
Created by Neil Streeter June 2025

 Python Activities Book

HP Prime

Python Programming

Contents

Python Programming .. 2

HP Prime Graphing Calculator ... 3

1. Getting started with Python on the HP Prime .. 3

2. Creating Python Programs .. 3

3. Python language on the HP Prime .. 6

4. Creating Python Applications on the Prime.. 11

5. Python application windows .. 12

6. Operators .. 13

7. Python libraries ... 14

8. Python from CAS ... 19

9. Using VS Code to wite PPL and Python ... 20

10. Examples ... 21

11. Links .. 22

 Page 3

HP Prime Graphing Calculator

1. Getting started with Python on the HP Prime

Since firmware update version Beta 2.1.15048 the HP Prime Graphing

calculator has had an ability to program in Python and the ability to create

Python based applications. Though not a full implementation of Python -

Micro python is closely based on Python 3.4 with some hardware specific

and library differences.

The HP-Prime uses micro python (You should be able to find all the

documentation at https://micropython.org/). The closest version for

reference is https://docs.micropython.org/en/v1.9.4/ however while

additional functions have been added to take advantage of the calculators

built in capabilities and some functions such as the control of I/O ports

are not included.

There are two methods for creating Python programs: -

1. By using or creating a copy of the Python application.

2. By creating a new program using the Sy keys.

These require slightly different approaches.

For both we will need to enter the Python script, but in the program mode

it will need to be placed within a HPL wrapper, in simple terms some code

that tells the Prime to interpret the code as Python.

2. Creating Python Programs

Start by pressing Sy to access the programs screen.

Then Select New from the options at the bottom of the display. This is the

same process that you would use to create a HPPL program.

There is no direct help for Python available in the program view; to get

help you need to highlight the Python App, then press the ^ button. If

you then click on the TREE menu it will open at the Python App help.

The Python tree gives details of how to create the initial wrapper needed

for Python to work under HPPL or how Python can be called directly from

within PPL using the PYTHON(“script”,[params]) syntax.

It is well worth reading this help file which I will refer to as we go through

this tutorial.

https://micropython.org/
https://docs.micropython.org/en/v1.9.4/

 Page 4

After entering a name for the program, you will be presented with the

program entry screen. In this case I have called the program PythProg1.

There are several ways to proceed from here outlined in help. Every

program that is not based on a Python App needs to be embedded in a

PPL wrapper.

The wrapper will embed the Python code into a script that can be called

with the HPPL command PYTHON("script", [params]) within the PPL

section to run a Python script.

For example:

#PYTHON test

import sys

//Put your python code between these two comments

//Beginning of Python code

print(str(1+2)+sys.argv[0])

//End of Python code

#end

export ppl(a)

begin

PYTHON(test, a);

end;

A second form executes the python script but without the PYTHON

command by using a HPPL wrapper to call Python code from PPL using the

name you have given it.

For example:

#PYTHON test2,(a)

IMPORT sys

PRINT("param is "+sys.argv[0])

#END

EXPORT ppl2(a)

BEGIN

test2(a);

END;

 Page 5

In this example code was entered using Visual Studio Code selecting the

HP PL script support extension which appears to include the python

syntax, but we will come to that shortly for now let’s take a step back.

When you initially create the program after naming it you will get the

default PPL structure. Press Shift and Clear (ESC key) to clear this text.

So let’s have a look at the PPL wrapper.

#PYTHON name  Name this as whatever you want

  Place your Python code here

#end

EXPORT PyProg2() This is the name it will appear as

BEGIN

 PYTHON(name); Call the python code by name

END;

A note on code entry.

Entering code can be done directly into the calculator on the program

entry screen but can be a bit tedious as the keyboard doesn’t lend itself to

typing. There are a few options available that make this easier.

1. Use the HP Connectivity kit

2. Use Microsoft Visual Studio Code with the HPPL extension

3. Use Notepad and cut and paste the code into a virtual HP Prime

calculator.

Options 2 and 3 still require the connectivity kit to transfer the code to the

calculator, whether the virtual or actual device. Using VS Code has the

advantage of syntax checking and colourisation of Keywords.

Let’s recreate the classic “Hello world” one liner – all that you have to do

is embed the Python code for this between the #PYTHON and #END tags.

#PYTHON name

PRINT("Hello world!")  Place your Python code here
#END

EXPORT PyProg2()

BEGIN

 PYTHON(name);

END;

VS Code has significant benefits including Python 3.4 support and Co-Pilot

which can help building the code.

 Page 6

The following shows the same program viewed from within the HP

Connectivity Kit and is where you would paste the copied code from VS

Code.

We will cover the tools in a bit more depth further on, but for now just

understand, whatever tool you use you copy the code and paste it into the

connectivity kit.

3. Python language on the HP Prime

Ok so let’s have a look at Python by examples. First let’s have the program

create two variables a and b and add them together and print the answer.

#PYTHON test2()

import math

a=5

b=7

result=a+b

print("The sum of a and b is: ")

print(a+b)

#END

EXPORT ppl2()

BEGIN

print;

test2();

END;

Use ESC to get to the list of programs, select the program from the list and

then click on run.

 Page 7

We can make this more interactive by prompting for the values a and b

#PYTHON test2()

a=input("Enter a: ")

print(end = '\n')

b=input("Enter b: ")

print(end = '\n')

print("The sum of a and b is: ")

result = int(a) + int(b)

print(result)

#END

EXPORT ppl2()

BEGIN

print;

 test2();

END;

This now prompts you to enter two numbers a and b it adds them

together and prints the sum of the two numbers. If you don’t cast the

variables as type int, then it will assume they are of type string and

concatenate the two figures together.

To illustrate the alternative syntax for calling the python script the HPPL

part of the program could also be written as follows explicitly using the

Python key word.

EXPORT ppl2()

BEGIN

print;

PYTHON(test2);

END;

So let’s add something a bit more complex, in this example we will import

the Math library and solve a quadratic of the form

For this example, we will set the values of a b and c in the code.

 Page 8

#PYTHON MyProg()

import math

a = 3

b = -2

c = 2

discriminant = b**2 - 4*a*c

if discriminant > 0:

 root1 = (-b + math.sqrt(discriminant)) / (2*a)

 root2 = (-b - math.sqrt(discriminant)) / (2*a)

 print("Two real roots:", root1, "and", root2)

elif discriminant == 0:

 root = -b / (2*a)

 print("One real root:", root)

else:

 real_part = -b / (2*a)

 imag_part = math.sqrt(-discriminant) / (2*a)

 print("Two complex roots: {}+{}j and {}-

{}j".format(real_part, imag_part, real_part, imag_part))

#END

EXPORT PY3()

BEGIN

 Python(MyProg());

END;

Ok let’s change this so that you can enter the values of a, b, and c.

#PYTHON MyProg()

import math

a=int(input("enter a : "))

print(a,end='\n')

b=int(input("enter b : "))

print(b,end='\n')

c=int(input("enter c : "))

print(c,end='\n')

discriminant = b**2 - 4*a*c

if discriminant > 0:

 root1 = (-b + math.sqrt(discriminant)) / (2*a)

 root2 = (-b - math.sqrt(discriminant)) / (2*a)

 print("Two real roots:", root1, "and", root2)

elif discriminant == 0:

The results are displayed

in the terminal screen

accessed by pressing the

Num key.

 Page 9

 root = -b / (2*a)

 print("One real root:", root)

else:

 real_part = -b / (2*a)

 imag_part = math.sqrt(-discriminant) / (2*a)

 print("Two complex roots: {}+{}j and {}-

{}j".format(real_part, imag_part, real_part, imag_part))

#END

EXPORT PY3()

BEGIN

 print();

 PYTHON(MyProg());

END;

Below is the code being edited in Microsoft Visual studio code. It provides

colour coding syntax checking, co-pilot for VS Code and auto-indentation.

The highlighted code can then be cut and pasted into the program code

editor in the HP-Prime Connectivity kit.

 Page 10

Then click on save all on the menu bar and this will be sent to the

calculator where you can select and run the program.

 Page 11

4. Creating Python Applications on the Prime

Creating a Python application is relatively straightforward but less tightly

integrated with HPPL.

Step 1 – create an empty app, based on the Python app by selecting the

Python app, then choosing Save at the bottom on the menu bar.

Step 2 – Give it a name and base it on the Python app. I have called mine

MyPyApp1.

Step 3 – Press OK twice, a new application called MyPyApp1 will be

created and appear on the apps screen.

You can rename the new app to whatever you wish, you can also give it a

custom icon and add files to the application.

To see the structure and where to put the files you need to load the

Connectivity Kit. If it doesn’t show the new app, then highlight the

calculator and right click and select Refresh which will synch the

connectivity kit with the calculator.

OK, let’s create a Python app that recreates a simple one round Yahtzee

game.

With the new Python App highlighted select the Symb key This should

bring up a blank main.py with line number 1 showing on the left. Now

create the following code in VS Code and copy and paste it into the

main.py screen editor.

import urandom

print()

def roll_dice(num=5):

 return [urandom.randint(1, 6) for _ in range(num)]

def display_dice(dice):

 print("Dice:", " ".join(str(d) for d in dice))

def yahtzee():

 print("Welcome to MicroPython Yahtzee!")

 dice = roll_dice()

 display_dice(dice)

 rolls = 1

 while rolls < 3:

 hold = input("Enter dice to hold (e.g. 135 to

hold dice 1, 3, 5), or press Enter to reroll all: ")

 Page 12

 if hold.strip() == "":

 dice = roll_dice()

 else:

 hold_indices = [int(i)-1 for i in hold if

i.isdigit() and 1 <= int(i) <= 5]

 new_dice = []

 for i in range(5):

 if i in hold_indices:

 new_dice.append(dice[i])

 else:

 new_dice.append(urandom.randint(1,

6))

 dice = new_dice

 display_dice(dice)

 rolls += 1

 # Simple scoring: check for Yahtzee

 if dice.count(dice[0]) == 5:

 print("YAHTZEE! All dice are", dice[0])

 else:

 print("Final dice:", dice)

 print("No Yahtzee. Try again!")

yahtzee()

Now the first time after you edit it when you click on the app you should

get the following prompt. Press or click on OK to import main.py. It will

then import and run the program you should see the following output.

5. Python application windows

When you select a python application the functions of the Synb and Num

keys change.

The Symb key brings up the code window by default showing main.py with

line numbers down the left hand side.

This is where you manually enter micropython code for the application. If

you enter it or change it the application will ask if you want to re-import

main.py the next time it is run.

The Num key brings up the console or terminal window, this is where you

see the results of the program as in the Yahtzee example above in Python

Numeric View.

 Page 13

6. Operators

MicroPython can perform various mathematical operations using

primitive and logical operations.

Type Operator Name Example

Arithmetic + Addition variable + 1

 - Subtraction variable - 1

 * Multiplication variable * 4

 / Division variable / 4

 % Modulo division variable % 4

Comparison == Equals expression1 == expression2

 != Not equal expression1 != expression2

 < Less than expression1 < expression2

 > Greater than expression1 > expression2

 <= Less than or equals expression1 <= expression2

 >= Greater than or equals expression1 >= expression2

Logical & bitwise and variable1 & variable2

 | bitwise or variable1 | variable2

 ^ bitwise exclusive or variable1 ^ variable2

 ~ bitwise complement ~variable1

 and logical and variable1 and variable2

 or logical or variable1 or variable2

Supported operations

https://en.wikipedia.org/wiki/Bitwise_operation

 Page 14

7. Python libraries

There are three types of libraries in MicroPython:

1. derived from a standard Python library (built-in libraries)

2. specific MicroPython libraries

3. specific libraries to assist with hardware functionality i.e. the HP-

Prime.

The list can be found on the calculator by starting the Python app and

choosing the CMDS item in the bottom menu.

The Prime implements a subset of micropython whose full documentation

is found at the Micropython site. Be aware that there are more routines

documented there than exist in the Prime. For easier searching while

writing code, the list below might be convenient.

Standard Python libraries in MicroPython[4]

Library

name

Description Functions

array operations on arrays asc

 char

 euler

 gcd

 iegcd

 ifactor

 isprime

 lcm

 nextprime

 nprimes

 prevprime

cmath provides math functions

for complex numbers

 cos

 e

 exp

 log

 log10

 phase

 pi

 polar

 rect

 sin

 sqrt

gc garbage collector

 collect

 disable

 enable

 isenabled

 mem_alloc

 mem_free

 threshold

math provides basic math operations

for floating-point numbers

 acos

 acosh

 asin

 asinh

 atan

 atan2

 atanh

 ceil

 copysign

 cos

 cosh

 degrees

 e

 erf

 erfc

 exp

 expm1

 fabs

 floor

 fmod

 frexp

 gamma

 isfinite

 isinf

 isnan

 ldexp

 lgamma

 log

 log10

 log2

 modf

 pi

 pow

 radians

 sin

 sinh

 sqrt

 tan

 tanh

 trunc

https://docs.micropython.org/en/latest/library
https://en.wikipedia.org/wiki/MicroPython#cite_note-MP-Website-4
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Floating_point_numbers

 Page 15

sys system-level functions; provides

access to variables used by the

interpreter

 argv

 byteorder

 exc_info

 exit

implementation

 maxsize

 modules

 path

 platform

print_exception

 stderr

 stdin

 stdout

 version

 version_info

ucollections operations for collections and

container types that hold various

objects

 deque

 append

 popleft

 namedtuple

 OrderedDict

 clear

 copy

 fromkeys

 get

 items

 keys

 pop

 popitem

 setdefault

 update

 values

uerrno provides access to error codes errorcode

 EACCES

 EADDRINUSE

 EAGAIN

 EALREADY

 EBADF

ECONNABORTED ECONNREFUSED

 ECONNRESET

 EEXIST

EHOSTUNREACH

 EINPROGRESS

 EINVAL

 EIO

 EISDIR

 ENOBUFS

 ENODEV

 ENOENT

 ENOMEM

 ENOTCONN

 EOPNOTSUPP

 EPERM

 ETIMEDOUT

uhashlib operations for binary hash

algorithms

 sha256

 digest

 update

uio operations for

handling input/output streams

 open

 BytesIO

 close

 flush

 getvalue

 read

 readinto

 readline

 readlines

 seek

 write

 FileIO

 close

 fileno

 flush

 read

 readinto

 readline

 readlines

 seek

 tell

 write

 StringIO

 close

 flush

 getvalue

 read

 readinto

 readline

 readlines

 seek

 write

TextIOWrapper

 close

 fileno

 flush

 read

 readinto

 readline

 readlines

 seek

 tell

 write

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Input/output

 Page 16

ure implements regular expression

matching operations

 compile

 match

 search

 DEBUG

ustruct performs conversions to Python

objects by packing and

unpacking primitive data types

 calcsize

 pack

 pack_into

 unpack

 unpack_from

utimeq provides time and date function,

including measuring time intervals

and implementing delays

 utimeq

 peektime

 pop

 push

Urandom Random numbers functions choice

 getrandbits

 randint

 random

 randrange

 seed

 uniform

HP-Prime MicroPython-specific libraries[4]

Library

name

Description

micropyth

on

access and control of MicroPython

internals like the library heapq

 const

 heap_lock

 heap_unlock

 kbd_intr

 mem_info

 opt_level

 pystack_use

 qstr_info

 stack_use

Builtins The builtins module contains all

the basic Python functions and

types

 abs

 all

 any

 bin

 bool

 bytearray

 append

 extend

 bytes

 center

 count

 decode

 endswith

 find

 format

 divmod

 Ellipsis

 enumerate

 eval

 exec

 filter

 float

 frozenset

 copy

 update

 values

 dir

difference

 intersection

 NotImplemented

 object

 oct

 open

 ord

 pow

 print

 property

 deleter

 getter

 setter

 range

 repr

 reversed

 round

 join

 lower

 lstrip

 partition

 replace

 rfind

 rindex

 rpartition

 rsplit

 rstrip

 split

 splitlines

 startswith

 strip

 upper

https://en.wikipedia.org/wiki/Primitive_data_type
https://en.wikipedia.org/wiki/MicroPython#cite_note-MP-Website-4

 Page 17

 index

 isalpha

 isdigit

 islower

 isspace

 isupper

 join

 lower

 lstrip

 parition

 replace

 rfind

 rindex

 rpartition

 rsplit

 rstrip

 split

 splitlines

 startswith

 strip

 upper

 callable

 chr

 classmethod

 compile

 complex

 delattr

 dict

 clear

 copy

 fromkeys

 get

 items

 keys

 pop

 popitem

 setdefault

 isdisjoint

 issubset

 issuperset

symmetric_differenc

e

 union

 getattr

 globals

 hasattr

 hash

 help

 hex

 id

 input

 int

 from_bytes

 to_bytes

 isinstance

 issubclass

 iter

 len

 list

 append

 clear

 copy

 count

 extend

 index

 insert

 pop

 remove

 reverse

 sort

 locals

 map

 max

 memoryview

 min

 next

 set

 add

 clear

 copy

 difference

 difference_update

 discard

 intersection

intersection_update

 isdisjoint

 issubset

 issuperset

 pop

 remove

symmetric_differenc

e

symmetric_differenc

e_update

 union

 update

 setattr

 slice

 sorted

 str

 center

 count

 encode

 endswith

 find

 format

 index

 isalpha

 isdigit

 islower

 isspace

 isupper

 staticmethod

 sum

 super

 tuple

 count

 index

 type

 zip

 ArithmeticError

 AssertionError

 AttributeError

 BaseException

 EOFError

 Exception

 GeneratorExit

 ImportError

 IndentationError

 IndexError

KeyboardInterrupt

 KeyError

 LookupError

 MemoryError

 NameError

NotImplementedE

rror

 OSError

 OverflowError

 RuntimeError

StopAsyncIteration

 StopIteration

 SyntaxError

 SystemError

 TypeError

 UnicodeError

 ValueError

 ZeroDivisionError

hpprime Is the main interface between

Python and the HP Prime

subsystem - It provides mainly

drawing primitives for fast

graphics and the eval function

which allows Python to interact

with the rest of the Prime system.

 arc

 arc_c

 blit

 blit_c

 circle

 circle_c

 dimgrob

 dimgrob_c

 eval

 fillrect

 fillrect_c

 get_cartesian

 grob

 grob_c

 grobh

 grobh_c

 grobw

 grobw_c

 keyboard

 line

 line_c

 mouse

 pixon

 pixon_c

 rect

 rect_c

 set_cartesian

 strblit

 strblit_c

 textout

 textout_c

 Page 18

Graphic Pixel and colour drawing

functions.

 cyan

 magenta

 yellow

 black

 white

 red

 green

 blue

draw_filled_circle

 draw_filled_polygon

 draw_line

 draw_pixel

draw_polygon

 draw_rectangle

 draw_string

 get_pixel

 set_pixel

 show

 show_screen

 clear_screen

 draw_arc

 draw_circle

 draw_filled_arc

CAS Evaluate CAS expressions from

within prime.

 caseval

 eval_expr

 get_key

 xcas

Arit Arithmetic functions - Prime

numbers

 asc

 char

 euler

 gcd

 iegcd

 ifactor

 isprime

 lcm

 nextprime

 nprimes

 prevprime

Linalg Linear Algebra functions abs

 add

 apply

 arange

 conj

 cross

 det

 dot

 egv

 eig

 eigenvects

 eye

 fft

 horner

 identity

 idn

 ifft

 im

 imag

 inv

 linspace

 matrix

 mul

 ones

 pcoeff

 peval

 pi

 proot

 rand

 ranm

 ranv

 re

 real

 rref

 shape

 size

 solve

 sub

 transpose

 zeros

matplotl Chart plotting functions arrow

 axis

 bar

 barplot

 boxplot

 boxwhisker

 clf

 grid

 hist

 histogram

 Page 19

8. Python from CAS

You can also use Python syntax in a CAS program - first create and save the

code exactly as is, in a program. Delete any template code (EXPORT,

BEGIN, END) lines.

Run the function, by calling <name of program>:<name of function>()

For example, if code is saved as CAS1,

in cas screen, type test01:pyhat()

#cas

def pyhat():

 t0 = ticks # Save the current clock count for

timing program

 # Clear screen

 rect_p(0,0,319,239,rgb(0,0,0))

 # Start program proper

 p=160; q=120

 xp=144; xr=1.5*3.1415927

 yp=56; yr=1; zp=64

 xf=xr/xp; yf=yp/yr; zf=xr/zp

 for zi in range(-q,q+1):

 if zi>=-zp and zi<=zp:

 zt=zi*xp/zp; zz=zi

 xl=int(.5+sqrt(xp*xp-zt*zt))

 # Draw one cross-section of figure

 for xi in range(-xl,xl+1):

 xt=sqrt(xi*xi+zt*zt)*xf; xx=xi

 yy=(sin(xt)+.4*sin(3*xt))*yf

 x1=xx+zz+p

 y1=yy-zz+q

 pixon_p(x1,230-y1,rgb(0,255,0))

 if y1!=0:

 Line_p(x1,230-y1+1,x1,230) # Erase points

below current point

 t = ticks-t0

 # Wait for key and print elapsed time

 wait

 print(approx(t/1000)+" seconds")

#end

 Page 20

9. Using VS Code to wite PPL and Python

Visual studio code is a programmer’s editor with many language

extensions. One extension is the HP Prime Language Support extension.

Once installed it understands HP Prime PPL and embedded Python

syntax.This includes colour coding keywords and correctly indenting the

code.

It also includes the ability to use co-pilot to help fix and generate code.

Once written in VS Code the code can be copied and then pasted straight

into either the virtual calculator program window or into the program in

the Connectivity kit.

 Page 21

10. Examples

Example 1. Calling Prime functions from Python

#PYTHON name

from math import *

from hpprime import *

t = eval("ticks")

loops = 30000

for i in range(loops):

 r0 = 10

 while True:

 x = r0

 x += 1

 x -= 4.567E-4

 x += 70

 x -= 69

 x *= 7

 x /= 11

 r0 -= 1

 if r0 <= 0:

 break

 x = log(x)

 x = sin(x)

 x = sqrt(x)

 x = sqrt(x)

print(x)

t = (eval("ticks")-t)/1000

print("Loops:", loops)

print("Time: {0:.3f} seconds".format(t))

print("Index: {0:.2f}".format(34/t*loops))

#end

EXPORT calcperf()

BEGIN

 print();

 PYTHON(name);

END;

 Page 22

11. Links

FORTH written in Python GitHub - diemheych/PrimeFORTH: A

simple version of FORTH written in Python for the HP Prime calculator

Classic adventure – Collosal caves written in Python

https://udel.edu/~mm/hp/adventure/

Hunt the Wumpus written for the HP Prime

HP Prime plays Hunt the Wumpus in Python

https://github.com/diemheych/PrimeFORTH
https://github.com/diemheych/PrimeFORTH
https://udel.edu/~mm/hp/adventure/
https://www.youtube.com/watch?v=qWtxehvj4sM&t=12s

	Cover
	Contents
	1. Getting started with Python on the HP Prime
	2. Creating Python Programs
	3. Python language on the HP Prime
	4. Creating Python Applications on the Prime
	5. Python application windows
	6. Operators
	7. Python libraries
	8. Python from CAS
	9. Using VS Code to write PPL and Python
	10. Examples
	11. Links

