NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THESIS

INVESTIGATION OF CARD PROGRAMMABLE AND
CHIP PROGRAMMABLE POCKET CALCULATORS
AND CALCULATOR SYSTEMS FOR USE AT
NAVAL POSTGRADUATE SCHOOL AND
IN THE NAVAL ESTABLISHMENT

by

Harry Rudolph Kruse
and
Hugh Alan Burkett

March 1977

Advisors: H.J. Larson
R.H. Shudde

Approved for public release; distribution unlimited.

1178061

UNCILASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Detas Entered)

READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED
Investigation of Card Programmable and Master's Thesis;

Chip Programmable Pocket Calculators and March 1977
Calculator Systems for Use at Naval Post—|% PERFORMING ORG. REPORT NUMBER

| graduate School and in the Naval Estahlishment

7. AUTHONR(e) 8. CONTRACT OR GRANT NUMBER(e)
Harry Rudolph Kruse
Hugh Alan Burkett

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Naval Postgraduate School
Monterey, California 93940

AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School March 1977
Monterey, California 93940 3. NUMBER OF PAGES

T4 MONITORING AGENCY NAME & ADDRESS(/{ ait{erent trom Controlling Otlice) 18. SECURITY CLASS. (of thie rdport)

Unclassified

Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If diferent freen Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Centinue on reverse eide if neceseary and Identity by bloek number)

Hand-held calculators
Card programmable calculators

HP-67 TI-59
HP-97 NS-7100
SR-52

20. ABSTRACT (Centinue on reverse side il nececsary and identity by bleck mamber)

This thesis investigates the usefulness of card program-
mable pocket calculators in the Management curricula of the
Naval Postgraduate School and in the fleet, based upon
manufacturer-provided information on the HP-67, HP-97,

SR-52, TI-59, and NS-7100 calculators; NPS classroom
experimentation; "hands on" programming of the HP-67 and SR-52;
interviews; and the literature. All aspects of calculator

DD , 00, 1473 =oition oF 1 nov s8 1s ossoLETE UNCLASSIFIED

(Page 1) S/N 0102-014- 6601 | 1 SECURITY CLASSIFICATION OF TRIS PAGE (When Data Bnteced)

UNCLASSIFIED

SecumTY CLASSIFICATION OF TWIS PAGE When Neta Entered.

(20. ABSTRACT Continued)

functions, programming and programmability are surveyed
with particular emphasis on educational and practical
applications. Thus, this is a baseline document for study
by potential purchasers and users. This study concludes
that these machines provide significant advantages in
teaching or learning mathematical concepts and that the
pocket calculator is a potentially important management
and tactical support tool navy-wide. In addition,
"thinking process transmutation," discovered during this
study, is concluded to be an inevitable and important
by-product of calculator programming which significantly
improves the user's overall analytic capacity.

1473 UNCLASSIFIED

N14-6601 2 SESURITY CLASSIFICATION OF THIS PAGE(When Date Zntered)

Investigation of Card Programmable and
Chip Programmable Pocket Calculators
and Calculator Systems for Use at
Naval Postgraduate School and
in the Naval Establishment
by
Harry Rudolph Kruse
Lieutenant Commander, United States Navy
B.S., University of Arizona, 1960
L.L.B., LaSalle University, 1970

and

Hugh Alan Burkett
Lieutenant Commander, Civil Engineer Corps, United States Navy
B.S., University of Oklahoma, 1966

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the
NAVAIL POSTGRADUATE SCHOOL
March 1977

ABSTRACT

This thesis investigates the usefulness of card pro-
grammable pocket calculators in the Management curricula
of the Naval Postgraduate School and in the fleet, based
upon manufacturer-provided information on the HP-67,
HP-97, SR-52, TI-59, and NS-7100 calculators; NPS classroom
experimentation; "hands on" programming of the HP-67 and
SR-52; interviews; and the literature. All aspects of
calculator functions, programming and programmability are
surveyed with particular emphasis on educational and prac-
tical applications. Thus, this is a baseline document for
study by potential purchasers and users. This study con-
cludes that these machines provide significant advantages
in teaching or learning mathematical concepts and that the
pocket calculator is a potentially important management and
tactical support tool navy-wide. In addition, "thinking
process transmutation", discovered during this study, is
concluded to be an inevitable and important by-product of
calculator programming which significantly improves the

user's overall analytic capacity.

ITI.

ITI.

Iv.

TABLE OF CONTENTS

INTRODUCTION == e e
A. GENERAL —-—=————mm e
B. PURPOSE =-=——— e -
C. STUDY METHODOLOGY —=——cmmmmm e -

CARD PROGRAMMABLE CALCULATORS AND EDUCATION ---

A.

B.

F.

THE CALCULATOR AS A TEACHING AID -—-=—====-

THE NPS PILOT PROJECT: CLASSROOM USE
OF CARD PROGRAMMABLE CALCULATORS —-—====—=-

PROPOSED USE OF CARD PROGRAMMABLE
CALCULATORS IN THE NPS MANAGEMENT
SCIENCE CURRICULA ===—===——=-——m————mm e
A RECOMMENDED COURSE STRUCTURE ——-——=—=—=--

THINKING PROCESS TRANSMUTATION: AN
IMPORTANT BY-PRODUCT —========————————m

CONCLUSIONS —=——— o mmm e e

FLEET USE OF CARD PROGRAMMABLE CALCULATORS ----

A.

B.

D.

E.

MACHINE CAPACITY REQUIREMENTS —-—-————=——e--
ADDITIONAL ADVANTAGES OF FLEET USE —-==———-—-
RELIABILITY —=———m——mmmm— e mm e cc e e =

CONCLUSIONS ==m=mmmmmmmmmmmm o mm e o

PROGRAMMING AND PROGRAMMABILITY ===-—=———==——-—--—

A.

A METHOD OF VALUE ANALYSIS -—-=————=———-—-—-
ALGEBRAIC VERSUS REVERSE POLISH NOTATION --

1. Description ----------------—-——m—————-

10
11
14
14

17

23

25

26
30
33
33
34
34
35
36
37
37
37

39

2. ACCUraCy ==—=—=——cm e 44

3. Execution Time ===--=c—-eemmmccec = 44
BASIC CALCULATOR PROGRAMMING CONCEPTS —-=====- 45
ADVANCED PROGRAMMING TECHNIQUES FOR
SR-52 and HP-67 --—=—-————-em e e 49
l. Introduction -=--==--mece—mm—m e e 49
2. Color Coding =—===-—————m—mmmmm e 50
3. Programming Language ==-——=-—c--—ee—eee———=- 52
TABLE 1l: KEY ABBREVIATIONS =-==—————====- 57
4. Key Code Systems ---------—c—cco————m——oo 56
5. Key Coding Formats ---—------———-———c——-——-— 66

6. HP-67 and SR-52 Program Storage
Capacities ---=--—-=--—-—-—c—c-ccmmm 67

FIGURE 1l: Single or Bivariate
Statistical Analysis (SR-52) - 69

Figure 2: Single or Bivariate

Statistical Analysis (HP-67) - 76
7. Magnetic Card Formats —--—-———=——=————————--- 68
8. Recording or Reading Magnetic Cards ----- 82

9. Advanced Programmability Comparisons,

SR-52 vs. HP=-67 —--=———--cc—-—c—c—ceono———- 83
a. General-Internal Rate of Return
As a Model ------—-—----—----—-——ooo— 83
b. Internal Rate of Return (IRR)
Concepts =-=—---==-r-—eemm—mmmmem e — 84
c. IRR Program Capabilities =—-=—=—==—=—=—-- 86
(1) Step Ratios --—-—-—=-----———---- 88
FIGURE 3: IRR (SR-52) —-——=-==--- 89
FIGURE 4: IRR {(HP-67) -=--———--- 94

(2) 1Initial Data Entry Operations -- 88

10.

(3) Data Modification Operations ----
(4) Undiscounted Subroutines =----——---
(5) Time-Valued Subroutines —--—=—=—=-=--
(6) Error Protections =—-—=—c-coeeceea-

(7) Sample Calculations, SR-52
IRR Program =—-———————c——ceeoee———e

(8) Sample Calculations, HP-67
IRR Program =—=—=—=-c-c-eecccocaac--

(9) Redefining IRR Decimal
Accuracy Limits —=—-—--———cemceee--

(10) Comparison with Manufacturer
Programs for IRR ===-—-—ceceeae-o

Advanced Programming Optimization
Techniques -—-=—=—c-———ccrrrmcrcrc e

a. Labeled, Direct, and Indirect
Relative Addressing ----------——=----—-

FIGURE 5: Types of Calls --=—=--—-=--

b. Label Search Mechanisms and
Subroutine Locations ==-=—-——eceeececee--

c. Nesting and Stacking Labels or
Subroutines --------—---ccc—c— o

d. Appropriating Program Steps or
Registers for Data Memory ---------—---

e. Structuring Loops and Counters =—---—-----

FIGURE 6: Loop Control by Sign
of Variable —-—---—————ceee--

£. Multiple (Alternate) Uses of
One Subroutine =--==--=----c-cce-—c—c--

g. Error or User-Prompting Routines -----
h. Multiple Card Operations --=-—--—--------

FIGURE 7: Linear Programming Aid
(SR=52) ===mmmmmmmmmm—

FIGURE 8: Linear Programming Aid
(HP=67) =—==mem——mmmmmm e

i. Program Space vs. Execution Time =—=---

99

11. Machines of the Future =-—=—-e—eceemccccoooo 154

a. The National Semiconductor Model

7100 (NS=7100) ===c==c—-ommmmmmmeee o 154
b. The Texas Instruments Programmable
Calculators 59 and 58 ====--—cecceee—-- 155
FIGURE 9: TI-59 AVAILABLE
ALPHANUMERICS =------ 158
FIGURE 10: TI-59 KEY CODE LISTING --- 159
FIGURE 11l: TI-59 SINE CURVE PROGRAM
AND OUTPUT ========—= 160
FIGURE 12: TI-59 ALPHANUMERIC
CALENDAR -—===—====== 161
FIGURE 13: HP-387 SINE CURVE PROGRAM
AND OUTPUT -======-- 162
F. PROGRAMMABILITY CONCLUSIONS =======—--cee———-- 163
APPENDIX A: EDUCATIONAL PROGRAM GUIDELINES =-=-=======- 166
APPENDIX B: COMPARISON OF CALCULATOR FUNCTIONS
W/PHOTO'S ===—m—— = e e e e e 169
APPENDIX C: FLEET USES =-----eeeeec e e e o 179
APPENDIX D: EXAMPLES OF USER SUBMITTED PROGRAMS —------- 181
BIBLIOGRAPHY == === e m e e e e e e e e m e 185
INITIAL DISTRIBUTION LIST —======——————————————————————— 187

Page

14
23
25
26
Ly
45
47

58

63

76

77

81

89

90

91

ERRATA

Line #/Item

21 after "document"

21 - after "often"

3 - along

2 - after "materials"
16 - IV.E(9)C.(8)

18 - +7 = & 7+

4L - DEC DEG
8 - DEG DEC

10 - DEG RAD
6 - X Y

"user keyed labels"
blocks a, c, e

Step 1 key entry
Step 65 key entry

"user keyed labels" diagram

"user keyed labels" (E')
Flags: Block O

Step 1 - call

Step 6 -

Step 37 -- +PVn REG 68

Step S4 - if n = U

Step 100-/it/REG

Should Read

(Page 37)

do not

among,

(el

IVE(9)c(9) on page 108
=7 = &7 +
delete AOS
DEC = DEG
DEG —» DFC

DEG =» RAD

X @Y

add N'; r3; n
fLBLA
RCLY

draw lines only to
match page 76

t ai - DO NPV

insert "if ‘n(N"

call

9.->

+PV —» REG 69

<if n = N GTO S"I'l" 193

/it/ —> REO 98

Page Line #/Item Should Read

92 Step 131 - key entry .4 9
note- A1 REG Ai—> REG 96
93 Step 182 - REG GO REG 60
Step 191 note (Clr) REG 99 (CLR) =->» REG 99
9y "user keyed labels" - e At Do t AL =» DO NPV
Step 18 key entry hR %
Step 20 note ¢ G TO LBL 1
95 Step 44 note (#n) REG #n = REG
Step 46 note (N+1) REG N+1) =—» REG
96 Step 83 note LBL C LBL c
Step 96 key entry h R h R4
Step 98 key entry h R} h RY
Step 118 note 1 REG i =» REG
97 Step 135 note -11) REG -11) —» REG
Step 148 note 1it) REG it) =>» REG
Step 166 key entry h ST I
Step 175 note =-26) REG -26) =—>» REG
99 Add title top of page (Initial Data Fntry Operations
102 7 - (1'.t stored) (+it stored)
15 - (n° 0) & (n 20) (ngo) and (n220)
LO6 5 - Display column 0.0639
13 - Press key column B

108

113

121

123

125
128
135
137
138
141

142

143

145

Line #/Item

21 - after program
23 - IV.C
1 - on

13 - Figure 2
9 - one equally
13 - Figure 2
5 - Figure 5

5 - 5.

10 - Figure 6

2 - Figure 6

2 - after "Explanation" add

2 - Figure 7

add 3rd line
(above C')

"user keyed labels"
block D aij REG

Step 4 add note
Step 26-29 note
Step 71 - Run

Step 79 - aij

Steps 96, 100, 10u-

cost

add title (above C')

"user keyed labels (C')" -

REG 040

(D) K PR

(E) X PR ROW

K-PR

Should Read

program card

Iv D
or
Figure 3

are equally
Figure 3
Fipgure 6

6.
Figure 7
Figure 7

of Figure 7 (page 142)

Figure 8

Card 1

aij =» REG
(Cj= 90+3-> REG 99)
bracket 1, 11, 81, 84

Run

>

aij

>

cost

gost 5

Card 2

REG ~>» 00
K-> PR

K=» PR =2 ROW
KePR

RE

Page linef#f/item should read

145 (con't) Step 7 - under K K
nole /W PR A= aOe
Step 11 = Proy Prow
S
146 Step 36 - RUN RUN N
Step 66 - Py
PROW ROW N
148 Step 1 - key entry QLBLa
149 Step 32 key entry SFRAC
154 15 - (Table 3) (Figure 3)

I. INTRODUCTION

A. GENERAL

Card programmable electronic pocket calculators offer
portable computational power and versatility heretofore
unknown at an astonishingly low cost. Most problems which
require the analysis of numbers can be programmed into and
automatically solved by this new breed of machine at the
touch of a few buttons. This new ability to execute complex
computations, on demand, in the field, and in seconds can
enable one to significantly improve his professional
efficiency in almost any profession. In the opinion of the
authors, the next generation of card programmable calculators
is going to have a greater ultimate effect on the modern
world than did the computer itself in recent years.

The invention of the logarithm by Napier in 1614 [1]
simplified and speeded mathematical computations by mankind.
The calculator revolution of today is comparable to the
revolution in mathematics brought about by the logarithm.
The non-programmable electronic calculator has already all
but eliminated the market for the sliderule while providing
greater accuracy at a lower cost. On the other hand,
sophisticated calculators are now beginning to compete with
larger computers. The first card programmable calculator,
the Hewlett-Packard HP-65, was introduced in 1974. 1In

January of 1976, Texas Instruments Incorporated (TI)

introduced the SR-52 card programmable calculator in compe-
tition with the HP-65. Hewlett-Packard (HP) answered the
challenge in June 1976 with the HP-67 which provided more
than twice the capability of the HP-65. National Semicon-
ductor intends to introduce their Model 7100 before summer
of 1977. It will have 480 user programmable steps plus 4000
library steps. In June 1977, TI will replace the SR-52
with the TI-59, which will have as many as 960 user pro-
grammable steps plus a 5000 step library cartridge. This
relatively rapid evolution in hand-held calculators is the
result of high consumer demand, and market competition.

It is believed by the authors that hand-held computers
with up to 20K of step processing capability will be

available within the next decade.

B. PURPOSE

The beginning for this thesis started with the purchase
of programmable calculators (HP-25's) for use by the authors
in course work at the Naval Postgraduate School (NPS).
Having gained the ability to program the purchased calcula-
tors, it was soon determined that more capability was
desired in order to solve more complex problems. This
phenomenon is described by Thompson [2] as the "fill-up"
principle where the user tends to "fill-up" the capability
of the machine and thus, outgrow it.

In 1976, NPS purchased more than sixty SR-52 machines

for use in a pilot project designed to determine if such

10

machines should be formally incorporated into the various
curricula. Additionally, the NPS faculty questioned
whether or not the use of these calculators in the fleet
could improve the capability of managers, i.e., if rapid
and concise analysis of data could enable managers to
arrive at better decisions which might lead to improved
operational readiness.

It is, therefore, the purpose of this study to investi-
gate the potential of card programmable pocket calculators
as a tool for both educational endeavors and management

support in conjunction with the NPS pilot project.

C. STUDY METEODOLOGY
(1) The Management Science curricula of the Naval

Postgraduate School (NPS) was used for educational program
guidelines. NPS Management Science students come from
diverse educational backgrounds; many of the students have
minimal formal mathematical training. The Management
Science curriculum encompasses the following disciplines
that include numerical computation:

a. Mathematics

b. Probability

c. Statistical Methods

d. Financial Accounting

e. Management Accounting

* Particular courses are listed in Appendix A.

11

(2) The Hewlett Packard HP-67 and the Texas Instruments
SR-52 were studied "hands on" and compared on the basis
of:

a. Machine language

b. Programming and programmability

c. Machine functions and capabilities
d. Use in the educational process

e. Use at NPS and in the Fleet.

Comparable functions and capabilities of the NS Model
7100 and the TI 59 are listed in Appendix B. Samples of
these two machines were not available during the time frame
of this study; therefore, listed data is informational
only, as provided by the manufacturers. The authors had
opportunity only to observe factory emulators which could
accomplish most of the functions predicted for the actual
production models of these machines.

(3) Additional information was collected through:

a. Interviews and surveys of users

b. A search of the literature

c. Telephonic and written interview of
researchers and educators

d. Review of written information provided by
educators and researchers

e. Review of information provided by manufacturers.

(4) There is little in the literature to indicate

the impact of card programmable calculators in the educational

12

and fleet environments. This thesis is written with the
expectation that it will be disseminated to readers who
have various levels of familiarity and needs concerning
these calculators. These underlying factors necessitated
a baseline study that includes technical information, as
well as non-technical, as deemed important to the wvarious
audiences. Therefore, the reader may extract information

as considered appropriate.

13

II. CARD-PROGRAMMABLE CALCULATORS AND EDUCATION

A. THE CALCULATOR AS A TEACHING AID?

Whether or not the calculator is usable as a teaching
aid is a multi-faceted question.

Rogers [3] believes that a good teaching aid must be
enduring if it is to be of value in the educational process;
i.e., as enduring as the blackboard. She lists four features
that seem to separate enduring teaching aids from others:

1. Inexpensive and/or durable

2. Controllable by learner

3. Does what the learner wants done

4. Flexible usability

The question of expense and durability is simply one
of value analysis. Such analysis must necessarily evaluate
(a) initial incremental cost, (b) initial support cost, and
(c) recurring cost. Support costs include publications
and peripheral equipment required to take full advantage
of the system. Recurring cost of calculators is primarily
a function of machine failure rates. A suggested method of
value analysis on this subject is located elsewhere in this
document.

A hand held calculator is certainly controllable by the
student, particularly when the student is allowed to take it
home with him. Equally obvious is that the machines surveyed

in this thesis are usable in almost any course of instruction

14

that requires numerical computation and are capable of
doing what the student wants them to do. In addition,
these instruments can be used to great advantage in the
fleet after graduation. 1In short, hand held calculators
have an advantage that even the blackboard cannot compete
with: portability.

Bell [4] points out that there is considerable agreement
that calculators should play an important role in the educa-
tional process as a result of their availability and use
outside the world of schools. He also reports that almost
invariably there is high initial interest which persists
over a long time provided students are given interesting
things to do with the calculators.

Suydam [5] lists the two fundamental arguments regarding
the use of calculators in the educational process in general:

Proponents argue:

"The hand-held calculator is the tool used in

society today for calculations. Schools are

'burying their heads in the sand' if calculators

are not recognized and used as the calculational

tool that they are."

Opponents argue:

"The principal objectives of mathematics

instruction (at least in grades K-9) are that

children learn the basic facts and paper-and-

pencil algorithms. Such learning will not

occur if calculators are made available in
schools."

The opposing view is also argued at the college level,
although calculators are not forbidden in most college

classrooms and numerous schools have taught a basic sliderule

15

course. It is agreed that a certain amount of computational
skill must be required before calculators can be used
entirely effectively. But the authors do not see much
distinction between "paper-and-pencil" and calculators,

and even less between sliderules and calculators. I.e., what
is the difference between using paper-and-pencil and using
calculators in the learning process? At best, it would

seem to be a moot point.

Available literature indicates to the authors that the
benefits of using calculators strongly outweigh not using
calculators. Interestingly, no evidence has been found
that calculators or sliderules negate the learning process.
Paper and pencils are merely different forms of tools.

Any tool that facilitates learning should be accepted on

its relative merits rather than being eliminated through
emotional recrimination. To put it simply, correct answers
instill confidence and it is inescapable that learning will
take place while using calculators. The degree of learning
depends upon the student, the teacher and how well the tools
available are used. Calculators will not replace the thinking
process but will enhance its capabilities to accomplish more,
as did the sliderule for the engineering profession.

The authors find no substantial reason against using
calculators as an educational tool per se and fully support

the proponents viewpoint.

16

Peripherally, an additional aid is on the market for
use by instructors — the "Edu-Calc." It is manufactured by
Educational Calculator Devices, Inc., in Laguna Beach,
California. It is an electronic repeater unit coupled
with a calculator, produced as an integral unit. With a
calculator on the top of the unit for operation by the
instructor, the display faces the students for them to
follow.

This integral unit is supplied in a brief case, which
makes it easy for the instructor to carry it with him from
class to class.

At present, the unit is manufactured using only Hewlett-
Packard calculators. When queried as to the possible
incorporation of other manufacturers calculators, Mr. George
Schultz, Manager, Academic Sales, stated that such an
eventuality would not be considered at this time due to
machine reliability factors. No "Edu-Calc" machines have
been returned for repair during the life of their production
(approximately one year). He provided a rough estimate
that an HP-67 model "Edu-Calc" could be made available for
approximately $1200 (6].

B. THE NPS PILOT PROJECT: CLASSROOM USE OF CARD

PROGRAMMABLE CALCULATORS

The project began with the issuance of SR-52 card
programmable calculators to fifteen beginning students in
the Naval Intelligence curriculum. The calculators were
incorporated in the course "Mathematics for Naval Intelligence"

(MA 2310); this course is described as [7]:

17

"A review of linear, logarithmic, sinusoidal
and exponential functions, with graphical
emphasis; differentiation and integration
with both analytical and numerical procedures,
continuation to include introductory treat-
ments of Fourier analysis; the Fourier
integral, spectral analysis, differential
equations, and the Laplace transformation."

The course was completed during the October-December
1976 quarter.

In addition to the calculators, students were issued a
text [8] that had been adapted by the instructor to take
best advantage of the calculators. The students received
5 hours of classroom lectures and 3 laboratory hours each
week for 11 weeks.

During the first two weeks of the quarter, the class
concentrated on learning machine capabilities and programming.
The balance of the quarter was spent learning mathematics.

The students completed survey forms during the fourth
and twelfth weeks of the guarter and were interviewed
throughout the quarter. These students will continue to
use the calculators in follow-on courses.

Following is an analysis of available information:

a. Ages of students: 29 * 5

b. Previous degrees: BA/BS 87%

c. Highest level math previously taken:

college algebra 40%
calculus 46%
differential

equations 14%

18

No student had previous experience in programming
calculators or computers.

Average use of calculators per student over 1l

week period: 97.08 hours (37.8 hrs without
programming; 59.28 hrs programming and using
programs) .

100% of the students believe that the calculator
oriented course was a worthwhile educational
endeavor that has enabled them to acquire an ability
useful in further education.

93% of the students foresee the use of programmable
calculators in future billets (versus 67% in the
4th week) and are generally willing to buy a
calculator (versus 73% in the 4th week). However,
that willingness is predicated on (a) billet
requirements and (b) the belief that if the
government benefits, the government should purchase
them.

93% of the students believe that using a programmable
calculator and programming has helped them to
understand mathematical concepts (as compared to
53% at the 4th week).

100% of the students rate handout materials better
(each student ranked them 4 on a scale of 1 to 5)
than manufacturers publications. They also believe
that these materials were of significant help in

learning mathematical concepts.

19

20% of the class experienced machine failures
(machine would not print cards or would not accept
manual program input). Not only did these students
rate programming lower as a learning mode, but they
also received the lowest grades in the class.

87% of the students believe a printer would be
useful in programming.

Machine features that the students particularly
liked included its card-programmability; 11 particu-
lafly disliked its inability to exponentiate
negative numbers (Yx) without indicating an error
condition.

It is noted that most answers concerning guestions
about future applications were guarded. Students
stated that they did not know future course
requirements, therefore, were not sure of particular
uses.

It is clear that the students perceive a strong
potential for the application of programmable
calculators in future billets.

Comparison of survey/interview results at the fourth
week with those of the twelfth week indicates a
strong increase in enthusiasm and confidence in

the ability to carry out computations of increasing
complexity. One particularly common statement

among the students was that they were able to

20

compute much faster and solve many more problems,
and, therefore, were able to devote more time to
studying theory. All students have the desire to
learn more about the machine, programming and
applications. Some students are already writing
programs for future uses.

Each student interviewed indicated that he now
views algorithms in a different way; in the way of
a flowchart or the way it could be programmed most
efficiently. 1In addition, each confirms that he
now tends to think about problems outside mathematics
in a similar manner.
This class began the quarter with the same text
material as covered by previous classes (except
for adaptation of the material to the calculator-
teaching mode). The instructor, after reviewing
student records, initially estimated that this
particular class would have difficulty in completing
the text (records of this class in prior mathematics
courses indicated an overall grade point average
of 2.0 or C). However, he found that the class had
completed the text during the ninth week and he was
able to include additional materials thét would
prove very useful in future courses. He observed
that students gained a great deal of insight and

intuition through writing programs and solving

21

repetitive computations. He stated that the major
advantages of calculator usage included "breaking

the ice", students obtained correct answers, developed
confidence and learned mathematics extremely well.

Not only were the students able to cover signifi-
cantly more material (15% more depth), they were

also able to complete a final examination that the
instructor judged to be 20% more difficult (complex)
than any previous examination in this course.

The class of the previous quarter, without benefit

of card programmable calculators, attained an

overall grade point average of 3.62 * ,43. This

class attained an overall grade point average of

3.60 = .44,

As a result of the success experienced by this class,
the instructor began the following quarter (second
quarter for the students) by teaching the students

to compute cumulative/inverse, cumulative normal

and binomial distribution values rather than referring
to tables. He has also taught the Runge-Kutta

method for solving differential equations, carrying
out fifty cycles during a class period. Normally
these methods are too time consuming to be demonstrated
past the "exposure" level. Accordingly, it certainly
appears that card programmable calculators have

provided a significant advantage to this class.

22

s. The mathematics courses in the Naval Intelligence
curriculum are similar to those in the Management
Science curriculum. Therefore, the information
collected from this class is entirely adaptable to

the following discussion concerning the Management
Science curricula.
C. PROPOSED USE OF PROGRAMMABLE CALCULATORS IN THE NPS

MANAGEMENT SCIENCE CURRICULA

Appendix A lists the courses that are considered to be
logical candidates for the incorporation of card programmable
calculators in the teaching process. The investigators
believe that each of these courses could be taught in a much
more efficient manner by adapting the computational portions
to algorithms, demonstrating the algorithms to the students
and having the students program them, and, finally, having
the students carry out several exercises for practice and
application.

The authors believe that the essence of the educational
process lies in being able to apply knowledge once gained.
Unfortunately, most students seem to do well in the class-
room but all too often not really know how to apply their
new capabilities.

It is axiomatic that an acquired skill will become
"rusty" or will be lost, if not exercised. However, that
tendency is ameliorated when a student is made aware of

when and how to use a particular algorithm to solve a

23

particular problem. In other words, teach the student how
to recognize a problematic situation, show him how to break
it down into its components, analyze each component and
reconstruct the situation to efficiently accomplish the
task.

The NPS Management Science curriculum includes a wide
variety of disciplines, each with its own procedures and
techniques. The generally accepted method of instruction
combines classroom lectures concerning theory with several
hours of homework "crunching numbers." Realistically,
little time is left available in the classroom to review
homwork problems or theory. Consequently, if the student
does not understand some aspect of the course, he is left
substantially to his own devices to completely comprehend
theory, numerical manipulation or both. A student who misses
a critical point early in the quarter may suffer the balance
of the quarter by not understanding an important aspect in
the progression of course material. Given that the student
is carrying more than one course, this effect may take place
in several areas. The effect can then become pryamidal
with the student demionstrating less than that of which he
is capable. Concomitantly, some students simply cannot
manipulate numbers rapidly, in spite of the fact that they
fully comprehend the material. These students appear to
be "poor students” at examination time, yet may be as capable

as most any student in the long run.

24

This investigation has led the authors to believe that
all of these effects could be ameliorated to a great degree,
with significant gains along all students, through incorpora-
tion of the card programmable calculator in NPS Management
Science curricula as well as other NPS curricula. 1In
addition, the student could take several programs (recorded

on cards) with him to the fleet for use in his next billet.

D. A RECOMMENDED COURSE STRUCTURE

Based upon the pilot project, the authors believe
unequivocally that a course of instruction in card pro-
grammable calculators can lead to a significantly improved
Naval Postgraduate School product and that a beneficial
effect would carry over into the fleet.

Such an initial course should be structured in the
following manner:

a. Offered during the first quarter of study in the
undergraduate portion of the curriculum.

b. The course should be no less than two two-hour
classroom periods per week for four weeks, to become pro-
ficient with the calculator, followed by two one-hour
classroom periods during the remaining seven weeks for
applications.

c. The course should be designed to include the use
of all functions of the calculator coupled with flow charting
and programming.

d. It should be provided as an initial course in

mathematics.

25

Professor Gaskell, NPS Mathematics Department, has
already developed text materials that could provide a
basis for the accomplishment of these goals. Basically,
his programmed text incorporates the teaching of algorithms
commensurate with teaching applications and the full
capability of the machine.

Obtaining this education early in the curriculum would
enable the student to allay the fear and drudgery of numeri-
cal analysis. He would be much better prepared for advanced
mathematics and the early computer programming courses.

CDR Gibfreid, Chairman, NPS Computer Science Department [9],
believes that a course in programmable calculators would
enable the doubling of the length of time now available for

teaching management information systems (MIS) applications.

E. THINKING PROCESS TRANSMUTATION: AN IMPORTANT BY-PRODUCT

Another important effect which would be developed through
the recommended course, however, is considered to be even
more powerful and far-reaching: This is the effect of
thought process transmutation which occurs as an almost
inescapable by-product during some four to six weeks of
such study.

The process discovered during this research, occurs in
the following manner:

(1) 1Initially, the neophyte programmer is merely
impressed with the capabilities of the machine; he attempts

to rush into programming without sufficiently studying the

26

operators manual. His initial success is thus limited, so
he begins to conscientiously study the manual to determine
how the machine operates.

(2) As his ability to use the machine improves, he
discovers the various methods of flow charting. He now has
a visual aid that he developed, enabling him to see the
program in graphic form.

(3) Once he has developed some amount of expertise in
flow charting and programming, he begins to visualize for-
mulas and processes in a new way. For all practical purposes,
his analytical thinking processes take on the characteristics
of a flow chart or program. As he gains even more expertise
in the art, he takes on the challenge of improving the effi-
ciency of his programs through redefinition and more complex
methods for eliminating unnecessary steps.

He has inescapably, but subtly, reorganized his thinking
processes. He now has developed a new capability to organize
his thoughts concerning any particular task, to graphically
display the steps necessary to the task, to make logical
comparisons and distinctions between facts and hypothesis,
and to then develop the most efficient procedure to accomplish
the task.

This subtle transmutation seems to take place whether
or not the student recognizes it. The transmutation results
in the enhancement of personal organization and efficiency
of thinking that cannot help but carry over into other areas

of the individual's life.

27

This process alone has the potential of becoming a
powerful tool for every individual that experiences it.

The process cannot be experienced through the use of a
non-programmable calculator; the same process was not
experienced by the authors while using the HP-25 (a lower
capacity machine with 49 step capability).

Not only was the HP-25 rapidly outgrown by the authors
but keying in a program each time limited the efficiency
of programming, particularly when more machine capacity
was required. With the lower capacity machine, the only
mental effects encountered seemed to be those associated
with tailoring a program to fit the machine, if it would fit
at all.

In short, the individual's mental faculties were not
taxed to the degree necessary for transmutation to take
place. Lower capacity machines, however, may be entirely
sufficient to teach programming and/or transmutation at
lower educational or experience levels [10].

Conversely, a 224 step machine has sufficient capacity
for the vast majority of problems (as indicated in the
appendices), while longer problems e.g., those used in
linear regression, queuing, etc., tend to tax the mental
comprehension of the individual while constructing programs.

As a result of programming the HP-67 and the SR-52,
and experiencing the transmutation process, it is suspected

that machines of greater capacity (greater than 224 steps)

28

may not result in equal or greater transmutation capability.
It is feared that students would simply write programs that
fit within the capacity of the machine, without regard for
further efficiency. Programming would be sloppy because
programming space would allow sloppiness. Hence, although

a student who begins with a larger capacity machine may
develop intricate programming and thinking capabilities,
nothing forces the process. Thus, if the aim is to increase
overall analytical ability as quickly as practicable, stu-
dents ought to begin with machines of no greater capacity
than the SR-52 or the HP-67. It is suspected that greater
machine capacity will lead to a longer time for transmutation
to take place.

It is strongly believed by the authors that the refine-
ments and complexities developed through the described
process carry over into other fields of endeavor and,
especially, that the more refined and more complex the
thinking process change becomes, the greater the analytical
capacity of the user.

Thinking process transmutation is a most desirable
effect to be created as early as practicable in the educa-
tional program of a student. The student could be expected
to be much better prepared to meet the challenge of later
courses. It is axiomatic that educators within the above
described process could surpass all previous records in

improving the ability of their students. More importantly,

29

graduates would be significantly more valuable to their

employers.

F. CONCLUSIONS

The drudgery and fear of manipulating complex formulas
is no longer necessary. An educator can now provide the
student with the algorithm to solve a problem, have him
program it and carry out several computations, and then be
able to spend a greater share of instructional time teaching
theory and applications. There is little question that the
student will gain greater intuition and understanding of
mathematical concepts by following this procedure.

The card-programmable calculator itself is clearly an
enduring teaching aid. 1Its portability is a great advantage,
enabling the student to carry exceptional computing power
in his pocket.

Educators should have no fear of this device. 1If used
properly, much more can be accomplished in the classroom,
in both quantity and depth of coverage of material. Accord-
ingly, educators can significantly advance their teaching
capabilities and improve the quality of graduates thereby.

Thinking process transmutation is a phenomenon that ought
to be studied in more detail. At this time, it can be said
that such transmutation occurs during four to six weeks of
calculator usage. The phenomenon has occurred with every
person interviewed who has had four to six weeks experience

in programming (card-programmable) calculators.

30

It is clear to the investigators that before providing
more machine capacity (more than 224 step capability) to the
student, the phenomenon should be studied further in order
to assure that it occurs at the earliest time in the curriculum.
In addition, more work needs to be done to determine an
appropriate measure of the phenomenon. It may be that thinking
process transmutation can be enhanced by "stacking" machines
of increasing capacity in the educational process, i.e.,

224 step, 500 step, 1000 step, etc.

When selecting a calculator for an educational program,
machine reliability should be a strong consideration.

Although it cannot be said with certainty, machine failure
seems to have been a strong factor with the students who
received the lowest grades in the pilot project. At the
very least, a failed machine is of little use and could
create an administrative burden to get machines repaired.

Ideally, sponsors should provide students with calculators
upon matriculation for use during their educational program
and after graduation. Instructors should be issued calcu-
lators with printing éapability, both for the benefit of
students and instructors. Additionally, an aid, such as
the "Edu-Calc", should be provided for classroom instruction.

Unfortunately, far too many educators are not yet aware
of the potential of this most valuable tool. The authors
are convinced that, provided exposure and knowledge is

given, the vast majority of people soon begin to realize

31

the diverse applications of the instrument and the new
abilities that they command. Conversely, a failure to
exploit the advantages of the card-programmable pocket
calculator in the educational process could be contradic-

tive of the tenets of the process itself.

32

IITI. FLEET USE OF CARD-PROGRAMMABLE CALCULATORS

A. GENERAL

The use of card-programmable calculators in fleet opera-
tions is certainly a feasible eventuality considering their
usability and adaptability. A dramatic example of fleet
usefulness is that portrayed by Commander, Patrol Wings
U.S. Pacific Fleet and Commander, Patrol Wings U.S. Atlantic
Fleet who have been using several HP-67's for approximately
one year for airborne search detection problems [11]. An
HP-65 (no longer in production), a predecessor of the HP-67,
was used as a backup for the onboard computer system on
the Apollo-Soyuz linkup mission [12]. Several civilian
ships navigators use card-programmable calculators for speed
and accuracy of calculations [13]. Appendix C is a short
list of some of the places where card-programmable calcula-
tors should be used in the Navy and is by no means a com-
plete list. Specific examples of usefulness are listed in
Appendix D. In short, appendices C and D indicate that
practical and feasible application in the fleet within
innumerable disciplines is limited only by imagination.

The simple fact that a great deal of time can be saved
while analyzing data, coupled with unparalleled accuracy at
a relatively low cost, is a strong reason for implementing

the use of these calculators throughout the fleet. This

33

fact alone would enable managers to make more timely decisions
based upon thoroughly analyzed and accurate data.

It is obvious that decisions supported by accurate
information are usually better decisions. Better (and
faster:) decisions would form the very heart of improved
management that could lead to improved operational readiness

throughout the Navy.

B. MACHINE CAPACITY REQUIREMENTS

Based upon this study, the capacity of machines .currently
in production (the SR-52 and HP-67) is probably sufficient
for the vast majority of fleet applications. Lieutenant
Commander Harvey states [14] specifically that he believes
machines of greater capacity would not provide significant
gains in tactical capability. Comparisons of appendices
C and D and the NPS Pilot project [supral support that belief.
It is therefore clear that 224 step capacity is adequate.

If a particular problem is beyond the capacity of
currently available machines, it might be more efficient
to use available computers. Alternatively, a great deal of
management information, no longer available due to computer
operation cost, could be regained by fleet users, e.g., daily
maintenance material management (3M) summaries could be

produced in abbreviated form by 3M analysts,

C. ADDITIONAL ADVANTAGES OF FLEET USE
As an additional advantage, fleet exchange of programs

and programmed cards could be an excellent vehicle for the

34

transfer of technology among fleet users at a very low cost.
LCDR Harvey [supra] indicates that the publication of 700
copies of one tactical program costs approximately $1000,
including programmed cards and all supporting publications.
There is little doubt that fleet exchange of programs
would lead to a certain amount of standardization in
programming. However, directed standardization of all
programming would not be in the best interests of the Navy
if programmable calculators become a standard Navy item.
Specifically, strict standardization of programming would
probably stifle individual creativity and investigation.
This aspect is considered vital in order to obtain the
benefit of all fleet talent available. Put simply, the
Navy should take advantage of the natural curiosity and

investigation that will occur among users.

D. MACHINE RELIABILITY

If card programmable calculators are purchased for use
in the fleet, machine reliability should be a prime consider-
ation. COMPATWINGSPAC experience shows that HP-67's operated
on aircraft electrical systems (115 VAC, 400 Hz) have incurred
less than a five percent failure rate although operating
temperatures are eight degrees higher than in normal (115 VAC,
60 Hz) usage. Unfortunately, no data has been found for the
SR-52 under similar conditions.

The above mentioned degree of reliability, or better,

is necessary, if such a machine is to be used to make

35

tactical decisions, even if the cost of returning machines

to the factory for repair is not considered.

E. CONCLUSIONS

The potential impact of the card-programmable calculator
upon fleet operations must be considered as enormous. Such
a machine can provide significant advantages in tactical
employment, management efficiency and the transfer of
technology. Although this broad range of applications has
been shown, many specific uses are yet to be defined.

The authors will attempt to define further specific
uses upon returning to the fleet after graduation.

Although these machines are not a panacea for solving
all management problems in the fleet, the Navy should take

every advantage of their computing power.

36

IV. PROGRAMMING AND PROGRAMMABILITY

A. GENERAL
Programming and programmability of card programmable
calculators is the most important area to be studied when
attempting to decide on the kind of system to use. 1In
simplistic terms, programming is only a matter of putting
an algorithm in a particular form for the machine to accept
it and then compute a correct answer. On the other hand,
programmability depends upon several factors.
Programmability is defined here as a combination of:
(1) machine language
(2) merging of key strokes in program steps
(3) type and number of program steps available
(4) ease of programming.
Each of these factors must be compared on its own merits.
Then, the user must decide which combination will best suit
his needs within his budget. The aforementioned interrelated
factors are discussed further in following subsections
concerning value analysis, basic and advanced programming

techniques.

B. A METHOD OF VALUE ANALYSIS

Once the determination has been made as to the system
(or systems) that will satisfy the particular need, the
question of value analysis arises. Certainly, a part of

that value analysis was determining the need in the first

37

place. However, here to be discussed is the primary
question of cost.

Cost(s) of a card programmable calculator should be
viewed as system(s) cost. Accordingly, cost(s) to be con-
sidered are more than just the purchase of a calculator.
They include a) initial machine cost, b) cost of additional
support such as program card librariles to be purchased or
published, text materials, replenishment items, etc.,

c) recurring cost, i.e., replacement and/or repair cost
(this is primarily a question of machine failure rates).

The decisionmaker must determine (or make the best
estimate) each of these costs for the various systems on
the market, and then, compare them as to the need to be
satisfied and the money he is willing to spend.

It is up to the decision maker to decide the weight to
be given to each particular item of the analysis. For
instance, initial machine cost may be determined to be more
important than reliability or vice versa. As an aid in
making these many judgements, the decision maker ought to
obtain the benefit of the knowledge of as many users as
practicable.

Necessarily, the end use of the system(s) will likely
be the major consideration in the analysis of costs and
benefits. There are no hard and fast rules concerning
any particular item. Again, it is up to the decision
maker to determine which system(s) will satisfy the needs

and the money he is willing to spend to obtain the best value.

38

However, the decision maker must also consider at least
these two factors:

(1) Increased simplicity, speed, or convenience (which
can be gained from the new calculator) not available under
the current procedures.

(2) Additional capabilities which can be expected to
accrue as expertise on the new calculator(s) occurs.

Most purchasing decisions appear to be based more upon
the former than the latter. In the opinion of the authors,
the latter is much more important. Thus decision makers
should assume such benefits will be available to higher levels
if more capable, more convenient calculators are purchased.

Manufacturer's suggested retail prices, as of this writing

(March 1977) are:

SR-52 $249.95
HP-67 $450.00
HP-97 (Includes Printer .o
Capability) $750.00
NS-7100 (Projected) $400.00
TI-59 (Projected) $300.00
PC-100A Printer for SR-52
or TI-59: $199.95
TI-58 $125.00

C. ALGEBRAIC VS REVERSE POLISH NOTATION

1. Description

The machines compared herein operate either in an

Algebraic Operating System (AOS) (SR-52) or in the Reverse

39

Polish Notation (RPN) (HP-67) system.

The AOS enthusiast states, "I put the problem
into the machine as it is normally wri£ten down", while the
RPN enthusiast states, "I put the problem into the machine
as it is normally calculated." Neither statement is entirely

correct. For instance, consider the following formula:
Q = /2KD7kc

For computation, the following (conceptual) sequences must
normally be followed on the two machines: (The machines
have no actual commas; commas are inserted below to group

concepts only.)

AOS RPN
2, XK, XD, +k_, =, e 2 ENTER, KX, DX,
or kc+, 2

(2, X, XD, k), /"

The reader should note that the formula had to be rewritten
in all cases to enable machine computations. Neither AOS
nor RPN allow entry of the square-root func;ion operator
prior to completion of all other operations. This problem
must be worked from the inside to the outside in all cases:

i.e., in all cases the machine must be told to compute the

40

result of (2KD/kc) and then be told to find the square

root of that result. It cannot, as one concept, be told to
compute the square root of (2KD/kc). The same argument holds
for sin x, cos x, tan x, ln x, log x, x!, x2, and 1/x
operations on both machines, as well as to the % and N
two function operations. Obviously, then, the A0S user

uses a considerable amount of RPN notation.

The AOS enthusiast also argues that he doesn't have
to learn a new language. Again, there is disparity — in
addition to the examples of the previous paragraph. Returning
to the generalized formula, Q = /7?57?;, note that there are
neither any parentheses nor any internal equality signs on
the right-hand side of the equation as were required for
the AOS example above. General formulas do not always have
parentheses, and rarely, if ever, show implied internal
equality signs. Instead, it is assumed that the user will
intuitively group variables and mathematical operators as
if these implied symbols were, in fact, present. This being
the case, the A0S user must usually stop to remember where
the implied symbols go and insert them. On the other hand,
the RPN user must remember to always enter the operator
after the variable. Hence, it is clear that for either AOS
or for RPN, the user must, to some extent, "learn a new
language". The RPN enthusiast usually argues that he must
only enter the variable(s) and then "tell the calculator

what to do with them". Truly, the RPN user must remember

41

only one rule: The operator(s) is(are) always entered
after the variable(s).

Only two registers are required to solve a simple
problem such as W + X + Y + Z in either A0S or RPN. 1In
AOS, additional registers will allow varied grouping of the
variables with parentheses, but will not permit additional
forms to solve the same problem; i.e., regardless of paren-
theses, each operator is entered before the variable it
will ultimately operate on. In RPN, additional registers
will allow the problem to be structured in varied ways,
all of which separate variables and their operators to

different degrees. For example:

AOQOS RPN
(Base Case) W+ X + Y + Z = W Enter X + Y + Z +

or W+ X+ (Y + 2) = W Enter X + Enter Y Enter Z ++ *

or W+ (X+Y + 2) = W Enter X Enter Y + 72 + +

or W+ (X + (Y + 2)) = W Enter X Enter Y Enter Z2 + + +

or W+ X) + (Y + 2) = W Enter X + Enter Y Enter 72 + +
* or:
W Enter X + Y Enter 72 + +

In short, an RPN machine gives flexibility that is not
available in an AOS machine. This feature becomes a powerful
benefit when writing programs in RPN. It also saves the time
of rewriting an equation [begin inside, work out, operator
after variable], an option the AQ§ user usually does not
have if he wants the most efficiency [3].

Using Hewlett-Packard terms [4], the automatic

stack operates as follows:

42

*

Data is entered:

5 ENTER 6 ENTER 7 ENTER 8

The stack registers then can be visualized as:

5.00 T
6.00 2
7.00 Y
8. X (DISPLAY)

Pushing the "roll-down" key once results in the following

change:

8.00 T
5.00 p/
6.00 Y
7.00 X (DISPLAY)

Now, pushing the "roll-up" key twice changes the display to:

6.00 T
7.00 Z
8.00 Y
5.00 X (DISPLAY)

Adding 5 to 5 in display by pressing 5 + changes the stack

to:
7.00 T
7.00 yA
8.00 Y

10.00 X (DISPLAY)

As noted above, keying in 5 pushed 6 out of the
stack. When + was pressed, the two 5's were added to put
10 in display and the stack dropped. The 7 in T is dupli-
cated in Z. The dropping and lifting of the stack enables
the user to position intermediate results in long calcula-
tions without the necessity of reentering the numbers.

The stack coupled with RPN creates an efficiency of the

language that is not within the capability of AOS. On the
other hand, AOS' programs are easier to "translate" because
of the almost direct algebraic notation used therein.

2. Accuracy

Accuracy of the last several digits displayed by

the SR-52 or HP-67 subsequent to executing calculations
varies slightly between the machines. For example, refer
to the "Internal Rate of Return" (IRR) nine place results
calculated in Section IV.E(9)C.(8). The accuracy of either
calculator is adequate for all but the most esoteric uses.

3. Execution Time

Execution time is generally slightly less on the SR-52
than on the HP-67 for identical functions. The SR-52 exe-
cutes exponentiation to positive powers much faster than
the HP-67; conversely, the SR-52 creates an error condition
with the correct, but unsigned, number in the display when
attempting to exponentiate to negative powers. Thus the
SR-52 programmer must include three steps such as IF ERR, A;
+/- or five steps such as IF ERR, 123; +/- (to ensure that

the program will continue) if the program can accept negative

44

exponentiation values. Even when such steps are required,
execution time is less on the SR-52 than in the normal
execution time on the HP-67. Then the HP-67 runs slower,

but uses less program space for negative exponentiation.

D. BASIC CALCULATOR PROGRAMMING CONCEPTS

Basic programming is nothing more than routinization
of repetitively occurring mathematical equations in terms
of equation variables as stored by the user into particular
storage registers. For example, consider the calculation
of V9 X 26/7 . One routine mental (or pencil-and-paper)
approach to this calculation is to multiply 9 X 26 yielding
the product of these two terms, dividing this product by 7
yvielding a quotient and, finally, extracting the square root
of the quotient. This process can be manually keyed into

SR-52 or HP-67 calculators as follows:

SR-52 HP-67
9 X 26 9 Enter 26 X
+ 7 = 7 +
2nd /x £ /x
Resulting in: 5.78174467 5.781744670

Naturally, a program written specifically to generate this
unigque result would never be written unless one had some
reason to constantly be reminded that

/9 X 26/7 = 5.78174467(0). Conversely, a program written

45

to generate YA X B/C for any given value of the variables
might prove most useful. Such a program is readily accom-
plished merely by storing the value of A in Storage Register
(Reg) #1, the value of B in Reg #2, the value of C in Reg
#3, and defining the calculation process in program memory.
This translation process is best begun by rethinking

YA X B/C in language the calculator can understand, i.e.,

as Y (Reg #1 Contents) X (Reg #2 Contents) + (Reg #3 Contents).
For calculator keying, the Recall (RCL) instruction orders
the proper storage register contents into operation. (In
SR-52, the primary storage registers are numbered 00 through
19; in HP-67 as 0 through 9 and Secondary (S) 0 through S9.)

Hence, YA X B/C translates in concept as:

SR-52 HP-67

YyRCL 01 X RCL 02 + RCL 03 YRCL 1 X RCL 2 + RCL 3

The manual keystrokes to store the variable values used

above into appropriate storage registers would be:

SR-52 HP-67

9 STO 01 9 STO 1
26 STO 02 26 STO 2
7 STO 03 7 STO 3

The manual keystrokes to accomplish the previous example

would then be:

46

SR-52 HP-67

RCL 01 X RCL 02 RCL 1 ENTER RCL 2 X
4+ RCL 03 = RCL 3 =+
2nd vx f /%

In order to convert each of the above keystroke sequences
into a program, it is only necessary to assign each sub-
routine a beginning point, or Label (LBL) and a stopping
point. Labeling regquires three keystrokes in either the
AOS HP-67 or the SR-52: the stopping point requires only

one keystroke. For a Label named "A", these keystrokes

would be:
SR-52 HP-67
LABELING: 2nd LBL A, f LBL A
normally
abbreviated:
*LBL A
ENDING: HLT (Halt) R/S (Run/Stop)

[Program space actually required is less on the HP-67:

see section IV.E(6).]

The respective Labels can be used either for storing the
variables in desired registers or for operating on the
stored variables. Hence, an entire program for the

previous example might be:

47

SR-52 HP-67

*IBL, A STO Ol HLT f LBL A STO 1 R/S
*ILBL, B STO 02 HLT f LBL B STO 2 R/S
*I,BL, C STO 03 HLT f LBL C STO 3 R/S
*IBL D f LBL D

RCL 01 X RCL 02 RCL 1 ENTER RCL 2 X

~ RCL 03 = RCL 3 =

*/x f vVx

HLT R/S

This program can be manually keyed into program memory
exactly as listed above. The manual keystroke sequence to
calculate the prior example, on either an SR-52 or HP-67
calculator, is now reduced to eight keystrokes as follows:
(Commas are never keystrokes, but are used herein to clarify
operations): 9 A, 26 B, 7 C, D. The calculator will now
respond almost immediately with the answer, 5.78174467(0).
More importantly, the calculator will not "forget" the con-

tents of any storage register unless those contents are

changed by the user. Thus, in order to calculate v9 X 32.5 + 7
(immediately following calculation of the previous example)

it is only necessary to change the value of "B" from 26 to

32.5 and rerun the calculation process defined by Label D.

This is accomplished by the keystrokes 32.5 B, D. The
calculator will this time respond almost immediately with

6.464187055 (AOS) or 6.464187056 (RPN). Similarly, a

completely new problem, such as v44.3 X 13.6 + 89.66667
can be entered as 44.3 A, 13.6 B, 89.66667 C, D--yielding

2.59212414(0), etc.

48

The programs developed above are quite basic and thus
are not particularly efficient. Both can be substantially
refined. A more complete discussion of advanced programming

follows.

E. ADVANCED PROGRAMMING TECHNIQUES FOR SR-52 OR HP-67

l. Introduction

Basic calculator programming concepts are introduced
in the previous subsection but an in-depth discussion of
basic and intermediate programming techniques is not provided
herein since such discussion is readily available in manu-
facturer's handbooks, manufacturer's promotional literature,
user club publications and other sources listed in the bibli-
ography. Instead, the discussion which follows is designed
to clarify the difference between AOS and RPN advanced
programming techniques, regardless of the reader's prior
familiarity with either system. Of course, since the follow-
ing discussion constantly compares the two systems, readers
already familiar with either AOS or RPN are likely to find
this discussion to be lighter reading. On the other hand,
this information is also designed to help readers who are
presently unfamiliar with either system to determine which
system can best meet their personal or organizational needs.
In this respect, the information provided is especially
designed to enable managers, staff analysts and procurement
officers to determine which system is optimal for the

organizational requirements being encountered. As far as

49

can be determined by the authors, the only currently
available literature which significantly facilitates such
management and procurement decisions is published by the
respective manufacturers. Accordingly the following dis-
cussion attempts to create an unbiased comparison which can
be used for managerial/procurement decisions.

Data obtained from the various manufacturers by
the authors — sometimes on a non-disclosure basis concerning
specifics — indicates, in general, that the comparisons
provided herein are likely to stand inviolate for at least
ten years. The introduction of new machines within the next
decade, as currently envisioned by the manufacturers, will
do little to change the analysis which follows. Thus,
readers in management positions are especially encouraged
to study the following analysis in detail. On the other
hand, persons unfamiliar with either AOS or RPN should be
able to determine which system best fits their individual
idiosyncracies and personal preferences after studying the
material which follows. Hence, this material should greatly
enhance personal purchasing decisions as well as organiza-
tional purchasing decisions. This information should be
especially useful to students, educators, or others considering
the purchase of a personal card-programmable calculator.

3. Color Coding

In order to minimize the number of keys required

on the machines, all manufacturers use most keys for at least

50

two purposes — and sometimes three or four. So, most keys
have a primary function and one or more secondary function(s).
Typically, the primary function is centered in one color

upon the flat upper surface of the key itself, whereas

each secondary function is listed in a different color above
the key, below the key, or upon an angled face of the key.
Therefore, a key may have associated functions listed in

one, two, three, or four different colors and the primary
colors of the keys themselves vary according to purpose.

In order to enable the calculator to determine which
listed key function is desired when a key is pressed, color-
coded, dedicated, "Second-Function" keys are pressed first
to designate secondary key functions similarly colored.
Typically, the primary function listed upon a key is exe-
cuted simply by pressing that key; the secondary function
is executed by first pressing a second-function key (which
matches color with the color of the desired secondary func-
tion) and then pressing the key: the alternate secondary
function, if any, is executed by first pressing an alternate
(third) second-function key (which matches color with the
color of the third function) and then pressing the key, etc.
A0S systems such as the SR-52 or TI-59 have one second
function key (Yellow: 2nd) whereas the HP-67 has three,
(Yellow: f), (Blue: g), (Black: h). The AOS notation "2nd"
corresponds directly with the thaught process involved, i.e.,

use the matching-color 2nd function listed — whereas the HP-67

51

notation corresponds indirectly by using standard symbols

for mathematical functions (£, g, h) such that the user can
easily modify the thought process to: "Use the function of
the key (f of key, g of key, h of key) by first pressing the
color matched and appropriately labelled second function

key (£, g, h)." The reader should note that the color coding
greatly simplifies actual usage and complicates only the
reading of documented programs by novice users, e.g., a
novice user would tend to look at the keyboard, see what
color a desired function is and then push appropriate keys

to execute the function without difficulty. The novice is
not required to memorize that /X is always preceded by 2nd
or T since the color coding, in actual usage, readily prompts
appropriate action. On the other hand, the documentation

of programs normally includes all keys which must be pressed,
such that /X becomes 2nd VX or * /X or £v/X, which may take

a little getting used to. However, new or different does

not necessarily equate to difficult. Thus the often-heard
cry of novice users that documented programs are "difficult
to read" appears to be unfounded.

3. Programming Language

Fear of having to learn a "new language" in order
to operate a card-programmable calculator is, in general,
unfounded. True, the user may be required to supply implied
parentheses or equality signs (AOS) or be required to always
(RPN) or sometimes (AOS) enter the operator after the mathe-

matical variables., and be required to become familiar with

52

a long list of abbreviations — but none of these requirements
can be considered to be a new language. In fact, the
"language" required by either AOS or RPN is best defined as
merely a simple abbreviation system for normal mathematical
language, similar to abbreviations that most high-school
graduates are already familiar with. Thus, learning the
language of the calculator is simply a matter of adapting
prior personal abbreviation habits to the abbreviations
listed on the calculator keys. Once the novice has learned
to recognize the listed abbreviations, he is ready to oper-
ate or to program. Further, since many abbreviations are
common to both AOS and RPN, individuals can quickly master
a second system. Additionally, many of the abbreviations
are phonetic or otherwise quite straightforward. Hence, it
is feasible to learn the great majority of these abbrevia-
tions, adequate for almost all calculators on the market,
in less than half a day.

Table 1 lists most abbreviations commonly found,
as well as a brief definition of each abbreviation. (For
full description of each function, the reader is referred
to handbooks published by the various manufacturers.)

The first column in Table 1 lists abbreviations which
are used by the authors to amplify documented programs in
the remainder of this work, especially in the remarks sgc—
tions of the programs themselves. This notation largely
duplicates keystroke abbreviations found on the various

calculators or amplifies such abbreviations. The reader

53

can, therefore, more easily translate any of the programs
which follow — on either machine — by studying this consis-
tent notational system in lieu of studying the particular
keystrokes actually required. 1In other words, instead of
learning two systems, the reader can concentrate on the one
"translation system" which is provided throughout. Viewed in
another way, this notational system is also a first step
toward a universél calculator language; the average reader
will find it useful for annotating his own future programs.

The reader is warned not to equate the charted list
of key abbreviations to functional capabilities (see Appendix
B for functional capabilities). Many functions require
sequenced keystrokes and thus are not in Table 1; e.g.,
on the SR-52, the arc sine is executed by pressing INV SIN
and e® is executed by pressing INV Lnx, but neither ARC SIN
nor e* appear, on the SR-52, as key abbreviations.

The second column of Table 1 defines the abbrevia-
tions as used by the authors. Such use usually, but not
always, corresponds to the designed primary use of the same
abbreviation by the calculators. The abbreviations duplicate
notation actually found on the machines to the maximum
extent feasible, adding or changing only where necessary
to achieve the desired consistent set of abbreviations which
can then be used to amplify either HP-67 or SR-52 programs
as discussed previously.

The final columns show the relationship between

the definitions and the labeling used on the machines.

54

Direct correlation of both the abbreviation and its meaning
to a key found on one of the calculators is indicated either
by "P" (Primary function of one key) or by "*" (Secondary
function of one key) or by S (Manual Switch) as listed under
each calculator. Additionally, alternate abbreviations used
on the calculators are listed opposite the appropriate defini-
tion. Finally, the entry "(OU)" in these columns means that
the same abbreviation is used for some other use on the
calculator in each case the other use can be found elsewhere
in the same column. For example, "(OU)" is located in the
right column opposite the left-column abbreviation "DEG",
which is defined as "Degrees" for use in this study. Several
entries below the, " (OU)" entry in the same (right) column,
"DEG" appears, opposite "DEG MODE" in the left column,
which is the abbreviation used for "Degrees Trigonometric
Mode" throughout this study. Other entries on this same
latter line of Table 1 indicate both what the abbreviation
"DEG" designates as used by the particular calculators and
what "DEG MODE" designates as used by the authors, i.e.,
that the abbreviation "DEG" appears as a second-function
key designation (*) on the HP-67 designating "Degrees
Trigonometric Mode" and as a switch designation (S) on
the SR-52 designating "Degrees Trigonometric Mode."

Hence, Table 1 defines how the authors use particu-
lar abbreviations throughout the remainder of this work;

whether such usage corresponds directly to usage on the

55

particular machines, and (if the correspondence is not
direct) how the same abbreviations are used on the calcu-
lators or what different abbreviations are used on the
calculators.

Novice calculator users are advised to concentrate
only upon the two left columns of Table 1. More advanced
readers can use Table 1 to determine if a specific abbre-
viation used by this study also appears as an abbreviation
on the SR-52 or HP-67. However, all readers are again
warned that Table 1 lists abbreviations, not functional
capabilities. After achieving basic familiarity, readers
can restudy Table 1 and Appendix B, together with the
discussion which follows, in order to better determine which
calculator's system appears to best fit personal or organi-
zational purchase parameters.

4. Key Code Systems

Both the HP-67 and SR-52 use a key code system which
closely corresponds (for primary functions) to the location
of each key in an imaginary superimposed, second quadrant,
xy matrix. The y-value is read first, neglecting the minus
sign; i.e., row, column. Thus the primary function of the
key at topmost, leftmost (the A key) is coded 11 the primary
function of the key at fourth row down, third column to
the right is 43, etc. As one exception to this pattern, on
both machines, numeric keys are directly coded 00, 01, ...,
09. This exception causes no confusion both because it is

direct and because there is no "zero row" of keys.

56

Abbreviation

TABLE I. KEY ABBREVIATIONS

Meaning as Used by Authors

AI

BST

Cl

CHS

CLR
CLR

User-defined Label
User-defined Label
User-defined Label
User-defined Label
User-defined Label
User-defined Label
Backstep (Program Mode)
User-defined Label
User-defined Label
User-defined Label
Change Sign of Display
Clear

Clear Entry or
Arrest Flashing Error

Clear Display

Clear Flag

Clear Program

Clear (Primary) Registers
Coordinates

Cosine

Arc Cosine

User-defined Label
User-defined Label
User-defined Label

+/-
(ou)
CE

CLR

CLX

CLX

cF
CLPRGM
CLREG

TABLE I. (Continued)

Abbreviation Meaning as Used by Authors

DEC Decimal

DEC DEG Convert DEC DEG(HR)
DSP - Format to DEG(HR),
MIN, SEC, DSP - Format

DECR Decrement by 1

DEL Delete Step (PRGM MODE)

DEG Degrees

DEG DEC Convert DEG(HR), MIN, SEC
DSP-Format to
DEC DEG(HR) DSP-Format

DEG MODE Degrees Trigonometric Mode

DEG RAD Convert Degrees to Radians

0o Compute or Execute

pSP Display or X-Register

0SZ Decrement DSP (or I-Reg) by 1,
Skip Step if Result is Zero

DSZ(7) DSZ (Indirectly in REG Addressed
by I-REG)

E User-defined Label

E' User-defined Label

e User-defined Label

EEX Enter Exponent

ENG DSP Engineering Display Format

ENTER Lift STACK; Enter DSP into
STACK Y-REG

ERR Error

ex Xth Power of e

EXCH Exchange

D.MS

EE

EXC

H.MS

(0u)

DEG

ENG

Abbreviation

Meaning as Used by Authors

TABLE 1.

(Continued)

EXP

£

FORMAT
FUNC

FIX DSP
FLG
FLOAT PT
FRAC

IF x=y
IF x<y
IF x#y
IF x>y
IF x=0
IF x>0
IF x#0
IF x<0
IF x>0

Exponent

2nd-Function Call-Key

Set Display Format

Function

Fixed Decimal Display Format

Flag

Floating Decimal Display Format

Fractional Portion

2nd-Function Call-Key

GRADS TRIG MODE

Go To

2nd-Function Call-Key

I-Register

If Error is Displayed (Flashing)

If
If
If
If
If
If
If
If
If
If

Flag is Set

Display
Display

Display #

\4

Display

Display

Display >

Display #
Display <

Display >

| A

Y-register
Y-register
Y-register
Y-register
zero
zero
zero
zero

zZero

*

SR-52

2nd

FIX

2nd

2nd

if flg

if zro

if pos

HP-67

DSP

GRD

F?

X=y
X<y
XFY
x>y

x=0

x#0
x<0

x>0

Abbreviation

TABLE I. (Continued)

Meaning as Used by Authors

INCR
IND
INS
INT
INV
ISZ

ISZ(i)
LBL
LBLf
LASTx
LIST
LN
LOG
LRN
MEM
MERGE
ON/OFF
OPS
ow
PAPER
PAUSE

P=R

Increment by 1

Indirect

Insert Step (Program Mode)
Integer Portion

Inverse Function of ...

Increment DSP (or I-Reg) by 1;
Skip Step if result is zero

ISZ (In REG Addressed by I-REG)

Label
Label

Entry Prior to Last Operation

List Program
Logarithm, Base e

Logarithm, Base 10

Learn (Shift to Program Mode)

Memory

Merge Steps (Program Mode
Switch Machine ON/OFF
Operations

Otherwise

Advance Paper

Pause from Operation
(for data entry)

Convert Polar Coordinates
to Rectangular

In X

pap

P/R

(1)

LSTx

W/PRGM

Abbreviation

TABLE I. (Continued)

Meaning as Used by Authors

PRI

PRGM
PRGM MODE
PROD

o
1
n

R

R?

RAD
RAD-*DEG
RAD MODE
RCL
RCL(4)

READ
RECT
REG/ REG
R-»P

REVU REG
REVU STACK
RND

RSET

RTN

RUN

Primary
Program
Program Mode

Product (Multiplication in
Register)

Primary/Secondary Register
Exchange

Ro11 Down Stack Registers
Ro1l Up Stack Registers
Radians

Convert Radians to Degrees
Radians Trigonometric Mode
Recall

RCL (Indirectly from

Register Addressed by I-REG)

Read Card
Rectangular Coordinates

Register/Store in REG

Convert Rectangular Coordinates

to Polar

Review Primary Register
Review Stack Register
Round Off

Reset Counter to 000

Return Control to Calling
Routine (or Keyboard)

Run Routine (Program)

P

LEARN

S

HP-67

W/PRGM

(0U)

RAD

(0uU)

REG
STK

R/S

Abbreviation

TABLE I. (Continued)

Meaning as Used by Authors

S
SBR
SCI DSP

SST
STACK
SET FLAG
STO
STO(1)

STOP
SUM
TAN
AN
THRU
W/
WRITE
X

X

x

X

Sample Standard Deviation
Subroutine

Scientific Notation Display
Format

Secondary Register n (n=1,...,9)

Sine

Arc Sine

No Operation (Skip Step or Space)

SingleStep (Program Mode)
X,Y,Z,T Register Group
Set Flag (Turn On)

Store

Store (Indirectly, in
Register Addressed by I-REG)

Stop (Halt)

Sum to (Add to Register)
Tangent

Arc Tangent

Through

With

Write Data Onto Card

Times, Multiplication Operator
X-Register or Display
Arithmetic Mean

Factorial

62

SR-52

ST FLG

HLT

*

SF

R/S

W/DATA

Abbreviation

TABLE I. (Continued)

Meaning as Used by Authors

%
%CH

St

Flash Display (x-register)
Absolute Value of x
Square root of x

Exchange x and y register
xth root of y

Square of x-register
(Display) value

y-register

Add y-register DEG,MIN,SEC
to Display

xth power of y
z-register
2nd-Function Key
Addition Operator
Decimal Point
Division Operator
Equality Operator
Implies
Parenthesis, left
Parenthesis, right
Percentage
Percent Change

Pi (3.141492654)
Number

Subtraction Operator

63

2nd

0

HP-67

ABS

f,g,h

Abbreviation

Table I. (Continued)

Meaning as Used by Authors

T+

1/x

(o)} S w N

O o0 N

Notes: P

*

S

SUM: x to S4, x2 to S5,

y to S6, y2 to S7,
xy to S8, +1 to S9

2

SUM: -x to S4, -x" to S5,
-y to S6, —y2 to S7,
-xy to S8, -1 to S9

Zero

One

Reciprocal of Display
Two

Three

Four

Five

Six

Seven

Eight

Nine

xth power of 10

Manual Switch; not a key

64

SR-52

Primary function of one key found on the calculator

Secondary function of one key found on the calculator

The machines differ only concerning the coding
system for secondary functions. Although the HP-67 can
hancle one, two, or three two-digit numbers in its coding
displays when in programming mode, the SR-52 can handle only
one two-digit number in its coding display. Thus, secondary
functions are coded on the HP-67 exactly like primary func-
tions, the only difference being that two or three two
digit numbers are displayed for secondary function entries
which require two or three keystrokes, respectively. Thus
f LOG on the HP-67 is displayed as 31 53 and f LBL A is
displayed as 31 25 11, etc. Conversely, on the SR-52,
the coding system itself is modified to handle secondary
functions. Since the calculator is only 5 keys wide, the
column code for all primary functions is defined by the
digits 1 through 5, leaving 6 through 9 and 0 available.
Further, all secondary functions on the SR-52 are printed
above the key. Hence, by mentally folding the remaining
available digits over the first five digits in each row,
each secondary function is assigned a number of its own.

As an example, the coding for the third and fourth rows

of the SR-52 is as follows:

Secondary Functions: 36 37 38 39 30
Primary Functions: 31 32 33 34 35

Secondary Functions: 46 47 48 49 40
Primary Functions: 41 42 43 44 45

Third Row:

Fourth Row:

65

Although the need for ten codes per row puts the
last secondary code out of sequence in each row, the
system does have logic and is easily learned: higher locations
of abbreviations on the keyboard itself correspond to
higher-numbered keycodes (with exception of the right column
secondary functions). The above method solves both the
coding for secondary functions and the two-digit display
limitation. Since the secondary-function code cannot be
created without pressing the "2nd" key, there is no need to
ever display the key code for the "2nd" key — as is required
to distinguish between the three available second keys on the
HP-67. Hence, "2nd LOG" becomes 28, period, on the SR-52:
"2nd LBL A" becomes 46 (2nd LBL) as one step and 11 (A)
as another step; etc.

5. Key Coding Formats

Key coding displays, on both machines, naturally
include the program step number. Thus, if the examples

above begin at step #136, the complete formats would be:

SR-52 HP-67
Keystrokes Display Keystrokes Display
2nd LOG 136 28 f LOG 136 31 53
2nd LBL 137 46 f LBL A 137 31 25 11
A 138 11

Such displays are extremely useful for verifying or editing
programs. The user can always determine what key instruction

is stored as a given step number by merely counting (down

66

and over) the rows and columns indicated by the respective

keycode system.

6. HP-67 and SR-52 Program Storage Capacities

It is often assumed that since the HP-67 can store
up to three kevcodes per step of program memory whereas the
SR-52 stores only one, the effective program capacity of the
HP-67 must be three times as large. This is simply untrue,
as evidenced above, because the third HP-67 keycode is never
used for anything other than to designate one of the second-
function keys, a designation that is never separately
required at all on the SR-52. The HP-67 program capacity is
slightly larger than the SR-52 capacity, but the reason is
the way keystrokes are merged per step on the HP-67, not
because three keycodes are displayed per step. This merging
applies primarily to all addressing and labeling. Thus,
returning to step 137 in the above example, the SR-52 code
"46" relays the same amount of information as do the HP-67
codes "31 25". But the HP-67 program capacity is increased
because the "A" requires an additional step for its code on
the SR-52, whereas the "A" is merged as "1ll1l" in the codes
for step 137 on the HP-67. Similarly, recalling or storing
data in a given register requires three steps on the SR-52
but only one step on the HP-67. Hence, the maximum ratio
of obtainablé program capacities, ever encountered by the
authors is approximately 2.4:1, with a more common long-term

ratio of between 1.3:1 and 1.6:1, in favor of the HP-67,

67

for advanced programming. Conversely, novice programmers
commonly encounter a ratio slightly higher than 2:1. As an
example, Figures 2 and 3 (Single or Bivariate Statistical
Analysis) are written with identical algorithms and program
sequencing on each machine, disregarding special functions
available on each machine which could be used to signifi-
cantly shorten the programs (HP-67 in particular). 1In
other words, thesé programs are intentionally written
inefficiently in order to achieve a typical comparison of
the number of program steps actually required to place
identical programs in either machine. The result is
2.196:1, for these particular programs. The ratio would
favor the HP-67 even more if special functions, such as the
ttkey available only on the HP-67, are included; conversely,
program optimization techniques as addressed later in this
study will do more to reduce SR-52 steps (for the common
functions) than to reduce HP-67 steps, because the HP-67
steps are more compact in the first place. In summary,
many programs éo not require extensive use of special func-
tions found on only one of the machines. In such cases,
the program capacity ratio appears to be between 1.3:1 and
1.6 to one in favor of the HP-67, but certainly is not 3:1
except in unigue cases.

7. Magnetic Card Formats

Standard SR-52 and HP-67 magnetic cards are reproduced
(actual size) below. The lower reproduction is a HP-67
card placed upon the backside of a SR-52 to better show

relative sizes.

68

Figure 1

Single or Bivariate Statistical Analysis (SR-52)

(Sheet 1 of 7)

USER M N' EJ E‘J Ca-rCl:]ate EJ D_'I n
KEYED
eerg x oy ltaleulate BTy BT vy
egression
FLAGS: _ OFF/ON OTHER LABELS NOTES
0 X
1 X See Sheets 6 and 7.
X
3 X
X
REGISTERS
0
1] LAST X
2l T3
I rxié
4 n STEP KEY CODE KEY ENJRY
S| LAST Y 000 ¢ * Bl
6l sy I 1 A COMPUTE X VALUES |
I 5yi¢ 2l 42 STO
8 rxivi 300 0
91 ns2y a4 o]
0 % 5l 44 SUM
1 ¥ 6 00 0
2 r 7102 2
3| nsxy 8 40 *y &
o Sg- 9 44 SUM
5 Sy g10 Q0 0
ol 8 11 03 3
N e 2l 0l 1
8 3 3 44 SUM
9 4 00 0
51 04 4
6l 43 RCL
7100 0
8 02 2
9 55 3
020 10 *E
i 95 =
2 42 ST0
3 01 1
SET STATUS 4 00 0
DISPLAY _ 1RIG 5 40 *xZ
ST X DEG 6] 65 X
TJENG__ [RAD 710 *t
171X []GRAD g 95 =
¥ FLOATING PT 9 94 +/-

69

STEP

KEY CODE KEY ENTRY

030 %5 T NOTES

1 43 RCL

2 00 0

3 03 3

4 95 =

5 42 STO

b 01 1

/ 07 7

8 55 +

9 10 *E !
040 95 =

I 30 R

2 42 STO

3 01]

4 04 4

5 10 *E !

6 56 *RTN

7 46 *| BL

8 10 *E ! n counter]

9 43 RCL
050 00 0

1 04 4

2 56 . *RTN

3 46 * BL

4 12 B compute Y values |

5 42 STO

6 00 0

7 05 5

8 44 QUM

9 00 0
060 06 6

1 40 *xC

2 44 SUM

3 00 0

4 07 7

5 53 @

6 43 RCL

7 00 0

8 06 6

9 55 P
070 10 *E

1 95 =

2 4?2 STO

3 01 1

401 T

5 40 *x<

6 65 X

7 10 *E T

8 95 =

9 94 +/-

70

STEP KEY CODE KEY ENTRY
080] 85 T NOTES

1] 43 RCL

2] 00 0

3] 07 7

4] 95 =

5] 42 STO

6 00 0

71 09 9

8] 55 <

9 10 *E!
090f 95 =

11 30 *VX

2l 42 STO

31 01 1

4 05 5

5] 43 RCL

6| 00 0

/1 01 1

8] 65 X

9] 43 RCL
100 00 0

11 05 5

2] 95 =

3| 44 sum

4] 00 0

5/ 08 8

6 56 *RTN

71 46 * BL

8] 13 C compute Regression |

9] 43 RCL
110 00 0

1] 08 8

ANRE -

3] 53 (

4 53 (

5[43 RCL

6] 01]

71 01 1

8| 65 X

9] 43 RCL
120} 01 1

1] 00 0

2] 54)

3l 65 X

4 10 *E!

5 54)

6] 95 =

71 42 STO

8] 01 1

9] 03 3

71

STEP _KEY CODE KEY ENTRY

(130

29

43

RCT

1

/

wy
—
(@

=

O
—

—q
O

—A W N —4— ol +|+]| I]|O]—4 231 ><] Oy —
~
1

(o0]

»*
X
b
=

*
—
w0
—

*
B

NI

N

>

=
(]
—

o
—

I ~lO|— o< O)e e It [j—

Y*/X

Ol 00 ~3] Y OV £ Lol PO =] O O 0ol ~3| O] O] LV P =] O] WO OOf ~J3] OO LN -] LV N} —| O WO OO ~J| O] O -] Lol N =] O LOJ O0] ~J] OY| U]] L] N +—

72

NOTES

180

95

STEP KEY CODE KEY ENTRY

85

+

43

RCL

ol

1

08

8

HLT

*LBL

D

X*/Y 1

x
O
—

IO —1 D] le | W |OO]—
N]
—

Compute r |

m

(&,
(o

O
o

—
(e

N_-Jm 1 s~ O — =0 ><| B — A~ ><] H— 1] Lo —

X
=
—4

END OF PROGRAMMABLE MEMORY

~J| O O]] o N 1= | Of WOl 0ol | O] U] =] Lo P =] O O] O ~J] O U] B W[N] =] O] WO 00| ~J| O] U]] LI PN} =] O WO 00 ~Jf O U] Lo N 1—

e

73

FIGURE 1

Single or Bivariate Statistical Analysis (SR-52)

Program Description, Equations, Variables, etc.

This program provides X, Sy Y, S., b, a, r, x* given y, y* given x

Y
for bivariate samples. In addition, N' (optimum sample size with
95% confidence) may be determined using data from X; calculation.

a) N' is computed with the formula

(—1—)?
.025 X5
described in Chapter 12 of the Production Handbook; Carson, Bolz
and Young; Ronald Press, N.Y.; 1972.

b) The balance of the program is based upon Chapters 9 and 10,
Introductory Statistics; Zehna; Prindle, Weber & Schmidt, Inc,
Boston; 1974.

¢) Single variable samples can be analyzed for X Sy and N'

d) Confidence level for N' may be changed by inserting a di fferent a/2

in steps 164-166.

Note: *E' is used for a subroutine in the program to recall n.

Pressing *E' will place n in display.

74

Step User Instructions Input Qutput
Data/Units Press Data/Units

1. Record program and initialize:
2. a) for single variable sample X x data
(n will be in display after
each xj)
b) for b{variate sample X A x data
(last (xi)(yi) will be in display) Y; B y data
c) after x; and y, are entered C
linear regression is
calculated
d) estimated correlation coefficient *C! r
can now be calculated
e) N' is calculated from X data (in A) *A N'
f) X* may be calculated by placing a
Y in display and pressing D Y D X*
g) Y* may be calculated by placing an X E y*

X in display and pressing E
h) balance of data may be recalled
using RCL and appropriate

register number.

75

Figure 2

Single or Bivariate Statistical Analysis (HP-67)

user Rl bj c] [d]]
KEYED
LABELSA! x4 B 1 v C 1 catcutate B vy B yayx
ELAGS: O;F/ON OTHER LABELS NOTES
1 X See Sheets 6 and 7
2 X
3 X
REGISTERS
O Txj
1 X
2 Sx
3 x4
a4y STEP KEY CODE_ KEY ENTRY
5(Sy 0
6| T yi 131 25 11 | CLBL A CALCULATE X values |
71 Tyié 2] 33 14 STO D
8 Ixiyi 313361 00 | STO +0
9 n 4[32 54 gxt
0 5[33 61 03 | S10 +3
1 601]
2 7133 61 09 | S10 +9
3 8/ 3¢ 00 RCL 0
g 9[34 09 RCL 9
5 010[81 T
6 133 01 STO 1
7 2|32 54 gx<
8 334 09
o WA X
A nox> 5[42 CHS
B[nSyZ 6| 34 03 RCL 3
C] nSxy 7161 +
D[Last x/b 833 11 STO A
EfLast y/& 9] 34 09 RCL 9
020] 81 3
137 54 /X
2133 02 STO 2
334 09 RCC O
SET STATUS 4] 8% R/S
DISPLAY _ 1RIG 537 25 12 | fLBL B CALCULATE Y values)
SCI DEG 633 15 STO E
ENG [1RAD 7133670 STO +6
1FIx__ []GRAD g 32 54 gx2
FLOATING PT 9[33 61 07 | ST0 +7

76

STEP _KEY CODE KEY ENTRY NOTES

030] 34 06 RCL 6 —
1134 09 RCL 9
2] 81 +
3133 04 STQ 4
4{ 32 54 gx<
5/ 34 09 RCL 9
6] 71 X
7142 CHS
8] 34 07 RCL 7
9] 61 +
040]33 12 STO B
1134 09 RCL 9
2] 81 +
3131 54 f/X
4133 05 STO 5
5134 14 RCL D
6134 15 RCL E
7171 X
8/33 61 08 [STO +8
9} 84 R/S
050131 25 13 | fLBL C CALCULATE Regression |
1134 08 RCL 8
2134 09 RCL 9
3134 01 RCL 1
4134 04 RCL 4
5{71 X
6 71 X
7151 -
8{33 13 STO C
9{34 11 RCL A
060} 81 B
1133 14 STO D
2{34 01 RCL 1
3|71 X
4142 CHS
5{34 04 SCL 4
6161 +
7133 15 STO E
8| 84 R/S
9132 25 11 |[glBL a CALCULATE N']
070134 02 RCL 2
1102 2
2171 X
3[83 .
4100 0
5{02 2
6{05 5
7134 01 RCL T
8| /1 X
9]81 :

77

STEP__KEY CODE KEY ENTRY NOTES

080|132 54 qXé
84 R/S
32 25 13_[qlBL ¢ CALCULATE r]
34 13 RCL C
34 02 RCL 2
34 05 RCL 5
34 09 RCL 9
71 X
71 X
81 +
090] 84 R/S
31 25 14 [fLBL D CALCULATE X*/Y]
34 15 RCL E
51 -
34 14 RCL D
81 :
84 R/S
31 25 15 CLBL E CALCULATE Y*/X |
34 14 RCL D
7] X
100134 15 RCL E
61 +
84 R/S
32 25 15 | fLBL e RECALL n |
34 09 RCL 9
R/S END OF PROGRAM.
(End of Programmable Memory at
Step #224)

c—
O
WOl 00l ~1l | Gl B ol P =] Of WOl o] ~if] |] Lol POl =] O Wl o] ~af] |] ol POf —] O WJ 0ol 3] O] Ul B Lol P =] Of WO 0]] v L] B Lol Po—
[0 0]
N

78

. . FIGURE 2
Single or Bivariate Statistical Analysis (HP-67)

Program Description, Equations, Variables, etc.

1. This program provides X, Sx, Y, Sy, B, &, r,X* given Y, Y(given X
for bivariate samples. In addition, N' (optimum sample size with
95% confidence) may be determined using data from Xj calculation.

a) N' is computed with the formula

described in Chapter 12 of Production Handbook; Carson, Bolt

and Young; Ronald Press, N.Y., 1972.

b) The balance of the program is based upon Chapters 9 and 10,
Introductory Statistics; Zehna; Prindle, Neber & Schmidt,
Inc., Boston; 1974.

c) Single variable samples can be analyzed for X, Sx and N'.

d) Confidence level may be changed by inserting a different a/2
in Steps 73-76.

79

Input Qutput
Step User Instructions Data/Units Press Data/Units
1. Record program and initialize
a) for single variable sample Xi A X data
(n will be in display after each
Xi)
b) for bivariate sample (Last Xi A X data
(Xiyi) will be in display) Y, B Y data
c) After X and Yi are entered o
linear regression is
calculated
d) Estimated correlation coefficient c r
can now be calculated
e) N' is now calculated from Xi a N
data (in A)
f) X* may be calculated by placing a Y X*/Y
Y in display and pressing D
g) Y* may be calculated by placing X Y*/X

an X in display and pressing E
h) balance of data may be recalled using

RCL and appropriate register number.

80

SR=52 Y8 TEXAS INSTRUMENTS .
STAND }‘A‘,_ ,T;‘vj.‘,‘ as, - e o ’8.{ ll

Y TR T

HP-67 7
STANDARD 5 2p,
CARD = . = = 2 2L

HP-67 CARD
OoN
SR-52 CARD

Both the SR-52 and HP-67 have 5 user-definable keys
as the top row of keyvs, labeled A through E. The second
functions of each of these are also user-definable, labeled
A' through E' on the SR-52 or labeled a through e on the
HP-67. The functions defined for each label are written
on the card as desired by the programmer. The following
notation is used throughout this work to represent the 10
user keved labels, as those labels would actually be completed

upon the card itself:

USER —

KEYED -
LABELS 2 B ¢ 0 £

The labels for the top row, of course, are completed to
correspond to the keys on the machine under discussion in

each case.

81

8. Recording or Reading Magnetic Cards

After keying a program into memory, the program can
be permanently stored on a magnetic card by passing the
card through the card reader. 1Initializing the card reader
to record requires the proper setting of a switch on the
HP-67 or several keystrokes on the SR-52. Data from storage
registers can also be permanently stored on cards. Initial-
izing the card reader for data requires the setting of a
switch and two keystrokes on the HP-67; a special prior
program card must be used together with blank data card on
the SR-52, using two keystrokes with each card.

Stored programs or data remains on the cards until
the information in intentionally altered by the user; i.e.,
the cards are reusable or can be permanently filed for
dedicated purposes. Various systems are used on the differ-
ent calculators to prevent accidental altering of cards,
or to abort protections used to prevent accidental destruction
of card information in order to reuse "permanent" cards.

All of these systems work well, hence, these differences
will not be addressed herein.

Reading previously programmed magnetic cards requires
only the proper setting of a switch on the HP-67; two or three
keystrokes per card side are required on the SR-52. Addi-
tional machine functions which are automatically executed
when a card is read differ between calculators. This subject

is addressed in Section IV.E.1l0.h.

82

9. Advanced Programmability Comparisons, SR-52 and HP-67

The authors believe that this work is relatively
unbiased toward these two machines. Both have unigue
capacities and constraints which can apply to a given
situation, but full discussion of each would unnecessarily
triple the length of this section. Thus, programming con-
cepts in this section are presented on whatever machine
appears to be most pertinent for that particular concept,
with no attempt to "yes but" the alternate machines alternate
capabilities for some other concept. Further, since more
readers are expected to already be familiar with algebra
than with reverse polish notation — and for uniformity -
SR-52 programs are normally discussed first. This is not
intended to degrade the HP-67 or HP-97 in any manner.

a. General — Internal Rate of Return (IRR) As A Model

In order to provide a problem simple enough to
be readily understood by the majority of readers, yet intri-
cate enough to necessitate complex programming techniques,
an Internal Rate of Return program is developed herein,
upon the HP-67 and SR-52, as a vehicle for clarifying differ-
ences between these machines and programming systems. These
programs are also compared with literature (programs) avail-
able from the manufacturers in order to yield additional
insights concerning both available programs and programming

potentials and limitations.

83

b. Internal Rate of Return (IRR) Concepts
IRR programs incorporate concepts involving the

time value of money; specifically, the net present value
(NPV) of a series of n future (periodic) cas flows (CF's)
CFl, CF2, ceoy CFn, after the incurrence of some initial
investment. The discrete interest rate (i) which will make
the sum of discounted cash flows equal the initial investment
is defined as the IRR, and reflects the effective discrete
interest rate that will be earned upon the investment. For
a series of twenty future cash flows, using the above notation,
the formula for NPV is:

20 CF

NPV = § ——2— - INVEST

n=1 (1l+i)
A negative NPV indicates that, at the chosen interest rate,
a shortfall (below the amount which would be expected at
that interest rate) equal to the magnitude of the negative
NPV will occur; a positive NPV indicates that, at the chosen

interest rate, an additional gain (above the amount which

would be expected at that interest rate) equal to the
magnitude of the NPV will occur; i.e., the defined interest
on the original investment has been exceeded by the positive

NPV amount.

CF
n

(1+1)
present value (PV) of each flow n, written PVn. In order to

The quantity is defined as the discounted

determine IRR, the above formula must be solved for the

value of i which makes the difference zero; i.e.,

84

20 CF_
0 = Z—n—INVEST
n=1 (1l+i)

or

20
0 = z PV = INVEST
n
n=1

Graphically, the cash flow process can be pictured on a

time line as follows:

+$ CF cr CF3 CF

pericds

-$ INVEST

The future cash flows may also include zero or negative
(additional future investment) values. Hence, a more complex

case can be pictured on a time line as:

F, F, F; Fy Fy Fg ... Fyg Fpg Fy Frg Frg Ty

1

A

85

c. IRR Program Capabilities

(1) The programs developed herein will provide
the discrete IRR for any conceivable periodic (equally-
spaced) set of 21 positive, zero or negative cash flows.
The programs solve for two decimal places beyond the integer
percentage value (i.e. 7000%, .62% or 6.39% or 0.03%) unless
instructed by the user to proceed further; accuracy up to
the machine display capability (10 significant digits), if
desired, may be initially requested by the user. The programs
will also solve for a negative IRR, i.e., where net undis-
counted income is less than net undiscounted investments.

Either program will permanently store an

initial (positive, zero, or negative) "investment" and
twenty additional future positive, zero, or negative periodic
cash flows. 1In addition to the IRR, either program will
compute the NPV of these flows at any positive or negative
trial interest rate; the initial value (investment) or the
trial interest rate may each be individually modified by
the user at any time; the trial interest rate may also be
incremented or decremented by the user at any time (in lieu
of reentering a many-digit rate where only the last digit
or last several digit sequence is to be changed); the number
of cash flows (data entry values exclusive of the value
normally used for the initial investment) is automatically
accumulated and stored for possible later recall by the user

and each value can be individually modified or deleted

86

(changed to zero) at any time; previously unused data points

from the twenty available may be automatically added (on

the end) at any time without recall of the number of entries.
used previously; and the manual entry of long sequences of
zero values may be avoided by instructing the calculator to
jump over them in its automatic accumulation. Most of the

above processes are executed exclusively on the 10 user-

defined keys. Accordingly, this program is satisfactory for

IRR, NPV or Profit analysis of any periodic sequence of 21
unigue values or for an Investment .followed by either 20
unigue values or by 20 identical (annuity) values. The
HP-67 program will also calculate the undiscounted breakeven
point for the series of values but this! subroutine is
omitted from the SR-52 for lack of program memory space.

In summary, these programs are satisfactory for rather com-
plete analyses of any 21 flows spaced by uniform intervals —
days, weeks, 12 day periods, months, gquarters, years or
whatever. Each of these programs will perform the function
of at least three of the programs published by the respective
manufacturers — using only user defined keys. Additional
manufacturer programs can be accomplished by including
limited manual use of other keys.

Functionally similar subroutines are
arranged in a different sequence for each calculator in
order to take advantage of the program search patterns
unique to each calculator and thus minimize execution time

for each. Since these different arrangements make direct

87

comparison of the programs difficult, applicable functional
subroutines are individually reproduced within the analysis
which follows, in addition to the complete listings provided
for each program. Meanwhile, the reader should concentrate
primarily upon the first page of each program.

(1) Step Ratios. Because the following programs
are advanced and optimized programs, the SR-52/HP-67 step
ratio is approximately 1.32, i.e., the number of steps
required on the HP-67 to accomplish all of the functions
which can be accomplished by the 208 step SR-52 program is
158. The remaining 50 HP-67 steps are used for additional
functional, informational, and user-prompting subroutines
not programmable on the SR-52 because of program memory
space constraints. (The SR-52 program does not use 16
steps in order to make available two extra data registers.
Thus the HP-67 program additionally uses these steps for
additional routines not programmable on the SR-52.)

(2) 1Initial Data Entry Operations. Typical
operations which can be performed by either of these

single-card programsare: (p9)

88

INTERNAL RATE OF RETURN (SR-52)

FIGURE 3

g

gé%?o AT ciR ReG BbET n=Dsp | [usep) Pdoo IRRFJ 1 D0
LABELYR s nvesT £ sto crrs [Rt g PISR0 L EToo wev
SLAGS: OFF /0N OTHER LABELS NOTES
X -
% X i = INTEREST RATE
X — .
3 X iy = TRIAL i
X Ai = INCREMENT OR
REGISTERS DECREMENT TO i,
ggc?sgzﬂow n = CF# (PERIOD #)
02CF _#3 PV = PRESENT VALUE
03CF _#4 -
04CF_#5 STEP__KEY CODE__KEY ENTRY NPV = NET PV
05CF £6 PRGM [00Q]_B1 HLT STOP)
06CF £7 CALL {001} 46 *[BL RCL A1
07CF #8 USER [002] 18 *C' & DO BELOW
08CF 79 OR [003] 43 RCL
09CF 710 PRGM [004] 09 9
TOCF £ GIVE [005] 06 6 RCL AT
11CF #12 i | 006] 46 *LBL ADD A1 TO TRIAL 7
12CF #13 007] 10 ! & DO BELOM
13CF #14 USER [008] 44 SUM
T4CF 15 “OR [009] 09 9
T5CF #16 PRGM | 010] 08 8 +Ai>~REG 98
T6LF #17 CALL |OTI[46 *LBL DO NPV — l
T7CF #18 012 15 E (@ TRIAL i)
T8LF 719 013 25 CLR CLR DSP & CLR
TOLF 20 014 01 1 REGs 60-69
015] 44 SUM
58 n 016] 09 9
PV 017] 08) | +1~REG 98
018 43 RCL)
96| A7 or (n-T) 019 09 9
97| N=MAX_n 020] 08 8 RCL (1+TRIAL i)
98| TRIAL i/IRR 021 45 yX
99] INVEST 022] 53 (
023 43 RCL
SET_STATUS 024] 06 6
DISPLAY ___TRIG 025 08 8 RCL(n-1 A A
R DEG | 026] 85 + ADD L
ENG__ []RAD 027 01 T 1 =a_! 000
[1FIX__ [1GRAD 028 54) ., 018 122
K] FLOATING PT 029 94 +/- DO (1+1,) 066 192

89

o
e |
(o)

o
[e2]
(o)}

STEP_ KEY CODE KEY ENTRY NOTES
030] 65 X —_—
1 36 *IND
2 43 RCL
3 06 6
4 08 g i
5 95 = (1+1,) "X (CF #n) = PV
g 44 SUM
06 3 _
505 : +PV REG 69 = TPV
039 01 T)
040] 44 SO
106 5
2|08 8 INCREMENT n - REG 68
343 RCL
4 06 3
508 8
6 75 -
7143 RTL
8|09)
907 7
050 95 = COMPUTE (n - N)
90 *TFZRO
21 01 T)
3 09 g 4
- 05410 3 IF n=N GTO STEP 193
— 536 FIND
6 43 RCL
7] 06 3
808 g IF n#N, RCL CF#n
990 *TFZRO
06000 0
03 3
o 09 g IF CF#n = 0, GTO STEP 039 J
341 GT0
400 0
USER[__ 5] 01 1
SIVE osg o 5 IF FV #0, GTO STEP 018 y
*
DS 8L 1 SET n = DSP(x)
9 75 -
070] 01 1
1 95 =
2148 FEXC
3 09 9
4 07 7 (n-1) + REG 97; RCL PRIOR N
5 42 STO
6] 09 9
v 7] 06 6 PRIOR N REG 96
054 804 +7
193 985 ¥

90

STEP KEY CODE KEY ENTRY
% o] NOTES %§%
% 85 + 0 ~
13 C RCL REG 97 >© (D0 LBL)
395 = [“DO(-PRIOR N+ 1+ (n-1))
480 *TE POS
5 13 C IF n> PRIOR N, GTO C
6] 50 *ST FLG
{ 7100 7 IF n< PRIOR N, SET FLAG ¢
g 8 46 *LBL RCL N '1
T 9 13 C (N = MAX n) T
090] 43 RCL
USER u]
GIVE /
: 3 56 *RIN STOP (OR RTN TO CALLING SBR)
t, 3 46 *LBL | sTO TRIAL i
5 14 D L1
6| 40 w7
7] 30 %/% DO ABSOLUTE VALUE OF i+
8 42 570
o[09 9
USER [T00] 08 8 lit| REG 98
GIVE [7|56 *RTN | STOP (DSP i) r A
CFn 21 46 *LBL STO CF's
312 B (FUTURE CASH FLOWS)
1 36 *IND
5[42 570
509 9
707 7 STO FV_~ REG (n-1)
807 1
944 SUM
17009 9
107 7 INCREMENT n
222 TNV
360 *TE FLG
400 7
513 C IF FLAG @ NOT SET, GTO C)
6 43 RCL
709 g
806 6 IF FLAG @ SET, RCL PRIOR N
9|48 FEXC
T20] 09 3
07 7 STO PRIOR N -REG 97; DSP n
USER[T22] 86 FRSET] CLR FLAG @; GTO STEP 000 D
CAL 346 *TBL
Ly i o D0 IRR
557 *FTX
6 08 g FORMAT 8 DEC DSP
7193 :
800 7
07 7 0.02 = Ai

91

STEP KEY CODE KEY ENTRY
T 42 STO NOTES
é 82 g A1 REG 96
6 é/‘ -
133 18 *CT DO NPV ? &C) (DO LBL)
4 80 *IF POS
501]
603 3
/103 3 IF NPV NOT NEG, GTO STEP 133
8] 02 2
9l 94 +/-
140 22 TNV
149 *PROD IF NPV NEGATIVE:
209 9 -(Ai%2) = Ai' ~ REG 96
306 6 » .
T4 18 x0T DO NPV %C) (DO LBL)
522 TNV T
680 *TF POS A
701 l
804 3
904 4 IF NPV STILL NEG, GTO STEP 144 |
150 93 :
02 2
2] 94 +/-
349 *PROD
2109 9 IF NPV POS OR @:
5106 3 (-0.2)XAi = Ai" REG 96
61 43 RCL
7109 9
806 6 (A" = NEW Ai)
975 -
T60] 02 7
1 52 EF
* [62] 04 2
394 7= (LOW LIMIT = 0.0002) A
4 95 = .
522 TNV
5] 52 EE DO (Ai - LOW LIMIT)
7180 *TF POS
801 1
9] 03 3
T70] 03 3 IF Ai > LOW LIMIT, GTO STEP 133 J
1 43 RCC
2109 9 IF Ai < LOW LIMIT:
308 8 RCL IRR
22 TRV
5 57 *FTX FORMAT FLOATING PT DSP
USER [6] 56 FRTN STOP (DSP IRR)
x
CALL ! ?2 *;?L CLR REG
9|47 VS CLR REG 00 THROUGH 19

92

)

EE

STEP KEY CODE__KEY ENTRY 000
T80 01 1 MOTES 192
17 g CLR REG 97 €8) (DO LBL) o
2|25 TLR CLR DSP & REG,GO THRU 69
314 D _CLRREG 98 "~ (@© (DO LBL)
4 @ STO <
509 9
g 06 6 CLR REG 96
*
SN LBk INVEST §
o 42 STO
19009 9
109 9 INVEST (CLR) REG 99
192] 86 *RSET CLR ALL FLAGS; GTO 000 & STOP)
193] 01 T (LBL E (NPV SBR) CONTINUANCE)
a2 NV
5|44 SUM
609 9
7108 g (-1) ~REG 98 =>TRIAL i
843 RCL
906 [
200 09 El
175 -
2| 43 RCC
309 g
409 g
505 = ZPV - INVEST = NPV @ iy
206] 56 *RTN STOP (DSP NPV @ i¢)
786 *RSET GTO 000 IF RUN BUTTON IS
208 STEPS MISTAKENLY HIT
9 208 BY USER WHILE
210 THRY PRGRM HALTED
1 215 AT STEP 206.
2 APPROPRIATED | THIS SAFETY
3 FOR USE AS FEATURE
4 REG #96 EXCLUDES
5 FALLING THRU
216 STEPS STEPS 208-223
7 216 AND THUS
8 THRU PROTECTS ALL
) 223 OTHER STORED
20 APPROPRIATED | DATA FROM
1 FOR USE AS BEING ALTERED
2 REG #97 BY REG 96/97
223END OF ME "INSTRUCTIONS
4
5
6
7
8
9

93

FIGURE 4
Internal Rate of Return (HP-67)

EEEED ad CLR REG SET n=psp E—'Do PROFIT d | DO IRR e | +Ai DO

LABELS™s [NVEST B sTO CF's UB 200 D—]TRﬂE . B oo wev
FLAGS: _OFF/ON OTHER LABELS NOTES
0 X D BLANK [(FOR ERROR DSP) n = CF # (PERIOD #)
1 X I END SET n SBR b n.m = NON-INT ENTRY
2|RESFT n X P _FIND [MAX n W/CF=0 (.m = USER MISTAKE
2 X 3 END_CFs SBR B i = INTEREST RATE
A MINUS NEXT CF it = TRIAL i
REGISTERS FCYCLE INEXT DEC (IRR) Ai = INCREMENT OR
O] CASH FLOW 1 3 SKIP @ CF _SBR DECREMENT T0 it
1/ CF #2 7 TEST A1 LIM(IRR SBR) PV = PRESENT VALUE
2| CF #3 R END_IRR SBR d NPV = NET PRESENT VALUE
3 CF #4 USER END NPV SBR E B.E. = BREAK-EVEN
4 CE 45 GIVE STEP KEY CODE KEY ENTRY
5 CF #6 SINVP[LL/W/////////’///////L/L/
6| CF_#7 001]371 85 11 |f LBL A STO INVEST
7 CF #8 USER [002] 33 n STO A INVEST > REG A
8[CF_#9 GIVE [003] 23 02 DSP 2 FORMAT 2 DEC DSP
9[CF #10 n.m . {004] 35 22 |h RIN STOP. (DSP $ INVEST)
SO[CF #11 00532 25 12 |g LBL b SET n = DSP(x)]
S1/CF #12 006] 31 83 [f INT BSP INT n
S2[CF #13 007] 35 82 [h LST x DSP INPUT VALUE (x=n.m)
S3|CF #14 008 23 09 DSP 9 FORMAT 9 DEC DSP
SA[CF #15 009 32 61 (g x7Fy IF INPUT VALUE # INT
SS[CF #16 ERR [OTO] 22 00 G10 @ DSP ERR(n.m) STOP.
S6ICF #17 T foTi 2300 DSP ¢ o_—KJ‘_Lw FORMAT INT DSP
S7|CF #18 012 02 2
S8[CF #19 013 00 1 0
SO[CF #20 014 3552 [h x<y
015 3281 [qg xsv IFn > 20
A |INVEST _ERR 0T 22 00 GTO ¢ DSP ERR (n) STOP.
B IN=MAXn | 017 01] B
C |Ai or BE Pt 018 35 54 |h R
D {TRIAL i/IRR 079 3251 |g x=y IFn=1
E |NPV 020 22 01 GT0 1 GTO LBL 1
102 1 3271 |g x<y IF n <1
T [N MAX/PRIOR I <ERR022] 22 00 | GT0@ | _ DSP ERR (n) STOP.
02 3131 25 01 |f LBL 1 END SET n SBR b]
SET STATUS 02 4] 35 53 |h Ry If 1< (n=x)<20
DISPLAY __ 1RIG 025 5T - (n-17 = FAKE PRIOR n
SCT DEG | [026] 35 33 |h ST I ~ REG I
T1ENG__ [RAD 027] 3412 | RCLB RCL PRIOR N
¥ FIX__ []GRAD 028 31 84 |f -x- FLASH PRIOR N
FLOATING PT 029 35 54 |h Rt RCL n; (n=x)

94

STEP

KEY CODE KEY ENTRY

NOTES

030] 32 &1 g x>y IF n >PRIOR N
1 33 12 STO B STO n (=New N) - REG B
2|35 51 02 | h SF 2 |EITHER WAY, SET FLAG 2
3] 3522 | n RIN DSP n & STOP.
4131 25 12 | f IBL B STO CF's [
5| 2300 DSP @ | FORMAT INT DSP
6 02 2
7 01 1
8| 3534 [hRCI
9 01]
040 61 ¥
% 32 51 g x=y IF PRIOR N ? 2?
ERR 22 00 G0 @ DSP ERR (21) STOP.
1 3 355t [nRe
4 33 24 STO (1)] OW, STO CF #n REG #(n-1)
5] 3553 | h R¢
6] 3533 | h ST I |STO(PRIOR N+1) REG I
7135 71 02 | h F? 2 | IF FAKE PRIOR N WAS USED
8[35 7102 | h F? 2 SKIP NEXT STEP
(7T 9] 2203 GT0 3 [OW, GIU LBL 3
(— 4050 31 84 | f -x- FLASH FAKE PRIOR N USED
1 34 12 RCL B | RCL ACTUAL PRIOR N
2 32 81 g x>y IF PRIOR N > FAKE PRIOR N
3 3583 | hST 1 STO PRIOR N—+REG I
4 23 02 DSP 72 | EITHER WAY, FORMAT 2 DEC DSP
5 3554 | h R
6 35 72 | h PAUSE | FLASH CF #n ($)
71 2300 DSP_@ | REFORMAT INT DSP _ _ _
8131 25 02 | f LBL 2 [FIND MAX n W/CF =9 [T
9 35 34 | h RCI RCC MAX n
060 31 51 f x=0 IF MAX n = @
1 22 03 GT0O 3 |, GTO LBL 3
2 31 33 | f DSZ “OW, DECREMENT n
3] 35 84 | h SPACE A
4 34 24 RCL (i)| RCL CF #n
5 31 54 | f x=0 IF CF #n = ¢
6 22 02 GT0 2 GTO STEP @58 Y,
7 31 3¢ | f ISZ OW, INCREMENT n_ _ _ _
8] 31 25 03 f LBL 3 |END CFs SBR B |
9 35 34 | h RC I RCL n (=NEW N)
070 33 12 STO B | STO N-+REG B
1 35 22 | h RIN STOP. (DSP N)
2|31 25 13 f LBL _C [DO B.E. POINT]
3 00 g
4 35 33 | hST 1 |STO(@ = n-1)> REG I
5 34 11 RCL A | RCL_INVEST (=INVEST_-_ CF
06631 25 04 | f LBL 4 | “MINUS NEXT CF
7 34 24 RCL ()] RCC CF #n (=CFp)
8 51 - DSP ((INVEST - £CFp-1) - CFp)
] 3554 | h Rt STO (INVEST - ZCFp) = STACK

95

)

o
(o))
o

1

96

STEP KEY CODE KEY ENTRY
080 3312 RCC 8] ReL N NOTES [of
1] 3534 [hReT RCL (n-1) ‘
st e e cenos e
cl, GTO LBL € (FINDS ERR
4 31 3¢] f IsZ “OW, STO n~ REG 1
5 3554 | h Rt DSP (INVEST - CF,) = BALANCE
6 31 81 [f %0 IF STILL POS
087 22 04 GI0 4 GTO LBL 4
8 35 8 | h LSTx OW,ADD BACK CFy, TO BALANCE
9 61 + = INVEST - £CFp-]
090 35 8 | h LST x = POS CASH BALANCE
Y 1 81 = +CFp = FRAC PART OF YEAR
2 31 33| f DSZ LAST FULL YR USED REG I
3 353 [hRCI IF LFYU # @, RCL LFYU
4 61 + ADD LFYU OR @ TO FRAC
5 33 13 STO C STO B.E. POINT REG C
6 3554 h R RCL PRIOR N
USER / 35 33| h ST I STO PRIOR N REG I
OR 8 35 531 h Rt RCL B.E. POINT
PRGM 9 23 06 DSP 6 FORMAT 6 DEC DSP
__ CALL [100 35 22 | h RIN STOP (DSP B.E. POINT)
USER — 3225 13 [g LBL ¢ DO PROFIT
2 00 /)
OR
PRGM 3 33 14 STO D _
SIVE |__4| 3122 15 | ¥ GSB E | (DO NPV 6 i=¢]) (D0 LBL)
; 5 31 81 | f x>0 IF PROFIT > @ STOP
t | 6 35 22 | h RIN IF PROFIT < @ CONTINUE
71 3125 14 | f LBL D STO TRIAL i]
8 31 71] f X<0 IF TRIAL 1 < @
_ERR 9 22 00 GTO @ DSP ERR (-TRIAL i)
- 110 33 14 STO D | OW, STO TRIAL i ~REG D
USER 1 23 04 DSP 4 FORMAT 4 DEC DSP
CAL 2 35 22 | h RIN STOP (DSP TRIAL 1)
ONLY 3] 32 25 14| g LBL d DO IRR]
G 83 .
5 00 [’)
6 02 2 0.02 = 1
T17] 31 25 05| f LBL 5| CYCLE NEXT DEG (IRR‘)< }
8 3313 STO C |, 510 1 REG C
119 34 13 RCL C RCL 1 N ‘w
120] 32 22 15 | g GSB e (DO NPV SBR)” (& (DO LBL
1 07 7 A
) 42 CHS A
3 35 33| h ST I STO(-7)-> REG 1
4 35 53 | h Rt
5 31 81 | f X>0 IF NPV POS
3 22,28 GT0 (3] GTO STEP 119}
127 34 13 RCL C [YIF NPV NEG, RCL &1 e
8 02 27 17
9 81 % 138 194

|

-
N
~

STEP KEY CODE KEY ENTRY NOTES 138
130 42 T CHS (-ai:2) = pi'"_ A
1132 22 15 | q GSB e (DONPV SBR) @® (DO LBL)
ND 2 0] 1
3 01 {1
MAY g 42 1 CHS
BE 5 35 33 [h ST I STO (-11) REG I
PRGM 6 35 53 [h Ry RCL NPV @ TRIAL i
OR 7 3171 | fx<g IF NPV NEG
USER | 138 22 24 [GTO (1) GTO STEP 127)
CALL }39 22 07 GT0 7 F NPV PUS, GIU STEP 184
 140{32 25 15 |q LBL e [#1i- DO BELOW I
T 34 14 |RCL D
2 61 |+
3 33 14 |[STO D +\i~+REG D
413125 15 [f [BL E [DO NPV @ TRIAL 1 |
5 34 14 |RCL D RCL TRIAL T = 1
6 01 |1
7 61 |+
8 3314 ISTO D STO (1+i¢) REG D
9 00 [0
v 150 33 15 |ST10 E T0 (n=@) ~ REG E
151 35 24 [h X 21 TO n> REG 1; DSP (-26) OR @)
2 3514 [RCLD RCL (1+1¢)
3] 35 3% |h RC I RCL (n-1)
g 01 |1 ADD
5 61 |+]
6 42 |CHS)
7| 3563 |h yX DO (1+i¢)™"
8] 34 24 |RCL (d))
9 71 |X (1+1,) M X (CF #n) = PV
160 34 15 [RCL E
1 61 |+ A
2| 3315 |STOE +PV, > REG E = ZPV,
3 35 34 |h RC I CL n
16 4 01 N A
5 61 |+
6] 35 33 |h SI I INCREMENT n ~REG I
71 34 12 |RCL B
8] 32 51 - X=y IF N=n
1691 22 09 |GI0 9 . GTO STEP 201
(— (170] 34 24 [RCL B F N#n, RCL CF #n A
1 31 51 q X=y IF CF #n = @
2| 22 06 |GTO 6 , GTO LBL 6
3 02 |2 FCF#n 7 0
\ 4 06 |6
139 5 42 [CHS STO (-26) REG I DSP n
184 6] 3528 |h x=1 GTO STEP #1517)
— ¥ 7] 22 24 [GTO (4) —7
T69 °[178[31 25 06 |f [BL 6 [SKIP @-CF [SBRE] T 1%
207 9 01] 183

97

(Yol

—|

-—
w

|I'\)
I__a

STEP KEY CODE KEY ENTRY ez 77
7 180 55T 9 HOTES o 3
1 42 | CHS * K
2 35 24 | h x21 |STO (~19)+>REG I; DSP n
| 183 22 24 | GT0 i GTO STEP 164
- ’82 31 25 8; ; LBL 7 [TEST 31 LIM (IRR SBR) [
6 43 | EEX
7 05| 5
8 42 | CHS LOW LIMIT = 0.00002
9 34 13] RCL C
0 831 .
1 01 [1
2 71 | X Ai+10 = Ait
3 32 811 g x>v IF Ai' > LOW LIMIT, GTO STEP 117
}gg - gg 8% %TSBE o OW, CONTINUE BELOW y
END IRR SBR (d)]&-—\
6 34 12 | RCC B
7 35 33| h ST1 STO N+ REG I
8 23 04| DSP & FORMAT 4 DEC DSP
9 35 14 | RCC D DSP IRR
200 35 22| h RIN STOP.
2071 31 25 09 | T LBL 9 |END NPV SBR (E)
2 34 14| RCC O RCL{T + TRIAL i) = (1 + IRR)
3 T [1
4 5T 1 =
5 33 14 { ST0 D STO IRR=+REG D
6 34 15| RCC E
7 3 1T | RCC A
8 5T | - ZPV,, - INVEST = NPV
9 33 15 | S10 E STO NPV~ REG E
210 23 02 [DSP 2 FORMAT 2 DEC DSP =*§
211 31 24 | f RND ROUND NPV TO NEAREST CENT
2 31 51| f x=0 IF ROUNDED NPV = ¢
213 22 08| GI0 8 GTO LBL 8 y
214 35 82 | h LSTx OW,RCL ACTUAL NPV
5 35 22 | RIN STOP. (RTN TO CALLING SBR)
6] 32 25 11| g LBL a CLR REG 1
7 61 | + STO DSP ~ REG LSTx
8 31 43 | f CLREG | CLR REGs @ THRU 9
9 31 42| f P=S | EXCH PRI/SEC REGs
220 31 43| T CLREG | CLR REGS S@ THRU S9
1 23 09 | DSP 9 FORMAT 9 DEC DSP
2 44 | CLx CLR DSP
3] 35 61 02| h CF 2 CLR FLAG 2
4 35 22 | h RIN STOP.
/1/3
///8
/117
///3
///9

98

DATA

INVESTMENT: SR 52:
HP 67:

CASH FLOWS:

DECIMAL TRIAL INTEREST RATE (i)

SR-52
HP-67
EXAMPIES: it=10%

it=7654.321%

(3)

GHANGE INVESTMENT

CHANGE INTEREST RATE

PRESS

ENTER KEYS
INVEST A
INVEST A
CF#l B
CF#2 B
CFin B
CF#20 B
it D
lt D
1 D
76.54321 D

FORMAT &

Data Modification Operations.

PRESS
ENTER

NEW INVEST A

NEW it D

CHMKEICN&iFDJVFORIEE&ODI}(CFn)

SR-52:

HP-67

n *B
CFn B
n b
cr B
n
99

KEYS

DISPLAY NOTES
INVEST (As entered)
INVEST ($ and ¢)

l.

20

n.

20.

it (As entered)

lt (n.wxyz)

0.1000

76.5432 (All digits

stored)

FORMAT &

DISPLAY NOTES
NEW INVEST
NEW it
m. (n-1)

n.

N. (flashes 4X)

n.

n. (flashes 4X)

CFn (flashes 1X)

N. (Highest n used*)

[see *note next
page]

*NOTE: If n N and CFn

0 is entered, the HP-67 program

will automatically redefine N as the highest period

for which a non-zero cash flow is stored

in memory.

Accurate definition of N speeds program operations

but is not required to obtain the solutions.

Redefinition on the SR-52, if desired subsequent

to the above entries, is accomplished by:

PRESS
ENTER KEYS DISPLAY
*B M.
*RSET N.
INJ&WENTi%'by +A1 AND AUTOMATICALLY RUN NPV
SR-52: *A1 *E NPV
HP-67: *A1 fe NFV
CLEAR ALL DATA FOR NEW CASE:
SR-52 *A 0.
HP-67: fa 0.000000000
(4) Undiscounted Subroutines.
PRESS
ENTER KEYS DISPLAY
PROFIT MARGIN
HP-67: fc PROFIT
SR-52: 0 D 0.
E PROFIT

100

FORMAT &
NOTES
(N-1)

(=Prior N-1)

(10 DIGITS)

($ and ¢)

FORMAT &
NOTES

($ and ¢;
DESTROYS ig
(it)
(DIGITS

APPLICABLE
TO CF's USED)

PRESS
ENTER KEYS

OTHER (HP-67 ONLY)

FIRST BREAK EVEN POINT: C

ESTIMATE it: C
fc
RCL C
RCL A

X =

DSP 4

f R\D

DISPLAY

B.E.PT

B.E.PT

PROFIT

B.E.PT

INVEST

(5) Time-Valued Subroutines.

PRESS

ENTER KEYS
NEV @j}f SR-52 E
HP-67 E
IRR : SR-52 *D
HP-67 fd

DKFH@NTAEERD&NTit & RUN NPV

101

DISPLAY

NPV

NPV

IRR

IRR

FORMAT &
NOTES

(6 Decimal
Places)

(2 Decimal
Places)

(4 Decimal
Places)

(STORE D)

FORMAT &
NOTES
NOTES

(10 DIGITS)
($ and ¢)
(10 DIGITS)

(4 Decimal
Places)

Discussed Above

(6) Error Protections. (When User attempts

to store invalid values)

PRESS FORMAT &
ENTER KEYS DISPLAY NOTES

NEGATIVE TRIAL INTEREST USING (STO Trial i) Key

RATE (lt_):
SR-52: -1 i i
lt D +1t (i, Stored)
HP-67: —it D Error
CIx —it (Not. stored)
(IF NEGATIVE it DESIRED)
SR-52 0 D 0.
—. ' -.
i *E NPV (i, stored)
HP-67 0 D 0.0000
-1, fe NPV (—-1t stored)
NEGATIVE (n 0) or TCO.IARGE (n 20)
USING (SET n=DSP) KEY.
SR-52: n *B! M (n-1)

Although the display is normal, no data has yet been
stored. Alert user will note minus signs and/or
increments of n in wrong directions or beyond 0 to 20
limits. However, some data must be entered against
key B in the usual manner in order to avoid undesired

redefinition of N, i.e.,

Any Value B n (no data
stcred)
HP-67: n fb Exrror
CIx n

102

PRESS
ENTER KEYS

DISPLAY

NON-INTEGER PERIOD NUMBER (#n.p) USING (SET n=DSP) KEY,

SR-52: in.p *B*
Same comments and process as
Any Value B
HP-67: in.p b
ax

21st CASH FLCW WHEN USING (STO CF's) KEY:

SR-52: Cr#2l B

Cr#22,etc. B

Error Noted by User. To correct:
*B!
*g !
*RESET
HP-67: CF#21 B

CIx

103

m.p
above

in.p

Error

:tn.p

21.

22,

21.
20.
20.
Error

210

FORMAT &
NOTES

((n.p)-1)

(No data
stored)

(No data
stored)

(No data
stored)

(Redefine N)

(No data
stored)

(7) Sample Calculations, SR-52 IRR Program.

PRESS RUN TIME
ENTER KEYS DISPLAY IN SECONDS

INVEST $1000 A 1000. 0.8
CF#l $ 500 B 1. 1.2
Cr42 $ 600 B 2. 1.2
TRIAL i (ANNUAL) 1 D 0.1 0.8
DO NPV E -49,58677686 3.5
DECR. i,D0 NPV -.04 *E' 5.69597721 3.8
*DECR. 1,D0 NPV -.0111 *E! 22.04961262 3.8
*D0 IRR *D* 0.0639 32.5

47.6

*NOTE: LOWEST RUN TIME NORMALLY OCCURS WITH (it = IRR - 0.0111)

e.g., WITH it = 0.0528, RUN TIME FOR ABOVE IRR IS

22.8 SECONDS.

CHANGE INVEST $1200.75 A 1200.75 0.8
ADD CF#3 $ 100 B 3. 1.2
CGHANGE CF#1 1 *B' 0. 1.8
$ 555 B 1. 1.0

ADD CTr#4 $ 200 B 4. 1.2 -
ADD CF#15 15 *B' 14. 1.8
$ 352.16 B 15. 1.4
ADD CF#16 $ 100 B 16. 1.2
CELETE CF#16 (16) *B' 15. 1.8
0 B 16. 1.0

PRESS RUN TIME

ENTER KEYS DISPLAY IN SECONDS
REDEFINE N *B! 15. 1.8
*RSET 15. —
TRIAL i 1 D 0.1 0.8
DO NPV E 95.7016984 14.0
INCR i, DO NPV .05 *E' -41.07430984 14.5
TECR i, DO NPV -.025 *E' 21.92961966 14.5
DO IRR *D! 0.1332 179.0
285.7
(4'46")
NOTE: WITH i_ = 0.1221 (VICE .1250) RUN TIME FOR

t
IRR is 64 SECONDS (VICE 179).

(8) Sample Calculations, HP-67 IRR Program.

PRESS RUN TIME

ENTER KEYS DISPLAY IN SECONDS
INVEST $1000 A 1000.00 0.8
CF#l $ 500 B 1. 1.9
CF#2 $ 600 B 2. 1.9
DO B.E.PT(YRS) C 1.833333 2.8
DO PROFIT fc 100.00 5.0
TRIAL i (ANNUAL) 1 D 0.1000 0.8
DO NPV E -49.59 6.1
(DISPLAY 9) (-49.58677686)

105

PRESS RUN TIME

ENTER KEYS DISPLAY IN SECONDS
DECR i, DO NPV -.04 fE 5.70 6.3
*CECR i, DO NPV -.011 fE 22.05 6.6
*DO IRR fD 53.8
86.0

*NOTE: LOWEST RUN TIME NORMALLY OCCURS WITH (it==IRR—0.0lll)

e.g., WITH it = 0.0528, RUN TIME FOR ABOVE IS

37.0 SECONDS.

CHANGE INVEST $1200.75 A 1200.75 0.8
ADD CF#3 $ 100 B 1.9
GIANGE CF#l 1 b 3. (Flashes 4X)
1. 7.1
$ 555 1. (Flashes 4X)

555.00 (Flashes 1X)

3. 2.2
ADD CF #4 200 B 4. 1.9
ADD CF#15 15 b 4, (Flashes 4X)
15. 7.1
$ 352.16 B 15. (Flashes 4X)

352.16 (Flashes 1X)

15. 8.2
ADD CF#16 $ 100.00 B 16. 1.9
CELETE CF#16 (16) fb 16. (Flashes 4X)

16. 7.1

16.

16. (Flashes 4X)

106

DO B.E. PT (YRS)
DO PROFIT

ESTIMATE it

TRIAL i

DO NPV
DECR i1, DO NPV

DO IRR

NOTE: WITH it

PRESS
ENTER KEYS

RUN TIME
DISPLAY IN SECONDS

fc

RCL C
RCL A
X+

DSP 4
f R\D

(.2055) D

fd

0.00 (Flashes 1X)

15. 9.2
2.457500 3.9
606.41 17.2
0.2055 NA

0.2055
0.2055 0.8
-154.36 19.4
20.57 19.7
0.1332 260.0
460.4
(7'20")

= 0.1221 (VICE .1255) RUN TIME FOR

IRR IS 123 SECONDS (VICE 260).

(9) Redefining IRR Program Decimal Accuracy

Limits. 1In order to carry the IRR calculations to a digit

limit other than four (or to reset to four digits

subsequently) the procedures are:

107

ENTER PRESS KEYS DISPLAY

SR-52
Go to Step 162 GTO 1,6,2 (0.1332)
Shift to Learn Mode LRN 162 04

In same step, Reset
Decimal Digit

Limit (1 through 9): 9 163 94
Backstep to Review Change *BST 162 09
Shift to Run Mode LRN (0.1332)
Enter Trial i 0.1221 D 0.1221

DO IRR: *D! 0.133286694

Run time for above IRR is 7 minutes and 38 seconds for

9 decimal digits. Roundoff error (amount NPV misses zero

at IRR) decreases from +22.371990 at IRR = 0.1332 to
+0.0000130 at IRR = 0.133286694. Repeat above to reset
number of digits again; do not reread card if same set of
data needed for further analysis — data will be altered
thusly in this program because it uses some program steps as

data registers.

HR=67
Shift switch to Program Mode W/PRGM --
Delete Step 214 GTO.214 214 35 82
h DEL 213 22 08
Delete Step 211 GTO.211 211 31 24
h DEL 210 23 15

108

ENTER PRESS KEYS DISPLAY

Delete Step 210 h DEL 209 23 15
Delete Step 187 GTO.187 187 05
h DEL 186 43

Mentally add 1 to Decimal
Limit Desired

Enter limit (2 through 10) 1 187 01
0 188 00
Shift switch to Run Mode RUN (0.1332)
Enter Trial i 0.1221 D 0.1221
DO IRR: fd 0.1333
DSP 9 0.133286694

Run time for above IRR is 12.0 minutes for 9 decimal digits.
Roundoff Error (Amount NPV misses zero at IRR) decreases from
+22.372000 ¢ at IRR = 0.1332 to 0.0000000 ¢ at IRR=0.133286694,
i.e., beyond the machine capability to determine. To reset
number of digits to 4, merely reread card. To reset to some
other number of digits, reread card and then repeat above

process. No data will be altered.

(10) Comparison With Manufacturer Programs for IRR.

The Hewlett—-Packard "Internal Rate of Return" program and

(BD1-01A) yields the same interest rate for the previous
problem in 116.3 seconds (vice 260 seconds with the program
developed above). However, this card uses 197 program nemory
steps to do nothing but IRR and always requires manual entry

of all values, i.e.:

109

INVEST $1200.75 » A CF 8 0 »~C
CFl 555 + C CF 9 0~>C
CF2 600 + C CFl0 0 »~C
CF3 100 > C CFll 0 ~-C
CFr4 200 + C CFl2 0~>2C
CF5 0 + C CF1l3 0 ~C
CF6 0 =+ C CFl4 0 +C
CF7 0 > C CF15 352.16 +~ C
' D + 13.32866940

If the user keys in a mistake, the entire
data entry process must be begun anew. This program will not
accept a negative or zero Investment but will accept up to
44 positive cash flows, limited to five digits each. However,
for more than 22 cash flows, accuracy decreases to * 0.01 %
(.0001 decimal). TIf there are negative as well as positive
cash flows, the program accepts up to 22 cash flows. This
program may sometimes halt prematurely with ERROR in the
display if the actual IRR is greater than 100% or if the
sign of the cash flows is reversed more than once. Addi-
tionally, since more than one interest rate is considered
correct in the mathematical sense when the sign of the cash
flows is reversed more than once, the user has no way of
determining which rate this program has found. (Conversely,
the program developed by the authors of this thesis, if given
a trial interest rate of zero, will always find the IRR
(positive or negative) closest to zero.) Finally, this

program will not warn the user of improper data entries or

110

results, and stored data cannot be used for other purposes
but must be reentered against other programs to determine
break~-even point, profit, net present value, etc.

In summary, then, card BD1-0lA is considered
inferior to the program developed herein unless IRR is
required for more than 20 positive cash flows (each limited
to five digits) and no other information or analysis is
desired. Otherwise, the card BDI-01lA user must be satisfied
with a program that may more quickly provide one of the
possible solutions or may provide no solution at all, or
may not provide the best solution. The BD1-0lA user must
also be very careful to avoid input errors since stored
data is very difficult to review or to change.

The Texas Instruments "Variable Cash Flow

(Present Value)" program card (FIl1-23) will only accept ten
cash flow values and hence will not work the previous prob-
lem. Card FI1-23 uses 204 program steps whereas the
SR-52 card developed herein uses 224 to accomplish all of

the previously discussed capabilities. Thus Card FI1l-23

is considered to represent particularly inefficient programming;
the card has little practical utility. It does work quickly
and well for 10 values, and data can be individually reviewed
or altered easily. This card, FI1l-23, does yield rates
dependent upon the trial interest rate, similar to the program
developed by the authors. The five-cash-flow data set listed
on page 131 in the Texas Instruments Finance Library for

this card requires 151 seconds to run, as below, with accuracy

111

specified to nearest cent of NPV. Similar data runs on the
program developed herein in 133 seconds without specifying
accuracy, but additional accuracy (using the same trial
interest rate) requires progressively longer times as

shown below.

INVEST $40,200

CF #1 400

CF %2 9,200

CF #3 11,560

CF #4 17,048

CF #5 45,484

Trial i 15%

Accuracy .01 (Specified for FI1-23 only)

IRR Results: Solution Seconds Amount NPV misses 0 QIRR
(FI1-23) : 0.1978193283 151 + $0.0095657
Program 0.1978 133 + $2.5701892

Herein: 0.19781 149 + $1.2452525
0.197819 196 + $0.0528593
0.1978193 223 + $0.0131138
0.19781939 265 + $0.0011901
0.197819398 321 + $0.0001301

With Trial
i=10.1867: 0.197819398 235 + $0.0001301

A shrewd user of the program developed herein, of course,
would normally run the data once to obtain 0.1978 and then,
if desired, modify the program and use a trial i of 0.0111
less as mentioned earlier; i.e., 0.1867, to obtain the value
0.197819398, as shown above, with a total running time of

133 + 235 = 368 seconds.

112

It should be obvious from the above that
experienced programmers can, in many cases, develop programs
more subtle or more efficient than the program found in the
libraries published by any manufacturer. The manufacturers
are motivated to sell calculators and calculator cards, not
to create particularly efficient programs. Thus the typical
approach appears to be that of including generally useful,
but simplistic, programs in published libraries, so long
as the programs function without error for most input
possibilities.

On the other hand, the usefulness of the
published programs to less experienced programmers is
immense because the cards allow calculations such users
might have no idea how to (mathematically) approach, much
less program.

10. Advanced Programming Optimization Techniques

The previously developed IRR programs (Figures 3
and 4) and additional programs are used below to clarify
subtle differences required when programming the SR-52 or
HP-67.

a. Labeled, Direct, and Indirect Relative Addressing.

The simplest way to call a subroutine is merely
to give it a label, as discussed previously in Section 1IV.C.,
and call the label as required. Equally simple direct
addressing (not available on the HP-67) typically uses a
"GIO XYZ" statement in lieu of a label. Thus "GIO 123",

stored as program steps on the SR-52, will branch the program

113

to step 123 whenever this calling instruction is encoun-
tered. But this branch is an unconditional transfer; the
program does not return to the calling point. For true
subroutines, the similar instruction of "SBR 123" is used
instead; this call returns the program counter to the step
immediately after the "3" when the program encounters a
"RTN" instruction subsequent to step 123.

Indirect relative addressing is used on the
HP-67, for unconditional branching, by first placing a
negative integer in the I-Register such that when the instruc-
tion "GTO (i)" is next encountered during program execution,
the program will halt, note its own current step number,
backstep the number of steps specified by the current (nega-
tive) number in the I-register and there resume program
execution. Similarly, £ GSB (i) is used to call and execute
a subroutine and then return to the step after the call.
These features each require two or three extra steps, com-
pared to the SR-52, of program memory for each branch thus
defined; these features are not included or normally needed
on machines such as the SR-52 which have direct addressing
capabilities.

Examples of these types of addressing are ex-
tracted from Figures 3 and 4 (IRR Programs) and reproduced

below, as Figure 5.

114

FIGURE 5

TYPES OF CALLS

SR-52 MAIN ROUTINE (IRR)

STEP KEY ENTRY

STEP KEY ENTRY

HP-67 MAIN ROUTI
STEP KEY ENTRY

NE (IRR)

125 *LBL 1738 113_a LBL d
*D’ INV)
*F1X *F1X 0
8 126 RIN 2)
. fI1BL 5% N
¢ STO C
2 RCLC
130 STO 120 q GSB e ¥ ™
9 7
6 . CHS
133 *C' EE *\) h ST I A
*IF POS - h Rt
1 DIRECT) INDIRECT
3 ABSOLUTE ADDRESS 126 GI0 3 RELATIVE CALL
3 CALL 4 127 RCLC
2 5 <
+/- + }
140 INV T30 CHS
*PROD g GSB e _LABEL CALL **)
9] N
6 < 1 A
144 *C' NEE CHS
TNV h ST I
*IF P0OS h Ry
1 DIRECT f %<0 INDIRECT
q ABSOLUTE ADDRESS 138 GT0 (1) RELATIVE CALL
A CALL 139 G610 7
150 . ////////////// ,LABEL CALL)
? 184 f LBL 7 ©
+/- 2
*PROD EEX
9 5
6 CAS
RCL RCL C
9 190 .
6]
Z X
160 2 g X>Y
EE 194 G610 5 LABEL CALL
4 f LBL 8 -
+/- RCL B
= b ST 1
TNV DSP 4
EE RCL D
*IF POS 200 b RIN
] DIRECT
3 ABSOLUTE ADDRESS **| ABEL CALLS; ARROWS OMITTED IF
1703 CALL y REQUIRED FOR CLARITY OF OTHER
RCL CALLS; CALLED LABEL NOT SHOWN
1729 HEREON.

115

b. Label Search Mechanisms and Subroutine Locations.

The call for a labeled subroutine on the SR-52
causes the program step counter to immediately reset to 000
and then begin a downward search looking for "LBL". Each
label thus encountered is then further tested to determine
if it is the requested label. If so, execution of that label
begins; if not, the downward search is resumed. Thus SR-52
label-location times are directly proportional both to the
distance between 000 and the called label and to the number
of intervening labels, but the step number of the call
itself has little, if any, effect upon location time.

The call for a labeled subroutine on the HP-67
causes a search to begin downward from the point of call
in a manner otherwise similar to the SR-52. Thus, HP-67
label location times are directly proportional to the down-

ward distance between the step number of the call and the label,

and to the number of intervening labels. (The HP-67 "falls
through" its last step, 224, into step 001 if required
during this process.)

For subroutines which are infrequently called
by the program, the length of lakel location time is rela-
tively unimportant. But for frequently called or for iter-
ative routines, subroutine location often becomes the most
critical factor in optimizing program run times.

Run time is minimized on the SR-52 by placing

the most frequently called labeled-subroutines near the

116

beginning of the program or, as an alternative, placing a
series of labeled GTO XYZ (Step Number) statements at or
near the beginning; e.g., *LBL A GTO 046, *LBL B GTO 113,
*LBL %C' GTO 214 defines three labeled subroutines (A, B,
C') which, respectively, begin execution at steps 046, 113,
and 214. In these cases the label names are merely moved,
but the GTO XYZ instructions require four additional steps
per label. Thus the method is only applicable where extra
step space 1is available.

c. Nesting and Stacking Labels or Subroutines.

Program execution normally stops only when a
"HLT" or "R/S" instruction is encountered, or when an error
condition is created (such as dividing by zero or branching
to a non-existent label) or when the "RTN" instruction is
encountered in the primary routine being executed. Con-
versely, labels function only to identify the starting point
of a called subroutine. Thus, encountering an uncalled
label during program execution has no effect at all; the
label is merely ignored. For this reason, labels can some-
times be nested such that the same single step number ends
every subroutine in the nest. For example, consider the
following SR-52 subroutine (assume any non-zero value, j,

is stored in REG 00):

117

STEP KEY ENTRY LABEL CALLED VALUE CALCULATED & STORED IN REG 99

001 *BL
.2 C C 7+ 73+ 10+ j = 90 + j
3 7
il ¥
5 *[BL
6 *D *D 73+ 10 + j = 83+
7 7
8 3
9 +
010 *BL
1 B B 10 + j = 10 + j
2 1
3 *[BL
4 A A 0+] = j
5 0
6 +
7 RCL
8 0
9 0
020 INV
1 *TFZR0 If j# 0
2 0
3 2 (j assumed to be needed for other purposes;
4 7 hence, INV*DSZ features available on
5 + calculator not used.)
6] -
027 = -
8 STO
9 9
030 9
031 *RTN STOP Similarly, if j=0:
C 7+73+10+0+1 = 9]
D 73+ 10+0+1 = 84
B 10+0+1 = 11
A o+1 = 1

118

If the above four labels are each individually
written, 77 (vice 31) steps are required as listed below.

(Assume Program Begins at Step 001.)

*IBL C : 90 + RCL 00 , INV * IFZRO 015,+1= , STO 99, *RTN.
*LBL *D' : 83 + RCL 00 , INV * IFZRO 036,+1= , STO 99, *RTN.
*LBL B : 10 + RCL 00 , INV * IFZRO 056,+1= , STO 99, *RTN.
*IBL A : RCL 00 , INV * IFZRO 074,+1= , STO 99, *RTN.

If the common steps are combined into an
unlabeled subroutine (beginning at step 035) 50 steps are

required, i.e.,:

*IBL C : 90 , SBR 035 , *RTN.
*LBL *D' : 83 , SBR 035 , *RTN.
*IBL B : 10 , SBR 035 , *RTN.
*ILBL A : SBR 035 , *RTN.

Subroutine: + RCL 00 , INV * IFZRO 046,+1= , STO 99 , *RTN.

If the above subroutine is labeled A and used

as a terminus vice as a subroutine 39 steps are required, i.e.:

*IBL C : 90 , + , GTO A
*LBL *D' : 83 , + , GTO A
*IB, B : 10 , + , GTO A
*IBI, A : RCL 00 , INV * IFZRO 034,+1= , STO 99 , *RTN.

119

Clearly, the most efficient use of memory
space is demonstrated by the initial nesting method. Such
nesting can also be shown to be the most efficient method
on RPN calculators. Nesting always saves steps on either
type of system simply because nesting completely avoids using
any calls whatsoever for any subroutine properly sequenced
in the nest, and also avoids repeating identical instructions
within several subroutines. For many examples of complex
nesting with RPN, see Figure 4. This program has 19 labels
but only 8 RTN instructions; Labels 1, 2, 3, 4, 5, 8, and E
are nested under other labels. In the comparable SR-52
program, Figure 3, labels *E', E, and A are nested under
other labels.

Stacking is the process of minimizing program
execution time by avoiding lengthy label searches, rather
than a process designed to minimize program storage space.
Stacking costs steps on the SR-52, but does not cost steps
on the HP-67. On the SR-52, labels are stacked followed by
GTO xyz statements as discussed in Section IV.E. (10)a above.

On the HP-67, entire subroutines are stacked immediately

after the subroutine(s) which call the stacked subroutines
most often, in order of expected call frequencies.

Returning to Figure 4, Labels (Subroutines)
6, 7, 8, and 9 are stacked in order of expected frequency to
accomplish such minimum average label-search times on the
HP-67 during IRR calculations. Stacked subroutines may

sometimes also be nested, as is Subroutine 8 in Figure 4.

120

d. Appropriating Program Steps on Registers
for Data Memory

The SR-52 has 22 memory registers nominally
available: Registers 0 through 19, 98 and 99. (Some of
the Registers 60 through 69 may also be available, depending
upon the number of pending operations being stored.) An
additional 18 Registers (80 through 97) may be "purchased"
by trading eight steps of program memory per extra register
desired, working backwards from the end of the program. Thus
trading of steps 216 through 223 "buys" register 97 and
trading of steps 208 through 215 buys register 96, etc., down
to the purchase of register 80 with steps 80 through 87.
(This technique is demonstrated in Figure 2 to create two
extra registers.) In this manner, a program which can be
limited to 80 steps (000 through 079) can use at least 40
storage registers on the SR-52; a program limited to 112
steps (one side of a card) can use at least 36 registers,
including 0 through 19 and 84 through 99.

The availability of so many storage registers
allows the user to approach arrayed data with straight-
forward indexing techniques. For example, using the latter
allocation above, some of the 36 available registers may
be arbitrarily assigned to the following array (two-digit

numbers equate to register address numbers) :

121

Column No.: 1 2 3 4 5 6 7

ROW *D' : 84 85 86 87 88 89 90
ROW A : 01 02 03 04 05 06 07
ROW B : 11 12 13 14 15 16 17
ROW C : 91 92 93 94 95 96 97

Combining this array with the optimized nested routines of
subsection (c) above then allows programmed indexing by
column and row number. For example, if 3 (the column index)
happens to be stored in REG 00 when LBL B (the row index)
happens to be called, the nested program routines will
generate the number 13 (10 + j = 10 + 3 = 13), the same
number located in column 3, Row B of the array. A subsequent
call for LBL C would generate 93, the number located in
Column 3, Row C, etc. Thus, each register number listed in
Column 3 could be generated, in succession, by the subroutine:
3 sTtO00 , *Dp' , A, B, C . Similarly, if the number stored
in the column indexer (REG 00) happens to next be changed
from 3 to 4, a call for LBL A would generate 04, the number
located in Column 4, Row A, etc.

Note, within the nested programs introduced
earlier, that each call, in addition to generating the
desired number, actually stores the generated number in
REG 99. Thus REG 99 can be used as an addresser for the
arrayed registers, in each case, by some other portion of

the program. Additionally, the column number can

122

automatically incremented in REG 00 by still another portion
of the program. 1In this manner, each of the values actually
stored in the registers listed in a particular row of the
array may be sequentially recalled and used by the program.
Similarly, each register listed in any column of the array
may be sequentially called prior to again changing the
column indexer. These row and column call techniques and
the above array are used in Subsection (h) below to
facilitate a linear-programming problem, but one equally
applicable to any other problems which must address a four
by eight array of data.

A simple example of appropriated SR-52 program
steps is shown in Figure 2, where only two extra registers
were required. In summary, the user should always remember
that useful extra registers are available on the SR-52
anytime the applicable program steps are not used.

An alternate method, packing registers in order
to store two values per register, can be used on the HP-67
to create an additional register (or registers). This
method is discussed in Section IV.E (10) h. below. The only
limitation of this method appears to be that only 10 digits
may be handled between both numbers, uniformly split as
desired, e.qg., 5/5 or 6/4, etc.

A different, but equally unique, feature of the
HP-67 is its ability to store many "words" in its storage
registers. Any word formed with the letters a, B, C, 4, E,

g, I, 1, 0, o, r, S, Y and Z may be normally, but not always

123

be created. For example, the following ll-space word
groups (including mandatory period) can be stored in

registers (not in program memory)

YES SIr . IdEa rEady.
I dEClarE . I do say .
I IS rEady . I do AgrEE.
BOSS SaY . 0O 0 0o

good IdEaS . gollY gee .
I do Easy . IdEa CraZy.
god BlESS . also SOrrY.
go BaBY go . I 4ISagrEE.

Cards containing 32 phrases may be obtained via the HP-65
Users Club ([19] by club members, or from club members who
have already obtained them; there is no copyright involved.
There is no other published source at this time.

Only extremely advanced programmers can create
words; the process involves understanding design architecture
of the machine. Conversely, the words are transferred to the
storage registers by merely reading the data card, once
obtained.

e. Structuring Loop Controls and Counters

Loops are normally structured to begin with a
given value and iteratively change that value until some
specified 1limit is reached, at which point the program will

exit from the loop. The given value may be either the

124

variable which is to be worked upon inside the loop or a
simple (additional) counter which is incremented or decre-
mented by the program during each pass through the loop.

An example of the former (no counter), extracted from the

IRR programs of Figures 3 and 4, is duplicated as Figure 5
below. In this example, the program begins with a given
value of 0.02 (2%) as an increment for the trial interest
rate supplied by the user. The increment is added to the
trial interest rate and the program falls into the first
loop, where it is immediately sent elsewhere to compute the
net present value (NPV) of the Investment and cash flows
stored. Upon returning, the newly calculated NPV is tested
to determine if it is positive — if so, the program loops
back to add the increment again and repeat the loop process.
This continues until the NPV goes negative, at which point
the program falls out of the first loop, divides the increment
by minus two creating a decrement, and falls into the second
loop. This loop cycles similarly until the NPV goes positive
again, at which point the program falls out of the second
loop, changes the decrement back in to the previous increment
by multiplying by minus two, and tests to see if the increment
has yet been reduced to the specified limit (0.0002). If
not, the increment is divided by ten to move the decimal

one place and the program loops back to the beginning of the
first loop. (The HP-67 program changes the increment before
the limit test and thus tests against 0.00002 instead.)

The entire process above then repeats. When the SR-52 program

125

FIGURE 6

LOOP CONTROL BY SIGN OF VARIABLE

SR-52 IRR SUBROUTINE

STEP KEY ENTRY

HP-67 IRR SUBROUTINE
STEP REY ENTRY

127 . 114)
8 O 5 0
9 2 6 2 |
130 STO 7 f LBL 5° ~
19 g sSi0C
g ic ﬁf) 9 _RCL C)
' ¢ ' 120 GSB e 7
4___*IF POS) ‘? a ®
5 1 2 CHS
3 g 3 h ST I
- ~— g s
9 +/- 6 GI0 (1) — >
140 INV 7 RCL C _ © N
1 *PROD g8 2
2 9 h/,//”/////’//_\ 9 =
3 6 T30 CHS o
4 *C’ ¢ (O B GSB e _ ~
5 INV < i::b 2 ? < ®©
6 *IF POS 31
7 1 4 CHS
g8 4 5 h ST 1
9 4 -) 6 h Rt
150 . e 7t x<@ IF NPV IS
T 2 8 G610 (1) NEGATIVE .
2 +/- 9 Gi0 / 7
3 *PROD (1111111111111
4 9 & f LBL 7/
5 6 5 2
6 RCL 6 EEX
7 9 7 5
8 6 8 CHS
g - 9 RCL C
160 2 190 .
T EE T 1
24 2 X
3 /- 3 g x>y
4 = 4 Gi0 5 IF A > .00002 _J
5 INV 5 f LBL 8 -
6 EE 6 RCL B
7 *IF POS 7 h ST 1
g 1 IF (i - .0002) 8 DSP 4
9 3 IS ZERO OR 9 RCL D
70 3 POSITIVE) 200 _h RIN
T RCL ~
2 9 For details, See
3 8 Figures 3 and 4
4 INV
5 *FIX
176 *RIN

126

has completed the inner loops using the specified limit as
the increment, or when the HP-67 has completed the inner
loops using ten times the specified limit for the increment,
the program stops with the IRR in the display.

The loop control method discussed above, which
is actually a modified bisection search pattern using defined
vice variable increments, is useful anytime the programmer
needs to structure loops based upon a sign change of the
variable being addressed within the program. This method
also allows limiting accuracy to a specified number of
decimal places to avoid unnecessary iterations. Differences
between the machines for these loops are the order of
increment division and test as already mentioned and the
loop-back commands themselves. The SR-52 requires programming
the step number of the beginning of the loop immediately
below each sign test; the HP-67 requires either programming
(prior to the sign test) the relative (minus) number of
steps to get back to the beginning of the loop from the
GTO (i) instruction which follows the sign test, or the
programming of extra labels which can be used as addresses
after the sign tests. Extra labels can also be used on the
SR-52, but absolute numeric addresses are executed guicker.
(On the HP-67, the relative (minus-step) addresses are

guicker than label addresses for short distances.)

Both calculators have a register (the zero
register) which can be automatically decremented by one

and tested for zero; the program counter will skip one

127

address after the test if the register value has reached

zero (the DSZ function). The HP-67 also has an ISZ function,
and can also branch to an instruction, vice an address, in
either case, if desired. (The user of the SR-52 can only
increment negative numbers, and can only branch to an address.)
The HP-67 can also use the DSZ or ISZ function against the
value in the display; the SR~52 cannot.

Any storage register may be used as a counter
and decremented or incremented by the program itself on
either calculator, but this method is only used when the
zero register is needed to store other data such that the
automatic DSZ or ISZ cannot be used. Of course, this use
of other registers as counters also requires that the
stored value be recalled and tested by the program at the
end of each loop iteration, similar to the process in Figure
5. Additional details are available in the manufacturer's
handbooks.

f. Multiple (Alternate) Uses of One Subroutine

One example of multiple uses of one subroutine
was provided in subsection (c) above, using nested labels.
Another example is at step 104 of Figure 4, which is

duplicated below:

Step Key Entry Explanation

101 g LBL c Begins "Do Profit" Routine
102 0

103 STO D Sets Trial i = 0

104 f GSB E Run NP¥ routine

105 fx >0 If Profit > 0, Stop

106 h RTN

128

This routine uses the fact that the NPV of a series of
cash flows at an interest rate of zero is the same as the
undiscounted profit margin. Hence, instead of writing a
long separate routine to calculate the profit margin, the
authors merely set i = 0 and branch to the NPV routine

from the short routine above. This routine continues:

107 £f LBL D Begins "Do TRIAL i" Routine
8 f %<0 If TRIAL i < 0
9 GTO 0 DSP ERR (-TRIAL i)

110 STO D OW, STO TRIAL i in REG D
1 DSP 4 FORMAT 4 DEC DSP

112 h RTN STOP. (DSP TRIAL i)

During the breakeven point routine, not shown above, exe-
cution is branched to step 101 if a situation arises where
all cash flows have been subtracted from the investment but
the balance is still negative. In this case, the profit
routine (which, in turn, uses the NPV routine) is used to
recalculate the negative profit. This value then falls
through step 107 to hit step 108, a step actually designed
to catch negative input errors by the user for the trial
interest rate. In this case, however, the value tested is
the negative profit, and the program branches to 0, a non-
existent label in this program. This generates an error
condition and halts program execution with "Error" in the
display. If the user then presses any key on the keyboard,
the key will not execute. Instead, the negative profit,

with minus sign, will appear in the display. Thus the

129

routine has a third use — calculating negative profits.

Of course, the negative profit was already in the stack

when the program branched to step 101, so why was it

recalculated?

Simply because getting it out of the stack,

halting execution, and displaying the error would require

considerable program steps which are not available. Instead,

then, the single step (#083, GTO f c), accomplished all that

was required, since the steps 101 through 112 already existed

for other purposes.

Similar multiple use of subroutines

can be designed into most programs with a little thought.

Error or User-Prompting Routines

In addition to the above example, there are four

other places in Figure 4 where the program is ordered to

branch to the unused label zero, creating an error condition.

In each case, the value which will be displayed when the

user pushes any key to clear the error display provides

information concerning what error wa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>