
OQOSBORNE/McGraw-HiII

Gerry Kane
Steve Harper
David Ushijima

THE HP-IL SYSTEM:
An Introductory Guide
to the Hewlett-Packard
Interface Loop

THE HP-IL SYSTEM

THE HP-IL SYSTEM:
An Introductory Guide
to the Hewlett-Packard
Interface Loop

Gerry Kane
Steve Harper
David Ushijima

OSBORNE/McGraw-Hill
Berkeley, California

Published by

OSBORNE/McGraw-Hill

630 Bancroft Way
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the

U.S.A,, please write OSBORNE/McGraw-Hill at the above address.

THE HP-IL SYSTEM

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved. Printed in the

United States of America. Except as permitted under the Copyright Act of
1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a data base or retrieval system,

without the prior written permission of the publisher.

1234567890 HCHC 898765432

ISBN 0-931988-77-2

Cover design by Lorilee Willis

Text design by K.L.T. van Genderen

DISCLAIMER

The state diagrams that appear in this book are subject to change. To

guarantee complete accuracy you should obtain a copy of the HP-IL

reference specification.

CONTENTS

N
G
O
O
k
W
=

An Introduction to HP-IL.....cccervveriiissnnricsssnnneccsssnneccscnnnes 1

Getting on the LoOp .iccevveeeicrisssnnnricsisssnneencccssssinneenecsnns 11

Using a General-Purpose Interface to HP-IL 21

A Component Level Interface to HP-ILcccceveuunnnneeee 37

Some Typical LoOp SeqUEeNCes ...cccererssnnvensrrreereecccsssnnnns 57

The Interface FUNCLIONS ..ciiiccricnnnrecssssnneneccssisssnnnenncsnnns 67

What You Have Not Been Toldccceeevnnereeccicsccnnenneccnnns 79

APPENAIX A.eeeerrrerriiiiircineeneneneeessesesssssssssssesssssssssssssssssssssss 87

GlOSSATY ceeerneeesieessssssnnesssnescsssssssssssssssssssssssssssessssssssssssssne 95

INAEX trrereereeeneereeesecsecsscesecsssssesssossssssossassssssossassossossssssoses 105

CHAPTER 1

An Introduction
To HP-IL

HP-IL(short for Hewlett-Packard

Interface Loop) is an interface

system. It defines the way a

wide range of stand-alone, desk-top, and

handheld devices can work together as a

unified system.

The characteristics of HP-IL are for-

mally defined in a document known as the

HP-IL reference specification. This speci-

fication defines both a physical link and a

message protocol between a number of

devices and controllers. Before we go any

further, perhaps it would help to place

some of these terms in perspective.

THE NEED FOR

COMMUNICATION

Communication is a very vital concept in

computing systems. Most systems are com-

prised of a number of different devices.

Each device is typically capable of execut-

ing a specific task. If these devices are to

work together in an orderly fashion, they

must have the ability to communicate with

each other. To do this, they must be physi-

cally connected and, equally important,

they must speak a common language.

THE PHYSICAL CONNECTION

A hardware interface allows a device to be
connected to other devices via a physical

link. The nature of this link varies from

device to device (see Figure 1-1).

A parallel interface is shown in Figure

1-2. In this case, the parallel interface con-

sists of eight data lines and a set of control

lines. Information is transferred from

Device A to Device B in parallel, eight bits

at a time over the eight data lines. The

control lines are used to synchronize the

1

2 The HP-IL System

Device Device

A B

Interface Interface

Interface

Device

C
FIGURE 1-1. Three devices linked through

a common interface system

8-16
Data Lines

Device : : Device

A B

——
Control Lines

FIGURE 1-2. A parallel interface

data transfers between devices, a process

often known as “handshaking.” Typically,

Device A will signal Device B once it has

placed valid data on the data lines. Once

the data has been accepted, Device B will

acknowledge receipt of the data by assert-

ing the appropriate controlline.

A serial interface consisting of a single

data line and a reference line is shown in

Figure 1-3. Information is transferred from

Device A to Device B one bit at a time via

the single data line. You can easily see that

a serial interface limits the rate at which
data can be transferred. However, it is

simpler and, for most low- to medium-

speed applications, the data rate of a serial

interface is more than adequate.

Configurations

Once the general nature ofthe physical link

is determined to be parallel or serial, there

are a number of ways to configure an inter-

face system. One of the most common
hardware configurations is the bus-type

system shown in Figure 1-4. Parallel bus-

type interfaces are usually used in cases

where speed is a critical consideration.
Information is transmitted along the bus

and each device residing on the bus has

equal access to all bus information simul-

taneously (or as simultaneouslyasis physi-

cally possible). Usually the limiting factor

in bus systems is the length of the transmis-

sion medium. Longer distances tend to
degrade the quality of the signal and thus

introduce errors.

. Data .
Device Device

A
Reference B

FIGURE 1-3. A serial interface

Another interface configuration, com-

monly called a “ring” or “loop”interface is
shown in Figure 1-5. Information is sent

over the loop and passes from device to

device, finally returning to its source. For
example, suppose Device A in Figure 1-5

sends out information intended for Device
D. This information travels over the loop,

passing through Devices B and C,finally to

arrive at Device D, where the information

is stored in Device D’s local storage. The

information, meanwhile, continues to tra-

verse the loop until it ends up back at the

source, in this case Device A. At this point,

Device A could compare this newly

received information with that which it
sent to verify and check for errors.

Obviously, the limiting factor in a loop

or ring configuration is the time it takes
information to travel completely around

the loop. However, with the present com-

munication technology, adequate trans-

mission rates can be achieved.
Two primary benefits of a serial-loop

Device Device Device

|
Device Device

D E

Chapter 1: An Introduction to HP-IL 3

Device
/ A \

Device Device

D B

\ Device /
C

FIGURE 1-4. A bus interface system

FIGURE 1-5. A ring or loop interface

configuration are low cost and low power

consumption. Since there are only two

wires in the connecting link, there is also a

much lower chance of a hardware failure,

compared to the bus configuration of

Figure 1-4.

PROTOCOLS AND
COMPATIBILITY

More than just a common physical link is

needed to support communications
between devices. In order for devices to
understand each other, they must send

information out in a form that is under-

stood by all devices. They must also all

agree to support a common set of rules

governing the way communications will

occur over the physical link. This is particu-

larly true in the case of a serial interface

where there are no control lines to support

the handshaking functions. The common

set of rules and the format of individual

4 The HP-IL System

messages are often defined in what is

known as a communications protocol.

Various manufacturers tend to utilize

their own protocols for their own equip-

ment. In most cases, the protocols used by

different manufacturers are not compati-

ble. For instance, information sent using
an IBM protocol such as SDLC, may not

be compatible with information sent from

a piece of DEC equipment and vice-versa.

To overcome this problem, interface

standards have evolved over the years. This

allows manufacturers of communications
and processing equipment to indepen-

dently manufacture their own equipment,
yet maintain some semblance of compati-

bility. One such standard is the IEEE-488

also known as the GPIB (short for General-

Purpose Interface Bus).

FROM HP-IB
TO HP-IL

The IEEE 488 was originally developed at

Hewlett-Packard (under the name HP-IB)

for use with its own line of computers and

measurement devices. It is a parallel-type

bus interface that allows all devices on the

bus to communicate with each other under

the direction of one or more Controllers. In

1975, the Standards Board of the Institute

for Electrical and Electronic Engineers

(IEEE) elected to adopt HP-IB as a stand-

ard. The IEEE 488 currently supports more

than 1000 pieces of equipment manufac-

tured by companies around the world.

The IEEE 488 was originally intended to

support a wide range of equipment, from

the very fast to the very slow. Since its

design, technology has spawned the growth

of medium-speed, portable equipment.

Devices such as the handheld computer

and its associated peripherals are now the

trend. With this shift toward medium per-

formance, low-cost, and lightweight

equipment, new standards are being de-

veloped to reflect and support the new

trends in technology. One such develop-

ment is the Interface Loop developed by

the Hewlett-Packard Corporation.

While not intended to replace the IEEE

488 Interface, HP-IL is a natural out-

growth of the trend toward smaller, porta-

ble, and low-cost equipment. It is primarily

aimed at the small-system user, whether in

the laboratory, office, or home.

AN OVERVIEW
OF HP-IL

An easy way to describe an HP-IL system is

to simply look at a typical configuration.

Figure 1-6 shows an HP-IL system com-

prised of a Controller and two other de-

vices: a printer and a magnetic tape drive.

Since HP-IL is a serial communications

interface, information travels one bit at a

time over the two-wire cable connecting

devices and Controllers. All devices com-

municate by sending messages over this

two-wire loop. Each message is comprised

of 11 bits as shown in Figure 1-7.

To ensure that devices and Controllers

speak the same language, Hewlett-Packard

has defined a message structure; that is, a

common set of messages that all HP-IL

devices must understand. These messages

define the way a device must operate ifit

Controller | Printer

Tape Drive

FIGURE 1-6. A simple HP-IL system

Direction

of Travel

<—clclc|p/p/p|p|p[D[D|D]
—W

Control Data or

Information Command

FIGURE 1-7. Structure of an HP-IL message

wishes to send information out over the

loop.
Messages originating at a Controller or

device circulate around the loop to each

device in turn, finally arriving back at the

source. This is illustrated in Figure 1-8.

HP-IL systems can be comprised of

three types of devices: Talkers, Listeners,

and Controllers. Talkers are devices that

send data over the interface loop. Listeners

are devices that receive data from a Talker

or commands from a Controller. The role

Chapter 1: An Introduction to HP-IL 5

Talker or Listener is assigned to a device by

a Controller.

Controllers are in charge of all loop

operations. They are typically responsible

for assigning addresses to devices, assign-

ing device roles, servicing device requests,

and initiating the transfer of data from

Talker to Listener(s).

BASIC SYSTEM
FEATURES

Now that you know a little about what

HP-IL is, here is an explanation of some of
its capabilities.

The Maximum Number

Of Devices

HP-IL will support a maximum of 31 devi-

ces on a single loop using the standard

method of addressing (a topic which will be

covered later in the book). An extended

form of addressing (involving the issuance

Device

/ A

Device Device

D B

\\ Device /

C

FIGURE 1-8. An HP-IL message on the
Interface Loop

6 The HP-IL System

of a two-byte address) allows the HP-IL

interface to support up to 960 devices.

Data Transfer Rates

The rate at which data may be transferred

over the loop interface is theoretically

limited to 20K (20,000) bytes per second.

Using equipment currently available (at the

time of this printing), speeds of about 2K

bytes per second are achievable. This trans-

lates to about half of a page of text (on an

814" X 11” piece of paper) per second.

Mode Of Transmission

HP-IL transmissions are implemented in

hardware using the three-level code shown

in Figure 1-9. A logic one is represented by

a high pulse of 1.5 volts followed by a low

pulse of -1.5 volts. A logic zero is repres-

ented by a pulse of -1.5 volts followed by a

high pulse of +1.5 volts. A level of 0 volts is

used to represent the “quiescent condition”
(no line activity).

+1.5V — r

ov2Pls
One

FIGURE 1-9. HP-IL transmission code

The transmission line is electrically iso-

lated from the device by means of a pulse
transformer which acts both as a level

translator and as a means of isolating the

transmission line from device logic levels.

Drivers and receivers are specified as two-

wire balanced-pair devices. An electrical

diagram of an HP-IL transmission line is

shown in Figure 1-10.

Tx

 HP-IL

Interface

IC H
E
F

To Next

3 L Device on

—: the Loop

Rx

<

$<

 el
o—
-

i

-<3 Frorr}
} E Previous

— Device

FIGURE 1-10. Diagram of an HP-IL transmission line

Transmission Medium

The HP-IL specification allows for a max-

imum distance of up to 10 meters between

devices using simple two-wire cable. Dis-

tances of up to 100 meters are allowed

when using shielded, twisted-pair cable.

Additional Capabilities

In addition to the basic list of HP-IL fea-

tures, a number of additional functions

have been defined. These functions allow

devices to go to a power-down (or standby)

mode and to wake up on command from a

Controller.

The power-down mode of operation

allows a Loop Controller to place all de-

vices into a state where power requirements

are minimal (a feature very important for

battery-powered systems). If the

Controller has the capability to institute

real-time wake-up calls, it can wake up all

devices on the loop to make measurements

periodically or perform control functions.

Once these functions or measurements are

completed, the Controller can put the sys-

tem back to sleep.

Device Triggering

Device Triggering is a function which lets a

Controller initiate an action at a remote

device. For example, a signal from a Con-

troller to trigger a measurement reading at

an appropriate time could be used in a

laboratory system to make a series of read-

ings at predefined intervals.

Addressing

HP-IL Controllers have the capability to

initialize devices on the loop and to assign

Chapter 1: An Introduction to HP-IL T

addresses to devices (a feature called Auto-

Addressing). In this way devices may be

added to the loop without concern for

addresssing details (such as setting address

switches).

APPLICATIONS

Because of its extremely lightweight design

and minimal power requirements, HP-IL is

particularly well-suited to a wide range of

applications where portability is a factor. A

few examples will illustrate some of the

possibilities.

Portable Data Collection

Figure 1-11 shows a portable data-

collection system comprised of HP-IL

devices. Such a system could be used in

situations requiring a portable unit for use

in the field. A handheld unit such as the

HP-41C could be programmed to accept

information entered by field personnel.

Information such as inventory counts,

meter readings, or individual responses to

marketing surveys could be directly

entered into the handheld units as the

information is collected.

Once the information has been gathered

and entered into the handheld unit, it can

be brought into the office. The data analy-

sis system of Figure 1-11 then can be used

to permanently file and analyze the field

collected data. The data may be transferred

to magnetic tape or disk via the HP-IL

interface. Once it has been stored, you can

analyze the data in any way you choose by

running an appropriate program on the

microcomputer (Controller). A copy of the

results (inventory lists or the results of the

8 The HP-IL System

marketing survey) then can be printed out

on the printer.

Remote Measurement

Analysis

The system shown in Figure 1-12 is suitable

for collecting data at a remote site with or

without the assistance of a human opera-

tor. This field site could be in the remote

reaches of a wilderness area, where envi-

ronmental data is being collected or it

could be an area of the laboratory set aside

for a particular experiment. In either case,

Portable
— Handheld Units
—

I== =

Microcomputer/ Printer
Controller

Terminal S];:iz?cg:

+

FIGURE 1-11. A portable data collection
and analysis system

Remote Measurement System

A Dg{a . Measurement
cquisition }—— .
Devi Device
evice

Portable
Handheld Modem [V
Controller Phone

Line

Laboratory System

Microcomputer Modem |jeN
Phone

/ \ Line

Terminal Printer

Mass /
Storage

FIGURE 1-12. A remote measurement and

laboratory analysis system

the portable Controller (an HP-41C, for

example) could be programmed to take

measurements at preset intervals and store

the information for later analysis. Because

its power consumption is extremely low,

this remote system could operate for weeks

at a time, totally unattended by a human

operator.

Once a sufficient amount of information

has been collected, you could simply

unplug the portable Controller and take it

back to the laboratory system to store and

analyze the data. After running the proper

analysis programs, the results could be

printed out. Alternatively, the data could

be transferred via a modem over a tele-

phone line for analysis in the laboratory.

Of course, these are only a few examples

of the possible things you can do with an

HP-IL system. Applications are certainly

not limited to those requiring portability.

Many personal or business applications

also are ideally suited to the HP-IL system

simply because of its low cost and
simplicity.

For example, a system such as the one

shown in Figure 1-13 could be used to pre-

pare a financial model or perhaps to pre-

pare a budget report. Once complete, the

information could be sent to a central data

base computer located thousands of miles

away. Transmission of data via phone and

satellite lines is possible through the use of

a modem adapted to the HP-IL Interface

Loop.

USING THIS BOOK

Since there are a number of ways to

approach HP-IL, we have organized the

book to address a wide range of users. Your

level of involvement will depend upon your

application and may range from a casual

overview to a detailed knowledge of the

inner workings of the HP-IL message

protocol.

We began in Chapter 1 to give you an

idea of what HP-IL is and how it can be

Chapter 1: An Introduction to HP-IL 9

Terminal __ |Microcomputer

Storage Printer

Modem
NN

Phone or

Satellite

Communications

Central

Data Base }|— Modem o~~~

Computer
FIGURE 1-13. A possible business application

involving data transmission

used. Those of you considering the use of a

system comprised of HP-IL products will

find sufficient information in Chapters 1

and 2 to allow you to intelligently configure

a small system.

While many will be satisfied with a cur-

sory knowledge of what actually happens

on the loop, often a more detailed knowl-

edge of the inner workings of HP-IL is

necessary. For instance, should you need to

add a device to your system which was not

designed to be used specifically with HP-IL

or if you are interested in integrating or

designing an HP-IL interface into a device

of your own, you will certainly need to

understand the workings of HP-IL

messages.

10 7The HP-IL System

Chapters 3,4, and 5 introduce and cover

the topic of HP-IL messages and how they

are used in a typical loop system. These

chapters provide a framework in which you

can begin to familiarize yourself with the

HP-IL message structure. Messages are

also listed in a Glossary at the end of the

book. A brief summary of the way mes-

sages are organized and classified appears

in Appendix A.

Those interested in the design of HP-IL

compatible equipment will find a basic
hardware interface explained in Chapter4.

The details of the HP-IL functional specifi-

cation necessary to begin designing an

interface are introduced in Chapters 6 and

7. While we present enough information to

allow you to feel comfortable with the

HP-IL reference specification, this bookis

not intended to replace that document.

CHAPTER 2

Getting on
The Loop

P-IL is a system comprised of a
number of devices linked

through a common interface

loop. There are a variety of ways to config-

ure such a system. Deciding which devices

you will need and how they are to interact

will be determined by the requirements of

your own application, and limited only by

your imagination. The level of complexity

you must deal with increases as you venture

into new and more complex applications.

As a starting point, you can easily con-

figure an HP-IL system from off-the-shelf

HP-IL products. Systems configured in

this way may be brought up with a min-

imum of effort and will require only that

you connect the devices with the proper

cables and turn them on.

As you begin to see the possibilities for

expanding your system, you may want to

add a non-standard device to the loop. An

adapter such as HP’s 82166A HP-IL Con-

verter lets you attach a wide range of non-

standard devices to the interface loop.

Finally, should you decide you want to

build an HP-IL interface into a device of

your own design, there are a number of

ways you can proceed.

But first, we’ll configure a simple loop

system with off-the-shelf devices.

A SIMPLE HP-IL
SYSTEM

Perhapsthe easiest way to introduce you to

an HP-IL system is simply to put together

a few of the HP-IL devices offered by

Hewlett-Packard. Figure 2-1 shows a sys-

tem comprised of an HP-41C Handheld

Computer, an HP 82160A Interface

Module, an HP 82162A Thermal Printer,

and an HP 82161A Digital Cassette Drive.

11

R
E
P
R
I
N
T
E
D
C
O
U
R
T
E
S
Y
O
F
E
L
E
C
T
R
O
N
I
C
D
E
S
I
G
N

12 The HP-IL System

HP82161A
Digital Cassette

° Male plug
(small)

HP82162A

Thermal Printer

HP-41C Controller with

HP82160A Interface Module
FIGURE 2-1. An HP-IL System configured

from off-the-shelf HP-IL devices

By simply connecting the devices, as shown

in Figure 2-1, the system is configured and

ready.

An HP-IL system, such as the one shown

in Figure 2-1, can provide you with an

extremely lightweight and portable com-

puting system. It would be appropriate for

any application requiring on-line mass

storage and print capabilities such as the

portable data-collection system described

in Chapter 1.

To begin, here’s a description of each of

the off-the-shelf devices shown in Figure

2-1.

The HP-41C is an extremely versatile,

handheld computer. A closer look at some

of its features may help to give you a better

idea of its capabilities. The 12-character

HP-41C display is capable of displaying

alphanumeric strings of up to 24 characters

in length. (Strings longer than 12 charac-

ters are horizontally scrolled across the

display.) The keyboard allows for the entry

of alphabetic and numeric characterstrings

as well as supporting the standard

calculator-type functions.In addition, you

may redefine each key of the HP-41’s key-

board to execute functions or programs

stored in program memory. Memory is

expandable via plug-in modules up to a

maximum of 320 registers (1000 to 2000

program lines). With the addition of the

HP 82160A HP-IL Interface Module, the

HP-41 is capable of acting as an HP-IL
System Controller.

The HP-IL Interface Module shown in

Figure 2-1 plugs into one of four HP-41

expansion ports. The Interface Module

consists of a set of routines in ROM to

support the basic HP-IL functions and the

interface electronics necessary to imple-

ment the physical interface to the HP-IL.

With the Interface Module attached, the

HP-41 is capable of communicating with

and controlling other HP-IL devices.

The HP 82161A Digital Cassette Drive is

shown in Figure 2-2. Programs and data

are stored on HP mini-data cassettes. Each

cassette is capable of storing up to 131K

bytes of data. Data is stored on the tape in

records of 256 bytes each, (up to 512

records may be stored per cassette). Data is

read and written at a speed of 9 inches per

second and the tape is searched or rewound

at 30 inches per second. When used with

P
H
O
T
O
C
O
U
R
T
E
S
Y
O
F
H
E
W
L
E
T
T
-
P
A
C
K
A
R
D

Chapter 2: Getting on the Loop 13

FIGURE 2-2. HP 82161 digital tape cassette drive

the HP-41, all tape functions are executa-

ble either through direct entry from the

keyboard or under program control.

The HP 82162A Thermal Printer, shown

in Figure 2-3, is a portable device capable

of printing up to 24 single-width characters

or 12 double-width characters on 214 ”-wide

HP thermal paper. The set of characters

which the 82162A is capable of printing

includes the standard 96-character ASCII

character set, as well as an additional 127-

character alternate character set. The

82162A is also capable of printing bar

codes, plots, and graphics.

While all communication between these

devices takes place over the interface loop,

you will not need to know the details of the

messages which are sent over the loop. The

actual generating and handling of HP-IL

messages will be taken care of by the Con-

troller and the devices themselves. In the

case of the system of Figure 2-1, all HP-IL

communication is achieved through the

functions contained in the HP-IL Interface

Module’s ROM. A program to control the

interaction of several HP-IL devices

would, therefore, consist of a series of calls

to these functions. Alternately, devices

P
H
O
T
O
C
O
U
R
T
E
S
Y
O
F
H
E
W
L
E
T
T
-
P
A
C
K
A
R
D

14 The HP-IL System

may be controlled directly through a series

of keystroke commands.

As an example of this system’s opera-

tion, suppose you want to execute a com-

mand from the keyboard of the HP-41C to

search the tape and print a list of files
found. You simply would enter the “DIR”
function into the HP-41C. All communica-
tions over the interface loop would be invis-

ible to you. The Controller translates your

commands into the appropriate set of mes-

sages and handles all the details necessary

toread the directory from the tape and pass

this information to the printer.

To illustrate the use of a stored program

to control the system of Figure 2-1, the

following is a short routine which reads a

datafile from the tape drive and prints the

file on the printer.

01 LBL “SYS1” (program name)

02 “DAT” (name of file to read)

03 READR (read file into registers)

04 PRREG (print registers)

05 END

Line 01 is a label which identifies this
program;in this case the name of our pro-

gram is SYSI1. Line 02 places the name of

FIGURE 2-3. HP 82162A thermal printer

the file we are going to read in the Alpha

register of the HP-41C. Line 03 specifies

the execution of the function READR, a

function that reads data from a tape file

into the HP-41’s data registers. Line 04

causes the execution of the function
PRREG, a function that causes all data

registers to be printed on the printer.

While it is not our intention to explain

the programming of a Controller such as

the HP-41C, you should notice that the

control of loop operations (when using off-

the-shelf devices) is handled by the func-

tions which are built into a particular Con-

troller. Knowledge of the actual HP-IL

messages sent on the loop is not really

necessary.

INTERFACING
DEVICES

At some point you may need to add a

device that does not have an HP-IL inter-

face. An HP-IL Converter Module lets you

do this without getting too far into the

details of the HP-IL message structure.

An HP-IL converter is shown in Figure

2-4. It attaches to the loop as would any

standard HP-IL device. A message bound

for an external device is interpreted by the

converter and output in a form suitable for

use by the external device. Similarly, mes-

sages sourced by the external device are

translated into the standard HP-IL format

before they are sent out over the loop.

An external device capable of sending

and receiving 8 or 16 bits of parallel data

can be attached to the interface loop

through the use of an HP-IL to parallel

Chapter 2: Getting on the Loop 15

HP-IL HP-IL

Device A Device B

HP-IL HP-IL

Controller Converter

Non-HP-IL

External

Device
FIGURE 2-4. Interfacing a non-HP-IL external

device to the Interface Loop

bus converter. An example of such a con-

verter is the HP 82166A shown in Figure

2-5. Messages intended for the external

device are sent to the converter via the loop

interface and converted to a parallel data

format for use by the device. Similarly,

parallel data from the external device is

passed to the converter where it is format-

ted into a standard HP-IL message. Hand-

shake lines provide for the orderly transfer

of data between the converter and external

device.

If the device you wish to add to the inter-

face loop hasan RS232 serial interface, you

could use an HP-IL to RS232 converter.

Figure 2-6 shows such a configuration.

While this figure shows a converter at-

tached to a modem, any RS232 device

could be similarly attached.

16 The HP-IL System

HP82166A

HP-IL Data

Device A HP-IL to)

Parallel- External

(Bus Device

HP-IL Converter

Controller Handshake and

HP-IL

Control Lines

FIGURE 2-5. Interfacing an external parallel device to the Interface Loop

HP-IL

Device A
HP-IL

(Serial RS232
Converter

HP-IL

Controller

Any RS232
RS232 Device

Cable Phone Line

Modem NN\

FIGURE 2-6. Interfacing to an external RS232 serial device

Interfacing an external device to the

interface loop via a converter requires

some knowledge of the interface signals

necessary to pass data to and from a device.

To give you a better idea of what is

involved in setting up a converter interface,

Figure 2-7 diagrams an HP 82166A Con-

verter to Centronics-type parallel

printer interface.

Converters such as the HP-82166A also

require a small amount of programming to

set up the proper operating parameters for

the type of device being used. This entails

defining such things as the number of bits

(8 or 16) in the data interface, the number

and sense (positive or negative) of the

handshake lines, and the definition of the

status word. This programming is usually

in the form of HP-IL messages sent from

the Controller to the converter. In the case

82166A Centronics-Type
Converter +5VDC Printer

VCC, VClI

RDY] | 11|BUSY
ll))g‘(l:? =] ||STROBE*

a GNDH 19/GND
g (— U0
- DB7 9{DATA 8
- DB6 8 7
= DBS 7 6
= DB4 6 5
= DB3 5 4

DB2 4 3
DBl 3 2
DBO0 2| DATA1

DCLO* 31|INIT*

FIGURE 2-7. HP 82166A Converter to

Centronics-type printer interface

of the interface of Figure 2-7, a message

called “Device Dependent Listener 0” must

be sent to the converter to initialize a con-

trol register to the value 10011010. The

programming of a converter similar to the

one shown in Figure 2-7 will be covered in

greater detail in Chapter 3.

For maximum flexibility, you will need a

general understanding of HP-IL messages

in order to program a Controller to interact

with a converter. The level of knowledge

presented in Chapters 3 through 5 is cer-

tainly adequate to allow you to use and

program such a converter. In many cases,

however, a Controller’s pre-programmed

functions may be sufficient to allow you to

implement your application without a

knowledge of HP-IL messages.

Chapter 2: Getting on the Loop 17

BUILDING A DEVICE
INTERFACE

Should you need to build an HP-IL inter-

face of your own, either to interface an

external device or to design into a device of

your own composition, there are a number

of ways you can proceed. The level of

knowledge that you will require will be

more detailed than that presented in this

book. In fact, the information presented

here will serve as an excellent introduction

and overview of the HP-IL structure, but

you definitely will need a copy of the for-

mal HP-IL specification.

To start, you might consider designing

an existing HP-IL converter into a product

of your own. Converters such as the

HP82166A can be easily integrated into a

device package. Figure 2-8 depicts a con-

Integrated Package

]

I Device I

I l
I Device I
| Interface I

| HP82166A |
HP-IL

| Converter |

HP-IL In HP-IL Out
FIGURE 2-8. Integrated HP-IL Converter

and device

18 The HP-IL System

verter integrated into an existing product.

In this case, your device need only com-

municate with the converter via the

appropriate parallel or serial interface. The

converter provides all the necessary sup-

port to allow your product to be connected

to an HP-IL system.

If you decide you need to actually design

your own HP-IL interface, there are a

number of basic functions you must

implement in your design.

In Figure 2-9 the functions required to

implement an HP-IL interface are broken

into two basic groups: the loop interface

functions and the device interface func-

tions. Of the two, the loop interface func-
tions are the most complex. Your imple-

mentation of the loop interface functions

must provide for the proper handling of all

HP-IL In HP-IL Out

y !
Loop Interface

Functions

Device
Interface
Functions

1l
Device

FIGURE 2-9. Basic functions of an HP-IL

interface

HP-IL In HP-IL Out

Receiver Driver

' !
Message-Handling

Functions

L
o
o
p

In
te

rf
ac

e
Fu

nc
ti

on
s

Device Level

Functions
FIGURE 2-10. HP-IL Loop interface functions

types of the HP-IL messages.

Figure 2-10 illustrates an easier way of

visualizing the loop interface functions.
HP-IL messages are received by the block

labled “Receiver” and sent out via the
block labled “Driver.” The characteristics

of these blocks are described in detail in

HP’s functional and electrical specifica-

tions. HP’s mechanical specifications

cover the details and physical dimensions

of the connectors used to attach a device to

the interface loop.

The block labeled “Message-Handling

Functions”in Figure 2-10 is the real core of

the loop interface. It is responsible for such

things as determining whether a message is

addressed to this device and, if so, what

signals need to be sent to the device. If the

device needs to send a message, the message-

handling functions must properly format

the message, send it, and verify that it was

correctly received.

An interface such as this could be imple-
mented in discrete logic or more con-

veniently in a single LSI interface con-

troller chip.

Chapter 2: Getting on the Loop 19

The requirements of such an interface

are covered in much more detail in Chap-

ters 3 through 7 and are outlined in even

greater detail in the HP-IL reference

specification.

CHAPTER 3

Using a
General-Purpose
Interface to HP-IL

his chapter will discuss how you

might connect a device to an

existing HP-IL “system” using

some type of general-purpose interface

adapter. Thus, your level of involvement

with the loop, and your understanding of

loop operation, must be greater than if you

simply bought a device from Hewlett-

Packard. Before explaining some details of

loop operations at this level, let’s look at

what characteristics and capabilities a

general-purpose adapter to HP-IL might

have.

The adapter to be discussed here allows

devices with an 8-bit parallel interface to

connect to HP-IL. Different adapters

might permit devices with other interfaces

(16-bit parallel, IEEE 488, RS-232, and so

forth) to be connected.

A GENERAL-PURPOSE
ADAPTER

Figure 3-11is a block diagram of a hypothet-

ical adapter that could be used to interface

“foreign” devices to HP-IL. A discussion of

each of the functional blocks will explain

how this adapter would work.

Serial/Parallel Conversion

Information travels around the loop in a

bit-serial manner. Since many devices use a

bit-parallel method for data transfers, we

will want the interface to perform serial-to-

parallel conversion ofinformation it receives

from the loop and parallel-to-serial con-

version of information it is putting back

out onto the loop.

21

22 The HP-IL System

r---— " —-—"—"—"—"—"—"—"7—"7—7—™

Serial
Data | Parallel-to- Control l
Out ‘j\ Serial Logic 'Conversion g

Loop | Ereodne | Data <;':J> External
I Decoding Buffer evice

S]grial I Slgriall_lt(i_
ata‘__—r' aralle
In Conversion

--___

 Data Transfer ! >

Logic |

FIGURE 3-1. Functional block diagram of a general-purpose adapter to HP-IL

Message Encoding/Decoding

As the adapter receives the serial-bit stream

comprising a message from the loop, it

must perform some decoding of the

message-bit pattern to determine such

things as

- Is this message for me? (address decoding)

+ Should the message simply be retrans-

mitted?

- What category of message is this?

+ Do I need to respond to this message?

Similarly, when the device utilizing the

adapter needs to put a message out onto the

loop, the adapter must be able to encode

the information into the correct message

format for transmission by the parallel/ se-

rial conversion logic.

Data Buffering

Since the data-transfer rates of devices can

greatly vary from one type to another, and

since it would be unreasonable to expect

devices to be overly dependent on the data-

transfer rate on the loop (and vice versa), a

useful general-purpose adapter offers some

data-buffering capability. This provides

the greatest flexibility for devices, as well as

minimizing degradation of data-transfer

rates on the loop that might occur if a

particular device is excessively slow in

accepting or supplying data.

Device Interface Logic

The transfer of information between the

external device and the adapter must pro-

ceed relatively independent from activities

and exchanges between the adapter and the

loop. Assuming that this adapter is

intended to interface to devices that present

a parallel interface, Figure 3-1 shows the

adapter providing an 8-bit parallel inter-

face to the external device. Some data-

transfer logic also would be included to

synchronize and control exchanges of

information between the adapter and the

device.

Control Logic

Thisis sort of a “catchall” functional cate-

gory that would include the logic necessary

to control timing sequences, determine the

appropriate response and reactions to var-

ious categories of messages, and so on. This

logic might consist of PLA (Programmable

Logic Array) devices, ROM (Read Only

Memory) devices, and so on. This is the

logic that provides the “intelligence” of the

adapter. At this point, rather than being

concerned with how this intelligence is

implemented, simply assume that some

appropriate logic is provided to accomp-

lish the required functions. Chapter 4 will

dig deeper into this subject to show how

this logic might be implemented.

THE DEVICE
AS A LISTENER

Assume that the device you are going to

interface to HP-IL via the adapter is a

thermal printer. Before discussing how this

printer will interact with the loop, the char-

acteristics of the device and its role as part

of the loop will be defined.
First, without knowing anything else

about the printer, you can assume that it is

purely an output device. The system (thatis,

other devices on the loop) will send infor-

mation to the printer—the printer won’t be

sending information to other devices on the

loop. Thus, you can expect the printer to

primarily play the role of Listener. As a

23Chapter 3: Using a General-Purpose Interface

Listener, it has certain responsibilities to

the system, certain ways in which it must

respond to messages, and certain message
sequences it must adhere to. A discussion

of each of the messages that might be

exchanged between the printer and the

HP-IL system (via the adapter) will illus-

trate the rules that govern loop operation.

It will also give some insight into the logic

that you might have to provide in your

printer to enable it to operate within the

system.

But first, let’s define a few of the charac-

teristics of this printer since this will deter-

mine, to some extent, the way in which it

acts out its role as Listener.

You want to be able to put the printer

into a low-power, standby mode by issuing

commands from the System Controller.

This would give it the capability of using

the printer in unattended applications

where the printer need be activated only

intermittently for such things as logging

readings. Of course, the printer must also

respond to a “power-up” command from

the system prior to any printing operation.

The printer should be flexible in its

capabilities. For example, it should have

more than one character set that it can use,

be able to use different line spacings, and so

on. This implies that it must have some

degree of programmability and, therefore,

will receive information from the system in

addition to the data characters to be

printed.

The printer must be able to inform the

system aboutits status; for example,if it is

out of paper, if it is currently involved in a

printing operation, what its current mode

24 The HP-IL System

of operationis, and so on. In most systems,

you would want all devices to be capable of

providing at least minimal status informa-

tion. This capability requires that a device

also be able to play the role of Talker onthe

loop, since a Listeneris only a recipient of

information—never an originator. Thus,

even a pure output device like a printer

must be able to assume the role of Talker

occasionally.

Now, consider the messages you can

expect the printer to encounter during loop

operations. Not all of the HP-IL messages

will be described in the following para-

graphs; only those messages that the prin-

ter responds to. All other messages that the

adapter/printer receives will simply be

passed on to the next device on the loop.

COMMAND GROUP
MESSAGES

The command group messages are used to

establish initial operating conditions on the

loop, change the operating modes and roles

of devices on the loop, and generally main-

tain discipline and control of the loop sys-

tem. The following are the command group

messages that a printer, such as the one

defined here, might be expected to receive

via an interface adapter:

- Interface Clear (IFC)

- Device Clear (DCL)

- Loop Power-Down (LPD)

- Listen Address (LAD)

- Unlisten (UNL)

+ Talk Address (TAD)

+ Untalk (UNT)

Before actually discussing the messages,

let’s describe an illustration to be used in

this and subsequent discussions of loop

operations.

Loop Nomenclature

The examples that follow will use square

boxes drawn with solid lines to represent

devices on the loop that have been assigned

active roles such as Controller or Talker, or

that may soon be involved in the transac-

tion/operation being discussed. Square

boxes drawn with dotted lines indicate

other devices on the loop that have either

not yet been assigned roles or whose pres-

ence on the loop is insignificant in the

operation or transaction being described.

For example, in the following illustra-

tion, the device represented by the box on

the left is the System or Loop Controller

(C) and the device represented by the box

on the right is an active Listener (L).

Loop Devices

Printer

Messages that are being passed around

the loop are represented by ovals. For

example, the message being passed around

the loop in the following illustration is the

Interface Clear (IFC) message.

Loop Message

r—

e
Printer

r—

L1

Some of the symbols used in these illus-

trations may be enhanced as the discussion

progresses, but the extensions of the

nomenclature will either be quite obvious

or explained.

Interface Clear (IFC)

The IFC message is equivalent to a System

Clear message. It can only be sourced by

the System Controller, which may or may

not be the active Controller on the loop,

and allows the System Controller to take

control of the loop at any time. Typically,

the System Controller will send a series of

IFC messages around the loop when the

system is first powered-up to put all devices

on the loop into an inactive or “idle”

condition.

When the printer’s interface adapter

receives and decodes the IFC message,it

will simply remove itself from the active

Talker or Listener state if it happened to be

in one of those states at the time the mes-

sage was received. Thus, it will effectively

be in an idle state waiting for the Loop

Controller to assign it a new role.

r=
Lt

Printer

Chapter 3: Using a General-Purpose Interface 25

Note that this Interface Clear message

has no direct effect on the printeritself. It is

only the interface adapter that is affected.

Since the IFC message is directed to all

device interfaces on the loop, it might

require a lengthy period of time for the

message to once again reach the System

Controller, if each interface waits until it

has cleared itself before passing on the mes-

sage. To speed up this process, each inter-

face is expected to pass on the message

immediately and then proceed to putitself

into the idle state. Thus, when the IFC

message has returned to the System Con-

troller,it does not necessarily mean that all

interfaces on the loop have already been

cleared.
r—

{_—CaFc
Printer

r—
—d

In this situation, the Controller will send

a special Ready For Command (RFC)

message, which will be described shortly.

This RFC message will be held up by

each interface on the loop until it has com-

pleted any previous clearing operation.

Printer

r

—
L | L

26 The HP-IL System

This same sequence (that is, immediately

passing on the command and then holding

up the RFC message until ready to receive

the following command or other message)

is used for all command group messages to

speed up processing on the loop by all de-

vices. Other messages are simply held up

by each device until they are ready to

receive another message. The simple rule

the Controller will obey is to send an RFC

message as soon as each command mes-

sage returns. This will be discussed in more

detail in the section on ready group

messages.

Device Clear (DCL)

The DCL message can be used by the Loop

Controller to reset a device (as opposed to a

device’s interface). Note that all interfaces

on the loop must be capable of responding

to the IFC message, since it is the means by

which the System Controller takes control

of the loop. However, not all devices need

be capable of responding to the DCL mes-

sage. Furthermore, the action that a par-

ticular device takes in response to the DCL

message is entirely left up to the device.Its

only responsibility to the loop is that it pass

the DCL message on to the next device.

The printer then should respond to the

DCL message. Therefore, when the print-

ter’s interface adapter receives and decodes

the message, it must send some indication

to the printer electronics to cause the

appropriate device clear or reset functions.

This can be illustrated as shown in Figure

3-2.

When the interface adapter has decoded

the DCL message, it sends the CLEAR

Interface

Adapter Printer

TOFReset

CR
—

Loop

FIGURE 3-2. The effect of a DCL message

signal to the printer. Within the printer, the

CLEAR signal would cause such actions as

positioning paper to top-of-form, moving

the printing mechanism to home position

(carriage return), clearing its internal data

buffer of any previously received data, and

so on. All of these actions are device-

dependent and of no concern to the loop or

even to the printer’s interface adapter.

Just as with the Interface Clear message,

devices on the loop should not have to wait

for preceding devices to complete their

“clearing” operations before passing on the

DCL message. Instead, each device should

immediately forward the DCL message

and then proceed to establish its CLEAR

conditions. The Controller will follow the

DCL message with the Ready For Com-

mand (RFC) message to determine when

all devices have completed execution of the

DCL message.

Listen Address (LAD)

The LAD message is sent by the Loop Con-

troller to cause a particular device to

become an active Listener. In order for a

device to receive data from other devices on

the loop, it must first be addressed as a

Listener. Since there may be times when

the Controller wants to send the same

information to more than one device, the

loop can have more than one active Lis-

tener at a time. However, since the LAD

message includes an address, it is directed

to only one device at a time. Thus,if there

were to be more than one active Listener at

a time, the Controller would have to send

out a separate LAD message for each

device. Each LAD message would, of

course, be followed by an RFC message.

There is another Listen Address message

defined in the HP-IL specification called
My Listen Address (MLA). This message is

simply the LAD message containing an

address which matches that assigned to the

device receiving the LAD message. For

example, assume that the printer interface

has been assigned an address (using

switches installed on the card or some pro-

grammable method) of 2.

If the LAD messageis received contain-

ing an address of 1, then the interface

simply passes the LAD message on to the

next device. The LAD message in this case

was not directed to the printer interface,

but to Device 1 which assumes the role of

Listener.

Device 3

1
—

Printer

Device 2

L

Device 1

27Chapter 3: Using a General-Purpose Interface

Device 3
r=
L_Jd (Lapi

Printer

Device 2

re1
_J
Device 1

When an LAD message is received that

contains an address of 2, however, the prin-

ter interface decodes this as My Listen

Address (MLA) and takes the necessary

steps to prepare itself for the role of Lis-

tener. (Notice that Device 1 has also

retained its Listener role as illustrated.)

Device 3

Printer

Device 2

Printer

Device 2

LAD2 =

MLA for

printer

Device 1

Thus, the differentiation between LAD

and MLA is made simply to clarify the

different actions that the interface logic will

have to accomplish, based on whether an

address match is made.

Once the printer interface is an active

Listener, it can then accept data coming in

from the loop. This data could consist of

28 The HP-IL System

characters to be printed, control informa-

tion for the printer, or programming

information for the interface adapter.

Interpretation of the contents of a data

message is up to the device designer (in this

case, the adapter designer and the printer

designer).

Unlisten (UNL)

The UNL command is used to return all

addressed Listeners to anidle state. Thus,it

effectively deselects any devices that pre-

viously had been addressed as Listeners

using LAD messages.

Note that although you can only select or

address one device at a time using the LAD

messages, the UNL message causes all Lis-

teners to be reset or deselected. The Loop

Controller would therefore use this com-

mand whenever it has to address a new

Listener (or Listeners) for another data

transmission.

Printer

Printer

When the printer interface receives the

UNL message, it would simply place itself

in the idle state where it is still on the loop,

but is playing no active role.

Loop Power-Down (LPD)

The LPD message is used by the Loop

Controller to place devices on the loopina

powered-down or standby state to con-

serve power. This capability can be quite

useful in systems where power conserva-

tion is important, such as in unattended

remote applications where the equipment

needs to be fully functioning only during

certain small intervals of time. For exam-

ple, if the printer was being used to log

readings that were taken only every few

hours or so, it would be useful to be able to

put it in power-down mode when it was not

actually being used by the system.

The LPD command message is a univer-

sal (unaddressed) command message.

Thus, when the Loop Controller sendsthis

message out,it is directed to all devices on

the loop. However, all devices are not

required to include this capability. Only

those devices that have implemented the

power-down function will respond; other

‘devices will simply pass on the LPD mes-

sage to the next device in the loop.

Our printer has this low-power, standby

capability and is designed with a three-

position power switch: OFF-STANDBY-

ON. When the switch is OFF, all poweris

removed from the printer and from the

interface adapter. If it were on the loop at

this time, the loop would be inoperative,

since the printer’s interface would not be

able to pass messages along the loop. When

the switch is ON, the printeris fully opera-

tional, but it will not respond to the LPD

message—it simply passes on the message.

When the switch is set to STANDBY,the

printer is fully operational and can respond

to the LPD message. When an LPD mes-

sage is received, the printer will be put into

the low-power state. Only that circuitry on

the interface adapter needed to respond to

a subsequent message on the loop will still

have power applied.

When the printer’s switch is on

STANDBY and the interface adapter

receives the LPD message, the interface

prepares to enter the low-power state. The

LPD function is not actually executed,

however, until a Ready For Command

(RFC) message is received. When the inter-

face receives the subsequent RFC message,

it causes all unnecessary power to be

removed from the printer.

Notice that the way this device reacts to

the “command message-RFC message”

sequence is different from the previous

sequences we have discussed. In the other

situations, the device immediately would

pass on the command message to the next

device and then begin executing the com-

mand. With the LPD message, however,

the device waits until it receives the subse-

quent RFC message before it executes the

LPD command.

There are two reasonsfor this difference.

First, if you are powering down the loop,it

will probably be for an extended period of

time. Therefore, there is no real reason to

try to speed up the operation by a few

fractions of a second. Second, there is no

special command or message that causes

devices to be powered up again. Instead,

devices that are powered down must reac-

tivate themselves as soon as they begin to

receive any message on the loop. Thus, if

29Chapter 3: Using a General-Purpose Interface

the device had already completed execu-

tion of the LPD command when the RFC

command arrived, it would immediately

powerup itself. So, devices must wait until

the subsequent RFC message is

received before they begin executing LPD.

This power-down/power-up scheme is

simple and efficient, but it means that all

devices on the loop that are capable of

responding to the LPD message will be in

the same state; you cannot selectively

powera single unit up or down.

READY MESSAGES

The command messages just described can

only be sourced by the Controller. The

ready messages to be discussed here can be

sourced by either the Loop Controller or

by a device that is an active Talker. These

messages are generally used to coordinate

and synchronize the transfer of commands

and data between devices on the loop. The

following are the ready messages to which a

printer might be expected to respond:

+ Ready For Command (RFC)

- Send Status (SST)

- End of Transmission OK (ETO)

* End of Transmission Error (ETE).

Ready for Command (RFC)

The RFC message is used by the Loop

Controller to determine if an immediately

preceding command message has been exe-

cuted. To understand the need for this mes-

sage, the focus of this discussion must be

broadened. Normally, there is only one

message at a time traveling around the

loop. The Controller or Talker that sent the

30 The HP-IL System

message waits until it successfully receives

back that message before it sends another

message. Usually, a device does not pass on

a message until it is ready to receive

another message. This technique ensures

that Talkers and Controllers do not send

messages faster than the other devices on

the loop can handle them.

Obviously,if there are a number of slow

devices on the loop and they each delay the

message until they are ready to receive

another, the loop speed may be very slow.

Data messages are usually intended for

only one device and other devices imme-

diately pass on the message. Thus, satisfac-

tory throughput can be maintained.

Command messages, however, are often

directed to all devices on the loop at the

same time. In order to speed up execution

of these command messages, devices are

expected to pass on the message imme-

diately and then begin execution of the

command. So, all devices on the loop can

be executing the command more or less in

parallel.

When the Controller receives the com-

mand message after it has been around the

loop, the message does not indicate that the

command has been completed by all devi-

ces. It only indicates that it has been

received by all devices. The Controller then

sends out the RFC message. This message

will be held by each device and not

retransmitted onto the loop until execution

of the previously issued command message

is completed. Thus, it is only when the RFC

message has returned to the Controller that

completion of a command message is

ensured.

Send Status (SST)

The SST message is used by the Controller

to cause the addressed Talker to send some

status information back to the Controller.

Remember, we stated at the outset of the

description of the printer’s characteristics,

that it would have to be able occasionally

to assume the role of Talker in order to

send status information out on the loop.

Loop protocol says that if you want to

generate some information and send it

around the loop, then you have to assume

the role of Talker. Never mind that 99% of

the time a printer will be just a Listener.

The issue of “mostly Listener-occasionally

Talker” will be explained after the discus-

sion of Send Status messages.

The SST message is used to request some

information from a device (our printer/in-

terface adapter combination). The infor-

mation that the Controller is requesting

will typically be rather device-specific

information. For example, for the printer,

the Controller may want to know such

things as

+ Are you busy printing?

- Are you advancing paper?

- Do you have an error condition?

- Is your buffer empty?

- Are you in some sort of special or escape

mode?

The SST message does not include any

device address information. The message is

always directed to the active Talker. Since

there can only be one active Talker on the

loop at any time, there is no problem in

determining who the SST message is

intended for. When devices that are not the

active Talker receive the SST message, they

simply pass it on around the loop. Thus,if

there were no active Talker on the loop, the

Controller would receive back the un-
changed SST message. (Of course, you

would not expect this to happen, since the

Controller should always know what roles

are being played by the various devices on

the loop and would not send the SST mes-

sage out unless there was an active Talker

out there.)

Assume that the printer interface adap-

ter has previously been assigned the role of

Talker.

When it receives the SST message, it

does not pass the message on to the next

device on the loop as is done with most

messages. Instead, it substitutes its own

message—one or more bytes of status
information—and sends this information

out on the loop.

Printer

Printer

r—i
L-J

As other devices further on along the

loop receive the status bytes of information

sent out by the printer, they simply pass

them along until they finally return to the

Chapter 3: Using a General-Purpose Interface 31

Controller. The Controller, of course, is

not expecting to get the SST message

returned, but rather the status byte or bytes

from the printer.

There are some general guidelines, some

specific rules and some suggestions in the

HP-IL specification about the format for

the status bytes that devices send back to

the Controller. This level of detail is not

relevant to this discussion, however, and

will be described in detail in Chapter 4.

Figure 3-3 is a more detailed block di-

agram of an interface adapter that might be

used with a printer. You will notice that

we’ve added a few blocks that were not

included in Figure 3-1. Since the interface

adapter will be expected to respond to the

SST message, a status register is included.

This status register will be used to hold

information from the printer about its sta-

tus and might also contain information

about the status of the interface adapter

itself. Two holding registers have been

added: one for incoming messages, and one

for outgoing messages.

Figure 3-4 is a block diagram showing

what happens when the interface adapter

receives the SST message.

The SST message is simply discarded

after it has been decoded. The interface

adapter then sends a Data Byte (DAB) con-

taining its status information out on the

loop to the Controller. (DABs will be dis-

cussed in a few more paragraphs.)

The interface can send as many bytes of

the status data as it wants. Remember,it is

now the active Talker on the loop.

As the Controller receives the status byte

or bytes from the printer, it processes them

32 The HP-IL System

 Encoding
Logic

Message

Loop Out

Message

In

Decoding

Interface Adapter

r—----—-—"—-—-—"——-————7""77 "~ 1

Register

Control

Transfer

Interface

Control

L - J

——

Device

Status

Lines

Status

 Device

Control

Lines

Device

l Printer

Data Data

Buffer

ta Handshake
Lines

=
=

I

FIGURE 3-3. Detailed block diagram of an interface adapter for a printer

in whatever way is appropriate to yoursys-

tem and then passes the status byte back

around the loop to the printer. This is the

printer’s indication that it can send the next

byte.

 Printer

Consider one final point about the SST

message. The sequences just discussed

comprise what is known as “serial polling.”

Thisis a technique that can be used by the

Controller to ascertain the status of each

device on the loop one at a time by individ-

ually addressing it as a Talker, sending it

the SST message, deselecting it as a Talker,

and proceeding to the next device on the

loop. Another method of polling—

“parallel polling”—will be discussed in

later chapters.

End of Transmission (EOT)

After the printer/interface adapter has sent

and received back its status bytes, it must

Chapter 3: Using a General-Purpose Interface 33

 Encoding
Logic

Message

DAB
Loop

Decoding

Logic

I
I
I
I
I

,
I
I
|
I
I

Interface Adapter
—————————

TT11 ——

Status
Is)ewce

Register tatus
Lines

Device Device

Control Cpntrol

Lines

Printer

Data

ta
Transfer H'andshake

Lines

Interface I I

Control I |
FIGURE 3-4. Effects of the SST message

send a special message to the Controller to

let it know that the printer has finished with

its current role as active Talker. The mes-

sage used to signal this completion is the

End Of Transmission (EOT) message.

Remember, when the Controller receives

each of the status bytes from the printerit

passes them on around the loop back to the

printer.

When it finally receives the EOT mes-

sage, however,it does not pass this message

on. Instead, since EOT signals the comple-

tion of the printer’s role as active Talker,

the Controller now proceeds to issue

another command.

For example, the Controller might issue

the Untalk (UNT) command to cancel the

printer’s role as a Talker (the UNT com-

mand will be explained later).

== @
L-d

Printer

Printer

There are two forms of the End of

Transmission message: End of Transmis-

34 The HP-IL System

sion, OK (ETO); and End of Transmission,

Error (ETE). These messages are always

sourced by the active Talker and sent to the

Loop Controller. As shown, these mes-

sages do not travel all the way around the

loop, but stop when they reach the Con-

troller. As data bytes are returned to the

Talker, it can check them to determine if

the bytes returning are the same as those

sent out. If they are, the Talker would make

the ETO message the terminating message.

If any bytes returned incorrectly, the

Talker should terminate the transmission
with the error form of the message, ETE.

The Controller could then react approp-

riately to this error indication, for example,

by attempting a retry.

Note that devices on the loop are not

required to check returning bytes for

errors. If they don’t do error-checking then

they are not permitted to source the ETE

message. Obviously, however, good system

design procedures would incorporate

error-checking. Note also that the Con-

troller’s response to an error indication is

not specified. Recovery procedures are left

entirely up to the system designer.

THE TALK COMMAND
MESSAGES

As explained earlier, the printer must play

the role of Talker when it wants to put

status information out on the loop. There

are two talk-related command messages

and they correspond to the two listen

command messages described in preceding

paragraphs—the Listen Address (LAD)

and Unlisten (UNL) messages. The two

talk commands are: Talk Address (TAD)

and Untalk (UNT).

Talk Address (TAD)

The TAD messageis sent by the Loop Con-

troller to cause a particular device to

become the active Talker. In order for a

device to be able to put any information

out onto the loop, it first must be addressed

as a Talker. While there can be multiple

active Listeners on the loop at the same

time, there can only be one active Talker on

the loop.

Like the Listen Address (LAD) com-

mand, the TAD command message

includes an address and is directed to a

single, specified device on the loop. Also, as

with the LAD message, there is a form of

the TAD message command thatis defined
as My Talk Address (MTA). This message

is simply the TAD message that contains

an address which matches that assigned to

the device receiving the TAD message. For

example, assume that our printer interface

has been assigned an address of 2.

If the TAD message is received contain-

ing an address of 1, then the printer inter-

face simply passes the TAD message on to

the next device.

The TAD message in this case was not

directed to the printer interface, but to

Device 1, which assumes the role of Talker.

In this illustration, Device 1 decodes the

TAD message as My Talk Address (MTA).

HE
L—d

Printer

Device 1 Device 2

r—

L

r—
{_—CrapD)

Printer

Device 1 Device 2

r~
1T
- (TADI = MTA)

When a TAD message that contains an

address of 2 is received, however, the prin-

ter interface decodes this as My Talk

Address (MTA) and takes the necessary

steps to prepare itself for the role of Talker.

L-J

Printer

Device1 Device 2

r—

i |
L-J

(TAD2 = MTA)

Notice that Device 1 is no longer shown

as a Talker (T), since there can only be one

active Talker on the loop at a time. In fact,

when any device receives a TAD address

message that contains an address other

than its own (not MTA) the device must

automatically deselect itself as a Talker.

When a device receives a TAD message

whose address does not match its own

address, the device decodes this message as

OTA (Other Talker Address).

Of course, the TAD message must be

followed (just as with the LAD message) by

an RFC (Ready For Command) message

to ensure that the devices have completed

the process of adopting their new roles.

Printer

35Chapter 3: Using a General-Purpose Interface

Untalk (UNT)
The UNT command message is used to

return the active Talker to the idle state. As

discussed in the preceding paragraphs, the

active Talker can also be returned to the

inactive state simply by issuing another

TAD message addressing a different

Talker. So, you rarely will have to use this

message. It might be useful in some special

circumstances, however, such as when you

need to have no active Talker device on the

loop. Therefore, the specification has

included this command message to ensure

that there are no logical or functional

“holes” that might cause unforeseen diffi-

culties under special circumstances. Since

this command message will be infrequently

used, it will not be discussed any more at

this point.

DATA GROUP
MESSAGES

All of the messages discussed so far are

used to maintain system discipline, estab-

lish system configurations, and so on. They

might, therefore, be considered system

overhead, since the purpose of a system

obviously is not to simply maintain itself,

but to accomplish some task. The task that

an HP-IL system is expected to accomplish

is the transfer of information or data

between devices that comprise the system.

The data transferred around the loop are

contained in Data Byte (DAB) messages

and these messages will constitute most of

the traffic on the loop.

Data Byte messages are sourced by the

active Talker on the loop and sent to the

36 The HP-IL System

active Listener or Listeners on the loop.

Data Byte messages do not include an

address. If you are a Listener and you

receive a Data Byte message, then you must

assume that it is directed to you;that is, the

primary function of a Listener is to receive

data bytes.

The information thatis contained within

a data message is left entirely up to the
system designer. This information and its
interpretation is completely device-

dependent. You can also code the informa-

tion in any way you want, although it is

strongly recommended that ASCII be used

whenever possible to provide maximum

compatibility with other devices.

When devices that are not Listeners

receive Data Byte messages, they must

simply pass them on around the loop. Lis-

teners receiving Data Byte messages also

pass them on around the loop while retain-

ing the information for their attached

device. Thus, if our printer’s interface

adapter has been addressed as a Listener,

all data messages that it receives would be

passed on around the loop and it would

also send them to the printer.
There is a special type of data message

called the End Data Byte (END). This mes-

sage is the same as the Data Byte just de-
scribed and also contains a byte of data,

but it can be used to indicate an end-of-
record condition to the Listener. The effect
of the END message on a deviceis up to the

designer and it is treated exactly the same

as any other Data Byte by the system. It

might be used for such things as an end-of-
line indicator for some devices.

It is important that you not confuse the

END message with the EOT messages de-

scribed earlier. The END message does not

terminate a transmission. The Talker must

always send an EOT message when it has

finished. Also note that use of the END
message is optional. If a device does not
require it, you need not useit.

CHAPTER 4

A Component Level
Interface to HP-IL

his chapter will discuss how you

might create an interface to

HP-IL using some type of LSI

(Large Scale Integrated) component or

“chip.” This level must begin to deal with

the details of the HP-IL specification even
more intimately than in Chapter 3. Once

again, the discussion will begin by describ-

ing some of the characteristics and capabil-

ities that an LSI HP-IL interface compo-

nent might have.

AN OVERVIEW OF
AN INTERFACE CHIP

Figure 4-1is a block diagram of a hypothet-

ical chip that could be used to interface

“foreign” devices to HP-IL. If you compare

this figure to Figure 3-l in the preceding

chapter, you will see many similarities.

This should not be surprising, since the

functions provided by the chip must be

quite similar to those provided by the adap-

ter described in Chapter 3.

The level of detail shown in Figure 4-1 is

greater than that in Figure 3-1 because HP-

IL operations will be discussed in more

detail in this chapter. But first, the func-
tions provided by our interface chip should

be described.

Receiver Control Logic

This logic converts the input signals from

the loop to logic levels and controls loading

of the serial-bit stream into the input

buffer. Every message on the loop is sent as

a sequence of 11 bits. These 11 bits com-

prise whatis called a message “frame.” The

first bit, called the “sync bit,” is coded in a

special way so that devices on the loop can

recognize the beginning of a message

frame. The input detector logic must, there-

fore, monitor the inputs from the loop to

detect the sync bit marking the beginning

of a message frame.

37

38 The HP-IL System

To *—] Transmit .| Output . Driver

Encoder Register ta— Logic < Loop

 (11 bits)

)

 itError
Checking
Logic

Input
Register |—

Input |
| Buffer

(11 Bits)

Receiver

=1 Control
Logic

— From Input
Detector

Loop

Register Array

Data
Control

Status/ Mode RD
Data

je——

Address K : M Transfer [> Data Bus
Logic

j@«——— WR
 * External Device or

System
ja——— CS| Interface

Control
 Logic Address A~1

Compare \—]‘———\

'

] [
Decode
Frame Acceptor |

:-> Logic K——

FIGURE 4-1. Block diagram of a component-level interface to HP-IL

When the sync bit has been detected,it

and the bits that follow will be loaded into

the 11-bit input buffer under control of the

receiver logic. The use of the word

“receiver” to describe this logic function is

quite deliberate. Earlier chapters discussed

such device roles as Talker, Listener, and

Controller. These roles are actually just a

few of what the HP-IL specification defines

as “interface functions.”

There are 17 different interface functions

defined, and all of them will be described in

detail in Chapter 6. At this point we simply

want to introduce the concept, since these

functions shape the characteristics of inter-

faces to the loop. The Receiver interface

function is responsible for receiving mes-

sages from the loop. All devices on the loop

obviously must have this capability regard-

less of whatever primary role (Talker, Lis-

tener, or Controller) they are playing. As

you’ll see later, however, many ofthe inter-

face functions are optional.

After the entire 11 bits have been loaded

into the input buffer, they are transferred
to the input register by the receiver control

logic. From there, the input message can be

decoded and transferred around between

the various resources of the chip.

Frame-Decoding Logic

As stated in preceding paragraphs, each

message frame consists of 11 bits. The three

most significant bits define the particular

category of message; for example, com-

mand message, data message, and so on.

The remaining eight bits are data bits

which may further define the type of mes-

sage within one of the categories or which

may simply contain a byte of ASCII data.

L Message Frame _l

|C2 C1 C0 D7 D6 DS D4 D3 D2 DI DO|

HEEEEEEERER
TT——

1—7Data Bits

Control Bits

Message frames travel around the loop

with the most significant bit first. Thus,

after the first three bits (C2,C1,C0) have

been received, it would be possible to

determine the category of the message

being received. In some cases, this might be

used to speed up loop operations, since a

message need not always be fully decoded

before determining whether it might be

passed on to the next device on the loop. If

you want to take advantage ofthis fact, you

can add some logic to pre-decode these first

three bits of the message between the input

buffer and input register in Figure 4-1.

Address-Compare Logic

Chapter 3 described two commands, Listen

Address (LAD) and Talk Address (TAD),

that included an address as part of the

command. As you’ll see later in this chap-

ter, there are other commands that also

include address information. When a mes-

sage that includes an address is received by

a device which has been assigned a different

address, that device typically will take no

action other than passing on the message.

Thus, Figure 4-1 shows some address-

compare logic. This logic will compare the

address contained in the message with its

Chapter 4: A Component Level Interface 39

own address contained in an on-chip

address register. If the two addresses

match, the frame-decoding logic would be

enabled. Otherwise, the message would

simply be passed on along the loop.

When a message contains an address, the

address is in the five least significant bits

(the last five bits received) of the message

frame.

C2 C1 C0 D7 D6 D5 D4 D3 D2 D1 DO

HEEEEEEEEEE
W

r—5-bit address

(0-30)

Note that valid addresses are in the range

of 0to 30, not 0 to 31. An address of all 1’s

(31 decimal) is not permitted since this

address is reserved for special commands

(Unlisten, Untalk). This special usage will

be discussed later, along with an “extended-

addressing” capability that can be used to

have as many as 961 devices on the loop.

Acceptor Logic

The acceptor logic shown in Figure 4-1 is

the primary control logic for our chip. It

receives the decoded message frame infor-

mation and determines what action should

be taken by the chip (for example, retrans-

mit the message, pass data on to the exter-

nal device, and so on). This logic would

also control reading and writing of infor-

mation into the chip’s register array. The

action that the acceptor logic directs the

chip to perform would depend, of course,

not only on the contents of received mes-

sage frames, but also on the role that the

chip and its attached device are playing at

40 The HP-IL System

the moment. So, the actions taken might be

different if the chip were a Talker instead of

a Listener.
Previous paragraphs introduced the

concept of interface functions during the

discussion of the receiver logic shown in

Figure 4-1. The term “acceptor”is another

that is deliberately chosen for discussion

here because it is another of the interface

functions defined by the HP-IL specifica-

tion. Once again, the detailed discussion of

the acceptor interface function will be

deferred until Chapter 7.

Register Array

The register array block shown in Figure

4-1 is used to hold on-chip information

such as device address, status or mode,

control, and data. Additional “scratch”

registers might be provided for other spe-

cial functions or data manipulation. The

data register would be used to hold data

being transferred between the loop and the

external device interfaced by the chip.

The control register might hold informa-

tion needed by the chip to perform its var-

ious internal functions; for example,

information about the message currently

being processed or about the type of inter-

face to the external device.

The status/ mode register would contain

information about the role of the chip and

its attached device. That is, “am I an active

Talker, the System Controller,” and so on.

The address register would contain the

address assigned to the chip and its at-

tached device. This address typically would

be loaded into the register by the attached

external device and would be used by the

address-compare logic to determine if

addressed messages were intended for this

device.

Data Transfer and Interface

These logic blocks implement the interface

between the chip and the attached external

device. Data transfers between the chip and

the external device would typically proceed

rather independently, or at least asynchro-

nously from transfers between the loop and

the chip. For example, when the loop

requires information from the device, the

chip would signal the device, obtain the

data, and then put the information back

out onto the loop.

Assume that the external device con-

nected to the chip is some type of micro-

computer. You might, therefore, also

assume that the interface the chip provides

would be a generalized “microcomputer-

type” interface. While it is beyond the

scope of this book to provide any sort of a

detailed discussion of such an interface,

here are a few general characteristics you

would expect to encounter.

First, the chip would provide a bidirec-

tional, eight-bit data path for transfer of

information between the microcomputer

and the chip. These transfers of informa-

tion would be synchronized by the read

(RD) and write (WR) strobe signals gener-

ated by the microcomputer.

Second, you might expect a microcom-

puter to treat the HP-IL interface chip

simply as some type of input/output

device. Therefore, we have provided a chip-

select (CS) input to the chip to enable the

microcomputer to distinguish the chip

from other devices that might also be con-

nected to the microcomputer system. We

have also provided three register-select

inputs (RS0-RS2) to allow the microcom-

puter to transfer information between itself

and a particular register within the chip’s

register array.

Driver Logic

This logic is responsible for transmitting

messages out onto the loop. Once again,

the nomenclature used here is quite inten-

tional: “Driver”is one of the interface func-

tions defined by the HP-IL specification.

While most of the discussion of this and

other interface functions will be provided

in Chapter 7, let’s look briefly at how the

Driver interface function differs from the

more primary function of Talker.

A Talker on the loop must be able to

generate and transmit information out

onto the loop. Therefore, if a device is

assigned the role of Talker, it must also

implement the Driver interface function.

However, even if a device is not a Talker,it

must still be able to at least retransmit mes-

sages it receives back out onto the loop to

the next device. Therefore, all devices

would have to include the Driver interface

function.

At this point, perhaps the concept of

interface functions as distinguished from

the primary “roles” of loop devices is

beginning to take shape. Interface func-

tions are a way of conceptually dividing all

the tasks that have to be accomplished by

devices on the loop into various categories

or functions. A particular device may

implement some of the functions based on

Chapter 4: A Component Level Interface 41

its own characteristics and needs, and is

required to implement certain ofthe inter-
face functions if it is to participate at all on

the loop.

Output Register

This register holds the 11-bit message

frame that is going to be sent out to the next

device on the loop. This message might

simply be the message that was just

received from the preceding device on the

loop and could be obtained directly from

the chip’s input register. Alternately, it

might be coming from the microcomputer

via the register array, or from the register

array under control ofthe chip’s own logic.

The source of the outgoing message

depends on what mode the device is operat-

ing in and/or on the preceding message

that was received.

Error-Checking Logic

The error-checking logic included in Fig-

ure 4-1 is an intrinsic and important part of

the HP-IL scheme. Since all devices that

can source a message (that is, generate an

original message and send it out on the

loop) typically wait until that message

returns before sourcing another, error-

checking can be easily implemented. The

HP-IL specification does not require that

any device implement error-checking. It

strongly advises, however, that all devices

include this capability. This advice should

usually be heeded. Since you usually have

to wait for a message that you’ve sent out to

return before you can do anything further,

why not check to see if it returned exactly

as you sentit?

42 The HP-IL System

Transmit Encoder Logic

This small section of logic simply converts

the parallel message frame contained in the

output register to the serial-bit stream at

the voltage levels required by the loop.

MICROCOMPUTER AS
CONTROLLER

Assume in this chapter that the device

interfaced to the loop via the chip is a

microcomputer. Further, assume that this

microcomputer is going to perform as the

Controller of the loop. Since HP-IL is
intended for low-speed, low-power appli-

cations, you might expect that a relatively

powerful device such as a microcomputer

would be the Controller on the loop.

As Controller, the micro (for the sake of

brevity, microcomputer will be

abbreviated as “micro” for the rest of this

chapter) will have a great deal more

responsibility than did the thermal printer

described in Chapter 3. The printer was

primarily a Listener. The micro, on the
other hand, must be able to assume all of

the roles (Talker, Listener, and

Controller). And, as Controller, its tasks

require more intelligence. Let’s discuss the

various messages that the micro must

handle.

COMMAND GROUP
MESSAGES

As you saw in Chapter 3, the command

group messages are used to establish initial

operating conditions on the loop, change

the operating modes and roles of devices on

the loop, and generally maintain discipline

and control of the loop system. Here are

the command group messages that a micro

might be expected to source in its role as

Controller:

+ Interface Clear (IFC)

+ Device Clear (DCL)

* Loop Power-Down (LPD)

+ Listen Address (LAD)

* Unlisten (UNL)

- Talk Address (TAD)

+ Untalk (UNT)

NOTE: All of these messages were dis-

cussed in Chapter 3, but will be discussed
again here as they relate to the micro in its

role of Controller.

- Selected Device Clear (SDC)

* Go To Local (GTL)

- Remote Enable (REN)

- Not Remote Enable (NRE)

+ Parallel Poll Enable (PPE)

- Parallel Poll Disable (PPD)

- Parallel Poll Unconfigure (PPU)

Interface Clear (IFC) Message

The IFC message can only be sourced by

the System Controller. Assume that our

micro not only can assume the role of Loop

Controller, but also that it is the System

Controller. As described in

Chapter 3, the IFC message will typically

be sent around the loop when the system is

first powered up to put all the other devices

on the loop into some initial idle state.

Step back fora moment and see how this

initial IFC transaction might be handled

between the micro and the interface chip.

When the system is first powered up,

assume that the chip itself is in some sort of

neutral or idle state: it is playing no active

role on the loop. The micro

would, therefore, write information into

the chip’s status register telling the chip

that it (and its attached micro) were going

to perform as System Controller for the

loop.

Next, the micro would send data repres-

enting the IFC command to the chip and
the chip would send the IFC message frame

out on the loop. When the IFC message

frame has returned from its trip around the

loop, the chip would inform the micro of

this fact and the micro would then send the

RFC command message out onto the loop

to ensure that all devices had completed the

Interface Clear command. (Refer to

Chapter 3 for a thorough discussion of the

IFC and RFC commands.)

Selected Device Clear (SDC)

The Device Clear message was discussed in

some detail in Chapter 3 and you should

refer to that discussion for an explanation

of how it might affect devices on the loop.

Now, the Selected Device Clear (SDC)

message can be introduced. The DCL mes-

sage caused all devices (that were capable of

responding to the message) to conduct

their own particular clearing activities

when the message was received. The SDC

message differs slightly in that only devices

which are currently playing the role of Lis-

tener on the loop will conduct the clearing

activity.

This differentiating can be quite useful

since there can be multiple Listeners on the

Chapter 4: A Component Level Interface 43

loop at any one time, but only one Talker

or Controller. Therefore, if the micro

wants to clear one or more devices (but not

all devices indiscriminately), it would send

out the SDC command and accomplish

clearing of all currently addressed Listen-

ers. Note that there is another command

which would be used if you simply want to

deselect all Listeners—the UNL command

described in Chapter 3. The SDC com-

mand would cause all Listeners to clear

themselves, but not necessarily take them-

selves out of the Listener role. For exam-

ple, SDC might cause a printer to perform

a top-of-form and a cassette drive to go to

the beginning of the tape.

Remote/Local Commands

Some devices have front panel knobs and

switches that can be used to control their

operation; a voltmeter is a good example of

this kind of device. Sometimesit is useful to

operate these devices manually from their

“local” controls, and other times it is handy

to operate them automatically over the

loop in “remote” mode. Three commands

permit the Controller to switch devices

back and forth between these two modes:

Remote Enable (REN), Not Remote Ena-

ble (NRE), and Go To Local (GTL). Most

devices have no local controls, or their

local controls are always active (such as

with a printer or a cassette tape drive).

These devices simply ignore these com-

mands and pass them on to the next device

on the loop.

When the voltmeter, for example,is first

powered on,itisin local mode. It commun-

icates normally on the loop, but the

44 The HP-IL System

instrument settings (voltage range, for

example) are controlled by the voltmeter’s

front panel controls and cannot be changed

by programming data from the loop.

One of the first things the Loop Con-

troller usually does is send the Remote

Enable (REN) command. By itself, REN

really doesn’t do much of anything. Devi-

cesstill respond to their local controls. But

now, the entire loop is in a state that allows

switching from local to remote and back

again as necessary.

Now, any time after the voltmeter

receives the REN command and then

receives its Listen Address (LAD) com-

mand, it will immediately switch to remote

mode. This makes sense, because the device

must become the Listener anyway, in order

to receive the proper knob settings from the

loop. This also allows the Controller to

select the device or group of devices it

wants to control remotely, while leaving

the others in local mode. Once in remote,

the device will remain in this mode even

though the Controller later sends the

Unlisten (UNL) command and then makes

some other device a Listener.

When the Controller wants to put the

voltmeter back into manual mode, it sends

the Go To Local (GTL) command. This

command is similar to the SDC command

described earlier in that only those devices

currently addressed as Listeners pay any

attention to it. Once again, this permits the

Loop Controller to choose which device(s)

it wants returned to local mode.

If the Controller wants all devices

returned to local, it can send the Not

Remote Enable (NRE) command. This not

only puts all devices into local mode at the

same time, but also takes the loop out of

Remote Enabled state. Now all devices will

stay in the local mode (even though they

receive their LAD command) until they get

the REN-LAD sequence once again.

PARALLEL POLLING

There are three command messages in this

group and, since they are all interrelated,

they will be discussed together.

Chapter 3 discussed the Send Status

(SST) message and mentioned that it might

also be described as “serial polling,” since

the Controller could use that message to

discover the status and needs of any partic-

ular device on the loop. Obviously, this

serial-polling procedure could take quite

some time if there are many devices on the

loop. Therefore, the specifiers of HP-IL

have provided a more time-efficient

method of discovering the needs of devices

on the loop: parallel polling.

The SST message not only is addressed

to a single device on the loop (serial pol-

ling), but it can also be responded to only

by devices that are currently addressed as

active Talkers on the loop. The parallel-

poll capabilities that can be implemented

by devices on the loop allow the Controller

to quickly discover the needs of all devices

(that is, all devices that implement this

function) on the loop. So, youdon’t have to

first address a device as Talker and then ask

it forits status.

Parallel Poll Enable (PPE)

This command is sent by the Controller to

a specific device on the loop to activate that

device’s parallel-poll response capability.

Though a device has been designed with the

parallel-poll response capability included,

it must specifically be enabled by the Con-

troller before this capability is utilized.

This allows the Controller complete flexi-

bility in configuring and controlling the

loop. For example, certain polling opera-

tions might apply to only certain device

types. In this case, the Controller would

only want responses from devices of that

particular type: responses from other devi-

ces at that time would decrease the effi-

ciency of the polling operation.

Remember, the PPE message is directed

to a specific device on the loop. The mes-

sage does not contain the address of the

device to be enabled. Instead, the PPE

message is always assumed to be directed to

the active Listener on the loop. You will

recall from Chapter 3 that there can be
more than one active Listener on the loop.

Therefore, you would usually want to send

the Unlisten (UNL) message out first to

deactivate all Listeners. Then you would

send the Listen Address (LAD) message

out to the device that is going to be enabled

for parallel polling. Finally, you would

send the PPE message around the loop to

actually enable that device’s poll-response

capability. The sequence of these messages

can be illustrated as follows:

- UNL - Unlisten message to deactivate

all Listeners.

- RFC - Ready For Command ensures

that the UNL command has

been completed.

- LAD2 - Device 2 addressed as active

Listener.

Chapter 4: A Component Level Interface 45

* RFC - Ensures that the LAD com-

mand has been completed.

- PPE - Causes Device 2 to enable

its poll-response capability.

- RFC - Ensures that the PPE

command has been completed.

This entire sequence, including the UNL

message, would have to be repeated for

every device on the loop that is to have its

poll-response capability enabled. This

sequence may seem very cumbersome, and
you may be asking yourself if it wouldn’t be

easier to just perform serial polling of the

individual devices on the loop. Remember,

however, that this sequence is the configu-

ration portion required to set up the devi-

ces for parallel polling. You might only

have to perform this sequence once at the

time you power up the system or, at most,
at quite infrequent intervals during system

operations. The actual polling operation s,

as you’ll soon see, quickly and easily

accomplished.

While the PPE message does not contain

the address of the device that is to be

enabled, it does contain some configura-

tion information that determines how the

device will subsequently respond to a par-

allel poll. Here is the format of the PPE

message:

C2 C1 C0 D7 D6 DS D4 D3 D2 D1 D0

[nlolo]n[olo[onlnlalsl
Na——

T-—lndicates Bit #
(0-7) to use

for poll response

1 means set bit if

service needed

0 means set bitif

service not needed

46 The HP-IL System

The seven most significant bits contain

the bit pattern for the PPE message. The

four least significant bitstell the device that

is being enabled for parallel polling how it

should respond to subsequent polling

operations. Bit D3 (the “S-bit”) defines

the sense or polarity of the device’s

response to a poll. If the S-bit is “1,” the

device must respond to a poll by setting the

appropriate bit in the poll word if it needs

service. If the S-bit is “0,” the device

responds to a poll by setting the approp-

riate bit in the poll word if it does not need

service.

The three least significant bits in the PPE

message define which bit in the poll word

the device is supposed to set during its

response to polling. For example, if these

three bits are zero (000), the device would

set the least significant bit in the poll word

and if these three bits are one (111) the

device would use the most significant bit of

the poll word (bit D7) to respond.

The last several paragraphs have

referred to the poll word that the device

manipulates during its poll response. In

actuality this poll word is part of the Iden-

tify (IDY) message.

Identify (IDY)

The Identify message is sent out by the

Controller to determine if devices on the

loop need service.

C2 C1 C0 D7 D6 D5 D4 D3 D2 D1 DO

Llelxx[x x| x|x[x[x]x]
———

+—F‘oll response bits set

by configured devices

 Service request bit. Set by any

device needing service

Any device requiring service from the

Controller must set the service-request bit

(C0). Note that this bit can be set by devices

that do not have Parallel Polling Enabled.

The IDY message is also used in serial-

polling operations. When the IDY message

completes its circuit of the loop and returns

to the Controller, bit C0O can be checked to

see if any device is requesting service. If CO

is set, it indicates that somebody out there

needs service. If there are devices on the

loop that have Parallel Polling Enabled,

they would not only set bit C0O, they would

also set their assigned bit in the data por-

tion (D7-D0) of the IDY message. Thus,

the contents of the IDY data byte can be

checked when the message has been

returned to the Controller to determine

which of the devices capable of responding

to parallel polling has requested service.

Note that it is quite possible that more

than one device at a time could respond to

the parallel poll. Each device requiring ser-

vice uses its own specific bit to respond.

You should also note that it is not one of

the inherent functions of the Controller to
decode the IDY message when it returns in

order to determine which device or devices

require service. Any decoding of the IDY

message, and the subsequent course of

action to service devices, would depend on

the system you have designed. For exam-

ple, you would expect the interface chip to

decode the fact that the service-request bit

is set when the IDY message returns. The

chip would then pass this information

along with the IDY data byte to the micro.

It would then be up to the micro to decode

the data byte, determine who needs service,

and then initiate the appropriate loop

operations to provide that service.

Parallel Poll Disable (PPD)
And Unconfigure (PPU)

These two messages terminate the parallel-

polling function that was set up by the

Parallel Poll Enable (PPE) message. The

PPD message causes devices which are cur-

rently addressed as Listeners to no longer

respond to the parallel polls. If you subse-

quently want to reenable one of these devi-

ces, you must send it the PPE message.

However, devices that are not currently

addressed as Listeners, but which have

been enabled for parallel polling, are not

affected by the PPD message and retain

their ability to respond to polls.

The Parallel Poll Unconfigure (PPU)

messageis used by the Controller to disable

all devices on the loop from responding to

parallel polls. When a device receives this

command, regardless of whetherit is cur-

rently addressed,it disables its parallel-poll

response capability. Thus, the PPU mes-

sage can be viewed as a system clear or reset

message for parallel polling, while the PPD

message is more like a Device Clear

operation.

READY GROUP MESSAGES

The ready group messages coordinate and

synchronize the transfer of messages and

data between devices on the loop. As noted

in Chapter 3, the ready group messages can

be sourced by devices other than the Con-

troller. In the discussions that follow, how-

ever, you can usually assume that it is our

Chapter 4: A Component Level Interface 47

micro/interface chip combination that is

generating the messages.

Here are the ready messages that our

micro might source:

- Ready For Command (RFC)

+ Send Status (SST)

* End of Transmission, OK (ETO)

+ End of Transmission, Error (ETE)

NOTE: The above messages were dis-
cussed in Chapter 3, but will be dis-
cussed again here as they relate to the
micro in its role as Controller.

- Send Data (SDA)

- Not Ready for Data (NRD)

+ Send Device ID (SDI)

- Take Control (TCT)

Ready For Command (RFC)

Chapter 3 described how the RFC message

is used by the Loop Controller to deter-

mine when an immediately preceding

command message has been executed. The

command message-RFC sequence will

occur quite frequently, since HP-IL pro-

tocol demands that every command mes-

sage be followed by the RFC message—

this is part of the Loop Handshake

procedure. Because this sequence will

always be required, we would not expect

our micro to have to deal with it. Instead,

we would expect the interface chip to

automatically send out the RFC message

when it has received back a command mes-

sage that it has previously sent out to the

loop. The interaction between the chip and

the micro would thus be as follows: The

micro would place the chip in the Con-

troller mode (if it were not already there)

48 The HP-IL System

and would then send the chip the command

message (CMD in our illustration) that is

to be sent out on the loop.

Interface Chip

Micro-

computer

L_J

The chip would then proceed to send the

command message out to the loop without

further intervention or attention from the

micro.

=

rea

L
-

L_J

Micro-

computer
)

When the command message (CMD)

returns to the chip, the chip would auto-

matically generate the RFC message and

send it out on the loop. Once again, this

would be done autonomously by the chip

without any need of supervision by the

[t} Micro-

L J computer

L—d

f———(-‘ RFC
S—_}

r=a icro-™ C | Micro
L computer

When the RFC message finally returns

to the chip, the chip informs the micro

(using an interrupt input to the micro or

some other predefined method) that the

previously issued command had been suc-

cessfully completed. The micro could then

proceed with the next desired loop

operation.

="

" '
{_HCRFCS

Send Status (SST)

Remember that this message is used by the

Controller to obtain one or more bytes of

device-oriented status information from

the device that is the active Talker on the

loop. When the active Talker receives the

SST message, it does not retransmit this

message, but instead sends one or more

data bytes (DABs) back to the Controller.

Note that the interpretation of these data

bytes being returned in response to the SST

message is entirely up to the system

designer. Therefore, you would not expect

our interface chip to perform any decoding

or analysis of these data bytes. Instead, it

would simply pass them on to the micro for

processing.

End of Transmission (ETO, ETE)

Chapter 3 described how these messages

are always sourced by the active Talker and

directed to the Controller. The ETO mes-

sage indicates that the Talker correctly

received back all of the data bytesit sent. If

the chip received this message from the

Talker, it would simply indicate that the

transmission was complete and the next

loop operation could therefore proceed.

If the chip received the ETE message

Interrupt Micro-

computer

indicating that there were errors detected

by the Talker in the returned data bytes, the

chip would report this error status to the

micro. The action taken at this point would

be entirely up to the micro. The chip would

likely take no other action beyond report-

ing the error. Typically, the micro would

initiate some recovery procedure such as

retrying the transmission or,if that failed,

requesting operator intervention.

Send Data (SDA)

This message is sent by the Controller to

the active Talker and causes the Talker to
begin transmitting data bytes (DABs) on

the loop. Since there can only be one active

Talker on the loop at any one time, the

SDA message does not contain any address

information.It is always directed to the one

device on the loop currently acting in the

role of Talker.
When the Talker receives the SDA mes-

sage, it does not pass the message on

around the loop back to the Controller.

Instead, it substitutes its first data byte

(DAB) for the SDA message and thus be-

gins its transmission of data. After the

Talker has sent its last byte of data it sends

the appropriate End of Transmission mes-

sage (ETO or ETE) to inform the Loop

Controller that another loop operation can

begin.

The data being sent around the loop by

the Talker is passed on by all devices until it

has returned to the Talker, which then

replaces that byte with the next byte. The

data is not addressed to any particular

device; it is directed to all devices on the

loop currently addressed as Listeners.

Chapter 4: A Component Level Interface 49

Therefore, it is up to the Controller to

ensure that only devices for whom the data

is intended are active Listeners when the
SDA message is sent out.

Here’s a sample of a possible sequence

involving the SDA message:

The micro sends the SDA message to the

chip, having previously set up the chip as
Controller and having defined an active

Talker and active Listener on the loop.

Interface Chip

Micro-

computer

The chip then transmits the SDA mes-

sage out onto the loop and the message is

by definition directed to the Talker.

Micro-

computer

When the Talker receives the SDA mes-

sage, it does not pass it on, but instead

substitutes its first data byte (DABI).

Micro-

computer

The active Listener(s) takes a copy of the

data byte to do with it whatever is approp-

riate for that device. For example, if itis a

printer, it would put the message into the

print buffer. The data byte is also passed on

around the loop back to the Talker.

50 The HP-IL System

Micro-

computer

When the Talker gets the data byte

(DABI1) back fromits trip around the loop,

it can then send out its next byte of data

(DAB2). Note, the Talker should also be

checking each data byte for errors as it

returns.

Micro-

computer
DAB2 L

After the Talker has received its last byte

of data back,it sends the ETO message (or

ETE if there were errors) around the loop

to the Controller.
r=n

Micro-

computer

When the Controller (our interface chip)

receives the ETO message from the Talker,

it would notify the micro (perhaps usingan

interrupt input) that the transmission was

complete and that another loop operation

could, therefore, be started. Note that the

ETO message does not change the role of

any of the devices on the loop. The Talker,

Listener, and Controller all maintain their

assigned roles until they are told otherwise.

Micro-

computer

 Interrupt

There is one other point worth noting

regarding to the transactionjust described.

The interface chip should be able to

assume more than one role at a time. For

example, it could be the Controller and

also a Listener. If this were the case in the

preceding illustrations, then the interface

chip, in addition to passing the data bytes it

gets from the Talker on around the loop,

might also pass each of the data bytes on to

the micro. For example,if the Talker was a

tape cassette and was sending data to a

Listener that was a printer, there might be

times when the micro also wanted to exam-

ine that data while it was available on the

loop. In this case, the micro would simply

address both the printer and the interface

chip as Listeners before issuing the SDA

message.

Not Ready For Data (NRD)

The preceding description of the Send

Data (SDA) message showed that once the

Talker had received that message, it began

sending data and continued to completion

signaled when the Talker sent the ETO or

ETE message. However, in any system

involving multiple devices, there often will

be situations where you want the system

(the loop) to be able to interrupt processes

that are in progress for other activities of

higher priority. This is precisely the capa-

bility that the Not Ready for Data (NRD)

message provides for the loop.

The NRD message allows the Controller

to interrupt a Talker-to-Listener transmis-

sion so that it can use the loop for some

other operation. As is the case with the

Send Data message, the NRD message

contains no address information, since it is

always directed to the currently active

Talker (and there can be only one active

Talker on the loop at a time).

Here’s a typical sequence involving the

NRD message to see how it is used.

Let’s assume that the Talker is sending

its sixth byte of data (DAB6) around the

loop when the micro decides that it needs

the loop for some other operation and

sends the NRD message to the interface

chip.

Interface Chip

Micro-

computer

When the chip subsequently receives the

data byte, it retains the data (in an internal

register) and instead sends out the NRD

message on the loop.

Micro-

computer

When the Talker receives the NRD mes-
sage from the Controller instead of the

expected data byte, it must note that fact

and then pass the NRD message onaround

the loop.

(DAB6

Micro-

computer

When the chip receives the NRD mes-

sage back from the loop,it sends the data

Chapter 4: A Component Level Interface S1

byte (DAB6) that it has been hanging on to

back out on the loop to the Talker.

Micro-

computer

The Talker, having taken note of the

NRD message on the preceding go around,

now knows that it has received its preced-

ing data back and must terminate the data

transmission for now. It then sends out the

ETO (or ETE,if appropriate) message. If

there is data still left to send (for example,

DAB?7,8, and so on) the Talkeris expected

to retain that data for later transmission.

DAB7

!
!
1
!

Micro-

computer

After the micro has finished using the

loop for the operation that was of higher

priority, it can subsequently cause the

interrupted transmission to be resumed at

the point where it was interrupted. The

micro would issue another SDA (Send

Data) message to the interface chip which

would then send the message out onto the

loop.

Micro-

computer

When the Talker receives this new SDA

52 The HP-IL System

message, it should resume its interrupted

data transmission where it had left off by

sending out the next data byte (DAB7) on

the loop. Usually, if the Controller had

changed the role of the Talker while it was

using the loop for another operation, the

Talker is expected to be able to resume a

previous transaction (and a former role)

where it had been interrupted. But respon-

sibility for role assignments and continuity

during interruption belongs to the

Controller.

Micro-

computer

Send Device ID (SDI)

This command is used by the Controller to

obtain detailed information from the cur-

rently active Talker aboutits identity and

characteristics. It is thus similar to the Send

Status (SST) command, described earlier

in this chapter and in Chapter 3.

Once again, no address information is

needed as part of the SDI message, since it

is always directed to the sole active Talker

on the loop.

The Talker handles this message in the

same way it handles the SST message. It

does not pass the message on around the

loop, but instead substitutes data bytes

which are directed back to the Controller.

When the Talker has sent all of the identifi-

cation data bytes (and received them back

from their circuit of the loop) it must send

the ETO (or ETE if there were errors) to

inform the Controller that the transmission

is complete.

Just as with the Send Status message,

interpretation of the identification infor-

mation is entirely up to the designer, but

usually includes the manufacturer’s initials

and model number of the device (for

example, HP3468A).

Take Control (TCT)

This message allows the active Controller

to designate another device as Controller

and pass control of the loop to that device.

The device to which controlis being passed

mustfirst be addressed as the active Talker.

When the Talker subsequently receives the

TCT message, it assumes the role of Con-

troller. The sequence involved in transfer-

ring control is illustrated as follows.

First, the micro sends the Talk Address

(TAD) message to the interface chip which

then sends the message out onto the loop.

In this illustration, we have shown the

TAD message being sent to Device 2 on the

loop. Of course, if Device 2 were already

the active Talker, this step would be

unnecessary.

Micro-

computer

The Controller must, of course, follow

the TAD message with an RFC message.

But since this step is always required,it is

not necessary to illustrate it.

After the RFC message has returned to

the Controller, the TCT message can be

sent. The TCT message does not contain

any address information, since it is always

directed to the active Talker and there can

be but one Talker on the loop at any one

time.

Micro-

computer

As soon as the Talker receives the TCT

message, it immediately assumes the role of

Controller. It does not pass the TCT mes-

sage on around the loop, but instead repla-

ces it with its first operation message

(CMD in this illustration).

Micro-

computer

The original Controller, our interface

chip, retains its role of Controller until it

receives a message. If the first message it

receives is anything other than the TCT

message, then it knows that there is a new

Controller and it abandons that role.

Micro-

computer

If the TCT message returns to the origi-

nal Controller, it indicates that the

intended new Controller could not assume

that role for some reason. In this case, the

original Controller retains that role.

SERVICE-REQUEST
DATA MESSAGES

Two types of data messages (DAB and

END) were described in Chapter 3. There is

Chapter 4: A Component Level Interface 53

one aspect of these messages that was not

discussed, however: that is the ability to

send a service-request to the Controller

using the data messages. The mechanism

that is used is essentially the same as de-

scribed earlier in this chapter in the section

on parallel polling and the related

messages.

To see how this mechanism works with

data messages, examine the bit pattern for

these messages.

C2 C1C0 D7 D6 D5 D4 D3D2 D1 D0

Lofol T T T T TTTT]

LData byte

Service Request bit

1 = device needs service

0 = no service requested

The eight least significant bits contain

the actual data that is to be transferred. The

two most significant control bits (C2,C1)

indicate that this is a Data Byte message.

Bit CO is the service-request bit. If this bit is

set to “1”it indicates that some device on

the loop requires attention from the

Controller.

The Controller monitors every Data

Byte message that transits the loop. If it

detects one that has the service-request bit

set, it knows that something needs service.

However, it does not know which device

requires service. Although Data Byte mes-

sages are generated by the active Talker on

the loop, any device on the loop can set the

service-request bit in the Data Byte mes-

sage as that message passes by that device

on the loop.

This approach provides a rather efficient

54 The HP-IL System

method for devices on the loop to interrupt

operations in progress if the system

demands this. Devices need not wait until

nothing is happening on the loop before

attempting to attract the Controller’s

attention. All they have to is set the service-

request bit the next time a Data Byte mes-

sage comes by.

Also recognize that the action the Con-

troller takes when it discovers that some

device is requesting service is not defined

by the HP-IL specification. This reaction is

up to the system designer. Typically, you

would interrupt the data-transfer opera-

tion in progress (unless it were of very high

priority or of a critical nature) and conduct

some sort of survey of the devices on the

loop. This survey might consist of a serial-

or parallel-polling operation, depending

on the system configuration.

AUTO-ADDRESS
MESSAGES

Devices have specific loop addresses and

some messages are directed to devices using

an address. Chapter 3 suggested that these

addresses might be assigned using some

sort of switches on the device or that the

addresses might be programmable.

As it turns out, HP-IL provides a mech-

anism that allows you (the Controller) to

assign and reassign addresses to devices on

the loop. Before describing how this is

done, however, we must point out that

devices on the loop are not required to have

the capability of having addresses pro-

grammed under loop control. You can

design a device that has a predefined,

“hardwired” address and it can also be used

on the loop. However, the loop is much

more flexible if addresses can be dynami-

cally assigned and reassigned.

There are two auto-addressing tech-

niques that can be used on the loop: the

primary auto-addressing mode allows up

to 31 devices to operate on the loop while

the secondary, or extended mode, allows as

many as 961 devices to be connected to the

loop.

Primary
Addressing Mode

Two messages are used in this addressing

mode to automatically assign addresses to

loop devices and to reconfigure the loop as

required. The Auto-Address (AAD) mes-

sage causes devices that have this capability

implemented to accept a new device

address and then pass a new address on to

the next device on the loop. The approach

is quite simple and straightforward.

Thefirst device to receive the AAD mes-

sage assumes the address of “1,” increments

that address (contained within the AAD

message) by 1 and passes the message onto

the next device. Thus, the loop devices will

be numbered sequentially from 1 to a max-

imum of 30 with the first device on the loop

(inrelation to the Controller) being Device

1 and the last device on the loop, before you

get back to Controller, having the highest

address.

When the Controller needs to reassign

addresses, it sends out the Auto-Address

Unconfigure (AAU) message to prepare all

the devices for new address assignments.

Secondary (Extended)
Addressing Mode

This mode of addressing lets you assign

addresses to as many as 961 loop devices by

using a two-byte address. In order to acti-

vate this mode, the Controller uses some

other address-assignment messages similar

to AAD. Each device receives not only a

primary address which can range from 0 to

30, but also a secondary address which can

range from 0 to 30. In order to make one of

these devices the active Listener or Talker,

the Controller sends the proper primary

address (TAD or LAD) and then followsit

with the correct secondary address, called

SAD. Not many systems will need this cap-

ability so it will not be discussed in detail

here.

Note that you can have some devices on

the loop capable of accepting secondary

addressing while others will only imple-

ment the primary addressing mode or per-

haps not accept auto-addressing at all.

Devices that do not implement a particular

level of auto-addressing simply pass on

those related messages to the next device

on the loop without changing the message

in any way.

ASYNCHRONOUS
OPERATIONS

All of the operations described in this and

the preceding chapters have been synchro-

nous in the sense that every operation is

conducted singularly—there are never two

competing or conflicting operations hap-

pening on the loop. You have seen that

Chapter 4: A Component Level Interface S5

there can be orderly terminations of an

ongoing operation such as a data transfer

to allow for servicing of another device’s

more immediate needs. But these termina-

tions or interruptions were conducted

within the synchronized flow of ongoing

operations by such techniques as setting

service request bits or inserting Not Ready

for Data (NRD) messages within the flow.

These techniques for altering ongoing

operations on the loop all adhere to one

rule: there is never more than one message

in transit around the loop at any given

time. There may be cases, however, when

the techniques described so far may be

inadequate. For example, if the device

sending data messages around the loop is

extremely slow, and there is a device on the

loop which requires rapid response to its

service-requests, then an alternate tech-

nique might be needed.

Once again, the designers of HP-IL have

provided a solution to this potentially vex-

ing quandary. They will allow multiple

messages to travel around the loop, but

only under special circumstances. The

mode of operation used during these spe-

cial circumstances is defined as “asynchro-

nous” operation.

Now that the subject has been brought

up, note that implementation of this

asynchronous mode should not be consi-

dered unless absolutely required by your

system, and then only with great caution,

since it can greatly complicate the logic

required within system devices. Addition-

ally, this mode of operation can endanger

what is otherwise an extremely data-safe

system. It becomes much more difficult to

56 The HP-IL System

ensure the integrity of data during asynch- addressing, very few systems will have need

ronous operations. As with secondary of this feature, so it will not be detailed.

CHAPTER 5

Some Typical
Loop Sequences

hapters 3 and 4 described sev-

eral messages that might be

observed during loop opera-

tions. This chapter will discuss and illus-

trate a number of loop sequences as a way

of pulling together the information pre-

sented about HP-IL thus far. Since we have

already described nearly all of the messages

that are used on the loop, the nomenclature

should be familiar to you. If the function or

use of a particular message is confusing to

you, refer back to Chapter 3 or 4 where it

was first presented, and to the Glossary,

which describes all of the HP-IL messages.

Obviously, we cannot describe all possi-

ble message sequences that might occur on

the loop. Furthermore, the sequences that

are described are not the only way, nor

necessarily the best way, that a particular

task can be accomplished. Instead, the

sequences presented here are intended to

give you a better feel for how the messages

are used and how devices on the loop in-

teract. No doubt, you will be able to come

up with more efficient and creative solutions

to these tasks as you become more familiar

with HP-IL.

A POWER-ON
SEQUENCE

In almost any system you might design,

you will need to establish initial operating

conditions when poweris first applied to

the system. Typical tasks that must be

accomplished upon first powering up an

HP-IL system include establishing which

device is the Controller, determining when

all other devices on the loop are ready for

operation, and initializing devices that are

on the loop.

57

58 The HP-IL System

Here is an example of a power-on

sequence:

IFC The System Controller

initially sends the Interface

Clear (IFC) message out to

the loop at regular, slow

intervals. The Controller con-

tinues sending the IFC mes-

sage until it receives the IFC

message back from its transit

around the loop. When the

IFC message is returned to the
Controller, it indicates

that all devices on the loop

have been powered-up, are

properly receiving messages,

and are in the process of ini-

tializing themselves.

IFC

RFC After the IFC message has
returned, the System Con-

troller sends out the

Ready For Command (RFC)

message. This message is not

passed on by devices on the

loop until they have actually

finished their initialization

operations and are ready to

receive the next command

from the Controller. Note

that the RFC command

would only be sent once, while

the IFC command message

would be sent continuously

until it was returned to the

Controller.

Once the RFC message has returned to

the Controller, other initialization proce-

dures that might be device-specific can be

accomplished using standard loop pro-

tocol.

INITIALIZING A SYSTEM
WITHOUT CONTROLLER

HP-IL allows you to have a system that has

no Controller. This is the ultimate

“friendly” system where the devices on the

loop know exactly what to expect from,

and what they must provide to, other de-

vices on the loop. Design of such “friendly”

devices may make sense in special applica-

tions; a printer simply logging readings

from a voltmeter, for example.

Let’s look at how initialization of such a

system might differ from the one just

described.

If there is no Controller on the loop,

then there must be one device that initially

starts out as the Talker. In this situation,

the Talker—while it needn’t perform the

tasks that a loop or System Controller

does—must initiate activity on the loop.

DABI1 First, the Talker must send its

first data byte out on the loop.

This device must continue

sending this same data byte
out onto the loop at slow,

regular intervals until it is

returned. When the first data

byte is returned, it indicates

that the other devices on the

loop are powered-up and are

properly receiving and re-

transmitting messages.

This Data Byte (DAB) message is thus

the equivalent of both the IFC and RFC

messages in a more typical system.

DAB2 Once the Talker on this loop
gets back its first Data Byte

DAB3 message, it proceeds to send

the rest of its data string at its

normal speed. When the last

Data Byte message has been

sent and the transmission has

been completed, the Talker

can begin sending the next
message string.

DABn

In this case, no EOT message is required

because devices in such a friendly loop

know that there is only a Talker and Lis-

teners on the loop. Loop protocol and dis-

cipline is therefore greatly simplified.

Transmission of these messages can con-

tinue indefinitely in this relatively undisci-

plined manner until or unless system

demands require that devices be capable of

responding to messages beyond those in

the repertoire of simple Talkers and

Listeners.

A DATA-TRANSFER
SEQUENCE

Transfers of data around the loop will typi-

cally be the most common task thatis per-

formed in an HP-IL system. Once system

roles and discipline have been established,

you want to start moving information.

Here is one possible sequence that might be

used to move some data around the loop:

UNL First, if necessary, the Con-

troller will send out the

Unlisten (UNL) message to

inhibit any other devices that

might have been addressed as

Listeners (and that should not

receive this data transmis-

sion.)

Chapter 5: Some Typical Loop Sequences 59

RFC The UNL message is fol-

lowed, as are all command

messages, by the Ready for

Command message.

LAD1 The Controller then will send

out the appropriate Listen

RFC Address (LAD) messages to

enable a device in the role of

LAD2 Listener on the loop. The
Controller can set up more

RFC than one device as listener.

Each device must be enabled

by a separate LAD message,

however, and each LAD mes-

sage must be followed by an

RFC (Ready For Command)

message.

After the appropriate devices on the loop

have been enabled as Listeners, the Con-

troller should send out the message to the

device that is to put data out onto the

loop—the Talker.

TAD The Controller sends out the

Talk Address message to en-

able one device on the loop to

send some data out onto the

loop directed toward the Lis-

tener(s).

RFC

SDA The Controller, when it

receives back the RFC mes-

sage, will send out the Send

Data (SDA) message. When

the device that has been

addressed as Talker receives

the SDA message, it replaces

that message with its own first

byte of data (DABI).

After the Talker gets its last

data byte back from its transit

around the loop, it must send

DABI1

DAB2

DAB3

DABn

ETO

60 The HP-IL System

the End of Transmission

(ETO) message out to indicate

that all of the data thatit sent

out, returned, and error-

checked correctly.

When the Controller receives the ETO

message back at the end of the data trans-

mission by the Talker,it replaces the ETO

message with the next loop operation.

Notice that completion of this data trans-

mission has not, of itself, changed the roles

of any of the devices on the loop. The

device that was sending data out to Listen-
ers on the loop is still the Talker and receiv-

ers of the data are still addressed as the

Listeners.

If any of the roles of the loop devices are

to change, the Controller must send out

some messages reassigning roles after it

receives the ETO message. (Remember, the

Controller does not retransmit the End of

Transmission message—regardless of

whether it is an ETO or ETE message. It

replaces this message with its next loop

operation message.)

INTERRUPTION OF
DATA TRANSMISSION

This subject was mentioned in Chapter 4

during the discussion on the need for the

Loop Controller to be able to jump inif a

slow-moving device were monopolizing the

loop, when another device had more urgent

need for access to the loop. Although

HP-IL has intentionally been designed for

use in relatively low-speed systems, there is

no reason why provisions cannot be pro-

vided to maximize the performance that

can be obtained within these constraints.

Interruption of data transmissions is one

way of squeezing as much performance out

of the loop as you possibly can (so far as

simple data throughput is concerned).

Interruption of a data transmission thatis

in progress between a loop Talker and one

or more loop Listeners requires the inter-

vention of the Loop Controller. Here’s one

way of doing it:

DABS Let’s assume that the Talker

has just sent its fifth data byte

out onto the loop. At this
point, the Controller decides
that it has more important
tasks to perform and hangs

onto the Talker’s fifth data
byte (DABS).

The Controller replaces the

fifth data byte (DABS) with
the Not Ready for Data
(NRD) message. When the

active Talker on the loop
receives this message back,

instead of the data byte thatit
sent out, it curtails its data

transmission and passes on
the NRD message to the Con-

troller. This response places

no small amount of responsi-

bility on the Talker. It must

recognize that the NRD mes-

sage indicates that it must

suspend transmission of its

data. When the Controller

gets back the NRD,it then

passes on the data byte which

was delayed.

Not only that, the Talker must

remember that when it finally

NRD

DABS

ETO does get its “lost” data byte
back, it now must insert an

ETO message onto the loop.

CMD When the Controller receives

the ETO message from the

Talker, it can then begin the

operation for which it inter-
rupted the data transmission

by sending out its next com-
mand message (CMD).

If the Controller subsequently sends out

the Send Data (SDA) message after having

readdressed the Talker that was active

when the previous data transmission was

interrupted, the interrupted data transmis-

sion resumes from the point where it was

interrupted. Thus, in our example here, if

the Talker is still addressed as the active

Talker when it receives the SDA message

again,it should respond by placing its next

data byte (DAB6) out onto the loop.

A SERIAL-POLLING
OPERATION

Serial polling is used by the Loop Con-

troller to discover the identity of a device

(or devices) on the loop that have signalled

they need attention by setting the service-

request bit in a message traveling around

the loop. As discussed earlier, a device on

the loop can indicate its need for attention

by setting the service-request bit in any

Data Byte (DAB) message thatis traveling

around the loop—regardless of who

initiated the transmission of that Data Byte

message.

When the Controller sees a message on

the loop that has the service-request bit set,

Chapter 5: Some Typical Loop Sequences 61

it may choose to respond immediately

(perhaps by using the NRD sequence de-

scribed previously to interrupt the current

loop transmission) or it may simply wait

patiently until the present loop operation

terminates normally. In either case, when

the Controller gains control of the loop,it

might use a sequence like this to find out

who requested service and why:

UNL First, the Controller should

send out the Unlisten com-

mand to prevent all the Lis-

teners on the loop from auto-
matically receiving the status
bytes that are going to be soon

sent out on the loop from
polled devices. (This is, of
course, followed by the RFC

message.)

The Controller addresses the

first device on the loop to talk.

(Of course, the Controller

may know that only certain

devices on the loop are capa-

ble of requesting service. If
this is the case, there is no

need for the Controller to poll

every device on the loop—it
can simply check those de-
vices that are capable of

requesting service.)

RFC

TAD1

RFC

The Controller transmits the

Send Status (SST) message

which the addressed Talker

replaces on the loop with its

status byte or bytes (DABs).

After the Talker has received

back its last status byte, it

must send out the ETO mes-

sage. The Controller will rec-

SST

DAB

ETO

TAD2

62 The HP-IL System

RFC ognize this as the end of the

status-oriented transmission

and replace ETO with a Talk

Address message (TAD2 in

our example) directed to the

next device on the loop thatis

capable of requesting service.

SST This same sequence of

addressing devices as Talkers

and then requesting that they

send status will be repeated
for all of the devices on the

loop. The Controller must

examine the status bytes as

they are returned from each of

the polled devices to deter-

mine which device(s) actually

require service.

DAB

ETO

If a particular device simply

returns the SST message to

the Controller instead of a
data byte, the Controller

knows that the particular

device does not implement the
serial poll function (and there-

fore cannot be the device

requesting service). It’s easy to

see that serial poll is very sim-

ilar to data transmission. The

main difference is that the

Controller receives the “data”

(status bytes) without actually

being addressed as a Listener.

PARALLEL POLLING
AND CONFIGURATION

As explained in the preceding paragraphs,

serially polling all devices on the loop, or

even just those devices on the loop capable

of responding to the serial poll, can require

quite a bit of time. If your system requires a

more time-efficient method of polling, you

can implement the parallel-polling func-

tion defined by the HP-IL specification.

Of course, the gains that you obtain by

implementing the parallel-polling capabil-

ity in devices onthe loop are not free. They

require that devices on the loop have addi-

tional logic or intelligence (also known as

$89%).
Let’s take a look at how the parallel pol-

ling works so that you can get a feeling for

how it might complicate the logic needed

by a device on the loop.

UNL First of all, the Controller

may want to send out the

Unlisten (UNL) command.

This prevents unwanted de-

vices from responding to the
subsequent parallel-polling

sequence. Alternately, or per-

haps additionally, the Con-
troller may send out the

Parallel Poll Unconfigure

(PPU) message. This would

reset any parallel-polling con-

figuration that was previously

set up on the loop.

RFC

PPU

Now, the Controller can begin to config-

ure the loop for parallel polling. This con-

sists of individually addressing each of the

devices on the loop that the Controller

wants to be able to respond to a parallel

poll.

LAD1 First, the Controller

addresses the desired device

RFC (Device 1 in this example) as a

Listener so that the device can

subsequently receive the

Parallel Poll Enable (PPE)

command.

Then, the Controller sends the

Parallel Poll Enable

command to the addressed

Listener. The PPE message

includes information indicat-
ing the bit that device should
use in subsequent poll
responses and the polarity of

the response (1 or 0). In this

example, the addressed Lis-

tener (Device 1) is expected to

use Bit 3 for poll response and
should set that bittoa “1”if it

requires service.

PPE13

RFC

UNL Now the Controller must

unaddress Device 1 as a Lis-

tener so that it can individu-

ally send polling information
to another device on the loop.

This sequence (LAD, PPE, UNL) must

be repeated for each unit on the loop that is

to be enabled for parallel polling. After all

the desired devices have been enabled, the

loop can be considered as “configured” and

normal loop operations can continue.

While this procedure may seem lengthy,

you should keep in mind that it probably

will not need to be performed frequently.

Furthermore, once this has been accom-

plished, the actual polling operation is

greatly simplified.

RFC

The Controller executes the

parallel poll by sending out

the Identify (IDY) message.

When this message is received

by devices that have had their

parallel-poll capability

IDY

Chapter 5: Some Typical Loop Sequences 63

enabled, they set the appro-

priate bit in the IDY message

according to the polarity pro-

grammed during config-

uration. They then pass the

IDY message on around the

loop. Devices that do not have

the parallel-poll capability, or

that have not been enabled,

simply pass the IDY message

on without altering it inany
way.

When the Controller gets the IDY mes-

sage back fromitsjourney around the loop,

it needs only to examine the state of the

data bits of the message to determine which

device or devices on the loop require ser-

vice. If only one device is assigned to each

data bit, then up to eight devices can be

rapidly polled by the Controller.

ASSIGNING
AUTO-ADDRESSES

The automatic assignment of addresses is a

very simple task as far as the Controlleris

concerned. It does, however, assume the

presence of additional logic on each of the

devices that are to be capable of responding

to the auto-address messages.

AAU First, the Controller may need

to send the Auto-Address Un-

RFC configure (AAU) message out

to the loop to reset any pre-

vious addresses. This also

prepares all devices on the
loop for reception of their new
addresses. When the

Controller receives the RFC

message back from the loop,it

64 The HP-IL System

can then proceed with address
assignment.

The Controller sends the first

auto-address message out to

the loop and the first device to
receive the message accepts

that address (1) as its address.

That device then increments

the address contained in the

message and sends the mes-

sage on to the next device on

the loop. That next device
repeats the procedure. It

accepts address 2 as its own,

increments the address and

retransmits the auto-address

message.

AAD1

AAD2

AAD3

AADn This process continues until
the auto-address message

returns to the Controller.

When the Controller gets

back the AAD message,it can

examine the message to

determine how many devices
have been assigned addresses.

The AAD message will con-

tain the highest address, plus

1, that was assigned.

If the AAD message returns to the Con-

troller containing an address of 31, it may

mean that there are too many devices on

the loop. To check this, the Controller

could send out the AADI message again.

Since devices should not respond to

another auto-address assignment until the

AAU message has been sent out, this

second attempt to assign addresses should

be ignored and the AAD1 message should

return unchanged. If the AADI message

has been incremented when it returns to the

Controller, it indicates that there are too

many devices connected to the loop. Some

sort of corrective action must therefore be

initiated, since the loop will not work if

there are too many devices connected.

PASSING LOOP CONTROL
TO ANOTHER CONTROLLER

As previously mentioned, there can be only

one active Controller on the loop at any

one time. Additionally, one device must be

designated as the System Controller and

must be responsible for such things as

initializing the loop on power-up. There

can be more than one device capable of

being Loop Controller, however, and con-

trol of the loop can be transferred from

device to device. The procedure is quite

simple.

TADn The current active Controller

first addresses the device that

is going to become the Con-

troller as a Talker using the

Talk Address (TAD)

message. If the desired device

were already the active

Talker, this step would not be

needed.

TCT The current Controller then

sends out the Take Control

(TCT) message. The device

addressed as Talker does not

pass this message on around

the loop to the Controller that

sourced it. Instead, the device

immediately assumes the role

of Controller and replaces the
TCT message with its first

operation.

When the previous Controller receives

back a message other than the TCT mes-

sage, it knows that another device is now
the active Loop Controller. If the previous

Controller should receive back the TCT

Chapter 5: Some Typical Loop Sequences 65

message, it indicates that the addressed

Talker could not or would not assume the

role of Controller. The previous Controller

must, therefore, resume control of the loop

and take whatever actions are necessary.

CHAPTER 6

The Interface
Functions

everal times the last few chapters

have referred to the “interface

functions” defined by the HP-IL

specification. However, these functions

have not been defined or described to

explain their significance. Now it’s time to

dig deeper into the HP-IL specification to

see how these interface functions define all

of the loop-related characteristics of a

device.
Let’s begin by listing all of the interface

functions. They are grouped into three

categories: primary functions, device con-

trol functions, and address/status/service-

request functions.

Primary interface functions:

+ Receiver

+ Acceptor Handshake

* Driver

- Listener

+ Source Handshake

« Talker

- Controller.

Device-Control interface functions:

+ Power-Down

*+ Device Clear

- Device Trigger

+ Remote Local.

The Address/Status/Service-Request

interface functions:

+ Parallel Poll

+ Service-Request

+ Automatic Address

- Auto-Extended Address

+ Auto-Multiple Address

+ Device Dependent.

The names of some of these interface

functions are, no doubt, familiar to you.

67

68 The HP-IL System

Talkers, Listeners, and Controllers have

been discussed throughout the preceding

chapters along with service-requests and

auto-addressing. However, these phrases

usually were used in the context of “device

roles” or “device capabilities.” The com-

plete definition of a device’s role and its

capabilities is provided by determining
which of the 17 interface functions are

implemented by that device.

Some of the functions must be imple-

mented by every device that is going to

operate on the loop. Other functions, such

as Talker or Listener, obviously must be

implemented if the device is to assume one

of those primary roles. Additionally,

within most of the interface functions,

there are subsets of the function that a

device can implement, thus further varying

the personality of a particular device.
Essentially, then, you decide on what

loop-related capabilities a device must

have and then design the device by imple-

menting the interface functions that define

the needed capabilities. This process might

be compared to deciding what equipment

you want on a car. Some of the equipment,

such as wheels, engine, and brakes, is

required if you are going to operate the car

on the road. However, even among those

required capabilites, you may have choices

such as engine type (6-cylinder, 8-cylinder),

tires (radial or bias-ply), and so on. Other
equipment may be completely optional,

such as the music system, but you may have

choices even within these categories (8-

track or cassette).

Your decisions about the functions or

options you want to implement will also

involve tradeoffs that are similar to those

you might make when selecting and speci-

fying a new car: performance and creature-

comforts vs. cost. You must pay for each of

the interface functions you choose to

implement by adding more intelligence or
logic to the device.
The best way of gaining an understand-

ing of the interface functions is probably to

just dive into a description of them. We’ll

begin with the primary ones that will be

implemented most often.

Remember, the descriptions that follow

will often refer to one interface function
communicating with another interface

function. This concept may seem confusing

at first, since all communications discussed

thus far have been between separate devi-

ces on the loop. However, this simply

implies that the capabilities and options
that you can implement on a particular

device must usually interact with one

another.

If you recall the analogy of the automo-

bile, you could say that the automatic

transmission option interacts with the

engine function to control speed of the

engine and vehicle. The transmission does

not operate in a vacuum. It makes no sense
to try to think of the transmission traveling

down the freeway (around the loop) on its

own. Similarly, many ofthe interface func-

tions are interdependent. Each performs a
precisely defined function within a de-
vice/system, so you can economically

select only those options that you want.

However, all of the options must work

closely together to ensure that the device

can operate on the loop.

THE PRIMARY
INTERFACE FUNCTIONS

These are the interface functions that are

either required for all devices operating on

the loop, or that are intimately related with

the three primary loop roles of Talker, Lis-

tener, and Controller.

Receiver (R)

All devices on the loop must implement the

Receiver interface function, since every

device must be able to receive messages

from the loop. The Receiver interface func-

tion has responsibility for performing some

decoding of incoming messages to deter-

mine if this device has to deal with the

message in any way, orif it can simply be

immediately retransmitted.

The Receiver function does not perform

the retransmission of the message itself.

Instead, it informs the Driver interface

function (which will be described later) that

the current message should be retrans-

mitted.

The Receiver function interacts closely

with the Driver function, since it must wait

until the Driver function has finished send-

ing out any previous message before it tells

the Driver that there is another message

ready for retransmission.
Since the majority of the messages that

any device receives will be intended for

other devices on the loop, the Receiver

function will spend most ofits time check-

ing incoming messages for destination, and

letting the Driver function know that it

must send another message out onto the

loop.

Since messages are received bit-serial on

Chapter 6: The Interface Functions 69

the loop, and since the three most signifi-

cant bits (the first received)tell you the type

of message you are receiving, you can usu-

ally tell if a particular message might be for

your device even before the rest of the bits

are received. For example, if your device

begins receiving a command message and it

has not just sourced such a message, it

knows that this message should be imme-

diately retransmitted. (Remember, all

command messages will be followed by an

RFC message to determine if the pre-

viously issued command has been

completed.)

Note that there are no subsets of the

Receiver interface function. All devices

must implement all of the capabilities of

this primary function.

Acceptor Handshake (AH)

All devices on the loop must implement

this function. The AH interface function

allows a device to receive messages from

the Receiver function (another required

function) which are directed to this particu-

lar device. The AH function also must

determine whether the message it has

received needs to be retransmitted afterit

has been decoded. Note that this decoding

goes beyond that performed by the

Receiver function. The Receiver determined

whether this device had to involve itself

with an incoming message and, if not,

informed the other functions that the mes-

sage could be immediately retransmitted.

The Acceptor Handshake function,

however, must further decode the message

to determine when the message has been

fully decoded (beyond the first three bits)

70 The HP-IL System

and whether it’s the type of message that

needs to be retransmitted. For example, if

this device sourced the message, and it was

a data message, it will not need to be

retransmitted.

The Acceptor Handshake function has

no subsets. All devices must fully imple-

ment all of the capabilities.

Driver (D)

All devices must have the Driver interface

function, since it provides the device with

the capability of transmitting messages on

the loop. Regardless of a device’s primary

role on the loop, it must be able to pass

messages on around the loop. This is the

responsibility of the Driver function.

Messages that the Driver function must

handle can come from three different pla-

ces: messages coming in that must be

immediately retransmitted, messages that

must be retransmitted after this device has

taken a look at them, and messages that

this device might have generated itself.

Since the Driver function is such a pri-

mary function, there are no subsets defined

nor allowed.

Listener (L)

The Listener interface function need only

be implemented by devices that will assume

the role of Listener on the loop. Notice here

the differentiation between Acceptor

Handshake logic, which is required to

allow a device to receive a message (and,

likely retransmit it without any other

action), and Listener which implies a dif-

ferent and larger set of responsibilities.

This precise division of labor between the

functions can be implemented on a device

to give you maximum flexibility and (hope-

fully) economy. It does, however, make the

description of loop-device characteristics

and capabilities more complicated.

The Listener functionis only active when

this device has been addressed as a Listener

(it received its LAD message). When a

device has been designated as a Listener on

the loop, this logic must receive messages

from the Acceptor Handshake logic that

are intended for the device itself. Thus, you

can view the Acceptor Handshake function

as an interface between the loop and the

Listener function, and the Listener func-

tion as the interface to the device-specific

functions.

There are two parts to this function: one

allows use of a one-frame address and the

other permits use of an extended, two-

frame address. Refer to the discussion of

auto-extended addressing later in this

chapter and in Chapter 4 for details.

Source Handshake (SH)

This function must be implemented by all

devices that need to originate messages—

that is, devices that operate as a Talker or

Controller on the loop. Since most devices

will usually be required to operate as

Talkers some time (if only to send status

information), the Source Handshake func-

tion usually will be required.

The Source Handshake function coor-

dinates the transfer of messages from the

device itself to the Driver interface func-

tion. This function does not actually gener-

ate messages, it merely receives messages

from the device and then passes them on to

the Driver function.

There are no subsets of the Source

Handshake function. If a device requires

this capability, it must fully implement the

function.

Talker (T)

This function is, obviously, one of the

primary functions. If a device implements

this function,it has a voice on the loop and

assumes more than a few responsibilities.

There are two main parts to this function:

the basic function responds to a one-byte

address, while the Extended Talker func-

tion responds to a two-byte address.

If a device has the Talker function, that

capability is not activated until the device

receives its Talk Address (TAD) message.

Once it has been addressed as the Talker,

the Talker interface function is enabled to

send messages that its device generates out

onto the loop. The Talker function must

wait until a Send Data (SDA) message is

received before it can actually send out

messages (via the Driver function).

The Talker interface function also is

responsible for responding to serial polls

by sending out one or more bytes of device

status information.

The End of Transmisson (EOT) message

needed after data and status transmissions

also must be generated by the Talker

function.

Controller (C)

This is obviously a major function and, just

as obviously,is not a function that must be

Chapter 6: The Interface Functions 11

implemented by all devices on the loop.

Remember, there is only one Controller at

any one time on the loop.

If a device implements the Controller

interface function, it can send the Com-

mand (CMD), Ready (RDY), and Identify

(IDY) messages to other devices on the

loop. It must also be able to conduct

parallel-polling operations, check for

service-requests and detect transmission

errors in device-dependent transmissions.

As you saw in Chapter 5, there can be

more than one device on the loop capable

of operating as the Loop Controller. This

responsibility is passed between devices

using the Take Control (TCT) message.

However, there can be only one device

designated as System Controller. The Sys-

tem Controller usually does its chores at

system power-up and is the only device on

the loop that can source the Interface Clear

(IFC) message used to initialize devices on

the loop.

You can derive most of the characteris-

tics of the Controller interface function by

looking at the loop sequences described in

the preceding chapters. Whenever thereis a

particular sequence of messages required,

it is usually the Controller function that is

responsible for scheduling and implement-

ing that sequence.

The Controller interface function gets

messages from the Receiver and Acceptor

Handshake functions and sends messages

out via the Driver and Source Handshake

functions. Thus, you might visualize the

Controller function as operating in some-

what of an ivory tower, once removed from

the pedestrian activities going on around

72 The HP-IL System

the loop or within the device. The Con-

troller function receives information from

the device and the loop and generates

commands based on this information and

on the system operating criteria you have

programmed into the Controller function

logic.

There are several optional subsets of

capabilities that can be implemented in a

device that has the Controller interface

function:

+ CO0 (device has no Controller capability).

+ CI (device has basic Controller capability

and can send messages and detect trans-

mission errors).

+ C2 (device is System Controller and can

send the IFC message).

* C3 (device can respond to service-request

messages that travel around the loop).

+ C4 (device can transfer and receive control

of the loop).

+ CS5 (device can configure devices for and
execute parallel polling).

+ C6 (device can handle asynchronous loop

operations).

+ C7 (device can assign automatic

addresses).

Note that these Controller function

options or subsets are not hierarchical. All

controllers must have the Cl capability,

but you can implement whichever of the

other capabilities you want. Thus, you can

have a device that can recognize service-

requests and that can transfer control.

Such a device would be identified as

Cl1,3,4.

This discussion should illustrate that not

all of the operations and sequences de-

scribed in the preceding chapters are pos-

sible in all systems. For example, if the

Controller in your loop does not imple-

ment the parallel-poll capability (CS5), that

operation cannot be performed on the

loop. Therefore, if you were designing a

device to operate on this particular loop, it

would not make sense to include the Paral-

lel Poll interface function (which will be

described later) on that device. Once again,

this demonstrates how the precision of the

HP-IL specification leads to both flexibil-

ity and economy of design. You can select

the exact capabilities you want for your

device and know that so long as you

include the minimum required functions,

your device will be able to operate on the
loop.

DEVICE-CONTROL
INTERFACE FUNCTIONS

These interface functions are, as the name

assigned to them indicates, more closely

associated with how actual devices at-

tached to the loop operate, rather than

with how the loop itself performs. The

names of these functions will probably be

the most unfamiliar of those described in

this chapter, since they determine how an

HP-IL interface device you design will

interface to the loop.

Power Down

This function gives a device the capability

to be placed in a power-down or low-power

mode of operation viaa command received

over the loop. It also allows the device to be

powered up again under loop control. The

Power-Down function is optional and

there are no subsets of the function. A

device either has the capability or it

doesn’t.

Devices that do implement this capabil-

ity must place themselves in a low-power

state or completely powered-down condi-

tion when they receive the LPD (Loop

Power-Down) message from the loop. It is

up to the device designer to determine the

details of the powered-down condition.

The loop doesn’t care whether the device is

completely powered-down or placed in a

low-powerstate.

The loop does require, however, that a

device that implements this function and

responds to the LPD message, be able to

power up when it receives a message from

the loop. Typically, the Controller will

“wake up” or reactivate devices that have

been powered-down by repeatedly sending

a command out until the command even-

tually returns to the Controller. Devices

that are powered-down are expected to

monitor the loop for any incoming pulse.

When the leading edge of any message is

detected, the device must reactivate itself

and begin to pass messages on to the next

device on the loop.

Devices that do not implement the

Power-Down function simply pass the

LPD message on when they receive it.

Notice that the LPD message is not

addressed to any particular device on the

loop. All devices that have the capability

will power down when they receive the

LPD message. (Actually, they must first

pass the LPD and RFC messages on to the

next device on the loop before they power

Chapter 6: The Interface Functions 13

down.) Also note that any activity on the
loop after the LPD message will automat-

ically wake up all the powered-down

devices.

This capability would be quite useful in

remote, unattended operations. If a partic-

ular device is battery-powered or consumes

a lot of power or both, it may make sense to

turn it off whenever it is not needed and

there is a lull in loop activity.

Device Clear

This function lets the Controller initialize

devices on the loop by sending them a

“clear” message. This function is optional,

although most likely you would want to

implement the function on most devices.

While devices typically perform some type

of initialization when they are first

powered-up,it is usually a good idea if the

Controller has some positive way of estab-

lishing device initialization.

The HP-IL specification does not define

the actions that a device must take when it

receives the Device Clear message: the

designer has complete freedom in deciding

what the device should do to clear itself.

This is quite logical since the actions that a

device would take during initialization

vary widely. A cassette and a CRT

obviously would havelittle in common as

far as initialization activities.

There are two versions in which the

Device Clear function can be implemented.

Actually, there are three versions if you

consider the version where the function is

not implemented at all. If a device does not

implement this function, HP-IL nomencla-

ture defines it as DCO.

74 The HP-IL System

If a device responds to the Device Clear

(DCL) message, it is defined as having the

DCI1 capability. The DCL message will

reset all devices on the loop that implement

this DCI capability.

If a device responds to the Selected

Device Clear (SDC) message, it is defined

as having the DC2 capability. The SDC

message is addressed to a particular device

so that the Loop Controller can reset or

clear a single device. This capability can be

quite useful if a particular device is produc-

ing errors or requires frequent human

intervention (such as a printer might).

Note that if a device is designated as

having DC2 capability, it means it can

respond to both the DCL and SDC mes-

sages. You are not allowed to implement

only the SDC response capability.

Device Trigger

This function lets the Controllerinitiate the

basic operation of a device by sending it a

message (GET—Group Execute Trigger)

on the loop. This function is optional and

there are no subsets of the function. A

device either has it or it doesn't.

The Device Trigger function will typi-

cally be used to synchronize the operation

of a device with real-time operations or to

synchronize its operation with that of other

devices on the loop. For example, if you

had several temperature/ pressure measur-

ing devices on the loop, you could trigger

them all to perform their basic measuring

function at (approximately) the same time

by sending the GET message around the

loop.

If you implement the GET functionin a

device, that device must also have the Lis-

tener function implemented. Further, the

device must be addressed as an active Lis-

tener on the loop before it can respond to

the GET message. This approach lets the

Controller address either a single device for

the triggering operation or address several

devices as Listeners so they can be triggered

at the same time.

Again, note that the action the device

itself takes when it is triggered is com-

pletely up to the device designer. The loop

could care less about the details of what the

device is doing when it is triggered.

Remote Local (RL)

This function lets the Controller direct a

device to accept information from either

the loop (remote) or from its own front

panel or switches (local). This capability is

useful for devices that must have settings

and controls set up manually at various

points in their operation. For devices that

are programmable, this function allows

them to be programmed under loop con-

trol or local control. As a simple example

of this, you could establish a voltmeter’s

voltage range setting by sending the proper

data messages to it while in remote mode,

or you could press the correct range switch

on the front panel in local mode.

The Remote Local function is optional.

A device need not implement the function

if it doesn’t need it.

If a device does implementthis function,

it must also be capable of being a Listener,

since it must be addressed as an active Lis-

tener before it can activate remote mode or

respond to the Go To Local (GTL) message

that is used with this function.

Devices that implement this function
must power up in the local mode. They will

remain in the local mode until they have

received the REN message and are

addressed as a Listener. At that point, they

go to the remote state and can be pro-

grammed by the Controller.

The device will remain in the remote

state (even if it is subsequently unaddressed

as a Listener) until it receives the Go To

Local (GTL) message. The GTL message is

not addressed to any specific device—it is

directed to all devices that are currently

addressed as Listeners. Thus, the Con-

troller can select which device(s) should Go

To Local by first selecting the device(s) as

Listeners.

The Remote Local function is optional.

If a device does not implement this func-
tion, it is designated as RLO. If it imple-

ments the basic Remote Local functionjust

described,it is designated as RL1.

There is an extended version of this func-

tion, designated as RL2, that has a “lock-

out” capability. In this version, the Con-
troller can send a device the Local

Lockout (LLO) message that will prevent

an operator from inadvertently changing an

instrument’s control settings at some criti-

cal time. Once a device is locked out,it

remains locked out until it receivesa Go To

Local (GTL) message.

THE ADDRESS AND OTHER
INTERFACE FUNCTIONS

These interface functions should sound a

little more familiar than the device-related

Chapter 6: The Interface Functions 75

functions just described. The nomenclature

and messages discussed here have appeared

in the earlier chapters. Generally, these

functions deal with the abilities of a device

to respond to commands that are

addressed to a specific device, the way that

a device responds to a request for status

information, and the ways in which a

device can request service from the

Controller.

Admittedly, this is sort of a catch-all

category created to cover these functions.

However, there are only a few functions left

and it is easier to clump them together here.

Parallel Poll

This function enables a device to respond

to a parallel poll by the Controller by

returning one bit of status information

withinthe IDY polling message. The Paral-

lel Poll function is optional. Devices do not
have to implement this capability. There
are no subsets of this function. A device

either has it, or it doesn’t. If a device is

going to implementthis function, however,

it must also be capable of being a Listener.

If a device implements this function,it

must be able to respond to several loop

messages: Parallel Poll Enable (PPE),

Parallel Poll Disable (PPD), Parallel Poll

Unconfigure (PPU), and Identify (IDY).

Again, refer to Chapter 5 for a more

thorough discussion of parallel-polling.

However, the parallel-polling operation

will be summarized here.

The Controller defines the bit number

and polarity that a device should use to

respond to a parallel poll by sending out

76 The HP-IL System

the PPE message. Individual devices can

be disabled to prevent their response to a

poll by sending them the PPD message. All

devices on the loop can havetheir parallel-

polling capability disabled by sending out

the PPU message.

The actual polling operation is per-

formed by sending the IDY message

around the loop. Devices that have the

parallel-polling capability and that are

currently enabled, respond by setting a bit

in the IDY message data byte.

Service-Request

This function lets a device request service

from the Controller by setting the service-

request bit in a Data or End (DOE) mes-

sage or in an Identify (IDY) message.

When the Controller gets a message back

with the service-request bit set, it knows

that some device on the loop needs service,

but it doesn’t know which one. The Con-

troller then must perform a polling opera-

tion to discover which device or devices

require service.

The Service-Request function is

optional. If it is implemented, the device

must also have the Talker interface func-

tion implemented so that the device can

send status bytes to the Controller as a

response to polling operations.

For a thorough discussion of service-

requests and polling operations, refer to

Chapter 5, which includes illustrations of

typical loop sequences.

There is one subset of the Service-

Request function. If the device does not

implement the Service-Request function at

all, it is designated as SRO. If it implements

the basic Service-Request function just

described, it is designated as SR1. The

subset of the Service-Request function,

designated SR2, allows a device to asyn-

chronously request service by generating

its own IDY message. We discussed asyn-

chronous loop operations briefly in Chap-

ter 4 and then advised against implement-

ing that capability unless you absolutely

must. That advice will be repeated here and

you can refer to the HP-IL specification

for the details on the capability.

Automatic Address

This function allows a deviceto be assigned

an address via a command from the loop

(as opposed to having the address hard-

wired or manually set). The Auto-Address

function is optional. If all devices on the

loop implementthis function, however, the

user is completely relieved of the necessity

of manual address configuration, and so it

is strongly recommended.

If a device does not implement the Auto-

Address function, it simply ignores asso-

ciated messages (AAU and AAD) and

passes them on to the next loop device. If

this function is implemented, the device

accepts the address contained in an AAD

message as its address, then increments the

address and passes it on to the next device

on the loop. (Refer to Chapter 4 for a thor-

ough discussion of Auto-Address

operations.)

There are no subsets of the Auto-

Address interface function. However,

there are two other interface functions that

provide variations ofthe auto-addressing ca-

pability. If a device is going to have some

auto-addressing capability, it only has to

implement one of these three auto-

addressing functions. Here are the two

variations of this capability.

Auto-Extended (AE)
And Auto-Multiple (AM)

The basic auto-addressing function de-

scribed in the preceding paragraphs allows

as many as 31 devices to be addressed on

the loop. The Auto-Extended and Auto-

Multiple functions permit up to 961 devi-

ces to be addressed.

The operation of the Auto-Extended

function is basically as we described for the

auto-addressing function. However,

instead of the address being completely

contained in the Auto-Address (AAD)

message, there is an additional byte of

address information passed to the device.

The first message sent is called the Auto-

Extended Secondary (AES) message. Each

device that has implemented this function
will store the address contained in this

message, increment it, and pass the mes-

sage on to the next loop device. This opera-

tion is the same as the one described for the

standard auto-addressing mode. However,

when the address contained in the AES

message has been incremented to its max-

imum (31), subsequent devices will no

longer respond to the message but will just

pass it on around to the Controller.

The Controller will then send the Auto-

Extended Primary (AEP) message out.

This time, however, only those devices that

received legal addresses in the AES mes-

sage will accept this primary address as the

most significant part of their address.

Chapter 6: The Interface Functions 11

Furthermore, they will not increment the

address contained in the AEP message, but

simply pass it on around to the Controller.

This group of devices is now configured

and should not respond to any further

AES or AEP messages until they receive

the Auto-Address Unconfigure (AAU) mes-

sage.

The Controller can now send out

another AES message to the next group of

devices (which did not receive a legal

address in the AES message on the pre-

vious round). This will again be followed

by the AEP message. This sequence will be

repeated until AES is returned to the Con-

troller with a legal address still contained in

the message.

The Auto-Multiple address function is

similar to the two functions just described

but is intended for use with devices that

have multiple functional capabilities

implemented within the device itself. The

Auto-Multiple function allows each func-

tion within the device to be assigned a

separate loop address. Here is the sequence

that would be used with the Auto-Multiple

function.

The Controller would first send out the

Auto-Multiple Primary (AMP) message.

Each device implementing the multiple

function would accept this address as its

own, increment the address and pass it on

around the loop. Next, the Controller

would issue the Zero Extended Secondary

(ZES) message. When the first multiple

device receives the ZES message, it begins

assigning addresses to each of its internal

functions beginning with address zero. As

it assigns these internal addresses, it incre-

78 The HP-IL System

ments the address contained in the ZES

message. When all internal addresses have

been assigned, the device passes the ZES

messsage back around to the Controller,

which can then tell how many function

addresses are assigned to that device. The

Controller then sends the ZES message to

the next device on the loop until all multi-

ple devices have responded.

Device Dependent (DD)

This function lets the Controller send

command messages to devices where the

meaning of the message depends entirely

upon the device receiving it. A device must

first be addressed as a Talker or Listener

before it can respond to a Device Depend-

ent message and the Controller uses differ-

ent messages for Talkers and Listeners:

DDL (Device Dependent Listener) and

DDT (Device Dependent Talker).

The Device Dependent interface func-

tion is optional but, since it provides such a
simple way to initiate and control device

activity,it will probably be implemented in
most devices.

The least significant five bits of the DDL

and DDT messages contain the Device

Dependent command information. Thus,

the device designer has up to 32 separate

commands that can be defined for a par-

ticular device. The HP-IL specification
placesno limits onthe uses ofthe Device Depen-

dent commands. The effect of a command

on a device is left completely up to the
designer.

For example, in a tape cassette you

might use Device Dependent commands to

perform such tasks as rewind and advance

tape to next record. A printer might use

Device Dependent commands to initiate

such activities as advance paper to top of

form, or to set up a double-space mode of

operation,

Note that since there can only be one

active Talker on the loop at any one time,

there can never be any confusion about

which device a DDT message is directed to.

There can be multiple active Listeners,

however. Therefore, you must ensure that

there is not more than one active Listener

which has implemented the Device

Dependent function unless you want the

DDL message to be accepted by all of the

active Listeners.

CHAPTER 7

What You Have
Not Been Told

he approach in this book has

been to use each successive

chapter to lead you to a greater

level of detail about HP-IL. The intent has

never been, however, to replace the actual

HP-IL specification. Instead, the basic

concepts and capabilities of HP-IL have

been presented so that you might evaluate

its suitability for your application and gain

some appreciation for the amount of work

involved in implementing HP-IL at various

levels.
We do not, therefore, claim that this

book is comprehensive. In fact, there are

some details that have been intentionally

left out, since they will be needed only by

those who must implement the HP-IL spec-

ification at the most detailed level.

This chapter will give you a glimpse of

some of the details that have been avoided

thus far. The purpose is twofold: first, to

give even the casual reader a look at the

total picture of HP-IL and an appreciation

of the thoroughness of the specification;

second, to give those who must eventually

deal with HP-IL at this most detailed level

a head start, or at least a running start, at

deciphering the “state diagrams,” which
fully define the interface functions of

HP-IL.

SIMPLE
STATE DIAGRAMS

State diagrams are often used, especially in

the design phase, to describe all the legal

states in which a device or system can oper-

ate, and to define the conditions that must

exist to allow or cause a transition from

one state to another.

The following is an illustration of a sim-

ple state diagram.

79

80 The HP-IL System

The device depicted in this illustration

has three legal operating states: OFF, ON,

and STANDBY. Thus, the legal states are

shown as circles with their names (or mne-

monics) within the circles.

Arrows connecting the state circles show

the legal paths for going from one state to

another. The conditions that allow tran-

sitions from one state to another are

defined by the letters alongside the con-

necting arrows. In the preceding illustra-

tion, POS stands for Power On Switch and

SBS stands for StandBy Switch. Also note

that in the nomenclature used here, POS

with no line above the expression indi-

cates that the condition is “true” (the

switch is on) while an expression with a

line over it means that the condition is

“false” (for example, power is off or not

on).

Thus, for this device to go from the OFF

state to the ON state, the POS term must be

“true” (the Power On Switch must be on).

The transition from the ON state to the

STANDBY state can occur when the

StandBy switch (SBS) is true.

Note that this state diagram allows a

transition from the STANDBYstateto the

OFF state if the Power On Switchis “false”

(power is turned off). A transition from

OFF to STANDBY is not permitted,

however.

The state diagrams for HP-IL, as you

might expect, are more complicated than

the precedingillustration. Nonetheless, the

same simple principles that have just been

discussed apply, no matter how compli-

cated the diagrams might appear.

LOCAL MESSAGES
AND PSEUDO-MESSAGES

One more hurdle must be cleared before

you can proceed to the actual state di-

agrams for HP-IL. Most of the terms used

as conditions for making transitions

between states will be familiar. They will

consist of messages and/ or interface func-

tion expressions that have been discussed

in preceding chapters. Occasionally, how-

ever, state transition conditions will

include expressions (always shown in

lower case) that are defined as local mes-

sages or pseudo-messages.

HP-IL defines remote messages as the

messages that travel around the loop itself—

these are the messages that were explained

in preceding chapters. The HP-IL specifi-

cation also loosely defines local and

pseudo-messages. These are messages or

signals exchanged between the interface

functions of a device and the completely

device-dependent functions. The simplest

examples of local messages are the pof

(power off) and pon (power on) messages.

These two local messages are used in the

state diagrams of the Power-Down inter-

face function (described in Chapter 6) and

simply indicate that the interface function

and the device electronics must have some

way of indicating to each other the state of

the power switch of the device.

There are numerous local and pseudo-

messages defined by the HP-IL specifica-

tion. However, you don’t need to know all

of them unless you are going to work with

the state diagrams. Therefore, rather than

defining all of them, we will simply explain

the few that appear in the state diagrams

used here.

DRIVER STATE DIAGRAM

Since all devices on the loop must have the

Driver interface function,it is one of those

to be discussed. Figure 7-1 shows the state

diagram for this interface function. There

are four defined states:

- DACS - Driver Transmit from

Acceptor State

- Driver Idle State

— Driver Transmit from Source

State

- DTRS - Driver Transfer State

At this point, you may want to refer to

Chapter 6 for a discussion of the Driver

interface function. Briefly, this interface

function is responsible for transmitting all

messages (the remote messages) out onto

the loop, regardless of whether the message

is being initiated by this device or was

simply being passed along the loop.

One more bit of nomenclature must be

explained at this point. The four-letter

mnemonics appearing in this diagram (for

example, PONS), and enclosed in brackets

represent a linkage from or to another of

the interface states, in another interface

function.

The Driver Idle State (DIDS) is entered

- DIDS

- DSCS

Chapter 7: What You Have Not Been Told 81

{PONS}

{ACRS} {RITS}

FIGURE 7-1. Driver interface function

state diagram

from the Power On State (PONS) which is

a separate interface function (the PD func-

tion). In this idle state, the Driver function

is just waiting for something to happen and

is not transmitting any messages. This is

the state that the Driver function goes to

when poweris first applied.

Three different paths can be taken from

the idle state. Each of them basically

represents another interface function (in

this case, three different sources of mes-

sages to be transmitted) that the Driver

interface function must service. The other
three functions “serviced” by the driver are

the Source Handshake (SH), Acceptor

Handshake (AH), and Receiver (R) inter-

face functions.

The RITS (Receiver Immediate Transfer

State) expression causes a transition from

the idle state to the DTRS state and indi-

cates there is a message that must be

retransmitted immediately and not delayed

while the device decodesit.

82 The HP-IL System

The ACRS (Acceptor Ready State)

expression causes a transition from the idle

state to the DACS state and indicates thata

message has been received and accepted

and can now be retransmitted.

The SDYS (Source Delay State) expres-

sion causes a transition from the idle state

to the DSCS state and indicates that the

driver should transmit a message which is

being sourced by this device itself.

Note that all three of the expressions

discussed here (RITS, ACRS, and SDYS)

are themselves states within other interface

functions and are defined in the state di-

agrams for those functions. You should

now have some idea of the complexity of

the HP-IL specification (and of designing

at this level). There is a tremendous

amount of interaction that must occur

between all of the interface functions. This

approach of dividing total system and

device capabilities along strictly and com-

pactly defined functional lines can lead to

great flexibility and economy. However,it

can also be quite complicated.

The common term to all three transition

paths back to the idle state is “frtc” (Frame

Transmission Complete.) The frtc expres-

sion is a pseudo-message generated by the

device’s encoder circuitry to signal the
driver function that it is done transmitting

anentire frame and that a return to the idle

state can be made. Thus, the function

returns to wait for another request for

transmission of a message.

LISTENER STATE DIAGRAM

Figure 7-2 shows the state diagram for the

Listener interface function. This diagram is

more complicated than that for the Driver

and includes many more terms in the

expressions that cause transitions between

states. Let’s begin with the Listener Idle

State (LIDS).

As you might expect, this function also

powers up (note the link from the PONS

state) in the idle state. The transition to

LADS (Listener Addressed State) is fairly

straightforward. It requires that this device

MLA-{ACDS} {PONS}

lun{CACS}

(UNL+IFC[+MTA]){ACDS}

lon+ltn{{CACS}

CMD+{ACDS}

FIGURE 7-2. Listener interface function state diagram

has received its listen address (MLA = My

Listen Address) from the loop and that the

Acceptor Handshake (AH) function is in

the Acceptor Data State (ACDS), indicat-

ing that the MLA message has been fully

decoded and is valid for this device. Note

that the dot joining the MLA and ACDS

expressions means AND; that is, both

expressions must be true for the entire ex-

pression to be valid.

The transition from LADS to the Lis-

tener Active State (LACS), is also straight-

forward. When the device is already in the

Listener Addressed State (LADS) and the

Ready For Command (RFC) message is

received, then the function can proceed to

assume the role of an active Listener on the

loop. Once again, you will note that the

other qualifying term for transition from

LADS to LACS is Acceptor Data State

(ACDS), which indicates that the RFC

message has been completely decoded by

the Acceptor Handshake function.

When the function is in the Listener

Active State (LACS), it remains there,

receiving messages over the loop until it

receives a command (CMD) message.

If a CMD message is received, the device

is still addressed as a Listener and returns

to the LADS (Listener Addressed State).

From there it can once again return to

LACS if RFCisreceived, orit can go back

to the idle state (LIDS). The expression

that can cause a return to the idle state is

(UNL+IFC[+MTA))-{ACDS}.

While this expression may look intimi-

dating,it is not actually that complicated.

It says if the Unlisten (UNL) message is

received OR,(the plus sign means OR), if

Chapter 7: What You Have Not Been Told 83

the Interface Clear (IFC) message is

received, the function returns to the idle

state (LIDS). Of course, the now familiar

ACDS term also must be true.

There is one term in the expression not

yet discussed, [+MTA]. You will notice

that this term is enclosed in square brackets

instead of parentheses or curly brackets. In

the conventions used in the HP-IL state

diagrams, the square brackets are used to

indicate optional terms that may or may

not be implemented by the function. In this
case, it indicates that optionally the transi-

tion back to the idle state can also occurif a

device addressed as a Listener is then

addressed as a Talker. MTA is the My Talk

Address message indicating that this device

has been addressed as a Talker.

The other two transitions in the Listener

state diagram are mainly of concern to a

device that is also theactive Controller.

ACCEPTOR HANDSHAKE

STATE DIAGRAM

The Acceptor Handshake (AH) interface

function, like the Driver interface function

described earlier, must be implemented by

all devices. This function receives messages

from the Receiver interface function which

are intended for this device. When the mes-

sage is valid for interpretation, the AH

function indicates this fact to the other

functions. (You will recall the ever-present

Acceptor Data State—ACDS—term

encountered in the description of the Lis-

tener state diagram.)

The AH interface function also deter-

mines whether the message needs to be

retransmitted after interpretation (this is

84 The HP-IL System

called “repeat”) or whether it can be dis-

carded (which is called “norepeat”).
Figure 7-3 shows the state diagram for

the Acceptor Handshake interface func-

tion. The figure shown does not look much

more complicated than that for the Lis-

tener. However, its appearance has been

simplified by using the terms “repeat” and

“norepeat”in the figure. The actual expres-

sions required to make up these two simpli-

fied terms are listed below the state dia-

gram drawing and are quite involved. You

canignore those complete expressions fora

{PONS}

{RCDS}-rdy

norepeat-rdy

 IFC{RCDS}
rdy-{ DACS} repeat-Ey'

norepeat = DOE-({TACS}+{SPAS}+{DIAS}+{AIAS})

+CMD

+(RDY+IDY)-{({CACS}+{CSBS})

+SOT-({TADS}+{TACS}+{SPAS}+{DIAS}+{AIAS})

repeat = DOE- ({(LACS}+{CACS})

+RDY-SOT+{CACS}-{CSBS}
FIGURE 7-3. Acceptor Handshake interface

function state diagram

moment and look at the simplified form of
the state diagram.

Once again, the function starts out in the

idle state (AIDS) when poweris first app-

lied. From there, the only legal transition is

the Acceptor Data State (ACDS). This

transition occurs when the local ready (rdy)

message is true and the Receiver interface

function indicates that a message for this
device is available by entering its Receiver

Data State (RCDS). The local rdy message

is from the device and indicates to the

Acceptor Handshake function that the

device is ready to receive another byte of

data.

After the device has accepted the mes-

sage for interpretation, it sets the local rdy

message false. The AH function will then

return to the idle state (AIDS) if the mes-

sage does not have to be retransmitted

(norepeat), or to the Acceptor Not Ready

State (ANRS) if the message must be

retransmitted (repeat).

In the Acceptor Not Ready State

(ANRS), the function is waiting for the

device to indicate that it is ready for the

next byte of data from the loop. The device

indicates this by returning the local rdy

message to the true state. This typically

happens after the device has finished any

actions necessitated by the current mes-

sage. When the device is ready, the AH

function can make the transition to the

Acceptor Ready State (ACRS) where

retransmission of the message can begin.

You will notice that in addition to the

local rdy message, there is another term

involved in causing the transition from

ANRS to ACRS. The rdy message must be

accompanied by DACS being false. If you

refer back to our earlier discussion of the

Driver interface function, you will see that

DACS (Driver Transmit from Acceptor

State) is true when the Driver is actually

sending out a message. Therefore, the AH

function cannot proceed to ACRS where

the Driver must begin sending out another

message until the preceding message has

been transmitted by the Driver.

When the function is in the Acceptor

Ready State (ACRS) it is indicating to the

Driver function that retransmission of the

current message frame should begin. When

the Driver function indicates that it has

begun retransmitting that message (by set-

ting DACS true), the AH function can

make the transition back to the idle state

(AIDS).

Return for a moment to the Acceptor

Not Ready State (ANRS). We followed

the transition path from that state to

ACRS but, if you look at Figure 7-3 again,

the function can also return to Acceptor

Data State (ACDS) from ANRS. This

transition path will be taken if an Interface

Clear (IFC) message is received by the

Receiver (RCDS) whilein the ANRSstate.

Now turn your attention to the lengthy

expressions beneath the state diagram in

Figure 7-3 that were simplified to norepeat

and repeat. We are not going to explain all

of the terms shown in these expressions,

since most of them refer to states within

other interface functions. This would

require a discusssion of each of the state

diagrams for the other interface functions

involved. Instead, we will attempt to sum-

marize the effect of each of these expres-

Chapter 7: What You Have Not Been Told 85

sions to give you an idea of what factors are

involved in allowing the Acceptor Hand-

shake function to determine whether a

message must be retransmitted.

Basically, there are three different types

of messages that do not need to be

retransmitted:

+ DOE (Data or End) messages that were

sourced by this device (the device is the

Talker)

- CMD (Command), RDY (Ready), or IDY

(Identify) messages that were sourced by this

device (the device is the Controller)

- SOT (Start Of Transmission) messages

intended for this device (once again, the

device is the Talker).

All of the terms which follow these mes-

sage mnemonics represent various states
within other interface functions that in-

teract with the Acceptor Handshake

function.

Conversely, there are three categories of

messages that must be retransmitted by the

AH function.

- DOE messages that were not sourced by

this device

- RDY messages that were not sourced by

this device

- SOT messages that are not directed to this

device.

Even without discussing all of the other

terms involved in the simplified norepeat

and repeat expressions, you can see that

the interaction between functions can be-

come quite complicated, as Figure 7-4

shows.

86 The HP-IL System

{PONS} ton+tlk-{CACS}

(IFC+UNT+OTA[+MLA]){ACDS}

MTA-{ACDS}

SDA{ACDS}
+tlk-{CACS}

 EOT«{STRS}+CMD+{ACDS}

FIGURE 7-4. Talker interface function state diagram

TALKER STATE DIAGRAM

Figure 7-4 shows the state diagram for the

Talker interface function. As you can see,it

is more complicated than those discussed

thus far. Remember, however that what

makes this diagram appear more compli-

cated is the fact that it has more states in

which it can operate. This does not mean,

though, that it is more difficult to under-

stand or, more importantly, to implement

than some of the simpler appearing dia-

grams. In fact, as a general rule ofthumb,it

is the number of terms in the transition
expressions—especially when many of the

terms are from other interface functions—

that determine how complicated it may be
to implement all the capabilities of a given

function.

The Talker interface function state dia-

gram will not be described in any detail,

since you should have some understanding

of how these things work by now. To help

you get started on this one, here are the

names of the six states illustrated for the

Talker interface function in Figure 7-4:

« TIDS - Talker Idle State

* TADS - Talker Addressed State

« TACS - Talker Active State

- SPAS - Serial Poll Active State

+ DIAS - Device Identify Active State

+ AIAS - Accessory Identify Active State.

Since many of the terms in the transition

expressions for this state diagram consist

of remote messages, you should be able to

refer to the Message Glossary in the

back of this book to figure out quite a bit

about what is going on in this diagram.

APPENDIX A

The HP-IL
Instruction Set

ow that you have a fair

understanding of HP-IL con-

cepts, you may want to look

over the entire set of messages that can be

sent over the Loop interface. This col-

lection of messages is called the HP-IL

Instruction Set.
At first glance, the list of messages can be

rather forbidding, as is often the case when

you go to learn a new instruction set. But if

you look at the way these messages are

organized, you will find that they break

down into four basic classes: Data or End,

Command, Ready, and Identify (see Table

A-1).
The following discussion is presented to

help you understand the HP-IL Instruction

Set. We begin by reviewing the general

structure of an HP-IL message and then

explain, in basic terms, the way in which

HP-IL messages are grouped or organized.

Each HP-IL message in Table A-2 is

listed alphabetically by its three-letter

mnemonic. Each instruction or message is

also defined in the Glossary at the end of

the book.

THE HP-IL MESSAGE
STRUCTURE

An HP-IL message frame can be thought

of as a packet of information, 11 bits long.

TABLE A-1. The Coding of Bits C2, C1, C0

C2 C1 Co Class Mnemonic

0 END SRQ Data or End DOE

1 1 SRQ |Identify IDY

1 0 0 Command CMD

1 0 1 Ready RDY

87

88 7The HP-IL System

TABLE A-2. HP-IL Message Table

Name Message Coding Class Message Function Subgroup

AAD 101 100 AAAAA Ready Auto Address 0-30 AAG

AAG 101 100 XXXXX Ready Auto Address Group -

AAU 100 1001 1010 Command Auto Address Unconfigure UCG

ACG* 100 X000 XXXX Command Addressed Command Group -

AEP 101 101 AAAAA Ready Auto Extended Primary AAG

AES 101 110 AAAAA Ready Auto Extended Secondary AAG

AMP 101 111 AAAAA Ready Auto Multiple Primary AAG

ARG 101 01XX XXXX Ready Addressed Ready Group -

CMD 100 XXXX XXXX Command Command Class Message -

DAB 00X XXXX XXXX Data or End Data Byte —

DCL 100 0001 0100 Command Device Clear UCG

DDL 100 101X XXXX Command Device Dependent Listener ACG

DDT 100 110X XXXX Command Device Dependent Talker ACG

DOE 0XX XXXX XXXX Data or End Data or End Class -

EAR 100 0001 1000 Command Enable Asynchronous Requests UCG

END 01X XXXX XXXX Data or End End Byte -

EOT 101 0100 000X Ready End of Transmission ARG

ETE 101 0100 0001 Ready End of Transmission — Error ARG

ETO 101 0100 0000 Ready End of Transmission — OK ARG

GET 100 0000 1000 Command Group Execute Trigger ACG

GTL 100 0000 0001 Command Go to Local ACG

IAA 101 100 11111 Ready Illegal Auto Address AAG

IDY 11X XXXX XXXX Identify Identify -

IEP 101 101 11111 Ready Illegal Extended Primary AAG

IES 101 110 11111 Ready Illegal Extended Secondary AAG

IFC 100 1001 0000 Command Interface Clear UCG

IMP 101 111 11111 Ready Illegal Multiple Primary AAG

LAD 100 001 AAAAA Command Listen Address (0-30) LAG

LAG 100 001X XXXX Command Listen Address Group -

LLO 100 0001 0001 Command Local Lockout UCG

LPD 100 1001 1011 Command Loop Power Down UCG

MLA 100 001 AAAAA Command My Listen Address LAG

AAAAA = a 5-bit Address

XXXXX = Don't care bits

S = sense: 0 = set if SRQ; 1 = set if SRQ

BBB = bit : 000 = DO to 111 = D7

* Also includes DDL & DDT commands

TABLE A-2. HP-IL Message Table (continued)

Appendix A: The HP-IL Instruction Set

Name Message Coding Class Message Function Subgroup

MSA 100 011 AAAAA Command My Secondary Address SAG

MTA 100 010 AAAAA Command My Talk Address TAG

NAA 101 100 AAAAA Ready Next Auto Address AAG

NES 101 110 AAAAA Ready Next Extended Secondary AAG

NMP 101 111 AAAAA Ready Next Multiple Primary AAG

NRD 101 0100 0010 Ready Not Ready for Data ARG

NRE 100 1001 0011 Command Not Remote Enable UCG

NUL 100 0000 0000 Command Null Command ACG

OSA 100 011 AAAAA Command Other Secondary Address SAG

OTA 100 010 AAAAA Command Other Talk Address TAG

PPD 100 0000 0101 Command Parallel Poll Disable ACG

PPE 100 1000 SBBB Command Parallel Poll Enable ACG

PPU 100 0001 0101 Command Parallel Poll Unconfigure UCG

RDY 101 XXXX XXXX Ready Ready Class -

REN 100 1001 0010 Command Remote Enable UCG

RFC 101 0000 0000 Ready Ready for Command -

SAD 100 011 AAAAA Command Secondary Address SAG

SAG 100 011X XXXX Command Secondary Address Group -

SAI 101 0110 0011 Ready Send Accessory ID ARG

SDA 101 0110 0000 Ready Send Data ARG

SDC 100 0000 0100 Command Selected Device Clear ACG

SDI 101 0110 0010 Ready Send Device ID ARG

SOT 101 0110 0XXX Ready Start of Transmission ARG

SRQ** 0X1 XXXX XXXX DOE or IDY Service Request -

SST 101 0110 0001 Ready Send Status ARG

TAD 100 010 AAAAA Command Talk Address TAG

TAG 100 010X XXXX Command Talk Address Group -

TCT 101 0110 0100 Ready Take Control ARG

UCG 100 X001 XXXX Command Universal Command Group -

UNL 100 0011 1111 Command Unlisten LAG

UNT 100 0101 1111 Command Untalk TAG

ZES 101 110 00000 Ready Zero Extended Secondary AAG

AAAAA = a 5-bit Address

XXXXX = Don’t care bits

S = sense: 0 = set if SRQ; 1 = set if SRQ

BBB = bit : 000 = DO to 111 = D7

** Also 111 XXXX XXXX (IDY with SRQ)

90 The HP-IL System

The information contained within this

packet is structured as shown in Figure

A-1.
This 11-bit message is what travels over

the loop itself from Controller to device, or

from Talker to Listener. Figure A-2 depicts

a typical message frame travelingdown the

loop. Each message is sent with the most

significant bit of the framefirst. Since mes-

sages are being sent serially over the loop

interface,the first bits to arrive at a particu-
lar device will be bits C2, Cl, and CO0, in

that order. So, each device on the loop will

have a chance to decode these bits and

prepareitself for the proper handling of the

message.
If the message contains a command that

pertains to a particular device, execution is

usually deferred until after a local copy has

been made at the device. This speeds up the

overall throughput of the loop and allows

devices to be concurrently executing com-

mands at the local level.

Bits C2, Cl1, and CO are used to classify

the type of message which is contained in

bits D7 through DO.

Bit C2

Bit C2 serves two purposes. Since it is the

first bit sent in a message, it must act as the

c2|ct|co[p7|D6|Ds|D4|D3|D2| D1]|DO

 - >t 8-bit data
HP-IL control

information

FIGURE A-1. An HP-IL message frame

sync (synchronization) or start bit. It indi-

cates to a device that this is the start of a

message. This synchronization is neces-

sary, since messages could arrive at a device

atany time. (A message is an asynchronous

event.) Bit C2 is also used to indicate to a

device whether a message contains a data

byte.

When bit C2 is 0, it indicates to a device

that the current message contains eight bits

of data (D7-D0). When bit C2 is a 1, it

signifies to a device on the loop that this

message contains one of the three remain-

ing classes of messages: Command, Ready,

or Identify.

Bit C1

If a message frame contains a data class

message, bit C1is used to indicate a logical

end of record condition. When data bytes

are being transferred from Talker to Lis-

tener via the interface loop, it is often

necessary to tell the Listener that this byte

is the last in a logical group. For example,

ASCII files are often sent with a Carriage

Return and Linefeed to indicate the end of

a line of text. In this case the logical group

is a line of text. If a file of text were being

transferred over the loop, to a printer for

example, bit C1 could be used to indicate

the end of line condition. In non-data

frames, this bit indicates to a device

whether the message is a Command or

Ready frame (C1 = 0), or an Identify frame

(C1=1).

Bit Co

Bit CO is used by a device to indicate to the

Controller that it needs servicing as soon as

Appendix A: The HP-IL Instruction Set 91

Device B

f—{c2|c1|co |D7|D6|D5|D4]D3I02]01r1£|—-l

Device A

Controller

FIGURE A-2. A message on the loop

possible. This method of signaling a Con-

troller is known as a service-request.

Since messages addressed to various

devices on the loop are constantly passing

through a device’s interface, it must have

some means of quickly alerting the active

Controller. An input device may need to

indicate that it needs servicing in order to

prevent an overflow condition, or a printer

may need to tell a Talker (via a Controller)

that its buffer is full and it can no longer

accept any new information. Note that C0

is the service-request bit only for Data and

Identify frames. If C2 and C1 are 1 and 0

respectively, then CO indicates whether the

message isa Command (C0=0) ora Ready

frame (CO = 1).

Generally, bits C2, C1, and CO are used

to categorize the type of message that is

being sent via the Loop. Bits C2, Cl1, and

CO0 define the HP-IL message hierarchy, a

simple way of categorizing messages which

will now be described.

THE HP-IL MESSAGE
HIERARCHY

The structure of an HP-IL message and the

various categories and types of messages

have been briefly discussed. Messages are

categorized in an organization or

hierarchy.

This hierarchyis useful for two reasons.

First, it can help you to quickly associate a
message with its basic function; and

second, it defines a logical and convenient

way of implementing HP-IL functions in

hardware or software.

HP-IL messages are (for organizational

purposes) divided into four basic classes or

major types: the Command class (CMD),

the Data or End class (DOE), the Ready

class (RDY), and the Identify (IDY) class.

These categories or classes are based

upon the coding of bits C2, C1, and CO of

the message frame (Table A-1). Figure A-3

shows the overall organization of HP-IL

92 The HP-IL System

Subgroup

Major Class | Data or End |

| Command \

| I

Addressed

Command

Group

Universal

Command

Group

Listen

Address

Group

Talk

Address

Group

Secondary

Address

Group

| Ready I

 l

Addressed

Ready

Group

Auto

Address

Group

Identify

 DDT AAU

LPD

:;’v'::'"h“ DAB NUL LLO LAD TAD SAD | rEC | ETO AAD IDY

DAB(SRQ)| GTL DCL MLA MTA MSA ETE NAA IDY (SRQ)

END SDC PPU UNL OTA 0SA NRD IAA

END (SRQ)| PPD EAR UNT SDA AEP

GET IFC SST IEP
PPE REN SDI ZES

DDL NRE SAI AES

 TCT NES

IES

AMP

NMP

FMP

FIGURE A-3. HP-IL message hierarchy

messages, known as the HP-IL message hi-

erarchy.

Command Class

The Command (CMD) class includes all

messages sent from an active Controller to

other devices on the loop. These messages

contain commands that are used to control

either interface or device functions.

Instructions in the Command class may

pertain to a single device or to all devices

residing on the loop.

A device receiving a Command class

message will immediately retransmit the

message to the next device on the loop and

will save its own copy of the command

before beginning execution. The active

Controller must follow the Command class

message with a Ready For Command

(RFC) message (after the Command

returns) to verify that the device has com-

pleted execution of the command.

Instructions in the Command class

include

+ Those commands which are directed at a

specific device (the Addressed Command

Group);

- Those commands which are directed at all

devices on the Loop (Universal Command

Group); and

+ Those commands which assign Listen and

Talk responsibilities to devices on the loop

(LAG, TAG, and SAG).

Data or End (DOE) Class
Messagesin this class include all data sent

from an active Talker to an active Listener.

The last byte of data in a record is called the

End byte. The Talker may indicate this end

of record condition by setting bit C1 in the

data message. Note that the End byte is

distinct from the End of Transmission mes-

sage (ETO or ETE). The End byte does not

cause the termination of transmission from

a Talker to a Listener. Normally C1 is used

to indicate a logical end condition. This

may be an end of record, or, in the case of

ASCIIfiles, an end ofline.

Ready Class

Ready class messages provide a means of

controlling loop operations. There are

three basic groups of messages within the

Ready class: the RFC (Ready For Com-

mand) message, the group of messages

known as the Addressed Ready Group,

and the group of Ready frames called the

Auto-Address Group.

The RFC (Ready For Command) mes-

sage allows the active Controller to deter-

mine when devices have completed the exe-

cution of a prior command.

Addressed Ready Group commands

normally are used to control the sending of

Appendix A: The HP-IL Instruction Set 93

data from Talker to Listener. These

instructions specify when a device

should start sending data (SOT group) and

indicate to the Controller when the transfer

is complete (EOT group) or when a Con-

troller must interrupt a data transmission

(NRD message).

Ready class messages also include a

group of commands known as the Auto-

Address Group (AAG). Auto-Address

messages simply allow a Controller to

bring up or configure a loop without oper-

ator intervention. In this mode de-

vices are effectively assigned an address

through the use of messages in the AAG

group.

Identify (IDY) Class

The class of messages known as the Iden-

tify (IDY) class is used by the Controller to

determine if a device on the loop needs

servicing. The process of identifying which

device needs attention is called polling. The

HP-IL command structure allows for two

methods of polling: serial and parallel.

GLOSSARY

Terms and
Remote Messages

he following is a listing of terms

and remote messages used in the

HP-IL. Messagesare listed alpha-

betically by three-letter mnemonic. Fol-

lowing the definition of each message, the

binary representation is given in which “X”

equals a bit of any value and “A” equals

any address bit.

AAD Auto-Address. This message

allows a Controller to assign addresses

to a maximum of 31 devices on the loop.

The AAD message is issued by the Con-

troller to the first device on the loop. The

first device takes the number AAAAA

as its address, then increments AAAAA

and passes the message along to the next

device on the loop.

(101 100 AAAAA)

AAG Auto-Address Group. This

group of messagesis issued by the Con-

troller to assign addresses to devices that

are on the loop.

(101 100 XXXXX)

AAU Auto-Address Unconfigure.

This command is issued by the Con-

troller to cause all devices capable of

being auto-addressed to relinquish their

present address assignments. Once a

device has received an AAU command,

it may be readdressed using the AAD

command.

(100 1001 1010)

ACG Addressed Command Group.

This group of commands is sent from a

Controller to a device which has been

previously addressed as a Talker or Lis-

tener. Commands in this group are used

to control specific devices on the loop.

(100 X000 XXXX)

or (100 101X XXXX)

or (100 110X XXXX)

AEP Auto-Extended Primary. This

message is issued by the Controller to

assign a single extended primary address

(AAAAA)toagroup of devices that are

95

AMP

ARG

CMD

96 The HP-IL System

capable of extended-addressing and

which have previously been assigned

extended secondary addresses with the

AES message.

(101 101 AAAAA)

AES Auto-Extended Secondary. This

message is issued by the Controller to

assign a group of secondary addresses to

devices capable of supporting extended-

addressing. A device receiving an AES

message will take AAAAA as its second-

ary address, increment AAAAA and

send it on to the next device on the loop.

(101 110 AAAAA)

Auto-Multiple Primary. This

message is issued by the Controller to

assign primary addresses to devices ca-

pable of multiple addressing. The Con-

troller issues the AMP message and each

device in turn accepts the primary

address AAAAA, increments it and

passes it on to the next device on the

loop.

(101 111 AAAAA)

Addressed Ready Group. This

group of messages is primarily issued by

the Controller to initiate the sending of

data or status from a Talker, or to inter-

rupt the flow of data from a Talker to a

Listener. The ARG messages also

include two which are issued by a Talker

to notify a Controller thatit is through

transmitting data.

(101 01XX XXXX)

Command class. The class of

messages known as Commands are sent

from Controllers to devices on the loop.

Commands are used to control either

Controller

DAB

DCL

DDL

DDT

device or interface functions.

(100 XXXX XXXX)

A Controller is a device

which has been assigned the function of

maintaining order among all devices on

the loop. There is only a single active

Controller at any one time, however;

control may pass between any number

of Controllers on the loop.

Data Byte. The Data Byte is the

basic unit of data sent from a Talkertoa

Listener over the HP-IL bus. A Data

Byte message contains data in bits D7-

DO of the message frame. The most sig-

nificant bit of data (D7) is sent first.

Data is normally encoded in ASCII for

compatibility between different types of

devices.

(00X XXXXXXXX)

Device Clear. This command is

issued by the Controller to cause all

devices to be reset to their initial clear

states. Devices need not be addressed to

respond to the DCL command.

(100 00010100)

Device Dependent Listener.

This command is issued by the Con-

troller to devices addressed as Listeners.

A total of 32 possible DDL commands is

encoded into bits D4 thru DO of the

message frame. The effect of each of the

32 DDL commands depends upon the

device. DDL commands will vary from

device to device.

(100 101X XXXX)

Device Dependent Talker. This

command is issued by the Controller to

Device

devices addressed as Talkers. A total of

32 possible DDT commands is encoded

in bits D4 thru DO of the message frame.

The effect of each of the 32 DDT com-

mands is dependent on the device.

(100 110X XXXX)

A device is any physical unit.

Devices and Controllers communicate

with each other by sending messages

over a common loop interface.

DOE Data Or End. The Data or End

class of messages contain eight bits of

data (bits D7-D0) usually sent from a

Talker to a Listener over the loop. The

End message is identical to a Data mes-

sage with the exception that bit C1 is set

to indicate an end of record condition.

(0XX XXXXXXXX)

EAR Enable Asynchronous Requests.

This command is issued by the active

Controller to allow all devices so

equipped to originate their own IDY

messages to indicate a request for ser-

vice. Once the EAR command is in

effect, any universal command other

than EAR or LPD issued by a Con-

troller will disable the ability of a device

to source an asynchronous request.

(100 0001 1000)

END End Byte. The End Byte is a data

byte with bit C1 set to indicate an end of

record condition. The End Byte does not

cause transmission from a Talker to a

Listener to terminate, it merely signals a

logical end condition.

(01X XXXX XXXX)

ETE End of Transmission Error. This

messageis issued by a Talker to notify a

Extended Addressing

Glossary 97

Controller that it is finished sending

data and that an error was detected in

the transmission.

(101 0100 0001)

ETO End of Transmission OK. This

message is issued by a Talker to notify a

Controller that it is through sending its

data and that all data sent was correctly

received.

(101 0100 0000)

Extended Ad-

dressing allows for up to 961 devices to

be addressed on the loop. The first 31

devices are assigned extended secondary

addresses with the AES message. The

same devices are then assigned a com-

mon primary address with the AEP mes-

sage. This process continues until all

devices have been assigned addresses.

GET Group Execute Trigger. This

command is issued by the Controller to

addressed Listeners on the loop. Receipt

of the GET command by the device will

cause a device function to begin operat-

ing. Functions which may be controlled

in this manner are dependent upon the

device.

(100 0000 1000)

GTL Go To Local. This command is

used to tell all devices addressed as Lis-

teners to accept commands from their

own front panel (local) controls rather

than accepting device-dependent com-

mands via the loop interface.

(100 0000 0001)

IAA Illegal Auto-Address. This mes-

sage is a form of the AAD message used

98 The HP-IL System

to indicate to the Controller that the

number of devices on the loop is equal to

or greater than 31 (the maximum

allowed with simple addressing). It is

simply defined as an AAD message with

an address field AAAAA, equal to 31.

(101 1001 1111)

IDY Identify. This class of message is

issued by the Controller to determineifa

device on the loop needs servicing. Devi-
ces needing service may alert the Con-
troller by setting bit CO of the message

frame. Additionally, if parallel polling is
being used, devices may set bits D0-D7

to indicate specific service-requests.

(11X XXXX XXXX)

IEP Illegal Extended Primary. This is

a form of the AEP message with the

address field AAAAA equal to 31 (an

illegal condition). Devices will not

respond to an IEP message.

(101 1011 1111)

IES Illegal Extended Secondary. An

AES message which has been incre-
mented so that the address field

AAAAA equals 31 is called the IES mes-

sage. The IES message indicates to the

Controller that there are more devices

remaining to be addressed.

(101 1101 1111)

IFC Interface Clear. The IFC com-

mand is issued by the System Controller

to all devices and Controllers on the

loop. It causes all active devices to return

to anidle state, but does not destroy any

device addressing information pre-

viously set.

(100 1001 0000)

IMP Illegal Multiple Primary. This is

a form of the AMP message with the

address field equal to 31. It indicates to

the Controller that the number of devi-

ces having multiple address capabilities

on the loop equals or exceeds 31 (the

maximum number allowed).

(101 1111 1111)

LAD Listen Address. This command

is issued by a Controller to cause a

device to become an active Listener on

the loop. Active Listeners are allowed to

receive data from the active Talker.

When a device receives an LAD message

with AAAAA equal to its own assigned

Listen Address, it becomes an active Lis-

tener on the loop. If the device is config-
ured for extended or multiple address-

ing, the LAD address field contains a

primary address only. In this case the

device does not become active until

receiving the proper SAD command.

(100 001 AAAAA)

LAG Listen Address Group. This

group of commands is used by a Con-

troller to cause devices to become active

Listeners on the interface loop.

(100 001 XXXXX)

Listener A Listener is a device which

has been assigned the ability to receive

data being sent over the interface loop.

Listeners are enabled via the Listen

Address Group (LAG) commands.

LLO Local Lockout. This commandis

used by the Controller to prevent a de-

vice’s front panel controls from inad-

vertently being changed by the operator.

Once an LLO command has been

accepted by a device, that device will no

longer accept commands from its front

panel controls.

(100 0001 0001)

LPD Loop Power-Down. This com-

mand, issued by the Controller, causes

all devices on the loop, which have the ca-

pability, to go to a powered-down state.

Once a device has been placed in such a

state it may be reawakened by any mes-

sage traveling over the interface loop. A

device placed in a powered-down state

consumes very little power.

(100 10011011)

Message A message is the information

that is contained in a message frame. If

the message is a command, bits D7-D0

may be used as part of the command. If

the message contains data, bits D7-D0

contain the 8-bit data sent from Talker

to Listener.

Message Frame A message frame is the

logical object which travels over the loop

interface from Controller to device or

from Talker to Listener. A message

frame is 11 bits in length. The first three

bits (C2, C1, C0) determine the message

class and type of message.

MLA My Listen Address. When a

device receives an LAD message with

the address bits AAAAA equal to its

own previously assigned Listen Address,

it becomes an active Listener. Active

Listeners are qualified to receive data

sent by an active Talker.

(100 001 AAAAA)

Glossary 99

MSA My Secondary Address. Whena

device requiring a two-byte extended or

multiple address receives an SAD mes-

sage with the address bits AAAAA

equal to its own secondary address, it

becomes active.

(100011 AAAAA)

MTA My Talk Address. When a

device receives a TAD message with the

address bits AAAAA equal to its own

previously assigned Talk Address, it

becomes an active Talker. Active

Talkers are qualified to send data over

the loop to any number of active

Listeners.

(100 010 AAAAA)

Multiple Address Multiple addresses

allow a single physical device to be allo-

cated up to 31 unique addresses consist-

ing of a single primary address and up to

31 secondary addresses. Multiple ad-

dressed devices are assigned addresses

with the AMP and ZES messages.

NAA Next Auto-Address. An AAD

message whose address has been incre-

mented by a device is referred to as an

NAA message.

(101 100 AAAAA)

NES Next Extended Secondary. An

AES message whose address field

AAAAA has been incremented by a

device is known as the NES message.

(101 110 AAAAA)

NMP Next Multiple Primary. This

message is an AMP message whose

address field AAAAA has been incre-

100 7he HP-IL System

mented by a device capable of multiple

addressing.

(101 111 AAAAA)

NRD Not Ready for Data. During the

transmission of data from Talker to Lis-

tener, the Controller may interrupt by

replacing a data byte with the NRD mes-

sage. The Talker, upon receipt of the

NRD message should terminate trans-

mission. The final byte of data is

released by the Controller upon receipt

of the NRD message on the loop.

(101 0100 0010)

NRE Not Remote Enable. This com-

mand is issued by the Controller to all

devices on the loop. It enables a device

which was previously set to accept

commands via the loop interface to now

begin responding to its local front panel

controls. Once an NRE command is in

effect, devices will no longer respond to

commands received via the loop in-

terface.

(100 1001 0011)

NUL Null Command. The Null com-

mand does not cause any operation to

occur at a device (no-op). It may, how-

ever, be used in instances where loop

devices must be awakened from a

powered-down condition without

further affecting the device. The Null

command may also be used in instances

where it is necessary to have a message

circulated on the loop without affecting

any specific device.

(100 0000 0000)

OSA Other Secondary Address. A

device receiving an SAD command in

which the address bits AAAAA do not

match its own secondary address cannot

become active. Talkers receiving OSAs

will become inactive.

(100011 AAAAA)

OTA Other Talk Address. A Talker

receivinga TAD command in which the

address bits AAAAA do not match its

own previously assigned Talk Address

will become inactive, since only one

Talker may be active at any one time.

(100 010 AAAAA)

Parallel Polling Parallel polling allows

a Controller to quickly identify a device

needing service. The Controller sources

an IDY message. Devices set pre-

assigned bits in the IDY message to indi-

cate service-request conditions.

Polling Polling is a method which

allows the Controller to identify a device

needing service. There are two methods

of polling used in the HP-IL sytems:

serial and parallel.

PPD Parallel Poll Disable. This com-

mand issued by the Controller causes

devices which are currently addressed as

Listeners to cease further parallel-poll

operations.

(100 0000 0101)

PPE Parallel Poll Enable. This com-

mand is issued by a Controller to con-

figure a device addressed as a Listener

for parallel-polling operation. Bits D2-

DO are used to assign a service-request

bit to a device (000= DO, 111 =D7). The

sense of bit D3 will determine whether

the device must set the parallel-poll bit

when it needs service (D3 = 1) or when it

does not need service (D3 = 0).

(100 1000 SBBB)

PPU Parallel Poll Unconfigure. This

command issued by a Controller pre-

vents all devices from responding to

further parallel-poll operations. Devices

do not have to be addressed as Listeners

in order for the PPU command to apply.

(100 0001 0101)

Primary Address A primary address is

the most significant byte of a two-byte

address. Primary addresses are used in

addressing devices which have been

assigned extended addresses or have

multiple address capabilities.

RDY Ready. This class of messages is

normally used to control loop opera-

tions. Ready class messages include the

RFC command, the Addressed Ready

Group commands and the Auto-

Address Group commands.

(101 XXXX XXXX)

REN Remote Enable. This is a com-

mand issued by the Controller to all

devices on the loop. It enables devices to

begin accepting commands via the loop

interface when properly addressed.

Once the REN command is in effect and

the device has received the MLA mes-

sage, front panel controls will have no

effect on the device.

(100 1001 0010)

Glossary 101

RFC Ready For Command. This

Ready class message is issued by the

active Controller to verify that a pre-

viously issued command has been ex-

ecuted by a device or devices on the loop.

Each command issued by the Controller

must be followed by an RFC message.

(101 0000 0000)

SAD Secondary Address. This com-

mandis issued by a Controller to enable

those devices which require a two-byte

address. A device which has received a

primary address command will become

active upon receipt of a SAD command

in which AAAAA equals a previously

assigned secondary address.

(100 011 AAAAA)

SAG Secondary Address Group. This

group of commands is issued by a Con-

troller to assign secondary addresses to

those devices using two-byte, extended

or multiple addressing.

(100 011X XXXX)

SAI Send Accessory ID. This message

is issued by a Controller to cause the

active Talker to begin sending its acces-

sory ID. The accessory ID is usually a

single byte in which the high order four

bits specify the device class (for example,

printer, mass storage, etc.) and the lower

four bits indicate a specific device.

(101 0110 0011)

SDA Send Data. This message is

issued by the Controller to allow a

Talker to begin sending data.

(101 0110 0000)

Serial Polling

102 The HP-IL System

SDC Selected Device Clear. When this

command is issued by the Loop Con-

troller, all devices which are addressed

as Listeners will be reset to their initial

clear states.

(100 0000 0100)

SDI Send Device ID. This message is

issued by the Controller to cause an

active Talker to begin sending its device

identification. The device identification

is usually an ASCII string consisting of a

two-letter manufacturer’s code, a five-

character model number, model revi-

sion, and any additional information

included by the manufacturer of the

device.

(101 0110 0010)

Secondary Address A secondary ad-

dress is the least significant byte of a

two-byte address. Secondary addresses

are used to address devices that have

been assigned extended addresses or

have multiple address capabilities.

Serial polling is the

normal method polling used by a Con-

troller to identify devices needing ser-

vice. The Controller sources an IDY

message. Bit CO of the message is set by

any device requesting service. In serial

polling, the Controller must address

each device individually to determine

the source of the request.

Simple Address A simple address is a

single byte identifier in the address field

of a message frame. Simple addresses

TAD

TAG

request is an action initiated by a device

to alert a Controller to the fact that it

needs servicing. The service-request bit,
CO of the message frame, is turned on by

the device to indicate the SRQ condi-

tion. This may occur in either a DOE or

IDY class of message.

(0X1 XXXX XXXX)
or (111 XXXX XXXX)

SST Send Status. This message is

issued by the Controller to tell a Talker

to begin sending its status byte(s). Status

information may indicate that a device

needs service or may contain device-

dependent information.

(101 0110 0001)

Talk Address. This command is

issued by a Controller to cause one

device on the loop to become the active

Talker. When a device receives the TAD

command it checks to see if the address

AAAAA matches its own assigned Talk

Address. If so, it becomes the active

Talker on the loop. If the device is con-

figured for extended or multiple

addressing, the addressfield is taken as a

primary address. The device will not

become active until receiving the proper

SAD command.

(100 010 AAAAA)

Talk Address Group. This group

of commandsis used by a Controller to

cause a device to become the active

Talker on the loop.

(100 010 XXXXX)

may specify up to 31 unique devices.

SRQ

Talker A Talker is a device which has

Service-Request. A service- been assigned the ability to source data

on the interface loop. Talkers are

enabled through the Talk Address

Group (TAG) commands.

TCT Take Control. This message is

issued by the active Controller to cause

control to pass to another Controller on

the loop.

(101 0110 0100)

UCG Universal Command Group.
This group of commands is sent from a
Controller to all devices on the loop.

UCG commands affect all devices, not

only those which have been addressed.

(100 X001 XXXX)

UNL Unlisten. This command is

issued by a Controller to cause all cur-

rently addressed Listeners to go inactive.

(100 0011 1111)

Glossary 103

UNT Untalk. This command is issued

by a Controller to cause the active

Talker to go inactive.

(100 0101 1111)

ZES Zero Extended Secondary. This

message is issued by the Controller to

assign secondary addresses to those

devices capable of multiple addressing.

Following the assignment of primary

addresses with the AMP message the

Controller issues ZES to each multiple

addressed device in turn. A device

receiving a ZES message will increment
the low-order five bits of the ZES mes-

sage to indicate to the Controller the

number of addresses reserved for the

device.

(101 1100 0000)

INDEX

AAD, 54—55, 63—64, 76—1717, 88, 95
AAG, 88, 95
AAU, 5455, 63—64, 76—77, 88, 95
Acceptor handshake function, 69—70, 71, 83—84

state diagram, 83—84

Acceptor logic, 39—40
ACG, 88, 92,93, 95
Address functions, 67

Addressed command group, 92
AEP, 77, 88, 95
AES, 77, 88, 96
AMP, 77, 88, 96
ARG, 88, 93, 96
Asynchronous operation, 55—56, 72, 76

Auto-Addressing, 7, 54—55, 63—64, 72, 76—178

Auto-Multiple function, 77—78

Cables, interconnecting, 7

CMD, 85, 87, 88, 96

Command class, 91—92. See also CMD

Command group messages, 24—29, 30, 42—47

Communications protocols, 4

Connectors, 18

Controller function, 71—72

Controllers, 5, 42, 52, 64—65, 71—72

HP-41,11—14

Converters

HP-IL, 11, 15—17

integrated, 18

programming of, 16—17
RS232, 15, 21

DAB, 31, 35—36, 88, 96

Data buffering, 22

Data group messages, 35—36

Data or End class, 91—93. See also DOE

Data transfer, 59—60

Data transfer rates, 6, 22

Data transmission

codes, 6

interruption of, 60—61

DCL,24, 26, 42—43, 72—73, 88, 96

DDL, 78, 88, 96

DDT, 78, 88, 96

Device addressing, 39

Device clear, 73

Device Control functions, 67, 72—75

Device interface logic, 22
Device triggering, 7, 74

Devices, 5—6, 97

Devices, external, 11, 15—17, 21—23

parallel interface to, 18, 22—23

Devices, off-the-shelf, 11—13

Digital Cassette Drive, HP 82161A, 11, 12—13

DOE,85, 87, 88, 97

Driver interface function, 41, 70—71

state diagram, 81—82

EAR,88, 97

END,36, 88, 97

End byte, 92—93

End of record, 36, 90

EOT, 32—34, 71, 88

Error checking, 34, 41

ETE, 29, 33—34, 47, 48—49, 88, 97

ETO, 29, 33—34, 47, 48—49, 88, 97

Extended addressing, 77—78, 97

Frame decoding, 38—39

General purpose adapter, 21—23, 31—32

GET, 74, 88, 97
GTL, 42, 43—44, 88, 97

Handshaking, 2, 3, 47

Hardware interfaces, 1—3

bus interface, 2

loop interface, 3
parallel interface, 1—2
serial interface, 2

HP-IL messages, 4—S5, 13, 15—18, 37, 80, 87—89, 99

HP-IL program, 13—14

HP-IL specification, 1, 17—19
HP-IL system

applications, 7—9
example of, 11—15

overview, 4—5

features, 5—7

without Controller, 58—59

IAA, 97—98

Identify class, 91, 93.

Idle state, 6, 25, 28, 35, 81—82

IDY, 46—47, 63, 75—76, 85, 87, 88, 93, 98

IEP, 98

IES, 98

IFC, 24—26, 42—43, 58, 88, 98

IMP, 98
Interface functions, 18, 38, 41, 67—78, 79—80

105

106 The HP-IL System

Interface Module, HP 82160A, 11, 12

Interface standards, IEEE 488, 4, 21

LAD, 24, 26—28, 42, 88, 98

LAG,88,98

Listener interface functions, 70

Listeners, 5, 23—24, 26—28, 35—36, 70, 82—93, 98

example of, 23

state diagram, 82—83
LLO, 88, 98—99

Local messages, 80—81

Local mode, 43—44, 74—75

Loop nomenclature, 24

LPD,24, 28—29, 42, 72—73, 88, 99

LSI Controller, 19, 37—42

device interface, 40

register array, 40

Message encoding/decoding, 22
Message frame, 37, 87—91, 99

Message-handling functions, 18
Message hierarchy, 91—93
MLA, 27, 88, 99
MSA,89, 99
MTA,3435, 89, 99
Multiple address, 99

NAA,89,99
NES,89, 99
NMP, 89, 99—100
NRD,47, 50—52, 89, 100
NRE,42, 43—44, 89, 100
NUL,89, 100

OSA,89, 100
OTA,35, 89, 100

Parallel polling, 32, 44—47, 72, 75—76, 93, 100

Parallel printer interface, 16, 21—24, 31—32

Portable data collection, 7—8

Power-down state, 7, 23, 28, 72—73

Power-up, 29, 45, 57—58, 72—73,81

PPD, 42, 47, 75—76, 89, 100

PPE, 42, 44—46, 75—76, 89, 100—01

PPU,42, 47, 75—76, 89, 101

Primary address, 54—S55, 101

Primary interface functions, 67, 69—72

Primary roles, 38

Printer, HP 82162A, 11, 13

Pseudo messages, 80—81

RDY,85, 87, 89, 101
Ready class, 47—56, 91, 93. See also RDY

Ready messages, 29—34

Receiver interface function, 38, 69, 71

Remote measurement, 8—9

Remote messages, 80

Remote mode, 43—44, 74—75

REN,42, 43—44, 89, 101

RFC, 25—26, 29—30, 47—48, 58, 89, 93, 101

SAD,55, 89, 101

SAG, 89, 101

SAI89, 101

SDA, 47, 499—50, 71, 89, 101—2

SDC,42, 89, 102

SDI, 47, 52, 89, 102

Secondary address, 55, 102

Serial interface, 18

Serial polling, 30—32, 44—45, 61—62, 93, 102

Service request, 46—47, 53—54, 61—63, 67, 72, 76, 91.

See also SRQ
SOT,85, 89

Source handshake function, 70—71

SRQ, 89, 102

SST, 29, 30—32, 47, 48, 89, 102

State diagrams, 79
Status functions, 67

Status information, 23—24, 30—32

Sync bit, 37—38, 90

System clear, 25

System Controller, 12, 15, 17, 25, 42—43, 64, 71—72

TAD, 24, 34—35, 42, 71, 89, 102

TAG,89, 102

Talk Command messages, 34—35

Talker function, 71

Talkers, 5, 30—31, 34—36, 41, 71, 86, 102—03
state diagram, 86

TCT, 47, 52—53, 64—65, 71, 89, 103

Transmission line, 6

UCG, 89, 92, 103

Universal Command Messages, 28, 92

UNL, 24, 28, 42—43, 89, 103

UNT,24, 33, 35, 42, 89, 103

ZES, 7778, 89, 103

Here’s a definitive guide to the new Hewlett-Packard Interface Loop
(HP-IL), an eight-bit serial interface designed for small low-cost, battery-
operable systems. The HP-IL makes a new generation of portable sys-
tems for controlling instruments and peripherals possible.

The HP-IL links programmable calculators such as the HP-41C/CV,
and the new series 80 personal computers, to low-power, low cost periph-
eral devices and test equipment. For those who require portability in the
field it’s an indispensable tool in data collection, reduction of duplicate
paperwork, briefcase computation and bench instrumentation.

Co-author Steve Harper is on the Research and Development staff at
Hewlett-Packard’s Corvallis Division in Corvallis, Oregon. He assists Gerry
Kane and David Ushijima in providing an in-depth description of the HP-IL
and its functions. Contents include instructions on how to interface both
HP-IL and non-HP-IL devices to the Loop.Also included are summaries of
all HP-IL remote messages and message sequences.

4W ISBN 0-931988-77-2

In 5955-9425

	Cover
	Contents
	1. An Introduction to HP-IL
	2. Getting on the Loop
	3. Using a General-Purpose Interface to HP-IL
	4. A Component Level Interface to HP-IL
	5. Some Typical Loop Sequences
	6. The Interface Functions
	7. What You Have Not Been Told
	8. Appendix A
	9. Glossary
	10. Index

