
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

INVESTIGATION OF CARD PROGRAMMABLE AND

CHIP PROGRAMMABLE POCKET CALCULATORS
AND CALCULATOR SYSTEMS FOR USE AT

NAVAL POSTGRADUATE SCHOOL AND
IN THE NAVAL ESTABLISHMENT

by

Harry Rudolph Kruse
and

Hugh Alan Burkett

March 1977

Advisors: H.J. Larson

R.H. Shudde
Approved for public release; distribution unlimited.

1178061

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dets Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO} 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Investigation of Card Programmable and Master's Thesis;
Chip Programmable Pocket Calculators and March 1977
Calculator Systems for Use at Naval Post-—|$ PERFORMING ORG. REPORT NUMBER
graduate School and in the MNMaval EFstahlishment

7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(e)

Harry Rudolph Kruse
Hugh Alan Burkett

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Naval Postgraduate School AREA & WORK UNIT NUMBERS
Monterey, California 93940

19. CONTROLLING OFFICE NAME ANDO ADDRESS 12. REPORT DATE

Naval Postgraduate School March 1977
Monterey, California 93940 13. NUMBER OF PAGES

Td MONITORING AGENCY NAME & ADDRESS(!! aitferent from Controlling Ottice) 18. SECURITY CLASS. (of thie report)

Unclassified

Se. DECLASSIPFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different freen Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide If necessary and identity by bloek number)

Hand-held calculators
Card programmable calculators
HP-67 TI-59
HP-97 NS-7100
SR-52

20. ABSTRACT (Centinue an reverse side if necessary and identity by block mamber)

This thesis investigates the usefulness of card program-
mable pocket calculators in the Management curricula of the
Naval Postgraduate School and in the fleet, based upon
manufacturer-provided information on the HP-67, HP-97,
SR-52, TI-59, and NS-7100 calculators; NPS classroom
experimentation; "hands on" programming of the HP-67 and SR-52;
interviews; and the literature. All aspects of calculator

DD ,8%, 1473 ceoiTion oF 1 nov 681s oBsoLETE UNCLASSIFIED

(Page 1) S/N 0102-014° 6601 | 1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED
§.cuUMITY CLASSIFICATION OF THIS PAGE When Nota Entered.

(20. ABSTRACT Continued)

functions, programming and programmability are surveyed

with particular emphasis on educational and practical
applications. Thus, this is a baseline document for study
by potential purchasers and users. This study concludes
that these machines provide significant advantages in
teaching or learning mathematical concepts and that the
pocket calculator is a potentially important management
and tactical support tool navy-wide. In addition,
"thinking process transmutation," discovered during this
study, is concluded to be an inevitable and important
by-product of calculator programming which significantly
improves the user's overall analytic capacity.

bD hor 1473 UNCLASSIFIED
014-6601 2 SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Investigation of Card Programmable and
Chip Programmable Pocket Calculators
and Calculator Systems for Use at
Naval Postgraduate School and

in the Naval Establishment

by
Harry Rudolph Kruse

Lieutenant Commander, United States Navy
B.S., University of Arizona, 1960
L.L.B., LaSalle University, 1970

and

Hugh Alan Burkett
Lieutenant Commander, Civil Engineer Corps, UnitedStates Navy

B.S., University of Oklahoma, 1966

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

March 1977

ABSTRACT

This thesis investigates the usefulness of card pro-

grammable pocket calculators in the Management curricula

of the Naval Postgraduate School and in the fleet, based

upon manufacturer-provided information on the HP-67,

HP-97, SR-52, TI-59, and NS-7100 calculators; NPS classroom

experimentation; "hands on" programming of the HP-67 and

SR-52; interviews; and the literature. All aspects of

calculator functions, programming and programmability are

surveyed with particular emphasis on educational and prac-

tical applications. Thus, this 1s a baseline document for

study by potential purchasers and users. This study con-

cludes that these machines provide significant advantages

in teaching or learning mathematical concepts and that the

pocket calculator is a potentially important management and

tactical support tool navy-wide. In addition, "thinking

process transmutation", discovered during this study, is

concluded to be an inevitable and important by-product of

calculator programming which significantly improves the

user's overall analytic capacity.

II.

IIT.

IV.

TABLE OF CONTENTS

INTRODUCTION ——————mmmmeme

A. GENERAL==

B. PURPOSE==

C. STUDY METHODOLOGY ==—-=—c—mmmmmccecceeee=

CARD PROGRAMMABLE CALCULATORS AND EDUCATION =---

A. THE CALCULATOR AS A TEACHING AID -—-==—=—---

B. THE NPS PILOT PROJECT: CLASSROOM USE
OF CARD PROGRAMMABLE CALCULATORS ---======-

C. PROPOSED USE OF CARD PROGRAMMABLE
CALCULATORS IN THE NPS MANAGEMENT
SCIENCE CURRICULA ——=—==——=———————o—m—meee

D. A RECOMMENDED COURSE STRUCTURE --------—---

E. THINKING PROCESS TRANSMUTATION: AN
IMPORTANT BY=PRODUCT ==-=m====—————————mm

F. CONCLUSIONS —=—=—emmmmmeememmmrmmeme==

FLEET USE OF CARD PROGRAMMABLE CALCULATORS ----

A. GENERA] ——cmcemmmcmcmcremmememmmme=

B. MACHINE CAPACITY REQUIREMENTS —---==--—e——e--

C. ADDITIONAL ADVANTAGES OF FLEET USE =-=====--

D. RELIABILITY —=——emmmmemmmeccmmmmcmemm=—

E. CONCLUSIONS ——————cmmmmmmmcmmcmmmmmmm==

PROGRAMMING AND PROGRAMMABILITY =--=——=——————---

A. GENERAL —=——rremmmmcmmmcmmcmmmmmmmmmmmmmmm=

B. A METHOD OF VALUE ANALYSIS -——=—ccmemeemee—--

C. ALGEBRAIC VERSUS REVERSE POLISH NOTATION --

l. Description ---------------—--———om———-

10

11

14

14

17

23

25

26

30

33

33

34

34

35

36

37

37

37

39

39

2.

3.

ACCUuraCy ===-———————mmm

Execution Time —=—=——=eceeemmecccccccccee

BASIC CALCULATOR PROGRAMMING CONCEPTS =---—---

ADVANCED PROGRAMMING TECHNIQUES FOR
SR-52 and HP-67 =—=-—meememememeeee

l. Introduction —=——=—-—emmmmmmmmmemeee

2. Color Coding —==—=—————mmmmm

3. Programming Language —--——————————m—meeeeae

TABLE 1: KEY ABBREVIATIONS =--=-————e———-

4. Key Code Systems —--——-———————cccmmmmmeee

5. Key Coding Formats —---—--—-——-——ceeeeee——-

6. HP-67 and SR-52 Program Storage

Capacities —-=——=-—-=memmmmmmmmmm

FIGURE 1l: Single or Bivariate
Statistical Analysis (SR-52) -

Figure 2: Single or Bivariate
Statistical Analysis (HP-67) -

7. Magnetic Card Formats ----—--———-————c-----

8. Recording or Reading Magnetic Cards -----

9. Advanced Programmability Comparisons,
SR=52 vs. HP=67 =—--=--—cc-cc—c—cmeme—e——

a. General-Internal Rate of Return

As a Model ——————mmeeee

b. Internal Rate of Return (IRR)

concepts ===——=—=mmmmmmmmmmmem

c. IRR Program Capabilities —--—=======—--

(1) Step Ratios ——-—————=-—c—memeee--

FIGURE 3: IRR (SR-52) =——===-=-

FIGURE 4: IRR {(HP-67) —--—————--

(2) Initial Data Entry Operations --

56

66

67

69

76

10.

(3) Data Modification Operations ---- 99

(4) Undiscounted Subroutines —-—--=--- 100

(5) Time-Valued Subroutines ====—=ee=-- 101

(6) Error Protections —--———c—cececeea- 102

(7) Sample Calculations, SR-52
IRR Program =—-—=-——-——--—--—e—ec——-- 104

(8) Sample Calculations, HP-67
IRR Program ==-—=-c-ccecccccccae—-- 105

(9) Redefining IRR Decimal
Accuracy Limits ====—=-ceccccccc--- 107

(10) Comparison with Manufacturer
Programs for IRR -==-=c-cecccacca-- 109

Advanced Programming Optimization
Techniques -——=—=c—mccmmmmremem 113

a. Labeled, Direct, and Indirect
Relative Addressing ==—-—=--cccceeeca--- 113

FIGURE 5: Types of Calls —-===—-—=c—-- 115

b. Label Search Mechanisms and
Subroutine Locations =-—===—-—ccececeecea-- 116

c. Nesting and Stacking Labels or
Subroutines --—-=--memmmccccccccccme 117

d. Appropriating Program Steps or
Registers for Data Memory ------—------ 121

e. Structuring Loops and Counters ------ - 124

FIGURE 6: Loop Control by Sign
of Variable =====ce—ecee--- 126

£. Multiple (Alternate) Uses of
One Subroutine ==—==——=——crmccccr—e——-- 128

g. Error or User-Prompting Routines ----- 130

h. Multiple Card Operations ------------- 134

FIGURE 7: Linear Programming Aid
(SR=52) ====c=cmmm—mm—————— 142

FIGURE 8: Linear Programming Aid
(HP=67) ===-e————mmmmmmm—— 148

i. Program Space vs. Execution Time -=--- 141

11. Machines of the Future =—=—=—ccececmmmmmmoca—- 154

a. The National Semiconductor Model

7100 (NS=7100) =--—--=c-m——mmmmmmmmoe 154

b. The Texas Instruments Programmable
Calculators 59 and 58 ====eecececceea- 155

FIGURE 9: TI-59 AVAILABLE
ALPHANUMERICS ===--- 158

FIGURE 10: TI-59 KEY CODE LISTING =--- 159

FIGURE 11: TI-59 SINE CURVE PROGRAM
AND OUTPUT -======-- 160

FIGURE 12: TI-59 ALPHANUMERIC
CALENDAR --=-====—-= 161

FIGURE 13: HP-37 SINE CURVE PROGRAM
AND OUTPUT =-======-- 162

F. PROGRAMMABILITY CONCLUSIONS =-===-==----eeeae-- 163

APPENDIX A: EDUCATIONAL PROGRAM GUIDELINES ===-=====--- 166

APPENDIX B: COMPARISON OF CALCULATOR FUNCTIONS
W/PHOTO'S ==-=m—mereececeemeee 169

APPENDIX C: FLEET USES =-----memme—memceeemceememe 179

APPENDIX D: EXAMPLES OF USER SUBMITTED PROGRAMS ------- 181

BIBLIOGRAPHY ======= mmmmmmmmmmmmmmmmmmmmmmmm 185

INITIAL DISTRIBUTION LIST --=---————-=-——————————————eoo 187

Page

14

23

25

26

Ly

45

47

58

63

76

77

81

89

90

91

ERRATA

Line #/Item

21 - after "document"

21 - after "often"

3 - along

2 - after "materials"

16 - IV.E(9)C.(8)

18 - +7 = § 7+

9

4 - DEC DEG

8 - DEG DEC

10 - DEG RAD

6 - X Y

"user keyed labels"
blocks a, c, e

Step 1 key entry

Step 65 key entry

"user keyed labels" diagram

"user keyed labels" (E')

Flags:

Step

Step

Step

Step

Step

Block O

1 - call

6 -

37 -- +PVn REG 69

54 « if n = U

100-71, /REG

Should Read

(Page 37)

do not

among,

{sl
IVE(S)c(9) on page 108

= 7 = & 7 +

delete AOS

DEC =» DEG

DEG =~» DFC

DEG =» RAD

X @Y

add N'; ry; n

fLBLA

RCLUY

draw lines only to
match page 76

+ Ai -» DO NPV

insert "if m<N”

call

ai,

+PV =>» REG 69

if n = N GTO §"I'" 193

[af —> REO 98

93

Sy

95

96

97

99

102

LOG

Line #/Item Should Read

Step 131 - key entry .4 9

note- Ai REG Ai —> REG 96

Step 182 - REG GO REG 60

Step 191 note (Clr) REG 99 (CLR) =>» REG 99

"user keyed labels" - e At Do + AL =» DO NPV

Step 18 key entry hR 4

Step 20 note ¢ G TO LBL 1

Step 44 note (#n) REG #n =» REG

Step 46 note (N+1) REG N+1) =» REG

Step 83 note LBL C LBL c

Step 96 key entry h R h RA

Step 98 key entry h RY h RY

Step 118 note 1 REG i =» REG

Step 135 note -11) REG -11) —» REG

Step 148 note it) REG it) =>» REG

Step 166 key entry h ST I

Step 175 note -26) REG -26) =>» REG

Add title top of page (Initial Data Fntry Operations

7 - (i, stored) (+1 stored)

15 = (n° 0) & (n 20) (no) and (n2 20)

5 - Display column 0.0639

13 - Press key column B

108

113

121

123

125

128

135

137

138

141

142

143

145

Line #/Item

21 - after program

23 - IV.C

1 - on

13 - Figure 2

3 - one equally

13 - Figure 2

S - Figure 5S

S - 5S.

10 - Figure 6

2 - Figure 6

2 - after "Explanation" add

2 - Figure 7

add 3rd line
(above C')

"user keyed labels"
block D aij REG

Step 4 add note

Step 26-29 note

Step 71 - Run

Step 79 - aij

Steps S86, 100, 10u4-
cost

add title (above C')

"user keyed labels (C')" -
REG #8

(D) K PR

(E) XK PR ROW
K-PR

Should Read

program card

Iv D

or

Figure 3

are equally

Figure 3

Fipure 6

6.

Figure 7

Figure 7

of Figure 7 (page 142)

Figure 8

Card 1

aij =» REG

(Cj= 90+3j => REG 89)

bracket 1, 11, S81, 8u RE

Run
 >

aij S

costRN

Card 2

REG =» 00

K—7 PR

K=>» PR =? ROW

Ke PR

Page linef#/item should read

145 (con't) Step 7 - under K K
note # PR orPe
Step 11 = Proy Prov

—>

146 Step 36 - RUN RUN 5

Step 66 - 5=—— Poo
"row ROW 3

148 Step 1 - key entry gLBLa

149 Step 32 key entry qFRAC

154 15 - (Table 3) (Figure 3)

I. INTRODUCTION

A. GENERAL

Card programmable electronic pocket calculators offer

portable computational power and versatility heretofore

unknown at an astonishingly low cost. Most problems which

require the analysis of numbers can be programmed into and

automatically solved by this new breed of machine at the

touch of a few buttons. This new ability to execute complex

computations, on demand, in the field, and in seconds can

enable one to significantly improve his professional

efficiency in almost any profession. In the opinion of the

authors, the next generation of card programmable calculators

is going to have a greater ultimate effect on the modern

world than did the computer itself in recent years.

The invention of the logarithm by Napier in 1614 [1]

simplified and speeded mathematical computations by mankind.

The calculator revolution of today is comparable to the

revolution in mathematics brought about by the logarithm.

The non-programmable electronic calculator has already all

but eliminated the market for the sliderule while providing

greater accuracy at a lower cost. On the other hand,

sophisticated calculators are now beginning to compete with

larger computers. The first card programmable calculator,

the Hewlett-Packard HP-65, was introduced in 1974. In

January of 1976, Texas Instruments Incorporated (TI)

introduced the SR-52 card programmable calculator in compe-

tition with the HP-65. Hewlett-Packard (HP) answered the

challenge in June 1976 with the HP-67 which provided more

than twice the capability of the HP-65. National Semicon-

ductor intends to introduce their Model 7100 before summer

of 1977. It will have 480 user programmable steps plus 4000

library steps. In June 1977, TI will replace the SR-52

with the TI-59, which will have as many as 960 user pro-

grammable steps plus a 5000 step library cartridge. This

relatively rapid evolution in hand-held calculators iS the

result of high consumer demand, and market competition.

It is believed by the authors that hand-held computers

with up to 20K of step processing capability will be

available within the next decade.

B. PURPOSE

The beginning for this thesis started with the purchase

of programmable calculators (HP-25's) for use by the authors

in course work at the Naval Postgraduate School (NPS).

Having gained the ability to program the purchased calcula-

tors, it was soon determined that more capability was

desired in order to solve more complex problems. This

phenomenon is described by Thompson [2] as the "fill-up"

principle where the user tends to "fill-up" the capability

of the machine and thus, outgrow it.

In 1976, NPS purchased more than sixty SR-52 machines

for use in a pilot project designed to determine if such

10

machines should be formally incorporated into the various

curricula. Additionally, the NPS faculty questioned

whether or not the use of these calculators in the fleet

could improve the capability of managers, i.e., if rapid

and concise analysis of data could enable managers to

arrive at better decisions which might lead to improved

operational readiness.

It is, therefore, the purpose of this study to investi-

gate the potential of card programmable pocket calculators

as a tool for both educational endeavors and management

support in conjunction with the NPS pilot project.

C. STUDY METHODOLOGY

(1) The Management Science curricula of the Naval

Postgraduate School (NPS) was used for educational program

guidelines. NPS Management Science students come from

diverse educational backgrounds; many of the students have

minimal formal mathematical training. The Management

Science curriculum encompasses the following disciplines

that include numerical computation:

a. Mathematics

b. Probability

c. Statistical Methods

d. Financial Accounting

e. Management Accounting

* Particular courses are listed in Appendix A.

11

(2) The Hewlett Packard HP-67 and the Texas Instruments

SR-52 were studied "hands on" and compared on the basis

of:

a. Machine language

b. Programming and programmability

c. Machine functions and capabilities

d. Use in the educational process

e. Use at NPS and in the Fleet.

Comparable functions and capabilities of the NS Model

7100 and the TI 59 are listed in Appendix B. Samples of

these two machines were not available during the time frame

of this study; therefore, listed data is informational

only, as provided by the manufacturers. The authors had

opportunity only to observe factory emulators which could

accomplish most of the functions predicted for the actual

production models of these machines.

(3) Additional information was collected through:

a. Interviews and surveys of users

b. A search of the literature

c. Telephonic and written interview of

researchers and educators

d. Review of written information provided by

educators and researchers

e. Review of information provided by manufacturers.

(4) There is little in the literature to indicate

the impact of card programmable calculators in the educational

12

and fleet environments. This thesis is written with the

expectation that it will be disseminated to readers who

have various levels of familiarity and needs concerning

these calculators. These underlying factors necessitated

a baseline study that includes technical information, as

well as non-technical, as deemed important to the various

audiences. Therefore, the reader may extract information

as considered appropriate.

13

II. CARD-PROGRAMMABLE CALCULATORS AND EDUCATION

A. THE CALCULATOR AS A TEACHING AID?

Whether or not the calculator is usable as a teaching

aid is a multi-faceted question.

Rogers [3] believes that a good teaching aid must be

enduring if it is to be of value in the educational process;

i.e., as enduring as the blackboard. She lists four features

that seem to separate enduring teaching aids from others:

1. Inexpensive and/or durable

2. Controllable by learner

3. Does what the learner wants done

4. Flexible usability

The question of expense and durability is simply one

of value analysis. Such analysis must necessarily evaluate

(a) initial incremental cost, (b) initial support cost, and

(c) recurring cost. Support costs include publications

and peripheral equipment required to take full advantage

of the system. Recurring cost of calculators is primarily

a function of machine failure rates. A suggested method of

value analysis on this subject is located elsewhere in this

document.

A hand held calculator is certainly controllable by the

student, particularly when the student is allowed to take it

home with him. Equally obvious is that the machines surveyed

in this thesis are usable in almost any course of instruction

14

that requires numerical computation and are capable of

doing what the student wants them to do. In addition,

these instruments can be used to great advantage in the

fleet after graduation. In short, hand held calculators

have an advantage that even the blackboard cannot compete

with: portability.

Bell [4] points out that there is considerable agreement

that calculators should play an important role in the educa-

tional process as a result of their availability and use

outside the world of schools. He also reports that almost

invariably there is high initial interest which persists

over a long time provided students are given interesting

things to do with the calculators.

Suydam [5] lists the two fundamental arguments regarding

the use of calculators in the educational process in general:

Proponents argue:

"The hand-held calculator is the tool used in
society today for calculations. Schools are
'burying their heads in the sand' if calculators
are not recognized and used as the calculational

tool that they are."

Opponents argue:

"The principal objectives of mathematics
instruction (at least in grades K-9) are that
children learn the basic facts and paper-and-
pencil algorithms. Such learning will not
occur if calculators are made available in
schools."

The opposing view is also argued at the college level,

although calculators are not forbidden in most college

classrooms and numerous schools have taught a basic sliderule

15

course. It is agreed that a certain amount of computational

skill must be required before calculators can be used

entirely effectively. But the authors do not see much

distinction between "paper-and-pencil" and calculators,

and even less between sliderules and calculators. I.e., what

is the difference between using paper-and-pencil and using

calculators in the learning process? At best, it would

seem to be a moot point.

Available literature indicates to the authors that the

benefits of using calculators strongly outweigh not using

calculators. Interestingly, no evidence has been found

that calculators or sliderules negate the learning process.

Paper and pencils are merely different forms of tools.

Any tool that facilitates learning should be accepted on

its relative merits rather than being eliminated through

emotional recrimination. To put it simply, correct answers

instill confidence and it is inescapable that learning will

take place while using calculators. The degree of learning

depends upon the student, the teacher and how well the tools

available are used. Calculators will not replace the thinking

process but will enhance its capabilities to accomplish more,

as did the sliderule for the engineering profession.

The authors find no substantial reason against using

calculators as an educational tool per se and fully support

the proponents viewpoint.

16

Peripherally, an additional aid is on the market for

use by instructors — the "Edu-Calc." It is manufactured by

Educational Calculator Devices, Inc., in Laguna Beach,

California. It is an electronic repeater unit coupled

with a calculator, produced as an integral unit. With a

calculator on the top of the unit for operation by the

instructor, the display faces the students for them to

follow.

This integral unit is supplied in a brief case, which

makes it easy for the instructor to carry it with him from

class to class.

At present, the unit is manufactured using only Hewlett-

Packard calculators. When queried as to the possible

incorporation of other manufacturers calculators, Mr. George

Schultz, Manager, Academic Sales, stated that such an

eventuality would not be considered at this time due to

machine reliability factors. No "Edu-Calc" machines have

been returned for repair during the life of their production

(approximately one year). He provided a rough estimate

that an HP-67 model "Edu-Calc" could be made available for

approximately $1200 [6].

B. THE NPS PILOT PROJECT: CLASSROOM USE OF CARD
PROGRAMMABLE CALCULATORS

The project began with the issuance of SR-52 card

programmable calculators to fifteen beginning students in

the Naval Intelligence curriculum. The calculators were

'
incorporated in the course "Mathematics for Naval Intelligence’

(MA 2310): this course is described as [7]:

17

"A review of linear, logarithmic, sinusoidal
and exponential functions, with graphical
emphasis; differentiation and integration
with both analytical and numerical procedures,
continuation to include introductory treat-
ments of Fourier analysis; the Fourier
integral, spectral analysis, differential
equations, and the Laplace transformation."

The course was completed during the October-December

1976 quarter.

In addition to the calculators, students were issued a

text [8] that had been adapted by the instructor to take

best advantage of the calculators. The students received

5 hours of classroom lectures and 3 laboratory hours each

week for 11 weeks.

During the first two weeks of the quarter, the class

concentrated on learning machine capabilities and programming.

The balance of the quarter was spent learning mathematics.

The students completed survey forms during the fourth

and twelfth weeks of the quarter and were interviewed

throughout the quarter. These students will continue to

use the calculators in follow-on courses.

Following is an analysis of available information:

a. Ages of students: 29 * 5

b. Previous degrees: BA/BS 87%

c. Highest level math previously taken:

college algebra 40%

calculus 46%

differential
equations 14%

18

No student had previous experience in programming

calculators or computers.

Average use of calculators per student over 11

week period: 97.08 hours (37.8 hrs without

programming; 59.28 hrs programming and using

programs) .

100% of the students believe that the calculator

oriented course was a worthwhile educational

endeavor that has enabled them to acquire an ability

useful in further education.

93% of the students foresee the use of programmable

calculators in future billets (versus 67% in the

4th week) and are generally willing to buy a

calculator (versus 73% in the 4th week). However,

that willingness is predicated on (a) billet

requirements and (b) the belief that if the

government benefits, the government should purchase

them.

93% of the students believe that using a programmable

calculator and programming has helped them to

understand mathematical concepts (as compared to

53% at the 4th week).

100% of the students rate handout materials better

(each student ranked them 4 on a scale of 1 to 5)

than manufacturers publications. They also believe

that these materials were of significant help in

learning mathematical concepts.

19

20% of the class experienced machine failures

(machine would not print cards or would not accept

manual program input). Not only did these students

rate programming lower as a learning mode, but they

also received the lowest grades in the class.

87% of the students believe a printer would be

useful in programming.

Machine features that the students particularly

liked included its card-programmability; 11 particu-

larly disliked its inability to exponentiate

negative numbers (v¥) without indicating an error

condition.

It is noted that most answers concerning questions

about future applications were guarded. Students

stated that they did not know future course

requirements, therefore, were not sure of particular

uses.

It is clear that the students perceive a strong

potential for the application of programmable

calculators in future billets.

Comparison of survey/interview results at the fourth

week with those of the twelfth week indicates a

strong increase in enthusiasm and confidence in

the ability to carry out computations of increasing

complexity. One particularly common statement

among the students was that they were able to

20

compute much faster and solve many more problems,

and, therefore, were able to devote more time to

studying theory. All students have the desire to

learn more about the machine, programming and

applications. Some students are already writing

programs for future uses.

Each student interviewed indicated that he now

views algorithms in a different way; in the way of

a flowchart or the way it could be programmed most

efficiently. In addition, each confirms that he

now tends to think about problems outside mathematics

in a similar manner.

This class began the quarter with the same text

material as covered by previous classes (except

for adaptation of the material to the calculator-

teaching mode). The instructor, after reviewing

student records, initially estimated that this

particular class would have difficulty in completing

the text (records of this class in prior mathematics

courses indicated an overall grade point average

of 2.0 or C). However, he found that the class had

completed the text during the ninth week and he was

able to include additional materials that would

prove very useful in future courses. He observed

that students gained a great deal of insight and

intuition through writing programs and solving

21

repetitive computations. He stated that the major

advantages of calculator usage included "breaking

the ice", students obtained correct answers, developed

confidence and learned mathematics extremely well.

Not only were the students able to cover signifi-

cantly more material (15% more depth), they were

also able to complete a final examination that the

instructor judged to be 20% more difficult (complex)

than any previous examination in this course.

The class of the previous quarter, without benefit

of card programmable calculators, attained an

overall grade point average of 3.62 + ,43. This

class attained an overall grade point average of

3.60 = .44.

As a result of the success experienced by this class,

the instructor began the following quarter (second

quarter for the students) by teaching the students

to compute cumulative/inverse, cumulative normal

and binomial distribution values rather than referring

to tables. He has also taught the Runge-Kutta

method for solving differential equations, carrying

out fifty cycles during a class period. Normally

these methods are too time consuming to be demonstrated

past the "exposure" level. Accordingly, it certainly

appears that card programmable calculators have

provided a significant advantage to this class.

22

s. The mathematics courses in the Naval Intelligence

curriculum are similar to those in the Management

Science curriculum. Therefore, the information

collected from this class is entirely adaptable to

the following discussion concerning the Management

Science curricula.

C. PROPOSED USE OF PROGRAMMABLE CALCULATORS IN THE NPS

MANAGEMENT SCIENCE CURRICULA

Appendix A lists the courses that are considered to be

logical candidates for the incorporation of card programmable

calculators in the teaching process. The investigators

believe that each of these courses could be taught in a much

more efficient manner by adapting the computational portions

to algorithms, demonstrating the algorithms to the students

and having the students program them, and, finally, having

the students carry out several exercises for practice and

application.

The authors believe that the essence of the educational

process lies in being able to apply knowledge once gained.

Unfortunately, most students seem to do well in the class-

room but all too often not really know how to apply their

new capabilities.

It is axiomatic that an acquired skill will become

"rusty" or will be lost, if not exercised. However, that

tendency is ameliorated when a student is made aware of

when and how to use a particular algorithm to solve a

23

particular problem. In other words, teach the student how

to recognize a problematic situation, show him how to break

it down into its components, analyze each component and

reconstruct the situation to efficiently accomplish the

task.

The NPS Management Science curriculum includes a wide

variety of disciplines, each with its own procedures and

techniques. The generally accepted method of instruction

combines classroom lectures concerning theory with several

hours of homework "crunching numbers." Realistically,

little time is left available in the classroom to review

homwork problems or theory. Consequently, if the student

does not understand some aspect of the course, he is left

substantially to his own devices to completely comprehend

theory, numerical manipulation or both. A student who misses

a critical point early in the quarter may suffer the balance

of the quarter by not understanding an important aspect in

the progression of course material. Given that the student

is carrying more than one course, this effect may take place

in several areas. The effect can then become pryamidal

with the student demonstrating less than that of which he

is capable. Concomitantly, some students simply cannot

manipulate numbers rapidly, in spite of the fact that they

fully comprehend the material. These students appear to

be "poor students" at examination time, yet may be as capable

as most any student in the long run.

24

This investigation has led the authors to believe that

all of these effects could be ameliorated to a great degree,

with significant gains along all students, through incorpora-

tion of the card programmable calculator in NPS Management

Science curricula as well as other NPS curricula. In

addition, the student could take several programs (recorded

on cards) with him to the fleet for use in his next billet.

D. A RECOMMENDED COURSE STRUCTURE

Based upon the pilot project, the authors believe

unequivocally that a course of instruction in card pro-

grammable calculators can lead to a significantly improved

Naval Postgraduate School product and that a beneficial

effect would carry over into the fleet.

Such an initial course should be structured in the

following manner:

a. Offered during the first quarter of study in the

undergraduate portion of the curriculum.

b. The course should be no less than two two-hour

classroom periods per week for four weeks, to become pro-

ficient with the calculator, followed by two one-hour

classroom periods during the remaining seven weeks for

applications.

c. The course should be designed to include the use

of all functions of the calculator coupled with flow charting

and programming.

d. It should be provided as an initial course in

mathematics.

25

Professor Gaskell, NPS Mathematics Department, has

already developed text materials that could provide a

basis for the accomplishment of these goals. Basically,

his programmed text incorporates the teaching of algorithms

commensurate with teaching applications and the full

capability of the machine.

Obtaining this education early in the curriculum would

enable the student to allay the fear and drudgery of numeri-

cal analysis. He would be much better prepared for advanced

mathematics and the early computer programming courses.

CDR Gibfreid, Chairman, NPS Computer Science Department [9],

believes that a course in programmable calculators would

enable the doubling of the length of time now available for

teaching management information systems (MIS) applications.

E. THINKING PROCESS TRANSMUTATION: AN IMPORTANT BY-PRODUCT

Another important effect which would be developed through

the recommended course, however, is considered to be even

more powerful and far-reaching: This is the effect of

thought process transmutation which occurs as an almost

inescapable by-product during some four to six weeks of

such study.

The process discovered during this research, occurs in

the following manner:

(1) Initially, the neophyte programmer is merely

impressed with the capabilities of the machine; he attempts

to rush into programming without sufficiently studying the

26

operators manual. His initial success is thus limited, so

he begins to conscientiously study the manual to determine

how the machine operates.

(2) As his ability to use the machine improves, he

discovers the various methods of flow charting. He now has

a visual aid that he developed, enabling him to see the

program in graphic form.

(3) Once he has developed some amount of expertise in

flow charting and programming, he begins to visualize for-

mulas and processes in a new way. For all practical purposes,

his analytical thinking processes take on the characteristics

of a flow chart or program. As he gains even more expertise

in the art, he takes on the challenge of improving the effi-

ciency of his programs through redefinition and more complex

methods for eliminating unnecessary steps.

He has inescapably, but subtly, reorganized his thinking

processes. He now has developed a new capability to organize

his thoughts concerning any particular task, to graphically

display the steps necessary to the task, to make logical

comparisons and distinctions between facts and hypothesis,

and to then develop the most efficient procedure to accomplish

the task.

This subtle transmutation seems to take place whether

or not the student recognizes it. The transmutation results

in the enhancement of personal organization and efficiency

of thinking that cannot help but carry over into other areas

of the individual's life.

27

This process alone has the potential of becoming a

powerful tool for every individual that experiences it.

The process cannot be experienced through the use of a

non-programmable calculator; the same process was not

experienced by the authors while using the HP-25 (a lower

capacity machine with 49 step capability).

Not only was the HP-25 rapidly outgrown by the authors

but keying in a program each time limited the efficiency

of programming, particularly when more machine capacity

was required. With the lower capacity machine, the only

mental effects encountered seemed to be those associated

with tailoring a program to fit the machine, if it would fit

at all.

In short, the individual's mental faculties were not

taxed to the degree necessary for transmutation to take

place. Lower capacity machines, however, may be entirely

sufficient to teach programming and/or transmutation at

lower educational or experience levels [10].

Conversely, a 224 step machine has sufficient capacity

for the vast majority of problems (as indicated in the

appendices), while longer problems e.g., those used in

linear regression, queuing, etc., tend to tax the mental

comprehension of the individual while constructing programs.

As a result of programming the HP-67 and the SR-52,

and experiencing the transmutation process, it is suspected

that machines of greater capacity (greater than 224 steps)

28

may not result in equal or greater transmutation capability.

It is feared that students would simply write programs that

fit within the capacity of the machine, without regard for

further efficiency. Programming would be sloppy because

programming space would allow sloppiness. Hence, although

a student who begins with a larger capacity machine may

develop intricate programming and thinking capabilities,

nothing forces the process. Thus, if the aim is to increase

overall analytical ability as quickly as practicable, stu-

dents ought to begin with machines of no greater capacity

than the SR-52 or the HP-67. It is suspected that greater

machine capacity will lead to a longer time for transmutation

to take place.

It is strongly believed by the authors that the refine-

ments and complexities developed through the described

process carry over into other fields of endeavor and,

especially, that the more refined and more complex the

thinking process change becomes, the greater the analytical

capacity of the user.

Thinking process transmutation is a most desirable

effect to be created as early as practicable in the educa-

tional program of a student. The student could be expected

to be much better prepared to meet the challenge of later

courses. It is axiomatic that educators within the above

described process could surpass all previous records in

improving the ability of their students. More importantly,

29

graduates would be significantly more valuable to their

employers.

F. CONCLUSIONS

The drudgery and fear of manipulating complex formulas

is no longer necessary. An educator can now provide the

student with the algorithm to solve a problem, have him

program it and carry out several computations, and then be

able to spend a greater share of instructional time teaching

theory and applications. There is little question that the

student will gain greater intuition and understanding of

mathematical concepts by following this procedure.

The card-programmable calculator itself is clearly an

enduring teaching aid. Its portability is a great advantage,

enabling the student to carry exceptional computing power

in his pocket.

Educators should have no fear of this device. If used

properly, much more can be accomplished in the classroom,

in both quantity and depth of coverage of material. Accord-

ingly, educators can significantly advance their teaching

capabilities and improve the quality of graduates thereby.

Thinking process transmutation is a phenomenon that ought

to be studied in more detail. At this time, it can be said

that such transmutation occurs during four to six weeks of

calculator usage. The phenomenon has occurred with every

person interviewed who has had four to six weeks experience

in programming (card-programmable) calculators.

30

It is clear to the investigators that before providing

more machine capacity (more than 224 step capability) to the

student, the phenomenon should be studied further in order

to assure that it occurs at the earliest time in the curriculum.

In addition, more work needs to be done to determine an

appropriate measure of the phenomenon. It may be that thinking

process transmutation can be enhanced by "stacking" machines

of increasing capacity in the educational process, i.e.,

224 step, 500 step, 1000 step, etc.

When selecting a calculator for an educational program,

machine reliability should be a strong consideration.

Although it cannot be said with certainty, machine failure

seems to have been a strong factor with the students who

received the lowest grades in the pilot project. At the

very least, a failed machine is of little use and could

create an administrative burden to get machines repaired.

Ideally, sponsors should provide students with calculators

upon matriculation for use during their educational program

and after graduation. Instructors should be issued calcu-

lators with printing capability, both for the benefit of

students and instructors. Additionally, an aid, such as

the "Edu-Calc", should be provided for classroom instruction.

Unfortunately, far too many educators are not yet aware

of the potential of this most valuable tool. The authors

are convinced that, provided exposure and knowledge is

given, the vast majority of people soon begin to realize

31

the diverse applications of the instrument and the new

abilities that they command. Conversely, a failure to

exploit the advantages of the card-programmable pocket

calculator in the educational process could be contradic-

tive of the tenets of the process itself.

32

IIT. FLEET USE OF CARD-PROGRAMMABLE CALCULATORS

A. GENERAL

The use of card-programmable calculators in fleet opera-

tions is certainly a feasible eventuality considering their

usability and adaptability. A dramatic example of fleet

usefulness is that portrayed by Commander, Patrol Wings

U.S. Pacific Fleet and Commander, Patrol Wings U.S. Atlantic

Fleet who have been using several HP-67's for approximately

one year for airborne search detection problems [11]. An

HP-65 (no longer in production), a predecessor of the HP-67,

was used as a backup for the onboard computer system on

the Apollo-Soyuz linkup mission [12]. Several civilian

ships navigators use card-programmable calculators for speed

and accuracy of calculations [13]. Appendix C is a short

list of some of the places where card-programmable calcula-

tors should be used in the Navy and is by no means a com-

plete list. Specific examples of usefulness are listed in

Appendix D. In short, appendices C and D indicate that

practical and feasible application in the fleet within

innumerable disciplines is limited only by imagination.

The simple fact that a great deal of time can be saved

while analyzing data, coupled with unparalleled accuracy at

a relatively low cost, is a strong reason for implementing

the use of these calculators throughout the fleet. This

33

fact alone would enable managers to make more timely decisions

based upon thoroughly analyzed and accurate data.

It is obvious that decisions supported by accurate

information are usually better decisions. Better (and

faster.) decisions would form the very heart of improved

management that could lead to improved operational readiness

throughout the Navy.

B. MACHINE CAPACITY REQUIREMENTS

Based upon this study, the capacity of machines .currently

in production (the SR-52 and HP-67) is probably sufficient

for the vast majority of fleet applications. Lieutenant

Commander Harvey states [14] specifically that he believes

machines of greater capacity would not provide significant

gains in tactical capability. Comparisons of appendices

C and D and the NPS Pilot project [supra] support that belief.

It is therefore clear that 224 step capacity is adequate.

If a particular problem is beyond the capacity of

currently available machines, it might be more efficient

to use available computers. Alternatively, a great deal of

management information, no longer available due to computer

operation cost, could be regained by fleet users, e.g., daily

maintenance material management (3M) summaries could be

produced in abbreviated form by 3M analysts,

C. ADDITIONAL ADVANTAGES OF FLEET USE

As an additional advantage, fleet exchange of programs

and programmed cards could be an excellent vehicle for the

34

transfer of technology among fleet users at a very low cost.

LCDR Harvey [supra] indicates that the publication of 700

copies of one tactical program costs approximately $1000,

including programmed cards and all supporting publications.

There is little doubt that fleet exchange of programs

would lead to a certain amount of standardization in

programming. However, directed standardization of all

programming would not be in the best interests of the Navy

if programmable calculators become a standard Navy item.

Specifically, strict standardization of programming would

probably stifle individual creativity and investigation.

This aspect is considered vital in order to obtain the

benefit of all fleet talent available. Put simply, the

Navy should take advantage of the natural curiosity and

investigation that will occur among users.

D. MACHINE RELIABILITY

If card programmable calculators are purchased for use

in the fleet, machine reliability should be a prime consider-

ation. COMPATWINGSPAC experience shows that HP-67's operated

on aircraft electrical systems (115 VAC, 400 Hz) have incurred

less than a five percent failure rate although operating

temperatures are eight degrees higher than in normal (115 VAC,

60 Hz) usage. Unfortunately, no data has been found for the

SR-52 under similar conditions.

The above mentioned degree of reliability, or better,

is necessary, if such a machine is to be used to make

35

tactical decisions, even if the cost of returning machines

to the factory for repair is not considered.

E. CONCLUSIONS

The potential impact of the card-programmable calculator

upon fleet operations must be considered as enormous. Such

a machine can provide significant advantages in tactical

employment, management efficiency and the transfer of

technology. Although this broad range of applications has

been shown, many specific uses are yet to be defined.

The authors will attempt to define further specific

uses upon returning to the fleet after graduation.

Although these machines are not a panacea for solving

all management problems in the fleet, the Navy should take

every advantage of their computing power.

36

IV. PROGRAMMING AND PROGRAMMABILITY

A. GENERAL

Programming and programmability of card programmable

calculators is the most important area to be studied when

attempting to decide on the kind of system to use. In

simplistic terms, programming is only a matter of putting

an algorithm in a particular form for the machine to accept

it and then compute a correct answer. On the other hand,

programmability depends upon several factors.

Programmability is defined here as a combination of:

(1) machine language

(2) merging of key strokes in program steps

(3) type and number of program steps available

(4) ease of programming.

Each of these factors must be compared on its own merits.

Then, the user must decide which combination will best suit

his needs within his budget. The aforementioned interrelated

factors are discussed further in following subsections

concerning value analysis, basic and advanced programming

techniques.

B. A METHOD OF VALUE ANALYSIS

Once the determination has been made as to the system

(or systems) that will satisfy the particular need, the

question of value analysis arises. Certainly, a part of

that value analysis was determining the need in the first

37

place. However, here to be discussed is the primary

question of cost.

Cost (s) of a card programmable calculator should be

viewed as system(s) cost. Accordingly, cost(s) to be con-

sidered are more than just the purchase of a calculator.

They include a) initial machine cost, b) cost of additional

support such as program card libraries to be purchased or

published, text materials, replenishment items, etc.,

c) recurring cost, i.e., replacement and/or repair cost

(this is primarily a question of machine failure rates).

The decisionmaker must determine (or make the best

estimate) each of these costs for the various systems on

the market, and then, compare them as to the need to be

satisfied and the money he is willing to spend.

It is up to the decision maker to decide the weight to

be given to each particular item of the analysis. For

instance, initial machine cost may be determined to be more

important than reliability or vice versa. As an aid in

making these many judgements, the decision maker ought to

obtain the benefit of the knowledge of as many users as

practicable.

Necessarily, the end use of the system(s) will likely

be the major consideration in the analysis of costs and

benefits. There are no hard and fast rules concerning

any particular item. Again, it is up to the decision

maker to determine which system(s) will satisfy the needs

and the money he is willing to spend to obtain the best value.

38

However, the decision maker must also consider at least

these two factors:

(1) Increased simplicity, speed, or convenience (which

can be gained from the new calculator) not available under

the current procedures.

(2) Additional capabilities which can be expected to

accrue as expertise on the new calculator(s) occurs.

Most purchasing decisions appear to be based more upon

the former than the latter. In the opinion of the authors,

the latter is much more important. Thus decision makers

should assume such benefits will be available to higher levels

if more capable, more convenient calculators are purchased.

Manufacturer's suggested retail prices, as of this writing

(March 1977) are:

SR-52 $249.95

HP-67 $450.00

HP-97 (Includes Printer Lo
Capability) $750.00

NS-7100 (Projected) $400.00

TI-59 (Projected) $300.00

PC-100A Printer for SR-52
or TI-59: $199.95

TI-58 $125.00

C. ALGEBRAIC VS REVERSE POLISH NOTATION

1. Description

The machines compared herein operate either in an

Algebraic Operating System (AOS) (SR-52) or in the Reverse

39

Polish Notation (RPN) (HP-67) system.

The AOS enthusiast states, "I put the problem

into the machine as it

RPN enthusiast states,

as it is normally calculated."

correct.

Q =

is normally written down", while the

"I put the problem into the machine

Neither statement is entirely

For instance, consider the following formula:

/2KD/K_

For computation, the following (conceptual) sequences must

normally be followed on the two machines:

have no actual commas;

concepts only.)

or

(The machines

commas are inserted below to group

RPN

2 ENTER,

k +, Vv
C

KX, DX,

(2, XK, XD, %k), /

The reader should note

in all cases to enable

nor RPN allow entry of

prior to completion of

that the formula had to be rewritten

machine computations. Neither AOS

the square-root function operator

all other operations. This problem

must be worked from the inside to the outside in all cases:

i.e., in all cases the machine must be told to compute the

40

result of (2KD/k) and then be told to find the square

root of that result. It cannot, as one concept, be told to

compute the square root of (2KD/k) . The same argument holds

for sin x, cos x, tan x, ln x, log x, x!, =, and 1/x

operations on both machines, as well as to the ¥* and */%¥

two function operations. Obviously, then, the AOS user

uses a considerable amount of RPN notation.

The AOS enthusiast also argues that he doesn't have

to learn a new language. Again, there is disparity — in

addition to the examples of the previous paragraph. Returning

to the generalized formula, Q = /2KD/K_, note that there are

neither any parentheses nor any internal equality signs on

the right-hand side of the equation as were required for

the AOS example above. General formulas do not always have

parentheses, and rarely, if ever, show implied internal

equality signs. Instead, it is assumed that the user will

intuitively group variables and mathematical operators as

if these implied symbols were, in fact, present. This being

the case, the AOS user must usually stop to remember where

the implied symbols go and insert them. On the other hand,

the RPN user must remember to always enter the operator

after the variable. Hence, it is clear that for either AOS

or for RPN, the user must, to some extent, "learn a new

language". The RPN enthusiast usually argues that he must

only enter the variable(s) and then "tell the calculator

what to do with them". Truly, the RPN user must remember

41

only one rule: The operator(s) is (are) always entered

after the variable(s).

Only two registers are required to solve a simple

problem such as W + X + ¥Y + Z in either AOS or RPN. In

AOS, additional registers will allow varied grouping of the

variables with parentheses, but will not permit additional

forms to solve the same problem; i.e., regardless of paren-

theses, each operator is entered before the variable it

will ultimately operate on. In RPN, additional registers

will allow the problem to be structured in varied ways,

all of which separate variables and their operators to

different degrees. For example:

AOS RPN

(Base Case) W + X + Y + Z2 = W Enter X + Y + 72 +

or W+ X + (Y + 2) = W Enter X + Enter Y Enter 7 ++ *

or W+ (X+Y + 2) = W Enter X Enter Y + 2 + +

or W+ (X + (Y + 2)) = W Enter X Enter Y Enter 72 + + +

or (W + X) + (Y + 2) = W Enter X + Enter Y Enter Z2 + + *

* or:

W Enter X + Y Enter Z2 + +

In short, an RPN machine gives flexibility that is not

available in an AOS machine. This feature becomes a powerful

benefit when writing programs in RPN. It also saves the time

of rewriting an equation [begin inside, work out, operator

after variable], an option the AOS user usually does not

have if he wants the most efficiency [3].

Using Hewlett-Packard terms [4], the automatic

stack operates as follows:

42

Data is entered:

5 ENTER 6 ENTER 7 ENTER 8

The stack registers then can be visualized as:

5.00 T

6.00 Z

7.00 Y

8. X (DISPLAY)

Pushing the "roll-down" key once results in the following

change:

8.00 T

5.00 Zz

6.00 Y

7.00 X (DISPLAY)

Now, pushing the "roll-up" key twice changes the display to:

6.00 T

7.00 Z

8.00 Y

5.00 X (DISPLAY)

Adding 5 to 5 in display by pressing 5 + changes the stack

to:

7.00 T

7.00 2

8.00 Y

10.00 X (DISPLAY)

As noted above, keying in 5 pushed 6 out of the

stack. When + was pressed, the two 5's were added to put

10 in display and the stack dropped. The 7 in T is dupli-

cated in 2. The dropping and lifting of the stack enables

the user to position intermediate results in long calcula-

tions without the necessity of reentering the numbers.

The stack coupled with RPN creates an efficiency of the

language that is not within the capability of AOS. On the

other hand, AOS' programs are easier to "translate" because

of the almost direct algebraic notation used therein.

2. Accuracy

Accuracy of the last several digits displayed by

the SR-52 or HP-67 subsequent to executing calculations

varies slightly between the machines. For example, refer

to the "Internal Rate of Return" (IRR) nine place results

calculated in Section IV.E(9)C.(8). The accuracy of either

calculator is adequate for all but the most esoteric uses.

3. Execution Time

Execution time is generally slightly less on the SR-52

than on the HP-67 for identical functions. The SR-52 exe-

cutes exponentiation to positive powers much faster than

the HP-67; conversely, the SR-52 creates an error condition

with the correct, but unsigned, number in the display when

attempting to exponentiate to negative powers. Thus the

SR-52 programmer must include three steps such as IF ERR, A;

+/- or five steps such as IF ERR, 123; +/- (to ensure that

the program will continue) if the program can accept negative

44

exponentiation values. Even when such steps are required,

execution time is less on the SR-52 than in the normal

execution time on the HP-67. Then the HP-67 runs slower,

but uses less program space for negative exponentiation.

D. BASIC CALCULATOR PROGRAMMING CONCEPTS

Basic programming is nothing more than routinization

of repetitively occurring mathematical equations in terms

of equation variables as stored by the user into particular

storage registers. For example, consider the calculation

of V9X26/7 . One routine mental (or pencil-and-paper)

approach to this calculation is to multiply 9 X 26 yielding

the product of these two terms, dividing this product by 7

vielding a quotient and, finally, extracting the square root

of the quotient. This process can be manually keyed into

SR-52 or HP-67 calculators as follows:

SR-52 HP-67

9 X 26 9 Enter 26 X

+ 7 = 7 +

2nd vx f/x

Resulting in: 5.78174467 5.781744670

Naturally, a program written specifically to generate this

unique result would never be written unless one had some

reason to constantly be reminded that

/9 X 26/7 = 5.78174467(0). Conversely, a program written

45

to generate YAXB/C for any given value of the variables

might prove most useful. Such a program is readily accom-

plished merely by storing the value of A in Storage Register

(Reg) #1, the value of B in Reg #2, the value of C in Reg

#3, and defining the calculation process in program memory.

This translation process is best begun by rethinking

YA X B/C in language the calculator can understand, i.e.,

as Vv(Reg #1 Contents) X (Reg #2 Contents) + (Reg #3 Contents).

For calculator keying, the Recall (RCL) instruction orders

the proper storage register contents into operation. (In

SR-52, the primary storage registers are numbered 00 through

19; in HP-67 as 0 through 9 and Secondary (S) 0 through S9.)

Hence, YA X B/C translates in concept as:

SR-52 HP-67

YRCL 01 X RCL 02 % RCL 03 YRCL 1 X RCL 2 + RCL 3

The manual keystrokes to store the variable values used

above into appropriate storage registers would be:

SR-52 HP-67

9 STO 01 9 STO 1
26 STO 02 26 STO 2
7 STO 03 7 STO 3

The manual keystrokes to accomplish the previous example

would then be:

46

SR-52 HP-67

RCL 01 X RCL 02 RCL 1 ENTER RCL 2 X

+ RCL 03 = RCL 3 =

2nd vx f Vx

In order to convert each of the above keystroke sequences

into a program, it is only necessary to assign each sub-

routine a beginning point, or Label (LBL) and a stopping

point. Labeling requires three keystrokes in either the

AOS HP-67 or the SR-52: the stopping point requires only

one keystroke. For a Label named "A", these keystrokes

would be:

SR-52 HP-67

LABELING: 2nd LBL A, f LBL A

normally
abbreviated:

*LBL A

ENDING: HLT (Halt) R/S (Run/Stop)

[Program space actually required is less on the HP-67:

see section IV.E(6).]

The respective Labels can be used either for storing the

variables in desired registers or for operating on the

stored variables. Hence, an entire program for the

previous example might be:

47

SR-52 HP-67

*IBL A STO 01 HLT f LBL A STO 1 R/S
*IBl, B STO 02 HLT f LBL B STO 2 R/S
*I,BL, C STO 03 HLT f LBL C STO 3 R/S
*I,BL D f LBL D
RCL 01 X RCL 02 RCL 1 ENTER RCL 2 X
~ RCL 03 = RCL 3 =
*/x f Vx
HLT R/S

This program can be manually keyed into program memory

exactly as listed above. The manual keystroke sequence to

calculate the prior example, on either an SR-52 or HP-67

calculator, is now reduced to eight keystrokes as follows:

(Commas are never keystrokes, but are used herein to clarify

operations): 9 A, 26 B, 7 C, D. The calculator will now

respond almost immediately with the answer, 5.78174467(0).

More importantly, the calculator will not "forget" the con-

tents of any storage register unless those contents are

changed by the user. Thus, in order to calculate V9X32.5+7

(immediately following calculation of the previous example)

it is only necessary to change the value of "B" from 26 to

32.5 and rerun the calculation process defined by Label D.

This is accomplished by the keystrokes 32.5 B, D. The

calculator will this time respond almost immediately with

6.464187055 (AOS) or 6.464187056 (RPN). Similarly, a

completely new problem, such as v44.3 X 13.6 + 89.66667

can be entered as 44.3 A, 13.6 B, 89.66667 C, D--yielding

2.59212414(0), etc.

48

The programs developed above are quite basic and thus

are not particularly efficient. Both can be substantially

refined. A more complete discussion of advanced programming

follows.

E. ADVANCED PROGRAMMING TECHNIQUES FOR SR-52 OR HP-67

1. Introduction

Basic calculator programming concepts are introduced

in the previous subsection but an in-depth discussion of

basic and intermediate programming techniques is not provided

herein since such discussion is readily available in manu-

facturer's handbooks, manufacturer's promotional literature,

user club publications and other sources listed in the bibli-

ography. Instead, the discussion which follows is designed

to clarify the difference between AOS and RPN advanced

programming techniques, regardless of the reader's prior

familiarity with either system. Of course, since the follow-

ing discussion constantly compares the two systems, readers

already familiar with either AOS or RPN are likely to find

this discussion to be lighter reading. On the other hand,

this information is also designed to help readers who are

presently unfamiliar with either system to determine which

system can best meet their personal or organizational needs.

In this respect, the information provided is especially

designed to enable managers, staff analysts and procurement

officers to determine which system is optimal for the

organizational requirements being encountered. As far as

49

can be determined by the authors, the only currently

available literature which significantly facilitates such

management and procurement decisions is published by the

respective manufacturers. Accordingly the following dis-

cussion attempts to create an unbiased comparison which can

be used for managerial/procurement decisions.

Data obtained from the various manufacturers by

the authors — sometimes on a non-disclosure basis concerning

specifics — indicates, in general, that the comparisons

provided herein are likely to stand inviolate for at least

ten years. The introduction of new machines within the next

decade, as currently envisioned by the manufacturers, will

do little to change the analysis which follows. Thus,

readers in management positions are especially encouraged

to study the following analysis in detail. On the other

hand, persons unfamiliar with either AOS or RPN should be

able to determine which system best fits their individual

idiosyncracies and personal preferences after studying the

material which follows. Hence, this material should greatly

enhance personal purchasing decisions as well as organiza-

tional purchasing decisions. This information should be

especially useful to students, educators, or others considering

the purchase of a personal card-programmable calculator.

3. Color Coding

In order to minimize the number of keys required

on the machines, all manufacturers use most keys for at least

50

two purposes — and sometimes three or four. So, most keys

have a primary function and one or more secondary function(s).

Typically, the primary function is centered in one color

upon the flat upper surface of the key itself, whereas

each secondary function is listed in a different color above

the key, below the key, or upon an angled face of the key.

Therefore, a key may have associated functions listed in

one, two, three, or four different colors and the primary

colors of the keys themselves vary according to purpose.

In order to enable the calculator to determine which

listed key function is desired when a key is pressed, color-

coded, dedicated, "Second-Function" keys are pressed first

to designate secondary key functions similarly colored.

Typically, the primary function listed upon a key is exe-

cuted simply by pressing that key; the secondary function

is executed by first pressing a second-function key (which

matches color with the color of the desired secondary func-

tion) and then pressing the key: the alternate secondary

function, if any, is executed by first pressing an alternate

(third) second-function key (which matches color with the

color of the third function) and then pressing the key, etc.

AOS systems such as the SR-52 or TI-59 have one second

function key (Yellow: 2nd) whereas the HP-67 has three,

(Yellow: ff), (Blue: g), (Black: h). The AOS notation "2nd"

corresponds directly with the thought process involved, i.e.,

use the matching-color 2nd function listed — whereas the HP-67

51

notation corresponds indirectly by using standard symbols

for mathematical functions (£f, g, h) such that the user can

easily modify the thought process to: "Use the function of

the key (f of key, g of key, h of key) by first pressing the

color matched and appropriately labelled second function

key (£, g, h)." The reader should note that the color coding

greatly simplifies actual usage and complicates only the

reading of documented programs by novice users, e.g., a

novice user would tend to look at the keyboard, see what

color a desired function is and then push appropriate keys

to execute the function without difficulty. The novice is

not required to memorize that YX is always preceded by 2nd

or T since the color coding, in actual usage, readily prompts

appropriate action. On the other hand, the documentation

of programs normally includes all keys which must be pressed,

such that vX becomes 2nd Vx or * /x or f/x, which may take

a little getting used to. However, new or different does

not necessarily equate to difficult. Thus the often-heard

cry of novice users that documented programs are "difficult

to read" appears to be unfounded.

3. Programming Language

Fear of having to learn a "new language" in order

to operate a card-programmable calculator is, in general,

unfounded. True, the user may be required to supply implied

parentheses or equality signs (AOS) or be required to always

(RPN) or sometimes (AOS) enter the operator after the mathe-

matical variables, and be required to become familiar with

52

a long list of abbreviations — but none of these requirements

can be considered to be a new language. In fact, the

"language" required by either AOS or RPN is best defined as

merely a simple abbreviation system for normal mathematical

language, similar to abbreviations that most high-school

graduates are already familiar with. Thus, learning the

language of the calculator is simply a matter of adapting

prior personal abbreviation habits to the abbreviations

listed on the calculator keys. Once the novice has learned

to recognize the listed abbreviations, he is ready to oper-

ate or to program. Further, since many abbreviations are

common to both AOS and RPN, individuals can quickly master

a second system. Additionally, many of the abbreviations

are phonetic or otherwise quite straightforward. Hence, it

is feasible to learn the great majority of these abbrevia-

tions, adequate for almost all calculators on the market,

in less than half a day.

Table 1 lists most abbreviations commonly found,

as well as a brief definition of each abbreviation. (For

full description of each function, the reader is referred

to handbooks published by the various manufacturers.)

The first column in Table 1 lists abbreviations which

are used by the authors to amplify documented programs in

the remainder of this work, especially in the remarks sec-

tions of the programs themselves. This notation largely

duplicates keystroke abbreviations found on the various

calculators or amplifies such abbreviations. The reader

53

can, therefore, more easily translate any of the programs

which follow — on either machine — by studying this consis-

tent notational system in lieu of studying the particular

keystrokes actually required. In other words, instead of

learning two systems, the reader can concentrate on the one

‘translation system" which is provided throughout. Viewed in

another way, this notational system is also a first step

toward a universal calculator language; the average reader

will find it useful for annotating his own future programs.

The reader is warned not to equate the charted list

of key abbreviations to functional capabilities (see Appendix

B for functional capabilities). Many functions require

sequenced keystrokes and thus are not in Table 1; e.g.,

on the SR-52, the arc sine is executed by pressing INV SIN

and e® is executed by pressing INV Lnx, but neither ARC SIN

nor e* appear, on the SR-52, as key abbreviations.

The second column of Table 1 defines the abbrevia-

tions as used by the authors. Such use usually, but not

always, corresponds to the designed primary use of the same

abbreviation by the calculators. The abbreviations duplicate

notation actually found on the machines to the maximum

extent feasible, adding or changing only where necessary

to achieve the desired consistent set of abbreviations which

can then be used to amplify either HP-67 or SR-52 programs

as discussed previously.

The final columns show the relationship between

the definitions and the labeling used on the machines.

54

Direct correlation of both the abbreviation and its meaning

to a key found on one of the calculators is indicated either

by "P" (Primary function of one key) or by "*" (Secondary

function of one key) or by S (Manual Switch) as listed under

each calculator. Additionally, alternate abbreviations used

on the calculators are listed opposite the appropriate defini-

tion. Finally, the entry "(OU)" in these columns means that

the same abbreviation is used for some other use on ‘the

calculator in each case the other use can be found elsewhere

in the same column. For example, "(OU)" is located in the

right column opposite the left-column abbreviation "DEG",

which is defined as "Degrees" for use in this study. Several

entries below the, "(OU)" entry in the same (right) column,

"DEG" appears, opposite "DEG MODE" in the left column,

which is the abbreviation used for "Degrees Trigonometric

Mode" throughout this study. Other entries on this same

latter line of Table 1 indicate both what the abbreviation

"DEG" designates as used by the particular calculators and

what "DEG MODE" designates as used by the authors, i.e.,

that the abbreviation "DEG" appears as a second-function

key designation (*) on the HP-67 designating "Degrees

Trigonometric Mode" and as a switch designation (S) on

the SR-52 designating "Degrees Trigonometric Mode."

Hence, Table 1 defines how the authors use particu-

lar abbreviations throughout the remainder of this work;

whether such usage corresponds directly to usage on the

55

particular machines, and (if the correspondence is not

direct) how the same abbreviations are used on the calcu-

lators or what different abbreviations are used on the

calculators.

Novice calculator users are advised to concentrate

only upon the two left columns of Table 1. More advanced

readers can use Table 1 to determine if a specific abbre-

viation used by this study also appears as an abbreviation

on the SR-52 or HP-67. However, all readers are again

warned that Table 1 lists abbreviations, not functional

capabilities. After achieving basic familiarity, readers

can restudy Table 1 and Appendix B, together with the

discussion which follows, in order to better determine which

calculator's system appears to best fit personal or organi-

zational purchase parameters.

4. Key Code Systems

Both the HP-67 and SR-52 use a key code system which

closely corresponds (for primary functions) to the location

of each key in an imaginary superimposed, second quadrant,

xy matrix. The y-value is read first, neglecting the minus

sign; i.e., row, column. Thus the primary function of the

key at topmost, leftmost (the A key) is coded 11 the primary

function of the key at fourth row down, third column to

the right is 43, etc. As one exception to this pattern, on

both machines, numeric keys are directly coded 00, 01, ...,

09. This exception causes no confusion both because it is

direct and because there is no "zero row" of keys.

56

Abbreviation

A!

B'

BST

C

Cc!

C

CHS

CLR

CLR

CLR DSP

CLR FLAG

CLR PRGM

CLR REG

COORD

CoS

cos”!

D
D!

TABLE I. KEY ABBREVIATIONS

Meaning as Used by Authors

User-defined Label

User-defined Label

User-defined Label

User-defined Label

User-defined Label

User-defined Label

Backstep (Program Mode)

User-defined Label

User-defined Label

User-defined Label

Change Sign of Display

Clear

Clear Entry or
Arrest Flashing Error

Clear Display

Clear Flag

Clear Program

Clear (Primary) Registers

Coordinates

Cosine

Arc Cosine

User-defined Label

User-defined Label

User-defined Label

+/-

(OU)

CE

CLR

CLX

CLX

oF

CLPRGM

CLREG

TABLE I. (Continued)

Abbreviation Meaning as Used by Authors SR-52

DEC Decimal

DEC DEG Convert DEC DEG(HR)
DSP - Format to DEG(HR),
MIN, SEC, DSP - Format

DECR Decrement by 1

DEL Delete Step (PRGM MODE) *

DEG Degrees

DEG DEC Convert DEG(HR), MIN, SEC * D.MS
DSP-Format to
DEC DEG(HR) DSP-Format

DEG MODE Degrees Trigonometric Mode S D

DEG RAD Convert Degrees to Radians S R

00 Compute or Execute

DSP Display or X-Register

DSZ Decrement DSP (or I-Reg) by 1, *
Skip Step if Result is Zero

AGH) DSZ (Indirectly in REG Addressed
by I-REG)

E User-defined Label P

E! User-defined Label *

e User-defined Label

EEX Enter Exponent P EE

ENG DSP Engineering Display Format

ENTER Lift STACK; Enter DSP into
STACK Y-REG

ERR Error

ex Xth Power of e

EXCH Exchange * EXC

H.. MS

(ou)

DEG

(0U)

ENG

Abbreviation

EXP

£

FORMAT

FUNC

FIX DSP

FLG

FLOAT PT

FRAC

IF x=y

IF X<y

IF x#y

IF x>y

IF x=0

IF x>0

IF x#0

IF x<0

IF x>0

TABLE I. (Continued)

Meaning as Used by Authors

Exponent

2nd-Function Call-Key

Set Display Format

Function

Fixed Decimal Display Format

Flag

Floating Decimal Display Format

Fractional Portion

2nd-Function Call-Key

GRADS TRIG MODE

Go To

2nd-Function Call-Key

[-Register

If Error is Displayed (Flashing)

If Flag is Set

If Display Y-register

If Display < Y-register

If Display # Y-register

If Display > Y-register

If Display =zero

If Display > zero

If Display # zero

If Display < zero

If Display > zero

SR-52

2nd

FIX

2nd

2nd

if flg

if zro

if pos

HP-67

DSP

GRD

F?

X=Yy

X<Yy

XFY

X>y

x=0

x#0

x<0

x>0

Abbreviation

INCR

IND

INS

INT

INV

ISZ

ISZ(i)

LBL

LBLf

LASTx

LIST

LN

LOG

LRN

MEM

MERGE

ON/OFF

OPS

ou

PAPER

PAUSE

P—~R

TABLE I. (Continued)

Meaning as Used by Authors

Increment by 1

Indirect

Insert Step (Program Mode)

Integer Portion

Inverse Function of ...

Increment DSP (or I-Reg) by 1;
Skip Step if result is zero

ISZ (In REG Addressed by I-REG)

Label

Label

Entry Prior to Last Operation

List Program

Logarithm, Base e

Logarithm, Base 10

Learn (Shift to Program Mode)

Memory

Merge Steps (Program Mode

Switch Machine ON/OFF

Operations

Otherwise

Advance Paper

Pause from Operation
(for data entry)

Convert Polar Coordinates

to Rectangular

Tn x

pap

P/R

(1)

LSTX

W/PRGM

Abbreviation

TABLE I. (Continued)

Meaning as Used by Authors

PRI Primary

PRGM Program

PRGM MODE Program Mode

PROD Product (Multiplication in
Register)

P2S Primary/Secondary Register
Exchange

RY Ro11 Down Stack Registers

Rt Roll Up Stack Registers *

RAD Radians (OU)

RAD-—DEG Convert Radians to Degrees * D

RAD MODE Radians Trigonometric Mode S R * RAD

RCL Recall p p

RCL(1) RCL (Indirectly from
Register Addressed by I-REG)

READ Read Card *

RECT Rectangular Coordinates

REG/ REG Register/Store in REG (OU)

R-P Convert Rectangular Coordinates *
to Polar

REVU REG Review Primary Register * REG

REVU STACK Review Stack Register * STK

RND Round Off *

RSET Reset Counter to 000 *

RTN Return Control to Calling * *
Routine (or Keyboard)

RUN Run Routine (Program) p P R/S

Abbreviation

S

SBR

SCI DSP

SST

STACK

SET FLAG

STO

STO(i)

STOP

SUM

TAN

TAN]

THRU

W/

WRITE

X

X

x

Xx.

TABLE I. (Continued)

Meaning as Used by Authors

Sample Standard Deviation

Subroutine

Scientific Notation Display
Format

Secondary Register n (n=1,...,9)

Sine

Arc Sine

No Operation (Skip Step or Space)

SingleStep (Program Mode)

X,Y,Z,T Register Group

Set Flag (Turn On)

Store

Store (Indirectly, in
Register Addressed by I-REG)

Stop (Halt)

Sum to (Add to Register)

Tangent

Arc Tangent

Through

With

Write Data Onto Card

Times, Multiplication Operator

X-Register or Display

Arithmetic Mean

Factorial

62

SR-52

ST FLG

HLT

*

HP-67

SF

R/S

W/DATA

Abbreviation

%

%CH

E
is

TABLE I. (Continued)

Meaning as Used by Authors

Flash Display (x-register)

Absolute Value of x

Square root of x

Exchange x and y register

xth root of y

Square of x-register
(Display) value

y-register

Add y-register DEG,MIN,SEC
to Display

xth power of y

Z-register

2nd-Function Key

Addition Operator

Decimal Point

Division Operator

Equality Operator

Implies

Parenthesis, left

Parenthesis, right

Percentage

Percent Change

Pi (3.141492654)

Number

Subtraction Operator

63

2nd

HP-67

ABS

f,g,h

Abbreviation

r+

1/x

o
N

H
o
w

n
N

O
O

©0
0

J

Notes: P

*

S

Table I. (Continued)

Meaning as Used by Authors

SUM: x to S4, x% to S5,

y to S6, y? to S7,

xy to S8, +1 to S9

SUM: -x to S4, -x° to S5,
-y to S6, _y® to S7,

-xy to S8, -1 to S9

Zero

One

Reciprocal of Display

Two

Three

Four

Five

Six

Seven

Eight

Nine

xt power of 10

Manual Switch; not a key

64

SR-52

Primary function of one key found on the calculator

Secondary function of one key found on the calculator

The machines differ only concerning the coding

system for secondary functions. Although the HP-67 can

handle one, two, or three two-digit numbers in its coding

displays when in programming mode, the SR-52 can handle only

one two-digit number in its coding display. Thus, secondary

functions are coded on the HP-67 exactly like primary func-

tions, the only difference being that two or three two

digit numbers are displayed for secondary function entries

which require two or three keystrokes, respectively. Thus

f LOG on the HP-67 is displayed as 31 53 and f LBL A is

displayed as 31 25 11, etc. Conversely, on the SR-52,

the coding system itself is modified to handle secondary

functions. Since the calculator is only 5 keys wide, the

column code for all primary functions is defined by the

digits 1 through 5, leaving 6 through 9 and 0 available.

Further, all secondary functions on the SR-52 are printed

above the key. Hence, by mentally folding the remaining

available digits over the first five digits in each row,

each secondary function is assigned a number of its own.

As an example, the coding for the third and fourth rows

of the SR-52 is as follows:

Secondary Functions: 36 37 38 39 30
Primary Functions: 31 32 33 34 35

Secondary Functions: 46 47 48 49 40
Primary Functions: 41 42 43 44 45

Third Row:

Fourth Row:

65

Although the need for ten codes per row puts the

last secondary code out of sequence in each row, the

system does have logic and is easily learned: higher locations

of abbreviations on the keyboard itself correspond to

higher-numbered keycodes (with exception of the right column

secondary functions). The above method solves both the

coding for secondary functions and the two-digit display

limitation. Since the secondary-function code cannot be

created without pressing the "2nd" key, there is no need to

ever display the key code for the "2nd" key — as is required

to distinguish between the three available second keys on the

HP-67. Hence, "2nd LOG" becomes 28, period, on the SR-52:

"2nd LBL A" becomes 46 (2nd LBL) as one step and 11 (A)

as another step; etc.

5. Key Coding Formats

Key coding displays, on both machines, naturally

include the program step number. Thus, if the examples

above begin at step #136, the complete formats would be:

SR-52 HP-67

Keystrokes Display Keystrokes Display

2nd LOG 136 28 f LOG 136 31 53

2nd LBL 137 46 f LBL A 137 31 25 11

A 138 11

Such displays are extremely useful for verifying or editing

programs. The user can always determine what key instruction

is stored as a given step number by merely counting (down

66

and over) the rows and columns indicated by the respective

keycode system.

6. HP-67 and SR-52 Program Storage Capacities

It is often assumed that since the HP-67 can store

up to three kevcodes per step of program memory whereas the

SR-52 stores only one, the effective program capacity of the

HP-67 must be three times as large. This is simply untrue,

as evidenced above, because the third HP-67 keycode is never

used for anything other than to designate one of the second-

function keys, a designation that is never separately

required at all on the SR-52. The HP-67 program capacity is

slightly larger than the SR-52 capacity, but the reason is

the way keystrokes are merged per step on the HP-67, not

because three keycodes are displayed per step. This merging

applies primarily to all addressing and labeling. Thus,

returning to step 137 in the above example, the SR-52 code

"46" relays the same amount of information as do the HP-67

codes "31 25". But the HP-67 program capacity is increased

because the "A" requires an additional step for its code on

the SR-52, whereas the "A" is merged as "ll" in the codes

for step 137 on the HP-67. Similarly, recalling or storing

data in a given register requires three steps on the SR-52

but only one step on the HP-67. Hence, the maximum ratio

of obtainable program capacities, ever encountered by the

authors is approximately 2.4:1, with a more common long-term

ratio of between 1.3:1 and 1.6:1, in favor of the HP-67,

67

for advanced programming. Conversely, novice programmers

commonly encounter a ratio slightly higher than 2:1. As an

example, Figures 2 and 3 (Single or Bivariate Statistical

Analysis) are written with identical algorithms and program

sequencing on each machine, disregarding special functions

available on each machine which could be used to signifi-

cantly shorten the programs (HP-67 in particular). In

other words, these programs are intentionally written

inefficiently in order to achieve a typical comparison of

the number of program steps actually required to place

identical programs in either machine. The result is

2.196:1, for these particular programs. The ratio would

favor the HP-67 even more if special functions, such as the

Ltkey available only on the HP-67, are included; conversely,

program optimization techniques as addressed later in this

study will do more to reduce SR-52 steps (for the common

functions) than to reduce HP-67 steps, because the HP-67

steps are more compact in the first place. In summary,

many programs do not require extensive use of special func-

tions found on only one of the machines. In such cases,

the program capacity ratio appears to be between 1.3:1 and

1.6 to one in favor of the HP-67, but certainly is not 3:1

except in unique cases.

7. Magnetic Card Formats

Standard SR-52 and HP-67 magnetic cards are reproduced

(actual size) below. The lower reproduction is a HP=67

card placed upon the backside of a SR-52 to better show

relative sizes.

68

Figure 1

Single or Bivariate Statistical Analysis (SR-52)

(Sheet 1 of 7)

alcula
r

alculate
Regression

USER
KEYED
LABEL

n

 X*/Y Y*/X

See Sheets 6 and 7.

MPUTE X VALUES

DISPLAYTRIG
SCI[Y DEG
ENG RAD
(FIX [GRAD
X| FLOATING PT

69

STEP KEY CODE KEY ENTRY NOTES

— O
o

3

S

7

+E
7“A

4

n counter

compute Y values

70

STEP KEY CODE KEY ENTRY NOTES
0 +

43
00
7

95
4
00
09

10
95
30
42
0
05
43
00
01
5

43

5

95
44
00
08
56
46
3 compute ression

43
00
08
75
53

43
0
0
65
43
0
00
54
6
10
54
95
42
0
0

71

STEP KEY CODE KEY

ENTRY

72

STEP KEY CODE KEY ENTRY NOTES

1

d
a
l
e

|

0
|

n
i
c

ompute r

END OF PROGRAMMABLE MEMORY

73

FIGURE 1

Single or Bivariate Statistical Analysis (SR-52)

Program Description, Equations, Variables, etc.

This program provides X, s., ¥, s , b, a, r, x* given y, y* given x
y

for bivariate samples. In addition, N' (optimum sample size with

95% confidence) may be determined using data from Xs calculation.

a) N' is computed with the formula

(—L)?
.025 Xs

described in Chapter 12 of the Production Handbook; Carson, Bolz

and Young; Ronald Press, N.Y.; 1972.

b) The balance of the program is based upon Chapters 9 and 10,

Introductory Statistics; Zehna; Prindle, Weber & Schmidt, Inc,

Boston; 1974.

c) Single variable samples can be analyzed for X, Sy and N'

d) Confidence level for N' may be changed by inserting a different a/2

in steps 164-166.

Note: *E' is used for a subroutine in the program to recall n.

Pressing *E' will place n in display.

74

Step User Instructions Input Output
Data/Units Press Data/Units

1. Record program and initialize:

2. a) for single variable sample Xs Xx data

(n will be in display after
each xj)

b) for bivariate sample Xs A x data

(last (x;) (ys) will be in display) Y; B y data

c) after x; and y, are entered C

linear regression is
calculated

d) estimated correlation coefficient *C! r

can now be calculated

e) N' is calculated from Xs data (in A) *A! N'

f) X* may be calculated by placing a

Y in display and pressing D Y D X*

g) Y* may be calculated by placing an X E Y*

X in display and pressing E

h) balance of data may be recalled

using RCL and appropriate

register number.

75

Figure 2

Single or Bivariate Statistical Analysis (HP-67)

USER
KEYED
LABEL Calculate K*/Y Y*/X

See Sheets 6 and 7

S
DISPLAY TRIG
SCT_ DEG
ENG [RAD

[1FIx__ []GRAD
FLOATING PT

76

STEP KEY CODE KEY ENTRY
0

R34 09

3
3

5
4 0

77

NOTES

E Regression

STEP KEY CODE KEY ENTRY
0 5 X

1

LBL

RCL 2

34 14

34 15

84
32 25 15 [fLBL e
34 09 RCL_9
4 R/S

78

NOTES

CALCULATE Y*/X

E n

END OF PROGRAM.
(End of Programmable Memory at
Step #224)

| | FIGURE 2
Single or Bivariate Statistical Analysis (HP-67)

Program Description, Equations, Variables, etc.

1. This program provides X, Sx, Y, Sy, B, &, r,X* given Y, Y(given X

for bivariate samples. In addition, N' (optimum sample size with

95% confidence) may be determined using data from Xj calculation.

a) N' is computed with the formula

described in Chapter 12 of Production Handbook; Carson, Bolt

and Young; Ronald Press, N.Y., 1972.

b) The balance of the program is based upon Chapters 9 and 10,

Introductory Statistics; Zehna; Prindle, Neber & Schmidt,

Inc., Boston; 1974.

c) Single variable samples can be analyzed for X, Sx and N'.

d) Confidence level may be changed by inserting a different a/2

in Steps 73-76.

79

Step
Input

User Instructions Data/Units

Record program and initialize

a)

d)

e)

f)

for single variable sample X

(n will be in display after each

for bivariate sample (Last X;

(x:y;) will be in display) Y,

After X; and Y. are entered

linear regression is

calculated

Estimated correlation coefficient

can now be calculated

N' is now calculated from X;

data (in A)

X* may be calculated by placing a

Y in display and pressing D

Y* may be calculated by placing

an X in display and pressing E

balance of data may be recalled using

RCL and appropriate register number.

80

Output
Press Data/Units

A X data

A X data

B Y data

C

Cc r

a N'

Y X*/Y

X Y*/X

SRes52 [TTSernimentsCRE
STANDARD AE rt =
CARD TT 1

AmatiiensasiE Foovii~o rr. crass heseboaal]

HP-67 Z¢
STANDARD 5 2p,CARD —a

i

1 iL x 2 vd

HP-67 CARD
ON

SR-52 CARD

Both the SR-52 and HP-67 have 5 user-definable keys

as the top row of keys, labeled A through E. The second

functions of each of these are also user-definable, labeled

A' through E' on the SR-52 or labeled a through e on the

HP-67. The functions defined for each label are written

on the card as desired by the programmer. The following

notation is used throughout this work to represent the 10

user keved labels, as those labels would actually be completed

upon the card itself:

USER — —
KEYED
LABELS 2 £ L 2 £

The labels for the top row, of course, are completed to

correspond to the keys on the machine under discussion in

each case.

81

8. Recording or Reading Magnetic Cards

After keying a program into memory, the program can

~ be permanently stored on a magnetic card by passing the

card through the card reader. Initializing the card reader

to record requires the proper setting of a switch on the

HP-67 or several keystrokes on the SR-52. Data from storage

registers can also be permanently stored on cards. Initial-

izing the card reader for data requires the setting of a

switch and two keystrokes on the HP-67; a special prior

program card must be used together with blank data card on

the SR-52, using two keystrokes with each card.

Stored programs or data remains on the cards until

the information in intentionally altered by the user; i.e.,

the cards are reusable or can be permanently filed for

dedicated purposes. Various systems are used on the differ-

ent calculators to prevent accidental altering of cards,

or to abort protections used to prevent accidental destruction

of card information in order to reuse "permanent" cards.

All of these systems work well, hence, these differences

will not be addressed herein.

Reading previously programmed magnetic cards requires

only the proper setting of a switch on the HP-67; two or three

keystrokes per card side are required on the SR-52. Addi-

tional machine functions which are automatically executed

when a card is read differ between calculators. This subject

is addressed in Section IV.E.10.h.

82

9. Advanced Programmability Comparisons, SR-52 and HP-67

The authors believe that this work is relatively

unbiased toward these two machines. Both have unique

capacities and constraints which can apply to a given

situation, but full discussion of each would unnecessarily

triple the length of this section. Thus, programming con-

cepts in this section are presented on whatever machine

appears to be most pertinent for that particular concept,

with no attempt to "yes but" the alternate machines alternate

capabilities for some other concept. Further, since more

readers are expected to already be familiar with algebra

than with reverse polish notation — and for uniformity -—

SR-52 programs are normally discussed first. This is not

intended to degrade the HP-67 or HP-97 in any manner.

a. General — Internal Rate of Return (IRR) As A Model

In order to provide a problem simple enough to

be readily understood by the majority of readers, yet intri-

cate enough to necessitate complex programming techniques,

an Internal Rate of Return program is developed herein,

upon the HP-67 and SR-52, as a vehicle for clarifying differ-

ences between these machines and programming systems. These

programs are also compared with literature (programs) avail-

able from the manufacturers in order to yield additional

insights concerning both available programs and programming

potentials and limitations.

83

b. Internal Rate of Return (IRR) Concepts

IRR programs incorporate concepts involving the

time value of money; specifically, the net present value

(NPV) of a series of n future (periodic) cas flows (CF's)

CF. CF, coe CF_. after the incurrence of some initial

investment. The discrete interest rate (i) which will make

the sum of discounted cash flows equal the initial investment

is defined as the IRR, and reflects the effective discrete

interest rate that will be earned upon the investment. For

a series of twenty future cash flows, using the above notation,

the formula for NPV is:

20 CF
NPV = § ——— =- INVEST

n=1 (l+i)

A negative NPV indicates that, at the chosen interest rate,

a shortfall (below the amount which would be expected at

that interest rate) equal to the magnitude of the negative

NPV will occur; a positive NPV indicates that, at the chosen

interest rate, an additional gain (above the amount which

would be expected at that interest rate) equal to the

magnitude of the NPV will occur; i.e., the defined interest

on the original investment has been exceeded by the positive

NPV amount.
CF

The quantity 0 is defined as the discounted

(1+1i)

present value (PV) of each flow n, written PV_. In order to

determine IRR, the above formula must be solved for the

value of i which makes the difference zero; i.e.,

84

20 CF_
0 = z ———= =~ INVEST

n=1 (1l+1i)

or

PV - INVEST

Graphically, the cash flow process can be pictured on a

time line as follows:

+S CF F, CF, CF, I Ee: Flo Foo

0+ | |] | TTT TTT=== | time

pericds

-$ INVEST

The future cash flows may also include zero or negative

(additional future investment) values. Hence, a more complex

case can be pictured on a time line as:

Cr cr Cr cr CF. ... Fy5 Fie CF, Fig iq Fao
Fy 2 3 4

-
-ole rl]
|

85

c. IRR Program Capabilities

(1) The programs developed herein will provide

the discrete IRR for any conceivable periodic (equally-

spaced) set of 21 positive, zero or negative cash flows.

The programs solve for two decimal places beyond the integer

percentage value (i.e. 7000%, .62% or 6.39% or 0.03%) unless

instructed by the user to proceed further; accuracy up to

the machine display capability (10 significant digits), if

desired, may be initially requested by the user. The programs

will also solve for a negative IRR, i.e., where net undis-

counted income is less than net undiscounted investments.

Either program will permanently store an

initial (positive, zero, or negative) "investment" and

twenty additional future positive, zero, or negative periodic

cash flows. In addition to the IRR, either program will

compute the NPV of these flows at any positive or negative

trial interest rate; the initial value (investment) or the

trial interest rate may each be individually modified by

the user at any time; the trial interest rate may also be

incremented or decremented by the user at any time (in lieu

of reentering a many-digit rate where only the last digit

or last several digit sequence is to be changed); the number

of cash flows (data entry values exclusive of the value

normally used for the initial investment) is automatically

accumulated and stored for possible later recall by the user

and each value can be individually modified or deleted

86

(changed to zero) at any time; previously unused data points

from the twenty available may be automatically added (on

the end) at any time without recall of the number of entries.

used previously; and the manual entry of long sequences of

zero values may be avoided by instructing the calculator to

jump over them in its automatic accumulation. Most of the

above processes are executed exclusively on the 10 user-

defined keys. Accordingly, this program is satisfactory for

IRR, NPV or Profit analysis of any periodic sequence of 21

unigue values or for an Investment .followed by either 20

unique values or by 20 identical (annuity) values. The

HP-67 program will also calculate the undiscounted breakeven

point for the series of values but this! subroutine is

omitted from the SR-52 for lack of program memory space.

In summary, these programs are satisfactory for rather com-

plete analyses of any 21 flows spaced by uniform intervals —

days, weeks, 12 day periods, months, quarters, years or

whatever. Each of these programs will perform the function

of at least three of the programs published by the respective

manufacturers — using only user defined keys. Additional

manufacturer programs can be accomplished by including

limited manual use of other keys.

Functionally similar subroutines are

arranged in a different sequence for each calculator in

order to take advantage of the program search patterns

unique to each calculator and thus minimize execution time

for each. Since these different arrangements make direct

87

comparison of the programs difficult, applicable functional

subroutines are individually reproduced within the analysis

which follows, in addition to the complete listings provided

for each program. Meanwhile, the reader should concentrate

primarily upon the first page of each program.

(1) Step Ratios. Because the following programs

are advanced and optimized programs, the SR-52/HP-67 step

ratio is approximately 1.32, i.e., the number of steps

required on the HP-67 to accomplish all of the functions

which can be accomplished by the 208 step SR-52 program is

158. The remaining 50 HP-67 steps are used for additional

functional, informational, and user-prompting subroutines

not programmable on the SR-52 because of program memory

space constraints. (The SR-52 program does not use 16

steps in order to make available two extra data registers.

Thus the HP-67 program additionally uses these steps for

additional routines not programmable on the SR-52.)

(2) Initial Data Entry Operations. Typical

operations which can be performed by either of these

single-card programsare: (p99)

88

INTERNAL RATE OF RETURN (SR-52)

FIGURE 3

USER Al CLR REG PKET n=psp [J [USED] Ulpo tr EJ 1 D0

LABELS] § tnvesT Bd sto cr's J (rel ng DITO+ [Eo nev
FLAGS OFF/ON OTHER LABELS NOTES

X -
1 X i = INTEREST RATE

c , i, = TRIAL i
1X Ai = INCREMENT OR

REGISTERS DECREMENT TO i,
00Cash Fiow

02CF #3 PV = PRESENT VALUE
03CF #4 _
04CF #5 STEP KEY CODE KEY ENTRY NPV NET PV
05CF £6 PRGM [008] B1 HLT STOP)
06CF £7 CALL 001] 46 *|BL RCL Ad
07CF #8 USER 002] 18 *C! & DO BELOW
08CF #9 OR [003] 43 RCL
09CF #10 PRGM [004] 09 9
TOCF #11 GIVE 005] 06 6 RCLAf
11CF #12 Ai [006] 46 *LBL ADD Ai TO TRIAL ol
12CF #13 007] 10 *E & DO BELOW
13CF #14 USER 008] 44 SUM
TaCF#15 “OR [009] 09 9
TSCF#16 PRGM 010] 08 8 +71>REG98
T6CF #17 CALL [011] 46 *BL DO NPV |
CF #18 012] 15 E (@ TRIAL i)
T8LF #19 013] 25 CLR CLR DSP & CLR
fF 520 014] 01 1 REGs 60-69

015 44 SUM
58 n 016] 09 9

TPV 017] 08 8 l +1 REG 98
018] 43 RCL h

Jo] A1 or (n-1) 019] 09 9
97| N=MAX n 020] 08 8 RCL (1+ TRIAL 4)
98] TRIAL i/IRR 021] 45 yX
99] INVEST 022] 53 (

023 43 RCL
SET STATUS 024] 06 6

DISPLAYTRIG 025] 08 8 RCL(n-1 1 ,
T3CT DEG 026] 85 + ADD LL

ENG__ [RAD 027] 0] 1 1 =p! 000
FIX[GRAD 028 54) ., 018 122
K| FLOATING PT 029] 94 +/- DO (1+i,) 066 192

89

o
O

a
a
d

o
o

O
o

N
n

o
N

215 KEY CODE KEY ENTRY NOTES

1 36
43

8

(144,07 X (CF #n) = PV_
t

PV REG 69 = LPV

 44
06
09

INCREMENT n- REG 68

COMPUTE (n -N)

IF n=N GTO STEP 193

IF n#N, RCL CF#n

IF CF#n = 0, GTO STEP 039

IF FV70, GTO STEP 018
SET n = DSP(x)

(n-1) > REG 97; RCL PRIOR N

PRIOR N REG 96

oO
o

|

90

STEP KEY CODE KEY ENTRY 000
080 Ol 1 NOTES 122

1 85 + _ ~

213 C RCL REG 07 >© (Do LBL)
395 DO(-PRIOR N+ 1+ (n-1))
4 80 *TF POS
513 C IF n> PRIOR N, GTO C

6 50 *ST FLG =
7100 7 IFn<PRIORN, SETFLAG ¢

J 8 46 *|BL RCL N J
T 9 13 C (N = MAX n) TT

090] 43 RCL
USER —1—2 :
GIVE EG *RTN STOP (OR RTN TO CALLING SBR)

t Jaa LBL 510 TRIAL i51 14 D !
6 40 x2
7130 */X DO ABSOLUTE VALUE OF it
8 42 STO
9 09 9

USER [700] 08 8 |i¢| REG 98 AA
GIVE[™ 1 56 *RTN STGP (DSP i+) >
CFn 2 46 *|BL STO CF's

312 B (FUTURE CASH FLOWS)
I 36 *IND
5 42 STO
6 09 9
7707 7 STO FV_~ REG (n-1)
8 07 1
9] 44 SUM

17009 9
i 07 7 INCREMENT n
2 22 NV
360 *IF FLG
400 7
5 13 C IF FLAG @ NOT SET, GTO C)
6 43 RCL
7 09 9
8 06 6 IF FLAG § SET, RCL PRIOR N
9 48 EXC

120] 09 9
[07 7 STO PRIOR N-+REG 97; DSP n

USER[T2 86 FGET CLR FLAG @; GTO STEP 000 »
CAL 3 46 BLSe i DO IRR

5 57 *FTX
6 08 3 FORMAT 8 DEC DSP
7193)
800 7
902 7 0.02 = Ai

91

STEP KEY CODE KEY ENTRY NOTES

09 A
06
8 (DO LBL)

1

IF NPV NOT NEG, GTO STEP 133

IF NPV NEGATIVE:
-(A1+2) = Ai' > REG 96

20 NPV *C') (DO LBL)

IF NPV STILL NEG, GTO STEP 144

IF NPV POS OR @:
(-0.2)XAi = Ai" REG 96

(Ai" = NEW A1)

(LOW LIMIT = 0.0002)

DO (Ai - LOW LIMIT)

IF Ai > LOW LIMIT, GTO STEP 133

IF Ai < LOW LIMIT:
RCL IRR

FORMAT FLOATING PT DSP
USER STOP (DSP IRR

CLR REG
92

o
O

oOo
o
O

nSNOILINMYLSNI
£6/96934Ad

034317Y9NI3E
WOdd4VY1Vd

03J0LS¥3IHLO
17S133104d

SNHLANY
£22-80¢Sd3lS
NYHLINITIVA

S3anTIX3
FANLY3d

AL34VSSIHL
"90¢d31SlV
Q3LTVHWiddd

3JTIHM¥3SNAS
LIHATINIAVLISIW

£6

L6#OY
Sy3sn¥04

d31YIdd0dddY
gee
NdHL
91¢

Sd31S

JW40_aN3M
|
<
L
O
R
O
[
P

JoO
JOO

17

N
J

LO
jrJ
o
o

[on
[
y
f
e
y

N
I

96#93d
SY3SN¥04

31vIdd0dddy
Gle

fIIHL
802

Sd3lS

O
N

|
M
|

U
O

N
J

SINOLLNGNMY41000O19
(FL©AdNdSa)dOLS

IL9AdN=LSIANI-AdX

LWWIYLl<=86934«(L-)

(IINVANILNOD(48SAdN)3187)

S
3
8QV

o
o

N
I

124
8
6

WAS
ANTT

O
R
O
I
N
O

O
H
I
O

|
—
[
N
M

[<Tt
[LD

1
(401SB®000019

6693

(18100)@
69NYHL09

(18100)(89L693
S3L1ON Bf =x

“SoyT4IY41)
(472)L1S3ANI

$1S3ANI

96934YD

Se

13x
6
6

01S
Y

187%
9
6

01S
8693¥1)

930®da41)
ad

41)
2x

l LO
 081ToL

50 AJIN3ATX3000AIXd3LSv

Internal Rate of Return

FIGURE 4

(HP-67)

Sores a CLR REG bloer n=DSP <In PROFIT | po 1RR [J ai DO

LABELS™s tnvesT BH STO CF's Ll 0 Llsn | bo npv
FLAGS: OFF/ON OTHER LABELS NOTES
0 X D BLANK J(FOR ERROR DSP) n = CF # (PERIOD #)
1 X 1 END SET n SBR b n.m = NON-INT ENTRY
2|RESFT n X ? FIND [MAX n W/CF=@ (.m = USER MISTAKE
2 X 3 END CFs SBR B i = INTEREST RATE

A MINUS NEXT CF it = TRIAL i
REGISTERS 5 CYCLE |NEXT DEC (IRR) Aq = INCREMENT OR

O[CASH FLOW 1 h SKIP @ CF SBR DECREMENT TO it
1 CF #2 J TEST a1 LIM(IRR SBR) PV = PRESENT VALUE
2| CF # R END IRR SBR d NPV = NET PRESENT VALUE
3 CF #4 USER END NPV SBR E B.E. = BREAK-EVEN
ACF #5 GIVE STEP KEY CODE KEY ENTRY
5 CF #6 SINVGY//GY/IIIII11IY111LLLLLL]
6l CF #7 001/31 85 11 |f LBL A STO INVEST
7 CF #8 USER [002] 33 11 STO A INVEST ~ REG A
8 CF ¢ GIVE [003] 23 02 DSP 2 FORMAT 2 DEC DSP
9[CF #10 n.m .{004] 35 22 |h RIN STOP. (DSP $ INVEST)

SO| CF #11 005[32 25 12 |g LBL b SET n = DSP(x) |
SII CF #12 006] 31 83 |f INT CSP INT n
S2[CF #13 007] 35 82 |h LST x DSP INPUT VALUE (x=n.m)
S3[CF #14 008] 23 09 DSP 9 FORMAT 9 DEC DSP
SA| CF #15 009] 32 61 |g x7y IF INPUT VALUE # INT
S5/CF #16 ERR [010 22 00 GTO @ < DSP ERR(n.m) STOP.
S6{CF #17 = 1 23 00 DSP @ oreS10
S7ICF #18 012 02 2
S8[CF #19 013 00 0
SO[CF #20 014] 3552 [h x<*y

0150 32 81 |g xv IF n> 20
A [INVEST ERR OTH 22 00 G10 @ DSP ERR (n) STOP.
BIN = MAX n__ | 017 01] Bh
C |Ai or BE Pt 018 35 54 th R
D_|TRTIAL i/IRR 019] 3251 |g x=y IF n=1
E INPV 020] 22 01 GTO |] GTO LBL 1

021 32 71 |g x<y IF n <1
TIN MAX/PRIOR <ERR022] 2200 Grog | _ DSP ERR (n) STOP.

"02 3131 25 01 |f LBL 1 END SET n SBR b |]
SET STATUS [024] 35 53 |h Ry If 1< (n=x)<20

DISPLAYTRIG 025 51 (n-17 = FAKE PRIOR n
SCI DEG 026] 35 33 |h ST I + REG I
ENG[RAD 027] 34 12 RCL B RCL PRIOR N

¥| FIX[1GRAD 028 31 84 |f -x- FLASH PRIOR N
FLOATING PT 029] 35 54 [h Rt RCL n; (n=x)

94

STEP KEY CODE KEY ENTRY NOTES

030 32 81 g xy IF n >PRIOR N
1 33 12 STO B STO n (=New N)- REG B
2]35 51 02 h SF 2 |EITHER WAY, SET FLAG 2
3 3522 h RIN DSP n & STOP.
4131 25 12 f [BL B STO CF's I
5] 2300 DSP FORMAT INT DSP
6 02 2
7 0] 1
8] 3534 hRCI
9 01 1

040 61 +
1 32 51 g x=y IF PRIOR N 2

ERR 22 00 GT0 0 DSP ERR (21) STOP.
3 3554 h Rt
4] 33 24 STO (1)| OW, STO CF #n REG #(n-1)
5] 3553 h Ry
6] 35 33 h STI |STO(PRIOR N+1) REG I
7135 71 02 h Fz 2 IF FAKE PRIOR N WAS USED
8135 71 02 h F? 2 SKIP NEXT STEP
9 22 03 GID 3 W, GIU LBL 3

(“> 050] 3184 f -x- FLASH FAKE PRIOR N USED
11 3412 RCL B RCL ACTUAL PRIOR N
2] 32 81 g xy IF PRIOR N > FAKE PRIOR N
3 3583 h STI STO PRIOR N~+REG I
42302 DSP 2 EITHER WAY, FORMAT 2 DEC DSP
5 35 54 h R
6] 35 72 h PAUSE FLASH CF #n ($)
7] 2300 DSP @ REFORMAT INT DSP _ _
8] 31 25 02 f LBL 2 [FIND MAX n W/CF =0_ [7
9] 3534 h RCI [RCL MAX n

0601 3151 f x=0 IF MAX n = @
1] 22 03 GTO 3 |, GTO LBL 3
2] 3133 fDSZ |OW, DECREMENT n
3] 35 84 h SPACE A
4] 34 24 RCL_(3)| RCL CF #n
5] 3154 f x=0 IF CF #n = 0
6] 22 02 GTO 2 GTO STEP (58 J
7] 3138 fISZ OW,INCREMENTn_ _ _ _
8131 25 03

|

f LBL 3 [END CFs SBR B [
9] 3534 |h RCI [RCL n (=NEW N)

070] 33 12 STO B_| STO N~REG B
1] 3522 h RIN STOP. (DSP N)
21312513

|

f LBL C [DO B.E. POINT]
3 00 ?
4] 3533 hST 1 |STO(@ = n-1)> REG I
5 34 1 RCL A RCLINVEST (=INVEST_-_ CF

066] 31 25 04

|

f LBL 4

|

MINUS NEXT CF
7] 34 24 RCL (1) RCC CF #n (=CFy)
8 51 - DSP ((INVEST - £CFp-1) - CF,) 066
9] 3554

|

h Rt STO (INVEST - ZCFp) = STACK 087
95

i)

o o
N

STEP KEY CODE KEY ENTRY 22080] A TZ RCLE pel » NOTES 087
1 35 34

|

h RC I RCL (n-1)

Ts] Fn) =cl, GTO LBL C (FINDS ERR
4 31 3¢ f ISZ “OW, STO n> REG I ApS.Ean)
5 3554 h Rt DSP (INVEST - CF,) = BALANCE
6 3181 f 50 IF STILL POS

087 22 04 GI0 4 GTO LBL 4
8 35 82 h LSTx OW,ADD BACK CF,, TO BALANCE
9 61 + = INVEST - £CFp-1

090 35 82 h LST x = POS CASH BALANCE
Y 1 81 - +CFn = FRAC PART OF YEAR

2 31 33 f DSZ LAST FULL YR USED REG I
3 35 30 h RC I IF LFYU # @, RCL LFYU
4 61 + ADD LFYU OR @ TO FRAC
5 33 13 STO C STO B.E. POINT REG C
6 3554] h R RCL PRIOR N

USER 7 35 33 h ST I STO PRIOR N REG I
OR 8 35 53 h Rt RCL B.E. POINT
PRGM 9 23 06 DSP 6 FORMAT 6 DEC DSP

CALL 100 35 22 h RIN STOP (DSP B.E. POINT)
USER—132.25 13] q LBL ¢ DO PROFIT

2 00 dgORPRGM 3 33 14 STO D
SVE |__4] 3122 15 ¥ GSB E | (DO NPV @ 1=0) 7) (DO LBL)
; 5 31 81 f x0 TF PROFIT > @ STOP
t | 6 35 22 h RIN IF PROFIT < @ CONTINUE

71 31 25 14 f LBL D STO TRIAL 1]
8 31 71 f X<@ IF TRIAL 1 < 0

ERR 9 22 00 GTO 0 DSP ERR (-TRIAL i)
> 110 33 14 STO D OW, STO TRIAL i ~REG D
USER 1 23 04 DSP 4 FORMAT 4 DEC DSP
CAL 2 35 22 h RIN STOP (DSP TRIAL i)
ONLY 3] 32 25 14 g [BL d DO IRR T

g 83 }
5 00 J
6 02 7 0.02 = i

17] 31 25 05 Tf LBL 5 CYCLE NEXT DEG (TRRT)
8 33 13 STO C S10 1 REG C

119 34 13 RCL C RCL 1 a
120] 32 22 15 g GSB e (D0 NPV SBR)” (&(DO LBL

1 07 7 A
2 42 CHS
3 35 33] h ST I STO(-7)=> REG i
q 35 53 |h RY
5 31 81 fT X>0 IF NPV POS
6 22.20 GIO (i1)] GTO STEP 119 _

127 34 13 RCL C [©IFNPVNEG,RCCBTNY |
8 02 127 117
9 81 : 138 194

96

STEP

1

KEY CODE
42

KEY ENTRY
S

e

NOTES
-Ai+2) = Ai

NPV SBR

STO (-11) REG I
RCL NPV @ TRIAL i
IF NPV NEG

GTO STEP 127

Al L

1

t

STO (1+1it) REG D

TO (n=@) ~ REG E
n- ; -

RCL (1+i¢t)
RCL (n-1)
ADD

1

DO (1+1i¢) 7"

(1+1,)™" X (CF #n) = PV
n

+PVp > REG E = ZPV,
CL n

INCREMENT n+ REG 1

IF N=n
GTO STEP 201

N#n, L

IF CF #n = @
GTO LBL 6

n

STO (-26) REG I; DSP n
GTO STEP #151

97

(DO LBL)

|
—

P
I
S

O
o
~

86

*d01S
¢9Y1d¥10

dSa¥1d
dSa3306lviWd0d

6SNYHLBSSHI¥1I
s93Y23S/I¥dHOX3
6NYHL©SHI¥1I
X“

34¥19

(48SBNITTYI01NLM“d0LS

8147019
g=AdNQ3aNNOY41

INI1S3¥¥INOLAdNONNOY
¢—dSQ23021YWy04

3934«AdN01S
AdN=1SIANI-YAdz

d93«¥dI01S

“d0lLS
ddIdS

dSq230vlvWd0d
I934«N01S

M0138INANILNOD“MO

LLLd3LS019“LIWITMOT<LV41
LV=01+LV

2¢0000°0=LIWITMOT

W
O
—

|
)

v9ld31S019
udsa<19«(61-)01S

$
2

&— S310NAdIN3A3X3000AIXd3LS N

PRESS
DATA ENTER KEYS

INVESTMENT: SR 52: INVEST A

HP 67: INVEST A

CASH FLOWS: CF#l B

CF#2 B

CF#n B

CF#20 B

CECIMAL TRIAL INTEREST RATE (i)

SR-52 i, D

HP-67 1, D

EXAMPLES: 1,=10% 1 D

76.54321 D1,=7654.321%

FORMAT &

(3) Data Modification Operations.

PRESS

ENTER KEYS

CHANGE INVESTMENT NEW INVEST A

CHANGE INTEREST RATE NEW i, D

CHANGE CASH FLOW FOR PERIOD n (CF)

SR-52: n *B

CF, B

HP-67 n fb

Cr B
n

99

DISPLAY NOTES

INVEST (As entered)

INVEST ($ and ¢)

1.

2.

n.

20.

i (As entered)

ic (n.wxyz)

0.1000

76.5432 (All digits
stored)

FORMAT &

DISPLAY NOTES

NEW INVEST

NEW i,

m. (n-1)

n.

N. (flashes 4X)

n.

n. (flashes 4X)

CF, (flashes 1X)

N. (Highest n used*)
[see *note next

page]

*NOTE: If n N and CF, 0 is entered, the HP-67 program

will automatically redefine N as the highest period

for which a non-zero cash flow is stored in memory.

Accurate definition of N speeds program operations

but is not required to obtain the solutions.

Redefinition on the SR-52, if desired subsequent

to the above entries, is accomplished by:

PRESS

ENTER KEYS DISPLAY

*B M.

*RSET N.

INCREMENT ic by +A1 AND AUTOMATICALLY RUN NPV

SR-52: +A *E NPV

HP-67: *A1 fe NPV

CLEAR ALL DATA FOR NEW CASE

SR-52 *A 0.

HP-67: fa 0.000000000

(4) Undiscounted Subroutines.

PRESS

ENTER KEYS DISPLAY

PROFIT MARGIN

HP-67: fc PROFIT

SR-52: 0 D 0.

E PROFIT

100

FORMAT &

NOTES

(N-1)

(=Prior N-1)

(10 DIGITS)

($ and ¢)

FORMAT &

NOTES

(S$ and ¢;

CESTROYS i)

(1)

(DIGITS

APPLICABLE
TO CF's USED)

ENTER

OTHER (HP-67 ONLY)

FIRST BREAK EVEN POINT:

ESTIMATE ic:

PRESS

KEYS

fc

RCL C

RCL A

X =

DSP 4

f RD

DISPLAY

B.E.PT

B.E.PT

PROFIT

B.E.PT

INVEST

(5) Time-Valued Subroutines.

PRESS
ENTER KEYS

NPV @ 1: SR-S2 E

HP-67 E

IRR SR-52 *D

HP-67 fd

INCREMENT/DECREMENT i, & RUN NPV
t

101

DISPLAY

NPV

NPV

IRR

IRR

FORMAT &

NOTES

(6 Decimal
Places)

(2 Decimal

Places)

(4 Decimal
Places)

(STORE D)

FORMAT &
NOTES
NOTES

(10 DIGITS)

(S$ and ¢)

(10 DIGITS)

(4 Decimal
Places)

Discussed Above

(6) Error Protections.

to store invalid values)

PRESS
ENTER KEYS

NEGATIVE TRIAL INTEREST USING (STO Trial i) Key

RATE (i):

SR-52: “1, D

HP-67: “1, D

Cx

(IF NEGATIVE i, DESIRED)

SR-52 0 D

-— !i *E

HP-67 0 D

“i, fe

NEGATIVE (n 0) or TCO.IARGE (n 20)

USING (SET n=DSP) KEY.

SR-52: n *B!

DISPLAY

NPV

0.0000

NPV

M

(When User attempts

FORMAT &

NOTES

(1, Stored)
t

(Not. stored)

(-1,_ stored)

(=i, stored)

(n-1)

Although the display is normal, no data has yet been

stored. Alert user will note minus signs and/or

increments of n in wrong directions or beyond 0 to 20

limits. However, some data must be entered against

key B in the usual manner in order to avoid undesired

redefinition of N, i.e.,

Any Value B n (no data
stored)

HP-67: n fb Error

CIx n

102

PRESS FORMAT &
ENTER KEYS DISPLAY NOTES

NON-INTEGER PERIOD NUMBER (#n.p) USING (SET n=DSP) KEY,

SR-52: in.p *B* m.p ((n.p)-1)

Same comments and process as above

Any Value B tn.p (No data
stored)

HP-67: in.p fb Error

ax n.p

21st CASH FLCW WHEN USING (STO CF's) KEY:

SR-52: CF#21 B 21. (No data
stored)

Cr#22,etc. B 22. (No data
stored)

Error Noted by User. To correct: (Redefine N)

*B! 21.

*B! 20.

*RESET 20.

HP-67: CF#21 B Error

CIx 21. (No data
stored)

103

(7) Sample Calculations, SR-52 IRR Program.

PRESS RUN TIME
ENTER KEYS DISPLAY IN SECONDS

INVEST $1000 A 1000. 0.8

CF#1 $ 500 B 1. 1.2

CF#2 $ 600 B 2. 1.2

TRIAL i (ANNUAL) 1 D 0.1 0.8

DO NPV E -49.58677686 3.5

CECR. i,D0 NPV -.04 *E 5.69597721 3.8

*CECR. i,DO NPV -.0111 *E! 22.04961262 3.8

*D0 IRR *D! 0.0639 32.5

47.6

*NOTE: LOWEST RUN TIME NORMALLY OCCURS WITH (i, = IRR - 0.0111)

e.g., WITH ic = 0.0528, RUN TIME FOR ABOVE IRR IS

22.8 SECONDS.

CHANGE INVEST $1200.75 A 1200.75 0.8

ADD CF#3 $ 100 B 3. 1.2

CHANGE CF#l 1 *B' 0. 1.8

$ 555 B 1. 1.0

ADD CF#4 $ 200 B 4. 1.2 -

ADD CF#15 15 *B' 14. 1.8

$ 352.16 B 15. 1.4

ADD CF#16 $ 100 B 16. 1.2

DELETE CF#l6 (16) *B' 15. 1.8

0 B 16. 1.0

RCL N C 16. 0.3

PRESS RUN TIME
ENTER KEYS DISPLAY IN SECONDS

REDEFINE N *B' 15. 1.8

*RSET 15. —_—

TRIAL i 1 D 0.1 0.8

DO NPV E 95.7016984 14.0

INCR i, DO NPV .05 *E! -41.07430984 14.5

TECR 1, DO NPV -.025 *E' 21.92961966 14.5

DO IRR *D* 0.1332 179.0

285.7

(4'46")

NOTE: WITH i, = 0.1221 (VICE .1250) RUN TIME FOR

IRR is 64 SECONDS (VICE 179).

(8) Sample Calculations, HP-67 IRR Program.

PRESS RUN TIME
ENTER KEYS DISPLAY IN SECONDS

INVEST $1000 A 1000.00 0.8

CF#l $ 500 B 1. 1.9

CF#2 $ 600 B 2. 1.9

DO B.E.PT(YRS) C 1.833333 2.8

DO PROFIT fc 100.00 5.0

TRIAL i (ANNUAL) 1 D 0.1000 0.8

DO NPV E -49.59 6.1

(DISPLAY 9) (-49.58677686)

105

PRESS RUN TIME

ENTER KEYS DISPLAY IN SECONDS

DECR i, DO NPV -.04 fE 5.70 6.3

*CECR 1, DO NPV -.011 fE 22.05 6.6

*D0 IRR fD 53.8

86.0

*NOTE: LOWEST RUN TIME NORMALLY OCCURS WITH (iy =IRR-0.0111)

e.g., WITH io = 0.0528, RUN TIME FOR ABOVE IS

37.0 SECONDS.

CHANGE INVEST $1200.75 A 1200.75 0.8

ADD CF#3 $ 100 B 1.9

CHANGE CFzl 1 fb 3. (Flashes 4X)

1. 7.1

$ 555 1. (Flashes 4X)

555.00 (Flashes 1X)

3. 2.2

ADD CF #4 200 B 4. 1.9

ADD CF#l15 15 fb 4, (Flashes 4X)

15. 7.1

$ 352.16 B 15. (Flashes 4X)

352.16 (Flashes 1X)

15. 8.2

ADD CF#16 $ 100.00 B 16. 1.9

DELETE CF#16 (16) fb 16. (Flashes 4X)

16. 7.1

16.

16. (Flashes 4X)

106

PRESS RUN TIME

ENTER KEYS DISPLAY IN SECONDS

0 B 0.00 (Flashes 1X)

15. 9.2

DO B.E. PT (YRS) C 2.457500 3.9

DO PROFIT fc 606.41 17.2

ESTIMATE i

RCL C

RCL A

Xs

DSP 4 0.2055 NA

TRIAL i f RD 0.2055

(.2055) D 0.2055 0.8

DO NPV E -154.36 19.4

DECR i, DO NPV -.08 20.57 19.7

DO IRR fd 0.1332 260.0

460.4

(7'20")

ilNOTE: WITH i,

IRR IS 123 SECONDS (VICE 260).

0.1221 (VICE .1255) RUN TIME FOR

(9) Redefining IRR Program Decimal Accuracy

Limits. In order to carry the IRR calculations to a digit

limit other than four (or to reset to four digits

subsequently) the procedures are:

107

ENTER PRESS KEYS DISPLAY

SR-52

Go to Step 162 GTO 1,6,2 (0.1332)

Shift to Learn Mode LRN 162 04

In same step, Reset

Decimal Digit

Limit (1 through 9): 9 163 94

Backstep to Review Change *BST 162 09

Shift to Run Mode LRN (0.1332)

Enter Trial i 0.1221 D 0.1221

DO IRR: *D! 0.133286694

Run time for above IRR is 7 minutes and 38 seconds for

9 decimal digits. Roundoff error (amount NPV misses zero

at IRR) decreases from +22.371990 at IRR = 0.1332 to

+0.0000130 at IRR = 0.133286694. Repeat above to reset

number of digits again; do not reread card if same set of

data needed for further analysis — data will be altered

thusly in this program because it uses some program steps as

data registers.

HR-67
Shift switch to Program Mode W/PRGM --

Delete Step 214 GTO.214 214 35 82

h DEL 213 22 08

Delete Step 211 GTO.211 211 31 24

h DEL 210 23 15

108

ENTER PRESS KEYS DISPLAY

Delete Step 210 h DEL 209 23 15

Delete Step 187 GTO.187 187 05

h DEL 186 43

Mentally add 1 to Decimal
Limit Desired

Enter limit (2 through 10) 1 187 0l

0 188 00

Shift switch to Run Mode RUN (0.1332)

Enter Trial i 0.1221 D 0.1221

DO IRR: fd 0.1333

DSP 9 0.133286694

Run time for above IRR is 12.0 minutes for 9 decimal digits.

Roundoff Error (Amount NPV misses zero at IRR) decreases from

+22.372000 ¢ at IRR = 0.1332 to 0.0000000 ¢ at IRR=0.133286694,

i.e., beyond the machine capability to determine. To reset

number of digits to 4, merely reread card. To reset to some

other number of digits, reread card and then repeat above

process. No data will be altered.

(10) Comparison With Manufacturer Programs for IRR.

The Hewlett-Packard "Internal Rate of Return" program and

(BD1-01lA) yields the same interest rate for the previous

problem in 116.3 seconds (vice 260 seconds with the program

developed above). However, this card uses 197 program memory

steps to do nothing but IRR and always requires manual entry

of all values, i.e.:

109

INVEST $1200.75 - A CF 8 0 > C

CF1l 555 +> C CF 9 0 > C

CF2 600 + C CF1l0 0 »~C

CF3 100 +> C CFll 0 »~-C

CF4 200 + C CF1l2 0 »>2C

CF5 0 + C CF1l3 0+ C

CFé6 0 + C CFl4 0 »~-C

CF7 0 + C CF1l5 352.16 + C

D + 13.32866940

If the user keys in a mistake, the entire

data entry process must be begun anew. This program will not

accept a negative or zero Investment but will accept up to

44 positive cash flows, limited to five digits each. However,

o
vfor more than 22 cash flows, accuracy decreases to = 0.01

(.0001 decimal). If there are negative as well as positive

cash flows, the program accepts up to 22 cash flows. This

program may sometimes halt prematurely with ERROR in the

display if the actual IRR is greater than 100% or if the

sign of the cash flows is reversed more than once. Addi-

tionally, since more than one interest rate is considered

correct in the mathematical sense when the sign of the cash

flows is reversed more than once, the user has no way of

determining which rate this program has found. (Conversely,

the program developed by the authors of this thesis, if given

a trial interest rate of zero, will always find the IRR

(positive or negative) closest to zero.) Finally, this

program will not warn the user of improper data entries or

110

results, and stored data cannot be used for other purposes

but must be reentered against other programs to determine

break-even point, profit, net present value, etc.

In summary, then, card BD1-0lA is considered

inferior to the program developed herein unless IRR is

required for more than 20 positive cash flows (each limited

to five digits) and no other information or analysis is

desired. Otherwise, the card BDI-0lA user must be satisfied

with a program that may more quickly provide one of the

possible solutions or may provide no solution at all, or

may not provide the best solution. The BD1-0lA user must

also be very careful to avoid input errors since stored

data is very difficult to review or to change.

The Texas Instruments "Variable Cash Flow

(Present Value)" program card (FIl-23) will only accept ten

cash flow values and hence will not work the previous prob-

lem. Card FI1l-23 uses 204 program steps whereas the

SR-52 card developed herein uses 224 to accomplish all of

the previously discussed capabilities. Thus Card FI1l-23

is considered to represent particularly inefficient programming;

the card has little practical utility. It does work quickly

and well for 10 values, and data can be individually reviewed

or altered easily. This card, FI1l-23, does yield rates

dependent upon the trial interest rate, similar to the program

developed by the authors. The five-cash-flow data set listed

on page 131 in the Texas Instruments Finance Library for

this card requires 151 seconds to run, as below, with accuracy

111

specified to nearest cent of NPV. Similar data runs on the

program developed herein in 133 seconds without specifying

accuracy, but additional accuracy (using the same trial

interest rate) requires progressively longer times as

shown below.

INVEST $40,200

CF #1 400

CF #2 9,200

CF #3 11,560

CF #4 17,048

CF #5 45,484

Trial i 15%

Accuracy .01 (Specified for FI1-23 only)

IRR Results: Solution Seconds Amount NPV misses 0 @IRR

(FI1-23) 0.1978193283 151 + $0.0095657

Program 0.1978 133 + $2.5701892

Herein: 0.19781 149 + $1.2452525
0.197819 196 + $0.0528593

0.1978193 223 + $0.0131138

0.19781939 265 + $0.0011901

0.197819398 321 + $0.0001301

With Trial

i =10.1867: 0.197819398 235 + $0.0001301

A shrewd user of the program developed herein, of course,

would normally run the data once to obtain 0.1978 and then,

if desired, modify the program and use a trial i of 0.0111

less as mentioned earlier; i.e., 0.1867, to obtain the value

0.197819398, as shown above, with a total running time of

133 + 235 = 368 seconds.

112

It should be obvious from the above that

experienced programmers can, in many cases, develop programs

more subtle or more efficient than the program found in the

libraries published by any manufacturer. The manufacturers

are motivated to sell calculators and calculator cards, not

to create particularly efficient programs. Thus the typical

approach appears to be that of including generally useful,

but simplistic, programs in published libraries, so long

as the programs function without error for most input

possibilities.

On the other hand, the usefulness of the

published programs to less experienced programmers is

immense because the cards allow calculations such users

might have no idea how to (mathematically) approach, much

less program.

10. Advanced Programming Optimization Techniques

The previously developed IRR programs (Figures 3

and 4) and additional programs are used below to clarify

subtle differences required when programming the SR-52 or

HP-67.

a. Labeled, Direct, and Indirect Relative Addressing.

The simplest way to call a subroutine is merely

to give it a label, as discussed previously in Section IV.C.,

and call the label as required. Equally simple direct

addressing (not available on the HP-67) typically uses a

"GIO XYZ" statement in lieu of a label. Thus "GIO 123%,

stored as program steps on the SR-52, will branch the program

113

to step 123 whenever this calling instruction is encoun-

tered. But this branch is an unconditional transfer; the

program does not return to the calling point. For true

subroutines, the similar instruction of "SBR 123" is used

instead; this call returns the program counter to the step

immediately after the "3" when the program encounters a

"RTN" instruction subsequent to step 123.

Indirect relative addressing is used on the

HP-67, for unconditional branching, by first placing a

negative integer in the I-Register such that when the instruc-

tion "GTO (i)" is next encountered during program execution,

the program will halt, note its own current step number,

backstep the number of steps specified by the current (nega-

tive) number in the I-register and there resume program

execution. Similarly, f£ GSB (i) is used to call and execute

a subroutine and then return to the step after the call.

These features each require two or three extra steps, com-

pared to the SR-52, of program memory for each branch thus

defined; these features are not included or normally needed

on machines such as the SR-52 which have direct addressing

capabilities.

Examples of these types of addressing are ex-

tracted from Figures 3 and 4 (IRR Programs) and reproduced

below, as Figure 5.

114

FIGURE 5

TYPES OF CALLS

SR-52 MAIN ROUTINE (IRR)

STEP KEY ENTRY STEP KEY ENTRY

HP-67 MAIN ROUTINE (IRR)

STEP KEY ENTRY

125 *LBL 1738 113 _g LBL d
*D’ INV
*F1X *F1X 0

8 126 RIN 2 J
: flBL 5©)
g STO C
2 RCLC

130 STO 120 gq GSB e_¥)
9 7
6 - CHS

133 *C° °** NN) h ST I A
*IF POS ~ h R
T_ ~ DIRECT er INDIRECT
3 ABSOLUTE ADDRESS) 126GIO1RELATIVE CALL J
3 CALL ~ T27 RCLC ~

2 2 A
+/- 3

301 T30 CAS A
*PROD g GSB e LABEL CALL **)
g 1
6 Pp i IN

144 *C’ xk CHS
INV h ST I
*IF POS hhRL
TDIRECT |fX<0___ INDIRECT
4 ABSOLUTE ADDRESS 138 G10 (i) RELATIVE CALLJ
4 CALL 139 G10 7
150 ////////////// ,LABEL CALL)
2 184 f LBL 7 °
+/- ?

*PROD EEX
9 5
6 CHS
RCL RCL C
9 190 .
6]
- X

160 2 X>Y
EE 194 G10 5 LABEL CALL.
4 f LBL 8 7
+/- RCL B

= b ST I
INV DSP 4
EE RCL D
*IF POS 200 b RIN
1 DIRECT
3 ABSOLUTE ADDRESS **|ABEL CALLS; ARROWS OMITTED IF

170 3 CALL Py REQUIRED FOR CLARITY OF OTHER
RCL CALLS; CALLED LABEL NOT SHOWN

172 9 HEREON.

115

b. Label Search Mechanisms and Subroutine Locations.

The call for a labeled subroutine on the SR-52

causes the program step counter to immediately reset to 000

and then begin a downward search looking for "LBL". Each

label thus encountered is then further tested to determine

if it is the requested label. If so, execution of that label

begins; if not, the downward search is resumed. Thus SR-52

label-location times are directly proportional both to the

distance between 000 and the called label and to the number

of intervening labels, but the step number of the call

itself has little, if any, effect upon location time.

The call for a labeled subroutine on the HP-67

causes a search to begin downward from the point of call

in a manner otherwise similar to the SR-52. Thus, HP-67

label location times are directly proportional to the down-

ward distance between the step number of the call and the label,

and to the number of intervening labels. (The HP-67 "falls

through" its last step, 224, into step 001 if required

during this process.)

For subroutines which are infrequently called

by the program, the length of lakel location time is rela-

tively unimportant. But for frequently called or for iter-

ative routines, subroutine location often becomes the most

critical factor in optimizing program run times.

Run time is minimized on the SR-52 by placing

the most frequently called labeled-subroutines near the

116

beginning of the program or, as an alternative, placing a

series of labeled GTO XYZ (Step Number) statements at or

near the beginning; e.g., *LBL A GTO 046, *LBL B GTO 113,

*LBL 3%C' GTO 214 defines three labeled subroutines (A, B,

C') which, respectively, begin execution at steps 046, 113,

and 214. In these cases the label names are merely moved,

but the GTO XYZ instructions require four additional steps

per label. Thus the method is only applicable where extra

step space is available.

c. Nesting and Stacking Labels or Subroutines.

Program execution normally stops only when a

"HLT" or "R/S" instruction is encountered, or when an error

condition is created (such as dividing by zero or branching

to a non-existent label) or when the "RTN" instruction is

encountered in the primary routine being executed. Con-

versely, labels function only to identify the starting point

of a called subroutine. Thus, encountering an uncalled

label during program execution has no effect at all; the

label is merely ignored. For this reason, labels can some-

times be nested such that the same single step number ends

every subroutine in the nest. For example, consider the

following SR-52 subroutine (assume any non-zero value, J

is stored in REG 00):

117

STEP KEY ENTRY

001 *LBL

t

O
o
—

o
O

n
N

LABEL CALLED

*D

If j# 0

o
O

n
o

LO
]

0O
|
H
O
Y

Un
f
|

GO
|

NV
I
=
|
O
J

WO
]
O
O
]

O
Y

On
|

B=
]
L
o
P
|
—
4
O
f
W
O
O
O
~
~

OO
]

On
|
>

Lo
l
r
o

o
O
w o
O

031 *RTN

W
O
O
N
]

1
|
—
+
~
{
P
O
O

STOP

VALUE CALCULATED & STORED IN REG 99

7+ 73+ 10+ 3 = 90 + j

73 +10 + j = 83 + j

10 + j = 10 +]

0+ = J

(j assumed to be needed for other purposes;
hence, INV*DSZ features available on
calculator not used.)

Similarly, if j=0:

7+73+10+0+1 = 91

73+ 10+0+1 = 84

10+0+1 = 11

o+1 = 1

118

If the above four labels are each individually

written, 77 (vice 31) steps are required as listed below.

(Assume Program Begins at Step 001.)

*IBL C : 90 + RCL 00 , INV * IFZRO 015,+1= , STO 99, *RTN.

*LBL *D' : 83 + RCL 00 , INV * IFZRO 036,+1= , STO 99, *RTN.

*LBL B =: 10 + RCL 00 , INV * IFZRO 056,+1= , STO 99, *RTN.

*IBL A RCL 00 , INV * IFZRO 074,+1= , STO 99, *RTN.

If the common steps are combined into an

unlabeled subroutine (beginning at step 035) 50 steps are

required, i.e.,:

*IBL C =: 90 , SBR 035 , *RTN.

*IBL *D' : 83 , SBR 035 , *RTN.

*IBL B : 10 , SBR 035 , *RTN.

*LBL A : SBR 035 , *RTN.

Subroutine: + RCL 00 , INV * IFZRO 046,+1= , STO 99 , *RTN.

If the above subroutine is labeled A and used

as a terminus vice as a subroutine 39 steps are required, i.e.:

*IBL C : 90 , + , GTO A

*LBL *D' : 83 , + , GTO A

*IB, B : 10 , + , GTO A

*IBL, A : RCL 00 , INV * IFZRO 034,+1= , STO 99 , *RIN.

119

Clearly, the most efficient use of memory

space 1s demonstrated by the initial nesting method. Such

nesting can also be shown to be the most efficient method

on RPM calculators. Nesting always saves steps on either

type of system simply because nesting completely avoids using

any calls whatsoever for any subroutine properly sequenced

in the nest, and also avoids repeating identical instructions

within several subroutines. For many examples of complex

nesting with RPN, see Figure 4. This program has 19 labels

but only 8 RTN instructions; Labels 1, 2, 3, 4, 5, 8, and E

are nested under other labels. In the comparable SR-52

program, Figure 3, labels *E', E, and A are nested under

other labels.

Stacking is the process of minimizing program

execution time by avoiding lengthy label searches, rather

than a process designed to minimize program storage space.

Stacking costs steps on the SR-52, but does not cost steps

on the HP-67. On the SR-52, labels are stacked followed by

GTO xyz statements as discussed in Section IV.E.(10)a above.

On the HP-67, entire subroutines are stacked immediately

after the subroutine(s) which call the stacked subroutines

most often, in order of expected call frequencies.

Returning to Figure 4, Labels (Subroutines)

6, 7, 8, and 9 are stacked in order of expected frequency to

accomplish such minimum average label-search times on the

HP-67 during IRR calculations. Stacked subroutines may

sometimes also be nested, as is Subroutine 8 in Figure 4.

120

d. Appropriating Program Steps on Registers
for Data Memory

The SR-52 has 22 memory registers nominally

available: Registers 0 through 19, 98 and 99. (Some of

the Registers 60 through 69 may also be available, depending

upon the number of pending operations being stored.) An

additional 18 Registers (80 through 97) may be "purchased"

by trading eight steps of program memory per extra register

desired, working backwards from the end of the program. Thus

trading of steps 216 through 223 "buys" register 97 and

trading of steps 208 through 215 buys register 96, etc., down

to the purchase of register 80 with steps 80 through 87.

(This technique is demonstrated in Figure 2 to create two

extra registers.) In this manner, a program which can be

limited to 80 steps (000 through 079) can use at least 40

storage registers on the SR-52; a program limited to 112

steps (one side of a card) can use at least 36 registers,

including 0 through 19 and 84 through 99.

The availability of so many storage registers

allows the user to approach arrayed data with straight-

forward indexing techniques. For example, using the latter

allocation above, some of the 36 available registers may

be arbitrarily assigned to the following array (two-digit

numbers equate to register address numbers) :

121

Column No.: 1 2 3 4 5 6 7

ROW *D' : 84 85 86 87 88 89 90

ROW A : 01 02 03 04 05 06 07

ROW B : 11 12 13 14 15 16 17

ROW C : 91 92 93 94 95 96 97

Combining this array with the optimized nested routines of

subsection (c) above then allows programmed indexing by

column and row number. For example, if 3 (the column index)

happens to be stored in REG 00 when LBL B (the row index)

happens to be called, the nested program routines will

generate the number 13 (10 + j = 10 + 3 = 13), the same

number located in column 3, Row B of the array. A subsequent

call for LBL C would generate 93, the number located in

Column 3, Row C, etc. Thus, each register number listed in

Column 3 could be generated, in succession, by the subroutine:

3 sto 00 , *D' , A, B, C. Similarly, if the number stored

in the column indexer (REG 00) happens to next be changed

from 3 to 4, a call for LBL A would generate 04, the number

located in Column 4, Row A, etc.

Note, within the nested programs introduced

earlier, that each call, in addition to generating the

desired number, actually stores the generated number in

REG 99. Thus REG 99 can be used as an addresser for the

arrayed registers, in each case, by some other portion of

the program. Additionally, the column number can

122

automatically incremented in REG 00 by still another portion

of the program. In this manner, each of the values actually

stored in the registers listed in a particular row of the

array may be sequentially recalled and used by the program.

Similarly, each register listed in any column of the array

may be sequentially called prior to again changing the

column indexer. These row and column call techniques and

the above array are used in Subsection (h) below to

facilitate a linear-programming problem, but one equally

applicable to any other problems which must address a four

by eight array of data.

A simple example of appropriated SR-52 program

steps is shown in Figure 2, where only two extra registers

were required. In summary, the user should always remember

that useful extra registers are available on the SR-52

anytime the applicable program steps are not used.

An alternate method, packing registers in order

to store two values per register, can be used on the HP-67

to create an additional register (or registers). This

method is discussed in Section IV.E (10) h. below. The only

limitation of this method appears to be that only 10 digits

may be handled between both numbers, uniformly split as

desired, e.g., 5/5 or 6/4, etc.

A different, but equally unique, feature of the

HP-67 is its ability to store many "words" in its storage

registers. Any word formed with the letters a, B, C, 4d, E,

g, I, 1, 0, o, xr, S, ¥Y and Z may be normally, but not always

123

be created. For example, the following ll-space word

groups (including mandatory period) can be stored in

registers (not in program memory)

YES SIr . IdEa rEady.

I deEClarE . I do say .

I IS rEadyY . I do AgrEE.

BOSS Say . O 0 OO

good IdEaS . gollY gee .

I do EaSy . IdEa CraZy.

god BlESS . also SOrry.

go BaBY go . I dISagrEE.

Cards containing 32 phrases may be obtained via the HP-65

Users Club (19] by club members, or from club members who

have already obtained them; there is no copyright involved.

There is no other published source at this time.

Only extremely advanced programmers can create

words; the process involves understanding design architecture

of the machine. Conversely, the words are transferred to the

storage registers by merely reading the data card, once

obtained.

e. Structuring Loop Controls and Counters

Loops are normally structured to begin with a

given value and iteratively change that value until some

specified limit is reached, at which point the program will

exit from the loop. The given value may be either the

124

variable which is to be worked upon inside the loop or a

simple (additional) counter which is incremented or decre-

mented by the program during each pass through the loop.

An example of the former (no counter), extracted from the

IRR programs of Figures 3 and 4, is duplicated as Figure 5

below. In this example, the program begins with a given

value of 0.02 (2%) as an increment for the trial interest

rate supplied by the user. The increment is added to the

trial interest rate and the program falls into the first

loop, where it is immediately sent elsewhere to compute the

net present value (NPV) of the Investment and cash flows

stored. Upon returning, the newly calculated NPV is tested

to determine if it is positive — if so, the program loops

back to add the increment again and repeat the loop process.

This continues until the NPV goes negative, at which point

the program falls out of the first loop, divides the increment

by minus two creating a decrement, and falls into the second

loop. This loop cycles similarly until the NPV goes positive

again, at which point the program falls out of the second

loop, changes the decrement back in to the previous increment

by multiplying by minus two, and tests to see if the increment

has yet been reduced to the specified limit (0.0002). If

not, the increment is divided by ten to move the decimal

one place and the program loops back to the beginning of the

first loop. (The HP-67 program changes the increment before

the limit test and thus tests against 0.00002 instead.)

The entire process above then repeats. When the SR-52 program

125

FIGURE 6

LOOP CONTROL BY SIGN OF VARIABLE

SR-52 IRR SUBROUTINE

STEP KEY ENTRY

127
8 0

2
STO
9
6
*C° J

*IF POS °

— W
w
o
w

fc)

— ~
~

— o
n

O
W
]

|
W
]

MN
]
=
|
O
J
W
]
0
0
|
~
|

O
O
Y
|
O
N
P
|
W
N

=
|
O
|
W
O
O
O

O
Y

OU
]
-
B
W
[
N
O
|
—

—
_

o
N

IF (i - .0002)
3 IS ZERO OR J

— ~
J POSITIVE

OY
]
|

HB
]

WW
]

NO
]

—i
]
O
f
W
O

Oo
]
~
~
O
Y

Dn
]
|
W
]

PO
]
—

—
_

— ~
J

126

HP-67 IRR SUBROUTINE

STEP KEY ENTRY
114

5 0
6 2 ,
7 f LBL 5°)
8 STO C |
9 RCLC °° -

120 g GSB e ~(®
1 7 *
2 CHS
3 hSTI

; ; 8 IF NPV IS
5GT0(7) ~_POSITIVE >

7 RCLC VY
8 2 A
9 +

12 CHS ©
g GSB e ~

2 1 oo
3 |
4 CHS
5 h STI
6 h RY
7 f x<@ IF NPV IS
8 G10 (1) NEGATIVE a,
9g GTO 7 ~

////1111111111
184 f LBL 7

5 2

EEX
7 5
8 CHS
9 RCL C

190 .
1 1
2 X
3 X>
4 G70 5 IF Ai > .00002
5 f LBL 8 -
6 RCL B
7 hSTI
8 DSP 4
g RCL D

200 h RIN

For details, See
Figures 3 and 4

has completed the inner loops using the specified limit as

the increment, or when the HP-67 has completed the inner

loops using ten times the specified limit for the increment,

the program stops with the IRR in the display.

The loop control method discussed above, which

is actually a modified bisection search pattern using defined

vice variable increments, is useful anytime the programmer

needs to structure loops based upon a sign change of the

variable being addressed within the program. This method

also allows limiting accuracy to a specified number of

decimal places to avoid unnecessary iterations. Differences

between the machines for these loops are the order of

increment division and test as already mentioned and the

loop-back commands themselves. The SR-52 requires programming

the step number of the beginning of the loop immediately

below each sign test; the HP-67 requires either programming

(prior to the sign test) the relative (minus) number of

steps to get back to the beginning of the loop from the

GTO (i) instruction which follows the sign test, or the

programming of extra labels which can be used as addresses

after the sign tests. Extra labels can also be used on the

SR-52, but absolute numeric addresses are executed guicker.

(On the HP-67, the relative (minus-step) addresses are

quicker than label addresses for short distances.)

Both calculators have a register (the zero

register) which can be automatically decremented by one

and tested for zero; the program counter will skip one

127

address after the test if the register value has reached

zero (the DSZ function). The HP-67 also has an ISZ function,

and can also branch to an instruction, vice an address, in

either case, if desired. (The user of the SR-52 can only

increment negative numbers, and can only branch to an address.)

The HP-67 can also use the DSZ or ISZ function against the

value in the display; the SR~52 cannot.

Any storage register may be used as a counter

and decremented or incremented by the program itself on

either calculator, but this method is only used when the

zero register is needed to store other data such that the

automatic DSZ or ISZ cannot be used. Of course, this use

of other registers as counters also requires that the

stored value be recalled and tested by the program at the

end of each loop iteration, similar to the process in Figure

5. Additional details are available in the manufacturer's

handbooks.

f. Multiple (Alternate) Uses of One Subroutine

One example of multiple uses of one subroutine

was provided in subsection (c) above, using nested labels.

Another example is at step 104 of Figure 4, which is

duplicated below:

Step Key Entry Explanation

101 g LBL c Begins "Do Profit" Routine

102 0

103 STO D Sets Trial i = 0

104 f GSB E Run NPY routine

105 fx >0 If Profit > 0, Stop

106 h RTN

128

This routine uses the fact that the NPV of a series of

cash flows at an interest rate of zero is the same as the

undiscounted profit margin. Hence, instead of writing a

long separate routine to calculate the profit margin, the

authors merely set i = 0 and branch to the NPV routine

from the short routine above. This routine continues:

107 f LBL D Begins "Do TRIAL i" Routine

8 f x<O If TRIAL i <0

) GTO O DSP ERR (-TRIAL 1i)

110 STO D OW, STO TRIAL i in REG D

1 DSP 4 FORMAT 4 DEC DSP

112 h RTN STOP. (DSP TRIAL i)

During the breakeven point routine, not shown above, exe-

cution is branched to step 101 if a situation arises where

all cash flows have been subtracted from the investment but

the balance is still negative. In this case, the profit

routine (which, in turn, uses the NPV routine) is used to

recalculate the negative profit. This value then falls

through step 107 to hit step 108, a step actually designed

to catch negative input errors by the user for the trial

interest rate. In this case, however, the value tested is

the negative profit, and the program branches to 0, a non-

existent label in this program. This generates an error

condition and halts program execution with "Error" in the

display. If the user then presses any key on the keyboard,

the key will not execute. Instead, the negative profit,

with minus sign, will appear in the display. Thus the

129

routine has a third use — calculating negative profits.

Of course, the negative profit was already in the stack

when the program branched to step 101, so why was it

recalculated? Simply because getting it out of the stack,

halting execution, and displaying the error would require

considerable program steps which are not available. Instead,

then, the single step (#083, GTO f c¢), accomplished all that

was required, since the steps 101 through 112 already existed

for other purposes. Similar multiple use of subroutines

can be designed into most programs with a little thought.

g. Error or User-Prompting Routines

In addition to the above example, there are four

other places in Figure 4 where the program is ordered to

branch to the unused label zero, creating an error condition.

In each case, the value which will be displayed when the

user pushes any key to clear the error display provides

information concerning what error was made, only because

this information is built into the program structure:

Step Info Built into program Error Which will be Displayed

010 None; User's error returned Non-integer Period Number

016 None; User's error returned Period No. Greater
Than 20

022 None; User's error returned Negative Period Number

042 21 21 (User attempted to
store more than

20 Cash Flows)

109 None; User's error returned Negative interest rate

109 Profit Routine as above Negative profit margin
for Break-even routine

130

Instead of generating an error, the SR-52 program (Figure 3)

avoids negative inputs by taking the absolute value of inputs

which can be incorrectly entered as negative. This is better

than no protection, but program space in the IRR routine does

not allow warnings similar to the above. In other programs

with more space, similar devices could be used. The SR-52

flashes the error value automatically, instead of flashing

"Error" once and halting with error in the display as does

the HP-67. Either metkad is._useful.

User prompting routines are more difficult to

structure on the SR-52 since (unlike the HP-67) the SR-52

will not automatically halt in execution, flash a value, or

accept input, and then automatically continue. Conversely,

for the HP-67 IRR program (Figure 4), whenever the user

decides to shift to another period number and change the

cash flow for that period, and thus use key b (Set n = DSP(x)),

the calculator announces the maximum period number already

used (flashes it four times) and then displays the requested

period number. This is designed to say to the user: "OK,

you have N values in here now, now go change the one you

asked for." Similarly, when the user enters the cash flow

for the period requested, the HP-67 announces the period

number which the cash flow was stored under (flashes it four

times), the amount stored (flashes it once) and halts

displaying the maximum period number which has a cash flow

stored against it, after the change. This is designed to

say to the user: "OK, you just changed the cash flow for

131

the nth period.... to the amount of $.... and you now have

N values stored in the machine." (If the value zero is

stored against the maximum period, the HP-67 program

automatically searches out and displays the period number

for the highest non-zero cash flow stored, as the third

part of the above sequence.)

On the SR-52, in lieu of the above, the IRR

program (Figure 3) provides a user key (C) that can be

pressed to display the maximum N stored, prior to using the

"Set n = DSP(x)" key (B'). Then, when the user enters the

desired period number and presses the B' Key, the display

responds with the desired period number minus one. Note

that during automatic accumulation of cash flows using the

"STO CF's" user-defined label (see Figure 3 or 4) on either

machine, the period number is displaved for each cash flow

stored in sequence. Thus the user is accustomed to having

the previous period number in display immediately before

each new cash flow is entered. The SR-52 IRR routine thus

capitalizes on this familiarity when the period number is

abruptly changed by the user via the "Set n = DSP(x)" key.

This prompting is designed to say to the user: "OK, I (the

machine) have switched to the customary cash flow accumnula-

tion mode, thus the period prior to the one you requrest —

and that you will next enter a cash flow into — is in my

display; now enter the desired cash flow." The user then

enters the desired cash flow and presses the "STO CF's" key

132

This time, the calculator responds with the number of the

period used (as originally requested by the user in the

previous routine). The user can then check the total number

of cash flows stored, if desired, by pressing C. Since the

SR-52 program does not (for lack of program space only)

automatically reset N if 0 is stored in N, this check will

alert the user to reset N, if required, by pressing

*B, *RSET. (See Section IV.E.(9)c(3).) Clearly, without

the minus one routine discussed above, the user would be

faced with the same period number both before and after

entering the cash flow, which could more easily lead to

user's forgetting which operation was just accomplished,

especially if the user is interrupted during this process.

Conversely, the two routines are tied together by the display

itself with the above method. Similar display prompts can

be designed into most programs.

Finally, the HP-67 use of "words" in storage

registers (see-Section IV.E.(1l0)}d.) can also be used for

user prompting at end of executing or user prompting of

intermediate errors. Setting this process up, however, is

somewhat difficult, because the user must use both a data

card which contains the word-phrases and the program card

prior to commencing operations. Additionally, one storage

register per phrase desired must be available and otherwise

unused by the program at any time, and the program must be

structured to have the result (or error), normally to be

displayed after the words, stored in the proper STACK REG.

133

The process will then work similar to the HP-67 flashing

displays above. Thus a three phrase message might be

transferred into the STACK in the event of an error such

that the message, "IdEa CraZY. alsSO SOrrY. I dISagrEE.

-123.4567890" is flashed at the user for the result (or

error) valued -123.4567890. If the sequence of desired

phrases is longer, register review vice STACK review

can be used similarly, except that all intervening values

stored in the registers 1 through 9 and 20 through 25

would also be flashed. Alternately, a sequence which

individually recalls each phrase, pauses to display it,

and then repeats this cycle for the next phrase may also

be programmed.

h. Multiple Card Operations

Either calculator may be programmed to read

additional program or data cards in operation. Since this

process is somewhat more difficult with the SR-52, the SR-52

will be used in this section in all examples. The HP-67

process is simpler to program because the HP-67 "smart"

card reader does not require that the programs be structured

to ensure that read instructions on one card appear in the

same step number as do halt instructions on the next card.

The HP-67 will also automatically distinguish between

program and data, and will automatically reset all flags

and the display mode as specified on the new card. Once

programmed, however, the systems work similarly: A program

card is read into the calculator and the user begins using

134

the user defined keys for entry of variables and/or to run

calculations. Once calculations have begun, the user slips

the leading edge of a second card into the card reader.

This card will not be read until the program reaches a

point specified in the program, at which time the second

card is pulled through the card reader, modifying the program

or supplying additional data, and execution continues. As

an example, the authors designed a program which can be used

by students being introduced to basic linear programming

methods (Figure 6). The program will optimize an objective

function subject to three equations containing seven variables

each. The example below is subject to only two equations

of five variables: each, but is solved the same way. Thus,

as an example, suppose the student is asked to:

Maximize: 2x4 + 5X, + 7x4

Subject to: 3%, tox, + 2X4 + xy + 0x = 150

Xq + 3%, + 4X4 + 0x, + Xe = 250

(An explanation of linear programming is beyond the scope of

this work [18]. Thus the following analysis is most useful

to those readers already familiar with the technique.

Remember, however, that the method of this example is a

simplistic method for beginning students, not the most

advanced method that can be programmed.)

135

The student is given the following instructions:

(1)
(2)
(3)

(4)

(5)

(6)

(7)

(8)

(9)

Construct an expanded Simplex Tableau as shown below.
Compute the (cy = 235) row.
Mark the maximum value in the (cy = 25) row with one
asterisk (%*).
Compute the ratio of each constraint to the value in
the pivot (*) column.
Mark the minimum ratio obtained with two asterisks (**)
to define the pivot row.
Mark the intersection of the pivot row and pivot
column with the symbol (@) to define the pivot element.
Multiply the pivot element, and every other element in
the pivot row, by the reciprocal of the pivot element;
enter this new row in the next section of the tableau.
Multiply the new row by whatever factor is required
such that when the multiplied row is added to a
remaining row, in the previous tableau, the element
in the pivot column becomes zero; bring down this
zero (f) and the resulting sum for each other element
in the same previous row into the new tableau.
Continue with new tableaus until all elements in the
(c5 — 23) row become zero or negative or some other
informational condition is reached.

If required to work the example problem with the above

instructions, the result might look like this:

COST ROW VARIABLE Xq X4 X4 Xy Xg Xe

2 0 P
Ca =0 A x4 3 1 0 150
Cc =0 B Xo 1 3 s@ 0 1 250 **

. - . %* 0(5-25) 2 5 7 0 0 (0)

c,=0 a x4 2.5¢ -0.5 f 1 -0.5 25 **
Ce =7 B X13 0.25 0.75 1 0 0.25 62.5

(cj =25) 0.25%-0.25 0 0 -1.75 (437.5)

Cc, = 2 A X1 1 -0.2 0 0.4 -0.2 10
ci=7 B x3 # 0.8 1 -0.1 0.3 60

(cy=2z) 0 0.2 0 0.1 -1.7 (440)

OPTIMAL.

136

As a teaching aid to the above process, and to

avoid mathematical errors, the Program in Figure 6 can be

used by the student, in lieu of pencil and paper algorithms,

in the exact manner shown above. (This program does the

computations one line at a time the same way the student

would. The student must only learn to operate the program

properly and to relate to the matrix developed in Section

IV.E. (10)d., as reproduced below; the student must compute

ratios and pick his own pivots in the usual manner -— hence

these steps do not appear below.)

Column Number: 1 2 3 4 lon lon ~
J

©

Objective Row: *D' 84 85 86 87 88 89 90
ROW A: 01 02 03 04 05 06 07 08
ROW B: 11 12 13 14 15 16 17 18
ROW C: 91 92 93 94 95 96 97 98

Although this matrix differs from the standard matrix

typically learned for the Simplex method (a;qraypretc.) it

is similar and rather easily learned by the student; the

subscripts normally learned do not happen to all be available

as register numbers on the SR-52.

The process to use this two card program (one

side programmed per card) is:

137

Sample

Explanation Entry Press Display

Read Card 1 *READ

Set up OBJECTIVE ROW *D! 84.

Set up row counter D 84.
Enter OBJECTIVE ROW values (Column 1) 2 RUN 84.

(Column 2) 5 RUN 85.
(Column 3) 7 RUN 86.

Set up ROW A A 1.
Set up row counter D 1.
Enter ROW A values (Column 1 term) 3 RUN 1.

(Column 2 term) 1 RUN 2.
(Column 3 term) 2 RUN 3.
(Column 4 term) 1 RUN 4.
(Column 5 term) 0 RUN 5.
(Column 6 term) 150 RUN 6.

Set up ROW B B 11.
Set up row counter D 11.
Enter ROW B values (Column 1 term) 1 RUN 11.

(Column 2 term) 3 RUN 12.
(Column 3 term) 4 RUN 13
(Column 4 term) 0 RUN 14
(Column 5 term) 1 RUN 15
(Column 6 term) 250 RUN 16

(Same process for ROW C when required)

Set up for (cq = 24) calculations *RSET (l6.)
Enter highest” column number used 6 E 0.

(Values for each) (5th) RUN 0.
(successively) (4th) RUN 0.
(smaller column) (3rd) RUN 7.
(compute in) (2nd) RUN 5.
(sequence) (1st) RUN 2.

Alternately, or to recheck a value,
merely enter column number: 3 E

1 E 2

etc.

Read Card 2 *g! -——-
HLT (2.)

Multiply ROW B by (1/4 = .25)
and Relist ROW B. .25 D 0.25

B 11.

(Column 1 term) RUN 0.25

(Column 2 term) RUN 0.75

(Column 3 term) RUN 1.
(Column 4 term) RUN 0.
(Column 5 term) RUN 0.25
(Column 6 term) RUN 62.5

138

Sample

Explanation Entry Press

Multiply new ROW B by -2 and -2. E
add to previous ROW A; B
list new ROW A A

(Column 1 term) RUN
(Column 2 term) RUN
(Column 3 term) RUN
(Column 4 term) RUN
(Column 5 term) RUN
(Column 6 term) RUN

Reread Card 1 and Reset Counters *E'!

HLT

*RSET

Set up Cost Routine *C!
Enter Cost of ROW A 0 RUN
Enter Cost of ROW B 7 RUN
(Same process for ROW C when required)

Set up for (c4 -z4) calculations *RSET
Enter highest column number used and

compute as in previous tableau: 6 E
(Column 5 term) RUN
(Column 4 term) RUN
(Column 3 term) RUN

(Column 2 term) RUN
(Column 1 term) RUN

Reread Card 2 *E!
HLT

Multiply ROW A by (1/2.4 = .4) and
relist .4 D

A

(Column 1 term) RUN

(Column 2 term) RUN
(Column 3 term) RUN
(Column 4 term) RUN
(Column 5 term) RUN

(Column 6 term) RUN

Multiply new ROW A by -1/4 and add to
previous ROW B; list new ROW B -.25 E

A

B

(Column 1 term) RUN
(Column 2 term) RUN
(Column 3 term) RUN
(Column 4 term) RUN
(Column 5 term) RUN
(Column 6 term) RUN

139

-437.5
-1.75

-0.25
0.25

(0.25)

=
N
D

1
C
O
O
0
O
O
0
O
O
H
K
H
O

N
o

(
H

|
O
H
H
O n
N

u
n

o
N

|
O
O
O
H
O

w
+

00
]

Sample

Explanation Entry Press Display

Reread Card 1 and Reset Counters *E -———
HLT (60.)

*RSET (60.)

Set up Cost Routine *C! (60.)
Enter Cost of Row A 2 RUN 2.
Enter Cost of Row B 7 RUN 7.

Set up for (cy = 235) calculations *RSET (7.)
Enter highest coltmn number used and

compute as in previous tableaus 6 E -440.
(Column 5 term) RUN -1.7
(Column 4 term) RUN -0.1
(Column 3 term) RUN 0.
(Column 2 term) RUN -0.2
(Column 1 term) RUN 0.

Problem complete. Recall maximum: 6 E -440.
Result is $440.00.

If the reader is wondering why this program uses

two cards but only one side per card, the answer is that

only the first 112 program steps are used as program. The

remainder are used to create the storage registers 84

through 27. Of course, the two 112 step programs could be

put on alternate sides of the same card anyway, but since

the two programs use different user-defined labels, the use

of one card for both purposes would be confusing.

On the HP-67, the necessary number of data

registers can only be created by packing (storing values on

opposite sides of the decimal) at least 20 of the 26 available

registers. This limits inputs to values having no more than

5 significant digits, which is quite satisfactory for the

above example. This entire program can, also, be listed on

only one HP-67 card. Further, it is somewhat simpler to use

140

than the above SR-52 method. For interested readers, such

a program is provided at Figure 7.

In a manner almost identical to the above,

programs can be created which do not require secondary input

from the user, other than start commands after initial input.

Programs can even be created on loops of magnetic mylar

instead of cards, loops which require only occasional starts

by the user.

i. Program Space Versus Execution Time

In programs which compute solutions based upon

non-iterative algorithms, or with minimal use of iterative

(loop) algorithms, execution speed is not normally a

consideration because SR-52 and HP-67 can both execute an

average program of 224 instructions in less than 15 seconds

(unless numerous exponentiations are required in the case

of the HP-67). However, when numerous iterations of

algorithmic loops are necessary, execution time becomes a

critical factor. For example, note that the IRR examples

discussed in Sections IV.E.(9)c(7) and (8) require 4 minutes

46 seconds on the SR-52 and 7 minutes 20 seconds on the

HP-67. If these programs’ were not optimized for execution

speed, execution could require more than two times these

respective amounts of time. Extremely long program execution

times are both inconvenient to the user and unnecessarily

wasteful of battery power. Hence complex or iterative main

routines should normally be designed to minimize execution

time.

141

FIGURE 7

LINEAR PROGRAMMING AID (SR-52)

CJINIT.
A

SE
0BJ. ROW

REG,

USER
KEYED
LABEL

FLAGS:

(USED)

SELECT
CARD 2

J +(ci-2z2)

 SELECT SELECT
a.

 1 SUS.

COEF.

Subscript

Coefficient

TO INITIALIZE:

00 PRESS HLT*RSET.
0 a SUS. Al
02a SUS. A? INSTRUCTIONS IN THESIS.
03a SUS. A3
04[a SUS. Ad
05a SUS. A5 00010 *LT
06] a SUS. A6 I 46 *LBL
07a SUS. A7 2 13 C SELECT ROW C
08[b SUS. A8 307 7
09] Row A COST 4 85 +

10] Row B COST 5 46 *8L
11] a SUS. Bl 6 19 ED) SELECT

T2[a SUS. B2 IY 7 OBJECTIVE ROW
13a SUS. 83 8 03 3 _
14a SUS. 84 3&5 ¥ (Dy=83+j~REG 99)
15a SUS. B5 010] 46 *[BL
T6{a SUS. B86 —1 12 8 SELECT ROW B
17[a SUS. B7 201 1 (Bj=10+j>REG 99) _
18[b SUS. BS 3 46 *BL
19] Row C COST NEE A SELECT ROW A
911a SUS. CI 5 00 2 (A. = §+3~REG 99)
92]a SUS. C2 6| 85 ¥ J
93a SUS. C3 71 43 RCL
94a SUS. C4 8 00 a
95{a SUS. C5 9 00 @
96a SUS. C6 020] 22 INV
97]a SUS. C7 I 90 *TFZRO IFj#0
98[b SUS. C8 2 00 J
99 la SUS, 11 3 02 2
SET STATUS a 07 7 GTO STEP 027

DISPLAYTRIG 5 85 ¥ IF J = 0, As Above,
TSCI__ [x DEG 5 01 1 Aj = 1

ENG [RAD 027] 95 = BY = 11 pea 99
FIX" [GRAD 8 42 STO Cj = 91
X| FLOATING PT 9 09 9 Dj = 84

142

STEP KEY CODE KEY ENTRY NOTES

- emt em —— — om e—— S— — G— G— G— —

0, GTO STEP 037

CONTINUED
ON NEXT

143

STEP KEY CODE KEY ENTRY NOTES

GIVE:
ROW A INIT. COST: A,B,C

READ CARD 2

END OF CARD 1.

 96

STEPS 112-223
USED AS STORAGE
REGISTERS 84-97.

 NEXT
PAGE
FOR
CAR
NUMBER
TWO

144

USER | | LIsT0 Kk [] [REREAD
KEYED REG 0g CARD 1

LABELSASELECT BISELECT [CJSELECT PpJK. PR E TK PR ROW
ROW A WB ROW_C K-PR IN PR [K=PR SUM IN ROW

FLAGS OF F/ON OTHER REGISTERS NOTES

85 COEF. x SUS. 2 - FFICIENTSIF X COEF. = COEFFICIEN

3 : 87 COEF. x SUS. 4
88__ COEF. x SUS. 5mri os rt 208 1 TO INITIALIZE:

(COL) 9g COEF. x SUS. 7 press hit.
1

a

SUS. 68 |P SUS. j
02a SUS. 69 (Cy-23)

SUS.
SUS.
SUS.
S

SUS.
S.

SUS.
SUS.
SUS.
SUS.

98 b SUS.

94
95
6

97] a

US

C2
C3
C4

Co
C7
c8
i

S TUS
DISPLAY ___TRIG
TCT DEG
ENG[RAD
FIX[]GRAD
X| FLOATING PT

STEP KEY CODE KEY ENTRY

 1 STO K REG @@

K TIMES PR IN PR

— Sm o—— o——— SESS mm —— — —

SELECT ROW B
—
—

 et1 = 11%
SELECT ROW A

Set

+

145

STEP KEY CODE
0

KEY ENTRY
/

1 0

02
00
07
05
56

L

*E

*L
E

*ST F

AL
IN

*ST FL

STO

*ST FLG
02
81
TINUED

 H

N
NEXT
p

146

NOTES
IF FLG 1 SET,GIO STEP 067

IF FLG 2 SET, GTO STEP 075

STOP OR RTN TO CALLING SBR

READ CARD 2

> >

K TIMES PR SUM IN ROW

STEP KEY CODE KEY ENTRY NOTES

PRGM
OR
USER
GI

STOP OR GTO STEP 07/9

END OF CARD 2.

STEPS 112-223
USED AS STORAGE
REGISTERS 84-97.

147

FIGURE 8

LINEAR PROGRAMMING AID (HP-67)

user a] INITIALIZED] cINTTIALTZE [d INITIALIZE |e INIT. Z;
KEYED > LOADING CONVERSION OT SEQ. SEQUENCE

els row A Bd rows Md rwc BJ row EJ Z,
FLAGS: OFF/ON OTHER LABELS NOTES

0 @ POSITIONING
1 1 CONTROLS Any row may be used as
: 2 the Objective Row.

3
| 4 Costs of each row are

REGISTERS 5 manually stored as
1 8 STO A, STO B, STO C, etc.

7
Pivot value manually
stored as STO E.

STEP KEY CODE KEY ENTRY

d d

S1} STO ROWS
&D

DISPLAY TRIG

SCT_ [J 0EG
ENG []RAD

{FIX [1GRAD
| FLOATING PT

148

STEP KEY CODE KEY ENTRY NOTES

1

32 83
33 6
35 34

 STO PIVOT VALUE
IN E

PIVOT ON ROW A

149

STEP KEY CODE KEY ENTRY

31 25
34
3
34

PIVOT ON ROW B

150

FOLLOWING LABELS:
(1) PRESS LBL FOR PIVOT ROW
(2) PRESS LBL FOR ROW

BEING CONVERTED

STEP KEY CODE KEY ENTRY NOTES

E

S OW
IN REGs A,B,C AND D
AS APPLICABLE

151

STEP KEY CODE KEY ENTRY NOTES

1] 34 24 RC
1 83 f INT

END OF THIS PROGRAM

END OF PROGRAMMABLE MEMORY

152

Attempts to minimize execution times often

conflict with attempts to minimize program space. Because

of the search patterns used internally by either calculator,

the shortest possible program is not normally the fastest.

Thus the user must usually consider eliminating steps and

tolerating slower execution speeds in order to squeeze in

the primary program itself, or in order to add additional

user-defined routines to the program, as opposed to- minimizing

execution speeds. The best choice is normally to minimize,

to the maximum extent possible, the number of steps required

by all secondary routines which are never, or infrequently,

used by the primary routine(s). Conversely, the best choice

for the primary routine(s) is normally to minimize steps

only to the extent that execution time is not adversely

affected by the exclusion of addressing techniques which

require more steps, but which execute faster. These kinds

‘of tradeoffs are incorporated in the IRR routines discussed

earlier, for example. Nesting, stacking and even separating

the parts of routines can often be used to increase execution

speed, without requiring additional steps. Thus, the location

of each routine within the program may also be analyzed by

the programmer with regard to desires concerning program

space or execution times.

In summary, the optimization of calculator

programs requires tradeoffs which are based upon experience

and published literature, whereas basic, less efficient (but

useful) calculator programs can be created even by the novice

user.

153

11. Machines of the Future

a. The National SemiConductor Model 7100 (NS-7100)

The projected capabilities of this calculator

(Appendix B) are immense, exceeding the SR-52 and HP-67 by

at least one order of magnitude. Its projected cost is

$400. Its 4000-step basic library is structured as a

semiconductor cartridge, comparable (theoretically) to about

18 full SR-52 or HP-67 cards. The non-volatile memory thus

requires no drive motor in order to be read. Then, its

keyable memory and user cartridge give another 240 steps,

each. This totals an equivalent of 20 cards. Its projected

hardwired functions are extensive.

It is difficult to comprehend the capacity of

this calculator. For example, consider the IRR program

developed earlier (Table 3) and multiply the capacity of

that program by 20, or consider 20 equally complex programs

all in your hand at one time and all usable in whatever

sequence is desired, either in total or as subroutines

of a user-keyed or user-stored additional program; subroutines

of indexed library programs may also be called from the

keyboard. This calculator does not have user-definable

keys. Instead, multiple-digit call numbers, as specified on

the library index, must be used to call a routine. This

system is designed to correspond closely to normal usage of

mathematical subscripting, but requires more keystrokes than

do systems which use user-defined keys.

154

The 240 step cartridge programmable by the user

is much bulkier and much more expensive ($15 vice 50¢ each)

than a card of 224 steps. This may be considered, in some

applications, as the price for security: unlike cards,

semiconductor cartridges cannot be accidentally altered by

an external magnetic field.

National Semiconductor is not planning to

manufacture a printer for the NS-7100; another (independent)

company is planning to do this.

Experience with the NS-7100 may show that most

problems can be solved without much additional programming

by the user, simply by using the extensively indexed

routines available from each library cartridge. The authors

of this work are biased, however, toward high use of

individualized, permanently stored programs. Such an

accumulation of programs on the NS-7100 user cartridges

would be extremely expensive. It thus appears that the

calculator may be better suited to users who do not mind

keying in programs manually when required and who are

otherwise satisfied to depend heavily upon preprogrammed

routines, rather than generating large numbers of

individualized programs.

b. The Texas Instruments Programmable
Calculators 59 and 58 (TI-59; TI-58)

The TI-59 machine is the highest capacity hand-

held calculator projected to be available in June 1977. The

projected cost is $300. When combined with the PC-100A

155

printer it provides extensive alphanumeric formating (63

digits, letters, mathematical and Greek symbols) as well

as discrete-point curve plotting (printable coordinate

points 20 by n). This entire system will fit in a brief-

case with room to spare. The TI-59 has extensive hardwired

(semiconductor) functions, additional interchangeable

5000-step library semiconductor chips plug into the calcula-

tor's backside, and 480 step magnetic cards pass through

its card reader for additional capacity. Only one card is

required for the optional mode of 480 steps and 60 registers

but an additional card may be used to store data in registers

or to redefine step/register ratios; i.e., optional modes

of 960 steps with no registers or 720 steps with 30

registers, etc. (The tradeoff is 10 registers per 80 steps,

except that no more than 100 data-storage registers are

available.) The calculator will also read cards during

operation, as desired.

Key codes are double-merged, whereas they are

unmerged on the SR-52 and triple merged on the HP-67 or

NS-7100. Because of machine differences, the number of

double merged TI-59 program steps required to accomplish

programs equivalent to programs of triple-merged systems

appear to yield a step ratio of 1.2 to 1. Hence its

nominal mode of 60 registers and 480 card-steps (+5000

chip steps) roughly equates to 4567 NS-7100 steps or HP-67

steps. Of course, neither the NS-7100 or HP-67 has either

this many steps or 60 storage registers.

156

Projected execution speeds are faster on the

TI-59 than on the SR-52.

To introduce the reader to the data range

available on the TI-59, several tape outputs of this system,

obtained from Texas Instruments emulators, are reproduced

below as Figures 9, 10, 11, and 12. These tapes show that

this calculator retains all of the good features of its

predecessor (the SR-52) but, evidently, few of the dis-

advantages of the SR-52. (See also Appendix B.)

(The HP-67 will also accomplish some types of

graphical output by using the limit of each line printed,

or figures within each line printed, to outline curves.

An example of an HP-97 sine curve generated in this manner

is provided as Figure 13 below for comparison with the

TI-59 sine curves duplicated in Figure 11.)

The TI-59 is likely to be marketed longer than

has been the case for many calculators. Instead of pursuing

new machine designs, the manufacturers appear to be re-

searching improvements to the interchangeable semiconducter

chips which clip into the machine. Thus even more capacity,

on the same machine, may become available in the future.

Meanwhile, the TI-58 is projected for introduction at the

same time as the TI-59, at a lower ($125) cost. The TI-58

is identical to the TI-59 except that it has no motor and

doesn't read cards. In any event, until National Semiconductor

provides a printing capability for the NS-7100, the TI-59

combined with the PC-100A printer is projected to be the most

compact system available of equal capabilities.

157

FIGURE 9

TI-59 AVAILABLE ALPHANUMERICS

I

3=
7

i
| |

io
:li £3

:

LA
SS

i

i] 3 oT
<

[1] -

=

A T te
2

FH AJ
=

il Tl
‘at C—"

ur : := id=

i) =

3 biog
i=

3: =-— - oo 3 -
= 5mm

: Lc
I] at tat

“=
- 23

— HE
= p=

i: Fl
} My

—_ i:
= Ti

~ Pid
.

: =~
rid

ia HE
= 4

: = 2
-= = 1

= os
= - A— i- -— —

Fr =

7 =
J-. 1

? z:
=i PW

==

13 - =

oi
Ed =a= = eT

H z 3
= =

=e~~ = =
= ==

; T=

) — =

= =

! SE

it Liat
TE

= LE

ii
LL FE

2
: &

Sa. o

-. =,

?
’ :

- id
=;

—

i
“T -— id

N pl
i iit=i

=. CE
- =i

2 £1
is Za

; -:

2 ==
3 o =

X ==

eo7 SE
5

i
Rk

—
- 3-=
ps

i
- =.

- :

Cet
—

3

¥. Zi
=oe =. oo -

_ z

i pC
i — i

- ’i “id
= =

pi
i

-
=

el 3
Ta oa

Fas eT

i

3 SE
. -_

= jp
: a

: - te {i Te-, ~~
2 FeLi Jie
ii Ta~~ TLE
= fe

or Tr. t
ie. -r=

-= Tit .
= Ls

Io Si .
i TE

]

i y =

—-— -

whe

158

C
h
a
e

—
—
—
—
—
—
=

fe We a aseistae = aatt Re Te Be 2Wh,id LC armelais.]

159

C
b

T
a
t
F
o
[
o
d

[
o
d

C
O
E
0

—
—

.
0

se
es

ee
s,

at
o

0
C
T
a
a
a

”
..

.
W
O
T
S
T

o
h
b
e
e
e
E
E
E
E

o
fr

ee
rd

s
fr
ee
de

fe
se

nd
e

La
d

[r
od

be
s

Im
C
T
E

T
D

we
n
e
0
L
T

L
E
f
n
D
o
T
O
e
e

C
o

1
e
f
L
m
4

ob
es
es

3

.
~

C
e

a
u
n

or
h
t
a
r
a

i
r
®
ae
h
t

S
o
n
v
m
A
T
S
Y
N
J
S

C
D

"
.

*,
1
1

T
n
o
n
o
n
a
n
C
T
I
C
N
N
C
R

J
u

J
o
J
u
a

J
o

o
t

C
0
0
e
l

T
E

P
e

00
0

Po
l

ee
t
T
o
T

C0
0

me
]
C
T
)

00
)

be
e
D
0

04
0
0
0

a
e
e

o
n
b
l
C
C
T
O
n

4
s
r
m
t
i
m
i
a
a
b
m
n
v
a
c
a
l
A
n
a
r

a
m
r

20
m
n

a
o
s
o
m

T
T
T

a

o
t
e

t
e

fe
de

fe
de

fr
e

fe
de

fo
t

fa
ke

fe
de

fe
de

70
0
0
1
T
H

2
0
1
)
0

|

.
0
wd

n
o
C
o
o
2
I
)
.

p
o
C
h
a
e

L
L
*
L
n
i
a

0
0
a
A
D

|
C
T
C
F
)

o
f
C
l
)
0
0

ee
n
0

lo
fo

od
s

Pe
os

ke
f
r
o
m

re
ed

s
fo
rs
e

fo
od
s

fo
re
te

fo
rs

al
e

fo
od
s

fe
os

ed
e

fo
ee
be

fo
re

de
fo
rc
e

re
ct
.

f
e
t
e

B
E

To
t
Fo

To
d
Fd

To
Ft

Tt
0
0

To
d

bee
ts

pon
te

pon
te

poe
t

E
T
]
O
T

P
e
0

e
l
e
e

Z
T
0

0
0
0
C
F

|
]
Z
T
0
S

T
e
]
e
T

0

we
B
E

L
o

I
T
E

e
e
)
D
L

wd
A

l
t

no
l

C
O
B
O
|
D
E

“
a

.
-_

.
m
a

C
e

m
e
r
d
u
m
m
i
o
a
m
s
i
e

A
t
e

L
e
d
e
e
r
a
m
e
s

a
t

h
h
a

+m
a
h
h
a
r
A
d

..
C
e
r

te
ay

sm
er

ee
.

A
m
n

o
e
a
d
e
n

ce
a

o
n
t
a
n
a

c
o
a
t
ba
m
m
s

+
b
e
m

da
e

a
a
m
a
m
a
s

i
a
m

de
m
o
e

e
a
m

TI-59 KEY CODE LISTING
(Output Tape Width Cut Off Examples)

(CODES 00-99)

FIGURE 10

TI-59 SINE CURVE PROGRAM AND OUTPUTS (ACTUAL SIZES)

A-T=i ier

ENB 11 5
- = 1

1s sy 0 - — —

Utils a2 570 |
Cs O00 on
Cad S92 oT: fig

His Loo= tated Lo

I
e
e
t
L
t
0
0

0

“o
f

LT
H

IT
)

£
5

Jo
et
e
2
1C
o

a
—
—

V
T

0
)

e
T

RES i
Cis TH
i is

~
.
J
L

La
d
a
t
C
F
P
0
0
P
3
0

a
0
0
0

[4
0

00
[a

pet
e

(1

0
)

be
d
1
7
)
,

 3
b

b
e
r
L
f

E
T
f
a

pe
s
l
e
,

I
o

p
o
s
e

e
e
n

gr
as
s

i; =I
abs ar oi
Old 33 SIH
lz 83 ow |Gls 03 3
= 3 == TT .il ! 7 oe. =

ols or
LF gas 0
=o = _AR
zi 2% OF
022 GF aT
ECCI I =
O24 a3 oo
323 24 sunOEE 01 0d |=n =i OTNi; 1 5 iy i ui

ozs iT 0PE oag a

—COMPRESSEDSPACING

i

+ + -
+ oo

W
c
a
d

A
e
r
o
n
a
n
i
d

fa
1

me
s
S
h
A
a
s
h

a
b
e

* +

r
e
e

a
S
m

- Edt Oe bls onnlleb emnd€IrtEii AMAmreln er.mires ll)

160

de

_STANDARD SPACING
> TTTTOwSerrere yeyTy

= Ce TN

+

 oo

oa

Se

121

R
O
C
W
E

L
e
e
f
a
)

0

Ft
Fn

ve
R
E
C
T
E

0
T
T

u
g
[
a

ee
)

I
"
0

fr
ee

e:

T
E
0
0

[
O
U
R
V
E
N

-

La
d
[
o
l
e

E
e

C
T
T
e

C
2
0
d
n
a

"
i

P
o
o

fo
ot

Ja
e
t
m
)
0

[
r
o

fr
ea

d
foo

nch
e

C
E
C

ee
t
f
u

I
X

fo
ol
s

fo
nd
o

1
h
v
1

[
R
X
|

[
o
o

e
s
= |
e
0
0

f
e
e
d

0
be

se
J
o
n

{
0
[
2

bo
eh

e

L
E
C
I
C

ee
0

L
e
a
s
e
s

L
I

I)
EN

ee
SE

r
e
g
s
F
o
l

DO
K

_
—

Fa
it

To
l

po
t

C
0
0

pe
te
J
o
e
d

w
e
]

K
X

for
est

s

Pd
I
E
b
e

J
a

fr
oo
le

Ca
d
C
0
0
0

o
t
=

- [1

L
l
C
C

es
e
0

C
a

C
F
a
0

T
E

C
L
—

Fe
te
f
i

me
]

ID
E
N
a
e
e
)

C
H
C
v
e
E
D

ml
Z
T

er
Jos

es
le

*
oe

,
C
0

eee
a

me
]
0
8

x - C
o

a
A
t
e
b
e
t
m
m
M
A
+
Ab

ga
rm

se
b
o
d
m
a
n

FIGURE 12

TI-59 ALPHANUMERIC CALENDAR OUTPUT
(Program Not Shown)

FIGURE 13

HP-97 SINE CURVE PROGRAM AND OUTPUT

(Actual Sizes)

Note: X-axis labeling in 10 degree increments printed with
curve display.

- = - - os . oa y. $ 5 1 i me ee o- -— .
a - 3 4

‘e telwmn _— es Jabot Oo $i
oes - = i eee —-
Luo . : : { es hitTJ $EE
5s = i” - (TE SE
seo -— “- POPIE RENi * 23

- - -- { --
tire 3 ve ! se.”S% Fis :

EE Ls :“ w wis - Lo. - 8 - Sas KE

-- = - = -y = i i. es =
Bb Redwie -- - ! “at re Fo0 $

i - esl Ta : saa Zw Fe SO
- - = . © - ' : - - -—-
ERR = i ¢ ~~ -
Lao - a + a8 - if

so -. or wm ==
bg 3 . - - ! 8 ae ea ™

Coes . - “eee. =
gig - I de Vine ToT rg
<y _ ceca ==
Cia . -- baana aw OF

TRA - -= de dUTTIUY Da

dao. - Tee La ndEIRLTOY --2 -
- 4 - ee. - - a - = -- ee -. ee ae -

Jie oe TI. Wa loti dav wold =: : 3
- 4 > - . -— i - - 3 .

bao Tite .: = == fs
- - - = - vq ¢-

i] o Live ec Ta T- $7

= y= -= = - == 4 =
nly Ferme iT a. -= itd

UL - -a Zl Ea
yz - == --
J.= - = - 2 er

- oo - - J -

wre = - - ts
. -. -- y = a= ee =a
1 oe - - - - Sm

toa -w tb - > Pa a8 eo - - Ts

- oe. - -. --
ge o- T=. «8 © uile ii

3. = Tr <! -
Heo 1 -- -s — $54

- -- - — o - - = .

Cov Loo “Iv ose -t -r Er
- - - -- amo sq ~~

Joo Fos, Te 3.4}

“= -—- = -- ==
gio Ree -r wh Fg

[2J - Ng srg

nos - oT]CF < - a i...

aos mow - . Hl

ERA T °c
= -— = be

TT “= <= Lo
bol “ = =F

Jol - S-

Bas Jes -—_ Pak
--. ce. ‘¢ -_ = =
Eos FAT. ZT=c sf
FTE - s > o -
doo r - -e 7

-—- cee ee =
Boo Twn -_— a =i

doi r= z. Ll

F. PROGRAMMABILITY CONCLUSIONS

Programming calculators, as discussed in this work, is

the art of structuring algorithms such that the calculator

executes those algorithms most efficiently. On the other

hand, programmability relates to machine langauge; types

and numbers of keystrokes required; merging of keystrokes

in program steps; number of program steps available; functions

available; program and data storage capacity; speed of

execution; and ease of programming. All of these

items have been discussed in detail. In the opinion of the

authors, conclusions are:

(1) Programming calculators is certainly within the

capability of the average college student and probably within

the capability of most people at even lower levels of education

or experience.

(2) Pragmatically, the differences in learning algebraic,

AOS, or RPN languages are rather insignificant. However,

RPN does add programming flexibility, once learned.

(3) Tvpe and number of keystrokes required depends

primarily upon functions available on the keyboard and,

secondarily, upon the frequency that parentheses are used

(in lieu of algebraic hierarchy) on non-RPN systems.

(4) Excluding use of the HP-67 "I+" key, the average

number of merged program steps available on the HP-67 as

compared to the SR-52 approaches a maximum ratio of 3 to

1, but the average ratio can be reduced to 1.3 to 1 for routine

programming, dependent, of course, on ddlities of the programmer.

163

(5) The number of steps available depends upon sub-

paragraphs (2), (3) and (4), supra.

(6) Functional comparisons are as provided in Appendix

(7) The SR-52, compared to the HP-67, lacks an equivalent

amount of program storage capacity. The SR-52 has easier

access to extra registers for data storage whenever program

steps can be sacrificed.

(8) Speed of execution is faster on the SR-52, and is

particularly faster when exponentiation is used.

(9) The ease with which either calculator can be pro-

grammed depends more upon the experience and expertise of

the programmer than upon the machine. However, the HP-67

is easier to use for merging programs or multiple card

operations. Conversely, the direct addressing system used

by the SR-52 is easier to use than the relative addressing

used on the HP=67.

(10) The projected new machines (NG-7100 and TI-59)

portend quantum improvements in capacity and capability.

Questions concerning ease of use remain to be answered by

actual usage; projections known to the authors are that

Texas Instruments, Inc., intends to stop SR-52 production

and start TI-59 production almost simultaneously. Both the

projected NS-7100 and the projected TI-59 and TI-58 repre-

sent new levels of sophistication, but can only be theoretically

compared to each other, at the time of this writing, since

production models are not available to the authors.

164

Theoretically, none of these machines have serious competitors

in the current market, with the possible exception of the

HP-97 for some limited applications. Most information

made available to the authors concerning these machines is

represented by previous discussion and appendices hereto.

In any case, such calculators indicate the beginning of a

new generation of pocket calculators.

In summary, the prospective user should determine which

of the above capacities, constraints, and (as yet) unproven

manufacturer's projections, when compared to the somewhat

different prices of these current and projected calculators,

best fit his own parameters and yield the best value for

the specific situation.

165

APPENDIX A

EDUCATIONAL GUIDELINES: CANDIDATE COURSES IN THE MANAGEMENT
SCIENCE CURRICULA, NAVAL POSTGRADUATE SCHOOL [15]

The following listed required courses are considered to

be readily adaptable for incorporation of the hand held

card programmable calculator as an edutakional: tool:

2040

2045

5
8

5
5

1100

21502

31612

41512

MN 4152

MN 4154

41612

41622

Mathematics

- Matrix Algebra

2305/2306 - Calculus I-II

- Computational Matrix Algebra

- Calculus and Vector Analysis

Accounting

Financial Accounting

- Managerial Accounting

- Internal Control and Auditing

- Decision Making for Financial

Management

- Financial Management in the Navy

- Controllership

- Cost Accounting

166

Probability and Statistics

PS 3005 - Probability

MN 3011/3012 - Probability and Statistics
for Management I-II

MN 3211/3212 - Operations Analysis for
Management I-II

OS 3062 - Intelligence Data Analysis

OS 3201/3202 - Fundamentals of Operations
and Systems Analysis

OS 32-3 - Survey of Operations and Systems
Analysis

In addition to the foregoing, use of hand-held card

programmable calculators in the required curricula is

considered to be of importance in preparation for and/or

utilization in the following courses:

CS

CS

2
2

85
8

B
oO >

0110

0113

3183

3214

3645

4145

4181

3604

3620

3704

4510

Fortran Programming

COBOL Programming

Management Information Systems
and the Computer

Operations Research Methodology

Investigative Methods of Economics

Systems Analysis

Applications of Management Information Systems

Linear Programming

Inventory 1

Stochastic Processes

Selected Topics of Probability and Statistics

167

OA

OA

(07:

OA

OA

4614

4633

4634

4651

4654

Methods and Practices of Systems Analysis

Networks, Flows and Graphs

Games of Strategy

Search Theory and Detection

Combat Models

168

APPENDIX B

COMPARISON OF CALCULATOR FUNCTIONS

SR TT* HP NS*

52 59 67 7100

Logic System 20S AOS RPN ALG

Memory
Parens 9 9S 9
Automatic four memory stack X
Last X X

Program 224 480 (1) 224 480 (2)
Pending Operations 10 8 4 10
Addressable Memory (dedicated) 20 60 (1) 26 26 (2)
Algebraic hierarchy X X X

Positioning Operations
Stack roll down X
Stack roll up X
X, Y exchange X X
X, I exchange X X
X, Register nn exchange X
Fixed notation X X X X
Scientific notation X X X X
Engineering notation X X X
Auto-overflcw into scientific X X X (3)
Enter exponent X X X X
Change sign X X X X
Improper op and low battery

indicator X X X X
X, T exchange X X

Programming Features
Program review - back step/

single step X X X X

Insert/delete X X X X

Overwrite X X X

Relative Step number addressing X X

Relative Branching X X

Direct Branching Label X X X X

Direct Branching to Step no. X X X

Pause X X X

Condition Tests 5 12 (4) 8 9

Flags 5 10 4 8

DSZ X X X X

ISZ (looping) X X

169

Subroutine levels
File reader

Stores programs and data
Merges programs and data
Autcmatic prompting

Labels

User-definable keys
Indirect control of:
Data Storage and Recall
Storage arithmetic
Unconditional branching
Subroutine branching
[SZ
ISZ
Display

Clearing options
Clear entry
Clear T
Clear all
Clear registers
Clear program
Clear register nn

Built in Statistical Functions
Mean, Standard deviation

(no. variables)
Factorial 5 5
Summation (n,Ix,IxX",Ly,Ly ,Ixy)

(n,Ix,Ix2)

SR
52

X
72
10

X(a)

X(b)

Built in Scientific/Mathematical Functions
Trigonometric

Decimal degrees
Radians
Grads
Sin, Cos, Tan (plus inverses)
Rectangqular/Polar conversion
Decimal angle time/degree angle

time (H.M.S.)
Degree/Radian conversion
Conversion any angular
measure to any other

Logarithmic
log x, 10%
In x, eX
Expcnentiate negative number

170

X(c)

TI*

59

72
10(6)

<
a

<<
X

q
a

K
X

>
r
e
k
e
k
e

20(5)

R
K
X
X

X
X

a
i
l
e

NS*
7100

L
e
X
X

>
4

X
X

P
O
P
E
X
X

X
X

R
e

Re
e
e

SR TL* HP NS*
52 59 67 7100

Other Built in Functions

2 .
YY, x, x, Pi, 1/x X X X >

+, -,%x, + X X X >

X Root of Y X

%

% change
Absolute value X
Integer/fraction truncation X
Founding key
Merge programs

Conversions: in/am, gal/liter
Kg/lb, Newtons/lb force,
Deg C/Deg F, BTU/Foot 1b force X

R
X

X
O
X

R
E
D
E
X
X

Printing Features [7]
Print X X

List stack registers
List data
List labels
Paper advance
Variable print modes
Print space
List program
List crom program [8]

>

R
e

Re
Re

Re
o

Ra
R
o
s

P
S
P
E

P
E
E
D
K
K
X
K

NOTES:

*Based solely cn manufacturers claims. NS7100 uses chip vice card to
record programs.

(1) 480 steps nominal (mainframe) with 60 registers. Alternate levels:
160 steps with up to 98 registers or 960 steps with 0 registers;
plus 5000 step library CROM.

(2) 240 mainframe and 240 permanent file cartridge. Mainframe retains
program plus data as long as batteries are charged; or 240 mainframe
plus 4000 + library cartridge. Can retrieve particular numbers
from pending operations (total of 37 registers.)

(3) Rounds as ordered.

(4) Compare X to T (4 tests) plus compare X to registers (8 tests).

(5) Labels are reusable.

(6) 10 user definable functions plus call label.

171

(7)

(8)

(a)

(b)

(c)

(@)

SR52 and TISY plug into a separate printing unit. HP67 cards must
be printed with an HP37. All functions of HP67 and HP97 are the
same except for the integral printing unit. No printer presently
available for NS 7100 (see 8 below).

The TI59 CROM (library chip) is ccded by "page." A complete CROM
has 10 "pages" with 500 steps per "page." NS 7100 printer to be
manufactured by separate manufacturer. In addition NS 7100 will
have full input/output capability with other systems. Also, NS 7100
displays GTO, label and shift codes.

except registers 20-99

only registers 60-69 all at once

activated by a switch vice a button

will work but gives error flash; will halt a running program

172

R
S

RANA
NSAA

A
A
G
A
I
A

HP-67

173

SR-52 Mounted on PC-100

174

175

HP-97

61
pd

2
1

1

n
e
t

" 8
7

we

OLT

8G-1IL

177

TI 59

TLE
2mpy Rr—

A

Es

7

NN
A
R
T
I

Q
R
I
N

NS Model 7100

178

APPENDIX C

FLEET USES

The following non-exhaustive list of fleet functions

indicates the broad range of applications for programmable

calculators:

Aviation:

Tactics

Navigation

Flight profiles

Weight and balance (particularly cargo)

Analysis of Maintenance Material Management Data

Trend analysis (quality assurance)

Surface:

Tactics

Navigation and plot

Analysis of Planned Maintenance System Data

Trend Analysis (quality assurance)

Damage Control

Ships Engineering

179

Civil Engineer Corps:

Surveying

Structural design

Roadway design

Construction

Financial Analysis

Medical Corps:

Biological Analysis

Pathological Analysis

Meteorology:

Analysis of Meteorological data

Prediction

Research and Development:

All forms of weapons system design, research and

development analysis.

All of the following kinds of officers should be issued card-

programmable calculators:

Aeronautical Engineering Duty

Aviation Maintenance Duty

Weapons Engineering Duty

Civil Engineer Corps

Supply Corps

P-coded Operations analysis and engineering officer
billets

P-coded Managerial billets

180

APPENDIX D

EXAMPLES OF USER-SUBMITTED PROGRAMS [16,17]
(Extracted from some 5000 available programs)

BUSINESS

Experience curve for manufacturing cost

Summation of Ledger Columns

Amortization Schedule

New Product Growth Factor - Gompertz Method

Multi-Family Land Use Evaluation

Manufacturing Learning Curve - Unit and Cumulative Cost

Pert Estimating

Universal Rate of Return

Multivariate Corporate Failure Prediction Model

MATHEMATICS

4 x 4 Determinant and Simultaneous Equations

Complex Arithmetic

Complex Functions

Radar Range-height Calculation

Function and Derivatives

Maxima and Minima

La Grange Polynomial Interpolation

Numerical Integration

Differential Equations

181

ENGINEERING

Phase Shift Oscillator Design

Rectangular Waveguide Calculations

Transmittal Laser Pulse Energy

Aircraft Flyby Look =- Angles and Rates

Bode of Transfer Function with Eighth Order Polynomial

Phase Locked Loop Design, Acoustic Horn Evaluation

Ballistic Missile, Range, Elevation Angle

Biomechanics

Two-Instrument Radial Survey

COMPUTER SCIENCE

Binary Coded Decimal with Parity to Decimal Conversion

Control Data Computer Octal Dump Decoding

Decimal to IBM 370 Floating Point Hexadecimal Conversion

Octal Debug Aid

Optimum Disk File Blocking

Timesharing Wait Model

Sentential Logic

PROBABILITY AND STATISTICS

Moments, Skewness and Kurtosis

Permutations and Combinations

Two-State Markov Chain Matrix

Five Variable Regression Analysis

Chi Square Proportion Difference

Biserial Correlation Coefficient

The Cochran Q Test

182

QUALITY ASSURANCE/RELIABILITY

Redundant System Reliability

Aerhenius Chemical Reaction Rate

X Bar and R Control Charts

Correlation: Reliability and Validity

NATURAL SCIENCES

Environmental Noise Levels

Acid-base Balance

Creatinine Clearance

Enzyme Kinetics

ECG Data Optimization

Blood Acid-Base Status

Fick Cardiac Output

Oxygen Saturation and Content

Tumor Growth

Absorption Spectroscopy Calibration

Orbital Mechanics

GAMES

Casino Game Model for Study of Behavior

Simulation Wargame

Combat Odds

Space Ship Landing Simulator

Underwater Submarine Hunt

Biorhythms

Space Battle

Space Docking

183

AIR NAVIGATION

Flight, Plan and Verification

Predict Freezing Level

Dead Reckoning

Rhumbline Navigation

Great Circle Flying

Position and Navigation by One VOR

Weight and Balance

Moon Sight Reduction

MARINE NAVIGATION

Course Made Good from Three Bearings

Map Initialization

Running Fix from One Object

Planet Location

Sextant Correction

Storm Avoidance

Distance and Bearing to the Mark Sun Sight Reduction

184

10.

11.

12.

13.

14.

15.

LIST OF REFERENCES

Roperts, E.M., Fingertip Math, Texas Instruments, Inc.

Naval Research Laboratory Report 2938, Programmable
Calculator — Mini Computer Tradeoffs, by K.P. Thompson,
December 1974.

Rogers, Joy J., "The Electronic Calculator — Another
Teaching Aid?" The Arithmetic Teacher, Vol. 23, no. 7,
November 1976, pp. 527-530.

Bell, Max S.,"Calculators in Elementary Schools? Some
Tentative Guidelines and Questions Based on Classroom
Experience," 3 Ibid, pp. 502-509.

National Science Foundation Final Report. Grant no.
EPP 75-16157, Electronic Hand Calculators: The Implications

for Pre-College Education, by Marilyn N. Snydam, February
1976.

Interview of Mr. George Shultz, Manager, Academic Sales,
Educational Calculator Devices, Inc., Laguna Beach,

California.

Naval Postgraduate School Catalog 1976-77.

Gaskell, R.E., Turning On Your Mathematics, Naval
Postgraduate School, September 1976.

Interview of Commander C. Gibfreid, Chairman, Computer
Science Department, Naval Postgraduate School.

Lewart, Cass R. and Hal Brown, 65 Notes , January 1977,
Vol. 4, No. 1, pp. 1 and 12.

Interview of Lieutenant Commander P.I. Harvey, Tactical
Development and Evaluation Officer; Commander, Patrol
Wings U.S. Pacific Fleet.

What to Look for Before You Buy an Advanced Calculator,

Approach 13-30 Corporation, 1976.

Interview of Mr. Ron Eldrid, Hewlett Packard Company,

Santa Clara, California.

11 Ibid.

7 Ibid.

185

16.

17.

18.

19.

Catalog of Contributed Programs, HP65/67/97, Hewlett
Packard Company, July 1976.

Software Catalog (PPX-52), Texas Instruments,

November 1976.

Hadley, G., Linear Programming, Addison-Wesley, 1963.

10 Ibid.

186

Inc.

10.

INITIAL DISTRIBUTION LIST

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Library, Code 0212
Naval Postgraduate School
Monterey, California 93940

Dr. Carl R. Jones
Department Chairman, Code 54Js

Administrative Sciences Department
Naval Postgraduate School
Monterey, California 93940

Professor Harold J. Larson, Code 55La
Operations Research Department
Naval Postgraduate School

Monterey, California 93940

Assoc. Professor Rex. H. Shudde, Code 55Su
Operations Research Department
Naval Postgraduate School
Monterey, California 93940

Lieutenant Commander Harry R. Kruse, USN

Attack Carrier Air Wing Eleven
FPO, San Francisco 96601

Lieutenant Commander Alan Burkett, CEC, USN

COMRNCF REP West

Suite 203
1220 Pacific Hiway
San Diego, California 93132

Chief of Naval Operations
ATTN: OP0942D21
Washington, D.C. 20350

Chief of Civil Engineers
200 Stovall Street
Alexandria, Virginia 22332

Mr. D.S. Hurst
Naval Air Systems Command
ATTN: AIR340C

Washington, D.C. 20361

187

No.

10

Copies

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Capt. G. Dowd, USN

Naval Air Systems Command
ATTN: PMA 270

Washington, D.C. 20361

LCDR P.I. Harvey, USN

Commander, Patrol Wings ATTN: Code 51
U.S. Pacific Fleet

NAS Moffett Field, California 94035

Mr. Richard Nelson
HP 65 Users Club
2541 W. Camden Place

Santa Ana, California 92704

Mr. Ron Eldrid
Advanced Products Division

Hewlett Packard Company
3003 Scott Blvd
Santa Clara, California 95050

Mr. James Chumbley
National Semiconductor Corp.
1177 Kern Avenue
Sunnyvale, California 94086

Mr. Stavro E. Prodromou

Calculator Division
Texas Instruments, Inc.

P.O. Box 5012, MSS
Dallas, Texas 75222

Mr. Marvin Johnson
Vice President
University of Arizona
Tucson, Arizona

Mr. George Schultz
Manager, Academic Sales
Educational Calculator Devices, Inc.
P.O. Box 974
Laguna Beach, California 92652

National Council of Teachers of Mathematics

1906 Association Drive
Reston, Virginia 22091

Dr. Marilyn Suydam
Associate Professor
Ohio State University
1200 Chambers Rd., 310
Columbus, Ohio 43212

188

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Dr. Jacob T. Schwartz, Chairman
Department of Computer Science
New York University
251 Mercer Street
New York, New York 10012

Mr. Robert A. Sulit
Head, Operations Research Division
ATTN: Code 1860
Department of the Navy Naval Ship Research
and Development Center

Bethesda, Maryland 20084

Mr. Andre A. Pugin
Naval Weapons Engineering Support
Activity

ATTN: Code ESA 83
Washington, D.C. 20390

PPX-52

Texas Instruments, Inc.

P.O. Box 22283
Dallas, Texas 75222

Mr. R.C. Vanderburgh
52 Notes
9459 Taylorsville Road
Dayton, Ohio 45424

Mr. Jim Grant,
Head, Programmable Calculator Support Group
ATTN: PROCAL

Naval Electronics Laboratory Center
271 Catalina Blvd.
San Diego, California 92152

HP Key Notes
Hewlett-Packard Company
Users Library
1000 N.E. Circle Boulevard
Corvallis, Oregon 97330

U.S. Naval Academy
ATTN: Administrative Science Dept.
Annapolis, Maryland 21402

U.S. Coast Guard Academy
ATTN: Dept. of Mathematics
New London, Connecticut 06320

U.S. Air Force Academy
ATTN: Administrative Science Dept.
Colorado Springs, Colorado 80840

189

31.

32.

33.

34.

35.

36.

37.

38.

39.

U.S. Military Academy
ATTN: Administrative Science Department
West Point, New York 10996

Capt. J.M. Barron, USN

ATTN: Code 03

Director of Programs
Naval Postgraduate School
Monterey, California 93940

Professor R.E. Gaskell, Code 53Gl
Mathematics Department
Naval Postgraduate School
Monterey, California 93940

Assoc. Prof. Rudolph Panholzer, Code 62Pz
Electrical Engineering Department
Naval Postgraduate School
Monterey, California 93940

Assoc. Prof. A.W. McMasters, Code 54Mg

Administrative Sciences Department
Naval Postgraduate School
Monterey, California 93940

Adjunct Professor R. W. Hamming, Code 52Hg
Computer Science Department

Naval Postgraduate School
Monterey, California 93940

Mr. Alvin Andrus
Office of Naval Research
ATTN: Code 230
800 North Quincy Street
Arlington, Virginia 22217

Mr. Dean Lampman
National 7100 Users Club
5440 Cooper Road
Cincinnati, Ohio 45245

R.N. Forrest, Code 55Fo0
Operations Research Department
Naval Postgraduate School
Monterey, California 93940

190

	Cover
	Table of Contents
	Errata
	I. Introduction
	A. General
	B. Purpose
	C. Study Methodology

	II. Card Programmable Calculators and Education
	A. The Calculator as a Teaching Aid
	B. The NPS Pilot Project: Classroom Use of Card Programmable Calculators
	C. Proposed Use of Card Programmable Calculators in the NPS Management Science Curricula
	D. A Recommended Course Structure
	E. Thinking Process Transmutation: An Important By-Product
	F. Conclusions

	III. Fleet Use of Card Programmable Calculators
	A. General
	B. Machine Capacity Requirements
	C. Additional Advantages of Fleet Use
	D. Reliability
	E. Conclusions

	IV. Programming and Programmability
	A. General
	B. A Method of Value Analysis
	C. Algebraic Versus Reverse Polish Notation
	1. Description
	2. Accuuracy
	3. Execution Time

	D. Basic Calculator Programming Concepts
	E. Advanced Programming Techniques for SR-52 and HP-67
	1. Introduction
	2. Color Coding
	3. Programming Language
	Table 1: Key Abbreviations

	4. Key Code Systems
	5. Key Coding Formats
	6. HP-67 and SR-52 Program Storage Capacities
	Figure 1: Single or Bivariate Statistical Analysis (SR-52)
	Figure 2: Single or Bivariate Statistical Analysis (HP-67)

	7. Magnetic Card Formats
	8. Recording or Reading Magnetic Cards
	9. Advanced Programmability Comparisons, SR-52 vs. HP-67
	a. General-Internal Rate of Return as a Model
	b. Internal Rate of Return (IRR) Concepts
	c. IRR Program Capabilities
	(1) Step Ratios
	Figure 3: IRR (SR-52)
	Figure 4: IRR (HP-67)

	(2) Initial Data Entry Operations
	(3) Data Modification Operations
	(4) Undiscounted Subroutines
	(5) Time-Valued Subroutines
	(6) Error Protections
	(7) Sample Calculations, SR-52 IRR Program
	(8) Sample Calculations, HP-67 IRR Program
	(9) Redefining IRR Decimal Accuracy Limits
	(10) Comparison with Manufacturer Programs for IRR

	10. Advanced Programming Optimization Techniques
	a. Labeled, Direct, and Indirect Relative Addressing
	Figure 5: Types of Calls

	b. Label Search Mechanisms and Subroutine Locations
	c. Nesting and Stacking Labels or Subroutines
	d. Appropriating Program Steps or Registers for Data Memory
	e. Structuring Loops and Counters
	Figure 6: Loop Control by Sign of Variable

	f. Multiple (Alternate) Uses of One Subroutine
	g. Error or User-Prompting Routines
	h. Multiple Card Operations
	Figure 7: Linear Programming Aid (SR-52)
	Figure 8: Linear Programming Aid (HP-67)

	i. Program Space vs. Execution Time

	11. Machines of The Future
	a. The National Semiconductor Model 7100 (NS-7100)
	b. The Texas Instruments Programmable Calculators 59 and 58
	Figure 9: TI-59 Available Alphanumerics
	Figure 10: TI-59 Key Code Listing
	Figure 11: TI-59 Sine Curve Program and Output
	Figure 12: TI-59 Alphanumeric Calendar
	Figure 13: HP-37 Sine Curve Program and Output

	F. Programmability Conclusions

	Appendix A: Educational Program Guidelines
	Appendix B: Comparison of Calculator Functions w/Photo's
	Appendix C: Fleet Uses
	Appendix D: Examples of User Submitted Programs
	Bibliography
	Initial Distribution List

