Symbolic computation and Mathematics with the calculator HP Prime

> Renée De Graeve Lecturer at Grenoble I

Translated from French by Jean-Michel Lecointre

© 2013 Renée De Graeve, renee.degraeve@wanadoo.fr

Copy, translation and redistribution of this document on electronic support or paper are permitted for non-commercial purpose only. Use of this document for commercial purpose is forbidden without the written consent of the owner of the copyright. This documentation is provided "as is", without warranty of any kind. The owner of the copyright shall not be held responsible in any case for any damage resulting from the use of this document.

This document is available at the following Internet address: <u>http://www-fourier.ujf-grenoble.fr/~parisse/hp-prime_cas.pdf</u> (\rightarrow link to be updated)

INDEX

	+ infinity, 196
-, 40, 131, 293, 324	
	<, 196, 513
- inf, 196	<=, 196, 197, 513
- infinity, 196	
260 274 277	<i>≠</i> , 196, 513
_, 369, 371, 377	==, 196, 513
- 50 400	=>, 371, 375, 499
:=, 59, 499 :=, 44	>, 196, 513
, ++	>=, 196, 513
!, 227	, _ , _ , _ , _ , _ , _ , _ , _ , _ , _
!=, 196, 513	, 197
, 293, 324	≤, 196
.*, 293, 325	
./ , 294, 325	≥, 196
. ^, 326	
.+ , 292, 324	a2q, 103
<i>#</i>	abcuv, 149
", 60	about, 506
' , 60, 225	ABS, 210, 335
, 00, 223	abscissa, 434 ACOS, 216
", 295	acos2asin, 113
, 200	acos2atan, 114
[[]], 295	ACOSH, 221
[], 295	ACOT , 219
	ACSC, 217
*, 40, 131, 324	ADDCOL, 316
	additionally, 505
/, 40, 133, 135	ADDROW , 322
//, 497, 513	affix, 435
/laplace, 94	algvar, 223
& *, 324	ALOG, 213
& , 524 &&, 197	alog10, 213 altitude, 396
&^, 325	AMORT , 465
x , 525	and, 197, 513
, 499	angle , 435
, 400	angleat, 427
%, 129, 208	angleatraw, 427
%e, 196	Ans , 508
%i, 196	ans(n) , 508
%pi, 196	append , 276
	apply, 287
^, 40	approx, 225
	arc, 414
^, 133, 325	arcLen, 436
	area, 438 areaat, 428
→, 44, 59	areaatraw, 428
a co	ARG , 209
ð , 60	ASC , 297
+, 40, 130, 292, 296, 303, 324	ASEC , 218
', TO, 130, 232, 230, 303, 32 7	ASIN, 216

asin2acos, 113 asin2atan, 113 **ASINH**, 220 assume, 502 ATAN, 217 atan2acos, 115 atan2asin, 115 **ATANH**, 221 atrig2ln, 116 barycenter, 384 basis, 329 Beta, 359 **BINOMIAL**, 239 BINOMIAL_CDF, 243 **BINOMIAL_ICDF**, 246 bisector, 397 bitand, 198 **bitor**, 198 **bitxor**, 198 bounded_function, 66 BREAK, 511 canonical_form, 151 **CASE**, 509 cat, 296 **CEILING**, 199 Celsius2Fahrenheit, 376 center, 395 cFactor, 53 CHAR, 298 charpoly, 327 **CHECK**, 517 chinrem, 149, 177 CHISQUARE, 238 CHISQUARE_CDF, 241 CHISQUARE_ICDF, 246 cholesky, 345 **CHOOSE**, 514 **Ci**, 366 circle, 413 circumcircle, 415 coeff, 155 col, 318 colDim, 316 collect, 49 **COLNORM**, 337 colSwap, 317 **COMB**, 227 comDenom, 55 comment, 497 common_perpendicular, 380 companion, 165 compare, 501 complexroot, 152 **CONCAT**, 274 **COND**, 339

conic, 105, 415 **CONJ**, 209 contains, 282 content, 170 **CONTINUE**, 510 convert, 371, 375 convexhull, 412 coordinates, 438 CopyVar, 499 correlation, 256 COS, 216 cos2sintan, 114 COSH, 220 **COT**, 218 count, 283 covariance, 255 covariance_correlation, 258 cpartfrac, 55 CROSS, 356 CSC, 217 **cSolve**, 89 cumSum, 291, 296 curl, 72 cyclotomic, 178 cZeros, 88, 90 degree, 168 **DELCOL**, 318 delcols, 318 **DELROW**, 319 delrows, 319 deltalist, 285 deSolve, 90 det, 136, 326 diag, 345 diff, 60 DIM, 278, 302, 315 Dirac, 367 distance, 441 distance2, 442 distanceat, 429 distanceatraw, 430 divergence, 73 divis, 140, 157 division_point, 393 divpc, 83 DOM_COMPLEX, 500 DOM_FLOAT, 500 DOM_IDENT, 500 DOM_INT, 500 DOM LIST, 500 DOM_RAT, 500 DOM_STRING, 500 DOM_SYMBOLIC, 500 **DOT**, 356 DrawSlp, 395

e, 196 **EDITMAT**, 515 egcd, 148 **Ei**, 364 EIGENVAL, 342 eigenvals, 342 eigenvects, 343 EIGENVV, 343 eigVI, 344 element, 391 ellipse, 416 equation, 442 equilateral_triangle, 404 erf, 362 erfc, 363 euler, 125 euler gamma, 196 **eval**, 224 evalc, 211 evalf, 225 even, 121 exact, 226 exbisector, 397 excircle, 417 **EXP**, 214 exp2pow, 110 exp2trig, 111 expand, 51 expexpand, 112 EXPM1, 214 exponential_regression, 261 expr, 299 extract_measure, 442 ezgcd, 146 f2nd, 56 factor, 52, 136, 139 factor_xn, 170 factorial, 227 factors, 157 fadeev, 328 Fahrenheit2Celsius, 376 false, 196 fcoeff, 162 fft, 86 **FISHER**, 239 FISHER_CDF, 242 FISHER_ICDF, 246 FLOOR, 200 fMax, 59 fMin, 59 FNROOT, 207 FOR, 519 FOR FROM TO DO END, 511 FOR FROM TO STEP DO END, 511 **FP**, 201 frac, 204

fracmod, 135 **FREEZE**, 514 froot, 153 fsolve, 101 function_diff, 60 Gamma, 360 gauss, 104 gbasis, 179 gcd, 122, 136, 144, 158 **GETKEY**, 514 **GF**, 137 grad, 73 gramschmidt, 104 greduce, 179 half_line, 397 halftan, 115 halftan_hyp2exp, 108 hamdist, 199 harmonic_conjugate, 394 harmonic_division, 393 has, 223 head, 304 Heaviside, 367 hermite, 179 hessenberg, 346 hessian, 73 hexagon, 410 hilbert, 334 histogram, 254 homothety, 421 hyp2exp, 112 hyperbola, 417 HypZ1mean, 466 HypZ2mean, 466 i, 196, 208 iabcuv, 123 ibasis, 329 ibpdv, 78 **ibpu**, 79 ichinrem, 128 id, 199 **IDENMAT**, 332 identity, 332 idivis, 121 iegcd, 123 IF, 508, 518 IF THEN ELSE END, 509 ifactor, 122 ifactors, 122 **IFERR**, 510 ifft, 86 IFTE, 508 igcd, 144 ihermite, 346

ilaplace, 94 IM, 209 image, 329 incircle, 418 inf, 196 infinity, 196 **INPUT**, 497, 515 InputStr, 497 INSTRING, 297, 301 **int**, 63 integrate, 75 inter, 388 interval2center, 58 inv, 135, 137, 199 inversion, 422 invlaplace, 84, 94 invztrans, 99 IP, 200 iPart, 204 iquo, 127 iquorem, 128 irem, 128 is_collinear, 446 is_concyclic, 446 is conjugate, 446 is_coplanar, 447 is_element, 448 is equilateral, 448 is_harmonic, 454 is_harmonic_circle_bundle, 455 is_harmonic_line_bundle, 454 is_isosceles, 449 is_orthogonal, 450

is_parallel, 450

is_rhombus, 453

ISKEYDOWN, 514

isobarycenter, 386

isosceles_triangle, 406

isopolygon, 410

isPrime, 124

ITERATE, 511

ithprime, 124

jordan, 344

ker, 329

jacobi_symbol, 126

JordanBlock, 333

l1norm, 290, 357

l2norm, 290, 357

lagrange, 180

is_square, 453

ismith, 347

is_parallelogram, 451

is_perpendicular, 452
is_rectangle, 452

laplace, 84 laplacian, 74 lcm, 123, 147, 159 Icoeff, 163, 169 left, 57, 281, 301 legendre, 184 legendre_symbol, 126 length, 278, 302 lgcd, 123 limit, 65, 67 lin, 107 line, 398, 399 linear interpolate, 260 linear_regression, 261 LineHorz, 399 LineTan, 396 LineVert, 399 linsolve, 102 list2mat, 289 LN, 211 Iname, 222 Incollect, 107 Inexpand, 107 LNP1, 215 locus, 418 log, 211, 212 log10, 212 logarithmic_regression, 262 logb, 213 logistic_regression, 265 LQ, 347 **LSQ**, 349 LU, 349, 350 Ivar, 222 MAKELIST, 273 **MAKEMAT**, 331 **MANT**, 205 map, 287 mat2list, 290 matpow, 345 matrix, 332 **MAX**, 206 maxnorm, 290, 358 MAXREAL, 196 mean, 248, 267, 270, 465 median, 251, 267, 270 median_line, 401 member, 282 mid, 302 midpoint, 386 **MIN**, 206 MINREAL, 196 mkisom, 334 mksa, 372, 376 MOD, 206

laguerre, 184

modgcd, 146 mRow, 323 mRowAdd, 323 **MSGBOX**, 515 mult_c_conjugate, 211 mult_conjugate, 51 **nDeriv**, 62 neg, 199 nextprime, 124 norm, 290 normal, 50, 130, 131, 133 NORMALD, 238 NORMALD CDF, 240 NORMALD_ICDF, 244 normalize, 291 not, 197, 513 nSolve, 101 **NTHROOT**, 207 **numer**, 56 odd, 121 odesolve, 97 ofnom, 56 open_polygon, 412 OR, 513 order_size, 83 ordinate, 443 orthocenter, 389 pa2b2, 127 pade, 69 parabola, 420 parallel, 401 parallelogram, 409 parameq, 444 partfrac, 54 pcoef, 156, 162 pcoeff, 156, 162 perimeter, 444 perimeterat, 431 perimeteratraw, 432 **PERM**, 228 perpen_bisector, 401 perpendicular, 402 Pi, 196 PIECEWISE, 47 pivot, 341 plotcontour, 192 plotdensity, 190 plotfield, 191 plotfunc, 187 plotimplicit, 189 plotlist, 193, 259 plotode, 193 plotparam, 188 plotpolar, 188

plotseq, 189 pmin, 164 point, 385 point2d, 387 POISSON, 240 POISSON_CDF, 244 POISSON_ICDF, 247 polar, 394 polar_coordinates, 441 polar_point, 387 **pole**, 394 poly2symb, 161 POLYCOEF, 305 polyEval, 163, 305 POLYFORM, 306 polygon, 412 polygonplot, 259 polygonscatterplot, 260 polynomial_regression, 263 POLYROOT, 308 POS, 277 potential, 74 pow2exp, 111 power_regression, 264 **powerpc**, 421 powexpand, 108 powmod, 129, 134 PredX, 466 PredY, 466 prepend, 277 preval, 64, 80 prevprime, 125 primpart, 170 print, 499, 515 product, 286 projection, 422 proot, 151 propfrac, 55 Psi, 361 ptayl, 153 purge, 507 q2a, 103 **QR**, 352 quadrilateral, 409 quantile, 253, 267, 270 quartile1, 252, 267 quartile3, 252, 267 quartiles, 251, 267, 270 quo, 131, 141, 166 quorem, 132, 143 QUOTE, 225, 295 radical_axis, 404 radius, 444 ramn, 333 rand, 229

randexp, 236

RANDINT, 229 **RANDMAT**, 333 randmatrix, 333 RANDNORM, 235 **RANDOM**, 228 randperm, 232 randpoly, 165 RANDSEED, 236 randvector, 232 **RANK**, 340 **RE**, 210 reciprocation, 395 rectangle, 407 rectangular_coordinates, 440 **REDIM**, 321 reduced_conic, 105 ref, 102 reflection, 423 regroup, 50 **REGRS**, 466 rem, 132, 142, 167 remove, 280 reorder, 165 **REPEAT UNTIL**, 511 **REPLACE**, 322 residue, 69 restart, 507 resultant, 174 REVERSE, 274 revlist, 278 rhombus, 406 right, 57, 281, 301 right_triangle, 405 romberg, 64 rootof, 154 rotate, 279, 302 rotation, 424 **ROUND**, 201 row, 318 rowAdd, 323 rowDim, 316 **ROWNORM**, 336 rowSwap, 317 rref, 137, 330 rsolve, 312 **SCALE**, 323 SCALEADD, 323 **SCHUR**, 352 SEC, 218 segment, 402 select, 285 seq, 512 seqsolve, 310 series, 68 shift, 279

shift_phase, 117 Si, 365 **SIGN**, 210 signature, 58 similarity, 425 simplify, 49 simult, 331 SIN, 216 sin2costan, 113 sincos, 111 single_inter, 387 SINH, 220 SIZE, 278, 302 **slope**, 445 slopeat, 432 slopeatraw, 433 snedecor, 239 snedecor_cdf, 242 snedecor_icdf, 246 solve, 87 **SORT**, 274 SPECNORM, 338 **SPECRAD**, 339 spline, 181 sq, 199 sqrfree, 53 sqrt, 199 square, 408 srand, 236 STARTVIEW, 517 **STAT1**, 465 stddev, 249, 267, 270 stddevp, 249, 267 Sto 🏲 , 59 string, 299, 300 **STUDENT**, 238 STUDENT_CDF, 241 **STUDENT ICDF**, 245 sturm, 171 sturmab, 171 sturmseq, 172 SUB, 320 subMat, 320 subst, 54 sum, 71, 286, 465 sum_riemann, 80 suppress, 280 surd, 207 SVD, 353 SVL, 355 **SWAPCOL**, 317 SWAPROW, 317 sylvester, 173 symb2poly, 161 table, 271

tail, 280, 304

TAN, 217 tan2sincos, 115 tan2sincos2, 114 tangent, 402 **TANH**, 221 taylor, 83 tchebyshev1, 185 tchebyshev2, 185 tcollect, 119 texpand, 108 time, 41 tlin, 117 **TRACE**, 341 translation, 426 transpose, 326 triangle, 404 trig2exp, 120 trigcos, 116 trigexpand, 119 trigsin, 116 trigtan, 117 **TRN**, 326 true, 196 trunc, 203 truncate, 156, 203 tsimplify, 112 **TYPE**, 500 ufactor, 372, 377 unapply, 44 **UNCHECK**, 517

usimplify, 373, 377

UTPF, 237 **UTPN**, 237 **UTPT**, 237 valuation, 169 vandermonde, 335 variance, 250, 267, 270 vector, 400 vertices, 390 vertices_abca, 390 vpotential, 75 WAIT, 515 when, 47 WHILE, 519 WHILE DO END, 511 xor, 197, 514 **XPON**, 205 zeros, 88 **Zeta**, 362 zip, 289 ztrans, 98 **ΔLIST**, 285 π, 196 **ΠLIST**, 286 **ΣLIST**, 286

UTPC, 236

Table of content

PART I GETTING STARTED	31
Generalities	32
CAS and HOME keys	33
Reset and clear	35
Tactile screen	35
Keys	35
General settings	36
CAS settings: Shift CAS	36
Calculator settings: Shift HOME	36
Symbolic computation functions	36
PART II MENU CAS OF THE TOOLBOX KEY	37
CHAPTER 1 GENERALITIES	39
1.1 Calculations in the CAS	39
1.2 Priority of operators	39
1.3 Implicit multiplication	39
1.4 Duration of a calculation: time	39
1.5 Lists and sequences in the CAS	40
 1.6 Difference between expressions and functions 1.6.1 Defining a function by an expression 1.6.2 Definition of a function of one or several variables 1.6.3 To define a function by two expressions: when 1.6.4 Defining a function by n values: PIECEWISE piecewise 1.6.5 Exercise on expressions 1.6.6 Exercise on the functions (to be followed) 	41 42 43 45 45 46 46
CHAPTER 2 MENU ALGEBRA	48
2.1 Simplifying an expression: simplify	48
2.2 Factorizing a polynomial on the integers: collect	48
2.3 Regrouping and simplifying: regroup	49
2.4 Expanding and simplifying: normal	49

2.5	Expanding an expression: expand	49
2.6	Multiply by the conjugate quantity: <pre>mult_conjugate</pre>	50
2.7	Factorizing an expression: factor	50
2.8	Factorization without square factor: sqrfree	51
2.9	Factorization in C: cFactor cfactor	52
2.10	Substituting a variable by a value: subst	53
2.11	Fractions	53
2.1	1.1 Decompose into simple elements: partfrac	53
2.1	1.2 Decomposition in simple elements on C: cpartfrac	53
2.1	1.3 Put to common denominator: comDenom	54
2.1	1.4 Integer part and fractional part: propfrac	54
2.12	Extract	55
2.1	2.1 Numerator of a fraction after simplifiation: numer	55
2.1	2.2 Denominator of a fraction after simplification: ofnom	55
2.1	2.3 Numerator and denominator: f2nd	55
2.1	2.4 Get the left member of an equation: left	56
2.1	2.5 Get the right member of an equation: right	56
2.1	2.6 Center of an interval: interval2center	56
2.1	2.7 Signature of a permutation: signature	57
СНА	PTER 3 MENU CALCULUS	58
	_	
3.1	Definition of a function: $:=$ and \rightarrow (Sto \blacktriangleright)	58
3.2	Maximum and minimum of an expression: fMax fMin	58
3.3	Differentiate	59
3.3	.1 Derivative function of a function: function diff	59
3.3		59
3.3		61
3.4	Integration	62
3.4	.1 Primitive: int	62
3.4	.2 Evaluate a primitive: preval	63
3.4	.3 Approximate calculation of integrals with the Romberg method: romberg	63
3.5	Limites: limit	63
3.6	Limit and integral	65
3.7	Series: series	67
	Posiduo of an expression in a point, we address	
3.8	Residue of an expression in a point: residue	67
3.9	Pade approximation: pade	68
3.10	Indexed finite and infinite sum and discrete primitive: sum	69
3.11	Differential	71

3.11.1	Rotational curl: curl	71
3.11.2	Divergence: divergence	71
3.11.3	Gradient: grad	71
3.11.4	Hessian matrix: hessian	72
3.11.5	Laplacian: laplacian	72
3.11.6	Potential: potential	73
3.11.7	Conservative vector field: vpotential	73
3.12 Int	regral	74
3.12.1	Primitive and definite integral: integrate	74
3.12.2	Integration by parts: ibpdv	76
3.12.3	Integration by parts: ibpu	77
3.12.4	Evaluate a primitive: preval	78
3.13 Lir	nits	79
3.13.1	Riemann sum: sum riemann	79
3.13.2	Series expansion: taylor	81
3.13.3	Division by increasing power order: divpc	82
3.14 Tra	ansform	82
3.14.1	Laplace transform: laplace	82
3.14.2		83
3.14.3	Fast Fourier transform: fft	84
3.14.4	inverse of the fast Fourier transform: ifft	84
5.14.4		04
CHAPTEI	R 4 MENU SOLVE	86
4.1 Solv	e equations: solve	86
4.2 Zero	os of an expression: zeros	87
4.2 2010		07
4.3 Con	nplex Zeros of an expression: cZeros	87
4.4 Solv	e equations in C: cSolve csolve	88
4.5 Con	nplex zeros of an expression: cZeros	89
4.6 Diff	erential equations	89
	Solve differential equations: deSolve desolve	89
4.6.2	Laplace transform and inverse Laplace transform: /laplace ilaplace invlaplace	93
4.7 App	roximate solution of $y' = f(t, y)$: odesolve	95
4.8 z tra	insform and z inverse transform	97
4.8.1	z transform of a series: ztrans	97
4.8.2	z transform inverse of a rational fraction: invztrans	98
4.9 Solv	e numerical equations: nSolve	99
4.10 So	lve equations with fsolve	99
4.11 Lir	iear systems	100
4.11.1	Solve a linear system: linsolve	100
4.11.2	Gauss reduction of a matrix: ref	100
4.12 Qu	iadratic forms	101

4.12.1 4.12.2 4.12.3 4.12.4	Matrix of a quadratic form: q2a Transform a matrix in a quadratic form: a2q Gauss method: gauss Gramschmidt process: gramschmidt	101 102 102 102
4.13 C 4.13.1 4.13.2		103 103 103
СНАРТЕ	R 5 MENU REWRITE	105
5.1 Co	llect the logarithms: lncollect	105
5.2 Exp	pand the logarithms: lnexpand	105
5.3 Lin	earize the exponentials: lin	105
5.4 Tra	ansform a power in product of powers: powexpand	106
5.5 Tra 100	ansform the trigonometric and hyperbolic expressions in $\tan(x/2)$ and in ex: halfta 6	an_hyp2exp
5.6 Exp	pand a transcendantal and trigonometric expression: texpand	106
	p & Ln	108
5.7.1	Transform $exp(n*ln(x))$ in power: $exp2pow$	108
5.7.2	Transform a power into an exponential: pow2exp	109
5.7.3	Transform the complex exponentials into sin and cos: sincos exp2trig	109
5.7.4	Transform the functions hyperbolic in exponentials: hyp2exp	110
5.7.5 5.7.6	Write with complex exponentials: tsimplify Expand the exponentials: expexpand	110 110
5.8 Sin	e	110
5.8.1	Transform the arcsin into arccos: asin2acos	110
5.8.2	Transform the arcsin in arctan: asin2atan	110
5.8.3	Transform sin(x) in cos(x)*tan(x): sin2costan	111
5.9 Co:	sine	111
5.9.1	Transform the arccos into arcsin: acos2asin	111
5.9.2	Transform the arccos into arctan: acos2atan	111
5.9.3	Transform cos(x) into sin(x)/tan(x): cos2sintan	112
	angent	112
5.10.1	Transform tan(x) with sin(2x) and cos(2x): tan2sincos2	112
5.10.2	Transform the arctan into arcsin: atan2asin	112
5.10.3	Transform the arctan into arccos: atan2acos	113
5.10.4 5.10.5	Transform tan(x) into sin(x)/cos(x): tan2sincos Transform a trigonometric expression in term of tan(x/2): halftan	113 113
	rigonometry Simplify by privileging since that as in	114
5.11.1 5.11.2	Simplify by privileging sine: trigsin Simplify by privileging cosine: trigcos	114 114
5.11.2	Transform trigonometric inverse functions to logarithms: atrig21n	114
5.11.3	Simplify by privileging tangent: trigtan	114
5.11.5	Linearize a trigonometric expression: tlin	114
5.11.6	Shift the phase by $\pi 2$ in trigonometric expressions: shift phase	115
	·	

5.11.7	Collect the sine and cosine of a same angle: tcollect	117
5.11.8	Expand a trigonometric expression: trigexpand	117
5.11.9	Transform a trigonometric expression into complex exponentials: $\tt trig2exp$	117
СНАРТЕ	R 6 MENU INTEGER	118
6.1 Tes	st of parity: even	118
6.2 Te	st of non parity: odd	118
6.3 Div	visors of an integer: idivis	118
6.4 Pri	me factors decomposition of an integer: ifactor	119
6.5 Lis	t of prime factors and their multiplicity: ifactors	119
6.6 GC	D of one or several integers: gcd	119
6.6.1	GCD of a list of integers: lgcd	119
6.7 LCI	M of one or several integers: lcm	120
6.7.1	Bezout identity: iegcd	120
6.7.2	Solve $au + bv = c$ in Z: iabcuv	120
6.8 Pri	mality	121
6.8.1	Check whether a number is prime: is Prime is prime	121
6.8.2	The N-th prime number: ithprime	121
6.8.3	nextprime	121
6.8.4	prevprime	122
6.8.5	Euler's totient: euler	122
6.8.6	Legendre symbole: legendre symbol	122
6.8.7	Jacobi symbol: jacobi symbol	123
6.8.8	Solve $a^2 + ab^2 = p in \overline{Z}$: pa2b2	124
6.9 Div	vision	124
6.9.1	Quotient of the Euclidean division: iquo	124
6.9.2	Remainder of the Euclidean division: irem	124
6.9.3	Quotient and remainder of the Euclidean division: iquorem	125
6.9.4	Chinese remainder for integers: ichinrem	125
6.9.5	Calculation of an mod p: powmod	126
6.10 N	Nodular calculus in ${ m Z}$ /p ${ m Z}$ or in ${ m Z}$ /p ${ m Z}$ $[{ m x}]$	126
6.10.1	Expand and factorise: normal	126
6.10.2	Addition in Z /p Z or in Z /pZ[x]: +	127
6.10.3	Substraction in Z /p Z or in Z /pZ[x]: –	127
6.10.4	Multiplication in Z /p Z or Z /p Z $[x]$: *	128
6.10.5	Quotient: quo	128
6.10.6	Remainder: rem	128
6.10.7	Quotient and remainder: quorem	129
6.10.8	Division in Z /p Z or Z /p \overline{Z} [x]: /	129
6.10.9	Power in Z /p Z or Z /p Z $[x]$:	130
6.10.10		130
6.10.11		131
6.10.12		132
6.10.13		132
6.10.14		133
6.10.15		133
	· •	

6.10.16Inverse of a matrix of Z /p Z: inv136.10.17Solve a linear system of Z /p Z: rref136.10.18Creation of a Galois field: GF136.10.19Factorization of a polynomial with coefficients in a Galois field: factor136.11Arithmetic of polynomials136.11.1List of divisors of a polynomial: divis136.11.2Euclidean quotient of two polynomials: quo136.11.3Euclidean remainder of two polynomials: rem13	33 34 36 36 36 36 37 38 39 40 42 43
6.10.18Creation of a Galois field: GF136.10.19Factorization of a polynomial with coefficients in a Galois field: factor136.11Arithmetic of polynomials136.11.1List of divisors of a polynomial: divis136.11.2Euclidean quotient of two polynomials: quo13	34 36 36 36 37 38 39 40 42
6.10.19Factorization of a polynomial with coefficients in a Galois field: factor136.11Arithmetic of polynomials136.11.1List of divisors of a polynomial: divis136.11.2Euclidean quotient of two polynomials: quo13	36 36 37 38 39 40 42 43
6.11Arithmetic of polynomials136.11.1List of divisors of a polynomial: divis136.11.2Euclidean quotient of two polynomials: quo13	36 36 37 38 39 40 42 43
6.11.1List of divisors of a polynomial: divis136.11.2Euclidean quotient of two polynomials: quo13	36 37 38 39 40 42 43
6.11.2Euclidean quotient of two polynomials: quo13	37 38 39 40 42 43
	38 39 40 42 43
6 11 3 Euclidean remainder of two polynomials: rem	39 40 42 43
	40 42 43
	42 43
	43
6.11.7LCM of two polynomials: 1 cm14	
6.11.8 Bezout identity: egcd 14	14
6.11.9 Solve polynomial of the form $au + bv = c$: abcuv 14	15
6.11.10Chinese remainder: chinrem14	15
CHAPTER 7 MENU POLYNOMIAL 14	17
7.1 Canonical form: canonical_form 14	17
7.2 Numerical roots of a polynomial: proot14	17
7.3 Roots exact of a polynomial 14	18
7.3.1Exact boundaries of complex roots of a polynomial: complexroot14	18
7.3.2 Exact values of complex rational roots of a polynomial: crationalroot14	18
7.4 Fraction rational, its roots and its exact poles 14	19
7.4.1Roots and exact poles of a rational fraction: froot14	19
7.5 Writing in powers of (x-a): ptayl14	19
7.6 Calculation with the exact roots of a polynomial: rootof15	50
7.7 Coefficients of a polynomial: coeff15	51
7.8 Coefficients of a polynomial defined by its roots: pcoeff pcoef1515	52
7.9 Truncation of order n: truncate 15	52
7.10List of divisors of a polynomial: divis15	52
7.11 List of factors of a polynomial: factors15	53
7.12GCD of polynomials by Euclid's algorithm: gcd15	53
7.13LCM of two polynomials: lcm15	55
7.14 Create 15	56
7.14.1 Transform a polynomial into a list (internal recursive dense format): symb2poly 15	56
7.14.2 Transform the internal sparse distributed format of the polynomial into a polynomial writting:	
poly2symb157.14.3Coefficients of a polynomial defined by its roots: pcoeff pcoef15	
7.14.3Coefficients of a polynomial defined by its roots: pcoeff pcoef157.14.4Coefficients of a rational fraction defined by its roots and its poles: fcoeff15	
7.14.4 Coefficients of a rational fraction defined by its roots and its poles. recerr 15	
7.14.6 Evaluation of a polynomial: polyEval 15	

7.14.7	Minimal polynomial: pmin	159
7.14.8		160
7.14.9	Random polynomials: randpoly randPoly	160
7.14.1	0 Change the order of variables: reorder	161
7.15 A	Algebra	161
7.15.1	Euclidean quotient of two polynomials: quo	161
7.15.2		162
7.15.3	o i i i	163
7.15.4		164
7.15.5		164
7.15.6		165
7.15.7		165
7.15.8 7.15.9		165 166
7.15.9		166
7.15.1		160
7.15.1		168
7.15.1		169
7.15.1		172
7.16 S	special	172
7.16.1	-	172
7.16.2	Groebner basis: gbasis	173
7.16.3	Reduction according to a Groebner basis: greduce	174
7.16.4	Hermite polynomial: hermite	174
7.16.5		175
7.16.6		176
7.16.7		178
7.16.8		179
7.16.9 7.16.1		179 180
СНАРТІ	ER 8 MENU PLOT	181
8.1 Plo	ot of a function: plotfunc	181
8.2 Pa	rametric curve: plotparam	181
8.3 Po	lar curve: plotpolar	182
8.4 Plo	ot of a recurrent sequence: plotseq	183
8.5 Im	plicit plot in 2D: plotimplicit	183
8.6 Plo	ot of a function by colors levels: plotdensity	184
8.7 Th	e field of tangents: plotfield	184
8.8 Le	vel curves: plotcontour	186
8.9 Plo	ot of solutions of a differential equation: plotode	186
	Polygonal line (→ translation to be checked): plotlist	187
-	Prostroo	207
PART II	THE MENU MATH OF THE TOOLBOX KEY	189

CHAPTER 9 FUNCTIONS ON REALS	190
9.1 HOME constants	190
9.2 The symbolic constants of the CAS: e pi i infinity inf euler_gamma	190
<pre>9.3 Booleans 9.3.1 Boolean values: true false 9.3.2 Tests: == != > >= < <= 9.3.3 Boolean operators: or xor and not</pre>	190 190 190 191
 9.4 Bit to bit operators 9.4.1 operators bitor, bitxor, bitand 9.4.2 Bit to bit Hamming distance of: hamdist 	192 192 193
9.5 Usual functions	193
9.6 The smallest integer greater than or equal to the argument: CEILING ceiling	193
9.7 Integer part of a real: FLOOR floor	194
9.8 Argument without its fractional part: IP	194
9.9 Fractional part: FP	195
9.10 Round a real or a complex to n decimal places: ROUND round	195
9.11 Truncate a real or a complex to n decimal places: TRUNCATE trunc	197
9.12 The fractional part of a real: frac	198
9.13 The real without its fractional part: iPart	198
9.14 Mantissa of a real: MANT	198
9.15 Integer part of the logarithm basis 10 of a real: XPON	199
CHAPTER 10 ARITHMETIC	200
10.1 Maximum of two or several values: MAX max	200
10.2 Minimum of two or several values: MIN min	200
10.3 MOD	200
10.4 FNROOT	201
10.5 N-th root: NTHROOT surd	201
10.6 %	202
<pre>10.7 Complex 10.7.1 The key i 10.7.2 Argument: ARG arg 10.7.3 Conjugate: CONJ conj 10.7.4 Imaginary part: IM im</pre>	202 202 203 203 203

10.7.5	Real part: RE re	203
10.7.6	Sign:SIGN sign	204
10.7.7	The key Shift +/-: ABS abs	204
10.7.8	Write of complex in the form of $re(z) + i^{*}im(z)$: evalc	204
10.7.9	Multiply by the complex conjugate: <pre>mult_c_conjugate</pre>	205
10.8 Ex	ponential and Logarithms	205
10.8.1	Function neperian logarithm: LN ln log	205
10.8.2	Function logarithm basis 10: LOG log10	206
10.8.3	Function logarithm basis b: logb	206
10.8.4	Function antilogarithm: ALOG alog10	207
10.8.5	Function exponential: EXP exp	207
10.8.6	Function EXPM1	208
10.8.7	Function LNP1	208
СНАРТЕ	R 11 TRIGONOMETRIC FUNCTIONS	210
11.1 Tł	ne keys of trigonometric functions	210
		244
11.2 Co	osecant: CSC csc	211
11.3 Aı	rccosecant: ACSC acsc	211
11.4 Se	ecant: SEC sec	212
11.5 Aı	rcsecant: ASEC asec	212
11.6 Co	Dtangent: COT cot	212
11.7 Aı	rccotangent: ACOT acot	213
СНАРТЕ	R 12 HYPERBOLIC FUNCTIONS	214
12.1 Hy	yperbolic sine: SINH sinh	214
12.2 Hy	yperbolic arc sine: ASINH asinh	214
12.3 Hy	yperbolic cosine: COSH cosh	214
12.4 Hy	yperbolic arc cosine: ACOSH acosh	215
12.5 Hy	yperbolic tangent: TANH tanh	215
12.6 Hy	yperbolic arc tangent: ATANH atanh	215
12.7 Ot	ther functions	216
12.7.1	List of variables: lname	216
12.7.2	List of variables and expressions: lvar	216
12.7.3	List of variables and algebraic expressions: algvar	217
12.7.4	Testing the presence of a variable in an expression: has	217
12.7.5	Evaluate an expression: eval	218
12.7.6	Not evaluating an expression: QUOTE quote '	219
12.7.7	Numerical evaluation: evalf approx	219
12.7.8	Rational approximation: exact	220

СНАРТЕ	R 13 PROBABILITY FUNCTIONS	221
13.1 F	actorial: factorial !	221
13.2 N	lumber of combinations of p objects among n: COMB comb	221
13.3 N	lumber of permutations of p objects among n: PERM perm	221
13.4 R	andom numbers	222
13.4.1	Random number (real or integer): RANDOM	222
13.4.2	Random integer: RANDINT	223
13.4.3	Rand function of the CAS: rand	223
13.4.4	Random permutation: randperm	226
13.4.5	Generating a random list: randvector	226
13.4.6	Draw according to a multinomial law with programs	228
13.4.7	Draw according to a normal distribution: RANDNORM randNorm	229
13.4.8	Draw according to an exponential law: randexp	229
13.4.9	Initializing the series of random numbers: RANDSEED RandSeed srand	230
13.4.10) Function UTPC	230
13.4.1	L Function UTPF	230
13.4.12	2 Function UTPN	230
13.4.13	3 Function UTPT	231
13.5 D	ensity of probability	231
13.5.1	Density of probability of the normal distribution: NORMALD normald	231
13.5.2	Density of probability of the Student law: STUDENT student	232
13.5.3	Density of probability of the $\chi 2$: CHISQUARE chisquare	232
13.5.4	Density of probability of the Fisher law: FISHER fisher snedecor	232
13.5.5	Density of probability of the binomial law: BINOMIAL binomial	232
13.5.6	Density of probability of the Poisson law: POISSON poisson	233
13.6 F	unction of distribution	233
13.6.1	Function of distribution of the normal distribution: NORMALD CDF normald cdf	233
13.6.2		234
13.6.3	Function of distribution of the $\chi 2$ law: <code>CHISQUARE CDF chisquare cdf</code>	235
13.6.4	The function of distribution of the Fisher-Snedecor law: FISHER CDF fisher cdf	
snede	ecor_cdf	235
13.6.5	Function of distribution of the binomial law: BINOMIAL_CDF binomial_cdf	236
13.6.6	Function of distribution of the Poisson law: POISSON_CDF poisson_cdf	237
13.7 lı	nverse distribution function	237
13.7.1	Inverse normal distribution function: NORMALD ICDF normald icdf	237
13.7.2		238
13.7.3	— — — —	
chiso	quare icdf	239
13.7.4	Inverse of the function of distribution of the Fisher-Snedecor law: FISHER ICDF	
fishe	er icdf snedecor icdf	239
13.7.5	Inverse distribution function of the binomial law: BINOMIAL ICDF binomial icdf	239
13.7.6	Inverse distribution function of Poisson: POISSON_ICDF poisson_icdf	240
СНАРТЕ	R 14 STATISTICS FUNCTIONS	241
14.1 S	tatistics functions at one variable	241
14.1 5	The mean: mean	241 241
14.1.1		241 242
14.1.2		242
J	me standard deviation of the population stade vp stade v	272

14.1.4	The variance: variance	243
14.1.5	The median: median	244
14.1.6	Different statistics values: quartiles	244
14.1.7	The first quartile: quartile1	245
14.1.8	The third quartile: quartile3	245
14.1.9	The quantile: quantile	245
14.1.10	The histogram: histogram	246
14.1.11	The covariance: covariance	247
14.1.12	The correlation: correlation	249
14.1.13	Covariance and correlation: covariance_correlation	250
14.1.14	Polygonal line: polygonplot	251
14.1.15	Polygonal line: plotlist	251
14.1.16	Polygonal line and cloud of plots: polygonscatterplot	252
14.1.17	Linear interpolation: linear_interpolate	252
14.1.18	Linear regression: linear_regression	253
14.1.19	Exponential regression: exponential_regression	254
14.1.20	Logarithmic regression: logarithmic_regression	254
14.1.21	Polynomial regression: polynomial_regression	256
14.1.22	Power regression: power_regression	256
14.1.23	Logistic regression: logistic_regression	257

CHAPTER 15 STATISTICS

15.1 Statistics functions on a list: mean, variance, stddev, stddevp, median, quant quartiles, quartile1, quartile3 15.1.1 Statistics functions on the columns of a matrix: mean, stddev, variance, median, quantile, quartiles	260
15.2 Tables indexed by two strings: table	264
CHAPTER 16 LISTS	266
16.1 Function MAKELIST makelist	266
16.2 Function SORT sort	267
16.3 Function REVERSE	267
16.4 Concatenate: CONCAT concat	267

16.4.1	Add an element at the end of a list: append	269
16.4.2	Add an element at the beginning of a list: prepend	269

16.5 Position in a list: POS

16.6 Fui	nction DIM dim SIZE size length	270
16.6.1	Get the reversed list: revlist	271
16.6.2	Get the list swapped starting from its n-th element: rotate	272
16.6.3	Get the list shifted starting from its n-th element: shift	272
16.6.4	Removing an element from a list: suppress	273
16.6.5	Get the list without its first element: tail	273
16.6.6	Removing elements from a list: remove	273
16.6.7	Right and left part straight of a list: right, left	274
16.6.8	Checking whether an element is in a list: member	274
16.6.9	Checkin whether an element is in a list: contains	275
16.6.10	Counting the elements of a list or of a matrix such as a property: count	275
16.6.11	Select elements of a list: select	277

260

16.7	List of differrences between consecutive terms: $\Delta \texttt{LIST}$ deltalist	278
16.8	Sum of the elements of a list: $\Sigma \texttt{LIST}$ sum	278
16.9	Product of the elements of a list: $\Pi t LIST$ product	279
16.9	0.1 Apply a function of one variable to the elements of a list: map apply	279
16.9	Apply a function of two variables to elements of two lists: zip	281
16.10	Convert a list to a matrix: list2mat	282
16.11	Convert a matrix to a list: mat2list	282
16.12	Useful functions for the lists and the components of a vector	282
16.1	2.1 Norms of a vector: maxnorm l1norm l2norm norm	282
16.1	2.2 Normalizing the components of a vector: normalize	283
16.1		284
16.1		284
16.1		285
16.1		286
16.1		286
СНАР	TER 17 STRINGS OF CHARACTERS	287
474	Write a string out should be u	202
17.1	Write a string or a character: "	287
17.1	0	288
17.1	5	288
17.1	3 Finding a character in a string: INSTRING inString	289
17.2	ASCII codes: ASC asc	289
17.3	Character from ASCII code: CHAR char	290
17.3	Converting a real or an integer into a string: string	290
17.4	Use a string as a number or a command: expr	291
17.4	I.1 Use a string as a number	291
17.4	I.2 Use a string as a command name	292
17.5	Evaluate an expression in the form of a string: string	292
17.6	inString	293
17.7	Left part of a string: left	293
17.8	Right part of a string: right	293
17.9	Mid part of a string: mid	294
17.10	Rotate last character: rotate	294
17.11	Length of a string: dim DIM size SIZE length	294
17.12	Concatenate two strings: +	295
17.13	Get the list or the string without its first element: tail	296
17.14	First element of a list or of a string: head	296

СНАР	TER 18 POLYNOMIALS	297
18.1	Coefficients of a polynomial: POLYCOEF	297
18.2	Polynomial from coefficients: POLYEVAL	297
18.3	Expand a polynomial: POLYFORM	298
18.4	Roots of a polynomial from its coefficients: POLYROOT	300
СНАР	TER 19 RECURRENT SEQUENCES	301
19.1	Values of a recurrent sequence or of a system of recurrent sequences: ${\tt seqsolve}$	301
19.2	Values of a recurrent sequence or of a system of recurrent sequences: rsolve	303
СНАР	TER 20 MATRICES	306
20.1	Generalities	306
20.2	Definition	306
20.2	.1 Dimension of a matrix: dim	306
20.2		307
20.2	.3 Number of columns: colDim	307
20.3	Operations on rows and columns useful in programming	307
20.3	.1 Add a column to a matrix: ADDCOL	307
20.3	.2 Swap rows: SWAPROW rowSwap	308
20.3	.3 Swap columns: SWAPCOL colSwap	308
20.3	.4 Extract rows from a matrix: row	309
20.3	.5 Extract columns from a matrix: col	309
20.3		309
20.3	7.7 Remove rows from a matrix: DELROW delrows	310
20.3		311
20.3		312
	.10 Replace a portion of a matrix or of a vector: REPLACE	312
20.3		313
20.3		313
20.3		314
20.3	.14 Add k times a row to another: SCALEADD mRowAdd	314
20.4	Creation and arithmetic of matrices	314
20.4		314
20.4		315
20.4		315
20.4		316
20.4		316
20.4	.6 Hadamard power (infix version): . ^	316
20.5	Transpose matrix: transpose	316
20.6	Conjugate transpose matrix: TRN trn	316
20.7	Determinant: DET det	317
20.7	.1 Characteristic polynomial: charpoly	317

20.0	activity field and linear applications	210
20.8	ectorial field and linear applications	319
20.8	Basis of a vectorial subspace: basis	319
20.8	Intersection basis of two vectorial subspaces: ibasis	319
20.8	Image of a linear application: image	319
20.8	Kernel of a linear application: ker	319
20.9	olve a linear system: RREF rref	320
20.9	Solve of A*X = B: simult	321
20.10	Make matrices	322
20.1	•	322
20.1		322
20.1	, 1	322
20.1		323
20.1		324
20.1		324
20.1		324
20.1	Vandermonde matrix: vandermonde	325
20.11	Basics	325
20.1		325
20.1		326
20.1	Maximum of matrix norms of matrix columns of a matrix: COLNORM colnorm	327
20.1	Spectral norm of a matrix: SPECNORM	328
20.1		328
20.1	Condition number of an invertible square matrix: COND cond	329
20.1	Rank of a matrix: RANK rank	330
20.1	Step of the Gauss-Jordan reduction of a matrix: pivot	331
20.1	Trace of a square matrix: TRACE trace	331
20.12	Advanced	332
20.1	Eigenvalues: EIGENVAL eigenvals	332
20.1	6	333
20.1		333
20.1		334
20.1	-	334
20.1	· -	335
20.1		335
20.1	, _	335
20.1		335
20.1		337
20.13	Factorization	337
20.15		337
20.1		338
20.1	-	339
20.1		340
20.1		341
20.1		342
20.1	•	342
20.1	Singular values: SVL svl	344
20.14	Vector	345
20.1	•	345
20.1		345
20.1		346
20.1	Norm l1: llnorm	346

20.14	1.5 Norm of the maximum: maxnorm	347
СНАР	TER 21 SPECIAL FUNCTIONS	348
21.1	eta function: Beta	348
21.2	Γ function: Gamma	349
21.3	Derivatives of the DiGamma function: Psi	350
21.4	The G function: Zeta	351
21.5	erf function: erf	351
21.6	erfc function: erfc	352
21.7	Exponential integral function: Ei	353
21.8	Sine integral function: Si	354
21.9	Cosine integral function: Ci	355
21.10	Heaviside function: Heaviside	355
21.11	Dirac distribution: Dirac	356
СНАР	TER 22 CONSTANTS AND CALCULATIONS WITH UNITS	357
22.1	Shifted key Units	357
22.2	Units	357
22.2.		357
22.2.	2 Avalaible prefixes for units names	357
22.2.	3 Calculations with units	358
22.3	Tools	359
22.3.	<pre>1 Conversion of a unit object to another unit: convert =></pre>	359
22.3.	2 Units conversion to MKSA units: mksa	360
22.3.	•	360
22.3.	4 Simplify a unit: usimplify	361
22.4	Physics constants	361
22.5	Units	361
22.5.		361
22.5.		361
22.5.		
22 F		362
22.5.	4 Units conversion to MKSA units: mksa	362 364
22.5.	 Units conversion to MKSA units: mksa Conversions between degree Celsius and Fahrenheit: Celsius2Fahrenheit 	364
22.5. Fah:	 Units conversion to MKSA units: mksa Conversions between degree Celsius and Fahrenheit: Celsius2Fahrenheit renheit2Celsius 	364 364
22.5.	 Units conversion to MKSA units: mksa Conversions between degree Celsius and Fahrenheit: Celsius2Fahrenheit renheit2Celsius Factorization of a unit: ufactor 	364
22.5. Fah: 22.5.	 Units conversion to MKSA units: mksa Conversions between degree Celsius and Fahrenheit: Celsius2Fahrenheit renheit2Celsius Factorization of a unit: ufactor 	364 364 365
22.5. Fah: 22.5. 22.5.	 4 Units conversion to MKSA units: mksa 5 Conversions between degree Celsius and Fahrenheit: Celsius2Fahrenheit 6 Factorization of a unit: ufactor 7 Simplify a unit: usimplify 	364 364 365 365

CHAPTER	23 FUNCTIONS OF 3D GEOMETRY	367
23.1 Co	mmon perpendicular to two 3D lines: common_perpendicular	367
PART IV	THE APPLICATIONS AND THE APPS KEY	368
CHAPTER	24 THE MENU GEOMETRY	369
24.1 Ge	neralities	369
24.2 Poi	nt	370
24.2.1	Point defined as barycenter of n points: barycenter	370
24.2.2	Point in geometry: point	371
24.2.3	Midpoint of a segment: midpoint	372
24.2.4	Isobarycenter of n points: isobarycenter	373
24.2.5	Randomly define a 2D point: point2d	373
24.2.6	Polar point in plane geometry: polar_point	374
24.2.7	One of the intersection points of two geometrical objects: <pre>single_inter</pre>	374
24.2.8	All intersection points of two geometrical objects: inter	375
24.2.9	Orthocenter of a triangle: orthocenter	376
24.2.10	Vertices of a polygon: vertices	376
24.2.11	Vertices of a polygon: vertices_abca	377
24.2.12	Point on a geometrical object: element	377
24.2.13	Point dividing a segment: division_point	379
24.2.14	Harmonic division: harmonic_division	380
24.2.15	Harmonic conjugate	380
24.2.16	Pole and polar: pole polar	381
24.2.17 24.2.18	Reciprocal polar: reciprocation The center of a circle: center	381 381
24.3 Lin	-	382
24.3.1	Line defined by a point and a slope: DrawSlp	382
24.3.2	Tangent to the curve of $y = f(x)$ in $x = a$: LineTan	382
24.3.3	Altitude of a triangle: altitude	382
	Internal bisector of a angle: bisector	383
24.3.5	External bisector of a angle: exbisector	383
24.3.6	Half line: half_line	383
24.3.7	Line and oriented line: line	384
24.3.8	Segment: Line	385
24.3.9	Plot of a 2D horizontal line: LineHorz Plot of a 2D vertical line: LineVert	385
24.3.10		385
24.3.11 24.3.12	Vector in plane geometry: vector Median line of a triangle: median line	386 387
24.3.12	Parallel lines: parallel	
24.3.13	Perpendicular bisector: perpen bisector	387
24.3.14 24.3.15	Line perpendicular to a line: perpendicular	387 388
24.3.13		
24.3.16	Segment: segment Tangent to a geometrical object or tangent to a curv in a point: tangent	388 388
24.3.17 24.3.18	Radical axis of two circles: radical axis	388
	—	
	ygon	390
24.4.1	Scalene triangle: triangle	390
24.4.2	Equilateral triangle: equilateral_triangle	390
24.4.3	Right triangle: right_triangle	391
24.4.4	<pre>Isosceles triangle: isosceles_triangle</pre>	392

24.4.5	Rhombus: rhombus	392
24.4.6	Rectangle: rectangle	393
24.4.7	Square: square	394
24.4.8	Quadrilateral: quadrilateral	395
24.4.9	Parallelogram: parallelogram	395
24.4.10	Isopolygon: isopolygon	396
24.4.11	Hexagon: hexagon	396
24.4.12	Polygon: polygon	397
24.4.13	Polygonal line: open_polygon	397
24.4.14	Convex hull of points of the plan: convexhull	398
24.5 Cu	ves	398
24.5.1	Circle and arcs: circle	398
24.5.2	Arcs of circle: arc ARC	400
24.5.3	Circumcircle: circumcircle	400
24.5.4	Plot of a conic: conic	401
24.5.5	Ellipse: ellipse	401
24.5.6	Excircle: excircle	402
24.5.7	Hyperbola: hyperbola	402
24.5.8	Incircle: incircle	403
24.5.9	Locus and envelope: locus	403
24.5.10	Parabola: parabola	405
24.5.11	Power of a point according to a circle: powerpc	405
24.6 Tra	nsformation	406
24.6.1	Homothety: homothety	406
24.6.2	Inversion: inversion	406
24.6.3	Orthogonale projection: projection	407
24.6.4	Symmetry line and symmetry point: reflection	408
24.6.5	Rotation: rotation	409
24.6.6	Similarity: similarity	410
24.6.7	Translation: translation	410
24.7 Me	easure and graphics	411
24.7.1	Measure of a angle: angleat	411
24.7.2	Measure of a angle: angleatraw	412
24.7.3	Display of the area of a polygon: areaat	412
24.7.4	Area of a polygon: areaatraw	413
24.7.5	Length of a segment: distanceat	413
24.7.6	Length of a segment: distanceatraw	414
24.7.7	Perimeter of a polygon: perimeterat	415
24.7.8	Perimeter of a polygon: perimeteratraw	416
24.7.9	Slope of a line: slopeat	417
24.7.10	Slope of a line: slopeatraw	417
24.8 Me	asure	419
24.8.1	Abscissa of a point or of a vector: abscissa	419
24.8.2	Affix of a point or of a vector: affix	419
24.8.3	Measure of a angle: angle	420
24.8.4	Length of an arc of curve: arcLen	421
24.8.5	Area of a polygon: area	422
24.8.6	Coordinates of a point, a vector or a line: coordinates	422
24.8.7	Rectangular coordinates of a point: rectangular_coordinates	424
24.8.8	Polar coordinates of a point: polar_coordinates	425
24.8.9	Length of a segment and distance between two geometrical objects: distance	425
24.8.10	Square of the length of a segment: distance2	426
24.8.11	Cartesian equation of a geometrical object: equation	426

	Get as answer the value of a measure displayed: <code>extract_measure</code>	426
24.8.13	Ordinate of a point or of a vector: ordinate	427
24.8.14	Parametric equation of a geometrical object: parameq	428
24.8.15	Perimeter of a polygon: perimeter	428
24.8.16	Radius of a circle: radius	428
24.8.17	Slope of a line: slope	429
24.9 Te	st	430
24.9.1	Check whether three points are collinear: is collinear	430
24.9.2	Check whether four points are concyclic: is_concyclic	430
24.9.3	Check whether elements are conjugates: is_conjugate	430
24.9.4	Check whether points or/and lines are coplanar: is_coplanar	431
24.9.5	Check whether a point is on a geometrical object: <pre>is_element</pre>	432
24.9.6	Check whether a triangle is equilateral: is_equilateral	432
24.9.7	Check whether a triangle is isoscele: is_isosceles	433
24.9.8	Orthogonality of two lines or two circles: is_orthogonal	433
24.9.9	Check whether two lines are parallel: is_parallel	434
24.9.10	Check whether a polygon is a parallelogram: is_parallelogram	434
24.9.11	Check whether two lines are perpendicular: is_perpendicular	435
24.9.12	Check whether a triangle is right or a polygon is a rectangle: is_rectangle	436
24.9.13	Check whether a polygon is a rhombus: is_rhombus	436
24.9.14	Check whether a polygon is a square: is_square	437
24.9.15	Check whether 4 points form an harmonic division: is_harmonic	438
24.9.16	Check whether lines are in harmonic bundle: <pre>is_harmonic_line_bundle</pre>	438
24.9.17	Check whether circles are in harmonic bundle: is _harmonic_circle_bundle	438
24.10 E	xercises of geometry	439
24.10.1	Transformations	439
24.10.2	Loci	439
24.11 G	eometry activities	440
	eometry activities 25 THE SPREADSHEET	440 447
СНАРТЕ	25 THE SPREADSHEET	-
CHAPTEF 25.1 Ge	25 THE SPREADSHEET	447 447
CHAPTEF 25.1 Ge 25.2 Sci	25 THE SPREADSHEET neralities een of the spreadsheet	447 447 447
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1	25 THE SPREADSHEET neralities een of the spreadsheet Copy the content of a cell to another	447 447 447 447
CHAPTEF 25.1 Ge 25.2 Sci	25 THE SPREADSHEET neralities een of the spreadsheet	447 447 447
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1 25.2.2 25.3 Fu	A 25 THE SPREADSHEET neralities een of the spreadsheet Copy the content of a cell to another Relative and absolute referencces nctions of the spreadsheet	447 447 447 447 447 448
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1 25.2.2 25.3.1	A 25 THE SPREADSHEET neralities een of the spreadsheet Copy the content of a cell to another Relative and absolute referencces netions of the spreadsheet Function SUM	447 447 447 447 447 448 448
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1 25.2.2 25.3 Fu 25.3.1 25.3.2	A 25 THE SPREADSHEET neralities een of the spreadsheet Copy the content of a cell to another Relative and absolute referencces netions of the spreadsheet Function SUM Function MEAN	447 447 447 447 447 448 448 448
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1 25.2.2 25.3 Fu 25.3.1 25.3.2 25.3.3	A 25 THE SPREADSHEET neralities een of the spreadsheet Copy the content of a cell to another Relative and absolute referencces netions of the spreadsheet Function SUM Function MEAN Function AMORT	447 447 447 447 447 448 448 448 448 448
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1 25.2.2 25.3 Fu 25.3.1 25.3.2 25.3.3 25.3.4	A 25 THE SPREADSHEET neralities een of the spreadsheet Copy the content of a cell to another Relative and absolute referencces netions of the spreadsheet Function SUM Function MEAN Function MEAN Function STAT1	447 447 447 447 447 448 448 448 448 448 448
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1 25.2.2 25.3 Fu 25.3.1 25.3.2 25.3.3 25.3.4 25.3.5	A 25 THE SPREADSHEET neralities een of the spreadsheet Copy the content of a cell to another Relative and absolute referencces netions of the spreadsheet Function SUM Function MEAN Function AMORT Function STAT1 Function REGRS	447 447 447 447 448 448 448 448 448 448 448
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1 25.2.2 25.3 Fu 25.3.1 25.3.2 25.3.3 25.3.4 25.3.5 25.3.6	A 25 THE SPREADSHEET neralities een of the spreadsheet Copy the content of a cell to another Relative and absolute referencces netions of the spreadsheet Function SUM Function MEAN Function AMORT Function STAT1 Function REGRS Functions PredY PredX	447 447 447 447 447 448 448 448 448 448 448 448 448
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1 25.2.2 25.3 Fu 25.3.1 25.3.2 25.3.3 25.3.4 25.3.5	A 25 THE SPREADSHEET neralities een of the spreadsheet Copy the content of a cell to another Relative and absolute referencces netions of the spreadsheet Function SUM Function MEAN Function AMORT Function STAT1 Function REGRS	447 447 447 447 448 448 448 448 448 448 448
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1 25.2.2 25.3 Fu 25.3.1 25.3.2 25.3.3 25.3.4 25.3.5 25.3.6 25.3.7 25.4 Us	A 25 THE SPREADSHEET neralities een of the spreadsheet Copy the content of a cell to another Relative and absolute referencces netions of the spreadsheet Function SUM Function MEAN Function AMORT Function STAT1 Function REGRS Functions PredY PredX	 447 447 447 447 447 448 449 449
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1 25.2.2 25.3 Fu 25.3.1 25.3.2 25.3.3 25.3.4 25.3.5 25.3.6 25.3.7 25.4 Us 25.4.1	A 25 THE SPREADSHEET meralities een of the spreadsheet Copy the content of a cell to another Relative and absolute referencces function soum Function SUM Function MEAN Function MMORT Function STAT1 Function REGRS Functions PredY PredX Functions HypZ1mean HypZ2mean e of the spreadsheet based on examples Exercise 1	 447 447 447 447 447 448 449 449
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1 25.2.2 25.3 Fu 25.3.1 25.3.2 25.3.3 25.3.4 25.3.5 25.3.6 25.3.7 25.4 Us	A 25 THE SPREADSHEET neralities een of the spreadsheet Copy the content of a cell to another Relative and absolute referencces nctions of the spreadsheet Function SUM Function MEAN Function MORT Function REGRS Functions PredY PredX Functions Hyp21mean Hyp22mean e of the spreadsheet based on examples	 447 447 447 447 447 448 449 449
CHAPTEF 25.1 Ge 25.2 Sci 25.2.1 25.2.2 25.3 Fu 25.3.1 25.3.2 25.3.3 25.3.4 25.3.5 25.3.6 25.3.7 25.4 Us 25.4.1 25.4.2	A 25 THE SPREADSHEET meralities een of the spreadsheet Copy the content of a cell to another Relative and absolute referencces function soum Function SUM Function MEAN Function MMORT Function STAT1 Function REGRS Functions PredY PredX Functions HypZ1mean HypZ2mean e of the spreadsheet based on examples Exercise 1	 447 447 447 447 447 448 449 449

26.1 Function application

26.2.1 26.2.2	quence application Fibonnacci sequence GCD	453 453 454
26.2.3	Bezout identity	454
26.3 Pa	rametric application	455
26.4 Po	ar application	455
26.5 So	ve application	456
26.6 Fin	ance application	456
26.7 Lin	ear Solver application	457
26.8 Tri	angle Solver application	458
26.9 1-\	/ar Statistics	458
26.10 2	-Var statistics	459
26.10.1	Exercises	460
	iference application	466
26.11.1 26.11.2	Frequency of a parameter and hypothesis based on samples Samples extracted from a normal distribution	467 471
26.11.2	Samples extracted from a Student distribution	471
PART V	PROGRAMMING	475
СНАРТЕР	27 GENERALITIES	476
	27 GENERALITIES ntax of HOME programs and CAS programs	476 476
27.1 Syı		
27.1 Syı 27.2 Wı	ntax of HOME programs and CAS programs	476
27.1 Syı 27.2 Wı CHAPTEF	ntax of HOME programs and CAS programs iting a program slightly different from an existing program	476 476
27.1 Syı 27.2 Wı CHAPTEF	ntax of HOME programs and CAS programs iting a program slightly different from an existing program 2 28 PROGRAMMING INSTRUCTIONS	476 476 478
27.1 Syı 27.2 Wı CHAPTEF 28.1 Va	ntax of HOME programs and CAS programs iting a program slightly different from an existing program 2 28 PROGRAMMING INSTRUCTIONS riables	476 476 478 478
27.1 Syı 27.2 Wı CHAPTEF 28.1 Va 28.1.1	ntax of HOME programs and CAS programs iting a program slightly different from an existing program X 28 PROGRAMMING INSTRUCTIONS riables Variables names	476 476 478 478 478 478
27.1 Syn 27.2 Wi CHAPTEF 28.1 Va 28.1.1 28.1.2	ntax of HOME programs and CAS programs iting a program slightly different from an existing program 28 PROGRAMMING INSTRUCTIONS riables Variables names Comments: comment //	476 476 478 478 478 478 478
27.1 Syn 27.2 Wi CHAPTEF 28.1 Va 28.1.1 28.1.2 28.1.3	ntax of HOME programs and CAS programs iting a program slightly different from an existing program 28 PROGRAMMING INSTRUCTIONS riables Variables names Comments: comment // Inputs: INPUT input InputStr	476 476 478 478 478 478 478 478
27.1 Syn 27.2 Wu CHAPTEF 28.1 Va 28.1.1 28.1.2 28.1.3 28.1.4	<pre>htax of HOME programs and CAS programs iting a program slightly different from an existing program 2 28 PROGRAMMING INSTRUCTIONS riables Variables names Comments: comment // Inputs: INPUT input InputStr Outpouts: print</pre>	476 476 478 478 478 478 478 478 478 479
27.1 Syn 27.2 Wi CHAPTEF 28.1 Va 28.1.1 28.1.2 28.1.3 28.1.4 28.1.5 28.1.6 28.1.7	<pre>htax of HOME programs and CAS programs iting a program slightly different from an existing program 2 28 PROGRAMMING INSTRUCTIONS riables Variables names Comments: comment // Inputs: INPUT input InputStr Outpouts: print Assignment instruction: => := ► Copy without evaluating the content of a variable: CopyVar Function testing the type of its argument: TYPE type</pre>	476 476 478 478 478 478 478 478 479 480 480 481
27.1 Syn 27.2 Wu CHAPTEF 28.1 Va 28.1.1 28.1.2 28.1.3 28.1.4 28.1.5 28.1.6 28.1.7 28.1.8	<pre>htax of HOME programs and CAS programs iting a program slightly different from an existing program 28 PROGRAMMING INSTRUCTIONS riables Variables names Comments: comment // Inputs: INPUT input InputStr Outpouts: print Assignment instruction: => := ► Copy without evaluating the content of a variable: CopyVar Function testing the type of its argument: TYPE type Function testing the type of its argument: compare</pre>	476 476 478 478 478 478 478 478 479 480 480 480 481 482
27.1 Syn 27.2 Wu CHAPTEF 28.1 Va 28.1.1 28.1.2 28.1.3 28.1.4 28.1.5 28.1.6 28.1.7 28.1.8 28.1.9	<pre>htax of HOME programs and CAS programs iting a program slightly different from an existing program 2 28 PROGRAMMING INSTRUCTIONS riables Variables names Comments: comment // Inputs: INPUT input InputStr Outpouts: print Assignment instruction: => := ► Copy without evaluating the content of a variable: CopyVar Function testing the type of its argument: TYPE type Function testing the type of its argument: compare Stating an assumption about a variable: assume</pre>	476 476 478 478 478 478 478 478 479 480 480 480 481 482 483
27.1 Syn 27.2 Wn CHAPTEF 28.1 Va 28.1.1 28.1.2 28.1.3 28.1.4 28.1.5 28.1.6 28.1.7 28.1.8 28.1.9 28.1.10	<pre>htax of HOME programs and CAS programs iting a program slightly different from an existing program 28 PROGRAMMING INSTRUCTIONS variables Variables names Comments: comment // Inputs: INPUT input InputStr Outpouts: print Assignment instruction: => := ► Copy without evaluating the content of a variable: CopyVar Function testing the type of its argument: TYPE type Function testing the type of its argument: compare Stating an assumption about a variable: assume State an additional assumption about a variable: additionally</pre>	476 476 478 478 478 478 478 478 479 480 480 480 480 481 482 483 486
27.1 Syn 27.2 Wr CHAPTEF 28.1 Va 28.1.1 28.1.2 28.1.3 28.1.4 28.1.5 28.1.6 28.1.7 28.1.8 28.1.9 28.1.10 28.1.11	<pre>htax of HOME programs and CAS programs iting a program slightly different from an existing program 28 PROGRAMMING INSTRUCTIONS riables Variables names Comments: comment // Inputs: INPUT input InputStr Outpouts: print Assignment instruction: => := ► Copy without evaluating the content of a variable: CopyVar Function testing the type of its argument: TYPE type Function testing the type of its argument: compare Stating an assumption about a variable: assume State an additional assumption about a variable: about</pre>	476 476 478 478 478 478 478 478 479 480 480 480 480 481 482 483 483 486 487
27.1 Syn 27.2 Wi CHAPTEF 28.1 Va 28.1.1 28.1.2 28.1.3 28.1.4 28.1.5 28.1.6 28.1.7 28.1.8 28.1.9 28.1.10 28.1.11 28.1.12	<pre>htax of HOME programs and CAS programs iting a program slightly different from an existing program 28 PROGRAMMING INSTRUCTIONS riables Variables names Comments: comment // Inputs: INPUT input InputStr Outpouts: print Assignment instruction: => := ► Copy without evaluating the content of a variable: CopyVar Function testing the type of its argument: TYPE type Function testing the type of its argument: compare Stating an assumption about a variable: assume State an additional assumption about a variable: about Delete the content of a variable: purge</pre>	476 476 478 478 478 478 478 478 479 480 480 480 480 481 482 483 486 487
27.1 Syn 27.2 Wr CHAPTEF 28.1 Va 28.1.1 28.1.2 28.1.3 28.1.4 28.1.5 28.1.6 28.1.7 28.1.8 28.1.9 28.1.10 28.1.11	<pre>htax of HOME programs and CAS programs iting a program slightly different from an existing program 28 PROGRAMMING INSTRUCTIONS riables Variables names Comments: comment // Inputs: INPUT input InputStr Outpouts: print Assignment instruction: => := ► Copy without evaluating the content of a variable: CopyVar Function testing the type of its argument: TYPE type Function testing the type of its argument: compare Stating an assumption about a variable: assume State an additional assumption about a variable: about</pre>	476 476 478 478 478 478 478 478 479 480 480 480 480 481 482 483 483 486 487

28.2 Conditionnal instructions

28.3 L	oops	491
28.3.1	Instructions FOR FROM TO DO END and FOR FROM TO STEP DO END	491
28.3.2	Iterative loops: ITERATE	491
28.3.3	Instruction WHILE DO END	491
28.3.4	Instruction REPEAT UNTIL	491
28.3.5	Instruction BREAK	492
28.3.6	Function seq	492
28.4 C	omments: / /	493
28.5 V	ariables	493
28.6 B	oolean operators: < <= == != > >=	493
28.7 C	ommands of applications	496
CUADTE		498
CHAPIE	R 29 HOW TO PROGRAM	498
29.1 C	onditional instruction IF	498
29.2 F	OR and WHILE loops	499
29.2.1	Make the calculator count by step of one and display the result	499
29.2.2	Make the calculator count by step of 1 by using a list or a sequence	500
29.3 A	pproximate value of the sum of a sequence	501
29.3.1	Sequence of general term $un = 1n2$	501
29.3.2	Sequence of general term $vn = -1n + 1n$	502
29.3.3	The sequence of general term $wn = 1n$ is divergent	503
29.4 D	ecimal form of a fraction	504
29.4.1	With no program	504
29.4.2	With a CAS program	505
29.5 2	9.5 Newton method and Heron algorithm	506
29.5.1	29.5.1 Newton method	506
29.5.2	Newton algorithm	507
29.5.3	Heron algorithm	507
СНАРТЕ	R 30 EXAMPLE OF PROGRAMS	509
30.1 G	CD and Bezout identity from Home	509
30.1.1	GCD	509
30.1.2	Bezout identity for A and B	509
30.2 G	CD and Bezout identity from the CAS	511
30.2.1	GCD with the CAS with no program	511
30.2.2	GCD with a CAS program	511
30.2.3	Bezout identity with the CAS, with no program	511
30.2.4	Bezout identity with a CAS program	511

Part I Getting started

Generalities

With the HP Prime calculator you have two calculators in one: one to do symbolic and exact computation (key CAS), the other to do approximate calculation (key HOME). This is the fruit of the union in the calculator of two softwares; Giac/Xcas for the CAS and the software developed by HP for their scientific and graphic calculators in HOME. These two logics are often contradictory, which required a huge effort of consistency to allow the use of HOME data in the CAS and reciprocally, which effort being still continued up to today.

Then, the logic of a symbolic computation software is to not have pre-assigned variable and to allow to store any kind of data in a variable which name is free (in particular a name of variable may be more than one letter long) whereas the logic of calculators HP38/39/40 was to have pre-assigned variables which name is a letter or a letter followed by a digit, and storing one kind only of data: A, B..Z for reals, Z0, ...Z9 for complex, L0, L1..L9 for lists, M0, M1..M9 for vectors or matrices etc., This has of course major consequences, if we write ab in the CAS, this designates a variable with a two-letter name, whereas AB in HOME designates the product (implicit multiplication) of variables A and B.

To avoid confusion, it is advised to use names of variables in lower case in the CAS, names of CAS commands being in lower case (exceptions aside), while names of command in HOME are in upper case. This choice is eased by the lock of alphabetic keyboard in lower case in the CAS an in upper case in HOME. Many commands exist in the two versions (HOME in upper case, CAS in lower case), most of the time they do the same thing, but, unfortunately there are exceptions, for example <code>size</code> and <code>size</code> (see below).

Please also note that in HOME, there is a difference between the lists $(L1:=\{1,2,3\})$ and the vectors (M1:=[1,2,3]) and the notion of sequence does not exist, whereas in the CAS there is no difference between lists and vectors (v:=[1,2,3]) or $v:=\{1,2,3\}$ and we may work with a sequence (s:=1,2,3).

More to say, warning! The history does not always reflect what has been typed in, in the history of HOME the lower case letters are changed into upper case letters whereas in the history of CAS, it depends on whether Textbook is checked or not in General Setting (Shift (Settings)).

Example:

In HOME screen or in the CAS screen, we enter: SIZE (1, 2, 3) **or** size (1, 2, 3) We get in the history SIZE (1, 2, 3) and as a result: 3 In HOME screen, we enter: SIZE([1,2,3]) **Or** size([1,2,3]) We get in the history SIZE ([1, 2, 3]) and as a result: {3} In the CAS screen, we enter: SIZE([1,2,3]) **Or** size([1,2,3]) We get in the history (if we did not check Textbook): SIZE([1,2,3]) or size([1,2,3]) and as a result: 3 In HOME screen, we enter: SIZE([[1,2,3],[4,5,6]]) Or size([[1,2,3],[4,5,6]]) We get in the history SIZE ([[1, 2, 3], [4, 5, 6]]) and as a result: {2, 3} In the CAS screen, we enter: size([[1,2,3],[4,5,6]]) We get in the history (if we did not check Textbook): size([[1,2,3],[4,5,6]]) and as a result: 2 but if we enter in the CAS: SIZE([[1,2,3],[4,5,6]]) We get in the history (if we did not check Textbook): SIZE([[1,2,3],[4,5,6]]) and as a result: [2,3]

ADVICE: make your choice: either you always work in HOME, either in the CAS because commands with same name not returning the same thing in HOME or in CAS quickly becomes a true brain teaser! Note for the users of Xcas: the getting started phase of the calculator mode CAS should be quick. However, please note what follows:

- some commands are not available, as HP did not wish to implement them (for example all the commands on permutations)
- some synonyms are not available, and unfortunately HP did not make the choice of Xcas native commands in lower case but the choice of mixte commands with a mixte name with an upper case letter in the middle of the command name.
- interface for the use of the programming language of Xcas is still perfectible (for example the alphabetic keyboard is locked in upper case even if we select a CAS program, the interface of the function of debugging debug is experimental...)

CAS and HOME keys

With the HP Prime calculator you can choose of working in exact mode or in approximate mode: there are two screens, one to do the exact calculation it is the CAS screen, the other to do the approximate calculation, it is the HOME screen.

In CAS screen, commands are in lower case whereas they are in upper case in HOME screen. If you press on CAS, you work in exact mode, if you press on HOME you work in approximate mode. What does this change ?

For example, we will consider 2 sequences *u* and *v* defined by:

$$u_0 = \frac{2}{3}, u_{n+1} = 2u_n - \frac{2}{3} (n \ge 0)$$

and
$$v_0 = \frac{2}{3}, v_{n+1} = 2(u_n - \frac{1}{3})(n \ge 0)$$

In the CAS screen

We press CAS and we enter to get the first terms of *u*: 2/3 then Enter and we get 2/3. We enter: 2*Ans-2/3 then Enter, Enter, ... and we get 2/3, 2/3, 2/3...

In exact mode, *i.e.* in the CAS screen, the sequence u is then stationnary and equals $\frac{2}{x}$.

In this case the result is in accordance with the theoretical result.

Still in the CAS, to get the first terms of v, we enter:

2/3 then Enter and we get 2/3. We enter:

2* (Ans-1/3) then Enter, Enter... and we get 2/3, 2/3, 2/3...

In exact mode, *i.e.* in the CAS screen, the series v is then stationnary and equals $\frac{2}{3}$.

The result, here, is still in accordance with the theoretical result.

In HOME screen

Now we press HOME and to get the first terms of u, we enter the value of u_0 : 2/3 then Enter and we get 0.666666666667 then we enter: 2*Ans-2/3 then Enter, Enter, Enter... and we get 0.6666666666663,0.66666666663... The result is here almost in accordance with the theoretical result. In approximate mode *i.e.* in HOME screen (key), the sequence u is then stationary starting from n > 0and equals 0.666666666663. Still in HOME (key), we enter to get the first terms of v: 2/3 then Enter and we get 0.66666666667. We enter: 2* (Ans-1/3) then Enter, Enter, Enter, ... and we get $v_1 = 0.666666666668$,

```
\begin{array}{l} v_2 = 0.666666666670, \\ v_3 = 0.6666666666674, \\ then \\ 0.6666666666682, \\ 0.666666666682, \\ 0.666666666688, \\ 0.6666666666730, \\ 0.6666666666730, \\ 0.6666666666922 \\ etc., \ldots \end{array}
```

and after having pressed Enter 51 or 52 times, we get:

 $v_{40} = 1.76617829443$ and $v_{50} = 2.252.46648036$ etc.. In approximate mode, *i.e.* in HOME screen (key), the series v then tends to $+\infty$.

We clearly see that, in approximate mode, calculations errors accumulate themselves and that the results displayed are not always in accordance with the theroretical results!

How the calculations are performed in HOME.

In HOME, the real numbers are displayed with at most 12 significative digits but the calculations are performed with more digits and then rounded to be displayed, for example:

For the calculation of u we enter u_0 :

2/3 we get 0.666666666667 then,

etc., ... The sequence u is then stationary for n > 0 and equals 0.6666666666666.

For the sequence *v* the calculation is done once *2* has been put in factor.

We enter v_0 :

2/3 we get 0.66666666666667 then, 2*(Ans-1/3) in the different operations one always has 12 decimal places, we get:

2*(0.666666666666667-0.333333333333)=2*0.333333333334=0.6666666666668.

Then, we have:

Then, we have:

$$\begin{split} v_0 &= \frac{2}{3} = A + 10^{-12} \\ v_1 &= 2*(A + 10^{-12} - B) = 2*(B + 10^{-12}) = A + 2*10^{-12} \\ \text{then} \\ v_2 &= 2*(A + 2*10^{-12} - B) = 2*(B + 10^{-12}) = A + 2^2*10^{-12} \\ \text{then...} \\ v_{38} &= A + 2^{38}*10^{-12} = 0.94154457361 \\ v_{39} &= A + 2^{39}*10^{-12} = 1.21642248055 \\ v_{40} &= A + 2^{40}*10^{-12} = 1.76617829445 \\ \dots \\ v_{50} &= A + 2^{50}*10^{-12} = 1126.56657351 \\ v_{51} &= A + 2^{38}*10^{-12} = 2252.46648036 \end{split}$$

then the formula might not be true anymore due to rounding errors...

If we use the command ITERATE which iterates, starting by the value 2/3, 90 times the function
which to x matches 2* (X-1/3), we enter:
ITERATE (2* (X-1/3), x, 2/3, 90)
we get:
1.23794003934E15
and
ITERATE (2* (X-1/3), x, 2/3, 91)
we get:

So $v_n = 2^{n-90} * u_{90}$ and when *n* tends to the infinite $v_n = 2^{n-90} * u_{90}$ tends to the infinite.

Reset and clear

To reset the calculator:

- Press the keys F O C (not in ALPHA mode),
- Perform a reset with a paper clip by keeping the keys pressed,
- Release the keys then choose 4 FLS Utility, then 3 Format Disk C, then Esc then 9 Reset. To clear:
 - the last character entered, press Del (the big black arrow).
 - the entry line, press ON
 - the last result or the last command of the history, press Shift-Del
 - all the history, press Shift-Esc (Clear).

Tactile screen

We notice that the menus at the bottom of the screen (here named push buttons) can only be accessed by touching with the finger: there are no soft keys F1...F6 anymore!

The screen is tactile and this allows to easily copy a entry line or an answer to the history, or read or re-read a too long answer, to select a menu then a command of the key . For this:

- it is enough to look for the command or the answer to be copied by scrolling in the history with a finger, then to select the command or the answer to be copied still with a digit and press Copy on the push buttons when the line is hightlighted or to press twice quickly with the finger on the line to be copied,
- to read a too long answer it is enough to sweep the line of the answer with a finger
- we open a menu with a finger or by its number, we do the same if there is a sub-menu, then we select the function with a finger or with its number and that causes the function to be written at left of the entry line: all that is left is to enter the parameters of this function and to make with Enter. The result is then written at the right.

Keys

– CAS

You must press the key CAS to do the symbolic computation. The letters in lower case can then be accessed in ALPHA mode and the key $xt\theta n$ allows to directly get x.

HOME

You must press the key HOME to quit the symbolic computation and do numerical calculation. – Apps

You must press the key Apps to use the different Application which have, each one, 3 views: a Symbolic view which stores the commands that were called (key Symb), a Plot view which executes the graphical commands (key Plot) and a Numeric view for the numerical results (key Num).

– Menu

The key Menu returns a specific menu depending on what we are doing. For instance, from the CAS or from HOME you can exchange data between the CAS screen and the HOME screen, from the Plot screen of the geometry application you can change the color of objects or do filled figures with the Options command (push buttons) or by filling with color, in the Symbolic view, the square located between the cell used to set and the name of the object (by touching this square one opens the color palet).

– Help

The key Help gives help on the different commands that are in the Cmds menu (push buttons) or in the menu of the key:

You must highlight this command with the arrows then press Help or we enter this command and we press Help.

Esc

The key Esc allows to cancel the command in progress

General settings

We opens the screen of the general setting with Shift-HOME. You can for example choose:

- to enter the commands in 2D (choose Entry: Textbook),
- to get the answers in 2D (check Textbook Display),
- to have the menus displaying the name of the commands rather than a theme (set Display Menu),
- to set the calculator in exam mode

CAS settings: Shift CAS

```
We enter: Shift CAS (Settings).

To be in complex mode you must check i.

To use of complex variables you must check Complex.

For instance:

solve(x^3+2*x^2+x+2=0,x) returns [-2] in real mode

solve(x^3+2*x^2+x+2=0,x) returns [-2,-i,i] in complex mode

To use square roots in a factorization you must check:

Use \sqrt{}

For instance:

factor(x^2+x-1) returns x^2+x-1 if Use \sqrt{} is not checked

factor(x^2+x-1) returns (x+(-(sqrt(5))+1)/2)*(x+(sqrt(5)+1)/2) if Use \sqrt{} is checked
```

Calculator settings: Shift HOME

The key Shift HOME (Settings) allows to do the settings of the calculator.

To get in the menus or the sub-menus the names of the commands, $\tt Display Menu$ must not be checked.

If Display Menu is checked, the menus and the sub-menus describe the commands and returns the command when a menu or a sub-menu is selected.

Symbolic computation functions

We access functions of symbolic computation by pressing the key .

These functions are sorted by category.

Use Shift (Settings) and uncheck Display Menu to get the name of the functions and not the description of these functions.

Part II Menu CAS of the Toolbox key

Chapter 1 Generalities

1.1 Calculations in the CAS

With the CAS, we do exact calculation.

With the CAS we can use the variables of Home which have as a name one of the upper case letters and which have by default the value 0 but also variables which have as names a string of lower case letters or of digits starting by a lettre. These variables have by default no value: these variables are symbolic (without value) as long as we do not affect one to them.

In CAS, the commands are in general in lower case, it is why the key ALPHA allows to enter a lower case and ALPHA, ALPHA locks the keyboard in lower case (no need to press Shift).

With the CAS, the simplifications are not done automatically, only the useless parentheses are removed and the fractions are simplified. To get the simplified form of an expression, you must use the command simplify.

We notice that the answer can be provided in an equation editor.

1.2 Priority of operators

The four following operations are infix operators.

- + designates the addition,
- designates the substraction,
- * designates the multiplication,
- / designates the division.

The raising to power is obtained with the key x^y and is written with ^ in the history.

- To do the calculations:
 - we do the calculations between the parentheses,
 - we do the raising to powers,
 - we do the multiplications and the divitions in the order from left to right,
 - we do the additions and the substractions in the order from left to right.

1.3 Implicit multiplication

In CAS, to do a multiplication, the sign * can be omitted when we do the multiplication of a number by a variable. It is allowed to write 2x but you must write a*b to do the product of the variable a by b, because ab is also a name of variable.

```
We can write for example:

2x+3i+4pi

We cannot write:

(2) x, (2) (x+y), (2x+3) (x+y)

We must write:

2x or 2* (x+y) or (2x+3)* (x+y)
```

Warning! x2 and xy designate the name of a variable and f(x+1) is the value of the function f at x+1.

1.4 Duration of a calculation: time

The evaluation of the duration of a long calculation is written in blue.

40

This evaluation of the duration is approximate, if you want more precision on the duration of your calculation, you must use the command time which returns the time taken for the evaluation in seconds.

 \mathtt{time} takes as argument a command and returns the time counted in seconds. We enter:

```
time(factor(x^{10-1}))
```

We get in real mode:

0.0045

We enter:

time(factor(x^100-1))

We get in real mode:

0.0092

We enter:

time(factor(x^10-1))

We get in complex mode (set i in the CAS Settings):

0.272

We enter:

time(factor(x^100-1))

We get in complex mode:

29.794

1.5 Lists and sequences in the CAS

With the CAS, the lists (resp. the vectors) are put between brackets by { } or by [] and the indeces are put between brackets or between parentheses. All indices start at 1. For instance, we enter: 1:=[1,2,3,4]; $11:=\{1,2,3,4\};$ 1[2] or 11[2] returns 2 1 (2) or 11 (2) returns 2 With the CAS, the type sequence is also available, which is a series of objects. The indices of a sequence also start at 1. For instance, we enter: s:=1,2,3,4s[2] or s(2) returns 2. With this type sequence, the concatenation is easy. To define the emtpy sequence, we enter:

s:=NULL;

If we did not check Textbook or Algebraic in the general setting (Shift HOME), we get:

Then, we enter:

s:=s,1,2 We get: seq[1,2] We enter: s[1]) We get: 2 Whereas with the type list, to define the emtpy list, we enter: l:=[]; Then, we enter: l:=concat(l,[1,2]) We get: [1,2] We enter: 1[1]) We get: 2 To transform a list into a sequence; we use the operator op. We enter: op(1) We get: seq[1,2] To transform a sequence into a list, it is enough to put the sequence between []. We enter: [s])

We get:

[1,2]

1.6 Difference between expressions and functions

You must clearly distinguish expression and function.

An **expression** is a series of terms separated by the sign of an operation.

A term is a number, or a name of variable, or a product, or a pair of parentheses containing an expression.

Convention: the multiplication and the division have priority over the addition and the substraction. The sign * is sometimes omitted in the writting, for example one writes: 2x instead of 2*x. A real function f defined on I part of R is an application which at each number x of I maps an expression f(x). The value of the function in one point x is then given by an expression. Example With HP Prime we enter in the CAS: $xpr:=3 \times x+2$

```
We then define the expression xpr
We enter:
```

 $f(x) := 3 \times x + 2$

We then define the function fWe enter: subst(xpr, x=1) and we get 5

We enter:

f(1) and we get 5

We enter:

plotfunc(3*x+2) or, plotfunc(xpr) or, plotfunc(f(x))

we get one single graph which is the graph of the function f.

Note:

The plot of most of the commands starting by plot is working well from the CAS screen: then, it is better to use the geometry application to do the graphs related to these commands.

1.6.1 Defining a function by an expression

To define $f(x) = x \sin(x)$ we enter:

	f(x) := x * sin(x)	
We enter:		
	f(1)	
We get:		
	sin(1)	
but, take care, if we enter:		
	<pre>xpr:=x*sin(x)</pre>	
then:		
	g(x):=xpr	
this is not correct, because the variable ${\tt x}$ does not appear in ${\tt xpr}.$ You must enter:		
c	g:=unapply(xpr,x)	
We enter:		
	g(1)	
We get:		
	sin(1)	

The command unapply returns a function which is defined by an expression and a variable: for example here unapply (xpr, x) designates the function: $x \rightarrow x * \sin(x)$

1.6.2 Definition of a function of one or several variables

Definition of a function of \mathbb{R}^p in \mathbb{R}

To define the function $f(x) \rightarrow x * sin(x)$: we enter:

f(x) := x * sin(x)

Or we enter:

f:=x->x*sin(x)

We get:

 $(x) \rightarrow x + sin(x)$

To define the function $f: (x, y) \rightarrow x * sin(y)$ we enter:

 $f(x, y) := x \cdot sin(y)$

Or we enter:

 $f := (x, y) \rightarrow x \times sin(y)$

We get:

 $(x, y) \rightarrow x * sin(y)$

Warning! What is after \rightarrow is not evaluated.

Definition of a function of \mathbb{R}^p in \mathbb{R}^q

To define the function h: $(x, y) \rightarrow (x * \cos(y), x * \sin(y))$: we enter:

h(x, y) := (x * cos(y), x * sin(y))

To define the function $h : (x, y) \rightarrow [[x * \cos(y), x * \sin(y)]]$ we enter:

h(x,y):=[x*cos(y),x*sin(y)];

Or we enter:

h:=(x,y)->[x*cos(y),x*sin(y)];

Or we enter:

h(x,y):={[x*cos(y),x*sin(y)]};

Or we enter:

h:=(x,y)->return[x*cos(y),x*sin(y)];

44

Or we enter

We get:

(x,y) -> {return([x*cos(y),x*sin(y)]);}

Warning! What is after \rightarrow is not evaluated.

Definition of a function of \mathbb{R}^{p-1} in \mathbb{R}^q from a function of \mathbb{R}^p in \mathbb{R}^q

We define the function $f: (x, y) \rightarrow x * \sin(y)$, then we want to define the family of functions depending on the parameter *t* by g(t)(y) := f(t, y).

Since what is after \rightarrow is not evaluated, we cannot define g(t) by g(t) := y - f(t, y) and we must use the command unapply.

To define the functions $f(x, y) = x * \sin(y)$ and $g(t) = y \rightarrow f(t, y)$, we enter:

f(x,y):=x*sin(y);g(t):=unapply(f(t,y),y)

We get:

 $((x,y) \rightarrow x \sin(y), (t) \rightarrow unapply(f(t,y),y))$

We enter:

g(2)

We get:

 $y -> 2 \cdot sin(y)$

We enter:

We get:

2 ·sin(1)

g(2)(1)

We define the function $h: (x, y) \rightarrow (x * \cos(y), x * \sin(y))$, then we want to define the family of functions depending on the parameter t by k(t)(y) := h(t, y). Since what is after \rightarrow is not evaluated, we cannot define k(t) by $k(t) := y \rightarrow h(x, y)$ and we must use the command unapply.

To define the function h(x, y), we enter:

 $h(x, y) := (x \cdot \cos(y), x \cdot \sin(y))$

To define the function k(t), we enter:

k(t) := unapply(h(x,t),x)

We get:

 $(t) \rightarrow unapply(h(x,t),x)$

We enter:

k(2)

We get:

sin (

(x) -> (x*cos(2), x*sin(2))

We enter:

k(2)(1)

We get:

```
(2*cos(1),2*sin(1))
```

Or else we define the function $h: (x, y) \rightarrow [[x * \cos(y), x * \sin(y)]]$, then we want to define the family of functions depending on the parameter *t* by k(t)(y) := h(t, y). Since what is after \rightarrow is not evaluated, we cannot define k(t) by $k(t) := y \rightarrow h(x, y)$ and we must use

the command unapply.

To define the function h(x, y), we enter:

h(x,y):={[x*cos(y),x*sin(y)]}

To define the function k(t), we enter:

k(t) := unapply(h(x,t), x)

We get:

 $(t) \rightarrow unapply(h(x,t),x)$

We enter:

k(2)

We get:

 $(x) \rightarrow \{ [x \cos(2), x \sin(2)]; \}$

We enter:

```
k(2)(1)
```

We get:

 $[2 \cdot \cos(1), 2 \cdot \sin(1)]$

1.6.3 To define a function by two expressions: when

```
We enter: g(x) :=when (x>0, x, -x)
g(-2) returns 2
g(-2) returns 2
```

1.6.4 Defining a function by n values: PIECEWISE piecewise

For instance, to define the function g which equals -1 if x < -1, 0 if $-1 \le x \le 1$ and 1 if x > 1, we enter:

g(x):=piecewise(x<-1,-1,x<=1,0,1)

piecewise uses pairs condition/value where value is returned if condition is true, which implies that the previous conditions are false. If the number of arguments is odd, the last value is the default value (as in switch).

piecewise is the generalization of when.

Then, we can do the graph of *f* by entering:

plotfunc(f(x))

1.6.5 Exercise on expressions

Here are 6 expressions formed from T = 1 - x * 2 + x by adding parentheses:

A = (1 - x) * 2 + x B = 1 - (x * 2) + x C = 1 - x * (2 + x) D = (1 - x * 2) + x F = 1 - (x * 2 + x)G = (1 - x) * (2 + x)

- Is there one (or several) expression(s) equals to T ? If so, why ?
- 2) Calculate the values of these expressions for x = 1 and for x = -1.
- 3) Among the expressions A, B, C, D, F, G:
- Which are a sum of two terms?
- Which are a difference of two terms?
- Which are an algebraic sum of 3 terms?
- Which are a product of two terms?
- Which are equal?
- 4) Simplify the expressions *A*, *B*, *C*, *D*, *F*, *G*.
- 5) Write all the expressions formed from $S = 1 + \frac{x}{2 + x}$ by adding parentheses.

Let us check with HP Prime. We enter:

T:=1-x*2+x A:=(1-x)*2+x B:=1-(x*2)+x C:=1-x*(2+x) D:=(1-x*2)+x F:=1-(x*2+x)G:=(1-x)*(2+x)

Then, we enter to check which expression equals T:

A==T, B==T, etc., ...

We find out that the answer to A = = T is 0 which means that the expression A is different from T. We find out that the answer to B = = T is 1 which means that the expression B is identical to T, etc., ...

1.6.6 Exercise on the functions (to be followed)

- 1) Define 6 functions having for respective values the expressions A, B, C, D, F, G.
- 2) Plot the graphs of these functions and look at them on the same graphical representation.
- 3) Among these graphs there are lines and parabolae. Recognize the graph of each function. Let us check with HP Prime. To define the 6 functions, we enter:

f(x) := 1 - (x * 2 + x)

g(x) := (1-x) * (2+x)

Then, we enter to display the graphs:

We get only 5 curves of different colors. We can enter successively:

plotfunc([a(x)]), plotfunc([a(x),b(x)]), etc., ...

Then, we notice that:

- the graph of a is the black line,
 the graph of b is the red line,

- the graph of c is the green parabola,
 the graph of d is the yellow line which overlaps the red line,
 the graph of f is the blue line, and
- the graph of g is the green parabola.

Chapter 2 Menu Algebra

2.1 Simplifying an expression: simplify

simplify simplifies an expression in an automatic way. We enter:

```
simplify(x^5+1/((x-1)*4)+1/((x+1)*4)+1/((x+i)*4)+1/((x-i)*4))
```

We get:

(x^9-x^5+x^3)/(x^4-1)

We enter:

simplify(3-54*sqrt(1/162))

We get:

-3*sqrt(2)+3

Warning! simplify is more efficient when to simplify trigonometric expressions when being in radian: for this reason, we check radian in the CAS configuration. We enter:

simplify((sin(3*x)+sin(7*x))/sin(5*x))

We get:

 $4*(\cos(x))^{2-2}$

2.2 Factorizing a polynomial on the integers: collect

collect takes as parameter a polynomial or a list of polynomials and eventually sqrt(n). collect factors the polynomial (or the polynomials of the list) on the integers when the coefficients of the polynomial are integers or one $\mathbb{Q}(\sqrt{(n)})$, if the coefficients of the polynomial are in $\mathbb{Q}(\sqrt{(n)})$ or if sqrt(n) is the second argument.

We enter:

$$collect(x^3-2*x^2+1)$$

We get:

 $(x-1) * (x^2-x-1)$

We enter:

 $collect(x^{3}-2*x^{2}+1, sqrt(5))$

We get:

(x+(-(sqrt(5))-1)/2)*(x-1)*(x+(sqrt(5)-1)/2)

See also factor depending on we have checked or not $\sqrt{}$ in the CAS configuration.

2.3 Regrouping and simplifying: regroup

regroup takes as parameter an expression. regroup does the obvious simplifications on an expression by grouping terms. We enter:

regroup (x+3*x+5*4/x)

We get:

20/x+4*x

2.4 Expanding and simplifying: normal

normal takes as parameter an expression. normal returns the developed and simplified expression. We enter:

normal (x+3*x+5*4/x)

We get:

(4*x^2+20)/x

We enter:

normal((x-1)*(x+1))

We get:

x^2-1

Warning! normal is less efficient than simplify and, sometimes, it might be necessary to invoque several times the command normal. We enter:

normal(3-54*sqrt(1/162))

We get:

(-9*sqrt(2)+9)/3

We enter:

normal((-9*sqrt(2)+9)/3)

We get:

-(3*sqrt(2))+3

2.5 Expanding an expression: expand

 $\tt expand$ applies on an expression the distributive of the multiplication over the addition. We enter:

We get:

 $x^{2+3}x+2$

We enter:

 $expand((a+b)^5)$

We get:

5*a^4*b+10*a^3*b^2+10*a^2*b^3+5*a*b^4+b^5+a^5

2.6 Multiply by the conjugate quantity: mult conjugate

 $\tt mult_conjugate$ takes as argument an expression with a denominator or a numerator comprising square roots:

mult_conjugate takes as argument an expression with a denominator comprising square roots.

mult_conjugate multiplies the numerator and the denominator of this expression by the conjugate quantity of the denominator.

 mult_conjugate takes as argument an expression with a denominator not comprising square roots.

mult_conjugate multiplies the numerator and the denominator of this expression by the conjugate quantity of the numerator.

We enter:

mult conjugate((2+sqrt(2))/(2+sqrt(3)))

We get:

(2+sqrt(2))*(2-sqrt(3))/((2+sqrt(3))*(2-sqrt(3)))

We enter:

mult conjugate((2+sqrt(2))/(sqrt(2)+sqrt(3)))

We get:

(2+sqrt(2))*(-sqrt(2)+sqrt(3))/

((sqrt(2)+sqrt(3))*(-sqrt(2)+sqrt(3)))

We enter:

```
mult_conjugate((2+sqrt(2))/2)
```

We get:

(2+sqrt(2))*(2-sqrt(2))/(2*(2-sqrt(2)))

2.7 Factorizing an expression: factor

We enter:

 $factor(x^{6-1})$

We get in real mode:

 $(x-1) * (x+1) * (x^2-x+1) * (x^2+x+1)$

We enter:

factor(x^6+1)

We get in real mode:

$$(x^{2+1}) * (x^{4}-x^{2+1})$$

We get in complex mode with $\sqrt{1}$ not checked:

$$(x+i) * (x-i) * (x^{2}+(i) * x-1) * (x^{2}+(-i) * x-1)$$

We get in complex mode with $\sqrt{}$ checked:

$$(x+i)*(x-i)*(x+(-(sqrt(3))-i)/2)*(x+(-(sqrt(3))+i)/2)*(x+(sqrt(3)-i)/2)*(x+(sqrt(3)+i)/2)$$

We enter:

$$factor(x^{6+1}, sqrt(3))$$

We get in complex mode with $\sqrt{\text{checked or not:}}$

We enter:

```
factor (x^{3}-2x^{2}+1)
```

We get, if we have not checked $\sqrt{}$ in the CAS configuration:

$$(x-1) * (x^2-x-1)$$

We enter:

 $factor(x^{3}-2*x^{2}+1)$

We get, if we have checked $\sqrt{}$ in the CAS configuration:

$$(x+(-(sqrt(5))-1)/2)*(x-1)*(x+(sqrt(5)-1)/2)$$

We enter:

```
factor (expexpand (exp(5*x)) -exp(x))
```

We get in complex mode:

 $\exp(x) * (-1 + \exp(x)) * (1 + \exp(x)) * (i + \exp(x)) * (-i + \exp(x))$

2.8 Factorization without square factor: sqrfree

 $\tt sqrfree$ takes as parameter a polynomial. $\tt sqrfree$ factors this polynomial by grouping the terms having the same exponent. We enter:

sqrfree((x^2-1)*(x-1)*(x+2))

52

We get:

We enter:

```
sqrfree((x^2-1)^2*(x-1)*(x+2)^2)
```

We get:

```
(x^2+3*x+2)*(x-1)^3
```

2.9 Factorization in C: cFactor cfactor

 $\tt cFactor$ or <code>cfactor</code> takes as parameter the expression we want to factor in the complex field without being in complex mode.

When there are more than two variables, the factorization is performed on Gauss integers.

Examples

1. Factorizing in C:

We enter:

cFactor(x^4-1)

 $x^4 - 1$

We get:

((x+-i)*((-i)*x+1)*((-i)*x+i)*(x+1))

2. Factorizing in ℂ:

We enter:

cfactor(x^4+1)

 $x^4 + 1$

We get:

(x^2+i) * (x^2+-i)

Then, we enter:

```
cfactor(sqrt(2) * (x^{2+i})) * cFactor(sqrt(2) * (x^{2+-i}))
```

We get:

```
sqrt(2)*1/2*(sqrt(2)*x+1-i)*(sqrt(2)*x-
1+i)*sqrt(2)*1/2*(sqrt(2)*x+1+i)*(sqrt(2)*x-1-i)
```

but if we enter,:

 $cfactor(sqrt(2)*(x^4+1))$

We get:

```
\texttt{sqrt(2)} * (\texttt{x}^2 + \texttt{sqrt(2)} * \texttt{x} + 1) * (\texttt{x}^2 + (-(\texttt{sqrt(2)})) * \texttt{x} + 1)
```

2.10 Substituting a variable by a value: subst

subst takes two or three arguments: an expression depending on a parameter and an equality (parameter=substitution value) or an expression depending on a parameter, the parameter and the substitution value.

subst does the requested substitution in the expression provided that the parameter is not assigned because subst first evaluates the expression and then replaces the parameter (if it has been assigned) by its value without taking into account the substitution value supplied by the second parameter.

We enter: subst (a^2+1, a=3) We get: a:=2; subst (a^2+1, a=3) We get: (2, 5) We enter: a:=2; purge (a); subst (a^2+1, a=3) We get: (2, 2, 10)

2.11 Fractions

2.11.1 Decompose into simple elements: partfrac

partfrac takes as argument a rational fraction. partfrac returns its decomposition into simple elements.

We enter:

```
partfrac(x^{5}+x^{3}/(x^{4}-1))
```

We get:

```
x^5+1/((x-1)*4)+1/((x+1)*4)+x/((x^2+1)*2)
```

We enter:

 $partfrac(x^{5}+x^{3}/(x^{4}-1))$

We get:

```
x^5+1/((x-1)*4)+1/((x+1)*4)+1/((x+i)*4)+1/((x-i)*4)
```

2.11.2 Decomposition in simple elements on C: cpartfrac

cpartfrac takes as argument a rational fraction.

cpartfrac returns its decomposition into simple elements on C be it in real mode or complex mode.

Example:

Decompose into simple elements the rational fraction:

$$\frac{x^3 - 2x^3 + 1}{x^4 - 2x^3 + 2x^2 - 2x + 1}$$

We use the command $\ensuremath{\mathtt{cpartfrac}}$. We enter:

 $cpartfrac((x^{5}-2*x^{3}+1)/(x^{4}-2*x^{3}+2*x^{2}-2*x+1))$

We get in real mode or in complex mode:

$$x+2+(-1+2*i)/((2-2*i)*((i)*x+1))+1/(2*(-x+1))+(-1-2*i)/((2-2*i)*(x+i))$$

2.11.3 Put to common denominator: comDenom

comDenom takes as parameter a sum of rational fractions. comDenom returns this sum as a rational fraction, that is to say returns this sum once the rational fractions it is composed with have been put to common denominator.

We enter:

 $comDenom(x-1/(x-1)-1/(x^2-1))$

We get:

(x^3+-2*x-2)/(x^2-1)

2.11.4 Integer part and fractional part: propfrac

propfrac takes as argument a rational fraction. propfrac returns this rational fraction written in a way that brings out its integer part. propfrac (A(x)/B(x)) writes the rational fraction $\frac{A(x)}{B(x)}$ after simplification in the form of:

$$Q(x) + \frac{R(x)}{B(x)}$$

with R(x) = 0 or $0 \le \text{degree}(R(x)) < \text{degree}(B(x))$.

We enter:

$$propfrac((5*x+3)*(x-1)/(x+2))$$

We get:

2.12 Extract

2.12.1 Numerator of a fraction after simplifiation: numer

numer takes as argument a fraction or a rational fraction and returns the numerator of this simplified fraction.

We enter:

numer(42/12)

7

We get:

We enter:

numer($x^{5}+x^{3}/(x^{4}-1)$)

We get:

x^9-x^5+x^3

2.12.2 Denominator of a fraction after simplification: ofnom

denom takes as argument a fraction or a rational fraction and returns the denominator of this simplified fraction.

We enter:

denom(42/12)

We get:

2

We enter:

denom(x^5+1/((x-1)*4)+1/((x+1)*4)+x/((x^2+1)*2))

We get:

x^4-1

2.12.3 Numerator and denominator: f2nd

f2nd takes as argument a fraction or a rational fraction and returns the list formed by the numerator and the denominator of this simplified fraction.

We enter:

f2nd(42/12)

We get:

[7,2]

We enter:

f2nd((x^2-1)/(x-1))

56

We get:

[x+1,1]

We enter:

f2nd((x^2+2*x+1)/(x^2-1))

We get:

[x+1,x-1]

2.12.4 Get the left member of an equation: left

left takes as parameter an equation or an interval.
left returns the left member of the equation or the left boundary of the interval.

We enter:

We get:

We enter:

We get:

left(a=3) a left(a..2*a+1) a

2.12.5 Get the right member of an equation: ${\tt right}$

right takes as parameter an equation or an interval. right returns the right member of the equation or the right boundaryof the interval.

We enter:

We get:

right(a=3) 3 right(a..2*a+1)

We get:

We enter:

2*a+1

2.12.6 Center of an interval: interval2center

interval2center takes as argument an interval or a list of intervals.
interval2center returns the center of the interval or the list of centers of these intervals.

We enter:

interval2center(3..5)

We get:

4

We enter:

interval2center([2..4,4..6,6..10])

We get:

[3,5,8]

2.12.7 Signature of a permutation: signature

signature takes as argument a permutation.

signature returns the signature of the permutation supplied as argument. The signature of a permutation equals:

1 if it can be decomposed into an even product of transpositions,
 -1 if it can be decomposed into an odd product of transpositions.

The signature of a cycle of order k is: $(-1)^{k+1}$.

We enter:

signature(3,4,5,2,1)

We get:

-1

Indeed, this permutation is decomposed into the cycles: (1,3,5) and (2,4) that is to say in 3 transpositions: (1,3), (3,5) and (2,4).

Chapter 3 Menu Calculus

3.1 Definition of a function: $:= \text{ and } \rightarrow (\text{Sto})$

To define for example the function f which at x maps $x^3+\ln(x)$, we enter:

 $f:=x-> x^3+ln(x)$

or we enter:

 $f(x) := x^3+ln(x)$

3.2 Maximum and minimum of an expression: fMax fMin

fMax and fMin have as argument: an expression of one variable and the name of this variable (by default x).

fMax returns the abscissa of the main solution of the maximum of the expression. fMin returns the abscissa of the main solution of the minimum of the expression.

We enter: fMax(sin(x),x) Or we enter: fMax(sin(x)) Or we enter: fMax(sin(y),y) We get: pi/2 We enter: fMin(sin(x), x)Or we enter: fMin(sin(x)) Or we enter: fMin(sin(y),y) We get: -pi/2 We enter: $fMin(sin(x)^2, x)$ We get:

3.3 Differentiate

3.3.1 Derivative function of a function: function diff

function_diff takes as argument a function.
function_diff returns the derivative function of this function.

We enter:

function_diff(sin)

0

We get:

(' x')->cos(' x')

We enter:

function diff(sin)(x)

We get:

cos(x)

We enter:

 $f(x) := x^2 + x \cos(x)$

```
function_diff(f)
```

We get:

(' x')->2*' x'+cos(' x')+' x'*(-(sin(' x')))

We enter:

function diff(f)(x)

We get:

 $\cos(x) + x^{*}(-(\sin(x))) + 2^{*}x$

3.3.2 Differentiate : ∂ diff ' ''

 $\tt diff$ or ' returns the derivative of an expression or of a function of a variable and returns also the partial derivatives of an expression of several variables.

We can also use the key showing letter ${\tt C}$ and use:

 $\frac{\partial \Box}{\partial \Box}$

and if we have checked the display configuration in Textbook mode (cf. Settings of HOME), it is enough to fill in the two \Box .

Derivative of an expression of one variable
 We enter:

Or we enter (' is obtained with Shift-() ('') by clearing a '):

(x^3+ln(x))'

We get the expression of the derivative of $x^3+\ln(x)$ according to x:

3*x^2+1/x

We enter:

```
diff(y^3+ln(y), y)
```

Or we enter (' is obtained with Shift-() ('') by clearing a '):

(y^3+ln(y),y)'

We get the expression of the derivative of $y^3+\ln(y)$ according to y:

3*y^2+1/y

- Second derivative (or Nth) of an expression of one variable

We enter:

diff(diff(x^3+ln(x)))

Or we enter ('' is obtained with Shift-()):

(x^3+ln(x))"

We get the expression of the second derivative of $x^3+\ln(x)$ according to x:

 $3 \times 2 \times x - 1 / x^{2}$

We enter:

```
diff(diff(diff(x^3+ln(x)))))
```

Or we enter ('''' is obtained with Shift-() Shift-()):

(x^3+ln(x))''''

We get the expression of the 4th derivative of $x^3+\ln(x)$ according to x:

-2*3/x^4

- Partial derivative of an expression of several variables.

We enter:

```
diff(x^{*}y^{*}z, {x, y, z})
```

We get the expression of the partial derivative according to x, according to y and according to z, of x*y*z:

- Derivative of a function

To define the function f, we enter:

$$f(x) := x^3 + ln(x)$$

We get:

$$(x) - x^3 + \ln(x)$$

We enter:

Or we enter (' is obtained with Shift-() ('') by clearing a '):

g:=f'

We get the function g which is the derivative function of f:

 $x - > 3 * x^2 + 1 / x$

- Second derivative (or Nth) of a function

To define the function f, we enter:

 $f(x) := x^3 + ln(x)$

We get

 $(x) - x^{3} + \ln(x)$

We enter:

h:=diff(diff(f))

Or we enter ('' is obtained with Shift-()):

h:=f''

We get the function h which is the second derivative function of f:

 $x -> 3 + 2 + x - 1 / x^{2}$

3.3.3 Approximate calculation of the derivative number: nDeriv

n Deriv takes as arguments: an expression Xpr, the name of the variable of this expression (by default x), and h (by default h=0.001).

<code>nDeriv(f(x),x,h)</code> calculates, in an approximate way, the value of the derivative of the expression f(x) at point x and returns:

(f(x+h) - f(x+h)) / 2 + h.

We enter:

 $nDeriv(x^{2}, x)$

We get:

 $((x+0.001)^{2}-(x+-0.001)^{2})*500.0$

We enter:

We get:

2

3.4 Integration

3.4.1 Primitive: int

int allows to calculate a primitive of an expression or of a function or a definite integral. We can also use the key showing letter ${\tt C}$ and use:

 $\int_{\Box}^{\Box} \Box \partial \Box$

and if we have chosen the Textbook mode as display configuration (cf. Settings of HOME), it is enough to fill in the boxes.

- Primitive of an expression

We enter:

 $int(x^3+ln(x))$

We get a primitive of $x^3+\ln(x)$ according to x:

 $x + ln(x) - x + x^{4}/4$

We enter:

 $int(y^3+ln(y), y)$

We get a primitive of $y^3+\ln(y)$ according to y:

 $y*ln(y) - y + y^{4}/4$

Primitive of a function

To define the function f, we enter:

 $f(x) := x^{3}+ln(x)$

We get:

 $(x) \rightarrow x^3+\ln(x)$

We enter:

```
g:=int(f)
```

We get the function g which is a primitive of f:

 $(x) = x + ln(x) = x + x^{4}/4$

- Definite integral

We enter:

 $int(x^3+ln(x),x,1,2)$

Or we enter:

 $int(x^3+ln(x), x=1..2)$

Or we enter:

Or we enter when $f(x) := x^3+\ln(x)$ and g:=int(f):

We get the value of $\int_{1}^{2} x^{3} \ln(x) dx$:

2*ln(2)-(-3/4

3.4.2 Evaluate a primitive: preval

 $\tt preval$ has three parameters: an expression $\tt F(x)$ depending on the variable x, and two expressions a and $\tt b.$

preval does F(b) - F(a).

preval is useful to calculate a definite integral by a primitive: we calculate a primitive, then one evaluates this primitive between the boundaries of the integral.

We enter:

6

We get:

3.4.3 Approximate calculation of integrals with the Romberg method: romberg

romberg takes as arguments: an expression Xpr, the name of the variable of this expression (by default x), and two values a, b.

romberg (Xpr, x, a, b) returns the approximate integral $\int_a^b Xpr \, dx$ by the Romberg method.

We enter:

romberg(exp(x^2), x, 0, 1)

We get:

1.46265174591

3.5 Limites: limit

Provided we are in radians, limit allows to calculate the limit of an expression in a finite point (or infinite).

By means of an additional parameter, we can tell if we look for a limit by greater values or by lower values (1 to tell " by greater values " and -1 to tell " by lower values ").

limit takes three or four arguments:

an expression, the name of the variable (for example x), the limit point (for example a) and an optional argument which tells if the limit is unidirectional or bidirectional (by default 0). This argument equals – 1 as left limit (x < a) or equals 1 as right limit (x > a) or equals 0 for a limit.

The optional argument is then used when we want to calculate right limit (+1) or a left limit(-1). limit returns the requested limit (if any).

When we use limit from the menus and and if we have chosen the Textbook mode as display configuration (cf HOME Settings) it is diplayed on the entry line: $\lim_{\square \to \square^\square} (\square)$ and it is enough to fill in the □. For example, we get limit in the menu CAS \rightarrow Calculus \rightarrow Limit: $\lim_{x\to 0^1} abs(x)/x$ We get in the history: limit(abs(x)/x, x, 0, 1)and the answer: 1 We enter: limit(sin(x)+ln(x))/x, x, 1We get: sin(1) We enter: limit(1/x, x, 0)We get: infinity this means that abs(1/x) tends to $+\infty$ when x tends to 0. We enter: limit(1/x, x, 0, 1)We get: +infinity We enter: limit(1/x, x, 0, -1)We get: -infinity Note: if we enter limit((-1)^n, n=inf), then the CAS returns bounded function(5) which means that the function is bounded but has no limit at the infinite. We enter: limit(sin(x),x,inf) We get: bounded function(2)

We enter:

limit(cos(x),x,inf)

We get:

bounded_function(7)

Exercises:

- Find for n > 2, the limit when x tends to 0 of: $n \tan(x) - \tan(nx)$

We enter:

 $\sin(nx) - n\sin(x)$

We get:

2

- Find the limit when x tends to $+\infty$ of:

$$\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x}$$

We enter:

limit(sqrt(x+sqrt(x)))-sqrt(x), x=+infinity)

We get:

1/2

- Find the limit when x tends to 0 of:

$$\frac{\sqrt{1+x+\frac{x^2}{2}}-e^{\frac{x}{2}}}{(1-\cos(x))\sin(x)}$$

We enter:

```
limit((sqrt(1+x+x^2/2)-exp(x/2))/((1-cos(x))*sin(x)),x,0)
```

We get:

-1/6

Sometimes, to calculate limits more easily, it can be judicious to quote the first argument. By example, we enter:

```
limit('(2*x-1)*exp(1/(x-1))',x=+infinity)
```

We notice that we have quoted here the first argument so that it is not evaluated, that is to say so that it is not simplified. We get:

+(infinity)

3.6 Limit and integral

We give here some examples:

- Determinate the limit when a tends to the infinite of:

We enter:

$$limit(int(1/(x^2), x, 2, a), a, +(infinity))$$

1/2

We get (check that a is formal otherwise do purge (a)):

Indeed $\int_2^a \frac{1}{x^2} dx = \frac{1}{2} - \frac{1}{a}$

Thus $\int_2^a \frac{1}{x^2} dx$ tends to $\frac{1}{2}$ when *a* tends to the infinite.

Determinate the limit when a tends to the infinite of:

$$\int_{2}^{a} \left(\frac{x}{x^2 - 1} + \ln\left(\frac{x + 1}{x - 1}\right) \right) dx$$

We enter:

$$limit(int(x/(x^2-1)+ln((x+1)/(x-1)),x,2,a), a,+(infinity))$$

We get (check that a is formal otherwise do purge (a)):

Indeed:

$$\int_{2}^{a} \frac{x}{x^{2}-1} dx = \frac{1}{2} \left(\ln(a^{2}-1) - \ln(3) \right)$$
and

$$\int_{2}^{a} \ln\left(\frac{x+1}{x-1}\right) dx = \ln(a+1) + \ln(a-1) + a * \ln\left(\frac{a+1}{a-1}\right) - 3\ln(3)$$
So when *a* tends to +∞ the integral tends to +∞.

- Determinate the limit when *a* tends to 0 of:

$$\int_{a}^{3a} \frac{\cos(x)}{x} dx$$

limit(int(cos(x)/x, x, a, 3a), a, 0)

We get (check that a is formal otherwise do purge (a)):

To find this limit, we boundary $\frac{\cos(x)}{x}$ because we do not know the primitive of $\frac{\cos(x)}{x}$. Knowing that:

 $1 - 2\sin^{2}\frac{x}{2} = \cos(x) \le 1 \text{ and } \sin^{2}\frac{x}{2} \le \frac{x^{2}}{4} \text{ thus,} 1 - \frac{x^{2}}{2} = \cos(x) \le 1 \text{ and}$ $\frac{1}{x} - \frac{x}{2} \le \frac{\cos(x)}{x} \le \frac{1}{x}$ Thus: $\int_{a}^{3a} \left(\frac{1}{x} - \frac{x}{2}\right) dx \le \int_{a}^{3a} \frac{\cos(x)}{x} dx \le \int_{a}^{3a} \frac{1}{x} dx$ $\ln(3) - \frac{9a^{2}}{4} + \frac{a^{2}}{4} \le \int_{a}^{3a} \frac{\cos(x)}{x} dx \le \ln(3)$ Thus $\int_{a}^{3a} \frac{\cos(x)}{x} dx$ tends to $\ln(3)$ when *a* tends to 0.

3.7 Series: series

series allows to do the series expansion of an expression of the variable Var in Var=0 (by default in x=0) at a supplied order (by default 5).

We enter:

series(tan(x))

We get:

x+1/3*x^3+2/15*x^5+x^6*order size(x)

```
<code>order_size</code> designates a function so that, regardless than r positive: <code>x^r*order_size(x)</code> tends to zero when x tends to zero.
So, when we have in the answer (x-a)^n*order_size(x-a), this means that we have a series expansion at order n - 1 in the vicinity of x=a.
```

We enter:

series (tan(x), x=0, 9)

We get:

```
x+1/3*x^3+2/15*x^5+17/315*x^7+62/2835*x^9+x^10*order size(x)
```

We enter:

```
series(atan(x), x=+infinity, 5)
```

We get:

```
1/2*pi-1/x+1/3*(1/x)^3-1/5*(1/x)^5+(1/x)^6*order_size(1/x)
```

here $(1/x)^{6}$ means that we have a series expansion at order 6 - 1 = 5 in the vicinity of $\frac{1}{2} = 0$ *i.e.* in the vicinity of $+\infty$

We enter:

```
series(atan(x), x=-infinity, 5)
```

We get:

```
-1/2*pi-1/x-1/3*(-1/x)^3+1/5*(-1/x)^5+(-1/x)^6*order size(-1/x)
```

here $(-1/x)^{6+}$ order_size (-1/x) means that we have a series expansion at order 6 - 1 = 5 in the vicinity of $\frac{1}{x} = 0$ *i.e.* in the vicinity of $-\infty$

3.8 Residue of an expression in a point: residue

residue takes as argument an expression depending on a variable, the name of this variable and a complex a or else an expression depending on a variable and the equality: name_of_variable=a. residue returns the residue of this expression at point a.

We enter:

residue(cos(x)/ x^3 ,x,0)

68

Or we enter:

```
residue (cos(x)/x^3, x=0)
```

We get:

(-1)/2

We enter:

```
int(exp(i*t)/(2*exp(i*t)-1),t=0..2*pi)
```

We get:

Searching int of 1/(2 * t - 1) where t is on the unit circle, using residues

(2*pi)/2

We enter:

int(exp(2*i*t)/(2*exp(i*t)-1))^2,t=0..2*pi)

We get: Searching int of $t/(4 * t^2 - 4 * t + 1)$ where t is on the unit circle, using residues

(2*pi)/4

3.9 Pade approximation: pade

pade has four arguments:

- an expression,
- the name of the used variable,
- an integer n or a polynomial N,
- an integer p.

pade returns a rational fraction P/Q (with the order of P < p) which has, in the vicinity of 0, the same Taylor series expansion at order *n* as the expression, or which equals the expression modulus x^{n+1} (resp. modulus *N*).

We enter:

pade(exp(x), x, 5, 3)

Or we enter:

pade(exp(x), x, x^{6} , 3)

We get:

```
(3 \times x^2 + 24 \times x + 60) / (-x^3 + 9 \times x^2 - 36 \times x + 60)
```

We check by entering:

taylor($(3*x^2+24*x+60)/(-x^3+9*x^2-36*x+60)$)

We get:

```
1+x+1/2*x^{2}+1/6*x^{3}+1/24*x^{4}+1/120*x^{5}+x^{6}* order size(x)
```

We recognize the Taylor series expansion at order 5 of exp(x) in the vicinity of 0.

We enter: pade $((x^{15+x+1})/(x^{12+1}), x, 12, 3)$ Or we enter: pade($(x^{15+x+1})/(x^{12+1}), x, x^{13}, 3$) We get: x+1 We enter: pade $((x^{15+x+1})/(x^{12+1}), x, 14, 4)$ Or we enter: pade($(x^{15+x+1})/(x^{12+1}), x, x^{15}, 4$) We get: $(-2 \times 3 - 1) / (-x^{11} + x^{10} - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 - x^2 + x - 1)$ We check by entering: series(ans(), x=0, 15) We get: 1+x-x^12-x^13+2x^15+x^16*order size(x) then by entering:

series((x^15+x+1)/(x^12+1),x=0,15)

We get:

 $1+x-x^{12}-x^{13}+x^{15}+x^{16}$ *order size(x)

Both expressions have the same Taylor series expansion at order 14 in the vicinity of 0.

3.10 Indexed finite and infinite sum and discrete primitive: sum

sum does the finite summation and infinite summation or returns the discrete primitive of an expression.

sum also does the sum of the elements of a list (see 16.8).

- sum of a list or of a sequence

We enter:

```
1 := [1, 2, 3, 4, 5, 6, 7, 8]
```

Or we enter:

1:=1,2,3,4,5,6,7,8

Then, we enter:

sum(l)

```
We get the sum 1+2+..+8=8*9/2:
```

36

indexed finite sum

We enter:

sum(k,k=1..8)

Or we enter:

sum(k,k,1,8)

We get:

36

- indexed infinite sum

We enter:

sum(1/2^k,k,0,inf)

We get:

2

- discrete primitive of an expression

The discrete primitive of the expression f(x) is the function *G* which makes: G(x + 1) - G(x) = f(x)Then sum has two arguments: an expression of one variable (for example f(x)) and the variable (for example *x*):

We enter:

sum(x,x)

We get:

(x^2-x)/2

Thus: 4 + 5 + ...19 = G(20) - G(4) = 190 - 6 = 184Check that: sum(k,k=4..19) returns 184 We enter:

sum(1/(x*(x+1)),x)

We get:

-1/x

Thus: 1/(1 * 2) + 1/(2 * 3) + ...1/(9 * 10) = -1/10 + 1 = 9/10We check that: sum(seq(1/(k*(k+1)),k,1,9)) returns 9/10

3.11 Differential

3.11.1 Rotational curl: curl

curl has two parameters: an expression F depending on three real variables and a vector dimension 3 storing the name of these variables. curl designates the rotational curl of F.

We enter:

curl([x*z,-y^2,2*x^y],[x,y,z])

We get:

[2*ln(x)*x^y,x-2*y*x^(y-1),0]

Indeed:

$diff(2*x^y, y) - diff(-y^2, z)$	returns	2*ln(x)*x^y
<pre>diff(x*z,z)-diff(2*x^y,x)</pre>	returns	x-2*y*x^(y-1)
$diff(-y^2, x) - diff(x*z, y)$	returns	0
We enter:		

curl([x*y*z,-y^2,2*x],[x,y,z])

We get:

[0, x*y-2, -x*z]

3.11.2 Divergence: divergence

divergence has two parameters: an expression F depending on n real variables and a dimension n vector storing the name of these variables.

divergence designates the divergence of *F*.

We enter:

divergence([x^2+y,x+z+y,z^3+x^2],[x,y,z])

We get:

2*x+3*z^2+1

Indeed:

diff(x^2+y, x)+diff(x+z+y, y)+diff(z^3+x^2, z) returns $2*x+1+3*z^2$

3.11.3 Gradient: grad

grad has two parameters: an expression F depending on n real real variables and a dimension n vector storing the name of these variables. derive returns the gradient of F.

We enter:

grad(2*x^2*y-x*z^3,[x,y,z])

We get:

[2*2*x*y-z^3,2*x^2,-x*3*z^2]

Indeed:

```
diff(2*x^2*y-x*z^3,x) returns 4*x*y-z^3
diff(2*x^2*y-x*z^3,y) returns 2*x^2
diff(2*x^2*y-x*z^3,z) returns -3*x*z^2
```

3.11.4 Hessian matrix: hessian

hessian has two parameters: an expression F depending on n real variables and a dimension n vector storing the name of these variables. hessian returns the Hessian of F which is the matrix of derivatives of degree two namely diff(diff(F, [x, y, z]), [x, y, z]).

We enter:

hessian($2*x^2*y-x*z$, [x, y, z])

We get:

[[4*y,4*x,-1],[2*2*x,0,0],[-1,0,0]]

Indeed:

```
diff(diff(2*x^2*y-x*z,x),[x,y,z]) returns [4*y,4x,-1]
diff(diff(2*x^2*y-x*z,y),[x,y,z]) returns [4x,0,0]
diff(diff(2*x^2*y-x*z,z),[x,y,z]) returns [-1,0,0]
```

Note:

To get the Hessian at critical points, we look for the critical points.

We enter:

```
solve(diff(2*x^2*y-x*z^3, [x, y, z]), [x, y, z])
```

We get:

[[0,y,0]]

Then, we calculate the Hessian at these points.

We enter:

subst([[4*y,4*x,-(3*z^2)],[2*2*x,0,0], [-(3*z^2),0,6*x*z]],[x,y,z],[0,y,0])

We get:

[[4*y,4*0,-(3*0^2)],[4*0,0,0],[-(3*0^2),0,6*0*0]]

and after simplification:

[[4*y,0,0],[0,0,0],[0,0,0]]

3.11.5 Laplacian: laplacian

laplacian has two parameters: an expression F depending on n real variables and a dimension n vector storing the name of these variables.

laplacian returns the laplacian of $F\left(\nabla^2(F) = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} + \frac{\partial^2 F}{\partial z^2} if n = 3\right)$.

Example

Determinate the laplacian of $F(x, y, z) = 2x^2y - xz^3$.

We enter:

We get:

4*y+-6*x*z

3.11.6 Potential: potential

potential has two arguments: a vector \vec{V} of \mathbb{R}^n depending on *n* variables and the vector storing the name of these variables.

potential returns a function U so that $\overline{grad}(U) = \vec{V}$ when possible. Then, we say that \vec{V} issues from (\rightarrow translation to be checked) the potential U. The general solution is the sum of a particular solution and a constant.

We know that a vector \vec{V} is a gradient if and only if its rotational curl is null:

in other words if curl (V) =0.

potential is the reciprocal function of derive.

We enter:

potential($[2*x*y+3,x^2-4*z,-4*y],[x,y,z]$)

We get:

```
2*y*x^2/2+3*x+(x^2-4*z-2*x^2/2)*y
```

3.11.7 Conservative vector field: vpotential

vpotential has two arguments: a vector \vec{V} of \mathbb{R}^n depending on *n* variables and the vector storing the name of these variables.

vpotential returns a vector \vec{U} such as $\overrightarrow{Rot}(\vec{U}) = \vec{V}$ when possible. Then, we say that \vec{V} is a conservative vector field or a solenoidal field.

The general solution is the sum of a particular solution and the gradient of an arbitrary function, the calculator returns the particular solution vector whose first component is null.

One knows that a vector \vec{V} is a rotational curl if and only if its divergence is null: in other words if divergence (V) =0.

In electromagnetism science, we have:

 $\vec{V} = \vec{B}$ = the magnetic field and

 $\vec{U} = \vec{A}$ = the potential vector.

vpotential is the reciprocal function of curl.

We enter:

vpotential([2*x*y+3,x^2-4*z,-2*y*z],[x,y,z])

$$[0, (-(2*y))*z*x, -x^3/3-(-(4*z))*x+3*y]$$

3.12 Integral

3.12.1 Primitive and definite integral: integrate

integrate (or int) allows to calculate a primitive or a definite integral.

We enter:

int(exp(x), x, 0, 1))

or

integrate(exp(x),x,0,1)

We get:

exp(1)-1)

We enter:

 $evalf(integrate(exp(x^2),x,0,1))$

Or we enter:

 $evalf(int(exp(x^2),x,0,1))$

We get:

1.46265174591

integrate (or int) has one, two or four arguments.

with an argument which is an expression of the variable x, (resp. a function).
 integrate (or int) then returns an expression which is a primitive of the expression according to the variable x (resp. returns a primitive function of the function supplied as argument)

We enter:

integrate(x^2)

We get:

x^3/3

We enter:

f(t):=t^2

g:=integrate(f)

We get:

(t)->t^3/3

 with two arguments which are: an expression and a variable, integrate (or int) then returns a primitive of the expression according to the variable supplied as second parameter. We enter: integrate(x^2)

We get:

x^3/3

We enter:

integrate(t^2,t)

We get:

t^3/3

 with four arguments which are: an expression, a variable and the boundaries of the definite integral, integrate (or int) then returns the value of the definite integral.

We enter:

 $integrate(x^2, x, 1, 2)$

We get:

7/3

We enter:

integrate(1/(sin(x)+2), x, 0, 2*pi)

We get after simplification (thanks to simplify):

2*pi*sqrt(3)/3

Exercise 1

Let

 $f(x) = \frac{x}{x^2 - 1} + \ln\left(\frac{x + 1}{x - 1}\right)$

Calculate a primitive of *f*.

We enter:

```
int(x/(x^2-1)+ln((x+1)/(x-1)))
```

We find:

 $x \log((x+1)/(x-1)) + \log(x^2-1) + 1/2 \log(2 x^2/2-1)$

Or else, we define the function *f* by entering:

```
f(x) := x/(x^2-1) + ln((x+1)/(x-1))
```

then we enter:

int(f(x))

We get, of course, the same result. **Warning!** In CAS, log is similar to ln (neperian logarithm), and log10 is the logarithm in basis 10.

Exercise 2

Calculate:

$$\int \frac{2}{x^6 + 2 \cdot x^4 + x^2} dx$$

We enter:

 $int(2/(x^{6+2}x^{4+x^{2}}))$

We find:

$$2*((3*x^2+2)/(-(2*(x^3+x)))+-3/2*atan(x))$$

Exercise 3

Calculate:

$$\int \frac{1}{\sin(x) + \sin(2 \cdot x)} dx$$

We enter:

integrate(1/(sin(x)+sin(2*x)))

We find:

 $(1/-3*\log((tan(x/2))^2-3)+1/12*\log((tan(x/2))^2))*2$

3.12.2 Integration by parts: ibpdv

ibpdv allows to look for a primitive (or to calculate a definite integral) of an expression of the form $u(x) \cdot v'(x)$.

ibpdv has two parameters for the primitives and five parameters for the integrals defined:

- either an expression of the form $u(x) \cdot v'(x)$ and v(x) (or a list of two expressions [F(x), u(x) * v(x)] and v(x)),
- either an expression of the form g(x) and 0 (or a list of two expressions [F(x), g(x)] and 0).
- for the defined integrals, three other parameters must be added: the name of the variable and the boundaries.

Value returned by ibpdv depending on its parameters:

- ibpdv(u(x).v'(x),v(x)) (resp. ibpdv([F(x),u(x).v'(x)],v(x))) returns: if $v(x) \neq 0$, a list formed of u(x).v(x) and -v(x).u'(x) (resp. a list formed of F(x) + u(x).v(x) and -v(x).u'(x)),
- ibpdv(g(x),0) (resp. ibpdv([F(x),g(x)],0)) returns: a primitive G(x) of g(x) (resp. F(x) + G(x)) where diff(G(x))=q(x).
- ibpdv(u(x)*v'(x),v(x),x,a,b) (resp. ibpdv([F(x),u(x)*v'(x)],v(x),x,a,b))
 returns:
- if $v(x) \neq 0$, a list formed of u(b).v(b) u(a).v(a) and -v(x).u'(x)(resp. a list formed of F(b) + u(b).v(b) - F(a) - u(a).v(a) and -v(x).u'(x)),
- if the second argument is null, ibpdv (g (x), 0, x, a, b) returns:
 G(b) G(a) where G(x) is a primitive of the first argument g(x)
 (resp. ibpdv ([F(x), g(x)], 0, x, a, b) returns F(x) + G(b) G(a) where G(x) is a primitive of g(x)).

We enter:

ibpdv(ln(x),x)

We get:

[x.ln(x),-1]

then we enter

ibpdv([x.ln(x),-1],0)

76

We get:

```
-x+x.ln(x)
```

We enter:

ibpdv(ln(x),x,x,1,2)

We get:

[2*ln(2),-1]

We enter:

ibpdv(ln(x),x,x,2,3)

We get:

[3*ln(3)-2*ln(2),-1]

then we enter:

ibpdv([3*ln(3)-2*ln(2),-1],0,x,2,3)

We get:

-1+3*ln(3)-2*ln(2)

3.12.3 Integration by parts: ibpu

ibpu allows to look for a primitive (or to calculate a definite integral) of an expression of the form u(x). v'(x).

ibpu has two parameters for the primitives and five parameters for the integrals defined:

- either an expression of the form u(x). v'(x) and u(x) (or a list of two expressions [F(x), u(x) * v'(x)] and u(x)),
- either an expression of the form g(x) and 0 (or a list of expressions [F(x), g(x)] and 0).
- for the defined integrals, three other parameters must be added: the name of the variable and the boundaries.

Value returned by ibpu according to its parameters:

- ibpu(u(x).v'(x),u(x)) (resp. ibpu([F(x),u(x).v'(x)],u(x))) returns: if $u(x) \neq 0$, a list formed of u(x).v(x) and -v(x).u'(x) (resp. a list formed of F(x) + u(x).v(x) and -v(x).u'(x)),
- ibpu(g(x),0) (resp. ibpu([F(x),g(x)],0)) returns:
- G(x) a primitive of g(x) (resp. F(x) + G(x) where diff(G(x)) = g(x)).- ibpu(u(x) *v'(x), u(x), x, a, b) (resp. ibpu([F(x), u(x) *v'(x)], u(x), x, a, b))
- ibpu(u(x)^v'(x), u(x), x, a, b) (resp. ibpu([F(x), u(x)^v'(x)], u(x), x, a, b)) returns:
- if $u(x) \neq 0$, a list formed of u(b).v(b) u(a).v(a) and -v(x).u'(x)(resp. a list formed of F(b) + u(b).v(b) - F(a) - u(a).v(a) and -v(x).u'(x)),
- if the second argument is null, ibpu(g(x), 0, x, a, b) returns: G(b) - G(a) where G(x) a primitive of g(x) (resp. F(x) + G(b) - G(a) where G(x) is a primitive of g(x)).

We enter:

ibpu(ln(x),ln(x))

then we enter:

```
ibpu([x.ln(x),-1],0)
```

We get:

-x+x.ln(x)

We enter:

```
ibpu(ln(x), ln(x), x, 2, 3)
```

We get:

[3*ln(3)-2*ln(2),-1]

then we enter:

ibpu([3*ln(3)-2*ln(2),-1],0,x,2,3)

We get:

-1+3*ln(3)-2*ln(2)

3.12.4 Evaluate a primitive: preval

 ${\tt preval}$ has three parameters: an expression F(x) depending on the variable x, and two expressions a and b.

preval does F(b)-F(a).

preval is useful to calculate a definite integral by a primitive: we calculate a primitive, then one evaluates this primitive between the two boundaries of the integral.

We enter:

 $preval(x^2+x, 2, 3)$

6

int(ln(x))

x + ln(x) - x

preval(x*ln(x)-x,2,3)

3*ln(3)-3-2*ln(2)+2

We get:		
We enter:		
We get:		
We enter:		
We get:		

78

3.13 Limits

3.13.1 Riemann sum: sum riemann

sum_riemann has two arguments: an expression Xpr depending on two variables and the list of names of these two variables.

sum_riemann(Xpr(n,k), [n,k]) returns an equivalent, in the vicinity of $n = +\infty$, of $\sum_{k=1}^{n} Xpr(n,k)$ or of $\sum_{k=0}^{n-1} Xpr(n,k)$ or of $\sum_{k=1}^{n-1} Xpr(n,k)$, when the sum considered is a Riemann sum associated to a function continuous on [0,1] or, when the search was unsuccessfull, returns

"This is probably not a Riemann sum" .(\rightarrow actual message to be checked) Let $S_n = \sum_{k=1}^n \frac{k^2}{n^3}$ Calculate $\lim_{n \to +\infty} S_n$

We enter:

sum riemann(k^2/n^3,[n,k])

We get:

1/3

because:

$$\sum_{k=1}^{n} \frac{k^2}{n^3} = \frac{1}{n} \sum_{k=1}^{n} \frac{k^2}{n^2}$$
$$\int_0^1 x^2 dx = \frac{1}{3}$$

is the Riemann sum associated to:

Let $S_n = \sum_{k=1}^n \frac{k^3}{n^4}$

Calculate $\lim_{n \to +\infty} S_n$

We enter:

sum_riemann(k^3/n^4,[n,k])

We get:

1/4

because:

$$\sum_{k=1}^{n} \frac{k^3}{n^4} = \frac{1}{n} \sum_{k=1}^{n} \frac{k^3}{n^3}$$

is the Riemann sum associated to:

$$\int_0^1 x^3 dx = \frac{1}{4}$$

Let

$$S_n = \sum_{k=1}^n \frac{32n^3}{16n^4 - k^4}$$

 $\underset{n \to +\infty}{\text{Lim}} S_n$

We enter:

We get:

because:

$$\sum_{k=1}^{n} \frac{32n^3}{16n^4 - k^4} = \sum_{k=1}^{n} \frac{32}{16 - \left(\frac{k}{n}\right)^4}$$

is the Riemann sum associated to:

$$\int_{0}^{1} \frac{32}{16 - x^{4}} dx = \int_{0}^{1} \frac{1}{x + 2} - \frac{1}{x - 2} \frac{4}{x^{2} + 4}$$

which then equals $\ln(3) - \ln(2) + \ln(2) - \ln(1) + 2 \operatorname{atan} (1/2) = \ln(3) + 2 \operatorname{atan} (1/2)$

Calculate

$$\lim_{n \to +\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right)$$

We enter:

We get:

because:

$$\sum_{k=1}^{n} \frac{1}{n+k} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \left(\frac{k}{n}\right)}$$

is the Riemann sum associated to:

$$\int_0^1 \frac{1}{1+x} dx = \ln(1+1) = \ln(2)$$

Calculate

$$\lim_{n \to +\infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right)$$

We enter:

We get:

pi/4

because:

$$\sum_{k=1}^{n} \frac{n}{n^2 - k^2} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \left(\frac{k}{n}\right)^2}$$

is the Riemann sum associated to:

$$\int_0^1 \frac{1}{1 - x^2} dx = \operatorname{atan}(1) = \frac{\pi}{4}$$

Calculate

$$\lim_{n \to +\infty} \left(\frac{1}{\sqrt{n^2 + 1^2}} + \frac{1}{\sqrt{n^2 + 21^2}} + \dots + \frac{1}{\sqrt{n^2 + n^2}} \right)$$

We enter:

We get:

because:

$$\sum_{k=1}^{n} \frac{n}{\sqrt{n^2 - k^2}} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \left(\frac{k}{n}\right)^2}}$$

is the Riemann sum associated to:

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx = \ln(1+\sqrt{1+1^2}) - \ln(0+\sqrt{1+0^2}) = \ln(1+\sqrt{2})$$

3.13.2 Series expansion: taylor

taylor has one to four parameters:

the expression to be developped, x=a (by default x=0), the order of development (by default 5), or: the expression to be developped, x, the order of development (by default 5) and the point in the vicinity of which we want the development (by default 0).

Note: we can also put x, a, n instead of x=a, n

 ${\tt taylor}$ returns a polynomial in x-a, plus a rest that the calculator writes:

(x-a) ^n*order_size(x-a)

This means that we have a series expansion at order n-1 (or at order p < n).

Indeed, ${\tt order_size}$ designates a function so that, regardless <code>r</code> positive:

x^r*order_size(x) tends to zero when x tends to zero.

For instance, the constant functions, the \log (or \ln) function, are order_size functions.

We enter:

$$taylor(sin(x), x=1, 2)$$

Or we enter (mind the order of arguments!):

```
\sin(1) + \cos(1) * (x-1) - (\sin(1)/2) * (x-1)^{2} + (x-1)^{3} \cdot \text{order}_{size}(x-1)
```

3.13.3 Division by increasing power order: divpc

divpc has three arguments: two polynomials A(x), B(x) (with $B(0) \neq 0$) and an integer n. divpc returns the quotient Q(x) of the division of A(x) by B(x) by increasing power order with degree(Q) $\leq n$ or Q = 0. Q(x) is then the series expansion order n of $\frac{A(x)}{B(x)}$ in the vicinity of x = 0.

We enter:

divpc
$$(1+x^2+x^3, 1+x^2, 5)$$

We get:

-x^5+x^3+1

Warning! This command does not work if the polynomials are written with the list of their coefficients.

3.14 Transform

3.14.1 Laplace transform: laplace

laplace has one, two or three arguments:

the expression to be transformed and eventually the name of one or two variables.

The expression is an expression of the current variable (here x) or the expression to be transformed is an expression of the supplied variable as second argument.

laplace is the Laplace transform of the expression supplied as argument .

The result of laplace is an expression of variable: the third argument, or by default the second argument, or by default x.

We enter:

laplace(sin(x))

We get:

1/(x^2+1)

Or we enter:

laplace(sin(t),t)

We get:

1/(t^2+1)

Or we enter:

laplace(sin(x),x,t)

We get:

1/(t^2+1)

Or we enter:

laplace(sin(t),t,s)

3.14.2 Laplace transform inverse: invlaplace

invlaplace (or ilaplace) has one, two or three arguments:

the expression to be transformed and eventually the name of one or two variables.

The expression is an expression of the current variable (here x) or the expression to be transformed is an expression of the supplied variable as second argument.

invlaplace is the inverse Laplace transform of the expression supplied as argument. The result of invlaplace is an expression of variable: the third argument, or by default the second argument, or by default x.

We enter:

 $invlaplace(1/(x^{2}+1))$

We get:

sin(x)

Or we enter:

 $invlaplace(1/(t^2+1),t)$

We get:

sin(t)

Or we enter:

```
invlaplace(1/(t^2+1),t,x)
```

sin(x)

We get:

Note:

We use the Laplace transform (laplace) and the inverse Laplace transform (ilaplace or invlaplace) to solve differential equations linear at constant coefficients, for example:

$$y'' + p.y' + q.y = f(x)$$

 $y(0) = a y'(0) = b$

By noting \mathcal{L} the Laplace transform, we have the following relations:

$$\mathcal{L}(y)(x) = \int_0^{+\infty} e^{-x \cdot u} y(u) du$$
$$\mathcal{L}^{-1}(g)(x) = \frac{1}{2i\pi} \int_{\mathcal{C}} e^{z \cdot x} g(z) dz$$

where C is a closed curve containing the poles of q.

Example:

 $y'' - 6.y' + 9.y = x.e^{3.x}, \quad y(0) = c_0, \quad y'(0) = c_1$ Here, p = -6, q = 9.

We enter:

laplace(x*exp(3*x))

84

We get:

 $1/(x^{2}-6*x+9)$

We enter:

ilaplace((1/(
$$x^2-6*x+9$$
)+($x-6$)*c_0+c_1)/($x^2-6*x+9$))

We get

```
(216*x^3-3888*x*c_0+1296*x*c_1+1296*c_0)*exp(3*x)/1296
```

after simplification and factorization (command factor) the solution reads:

(-18*c 0*x+6*c 0+x^3+6*x*c 1)*exp(3*x)/6

One can, of course, press directly:

desolve (y'' - 6*y' + 9*y = x*exp(3*x), y)

We get:

3.14.3 Fast Fourier transform: fft

fft takes as argument a list (or a sequence) $[a_0, .., a_{N-1}]$ where N is a power of two. fft returns the list $[b_0, .., b_{N-1}]$ such as for k=0..N-1 such as: fft([a0, ..aN-1])[k]

$$= bk = \sum_{j=0}^{N-1} x_j \omega_N^{-k,j}$$

with ω_N N-th root of the unity.

We enter:

We get:

Note: we can also work on a field $\mathbb{Z}/p\mathbb{Z}$, by giving an N-th primitive root of unity as second argument and p as third argument of fft.

3.14.4 inverse of the fast Fourier transform: ifft

ifft takes as argument a list or a sequence $[b_0, .., b_{N-1}]$ where N is a power of two. ifft returns the list $[a_0, .., a_{N-1}]$ such as: fft $([a_0, .., a_{N-1}]) = [b_0, .., b_{N-1}]$.

We enter:

ifft([2,-1-i,0,-1+i])

Or we enter:

ifft(2,-1-i,0,-1+i)

Note: we can also work on a field $\mathbb{Z}/p\mathbb{Z}$, by giving an N-th primitive root of unity as second argument and p as third argument of iff.

Chapter 4 Menu Solve

4.1 Solve equations: solve

solve allows to solve an equation or a set of polynomial equations. solve takes one or two arguments which are an expression xpr in x or an expression xpr of a variable var and the name of this variable var. solve solves xpr = 0, the unknown value being x or var

Warning! The second variable can specify an interval, for example x = a..b, to only have the solutions in the interval [a; b] but in this case the solutions will be numerical and solve is then similar to fsolve, for example:

solve(t^2-2,t=0..2) or fsolve(t^2-2,t=0..2) returns [1.41421356237]
whereas solve(t^2-2,t) returns [-(sqrt(2)),sqrt(2)].

We enter:

 $solve(x^{2}-3*x+2=0)$

We get:

{1**,**2}

We enter:

solve $(x^4-1=0)$

We get:

{-sqrt(2), sqrt(2)}

We enter:

solve([x+y=3, x*y=2], [x,y])

Or we enter:

solve({x+y=3, x*y=2}, {x, y})

We get:

{[1,2],[2,1]}

We enter:

```
solve([-x^2+y=2,x^2+y=0],[x,y])
```

Or we enter:

solve({-x^2+y=2,x^2+y=0}, {x,y})

4.2 Zeros of an expression: zeros

zeros takes as parameter an expression.

zeros returns the list of elements which cause the expression to vanish.

Depending on the chosen mode, if we are in real mode (complex_mode:=0 or if i is not checked in the CAS Settings) the zero will be real and if we are in complex mode (complex_mode:=1 or if i is checked in the CAS Settings)) the zero will be complex.

We enter:	
	zeros(x^2-3*x+2)
We get:	
	[2,1]
We enter:	
	zeros(x^4-1)
We get:	
	[1,-1]
We enter:	
	zeros([x+y-3,x*y-2],[x,y])
Or we enter:	
	zeros({x+y-3,x*y-2},{x,y})
We get:	
	[[1,2],[2,1]]
We enter:	
	zeros([-x^2+y-2,x^2+y],[x,y])
Or we enter:	
	<pre>zeros({-x^2+y-2,x^2+y}, {x,y})</pre>
We get:	

4.3 Complex Zeros of an expression: cZeros

cZeros takes as parameter an expression.

 $\tt cZeros$ returns the list of complex elements which make the expression equals zero. Note:

Difference between zeros and cZeros: in complex mode, zeros returns the same result as cZeros (as far as cZeros is concerned, being in complex mode or real mode does not matter much). Thus, if we do not want that the result depends on the mode, it is better to use cZeros to get the complex solutions.

[]

We enter in real or complex mode:

	cZeros(x^2+4)
We get:	[-2*i,2*i]
We enter:	
	cZeros(ln(x) $^{2-2}$)
We get:	[exp(sqrt(2)),exp(-(sqrt(2)))]
We enter:	cZeros(ln(y)^2-2,y)
We get:	
	[exp(sqrt(2)),exp(-(sqrt(2)))]
We enter:	cZeros(x*(exp(x))^2-2*x-2*(exp(x))^2+4)
We get:	

4.4 Solve equations in C: cSolve csolve

 $\tt cSolve$ or $\tt csolve$ solves an equation or a set of polynomial equations in ${\mathbb C}$ without needing to be in complex mode.

[[log(sqrt(2)),log(-sqrt(2)),2]]

Note:

Difference between solve and csolve: in complex mode solve returns the same result as csolve (as far as csolve is concerned, being in complex mode or real mode does not matter much). Thus, if we do not want that the result depends on the mode, for it is better to use csolve to get the complex solutions.

We enter in real or complex mode:

 $cSolve(x^4-1=3)$

or

 $csolve(x^4-1=3)$

We get:

[sqrt(2),-sqrt(2),sqrt(2)*i,-sqrt(2)*i]

We enter:

cSolve([-x^2+y=2,x^2+y=0],[x,y])

Or we enter:

cSolve({-x^2+y=2,x^2+y=0}, {x,y})

We get:

4.5 Complex zeros of an expression: cZeros

cZeros takes as parameter an expression.

 $\tt cZeros$ returns the list of complex elements which make the expression equals zero.

Note:

Difference between zeros and cZeros: in complex mode zeros returns the same result as cZeros (as far as cZeros is concerned, being in complex mode or real mode does not matter much). Thus, if we do not want that the result depends on the mode, it is better to use cZeros to get the complex solutions.

We enter in real or complex mode:

```
cZeros(x^4-1)
```

We get:

[1,-1,-i,i]

We enter:

cZeros([-x^2+y-2,x^2+y],[x,y])

Or we enter:

```
cZeros({-x^2+y-2,x^2+y},{x,y})
```

We get:

4.6 Differential equations

For the numerical calculation of solutions of differential equations please refer to <code>odesolve</code> and for the graphical representation of solutions of differential equations please refer to <code>plotfield</code>, <code>plotode</code>.

4.6.1 Solve differential equations: deSolve desolve

deSolve or desolve allows to solve:

- the linear differential equations with constant coefficients of order one or order two,
- the linear differential equations of order one,
- the differential equations of order one incomplete in *y*,
- the differential equations of order one incomplete in x,
- the differential equations of order one of separate variables,
- the differential equations of order one homogeneous (y' = F(y/x)),
- the differential equations of order one having an integrating (→ translation to be checked) factor,
- the differential equations of Bernoulli $(a(x)y' + b(x)y = c(x)y^n)$,
- the differential equations of Clairaut (y = x * y' + f(y')).

Parameters of desolve:

 when the differential equation is of order one, the variable is x and the unknown value is y, the parameters are: the differential equation or

the differential equation followed by the list $[x_0, y_0]$ which sets as initial condition $y(x_0) = y_0$.

- when the variable is x, the parameters are: the differential equation (or the list formed by the differential equation and the initial conditions) and the unknown y.
 In the differential equation y reads y, y' reads y', y" reads y", because we derivate according to the variable x. For instance: desolve (y' + 2*y' + y, y) and desolve ([y' + 2*y' + y, y(0) = 1, y' (0) = 0], y).
- when the variable is not x (for example t), the parameters are: the differential equation (or the list formed by the differential equation and the initial conditions), the variable t and the unknown y or the unknown y(t) (the variable is then t and the unknown is y). In the differential equation y reads y(t) and y' reads diff(y(t),t), y" reads diff(y(t),t\$2). For instance: desolve(diff(y(t),t\$2)+2*diff(y(t),t)+y(t),y(t)); or desolve(diff(y(t),t\$2)+2*diff(y(t),t)+y(t),t,y); and desolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t), y(0)=1,y'(0)=0],y(t)); or desolve([diff(y(t),t\$2)+2*diff(y(t),t)+y(t), y(0)=1,y'(0)=0],t,y);

We enter (by pressing Shift-() for "):

deSolve(y''+y=cos(x),y)
or else:
deSolve((diff(diff(y))+y)=(cos(x)),y)
We find:

 $\label{eq:G_0*cos(x)+(x+2*G_1)/2*sin(x)} c_0, c_1 \text{ are the integration constants: } y(0)=c_0 \text{ and } y'(0)=c_1.$

We enter, if we want the solutions that make y(0) = 1:

deSolve($[y''+y=\cos(x), y(0)=1], y$)

We get

 $[\cos(x) + (x+2*c 1)/2*\sin(x)]$

the components of this vector are solutions (here we have one single component because we get one single solution depending on the constant $_{\rm c}$ _1).

Exercise

Find the differentiable functions f which make:

f'(x) = f(-x).

The function f' is then differentiable and we have:

$$f''(x) = -f'(-x) = -f(x).$$

f then makes the differential equation y'' + y = 0 which is easy to integrate. So *f* is solution of the differential equation: y'' + y = 0.

We enter:

desolve(y''+y=0)

We get:

$$c 0 cos(x) + c 1 cos(x)$$

So f (x) is of the form $c_0 cos(x) + c_1 sin(x)$

Let us look for the values of c 0 and c 1 to get f' (x) - f (-x) = 0 for all the values of x.

We enter:

$$f(x) := c_0 * cos(x) + c_1 * sin(x)$$

factor(f'(x)-f(-x))

We get:

$$(-\sin(x) - \cos(x)) * (c_0 - c_1)$$

So c 0=c 1

So the differentiable functions f which make f'(x) = f(-x) are the functions equal to: c * (cos(x) + sin(x)) where c is an arbitrary constant. Or $f(x) = k \cos(x - \pi/4)$ where k is an arbitrary constant.

We check by entering:

$$(\cos(x) + \sin(x))' - (\cos(-x) + \sin(-x))$$

or by entering

cos(x-pi/4)'-cos(-x-pi/4)

We get

0

Similar exercise

Find the differentiable functions *f* of \mathbb{R}^+ in \mathbb{R} which make:

f'(x) = f(1/x).

The function f' of $\mathbb{R}^* *$ in \mathbb{R} is then differentiable and we have:

 $f''(x) = -f'(1/x)/x^2 = -f(x)/x^2$

So f then makes the differential equation $x^2y'' + y = 0$ which is more difficult to integrate.

We enter:

```
factor (desolve (x^2*y''+y=0))
```

We get:

```
sqrt(x)*(c 0*cos(2*sqrt(3)*ln(x)/4)+c 1*sin(2*sqrt(3)*ln(x)/4))
```

Let us look for the values of c_0 and c_1 so that f makes: f'(x) - f(1/x) = 0 for all the values of x. We enter:

$$f(x) := sqrt(x) * (c \ 0 * cos(sqrt(3) * ln(x) / 2) + c \ 1 * sin(sqrt(3) * ln(x) / 2))$$

factor(f'(x)-f(1/x))

We get:

```
sqrt(x)*(cos(sqrt(3)*ln(x)/2)+sqrt(3)*sin(sqrt(3)*ln(x)/2))*(-c 0-(-
                             (sqrt(3)))
```

So (-c 0-(-(sqrt(3)))*c 1)=0 **that is to say -**c 0=c 1*sqrt(3). So the differentiable functions \overline{f} which make $f'(x) = \overline{f(1/x)}$ are the functions equal to: $c * (\sqrt{3}\cos(x) + \sin(x))$ where c is an arbitrary constat.

We check by entering:

```
f(x) := sqrt(x) * (sqrt(3) * cos(sqrt(3) * ln(x)/2) + sin(sqrt(3) * ln(x)/2))
```

Then, simplify (f'(x) - f(1/x)) returns 0.

To do the integration by hand, we consider t = ln(x) *i.e.* $x = e^t$. We have:

 $y'_x = y'_t/x$ and $y''_x = y''_t/x^2 - y'_t/x^2 = 1/x^2(y''_t - y'_t)$ So $g(t) = f(e^t)$ checks the differential equation: $y''_{t^2} - y'_t + y = 0$ whose characteristic equation is $r^2 - r + 1 = 0$. Thus g

$$-y'_t + y = 0$$
 whose characteristic equation is $r^2 - r + 1 = 0$. Thus $g(t) = f(e^t)$ is of the form:
 $t \left(\sqrt{3} \ln(x) \right) = \sqrt{3} \ln(x)$

$$e^{\frac{t}{2}}\left(a\cos\left(\frac{\sqrt{3}\ln(x)}{2}\right)+b\sin\left(\frac{\sqrt{3}\ln(x)}{2}\right)\right)$$

i.e. f(x) is of the form:

$$f(x) = e^{\frac{\ln(x)}{2}} \left(a \cos\left(\frac{\sqrt{3}\ln(x)}{2}\right) + b \sin\left(\frac{\sqrt{3}\ln(x)}{2}\right) \right)$$

Let us look for the values of *a* and *b* to get: f'(x) = f(1/x).

$$f'(x) = e^{\frac{\ln(x)}{2}} \frac{\left(a\left(-\sqrt{3}\sin\left(\frac{\sqrt{3}\ln(x)}{2}\right) + \cos\left(\frac{\sqrt{3}\ln(x)}{2}\right)\right) + b\left(\sin\left(\frac{\sqrt{3}\ln(x)}{2}\right) + \sqrt{3}\cos\left(\frac{\sqrt{3}\ln(x)}{2}\right)\right)\right)}{2x}$$

and

f'(x) - f(1/x) = 0 causes:

 $(-a + b\sqrt{3}) = 0$ then $a = b\sqrt{3}$.

If we look for the differentiable functions f of \mathbb{R}^* in \mathbb{R} which makes:

f'(x) = f(1/x).

You must consider for x < 0: $x = -\exp(t)$.

We get the same differential equation but the relation y'(x) = y(1/x) gives as condition

 $c1 = -c_0\sqrt{3}.$

Then, we consider:

```
f(x) :=exp(ln(abs(x))/2)*(sqrt(3)*cos(sqrt(3)/2*ln(abs(x)))+sin(sqrt(3)/2*ln(abs(x))))
g(x) :=exp(ln(abs(x))/2)*(cos(sqrt(3)/2*ln(abs(x)))-
sqrt(3)*sin(sqrt(3)/2*ln(abs(x))))
Then:
h(x) :=ifte(x>0,f(x),g(x))
k(x) :=ifte(x>0,f'(x),g'(x))
```

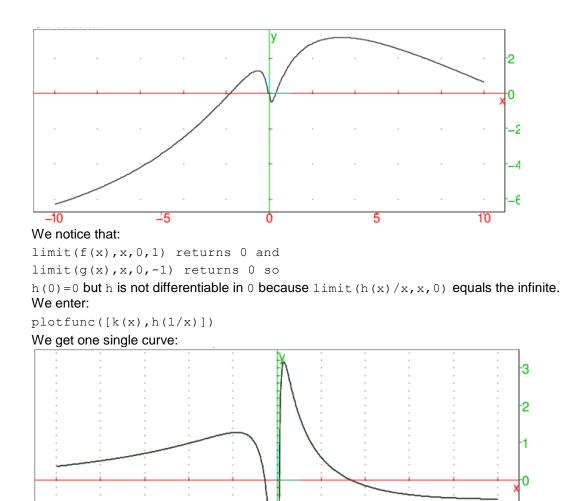
because if we enter k(x) := h'(x) we have as a result:

ifte: impossible to perform the test Error: Incorrect Argument Value.

or we enter:

h(x) := when (x>0, f(x), g(x)) and k(x) := h'(x) because ifte performs the test, but not when, or the expression is evaluated to derivate. The functions c*h(x) where c is an arbitrary constant make c*h'(x) = c*k(x) = c*h(1/x)We enter:

plotfunc(h(x))



4.6.2 Laplace transform and inverse Laplace transform: /laplace ilaplace invlaplace

5

laplace and ilaplace (or invlaplace) have one, two or three arguments:

the expression to be transformed and eventually the name of two variables.

-'5

-10

The expression is an expression of the current variable (here x) or the expression that we transform is an expression of the supplied variable as second argument.

laplace is the Laplace transform of the expression supplied as argument and ilaplace (or invlaplace) is the inverse Laplace transform of the expression supplied as argument. The result of laplace and ilaplace (or invlaplace) is an expression of variable the third argument, or by default the second argument, or by default x.

Warning! The second argument is the name of the variable of the first argument and is also the name of the variable of the result when there is no third argument, by example: laplace(sin(x),t) returns sin(x)/t

We use the Laplace transform (laplace) and the Laplace inverse transform (ilaplace or invlaplace) to solve linear differential equations at constant coefficients, for example:

$$y'' + p.y0 + q.y = f(x)$$

 $y(0) = a y'(0) = b$

By noting \mathcal{L} the Laplace transform, we have the following relations:

$$\mathcal{L}(y)(x) = \int_0^{+\infty} e^{-x \cdot u} y(u) du$$

-1

10

where *C* is a closed curve containing the poles of g. laplace:

We enter:

here we do not specify the variable, then the expression to be transformed (here sin(x)) is an expression of the current variable (here x) and the transform will also be a function of the variable x.

We get:

1/(x^2+1)

Or we enter:

```
laplace(sin(t),t)
```

here we specify the name of the variable of the function to be transformed (here t) and this name of variable will be used for the Laplace transform.

We get:

1/(t^2+1)

Or we enter:

```
laplace(sin(t),t,s)
```

here we specify the name of the variable of the function to be transformed (here t) and the name of the variable that the we wish to get for the Laplace transform (here s).

We get:

1/(s^2+1)

ilaplace or invlaplace: We enter:

 $ilaplace(1/(x^2+1))$

We get:

sin(x)

We enter:

 $ilaplace(1/(t^2+1),t)$

We get:

sin(t)

We enter:

 $ilaplace(1/(t^2+1),t,x)$

We get:

sin(x)

We use the following properties:

$$\mathcal{L}(y')(x) = -y(0) + x.\mathcal{L}(y)(x)$$

$$\mathcal{L}(y'')(x) = -y'(0) + x.\mathcal{L}(y0)(x)$$

$$= -y'(0) - x.y(0) + x^{2}.\mathcal{L}(y)(x)$$

We have then if $y''(x) + p.y'(x) + q.y(x) = f(x)$:

$$\mathcal{L}(f)(x) = \mathcal{L}(y'' + p.y' + q.y)(x)$$

$$= -y'(0) - x.y(0) + x^{2}.\mathcal{L}(y)(x) - p.y(0) + p.x.\mathcal{L}(y)(x)) + q.\mathcal{L}(y)(x)$$

$$= (x^{2} + p.x + q).\mathcal{L}(y)(x) - y'(0) - (x + p).y(0)$$

soit, if $a = y(0)$ and $b = y'(0)$:

$$\mathcal{L}(f)(x) = (x^{2} + p.x + q).\mathcal{L}(y)(x) - (x + p).a - b$$

The solution is then:

$$y(x) = \mathcal{L}^{-1}((\mathcal{L}(f)(x) + (x + p).a + b)/(x^2 + p.x + q))$$

Example:

Solve:

 $y'' - 6.y' + 9.y = x.e^3.x$, $y(0) = c_0, y'(0) = c_1$ Here, p = -6, q = 9.

We enter:

```
laplace(x*exp(3*x))
```

We get:

```
1/(x^{2}-6*x+9)
```

We enter:

$$ilaplace((1/(x^2-6*x+9)+(x-6)*c 0+c 1)/(x^2-6*x+9))$$

We get

```
(216*x^3-3888*x*c_0+1296*x*c_1+1296*c_0)*exp(3*x)/1296
```

after simplification and factorization (command factor) the solution reads:

(-18*c_0*x+6*c_0+x^3+6*x*c_1)*exp(3*x)/6

We can, of course, press directly:

```
desolve (y'' - 6*y' + 9*y = x*exp(3*x), y)
```

We get:

```
exp(3*x)*(-18*c 0*x+6*c 0+x^3+6*x*c 1)/6
```

4.7 Approximate solution of y' = f(t, y): odesolve

Be f a function of $\mathbb{R}^2 y' = f(t, y)$ in \mathbb{R} . odesolve returns the approximate value $y(t_1)$ of the solution of the differential equation y' = f(t, y)when $y(t_0) = y_0$. odesolve takes as parameters:

-odesolve(f(t,y),[t,y],[t0,y0],t1) or odesolve(f(t,y),t=t0..t1,y,y0) Or odesolve(t0..t1,f,y0) or odesolve(t0..t1,(t,y)->f(t,y),y0) returns the approximate value of $y(t_1)$ when y(t) is the solution of y'(t) = f(t, y(t)) which checks $y(t_0) = y_0.$ - We can add an optional parameter for tell the wished discretization in time (tstep=value). This value is not necessarily respected by the solver. - We can add curve as optional parameter to get the list of [t, [y(t)]] calculated instead of the only value of $y(t_1)$. We enter: odesolve(sin(t*y),[t,y],[0,1],2) or: odesolve(sin(t*y), t=0..2, y, 1) or: odesolve(0..2,(t,y)->sin(t*y),1) or else we define the function: f(t, y) := sin(t*y)and we enter: odesolve(0..2, f, 1)We get: [1.82241255674] then we enter: odesolve(0..2,f,1,tstep=0.3) We get: [1.82241255675] We enter: odesolve (sin(t*y), t=0..2, y, 1, tstep=0.5)We get: [1.82241255675] We enter: odesolve(sin(t*y),t=0..2,y,1,tstep=0.5,curve) We get: [[0.0,[1.0]],[0.3906,[1.07811817892]],[0.760963058921,[1.30972370161]], [1.07086790074, [1.60476137064]], [1.39334557444, [1.86417104883]], [1.78645581533, [1.90374891395]], [2.0, [1.82241253071]]] We enter:

odesolve(sin(t*y),t=0..2,y,1,curve)

Or we enter:

odesolve(sin(t*y),t=0..2,y,1,tstep=0.3,curve)

We get:

```
[[0.0,[1.0]],[0.3781,[1.07309655677]],[0.6781,[1.24392692452]],
[0.9781,[1.51224777765]],[1.2781,[1.7904830809]],[1.5781,[1.92164503333]],
[1.8781,[1.87481063533]],[2.0,[1.82241255617]]]
```

4.8 z transform and z inverse transform

4.8.1 z transform of a series: ztrans

ztrans has one or three arguments:

- a sequence supplied by its general term a_x : the used variable to define the general term is x and x will also be the name of the used variable in the function returned by ztrans

- a sequence supplied by its general term a_n , the name of the used variable to define this general term (here n) and the name of the used variable in the function returned by ztrans (for example z). ztrans returns the z transform of the series supplied as argument.

We have by definition: if f(x) = ztrans(ax) we have

if f(z) = z trans(an, n, z) we have

$$f(x) = \sum_{n=0}^{\infty} \frac{a_n}{x^n}$$
$$f(z) = \sum_{n=0}^{\infty} \frac{a_n}{z^n}$$

We enter:

ztrans(1)

We get:

x/(x-1)

We have indeed:

$$\sum_{n=0}^{\infty} \frac{1}{x^n} = \frac{1}{1 - \frac{1}{x}} = \frac{x}{x - 1}$$

We enter:

ztrans(1, n, z)

We get:

We have indeed:

$$1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \dots = \sum_{n=0}^{\infty} \frac{1}{z^n} = \frac{1}{1 - \frac{1}{z}} = \frac{z}{z - 1}$$

98

We enter:

We get:

 $x/(x^2-2*x+1)$

We enter:

ztrans(n,n,z)

We get:

 $z/(z^2-2*z+1)$

We have indeed:

$$\frac{1}{z-1} = \sum_{n=1}^{\infty} \frac{n}{z^{n-1}}$$
$$\frac{1}{(z-1)^2} = -\left(\frac{1}{z-1}\right)' = \sum_{n=1}^{\infty} \frac{n}{z^{n-1}}$$

Thus

$$\frac{z}{(z-1)^2} = \sum_{n=1}^{\infty} \frac{n}{z^n}$$

4.8.2 z transform inverse of a rational fraction: invztrans

invztrans has one or three arguments:

- a rational fraction supplied by its expression by using the variable x and x will also be the name of the used variable in the function returned by ztrans,
- three arguments: a rational fraction supplied by its expression, the name of the used variable to define this expression (for example the variable z), and the name of the used variable in the function returned by invztrans (for example n).

invztrans returns the z inverse transform of the rational fraction supplied as argument.

We have by definition: if $invztrans(R_x) = ax$ we have

if $a_n = invztrans(R_z, z, n)$ we have

$$R_z = \sum_{n=0}^{\infty} \frac{a_n}{z^n}$$

 $R_x = \sum_{n=0}^{\infty} \frac{a_n}{x^n}$

We enter:

invztrans(x/(x-1))

We get:

1

We enter:

We get:

We have indeed:

$$\frac{z}{z-1} = \frac{1}{1-\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \dots = \sum_{n=0}^{\infty} \frac{1}{z^n}$$

We enter:

 $invztrans(x/(x-1)^2)$

Х

We get:

We enter:

```
invztrans(z/(z-1)^2, z, n)
```

We get:

n

4.9 Solve numerical equations: nSolve

nSolve allows to solve numerically non polynomial equations: f(x) = 0 for $x \in]a, b[$. The parameters of nSsolve are f(x) = 0, x = x0 where x0 is a point of]a, b[.

We enter:

 $nSolve(x^{2}-2=0, x=1)$

We get:

1.41421356237

We enter:

 $nSolvex^2-2=0, x=-1)$

We get:

-1.41421356237

4.10 Solve equations with fsolve

fsolve allows to solve numerically non polynomial equations: f(x) = 0 for $x \in]a, b[$. fsolve takes as arguments f(x) = 0 and x = a..b or f(x) = 0, x and a..b.

We enter:

fsolve(sin(x)=0, x=0..10)

100

Or we enter:

We get:

[0.0,3.14159265359,6.28318530718,9.42477796077]

We can add as last argument the value of the sample by specifying the value of xstep or the value of nstep (step of the interval]a, b[).

We enter:

fsolve(sin(x)=0, x=0..10, xstep=1)

We get:

[0.0,3.14159265359,6.28318530718,9.42477796077]

We enter:

fsolve(sin(x)=0, x=0..10, nstep=10)

We get:

[0.0,3.14159265359,6.28318530718,9.42477796077]

4.11 Linear systems

4.11.1 Solve a linear system: linsolve

linsolve allows to solve a linear equations system where each equation is of the form Xpr = 0 where Xpr is an expression.

linsolve takes as parameters the list of equations and the list of variables.

linsolve returns a list which is a solution of the equations system.

linsolve allows to solve also a linear equations system in $\mathbb{Z}/n\mathbb{Z}$.

We enter:

We get:

SO

$$x = -\frac{1}{2}, y = \frac{5}{2}, z = -\frac{1}{2}$$

$$\begin{cases} 2x + y + z = 1 \\ x + y + 2z = 1 \\ x + 2y + z = 4 \end{cases}$$

is the solution of the linear system:

4.11.2 Gauss reduction of a matrix: ref

ref allows to solve a linear equations system that we write under matrix form:

The parameter of ref is the "expanded matrix" of the system (the one formed by the matrix A of the system and having as last column vector the second member B). The result is a matrix [A1, B1]: A1 has two zeros below its diagonal and the solutions of:

A1*X=B1

are the same as those of:

A*X=B

ref may work in $\mathbb{Z} / p \mathbb{Z}$. For instance, be the system in \mathbb{R} and in $\mathbb{Z} / 5 \mathbb{Z}$ to be solved:

$$\begin{cases} 3x + y = -2\\ 3x + 2y = 2 \end{cases}$$

To solve the system in \mathbb{R} , we enter:

```
ref([[3,1,-2],[3,2,2]])
```

We get:

```
[[1,1/3,-2/3],[0,1,4]]
```

so this means:

y = 4 and x = -2 are solutions of the system. To solve the system in $\mathbb{Z}/5\mathbb{Z}$, we enter:

We get:

[[1 % 5,2 % 5,1 % 5],[0 % 5,1 % 5,-1 % 5]]

so this means:

y = -1%5 and x = 3%5 are solutions of the system.

Note:

When the number of columns equals the number of lines +1 ref does not divide by the pivot of the last column, for example, we enter:

ref([[1,1,0,0,-a1],[0,1,1,0,-a2],[0,0,1,1,-a3],[1,0,0,1,-a4]])

We get:

```
[[1,1,0,0,-a1],[0,1,1,0,-a2],[0,0,1,1,-a3],[0,0,0,0,a1-a2+a3-a4]]
```

So one learns that if a1-a2+a3-a4 is not null, there is no solution.

4.12 Quadratic forms

4.12.1 Matrix of a quadratic form: q2a

 q_{2a} has two arguments: a quadratic form q and the vector whose components the used variables. q_{2a} returns the matrix A associated to q.

We enter:

q2a(2*x*y, [x,y])

[[0,1],[1,0]]

4.12.2 Transform a matrix in a quadratic form: a2q

a2q has two arguments: a symmetric matrix A representing a quadratic form q and the vector whose components are the used variables. a2q returns the quadratic form q.

We enter:

```
a2q([[0,1],[1,0]],[x,y])
```

We get:

2*x*y

We enter:

a2q([[1,2],[2,4]],[x,y])

We get:

x^2+4*x*y+4*y^2

4.12.3 Gauss method: gauss

gauss has two arguments: a quadratic form q and the vector whose components are the used variables.

gauss returns the writting of q under the form of a sum and difference of squares.

We enter:

gauss(2*x*y,[x,y])

We get:

 $(y+x)^{2/2}+(-(y-x)^{2})/2$

4.12.4 Gramschmidt process: gramschmidt

gramschmidt has one or two parameters:

- a matrix seen as a list of row vectors, the dot product of being the canonical scalar product, or
- a vector containing the basis of a vector subspace and a function which defines a scalar product.

gramschmidt gives a orthonormal basis according to this scalar product.

We enter:

normal(gramschmidt([[1,1,1],[0,0,1],[0,1,0]]))

Or we enter:

normal(gramschmidt([[1,1,1],[0,0,1],[0,1,0]],dot))

We get:

[[(sqrt(3))/3,(sqrt(3))/3,(sqrt(3))/3],

[(-(sqrt(6)))/6,(-(sqrt(6)))/6,(sqrt(6))/3],

Example

For the polynomials of degree < n, we consider the dot product defined by:

$$P.Q = \int_{-1}^{1} P(x).Q(x)dx$$

We enter:

```
gramschmidt([1,1+x], (p,q) ->integrate(p*q,x,-1,1))
```

Or we write the function ${\tt p}$ ${\tt scal}$, we enter:

p_scal(p,q):=integrate(p*q,x,-1,1)

and we enter:

gramschmidt([1,1+x],p scal)

We get:

[1/(sqrt(2)), (1+x-1)/sqrt(2/3)]

4.13 Conics

4.13.1 Plot of a conic: conic

conic takes as argument the expression of a conic. conic plots the conic having for equation the argument equals zero.

We enter:

 $conic(2*x^{2}+2*x*y+2*y^{2}+6*x)$

We get:

the plot of the ellipse of center -2+i and equation $2^{*}x^{*}2^{+}2^{*}x^{*}y^{+}2^{*}y^{*}2^{+}6^{*}x^{=}0$

Note:

Use reduced conic to get the parametric equation of the conic.

4.13.2 Reduction of a conic: reduced conic

reduced_conic takes one or two arguments: the expression of a conic and the vector whose components are the used variables if it is different from [x, y].

reduced_conic returns a list of elements:

- the origin of the conic,
- the matrix of a basis in which the conic is reduced,
- 0 or 1 to tell whether the conic is degenerate or not,
- the reduced equation of the conic in this basis,
- a vector containing its parametric equation or its parametrics equations when the conic is multi-napped.

We enter:

104

((i)*sqrt(42)*sin(t))/6),t,0,2*pi,(2*pi)/60]]]

The conic is not degenerate and its reduced equation is:

$$3x^2 + y^2 - \frac{7}{6} = 0$$

in the origin basis -5/3 + 5 * i/6 and with axis parallel to vectors (-1, 1) and (-1, -1). Its parametric equation is:

$$-\frac{10+5*i}{6} + \frac{1+i}{\sqrt{2}} * \frac{\sqrt{14}*\cos(t)+i*\sqrt{42}*\sin(t)}{6}$$

and for the plot, the parameter t varies from 0 to 2π by step tstep= $2\pi/60$. Note:

When the conic is degenerate in one or two line(s), each line is not supplied by its parametric equation but by the list constituted by a vector normal to the line and a point of the line.

We enter:

reduced conic($x^2-y^2+3*x+y+2$)

We get:

We get:

(2*sqrt(5*23297^2*126757^*21302293^2))/62906903119301897

That is to say:

2*sqrt(5)

We enter:

H1:=projection(D1,M)

length(M,F1)/length(M,H1)

We get:

(2^14*3*13*17*89*311*521*563*769*2609* sqrt(2*3*49409^2*112249^2*126757^2* 21302293^2*568000439^2*6789838247809^2))/ (2^14*3^2*13*17*89*311*521*563*769* 2609*49409*112249*126757*21302293*568000439*6789838247809) That is to say:

(sqrt(6))/3

Chapter 5 Menu Rewrite

5.1 Collect the logarithms: lncollect

lncollect takes as argument an expression containing logarithms. lncollect collects the terms in logarithms. It is better to use it on a factorized expression (by using factor).

We enter:

lncollect(ln(x+1)+ln(x-1))

We get:

ln((x+1)*(x-1))

We enter:

lncollect(exp(ln(x+1)+ln(x-1)))

We get:

(x+1) * (x-1)

5.2 Expand the logarithms: lnexpand

lnexpand takes as argument an expression containing logarithms. lnexpand expands this expression.

We enter:

 $lnexpand(ln(3*x^2)+ln(2*x+2))$

We get:

 $\ln(3) + 2 \cdot \ln(x) + \ln(2) + \ln(x+1)$

5.3 Linearize the exponentials: lin

lin takes as argument an expression containing exponentials. lin linearizes this expression (rewrites it according to exp(n.x)). **Examples**

We enter:

 $lin(sinh(x)^2)$

```
1/4 \exp(2 \times x) + 1/-2 + 1/4 \exp(-(2 \times x))
```

 $lin((exp(x)+1)^{3})$

We get:

```
\exp(3*x) + 3*\exp(2*x) + 3*\exp(x) + 1
```

5.4 Transform a power in product of powers: powexpand

powexpand allows to transformer a power in a product of powers.

We enter:

powexpand(a^(x+y))

We get:

a^x*a^y

5.5 Transform the trigonometric and hyperbolic expressions in tan(x/2) and in e^x : halftan hyp2exp

halftan_hyp2exp takes as argument a trigonometric or hyperbolic expression. halftan_hyp2exp transforms the sin(x), cos(x) and tan(x) of the expression in terms of $tan\left(\frac{x}{2}\right)$ and e^x .

We enter:

halftan hyp2exp(tan(x)+tanh(x))

We get:

```
(2 \tan (x/2))/((1-(\tan (x/2))^2))+(((\exp (x))^2-1))/(((\exp (x))^2+1)))
```

We enter:

```
halftan hyp2exp(sin(x)^{2}+cos(x)^{2}-sinh(x)^{2}+cosh(x)^{2})
```

We get, after simplification with normal (ans ():

2

5.6 Expand a transcendantal and trigonometric expression: texpand

texpand takes as argument a transcendantal and trigonometric expression. texpand is the generalization of expexpand, lnexpand and trigexpand because it expands the transcendantal and trigonometric expressions.

For example, typand allows to transform $\ln(x^n)$ in $n \ln(x)$, e^{x^n} in e^{nx} , and $\sin(2x)$ in $2\sin(x)\cos(x)$.

- texpand takes as argument a transcendantal and trigonometric expression. **Example**: Expand $\exp(x + y) + \cos(x + y) + \ln(3x^2)$. We enter:

texpand (exp(x+y)+cos(x+y)+ln($3*x^2$))

We get:

 $\cos(x) \cos(y) - \sin(x) \sin(y) + \exp(x) \exp(y) + \ln(3) + 2 \sin(x)$

- texpand takes as argument a trigonometric expression. texpand expands this expression in term of sin(x) and cos(x).

Examples

1. Expand $\cos(x + y)$.

We enter:

texpand(cos(x+y))

We get:

```
\cos(x) \star \cos(y) - \sin(x) \star \sin(y)
```

2. Expand cos(3x).

We enter:

texpand(cos(3*x))

We get:

```
4*(\cos(x))^{3-3}\cos(x)
```

3. Expand
$$\frac{\sin(3 * x) + \sin(7 * x)}{\sin(5 * x)}$$
.

We enter:

texpand((sin(3*x)+sin(7*x))/sin(5*x))

We get

```
(4*(cos(x))^2-1)*(sin(x)/(16*(cos(x))^4)
-12*(cos(x))^2+1))/sin(x)+(64*(cos(x))^6)
-80*(cos(x))^4+24*(cos(x))^2-1)*sin(x)/
(16*(cos(x))^4-12*(cos(x))^2+1)/sin(x)
```

And, after simplification by entering simplify (Ans), we get:

4*(cos(x))^2-2

texpand takes as argument a transcendantal expression.

Examples

1. Expand exp(x + y).

We enter:

We get:

exp(x)*exp(y)

2. Expand ln(x + y). We enter:

texpand(log(x*y))

We get:

log(x) + log(y)

3. Expand $ln(x^n)$. *

We enter:

texpand(ln(x^n))

We get:

n*ln(x)

4. Expand $ln((e^2) + exp(2 * ln(2)) + exp(ln(3) + ln(2)))$.

We enter:

```
texpand(log(e^2)+exp(2*log(2))+exp(log(3)+log(2)))
```

We get:

6+3*2

Or we enter:

```
\texttt{texpand}(\log(e^2) + \exp(2*\log(2))) + \texttt{lncollect}(\exp(\log(3) + \log(2)))
```

We get:

12

5.7 Exp & Ln

5.7.1 Transform exp(n * ln(x)) in power: exp2pow

exp2pow allows to transform an expression of the form exp(n*ln(x)) into a power of x.

We enter:

exp2pow(exp(n*ln(x)))

We get:

x^n

Please note the difference with lncollect:

```
lncollect(exp(n*ln(x))) = exp(n*ln(x))
lncollect(exp(2*ln(x))) = exp(2*ln(x))
exp2pow(exp(2*ln(x))) = x^2
But:
lncollect(exp(ln(x)+ln(x))) = x^2
exp2pow(exp(ln(x)+ln(x))) = x^(1+1)
```

5.7.2 Transform a power into an exponential: pow2exp

pow2exp allows to transform a power into exponential.

We enter:

pow2exp(a^(x+y))

We get:

exp((x+y)*ln(a))

5.7.3 Transform the complex exponentials into sin and cos: sincos exp2trig

sincos or exp2trig takes as argument an expression containing complex exponentials. sincos or exp2trig transforms this expression in term of sin(x) and cos(x).

We enter:

sincos(exp(i*x))

or

exp2trig(exp(i*x))

We get, if Complex is not checked in the CAS configuration (Shift-CAS):

 $\cos(x) + i \cdot \sin(x)$

We get, if Complex is checked in the CAS configuration:

 $\exp(im(x)) * (\cos(re(x)) + (i) * \sin(re(x)))$

We enter:

sincos(exp(i*x)+exp(-i*x))

or

exp2trig(exp(i*x)+exp(-i*x))

We get:

```
\cos(x) + i \cdot \sin(x) + \cos(x) - i \cdot \sin(x)
```

then we select this answer and we press simplify. We get:

 $2 \star \cos(x)$

5.7.4 Transform the functions hyperbolic in exponentials: hyp2exp

hyp2exp takes as argument an hyperbolic expression. hyp2exp transforms the hyperbolic functions hyperbolic in exponentials WITHOUT linearizing.

We enter:

hyp2exp(sinh(x))

We get:

 $(\exp(x) - 1/(\exp(x)))/2$

5.7.5 Write with complex exponentials: tsimplify

tsimplify simplifies all the expressions by transforming them into complex exponentials. We do use tsimplify as last resort only.

We enter:

tsimplify((sin(7*x)+sin(3*x))/sin(5*x))

We get:

((exp((i)*x))^4+1)/(exp((i)*x))^2

5.7.6 Expand the exponentials: expexpand

expexpand takes as argument an expression containing exponentials. expexpand expands this expression.

We enter:

expexpand(exp(3*x))

We get:

exp(x)^3

We enter:

expexpand (exp(3*x) +exp(2*x+2))

We get:

 $\exp(x)^{3} + \exp(x)^{2} \exp(2)$

5.8 Sine

5.8.1 Transform the arcsin into arccos: asin2acos

```
asin2acos takes as argument a trigonometric expression.
asin2acos transforms this expression by replacing:
\arcsin(x) by \frac{\pi}{2} - \arccos(x).
```

We enter:

We get after simplification:

pi/2

5.8.2 Transform the arcsin in arctan: asin2atan

asin2atan takes as argument a trigonometric expression. asin2atan transforms this expression by replacing:

$$\arcsin(x)$$
 by $\arctan\left(\frac{x}{\sqrt{1-x^2}}\right)$.

We enter:

asin2atan(asin(x))

We get:

 $atan(x/sqrt(1-x^2))$

5.8.3 Transform sin(x) in cos(x)*tan(x): sin2costan

sin2costan takes as argument a trigonometric expression. sin2costan transforms this expression by replacing: sin(x) by cos(x) * tan(x).

We enter:

sin2costan(sin(2*x))

We get:

cos(2*x)*tan(2*x)

5.9 Cosine

5.9.1 Transform the arccos into arcsin: acos2asin

acos2asin takes as argument a trigonometric expression. acos2asin transforms this expression by replacing: $\arccos(x)$ by $\frac{\pi}{2}$ - $\arcsin(x)$.

We enter:

acos2asin(acos(x)+asin(x))

We get after simplification:

pi/2

5.9.2 Transform the arccos into arctan: acos2atan

acos2atan takes as argument a trigonometric expression. acos2atan transforms this expression by replacing:

$$\arccos(x)$$
 by $\frac{\pi}{2} - \arctan\left(\frac{x}{\sqrt{1-x^2}}\right)$.

We enter:

acos2atan(acos(x))

We get:

 $pi/2-atan(x/sqrt(1-x^2))$

5.9.3 Transform cos(x) into sin(x)/tan(x): cos2sintan

cos2sintan takes as argument a trigonometric expression. cos2sintan transforms this expression by replacing: cos(x) by $\frac{sin(x)}{tan(x)}$.

We enter:

cos2sintan(cos(2*x))

We get:

sin(2*x)/tan(2*x)

5.10 Tangent

5.10.1 Transform tan(x) with sin(2x) and cos(2x): tan2sincos2

tan2sincos2 takes as argument a trigonometric expression. tan2sincos2 transforms this expression by replacing: tan(x) by $\frac{\sin(2.x)}{1+\cos(2.x)}$.

We enter:

tan2sincos2(tan(x))

We get:

sin(2*x)/(1+cos(2*x))

5.10.2 Transform the arctan into arcsin: atan2asin

atan2asin takes as argument a trigonometric expression. atan2asin transforms this expression by replacing: arctan(x) by $\arcsin\left(\frac{x}{\sqrt{1+x^2}}\right)$.

We enter:

atan2asin(atan(x))

We get:

 $asin(x/sqrt(1+x^2))$

5.10.3 Transform the arctan into arccos: atan2acos

atan2acos takes as argument a trigonometric expression. atan2acos transforms this expression by replacing: $\arctan(x)$ by $\frac{\pi}{2} - \arccos\left(\frac{x}{\sqrt{1+x^2}}\right)$.

We enter:

atan2acos(atan(x))

We get:

```
pi/2-acos(x/sqrt(1+x^2))
```

5.10.4 Transform tan(x) into sin(x)/cos(x): tan2sincos

tan2sincos takes as argument a trigonometric expression. tan2sincos transforms this expression by replacing: tan(x) by $\frac{\sin(x)}{\cos(x)}$.

We enter:

tan2sincos(tan(2*x))

We get:

sin(2*x)/cos(2*x)

5.10.5 Transform a trigonometric expression in term of tan(x/2): halftan

```
halftan takes as argument a trigonometric expression.
halftan transforms the sin(x), cos(x) and tan(x) of the expression in term of tan(\frac{x}{2}).
```

We enter:

halftan(sin(x))

We get:

 $2 \tan (x/2) / (1 + \tan (x/2)^2)$

We enter:

halftan(sin(2*x)/(1+cos(2*x)))

We get:

2*tan(2*x/2)/((tan(2*x/2))^2+1)/(1+(1-(tan(2*x/2))^2)/((tan(2*x/2))^2+1))

And, after simplification with simplify (Ans), we get:

tan(x)

5.11 Trigonometry

5.11.1 Simplify by privileging sine: trigsin

trigsin takes as argument a trigonometric expression. trigsin simplifies this expression using formulas: $sin(x)^2 + cos(x)^2 = 1$, $tan(x) = \frac{sin(x)}{cos(x)}$ and by privileging sine.

We enter:

 $trigsin(cos(x)^{2+1})$

We get:

 $-\sin(x)^{2+2}$

5.11.2 Simplify by privileging cosine: trigcos

trigcos takes as argument a trigonometric expression. trigcos simplifies this expression using formulas: $sin(x)^2 + cos(x)^2 = 1$, $tan(x) = \frac{sin(x)}{cos(x)}$ and by privileging cosine.

We enter:

 $trigcos(sin(x)^{4+2})$

We get:

 $\cos(x)^{4-2}\cos(x)^{2+3}$

5.11.3 Transform trigonometric inverse functions to logarithms: atrig2ln

atrig2ln rewrites the expression containing trigonometric inverse functions with logarithms.

We enter:

atrig2ln(asin(x))

We get:

 $i*ln(x+sqrt(x^2-1))+pi/2$

5.11.4 Simplify by privileging tangent: trigtan

trigtan takes as argument a trigonometric expression. trigtan simplifies this expression using formulas: $\sin(x)^2 + \cos(x)^2 = 1$, $\tan(x) = \frac{\sin(x)}{\cos(x)}$ and by privileging tangent.

We enter:

 $trigtan(sin(x)^{4}+cos(x)^{2}+1)$

We get:

```
((\tan(x))^2/(1+(\tan(x))^2))^2+1/(1+(\tan(x)^2)+1)
```

and after simplification with simplify (Ans), we have:

 $(2 \tan (x)^{4+3}\tan (x)^{2+2}) / (\tan (x)^{4+2}\tan (x))^{2+1})$

5.11.5 Linearize a trigonometric expression: tlin

tlin takes as argument a trigonometric expression.

tlin linearizes this expression in term of sin(n,x) and cos(n,x).

Examples

- Linearize cos(x) * cos(y).

We enter:

tlin(cos(x) * cos(y))

We get:

 $1/2 \cos(x-y) + 1/2 \cos(x+y)$

- Linearize $cos(x)^3$.

We enter:

 $tlin(cos(x)^3)$

We get:

 $3/4*\cos(x)+1/4*\cos(3*x)$

- Linearize $4 \cos(x)^2 - 2$.

We enter:

tlin(4*cos(x)^2-2)

We get:

2*cos(2*x)

5.11.6 Shift the phase by $\frac{\pi}{2}$ in trigonometric expressions: shift_phase

shift_phase takes as argument a trigonometric expression. shift_phase allows to shift the phase by $\frac{\pi}{2}$ in trigonometric expressions once the automatic simplification has been performed.

We enter:

shift phase(x+sin(x))

We get:

x-cos((pi+2*x)/2)

We enter:

shift_phase(x+cos(x))

We get:

x-+sin((pi+2*x)/2)

We enter:

```
shift_phase(x+tan(x))
```

We get:

x+1/(tan((pi+2*x)/2))

Should the expression not be evaluated (*i.e.* no automatic simplification), just quote the argument.

We enter:

shift phase('sin(x+pi/2)')

We get:

-(cos(pi+x))

but if we enter without quoting the sine:

shift phase(sin(x+pi/2))

We get:

sin((pi+2*x)/2)

because $\sin(x+pi/2)$ is evaluated (*i.e.* simplified) into $\cos(x)$ before the command shift_phase is called and then shift_phase($\cos(x)$) returns $\sin((pi+2*x)/2)$.

Exercise

Calculate

 $\sum_{n=1}^{+\infty} \frac{\sin(n * x)}{n}$

We enter:

normal(sum((sin(n*x))/n,n=1..+infinity))

We get:

-atan((sin(x))/(cos(x)-1))

We enter:

```
normal(shift phase(halftan(atan(sin(x)/(-cos(x)+1)))))
```

We get:

pi*floor(((pi+x)/2)/pi+1/2)+(-1)/2*pi+(-1)/2*x

if we enter:

tsimplify(atan((sin(x))/(-cos(x)+1)))

Because tsimplify is not rigorous with respect to $2k\pi$, we get:

-1/2*pi-1/2*x

5.11.7 Collect the sine and cosine of a same angle: tcollect

tcollect takes as argument a trigonometric expression.

tcollect linearizes this expression in term of sin(n, x) and cos(n, x) then collects the sine and cosine of same angle.

We enter:

```
tcollect(sin(x) + cos(x))
```

We get:

sqrt(2) *cos(x-pi/4)

We enter:

 $\texttt{tcollect}(2*\sin(x)*\cos(x)+\cos(2*x))$

We get:

sqrt(2)*cos(2*x-pi/4)

5.11.8 Expand a trigonometric expression: trigexpand

trigexpand takes as argument a trigonometric expression. trigexpand expands this expression in term of sin(x) and cos(x). We enter:

trigexpand(cos(x+y))

We get:

 $\cos(x) \star \cos(y) - \sin(x) \star \sin(y)$

5.11.9 Transform a trigonometric expression into complex exponentials: trig2exp

trig2exp takes as argument a trigonometric expression. trig2exp transforms the trigonometric functions into complex exponentials WITHOUT linearizing.

We enter:

trig2exp(tan(x))

We get:

((exp((i)*x))^2-1)/((i)*((exp((i)*x))^2+1))

We enter:

trig2exp(sin(x))

We get:

```
(exp((i)*x)-1/(exp((i)*x)))/(2*i)
```

Chapter 6 Menu Integer

6.1 Test of parity: even

even takes as argument an integer n. even returns 1 if n is even and 0 if n is odd.

We enter:

	even(148)
We get:	
	1
We enter:	
	even(149)

We get:

6.2 Test of non parity: odd

odd takes as argument an integer n. odd returns 1 if n is odd and 0 if n is even.

We enter:

We get:

We enter:

odd(149)

0

odd(148)

0

We get:

1

6.3 Divisors of an integer: idivis

idivis returns the vector whose components are the divisors of an integer.

We enter:

idivis(45)

We get:

```
[1,3,9,5,15,45]
```

6.4 Prime factors decomposition of an integer: ifactor

ifactor returns the prime factors decomposition of an integer.

We enter:

ifactor(20!)

We get:

2^18*3^8*5^4*7^2*11*13*17*19

6.5 List of prime factors and their multiplicity: ifactors

ifactors returns the list of prime factors of an integer with their multiplicity.

We enter:

ifactors(45)

We get:

[3,2,5,1]

indeed 45 = 32 * 5^1

6.6 GCD of one or several integers: gcd

 $\tt gcd$ returns the greatest common divisor of one or several integers (see 7.12 for the GCD of polynomials).

We enter:

	gcd(45,10)
We get:	
	5
We enter:	
	gcd(40,12,16,24)
We get:	

4

6.6.1 GCD of a list of integers: lgcd

lgcd designates the GCD of the elements of a list of integers (or of a list of polynomials).

We enter:

lgcd([18,15,21,36])

We get:

3

6.7 LCM of one or several integers: lcm

lcm returns the lowest common multiple of two or several integers.

We enter:

We get:

We enter:

lcm(45,10,25,30)

lcm(45, 10)

90

We get:

450

6.7.1 Bezout identity: iegcd

iegcd(a,b) designates the extended GCD (Bezout identity) of two integers. iegcd(a,b) returns [u,v,d] that make au+bv=d and such as d=gcd(a,b).

We enter:

iegcd(48,30)

We get:

[2,-3,6]

Indeed: $2 \cdot 48 + (-3) \cdot 30 = 6$

6.7.2 Solve *au* + *bv* = *c* in ℤ: iabcuv

iabcuv(a,b,c) gives [u,v] that make au+bv=c.
Of course, c has to be a multiple of gcd(a,b) to get a solution.

We enter:

iabcuv(48,30,18)

We get:

[6,-9]

6.8 Primality

6.8.1 Check whether a number is prime: isPrime isprime

isPrime(n) or isprime returns true if n is prime and false otherwise.

We enter:

isPrime(1234567)

We get:

false

We enter:

isPrime(1234547)

We get:

true

6.8.2 The N-th prime number: ithprime

ithprime(n) returns the N-th prime number.

We enter:

```
ithprime(10)
```

We get:

29

Indeed, the ten first prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

We enter:

ithprime(100)

We get:

541

541 is then the 100-nth prime number.

6.8.3 nextprime

nextprime (n) returns the prime number p which is juste after n (p>n).

We enter:

nextprime(11)

We get:

We enter:

nextprime(1234567)

We get:

1234577

6.8.4 prevprime

prevprime (n) returns the prime number p which is just before n (p<n).

We enter:

prevprime(11)

7

We get:

We enter:

prevprime(1234567)

We get:

1234547

6.8.5 Euler's totient: euler

euler(n) returns the cardinal of the set of numbers lower than n which are relatively prime to n. euler(n) designates then the Euler's totient of the integer n.

We enter:

euler(18)

6

We get:

Indeed, the set:

 $E = \{5,7,11,13,15,17\}$ corresponds to numbers lower than 18 which are prime to 18, and *E* takes as cardinal 6. With the euler function, we have the generalization of the Fermat's theorem (which says that "if *n* is prime and if *a* is prime to *n* then $a^{n-1} = 1 \mod n$.") The generalization is (because if *n* is prime, euler(n) = n - 1): $a^{euler(n)} = 1 \mod n$ if *a* and *n* are prime to each other.

We enter:

powmod(5,6,18)

We get:

1

6.8.6 Legendre symbole: legendre symbol

When *n* is prime, we define the Legendre symbol of *a* written $\left(\frac{a}{n}\right)$ by:

$$\binom{a}{n} = \begin{cases} 0 \text{ if } a = 0 \mod n \\ 1 \text{ if } a \neq 0 \mod n \text{ and if } a = b^2 \mod n \\ -1 \text{ if } a \neq 0 \mod n \text{ and if } a \neq b^2 \mod n \end{cases}$$

Some properties

- if *n* is prime:

$$a^{\frac{n-1}{2}} = \left(\frac{a}{n}\right) \mod n$$

$$- \left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}} \cdot (-1)^{\frac{q-1}{2}} \text{ if } p \text{ and } q \text{ are odd and positive}$$

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$

legendre_symbol has two parameters a and n and returns the Legendre symbol $\left(\frac{a}{n}\right)$.

We enter:

legendre_symbol(26,17)

We get:

1

We enter:

legendre symbol(27,17)

We get:

-1

We enter:

legendre symbol(34,17)

0

We get:

6.8.7 Jacobi symbol: jacobi_symbol

When n is not prime, we define the Jacobi symbol of a, also written $\left(\frac{a}{n}\right)$, from the Legendre symbol and the decomposition of *n* in prime factor. Let

 $n = p_1^{\alpha_1} \dots p_{k_1}^{\alpha_k}$ where p_j is prime and α_j is an integer for $j = 1 \dots k$. The Jacobi symbol of a is defined by: $\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{\alpha_1} \dots \left(\frac{a}{p_k}\right)^{\alpha_k}$

jacobi_symbol has two parameters a and n and returns the symbol of Jacobi $\left(\frac{a}{n}\right)$.

We enter:

We get:

124

We enter:

```
jacobi_symbol(35,12)
```

We get:

-1

We enter:

jacobi_symbol(33,12)

We get:

0

6.8.8 Solve $a^2 + ab^2 = p$ in Z: pa2b2

pa2b2 decomposes a prime integer p, congruent to 1 modulus 4, in the sum of two squares: $p = a^2 + b^2$. The result is supplied as a list.

We enter:

pa2b2(17)

We get:

[4,1]

indeed $17 = 4^2 + 1^2$

6.9 Division

6.9.1 Quotient of the Euclidean division: iquo

iquo(a,b) returns the quotient of the Euclidean division of a by b when a and b are integers.

We enter:

iquo(45,10)

We get:

4

indeed 45 = 4 * 10 + 5

6.9.2 Remainder of the Euclidean division: irem

irem(a,b) returns the remainder of the Euclidean division of a by **b** when a and **b** are integers.

We enter:

irem(45,10)

We get:

5

indeed 45 = 4 * 10 + 5

6.9.3 Quotient and remainder of the Euclidean division: iquorem

iquorem gives the list of the quotient q and the integer remainder r of the Euclidean division of the integers a and b supplied as argument (a = b * q + r with $0 \le r < b$).

We enter:

iguorem(148, 5)

We get:

[29,3]

6.9.4 Chinese remainder for integers: ichinrem

ichinrem([a,n],[b,p]) returns the vector [c,lcm(p,q)] formed of two integers. The first number c is such as

 $\forall k \in \mathbb{Z}, \qquad d = c + k \times \operatorname{lcm}(p,q)$

l checks

 $d = a \pmod{p}, \quad d = b \pmod{q}$ If n and p are prime then there is always a solution and q=n*p

Example:

Find the solutions of:

 $\begin{cases} x = 3 \pmod{5} \\ x = 9 \pmod{13} \end{cases}$

We enter:

ichinrem([3,5],[9,13])

Or we enter:

ichinrem({[3,5}, {9,13})

We get:

[-17,65]

So the solutions are x=-17+k*65 with $k \in \mathbb{Z}$. We have indeed $-17 = -5*4+3 = 3 \mod 5$ and $-17 = -2*13+9 = 9 \mod 13$ ichinrem returns the Chinese remainder for integers.

We enter:

ichinrem({2,7}, {3,5})

Or we enter:

ichinrem([2,7],[3,5])

We get:

```
[-12,35]
```

We do have $-12 + 35k = 2 \mod 7$ and $-12 + 35k = 3 \mod 5$ for $k \in \mathbb{Z}$

powmod (a, n, p) returns a^n modulus p with the method of the fast exponentiation.

We enter:

powmod(5,21,13)

We get:

5

 $5^2 = 25 = -1 \mod 13$ then $5^{21} = 5 * 5^{20} = 5 \mod 13$

We enter:

```
powmod(37,25,11)
```

We get:

1

indeed $37 = 4 \mod 11$ and $4^5 = 4^2 * 4^2 * 4 = 25 * 4 = 1 \mod 11$

6.10 Modular calculus in $\mathbb{Z}/p \mathbb{Z}$ or in $\mathbb{Z}/p \mathbb{Z}[x]$

We can perform calculations modulus p that is to say in $\mathbb{Z} / p \mathbb{Z}$ or in $\mathbb{Z} / p \mathbb{Z} [x]$. The numbers n of $\mathbb{Z} / p \mathbb{Z}$ are written n% p.

Examples of notation

- an integer n of ℤ /13 ℤ n:=12% 13.
- a vector V of coordinates in Z /13 Z
 V:=[1,2,3]% 13 or V:=[1% 13,2% 13,3% 13].
- a matrix A of coefficients in Z /13 Z A:=[[1,2,3],[2,3,4]]% 13 or
- A:=[[1% 13, 2% 13, 3% 13], [2% 13, 3% 13, 4% 13]].
- a polynomial A of Z /13 Z [x] in symbolic notation A:=(2*x^2+3*x-1)%13 or A:=2%13*x^2+3%13*x-1%13.
 a polynomial A of Z /13 Z [x] represented with a list
- A:=poly1[1,2,3]%13 Or A:=poly1[1%13,2%13,3%13].

To transform an object \circ of modular coefficients into an object of integer coefficients, press: $\circ \$ $\circ \$

-3. Notes

- For some commands in $\mathbb{Z}/p \mathbb{Z}$ or in $\mathbb{Z}/p \mathbb{Z}[x]$, we have to choose a number p which is prime.
- The chosen representation is the symmetrical representation:
 11%13 = -2%13

6.10.1 Expand and factorise: normal

normal takes as argument a polynomial expression. normal expands and factors this expression in $\mathbb{Z}/p\mathbb{Z}[x]$. We enter:

We get:

(-3% 13)*x^3+(5% 13)*x^2+(-5%13)*x+4% 13

6.10.2 Addition in $\mathbb{Z} / p \mathbb{Z}$ or in $\mathbb{Z} / p \mathbb{Z}[x]$: +

To perform an addition in $\mathbb{Z}/p\mathbb{Z}$, we use the usual + and, for polynomials of $\mathbb{Z}/p\mathbb{Z}[x]$, we use the usual + and the command normal to simplify.

For the integers in $\mathbb{Z}/p\mathbb{Z}$, we enter:

3% 13+10% 13

We get:

0%13

For the polynomials with coefficients in $\mathbb{Z}/p\mathbb{Z}$, we enter:

normal(11% 13*x+5% 13+8% 13*x+6% 13)

or else

normal((11*x+5)% 13+(8*x+6)% 13)

We get:

(6%13)*x+-2% 13

6.10.3 Substraction in $\mathbb{Z}/p\mathbb{Z}$ or in $\mathbb{Z}/p\mathbb{Z}[x]$: -

To perform a substraction in $\mathbb{Z}/p\mathbb{Z}$, we use the usual – and, for polynomials of $\mathbb{Z}/p\mathbb{Z}[x]$, we use the usual – and the command normal to simplify.

For the integers in $\mathbb{Z}/p\mathbb{Z}$, we enter:

31% 13-10% 13

We get:

-5% 13

For the polynomials with coefficients in $\mathbb{Z}/p\mathbb{Z}$, we enter:

normal(11% 13*x+5% 13-8% 13*x+6% 13)

or else

normal((11*x+5)% 13-(8*x+6)% 13)

We get:

(3% 13)*x+-1% 13

6.10.4 Multiplication in $\mathbb{Z} / p \mathbb{Z}$ or $\mathbb{Z} / p \mathbb{Z} [x]$: *

To perform a multiplication in $\mathbb{Z}/p\mathbb{Z}$, we use the usual * and, for polynomials of $\mathbb{Z}/p\mathbb{Z}[x]$, we use the usual * then the command normal to simplify.

For the integers in $\mathbb{Z}/p\mathbb{Z}$, we enter:

We get:

-2% 13

For the polynomials with coefficients in $\mathbb{Z}/p\mathbb{Z}$, we enter:

normal((11% 13*x+5% 13)*(8% 13*x+6% 13))

or else we enter:

normal((11*x+5)% 13*(8*x+6)% 13)

We get:

(-3% 13) *x^2+(2% 13) *x+4% 13

6.10.5 Quotient: quo

quo takes as arguments two polynomials *A* and *B* with coefficients in $\mathbb{Z}/p\mathbb{Z}$. *A* and *B* may be supplied by a symbolic polynomial expression (of *x* or of the name of the variable supplied as third argument) or by the list of their coefficients.

quo returns the quotient of the Euclidean division of A by B in $\mathbb{Z}/p\mathbb{Z}[x]$.

We enter:

quo((x^3+x^2+1)% 13,(2*x^2+4)% 13)

Or we enter:

quo((x^3+x^2+1,2*x^2+4)% 13)

We get:

(-6% 13) *x+-6% 13

indeed $x^3 + x^2 + 1 = (2x^2 + 4)\left(\frac{x+1}{2}\right) + \frac{5x-4}{4}$ and $-3 * 4 = -6 * 2 = 1 \mod 13$

6.10.6 Remainder: rem

rem takes as arguments two polynomials *A* and *B* with coefficients in $\mathbb{Z}/p\mathbb{Z}$. *A* and *B* may be supplied by a symbolic polynomial expression (of *x* or of the name of the variable supplied as third argument) or by the list of their coefficients.

rem returns the remainder of the Euclidean division of A by B in $\mathbb{Z}/p\mathbb{Z}[x]$.

We enter:

rem((x^3+x^2+1)% 13,(2*x^2+4)% 13)

Or we enter:

rem((x^3+x^2+1,2*x^2+4)% 13)

We get:

indeed $x^3 + x^2 + 1 = (2x^2 + 4)\left(\frac{x+1}{2}\right) + \frac{5x-4}{4}$ and $-3 * 4 = -6 * 2 = 1 \mod 13$

6.10.7 Quotient and remainder: quorem

quorem takes as arguments two polynomials A and B with coefficients in $\mathbb{Z}/p\mathbb{Z}$.

A and B may be supplied by a symbolic polynomial expression (of x or of the name of variable supplied as third argument) or by the list of their coefficients.

quorem returns the list of the quotient and the remainder of the Euclidean division of A by B in $\mathbb{Z}/p\mathbb{Z}[x]$ (see also 6.9.3 and 6.11.4).

We enter:

quorem(5% 13,2% 13)

Or we enter:

quorem((5,2)% 13)

and because 2 * -4 = 5 - 13We get:

[-4% 13,0]

We enter:

quorem((x^3+x^2+1)% 13,(2*x^2+4)% 13)

Or we enter:

quorem((x^3+x^2+1,2*x^2+4)% 13)

because $x^3 + x^2 + 1 = (2x^2 + 4)\left(\frac{x+1}{2}\right) + \frac{5x-4}{4}$ and $-3 * 4 = -6 * 2 = 1 \mod 13$ We get:

[(-6% 13)*x+-6% 13,(-2% 13)*x+-1% 13]

6.10.8 Division in $\mathbb{Z} / p \mathbb{Z}$ or $\mathbb{Z} / p \mathbb{Z} [x]$: /

/ divides of two integers in $\mathbb{Z}/p\mathbb{Z}$, or divides two polynomials *A* and *B* in $\mathbb{Z}/p\mathbb{Z}[x]$. For the polynomials, the result is the rational fraction $\frac{A}{B}$ simplified in $\mathbb{Z}/p\mathbb{Z}[x]$.

For integers in $\mathbb{Z}/p\mathbb{Z}$, we enter:

5% 13/2% 13

We get:

-4% 13

because 2 is invertible in $\mathbb{Z}/13\mathbb{Z}$.

For the polynomials with coefficients in $\mathbb{Z}/p\mathbb{Z}$. We enter:

(2*x^2+5)% 13/(5*x^2+2*x-3)% 13

We get:

```
((6% 13)*x+1% 13)/((2% 13)*x+2% 13)
```

6.10.9 Power in $\mathbb{Z}/p \mathbb{Z}$ or $\mathbb{Z}/p \mathbb{Z}[x]$: ^

To calculate a at the power n in $\mathbb{Z}/p\mathbb{Z}$ we use the operator \wedge .

We enter:

(5% 13)^2)

We get:

-1% 13

To calculate A at the power n in $\mathbb{Z}/p\mathbb{Z}[x]$ we use the operator ^ and the command normal. We enter:

```
normal(((2*x+1)% 13)^5)
```

We get:

```
(6\% \ 13) * x^5 + (2\% \ 13) * x^4 + (2\% \ 13) * x^3 + (1\% \ 13) * x^2 + (-3\%13) * x + 1\% \ 13
```

because:

 $10 = -3 \pmod{13} 40 = 1 \pmod{13} 80 = 2 \pmod{13} 32 = 6 \pmod{13}$.

6.10.10 Calculation of $a^n \mod p$ or of $A(x)^n \mod \P(x), p$: powmod

- To calculate in $[0; p-1] a^n \mod p$ we use the command powmod or powermod with as argument a, n, p.

We enter:

```
powmod(5,21,13)
```

We get:

5

We enter:

powmod(5,21,8)

We get:

5

- To calculate $A(x)^n \mod \P(x)$, p with as a result a polynomial with coefficients in \mathbb{Z} (which will be symmetrical remainders of division by p), we use the command powmod or powermod with as argument A(x), n, p, P(x).

We enter:

130

powmod(x+1,17,5,x^4+x+1)

We get:

-x^3-x^2

We have indeed:

```
rem((x+1)^17, x^{4+x+1})
```

which returns:

29144*x^3+36519*x^2+12270*x-4185

and

(29144*x^3+36519*x^2+12270*x-4185)% 5

which returns:

(-1 % 5) *x^3+(-1 % 5) *x^2

and

((-1 % 5)*x^3+(-1 % 5)*x^2)% 0

which returns:

-x^3-x^2

Note (cf section 6.10.9) If we can calculate a power in $\mathbb{Z} / p \mathbb{Z}$ we enter for example:

(5% 13)^21)

We get:

5% 13

We enter:

(5% 8)^21)

We get:

-3% 8

6.10.11 Inverse in $\mathbb{Z}/p\mathbb{Z}$: inv or /

We calculate the inverse of an integer n in $\mathbb{Z} \, / p \, \mathbb{Z}$ by entering 1/n% p or inv (n%p) or inverse (n% p).

We enter:

inv(3% 13)

We get:

-4% 13

Indeed: $3 \times -4 = -12 = 1 \pmod{13}$

6.10.12 Transform an integer into its fraction modulus p: fracmod

fracmod has two arguments, an integer n (or an integer expression) and an integer p. fracmod returns a fraction a/b such as:

$$-\frac{\sqrt{p}}{2} < a \le \frac{\sqrt{p}}{2}, 0 \le b < \frac{\sqrt{p}}{2}, n \times b = a \pmod{p}$$

over words $n = \frac{a}{2} \pmod{p}$.

In other words $n = \frac{a}{b} \pmod{p}$.

We enter:

fracmod(3, 13)

We get:

-1/4

Indeed: $3 * -4 = -12 = 1 \pmod{13}$ then 3 = -1/4% 13. We enter:

fracmod(13,121)

We get:

-4/9

Indeed: $13 \times -9 = -117 = 4 \pmod{121}$ then 13 = -4/9% 13.

6.10.13 GCD in $\mathbb{Z}/p\mathbb{Z}[x]$: gcd

When gcd has two polynomials with coefficients in $\mathbb{Z}/p\mathbb{Z}$ as arguments (p must be prime), gcd returns the GCD of the two polynomials in $\mathbb{Z}/p\mathbb{Z}[x]$ (see also 7.12 for polynomials with non modular coefficients).

We enter:

gcd((2*x^2+5)% 13,(5*x^2+2*x-3)% 13)

We get:

(-4% 13)*x+5% 13

We enter:

 $gcd(x^{2+2}x+1,x^{2-1}) \mod 5$

We get:

1

but if we enter:

gcd((x^2+2*x+1,x^2-1)) mod 5)

gcd is calculated in $\mathbb{Z}[x]$ then the modular calculus is performed, we get:

x% 5

6.10.14 Factorization in $\mathbb{Z}/p \mathbb{Z}[x]$: factor

factor takes as argument a polynomial with coefficients in $\mathbb{Z} / p \mathbb{Z}$. factor factors this polynomial in $\mathbb{Z} / p \mathbb{Z} [x]$ (*p* must be prime).

We enter:

We get:

 $((1\$ 13) * x + -6\$ 13) * ((-3\$ 13) * x^2 + -5\$ 13)$

6.10.15 Determinant of a matrix of $\mathbb{Z}/p\mathbb{Z}$: det

det takes as argument a matrix A with coefficients in $\mathbb{Z}/p\mathbb{Z}$. det returns the determinant of this matrix A.

We enter:

det([[1,2,9]% 13,[3,10,0]% 13,[3,11,1]% 13])

Or we enter:

det([[1,2,9],[3,10,0],[3,11,1]]% 13)

We get:

5% 13

thus, in $\mathbb{Z}/13 \mathbb{Z}$, the determinant of the matrix A = [[1, 2, 9], [3, 10, 0], [3, 11, 1]] is 5% 13 (on a det (A) =31).

6.10.16 Inverse of a matrix of $\mathbb{Z}/p\mathbb{Z}$: inv

inverse (or inv) takes as argument a matrix A with coefficients in $\mathbb{Z}/p\mathbb{Z}$. inv returns the inverse of the matrix A in $\mathbb{Z}/p\mathbb{Z}$.

We enter:

inv([[1,2,9]% 13,[3,10,0]% 13,[3,11,1]% 13])

Or we enter:

```
inv([[1,2,9],[3,10,0],[3,11,1]]% 13)
```

We get:

It is the inverse of the matrix A = [[1, 2, 9], [3, 10, 0], [3, 11, 1]] in $\mathbb{Z} / 13 \mathbb{Z}$.

6.10.17 Solve a linear system of Z /p Z: rref

rref allows to solve, in $\mathbb{Z} / p \mathbb{Z}$, a linear equations system of the form: Ax = B (see also 20.9). The argument is a matrix formed by A bordered (\rightarrow translation to be checked) with B as last column vector. The result is a matrix formed of A_1 and B_1 where A_1 has two zeros from either side of the diagonal, and where the system $A_1x = B_1$ is equivalent to Ax = B. Solve in $\mathbb{Z} / 13 \mathbb{Z}$

$$\begin{cases} x + 2 \cdot y = 9\\ 3 \cdot x + 10 \cdot y = 0 \end{cases}$$

We enter:

rref([[1, 2, 9]% 13,[3,10,0]% 13])

Or we enter:

rref([[1, 2, 9],[3,10,0]])%13

We get:

[[1% 13,0% 13,3% 13],[0% 13,1% 13,3% 13]]

which means that x=3% 13 and y=3% 13.

6.10.18 Creation of a Galois field: GF

In its simplest form, GF takes as arguments a prime number p and an integer n > 1 or the power of a prime number p^n and an optional argument which is the name of variable chosen for the generator of the field (the variable must be purged first).

GF creates a Galois field of characteristic p and having p^n elements, the elements of the field are then 0 and the powers from 0 to $p^n - 2$ of the generator. The field itself is stored in a free variable (by default K, this variable is displayed by the system, at the same time as the names of the generator and the free variable, by default k, used to represent the elements of the field such as the quotient $\mathbb{Z}/p\mathbb{Z}[k]/P(k)$ where P is a irreducible polynomial and primitive).

For instance:

- GF(3,5) or GF(3^5) creates a field having 3^5 elements whose generator is g (or h, ... if g is assigned). We can create an element of the field by taking a polynomial in term of g, for example $g^{10} + 5g + 1$.
- GF(2,8,a) creates a field having 2⁸ elements, and uses the variable a to designate the generator (Warning, do purge(a) first if necessary).
- The command pmin allows knowing the minimal polynomial of an element of the field.

We can then create polynomials or matrices having coefficients in the field, and handle them with the usual instructions + - * / inv, sqrt, quo, rem, quorem, diff, factor, gcd, egcd, ... for example:

- GF(3,5,b); A:=[[1,b],[b,1]]; inv(A) returns the inverse of a matrix with coefficients in the field of 3⁵ elements
- GF(5,3,c); $p:=x^2-c-1$; factor(p) factors the polynomial p as polynomial with coefficients in the field at 5³ elements, we deduce from it a value of square root of c + 1.
- p:=randpoly(x, 5, g); q:=diff(p); gcd(p,q) generates a polynomial with random coefficients, then returns its derivative and the GCD, which allows to know if p has multiples roots.

There are still limitations due to the incomplete implementation of some algorithms (for example factorization with several variables when the polynomial is not unitary).

In its most comprehensive form (but more difficult to handle and less legible), the elements of this field and the field itself are represented by $GF(\ldots)$ where \ldots is a sequence composed of:

- the characteristic p(px = 0),
- the minimal irreducible polynomial (primitive if created by the CAS) generating an ideal *I* in Z /p Z [X], the Galois field is then the quotient of Z /p Z [X] by *I*,
- the name of the variable of the polynomial, by default x,
- a polynomial (a remainder modulus the minimal polynomial) to designate an element of the field (These elements have an additive representation) or undef to designate the whole field which is the quotient of polynomials with coefficients in $\mathbb{Z}/p\mathbb{Z}$ by *I*.

Usually, we give a name to the created field (for example G := GF(p, n)), in order to build a particular element of the groupe from a polynomial of $\mathbb{Z}/p\mathbb{Z}[X]$, by writing for example $G(x^3+x)$. Note that

134

G(x) is a generator of the multiplicative group G^* when the minimal polynomial is generated by the CAS.

We enter:

We get (for example):

$$GF(2, k^8-k^7-k^6-k-1, k, undef)$$

The field G has $2^8 = 256$ elements and g = G(k) generates the multiplicative group of this field $(\{1, g, g^2, \dots, g^{254}\}).$

We enter:

K(k^9)

We get:

 $q^{6}+q^{2}+1)$

We enter:

K(k)^255

We get

As you notice on the previous examples, when we work with the same field, the answers content redundant informations. This is why the definition of a field may have a third argument: the name of the generator or a list containing two or three names of formal variables, (the name of the undetermined of the irreducible polynomial and the name of the Galois field that has to be quoted so that these variables are not evaluated as well as the name of the generator). This allows to get a more compact display of the elements of the field.

We enter:

```
G:=GF(2,2,['w','G']):; G(w^2)
```

We get:

Done, G(w+1)

We enter:

G(w^3)

We get:

G(1)

The elements of GF (2, 2) are then: 0, 1, w, w²=w+1. We can then tell which irreducible polynomial we wish to use, by mentioning it as second parameter (instead of n), for example:

```
G:=GF(2, w^{8}+w^{6}+w^{3}+w^{2}+1, ['w', 'G'])
```

If we give a non primitive irreducible polynomial, the calculator tells it and proposes a replacement by a primitive polynomial, for example:

1

```
G:=GF(2,w^8+w^7+w^5+w+1,['w','G'])
```

We get:

 $G:=GF(2, w^8-w^6-w^3-w^2-1, ['w', 'G'], undef)$

6.10.19 Factorization of a polynomial with coefficients in a Galois field: factor

We can factorize a polynomial with coefficients in a Galois field with factor.

By example, to get $G = \mathbb{F}_4$, we enter:

GF(2,2,a)

We get:

GF(2, k^2+k+1, [k,K,a], undef)

By example, we enter:

 $factor(a^2*x^2+1))$

We get:

(a+1) * (x+a+1) ^2

6.11 Arithmetic of polynomials

Polynomials are represented by expressions or by the list of their coefficients listed with decreasing powers. In the first case the variable used by default is x. For the polynomials with coefficients in $\mathbb{Z} / n \mathbb{Z}$, apply n to the expression or to each coefficient of the list.

6.11.1 List of divisors of a polynomial: divis

 $\tt divis$ takes as argument a symbolic polynomial (or a list of polynomials) and returns the list of divisors.

We enter:

divis(x^2-1)

We get:

[1, x-1, x+1, (x-1) * (x+1)]

We enter:

divis(t^2-1)

We get:

[1,t-1,t+1,(t-1)*(t+1)]

We enter:

divis (x^4-1)

Or we enter:

divis(poly2symb([1,0,0,0,-1],x))

We get:

$$\begin{bmatrix} 1, x^2+1, x+1, (x^2+1) * (x+1), x-1, (x^2+1) * (x-1), (x+1) * (x-1) \\ 1, (x^2+1) * (x+1) * (x-1) \end{bmatrix}$$

We enter:

divis([t^2,x^2-1])

We get:

[[1,t,t^2],[1,x+1,x-1,(x+1)*(x-1)]]

6.11.2 Euclidean quotient of two polynomials: quo

quo gives the quotient of the Euclidean division of polynomials (division by decreasing power order). We can enter the polynomials either by the list of their coefficients by decreasing power order, either under symbolic forms, and in this case the variable must be added as third argument (by default the variable is x).

We enter:		
	quo(x^2+2x+1,x+3)	
We get:		
	x-1	
We enter:		
	quo(t^2+2t+1,t+3,t)	
We get:		
	t-1	
or we enter:		
	quo([1,2,1],[1,3])	
We get:		
	[] 1,-1 []	
that is to say the polynomial poly1[1]	<i>,</i> –11.	
To get the quotient of $x^3 + 2x + 4$ by $x^2 + x + 2$, we enter:		
	quo(x^3+2x+4,x^2+x+2)	
We get:		
	x-1	
Or we enter:		
Of we enter.		
	quo([1,0,2,4],[1,1,2])	
We get:		

[] 1,-1 []

that is to say the polynomial ${\tt poly1[1,-1]}$ or the polynomial ${\tt x-1}.$ We enter:

```
quo(t^3+2t+4,t^2+t+2,t)
```

We get:

t-1

If we do not put the variable t as last argument, we enter:

quo(t^3+2t+4,t^2+t+2)

We get:

We enter:

 $(t^{3+2}t+4) / (t^{2+t+2})$

6.11.3 Euclidean remainder of two polynomials: rem

 ${\tt rem}$ gives the remainder of the Euclidean division of two polynomials (division by decreasing power order).

We can enter the polynomials either by the list of their coefficients by decreasing power order, either under symbolic forms, and in this case the variable must be added as third argument (by default the variable is x).

 $rem(x^{3}-1, x^{2}-1)$ We get: x-1 We enter: $rem(t^{3}-1,t^{2}-1,t)$ We get: t-1 We enter: $rem(x^{2+2x+1}, x+3)$ Or we enter: rem(t^2+2t+1,t+3,t) We get: 4 or we enter: rem([1,2,1],[1,3]) We get:

[] 4

that is to say the polynomial poly1[4] or else the polynomial 4. To get the remainder of x, we enter $x^3 + 2x + 4$ by $x^2 + x + 2$:

 $rem(x^{3+2x+4}, x^{2+x+2})$

We get:

x+6

Or we enter:

We get:

[] 1,6[]

that is to say the polynomial ${\tt poly1[1,6]}$ or the polynomial ${\tt x+6}.$ We enter:

 $rem(t^{3+2t+4},t^{2+t+2},t)$

We get:

t+6

We enter, if we do not put the variable t as last argument:

We get:

0

6.11.4 Quotient and Euclidean remainder: guorem

quorem (or divide) gives the list of the quotient and the remainder of the Euclidean division (by decreasing power order) of two polynomials. (See also 6.9.3 and 6.10.7).

We can enter the polynomials either by the list of their coefficients by decreasing power order, either under symbolic forms, and in this case the variable must be added as third argument (by default the variable is x).

To get the quotient and the remainder of the division of $x^3 + 2x + 4$ by $x^2 + x + 2$, we enter:

 $quorem(x^{3}+2x+4, x^{2}+x+2)$

We get:

[x-1,x+6]

Or we enter:

```
quorem([1,0,2,4],[1,1,2])
```

We get:

```
[[1,-1],[1,6]]
```

that is to say the list of polynomials [poly1[1,-1], poly1[1,6]] then the quotient is the polynomial x-1 and the remainder is the polynomial x+6.

We enter:	
	<pre>quorem(t^3+2t+4,t^2+t+2,t)</pre>
We get:	
	[t-1,t+6]
We enter:	
	<pre>quorem(t^3+2t+4,t^2+t+2)</pre>
We get:	
	$[(t^3+2*t+4)/(t^2+t+2),0]$
We enter:	
	quorem(x^3-1,x^2-1)
We get:	
	[x, x-1]
We enter:	
	quorem(t^3-1,t^2-1,t)
We get:	
	[t,t-1]

6.11.5 GCD of polynomials by Euclid's algorithm: gcd igcd

gcd or igcd designates the GCD (Greatest Common Divisor) of two polynomials which may have several variables and also the GCD of a list of polynomials, or of a sequence of polynomials which may have several variables (see 6.6 for the GCD of integers). We can also put as parameters two lists of same length (or a matrix of two lines), in this case gcd returns the greatest common divisor of elements of same index (or of same column).

We enter:

gcd([x²-4,x*y-y],[x³-8,y²-x²*y])

Or we enter:

gcd([[x^2-4,x*y-y],[x^3-8,y^2-x^2*y]])

We get:

[x-2,y]

Examples We enter:

 $gcd(x^{2+2}x+1,x^{2-1})$

We get:

We enter:	
	gcd(x^2-2*x+1,x^3-1,x^2-1,x^2+x-2)
or	
g	cd([x^2-2*x+1,x^3-1,x^2-1,x^2+x-2])
We get:	
	x-1
We enter:	
A:=z^	2+x^2*y^2*z^2+(-(y^2))*z^2+(-(x^2))*z^2
	B:=x^3*y^3*z+(-(y^3))*z+x^3*z-z
	C:=gcd(A,B)
We get:	
	z*x*y+z*x-z*y-z
We enter:	
	factor(A)
We get:	
	(y-1) * (y+1) * (x-1) * (x+1) * z^2
We enter:	
	factor(B)
We get:	
	(x^2+x+1) * (x-1) * (y+1) * (y^2-y+1) * z
We enter:	
	factor(C)
We get:	
	(y+1) * (x-1) * z
For the polynomials with modular coefficients, we enter for example:	
g	cd((x^2+2*x+2) mod 5,(x^2-1) mod 5)
We get:	
	(1 % 5)*x-1 % 5
but if we enter:	
	gcd(x^2+2*x+2,x^2-1) mod 5)
We get:	

142

1%5

because the modular operation modular is done after the calculation of the GCD which has been calculated in $\mathbb{Z}[X]$.

6.11.6 Choose the algorithm of the GCD of two polynomials: ezgcd modgcd

ezgcd and modgcd designate the GCD (Greatest Common Divisor) of two polynomials (or of a list of polynomials, or of a sequence of polynomials) of several variables. ezgcd is calculated with the algorithm ezgcd, modgcd is calculated with the modular algorithm.

We enter: $gcd(x^{2-2}x^{+}y^{+}y^{-2-1}, x-y)$ or $ezgcd(x^{2}-2*x*y+y^{2}-1,x-y)$ or $modgcd(x^2-2*x*y+y^2-1, x-y)$ We get: 1 We enter: $gcd((x+y-1)*(x+y+1), (x+y+1)^{2})$ or we enter: $ezgcd((x+y-1)*(x+y+1),(x+y+1)^{2})$ or $modgcd((x+y-1)*(x+y+1), (x+y+1)^2)$ We get: x+y+1 We enter: $ezgcd((x+1)^{4}-y^{4}, (x+1-y)^{2})$ We get: "GCD not successfull Error: Bad Argument Value" but if we enter: $gcd((x+1)^{4}-y^{4}, (x+1-y)^{2})$ or $modgcd((x+1)^{4}-y^{4}, (x+1-y)^{2})$

143

We get:

x-y+1

6.11.7 LCM of two polynomials: lcm

lcm designates the LCM (Lowest Common Multiple) of two polynomials which may have several variables and also the LCM of a list of polynomials or of a sequence of polynomials which may have several variables (see 6.7 for the LCM of integers).

We enter: $lcm(x^{2+2}x+1, x^{2-1})$ We get: $(x+1) * (x^{2}-1)$ We enter: $lcm(x, x^{2+2}x+1, x^{2-1})$ or lcm([x,x^2+2*x+1,x^2-1]) We get: $(x^{2+x}) * (x^{2-1})$ We enter: $A := z^{2} + x^{2} + y^{2} + z^{2} + (-(y^{2})) + z^{2} + (-(x^{2})) + z^{2}$ $B:=x^{3}y^{3}z+(-(y^{3}))^{2}z+x^{3}z-z$ D:=lcm(A,B) We get: $(x*y*z-x*z+y*z-z)*(x^3*y^3*z+(-(y^3))*z+x^3*z-z)$ We enter: factor(A) We get: $(y-1) * (y+1) * (x-1) * (x+1) * z^2$ We enter: factor(B) We get: $(x^{2}+x+1)*(x-1)*(y+1)*(y^{2}-y+1)*z$ We enter: factor(D)

We get:

$$(x-1) * (x+1) * (x^2+x+1) * (y-1) * (y+1) * (y^2-y+1) * z^2$$

6.11.8 Bezout identity: egcd

It is the Bezout identity for polynomials (Extended Greatest Common Divisor). egcd takes two or three arguments: the polynomials A and B which are either in the form of expressions of one variable, (if the variable is not specified it is x), either supplied by the list of their coefficients by decreasing power order. Given 2 polynomials A(x), B(x), egcd or gcdex returns 3 polynomials [U(x), V(x), D(x)] such as: U(x) *A(x) +V(x) *B(x) =D(x) =GCD(A(x), B(x))We enter: $egcd(x^{2+2}x+1,x^{2-1})$ We get: [1, -1, 2*x+2]We enter: egcd([1,2,1],[1,0,-1]) We get: [[1],[-1],[2,2]] We enter: $egcd(t^{2+2}t+1,t^{2-1},t)$ We get: [1,-1,2*t+2] We enter: $egcd(x^{2}-2*x+1,x^{2}-x+2)$ We get: [x-2, -x+3, 4]We enter: egcd([1,-2,1],[1,-1,2]) We get: [[1,-2],[-1,3],[4]] We enter: $egcd(t^{2}-2*t+1,t^{2}-t+2,t)$ We get:

6.11.9 Solve polynomial of the form au + bv = c: abcuv

It is still the Bezout identity.

abcuv solves the polynomial equation

C(x) = U(x) * A(x) + V(x) * B(x)

in which the unknowns are the polynomials U and V and the parameters are the three polynomials, A, B, C where C must be a multiple of the GCD of A and B.

abcuv takes as argument thre polynomials expressions A, B, C and the name of their variable (by default x) (resp. 3 lists representing the coefficients by decreasing power order of 3 polynomials A, B, C). abcuv returns the list of two polynomial expressions U and V (resp. of two lists which are the coefficients by decreasing power order of U and V).

We enter:

 $abcuv(x^{2+2}x+1,x^{2-1},x+1)$

We get:

We enter:

abcuv(x^2+2*x+1,x^2-1,x^3+1)

We get:

 $[1/2*x^{2+1}/-2*x+1/2, -1/2*x^{2-1}/-2*x-1/2]$

We enter:

abcuv([1,2,1],[1,0,-1],[1,0,0,1])

We get:

[poly1[1/2,1/-2,1/2],poly1[1/-2,1/2,1/-2]]

6.11.10 Chinese remainder: chinrem

chinrem takes as argument two lists having each as components two polynomials eventually supplied by the list of their coefficients by decreasing power order.

chinrem returns a list of components of two polynomials.

chinrem([A,R],[B,Q]) returns the list of polynomials P and S such as:

 $S = R.Q, P = A \pmod{R}, P = B \pmod{Q}$

There is always a solution *P* if *R* and *Q* are prime to each other, and all the solutions are congruent modulus S = R * Q

Find the solutions P(x) of:

$$\begin{cases} P(x) = x \mod (x^2 + 1) \\ P(x) = x - 1 \mod (x^2 - 1) \end{cases}$$

We enter:

We get:

$$[[1/-2,1,1/-2], [1,0,0,0,-1]]$$

146

or we enter:

We get:

 $[1/-2 \times x^2 + x + 1/-2, x^4 - 1]$

so
$$P(x) = -\frac{x^2 - 2x + 1}{2} (mod x^4 - 1)$$

Other example: We enter:

chinrem([[1,2],[1,0,1]],[[1,1],[1,1,1]])

We get:

[[-1,-1,0,1],[1,1,2,1,1]]

or we enter:

chinrem([x+2,x^2+1],[x+1,x^2+x+1])

We get:

 $[-x^3-x^2+1, x^4+x^3+2*x^2+x+1]$

Chapter 7 Menu Polynomial

7.1 Canonical form: canonical form

 $\tt canonical_form$ takes as parameter a trinomial of the second degree that we want to put into the canonical form.

Example:

Transform into canonical form:

 $x^2 - 6x + 1$

We enter:

canonical form $(x^2-6*x+1)$

We find:

(x-3)^2-8

7.2 Numerical roots of a polynomial: proot

proot takes as argument a polynomial or the vector whose components are the coefficients of a polynomial (by decreasing order).

proot returns a vector whose components are the numerical roots of the polynomial.

To find the numerical roots of $P(x) = x^3 + 1$, we enter:

proot([1,0,0,1])

or we enter:

proot(x^3+1)

We get:

[-1,0.5+0.866025403784*i,0.5-0.866025403784*i]

To get the numerical roots of x^2 – 3, we enter:

proot([1,0,-3])

or:

 $proot(x^2-3)$

We get:

[1.73205080757, -1.73205080757]

To find the numerical roots of $P(x) = x^3 - 5 * x^2 + 8 * x - 4$, we enter:

proot([1,-5,8,-4])

or we enter:

```
[1.,2.,2.]
```

7.3 Roots exact of a polynomial

7.3.1 Exact boundaries of complex roots of a polynomial: complexroot

complexroot has two or four arguments: a polynomial and a real number, and eventually two complex α , β .

 if complexroot has two arguments, complexroot returns the list of vectors of coordinates the value of complex and exact roots of the polynomial and their multiplicity, or of coordinates an interval (the boundaries of the interval are the opposite vertices of a rectangle with sides parallel to the axis and in which is a root complex of the polynomial) and the multiplicity of this root.

If the interval is [a1 + ib1, a2 + ib2] we have $|a_1 - a_2| < and |b_1 - b_2| < \mathcal{E}$ and the root a + ib checks $a_1 \le a \le a_2$ and $b_1 \le b \le b_2$.

- if complexroot has four arguments, complexroot only returns the roots laying in the rectangle with sides parallel to the axis and of opposite vertices α , β .

To get the roots of $x^3 + 1$, we enter:

$$complexroot(x^3+1, 0.1)$$

We get:

[[-1,1],[[(4-7*i)/8,(8-13*i)/16],1],[[(8+13*i)/16,(4+7*i)/8],1]]

So for $x^3 + 1$:

-1 is a root of multiplicity 1, 1/2i * b is a root of multiplicity 1 with $-7/8 \le b \le -13/16$, 1/2i * c is root of multiplicity1 with $13/1 \le c \le 7/8$.

To get the roots of $x^3 + 1$ in the rectangle of opposite vertices -1, 1 + 2 * I, we enter:

 $complexroot(x^{3+1}, 0.1, -1, 1+2*i)$

We get:

```
[[-1,1],[[(8+13*i)/16,(4+7*i)/8],1]]
```

7.3.2 Exact values of complex rational roots of a polynomial: crationalroot

crationalroot has one or three arguments: a polynomial and eventually two complex α , β .

- if crationalroot has one argument, crationalroot returns the list of values of complex roots rational of the polynomial without tell the multiplicity of these roots.
- if crationalroot has three arguments, crationalroot only returns the complex rational roots laying in the rectangle of opposite vertices $[\alpha, \beta]$.

To get the roots rational and complex of $(x^2 + 4) * (2x - 3) = 2 * x^3 - 3 * x^2 + 8 * x - 12$, we enter:

 $crationalroot(2*x^{3}-3*x^{2}+8*x-12)$

We get:

148

7.4 Fraction rational, its roots and its exact poles

7.4.1 Roots and exact poles of a rational fraction: froot

froot takes as argument a rational fraction F(x).

froot returns a vector whose components are the roots and the poles of F(x) followed by their multiplicity.

The calculator returns the exact values of these roots or poles when possible and otherwise returns their numerical values.

We enter:

froot $(x^5-2x^4+x^3)/(x-2)$

We get:

[1,2,0,3,2,-1]

so for $F(x) = \frac{x^5 - 2x^4 + x^3}{x - 2}$: 1 is a double root,

0 is a triple root and 2 is a pole of order 1. We enter:

```
froot ((x^3-2*x^2+1)/(x-2))
```

We get:

```
[1,1,(1+sqrt(5))/2,1,(1-sqrt(5))/2,1,2,-1]
```

Note: to get the roots and the complex poles, we must have checked Complex in the CAS configuration (key giving the status line).

We enter:

```
froot ((x^{2+1})/(x-2))
```

We get:

```
[-i,1,i,1,2,-1]
```

7.5 Writing in powers of (x - a): ptayl

It is to write a polynomial P(x) in powers of (x - a). ptayl has two parameters: a polynomial P supplied in symbolic form or by the list of its coefficients, and a number a.

ptayl returns the polynomial Q such as Q(x - a) = P(x).

We enter:

 $ptayl(x^{2+2}x+1,2)$

We get the polynomial Q(x):

 $x^{2+6*x+9}$

We enter:

[1,6,9]

Warning!

We have:

$$P(x) = Q(x - a)$$

that is to say for the example:

 $x^{2} + 2x + 1 = (x - 2)^{2} + 6(x - 2) + 9$

7.6 Calculation with the exact roots of a polynomial: rootof

Be *P* and *Q* two polynomials supplied by the list of their coefficients, so rootof(P,Q) designates the value $P(\alpha)$ where α is the "largest" root of *Q* (one first compares the real parts and in case of equality one compare the imaginary parts).

Then, we can perform calculations with this value.

We enter:

We get:

1

indeed $x^2 + 2x - 3 = (x - 1)(x + 3)$ takes as largest root 1.

Other example : Be α the largest root in norm of $Q(x) = x^4 + 10x^2 + 1$. - Calculate $\frac{1}{\alpha}$

Calculate

We enter:

normal(1/rootof([1,0],[1,0,10,0,1]))

because P(x) = x is represented by [1,0]. We get:

rootof([[-1,0,-10,0],[1,0,10,0,1]])

which means that:

$$\frac{1}{\alpha} = -(\alpha)^3 - 10.\alpha$$

- Calculate $(\alpha)^2$.

We enter:

We have $\alpha = \text{rootof}([1, 0], [1, 0, 10, 0, 1])$ because P(x) = x is represented by [1,0], and to get α^2 , we raise α to square. We get:

or to get α^2 directly, we enter:

150

because $P(x) = x^2$ is represented by [1,0,0]. We get:

-5-2*sqrt(6)

This result can be checked because we have a biquadratic equation of reduced discriminant 25 - 1 = 24 = 4 * 6. We enter:

 $csolve(x^4+10x^2+1)$

We get:

[(i)*sqrt(-2*sqrt(6)+5), (-i)*sqrt(-2*sqrt(6)+5), (i)*sqrt(2*sqrt(6)+5), (-i)*sqrt(2*sqrt(6)+5)]

So $\alpha = i * \sqrt{2 * \sqrt{6} + 5}$ We enter:

((i)*sqrt(2*sqrt(6)+5))^2

We get:

We enter:

-5-2*sqrt(6)

7.7 Coefficients of a polynomial: coeff

coeff has three arguments: the polynomial, the name of the variable (or the list of names of the variables) the order (or the list of orders of variables).

 ${\tt coeff}$ returns the coefficient of the polynomial of specified order.

 $coeff(x^{3}-5x^{2}+8x-4,2)$ We get:
-5
We enter: $coeff(-x^{4}+3*x*y^{2}+x,y,2)$ We get:
3*x
We enter: $coeff(-x^{4}+3*x*y^{2}+x,[x,y],[1,2])$ We get:

7.8 Coefficients of a polynomial defined by its roots: pcoeff pcoef

pcoeff (or pcoef) takes as argument a list whose components are the roots of a polynomial P. pcoeff (or pcoef) returns a list of components the coefficients of the polynomial univariate P (by decreasing order).

We enter:

We get:

[1, -6, 11, -6, 0, 0]

that is to say $(x - 1)(x - 2)(x^2)(x - 3) = x^5 - 6x^4 + 11x^3 - 6x^2$.

7.9 Truncation of order n: truncate

truncate allows to truncate a polynomial at a supplied order. truncate is useful when we do series expansions by hand, or to transform a series expansion into a polynomial.

truncate has two arguments: a polynomial and an integer n.

truncate returns the polynomial truncated at order n (no terms of order greater than or equal to n+1).

We enter:

truncate($(1+x+x^{2}/2)^{3}, 4$)

We get:

(9*x^4+16*x^3+18*x^2+12*x+4)/4

We enter:

truncate(series(sin(x)),4)

We get:

(-x^3-(-6)*x)/6

We notice that the returned polynomial is reduced to common denominator.

7.10 List of divisors of a polynomial: divis

 ${\tt divis}$ takes as argument a symbolic polynomial (or a list of polynomials) and returns the list of divisors.

We enter:

divis(x^2-1)

We get:

$$[1, x-1, x+1, (x-1) * (x+1)]$$

We enter:

divis $(2t^2-2)$

We get:

```
[1,2,t-1,2*(t-1),t+1,2*(t+1),(t-1)*(t+1),2*(t-1)*(t+1)]
```

We enter:

divis([t^2,x^2-1])

We get:

[[1,t,t^2],[1,x+1,x-1,(x-1)*(x+1)]]

7.11 List of factors of a polynomial: factors

factors takes as argument a polynomial or a list of polynomials. factors gives the list of factors of the polynomial with their multiplicity.

We enter: factors (x^2+2x+1) We get: [x+1,2] We enter: factors (x^4-2x^2+1) We get: [x-1,2,x+1,2] We enter: factors ($[x^3-2x^2+1, x^2-x]$) We get: [[x-1,1,x^2-x-1,1],[x,1,x-1,1]] We enter: factors ($[x^2, x^2-1]$) We get: [[x,2],[x+1,1,x-1,1]]

7.12 GCD of polynomials by Euclid's algorithm: gcd

gcd designates the GCD (Greatest Common Divisor) of two polynomials pou-vant get several variables and also the GCD of a list of polynomials or of a sequence of polynomials which may have several variables (see 6.6 for the GCD of integers).

We can also put as parameters two lists of same length (or a matrix of two lines), in this case gcd returns the greatest common divisor of elements of same index (or of a same column).

We enter: $gcd(x^{2+2}x+1,x^{2-1})$ We get: x+1 We enter: gcd([x^2-4,x*y-y],[x^3-8,y^2-x^2*y]) Or we enter: gcd([[x²-4,x*y-y],[x³-8,y²-x²*y]]) We get: [x-2,y] We enter: gcd(x^2-2*x+1,x^3-1,x^2-1,x^2+x-2) or gcd([x^2-2*x+1,x^3-1,x^2-1,x^2+x-2]) We get: x-1 We enter: $A := z^{2} + x^{2} + y^{2} + z^{2} + (-(y^{2})) + z^{2} + (-(x^{2})) + z^{2}$ $B := x^{3} + y^{3} + z + (-(y^{3})) + z + x^{3} + z - z$ C:=gcd(A,B)We get: z*x*y+z*x-z*y-z We enter: factor(A) We get: $(y-1) * (y+1) * (x-1) * (x+1) * z^2$ We enter: factor(B) We get:

lcm(x^2+2*x+1,x^2-1)

We get:

(x+1) * (x^2-1)

We enter:

 $lcm(x, x^{2+2}x+1, x^{2-1})$

or

lcm([x,x^2+2*x+1,x^2-1])

We get:

 $(x^{2+x}) * (x^{2-1})$

We enter:

 $A := z^{2} + x^{2} + y^{2} + z^{2} + (-(y^{2})) + z^{2} + (-(x^{2})) + z^{2}$

1 %% 5

because the modular operation is performed after the calculation of the GCD which has been calculated in Z [X].

7.13 LCM of two polynomials: lcm

lcm designates the LCM (lowest common multiple) of two polynomials which may have several variables and also the LCM of a list of polynomials or of a sequence of polynomials which may have several variables (see 6.7 for the LCM of integers).

We enter:

gcd(x^2+2*x+2,x^2-1) %% 5

(1 %% 5) *x -1 %% 5

gcd((x^2+2*x+2) %% 5,(x^2-1) %% 5)

For the polynomials with modular coefficients, we enter, for example, because %% is there used to

We enter:

factor(C)

 $(x^{2}+x+1)*(x-1)*(y+1)*(y^{2}-y+1)*z$

We get:

We get:

We get:

but if we enter:

designate a modular number:

(y+1) * (x-1) * z

	B:=x^3*y^3*z+(-(y^3))*z+x^3*z-z
	D:=lcm(A,B)
We get:	
	$(x*y*z-x*z+y*z-z)*(x^3*y^3*z+(-(y^3))*z+x^3*z-z)$
We enter:	
	factor(A)
We get:	
	(y-1) * (y+1) * (x-1) * (x+1) * z^2
We enter:	
	factor(B)
We get:	
	(x^2+x+1) * (x-1) * (y+1) * (y^2-y+1) * z
We enter:	
	factor(D)
We get:	

156

 $(x-1)*(x+1)*(x^{2}+x+1)*(y-1)*(y+1)*(y^{2}-y+1)*z^{2}$

7.14 Create

7.14.1 Transform a polynomial into a list (internal recursive dense format): symb2poly

symb2poly takes as argument a polynomial, supplied with a polynomial writting, of a variable (resp. several variables), and the name of this formal variable (by default x) (resp. the sequence of names of these variables).

symb2poly transforms this polynomial writting, into the list of coefficients by decreasing power order according to the name of the variable supplied as second argument (resp. the recursive writting of the list of coefficients by decreasing power order according to the names of variables supplied as second argument: the result is the list of coefficients of the first variable, coefficients which are itself polynomials which will be supplied in form of the list of coefficients of the second variable, etc., ...). **Warning!** If the second argument is a list, the result is the writting of the polynomial under internal format.

We enter:

symb2poly(x^2-1)

Or we enter:

 $symb2poly(x^2-1, x)$

Or we enter:

symb2poly(y^2-1,y)

[1,0,-1]

We enter:

```
symb2poly(x*y^{2+2y-1}, x)
```

We get:

[y^2,2y-1]

We enter:

symb2poly($x*y^2+2y-1$,y)

We get:

[x,2,-1]

7.14.2 Transform the internal sparse distributed format of the polynomial into a polynomial writting: poly2symb

poly2symb takes as argument the list of coefficients by decreasing power order of a polynomial and a name of formal variable (by default x) (resp. the internal sparse (\rightarrow translation to be checked) distributed format of the polynomial that is to say the sum of monomials such as: $\$ (px, py, pz] $\$ and a list of formal variables such as [x, y, z] which represents the monomial $cx^{px}y^{py}z^{pz}$).

poly2symb transforms the list of coefficients by decreasing power order of a polynomial (resp. the sum of $\ensuremath{\ensuremath{\&\ensuremath{\&\ensuremath{B}\ensuremath{\&\ensuremath{B}\ensuremath{\&\ensuremath{B}\ensuremath{B}\ensuremath{\ensuremath{B}\ensuremath{\ensuremath{B}\ensuremath{\ensuremath{B}\ensuremath{\ensuremath{B}\ensuremath{\ensuremath{B}\ensuremath{\ensuremath{B}\ensuremath{\ensuremath{B}\ensuremath{\ensuremath{\ensuremath{B}\ensuremath{\ensuremath{B}\ensuremath{$

We enter:

poly2symb([1,0,-1])

Or we enter:

poly2symb([1,0,-1],x)

We get:

x*x-1

We enter:

poly2symb([1,0,-1],y)

We get:

y*y−1

7.14.3 Coefficients of a polynomial defined by its roots: pcoeff pcoef

pcoeff (or pcoef) takes as argument a list of components the roots of a polynomial P. pcoeff (or pcoef) returns a list of components the coefficients of the polynomial univariate P (by decreasing order).

We enter:

that is to say $(x - 1)(x - 2)(x^2)(x - 3) = x^5 - 6x^4 + 11x^3 - 6x^2$.

7.14.4 Coefficients of a rational fraction defined by its roots and its poles: fcoeff

fcoeff takes as argument a vector whose components are the roots and the poles of a rational fraction F(x) followed by their multiplicity. fcoeff returns the rational fraction F(x).

We enter:

We get:

```
(x-1)^2*x^3*(x-2)^-1
```

7.14.5 Coefficients of the term of highest degree of a polynomial: lcoeff

lcoeff takes as argument a polynomial supplied in symbolic form or by the list of its coefficients. lcoeff returns the coefficient of highest degree of this polynomial (lcoeff=leading coefficient).

We enter:

```
lcoeff([2,1,-1,0])
We get:
2
We enter:
1 coeff(3*x^2+5*x,x)
We get:
3
We enter:
1 coeff(3*x^2+5*x*y^2,y)
We get:
5*x
```

7.14.6 Evaluation of a polynomial: polyEval

<code>polyEval</code> takes as argument a polynomial p supplied by the list of its coefficients and a real a. <code>polyEval</code> returns the numerical or exact value of <code>p(a)</code>.

We enter:

```
polyEval([1,0,-1],sqrt(2))
```

```
sqrt(2)*sqrt(2)-1
```

Then:

```
normal(sqrt(2)*sqrt(2)-1)
```

We get:

1

We enter:

polyEval([1,0,-1],1.4)

We get:

0.96

7.14.7 Minimal polynomial: pmin

pmin has one (resp. two) argument(s).

pmin takes as argument a matrix A of degree n (resp. a matrix A of degree n and a name of formal variable).

pmin returns the minimal polynomial of *A* written as a list of its coefficients (resp. the minimal polynomial *P* of *A* written in symbolic form by using the name of variable supplied as argument). The minimal polynomial *P* of *A* is the polynomial of lowest degree which makes *A* equals zero (P(A) = 0).

We enter:

pmin([[1,0],[0,1]])

We get:

[1,-1]

Or we enter:

pmin([[1,0],[0,1]],x)

We get:

x-1

So the minimal polynomial of [[1,0], [0,1]] is x - 1.

We enter:

pmin([[1,1,0],[0,1,1],[0,0,1]])

We get:

[1,-3,3,-1]

We enter:

pmin([[1,1,0],[0,1,1],[0,0,1]],x)

160

We get:

So the minimal polynomial of [[1,1,0], [0,1,1], [0,0,1]] is $x^3 - 3 * x^2 + 3 * x - 1$. We enter:

We get:

[1,-4,4]

We enter:

pmin([[2,1,0],[0,2,0],[0,0,2]],x)

We get:

x^2-4*x+4

So the minimal polynomial of [[2,1,0], [0,2,0], [0,0,2]] is $x^2 - 4x + 4$.

7.14.8 Companion matrix of a polynomial: companion

companion takes as argument a univariate polynomial *P* and the name of its variable. companion returns the matrix which has for characteristic polynomial the polynomial *P*. If $P(x) = x + a_{n-1}x^{n-1} + \ldots + a - 1x + a_0$, this matrix equals the matrix unity of order n - 1bordered (\rightarrow translation to be checked) by $[0, 0..., 0, -a_0]$ as first line, and by $[-a_0, -a_1, \ldots, -a_{n-1}]$ as last column.

We enter:

 $companion(x^2+5x-7,x)$

We get:

[[0,7],[1,-5]]

We enter:

 $companion(x^{4}+3x^{3}+2x^{2}+4x-1, x)$

We get:

```
[[0,0,0,1],[1,0,0,-4],[0,1,0,-2],[0,0,1,-3]]
```

7.14.9 Random polynomials: randpoly randPoly

randpoly randPoly takes as parameter an integer n. randPoly returns the coefficients of a polynomial of degree n and whose coefficients are random integers equally distributed on -99..+99.

We enter in HOME or in the CAS:

randPoly(4)

randpoly(4)

We get for example:

```
[4,53,-45,80,-99)
```

7.14.10 Change the order of variables: reorder

reorder has two parameters: an expression and a list containing the names of variables in a certain order.

reorder expands the expression by order of the variables supplied as second parameter.

We enter:

```
reorder(x^2+2*x*a+a^2+z^2-x*z,[a,x,z])
```

We get:

a^2+2*a*x+x^2-x*z+z^2

Warning! The variables must not be assigned.

7.15 Algebra

7.15.1 Euclidean quotient of two polynomials: quo

 ${\tt quo}$ gives the quotient of the Euclidean division of two polynomials (division by decreasing power order).

We can give the polynomials either by the list of their coefficients by decreasing power order, either in symbolics forms, and in this case the variable must be added as third argument (by default the variable is x).

We enter:

```
quo(x^2+2x+1,x+3)
```

We get:

x-1

We enter:

quo(t^2+2t+1,t+3,t)

We get:

t-1

or we enter:

quo([1,2,1],[1,3])

We get:

[1,-1]

that is to say the polynomial poly1[1,-1]. To get the quotient of $x^3 + 2x + 4$ by $x^2 + x + 2$, we enter: $quo(x^3+2x+4, x^2+x+2)$

We get:

x-1

Or we enter:

We get:

[] 1,-1 []

that is to say the polynomial poly1[1, -1] or else the polynomial x-1.

We enter:

 $quo(t^3+2t+4,t^2+t+2,t)$

We get:

t-1

If we do not put the variable t as last argument, we enter:

 $quo(t^3+2t+4,t^2+t+2)$

We get:

(t^3+2*t+4)/(t^2+t+2)

7.15.2 Euclidean remainder of two polynomials: rem

 ${\tt rem}$ gives the remainder of the Euclidean division of two polynomials (division by decreasing power order).

We can give the polynomials either by the list of their coefficients by decreasing power order, either in symbolic forms, and in this case the variable must be added as third argument (by default the variable is x).

We enter:

 $rem (x^{3}-1, x^{2}-1)$ We get: x-1We enter: $rem (t^{3}-1, t^{2}-1, t)$ We get: t-1We enter: $rem (x^{2}+2x+1, x+3)$ Or we enter:

4

We get:

or we enter:

rem([1,2,1],[1,3])

We get:

[] 4

that is to say the polynomial poly1[4] or else the polynomial 4.

To get the remainder of $x^3 + 2x + 4$ by $x^2 + x + 2$, we enter:

 $rem(x^{3+2x+4}, x^{2+x+2})$

We get:

x+6

Or we enter:

rem([1,0,2,4],[1,1,2])

We get:

[1,6]

that is to say the polynomial poly1[1, 6] or else the polynomial x+6.

We enter:

```
rem(t^3+2t+4,t^2+t+2,t)
```

We get:

t+6

If we do not put the variable t as last argument, we enter:

rem(t^3+2t+4,t^2+t+2)

We get:

0

7.15.3 Degree of a polynomial: degree

degree takes as argument a polynomial supplied in symbolic form or by the list of its coefficients. degree returns the degree of this polynomial (degree of the monomial of highest degree).

We enter:

degree (x^3+x)

We get:

We enter:

degree([1,0,1,0])

We get:

3

7.15.4 Valuation of a polynomial: valuation

 ${\tt valuation}\ {\tt or}\ {\tt ldegre}\ {\tt takes}\ {\tt as}\ {\tt argument}\ {\tt a}\ {\tt polynomial}\ {\tt supplied}\ {\tt in}\ {\tt symbolic}\ {\tt form}\ {\tt or}\ {\tt by}\ {\tt the}\ {\tt list}\ {\tt of}\ {\tt its}\ {\tt coefficients}.$

valuation or ldegre returns the valuation of this polynomial, it is the degree of the monomial of lowest (ldegree=low degree).

We enter:

valuation	(x^3+x)
varuation	$(A \cup A)$

We get:

We enter:

valuation([1,0,1,0])

1

We get:

1

7.15.5 Coefficient of the term of highest degree of a polynomial: lcoeff

lcoeff takes as argument a polynomial supplied in symbolic form or by the list of its coefficients. lcoeff returns the coefficient of highest degree of this polynomial (lcoeff=leading coefficient).

We enter:

	lcoeff([2,1,-1,0])
We get:	
	2
We enter:	
	$lcoeff(3*x^{2}+5*x,x)$
We get:	
	3
We enter:	
	$lcoeff(3*x^2+5*x*y^2,y)$
We get:	

3

5*x

7.15.6 Put in factor of x^n in a polynomial: factor xn

factor_xn takes as argument a polynomial P. factor_xn returns the polynomial P in which we have put in factor x^n where n is the degree of P (n=degree (P)).

We enter:

factor $xn(-x^4+3)$

We get:

 $x^{4} + (-1 + 3 + x^{-4})$

7.15.7 GCD of coefficients of a polynomial: content

content takes as arguments a polynomial P supplied in symbolic form or by the list of its coefficients and the name of the variable (by default x).

 $\tt content$ designates the GCD (Greatest Common Divisor) of coefficients the polynomial $\tt P.$

We enter:

 $content(6*x^2-3*x+9)$

or we enter:

 $content(6*t^2-3*t+9,t)$

or:

content([6,-3,9]))

3

We get:

7.15.8 Primitive part of a polynomial: primpart

primpart takes as argument a polynomial P supplied in symbolic form or by the list of its coefficients. primpart returns the polynomial P divided by the GCD (Greatest Common Divisor) of its coefficients.

We enter:

 $primpart(6x^2-3x+9)$

or:

primpart([6,-3,9],x))

We get:

 $2 \times x^2 - x + 3$

7.15.9 Sturm sequence and number of changes of the sign of P on]a; b]: sturm

sturm has two or four parameters: a polynomial expression P, or a rational fraction P/Q, and the name of the variable, or a polynomial expression P, the name of the variable and two numbers a and b.

When there are two parameters, sturm returns the list of Sturm series and their multiplicity for *P* or for *P* and for *Q* (sturm is then similar to sturmseq).

- When there are four parameters, sturm behaves as sturmab:
 - if a and b are reals, sturm returns the number of changes of sign of P on]a; b]
 - if *a* or *b* is complex, sturm returns the number of complex roots laying inside the rectangle of opposite vertices *a* and *b*.

We enter:

 $sturm(2*x^{3}+2, x)$

We get:

[2, [[1, 0, 0, 1], [3, 0, 0], -9], 1]

We enter:

 $sturm((2*x^3+2)/(x+2),x)$

We get:

[2,[[1,0,0,1],[3,0,0],-9],1,[[1,2],1]]

We enter:

 $sturm(x^{2}*(x^{3}+2), x, -2, 0)$

We get:

1

7.15.10 Number of changes of sign on [*a*; *b*]: sturmab

sturmab has four parameters: a polynomial expression P, the name of the variable and two numbers a and b.

- if a and b are reals, sturmab returns either a strictly positive number which is the number of changes of sign of P on]a; b], either 0 if P remains of constant positive sign or null on]a; b], either -1 if P remains of constant negative sign or null on]a; b]. Thus, sturmab let us know the number of roots on [a, b] of the polynomial P/G with G = gcd(P, diff(P)).
- if a or b is complex, the number of complex roots laying inside the rectangle of opposite vertices a and b.

We enter:

```
sturmab(x^{2}*(x^{3}+2), x, -2, 0)
```

We get:

1

We enter:

```
sturmab(x^3-1,x,-2-i,5+3i)
```

We get:

We enter:

sturmab(x^3-1,x,-i,5+3i)

We get:

1

Warning!

P must be supplied by its symbolic expression, and, if we enter:

sturmab([1,0,0,2,0,0],x,-2,0)

we get:

Bad argument type.

7.15.11 Sequence of Sturm: sturmseq

sturmseq takes as parameter a polynomial expression P or a rational fraction P/Q.

sturmseq returns the list of Sturm series and their multiplicity for *P*, or for *P* and *Q*.

The series of sturm $R_1, R_2, ...$ is obtained from the factor *F* without square of *P*. To get *F* starting from the decomposition of *P* in prime factors, one removes the square terms and one transforms the odd powers in powers 1.

R1 is the opposite of the remainder of the Euclidean division of F by F' then, R_2 is the opposite of the remainder of the Euclidean division of F' by R_1

and so on until $R_k = 0$.

We enter:

 $sturmseq(2*x^3+2)$

or

sturmseq(2*y^3+2,y)

We get:

[2,[[1,0,0,1],[3,0,0],-9],1]

The first term gives the GCD of the coefficients of the numerator (here 2), the last term gives the denominator (here 1). Between these two terms, we have the series of polynomials $[x^3 + 1, 3x^2, -9]$. We enter:

sturmseq($(12*x^{3}+4)/(6*x^{2}+3), x$)

We get:

[4, [[3,0,0,1], [9,0,0], -81], 3, [[2,0,1], [4,0], -16]]

The first term gives the GCD of the coefficients of the numerator (here 4), then the Sturm series of the numerator ([[3,0,0,1], [9,0,0], -81]), then the the GCD of the coefficient of the denominator (here 3), and the Sturm series of the denominator ([[2,0,1], [4,0], -16]). We have the series of polynomials $[3x^3 + 1, 9x^2, -81]$ for the numerator and, $[2x^2 + 1, 4x, -16]$ for the denominator.

We enter:

 $sturmseq((x^{3}+1)^{2}, x)$

We get:

[1,1]

Indeed, the square terms are removed and F = 1.

We enter:

$$sturmseq(3*(3*x^3+1)/(2*x+2),x)$$

We get:

[3, [[3,0,0,1], [9,0,0], -81], 2, [[1,1],1]]

The first term gives the GCD of the coefficients of the numerator (here 3), the second term gives the series of polynomials (here $3x^3+1$, $9x^2$, 81), the third term gives the GCD of the coefficients of the denominator (here 2), the fourth term gives the series of polynomials of the denominator (x+1,1). Warning!

P must be supplied by its symbolic expression, and, if we enter:

sturmseq([1,0,0,1],x)

we get:

Bad argument type.

7.15.12 Sylvester matrix of two polynomials: sylvester

sylvester takes as arguments two polynomials. sylvester returns the Sylvester matrix *S* of two polynomials. For two polynomials $A(x) = \sum_{i=0}^{i=n} a_i x^i$ and $B(x) = \sum_{i=0}^{i=m} b_i x^i$, the Sylvester matrix *S* is a square matrix of dimension m+n whose m=degree (B(x) first lines are composed of coefficients of A(x):

$$\begin{pmatrix} s_{11} = a_n & s_{12} = a_{n-1} & \cdots & s_{1(n+1)} = a_0 & 0 & \cdots & 0 \\ s_{21} = 0 & s_{22} = a_n & \cdots & s_{2(n+1)} = a_1 & s_{2(n+2)} = a_0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ s_{m1} = 0 & s_{m2} = 0 & \cdots & s_{m(n+1)} = a_{m-1} & s_{m(n+2)} = a_{m-2} & \cdots & a_0 \end{pmatrix}$$

and the n=degree(A(x)) following lines are composed the same way of coefficients of B(x):

$$\begin{pmatrix} s_{(m+1)1} = b_m & s_{(m+1)2} = b_{m-1} & \cdots & s_{(m+1)(m+1)} = b_0 & 0 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots\\ s_{(m+n)1} = 0 & s_{(m+n)2} = 0 & \cdots & s_{(m+n)(m+1)} = b_{n-1} & b_{n-2} & \cdots & b_0 \end{pmatrix}$$

We enter:

sylvester
$$(x^3-p^*x+q, 3^*x^2-p, x)$$

We get:

$$[[1,0,-p,q,0],[0,1,0,-p,q],[3,0,-p,0,0], [0,3,0,-p,0],[0,0,3,0,-p]]$$

We enter:

We get:

-4*p^3-27*q^2

7.15.13 Resultant of two polynomials: resultant

resultant takes as arguments two polynomials.

resultant returns the resultant of two polynomials.

The resultant is the determinant of the Sylvester matrix S.

For the two polynomials $(x) = \sum_{i=0}^{i=n} a_i x^i$ and $B(x) = \sum_{i=0}^{i=m} b_i x^i$, the Sylvester matrix *S* is a square matrix of dimension m + n whose m first lines are composed of coefficients of A(x):

 $\begin{pmatrix} s_{00} = a_n & s_{01} = a_{n-1} & \cdots & s_{0n} = a_0 & 0 & \cdots & 0\\ s_{10} = 0 & s_{11} = a_n & \cdots & s_{1n} = a_1 & s_{1(n+1)} = a_0 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots\\ s_{(m-1)0} = 0 & s_{(m-1)1} = 0 & \cdots & s_{(m-1)n} = a_{m-1} & s_{(m-1)(n+1)} = a_{m-2} & \cdots & a_0 \end{pmatrix}$

and the *n* following lines are composed the same way of from coefficients of B(x):

We enter:

resultant
$$(x^3-p^*x+q, 3^*x^2-p, x)$$

We get:

We look for two polynomials $U(x) = \alpha * x + \beta$ (of degree 1) and $V(x) = \gamma * x^2 + \delta * x + \varepsilon$ (of degree 2) so that $U(x) * (x^3 - p * x + q) + V(x) * (3 * x^2 - p) = 1$ Then, we must solve a linear system of five equations and five unknowns, which are $\alpha, \dots \delta, \eta$ (**Warning!** $\varepsilon = 10^{-10}$).

We enter:

We get:

```
poly1[alpha+3*gamma,beta+3*delta,-alpha*p-p*gamma+3*eta,
```

The matrix A of this system is then:

$$A = \begin{pmatrix} 1 & 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & 3 & 0 \\ -p & 0 & -p & 0 & 3 \\ q & -p & 0 & -p & 0 \\ 0 & q & 0 & 0 & -p \end{pmatrix}$$

the Sylvester matrix S is the transpose matrix of A:
$$S = \begin{pmatrix} 1 & 0 & -p & 0 & 3 \\ 0 & 1 & 0 & -p & q \\ 3 & 0 & -p & 0 & 0 \\ 0 & 3 & 0 & -p & 0 \\ 0 & 0 & 3 & 0 & -p \end{pmatrix}$$

We have det (b) = det (C) = 4tp 02+27tp 02

We have det (A) = det (S) = $-4*p^{3}+27*q^{2}$

In fact, we solve UP + VQ = C with any C such as deg(C) < deg(P) + deg(Q) *i.e.* we look for U and V such as deg(U) < deg(Q) and deg(V) < deg(P) (strict inequalities) which make

UP + VQ = 1. When the system is a Cramer system, there is a unique solution and, arithmetically speaking, it corresponds to *P* and *Q* prime to each other (and reciprocally). So, if det(*A*) = det(*S*) is not null, *U* and *V* exist and are unique, so the two polynomials

 $x^3 - p * x + q$ and $3 * x^2 - p$ are prime to each other and reciprocally if the two polynomials $x^3 - p * x + q$ and $3 * x^2 - p$ are prime to each other *U* and *V* such as

deg(U) < deg(Q) and deg(V) < deg(P) exist and are unique so det(A) = det(S) is not null.

So if this determinant is null, the two polynomials $x^3 - p * x + q$ and $3 * x^2 - p$ are not prime to each other.

Note:

We have: discriminant (P) = resultant (P, P') /lcoeff (P).

Example of the use of the resultant:

Be *F*1 and *F*2 two fixed points, and a variable point *A* on the circle of center *F*1 and radius 2*a*. We want to find the cartesian equation of the locus of the points *M*, intersection of *F*1*A* and the perpendicular bisector of *F*2*A*: we have MF1 + MF2 = MF1 + MA = F1A = 2a then *M* draws an ellipse of foci *F*1 and *F*2 and major axis 2*a*.

Let us choose as orthonormal basis the one of center F1 and axis Ox of vector

$\overrightarrow{F1F2}$. We have:

 $A = (2a\cos(\theta); 2a\sin(\theta))$ where θ is the angle (0x, 0A). We choose as parameter $t = \tan(\theta/2)$ so that the coordinates of *A* are a rational function of the parameter *t*. Then, we have:

$$A = (ax; ay) = \left(2a\frac{1-t^2}{1+t^2}; 2a\frac{2t}{1+t^2}\right)$$

We consider F1F2 = 2c and we note *I* the midpoint of *AF2*. We have: F2 = (2c, 0) and

$$I = \left(c + \frac{ax}{2}; \frac{ay}{2}\right) = \left(c + a \frac{1 - t^2}{1 + t^2}; a \frac{2t1 - t^2}{1 + t^2}\right)$$

IM is perpendicular to *AF*2 then M = (x; y) checks the equation eq1 = 0 with: eq1 := (x - ix) * (ax - 2 * c) + (y - iy) * ay

M = (x; y) is one F1A then M checks the equation eq2 = 0 with: $eq2: = \frac{y}{x} - \frac{ay}{ax}$ We have:

resultant (eq1, eq2, t) is a polynomial eq3 of x and y, eq3 is independent from t and there are polynomials of t, U and V such as: U(t) * eq1 + V(t) * eq2 = eq3.

We enter:

We get as resultant:

$$\begin{array}{c} -\,(\,64\cdot\,(x^{\,2}+y^{\,2})\cdot\,(x^{\,2}\cdot a^{\,2}-x^{\,2}\cdot c^{\,2}+-2\cdot x\cdot a^{\,2}\cdot c+2\cdot x\cdot c^{\,3}-a^{\,4}+2\cdot a^{\,2}\cdot c^{\,2}+a^{\,2}\cdot y^{\,2}-c^{\,4})\,) \end{array}$$

The factor $-64 \cdot (x^2+y^2)$ never vanishes, then the equation of the locus is:

$$x^{2}a^{2} - x^{2}c^{2} + -2xa^{2}c + 2xc^{3} - a^{4} + 2a^{2}c^{2} + a^{2}y^{2} - c^{4} = 0$$

By taking as origin of the basis in 0 midpoint of F1F2, one finds back the cartesian equation of the ellipse. To do this change of of origin, we have

 $\overrightarrow{F1M} = \overrightarrow{F1O} + \overrightarrow{OM}$, so we enter:

normal(subst(
$$x^2 \cdot a^2 - x^2 \cdot c^2 + -2 \cdot x \cdot a^2 \cdot c + 2 \cdot x \cdot c^3 - a^4 + 2 \cdot a^2 \cdot c^2 + a^2 \cdot y^2 - c^4$$
, $[x, y] = [c+X, Y]$))

We get:

or else if we put $b^2 = a^2 - c^2$

We get:

that is to say after division by a^2b^2 , *M* checks the equation:

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$$

Another example of use of the resultant

Be F1 and F2 two fixed points and a variable point A on the circle of center F1 and radius 2a. We want to find the cartesian equation of the envelop of the perpendicular bisector D of F2A (we know that the perpendicular bisector of F2A is tangent to the ellipse of foci F1 and F2 and major axis 2a). Let us choose as orthonormal basis the one of center F1 and axis Ox of vector

 $\overrightarrow{F1F2}$. We have:

 $A = (2a\cos(\theta); 2a\sin(\theta))$ where θ is the angle (0x, 0A). We choose as parameter $t = \tan(\theta/2)$ so that the coordinates of *A* are a rational function of parameter *t*. We have then:

$$A = (ax; ay) = \left(2a\frac{1-t^2}{1+t^2}; 2a\frac{2t}{1+t^2}\right)$$

We consider F1F2 = 2c and we note I the midpoint of AF2. We have: F2 = (2c, 0)and

$$I = \left(c + \frac{ax}{2}; \frac{ay}{2}\right) = \left(c + a \frac{1 - t^2}{1 + t^2}; a \frac{2t1 - t^2}{1 + t^2}\right)$$

D is perpendicular to AF2 then D has for equation: eq1 = 0 with: eq1:=(x - ix) * (ax - 2 * c) + (y - iy) * ayThe envelop of D is then the locus of M intersection of D and D' of equation eq2 = 0 with eq2:= diff(eq1,t).

We enter:

factor(resultant(eq1,eq2,t))

We get as resultant:

$$(-(64 \cdot a^2)) \cdot (x^2+y^2) \cdot (x^2 \cdot a^2-x^2 \cdot c^2+-2 \cdot x \cdot a^2 \cdot c+2 \cdot x \cdot c^3)$$

The factor $-64 \cdot (x^2+y^2)$ never vanishes then the equation of the locus is: $x^{2}a^{2} - x^{2}ac^{2} + -2xa^{2}c + 2xc^{3} - a^{4} + 2a^{2}c^{2} + a^{2}cy^{2} - c^{4} = 0$ By taking as origin of the basis in O midpoint of F1F2, we find as previously the cartesian equation of the ellipse:

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$$

 $\tt chinrem$ takes as argument two lists having each as components two polynomials eventually supplied by the list of their coefficients by decreasing power order.

chinrem returns a list of components of two polynomials.

chinrem([A,R],[B,Q]) returns the list of polynomials P and S such as:

$$S = R.Q, P = A \pmod{R}, P = B \pmod{Q}$$

There is always a solution *P* if *R* and *Q* are prime to each other, and all the solutions are congruent modulus S = R * Q

Find the solutions P(x) of:

$$\begin{cases} P(x) = x \mod (x^2 + 1) \\ P(x) = x - 1 \mod (x^2 - 1) \end{cases}$$

We enter:

chinrem([[1,0],[1,0,1]],[[1,-1],[1,0,-1]])

We get:

[[1/-2,1,1/-2],[1,0,0,0,-1]]

or we enter:

chinrem([x,x^2+1],[x-1,x^2-1])

We get:

 $[-1/2 \times 2 \times 2 \times -1/2, \times 4 - 1]$

so

$$P(x) = \frac{-x^2 - 2x + 1}{2} (mod \ x^4 - 1)$$

Other example:

We enter:

We get:

[[-1,-1,0,1],[1,1,2,1,1]]

or we enter:

```
chinrem([x+2,x^2+1],[x+1,x^2+x+1])
```

We get:

 $[-x^3-x^2+1, x^4+x^3+2*x^2+x+1]$

7.16 Special

7.16.1 Cyclotomic polynomial: cyclotomic

cyclotomic takes as parameter an integer n.

 $c_{yclotomic}$ returns the list of coefficients of the cyclotomic polynomial of degree *n*. It is the polynomial whose zeros are all the n-th roots and primitives of the unity (an n-th root of the unity is primitive if its powers generate all the others n-th roots of the unity).

173

For example, for n = 4, the fourth root of the unity are: $\{1, i, -1, -i\}$, and the primitive roots are: $\{i, -i\}$. So the cyclotomic polynomial of degree four is $(x - i) \cdot (x + i) = x^2 + 1$.

We enter:

```
cyclotomic(4)
```

We get:

[1,0,1]

We enter:

cyclotomic(5)

We get:

[1, 1, 1, 1, 1]

So the cyclotomic polynomial of degree 5 is $x^4 + x^3 + x^2 + x + 1$ and we have $(x - 1) * (x^4 + x^3 + x^2 + x +) = x^5 - 1$.

We enter:

cyclotomic(10)

We get:

[1, -1, 1, -1, 1]

So the cyclotomic polynomial of degree 10 is $x^4 - x^3 + x^2 - x + 1$ and we have $(x^5 - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) = x^{10} - 1$ We enter:

cyclotomic(20)

We get:

[1, 0, -1, 0, 1, 0, -1, 0, 1]

So the cyclotomic polynomial of degree 20 is $x^8 - x^6 + x^4 - x^2 + 1$ and we have $(x^{10} - 1) * (x^2 + 1) * (x^8 - x^6 + x^4 - x^2 + 1) = x^{20} - 1$

7.16.2 Groebner basis: gbasis

gbasis a at least two arguments: a list of polynomials of several variables and the list of the names of these variables.

gbasis returns a Groebner basis of the polynomial ideal generated by the polynomials supplied as first argument.

We choose to order the monomials by lexicographical order in accordance with the list supplied as last argument and by decreasing power order: for example we write $x^2 * y^4 * z^3$ then $x^2 * y^3 * z^4$ if the second argument is [x, y, z] because (2, 4, 3) > (2, 3, 4) but we write $x^2 * y^3 * z^4$ then $x^2 * y^4 * z^3$ if the second argument is [x, z, y].

If *I* is an ideal and if $(G_k)_{k \in K}$ is a Groebner basis of the ideal *I*, so, if *F* is a polynomial not null of *I*, the dominant term of *F* is divisible by the dominant term of a G_k .

Property: if we do the Euclidean division of *F* by one of the G_k and then, if we do it again with the rest obtained and the following G_k , we end up with a null rest.

We enter:

We get:

$$[y^3, x^*y^+(-1/2)^*y^2, x^2-y^2]$$

7.16.3 Reduction according to a Groebner basis: greduce

greduce has three arguments: a polynomial of several variables, a list of polynomials forming a Groebner basis depending on the same variables and the list of the names of these variables. greduce returns the reduction (a multiplicative constant excepted) of the polynomial supplied as first argument according to the Groebner basis supplied as second argument.

We enter:

We get:

1/2*y^2-1

which means that $xy - 1 = \frac{1}{2}(y^2 - 2) \mod I$ where *I* is the ideal generated by the Groebner basis $[x^2 - y^2, 2xy - y^2, y^3]$, because $y^2 - 2$ is the remainder of the Euclidean division of 2(xy - 1) by $G2 = 2xy - y^2$.

Note:

The multiplicative constant can be determinated by looking at how the constant coefficient is transformed. In the example, the constant term -1 is transformed into the constant term -2, then the multiplicative coefficient is 1/2.

7.16.4 Hermite polynomial: hermite

hermite takes as argument an integer n and eventually the name of the variable (x by default). hermite returns the Hermite polynomial of degree n.

The Hermite polynomial of degree n written P(n, x) checks the relations:

P(0,x) = 1 P(1,x) = 2xP(n,x) = 2xP(n - 1,x) - 2(n - 1)P(n - 2,x)

These polynomials are orthogonal for the scalar product:

$$\langle f,g \rangle = \int_{-\infty}^{+\infty} f(x)g(x)e^{-x^2}dx$$

We enter:

hermite(6)

We get:

```
64*x^6+-480*x^4+720*x^2-120
```

We enter:

hermite(6,y)

We get:

174

7.16.5 Lagrange interpolation: lagrange

lagrange takes as argument two lists of length n or a matrix of two lines and n columns and eventually the name of the variable var (by default x):

the first list (or line) corresponds to values of abscissa x_k , and the second list (or line) corresponds to values of ordinates y_k for k from 1 to n.

lagrange returns a polynomial expression P(var) of degree n-1 such as

 $P(x_k) = y_k.$

We enter:

lagrange([[1,3],[0,1]])

Or we enter:

lagrange([1,3],[0,1])

We get:

1/2*(x-1)

indeed for x = 1 we have $\frac{x-1}{2} = 0$ and for x = 3 we have $\frac{x-1}{2} = 1$.

We enter:

lagrange([1,3],[0,1],y)

We get:

1/2*(y-1)

Warning! lagrange([1,2],[3,4],y) does not return a function but an expression, but we can define a function by putting:

f(x) := lagrange([1,2],[3,4],x)

or

f(y) := lagrange([1,2],[3,4],y)

and so f(4) returns 6 because f(x) = x+2) Please note the difference between:

g(x):=lagrange([1,2],[3,4])

and

```
f(x) := lagrange([1,2],[3,4],x).
```

g(x) := lagrange([1,2],[3,4]) does not define a function, for example, g(2) = x-1+3 whereas f(2) = 4.

That said, the definition of f is not efficient because the polynomial will be recalculated from the beginning at each call of f (when we define a function the right member is not evaluated, the evaluation is made only when we call f).

To be efficient, you must use unapply:

or

f:=unapply(lagrange([1,2],[3,4],y),y)

Exercise:

Be $f(x) = \frac{1}{x}$, $x_0 = 2x_1 = 2.5$ and $x_2 = 4$. You are asked to calculate the polynomial *L* of Lagrange interpolation, and its value in x = 3 and x = 4.5.

We enter:

$$f(x) := 1/x$$

L:=unapply(normal(lagrange([2,2.5,4],[f(2),f(2.5),f(4)])),x)

We get:

```
x->0.05*x^2-0.425*x+1.15
```

We enter:

```
L(3),L(4.5)
```

We get:

0.325,0.25

7.16.6 Natural splines: spline

Definition

Be a subdivision σ_n of the interval [a, b]:

$$a = x_0, x_1, \dots, x_n = b$$

We say that *s* is a spline function of degree *l* if *s* is an application of [a, b] in \mathbb{R} such as:

- s has continuous derivatives up to degree l 1,
- s restricted at each interval of the subdivision is a polynomial of degree lower than or equals l.

Theorem

The set of splines functions of degree l on σ_n is a \mathbb{R} -vector field of dimension n + l. Indeed:

We [a, x1], s is a polynomial *A* of degree lower than or equals *l*, then on [a, x1], $s = A(x) = a_0 + a_1 x + ... a_l x^l$ and *A* is a linear combination of $1, x, ... x^l$. We [x1, x2], s is a polynomial *B* of degree lower than or equals *l*, then on [x1, x2], $s = B(x) = b - 0 + b - 1 x + ... b_l x^l$. Since *s* has continuous derivatives up to degree l - 1 we must have:

the *s* has continuous derivatives up to degree
$$l - 1$$
 we must have:
 $\forall 0 \le j \le l - 1$, $B^{(j)}(x1) - A^{(j)}(x1) = 0$

so $B(x) - A(x) = \alpha_1 (x - x_1)^l$ or else $B(x) = A(x) + \alpha_1 (x - x_1)^l$. Be the function:

$$q_{1(x)} = \begin{cases} 0 \text{ on } [a, x_1] \\ (x - x_1)^l \text{ on } [x_1, b] \end{cases}$$

Thus:

 $s|[a, x_2] = a_0 + a_1 x + \dots a_l x^l + \alpha_1 q_1 (x).$ On $[x_2, x_3]$, *s* is a polynomial *C* of degree lower than or equal to *l*, then on $[x_2, x_3]$, $s = C(x) = c_0 + c_1 x + \dots c_l x^l.$ Since *s* has continuous derivatives up to degree l - 1 we must have: $\forall 0 \le j \le l - 1, \quad C^{(j)}(x_2) - B^{(j)}(x_2) = 0$ so $C(x) - B(x) = \alpha_2 (x - x_1)^l$

so
$$C(x) - B(x) = \alpha_2(x - x_2)$$

or else $C(x) = B(x) + \alpha_2(x - x_2)^l$.

 $\forall 1 \leq j \leq n - 1,$

$$q_2(x) = \begin{cases} 0 \text{ on } [a, x_2] \\ (x - x_2)^l \text{ on } [x_2, b] \end{cases}$$

Thus:

 $s|_{[a,x_3]} = a_0 + a_1 x + \dots a_l x^l + \alpha_1 q_1 (x) + \alpha_2 q_2 (x)$ and so on, we define the functions:

$$\forall 1 \leq j \leq n - 1, q_j(x) = \begin{cases} 0 \text{ on } [a, x_j] \\ (x - x_j)^l \text{ on } [x_j, b] \end{cases}$$

thus,

 $s|_{[a,b]} = a_0 + a_1 x + \dots a_l x^l + \alpha_1 q_1 (x) + \alpha_{n-1} q_{n-1} (x)$ and *s* is a linear combination of n + l independent functions $1, x, \dots x^l, q_1, \dots q_{n-1}$.

Interpolation with splines functions

We can ask to interpolate a function f on σ_n by a spline function s of degree l, which forces s to check $s(x_k) = y_k = f(x_k)$ for all $0 \ge k \ge n$.

We have then n + 1 conditions, then remain l - 1 degrees of freedom. So can we still impose l - 1 additional conditions which will be conditions on the derivatives of *s* in *a* and *b*. There are then three kinds of interpolation (Hermite interpolation, natural interpolation, periodic interpolation) which are obtained by adding three kind of constraints. We can show that for each of these kinds of interpolation the solution to the interpolation problem is unique.

Let us assume l odd, l = 2m - 1, there are then 2m - 2 degrees of freedom. We add the following constraints:

- Hermite interpolation

$$\forall 1 \le j \le m - 1, \quad s^{(j)}(a) = f^{(j)}(a), s^{(j)}(b) = f^{(j)}(b)$$

natural interpolation

$$\forall m \le j \le 2m - 2, \qquad s^{(j)}(a) = s^{(j)}(b) = 0$$

periodic interpolation

 $\forall 1 \le j \le 2m - 2, \quad s^{(j)}(a) = s^{(j)}(b)$

Let us assume l even, l = 2m, there are then 2m - 1 degrees of freedom. We add the following constraints:

- Hermite interpolation

$$\forall 1 \le j \le m - 1, \quad s^{(j)}(a) = f^{(j)}(a), s^{(j)}(b) = f^{(j)}(b)$$

 $s^{(m)}(a) = f^{(m)}(a)$

natural interpolation

 $\forall m \leq j \leq 2m - 2, \quad s^{(j)}(a) = s^{(j)}(b) = 0$

and

and

 $s^{(2m-1)}(a) = 0$

periodic interpolation

 $\forall 1 \le j \le 2m - 1$, $s^{(j)}(a) = s^{(j)}(b)$

A natural spline of supplied degree passing by two supplied points is a spline function that makes the natural interpolation.

The instruction <code>spline</code> returns a natural spline of supplied degree passing by points whose lists of abscissae by increasing order and ordinates are supplied has argument. It returns the spline function under the form of a list of polynomials, each polynomial being valide in an interval. We give the list of abscissae in increasing order, the list of ordinates, the names of variables wished for the polynomials, and the degree.

For instance, we want a natural spline of degree 3, passing by the points $x_0 = 0, y_0 = 1, x_1 = 1, y_1 = 3$ and $x_2 = 2, y_2 = 0$.

We enter:

We get a list of two polynomials function of x:

$$\left[-\frac{5 * x^3}{4} + \frac{13 * x}{4} + 1, \frac{5 * (x - 1)^3}{4} - \frac{15 * (x - 1)^2}{4} + \frac{(x - 1)}{-2} + 3\right]$$

valid respectively on the intervals [0, 1] and [1, 2].

For instance, we want a natural spline of degree 4, passing by the points $x_0 = 0$, $y_0 = 1$, $x_1 = 1$, $y_1 = 3$, $x_2 = 2$, $y_2 = 0$ and $x_3 = 3$, $y_3 = -1$, we enter:

We get a list of three polynomials function of x:

$$\frac{\begin{bmatrix} -62 & x^{4} + 304 & x \\ 121 & + 1, \\ \\ \frac{201 * (x - 1)^{4} - 248 * (x - 1)^{3} - 372 * (x - 1)^{2} + 56 * (x - 1) \\ 121 & + 3, \\ \\ \frac{-139 * (x - 2)^{4} + 556 * (x - 2)^{3} + 90 * (x - 2)^{2} - 628 * (x - 2) \\ 121 \end{bmatrix}}{$$

valid respectively on the intervals [0, 1], [1, 2] and [2, 3]. For instance, to get the natural interpolation of cos on $\left[0, \frac{\pi}{2}, \frac{3\pi}{2}\right]$ We enter:

We get:

$$\frac{(3\pi^3 + (-7\pi^2)x + 4x^3)\left(\frac{1}{3}\right)}{\pi^3}, \frac{(15\pi^3 + (-46\pi^2) + 36\pi x^2 - 8x^3)\left(\frac{1}{12}\right)}{\pi^3}$$

7.16.7 Laguerre polynomial: laguerre

laguerre takes as argument an integer n and eventually the name of the variable (x by default) and the parameter (a by default).

laguerre returns the Laguerre polynomial of degree n and parameter a.

The Laguerre polynomial of degree n of parameter a written L(n, a, x) checks the relations:

$$L(0, a, x) = 1$$

$$L(1, a, x) = 1 + a - x$$

$$L(n, a, x) = \frac{2n + a - 1 - x}{n} L(n - 1, a, x) - \frac{n + a - 1}{n} L(n - 2, a, x)$$

These polynomials are orthogonal for the scalar product:

$$< f,g > = \int_0^{+\infty} f(x)g(x)x^a e^{-x} dx$$

We enter:

laguerre(2)

We get:

We enter:

laguerre(2,y)

We get:

b must be purged (b := 'b'), we enter:

laguerre(2,y,b)

We get:

7.16.8 Legendre polynomial: legendre

legendre takes as argument an integer n and eventually the name of the variable (x by default). legendre returns the Legendre polynomial of degree n: it is the polynomial, not null, solution of the differential equation:

$$(x^{2} - 1).y'' - 2.x.y' - n(n + 1).y = 0$$

The Legendre polynomial of degree *n* written P(n, x) checks the relations:

$$P(0,x) = 1$$

$$P(1,x) = x$$

$$P(n,x) = \frac{2n-1}{n}xP(n-1,x) - \frac{n-1}{n}P(n-2,x)$$

These polynomials are orthogonal for the scalar product:

$$< f,g > = \int_{-1}^{+1} f(x)g(x)dx$$

We enter:

legendre(4)

We get:

35/8*x^4+-15/4*x^2+3/8

We enter:

legendre(4,y)

We get:

```
35/8*y^4+-15/4*y^2+3/8
```

7.16.9 Tchebyshev polynomial of first kind: tchebyshev1

tchebyshev1 takes as argument an integer n and eventually the name of the variable (x by default). tchebyshev1 returns the Tchebyshev polynomial of first kind, of degree n, written T(n, x).

We have:

$$T(n,x) = cos(n. \arccos(x))$$

$$T(n, x) \text{ checks the relations:}$$

$$T(0, x) = 1$$

$$T(1, x) = x$$

$$T(n, x) = 2xT(n - 1, x) - T(n - 2, x)$$
The polynomials $T(n, x)$ are orthogonal for the scalar product:
$$< f, g \ge \int_{-1}^{+1} \frac{f(x)g(x)}{\sqrt{1 - x^2}} dx$$

We enter:

tchebyshev1(4)

We get:

We enter:

tchebyshev1(4,y)

We get:

8*y^4-8*y^2+1

and we do have: $cos(4,x) = Re((cos(x) + i.sin(x))^4)$ $cos(4,x) = cos(x)^4 - 6.cos(x)^2.(1 - cos(x)^2) + (1 - cos(x)^2)^2$ cos(4,x) = T(4,cos(x))

7.16.10 Tchebyshev polynomial of second kind: tchebyshev2

tchebyshev2 takes as argument an integer n and eventually the name of the variable (x by default). tchebyshev2 returns the Tchebyshev polynomial of second kind, of degree n, written U(n,x). We have:

$$U(n,x) = \frac{\sin((n + 1) \cdot \arccos(x))}{\sin(\arccos(x))}$$

or else

$$sin((n + 1)x) = sin(x) * U(n, cos(x))$$

U(n, x) checks the relations:

U(0,x) = 1 U(1,x) = 2x U(n,x) = 2xU(n - 1,x) - U(n - 2,x)Polynomials U(n,x) are orthogonal for the scalar product:

$$\langle f,g \rangle \ge \int_{-1}^{+1} f(x)g(x)\sqrt{1-x^2}dx$$

We enter:

tchebyshev2(3)

We get:

```
8*x^3+-4*x
```

We enter:

tchebyshev2(3,y)

We get:

8*y^3+-4*y

indeed:

 $\sin(4.x) = \sin(x) * (8 * \cos(x)^3 - 4.\cos(x)) = \sin(x) * U(3,\cos(x)).$

180

Chapter 8 Menu Plot

Note:

The plot of most of the commands starting by plot is not well done from the CAS screen: you will then preferably use the geometry application to do the plots corresponding to these commands.

8.1 Plot of a function: plotfunc

We open the geometry application and we press the key Plot. Then, we use Cmds of the push buttons. We choose 6 Plot then 1 Function. plotfunc(shows on the entry line and it is enough to fill up with the expression f(x) which we want to get the plot of.

The Symbolic view stores then an additional line containing the command entered for example: plotfunc(f(x))

plotfunc(f(x), x) plots the graphical representation of y = f(x) and plotfunc(f(x), x=a..b) plots the graphical representation of y = f(x)

when $a \leq x \leq b$.

We enter:

 $plotfunc(x^2-2)$

or

 $plotfunc(a^2-2,a=-1..2)$

We get:

the graphical representation of $y=x^2-2$

Or else, we enter:

gf:=plotfunc(x^2-2)

Then, in the Symbolic view of the geometry application (Symb), we press New, which displays, for example:

 $\sqrt{\text{GC}}$ =

We fill up with

√GC:=gf

Then, we press the key Plot to get the Plot view of the geometry application, we get:

the plot of x^2-2

8.2 Parametric curve: plotparam

plotparam(f(t)+i*g(t),t) (resp. plotparam(f(t)+i*g(t),t=t1..t2)) plots the parametric representation of the curve defined by x = f(t), y = g(t) (resp. by x = f(t), y = g(t) and $t1 \ge t \ge t2$).

We enter:

```
plotparam(cos(x)+i*sin(x),x)
```

or

plotparam([cos(x), sin(x)], x)

We get:

The plot of the circle unity

We can specify the boundaries of the interval of variation of the parameter. We enter:

```
plotparam(sin(t)+i*cos(t),t=-4..1)
```

or else:

plotparam(sin(x)+i*cos(x), x=-4..1)

Or we enter, if in the plot configuration t goes from -4 to 1:

plotparam(sin(t)+i*cos(t))

We get:

The plot of the arc of circle unity starting from -4 at 1

We can add a parameter to specify the step of sampling of the parameter t with tstep=, that is to say the step t we want to use to do the plot.

We enter, if in the plot configuration *t* goes from -4 to 1:

plotparam(sin(t)+i*cos(t),t,tstep=0.5)

Or we enter:

plotparam(sin(t)+i*cos(t),t=-4..1,tstep=0.5)

We get:

The raw plot of the arc of circle unity starting from -4 to 1

8.3 Polar curve: plotpolar

plotpolar(f(t),t) plots the Polar representation of the curve defined by: $\rho = f(t)$.

We enter:

plotpolar(t, t=0..10)

We enter, if in the plot configuration t goes from 0 to 10:

plotpolar(t,t)

We get:

The spiral ρ =t is plotted

We can add a parameter to specify the step of sampling of the parameter t with tstep=, that is to say the step t we want to use to do the plot.

We enter, if in the plot configuration t goes from 0 to 10:

plotpolar(t,t,tstep=1)

or:

```
plotpolar(t,t=0..10,tstep=1)
```

We get:

The spiral ρ =t is plotted roughly.

8.4 Plot of a recurrent sequence: plotseq

 ${\tt plotseq(f(x),a,n)}$ or ${\tt plotseq(f(t),t=a,n)}$ allows to display the n first terms of a recurrent sequence defined by:

 $u_0 = a, a = f(u_{n-1})$

We enter:

plotseq(sqrt(1+x),3,5)

We get:

```
The plot of y=sqrt(1+x), of y=x and the five first terms
```

of the sequence $u_0=3$ and $u_n=sqrt(1+u_(n-1))$

8.5 Implicit plot in 2D: plotimplicit

plotimplicit allows to plot curves defined in an implicit way by an expression. In order to not have the calculator starting to factorize the expression, the command plotimplicit can be used with the option unfactored put as last parameter:

- with unfactored, the expression will not be modified,
- without unfactored, the calculator factors the expression to the same denominator and then tries to factorize the numerator.
- plotimplicit(f(x, y), x, y) or plotimplicit(f(x, y), [x, y]) plots the graphical representation of the curve defined implicitly by f(x, y) = 0 when x (resp. y) varies according to WX -, WX + (resp. WY-, WY +) defined in cfg,

- plotimplicit(f(x,y),x=0..1,y=-1..1)
or
plotimplicit(f(x,y),[x=0..1,y=-1..1])

plotimplicit (f (x, y), [x=0..1, y=-1..1]) plots the graphical representation of the curve defined implicitly by f(x,y) = 0 when $0 \le x \le 1$ and $-1 \le y \le 1$ (set the boundaries slightly larger to avoid losing part of the plot!).

We enter:

plotimplicit(x^2+y^2-1 , [x,y])

Or we enter:

184

```
plotimplicit (x^2+y^2-1, \{x, y\}, unfactored)
```

Or we enter:

```
plotimplicit(x^2+y^2-1, x, y, unfactored)
```

We get:

```
circle(point(0,0),1)
```

We enter:

```
g:=plotimplicit(x^2+y^2-1,[x,y])
```

Then, in the Symbolic view of the geometry application (symb), we press New, which displays, for example:

 $\sqrt{\text{GC}} :=$

We fill up with

 $\sqrt{\text{GC}} = g$

Then, in the Plot view of the geometry application (Plot), we get:

the plot of the circle unity

8.6 Plot of a function by colors levels: plotdensity

plotdensity (f(x, y), [x, y]) plots the graph of z = f(x, y) in the plane by representing z by one of the colors of the rainbow.

We enter:

plotdensity(x^2-y^2,[x=-2..2,y=-2..2],xstep=0.1,ystep=0.1)

We get:

```
A 2D-plot representing, for each z, the hyperbola defined by x^2 - y^2 = z of one of the colors of the rainbow.
```

or one of the colors of the fain

We notice that we have the color scale below the plot.

8.7 The field of tangents: plotfield

We can plot the field of tangents of the differential equation y' = f(t, y) or of the system of differential equations x' = u(x, y), y' = v(x, y) and we can specify the ranges of values of the parameters.

- Be f(t, y) an expression depending on two variables t and y, then plotfield(f(t, y), [t, y]) plots the field of tangents of the differential equation y' = f(t, y) where y represents a real variable and t is represented in abscissa,
- Be V = [u(x, y), v(x, y)] a 2D-vector of coordinates two expressions depending on two variables x, y, but not depending from the time, so plotfield(V, [x, y]) plots the field of tangents of the system [x'(t) = u(x, y), y'(t) = v(x, y)],

- The ranges of values of t, y or of x, y can be specified by t=tmin..tmax, x=xmin..xmax, y=ymin..ymax instead of the name of the variable only.
- We can specify the plot view by putting, for example:
- plotfield(f(t,y),[t=tmin..tmax,y=ymin..ymax])
- We can specify that the field of tangents is, in an orthonormal basis, of norm 1 with the option normalize. Without the option normalize the contact point is the origin of the vector tangent, and with the option normalize, the contact point is located at the midpoint of the tangent lines.
- We can also specify the value of the step in t and in y with xstep=... and ystep=....

We enter:

We get:

Segments of slope 4*sin(t*y) are plotted in different points. These lines represent the vectors tangent oriented toward

the increasing t and whose origin is the point of contact.

We enter:

We get:

Segments of length 1 and slope 4*sin(t*y)

Representing the tangent lines at their midpoint.

These points are spaced of 0.7.

We enter:

plotfield(5*[-y,x],[x=-1..1,y=-1..1])

We get:

vectors [-y, x] are plotted at points (x, y).

These vectors represent vectors tangents at their origin to curves solutions of the system x(t) 0 = -y, y(t) 0 = x.

They are orientated toward the increasing t.

We enter:

plotfield(5*[-y,x],[x=-1..1,y=-1..1],normalize)

We get:

Segments of length 1 and slope -y/xrepresenting the lines tangent at their midpoint to curves solutions of the systemx(t)0= -y, y(t)0= x.

8.8 Level curves: plotcontour

plotcontour (f (x, y), [x, y]) plots the level curves z = -10, z = -8, .., z = 0, z = 2, .., z = 10 of the surface defined by z = f(x, y).

We enter:

We get:

```
[polygon(point(....))..]
```

Then, in the Symbolic view of the geometry application (Symb), we press New, which displays, for example:

 $\sqrt{\text{GC}} :=$

We fill up with

 $\sqrt{\text{GC}} := q$

Then, in the Plot view of the geometry application (Plot), we get:

```
the plot of three ellipses x^2-y^2=n for n=1,2,3;
```

the areas in between these ellipses are filled with the color green, red or black.

We enter:

plotcontour $(x^2-y^2, [x, y])$

We get:

```
[polygon(point(-4.8,-5),point(-3.9,-4)...)]
```

Then, in the Symbolic view of the geometry application (Symb), we press New, which displays, for example:

 $\sqrt{\text{GC}}$ =

We fill up with

√GC:=g

Then, in the Plot view of the geometry application (Plot), we get:

```
the plot of 11 hyperbolae x^2-y^2=n for n=-10,-8,..10
```

8.9 Plot of solutions of a differential equation: plotode

We can plot the solutions of the differential equation y' = f(t, y) or of the system of differential equations x' = u(t, x, y), y' = v(t, x, y) and we can specify the ranges of values of the parameters.

- plotode (f(t, y), [t, y], [t0, y0]) plots according to the time the solution y(t) of the differential equation y' = f(t, y) passing by the point (t0, y0), where f(t, y) designates an expression depending on the time variable t and the variable y.
- By default, *t* varies along the two directions. We can specify the range of the time by the optional parameter t=tmin..tmax.

- When y = (X, Y) is a vector of length 2 and f has values in \mathbb{R}^2 , we can also represent in the space (t, X, Y) or in the plane (X, Y) the solution of a differential equation y' = f(t, y), that is to say [X', Y'] = [f(t, X, Y)]. For that, it is enough to replace y by the names of variables X, Y and the initial value by the two initial values of the variables at time t_0 .

We enter:

We get:

```
The graph of the solution of y' = sin(t, y) passing by the point (0,1).
```

To display the values of the solution, please refer to section 4.7.

We enter:

plotfield(5*[-y,x],[x=-1..1,y=-1..1],normalize)

plotode(5*[-y,x],[t=0..1,x,y],[0,0.3,0.7],tstep=0.05,plan)

We get:

The graph of the solution of x'=-y, y'=x for t=0

passing by the point (0.3, 0.7)

8.10 Polygonal line (→ translation to be checked): plotlist

plotlist takes as argument a list I or a matrix of two columns.

plotlist allows to display the segments connecting the cloud of dots having for abscissa [0,1,2...n] and for ordinate I, or for coordinates a line of the matrix. listplot or plotlist connects by two line segments the different points of the cloud, but without reorder the points unlike polygonplot which reorders the points according to their abscissa then connects them.

We enter:

a:=plotlist([0,1,4,9,16])

Or we enter:

```
a:=plotlist([[0,0],[1,1],[2,4],[3,9],[4,16]])
```

Then, in the Symbolic view of the geometry application (Symb), we press New, which displays, for example:

 $\sqrt{\text{GD}} :=$

We fill up with

√GD:=a

Then, in the Plot view of the geometry application (Plot), we get:

the plot of 5 points ((0,0),(1,1),...(4,16)) joined by 4 segments

Warning!

plotlist([0,1,2,3,4],[0,1,4,9,16])
or
plotlist([[0,1,2,3,4],[0,1,4,9,16]])
is not valid!

Part III The menu MATH of the Toolbox key

Chapter 9 Functions on reals

9.1 HOME constants

- e for exp(1)
- i for the complex number of modulus 1 and argument $\pi/2$ or (0,1)
- MAXREAL it is +∞
- MINREAL it is 0
- Pi or pi or PI for π

9.2 The symbolic constants of the CAS: e pi i infinity inf euler gamma

e or %e designates the number exp(1);
pi or %pi designates the number π;
infinity designates ∞.
+infinity or inf designates +∞.
-infinity or -inf designates -∞.
i or %i designates the complex number i.
euler gamma designates the Euler constant.

We have:

```
euler_gamma=limit(sum(1/k,k,1,n)-ln(n),n,+infinity)
and
evalf(euler gamma) returns 0.577215664902
```

9.3 Booleans

9.3.1 Boolean values: true false

A boolean takes as value true or false. We have the following synonyms: true or TRUE or 1 and, false or FALSE or 0. In HOME, TRUE is replaced in the history by 1, and FALSE by 0. The tests or the conditions are Boolean functions.

9.3.2 Tests: == != > >= < <=

==, !=, >, >=, <, <= are infix operators.
>=, <=, != are obtaineds with the keys ≥, ≤ and ≠.
a==b tests the equality between a and b and returns 1 if a equals b and 0 otherwise.
a!=b returns 1 if a is different from b and 0 otherwise.
a>=b returns 1 if a is greater than or equals b and 0 otherwise.
a>b returns 1 if a is strictly greater than b and 0 otherwise.
a<=b returns 1 if a is lower than or equals b and 0 otherwise.
a<=b returns 1 if a is strictly greater than b and 0 otherwise.
a<=b returns 1 if a is strictly lower than b and 0 otherwise.

To define the boolean function which is true on $]0; +\infty[$ and false on $] -\infty; 0]$, we enter:

f(x):=ifte(x>0,true,false)

We enter:

f(0) == 0

We get:

1

Warning!

a=b is not a boolean! To test the equality between a and b, you have to write a==b.

9.3.3 Boolean operators: or xor and not

or (or ||), xor, and (or &&) are infix operators.

not is a prefix operator.

Let a and b be two booleans: (a or b) or (a || b) returns 0 (or false) if a and b equal 0 and returns 1 (or true) if not.

(a xor b) returns 1 if a equals 1 and b equals 0 or if a equals 0 and b equals 1 and returns 0 if a and b equal 0 or if a and b equal 1 (it is the "exclusive or ").

(a and b) or (a && b) returns 1 (or true) if a and b equal 1 and 0 (or false) if not.

not (a) returns 1 (or true) if a equals 0 (or false), and 0 (or false) if a equals 1 (or true).

We enter:

1>=0 or 1<0 We get: 1 We enter: 0 We get: 1>=0 and 1>0 We get: 1 We enter: 1 We enter: 0

9.4 Bit to bit operators

9.4.1 operators bitor, bitxor, bitand

The integers can be entered with the notation 0x... in hexadecimal. By example, 0x1f represents 16 + 15 = 31 in decimal. We can display the integers in hexadecimal (key of the status line of the CAS with the key Base (Integers)).

- bitor is the inclusive logic bit to bit or.

We enter:

bitor(0x12,0x38)

or we enter:

bitor(18,56)

We get:

58

indeed:

```
18 reads 0x12 in basis 16 and 0b010010 in basis 2,
56 reads 0x38 in basis 16 and 0b111000 in basis 2,
bitor (18,56) reads 0b111010 in basis 2 and then equals 58.
```

- bitxor is the logic exclusive bit to bit or.

We enter:

bitxor(0x12,0x38)

or we enter:

```
bitxor(18,56)
```

We get:

```
42
```

indeed:

```
18 reads 0x12 in basis 16 and 0b010010 in basis 2,
56 reads 0x38 in basis 16 and 0b111000 in basis 2,
bitxor(18,56) reads 0b101010 in basis 2 and then equals 42.
```

- bitand is the bit to bit logic and.

We enter:

bitand(0x12,0x38)

or we enter:

bitand(18,56)

We get:

16

indeed:

18 reads 0x12 in basis 16 and 0b010010 in basis 2, 56 reads 0x38 in basis 16 and 0b111000 in basis 2, bitand(18,56) reads 0b010000 in basis 2 and then equals 16.

9.4.2 Bit to bit Hamming distance of: hamdist

The bit to bit Hamming distance is the sum of absolute values of bit to bit differences between two numbers, that is to say the number of different bits.

We enter:

hamdist(0x12,0x38)

or we enter

hamdist(18,56)

We get:

3

indeed:

18 reads 0x12 in basis 16 and 0b010010 in basis 2,

56 reads 0x38 in basis 16 and 0b111000 in basis 2,

hamdist(18,56) equals 1+0+1+0+1+0 and then equals 3.

9.5 Usual functions

The usual functions can be accessed by pressing the corresponding keys. We need their programming names, for example:

- id designates the function identity,
- sq designates the function square,
- sqrt designates the function square root,
- neg designates the function $x \rightarrow -x$,
- inv designates the function $x \to \frac{1}{r}$.

9.6 The smallest integer greater than or equal to the argument: CEILING ceiling

CEILING(a) or ceiling(a) returns the smallest integer greater than or equal to the argument *a*.

We enter:

CEILING(45/8)

We get:

6

We enter:

CEILING (-45/8)

194

We get: -5 We enter: CEILING(2.5) We get: 3

9.7 Integer part of a real: FLOOR floor

FLOOR(a) or floor(a) returns the greater integer lower than or equal to the argument a.

2

We enter: FLOOR (45/8) We get: 5 We enter: -6 We enter: FLOOR (2.5) We get:

9.8 Argument without its fractional part: IP

IP (a) returns the argument real a without its fractional part. We enter: IP (45/8) We get: 5 We enter: IP (-45/8) We get:

-5

9.9 Fractional part: FP

FP (a) returns the fractional part of the real argument a .	
We enter in:	
	FP(45/8)
We get:	
	0.625
We enter in the CAS:	
	FP(45/8)
We get:	
	5/8
We enter in:	
	FP(-45/8)
We get:	
	-0.625
We enter in the CAS:	
	FP(-45/8)
We get:	
	-5/8

9.10 Round a real or a complex to n decimal places: ROUND round

ROUND(a) or round(a) (resp. ROUND(a, n) or round(a, n)) rounds the real a according to the closest integer (resp. the closest decimal number having n decimal places). ROUND(a) (resp. ROUND(a, n)) rounds the complex a according to the closest element of $\mathbb{Z}[i]$, (resp. with n decimal places).

We enter:

ROUND(45/8)

or

round(45/8)

We get:

6

We enter:

	ROUND(45/8,2)
or	
M/	round(45/8,2)
We get:	5.63
We enter:	
	ROUND(-45/8)
or	nound (45 / 2)
We get:	round(-45/8)
	- 6
We enter:	
or	ROUND(-45/8,2)
	round(-45/8,2)
We get:	
We enter:	-5.62
We enter.	ROUND(0.5+i*pi)
or	
Ma acti	round(0.5+i*pi)
We get:	1+3*i
We enter:	
	ROUND(0.5+i*pi,4)
or	round(0.5+i*pi,4)
We get:	
	0.5+3.1416*i

9.11 Truncate a real or a complex to n decimal places: TRUNCATE trunc

TRUNCATE or trunc returns the argument truncated to n decimal places (by default n = 0).

We enter in HOME or in the CAS:

	TRUNCATE (45/8)
or	
	trunc(45/8)
We get:	
	5
We enter in HOME or in the CAS:	
	TRUNCATE(45/8,2)
or	trunc(45/8,2)
We get:	crunc(45/6,2)
we get.	5.62
We enter in HOME or in the CAS:	
	TRUNCATE (-45/8)
or	
	trunc(-45/8)
We get:	
	-5
We enter in HOME or in the CAS:	
	TRUNCATE $(-45/8, 2)$
or	
	trunc(-45/8,2)
We get:	
We enter in HOME or in the CAS:	-5.63
we enter in HOME of in the CAS.	<pre>TRUNCATE(sqrt(2)+i*sqrt(5),4)</pre>
or	INGROATE (SQLC(2) I SQLC(3), 4)
-	trunc(sqrt(2)+i*sqrt(5),4)
We get:	

1.4142+2.236*i

Warning! In CAS, truncate(P,n) truncates the polynomial P at degree n. We enter:

truncate $(x^{5}+x^{4}+x^{2}+x+1, 2)$

We get:

x^2+x+1

9.12 The fractional part of a real: frac

frac of a real returns its fractional part.

We enter in the CAS or in HOME:

frac(22/7))

We get:

1/7

We enter in the CAS or in HOME:

frac(sqrt(2))

We get:

sqrt(2)-1

9.13 The real without its fractional part: iPart

iPart of a real returns a real which equals the real argument without its fractional part.

We enter:

iPart(sqrt(2))

We get:

1.0

9.14 Mantissa of a real: MANT

MANT (a) returns $|a|/10^n$ where the integer n checks: $10^n \le |a| < 10^{n+1}$. MANT (a) then returns the mantissa of a real *a*, that is to say the significant digits of *a*.

We enter:

MANT(45/8)

We get:

We enter:

MANT(-45/8)

We get:

5.625

9.15 Integer part of the logarithm basis 10 of a real: ${\tt XPON}$

XPON(a) returns the integer n such as 10	$a^n \le a < 10^{n+1}.$
We enter:	
	XPON(45/8)
We get:	
	0
We enter:	
	XPON(45000/8)
We get:	
	3
We enter:	
	XPON(1234*sqrt(2))
We get:	
	3
indeed $10^3 < 1234 * \sqrt{2} \simeq 1745.13953597 < 10^4$	

Chapter 10 Arithmetic

10.1 Maximum of two or several values: MAX max

MAX or max returns the maximum of elements of a sequence or of a list of reals. We enter:

or

max(4,5,8,2,6)

MAX(4,5,8,2,6)

We get:

8

10.2 Minimum of two or several values: MIN min

MIN or min returns the minimum of elements of a sequence or of a list of reals.

We enter:

MIN(4,5,8,2,6)

or

min(4,5,8,2,6)

We get:

2

10.3 MOD

MOD is an infix function. a MOD b returns the remainder of the Euclidean division of a by b.

We enter:

22 MOD 5

We get:

10.4 FNROOT

FNROOT returns an approximate root of the expression supplied as first argument, for the variable supplied as second argument, and which is close to the third argument.

We enter in real mode (*i* not checked in the CAS Settings):

FNROOT (x^4+3x-4)

We get:

-1.74295920217,1.

We enter in real mode (*i* not checked in the CAS Settings):

FNROOT $(x^{4}+3x-4, x, -2)$

We get:

-1.74295920217

We enter in complex mode (*i* checked in the CAS Settings):

```
FNROOT (x^4+3x-4)
```

We get:

```
[-1.74295920217,0.371479601083+1.46865601291*i, 0.371479601083-
1.46865601291*i,1.0]
```

10.5 N-th root: NTHROOT surd

NTHROOT is an infix function whereas surd is a prefix command of the CAS. NTHROOT comes with the shifted key $\sqrt[n]{}$ (Shift x^y). p NTHROOT n returns the value of $n^{1/p}$ surd(n,p) returns $n^{1/p}$

We enter in real mode in HOME (*i* not checked in the CAS Settings):

3 NTHROOT 8

We get:

2

We enter in complex mode in HOME (*i* checked in the CAS Settings):

3 NTHROOT -1+i

We get:

0.85502540378-0.5*i

We enter in real mode in the CAS (*i* not checked in the CAS Settings):

3 NTHROOT 8

or

surd(8,3)

We get:

2

We enter in complex mode in the CAS:

3	NTHROOT	-1+i

surd(-1+i,3)

or

We get:

exp(ln(-1+i)/3)

10.6 %

(a,b) returns $\frac{a}{100} * b$ (a percent of b).	
We enter:	
	%(5 , 70)
We get:	
	3.5
We enter:	
	%(5,90)
We get:	
	4.5

10.7 Complex

10.7.1 The key $\rm \dot{1}$

The key \pm is a shifted key (Shift 2). \pm is the complex number of modulus 1 and argument $\pi/2$.

We enter:

	1+3*i
or	
	1+3i
We get:	
	1+3*i

10.7.2 Argument: ARG arg

ARG or arg returns the argument of the complex number supplied as argument (in degrees or in radians according to the chosen configuration).

We enter in HOME:

	ARG(2+6*i)
We get, if we are in radians:	
	1.2490457724
We get, if we are in degrees:	
	71.5650511771
We enter in the CAS:	
	ARG(2+6*i)
We get, if we are in radians:	
	atan(3)
We get, if we are in degrees:	

71.5650511771

10.7.3 Conjugate: CONJ conj

CONJ or conj returns the conjugate of the complex number supplied as argument.

We enter:

CONJ(1+3*i)

or

conj(1+3*i)

We get:

1-3*i

10.7.4 Imaginary part: IM im

IM or im returns the imaginary part of the complex number supplied as argument.

We enter:

IM(1+3*i)

We get:

3

10.7.5 Real part: RE re

RE or re returns the real part of the complex number supplied as argument.

204

We enter:

RE(1+3*i)

We get:

1

10.7.6 Sign: SIGN sign

SIGN or sign returns the complex number supplied as argument divided by its modulus.

We enter:

SIGN(1+3*i)

We get:

(1+3*i)/sqrt(10)

10.7.7 The key Shift +/-: ABS abs

The key |x| is a shifted key (Shift +/-).

- The key |x| returns ABS (x), which equals:
 - the absolute value of a real,
 - the modulus of a complex number,
 - the length of a vector $v_j\left(\left(\sum_{j=1}^n |v_j|^2\right)^{1/2}\right)$,
 - the Schur norm or Frobenius norm of a matrix $a_{j,k}\left(\left(\sum_{j,k=1}^{n} |a_{j,k}|^2\right)^{1/2}\right)$.

We enter:

ABS(1+3*i)

We get:

3.1622776602

We use the key |x| in the CAS:

ABS(1+3*i)

or we enter:

abs(1+3*i)

We get:

sqrt(10)

10.7.8 Write of complex in the form of re(z) + i * im(z): evalc

evalc takes as argument a complex number z. evalc returns this complex number, written in the form re(z) + i*im(z).

We enter:

evalc(sqrt(2)*exp(i*pi/4))

We get:

10.7.9 Multiply by the complex conjugate: mult c conjugate

If an expression has a complex denominator, mult_c_conjugate multiplies the numerator and the denominator of this expression by the complex conjugate of the denominator. If an expression does not have a complex denominator, mult_c_conjugate multiplies the numerator and the denominator of this expression by the complex conjugate of the numerator.

We enter:

mult c conjugate((2+i)/(2+3*i))

We get:

(2+i)*(2+3*(-i))/((2+3*(i))*(2+3*(-i)))

We enter:

mult_c_conjugate((2+i)/2)

We get:

(2+i) * (2+-i) / (2*(2+-i))

10.8 Exponential and Logarithms

10.8.1 Function neperian logarithm: LN ln log

LN or ln or log designates the function neperian logarithm. LN (or ln in the CAS) is accessed with the key LN.

Warning! The neperian log is LN in HOME, and ln or log in the CAS.

We enter in HOME:

	LN(e)
We get:	
	1
We enter:	
	LN(2)
We get:	
	0.69314718056
but in the CAS, we enter:	
	ln(e)
or	
	- / \

log(e)

We get:	
We enter:	1
or.	ln(2)
or	log(2)
We get:	ln(2)

10.8.2 Function logarithm basis 10: LOG log10

Warning! The log basis 10 is LOG in HOME and log10 in the CAS and log designates the neperian log. LOG or log10 designates the function logarithm basis ten, LOG (or log10 in the CAS) can be

accessed with the key LOG.

We enter in HOME:

LOG (10) We get: 1 We enter: LOG (7) We get: 0.84509804001 We enter in the CAS: 10g10 (10) We get: 1 We enter: 10g10 (7) We get: 10g10 (7)

10.8.3 Function logarithm basis b: logb

logb designates the function logarithm with the basis supplied as second argument:

We enter in the CAS:

206

We get:

1

We enter in the CAS:

logb(7,10)

We get:

ln(7)/ln(10)

logb(7,10)=log10(7)=log(7)/log(10)

10.8.4 Function antilogarithm: ALOG alog10

alog10 designates the function antilogarithm basis ten, it is the function: $x \rightarrow 10^x$.

We enter in HOME:

ALOG(3/2)

We get:

31.6227766017

it is the approximate value of sqrt (10) *10 at the nearest 10^{-10} .

We enter in the CAS:

or

alog(3/2)

ALOG(3/2)

or we get:

sqrt(10)*10^1

We enter:

We get:

1000000000

alog10(10)

10.8.5 Function exponential: EXP exp

EXP or exp designates the function exponential. EXP (or exp in the CAS) can be accessed with the key EXP.

We enter in HOME:

	EXP(2)
We get:	
	7.38905609893
but in the CAS, we enter:	
	exp(2)
We get:	
	exp(2)
10.8.6 Function EXPM1	
EXPM1 designates the function $x \rightarrow EXP(x)$) — 1.
We enter:	
	EXPM1(4)
We get:	
	EXP(4)-1
We enter:	
	EXPM1(2.*10^-4)
We get:	
	0.00020002000133
BUT if we enter:	
	EXP(2.*10^-4)-1
We get:	
	0.00020002
10.8.7 Function LNP1	
LNP1 designates the function $x \rightarrow LN(x +$	1)
We enter:	
	LNP1(4)
We get:	
	LN(5)
We enter:	
	LNP1(2.*10^-4)
We get:	

1.99980002666E-4

Chapter 11 Trigonometric functions

11.1 The keys of trigonometric functions

- SIN or sin designates the function sine. We enter in the CAS: SIN(pi/3) or sin(pi/3) We get: sqrt(3)/2 ASIN or asin designates the function arc sine. _ We enter in the CAS: ASIN(1/2)or asin(1/2)We get: pi/6 - COS or cos designates the function cosine. We enter in the CAS: COS(pi/3) or cos(pi/3) We get: 1/2 ACOS or acos designates the function arc cosine. _ We enter in the CAS: ACOS(1/2) or

We get:

pi/3

- TAN or tan designates the function tangent.

We enter in the CAS:

TAN(pi/3)

or

tan(pi/3)

We get:

sqrt(3)

- ATAN or atan designates the function arc tangent.

We enter in the CAS:

ATAN(sqrt(3)/3)

or

atan(sqrt(3)/3)

We get:

pi/6

11.2 Cosecant: CSC csc

CSC(x) or csc returns 1/SIN(x): it is the function cosecant.

We enter in the CAS:

CSC(pi/3)

or

csc(pi/3)

We get after simplification:

2*sqrt(3)/3

11.3 Arccosecant: ACSC acsc

ACSC(x) or acsc returns ASIN(1/x): it is the reciprocal function of the function cosecant.

We enter in the CAS:

ACSC(sqrt(2))

or

We get after simplification:

pi/4

11.4 Secant: SEC sec

SEC (x) or sec returns $1/\cos(x)$: it is the function secant.

We enter in the CAS:

or

sec(pi/3)

SEC(pi/3)

We get:

2

11.5 Arcsecant: ASEC asec

ASEC (x) or asec returns ACOS(1/x): it is the reciprocal function of the function secant.

We enter in the CAS:

ASEC(2) or asec(2) We get: 1/3*pi

11.6 Cotangent: COT cot

COT(x) or cot returns COS(x) / SIN(x): it is the function cotangent.

We enter in the CAS:

COT(pi/3)

or

cot(pi/3)

We get after simplification:

sqrt(3)/3

212

11.7 Arccotangent: ACOT acot

ACOT (x) or acot returns pi/2-ATAN(x): it is the reciprocal function of the function cotangent.

We enter in the CAS:

ACOT(sqrt(3))

or

acot(sqrt(3))

We get after simplification:

pi/6

Chapter 12 Hyperbolic functions

12.1 Hyperbolic sine: SINH sinh

SINH(x) or sinh(x) returns:

$$\frac{\exp(x) - \exp(-x)}{2}$$

it is the function hyperbolic sine

We enter in the CAS:

hyp2exp(SINH(ln(2)))

We enter in the CAS:

hyp2exp(sinh(ln(2)))

We get:

3/4

Indeed, the command hyp2exp transforms the functions hyperbolic into exponentials.

12.2 Hyperbolic arc sine: ASINH asinh

ASINH or asinh is the reciprocal function of the function hyperbolic sine.

We enter in the CAS:

or

asinh(3/4)

ASINH(3/4)

We get:

ln(2)

12.3 Hyperbolic cosine: COSH cosh

COSH(x) or cosh returns:

 $\frac{\exp(x) + \exp(-x)}{2}$

it is the function hyperbolic cosine.

We enter in the CAS:

COSH(0)

or

cosh(0)

We get:

1

12.4 Hyperbolic arc cosine: ACOSH acosh

 $\tt ACOSH$ or $\tt acosh$ is the reciprocal function of the function hyperbolic cosine.

We enter in the CAS:

or

hyp2exp(ACOSH(1))

hyp2exp(acosh(1))

We get:

0

12.5 Hyperbolic tangent: TANH tanh

TANH(x) or tanh returns:

$$\frac{\exp(2x) - 1}{\exp(2x) + 1}$$

it is the function hyperbolic tangent.

We enter in the CAS:

hyp2exp(TANH(ln(3)))

or

hyp2exp(tanh(ln(3)))

We get:

4/5

Indeed, the command ${\tt hyp2exp}$ transforms the functions hyperbolic into exponentials.

12.6 Hyperbolic arc tangent: ATANH atanh

 ${\tt ATANH}\ or\ {\tt atanh}\ is\ the\ reciprocal\ function\ of\ the\ function\ hyperbolic\ tangent.$

We enter in the CAS:

```
ATANH (4/5)
```

or

atanh(4/5)

We get:

1/2*ln(9)

12.7 Other functions

12.7.1 List of variables: lname

lname takes as parameter an expression.
lname returns a vector whose components are the name of symbolic variables used in this
expression.

We enter:

lname(x*y*sin(x))

We get:

[x,y]

We enter:

a:=2;assume(b>0);assume(c=3);

```
lname(a*x^2+b*x+c)
```

We get:

[x,b,c]

12.7.2 List of variables and expressions: lvar

lvar takes as parameter an expression.
lvar returns a vector whose components are the names of variables and expressions
which this expression depends logically.

We enter:

```
lvar(x*y*sin(x)^{2}+ln(x)*cos(y))
```

We get:

[x,y,sin(x)]

We enter:

lvar(x*y*sin(x)^2)

We get:

[x,y,sin(x),ln(x),cos(y)]

We enter:

lvar(y+x*sqrt(z)+y*sin(x))

We get:

[y,x,sqrt(z),sin(x)]

12.7.3 List of variables and algebraic expressions: algvar

algvar takes as parameter an expression.

algvar returns a vector whose components are the name of symbolic variables, by order of algebraic extension, used in this expression.

We enter:	
	<pre>algvar(y+x*sqrt(z))</pre>
We get:	
	[[y,x],[z]]
We enter:	
	algvar(y*sqrt(x)*sqrt(z))
We get:	
	[[y],[z],[x]]
We enter:	
	algvar(y*sqrt(x*z))
We get:	
	[[y],[x,z]]
We enter:	
	algvar(y+x*sqrt(z)+y*sin(x))
We get:	

[[x,y,sin(x)],[z]]

12.7.4 Testing the presence of a variable in an expression: has

 $\tt has$ takes as parameter an expression and the name of a variable. $\tt has$ returns 1, or 0, depending on the variable is present , or not present , in the expression.

We enter:

has(x*y*sin(x),y)

We get:

1

We enter:

has(x*y*sin(x),z)

12.7.5 Evaluate an expression: eval

eval is used to evaluate an expression.

eval takes one or two arguments: an expression and eventually the wished level of the evaluation. You have to know that the CAS always evaluates the expressions without having to call the command

eval: the level of evaluation is indicated in the cell Recursive Evaluation of the CAS configuration (Shift CAS) and is checked by default to 5.

The command eval is mostly useful when we want to evaluate a subexpression in the expression editor.

We enter:	
	a:=2
We get:	
	2
We enter:	
	eval(2+3*a)
or	
	2+3*a
We get:	

we get.

We enter:

purge(r);purge(p);a:=1+i*r

8

r:=p+1;p:=-4;

We can then get different evaluation of a according to the level of evaluation asked:

we enter:

		a
	We get:	
		1-3*i
_	we enter:	evel (c. 1)
	We get:	eval(a,1)
	5	i*r+1
_	we enter:	
		eval(a,2)
	We get:	
		i*(p+1)+1

we enter:

eval(a,3)

We get:

1-3*i

12.7.6 Not evaluating an expression: QUOTE quote '

If we do not want an expression to be evaluated in a calculation, we need to quote it, either with ', either thanks to the function quote.

Note

When we enter for example a:=quote(a), this purges the variable a, and this instruction returns the value of this variable (or the assumptions made on this variable). So a:=quote(a) is synonymous of purge(a).

We enter:

```
a:=2;quote(2+3*a)
```

or

a:=2;'2+3*a'

We get:

(2,2+3.a)

12.7.7 Numerical evaluation: evalf approx

evalf or approx takes as parameter a numerical expression or a matrix. evalf returns the numerical value of the expression or of the matrix. By adding a second argument n to evalf (or approx), we can specify the number of significant digits of the approximation.

	<pre>evalf(sqrt(2))</pre>
We get:	
	1.41421356237
We enter:	
	<pre>evalf(sqrt(2),5)</pre>
We get:	
	1.4142
We enter:	
	evalf([[1,sqrt(2)],[0,1]])
We get:	
	[[1.0,1.41421356237],[0.0,1.0]]

We enter:

evalf([[1,sqrt(2)],[0,1]],5)

We get:

[[1.0,1.4142],[0.0,1.0]]

12.7.8 Rational approximation: exact

exact takes as parameter a real numerical expression. exact gives a rational approximation of all the decimal numbers r present which validate $|r - exact(r)| < \varepsilon$, where ε is defined by epsilon in the CAS configuration (key Shift CAS).

We enter:

	exact(1.5)
We get:	
	3/2
We enter:	
	exact(1.414)
We get:	
	707/500
We enter:	
	exact(1.41421356237^2)
We get:	

2

Chapter 13 Probability functions

13.1 Factorial: factorial !

! is a postfix function whereas factorial is a prefix function. n! or factorial (n) returns the factorial of n if n is n integer, and a! returns the value of the Gamma function for a + 1 if a is real.

We enter in the CAS:

20! or factorial(20) We get: 2432902008176640000 We enter: 5.2! or factorial(5.2) We get: 169.406099462

13.2 Number of combinations of p objects among *n*: COMB comb

COMB (n,p) or comb (n,p) returns the number of combinations of p elements among n (n and p are integers). We have: COMB (n,p) returns

$$\frac{n!}{p!\,(n\,-\,p)!}$$

We enter:

COMB(5,2)

10

We get:

13.3 Number of permutations of p objects among n: PERM perm

PERM(n,p) or perm(n,p) returns the number of permutations of p elements among n (n and p are integers).

222

We have: PERM(n,p) returns

$$\frac{n!}{(n-p)!}$$

We enter:

PERM(5,2)

We get:

20

13.4 Random numbers

13.4.1 Random number (real or integer): RANDOM

- To get a random real number between 0 and 1, we do not put any argument.

We enter:

RANDOM

We get a real number of the range 0,1, for example:

0.291424166081

- To get a random integer a between 1 and n ($1 \le a \le n$), we put n as argument without brackets.

We enter:

RANDOM 3

We get 1, 2 or 3, for example:

1

- To get a random real number *a* between *b* and *c* ($b \le a \le c$), we put *b*, *c* as arguments without brackets.

We enter:

RANDOM 3,5

We get a real number of 3,5 for example:

```
4.81731227506
```

- To get k random integers a between p and n ($p \le a \le n$) we put k, p, n as arguments without brackets.

We enter:

RANDOM 3,2,5

We get 3 integers between 2 and 5, for example:

13.4.2 Random integer: RANDINT

- To get a random integer a between 1 and n ($1 \le a \le n$) we put n as argument.

We enter:

RANDINT(4)

We get 0,1,2,3 or 4, for example:

2

To get a random integer *a* between *b* and *c* (*b* ≤ *a* ≤ *c*), we put *b* and *c* as arguments.
 We enter:

```
RANDINT(4,6)
```

We get 4,5 or 6, for example:

5

- To get *k* random integers *a* between *p* and *n* ($p \le a \le n$) we put *k*, *p* and *n* as arguments.

We enter:

RANDINT(4,2,6)

We get 4 numbers between 2 and 6, for example:

[2,6,2,6]

13.4.3 Rand function of the CAS: rand

Equally distributed draw on [0,1[: rand() rand() rand() returns randomly, in an equiprobable manner, a real number of [0,1[.

We enter:

rand()

We get for example:

0.912569261115

To get, randomly, in an equiprobable manner, a number of [0; 1[, we can also use (see following paragraph):

rand(0,1)

We get:

0.391549611697

Equally distributed draw on the interval [*a*; *b*[: rand(a,b)

If a and b are reals, rand(a, b) designates a random decimal number of the interval [a; b[. Thus, rand(a, b) returns randomly, and in an equiprobable manner, a decimal number of [a; b[. To get, randomly and in an equiprobable manner, a decimal number of [0; 1[, we enter: We get:

0.391549611697

We get for example:

0.912569261115

To get, randomly and in an equiprobable manner, a decimal number of [0; 0.5[, we enter:

rand(0,0.5)

We get:

0.303484437987

To get, randomly and in an equiprobable manner, a decimal number of] - 0.5; 0], we enter:

rand(0, -0.5)

or we enter:

rand(-0.5,0)

We get for example:

-0.20047219703

If a and b are reals, rand(a..b) designates a function which is a generator of random numbers of the interval [a; b[.

Thus, rand (a..b) () returns randomly, and in an equiprobable manner, a decimal number of [a; b[. To get, randomly and in an equiprobable manner, a decimal number of [0; 1[, we enter:

rand(0..1)()

We get:

0.391549611697

To get, randomly and in an equiprobable manner, several random decimal numbers of the interval [1; 2[, we enter:

r:=rand(1..2)

then, it is enough to press r() . We enter:

r()

We get:

1.14160255529

Random draw of equally distributed integers on 0,...,*n*: rand(n)

If *n* is a relative integer, rand(n) returns randomly, and in an equiprobable manner, an integer of [0, 1, ..., n[(or of]n, ...1, 0] if *n* is negative).

We get:

or we get:

We enter:

We get:

or we get:

0

1

0

rand(-2)

-1

To get a random integer between 6 and 10, boundaries included, we enter:

6+rand(11-6)

We get for example:

8 Random draw without replacement of p objects among n: rand rand has, in this case, either two, either three arguments. If rand has two arguments: the arguments are an integer p and a list L, then rand (p, L) returns, randomly, ${\tt p}$ elements of the list ${\tt L}.$ If rand has three arguments: the arguments are three integers p, min, max, then rand (p, min, max) returns, randomly, p integers of [min, ..., max] We enter: rand(3,["r","r","r","v","v","v"]) We get: ["r","r","v"] We enter: rand(2,1,10) We get: [3,7] We enter: rand(2,4,10) We get:

13.4.4 Random permutation: randperm

randperm takes as argument an integer n. randperm returns a random permutation of [0..n - 1].

We enter:

randperm(3)

We get:

[2,0,1]

13.4.5 Generating a random list: randvector

randvector generates a list of random numbers.

randvector takes as argument an integer n and eventually a second argument, either an integer k, either the quoted or not quoted name of the distribution law of the random numbers of the list (see also 13.4.8, 13.5.4, 13.5.5 and 13.5.6).

randvector returns a list of degree *n* constituted of random integers equally distributed between -99 and 99 (by default) or between 0 and k - 1 or a list of degree n of random numbers distributed according to the quoted law or as parameter.

When randvector takes as argument an integer n and a random law of the calculator you have to quote or not in this case, randvector returns a list of dimension n whose elements are taken randomly according to the function supplied as third argument.

The functions supplied as second argument, which must be quoted or not, can be:

' rand(n) '

'binomial(n,p)' Or binomial,n,p Or 'randbinomial(n,p)' 'poisson(λ)' Or poisson, λ Or 'randpoisson(λ)' 'normald(μ,σ)' Or normald, μ,σ Or 'randnorm(μ,σ)' 'exponential(a)' Or exponential,a Or 'randexp(a)' 'fisher(n,m)' Or fisher,n,m Or 'randfisher(n,m)'

Warning! The syntax without quote suits to the laws, but not to the corresponding command rand..., then, for example, the commands randvector(3,normald,0,1) or randvector(3,'normald(0,1)') or randvector(3,'randnorm(0,1)') are valid but randvector(3,randnorm,0,1) is not valid.

We enter:

randvector(3)

We get for example:

[-54,78,-29]

We enter:

randvector(3,5)

We enter:

randvector(3,'rand(5)')

We get for example:

[1,2,4]

randvector(3,normald,0,1) Or we enter: randvector(3, 'normald(0,1)') We get for example: [1.39091705476,-0.136794772167,0.187312440336] We enter: randvector(3, 2..4) We get for example: [3.92450003885, 3.50059241243, 2.7322040787] We enter: randvector(6, binomial, 4, 0.2) Or we enter: randvector(6,'binomial(4,0.2)') We get for example: [0,1,0,2,2,0] We enter: randvector(6,poisson,1.3) Or we enter: randvector(6, 'poisson(1.3)') We get for example: [1,0,1,1,1,1]We enter: randvector(4, exponential, 1.2) Or we enter: randvector(4, 'exponential(1.2)') We get for example: [1.67683756526,0.192937941271,0.580820253805,0.709352619633] We enter: randvector(5,fisher,4,6) Or we enter: randvector(5,'fisher(4,6)')

We get for example:

```
[0.17289703163,1.03709368317,0.161051043162,1.4407877128,0.3586901042
75]
```

13.4.6 Draw according to a multinomial law with programs

We write the programs randmult and randmultiname which simulate the multinomial law. randmult(n,P) chooses randomly n numbers among 1...k according to the multinomial law of probability P (k=size(P)). This means that we do a draw with replacement of n objects among k=size(P) objects. randmult(n,P) returns a list R of k=size(P) elements where R[j] is the number of objects of probability P[j] which have been drawn.

We enter the program randmult:

END;

We do six times the draw of an object among three objects (draw with replacement). Each object has a probability [1/2,1/3,1/6] to be drawn. To simulate a draw, we enter:

randmult(6,[1/2,1/3,1/6])

We get for example:

[3,2,1]

randmultinom(n,P,C) chooses randomly n objects among the elements of the list C. If k=size(C), the object C[j] has the probability P[j] to be drawn for (j=1..k). We must get k=size(C)=size(P) and sum(P)=1. randmultinom(n,P,C) returns the sequence of k lists constituted of the name of the objects and their number of occurence.

We enter the program randmultinom:

```
(n,p,c)->BEGIN
local k,j,l,r,x,y;
k:=size(p);
if size(c)!=k then return "error"; end;
x:=cumSum(p);
if x[k]!=1 then return "error"; end;
y:=MAKELIST([c[j],0],j,1,k);
for j from 1 to n do
r:=rand(0,1);
l:=1;
while r>x[1] do
l:=l+1;
end;
y[1,2]:=y[1,2]+1
end;
```

return y; END;

We do six times the draw of an object among three objects ["A", "B", "C"] (draw with replacement). Each object has the probability [1/2, 1/3, 1/6] to be drawn. To simulate a draw, we enter:

randmultinom(6,[1/2,1/3,1/6],["A","B","C"])

We get for example:

[["A",3],["B",1],["C",2]]]

13.4.7 Draw according to a normal distribution: RANDNORM randNorm

RANDNORM(mu, sigma) or randNorm(mu, sigma) returns a real randomly distributed according to the normal distribution N(mu, sigma) (by default mu = 0 and sigma = 1).

We enter:

RANDNORM()

Or we enter:

RANDNORM(0,1)

We get, for example:

1.2440525851

We enter:

RANDNORM(1,2)

We get, for example:

-1.8799815939

13.4.8 Draw according to an exponential law: randexp

 ${\tt randexp}\left(a\right)$ returns numbers randomly distributed according to the exponential law of positive parameter a.

The density of probability is proportional to exp(-a * t) and we have: $Proba(X \le t) = a \int_0^t exp(-a * u) du.$

We enter:

randexp(1)

We get for example:

0.310153677284

or we get for example:

13.4.9 Initializing the series of random numbers: RANDSEED RandSeed srand

RANDSEED or RandSeed or srand initializes the series of random numbers supplied by RANDOM. If we do not put a parameter, RANDSEED uses the time value as parameter.

We enter:

We get:

RANDSEED()
1

We enter:

We get:

1

RANDSEED(pi)

13.4.10 Function UTPC

 $\tt UTPC(n,x0)$ returns the probability that a random Chisquare variable with n degrees of freedom be greater than x0.

We enter:

UTPC(2,6.1)

We get:

0.0473589243911

13.4.11 Function UTPF

UTPF(n,m,x0) returns the probability that a random Fisher-Snedecor variable with n,m degrees of freedom be greater than x0.

We enter:

UTPF(4,10,3.5)

We get:

0.0491881403249

13.4.12 Function UTPN

UTPN (mu, v, x0) returns the probability that a random Normal variable be greater than x0 with mu the mean and v the variance (by default mu = 0 and v = 1).

We enter:

UTPN(1.96) or UTPN(1,4,4.92)

We get:

indeed $(x - 1)/\sqrt{4} > 1.96$ is equivalent to x > 4.92.

We enter:

UTPN(0.98)

or

UTPN(1,4,2.96)

We get:

0.163543059328

indeed $(x - 1)/\sqrt{4} > 0.98$ is equivalent to x > 2.96.

13.4.13 Function UTPT

UTPT(n, x0) returns the probability that a random Student variable with n degrees of freedom be greater than x0.

We enter:

We get:

UTPT(3,2.35)

0.050152899407

We enter:

UTPT(3,-2.35)

We get:

0.949847100593

13.5 Density of probability

13.5.1 Density of probability of the normal distribution: NORMALD normald

NORMALD(x) or normald(x) is the density of probability of the normal reduced centered distribution (of mean 0 and standard deviation 1).

NORMALD (μ , σ , x) or normald (μ , σ , x) is the density of probability of the normal distribution of mean μ and standard deviation σ).

We enter:

NORMALD(0.5)

Or we enter:

NORMALD(0,1,0.5)

We get:

232

We enter:

NORMALD(1,2,0.5)

We get:

0.193334058401

13.5.2 Density of probability of the Student law: STUDENT student

STUDENT (n, x) or student (n, x) is the density of probability of the Student law having *n* degrees of freedom.

We enter:

STUDENT(3,5.2)

We get:

0.00366574413491

13.5.3 Density of probability of the χ**2:** CHISQUARE chisquare

CHISQUARE(n,x) or chisquare(n,x) is the density of probability of the χ^2 law having *n* degrees of freedom.

We enter:

CHISQUARE(2,3.2)

We get:

0.100948258997

13.5.4 Density of probability of the Fisher law: FISHER fisher snedecor

FISHER (n, m, x) or fisher (n, m, x) or snedecor (n, m, x) returns the density of probability in x of the Fisher-Snedecor law (*n* and *m* are the numbers of degrees of freedom).

We enter:

FISHER(4,10,2.1)

We get:

0.141167840452

13.5.5 Density of probability of the binomial law: BINOMIAL binomial

BINOMIAL(n,k,p) Or binomial(n,k,p) returns $COMB(n,k) * p^k * (1-p)^{(n-k)}$ and BINOMIAL(n,k) Or binomial(n,k,p) returns COMB(n,k) if there is no third argument.

We enter:

BINOMIAL(4,2)

We enter:

BINOMIAL(4,2,0.5)	
We get:	
0.375	
We enter in the CAS:	
binomial(4,2)	
We get:	
6	
We enter in the CAS:	
binomial(4,2,1/2)	
We get:	
3/8	
13.5.6 Density of probability of the Poisson law: POISSON poisson	
The density of probability of the Poisson law of parameter mu, that is to say of mean mu and standard deviation mu is:	
POISSON(mu,k) or poisson(mu,k) returns $exp(-mu) * mu^{k}$	

We enter:

POISSON(0.5,2)

k!

We get:

0.0758163324641

13.6 Function of distribution

13.6.1 Function of distribution of the normal distribution: NORMALD CDF normald cdf

When a random variable *X* follows a normal reduced centered distribution, we have: $Proba(X \leq x) = \text{NORMALD CDF}(x) = \text{normald cdf}(x)$ and $Proba(x \le X \le y) = \text{NORMALD}_CDF(x, y) = \text{normald}_cdf(x, y).$ When a random variable *X* follows a normal distribution of mean μ and standard deviation σ , we have: $Proba(X \leq x) = NORMALD_CDF(\mu, \sigma, x).$

 $Proba(x \leq X \leq y) = \text{NORMALD CDF}(\mu, \sigma, x, y).$

We enter:

NORMALD CDF(0.96)

Or we enter:

NORMALD_CDF(0,1,0.96)		
We get:		
0.831472392533		
We enter:		
NORMALD_CDF(1.96)		
We get:		
0.975002104852		
We enter:		
NORMALD CDF(0,1.96)		
We get:		
0.475002104852		
because NORMALD_CDF(0) =1/2 and $0.975002104852 - 0.5 = 0.475002104852$		
We enter:		
NORMALD_CDF(1,2,1.96)		
We get:		
0.684386303484		
We enter:		
NORMALD_CDF(1,2,1.1,2.9)		
We get:		
0.309005067853		
13.6.2 Function of distribution of the Student law: STUDENT_CDF student cdf		
When a random variable X follows a Student law having n degrees of freedom, we have:		
$\begin{aligned} Proba(X \leq x) = & \texttt{STUDENT_CDF}(n, x) = \texttt{student_cdf}(n, x). \\ Proba(x \leq X \leq y) = & \texttt{STUDENT_CDF}(n, x, y) = & \texttt{student_cdf}(n, x, y). \end{aligned}$		
We enter:		
STUDENT_CDF(5,2)		
We get:		
0.949030260585		
We enter:		

STUDENT_CDF(5,-2)

13.6.3 Function of distribution of the χ^2 **law:** CHISQUARE_CDF

chisquare_cdf

When a random variable X follows a χ^2 law having n degrees of freedom, we have: $Proba(X \le x) = CHISQUARE_CDF(n, x) = chisquare_cdf(n, x)$. $Proba(x \le X \le y) = CHISQUARE_CDF(n, x, y) = chisquare_cdf(n, x, y)$.

We enter:

CHISQUARE CDF(5,11)

We get:

0.948620016517

We enter:

CHISQUARE_CDF(5,3)

We get:

0.300014164121

We enter:

CHISQUARE CDF(5,3,11)

We get:

0.648605852396

because 0.948620016517 - 0.300014164121 = 0.648605852396

13.6.4 The function of distribution of the Fisher-Snedecor law: FISHER_CDF fisher cdf snedecor cdf

When a random variable X follows a Fisher-Snedecor law having as degrees of freedom n1, n2, we have:

 $\begin{aligned} & Proba(X \leq x) = \texttt{FISHER_CDF}(\texttt{n1},\texttt{n2},\texttt{x}) = \texttt{fisher_cdf}(\texttt{n1},\texttt{n2},\texttt{x}). \\ & Proba(x \leq X \leq y) = \texttt{FISHER_CDF}(\texttt{n1},\texttt{n2},\texttt{x},\texttt{y}) = \\ & \texttt{fisher cdf}(\texttt{n1},\texttt{n2},\texttt{x},\texttt{y}) = \texttt{snedecor cdf}(\texttt{n1},\texttt{n2},\texttt{x},\texttt{y}). \end{aligned}$

We enter:

FISHER_CDF(5,3,9)

We get:

0.949898927032

We enter:

FISHER_CDF(3,5,9.)

236

0.981472898262

We enter:

FISHER_CDF(3,5,2.)

We get:

0.767376082

We enter:

FISHER_CDF(3,5,2.,9.)

We get:

0.214096816262

because 0.981472898262 - 0.767376082 = 0.214096816262

13.6.5 Function of distribution of the binomial law: BINOMIAL_CDF binomial cdf

When a random variable *X* follows a binomial law B(n, p). We have:

```
\begin{split} & \texttt{BINOMIAL\_CDF}(n,p,x) = \texttt{binomial\_cdf}(n,p,x) = \texttt{Proba}(X \leq x) = \\ & \texttt{BINOMIAL}(n,0,p) + \ldots + \texttt{BINOMIAL}(n,\texttt{floor}(x),p) \ . \\ & \texttt{BINOMIAL\_CDF}(n,p,x,y) = \texttt{binomial\_cdf}(n,p,x,y) = \texttt{Proba}(x \leq X \leq y = \\ & \texttt{BINOMIAL}(n,\texttt{ceil}(x),p) + \ldots + \texttt{BINOMIAL}(n,\texttt{floor}(y),p) \ . \end{split}
```

We enter:

BINOMIAL CDF(4,0.5,2))

We get:

0.6875

We can check that:

```
BINOMIAL(4,0,0.5)+BINOMIAL(4,1,0.5)+BINOMIAL(4,2,0.5)
```

=0.6875

We enter:

BINOMIAL CDF(2,0.3,1)

We get:

0.91

We enter:

BINOMIAL_CDF(2,0.3,1,2)

We enter in the CAS:

	<pre>binomial_cdf(4,1/2,2))</pre>
We get:	
	11/16
We enter:	
	<pre>binomial_cdf(2,3/10,1)</pre>
We get:	
	91/100
We enter:	
	binomial_cdf(2,3/10,1,2)
We get:	
	51/100

13.6.6 Function of distribution of the Poisson law: POISSON_CDF poisson cdf

When a random variable X follows a Poisson law of parameter mu, of mean mu, we have: $Proba(X \le x) = POISSON_CDF(mu, x) = poisson_cdf(mu, x)$ with $X \in P(mu)$. And $Proba(x \le X \le y) = POISSON_CDF(mu, x, y) = poisson_cdf(mu, x, y)$ $POISSON_CDF(mu, x)$ is the function of distribution of the Poisson law of parameter mu.

We enter:

POISSON_CDF(10.0,3)

We get:

0.0103360506759

13.7 Inverse distribution function

13.7.1 Inverse normal distribution function: NORMALD ICDF normald icdf

When a random variable X follows a normal reduced centered distribution, if we have $NORMALD_ICDF(x) = normald_icdf(x) = h$, it is what we have:

 $Proba(X \leq h) = x = NORMALD_CDF(h) = normald_cdf(h)$.

When a random variable *X* follows a normal distribution of mean μ and standard deviation σ , if we have:

NORMALD_ICDF(μ , σ , x)=normald_icdf(μ , σ , x)=h

it is that we have:

 $Proba(X \leq h) = x = \text{NORMALD}_CDF(\mu, \sigma, h) = \text{normald}_cdf(\mu, \sigma, h).$

We enter:

NORMALD_ICDF(0.95)

238

Or we enter:	
	NORMALD_ICDF(0,1,0.95)
We get:	
We enter:	1.64485362695
we enter.	NORMALD ICDF(0.975)
We get:	
	1.95996398454
We enter:	
	NORMALD_ICDF(1,2,0.495)
We get:	0.974933060984
We enter:	0.9/4955000964
	NORMALD_ICDF(1,2,NORMALD_CDF(1,2,0.975))
We get:	
	0.975
We enter:	
We get:	NORMALD_CDF(1,2,NORMALD_ICDF(1,2,0.495))
We get:	0.495
We enter:	
	NORMALD_ICDF(1,2,2.96*sqrt(2))
We get:	
	0.944423950497
13.7.2 Inverse distribut student_icdf	tion Student's function: STUDENT_ICDF

When a random variable X follows a Student law having n degrees of freedom, if we have $STUDENT_ICDF(n,x)=student_icdf(n,x)=h$ it is that: $Proba(X \le h) = x = STUDENT_CDF(n,h) = student_cdf(n,h)$.

We enter:

STUDENT_ICDF(5,0.95)

2.01504837333

13.7.3 Inverse function of the function of distribution of the χ^2 law:

CHISQUARE ICDF chisquare icdf

When a random variable X follows a χ^2 law having n degrees of freedom, if we have CHISQUARE_ICD(n,x)=chisquare_icdf(n,x)=h it is that: $Proba(X \le h) = x = CHISQUARE CDF(n,h) = chisquare cdf(n,h)$.

We enter:

CHISQUARE ICDF(5,0.95)

We get:

11.0704976935

13.7.4 Inverse of the function of distribution of the Fisher-Snedecor law: FISHER ICDF fisher icdf snedecor icdf

When a random variable X follows a Fisher-Snedecor law having as degrees of freedom n1, n2, if we have:

FISHER_ICDF(n1, n2, x) = fisher_icdf(n1, n2, x) = snedecor_icdf(n1, n2, x) = h
it is that:

 $Proba(X \le h) = x = FISHER_CDF(n1, n2, h) = fisher_cdf(n1, n2, h) = snedecor_cdf(n1, n2, h)$

We enter:

FISHER ICDF(5,3,0.95)

We get:

9.01345516752

We enter:

1/FISHER ICDF(3,5,0.05)

We get:

9.01345516752

Note: FISHER_ICDF(n1,n2,p)=1/FISHER_ICDF(n2,n1,1-p)

13.7.5 Inverse distribution function of the binomial law: BINOMIAL_ICDF binomial icdf

When a random variable X follows a binomial law B(n,p), if we have: BINOMIAL_ICDF(n,p,x)=binomial_icdf(n,p,x)=h it is that $Proba(X \le h) = x = BINOMIAL_ICDF(n,p,h) = binomial_cdf(n,p,h)$.

We enter:

BINOMIAL_ICDF(4,0.5,0.9)

240

	3
We enter:	
	BINOMIAL_ICDF(2,0.3,0.95)
We get:	
	2
We enter in the CAS:	
	<pre>binomial_icdf(4,1/2,0.9)</pre>
We get:	
	3
We enter:	
	binomial_icdf(2,3/10,0.95)
We get:	

13.7.6 Inverse distribution function of Poisson: POISSON_ICDF poisson icdf

When a random variable X follows a Poisson law of parameter mu, of mean mu, we have: POISSON_ICDF(mu,t)=poisson_icdf(mu,t)= h is equivalent to $Proba(X \le h)$ =t= poisson_cdf(mu,h)=POISSON_CDF(mu,h) with $X \in P(mu)$. POISSON_ICDF(mu,t) is the inverse of the function of distribution of the Poisson law of parameter mu.

We enter:

POISSON_ICDF(10.0,0.975)

2

We get:

Chapter 14 Statistics functions

14.1 Statistics functions at one variable

We will describe the different statistics functions thanks to an example:

with the list A: = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

- taking as statistical sequence of size 1 the list A1, or
- taking as statistical sequence the list A1 with as size again the list A1.

We enter:

A1:=[0,1,2,3,4,5,6,7,8,9,10,11]

We can also refer to 15.1 when the arguments are lists and at 15.1.1 when the arguments are matrices.

14.1.1 The mean: mean

mean returns the numerical mean of the elements of a list (or of each column of a matrix).

We enter:

mean(A)

We get:

Indeed, (0 + 1 + ... + 11) = 66 and 66/12 = 11/2

We enter:

```
mean([[1,2],[3,4]])
```

We get:

[2,3]

Indeed, (1+3)/2 = 2 and (2+4)/2 = 3. mean returns the numerical mean of the elements of a list (respectively of each column of a matrix) weighted by a list (respectively a matrix) of same size, supplied as second argument.

We enter:

mean(A,A)

Indeed: 1 * 1 + 2 * 2 + ..11 * 11 = 23 * 12 * 11/6 = 23 * 2 * 11 and 1 + 2 + ..11 = 66 then: mean (A, A) = 23 * 2 * 11/66 = 23/3

We enter:

We get:

Indeed: (1 * 1 + 3 * 3)/(1 + 3) = 5/2 and (2 * 2 + 4 * 4)/(2 + 4) = 10/3

14.1.2 The standard deviation: stddev

 ${\tt stddev}$ returns the numerical standard deviation of the elements of a list (or of each column of a matrix).

We enter:

stddev(A)

We get:

sqrt(143/12)

We enter:

stddev([[1,2],[3,4]])

We get:

[1,1]

stddev returns the numerical standard deviation of the elements of a list weighted by another list supplied as second argument.

We enter:

stddev(A,A)

We get:

sqrt(65/9)

14.1.3 The standard deviation of the population: stddevp stdDev

stddevp takes as argument a (or two) list(s): stddevp(1) returns an estimation of the numerical standard deviation of the population whose is issu the sample described by the elements of the list 1, of length n, supplied as argument (size(1)=n and n must be large). We have: stddevp(1)^2=n/(n-1)* stddev(1)^2.

stddevp(A1)

We get:

sqrt(13)

Indeed: n=size(A1)=12 and 12/11*stddev(A1)^2=12/11*143/12=13.

We enter:

```
stddevp([[1,2],[3,4]])
```

We get:

[sqrt(2), sqrt(2)]

stddevp(11,12) returns the numerical standard deviation of the population whose is issu
the sample described by the elements of a list 11 weighted by another list 12 supplied as second
argument.
We have:

stddevp $(11,12)^{2=n}/(n-1)$ stddev $(11,12)^{2}$ if n is the size of the sample, that is to say if n is the sum of the list 12 (sum(12)=n).

We enter:

stddevp(A1,A1)

We get:

sqrt(22/3)

Indeed, sum(A1)=66 and $\frac{22}{3} = \frac{66}{65} * \frac{65}{9}$

Note stddev is the standard deviation after division by n (size of the sample) whereas stddevp is divided by n-1 and gives the non biased estimator of the standard deviation of a population from the standard deviation calculated with a sample (the division by n-1 allows to remove the bias). For the variance, we just give one command (division by n), but it is very easy to define a "variance of sample" by taking the square of the standard deviation stddevp.

14.1.4 The variance: variance

variance returns the numerical variance of the elements of a list.

We enter:

variance(A1)

We get:

143/12

variance returns the numerical variance of the elements of a list weighted by another list supplied as second argument.

244

We get:

65/9

We enter:

variance([[1,2],[3,4]])

We get:

[1,1]

14.1.5 The median: median

median returns the median of the elements of a list.

We enter:

median(A1)

We get:

5.0

 $\tt median$ returns the numerical median of the elements of a list weighted by another list supplied as second argument.

We enter:

A1:=[0,1,2,3,4,5,6,7,8,9,10,11] median(A1,A1)

We get:

8

We have indeed: 1 + 2 + 3 + ...7 = 28 and 9 + 10 + 11 = 30 there are then 28 elements before 8 and 30 elements after 8.

14.1.6 Different statistics values: quartiles

 $\tt quartiles$ returns the matrix column formed by: the minimum, the first quartile, the median, the third quartile and the maximum of the elements of a list.

We enter:

A1:=[0,1,2,3,4,5,6,7,8,9,10,11]

quartiles(A1)

We get:

[[0.0],[2.0],[5.0],[8.0],[11.0]]

We enter:

A1:=[0,1,2,3,4,5,6,7,8,9,10,11]

quartiles(A1,A1)

We get:

[1,6,8,10,11]

14.1.7 The first quartile: quartile1

quartile1 returns the first quartile of the elements of a list.

We enter:

```
A1:=[0,1,2,3,4,5,6,7,8,9,10,11]
quartile1(A1)
```

We get the first quartile of A1:

2.0

quartile1 returns the first quartile of the elements of a list weighted by another list supplied as second argument. We enter:

quartile1(A1,A1)

We get the first quartile of A1 weighted by A1:

6

14.1.8 The third quartile: quartile3

quartile3 returns the third quartile of the elements of a list.

We enter:

```
A1:=[0,1,2,3,4,5,6,7,8,9,10,11]
quartile3(A1)
```

We get the third quartile of A1:

8.0

quartile3 returns the third quartile of the elements of a list weighted by another list supplied as second argument.

We enter:

We get the first quartile of A1 weighted by A1:

10

14.1.9 The quantile: quantile

quantile(L1,p) where L1 is the statistical sequence and p a real of [0,1[, tells the value of the character starting from which the cumulated frequency of L1 reaches or exceeds p.

	A1:=[0,1,2,3,4,5,6,7,8,9,10,11]
	quantile(A1,0.1)
We get the first quantile:	
	1.0
We enter:	
	quantile(A1,0.25)
We get the first quartile:	
	2.0
We enter:	
	quantile(A1,0.5)
We get the median:	
	5.0
We enter:	
	quantile(A1,0.75)
We get the third quartile:	
	8.0
We enter:	
	quantile(A1,0.9)
We get the ninth quantile:	
	10.0

quantile(l1, l2, p) returns the quantile specified by the last argument of the elements of the list l1 weighted by the list l2.

We enter:

quantile(A1,A1,0.25)

We get the first quartile of the list A weighted by A:

6

14.1.10 The histogram: histogram

histogram plots the histogram of data. We can specify a list of numbers of items, or a number nc of classes, or the mimimum classmin of the classes and the size classsize of the classes.

histogram allows to display the function density of frequencies: we put as abscissa the classes and as ordinate the density of frequency (if we have discret values, they are considered as being the center of the class). The histogram is then a stairs graph in which the frequency of different classes are represented by the areas of different rectangles located under the different steps.

We point out that, if the size of the class $[a_{j-1}; a_j]$ is n_j , the frequency of the classe $[a_{j-1}; a_j]$ is $f_j = \frac{n_j}{N}$ (if *N* is the total number of items) and the density of frequency of the class $[a_{j-1}; a_j]$ is $\frac{f_j}{a_{j-1}} = \frac{n_j}{N}$.

We enter:

histogram([[1.5..1.65,50],[1.65..1.7,20],[1.7..1.8,30]])

The graphic windows automatically opens and we get the histogram of the sequence [[1.5..1.65, 50], [1.65..1.7, 20], [1.7..1.8, 30]], provided that the plot configuration has been correctly defined (menu Cfg).

The argument of histogram can also be a list of discrete values. In this case, the classes start at a value (class_min) and are all of same size (class_size), either defined by default (at 0 and 1, values tobe checked in the graphic settings), either put as second and third arguments.

We enter:

histogram([0,1,2,1,1,2,1,2,3,3])

so <code>class_min=0</code> and <code>class_size=1</code> and then the values 0,1,2,3 are not centered. but if we enter:

histogram([0,1,2,1,1,2,1,2,3,3],-0.5,1)

so $class_min=-0.5$ and $class_size=1$ and the values 0,1,2,3 are then centered, and it returns the same thing as:

histogram([[0,1],[1,4],[2,3],[3,2]])

We enter:

```
histogram(seq(rand(1000),k,1,100),0,100)
```

Here we have chosen class_min=0 and class_size=100.

We enter:

histogram(seq(rand(10),k,1,100),0,1)

Here we have chosen class_min=0 and class_size=1.

14.1.11 The covariance: covariance

The covariance of random variables *X* and *Y* is:

 $cov(X,Y) = E((X - \overline{X})(Y - \overline{Y})).$

covariance has different kinds of arguments:

 when the sizes equal 1, covariance takes as argument two lists of same length or a matrix of two columns.
 covariance returns the numerical variance of two lists or two columns of this matrix.

We enter:

covariance([1,2,3,4],[1,4,9,16])

We get:

We get:

25/4

covariance([[1,1],[2,4],[3,9],[4,16]])

Because we have:

1/4 * (1 + 8 + 27 + 64) - 75/4 = 25/4

Provided that A1:=[0,1,2,3,4,5,6,7,8,9,10,11], we enter:

We get:

1573/12

- when the sizes are different from 1:

• if the paired values a[j], b[j] have as size n[j] (j = 0..p - 1), covariance takes as argument three lists a, b, n of same length p, or a matrix of three columns a, b, n and p lines [a[j], b[j], n[j]].

covariance returns the numerical variance of the two first lists weighted by the list supplied as last argument, or of the two columns of this matrix weighted by the third column.

We enter:

covariance([1,2,3,4],[1,4,9,16],[3,1,5,2])

Or we enter:

covariance([[1,1,3],[2,4,1],[3,9,5],[4,16,2]])

We get:

662/121

• if the paired values a[j], b[k] have for size N[j,k] (j = 1..p, k = 1..q), covariance takes as argument two lists a, b of respective lengths p and q, and a matrix N of p rows and q columns, or also, in order to write the data in a pleasant way in the table, covariance can also have two arguments, a matrix M and -1. M is then a double entry table equal to:

$$M = \begin{bmatrix} a \setminus b & b[1] & \cdots & b[q] \\ a[1] & N[1,1] & \cdots & N[1,q] \\ \vdots & \vdots & \ddots & \vdots \\ a[p] & N[p,0] & \cdots & N[p,q] \end{bmatrix}$$

covariance (a, b, N) or covariance (M, -1) returns the numerical covariance of paired values a[j], b[k] weighted by $N_{i,k}$.

We enter:

We get:

662/121

We enter:

covariance([[b\a,1,2,3,4],[1,3,0,0,0],
[4,0,1,0,0],[9,0,0,5,0],[16,0,0,0,2]],-1)

We get:

662/121

14.1.12 The correlation: correlation

The coefficient of linear correlation of two random variables *X* and *Y* is $\rho = \frac{cov(X,Y)}{\sigma(X)\sigma(Y)}$ where $\sigma(X)$ (resp. $\sigma(Y)$) designates the standard deviation of *X* (resp. *Y*).

correlation has the same arguments a covariance.

When the sizes equal 1, correlation takes as argument two lists of same length or a matrix of two columns.

We enter:

correlation([1,2,3,4],[1,4,9,16])

We get:

100/(4*sqrt(645))

We enter:

correlation([[1,1],[2,4],[3,9],[4,16]])

We get:

100/(4*sqrt(645))

Provided that A1:=[0,1,2,3,4,5,6,7,8,9,10,11], we enter:

correlation(A1,A1^2)

We get:

18876/(572*sqrt(1173))

When the sizes are different from 1:

- if the paired values a[j], b[j] have as size n[j] (j = 0..p - 1), correlation takes as argument three lists a, b, n of same length p, or a matrix of three columns a, b, n and p rows [a[j], b[j], n[j]].

correlation returns the numerical correlation of the two first lists which are weighted by the list supplied as last argument or returns the numerical correlation of two columns of this matrix which are weighted by the third column.

We enter:

correlation([1,2,3,4],[1,4,9,16],[3,1,5,2])

Or we enter:

correlation([[1,1,3],[2,4,1],[3,9,5],[4,16,2]])

We get:

662/(180*sqrt(14))

- if the paired values a[j], b[k] have for size N[j,k] (j = 1..p, k = 1..q), correlation takes as argument two lists a, b of respective lengths p and q and a matrix N of p rows and qcolumns or else, in order to write the data in a pleasant way in the table, correlation can also get for argument, a matrix M and -1.

M is then a double entry table equal to:

$$M = \begin{bmatrix} a \setminus b & b[1] & \cdots & b[q] \\ a[0] & N[1,1] & \cdots & N[1,q] \\ \vdots & \vdots & \ddots & \vdots \\ a[p] & N[p,1] & \cdots & N[p,q] \end{bmatrix}$$

correlation (a, b, N) or correlation (M, -1) returns the numerical correlation of paired values a[j], b[k] weighted by Nj,k.

We enter:

We get:

```
662/(180*sqrt(14))
```

We enter:

correlation([["b\a",1,2,3,4],[1,3,0,0,0], [4,0,1,0,0],[9,0,0,5,0],[16,0,0,0,2]],-1)

We get:

662/(180*sqrt(14))

14.1.13 Covariance and correlation: covariance correlation

covariance_correlation has the same arguments as covariance: if the sizes equal 1, covariance_correlation takes as argument two lists of same length or a matrix of two columns representing two random variables X and Y and otherwise covariance_correlation takes as argument three lists of same length, or a matrix of three columns representing two random variables X and Y and otherwise covariance_correlation takes as argument three lists of same length, or a matrix of three columns representing two random variables X and Y and three columns representing two random variables X and Y and the weighting of their sizes or else a matrix M and -1, where M gives the weighting of X (the first column of M without M[0, 0]) and Y (the first line of M without M[0, 0]).

covariance_correlation returns the list of the covariance cov(X, Y) and the coefficient of linear correlation ρ of two random variables X and Y.

We have $\rho = \frac{cov(X,Y)}{\sigma(X)\sigma(Y)}$ where $\sigma(X)$ (resp. $\sigma(Y)$) designates the standard deviation of X (resp. Y).

We enter:

We get:

[25/4,100/(4*sqrt(645))]

Provided that A1:=[0,1,2,3,4,5,6,7,8,9,10,11], we enter:

covariance correlation(A1,A1^2)

We get:

```
[1573/12,18876/(572*sqrt(1173))]
```

```
covariance_correlation([1,2,3,4],[1,4,9,16],[3,1,5,2])
```

Or we enter:

```
covariance_correlation([[1,1,3],[2,4,1],[3,9,5],[4,16,2]])
```

We get:

[662/121,662/(180*sqrt(14))]

We enter:

covariance_correlation([1,2,3,4],[1,4,9,16],
 [[3,0,0,0],[0,1,0,0],[0,0,5,0],[0,0,0,2]])

We get:

[662/121,662/(180*sqrt(14))]

We enter:

covariance_correlation([["b\a",1,2,3,4],[1,3,0,0,0], [4,0,1,0,0],[9,0,0,5,0],[16,0,0,0,2]],-1)

We get:

[662/121,662/(180*sqrt(14))]

14.1.14 Polygonal line: polygonplot

polygonplot takes as arguments two lists or a matrix of two columns. polygonplot allows to display the line segments joining the different points of the cloud of dots defined by the argument and ordinates according to the increasing abscissae. If you want that the points are joined in the order supplied, you must use <code>listplot</code>.

We enter:

polygonplot([[0,0],[1,1],[2,4],[3,9],[4,16]])

Or we enter, because the points will be ordered according to the increasing abscissae:

polygonplot([[2,4],[0,0],[3,9],[1,1],[4,16]])

Or we enter:

```
polygonplot([0,1,2,3,4],[0,1,4,9,16])
```

The graphic windows automatically opens and we get the plot of 4 segments joining the 5 points ((0,0),...(4,16)), provided that the plot configuration has been correctly defined (menu Cfg).

14.1.15 Polygonal line: plotlist

plotlist takes as argument a list I or a matrix of two columns.

listplot or plotlist allows to display the segments joining the cloud of plots having for abscissa [0, 1, 2...n] and for ordinate 1 or for coordinates a line of the matrix. plotlist connects by two line segments the different points of the cloud, but without reordering the points, unlike polygonplot which reorders the points according to their abscissa, then connects them.

plotlist([0,1,4,9,16])

Or we enter:

```
plotlist([[0,0],[1,1],[2,4],[3,9],[4,16]])
```

The graphic windows automatically opens and we get, provided that the plot configuration has been correctly defined (menu Cfg):

```
the plot of 5 points ((0,0),(1,1),\ldots,(4,16)) connected by 4 segments
```

We enter, if A is a matrix of 5 rows and 2 columns:

```
A:=[[0,0],[1,1],[5,4],[3,9],[4,16]]
listplot(A[0..4,0..1])
```

The graphic windows automatically opens and we get:

The 5 points joined by 4 segments

Please note the difference between:

listplot([[0,0],[1,1],[5,4],[3,9],[4,16]])

polygonplot([[0,0],[1,1],[5,4],[3,9],[4,16]])

Warning!

listplot([0,1,2,3,4],[0,1,4,9,16])
or
listplot([[0,1,2,3,4],[0,1,4,9,16]])
is not valid!

14.1.16 Polygonal line and cloud of plots: polygonscatterplot

polygonscatterplot takes as arguments two lists or a matrix of two columns. polygonscatterplot allows to display the cloud of dots defined by the argument, by joining by line segments the different points of the cloud, ordering them according to the increasing abscissae .

We enter:

polygonscatterplot([[0,0],[1,1],[2,4],[3,9],[4,16]])

Or we enter:

```
polygonscatterplot([0,1,2,3,4],[0,1,4,9,16])
```

The graphic windows automatically opens and we get the plot of 5 points ((0,0),...(4,16)) joined by 4 segments, provided that the plot configuration has been correctly defined (menu Cfg).

14.1.17 Linear interpolation: linear interpolate

Considering a matrix of two lines giving points coordinates: once the abcissae of these points have been sorted, these points define a polygonal line. We want to get the points coordinates of this line regularly distributed.

linear_interpolate has four arguments, a two line matrix A1 giving the coordinates of the points of a polygonal line, the minimum value of x (xmin), the maximum value of x (xmax), and the step (xstep).

linear_interpolate returns the coordinates of the points of the polygonal line for x growing from xmin to xmax with a step of xstep.

252

We enter:

We get:

[[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0],

We enter:

We get:

[[2.0,3.0,4.0,5.0,6.0,7.0],[4.0,4.5,5.0,5.5,6.0,8.0]]

We enter:

linear_interpolate([[1,2,9,6],[3,4,6,12]],1,9,1)

We get:

[[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0], [3.0,4.0,6.0,8.0,10.0,12.0,10.0,8.0,6.0]]

14.1.18 Linear regression: linear regression

To fit the data the best way by the line of the least squares having for equation y = mx + b, we use linear_regression which returns the paired value (m, b). If the data are x_i , y_i with i = 1..n, we have:

If the data are
$$x_i$$
, y_i with $i = 1..n$,
 $m = \frac{cov(X,Y)}{\sigma(X)^2}$ and $b = \overline{Y} - m\overline{X}$

because the sum of the squares of the distances $d_i = |y_i - mx_i - b_i|$ is minimal for these values and this minimum (which is then the average vertical quadratic error) equals $(1 - \rho^2)\sigma(Y)^2$ where r is the correlation coefficient ($\rho = \frac{cov(X,Y)}{\sigma(X)\sigma(Y)}$).

linear regression has the same arguments as covariance.

We enter:

Or we enter:

We get:

4,-2

it is then the linear function equation y = 4x - 2 which fits the data the best.

$$X1:=[0,1,2,3,4,5,6,7,8,9,10]$$

Y1:=[7.3,9.53,12.47,16.3,21.24,27.73,36.22, 47.31,61.78,80.68,105]

Z1:=log(Y1)

linear regression(X1,Z1)

We get:

0.266729219953,1.98904252589

it is then the linear function equation $z = \ln(y) = 0.267x + 1.99$ which fits the data the best.

14.1.19 **Exponential regression:** exponential regression

To fit the data by an exponential function equation $y = be^{mx} = ba^x$, we use exponential_regression which returns the paired value (a, b). exponential_regression has the same arguments as covariance.

We enter:

```
evalf(exponential regression([[1,1],[2,4],[3,9],[4,16]]))
```

Or we enter:

evalf(exponential regression([1,2,3,4],[1,4,9,16]))

We get:

2.49146187923,0.5

it is then the exponential function of equation $y = 0.5 * (2.49146187923)^x$ which fits the data the best.

We enter:

X1:=[0,1,2,3,4,5,6,7,8,9,10] Y1:=[7.3,9.53,12.47,16.3,21.24,27.73,36.22,47.31, 61.78,80.68,105]

exponential_regression(X1,Y1)

We get:

1.30568684451,7.30853268031

it is then the function exponential of equation $y = 7.3 * (1.3)^x$ which fits the data the best. We check by entering:

e^[linear regression(X1,ln(Y1))]

We get:

1.30568684451,7.30853268031

14.1.20 Logarithmic regression: logarithmic regression

To fit the data by a logarithmic function equation $y = m\ln(x) + b$, we use logarithmic_regression which returns the paired value (m, b). logarithmic regression has the same arguments as covariance. We enter:

Or we enter:

```
evalf(logarithmic_regression([1,2,3,4],[1,4,9,16]))
```

We get:

10.1506450002,-0.564824055818

it is then the logarithmic function of equation $y = 10.15 \ln(x) - 0.565$ which fits the data the best.

We enter:

We get:

2.83870854646,0.843078064152

it is then the logarithmic function of equation $y = 0.84 \ln(x) + 2.84$ which fits the data the best. We check by entering:

linear regression(ln(X1),Y1)

We get:

2.83870854646,0.843078064152

and the correlation coefficient is:

correlation(ln(X1),Y1)

We get:

0.977939822434

We can also enter to look for a better approximation:

logarithmic regression(X1, log(Y1))

We get:

0.732351031846,0.467599676658

it is then the function logarithmique of equation z = ln(y) = 0.73 ln(x) + 0.47 which fits the data the best. We check by entering:

linear_regression(ln(X1),ln(Y1))

We get:

0.732351031846,0.467599676658

and the correlation coefficient is:

We get:

0.999969474543

14.1.21 Polynomial regression: polynomial regression

To fit the data by a polynomial function of degree $\leq n$ of equation $y = a_0 x^n + ... + a_n$, we use, putting the degree n as last parameter, polynomial_regression which returns the list [an, ...a0]. polynomial_regression has the same first arguments as covariance, the last argument being the degree of the polynomial returned.

We enter:

polynomial regression([[1,1],[2,4],[3,9],[4,16]],3)

Or we enter:

```
polynomial regression([1,2,3,4],[1,4,9,16],3)
```

We get:

[0,1,0,0]

it is then the polynomial function equation $y = 0 * x^3 + x^2 + 0 * x + 0 = x^2$ which fits the data the best.

Note: we will notice that the equation of the curve represented as well as the value of the correlation coefficient of data are written in blue.

If we want to get the equation and/or the correlation coefficient on the plot we must add as last argument the option equation and/or correlation.

14.1.22 Power regression: power regression

To fit the data by a function power equation $y = bx^m$, we use power_regression which returns the paired value (m, b).

power regression has the same arguments as covariance.

We enter:

```
evalf(power regression([[1,1],[2,4],[3,9],[4,16]]))
```

Or we enter:

evalf(power_regression([1,2,3,4],[1,4,9,16]))

We get:

(2.0, 1.0)

so $y = x^2$ is the function power which fits the data the best.

We enter:

X1 := [1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8]

Y1:=[1.6,2.15,2.65,3.12,3.56,3.99,4.4,4.8,5.18, 5.58,5.92,6.27,6.62,7.06,7.3] power_regression(X,Y)

We get:

```
0.732351031846,1.59615829535
```

it is then the function power of of equation $y = 1.6 * x^{0.73}$ which fits the data the best. We check by entering:

linear regression(ln(X1),ln(Y1))

We get:

0.732351031846,0.467599676658

We do have:

e^0.467599676658=1.59615829535

so

 $\ln(y) = \ln(1.59615829535) + \ln(x) * 0.732351031846$ $\ln(y) = 0.467599676659 + \ln(x) * 0.732351031846$ and the correlation coefficient is:

correlation(ln(X1),ln(Y1))

We get:

0.999969474543

14.1.23 Logistic regression: logistic regression

The logistic curves are of curves whose equation y = y(x) are solutions of a differential equation of the form:

y'/y = a * y + b and $y_0 = y(x_0)$ with a < 0 and b > 0. The solutions are of the form: $y(x) = C/(1 + exp(-\alpha(x - x_0 - k)))$ with C = -b/a, $\alpha = -b$ and $y_0 = (-b/a)/(1 + exp(-b * k))$ thus $k = -1/b * (ln(-((a * y_0 + b)/(a * y_0))))$ To check, we can enter:

normal(desolve(y'/y=a*y+b)

We get:

$$(-b*exp(-(b*c 0-b*x)))/(a*exp(-(b*c 0-b*x))-1)$$

Then, we can enter to check:

normal(desolve(
$$[y'/y=a*y+b, y(x0)=y0], y$$
)

We get:

We have then: $c_0 = x_0 - \ln(y_0/(a * y_0 + b))/b$ Thus, by multiplying the numerator and denominator of y(x) by $\exp(b * c_0 - b * x)$, we have: $y(x) = (-b/(exp(b * c_0 - b * x) * a * exp(-(b * c_0 - b * x)) - 1)$ so $y(x) = -b/(a - exp(b * (x - c_0))) = (-b/(a * (1 - exp(b * (x - c_0))/a))$ We have $1/a = -\exp(-\ln(-a))$ because a < 0then $y(x) = (-b/a) * (1/(1 + exp(b * (x - c_0) - \ln(-a)))$ which is indeed the form announced. When we know the values of f' at $x = x_0, x_0 + 1 \dots x_0 + n$, we look for a logistic function y(x) such as y'(x) fits the different values of f'(x) the best.

logistic regression takes as parameters:

- a list L1 which stores the values of y' to $x = x_0, x_0 + 1 \dots x_0 + n$,
- the value x 0 of x_0

- the value y0 of $y(x_0)$ when we know it, otherwise the calculator gets to estimate it...

logistic_regression (L1, x0, y0) returns the functions y(x) and y'(x), the constant C, y1M and xM with y1M is the value y'(xM) which is the maximum of y' obtained in x = xM, and then the linear correlation coefficient R of Y = y'/y function of y with the line Y = a * y + b.

From the list L1, the calculator returns the list Ly by using the formula y(t + 1) - y(t) = y'(t), thus, we have Ly=[y0, y0+y0', y0+y0'+y1',].

Then, the CAS performs a linear regression of L/L_Y in term of L_Y to get the values of *a* and *b* (y'/y = a * y + b and $y_0 = y(x_0)$) then finds the solution of this differential equation.

We enter:

We get, written in blue, the signification of the values returned:

[(-17.77)/(1+exp(-0.496893925384*x+2.82232341488+3.14159265359*i)),

(-2.48542227469)/(1+cosh(-0.496893925384*x+2.82232341488+3.14159265359

-17.77,-1.24271113735,5.67993141131+6.32246138079*i, 0.307024935856]

We enter:

evalf(logistic regression([1,2,4,6,8,7,5],0,2))

Or we enter:

logistic_regression(evalf([1,2,4,6,8,7,5]),0,2.0))

We get:

[64.8358166583/(1.0+exp(-0.551746244591*x+2.95837880348)), 14.4915280084/(1.0+cosh(-0.551746244591*x+2.95837880348)), 64.8358166583,7.24576400418,5.36184674112,-0.81176431297]

To retrieve the value -0.81176431297 of the correlation coefficient, we enter:

y0:=2.0;

Ly:=makelist(y0,1,size(L))+cumSum(L)

We get:

[3,5,9,15,23,30,35]

then

correlation(L/Ly,Ly)

which returns

-0.81176431297

Chapter 15 Statistics

```
15.1 Statistics functions on a list: mean, variance, stddev,
stddevp, median, quantile, quartiles, quartile1,
quartile3
```

See also 15.1.1 and 14.

Useful functions for statistics whose data are lists:

- mean to calculate the mean of the elements of a list.

We enter:

mean([3,4,2])

We get:

We enter:

mean([1,0,1])

3

We get

2/3

- stddev to calculate the numerical standard deviation of the elements of a list.

We enter:

```
stddev([3,4,2])
```

We get:

```
sqrt(2/3)
```

We have indeed the mean which equals 3 and the standard deviation which equals:

$$\sqrt{\frac{(3-3)^2+(4-3)^2+(2-3)^2}{3}} = \sqrt{\frac{2}{3}}$$

- stddevp to calculate an estimation of the numerical standard deviation of the population from a sample whose elements are supplied in a list.

We enter:

We get:

We have indeed the mean which equals 3 and the standard deviation which equals:

$$\sqrt{\frac{(3-3)^2+(4-3)^2+(2-3)^2}{2}} = \sqrt{\frac{2}{2}} = 1$$

We have the relation:

stddevp(l)^2=size(l)*stddev(l)^2/(size(l)-1).

- variance to calculate the numerical variance of the elements of a list.

We enter:

We get:

2/3

- median to calculate the median of the elements of a list.

We enter:

```
median([0,1,3,4,2,5,6])
```

We get:

3.0

- quantile to calculate the deciles of the elements of a list.

We enter:

```
quantile([0,1,3,4,2,5,6],0.25)
```

We get the first quartile:

[1.0]

We enter:

quantile([0,1,3,4,2,5,6],0.5)

We get the median:

[3.0]

We enter:

```
quantile([0,1,3,4,2,5,6],0.75)
```

We get the third quartile:

[5.0]

- quartiles returns the minimum, the first quartile, the median, the third quartile and the maximum of a statistical series.

We enter:

quartiles([0,1,3,4,2,5,6])

[[0.0],[1.0],[3.0],[5.0],[6.0]]

- quartile1 returns the first quartile of a statistical series.

We enter:

```
quartile1([0,1,3,4,2,5,6])
```

We get:

1.0

- quartile3 returns the third quartile of a statistical series.

We enter:

quartile3([0,1,3,4,2,5,6])

We get:

5.0

Be A the list [0,1,2,3,4,5,6,7,8,9,10,11]. We enter:

A:=[0,1,2,3,4,5,6,7,8,9,10,11]

We get:

11/2 for mean(A)

sqrt(143/12) for stddev(A)

0 for min(A)

[1.0] for quantile(A,0.1)

[2.0] for quantile(A,0.25)

[5.0] for median(A) or for quantile(A,0.5)

[8.0] for quantile(A,0.75)

[9.0] for quantile(A,0.9)

11 for max(A)

[[0.0],[2.0],[5.0],[8.0],[11.0]] for quartiles(A)

See also these functions for matrices at section 15.1.1 and for weighted lists at chapter 14.

15.1.1 Statistics functions on the columns of a matrix: mean, stddev, variance, median, quantile, quartiles

See also 15.1 and 14.

Useful functions for statistics whose data are the columns of a matrix:

- mean to calculate the mean numerical of statistical series which are the columns of a matrix.

We enter:

262

We get a vector whose components are the mean of columns:

[2,3,4]

We enter:

```
mean([[1,0,0],[0,1,0],[0,0,1]])
```

We get

```
[1/3,1/3,1/3]
```

- stddev to calculate the numerical standard deviation of statistical series which are the columns of a matrix.

We enter:

```
stddev([[3,4,2],[1,2,6]])
```

We get a vector whose components are the standard deviation of columns:

[1,1,2]

 variance to calculate the numerical variance of statistical series which are the columns of a matrix.

We enter:

```
variance([[3,4,2],[1,2,6]])
```

We get a vector whose components are the variance of columns:

[1, 1, 4]

- median to calculate the median of statistical series which are the columns of a matrix.

We enter:

median([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0], [3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]])

We get a vector whose components are the median of columns:

[2.0,2.0,3.0,3.0,2.0,2.0,3.0]

- quantile to calculate the decile according to the second argument, of statistical series which are the columns of a matrix.

We enter:

quantile([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0], [3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]],0.25)

We get a vector whose components are the first quartile of columns:

[1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 1.0]

We enter:

quantile([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0], [3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]],0.75) We get a vector whose components are the third quartile of columns:

[4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0]

- quartiles to calculate the minimum, the first quartile, the median, the third quartile and the maximum of statistical series which are the columns of a matrix.

We enter:

 $\begin{array}{c} \texttt{quartiles}([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0],\\ [3,4,2,5,6,0,1], \ [4,2,5,6,0,1,3], \ [2,5,6,0,1,3,4]]) \end{array}$

We get the matrix, of first line the minimum of each column, of second line the first quartile of each column, of third line the median of each column, of fourth line the third quartile of each column and last line the maximum of each column:

 $\begin{bmatrix} [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 1.0], \\ [2.0, 2.0, 3.0, 3.0, 2.0, 2.0, 3.0], [4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0], \\ [6.0, 5.0, 6.0, 6.0, 6.0, 6.0] \end{bmatrix}$

15.2 Tables indexed by two strings: table

A table is a list indexed by something more general than integers. A table can be used, for example, to store of telephone numbers indexed by two names.

In CAS, the index of a table can be any objects of the CAS.

The access is done by an algorithm which sorts by type then uses the order of each type (for example < for numerical type, lexicographical order for strings, etc., ...).

table takes as argument a list or a sequence of equalities of the form:

"index_name"=value_element.

table returns this table.

We enter:

T:=table(3=-10,"a"=10,"b"=20,"c"=30,"d"=40)

We enter:

	T["b"]
We get:	
	20
We enter:	
	Τ[3]
We get:	
	-10

Example

We want to encode the letters "a", "b",..."z" by 1,2,....26.

We enter:

```
alphab:="abcdefghijklmnopqrstuvwxyz";
```

then:

code:=table(seq(alphab[j]=j+1,j=0..25));

We enter

code["c"]

We get

3

or we write a function:

```
Code(a):={
local code,alphab,j;
alphab:="abcdefghijklmnopqrstuvwxyz";
code:=table(seq(alphab[j]=j+1,j=0..25));
return code(a);
};
```

We enter

Code("c")

We get

3

Note:

If we do an assignment of the type $T[n] := \dots$ where T is the name of a variable and n an integer

- if the variable T stores a list or a sequence, then the *n*-th element of T is modified,
- if the variable T is not assigned, a table T is created with an entry (corresponding to the index n). Note that once this assignment is done, T is not a list, even though n is an integer.

Chapter 16 Lists

16.1 Function MAKELIST makelist

In HOME, MAKELIST creates a list from a symbolic expression. For instance, we create a list starting from $X^2 + 1$, by having the variable X growing from 2 to 6 with a step of 1 (1 can be omitted), we enter:

MAKELIST (X^2+1, X, 2, 6)

We get:

```
\{5, 10, 17, 26, 37\}
```

We enter:

MAKELIST(0,X,1,10)

We get:

 $\{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\}$

We create a list starting from $X^2 + 1$, by having the variable X growing from 2 to 6 with a step of 2, we enter:

MAKELIST (X^2+1, X, 2, 6, 2)

We get:

{5**,**17**,**37}

In CAS, we can use MAKELIST and makelist. makelist has a function as first argument, the second argument represents the initial value of the variable and the third argument represents its final value. We can put a fourth argument which represents the step of the variable. **Warning!** The index also starts at 1.

We enter:

makelist($x \rightarrow x^2, 1, 10$)

We get:

[1,4,9,16,25,36,49,64,81,100]

We enter:

makelist(x->x^2,1,10,2)

We get:

[1,9,25,49,81]

16.2 Function SORT sort

SORT or sort sorts by increasing order the components of a list.

We enter:

SORT([12,2,31,24,15])

We get:

[2,12,15,24,31]

We enter:

SORT({12,2,31,24,15})

We get:

 $\{2, 12, 15, 24, 31\}$

16.3 Function REVERSE

REVERSE creates a list by reversing the order of the elements.

We enter:

```
REVERSE([1,22,3,4,5])
```

We get:

[5,4,3,22,1]

We enter:

REVERSE({1,22,3,4,5})

We get:

{5,4,3,22,1}

16.4 Concatenate: CONCAT concat

CONCAT or concat concatenates two lists or two vectors or two strings of characters or two matrices (the two matrices must have the same number of rows, and will be concatenated line by line.)

We enter:

CONCAT([1,2,3],[4,5])

We get:

[1,2,3,4,5]

We enter:

CONCAT({1,2,3}, {4,5})

	$\{1, 2, 3, 4, 5\}$
We enter:	
	CONCAT("HE", "LLO")
We get:	
	"HELLO"
We enter:	
	2=>A
	CONCAT([1, A, 3], [4, 5])
We get:	
U	[1,2,3,4,5]
We enter:	
	CONCAT([[1,2],[3,4]],[[4,5,6],[6,7,8]])
We get:	
	[[1,2,4,5,6],[3,4,6,7,8]]
We enter:	
	2=>A
	CONCAT({1,A,3}, {4,5})
We get:	
we get.	
	{1,2,3,4,5}
To concatenate a string and	a list into a list we use CONCAT.
We enter:	
	2=>A
	CONCAT([1, A, 3]), "L1"
We get:	
	[1,2,3,"L1"]
We enter:	
	2=>A
	CONCAT("L1", [1, A, 3])
We get:	
	["L1",1,2,3]
Warning!	
J	

We enter:

	2=>A
	"L1="+[1,A,3]
We get:	
	"L1=[1,2,3]"
We enter:	
	2=>A
	[1, A, 3]+"L1="
We get:	
	"[1,2,3]L1="
We enter:	
	2=>A
	"L1="+{1,A,3}
We get:	
	"L1={1,2,3}"
16.4.1 Add an element at the end of a list: append	
append adds an element at the end of a list.	
We enter:	

an element at the beginning of a list: preper	
[1,2,[3,4]]	
append([1,2],[3	,4])
[3,4,2,1]	
append([3,4,2]	,1)

16.4.2 Add an element at the beginning of a list: prepend

prepend adds an element at the beginning of a list.

We enter:

We get:

We enter:

We get:

prepend([3,4,2],1)

270

We get:

[1,3,4,2]

We enter:

prepend([1,2],[3,4])

We get:

[[3,4],1,2]

16.5 Position in a list: POS

POS returns the position of an element in a list, that is to say POS returns the index of the first occurence of the element or 0 if the element is not in the list.

We enter:

	POS([4,3,1,2,3,4,5],4)
Or we enter:	
	POS({4,3,1,2,3,4,5},4)
We get:	
	1
We enter:	
	POS([4,3,1,2,3,4,5],2)
Or we enter:	
	POS({4,3,1,2,3,4,5},2)
We get:	
	4
We enter:	
Or we enter	POS([4,3,1,2,3,4,5],6)
Or we enter:	POS({4,3,1,2,3,4,5},6)
We get:	103((4,3,1,2,3,4,3),0)
110 got.	0
	÷

16.6 Function DIM dim SIZE size length

SIZE or size or DIM or dim or length returns the length of the list (or of the strings) supplied as argument. Warning!

In HOME and in the CAS $_{\tt SIZE}$ returns the dimension of a matrix whereas in the CAS $_{\tt SIZE}$ returns the number of line of a matrix.

We enter in HOME:	
	SIZE({1,2,3})
We get:	
	3
We enter:	
	SIZE([[1,2,3],[4,5,6]])
We get:	
	{2,3}
We enter in the CAS:	
	size([1,2,3])
We get:	
	3
We enter:	
	size([[1,2,3],[4,5,6]])
We get:	
	2
Warning! We enter in the CAS:	
	SIZE([[1,2,3],[4,5,6]])
We get:	
	[2,3]
16.6.1 Get the reversed list: re	evlist
revlist takes as argument a list (resp. a sequence). revlist returns the list (resp. the sequence) in reversed order.	
We enter:	
	revlist([0,1,2,3,4])
We get:	

[4,3,2,1,0]

We enter:

revlist([0,1,2,3,4],3)

We get:

16.6.2 Get the list swapped starting from its n-th element: rotate

rotate takes as argument a list and an relative integer (by default n=-1). rotate returns:

- if n>0: the list obtained by swapping the n first elements with the end of the list,
- if n<0: the list obtained by swapping the -n last elements with the beginning of the list. By default, n=-1 and we put the last element in first position.

We enter:

```
rotate([0,1,2,3,4])
```

We get:

[4,0,1,2,3]

We enter:

rotate([0,1,2,3,4],2)

We get:

[2,3,4,0,1]

We enter:

rotate([0,1,2,3,4],-2)

We get:

[3,4,0,1,2]

16.6.3 Get the list shifted starting from its n-th element: shift

shift takes as argument a list and an relative integer (by default n=-1). shift returns:

- if n>0: the list obtained by replacing the n first elements of the list by undef, then by swapping these n first elements with the end of the list,
- if n<0: the list obtained by replacing the -n last elements of the list by undef, then by swapping the -n last elements with the beginning of the list. By default (n=-1) the first element equals undef and is followed by the list whose last element is removed.

We enter:

```
shift([0,1,2,3,4])
```

We get:

[undef,0,1,2,3]

We enter:

shift([0,1,2,3,4],2)

[2,3,4,undef,undef]

We enter:

shift([0,1,2,3,4],-2)

We get:

[undef, undef, 0, 1, 2]

16.6.4 Removing an element from a list: suppress

suppress removes from a list the element of supplied index. **Warning!** The index of the first element is 0.

We enter:

suppress([3,4,2],1)

We get:

[3,2]

16.6.5 Get the list without its first element: tail

tail returns the list without its first element.

We enter:

tail([0,1,2,3])

We get:

[1,2,3]

l:=tail([0,1,2,3]) is equivalent to l:=suppress([0,1,2,3],0)

16.6.6 Removing elements from a list: remove

remove has two parameters: a boolean function f and a list l.
remove removes the elements c from the list l, which checks f(c)=true.

We enter:

remove(x->(x>=2),[0,1,2,3,4,5])

We get:

[0,1]

Note

To do the same thing with a string of characters, for example, remove all the "a" from a string:

We enter:

```
ord("a")
```

We enter:

```
f(chn):={local l:=length(chn); return
```

remove(x->(ord(x)==97), seq(chn[k],k,1,1));}

Then, we enter:

f("abracadabra")

We get:

["b","r","c","d","b","r"]

Then, we enter:

```
char(ord(["b","r","c","d","b","r"]))
```

We get:

"brcdbr"

16.6.7 Right and left part straight of a list: right, left

- right(l,n) returns the n last elements of a list l.

We enter:

```
right([1,2,3,4,5,6],4)
```

We get:

[3,4,5,6]

- left(l,n) returns the n first elements of a list 1.

We enter:

left([1,2,3,4,5,6,7,8],3)

We get:

[1,2,3]

16.6.8 Checking whether an element is in a list: member

member has two parameters: an element c and a list (or a set) L. member is a function which checks whether the element c is in the list L. member returns 0 if c is not in L, and returns otherwise:

"the index of its first occurence".

Warning! For sake of compatibility, please mind the order of the parameters!

We enter:

member(2,[1,2,3,4,2])

2

We enter:

member(2,% {1,2,3,4,2% })

We get:

2

16.6.9 Checkin whether an element is in a list: contains

contains has two parameters: a list (or a set) L and an element c. contains is a function which checks whether the element c is in the list L. contains returns 0 if c is not in L, and otherwise returns:

"the index of its first occurence".

Warning! For sake of compatibility, please mind the order of the parameters!

We enter:

contains([1,2,3,4,2],2)

We get:

2

We enter:

contains(% {1,2,3,4,2% },2)

We get:

2

16.6.10 Counting the elements of a list or of a matrix such as a property:

Depending on its parameters, count is able to count in a list 1 the number of elements:

- equal to a with count (x x = a, 1),
- greather than a with count (x->x>a, 1),
- lower than a with count (x->x<a,1),
- with count (x->1, 1)

Indeed, count has one, two or three parameters:

- 1. a list of integers 1
- 2. a real function f,
 - list 1 of length n or a matrix a of dimension p*q,
 - an optional argument row or col, in case of the second parameter is a matrix a.

When count has:

- one parameter which is a list of integers 1, count(1) counts the number of occurences by returning a matrix of first column the elements of the list 1 sorted, and second column the number of occurences of this element in the list.
- two parameters, count applies the function to the elements of the list (or of the matrix) and in returns the sum, that is to say, count(f,1) returns the number f(l[0])+f(l[1])+..f(l[n-1]) or count(f,a) returns the number $f(a[0,0])+\ldots+f(a[p-1,q-1])$.

If f is a boolean function, count returns the number of elements of the list (or of the matrix) for which the boolean function is true.

three parameters, count applies the function to the elements of each line (resp. column) of the matrix a if the optional argument is row (resp. col) and returns a list of length p having as k-nth element:
 f(a[k,0])+...f(a[k,q-1]) (resp. a list of length q having as k-nth element:

 $f(a[k,0])+\ldots f(a[k,q-1])$ (resp. a list of length q having as k-nth element: $f(a[0,k])+\ldots f(a[p-1,k]))$.

We enter:

276

count([1,3,1,1,2,10,3])

We get:

[[1,3],[2,1],[3,2],[10,1]]

We enter:

count((x)->x,[2,12,45,3,7,78])

Or we enter:

count((x)->x,[[2,12,45],[3,7,78]])

We get:

147

because we have: 2 + 12 + 45 + 3 + 7 + 78 = 147.

We enter:

count((x)->x,[[2,12,45],[3,7,78]],row)

We get:

[59,88]

because we have: 2 + 12 + 45 = 59 and 3 + 7 + 78 = 88.

We enter:

count((x)->x,[[2,12,45],[3,7,78]],col)

We get:

[5,19,123]

because we have: 2+3=5,12+7=10,45+78=123Tapez une équation ici..

We enter:

count((x)->x<12,[2,12,45,3,7,78])

We get:

3

Indeed, $(x) \rightarrow x < 12$ is a boolean function which equals 1 if x < 12 and 0 otherwise. We have then 1 + 0 + 0 + 1 + 1 + 0 = 3.

count((x)->x==12,[2,12,45,3,7,78])

Or we enter:

We get:

1

Indeed, $(x) \rightarrow x = 12$ is a boolean function which equals 1 if x = 12 and 0 otherwise. We get then the number of terms equal to 12. Here it is 1.

We enter:

We get:

2

Indeed, $(x) \rightarrow x > 12$ is a boolean function which equals 1 if x > 12 and 0 otherwise. We have then 0 + 0 + 1 + 0 + 0 + 1 = 2.

We enter:

count(x->x^2,[3,5,1])

We get:

35

Indeed, we have: $3^2 + 5^2 + 1^1 = 35$. We enter:

count(id,[3,5,1])

We get:

9

Indeed, id is the function identity and we have: 3 + 5 + 1 = 9.

We enter:

count(1,[3,5,1])

We get:

3

Indeed, 1 is the constant function equal to 1 and we have: 1 + 1 + 1 = 3.

16.6.11 Select elements of a list: select

In CAS, select has two parameters: a boolean function f and a list L. select selects the elements c of the list L which checks f(c) = true.

We get:

[2,3,4,5]

16.7 List of differrences between consecutive terms: Δ LIST deltalist

In HOME, (resp. CAS), Δ LIST (resp. deltalist) returns the list of differences between the components of the list supplied as argument.

We enter in HOME:

```
ΔLIST([1,21,34,41,52])
```

We get:

[20,13,7,11]

We enter in HOME:

 Δ LIST({1,21,34,41,52})

We get:

 $\{20, 13, 7, 11\}$

We enter in the CAS:

deltalist([1,21,34,41,52])

We get:

[20,13,7,11]

16.8 Sum of the elements of a list: ΣLIST sum

In HOME, Σ LIST returns the sum of components of the list supplied as argument.

We enter:

```
\SigmaLIST([1,2,3,4,5])
```

We get:

15

We enter:

ΣLIST({1,2,3,4,5})

We get:

15

In CAS, sum returns the sum of the components of the list supplied as argument.

sum([1,2,3,4,5])

We get:

15

16.9 Product of the elements of a list: $\Pi \texttt{LIST}$ product

In HOME, $\Pi LIST$ returns the product of the components of the list supplied as argument.

We enter:

 Π LIST([1,2,3,4,5])

We get:

120

We enter:

ΠLIST({1,2,3,4,5})

We get:

120

In CAS, product returns the product of the components of the list supplied as argument.

We enter:

product([1,2,3,4,5])

We get:

120

16.9.1 Apply a function of one variable to the elements of a list: map apply

map, or apply, is used to apply a function to the elements of a list, but these two instructions are not of synonymous. We have:

apply has two parameters: a function f and a list L.
 apply(f,L) returns [f(L[0]),f(L[1]),...f(L[size(L)-1])].
 Warning! apply answers [] if the second element is not a list.

map has two parameters: an expression E or a list L, and a function f. map(E,f) returns f(E) and map(L,f) returns [f(L[0]),f(L[1]),...f(L[size(L) -1])].

Warning!, Please mind that, for sake of compatibility, the orders of the parameters are different for map and apply.

When the list is a matrix and the function must apply to each element of a matrix, matrix must be put as optional argument to map.

We enter:

apply(x->x+1,[3,5,1])

or

map([3,5,1],x->x+1)

280

this adds 1 to each element of the list, and we get:

[4,6,2]

Example with a matrix We enter:

apply(x->x+1,[[3,5,1],[3,5,1],[3,5,1]])

or

```
map([[3,5,1],[3,5,1],[3,5,1]],x->x+1)
```

this adds 1 to each element of the list, that is to say to each line of the matrix and since [3, 5, 1]+1=[3, 5, 2], we get:

[[3,5,2],[3,5,2],[3,5,2]]

We enter:

```
map([[3,5,1],[3,5,1],[3,5,1]],x->x+1,matrix)
```

this adds 1 to each element of the matrix, and we get:

[[4,6,2],[4,6,2],[4,6,2]]

Other examples. We enter:

apply(x->x^2,[3,5,1])

or

map([3,5,1],x->x^2)

or we define the function $h(x) = x^2$ by entering:

 $h(x) := x^{2}$

then

apply(h,[3,5,1])

or

map([3,5,1],h)

We get:

[9,25,1]

We enter:

apply(h,[[3,5,1],[3,5,1],[3,5,1]])

or

map([[3,5,1],[3,5,1],[3,5,1]],h)

or

map([[3,5,1],[3,5,1],[3,5,1]],h,matrix)

We get each element raised to square:

[[9,25,1],[9,25,1],[9,25,1]]

We define the function $g(x) = [x, x^2, x^3]$ by entering:

 $g(x) := [x, x^2, x^3]$

or

 $g := (x) \rightarrow [x, x^2, x^3]$

then, we enter:

apply(g,[3,5,1])

or

map([3,5,1],g)

We make g proceed on 3, on 5, then on 1, and we get:

[[3,9,27],[5,25,125],[1,1,1]]

Note:

If 11, 12, 13 are lists:

sizes([11,12,13]) = map(size,[11,12,13])

16.9.2 Apply a function of two variables to elements of two lists: zip

zip is used to apply a function of two variables to elements of two lists.

We enter:

zip('sum',[a,b,c,d],[1,2,3,4])

We get:

[a+1,b+2,c+3,d+4]

We enter:

```
zip((x,y)->x^2+y^2,[4,2,1],[3,5,1])
```

Or we enter:

 $f := (x, y) - x^2 + y^2$

then,

zip(f,[4,2,1],[3,5,1])

We get:

[25,29,2]

then,

zip(f,[4,2,1],[3,5,1])

 $f := (x, y) \rightarrow [x^2+y^2, x+y]$

We get:

[[25,7],[29,7],[2,2]]

16.10 Convert a list to a matrix: list2mat

list2mat allows to get the matrix of the terms of the list supplied as argument by splitting the list according to the number of columns specified. If terms are missing, the list is supplemented by zeros.

We enter:

list2mat([5,8,1,9,5,6],2)

We get:

[[5,8],[1,9],[5,6]]

We enter:

list2mat([5,8,1,9],3)

We get:

[[5,8,1],[9,0,0]]

Note:

In the answer, the delimitors of a matrix are [and], whereas the delimitors of a list are [and] (the vertical line of the brackets is thicker for the matrices).

16.11 Convert a matrix to a list: mat2list

mat2list allows to get the list of the terms of the matrix supplied as argument.

We enter:

mat2list([[5,8],[1,9]])

We get:

[5,8,1,9]

16.12 Useful functions for the lists and the components of a vector

16.12.1 Norms of a vector: maxnorm llnorm l2norm norm

See also 20.11.1 for the different instructions to get the norms of a matrix. The different instructions to get the norms of a vector are:

maxnorm to calculate the norm l[∞] of a vector: it is the maximum of the absolute values of its coordinates.
 We enter:

thon

```
maxnorm([3,-4,2])
```

Or we enter:

```
maxnorm(vector(3, -4, 2))
```

We get:

4

Indeed: x = 3, y = -4, z = 2 and 4 = max(|x|, |y|, |z|).
llnorm to calculate the norm l¹ of a vector: it is the sum of the absolute values of its coordinates.
We enter:

```
l1norm([3,-4,2])
```

Or we enter:

llnorm(vector(3, -4, 2))

We get:

9

- Indeed: x = 3, y = -4, z = 2 and 9 = |x| + |y| + |z|.
- norm or 12norm to calculate the norm l² of a vector: it is the square root of the sum of the squares of its coordinates.
 We enter:

norm([3,-4,2])

Or we enter:

norm(vector(3, -4, 2))

We get:

sqrt(29)

Indeed: x = 3, y = -4, z = 2 and $29 = |x|^2 + |y|^2 + |z|^2$.

16.12.2 Normalizing the components of a vector: normalize

normalize normalizes the components of a vector and returns the components of a vector of norm 1 according to the norm l^2 (the square root of the sum of the squares of its coordinates).

We enter:

normalize([3, 4, 5])

We get:

[3/(5*sqrt(2)),4/(5*sqrt(2)),5/(5*sqrt(2))]

Indeed: x = 3, y = 4, z = 5 and $50 = |x|^2 + |y|^2 + |z|^2$.

16.12.3 Cumulated sums of the elements of a list: cumSum

cumSum allows to do the cumulated sums of the elements of a list, or of a sequence of real numbers, or of decimals, or of string of characters.

cumSum takes as argument a list or a sequence.

cumSum returns a list or a sequence, the element of index k being obtained by doing the sum of the elements of index 1...k.

If I is a list, cumSum returns the list Ir which equals [sum(l[j],j=1..k)\$(k=1..size(l))].
If 1 is a sequence, cumSum returns the sequence lr which equals
sum(l[j],j=1..k)\$(k=1..size(l)).

We enter:

L:=cumSum(1,2,3)

We get:

1,3,6

We enter:

L:=cumSum([1,2,3])

We get:

We enter:

c[2]

[1,3,6]

We get:

3

16.12.4 Term by term sum of two lists: + . +

The term by term sum of two lists is done with the infix operator + or .+ and also with the prefix operator '+'.

If the two lists are not of same length, the shortest list is supplemented by zeros.

Please note the difference with sequences: if the infix operator + takes as arguments two sequences, it returns the sum of the terms of the two sequences.

We enter:

	[1,2,3]+[4,3,5]
Or we enter:	
	[1,2,3] .+[4,3,5]
Or we enter:	
	' + ' ([1,2,3],[4,3,5])
Or we enter:	
	' + ' ([[1,2,3],[4,3,5]])

We enter:

[1,2,3,4,5,6]+[4,3,5]

Or we enter:

[1,2,3,4,5,6].+[4,3,5]

Or we enter:

'+' ([[1,2,3,4,5,6],[4,3,5]])

Or we enter:

'+'([[1,2,3,4,5,6],[4,3,5]])

We get:

[5,5,8,4,5,6]

Warning!

When the operator + is prefix, it must be quoted, that is to say written ' + '. If we enter:

[1,2,3,4,5,6]+4

We get, because the list is considered as the coefficients of a polynomial:

[1,2,3,4,5,10]

16.12.5 Term by term difference of two lists: - . -

The term by term difference of two lists is done with the infix operator – or . – and also with the prefix operator ' - '.

If the two lists are not of same length, the shorted list is supplemented by zeros.

Please note the difference with sequences: if the infix operator - takes as arguments two sequences, it returns the difference of the sums of the terms of each of the sequences.

We enter:

	[1,2,3]-[4,3,5]
Or we enter:	
	[1,2,3] [4,3,5]
Or we enter:	
	'-' ([1,2,3],[4,3,5])
Or we enter:	
	'-' ([[1,2,3],[4,3,5]])
We get:	
	[-3,-1,-2]

Warning!

16.12.6 Term by term product of two lists: . *

See also product for lists and matrices (cf 20.4.4 and ??) The term by term product of two lists of same length is done with the infix operator.*.

We enter:

[1,2,3] .* [4,3,5]

We get:

[4,6,15]

We enter:

[[1,2],[4,3]] .* [[4,3],[5,6]]

We get:

[[4,6],[20,18]]

16.12.7 Quotient term by term of two lists: . /

The quotient term by term of two lists of same length is done with the infix operator . /.

We enter:

[1,2,3] ./ [4,3,5]

We get:

[1/4,2/3,3/5]

Chapter 17 Strings of characters

17.1 Write a string or a character: "

Strings of characters are written by using the quotes as delimitors (" " it is the key ALPHA 0). A character is a string of one character; indeed the delimitors ' or (quote key Shift ()) are used to specify that the variable put between the quotes must not be evaluated.

Example:

"a" is a character but ' a' or quote(a) designates the variable a non evaluated. The characters of a string are designated by an index (as for the lists). To access an element of a string, we enter the index of this element between two brackets (the index which start at 1): [] [[]].

Example:

We enter:

"hello"[2]

"e"

We get:

We enter:

"hello"[[2]]

We get:

"e"

Note:

When we put a string of characters on the entry line, this generates an echo as a result.

Example:

We enter:

"hello"

We have "hello" written as a question and we get hello as answer. We enter:

"hello"+", how do you do?"

We get:

"hello, how do you do?"

17.1.1 To concatenate two numbers and strings: <code>cat +</code>

+ or <code>cat</code> evaluates the arguments and concatenates them in a string. This allows so to convert a real number into a string of characters.

We enter:

"="+123 Or we enter: cat ("=",123) We get: "=123" We enter: a:=123 then, "We get: "+a) or cat ("We get: ",a) We get: "We get: 123"

17.1.2 Concatenating a sequence of words: cumSum

We enter:

c[2]

We get:

" Hello my "

17.1.3 Finding a character in a string: INSTRING inString

inString has two parameters: a string of characters s and a character c. inString is a function which checks whether the character c is in the string of characters S. inString returns 0 if c is not in S and, otherwise, returns "the index of its first occurence".

We enter:

inString("abcded","d")

We get:

4

We enter:

inString("abcd","e")

We get:

0

17.2 ASCII codes: ASC asc

 $\tt ASC$ or <code>asc</code> returns the list of ASCII codes of the characters of the string. We enter the " " thanks to the key <code>ALPHA 0</code>.

We enter in HOME:

	ASC("A")
We get:	
	[65]
We enter in HOME:	
	ASC("ABC")
We get:	
	[65,66,67]
We enter in the CAS:	/
We get:	asc("A")
We get:	[65]
We enter in the CAS:	[00]
	asc("ABC")
We get:	
	[65,66,67]

17.3 Character from ASCII code: CHAR char

 $\tt CHAR$ or $\tt char$ returns the string corresponding to the characters having as ASCII code those of the argument.

We enter in HOME:

	char(65)
or	
	char({65})
We get:	
	"A"
We enter:	
	char([65,66,67])
or	
	char({65,66,67})
We get:	
	"ABC"
We enter in the CAS:	
	char(65)
Or	
	char([65])
or	
	char({65})
We get:	
	"A"
We enter:	
	char([65,66,67])
or	
	char({65,66,67})
We get:	
	"ABC"

17.3.1 Converting a real or an integer into a string: string

string evaluates its argument and converts it into a string of characters.

We enter:

string(1.32*10^20)

We get:

"1.23e+20"

We enter:

a:=1.32*10^4) string(a+a)

We get:

"26400"

17.4 Use a string as a number or a command: expr

17.4.1 Use a string as a number

expr allows to use a string of digits without leading zero as an integer written in basis 10, or a string of digits with a point as a decimal number written in basis 10. expr returns this integer.

We enter:

expr("123")+1

We get:

124

We enter:

expr("45.67")+2.12

We get:

47.79

 $\tt expr$ also allows to use a string of digits with no $\tt 8,$ nor $\tt 9,$ and with no leading zero as an integer written in basis $\tt 8.$

We enter:

expr("0123")

We get:

83

Indeed, $1 * 8^2 + 2 * 8 + 3 = 83$ **Note**:

If we enter expr("018"), we get the decimal number 18.0. expr allows to use a string containing digits and the letters a, b, c, d, e, f, and with the prefix 0x as an integer written in basis 16. We enter:

expr("0x12f")

We get:

303

Indeed, $1 * 16^2 + 2 * 16 + 15 = 303$

17.4.2 Use a string as a command name

expr allows to use a string of characters as a command. expr is mostly useful in a program. expr takes as argument a string of characters which can be interpreted as a command (or the name of a variable which stores a string or an expression returning a string). expr transforms the string in an expression, then evaluates this expression: to do an assignment, we should not write expr("a"):=2, but expr("a:=2") (see also expr 17.4)

We enter:

expr("c:=1")

We get:

The variable c stores 1

We enter:

a:="ifactor(54)";expr(a)

or:

expr("ifactor(54)")

We get:

2*3^3

17.5 Evaluate an expression in the form of a string: string

string evaluates an expression and returns its value in the form of a string of characters. We can also use the concatenation of the expression with an emtpy string.

We enter:

string(ifactor(6))

Or we enter:

ifactor(6)+""

Or we enter:

""+ifactor(6)

We get:

292

"2*3"

We enter:

string('(ifactor(6)'))

We get:

"ifactor(6)"

17.6 inString

inString(l,c) checks whether c is in the string l and returns the index of c or 0.

We enter:

inString"ABCDEF","C"

We get:

3

We enter:

inString"ABCDEF","G"

0

We get:

17.7 Left part of a string: left

left(l,n) returns the left part of length n of the string l.

We enter:

left("ABCDEF",3)

We get:

"ABC"

17.8 Right part of a string: right

right(l,n) returns the right part of length *n* of the string *l*.

We enter:

right("ABCDEF",2)

We get:

"EF"

17.9 Mid part of a string: mid

mid(l,d,n) returns the string extracted from the string *l*, starting by the character of index *d*, and length *n* (by default $n = \dim(l) - d$).

We enter:

mid("ABCDEF",2,3)

We get:

"BCD"

We enter:

mid("ABCDEF",2)

We get:

"BCDEF"

17.10 Rotate last character: rotate

rotate returns the string obtained by turning the last character first.

We enter:

rotate("ABC")

We get:

We get:

We enter:

("CAB")

17.11 Length of a string: dim DIM size SIZE length

DIM (or dim or size or SIZE or length returns the length of the string (or of the list).

We enter in HOME or in the CAS:

DIM("ABC") 3 We can also use SIZE SIZE ("ABC") 3

Note

We get:

In HOME, DIM and SIZE are equivalent for matrices.

We enter in HOME:

```
DIM([[1,2,3],[4,5,6]])
```

We get:

{2**,**3}

We enter in HOME:

```
SIZE([[1,2,3],[4,5,6]])
```

We get:

{2**,**3}

In CAS, dim and size are not equivalent for matrices. dim returns the list giving the dimension of a matrix whereas size returns the length of the list.

We enter in the CAS:

dim([[1,2,3],[4,5,6]])

We get:

[2,3]

We enter in the CAS:

size([[1,2,3],[4,5,6]])

We get:

2

17.12 Concatenate two strings: +

+ concatenates two strings.

We enter:

"ABC"+"DEF"

We get:

"ABCDEF"

We can also use CONCAT We enter:

CONCAT("ABC", "DEF")

We get:

"ABCDEF"

17.13 Get the list or the string without its first element: tail

tail(s) returns the list or the string s without its first element.

We enter:

tail([0,1,2,3])

We get:

[1,2,3]

l:=tail([0,1,2,3]) is equivalent to l:=suppress([0,1,2,3],0) We enter:

tail("abcdef")

We get:

"bcdef"

l:=tail("abcdef") is equivalent to l:=suppress("abcdef", "a")

17.14 First element of a list or of a string: head

head(s) returns the first element of the list s or the first character of the strings s.

We enter:

head([0,1,2,3])

We get:

We enter:

head("abcdef")

0

We get:

"a"

Chapter 18 Polynomials

18.1 Coefficients of a polynomial: POLYCOEF

POLYCOEF returns the coefficients of a polynomial knowing its roots.

We enter:

POLYCOEF([2,1])

or we enter:

POLYCOEF(2,1)

We get:

poly1[1,-3,2]

this represents the polynomial $X^2 - 3X + 2 = (X - 2) * (X - 1)$ We enter:

POLYCOEF([2,-1,3,-4])

We get:

poly1[1,0,-15,10,24]

this represents the polynomial X^4 – $15X^2$ + 10X + 24

18.2 Polynomial from coefficients: POLYEVAL

POLYEVAL returns the symbolic writting of a polynomial supplied by the list of its coefficients or POLYEVAL evaluates at a point a polynomial supplied by the list of its coefficients.

We enter:

or we enter:

We get:

We enter:

or we enter:

POLYEVAL({1,0,-15,10,24}) POLYEVAL([1,0,-15,10,24]) X^4-15*X^2+10*X+24 POLYEVAL({1,0,-15,10,24},4) POLYEVAL([1,0,-15,10,24],4) We get:

80

because 4^4 - 15 * 4^2 + 10 * 4 + 24 = 80

18.3 Expand a polynomial: POLYFORM

POLYFORM expands a polynomial supplied by an expression of one or several variables. POLYFORM also permits to factorize a polynomial of one or several variables and do the decomposition into simple elements of a rational fraction.

We enter:

	POLYFORM((X+2)^3+5)
or	
	<pre>POLYFORM((X+2)^3+5,X)</pre>
We get:	
	X^3+6*X^2+12*X+13
We enter:	
	POLYFORM((X+Y)^3+5)
or	
	POLYFORM((X+Y)^3+5,X,Y)
We get:	X^3+3*X^2*Y+3*X*Y^2+Y^3+5
We enter:	
	POLYFORM((X+Y)^3+5,Y,X)
We get:	
	Y^3+3*Y^2*X+3*Y*X^2+X^3+5
We enter:	
	<pre>POLYFORM((X+2)^2+5,X)</pre>
We get:	
	X^2+4*X+8
We enter:	
	POLYFORM((X+Y)^2+5)
We get:	x^2+2*x*y+y^2+5
	A ZTZ ATITI ZTJ

298

We enter:

POLYFORM((X^2+2*X+1)*(X-1)))

We get:

 $X^{3}+X^{2}-X-1)$

To factorize we enter:

POLYFORM (X^3+X^2-X-1, ' *')

We get:

(X-1) * (X+1) ^2

We enter:

POLYFORM(X^2-Y^2,'*')

We get:

(X-Y) * (X+Y)

We enter:

POLYFORM(1/(X^2-Y^2),'*')

We get:

1/((X-Y)*(X+Y))

To perform the decomposition into simple elements of a rational fraction, we enter:

POLYFORM(1/(1-X^2)^2),'+'

We get:

-1/4/(X-1)^2-1/4/(X-1)+1/4/(X+1)^2+1/4/(X+1)

We enter:

```
POLYFORM(1/(X^2-Y^2)),'+'
```

We get:

1/(2*Y)/(X+Y)-1/(2*Y)/(X-Y)

Note:

We can also use STO to get a rewritting of an expression:

- STO STO to evaluate formally an expression,
- STO + to expand or to do a decomposition into simple elements (\rightarrow translation to be checked)
- STO * to factorize

We enter from Home:

X*SIN(X) STO STO

We get:

300

We enter:	
	∂ (X*SIN(X),X) STO STO
We get:	
	SIN(X)+X*COS(X)
We enter:	
	\int (SIN(X),X) STO STO
We get:	
	-COS(X)
We enter:	
	(X+Y)^2+5 STO +
We get:	
	X^2+2*X*Y+Y^2+5
We enter:	
	1/(1-X^2)^2 STO +
We get:	
	-1/4/(X-1)^2-1/4/(X-1)+1/4/(X+1)^2+1/4/(X+1)
We enter:	
	X^3+X^2-X-1 STO *)
We get:	
	(X-1) * (X+1) ^2

18.4 Roots of a polynomial from its coefficients: POLYROOT

POLYROOT returns the roots of a polynomial knowing its coefficients.

We enter:

POLYROOT({1,0,-15,10,24})

Or we enter:

POLYROOT([1,0,-15,10,24])

We get:

[-1,2,3,-4]

which are the four roots of the polynomial X^4 - $15X^2$ + 10X + 24

Chapter 19 Recurrent sequences

19.1 Values of a recurrent sequence or of a system of recurrent sequences: seqsolve

See also rsolve 19.0.2.

seqsolve takes as argument the expression or the list of expressions which define(s) (one of) the relation(s) of recurrence, for example f(x,n) if the recurrence relation is $u_{n+1} = f(u_n,n)$ (resp. g(x,y,n) if the recurrence relation is $u_{n+2} = g(u_n, u_{n+1}, n) = g(x, y, n)$), the name of variables used (for example [x,n] (resp. [x,y,n])) and the start values of the sequences: for example a if $u_0 = a$ (resp. [a,b] if $u_0 = a$ and $u_1 = b$).

The recurrence relation must includes a linear homogenous part, the non homogenous part must be a linear combination of products of polynomial in n by a geometrical sequence in n. seqsolve then returns the value of the sequence on n.

Examples:

- Values of the sequence $u_0 = 3$, $u_{n+1} = 2u_n + n$

We enter:

seqsolve(2x+n,[x,n],3)

We get:

```
-n-1+4*2^n
```

We can also press rsolve (u (n+1)=2*u (n)+n, u (n), u (0)=3) (cf19.0.2)

- Values of the sequence $u_0 = 3$, $u_{n+1} = 2u_n + n3^n$

We enter:

seqsolve $(2x+n*3^n, [x,n], 3)$

We get:

```
(n-3) *3^n+6*2^n
```

- Values of the sequence $u_0 = 0, u_1 = 1, u_{n+1} = a + u_{n-1}$ for n > 0.

We enter:

```
seqsolve(x+y,[x,y,n],[0,1])
```

We get:

 $(5+sqrt(5))/10*((sqrt(5)+1)/2)^{(n-1)}+$

(5-(sqrt(5)))/10*((-sqrt(5)+1)/2)^(n-1)

- Values of the sequence $u_0 = 0, u_1 = 1, u_{n+2} = 2 * u_{n+1} + u_n + n + 1$ for n > 0. By hand, we find $u_2 = 3, u_3 = 9, u_4 = 24$, etc., ...

We enter:

Check that n := 4 returns 24

Or we enter because we have $u_{n+1} = 2u_n + v_n + n$ and $v_{n+1} = u_n$ (so $v_n = u_{n-1}$) with $u_0 = 0$ and $u_1 = 2u_0 + v_0 + 0 = 1$ then $v_0 = 1$:

We get:

```
[(-1)/2-(-2-3*sqrt(2))/8*(sqrt(2)+1)^n-(-2+3*sqrt(2))/8*(-
sqrt(2)+1)^n-1/2*n, -(-4+sqrt(2))/8*(sqrt(2)+1)^n-(-4-sqrt(2))/8*(-
sqrt(2)+1)^n-1/2*n]
```

Check that n := 4 returns 24

Values of the sequence $u_0 = 0$, $v_0 = 1$, $u_{n+1} = u_n + 2v_n$, $v_{n+1} = u_n + n + 1$ for n > 0. We enter:

We get:

$$[(-2*n-(-1)^n+2^n*4-3)/2,((-1)^n+2*2^n-1)/2]$$

- Values of the sequence $u_0 = 0$, $v_0 = 1$, $u_{n+1} = u_n + 2v_n + n + 1$, $v_n + 1 = u_n$ for n > 0. We enter:

We get:

Values of the sequence $u_0 = 0$, $v_0 = 1$, $u_{n+1} = u_n + v_n$, $v_{n+1} = u_n - v_n$ for n > 0. _

We enter:

We get:

Values of the sequence $u_0 = 2, v_0 = 0, u_{n+1} = 4 * v_n + n + 1, v_n + 1 = u_n$, for n > 0. _ We enter:

We get:

 $[(-8)/9+2*2^n-(-8)/9*(-1)^n*2^n-1/3*n,$

(-5)/9+2^n-4/9*(-1)^n*2^n-1/3*n]

19.2 Values of a recurrent sequence or of a system of recurrent sequences: rsolve

See also seqsolve 19.1. rsolve takes as argument the relation(s) of recurrence, the name of the variables used and the start value of the sequence.

The recurrence relation is:

- either a linear homogenous part, the non homogenous part must be a linear combination of products of polynomial in *n* by a geometrical sequence in *n*. For example, $u_{n+1} = 2u_n + n3^n$
- either an homographic function. For example, $u_{n+1} = \frac{u_{n-1}}{u_{n-2}}$

rsolve then returns a matrix whose rows are the values of the sequence in n.

Notes

Unlike seqsolve, rsolve is more flexible because with rsolve:

- starting the sequence by u(0) is not compulsory,
- we can give several start values, for example u (0) ^2=1, that is why rsolve returns a list,
- we write the recurrence relation as in mathematics.

Examples:

- Values of the sequence $u_0 = 3$, $u_{n+1} = 2u_n + n$

We enter:

rsolve(u(n+1)=2u(n)+n,u(n),u(0)=3)

We get:

$$[-1+4*2^{(n+1-1)}-n]$$

- Values of the sequence $u_1^2 = 1$, $u_{n+1} = 2u_n + n$ We enter:

$$rsolve(u(n+1)=2u(n)+n,u(n),u(1)^{2}=1)$$

We get:

$$[[-1-(-3)/2*2^{(n+1-1)}-n, -1-(-1)/2*2^{(n+1-1)}-n]]$$

- Values of the sequence $u_0 = 3$, $u_{n+1} = 2u_n + n3^n$

We enter:

We get:

$$[-3*3^{(n+1-1)}+6*2^{(n+1-1)}+n*3^{(n+1-1)}]$$

- Values of the sequence $u_0 = 4$, $u_{n+1} = \frac{u_{n-1}}{u_{n-2}}$ We enter: We get:

[((10*sqrt(5)+30)*((sqrt(5)-3)/2)^n+30*sqrt(5)-70)/

(20*((sqrt(5)-3)/2)^n+10*sqrt(5)-30)]

- Values of the sequence $u_0 = 0$, $u_1 = 1$, $u_{n+1} = a + u_{n-1}$ for n > 0.

We enter:

We get:

 $[(5+sqrt(5))/10*((sqrt(5)+1)/2)^{(n+1-1-1)+}]$

 $(5-sqrt(5))/10*((-sqrt(5)+1)/2)^{(n+1-1-1)}]$

- Values of the sequence $u_0 = 0$, $u_1 = 1$, $u_{n+1} = 2 * a + u_{n-1} + n$ for n > 0.

We enter:

We get:

Or we enter:

$$rsolve([u(n+1)=2*u(n)+v(n)+n,v(n+1)=u(n)], [u(n),v(n)],u(0)=0,v(0)=1)$$

We get:

```
[[(-1)/2-(-2-3*sqrt(2))/8*(sqrt(2)+1)^(n+1-1)-(-2+3*sqrt(2))/8*(-
sqrt(2)+1)^(n+1-1)-1/2*n, -(-4+sqrt(2))/8*(sqrt(2)+1)^(n+1-1)-(-4-
sqrt(2))/8*(-sqrt(2)+1)^(n+1-1)-1/2*n]]
```

- Values of the sequence $u_0 = 0$, $v_0 = 1$, $u_{n+1} = a + v_n$, $v_{n+1} = a - v_n$.

We enter:

```
rsolve ([u(n+1)=u(n)+v(n), v(n+1)=u(n)-v(n)],
[u(n), v(n)], [u(0)=0, v(0)=1])
```

We get:

$$[[1/2*2^{(n-1)/2} + 1/2*(-(sqrt(2)))^{(n-1)}, (-1+sqrt(2))/2*2^{((n-1)/2)} + 1/2*(-(sqrt(2)))^{(n-1)}, (-1+sqrt(2))/2*2^{(n-1)/2}) + 1/2*(-(sqrt(2)))^{(n-1)/2}) + 1/2*(-(sqrt(2))) + 1/2*(-(sqrt(2)))^{(n-1)/2}) + 1/2*(-(sqrt(2))) + 1/2$$

- Values of the sequence $u_0 = 2$, $v_0 = 0$, $u_{n+1} = 4 * v_n + n + 1$, $v_{n+1} = u_n$.

We enter:

```
rsolve([u(n+1)=4*v(n)+n+1,v(n+1)=u(n)], [u(n),v(n)],[u(0)=2,v(0)=0])
```

We get:

[[(-8)/9+2*2^(n+1-1)-(-8)/9*(-1)^(n+1-1)*2^(n+1-1)-1/3*n, (-5)/9+2^(n+1-1)-4/9*(-1)^(n+1-1)*2^(n+1-1)-1/3*n]]

Chapter 20 Matrices

20.1 Generalities

To write a matrix, we put between two brackets a series of row vectors, for example: [[1,2], [3,4]]. The numerical matrices are stored in variables M0, M1...M9. The index of rows and columns of a matrix start at 1, and we put the index between two brackets or parentheses.

20.2 Definition

To define the matrix *M*1 which equals [[1,2], [3,4]], we enter: [[1,2],[3,4]]=>M1 or we use the matrix editor (Shift 4 (Matrix)) We get:

[[1,2],[3,4]]

To define the matrix M2 which equals [[1,2], [3,4], [5,6]], we enter: [[1,2],[3,4],[5,6]]=>M2 or we use the matrix editor (Shift 4 (Matrix)) We get:

[[1,2],[3,4],[5,6]]

To get the element 3 of *M*2, located at the beginning of the second row: this will be the element on row of index 2 and on column of index 1 if we designate it by M2[2,1] or M2(2,1). We enter:

M1	[2,	1]
	3	
	÷	
М1	(2,	1)

We get:

We enter:

We get:

3

20.2.1 Dimension of a matrix: dim

dim takes as argument a matrix A.

dim returns the dimension of the matrix A in the form of a list formed by its number of rows and number of columns.

We enter:

dim([[1,2,3],[3,4,5]])

We get:

[2,3]

20.2.2 Number of rows: rowDim

rowDim takes as argument a matrix A. rowDim returns the number of rows of the matrix A.

We enter:

rowDim([[1,2,3],[3,4,5]])

We get:

2

20.2.3 Number of columns: colDim

colDim takes as argument a matrix *A*. colDim returns the number of columns of the matrix *A*.

We enter:

colDim([[1,2,3],[3,4,5]])

3

We get:

20.3 Operations on rows and columns useful in programming

20.3.1 Add a column to a matrix: ADDCOL

ADDCOL (M1, col, n) adds the column col which will be the column of index n of the matrix M1.

We enter:

```
[[1,2],[3,4]]=>M1
ADDCOL(M1,[5,6],1)
```

We get the new matrix M1:

[[5,1,2],[6,3,4]]

We enter:

M1

We get the new matrix M1:

[[5,1,2],[6,3,4]]

To add a last column (which, in this case, will be the column of index 3) to the matrix M1, we enter:

[[1,2],[3,4]]=>M1

ADDCOL(M1,[5,6],3)

We get the new matrix M1:

[[1,2,5],[3,4,6]]

308

We enter:

M1

We get the new matrix *M*1:

[[1,2,5],[3,4,6]]

20.3.2 Swap rows: SWAPROW rowSwap

SWAPROW or rowSwap has three arguments: a matrix and two integers n1 and n2. SWAPROW or rowSwap returns the matrix obtained by swapping the rows n1 and n2 in the matrix given as argument.

We enter in HOME (the index starts at 1):

```
SWAPROW([[1,2],[3,4]],1,2)
```

We get:

[[3,4],[1,2]]

We enter in the CAS (the index also starts at 1):

SWAPROW([[1,2],[3,4]],1,2)

or

rowSwap([[1,2],[3,4]],1,2)

We get:

[[3,4],[1,2]]

20.3.3 Swap columns: SWAPCOL colSwap

SWAPCOL or colSwap has three arguments: a matrix and two integers n1 and n2. SWAPCOL or colSwap returns the matrix obtained by swapping the columns n1 and n2 in the matrix given as argument.

We enter in HOME or in the CAS (the index starts at 1):

SWAPCOL([[1,2],[3,4]],1,2)

We get:

[[2,1],[4,3]]

We enter in the CAS

SWAPCOL([[1,2],[3,4],[5,6]],1,2)

or

colSwap([[1,2],[3,4],[5,6]],1,2)

We get:

[[2,1],[4,3],[6,5]]

20.3.4 Extract rows from a matrix: row

row allows to extract one or several rows from a matrix. row has two arguments: a matrix and an integer n or an interval n1..n2. row returns the row of index n of the matrix supplied as argument, or the sequence of rows of index starting from n1 to n2 of this matrix.

We enter in HOME or in the CAS (the index starts at 1):

We get:

[1,2,3]

We enter:

row([[1,2,3],[4,5,6],[7,8,9]],1..2)

We get:

20.3.5 Extract columns from a matrix: col

col allows to extract one or several columns from a matrix.

col has two arguments: a matrix, and an integer n or an interval n1..n2.

col returns the column of index n of the matrix supplied as argument, or the sequence of columns of index starting from n1 to n2 of this matrix.

We enter in HOME or danc CAS (the index starts at 1):

col([[1,2,3],[4,5,6],[7,8,9]],1)

We get:

[1,4,7]

We enter:

col([[1,2,3],[4,5,6],[7,8,9]],1..2)

We get:

([1,4,7],[2,5,8])

20.3.6 Remove columns from a matrix: DELCOL delcols

In HOME, DELCOL (M1, n) removes the column of index n from the matrix M1. In CAS, delcols has two arguments: a matrix A, and an integer n or an interval n1..n2. delcols returns the matrix obtained by removing the column n or the columns n1 up to n2 from the matrix A.

We enter:

```
[[1,2,5],[3,4,6]]=>M1
```

```
DELCOL(M1,2)
```

309

DELCOL(M1,2..2)

We get:

[[1,5],[3,6]]

To remove the columns of index 2 and 3 from the matrix M1, we enter:

DELCOL(M1,2..3)

We get:

[[1],[3]]

We enter:

delcols([[1,2,3],[4,5,6],[7,8,9]],2)

We get:

```
[[1,3],[4,6],[7,9]]
```

We enter:

delcols([[1,2,3],[4,5,6],[7,8,9]],1..2)

We get:

[[3],[6],[9]]

20.3.7 Remove rows from a matrix: DELROW delrows

In HOME, DELROW (M1, n) removes the row of index n from the matrix M1 In CAS, delrows has two arguments: a matrix A, and an integer n or an interval n1..n2. delrows returns the matrix obtained by removing the row n or the rows n1 up to n2 from the matrix A.

We enter:

```
[[1,2],[3,4],[5,6]]=>M1
```

DELROW(M1,2)

or

DELROW(M1,2..2)

We get the new matrix M1:

[[1,2],[5,6]]

To remove the rows of index 2 and 3 from the matrix *M*1, we enter:

[[1,2],[3,4],[5,6]]=>M1

DELROW(M1,2..3)

We get the new matrix M1:

[[1,2]]

We enter:

We get:

[[1,2,3],[7,8,9]]

We enter:

We get:

[[7,8,9]]

20.3.8 Extract a sub-matrix from a matrix: SUB subMat

In HOME, SUB has three arguments: a matrix M1, and two lists of indexs $\{nl1, nc1\}, \{nl2, nc2\}$. Warning! Indices starts at 1.

These indices are:

*nl*1 index of the beginning of row,

*nc*1 index of the beginning of column,

nl2 index of end of row,

nc2 index of end of column.

SUB(M1, {nl1,nc1}, {nl2,nc2}) extracts the sub-matrix from the matrix A of first element A[nl1,nc1] and last element A[nl2,nc2].

We enter:

SUB([[3,4,5],[1,2,6]],{1,2},{2,3})

We get:

[[4,5],[2,6]]

In CAS, subMat has three arguments: a matrix A, and two lists of indexs [nl1, nc1], [nl2, nc2] or $\{nl1, nc1\}$, $\{nl2, nc2\}$.

Warning! Indices also start at 1.

These indices are:

*nl*1 index the beginning of row,

*nc*1 index of the beginning of column,

nl2 index of end of row

nc2 index of end of column.

subMat(A,nl1,nc1,nl2,nc2) extracts the sub-matrix from the matrix A of first element A[nl1,nc1] and last element A[nl2,nc2].

To define the matrix *A*, we enter:

A:=[[1,2,3],[4,5,6],[7,8,9]]

We enter:

subMat(A,[1,2],[2,3])

We get:

[[2,3],[5,6]]

REDIM takes as argument a matrix *A* (resp. a vector) and a list of two integers (resp. one integer). REDIM redimension this matrix (resp. this vector) either by reducing it, either by filling it with 0.

We enter:	
	REDIM([[4,1,-2],[1,2,-1]],[3,4])
We get:	
	[[4,1,-2,0],[1,2,-1,0],[0,0,0,0]]
We enter:	
	REDIM([[4,1,-2],[1,2,-1],[2,1,0]],[2,1])
We get:	
	[[4],[1]]
We enter:	
	REDIM([4,1,-2,1,2,-1],8)
We get:	
	[4,1,-2,1,2,-1,0,0]
We enter:	
	REDIM([4,1,-2,1,2,-1],3)
We get:	
	[4,1,-2]

20.3.10 Replace a portion of a matrix or of a vector: REPLACE

REPLACE takes as argument a matrix A (resp. a vector) and a list of two indices (resp. one integer) and the matrix (resp. the vector) which must be replaced starting from these two indices. REPLACE does this replacement by eventually reducing the matrix (resp. the vector) if it is oversized.

We enter in HOME:

REPLACE([[1,2,3],[4,5,6]],{1,1},[[5,6],[7,8]])

Or we enter in the CAS:

REPLACE([[1,2,3],[4,5,6]],[1,1],[[5,6],[7,8]])

We get:

[[5,6,3],[7,8,6]]

We enter in HOME:

REPLACE([[1,2,3],[4,5,6]],{1,2},[[7,8],[9,0]])

Or we enter in the CAS:

REPLACE([[1,2,3],[4,5,6]],[1,2],[[7,8,10],[9,0,11]])

We get:

```
[[1,7,8],[4,9,0]]
```

We enter in HOME or in the CAS:

We get:

[1,5,6,4]

We enter in HOME or in the CAS:

```
REPLACE([1,2,3,4],2,[5,6,7,8])
```

We get:

[1,5,6,7]

20.3.11 Add a row to a matrix: ADDROW

ADDROW (M1, row, n) adds the row row which will be the row of index n to the matrix M1.

We enter:

```
[[1,2],[3,4]]=>M1
```

ADDROW(M1, [5,6],1)

We get the new matrix *M*1:

[[5,6],[1,2],[3,4]]

To add a last row (which will be here the row of index 3) to the matrix M1, we enter:

```
[[1,2],[3,4]]=>M1
ADDROW(M1,[5,6],3)
```

We get the new matrix *M*1:

```
[[1,2],[3,4],[5,6]]
```

20.3.12 Add a row to another: rowAdd

In CAS, rowAdd has three arguments: a matrix A and two integers n1 and n2. rowAdd returns the matrix obtained by replacing in A the row n2 by the sum of rows n1 and n2.

We enter:

rowAdd([[1,2],[3,4]],1,2)

We get:

[[1,2],[4,6]]

20.3.13 Multiply a row by an expression: SCALE mRow

Warning! SCALE and mRow do not have their arguments listed in the same order. SCALE has three arguments: a matrix A, an expression and an integer n. mRow has three arguments: an expression, a matrix A and an integer n. SCALE or mRow returns the matrix obtained by replacing in A the row n by the multiplication of the row n by the expression.

We enter:

SCALE([[1,2],[3,4]],12,2)

Or we enter:

mRow(12,[[1,2],[3,4]],2)

We get:

[[1,2],[36,48]]

20.3.14 Add k times a row to another: SCALEADD mRowAdd

Warning! SCALEADD and mRowAdd do not have their arguments listed in the same order. SCALEADD has four arguments: a matrix A, a real k and two integers n1 and n2. mRowAdd has four arguments: a real k, a matrix A and two integers n1 and n2. mRowAdd returns the matrix obtained by replacing in A the row n2 by the sum of the row n2 and k times the row n1.

We enter:

SCALEADD([[5,7],[3,4],[1,2]],1.1,2,3)

Or we enter:

mRowAdd(1.1,[[5,7],[3,4],[1,2]],2,3)

We get:

[[5,7],[3,4],[4.3,6.4]]

20.4 Creation and arithmetic of matrices

20.4.1 Addition and substraction of matrices: + - . + . -

The addition (resp. the substraction) of matrices is done thanks to the infix operator + or . + (resp. - or . -).

We enter:

[[1,2],[3,4]] + [[5,6],[7,8]]

We get:

[[6,8],[10,12]]

We enter:

```
[[1,2],[3,4]] - [[5,6],[7,8]]
```

[[-4,-4],[-4,-4]]

Note:

 $\ensuremath{^+}$ can also be prefix, in this case it must be quoted. We enter:

'+'([[1,2],[3,4]],[[5,6],[7,8]],[[2,2],[3,3]])

We get:

[[8,10],[13,15]]

20.4.2 Multiplication of matrices: * &*

The multiplication of matrices is done thanks to the infix operator * (or $\&^*$).

We enter:

[[1,2],[3,4]] * [[5,6],[7,8]]

Or we enter:

[[1,2],[3,4]] &* [[5,6],[7,8]]

We get:

[[19,22],[43,50]]

20.4.3 Rising a matrix to an integer power: \hat{k}

The rising of a matrix to a power is done thanks to the infix operator \land (or $\&^{\land}$). We enter: $[[1,2],[3,4]] \land 5$ Or we enter: $[[1,2],[3,4]] \&^{\land} 5$ We get: [[1069,1558],[2337,3406]]We enter: normal($[[1,2],[3,4]] \land n$) Or we enter: normal($[[1,2],[3,4]] \&^{\land} n$) We get: $[[(11-sqrt(33))/22*((sqrt(33)+5)/2)^n+(11+sqrt(33))/22*((-sqrt(33)+5)/2)^n,(2))]$

20.4.4 Hadamard product (infix version): . *

See also 16.12.6 and ??.

. * takes as arguments two matrices or two lists A and B of same order.

.* is a infix operator which returns the matrix or the list constituted by the product terme at term of elements of A and B.

We enter:

[[1, 2], [3, 4]] .* [[5, 6], [7, 8]]

We get:

[[5,12],[21,32]]

20.4.5 Hadamard division (infix version): . /

. / takes as arguments of matrices or two lists A and B of same degree. . / is a infix operator which returns the matrix or the list constituted by the division term by term of elements of A and B.

We enter:

[[1, 2],[3,4]] ./ [[5, 6],[7, 8]]

We get:

[[1/5,1/3],[3/7,1/2]]

20.4.6 Hadamard power (infix version): . ^

. \uparrow takes as arguments a matrix A and a real number b.

. ` is an infix operator which returns the matrix constituted by each element of A rised to the power b.

We enter:

```
[[1, 2], [3, 4]] .^ 2
```

We get:

```
[[1,4],[9,16]]
```

20.5 Transpose matrix: transpose

In CAS, transpose returns the transpose matrix of the matrix supplied as argument.

We enter:

transpose([[i,2],[4,5-i]])

We get:

[[i,4],[2,5-i]]

20.6 Conjugate transpose matrix: TRN trn

In CAS, TRN returns the transpose of the conjugatee of the matrix supplied as argument.

We enter:

Or we enter:

```
trn([[i,2],[4,5-i]])
```

We get:

[[-i,4],[2,5+i]]

20.7 Determinant: DET det

In HOME, DET returns the determinant of a square matrix.

We enter:

DET([[1/2,2,4],[4,5,6],[7,8,9]])

We get:

-1.5

In CAS, \mathtt{DET} or det returns the determinant of a square matrix. We enter:

DET([[1/2,2,4],[4,5,6],[7,8,9]])

Or we enter:

det([[1,2,4],[4,5,6],[7,8,9]])

We get:

-3/2

20.7.1 Characteristic polynomial: charpoly

charpoly has one (resp. two) argument(s).

charpoly takes as argument a matrix A of order n (resp. a matrix A of order n and a name of formal variable).

charpoly returns the characteristic polynomial P of A written as a list of its coefficients (resp. the characteristic polynomial P of A written in symbolic form by using the name of variable supplied as argument).

The characteristic polynomial P of A is defined by

$$P(x) = \det(x.I - A)$$

We enter:

We get:

[1, -6, 12, -8]

So the characteristic polynomial of [[4,1,-2], [1,2,-1], [2,1,0]] is

 $x^3 - 6x^2 + 12x - 8$

We can also get the symbolic form by entering:

normal(poly2symb([1,-6,12,-8]))).

We enter:

purge(x):;charpoly([[4,1,-2],[1,2,-1],[2,1,0]],x)

We get:

x^3-6*x^2+12*x-8

We can specify by an optional argument the algorithm used to do this calculations, among the following:

- lagrange: calculation by Lagrange interpolation, by giving to x the values between 0 and the dimension.

We enter:

We get:

$$x*((x-1)*(-x+5)-7)+8$$

and after simplification:

 hessenberg: calculation by tridiagonal reduction, then recurrence formula, efficient on a finite field.

We enter:

pcar([[4,1,-2],[1,2,-1],[2,1,0]],hessenberg)

We get:

```
[1, -6, 12, -8]
```

- fadeev: simultaneous calculation of the characteristic polynomial and the comatrix of xI - A

We enter:

pcar([[4,1,-2],[1,2,-1],[2,1,0]],fadeev)

We get:

[1,-6,12,-8]

 pmin: calculation of the minimal polynomial relative to a randomly chosen vector. It is the characteristic polynomial if it is of maximal degree.

We enter:

pcar([[4,1,-2],[1,2,-1],[2,1,0]],pmin)

We get:

[1,-6,12,-8]

For matrices with integer coefficients, the algorithm used by default is modular, we calculate the characteristic polynomial modulus several prime numbers, either by the minimal polynomial, either by Hessenberg, and we rebuild by the chinese remainders coefficient by coefficient. The stop condition is probabilistic, when the rebuilt polynomial does not vary anymore for prime numbers whose product is greater than the inverse of the value of proba_epsilon (which can be tuned in the CAS configuration). If proba_epsilon is null, the result is determinist (an increase a priori of the coefficients is then used). In all cases, the calculation time is of the range $O(n4\ln(n))$, but it is quicker with the probabilistic method.

20.8 Vectorial field and linear applications

20.8.1 Basis of a vectorial subspace: basis

basis takes as argument the list of components of the vectors which generate a vectorial subspace of \mathbb{R}^n .

basis returns a list constituted of vectors of a basis of this vectorial subspace.

We enter:

basis([[1,2,3],[1,1,1],[2,3,4]])

We get:

[[1,0,-1], [0,1,2]]

20.8.2 Intersection basis of two vectorial subspaces: ibasis

ibasis takes as argument two lists of vectors generating two vectorial subspaces of \mathbb{R}^n . ibasis returns a list constituted of vectors forming a basis of the intersection of these vectorial subspaces.

We enter:

ibasis([[1,2]],[[2,4]])

We get:

[[1,2]]

20.8.3 Image of a linear application: image

image takes as argument the matrix of a linear application f in the canonical basis. image returns a list of vectors forming a basis of the image of f.

We enter:

image([[1,1,2],[2,1,3],[3,1,4]])

We get:

[[-1,0,1],[0,-1,-2]]

20.8.4 Kernel of a linear application: ${\tt ker}$

ker takes as argument the matrix of a linear application f in the canonical basis.

320

ker returns a list of vectors forming a basis of the kernel of f.

We enter:

We get:

[[1,1,-1]]

The kernel is then generated by the vector [1, 1, -1].

20.9 Solve a linear system: RREF rref

In HOME, RREF allows to solve a linear system of matrix M1 and second member M3. ADDCOL (M1, M3) =>M2 and RREF (M2) returns the reduced row-echelon form of M2. For instance, we want to solve the system: $\{3x + y = 2, 3x + 2y = -2\}$ with respect to x, y.

We enter:

We get:

[[1,0,2],[0,1,-4]]

and we deduce that x = 2 and y = -4. We want to solve the system: $\{x + y - z = 5, 2x - y = 7, x - 2y + z = 2\}$ with respect to x, y, z.

We enter:

We get:

[[1,0,-0.333333333333,4],[0,1,-0.666666666666667,1],[0,0,0,0]]

and we deduce that x = 4 + z/3, y = 1 + 2z/3 and z = z.

In CAS, rref or RREF returns the reduced row-echelon form of the matrix supplied as argument. For instance, we want solve the system: $\{3x + y = 2, 3x + 2y = -2\}$ with respect to x, y. We enter:

rref([[3,1,2],[3,2,-2]])

Or we enter:

We get:

[[1,0,2],[0,1,-4]]

and we deduce that x = 2 and y = -4. We want to solve the system: $\{x + y - z = 5, 2x - y = 7, x - 2y + z = 2\}$ with respect to x, y, z. We enter:

Or we enter:

We get:

[[1,0,-1/3,4],[0,1,-2/3,1],[0,0,0,0]]

and we deduce that x = 4 + z/3, y = 1 + 2z/3 and z = z.

20.9.1 Solve of *A* * *X* = *B*: simult

simult allows to solve a system of linear equations (resp. several systems of linear equations which differ by their second member only).

We write the system(s) in matrix form (see also 6.10.17):

A*X=b (resp. A*X=B)

The parameters of simult are the matrix A of the system and the column vector b (*i.e.* a matrix of one column) formed by the second member of the system to be solved (resp. the matrix B whose columns are the vectors b of the second members of the systems to be solved).

The result is a column vector solution of the system (resp. a matrix whose columns are the solutions of the different systems).

For instance, be the following system to be solved:

$$\begin{cases} 3x + y = -2 \\ 3x + 2y = 2 \end{cases}$$

We enter:

simult([[3,1],[3,2]],[[-2],[2]])

We get:

[[-2],[4]]

so this means: x = -2 and y = 4 are solutions of the system. We enter:

simult([[3,1],[3,2]],[[-2,1],[2,2]])

We get:

[[-2,0],[4,1]]

so this means that:

x = -2 and y = 4 are solutions of the system $\begin{cases}
3x + y = -2 \\
3x + 2y = 2
\end{cases}$ and that x = 0 and y = 1 are solutions of the system $\begin{cases}
3x + y = 1 \\
3x + 2y = 2
\end{cases}$

20.10 Make matrices

20.10.1 Make a matrix from an expression: MAKEMAT makemat

In HOME, MAKEMAT(Expr(I,J),n,p) creates a matrix from an expression according to the variables I and J.

I represents the index of rows and *J* represents the index of columns and the index *I* goes from 1 to n and the index *J* goes from 1 to p.

MAKEMAT (Expr(I,J),n,p) returns the matrix MI,J = Expr(I,J) for I = 1..n and J = 1..p. We enter:

MAKEMAT(I*J,2,3)

We get:

[[2,3,4],[3,4,5]]

In CAS, we can use MAKEMAT and makemat. makemat has a function as first argument: the first variable, the index of the row and the second variable, the index of the column. The second argument represents the number of rows and the third argument represents the number of columns. **Warning!** The indices also start at 1.

We enter:

MAKEMAT((I+J),2,3)

Or we enter:

makemat((j,k) -> (j+k), 2, 3)

We get:

[[0,1,2],[1,3,5]]

20.10.2 Matrix of zeros: matrix

matrix(n,p) returns the matrix of n rows and p columns formed by zeros.

We enter:

matrix(4,3)

We get:

```
[[0,0,0],[0,0,0],[0,0,0],[0,0,0]]
```

20.10.3 Matrix identity: IDENMAT identity

In HOME, IDENMAT (n) creates the identity matrix of size *n*.

We enter:

IDENMAT(3)

We get the identity matrix of size 3:

[[1,0,0],[0,1,0],[0,0,1]]

In CAS, IDENMAT (n) creates the identity matrix of size *n*.

We enter:

IDENMAT(3)

Or we enter:

identity(3)

We get the identity matrix of size 3:

20.10.4 Matrix random: RANDMAT randMat randmatrix ramn

In HOME, RANDMAT (M1, n, p) creates a random matrix M1 of n rows and p columns and formed of integers between -99 and +99.

We enter:

RANDMAT (M1, 2, 3)

We get:

[[-24.0,-67.0,38.0],[-73.0,-3.0,72.0]]

We enter:

M1

We get:

[[-24,-67,38],[-73,-3,72]]

In CAS, we have two arguments only: RANDMAT (n, p) creates a random matrix of n rows and p columns, and formed of integers between -99 and +99.

We enter:

RANDMAT(2,3)

In CAS, or in HOME, randMat(n,p) or randmatrix or ranm(n,p) creates a random matrix of n rows and p columns, and formed of integers between -99 and +99.

We enter:

randMat(2,3)

Or we enter:

randmatrix(2,3)

Or we enter:

ranm(2,3)

We get for example:

[[-57,17,39],[-61,23,4]]

20.10.5 Jordan block: JordanBlock

In HOME, we use it in the form of CAS.JordanBlock(a, n) because it is a CAS function. In CAS, JordanBlock(a, n) returns a square matrix of size n, filled with a on the main diagonal, 1 above and 0 elsewhere.

We enter:

JordanBlock(7,3)

We get:

[[7,1,0],[0,7,1],[0,0,7]]

20.10.6 N-th Hilbert matrix: hilbert

hilbert is used in the CAS (in HOME, use CAS.hilbert). hilbert (n) returns the *n*-th Hilbert matrix, that is to say: $H_{j,k} = \frac{1}{j+k+1}$ to j = 1..n and k = 1..n.

We enter:

hilbert(3)

We get:

[[1, 1/2, 1/3], [1/2, 1/3, 1/4], [1/3, 1/4, 1/5]]

20.10.7 Matrix of an isometry: mkisom

mkisom is used in the CAS (in HOME, use CAS.mkisom).
mkisom takes as argument:

- In dimension 3, the list of characteristic elements (axis direction, angle for a rotation or normal to the plane for a symmetry) and +1 or -1 for direct isometries or -1 indirect isometries).
- In dimension 2, the characteristic element (an angle or a vector) and +1 or -1 (+1 for direct isometries and -1 for indirect isometries).

mkisom returns the matrix of the isometry defined by the arguments.

We enter:

mkisom([[-1,2,-1],pi],1)

We get the matrix of a rotation of axis [-1, 2, -1] and angle π :

[[-2/3,-2/3,1/3],[-2/3,1/3,-2/3],[1/3,-2/3,-2/3]]

We enter:

mkisom([pi],-1)

We get the matrix of a symmetry with respect to *O*:

$$[[-1,0,0],[0,-1,0],[0,0,-1]]$$

We enter:

```
mkisom([1,1,1],-1)
```

We get the matrix of a symmetry with respect to the plane x + y + z = 0:

We enter:

We get the matrix product of a rotation of axis [1, 1, 1] and angle $\frac{\pi}{3}$ and a symmetry with respect to the plane x + y + z = 0:

[[0, -1, 0], [0, 0, -1], [-1, 0, 0]]

We enter:

mkisom(pi/2,1)

We get the matrix, in dimension 2, of the plane rotation of angle $\frac{\pi}{2}$:

```
[[0,-1],[1,0]]
```

We enter:

mkisom([1,2],-1)

We get the matrix, in dimension 2, of the plane symmetry with respect to the line of equation x + 2y = 0:

[[3/5,-4/5],[-4/5,-3/5]]

To get the matrix in dimension 2 of rotation center 0 and angle 1, we enter:

mkisom(1,1)

We get:

```
[[cos(1),-sin(1)],[sin(1),cos(1)]]
```

20.10.8 Vandermonde matrix: vandermonde

vandermonde is used in the CAS (in HOME, use CAS.vandermonde). vandermonde takes as argument a vector whose components are x_j . vandermonde returns the corresponding Vandermonde matrix: elle a for k-nth row the vector whose components are $x_j^{k-1}(k = 1..n)$. Warning!

The calculator numbers the rows and the columns starting from 1.

We enter:

vandermonde([a,2,3])

We get (if a is not assigned):

[[1,1,1],[a,2,3],[a*a,4,9]]

20.11 Basics

20.11.1 Schur norm or Frobenius norm of a matrix: ABS

We point out that ABS let us get:

- the absolute value of a real,
- the modulus of a complex number,
- the length of a vector $v_j \left(\left(\sum_{j=1}^n |v_j|^2 \right)^{\frac{1}{2}} \right)$,
- the Schur norm or Frobenius norm of a matrix $a_{j,k} : \left(\left(\sum_{j,k=1}^{n} |a_{j,k}|^2 \right)^{\frac{1}{2}} \right)$.

We enter:

We get:

sqrt(30)

indeed $\sqrt{1 + 4 + 9 + 16} = \sqrt{30}$ We enter:

ABS([[1,2],[3,4],[5,11]])

We get:

4*sqrt(11)

indeed $\sqrt{1 + 4 + 9 + 16 + 25 + 121} = \sqrt{176} = 4\sqrt{11}$ In CAS, we enter:

abs([[i,2],[4,5+i]])

Or we enter || with the key on the right of the toolbox:

|[[i,2],[4,5+i]]|

We get:

sqrt(47)

because $\sqrt{1 + 4 + 16 + 25 + 1} = \sqrt{47}$ In HOME, we enter:

ABS([[i,2],[4,5+i]])

Or we enter $| \cdot |$ with the key on the right of the toolbox:

|[[i,2],[4,5+i]]|

We get:

6.8556546004

because $\sqrt{1 + 4 + 16 + 25 + 1} = \sqrt{47} \simeq 6.8556546004$

20.11.2 Maximum of the norms of the rows of a matrix: ROWNORM rownorm

In HOME, ROWNORM takes as argument a matrix.

ROWNORM returns the maximum of the norms of the rows of this matrix (the norm of a row being the sum of the absolute values of the components of the line).

We enter:

326

ROWNORM([[1,-2,3],[4,5,-6]])

We get:

15

indeed we have 1 + 2 + 3 = 6 < 4 + 5 + 6 = 15In CAS, ROWNORM or rownorm takes as argument a matrix. ROWNORM or rownorm returns the maximum of the norms of the rows of this matrix (the norm of a row being the sum of matrix absolute values of matrix components of the line).

We enter:

ROWNORM([[1,-2,3],[4,5,-6]])

Or we enter:

rownorm([[1,-2,3],[4,5,-6]])

We get:

15

indeed we have 1 + 2 + 3 = 6 < 4 + 5 + 6 = 15

20.11.3 Maximum of matrix norms of matrix columns of a matrix: COLNORM colnorm

In HOME, COLNORM takes as argument a matrix.

COLNORM returns the maximum of the norms of the columns of this matrix (the norm of a column being the sum of the absolute values of the components of the column).

We enter:

COLNORM([[1,-2,3],[4,5,-6]])

We get:

9

indeed we have 1 + 4 < 2 + 5 < 3 + 6 = 9In CAS, COLNORM or colnorm takes as argument a matrix. COLNORM or colnorm returns the maximum of the norms of the columns of this matrix (the norm of a column being the sum of the absolute values of the components of the column).

We enter:

COLNORM([[1,-2,3],[4,5,-6]])

Or we enter:

colnorm([[1,-2,3],[4,5,-6]])

We get:

9

indeed we have 1 + 4 < 2 + 5 < 3 + 6 = 9

20.11.4 Spectral norm of a matrix: SPECNORM

In HOME, SPECNORM is written CAS.SPECNORM and takes as argument a matrix M1. SPECNORM returns the spectral norm of this matrix M1: it is the largest singular value of the matrix M1 *i.e.* the root of the largest eigenvalue of the symmetric matrix M1 * TRN(M1).

We enter:

We get:

2.28824561127

because

```
eigenvals([[1,1],[0,2]]*trn([[1,1],[0,2]]))=[sqrt(5)+3,-sqrt(5)+3]
```

```
EIGENVAL([[1,1],[0,2]]*TRN([[1,1],[0,2]]))
```

= [0.7639320225, 5.2360679775]

and

SVL([[1,1],[0,2]]) = [sqrt(sqrt(5)+3), sqrt(-sqrt(5)+3)]

and

$$\sqrt{\sqrt{5} + 3} \simeq 2.28824561127$$

In CAS, SPECNORM takes as argument a matrix A.

SPECNORM returns the spectral norm of this matrix A: it is the largest singular value of the matrix A *i.e.* the root of the largest eigenvalue of the symmetric matrix A * TRAN(A).

We enter:

SPECNORM([[1,1],[0,2]])

We get:

2.28824561127

because

```
eigenvals([[1,1],[0,2]]*trn([[1,1],[0,2]]))=[sqrt(5)+3,-sqrt(5)+3]
```

and

and

```
\sqrt{\sqrt{5}} + 3 \simeq 2.28824561127. Indeed, SVL(A)), returns the list of singular values (i.e. the positive square roots of the eigenvalues of A * \operatorname{trn}(A)) of the real numerical matrix A supplied as argument.
```

20.11.5 Spectral radius of a square matrix: SPECRAD

In HOME, SPECRAD is written CAS. SPECRAD and takes as argument a square matrix.

SPECRAD returns the spectral radius of this square matrix: the spectral radius is the largest eigenvalue in absolute value.

We enter:

CAS.SPECRAD([[1,1],[0,-2]])

We get:

2.

In CAS, SPECNORM takes as argument a matrix A. SPECNORM returns the spectral radius of this square matrix: the spectral radius is the largest eigenvalue in absolute value. We enter:

SPECRAD([[1,1],[0,-2]])

We get:

2.

20.11.6 **Condition number of an invertible square matrix:** COND cond

In HOME (resp. in the CAS), COND (resp. cond) takes as argument an invertible square matrix and as second argument 1, 2 or ∞ (obtained with Shift 9) (resp. 1, 2 or inf), by default 1, specifying the norm used $(l_1, l_2 \text{ or } l_{\infty})$.

COND returns the condition number of this invertible square matrix for the norm specified:

if the second argument is 1, the condition number of an invertible square matrix is the product of the column norm (it is colnorm) of this matrix by the column norm of its inverse matrix. The

column norm of
$$M1$$
 of dimension p, q is:

$$MAX_{(1 \le k \le q)}\left(\sum_{j=1}^{p} ABS(M1[j,k])\right)$$

We enter:

COND([[1,2],[5,6]])

or

cond([[1,2],[5,6]])

We get:

22

We have indeed:

Column norm of [[1, 2], [5, 6]] is 2 + 6 = 8Column norm of $[[1, 2], [3, -4]]^{-1} = [[-1.5, 0.5], [1.25, -0.25]]$ is 1.5 + 1.25 = 2.75. We do have 2.75 * 8 = 22.

if the second argument is 2, the condition number of an invertible square matrix is the product of the spectral norm (it is SPECNORM, and also max(SVL()) of this matrix by the spectral norm of its inverse matrix.

We enter:

or

We get:

2.6180339888

We have indeed:

SPECNORM(INV([[1,2],[3,-4]]))=5.116672736

SPECNORM(INV([[1,2],[3,-4]]))=0.5116672736.

We do have 5.116672736 * 0.5116672736 = 2.6180339888.

- if the second argument is inf, the condition number of an invertible square matrix is the product of the norm row (it is rownorm) of this matrix by the norm row of its inverse matrix. The norm row of *M*1 of dimension *p*, *q* is:

$$MAX_{(1 \le j \le p)} \left(\sum_{k=1}^{q} ABS(M1[j,k]) \right)$$

We enter:

or

cond([[1,2],[5,6]],inf)

We get:

22.0

We have indeed: Norm row of [[1,2], [5,6]] is 5 + 6 = 11Norm row of $[[1,2], [3,-4]]^{-1} = [[-1.5, 0.5], [1.25, -0.25]]$ is 1.5 + 0.5 = 2. We do have 2 * 11 = 22.

20.11.7 Rank of a matrix: RANK rank

In HOME, RANK returns the rank of the matrix supplied as argument.

We enter:

```
RANK([[1,2,3],[4,5,6]])
```

We get:

2

In CAS, ${\tt RANK}\ or\ {\tt rank}\ returns the rank of the matrix supplied as argument. We enter:$

RANK([[1,2,3],[4,5,6]])

Or we enter:

rank([[1,2,3],[4,5,6]])

We get:

20.11.8 Step of the Gauss-Jordan reduction of a matrix: pivot

pivot is used in the CAS (in HOME, use CAS.pivot).

pivot has three arguments: a matrix of n rows and p columns and two integers l and c such as: $0 \le l < n$ and $0 \le c < p$.

pivot (A, 1, c) returns the matrix obtained by putting zeros in the column c of A, with the method of Gauss-Jordan, using the element A[1, c] as pivot.

We enter:

pivot([[1,2],[3,4],[5,6]],1,1)

We get:

[[-2,0],[3,4],[2,0]]

We enter:

```
pivot([[1,2],[3,4],[5,6]],0,1)
```

We get:

[[1,2],[2,0],[4,0]]

20.11.9 Trace of a square matrix: TRACE trace

In HOME, TRACE returns the trace of the square matrix supplied as argument.

We enter:

TRACE([[1/2,2,3],[4,5,6],[7,8,9]])

We get:

14.5

We enter:

```
TRACE([[i,2],[4,5-i]])
```

We get:

5

In CAS, TRACE or trace returns the trace of the square matrix supplied as argument.

We enter:

TRACE([[1/2,2,3],[4,5,6],[7,8,9]])

Or we enter:

trace([[1,2,3],[4,5,6],[7,8,9]])

We get:

29/2

332

We enter:

```
TRACE([[i,2],[4,5-i]])
```

Or we enter:

```
trace([[i,2],[4,5-i]])
```

We get:

5

20.12 Advanced

20.12.1 Eigenvalues: EIGENVAL eigenvals

In HOME, ${\tt EIGENVAL}$ returns the vector of the calculable eigenvalues of a diagonalizable numerical matrix.

We enter:

EIGENVAL([[1,1],[0,2]])

We get:

[2,1]

In CAS, eigenvals returns the vector of the calculable eigenvalues of a matrix.

We enter:

eigenvals([[1,1,2],[0,1,1],[0,0,1]])

We get:

[1,1,1]

We enter:

eigenvals([[1,1,2],[0,2,1],[0,0,3]])

We get:

[3,2,1]

We enter:

eigenvals([[1,1,2],[0,1,1],[0,0,1]])

We get:

[1,1,1]

We enter:

eigenvals([[1,1,2],[0,2,1],[0,0,3]])

We get:

[3,2,1]

20.12.2 Eigenvectors: EIGENVV eigenvects

In HOME, EIGENVV returns a list of two matrices: the one of eigenvectors and the one of the calculable eigenvalues of a numerical diagonalizable matrix.

We enter:

EIGENVV([[1,1],[0,2]])

We get:

{[[0.707106781187,-1.41421356237],[0.707106781187,0]],[[2,0],[0,1]]}

In CAS, eigenvects or eigVc returns the matrix of eigenvectors of a diagonalizable matrix.

We enter:

eigenvects([[1,1],[0,2]])

or

eigVc([[1,1],[0,2]])

We get:

[[1,-1],[1,0]]

We enter:

eigenvects([[1,1,2],[0,1,1],[0,0,1]])

or

```
eigVc([[1,1,2],[0,1,1],[0,0,1]])
```

We get:

"Low accuracy or not diagonalizable at some eigenvalue.

Try jordan if the matrix is exact."

We enter:

```
eigenvects([[1,1,2],[0,2,1],[0,0,3]])
```

or

eigVc([[1,1,2],[0,2,1],[0,0,3]])

We get:

```
[ [ 3, -1, 1 ], [ 2, -1, 0 ], [ 2, 0, 0 ] ], [ [ 3, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 1 ] ]
```

20.12.3 Jordan matrix: eigVl

eigVl takes as argument a matrix of size n. eigVl returns the matrix of Jordan associated to this matrix. **Note**: if the matrix is symbolic, we can get as a numerical result eigenvalues because the CAS must formally factorize the characteristic polynomial!

We enter:

egVl([[4,1,-2],[1,2,-1],[2,1,0]])

We get:

[[2,1,0],[0,2,1],[0,0,2]]

We enter:

egVl([[4,1,0],[1,2,-1],[2,1,0]])

We get:

```
[[0.324869129433,0,0],[0,4.21431974338,0],[0,0,1.46081112719]]
```

20.12.4 Jordan matrix and its transfer matrix: jordan

jordan is used in the CAS (in HOME, use CAS.jordan and the result will be exact). jordan returns the list formed by the transfer matrix and the Jordan form of a matrix. We enter:

jordan([[1,1,2],[0,2,1],[0,0,3]])

We get:

[[3, -1, 1], [2, -1, 0], [2, 0, 0]]

We enter:

jordan([[1,1,2],[0,1,1],[0,0,1]])

We get:

[[1,2,0],[0,1,0],[0,0,1]],[[1,1,0],[0,1,1],[0,0,1]]

If A=[[1,1,2],[0,1,1],[0,0,1]], P=[[1,2,0],[0,1,0],[0,0,1]] and B=[[1,1,0],[0,1,1],[0,0,1]], we have: inv(P)*A*P returns B.

20.12.5 Power n of a square matrix: matpow

matpow rises a square matrix to the power n by jordanization.

We enter:

matpow([[1,2],[2,1]],n)

We get:

```
\left[\left[\left(\left(-1\right)^{n}+3^{n}\right)/2,\left(-\left(-1\right)^{n}+3^{n}\right)/2\right],\left[\left(-\left(-1\right)^{n}+3^{n}\right)/2,\left(\left(-1\right)^{n}+3^{n}\right)/2\right]\right]
```

We have indeed:

jordan([[1,2],[2,1]]) returns:

[[1, -1], [1, 1]], [[3, 0], [0, -1]]

20.12.6 Diagonal matrix and its diagonal: diag

diag is used in the CAS (in HOME, use CAS.diag). When diag takes as argument a matrix, diag returns the vector formed by the elements of its diagonal. When diag takes as argument a vector, diag returns the diagonal matrix, of diagonal the elements of this vector.

We enter:

diag([[1,0],[0,2]])

We get:

[1,2]

We enter:

diag([1,2])

We get:

[[1,0],[0,2]]

20.12.7 Cholesky matrix: cholesky

cholesky is used in the CAS (in HOME, use CAS.cholesky). cholesky takes as argument a symmetric matrix A. cholesky returns the matrix L such as A=L*tran(L)

We enter:

cholesky([[3,1],[1,4]])

We get:

[[3/(sqrt(3)),0],[1/(sqrt(3)),(sqrt(33))/3]]

and we do have [[3/(sqrt(3)),0],[1/(sqrt(3)),(sqrt(33))/3]]*
tran([[3/(sqrt(3)),0],[1/(sqrt(3)),(sqrt(33))/3]])
returns [[3,1],[1,1/3+11/3]]

20.12.8 Hermite normal form of a matrix: ihermite

ihermite returns the Hermite normal form of a matrix A of integer coefficients. ihermite returns U, B such as U is invertible in \mathbb{Z} , B is upper triangular and B = U * A. We enter:

ihermite([[1,2],[2,3]])

We get:

```
[[-3,2],[2,-1]],[[1,0],[0,1]]
```

20.12.9 Matrix reduction to Hessenberg form: hessenberg

hessenberg is used in the CAS (in HOME, use CAS.hessenberg). hessenberg takes as first argument a matrix A and as second argument 0, -1 or -2 or n > 1 and n prime. hessenberg returns the transfer matrix *P* and the matrix *B* similar to *A* whose coefficients sous-sousdiagonaux are null. We say that *B* is a Hessenberg matrix and we have $B = P^{-1}AP$ or $B \sim P^{-1}AP$ according to the second argument.

- With one single argument or as second argument 0, calculations are exact.
- With as second argument -1, the calculations are approximate and the matrix *B* is triangular.
- With as second argument -2, the calculations are approximate and the matrix *P* is orthogonal and the matrix *B* has its subdiagonal coefficients are null.
- With as second argument n > 1 and n prime, the calculations are given modulus n and the matrix B is triangular.

We enter:

hessenberg([[1,2,3],[4,5,6],[7,8,1]])

We get:

```
[[[1,0,0],[0,4/7,1],[0,1,0]], [[1,29/7,2],[7,39/7,8],[0,278/49,3/7]]]
```

We enter:

hessenberg([[1,2,3],[4,5,6],[7,8,1]],-1)

We get:

[[[-0.293737737475,0.802770468103,0.5189197598	141,	.518919759	03,0	80277046810	7737475,0	[[[-0.29373
--	------	------------	------	-------------	-----------	-------------

[-0.69005396727,-0.553745992027,0.466037443312],

[-0.661470833702,0.221189854777,-0.716611041155]],

[4.52383345971e-20,-9.66694414605e-19,-5.07440255497]]]

We enter:

hessenberg([[1,2,3],[4,5,6],[7,8,1]],-2)

We get:

[[[1,0.0,0.0],

[0,0.496138938357,0.868243142124],

[0, 0.868243142124, -0.496138938357]],

[[1.0,3.59700730309,0.248069469178], [8.0622577483,8.01538461538,6.27692307692],

[0,4.27692307692,-2.01538461538]]]

We enter:

hessenberg([[1,2,3],[4,5,6],[7,8,1]],3)

We get:

[[1,0,0],[0,1,0],[0,1,1]],[[1,-1,0],[1,-1,0],[0,1,1]]]

20.12.10 Smith normal form of a matrix: ismith

ismith is used in the CAS (in HOME, use CAS.ismith). ismith(A) returns the Smith normal form of the matrix A with integer coefficients and returns the matrices U, B, V with U and V invertible in \mathbb{Z} and where B is a diagonal matrix so that B[j, j] is a divider of B[j + 1, j + 1] and B = U * A * V.

We enter:

ismith([[1,2],[2,3]])

We get:

[[1,0],[2,-1]],[[1,0],[0,1]],[[1,-2],[0,1]]

We enter:

ismith([[9,-36,30],[-36,192,-180],[30,-180,180]])

We get:

[[-3,0,1],[6,4,3],[20,15,12]],[[3,0,0],[0,12,0],[0,0,60]],

[[1, 24, -30], [0, 1, 0], [0, 0, 1]]

20.13 Factorization

20.13.1 LQ decomposition of a matrix: LQ

In HOME LQ (M1), (resp. in the CAS LQ (A)), returns the LQ decomposition of a numerical matrix M1 (resp. A) of dimension $m \times n$ in a lower triangular matrix M2 (resp. L) of dimension $m \times n$, an orthogonal matrix M3 (resp. Q) of dimension $n \times n$ and a permutation matrix M4 (resp. P) of dimension $n \times n$ such as M4 * M1 = M2 * M3 (resp. P * A = L * Q).

We enter:

LQ([[4,0,0],[8,-4,3]])

We get:

[0, -0.8, 0.6], [0, -0.6, -0.8]], [[1, 0,], [0, 1]]

We enter:

```
LQ([[0.8,0.6],[2.2,0.4]])
```

We get:

$$[[1.0,0],[2.0,-1.0]],[[0.8,0.6], [-0.6,0.8]],[[1,0],[0,1]]$$

We enter:

LQ([[4,3],[11,2]])

We get:

[[5.0,0],[10.0,-5.0]],[[0.8,0.6], [-0.6,0.8]],[[1,0],[0,1]]

338

We enter:

We get:

[[1,0],[0,1]]]

which means that:

We enter:

```
[[1,2,3],[3,4,5],[5,6,7]]=>M3
```

LQ(M3)

We get:

[[3.74165738677,0,0],[6.94879228972,1.30930734142,0], [10.1559271927,2.61861468283,1]], [[0.267261241912,0.534522483825,0.801783725737], [0.872871560944,0.218217890236,-0.436435780472],

[-9.09494701773e-13,-2.27373675443e-13,6.8212102633e-13]],

[[1,0,0], [0,1,0], [0,0,1]]

20.13.2 Minimal norm of the linear system A * X = B: LSQ

LSQ (A, B) returns the minimal norm to the least squares method of the over or underdeterminated linear system A*X=B, to estimate the solution of a linear system A*X=B (if B is a vector) or of linear systems A*X=B (if B is a matrix) for:

- an overdeterminated system (more rows than columns)
- if B is a vector: we look for X, of Euclidean norm minimal which minimizes the Euclidean norm of (AX-B).
- if B is a matrix: we look for xj of Euclidean norm minimal among the solutions which minimize the Euclidean norm of (Axj-Bj)
- an underdeterminated system (most of the time: more columns than rows)
- We look for x which minimizes the Frobenius norm of (AX-B) (the Frobenius norm of a matrix *M* is $\sqrt{P |M(j,k)|^2}$).
- a system exactly determinated (the number of columns equals the number of rows and A is invertible).

We use inv(A) *B to get X which gives false results with approximate calculation if the matrix is baddly determinated (independent equations close one to the other)

We enter:

LSQ([[1,2],[3,4]],[[5,-1],[11,-1]])

We get:

[[1,1],[2,-1]]

We enter:

LSQ([[1,2]],[[5,-1]])

We get:

```
[[1,-1.2],[2,-0.4]]
```

We enter:

```
LSQ([[1,2],[3,4],[3,6]],[[5,-1],[11,-1],[15,-3]])
```

We get:

[[1,1],[2,-1]]

We enter:

LSQ([[1,2],[3,4],[3,6]],[[5,-1],[11,-1],[15,-1]])

We get:

[[1,-0.2],[2,-0.1]]

20.13.3 LU decomposition of a square matrix: LU

Warning! LU and lu do not return the same result.

In HOME LU (M1), returns the LU decomposition of a square matrix M1 (resp. A1) in a lower triangular matrix M2 (resp. L) (of diagonal 1) and a upper triangular matrix M3 (resp. U) such as, if M4 (resp. P) is a permutation matrix we have M4 * M1 = M2 * M3 (resp. P * A1 = L * U).

We enter:

LU([[1,2],[1,4]])

We get:

 $\{ [[1,0], [1,1]], [[1,2], [0,2]], [[1,0], [0,1]] \}$

We enter:

LU([[1,2],[3,4]])

We get:

 $\{ [[1,0], [0.333333333333,1]],$

[[3,4],[0,0.666666666667]],

[[0,1],[1,0]]}

because we have chosen to put 1 on the diagonal of *L*. This means that:

```
[[0,1],[1,0]]*[[1,2],[3,4]]) = [[3,0],[1,0.6666666]]*[[1,1.333333],[0,1]]
```

We enter:

LU([[1,2,4],[4,5,6],[7,8,9]])

We get:

which means that:

[[1, 2, 4], [4, 5, 6], [7, 8, 9]] =[[1, 0, 0], [4, 1, 0], [7, 2, 1]] * [[1, 2, 4], [0, -3, -10], [0, 0, 1]]because the matrix associated to the permutation [0,1,2] is the identity matrix of size 3.

We enter:

LU([[6,12,18],[5,14,31],[3,8,18]])

We get:

[[[1,0,0],[2,1,0],[5/3,(-1)/6,1]],[[3,8,18],[0,-4,-18],[0,0,-2]],[2,0,1]]

which means that:

```
[[0,0,1], [1,0,0], [0,1,0]] * [[6,12,18], [5,14,31], [3,8,18]] = [[1,0,0], [2,1,0], [5/3, (-1)/6,1]] * [[3,8,18], [0,-4,-18], [0,0,-2]]
because the matrix associated to the permutation [2,0,1] is the matrix [[0,0,1], [1,0,0], [0,1,0]].
```

20.13.4 LU decomposition: lu

Warning! LU and lu do not return the same result.

In HOME (resp. in the CAS) lu takes as argument a square matrix M1 (resp. A1) of size n (numerical or symbolic).

lu(M1) returns a permutation p of 1..n (because in HOME the indices start at 1), a lower triangular matrix L with 1 on its diagonal and an upper triangular matrix U.

lu(A) returns a permutation p of 1..n (because in the CAS the indices also start at 1), a lower triangular matrix L with 1 on its diagonal and an upper triangular matrix U.

These matrices are such as:

- P * M1 = L * U (resp. P * A1 = L * U), where P is the permutation matrix associated to p (that we can calculate in the CAS with P:=permu2mat(p)),
- the equation A * x = B equals:

L * U * x = P * B = p(B) where $p(B) = [b_{p(1)}, b_{p(2)}, b_{p(n)}], B = [b_1, b_2, b_n]$

We can also define from p the permutation matrix P_n by:

 $P_n[i, p(i)] \coloneqq 1$ and $P_n[i, i] = 0$ if $i \in I$

 $P_n[i,j]:= 0 \text{ if } j \neq p(i).$

It is the matrix obtained by permuting, according to permutation p, the rows of the matrix unity. We can use the function permu2mat: permu2mat(p) returns the matrix P of size n.

We enter in HOME:

We get:

[1,2],[[1,0],[1.333333333,1]],[[4,5],[0,-1.6666666667]]

We enter in the CAS:

```
(p,L,U):=lu([[3,5],[4,5]])
```

We get:

We have indeed n = 2, then:

 $P[0, p(0)] = P_2[0, 1] = 1, P[1, p(1)] = P_2[1, 0] = 1, P = [[0, 1], [1, 0]]$ Checking:

We enter:

permu2mat(p)*A1; L*U

We get:

Please note that the permutation is different when the data are exact (the choice of the pivot is easier). We enter in the CAS:

lu([[1,2],[3,4]])

We get:

```
[1,2],[[1,0],[3,1]],[[1,2],[0,-2]]
```

20.13.5 QR decomposition of a square matrix: QR qr

In HOME QR (M1), (resp. in the CAS qr (A)), returns the QR decomposition of a square matrix M1 (resp. A) in a matrix Q orthogonal and an upper triangular matrix R such as, if P is a permutation matrix, we have M1 * P = Q * R (resp. A * P = Q * R).

We enter:

QR([[4,11,-2],[3,2,11]])

or

We get:

 $\{ [[0.8,-0.6], [0.6,0.8]], [[5.0,10.0,5.0], [0,-5.0,10.0]], \\ [[1,0], [0,1]] \}$

We enter:

QR([[1,2],[3,4]])

or

qr([[1,2],[3,4]])

We get:

```
[[0.316227766017,0.948683298051], [0.94868329805,-0.316227766017]],
[[3.16227766017,4.42718872424], [0.0,0.632455532034]], [[1,0],[0,1]]
```

which means that:

```
[[0.316227766017,0.948683298051],[0.94868329805,-0.316227766017]]*
[[3.16227766017,4.42718872424],[0.0,0.632455532034]]=
[[1,2],[3,4]]
```

We enter:

We get:

```
[[1,0,0],[4,1,0],[7,2,1]], [[1,2,4],[0,-3,-10],[0,0,1]],[0,1,2]]
```

which means that:

[[1,2,4],[4,5,6],[7,8,9]]= [[1,0,0],[4,1,0],[7,2,1]]*[[1,2,4],[0,-3,-10],[0,0,1]]

20.13.6 Matrix reduction to Hessenberg form: SCHUR schur

In HOME SCHUR(M1), (resp. in the CAS schur(A)), returns the numerical matrices [P, B] such as $B = inv(P) * M_1 * P$ (resp. B = inv(P) * A * P) with B triangular. We have SCHUR(A)=hessenberg(A, -1). B is the Hessenberg matrix similar to the matrix M_1 (resp. A).

We enter:

```
SCHUR([[1,2,3],[4,5,6],[-1,3,-2]])
```

We get two matrices P (orthogonal transfer matrix tran(P) = inv(P)) and B (triangular matrix similar to the argument):

[[[0.353452714748,-0.31069680265,0.882348386557],

[0.905760021954,-0.122092619725,-0.405822836763], [0.23381608385,0.94263507734,0.238262774897]], [[8.10977222864,3.79381095693,2.32899008373],

[0.0,-3.0,-3.03031411127],[0.0,0.0,-1.10977222865]]]

and we have:

B∼ inv(P)*[[1,2,3],[4,5,6],[-1,3,-2]]*P.

We enter:

SCHUR([[1,2,4],[4,5,6],[7,8,9]])

We get two matrices P (orthogonal transfer matrix tran(P) = inv(P)) and B (triangular matrix similar to the argument):

[[[-0.275726630766,-0.921788330317,-0.272545591008], [-0.518148584403,-0.0962872203049,0.849853408352], [-0.809627611663,0.375546329096,-0.451074367633]], [[16.5037894003,3.99680014234,-0.803622341526],

[-4.55776517517e-20, -1.61625693617, 0.616262731649],

[4.1752316389e-20,-2.72155736143e-15,0.112467535861]]]

and we have:

MB~ inv(P)*[[1,2,3],[4,5,6],[-1,3,-2]]*P

20.13.7 Singular value decomposition: SVD svd

In HOME SVD (M1) returns 1 matrix M2, 1 vector M3, 1 matrix M4.

342

This gives the factorization of the rectangular numerical matrix real M_1 (of size m * n) in M2*diag(M3)*TRN(M4) where M2 is an orthogonal matrix m * m, M4 is an orthogonal matrix n * n, and diag(M3) is a diagonal matrix of dimension m * n having as diagonal the singular values M3 of M_1 .

In CAS, svd (A) returns 1 matrix U, 1 vector S, 1 matrix Q.

This gives the factorization of the rectangular numerical matrix real A (of size m * n) in U*diag(S)*TRN(Q) where U is an orthogonal matrix m*m, Q is an orthogonal matrix n * n, and diag(S) is a matrix diagonal of size m * n having as diagonal the singular values S of A.

We enter in HOME:

M2, M3, M4:=SVD([[1,2],[2,1]])

We get:

{[[[0.707106781187,-0.707106781187],

[0.707106781187,0.707106781187]],

[[0.707106781187,0.707106781187],

[0.707106781187, -0.707106781187]]

and we have (here M_4 is symmetrical):

M2*diag(M3)*TRN(M4).

We enter in the CAS:

U,S,Q:=SVD([[1,2],[2,1]])

Or we enter in the CAS:

U,S,Q:=svd([[1,2],[2,1]])

We get:

{[[[0.707106781187,-0.707106781187],

[0.707106781187,0.707106781187]],

[3.,1.],

[[0.707106781187,0.707106781187],

[0.707106781187, -0.707106781187]]]

and we have (Q is symmetrical):

[[0.707106781187,-0.707106781187],[0.707106781187,0.707106781187]]* [[3,0],[0,1]]* [[0.707106781187,0.707106781187],[0.707106781187,-0.707106781187]]= [[1,2],[2,1]]

We enter in the CAS:

SVD([[1,2],[3,4]])

Or we enter in the CAS:

svd([[1,2],[3,4]])

^{[3,1],}

We get:

```
[[-0.404553584834,-0.914514295677],
[-0.914514295677,0.404553584834]],
[5.46498570422,0.365966190626]
[[-0.576048436767,0.81741556047],
[-0.81741556047,-0.576048436766]],
```

because

[[-0.404553584834, -0.914514295677], [-0.914514295677, 0.404553584834]]*
[[5.46498570422, 0], [0, 0.365966190626]]*
TRN([[-0.576048436767, 0.81741556047], [-0.81741556047, -0.576048436766]])
=
[[1.0, 2.0], [3.0, 4.0]]

20.13.8 Singular values: SVL svl

In HOME SVL (M1), (resp. in the CAS svl (A)), returns the list of singular values of the numerical real matrix M_1 (resp. A) *i.e.* the positive square roots of the eigenvalues of the real symmetrical matrix $M_1 * TRN(M_1)$ (resp(A * TRN(A))).

We enter:

```
SVL([[1,4],[1,1]])
```

Ou:

svl([[1,4],[1,1]])

We get:

```
[4.30277563773,0.697224362268]
```

```
because
eigenvals([[1,4],[1,1]]*[[1,1],[4,1]])
returns
(5*sqrt(13)+19)/2,(-5*sqrt(13)+19)/2
and
sqrt((5*sqrt(13)+19)/2.),sqrt((-5*sqrt(13)+19)/2.)
returns
4.30277563773,0.697224362268
We enter:
```

SVL([[1,2],[2,1]])

or

svl([[1,2],[2,1]])

We get:

[3, 1]

because
EIGENVAL([[1,2],[2,1]]*[[1,2],[2,1]])
returns
[9,1].
We enter:

344

SVL([[1,2],[3,4]])

or

```
svl([[1,2],[3,4]])
```

We get:

[5.46498570422,0.365966190626]

because EIGENVAL([[1,2],[3,4]]*[[1,3],[2,4]]) returns [29.8660687473,0.133931252682] which are the aproached values of $\sqrt{221}$ + 15 and - $\sqrt{221}$ + 15. We have: $\sqrt{\sqrt{221} + 15} \simeq 5.46498570422, \sqrt{-\sqrt{221} + 15} \simeq 0.365966190626$

20.14 Vector

20.14.1 Cross product: CROSS cross

In HOME, CROSS returns the cross product of two vectors.

We enter:

```
CROSS([1,2,3],[4,5,6])
```

or

CROSS({1,2,3}, {4,5,6})

We get:

[-3,6,-3]

because 2 * 6 - 5 * 3 = -3, 4 * 3 - 1 * 6 = 6, 5 - 4 * 2 = -3In CAS, CROSS or cross returns the cross product of two vectors. We enter:

CROSS([1,2,3],[4,5,6])

or

We get:

[-3,6,-3]

because 2 * 6 - 5 * 3 = -3, 4 * 3 - 1 * 6 = 6, 5 - 4 * 2 = -3

20.14.2 Dot product: DOT dot

In HOME, DOT returns the dot product of two vectors.

We enter:

We get:

26

because 1 * 3 + 2 * 4 + 3 * 5 = 26In CAS, DOT returns the dot product of two vectors.

We enter:

DOT([1,2,3],[3,4,5])

Or we enter:

dot([1,2,3],[3,4,5])

We get:

26

because 1 * 3 + 2 * 4 + 3 * 5 = 26

20.14.3 Norm 12: 12norm

12norm is used in the CAS (in HOME, use CAS.12norm and the answer will be exact). 12norm returns the norm l^2 of a vector: it is the square root of the sum of the squares of its coordinates.

We enter:

l2norm([3,-4,2])

Or we enter:

12norm(vector(3, -4, 2))

We get:

.

sqrt(29)

Indeed: x = 3, y = -4, z = 2 and $29 = |x|^2 + |y|^2 + |z|^2$

20.14.4 Norm *l*¹: l1norm

llnorm is used in the CAS (in HOME, use CAS.llnorm and the answer will be exact). llnorm returns the norm l^1 of a vector: it is the sum of absolute values of its coordinates. We enter:

llnorm([3,-4,2])

Or we enter:

llnorm(vector(3, -4, 2))

We get:

Indeed: x = 3, y = -4, z = 2 and 9 = |x| + |y| + |z|.

20.14.5 Norm of the maximum: maxnorm

maxnorm is used in the CAS (in HOME, use CAS.maxnorm and the answer will be exact). maxnorm returns the norm l^{∞} of a vector: it is the maximum of absolute values of its coordinates.

We enter:

maxnorm([3,-4,2])

Or we enter:

maxnorm(vector(3, -4, 2))

We get:

4

Indeed: x = 3, y = -4, z = 2 and 4 = max(|x|, |y|, |z|).

Chapter 21 Special functions

21.1 β function: Beta

Beta is used in the CAS (in HOME, use CAS.Beta and the answer will be exact).

- Beta takes as argument two reals a, b, or three reals a, b, p, or three reals and 1: a, b, p, 1. - with two arguments a, b, Beta returns the values of the function β at the point a, b of \mathbb{R}^2 .
 - We have by definition:

$\beta(x, y) = \frac{\Gamma(x) * \Gamma(y)}{\Gamma(x + y)}$
$\beta(1,1) = 1$ $\beta(n,1) = \frac{1}{n}$
$\beta(n,2) = \frac{1}{n(n+1)}$

and:

We have:

We have:

Beta (a, b) = $\int_0^1 t^{a-1} * (1-t)^{b-1} dt$ Beta (a, b) is defined for *a* and *b* positive reals (so that the integral is convergent).

We enter:

```
Beta(5,2)
```

We get:

```
1/30
```

We enter:

simplify(Beta(5,-3/2))

We get:

256/15

We enter:

Beta(x,y)

We get:

Gamma(x) *Gamma(y) /Gamma(x+y)

We enter:

Beta(5.1,2.2)

We get:

0.0242053671402

- with three arguments a, b, p, it is the incomplete Beta function for p between 0 and 1, it is:

- Beta(a,b,p) = $\int_0^p t^{a-1} * (1-t)^{b-1} dt$, the integral goes from 0 to p instead of 0 to 1 for the Beta function.

We enter:

We get:

0.00364583333333

- with four arguments a, b, p, 1, if we put 1 as fourth argument, this returns the regularized incomplete beta function, *i.e.* the incomplete Beta function divided by Beta(a, b).

We enter:

We get:

0.109375

indeed Beta(5,2)=1/30 and 0.00364583333333*30=0.109375

21.2 Γ function: Gamma

Gamma is used in the CAS (in HOME, use CAS.Gamma and the answer will be exact). Gamma takes as argument a number a. Gamma returns the values of the function Γ at point a.

We have by definition:

$$\Gamma(a) = \int_0^{+\infty} e^{-t} t^{a-1} dt$$
, if $a > 0$

and we use the formula:

 $\Gamma(a + 1) = a * \Gamma(a)$ if *a* is not a negative integer Thus:

$\Gamma(1) = 1$
$\Gamma(a + 1) = a * \Gamma(a)$
$\Gamma(n + 1) = n!$

and thus:

We enter:

Gamma(5)

24

We get:

We enter:

We get:

sqrt(pi)

Gamma(1/2)

We enter:

Gamma(0.7)

350

We get:

We enter:

We get:

```
1.29805533265
Gamma(-0.3)
-4.32685110883
```

Indeed: Gamma(0.7)=-0.3*Gamma(-0.3)

We enter:

Gamma(-1.3)

We get:

3.32834700679

Indeed:

Gamma(0.7)=-0.3*Gamma(-0.3)=(-0.3)*(-1.3)*Gamma(-1.3)

21.3 Derivatives of the DiGamma function: Psi

```
Psi is used in the CAS (in HOME, use CAS.Psi and the answer will be exact).
Psi takes as arguments a real a and an integer n (by default n = 0).
Psi is the value of the n-th derivative of the DiGamma function at point a.
The DiGamma function is the derivative of \ln(\Gamma(x)).
```

We enter:

Psi(3,1)

We get:

pi^2/6-5/4

We can omit the parameter n when n = 0. When Psi takes as single parameter a number a, Psi returns the value of the DiGamma function at point a: then we have Psi(a, 0) = Psi(a).

We enter:

We get:

We enter:

evalf(Psi(3))

Psi(3)

Psi(1)+3/2

We get:

.922784335098

21.4 The \zeta function: Zeta

Zeta is used in the CAS (in HOME, use CAS.Zeta and the answer will be exact). Zeta takes as argument a real x. Zeta returns for x > 1: +∞ 1

We enter:	$\sum_{n=1}^{} \frac{1}{n^x}$
	Zeta(2)
We get:	pi^2/6
We enter:	Zeta(4)
We get:	pi^4/90

21.5 erf function: erf

erf is used in the CAS (in HOME, use CAS.erf and the answer will be exact).

erf takes as argument a number a.

erf returns the values of the erf function at point a.

We have by definition:

we have by deminion.	$\operatorname{erf}(\mathbf{x}) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$
We have:	V U
Indeed, we know that:	$erf(+\infty) = 1$ $erf(-\infty) = -1$ $\int_{0}^{+\infty} e^{-t^{2}} dt = \frac{\sqrt{\pi}}{2}$
We enter:	
	erf(1)
We get:	
	0.84270079295
We enter:	

erf(1/(sqrt(2)))*1/2+0.5

We get:

0.841344746069

Note:

There is a relationship between the functions erf and normal_cdf: normal_cdf(x) = $\frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)$

Indeed:

normal_cdf(x) = $\frac{1}{2} + \frac{1}{\sqrt{2\pi}} \int_0^x e^{\frac{-t^2}{2}} dt$ so with the change of variable $t = u * \sqrt{2}$, we have:

normal_cdf(x) = $\frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{\frac{x}{\sqrt{2}}} e^{-u^2} du = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)$

We check by entering:

normal cdf(1)=0.841344746069

21.6 erfc function: erfc

erfc is used in the CAS (in HOME, use CAS.erfc and the answer will be exact). erfc takes as argument a number a.

erfc returns the values of the erfc functionc at point a. We have by definition:

Indeed, we know that:

 $\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{+\infty} e^{-t^{2}} dt = 1 - \operatorname{erf}(x)$ erfc(0) = 1

We have:

$$erfc() = -1$$
$$\int_{x}^{+\infty} e^{-t^{2}} dt = \frac{\sqrt{\pi}}{2}$$

We enter:

erfc(1)

We get:

We enter:

1- erfc(1/(sqrt(2)))*1/2

We get:

0.841344746069

Note:

There is a relationship between the functions erfc and normal cdf: normal_cdf(x) = $1 - \frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)$ Indeed:

normal_cdf(x) = $\frac{1}{2} + \frac{1}{\sqrt{2\pi}} \int_0^x e^{\frac{-t^2}{2}} dt$ so with the change of variable $t = u * \sqrt{2}$

normal_cdf(x) =
$$\frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_0^{\frac{x}{\sqrt{2}}} e^{-u^2} du = 1 - \frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)$$

We check by entering:

normal cdf(1)=0.841344746069

21.7 Exponential integral function: Ei

Ei is used in the CAS (in HOME, use CAS.Ei and the answer will be exact).

Ei takes as argument a complex number *a*.

Ei returns the values of the Ei function at point a.

We have by definition:

$$\operatorname{Ei}(x) = \int_{t=-\infty}^{x} \frac{e^{t}}{t} \mathrm{d}t$$

For x > 0, we extend by the principal value of the integral (the parts of 0^- and 0^+ compensate themselves). We have: $Fi(0) = -\infty$ $Fi(-\infty) = 0$

$$Ei(0) = -\infty, \quad Ei(-\infty) = 0$$

When we are close to $x = 0$ we know that:
$$\frac{\exp(x)}{x} = \frac{1}{x} + 1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots + \frac{x^n}{(n-1)!} \dots$$

then we have for $x \in C - \mathbb{R}^+$, (the function is discontinuous on \mathbb{R}^+):
$$Ei(x) = \ln(-x) + \gamma + x + \frac{x^2}{2.2!} + \frac{x^3}{3.3!} + \dots$$

where γ = Euler constant = 0.57721566490..

where γ = Euler constant = 0.5772156649 on the axis x > 0 we take:

$$\operatorname{Ei}(x) = \ln(x) + \gamma + x + \frac{x^2}{2.2!} + \frac{x^3}{3.3!} + \dots$$

We enter:

Ei(1.)

We get:

1.89511781636

Ei(-1.)

-0.219383934396

We enter:

We get:

We enter:

Ei(1.)-Ei(-1.)

We get:

2.11450175075

We enter:

int((exp(x)-1)/x, x=-1..1.)

We get:

2.11450175075

We enter:

evalf(Ei(-1)-sum((-1)^n/n/n!, n=1..100))

We get the Euler constant γ :

21.8 Sine integral function: Si

si is used in the CAS (in HOME, use <code>CAS.Si</code> and the answer will be exact).

Si takes as argument a complex number a.

Si returns the values of the function Si at point a.

We have by definition

$$\operatorname{Si}(x) = \int_{t=0}^{x} \frac{\sin(t)}{t} dt$$

We have Si(0) = 0, $Si(-\infty) = -\frac{\pi}{2}$, $Si(+\infty) = \frac{\pi}{2}$. When we are close to x = 0, we know that:

$$\frac{\sin(x)}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} + \dots + (-1)^n \frac{x^{2n}}{(2n+1)!} \dots$$

which gives by integration the development in sequences of Si in 0. We also note that Si is an odd function.

We enter:

Si(1.) We get: 0.946083070367 We enter: Si(-1.) We get: -0.946083070367 We enter: Si(1.)+Si(-1.) We get: 0 We enter: Si(1.)-Si(-1.) We get: 1.89216614073 We enter: int(sin(x)/x, x=-1..1.)We get: 1.89216614073

21.9 Cosine integral function: Ci

 $\tt Ci$ is used in the CAS (in HOME, use <code>CAS.Ci</code> and the answer will be exact).

Ci takes as argument a complex number a.

 \mathtt{Ci} returns the values of the function \mathtt{Ci} at point <code>a</code>.

We have by definition:

$$\operatorname{Ci}(x) = \int_{x}^{t=+\infty} \frac{\cos(t)}{t} dt = \ln(x) + \gamma + \int_{0}^{x} \frac{\cos(t) - 1}{t} dt$$

We have: $\operatorname{Ci}(0) = -\infty, \operatorname{Ci}(-\infty) = i\pi, \operatorname{Ci}(+\infty) = 0.$
When we are close to $x = 0$ we know that
$$\frac{\cos(x)}{x} = \frac{1}{x} - \frac{x}{2} + \frac{x^{3}}{4!} + \dots + (-1)^{n} \frac{x^{2n-1}}{(2n)!} \dots$$

which gives by integration the development in sequences of Ci

which gives by integration the development in sequences of Ci.

We enter:

Ci(1.)

We get:

0.337403922901

We enter:

Ci(-1.)

We get:

0.337403922901+3.14159265359*i

We enter:

Ci(1.)-Ci(-1.)

We get:

We enter:

int((cos(x)-1)/x,x=-1..1.)

-3.14159265359*i

We get:

-3.14159265359*i

21.10 Heaviside function: Heaviside

Heaviside takes as argument a number a. Heaviside returns the values of the Heaviside function at point a. We have by definition:

Heaviside(x) = 0 if x < 0 and 1 otherwise

We enter:

Heaviside(2)

We get:

356

We enter:

Heaviside(-4)

1

We get:

0

21.11 Dirac distribution: Dirac

Dirac takes as argument a number *a*. Dirac is the Dirac distribution, it is the distribution associated to the function Heaviside. We have by definition:

Dirac(x) = 0 if x = 0 and ∞ otherwise and if $a \ge 0$ and $b \ne 0$ we have: a

$$\int_{b}^{a} Dirac(x)dx = 1$$

$$\int_{b}^{a} Dirac(x)f(x)dx = [Heaviside(x)f(x)]_{b}^{a} - \int_{b}^{a} Heaviside(x)f'(x)dx = f(0)$$

$$\int_{-\infty}^{+\infty} Dirac(x) * f(x)dx = f(0)$$

We enter:

int(Dirac(x) * sin(x), x, -1, 2)

We get:

sin(0)

We enter:

We get:

sin(1)

Chapter 22 Constants and calculations with units

22.1 Shifted key Units

With the shifted key Units, and then Tools of the push buttons, we get the functions allowing to perform calculations with units:

convert, mksa, ufactor, usimplify.

With the shifted key Units, and then Units of the push buttons, we get the units sorted by category, in menu 1 the avalaible prefixes.

With the shifted key Units, and then Const of the push buttons, we get the Mathematics, Chemistry, Physics and Quantum Mechanics constants.

22.2 Units

22.2.1 Notation of units

The names of units are prefixed with the symbol _ ("underscore"). For instance 2_m for 2 meters. You can add a prefix ahead of the name of a unit meaning a multiplication by a power of 10. For example, k or κ for kilo (means multiplication by 10^3), D for deca (means multiplication by 10), d for deci (means multiplication by 10^{-1}), etc..

When combining a real number with units, we create a unit object.

We enter:

10.5_m

We get:

a unit object of 10.5 meters

We enter:

10.5 km

We get:

a unit object of 10.5 kilometers

22.2.2 Avalaible prefixes for units names

You can add prefixes ahead of the names of the units: each prefix corresponds to the name of the unit multiplied by a power of 10.

Here are the different avalaible prefixes:

Prefix	Name	(*10^) n	Prefix	Name	(*10^) n
Υ	yota	24	d	deci	-1
Z	zeta	21	С	cent	-2
E	exa	18	m	mili	-3
Р	peta	15	mu	micro	-6
Т	tera	12	n	nano	-9
G	giga	9	р	pico	-12
М	mega	6	f	femto	-15
k or K	kilo	3	а	atto	-18
h or H	hector	2	Z	zepto	-21
D	deca	1	У	yocto	-24

Note:

You can of course not use a prefix with an integrated unit if this combination leads to another integrated unit.

For instance, 1 a is an are and 1 Pa is a Pascal, and not 10^15 a.

22.2.3 Calculations with units

We can do the basic operations (+, -, *, /) with unit objects.

In the operations, we can use different units (provided they are compatibles for + and -) and the result will be expressed according to the corresponding unit. For the multiplication and the division of two different units _u1 and _u2 the result unity reads _(u1*u2) or _(u1/u2) (Mind to not forget the parentheses!)

We can also rise a unit object to an integer power: we get the corresponding unit object.

Please note that, as far as the addition or substraction is concerned, the result will be expressed with the unit of the first term of the operation.

We enter:

	1_m+100_cm
We get:	
	2_m
We enter:	
	100_cm+1_m
We get:	200
We enter:	200_cm
we chief.	1_m*100_cm
We get:	
	100_(cm*m)
We enter:	
	3_h +10_mn-(1_h+45_mn)
We get:	
	1.41666666667_h
We enter:	
	10_mn+3_h-(1_h+45_mn)
We get:	0.5 0
	85.0_mn

22.3 Tools

22.3.1 Conversion of a unit object to another unit: convert =>

convert allows to get the conversion of a unit object into another unit given as second parameter.
=> is the infix version of convert.

We enter:	
	<pre>convert(2_h+30_mn,_mn)</pre>
or else	
	2_h+30_mn=>_mn
We get:	
	150_mn
We enter:	
	<pre>convert(1_m*100_cm,_m^2)</pre>
or else	
	convert(100_(cm*m),_m^2)
or else	
	100_(cm*m)=>_m^2
We get:	1 m^2
We enter:	
we chief.	<pre>convert(1_h,_s)</pre>
Or we enter:	
	1_h=>_s
We get:	
	3600_s
We enter:	
	<pre>convert(60_mn,_h)</pre>
Or we enter:	
	60_mn=>_h
We get:	
	1.0_h
Note:	

You must insert a space before the unit if the number of unit is stored in a variable or if it is a constant: We enter:

pi _rad=>_deg

180.0_deg

Or we enter:

We get:

We enter:

a:=180

convert(a _deg,_rad)

Or we enter:

a _deg=>_rad

We get:

3.14159265358 rad

22.3.2 Units conversion to MKSA units: mksa

mksa allows to get the conversion of a unit object into a unit object expressed in MKSA units.

We enter:

	mksa(15_C)
We get:	
	15_A*s
We enter:	
	mksa(1_Hz)
We get:	
	1_s^(-1)

22.3.3 Factorize a unit in a unit object: ufactor

ufactor allows to factorize the compound unit of a unit object to get a unit object expressed in constituent units (*i.e.* multiplied by the necessary MKSA units).

We enter:

ufactor($3_J, W$)

We get:

3_(W*s)

We enter:

ufactor(3_W,_J)

We get:

3_(J/s)

22.3.4 Simplify a unit: usimplify

usimplify allows to simplify a unit in a unit object.

We enter:

```
usimplify(3 (W*s))
```

We get:

3_J

22.4 Physics constants

With the shifted key Units then Const of the push buttons, then 3: Physics we get the physics constants sorted by category. With the shifted key Units then Unit of the push buttons, we get the units sorted by category. The physics constants, and the units sorted by category, are in the menu Physics.

22.5 Units

22.5.1 Units notation

The names of units are prefixed with the symbol _ ("underscore"). For instance 2_m for 2 meters. You can add a prefix ahead of the name of a unit meaning a multiplication by a power of 10. For example, k or κ for kilo (multiplication by 10³), D for deca (means multiplication by 10), d for deci (means multiplication by 10⁻¹) etc., ...

When combining a real number with units, we create a unit object.

We enter:

10.5_m

We get:

a unit object of 10.5 meters

We enter:

10.5 km

We get:

a unit object of 10.5 kilometers

22.5.2 Calculations with units

In the operations, we can use different units (provided they are compatibles for + and -) and the result will be expressed according to the corresponding unit. For the multiplication and the division of two

different units _u1 and _u2 the result unity reads _(u1*u2) or _(u1/u2) (Mind to not forget the parentheses!) We can also rise a unit object to an integer power: we get the corresponding unit object.

Please note that, as far as the addition or substraction is concerned, the result will be expressed with the unit of the first term of the operation.

We enter:

	1_m+100_cm
We get:	
	2_m
We enter:	
We get:	100_cm+1_m
we get.	200_cm
We enter:	_
	1_m*100_cm
We get:	
	100_(cm*m)
We enter:	
We get:	3_h +10_mn-(1_h+45_mn)
We get:	1.41666666667_h
We enter:	
	10_mn+3_h-(1_h+45_mn)
We get:	
	85.0_mn

22.5.3 Conversion of a unit object into another unit: convert =>

convert allows to get the conversion of a unit object into another unit given as second parameter. => is the infix version of convert.

We enter:

convert(2_h+30_mn,_mn)

or else

2_h+30_mn=>_mn

We get:

	150_mn
We enter:	
	<pre>convert(1_m*100_cm,_m^2)</pre>
or else	
	convert(100_(cm*m),_m^2)
or else	
	100_(cm*m)=>_m^2
We get:	1
We enter:	1_m^2
	<pre>convert(1_h,_s)</pre>
Or we enter:	
	1_h=>_s
We get:	
	3600_s
We enter:	
	<pre>convert(60_mn,_h)</pre>
Or we enter:	
	60_mn=>_h
We get:	1 0 b
Note:	1.0_h
You must insert a space before the unit if the numerical value of the unit i	

Ν

is stored in a variable or if it is Y a constant:

We enter:

convert(pi _rad,_deg)

Or we enter:

pi _rad=>_deg

We get:

180.0_deg

We enter:

a:=180

```
364
```

```
convert(a _deg,_rad)
```

Or we enter:

a _deg=>_rad

We get:

```
3.14159265358_rad
```

22.5.4 Units conversion to MKSA units: mksa

mksa allows to get the conversion of a unit object to a unit object expressed in MKSA units.

We enter:

```
mksa(15_C)
We get:
We enter:
mksa(1_Hz)
We get:
1_s^(-1)
```

22.5.5 Conversions between degree Celsius and Fahrenheit: Celsius2FahrenheitFahrenheit2Celsius

Celsius2Fahrenheit allows to convert the Celsius degrees into Fahrenheit degrees.

We enter:

```
Celsius2Fahrenheit(a)
```

We get:

(a*9)/5+32

We enter:

Celsius2Fahrenheit(0)

We get:

32

Fahrenheit2Celsius allows to convert the Fahrenheit degrees into Celsius degrees.

We enter:

Fahrenheit2Celsius(a)

We get:

((a-32)*5)/9

We enter:

Fahrenheit2Celsius(212))

We get:

100

22.5.6 Factorization of a unit: ufactor

ufactor allows to factorize the compound unit of a unit object to get a unit object expressed in constituent units (*i.e.* multiplied by the necessary MKSA units).

We enter:

ufactor(3_J,_W)

We get:

3_(W*s)

We enter:

ufactor($3_W, _J$)

We get:

3 (J/s)

22.5.7 Simplify a unit: usimplify

 $\tt usimplify$ allows to simplify a unit in a unit object. We enter:

usimplify(3 _(W*s))

We get:

3 _J

22.6 Constants

22.6.1 Notation of chemical, physics or quantum mechanics constants.

The names of physics constants start and end by the character _ ("underscore"). Do no mix physics constants and symbolic constants. For example, e, π are symbolic constants whereas $_c_$, $_NA_$ are physics or chemical constants.

We enter:

c

We get the light speed in vacuum:

299792458_m*s^-1

We enter:

We get the Avogadro number:

22.6.2 Physics constants library

Here is the constants lib	ron/:	
Name	Description	
NA	Avogadro Number	
NA _k_	Boltzmann constant	
_ <u>~</u> _ _Vm_	Molar volume of ideal gas	
R stat	Molar gas constant	
StdT	Standard temperature	
StdP	Standard pression	
sigma	tefan-Boltzmann constant	
C	Light speed	
epsilon0	Vacuum permittivity	
mu0	Vacuum permeability	
g	Acceleration of gravity	
G	Gravitation	
h	Planck constant	
hbar	Dirac constant	
q	Electronic charge	
me	Electron mass	
qme	q/me ratio (charge/mass of the electron)	
mp	Proton mass	
mpme	mp/me ratio (proton mass /electron mass)	
alpha	fine structure	
phi	Magnetic flux quantum	
F	Faraday constant	
Rinfinity	Rydberg constant	
a0	Bohr radius	
muB	Bohr magneton	
muN	Nuclear magneton	
lambda0	Photon wavelength	
f0	Photon frequency	
lambdac	Compton wavelength	
FOLLOWING CONSTANTS NON PRESENT IN THE CALCULATOR !		
<mark>_rad_ 1</mark>	radian	
twopi	2*pi radians	
angl	Angle of 180 degrees	
c3	Wien displacement law constant	
<mark>_kq_</mark>	k/q (Boltzmann/electronic charge)	
epsilon0q	epsilon0/q (permittivity/electronic charge)	
qepsilon0	q*epsilon0 (electronic charge*permittivity)	
_epsilonsi	Silicium dielectric constant	
epsilonox	Silicium dioxyd dielectric constant	
I0 Sound reference	e intensity	

Chapter 23 Functions of 3D geometry

23.1 Common perpendicular to two 3D lines: common perpendicular

common_perpendicular takes as argument two lines D1 and D2. common perpendicular (D1, D2) draws the common perpendicular of lines D1 and D2.

We enter:

```
D1:=line([1,1,0],[0,1,1]);
```

D2:=line([0,-1,0],[1,-1,1]);

Then, we enter:

d:=common perpendicular(D1,D2)

We get:

pnt([[1,0,-1],[-1/3,-2/3,-1/3]],0,d)

Which means that the common perpendicular to D1 and D2 passes through the points [1,0,-1] and [-1/3,-2/3,-1/3].

Then, we enter:

equation(d)

We get:

[2/3-2*x/3+4*y/3=0,-4/3-8*x/9-4*y/9-20*z/9=0]

Part IV The Applications and the Apps key

Chapter 24 The menu Geometry

Warning! The documentation on the geometry application is subject to modification.

24.1 Generalities

We will describe here the Geometry application which allows to do interactive geometry.

As all the Apps, the plane geometry application has three views: the Symbolic view, the Plot view and the Numeric view.

 $\tt Cmds,$ in the push buttons of these three views, lists the geometry commands, sorted by categories useful in each of the views:

Point Line Polygon Curv Plot Transformation for the Symbolic view,

Zoom Point Line Polygon Curv Plot Transformation, Cartesian, Measure, Tests for the Plot view,

Cartesian, Measure, Tests for the Numeric view.

Let us detail these three views with an example:

- 1. the key Symb opens the Symbolic view.
 - Tap Edit or Insert in the push buttons, and fill in the cell GC:circle(1,2) For that:
- enter circle (spelt out) or tap Cmds in the push buttons (Cmds->Curv>Circle).
 If it is the first command you enter, it will be named GA. You can modify this name by selecting GA and editing it by tapping Edit in the push buttons. Change A for C and press Enter.
- directly plot a circle in the Plot view so that circle(point(GA), GB-GA) is written in GC, in the Symbolic view. You can then modify the values of GA and GB - GA by point(1) and

Notes

- a. To have the command stored in GC executed, check the cell ahead of GC.
- b. To highlight a command line, use the cursor.
- c. To reorder the commands, use the arrows ↑ and ↓ of the push buttons: with them you can move the highlighted line.
- d. To insert a new command, press Insert of the push buttons.
- e. To change the name of a variable in the Symbolic view, select this name, edit it with Edit of the push buttons, modify it, and confirm with Enter.
- f. To delete a command line, highlight it, then press the delete key.
- 2. The key Plot opens the Plot view.

To directly plot a circle in the Plot view, use Cmds (push buttons) (Cmds->Curv>Circle), then designate with your finger the point which will be the center (you can then refine with the cursor), and press Enter to confirm your choice: the command point (2.375,1.24) (for example) has been automatically registered in GA in the Symbolic view.

Then, directly with your finger a second point, this time on the circle (you can then refine with the cursor) and press Enter to confirm your choice.

The command point (2.375, 3.24) (for example) is then written in GB and the command circle (point (GA), GB-GA) is then written in GC in the Symbolic view.

Once the circle is drawn, you can:

a. change the color.

Put your finger close to the contour of the circle to have Options appear in the push buttons, then tap Options->Choose to choose a color and Enter. The color palette opens: select a color with your finger and confirm with Enter.

b. Fill it with color

Put your finger close to the contour of the circle to have Options appear in the push buttons, then tap Options->Filled and Enter, which fills the circle with the chosen color.

c. Hide its name

Put your finger close to the contour of the circle to have Options appear in the push buttons, then tap Options->Hide Label: in case of ambiguity, the calculator will propose several choices.

d. Move it

Put your finger close to the name of the circle (refine with the cursor) to have Options appear in the push buttons, then Enter. Then, you can dragg it anywhere with your finger or with the cursor.

Confirm with Enter.

Note:

Please note that the points or the geometrical objects directly created in the Plot view are written automatically: the geometrical objects are named and designated by A, B, C... then stored in the variables GA, GB, GC... variables also listed in the Symbolic view. Please note that the point F does not exist because GF is a CAS command.

3. the key Num opens the Numeric view.

If you want the equation of the circle previously defined, press: equation (GC) and you get:

 $(x-1.0)^{2}+y^{2}=4.0$

The Numeric view allows to use the numerical commands in relationship with the graphic and to get numerical results.

The commands giving a numerical result (points coordinates, lines equations or of curves...) can be executed from the Num screen by using New, then Cmds (push buttons) of the Num screen.

When we are in the CAS or in the Geometry Application, the commands of geometry are sorted by category in the menu Apps-> Geometry of the key Toolbox. We find there the nine categories of the Cmds menu of each (push buttons) of the various views:

Point, Line, Polygon, Curve, Plot, Transformation, Cartesian, Measure, Tests.

Note:

All the geometry functions can be executed from the CAS, but, in this case, the answer will be such as, for example: point(1, 2), or line(x=1), but not a plot.

Then, we can do 2D, or even 3D analytic geometry from the CAS.

For example, let us enter from the CAS:

g:=line(x=1) then add in the Symb screen GK:=g.

Warning!

We can retrieve the value of these variables in the Symbolic view, in the Numeric view, or in the CAS screen. If, for example, in the geometry application, we have: GA:=point(4.16+2.13*i) and in the CAS we enter GA:=5, GA will be equal to 5, as long as we have not used Plot of the geometry application, because, once we will have done this, we will have back GA:=point(4.16+2.13*i). For this reason, it is not safe to use the variables GA, GB, \ldots in the CAS.

24.2 Point

24.2.1 Point defined as barycenter of n points: barycenter

In plane geometry, barycenter takes as argument n lists of length 2 (resp. a matrix of n lines and two columns):

the first element of the list *j* (resp. the *j*-th element of the first column of the matrix) stores the point A_j or the complex number aj representing the affix of this point, the second element of the list *j* (resp. the *j*-th element of the second column) stores the real coefficient α *j* assigned to A_j .

barycenter returns and plots the point which is the barycenter of points A_j of affixes a_j assigned of real coefficients α_j when $\sum \alpha_i \neq 0$.

If $\sum \alpha_i = 0$, barycenter returns an error.

We enter:

```
barycenter([1+i,1],[1-i,1])
```

Or we enter:

barycenter([point(1,1),1],[point(1,-1),1])

Or we enter:

```
barycenter([[1+i,1],[1-i,1]])
```

Or we enter:

barycenter([[point(1,1),1],[point(1,-1),1]])

We get in the geometry application:

```
The point of affix 1 is plotted with a cross and its label (name)
```

We get in the CAS:

point(1)

Warning! In the geometry application, if you want to get as answer a complex number, you have to ask for the affix of the barycenter, otherwise we get the plot of the barycenter point. We enter:

affix(barycenter([1+i,1],[1-i,1]))

Or we enter:

```
affix(barycenter([[1+i,1],[1-i,1]]))
```

We get:

1

In CAS screen, barycenter may also be used in 3D geometry and takes as argument n lists of length 2 (or a matrix of n lines and two columns). The first element of the list j (resp. the j-th element of the first column of the matrix) stores the point A_j , the second element of the list j (resp. the j-nth element of the second column) stores the real coefficient α_j assigned to A_j .

barycenter returns point([a,b,c]), where [a,b,c] are the coordinates of the barycenter of these n points.

We enter:

barycenter([point(0,0,0),1],[point(3,3,3),2])

We get:

pnt(pn[(point[2,2,2],0)])

24.2.2 Point in geometry: point

In the Plot view, to get a point, it is enough to be in mode point (*i.e.* Point of the push buttons, then select Point and Enter) and locate the cursor at the wished place (with the finger or the arrows) then to confirm with Enter: a point is displayed as well as a label.

This label is automatically generated: ${\tt A},$ then ${\tt B},$ etc., ...

We can also use the command point:

point takes as argument a complex number or a paired value of two real numbers.

Warning!

If a,b is a paired value of two complex numbers whose one is non real, GK:=point(a,b) returns two points of same label (here K): one of affix a, the other of affix b. When a,b is a paired value of two real numbers, GA:=point(a,b) returns and plots the point having for affix a+ib.

We enter:

GA:=point(1+i)

We get:

The point A of affix 1+i is plotted with a cross

We enter:

GB:=point(-2,1)

We get:

The point B of affix -2+i is plotted with a cross

We enter:

GC:=point(-2,i)

We get:

The two points of affix -2 and i are plotted with a cross and are written $\ensuremath{\mathsf{C}}$

Note When doing an assignment, for example GA:=point(-2+i), this stores the point(-2+i) in the variable GA, to plot the point with a cross and to assign it as a label the name on the left of := by omitting the letter G: here A.

In the case we do several assignments with one single := sign, such as: GD, GE:=point(-2+i), point(2+i), the variable GD stores the point(-2+i), and GE the point(-2+i), but it will not be possible to move these points by pointing them. To avoid this, we must enter: GL:=point(-2+i), point(2+i):;GD:=L[0];GE:=L[1] or

GL:=point(-2+i, 2+i):;GD:=L[0];GE:=L[1] which defines the point D of affix -2 and the point E of affix i (because the affix of GD is not real!).

24.2.3 Midpoint of a segment: midpoint

In plane geometry, midpoint takes as argument two points or two complex numbers representing the affixes of these points (or else a list of two points or of two complex numbers). midpoint returns and plots the point midpoint of the segment defined by these two points.

We enter:

midpoint(-1,1+i)

We get in the geometry application:

The point of affix i/2 is plotted with its label

In CAS screen, midpoint may also be used in 3D geometry and returns the point midpoint of the segment defined by two points.

We enter:

midpoint(point(0,0,0),point(2,2,2))

We get:

point(1,1,1)

24.2.4 Isobarycenter of n points: isobarycenter

isobarycenter takes as argument the list (or the sequence) of n points or n complex numbers representing the affixes of these points.

isobarycenter returns and plots a point which is the isobarycenter of these n points. We enter:

isobarycenter(0,2,2*i)

We get:

The point of affix 2/3+2*i/3 is plotted with a cross in the geometry application

In CAS screen, isobarycenter may also be used in 3D geometry and takes as argument the list (or the sequence) of n points.

isobarycenter returns point([a,b,c]) where [a,b,c] are the coordinates of the isobarycenter of these n points.

We enter:

isobarycenter(point(0,0,0),point(3,3,3))

We get:

pnt(pn[(point[3/2,3/2,3/2],0]))

24.2.5 Randomly define a 2D point: point2d

point2d takes as argument a sequence of names of points. point2d randomly defines the integer coordinates (between -5 and +5) of the 2D points supplied as argument.

We enter:

point2d(A,B,C)

Then, we enter:

triangle(A,B,C)

We get:

The plot of a triangle ABC

Warning!

The points defined by the command point2d are fixed once and for all, and hence, they may not be moved.

 $polar_point(r,t)$ returns the 2D point of polar coordinates the arguments r and t, that is to say the point of affix r*exp(i*t).

We enter:

polar point(2,pi/4)

We get:

The plot of the point of affix 2*exp(i*pi/4)

24.2.7 One of the intersection points of two geometrical objects: single inter

single_inter takes two or three arguments which are two geometrical objects and eventually a
third argument which ,is either a point either a list of points.

single inter returns one of the intersection points of these two geometrical objects.

If we have supplied a point GA (or its affixe) as third argument, single_inter returns the intersection point the closest to GA, and if we have supplied a list of points 1 (or a list of affixes), single_inter returns the intersection point which is not in the list 1.

We enter:

GA:=single inter(line(0,1+i),line(1,i))

We get:

The point of affix 1/2+i/2 is plotted with a cross and is labeled A

We enter:

GB:=single inter(circle(0,1),line(-1,i))

We get:

```
The point of affix i is plotted with a cross and is labeled B
```

We enter:

GB1:=single_inter(circle(0,1),line(-1,i),[i])

We get:

```
The point of affix -1 is plotted with a cross and is labeled B1
```

We enter:

```
GB2:=single inter(circle(0,1),line(-1,1+2*i),1+2*i)
```

We get:

```
The point of affix i is plotted with a cross and is labeled B2
```

We enter:

GC:=single inter(circle(1, sqrt(2)), circle(0, 1))

We get:

The point of affix i is plotted with a cross and is labeled $\ensuremath{\mathsf{C}}$

We enter:

GC1:=single_inter(circle(1, sqrt(2)), circle(0,1),[i])

We get:

```
The point of affix -i is plotted with a cross and is labeled C1
```

We enter:

```
GC2:=single inter(circle(1, sqrt(2)), circle(0, 1), i/2)
```

We get:

The point of affix i is plotted with a cross and is labeled $\mbox{C2}$

24.2.8 All intersection points of two geometrical objects: inter

inter takes two arguments or three arguments:

- if inter is supplied with two geometrical objects as arguments, it returns the list of points of intersection of these two geometrical objects.
- if inter is supplied with two geometrical objects and a point as arguments, it returns the intersection point of these two geometrical objects the closest of the point supplied as third argument.

We enter in geometry:

```
GA:=inter(line(0,1+i),line(1,i))[0]
```

We get:

```
The point of affix 1/2+i/2 is plotted with a cross and is labeled A
```

We enter in geometry:

GB:=inter(circle(0,1),line(1,i))[0]

GC:=inter(circle(0,1),line(1,i))[1]

We get:

The point of affix i is plotted with a cross and is labeled $\ensuremath{\mathsf{B}}$

```
The point of affix 1 is plotted with a cross and is labeled C
```

We enter in the CAS:

inter(circle(0,1),line(1,i))

We get:

[point(1),point(i)]

We enter in geometry in the Symbolic view:

```
GL inter(circle(0,1),line(1,i))
```

We get in the Plot view:

The points of affix i and 1 are plotted with a cross and are written

We enter in plane geometry:

```
GD:=inter(circle(0,1),line(1,i),point(1/2))
```

We get:

The point of affix 1 is plotted with a cross and is labeled D

24.2.9 Orthocenter of a triangle: orthocenter

orthocenter takes as argument a triangle, or three points, or three complex numbers specifying the affix of three points. orthocenter plots and returns the point which is the orthocenter of the triangle, or of the triangle formed by these three points.

We enter:

orthocentre(0,1+i,-1+i)

Or we enter:

orthocenter(triangle(0,1+i,-1+i))

We get:

The point of affix 0 is plotted with a cross

We enter in the Symbolic view of the geometry application:

```
GT triangle(-i,2+i,-1+i);GH orthocenter(T)
```

We get:

The triangle T and the point H of affix 0 are plotted

24.2.10 Vertices of a polygon: vertices

vertices takes as argument a polygon. vertices returns the list of the vertices of this polygon and plots them. **Warning!** If the polygon has n vertices the list will be of length n.

We enter:

vertices(equilateral triangle(0,2))

We get:

the points [pnt(0,0), pnt(2,0), pnt((2*(sqrt(3)*(i)+1))/2,0)] are plotted with a cross

We enter:

GC:=vertices(equilateral triangle(0,2))[2]

We get:

```
The point of affix 1 + i * \sqrt{3} is plotted with a cross and is labeled C
```

Warning! If we enter:

376

GT:=equilateral triangle(0,2,C);

We get:

the triangle T and the point C

Whereas, if we enter

GT:=equilateral_triangle(0,2,C):;vertices(GT[0])

We get:

```
the vertices of T plotted with a cross without label
```

24.2.11 Vertices of a polygon: vertices abca

vertices abca takes as argument the name of a polygon.

vertices abca returns the "closed" list of vertices of this polygon and plot them.

Warning! If the polygon has n vertices the list will be of length n + 1 because it starts and ends by the first vertex ("closed" list).

We enter:

vertices abca(equilateral triangle(0,2))

We get:

[pnt(0,0),pnt(2,0),pnt((2*(sqrt(3)*(i)+1))/2,0),pnt(0,0)]

24.2.12 Point on a geometrical object: element

element may take different kind of arguments:

1. an interval a..b and two reals, the value and the step (by default the value equals (a + b)/2 and the step (b - a)/100). For example, we enter in the Symbolic view:

```
GC:=element(-pi..pi) Or
```

```
GC:=element(-pi..pi,pi/2) Or
```

```
GC:=element(-pi..pi,pi/2,pi/100.0)
```

this means that GC can take any value in the range $[-\pi; \pi]$, the second argument $\pi/2$ is the start value of GC and $\pi/100.0$ is the chosen step.

Then, in the Plot view:

- we have at the bottom-left the coordinates x1,y1 of the pointer. We enter c in Alpha mode,
- then we get at the bottom-right Pick GC; Press Enter to validate.
- then pick C.

A line appears at the top of the Plot view: it is a cursor which allows to change the value of GC with the arrows (\leftarrow and \rightarrow) and at the bottom-right we have Move GC to the left of this line we have GC=xc (xc is the value of GC). The arrows \leftarrow and \rightarrow allow to change the value xc of GC.

Example.

We define GC as above: We enter in the Symbolic view:

GC:=element(-pi..pi,pi/2)

$$GD:=line(y+x*TAN(GC)-2*SIN(GC)=0)$$

GD is then a line of parameter GC.

When we move the cursor ${\tt GC},$ the line ${\tt GD}$ moves.

We can keep the trace of this line GD by entering in the Symbolic view: trace(GD) or by using in the menu of the Plot view Point->Plus->trace, which allows to choose the name

of the object whose we want the trace of and thus ${\tt trace(GD)}$ reads automatically in the Symbolic view.

Thus, we can see that the envelop of these lines is an astroid. **Note**:

To delete the trace or to stop it, use the menu Point->Plus.

2. a geometrical object and a real (by default this real equals 1/2), for example:

GA:=element(circle(0,2),1) means that A is on the circle of center 0 and radius 2, and has as affix 2 * exp(i) (because 2 * exp(i * t) is the parametric equation of this circle and the second argument 1 gives the value of the parameter t to define GA).

For instance, GA:=element(circle(0,1)) means that A is on the circle of center 0 and radius 1, the point A will be plotted by having t = 1/2 as value of the parameter of the parametric equation of the geometrical object (here affix(GA) = 2 * exp(i/2)). When moving A with the arrows, A will follow the outline of the geometrical object.

Warning! It is the projection of the cursor on the circle which defines the point A: take care to move the cursor in the Plot view so that it defines a point A.

3. a geometrical object and a name of variable (for example GC) previously defined by the command element: for example GC:=element(0..pi). If we enter GD:=element(circle(0,2),GC), then GC is the variable of setting of the geometrical object defined by the first argument of element, that is to say that GD is on the circle of center 0 and radius 2, and GD has as affix 2 * exp(i * GC), because 2 * exp(i * t) is the parametric equation of the circle(0,2). It is compulsory in this case to previously define the second argument (here GC) as being an element of an interval. By example, we enter:

then

Then, we place the cursor on GC (Pointer GC), then Enter. As a result, we have at the top a cursor labelled GC that the we can move with the arrows (\leftarrow and \rightarrow) from 0 to π , with at the left of this cursor a number equal to the value of the cursor. This cursor allows to move the point A on the top half-circle of the circle of center 0 and radius 1 (because $0 \le t \le \pi$) and this without plotting this half-circle.

By example, we enter:

GC:=element(0..2)

then

GD:=element(line(GA,GB),GC)

D is a point of the line AB and we have M=A+t*(B-A) *i.e.* M=(1-t)*A+t*Bto follow the segment AB, you have to put GC:=element(0..1) or else GD:=element(segment(GA,GB),GC) which leaves D in A if t < 0 and leave D in B if t > 1.

4. a polygonal line GP and [floor(GC), frac(GC)] with GC previsouly defined by the command element: for example GC:=element(0..5) if GP has 5 sides. The sides of the polygonal line GP have as number: 0,1....
If, for example, GP has 5 sides and as vertices S(0), ...S(4), S(5)=S(0), we enter:

GC:=element(0..5)

GD:=element(GP,[floor(GC),frac(GC)])

Thus, according to the values of GC, D will follow the 5 sides of GP: D will be located on the side number n=floor(GC) and we will have: D=frac(GC)*S(n)+(1-frac(GC))*S(n+1).

378

For instance:

GA:=point(0); GB:=point(4); GC:=point(4*i); Gd:=element(0..3); GT:=triangle(A,B,C); GM:=element(GT,[floor(GD),frac(GD)]);

Warning! If we add a complex a to a point *M* of affix *m*, defined as element of a curve *C*, this defines a point *N* of the curve *C* which is the projection the point of affix m + a on *C*.

Par contre if a point M of affix m, defined as element of a curve C, we add a point A of affix a, this defines a point P of affix m + a. For instance, being supplied 3 points M, A, B, if we want to define the point N that makes for example:

$\overrightarrow{MN} = \overrightarrow{AB}$,

We can enter: GN := GM + (GB-GA) provided that M is not defined as element of a curve C. Indeed, if we have entered GM := element(GC), we must define N by entering: GN := affix(GM) + GB-GA or GN := GM + GB - GA (without parenthesis) because GN := GM + GB - GA is interpreted as GN := (GM + GB) - GA because there are no precedence rules for + and - whereas

GN := GM + (GB - GA) returns an element of the curve C which is the projection of N on C. Thus, if we enter:

GA:=point(-2,2);GB:=point(1,3);GC:=circle(0,1);

GM:=element(GC);GN:=affix(GM)+GB-GA;(or GN:=GM+GB-GA;)

GN is not on the curve C but if we enter:

GP:=GM+(GB-GA) (or GP:=projection(GC,GN);)

 ${\tt P}$ is on the curve ${\tt C}.$

24.2.13 Point dividing a segment: division point

division_point takes three arguments: two points (or two complex numbers a and b) and a complex number k.

division point returns and plots the point of affix z such as:

$$\frac{z-a}{z-b} = k$$

We enter:

```
GA:=division point(i,2+i,3+i)
```

We get:

```
the point A of affix (5+4*i)/(2+i)
```

because <code>csolve(z-i=(3+i)*(z-2-i),z)</code> returns <code>[(14+3*i)/5]</code> and <code>(5+4*i)/(2+i)</code> returns <code>(14+3*i)/5</code>

We enter:

GB:=division point(point(i),point(2+i),3)

We get:

the point B of affix 3+i

because csolve(z-i=3*(z-2-i),z) returns [3+i]

24.2.14 Harmonic division: harmonic division

Four points aligned *A*, *B*, *C*, *D* are in harmonic division if we have:

$$\frac{\overline{CA}}{\overline{CB}} = -\frac{\overline{DA}}{\overline{DB}} = k$$

We also say that C and D divide the segment AB with the ratio k and that the point D is the conjugate harmonic of C according to A and B or, shortly, D is the harmonic conjugate of A, B, C.

Four concurrent or parallel lines d1, d2, d3, d4 are in harmonic division if they define an harmonic division on each secant line.

We also say that d1, d2, d3, d4 form an harmonic bundle.

harmonic_division takes as arguments three points aligned or their three affixes

(resp. three concurrent or parallel lines) and the name of a variable.

harmonic_division modifies the last argument so that we get an harmonic division and returns the list of four points (resp. list of four lines) and plots the points (resp. the lines).

We enter:

harmonic division(0,2,3/2,GD)

We get:

[0,2,3/2,pnt(3,0,"GD")] and only the point D is plotted

We enter:

harmonic division(point(0),point(2),point(3/2),GD)

We get:

```
[pnt(0,0), pnt(2,0), pnt(3/2,0), pnt(3,0,"D")] and the four points are plotted Note: 0 stands for the color of the point.
```

We enter:

```
harmonic division(line(i,0),line(i,1+i), line(i,3+2*(i)),GD)
```

We get:

[pnt([[i,0],0]),pnt([[i,1+i],0]), pnt([[i,3+2*i],0]), pnt([[i,-3+2*i],0,"GD"])] and the four lines are plotted

24.2.15 Harmonic conjugate: harmonic conjugate

harmonic_conjugate takes as arguments three points aligned *GA*, *GB*, *GC* (resp. three concurrent or parallel lines).

harmonic_conjugate returns and draws the conjugate harmonic of GC with respect to GA and GB.

We enter:

harmonic conjugate(0,2,3/2)

We get:

pnt(3,0) and the plot of this point

We enter:

harmonic conjugate(line(0,1+i),line(0,3+i),line(0,i))

We get:

pnt([[0,3+2*i],0]) and the plot of this line

24.2.16 Pole and polar: pole polar

polar takes as argument a circle GC and a point GA (or a complex number). polar returns and draws the polar of the point GA with respect to the circle GC: it is the line which is the locus of conjugates of GA with respect to the circle GC. pole takes as argument a circle GC and a line Gd.

pole returns and draws the pole of Gd with respect to the circle GC: it is the point GA having Gd as polar according to GC.

We enter:

polaire(circle(0,1),(point(1+i))/2)

We get:

pnt([[2,2*i],0]) and the plot of this line

We enter:

pole(circle(0,1),line(i,1))

We get:

pnt(1+i,0) and the plot of this point

24.2.17 Reciprocal polar: reciprocation

reciprocation takes as argument a circle *GC* and a list of points and lines. reciprocation returns the list obtained by replacing in the list supplied as argument a point (resp. a line) by its polar (resp. its pole) with respect to the circle *GC*. We enter:

reciprocation(circle(0,1),[point((1+i)/2), line(1,-1+i)])

We get:

the line of equation y = (-x + 2) and the point of affix 1+2i

24.2.18 The center of a circle: center

center takes as argument the name of a circle (see the definition of the circle ??). center returns and plots the center of this circle.

We enter:

GC:=center(circle(0, point(2*i)))

We get:

The point of affix i is plotted with a cross and is labeled C

We enter:

GM:=center(circle(point(1+i),1))

We get:

The point of affix 1+i is plotted with a cross and is labeled ${\tt M}$

24.3 Line

24.3.1 Line defined by a point and a slope: DrawSlp

```
DrawSlp(a, b, m) draws the line of slope m passing by the point (a, b)
```

We enter:

DrawSlp(1, 2, -1)

We get:

The line passing by the point of affix 1+2i and slope $\mbox{-}1$

24.3.2 Tangent to the curve of y = f(x) in x = a: LineTan

```
LineTan(f(x), x=a) plots the tangent to the curve of y = f(x) in x = a.
```

We enter:

LineTan(sin(x),pi/6)

Or we enter:

LineTan(sin(t),t,pi/6)

We enter:

LineTan(sin(t),t=pi/6)

We get:

```
The plot of the tangent to the curve y = sin(x) at the point of abscissa x = \pi/6)
```

24.3.3 Altitude of a triangle: altitude

altitude (GA, GB, GC) plots the altitude of the triangle ABC through A.

We enter:

```
altitude(1,0,1-i)
```

We get in the geometry application:

The plot of the altitude of the triangle (1, 0, 1 - i) through the point of affix 1 $\,$

We enter:

```
altitude(0,1,2-i)
```

We get in the geometry application:

```
The plot of the altitude of the triangle (0, 1, 2 - i) through the point of affix 0 \,
```

We enter in the CAS screen:

```
a:=altitude(1,0,1-i)
```

We get:

line(y=x-1)

We enter in the CAS screen:

a:=altitude(1,0,1-i)

We get:

line(y=x)

24.3.4 Internal bisector of a angle: bisector

bisector (GA, GB, GC) plots the internal bisector of the angle \widehat{BAC} .

We enter:

bisector(0,1,i)

We get in the geometry application:

The plot of the internal bisector of the angle $(\widehat{0,1,\iota})$

We enter in the CAS screen:

bisector(0,1,i)

We get:

line(y=x)

24.3.5 External bisector of a angle: exbisector

exbisector (GA, GB, GC) plots the internal bisector of the angle \widehat{BAC} .

We enter:

exbisector(0,1,i)

We get in the geometry application:

```
The plot of the external bisector of the angle (\widehat{0,1,\iota})
```

We enter in the CAS screen:

exbisector(0,1,i)

We get:

line(y=-x)

24.3.6 Half line: half line

half line (GA, GB) plots the half line A, B.

We enter:

half_line(1,2+i)

We get in the geometry application:

```
The plot of the half-line of origin the point of affix 1 and passing by the point of affix 2+i.
```

We enter in the CAS screen:

half line(1,2+i)

We get:

line(y=x-1)

24.3.7 Line and oriented line: line

In plane geometry, line takes as argument two points (or two complex numbers representing the affixes of these points), or a list of two points (or two complex numbers), or takes as argument a point and slope=m, or else a line equation of the form a * x + by + c = 0. line returns and plots the line defined by the two arguments. line (GA, GB) plots the line A, B.

Note: slope is also a command giving the slope of a line. You would better use DrawSlp to define a line with a point and its slope. (DrawSlp(a,b,m) defines the line line(point(a,b), slope=m)).

In the CAS screen:

We enter:

line(1,2+i)

We get:

line(y=x-1)

In the geometry application:

We enter:

line(1,2+i)

We get:

The plot of the line passing by the point of affix 1 and through the point of affix 2+i.

We enter:

line(0,1+i)

We get:

The line equation y=x is plotted

We enter:

line(i,slope=2)

Or we enter:

DrawSlp(0,1,2)

We get:

The line equation y=2x+1 is plotted

We enter:

line(y-x=0)

We get:

The line equation y=x is plotted

Note: orientation of the line

- When the line is defined by an equation, we rewrite the equation in the form: "*left_member right_member* = 0" to get a line equation of the form a * x + by + c = 0 and then the vector giving the orientation of the line is [b, -a], or else its orientation is defined by the 3D cross product of its normal vector (third coordinate 0) and [0,0,1]. For instance, line (y=2*x) is orientated by [1,2] because its equation is -2 * x + y = 0 and cross ([-2,1,0], [0,0,1]) = [1,2,0].
- When the line is defined by a point *A* and its slope *m*, its orientation is defined by the vector \overrightarrow{AB} with B = A + 1 + i * m.

24.3.8 Segment: Line

Line takes as argument four real numbers giving the coordinates of two points. Line (a, b, c, d) returns and plots the segment defined by the two points a + i * b and c + i * d.

We enter:

Line(-1,1,2,-2)

We get:

The segment -1+i,2-2*i

24.3.9 Plot of a 2D horizontal line: LineHorz

LineHorz takes as argument an expression Xpr. LineHorz plots the horizontal line y = Xpr. We enter:

LineHorz(1)

We get:

the plot of the line y=1

24.3.10 Plot of a 2D vertical line: LineVert

LineVert takes as arguments an expression Xpr. LineVert plots the the vertical line x = Xpr. We enter:

LineVert(1)

We get:

386

the plot of the line x=1

24.3.11 Vector in plane geometry: vector

In plane geometry, vector takes as arguments:

- either two points GA and GB, or two complex numbers representing the affixes of these points, or two lists of the points coordinates. vector defines and draws the vector \overrightarrow{GAGB} - either a point GA (or a complex number representing the affix of this point or a list representing the coordinates of this point) and a vector \overline{GV} (recursive definition). vector defines and draws the vector AB such as $\overrightarrow{GAGB} = \overrightarrow{GV}$. If GW:=vector(GA,GV), so the point \overrightarrow{GB} such as $\overrightarrow{GAGB} = \overrightarrow{GV}$ is point(GW[1,1]) or point (coordinates (GV) + coordinates (GA)) OF GA+ (affix (V) [1] - affix (GV) [0]). We enter: vector(point(-1), point(i))

Or we enter:

vector(-1,i)

Or we enter:

vector([-1,0],[0,1])

We get:

The plot of the vector of origin -1 and end i

We enter:

```
GV:=vector(point(-1),point(i))
```

We enter:

```
vector(point(-1+i),GV)
```

Or we enter:

vector(-1+i,GV)

Or we enter:

vector([-1,1],GV)

We enter:

point([-1,1], coordinates(GV))

We get:

```
The plot of the vector of origin -1+i and end 2*i
```

We enter:

```
GD:=point([-1,1]+coordinates(GV))
```

We get:

```
GD the point(2*i)
```

Note:

In symbolic computation, we work with the list of coordinates of the vectors that the we get thanks to the command coordinates (cf 24.8.6).

24.3.12 Median line of a triangle: median line

median_line(GA, GB, GC) plots the median line of the triangle ABC through A. We enter:

median line(0, 1, 2+i)

We get in the geometry application:

```
The plot of the line passing by the point of affix 0 and through the point of affix (3+i)/2 (midpoint of the segment (0,2+i))
```

We enter in the CAS screen:

median line(0, 1, 2+i)

We get:

line(y=x/3)

24.3.13 Parallel lines: parallel

parallel (GA, GD) plots the line parallel to the line *D* passing by *A*. We enter:

parallel(0, line(1,i))

We get in the geometry application:

the plot of the line equation y=-x

We enter in the CAS screen:

parallel(0, line(1,i))

We get:

line(y=(-x))

24.3.14 Perpendicular bisector: perpen bisector

perpen bisector (GA, GB) plots the perpendicular bisector of the segment AB.

We enter:

perpen bisector(1,i)

We get in the geometry application:

the plot of the line equation y=x

We enter in the CAS screen:

perpen bisector(1,i)

We get:

line(y=x)

24.3.15 Line perpendicular to a line: perpendicular

perpendicular (GA, GB, GC) or perpendicular (GA, line (GB, GC)) plots the line perpendicular to the line BC passing by the point A.

We enter:

perpendicular(1,1,2-i)

We get in the geometry application:

```
the plot of the line perpendicular to the line (1,2-i) and passing by the point of affix 1\,
```

We enter in the CAS screen:

perpendicular(1,1,2-i)

We get:

line(y=(x-1))

24.3.16 Segment: segment

segment (GA, GB) plots the segment AB.

We enter:

segment (0,1+i)

We get in the geometry application:

The plot of the segment (0, 1+i)

We enter in the CAS screen:

segment (0,1+i)

We get:

segment (point(0), point(1+i))

24.3.17 Tangent to a geometrical object or tangent to a curv in a point: tangent

tangent takes two arguments: a geometrical object and a point A.

- the geometrical object is the graph G of a function 2D
 - In this case, the second argument can be, either a real number x_0 , either a point A located on G.

For example, if we have defined the function g, we enter:

```
GG:=plotfunc(g(x),x)
```

```
tangent(GG, 1.2)
```

388

plots the tangent to the graph G of the function g at point of abscissa x=1.2, or we enter:

GA:=point(1.2+i*g(1.2))

tangent(GG, GA)

plots the tangent to point A of the graph G of the function g. For instance, to get the plot of the tangent to the curve of $g(x) = x^2$ at point of abscissa $x_0 = 1$, we enter in the CAS:

g(x):=x^2

Then, in Symb, we enter:

GG:=plotfunc(g(x),x)

GT:=tangent(G,1)

or we enter:

GT:=tangent(G,point(1+i))

We get

```
The tangent to the curve of g(x) = x^2 at point 1+i
```

We get the equation of the tangent by entering in Num:

equation(GT)

- the geometrical object is not a graph

tangent may take as arguments:

- either a geometrical object G and a point A,

- either a point A defined by element whose parameters are: a geometrical object
- *G* and a real representing the value of the parameter of the parametric equation of *G*. tangent returns a list of lines and draws these lines which are the tan-gentes at this geometrical object *G* and which passent through the point *A*.

We enter:

tangent(circle(0,1),point(1+i))

We get:

The line equation x=1 and the line equation y=1

We enter:

```
tangent(element(circle(0,1),1))
```

We get:

```
The tangent to the circle of center 0 and radius 1, at point of affix \exp(i)
```

We enter:

```
tangent(circle(i,1+i),point((1+i*sqrt(3))*2))
```

We get:

2 tangents to the circle of center i and radius $\sqrt{2}$ through the point((1+i*sqrt(3))*2)

24.3.18 Radical axis of two circles: radical axis

The radical axis of two circles C_1 and C_2 is the locus of points which have the same power with respect to C_1 and at C_2 .

We enter:

```
radical axis(circle(0,1+i),circle(1,1+i)))
```

We get:

The plot of the line equation x = 1/2

Indeed: the line x = 1/2 is the perpendicular bisector of the segment [0; 1]

24.4 Polygon

24.4.1 Scalene triangle: triangle

In plane geometry, triangle takes as arguments: three points (or three complex numbers representing the affixes of these points, or else a list of three points or of three complex numbers). triangle returns and plots the triangle having for vertices these three points.

We enter:

triangle(-1,i,1+i)

We get:

The triangle of vertices -1, i, 1+i

24.4.2 Equilateral triangle: equilateral triangle

In plane geometry, equilateral triangle, takes two a or three arguments:

two arguments: two points or two complex numbers representing the affixes of these points (or else a list of two points or of two complex numbers).
 equilateral_triangle(GA,GB) returns and plots the equilateral triangle direct ABC but without defining the point C. We enter:

equilateral triangle(0,2)

We get:

the equilateral triangle of vertices the points of affix 0,2,1+i*sqrt(3)

To define the third vertex C, we can give the triangle a label (for example $GT:=equilateral_triangle(0,2)$) and use the command vertices(GT) which returns the list of vertices of T. Then, we will define GC:= vertices(GT)[2] but it is easier to add GC, name of the last vertex, as third argument.

 three arguments: the two previous arguments and as third argument the name of a variable to define and plot the third vertex with its label.

We enter:

equilateral triangle(0,2,GC)

We get:

```
the equilateral triangle of vertices the points of affix 0, 2, 1+i*sqrt(3)
```

We enter:

normal(affix(GC))

We get:

1+i*sqrt(3)

24.4.3 Right triangle: right triangle

In plane geometry, right triangle takes three or four arguments:

- three arguments: two points A and B (or two complex numbers representing the affixes of these points) and a real k not null.
 - right_triangle(GA, GB, k) returns and plots the triangle *ABC* right angled in *A*: this triangle is direct if k > 0, indirect if k < 0 and is such as AC = |k| * AB. Thus, if the angle $(\overrightarrow{BC}, \overrightarrow{BA}) = \beta$ radians (or degrees), we have $tan(\beta) = k$.
 - We notice that if *C* is the transform of *B* in the similarity of center *A* of ratio |k| and angle $(k/|k|) * \pi/2$.

We enter:

```
right triangle(i,-i,2)
```

We get:

The right triangle of vertices i, -i, 4+i

We enter:

```
right triangle(i,-i,-2)
```

We get:

```
The right triangle of vertices i, -i, -4+i
```

 four arguments: the three previous arguments and as last argument the name of a variable to define the third vertex.

We enter:

```
right triangle(i,-i,2,GD)
```

We get:

The right triangle of vertices i, -i, 4+i

We enter:

normal(affix(GD))

We get:

24.4.4 Isosceles triangle: isosceles_triangle

In plane geometry, isosceles triangle takes three or four arguments:

three arguments: two points *A* and *B* (or two complex numbers representing the affixes of these points) and a real which designates the measure in radians (or in degrees) of the angle $(\overrightarrow{AB}, \overrightarrow{AC})$.

isosceles_triangle(GA,GB,c) returns and plots the isosceles triangle *ABC* of vertex *A* (AB = AC) and such as the angle ($\overrightarrow{AB}, \overrightarrow{AC}$) = *c* radians (or degrees), without defining the point *C*).

We enter:

isosceles triangle(i,1,-3*pi/4)

We get, if we have checked radian in the CAS configuration (Shift-CAS):

```
The isoscele triangle of vertices -1, i, -\sqrt{2}+i
```

 four arguments: the three previous arguments and as fourth argument the name of a variable to define the third vertex.

We enter:

```
isosceles triangle(i,1,-3*pi/4,GC)
```

We get, if we have checked radian in the CAS configuration (Shift-CAS):

```
The isoscele triangle of vertices -1, i, -\sqrt{2}+i
```

We enter:

normal(affix(GC))

We get:

```
-sqrt(2)+i
```

24.4.5 Rhombus: rhombus

In plane geometry, rhombus takes three to five arguments:

- three arguments: two points or two complex numbers representing the affixes of these points and a real number *a*.

rhombus (GA, GB, a) returns and plots the rhombus *ABCD* such as:

 $(\overrightarrow{AB}, \overrightarrow{AD}) = a$ radians (or degrees), but without defining the points C and D.

We enter:

```
rhombus(-2*i,sqrt(3)-i,pi/3)
```

We get, if we have checked ${\tt radian}$ in the CAS or Home configuration (Shift-CAS or Shift-Home)

The rhombus of vertices -2 * i, $\sqrt{3} - i$, $\sqrt{3} + i$, 0

 four (resp. five) arguments: the three previous arguments, the last parameter (resp. the two last parameters) is (resp. are) the name(s) of a (resp. of the two) variable(s) which define(s) the penultimate vertex (resp. the two last vertices).

We enter:

We get, if we have checked radian in the CAS configuration:

```
The rhombus of vertices -2*i, \sqrt{3}-i, \sqrt{3}+i, 0
```

We enter:

```
normal(affix(E))
```

We get:

```
sqrt(3)+i
```

We enter:

normal(affix(F))

We get:

0

24.4.6 Rectangle: rectangle

In plane geometry, rectangle takes three to five arguments:

- three arguments: two points (or two complex numbers representing the affixes of these points) and a real number k not null.
 rectangle (GA, GB, k) returns and plots the rectangle ABCD such as:
 - AD = |k| * AB and $(\overrightarrow{AB}, \overrightarrow{AD}) = (k/|k|) * \pi/2$ that is to say such as: affix (GD) = affix (GA) + k*exp (i* $\pi/2$) * (affix (GB) - affix (GA)) but without defining the points *C* and *D*. **Note** If *k* is complex, we have: affix (GD) = affix (GA) + k*exp (i* $\pi/2$) * (affix (GB) - affix (GA)) and we can thus get the plot of a parallelogram.

We enter:

rectangle(0, 1+i, 1/2)

We get:

```
The rectangle of vertices 0, 1+i, 1/2+3*i/2, -1/2+i/2
```

We enter:

rectangle (0, 1+i, -1/2)

We get:

```
The rectangle of vertices 0, 1+i, 3/2+i/2, 1/2-i/2
```

We enter:

rectangle(0,1,1+i)

We get:

```
The parallelogram of vertices 0,1,i,-1+i because -1 + i = (1 + i) * 
 \exp(i * \pi/2)
```

 five arguments: the three previous arguments and the two last arguments are the names of two variables to define the two last vertices.

24.4.7 Square: square

In plane geometry, square takes one to four arguments:

two arguments: two points or two complex numbers representing the affixes of these points (or else a list of two points or of two complex numbers).
 square (GA, GB) returns and plots the square ABCD of direct direction, but without defining the points D and C.

We enter:

square(0,1+i)

We get:

The square of vertices 0, 1+i, 2*i, -1+i

three (resp. four) arguments: the two previous arguments followed by the the name of a (resp. two) variable(s) which define(s) the penultimate vertex (resp. the two other vertices).

We enter:

square(0,1+i,GC,GD)

We get:

The square of vertices 0, 1+i, 2*i, -1+i

We enter:

affix(GC)

We get:

We enter:

affix(GD)

We get:

-1+i

24.4.8 Quadrilateral: quadrilateral

In plane geometry, quadrilateral (GA, GB, GC, GD), returns and plots the quadrilateral ABCD.

We enter:

quadrilateral (0, 1, 1+i, -1+2*i)

We get:

```
The "kite" of vertices 0, 1, 1+i, 1+2*i
```

24.4.9 Parallelogram: parallelogram

In plane geometry, parallelogram takes three arguments or four arguments:

three arguments: three points (or three complex numbers representing the affixes of these points).

 $\tt parallelogram(GA,GB,GC)$ returns and plots the parallelogram <code>ABCD</code> such as:

 $\overrightarrow{AD} = \overrightarrow{BC}$ but without defining the point D.

We enter:

```
parallelogram(0,1,2+i)
```

We get:

The parallelogram of vertices 0,1,2+i,1+i

We enter:

parallelogram(1,0,-1+i)

We get:

```
The parallelogram of vertices 1,0,-1+i,i
```

- four arguments: the three previous arguments and as fourth argument the name of a variable which defines the missing vertex.

We enter:

parallelogram(0,1,2+i,GF)

We get:

```
The parallelogram of vertices 0, 1, 2+i, 1+i and the point F of affix 1+i
```

We enter:

normal(affix(GF))

We get:

24.4.10 Isopolygon: isopolygon

In plane geometry, isopolygon takes three arguments:

- either two points or two complex numbers and a positive integer k

- either two points or two complex numbers and a negative integer k.

When k > 0, isopolygon plots the direct regular polygon of k sides and consecutive vertices the two first arguments.

We enter:

isopolygon(0,1,4)

We get:

The square of vertices 0,1,1+i,i

When k < 0, isopolygon plots the direct regular polygon having – k sides, as center the first argument, and as vertex the second argument. We enter:

isopolygon(0, 1, -4)

We get:

square of vertices 1, i, -1, -i

24.4.11 Hexagon: hexagon

See also: ?? for 2D geometry.

In plane geometry, hexagon may take from two to six arguments. Description of the arguments:

 two arguments: two points or two complex numbers representing the affixes of these points (or else a list of two points or of two complex numbers).

hexagon (A, B) returns and plots the hexagon *ABCDEF* of direct orientation, but without defining the points D, C, E and F.

We enter:

hexagon(0,1)

We get:

The hexagon of vertices

0,1,3/2+i*sqrt(3)/2,1+i*sqrt(3),i*sqrt(3),-1/2+i*sqrt(3)/2

 six arguments, the four last parameters are the name of two variables which define the two other vertices.

We enter:

hexagon(0,1,C,D,E,F)

We get:

The hexagon of vertices

0,1,3/2+i*sqrt(3)/2,1+i*sqrt(3),i*sqrt(3),-1/2+i*sqrt(3)/2

We enter: affix(C) We get: 3/2+i*sqrt(3)/2 We enter: 1+i*sqrt(3) We enter: affix(E) We get: i*sqrt(3) We enter: affix(F)

-1/2+i*sqrt(3)/2

24.4.12 Polygon: polygon

In plane geometry, polygon takes as argument the list (or the sequence) of n points or of n complex numbers representing the affixes of these points.

polygon returns and plots the polygon having for vertices these n points.

We enter:

polygon(-1,-1+i/2,i,1+i,-i)

We get:

The polygon of vertices -1, -1+i/2, i, 1+i, -i

We enter:

```
polygon(makelist(x \rightarrow exp(i*pi*x/3), 0, 5, 1))
```

We get:

The hexagon of vertices $1,e^{\frac{i\pi}{3}},e^{\frac{2i\pi}{3}},..,e^{\frac{5i\pi}{3}}$

24.4.13 Polygonal line: open polygon

In plane geometry, $open_polygon$ takes as argument the list (or the sequence) of n points or of n complex numbers representing the affixes of these points.

 $open_polygon$ returns and plots the polygonal line having for vertices these n points.

398

We enter:

open_polygon(-1,-1+i/2,i,1+i,-i)

We get:

The polygonal line of vertices -1,-1+i/2,i,1+i,-i

We enter:

open polygon(makelist(x->exp(i*pi*x/3),0,5,1))

We get:

The polygonal line of vertices $1, e^{\frac{i\pi}{3}}, e^{\frac{2i\pi}{3}}, \dots, e^{\frac{5i\pi}{3}}$

24.4.14 Convex hull of points of the plan: convexhull

The instruction convexhull returns the convex hull of a ensemble of points of the plane supplied by two points or of affixes of points, elle returns a list of complex affixes of vertices of the envelop convexe. The algorithm used ist the scan of Graham. We can use polygon on the result of convexhull to get the plot of the convexe envelop.

We enter:

polygon(convexhull(0,1,1+i,1+2i,-1-i,1-3i,-2+i))

to get the convex hull of points of affixes (0,0), (1,0), (1,1), (1,2), (-1,-1), (1,-3), (-2,1).

24.5 Curves

24.5.1 Circle and arcs: circle

 $\tt circle$ takes one or two arguments to draw a circle, and four to six arguments to draw an arc of circle:

- with one argument:
 the argument of circle is then the equation of the circle having as variables x and y,
- with two arguments:

The first argument of circle is a point or a complex number considered as the affix of a point.

The second argument specifies which additional data is supplied to plot the circle: either the radius (as modulus of a complex number), either the diameter (specified by a point). Then:

- circle(GC,r) where GC is a point (or a complex number) and r a complex number, plots the circle of center c and radius the modulus of r.

This is useful, for example, to get the circle of center A passing by B.

We enter:

```
circle(GA,GB-GA).
```

- circle(GA, GB) where A is a point or a complex number and B a point, plots the circle of diameter AB.

We get:

The circle of center 1+i and radius sqrt(2) is drawn.

We enter:

circle(-1,i)

We get:

The circle of center -1 and radius 1 is drawn.

We enter:

circle(-1, point(i))

We get:

The circle of diameter -1,i

- With four to six arguments:

circle designates an arc of circle. In this case, the two first arguments determinate the circle which is the basis of the arc (see above) and the two following arguments are the angles at the center of the points which border the arc, and the two last arguments are the names of the variables storing the points which border the arc. The third and the fourth argument are the measures of the angles at the center of points which border the arc, these angles are measured in radians (or in degrees) starting from the axis defined by the two first arguments if the second argument is a point (definition of the circle by its diameter) or of the axis defined by its center *C* and the point A = C + r if the second argument is a complex equal to *r* (definition of the circle by its centre and a complex whose modulus equals the radius). The fifth and the sixth argument are not mandatory and define the ends of the arc.

We enter:

We get, if we have checked radian in the CAS configuration:

```
The arc AB (GA:=point(0) and GB:=point(\frac{-1+\sqrt{2}+i*\sqrt{2}}{2})) of the circle of center -1 and radius 1 is drawn.
```

Indeed, the angle is measured starting from the axis (-1,0) and then the angle 0 is the point (0).

We enter:

We get, if we have checked radian in the CAS configuration:

The arc AB (GA:=point(-1+i) and GB:=point($\frac{-1-\sqrt{2}+i*\sqrt{2}}{2}$)) of the circle of center -1 and radius 1 is drawn.

Indeed, the angle is measured starting from the axis (-1, i - 1) and then the angle 0 is the point of affix i - 1.

We get:

```
The arc AB (GA:=point(i) and GB:=point(\frac{-1+i*(1+\sqrt{2})}{2})) the circle of diameter -1, i
```

Indeed, the angle is measured starting from the axis (-1, i) and then the angle 0 is the point of affix *i*.

24.5.2 Arcs of circle: arc ARC

See also: 24.5.1 for circles and arcs of circle.

arc takes three to five arguments: two points A, B (or two complex numbers a,b) and a real number α representing the measure of the arc AB in radians ($-2 * \pi \le \alpha \le 2 * \pi$). The fourth and the fifth arguments are not mandatory and are names of variables storing the center and the radius of the circle the arc is based on.

The arc AB is then based on the circle of centre: $(a + b)/2 + i * (b - a)/(2 * tan(\alpha/2))$.

arc (A, B, α) is the arc where we see the segment AB from, along the angle $-\pi + \alpha/2$ if $2\pi > \alpha > 0$, or under the angle $\pi + \alpha/2$ if $-2\pi < \alpha < 0$.

To get the arc capable AB of measure β that is to say the arc of where the we see the segment AB from, along the angle $-\pi < \beta < \pi$, you have to enter:

 $\mathrm{arc}\,(\mathrm{A}\,,\mathrm{B}\,,2\,^{\star}\,(\,-\mathrm{pi}\,+\,\beta)\,) \text{ if }\pi\,>\,\beta>0 \text{ or }\mathrm{arc}\,(\mathrm{A}\,,\mathrm{B}\,,2\,^{\star}\,(\mathrm{pi}\,+\,\beta)\,) \text{ if }-\pi\,<\,\beta<0\;.$

Warning!

The sign of α gives the direction of the arc AB. For example, arc(A,B,3*pi/2) and arc(A,B,-pi/2) draw a full circle.

We enter:

arc(1,i,pi/2)

We get:

The arc (1,i) of the circle of center 0 and radius 1

We enter:

```
arc(1,i,pi/2,C,r)
```

We get:

```
The arc (1,i) of the circle of center C=point(0) and radius r=1
```

We enter:

```
arc(2,2*i,pi,C,r)
```

We get:

The half-circle of center C=point(1+i) and radius r=sqrt(2), starting from the point(2) to the point(2*i) in positive direction.

Note:

When circle has four arguments, circle also draws an arc of circle (cf. ??).

24.5.3 Circumcircle: circumcircle

circumcircle takes three parameters defining the vertices of a triangle. circumcircle draws and returns the circumcircle of this triangle.

circumcircle(-1,i,1+i)

We get:

Circumcircle of the triangle(-1, i, 1+i)

24.5.4 Plot of a conic: conic

conic takes as argument the expression of a conic. conic plots the conic having for equation argument=0.

We enter:

 $conic(2*x^{2}+2*x*y+2*y^{2}+6*x)$

We get:

the plot of the ellipse of center -2+i and equation $2^{*}x^{2}+2^{*}x^{*}y+2^{*}y^{2}+6^{*}x=0$

Note:

Use reduced conic to get the parametric equation of the conic.

We enter:

reduced conic(2*x^2+2*x*y+2*y^2+6*x)[4]

We get:

```
[-2+i+(1+i)*(cos(t)+sqrt(3)*i*sin(t)),t,0,2\pi,2\pi/60]
```

24.5.5 Ellipse: ellipse

In plane geometry, ellipse takes one or three parameters:

- one parameter:
 its equation of variables x and y. ellipse(p(x, y)) plots the conic equation p(x, y) = 0 if p(x, y) is a polynomial of degree 2.
- three parameters: the two foci and a point on the ellipse (or its affix if this affix is not real) or its two foci and a real (its half-major axis).
 ellipse(GF1,GF2,GA) plots the ellipse passing by A and of foci F1 and F2 or, ellipse(GF1,GF2,a) where a is a real number, plots the ellipse of foci F1 and F2 and half-major axis |a|.

We enter:

```
ellipse(-i,i,1+i)
```

We get:

The ellipse of foci -i, i and passing by 1+i

We enter:

ellipse(-i,i,sqrt(5)-1)

```
The ellipse of foci -i, i and half-major axis
```

```
sqrt(5)-1
```

We enter:

```
ellipse(x^{2+2}y^{2-1})
```

or we enter:

ellipse(sqrt(2)/2,-sqrt(2)/2,1)

We get:

```
The ellipse of center 0 and half-major axis 1 and foci sqrt(2)/2 and -\mathrm{sqrt}\left(2\right)/2
```

24.5.6 Excircle: excircle

```
excircle has three parameters defining the vertices of a triangle.
excircle draws and returns the excircle in the inner angle of the first vertex of this triangle.
```

We enter:

excircle(-1,i,1+i)

We get:

Excircle in the angle of vertex -1 the triangle(-1,i,1+i) is drawn.

24.5.7 Hyperbola: hyperbola

In plane geometry, hyperbola takes one or three parameters:

– one parameter:

its equation of variables x and y. hyperbola (p(x, y)) plots the conic equation p(x, y) = 0 if p(x, y) is a polynomial of degree 2.

three parameters:

its two foci and one of these points (or its affix if this affix is not real) or its two foci and a real (its half-major axis).

hyperbola (GF1, GF2, GA) plots the hyperbola passing by A and of foci F1 and F2 or, hyperbola (GF1, GF2, a) where a is a real number, plots the hyperbola of foci F1 and F2 and half-major axis |a|.

We enter:

hyperbola(-i,i,1+i)

We get:

```
The hyperbola of foci -i, i and passing by 1+i
```

We enter:

hyperbola(-i,i,1/2)

We get:

```
The hyperbola of foci -i, i and half-major axis 1/2
```

We enter:

hyperbola (x^2+2*y^2-1)

or we enter:

402

hyperbola(sqrt(6)/2,-sqrt(6)/2,1)

We get:

```
The hyperbola of center 0 and half-major axis 1 and foci sqrt(6)/2 and -sqrt(6)/2
```

24.5.8 Incircle: incircle

incircle has three parameters defining the vertices of a triangle. incircle draws and returns the incircle of this triangle.

We enter:

incircle(-1,i,1+i)

We get:

Incircle of the triangle(-1,i,1+i)

24.5.9 Locus and envelope: locus

locus allows to plot the locus of a point which depends on another point to be defined with the function element.

locus also permits to plot the envelop of a line which depends on a point to be defined with the function element.

- locus of a point.
 - locus takes two to four arguments.

The two first argument are names of variables:

the first argument is the name of the point (for example B) whose we want to know the locus, this point being function of the second argument, the second argument is the name of the point (for example A) which follows the curve C and to be defined by GA:=element(GC).

We can eventually specify as third argument the interval in which is the parameter used for the setting of c when the second described argument c and specify as fourth argument the value of tstep.

Note:

Use the command parameq(C) to know the setting of the curve C.

locus draws the locus of the first argument when the second argument moves as specified in the argument given to element.

Tip:

Put as few instructions as possible between the definition of M and the instruction locus. To get the locus of the center of gravity B of the triangle of vertices point(-1), point(1) and A, when A follows the line of equation y = 1, we enter:

```
GA:=element(line(i,1+i))
GB:=isobarycenter(-1,1,GA)
GC:=locus(GB,GA)
```

We get:

The line parallel to the x axis passing by i/3

We enter in the Numeric view:

equation(GC)

404

- envelop of a line function of a point following a curve.

locus takes as arguments two names of variables: the first argument is the name of the line we want to know the envelop of, and this line is function of the second argument. The second argument is the name of the point which moves, to be defined with the function element.

locus draws the envelop of the first argument when the second argument moves according to what has been supplied as argument of element.

To get the the envelop of the perpendicular bisector of *FH* when *H* follows the line of equation x = 0, we enter:

GD:=perpend bisector(GF,GH)

locus(GD,GH)

We get:

```
The parabola of focus F and directrix line the y axis, whose equation is 2\star x-y^{2-1=0}
```

envelop of a line supplied by an equation depending on a parameter. In this case, you have to specify that the parameter is the affix of a point of the line y = 0.
For instance, envelop of a family of lines of equations y + x tan(t) - 2 sin(t) = 0 when t ∈ ℝ. (cf. 1)

We enter:

GH:=element(line(y=0));

GD:=line(y+x*tan(affix(M))-2*sin(affix(M)))

locus(GD,GH)

We get:

```
The astroid of parametric equation 2 \cos(t)^{3+2}i\sin(t)^{3}
```

To get the envelop when $t = 0..\pi$, we enter:

locus(GD,GH,t=0..pi)

We get:

The part above y = 0 of the astroid of parametric equation $2*\cos(t)^3+2*i*\sin(t)^3$

We can also look for the intersection of ${\tt GD}$ and ${\tt GE}$ (detailed below) to get the parametric equation of the locus.

```
GD:=y+x*tan(t)-2*sin(t)
```

```
GE:=diff(GD,t)
```

```
GM:=linsolve([GD=0,GE=0],[x,y])
```

```
GP:=plotparam(affix(simplify(GM)),t)
```

The astroid of parametric equation

2*cos(t)^3+2*i*sin(t)^3

indeed, simplify(GM) returns: [2*cos(t)^3,2*sin(t)^3]

24.5.10 Parabola: parabola

In plane geometry, parabola takes one or two parameters:

- one parameter: its equation of variables x and y. parabola(p(x, y)) plots the conic equation p(x, y) = 0 if p(x, y) is a polynomial of degree 2.
 two parameters:
- two points (or their affixes if the second affix is not real), representing its focus and its vertex, or else a point (the vertex), or the affix of its vertex and a real number c. parabola (GF, GS) returns and draws the parabola of focus F and vertex S. parabola (GS, c) returns and draws the parabola of vertex $S = x_s + iy_s$ and equation $y = y_s + c * (x - x_s)^2$. You must know that if p is the parameter of the parabola, we have FS = p/2 and c = 1/(2 * p).

We enter:

parabola (0,i)

We get:

The parabola of focus 0 and vertex i

We enter:

parabola (0,1)

We get:

The parabola of vertex 0 and equation $y = x^2$

We enter:

parabola (x^2-y-1)

or we enter:

parabola (-i,1)

or we enter:

parabola (i,-i)

We get:

The parabola of vertex -i and focus i

24.5.11 Power of a point according to a circle: powerpc

If a point *A* is at a distance *d* of the center of a circle *C* of radius *r*, the power of *A* with respect to the circle *C* equals $d^2 - r^2$.

We get:

8

Indeed: $r = \sqrt{2}$ and $d = \sqrt{10}$ then $d^2 - r^2 = 8$

24.6 Transformation

24.6.1 Homothety: homothety

In plane geometry, homothety takes two or three arguments: a point (the center of the homothety), a real (the value of the ratio of the homothety) and eventually the geometrical object to be transformed. When homothety has two arguments, this function applies on a geometrical object.

We enter:

h:=homothety(i,2)

Then:

h(1+i)

We get:

The point 2+i plotted as a black cross (x)

When homothety has three arguments, homothety draws and returns the transform of the third argument in the homothety of center the first argument and ratio the second argument. We enter:

homothety(i,2,1+i)

We get:

The point 2+i plotted as a black cross (x)

We enter:

homothety(i,2,circle(1+i,1))

We get:

The circle of center 2+i and radius 2

Note:

When the value of the homothety ratio is a non real complex number k, homothety(GA, k) is the similarity of center the point A, of ratio abs(k) and angle arg(k).

24.6.2 Inversion: inversion

In plane geometry, inversion takes two or three arguments: a point (the center of the inversion), a real (the value of the ratio of the inversion) and eventually the geometrical object to be transformed. When inversion has two arguments, this function applies on a geometrical object. If GF:=inversion(GC, k) and GB:=GF(GA), we have $\overline{CA} * \overline{CB} = k$.

We enter:

406

GF:=inversion(i,2)

Then:

```
GF(circle(1+i,1))
```

We get:

The vertical line of equation x=1

We enter:

GF(circle(1+i,1/2))

We get:

The circle of center 8/3+i and radius 4/3 (passing by the point 4+i)

When inversion has three arguments, inversion draws and returns the transform of the third argument in the inversion of center the first argument and ratio the second argument. If A1:=inversion(C, k, A) we have CA * CA1 = k.

We enter:

inversion(i,2,circle(1+i,1))

We get:

The vertical line of equation x=1

We enter:

inversion(i,2,circle(1+i,1/2))

We get:

The circle of center 8/3+i and radius 4/3, passing by the point 4+i

24.6.3 Orthogonale projection: projection

In plane geometry, projection takes one or two arguments: a geometrical object and eventually a point.

When projection has one argument, this function applies on a point and projects this point orthogonally on the geometrical object.

We enter:

p1:=projection(line(-1,i))

Then:

p1(1+i)

We get:

```
The point 1/2+3/2*i shows as a black cross (x)
```

We enter:

p2:=projection(circle(-1,1))

p2(i)

We get:

```
The point of affix, sqrt(2)/2+(i)*sqrt(2)/2-1, shows as a black cross (x)
```

When projection has two arguments, projection draws and returns the transform of the point supplied as second argument by the orthogonal projection on the first argument.

We enter:

projection(line(-1,i),1+i)

We get:

The point 1/2+3/2*i shows as a black cross (x)

We enter:

projection(circle(-1,1),i)

We get:

The point of affix, -1+sqrt(2)/2+(i)*sqrt(2)/2, shows as a black cross (x)

24.6.4 Symmetry line and symmetry point: reflection

In plane geometry, reflection takes one or two arguments: a point or a line, and eventually the geometrical object to be transformed.

When reflection has one argument, this function applies on a geometrical object: when the first argument is a point (or a complex number), it is the symmetry with respect to this point (or with respect to point of affixe this complex number) and when the first argument is a line ,it is the symmetry with respect to this line.

We enter:

sp:=reflection(-1)

Then:

sp(1+i)

We get:

The point -3-i plotted as a black cross (x)

We enter:

sd:=reflection(line(-1,i))

Then:

sd(1+i)

We get:

The point 2*i plotted as a black cross (x)

When reflection has two arguments, reflection draws and returns the transform of the second argument in the symmetry defined by the first argument: when the first argument is a point (or a complex number) it is the symmetry with respect to this point (or with respect to point of affix this complex number) and when the first argument is a line ,it is the symmetry with respect to this line.

We enter:

```
reflection(-1,1+i)
```

We get:

The point -3-i plotted as a black cross (x)

We enter:

reflection(line(-1,i),1+i)

We get:

The point 2*i plotted as a black cross (x)

24.6.5 Rotation: rotation

In plane geometry, rotation takes two or three arguments. When rotation has two arguments, these are: a point (the center of rotation) and a real (the measure of the rotation angle); this function applies on a geometrical object (point, line, etc., ...)

We enter:

```
r:=rotation(i,-pi/2)
```

Then:

r(1+i)

We get, if we have checked radian in the CAS configuration:

The point 0 plotted as a black cross (x)

When rotation has three arguments, these are: a point (the center of rotation), a real (the measure of the rotation angle) and the geometrical object to be transformed;

rotation draws and returns the transform of the third argument in the rotation of center the first argument and measure of rotation angle the second argument.

We enter:

rotation(i,-pi/2,1+i)

We get, if we have checked radian in the CAS configuration:

The point 0 plotted as a black cross (x)

We enter:

```
rotation(i,-pi/2,line(1+i,-1))
```

We get, if we have checked radian in the CAS configuration:

The line passing by 0 and -1+2*i

24.6.6 Similarity: similarity

In plane geometry, similarity takes three or four arguments: a point (the center of rotation), a real (the value of the ratio k of the similarity), a real (the measure a of the rotation angle in radians (or degrees)) and eventually the geometrical object to be transformed.

Note: if the ratio k is negative, the angle of the similarity is then of measure -a radians (or degrees). When similarity has three arguments, this function applies on a geometrical object.

We enter:

```
GS:=similarity(i,2,-pi/2)
```

Then:

GS(1+i)

We get, if we have chosen radian in the CAS configuration:

The point -i plotted as a black cross (x)

We enter:

GS(circle(1+i,1))

We get, if we have chosen radian in the CAS configuration:

The circle of center -i and radius 2

When similarity has four arguments, similarity draws and returns the transform of the fourth argument in the similarity of center the first argument, of ratio the second argument and angle the third argument.

We enter:

similarity(i,2,-pi/2,1+i)

We get, if we have chosen radian in the CAS configuration:

The point -i plotted as a black cross (x)

We enter:

similarity(i,2,-pi/2,circle(1+i,1))

We get, if we have chosen radian in the CAS configuration:

The circle of center -i and radius 2

Note:

In 2D, the similarity of center the point GA, ratio k and angle a results in: similarity (GA, k, a) or by homothety (GA, k*exp(i*a)).

24.6.7 Translation: translation

In plane geometry, translation takes one or two arguments: the vector of translation supplied by a geometrical vector, or by the list of its coordinates, or by its affix (difference between the coordinates of two points, or a complex number) and eventually the geometrical object to be transformed. When translation has one argument, this function applies on a geometrical object.

t:=translation(1+i)

Then:

t(-2)

We get:

```
The point -1+i plotted as a black cross (x)
```

When translation has two arguments, translation draws and returns the transform of the second argument in the translation of vector the first argument.

We enter:

translation([1,1],-2)

Or we enter:

```
GA:=point(1);GB:=point(2+i);translation(vector(GA,GB),-2)
```

Or we enter:

translation(1+i, -2)

Or we enter:

```
GA:=point(1);GB:=point(2+i);translation(GB-GA,-2)
```

We get:

The point -1+i plotted as a black cross (x)

We enter:

translation(1+i,line(-2,-i))

We get:

The line passing by -1+i and 1

24.7 Measure and graphics

24.7.1 Measure of a angle: angleat

angleat takes as argument the name of three points and a point (or the affix of this point supplied as a complex number).

Warning! Take care that the three first arguments are names.

angleat returns the fourth point, calculates the measure (in radians or in degrees) of the oriented angle of vertex the first argument, the second argument is on the first side of the angle and the third argument on the second side, and this measure is displayed, along with a label, at the location of the fourth point.

Thus, angleat(GA, GB, GC, GD) designates the measure of the angle in radians (or in degrees) of $(\overrightarrow{AB}, \overrightarrow{AC})$ and this measure will be displayed, preceded by $\alpha A =$, at the location of point D. We enter this command in the Symbolic view.

segment(GA,GB); segment (GA,GC);

angleat(GA,GB,GC,0.2i)

We get, if we have checked radian in the CAS configuration (Shift-CAS):

 α A=atan(1/3) is displayed at the point(0.4i)

24.7.2 Measure of a angle: angleatraw

angleatraw takes as argument four points (or the affixes of these points supplied as four complex numbers).

angleatraw returns the fourth point, returns the measure (in radians or in degrees) of the oriented angle of vertex the first argument, the second point is on the first side of the angle, the third point on the second side and the measure is displayed, along with a label, close to the fourth point.

Thus, angleatraw (GA, GB, GC, GD) designates the measure of the angle in radians (or in degrees) of $(\overrightarrow{AB}, \overrightarrow{AC})$ and this measure will be displayed at the location of point D.

We enter:

```
GA:=point(-1);GB:=point(1+i);GC:=point(i);
segment (GA,GB); segment (GA,GC);
angleatraw(GA,GB,GC,0.2i)
```

We get, if we have checked radian in the CAS configuration (Shift-CAS):

```
atan(1/3) is displayed at the point(0.4i)
```

24.7.3 Display of the area of a polygon: areaat

areaat takes as arguments the name of a circle or of a polygon and a point (or the affix of a point supplied as a complex number).

areaat returns the point, the area of the circle or polygon and displays this area at the location of the point with a label.

Warning! Take care that the first argument is the name of a circle or of a polygon.

We enter:

```
t:=triangle(0,1,i)
```

areaat(t,(1+i)/2)

We get:

1/2 is displayed at the point(1+i)/2 with the label

We enter:

cc:=circle(0,2)

areaat(cc,2.2)

We get:

4*pi is displayed at the point(2.2) with a label

c:=square(0,2)

areaat(c, 2.2)

We get:

4 is displayed at the point (2.2) with a label

We enter:

h:=hexagon(0,1)

areaat(h,1.2)

We get:

3*sqrt(3)/2 is displayed at the point(1.2) with a label

24.7.4 Area of a polygon: areaatraw

areaatraw takes as arguments a circle or a polygon and a point (or the affix of a point supplied as a complex number). areaatraw returns the point, the area of the circle or of the polygon and displays this area at the

location of the point.

We enter:

areaatraw(triangle(0,1,i),(1+i)/2)

We get:

1/2 is displayed at the point(1+i)/2

We enter:

areaatraw(circle(0,2),2.2)

We get:

4*pi is displayed at the point(2.2)

We enter:

areaatraw(square(0,2),2.2)

We get:

4 is displayed at the point(2.2)

We enter:

areaatraw(hexagon(0,1),1.2)

We get:

3*sqrt(3)/2 is displayed at the point(1.2)

24.7.5 Length of a segment: distanceat

distanceat is a command which allows to display at a point the length of a segment with a label.

We enter this command in the Symbolic view.

distanceat takes three arguments: the name of two points and a point (or the affix of this point) or else the name of two geometrical objects and a point (or the affix of this point).

Warning! Take care that the two first arguments are names of point.

distanceat returns the point supplied in third argument, the length of the segment defined by the two fist points or the distance between the two geometrical objects and displays this length at the location of the third point, preceded by a label.

We enter (we must give the name of the objects):

```
GA:=point(-1);GB:=point(1+i);
```

distanceat(GA,GB,0.4i)

We get:

"GAB=sqrt(5)" is displayed at the point(0.4i)

We enter (you must give the name of the objects):

```
GC:=point(0);GD:=line(-1,1+i)
```

```
distanceat(GC,GD,i/2)
```

We get:

"GCD=sqrt(5)/5" is displayed at the point(i/2)

We enter (me must give the name of the objects):

```
GK:=circle(0,1); GL:=line(-2,1+3i)
```

distanceat(GK,GL,0)

We get:

"GKL=sqrt(2)-1" is displayed at the point(0)

24.7.6 Length of a segment: distanceatraw

distanceatraw is a command which allows to display at a point the length of a segment, but with no label.

We enter this command in the Symbolic view.

distanceatraw takes as argument three points (or two points and the affix of a point supplied as a complex number) or else two geometrical objects and a point (or the affix of this point).

distanceatraw returns the point supplied in third argument, the length of the segment defined by the two fist points, or the distance between the two geometrical objects, and displays this length at the location of the third point.

We enter:

GA:=point(-1);GB:=point(1+i);

distanceatraw(GA,GB,0.4i)

Or we enter directly:

distanceatraw(point(-1), point(1+i), 0.4i)

sqrt(5) is displayed at the point(0.4i)

We enter:

```
GC:=point(0);GD:=line(-1,1+i)
```

distanceatraw(GC,GD,i/2)

Or we enter directly:

```
distanceatraw(point(0),line(-1,1+i),0.4i)
```

We get:

sqrt(5)/5 is displayed at the point(i/2)

We enter:

GK:=circle(0,1); GL:=line(-2,1+3i)

distanceatraw(GK,GL,0)

Or we enter directly:

distanceatraw(circle(0, 1), line(-2, 1+3i), 0.4i)

We get:

sqrt(2)-1 is displayed at the point(0)

24.7.7 Perimeter of a polygon: perimeterat

perimeterat takes as argument the name of a circle or of a polygon and a point (or the affix of a point supplied as a complex number).

perimeterat returns the point, the perimeter of the circle or of the polygon, and displays this perimeter at the location of the point with a label.

We enter this command in the Symbolic view.

Warning! Take care that the first argument is the name of a circle or of a polygon.

We enter:

```
t:=triangle(0,1,i)
```

perimeterat(t,(1+i)/2)

We get:

2+sqrt(2) is displayed at the point((1+i)/2) with a label

We enter:

c:=square(0,2)

perimeterat(c,2.2)

We get:

8 is displayed at the point(2.2) with a label

cc:=circle(0,2)

perimeterat(cc,2.2)

We get:

4*pi is displayed at the point(2.2) with a label

We enter:

h:=hexagon(0,1)

perimeterat(h,1.2)

We get:

6 is displayed at the point(1.2) with a label

24.7.8 Perimeter of a polygon: perimeteratraw

perimeteratraw takes as argument a circle or a polygon, and a point (or the affix of a point supplied as a complex number).

perimeteratraw returns the point, the perimeter of the circle or of the polygon, and displays this perimeter at the location of the point.

We enter this command in the Symbolic view.

We enter:

24.7.9 Slope of a line: slopeat

slopeat is a command which allows to display at a point the slope of a line, or of a segment, with a label.

We enter this command in the Symbolic view.

slopeat takes two arguments: the name of a line (or of a segment), and a point (or the affix of a point supplied as a complex number).

slopeat returns the point, the slope of the line (or of the segment) and displays this slope at the location of the point, with a label.

Warning! Take care that the first argument is the name of a line or of a segment.

We enter:

GD:=line(1,2i)

Or we enter:

GD:= segment (1,2i),i)

slopeat(GD,i)

We get:

"sD=-2" is displayed at the point(i)

We enter:

GP:=line(2y-x=3),2*i)

slopeat(GP,2*i)

We get:

```
"sP=1/2" is displayed at the point(2*i)
```

We enter:

GT:=tangent(plotfunc(sin(x)),pi/4)

Or we enter:

```
GT:=LineTan(sin(x),pi/4)
```

Then:

slopeat(GT,i)

We get:

"sT=(sqrt(2))/2" is displayed at the point(i)

24.7.10 Slope of a line: slopeatraw

 ${\tt slopeatraw}$ is a command which allows to display at a point the slope of a line or of a segment but with no label.

We enter this command in the Symbolic view.

slopeatraw takes two arguments: a line (or a segment) and a point (or the affix of a point supplied as a complex number).

slopeatraw returns the point, the slope of the line (or of the segment), and displays this slope at the location of the point.

We enter: GD:=line(1,2i) slopeatraw(GD,i) Or we enter directly: slopeatraw(line(1,2i),i) We get: -2 is displayed at the point(i) We enter: GE:= segment (1,2i),i) slopeatraw(GE,1) Or we enter directly: slopeatraw(segment (1,2i),1) We get: -2 is displayed at the point(1) We enter: GP:=line(2y-x=3,2*i) slopeatraw(GP,2*i) Or we enter directly: slopeatraw(line(2y-x=3,2*i),2*i) We get: 1/2 is displayed at the point(2*i) We enter: GT:=tangent(plotfunc(sin(x)),pi/4) slopeat(GT,i) Or we enter directly: slopeatraw(tangent(plotfunc(sin(x)),pi/4),i) We get: (sqrt(2))/2 is displayed at the point(i)

24.8 Measure

24.8.1 Abscissa of a point or of a vector: abscissa

In plane geometry, abscissa takes as argument a point, a vector, or a complex number.

abscissa returns the abscissa of the point or of the vector:

- if the point A is of cartesian coordinates (x_A, y_A) , abscissa(GA) returns x_A ,

- if the point B is of cartesian coordinates (x_B, y_B) , abscissa(GA-GB) returns x_A - x_B (because GA-GB designates the vector \overrightarrow{BA} .

We enter:

abscissa(point(1+2*i))

We get: 1 We enter: abscissa (point (i) - point (1+2*i)) We get: -1 We enter: abscissa (1+2*i) We get: 1 We get: 1

24.8.2 Affix of a point or of a vector: affix

affix takes as argument a point, a vector, or the coordinates of a point or of a 2D vector. affix returns the affix of the point or of the vector:

- if the point A is of cartesian coordinates (x_A, y_A) , affix (GA) returns $x_A + i * y_A$
- if the point B is of cartesian coordinates (x_B, y_B) , affix(GA-GB) or affix(vector(GB,GA)) returns $x_A x_B + i * (y_A y_B)$ (because GA-GB designates the vector \overrightarrow{BA} and coordinates (vector(GB,GA)) returns $[x_A + i * y_A, x_B + i * y_B]$.

We enter:

affix(point(i))

We enter:

affix(point(i)-point(1+2*i))

We get:

-1-i

24.8.3 Measure of a angle: angle

angle takes as argument three points (or the affixes of these points supplied as three complex numbers) and eventually a string used as label along with the symbol of an arc of circle which represents the angle on the figure (the arc of circle is replaced by the symbol of the half of a square in the case of the angle equals $\pi/2$ or $-\pi/2$).

angle returns the measure (in radians or in degrees) of the oriented angle of vertex the first argument, the second argument is on the first side of the angle and the third argument is on the second side.

Then:

angle (GA, GB, GC) designates the measure of the angle in radians (or in degrees) of $(\overline{AB}, \overline{AC})$.

angle (GA, GB, GC, "") plots the angle $(\overrightarrow{AB}, \overrightarrow{AC})$ with as label a small oriented arc.

angle (GA, GB, GC, "a") plots the angle $(\overrightarrow{AB}, \overrightarrow{AC})$ with as label a small oriented arc written a. angle (GA, GB, GC, "") [0] or angle (GA, GB, GC, "a") [0] designates the measure of the angle in radians (or in degrees) of $(\overrightarrow{AB}, \overrightarrow{AC})$.

We enter:

angle(0,1,1+i)

We get, if we have chosen radian in the CAS configuration:

pi/4

We enter:

angle(0,1,1+i,"")

We get, if we have checked radian in the CAS configuration:

We enter:

angle(0,1,1+i,"a")

We get, if we have checked radian in the CAS configuration:

We enter:

angle(0,1,i,"a")

We get, if we have checked radian in the CAS configuration:

```
[pi/2, polygon(point(1/5, 0), point(1/5, 1/5), point(0, 1/5), point(0, 1/5))]
and the right angle is designated by an half of square with the label
a.
```

420

24.8.4 Length of an arc of curve: arcLen

arcLen takes one or four parameters. Warning! Take care to not be in complex mode.

- the parameter is either a circle or an arc of circle, either a polygon.

We enter:

 $\operatorname{arcLen}(\operatorname{circle}(0,1,0,\operatorname{pi}/2))$

We get:

pi/4

We enter:

arcLen(hexagon(0,1))

We get:

6

- the four parameters are: an expression *expr* (resp. a list of two expressions [*expr*1, *expr*2]), the name of a parameter and two values *a* and *b* of this parameter. arcLen returns the length of the arc of curve defined by the equation *y* = *f*(*x*) = *expr* (resp. by *x* = *expr*1, *y* = *expr*2) for the values of the parameter between *a* and *b*. We have then arcLen(f(x), x, a, b) =: integrate(sqrt(diff(f(x), x)^2+1), x, a, b) Or integrate(sqrt(diff(x(t), t)^2+diff(y(t), t)^2), t, a, b).

Examples

- Calculate the length of the arc of circle AB (with A = (0,0) and B = (0,1)) and angle at center $\pi/2$.

We enter:

```
\operatorname{arcLen}(\operatorname{arc}(0,1,\operatorname{pi}/2))
```

We get:

sqrt(2)*pi/4

- Calculate the perimeter of the triangle ABC (with A = (0,0), B = (0,1) and C = (1,1)).

We enter:

```
arcLen(triangle(0,1,1+i))
```

We get:

```
sqrt(2)+2
```

- Calculate the length of the arc of parabola $y = x^2$ to x from 0 to x = 1.

We enter:

```
arcLen(x^2,x,0,1)
```

or

We get:

```
(sqrt(5))/2-ln(sqrt(5)-2)/4
```

- Calculate the length of the arc of the curve $y = \cosh(x)$ for x from 0 to $x = \ln(2)$. We enter:

```
\operatorname{arcLen}(\operatorname{cosh}(x), x, 0, \log(2))
```

We get:

3/4

- Calculate the length of the arc of circle x = cos(t), y = sin(t) for t from 0 to $t = 2 * \pi$. We enter:

```
arcLen([cos(t), sin(t)], t, 0, 2*pi)
```

We get:

2*pi

24.8.5 Area of a polygon: area

area returns the area of a circle or of a polygon.

We enter:

area(triangle(0,1,i))

We get:

1/2

We enter:

area(square(0,2))

We get:

4

24.8.6 Coordinates of a point, a vector or a line: coordinates

In plane geometry, coordinates takes as argument a point, a complex number, a vector or a line. coordinates returns the list of the abscissa and the ordinate of the point, or the vector, or the list of affixes of two points of the oriented line.

- if the point A is of cartesian coordinates (x_A, y_A) , coordinates (GA) returns $[x_A, y_A]$,
- if the point B is of cartesian coordinates (x_B, y_B) , coordinates (vector (GA, GB)) or coordinates (GB-GA) returns $[x_B - x_A, y_B - y_A]$ (whereas B-A returns $(x_B - x_A) + i * (y_B - y_A)$ because B-A designates the affix of the vector AB in plane geometry),
- if the vector V is of cartesian coordinates (x_V, y_V) , coordinates (GV) or coordinates (vector (GA, GV)) returns $[x_V, y_V]$,
- if a line D is defined by two points A and B, coordinates(GD) returns [affix(GA),affix(GB)]. If D is defined by its equation, coordinates(GD) returns

[affix(GA), affix(GB)] where A and B are two points of the line D, the vector AB having same orientation as d. We enter: coordinates(point(1+2*i)) Or we enter: coordinates(1+2*i) We get: [1,2] We enter: coordinates(point(1+2*i)-point(i)) Or we enter: coordinates(point(1+2*i)-point(i)) We get: [1,1] We enter: coordinates(vector(point(i),point(1+2*i))) Or we enter: coordinates(vector(i,1+2*i)) Or we enter: coordinates(vector([0,1],[1,2])) We get: [1,1] We enter: coordinates (1+2*i) Or we enter: coordinates(vector(1+2*i)) Or we enter: coordinates(vector(point(i),vector(1+2*i))) We get: [1,2] We enter:

<pre>coordinates(point(i),vector(1+2*i))</pre>		
We get:		
[1,2]		
We enter:		
d:=line(-1+i,1+2*i)		
Or we enter		
d:=line(point(-1,1),point(1,2))		
Then,		
coordinates(d)		
We get:		
[-1+i,1+2*i]		
We enter:		
d:=line(y=(1/2*x+3/2))		
We get:		
[(3*i)/2,1+2*i] We enter:		
d:=line(x-2*y+3=0)		
We get:		
[(3*i)/2,(-4+i)/2]		
Warning!		
coordinates might also take as argument a sequence or a list of points. Then, coordinates returns the sequence or the list of lists of coordinates of these points, for example: coordinates (i,1+2*i) Or coordinates (point (i), point (1+2*i))		
returns the sequence: [0,1],[1,2]		
<pre>and coordinates([i,1+2*i]) Of coordinates([point(i),point(1+2*i)]) returns the metric.</pre>		

returns the matrix:

[[0,1],[1,2]] **so** coordinates([1,2]) **returns the matrix**:

[[1,0],[2,0]] because [1,2] is considered as the list of two points of affix 1 and 2.

24.8.7 Rectangular coordinates of a point: rectangular coordinates

 ${\tt rectangular_coordinates} \ {\tt returns} \ {\tt the} \ {\tt list} \ {\tt of} \ {\tt the} \ {\tt abscissa} \ {\tt and} \ {\tt the} \ {\tt ordinate} \ {\tt of} \ {\tt a \ point} \ {\tt supplied} \ {\tt by} \ {\tt the} \ {\tt list} \ {\tt of} \ {\tt its} \ {\tt polar} \ {\tt coordinates}.$

We enter:

rectangular_coordinates(2,pi/4)

Or we enter:

rectangular_coordinates(polar_point(2,pi/4))

We get:

[2/(sqrt(2)),2/(sqrt(2))]

24.8.8 Polar coordinates of a point: polar coordinates

polar_coordinates returns the list of the modulus and the argument of the affixe of a point, of a complex number, or of the list of rectangular coordinates.

We enter:

polar coordinates(1+i)

Or we enter:

polar coordinates(point(1+i))

Or we enter:

polar coordinates([1,1])

We get:

[sqrt(2),pi/4]

24.8.9 Length of a segment and distance between two geometrical objects: distance

distance takes as argument two points (or the affixes of these points supplied as two complex numbers) or two geometrical objects.

 $\tt distance$ returns the length of the segment defined by these two points or the distance between the two geometrical objects.

We enter:

We get:

distance(-1,1+i)

sqrt(5)

We enter:

distance(0,line(-1,1+i))

We get:

sqrt(5)/5

We enter:

distance(circle(0,1),line(-2,1+3i))

We get:

sqrt(2)-1

24.8.10 Square of the length of a segment: distance2

distance2 takes as argument two points (or two points and a the affix of a point supplied as a complex number).

distance2 returns the square of the length of the segment defined by these two points.

We enter:

We get:

5

24.8.11 Cartesian equation of a geometrical object: equation

equation allows to get the cartesian equation of a geometrical object. Warning! Prior to use equation, take care of purging the variables x and y by entering purge(x) and purge(y) or x:='x' and y:='y'.

We enter:

equation(line(point(0,1,0),point(1,2,3)))

We get:

(x-y+1=0, 3*x+3*y-2*z=0)

We enter:

equation(sphere(point(0,1,0),2))

We get:

 $x^{2}+y^{2}+-2*y+z^{2}-3=0$

which is the equation of the sphere of center (0,1,0) and radius 2.

24.8.12 Get as answer the value of a measure displayed:

extract measure

extract_measure allows to get the value of a measure which has been displayed.
extract_measure takes as argument the command which previously displayed this measure.

We enter:

```
GA:=point(-1);GB:=point(1+i);GC:=segment(GA,GB)
```

extract measure(distanceat(GA,GB,i))

We get:

sqrt(5)

We enter:

extract_measure(distanceatraw(GA,GB,i))

sqrt(5)

We enter:

extract_measure(slopeat(GC,i))

We get:

1/2

We enter:

extract_measure(slopeatraw(GC,i))

We get:

1/2

24.8.13 Ordinate of a point or of a vector: ordinate

In plane geometry, ordinate takes as argument a point, a vector, or a complex number. ordinate returns the ordinate of the point or of the vector:

- if the point A is of cartesian coordinates (x_A, y_A) , ordinate (GA) returns y_A ,
- if the point B is of cartesian coordinates (x_B, y_B) , ordinate (GA-GB) returns y_A y_B (A-B designates the vector \overrightarrow{BA}).

We enter:	
	ordinate(point(1+2*i))
We get:	
	2
We enter:	
	ordinate(point(i)-point(1+2*i))
We get:	
	-1
We enter:	
	ordinate(1+2*i)
We get:	
	2
We enter:	
	ordinate([1,2])
We get:	
	2

24.8.14 Parametric equation of a geometrical object: parameq

In plane geometry, parameq allows to get the parametric equation of a geometrical object in the form of the complex number x(t) + i * y(t).

Warning! Prior to use parameq, take care of purging the variable t by entering: purge(t) or t := t t'.

We enter:

parameq(line(-1,i))

We get:

-t+(1-t)*(i)

We enter:

parameq(circle(-1,i))

We get:

```
-1+exp(i*t)
```

We enter:

normal(parameq(ellipse(-1,1,i)))

We get:

```
sqrt(2)*cos(t)+(i)*sin(t)
```

24.8.15 Perimeter of a polygon: perimeter

perimeter returns the perimeter of a circle or of a polygon. See also the command arcLen.

We enter:

```
perimeter(triangle(0,1,i))
```

We get:

2+sqrt(2)

We enter:

perimeter(square(0,2))

We get:

8

24.8.16 Radius of a circle: radius

radius takes as argument a circle. radius returns the length of the radius of this circle.

We enter:

radius(circle(-1,i))

We get:

1

We enter:

radius(circle(-1, point(i)))

We get:

sqrt(2)/2

24.8.17 Slope of a line: slope

slope is either a command, either a parameter of the command line (See 24.3.7)
When slope is a command, it takes argument a line, a segment, two points or two complex numbers.
slope returns the slope of the line defined by the segment, the two points, or their affixes.

We enter:

slope(line(1,2i)) Or we enter: slope(segment (1,2i)) Or we enter: slope(point(1), point(2i)) Or we enter: slope(1,2i) We get: -2 We enter: slope(line(2y-x=3)) We get: 1/2 We enter: slope(tangent(plotfunc(sin(x)),pi/4)) Or we enter: slope(LineTan(sin(x),pi/4)) We get: (sqrt(2))/2

24.9 Test

24.9.1 Check whether three points are collinear: is collinear

is_collinear is a boolean function and takes as argument a list or a sequence of points.
is_collinear equals 1 if the points are collinear, 0 otherwise.

We enter:

is collinear(0,1+i,-1-i)

1

We get:

We enter:

is collinear(i/100,1+i,-1-i)

We get:

0

24.9.2 Check whether four points are concyclic: is concyclic

is_concyclic is a boolean function and takes as argument a list or a sequence of points.
is_concyclic equals 1 if the points are concyclic, 0 otherwise.
We enter:

is concyclic(1+i,-1+i,-1-i,1-i)

1

We get:

We enter:

is concyclic(i,-1+i,-1-i,1-i)

0

We get:

24.9.3 Check whether elements are conjugates: is conjugate

is_conjugate allows to know if four points are conjugates, or if two points, two lines, or a line and a point are conjugates for a circle or for two lines.

is_conjugate is a boolean function and takes as arguments two points (resp. two lines, or a circle) followed by two points, two lines, or a line and a point.

is conjugate equals 1 if the arguments are conjugates, 0 otherwise.

We enter:

is_conjugate(circle(0,1+i),point(1-i),point(3+i))

We enter:
<pre>is_conjugate(circle(0,1),point((1+i)/2),line(1+i,2))</pre>
Or we enter:
<pre>is_conjugate(circle(0,1),line(1+i,2),point((1+i)/2))</pre>
We get:
1
We enter:
<pre>is conjugate(circle(0,1),line(1+i,2), line((1+i)/2,0))</pre>
We get:
1
We enter:
<pre>is_conjugate(point(1+i),point(3+i),point(i),point(i+3/2))</pre>
We get:
1
We enter:
is_conjugate(line(0,1+i),line(2,3+i), line(3,4+i),line(3/2,5/2+i))
We get:
1
24.9.4 Check whether points or/and lines are coplanar: is coplanar
is coplanar checks whether a list, or a sequence of points, or of lines are coplanar.
We enter:
is_coplanar([0,0,0],[1,2,-3],[1,1,-2],[2,1,-3])
We get:
1
We enter:
is_coplanar([-1,2,0],[1,2,-3],[1,1,-2],[2,1,-3])
We get:
0
We enter:
is coplanar([0,0,0],[1,2,-3],line([1,1,-2],[2,1,-3]))
We get:

We enter:

```
is_coplanar(line([0,0,0],[1,2,-3]),line([1,1,-2],[2,1,-3]))
```

1

We get:

We enter:

```
is_coplanar(line([-1,2,0],[1,2,-3]), line([1,1,-2],[2,1,-3]))
```

0

We get:

24.9.5 Check whether a point is on a geometrical object: is element

is_element is a boolean function and takes as argument a point and a geometrical object.
is_element equals 1 if the point is on the geometrical object, 0 otherwise.

We enter:

is element(point(-1-i),line(0,1+i))

1

We get:

We enter:

is element(point(i),line(0,1+i))

We get:

0

24.9.6 Check whether a triangle is equilateral: is equilateral

is_equilateral is a boolean function and takes as argument three points or a geometrical object. is_equilateral equals 1 if the three points form an equilateral triangle, or if the geometrical object is an equilateral triangle, 0 otherwise. We enter:

is equilateral(0,2,1+i*sqrt(3))

We get:

1

We enter:

GT:=equilateral_triangle(0,2,GC);is_equilateral(GT[0])

Indeed, GT[0] designates a triangle because GT is a list composed of the triangle and its vertex GC.

```
We enter affix(GC) and we get 1+i*sqrt(3)
```

We enter:

```
is equilateral(1+i,-1+i,-1-i)
```

We get:

0

24.9.7 Check whether a triangle is isoscele: is isosceles

is_isosceles is a boolean function and takes as argument three points or a geometrical object. is_isosceles equals 1 (resp. 2, 3) if the three points form an isosceles triangle or if the geometrical object is an isosceles triangle whose angle between the two equal sides is designated by the first (resp. second, third) argument, or equals 4 if the three points form an equilateral triangle, or if the geometrical object is an equilateral triangle, 0 otherwise.

We enter:

is isosceles(1,1+i,i)

We get:

We enter:

GT:=isosceles triangle(0,1,pi/4);is isoceles(GT)

1

2

We get:

We enter:

GT:=isosceles triangle(0,1,pi/4,GC);is isoceles(GT[0])

We get:

1

Indeed, GT[0] designates a triangle because GT is a list composed of the triangle and its vertex C.

```
We enter affix(GC) and we get (sqrt(2))/2+((i)*sqrt(2))/2
```

We enter:

```
is isosceles(1+i,-1+i,-i)
```

We get:

3

24.9.8 Orthogonality of two lines or two circles: is orthogonal

is orthogonal is a boolean function and takes as argument two lines or two circles.

We enter: is orthogonal(line(1,i), line(0,1+i)) We get: 1 We enter: is orthogonal(line(2,i), line(0,1+i)) We get: 0 We enter: is orthogonal(circle(0,1),circle(sqrt(2),1)) We get: 1 We enter: is orthogonal(circle(0,1),circle(2,1)) We get: 0 24.9.9 Check whether two lines are parallel: is parallel In plane geometry, is parallel is a boolean function and takes as argument two lines. is parallel equals 1 if the two lines are parallel, 0 otherwise. We enter: is_parallel(line(0,1+i),line(i,-1)) We get: 1 We enter: is parallel(line(0,1+i),line(i,-1-i)) We get: 0

is_orthogonal equals 1 if the two lines or the two circles (i.e if the tangents at their cross points are orthogonal), 0 otherwise.

24.9.10 Check whether a polygon is a parallelogram: is parallelogram

is parallelogram is a boolean function and takes as argument four points or a geometrical object.

is_parallelogram equals 1 (resp. 2, 3, 4) if the four points form a parallelogram (resp. a rhombus, a rectangle, a square) or if the geometrical object is a parallelogram (resp. a rhombus, a rectangle, a square), 0 otherwise.

We enter:

is parallelogram(i,-1+i,-1-i,1-i)

We get:

We enter:

is parallelogram(1+i,-1+i,-1-i,1-i)

0

We get:

1

We enter:

GQ:=quadrilateral(1+i,-1+i,-1-i,1-i); is parallelogram(GQ)

We get:

4

Warning!

We must enter:

```
GP:=parallelogram(-1-i,1-i,i,GD);is_parallelogram(GP[0])
```

To get:

1

Indeed, it is GP[0] which designates a parallelogram because GP is a list composed of a parallelogram and its last vertex D. If we enter affix(GD), we get -2+i.

24.9.11 Check whether two lines are perpendicular: is perpendicular

In plane geometry, is_perpendicular is a boolean function having as argument two lines.

is_perpendicular equals 1 if the two lines are perpendicular, and equals 0 otherwise.

We enter:

is perpendicular(line(0,1+i),line(i,1))

We get:

1

We enter:

is_perpendicular(line(0,1+i),line(1+i,1))

24.9.12 Check whether a triangle is right or a polygon is a rectangle:

is_rectangle

is_rectangle is a boolean function and takes as argument three or four points, or a geometrical object.

is_rectangle equals 1 (resp. 2 or 3) if the three points form a right triangle, the right angle being specified in the first (resp. second, third) argument or if the geometrical object is a right triangle, is_rectangle equals 1 (resp. 2) if the four points form a rectangle (resp. a square) or if the geometrical object is a rectangle (resp. a square), 0 otherwise.

We enter:

is rectangle(1,1+i,i)

We get:

We enter:

is rectangle(1+i,-2+i,-2-i,1-i)

1

2

We get:

We enter:

GR:=rectangle(-2-i,1-i,3,GC,GD);is rectangle(GR[0])

We get:

1

Indeed, GR[0] designates a rectangle because GR is a list composed of the rectangle and its vertices C and D.

24.9.13 Check whether a polygon is a rhombus: is rhombus

is_rhombus is a boolean function and takes as argument four points or a geometrical object. is rhombus equals 1 (rep 2) if the four points form a rhombus (resp. a square)

or if the geometrical object is a rhombus (resp. a square), 0 otherwise. We enter:

is rhombus(1+i,-1+i,-1-i,1-i)

We get:

1

We enter:

GK:=rhombus(1+i,-1+i,pi/4);is_rhombus(GK)

We get:

We enter:

GK:=rhombus(1+i,-1+i,pi/4,GC,DD); is rhombus(GK[0])

We get:

1

Indeed, GK[0] designates a rhombus because GK is a list composed of a rhombus and its vertices GC
and GD.
If we enter: normal(coordinates(GC,GD)), we get [-sqrt(2)-1,-sqrt(2)+1],[-

```
sqrt(2)+1,-sqrt(2)+1].
We enter:
```

is rhombus(i,-1+i,-1-i,1-i)

We get:

0

24.9.14 Check whether a polygon is a square: is square

is_square is a boolean function and takes as argument four points or a geometrical object. is_square equals 1 if the four points form a square or if the geometrical object is a square, 0 otherwise.

We enter:

is square(1+i,-1+i,-1-i,1-i)

We get:

We enter:

GK:=square(1+i,-1+i); is square(GK)

1

We get:

1

We enter:

```
GK:=square(1+i,-1+i,C,D);is_square(GK[0])
```

We get:

1

Indeed, GK[0] designates a square because GK is a list composed of a square and ses vertices C and D. If we enter affix(GC,GD), we get -1-i, 1-i.

We enter:

```
is square(i,-1+i,-1-i,1-i)
```

We get:

24.9.15 Check whether 4 points form an harmonic division: is harmonic

is_harmonic allows to know if four points are in harmonic division.
is_harmonic is a boolean function and takes as arguments four points.
is_harmonic equals 1 if the four points are in harmonic division and 0 otherwise.

We enter:

is harmonic(0,2,3/2,3)

We get:

1

We enter:

is_harmonic(0,1+i,1,i)

We get:

0

24.9.16 Check whether lines are in harmonic bundle:

is harmonic line bundle

is harmonic line bundle takes as argument a list of lines.

is_harmonic_line_bundle returns:

1 if these lines are concurrent in a point,

2 if they are parallel,

3 if they are overlapping,

and 0 otherwise.

We enter:

1

We get:

24.9.17 Check whether circles are in harmonic bundle:

is harmonic circle bundle

is_harmonic_circle_bundle takes as argument a list of circles.

is_harmonic_circle_bundle returns:

1 if these circles form a beam (that is to say if they have by pair the same radical axis),

2 if these circles are concentric,

3 if these circles are overlaping,

and 0 otherwise.

We enter:

We get:

24.10 Exercises of geometry

24.10.1 Transformations

Translation

Paving: any plane non crossed quadrilateral might form a pavement of the plane as a regular pattern.

We define 4 points A, B, C, D randomly:

menu Points->Free points->4 random point

In Symb, we change the name of points so that the quadrilateral A, B, C, D is not crossed.

Then, we define the quadrilateral A, B, C, D with the menu Lines->Polygons->Quadrilateral and this will be the basis pattern: GE:=quadrilateral (GA, GB, GC, GD) GA:=point() GB:=point() GC:=point() GD:=point GE:=quadrilateral(GA,GB,GC,GD) GG:=segment(GA,GB) GH:= segment (GB,GC) GI:= segment (GC,GD) GJ:= segment (GD,GA) GK:=midpoint(GA,GB) GL:=reflection(GK,GC) GM:=reflection(GK,GD) GN:=quadrilateral(GA,GB,GL,GM) GO:= segment (GA,GB) GP:= segment (GB,GL) GQ:= segment (GL,GM) GR:= segment (GM,GA) translation(GB-GD,[GE,GN]) translation(GC-GA,[GE,GN])

- Inversion

```
The Peaucellier inverter
GA:=element(-1.6..1.6,0.6)
GD:=circle(1,1)
GE:=point(1+EXP(i*GA)
GH:=circle(GE,2.)
GI:=circle(0,3.)
GJ:=inter(GH,GI)
GK:=reflection(GJ,GE)
GL:=locus(GK,GA)
GG:=quadrilateral(GE,GJ[0],GK,GJ[1])
GB:=segent(0,GJ[0])
GC:=segent(0,GJ[1])
```

24.10.2 Loci

Be a direct triangle *OAB* right in *O*, with *OA* = *a* and *OB* = *b*. Be D = At a variable half line so that: $(\overrightarrow{OA}, \overrightarrow{At}) = c, 0 \le c \le \pi/2$. Let *A*1 and *B*1 be the respective projections of *A* and *B* on *D*. What is the value of *c* which causes *A*1 and *B*1 to be mixed in a point named *P*? Find the loci of *A*1 and *B*1 when *c* varies. Show that the triangle *PA*1*B*1 remains similar to the triangle *OAB* when *c* varies. Find the locus of *M* midpoint of *A*1*B*1 when *c* varies.

```
GA:=point(0.,3.)
GB:=point(5.,0.)
GC:=arc(1.5*i,1.5)
GD:=(inter(GC,line(GA,GB)))[0]
GE:=arc(1.5*i,-pi/2.,pi/2)
GG:=element(0..1.57,0.25)
GH:=line(y=TAN(GG)*x)
GI:=projection(GH,GA)
```

```
GJ:=projection(GH,GB)
GK:=triangle(GD,GI,GJ)
GL:=triangle(GD,2.5,1.5*i)
GM:=midpoint(GI,GJ)
GN:=trace(GM)
```

24.11 Geometry activities

- Perpendicular bisector of AB

Create a segment AB.

Draw the perpendicular bisector of AB, by using the same geometric construction as with a compass.

Answer:

We tap:

Lines->Segment and we define with the cursor two points A and B and the segment C is automatically defined in Symb (GC:= segment (GA,GB)).

perpen_bisector directly draws the perpendicular bisector of AB.

To do the same geometric construction as with a compass:

We tap: Curves->Circles->Circle

We pick the center B (or we enter Alpha B), we confirm with Enter or with , then we pick the point A (or we enter Alpha A) .

The following is then displayed below the figure:

circle(GB,GA-GB) (it is the circle D of center B passing by A), we confirm with Enter (GD:=circle(GB,GA-GB) is automatically defined in Symb).

Then, we pick the center A then the point B.

The following is then displayed below the figure:

circle(GA,GB-GA) (it is the circle E of center A passing by B), we confirm with Enter (GE:=circle(GA,GB-GA) is automatically defined in Symb).

We can then enter in Symb:

GG:=line(inter(GD,GE) to plot the line joigning the two points of the intersection of GD and GE (inter(GD,GE) is the list of intersection points).

Or else, we define the intersection with <code>Point->Inter</code> and then, by designing the first intersection point, then the second one.

- Midpoint

Create a segment [AB].

Draw the midpoint of AB, either by using the coordinates, either by using the same geometric construction as with a compass.

We enter: GI:=point (coordinates (GA) /2+coordinates (GB) /2) or we add to the construction of the perpendicular bisector (cf above): GI:=single_inter(GC,GG)

As an exercise of programming, we can also define the function Midpoint. (The first letter of the name of the function must be in upper case, because midpoint is a CAS command). We enter:

Midpoint(A,B):=point(coordinates(A)/2+coordinates(B)/2)

or else if we have defined the function Perpendicular_bissector:

Midpoint(A,B):=single_inter(segment
(A,B),Perpendicular_bissector(A,B))

Isobarycenter

Create 4 points A, B, C, D. Define the isobarycenter of A, B, C, D, by using the coordinates. Answer: We enter in Symb:

```
GE:=point((coordinates(GA)+coordinates(GB)+coordinates(GC)+
```

coordinates(GD))/4)

As an exercise of programming, we can define the function ISOBAR

Warning! isobarycenter is an existing command.

We enter as name of program ISOBAR and we check CAS. We enter (the variables must be in lower case):

```
(1)->BEGIN
LOCAL s,d;
d:=size(1);
s:=sum(1[k],k,1,d)/d;
RETURN s;
END;
```

By example, we enter:

ISOBAR(0,1,1+i,i)

We get:

(1+i)/2

- Barycenter

Create 4 points A, B, C, D. To define the barycenter of [A, 1], [B, -2], [C, 1], [D, 3], by using the coordinates.

Answer: We enter:

```
GE:=point((coordinates(GA) - 2*coordinates(GB)+coordinates(GC)+3*coordinates(GD))/3)
```

As an exercise of programming, we can also define the function BARY

Warning! barycenter is an existing command which returns the barycenter of points A, B... weighted of coefficients $\alpha, \beta...$

We enter BARY as name of the program and we check CAS. We enter (the variables must be in lower case) and we assume that l is the list affix (GA), α , affixGB, β ...:

By example, we enter:

Bissector of a angle

Create a triangle ABC.

Draw the bissector of the angle *A* of the triangle *ABC*, by using the same geometric construction as with a compass and by using the instruction perpen_bissector which plots the perpendicular bisector of a segment.

Answer:

We tap:

Lines->Triangle->Triangle and we define with the cursor three points A, B and C and then the triangle D as well as its sides are automatically defined in Symb (GD:=triangle(GA, GB, GC)),

GE:= segment ([GA,GB]), GG:= segment ([GB,GC]), GH:= segment ([GC,GA]).

We tap: Curves->Circles->Circle

We assume that AB < AC so that the circle of center A passing by B intersects the segment H which is the segment AC.

We pick the center A (or we enter Alpha A), we confirm with Enter or with , then we pick the point B (or we enter Alpha B) .

The following is then displayed below the figure:

circle (GA, GB-GA) which is the circle I of center A passing by B.

We tap $Points \rightarrow Dep.points \rightarrow Inter$ and we designate the circle I, then the segment H GJ:=inter(GI,GH) defines the intersection of the circle I with the segment H which is the segment AC.

Then, we select perpen_bissector to plot the perpendicular bisector of BJ GK:=perpen_bissector(GB,GJ)

As an exercise of programming, we can also define the functions ${\tt Bissector}$ and ${\tt Exbissector}$

Warning! bissector and exbissector are existing commands.

```
We enter, if we have defined the function Perpendicular_bissector:
Perpendicular_bissector(GA,GB,GC):=perpen_bissector(single_inter(half
_line(GA,GB),
circle(A,2)),single_inter(half_line(GA,GC),circle(GA,2)))
Exbissector (GA,GB,GC):={local_GC1:=GA+(GA-GC);
Bissector (GA,GB,GC1)}
```

- Offset from a given length

Given three points A, B and C, we want to build a point D so that AD = BC. We use the command circle and we enter:

GD:= element(circle(GA,GB-GC))

The instruction distance (GB, GC) returns the length of the segment BC (units defined in Plot view).

If we want to offset of this length in a given direction, we multiply this length by the unity vector of this direction.

Example:

Given three points A, B and C, build on the half-line *AB* a point *D* such as AD = AC. We enter:

GD:=GA+distance(GA,GC)*(GB-GA)/distance(GA,GB)

or else

GD:=single inter(circle(GA,GC-GA),half line(GA,GB))

- Offset from a given angle

Given two points A and B, we want to build C so that the angle $(\overrightarrow{AB}, \overrightarrow{AC})$ let of measure supplied for example 72 degrees or $2 * \pi/5$ radians. We enter, if we have checked radian in the CAS settings:

GD:=rotation(GA,2*pi/5,line(GA,GB))

or, if we are in degree (we did not check radian):

then we enter:

GC:=element(GD)

The instruction angle(GA, GB, GC) gives the measure in radians (or in degrees) of the angle $(\overrightarrow{AB}, \overrightarrow{AC})$, we can then check the construction requested.

Given two points A and B, we want to build C so that the angle $(\overline{AB}, \overline{AC})$ is equal to the angle $(\overline{OM}, \overline{OP})$.

We enter:

```
GD:=rotation(GA, angle(GO, GM, GP), line(GA, GB));
```

GC:=element(GD)

Perpendicular to the line BC passing by A

Create a point A and a line BC not passing by A.

Draw the perpendicular to the line BC passing by A, by using the same geometric construction as with a compass.

Answer:

We tap: <code>Points->Point</code> and we define with the cursor the point A, then we tap <code>Lines->Line</code> and we define with the cursor the points <code>B</code> and <code>C</code> and the line <code>D</code> is automatically defined in <code>Symb</code> (GD:=line(GB,GC)).

We tap: Curves->Circles->Circle

We pick the center B (or we enter Alpha B), we confirm with Enter or with , then we pick the point A (or we enter Alpha A).

The following is then displayed below the figure:

circle(GB,GA-GB) which is the circle E of center B passing by A.

We pick the center C (or we enter Alpha C), we confirm with Enter or with , then we pick the point A (or we enter Alpha A).

The following is then displayed below the figure:

circle(GC,GA-GC) which is the circle G of center C passing by A.

We tap Points->Dep.points->Inter and we designate the first intersection point of circles E and G. This defines the point H, then we designate their second intersection point and this defines the point K. Then, we draw the line HK.

Perpendicular to the line AB passing by A

Draw the perpendicular to the line *AB* passing by *A* by using the same geometric construction as with a compass.

Answer: We tap: Lines->Line and we define with the cursor the points A and B, and the line C is automatically defined in Symb (GC:=line(GA,GB)).

We tap: Curves->Circles->Circle

We pick the center A (or we enter Alpha A), we confirm with Enter or with , then we pick the point B (or we enter Alpha B).

The following is then displayed below the figure:

circle (GA, GB-GA) which is the circle D of center A passing by B.

We tap <code>Points->Dep.points->inter</code> and we designate the point of intersection (other than <code>B</code>) of the circle <code>D</code> with the line <code>C</code>. This defines the point <code>E</code>, then we plot the perpendicular bisector of <code>BE.perpen_bissector(GB,GE)</code> draws the perpendicular bisector of two points defined by <code>inter(C3,line(GA,GB))</code>, this perpendicular bisector passes by <code>A</code> and is perpendicular to <code>AB</code>.

As an exercise of programming, we can also define the function PERP

Warning! perpendicular is an existing command.

We enter as name of program PERP and we check CAS. We enter (the variables must be in lower case or names of geometrical objects) and we assume that GA is a point and that GD is a line:

```
(GA,GD) ->BEGIN
LOCAL GM,GE,GL;
GE:=element(GD);
IF is_element(GA,GD) THEN
GL:=inter(GD,circle(GA,1));
RETURN equation(perpen_bisector(GL));
END;
IF angle(GE,GA,GD)==pi/2 OR angle(GE,GA,GD)==-pi/2
RETURN equation(line(GA,GE)); END;
GM:=midpoint(op(inter(GD,circle(GA,GE-GA))));
RETURN equation(line(GA,GM));
END;
```

We enter:

```
PERP(point(i),line(0,1+i))
```

We get:

y = -3 * x + 1

We enter:

PERP(point(i), line(-2, 2+2i))

We get:

```
y = -2 * x + 1
```

We enter:

PERP(point(1),line(0,1+i))

We get:

y=-x+1

We enter:

PERP(point(1), line(-2, 1+i))

We get:

```
y=-3*x+3
```

Parallel to a line passing by A

Create a point A and a segment BC not passing by A. Draw the parallel to the line BC passing by A by using the instruction perpendicular.

Answer:

We tap with the finger to create three point ${\tt A},\,{\tt B}$ and ${\tt C},$ and the segment ${\tt BC}.$ We enter:

GD:=perpendicular(GA,line(GB,GC))

this plots the perpendicular to BC passing by A

GP:=perpendicular(GA,GD)

this plots the perpendicular to *D* passing by *A*.

As an exercise of programming, we can define the function <code>PARAL</code> which returns the equation of the line parallel to <code>D</code> passing by <code>A</code> (Take care to have the first letter of the name of the function in upper case, because <code>parallel</code> is an existing geometry command).

We enter PARAL as name of program and we check CAS.

We enter (variable names must be in lower case or names of geometrical objects) and we assume that GA is a point and GD is a line:

```
(GA,GD) ->BEGIN
LOCAL GP:=line(PERP(GA,GD));
RETURN PERP(GA,GP);
};
```

We enter:

PARAL(point(i),line(0,1+i))

We get:

y=x+1 We enter:

PARAL (point (1), line (-2, 2+i))

We get:

y = (1/4) * x - 1/4

```
    Parallels to a line located at a distance d of this line.
    Create a point A and a segment BC not passing by A.
    Then, create a point D to define d=distance (A, D).
    Draw the parallel to the line BC located at a distance d=distance (A, D) of BC.
```

Answer:

We pick on the screen to create three point A, B and C, the segment BC, then the point D (d = distance(A, D)).

```
We enter:
GD1:=perpendicular(GB,line(GB,GC));
GC1:=circle(GB,distance(GA,GD));
GI:=inter(GD1,GC1);
GE:=GI[0];
GF:=GI[1];
or we use the complex numbers to define GE and GF:
```

GB) *distance(GA,GD) /distance(GB,GC) the point F is at a distance d =

distance (A, D) of the line BC (E and F are symmetrical with respect to BC), and then,

parallel(GE,line(GB,GC)) draws a line parallel to the line BC located at a distance d = distance(A,D) of BC.

parallel(GF, line(GB, GC)) draws the other line parallel to the line BC, located at a distance d = distance(A, D) of BC.

Chapter 25 The spreadsheet

25.1 Generalities

Once the Spreadsheet application is open, the Menu key gives access to the following functions: SUM MEAN AMORT STAT1 REGRS PredY PredX HypZ1mean HypZ2mean The spreadsheet is a calculation sheet in the form of a grid, composed of rows and columns forming what are called the cells. Cells stores values, commands, or formulas referring to other cells.

25.2 Screen of the spreadsheet

The spreadsheet is a table composed of columns designated by two letters in upper case A, B, C, ... or sometimes in lower case g, 1, m, z, and rows numbered 1, 2, .3, ... Thus, A1 designates the first cell of the spreadsheet.

25.2.1 Copy the content of a cell to another

For instance:

We enter 1 in A1 and we want to copy downward the formula =A1+1 valid in A2, to get 1, 2, 3, 4, 5 in the column A.

There are three ways to do it: choose the one which suits you the most!

- first way: we tap select (push buttons) to select the block from A2 to A5, and we enter: =A1+1,
- second way: we enter =A1+1 in A2, copy, then select (push buttons) to select from A3 to A5, and paste, by choosing the formula among the expressions which are in the clipboard,
- third way: we put =A1+1 in A2, then we select from A2 to A5, then Edit and Enter

25.2.2 Relative and absolute referencces

In a cell, we can enter:

- a string of characters,
- an algebraic expression,
- a formula referring to other cells. These references to the cell storing the formula can be either absolute, either relative. Relative references become absolute by adding the symbol \$ ahead of the letter of the column and/or ahead of the number of the line of the cell to refer to.

Relative references allow to designate the cells with respect to another:

Thus, A0 entered in the cell B1 designates the cell located in the preceeding column and the preceeding row, and this is the information copied when we copying the formula downward or rightward.

Examples:

Given 1 in A1, we enter the following formula in B2:

- \$A\$1+2: the content of B2 is then 3, and if we copy this formula downward, we get 3's in the column B because we copy the same formula \$A\$1+2 in all the cells of the column B. If we copy this formula rightward, we also get 3's on the first row, because we copy in all the cells of the first line the same formula \$A\$1+2, since \$A\$1 is the absolute reference of the cell A1.

\$A1+2: the content of B2 is then 3, and if we copy this formula downward, it will become
 \$A2+2 in B2, \$A2+2 in B3. Then, the value of B2 depends on the value of A1, the value of B3 depends on the one of A2, etc., ...
 If we copy this formula rightward, it will become \$A1+2 in C2, \$A1+2 in D2 ...we get then a row

If we copy this formula rightward, it will become \$A1+2 in C2, \$A1+2 in D2 ...we get then a row of 3's. \$A0 always refer to the column A: A is an absolute reference but 0 designates here the preceeding line because \$A1 is stored in B2.

- A\$1+2: the content of B2 is then 3, and if we copy this formula downward, we get 3's in column B, but if we copy this formula rightward, it will become B\$1+2 in C2, C\$1+2 in D2 etc.,
- =A1+2: the content of B2 is then 3, and if we copy this formula downward, it will become =A2+2 in B3, =A3+2 in B4 etc.,.. If we copy this formula rightward, it will become =B1+1 in C2, =C1+1 in D2 etc., ...

25.3 Functions of the spreadsheet

25.3.1 Function SUM

SUM does the sum of the cells supplied as argument. For instance: SUM (A1:B3) does the sum A1+A2+A3+B1+B2+B3

25.3.2 Function MEAN

MEAN

25.3.3 Function AMORT

AMORT allows to calculate the amortization of a loan. The syntax is:

AMORT(range,n,i,pv,pmt,[ppyr=12,cpyr=ppyr,Groupement=ppyr,beg=false,fix=cur rent,),"Configuration")

where:

- range refers to cells in which one pourra lire the results,
 - n is the number of periods of the loan (*i.e.* number of payments),
 - i is the interest rate,
 - pv is the remaining due sum (present value),
 - pmt is the amount of each payment (per-period payment).

For instance:

but it seems easier to use the Finance application.

25.3.4 Function STAT1

STAT1 allows to do statistics at one variable.

The syntax is: STAT1(range, [mode], ["configuration"]). range is the source of data, for example: A1:B3 mode equals:

- 1 if each column is independent,
- 2 if the columns are used by pairs (data, frequencies),
- 3 if the columns are used by pairs (data, weight),

4, but it seems easier to use the application:

Stats-1Var.

25.3.5 Function REGRS

REGRS attempts to fit the input data to a specified function (default is linear). The syntax is: REGRS (range, [mode], ["configuration"]). For instance: but it seems easier to use the commands linear_regression, exponential_regression, etc.,

25.3.6 Functions PredY PredX

For instance:

25.3.7 Functions HypZ1mean HypZ2mean

For instance: but it seems easier to use the application Inference.

25.4 Use of the spreadsheet based on examples

25.4.1 Exercise 1

Sum of odd integers.

Write in the spreadsheet:

- the integers from 1 to 10 in the column ${\rm A},$
- the squares of integers from 1 to 10 in the column ${\rm B}$
- the odd integers 2k 1 for k = 1..10 in the column c,
- the sum of odd integers $\sum_{j=1}^{k} 2j 1$ for k = 1..10 in the column D.

Calculate $\sum_{j=1}^{k} 2j - 1$ when $k \in \mathbb{N}$.

A solution

- We enter 1 in A1.
 - We enter =A1+1 in A2, and then, we copy downward the formula stored in A2: for this we select A2...A10 (when select. of the push buttons is visible and we select A2...A10 with the cursor) and we enter =A1+1.
- We put =A1^2 in B1, and then, we copy downward the formula stored in B1: for this we select B1...B10 (when select. of the push buttons is visible and we select B1...B10 with the cursor) and we enter =A1^2.
- We put =2*A1-1 in C1, and then, we copy downward the formula stored in C1: for this we select C1...C10 (when select. of the push buttons is visible and we select C1...C10 with the cursor) and we enter =2*A1-1.
- We enter 1 in D1.
 - We enter =D1+C2 in D2, and then, we copy downward the formula stored in D2: for this we select D2...D10 (when select. of the push buttons is visible and we select D2...D10 with the cursor) and we enter =D1+C2.

	A	В	С	D
1	1	1	1	1
2	2	4	3	4
3	3	9	5	9
4	4	16	7	16
5	5	25	9	25
6	6	36	11	36
7	7	49	13	49
8	8	64	15	64
9	9	81	17	81
10	10	100	19	100

We get:

We will then demonstrate by recurrence that:

$$\sum_{j=1}^{k} 2j - 1 = k^2$$

when $k \in \mathbb{N}$ The formula is true for k = 1..10 (cf above). Let us assume that for

$$k = n \sum_{j=1}^{k} 2j - 1 = n^2$$

so for k = n + 1 we have

$$\sum_{j=1}^{n+1} 2j - 1 = \sum_{j=1}^{n} +2(n+1) - 1 = n^2 + 2n + 1 = (n+1)^2$$

So the formula is demonstated.

25.4.2 Exercise 2

The Pascal triangle and the Fibonacci sequence.

The Fibonacci sequence

The Fibonacci sequence is the sequence u defined by: $u_0 = 1$ $u_1 = 1$ $u_n = u_{n-1} + u_{n-2}$ for n > 1We want to find the 11 first terms of this sequence. We use the spreadsheet. We put: 1 in A1 1 in A2 We select the column A from 3 to 11 (commands Select. and Gol of the push buttons should be displayed) and we enter: =A1+A2 We get in the column A: 1,1,2,3,5,8,13,21,34,55,89

Pascal triangle

We want to use the spreadsheet to create the Pascal triangle from 0 to 10. For that, we use the relations for $n \in \mathbb{N}$ and $p \in \mathbb{N}$: $C_n^0 = 1, C_n^n = 1, C_n^p = 0$ if p > n and $C_n^p = C_{n-1}^p + C_{n-1}^{p-1}$ for 0 .We check and enter:

$$simplify(comb(j-1,k-1)+comb(j-1,k)-comb(j,k))$$

We get:

0

To fill in the spreadsheet:

We enter 1 in A1 then we copy A1 by pressing the keys Shift Copy, we tap Select (push buttons) (which becomes Sel.).

We choose $Go\downarrow$ in the push buttons and we select the cells from 1 to 11, then we press the keys Shift Paste: as a result, this puts 1's in the column A.

We enter O's in B1 then we copy B1 with the keys Shift Copy, we press Select (push buttons) (which becomes Sel.).

We choose $Go \rightarrow in$ the push buttons and we select the columns from B to K, then we press the keys Shift Paste: as a result, this put 0 in the line 1 starting from the column B.

We enter =A1+B1 in B2 then we copy B2 with on the keys Shift Copy, we press Select (push buttons) (which becomes Sel.).

We choose $Go \rightarrow in$ the push buttons and we select the columns from B to K, then we press the keys Shift Paste: as a result, this puts 1 in B2 and 0 in the line 2 starting from the column C but this also copies the formulas =B1+C1 in C2, =C1+D1 in D2 etc.,

Then, we also copy the formula =A1+B1 in the column B (with the keys Shift Copy, we press Select (push buttons) (which becomes Sel.).

We choose $Go\downarrow$ in the push buttons and we select the cells from 2 to 11, then we press the keys Shift Paste: as a result, this puts in the column B: 0,1,2,3,4..10.

Then, we also copy the formula =B1+C1 in the column C (with the keys Shift Copy, we press Select (push buttons) (which becomes Sel.).

We choose Gol in the push buttons and we select the cells from 2 to 11, then we press the keys Shift Paste (first copy the formula and then choose $0 \rightarrow \texttt{Formula}$): as a result, this puts in the column C:

0,0,1,3,6,10,15,21,28,36,45.

Likewise, we copy the formula located in D2 (resp. E2...K2) in the column D (resp. E...K).

We get:

	А	В	С	D	E	F	g	Н		J	K
1	1	0	0	0	0	0	0	0	0	0	0

2	1	1	0	0	0	0	0	0	0	0	0
3	1	2	1	0	0	0	0	0	0	0	0
4	1	3	3	1	0	0	0	0	0	0	0
5	1	4	6	4	1	0	0	0	0	0	0
6	1	5	10	10	5	1	0	0	0	0	0
7	1	6	15	20	15	6	1	0	0	0	0
8	1	7	21	35	35	21	7	1	0	0	0
9	1	8	28	56	70	56	28	8	1	0	0
10	1	9	36	84	126	126	84	36	9	1	0
11	1	10	45	120	210	252	210	120	45	10	1

The Fibonacci sequence and the Pascal triangle

When we do the sum of the diagonals of the Pascal triangle upward, we get the Fibonacci sequence. For instance:

/1	=\	/1		0		0		0		0		0\
1)		7		7		7		7		7)
1	=	1		1		0		0		0		0
			7		7		7		7		7	
2	=	1		2		1		0		0		0
			7		1		7		7			
3	=	1		3		3		1		0		0
			7		1		7					
5	=	1		4		6		4		1		0
			7		7							
8	=	18		5		10		5		5		1
			7									J
\13	=/	<u>\</u> 1		6		15		20		15		6/

We enter:

L:=sum(A[j-k, k],k=1..j-1)\$(j=2..12)

We get:

1,1,2,3,5,8,13,21,34,55,89

We enter:

L1:=0, sum(A[j-k-1,k-1],k=2..j-2)\$(j=3..12)

We get:

0,0,1,1,2,3,5,8,13,21,34

We enter:

```
L2:=1, sum(A[j-k-1,k],k=1..j-2)$(j=3..12)
```

We get:

1,1,1,2,3,5,8,13,21,34,55

We enter:

[L1]+[L2]

We get:

To show it, we use the relation for $n \in \mathbb{N}$: $C_n^n = 1, C_n^n = 1, C_n^p = 0$ and $C_n^p = C_{n-1}^p + C_{n-1}^{p-1}$ for 0 .Be an the series which equals the sum of the upward diagonals of the Pascal triangle.We have then: $<math>a_0 = 1, a_1 = 1$ and for n > 1: $a_n = \sum_{p=0}^{\text{floor}(\frac{n}{2})} \text{comb}(n - p, p) = 1 + \sum_{p=1}^{\text{floor}(\frac{n}{2})} \text{comb}(n - p, p)$ $a_n = 1 + \sum_{p=1}^{\text{floor}(\frac{n}{2})} \text{comb}(n - p - 1, p - 1) + \sum_{p=1}^{\text{floor}(\frac{n}{2})} \text{comb}(n - p - 1, p)$ We have for any n: floor $(\frac{n}{2}) - 1 = \text{floor}(\frac{n-2}{2})$. If n = 2k, we have floor (n/2) = floor((n - 1)/2) + 1 = k: $1 + \sum_{p=1}^{\text{floor}(\frac{n}{2})} \text{comb}(n - p - 1, p) = \sum_{p=0}^{\text{floor}(\frac{n-1}{2})} \text{comb}(n - 1 - p, p) + \text{comb}(2k - 1 - k, k) = 0$ because comb(2k - 1 - k, k) = 0 $\sum_{p=1}^{\text{floor}(\frac{n}{2})} \text{comb}(n - p - 1, p - 1) = \sum_{p=0}^{\text{floor}(\frac{n-2}{2})} \text{comb}(n - 1 - p, p) = a_{n-1}$ $\sum_{p=1}^{\text{floor}(\frac{n}{2})} \text{comb}(n - p - 1, p - 1) = \sum_{p=0}^{\text{floor}(\frac{n-2}{2})} \text{comb}(n - 2 - p, p) = a_{n-2}$ because floor $(\frac{n}{2}) - 1 = \text{floor}(\frac{n-2}{2})$ If n = 2k + 1, then we have floor $(\frac{n}{2}) = \text{floor}(\frac{n-1}{2}) = k$:

$$1 + \sum_{p=1}^{\text{floor}\left(\frac{n}{2}\right)} \text{comb}(n-p-1,p) = \sum_{p=0}^{\text{floor}\left(\frac{n-1}{2}\right)} \text{comb}(n-1-p,p) = a_{n-1}$$
$$\sum_{p=1}^{\text{floor}\left(\frac{n}{2}\right)} \text{comb}(n-p-1,p-1) = \sum_{p=0}^{\text{floor}\left(\frac{n-2}{2}\right)} \text{comb}(n-2-p,p) = a_{n-2}$$

because $floor\left(\frac{n}{2}\right) - 1 = floor\left(\frac{n-2}{2}\right)$ Thus:

 $a_0 = 1, a_1 = 1$ and for n > 1 we have $a_n = a_{n-1} + a_{n-2}$ a_n is then the Fibonacci sequence.

Chapter 26 Other Applications

26.1 Function application

We enter in the Symbolic view of the Function application: F1 (X) = SIN (2X) + X $F2 (X) = \partial (F1 (A), A=X)$ We highlight $\partial (F1 (A), A=X)$ and we press EVAL of the push buttons. We get, if we are in Radians: $F2 (X) = COS (2 \times X) \times 2 + 1$ In HOME, we enter: F1 (1)

We get, if we are in Radians:

SIN(2)+1

F2(1)

COS(2)*2+1

In HOME, we enter:

We get, if we are in Radians:

In HOME, we enter:

 ∂ (F1(X),X=1)

We get, if we are in Radians:

0.167706326906

26.2 Sequence application

26.2.1 Fibonnacci sequence

We enter:

```
U1(1)=1
```

U1(2)=1

U1 (N) =U1 (N-1) +U1 (N-2)

We get by pressing Num:

the Fibonnacci sequence

We enter the sequence of the remainders:

453

U1(1)=1

U1(N) = U1(N-1) + U1(N-2)

We get by pressinge Num:

the Fibonnacci sequence

26.2.2 GCD

Here is an implementation of Euclid's algorithm with the HPrime. Here is the description of this algorithm: We do successive euclidean divisions:

$$\begin{array}{l} A \ = \ B \ \times \ Q_1 \ + \ R_1 0 \ \le \ R_1 < \ B \\ B \ = \ R_1 \ \times \ Q_2 \ + \ R_2 \ 0 \ \le \ R_2 \ < \ R_1 \\ R_1 \ = \ R_2 \ \times \ Q_3 \ + \ R_3 \ 0 \ \le \ R_3 \ < \ R_2 \\ \ldots \ldots \\ R_{n-2} \ = \ R_{n-1} \ \times \ Q_n \ + \ R_n \ 0 \ \le \ R_n \ < \ R_{n-1} \end{array}$$

After a finite number of steps (at most *B*), there is an integer n such as: $R_n = 0$. Then we have:

$$GCD(A,B) = GCD(B,R_1) = \dots$$

 $GCD(R_{n-1}, R_n) = GCD(R_{n-1}, 0) = R_n - 1$ Thanks to the Sequence application, we write the series of the remainders. We enter the series of remainders *R*:

We get by pressing Num:

76, 56, 20, 16, 4, 0 then the GCD of 76 and 56 is 4

26.2.3 Bezout identity

The Euclid's algorithm allows to trouver a paired value U, V such as:

$$A \times U + B \times V = GCD(A, B)$$

With the Sequence application, we will define "the sequence of remainders" R and two sequences U and V, so that at each step we have:

 $R_n = U_n \times A + V_n \times B$. If *Q* is "the sequence of quotients", $Q_n = iquo(R_{n-2}, R_{n-1})$ because Q_n is the integer quotient of R_{n-2} by R_{n-1} and we have:

 $R_n = irem(R_{n-2}, R_{n-1}) = R_{n-2} - Q_n \times R_{n-1}$ because $R_{n-2} = R_{(n-1)Q_n} + R_n with 0 \le R_n < R_{n-1}$. U_n and V_n will then check the same relation of recurrence. We have at the beginning: $R_1 = A R_2 = B$ $U_1 = 1 U_2 = 0$ because $A = 1 \times A + 0 \times B$ $V_1 = 0 V_2 = 1$ because $B = 0 \times A + 1 \times B$ We enter in U_1 the series of remainders R for A = 76 and B = 56:

```
U1(1)=76
```

```
U1(2) = 56
```

```
U1(N)=irem(U1(N-2),U1(N-1))
```

We enter the series of quotients Q in U_2 :

454

U2(1) = 0

U2(N) = iquo(U1(N-2), U1(N-1))

We will put U in U_3 and U_4 in V so that at each step we have 76 * U + 56 * V = R. Since R(N) = R(N-2) - R(N-1) * Q(N) and Q(N)iquo(R(N-2), R(N-1)), if we have: 76 * U(N - 2) + 56 * V(N - 2) = R(N - 2)(1)and 76 * U(N - 1) + 56 * V(N - 1) = R(N - 1)(2)By doing (1) - (2) * Q(N), we have: 76 * (U(N-2) - U(N-1) * Q(N)) + 56 * (V(N-2) - V(N-1) * Q(N)) =R(N - 2) - R(N - 1) * Q(N) = R(N)The recurrence relations are then: U(N) = U(N-2) - U(N-1) * Q(N) = U(N-2) - U(N-1) * iquo(R(N-2), R(N-1))V(N) = V(N-2) - V(N-1) * Q(N) = V(N-2) - V(N-1) * iquo(R(N-2), R(N-1))We enter in U3 the sequence of U: U3(1) = 1U3(2) = 0U2(N) = U3(N-2) - U3(N-1) * iquo(U1(N-2), U1(N-1))We enter in U4 the sequence of V: U4(1) = 0U4(2) = 1U4 (N) =U4 (N-2) -U4 (N-1) * iquo (U1 (N-2), U1 (N-1))

Thus, for each N we have 76*U3(N)+56*U4(N)=U1(N)By pressing Num, we get:

76,0,1,0	(76 = 76 * 1 + 56 * 0)
56,0,0,1	(56 = 76 * 0 + 56 * 1)
20,1,1,-1	(20 = 76 * 1 + 56 * -1)
16,2,-2,3	(16 = 76 * -2 + 56 * 3)
4,1,3,-4	(4 = 76 * 3 + 56 * -4)
0,4,-14,19	(0 = 76 * -14 + 56 * 19)

so 76 * 3 + 56 * -4 = 4 = GCD of 76 and 56

26.3 Parametric application

We enter:

We get:

the plot of a curve looking like an $\boldsymbol{\alpha}$

26.4 Polar application

We enter:

R1(θ) =COS(3 θ)

We get:

the plot of a clover

26.5 Solve application

We enter in the Symbolic view of the Solve application:

COS(X)-X

By pressing Num: We enter:

1

To start the iteration, and then we press SOLVE (push buttons) to get:

0.739085133215

Then, we enter in HOME:

We get:

0.739085133215

Х

the value obtained has been stored in X.

26.6 Finance application

We fill in all different fields but one, and we press SOLVE of the push buttons. For instance, we want to know the monthly payments of a 10-year loan of \$ 100,000 at 4.6 % annual interest, we enter:

NbPmt	120	IPYR	4.6
PV	100,000	PPYR	12
PMT		CPYR	12
FV	0.00	Fin Y	
Group Size	12		

We highlight PMT and we press SOLVE of the push buttons. We get the value of the monthly payment:

-1,041.21

The payments of this loan are then of \$ 1,041.21 per month. Press AMORT of the push buttons.

We get the amortization table by groups of 12 months:

- Princ gives the amount of the paid sums
- Inter gives the amount of the interest
- Balan gives the amount of the due sums

For example, at the end of the second year, we have:

Princ=-16,505.07:	we have then reimboursed \$ 16,505.07
Inter=-8,484.0:	we have paid \$ 8,484 of interest
Balan=83,494.9: \$ 83,494.93	are to be reimbursed (100,000 – 16,505.07)

456

By pressing the key PLOT we get the amortization graph. We can read: 1-12 Principal 8,063.12 and Interest 4,431.41 and by using the right arrow 13-24 Principal 8,441.95 and Interest 4,052.59 Thus, we recover the previous values: 8,063.12+8,441.95=16,505.07 and 4,431.41+4,052.59=8,484.0.

We returns in the application Finance by pressing the key Num. If the payments are quaterly, we change: NbPmt 40 and PPYR 4 and we leave CPYR 12.

We highlight PMT and we press SOLVE of the push buttons. We get the value of the quarterly payments: -3,133.03 The payments of this loan are then of \$3,133.03 by quarter.

26.7 Linear Solver application

This application allows to solve linear systems of two equations at two unknowns X, Y, or of three equations at three unknowns X, Y, Z.

Note:

To solve a linear system of two equations at two unknowns X, Y, you have to set 2×2 in the push buttons.

The fields of the system are displayed and we only need to enter the coefficients. The answer appears at the bottom of the screen.

We enter:

We get:

We enter:

We get:

1*X+1*Y+1*Z=3
2*X+(-2)*Y+1*Z=1
3*X+1*Y+1*Z=5
X:1,Y:1,Z:1
1*X+1*Y+1*Z=3
2*X+2*Y+2*Z=1
3*X+1*Y+1*Z=5
No Solutions

26.8 Triangle Solver application

Given a triangle defined by three data: length of side and/or value of angles (cf the case of equalities of triangles).

The application Triangle Solver allows to calculate the length of other sides and/or the value of other angles of this triangle.

Be the triangle of sides A, B, C such as A = 4B = 3C = 5. We want to get the value of the angles of this triangle.

We enter:

A=4, B=3, C=5

Tap <code>SOLVE</code> of the push buttons. We get, if we are in degrees: $\alpha = 5.31301E1$ (it is the angle opposite to side A) $\beta = 3.68699E1$ (it is the angle opposite to side B) $\delta = 90$ (it is the angle opposite to side C) In Home, if we enter 5.31301E1, highlight 5.31301E1 and press the key Shift a<->b/c, we get:

5307'48.36"

If we press again the key Shift a<->b/c, we get:

53.1301

26.9 1-Var Statistics

The application Statistics 1-Var allows to do statistics at one variable with or without frequency. **Example** We measure the sizes in cm of 10 people. We get:

150, 165, 170, 165, 160, 170, 160, 175, 165, 180.

1. Calculate the median, the mean and the standard deviation of this sample. We open the application Statistics 1-Var and we use one single column. We tap Start (push buttons) and we enter in D1: 150 Enter 165 Enter.... We can, if wished, sort the data with Sort of the push buttons. Press Symb, we set H1:D1 and we check that we have Plot1: Histogram Press the key Num and tap Stats of the push buttons. We get: Nb Item 10 X min 150 X Q1 160 X med 165 X Q3 170 X max 180 ∑X 1660 ∑x^2 276200 MoyX 166 SX 8.432740 **σ**X 8 SE X 2.6666667 2. Draw the histogram. We first set the Plot Setup (Shift Plot): Width 5 HRNG 150 180 XRNG 150 180 YRNG -1 10 XTICK 1 YTICK 1 Then, we press Plot.

We get:

the histogram

3. Display the Box Whisker.

We press Symb and highlight Plot1: Histogram. With Choos (push buttons) we chooses Box Whisker, then we press Plot. We get:

The plot of a box whisker

4. Same exercise by using a column for the frequency.

We measure the sizes in cm of 10 people. We get: 150:1 160:2 165:3 170:2 175:1 180:1 We press Num and enter in D2: 150 Enter 160 Enter 165 Enter 170 Enter 175 Enter 180 Enter and in D3: 1 Enter 2 Enter 3 Enter 2 Enter 1 Enter 1 Enter We press Symb and we unset H1:D1 and we put: H2:D2 and we enter D3 when Freq is highlighted. Thus H2 is checked as well as Plot2: Histogram. We get the same thing that previously. Nb Item 10 X min 150 X Q1 160 X med 167.5 X Q3 175

26.10 2-Var statistics

The application Statistics 2-Var allows to do statistics at two variables. Example We measure the sizes in cm and the weight in kg of 10 people. We get: 150:41 165:53 170:70 165:63 160:52 170:68 160:62 175:72 165:58 180:75 1. Calculate the average size and the average weight of these people. Calculate the correlation coefficient. We open the application Statistics 2-Var and we use two columns. Tap Start of the push buttons. We enter in C1: 150 Enter 165 Enter.... We enter in C2: 41 Enter 53 Enter.... We can, if we want, sort the data with Sort of the push buttons.

Press Symb, we put S1:C1 C2, we set S1 and we check that we have: Type1:Linear Fit1: m*X+b Press the key Num and tap Stats of the push buttons. We get: Nb Item 10 Corr 0.91798 CoefDet 0.84269 SCov 81.7778 PCov 73.6 X max 180 Ρ XY 102660 By tapping x (push buttons) we have: MoyX 166 Ρ X 1660 Ρ X^2 276200 SX 8.432740 **σ**X 8 SE X 2.6666667 By tapping Y (push buttons) we have: MoyY 61.4 Ρ Y 614 Ρ Y^2 38704 SY 10.5641 $\sigma \texttt{Y}$ 10.0220 SE Y 3.340659 2. Plot the cloud of dots We first set the Plot Setup (Shift Plot): XRNG 145 185 YRNG 39 77 YTICK 2 XTICK 5

XTICK 5 YTICK 2 Then, we press Plot. We get:

the cloud of dots and the plot of the regression line

 Determinate a line of linear regression by the least squares method. We get the equation of the line of linear regression by pressing Symb. We get:

Fit1:1.15*X+-129.5

26.10.1 Exercises

- The aim of this activity is the study of the size (in cm) of a sample of 250 basket players.

Size	17	17	17	17	17	17	17	18	18	18	18	18	18	18	18
	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7
Frequenc	4	8	7	18	23	22	24	32	26	25	18	19	10	8	6
v															

The activity starts by the calculation of statistic parameters and is followed by the plot of the correlated graphs: bar graph, histograms and polygon of cumulated increasing frequency.

We enter:

Ts:=(173+j)\$(j=0..14)

We get:

We enter:

Ef:=(4,8,7, 18, 23, 22, 24, 32, 26, 25, 18, 19, 10, 8, 6)

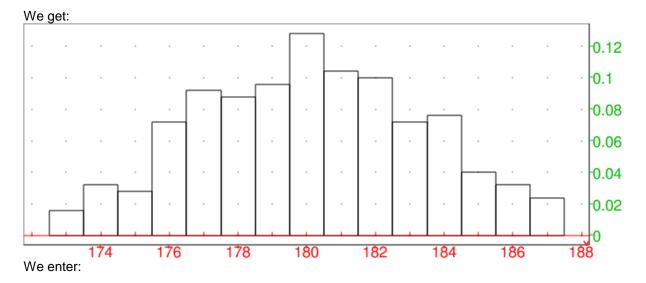
sum(Ef)

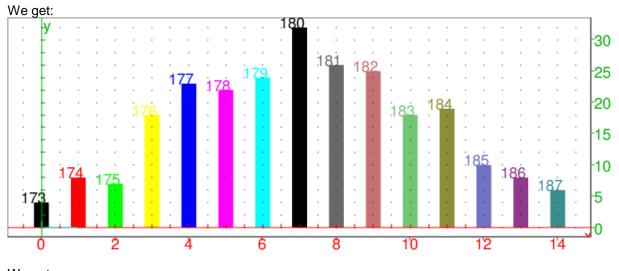
We get:

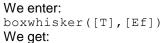
250

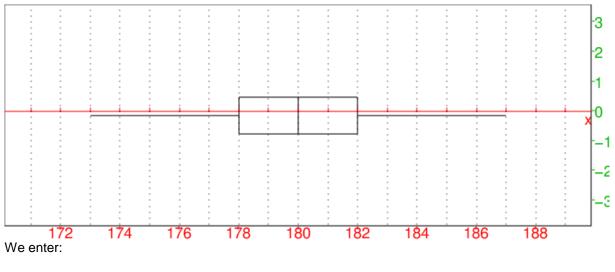
We enter:

histogram(tran([[Ts],[Ef]]))









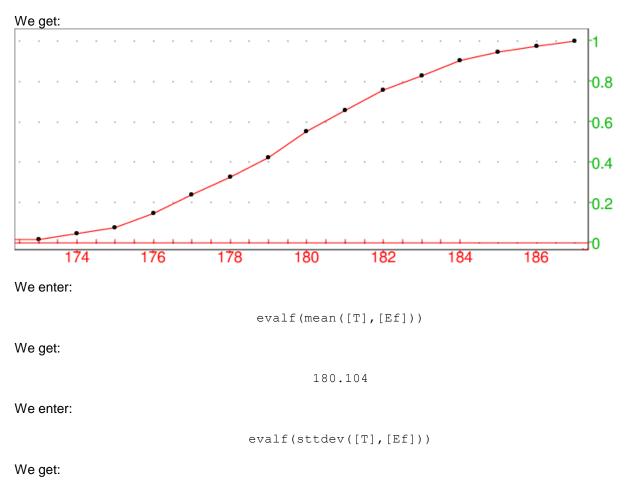
Efc:=(sum(Ef[j],j=1..k)/250.)\$(k=1..size(Ef))

We get:

0.016,0.048,0.076,0.148,0.24,0.328,0.424,0.552,0.656,0.756,0.828,0.90 4,0.944,0.976,1.0

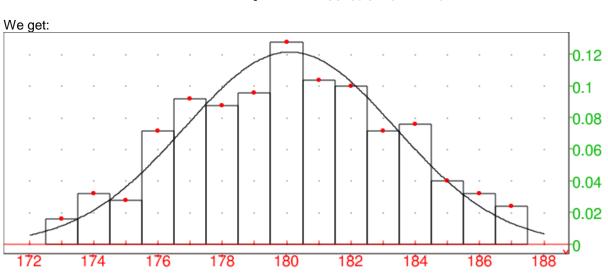
We enter:

scatterplot([[T],[Efc]]),cumulated_frequencies(trn([[T],[Ef]]))



3.27859482096

We enter:



histogram(trn([[T],[Ef]])), plotfunc(normald(180.104,3.27859482096,x),x=172..188), scatterplot(trn([[T],[Ef]/250.]))

An urn contains 12 red balls and 3 green balls. We propose to simulate the draw of a ball from the urn and then of to observe the sampling fluctuation on samples of size 225. Given the content of the urn, the probability to draw a green ball is $\frac{1}{r} = 0.2$.

Is our simulation valid? We create the function randmultinom

```
(cf 13.4.6):
(n,p,c)->BEGIN
local k,j,l,r,x,y;
k:=size(p);
if size(c)!=k then return "error"; end;
x:=cumSum(p);
if x[k]!=1 then return "error"; end;
y:=MAKELIST([c[j],0],j,1,k);
for j from 1 to n do
      r:=rand(0,1);
      1:=1;
      while r>x[l] do
             1:=1+1;
      end;
      y[1,2]:=y[1,2]+1
end;
return y;
END;
```

Warning! Write MAKELIST([c[j],0],j,1,k) with MAKELIST in upper case, or write makelist(j->[c[j],0],1,k or seq([c[j],0],j,1,k). We enter:

L:=[randmultinom(225,[4/5,1/5],["R","V"]);

We get:

[["R",179],["V",46]]

We get then 46 times the green ball.

We first analyses 50 samples of size 225 to see the fluctuation. We name:

N the number of simulations (one simulation is 225 draws),

n the number of times we got a green ball,

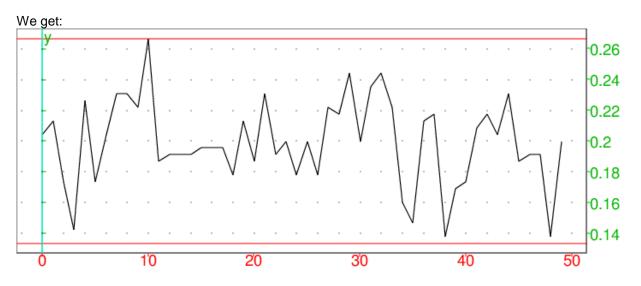
p the percentage of green balls obtained by this simulation,

Lp the sequence of percentages obtained. We enter:

```
test0(N):={
local L,p,n,k,Lp;
Lp:=NULL;
for k from 1 to N do
      L:=randmultinom(225,[4/5,1/5],["R","V"]);
      n:=L[2,2])
      p:=n/225.;
      Lp:=Lp,p;
      fpour;
      return Lp;
}:;
```

Then:

plotlist(test0(50)), line(y=2/15), line(y=4/15)



We successively analyse *t* samples of size n = 225 for $t \in 10, 20, 50, 100, 200, 500$. In our case, the fluctuation interval at level of 95% is: $p - \frac{1}{\sqrt{n}}p + \frac{1}{\sqrt{n}}$ with $p = \frac{1}{5}$ and n = 225 that is to say $\frac{2}{15}, \frac{4}{15}$. To check whether the simulation is correct or not, we write a program checking whether we do have or not p laying in the interval $\frac{2}{15}, \frac{4}{15}$ in 95% of the cases.

We note N the number of simulations (one simulation is 225 draws).

For the k-nth simulation, (k=1..N), we name:

L the list of 225 draws obtained,

n the number of times we got a green ball,

p the percentage of green balls obtained by this simulation,

1 s the number of draws such as 2/15<p<4/15 when we have done k simulations,

sn the number of times we got a green ball when we have done k simulations.

pcn the percentage of green balls obtained by these N*225 draws, which is then sn/(225*N)The number of times we have $2/15 \le p \le 4/15$ is s, or else the percentage pc = s/N. We check then if pc>0.95

```
test0(N) := {
local s,L,p,n,pc,sn,pcn,k,Le;
s:=0;sn:=0;
Le:=NULL;
for k from 1 to N do
      L:=[randmultinom(225,[4/5,1/5],["R","V"])];
      n:=L[2,2]
      p:=n/225;
      Le:=Le,p;
fpour;
```

```
returns Le;
}:;
test(N):={
local s,L,p,n,pc,sn,pcn,k,Le;
s:=0;sn:=0;
Le:=NULL;
for k \ \mbox{from 1} to N do
L:=[randmultinom(225,[4/5,1/5],["R","V"])];
n:=L[2,2]
p:=n/225;
Le:=Le,p;
if p>2/15 and p<4/15 then s:=s+1; endif;
sn:=sn+n;
fpour;
pc:=evalf(s/N);
pcn:=evalf(sn/N/225);
if pc>0.95 then returns pcn,pc,"correct"; otherwise returns pcn,pc,"not
correct''; endif;
}:;
We enter:
                                       test(10)
We get:
                            0.20311111111,1.0,"correct"
We enter:
                                       test(20)
We get:
                         0.194888888889,0.95," not correct"
We enter:
                                       test(50)
We get:
                            0.194311111111,0.98,"correct"
We enter:
                                      test(100)
We get:
                            0.198888888889,0.97,"correct"
We enter:
                                      test(200)
We get:
                            0.19377777778,0.99, "correct"
                                      test(500)
We get:
```

465

We enter:

plotlist([10,20,50,100,200,500],[0.203,0.195,0.194,0.199,0.1940.1999]

We get: 0.203 0.202 0.201 0.2 0.201 0.2 0.201 0.2 0.201 0.2 0.199 0.198 0.197 0.196 0.195 0.194

), line(y=0.2)

26.11 Inference application

The application Inference allows to do inferential statistics.

Resuts to keep in mind

If μ is the mean of a population and m_{α} the mean of means of values of a sample of size *n* extracted from this population, we have: $m_{\alpha} = \mu$.

If σ is the standard deviation of a population and $\sigma \alpha$ the standard deviation of the mean of means of values of a sample of size *n* extracted from this population, we have: $\sigma_{\alpha} = \frac{\sigma}{\sqrt{n}}$.

If σ^2 is the variance of a population and s^2 the mean of variances of values of a sample of size n extracted from this population: $S^2 = n - \frac{1}{n\sigma}$.

So we have $\sigma_{\alpha} \frac{\sigma}{\sqrt{n}} = \frac{S}{\sqrt{n-1}}$.

When we have a sample of size *n*, of mean \overline{x} , and standard deviation *s*, we choose by default:

S = s and $m_{\alpha} = \overline{x}$, and then the mean of values of samples of size *n* is of mean *x* and standard deviation $\frac{s}{\sqrt{n-1}}$.

Sum up

- The mean and the variance of a sum are respectively the sum of the means and the sum of the variances.
- The mean and the variance of a difference are respectively the difference of the means and the sum of the variances.
- The mean of the set of means of the values of a sample of size *n* extracted from a population of mean *m* is *m*.

The variance of the set of means of the values of a sample of size n extracted from a population of variance σ^2 is $\frac{\sigma^2}{n}$.

The standard deviation of the set of means of the values of a sample of size n extracted from a population of standard deviation σ is $\frac{\sigma}{\sqrt{\sigma}}$.

- The mean *s* of the variances of the set of variances of the values of a sample of size *n* extracted from a population of variance σ^2 is $\frac{n-1}{n}\sigma^2$.
- The standard deviation of the set of means of the values of a sample of size n comes by dividing the mean S of the variances of the set of variances of the values of a sample of size n by $\sqrt{n-1}$:

the set of the means of the values of a sample of size *n* is of mean *m* and of standard deviation $\frac{s}{\sqrt{n-1}}$.

26.11.1 Frequency of a parameter and hypothesis based on samples

Comparison of experimental frequency and theoretical frequency

In a population, be p the frequency of a parameter.

Be a sample of n items which frequency of this parameter is f. Let us check whether this sample is extracted from the population or not.

For a sample of n items, be X the random variable counting the size showing the considered parameter of probability p. X follows a binomial law of mean np and standard deviation

 $\sqrt{np(1-p)}$. If *n* is large (n > 50), the binomial law can be approximated by the normal distribution.

The distribution of the frequencies of the parameter of samples of size *n* is of mean *p* and standard deviation $\sqrt{(1-p)n}$.

Example

We count the number of times a player draws an ace when distributing the cards of a 32 card set: for a set of 800 distributions, this player has drawn an ace 180 times. Is this player a cheater?

We have n = 800, and the probability to draw an ace is:

$$p = \frac{4}{32} = \frac{1}{8}.$$

So the number X of drawing an ace follows a binomial law of mean n * p = 100 and standard deviation $\sqrt{np(1-p)} = 10\sqrt{\frac{7}{8}} \approx 9.35414346693.$

Let us look for the probability so that 70 < X < 130, we enter in Home:

normald cdf(100,9.354,130)-normald cdf(100,9.354,70)

We get:

0.998659588108

Then, we can state that this player is a cheater with a probability to be wrong lower than $\frac{2}{1000}$.

With the calculator:

We press Symb and choose: Method:Hypothesis Test Type Z-Int: 1 π Alt Hypoth $\pi \neq \pi_0$

We press Num and enter: x=180 n=800

 $\mu_0 = 0.125$ $\sigma = 50.25$ $\alpha = 0.02$

We tap Calc of the push buttons and we get: Result 0 (Assumption rejected at $\alpha{=}0.02$) Test Z 8.5523597412 Test b p 0.225 Prob. 1.2059722286E-17 Crit Z ± 2.32634787404

Lower 0.0906543...

Upper 0.15934...

We enter in ${\tt Home}$:

(180-100)/9.35414346693

We get:

8.5523597412

We enter in Home:

normald_icdf(100,9.35414346693,0.99)

We get:

121.760991768

We enter in Home:

(121.760991768-100)/9.35414346693

We get:

2.32634787407

We enter in Home for $\alpha = 0.002$:

```
normald icdf(100,9.354,0.001), normald icdf(100,9.354,0.999)
```

We get:

71.0939670081,128.906032992

Confidence interval of a proportion or a frequency

How to evaluate the frequency p of a parameter in a population au view of a sample of size n. **Example**

We throw a dice 3,000 times and we have get 490 times the six. Can we state that the dice is regular ? We have:

so m = nf = 490 and $s = \sqrt{nf(1 - f)} \approx 20.2476336066$ At the level of $\alpha = 0.002$, we enter in Home:

We get:

0.378612513321

So the probability that *p* is in the interval [480, 500] is 0.378612513321. We can reasonably admit that p = 1/6, that is to say that the dice is regular, because, otherwise, the probability to be wrong would be $1 - 0.378612513321 \approx 0.621387486679$

With the calculator:

We press Symb and choose: Method: Confidence interval

Type: Z-Int: 1 π We press Num and enter: x = 490n=3000 $\mu_0 = 0.16666666667$ α=0.05 We tap Calc of the push buttons and we get: C 0.95 Crit Z ± 1.95996398454 Lower 0.150105122453 Upper 0.176561544214... With: C = 0.38We tap Calc of the push buttons and we get: C 0.38 Crit Z ± 0.495850347347 Lower 0.159986734614 Upper 0.166679932052

Comparison of the frequencies of two samples

We have two samples of sizes n_1 and n_2 for which the frequencies of a parameter are f_1 and f_2 . If f_1 and f_2 are different, how to know whether these two samples come from a same population or not ? If we do the hypothesis that the two samples come from of a same population, we can estimate the frequency p of the entire population by grouping the two samples with $p = \frac{n_{1f_1} + n_{2f_2}}{n_1 + n_2}$.

The standard deviation of the distribution of the frequencies of the parameter of the sample 1 is

 $\sqrt{\frac{f_1(1-f_1)}{n_1}}$ and the one of the sample 2 is $\sqrt{\frac{f_2(1-f_2)}{n_2}}$.

We consider the distibution of the values of f1 - f2, if the two samples come from a same population:

the mean of $f_1 - f_2$ is 0 and the standard deviation s of $f_1 - f_2$ is $\sqrt{\frac{p(1-p)}{n_1} + \frac{p(1-p)}{n_2}}$

Example

Among the 40 class mates of class *A*, 23 have been admitted, and among the 40 of class *B*, 17 have been. Are the class mates of classes *A* and *B* part of the same population ?

If they are, the distribution of frequencies $f_1 - f_2$ follows a normal distribution: of mean $p = \frac{40}{80} = 0.5$

and standard deviation $s = \sqrt{\frac{2*0.5*0.5}{40}} \approx 0.111803398875$ We know that $f_1 = \frac{23}{40} \approx 0.575$ and $f_2 = \frac{17}{40} \approx 0.425$ then $f_1 - f_2 = 0.15$ and $\frac{f_1 - f_2}{s} \approx 1.3416407865$

We enter:

```
normal cdf(0,0.111803398875,0.15)-normal cdf(0,0.111803398875,-0.15)
```

or we enter:

```
normal cdf(0,1,1.3416407865)-normal cdf(0,1,-1.3416407865)
```

We get:

0.820287505121

We enter:

1-0.820287505121

We get:

0.179712494879

This means that the we can state that the two classes come from the same population, because if would state the contrary, the probability to be wrong would be 17.97 % We enter, if we want a result at te level of 5%:

```
normal_icdf(0,0.111803398875,0.025),normal_icdf(0,0.111803398875,0.97
5)
```

We get:

-0.219130635144,0.219130635144

We enter, if we want a result at the level of 5%:

normal icdf(0,1,0.025),normal icdf(0,1,0.975)

We get:

-1.95996398454,1.95996398454

As 0.15 is in the interval [-0.219130635144, 0.219130635144], we can say that, at the level of 5%, the two classes come from the same population.

With the Inference application:

We press Symb and choose: Method: Hypothesis test Type: Z-Int: 1 π 1 - π 2 Alt Hypoth: $\pi 1$ 6= $\pi 2$ We press Num and enter: **x**₁=23 $x_2 = 17$ n1=40 $n_2 = 40$ *α*=0.05 We tap Calc of the push buttons and we get: Result 1 (H_0 not rejected at α =0.05) Test Z 1.3416407865 Test $\Delta \hat{p}$ 0.15 Prob. 0.179712494879 Crit Z ±1.95996398454 Lower -0.0666513904072 Upper 0.366651390407 We enter in Home:

> normal_icdf(0.15,0.111803398875,0.025),normal_icdf(0.15,0.11180339887 5,

> > 0.975)

We get:

-0.0691306351442,0.369130635144

The sample 1 has as mean: $f_1 = \frac{23}{40} = 0.575$ and as variance: $\frac{f1(1-f1)}{n1} = \frac{0.575 * 0.425}{40}$ The sample 2 has as mean: $f_1 = \frac{17}{40} = 0.425$ and as variance: $\frac{f_2(1-f_2)}{n_2} = \frac{0.425 * 0.575}{40}$

We consider the distribution of frequencies $f_1 - f_2$: we can say that it has as mean the difference of means, *i.e.*: 0.575 - 0.425 = 0.15 and as variance the sum of these two variances, *i.e*:

2 * 0.425 * 0.575

40

We enter in Home to get the standard deviation of the distribution of frequency f_1 - f_2 :

We get:

```
0.1105384548472
```

normal_icdf(0.15,0.1105384548472,0.025),normal_icdf(0.15,0.1105384548 472,0.975)

We get the critical lower and upper:

26.11.2 Samples extracted from a normal distribution

Comparison of an experimental mean and a theoretical mean

If the statistical series follows a normal distribution of mean *m* and standard deviation σ , the distribution of means m_{α} of samples of size *n* follows a normal law of mean *m* and standard deviation $\sigma_{\alpha} = \frac{\sigma}{\sqrt{n}}$.

If S is the mean of standard deviation of samples of size n then we have $\frac{S}{\sqrt{n}} = \frac{\sigma}{\sqrt{n-1}}$ and then $\sigma \alpha = \frac{S}{\sqrt{n-1}}$

Example

We weight 100 400 g-breads taken randomly in a bakery and we get a mean m_1 of 390 g with a standard deviation s_1 of 50 g.

Does the baker observe the weight of its 400 g breads at the significance level of 95 % ?

Estimate the mean of the population starting from \overline{x} and standard deviation s of this sample.

- It is to compare an experimental mean $m_{\alpha} = \overline{x}$ to a theoretical mean μ .

The hypothesis (H_0) is that the difference between these 2 means is not significant *i.e.* $(H_0): \overline{x} = \mu$. The alternate hypothesis (H_1) is then $(H_1): \overline{x} \neq \mu$.

The standard deviation s of the sample of 100 elements is 50, we estimate then the standard deviation of the population at:

$$50 * \sqrt{\frac{100}{99}} \simeq 50.25$$

Knowing that:

$$U = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

significantly follows a reduced centered law because n = 100 > 30. Then, we consider:

$$U = \frac{390 - 400}{\frac{50}{\sqrt{99}}} \simeq -1.98997487421$$

Given α , we look for u_{α} such as: $Prob(-u_{\alpha} < U < u_{\alpha}) = 1 - \alpha$. If $\alpha = 0.05$, we enter: We get:

 $1.95996398454 \simeq 1.96$

We enter:

normald icdf(0.025)

We get:

 $-1.95996398454 \simeq -1.96$

So Prob(-1.96 < U < 1.96) = 0.975 - 0.025 = 0.95 = 1 - 0.05 and we have $u_{\alpha} = 1.96$. As $U \notin] - u_{\alpha}, u_{\alpha}[$, the hypothesis (H_0) is rejected with a risk of error less than 5%. So, we can say with a risk of error less than 5%, that the baker does not respect the weight of 400 g of its breads.

With the calculator:

```
We press Symb and we choose:
Hypothesis test
Type Z-Int: 1 \mu
Alt Hypoth \mu \neq \mu 0
We press Num and enter:
N=100
\mu = 400
σ=50.25
α=0.05
We tap Calc of the push buttons and we get:
Result 0 (Hypothesis rejected at \alpha=0.05)
Test Z -1.99
Test x 390
Prob Z 0.0466
Crit Z ±1.9599
Lower 390.151
Upper 409.849
We enter in Home:
```

```
normald icdf(400,5.025,0.025), normald icdf(400,5.025,0.975)
```

We get:

390.151180978,409.848819022

- It is to find an interval at the level of 5%, of center \overline{x} , in which *m* is laying with a probability of 95%.

We choose by default:

 $\overline{x} = m_{\alpha}$

 $s = s_{\alpha} = \sigma \frac{\sqrt{n-1}}{\sqrt{n}}$ and $s = \sigma_{\alpha}$ then the mean of means of samples of size *n* follows a normal distribution of mean \overline{x} and standard deviation $\frac{\sigma}{\sqrt{n}} = \frac{s}{\sqrt{n-1}}$ Thus $\sigma = \frac{500}{\sqrt{99}} \approx 50.25$.

With the calculator:

We press Symb and we choose: Inter of Confidence .Type Z-int: 1 μ We press Num and enter: x 390 N=100 σ =50.25 C=0.95

We get:

380.151180978,399.848819022

26.11.3 Samples extracted from a Student distribution

We use the Student law (mostly valid for small samples (n < 30)): The variable $T = \frac{|m\alpha - m|}{s} \sqrt{n}$ follows a Student law of n - 1 degrees of freedom.

Comparison of an experimental mean to a theoretical mean

We can do the previous exercise with the Student law:

```
    We press Symb and we choose:

   Hypothesis test
   Type T-Test: 1 µ
   Alt Hypoth \mu \neq \mu 0
   We press Num and enter:
  x=390
   S=50
   N = 100
   \mu 0 = 400
   α=0.05
   We tap Calc of the push buttons and we get:
   Result 0 (Hypothesis rejected at \alpha=0.05)
  Test T -2
Test x 390
   Prob T 0.048239...
   DF=99
   Crit T ±1.9842...
   Lower 390.0789
   Upper 409.921
   We enter in Home:
                  student icdf(99,0.025),student icdf(99,0.975)
```

We get:

```
-1.98421695159,1.98421695159
```

We enter in Home:

student_icdf(99,0.025)*50/sqrt(100)+400, student_icdf(99,0.975)*50/sqrt(100)+400

We get:

390.078915242,409.921084758

- We press Symb and we choose: Inter of Confidence Type T-int: 1 µ
We press Num and enter:
x: 390
S:=50
N=100
C=0.95
We tap Calc of the push buttons and we get:
C 0.95
DF=99
Crit T ±1.9842
Min Crit x 380.0789
Maxi Crit x 399.9210
We enter in Home:

student_icdf(99,0.025)*5+390, student_icdf(99,0.975)*5+390

We get:

380.078915242,399.921084758

Part V Programming

Chapter 27 Generalities

27.1 Syntax of HOME programs and CAS programs

Following examples are programs using either only HOME commands, either both HOME and CAS commands.

To enter the programming interface, we enter:

Shift Program and then New. of the push buttons.

We get a dialog box with Name and CAS.

We check CAS to write a CAS program and we put ABC as $\tt name,$ by example, then $\tt OK$ and we enter the program.

The syntax of a program is:

```
For an HOME program of name ABC:
EXPORT ABC(<name of parameters>)
BEGIN
LOCAL <name of local variables>;
<instructions>;
RETURN <result>;
END;
With Shift Program we get the list of valid programs among which ABC.
```

```
For a CAS program of name ABC: (we notice that ABC is not shown in the program)
(<name of parameters>)->BEGIN
LOCAL <name of local variables>;
<instructions>;
RETURN <result>;
END;
With Shift Program we get the list of valid programs among which ABC (CAS).
```

27.2 Writing a program slightly different from an existing program

You have already written a program and you want to write a slightly different program without rewriting all from scratch. For example, you have written the CAS program PERP returning the equation of the perpendicular to a line through a given point:

```
(GA,GD) ->BEGIN
LOCAL GM,GE,GL;
GE:=element(GD);
IF is_element(GA,GD) THEN
GL:=inter(GD,circle(GA,1));
RETURN equation(perpen_bisector(GL));
END;
IF angle(GE,GA,GD)==pi/2 OR angle(GE,GA,GD)==-pi/2
THEN RETURN equation(line(GA,GE)); END;
GM:=midpoint(op(inter(GD,circle(GA,GE-GA))));
RETURN equation(line(GA,GM));
END;
```

You want to get the program FOOTP returning the affix of the foot of this perpendicular. We enter in the CAS: FOOTP:=PERP Then, Shift Program We see that FOOTP is in the program list. Then, it is enough to edit it and modify it as follows:

GA,GD) ->BEGIN LOCAL GM,GE,GL; GE:=element(GD); IF is_element(GA,GD) THEN
GL:=inter(GD,circle(GA,1));
RETURN affix(GA));
END;
IF angle(GE,GA,GD)==pi/2 OR angle(GE,GA,GD)==-pi/2
THEN RETURN affix(GE); END;
GM:=midpoint(op(inter(GD,circle(GA,GE-GA))));
RETURN affix(GM);
END;

We enter:

FOOTP(point(1), line(-2, 2+2i))

We get:

2/5+6i/5

Chapter 28 Programming instructions

28.1 Variables

28.1.1 Variables names

In HOME, there are no symbolic variables and the names of the variables are predefined, such as:

A..Z for real variables (default value 0),

L0..L9 for lists (default value { }),

M0..M9 for matrices (default value [[0]]).

In CAS, apart the names of HOME variables, the names of the variables are strings composed of letters or digits, starting by a letter.

Warning! All names are not valid, some are already used by the system.

In CAS, all the variables are symbolics as long as they are not assigned.

The variables defined in HOME are also valid in the CAS, and the assigned variables defined in the CAS are also valid in HOME.

28.1.2 Comments: comment //

comment takes as argument a string of characters (take care to use the ") whereas // does not require the " but must end by a carriage return character: this means that the argument of comment, or what is between // and the the carriage return character, is not taken into account by the program and that it is a comment.

We enter the program in a program editor, then we validate it with OK:

```
f(x) := {comment("f:R->R^2")
    return [x+1,x-1]; }
```

or:

```
f(x) := { / / f: R->R^2 }
```

return [x+1,x-1];}

We get:

the commented definition of the function f(x) = [x+1, x-1]

28.1.3 Inputs: INPUT input InputStr

input INPUT allow to enter expressions, InputStr allows to enter strings of characters. input, INPUT and InputStr take as argument the name of a variable (resp. a sequence of names of variables) or a string of characters (strings giving the user instructions on the value to be entered) and the name of a variable (resp. a sequence of strings of characters and a sequence of names of variables).

input, INPUT and InputStr open a dialog box where we can enter the value of the variable supplied as argument and where is displayed, as label, the string of characters supplied as argument (if any).

With input, INPUT, we can enter numbers or strings of characters (add "...") or names of variables (without "...").

With InputStr, we can enter only strings of characters, hence, the "..." are not needed.

We enter: input(a) or: input("a=?",a) We get: a dialog box where we can enter the value of a We enter: 12 in this dialog box, then OK then: a+3 We get: 15 We enter: input("polynomial",p,"value",a) We get: a dialog box where we can enter the values of p with the label "polynomial" and a with the label "value" We enter: InputStr(a) or: InputStr("answer=",a) We get: a dialog box where we can enter the value of a We enter: 12 in this dialog box, then OK then: a+3 We get: 123 because a is the string of characters "12", and the "+" sign concatenates the two strings "12" and "3".

28.1.4 Outpouts: print

print takes as argument a sequence of string of characters or of names of variables. print displays the strings of characters and the content of variables on the screen before the answer. 480

We enter:

a:=12

then:

print("a=",a)

We get:

Т

"a=",12 is displayed, and the answer is 1

28.1.5 Assignment instruction: => := \blacktriangleright

To store an object in a variable, in HOME, we use Sto**>** of the push buttons.

n HOME, we enter for example:

12 Sto▶ A

as a result, this stores 12 in the variable A. In CAS, or in a CAS program, we enter for example:

12 => a

Or we enter

a:=12

as a result, this stores 12 in the variable a.

In CAS, or in a CAS program, we can write: a, b:=12, 34 or a, b:=[12, 34] as a result, this put 12 in the variable a and 34 in the variable b. For instance, to put the quotient and the remainder of the Euclidean division respectively in q and r by using the CAS command iquorem, we enter: q, r:=iquorem(365, 12) as a result, this stores 30 in the variable q, and 5 in the variable r, because 365 = 30 * 12 + 5.

Warning! You must use this carefully because these two assignments are done simultaneously. For example:

a:=1;b:=2; a:=a+b;a:=1;b:=a-b; is equivalent to: a:=1;b:=2;c:=a;a:=a+b;b:=c-b; so, after that, a equals 3 and b equals -1 (and not 1). BUT purge (a);a,b:=2,a+1 stores 2 in a and 3 in b.

28.1.6 Copy without evaluating the content of a variable: CopyVar

CopyVar takes as arguments the name of two variables. CopyVar copy, without evaluating it, the content of the first variable in the second variable.

We enter (mind the order):

```
a:=c
c:=5
CopyVar(a,b)
```

We get:		
C		
then we enter:		
c:=10		
b		
We get:		
10		
A modification of the content of c also modifies the content of b, because b stores c.		
We enter:		
a:=d		
b		
We get:		
10		
We enter:		
purge (c	2)	
b		
We get:		
c		
because b stores c.		
28.1.7 Function testing the type of its argument: TYPE type		
TYPE is an HOME function returning the type of the object supplied as argument. For example: TYPE (1) = TYPE (pi) = 0, TYPE (i) = 3, TYPE ($[1,2]$) = 6, TYPE ($\{1,2\}$) = 6. type is a CAS function returning the type of the object supplied as argument. For example:		

TYPE(1)=TYPE(p1)=0, TYPE(1)=3, TYPE([1,2])=6, TYPE({1,2})=6.
type is a CAS function returning the type of the object supplied as argument. For example:
DOM_FLOAT, DOM_INT, DOM_COMPLEX, ..., DOM_IDENT, DOM_LIST, DOM_SYMBOLIC, DOM_RAT, ..., DOM_SYMBOLIC, DOM_STRING.
There are 20 different types, each one represented by an integer from 1 to 20.

type allows to check for an input error.

We enter:

type(3.14)

We get:

DOM_FLOAT

We enter:

type(3.14)+0

We get:

1 We enter: UVE get: UVE enter: UVE enter: 2 We enter: 2 We enter: 15

28.1.8 Function testing the type of its argument: compare

compare is a function of two arguments returning 1 if they are of different types, or if they are of same type and listed in increasing order of type, and 0 otherwise.

We enter:

0

We enter:

compare(3,"a")

We get:

We enter:

compare("a",3)

0

1

We get:

Indeed, we have: type(3)=DOM INT=2 and type("a")=DOM STRING=12

28.1.9 Stating an assumption about a variable: assume

assume allows to state an assumption on a variable.

assume takes as argument a name of variable followed by an equality, or an inequality, representing the assumption stated, or else a name of variable followed by a comma and its type. We can put several assumptions, provided they are linked by and or or, depending on what we want to do. Though, you must use additionally as second argument of assume to specify the type of the variable and a range of values for this variable.

assume returns the name of the variable about which we have stated the assumption, or the type of this variable.

Warning! If we state another assumption with assume, the previous assumption is deleted: if you want to add another assumption, you must use the command additionally, or put additionally as second argument of assume.

Notes

This allows to do interactive geometry while doing symbolic computations at the same time. For instance, if we put in geometry:

assume (a=2); assume (b=3); A:=point (a+i*b), the figure will be built with the values given to the variables, but the calculations will be performed with the symbolic variables a and b, because for all the graphic outputs, and these ones only, the variable is evaluated.

We enter:

assume(a=2)

Or we enter directly:

We get:

```
a sliding bar allowing to make a vary
```

When we make a vary, the command assume(a=2) turns into assume(a=[2.1,-5.0,5.0,0.1]) and the following levels are evaluated. If there is nothing on the following level we will get undef as a result.

This means that a may vary between -5 and 5 with a step of 0.1 and that a equals 2.1.

If on the two following levels we have evalf(a+2) and evalf(a+3), the answers will evoluate according to the position of the cursor (cursor at 2.1: we have 4.1 and 5.1, then cursor at 2.2 we

have 4.2 and 5.2). but if on the two following levels we have a+2 and a+3, the answers will always be a+2 and a+3. To assume that the formal variable a is positive, we enter:

assume(a>0)

```
We get:
                                                    а
We enter:
                                               assume(a)
We get:
                        assume[DOM FLOAT,[line[0,+(infinity)]],[0]]
this means that a is a real variable laying in ]0; +\infty[ and that 0 is excluded.
We know the domain, the interval and the excluded values.
To assume that the formal variable a is in [2; 4[U] 6; \infty], we enter:
                                  assume((a >= 2 and a < 4) or a > 6)
We get:
                                                    а
We enter:
                                              assume(a)
We get:
                      assume[DOM_FLOAT,[[2,4],[6,+(infinity)]],[4,6]]
this means that a is a real variable laying in [2; 4[ \cup ]6; \infty] and that 4 and 6 are excluded.
We know the domain, the interval, and the excluded values.
We enter:
                                               abs(1-a)
We get:
                                                  -1+a
We enter to tell that b is an integer:
                                         assume(b,integer)
We get:
                                                DOM INT
We enter:
                                               assume(b)
We get:
```

[DOM_INT]

To tell that b is an integer strictly greater than 5, we enter:

```
assume(b,integer);
```

```
assume(b>5,additionally)
```

We get:

DOM INT

b

then

We enter:

assume(b)

We get:

[DOM_INT]

Note:

When assume takes as argument one single equality and the command is entered from the entry line of the Geometry screen, as a result, this adds a small cursor at the top right of this screen. The name of the parameter is written at the right of the cursor.

This cursor allows to change the value of the parameter, and this value will be written at the left of the cursor.

By example, we enter:

assume(a=[2,-10,10,0.1])

This means that all the calculations will be performed with any value of a, provided that the points have exact coordinates, but also that the figure will be plotted with a=2 and that we will be able to have this figure vary thanks to the small cursor according to a from -10 to +10, with a step of 0.1. If we put assume (a=[2, -5, 5), a varies from -5 to +5 with a step of (5-(-5))/100), and if we put assume (a=2), a varies from WX- to WX+ and the step is ((WX+)-(WX-))/100.

Warning! As far as geometry is concerned, you have to work with exact coordinates. For example:

A:=point(i);assume(b:=2); B:=point(b);

then we enter:

length(A,B);

We get:

sqrt((-b)^2+1)

But:

A:=point(0.0+i);assume(b:=2); B:=point(b);

then we enter:

length(A,B);

We get the approximate value of $\sqrt{1 + 4}$:

2.2360679775

Warning! A parameter defined by assume is evaluated for graphic outputs only, otherwise you must use evalf.

Example.

We enter: dr (m) :=ifte (m==2, line (x=1), line (x+ (m-2)*y-1)) then in a level of geometry, we enter: assume (a=[2.0,-5,5,0.1]) dr (evalf(a)) which returns line (x=2) when a:=2 and line (y=(-5*x+5)) when a:=2.2, whereas dr (a) returns line (y=(-1/(a-2)*x+1/(a-2))) whatever a is and this will then lead to an error for a=2.

Warning! Mind the difference between assume and element.

If b:=element(0..3,1,0.1) is entered from the entry line of thea Geometry screen, this adds a small cursor at the top right of this screen with b=1 and we will be able to have b vary thanks to the small cursor from 0 to 3 with a step of 0.1, but the variable b is not formal!

We enter:

a;b

We get:

(a,1)

28.1.10 State an additional assumption about a variable: additionally

additionally allows to state additional assumptions about a variable. Indeed, if we state another assumption with assume, the previous assumption is deleted. Thus, if you want to add a new assumption, you must use the command additionally or put additionally as second argument of assume.

additionally has the same arguments as assume: a name of variable along with an equality or an inequality representing the assumption stated, or else the name and the type of a variable separated by a comma. Several assumptions may be suppled, provided that they are linked by and or or, depending on what we want to do.

We must use ${\tt additionally}$ to specify the type and the range of values of a variable at the same time.

To tell that b is an integer strictly greater than 5, we enter:

assume(b,integer);

additionally(b>5)

or else

assume(b,integer);

assume(b>5,additionally)

We get:

DOM INT

then

b

We enter:

assume(b)

[DOM_INT]

28.1.11 Know the assumptions stated about a variable: about

about takes as argument a name of variable. about allows to know the assumptions stated about this variable.

We enter:

assume(a, real); additionally(a>0)

or

assume(a,real);assume(a>0,additionally)

then,

about(a)

We get:

assume[DOM_FLOAT,[0,+(infinity)],[0]]

assume[] means that we have a list of a specific type.

The last 0 means that 0 is excluded from the interval [0, + (infinity)]. We enter:

assume(b,real);additionally(b>=0 and b<2)</pre>

or

assume(b,real);assume(b>=0 and b<2,additionally)</pre>

then,

about(b)

We get:

assume[DOM FLOAT, [0,2], [2]]

The last 2 means that 2 is excluded from the interval [0,2[.

We enter:

about(x)

We get:

Х

which means that $\ensuremath{\mathbf{x}}$ is a formal variable.

28.1.12 Delete the content of a variable: purge

purge allows to delete the content of a variable or to cancel an assumption stated about this variable. We enter:

purge(a)

If a is not assigned, we get in direct mode "a not assigned", otherwise the previous value is returned (or the assumptions stated on this variable) and the variable turns back to formal with no assumption.

We can also enter:

purge(a,b)

to delete the content of variables a and b.

28.1.13 Delete the content of all the variables: restart

 ${\tt restart}$ allows to delete the content of all the variables and to cancel the assumptions stated about these variables.

We enter:

```
A:=point(1+i);assume(n>0);
```

then

```
restart
```

We get:

[A,n]

if the variables [A, n] would have been the only assigned variables.

28.1.14 Access to answers: Ans ans (n)

Ans (Shift +) or Ans() designates the latest answer, ans must be used when working without modifying the lines already validated. Indeed, the questions and the answers are numbered starting from 0, and this number does not correspond to the entry lines numbers. Indeed, we can, for example, modify the first line after having already entered 4 other lines, and this modification will be numbered 4.

If $n \ge 0$, ans (n) designates the answer of number n + 1, and,

if n < 0, ans (n) designates the (-n)-nth previous answer.

Then:

ans (0) designates the first answer (the one corresponding to the first requested command).

Warning! If you have deleted some levels, the answers of these levels are not deleted and are taken into account by ans (n).

28.2 Conditionnal instructions

IF X>0 THEN X+1;END

```
    IF
        IF < cond > THEN < inst1 > END

        If the condition < cond > is true, the instructions < inst1 > are executed, otherwise nothing is
        done.
        We enter:
            3=>X
            IF X>0 THEN X+1 END
            or
```

```
We get:

3

We enter:

-3=>X

IF X>0 THEN X+1 END

or

IF X>0 THEN X+1;END

We get:

-3
```

– IFTE

IFTE (cond, inst1, inst2) If the condition supplied as first argument is true, the second argument is executed, otherwise the third argument is executed.

```
We enter:
   3=>X
   IFTE(X>0, X+1, X-1)
   We get:
   4
   To define the absolute value, we enter:
   -3 = > X
   IFTE (X > 0, X, -X)
   We get:
   3
   We enter:
   EXPORT TRIALO(X,A)
   BEGIN
   RETURN IFTE(X<-ABS(A),-1,IFTE(X<ABS(A),0,1));
   END;
   Then, we enter:
   TRIAL0(-5,3)
   We get:
   -1
   We enter:
   TRIAL0(-2,3)
   We get:
   0
   We enter:
   TRIAL0(5,3)
   We get:
   1
- IF THEN ELSE END
   IF < cond >THEN < inst1 > ELSE < inst2 > END
   If the condition < cond > is true, the instructions < inst1 > is executed, otherwise the
   instructions < inst2 > is executed.
```

```
We enter:
3=>X
IF X>0 THEN X+1 ELSE X-1 END
or
IF X>0 THEN X+1; ELSE X-1; END
We get:
3
We enter:
-3 => X
IF X>0 THEN X+1 ELSE X-1 END
or
IF X>0 THEN X+1; ELSE X-1; END
We get:
-4
We enter:
EXPORT TRIAL(X, A)
BEGIN
```

```
IF X<-ABS(A) THEN RETURN -1; END;
   IF X<ABS(A) THEN RETURN 0; END;
   RETURN 1;
   END;
   Then, we enter:
   TRIAL(-5,3)
   We get:
   -1
   We enter:
   TRIAL(-2,3)
   We get:
   0
   We enter:
   TRIAL(5,3)
   We get:
   1
   CASE
   CASE ... END
   CASE
   IF < cond1 > THEN < inst1 > END;
   IF < cond2 > THEN < inst2 > END;
   IF < cond3 > THEN < inst3 > END;
   DEFAULT < inst4 >;
   END
   We use CASE to avoid using nested IF.
   < cond1 > is evaluated:
        if < cond1 > is true, the instructions < inst1 > are executed, and we end CASE by doing
        the instructions following END of CASE.
        if < cond1 > is false, then < cond2 > is evaluated, if it is true the instructions < inst2 > are
    _
        executed and we end CASE by doing the instructions following END of CASE, etc., ... The
        instruction < inst4 > is done if the three conditions < cond1 >, < cond2 >, < cond3 > are
        false.
   CASE
   IF X<-1 THEN -1=>R; END;
   IF X<1; THEN 0=>R; END;
IF X>=1 THEN 1=>R; END;
   END;
   R;
   or else:
   CASE
   IF X<-1 THEN -1=>R; END;
   IF X<1 THEN 0=>R; END;
   DEFAULT 1=>R;
   END;
   R;
– IFERR
   The syntax is:
   IFERR < inst0 > THEN < inst1 > ELSE < inst2 > END
   If an error is detected in the instructions < inst0 >, the instructions < inst1 > are executed,
   otherwise the instructions < inst2 > are executed.
   We enter (for example if we do not know the order of the arguments of the command POS):
```

```
IFERR(A:=POS(5,[1,3,5,2,4]); THEN
A:=POS([1,3,5,2,4],5); ELSE
A:=POS(5,[1,3,5,2,4]);
END
```

```
We get:
```

– CONTINUE

When CONTINUE; is among instructions of an iteration, this leads to skip the instructions which follows it and go to the next iteration.

We enter to calculate $1 + 2 + 4 + 5 = \sum_{j \neq 3 \text{ and } j=1}^{5} j$:

```
A:=0;
FOR J FROM 1 TO 5 DO
IF J==3 THEN CONTINUE; END;
A:=A+J;
END;
We get:
12
```

28.3 Loops

28.3.1 Instructions FOR FROM TO DO END **and** FOR FROM TO STEP DO END

We enter: S:=0; FOR J FROM 1 TO 5 DO S:=S+J;END We get: 15 because 1 + 2 + 3 + 4 + 5 = 15 We enter: S:=0; FOR J FROM 2 TO 10 STEP 2 DO S:=S+J;END We get: 30 because 2 + 4 + 6 + 8 + 10 = 30

28.3.2 Iterative loops: ITERATE

To do an iteration, we enter: ITERATE (X^2 , X, 2, 3) this means that X:=2; FOR J FROM 1 TO 3 DO $X^2=>X$; END; We get: 256 because X equals 2 then $2^2 = 4$ then $4^2 = 16$ then $16^2 = 256$

28.3.3 Instruction WHILE DO END

We enter: A:=1; WHILE A<=1 DO A:=A+1; END;A; We get: 2 We enter: S:=0;J:=1;WHILE J<=5 DO S:=S+J;J:=J+1; END;S We get as value of S: 15

28.3.4 Instruction REPEAT UNTIL

```
We enter:

A:=1; REPEAT A:=A+1 UNTIL A>1;A;

We get as value of A:

2

We enter:

A:=1; REPEAT A:=A+1 UNTIL A>4;A;

We get as value of A:

5
```

28.3.5 Instruction BREAK

We enter: BREAK We get: The exit from a loop

For example, to get the approximate value of the sum $6\sum_{j=1}^{\infty} \frac{1}{j^2}$, we decide to not add the terms lower than *P* and to not do more than 100 additions.

We enter: EXPORT PI2S6(P) BEGIN LOCAL J,S,U; FOR J FROM 1 TO 100 DO U:=1/J^2; IF U<P THEN BREAK; END; S:=S+U; END; RETURN S; END;

We enter: PI2S6(0.001) We get: 1.61319070033 We enter: PI2S6(0.0001) We get: 1.63498390018 We enter: PI^2/6 We get: 1.64493406685

28.3.6 Function seq

seq is not an instruction but a function which allows to return the list constituted by the different values of the first argument when the second argument varies according to the values of following arguments: start value, end value, step (by default, step=1). seq(f(k), k, 1, 3) = [f(1), f(2), f(3)]

seq (f (k), k, 1, 5, 2) = [f (1), f (3), f (5)] The function seq is useful to plot a series of points on the Geometry screen.

Example

We want to represent the ten first terms of the sequence: $u_n = \left(1 + \frac{1}{n}\right)^n = f(n)$ by the points n + i * f(n).

We open the Geometry application and we enter:

f(n):=(1+1/n)^n

seq(point(k+i*f(k)),k,1,10)

We get:

We see the points on this Geometry screen

If we enter:

for (k:=1;k<11;k++) {point(k+i*f(k));}</pre>

We get:

only the last point

but if if we enter:

L:=[];for (k:=1;k<11;k++)

{L:=append(L,point(k+i*f(k)));}:;L;

We get:

We see the points on the Geometry screen

28.4 Comments: / /

// starts a line intended to be a comment.

28.5 Variables

In programming, the variables have as names a string of letters or numbers starting by a letter. The variables which are locals to the program will be declared by using the key word LOCAL, for example: LOCAL A, B, AB, x;. In this case, the variables are set to 0.

To get a formal variable, we write: $x := ' \times '$.

28.6 Boolean operators: < <= == != > >=

<, <=, >, >=	are boolean infix operators checking for inequality.
==	is a boolean infix operator checking for equality.
$<>$ or $!=$ or \neq	is a boolean infix operator checking for non equality.

```
    AND and

   AND or and is the boolean infix operator and.
   We enter:
   1 AND 0
   We get:
   0
   We enter:
   1 AND 1
   We get:
   We enter:
   0 AND 0
   We get:
   0
   NOT
   NOT returns the logic inverse of the argument.
   We enter:
   NOT 1
   We get:
   0
   We enter:
   NOT 0
   We get:
   1
```

- OR or OR or or is the boolean infix operator or. We enter: 1 OR 0 We get: 1 We enter: 1 OR 1 We get: 1 We enter: 0 OR 0 We get: 0 XOR XOR is the boolean infix operator exclusive or. We enter: 1 XOR 0 We get: 1 We enter: 1 XOR 1 We get: Ο We enter: 0 XOR 0 We get: 0 Input commands CHOOSE To choose the value of A among the three values (1,2,3), we enter: CHOOSE (A, "TITLE: A=", "ONE", "TWO", "THREE") We get: A dialogue opens displaying three items: if we pick on the first (resp. the second, the third) item, this stores 1 (resp. 2, 3) in A – FREEZE We enter: FREEZE We get: the screen freezes, we press a key to quit - GETKEY We enter: A:=GETKEY We get, if we pressed .: 48 We enter: A:=GETKEY We get, if we did not press any key: -1 ISKEYDOWN We enter: ISKEYDOWN(48) We get, if we did not press the key .: 0 We enter: ISKEYDOWN(48) We get, if we have pressed the key .: 1

_

INPUT We enter: INPUT(C, "TITLE:C=") We get: A screen allowing to enter a value to be stored in the variable C MSGBOX We enter: A:=3 MSGBOX(2*A) or MSGBOX(2*A, 0)We get: 6 and OK in the push buttons If we tap OK then MSGBOX(2*A) or MSGBOX(2*A, 0) returns 1. We enter: A:=3 MSGBOX(2*A,1) We get: 6 and CANCEL and OK in the push buttons If we press CANCEL then MSGBOX(2*A, 1) returns 0. If we press OK then MSGBOX (2*A, 1) returns 1. We enter: A:=3 MSGBOX ("A= "+A) We get: "A= 3" – PRINT We enter: A:=3 PRINT(A) We get: A:3 - WAIT We enter: WAIT(5) We get: A 5 seconde pause of the program - EDITMAT We enter: EDITMAT(M) We get: A matrix editor opens to enter the matrix M An example of use of GETKEY and ISKEYDOWN. The following program let us know the code of each key pressed and ends when pressing the key ...

EXPORT AA() BEGIN LOCAL A,L; L:=[]; REPEAT REPEAT A:=GETKEY; UNTIL A! = -1;L:=CONCAT(L,A); UNTIL ISKEYDOWN(48); RETURN L; END;

We enter:

```
AA() then Enter 1230.
We get:
[42,43,44,47,48]
```

We can also write the following program, which gives the same result:

```
EXPORT AAA()

BEGIN

LOCAL A,L,N;

L:=[];

N:=0

WHILE N==0 DO

REPEAT

A:=GETKEY;

UNTIL A!=-1;

L:=CONCAT(L,A);

N:=ISKEYDOWN(48);

END;

RETURN L;

END;
```

```
We enter:
AAA() then Enter 1230.
We get:
[42,43,44,47,48]
```

Example of a dice roll: two players A and B roll alternately two dices and keep their scores SA and SB, putting aside the score of some rolls (for example some giving at least one 6). They decide to stop playing after two minutes.

The program will display the result of the roll of each of the two players. We notice that the display of the roll of player B: MSGBOX(N+1+":B="+B,1)) takes as second parameter 1. CANCEL and OK are displayed in the push buttons. If we press CANCEL, MSGBOX(N+1+":B="+B,1) returns 0 and otherwise MSGBOX(N+1+":B="+B,1) returns 1. So if we press CANCEL we cancel the play. To stop playing, it is enough to press OK (key 5).

The program displays then the score and the list of the rolls.

```
EXPORT TWODICES()
BEGIN
LOCAL SA, SB, A, B, C, N, L;
SA:=0;
SB:=0;
N := 0;
L:=[];
RANDSEED
WHILE ISKEYDOWN(5) == 0 DO
A:=(RANDOM 6+RANDOM 6);
MSGBOX(N+1+":A="+A,0);
B:=(RANDOM 6+RANDOM 6);
C:=MSGBOX(N+1+":B="+B,1);
IF C==-1 THEN
L[N]:=[A,B];
N:=N+1;
IF A>B THEN
SA:=SA+1;
ELSE
SB:=SB+1;
END;
END;
END;
RETURN SA, SB, L;
END;
```

28.7 Commands of applications

CHECK

If the current application is Function, we enter: F2(X) := COS(X) + XCHECK(2) We get: The definition of F2 in the Function application and the function F2 is checked UNCHECK If the current application is Function, we enter: UNCHECK (2) We get: The function F2 is unchecked STARTVIEW — We enter: STARTVIEW(1) We get: black: 0 drak grey: 1 2 3 light grey: white: 0 Symbolic: Plot: 1 Numeric: 2 3 Symbolic Setup: Plot Setup: 4 Numeric Setup: 5 First special view (Split Screen Plot Detail):6 Second special view (Split Screen Plot Table):7 Third special view (Autoscale): 8 Fourth special view (Decimal): 9 Fifth special view (Integer): 10 Sixth special view (Trig): 11 -1 HomeScreen: Home Modes: -2 -3 Memory Manager: APP Library: -4 Application Note Editor: -5 MatrixCatalog: -6 -8 ListsCatalog: -10 ProgramCatalog: Note Catalog: -12

Chapter 29 How to program

29.1 Conditional instruction IF

Three stores selling the same wools at the same unit price of p, decide to offer rebates. In the store 1, the conditions of the rebates are:

- 10 % rebate when buying over 5 to less than 10 balls of wool,
- 20 % rebate when buying at least 10 balls.

In the store 2, the conditions of the rebates are:

- 1 ball free for 8 bought
- 2 balls free for 13 bought.

In the store 3, the conditions of the rebates are:

- 10 % rebate when buying 5 balls,
- 20 % rebate when buying 10 balls, for example, if you buy 7 balls at \$ p one, you get the rebate on 5 balls only and pay 2 * p + 5 * 0.9 * p = 6.5 * p and if you buy 17 balls, you get the rebate on 10 balls only and on 5 balls and you pay 2 * p + 5 * 0.9 * p + 10 * 0.8 * p = 14.5 * p.

You need 9 balls, which store do you choose? You need 15 balls, which store do you choose?

Write the program price(n, p) for each store, returning the price to pay, the number of balls and the money spared thanks to the rebate, when buying n balls at a unit price p.

The programs

```
- pricel
   (n,p)->BEGIN
   LOCAL p1, p2, n1, n2, r1;
   p1:=0.8*p;
   p2:=0.9*p;
   r1:=irem(n,10);
   IF n<5 THEN return n*p,n,0;END;
   IF 5<=n and n<10 THEN return n*p2, n, n*(p-p2); END;
   IF n>10 THEN return n*p1,n, n*(p-p1);END;
   END;

    price2

   (n,p)->BEGIN:={
   LOCAL r1,q1;
   r1:= irem(n,13);
   q1:=iquo(n,13);
   IF r1>=8 THEN return n*p, n+2*q1+1, 2*q1*p+p; END;
   IF r1<8 THEN return n*p, n+2*q1, 2*q1*p; END;
   END;
 price3
   (n,p)->BEGIN
   LOCAL p1, p2, n1, n2, r1;
   p1:=0.8*p;
   p2:=0.9*p;
   r1:=irem(n,10);
   IF r1<5 THEN n1:=n-r1; return n1*p1+r1*p,n,(n-r1)*p-n1*p1;END;
   IF r1>=5 THEN n1:=n-r1; return n1*p1+5*p2+(r1-5)*p,n,(n-r1+5)*p-
   n1*p1-5
```

END;

29.2 FOR and WHILE loops

29.2.1 Make the calculator count by step of one and display the result

We want the calculator display: 0, then 1, then 2, etc., ...

When not in a program, we enter: n:=0; then, Enter We enter: n:=n+1 then, Enter, Enter, etc., ... We get (each press of Enter displays the following number): 1, then 2, etc., ...

With a CAS program

The FOR loop

We name the program countf, and check CAS. In order to display the sequence 0, 1, 2...p, we enter a program using a FOR loop:

```
(p)->BEGIN
LOCAL n;
        FOR n FROM 0 TO p DO
        PRINT(n);
        END;
RETURN n;
END;
```

We notice that:

n is initialized by the value following FROM, and the value following TO is used to do the loop stop test. The instruction n:=n+1, and then the test n<=p is automatically done in a FOR loop. The loop stops when the first integer n strictly greater than p is reached.

```
We enter in the CAS:

countf(-1)

We get:

0, because the test n<=p is done at the beginning of the loop.

We enter in the CAS:

countf(4)

We get:

0

1

2

3

4,

then 5, because 5 is the first integer strictly greater than p=4
```

Sum up

FOR initializes the variable of the FOR, does the test, if true executes the body of the loop (*i.e.* all the instructions up to the END of the FOR), then the variable the FOR is incremented, then the test is done: if true executes the body of the loop etc..; and if false executes the instructions following the END of the FOR.

The WHILE loop We name the program countw and we check CAS. In order to display the sequence 0,1,2..p, we enter a program using a WHILE loop:

(p)->BEGIN

We notice that:

n must be initialized before the beginning of the loop,

WHILE does the test $n \le p$:

if the test is true it executes the body of the loop (*i.e.* all the instructions up to the END of the WHILE) but, be careful, you have to change

in the body of the loop the value of at least one variable of the test, so that the test is false at a time, to avoid to get an infinite loop, in this case the instruction n:=n+1. Then, WHILE does the test n<=p, if true, executes the body of the loop, etc., ..., otherwise executes the instructions following the END of the WHILE.

```
The loop stops when the first integer n strictly greater than p is reached.

We enter in the CAS:

countw(-1)

We get:

0, because the test n<=p is done at the beginning of the loop.

We enter in the CAS:

countw(4)

We get:

0

1

2

3

4
```

then 5, because 5 is the first integer strictly greater than p=4

29.2.2 Make the calculator count by step of 1 by using a list or a sequence

Rather than displaying the numbers with the command PRINT, we will put these numbers into a list or a sequence.

With a list

The emtpy list is [] and the command l:=append(l,a) adds the element a at the end of the list 1.

With a FOR loop

We name the program countlf and we check CAS. In order to display the list [0,1,2..p], we enter the program using a FOR loop:

```
(p)->BEGIN
LOCAL n,l;
l:=[];
FOR n FROM 0 TO p DO
l:=append(l,n);
END;
RETURN 1;
END;
```

With a WHILE loop

We name the program countlw and we check CAS. In order to display the list [0,1,2..p], we enter the program using a WHILE loop:

(p) ->BEGIN LOCAL n,1; 1:=[]; n:=0; WHILE n <=p DO</pre>

```
l:=append(l,n);
n:=n+1;
END
RETURN l;
END;
```

```
We enter:
countlf(4) or countlw(4)
We get:
[0,1,2,3,4]
```

With a sequence

The emtpy sequence is NULL and the command l:=l, a adds the element a at the end of the sequence l.

With a FOR loop

We name the program countsf (or we modify the previous program) and we check CAS. In order to display the list [0,1,2..p], we enter the program using a FOR loop:

With a WHILE loop

We name the program countsw (or we modify the previous program) and we check CAS. In order to display the list [0,1,2..p], we enter the program using a WHILE loop:

```
(p) ->BEGIN
LOCAL n,1;
1:=NULL;
n:=0;
WHILE n <=p DO
1:=1,n;
n:=n+1;
END;
RETURN 1;
END;
```

```
We enter:
countsf(4) or countsw(4)
We get:
0,1,2,3,4
```

29.3 Approximate value of the sum of a sequence

29.3.1 Sequence of general term $u_n = \frac{1}{n^2}$

With no program

We enter in the CAS: s:=0;n:=1; Then, Enter We enter then: s:=s+1/n^2;n:=n+1 Then, Enter, Enter, etc., ... We get (each press of Enter does an additional addition): [1,2] [5/4,3] [49/36,4] [205/144,5] [5269/3600,6] [5369/3600,7] [266681/176400,8] etc., ...

With a CAS program

We name the program sumu and we check CAS. We enter, to get the sum of $1 + \frac{1}{2^2} + \dots + \frac{1}{p^2}$, the program:

We enter in the CAS: sumu(7) We get:

[1,1] [5/4,2] [49/36,3] [205/144,4] [5269/3600,5] [5369/3600,6] [266681/176400,7] [266681/176400,8]

We notice that we would need to put PRINT ([s, n+1]); to get the same results because in the FOR loop the incrementation of n is done when the body of the loop has been executed, but the final result is the same because the incrementation of n has been done and since 8>7, the FOR loop stops.

29.3.2 Sequence of general term $v_n = \frac{(-1)^{n+1}}{n}$

With no program

We enter in the CAS: s:=0;n:=1; then, Enter We enter then: s:=s+(-1)^(n+1)/n;n:=n+1 Then, Enter, Enter, etc., ... We get (each Enter does an additional operation):

[1,2] [1/2,3] [5/6,4] [7/12,5] [47/60,6] [37/60,7] [319/420,8] etc.

With a CAS program

We name the program sumv and we check CAS. We enter, to get the sum of $1 - \frac{1}{2} + \frac{1}{3} \dots + \frac{(-1)^{p+1}}{p}$, the program:

We enter in the CAS: sumu(7) We get:

[1,1] [1/2,2] [5/6,3] [7/12,4] [47/60,5] [37/60,6] [319/420,7] [319/420,8]

29.3.3 The sequence of general term $w_n = \frac{1}{n}$ is divergent

To demonstrate this, we show that for p > 1 we have:

$$\sum_{n=2^{p-1}}^{2^{p}} \frac{1}{k} \ge \frac{1}{2}$$

With no program

We enter in the CAS: s:=1;n:=1;k:=0; Then, Enter We enter then: s:=s+sum(1/k, k=n+1..2*n);n:=2*n;k:=1+k;1+k/2<=s Then, Enter,Enter etc... We get (each press of Enter does an additional operation): [3/2,2,1] [25/12,4,1] [25/12,4,1] [761/280,5,1] [2436559/720720,6,1] etc.

With a CAS program

We name the program sumdiv and we check CAS. To get the sum of n, we enter in the CAS:

```
sumdiv(p)->BEGIN
LOCAL s,n,k;
s:=1;
n:=1;
FOR k FROM 1 TO p DO
        s:=s+sum(1/k,k=n+1..2*n);
        n:=2*n;
        1+k/2<=s;
        PRINT([s,n,k,1+k/2,1+k/2<=s]);
END
RETURN [s,n,1+(k-1)/2<=s];
END;
```

We enter in the CAS: sumdiv(7) We get: 3/2,2,1,true] [25/12,4,2,true] [761/280,8,3,true] [2436559/720720,16,4,true] then, [2436559/720720,16,5,true]

Exercise

Which value of *n* makes $\sum_{k=1}^{n} \frac{1}{k} > p$? To get the sum of n, we enter in the CAS:

```
sumsup(p)->BEGIN
LOCAL s,n;
s:=0;
n:=0;
WHILE sn:=n+1;
s:=s+1/n;
END;
RETURN evalf(s),n;
END;
```

We enter in the CAS:

sumsup(4) Weget: 4.02724519544,31

29.4 Decimal form of a fraction

29.4.1 With no program

```
For example, we want to find the first decimal of f = \frac{355}{112}
(f is a fraction givings \pi with 6 exact decimal places)
We enter in the CAS:
f:=355/113;f1:=floor(f);l:=f1;n:=numer(f-f1);d:=denom(f-f1);
Then, Enter
We enter then:
ds,n:=iquorem(10*n,d); L:=L,ds;
Then, Enter, Enter, etc., ...
We get (each press of Enter gives one more decimal place):
[[1,47],3,1]
[[1,47],3,1,4]
[[1,47],3,1,4,1]
[[1, 47], 3, 1, 4, 1, 5]
[[1,47],3,1,4,1,5,9]
[[1,47],3,1,4,1,5,9,2]
The decimal places obtained are in the list 1, beginning by the integer part of the fraction f.
Or else we enter:
f:=355/113;f1:=floor(f);L:=f1;n:=numer(f-f1);d:=denom(f-f1);
Then, Enter
We enter then:
ds,n:=iquorem(10*n,d):; L:=L,ds:;
Then, Enter, Enter, etc., ...
We get:
["Done", "Done"], ["Done", "Done"] etc.
Then, we enter:
1
We get, after having pressed Enter 30 times:
[3,1,4,1,5,9,2,9,2,0,3,5,3,9,8,2,3,0,0,8,8,4,9,5,5,7,5,2,2,1,2]
```

As it is difficult to count the number of times we have pressed Enter, we can display, by example, five more decimal places each time we press Enter. The first Enter pressed displays the integer part followed by five decimal places. We may also wish or not to display ds and n. We enter:

```
f:=355/113;f1:=floor(f);L:=f1;n:=numer(f-f1);d:=denom(f-f1);
Then, Enter and then, ds, n:=iquorem(105*n,d); l:=l*10^5+ds;
or, if we do not want the values of ds and n:
ds,n:=iquorem(10^5*n,d):; l:=l*10^5+ds;
We get after the first Enter:
[14159 33], 314159
(or ["Done", "Done"], 314159)
We notice that: 113 * 314159 + 33 = 355 * 10^5
If we press 8 times Enter we get a 41-digit number: the integer part 3, followed by the 40 decimal
places of 355/113:
[5309 83], 31415929203539823008849557522123893805309
If we enter:
1
We get:
31415929203539823008849557522123893805309
Note that 5309 has only 4 digits, so the last decimal places are: 05309 and we have:
113 * l + 83 = 355 * 10^{40}
```

29.4.2 With a CAS program

We name the program decimal and we check CAS. The program decimal returns a sequence 1 giving the integer part (f1) and the p first decimal places (ds) of a fraction f. We use the following functions: floor, which gives the integer part of a number, numer, which gives the numerator of a simplified fraction, denom, which gives the denominator of a simplified fraction, iquorem, which gives the quotient and the remainder of the Euclidean division ds, n:=iquorem(10*n,d); is equivalent to: ds:=iquo(10*n,d); (to get the quotient of 10*n by d) and n:=irem(10*n,d); (to get the remainder of 10*n by d).

We enter, Shift Program, then New of the push buttons.

We get a dialog box with Name and CAS. We check CAS and put as Name: decimal, then OK, and we enter the program which gives the integer part and the p decimal places, one by one, of the rationnal number f:

```
(f,p)->BEGIN
LOCAL n,d,l,f1,j,ds;
f1:=floor(f);
l:=f1;
n:=numer(f-f1);
d:=denom(f-f1);
FOR j FROM 1 TO p DO
       ds,n:=iquorem(10*n,d);
       l:=1,ds;
END:
RETURN 1;
END;
We enter in the CAS:
decimal(355/311,20)
We get:
1,1,4,1,4,7,9,0,9,9,6,7,8,4,5,6,5,9,1,6,3
We enter in the CAS:
decimal(355/113,20)
We get an approximation of \pi to the next 3 * 10<sup>-7</sup>:
[3,1,4,1,5,9,2,9,2,0,3,5,3,9,8,2,3,0,0,8,8]
We have indeed: evalf (pi) wihich returns 3.1415926536
```

We can determinate the decimal places by p groups of g decimal places and return an integer l. The decimal form of the fraction is then $l * 10^{(-p * g)}$. We name the program decimalg and we check CAS (or we modify the program decimal):

```
(f,p,g) ->BEGIN
LOCAL n,d,l,f1,j,ds;
f1:=floor(f);
l:=f1;
n:=numer(f-f1);
d:=denom(f-f1);
FOR j FROM 1 TO p DO
ds,n:=iquorem(10^g*n,d);
l:=l*10^g+ds;
END;
RETURN 1;
END;
```

We enter in the CAS: decimalg(355/311,8,5) We get: 11414790996784565916398713826366559485530 We enter in the CAS: decimalg(355/113,8,5) We get: 31415929203539823008849557522123893805309

29.5 29.5 Newton method and Heron algorithm

29.5.1 29.5.1 Newton method

Be *f* two times differentiable, having one and only one zero *r* in the interval [*a*; *b*]. Let us additionally assume that *f*' and *f*'' has a constant sign on [*a*; *b*]. The Newton method consist in fit *r* by the abscissa x_1 of the point common to O_x and the tangent at the point M_0 to the graph of *f*. If M_0 has for coordinates $(x_0, f(x_0))(x_0 \in [a; b])$, the tangent in M_0 has for equation: $y = f(x_0) + f'(x_0) * (x - x_0)$ and then we have:

$$x1 = x_0 - \frac{f(x_0)}{f(x_0)}$$

We can then reiterate the process, and we get a sequence x_n converging to r

either by greater values, if f' * f" > 0 on [a; b] (*i.e.* if f'(r) > 0 and if f is convex (f" > 0 on [a; b]) or if f'(r) < 0 and if f is concave (f" < 0 on [a; b]))
either by lower values, if f' * f" < 0 on [a; b] (*i.e.* if f'(r) < 0 and if f is convex (f" > 0 on [a; b]) or if f'(r) > 0 and if f is concave (f" < 0 on [a; b])).

The Heron algorithm is a specific case of the application of the Newton method to look for the approximate values of \sqrt{a} for a integer. In this case

 \sqrt{a} is a zero of $f(x) = x^2 - a$ and g(x) = f'(x) = 2x then the sequence of the iterations is supplied by:

$$x_n + 1 = x_n - \frac{x_n^2 - a}{2x_n} = \frac{1}{2} \left(x_n - \frac{a}{x_n} \right)$$

29.5.2 Newton algorithm

The function newton_rac returns the approximate value, at the nearest p, of the root of f(x) = 0, starting the iteration with x_0 .

We notice that the parameter f is a function, and thus, that its derivative is the function $g:=function_diff(f)$.

We look for a approximate value, so we must write:

x0:=evalf(x0) because if we do not put evalf, the calculations of the iteration we be done in the exact way, and hence, will be soon complicated.

We check at the beginning if the sequence of $x_i(i = 0..n)$ is increasing or decreasing, starting from n = 1, by comparing at the beginning x_1 and x_2 . We name the program <code>newton_rac</code> and we check CAS.

The program newton rac gives a zero of f close to x0 at the nearest p.

We enter the program:

```
(f,x0,p)->BEGIN
LOCAL x1, h, g;
g:=function diff(f)
x0:=evalf(x\overline{0});
x0:=x0-f(x0)/g(x0);
x1:=x0-f(x0)/g(x0);
IF (x1>x0) THEN
      h:=p;
ELSE
      h:=-p;
END:
WHILE (f(x1) * f(x1+h) > 0) DO
      x1:=x1-f(x1)/g(x1);
END:
RETURN x1;
END;
```

We enter in the CAS:

f (x) :=cos (x) -x newtonrac (f, 0.4, 1e-10) We get: 0.739085133215 We enter in the CAS: cos (0.739085133215) -0.739085133215 We get: 2.70006239589e-13

29.5.3 Heron algorithm

We name the program heron and we check CAS. The program heron gives a fraction approaching sqrt(a) at the nearest p when x0 is close to sqrt(a).

We enter:

```
(a, x0, p) ->BEGIN
LOCAL b;
b:=x0-p;
WHILE b^2>a DO
        x0:=(x0+a/x0)/2;
        b:=x0-p;
END;
RETURN x0;
END;
```

We enter in the CAS:

heron(2,3/2,10^-10) We get:

66587/470832 We enter in the CAS: decimalg(66587/470832,2,5) We get: 14142135623 We enter in the CAS: f:=heron(2,2,10^-40) We get: 1572584048032918633353217/1111984844349868137938112 We enter in the CAS: r2:=decimalg(f, 8, 5)We get: 14142135623730950488016887242096980785696 and $\sqrt{2} \simeq$ r2 * 10⁻⁴⁰ The library of long floating point numbers is not implemented in the HP Prime. We use the CAS to check. We enter in CAS: evalf(r2*10^-40,41) We get: 1.4142135623730950488016887242096980785696 We enter in CAS: evalf(sqrt(2),41) Because the CAS rounds off the last decimal place, we get: 14142135623730950488016887242096980785697

Chapter 30 Example of programs

30.1 GCD and Bezout identity from Home

30.1.1 GCD

We use Euclid's algorithm.

We enter:

```
EXPORT GCD(A,B)
BEGIN
LOCAL R;
WHILE B<>0 DO
R:=A MOD B;
A:=B;
B:=R;
END;
RETURN A;
END;
```

Or else we use the function irem which returns the remainder of the Euclidean division:

```
EXPORT GCD(A,B)
BEGIN
LOCAL R;
WHILE B<>0 DO
R:=CAS.irem(A,B);
A:=B;
B:=R;
END;
RETURN A;
END;
```

We enter: GCD (45,25) We get: 5

30.1.2 Bezout identity for A and B

We use Euclid's algorithm and the variables U, V, R which will vary so that at the step k we have $A * U_k + B * V_k = R_k$. Thus, when R_p is the GCD of A and B, we will have: $A * U_p + B * V_p = GCD(A, B)$. At the beginning, we have: (1) $A = U_1 * A + V_1 * B (R_1 = A, U_1 = 1, V_1 = 0)$ (2) $B = U_2 * A + V_2 * B (R_2 = B, U_2 = 0, V_2 = 1)$ We want to get: $R_3 = U_3 * A + V_3 * B$ since $R_3 = A - B * Q_3$ (with Q_3 integer quotient of $A = R_1$ by $B = R_2$) we find, by doing (1)- $Q_3 * (2)$: $U_3 = U_1 - Q_3 * U_2$ and $V_3 = V_1 - Q_3 * V_2$ and thus $R_3 = U_3 * A + V_3 * B$ and at each step we will have $R_k = U_k * A + V_k * B$ with the relations: $U_k = U_{k-2} - Q_k * U_{k-1}$ and $V_k = V_{k-2} - Q_k * V_{k-1}$. To write the program, we need 3 lists L1, L2, L3 which will be 3 successive steps of $[U_k, V_k, R_k]$. At the beginning: L1 = 1, 0, R1 (R1 = A)L2:= 0, 1, R2 (R2 = B)We calculate L3:L3 is obtained from L1 and L2 and if Q3, R3:=iquorem(R1, R2), on R3 = R1 - R2 * Q3 and then L3 = L1 - Q3 * L2. Then, R1 takes the value of R2, L1 the value of L2, R2 the value of R3, L2 the value of L3, etc., ... We stop when R2 = 0 and then R1 = GCD(A, B).

We enter:

```
EXPORT BEZOUT (A, B)
BEGIN
LOCAL L1, L2, L3, Q3, R1, R2, R3;
R1:=A;
R2:=B;
L1:={1,0,R1};
L2:={0,1,R2};
WHILE B<>0 DO
      Q3,R3:=CAS.iquorem(R1,R2);
      R1:=R2;
      R2:=R3;
      L3:=L1-Q3*L2;
      L1:=L2;
      L2:=L3;
END;
RETURN L1;
END;
```

We can reduce the number of variables:

```
EXPORT BEZOUT (A, B)
BEGIN
LOCAL L1, L2, L3, Q;
L1:={1,0,A};
L2:={0,1,B};
WHILE L2(3)<>0 DO
       //Q:=iquo(L1(3),L2(3));
Q:=(L1(3)-L1(3) MOD L2(3))/L2(3)
       L3:=L1-Q*L2;
       L1:=L2;
       L2:=L3;
END;
RETURN L1;
END;
We enter:
BEZOUT(45,10)
We get:
1,-4,5
Which means that 1 * 45 - 4 * 10 = 5 = GCD(45,25)
We enter:
BEZOUT (45,25)
We get:
-1,2,5
Which means that -1 * 45 + 2 * 25 = 5 = GCD(45,25)
```

30.2 GCD and Bezout identity from the CAS

30.2.1 GCD with the CAS with no program

```
We can apply Euclid's algorithm by using the key Enter of the calculator. We enter on the entry line:

a:=72;b:=33; then we press Enter

Then, we enter on the entry line:

r:=irem(a,b);a:=b;b:=r; then we press Enter several times until the last value is null.

When the last value is null,the GCD of a and b is the value 3 above the 0.

We can check this thanks to the existing gcd command:

gcd(72,33) returns 3.
```

30.2.2 GCD with a CAS program

We use the function irem to write the Euclid's algorithm. We check CAS, and we name the program GCD, and we enter:

```
(a,b) ->
BEGIN
LOCAL r;
WHILE b<>0 DO
    r:=irem(a,b);
    a:=b;
    b:=r;
END;
RETURN(a);
END;
```

We enter:

GCD (45,25) We get: 5

30.2.3 Bezout identity with the CAS, with no program

We can apply the algorithm giving the coefficients of the Bezout identity by using the Enter key of the calculator. We enter on the entry line:

a:=72;b:=33;11:=[1,0,a];12:=[0,1,b] then we press Enter Then, we enter on the entry line:

q:=iquo(l1(3), l2(3)); l3:=l1-q*l2; l1:=l2; l2:=l3; then we press Enter several times until the last value of the last list is null.

When this last value is null, the Bezout identity [-5, 11, 3] is the last list above the 0: this means that -5*72+11*33=3].

We can check this thanks to the existing iegcd command, giving the Bezout identity: iegcd(72,33) returns [-5,11,3].

30.2.4 Bezout identity with a CAS program

We use Euclid's algorithm and the variables u, v, r which will vary so that at te step k we have $a * u_k + b * v_k = r_k$. Thus, when rp is the GCD of a and b, we will have: $a * u_p + b * v_p = GCD(a, b)$. To write the program, we need 3 lists L1, L2, L3 which will be 3 successive steps of $[u_k, v_k, r_k]$. At the beginning: L1 = 1, 0, r1 (r1 = a)L2: = 0, 1, r2 (r2 = b)

We calculate *L*3:

L3 is obtained from L1 and L2 and if q3, r3:=iquorem(r1, r2), we have: r3 = r1 - r2 * q3 and then L3 = L1 - q3 * L2.

Then, *r*1 takes the value of *r*2, *L*1 the value of *L*2, *r*2 takes the value of *r*3, *L*2 the value of *L*3, etc., ...

We enter:

```
(a,b)->BEGIN
LOCAL 11,12,13,q;
11:=[1,0,a];
12:=[0,1,b];
WHILE 12(3)<>0 DO
      q:=iquo(l1(3),l2(3));
      13:=11-q*12;
      11:=12;
      12:=13;
END;
RETURN 11;
END;
We enter:
BEZOUT(45,10)
We get:
1,-4,5
Which means that 1*45-4*10=5=GCD (45, 25)
We enter:
BEZOUT(45,25)
We get:
-1,2,5
Which means that -1 * 45 + 2 * 25 = 5 = GCD(45,25)
```