
Return to Cover Page

An Introduction to Programming
HP Graphing Calculators

Second Edition

by

Mervin E. Newton
Thiel College

i

© Copyright 2005

by

Mervin E. Newton

All rights reserved.

ii

To

Sara Franco Newton

iii

Table of Contents

Copyright . i

Dedication . ii

Preface . iv

Section 1 - What is a Program? . 1
EXERCISE SET 1 . 2

Section 2 - Stack Manipulation . 2
EXERCISE SET 2 . 5

Section 3 - Editing and Debugging . 5

Section 4 - Variables, Input, Output . 7
EXERCISE SET 4 . 9

Section 5 - Branching . 10
EXERCISE SET 5 . 14

Section 6 - Looping . 15
EXERCISE SET 6 . 18

Section 7 - Flags . 18
EXERCISE SET 7 . 19

Section 8 - Arrays . 19
EXERCISE SET 8 . 21

Section 9 - Procedures . 21
EXERCISE SET 9 . 25

Section 10 - Recursion . 25
EXERCISE SET 10 . 29

INDEX . 31

iv

Preface

This introduction to programming HP graphics calculators assumes the reader is already
familiar with the basic operation of the calculator; it deals only with programming techniques.
The Web site HP 50g Calculator Tutorial

http://www.thiel.edu/MathProject/CalculatorLessons/Default.htm

provides an introduction to the basic operation to the three models mentioned below. These
instructions are based on the HP 49G+, but much of what is included here applies to many other
models. In particular, virtually everything here applies to the HP 48GII and the HP 50g, which
are almost identical to the 49G+. The only differences are that the memory capacity of the 48 is
much smaller and the shift keys on both are different colors. This introduction deals primarily
with the programming techniques that will be needed by students in the Numerical Analysis
course at Thiel College. There is much more to be learned by reading chapters 21 and 22 of HP
49G+ Graphing Calculator User's Guide. This publication comes on a CD with the calculator.
This guide will be referred to as UG in what follows.

The HP 49G+ has three shift keys, the yellow ALPHA shift, the green left shift and the
red right shift. They will be abbreviated AS, LS, and RS respectively. The four arrow keys; up
arrow, down arrow, left arrow, and right arrow; will be abbreviated UA, DA, LA, and RA
respectively. In some cases, especially with the calculator in RPN mode, a shift key must be held
down while another key is pressed. In such cases the command will be written as LS(hold).
Finally, menu commands will be preceded by the appropriate soft key, F1, F2, ..., F6. For
example, if the calculator is in algebraic mode, the following steps will put it into RPN mode:

MODE F2-CHOOS DA F6-OK F6-0K.

As another example, let us set the calculator to show soft menus. Press MODE, then F1-
FLAGS then UA 7 times to highlight system flag 117. If this flag is not checked, press F3-
CHK. The flag should now show "Soft MENU." Now press F6-OK twice. For all of the
examples in this text it is assumed that the calculator is set for RPN and soft menus.

The author wishes to thank Sara Franco Newton, Cassandra Beck(<09), Angela
Crone(<09), Klotilda Lazaj(<04), Nicholas Lias(<04), Kara McDowell(<01), Amanda
McKeehan(<04), Andrew Murrin(post grad student), Anthony Ross(<04), Michael Ryan(<09),
John Svirbly('06), Timothy Van Horn(<09) Nicole Volchko(<00), Sean Weaver(<04), and
Rebeccah Williams(<04) for their help in proofreading this and previous editions of this work.
Thanks also to Michelle Porada (Thiel class of 2000) for her help in preparing it for the WWW.

An interactive version of this text can be found on the WWW at

http://www.thiel.edu/mathproject/itphpc/

1

Section 1 - What is a Program?

It is suggested that before we start to write and save programs, we should create a
directory into which to put them. To do this key LS(hold) UPDIR to get to the Home directory.
Now key LS FILES F6-OK NXT F3-NEW DA. Type in your choice of name for the new
directory, then DA F3-CHK F6-OK. Finally, press CANCEL (the ON button) to get out of the
FILE dialog box. Now press VAR and press the soft menu key for the new directory you just
created (it should be F1.) You are now in your new directory and ready to start saving new
programs in it. For more about directories and saving variables see UG 2-32 to 2-59.

Basically, an HP49G+ program is an object that contains a listing of the steps to solve a
particular type of problem. Let us look at a simple example. In a typical bowling league each
member of each team bowls three games in a match. To find the average for a particular member
for the match, you must add the individual's three scores and divide by 3. If the three scores were
on the stack of your HP49G+, you would push the plus sign twice, enter a 3, and push the
division key. Let us make this a program. On the HP49G+ the listing of a program must be
enclosed in the symbols << >>, which is a right shifted plus sign. Our program then, would be

<< + + ÷ >>3

Type the above program into the command line by keying

RS <<>> + + 3 ÷

then press ENTER to put it on level 1 of the stack. Notice that as soon as you press RS << >>,
you see the PRG annunciator in the upper right corner of the display, telling you that the
calculator is in program mode. Also notice that division is shown as "/" in the program. For a
program to be useful, it must be given a name and saved. Let us call it BWL1. Type 'BWL1'
into the command line and press STO. If you now press VAR you should see BWL1 as the first
item in your menu. To run the program put three scores on the stack and press the soft key for
BWL1. Try it with the scores 172, 188, and 186: put the three numbers on stack levels 1, 2 and
3, then press the BWL1 menu key. You should see 182 on level 1 of the stack. (NOTE: The last
number in the previous example could, alternatively, have been left in the command line; as in
most HP49G+ operations.)

The program above is short enough to fit in one line on the screen, but that will not
always be the case. When entering longer programs it is helpful to use the carriage return,

(right shift decimal point) to go to a new line while in program mode. This also serves as a↵ ,
carriage return in a string. Recall that in the HP language a string is any group of characters
surrounded by quotation marks.

2

EXERCISE SET 1

1. Write a program called TAX1 to find a six percent sales tax for the amount in level 1 of
the stack. HINT: If you have the program set the number format to Fix 2 the tax will be shown
rounded to the nearest penny. To do this include the sequence

2 LS PRG NXT F4-MODES F1-FMT F2-FIX

at the beginning of the program. All you will see in the program is “2 FIX.”

2. Your sales force works 5 days per week. Each person's pay for the week is $500 plus 5% of
sales over $1000. For example: a salesperson who sells $1200 in the week would earn $500 plus
5% of $200, which is $510. Write a program called PAY to take the five daily sales figures from
the stack and compute the person's pay for the week. WARNING: Be sure you do not penalize a
person who sells less than $1000 for the week. The MAX function (LS MTH F5-REAL F5-
MAX) should be helpful here. Function MAX is explained on page 3-13 of UG.

3. In Pennsylvania (as in many other states) the exits on the interstate highways are numbered by
the nearest mile marker, and the speed limit is 65 MPH. Write a program called TMR1 to take
the exit number and the mile marker you just passed from the stack and compute the time it will
take you to reach the exit assuming you are traveling at 65 MPH. NOTE: The ABS function
(left shifted division key) should be useful to make sure you don't end up with a negative time.
Function (LS PRG NXT NXT F1-TIME NXT), which is explained→HMS F3 −→HMS
on page 25-3 of UG may also be helpful here. Since an answer to the nearest minute would
normally be good enough for this type of problem, it would also make sense to set the display to
FIX 2 for this program.

Section 2 - Stack Manipulation

When working on the HP49G+ in RPN mode we sometimes make use of the stack
manipulation commands that are available in the STACK menu. These tend to be much more
important in programming. With the calculator in RPN mode, the STACK menu can be found
by pressing TOOL F3-STACK or LS PRG F1-STACK. There are 19 stack manipulation
commands in this menu. These are listed and explained in the table below because they don't
seem to be explained anywhere in UG.

3

DUP Duplicates the item on level 1 of the stack, puts it on level 1 of the stack and
moves everything else up on the stack.

SWAP Interchanges the items on levels 1 and 2 of the stack

DROP Deletes the item on level 1 of the stack and drops everything else down one level.

OVER Makes a copy of the item from level 2 of the stack, puts it on level 1, and moves
everything else up one level.

ROT Rotates the item in level 3 of the stack to level 1, the item from level 1 to level 2,
and the item from level 2 to level 3.

UNROT Reverses the process of ROT.

ROLL With an integer n in the command line, ROLL works like ROT, but on the first n
levels of the stack, so 3 ROLL has the same effect as ROT. If the command line
in empty but there is an integer n on level 1 of the stack, ROLL takes n from the
stack, drops the rest of the stack down one level, then performs the ROLL. Thus,
4 ROLL and 4 ENTER ROLL have the same effect.

ROLLD Reverses ROLL

PICK With an integer n in the command line, PICK works like OVER, but selects the
item from level n of the stack, 2 PICK is the same as OVER. If the command
line is empty and an integer n is on level 1 of the stack, PICK removes the integer
from the stack, moves everything down one level, then performs the PICK, thus 4
PICK and 4 ENTER PICK have the same effect.

UNPICK Is NOT quite the reverse of PICK. With an integer n in the command line, PICK
removes the item in level 1 of the stack, moves everything in the stack down one
level, then replaces the item in level n with the item that was originally removed
from level 1. If the command line is empty and there is an integer n on level 1 of
the stack, UNPICK removes the integer from the stack, moves everything in the
stack down one level, then performs the UNPICK, thus 4 UNPICK and 4 ENTER
UNPICK have the same effect.

PICK3 The same as 3 PICK

DEPTH Counts the number of elements in the stack, puts the number on level 1 of the
stack and moves everything else up one level.

DUP2 Duplicates the items in levels 1 and 2 of the stack and moves everything up 2
levels.

4

DUPN With an integer n in the command line, DUPN duplicates the items in levels 1
through n and moves everything up n on the stack. If the command line is empty
and there is an integer n on level 1 of the stack, DUPN takes the n from the stack,
drops everything down one level, then executes the DUPN. Thus, 3 DUPN and 3
ENTER DUPN have the same effect.

DROP2 Drops the items on levels 1 and 2 of the stack and moves everything else down
two levels.

DROPN With an integer n in the command line, DROPN drops the items on levels 1
through n from the stack and moves everything else down n levels. If the
command line is empty and there is an integer n on level 1 of the stack, DROPN
removes the n, drops everything down one level, then executes the DROPN.
Thus, 4 DROPN and 4 ENTER DROPN have the same effect.

DUPDUP The same DUP DUP, that is, the same as pressing DUP twice.

NIP Drops the item in level 2 of the stack and moves anything above level 2 down one
level.

NDUPN With an integer n in the command line, NDUPN puts n copies of the item on
level 1 into levels 2 through n + 1, and n is put on level 1. Everything else on the
stack is moved up n levels. If the command line is empty and there is an integer
n on level 1, NDUPN removes n, drops everything on the stack down one level,
then executes NDUPN. Thus, 3 NDUPN and 3 ENTER NDUPN have the same
effect.

Suppose the bowling league of Section 1 computes a bowler's handicap for the next week
as 80% of (200 minus this week's average). Let's write a program to take three scores from the
stack and leave the total on level 3, the average truncated to an integer on level 2, and next
week's handicap truncated to an integer on level 1.

<< + + DUP 3 FLOOR 200
 OVER - 0 MAX .8 FLOOR >>

÷
×

Type this program into your calculator and store it as BWL2 then try it with several sets of data.
With 172, 177 and 186, the output should be 535 on level 3, 178 on level 2, and 17 on level 1.
Notice that the commands 0 MAX are needed to make sure that a bowler whose average is over
200 will not have a negative handicap. The FLOOR function (LS MTH F5-REAL NXT NXT
F3-FLOOR) is described on page 3-14 of UG.

5

EXERCISE SET 2

1. Change Problem 3 of Exercise Set 1 so that the distance is left on level 2 of the stack and the
time on level 1. Save this new version as TMR2.

2. Change Problem 1 of Exercise Set 1 so that the original amount is left on level 3 of the stack,
the tax on level 2, and the total on level 1. Call this new version TAX2.

3. Write a program called LIN1 to do linear interpolation. That is, given the two points (x1, y1),

(x2, y2) and a number x between x1 and x2, find The programy y
y y
x x

x x= +
−
−

−1
2 1

2 1
1().

should begin with x1 in level 5, y1 in level 4, x2 in level 3, y2 in level 2, and x in level 1; and
should end with y in level 1 and the rest of the stack empty. (First strive for a solution which
works, but then try to do it in as few steps as possible.)

Section 3 - Editing and Debugging

It is an unfortunate fact of life that humans make mistakes (called bugs in this context)
that cause the calculator to halt in mid program because it has been asked to do something
impossible or that cause the calculator to give wrong answers. One of the easiest ways to find a
bug in a program is to have the calculator execute the program one step at a time so we can see
exactly what it is doing. Let's look again at the example BWL2 from Section 2. Put three
bowling scores on levels 4, 3 and 2, and 'BWL2' on level 1. Now press LS PRG NXT NXT
F3-RUN F1-DBUG. The program name will be taken off the stack and the annunciator HLT
will appear at the top of the screen. Now press F2-SST once for each step of the program.
Notice that with each press the step being executed is shown in the upper left corner of the screen
and the result is shown on the stack. If you find an error and choose not to continue single
stepping through the program, press the F6-KILL, to return to normal keyboard commands.

Once an error is found we need to edit our program. Suppose we want to edit BWL2.
Enter <BLW2' on the stack and press LS DA. The program will now show in the command line
and you can use the arrow keys to move around the program. A handy thing to remember,
especially when you are editing a long program, is that RS DA gets you to the end of the program
and RS UA gets you to the beginning of the program. Also, RS LA gets you to the beginning of
a line and RS RA gets you to the end of a line. When the cursor is where the changes are
needed, you can type in new things and use the backspace or delete keys to remove things. When
the editor is entered it is in insert mode. The soft menu key F6-INS toggles between insert mode
and overwrite mode. When the menu shows a small square after INS, insert mode is on.

While working in the command line, it is possible to bring up any of the menus that may

6

be useful in writing the program, such as PRG, MTH, etc. To return to the edit commands,
press TOOL.

When all the necessary corrections have been made, press ENTER to make the changes
permanent and return to normal calculator operation. If you decide you wish to exit without
making the changes permanent, press the CANCEL key and the program will be left unaltered.

There are also several editing commands in the menu. Some of these are explained in
Appendix L of UG, but several are missing from the appendix and others don't do what the
appendix says they do. On the first page of menu commands are moves theF1 SKIP,−←
cursor to the end of the previous word, moves the cursor to the beginning of theF2 SKIP− →
next word, deletes to the end of the previous word, and deletesF3 DEL−← F4 DEL− →
to the beginning of the next word. F5-DEL L deletes an entire line, and F6-INS was discussed
above.

On the second page of menus there are two subdirectories that are very useful. The first
is F1-SEARCH. F1-FIND opens a dialog box with a field for the string to be searched for.
After entering the target string, F6-OK finds the first occurrence of the string starting at the
current cursor position and searching forward. If the string is not found before the end of the file,
an error message is displayed. If the string is found, it is highlighted. To find the next
occurrence of the string, press F3-NEXT. F2-REPL opens a dialog box with fields for the target
string and for the replacement string. After entering the desired strings in these two fields, F6-
OK will highlight the first occurrence of the target string (or give error message if it is not
found). There are now three choices of how to make the replacement. F4-R makes the
replacement and leaves the cursor at that point, F5-R/N will make the replacement and highlight
the next occurrence of the target string, F6-ALL will make the replacement for all occurrences of
the target string from the current location to the end of the file.

The other subdirectory of interest in the second page of the Edit directory is F2-GOTO.
The one command in this subdirectory that is useful in long programs is F1-GOTOL. It will
open a dialog box with a field for a line number. When a line number is entered and F6-OK is
pressed, the cursor will move to the beginning of the requested line.

On the main keyboard there are also commands to do COPY/CUT/PASTE similar to
what is available in most computer text editors. Place the cursor at the beginning of the text to
be copied or moved and press RS BEGIN. Move the cursor to the end of the desired text and
press RS END. Now press RS COPY or RS CUT, as desired, move the cursor to the point
where the text is to be inserted and press RS PASTE.

In some cases (as in Problems 1 and 2 of Exercise Set 2) you may wish to create a new
program by making changes to an existing program, but leave the original intact. To do this,
press RS and press the menu key for the desired program to put it on the stack, then DA to put it
on the command line. Make the necessary changes and press ENTER. The new version is now
on the stack and can be saved under a new name, but the original is unaltered.

7

Section 4 - Variables, Input, Output

In all of our examples so far we have placed the necessary data on the stack before the
program starts. This works but it can create problems for both the programmer and the user.
This is best demonstrated by Problem 3 of Exercise Set 2; manipulating the stack with five
values is somewhat of a challenge for the programmer, and the user must remember the exact
order in which the data must be entered for the program to work correctly. It would also be
helpful to the user if programs like BWL2, which have several results, had each output item
labeled. In this section we will learn about the use of variables, which helps reduce the amount
of stack manipulation that may be required by a program, and we will learn about some input and
output techniques that will make the programs more user-friendly.

There are two types of variables available for programming, global and local. The
variables you learned to use on pages 2-46 through 2-60 of UG are global variables. They
function in programs just as they do in normal operation. Local variables are specific to a
program and live only while the program is running. We will adopt the convention of using
upper case letters for global variables and lower case letters for local variables. To create local
variables you must first put the values on the stack, put in an arrow, (right shifted zero key),→,
then the list of variable names, and finally a new set of << >> (like a program within the
program). The local variables are now available to this inner program and can be used the same
as global variables. We will see an example of this below.

 The problem of forcing the user to memorize the order in which data must be entered can
be solved with the INPUT command. This command allows the program to prompt the user for
the data one item at a time. To use the command there must be a prompt (a string telling the user
what to enter) on level 2 of the stack, "" on level one of the stack, then the INPUT command,
which can be found at LS PRG NXT F5-IN F4-INPUT. When the command is executed the
program pauses with the prompt displayed at the top of the screen and the cursor set to the
command line ready for input. When the user presses ENTER the program resumes and places
the input on level 1 of the stack as a string. Because the input is a string the most common
command to follow the INPUT command is the command, which can be found at LSOBJ→
PRG F5-TYPE We will see an example of this below. F1- OBJ→.

We will discuss two methods of labeling output, tagged output and the message box.
Tagged output is generally used at the end of a program. It leaves one or more output items on
the stack, each with an explanatory tag. The message box is generally used to pause the program
with intermediate results during program execution. After a message box comes up, the user
must acknowledge it by pressing F6-OK for the program to continue.

To create a tagged output item the output object should be on stack level 2 and the
desired explanatory tag on level 1 as a string. Then the command, which is found by→TAG
LS PRG F5-TYPE will combine them into a tag object on level 1. For theF5 TAG−→ ,

8

message box, put a message in a string on level 1 and issue the MSGBOX command, which is
found by LS PRG NXT F6-OUT F6-MSGBO. When the command is executed the string will
be dropped from the stack. To create the message string, use the + to concatenate the parts. For
example, suppose you wish to display the message "There are # apples in the bag.", where # is a
number that is on level 1 of the stack. Use the following steps:

<< ... "There are " SWAP + " apples in the bag." + MSGBOX ... >>.

Notice that it was not necessary to convert the number to a string; when + operates on a string
and a number it converts the number into a string then concatenates. If, however, you wish to
concatenate two numbers, you must first explicitly convert at least one of them to a string with
LS PRG F5-TYPE It is also important to note that when + is used forF4 STR−→ .
concatenation it is not a commutative operation; the object in level 2 will appear in front of the
object in level 1.

We will now consider two new versions of our bowling program; the first will
demonstrate the use of global variables and the message box and the second will demonstrate the
use of the INPUT command, local variables, and tagged output.

For the first example, which we call BWL3, we will make the following assumptions.
During the play of the games we were using a score keeping program that left the scores of
the three games in the calculator memory as SCR1, SCR2, and SCR3, and we want BWL3 to
leave the new handicap in memory as HNCP for use by the score keeping program next week.
With this in mind, the coding for BWL3 is

 <<
SCR1 SCR2 + SCR3 + "Series total = " OVER + MSGBOX
3 / FLOOR "Average = " OVER + MSGBOX 200 SWAP - 0 MAX
.8 * FLOOR "New handicap = " OVER + MSGBOX 'HNCP' STO

 >>

Try single stepping through this program to see exactly how it works. Notice that you will have
to create the global variable SCR1, SCR2, and SCR3 before you can run the program. It is not
necessary to create HNCP in advance, the calculator will create it if it does not exist, and will
overwrite the existing version if it does exist.

The second example, which we will call BWL4, will use the INPUT command, local
variables, and tagged output. Admittedly, the use of local variables in this case is not particularly
helpful, but it does provide an example. Unlike BWL3, this program is intended to stand alone.

HINT: As you enter this program make use of the COPY PASTE feature to simplify
entering the first three lines.

9

 <<
"GAME 1 SCORE" "" INPUT OBJ→
"GAME 2 SCORE" "" INPUT OBJ→
"GAME 3 SCORE" "" INPUT OBJ→
0 0 0 --> s1 s2 s3 tot avrg hncp
<<
 s1 s2 + s3 + 'tot' STO
 tot 3 / FLOOR 'avrg' STO
 200 avrg - 0 MAX .8 * FLOOR 'hncp' STO
 tot "TOTAL" →TAG
 avrg "AVERAGE" →TAG
 hncp "HANDICAP" →TAG
>>

 >>

Notice that to create the local variables tot, avrg, and hncp it was necessary to put an
initial value of 0 on the stack for each of them. The initial value did not have to be zero, it could
have been anything, but each must be initialized. Again, try single stepping through this program
to see exactly how it works.

The HP49G+ has several other input and output features that will not be discussed in this
text. Those interested in these more "exotic" I/O forms should consult pages 21-19 through 21-
43 of UG..

EXERCISE SET 4

Use the editing suggestions from Section 3 to make the required changes..

1. Change Problem 2 of Exercise Set 2 to add tags to the three lines of output. Save the new
version as TAX3.

2. Change Problem 1 of Exercise Set 2 so that the desired exit number and the speed limit are
obtained from global variables and the current mile marker is entered with an INPUT command.
The distance and time should be reported by way of message boxes. The message for the time
should read something like “Time = 2 hours and 12 minutes." There are two functions that
should help make your output “pretty.” One is LS MTH F5-REAL NXT NXT F1-RND (see
page 3-14 of UG). The other is LS CONVERT F4-REWRITE NXT NXT (seeF1 R I− →
page 5-28 of UG). Save this version as TMR3.

10

3. Change Problem 3 of Exercise Set 2 so that the values of x1, y1, x2, y2, and x are entered with
INPUT commands and are assigned to local variables. The output, y, should be tagged. Save
the new version as LIN2.

Section 5 - Branching

We will discuss two general types of branching, IF and CASE. The IF structure has the
form:

IF condition THEN
 block 1
ELSE
 block 2
END

The condition is an expression that is either true or false and each of the blocks is a set of one or
more instructions. If the condition is true then all the instructions in block 1 are executed, if the
condition is false, then all the instructions in block 2 are executed. The ELSE block 2 is
optional.

The CASE structure has the form

CASE
 condition 1 THEN

 block 1
 END

 condition 2 THEN
 block 2
 END

.

.

.
 condition n THEN

 block n
 END
 block n + 1
END

The block of instructions corresponding to the first true condition encountered is the only block
that will be executed. If none of the conditions are true, block n + 1 will be executed. This last
block is optional.

11

Before we can continue with the IF and CASE structure, we need to understand how the
HP49G+ works with boolean values and boolean operations, that is, with values that are either
true or false. LS PRG F4-TEST brings up a menu with six relational functions (five of these
functions are also on the keyboard). Each of the functions takes values from level 2 and level 1
and returns a 1 if the relation is true and 0 if the relation is false. For example, put 5 on level 2
and 8 on level 1. If you press F3-< or RS < you get a 1 and if you press F4-> or RS > you get a
0. F1-== in this menu and RS = on the keyboard are NOT the same. In the HP language, = is
used to assign a function to its name, == is used to test equality between two values. The == can
be created in a program from the keyboard by AS(hold) RS = RS = with the alpha shift held for
the four following keystrokes.

Press NXT to get to the next page of this menu and you find the commands AND, OR,
XOR, and NOT. These four operations are the same on the calculator as they are in logic; AND
is true if both conditions are true, OR is true if at least one condition is true, XOR is true if
exactly one of the conditions is true and NOT is true if the condition is false. The first three of
these are binary functions which act on levels 1 and 2 of the stack. AND returns 1 if both values
are 1's and 0 otherwise. OR returns 1 if at least one of the values is a 1, and 0 otherwise. XOR
returns 1 if exactly one of the values is 1 and the other is 0, and returns 0 otherwise. NOT
toggles the value on level 1 between 0 and 1. It should be noted that these four logical functions
and also the THEN command which we will discuss in the next paragraph, treat any nonzero real
number as a 1. If, for example, you place .5 on level 2 of the stack and -3.7 on level 1 and press
AND the response will be a 1.

We are now ready to return to the IF and CASE structures. The critical element here is
the THEN statement. When the calculator comes to THEN it takes the value off of level 1 of
the stack. If the value is true (that is, any real number not equal to zero), it executes the block of
instruction immediately following, and at the end of that block goes to the very end of the IF or
CASE structure. If the value is false (i.e., a zero) the program skips to the next section of the
structure it is working through; in the case of the IF statement it goes to the block after the ELSE
if there is one, or to the END of the IF if there is no ELSE; in a CASE structure it goes to the
next condition, to block n + 1, or the END of the CASE, whichever comes first.

LS PRG F3-BRCH F1-IF gets one to the menu with the IF elements and LS PRG F3-
BRCH F2-CASE to the menu with the CASE elements, but that's not the best way to get those
structures into a program. From the BRCH menu LS F1-IF will put IF ... THEN ... END into
the program and RS F1-IF will put IF ... THEN ... ELSE ... END into the program. LS F2-
CASE will put CASE ... THEN ... END ... END into the program and each RS F2-CASE will
put in an additional THEN ... END. These typing aids make the job easier and help eliminate
the very common error of forgetting to put in an END statement.

We will write a program to calculate a person's pay for a week. The input will be the
hourly rate and the hours worked. If the hours worked is greater than 40, the person is to receive
an extra half pay for the hours over 40.

12

<<
 "Hours worked" "" INPUT OBJ→
 "Pay rate" "" INPUT OBJ→
 h pr→

<<
 h pr *
 IF h 40 > THEN

h 40 - pr 2 / * +
 END
>>

 "Gross pay" →TAG
>>

Enter this program and save it as GPAY. Single step through the program three times with the
hours worked less than, equal to, and greater than 40.

We will now write a new version of BWL3 that will use an IF statement to overcome the
problem of a negative handicap if the bowler's average is greater than 200.

 <<
SCR1 SCR2 + SCR3 + "Series total = " OVER + MSGBOX
3 / FLOOR "Average = " OVER + MSGBOX
IF DUP 200 < THEN
 200 SWAP - .8 * FLOOR
ELSE
 DROP 0
END
"New handicap = " OVER + MSGBOX 'HNCP' STO

 >>

Save this program as BWL5 and single step through it a couple of times, once with the average
less that 200 and once with it over 200. BWL3 is actually a more efficient program than this
one, but this gives us a good example of how the IF statement works, and it is easier to read this
program and understand what it is doing.

For an example of a CASE structure we will write a program to solve the quadratic
equation ax2 + bx + c = 0. We will assume we are only interested in real solutions, so we will
write the program to output a message about the type of roots, but only give the values in the case
a double root or of two distinct real roots.

13

 <<
"Enter the leading coefficient" "" INPUT ↵ OBJ→
"Enter the coefficient of the linear term" "" INPUT ↵ OBJ→
"Enter the constant term" "" INPUT ↵ OBJ→
0 a b c d→
 <<

b SQ 4 a * c * - 'd' STO
CASE
 d 0 > THEN

"The roots are " b NEG d + 2 a * / x
DUP
IF FP 0 == THEN

R I→
END

+ " and " + b NEG d - 2 a * / x
DUP UNROT + SWAP
IF FP 0 THEN≠

"." +
END

 END
 d 0 == THEN

"There is a double root at " b NEG 2 a * /
DUP UNROT + SWAP
IF FP 0 THEN≠

"." +
END

 END
 "The roots are complex."
END

 >>
MSGBOX

 >>

The NEG function to change the sign of the element in level 1 can be entered by pressing
the +/- key. The “extra” IF statements that include the function FP are there to make the output
"pretty." FP can be found at LS MTH F5-REAL NXT F6-FP. It is explained on page 3-14 of
UG. Save this program as QDEQ and single step through it with different values of a, b, and c

14

so that you can see all three paths of the CASE in action. Be sure to try examples with both
integer and non-integer roots to see why the “extra” IF statements and the use of FP and R I→
were necessary.

Tuition at Podunk University is $25000 per year. A student who is the child of a PU
employee or the child of a clergy gets a 10% discount. If the student is the child of both a PU
employee and a clergy, the discount is 15%. We will write a program that will ask if the student
fits either of those conditions, then compute the bill.

 <<
 "Child of employee? Enter Y or N" { "" } INPUT↵ α
 "Child of clergy? Enter Y or N" { "" } INPUT↵ α
 1 e c m→
 <<
 CASE
 e "Y" == c "Y" == AND THEN .85 <m' STO END
 e "Y" == c "Y" == OR THEN .9 <m' STO END
 END
 25000 m *
 >>
 "Tuition" →TAG
 >>

The coding { “” } puts the calculator into alphabetic mode before the INPUT isα
executed, so the user need only press the appropriate letter key, without pressing AS first. The
question mark, ?, can be entered by AS RS 3. Save this program as TUIT and single step
through it with various choices of input to see how the AND and OR work.

EXERCISE SET 5

1. Add the coding necessary to your solution of Problem 2 of Exercise Set 4 so that if the time to
the desired exit is more than four hours a message box will warn the user of the need to plan an
intermediate rest stop. Call this program TMR4.

2. Write a program to check a customer's credit availability. The user should be prompted to
enter the customer's outstanding balance, current purchase, and credit limit. If the balance plus
the current purchase is less than or equal to the credit limit a message box will say the purchase is
approved, otherwise it will disapprove the purchase. Call this program CRD

3. Change the example GPAY above to compute withholdings and net pay. If the employee

15

earned no more than $50, there is no withholding. If the earnings are more than $50 but no more
than $300, withhold 10% of the excess over $50. If the earnings are over $300, but no more than
$500, withhold $25 plus 15% of the excess over $300. If the earnings are over $500, withhold
$55 plus 20% of the excess over $500. There should be three lines of tagged output giving the
gross wages, the withholding, and the net wages. Call this program NPAY1

4. Change Problem 3 of Exercise Set 4 so that if x is not between x1 and x2 inclusive a message
box will give the user a warning that the program is extrapolating. Save this program as LIN3.

Section 6 - Looping

One of the great powers of computer and calculator programs comes from the ability to
repeat a sequence of commands as many times as may be necessary. The HP49G+ provides five
different looping structures, only three of which will be discussed here. Those interested in the
other looping forms should consult pages 21-53 through 21-63 of UG..

The first looping structure we will explore is the WHILE structure. It has the form

WHILE condition REPEAT
block

END

The condition here is the same as in Section 5 and the REPEAT command works very much like
the THEN command discussed in Section 5. When the program reaches REPEAT the object is
removed from level 1 of the stack, if it is true (i.e. any nonzero real number) the block of
instructions is executed then the program returns to the condition and tests it again. Notice that
something must happen to eventually make the condition false, or the program will loop forever.
When the condition is false (i.e., the object on level 1 is a zero), the program jumps to the first
command after the END. All the elements for the WHILE structure can be found in LS PRG
F3-BRCH F6-WHILE, but as with IF, LS F6-WHILE from the BRCH menu will produce the
whole WHILE...REPEAT...END structure.

As an example we will write a program that is a variation on our earlier program to
compute our bowling average. In this case we will assume that we are simply out for an evening
of bowling with friends and don't know how many games we will bowl. We will have the
calculator prompt the user for the next score until a negative score is entered, which will be a
signal (called a sentinel) that there are no more scores.

 <<
0 0
"Enter first score." "" INPUT OBJ→

16

WHILE DUP 0 REPEAT≥
+ SWAP 1 + SWAP
"Enter next score or -1 to quit." "" INPUT ↵ OBJ→

END
DROP
IF SWAP DUP 0 > THEN

/ "Average" →TAG
ELSE

"No scores to average." MSGBOX DROP2
END

 >>

Save this program as BOL1 and single step through it at least twice, once with several scores
before the -1 is entered and once with -1 entered as the first score. See how it all works.

The second looping procedure we will consider is the FOR structure, which has the form

first last FOR index
block

NEXT

In this structure first is an integer that represents the first value of the loop index, last is an
integer that represents the last value of the loop index, and index is the loop index and is a local

variable that lives only while the loop is in effect. WARNING: Because to thei = −1
calculator, using i as the loop index can sometimes cause strange behavior. Although it is legal,
it is better to choose some other letter for index. When the FOR structure is encountered first
and last are removed from levels 2 and 1 of the stack respectively, the value first is assigned to
index and the block is executed. When NEXT is encountered index is increased by 1; if it is still
less than or equal to last, the block is executed again; if index is greater than last, the program
jumps to the next command after NEXT. This continues until the loop is satisfied, that is, until
index becomes greater than last. As soon as the loop is exited, the index is no longer available.
The FOR structure can be found at LS PRG F3-BRCH F4-FOR. As in the previous structures
we have studied, LS FOR from the BRCH menu types in the complete structure.

As an example, we shall rewrite BOL1 to prompt the user for the number of games
played, then ask for exactly that number of scores.

 <<
"How many games?" "" INPUT OBJ→
IF DUP 0 > THEN

17

 n→
 <<

0 1 n FOR k
"Enter score " k + "" INPUT +OBJ→

NEXT
n / "Average" →TAG

 >>
ELSE

"No scores to average." MSGBOX DROP
END

 >>

Save this program as BOL2 and single step through it at least twice, once with a positive first
input and once with zero as the first input. It won't show on this program because it is protected
by the IF statement, but if last starts smaller than first the FOR loop will still be executed once.

A minor variation of the FOR loop structure is the START loop structure:

first last START
block

NEXT

This is used to loop a fixed number of times when the value of the index is not needed. We
could, for example have written the previous program as

 <<
 "How many games?" "" INPUT OBJ→
 IF DUP 0 > THEN
 DUP 0 SWAP 1 SWAP START
 "Enter score." "" INPUT +OBJ→
 NEXT
 SWAP / "Average" →TAG
 ELSE
 "No scores to average." MSGBOX DROP
 END
 >>

This way, however, the prompt is not quite as user friendly. This version also demonstrates that
it was not necessary to use the local variable n. Save this program as BOL3 and try it with a

18

positive for the number of games and with 0 for the number of games. The START...NEXT
structure can also be created from the BRCH menu with LS F3-START.

EXERCISE SET 6

1. Change Problem 1 of Exercise Set 4 to prompt the user to enter the price of each item the
customer is purchasing until a zero is entered. (We are assuming that nothing costs $0, so it can
serve as a sentinel.) It should then display the subtotal, the tax, and the total as tagged output.
Call this version TAX4.

2. Professor Dinklesmith gives 10 quizzes during the semester and the final grade is the average
of the 10 scores. Each quiz is worth 100 points. An average of 90 or better is an A, 80 or more
but less than 90 is a B, 70 or more but less than 80 is a C, 60 or more but less than 70 is a D, and
less than 60 is an F. Write a program that will prompt the user for the ten scores then output the
average with the appropriate letter grade as a tag. For example, if the average is 87.3, the output
should be B:87.3. Call this program GRD.

Section 7 - Flags

The HP49G+ has 256 user flags (numbered 1 to 256) that can be thought of as built in
boolean variables. LS PRG F4-TEST NXT NXT will take you to a menu with six flag
commands; SF = set flag, CF = clear flag, FS? = is flag set?, FC? = is flag clear?, FS?C = is flag
set and clear it, and FC?C = is flag clear and clear it. To use any of the commands a flag number
must be on level 1 of the stack. When the command is executed, the number is removed from
the stack, and in the case of the last four commands, the appropriate response, 1 for yes or true
and 0 for no or false, is placed on level 1. For more details on these commands see Chapter 24 of
UG.

Suppose our bowling league is for families with children and the kids get a little extra
handicap depending on their ages: those at least 10 but less than 13 get an extra 5 pins, those at
least 7 but less than 10 get an extra 10 pins, and those less than 7 get an extra 15 pins. We will
rewrite BWL4 to incorporate these new rules and call it BWL6. Run it with different choices for
the ages of the bowler to see how it works.

 <<
"Is the bowler less than 13? Y/N" { “” } INPUT↵ α
IF "Y" == THEN

"Enter age group: ↵ ≤ < =10 13 1age
“↵ ≤ < = ↵ < =7 10 2 7 3age age .

"" INPUT SFOBJ→

19

END

"GAME 1 SCORE" "" INPUT OBJ→
"GAME 2 SCORE" "" INPUT OBJ→
"GAME 3 SCORE" "" INPUT OBJ→
0 0 0 s1 s2 s3 tot avrg hncp→
<<
 s1 s2 + s3 + 'tot' STO
 tot 3 / FLOOR 'avrg' STO
 200 avrg - 0 MAX .8 * FLOOR
 CASE

1 FS?C THEN 5 + END
2 FS?C THEN 10 + END
3 FS?C THEN 15 + END

 END
 'hncp' STO
 tot "TOTAL" →TAG
 avrg "AVERAGE" →TAG
 hncp "HANDICAP" →TAG
>>

 >>

Notice that the program will leave no flags set when it ends. It is wise to make sure that
any program that uses flags leaves them all clear at the end. If there are several flags to clear at
once, their numbers can be put in a list on level 1 of the stack, the CF will clear them all.

EXERCISE SET 7

1. Change Problem 3 of Exercise Set 5 as follows: If the employee is over 62 or disabled, the
withholdings are reduced by 10% of the initial calculation; if the employee is both over 62 and
disabled, the withholdings are reduced by 15% of the initial calculation. Be sure to make
appropriate use of flags. Save this program as NPAY2.

Section 8 - Arrays

It is assumed that the reader is familiar with the use of arrays and their associated
commands on the keyboard and various menus. An array may be a vector or a matrix. These are
discussed in chapters 9, 10 and 11 of UG. Besides the GET and PUT commands to access
specific elements of an array, there is an algebraic way of accessing them that is frequently much

20

more convenient in programs. In what follows let v be a vector and M be a matrix. Then 'v(k) +
7' EVAL will get the kth element of v, add 7 to it, and leave the result on the stack. The
sequence 12 'M(2,5)' STO will replace the element in the 2nd row and 5th column of M with the
number 12. We will also be making use of several memory arithmetic commands in what
follows. These commands are not described anywhere in UG so they are explained below.
These commands can be found in LS PRG F2-MEM F6-ARITH.

The first four are STO+, STO-, STOx, and STO/. They require the name of a variable to
be on either level 1 or level 2 of the stack and a constant on the other of level 1 or level 2. When
one of these four commands is executed the contents of the variable replaces the variable name
on the stack, the requested arithmetic is performed (if the values are compatible), and the result is
removed from the stack and stored in the named variable. For example, suppose the vector [1, 3]
is on level 2 of the stack and the variable <A', which contains a 4, is on level 1. After executing
STOx, the variable A will contain the vector [4, 12]. These four commands work with any
combination of real numbers, complex numbers, and arrays so long as the requested arithmetic is
defined. STO+ also works for concatenation of lists and strings.

The fifth and sixth commands are INCR (increment) and DECR (decrement). These
commands require the name of a variable on level 1 of the stack. For most applications the
variable will contain an integer. Executing one of these commands will remove the name from
the stack, increment or decrement the variable by 1 and leave the new value on level 1 of the
stack.

On the second page of this menu are three more commands, SINV (inverse), SNEG
(negative), and SCONJ (conjugate). They require the name of a variable on level 1 of the stack.
Executing one of the commands will remove the name from the stack and take the inverse,
negative, or conjugate of the contents of the variable.

Suppose that A is a vector of unknown length that contains integers and that has been
stored in memory. We want to find the average of the elements of A to one decimal place and
then determine if one of the elements of A is equal to that average. The SIZE command can be
found at LS MTH F2-MATRX F1-MAKE F6-SIZE and GET is LS MTH F2-MATRX F1-
MAKE NXT F1-GET.

 <<
A SIZE 1 GET 1 0 0 n k sum av→
 <<

1 n FOR j
'sum' 'A(j)' EVAL STO+

NEXT
sum n / 'av' STO 1
WHILE n 1 FC? AND REPEAT≤

IF 'A(k)==av' THEN
1 SF k

21

ELSE
'k' INCR

END
END
"Average = " 1 FIX av + ". It is " + STD↵
IF 1 FS?C THEN

"The " + k R->I +
CASE

k 1 == THEN "st" END
k 2 == THEN "nd" END
k 3 == THEN "rd" END
"th"

END
+ " element of A." ↵

ELSE
"NOT IN A."

END
+ MSGBOX

 >>
 >>

The command STD, found in LS PRG NXT F4-MODES F1-FMT F1-STD, puts the display
back to standard. Save this program as FDAV and single step through it with several different
vectors A to see how it works. Be sure to choose values that will test all the paths through the IF
and CASE structures.

EXERCISE SET 8

1. With a vector A of unknown length as in the example FDAV above, write a program, FDSM,
to go through the vector to find the smallest value and to see if there is more than one element
with that smallest value. The output should include the smallest value, the index of the first
occurrence of the smallest value, and a statement about whether or not that value is unique.

Section 9 - Procedures

It is possible for one program to call another program. The program that is called from
another is referred to as a procedure. There are two main reasons for using procedures.

The first reason is to avoid rewriting the same code when the same thing must be done at
several places in a program. For example, suppose you need to find the median of several sets of

22

numbers. The process of finding the median is the same for each set, only the numbers change. It
would therefor be more efficient to write a procedure to find the median of an arbitrary set of
numbers and calling it each time it is needed than to include the code for the complete process at
each point.

Suppose a city is divided into quadrants. We have random samples of the cost (in
thousands) of homes in each of the quadrants. The data for the north east quadrant is stored in a
list called NE, for the north west quadrant in a list called NW, for the south west quadrant in a list
called SW, and for the south east quadrant in a list called SE. (Recall that in HP terminology a
"list" is a set of objects contained in braces, {}. Any type of objects can be contained in a list.)
We wish to find the median cost of homes in each of the quadrants and in the city as a whole. The
program MEDN below is a procedure to find the median of the numbers in a list on level 1 of the
stack, and the program FMED calls that procedure 5 times to find the median of each quadrant
and for the city as a whole. The program SM is a procedure to display each median. Enter the
following three programs into your calculator.

 <<
 NE MEDN "NE" SM NW MEDN "NW" SM SW MEDN "SW" SM SE MEDN
 "SE" SM NE NW + SW + SE + MEDN "CITY" SM
 >>

Save the above program as FMED.
NOTE: When two lists are "added" with +, they are concatenated into one list. The +

sign can also be used to add an object to a list. If the list is on level 2 and an object is on level 1,
the object will be added to the end of the list. If the object is on level 2 and the list on level 1, the
object is added to the beginning of the list. See Chapter 8 of UG for more information about list
manipulation commands.

 <<
DUP SIZE a n→

 << a SORT 'a' STO
 IF n 2 MOD THEN
 a n 2 / CEIL GET
 ELSE
 n 2 / DUP 1 + a SWAP GET SWAP a SWAP GET + 2 /
 END
 >>
 >>

The CEIL function, (LS MTH F5-REAL NXT NXT F4-CEIL), is described on page 3-14 of

23

UG. Save the above program as MEDN.

 << "Median for " SWAP + " = " + SWAP + MSGBOX >>↵

Save the above program as SM.
Now create the four lists of data shown below and save them with the name indicated.

These files, and the file needed in Section 10, can be downloaded from

http://www.thiel.edu/mathproject/Itphpc/default.htm

onto your computer then transferred to the calculator if you have the HP connectivity kit installed
on your computer. The connectivity kit is on the CD that comes with the calculator or can be
downloaded from the HP Web site at

http://www.hp.com/calculators/graphing/index.html

click on "Support" then follow the appropriate links.

NE = { 89 105 97 120 101 94 142 121 110 98 109 132 126 114 91 126 173 }

NW = { 234 159 197 348 288 175 268 368 312 }

SW = { 129 85 101 114 104 125 103 178 161 155 179 150 103 161 145 127 158
 102 178 173 106 }

SE = { 105 131 131 120 94 90 142 138 122 87 83 136 109 129 98 91 121 141 128)

Now execute FMED and you should see the following results in message boxes:

"MEDIAN FOR NE = 110"
"MEDIAN FOR NW = 268"
"MEDIAN FOR SW = 129"
"MEDIAN FOR SE = 121"
"MEDIAN FOR CITY = 126"

NOTE: The sample sizes for the quadrants must be proportional to the number of homes
in each quadrant for the CITY median to be valid.

If you do not get the correct answers, use the techniques discussed in Section 3 to try to
correct the error. It is usually best to use the bottom up testing technique. That is, it is best to test

24

the lowest level procedures before the calling programs. To test SM, put a number on level 2 of
the stack and a name in quotes on level one. Press the SM button and see if you get the right
output. Next put a list of numbers on level 1 of the stack and press MEDN to see if the correct
median is being computed. Be sure to test with both an even and with an odd number of data
points in the list. Finally, check FMED. If you are using the single step procedure described in

Section 3, note that in the RUN directory there is a command called SST and one called SST↓.
If you use SST and you come to a procedure written by the user, such as a call to MEDN from

FMED the procedure will simply be executed in one step. If you use the calculator willSST↓
continue to single step through the called procedure. If one has done good bottom up testing,

 is almost never needed.SST↓
Notice that the procedures MEDN and SM are very different in nature. MEDN is a

general purpose procedure that can easily be used as a stand alone program or as a procedure for
another program. One can manually put a list of numbers on the stack and press the MEDN
command or, as in the example above, have a program place a list on the stack and call MEDN.
In either case, MEDN will find the median and leave it on the stack ready to be used as needed.

On the other hand, SM is a special purpose procedure intended specifically for FMED to
display its results. It could, of course be used by other programs, but it was written with this
particular program in mind. Clearly the coding for SM could have been included in MEDN,
which would have made FMED shorter since it would have required only one procedure call for
each data set, but it would have negated the generality of MEDN. This is a tradeoff that the
intelligent programmer must always keep in mind. In this case it seemed more reasonable to keep
MEDN general since it could have many other applications with the SM coding left out.

The other reason for using procedures is to make long programs easier to write,
understand, and test. In the classical top down design approach to programming, a large problem
is broken down into smaller parts called modules. Each module is then broken down into smaller
modules until each module in a relatively simple problem. Then each module is coded as a
special purpose procedure. For example, a payroll program may be broken down into modules to
compute the gross pay, compute deductions, update year to date totals, and print a check. The
gross pay module may have separate modules to compute regular pay and overtime pay. The
deductions module could contain separate modules to compute federal taxes, state taxes, local
taxes, insurances, 401K's, etc. We will not code this example as it would take too much time and
space, but if you have a long program to write, this approach is highly recommended. The logic
of the program is much easier to follow and the bottom up testing technique discussed above
makes it much easier to find errors.

25

EXERCISE SET 9

1. Given two sides a and b and the included angle C of a triangle, the third side, c, can be found

with the law of cosines Given the three sides a, b, c of a triangle,c a b ab C= + −2 2 2 cos().

the area can be found by Heron's formula where area s s a s b s c= − − −()()() ,
s = (a + b + c)/2. Given four sides and one angle of a convex quadrilateral, the area can be found
by drawing the diagonal between the two vertices that do not include the given angle. Use the law
of cosines to find the length of the diagonal, then use Heron's formula to find the areas of the two
triangles that are formed and add these areas. Write general purpose procedures for the law of
cosines, LCOS, and for Heron's formula, HERN. Write a program FDAR that uses those two
procedures to find the area of a convex quadrilateral given the four sides and one angle. FDAR
should prompt the user for the input and the output should be tagged.

Section 10 - Recursion

It is possible for an HP program to call itself. This is called recursion. There are many
cases in mathematics and computer science where recursion is an effective tool. Three classical
examples are given below. The first two demonstrate effective uses of recursion, the third is an
example of where recursion should NOT be used.

The first example is n factorial. This can be defined recursively as

0! = 1
n! = n(n-1)! for n = 1, 2, 3, ...

This can be coded recursively as follows:

 <<
R I→
IF DUP 0 == THEN

 DROP 1 R I→
 ELSE
 DUP 1 - NFCT *R I→
 END
 >>

Key this into your calculator and save it as NFCT. Try it with 0 and 6. You should get 1
and 720 respectively. This is better than the built in factorial function (LS MTH NXT F1-PROB

26

F3-!) because it always gives and integer answer. The built in function converts to scientific
notation at 15!, but it does give exact answers up to 17! because the missing digits are all zeros.
At 18!, however, this program gives the exact value of 6402373705728000 while the built in
function gives 6.40237370573E15. The use of in sample program QDEQ was simply partR I→
of the output beautification process, but in this program it is necessary to keep the calculator
working in integer mode to get the extra accuracy.

The second example is a binary search, which is a very fast way for finding an element of
an ordered list. The program is written to "guess" that the middle element is the one being sought.
If it is, the task is finished. If it is not, then the element being sought is to the left or to the right of
the middle, so we recursively search the left half or the right half of the list, as the case may be.
Suppose, for example, that we have the following list of records in the calculator where each
record is a list consisting of a record number and a name. This file can be downloaded from the
Web to your computer at http://www.thiel.edu/mathproject/Itphpc/default.htm then transfered to
your calculator if you have the calculator connectivity kit installed on your computer.

NLST = { { 103 "BOB BUBBLES" } { 107 "DOLLY DULL" } { 123 "ANNY
ANCHOR" } { 130 "QUINCY QUICK" } { 141 "LARRY LUCKY" } { 173 "HELEN HAPPY"}
{ 211 "ULMA UPSY" } { 229 "VIOLET VOCAL" } { 256 "OLGA OLF" } { 277 XAVIOR
XANY" } { 282 "MARK MUMPS" } { 298 "WALTER WACKY" } { 317 "FRED FREEK" }
{ 333 "YOLANDA YELLER" } { 361 "NELL NURDY" } { 375 "TOM TALL" } { 380
"KATHY KRUNCH" } { 381 "PAT PICKLE" } { 382 "ZELDA ZILCH" } { 383 "JIM JELLY" }
{ 384 "SANDY SLIM" } { 385 "ED ELFY" } { 409 "CHUCK CHUNKY" } { 419 "RICH
RAGS" } { 423 "IRMA IRKY" } { 431 "GUSS GUSHY" } }.

The objective is to write a program that will prompt the user for a record number and
return the name of the corresponding person, or "NOT FOUND" if the number is not in the list.
The solution is given below. The first program is a recursive binary search that takes the list, the
first element to be searched, the last element to be searched, and the target number from the stack
and returns the location of the required record, or zero if the record is not found. The second
program prompts for the record number, sets up the stack to start the recursive process, and calls
the search program. If the record was found it accesses the record and outputs the name, if the
record was not found it outputs "NOT FOUND" to a message box.

 <<
 s a b t→
 <<
 IF a b > THEN
 0
 ELSE

27

 a b + 2 / CEIL c→
 <<
 s c GET 1 GET
 IF DUP t == THEN
 DROP c
 ELSE
 IF t > THEN
 s a c 1 -
 ELSE
 s c 1 + b
 END
 t BSCH
 END
 >>
 END
 >>
 >>

Save the above program as BSCH.

 <<
 NLST DUP 1 SWAP SIZE "Enter record number" "" INPUT OBJ→
 BSCH
 IF DUP 0 == THEN
 DROP "NOT FOUND"
 ELSE
 NLST SWAP GET 2 GET
 END
 MSGBOX
 >>

Save the above program as FIND. Enter the data set and try the program by pressing
FIND. Study BSCH and make sure you understand how it works. Notice that BSCH will work
on any list of records so long as the record number is the first element in the record. FIND,
however, is specific to this particular list of records.

Another application of BSCH is to delete an element from the list. The following
program prompts the user for a record number, sets up the stack for the recursive process and calls
the search program. If the record was found, it is deleted from the list NLST. If the record is not
found, "NOT FOUND" is output to the stack.

28

 <<
 NLST DUP 1 SWAP SIZE "Enter record number" "" INPUT OBJ→
 BSCH
 IF DUP 0 == THEN
 DROP "NOT FOUND"
 ELSE
 n→
 <<
 CASE
 n 1 = THEN
 NLST TAIL
 END
 NLST SIZE n == THEN
 NLST REVLIST TAIL REVLIST
 END
 NLST 1 n 1 - SUB NLST n 1 + NLST SIZE SUB +
 END
 'NLST' STO "RECORD DELETED"
 >>
 END
 MSGBOX
 >>

Save the above program as DELT. Save NLST with another name so you can restore it to the
original after trying DELT, Be sure you understand how it all works.

The last example is using recursion to find the Fibonacci numbers. These are defined by

F0 = 0, F1 = 1, and Fn = Fn-1 + Fn-2 for n = 2, 3, 4, ...

This is easily coded as

 <<
 n→
 <<
 IF n 1 THEN≤
 n
 ELSE
 'FIBR(n-1)' EVAL n 2 - FIBR +
 END

29

 >>
 >>

Enter the above program and save it as FIBR. Notice that we have used two different methods for
the recursive calls, algebraic: 'FIBR(n-1)' EVAL, and using RPN logic: n 2 - FIBR. There is no
particular advantage of one method over the other, it was simply our intent to demonstrate both.
Use the program to evaluate F6 = 8.

Any program that can be written recursively can also be written as a loop. Below is a
version of the Fibonacci program written as a loop.

 <<
 n→
 <<
 IF n 1 THEN≤
 n
 ELSE
 0 1 2 n
 START
 SWAP OVER +
 NEXT
 SWAP DROP
 END
 >>
 >>

Enter the above program and save it as FIBL. It is not nearly as elegant or easy to follow as the
recursive version, but try finding F10 with both programs and you will easily see the advantage of
the loop version. When recursion applies, it usually makes programming much easier, but as this
example shows, it must be used with caution.

EXERCISE SET 10

1. One source of recursive formulas in mathematics is in the infinite series solutions to
differential equations. A typical case for a second order differential equation has the form

a0 = 1, a1 = 1, aj = f(j)aj-2 for j = 2, 3, 4, ...

where f(j) is some function of j. The solution of the differential equation is then

30

x t b a t b a tk
k

k
k

kk

() = + +
+

=

∞

=

∞

∑∑0 2
2

1 2 1
2 1

00

where b0 and b1 are given by the initial conditions.

(a) Write a recursive procedure called FNDA that will evaluate the a's given by

a0 = 1, a1 = 1, for j = 2, 3, 4, ...a
j

j j
aj j= −

+
− −

2
1 2()

,

(b) Write a program called FNDC that will prompt for the initial conditions b0 and b1 and output
the values of the coefficients

b a b a b a b a b a b a0 0 1 1 0 2 1 3 0 8 1 9, , , , ..., ,

through the coefficient of t9. The output should be tagged.

2. Alter BSCH so that given a new record number it returns the location where the new record
should be inserted to maintain the list in order or a zero if the record number already exists. Call
the new version SRHB. Write a program that prompts the user for the number and name of a new
record. It should use SRHB to find where the new record should be inserted or if the record
number already exists. It should then insert the new record into NLST or give an error message if
the record number already exists. Call this program NSRT. Put NLST and all the programs
associated with it into a directory and create a custom menu for that directory with FIND, NSRT,
and DELT. See page 20-2 of UG for instructions on how to create a custom menu.

31

INDEX

, 14α
<< >>, 1, 7
=, 11
==, 11

, 7→
, 1, 13, 21↵

?, 14
ABS, 2
ALL, 6
ALPHA shift, iv
AND, 11, 14
arrays, 19
arrow keys, iv
AS, iv
BEGIN, 6
boolean operations, 11
boolean values, 11
boolean variables, 18
bottom up testing, 24
branching, 10
BRCH, 11, 15, 16, 18
CANCEL, 1
carriage return, 1
CASE, 10
CEIL, 22, 23
CF, 18, 19
concatenate, 8, 22
condition, 10
connectivity kit, 23
COPY, 6, 8
CUT, 6
DA, iv
DBUG, 5
Debug, 5
DECR, 20
DEL, 6
DEPTH, 3

directory, 1
down arrow, iv
download, 23
DROP, 3
DROP2, 4
DROPN, 4
DUP, 3
DUP2, 3
DUPDUP, 4
DUPN, 4
edit, 5
ELSE, 10
END, 6, 10
F?, iv
Factorial, 25
FC?, 18
FC?C, 18
Fibonacci numbers, 28
FIND, 6
FIX, 2
Flags, 18
FLOOR, 4
FOR, 16
FP, 13
FS?, 18
FS?C, 18
GET, 20
global variables, 7
GOTOL, 6
Heron's formula, 25
HLT, 5
HMS, 2
hold, iv
Home directory, 1
IF, 10
INCR, 20
Input, 7, 9, 14
INS, 5

32

KILL, 5
LA, iv
Law of cosines, 25
left arrow, iv
left shift, iv
linear interpolation, 5
list, 22
local variable, 7, 9
loop index, 16
looping, 15
LS, iv
matrix, 19
MAX, 2
median, 22
MEM, 20
memory arithmetic, 20
menu commands, iv
message box, 7
move around the program, 5
MSGBOX, 8
NDUPN, 4
NEG, 13
NEXT, 6, 16
NIP, 4
NOT, 11
number format, 2
OR, 11, 14
output, 7, 9
OVER, 3
PASTE, 6, 8
PICK, 3
PICK3, 3
PRG annunciator, 1
procedure, 21, 24
program mode, 1
prompt, 7
quadratic equation, 12

, 9, 14, 25R I→
R/N, 6

RA, iv
recursion, 25
relational functions, 11
REPEAT, 15
REPL, 6
right arrow, iv
right shift, iv
ROLL, 3
ROLLD, 3
ROT, 3
RPN, iv
RS, iv
RUN, 5, 24
running a program, 1
sample programs

BOL1, 16
BOL2, 17
BOL3, 17
BSCH, 27
BWL1, 1
BWL2, 4
BWL3, 8
BWL4, 8
BWL5, 12
BWL6, 18
DELT, 28
FDAV, 21
FIBL, 29
FIBR, 29
FIND, 27
FMED, 22
GPAY, 12
MEDN, 22
NFCT, 25
QDEQ, 13
SM, 22
TUIT, 14

saving a program, 1
SCONJ, 20
SEARCH, 6

33

sentinel, 15
SF, 18
single stepping, 5
SINV, 20
SIZE, 20
SKIP, 6
SNEG, 20
soft key, iv
soft menus, iv
SST, 5, 24

, 24SST↓
STACK, 2
stack manipulation, 2
START, 17
STD, 21
STO+, 20
STO-, 20
STO/, 20
STOx, 20

string., 1, 7
SWAP, 3
system flags, iv
TAG, 7
tagged output, 7
THEN, 10, 11
TOOL, 6
top down design, 24
TYPE, 7
UA, iv
UG, iv
UNPICK, 3
UNROT, 3
up arrow, iv
variable, 7
vector, 19
WHILE, 15
XOR, 11

Return to Cover Page

	Cover
	Copyright
	Dedication
	Contents
	Preface
	Section 1 - What is a Program?
	Exercise Set 1

	Section 2 - Stack Manipulation
	Exercise Set 2

	Section 3 - Editing and Debugging
	Section 4 - Variables, Input, Output
	Exercise Set 4

	Section 5 - Branching
	Exercise Set 5

	Section 6 - Looping
	Exercise Set 6

	Section 7 - Flags
	Exercise Set 7
	Section 8 - Arrays
	Exercise Set 8
	Section 9 - Procedures
	Exercise Set 9
	Section 10 - Recursion
	Exercise Set 10
	Index

