
{ HOME WITH RPL }

"Introduction to"

"RPL"

"byfl

"Namir Clement Shammas"

EduCALC

{ HOME WITHRPL}

e ,,,Introduction-t0'|

- "RPL"

e
'”‘"by"

1: "Namir Clement Shammas"

EduCALC
Laguna Niguel, California

DISCLAIMER

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. IN NO EVENT SHALL
EDUCALC, OR THE BOOK AUTHOR (NAMIR CLEMENT SHAMMAS), OR THE
DISTRIBUTORS OF EDUCALC BE LIABLE FOR ANY DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS
OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, OR OTHER OCUENIARY LOSS) ARISING OUTOF THE USE OF
OR INABILITY TO USE THIS EDUCALC PRODUCT, EVEN IF EDUCALC HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright € 1990 by Namir Clement Shammas

HP48SX and HP41C/V are trademarks of the Hewlett-Packard company.
QuickBASIC and GW-BASIC are trademarks of Microsoft Corporation.
BASICA is a tradmark of IBM.

EduCALC
27953 CABOT RD.
LAGUNA NIGUEL, CA 92677

(714) 582-2637

Stock #2454

Dedication

To Richard Nelson

Table of Contents

Chapter 1: The HP48SX Stack

1
2
9

Operational Differences
Stack Manipulation Commands
Recovering Arguments

Chapter 2: The HP48SX Data Types

11
11
11
12
14
15
18
19
20
21
21
21
23
23
24
25
25

Overview
Name That Type
Real Numbers
Complex Numbers
Strings
Real Arrays
Complex Arrays
Lists
Global and Local Names
Program Objects
Algebraic Objects
Binary Integers
Graphic Objects
Unit Objects
Tagged Objects
Directory Objects
Other Objects

Chapter 3: Directories, Variables, and Programs

27
28
28
29
29
30
30
31
33
33
35
36
36
37
41
42
43

The HP48SX Directories
Creating a New Subdirectory
Removing a Subdirectory
Moving to Another Subdirectory
The Path to Your Door
Variables
Programs

Using Local Variables
Using Algebraic Objects
Mult-Level Programs
Reducing Program Levels
Accessing Global Variables

Calling Other Programs
Debugging Programs
Program Manipulation of Directories
Program Manipulating Programs
Program Guidelines

Chapter 4: Interactive Input and Output

45
46

Some Prompts Never Die!
Labeling the Output

47
47
48
49
51
52
53
53
54
55
35
58

The INPUT Command
Simple Input
Using a Default Input

Manipulating the Default Input
Tag-Aided Input

Input Validation
Other Input Control Parameters
Controlling the Screen Output
The HP48SX Bells and Whistles

Using Menus for Input
Building Custom Menus: A Crash Course
Menu Input

Chapter 5: Operators and Expressions

63
63
64
65
67
69
69
71
74
75
83

Mathematical Operators and Expressions
Real Numbers
Complex Numbers
Binary Integers
Real Arrays and Matrices
Complex Arrays and Matrices

Relational Operators
Boolean Operators
Concatenation Operators
Bitwise Operators
The EVAL Operator

Chapter 6: Decision-Making

87
90
91
97

The Single Alternative IF-THEN-END
Life Without GOTOs

The Dual-Alternative IF-THEN-ELSE-END
The Multi-Alternative CASE-END Structure

102 Nested Decision-Making Structures
104 The HP48SX Flags

Chapter 7: Loop Structures

111
115
120
121
122
128
135
137

The FOR-NEXT Fixed Loop Structure
The FOR-STEP Fixed Loop Structure
Manipulating FOR Loop Iteration
The START-NEXT and START-STEP Fixed Loop Structures
The DO-UNTIL Conditional Loop Structure
The WHILE-REPEAT Conditional Loop Structure
Nesting Loops
Open Loops: Who Needs Them?

Chapter 8: Error Handling

140
142
143

The IFERR-THEN-END Structure
The IFERR-THEN-ELSE-END Structure
Error-Proof Input

Chapter 9: Special and Non-Numerical Arrays

145
145
148
149
150
153
154
155
156
158
160
161
162
162
164
165
166
167
168
170
172
173

Chapter 10: Strings

177
179
181
183
187
188
190
192
194
196
198
200
202
203
205
207
210

Arrays of Strings
Storing Strings
Recalling Strings
Sorting Strings
Searching for Strings

Compound Arrays
Storing Compound Elements
Recalling Compound Elements
Sorting Compound Elements
Searching for Compound Elements

Hash Tables
Creating a Hash Table
Hashing Function
Inserting Data
Searching for Data
Deleting Data
Converting to Compound Arrays

Jagged Matrices
Storing Jagged Matrix Elements
Recalling Matrix Elements
Storing Rows
Recalling Rows

DELSTR
INSTR
IPOS
ITRNSL
LEFT
LOCASE
LTRIM
PADLF
PADEND
PADRT
REPSTR
REVSTR
RIGHT
RTRIM
TRIMEND
TRNSL
UPCASE

Listing Number
W

E
E
E
E
O
O
V

W
N
D
E
F
E
F
O
U
O
O
N
D
N
O
N
U
O
T
L
E
W
N

N
-
O

~
N
9

o)
)

o
o

o
0
N

D
L
L
E
D
L
L
E
L
E
L
E
L
L
L
E
L
E
L
E
L
P
L
V
L
W
L
U
O
L
W
L
L
L
L
W
L
W
W
L
W
W

N
=

~
o

w
n

>

~ S
w

S
S
9

~
N
S

°
.

.

\
O
0
0

~
o
v
u
:
n

7.10

7.11
7.12

7.13

8.1

Table of HP48SX Listings

Page Title

32 Program to evaluate f(X,Y) = X/Y + Y/X
33 Program to evaluate f(x) = 2X*2 - 5*X - 4
33 Quadratic Solver version 3.1

34 Quadratic Solver version 3.2

35 Quadratic Solver version 3.3
36 Random number generator
37 Dice simulator
38 Quadratic Solver version 3.4

41 Program TDIR
45 Quadratic Solver version 4.1

46 Quadratic Solver version 4.2

47 Quadratic Solver version 4.3

48 Quadratic Solver version 4.4
48 Quadratic Solver version 4.5

50 Program to demonstrate default input
51 Quadratic Solver version 4.6

53 DISP command demo, version 4.1
54 DISP command demo, version 4.2
54 DISP command demo, version 4.3

55 DISP command demo, version 4.4

59 Menu-aided version of the quadratic solver
87 Sale price calculator (RPN version)
89 Sale price calculator (algebraic version)
91 Financial program to solve for future or present

values
98 Progran that uses the CASE-END for financial

calculations
103 Program that uses the XOR operator in finanical

calculations
105 Program that calculates the circumference and area

of a circle (version 1)
107 Program that calculates the circumference and area

of a circle (version 2)
112 Program calculates factorial using FOR-NEXT loop
115 Program that calculates the average value of an

array
116 Program calculates factorial using FOR-STEP loop,

version 2
119 Program that uses Simpson’s method to integrate

the function y(x)
120 Array search function
121 Program that obtains the basic statistics of the

built-in random number generator
123 Program to iteratively solve for the square root

using Newton’s algorithm and a DO-UNTIL loop
126 Yes/No function
127 Program solves for the root of a function using

Newton'’s method, version 2

130 A number guessing game that uses a WHILE-REPEAT
loop

134 Array search function
135 Program that returns the largest element in a

matrix
136 Program that uses the Shell-Metzner algorithm to

sort a list of strings or numbers
140 Factorial function that traps negative arguments

using error trapping

n
u
d

W
N

0
0

Lo
/

o
0

o
L'

/
Lo

/
0

o
@

.
.

.
.

.

o
W

N
-

9.9

9.10

9.11

9.12
9.13
9.14

.15
9.16

9.17

9.18

9.19
9.20
9.21

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17

141

141

142
143

146

147

148

149

151

152

154

155

156

158

159

161

163

164
165

166

169

171
172
173
178
180
182
185
187
189

192
195
196
199
201
202
204
206
208
211

Factorial function that traps negative arguments
using defensive programming
Natural log function that guards against non-
positive arguments
Quadratic sqlver QS with a math error handling
Program that prompts for the coefficients of a
quadratic equation
Program STOR to store a string in an array of
strings
Program STOR to store a string in an array of
strings, version 2
Program RCAL to recall a string from an array of
strings
Program SORT to sort the elements of a string
array
Program LSRCH to search for a matching string in
the array
Program BSRCH to binary search for a matching
string in the array
Program STOR to store a compound element in a
compound array
Program RCAL to recall a compound element from an
array of compound data.
Program SORT to sort the elements of a compound
array
Program LSRCH to search for a matching compound
element in the array
Program BSRCH to binary search for a matching
compound element in the array
Program CRTHT to create an empty hash table
Function HASHF that returns the hash index
Program INSHT to insert compound data in the hash
table
Program SRCHT to search for data in a hash table
Program DELHT to delete a compound element from
the hash table
Program =SL to convert a hash table into a
compound array
Program STOIJ to store an element in a jagged
matrix
Program RCLIJ to recall a jagged matrix element
Program STOR to store a jagged matrix row
Program RCLR to recall a jagged matrix row
DELSTR version 1.0
INSTR version 1.0
IPOS version 1.0
ITRNSL version 1.0
LEFT version 1.0
LOCASE version 1.0
LTRIM version 1.0
PADLF version 1.0
PADEND version 1.0
PADRT version 1.0
REPSTR version 1.0
REVSTR version 1.0
RIGHT version 1.0
RTRIM version 1.0
TRIMEND version 1.0
TRNSL version 1.0
UPCASE version 1.0

Introduction

The HP48SX is a fascinating scientific machine. It is a worthy successor to the HP41C. The
HP48SX is packed with numerous features that offer a lot of power to the scientists and
engineers. This book introduces you to the RPL language used by the HP48SX. This book is
by no means a rewrite of the HP48SX manuals! Instead, it focuses on the aspects of the RPL
language itself. I am assuming that most of the readers are familiar with either the HP41C or
BASIC (Microsoft's QuickBASIC, in particular). Consequently, the book contains notes and
comments to such readers. My aim is to assist you in becoming more comfortable with
programming in RPL.

The first eight chapters present the various aspects of the RPL language. Chapter 9 implements
special arrays that can turn your HP48SX into a pocket database that stores your phone
numbers and addresses. Chapter 10 presents a string library that most of the readers should
find useful.

I would like to thank Richard Nelson for encouraging me to write this book. I would also like
to thank the Chicago CHIP chapter for holding the first HP48SX conference in June 1990. They
did a superb job in bringing together old PPC and CHHU friends. Finally, I would like to thank
Dr. Bill Wickesfor leading the tearn that designed the HP48SX. Keep up the excellent work Bill!

Namir Clement Shammas

January 1991

The HP48SX Stack

The HP48SX employs a stack that is a superset of the HP41C and most of the other Hewlett-
Packard RPN calculators. This chapter looks at the stack of the HP48SX and compares it with
that of the HP41C/CV/CX.

Operational Differences

The differences between the stacks of the HP48SX and those of the HP41C are as follows:

1. The HP41C has a fixed-size stack of four registers (or levels) named X, Y, Z, and T. The
HP48SX has a multi-level stack that is only limited by the amount of memory available. You
refer to a level by its number. The top of the stack is level 1, the next topmost level is 2, and
SO on.

2. When the HP41C stack drops due to the execution of a function or math operation, the T
register maintains its value while the other registers shift data. No similar mechanism exists
in the HP48SX. This is part ofthe machine’s multi-level stack feature. This difference is worth
noting if you intend to use some HP41C programming tricks with the new machine.

3. The stack of the HP41C essentially is dedicated to storing floating-point numbers. By
contrast, the stack of the HP48SX is able to store a variety of objects (or data types, if you like).
The partial list of objects includes floating-point numbers, complex numbers, strings, lists,
arrays, matrices, and graphics objects. Thus, the HP48SX is a heterogeneous stack, while that
of the HP41C is a homogenous one.

4. The concept of the HP41C LastX register has been expanded in the HP48SX to include the
last argument, menu, command, and stack contents.

5. The HP48SX has a greater reliance on the stack to supply arguments. For example, to store
a value from the stack into a variable, you need to push the name of the variable into the stack
before issuing a STO command. This is quite different from issuing a STO 00, for example, on
an HP41C to store a number in the register 00. The HP41C works by allowing you to specify
some of the arguments as part of the command. Not so with the HP48SX!

Stack Manipulating Commands

The commands that manipulate the HP48SX stack are very similar to those of the stack-
oriented FORTH language (RPL's cousin). These commands are:

1. CLEAR. This command clears the entire stack of the HP48SX. It is similar to the CLST

Chapter 1. The HP48SX Stack

command on the HP41C. The difference lies in the fact that in the HP41C the stack registers
are filled with zeroes. On the HP48SX all of the objects in the stack are dropped (or popped off,
if you like).

2. DEPTH. This command returns the number of objects in the stack, regardless of their types.
The result is pushed into the stack. This command has no equivalent in the HP41C, since a
four-stack register is always at work.

=
N

W
b

INPUT STACK

NAA"

‘FIRST’
 2.00

= number of
objects = 3

 =
N
N

W
b

OUTPUT STACK

"AA"

‘FIRST'

2.00
 3.00 <= result

<= top of the
stack

Figure 1.1. Using the DEPTH command.

3. DROP. This command drops (or pops off, if you prefer) the object in level 1.

N
W

b

INPUT STACK

"Hello Jim"

"M"

'FIRST’
 2.00 object

<== topmost stack

N

W
b

OUTPUT STACK

"Hello Jim"

.AA"

 'FIRST’

Figure 1.2. The DROP command.

4. DROP2. This command causes the objects in levels 1 and 2 (that is, the two topmost objects
in the stack) to be popped off the stack. The DROP2 command is a shorthand for issuing two
DROP commands.

Chapter 1. The HP48SX Stack 3

INPUT STACK OUTPUT STACK

4 "Hello Jim" 4

3 “"AA" 3

2 ‘FIRST’| <== next to topmost 2 "Hello Jim"
stack object

1 2.00| <== topmost stack 1 "AA"
 object

Figure 1.3. Using the DROP2 command.

4. DROPN. This command causes N objects in levels 2 through N + 1 to be popped off the stack.
The value of N is in level 1 and does not enter in the number of dropped levels since it is always
dropped. If N is less than 1 (zero or negative), it is the sole object dropped from the stack.

INPUT STACK OUTPUT STACK

"Hello Jim"

"AA" —T_‘ 3=N+1

"FIRST" _T-z 2

2.00| <=N, the number of
objects to pop in
levels 2 to N+l

=
N

W
b

=
N

W
s

"Hello Jim"
Figure 1.4. Using the DROPN command.

Chapter 1. The HP48SX Stack 4

5. DUP. This command duplicates the object in level 1. This is similar to a RCL X command
on the HP41C. It is a convenient way of duplicating an object before applying various functions
to it.

INPUT STACK OUTPUT STACK

4 4 "AA"

3 "AA" 3 ‘FIRST’

2 ‘FIRST’ 2 2.00

1 2.00| <== the duplicated 1 2.00
object

Figure 1.5. Using the DUP command.

6. DUP2. This command duplicates the object in levels 1 and 2. The result is that the objects
in levels 1 and 3, and levels 2 and 4 are equivalent. This command is equivalent to the
following set of HP41C commands:

STO 2

X <> Y

STO T

X <> Y

This command is a convenient way ofduplicating object pairs before applying various functions
to them.

Chapter 1. The HP48SX Stack 5

]

INPUT STACK OUTPUT STACK

5 “"AA"

4 4 ‘FIRST'| < Copied in
the same

3 “"AA" 3 2.00| < order

2 ‘FIRST' <== the duplicated 2 ‘FIRST'| <
object

1 2.00| <= the duplicated 1 2.00| <
object

Figure 1.6. Using the DUP2 command.

7. DUPN. This command empowers you to duplicate N objects in the stack. The value of N is
located in level 1 and the duplicated objects are found in levels 2 through N+ 1. The duplication
process pops N out ofthe stack. The order ofthe duplicated objects is preserved, as in the DUP2
command. This command is an example of HP48SX commands that retrieve its arguments
from the stack. The DUP and DUP2 commands are equivalent to DUPN with 1 and 2 placed in
level 1, respectively.

INPUT STACK OUTPUT STACK

4 4

3 "AA" 3 "AA"

2 ‘FIRST’ 2 ‘FIRST’

1 1.00| <=== the number of 1 ‘FIRST'
duplicated objects

Figure 1.7. Using the DUPN command.

8. OVER. This command pushes a copy of the object in level 2 into level 1, and is equivalent
toa RCL Y on the HP41C. The OVER command should be used instead of the SWAP command
when an additional copy of the object in level 2 is needed in level 1.

9. PICK. This command enables you to push a copy of an object at a level greater than 1. The

Chapter 1. The HP48SX Stack 6

INPUT STACK OUTPUT STACK

4 4 "AA"

3 "AA" >3 ‘FIRST’

2 ‘FIRST’| <=== the duplicated 2 2.00
object

1 2.00 > 1 ‘FIRST’

Figure 1.8. Using the OVER command.

index, N, of the accessed level is located in level 1. Therefore, the command PICK copies the
object in level N+ 1 (that is N levels higher that level 1)

INPUT STACK OUTPUT STACK

4 "AA" 4 "AA"

3 ‘FIRST’ 3 ‘FIRST’

2 2.00 2 2.00

1 4.00| <== the index of the 1 "AA" |<
copied level

Figure 1.9. Using the PICK command.

10. ROLL. This command empowers you to roll up the stack. Unlike the RUP command in the
HP41C, ROLL does NOT necessarily roll the entire stack. The power of ROLL comes from the
fact that you can specify the levels affected. This information is placed in level 1 before
invoking ROLL and represents the number oflevels (from 2 and on) that are rolled. The number
of rolled levels is popped out of the stack after the stack is partially or fully rolled up. To
systematically roll up the entire stack use the following command:

DEPTH
ROLL

It is worth pointing out that the objects in the levels 2 through N remain in their levels. This

Chapter 1. The HP48SX Stack 7

KX

is due to the effect of popping the argument N off the stack and moving the object in level N+ 1
to level 1 (see the effect illustrated by Figure 1.9).

INPUT STACK OUTPUT STACK

S 3.14 S

= level N+1

4 "MINES" 4 3.14| <— not

affected
3 "AA" 3 "AA"€

2 'FIRST’ 2 ‘FIRST’| rolled

1 3.00| <==== N, the number > 1 "MINES" <—-—

of rolled levels

Figure 1.10. Using the ROLL command.

11. ROLLD. This command allows you to roll down the stack. Unlike the RDN command in the
HP41C, ROLL does NOT necessarily roll the entire stack. The power of ROLLD lies in the fact
that you can specify the levels affected. This information is placed in level 1 before invoking
ROLLD and represents the number of levels (from 2 and on) that are rolled. The number of
rolled levels is popped out of the stack after the stack is partially or fully rolled down. To
systematically roll down the entire stack employ the following commands:

DEPTH
ROLLD

Chapter 1. The HP48SX Stack 8

]

INPUT STACK OUTPUT STACK

5 3.14 S

4 { one } 4 3.14| <- not

affected
3 "AA" > 3 'FIRST' €—

2 ‘FIRST’ 2 { one }| rolled

1 3.00| <=the number of 1 "AA" <

rolled levels

Figure 1.11. Using the ROLLD command.

12. ROT. This command rolls up the first three levels. It is a short hand for the 3 ROLL
command.

INPUT STACK OUTPUT STACK

4 { aabdb } 4 { aabb }| <-— not

affected
3 "AA" ———————— N+1 level 3 *FIRST’ |<

2 ‘FIRST’ 2 2.00|rolled

1 2.00| = N > 1 "AA" <

Figure 1.12. Using the ROT command.

13. SWAP. This command swaps levels 1 and 2. It is very similar to the X< >Y command in
the HP41C.

Chapter 1. The HP48SX Stack 9

INPUT STACK OUTPUT STACK

4 4

3 »AA " 3 IM"

2 ‘FIRST’| < 2 2.00
swapped objects

1 2.00| < 1 ‘FIRST’

Figure 1.13. Using the SWAP command.

Recovering Arguments

The HP41C LastX command has been expanded into four last commands used to retrieve the
last argument, stack, menu, and command line.

1. LAST ARG. This command is an expanded version of the HP41C LastX. While the HP41C
LastX command pushed only the last value of the X register, the LAST ARG recovers all the
objects that were involved in the last command issued. Figure 1.14 shows a stack before and
after a multiplication is carried out. When the LAST ARG command is executed the operands
of the multiplication, namely, the numbers 3 and 4, are pushed back in the stack. Notice that
the result of the multiplication, 12, is retained in the stack. Setting flag -55 conserves memory,
because the HP48SX does not save the last argument when this flag is set

2. LAST STACK. This command implements an interesting variation on LAST ARG. It works
by restoring the stack to its contents prior to the execution of the last command. Unlike LAST
ARG, LAST STACK eliminates any results obtained by the action of the last command. This

command has a back to the drawing board effect. Figure 1.15 shows the effect of the LAST
STACK command on the results of a multiplication operation. The original operands are
restored, while the result of the multiplication is removed.

The LAST STACK command offers you the advantage of quickly recuperating from an
erroneous operation. You need not drop the unneeded result and recall the original -- LAST

STACK will do it for you!

3. LAST MENU. This command displays the last menu enabling you to move to a menu
associated with another directory (more about this in a later chapter) and return back.

4. LAST CMD. This command enables you to recall and edit the last command you typed. You

can either reissue the same command or invoke a modified version of it.

Chapter 1. The HP48SX Stack 10

Original Stack After pressing After invoking the
the * key LAST ARG command

4 4 4 5

3 5 3 3 12

2 4 2 5 2 4

1 3 1 12 1 3

Figure 1.14. Using the LAST ARG command to restore the previous stack and eliminate the
effect of the last command.

Original Stack After pressing After invoking the
the * key LAST STACK command

4 4 4

3 5 3 3 5

2 4 2 5 2 4

1 3 1 12 1 3

Figure 1.15. Using the LAST STACK command to restore the previous stack and eliminate the
effect of the last command.

The HP48SX Data Types

Computers, big and small, process a wide variety ofdata. The versatility ofcomputer languages
can perhaps be measured by the number ofdata types and their complexity. The RPL language
supports a good variety of data types (also called object types by the HP48SX manual). This
chapter looks at the object types implemented in the HP48SX, compares RPL with other popular
microcomputer languages, and offers the basics of manipulating the various object types.

Overview

The designers of the HP48SX chose a rather unique approach in defining and implementing
data types for the machine. Whether you have been working exclusively with the HP41C or
with popular high-level languages like BASIC and Pascal, you will find that the HP48SX is
different. This difference occurs in two ways: the typed data and the variety. Figure 2.1
compares the data types of the HP48SX with those of the HP41C, BASIC, and Pascal. Looking
at the table you will notice that the family of data types in the HP48SX includes rather new
members, such as algebraic objects, graphic objects, directories, and libraries. While some of
these objects (such as directories and libraries) are present in the microcomputer environment,
they are not considered as object types by the micro users. Thus, the unique set of types in the
HP48SX is custom tailored for the machine itself. This gives the HP48SX powerful capabilities
for manipulating data.

Name That Type

The various object types in the HP48SX are associated with type numbers. Figure 2.2 lists the
19 object types by type number and includes examples of the object types. The type numbers
are also obtained with the TYPE command.

Real Numbers

Real numbers are familiar to HP calculator users. In the HP48SX positive reals range from 1E-
499 t0 9.9999999999E + 499. The negative reals range from -1E-499 to -9.9999999999E + 499.
Small numbers in the range of -1E-499 to 1E-499 are rounded to zero.

Real numbers are also used to represent date and time data. The date formats supported are
the MM.DDYYYY (where 5.031990 is May 3rd, 1990) and the DD.MMYYYY (where 3.051990 is
May 3rd. 1990). The time format used is HH.MMSS, with 11.3000 representing 11:30 a.m., for
example.

Chapter 2. The HP48SX Data Types 12

Data Types L A NG U A G E S8

RPL HP41C BASICA Pascal

Real Numbers Yes Yes Yes Yes2
Complex Numbers Yes No No Yes
Binary Integers Yes No Yes Yes
Strings Yes Yes Yes Yes
Real Arrays Yes No Yes Yes®

Complex Arrays Yes No No Yes®

Names Yes No No No
Algebraic Objects Yes No No No |
List Yes No No Yes

Graph Objects Yes No No No
Tagged Objects Yes No No No
Unit Objects Yes No No No
Programs Yes No No No
Directory Objects Yes No No No
Backup Objects Yes No No No
Library Objects Yes No No No
XLIB Names Yes No No No

Built-in Functions Yes No No No
Built-in Commands Yes No No No

(1) Can be created as a list of matrices or arrays.
(2) As user-defined types in Pascal.

Figure 2.1. Comparing the data types of RPL, HP41C, BASIC, and Pascal.

Real numbers are basic types that enter in the make-up of other object types, such as complex
numbers, arrays, and lists. The commands that transform reals into other types are discussed
in their respective sections below.

Complex Numbers

Complex numbers are represented by two real numbers and can be represented as either
Cartesian or polar coordinates. The HP48SX can display them using either coordinates.
Pressing the [right shift][1] keys toggles between Cartesian and polar display mode. You may
key in a complex number in either coordinate form -- the HP48SX will convert your input to the
current mode, if needed. In Cartesian coordinates a complex number has a real component X
and an imaginary component Y, and uses the format (X, Y). Examples ofcomplex numbers are
(1.1), (3.4), and (-0.45, 12.54). Using polar coordinates, a complex number is defined by its
modulus, M, and angle 6, and uses format (M, 46). Examples of complex numbers in polar form
are (1.4142, A45), (-.4142, A54), and (42.4, 4127). Converting from one system to another
utilizes the following pair of equations:

Chapter 2. The HP48SX Data Types 13

Object Type Type Number Example(s)

Real number o 1.2, -0.04, 1.2E+200, -3.65E-3

Complex number 1 (1.0345, -4.67), (20 , 45)

String 2 "THE FIRST TIME", "You", "me"

Real array 3 [1.03.06.0), [[2 2)3 4))

Complex array 4 [(1,2) (8,9))

List S { "Hello" "There" 2 3 (3,4))

Global name 6 GLBNAME

Local name 7 LCLNAME

Program 8 « DUP 2 * 1 = = § + »

Algebraic object S ‘2% (A+1)

Binary integer 10 #FFFFh, #280, #234d, #11001b

Graphic object 11 GROB 100x200

Tagged object 12 ¢JO: ‘AUGl"

Unit object 13 17m

XLIB name 14

Directory 15 { HOME JAMES)}

Library 16

Backup object 17

Built-in function 18

Built-in command 19
Figure 2.2. HP48SX object types and their numeric code types.

M=Vx+ Y

tan 6 =Y / X

Complex numbers can also be assembled from real numbers. The HP48SX places them in the

Chapter 2. The HP48SX Data Types 14

current coordinate format. The R-C command assembles a complex number from two real
numbers (see Figure 2.3). The real component of the complex number is placed in level 2, while
the imaginary part is located in level 1. The C-»R and the OBJ- commands disassemble a
complex number into its real and imaginary components (see Figure 2.4). The real and
imaginary parts are placed in levels 2 and 1, respectively.

INPUT STACK OUTPUT STACK

4 4

3 3

2 4.00| <== real part 2

1 1.00| <= imaginary 1 (4.00,2.00) <== complex
part number

Figure 2.3. Using the R—»C command to assemble a complex number from two real numbers.

INPUT STACK OUTPUT STACK

4 4

3 3

2 2 4.00| <= real part

1 (4.00,2.00)| <== complex 1 2.00| <== imaginary
number part

Figure 2.4. Using the C+R command to disassemble a complex number into two real numbers.

Strings

The string type is an important object type. Strings support messages and various types of text.
Since the HP48SX is a machine for scientific and engineering applications, its string
manipulation features seem of secondary concern by its designers.

Characters and strings can be entered directly from the keyboard. This is done by pressing the
[right shift] and [-] keys to enter a pair of double quotes on the command line. To key any letter

Chapter 2. The HP48SX Data Types 15

press the [a] key. To lock on alphanumeric input press the [a] twice. When you are done, press
the [a] another time to exit the alphanumeric input mode. Lowercase characters can be entered
by (a) pressing the [a], [left shift], and then the character keys in ordinary input mode, or (b) by
pressing the [shift left] and the character keys in alphanumeric input mode. The [left arrow] and
[right arrow] keys may be used to edit the string. Pressing the [Enter] key pushes the string into
the stack.

You can also obtain a character from a real number by using the CHR command. This
command first rounds up the real number to the next whole number and then converts the
number into the character whose numeric ASCII is equal to that number. For example, if you
type 65 and invoke the CHR command, you obtain "A", the character with an ASCII code of 65.
If the input number is 65.4,it is rounded down to 65 and then converted by CHR into "A". By
contrast, if the input number is 65.5, it is rounded up to 66 and then converted into "B" (the
character with an ASCII code of 66). Figure 2.5 shows the CHR command converting 65.4 into
the letter "A".

INPUT STACK OUTPUT STACK

2 2
Character with

1l 65.4 <== number 1 "A" <== a numeric ASCII

code of 65
Figure 2.5. Using the CHR command to convert a number into a character.

The CHR command can be used in loops (more about loops in Chapter 7) to create special long
test strings.

The reverse of command CHR is NUM. This command takes the first character in a string and
returns the ASCII code in level 1. Thus, invoking NUM with the strings "A", "And", or "Add"
yields 65 in all of the cases, since the first character in these strings is "A". Figure 2.6 shows
the NUM command processing the string "And”.

You can also build strings from smaller ones using the + operator. More about this in Chapter
5.

Real Arrays

The HP48SX supports real arrays and matrices. While arrays with more than two dimensions
are not explicitly supported, they can still be implemented using lists. Arrays are enclosed by
a single set of brackets. An example of an array is [1 2 3 4 5 6]. Matrices use nested sets of
brackets -- each row is enclosed in a set ofbrackets and the entire matrix is enclosed in another
set of brackets. Thus, [[11 12][21 22][31 32)] is a matrix containing three rows and two

Chapter 2. The HP48SX Data Types 16

INPUT STACK OUTPUT STACK

2 2 The ASCII code
of "A", the

1 "And" <== gource 1 65 <= first string
string character

Figure 2.6. Using the NUM command to convert the first character in a string.

columns. The number of rows is equal to the number of nested pairs of open and closed
brackets. The number of columns equals the number of elements in each row. A matrix MUST
have the same number of elements in each row.

The arrays and matrices can be assembled by either keying in numbers in the command line,
pushing numbers in the stack, or using the eloquent MatrixWriter. Keying in numbers in the
command line is an easy and straightforward method for entering rather small arrays and
matrices. The MatrixWriter converts the display of the 48 into a spreadsheet showing a few
rows and columns of the currently edited array or matrix. The MatrixWriter comes with a set
of menu options that enhance the input and editing of numbers. For example, you can specify
whether you are keying in an array or a matrix. You can also widen or narrow the column
width; specify the next-cell cursor movement; insert or delete columns and rows; and interact
with the stack. For more details on operating the MatrixWriter consult the HP48SX Owner'’s
Manual Volume I.

Concerning the assembly ofarrays and matrices from stack elements, RPL applies the following
scheme for arrays:

1) The members of the array are pushed into the stack. The first real number pushed in the
stack becomes the first array element, and so on.
2) The size of the array is pushed into the stack. The value of the size may be pushed in the
stack as a single-member list (e.g. { 3 }).
3) The -ARRY command is invoked to assemble the array.

Figure 2.7 shows how a three-element array, [10 20 30], is assembled from the stack.

Matrices (with R rows and C columns) are assembled from the stack using the following steps:

1) The C elements of the first row are pushed in the stack.
2) Step (1) is repeated for the C elements of the remaining rows (2 though R).
3) A two-element list { R C } is pushed in the stack. This (a) informs the HP48SX that you want
to put together a matrix (and not an array). and (b) specifies the number of rows and columns.

Chapter 2. The HP48SX Data Types 17

The first array The other The array The array is
element, 10, is elements are size is then assembled by

pushed in the pushed in the pushed in the invoking the
stack stack stack -ARRY command

4 10

3 10 20

2 20 30

1l 10 30 3 [10 20 30)

Figure 2.7. Assembling an array from elements in the stack using the -ARRY command.

The first matrix The other The matrix The matrix is
element, 11, is elements are size is then assembled by
pushed in the pushed in the pushed in the invoking the
stack stack stack -ARRY command

7 11

6 11 12
]=> row

5 12 #1 21

4 21 22
]=-> row

3 22 #2 31

2 31 32
]=> row

1 11 32 #3 { 32) ([11 12)
[21 22)
(31 32))

Figure 2.8. Assembling a matrix from elements in the stack using the -ARRY command.

Arrays and matrices can be disassembled, using the OBJ- command, placing their elements
and the object’s dimension in the stack. The object’'s dimensions is placed in level 1. This
action reverses the array/matrix assembly.

Chapter 2. The HP48SX Data Types 18

p o 7¢

Lists can be used as temporary surrogate arrays in the following case:

s The elements of the array are gradually obtained.
o The number of elements is not known ahead of time.

o The number of elements may widely vary.

Once the data collection is complete, the data is converted from the list to an array,
via the stack.

Complex Arrays

Complex arrays are extensions of real arrays (or you can say that real arrays are special cases
of complex arrays). Complex arrays and matrices are assembled in a manner very similar to
real arrays and matrices. This includes the use of the MatrixWriter, command-line input, and
assembly using the -“ARRY command.

Programming Hote

You can mix real and complex numbers when assembling a complex array or matrix
using the command-line or theARRY command methods. TheHP48SX scans the input
and automatically converts the real numbers into complex numbers with a 0 imaginary
part. However, when using the MatrixWriter the first element you enter MUST be a
complex number. This tells the MatrixWriter to automatically convert all real numbers
into their counterpart complex numbers. If the first number is keyed in as a real
number, the MatrixWriter will flag an error when you enter a complex number in
subsequent cells!

Complex arrays can be created from two real arrays. The R-C command works with the real
arrays in levels 1 and 2. The array in level 2 provides the real components, while the array in
level 1 supplies the imaginary components. The C-R command performs the reverse, splitting
an complex array into two real arrays.

Chapter 2. The HP48SX Data Types 19

Lists

Lists, as implemented on the HP48SX, are very powerful data structures. If you program in
high-level languages such as Pascal and C, you will mostlikely find the HP48SX lists extremely
flexible. What makes these lists versatile are the following features:

1) They are dynamic. This enables a program or a manual command to readily create them,
delete them, insert new data, delete old data, alter existing data, and access list components.
These operations are transparent to the user or a running program -- there is no need to
explicitly reserve space for the lists.

2) They are heterogeneous. The HP48SX lists may contain members of just about every
supported types, including other lists, strings, and arrays! The ability of the HP48SX list to
contain members of varying object types opens the door for the creation of records. The lists
used to contain records of information can in turn be members ofa bigger list, namely, the host
data base!

3) They support array-style access. This makes the HP48SX list a hybrid (and a great one at
that) between true lists and true arrays. These lists can be the repertoire for arrays of strings,
vectors, matrices, sublists, programs, etc (see Chapter 9). The possibilities are simply awesome.

The smallest list is the empty list, { }. List elements are separated by spaces. Examples of lists
are shown below:

{1234)
{ "Namir” "Clement” "Shammas” }
{1(1,2) "Hello" 'X1*Z2+2' {1 "Me" (2. 3)}[12][[11]]22]]}

The first two examples show homogeneous lists containing numbers and strings, respectively.
The third example shows how sophisticated lists can get. In the above example the list contains

a real number, a complex number, a string, an algebraic expression, a nested list, a real array,
and a real matrix. It is worth pointing out that nested lists are considered as single elements
in the host lists. Thus the list { { 1, 2 } } contains one element, the nested list { 1, 2 }.

Lists can be created using the -LIST command. This command resembles the -ARRY
command used to create arrays. The -»LIST command requires that you first push the list
members in the stack, and then push the list size. Figure 2.9 shows how this command works
in creating a new list from its components. The OBJ-» command performs the reverse action
of the LIST- command. The list located in level 1 is decomposed into its elements and its size.
The list size is located in level 1.

You can add new list members by using the + operator. More about this in Chapter 5.

Chapter 2. The HP48SX Data Types 20

Push the first Push rest of Pugh list size Create the list

list member in 1list members in the stack with the =-LIST

the stack in the stack command

4 "Hello"”

3 "Hello" 4

2 4 rX1+X2'

1l "Hello" *X1+X2' 3 { "Hello" 4

‘X1+4X2')
Figure 2.9. Creating a list using the -»LIST command.

Global and Local Names

The RPL language on the HP48SX associates names with data and objects. Ifyou are a veteran
HP41C programmer you have been used to storing data in numbered registers. This feature of
RPL is a welcome one, since it enables you to associate data objects with named containers.
The advantage is that the names used to store data objects can be selected to be representative
of the type of inforrnation stored. If you are familiar with BASIC, names should be familiar to
you.

Global names, as the name might suggest, are names of object container or variables. The
HP48SX requires that variable names be enclosed in a pair of tick (a.k.a. single quote)
characters. This enables the machine and RPL to distinguish between variable names and
strings of characters. Examples of names are:

'Velocity'
‘Pressure’
"Weight’
!xlo

Unlike strings, names are associated with data objects. These objects may be real numbers,
arrays, strings, lists, matrices, graph objects, etc.

The HP48SX makes a distinction between global and local names. A global name makes its
contents accessible (or public, if you prefer) to all programs. By contrast, a local name offers
limited access to its contents, offering a certain aspect of data hiding. This access depends on
where the local name is located.

For the HP41C programmer, local names bring forth a new level of data hiding. The same can

Chapter 2. The HP48SX Data Types 21

L

be said for those readers who work with BASIC interpreters where all variables are global. If
you are familiar with QuickBASIC, then you already know about global and local variables.

Program Objects

Programs are considered object types by the HP48SX! Yes, this might come across as being
very unusual to the majority of us. Even languages like BASIC, C, Pascal, and many others do
not regard programs as special data types. Programs are enclosed in a pair of left and right
double Guillemet characters, « and ». Pressing the [left shift][-] keys inserts a pair of double
Guillemet characters. Examples of programs are shown below:

«SQ1 +»

«DUPDUP * * 1 + »

The first program squares the number in level 1 and adds 1 to it. The second takes the cube
of the number in level 1 and adds 1 to it.

Programs, especially simple ones, can be pushed into the stack and then run by pressing the
[EVAL) key. The program object is removed from the stack. This is not the usual way for
executing programs. They should be stored first in a variable so that they can be retained for
repeated execution, and edited if need be.

Algebraic Objects

What sets the HP48SX apart from all the previous handheld machines is its ability to perform
symbolic manipulation of algebraic equations. For example, if you give the HP48SX an
equation like '"A+B=C+D’ and ask it to solve for C, you get ‘C=A+B-D'. The object type
involved here is the algebraic object which consists of an equation or an expression (an
expression differs from an equation by the absence of an assignment equal sign). Algebraic
objects are enclosed in single quotes. Examples of algebraic objects are shown below:

ey

‘X=Y/25+Z
'X=SQ(A+5.5)

Basic algebraic objects are simply pushed into the stack. You can build algebraic objects from
smaller ones using the four math operators, change of sign operator, and most math functions.
In all of these cases, the HP48SX applies the operators and functions symbolically. While
algebraic manipulation is not within the scope of this book, I encourage you to experiment with
this fascinating feature.

Binary Integers

The HP48SX supports another genre ofnumbers, namely binary (unsigned) integers. The term
unsigned means that the integers have O and positive values, and therefore never use a minus
sign. This type of integer is of interest to computer scientists and programmers. The general

Chapter 2. The HP48SX Data Types 22

syntax of binary integers is shown below:

Syntax Class of Integer Digits Range

hexadecimal digits h hexadecimal O to 9, A to F

decimal digits d decimal 0O to 9
octal digits o octal 0 to 7
binary digits b binary O tol

Table 2.10. The general syntax for binary integers.

All binary integers start with the pound character, #, and end with a base designator. This
designator also enables the HP48SX to check the validity of your input.

You can specify the current mathematical base to display these binary integers. The HP48SX
lets you key in a binary integer in any valid base. Conversion is made by the machine to make
your input conform to the current base. Examples of various binary integers and their decimal
equivalent are shown below:

Number Type Decimal Equivalent

#12h hexadecimal 18

#FFh hexadecimal 255
#1Bh hexadecimal 27
#330 octal 27
#070 octal 7
#104d decimal 10
#99d decimal 99
#11b binary 3
#101b binary 5

Figure 2.11. Examples of binary integers.

The R-C command converts non-negative real numbers into binary integers. The real numbers
are first rounded and then converted to the current base. Using negative numbers results in an
error. The B»R command performs the reverse, converting binary integers into reals.

Binary integers are available to the HP41C programmer through the PPC and Advantage plug-in
ROMs. A number of BASIC interpreters and compilers support binary integer constants in
hexadecimal, octal, and binary bases.

Chapter 2. The HP48SX Data Types 23

Graphic Objects

Graph objects represent a matrix of graphics pixels (short for picture elements). The HP48SX
possesses a sophisticated graphics system for plotting functions as well as drawing shapes. The
topic of graphics deserves a separate book. These graphs are treated as distinct objects that can
be placed in the stack and appear in the form:

GRAPH n by m

where n and m denote the graph height and width in pixels.

Unit Objects

One of the major drawbacks in computer calculations is the disassociation between units and
numbers. This makes engineering calculations vulnerable to erroneous input. For example,
a program prompts you to enter the pressure in atmospheres. You mistakenly enter the correct
value expressed in psi (pound per square inches). There is no easy way for the computer to
discern the intended units. This problem has been tackled by the HP48SX, since it is a
handheld machine aimed at engineers and scientists. Units are special objects made up ofareal
value and an accompanying unit of measurement. Unit objects have the following general
syntax:

value_unit

Examples of unit objects are shown below:

8m
12.31b/ft*3
0.23_kg/(m*s*2)

You can easily key in a unit object from the command line. Simply type in the value associated
with the unit, press the [right shift][x] keys (to type the underscore character), and type in the

units.

An alternate way of entering the unit objects is the use of the UNITS set of menus. These
menus enable you to select the exact units to be associated with the number in level 1.

Invoking the OBJ-» command with unit objects causes level 2 to contain the value associated
with the original unit, while level 1 contains a unit value (that is 1_unit).

Unit objects can be propagated by the math operations and function. For example, pressing the
square root key with 25_ft*2 in level 1 returns 5_ft.

Chapter 2. The HP48SX Data Types 24

Tagged Objects

The implementation of units in the HP48SX represents an important step in dealing with
engineering calculations. Associating units with numbers greatly clarifies data. Another tool
that clarifies information is tags. They are labels that are attached to data, separated from each
other by a colon. The general format for using a tagged objectis:

tag_name : data

Examples of tagged objects are shown below:

TODAY_TEMP:80_F
SLN_VECTOR:[1.4 5.6 -9.6]
RECORD_STRUCTURE: { "LastName" "FirstName" "Address" "City" "State” "Zip" }

Tagged objects can be created from the command line or assembled from data in the stack. To
create a tagged object from the command line you employ the :: command (by pressing [right
shift][+] keys). This puts the two colons in the command line and places the editing cursor in
between these colons. Type in the tag name, and then press the right arrow key to exit the tag.
Now you proceed in typing in the accompanying data.

To tag information in the stack the tagged data must be in level 2 and the tag name in level 1.
The tag name may either be a name or a string. By invoking the -TAG command, the tag and
the data are merged. Figure 2.12 shows how the -TAG command creates the object
NAME:"Lia" from the string "Lia" and the name 'NAME".

INPUT STACK OUTPUT STACK

4 4

3 3

2 "Lia" <== data 2

1 ‘NAME’ <== tag name 1 NAME:"Lia" <= tagged object
Figure 2.12. Tagging data.

The OBJ- command reverses the action of the -TAG command. The tagged object is divided
into two objects: the tagged data (in level 2) and the tag name (placed as a string in level 1).

Chapter 2. The HP48SX Data Types 25

Tagged data can be explicitly detagged using the DTAG command. Detagging occurs
automatically with most operations.

Directory Objects

This category of objects deals with the hierarchy of directory structures. The HP41C contained
all you programs and data registers in a single area. By contrast, the HP48SX offers a more
sophisticated level of work areas. These work areas are placeholders for variables that store
data and programs (I am using these terms in a general sense). This prevents the user from
cluttering the same area (especially with the amount of RAM made available to the machine)
with numerous objects that belong to different projects. Each work area is called a directory.
The HP48SX supports a hierarchy of directories. This means that the directories are connected
to each other using parent-child relationships. Directories are objects created using named
objects. The same names are used to visit a directory and delete it. Chapter 3 gives you more
details about directories.

Other Objects

In addition to the above objects there are a number of special objects. They are:

® Backup Objects. These are objects associated with backups.
® Library Objects. These are objects associated with libraries offered by plug-in cards, or they
may reside in RAM.
® XLIB Objects. These are special objects offered by plug-in cards.
® Built-in Functions. These are considered as built-in program objects.
® Built-in Commands. These are also considered as built-in program objects.

Chapter 2. The HP48SX Data Types

Notes

26

Directories, Variables, and Programs

This chapter looks at how the HP48SX uses directories to provide you with different work areas.
I will discuss the concept of directories, how they are created, connected, and removed. In
addition, I will address how to move between directories. The second topic of this chapter is
variables and how their scope is related to the directory hierarchy. The third chapter topic is
program objects. You will learn about local program variables, programs using global variables,
programs calling each other, and program debugging.

The HP48SX Directories

Imagine for a minute that all the internal walls are removed from your dwelling place! Suddenly
you can spot just about every object inside your place. Your eyes would be invaded by a clutter
ofobjects of different shapes and colors. Your mind would also easily tire just looking at things.
The bigger your house, the worse it is. Thus, it becomes apparent that internal walls play a
valuable role in eloquently structuring your house or apartment into semi-independent rooms.
Moreover, these rooms are interconnected in a certain order and sequence.

The above analogy can be applied to the memory of the HP48SX, especially one with additional
RAM cards. If the memory offers no partition, then you end up with a single work area that
contains ALL your objects! Yes, ALL OF THEM! The HP48SX offers your objects room-like
partitions called directories. These directories are interconnected in a special parent-child
hierarchial fashion. The HP48SX has a root directory, called HOME. It's always there. The first
child directory (or subdirectory) you create is attached to HOME. Additional subdirectories may
be attached to HOME or any other existing subdirectory. Figure 3.1 shows a sample directory
tree structure. The structures has four levels of subdirectories. The directories STAT, LIST,
STRING, and MATH are all attached to the root directory HOME. The directory STAT has one
subdirectory attached to it, namely, REGR. The directory STRING has two subdirectories
attached to it, namely, WORD and ITEM. The directory MATH has one subdirectory attached
to it, namely, OPTM. The latter is also attached to a subdirectory, NLR.

Chapter 3. Directories, Variables, and Programs 28

parent
H(IDME A

STAT LIST STRING MATH

REGR WORD ITEM OPTM

— | v

NLR child
Figure 3.1. A sample directory structure.

M'h,

The sooner you employ a directory structure to organize your work, the better.

Creating a New Subdirectory

A new subdirectory is created using the CRDIR command (obtained by pressing the [left shift]
[VAR] keys) CRDIR and is attached to the current directory. Once created, the name of the
subdirectory appears as a new option in the VAR menu. The name of the new subdirectory
must be a name object enclosed in tick characters. For example, to create the STAT
subdirectory, enter "STAT" CRDIR.

Removing a Subdirectory

A subdirectory can easily be removed in one of two ways. The first method requires that the
subdirectory be empty. The target subdirectory is first chosen by pressing the tick key and
entering the subdirectory name or selecting it from the menu. Invoking the PURGE command
performs the sought deletion. This command does not work with non-empty directories. The
HP48SX displays an error message to that effect. The CLVAR command empowers you to
purge all variables from a directory before removing the directory itself using the PURGE
command.

The second method performs a quick, decisive deletion of a subdirectory using the PGDIR
command. This command wipes clean the target subdirectory (and all ofits subdirectories) in
one swoop.

Chapter 3. Directories, Variables, and Programs 29

Waranlingl

Use the PGDIR with greatcaution.

Moving to Another Subdirectory

You can move between two linked subdirectories. Press the VAR key to obtain the menu of
objects in the parent directory. The name of the target child directory is selected from that
menu. You might need to press the [NXT] key a few times to locate the sought directory. The
HP48SX updates the name of the current directory, displayed at the top left corner of the
display.

The HP48SX offers two commands, found on the keyboard, to move upward. The HOME
command, invoked by pressing the [right shift]['] keys, moves you to the root directory. The UP
command, invoked by pressing the [left shift]['] keys, moves you to the parent directory. The
UP command appears as the UPDIR command in a program. The UP (and its alias UPDIR)
command have no effect if you are already in the root directory.

The Path to Your Door

It is worth pointing out that the names of subdirectories need not be unique. The HP48SX does
not object to using the same subdirectory name at different directory levels. The name HOME
is the exception -- you cannot create any subdirectory called HOME.

A directory path is a list of directories that form a branch in the directory tree structure. For
example, the path of the NLR subdirectory is the list { HOME MATH OPT NLR }. This list
specifies the names of all the connected directories, from HOME to the current ones. The PATH

command (found in the first set of MEMORY menu options) returns the current path.

The significance of the path lies in the fact that RPL supports a special inheritance scheme
between directories. The following simple rules apply:

1) The variables of ancestor directories are inherited by (or visible to, if you prefer) child
directories.
2) The programs stored in variables located in the ancestor directories can be executed in the

child directories.
3) When a child directory declares a variable (with data or programs) with a name matching an
inherited variable, the latter becomes opaque. From then on, the new version of the same
variable is visible to that child directory and all of its subdirectories.

This RPL feature is very powerful. You can place general objects at higher directory levels,
while locating more specialized objects in deeper subdirectories.

Chapter 3. Directories, Variables, and Programs 30

Variables

This section looks at variables as data containers. One of the first tasks a new HP48SX user
learns is to store and recall data in memory. Veteran HP41C programmers find this new way
of storing and recalling data a bit strange! The old practice of pressing STO and then two digits
is replaced by a new ritual. The name of the variable must be pushed in the stack (or located
in the command line) before pressing the [STO] key. Recalling data on the HP48SX is even
stranger for the HP41C user. First, there are several ways to do it:

1) Just press the VAR menu option with the name of the sought variable. This works if the
variable is stored in the current directory level.
2) Simply enter the name of the variables (with no tick characters). Press the [Enter] key and
voila! The contents of the variable are retrieved.
3) Enter the name ofthe variable enclosed in the tick characters and press the [EVAL] key. The
contents of the variables are placed in level 1.
4) Enter the name of the variable enclosed in the tick characters and press the [left shift][STO]
keys (this invokes the RCL command). The contents of the variables are placed in level 1.

Variables created on directory levels are basically global variables. They can be accessed by all
programs running launched in that directory and all of its subdirectories. As explained in the
last section, global variables can have a limited scope of visibility. This occurs when they are
overshadowed by other variables (bearing the same name) residing in child subdirectories.
Global variables are also overshadowed by local variables, declared inside programs. More about
this in the next section.

Programs

RPL programs are special objects that are characterized by the following:

1) Programs bring forth a new level of object visibility.

2) Programs can declare their own local variables and nested program objects.
3) The scope oflocal variables in restricted to the program level where they are declared, as well
as the nested program objects.
4) Programs interact with their environment using the stack and global variables. The stack
is a convenient channel for passing data back and forth. Global variables can also provide an
adequate source of data input. RPL allows programs to create global variables and store output
data in them.
5) Programs that implement functions return one or more results in the stack.
6) Programs that implement procedures usually do not return any data (under normal
conditions). Their main role is carrying out a task.

Programs are usually stored in variables. They are executed when their host variables are
selected from the menu, or when the names of these are evaluated. To edit a program, enter
the name (enclosed in tick characters) of the host variable and execute the VISIT command
(press the [right shift][+/-] keys). The HP48SX puts you in edit mode. When you are finished
editing, press the [Enter] key. Press the [ON] key to abort program editing and entry.

Chapter 3. Directories, Variables, and Programs 31

-Programming‘ g Tk _

Make a temporary duplicate copy of a program by storingit in another variable when:

@® Editing an irhbbrtant -p'rogr‘am.
@ Editing a large program.
® Creating an improved version of a program.

Remove the older program versions when the new ones are satisfactorily operating.
Programs vary from very simple to complex. In the rest of this section I will present small
programs that give you an idea of the variation in complexity. Consider the following simple
program object:

« SQ 1 + »

This program takes one argument from the stack, squares it, and adds 1 to it. The resultis left
in level 1 of the stack. This makes the program behave as a function. The next program acts
as a procedure:

« UPDIR EVAL »

The program makes two directory moves. First, it takes you from the current subdirectory and
into the parent directory. Second, it takes you to a subdirectory whose name is in level 1
(asuming the program is stored in a variable). The overall effect of this procedure-type program
is to move you to a sibling subdirectory.

Using Local Variables

The next programn demonstrates the use of local variables to store intermediate data. This
process involves moving data from the stack and into the local variables. The right arrow
symbol, -, is used to execute such a data transfer. The general syntax is:

- local_variable_1 local_variable_2 ... local_variable_n

Figure 3.2 shows the order of transferring data between the stack and local variables. For the
novice RPL programmer, this order is not too obvious.

After you assign data to local variables your program must contain a pair of left and right
double Guillemet characters (that is, « and »). This creates a nested program object inside which

Chapter 3. Directories, Variables, and Programs 32

When transferring N stack elements to local variables, the element in stack level i is
stored in the {N +1-i)'th local variable.

n » local variable # 1

= =

4 » local variable # n-3

3 » local variable # n-2

2 » local variable # n-1

1 » local variable # n

Figure 3.2. The order of moving data between the stack and local variables.

the local variables are accessible. Once the program passes the nested » character, the local
variables are removed by RPL.

The next program implements the following two-variable function:

fX.Y)=X/Y+Y/X

Rather than performing stack manipulations, the program moves the values of X and Y from
the stack into local variables (bearing the same names). This makes the program easier to read
than a version that relies more on the stack. The program is shown below and includes
comments that appear on the right in different character fonts:

; Listing 3.1. Program to evaluate f(X,Y) = X/Y + Y/X
«

- Y X ; assign element in level 2 to local variable Y
; assign element in level 1 to local variable X

/ ; calculate X / Y
; calculate Y / X
; add the two products

=
4
+

g ~

»

Chapter 3. Directories, Variables, and Programs 33

The assignment to the local variables X and Y is followed by a nested program object. The
scope of variables X and Y is confined to the nested object.

Using Algebraic Objects

The second example shows that a local variable is used to store data appearing in an algebraic
expression. The program implements a function that evaluates the following function:

fX)=2X*-5X-4

The program is shown below:

; Listing 3.2. Program to evaluate f(x) = 2X~2 - 5*X - 4
« = X ; store data in local variable X

«

*2*SQ(X)=-5*X-4"’ ; push algebraic object in stack
EVAL ; evaluate expression
»

Programming Hote

Storing data in a local variable is recommended if the data appears in an algebraic
object. This protects global variables from being accidentally overwritten.

Multi-Level Programs

The next example shows assignment to local variables appearing in two levels. The program
solves for the roots (both real and complex) of a quadratic equation:

AX*+BX+C=0

The quadratic coefficients A, B, and C are stored in local variables bearing the same name. The
solution is obtained using the following equation:

roots = (B + vD)/2 A

where the D determinant is equal to (B*> - 4 A C).

The program transfers the coefficients A, B, and C from the stack to the local variables A, B, and
C. The square root of the determinant D is calculated and stored in the local variable S. This
example shows that local variables are also used to store intermediate results. In addition to
variable S, the local variable TWOA stores the value of 2*A. The program is shown below:

; Listing 3.3. Quadratic Solver version 3.1

Chapter 3. Directories, Variables, and Programs 34
Jd

=

» w ; store data in local variables A, B, and C

; calculate B squared
; calculate 4 A C
; obtain the determinant
: get the square root of D

I
Y
<
L
I
1
d
D
w
=
O

O ' » »

S TWOA ; assign the square root of D to local variable S
; assign 2*A to the local variable TWOA

«

B NEG ; calculate the first root

B NEG ; calculate the second root

The number of nested program objects (which is also the number of program levels)
is equal to the number of assignments to sets of local variables {(which is also equal to
the number of times the - operator is used).

The above program also illustrates that the scope of the local variables (B in particular) extends
to the second nested program object.

?nugyuunndkg Hotes

RPL applies the inheritance and visibility scheme of directories to local variables and
multi-nested program objects.

The next program offers a more algebraic version of the quadratic root solver. Notice that the
use of algebraic objects enhances the program’s readability:

; Listing 3.4. Quadratic Solver version 3.2
«

- ABC ; store data in local variables A, B, and C
«

‘V(SQ(B)=4*A*C)‘’ EVAL ; calculate square root of determinant

Chapter 3. Directories, Variables, and Programs 35

*2*A’ EVAL ; calculate 2*A
= S TWOA s assign the square root of D to local variable S

; assign 2*A to the local variable TWOA

«

‘(=-B+S) /TWOA’ EVAL ; obtain first root
‘*(=-B-S)/TWOA’ EVAL ; obtain second root

Reducing Program Levels

Nested program levels occur when local variables are declared later in the program. It is easier
for some programmers to list all of the local variables at the beginning of the program. Local
variables that store intermediate results are initilized with dummy data. This method reduces
the program levels to two. Applying this technique to the above program perform the following:

1) Push two dummy values (usually zeros) in the stack -- one for S and the other for TWOA.
2) Include the variables S and TWOA in the first list of local variables.
3) Use the 'S’ STO and 'TWO' STO to store the meaningful data in the S and TWO variables,
respectively.

Programming Hotes

The number of program levels can be reduced by declaring all or most of the local
variables at the beginning of the program. Local variables storing intermediate results
can be assigned dummy values and included in the first list of local variables.

The modified version of the quadratic solver is shown below:

Listing 3.5. Quadratic Solver version 3.3i
«

00
- A B CS TWOA

: push dummy values in the stack
; store data in local variables A, B, and
;: C. Also store dummy zeros in local
: variables S and TWOA.

«

‘V(SQ(B)=4*A*C)’' EVAL calculate square root of determinant
‘'S’ STO assign the square root of D to local variable S
*2*A’ EVAL calculate 2 A
‘TWOA‘’ STO assign 2*A to the local variable TWOA
*(-B+S)/TWOA’ EVAL
*(-B-S)/TWOA’ EVAL

obtain first root
obtain second root

Notice that the names of the variables S and TWO are enclosed in the tick characters. If these

Chapter 3. Directories, Variables, and Programs 36

characters are removed, RPL evaluates the variables instead of pushing their names in the
stack. This results in a runtime error due to attempting to store one number in another.

Accessing Global Variables

In most of the programs shown so far only local variables were used. This should not give you
the impression that programs should never interact with global variables. The intended point
stresses that local variables are more recommended than their global counterparts. However,
there are applications that must use global variables to store data between program calls. The
following simple program implements a random number generator. The seed is stored in the
global variable SEED. Whenever the program runs, it recalls the seed value from the global
variable SEED, calculates a new random number, and stores the result back in SEED. A copy
of the new random number is pushed into the stack for convenience. To run the next program
you must first create the global variable SEED and assign it a real number.

; Listing 3.6. Random number generator.
«

‘SEED’ EVAL ; recall the seed value from the global variable SEED
m -NUM + : add pi to the old seed value
3~ ; cube the result
FP ; retain the fractional part
DUP ; duplicate new random number in stack
*SEED’ STO ; store a copy back in SEED

»

Using the above program you can reseed the random number generator by manually storing
a new real number in the global variable SEED. Programs can also use both local and global
variables -- local variables are used for short term data storage, while global variables are
employed for long term data storage.

W%&

Global variables are used to:

® Storing data between program calls.
® Accessing data representing parameters specific to the current state of an HP48SX.

Calling Other Programs

RPL permits programs to call other programs as subroutines. Ifyou have programmed on the
HP41C or used BASIC, this is not a new feature. The HP41C XEQ command empowered
programs to invoke other programs. Similarly, the BASIC GOSUB and CALL statements enable
internal or external subroutine calls. This feature fosters a structured approach for
programming on the HP48SX, as well as all other machines. RPL and its cousin language

Chapter 3. Directories, Variables, and Programs 37

FORTH enable you to develop a hierarchy of highly independent program objects. This process
involves a cycle of program development and testing.

I will illustrate this feature using the following program. Here, a dice is simulated, with the
output to the stack ranging from 1 to 6. The dice program calls the random number generator
program, presented above. This program assumes that the random number generatoris stored
in the variable RNG.

; Listing 3.7. Dice simulator.
o«

RNG s call the random number generator program
6 * : multiply by 6. The result is 0 < result < 6
IP ; truncate the number in level 1
1 + ; add one to make the final result in the range of 1 to 6

While the above example is a simple one it shows the following important point: the RNG
program is independent of the dice program. In fact, the RNG program can be used in many
other programs that generate a wide variety of random numbers (e.g., numbers that are
normally, log-normally, and linearly distributed). Callable programs should be independent of
their client programs. This may not always be the case. You may find or write callable
programs that strictly service multiple client programs. This type of callable program
participates in implementing structured programs.

Debugging Programs

Debugging is a form of executing a program in slow motion. This allows the programmer to
trace each program step being executed and watch the values of the variables and data.
Hewlett-Packard has implemented single-step debugging in all of its programmable pocket
calculators. The HP48SX is no exception. RPL allows you to debug a program using the
following steps:

® Enter any data the program expects to find in the stack. You might need to enter a particular
set of values that are causing the program to malfunction.
® Push the name of the variable storing the program in level 1.
® Press the [PRG] key and select the CTRL menu option.
® Select the DBUG option. This puts the HP48SX in debug mode. The name of the debugged
program is popped off the stack.
® Use the SST or SST+{ option to single-step through the program. The SST option causes
subprogram calls to be executed at full speed. By contrast, the SST+{ option empowers you to
single-step through the execution of a subprogram. Use the SST option when you do not
suspect a subprogram to contain the bug.

The HP48SX offers other debugging options. They are:

® The NEXT option permits you to look at the next program step. This is handy if you want
to select either the SST or SST ¢ option.
® The KILL option takes the HP48SX resets the debugging mode. This option is useful if you

Chapter 3. Directories, Variables, and Programs 38

want to stop a debugging session and start a new one.

Next, I present two debugging examples. The first example single-steps through the first
version of the quadratic equation solver. The program, assumed to be stored in the variable
QDR,is shown again next:

; Listing 3.8. Quadratic Solver version 3.4.
«

- ABZC ; store data in local variables A, B, and C
«

B SQ ; calculate B squared
AC 4 * » : calculate 4 A C
- ; obtain the determinant
v : get the square root of D
A2~
- S TWOA ; assign the square root of D to local variable S

; assign 2*A to the local variable TWOA
«

B NEG ; calculate the first root
S +

TWOA /
B NEG ; calculate the second root
S -

TWOA /

»

»

Enter the values 1, -5, 6, and 'QDR’ in the stack. Press the [PRG] key and the CTRL and DBUG

menu options. The name 'QDR’ is popped of the HALT annunciator is displayed at the top of
the HP48SX screen. The single-step tracing (using SST) is shown in the table on the next page:

Chapter 3. Directories, Variables, and Programs 39

Step #

S
W
N
N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Statement executed/ Value in level 1 Comment
Object evaluated

- ABC

&
0O

Y
»

v
y

<L
»

- S TWOA

NEG

TWOA

NEG

TWOA

none

25

24

24

N
N

e
e

w
N

o

Assignment to local
variables
recall value in B

square the number in
level 1
recall value in A

recall value in C

push 4 in stack

multiply 4 and C

obtain 4*A*C

obtain determinant

get the square root

recall value in A

push 2 in stack

obtain 2*A

assign results to
more local variables
recall value in B

change sign

recall value in S

add -B and S

recall value in TWOA

recall value in B

change sign

recall value in S

subtract -B and S

recall value in TWOA

obtain second root

Chapter 3. Directories, Variables, and Programs 40

Since the above program does not call any subprogram you may employ either the SST or SST {
option.

In the second debugging example we trace the execution of the dice program (saved under the
name DICE). Create the global variable SEED,ifyou already have not. Store 5 in SEED. Enter
the name 'DICE’ in the stack. Press the [PRG} key and select the CTRL and DBUG options.
Trace the program execution using the SST{¢ option to single-step through the RNG
subprogram. The single-step tracing is shown in the following table:

Step # Statement executed/ Value in level 1 Comment
Object evaluated

1 *SEED’ *SEED’ the name °‘SEED’ is

pushed in the stack
2 EVAL 5 evaluate ‘SEED’

3 n ‘m’ push ‘m’ in the stack

4 -NUM 3.14159265359 evaluate ‘=’

5 + 8.14159265359 add SEED and pi

6 3 3 push 3 in the stack

7 - 539.669791716 raise to power 3

8 FP 0.669791716 keep fractional part

S DUP 0.669791716 duplicate level 1

10 ‘SEED’ 'SEED’ push ‘SEED’ in stack

11 STO 0.669791716 store level 1 in SEED

12 » 0.669791716 exit from subprogram

13 6 6 gflgh 6 in the stack

14 * 4.018750296 tzmltiply levels 1 and

15 IP 4 truncate real number

16 1 1 push 1 in the stack

17 + 5 add 4 and 1

18 » 5 end program DICE

Chapter 3. Directories, Variables, and Programs 41

p ' . 7(-#

RPN code is easier to debug than algebraic objects.

The longer the algebraic objects the more difficult they are to debug.

Program Manipulation of Directories

Earlier in this chapter we examined creating, removing, and moving between directories. The
instructions discussed were for manual action. What about directory manipulation in
programs? The answer revolves around the fact that when you create a directory, RPL creates
a variable with the same name. As with all other variables, directory variables are inherited by
subdirectories. Thus, if a program pushes the name of a directory variable (i.e., the name of a
directory) on the stack and then executes an EVAL command, RPL attempts to evaluate that
variable. A successful evaluation leads to a movementto that directory. This results in a very
interesting feature, summarized by the following rules:

1) You can move between any two directories by evaluating a sequence of directory variables,
starting with HOME. This ensures that you always start with the root directory and proceed to
the target directory. The following program, named TDIR (which should be located in the
HOME directory) performs this task:

Listing 3.9. Program TDIR
Author: Namir Clement Shammas
Version 1.0, created 8/15/90
Purpose: perform a directory move

R
W
e

W
e

w
o

“w
o

DUP ; duplicate list
SIZE ; obtain the size of the list
- L N ; assign list to local variable L

assign list size to local variable N

1N ; set limits for the FOR-NEXT loop
FOR 1 ; start FOR loop. 1 is the control variable

L : push the list in the stack
I ; push the loop variable in the stack
GET ; obtain the 1’th list member (i.e. directory name)
EVAL ; evaluate the 1’th member

NEXT

The input to the above program is a list of a complete path. Consider the directory in Figure
3.1 on page 28. If you wanted to move from any directory to the NLR directory, you need to
supply the above program with the following argument:

Chapter 3. Directories, Variables, and Programs 42

{ HOME MATH OPTM NLR }

The program extracts the members of the supplied path and evaluates each one. Each
evaluation moves to that directory. The sequence of evaluation takes you to your target
directory.

2) You can move to a child subdirectory by simply evaluating its name. For example, if a
program is currently in the HOME directory (see Figure 3.1) and needs to move down to
STRING,it pushes the name STRING in the stack and evaluates it. The TDIR program can be
used. The input is a single memberlist, { STRING } in this case.

3) You can migrate upward along the same path by simply evaluating the name of the target
ancestor directory. For example, if a program is located in directory NLR and needs to move
to MATH,it simply evaluates the name '"MATH'. There is no need to mention OPTM, the parent
directory of NLR! This neat feature exists because of the inheritance in variables (including
directory variables) along a directory path. In the case of our example, the directory variable
MATH is visible in the directory NLR. Evaluating the directory name MATH successfully leads
to the MATH directory. The above program can also be used with this type of directory
traversal. A single-memberlist is needed. The input for our example is { MATH }. Notice that
the same input is needed to move from OPTM to MATH (although using UPDIR is quicker).

Programs Manipulating Programs

There are two basic types of languages and programs, namely, compilers and interpreters.
Compilers transform the readable source text into machine instructions. You need not compile
a program again to run it, unless you have changed it. When a compiled program runs, the
machine instructions are executed by the machine’s Central Processing Unit (CPU). By
contrast, interpreters execute a program by interpreting few parts of the program at a time.
Once, these parts are executed, the interpreter forgets about them. Consequently, if the
interpreter re-encounters program statements,it interprets them again! This is why interpreted
programs are slow. There are also language implementations that partially compile programs.
The compilers are called p-code (or psuedo-code) compilers. Such languages use a wide variety
of approaches. One compiles a program into instructions of an abstract CPU. During program
execution, the abstract instructions are translated into the instructions of the actual CPU.

One of the interesting advantages of using interpreters is dynamic program modification. This
is based on the fact that interpreted programs are regarded as data. As data, these programs
can be modified. One aspect of such modification is for a program to modify itself while it is
running. The interpreted BASICA and GW-BASIC possess such a capability. Another aspect
of program modification, applicable to RPL,is for a program object to modify another program
object before calling it. This approach is slightly different from the first one, since RPL
applications often consist of a set of semi-independent and modular program objects.

The basic steps in performing such program modifications are:

1) The edited program object is pushed in the stack and converted into a string.

Chapter 3. Directories, Variables, and Programs 43

2) The string image of the edited program is manipulated (this includes adding, removing, and
translating text) accordingly.
3) The string is converted back into the program object.
4) The altered program object is then stored in its proper host variable.
5) The modified program can be called, reflecting the runtime changes.

The following figure compares RPL and IBM-PC commands for traversing directory trees. Keep
in mind that the root of IBM-PC disks is simply the backslash character, \, while the root of the
HP48SX is HOME. The directories of figure 3.1 on page 28 are used.

RPL BASIC Comments

HOME CHDIR("\") move to the root directory
UPDIR CHDIR("..") move to the parent directory
‘MATH’ EVAL CHDIR("\MATH") move from OPTM to MATH

*‘OPTM’ EVAL CHDIR("\MATH\OPTM") move from NLR to OPTM
‘WORD’ EVAL CHDIR("WORD") move from STRING to WORD

*STRING’ EVAL

‘WORD’ EVAL CHDIR("\STRING\WORD") move from HOME to WORD
Figure 3.3. Comparing the movement in the directory tree between RPL and IBM-PC BASIC.

Program Guidelines

Good programming practices are built on sound discipline. While there is not one single method
that must be followed, a few techniques have evolved. Here are some guidelines for good
programming practices:

® Plan your program ahead. The more complex the application, the more planning is needed.
Design the features and determine the functionality of the application.

® Determine the primary data objects that are used in your application.
® Develop an outline of the set of tasks required. This process is a cyclic one. Each cycle

defines the tasks at a specific level. The first cycle determines the major tasks required. The
second cycle defines the tasks required by the first-level tasks. Each successive cycle brings
more details on what needs to be done. You will reach a stage where the tasks are so well
defined that the next natural step is to write the RPL code. Computer scientists call this
method a top-down design.

e Implement the code using a bottom-up strategy. Since you have all the tasks defined, start
writing the RPL source code for the lowest level programs. These routines should be coded
before moving on the next level of programs, as guided by your outline. This process is
repeated until you have coded the complete application.

® Document your programs as if others will read it. You will be surprised how vague
undocumented programs will look six months or so after they are written. Give extra

Chapter 3. Directories, Variables, and Programs 44

explanation to programming tricks.
Include in your document the following:

® Program name.
® Your name.
® The version number.
® The date of creating the program.
® The date for the last update.
® Program purpose.
¢ Comments.
® A list of global variables.
® A list of local variables.
® A list of called subprograms.

Comment your documented programs. I use the semicolon to separate trailing comments.
Adopt a program indentation style. There is no concrete rule for indenting documented RPL
listings. I use tabs to indent each logical level. This includes nested program objects and the
statements of a loop or decision-making constructs (discussed in later chapters).
Use meaningful names for local and global variables. Be consistent in using the same names.
For example, the variable LEN should consistently mean the length ofan array,list, or string.
This rule proves to be even more valuable when using single letter names.
Use bold characters when documenting subroutine calls. Use italic characters when
documenting global variables. This makes your listing more readable. Whatever style you
select, be consistent.
Use lowercase variable names for local variables.
Test your programs with several sets of data. Often you employ a single set of data that
works fine with a program. Test boundary and median values. Consider the case of testing
a program that inserts a small string in a big string. The median value is the middle of the
string. The boundaries are the head and tail of the string. Test the following cases:

® Inserting the small string before the first character of the big string.
® Inserting the small string after the last character of the big string.

Boundary-value cases frequently require additional code to detect them and properly deal
with them.

Interactive Input and Output

We will explore interactive keyboard input and output in this chapter. The popular term user-
friendly software is a reminder that (a) the user is supposed to know what to do, and (b) the
user never makes mistakes. Most end-users welcome programs that guide them with messages,
menus, and other fool-proof measures. This chapter discusses techniques that handle input
prompting, menu selection, sound, and labeled output.

Some Prompts Never Die!

The HP41C PROMPT command is also available in the HP48SX. It offers a simple method
(compared to the INPUT command, discussed later) for prompting the user for input. The
HP48SX PROMPT command takes a string in level 1 and displays it in the upper left corner of
the screen. The program control returns to the keyboard. This means that you are free to key
in one or more data objects and even performn intermediate calculations! When you are good
and ready for the program to resume, invoke the CONT command (by pressing the [left
shift]|ON] keys). The following program modifies a version of the quadratic solver from Chapter
3 by adding a PROMPT command. The latter displays the following string at the upper left
screen corner:

Enter A, B,and C:

To comply with the request, enter three real numbers and invoke the CONT command to
resume program execution.

; Listing 4.1. Quadratic Solver version 4.1
«

"Enter A, B, and C : " PROMPT ; prompt for input
0 push dummy values in the stack

- A B C S TWOA store data in local variables A, B, and
C. Also store dummy zeros in local
variables S and TWOA.

o

®
e
@
9

m
g
m
p

®

«

‘V(SQ(B)=4*A*C)’ EVAL
‘S’ STO
*2*A’ EVAL
*TWOA’ STO
(-B+S)/TWOA EVAL
*(-B-S)/TWOA’ EVAL

calculate square root of determinant
assign the square root of D to local variable S
calculate 2 A
assign 2*A to the local variable TWOA
obtain first root
obtain second root®

e
o
e

D
o
e

®
¢

Chapter 4. Interactive Input and Output 46

The display during the program looks like:

Enter A, B, and C :

4:

3:
2:

Hoo-] NNBIN
Labeling the Output

If you run the above program you might complain of the ambiguity of the output. While the
program prompts you for the input, the output consists oftwo real numbers with no explanation
of what they are. The HP48SX offers at least two methods to label the program output. The
first uses tags attached to stack objects. For example, the tagged output of the above program
might look like this:

2: ROOT1:2.5
1: ROOT2:4.5

The second technique is to simply build a string that contains the output and its explanation.
Thus, the output of the above program might look as follows:

2: "ROOT1 = 2.5
1: "ROOT2 = 3.4°

What's the difference between the two methods? Tags are very easy to attach and remove.
Consequently, the tagged results can be further used by the program with practically no
additional manipulation. Using strings has the advantage of giving you better wording. The
down side is that if the results need to be used later, they must be extracted from the string.
A program may store the results in variables and concatenate copies to the output strings. This
way, the results are easily retrieved from the host variables.

To tag an object in level 1 of the stack, you push the tag name and invoke the «TAG command.
The following listing shows the last version of the quadratic solver modified to include tags with
the output:

; Listing 4.2. Quadratic Solver version 4.2
«

"Enter A, B, and C" PROMPT : prompt for input
00 ; push dummy values in the stack
- A B C S TwOA ; store data in local variables A, B, and

: C. Also store dummy zeros in local
: variables S and TWOA.

Chapter 4. Interactive Input and Output 47

; calculate square root of determinant
; assign the square root of D to local variable S
; calculate 2 A
assign 2*A to the local variable TWOA

; obtain first root
; attach a ROOT1 tag to the first root
; obtain second root
; attach a ROOT2 tag to the second root

'V (SQ(B)=-4*A*C)’ EVAL
*S’ STO
*2*A’ EVAL
*TWOA’ STO
*(-B+S)/TWOA’ EVAL
*ROOT1’ =TAG
*(-B-S) /TWOA’ EVAL
*ROOT2’ =TAG ®e

e
e

By
e

®y
"o

@

The next version of the quadratic solver uses strings to display the results. I also wrote the
program to store the results in the global variables ROOT1 and ROOT2. The program is shown
below:

; Listing 4.3. Quadratic Solver version 4.3
«

; prompt for input
push dummy values in the stack

; store data in local variables A, B, and
C. Also store dumy zeros in local

; variables S and TWOA.

BEBter A, B, and C : " PROMPT

- A B C S TWOA

®y
m
e

ue
W

©

; calculate square root of determinant
u

‘V(SQ(B)=4*A*C)’ EVAL
o assign the square root of D to local variasble S‘S’ ST

‘2*A’ EVAL calculate 2 A
"TWOA’ STO ; assign 2*A to the local varisble TWOA
"ROOT1 = " ; push the first string tag in the stack

; obtain first root
; duplicate the above result
store in global variable ROOT1
concatenate the string tag and the first root
push the second string tag in the stack
obtain second root
duplicate the above result

; store result in global variable ROOT2
concatenate the string tag and the second
root

*(=B+S) /TWOA’ EVAL
DUP
‘ROOT1’ STO
+

"ROOT2 = "
*(-B-S) /TWOA’ EVAL
DUP
‘ROOT2’ STO
<+

»

»

The INPUT Command

The HP48SX offers a second interactive input command besides PROMPT. The INPUT
statement, perhaps intentionally named after BASIC's INPUT statement, offers more power. The
INPUT command permits you to display two strings: a prompt string located where level 4
appears,. and a string in the command line. The latter may be used to supply default input and
more sophisticated prompting. When the INPUT command is invoked it takes the machine into
command-line editing mode. You can edit the command line. Pressing the [Enter] key resumes
program execution.

Simple Input

Ley's use a series of short examples to explain the rather un-obvious way ofusing INPUT. The
first example modifies version 4.2 of the quadratic solver by replacing PROMPT with INPUT.
Instead ofhaving a single prompt for three data, you get a separate prompt for each input. This

Chapter 4. Interactive Input and Output 48

makes the program more friendly to users who are not comfortable with RPN and stacks. The
three INPUT statements are similar. Each takes two string arguments from the stack. Thefirst
string is the prompt that appears at the upper left screen. The second string is placed in the
command line. Since the second string is empty, the command line appears empty when
INPUT is invoked. The OBJ- command transforms the input into the appropriate object type,
real numbers in our case.

; Listing 4.4. Quadratic Solver version 4.4
«

"Enter A" "" INPUT OBJ- ; prompt for A
"Enter B" "" INPUT OBJ= prompt for B

prompt for CSEgter C" "" INPUT OBJ=

- A B C S TWOA
push dummy values in the stack
store data in local variables A, B, and
C. Also store dumy zeros in local
variables § and TWOA.

W
y
W
y
M
o
V
g
W
g
W
y

W

«

‘V(SQ(B)=-4*A*C)’ EVAL
'S’ STO
*2*A’ EVAL
*TWOR' STO
*(=B+S) /TWOA’ EVAL
*ROOT1’ —=TAG
*(-B-S) /TWOA’ EVAL
*ROOT2’ =TAG
»

calculate square root of determinant
assign the square root of D to local variable S
calculate 2 A
assign 2*A to the local variable TWOA
obtain first root
attach a ROOT1 tag to the first root
obtain second root
attach a ROOT2 tag to the second root®W

e
W

V
e
V
e
V
e
V
e
“
o
%

»

The screen is shown below when prompting for the first coefficient:

PRG
{ HOME)}

Enter A

<

oo~IIIB

Using a Default Input

The next version of the quadratic solver uses default input data for each coefficient. Thus, the
second INPUT string is no longer empty. Instead, it contains a default value. When you run
version 4.5 the command line contains a default value. If you press [Enter] the default value
is used.

; Listing 4.5. Quadratic Solver version 4.5
o«

"Enter A" "1™ INPUT OBJ= ; prompt for A with a default value of 1
"Enter B" "-5" INPUT OBJ- ; prompt for B with a default value of -5
"Enter C" "6" INPUT OBJ- ; prompt for C with a default value of 6
00 ; push dummy values in the stack

Chapter 4. Interactive Input and Output 49

- A B CS TWOA store data in local variables A, B, and
s C. Also store dumy 2eros in local
; variables S and TWOA.

«
e

‘V(SQ(B)-4*A*C)‘’ EVAL
‘S’ STO
*2*A’ EVAL
*TWOA’ STO
*(-B+S)/TWOA' EVAL
*ROOT1’ =TAG
*(-B-S) /TWOA’ EVAL
'ROOT2’ =TAG

; calculate square root of determinant
; assign the square root of D to local variable S
; calculate 2 A
; assign 2*A to the local variable TWOA
: obtain first root
: attach a ROOT1 tag to the first root
obtain second root
attach a ROOT2 tag to the second root®

e
o

Ve
g

We
By

Ny
»

The screen is shown below when prompting for the first coefficient:

PRG
{ HOME)}

Enter A

 laH-co:]IIB
To avoid using the default value you must delete it. It will not automatically disappear if you
press an alphanumeric key when prompted. Many microcomputers applications use the latter
technique, which is superior to the HP48SX approach.

Manipulating the Default Input

The last program illustrated how a default input is supplied. I purposely chose a simple default
value. The INPUT command allows you to position the cursor anywhere inside the default value

and set insert or overwrite mode. This is shown by the next program that prompts you for your
phone number. The prompt string for the INPUT statement is "Enter phone number®. The

second argument for INPUT is a list that contains a string and a real number. The string
"(804) - » displays a phone number template with a default area code. The number -
7 is interpreted as "put the cursor 7 characters from the left side of the string." The negative
value signals that the cursor is in overwrite mode. Had I used the positive number 7, the cursor
would be in insert mode. For this kind of prompt, the insert mode is the appropriate mode.
When the INPUT statement is executed, the solid block cursor (indicating that you are in
overwrite mode) is located at the first underscore character. You may move the cursor to the
area code data and type in another value. The underscore characters remind you ofwhere you
need to type non-default input. After you press the [Enter] key, the program extracts the area
code and phone numbers, tags them, and leaves them in the stack. The listing is shown below:

Chapter 4. Interactive Input and Output 50

; Listing 4.6. Program to demonstrate default input.

*"Enter phone number"
{ "(804) - " =7) INPUT prompt for the phone number
DUP duplicate the input
2 4 SUB extract the area code
‘AreaCode’ =TAG tag a label to area code string
SWAP swap to access other input copy

extract phone number
tag a label to phone number string

e
e

W
e
B

V
e
e
N

‘Number’ -TAG

The screen is shown below when prompting for the phone number:

PRG
{ HOME }

Enter phone number

 804) « -

H-=BI

The rules for using this type of advanced prompting are:

® The argument for INPUT in level 1 is a list made up of a string and a real number.
® The string appears in the command line. Quoted string constants may appear in the list.
However, variables containing strings must be first evaluated and the result included in thelist.
® The absolute value of the real number represents the position of the cursor from the left side
of the string. A value of 3 puts the cursor at the third string character. A zero indicates that
the cursoris placed after the command-line string. The absolute value of the real number is
rounded up. Thus, 7.6 is rounded up to 8, while 7.4 is rounded down to 7.
® The sign of the real number indicates the cursor mode. Positive values put the cursor in
insert mode (the cursor appears as a left-pointing arrow). By contrast, negative values invoke
the overwrite mode (the cursor appears as a block).

Programming Hote

The absolute values of the real numbers are located. For example, -7.6 is rounded to
‘the number -8.

Chapter 4. Interactive Input and Output 51

Tag-Aided Input

Version 4.2 of the quadratic solver uses the PROMPT command to prompt you for all three
coeflicients. The last two versions of the quadratic solver use the INPUT command to
individually prompt for each coefficient. You can use the INPUT command to prompt for several
items at once. Tags can be used to assist in the input multiple items. The command line string
contains the sequence of needed tags (one for each input datum). To display each tag on a
separate line, each tag must be followed by a return character. What about the cursor? Where
should it be located? The INPUT command allows you to select the row and column position
of the cursor using a list of two reals (I will call this list the input control list) . The first real
number is the tag index. Thus, 1 locates the cursor in the line of the first tag that appears in
the command-line string. The number 3 positions the cursor at the second tag in the command-
line string, and so on. If the tag index is greater than the actual number of tags, the cursoris
located at the last tag. In addition, the sign of the tag index number selects the insert or
overwrite mode. Positive values set the insert mode, while negative values select the overwrite
mode.

The second real number in thelist specifies the number of characters from the left side ofa tag.
Thus, { 2 1 } indicates that the cursor is located at the first character of the second tag.
Assigning O to the character position causes the cursor to be located after the tag. Thus, { -4
O } locates the cursor after the fourth tag and selects the overwrite mode.

‘z%ogadmwuk9»7z¢b

The list { n m } used with the INPUT command places the cursor at the m'th character
of the n'th line. If n is zero or greater than the actual number of lines, the cursoris
located at the last line. If mis zero, or greater than the length of the n'th line, the
cursor is located after the line's text.

The HP48SX screen shows up to four tags at a time. When using more than fourtags,
you scroll through them using the up and down arrow keys.

Prompting with more than three tagged items overwrites the prompt string.
The next prograrmn shows a version of the quadratic solver that uses the INPUT command as
discussed above (note: the symbol 8 in the listing is a carriage return):

;s Listing 4.7. Quadratic Solver version 4.6
«

"Enter A, B, C"{ ":A:®:B:®:C:" {10})

INPUT OBJ-

; display prompt string
; set command-line string and cursor mode and
; location
: invoke INPUT command

Chapter 4. Interactive Input and Output 52

0 push dummy values in the stack
- store data in local variables A, B, and

C. Also store dummy zeros in local
variables S and TWOA.

0
A B CS TWOA

®
e
W
y
W
y

o«

'V (SQ(B)=-4*A*C)’ EVAL
'S’ STO
*2*a’ EVAL
*TWOA’ STO
*(=B+S) /TWOA’ EVAL
*ROOT1’ =TAG
*(-B-S)/TWOA’ EVAL
*ROOT2’ -TAG

calculate square root of determinant
assign the square root of D to local variable S
calculate 2 A
assign 2*A to the local variable TWOA
obtain first root
attach a ROOT1 tag to the first root
obtain second root

attach a ROOT2 tag to the second root

»

The screen image of a sample session is shown below. The image shows the following:

® The tags A, B, and C.
® The number 1.4 was entered for the tag A.
® The cursor is currently located after the tag B.
® The tag C has yet to receive its input.

PRG
{ HOME)}

Enter A, B, C

tA:1.4
tB: «

Bl ooIDBNB
To move up or down between tags use the up and down arrow keys. Using these keys, you are
free to move back and forth between the tagged data. You can also edit your input (and any
default values) very easily.

Input Validation

The INPUT command offers a basic input validation feature. By including an unquoted V
parameter in the input control list, your programs can detect input that does not correspond
to any valid object type. Let’s consider the last program. If you enter an ill-formatted number,
say 1..4, the two-decimal number is not checked by INPUT. Consequently, the above program
is halted later due to the attempt to handle the erroneous input. There are two cures: insert a
set of commands that hunt for bad input, or use the V parameter. This parameter causes the
INPUT command to make sure that the input after each tag corresponds to a valid object type.
This is by no means a fool-proof measure, since, for example, you can enter a matrix where a
complex number is expected. More effective validation is discussed in the chapter on error-
handing. Thus, to utilize INPUT's data validation you need to change the following list:

Chapter 4. Interactive Input and Output 53

{ ":A:8:B:8:C:" {10})

into

{ ":A:8:B:8:C:" {10) V)

Programming Hote

The members of the input control list can appear in any order.

Other Input Control Parameters

The HP48SX offers two more input control parameters. They are the ALG and the a parameters
which must be appear unquoted in the input control list. The ALG parameter puts the HP48SX
in algebraic-object mode. The a parameter locks the alpha input. This parameter is very useful
for string input.

Controlling the Screen Output

The HP48SX offers a set of commands that permit you to control the screen output. The
CLLCD command clears the LCD display of the machine. Once the screen is blanked, the DISP
command is able to write to the screen using mediume-size characters. The DISP command

treats the LCD screen as having 7 rows and 22 columns. The rows are numbered 1 though 7,
with one being the top screen row. The stack is redisplayed when the program ends or when
a HALT command is executed. The following program uses the CLLCD and DISP commands
to demonstrate these commands. The output displays strings "ROW # 1" through "ROW #7°,

Listing 4.8. DISP command demo, version 4.1~
e

CLLCD : clear LCD
"ROW # 1" 1 DISP ; display strings on rows 1 to 7
"ROW # 2" 2 DISP
"ROW # 3" 3 DISP
"ROW # 4" 4 DISP
"ROW # 5" 5 DISP

"ROW # 6" 6 DISP

"ROW # 7" 7 DISP
S WAIT ; wWait 5 seconds

The DISP command converts the usual LCD display into a 7-by-22 character message board.
This permits the implementation of on-line help and condensed output.

The above program introduces the WAIT command. It suspends program execution for a
specified number of seconds. The waiting period is taken from level 1. The above program

Chapter 4. Interactive Input and Output 54

pauses for five seconds after displaying the seven strings, before the normal stack reappears.

While pausing a program for a specified period has its appeal, it also has drawbacks. What if
the user was distracted during the pause? The remedy is to make the program pause until a
the user presses a key. The WAIT command accommodates this requirement, too. By
supplying an argument of zero, the WAIT command pauses the program until a key is pressed
(the alpha and shift keys are excluded). It returns the code for the pressed key. If this
information is of no value to the program, simply pop it off the stack. I have modified the last
program to include the WAIT command with a zero argument. The seven strings remain visible
until you press a key.

; Listing 4.9. DISP command demo, version 4.2

CLLCD ; clear LCD
"ROW # 1" 1 DISP ; display strings on rows 1 to 7
"ROW # 2" 2 DISP

"ROW # 3" 3 DISP
"ROW # 4" 4 DISP
"ROW # 5" 5 DISP

"ROW # 6" 6 DISP

"ROW # 7" 7 DISP
0 WAIT ; wait until a key is pressed
DROP ; drop the keystroke code generated by the 0 WAIT command

The HP48SX offers the KEY command that works like 0 WAIT. The difference is that when
KEY is invoked it returns O if no key was pressed; otherwise, the command returns the key
code. The most common use ofthe KEY function includes the conditional DO-UNTIL loop (more
about loops in Chapter 7). For now, don’t worry about the loop if it looks ambiguous. The new
program version is shown below:

; Listing 4.10. DISP command demo, version 4.3

CLLCD ; clear LCD
"ROW # 1" 1 DISP ; display strings on rows 1 to 7

"ROW # 2" 2 DISP
"ROW # 3" 3 DISP

"ROW # 4" 4 DISP

"ROW # 5" 5 DISP
"ROW # 6" 6 DISP
"ROW # 7" 7 DISP
DO : use an empty DO-UNTIL loop
UNTIL KEY END : loop until a key is pressed
DROP ; drop the keystroke code generated by the KEY command

The HP48SX Bells and Whistles

The HP41C offered the BEEP and TONE commands to add sound to programs. Most BASIC
implementations also have sound commands. The HP48SX offers the BEEP command that
allows the data in the stack to specify the frequency and duration of the sound. The
functionality of the HP48SX BEEP resembles the BEEP command in many BASIC

Chapter 4. Interactive Input and Output 55

L

implementations. The argument in level 2 is the tone frequency. The argumentin level 1 is
the tone duration in seconds. The following version of the DISP command demo program beeps
for 0.2 seconds after a key is pressed:

; Listing 4.11. DISP command demo, version 4.4

CLLCD ; clear LCD
"ROW # 1" 1 DISP : display strings on rows 1 to 7
"ROW # 2" 2 DISP
"ROW # 3" 3 DISP
"ROW # 4" 4 DISP

"ROW # 5" 5 DISP

"ROW # 6" 6 DISP

"ROW # 7" 7 DISP
0 WAIT ; wait until a key is pressed
DROP ; drop the keystroke code generated by the 0 WAIT command
1000 .2 BEEP ; toot the 48’s horn!

Using Menus for Input

The latest generation of Hewlett-Packard hand-held programmable calculators extensively uses
menus. In addition to a wealth of predefined menus, the HP48SX allows you to set up your own
custom menu. This menu may be used to collect frequently used commands and functions.
The custom menu can also be used for a menu-directed input.

Building Custom Menus: A Crash Course

If you are familiar with creating custom menus, you may skip this subsection. The [CST] key
invokes the custom menu of the HP48SX. Interestingly, there are variations in the process of
creating custom menus. This is a quick rundown for these methods.

To create a custorn menu you need to place a list ofmenu items in level 1 and invoke the MENU
command (by pressing the [right shift][CST] keys and selecting the MENU option). The type of
list members determine how sophisticated the custorn menuis.

The simplest way to define a custom menu is to include a list of commands and other objects
that appear verbatim in the customm menu. For example, consider the following list used with
a MENU command:

{ DUP DROP QDR "HP48SX" SEED CST)} MENU

Chapter 4. Interactive Input and Output 56

.

The custom menu that appears when pressing the [CST] key is shown below:

{ HOME }

N
W
H

e
o
o

1: ‘
lovr] BoroPj [lioor) Ber4s) seeo) icsTH

The first two options are predefined commands. The third option invokes the quadratic solver
program saved as the variable QDR. The fourth menu option pushes the string "HP48SX" in
the stack. Thefifth option recalls the contents ofthe global variable SEED (if it exists) or pushes
the name 'SEED’ in the stack. The last option is similar to the last one, except it works with
the global variable CST. This variable is created by the machine when the MENU command
was executed. The variable CST contains the list used to create the most recent custom menu.
By storing the menu list in the CST variable, the HP48SX is able to offer you a separate custom
menu for each directory! Moreover, ifyou have selected the custorn menu and move to another
directory, the HP48SX automatically displays the custom menu of the new directory.

Programming Hote

By storing the menu list in the CST variable, the HP48SX is able to offer you a separate
custom menu for each directory! Moreover,if you have selected the custom menu and
move to another directory, the HP48SX automatically displays the custom menu of the
new directory.

The second genre of custom menus allows the menu options to be aliased using labels. This
means that the menu displays a label name that is different from the actual name of the
evaluated object. The menu labels are strings. Each menu option and its label must be
enclosed in a list. The above custom menu list can be modified to use labels as shown below:

{ DUP DROP { "ROOT" QDR } { "48" "HP48SX" } SEED CST)} MENU

The label ROOT is now used instead of the name of the program QDR. The string "HP48SX"
is nowreplaced with an abbreviated label "48". The custom menu that appears when pressing

the [CST) key is shown below:

Chapter 4. Interactive Input and Output 57

{ HOME)}

N
W

Biovel Bororfl Broorf Mol Bseeoll BicsT

Using menu labels also makes it possible to associate a label with a program object. For
example, the SEED option which recalls the contents of variable SEED can be changed to
perform the reverse. A label "»SEED" is used with a program object that stores the data oflevel
1 in the variable SEED. Notice that the label uses the right arrow to signal that the option is
used to store data into SEED. The modified custom menu list is shown below:

{ DUP DROP { "ROOT" QDR } { "48" "HP48SX")} { "SEED" « ’‘SEED’ STO » CST)}

The third type of custom menu allows you to define additional functionality with the right and
left shift keys. To implement this feature a menu label must be followed by a list of three
objects. The first object handles pressing the menu option. The second and third objects deal
with the use of the left and right shift keys, respectively. The following list shows a new version
of the custom menu list, with the -SEED option supporting the shift key functionality:

{
DUP
DROP
{ "ROOT" QDR)}
{ "48" "HP48SX")
{ "SEED"

{
« 'SEED’ STO »
« SEED »

« CLLCD

"Random number seed value" 1 DISP
"Option = get seed value" 2 DISP
"LShift - store value" 3 DISP

"Press any key ..." 7 DISP
O WAIT DROP

»

}
CST

} MENU

The three objects in the list following the "+=SEED" label are program objects. The first program
object stores data at level 1 in the variable SEED. This program runs when the menu option
is pressed. The second program object recalls the value of the SEED variable. This takes place
when the left shift key is pressed before menu key. The third object is a longer program that
offers on-line instructions and help. The help screen is shown below:

Chapter 4. Interactive Input and Output 58

Random number seed value

Option =+ get seed value
LShift = store value

Prese_any k
Bovrl |DRo§i Brootll <l F-seeol Wcstl

Menu Input

Custom menus can be used to implement a special class of applications. These programs
invoke the custom menu to display the names of the variables and the subprogram options.
The custom menu becomes the focal point for entering data and running program code. Unlike
the sequential input, using custom menus empower the user to selectively re-enter data. Of
course, all of the data variable must be assigned values initially. After the first round of
calculations, the end-user can ask what-ifquestions and update selected variables without going
through the whole list. This method is even faster than a sequential input method that uses the
last values you entered as default data.

To use menu-aided input, the host program must create and remove the custom menus as
needed. The program section using menu-aided input needs to invoke the MENU command
after defining the custom menu list. Here is a set of rules and suggested guideline for
constructing the menu lists for menu-aided input:

1) Global variables are used to store and recall the data.
2) The global variables are created when the menu is constructed and are purged when the
menu is no longer needed.
3) The menu labels associated with the global variables should start with the variable - symbol
to signal that the menu option handles a variable (and does not execute a program object).
4) The menu option that handles a global variable should be set as follows:

® The unshifted option stores data in the variable.
® The left shift option recalls the value in the variable.
® The right shift option offers an on-line explanation.

5) The menu option that handles a program object should be set as follows:

® The unshifted option executes the program object.
® The right shift option offers an on-line explanation.

6) A menu option should be used to properly exit the program. The action taken by this option
includes purging the global variables used and clearing the custom menu.

The above rules and guidelines are applied to the quadratic solver. The listing of this new

Chapter 4. Interactive Input and Output 59

version is shown below:

; Listing 4.12. Menu-aided version of the quadratic solver.
«

{

"A" ; set label for coefficient A

{
« ‘A’ STO » --- unshifted menu option ---

store value in global variable A
« A>» --- left shift menu option ---

recall value from global variable A
« --- right shift menu option ---

provide with on-line help
CLLCD clear display
"COEFF. OF X~2" 1 DISP
O WAIT DROP

show message in screen row 1
wait for a key to be pressed®

e
e

m
g
W
y
W
e
"
y
W
y
W
e
W
o

}
}
{
"=B" ; set label for coefficient B

« ‘B’ STO » ; --- unshifted menu option ---
; store value in global variable B

« B » ; --- left shift menu option ---
; recall value from global variable B

« : --- right shift menu option ---
; provide with on-line help

CLLCD : clear display
"COEFF. OF X" 1 DISP : show message in screen row 1
O WAIT DROP ; wait for a key to be pressed
»

}
}
{
"=C" ; set label for coefficient C

{
« ‘C’ STO » : --- unshifted menu option ---

; store value in global variable C
« Co» : --- left shift menu option ---

; recall value from global variable C
« ; --- right shift menu option ---

: provide with on-line help
CLLCD ; clear display
"CONST TERM" 1 DISP ; show message in screen row 1
O WAIT DROP ; wait for a key to be pressed
»

}
}
{
"SOoLvV" ; set label for the quadratic solver

{
« ; --- unshifted menu option ---
A BZC : push the quadratic coefficients in the stack
QR : invoke QR, the quadratic solver subroutine
»

« === left shift menu option ---
DO NOTHING!

; --- right shift menu option ---
; provide on-line help"QUADRATIC SOLVER"

Chapter 4. Interactive Input and Output 60

1 DISP

O WAIT DROP
»

}
}
{ :
"EXIT" ; set label for exit option

{
«

‘A’ PURGE ; purge the global variables A, B, and C
‘B’ PURGE

‘C’ PURGE
{ 8 MENU ; clear the custom menu
2.01 MENU ; select the VAR menu
»

) }

} MENU ; build and activate the custom menu

The above program object should be stored in a variable, say, MQDR. When the MQDR program
is executed is sets up the custorm menu shown below:

{ HOME)}

4:

3:

2:
1l:

BN BN Bl ol F=xiolI

The first three custom options manage the global variables A, B, and C involved with the
quadratic solver. The menu options for these coefficients are coded very similarly. The
unshifted option stores the number in level 1 of the stack in the corresponding global variable.
The left shifted menu option recalls the content of that variable. The right shift option provides
a verbose explanation of what that variable is.

The SOLV menu option offers two active choices. The unshifted option pushes the data in the
global variables A, B, and C in the stack and then invokes the subroutine QR (QR can be any
version of the quadratic solver in Chapter 3). The left shift option is made idle by using an
empty program object. The right shift option has an program object that displays a verbose
program title. The SOLV option shows that you can invoke program objects stored in other
variables.

The EXIT option is the most interesting one. Its task is to remove the global variable used,
remove the custom menu, and return to the VAR menu. Inspecting the CST variable after the
action of this option returns an empty list. You can delay selecting this option until you need
to reuse the custom menu. This means that you can move to other menus and return to the
custom menu at your discretion.

Chapter 4. Interactive Input and Output 61

The HP48SX also allows the use of temporary menus. They are more transient than custom
menus. Moreover, using temporary menus does not overwrite custorn menus. The TMENU
command works like MENU. You can use the temporary custom menu if the use of the menu-
aided program is just that -- temporary.

Menu-aided programs can also use a hierarchy of menus. This requires a more elaborate
scheme of custom menu manipulation. It is worth mentioning that such programs simulate
multiple levels in the same directory. The removal of variables can be done as you go up the
menu levels -- the variables of the level left behind are removed. An alternate scheme is to
remove all the global variables (created by the different menu levels) by an EXIT-type option
located at the highest menu level.

Chapter 4. Interactive Input and Output 62

Notes

Operators and Expressions

Operators and expressions for the different data objects will be examined in this chapter.
Operators are special functions. They work with one or two operands and are either symbols
(such as the + sign) or reserved keywords (such as MOD). Expressions contain one or more sets
of operators and operands.

Mathematical Operators and Expressions

This class ofoperators and expressions is involved in computing a mathematical result. In this
section I will discuss these operators applied to real numbers, complex numbers, binary
integers, arrays, and matrices.

Real Numbers

The operators for real numbers are familiar to calculator users. These include the operators for
the four operations, as well as the power and modulus operators. Figure 5.1 lists these
operators and includes examples in algebraic objects. The figure also shows the priority levels
of these operators when they appear in algebraic expressions. More about this next.

The HP41C user is familiar with RPN expressions --- the sequence of RPN commands that
calculate a result. By contrast, the BASIC programmer is accustomed to algebraic expressions.
The latter type of expression is generally easier to read, unless the expression is riddled with
parentheses. Examples of both types of expressions are shown in Figure 5.2.

Case number 1 shows a simple expression containing a single operator. Case number 2 shows
an algebraic expression with two + operators and a * operator. The equivalent RPN expression
is written to account for the different priority levels between the + and * operators in the
algebraic expressions. Figure 5.3 shows the sequence of evaluating the latter. This sequence
matches that of the RPN expression. Case number 3 shows how parentheses are used to
evaluate the priority of the first + operator in the algebraic expression. Figure 5.4 shows how
that results in the sequential evaluation of the operators. Case number 4 also shows how
parentheses are used to give the * operator a higher precedence over the power operator.

Chapter S. Operators and Expressions 64

Operator Function Priority Level Example

+ unary plus 4 ‘+5°

- unary minus 4 ‘=5"

+ add 1 ‘548"

- subtract 1l ‘22-5"

* multiple 2 '4*45"

/ divide 2 *355/113°

~ raise to power 3 ‘273’

MOD modulus 2 *355 MOD 7°

Note: Higher priority operators are performed before lower ones.

Figure 5.1. The operators for real numbers.

Complex Numbers

The operators of the complex numbers are the same ones for the real numbers, except the
modulus operator. The unary negation (i.e., change of sign) works on both real and imaginary
components of a complex number. The complex number operators have the same priority of
evaluation in algebraic expressions.

Complex and real numbers can appear in the same expression. The following rules apply:

e Multiplication and division: the real number is applied to both parts of the complex number.
® Addition, subtraction, and raising to a power: the real number is first converted into a
complex number with a zero imaginary part.

Chapter 5. Operators and Expressions 65

Case # RPN Expression Algebraic Expression Result

1 5
6
+ 5 + 6 11

2 3
4
5
*®

+

6
+ 3+4*5+6 29

3 3
4
+

5
*

6
+ (3+4)*5+6 41

4 355
113

/
2
. (355/113)~2 9.87

Figure 5.2. Examples of algebraic expressions and their equivalent RPN expressions.

Binary Integers

The mathematical operators for binary integers are essentially limited to the four basic
operators. Another limitation comes from the fact that binary integer constants cannot enter
algebraic expressions. However, variables storing binary integers can appear in algebraic
expressions. Figure 5.5 lists the mathematical operators. I have omitted the unary negation
operator, since it has the same effect as a bitwise-NOT operator, presented later.

Chapter 5. Operators and Expressions 66

Step # Expression

o 3+4*5+ 6

v

1 3 + 20 + 6

v

2 23 + 6

v

3 29

Figure 5.3. The steps involved in evaluating the algebraic expression is case 2.

Step # Expression

0 (3 +4) *5 + 6

v

1l 7 * 5 4+ 6

v

2 35 + 6

v

3 41

Figure 5.4. The steps involved in evaluating the algebraic expression is case 3.

Chapter S. Operators and Expressions 67

Operator Function Priority Level Example Result

+ add 2 #12d #FFh + 267d

- subtract 2 #FFFFh #10004 - 64535d

* multiple 1 #270 #100b +« 1340

/ integer divide 1 #3554 #1134 / 3d
Figure 5.5. The math operators for the binary integers.

RPL allows a limited interaction between binary integers and real numbers. By contrast, no
interaction is allowed with complex numbers. Ifsuch operations are desired, the binary integers
must be first converted into real numbers using the B»R command.

Real Arrays and Matrices

The mathematical operators for arrays work with real numbers, complex numbers, other arrays,
and matrices. The following operations are supported:

® Negation of an array results in the negation of all its elements.
e Communicative multiplication between an array and areal number. The result
is a real array.
¢ Communicative multiplication between an array and a complex number. The
result is a complex array.
® Division of an array by a real number (but not the other way around). The
result is an array of real numbers.
® Division ofan array by a complex number (but not the other way around). The

result is a complex array.
® Addition and subtraction of two arrays that have the same size.

Figure 5.6 lists the operators between arrays and real numbers, complex numbers, and other

arrays.

Chapter 5. Operators and Expressions 68

Operator Operandl Operand2 Result Examples

- array array (1 1) NEG gives [-1 ~-1)

* real array array S [(111) * gives [5 5 §5)
array real array [111) S *~ gives [5 5§ §5)
complex array complex (1,1) [2 2) * gives

array [(2,2) (2,2))
array complex complex (2 2) (1,1) * gives

array ((2,2) (2,2))

/ array real array (S 5 5) 5/ gives [1 1 1)
array complex complex (10 10) (2,2) / gives

array [(2.5,—205) (2.5'-205)]

+ array array array (1 1) [2 2) + gives [3 3)

- array array array (5 5) (1 1) - gives [4 4)

Note: the HP48SX allows the addition and subtraction of arrays that have the
same size. You can mix complex and real arrays.

Figure 5.6. The mathematical operations between arrays and real numbers, complex numbers,
and other real arrays.

The mathematical operators for matrices are similar to those for arrays. The same operations
for arrays are supported, plus the following:

® Multiplying an array and a matrix. The array must be in level 1 and the
matrix in level 2. The size of the array must equal the number of matrix
columns. The result is an array whose size is equal to the number of matrix
TOWS.
® Dividing an array by a matrix. This essentially solves a system of linear
equations.
® Multiplying two matrices. The first matrix has m rows and n columns. The
second matrix has n rows and p columns. The result is a matrix with m rows
and p columns.

Figure 5.7 shows the mathematical operators for real matrices. Examples are also included.

Chapter S. Operators and Expressions 69

Operator Operandl Operand2 Result Examples

- matrix matrix ({1 1)[1 1) NEG gives

((-1 -1)(-1 -1])

* real matrix matrix 5 [[1 1][1 1)) * gives

([5 5)[5 5])
matrix real matrix ([1)[(1 1)) 5 * gives

(5 5)
complex matrix complex (1,1) [[2 2)[1 1)) * gives

matrix (((2,2) (2,2))((1,1) (1,1))])
matrix complex complex ((2 2)(1 1)) (1,1) * gives

matrix (1(2,2) (2,2))[((1,1) (1,1)))
matrix array array [[11){1 1)) [2 2) * gives

(4 4)
matrix matrix matrix ((1 1311 1)) ([(1 1)[(1 1))

* gives [[2 2])[2 2))

/ matrix real matrix ({5 5)[5 5)) 5 / gives

((11)[1 1])
matrix complex complex ([2 2)(2 2)) (1,1) / gives

matrix (((1,-1) (1,-1))

[((1,-1) (1,-1)]]
array matrix array (12)([(1-2)[(2-1)) / gives

(1 0)

+ matrix matrix matrix ((1 1)(1 1)) [[2 2)[2 2))
+ gives [[3 3])[3 3)

- matrix matrix matrix ({5 53[5 S)) (1 1)(1 1))
- gives [[4 4)(4 4))

Figure 5.7. The mathematical operators for real matrices.

Complex Arrays and Matrices

The operators and rules for complex arrays and matrices parallel those for their real
counterparts. It seems that we make more ofa distinction between real and complex numbers
than the HP48SX does.

Relational Operators

This class of operators compares two similar objects and returns true/false values. If you
program on the HP41C you most likely use instructions such as x=y?, x>y?, and x=0?. These
instructions implement relational operators to compare the numbers in the X and Y stack

Chapter 5. Operators and Expressions 70

registers. The RPL language supports the relational operators found in the HP41C, BASIC, and
other popular programming languages. It is important to point out that relational operators
form Boolean (that is, logical) expressions that are either true or false. The false value is
represented numerically by 0. The true value is represented by 1. This is one of the main
differences between relational operators in the HP41C and the HP48SX. If you program in
Microsoft BASIC interpreters or compilers on the IBM PC, keep this in mind --- the values -1 and
O represent true and false on such implementations.

Programming Hote

It is better to use relational operators that test O {false) than 1 {true). This is because
0 is universally accepted as false by any language and nmplementatnon that represents
logical values using :ntegers .

Figure 5.8 lists the relational operators. The ==, ,and SAME operators work with all object
types. The rest of the operators work with real numbers, binary integers, strings, and units.

Boolean expressions can appear in either algebraic or RPN forms. Examples of the forms are
shown below:

The equivalent RPN forms are shown below:

X0>
Y 5.5 <

In the RPN form, the left and right operands are located in levels 2 and 1, respectively. The
algebraic form is easier to read than the RPN forn. Mathematical expressions (in both RPN and
algebraic forms) can appear where real numbers are expected. Thus, the following are valid
comparisons:

‘(23.4*X+2) > (TAN(Y)+1.2)°’
‘((2*X+3)*X-5) == 0’

The equivalent RPN forms are:

23.4 X * 2 +

Y TAN 1.2 +

>

and

Chapter S. Operators and Expressions 71

2 X *3 +X*5 -

0
==

Operator Test Example

== operandl equal operand2 ‘X == 0°
‘Y == 10’

operandl is not equal to operand2 ‘X <> Y’
lz <> _ll

> operandl is greater than operand2 ‘X > 0’
lx > Yl

< operandl is less than operand2 ‘X < 0’
lx < Yl

< operandl is less than or equal to ‘X = 0’
operand2 ‘X = Y’

2 operandl is greater than or equal to ‘X 2 0’
operand2 ‘X 2 Y’

SAME operandl and operand2 are equal objects X Y SAME

Note: The command SAME is a function, not an operator. I have included it
because (1) it is important to RPL, and (2) it is unique to the HP48SX.

Figure 5.8. The relational operators.

F%49uaun¢h9 Hote

Relational operators and their operands can by chained only by using Boolean
operators. This applies to both RPN and algebraic forms.

Boolean Operators

The discussion on Boolean expressions began in the last section. Relational operators need

Boolean operators to build more complex conditions. The Boolean operators are AND, OR, XOR,
and NOT. The first three are binary operators. The NOT operator is a unary operator that
performs logical negation. The operands of the Boolean operators are Boolean values. Such

Chapter S. Operators and Expressions 72

values are usually obtained by relational operators. You can use a real number as an operand
to these operators. The operator considers the number as representing a false Boolean value
if it is equal to O; otherwise,it represents a logical true value. This is why the last programmer’s
note recommends the testing with 0. Figure 5.9 shows the truth table. This table is to logic
what the multiplication table is to arithmetic.

Operand 1 Operand 2 Boolean Operator Result

true true AND true

true false AND false

false true AND false

false false AND false

true true OR true

true false OR true

false true OR true

false false OR false

true true XOR false

true false XOR true

false true XOR true
false false XOR false

true NOT false

false NOT true
Figure 5.9. The Truth table.

The Boolean operators are familiar to BASIC programmers, but not to HP41C programmers.
This does not mean that the HP41C programs cannot implement Boolean logic. Its just less
obvious. If you are not familiar at all with the Boolean operators, here is a brief description of
their functions:

® The AND operator declares a condition to be true if and only if its two sub-
conditions (that is, the operands) are true.

® The OR operator declares a condition to be true if either or both of its sub-
conditions are true.

® The XOR operator declares a condition to be true if only one of its sub-
conditions is true. The X in XOR stands for eXclusively OR.

® The NOT operator toggles the logical value of its operand. It resembles the
change-of-sign mathematical operator.

Examples of Boolean operators are shown below:

Chapter §. Operators and Expressions 73

Algebraic Form RPN Form

‘X > 0 AND X < 11° X 0>

‘I >1 AND I < 100 AND I #J' I1>

‘NOT A < 10’ A 10 <
NOT

RPL applies the following rules on Boolean expressions:

® The relational operators have a higher priority than Boolean operators. Since
relational operators are evaluated before Boolean ones, you need to enclose
relational operators and their operands in parentheses (when using algebraic
forms). In fact, when the HP48SX parses an algebraic object, it throws out the
parentheses that contain relational and Boolean operators.

® The Boolean operators are evaluated from left to right in an algebraic object.
You cannot use Boolean sub-expressions.

® The entire Boolean expression is evaluated.

The above rules should be noted by BASIC programmers. All BASIC implementations allow you
to use parentheses to build more complex Boolean expressions, such as the ones shown below:

((I > 0) AND (I < 10) OR (X = 100))
(NOT ((I < 0) OR (I > 10)) AND ((J < 1) OR (J > 9)))

To implement such Boolean expressions in RPL you can mix between algebraic and RPN forms
or use RPN form only. Applying the first solution to the first Boolean expression we get:

‘I >0 AND I < 10’ EVAL ; evaluate the first sub-expression
‘X == 100’ EVAL ; evaluate the second sub-expression
OR : OR the two results in the stack

Applying the first solution to the second Boolean expression we get:

‘I <OORT1I > 10’ EVAL ; evaluate the first sub-expression
‘I <1 ORJ > 9’ ; evaluate the second sub-expression
AND : AND the above results
NOT : logically negate the last result

Applying the second solution to the first Boolean expression we get:

I 0>1< 10 AND ; evaluate the first sub-expression

Chapter S. Operators and Expressions 74

X 10 == ; evaluate the second sub-expression
OR : OR the two results in the stack

Applying the second solution to the second Boolean expression we get:

I 0<I10 > OR ; evaluate the first sub-expression
J1<J9 >O0R ; evaluate the second sub-expression
AND ; AND the above results
NOT ; logically negate the last result

Concatenation Operators

Traditionally, most languages and implementations support concatenation operators tojoin two
similar objects. The most popular example is the BASIC + operator that joins strings and
characters. RPL has extended the use of the + concatenating operator to include strings and
lists. The concatenation operator is communicative. Figure 5.10 shows examples of
concatenating strings with other object types. The last example shows the interesting result of
concatenating a string and a list. RPL treats that operator as the list concatenation operator.

Operand 1 Operand 2 Result

"A" " word" "A word"

"Hello" " World" "Hello World"

"Cost = §" 123.55 "Cost = §123.55"

"Address is " # 11h "Address is # 11h"

"Volume = " 1lm~3 "Volume = ‘1m~3'"

"Vector is " {12 3) "Vector is [1 2 3)"

"Root = " (1,2) "Root = (1,2);

"Me" { 4.5 (3,4)) { "Me" 4.5 (3,4))

Figure 5.10. Examples of using the string concatenation operator to combine strings and other
object types.

RPL allows you to concatenate a list with just about every object type, including otherlists.
However, concatenating a non-empty list with an empty does not result in the growth of the
former list!

Chapter 5. Operators and Expressions 75

Bitwise Operators

This class of operators specializes in manipulating the zeros and ones of binary integers and
contains two types of operators:

® Operators that manipulate the bits of one or two binary integers, resulting in
a third binary integer. The operators are the AND, OR, XOR, and NOT. They
parallel the Boolean operators that bear the same name. The first three bitwise
operators take two operands, while the last one takes only one operand.

® Operators that manipulate the bits of a binary integer.

The first type of operators manipulates the entire bits of a binary integer. The change in bits
uses the bitwise truth table, shown in Figure 5.11. This table is a version of the Boolean truth
table where O replaces false, and 1 replaces true.

Before I proceed in discussing the bitwise operators I need to explain the orientation of bits in
a binary integer. Figure 5.12 shows random bits of a 64-bit binary integer. The bits are
numbered O to 63, and from right to left. The leftmost bits are called the most significant bits,
while the rightmost bits are called the least significant bits. Figure 5.12 shows the maximum
size of a word on the HP48SX. The RCLWS command returns the current number of bits in
a word. The STOWS command enables you to store a new word size. For example, if you are
using the HP48SX to do binary math and bit manipulations for an IBM PC assembler, set the
word size to 16 bits. The valid range of arguments for the STPWS is 1 to 64. If the argument
to the STOWS command exceeds 64, the HP48SX uses 64. If the argument for STOWSis less
than 1, the HP48SX uses 1.

Chapter 5. Operators and Expressions 76

Bit # 1 Bit # 2 Bit Operator Result

AND
AND
AND
AND

OR

OR

OR

ORO
H
O
K
O
O

XOR

XOR

XOR
XORO

O
K
K

O
O
K
K
O
O

O
O

NOT

NOT -
O
O
O
O
-

o
N
e
o
N
e
l

O
o
O
w

Figure 5.11. The Bit truth table.

most significant bits least significant bits

63 62 61 60 7 6 5 4 3 2 1 0

1 o|J]O0}| O 1 o o 1 1 1 1 1

Figure 5.12. The orientation of the bits of a 64-bit word.

Figure 5.13 shows the AND, OR, XOR, and NOT operators. The examples of how these
operators work are shown in hexadecimal and binary bases. The numbers in binary base give
you an exact picture of how the operators work. The AND, OR, and XOR operators work by
manipulating the corresponding bits of its operands. The NOT operator works by simply
reversing the 1s and Os of a binary integer.

Chapter 5. Operators and Expressions 77

Operator Binary Integer Operands Binary Base

AND # 55h # 1010101b
4Ch # 1001100b

44h # 1000100b

OR # 55h # 1010101b
4cCh # 1001100b

5Dh # 1011101b

XOR # 55h # 1010101b
4Ch # 1001100b

19h # 0011001b

NOT # FFh # 11111111b

FFOOh # 1111111100000000b
Figure 5.13. The bitwise operators AND, OR, XOR, NOT (the current word size setting is
assumed to be 16 bits).

The other bitwise operators shift or rotate the bits ofa binary integer. The set of shift operators
are:

1) The SR Shift Right operator. This operator shifts the bits of a binary integer to the right by
1 bit. The most significant bit is assigned O, while the least significant bit is lost. Figure 5.14
shows how the SR command works on an 8-bit word. The SR operator reduces the magnitude
of the binary integer, since the leading bit becomes 0.

2) The SL Shift Left operator. This operator shifts the bits of a binary integer to the left by 1
bit. The most significant bit is lost, while the least significant bit is assigned 0. Figure 5.15
shows how the SL command works on an 8-bit word.

3) The SRB Shift Right Byte operator. This operator shifts the bits of a binary integer by 8 bits
to the right. The most significant 8 bits (thatis, the most significant byte) are assigned Os, while
the least significant 8 bits are lost. Figure 5.16 shows how the SR command works on an 8-bit
word. The SRB operator reduces the magnitude of the binary integer, since the leading bits

become O.

Chapter 5. Operators and Expressions 78

4) The SLB Shift Left Byte operator. This operator shifts the bits of a binary integer by 8 bits
to the left. The most significant 8 bits (that is, the most significant byte) are lost, while the least
significant 8 bits are assigned Os. Figure 5.17 shows how the SR command works on an 8-bit
word.

7 6 S 4 3 2 1 0

1 1 0 1 0 0 1 0 the number is # 210d

L——————» bit O is lost

-
_
_
J

~
|-
«

-
|-
«

0 0 1 0 0 1 the number is # 1054’-

Figure 5.14. The SR shift right operator.

1 1l 0 1 0 0 1 0 the number is # 2104

bit 7
is «—-1
lost

|-
<

< < < <

o
~
<
—
—
]

o

v
|

0 O the number is # 164d-4

Figure 5.15. The SL shift left operator.

5) The ASR Arithmetic Right Shift operator. This is similar to the SR operator, except that the
most significant bit is not affected. Figure 5.18 shows how the ASR operator works on an 8-bit
word. .

Chapter 5. Operators and Expressions 79

i5-12 11-8 7-4 3-0

F 3 0 2

L|

 » least significant 8 bits are lost J
< |
<

»— O 0 F 3

most significant 8 bits are set to O
 Figure 5.16. The SRB shift right byte operator.

15-12 11-8 7-4 3-0

F 3 0 2

| |
most significant

8 bits <

are lost r——————————
—————

v \4

] 1

0 2 0o 0 te«—0

least significant 8 bits are set to O
 Figure 5.17. The SLB shift left byte operator.

Chapter 5. Operators and Expressions 80

7 6 5 4 3 2 1 0

1 (1lofalolola1]o the number is # 210d

L, bit 0 is lost

 []
v v
1 1 -

<

< < < <

v
|

1 1 1 0

1 0 0 1l the number is # 2334

Figure 5.18. The ASR arithmetic shift right operator.

The set of bit rotation operators modifies a binary integer by rotating its bits either to the left
or to the right. Unlike the shift operators, this set of operators preserves the bits, but changes
their location. Thus, it is possible to restore the original value ofa binary integer by repeatedly
applying the rotation operators until the original bit configuration is restored. The operators
are:

1) The RR Rotate Right operator. This operator rotates the bits of a binary integer to the right
by 1 bit. In the process bit O becomes the most significant bit, while every other bit becomes
less significant. Figure 5.19 shows how the RR operator works on the bits of an 8-bit word.

2) The RL Rotate Left operator. This operator rotates the bits of a binary integer to the left by
1 bit. In the process the most significant bit is moved to bit O, while every other bit becomes
more significant. Figure 5.20 shows how the RR operator works on the bits of an 8-bit word.

Chapter 5. Operators and Expressions 81

1l 1 0o 1l 0 0o 1l 0o the number is #210d

v v v v v v v v
]]] 1 1] 1]

o 1 1 0 1 {00 1 the number is # 105d

Figure 5.19. The RR rotate right operator.

3) The RRB Rotate Right Byte operator. This operator rotates the bits of a binary integer by 8
bits to the right. The least significant byte becomes the most significant one, while the other
bytes become less significant. Figure 5.21 shows how the RRB command works on a 16-bit
word.

4) The RLB Rotate Left Byte operator. This operator rotates the bits ofa binary integer by 8 bits
to the left. The most significant byte becomes the least significant one, while the other bytes
become more significant. Figure 5.22 shows how the RLB command works on a 16-bit word.

Chapter §. Operators and Expressions 82

The number is #2104
Figure 5.20. The RL rotate left operator.

15-12 11-8 7-4 3-0

F 3 0 2

i
v v v v

1 1 1 1

0 2 F 3

most significant 8 bits are set to O

Figure 5.21. The RRB rotate right byte operator.

Chapter 5. Operators and Expressions 83

15-12 11-8 7-4 3-0

F 3 o 2

|
<

|
< <

—
<

least significant 8 bits are set to O
Figure 5.22. The RLB rotate left byte operator.

The EVAL Operator

I consider the EVAL command a special (but not unique, since a few programming languages
implement similar operators) unary operator. The HP48SX EVAL command goes beyond simple
numerical evaluation of algebraic expressions. In fact, when EVAL is invoked it tells its
argument (whatever is on level 1) to do its thing. Here is a brief description of how EVAL
works with various object types:

® Algebraic objects which may contain math expressions with names, commands, and other
objects. The names are evaluated, the commands are executed, and the rest are pushed on the
stack. Examples of evaluating algebraic objects are shown below:

Algebraic object Result Comments

142 3
f2%X’ 6 assuming X has a value of 3
‘2*X’ '2*X’ there is no variable by the

name of X
‘SIN(45) "’ 0.70711 the command SIN is executed

® Global names are evaluated in various ways depending on their contents:

® Numeric data, strings, lists, arrays are pushed on the stack.
® Programs are executed.

Chapter 5. Operators and Expressions 84

® Directories become the current ones.

® Other objects are pushed on the stack.

Examples of evaluating global names are shown below:

Global Name Result Comments

‘X’ 5 if X stores S
‘ME’ "Namir" if ME stores "Namir"
‘Weekend’ { Sat Sun } if Weekend stores the

list { Sat Sun }
‘XARR’ (1 2 3) if XARR stores the array

(1 2 3)
‘QD’ executes a program if QD contains a program object
*STAT’ move to directory if STAT contains a directory

{ HOME STAT LR)}
‘MYART' pushes a graph object if MYART stores a graphics image

on the stack

® Local names have their contents recalled and if suitable, evaluated.

® Program objects are executed. Each item in the program object is evaluated individually (this
is actually how an HP48SX program runs). Names are evaluated, commands executed, and the
other objects are pushed on the stack.

® Lists are evaluated by individual list members. Names are evaluated, programs run,
commands executed, and the other objects are pushed on the stack. Examples of evaluating
lists are shown below:

List object Result Comments

{ 45 SIN) 0.70711 the number 45 is pushed on the
stack and then the SIN command

is executed

{ 25 SQRT INV) 0.2 the number 25 is pushed on the
stack, the user-defined program,
SQRT is run to return the square
root of 25, and the INV
command is executed, returning
0.2

{ ME X PURGE)} VAR menu updated purges directory entries in the
list.

Chapter 5. Operators and Expressions 85

You can use a list containing the names of programs, commands, and data to emulate
batch programming available on mainframes and microcomputers. This is very
suitable for chained programs that perform a time-consuming number crunching. Of
course, these programs should maintain minimum interaction with the end-user.

Chapter S. Operators and Expressions

Notes

86

Decision-Making

The last chapter presented Boolean expressions. Such expressions evaluate conditions, based
on which one or more courses of action are taken. This chapter looks at the RPL decision-
making constructs that use Boolean expressions. This includes the single-alternative IF-THEN-
END, the dual-alternative IF-THEN-ELSE-END, and the multi-alternative CASE-END control
structures.

The Single Alternative IF-THEN-END

The simplest decision-making construct is the single-alternative IF-THEN-END control structure.
The structure executes a set of commands if a tested condition is true. Otherwise, no action is
taken. The general syntax of the IF-THEN-END structure is:

IF condition is true THEN sequence ofcommands END

The following program contains an IF-THEN-END structure. It calculates the sale price of an
item using the base price and the state sales tax. The program tests if the percentage of state
tax is entered as a factional number or as a percent. Numbers greater than 1 are treated as
percentages and need to be divided by 100. The listing is shown below:

; Listing 6.1. Sale price calculator (RPN version)

"Enter base sale price" ""
INPUT OBJ= ; prompt for input

"Enter tax rate" ""
INPUT OBJ=
DUP 1 ; duplicate tax and push 1 in stack

IF > THEN ; is tax rate greater than 1?

100 / ; yes. Divide tax rate by 100

END
1l + ; calculate final sale price
®

»

The body of the THEN clause contains two items: the real number 100 and the divide
command. Let's single-step through two sample sessions to examine closer how the IF structure
works. To proceed with the first sample session enter "SALE’ (assuming that this is the name
of the variable string the sale program) in the stack, press the [PRG] key and select the CTRL
and DBUG options. Single-step through the program using the SST menu option. The program
tracing proceeds as follows:

Chapter 6. Decision-Making 88

Step # Statement executed/ Value in level 1 Comment
Object evaluated

1 "Enter base sale price" "Enter base sa... prompt string is in level 1

2 " nn command-line string is in
level 1

3 INPUT " prompt for user input

4 150" your input representing
$150

4 OBJ- 150 convert a real number

5 "Enter tax rate" "Enter tax... push prompt string in
level 1

6 " n" push command-line string
in level 1

7 INPUT "o prompt user for input

8 "4.5" your input representing
4.5%

9 OBJ- 4.5 convert into a real number

10 DUP 4.5 duplicate number in level 1

11 1 1 push 1 in stack

12 IF 1 beginning of IF structure

13 > 1 test if real number in
level 2 (i.e., the tax)
is greater than 1.
Since the condition is true,
a 1l is placed in level 1

14 THEN 4.5 the program proceeds in the
THEN clause

15 100 100 push 100 in stack

16 / 0.045 divide 4.5 by 100

17 END 0.045 end of IF structure

18 1 1 push 1 in the stack

19 + 1.045 add 1 to the tax

20 * 156.75 calculate sale price

Chapter 6. Decision-Making 89

21 » 156.75 end of program

The input for the above session caused the THEN clause to be executed. To make the program
bypass that clause, rerun it and enter 0.045 when prompted for the tax. As you trace the
program in this case, steps 14 through 17 are bypassed.

The program version that uses an algebraic condition form is shown below:

; Listing 6.2. Sale price calculator (algebraic version)
«

"Enter base sale price"™ ""
INPUT OBJ- : prompt for input
"Enter tax rate" ""

INPUT OBJ-
- I ; store tax in local variable 1

«

I : push I in the stack

IF 'I>1° THEN ; is tax rate greater than 17
100 / ; yes. Divide tax rate by 100

END

1l + ; calculate final sale price
*

»

The major difference between the two versions is that the algebraic one stores the tax in a local
variable. This is required for the algebraic condition. While both program versions are simple,
they represent typical use of the IF structure. The structure is usually preceded and followed
by other commands. The action taken by the IF structure adjusts data values before resuming
with other calculations.

The single-alternative IF structure is available in all BASIC implementations. The following
BASIC listing implements the same HP48SX sale calculator program:

* QuickBASIC version

CLS
INPUT "Enter base sale price : ";S

INPUT "Enter tax ";1
IFI>1THENI =1 / 100 ’ divide the tax rate by 100
PRINT "Sale price = §"; S * (1 + I)
END

How does the RPN version of the above program compare to an HP41 version? I present the
HP41 version along with the RPN version. The following set of listings attempts to match
similar aspects of the two programs:

HP41 Program HP48SX Program
LBL SALE «
"BASE PRICE" "Enter base sale price" "" INPUT OBJ-
PROMPT
1
*"TAX RATE" "Enter tax rate"™ "" INPUT OBJ-

Chapter 6. Decision-Making 90

PROMPT

DUP

1

X < Y? IF > THEN
GTO 00

100 100

/
LBL 00 END

1
+ +
* *

RTN »

The major differences between implementing single-alternative control structures on the HP41
and the HP48SX are:

e HP48SX objects that make up the tested condition are consumed by its
evaluation. This is not the case with the HP41.

® The HP41 executes the instruction right after the test, if the test is true.
GOTOs must be used when multiple imbedded instructions must be executed
when the test is positive. By contrast, GOTOs are not needed in RPL. In fact,
GOTOs are not even implemented in the HP48SX!

Programming Hote

RPL does not implement GOTOs!

While programming Iang‘uages (such as Pascal and C) support GOTOs but discourage
you from using them, RPL does not implement GOTO at all!

Life Without GOTOs

The sale calculator program gives HP41 and BASIC programmers an example of structured
programming without GOTOs. I have to admit that GOTOs have gotten a very bad press. Many
programmers look down at other colleagues if their listings contain GOTOs!

RPL is a highly structured reverse-polish language. As with any structured programming
language, you must view the sequence of commands as coherent and related blocks. Each
block performs a specific task or subtask. Consequently, allowing you to jump in the middle
of a block of commands is structured programming heresy (or is illogical, in the words of a
famous sci-fi TV character). The designers ofRPL have elected to resist this heresy to the fullest

Chapter 6. Decision-Making 91

by not offering GOTO statements. In return, they provide the typical structures for looping and
decision-making that succeed in making life without GOTOs an easy one.

The Dual-Alternative IF-THEN-ELSE-END

The dual-alternative IF-THEN-ELSE-END structure empowers a program to examine a condition
and take alternate actions. The general syntax of this form of IF structure is:

IF condition is true

THEN

sequence ofcommands
ELSE

alternate sequence of commands
END

The following HP48SX program illustrates the dual-alternative IF structure. The program solves
for either the present or future value of an investment using:

FV =PV (1 + iV

The program prompts you to enter the following:

® The percent interest rate.
¢ The number of investment periods.
® The present value. To solve for this value enter O.
® The future value. To solve for this value enter O.

The listing is shown below:

; Listing 6.3. Financial program to solve for future or present values.
«

"% Interest"™ "" INPUT OBJ- ; prompt for interest

100 / convert percentage to fraction

“"Periods" "" INPUT OBJ- prompt for investment periods
"Present Value" "" INPUT OBJ- prompt for present value

"Future Value"™ "" INPUT OBJ- prompt for future value

- NI FV PV : store input in local variables
«

IF 'P == 0° : is present value a zero?
THEN ; Yes. Solve for present value

‘PV’ : push PV tag

‘FV/(1+I)“~N’
ELSE : No. Solve for future value

‘FV’ : push FV tag

‘PV* (1+I)“~N

END
EVAL : evaluate expression in level 1

SWAP =TAG ; swap result and tag, then tag the result

Chapter 6. Decision-Making 92

Let's trace the above RPL program twice to get a closer view of how the IF structure works.
Each session uses a set of data that results in executing either the THEN or ELSE clause of the
IF structure. In the first debugging session I will solve for the present value of an investment
given the following data:

Interest rate: 10%
Investment periods: 15 years
Future value: $1000.00

To proceed with the debugging session clear the stack and enter the name of the variable
storing the RPL program. Press the [PRG] key and select the CTRL and DBUG menu options.
Single-step through the program using the SST menu option. The program tracing proceeds
as follows:

Step # Statement executed/ Value in level 1 Comment
Object evaluated

1 "% Interest"” ""
INPUT nn prompt for percent interest

2 10" your input representing 10%

3 OBJ- 10 convert into a real number

4 100 / 0.1 divide percent interest by
100

5 "Periods" "" prompt for investment
INPUT "o periods

6 15" your input, representing
15 years

7 OBJ- 15 convert into a real number

8 "Present Value" ""
INPUT oo prompt for present value

10 "o" your input of O, since you
want to solve for PV

11 OBJ- 0 convert a real number

12 "Future Value" ""
INPUT "o prompt for future value

13 "1000" your input representing
1000 dollars

Chapter 6. Decision-Making 93

14 OBJ=- 1000 convert into a real number

1S5 - NI FV PV save data in local
variables

16 «

17 IF

18 ‘PV==0" ‘PV==0" push condition in stack.
The value of variable PV
is compared with O.
Since PV is equal to O, the
condition returns 1. This

result is removed from the

stack and the THEN clause is
executed

19 THEN

20 ‘PV’ ‘PV’ push tag name in stack

21 ‘FV/(1+I)~N’ ‘FV/(1+I)~N’ push algebraic expression

in the stack

22 END ‘FV/(1+I)~N’ program jumps to END of
structure

23 EVAL 239.39 evaluate expression

24 SWAP ‘PV’ swap tag into level 1

25 -TAG PV:239.39 tag the result

26 »

27 » PV:239.39 end of program.

In the second debugging session I solve for the future value ofan investment given the following
data:

Interest rate: 10%
Investment periods: 15 years
Present value: $1000.00

To proceed with the debugging session clear the stack and enter the name of the variable
storing the RPL program. Press the [PRG] key and select the CTRL and DBUG menu options.
Single-step through the program using the SST menu option. The program tracing proceeds
as follows:

Chapter 6. Decision-Making 94

Step # Statement executed/ Value in Comment
Object evaluated level 1

1 "$ Interest"™ ""
INPUT "o prompt for percent Interest

2 10" your input representing 10%

3 OBJ- 10 convert into a real number

4 100 / 0.1 divide percent interest by
100

5 "Periods" "" prompt for investment
INPUT "n periods

6 15" your input, representing 15
years

7 OBJ- 15 convert into a real number

8 "Present Value" ""
INPUT "n prompt for present value

10 "1000" your input of 1000 dollars

11 OBJ- 1000 convert into a real number

12 "Future Value" ""
INPUT "o prompt for future value

13 "o" your input O, since you
want to solve for FV.

14 OBJ- 0 convert into a real number

15 - NI FV PV save data in local variables

16 «

17 IF

18 ‘PV==0"' ‘PV==0" push condition in stack.
The value of variable PV is
compared with O. Since PV is
not equal to 0, the condition
returns 0. This result is
removed from the stack and the
ELSE clause is executed

19 ELSE

20 ‘FV’ ‘FV’ push tag name in stack

Chapter 6. Decision-Making 95

21 ‘PV* (1+4I)~N’ ‘PV*(1+4I)~N’ push algebraic expression
in the stack

22 END ‘PV* (1+4I)~N’ program jumps to END of
structure

23 EVAL 4177.25 evaluate expression

24 SWAP ‘FV’ swap tag into level 1

25 -TAG FPV:4177.25 tag the result

26 »

27 » FV:4177.25 end of program.

The QuickBASIC version of the above RPL program is shown below:

‘ QuickBASIC version
CLS

INPUT "Enter interest rate : ";1I

I =1/100
INPUT "Enter investment periods : ";N
INPUT "Enter present value : ";PV
INPUT "Enter future value : ";FV

IF P = 0 THEN
PRINT "PV = ";FV/(1+I)~N

ELSE
PRINT "FV = ";PV*(1+4I)“N

END IF
END

The HP41 version of the above RPL program is shown side by side with the RPL listing:

HP41 RPL

LBL "FINC" «
"% INTEREST" "% Interest"™ "" INPUT OBJ-
PROMPT
100 100

/ /
STO 00
"PERIODS" "Periods" "" INPUT OBJ-
PROMPT
STO 01
"pV" "Present Value™ "" INPUT OBJ-
PROMPT
STO 02
"FV" "Future Value" "" INPUT OBJ-
PROMPT
STO 03

- NI FV PV
«

RCL 02
X#0? IF 'PV == 0’

Chapter 6. Decision-Making 96

GTO 00
THEN

.Pv:" IPVI

RCL 03 "FV/(1+I)~N’
1l
RCL 00
+

RCL 02
Y
GOTO 01
LBL 00 ELSE
"Fy=" "FV’
RCL 02 *PV* (1+I)~N
1
RCL 00
+

RCL 01
Y
LBL 01 END

EVAL
SWAP

ARCL X -TAG
PROMPT

»

RTN »

Looking at the HP41 version, you will notice that the test verifies whether or not the value in
the X register is not zero. This is the opposite of the 'PV= =0’ test. This is necessary to
implement the THEN and ELSE clauses in the same sequence in both programs. If I use the
X=07? test in the HP41 version, then I need to switch the instructions that make up the
informal THEN and ELSE clauses. In implementing the logic of an IF-THEN-ELSE-END
structure, the HP41 must resort to more GOTOs. Keep in mind that this example is simple. If
the Boolean expression is more complicated, a battery of GOTO’s and flags are most likely
needed with the 41 version.

Chapter 6. Decision-Making 97

(e

The Multi-Alternative CASE-END Structure

The RPL language offers the CASE-END structure to implement multiple-alternative decision-
making. The general syntax for the CASE-END structure is:

CASE
condition #1 is true
THEN

sequence #1 ofcommands
END

condition #2 is true
THEN

sequence #2 ofcommands
END

other tested conditions and THEN clauses

condition #n is true
THEN

sequence #¥n ofcommands
END

default sequence of commands,,qna

END

The CASE-END structure empowers a program to sequentially test a battery ofconditions. Each
condition is accompanied by a THEN clause. An optional catch-all clause may be included. The
CASE-END structure works by testing the conditions in sequence. If a condition is true, its
accompanying THEN clause is executed and the program resumes after the END of the CASE
structure. If no condition is true, the structure executes its default clause, if present.

Programming Hote

To enhance the speed of executing a CASE structure, place the conditions in the order
of their likelihood of being true.

To show how the CASE-END workslet's go back to the last RPL program. That program was

Chapter 6. Decision-Making 98

limited to solving either the present or future investment value --- the values for the interest and
investment periods must be always given. The next version of the program empowers you to
solve for either variable. To select a variable, enter O when prompted for its value. The new
program version is listed below:

; Listing 6.4. Progran that uses the CASE-END for financial calculations.
«

"% Interest™ "" INPUT OBJ-
100 /

"Periods"” "" INPUT OBJ-

"Present Value" "" INPUT OBJ-

"Future Value" "" INPUT OBJ=-
- NI FV PV

«

prompt for interest

convert percentage to fraction
prompt for investment periods

prompt for present value

prompt for future value
store input in local variables

CASE

‘P == 0 ; is present value 0?
THEN ; Yes. Solve for present value

‘PV’ : push PV tag

‘FV/(1+I)~N’

END

‘FV==0"' ; is future value 0?

THEN ; Yes. Solve for future value

‘FV’ : push FV tag

‘PV* (14I)~N’
END

‘I==0" ; is interest 0?

THEN ; Yes. Solve for interest

‘I’ : push I tag
*(FV/PV)~(1/N)-1"’

END
; ARRRR DEFAULT CLAUSE RNNY

‘N’ ; solve for investment periods
‘LN(FV/PV) / LN(1 + I)’

END

EVAL ; evaluate expression in level 1

SWAP -TAG ; swap result and tag, then tag the result

Let’s trace the above RPL program to get a closer view of how the CASE-END structure works.
Each session uses a set of data that results in executing a THEN clause and the default clause.
In the first debugging session I will solve for the interest rate of an investment, given the
following data:

Investment periods: 15 years
Present value: $250.00
Future value: $1000.00

To proceed with the debugging session clear the stack and enter the name of the variable
storing the RPL program. Press the [PRG] key and select the CTRL and DBUG menu options.
Single-step through the program using the SST menu option. The program tracing proceeds
as follows:

Chapter 6. Decision-Making 99

Step # Statement executed/ Value in Comment
Object evaluated level 1

1 "% Interest™ ""
INPUT ne prompt for percent interest

2 "o" your input, O.

3 OBJ- 0 convert string into a real number

4 100 / o divide percent interest by 100

5 "Periods"
INPUT "o prompt for investment periods

6 "1ls" your input, representing 15 years

7 OBJ- 15 convert string into a real number

8 "Present Value" ""
INPUT " prompt for present value

10 "250" your input of representing $250

11 OBJ= 250 convert into a real number

12 "Future Value" ""
INPUT " prompt for future value

13 "1000" your input representing $1000

14 OBJ=- 1000 convert string into a real number

15 - NI FV PV save data in local variables

16 «

17 CASE

18 ‘PV==0"’ ‘PV==0" push condition in stack. The
value of variable PV is
compared with O.
Since PV is not equal to O, the
condition returns 0. This result
is removed from the stack and the
next condition is evaluated.

19 ‘FV==0" ‘FV==0"' push condition in stack. The
value of variable FV is
compared with O.
Since FV is not equal to 0, the
condition returns 0. This result
is removed from the stack and the

next condition is evaluated.

Chapter 6. Decision-Making 100

20

21

22

23

22

23

24

25

26

27

'I==0"' ‘I==0"

THEN

'Il 'I'

*(FV/PV)~(1/N)-1’ *(FV/PV...

END *(FV/PV...

EVAL 0.0968

SWAP ‘1’

-TAG 1:0.0968

»

» 1:0.0968

push condition in stack. The
value of variable I is compared
with 0.

Since I is equal to O, the
condition returns 0. This result

is removed from the stack and the

THEN clause is executed.

push tag name in stack

push algebraic expression in
the stack

program jumps to END of structure

evaluate expression

swap tag into level 1

tag the result

end of program.

The QuickBASIC version of the above RPL program is shown below:

* Quic

CLS

INPUT

I =1
INPUT

INPUT
INPUT

IF PV

PRI

ELSEIF

kBASIC version

"Enter interest rate : ";I
/ 100
"Enter investment periods : ";N
"Enter present value : ";PV

"Enter future value : ";FV

= 0 THEN

NT "PV = ";FV/(1+I)“N
FV = 0 THEN

PRINT "FV = ";PV*(1+I)~N
ELSEIF I = O THEN

PRINT "I = ";(FV/PV)~(1/N) - 1
ELSE

PRINT "N = ";LOG(FV/PV)/LN(1 + I)
END IF
END

Notice that the QuickBASIC version uses a battery of IF and ELSEIF structures instead of a
CASE statement. This is due to the fact that the CASE structure in QuickBASIC (and most of
other languages) works differently from the CASE structure in RPL. The difference is seen from
the general syntax of CASE in QuickBASIC:

Chapter 6. Decision-Making 101

SELECT CASE variable or expression
CASE list # 1 of values

sequence ofstatements
CASE list # 2 of values

sequence ofstatements

other case labels

CASE ELSE
sequence ofstatements

END SELECT

Thus, the RPL CASE structure allows you to test multiple conditions that are not syntactically
related to each other. The QuickBASIC CASE examines the values of a specific variable or
expression.

The HP41 version of the above RPL program is shown side by side with the RPL listing:

HP41 RPL

LBL "FINC" «

"% INTEREST" "$ Interest” "" INPUT OBJ=

PROMPT

100 100

/ /
STO 00
"PERIODS" "Periods” "" INPUT OBJ-

PROMPT

STO 01
"pv" "Present Value" "" INPUT OBJ=

PROMPT

STO 02

“"FV" "Future Value" "" INPUT OBJ-

PROMPT

STO 03

- NI FV PV

«

RCL 02 CASE
X#0? ‘PV == 0’
GTO 01

THEN
flpv-._" lpvl

RCL 03 “FV/(1+I)~N’

RCL 00

REL 02

GTO 00 END
LBL 01

Chapter 6. Decision-Making

RCL 03
X#=0?
GTO 02
IFV:N

RCL 02

RCL 00

RPL 01

GTO 00
LBL 02
RCL 01
X#0?
GTO 03

"N: ”

RCL 03
RCL 02

LN

RCL 00

LN
/
GTO 00
LBL 03
"I:"

RCL 03
RCL 02

/
RCL 01
1/X
Y
1

LBL 00

ARCL X
PROMPT

RTN

102

*FV==0"

THEN
val

PV (1+I)~N

THEN
INI

*LN(FV/PV) /LN(1+I)"’

END

'II

* (FV/PV)~(1/N)-1"

END
EVAL
SWAP
-*TAG

Once again we see that the HP41 uses an increasing number of GOTOs to implement the logic
of a CASE structure. Using algebraic objects with the various clauses of a CASE structure
makes the RPL version far more readable than the HP41 version.

Nested Decision-Making Structures

The various decision-making structures can be nested to provide more advanced control logic.
The last RPL program that demonstrated the CASE structure has a logical weakness: what if

Chapter 6. Decision-Making 103

a user enters O for more than one variable? The result is a runtime math error. To remedy this
potential problem the CASE structure is placed inside an IF structure that detects multiple zero
assignment using the following Boolean expression:

'N==0 XORI==0 XORFV==0 XOR PV==0

The above condition is true if and only if one of the variables is zero. The CASE structure is
located in the THEN clause of the outer IF structure. An ELSE clause can be added to warn the
user of his or her bad input. The listing of this new program version is show below:

Listing 6.5.“
e

"% Interest”
100 /

"Periods"

"Present Value"

"Future Value"
- NI FV PV

"" INPUT OBJ=

"" INPUT OBJ-
"" INPUT OBJ-
" INPUT OBJ=

IF 'N==0
THEN

CASE
‘P ==

THEN
PV’

"FV/(1+4I)~N"
END
*FV==0"
THEN

'Fvl

PV (141)~N’
END
‘'I==0"'

THEN
'I'

(FV/PV)~(1/N)=-1'
END

OI

IN'

‘LN(FV/PV) / LN(1 + I)’
END

EVAL
SWAP

ELSE

1000

"Bad

END

-*TAG

.4 BEEP
input!”

®e
®
9

W
e

W
y

w
e

w
,

XOR I==0 XOR FV==0 XOR

«
e
¢

w
o

Program that uses the XOR operator in finanical calculations.

prompt for interest
convert percentage to fraction

prompt for investment periods

prompt for present value

prompt for future value
; store input in local variables

is there only one variable that

have a zero value?

PV==0"
yes! proceed in solution

start CASE structure

is present value 0?
Yes. Solve for present value

push PV tag

is future value 0?

Yes. Solve for future value

push FV tag

is interest 0?

Yes. Solve for interest

push 1 tag

RbA DEFAULT CLAUSE RNERR

solve for investment periods

end of CASE structure
evaluate expression in level 1

swap result and tag, then tag the result

warn user of bad input

There are no rules on how decision-making structures are nested. The process is subject to the

Chapter 6. Decision-Making 104

application’s need.

The HP48SX Flags

Most of the Hewlett-Packard programmable calculators support logical flags. Flags are
essentially logical switches. A flag is either set (that is, turned on) or clear (that is, turned off).
One or more flags are used to preserve or indicate a specific condition or state. There is no
explicit equivalent of flags in BASIC. BASIC programs can easily emulate flags by storing O or -
1 (the bitwise inverse of O) in integer-typed variables. The HP48SX flags are very similar to
those of the HP41. There are, however, the following differences:

® The user defined flags have positive numbers, while the system flags have
negative numbers. There is no flag O!

® To manipulate a flag you must place its number in level 1 of the stack.

® The result of testing the status of a flag is placed in level 1. A 1 indicates that
the tested status is true, while a O indicates the reverse.

® The command following a test of a flag status is always executed, regardless
of the outcome ofthe test.

The system flags are listed in Appendix E of the HP48SX manual. I will focus on the user-flags.
The HP48SX flag commands are shown below:

Flag Command Action Examples

SF set flag 3 SF
I SF

CF clear flag 4 CF
J CF

FS? is flag set? 3 FS?
K ABS FS?
2 FS? 3 FS? AND

10 FS? ‘I>J’ OR

FC? is flag clear 4 FC?
INDEX FC?
1 FC? 4 FC? XOR
‘I>0’ *J>0° AND 12 FC? AND

FS?C clear flag after 6 Fs2C
testing if it is FLGIDX FS?C
set *I<10’ FS?C 3 XOR

FC?C clear flag after 01 FC2C

Chapter 6. Decision-Making 108

testing if it is K FC?C
clear 1 FC?2C 2 FC?C XOR

The flag status test can be involved in the conditions of IF-THEN, IF-THEN_ELSE and CASE-
END structures. The flag status test contributes a O or 1 to the tested condition.

The next program illustrates flags. It calculates the circumference and area of a circle, then
prompts you for the following:

® The value of the radius.
® Whether or not you want the results tagged.
® Whether or not you want to print the results.
® Whether or not you want the results returned in a list.

When prompted for the three choices listed above, a default answer Y is provided. Press the
[ENTER] key for a yes, or type N and then press [ENTER] for a no. The program uses flags to
convert your input into a logical forrn. These flags are used after the calculation phase to fine-
tune the output. The program is listed below;

Listing 6.6. Program that calculates the circumference and area of a circle.
Version 1e

“
o

2

o " ; push dummy data in the stack

- RADIUS S ; create local variables
«

"Enter radius"™ {("1" -1} INPUT ; prompt for the radius

OBJ-

‘RADIUS’ STO

"Tag results?" {("Y" =1} INPUT ; do you want to tag the results?
‘S’ STO

IF 'S’ "Y" == : is answer a Y or a y?
Is" 'Iy” == OR

THEN
1l SF

ELSE

l1 CF

END
"Print results?” ("Y" =1) INPUT ; want to print results?
'S’ STO
IF 'S’ "Y" == ; is answer a Y or a y?

's" 'lyfl = oR

THEN

2 SF

ELSE

2 CF
END
"Store results in a list?" ; store the results in a list?

{"Y" -1) INPUT OBJ=
‘'S’ STO
IF ‘S’ "Y" == ; is the answer a Y or a y?

THEN

Chapter 6. Decision-Making 106

3 SF
ELSE

3 CF
END
RADIUS 2 * m -NUM ; calculate circumference

RADIUS SQ m * ; calculate the area

IF 1 FS2C ; tag results?

THEN
‘AREA’
-TAG
SWAP
‘CIRCUMF’
TAG-
SWAP

END
IF 2 FS2C ; print results?
THEN

PR1
SWAP

PR1
SWAP

END
IF 3 FS2C ; put results in a list?

}

+
4
+

END

»

The RCLF command recalls the system and user flags by pushing a list of two binary integers
in the stack. The first and second numbers in the list represent the current status ofthe system
and user flags, respectively. The STOF command enables you to restore or alter the status of
all flags or just the system flags. This command takes one of two arguments from the stack:

® A list of two binary integers. This is similar to the list produced by a RCLF
command. The first number sets the system flags, while the second one sets the
user flags.

® A binary integer that sets the system flags.

To calculate the value of the binary integer needed to alter the user and system flags, use the
following equations:

64
Binary integer = Y 2' for all flag i that is set

i=1

Chapter 6. Decision-Making 107

64
Binary integer = Y 2Vl for all flag i that is set

i=-1

The last program did not preserve and restore the status of flags 1, 2, and 3. The following is
a modified version that uses the RCLF and STOF commands. The list obtained by the RCLF
is stored in a new local variable FFLAG. At the end of the program the FFLAG STOF command
restores the previous flag status. Notice that the IF structure that tests for the status of the flags
now use the FS? test instead of the FS?C. In version 1 of the program I was assuming that the
flags 1, 2 and 3 were clear before the program started. Therefore, version 1 uses the FS?C to
test and clear the flags to the original values. In version 2 I need not clear these flags because
the STOF command takes care of restoring the status of these flags to whatever they were.
Version 2 has the strong advantage ofNOT ASSUMING ANYTHING about the status of the flags
before the program starts. This is the recommended approach for flag management by
programs.

;Duqruunndhy Hote

Use the RCLF and STOF to save and restore the status of the HP48SX flags at the
beginning and at the end of a program object, respectively. A local variable should
be used to store the flag status in the case of smooth-running programs. Otherwise,
use a global variable so that you can manually restore the flags.

The program is listed below:

; Listing 6.7. Program that calculates the circumference and area of a circle.
; Version 2
«

RCLF O =" ; recall status of flags and push dummy data in the stack
- FFLAG RADIUS S ; create local variables

«

"Enter radius” {("1" -1} INPUT ; prompt for the radius

OBJ-

‘RADIUS’ STO
"Tag results?” {("Y" =1} INPUT ; do you want to tag the results?
*S’ STO

IF 'S’ "Y" == ; is answer a Y or a y?
ls" 'Y" == oR

THEN
1l SF

Chapter 6. Decision-Making 108

ELSE
1 CF

END
"Print results?” {"Y"™ =1) INPUT ; want to print results?
‘S’ STO
IF 'S’ "Y" ==

‘S" fly” == OR

THEN
2 SF

ELSE
2 CF

END
"Store results in a list?" ; store the results in a list?
{“Y" _1}

INPUT OBJ-
‘S’ STO

IF 'S’ "Y" == ; is the answer a Y or a y?
OSH ”y'l == OR

THEN
3 SF

ELSE
3 CF

END
RADIUS 2 * w -NUM
RADIUS SQ m *

is answer a Y or a y?

calculate circumference

calculate the area

®
e

W
y
W

IF 1 FS? tag results?

THEN
‘AREA’
-TAG
SWAP
‘CIRCUMF’
TAG-
SWAP

END
IF 2 FS? : print results?
THEN

PR1
SWAP
PR1
SWAP

END
IF 3 FS? ; put results in a list?

{}
+

<+

END
FFLAG STOF ; restore original status of flags

Chapter 6. Decision-Making 109

Programming Hote

| recommend that you reserve a number of flags for the following:

® Program objects that implement logical functions. Such functions
would implement, for example, a yes/no prompt.

® Program results that are supplemented by flags. For example, flags
can indicate any error that occurred during computation.

| suggest that higher flags be used for this purpose. These flags should not be
considered as free flags. Their status need not be stored and restored as is the case
with the rest of the user flags.

Chapter 6. Decision-Making 110

Notes

Loop Structures

Loops enable programs to repeat commands. There are three types of loops: fixed iteration,
conditional, and open. Fixed-iteration loops (the HP48SX manual calls them definite loops)
iterate for a predetermined number of times. Conditional loops iterate while or until a tested
condition is true. Open loopsiterate indefinitely. This chapter deals with the HP48SX fixed and
conditional loops. While open loops are not explicitly implemented in RPL, they can be easily
mimicked by existing loops.

The FOR-NEXT Fixed Loop Structure

The FOR-NEXT loop is among perhaps the most popular loop in many languages. The general
syntax for the FOR-NEXT loop is:

start finish
FOR loop control variable

sequence ofcommands
NEXT

The start and finish are numeric limits that define the number of iterations (which is equal to
finish - start + 1). The start and finish parameters are located in levels 2 and 1, respectively,
just before the loop start executing. Typically the start parameter is assigned 1 and the finish
parameter is assigned the number of iterations. The loop control variable is local to the body
of the FOR-NEXT loop and represents a measure of the loop progress. When the loop starts
executing, the control variable is assigned the value of start. As the loop reaches the NEXT
keyword, the loop control variable is increased by one. The loop reiterates as long as the control
variable is less than or equal to the finish value.

If the start parameteris greater than the finish parameter, the loop iterates once. This
is because the control variable is compared with the finish parameter after the loop's
NEXT is encountered.

This loop structure should be very familiar if you have programmed in any BASIC
implementation. The general syntax for the FOR-NEXT loop in BASIC is:

Chapter 7. Loop Structures 112

FOR loop control variable
sequence of statements

NEXT

The HP41C is able to emulate a FOR-NEXT

bbb.eee

STO nn
LBL mm

ISG nn

GTO mm

start TO finish

loop using the following:

The bbb.eee is areal number than contains the loops limits. The loop begins with LBL mm and
ends with the GTO mm instruction. The ISG nn instruction handles the loop iteration control.

The next program demonstrates the FOR-
factorials. The program prompts you for an
negative before calculating the factorial usin

NEXT loop in a small program that calculates
input. The program verifies that your input is not
g a FOR-NEXT loop. The loop body uses the value

of the control variable to obtain the factorial. The program is listed below:

; Listing 7.1.
«

"Enter number" "" INPUT OBJ-

DUP

0
IF >=
THEN

’

1 SWAP
1 SWAP
FOR I

I »

NEXT

ELSE
1000 0.2 BEEP
"Bad input"”

END

®e
®o

o
®

®e
we

®
w
o

Let's single-step through the above program

Program calculates factorial using FOR-NEXT loop.

; prompt for input

; duplicate input for IF structure

; is your input equal to or greater than 0?
yes. Calculate factorial

push and swap 1 for factorial product

; push and swap 1 for start parameter of loop

; begin FOR-NEXT loop.

; multiply factorial product by 1
; end of FOR-NEXT loop
; handle bad input

; beep and put a message in level 1

1 is the control variable

. The following tracing session is for an input of 3:

Chapter 7. Loop Structures 113

Step #

S
W

N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Statement executed/ Value in level 1
Object evaluated

Comment

"Enter number" "" "o
INPUT

w3m

OBJ- 3

DUP 3

0 0

IF >= 1

THEN 3

1 1

SWAP 3

1 1

SWAP 3

FOR 1 1

I 1

* 1

NEXT 1

I 2

* 2

NEXT 2

I 3

* 6

NEXT 6

END 6

» 6

prompt user for input

your input, 3

convert into real number

is 3 > 0?

push and swap factorial
product

push and swap loop start

begin loop

*xkkxxx]1gt jteration

sxxxxxx 2nd jteration

sxxxxxs 3rd iteration

exit from loop and jump
to end of IF structure

end of program

Chapter 7. Loop Structures 114

The QuickBASIC program version is shown below. Except for how the FOR loop is syntactically
initialized, notice how similar the FOR-NEXT loops are in BASIC and RPL.

* QuickBASIC version

INPUT "Enter number : ";N

IF N >= 0 THEN
FACT = 1

FOR I =1 TON
FACT = FACT * I

NEXT

PRINT FACT

ELSE

PRINT "Bad input"
END

The HP41C version ofthe above program is shown below (in a side-by-side comparison with the
RPL version):

HP41C RPL

LBL "FACT" «

"ENTER NUMBER" "Enter number" "" INPUT OBJ-

PROMPT

DUP
0

X<0? IF >=

GTO 02

THEN
INT 1l SWAP

1E3 1l SWAP

LBL 01 FOR 1

INT

ISG 00
GTO 01 NEXT
GTO 10
LBL 02 ELSE
BEEP 1000 0.2 BEEP
"BAD INPUT" "Bad input"”
PROMPT
LBL 10 END
RTN »

Another example of using the FOR loop is one that handles arrays. Fixed loops are suitable
structures for handling arrays. The next program object implements a function that returns the
average of real elements in a one-dimensional array. The program takes its array argument

Chapter 7. Loop Structures 118

from level 1 and pushes the calculated average in the stack. The program is listed below:

; Listing 7.2. Program that calculates the average value of an array.
“«

0O 0 - A SUM SUMX ; assign array to local variable A and create/initialize

; the statistical summations
«

A SIZE 1 GET ; get the array size[

*SUM’ STO ; store array size in local variable SUM

1l SUM ; define limits of FOR-NEXT loop
FOR I ; begin FOR-NEXT loop, with I as the control

: variable

A I GET ; obtain the 1’th array element
‘SUMX’ STO+ ; update sum of elements

NEXT

SUMX SUM / ; calculate the average
‘AVERAGE’ ; push tag in the stack

-TAG ; tag the result

The FOR-STEP Fixed Loop Structure

The FOR-NEXT loop structure increments the loop control variable by 1 at the end of each
iteration. The FOR-STEP loop is a variation ofthe FOR-NEXT that increases the control variable
by a value other than 1. The increment may be positive or negative. Practically, the FOR-
NEXT loop is used more frequently than the FOR-STEP loop. The general syntax for the FOR-
STEP loop structure is:

start finish
FOR loop control variable

sequence ofcommands
increment

STEP

The FOR-STEP loop adds an increment parameter before the STEP keyword. This increment
is evaluated the first time it is encountered and is stored. When the loop starts executing, the
control variable is assigned the value of start. As the loop reaches the STEP keyword, the loop
control variable is increased by the specified increment. For positive increment values, the loop
reiterates as long as the control variable is less than or equal to the finish value. For negative
increment values, the loop reiterates as long as the control variable is greater than or equal to
the finish value.

The BASIC FOR loop supports a STEP clause that makes it work like RPL's FOR-STEP loop.
The general syntax for the FOR-NEXT with the STEP clause is:

Chapter 7. Loop Structures 116

FOR loop control variable = start TO finish STEP increment
sequence of statements

NEXT

The HP41C is able to emulate an upward-counting FOR-STEP loop using the following:

bbb.eeeii

STO nn

LBL mm

ISG nn

GTO mm

The ii part in the bbb.eeeii number represents the loop increment value.

The HP41C is also capable of emulating an downward-counting FOR-STEP loop using the
following:

bbb.eeeii

STO nn

LBL mm

B.SZ nn

GTO mm

The next program illustrates the FOR-STEP loop in a small program that calculates factorials.
This program resembles the FOR-NEXT version, except a downward-counting loop is used to
obtain the factorial. The program prompts you for an input. The program verifies that your
input is not negative before calculating the factorial using a FOR-START loop. The loop body
uses the value of the control variable to obtain the factorial. The program is listed below:

; Listing 7.3. Program calculates factorial using FOR-STEP loop, version 2.
«

"Enter number” "" INPUT OBJ- ; prompt for input

DUP ; duplicate input for IF structure
0o

IF >= ; is your input equal to or greater than 0?
THEN : yes. Calculate factorial

1l SWAP ; push and swap 1 for factorial product

1l ; push 1 for start parameter of loop
FOR I : begin FOR-STEP loop. 1 is the control variable

I » : multiply factorial product by 1
-1 : the loop increment value

Chapter 7. Loop Structures 117

STEP ; end of FOR-STEP loop

ELSE ; handle bad input

1000 0.2 BEEP ; beep and put a message in level 1
*"Bad input"”

END
»

Let’s single-step through the above program. The following tracing session is for an input of 3:

Step # Statement executed/ Value in level 1 Comment
Object evaluated

1 "Enter number" "" "o prompt user for input
INPUT

2 "3" your input, 3

3 OBJ- 3 convert into real number

4 DUP 3

5 o 0

6 IF >= 1 is 3 > 0?

7 THEN 3

8 1 1 push and swap factorial
product

S SWAP 3

10 1 1 push loop start

11 FOR 1I 1 begin loop

12 I 3 xxxxxxt Jgt jteration

13 * 3

14 NEXT 3

15 I 2 ®exxnnxr 2nd iteration

16 * 6

17 NEXT 6

18 I 1 wxxwxxx 3rd jteration

19 * 6

20 NEXT 6

Chapter 7. Loop Structures 118

21 END

22 »

exit from loop and jump
to end of IF structure

end of program

The QuickBASIC program version is shown below:

‘ QuickBASIC version

INPUT "Enter number : ";N

IF N >= 0 THEN
FACT = 1
FOR I = N TO 1 STEP -1

FACT = FACT * 1

NEXT
PRINT FACT

ELSE

PRINT "Bad input"”

END

The HP41C version of the above program is shown below (in a side-by-side comparison with the
RPL version):

HP41C

LBL "FACT"

"ENTER NUMBER"

PROMPT

X<0?
GTO 02

0.001
+

STO 00
LBL 01
RCL 00
INT
*

DSE 00
GTO 01
GTO 10
LBL 02
BEEP
"BAD INPUT"
PROMPT
LBL 10
RTN

RPL

«

"Enter number" "" INPUT OBJ=

DUP
0

IF >=

THEN
1 SWAP
1

FOR I
I

*

-1
STEP

ELSE
1000 0.2 BEEP
"Bad input"

END

Another example of the FOR-STEP loop performs the numerical integration using Simpson's
rule:

Chapter 7. Loop Structures 119

X,

[yds = (AX/3)[Y, +4Y, + 2V + ..+ 2Y,, +4Y,, +Y,]
X

Simpson’s rule calculates the approximate area of an odd number of function values taken at

regular x intervals. The array of y and the value of Ax must be supplied in levels 2 and 1,
respectively. The program pushes the result in the stack. A single FOR-STEP loop is used to
obtain separate sums for the array elements with odd and even indices. The FOR-STEP loop
is incremented by 2. Its limits are between 2 and the size of an array. The program is listed
below:

;s Listing 7.4. Program that uses Simpson’s method to integrate the function y(x)
«

0 00O=Y DX SUMODD SUMEVEN ; store array and Ax in local variables

AREA ARSIZE
«

A SIZE 1 GET
*ARSIZE’ STO
A 1 GET
A ARSIZE GET

"AREA’ STO
2 ARSIZE
FOR I

A I GET
*SUMEVEN' STO+
A 'I+1’ EVAL GET
*SUMODD’ STO+
2

STEP
4 'SUMEVEN’ STO*
2 ‘SUMODD’ STO*
*SUMEVEN + SUMODD’ EVAL
‘AREA‘ STO+
DX 3 /
‘AREA’ STO*
AREA
*AREA’
-TAG

®
e

@
9

W
y
B

W
y

®
y
w

-
y
o

=
-

-
®
e
e

m
e

®w
e

®
w
p

assign 0 to sum of even and odd terms

; obtain the array size

; store array size in the local variable ARSIZE

; get the first array element
get the last array element

store the difference in variable AREA

define the FOR-STEP loop limits
begin FOR loop

obtain 1’th element

update the even-terms summation

obtain (1+1)’th element

update the odd-terms summation

set the loop increment

multiply the even-terms sum by 4
multiply the odd-terms by 2

get the sum of even and odd terms

add to variable AREA

calculate the approximate area

push the tag in the stack

tag the result

If you compare the code of the above program with the above equation you discover that the
following revised form of Simpson's equation is implemented:

X

[yds = (AX/3)[Y, - ¥, +4Y, + 2Yy+ .. + 2V,5 + &Y,+ 2V,]
X,

Chapter 7. Loop Structures 120

This allows a single FOR-NEXT loop to obtain the sum of an equal number of odd and even
terms that are later multiplied by 2 and 4, respectively.

Manipulating FOR Loop Iteration

By manipulating the FOR loop control variable a program can reduce or extend the originally
planned number of iterations. While this type of action seems to defeat the purpose of having
a predetermined number of iterations, there are valid cases. The most prominent circumstance
is handling critical conditions. When such conditions arise they require that the loop stops
iterating. The technique is rather simple --- just assign the value of the loop’sfinish parameter
to the loop control variable. This makes the loop iteration mechanism think that its done.

The next program is an example that manipulates a loop control variable to exit from FOR-
NEXT loop. The program object is a function that searches for a number in an array. The input
to the function is the array in level 2 and the search element is level 1. The function output is
pushed in the stack and represents the index of the first matching array element, or O if no
match is found.

Listing 7.5. Array search function.
Version 1

R
w
e
N

0 ; push zero to reserve a space for the local variable
LEN
store data in local variables:

array in ARY

element in ELM
0 in LEN

- ARY ELM LEN

1l CF : clear flag 1 which is used to indicate if a match
is found

ARY SIZE 1 GET obtain the size of the array

‘LEN’ STO ; store array size in local variable LEN

1 LEN ; specify the limits of the FOR-NEXT loop

FOR 1 ; begin FOR-NEXT loop with | as the control variable

ARY I GET ; obtain the I’th array element

ELM ; recall the search element
IF == THEN ; is 1'th array member equal to search element?

1 ; yes! push result in stack

LEN ‘I’ STO ; set loop control variable to the loop’s upper limit

l SF ; set found flag
END

NEXT
»

IF 1 FC?C THEN ; no match found?
0o ; then push 0 in the stack

END

Chapter 7. Loop Structures 121

The START-NEXT and START-STEP Fixed Loop Structures

The RPL language implements a second class of fixed loops, namely, the START-NEXT and
START-STEP loops. These loops are very similar to the FOR-NEXT and FOR-STEP loops. The
main difference is that the START loop does not let you define and use a loop control variable.
In reality, these loops do use control variables, but a program is denied their access. The
STARTloops are not as common as FOR loops among popular languages. What purpose do
they serve? The START loops are used to repeat sequences of commands that do not require
loop control variables. The general syntax for the START-NEXT loop is:

start finish
START

sequence ofcommands
NEXT

The next program illustrates using the START-NEXT loop to obtain the basic statistics for the
built-in random number generator. The program requires that the number of iterations be in
level 1. This type of application does not require the use of a loop control variable, making the
START-NEXT loop an ideal candidate. The two tagged results are the mean value and the
standard deviation in levels 2 and 1, respectively. The theoretical results for the mean and
standard deviation are 0.5 and 0.28, respectively. The program is shown below:

; Listing 7.6. Program that obtains the basic statistics of the built-in random
; number generator.
; Version 1

O O 0O - SUM SUMX SUMXX X ; initialize statistical sumations and reserve space for

: the auxiliary local variable X
«

1 SUM ; set limits for START-NEXT loop

START

RAND ; obtain a random number between 0 and 1

X ‘SUMX’ STO+ ; update sum of X

‘X’ STO ; store random number in X

X SQ ‘SUMXX'’ STO+ ; update sum of X squared

NEXT
*SUMX / SUM'’ EVAL ; calculate the mean
‘MEAN’ -TAG : push tag in the stack

; calculate the standard deviation

‘V((SUMXX - SUMX * SUMX / SUM) / (SUM - 1))’ EVAL
‘SDEV'’' =TAG : push the tag in the stack
»

»

The START-STEP loop is a variation of the START-NEXT loop. Like the FOR-STEP loop, the
START-STEP uses an increment that is added to the internal loop counter. The general syntax
for the START-STEP loop is:

Chapter 7. Loop Structures 122

start finish
START

sequence ofcommands
loop increment

STEP

The DO-UNTIL Conditional Loop Structure

The RPL language supports two conditional loops, namely the DO-UNTIL and the WHILE-
REPEAT loops. The DO-UNTIL is a conditional loop that iterates until a tested condition is true.
The general syntax for this loop is:

DO

sequence of commands
UNTIL condition END

Since the tested condition is located at the end of the loop, the DO-UNTIL loop executes at least
once. It is therefore used when the loop’s command must be executed at least once. The
HP48SX DO-UNTIL should be familiar to you if you have programmed in QuickBASIC. The
QuickBASIC DO-UNTIL loop has the following general syntax:

REM *** QuickBASIC ***
DO

sequence of statements
LOOP UNTIL condition

By contrast, the HP41C does not explicitly support conditional loops. The logic of a DO-UNTIL
loop is implemented, in general, as follows:

LBL mm

sequence of commands
reverse condition

test

GTO mm

The scope of the DO-UNTIL loop on the HP41C is defined by the label and GTO command. The
condition tested must be the reverse of that in RPL.

The first example of using a DO-UNTIL is a very simple application of Newton's algorithm. The
program calculates the square root of a positive number, N, using the following algorithm:

X =(N/X, + X)) /2

Chapter 7. Loop Structures 123

The program takes the number from level 1 and returns the square root (8 decimal laces
accurate) in level 1. The initial guess for the square root is taken as N/2 and is provided by the
program itself. The program is listed below:

; Listing 7.7. Program to iteratively solve for the square root using Newton’s
; algorithm and a DO-UNTIL loop
«

ABS DUP 2 / » N X ; store number in local variable N
; store N/2 the initial guess for the square root in

; the local variable X
«

DO ; begin the DO-UNTIL loop
*(N/X+X) /2’ EVAL ; refine the guess for the square root
‘X’ STO ; store refined guess back in X

UNTIL ‘ABS(X*X-N) < 1E-8' EVAL ; is the refined guess accurate enough?

END
X ; push guess in the stack

Let's trace this program to obtain the square root of 25. I am using a perfect square so that it
becomes easier to get a feel of how close we're getting to the answer in each iteration. The use
ofalgebraic expressions bypasses the secondary intermediate results and focuses on the primary
ones. To single step the program, enter 5 and the name of the variable storing the program in
the stack. Press the [PRG] key and select the CRTL and DBUG menu options. Use the SST

menu option to single-step through the program. The program tracing proceeds as follows:

Step # Statement executed/ Value in level 1 Comment
Object evaluated

1 ABS 25 take the absolute value
of the square

2 DUP 25

3 2 2

4 / 12.5 get the initial guess
for the square root

5 - N X assign the data to
local variables

6 «

7 DO

8 *(N/X+X)/2°*' EVAL 7.25 evaluate refined guess

9 ‘X’ STO store refined guess

10 UNTIL

11 ‘ABS(X*X-N) < 1lE-8' EVAL 0 evaluate loop condition

Chapter 7. Loop Structures 124

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

END

" (N/X+X) /2"

‘X’ STO

UNTIL

*ABS (X*X-N)

END

*(N/X+X) /2’

‘X’ STO

UNTIL

*ABS (X*X-N)

END

* (N/X+X) /2°

‘X’ STO

UNTIL

*ABS (X*X-N)

END

" (N/X+X) /2"

‘X’ STO

UNTIL

*ABS (X*X-N)

END

EVAL

< lE-8' EVAL

EVAL

< 1lE-8' EVAL

EVAL

< 1lE-8' EVAL

EVAL

< lE-8‘ EVAL

5.3491379

5.0113941

5.000012953

evaluate refined guess

store refined guess

evaluate loop condition

evaluate refined guess

store refined guess

evaluate loop condition

evaluate refined guess

store refined guess

evaluate loop condition

evaluate refined guess

store refined guess

evaluate loop condition
since the condition is
1, the loop will stop
iterating.

push result in the stack

Chapter 7. Loop Structures 125

The QuickBASIC version is shown below:

INPUT "Enter a number : ";N

N = ABS(N)
X=N/ 2
DO

X=(N/X+X)/ 2
UNTIL ABS(X*X-N) < 1lE-8

PRINT X
END

The HP41C version is presented below with a side-by-side comparison to the RPL version:

HP41C RPL

LBL "SQQRT" «
ABS ABS
STO Y DUP
2 2
/ /
STO 00 - N X
RDN
STO 01

«

LBL 00 DO
RCL 01 *(N/X+X)/2' EVAL
RCL 00
/
RCL 00
+

2

/
STO 00 ‘X’ STO
STO *X UNTIL ‘ABS(X*X-N) < lE-8' EVAL
RCL 01

ABS
1E-8
x<=y?

GTO 00 END
RCL 00 X

RTN »

The above HP41C program implements the DO-UNTIL logic using the commands between LBL
00 and GTO 00. The test located before GTO 00 checks whether or not the absolute value of
(XX*-N) is greater or equal to the error tolerance of 1E-8. This test is the reversed version (or
logically negative, if you prefer) of the one in the RPL version.

The second example of the DO-UNTIL loop is a program object that implements a Yes/No

Chapter 7. Loop Structures 126

response function. You should find this function very useful in your own programs. The
function takes a prompt message from the stack. An INPUT command is used to prompt you
the message and a default answer "Y". A DO-UNTIL loop ensures that your answer begins with
the letters Y or N. Flag 64 is set ifyour answer begins with a Y. The same flag is cleared ifyour
answer begins with an N. The program is listed below:

Listing 7.8. Yes/No function.

INPUT:

Message in level 1

USER INPUT; Yes/No answer which includes Y, N, y, n, YES, Yes, No, and no.

OUTPUT:

flag 64 is set => answer was positive
flag 64 is clear => answer was negative

B
V
e
N

N
9
W
N
W
N

N
9
N
W
w

=+ MSG ANSWER ; store prompt message in variable MSG
«

DO ; begin DO-UNTIL loop

MSG {"Y" -1} INPUT prompt user with default answer “Y"

"ANSWER'’ STO store input in variable ANSWER

ANSWER SIZE O is the size of the input string > 0?®
e
e

™
o

=

IF >

THEN ; yes! Obtain the first input character

ANSWER 1 1 SUB
ELSE

" ; no! push a space in the stack
END

‘ANSWER’ STO ; store level 1 in ANSWER

UNIT ANSWER "Y" == ; DO loop condition:

ANSWER "y" == OR : is ANSWER a Y, y, N, or n?
ANSWER "N" == OR
ANSWER "n" == OR

END
IF ANSWER "Y" ==

ANSWER "y" == OR
; is ANSWER a Y or y?

THEN ; yes. Set flag 64
64 SF

ELSE

64 CF ; no. Clear flag 64
END

The third example of the DO-UNTIL is a program that solves for the root of a function using
Newton’'s algorithm:

xn+1 = Xn'f(xn)/f.(xn)

The f(X) and the f'(X) are the target function and its first derivative with respect to X. The

Chapter 7. Loop Structures 127

derivative can be approximated using the following:

f'(X) = (f(X + h)- f(X-h))/2h

where h is a small increment of X. I use the following rules to obtain h:

h = 0.01 if |X| =1
h 001X if |X| > 1

The program requires that the initial guess, the error tolerance, and the name of the variable
storing the function be placed in levels 3, 2, and 1, respectively. The program can iterate up
to 50 times. If after SO times no solution is found, flag 1 is set. The program is listed below.

Listing 7.9. Program solves for the root of a function using Newton’s method.
Version 2

i

i
; INPUT:

: guess for root
; error tolerance

; name of variable storing target function

’

; OUTPUT:
; refined root guess
; flag 1
; set => no solution was found

; clear => a solution was found
«

1l CF clear flag 1

s0 000 push the maximum number of iterations in the stack

push dummy data
assign data to local variables:

initial guess to variable X

error tolerance to variable TOLER

name of variable storing target function to variable FX
SO0 to variable MAXITER

0 to the iteration counter ITER

0 (dummy data) to increment variable H

0 (dummy data) to guess improvement variable DIFF

- X TOLER FX MAXITER ITER H DIFF

®
e

®
o
W

W
e
W
W
W

W
y
W

"
o
=

DO ; start Newton'’s iterations

.01 : push 0.01 in the stack
IF 'ABS(X)>1"’ ; is the sbsolute value of X greater than 1?
THEN ; yes. calculate increment as 0.01 * X

X =

END
‘H’ STO store increment value in H

H * calculate guess refinement

FX EVAL * calculate f(X)

H + FX EVAL
H - FX EVAL

calculate f(X+h)
calculate f(X-h)

N
X
X
X
N

Chapter 7. Loop Structures 128

DUP ; duplicate guess refinement

‘DIFF’ STO ; store refinement in variable DIFF

X SWAP - ; calculate refined guess and store in X

‘X’ STO
*ITER’ INCR DROP ; increment iteration counter

; test loop condition:
1) is absolute value of guess refinement

less than error tolerance?
OR

2) has the number of iteration reached

or exceeded the maximum al lowable

limit?

UNTIL ‘ABS(DIFF) < TOLR OR ITER =2 MAXITER’

END
IF "ITER 2 MAXITER’ ; solution diverged?
THEN ; yes. Set flag 1

l SF

END
X ; push latest guess for the root in the stack
‘Root’ ; tag the result

=-TAG
»

»

The above program includes the INCR command used to increment the loop iteration counter
ITER. This command takes the name of the variable, increments its value, and pushes the new
value in the stack. Since the program needs to merely increment ITER, a DROP command is
used to promptly remove the updated increment from the stack.

The DECR command decrements the values stored in variables acting as counters. This
command works like INCR by taking the name of the variable from level 1, decrementing it, and
pushing the new value back to the stack.

The WHILE-REPEAT Conditional Loop Structure

The WHILE-REPEAT loop iterates as long as a tested condition is true. The general syntax for
the WHILE-REPEAT is:

WHILE condition REPEAT
sequence ofcommands

END

Since the tested condition comes before the loop’s commands, the WHILE-REPEAT loop may
not iterate if the condition is false. This is an important difference between the WHILE-REPEAT
and DO-UNTIL loops.

Many programmers feel that the WHILE loop is the loop and all other loops are variations ofit.
These programmers claim that they can replace any loop with the WHILE loop. This claim is

Chapter 7. Loop Structures 129

technically valid. The reason other loops exist is that they offer a more readable and more
logical form. The following general syntax shows how a WHILE-REPEAT loop works like a FOR-
DO loop:

FOR-NEXT loop WHILE-REPEAT loop

start ‘controlvariable’ STO
WHILE ‘control_variable = finish’ REPEAT

sequence of commands
1 ‘control_variable’ STO+

start finish
FOR control_variable

sequence of commands

NEXT END

And similarly, the next general syntax shows how a WHILE-REPEAT loop emulates a FOR-STEP
loop:

FOR-NEXT loop

start finish
FOR control_variable

sequence of commands

increment

STEP

WHILE-REPEAT loop

start ‘control_variable’ STO
WHILE ‘controlvariable < finish’ REPEAT

sequence of commands
increment ‘control_variable’ STO+

END

The WHILE-REPEAT loop can also mimic the DO-UNTIL loop, as shown below:

DO-UNTIL loop

DO
sequence of commands

UNTIL condition is true
END

WHILE-REPEAT loop

WHILE condition is false REPEAT
sequence of commands

END

The ability to replace the various types of loops with the WHILE-REPEAT loop occasionally
becomes useful. Most common cases for such a substitution arise when you utilize a FOR-NEXT
loop --- you start with the FOR loop and realize that there is an additional condition (aside from
the loop’s start and finish parameters) that dictates whether or not the loop iterates. The
WHILE-REPEAT loop comes in handy.

The WHILE-REPEAT loop should be familiar to you if you have used QuickBASIC, BASICA, or
GW-BASIC. The general syntax for the WHILE-WEND loop available to these BASIC
implementation is:

WHILE condition
sequence of statements

WEND

QuickBASIC offers a second form of WHILE loop:

DO WHILE condition
sequence of statements

LOOP

Chapter 7. Loop Structures 130

Concerning the HP41C, there is no formal WHILE loop. Using tests, GOTOs, and labels, you can
easily implement the logic of a WHILE loop. This is shown by the following general syntax:

LBL mm
reverse condition

test
GTO nn

sequence of commands
GTO mm

LBL nn

Notice that the logic of the WHILE loop uses twice as many GOTOs and labels as does that of
the DO-UNTIL loop.

The first example of using the WHILE-REPEAT loop is a number guessing game. Using the
random number generator, the program produces a number between O and 99. The program
prompts you to guess the number. As you enter guesses that do not match the number, the
program tells you if your guess was high or low. You are allowed 10 trials. The use of the
WHILE loop handles the case where your first guess is the lucky one. In this instance, the
program needs not give you a hint for your next guess! Also notice that while INPUT
commands are used inside and outside the WHILE loop. the prompt messages are different.
This justifies using the INPUT command located before the WHILE loop. The program is listed
below:

; Listing 7.10.
«

100 RAND * IP
9
0
- NMBR MAX GUESS

«

"Enter guess" "" INPUT OBJ-
‘GUESS’ STO
WHILE

‘GUESS # NMBR AND MAX > 0O’

.
e

.

.

.’

’

®
e

W
e
e
e

©®
-

-

REPEAT

‘M’ DECR DROP :

CASE :
‘GUESS > NMBR' :

THEN
“"Guess is high" ""
INPUT OBJ- :

‘G’ STO
END

‘GUESS < NMBR’
THEN

"Guess is low" ""
INPUT OBJ- ;
‘G’ STO

END

«
e

A number guessing game that uses a WHILE-REPEAT loop.

generate number to be guessed

the number of maximum iterations minus one

; dummy data

; assign data to local variables

; first prompt for guess

; store first guess in variable GUESS

; start WHILE loop

test condition:

1) is guess not equal to number?

AND

2) did you run out of number of tries?

decrement iteration counter

use CASE-END to examine current guess

your guess is high

prompt for lower value

your guess is low

prompt for a higher guess

Chapter 7. Loop Structures 131

END
END

IF ‘GUESS == NMBR'
THEN

ELSE

END

"Good guess!"

"Number is " N +

®
e
e

wm
e
w ®** END of CASE structure ***

w** END of WHILE loop ***

did you guess the number?

The following is a sample tracing session. I use the word sample session to indicate thatit is
notlikely to be repeated easily due to the use of random numbers. As you single-step through

the program you will be able to see the number created by the program. Enter a high guess,
alow guess, and then the number itself. This makes your session somewhat parallel to the one
shown below:

Step #

e
W

N
w

10

11

12

13

14

15

16

Statement executed/
Object evaluated

in level 1

Comment

100 RAND * IP

S

0

- NMBR MAX GUESS

«

"Enter guess"™ "" INPUT

OBJ-

‘GUESS’ STO

WHILE

‘GUESS # NMBR AND MAX 2 0’

REPEAT

‘MAX’ DECR

DROP

CASE

‘GUESS > NMBR'’

THEN

generated the number to be
guessed

number of trial - 1

prompt for input. My input
was "50"

convert to real number

test loop condition

is guess > number?

yes. Hint at next guess

Chapter 7. Loop Structures 132

17 "Guess is high" "" INPUT n25" my input was "25".

18 OBJ- 25 convert to real number

19 ‘G’ STO

20 END END of THEN clause

21 END END of CASE structure

22 END END of WHILE loop

23 ‘GUESS # NMBR AND MAX 2 0’ test loop condition

24 REPEAT

25 ‘M’ DECR 7

26 DROP

27 CASE

28 ‘GUESS > NMBR'’ is guess > number?

29 THEN

30 END no!

31 ‘GUESS < NMBR’ is guess < number?

32 THEN

33 "Guess is low" "" INPUT "30" yes. Hint at next guess.
"30" was my input

34 OBJ- 30 convert to real number

35 ‘G’ STO

36 END END of THEN clause

37 END END of CASE structure

38 END END of WHILE loop

39 ‘GUESS # NMBR AND MAX 2 0’ test loop condition

40 END loop terminates, since
condition is false

41 IF do I guess the number?

42 'GUESS == NMBR'

43 THEN yes!

Chapter 7. Loop Structures 133

e

44 "Good guess!"

45 END

46 »

47 »

The QuickBASIC version is shown below:

NUMBER = RND(100)

MAX = 9
INPUT "Enter guess : ";GUESS
WHILE (GUESS <> NUMBER) AND (MAX >= 0)

MAX = MAX - 1
IF GUESS > NUMBER THEN

INPUT "Enter lower guess : ";GUESS
ELSEIF GUESS < NUMBER THEN

INPUT "Enter higher guess : ";GUESS
END IF

WEND

IF GUESS = NUMBER THEN
PRINT "Good guess!"

ELSE
PRINT "Number is " ;NUMBER

END IF
END

The HP41C version of the number guessing game is show below along with the RPL version:

HP41C RPL

LBL "GAME" «

100 100

XEQ "RNG" RAND
* *

INT IP

STO 00
9 S

STO 01

0

- NMBR MAX GUESS
«

"GUESS?" "Enter guess™ ""

PROMPT INPUT OBJ-

STO 02 ‘GUESS’ STO

LBL 00 WHILE
RCL 02 ‘GUESS # NMBR AND MAX > O’

RCL 00

x=y?

GTO 10
RCL 01
x=07?

GTO 10

Chapter 7. Loop Structures 134

]

REPEAT
DSE 01 ‘M’ DECR DROP
STO X

CASE
RCL 00 ‘GUESS > NMBR'
RCL 02
x<=y?

GTO 01
THEN

"GUESS HI" "Guess is high" ""
PROMPT INPUT OBJ-
STO 02 ‘G’ STO

END
LBL 01
x=y? ‘GUESS < NMBR'
GTO 03

THEN
"GUESS LO" "Guess is low" ""
PROMPT INPUT OBJ-
STO 02 ‘G’ STO

END

LBL 03 END
GTO 00 END
"NUMBER IS " IF ‘GUESS == NMBR'
ARCL 00
RCL 00 THEN
RCL 02 "Good guess!"
x=y? ELSE
"GOOD GUESS" "Number is " N +
PROMPT END

»

RTN »

The HP41C version assumes that the machine has a program labeled RNG to generate the
random numbers. The WHILE loop is defined by the commands between LBL 00 and GTO 00.
The logic of the CASE structure in the HP41C version lacks a defined start, but ends with LBL
03. The way that the HP41C displays the result does not translate the IF structure of the RPL
version.

The second example of using the WHILE-REPEAT loop is a version of the array search function
shown earlier. This version uses the WHILE loop to search for the first element that matches
a given number. The condition of the WHILE loop is made up of two ANDed subconditions:

1) The array index must be less than or equal to the array’s size.
2) The search flag must be clear, indicating that no match has been found yet.

This new version implements the linear search algorithm that works with un-unordered arrays
and lists. The program is shown below:

; Listing 7.11. Array search function.

: Version 2
«

00 : push zero to reserve a space for the local variable LEN

Chapter 7. Loop Structures 135

- ARY ELM LEN 1 ; store data in local variables:

array in ARY

element in ELM

0 in LEN
0 (dummy) in search index 1®

e
®
e

W
y
®
p

1 CF ; clear flag 1 which is used to indicate if a match

is found
ARY SIZE 1 GET obtain the size of the array

.

’

‘LEN’ STO ; store array size in local variable LEN

1 I’ STO ; assign 1 to the search index variable 1

WHILE ; begin WHILE-REPEAT loop
‘I € LEN' ; is search index within legal limit?

1l FC? ; is flag 1 clear?

AND ; are both of the above conditions true?

REPEAT
ARY I GET ; obtain the 1/th array element

ELM ; recall the search element
IF == THEN ; is 1'th array member equal to search element?

l SF ; yes! Set flag 1 (the found flag)
END

‘I’ INCR DROP ; increment the search index

END
»

IF 1 FC?C THEN : no match found?

0 : then push 0 in the stack

END
»

Nesting Loops

Non-trivial applications that perform repetitive tasks often use nested loops. Loops can be
nested in any combination. The only rule that must be observed is that nested loops cannot
overlap. Instead, they must be contained within each other. In this section I will show two
examples. The first nests two FOR-NEXT loops to assign data to a matrix. The second example
nests three loops, namely, a WHILE-REPEAT, a DO-UNTIL, and a FOR loop to sort a list of
strings.

The first program searches the element of a matrix to determine the largest number. A pair of
nested FOR-NEXT loops are used in this search. Nested FOR-NEXT loops are typically used
when handling matrices. The variable storing the largest element is initialized with the value
of the matrix element in the first row and column. The nested loops compare the matrix
elements with the current value of the local variable BIG. The program is shown below:

; Listing 7.12. Program that returns the largest element in a matrix.
«

DUP SIZE DUP duplicate matrix and obtain its size
1l GET obtain the number of rows

2 GET : obtain the number of columns
0o push 2 dummy value

- M ROWS COLS BIG > assign data to local variables:

Matrix in variable M®
e

®9
®
e

@
®
y

=
y

Chapter 7. Loop Structures 136

M {11) GET
‘BIG’ STO
1 ROWS
FOR I

1 COLS
FOR J

M

{} I +J+
GET
DUP
BIG
IF >
THEN

'BIG’ STO
ELSE

DROP
END

NEXT
NEXT
BIG

»

®
e

®
e

™
o

®e
o

®mo
®
p

Number of rows in variable ROWS

Number of columns in variable COLS

0 (dummy value) in variable BIG

get M[1,1]
store it in BIG
define limits of FOR loop that scan the matrix rows

define limits of FOR loop that scan the matrix columns

push matrix M in the stack

get M[1,J]

duplicate matrix element

: get BIG

; is M[1,J] > BIG?

; yes. Set BIG = M[I,J]

; drop M[1,J] from the stack

; push BIG in the stack

The second program sorts a list of strings or real numbers in an ascending order. The program
takes the target list from level 1 and returns the sorted list in the stack. The Shell-Metzner
method is used. This uses cycles of comparisons. These cycles start by comparing distant
elements and swapping them if needed. Once the elements ofa cycle are in order, the algorithm
moves to the next cycle to compare closer elements. The last cycle compares neighboring
elements. Once it is finished, the list is in order. The program is listed below:

<
o

w
o

DUP SIZE DUP O
- L LEN OFS 1

«

WHILE
‘OFS > 1’

REPEAT
OFS 2 / 'OFS’ STO
1 CF
DO

1l LEN OFS -
FOR J

J OFS +
‘I’ STO

«
e

w
e

®
e

W
e

W
g

@
9

®
p

w
,

®
e

®
e
W

®
e
W
=

Listing 7.13. Program that uses the Shell-Metzner algorithm to sort a
list of strings or numbers

obtain list size and duplicate it
store data in local variables:

List in variable L

The list size in variable LEN
The comparison offset in variable OFS

0 (dummy) data in I

start WHILE-REPEAT loop

loop while offset is greater than 1

reduce the offset by half
clear swap flag

start DO-UNTIL loop

assign limits for the FOR-NEXT loop

J is the leading list element
calculate the index I for the trailing list element

Chapter 7. Loop Structures 137

L J GET ; get the J'th list element

L I GET : get the I’th list element
DUP2 ; duplicate both elements

IF > ; test if J/th element > 1/th element
THEN ; yes. Swap elements

L SWAP : insert and swap list

J SWAP : insert and swap index J

PUT : put the 1’th element in location J
: *** NOTE: the list is still in the stack ***

SWAP : swap list and J/th element

I SWAP : insert and swap index 1

PUT : put J'th element in location |

‘L’ STO : updated the list variable L

1l SF ; set the swap flag

ELSE : no. Just drop the objects in levels 1 and 2
DROP2

END

NEXT ; *** END of FOR loop ***
UNTIL 1 FC?2C ; test condition of DO loop. Is swap flag clear?

END ;s *** END of DO loop ***
END ;s *** END of WHILE loop ***

L ; push sorted list in the stack
»

»

Open Loops: Who Needs Them?

Open loops iterate indefinitely! This statement seems to convey more of a warning than a
description. Why would any application want to use an open loop? The answer is that there
are indeed applications that put open loops to very good use. Consider the operating system of
the HP48SX (or any other computer). Such an operating system is nothing but a program that
keeps on looping. In each iteration, the machine awaits your instructions and executes them
when they are available. Aha! Now open loops make sense, don’t they? Just think if operating
systemns did not use any open loops --- you have to turn the power off and then on every time
you want to execute a command!

Practically. open loops come with mechanisms that allow a program to exit such loops ifneeded.
The RPL language does not implement open loops, but they are not hard to emulate. A WHILE-
REPEAT loop can easily accornmodate such a need. The following is a general syntax for using
a WHILE loop as a true-blue open loop:

WHILE '1==1"
REPEAT

sequence of commands
END

The test '1==1" can be replaced by any other test that is always true. The only way to stop
such a loop on the HP48SX is to press the attention key.

Chapter 7. Loop Structures 138

Notes

Error Handling

In the previous chapters the program examples used little or no measures to handle runtime
errors. The general assumption that a program will run without errors is probably confined to
only the most trivial programs. Programs that cannot handle anticipated errors lack the
professional look. In this chapter I will discuss the error-handling mechanism of the HP48SX.

The RPL language implements an error-handling mechanism that conforms to structured
programming. This allows your program applications to handle a variety of mishaps --- from
bad input to computational error. There are two basic categories of error-handling methods:
defensive programming and error trapping. Defensive programming works by using ordinary
decision-making structures (mostly the IF structure) to detect error-generating conditions. Thus,
the defensive programming essentially applies preventive measures. The error trapping method
is more bold in its approach. Its basic strategy is the following:

® Set an error trap.
® Let the error happen.
® Apply the trap to handle the error.

This enables the program to continue running even if an error has occurred. Compared to the
defensive programmming approach, the error trapping method is superior.

HP48SX errors are associated with a numeric code and an error message string. This
information is managed by a number of commands that enable you to set, reset, and query
errors. They are:

1) The ERRO command. This resets the error code and error message to O and a null string,
respectively.

2) The ERRN command. It returns the error code associated with the last runtime error. A #0
means either that there has been no error so far, or that the error code was cleared using the
ERRO command.

3) The ERRM command. It yields the error message associated with the value returned by
ERRN.

4) The DOERR command. This command empowers a program to raise a runtime error. If no
error trap is set, the DOERR command halts the program. Two types of arguments may be
supplied to the DOERR, namely:

® A user-defined error message string. When the DOERR detects a string it
automatically relates it with the #70000h error code.

Chapter 8. Error handling 140

® A binary integer or a real number that corresponds to an HP48SX runtime
code number. A subsequent call to ERRN and ERRM return the argument of
DOERR and the accompanying error message, respectively.

RPL provides the IFERR-THEN-END and the IFERR-THEN-ELSE-END structures to trap errors.

They are discussed in the next sections.

The IFERR-THEN-END Structure

This structure is the error-handling version of the IF-THEN-END structure. The general syntax
is shown below:

IFERR

trap-clause
THEN

error clause
END

The specialty of the IFERR-THEN-END structure is that if an error occurs while executing the
trap-clause, the program jumps to the THEN clause. For the HP41C programmer, the HP48SX
error-handling is superior to using the error-ignore flag 25. If you program in QuickBASIC you
will find that the HP48SX offers a more structured approach to error-handling, compared to
BASIC's ON ERROR GOTO statements.

The following simple example illustrates how the IFERR-THEN-END structure works. The
program object implements a version of the factorial function that uses error trapping to handle
negative numbers. The trap-clause contains the | command. If the function is supplied a
negative number, an error condition arises. Consequently, the program resumes in the THEN
clause. In this case a O is pushed in the stack --- such an invalid factorial value signals that the
argument was invalid to begin with. The program is listed below:

Listing 8.1. Factorial function that traps negative arguments using error
trapping.

*
w
e

w
e

IFERR !
THEN

0
END

The above example is a typical solution for mathematical functions that may experience
computational errors. These functions contain the calculating commands in the trap-clause.
The error clause contains commands pushing a special number in the stack. The number
should be either one that the function does not generate or a number of extreme magnitude.

For the sake of comparison, | present the defensive programming version below:

Chapter 8. Error handling 141

Listing 8.2. Factorial function that traps negative arguments using defensive
programming.

RN
e
%

DUP
0
IF >=
THEN

!
ELSE

0
END

Notice that the defensive programming version uses an IF-THEN-ELSE-END structure to handle
negative numbers.

The error-trapping version is an example of handling arguments that raise a runtime error and
halt the program in the absence of error-handling. It is interesting to point out that since the
HP48SX also supports complex math, some of the math function errors that occur in HP41C and
BASIC programs are not on the HP48SX. For example, the negative values supplied to the
square root and logarithm functions generate complex results on the HP48SX. If such results
are not acceptable to your applications, then you need to raise a runtime error. The next
program implements a LN function that considers negative arguments as erroneous input. Since
these arguments yield complex numbers, the program checks for their presence and accordingly
raises a runtime error. I have chosen -1 to be the result returned by the function when a bad
argument is supplied. In addition to protecting against negative arguments, the next program
also guards against a genuine runtime error when the argument is 0. In this case, error trapping
is triggered as soon as the LN command is executed. The program execution is then diverted
to the THEN errorclause. The program is shown below:

; Listing 8.3. Natural log function that guards against non-positive arguments.
«

IFERR

LN ; take the LN of the number in level 1
DUP ; duplicate the result

TYPE 1 : obtain the type code and compare with 1 (the type

; of complex numbers)
IF ==

THEN ; result is complex due to a non-positive argument

12Fh DOERR ; raise “Non-Real Result" error
END

THEN ; error clause
DROP ; drop result from the stack

-1 : push =1
END

Chapter 8. Error handling 142

The IFERR-THEN-ELSE-END Structure

This structure is the error-handling version of the IF-THEN-ELSE-END structure. The general
syntax is shown below:

IFERR

trap-clause
THEN

error clause
ELSE

normal-clause
END

The above error-handling extends the IFERR-THEN_END structure by adding an ELSE clause.
The commands in the latter clause are executed if no error occurs in the trapclause. The next
program demonstrates the IFERR-THEN-ELSE-END structure. It is a version of the quadratic
solver that traps division by zero error (that arise when the coefficient of the X square is zero).
The program first resets the error code by using the ERRO command. The trap-clause in the
IFERR structure contains the algebraic expressions that are vulnerable to a division-by-zero

error. The error-clause drops the intermediate results, pushes an error message in the stack,
and beeps. The latter two steps are optional, especially if the program is called as a subroutine.
In this case, the caller must compare ERRN with O to detect any error. The normal-clause tags
the results when the calculations proceed without any error. The program is listed below:

; Listing 8.4. Quadratic solver QS with a math error handling.
«

ERRO ; reset error code

00
- A B CD TWOA

«

‘V(B*B-4*A*C) ‘' EVAL
‘D’ STO

sssign data to local variables

calculate the square root of the determinant

store result in the local variable D

*2*A’ EVAL calculate 2A

'TWOA’ STO store 2A in the local variable TWOA

IFERR start trap-clause

‘(-B+D)/TWOA’ EVAL calculate the first root. If A=0 the divide-by-zero
error occurs here

calculate the other root.

error clause

drop the two intermediate results

optional error message tO0 the user
optional beep

normal-clause

tag the valid results

‘(-B-D)/TWOA’ EVAL

THEN

DROP2

"ERROR: A = 0O"

1000 .2 BEEP

ELSE

‘Rootl’ =TAG

SWAP

‘Root2’ =TAG

W
Y

V
e

T
e

V
e

V
o

V
e
T

V
e

V
o

"
y

W
y

V
e
e
%

END

Chapter 8. Error handling 143

Error-Proof Input

I stated earlier that computational errors and input error are among the general classes of errors.
The examples in this chapter have focused so far on computational error. In this section I will
discuss input error, especially when using the INPUT command. One of the most common
errors is the lack (total or partial) of actual input from the user. The scheme for error-free input
is to repeat the input command(s) until the sought input is obtained. The general syntax for
this scheme is shown below:

DO

IFERR

input command
data storage commands
1

THEN

drop any partial input from the stack
0

END

UNTIL

END

The nested commands are enclosed in a DO-UNTIL conditional loop. The loop’s UNTIL clause
performs no explicit test. Instead, it relies on O or 1 values passed by the clauses of an IFERR
structure. The trap-clause of the IFERR structure contains the commands for INPUT and input
verification (this can be simply the commands that store the input in variables). The last
command in the trap-clause pushes 1 in the stack for the UNTIL clause to examine. The error-
clause drops any data from a partial input and pushes O for the UNTIL clause.

The above scheme is put to work in the next program. The program prompts you to enter the
coeflicients of a quadratic equation. A single INPUT command is used to prompt you for input.
The DO-UNTIL loop iterates until you enter a value for each coefficient. Once the input is
complete the program calls the above version of the quadratic solver. The program is listed
below:

; Listing 8.5. Program that prompts for the coefficients of a quadratic equation.
«

00O : push dummy data to reserve space for local variables

- ABC ; essign data to local varisble
«

DO : start DO-UNTIL loop
IFERR ; start trap-clause

** {(":A:e:B:e:C:" 3 0) ; prompt for coefficients

INPUT OBJ-
‘C’ STO ; store input in local varisbles
‘B’ STO ; insufficient data error can occur in the
‘A’ STO : STO commands

1 ; made it ok! Push 1 in the stack

Chapter 8. Error handling 144

5

THEN

DROP ; drop partial input

0 : push 0 in the stack

END
UNTIL ; re-iterate if number in level 1 is 0, exit if 1

END

A B C QS : call subroutine QS

The last two programs enjoy error-handling features for both the input and calculations.

Special and Non-Numerical Arrays

The HP48SX offers advanced numeric array and matrix manipulation. This includes popular
matrix and matrix-vector operations, such as matrix math, matrix inversion, and solving
systems of equations. This prepares the HP48SX for scientific, engineering, statistical, and
numerical analysis calculations. By contrast, non-numerical arrays. such as arrays of strings,
are not explicitly implemented. However, the designers ofthe machine have provided the basics
of creating such arrays. In particular, lists (as implemented in the HP48SX) are able to act as
pseudo-arrays. Thus, lists can mimic arrays of strings, compound information, numerical
arrays, numerical matrices, and other lists.

This chapter looks at a few special list-based arrays:

1) Arrays of strings.
2) Arrays of compound data.
3) Jagged numerical matrices.
4) Hash tables.

The second and last structures provide you with a simple but practical databases. They can be
used to store phone numbers, addresses, and other useful data.

Arrays of Strings

The HP48SX array objects are limited to storing real and complex data. Strings are excluded.
Arrays of strings can be implemented as lists of strings, because you can access a list member
by index (a typical feature ofan array). The basic functionality of string arrays includes storing
and recalling a string from the list. Secondary functionality includes sorting the string array.
and searching for a specific string. The search can be either linear (for unsorted arrays) or
binary (a faster way used with sorted arrays). The general form of the list-based array is:

{ “string_1" “string_2" ... "string_n")}

Storing Strings

Storing a string in the list-based array (from now on I will simply call it array) involves placing
the string at the specific index. If the index is within the array’s current size, the operation is
straightforward. By contrast, when the index is beyond the array size the array must be first
expanded to the index value. This is accomplished by adding new members to the list. Since
the list implements an array of strings. null strings are suitable as fillers. What if the supplied
index is less than one (the first array element)? There are two choices: trigger an error condition
or substitute the bad index with a good one. The first alternative raises an error condition by

Chapter 9. Special and Non-Numerical Arrays 146

either setting a special flag or pushing an error-flagging data object into the stack. The second
alternative replaces the value of the bad index with a valid one, say 1. I will implement both
versions for storing strings in an array. The first version is shown below:

Listing 9.1. Program STOR to store a string in an array of strings.

Version 1

Date 12/12/90

INPUT:
List containing strings
Index
String to be stored in array

OUTPUT:

Flag 64 is clear => index value > 0
Flag 64 is set => index value < 1

O
2
e

N
e
e
e

V
e

V
e

V
e

V
e

V
e

W
e

V
e

V
e
W
W

= SARR INDEX S ARRSIZE assign parameters to local variables
string array to variable SARR
index to variable INDEX
stored string to variable S
0 (dummy value) to variable ARRSIZE®

e
e

®
e
m
o
®
o

«

IF ‘INDEX < 1° : is the index valid?
THEN yes, proceed

SARR SIZE obtain the array size and store it in variable ARRSIZE
‘ARRSIZE’ STO
IF °‘INDEX > ARRSIZE' is the index greater than the array size?
THEN ; yes. Increase the array size by adding null strings

‘INDEX-ARRSIZE’' EVAL ; evaluate the difference in size
1 SWAP ; begin a START-NEXT loop to concatenate null strings
START

. " +

NEXT
END
INDEX S PUT ; insert string at the INDEX element
64 CF ; clear error flag

ELSE
64 SF ; set error flag

END

Chapter 9. Special and Non-Numerical Arrays 147

The second version of the string storing program is presented next:

Version 2

Date 12/12/90

O
&

“
e

%
0
e

N
e
e

V
e

V
e
N
T

V
e
e
w

- SARR INDEX S ARRSIZE

«

IF ‘INDEX < 1’
THEN

1 'INDEX’ STO
END

SARR SIZE
'ARRSIZE’ STO
IF ‘INDEX > ARRSIZE’
THEN

‘INDEX-ARRSIZE’ EVAL
1l SWAP
START

nw <+

NEXT
END
INDEX S§ PUT
»

»

®
e
®
¢
o

®
e
®
¢

Listing 9.2. Program STOR to store a string in an array of strings.

INPUT:

List containing strings
Index
String to be stored in array

OUTPUT:

assign parameters to local variables
string array to variable SARR
index to variable INDEX
stored string to variable S
0 (dummy value) to variable ARRSIZE

: is the index valid?
yes, adjust index value
assign 1 to variable INDEX

obtain the array size and store it in variable ARRSIZE

is the index greater than the array size?
yes. Increase the array size by adding null strings
evaluate the difference in size
begin a START-NEXT loop to concatenate null strings

insert string at the INDEX element

The above version assumes that client programs check the index value before calling STOR.
Examples of using the second version of STOR are shown below. The first example illustrates
a typical use of STOR, where the storage index is within the array size:

INPUT STACK OUTPUT STACK

3: { "DO" "FOR" "NEXT")
2:2
1: "END" 1: { "DO" "END" "NEXT" }

Chapter 9. Special and Non-Numerical Arrays 148

The second example shows the resulting array when the storage index is greater than the array
size. In this case, the resulting array contains two new null strings:

INPUT STACK OUTPUT STACK

3: { "DO" "FOR" "NEXT" }
2: 6

1: "END" 1: { "DO” "FOR" "NEXT" " ** "END" }

Recalling Strings

Recalling a string from an array is a simpler operation. You simply check whether the index
of the sought element is valid (that is, its value is between 1 and the array size). If the index
value is valid, retrieve the sought element using a GET statement. If the index is out of range,
return a null string. The program is shown below:

Listing 9.3. Program RCAL to recall a string from an array of strings.

Version 1

Date 12/12/90

i

i
i

i
i
; INPUT:

; List containing strings
; Index

’

; OUTPUT:
i string
;
«

SWAP DUP SIZE ; obtain the array size
- INDEX SARR ARRSIZE assign parameters to local variables

index to variable INDEX
string array to variable SARR
array size to variable ARRSIZE

IF ; is the index valid?
‘INDEX > O AND INDEX s ARRSIZE’

THEN : yes, adjust index value
SARR INDEX GET ; obtain string from the INDEX’th element

ELSE
"n ; return a null string

END

Chapter 9. Special and Non-Numerical Arrays 149

Examples of using RCAL are shown below. The first example shows a typical use of the RCAL
program. Here the access index is within the array size:

INPUT STACK OUTPUT STACK

3: { "DO" "FOR" "NEXT")

1: 2 1: "FOR"

The second example shows the null string obtained by using an index that exceeds the array
size. The same result is obtained if the index value is less than 1:

INPUT STACK OUTPUT STACK

2: { "DO" "FOR" "NEXT" }

1: 4 1. °°

Sorting Strings

Sorting an array of strings causes the elements to be rearranged in either ascending or
descending order. The ascending order is most commonly used. There are various sorting
methods to choose from, each with its own efficiency. Most of the times, I use the Shell-Metzner
sort method because it offers good speed and does not require additional stack or memory space.
The QuickSort method is among the fastest, but requires stack space because it uses recursion
(that is, its routines call themselves).

The Shell-Metzner method compares and swaps array elements. This is done in cycles. Each
cycle compares members that are N elements apart. At first, N is half the array size. During
each other cycle the value of N is cut in half, until N becomes 1. Within each cycle, multiple
passes are performed to compare the array members and ensure that they are in order. The
last cycle compares immediate neighboring elements. When it is finished, the array is in order.

The following program sorts the elements of a string array in an ascending order and places the
result back on the stack:

Listing 9.4. Program SORT to sort the elements of a string array.

Version 1
Date 12/12/90

£
V
e

V
O

V
O

W
O

V
O

N
0

V
e

V
e

V
N
e
w

INPUT:
List containing strings

OUTPUT:
Sorted list of strings

DUP SIZE ; obtain the array size
DUP : duplicate size

Chapter 9. Special and Non-Numerical Arrays 150

0
RCLF ; recall flags

= SARR ARRSIZE OFS 1 FLAGS ; assign parameters to local variables
; string array to variable SARR

; array size to variable ARRSIZE
; special sort offset to variable OFS
; 0 (dummy) to variable 1
; flags to variable FLAGS

«

WHILE °'OFS>1’ ; main sort loop
REPEAT

OFS 2 / 'OFS’ STO ; halve OFS
1l SF ; set in-order flag
DO

1 ARRSIZE OFS - ; set the limits of & FOR-NEXT loop
FOR J

J OFS + : calculate |
‘I’ STO
SARR J GET ; obtain array element J
SARR I GET ; obtain array element I
DUP2 ; duplicate elements
IF > : is element J > element | ?
THEN ; swap them

SARR SWAP J ; swap element with list in stack
SWAP PUT

SWAP 1

SWAP PUT
*SARR’ STO ; update variable SARR
1l CF : clear in-order flag

ELSE
DROP2 ; drop the copies of elements | and J

END

NEXT
UNTIL 1 FS? ; repeat until in-order flag is true (set)

END
FLAGS STOF ; restore flags to original status
SARR : push string sarray in the stack

The program uses flag 1 to monitor the order of the array. The original status of the flags is
stored in variable FLAGS. When the program ends. the original flag states are restored. Since
flag 1 conveys no information relevant to client programs. An example of using the SORT
program is shown below:

INPUT STACK OUTPUT STACK

1: { "NEXT" "FOR" *DO" } 1:{ "DO" "FOR" "NEXT" }

Searching for Strings

Searching through an unordered array requires a linear method. usually searching the array
from the front to the end. The search stops when either a match is located or the end of the
array isreached without finding a match. A successful search returns the index ofthe matching
element; otherwise, a zero is returned. This type of linear search assumes that strings in the

Chapter 9. Special and Non-Numerical Arrays 151

array are unique, since no attempt is made to locate subsequent occurrences of the same string.
Thus, searching for the string "Stewart” in the list { "Nelson® “Stewart” “"Cox" "Stewart" }
always returns 2, the location of the first occurrence. The linear search program is shown
below:

Listing 9.5. Program LSRCH to search for a matching string in the array.

Version 1

Date 12/12/90

INPUT:
List containing strings
Search string

OUTPUT:

index to the matching string,
OR 0 when no matching is found

W
O

V
O

V
e

M
O

V
e

V
O
W

|
0
W
W

"
W

V
o
W

SWAP DUP SIZE 1
RCLF recall flags

-+ S SARR ARRSIZE I FLAGS essign parameters to local variables
search string to variable §
string array to variable SARR
array size to variable ARRSIZE
0 (dummy) to variable 1
flags to variable FLAGS

«

l SF
WHILE ‘I = ARRSIZE' 1 FS? AND

set the not-found flag
start the WHILE loop and test for:

1) if index | is less than or equal to the array size
AND

2) if the not-found flag is still set®
e

W
e
®
e
m
p
®
o

REPEAT
SARR I GET ; obtain the 1’th array element
S ; push the search string in the stack
IF = ; does the 1’th array element differ from the search string?
THEN ; Yes. Increment index I

l ‘I’ STO+
ELSE : No. Clear the not-found flag

1l CF

END

END
IF 1 FC? ; is the not-found flag clear
THEN : Yes. Return index for matching element

ELSE : No. Return 0 for a no-match search
0o

END
FLAGS STOF ; restore original flags
»

Chapter 9. Special and Non-Numerical Arrays 152

Examples of using LSRCH are shown below. Consider locating the string "DO" in the list { "IF"
*FOR" "DO" }, as shown below:

INPUT STACK OUTPUT STACK

2: { "IF" "FOR" "DO" }
1: "DO" 1: 3

A request to find the string "Do" returns O (since the string "Do" is not in the list), as shown
below:

INPUT STACK OUTPUT STACK

2: { "IF" "FOR" "DO" }
1: "Do" 1: 0

The binary search method is applied to ordered arrays. The method is much faster than the
linear scheme and uses the same approach of the root-solving bisection method in numerical
analysis. The binary search method starts by examining the median element of the array. This
enables the scheme to skip halfof the array and examine the relevant half. Successive searches
continue to reduce the size of the search sub-array by examining the median of the current sub-
array. The search stops until either a match is found or the size of the sub-array just examined
is 1.

Program object BSRCH performs a binary search on the ordered string array.

Listing 9.6. Program BSRCH to binary search for a matching string in the array.

Version 1

Date 12/12/90

INPUT:
List containing strings
Search string

OUTPUT:

index to the matching string,
OR O when no matching is found

U
)
R

S
e

S
0

“
¢

%
0
%

%
0

N
6

N
e

“
e

“
e
%

w
e

w
e

WAP DUP SIZE 1 O ™"
S SARR HIGH LOW MEDIAN ELEM ; assign parameters to local variables

search string to variable S
string array to variable SARR
array size to variable Nl
1 to variable LOW
0 (dummy) to variable MEDIAN
null string (cummy) to variable ELEM

d

®
e
B
9
®
e
B

@
y
B

®

LOW HIGH + 2 / 1P ; calculate the median value

Chapter 9. Special and Non-Numerical Arrays 153

DUP ’‘MEDIAN’ STO : store in variable MEDIAN
SARR SWAP GET obtain the median element

‘ELEM’ STO store in variable ELEM
IF 'S < ELEM’ compare search and median strings
THEN

M1l - ; select lower sub-array
*HIGH’ STO

ELSE
M1+ ; select upper sub-array
‘LOW’ STO

END

UNTIL
*S==ELEM OR LOW> HIGH' ; test for end of search

END
IF ’'S==ELEM’ ; found a match?
THEN : Yes. Return the median

MEDIAN
ELSE : No. Return zero

0o

END

The BSRCH program uses flag 1 to indicate whether or not a match is found. The original
status of the flag is stored in variable FLAGS and then restored near the end of the program.

Examples of using BSRCH are shown next. Consider the array:

{ "Bear” "Bird” "Dog" “Lion" "Tiger" "Zebra" }

Searching for "Bird", "Lion®, "Cat" returns 2, 4, and O respectively. The BSRCH and LSRCH
programs return the same results when dealing with sorted arrays. The difference is that
BSRCH is faster than LSRCH.

Compound Arrays

The list-based array of strings is made ofa un-nested list containing strings. Such a list is useful
when each string member represents a complete piece of information. What about the
applications where multiple data fields are needed? The simple list-based arrays can be

expanded to include compound data. A compound array is a nested list with the following
general format:

{ { key_1 data_12 data_13 ... data_In} ... { key_n data_n2 ... data_nm } }

A compound element is a list of data where the first list member is the key-information field.
The key field must be the same for all compound elements in the array. You can use either a
real number, a binary integer, or a string as the key field. Other data in compound elements
can vary in type and number. If you have been exposed to structured languages you may see
a similarity between compound elements and records or structures. Unlike such records and
structures, there is no formal definition of the compound data type. Your applications can
create them at will. With such a privilege comes the responsibility of using consistent keys, or

Chapter 9. Special and Non-Numerical Arrays 154

risk a variety of runtime errors!

The compound array is an expanded version of the simple string array presented earlier. Added
complexity comes from the fact that we are dealing with nested lists. This means that
operations store and recall must deal with extra steps of obtaining data from nested lists and
putting them back.

Compound arrays enable you to maintain a flexible little database on the HP48SX. For example
you can store mailing data or phone numbers. The last name can be used as the key field. So
the next time you want to call your favorite HP dealer (to order some more accessories for the
HP48SX). locate his/her phone number or address by supplying the last name!

Storing Compound Elements

Storing a compound element in a compound array is very similar to the simpler string array
version.

The version of the string storing program is presented below:

Listing 9.7. Program STOR to store a compound element in a compound array.

Version 1

Date 12/12/90

;
i

i

;
i
; INPUT:
; Nested list representing the compound array
; Index
; compound data list to be stored in array
’

;7 OUTPUT:

i
«

O - CARR INDEX S ARRSIZE ; assign parameters to local variables
compound array to variable CARR
index to variable INDEX
stored compound element to varisble S
0 (dummy value) to variable ARRSIZE®

e
m
e
m
p
w
e

«
IF "INDEX < 1’ is the index valid?
THEN : yes, adjust index value

1l *INDEX’ STO ; assign 1 to variable INDEX
END
CARR SIZE : obtain the array size and store it in varisble ARRSIZE
‘ARRSIZE’ STO
IF ‘INDEX > ARRSIZE’ ; is the index greater than the array size?
THEN ; yes. Increase the array size by adding null strings

*INDEX-ARRSIZE’' EVAL ; evaluate the difference in size
1 SWAP ; begin a START-NEXT loop to concatenate null strings
START

" " +

NEXT
END
INDEX § PUT : insert compound element at the INDEX element

Chapter 9. Special and Non-Numerical Arrays 155

The above version assumes that client programs check the index value before calling STOR.
Examples of using STOR are shown below. The first example illustrates a typical use, where
the storage index is within the array size:

INPUT STACK OUTPUT STACK

3:{{"FOR" 1} {"DO" 10} }
2:2

1: {"IF" 5} 1: {{"FOR" 1} {"IF" 5} }

The second example shows the resulting array when the storage index is greater than the array
size. In this case, the resulting array contains two new null strings:

INPUT STACK OUTPUT STACK

3:{{"DO" 3})}
2: 4

1: {"END" 9} 1: {{"DO" 3} """ {"END" 9} }

Recalling Compound elements

Recalling a compound elementis very similar to the string array version. An out-of-range index
results in a null string being pushed to the stack. Checking for null strings after invoking RCAL
enables your program to detect bad-index calls. The program is shown below:

Listing 9.8. Program RCAL to recall a compound element from an array of
compound data.
Version 1
Date 12/12/90

INPUT:
List containing compound elements
Index

OUTPUT:
compound element

R
V
e

V
e

V
e
N

V
e

V
e
T
W
N

V
e
N

SWAP DUP SIZE
= INDEX CARR ARRSIZE

obtain the array size
assign parameters to local variables
index to variable INDEX
compound array to variable CARR
array size to variable ARRSIZE

«

IF : is the index valid?

*INDEX > O AND INDEX s ARRSIZE’
THEN ; yes, adjust index value

CARR INDEX GET ; obtain compound element from the INDEX’th element
ELSE

" ; return 8 null string

Chapter 9. Special and Non-Numerical Arrays 156

END

Examples of using RCAL are shown below. The first example shows a typical use of the RCAL
program, here, the access index is within the array size:

INPUT STACK OUTPUT STACK

2:{{"DO" 3} {"FOR" 4} }
1: 2 1: { "FOR" 4}

The second example shows the string obtained by using an index that exceeds the array size.
The same result is obtained if the index value is less than 1:

INPUT STACK OUTPUT STACK

2: {{"DO" 3.14 } }
1: 4 1: *"

Sorting Compound elements

Sorting an array of compound elements is similar to sorting a string array. An added
complication comes from the fact that a two-step extraction must be carried out to reach the key
fields: the first obtains the compound element from the compound array, and the second
retrieves the first list member of the compound element. In addition, the compound elements
must be stored in separate variables for the sake of (potential) swapping.

The following program sorts the elements ofacompound array in an ascending order and places
the result back on the stack:

Listing 9.9. Program SORT to sort the elements of a compound array.

Version 1

Date 12/12/90

N
V
0

V
e
N

V
e

V
e

N
0

N
0
N
N
S
W

INPUT:

List containing compound elements

OUTPUT:

Sorted list of compound elements

DUP SIZE ; obtain the srray size
DUP : duplicate size
0
RCLF : recall flags
{) DUP
- ARRSIZE OFS 1 FLAGS EI EJ ; assign parameters to local variables

; special sort offset to veriable OFS
; array size to variable ARRSIZE

’

: 0 (dummy) to variable 1

Chapter 9. Special and Non-Numerical Arrays 157

flags to variable FLAGS
empty list (dummy) to variable EI
empty list (dummy) to variable EJ®

e
@
9
o

«
WHILE °‘OFS>1’ main sort loopL

X
)

REPEAT
OFS 2 / 'OFS’ STO : halve OFS
l SF : set in-order flag
DO

1l ARRSIZE OFS - ; set the limits of a FOR-NEXT loop
FOR J

J OFS + ; calculate |
‘I’ STO

DUP DUP
J GET : obtain array element J
‘EJ’ STO ; store it in variable EJ
I GET ; obtain array element |
‘EI'’ STO ; store it in variable EI
EJ 1 GET ; obtain the key field of element J
EI 1 GET ; obtain the key field of element |
IF > ; is element J > element I ?
THEN ; swap them

J EI PUT ; swap element with list in stack
I EJ PUT
1l CF : clear in-order flag

END

NEXT
UNTIL 1 FS? ; repeat until in-order flag is true (set)

END
FLAGS STOF ; restore flags to original status

While the above implementation of SORT resembles that of the string array, you might have
noticed that I am not using a local variable to store the compound array. Instead, the
implementation leaves the array in the stack.

An example of using the SORT program is shown below:

INPUT STACK OUTPUT STACK

1: { { "NEXT" 3} 1: { { "DO" 4)
{ "FOR" 9} { "FOR" 9)
{"DO" 4}) { "NEXT" 3})

Chapter 9. Special and Non-Numerical Arrays 158

Searching for Compound elements

I will present two programs that implement linear and binary searching on compound arrays.
The implementations are similar to those of string arrays.

W
O

W
O

V
O

V
0

V
e
N
N

V
0
W

V
W
N

"
N

«

Listing 9.10.
array.
Version 1

Date 12/12/90

SWAP DUP SIZE 1
RCLF

= S CARR ARRSIZE I FLAGS

«
1l SF
WHILE ‘I < ARRSIZE'

REPEAT

Program LSRCH to search for a matching compound element in the

CARR I GET
1l GET
S
IF

THEN
1 1

ELSE
1

END
END
IF 1 FC?
THEN

I

0
ELSE

END
FLAGS STOF

CF

STO+

1 FS? AND

®
e

®
o
W
e
e

“
e

®w
o

INPUT:
List containing compound elements
Search element

OUTPUT:

index to the matching compound element,
OR 0 when no matching is found

recall flags

assign parameters to local variables
search key to variable S
compound array to variable CARR
array size to variable ARRSI2E
0 (dummy) to variable |
flags to variable FLAGS

set the not-found flag
start the WHILE loop and test for:

1) if index | is less than or equal to the array size
AND

2) if the not-found flag is still set

obtain the 1’th array element
extract the key field
push the search key in the stack
does the key field of the I’th array element differ from
the search key?
Yes. Increment index |

No. Clear the not-found flag

is the not-found flag clear
Yes. Return index for matching element

No. Return 0 for a no-match search

restore original flags

Chapter 9. Special and Non-Numerical Arrays 159

Examples of using LSRCH are shown below. Consider locating the compound element "DO" in
thelist { { "IF" 4} { "FOR" 5} { "DO" 6 } }. as shown below:

INPUT STACK OUTPUT STACK

2: {{"IF"4}{"FOR" 5} {"DO" 6})
1: "DO" 1: 3

A request to find the compound element "Do" returns O (since the compound element "Do" is
not in the list), as shown below:

INPUT STACK OUTPUT STACK

2:{{"IF"4)}{"FOR" 5} {"DO" 6})}
1: "Do” 1: 0

Program object BSRCH performs a binary search on the ordered compound array.

Listing 9.11. Program BSRCH to binary search for a matching compound element
in the array.
Version 1
Date 12/12/90

INPUT:

List containing compound elements
Search key

OUTPUT:

index to the matching compound element,
OR 0 when no matching is found

U
)

R
S
¢

%
¢

W
6

N
6

N
0
e

N
e

W
e
N

®
e
N
W
W

WAP DUP SIZE 1 O ™"
S CARR HIGH LOW MEDIAN ELEM! assign parameters to local variables

search key to variable §
compound array to variable CARR
array size to variable Hl
1 to variable LOW
0 (dummy) to variable MEDIAN
null string (dummy) to variable ELEM

®
e
e

V
e
V
e
V
e
B

%
o

LOW HIGH + 2 / IP
DUP ‘MEDIAN’ STO
CARR SWAP GET

calculate the median value
store in variable MEDIAN
obtain the median element

®
e
®
o
®
p
®
p
w
o
e

1 GET get the key field of the median element
‘ELEM’ S8STO store in variable ELEM
IF ’S < ELEM’ compare search key and key of median compound element

THEN
M1l - : select lower sub-array
‘HIGH’ STO

ELSE

Chapter 9. Special and Non-Numerical Arrays 160

M1+ ; select upper sub-array
‘LOW’ STO

END
UNTIL

*S==ELEM OR LOW>HIGH'’ ; test for end of search

END
IF *‘S==ELEM’ : found a2 match?
THEN : Yes. Return the median

MEDIAN
ELSE : No. Return zero

0
END

Compound arrays are very powerful data structures. Their usefulness is indeed limited by our
imagination!

Hash Tables

The superiority of binary search over linear search stems from the fact that it takes advantage
of the array’s sorted elements. Computer scientists also discovered that, surprisingly, fast
searches can also be attained with arrays whose elements are in perfect disorder. How is that
possible, you might ask? The basic scheme, called hashing, converts the key portion of the
inserted data (usually a string) into a unique index. The inserted data is then stored at that
index, without examining other array elements. Thus, an array that uses hashing to store and
retrieve data is called a hash table. The unique index is calculated using a hashing function
that produces a random-number index. Ideally. the hashing function should not produce the
same index for two different data. This deviation, which causes data collision, occurs for two
reasons:

1) The randomness of the result given by the hashing function.
2) The ratio between the number of inserted data and hash table size. The more crowded the
hash table is, the more likely is collision.

There are various methods to handle colliding data. The best method is called chaining and
can be easily implemented on the HP48SX. It works by creating a list of the colliding data at
the offending index. The ideal hash table that stores strings can be implemented as a simple
list. The ideal hash table that stores compound data is implemented as a nested list:

{{keyl3 ...} { key99 ...} { key55 ... } ... { key67 ... } }

To implement chaining, another level of nested lists must be added. The general form of the
hash table that chains colliding data is shown below:

{ {{keyl3..){keyd45 ...}) {{keyS0 ..} {key67..}}..)

The compound data with keys key13 and key45 are hashed into the same index, 1. Similarly,
the data with keys key50 and key67 are hashed into index 2. Using lists that chain colliding

Chapter 9. Special and Non-Numerical Arrays 161

data enables a variable number of colliding data to be stored.

While hash tables succeed in providing fast data insertion and search, they are unable to readily
provide sorted data. You can still obtain sorted data from a hash table but there is a cost! You
need to search for all possible entries --- this works if the key data are limited and finite.

I present the implementation of a hash table system that creates hash tables, inserts data,
deletes data, and retrieves data. The hash table has the following features:

1) It handles compound data. This enables you to stores and quickly retrieve more meaningful
data, such as address and phone numbers.
2) The key field must be a string.

Creating a Hash Table

The first step in the life of a hash table is its creation. The following program creates a two-level
nested list with the number of inner lists equal to the specified hash table size. This enables the
list-based hash table to obtain its size by using the SIZE command.

Listing 9.12. Program CRTHT to create an empty hash table.

Version 1

Date 12/13/90

INPUT:

Hash table size

OUTPUT:
List-based empty hash table

o
A
y
R
N

N
0

N
0

N
0

N
0

N
9
N
N
W
N
N
N

insert the main list in the stack}
SWAP 1 SWAP define the limits of a FOR-NEXT loop

'

FOR I : start FOR-NEXT loop
" o+ ; concatenate a null string to the main list
I {)} PUT ; overwrite the null string with an empty nested list

NEXT

The CRTHT program is straightforward. It appends nested null lists by first appending null
strings and then overwriting them with empty nested lists. Attempting to directly append
empty lists yields a single-level empty main list! An example of using program CRTHT to create
a 3-entry table is shown below:

INPUT STACK OUTPUT STACK

1: 3 L{{}{}{}))

Chapter 9. Special and Non-Numerical Arrays 162

Hashing Function

The hashing function HASHF calculates the hash index for a given string and hash table size.
The method used is shown in pseudo-code below:

1) Let SUM = O,

2) Let L = length of input string
3) Let TS = input hash table size
4)Forl = 1toL Do

4.1) Let C = I'th string character
4.2) Let ASC = the ASCII code of character C

4.3) Let SUM = SUM + (19 * ASC + 13) MOD TS

5)Let SUM = SUMMOD TS + 1
6) Return SUM as the hash index

Listing 9.13. Function HASHF that returns the hash index.

Version 1

; Date 12/13/90

H

;

;

’

’

; INPUT:

; String
: BHash table size

’

;

’

’

«

OUTPUT:

Hash index

SWAP DUP SIZE = TSIZE S LEN

«

0
1 LEN
FOR I
S I 1 SUB
NUM
19 * 13 + TSIZE MOD +
NEXT
TSIZE MOD 1 +
»

»

Inserting Data

assign parameters to local variables
hash table size to variable TSIZE
string to variable S
the length of string S to variable LEN

insert the initial value of the hash index
set the limits of the FOR-NEXT loop

obtain the 1’th character of string S
obtain its ASCII code
update the hash index

calculate the final value for the hash index

Inserting compound data in a hash table involves the following steps:

1) Calculating the insertion index using the hashing function.
2) Making sure that the target list does not contain a compound element with the same key. If
so, the insertion is halted. This scheme guards against compound data with duplicate keys.
3) Inserting the compound data in the target nested list.

Chapter 9. Special and Non-Numerical Arrays 163

The insertion program INSHT is shown below:

7 Listing 9.14. Program INSHT to insert compound data in the hash table.

;
; Version 1

; Date 12/13/90

i
; INPUT:
; List-based hash table
; Compound data to be inserted

;
; OUTPUT:
: Update hash table

i
; CALL:
; HASHF to obtain hash index
; LSRCH to locate any duplicate keys in the hash table. This is the
; same routine for compound data.

;
«

ODUP {)} ""
= HT REC TSIZE INDEX HELM ELEM assign parameters to local variables

hash table to variable HT

compound data to variable REC
0 (dummy) to hash table size variable TSIZ2E
0 (dummy) to hash index variable INDEX
empty list (dummy) to hash entry variable HELM
null string (dummy) to variable ELEM®

e
e

B
y
g

w
y
®
p
w
y

obtain hash table size and store it in varisble TSIZE
obtain the data key and store it in variable ELEM
calculate the hash index

store hash index in variable INDEX
obtain the INDEX’th sublist

«

HT SIZE °‘TSIZE' STO
REC 1 GET 'ELEM’' STO
ELEM TSIZE HASHF
*INDEX’ STO
HT INDEX GET DUP

®
e
®
e

B
e
e

®
p
v
y

®
p

‘HELM’ STO store one copy into variable HELM
ELEM LSRCH search for duplicates in the hash entry

0o
IF == : any duplicate keys?
THEN : not found. Insert the data

HT INDEX ; push hash table and entry index into the stack
HELM "" + ; concatenate an empty string to the target sublist
DUP SIZE : obtain the size of the sublist
REC PUT ; append new compound data to the sublist
PUT ; update the hash table

ELSE : handle duplicate
HT : push unchanged hash table back in the stack

END

An example of inserting information in the hash table is shown below:

INPUT STACK OUTPUT STACK

2:{{}{}{})
1: { "JIM" "555-1234" } 1:{{){){{"JIM" "555-1234" } } }

Chapter 9. Special and Non-Numerical Arrays 164

Searching for Data

Searching for data in a hash table is usually faster than binary search in a list. The advantage
ofhash table searches is maximized when colliding elements are minimized. The steps involved
in hash table searching are:

1) Calculate the hash index of the search key string.
2) Locate the sublist with the same index.
3) If the sublist is not empty, perform a linear search.
4) A successful linear search returns the matching compound element. Otherwise, it returns
an empty list to indicate that no match was found.

The SRCHT program is shown below:

Listing 9.15. Program SRCHT to search for data in a hash table.

Version 1

Date 12/13/90

INPUT:

List-based hash table
Search key string

OUTPUT:

Compound data with the matching search key,
OR an empty list if no match is found

CALL:
HASHF to obtain hash index

LSRCH to locate matching data.

1
0
3
s
o
s
o
~
o
-
~
¢
~
o
s
-
o
~
o
~
c
~
o
~
o
~
.
s
o
s
.
\
c
-
o

{)}
HT S TSIZE HELM assign parameters to local variables

hash table to variable HT
key search string to varisble S
0 (dummy) to hash table size variable TSIZE
empty list (dummy) to hash entry variable HELM

«

HT SIZE ’‘TSIZE’ STO
S TSIZE HASHF
HT SWAP GET DUP
'HELM' STO
ELEM LSRCH

DUP O
IF >
THEN

HELM SWAP GET
ELSE

DROP

{)}
END

®e
®
9
9
¢

"
y
W

obtain hash table size and store it in variable TSI2E
calculate the hash index
obtain the target sublist

store one copy into variable HELM
search for duplicates in the hash entry

found 8 match?
yes! Extract the data
get matching compound element
no!
drop the 0 search result

; push an empty list in the stack

Chapter 9. Special and Non-Numerical Arrays 165

An example of searching for data in the hash table is shown below. The request is made to find
the record with the key field "JIM":

INPUT STACK OUTPUT STACK

2: {{}{)}{{"JIM" "555-1234" } } }
1: *JIM~ 1: { "JIM" "555-1234" }

Deleting Data

Updating data with string arrays and compound arrays is simple --- you store the new
information at a target index. By contrast, my implementation of hash tables prevent you from
directly updating data, to guard against duplicate keys. Moreover, since hash tables create the
index for storing data, you haven't the vaguest idea where the sought data is. The answer to
these problems is the deletion of the older version of the data, before the new one is inserted.

The steps involved in deleting an existing compound element are:

1) Calculate the hash index given the key string of the sought element.
2) If hash index points to an occupied sublist proceed with a linear search of that sublist.
3) If the linear search finds a matching element remove that element. This is done by (a)
overwriting the deleted element with last element, and then (b) extracting all ofthe list elements
except the last one (which gives the net effect of deleting the sought element).

The DELHT program is shown below:

Listing 9.16. Program DELHT to delete a compound element from the hash table.

Version 1

Date 12/13/90

INPUT:
List-based hash table
Search key string

OUTPUT:
Update hash table

CALL:
HASHF to obtain hash index

LSRCH to locate matching data.

DUP DUP2 {)
HT 8 TSIZE INDEX I LEN HELM : assign parameters to local variables

hash table to variable HT
key search string to variable $
0 (dummy) to hash table size varisble TS12E
0 (dummy) to the hash index variable INDEX
0 (dummy) to search index variable 1

0 (dummy) to the sublist length variable LEN
empty list (dummy) to hash entry variable HELM

‘
o
*
‘
.
‘
.
\
C
‘
l
Q
.
‘
.
Q
.
‘
.
\
.
Q
.
N
O
Q
.
Q
.
\
.
\
.
\
Q

®
e
e
o

®
y
w
p

g
y
®
e
»

Chapter 9. Special and Non-Numerical Arrays 166

S
HT SIZE DUP 'TSIZE’ STO obtain hash table size and store it in variable TSIZE

HASHF s calculate the hash index
*INDEX’ STO
HT INDEX GET DUP
'HELM’ STO
SIZE °'LEN’ STO
HELM S LSRCH

store the hash index in variable INDEX
obtain the target sublist
store one copy into variable HELM

: obtain the sublist length and store it in variable LEN
: search a match

‘I’ STO ; store result of search in variable |
IF ‘I > 0’ found a match?
THEN yes! Delete the data

HT INDEX push hash table and hash index in the stack
HELM DUP LEN GET obtain the last sublist member
I SWAP PUT put last member in element I
1l LEN 1 - SUB remove the last list element
PUT update the hash table

ELSE no!
HT push the unchanged hash table back in the stack

END

An example of deleting an entry in the hash table is shown below. The request is made to
remove the record with the key field "JIM":

INPUT STACK OUTPUT STACK

2: {{)} {} {{"JIM" "555-1234" } } }
1; "JIM" L{{}{}{})}

Converting to Compound Arrays

While hash tables search data quickly, obtaining their element in an ordered manner is very
difficult and, in some cases, is impossible. An easy solution is to convert the compound-data
hash table into a compound array. The latter can be sorted using the SORT program presented
earlier for compound data.

The program -SL, shown below, converts a hash table into a compound array. This is
accomplished by visiting every sublist of the hash table and extracting all of the compound
elements. The elements of the compound array maintain the same sequence of the hash table.

Listing 9.17. Program =SL to convert a hash table into a compound array.

Version 1

Date 12/13/90

INPUT:

List-based hash table

OUTPUT:

Compound array

A
D
N
N
N
N

V
O

V
e

V
e

V
e

W
0
N
N

Y "t {1}

Chapter 9. Special and Non-Numerical Arrays 167

- HT SL LST ; 8ssign parameters to local variables
;s hash table to variable HT
; empty list to the resulting array variable SL
; empty list (dummy) to the sublist variable LST

«

1l HT SIZE ; define the Limits of the FOR-NEXT loop to examine
; all of the sublists of the hash table

FOR I
HT I GET DUP : get the 1’/th sublist
‘LST’ STO ; store it in variable LST
SIZE DUP O : get the sublist size
IF > ; is the sublist occupied?
THEN

1 SWAP ; define the limits of the FOR-NEXT loop that extracts
; each sublist member

FOR J
SL "" + ; expand the resulting array by one element

DUP SIZE
LST J GET ; append the compound element to the resulting array
PUT
*SL’ STO : update the resulting list-based array

NEXT

ELSE
DROP ; drop an intermediate result

END

NEXT
SL ; push the resulting compound array in the stack

»

An example of converting a hash table into a compound array with program -SL is shown
below:

INPUT STACK OUTPUT STACK

1: { 1: {

{ { "JOHN" "555-5555" } } { "JOHN" "555-5555" }
{ { "PAUL" "555-4321" } } { "PAUL" "555-4321" }
{{ "JIM" "555-1234" } } } { "JIM" "555-1234" } }

Jagged Matrices

Matrices are typically square or rectangular in shape. This means that the number of elements
in each matrix row is consistent. The HP48SX supports this type of matrix. In this section,]
will present list-based jagged matrices. Such matrices are characterized by varying row sizes
(or column sizes, depending on how you look at it). Lower triangular matrices (such as those
used in the LU matrix-decomposition method) are a special case ofjagged matrices. The typical
jagged matrix has no restrictions on the individual row size (except available memory!).

The implementation ofjagged matrices is carried out based on the following features:

Chapter 9. Special and Non-Numerical Arrays 168

1) The family of real arrays, representing the jagged matrix rows, are enclosed in a list.
2) The number of matrix rows can be extended at runtime.
3) The smallest row is [O] by default.
4) The size of each matrix row can be expanded by a redimensioning process. This enables the
jagged matrices to grow by rows and columns at runtime.

The general form of the jagged matrix is shown below:

{[row_1l][row2]..[row_n]}

The number of rows is equal to the size of the host list.

The above specification depicts an extremely flexible jagged array. The operations associated
with this particular implementation ofjagged matrices are:

1) Storing an element at a specified row and column. Expanding the rows and columns of the
jagged matrix are carried out if need be.
2) Recalling a jagged matrix element from a specified row and column. If either or both of the
access row and column are out of range, a O is returned.
3) Storing a new row to replace an existing one. This enables a program to perform faster data
editing on a jagged matrix.
4) Recalling an existing row enables row-wise data retrieval.
5) Searching for a matrix element at a specified row and starting with a specified column index.
This feature enables you to find duplicate data in the same row.

Notice that the above operations exclude an explicit one for creating a jagged matrix. This is
not required since the jagged matrix is initially an empty list which dynamically grows by
calling the storage operations.

Storing Jagged Matrix Elements

The basic notion of storing data in a jagged matrix is the same as in an ordinary square or
rectangular matrix. You store a given number at a specified row and column of the jagged
matrix. Here is where the similarity between the jagged and ordinary matrix ends. The
specified row and column can lie outside the current dimension of the dynamically growing
jagged matrix. Rather than flagging such values as erroneous, the jagged matrix is extended
to match the specified row and column values. Naturally, excessively high value will drain the
machine’s memory.

In the case when the specified data insertion row is greater than the current rows of the jagged
matrix new rows are added. A set of | O] arrays are inserted as filler rows when the insertion
row exceeds the current number of rows by more than 1.

The value of the insertion column index is compared with the size of the insertion row (thatis,
the size of the array representing the specified jagged matrix row). If the column value exceeds
the array size, the array is redimensioned. This is carried out using the RDM command. The
progrm STOLJ is listed next:

Chapter 9. Special and Non-Numerical Arrays 169

Version 1

Date 12/14/90

INPUT:

Jagged matrix
Row
Column

Element

OUTPUT:
Updated jagged matrix

O
R

“
e
0

T
e
e

V
e

V
e

V
e

V
e

V
e
W
W
W
W
N

0O - JM ROW COL ELM LEN ARR

«

IF 'ROW < 0’
THEN

1 'ROW’ STO
END
IF 'COL < 0’
THEN

1 'COL’ STO
END
JM SIZE °‘LEN’ STO
IF ‘LEN < ROW’
THEN

JIM
1 ROW LEN =
START

[0] +
NEXT
‘JM’ STO

END
JM ROW GET DUP
‘ARR’ STO
SIZE 1 GET
*LEN’ STO
IF ‘LEN < COL’
THEN

ARR
{ coL)
RDM

ELSE

END
COL ELEM PUT
JM SWAP ROW SWAP PUT

S
e

m
e

T
0
®
o
w
o
w
o
u
e

S
®
o
B
9
e

V
e
e

B
y
g

V
e
“
g
V
e
w
y

-

Listing 9.18. Program STOIJ to store an element in a jagged matrix.

store parameters in local variables
jagged matrix in variable JM
insertion row in variable ROW
insertion colum in variable COL
inserted element in variable ELM
0O (dummy) in variable LEN
0 (dummy) in variable ARR

adjust non-positive row values to 1

; adjust non-positive column values to 1

get the number of matrix rows and store it in variable LEN
insertion row beyond the current number of rows?
Yes. Expand the number of jagged matrix rows
push the jagged matrix in the stack
gpecify the limits of the START-NEXT loop

append [0) arrays to the list-based jagged matrix

; update the jagged matrix

obtain the insertion row
store it in variable ARR
get the size of the insertion row
store it in variable LEN
is the insertion colum beyond the row size?
Yes! Expand the row
push the array in the stack
push a list with the new array size in the stack
redimension the array
No! use current array

push current array in the stack

insert new element in jagged matrix row
insert row back in jagged matrix

Chapter 9. Special and Non-Numerical Arrays 170

Examples of storing data in a jagged matrix are presented next. The first example stores the
number 10 in row 1 and column 1 of an empty jagged matrix:

INPUT STACK OUTPUT STACK

4: {)
3:1
2:1

1: 10 1: {[10]}

The second example stores the number 55 at row 2 and column 3 of an empty jagged matrix:

INPUT STACK OUTPUT STACK

4:{)
3:2
2:3
1: 55 1: {

[0]
[0055])

The above shows that the specified row/column values resulted in first row being the array [O
] and the first two elements of the second row also being zero.

The third example shows the storage of the number 55 within the current boundaries of a
jagged matrix:

INPUT STACK OUTPUT STACK

4:{[12)[34][67])}
3:
2:

1: A
N
W
~

5 1: {

N
N

[12]
[34]
[655])

Recalling Matrix Elements

Recalling jagged matrix elements is also similar to that ofan ordinary matrix — you specify the
matrix and the accessed row and column. Accessing jagged matrix elements is simpler and
faster that storing them since no matrix expansion is required. The values for the row and
column must be within the current limits of the jagged matrix. The program RCLIJ is shown
next:

Chapter 9. Special and Non-Numerical Arrays 171

Version 1

Date 12/14/90

Q
O
R

N
e
e

V
e

N
0

V
e

V
e

T
e

V
e
T
W

V
e

V
0

V
e

V
e
N

0O - JM ROW COL LEN

«

JM SIZE 'LEN’ STO
IF 'ROW > O AND ROW < LEN’
THEN

JM ROW GET
DUP SIZE
1 GET
‘LEN’ STO
IF

‘COL > 0 AND COL
THEN

COL GET

ELSE

END

.

.

.

’

e’

’

.

.

.

.

.

s LE
.

Listing 9.19. Program RCLIJ to recall a jagged matrix element.

INPUT:
Jagged matrix
Row
Column

OUTPUT:

Jagged matrix element,

OR O, for out-of-bound row/column

; store parameters in local variables:
; jagged matrix in variable JM
: accessed row in variable ROW
: accessed column in variable COL
; 0 (dummy) in variable LEN

: get the number of jagged matrix rows sand store then in LEN
: is the value of the accessed row within the matrix limit?
; Yes! Then proceed
: get the accessed row
; get the size of the row

; store the array size in variable LEN
is the column value within the jegged matrix row range?
NI

: Yes! Access the sought element

: No! Push 0 in the stack as the result

No! Push zero in the stack as the result

Examples of recalling jagged matrix elements are presented next. The first case deals with
recalling an element from row 2 and column 3 of a jagged matrix. Since the specified values
of the row and column are within the jagged matrix limits, the non-zero value of 66 is returned:

INPUT STACK OUTPUT STACK

3:{1112233)]([44556677))
2: 2
1: 3 1: 66

The second case shows an attempt to access the matrix element at row 3 and column 3. Since

Chapter 9. Special and Non-Numerical Arrays 172

the jagged matrix has only two rows, the coordinates of the matrix element are out of bound
and a zero is returned instead:

INPUT STACK OUTPUT STACK

3:{1112233)(445566 77))

2:3

1: 3 1: 0

Storing Rows

A quicker way to store an entire row is accomplished by inserting a new row or overwriting an
existing one. This assumes that your application can build or update ajagged matrix in chunks
of rows. The speed of storing rows over storing single elements is due to two reasons:

1) A single call to the row-storage program is made. This contrast the multiple calls that must
be issued to program STOIJ.
2) No row expansion occurs, since the new row is inserted "as is”.

The process of expanding the jagged matrix rows must still be carried out as with the element-
storage scheme. The program STORis listed below:

Listing 9.20. Program STOR to store a jagged matrix row.

Version 1

Date 12/14/90

i

i

i

7

’

; INPUT:

; Jagged matrix

: Insertion row
) Inserted array

’

; OUTPUT:

; Updated jagged matrix

’

«

0O - JM ROW ARR LEN ; assign the parameters to local variables
: jagged matrix to variable JM
; insertion row to variable ROW
: inserted row to variable ARR
: 0 (dummy) to variable LEN

o«

IF 'ROW < 1° ; assign one to ROW if its value is non-positive
THEN

l 'ROW’ STO
END
JM SIZE ‘LEN’ STO
JM
IF ‘ROW > LEN’
THEN

1 ROW LEN -

get the size of the jagged matrix snd store it in LEN
push the jsgged matrix in the stack
does the insertion row exceed the size of the matrix?
Yes! Add new rows to the jagged matrix
calculate the number of addition rows needed and use

: that value as the upper limit of a START-NEXT loop®e
o

W
e
o

@
9
w
o

START

Chapter 9. Special and Non-Numerical Arrays 173

[O) + ; append an empty row ([0 1) to the jagged matrix
NEXT

END
ROW ARR PUT ; insert the new row into the jagged mstrix
»

Examples of storing rows in a jagged matrix are presented next. The first example overwrite

an existing row with a new one --- the second row, array | 3 4 |, is replaced by a bigger one,
array | 11 22 33 |:

INPUT STACK OUTPUT STACK

3:{[123][34)[56789])
2:2

1: [11 22 33) 1: {1123)[112233)[56789])})

The second example shows how the STOR program expands a jagged matrix by adding a new
row. An array is inserted as the new f{ifth row in a three-row jagged matrix. The result is the
expansion of the jagged matrix by two rows --- row 4 is [O] and row 5 is the inserted row:

INPUT STACK OUTPUT STACK

3:{1123][3]156]}
2:5
1: [11 22] 1: {1123)(3)[56][0][1122])

Recalling Rows

The counterpart of storing rows in a jagged matrix is recalling them. The steps involved are
very simple. The access row must be valid, otherwise a | O] array is returned. The RCLR
program is shown below:

Listing 9.21. Program RCLR to recall a jagged matrix row.

Version 1

Date 12/14/90

i

3
i

i

;
;7 INPUT:
; Jagged matrix
i Accessed row

’

s OUTPUT:
; Array representing accessed jagged matrix row,
; OR [O) if the value of the accessed row is out of range
’

«

O - JM ROW LEN ; assign parameters to local variables

s insertion row to variable ROW
; jogged matrix to variable JM

; 0 (dummy) to variable LEN

Chapter 9. Special and Non-Numerical Arrays 174

.

«

JM SIZE °'LEN’ STO : get the jagged matrix size and store it in variable LEN
IF ‘ROW > 0 AND ROW < LEN’ ; is the value of ROW valid?
THEN : Yes! Extract the sought row

JM ROW GET
ELSE ; No! push an empty array in the stack

[0)
END

Here are a couple of examples for recalling jagged matrix rows. The first example shows the
typically successful call to program RCLR --- the second row of a three-row jagged matrix is
recalled:

INPUT STACK OUTPUT STACK

2:{1123][3333]([56])
1: 2 1:[33 33]

The second example illustrates the effect of a negative row number:

INPUT STACK OUTPUT STACK

2:{1123]183333][56]}
1: -2 1: 10

The same result is obtained if the row number was zero or greater than 3.

1@

Strings

Strings are special object types that store and retrieve readable text. Since the HP48SX is a
number crunching machine and not a text processing one, the built-in string functions are kept
to a minimum. This chapter presents a library of string processing routines. There are two
reasons for including this chapter in this book: educational and practical. The educational
aspect enables you to study more examples of RPL programs and how they are documented.
The practical part provides you with sets of routines that offer the lacking string functions.
However, these routines are NOT the fastest in the world. If speed is critical, you might want
to consider string manipulation routines offered by independent vendors. The HP48
Programmers Toolkit, by James Donnelly, is an example.

The string routines included in this chapter perform a variety of tasks. They are:

Routine Purpose

DELSTR Deletes part of a string

INSTR Inserts a substring in a string

IPOS Offers a version of POS with an offset

ITRNSL Performs case-insensitive string translation

LEFT Extracts the left side of a string

LOCASE Converts the characters of a string into lowercase

LTRIM Trims the left part of a string

PADLF Pads the left side of a string

PADEND Pads both ends of a string

PARDRT Pads the right side of a string

REPSTR Creates a string by multiple concatenation of a
substring

REVSTR Reverses the characters of a string

Chapter 10. Strings 176

RIGHT Extracts the right side of a string

RTRIM Trims the right side of a string

TRIMEND Trim both ends of a string

TRNSL Performs case sensitive string translation

UPCASE Converts the characters of a string into uppercase

Chapter 10. Strings 177

DELSTR

Purpose

Deletes a substring by specifying the first and last characters. If the last character exceeds the
actual string size, the trailing part of the string is deleted.

Stack 1/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

3: old string 3:
2: first character 2:
1: last character 1: new string

Example

The following example shows the stack before invoking DELSTR. It contains the string "Hello
World!" and the indices 3 and 9 for the first and last deleted characters, respectively. The
output stack shows the resulting string "Held!".

STACK INPUT STACK OUTPUT

3: "Hello World!" 3:

2:3 2:

1: 9 1: "Held!"

The second example presents a variation over the first one. The index of the last deleted
character is 100, a value exceeding the actual size of the string. The output stack shows how
the trailing part of the input string was clipped.

STACK INPUT STACK OUTPUT

3: "Hello World!"” 3:

2: 3 2:

1: 100 1: "He"

Program

The pseudo-code for DELSTR is as follows:

Input: A string S with the indices, F and L, for the first and last deleted characters, respectively.

1. Extract the leading F-1 characters.

Chapter 10. Strings 178

2. Extract the substring from character L + 1 to the end of the string.
3. Concatenate the leading and trailing substrings.

The listing for DELSTR is shown below:

Listing 10.1. DELSTR version 1.0i
«

0
= FIRST LAST LEN

«
DUP
SIZE °‘LEN’ STO
LASTARG
1l
FIRST 1 -
SUB
SWAP
LAST 1 +
LEN
SUB
<+

»

»

Local Variables

store the indices to first and last characters in the local

variables FIRST and LAST. 2ero a dummy 0 in variable
LEN

; duplicate string to obtain its size
; assign the string size to local variable LEN
; recall string

; extract the leading FIRST-1 characters

; swap with duplicate of original string
; extract from character LAST+1 to the end

concatenate the leading and trailing string fragments

FIRST The index of the first deleted character. Must be greater than zero.

LAST The index of the last deleted character. Must be greater than zero.

LEN The length of the original string.

Chapter 10. Strings 179

INSTR

Purpose

Inserts a string into another after a specified character index.

Stack I/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

3: inserted string 3:
2: main string 2:
1: insertion index 1: new string

Example

The next example shows the insertion of the string "joyful " after the sixth character of string
"Hello World!":

STACK INPUT STACK OUTPUT

3: “joyful * 3:
2: "Hello World!” 2:
1: 6 1: "Hello joyful World!"

Program

The pseudo-code for INSTR is as follows:

Input: the main string S, the inserted substring U, and the insertion index I.

1. LEN = size of the main string.
2. S1 = extracted leading I characters of S.
3. S2 = extracted trailing LEN - I characters of S
4.S =S1+U+ S2

Chapter 10. Strings 180

The listing for INSTR is shown below:

;7 Listing 10.2. INSTR version 1.0
«

OVER
SIZE
= INDEX LEN

«

IF 'INDEX>0’
THEN

DUP
1 INDEX SUB
SWAP
INDEX 1 + LEN SUB
SWAP

3 PICK
+

SWAP
+

SWAP
DROP

ELSE
+

END
»

»

Local Variables

INDEX The insertion index.

LEN The size of the main string.

®
e
W

Wy
N

V
e
V
Y

VY
N

Ty
N
T
T

N
y

Ny
"

™

copy main string into level 1
; obtain the size of the main string
: store the insertion index and the string size into the
; local variables INDEX and LEN, respectively

; is INDEX positive?

; duplicate the main string
; extract the leading N characters
; swap the other copy of the main string into level 1
extract the characters from INDEX+1 to the end of the string
swap substrings such that the leading portion
of the original string is in level 1 and the
tail portion is in level 2

; pick the inserted substring from level 3
concatenate the leading portion of the main string with the

: inserted string
swap the tail end of the original string into level 1
concatenate the rest
swap copy of inserted string into level 1

; drop copy of inserted string from the stack
; just concatenate strings

concatenate inserted and main strings (in that order)

Chapter 10. Strings 181

IPOS

Purpose

Returns the position of a substring in a string, given the index of the first character to be
searched. This is a version of the built-in POS function with an offset.

Stack I/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

3: string 3:
2: substring 2:
1: first character index 1: substring position

Example

The following example scans the string "Haris Paris” for the occurrence of the substring "aris”
starting at the 3rd character. The result is 8, the location of the second occurrence of "aris”,
since the first occurrence is bypassed by the offset of 3.

STACK INPUT STACK OUTPUT

3: "Haris Paris” 3:

2: "aris” 2:

1: 3 1: 8

Program

The pseudo-code for IPOS is as follows:

Input: the string S, the substring U, and the index of the first search character J.

1. IF J is greater than 1 then delete the leading J-1 characters of string S.
2. Locate substring U in string S. Assign result to L.
3. If1 is positive (that is, a match is found) and J is greater than 1 (thatis, the leading characters
of the original string have been clipped) add J-1 to the result of step 2.

The listing for DELSTR is shown next:

Chapter 10. Strings 182

; Listing 10.3. 1IPOS version 1.0
«

0
-J1

«

IF
0J>1'

THEN
SWAP
1l J 1 - DELSTR
SWAP

END
POS
‘I’ STO
I
IF

‘I>0 AND J>1°
THEN

J+1-
END

Subprograms Used

DELSTR

Local Variables

I The result of calling POS.

-
e

store the index of the first search character in
the local variable J. Store a dummy 0 in variable I

is J greater than 1?

swap string to level 1
delete first J-1 characters
swap string to level 2

find position of substring in string
assign result to local variable I
push I onto the stack

need to adjust result of POS?

add J-1

J The index of the first search character.

Chapter 10. Strings 183

ITRNSL

Purpose

Translates a string by replacing parts of it with other strings. The translation is case insensitive.

Stack I/O0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

5: client string 5
4: search-string 4.
3: replace-string 3:
2: first search character 2:
1: max. ¥ of translations 1: translated string

Example

Given the string "X =3.14+3.14*Y*SQR(3.14)", the search-string "3.14", and the replace-string
"PI". The translation of the client string can occur in several ways. In the first example, all of
the occurrences of the search-string are replaced, leading to a full string translation. The index
of the first search character is set to 1 to translate the entire string. Moreover, the value for the
maximum number of translations is assigned a high number (ifyou want to be even more sure,
use a value in the thousands or even millions!). The result is string "X =PI +PI*Y*SQR(PI)":

STACK INPUT STACK OUTPUT

5: "X=3.14+3.14*Y*SQR(3.14)" 5
4: "3.14" 4.

3. "PI” 3:
2:1 2:

1: 9 1: "X=PI+PI*Y*SQR(P])"

In the second example, the first occurrence of "3.14" is not translated. This is done by
supplying a value for the first search character that in the range of 4 to 8. The maximum
number of translation is still a large number. The result is string "X =3.14+PI*Y*SQR(P])":

Chapter 10. Strings 184

STACK INPUT STACK OUTPUT

5: "X=3.14+3.14*Y*SQR(3.14)" 5
4: "3.14"° 4.
3: "PI" 3:
2: 4 2:

1: 9 1: "X =3.14+PI*Y*SQR(P])"

To translate only the second occurrence of "3.14", the value for the first search character is also
set between 4 and 8, while the maximum number of translation is set to 1.

STACK INPUT STACK OUTPUT

5:"X=3.14+3.14*Y*SQR(3.14)" 5
4: "3.14" 4.
3. "PI” 3:

2: 4 2:

1: 1 1: "X=3.14+PI*Y*SQR(3.14)"

Program

The pseudo-code for ITRNSL is as follows:

Input: the string to be translated, S, the sought substring, F, the replacement substring, R, the
index of the first search character, Ofs, and the maximum number of translations, N.

1. Let L = size of the search-string F
2. Make the characters of F uppercase
3. Let SCOPY = uppercase copy of S

3. Let I = the position of string F in string SCOPY, such that the search starts at character Ofs
4. Loop while I and N are positive:

A. Decrement N
B. Delete the characters of S between I and I+L-1
C. Insert the string R, in string S, after character I-1
D. Delete the characters of SCOPY between I and I+L-1
E. Insert the string R in SCOPY, after character I-1
F.Let I = the position of string F in string SCOPY, such that the search starts at

character Ofs

The listing for ITRNSL is shown next:

Chapter 10. Strings 185

Listing 10.4. ITRNSL version 1.0

; insert dummy values-

J
O
3
8
~

0
S FROFS N 82 I LEN assign information to the following local variables

client string to S
search-string to F
replace-string to R

; index of the first search character to OFS
maximum number of translations to N
the space character to S2, the upper-case copy of S

; 0 (dummy value) to search index I
0 (dummy value) to size of search-string to LEN

«

F ;: obtain the size of string F
SIZE
'LEN’ STO ; store result in LEN
F ; make F into uppercase string

UPCASE
‘F’' STO ; update string F
S ; make S into uppercase string
UPCASE
*S2' STO ; store upper-case S in S2
S2 F OFS ; find position of F in S2, starting at character OFS

IPOS
‘I’ STO ; store result of IPOS in I
WHILE loop while an F string was found in S, AND

while the number of translations has not exceeded the

maximum specified
*I>0 AND N>0°

REPEAT
-1 ; decrement the number of translations
‘N’ STO+
S ; delete F string at character 1

1

DUP

LEN
+

1l

DELSTR
R ; insert R string after character -1

SWAP

I
1l

INSTR
‘S’ STO

store updated string in S

; perform the same alteration on string S2
S2 delete F string at character 1|

1
DUP

LEN
+

1

DELSTR
R
SWAP

insert R string after character 1-1

Chapter 10. Strings 186

I
1l

INSTR ; store updated string in S2
*S2' STO
S2 F OFS ; find position of F in S2, starting at character OFS
IPOS
‘I’ STO ; store result of IPOS in I

END
S ; push S in the stack

Subprograms Used

DELSTR Deletes the search string.

INSTR Inserts the replacement string.

IPOS Finds the position of a substring in a string.

UPCASE Converts to upper-case string.

Local Variables

F The search-string.

1 The result of the IPOS subprogram.

LEN The size of the search-string.

N The maximum number of translations.

OFS The index of the first search character.

R The replace-string.

S The client string.

S2 An upper-case copy of the client string

Chapter 10. Strings 187

LEFT

Purpose

Extracts a number of leftmost characters of a string.

Stack I/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

2: old string 2:
1: num 1: new string

Example

The next example shows the extraction of the five leftmost characters of string "Hello World!":

STACK INPUT STACK OUTPUT

2: "Hello World!" 2:

1: 5 1: "Hello"

Program

The pseudo-code for LEFT is as follows:

Input: the string S and the number of leading characters to extract, N.

1. Extract the N leading number of characters.

The listing for LEFT is shown below:

; Listing 10.5. LEFT version 1.0
«

1 ; insert 1 into the stack
SWAP ; swap 1 and the number of characters to extract
SUB ; extract the sought substring
»

Chapter 10. Strings 188

LOCASE

Purpose

Converts the uppercase characters of a string into lowercase.

Stack I/O

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

1: original string 1: lowercase string

Example

The following example shows how a call to LOCASE converts the string "Hello World!" into
"hello world!".

STACK INPUT STACK OUTPUT

1: "Hello World!" 1: "hello world!”

Program

The pseudo-code for LOCASE is as follows:

Input: the string S.

1. Let LEN = the size of string S.
2. Let U be the resulting string, initialized as an empty string.
3. Loop FOR I = 1 TO LEN perform the following steps:

A. Extract the character at index I.
B. Obtain the ASCII code for the extracted character.
C. If ASCII code is in range 65 to 90 then ASCII = ASCII + 32.
D. Convert ASCII code to character.
E. Concatenate character with string U.

4. String U contains the result.

Chapter 10. Strings 189

The listing for LOCASE is shown below:

; Listing 10.6. LOCASE version 1.0
«

DUP
SIZE
= LEN

1l LEN ;

FOR I ;
OVER :
I I SUB :

NUM :
- C :

«

c ;
IF

‘C>64 AND C<91°’ ;
THEN

32 :

+ ;
END
CHR :
»

+ ’

NEXT
SWAP :
DROP :

»

Local Variables

duplicate string
obtain string size and assign it to the local variable LEN

push the resulting string (initially empty) onto the stack
push FOR loop limits into the stack
1 is the loop control variable
get a copy of the string from level 2
extract character at index 1

convert character to ASCII code
store ASCI] code in local variable C

push ASCII code onto the stack

is the ASCII code that of a uppercase character?

add 32 to convert code to that of the corresponding
lowercase character

convert ASCI1 code to character

; concatenate character with resulting string

swap original string into level 1
drop original string from stack

C The ASCII code of the extracted characters.

LEN The size of the string.

1 The FOR-NEXT loop control variable.

Chapter 10. Strings 190

LTRIM

Purpose

Trims characters from the left side of a string. The trimmed characters are specified in a
separate string.

Stack 1/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

2: client string 2:
1: trim-characters 1: left-trimmed string

Example

The following example shows how string " + -+ -Hello" is stripped from leading spaces, plus, and
minus characters. The trim-character string " +-" is specified. The same result is achieved if
the trim-character string is any combination of the three deleted characters:

STACK INPUT STACK OUTPUT

2: " +-+-Hello” 2:
1: "+-" 1: "Hello"

Program

The pseudo-code for LTRIM is as follows:

Input: the client string S and the trim-character string T.

1. Let L = the size of string S
2. Let] = O, the character index
3. Repeat the following steps

A. Increment I
B. Let C = the I'th character of S
C. Let J = the position of C in string T

Untill =L, ord =0
4. Let S = characters of original S between I and L

Chapter 10. Strings 191

The listing for LTRIM is shown below:

s Listing 10.7. LTRIM version 1.0
«

OVER get a copy of the client string into level 1
SIZE obtain the size of the client string
0 push a dummy value for character index in the stack

push a dummy value for the character position in the stack
assign stack data to the following local variables:

the client string to S
the trim-character string to TRM
the size of S to LEN
0 to 1, the character index
0 to J, the character position

0
-+ S TRM LEN I J

®
e

V
e

V
e
e
T

W
y

V
e
V
e
®
o
"
o

start a DO-UNTIL loop,

TRM : push TRM in the stack
‘I’ INCR ; increment the character index
S ; extract the 1/th character of string S
SWAP ; swap the value of 1 in level 1
DUP ; duplicate the value of 1
SUB
POS ; obtain position of character in trim-character string
‘g’ STO store position in J

UNTIL ‘I==LEN OR J==0' test the following condition:
has | reached the end of the client string?
OR
was the last extracted character NOT in the
trim-character string?

W
M
o
W

W
y
e

m
e
e

END
S
I LEN SUB
»

push client string in level 1
extract characters from index 1 to the endw

e
m
e

»

Local Variables

I The character index.

J The character position.

LEN The size of the client string.

S The client string.

TRM The trim-character string.

Chapter 10. Strings 192

PADLF

Purpose

Pads the left side of a string with multiple copies of a padding string (or character).

Stack I/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

3: client string 3:
2: padding string 2:
1: count 1: left-padded string

Example

In this example the string " +-" is padded twice to the left side ofstring "HELLO", yielding string
"+-+-HELLO":

STACK INPUT STACK OUTPUT

3: "HELLO" 3:
2:"+-" 2:

1: 2 1: "+-+-HELLO"

Program

The pseudo-code for PADLFis as follows:

Input: the client string S, the building-unit for the padding string, B, and N be the number of
times string B is concatenated to the left side of string S.

1. Let P = N concatenation of string B
2.LetS=P + S

The listing for PADLF is shown below:

; Listing 10.8. PADLF version 1.0
«

REPSTR ; call REPSTR to created the complete padding string
SWAP ; swap the client string into level 1
+ ; concatenate strings
»

Chapter 10. Strings 193

Subprograms Used

REPSTR Used to create the complete padding string.

Chapter 10. Strings 194

PADEND

Purpose

Pads the both sides of a string with multiple copies of a padding string (or character).

Stack I/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

3: client string 3:
2: padding string 2:
1: count 1: padded string

Example

In this example the string " +-" is padded twice on both side of string "HELLO", yielding string
"+-+-HELLO+-+-":

STACK INPUT STACK OUTPUT

3: "HELLO" 3.

2:"+-" 2:

1: 2 1: "+-+-HELLO +-+-"

Program

The pseudo-code for PADEND is as follows:

Input: the client string S, the building-unit for the padding string, B, and N be the number of
times string B is concatenated to the left side of string S.

1.LetP

2. Let S

N concatenation of string B
P+S+P

Chapter 10. Strings 195

The listing for PADEND is shown below:

; Listing 10.9. PADEND version 1.0
«

REPSTR ; call REPSTR to created the complete padding string
SWAP ; swap the client string into level 1
OVER ; copy padding string into level 1
+ ; concatenate the right padding string and the client string
+ ; concatenate the left padding string and the client strings

Subprograms Used

REPSTR Used to create the complete padding string.

Chapter 10. Strings 196

PADRT

Purpose

Pads the right side of a string with multiple copies of a padding string (or character).

Stack I/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

3: client string 3:
2: padding string 2:
1: count 1: right-padded string

Example

In this example the string " +-" is padded twice to the right side of string "HELLO", yielding
string "HELLO + - +-":

STACK INPUT STACK OUTPUT

3: "HELLO" 3:
2: "+-" 2:
1: 2 1: "HELLO +-+-°

Program

The pseudo-code for PADRT is as follows:

Input: the client string S, the building-unit for the padding string, B, and N be the number of
times string B is concatenated to the right side of string S.

l1.LetP

2.LetS

N concatenation of string B
S+ P

The listing for PADRT is shown below:

; Listing 10.10. PADRT version 1.0
«

REPSTR ; call REPSTR to created the complete padding string
+ ; concatenate strings
»

Chapter 10. Strings 197

Subprograms Used

REPSTR Used to create the complete padding string.

Chapter 10. Strings 198

REPSTR

Purpose

Creates a string by concatenating a specified number of duplicates of smaller strings.

Stack I/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

2: building string 2:
1: count 1: resulting string

Example

The following example illustrates how the string "BABABABABA" is created by chaining 5 "BA"
strings:

STACK INPUT STACK OUTPUT

2: "BA" 2:
1: 5 1: "BABABABABA"

Program

The pseudo-code for REPSTR is as follows:

Input: the building string S and the number of times, N, to concatenate it.

1. Let the resulting string R = S
2. Loop N-1 times

Let R = R + S (concatenate resulting and building strings)
3. The string R contains the result.

The listing for REPSTR is shown next:

Chapter 10. Strings 199

; Listing 10.11. REPSTR version 1.0
«

SWAP ; swap building string to level 1
- C ; store building string in the local variable C

«

C ; push C in the stack. This becomes the resulting string
SWAP : swap count into level 1
l - ; subtract 1 from count
1l ; push 1 in the stack
SWAP ; swap 1 and count-1
START ; begin fixed iteration loop

C : push a copy of the building string in the stack
+ ; concatenate with the resulting string

NEXT ; end of fixed loop

Local Variables

C The building string.

Chapter 10. Strings 200

REVSTR

Purpose

Reverses the characters of a string.

Stack I/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

1: old string 1: new string

Example

The next example shows the reversal of the string "Hello World!":

STACK INPUT STACK OUTPUT

1: "Hello World!" 1: "IdlroW olleH"

Program

The pseudo-code for REVSTR is as follows:

Input: the string S.

1. Let LEN = the size of string S.
2. Let U be the resulting string, initialized as an empty string.
3. Loop FOR I = LEN TO 1 perform the following steps:

A. Extract the character at index I.
B. Concatenate character with string U.

4. String U contains the result.

Chapter 10. Strings 201

The listing for REVSTR is shown below:

; Listing 10.12. REVSTR version 1.0
«

DUP
SIZE :
= LEN

” "

LEN 1
FOR 1

OVER
I I SUB
+

®e
%y

mg
g

mp
W

»

STEP
SWAP
DROP e

®

Local Variables

LEN The size of the string.

I The FOR-NEXT loop control variable.

; duplicate string
obtain string size and assign it to the local variable LEN

; push the resulting string (initially empty) onto the stack
; push FOR loop limits onto the stack
; 1 is the loop control variable
; get a copy of the string from level 2
; extract character at index |
: concatenate character with resulting string

; specify loop step size

; swap original string into level 1
; drop original string from stack

Chapter 10. Strings 202

RIGHT

Purpose

Extracts the rightmost characters of a string.

Stack I/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

2: old string 2:
1: num 1: new string

Example

The next example shows the extraction of the six rightmost characters of string "Hello World!""

STACK INPUT STACK OUTPUT

2: "Hello World!" 2:
1: 6 1: "World!"

Program

The pseudo-code for RIGHTis as follows:

Input: the string S and the number of trailing characters to extract, N.

1. Let LEN = the size of string S.
2. Extract the substring between the character indices (LEN - N + 1) and LEN.

The listing for RIGHT is shown below:

; Listing 10.13. RIGHT version 1.0

OVER ; get a copy of the source string
SIZE ; obtain string size
SWAP ; swap count to level 1
-1+ ; calculate size - count + 1
OVER : get a copy of the source string
SIZE : obtain the string size
SUB ; extract the sought substring
»

Chapter 10. Strings 203

RTRIM

Purpose

Trims characters from the right side of a string. The trimmed characters are specified in a
separate string.

Stack 1/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

2: client string 2:
1: trim-characters 1: right-trimmed string

Example

The following example shows how string "Hello + - + - " is stripped from trailing spaces, plus, and
minus characters. The trim-character string " +-" is specified. The same result is achieved if
the trim-character string is any combination of the three specified characters:

STACK INPUT STACK OUTPUT

2: "Hello+-+- ° 2:

1: "+-° 1: "Hello"

Program

The pseudo-code for RTRIM is as follows:

Input: the client string S and the trim-character string T.

1. Let L = the size of string S
2. Let] = L, the character index
3. Repeat the following steps

A. Decrement 1
B. Let C = the I'th character of S
C. Let J = the position of C in string T

Untill = 1,ord =0
4. Let S = characters of original S between 1 and |

Chapter 10. Strings 204

The listing for RTRIM is shown below:

;s Listing 10.14. RTRIM version 1.0
o«

OVER get a copy of the client string into level 1
SIZE obtain the size of the client string
DUP duplicate the size
1l + increment the size

push a dummy value for the character position in the stack
assign stack data to the following local variables
the client string to S
the trim-character string to TRM
the size of S to LEN
LEN+1 to I, the character index
0 to J, the character position

0
- S TRM LEN I J

®
W
e
W
y
W
W

V
)
V
e
V
e
W
y
W
9
®
p

DO ; start a DO-UNTIL loop
TRM : push TRM in the stack
‘I’ ; decrement the character index
DECR
S : extract the I’th character of string S
SWAP ; swap the value of I into level 1
DUP ; duplicate the value of 1|
SUB
POS ; obtain position of character in trim-character string
‘J’ STO store position in J

UNTIL ‘I==]1 OR J==0' test the following condition
Has 1 reached the beginning of the client string?
OR
Was the last extracted character NOT in the trim-character
string?

END
S ; push client string in level 1
1 I SUB ; extract the first I characters

Local Variables

I The character index.

J The character position.

LEN The size of the client string.

S The client string.

TRM The trim-character string.

Chapter 10. Strings 205

TRIMEND

Purpose

Trims characters from the both sides of a string. The trimmed characters are specified in a
separate string.

Stack I/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

2: client string 2:
1: trim-characters 1: trimmed string

Example

The following example shows how string * +Hello+-+- " is stripped from leading and trailing
spaces, plus, and minus characters. The trim-character string " +-" is specified. The same
result is achieved if the trim-character string is any combination of the three specified
characters:

STACK INPUT STACK OUTPUT

2:" <+Hello+-+-" 2:
1: "4-" 1: "Hello"

Program

The pseudo-code for TRIMENDis as follows:

Input: the client string S and the trim-character string T.

1. Trim leading characters
2. Trim trailing characters

The listing for TRIMEND is shown next:

Chapter 10. Strings 206

; Listing 10.15. TRIMEND version 1.0
«

DUP2 ; duplicate objects in levels 1 and 2
LTRIM ; invoke the LTRIM routine
SWAP ; swap result of LTRIM with trim-character string
RTRIM ; invoke the RTRIM routine
SWAP ; bring the copy of original client string into level 1
DROP ; drop it, leaving result in level 1

Suprograms Used

LTRIM trim the leading characters.

RTRIM trim the trailing characters.

Chapter 10. Strings 207

TRNSL

Purpose

Translates a string by replacing parts of it with other strings. The translation is case sensitive.

Stack I/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

S: client string S5
4: search-string 4:
3: replace-string 3:

2
1:

2: first search character
1: max. ¥ of translations translated string

Example

Given the string "X =3.14+3.14*Y*SQR(3.14)", the search-string "3.14", and the replace-string
"PI". The translation of the client string can occur in several ways. In the first example, all of
the occurrences of the search-string are replaced, leading to a full string translation. The index
of the first search character is set to 1 to translate the entire string. Moreover, the value for the
maximum number of translations is set to a high value (if you want to be even more sure, use
a value in the thousands or even millions!). The result is string "X =PI +PI*Y*SQR(PI)":

STACK INPUT STACK OUTPUT

5:"X=3.14+3.14*Y*SQR(3.14)" 5
4: "3.14" 4:

3: “PI" 3:
2:1 2:
1: 9 1: "X =PI+PI*Y*SQR(PI)"

In the second example, the first occurrence of "3.14" is not translated. This is done by
supplying a value for the first search character that in the range of 4 to 8. The maximum
number of translation is still a large number. The result is string "X =3.14+PI*Y*SQR(P])":

STACK INPUT STACK OUTPUT

5: °X=3.14+3.14*Y*SQR(3.14)" 5:

4: "3.14" 4:

3. "PI” 3.

Chapter 10. Strings 208

2: 4 2:

1: 9 1: "X =3.14+PI*Y*SQR(P])"

To translate only the second occurrence of "3.14", the value for the first search character is also
set between 4 and 8, while the maximum number of translation is set to 1.

STACK INPUT STACK OUTPUT

5: "X =38.14+3.14*Y*SQR(3.14)" 5
4: "3.14" 4:
3: "PI” 3:
2: 4 2:

1: 1 1: "X=3.14+PI*Y*SQR(3.14)"

Program

The pseudo-code for TRNSL is as follows:

Input: the string to be translated, S, the sought substring, F, the replacement substring, R, the
index of the first search character, Ofs, and the maximum number of translations, N.

1. Let L = size of the search-string F
2. Let I = the position of string F in string S, such that the search starts at character Ofs
3. Loop while I and N are positive:

A. Decrement N
B. Delete the characters of S between I and 1+L-1
C. Insert the string R after character I-1
D. Let] = the position of string F in string S, such that the search starts at character Ofs

The listing for TRNSL is shown below:

; Listing 10.16. TRNSL version 1.0
«

00 ; insert dummy values
- S FROFS NI LEN : assign information to the following local variables

; client string to S
; search-string to F
; replace-string to R

; index of the first search character to OFS
maximum nunber of translations to N

0 (dummy value) to search index 1|
; 0 (dummy value) to size of search-string to LENe

W
e
W

o
e

"y
Wy

"9
©

F ; obtain the size of string F
SIZE
‘LEN’ STO ; store result in LEN
S F OFS ; find position of F in S, starting at character OFS
IPOS
‘I’ STO ; store result of IPOS in I
WHILE ; loop while an F string was found in S, AND

; while the number of translations has not exceeded the

Chapter 10. Strings 209

; maximum specified
*I>0 AND N>0O°’

REPEAT
-1 ; decrement the number of translations
‘N’ STO+
S : delete F string at character |
I

DUP

LEN + 1 -
DELSTR
R : insert R string after character -1
SWAP

I1-
INSTR ; store updated string in S
‘S’ STO
S F OFS IPOS : find position of F in S, starting at character OFS
‘I’ STO ; store result of IPOS in I

END
S ; push S in the stack

Subprograms Used

DELSTR Deletes the search string.

INSTR Inserts the replacement string.

IPOS Finds the position of a substring in a string.

Local Variables

F The search-string.

I The result of the IPOS subprogram.

LEN The size of the search-string.

N The maximum number of translations.

OFS The index of the first search character.

R The replace-string.

S The client string.

Chapter 10. Strings 210

UPCASE

Purpose

Converts the lowercase characters of a string into uppercase.

Stack I/0

The general stack usage is shown below:

STACK INPUT STACK OUTPUT

1: original string 1. uppercase string

Example

The following example shows how a call to UPCASE converts the string "Hello World!" into
"HELLO WORLD!".

STACK INPUT STACK OUTPUT

1: "Hello World!" 1: "HELLO WORLD!"

Program

The pseudo-code for UPCASE is as follows:

Input: the string S.

1. Let LEN = the size of string S.

2. Let U be the resulting string, initialized as an empty string.
3. Loop FORI = 1 TO LEN

A. Extract the character at index 1.
B. Obtain the ASCII code for the extracted character
C. If ASCII code is in range 97 to 122 then ASCII = ASCII - 32.
D. Convert ASCII code to character
E. Concatenate character with string U

Chapter 10. Strings 211

The listing for UPCASE is shown below:

; Listing 10.17. UPCASE version 1.0
«

DUP :
SIZE ;
- LEN

duplicate string
obtain string size and assign it to the local variable LEN

push the resulting string (initially empty) into the
stack
push FOR loop limits into the stack
1 is the loop control variable
get a copy of the string from level 2
extract character at index I

convert character to ASCI! cod

store ASCI] code in local variable C

push ASCII code onto the stack

is the ASCII code that of a lowercase
; character?

1 LEN :
FOR 1 :

OVER :
I I SUB :
SUB
NUM :
- C :

«

c ;
IF
‘C>96 AND C<123‘’ ;

THEN
32 - :

END
CHR :
»

+ ;
NEXT
SWAP :
DROP :

Local Variables

subtract 32 to convert code to that of the corresponding

uppercase character

convert ASCI! code to character

concatenate character with resulting string

swap original string into level 1
drop original string from stack

C The ASCII code of the extracted characters.

LEN The size of the string.

1 The FOR-NEXT loop control variable.

Chapter 10. Strings 212

Notes

@

Algebraic objects 21
AND 71-72, 76-77
Area under curve 119
Array search 120, 134
Arrays of strings 145

Recalling 148
Searching 150
Sorting 149
Storing 145

ASR 78

B

Backup objects 25
BEEP 54
Binary integers 21

examples of 22
operators for 65
syntax 22

Binary search 152, 159
Bitwise shift operators

(see shift operators)
Bitwise rotate operators

(see rotate operators)
Boolean operators 71
Built-in commands objects 25
Built-in functions objects 25

G

Calling subprograms 36
Cartesian coordinates 12
CASE-END structure 97
CF 104
Comparing WHILE loop with

other loops 129
Compound arrays 153

Recalling 155
Searching for 158

213

Index

Sorting 156
Storing 154

Complex arrays 18
Operators for 69

Complex numbers 12
Operators for 64

Concatenation operators 74
Converting characters to numbers 15
Converting numbers to characters 15
CLEAR 1
CLLCD 53
CLVAR 28
Creating a new subdirectory 28
CRDIR 28
CST 56

D

DBUG 37
Debugging programs 37-41
DELSTR 177
DEPTH 2
Differences between HP48SX and HP41C 1
Directories 27

Creating new 28
Removing 28
Manipulation by programs 41
Moving to anther 29

Directory objects 25
Directory path 29
DISP 53
DOERR 139
DO-UNTIL loop 122
DROP2 2
DROPN 3
DUP 4
DUP2 4
DUPN 5

B

ELSE 91

Error handling 139
ERRO 139
ERRM 139
ERRN 139
EVAL 83-85

?

FC? 104
FC?C 104
Flags 104
FOR-NEXT loop 111
FOR-STEP loop 115
FS? 104
FS?C 104

@

GOTO 90
Graphics objects 23
Guidelines for programs 42

i

Hash tables 160
Converting to compound arrays 166
Creating 161
Deleting 165
Inserting 162
Searching for 164

Hashing function 162

0

IF structures

IF-THEN-END 87

IF-THEN-ELSE-END 91

IFERR structures

IFERR-THEN-END 140

IFERR-THEN-ELSE-END 142

INPUT 47

Input

Control 50
Default 48
Error-proof 143

214

Menus for 55, 58

Tag-aided 51
Validation 52

INSTR 179
IPOS 181
ITRNSL 183

)
Jagged matrices 167

Recalling data from 170
Recalling rows from 173
Storing data in 168
Storing rows in 172

KILL 38

L

Labeling the output 46
LAST ARG 9
LAST CMD 9
LAST MENU 9
LAST STACK 9
LEFT 187
Library objects 25
Linear search 151, 158
Lists 18, 145
Local variable assignments 32
LOCASE 188
Loops

Conditional 122, 128
Control variable 111
Fixed 111, 115, 121
Increment 115

Nested 135
Open 137

LTRIM 190

(]

MENU 56

Menus

Custom 55
Input with 55

Moving to a subdirectory 29

N

Names (Local and Global) 20
Newton's method 122, 126
NOT 71-72, 76-77
Number guessing game 130

©

Operator(s) 63
Bitwise 75-82

Boolean 71-74

EVAL 83-85
Concatenation 74
Math 63-69
Relational 69-71

OR 71-72, 76-77
Output

labeling 46
Screen 53

OVER 5

P

PADLF 192

PADEND 194
PADRT 196
PATH 29
PGDIR 28
PURGE 28
Program objects 21
Programs 30-36

Algebraic objects in 33
Guidelines 43
Local variables in 31
Directory manipulation by 41
Multi-level 33
Programs Manipulating 42
Reducing levels 35
VISITing 30

215

PROMPT 45
for Yes/No 126

PICK 5
Polar coordinates 12

R

RCLF 106
RCLWS 75
RDM 168
Real arrays 15

Operators for 67
Real matrices 15

Operators for 67
Real numbers 11

date fornat using 11
Operators for 63
time format using 11

Recovering arguments 9
LAST ARG 9
LAST CMD 9
LAST MENU 9
LAST STACK 9

Relational operators 69
Removing a subdirectory 28
REPEAT (see WHILE-REPEAT)
REPSTR 198
REVSTR 200
RIGHT 202
RL 80
RLB 80
ROLL 6
ROLLD 7
Roots 121, 126
ROT 8
Rotate operators

RL 80
RLB 80
RR 80
RRB 81

RR 80
RRB 81
RTRIM 203

S

SAME 70
Screen output 53
Search (array) 120, 134, 150
SF 104
Shell-Metzner sort 136, 149, 156
Shift operators

ASR 78
SL 77

SLB 78
SR 77
SRB 77

Simpson’'s rule 119
SL 77
SLB 78
Sorting a list 136, 149
SR 77

SRB 77
SST 37
Stack Commands 1

CLEAR 1
DEPTH 2
DROP2 2
DROPN 3
DUP 4
DUP2 4
DUPNS
OVER 5
PICK 5
ROLL 6
ROLLD 7
ROT 8
SWAP 8

START-NEXT loop 121
START-STEP loop 121
STOF 106
STOWS 75
Strings 14

Arrays of 145
Subprograms 36
SWAP 8

T

Tag-aided input 51

216

Tagged objects 24
THEN 87, 91, 97
TMENU 61
Trap-clause (error) 140
TRIMEND 205
TRNSL 207

@

UP 29
UPCASE 210
UPDIR 29

Unit objects 23

v

Validation of input 52

W

WHILE-REPEAT loop 128
vs other loops 129

R

XOR 71-72, 76-77
XLIB objects 25

v

Yes/No prompter 125-126

	Cover
	Table of Contents
	Chapter 1: The HP48SX Stack
	Operational Differences
	Stack Manipulation Commands
	Recovering Arguments

	Chapter 2: The HP48SX Data Types
	Overview
	Name That Type
	Real Numbers
	Complex Numbers
	Strings
	Real Arrays
	Complex Arrays
	Lists
	Global and Local Names
	Program Objects
	Algebraic Objects
	Binary Integers
	Graphic Objects
	Unit Objects
	Tagged Objects
	Directory Objects
	Other Objects

	Chapter 3: Directories, Variables, and Programs
	The HP48SX Directories
	Creating a New Subdirectory
	Removing a Subdirectory
	Moving to Another Subdirectory
	The Path to Your Door
	Variables
	Programs
	Using Local Variables
	Using Algebraic Objects
	Multi-Level Programs
	Reducing Program Levels
	Accessing Global Variables

	Calling Other Programs
	Debugging Programs
	Program Manipulation of Directories
	Program Manipulating Programs
	Program Guidelines

	Chapter 4: Interactive Input and Output
	Some Prompts Never Die!
	Labeling the Output
	The INPUT Command
	Simple Input
	Using a Default Input

	Manipulating the Default Input
	Tag-Aided Input
	Input Validation
	Other Input Control Parameters
	Controlling the Screen Output
	The HP48SX Bells and Whistles

	Using Menus for Input
	Building Custom Menus: A Crash Course
	Menu Input

	Chapter 5: Operators and Expressions
	Mathematical Operators and Expressions
	Real Numbers
	Complex Numbers
	Binary Integers
	Real Arrays and Matrices
	Complex Arrays and Matrices

	Relational Operators
	Boolean Operators
	Concatenation Operators
	Bitwise Operators
	The EVAL Operator

	Chapter 6: Decision-Making
	The Single Alternative IF-THEN-END
	Life Without GOTOs
	The Dual-Alternative IF-THEN-ELSE-END
	The Multi-Alternative CASE-END Structure
	Nested Decision-Making Structures
	The HP48SX Flags

	Chapter 7: Loop Structures
	The FOR-NEXT Fixed Loop Structure
	The FOR-STEP Fixed Loop Structure
	Manipulating FOR Loop Iteration
	The START-NEXT and START-STEP Fixed Loop Structures
	The DO-UNTIL Conditional Loop Structure
	The WHILE-REPEAT Conditional Loop Structure
	Nesting Loops
	Open Loops: Who Needs Them?

	Chapter 8: Error Handling
	The IFERR-THEN-END Structure
	The IFERR-THEN-ELSE-END Structure
	Error-Proof Input

	Chapter 9: Special and Non-Numerical Arrays
	Arrays of Strings
	Storing Strings
	Recalling Strings
	Sorting Strings
	Searching for Strings

	Compound Arrays
	Storing Compound Elements
	Recalling Compound Elements
	Sorting Compound Elements
	Searching for Compound Elements

	Hash Tables
	Creating a Hash Table
	Hashing Function
	Inserting Data
	Searching for Data
	Deleting Data
	Converting to Compound Arrays

	Jagged Matrices
	Storing Jagged Matrix Elements
	Recalling Matrix Elements
	Storing Rows
	Recalling Rows

	Chapter 10: Strings
	DELSTR
	INSTR
	IPOS
	ITRNSL
	LEFT
	LOCASE
	LTRIM
	PADLF
	PADEND
	PADRT
	REPSTR
	REVSTR
	RIGHT
	RTRIM
	TRIMEND
	TRNSL
	UPCASE

	Index

