{ HOME WITH RPL }

"Introduction to"

"RPL"
"by"

"Namir Clement Shammas"

EduCALC

{ HOME WITH RPL }

"Introduction to"
- "RPL"
‘"by "

- "Namir Clement Shammas"

EduCALC
Laguna Niguel, California

DISCLAIMER

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. IN NO EVENT SHALL
EDUCALC, OR THE BOOK AUTHOR (NAMIR CLEMENT SHAMMAS), OR THE
DISTRIBUTORS OF EDUCALC BE LIABLE FOR ANY DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS
OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, OR OTHER OCUENIARY LOSS) ARISING OUT OF THE USE OF
OR INABILITY TO USE THIS EDUCALC PRODUCT, EVEN IF EDUCALC HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 1990 by Namir Clement Shammas

HP48SX and HP41C/V are trademarks of the Hewlett-Packard company.
QuickBASIC and GW-BASIC are trademarks of Microsoft Corporation.
BASICA is a tradmark of IBM.

EduCALC

27953 CABOT RD.
LAGUNA NIGUEL, CA 92677

(714) 582-2637

Stock #2454

Dedication

To Richard Nelson

Table of Contents

Chapter 1: The HP48SX Stack

1
2
9

Operational Differences
Stack Manipulation Commands
Recovering Arguments

Chapter 2: The HP48SX Data Types

11
11
11
12
14
15
18
19
20
21
21
21
23
23
24
25
25

Overview

Name That Type
Real Numbers
Complex Numbers
Strings

Real Arrays
Complex Arrays
Lists

Global and Local Names
Program Objects
Algebraic Objects
Binary Integers
Graphic Objects
Unit Objects
Tagged Objects
Directory Objects
Other Objects

Chapter 3: Directories, Variables, and Programs

27
28
28
29
29
30
30
31
33
33
35
36
36
37
41
42
43

The HP48SX Directories
Creating a New Subdirectory
Removing a Subdirectory
Moving to Another Subdirectory
The Path to Your Door
Variables
Programs
Using Local Variables
Using Algebraic Objects
Multi-Level Programs
Reducing Program Levels
Accessing Global Variables
Calling Other Programs
Debugging Programs
Program Manipulation of Directories
Program Manipulating Programs
Program Guidelines

Chapter 4: Interactive Input and Output

45
46

Some Prompts Never Die!
Labeling the Output

47 The INPUT Command

47 Simple Input

48 Using a Default Input
49 Manipulating the Default Input
51 Tag-Aided Input

52 Input Validation

53 Other Input Control Parameters

53 Controlling the Screen Output

54 The HP48SX Bells and Whistles

55 Using Menus for Input

55 Building Custom Menus: A Crash Course
58 Menu Input

Chapter 5: Operators and Expressions

63 Mathematical Operators and Expressions

63 Real Numbers

64 Complex Numbers

65 Binary Integers

67 Real Arrays and Matrices

69 Complex Arrays and Matrices

69 Relational Operators

71 Boolean Operators

74 Concatenation Operators
75 Bitwise Operators

83 The EVAL Operator

Chapter 6: Decision-Making

87 The Single Alternative IF-THEN-END

90 Life Without GOTOs

91 The Dual-Alternative IF-THEN-ELSE-END
97 The Multi-Alternative CASE-END Structure
102 Nested Decision-Making Structures

104 The HP48SX Flags

Chapter 7: Loop Structures

111 The FOR-NEXT Fixed Loop Structure

115 The FOR-STEP Fixed Loop Structure

120 Manipulating FOR Loop Iteration

121 The START-NEXT and START-STEP Fixed Loop Structures
122 The DO-UNTIL Conditional Loop Structure

128 The WHILE-REPEAT Conditional Loop Structure

135 Nesting Loops

137 Open Loops: Who Needs Them?

Chapter 8: Error Handling
140 The IFERR-THEN-END Structure

142 The IFERR-THEN-ELSE-END Structure
143 Error-Proof Input

Chapter 9: Special and Non-Numerical Arrays

145
145
148
149
150
153
154
155
156
158
160
161
162
162
164
165
166
167
168
170
172
173

Chapter 10: Strings

177
179
181
183
187
188
190
192
194
196
198
200
202
203
205
207
210

Arrays of Strings

Storing Strings

Recalling Strings

Sorting Strings

Searching for Strings
Compound Arrays

Storing Compound Elements

Recalling Compound Elements

Sorting Compound Elements

Searching for Compound Elements
Hash Tables

Creating a Hash Table

Hashing Function

Inserting Data

Searching for Data

Deleting Data

Converting to Compound Arrays
Jagged Matrices

Storing Jagged Matrix Elements

Recalling Matrix Elements

Storing Rows

Recalling Rows

DELSTR
INSTR
IPOS
ITRNSL
LEFT
LOCASE
LTRIM
PADLF
PADEND
PADRT
REPSTR
REVSTR
RIGHT
RTRIM
TRIMEND
TRNSL
UPCASE

Table of HP48SX Listings

Listing Number Page Title

3.1 32 Program to evaluate f(X,Y) = X/Y + ¥Y/X

3.2 33 Program to evaluate f(x) = 2X*2 - 5*X - 4

3.3 33 Quadratic Solver version 3.1

3.4 34 Quadratic Solver version 3.2

3.5 35 Quadratic Solver version 3.3

3.6 36 Random number generator

3.7 37 Dice simulator

3.8 38 Quadratic Solver version 3.4

3.9 41 Program TDIR

4.1 45 Quadratic Solver version 4.1

4.2 46 Quadratic Solver version 4.2

4.3 47 Quadratic Solver version 4.3

4.4 48 Quadratic Solver version 4.4

4.5 48 Quadratic Solver version 4.5

4.6 50 Program to demonstrate default input

4.7 51 Quadratic Solver version 4.6

4.8 53 DISP command demo, version 4.1

4.9 54 DISP command demo, version 4.2

4.10 54 DISP command demo, version 4.3

4.11 55 DISP command demo, version 4.4

4.12 59 Menu-aided version of the quadratic solver

6.1 87 Sale price calculator (RPN version)

6.2 89 Sale price calculator (algebraic version)

6.3 91 Financial program to solve for future or present
values

6.4 98 Progran that uses the CASE-END for financial
calculations

6.5 103 Program that uses the XOR operator in finanical
calculations

6.6 105 Program that calculates the circumference and area
of a circle (version 1)

6.7 107 Program that calculates the circumference and area
of a circle (version 2)

7.1 112 Program calculates factorial using FOR-NEXT loop

7.2 115 Program that calculates the average value of an
array

7.3 116 Program calculates factorial using FOR-STEP loop,
version 2

7.4 119 Program that uses Simpson’s method to integrate
the function y(x)

7.5 120 Array search function

7.6 121 Program that obtains the basic statistics of the
built-in random number generator

7.7 123 Program to iteratively solve for the square root
using Newton’s algorithm and a DO-UNTIL loop

7.8 126 Yes/No function

7.9 127 Program solves for the root of a function using
Newton’s method, version 2

7.10 130 A number guessing game that uses a WHILE-REPEAT
loop

7.11 134 Array search function

7.12 135 Program that returns the largest element in a
matrix

7.13 136 Program that uses the Shell-Metzner algorithm to
sort a list of strings or numbers

8.1 140 Factorial function that traps negative arguments

using error trapping

.
(50 -3 w N

O VW YV YV Y YV VYV VUV Woow oo o
o N o0 »n s W N e

o
(Ve

9.10
9.11

9.12
9.13
9.14

9.15
9.16

9.17
9.18

9.19

9.20

9.21
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17

141
141

142
143

146
147
148
149
151
152
154
155
156
158
159
161
163

164
165

166
169

171
172
173
178
180
182
185
187
189

192
195
196
199
201
202
204
206
208
211

Factorial function that traps negative arguments
using defensive programming

Natural log function that guards against non-
positive arguments

Quadratic solver QS with a math error handling
Program that prompts for the coefficients of a
quadratic equation

Program STOR to store a string in an array of
strings

Program STOR to store a string in an array of
strings, version 2

Program RCAL to recall a string from an array of
strings

Program SORT to sort the elements of a string
array

Program LSRCH to search for a matching string in
the array

Program BSRCH to binary search for a matching
string in the array

Program STOR to store a compound element in a
compound array

Program RCAL to recall a compound element from an
array of compound data.

Program SORT to sort the elements of a compound
array

Program LSRCH to search for a matching compound
element in the array

Program BSRCH to binary search for a matching
compound element in the array

Program CRTHT to create an empty hash table
Function HASHF that returns the hash index
Program INSHT to insert compound data in the hash
table

Program SRCHT to search for data in a hash table
Program DELHT to delete a compound element from
the hash table

Program =SL to convert a hash table into a
compound array

Program STOIJ to store an element in a jagged
matrix

Program RCLIJ to recall a jagged matrix element
Program STOR to store a jagged matrix row
Program RCLR to recall a jagged matrix row
DELSTR version 1.0

INSTR version 1.0

IPOS version 1.0

ITRNSL version 1.0

LEFT version 1.0

LOCASE version 1.0

LTRIM version 1.0

PADLF version 1.0

PADEND version 1.0

PADRT version 1.0

REPSTR version 1.0

REVSTR version 1.0

RIGHT version 1.0

RTRIM version 1.0

TRIMEND version 1.0

TRNSL version 1.0

UPCASE version 1.0

Introduction

The HP48SX is a fascinating scientific machine. It is a worthy successor to the HP41C. The
HP48SX is packed with numerous features that offer a lot of power to the scientists and
engineers. This book introduces you to the RPL language used by the HP48SX. This book is
by no means a rewrite of the HP48SX manuals! Instead, it focuses on the aspects of the RPL
language itself. I am assuming that most of the readers are familiar with either the HP41C or
BASIC (Microsoft’s QuickBASIC, in particular). Consequently, the book contains notes and
comments to such readers. My aim is to assist you in becoming more comfortable with
programming in RPL.

The first eight chapters present the various aspects of the RPL language. Chapter 9 implements
special arrays that can turn your HP48SX into a pocket database that stores your phone
numbers and addresses. Chapter 10 presents a string library that most of the readers should
find useful.

I would like to thank Richard Nelson for encouraging me to write this book. I would also like
to thank the Chicago CHIP chapter for holding the first HP48SX conference in June 1990. They

did a superb job in bringing together old PPC and CHHU friends. Finally, I would like to thank
Dr. Bill Wickes for leading the team that designed the HP48SX. Keep up the excellent work Bill!

Namir Clement Shammas

January 1991

The HP48SX Stack

The HP48SX employs a stack that is a superset of the HP41C and most of the other Hewlett-
Packard RPN calculators. This chapter looks at the stack of the HP48SX and compares it with
that of the HP41C/CV/CX.

Operational Differences

The differences between the stacks of the HP48SX and those of the HP41C are as follows:

1. The HP41C has a fixed-size stack of four registers (or levels) named X, Y, Z, and T. The
HP48SX has a multi-level stack that is only limited by the amount of memory available. You
refer to a level by its number. The top of the stack is level 1, the next topmost level is 2, and
SO on.

2. When the HP41C stack drops due to the execution of a function or math operation, the T
register maintains its value while the other registers shift data. No similar mechanism exists
in the HP48SX. This is part of the machine’s multi-level stack feature. This difference is worth
noting if you intend to use some HP41C programming tricks with the new machine.

3. The stack of the HP41C essentially is dedicated to storing floating-point numbers. By
contrast, the stack of the HP48SX is able to store a variety of objects (or data types, if you like).
The partial list of objects includes floating-point numbers, complex numbers, strings, lists,
arrays. matrices, and graphics objects. Thus, the HP48SX is a heterogeneous stack, while that
of the HP41C is a homogenous one.

4. The concept of the HP41C LastX register has been expanded in the HP48SX to include the
last argument, menu, command, and stack contents.

5. The HP48SX has a greater reliance on the stack to supply arguments. For example, to store
a value from the stack into a variable, you need to push the name of the variable into the stack
before issuing a STO command. This is quite different from issuing a STO 00, for example, on
an HP41C to store a number in the register 00. The HP41C works by allowing you to specify
some of the arguments as part of the command. Not so with the HP48SX!

Stack Manipulating Commands

The commands that manipulate the HP48SX stack are very similar to those of the stack-
oriented FORTH language (RPL's cousin). These commands are:

1. CLEAR. This command clears the entire stack of the HP48SX. It is similar to the CLST

Chapter 1. The HP48SX Stack 2

command on the HP41C. The difference lies in the fact that in the HP41C the stack registers
are filled with zeroes. On the HP48SX all of the objects in the stack are dropped (or popped off,
if you like).

2. DEPTH. This command returns the number of objects in the stack, regardless of their types.
The result is pushed into the stack. This command has no equivalent in the HP41C, since a
four-stack register is always at work.

INPUT STACK OUTPUT STACK

4 4 "AA"
3 "AA" 3 ‘FIRST’
2 ‘FIRST’ = number of 2 2.00
objects = 3
1 2.00 1 3.00| <= result

<= top of the
stack

Figure 1.1. Using the DEPTH command.

3. DROP. This command drops (or pops off, if you prefer) the object in level 1.

- N W b

INPUT STACK

"Hello Jim"

I'AA"

‘FIRST’

2.00

<== topmost stack

object

OUTPUT STACK

"Hello Jim"

IM"

‘FIRST’

Figure 1.2. The DROP command.

4. DROP2. This command causes the objects in levels 1 and 2 (that is, the two topmost objects
in the stack) to be popped off the stack. The DROP2 command is a shorthand for issuing two
DROP commands.

Chapter 1. The HP48SX Stack 3

INPUT STACK OUTPUT STACK
4 "Hello Jim" 4
3 "AR" 3
2 ‘FIRST'| <== next to topmost 2 "Hello Jim"
stack object
1 2.00| <== topmost stack 1 "AA"

object

Figure 1.3. Using the DROP2 command.

4. DROPN. This command causes N objects in levels 2 through N + 1 to be popped off the stack.
The value of N is in level 1 and does not enter in the number of dropped levels since it is always
dropped. If N is less than 1 (zero or negative), it is the sole object dropped from the stack.

INPUT STACK OUTPUT STACK

"Hello Jim"

"AA" —T_‘ 3=N+1
"FIRST" _I_‘ 2

2.00(<== N, the number of
objects to pop in
levels 2 to N+1

- N W b
= N W b

"Hello Jim"

Figure 1.4. Using the DROPN command.

Chapter 1. The HP48SX Stack 4

5. DUP. This command duplicates the object in level 1. This is similar to a RCL X command
on the HP41C. Itis a convenient way of duplicating an object before applying various functions
to it.

INPUT STACK OUTPUT STACK

4 4 "AA"

3 "AA" 3 ‘FIRST'

2 ‘FIRST’ 2 2.00

1 2.00| <== the duplicated 1 2.00
object

Figure 1.5. Using the DUP command.

6. DUP2. This command duplicates the object in levels 1 and 2. The result is that the objects
in levels 1 and 3, and levels 2 and 4 are equivalent. This command is equivalent to the
following set of HP41C commands:

STO 2
X <> Y
STO T
X <> Y

This command is a convenient way of duplicating object pairs before applying various functions
to them.

Chapter 1. The HP48SX Stack 5
]

INPUT STACK OUTPUT STACK
5 “"AA"
4 4 ‘FIRST' | < Copied in
the same
3 “"AA" 3 2.00(< order
2 ‘FIRST' | <== the duplicated 2 ‘FIRST'| <
object
1 2.00| <== the duplicated 1 2.00| <
object

Figure 1.6. Using the DUP2 command.

7. DUPN. This command empowers you to duplicate N objects in the stack. The value of N is
located in level 1 and the duplicated objects are found in levels 2 through N+ 1. The duplication
process pops N out of the stack. The order of the duplicated objects is preserved, as in the DUP2
command. This command is an example of HP48SX commands that retrieve its arguments
from the stack. The DUP and DUP2 commands are equivalent to DUPN with 1 and 2 placed in
level 1, respectively.

INPUT STACK OUTPUT STACK
4 4
3 "AA" 3 "AA"
2 ‘FIRST’ 2 ‘FIRST’
1 1.00| <=== the number of 1 ‘FIRST'
duplicated objects

Figure 1.7. Using the DUPN command.

8. OVER. This command pushes a copy of the object in level 2 into level 1, and is equivalent
toa RCL Y on the HP41C. The OVER command should be used instead of the SWAP command
when an additional copy of the object in level 2 is needed in level 1.

9. PICK. This command enables you to push a copy of an object at a level greater than 1. The

Chapter 1. The HP48SX Stack 6

INPUT STACK OUTPUT STACK

4 4 "AA"

3 "AR" > 3 ‘FIRST’

2 ‘FIRST’ | <=== the duplicated 2 2.00
object

1 2.00 > 1 ‘FIRST’

Figure 1.8. Using the OVER command.

index, N, of the accessed level is located in level 1. Therefore, the command PICK copies the
object in level N+ 1 (that is N levels higher that level 1)

INPUT STACK OUTPUT STACK
4 "AA" 4 "AA"
3 ‘FIRST’ 3 ‘FIRST’
2 2.00 2 2.00
1 4.00| <= the index of the 1 "AA" | <
copied level

Figure 1.9. Using the PICK command.

10. ROLL. This command empowers you to roll up the stack. Unlike the RUP command in the
HP41C, ROLL does NOT necessarily roll the entire stack. The power of ROLL comes from the
fact that you can specify the levels affected. This information is placed in level 1 before
invoking ROLL and represents the number oflevels (from 2 and on) that are rolled. The number
of rolled levels is popped out of the stack after the stack is partially or fully rolled up. To
systematically roll up the entire stack use the following command:

DEPTH
ROLL

It is worth pointing out that the objects in the levels 2 through N remain in their levels. This

Chapter 1. The HP48SX Stack 7
L]

is due to the effect of popping the argument N off the stack and moving the object in level N+ 1
to level 1 (see the effect illustrated by Figure 1.9).

INPUT STACK OUTPUT STACK
s 3.14 s
= level N+1
4 "MINES" 4 3.14| <— not
affected
3 "AA" 3 "AA" | €<——
2 ‘FIRST’ 2 'FIRST’| rolled
1 3.00| <==== N, the number > 1 "MINES" | <——
of rolled levels

Figure 1.10. Using the ROLL command.

11. ROLLD. This command allows you to roll down the stack. Unlike the RDN command in the
HP41C, ROLL does NOT necessarily roll the entire stack. The power of ROLLD lies in the fact
that you can specify the levels affected. This information is placed in level 1 before invoking
ROLLD and represents the number of levels (from 2 and on) that are rolled. The number of
rolled levels is popped out of the stack after the stack is partially or fully rolled down. To
systematically roll down the entire stack employ the following commands:

DEPTH
ROLLD

Chapter 1. The HP48SX Stack 8
.]

INPUT STACK OUTPUT STACK
5 3.14 5
4 { one } 4 3.14| <- not
affected

3 "AA" > 3 'FIRST’ | <————
2 ‘FIRST’ 2 { one }| rolled

1 3.00| <=== the number of 1 "AA" (<

rolled levels

Figure 1.11. Using the ROLLD command.

12. ROT. This command rolls up the first three levels. It is a short hand for the 3 ROLL
command.

INPUT STACK OUTPUT STACK
4 { aabb } 4 { aabb }| <— not
affected
3 "AA" | ———————— N+1 level 3 *FIRST' (<
2 ‘FIRST’ 2 2.00|rolled
1 2.00| = N > 1 "AA" |<

Figure 1.12. Using the ROT command.

13. SWAP. This command swaps levels 1 and 2. It is very similar to the X< >Y command in
the HP41C.

Chapter 1. The HP48SX Stack 9

INPUT STACK OUTPUT STACK
4 4
3 “"AA" 3 "AR"
2 ‘FIRST'| < 2 2.00
swapped objects
1 2.00(| < 1 ‘FIRST'

Figure 1.13. Using the SWAP command.

Recovering Arguments

The HP41C LastX command has been expanded into four last commands used to retrieve the
last argument, stack, menu, and command line.

1. LAST ARG. This command is an expanded version of the HP41C LastX. While the HP41C
LastX command pushed only the last value of the X register, the LAST ARG recovers all the
objects that were involved in the last command issued. Figure 1.14 shows a stack before and
after a multiplication is carried out. When the LAST ARG command is executed the operands
of the multiplication, namely, the numbers 3 and 4, are pushed back in the stack. Notice that
the result of the multiplication, 12, is retained in the stack. Setting flag -55 conserves memory,
because the HP48SX does not save the last argument when this flag is set

2. LAST STACK. This command implements an interesting variation on LAST ARG. It works
by restoring the stack to its contents prior to the execution of the last command. Unlike LAST
ARG, LAST STACK eliminates any results obtained by the action of the last command. This
command has a back to the drawing board effect. Figure 1.15 shows the effect of the LAST
STACK command on the results of a multiplication operation. The original operands are
restored, while the result of the multiplication is removed.

The LAST STACK command offers you the advantage of quickly recuperating from an
erroneous operation. You need not drop the unneeded result and recall the original -- LAST
STACK will do it for you!

3. LAST MENU. This command displays the last menu enabling you to move to a menu
associated with another directory (more about this in a later chapter) and return back.

4. LAST CMD. This command enables you to recall and edit the last command you typed. You
can either reissue the same command or invoke a modified version of it.

Chapter 1. The HP48SX Stack 10

Original Stack After pressing After invoking the
the * key LAST ARG command
4 4 4 5
3 5 3 3 12
2 4 2 5 2 4
1 3 1 12 1 3

Figure 1.14. Using the LAST ARQ command to restore the previous stack and eliminate the
effect of the last command.

Original Stack After pressing After invoking the
the * key LAST STACK command
4 4 4
3 5 3 3 5
2 4 2 5 2 4
1 3 1 12 1 3

Figure 1.15. Using the LAST STACK command to restore the previous stack and eliminate the
effect of the last command.

The HP48SX Data Types

Computers, big and small, process a wide variety of data. The versatility of computer languages
can perhaps be measured by the number of data types and their complexity. The RPL language
supports a good variety of data types (also called object types by the HP48SX manual). This
chapter looks at the object types implemented in the HP48SX, compares RPL with other popular
microcomputer languages, and offers the basics of manipulating the various object types.

Overview

The designers of the HP48SX chose a rather unique approach in defining and implementing
data types for the machine. Whether you have been working exclusively with the HP41C or
with popular high-level languages like BASIC and Pascal, you will find that the HP48SX is
different. This difference occurs in two ways: the typed data and the variety. Figure 2.1
compares the data types of the HP48SX with those of the HP41C, BASIC, and Pascal. Looking
at the table you will notice that the family of data types in the HP48SX includes rather new
members, such as algebraic objects, graphic objects, directories, and libraries. While some of
these objects (such as directories and libraries) are present in the microcomputer environment,
they are not considered as object types by the micro users. Thus, the unique set of types in the
HP48SX is custom tailored for the machine itself. This gives the HP48SX powerful capabilities
for manipulating data.

Name That Type

The various object types in the HP48SX are associated with type numbers. Figure 2.2 lists the
19 object types by type number and includes examples of the object types. The type numbers
are also obtained with the TYPE command.

Real Numbers

Real numbers are familiar to HP calculator users. In the HP48SX positive reals range from 1E-
499 t0 9.9999999999E +499. The negative reals range from -1E-499 to -9.9999999999E + 499.
Small numbers in the range of -1E-499 to 1E-499 are rounded to zero.

Real numbers are also used to represent date and time data. The date forrnats supported are
the MM.DDYYYY (where 5.031990 is May 3rd. 1990) and the DD.MMYYYY (where 3.051990 is
May 3rd, 1990). The time format used is HH.MMSS, with 11.3000 representing 11:30 a.m., for
example.

Chapter 2. The HP48SX Data Types 12

Data Types L A NG U A G E S8
RPL HP41C BASICA Pascal
Real Numbers Yes Yes Yes Yes
Complex Numbers Yes No No Yes
Binary Integers Yes No Yes Yes
Strings Yes Yes Yes Yes
Real Arrays Yes No Yes Yes®
Complex Arrays Yes No No ves®
Names Yes No No No
Algebraic Objects Yes No No No ,
List Yes No No Yes
Graph Objects Yes No No No
Tagged Objects Yes No No No
Unit Objects Yes No No No
Programs Yes No No No
Directory Objects Yes No No No
Backup Objects Yes No No No
Library Objects Yes No No No
XLIB Names Yes No No No
Built-in Functions Yes No No No
Built-in Commands Yes No No No
(1) Can be created as a list of matrices or arrays.
(2) As user-defined types in Pascal.

Figure 2.1. Comparing the data types of RPL, HP41C, BASIC, and Pascal.

Real numbers are basic types that enter in the make-up of other object types, such as complex
numbers, arrays, and lists. The commands that transform reals into other types are discussed
in their respective sections below.

Complex Numbers

Complex numbers are represented by two real numbers and can be represented as either
Cartesian or polar coordinates. The HP48SX can display them using either coordinates.
Pressing the [right shift][1] keys toggles between Cartesian and polar display mode. You may
key in a complex number in either coordinate form -- the HP48SX will convert your input to the
current mode, if needed. In Cartesian coordinates a complex number has a real component X
and an imaginary component Y, and uses the format (X, Y). Examples of complex numbers are
(1.1), (3.4). and (-0.45, 12.54). Using polar coordinates, a complex number is defined by its
modulus, M, and angle 6, and uses format (M, 46). Examples of complex numbers in polar form
are (1.4142, A445), (-.4142, A54), and (42.4, 4127). Converting from one system to another
utilizes the following pair of equations:

Chapter 2. The HP48SX Data Types 13

Object Type Type Number Example(s)

Real number 0 1.2, -0.04, 1.2E+200, -3.65E-3
Complex number 1l (1.0345, -4.67), (20 , 45)
String 2 "THE FIRST TIME", "You", "me"
Real array 3 [1.03.06.0), [(2 2)0[34))
Complex array 4 [(1,2) (8,9))

List) { "Hello" "There™ 2 3 (3,4))
Global name 6 GLBNAME

Local name 7 LCLNAME

Program 8 « DUP 2 * 1 = = 5 + »
Algebraic object 9 ‘2% (A+1) "’

Binary integer 10 #FFFFh, #280, #2344, #11001b
Graphic object 11 GROB 100x200

Tagged object 12 , :I0: ‘AUG1’

Unit object 13 17_m

XLIB name 14

Directory 15 { HOME JAMES)}

Library 16

Backup object 17

Built-in function 18

Built-in command 19

Figure 2.2. HP48SX object types and their numeric code types.

M=V (x+ Y
tan 6 = Y / X

Complex numbers can also be assembled from real numbers. The HP48SX places them in the

Chapter 2. The HP48SX Data Types 14

current coordinate format. The R-+C command assembles a complex number from two real
numbers (see Figure 2.3). The real component of the complex number is placed in level 2, while
the imaginary part is located in level 1. The C-»R and the OBJ- commands disassemble a
complex number into its real and imaginary components (see Figure 2.4). The real and
imaginary parts are placed in levels 2 and 1, respectively.

INPUT STACK OUTPUT STACK
4 4
3 3
2 4.00| <= real part 2
1 1.00| <= imaginary 1 (4.00,2.00) | <== complex
part number

Figure 2.3. Using the R»C command to assemble a complex number from two real numbers.

INPUT STACK OUTPUT STACK
4 4
3 3
2 2 4.00| <= real part
1 (4.00,2.00) | <= complex 1 2.00| <= imaginary
number part

Figure 2.4. Using the C»R command to disassemble a complex number into two real numbers.

Strings

The string type is an important object type. Strings support messages and various types of text.
Since the HP48SX is a machine for scientific and engineering applications, its string
manipulation features seem of secondary concern by its designers.

Characters and strings can be entered directly from the keyboard. This is done by pressing the
[right shift] and [-] keys to enter a pair of double quotes on the command line. To key any letter

Chapter 2. The HP48SX Data Types 15

press the [a] key. To lock on alphanumeric input press the [a] twice. When you are done, press
the [a] another time to exit the alphanumeric input mode. Lowercase characters can be entered
by (a) pressing the [a], [left shift], and then the character keys in ordinary input mode, or (b) by
pressing the [shift left] and the character keys in alphanumeric input mode. The [left arrow] and
[right arrow] keys may be used to edit the string. Pressing the [Enter] key pushes the string into
the stack.

You can also obtain a character from a real number by using the CHR command. This
command first rounds up the real number to the next whole number and then converts the
number into the character whose numeric ASCII is equal to that number. For example, if you
type 65 and invoke the CHR command, you obtain "A", the character with an ASCII code of 65.
If the input number is 65.4, it is rounded down to 65 and then converted by CHR into "A". By
contrast, if the input number is 65.5, it is rounded up to 66 and then converted into “B" (the
character with an ASCII code of 66). Figure 2.5 shows the CHR command converting 65.4 into
the letter "A".

INPUT STACK OUTPUT STACK
2 2
Character with
1 65.4 <== number 1 A" <== a numeric ASCII
code of 65

Figure 2.5. Using the CHR command to convert a number into a character.

The CHR command can be used in loops (more about loops in Chapter 7) to create special long
test strings.

The reverse of command CHR is NUM. This command takes the first character in a string and
returns the ASCII code in level 1. Thus, invoking NUM with the strings "A", "And", or "Add"
yields 65 in all of the cases, since the first character in these strings is "A". Figure 2.6 shows
the NUM command processing the string "And".

You can also build strings from smaller ones using the + operator. More about this in Chapter
5.

Real Arrays

The HP48SX supports real arrays and matrices. While arrays with more than two dimensions
are not explicitly supported. they can still be implemented using lists. Arrays are enclosed by
a single set of brackets. An example of an array is [1 23 4 5 6]. Matrices use nested sets of
brackets -- each row is enclosed in a set of brackets and the entire matrix is enclosed in another
set of brackets. Thus, [[11 12)[21 22][31 32]]is a matrix containing three rows and two

Chapter 2. The HP48SX Data Types 16

INPUT STACK OUTPUT STACK
2 2 The ASCII code
of "A", the
1 "And" <== gource 1 65 <== first string
string character

Figure 2.6. Using the NUM command to convert the first character in a string.

columns. The number of rows is equal to the number of nested pairs of open and closed
brackets. The number of columns equals the number of elements in each row. A matrix MUST
have the same number of elements in each row.

The arrays and matrices can be assembled by either keying in numbers in the command line,
pushing numbers in the stack, or using the eloquent MatrixWriter. Keying in numbers in the
command line is an easy and straightforward method for entering rather small arrays and
matrices. The MatrixWriter converts the display of the 48 into a spreadsheet showing a few
rows and columns of the currently edited array or matrix. The MatrixWriter comes with a set
of menu options that enhance the input and editing of numbers. For example, you can specify
whether you are keying in an array or a matrix. You can also widen or narrow the column
width; specify the next-cell cursor movement; insert or delete columns and rows; and interact
with the stack. For more details on operating the MatrixWriter consult the HP48SX Owner'’s
Manual Volume I.

Concerning the assembly of arrays and matrices from stack elements, RPL applies the following
scheme for arrays:

1) The members of the array are pushed into the stack. The first real number pushed in the
stack becomes the first array element, and so on.

2) The size of the array is pushed into the stack. The value of the size may be pushed in the
stack as a single-member list (e.g. { 3 }).

3) The -ARRY command is invoked to assemble the array.

Figure 2.7 shows how a three-element array, [10 20 30], is assembled from the stack.
Matrices (with R rows and C columns) are assembled from the stack using the following steps:
1) The C elements of the first row are pushed in the stack.

2) Step (1) is repeated for the C elements of the remaining rows (2 though R).

3) A two-element list { R C } is pushed in the stack. This (a) informs the HP48SX that you want
to put together a matrix (and not an array), and (b) specifies the number of rows and columns.

Chapter 2. The HP48SX Data Types 17

The other
elements are
pushed in the

The first array
element, 10, is
pushed in the

The array
size is then
pushed in the

The array is
assembled by
invoking the

stack stack stack -ARRY command
4 10
3 10 20
2 20 30
1 10 30 3 [10 20 30)

Figure 2.7. Assembling an array from elements in the stack using the -ARRY command.

The first matrix

element, 11,
pushed in the
stack

is

The other
elements are
pushed in the
stack

The matrix
size is then
pushed in the
stack

The matrix is
assembled by
invoking the
-ARRY command

11
11 12
]=> row
12 #1 21
21 22
]=> row
22 #2 31
31 32
]=> row
11 32 #3 {32 ([11 12)
(21 22)
[31 32))

Figure 2.8. Assembling a matrix from elements in the stack using the -»/ARRY command.

Arrays and matrices can be disassembled, using the OBJ—+ command, placing their elements
and the object’s dimension in the stack. The object’s dimensions is placed in level 1. This
action reverses the array/matrix assembly.

Chapter 2. The HP48SX Data Types 18

p : o 7¢
Lists can be used as temporary surrogate arrays in the following case:

o The elements of the array are gradually obtained.
o The number of elements is not known ahead of time.
o The number of elements may widely vary.

Once the data collection is complete, the data is converted from the list to an array,
via the stack.

Complex Arrays

Complex arrays are extensions of real arrays (or you can say that real arrays are special cases
of complex arrays). Complex arrays and matrices are assembled in a manner very similar to
real arrays and matrices. This includes the use of the MatrixWriter, command-line input, and
assembly using the -ARRY command.

Programming Hote

You can mix real and complex numbers when assembling a complex array or matrix
using the command-line or the ARRY command methods. The HP48SX scans the input
and automatically converts the real numbers into complex numbers with a 0 imaginary
part. However, when using the MatrixWriter the first element you enter MUST be a
complex number. This tells the MatrixWriter to automatically convert all real numbers
into their counterpart complex numbers. If the first number is keyed in as a real
number, the MatrixWriter will flag an error when you enter a complex number in
subsequent cells!

Complex arrays can be created from two real arrays. The R-C command works with the real
arrays in levels 1 and 2. The array in level 2 provides the real components, while the array in
level 1 supplies the imaginary components. The C-R command performs the reverse, splitting
an complex array into two real arrays.

Chapter 2. The HP48SX Data Types 19

Lists

Lists, as implemented on the HP48SX, are very powerful data structures. If you program in
high-level languages such as Pascal and C, you will most likely find the HP48SX lists extremely
flexible. What makes these lists versatile are the following features:

1) They are dynamic. This enables a program or a manual command to readily create them,
delete them, insert new data, delete old data, alter existing data, and access list components.
These operations are transparent to the user or a running program -- there is no need to
explicitly reserve space for the lists.

2) They are heterogeneous. The HP48SX lists may contain members of just about every
supported types, including other lists, strings, and arrays! The ability of the HP48SX list to
contain members of varying object types opens the door for the creation of records. The lists
used to contain records of information can in turn be members of a bigger list, namely, the host
data base!

3) They support array-style access. This makes the HP48SX list a hybrid (and a great one at
that) between true lists and true arrays. These lists can be the repertoire for arrays of strings,
vectors, matrices, sublists, programs, etc (see Chapter 9). The possibilities are simply awesome.

The smallest list is the empty list, { }. List elements are separated by spaces. Examples of lists
are shown below:

{1234}
{ "Namir" "Clement” "Shammas" }
{1(1,2) "Hello" 'X1*22+2' {1 "Me" (2. 3)}[12][[11]][22]]}

The first two examples show homogeneous lists containing numbers and strings, respectively.
The third example shows how sophisticated lists can get. In the above example the list contains
areal number, a complex number, a string, an algebraic expression, a nested list, a real array.
and a real matrix. It is worth pointing out that nested lists are considered as single elements
in the host lists. Thus the list { { 1, 2 } } contains one element, the nested list { 1, 2 }.

Lists can be created using the -LIST command. This command resembles the -ARRY
command used to create arrays. The -=LIST command requires that you first push the list
members in the stack, and then push the list size. Figure 2.9 shows how this command works
in creating a new list from its components. The OBJ-» command performs the reverse action
of the LIST- command. The list located in level 1 is decomposed into its elements and its size.
The list size is located in level 1.

You can add new list members by using the + operator. More about this in Chapter 5.

Chapter 2. The HP48SX Data Types 20

Push the first Push rest of Push list size Create the list
list member in list members in the stack with the =LIST
the stack in the stack command

4 "Hello"

3 "Hello" 4

2 4 'X1+X2°

1 "Hello" 'X1+X2° 3 { "Hello" 4

‘X1+X2')

Figure 2.9. Creating a list using the -LIST command.

Global and Local Names

The RPL language on the HP48SX associates names with data and objects. If you are a veteran
HP41C programmer you have been used to storing data in numbered registers. This feature of
RPL is a welcome one, since it enables you to associate data objects with named containers.
The advantage is that the names used to store data objects can be selected to be representative
of the type of information stored. If you are familiar with BASIC, names should be familiar to
you.

Global names, as the name might suggest, are names of object container or variables. The
HP48SX requires that variable names be enclosed in a pair of tick (a.k.a. single quote)
characters. This enables the machine and RPL to distinguish between variable names and
strings of characters. Examples of names are:

*Velocity'
‘Pressure’
‘Weight'
.Xl'
Unlike strings, names are associated with data objects. These objects may be real numbers,

arrays, strings, lists, matrices, graph objects, etc.

The HP48SX makes a distinction between global and local names. A global name makes its
contents accessible (or public, if you prefer) to all programs. By contrast, a local name offers
limited access to its contents, offering a certain aspect of data hiding. This access depends on
where the local name is located.

For the HP41C programmer, local names bring forth a new level of data hiding. The same can

Chapter 2. The HP48SX Data Types 21

L

be said for those readers who work with BASIC interpreters where all variables are global. If
you are familiar with QuickBASIC, then you already know about global and local variables.

Program Objects

Programs are considered object types by the HP48SX! Yes, this might come across as being
very unusual to the majority of us. Even languages like BASIC, C, Pascal, and many others do
not regard programs as special data types. Programs are enclosed in a pair of left and right
double Guillemet characters, « and ». Pressing the [left shift][-] keys inserts a pair of double
Guillemet characters. Examples of programs are shown below:

«SQ1 + »
«DUPDUP * *1 + »

The first program squares the number in level 1 and adds 1 to it. The second takes the cube
of the number in level 1 and adds 1 to it.

Programs, especially simple ones, can be pushed into the stack and then run by pressing the
[EVAL] key. The program object is removed from the stack. This is not the usual way for
executing programs. They should be stored first in a variable so that they can be retained for
repeated execution, and edited if need be.

Algebraic Objects

What sets the HP48SX apart from all the previous handheld machines is its ability to perform
symbolic manipulation of algebraic equations. For example, if you give the HP48SX an
equation like '"A+B=C+D’ and ask it to solve for C, you get ‘C=A+B-D'. The object type
involved here is the algebraic object which consists of an equation or an expression (an
expression differs from an equation by the absence of an assignment equal sign). Algebraic
objects are enclosed in single quotes. Examples of algebraic objects are shown below:

.2.X|
‘X=Y/25+Z
'X=SQ(A+5.5)

Basic algebraic objects are simply pushed into the stack. You can build algebraic objects from
smaller ones using the four math operators, change of sign operator, and most math functions.
In all of these cases, the HP48SX applies the operators and functions symbolically. While
algebraic manipulation is not within the scope of this book, I encourage you to experiment with
this fascinating feature.

Binary Integers

The HP48SX supports another genre of numbers, namely binary (unsigned) integers. The term
unsigned means that the integers have O and positive values, and therefore never use a minus
sign. This type of integer is of interest to computer scientists and programmers. The general

Chapter 2. The HP48SX Data Types 22

syntax of binary integers is shown below:

Syntax Class of Integer Digits Range
hexadecimal digits h hexadecimal O to 9, A toF
decimal digits d decimal 0 to 9
octal digits o octal 0 to 7
binary digits b binary 0 to 1

Table 2.10. The general syntax for binary integers.

All binary integers start with the pound character, #, and end with a base designator. This
designator also enables the HP48SX to check the validity of your input.

You can specify the current mathematical base to display these binary integers. The HP48SX
lets you key in a binary integer in any valid base. Conversion is made by the machine to make
your input conform to the current base. Examples of various binary integers and their decimal
equivalent are shown below:

Number Type Decimal Equivalent
#12h hexadecimal 18
#FFh hexadecimal 255
#1Bh hexadecimal 27
#330 octal 27
#070 octal 7
#104d decimal 10
#99d decimal 99
#11b binary 3
#101b binary 5

Figure 2.11. Examples of binary integers.

The R-C command converts non-negative real numbers into binary integers. The real numbers
are first rounded and then converted to the current base. Using negative numbers results in an
error. The B-R command performs the reverse, converting binary integers into reals.

Binary integers are available to the HP41C programmer through the PPC and Advantage plug-in
ROMs. A number of BASIC interpreters and compilers support binary integer constants in
hexadecimal, octal, and binary bases.

Chapter 2. The HP48SX Data Types 23

Graphic Objects

Graph objects represent a matrix of graphics pixels (short for picture elements). The HP48SX
possesses a sophisticated graphics system for plotting functions as well as drawing shapes. The
topic of graphics deserves a separate book. These graphs are treated as distinct objects that can
be placed in the stack and appear in the form:

GRAPH nby m

where n and m denote the graph height and width in pixels.

Unit Objects

One of the major drawbacks in computer calculations is the disassociation between units and
numbers. This makes engineering calculations vulnerable to erroneous input. For example,
a program prompts you to enter the pressure in atmospheres. You mistakenly enter the correct
value expressed in psi (pound per square inches). There is no easy way for the computer to
discern the intended units. This problem has been tackled by the HP48SX, since it is a
handheld machine aimed at engineers and scientists. Units are special objects made up of areal
value and an accompanying unit of measurement. Unit objects have the following general
syntax:

value_unit
Examples of unit objects are shown below:

8 m

12.3_1b/ft*3

0.23_kg/(m*s*2)
You can easily key in a unit object from the command line. Simply type in the value associated
with the unit, press the [right shift][x] keys (to type the underscore character), and type in the

units.

An alternate way of entering the unit objects is the use of the UNITS set of menus. These
menus enable you to select the exact units to be associated with the number in level 1.

Invoking the OBJ-» command with unit objects causes level 2 to contain the value associated
with the original unit, while level 1 contains a unit value (that is 1_unit).

Unit objects can be propagated by the math operations and function. For example, pressing the
square root key with 25_ft*2 in level 1 returns 5_ft.

Chapter 2. The HP48SX Data Types 24

Tagged Objects

The implementation of units in the HP48SX represents an important step in dealing with
engineering calculations. Associating units with numbers greatly clarifies data. Another tool
that clarifies information is tags. They are labels that are attached to data, separated from each
other by a colon. The general format for using a tagged object is:

tag_name : data
Examples of tagged objects are shown below:

TODAY_TEMP:80_F
SLN_VECTOR:[1.4 5.6 -9.6]
RECORD_STRUCTURE: { "LastName" "FirstName" "Address" "City" “State" "Zip" }

Tagged objects can be created from the command line or assembled from data in the stack. To
create a tagged object from the command line you employ the :: command (by pressing [right
shift][+] keys). This puts the two colons in the command line and places the editing cursor in
between these colons. Type in the tag name, and then press the right arrow key to exit the tag.
Now you proceed in typing in the accompanying data.

To tag information in the stack the tagged data must be in level 2 and the tag name in level 1.
The tag name may either be a name or a string. By invoking the -TAG command, the tag and
the data are merged. Figure 2.12 shows how the -»TAG command creates the object
NAME:"Lia" from the string "Lia" and the name 'NAME".

INPUT STACK OUTPUT STACK
4 4
3 3
2 "Lia" <== data 2
1 *NAME "’ <== tag name 1 NAME:"Lia" <== tagged object

Figure 2.12. Tagging data.

The OBJ- command reverses the action of the «TAG command. The tagged object is divided
into two objects: the tagged data (in level 2) and the tag name (placed as a string in level 1).

Chapter 2. The HP48SX Data Types 25

Tagged data can be explicitly detagged using the DTAG command. Detagging occurs
automatically with most operations.

Directory Objects

This category of objects deals with the hierarchy of directory structures. The HP41C contained
all you programs and data registers in a single area. By contrast, the HP48SX offers a more
sophisticated level of work areas. These work areas are placeholders for variables that store
data and programs (I am using these terms in a general sense). This prevents the user from
cluttering the same area (especially with the amount of RAM made available to the machine)
with numerous objects that belong to different projects. Each work area is called a directory.
The HP48SX supports a hierarchy of directories. This means that the directories are connected
to each other using parent-child relationships. Directories are objects created using named
objects. The same names are used to visit a directory and delete it. Chapter 3 gives you more
details about directories.

Other Objects

In addition to the above objects there are a number of special objects. They are:

® Backup Objects. These are objects associated with backups.

@ Library Objects. These are objects associated with libraries offered by plug-in cards, or they
may reside in RAM.

® XLIB Objects. These are special objects offered by plug-in cards.

@ Built-in Functions. These are considered as built-in program objects.

@ Built-in Commands. These are also considered as built-in program objects.

Chapter 2. The HP48SX Data Types

Notes

26

Directories, Variables, and Programs

This chapter looks at how the HP48SX uses directories to provide you with different work areas.
I will discuss the concept of directories, how they are created, connected, and removed. In
addition, I will address how to move between directories. The second topic of this chapter is
variables and how their scope is related to the directory hierarchy. The third chapter topic is
program objects. You will learn about local program variables, programs using global variables,
programs calling each other, and program debugging.

The HP48SX Directories

Imagine for a minute that all the internal walls are removed from your dwelling place! Suddenly
you can spot just about every object inside your place. Your eyes would be invaded by a clutter
of objects of different shapes and colors. Your mind would also easily tire just looking at things.
The bigger your house, the worse it is. Thus, it becomes apparent that internal walls play a
valuable role in eloquently structuring your house or apartment into semi-independent rooms.
Moreover, these rooms are interconnected in a certain order and sequence.

The above analogy can be applied to the memory of the HP48SX, especially one with additional
RAM cards. If the memory offers no partition, then you end up with a single work area that
contains ALL your objects! Yes, ALL OF THEM! The HP48SX offers your objects room-like
partitions called directories. These directories are interconnected in a special parent-child
hierarchial fashion. The HP48SX has a root directory, called HOME. It's always there. The first
child directory (or subdirectory) you create is attached to HOME. Additional subdirectories may
be attached to HOME or any other existing subdirectory. Figure 3.1 shows a sample directory
tree structure. The structures has four levels of subdirectories. The directories STAT, LIST,
STRING, and MATH are all attached to the root directory HOME. The directory STAT has one
subdirectory attached to it, namely, REGR. The directory STRING has two subdirectories
attached to it, namely, WORD and ITEM. The directory MATH has one subdirectory attached
to it, namely, OPTM. The latter is also attached to a subdirectory, NLR.

Chapter 3. Directories, Variables, and Programs 28

parent
HTME A
STAT LIST STRING MATH
REGR WORD ITEM OPTM
- v
NLR child

Figure 3.1. A sample directory structure.

Programming Teg

The sooner you employ a directory structure to organize your work, the better.

Creating a New Subdirectory

A new subdirectory is created using the CRDIR command (obtained by pressing the [left shift]
[VAR] keys) CRDIR and is attached to the current directory. Once created, the name of the
subdirectory appears as a new option in the VAR menu. The name of the new subdirectory
must be a name object enclosed in tick characters. For example, to create the STAT
subdirectory, enter "STAT" CRDIR.

Removing a Subdirectory

A subdirectory can easily be removed in one of two ways. The first method requires that the
subdirectory be empty. The target subdirectory is first chosen by pressing the tick key and
entering the subdirectory name or selecting it from the menu. Invoking the PURGE command
performs the sought deletion. This command does not work with non-empty directories. The
HP48SX displays an error message to that effect. The CLVAR command empowers you to
purge all variables from a directory before removing the directory itself using the PURGE
command.

The second method performs a quick, decisive deletion of a subdirectory using the PGDIR
command. This command wipes clean the target subdirectory (and all of its subdirectories) in
one swoop.

Chapter 3. Directories, Variables, and Programs 29

Waranlngl

Use the PGDIR with great caution.

Moving to Another Subdirectory

You can move between two linked subdirectories. Press the VAR key to obtain the menu of
objects in the parent directory. The name of the target child directory is selected from that
menu. You might need to press the [NXT] key a few times to locate the sought directory. The
HP48SX updates the name of the current directory, displayed at the top left corner of the
display.

The HP48SX offers two commands, found on the keyboard, to move upward. The HOME
command, invoked by pressing the [right shift][’] keys, moves you to the root directory. The UP
command, invoked by pressing the [left shift]['] keys, moves you to the parent directory. The
UP command appears as the UPDIR command in a program. The UP (and its alias UPDIR)
command have no effect if you are already in the root directory.

The Path to Your Door

It is worth pointing out that the names of subdirectories need not be unique. The HP48SX does
not object to using the same subdirectory name at different directory levels. The name HOME
is the exception -- you cannot create any subdirectory called HOME.

A directory path is a list of directories that form a branch in the directory tree structure. For
example, the path of the NLR subdirectory is the list { HOME MATH OPT NLR }. This list
specifies the names of all the connected directories, from HOME to the current ones. The PATH
command (found in the first set of MEMORY menu options) returns the current path.

The significance of the path lies in the fact that RPL supports a special inheritance scheme
between directories. The following simple rules apply:

1) The variables of ancestor directories are inherited by (or visible to, if you prefer) child
directories.

2) The programs stored in variables located in the ancestor directories can be executed in the
child directories.

3) When a child directory declares a variable (with data or programs) with a name matching an
inherited variable, the latter becomes opaque. From then on, the new version of the same
variable is visible to that child directory and all of its subdirectories.

This RPL feature is very powerful. You can place general objects at higher directory levels,
while locating more specialized objects in deeper subdirectories.

Chapter 3. Directories, Variables, and Programs 30

Variables

This section looks at variables as data containers. One of the first tasks a new HP48SX user
learns is to store and recall data in memory. Veteran HP41C programmers find this new way
of storing and recalling data a bit strange! The old practice of pressing STO and then two digits
is replaced by a new ritual. The name of the variable must be pushed in the stack (or located
in the command line) before pressing the [STO] key. Recalling data on the HP48SX is even
stranger for the HP41C user. First, there are several ways to do it:

1) Just press the VAR menu option with the name of the sought variable. This works if the
variable is stored in the current directory level.

2) Simply enter the name of the variables (with no tick characters). Press the [Enter] key and
voila! The contents of the variable are retrieved.

3) Enter the name of the variable enclosed in the tick characters and press the [EVAL] key. The
contents of the variables are placed in level 1.

4) Enter the name of the variable enclosed in the tick characters and press the [left shift][STO]
keys (this invokes the RCL command). The contents of the variables are placed in level 1.

Variables created on directory levels are basically global variables. They can be accessed by all
programs running launched in that directory and all of its subdirectories. As explained in the
last section, global variables can have a limited scope of visibility. This occurs when they are
overshadowed by other variables (bearing the same name) residing in child subdirectories.
Global variables are also overshadowed by local variables, declared inside programs. More about
this in the next section.

Programs

RPL programs are special objects that are characterized by the following:

1) Programs bring forth a new level of object visibility.

2) Programs can declare their own local variables and nested program objects.

3) The scope oflocal variables in restricted to the program level where they are declared, as well
as the nested program objects.

4) Programs interact with their environment using the stack and global variables. The stack
is a convenient channel for passing data back and forth. Global variables can also provide an
adequate source of data input. RPL allows programs to create global variables and store output
data in them.

5) Programs that implement functions return one or more results in the stack.

6) Programs that implement procedures usually do not return any data (under normal
conditions). Their main role is carrying out a task.

Programs are usually stored in variables. They are executed when their host variables are
selected from the menu, or when the names of these are evaluated. To edit a program, enter
the name (enclosed in tick characters) of the host variable and execute the VISIT command
(press the [right shift][+/-] keys). The HP48SX puts you in edit mode. When you are finished
editing, press the [Enter] key. Press the [ON] key to abort program editing and entry.

Chapter 3. Directories, Variables, and Programs 31

P s T
Make a temporary duplicate copy of a program by storing it in another variable when:
® Editing an important pvrogram.

@ Editing a large program.

® Creating an improved version of a program.

Remove the older program versions when the new ones are satisfactorily operating.

Programs vary from very simple to complex. In the rest of this section I will present small
programs that give you an idea of the variation in complexity. Consider the following simple
program object:

« SQ 1 + »

This program takes one argument from the stack, squares it, and adds 1 to it. The result is left
in level 1 of the stack. This makes the program behave as a function. The next program acts
as a procedure:

« UPDIR EVAL »

The program makes two directory moves. First, it takes you from the current subdirectory and
into the parent directory. Second, it takes you to a subdirectory whose name is in level 1
(asuming the program is stored in a variable). The overall effect of this procedure-type program
is to move you to a sibling subdirectory.

Using Local Variables

The next program demonstrates the use of local variables to store intermediate data. This
process involves moving data from the stack and into the local variables. The right arrow
symbol, -, is used to execute such a data transfer. The general syntax is:

- local_variable_1 local_variable_2 ... local_variable_n

Figure 3.2 shows the order of transferring data between the stack and local variables. For the
novice RPL programmer, this order is not too obvious.

After you assign data to local variables your program must contain a pair of left and right
double Guillemet characters (that is, « and »). This creates a nested program object inside which

Chapter 3. Directories, Variables, and Programs 32

When transferring N stack elements to local variables, the element in stack level i is
stored in the (N + 1-i)'th local variable.

n » local variable # 1

4 » local variable # n-3

w
v

local variable # n-2

local variable # n-1

[N
v

local variable # n

v

Figure 3.2. The order of moving data between the stack and local variables.

the local variables are accessible. Once the program passes the nested » character, the local
variables are removed by RPL.

The next program implements the following two-variable function:
SX.Y)=X/Y+Y/X

Rather than performing stack manipulations, the program moves the values of X and Y from
the stack into local variables (bearing the same names). This makes the program easier to read
than a version that relies more on the stack. The program is shown below and includes
comments that appear on the right in different character fonts:

; Listing 3.1. Program to evaluate f(X,Y) = X/Y + Y/X

«

- Y X ; assign element in level 2 to local variable Y
; assign element in level 1 to local variable X

/ ; calculate X / Y
; calculate Y / X
; add the two products

T 4+
<
~

»

Chapter 3. Directories, Variables, and Programs 33

The assignment to the local variables X and Y is followed by a nested program object. The
scope of variables X and Y is confined to the nested object.

Using Algebraic Objects

The second example shows that a local variable is used to store data appearing in an algebraic
expression. The program implements a function that evaluates the following function:

fX)=2X*-5X-4
The program is shown below:

; Listing 3.2. Program to evaluate f(x) = 2X*2 - 5*X - 4
« = X ; store data in local variable X

«

'2*SQ(X)-5*X-4" ; push algebraic object in stack
EVAL ; evaluate expression

»

Programming Hote

Storing data in a local variable is recommended if the data appears in an algebraic
object. This protects global variables from being accidentally overwritten.

Multi-Level Programs

The next example shows assignment to local variables appearing in two levels. The program
solves for the roots (both real and complex) of a quadratic equation:

AX*+BX+C=0

The quadratic coefficients A, B, and C are stored in local variables bearing the same name. The
solution is obtained using the following equation:

roots = (B £+ vD)/2 A
where the D determinant is equal to (B> - 4 A C).

The program transfers the coefficients A, B, and C from the stack to the local variables A, B, and
C. The square root of the determinant D is calculated and stored in the local variable S. This
example shows that local variables are also used to store intermediate results. In addition to
variable S, the local variable TWOA stores the value of 2*A. The program is shown below:

; Listing 3.3. Quadratic Solver version 3.1

Chapter 3. Directories, Variables, and Programs M4

d =
>
w

; store data in local variables A, B, and C

SQ ; calculate B squared

; celculate 4 A C

; obtain the determinant

; get the square root of D

IPY<LIiIdPwa 0
(o]
S
»
»

S TWOA ; assign the square root of D to local variable S
; assign 2*A to the local variable TWOA

o
B NEG ; calculate the first root

B NEG ; calculate the second root

Programming Hote

The number of nested program objects (which is also the number of program levels)
is equal to the number of assignments to sets of local variables (which is also equal to
the number of times the - operator is used).

The above program also illustrates that the scope of the local variables (B in particular) extends
to the second nested program object.

Programming Hotes

RPL applies the inheritance and visibility scheme of directories to local variables and
multi-nested program objects.

The next program offers a more algebraic version of the quadratic root solver. Notice that the
use of algebraic objects enhances the program’s readability:

; Listing 3.4. Quadratic Solver version 3.2

«

- ABC ; store data in local variables A, B, and C
«
‘Vv(SQ(B)=-4*A*C)’' EVAL ; calculate square root of determinant

Chapter 3. Directories, Variables, and Programs 35

*2*A’ EVAL ; calculate 2*A
- S TWOA ; assign the square root of D to local variable S
; assign 2*A to the local variable TWOA
L
‘(-B+S)/TWOAR’ EVAL ; obtain first root
’*(-B-S)/TWOA’ EVAL ; obtain second root

Reducing Program Levels

Nested program levels occur when local variables are declared later in the program. It is easier
for some programmers to list all of the local variables at the beginning of the program. Local
variables that store intermediate results are initilized with durnmy data. This method reduces
the program levels to two. Applying this technique to the above program perform the following:

1) Push two dummy values (usually zeros) in the stack -- one for S and the other for TWOA.
2) Include the variables S and TWOA in the first list of local variables.

3) Use the 'S’ STO and 'TWO’ STO to store the meaningful data in the S and TWO variables,
respectively.

Programmeng Hotes

The number of program levels can be reduced by declaring all or most of the local
variables at the beginning of the program. Local variables storing intermediate results
can be assigned dummy values and included in the first list of local variables.

The modified version of the quadratic solver is shown below:

Listing 3.5. Quadratic Solver version 3.3

push dummy values in the stack

store data in local variables A, B, and
C. Also store dummy zeros in local
variables S and TWOA.

‘'V(SQ(B)-4*A*C) '’ EVAL calculate square root of determinant

‘'S’ STO assign the square root of D to local variable S
*2*A’' EVAL calculate 2 A
‘TWOA’ STO assign 2*A to the local variable TWOA

obtain first root
obtain second root

*(-B+S) /TWOA’ EVAL
*(-B-S)/TWOA’ EVAL

Notice that the names of the variables S and TWO are enclosed in the tick characters. If these

Chapter 3. Directories, Variables, and Programs 36

characters are removed, RPL evaluates the variables instead of pushing their names in the
stack. This results in a runtime error due to attempting to store one number in another.

Accessing Global Variables

In most of the programs shown so far only local variables were used. This should not give you
the impression that programs should never interact with global variables. The intended point
stresses that local variables are more recommended than their global counterparts. However,
there are applications that must use global variables to store data between program calls. The
following simple program implements a random number generator. The seed is stored in the
global variable SEED. Whenever the program runs, it recalls the seed value from the global
variable SEED, calculates a new random number, and stores the result back in SEED. A copy
of the new random number is pushed into the stack for convenience. To run the next program
you must first create the global variable SEED and assign it a real number.

; Listing 3.6. Random number generator.
«

‘SEED’ EVAL ; recall the seed value from the global variable SEED
n -NUM + ; add pi to the old seed value

3 - : cube the result

FP ; retain the fractional part

DUP ; duplicate new random number in stack

‘SEED’ STO ; store a copy back in SEED

»

Using the above program you can reseed the random number generator by manually storing
a new real number in the global variable SEED. Programs can also use both local and global
variables -- local variables are used for short termn data storage, while global variables are
employed for long term data storage.

Mux@m

Global variables are used to:

® Storing data between program calls.
® Accessing data representing parameters specific to the current state of an HP48SX.

Calling Other Programs

RPL permits programs to call other programs as subroutines. If you have programmed on the
HP41C or used BASIC, this is not a new feature. The HP41C XEQ command empowered
programs to invoke other programs. Similarly, the BASIC GOSUB and CALL statements enable
internal or external subroutine calls. This feature fosters a structured approach for
programming on the HP48SX, as well as all other machines. RPL and its cousin language

Chapter 3. Directories, Variables, and Programs 37

FORTH enable you to develop a hierarchy of highly independent program objects. This process
involves a cycle of program development and testing.

I will illustrate this feature using the following program. Here, a dice is simulated, with the
output to the stack ranging from 1 to 6. The dice program calls the random number generator
program, presented above. This program assumes that the random number generator is stored
in the variable RNG.

; Listing 3.7. Dice simulator.
«

RNG ; call the random number generator program

6 * multiply by 6. The result is 0 < result < 6

IP truncate the number in level 1

1l + ; add one to make the final result in the range of 1 to 6
»

s e we®

While the above example is a simple one it shows the following important point: the RNG
program is independent of the dice program. In fact, the RNG program can be used in many
other programs that generate a wide variety of random numbers (e.g.., numbers that are
normally, log-normally, and linearly distributed). Callable programs should be independent of
their client programs. This may not always be the case. You may find or write callable
programs that strictly service multiple client programs. This type of callable program
participates in implementing structured programs.

Debugging Programs

Debugging is a form of executing a program in slow motion. This allows the programmer to
trace each program step being executed and watch the values of the variables and data.
Hewlett-Packard has implemented single-step debugging in all of its programmable pocket
calculators. The HP48SX is no exception. RPL allows you to debug a program using the
following steps:

® Enter any data the program expects to find in the stack. You might need to enter a particular
set of values that are causing the program to malfunction.

® Push the name of the variable storing the program in level 1.

® Press the [PRG] key and select the CTRL menu option.

® Select the DBUG option. This puts the HP48SX in debug mode. The name of the debugged
program is popped off the stack.

® Use the SST or SST+ option to single-step through the program. The SST option causes
subprogram calls to be executed at full speed. By contrast, the SST ¢ option empowers you to
single-step through the execution of a subprogram. Use the SST option when you do not
suspect a subprogram to contain the bug.

The HP48SX offers other debugging options. They are:
® The NEXT option permits you to look at the next program step. This is handy if you want

to select either the SST or SST¢ option.
® The KILL option takes the HP48SX resets the debugging mode. This option is useful if you

Chapter 3. Directories, Variables, and Programs 38

want to stop a debugging session and start a new one.

Next, I present two debugging examples. The first example single-steps through the first
version of the quadratic equation solver. The program, assumed to be stored in the variable
QDR, is shown again next:

; Listing 3.8. Quadratic Solver version 3.4.
«
- ABC ; store data in local variables A, B, and C
«
B SQ ; calculate B squared
AC 4 » * : calculate 4 A C
- ; obtain the determinant
v : get the square root of D
A 2 *
- S TWOA ; assign the square root of D to local variable S
; assign 2*A to the local variable TWOA
«
B NEG ; calculate the first root
S +
TWORA /
B NEG ; calculate the second root
S -
TWOA /

»
»

Enter the values 1, -5, 6, and 'QDR’ in the stack. Press the [PRG] key and the CTRL and DBUG
menu options. The name 'QDR’ is popped of the HALT annunciator is displayed at the top of
the HP48SX screen. The single-step tracing (using SST) is shown in the table on the next page:

Chapter 3. Directories, Variables, and Programs 39

Step #

O U s W N e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Statement executed/ Value in level 1 Comment
Object evaluated

- ABC none Assignment to local
variables

B -5 recall value in B

sQ 25 square the number in
level 1

A 1 recall value in A

c 6 recall value in C

4 4 push 4 in stack

* 24 multiply 4 and C

* 24 obtain 4*A*C

- 1 obtain determinant

v 1 get the square root

A 1 recall value in A

2 2 push 2 in stack

* 2 obtain 2*A

- S TWOA 2 assign results to
more local variables

B -5 recall value in B

NEG 5 change sign

s 1 recall value in S

+ 6 add -B and S

TWOA 2 recall value in TWOA

B -5 recall value in B

NEG 5 change sign

s 1 recall value in S

- 6 subtract -B and S

TWOA 2 recall value in TWOA

/ 3 obtain second root

Chapter 3. Directories, Variables, and Programs 40

Since the above program does not call any subprogram you may employ either the SST or SST ¢

option.

In the second debugging example we trace the execution of the dice program (saved under the
name DICE). Create the global variable SEED, if you already have not. Store 5 in SEED. Enter
the name 'DICE’ in the stack. Press the [PRG} key and select the CTRL and DBUG options.
Trace the program execution using the SST{ option to single-step through the RNG
subprogram. The single-step tracing is shown in the following table:

Step #

S W NN e

10
11
12
13

14

15
16
17

18

Statement executed/ Value in level 1 Comment
Object evaluated

‘SEED’ ‘SEED’ the name °‘SEED’ is
pushed in the stack
EVAL 5 evaluate ‘SEED’
n ‘m’ push ‘@’ in the stack
-NUM 3.14159265359 evaluate ‘n’
+ 8.14159265359 add SEED and pi
3 3 push 3 in the stack
~ 539.669791716 raise to power 3
FP 0.669791716 keep fractional part
DUP 0.669791716 duplicate level 1
‘SEED’ ‘SEED’ push ‘SEED’ in stack
STO 0.669791716 store level 1 in SEED
» 0.669791716 exit from subprogram
6 6 :ﬁgh 6 in the stack
* 4.018750296 ;ultiply levels 1 and
IP 4 truncate real number
1 1 push 1 in the stack
+ 5 add 4 and 1

» 5 end program DICE

Chapter 3. Directories, Variables, and Programs 41

p . 7&.#
RPN code is easier to debug than algebraic objects.

The fonger the algebraic objects the more difficult they are to debug.

Program Manipulation of Directories

Earlier in this chapter we examined creating, removing, and moving between directories. The
instructions discussed were for manual action. What about directory manipulation in
programs? The answer revolves around the fact that when you create a directory, RPL creates
a variable with the same name. As with all other variables, directory variables are inherited by
subdirectories. Thus, if a program pushes the name of a directory variable (i.e., the name of a
directory) on the stack and then executes an EVAL command, RPL attempts to evaluate that
variable. A successful evaluation leads to a movement to that directory. This results in a very
interesting feature, summarized by the following rules:

1) You can move between any two directories by evaluating a sequence of directory variables,
starting with HOME. This ensures that you always start with the root directory and proceed to
the target directory. The following program, named TDIR (which should be located in the
HOME directory) performs this task:

; Listing 3.9. Program TDIR

; Author: Namir Clement Shammas

; Version 1.0, created 8/15/90

; Purpose: perform a directory move

«

DUP ; duplicate list

SIZE obtain the size of the list

- LN assign list to local variable L
assign list size to local variable N

1N ; set limits for the FOR-NEXT loop

start FOR loop. 1 is the control variable

push the list in the stack

push the loop variable in the stack

obtain the I1’th list member (i.e. directory name)
evaluate the I’th member

GET
EVAL
NEXT

L]
et msssms s

The input to the above program is a list of a complete path. Consider the directory in Figure
3.1 on page 28. If you wanted to move from any directory to the NLR directory, you need to
supply the above program with the following argument:

Chapter 3. Directories, Variables, and Programs 42

{ HOME MATH OPTM NLR }

The program extracts the members of the supplied path and evaluates each one. Each
evaluation moves to that directory. The sequence of evaluation takes you to your target
directory.

2) You can move to a child subdirectory by simply evaluating its name. For example, if a
program is currently in the HOME directory (see Figure 3.1) and needs to move down to
STRING, it pushes the name STRING in the stack and evaluates it. The TDIR program can be
used. The input is a single member list, { STRING } in this case.

3) You can migrate upward along the same path by simply evaluating the name of the target
ancestor directory. For example, if a program is located in directory NLR and needs to move
to MATH, it simply evaluates the name '"MATH'. There is no need to mention OPTM, the parent
directory of NLR! This neat feature exists because of the inheritance in variables (including
directory variables) along a directory path. In the case of our example, the directory variable
MATH is visible in the directory NLR. Evaluating the directory name MATH successfully leads
to the MATH directory. The above program can also be used with this type of directory
traversal. A single-member list is needed. The input for our example is { MATH }. Notice that
the same input is needed to move from OPTM to MATH (although using UPDIR is quicker).

Programs Manipulating Programs

There are two basic types of languages and programs, namely, compilers and interpreters.
Compilers transform the readable source text into machine instructions. You need not compile
a program again to run it, unless you have changed it. When a compiled program runs, the
machine instructions are executed by the machine’s Central Processing Unit (CPU). By
contrast, interpreters execute a program by interpreting few parts of the program at a time.
Once, these parts are executed, the interpreter forgets about them. Consequently, if the
interpreter re-encounters program statements, it interprets them again! This is why interpreted
programs are slow. There are also language implementations that partially compile programs.
The compilers are called p-code (or psuedo-code) compilers. Such languages use a wide variety
of approaches. One compiles a program into instructions of an abstract CPU. During program
execution, the abstract instructions are translated into the instructions of the actual CPU.

One of the interesting advantages of using interpreters is dynamic program modification. This
is based on the fact that interpreted programs are regarded as data. As data, these programs
can be modified. One aspect of such modification is for a program to modify itself while it is
running. The interpreted BASICA and GW-BASIC possess such a capability. Another aspect
of program modification, applicable to RPL, is for a program object to modify another program
object before calling it. This approach is slightly different from the first one, since RPL
applications often consist of a set of semni-independent and modular program objects.

The basic steps in performing such program modifications are:

1) The edited program object is pushed in the stack and converted into a string.

Chapter 3. Directories, Variables, and Programs 43

2) The string image of the edited program is manipulated (this includes adding, removing, and
translating text) accordingly.

3) The string is converted back into the program object.

4) The altered program object is then stored in its proper host variable.

5) The modified program can be called, reflecting the runtime changes.

The following figure compares RPL and IBM-PC commands for traversing directory trees. Keep
in mind that the root of IBM-PC disks is simply the backslash character, \, while the root of the
HP48SX is HOME. The directories of figure 3.1 on page 28 are used.

RPL BASIC Comments

HOME CHDIR("\") move to the root directory
UPDIR CHDIR("..") move to the parent directory
‘MATH'’ EVAL CHDIR("\MATH") move from OPTM to MATH
‘OPTM’ EVAL CHDIR("\MATH\OPTM") move from NLR to OPTM
‘WORD’ EVAL CHDIR("WORD") move from STRING to WORD
‘STRING’ EVAL
‘WORD’ EVAL CHDIR("\STRING\WORD") move from HOME to WORD

Figure 3.3. Comparing the movement in the directory tree between RPL and IBM-PC BASIC.

Program Guidelines

Good programming practices are built on sound discipline. While there is not one single method
that must be followed, a few techniques have evolved. Here are some guidelines for good
programming practices:

® Plan your program ahead. The more complex the application, the more planning is needed.
Design the features and determine the functionality of the application.

® Determine the primary data objects that are used in your application.

® Develop an outline of the set of tasks required. This process is a cyclic one. Each cycle
defines the tasks at a specific level. The first cycle determines the major tasks required. The
second cycle defines the tasks required by the first-level tasks. Each successive cycle brings
more details on what needs to be done. You will reach a stage where the tasks are so well
defined that the next natural step is to write the RPL code. Computer scientists call this
method a top-down design.

e Implement the code using a bottom-up strategy. Since you have all the tasks defined, start
writing the RPL source code for the lowest level programs. These routines should be coded
before moving on the next level of programs, as guided by your outline. This process is
repeated until you have coded the complete application.

® Document your programs as if others will read it. You will be surprised how vague
undocumented programs will look six months or so after they are written. Give extra

Chapter 3. Directories, Variables, and Programs 4

explanation to programming tricks.
Include in your document the following:

® Program name.

® Your name.

® The version number.

® The date of creating the program.
® The date for the last update.

® Program purpose.

¢ Comments.

® A list of global variables.

® A list of local variables.

® A list of called subprograms.

Comment your documented programs. I use the semicolon to separate trailing comments.
Adopt a program indentation style. There is no concrete rule for indenting documented RPL
listings. I use tabs to indent each logical level. This includes nested program objects and the
statements of a loop or decision-making constructs (discussed in later chapters).

Use meaningful names for local and global variables. Be consistent in using the same names.
For example, the variable LEN should consistently mean the length of an array, list, or string.
This rule proves to be even more valuable when using single letter names.

Use bold characters when documenting subroutine calls. Use italic characters when
documenting global variables. This makes your listing more readable. Whatever style you
select, be consistent.

Use lowercase variable names for local variables.

Test your programs with several sets of data. Often you employ a single set of data that
works fine with a program. Test boundary and median values. Consider the case of testing
a program that inserts a small string in a big string. The median value is the middle of the
string. The boundaries are the head and tail of the string. Test the following cases:

® Inserting the small string before the first character of the big string.
® Inserting the small string after the last character of the big string.

Boundary-value cases frequently require additional code to detect them and properly deal
with them.

Interactive Input and Output

We will explore interactive keyboard input and output in this chapter. The popular term user-
friendly software is a reminder that (a) the user is supposed to know what to do, and (b) the
user never makes mistakes. Most end-users welcome programs that guide them with messages,
menus, and other fool-proof measures. This chapter discusses techniques that handle input
prompting, menu selection, sound, and labeled output.

Some Prompts Never Die!

The HP41C PROMPT command is also available in the HP48SX. It offers a simple method
(compared to the INPUT command, discussed later) for prompting the user for input. The
HP48SX PROMPT command takes a string in level 1 and displays it in the upper left corner of
the screen. The program control returns to the keyboard. This means that you are free to key
in one or more data objects and even perform intermediate calculations! When you are good
and ready for the program to resume, invoke the CONT command (by pressing the [left
shift]|ON] keys). The following program modifies a version of the quadratic solver from Chapter
3 by adding a PROMPT command. The latter displays the following string at the upper left
screen corner:

Enter A, B,and C:

To comply with the request, enter three real numbers and invoke the CONT command to
resume program execution.

; Listing 4.1. Quadratic Solver version 4.1
“«

prompt for input

push dummy values in the stack

store data in local variables A, B, and
C. Also store dummy zeros in local
variables S and TWOA.

"Enter A, B, and C : " PROMPT
0

o

- A B C S TWOA

®e wo me we e

«

‘V(SQ(B)=4*A*C)’ EVAL
‘S’ STO

*2*A’ EVAL

*TWOA’ STO

*(=B+S) /TWOA’ EVAL
*(-B-S)/TWOA’ EVAL

calculate square root of determinant

assign the square root of D to local variable S
calculate 2 A

assign 2*A to the local variable TWOA

obtain first root

obtain second root

e %o me mo we w0

Chapter 4. Interactive Input and Output 46

The display during the program looks like:

Enter A, B, and C :

4:
3:
2:

Boo-l I I D N

Labeling the Output

If you run the above program you might complain of the ambiguity of the output. While the
program prompts you for the input, the output consists of two real numbers with no explanation
of what they are. The HP48SX offers at least two methods to label the program output. The
first uses tags attached to stack objects. For example, the tagged output of the above program
might look like this:

2: ROOT1:2.5
1: ROOT2:4.5

The second technique is to simply build a string that contains the output and its explanation.
Thus, the output of the above program might look as follows:

2: "ROOT1 = 2.57
1: "ROOT2 = 3.4

What's the difference between the two methods? Tags are very easy to attach and remove.
Consequently, the tagged results can be further used by the program with practically no
additional manipulation. Using strings has the advantage of giving you better wording. The
down side is that if the results need to be used later, they must be extracted from the string.
A program may store the results in variables and concatenate copies to the output strings. This
way, the results are easily retrieved from the host variables.

To tag an object in level 1 of the stack, you push the tag name and invoke the «TAG command.
The following listing shows the last version of the quadratic solver modified to include tags with
the output:

; Listing 4.2. Quadratic Solver version 4.2

«

"Enter A, B, and C" PROMPT ; prompt for input

00 ; push dummy values in the stack

- A B CS TWOA ; store data in local variables A, B, and
; C. Also store dummy zeros in local
; veriables S and TWOA.

Chapter 4. Interactive Input and Output 47

calculate square root of determinant

assign the square root of D to local variable S
calculate 2 A

assign 2*A to the local variable TWOA

obtain first root

attach a ROOT1 tag to the first root

obtain second root

sttach a ROOT2 tag to the second root

‘V(SQ(B)-4*A*C)‘ EVAL
‘S’ STO
*2*A’ EVAL

*TWOA’ STO

*(-B+S) /TWOA’ EVAL
*ROOT1’ =TAG
*(-B-S)/TWOA’ EVAL
*ROOT2’ =TAG

»

®s s %e ®s we vy we we

The next version of the quadratic solver uses strings to display the results. I also wrote the
program to store the results in the global variables ROOT1 and ROOT2. The program is shown
below:

; Listing 4.3. Quadratic Solver version 4.3
«

; prompt for input

push dummy values in the stack

; store data in local variables A, B, and
C. Also store dummy zeros in local

; variables S and TWOA.

"Eroxter A, B, and C : " PROMPT
- A B C S TwOA

o

; calculate square root of determinant

“«
‘'V(SQ(B)-4*A*C)’ EVAL
(o} assign the square root of D to local variasble S

‘S’ ST

‘2*A’ EVAL calculate 2 A
"TWOA’ STO ; assign 2*A to the local variable TWOA
"ROOT1 = " ; push the first string tag in the stack

; obtain first root
; duplicate the above result
store in global variable ROOT1

*(=B+S)/TWOA’ EVAL
DUP
“ROOT1’ STO

+ ; concatenate the string tag and the first root
"ROOT2 = " push the second string tag in the stack
‘(=-B-S)/TWOA’ EVAL obtain second root
DUP duplicate the above result

‘ROOT2’ STO store result in global variable ROOT2
+ concatenate the string tag and the second

root

®e %o ®e Be®e e e Ny B We We B ®e Ve ®

»
»

The INPUT Command

The HP48SX offers a second interactive input command besides PROMPT. The INPUT
statement, perhaps intentionally named after BASIC's INPUT statement, offers more power. The
INPUT command permits you to display two strings: a prompt string located where level 4
appears, and a string in the command line. The latter may be used to supply default input and
more sophisticated prompting. When the INPUT command is invoked it takes the machine into
command-line editing mode. You can edit the command line. Pressing the [Enter] key resumes
program execution.

Simple Input
Ley's use a series of short examples to explain the rather un-obvious way of using INPUT. The

first example modifies version 4.2 of the quadratic solver by replacing PROMPT with INPUT.
Instead of having a single prompt for three data, you get a separate prompt for each input. This

Chapter 4. Interactive Input and Output 48

makes the program more friendly to users who are not comfortable with RPN and stacks. The
three INPUT statements are similar. Each takes two string arguments from the stack. The first
string is the prompt that appears at the upper left screen. The second string is placed in the
command line. Since the second string is empty, the command line appears empty when
INPUT is invoked. The OBJ- command transforms the input into the appropriate object type,
real numbers in our case.

; Listing 4.4. Quadratic Solver version 4.4

«

"Enter A" "" INPUT OBJ- ; prompt for A

"Enter B" "" INPUT OBJ- prompt for B
prompt for C

"Enter C" "" INPUT OBJ-
00 push dummy values in the stack
- A B C S TWOA store data in local variables A, B, and
C. Also store dumy zeros in local

variables S and TWOA.

s ms ®ses s ws

«

‘V(SQ(B)=-4*A*C)‘ EVAL
‘S’ STO

*2*A’ EVAL

‘TWOA’ STO
*(=B+S)/TWOA’ EVAL
*ROOT1’ =TAG
*(-B-S)/TWOA’ EVAL
*ROOT2’ —=TAG

»

calculate square root of determinant

assign the square root of D to local variable S
calculate 2 A

assign 2*A to the local variable TWOA

obtain first root

attach & ROOT1 tag to the first root

obtain second root

attach a ROOT2 tag to the second root

®e %o me wp we we e W

»

The screen is shown below when prompting for the first coefficient:

PRG
{ HOME }

Enter A

<
ol I I I

Using a Default Input

The next version of the quadratic solver uses default input data for each coefficient. Thus, the
second INPUT string is no longer empty. Instead, it contains a default value. When you run
version 4.5 the command line contains a default value. If you press [Enter] the default value
is used.

¢ Listing 4.5. Quadratic Solver version 4.5

o

"Enter A" "1" INPUT OBJ- ; prompt for A with a default value of 1
"Enter B" "-=5" INPUT OBJ- ; prompt for B with a default value of -5
"Enter C" "6" INPUT OBJ- ; prompt for C with a default value of 6
00 ; push dummy values in the stack

Chapter 4. Interactive Input and Output 49

- A B CS TWOA store data in local variables A, B, and
; C. Also store dumy zeros in local

variables S and TWOA.

‘V(SQ(B)=-4*A*C)‘ EVAL
‘S’ STO

*2*A’ EVAL

*TWOA’ STO

*(=B+S) /TWOA’ EVAL
*ROOT1’ =TAG
*(-B-S) /TWOA’ EVAL
*ROOT2 ' =TAG

; calculate square root of determinant

; assign the square root of D to local variable S
; calculate 2 A

; assign 2*A to the local variable TWOA

; obtain first root

; attach a ROOT1 tag to the first root

obtain second root

sttach a ROOT2 tag to the second root

®e s s me wews ns®

»

The screen is shown below when prompting for the first coefficient:

PRG
{ HOME }

Enter A

la
H-o:] I I B N

To avoid using the default value you must delete it. It will not automatically disappear if you
press an alphanumeric key when prompted. Many microcomputers applications use the latter
technique, which is superior to the HP48SX approach.

Manipulating the Default Input

The last program illustrated how a default input is supplied. I purposely chose a simple default
value. The INPUT command allows you to position the cursor anywhere inside the default value
and set insert or overwrite mode. This is shown by the next program that prompts you for your
phone number. The prompt string for the INPUT statement is "Enter phone number”. The
second argument for INPUT is a list that contains a string and a real number. The string
"(804) __ - » displays a phone number template with a default area code. The number -
7 is interpreted as "put the cursor 7 characters from the left side of the string.” The negative
value signals that the cursor is in overwrite mode. Had I used the positive number 7, the cursor
would be in insert mode. For this kind of prompt, the insert mode is the appropriate mode.
When the INPUT statement is executed, the solid block cursor (indicating that you are in
overwrite mode) is located at the first underscore character. You may move the cursor to the
area code data and type in another value. The underscore characters remind you of where you
need to type non-default input. After you press the [Enter] key, the program extracts the area
code and phone numbers, tags them, and leaves them in the stack. The listing is shown below:

Chapter 4. Interactive Input and Output 50

; Listing 4.6. Program to demonstrate default input.

"Enter phone number”

{ "(804) - " =7} INPUT prompt for the phone number

DUP ; duplicate the input
2 4 SUB ; extract the area code
‘AreaCode’ =TAG ; tag a label to area code string
SWAP ; swap to access other input copy
7 14 SUB ; extract phone number

.

‘Number’ -TAG

tag a label to phone number string

The screen is shown below when prompting for the phone number:

PRG
{ HOME }

Enter phone number

804) « -
hTELl Hoo:l I I B

The rules for using this type of advanced prompting are:

® The argument for INPUT in level 1 is a list made up of a string and a real number.

® The string appears in the command line. Quoted string constants may appear in the list.
However, variables containing strings must be first evaluated and the result included in the list.
® The absolute value of the real number represents the position of the cursor from the left side
of the string. A value of 3 puts the cursor at the third string character. A zero indicates that
the cursor is placed after the command-line string. The absolute value of the real number is
rounded up. Thus, 7.6 is rounded up to 8, while 7.4 is rounded down to 7.

® The sign of the real number indicates the cursor mode. Positive values put the cursor in
insert mode (the cursor appears as a left-pointing arrow). By contrast, negative values invoke
the overwrite mode (the cursor appears as a block).

Programming Hote

The absolute values of the real numbers are located. For example, -7.6 is rounded to
the number -8.

Chapter 4. Interactive Input and Output 51

Tag-Aided Input

Version 4.2 of the quadratic solver uses the PROMPT command to prompt you for all three
coeflicients. The last two versions of the quadratic solver use the INPUT command to
individually prompt for each coefficient. You can use the INPUT command to prompt for several
items at once. Tags can be used to assist in the input multiple items. The command line string
contains the sequence of needed tags (one for each input datum). To display each tag on a
separate line, each tag must be followed by a return character. What about the cursor? Where
should it be located? The INPUT command allows you to select the row and column position
of the cursor using a list of two reals (I will call this list the input control list) . The first real
number is the tag index. Thus, 1 locates the cursor in the line of the first tag that appears in
the command-line string. The number 3 positions the cursor at the second tag in the command-
line string, and so on. If the tag index is greater than the actual number of tags, the cursor is
located at the last tag. In addition, the sign of the tag index number selects the insert or
overwrite mode. Positive values set the insert mode, while negative values select the overwrite
mode.

The second real number in the list specifies the number of characters from the left side of a tag.
Thus, { 2 1 } indicates that the cursor is located at the first character of the second tag.
Assigning O to the character position causes the cursor to be located after the tag. Thus, { -4
0 } locates the cursor after the fourth tag and selects the overwrite mode.

Programming Hote

The list { n m } used with the INPUT command places the cursor at the m'th character
of the n'th line. If n is zero or greater than the actual number of lines, the cursor is
located at the last line. If m is zero, or greater than the length of the n'th line, the
cursor is located after the line's text.

The HP48SX screen shows up to four tags at a time. When using more than four tags,
you scroll through them using the up and down arrow keys.

Prompting with more than three tagged items overwrites the prompt string.

The next program shows a version of the quadratic solver that uses the INPUT command as
discussed above (note: the symbol 8 in the listing is a carriage return):

; Listing 4.7. Quadratic Solver version 4.6

«
"Enter A, B

, C" ; display prompt string
{ ":A:®:B:®8:C:" {10)) ; set command-line string and cursor mode and
; location
INPUT OBJ= ; invoke INPUT command

Chapter 4. Interactive Input and Output 52

(o] push dummy values in the stack
- store data in local variables A, B, and
C. Also store dummy zeros in local

variables S and TWOA.

0
A B C S TWOA

“o g mo wo

‘'Vv(SQ(B)-4*A*C)’ EVAL calculate square root of determinant

‘'S’ STO assign the square root of D to local variable S
*2*A’ EVAL calculate 2 A
‘TWOA’ STO assign 2*A to the local variable TWOA

*(-B+S)/TWOA’ EVAL
*ROOT1’ =TAG
*(-B-S)/TWOA’ EVAL
*ROOT2’ =TAG

obtain first root
attach a ROOT1 tag to the first root
obtain second root
attach a ROOT2 tag to the second root

»
The screen image of a sample session is shown below. The image shows the following:

® The tags A, B, and C.

® The number 1.4 was entered for the tag A.

® The cursor is currently located after the tag B.
® The tag C has yet to receive its input.

PRG
{ HOME }

Enter A, B, C
tA:1.4
tB:«

W= Eoo-d I I B

To move up or down between tags use the up and down arrow keys. Using these keys, you are
free to move back and forth between the tagged data. You can also edit your input (and any
default values) very easily.

Input Validation

The INPUT command offers a basic input validation feature. By including an unquoted V
parameter in the input control list, your programs can detect input that does not correspond
to any valid object type. Let's consider the last program. If you enter an ill-formatted number,
say 1..4, the two-decimal number is not checked by INPUT. Consequently, the above program
is halted later due to the attempt to handle the erroneous input. There are two cures: insert a
set of commands that hunt for bad input, or use the V parameter. This parameter causes the
INPUT command to make sure that the input after each tag corresponds to a valid object type.
This is by no means a fool-proof measure, since, for example, you can enter a matrix where a
complex number is expected. More effective validation is discussed in the chapter on error-
handing. Thus, to utilize INPUT's data validation you need to change the following list:

Chapter 4. Interactive Input and Output 53

{ ":A:B:B:®:C:" {10 })
into

{ ":A:8:B:8:C:" {10) V)

The members of the input control list can appear in any order.

Other Input Control Parameters

The HP48SX offers two more input control parameters. They are the ALG and the a parameters
which must be appear unquoted in the input control list. The ALG parameter puts the HP48SX
in algebraic-object mode. The a parameter locks the alpha input. This parameter is very useful
for string input.

Controlling the Screen Output

The HP48SX offers a set of commands that permit you to control the screen output. The
CLLCD command clears the LCD display of the machine. Once the screen is blanked, the DISP
command is able to write to the screen using medium-size characters. The DISP command
treats the LCD screen as having 7 rows and 22 columns. The rows are numbered 1 though 7,
with one being the top screen row. The stack is redisplayed when the program ends or when
a HALT command is executed. The following program uses the CLLCD and DISP commands
to demonstrate these commands. The output displays strings "ROW # 1” through "ROW #7°,

Listing 4.8. DISP command demo, version 4.1

~e

CLLCD : clear LCD

"ROW # 1" 1 DISP ; display strings on rows 1 to 7
"ROW # 2" 2 DISP

"ROW # 3" 3 DISP

"ROW # 4" 4 DISP

"ROW # 5" 5 DISP

"ROW # 6" 6 DISP

"ROW # 7" 7 DISP

T

S WAI
»

; wait 5 seconds

The DISP command converts the usual LCD display into a 7-by-22 character message board.
This permits the implementation of on-line help and condensed output.

The above program introduces the WAIT command. It suspends program execution for a
specified number of seconds. The waiting period is taken from level 1. The above program

Chapter 4. Interactive Input and Output 54

pauses for five seconds after displaying the seven strings, before the normal stack reappears.

While pausing a program for a specified period has its appeal, it also has drawbacks. What if
the user was distracted during the pause? The remedy is to make the program pause until a
the user presses a key. The WAIT command accommodates this requirement, too. By
supplying an argument of zero, the WAIT command pauses the program until a key is pressed
(the alpha and shift keys are excluded). It returns the code for the pressed key. If this
information is of no value to the program, simply pop it off the stack. I have modified the last
program to include the WAIT command with a zero argument. The seven strings remain visible
until you press a key.

; Listing 4.9. DISP command demo, version 4.2

CLLCD ; clear LCD

"ROW # 1" 1 DISP ; display strings on rows 1 to 7
"ROW # 2" 2 DISP

"ROW # 3" 3 DISP

"ROW # 4" 4 DISP

"ROW # 5" 5 DISP

"ROW # 6" 6 DISP

"ROW # 7" 7 DISP

0O WAIT ; wait until a key is pressed

DROP ; drop the keystroke code generated by the 0 WAIT command

The HP48SX offers the KEY command that works like 0 WAIT. The difference is that when
KEY is invoked it returns O if no key was pressed; otherwise, the command returns the key
code. The most common use of the KEY function includes the conditional DO-UNTIL loop (more
about loops in Chapter 7). For now, don’t worry about the loop if it looks ambiguous. The new
program version is shown below:

; Listing 4.10. DISP command demo, version 4.3

CLLCD ; clear LCD

"ROW # 1" 1 DISP : display strings on rows 1 to 7
"ROW # 2" 2 DISP

"ROW # 3" 3 DISP

"ROW # 4" 4 DISP

"ROW # 5" 5 DISP

"ROW # 6" 6 DISP

"ROW # 7" 7 DISP

DO ; use an empty DO-UNTIL loop
UNTIL KEY END ; loop until 8 key is pressed
DROP ; drop the keystroke code generated by the KEY command

The HP48SX Bells and Whistles

The HP41C offered the BEEP and TONE commands to add sound to programs. Most BASIC
implementations also have sound commands. The HP48SX offers the BEEP command that
allows the data in the stack to specify the frequency and duration of the sound. The
functionality of the HP48SX BEEP resembles the BEEP command in many BASIC

Chapter 4. Interactive Input and Output 55

L]

implementations. The argument in level 2 is the tone frequency. The argument in level 1 is
the tone duration in seconds. The following version of the DISP command demo program beeps
for 0.2 seconds after a key is pressed:

; Listing 4.11. DISP command demo, version 4.4
«

CLLCD ; clear LCD

"ROW # 1" 1 DISP ; display strings on rows 1 to 7
"ROW # 2" 2 DISP

"ROW # 3" 3 DISP

"ROW # 4" 4 DISP

"ROW # 5" 5 DISP

"ROW # 6" 6 DISP

"ROW # 7" 7 DISP

0 WAIT ; wait until a key is pressed
DROP ; drop the keystroke code generated by the 0 WAIT command
1000 .2 BEEP ; toot the 48’s horn!

Using Menus for Input

The latest generation of Hewlett-Packard hand-held programmable calculators extensively uses
menus. In addition to a wealth of predefined menus, the HP48SX allows you to set up your own
custom menu. This menu may be used to collect frequently used commands and functions.
The custom menu can also be used for a menu-directed input.

Building Custom Menus: A Crash Course

If you are familiar with creating custom menus, you may skip this subsection. The [CST] key
invokes the custom menu of the HP48SX. Interestingly, there are variations in the process of
creating custom menus. This is a quick rundown for these methods.

To create a custom menu you need to place a list of menu items in level 1 and invoke the MENU
command (by pressing the [right shift][CST] keys and selecting the MENU option). The type of
list members determine how sophisticated the custom menu is.

The simplest way to define a custom menu is to include a list of commands and other objects
that appear verbatim in the custom menu. For example, consider the following list used with
a MENU command:

{ DUP DROP QDR "HP48SX" SEED CST)} MENU

Chapter 4. Interactive Input and Output 56

The custom menu that appears when pressing the [CST] key is shown below:

{ HOME)}

N W b

1:

liovel Bororf eorl Bires) Bseeof Mcstl

The first two options are predefined commands. The third option invokes the quadratic solver
program saved as the variable QDR. The fourth menu option pushes the string "HP48SX" in
the stack. The fifth option recalls the contents of the global variable SEED (if it exists) or pushes
the name 'SEED’ in the stack. The last option is similar to the last one, except it works with
the global variable CST. This variable is created by the machine when the MENU command
was executed. The variable CST contains the list used to create the most recent custom menu.
By storing the menu list in the CST variable, the HP48SX is able to offer you a separate custom
menu for each directory! Moreover, if you have selected the custom menu and move to another
directory, the HP48SX automatically displays the custom menu of the new directory.

Programming Hote

By storing the menu list in the CST variable, the HP48SX is able to offer you a separate
custom menu for each directory! Moreover, if you have selected the custom menu and
move to another directory, the HP48SX automatically displays the custom menu of the
new directory.

The second genre of custom menus allows the menu options to be aliased using labels. This
means that the menu displays a label name that is different from the actual name of the
evaluated object. The menu labels are strings. Each menu option and its label must be
enclosed in a list. The above custom menu list can be modified to use labels as shown below:

{ DUP DROP { "ROOT" QDR } { "48" "HP48SX" } SEED CST)} MENU

The label ROOT is now used instead of the name of the program QDR. The string "HP48SX"
is now replaced with an abbreviated label "48". The custom menu that appears when pressing
the [CST] key is shown below:

Chapter 4. Interactive Input and Output §7

{ HOME)}

4:
3:
2:

Bi-vrl Bororll Brooll W<l Bseeoll Wics

Using menu labels also makes it possible to associate a label with a program object. For
example, the SEED option which recalls the contents of variable SEED can be changed to
perform the reverse. A label "»SEED" is used with a program object that stores the data oflevel
1 in the variable SEED. Notice that the label uses the right arrow to signal that the option is
used to store data into SEED. The modified custom menu list is shown below:

{ DUP DROP { "ROOT" QDR } { "48" "HP48SX")} { "SEED" « ‘SEED’ STO » CST }

The third type of custom menu allows you to define additional functionality with the right and
left shift keys. To implement this feature a menu label must be followed by a list of three
objects. The first object handles pressing the menu option. The second and third objects deal
with the use of the left and right shift keys, respectively. The following list shows a new version
of the custom menu list, with the -»SEED option supporting the shift key functionality:

{
DUP
DROP
{ "ROOT" QDR)}
{ "48" "HP48SX")
{ "SEED"
{
« ‘SEED’ STO »
« SEED »
« CLLCD
"Random number seed value" 1 DISP
"Option # get seed value" 2 DISP
"LShift - store value" 3 DISP
"Press any key ..." 7 DISP
O WAIT DROP
»
}
CST
} MENU

The three objects in the list following the "+»SEED" label are program objects. The first program
object stores data at level 1 in the variable SEED. This program runs when the menu option
is pressed. The second program object recalls the value of the SEED variable. This takes place
when the left shift key is pressed before menu key. The third object is a longer program that
offers on-line instructions and help. The help screen is shown below:

Chapter 4. Interactive Input and Output 58

Random number seed value
Option = get seed value
LShift - store value

Press_any k

Bovel |DRo:i ool I+l Wseeol McsT

Menu Input

Custom menus can be used to implement a special class of applications. These programs
invoke the custom menu to display the names of the variables and the subprogram options.
The custom menu becomes the focal point for entering data and running program code. Unlike
the sequential input, using custom menus empower the user to selectively re-enter data. Of
course, all of the data variable must be assigned values initially. After the first round of
calculations, the end-user can ask what-if questions and update selected variables without going
through the whole list. This method is even faster than a sequential input method that uses the
last values you entered as default data.

To use menu-aided input, the host program must create and remove the custom menus as
needed. The program section using menu-aided input needs to invoke the MENU command
after defining the custom menu list. Here is a set of rules and suggested guideline for
constructing the menu lists for menu-aided input:

1) Global variables are used to store and recall the data.

2) The global variables are created when the menu is constructed and are purged when the
menu is no longer needed.

3) The menu labels associated with the global variables should start with the variable -» symbol
to signal that the menu option handles a variable (and does not execute a program object).

4) The menu option that handles a global variable should be set as follows:

¢ The unshifted option stores data in the variable.
¢ The left shift option recalls the value in the variable.
® The right shift option offers an on-line explanation.
5) The menu option that handles a program object should be set as follows:

¢ The unshifted option executes the program object.
® The right shift option offers an on-line explanation.

6) A menu option should be used to properly exit the program. The action taken by this option
includes purging the global variables used and clearing the custom menu.

The above rules and guidelines are applied to the quadratic solver. The listing of this new

Chapter 4. Interactive Input and Output 59

version is shown below:

; Listing 4.12. Menu-aided version of the quadratic solver.
«
{
"SA" ; set label for coefficient A
{
« ‘A’ STO » ; --- unshifted menu option ---
; store value in global variable A
« A » ; --- left shift menu option ---
; recall value from global variable A
« ; --- right shift menu option ---
; provide with on-line help
CLLCD ; clear display
"COEFF. OF X~2" 1 DISP ; show message in screen row 1
O WAIT DROP ; wait for a key to be pressed
»
}
}
{ -
"=B" ; set label for coefficient B
« ‘B’ STO » ; --- unshifted menu option ---
; store value in global variable B
« B » ; --- left shift menu option ---
; recall value from global variable B
“« ; --- right shift menu option ---
; provide with on-line help
CLLCD ; clear display
"COEFF. OF X" 1 DISP ; show message in screen row 1
O WAIT DROP ; wait for a key to be pressed
»
}
}
{ .
"=Cc" ; set label for coefficient C
{
« ‘C’ STO » ; --- unshifted menu option ---
; store value in global variable C
« Co» ; --- left shift menu option ---
; recall value from global variable C
« ;s --- right shift menu option ---
; provide with on-line help
CLLCD ; clear display
“"CONST TERM" 1 DISP ; show message in screen row 1
0 WAIT DROP ; wait for a key to be pressed
»
}
}
{ .
"soLv" ; set label for the quadratic solver
{
« ; --- unshifted menu option ---
ABC : push the quadratic coefficients in the stack
QR ; invoke QR, the quadratic solver subroutine

--- left shift menu option ---
DO NOTHING!

--- right shift menu option ---
provide on-line help

"QUADRATIC SOLVER"

Chapter 4. Interactive Input and Output 60

1 DISP
O WAIT DROP
»
}
}
{ N
"EXIT" ; set label for exit option
{
«
‘A’ PURGE ; purge the global variables A, B, and C
‘B’ PURGE
‘C’ PURGE
MENU ; clear the custom menu
2.01 MENU ; select the VAR menu
»
) }
} MENU ; build and activate the custom menu

The above program object should be stored in a variable, say, MQDR. When the MQDR program
is executed is sets up the custom menu shown below:

{ HOME)}

W

2:
BN Bl B Esouvl E=xr

The first three custom options manage the global variables A, B, and C involved with the
quadratic solver. The menu options for these coeflicients are coded very similarly. The
unshifted option stores the number in level 1 of the stack in the corresponding global variable.
The left shifted menu option recalls the content of that variable. The right shift option provides
a verbose explanation of what that variable is.

The SOLV menu option offers two active choices. The unshifted option pushes the data in the
global variables A, B, and C in the stack and then invokes the subroutine QR (QR can be any
version of the quadratic solver in Chapter 3). The left shift option is made idle by using an
empty program object. The right shift option has an program object that displays a verbose
program title. The SOLV option shows that you can invoke program objects stored in other
variables.

The EXIT option is the most interesting one. Its task is to remove the global variable used,
remove the custom menu, and return to the VAR menu. Inspecting the CST variable after the
action of this option returns an empty list. You can delay selecting this option until you need
to reuse the custom menu. This means that you can move to other menus and return to the
custom menu at your discretion.

Chapter 4. Interactive Input and Output 61

The HP48SX also allows the use of temporary menus. They are more transient than custom
menus. Moreover, using temporary menus does not overwrite custom menus. The TMENU
command works like MENU. You can use the temporary custom menu if the use of the menu-
aided program is just that -- temporary.

Menu-aided programs can also use a hierarchy of menus. This requires a more elaborate
scheme of custom menu manipulation. It is worth mentioning that such programs simulate
multiple levels in the same directory. The removal of variables can be done as you go up the
menu levels -- the variables of the level left behind are removed. An alternate scheme is to
remove all the global variables (created by the different menu levels) by an EXIT-type option
located at the highest menu level.

Chapter 4. Interactive Input and Output 62

Notes

Operators and Expressions

Operators and expressions for the different data objects will be examined in this chapter.
Operators are special functions. They work with one or two operands and are either symbols
(such as the + sign) or reserved keywords (such as MOD). Expressions contain one or more sets
of operators and operands.

Mathematical Operators and Expressions

This class of operators and expressions is involved in computing a mathematical result. In this
section I will discuss these operators applied to real numbers, complex numbers, binary
integers, arrays, and matrices.

Real Numbers

The operators for real numbers are familiar to calculator users. These include the operators for
the four operations, as well as the power and modulus operators. Figure 5.1 lists these
operators and includes examples in algebraic objects. The figure also shows the priority levels
of these operators when they appear in algebraic expressions. More about this next.

The HP41C user is familiar with RPN expressions --- the sequence of RPN commands that
calculate aresult. By contrast, the BASIC programmer is accustomed to algebraic expressions.
The latter type of expression is generally easier to read, unless the expression is riddled with
parentheses. Examples of both types of expressions are shown in Figure 5.2.

Case number 1 shows a simple expression containing a single operator. Case number 2 shows
an algebraic expression with two + operators and a * operator. The equivalent RPN expression
is written to account for the different priority levels between the + and * operators in the
algebraic expressions. Figure 5.3 shows the sequence of evaluating the latter. This sequence
matches that of the RPN expression. Case number 3 shows how parentheses are used to
evaluate the priority of the first + operator in the algebraic expression. Figure 5.4 shows how
that results in the sequential evaluation of the operators. Case number 4 also shows how
parentheses are used to give the * operator a higher precedence over the power operator.

Chapter S. Operators and Expressions 64

Operator Function Priority Level Example
+ unary plus 4 ‘45’
- unary minus 4 ‘=5
+ add 1 ‘5+8°
- subtract 1 '22-5"
* multiple 2 '4*45’
/ divide 2 *355/113"
~ raise to power 3 ‘23’
MOD modulus 2 ‘355 MOD 7'
Note: Higher priority operators are performed before lower ones.

Figure 5.1. The operators for real numbers.

Complex Numbers

The operators of the complex numbers are the same ones for the real numbers, except the
modulus operator. The unary negation (i.e., change of sign) works on both real and imaginary
components of a complex number. The complex number operators have the same priority of
evaluation in algebraic expressions.

Complex and real numbers can appear in the same expression. The following rules apply:
@ Multiplication and division: the real number is applied to both parts of the complex number.

® Addition, subtraction, and raising to a power: the real number is first converted into a
complex number with a zero imaginary part.

Chapter 5. Operators and Expressions 65

Case # RPN Expression Algebraic Expression Result

1 5

6

+ S+ 6 11
2 3

4

5

*

+

6

+ 3+4*5+6 29
3 3

4

+

5

*

6

+ (3+4)*5+6 41
4 355

113

/

2

. (355/113)~2 9.87

Figure 5.2. Examples of algebraic expressions and their equivalent RPN expressions.
Binary Integers

The mathematical operators for binary integers are essentially limited to the four basic
operators. Another limitation comes from the fact that binary integer constants cannot enter
algebraic expressions. However, variables storing binary integers can appear in algebraic
expressions. Figure 5.5 lists the mathematical operators. I have omitted the unary negation
operator, since it has the same effect as a bitwise-NOT operator, presented later.

Chapter 5. Operators and Expressions 66

Step # Expression

0 3+4*54+ 6
v

1 3+ 20 + 6

v

2 I23 +6l
v

3 29

Figure 5.3. The steps involved in evaluating the algebraic expression is case 2.

Step # Expression
0 (3+44) *5+ 6
v

1 7 * 5 + 6
v

2 | 35 +?
v

3 41

Figure 5.4. The steps involved in evaluating the algebraic expression is case 3.

Chapter S. Operators and Expressions 67
. __]

Operator Function Priority Level Example Result
+ add 2 #12d #FFh + 267d
- subtract 2 #FFFFh #1000d - 64535d
* multiple 1 #270 #100b * 1340
/ integer divide 1 #3554 #1134 / 3d

Figure 5.5. The math operators for the binary integers.

RPL allows a limited interaction between binary integers and real numbers. By contrast, no
interaction is allowed with complex numbers. If such operations are desired, the binary integers
must be first converted into real numbers using the B»R command.

Real Arrays and Matrices

The mathematical operators for arrays work with real numbers, complex numbers, other arrays,
and matrices. The following operations are supported:

® Negation of an array results in the negation of all its elements.
o Communicative multiplication between an array and areal number. The result

is a real array.
e Communicative multiplication between an array and a complex number. The

result is a complex array.
® Division of an array by a real number (but not the other way around). The

result is an array of real numbers.
® Division of an array by a complex number (but not the other way around). The

result is a complex array.
e Addition and subtraction of two arrays that have the same size.

Figure 5.6 lists the operators between arrays and real numbers, complex numbers, and other
arrays.

Chapter 5. Operators and Expressions 68

Operator Operandl Operand2 Result Examples

- array array (1 1) NEG gives [-1 -1)

* real array array 5 [(111) * gives [5 5 5)
array real array [111) 5 * gives [5 § 5]
complex array complex (1,1) [2 2) * gives

array [(2,2) (2,2))
array complex complex (2 2) (1,1) * gives
array ((2,2) (2,2))

/ array real array (S 55) 5 / gives [1 1 1)
array complex complex {10 10) (2,2) / gives

array [(2.5,-2.5) (2.5,-2.5)]

+ array array array (1 1) (2 2) + gives [3 3)

- array array array (5 5) [1 1) - gives (4 4)

Note: the HP48SX allows the addition and subtraction of arrays that have the
same size. You can mix complex and real arrays.

Figure 5.6. The mathematical operations between arrays and real numbers, complex numbers,
and other real arrays.

The mathematical operators for matrices are similar to those for arrays. The same operations
for arrays are supported, plus the following:

® Multiplying an array and a matrix. The array must be in level 1 and the
matrix in level 2. The size of the array must equal the number of matrix
columns. The result is an array whose size is equal to the number of matrix
TOWS.

® Dividing an array by a matrix. This essentially solves a system of linear
equations.

® Multiplying two matrices. The first matrix has m rows and n columns. The
second matrix has n rows and p columns. The result is a matrix with m rows
and p columns.

Figure 5.7 shows the mathematical operators for real matrices. Examples are also included.

Chapter S. Operators and Expressions 69

Operator Operandl Operand2 Result Examples
- matrix matrix ({2 1][1 1) NEG gives
(-1 -1)(-1 -1))
* real matrix matrix 5 [[1 1)[1 1)) * gives
([5 S)([5 S))
matrix real matrix [(1 1)[(1 1)) 5 * gives
[[5 5][5 5))
complex matrix complex (1,1) [[2 2)[1 1)) * gives
matrix (1(2,2) (2,2))0(2,1) (1,1)))
matrix complex complex [(2 2)11 1)) (1,1) *~ gives
matrix [1(2,2) (2,2))[((1,1) (1,1)))
matrix array array ({2 1][(2 1)) [2 2) * gives
(4 4)
matrix matrix matrix (01 1311 1)) (11 1)1 1))
* gives [[2 2])(2 2]]
/ matrix real matrix [(5 5)(5 5)) 5 / gives
((11)[1 1))
matrix complex complex ({2 2)(2 2)) (1,1) / gives
matrix (((1,-1) (1,-1))
[(1,-1) (1,-1)]]
array matrix array (12)((1-2)[(2-1)) / gives
(1 0)
+ matrix matrix matrix [(1 1311 1)) [[2 2)}[2 2})
+ gives [[3 3])([3 3)
- matrix matrix matrix [[(S5 S)(S S)) ((1 1)(1 1))
- gives [[4 4])([4 4))

Figure 5.7. The mathematical operators for real matrices.

Complex Arrays and Matrices

The operators and rules for complex arrays and matrices parallel those for their real
counterparts. It seems that we make more of a distinction between real and complex numbers
than the HP48SX does.

Relational Operators

This class of operators compares two similar objects and returns true/false values. If you
program on the HP41C you most likely use instructions such as x=y?, x>y?, and x=0?. These
instructions implement relational operators to compare the numbers in the X and Y stack

Chapter 5. Operators and Expressions 70

registers. The RPL language supports the relational operators found in the HP41C, BASIC, and
other popular programming languages. It is important to point out that relational operators
form Boolean (that is, logical) expressions that are either true or false. The false value is
represented numerically by 0. The true value is represented by 1. This is one of the main
differences between relational operators in the HP41C and the HP48SX. If you program in
Microsoft BASIC interpreters or compilers on the IBM PC, keep this in mind --- the values -1 and
O represent true and false on such implementations.

Programming Hote

It is better to use relational operators that test O (false) than 1 {true). This is because
0 is universally accepted as false by any language and implementation that represents
logical values using integers.

Figure 5.8 lists the relational operators. The ==, ,and SAME operators work with all object
types. The rest of the operators work with real numbers, binary integers, strings, and units.

Boolean expressions can appear in either algebraic or RPN forms. Examples of the forms are
shown below:

lx > 0l
‘'Y < 5.5°

The equivalent RPN forms are shown below:
X 0>

Y 5.5 <

In the RPN form, the left and right operands are located in levels 2 and 1, respectively. The

algebraic form is easier to read than the RPN form. Mathematical expressions (in both RPN and

algebraic forms) can appear where real numbers are expected. Thus, the following are valid
comparisons:

‘(23.4*X+2) > (TAN(Y)+1.2)°
*((2%X+3)*X-5) == 0’
The equivalent RPN forms are:

23.4 X * 2 +
Y TAN 1.2 +
>

and

Chapter §. Operators and Expressions 71

2 X *3 +X*5 -

0
Operator Test Example
== operandl equal operand2 ‘X == 0’
‘Y == 10’
operandl is not equal to operand2 ‘X <> Y’
:z <> _ll
> operandl is greater than operand2 ‘X >0’
lx > YI
< operandl is less than operand2 ‘X < 0’
lx < Y'
< operandl is less than or equal to ‘X = 0’
operand2 ‘X s Y’
2 operandl is greater than or equal to ‘X 20’
operand2 ‘X 2 Y’
SAME operandl and operand2 are equal objects X Y SAME
Note: The command SAME is a function, not an operator. I have included it
because (1) it is important to RPL, and (2) it is unique to the HP48SX.

Figure 5.8. The relational operators.

Programming Hote

Relational operators and their operands can by chained only by using Boolean
operators. This applies to both RPN and algebraic forms.

Boolean Operators

The discussion on Boolean expressions began in the last section. Relational operators need
Boolean operators to build more complex conditions. The Boolean operators are AND, OR, XOR,
and NOT. The first three are binary operators. The NOT operator is a unary operator that
performs logical negation. The operands of the Boolean operators are Boolean values. Such

Chapter 5. Operators and Expressions 72

values are usually obtained by relational operators. You can use a real number as an operand
to these operators. The operator considers the number as representing a false Boolean value
if it is equal to O; otherwise, it represents a logical true value. This is why the last programmer’s
note recommends the testing with 0. Figure 5.9 shows the truth table. This table is to logic
what the multiplication table is to arithmetic.

Operand 1 Operand 2 Boolean Operator Result
true true AND true
true false AND false
false true AND false
false false AND false
true true OR true
true false OR true
false true OR true
false false OR false
true true XOR false
true false XOR true
false true XOR true
false false XOR false
true NOT false
false NOT true

Figure 5.9. The Truth table.

The Boolean operators are familiar to BASIC programmers, but not to HP41C programmers.
This does not mean that the HP41C programs cannot implement Boolean logic. Its just less
obvious. If you are not familiar at all with the Boolean operators, here is a brief description of
their functions:

® The AND operator declares a condition to be true if and only if its two sub-
conditions (that is, the operands) are true.

® The OR operator declares a condition to be true if either or both of its sub-
conditions are true.

® The XOR operator declares a condition to be true if only one of its sub-
conditions is true. The X in XOR stands for eXclusively OR.

® The NOT operator toggles the logical value of its operand. It resembles the
change-of-sign mathematical operator.

Examples of Boolean operators are shown below:

Chapter 5. Operators and Expressions 73

Algebraic Form RPN Form

‘X > 0 AND X < 11’

‘I >1 AND I < 100 AND I #J° I1>

‘NOT A < 10’ A 10 <
NOT

RPL applies the following rules on Boolean expressions:

® The relational operators have a higher priority than Boolean operators. Since
relational operators are evaluated before Boolean ones, you need to enclose
relational operators and their operands in parentheses (when using algebraic
forms). In fact, when the HP48SX parses an algebraic object, it throws out the
parentheses that contain relational and Boolean operators.

® The Boolean operators are evaluated from left to right in an algebraic object.
You cannot use Boolean sub-expressions.

® The entire Boolean expression is evaluated.

The above rules should be noted by BASIC programmers. All BASIC implementations allow you
to use parentheses to build more complex Boolean expressions, such as the ones shown below:

((I > 0) AND (I < 10) OR (X = 100))
(NOT ((I < 0) OR (I > 10)) AND ((J < 1) OR (J > 9)))

To implement such Boolean expressions in RPL you can mix between algebraic and RPN forms
or use RPN form only. Applying the first solution to the first Boolean expression we get:

‘I >0 AND I < 10’ EVAL ; evaluate the first sub-expression
‘X == 100’ EVAL ; evaluate the second sub-expression
OR ; OR the two results in the stack

Applying the first solution to the second Boolean expression we get:

‘I < OORTI > 10’ EVAL ; evaluate the first sub-expression
‘I < 1O0RJ > 9 ; evaluate the second sub-expression
AND ; AND the above results

NOT ; logically negate the last result

Applying the second solution to the first Boolean expression we get:

I10>1Ic< 10 AND ; evaluate the first sub-expression

Chapter 5. Operators and Expressions 74

X 10 == ; evaluate the second sub-expression
OR ; OR the two results in the stack

Applying the second solution to the second Boolean expression we get:

I 0<1I 10 > OR ; evaluate the first sub-expression
J1<J9 >O0R ; evaluate the second sub-expression
AND ; AND the above results

NOT ; logically negate the last result

Concatenation Operators

Traditionally, most languages and implementations support concatenation operators to join two
similar objects. The most popular examp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>