systems which will approximate an arbitrary function of one variable.
- Program of Four Bar System
- Calculates angular displacement, velocity, and acceleration for the output link of a four bar system.
- Program of Slider Crank
- Calculates displacement, velocity, and acceleration of the slider and angular velocity and acceleration of the connecting rod for the progression of a slider crank system.
- Circular Cams
- Computes parameters necessary for design of harmonic, cycloidal, or parabolic profiles for linear cams with roller followers.
- Gear Forces
- Computes the reaction forces resulting from torque applied to helical, bevel, and worm gears.
- External Involute Spur Gear
- Computes the parameters necessary for design manufacture, and testing of standard, external, involute, spur gears.
- Belt Length
- Computes belt length around an arbitrary set of pulleys.
- Free Vibrations
- Vibration Forced by F, COSwt
- Equations of State
- Ideal gas relation plus Redlich-Kwong model of real gas behavior.
- Isentropic Flow for Ideal Gases
- Replaces isentropic flow tables for ideal gases in converging-diverging passages.
- Conduit Flow
- Heat Exchangers (2 cards)

Games Pac

(00097-13185)

Game of 21
- Dice
- Includes the game of "Craps" as well as a dice roller.
- Slot machine

Standard Pac

(00097-13101)

Moving Average
- Tabulator
- Curve Fitting
- Calendar Functions
- Annulities and Compound Amounts
- Follow Me
- The programmable program.
- Triangular Solutions
- Vector Operations
- Polygonal Evaluation
- Matrix Operations
- Calculus and Roots of f(x)
- Approximates the derivative of a function at a point, evaluates a function at a point, and approximates the integral over a finite interval for a user specified function f(x). Also, approximates real roots of f(x).
Optional Accessories.

A. **DC Adapter/Recharger.**
 Lets you recharge your calculator in a car or boat.

 This accessory, which is most often asked for by our existing customers, operates from a 12-volt DC battery.
 - HP-21, HP-22, HP-25/25C, HP-27/82055A
 - HP-80 and HP-67 (Pictured below)/82054A*

B. **Reserve Power Pack.**
 Keeps a spare battery pack fully charged.

 You'll always have a fully-charged spare battery pack on hand when you use this reserve power pack, especially designed for Hewlett-Packard pocket calculators. It comes complete with a spare battery pack.

 Simply slip the battery pack into the holder, then plug the holder into the recharger/AC adapter that comes with your calculator. A built-in light-emitting diode tells you that the battery pack is recharging.

C. **Security Cradle/Cable.**
 Helps reduce pilferage.

 When leaving your HP calculator unattended in the office or lab, you can help guard it against "mysterious disappearance" by means of a ruggedly-constructed security cradle or a security cable.

 The security cradle may be attached to your desk via: (1) four corner screws, (2) center screw attachment, allowing 360° rotation, (3) removable six-foot steel cable, or (4) extremely hard-to-remove adhesive tape. (All are supplied.)

 - Security cradle for model HP-80/82007A***
 - Security cradle for model HP-67/82015A**
 - Security cradle for models HP-21, HP-22, HP-25/25C, HP-27, HP-29C (shown), has built-in prism to provide better viewing angle when on flat surface/82029A

D. **Hard Leather Case.**
 Helps protect your calculator outdoors.

 Using your HP calculator outdoors? Help protect it by carrying it in this hard leather field case. It guards your calculator against normal environmental conditions in the field—dust, dirt, rain, snow, bumps and jars. Calculator removal is easy with the snap-open flap and contoured front opening.

 - Field case for model HP-80/82006A***
 - Field case for model HP-67/82016A**

Replacement Accessories.

Accessories to replace or replenish those received with your HP calculator.

E. **Battery Pack**
 - HP-31E, HP-32E, HP-33E, HP-37E, HP-38E/82109A
 - HP-10, HP-19C/82052A
 - HP-80 and HP-67 (pictured below)/82001A*
 - HP-91, HP-92, HP-97/82033A

F. **Recharger/AC Adapter**
 - HP-31E, HP-32E, HP-33E, HP-37E, HP-38E/82087A (110 Vac)
 - HP-80 and HP-67/82002A* (110/220 Vac, switchable)
 - HP-10, HP-19C, HP-91, HP-92, HP-97/82059A (110 Vac)
 - HP-91, HP-92, HP-97/82066A (Euro 220 Vac)

(Pictured below)
Designed to protect and increase the versatility of Hewlett-Packard Calculators.

G. Soft Case

- HP-31E, HP-32E, HP-33E, HP-37E, HP-38E/8210A
- HP-10, HP-19C/82064A
- HP-21, HP-22, HP-25/25C, HP-27, and HP-29C/82027A
- HP-80/82021A***
- HP-67/82017A** (black leather)
- HP-91, HP-92, HP-97/82035A (synthetic)

Calculator Supplies

- Thermal Printing Paper for models HP-10, HP-19C/82051A (6 rolls)
- Thermal Printing Paper for models HP-91, HP-92, HP-97 (pictured below)/82045A (6 rolls)
- 3 Program Card Holders for models HP-67 and HP-97/00097-13142**
- Blank Program Cards for models HP-67 and HP-97/40 card pac with holder/00097-13141**

120 card pac with holders / 00097-13143**
1000 card pac / 00097-13206**

Owner's Handbooks

- HP-31E/00031-90001
- HP-32E/00032-90001
- HP-33E/00033-90001
- HP-37E/00037-90001
- HP-38E/00038-90001
- HP-10/00010-90001
- HP-19C/29C/5955-2110
- HP-21/00021-90001
- HP-22/00022-90001
- HP-25/25C/00025-90001
- HP-27/00027-90001
- HP-67/00067-90001
- HP-80/00080-90001
- HP-91/00091-90001
- HP-92/00092-90001
- HP-97/00097-90001

Application Books and Pacs.

Application Books

- HP-31E, HP-32E, HP-33E
 "Solving Problems With Your Hewlett-Packard Calculator"/5955-3015
- HP-33E Applications Books
 Standard/00033-90024
 Mathematics/00033-90030

Statistics/00033-90031
Student Engineering/00033-90032
Surveying/00033-90033
HP-37E, HP-38E "Your HP Financial Calculator"/5955-3016
HP-37E, HP-38E Applications Books
Real Estate Applications/00038-90024
Lending, Savings and Leasing/00038-90025
Investment Analysis and Statistics Applications/00038-90026
HP-19C/29C Applications Book/5955-2111
HP-21 Applications Book/00021-90016
HP-25/25C Application Programs/00025-90011
HP-80 Real Estate Applications/00080-66006
HP-92 Applications/00092-90011

HP-19C/29C Solutions Books

- Civil Engineering/00029-14008
- Electrical Engineering/00029-14004
- Financial/00029-14003
- Games/00029-14006
- Mathematics/00029-14001
- Mechanical Engineering/00029-14009
- Navigation/00029-14007
- Statistics/00029-14002
- Student Engineering/00029-14010
- Surveying/00029-14005

HP-67/97 Solutions Books

Refer to pages 22 and 23 for a complete listing of HP-67/97 Users' Library Solutions Books.

HP-67/97 Application Pacs

Refer to pages 24 and 25 for a complete listing of HP-67/97 Application Pacs.

* Also usable on HP-35, HP-45, HP-55, HP-65, and HP-70.
** Also usable on HP-65.
*** Also usable on HP-35, HP-45, HP-55, and HP-70.
Comparison Chart

<table>
<thead>
<tr>
<th>Features/Functions</th>
<th>HP-10</th>
<th>HP-37E</th>
<th>HP-92</th>
<th>HP-38E</th>
<th>HP-67/97</th>
<th>HP19C/29C</th>
<th>HP-33E</th>
<th>HP-32E</th>
<th>HP-31E</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPN Logic System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic four-memory stack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addressable memory</td>
<td>1</td>
<td>7</td>
<td>30</td>
<td>20-7</td>
<td>26</td>
<td>30</td>
<td>8</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Financial memory</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last x memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program memory</td>
<td>6-99</td>
<td>224</td>
<td>98</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Program Memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Addressable Memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Positioning Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stack roll down</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stack roll up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x, y memory exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x, I memory exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantissa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed notation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific notation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering notation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic overflow into scientific</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic underflow into scientific</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enter exponent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change sign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program review—back step / single step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert/delete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overwrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct branching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pause</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditional tests</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flags</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSZ, ISZ (looping)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 levels of subroutines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart card reader</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stores programs and data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merges programs and data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic prompting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 user-definable functions</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect control:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data storage and recall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage arithmetic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unconditional branching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subroutine branching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSZ, ISZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative addressing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearing Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear stack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear addressable registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear statistical registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear prefix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear program memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear financial registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printing Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List stack registers</td>
<td>97</td>
<td>19C</td>
<td>19C</td>
<td>19C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List addressable registers</td>
<td>97</td>
<td>19C</td>
<td>19C</td>
<td>19C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List statistical registers</td>
<td>97</td>
<td>19C</td>
<td>19C</td>
<td>19C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List financial registers</td>
<td>97</td>
<td>19C</td>
<td>19C</td>
<td>19C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print crosshatch separator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper advance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three print modes</td>
<td>97</td>
<td>19C</td>
<td>19C</td>
<td>19C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print space</td>
<td>97</td>
<td>19C</td>
<td>19C</td>
<td>19C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List program</td>
<td>97</td>
<td>19C</td>
<td>19C</td>
<td>19C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace program</td>
<td>97</td>
<td>19C</td>
<td>19C</td>
<td>19C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HP DIGEST 28
This chart has been designed for your convenience in making direct comparisons of the features and functions on the HP calculators described in the following pages. For your convenience, page numbers of catalog listings are indicated alongside each calculator.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-in Statistical Functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean, standard deviation (no. of variables)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Linear regression/estimate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summations (n, Σx, Σx², Σy, Σy², Σxy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Built-in Financial Functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of periods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest rate/period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payment/period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accumulated interest, Remaining Balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond prices, yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rule of 78's interest rebate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net present value</td>
<td>30</td>
<td>20-1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal rate of return</td>
<td>30</td>
<td>20-1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond/note switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beginning/ending period switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straight line depreciation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Declining Balance depreciation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum-of-the-year's digits depreciation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Built-in Scientific Functions/Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigonometric:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal degrees, Radians, Grads mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin x, Sin^-1 x, Cos x, Cos^-1 x, Tan x, Tan^-1 x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangular coordinates ↔ Polar coordinates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal angle ↔ Angle in deg (hr.)/min/sec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle in degrees ↔ Angle in radians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle (time) arithmetic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperbolic Trigonometric:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinhx, Sinh^-1 x, Cosh x, Cosh^-1 x, Tanhx, Tanh^-1 x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logarithmic:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log x, 10^x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln x, e^x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metric Conversions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inch ↔ Millimeter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Btu ↔ Joule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot ↔ Meter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallon ↔ Liter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pound ↔ Kilogram</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force in pounds ↔ Newton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahrenheit ↔ Celsius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y^n, √x, 1/x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Δ / Δ %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+, −, ×, +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat add or subtract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integer/fraction truncation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360°/365° - day switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calendar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rounding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commas in display</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not a built-in function, but available on pre-recorded magnetic program cards.

* Not a built-in function but programs found in application books.
A surprising attention to detail prepares an HP calculator for a long life of hard work and hard knocks.

Here are some of the interesting—and sometimes surprising—things our engineers insist on to ensure the performance, quality and durability of HP calculators. And, most surprising of all, it's only a partial list.

Accident Protection

The calculator case is made of acrylonitrile butadiene styrene plastic (ABS), a very tough ter-polymer typically used in football helmets and television cases.

The ABS is specified to combine a high impact rating with a high heat resistance rating.

The cases for the new Series E calculators are made from a polycarbonate/ABS-alloy that is even more heat resistant.

"My HP-45 was involved in a fire up in the Yukon Territory. After breaking open the case, burned beyond recognition, I found everything to be working in a satisfactory manner."

—Letter from an HP owner.

Even the keys are made out of ABS, though it is unlikely that they would be subjected to high impact.

The top case or keyboard assembly for most calculators is welded to prevent it from coming apart accidentally and to keep out dust and moisture.

The moisture-proof polyester film key-actuator under the keyboard helps protect the inside of the calculator from coffee spills and similar hazards.

Environmental Testing

Before the finished product is introduced, it is subjected to severe environmental testing including drop-testing, heat-testing, and salt-spraying.

The calculators are subjected to temperatures higher and lower than the temperatures specified for operating, 32° to 113°F; charging, 59° to 104°F; and storage, −40° to 131°F.

The calculators must withstand 3 g's peak-to-peak vibration at 5-500 Hz.

The calculator is dropped three times on each of its six faces onto hardwood from a distance of one meter—each shock equivalent to 500 g's for one millisecond.

Tests are made to measure susceptibility to static discharge and radiation.

Tests are also made to measure the effect of electromagnetic interference on the calculator and its electromagnetic interference on other devices.

Prototypes of the calculators are tested to withstand two and one-half times their heaviest predicted usage.

Each calculator is also designed to pass safety standards for electrical shock, fire hazard, etc.

Printing Quality

The fully-floating platen in the HP-92 and HP-97 is molded in a precision mold to assure a flat printing surface.

The platen is made of specially-formulated material—polyphenylene sulfide, carbon fiber, and teflon—that withstands high temperature.

It has a deflection temperature of 505°F at 264 psi, that is, the material deflects 0.010 inches at this temperature and pressure.

The carbon fiber is added to dissipate the heat of the print head without melting the surrounding plastic parts.

The teflon is added to cut down the drag on the print head.

Human Engineering

Switches on the calculator slide in a horizontal direction, rather than a vertical direction, to prevent them from moving accidentally when the cal-
calculator is placed in your shirt pocket or its carrying case.

The case on handheld calculators is contour-designed to fit the hand comfortably.

The low-level battery indicator is retained on even the least expensive models.

Displays in the new Series E calculators have extra segments to indicate commas in large numbers and error messages.

The battery compartment door is designed to open easily (but not accidentally), without using a coin or key, so you don’t have to worry about nicks or, worse, damage that could prevent the door from being easily opened or closed.

The socket for the adapter/recharger plug is recessed to ensure a positive connection, so it won’t accidentally become loose in the middle of a calculation.

The adapter/recharger plug on the new Series E calculators snaps in to further ensure a positive connection.

Key Quality

Every key is double-injection molded to a tolerance of 0.002 in. by 50-220 ton plastic molding machines.

The letters are 30 thousandths of an inch in depth.

Keys are pressed 250,000 times.

State-of-the-art plastics technology employs a transducer in the mold to detect the pressure of the plastic in-flow to ensure consistent reproduction.

On the HP-92 and HP-97 each key stem is indexed 15° so that a key cannot be placed in the wrong spot on the keyboard.

Silicone is added to the plastic (3% by weight) to help prevent key sticking, and to reduce wear.

During production, keys are inspected dimensionally every four hours and inspected cosmetically on a continuous sampling plan.

All Parts Inspected

All purchased parts, as well as parts fabricated by Hewlett-Packard and subassemblies, pass through Incoming Quality Assurance for inspection and testing.

Each part and subassembly from the recharger cord to the card-reader motor or printing mechanism has its own quality test plan.

The Quality Assurance department employs a continuous multi-level sampling plan based on military standards.

Quality levels are established for all incoming parts, usually tighter than industry standards.

A fixed sample size for a set quality level is tested electrically and mechanically.

A Digital Coordinate Measuring Machine is used in conjunction with a Hewlett-Packard 9830 Desktop Programmable Calculator for fast accurate measurements of mechanical parts.

An X, Y recorder and a Hewlett-Packard 2100 computer are interfaced to a roundness gauge for greater accuracy.

A metrology group from Hewlett-Packard recalibrates the test instruments periodically to maintain accuracy.

All components rejected by production are returned to Incoming Q.A. for testing.

“While designing a set of tower stairs from the top of a 40’ scaffolding, I felt something slide out of my shirt pocket. I looked down to see my HP-35 hit the concrete floor and come out of the case in several pieces. I climbed down, picked up the pieces, and put them back in the warped case. When I put the battery and all in the case I turned on the switch to find, to my surprise, it worked.”

—Letter from an HP owner.
The programming advantages of RPN

For years you've heard us tell you how terrific the RPN logic system is for complex problem solving. We've shown you that it is easier to use, faster, more efficient, more natural, and more versatile than algebraic logic.

Now you're ready to step up to a keystroke or fully programmable calculator and you're wondering which logic system is better for writing programs. The answer? RPN, of course.

All of the advantages of RPN for manual problem solving also apply to programmed problem solving. For most programs, RPN requires fewer keystrokes. You don't need parenthesis keys that waste valuable program memory and you don't need to keep track of complicated hierarchies. And because there are no pending operations to worry about, editing takes less time.

But there is more to it than that. Programming is much more than formula solving. In fact the predominant activity, in most programs, is data manipulation. And RPN with the four-register stack is a logic system designed for easy data manipulation.

Intermediate answers are automatically stored in the stack so you don't waste outside storage registers. And Hewlett-Packard has several data manipulation functions built into its calculators (R↓, x→y, and Last x) that you won't find on any algebraic calculator. These functions put you in complete control of the data in your programs.

Overall, RPN lets you slide through the most complicated programs the same easy way it lets you slide through complex calculations—with complete confidence.

The Personal Programmers Club *

The HP-65 Users Club has changed its name to the Personal Programmers Club. The PPC is a loose-knit, non-profit organization of nearly 2000 HP calculator users worldwide who share their experiences, programs, and information. Membership costs $15.00 per year.

The name of the club's monthly newsletter has also been changed. Formerly called 65 Notes, it is now called the PPC Journal. Articles in the PPC Journal are contributed by club members and include programs, programming techniques, calculator news, and applications. Many HP calculator users have reported this newsletter to be of significant value.

Anyone interested in finding out more about PPC should send a large self-addressed envelope with first-class postage for two ounces to:

PPC
2541 W. Camden Place
Santa Ana, CA 92704, USA

General Information on the club's activities and a sample newsletter will be sent by return mail.

*Note: This club is not sponsored by nor in any way officially sanctioned by Hewlett-Packard.

This will suit you to a T.

Too many people in the presence of a talented programmer don't even suspect it. If you've got it, flaunt it. Wear one of our 100% cotton T-Shirts wherever you are apt to be seen—playing golf or tennis, jogging, shopping, mass meditation or—for that matter—while actually programming. And remember, the secret password: HP (Homo programmus) means HP (Hewlett-Packard).

Use this coupon to order your T-Shirt. Available only in sand color as pictured. Do not include payment with calculator or accessory orders. (Please allow 3 weeks for delivery.)

HP T-Shirt Please send popular HP T-Shirts at $4.95 each. My check or money order is enclosed. Please add your state and local sales taxes.
Sizes: S M L XL

Offer expires August 1, 1978.

My check or money order is enclosed.

Please send __ HP T-Shirts at $4.95 each.

My check or money order is enclosed.

Sizes: S M L XL

Offer expires August 1, 1978.

Name __

Address __

City ___________________ State __ Zip ____________

Phone (include area code) __________________________

--

HP DIGEST 33
Hewlett-Packard introduces a new generation.

Hewlett-Packard's new Series E calculators offer innovative new features at lower prices than any comparable calculators we've ever offered.

New! Error messages tell you when you've made a mistake and even what kind. And if you suspect the calculator, it will perform a diagnostic self-check at the touch of a key.

New! A larger, brighter LED display that automatically separates thousands for easy reading.

New! To help you get started we've prepared modular owner's handbooks, free with the calculator, that let you skip what you already know.

Two features that aren't new are RPN, the most efficient logic system available today, and traditional Hewlett-Packard quality. These instruments are designed—in every detail—to be the finest of their kind in the world.

Try one of them today!