
Lion Machine Software
7956 Rio Vista Dr. Golets, California 93117

LION MACHINE

HP-IL DEVELOPERS TOOL KIT

OWNERS REFERENCE MANUAL

Copyright (c) 1988 by LION MACHINE. All rights reserved.

No part of this publication may be reproduced or distributed in
any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of LION MACHINE.

LION MACHINE 7956 Rio Vista Dr. Goleta Ca. 93117 (805) 685-2296

Getting started...

You may be wondering just what you have bought here and how to
use it. These are the questlons that we are going to try to answer.
First here are the requirements necessary to use this software
package.

1) An IBM PC/XT/AT or close compatible to run the software on.

2) This computer must have a HP-IL interface adapter card installed in
it. Either Hewlett Packard's or Interloop's adapter card will be fine.
Installation will load the device driver interrupt $54 in the
CONFIG.SYS file. This driver is necessary for the loop routines to
function. To install the adapter you should consult the owners manual
of the adapter card you have.

3) Turbo Pascal 4.0 this package will not work with Turbo Pascal 3.0.
Well.. you can modlfy it to work with 3.0 but you might as well get a
copy of 4.0 since it is sooco.. much nicer!

4) Ability to write programs in Pascal. If you don't think you have
the ability, then a desire to learn Pascal will be fine.

A quick word on Turbo Pascal 4.0 and pre-compiled units.. Turbo
Pascal 4.0 supports libraries of pre-compiled procedures. These
libraries are called units. The units are stored on disk and are
available to the programmer when she writes programs. If you find that
you use a group of procedures in most of your programs then you can
group them into a unit and complle it. Now you can use them in your
programs by just addlng them in your "uses" statement. For example if
you have some string handling routines CentJust, RightJust, LeftJust
& StrlpBlank and they are compiled in the unit strInc. You can use
these routines in any program you write by adding the 1line..

uses
StriInc:;

at the top of the file. Now these procedures are available to use. The
Turbo Pascal system keeps track of which unit has been modified and
re—complles them as necessary. This relieves the programmer of
worrying about the code being up to date.

Units are divided into two sectlons, interface and
implementation. The interface section has all of the constants, type
defs, variables functions and procedures that calling programs can
access. The implementation section contains the code that is hidden
from the calling programs. Section (1) & (2) of this manual contain
information about the interface part of the Lion Machine HP-IL tool
kit. This information is necessary to be able to use this code
properly. Section (3) contains information about the implementation
section. This section is here for the interested user. Not all of the
routines contained here are used by the Tool Kit but the source code
is there in case you would like to modify it. Section (2) contains
information for the Interloop IO port. This can be ignored if you have
the Hewlett-Packard interface card since that card has no IO port.

The Lion Machine HP-IL Developers Tool Kit is a pre-compiled unit
called HPILInc. It consists of all of the procedures, functions,
variables and constants necessary for controlling HP-IL devices. It is

intended to be copied into your programmlng library. Once copied into
your library the loop controlllng routines can be used in the programs
that you develop. Here is an example of a loop control program. This
program called Plist will output a text file to the first HP-IL
printer on the loop. This makes a handy utility program.

program Plist;

{
This is a simple demo program that will prompt for a text file then
prlnt it out to the first HP-IL printer it can find on the loop.
if no printer is found (the printer must be able to respond to an
Accessory search), then the program is terminated with an error
message.

}

uses
HPILInc;

var
InFile : text;
Line : String;
PrinterAddr : integer;

function GetFile(var InFile:text) : boolean;

{
GetFile will open up an input text file if possible. GetFile
returns true if successful or false if not.

}

var
FileName : string;
FileOk : boolean;

begin
FileOk := false; { Assume failure. }
writeln; { Prompt for file name. }
write('File name : ');
readln(FileName) ;
agsign(InFile,FileName);
{SI-)
reset(Infile); Try a reset...
{SI+)

Test file...
Have valid file.
Test Failed.

if IOresult=0 then
FileOk := true

else begin
writeln;
write('Can not open ',FileName):;

end;
GetFile := FileOk;

end;

N
y
t
N
t
N
t

N
’

function SetUpLoop(var PrinterAddr:integer) : boolean;

{
SetUpLoop will configure the Loop and find a printer. SetUpLoop
returns true if successful or false if not.

}

var
LoopOk : boolean;

begin
LoopOk := false; { Assume failure. }
Restoreio; { Set up loop. }
if LoopError<>0 then

writeln('Loop error!') { Loop did not work. }
else begin

Clear:; { Loop worked, Reset devices. }
PrinterAddr := AccAddr(Printer); { Look for printer. }
if (PrinterAddr=NullAddr) then

writeln('Can''t find printer on loop.') { No printer!)
else

LoopOk := true; { Loop's up and found printer. }
end;
SetUpLoop := LoopOk;

end;

begin
if GetFile(InFile) then begin { Have valid file, Set up loop.)}

if SetUpLoop(PrinterAddr) then begin {Loop's up, Print file.)})
while ((not EOF(InFile))and(LoopError=0)) do begin

readln(InFile,Line);
Output (PrinterAddr,Line) ;

end;
if LoopError<>0 then

writeln('Loop broken...'); { Finished with an error.)}
end;
close(Infile);

end;
end.

Section (1) Program accessible loop control interface.

To use the HP-IL Tool Kit to its fullest extent you should read
and understand this section. This section explains all of the
procedures, constants, and variables that can be used by your HP-IL
controlling programs.

g

Variables & Constants

Loop Error flag :

Possible Loop Errors
1l : Output Error
2 : Enter Error
4 : Configuration error

LoopError : byte;

Optional string terminator :

This is the string variable that is added to the end of output
strings as an end of data message. Default value is <CR><LF>.

EndStr : String;

Loop Time Out Value :

This is the number of seconds before setting loop time out error.
This value can be changed at compile time to suite the system.

TimeOut = 15;

Null address value :

Any function that returns an address will return a -1 or
"NullAddr" if unsuccessful. This will not cause "LoopError" to be
set because there is no error, just a device can not be found.
Procedures that use address as input will not execute if
Address = "NullAddr".

NullAddr = -=1;

Accessory ID pre-defined values :

This block of constants are used for finding devices on the loop
by accessory ID. For example to find a prlnter on the loop the
statement Addr := AccAddr(Printer):; will return the address of the
first printer on the loop to the integer variable "Addr".

Controller = 15
MassMem = 31
Printer = 47
Display = 63
IntfceDev = 79
ElectInst = 95
GraphDev = 111
AnalitInst = 127

Procedures & Functions

RestoreIO procedure :

RestoreIO should be run once to configure the loop before
attempting any loop operations. This will assign addresses to devices
on the loop, set the loop time out, and put the loop in a known state
with the PC as loop controller. If successful, the variable
"LoopError" will be cleared. If not successful, "LoopError" will be
set to 4.

* NOTES ON ADDRESSING *

Address 1 - 7 are reserved for HP-IL to HP-IB interfaces. This was
decided by Hewlett-Packard when they designed the HP-IL interface
card, what this means to you is...

l. HP-IL loop address will start at 8.

2. HP-IL to HP-IB interfaces must have their address set in the range
of 1 - 7.

3. This does not affect devices that do not support auto addressing.
If a device does not have auto addressing, it will be addressed by its
built in default address.

procedure RestoreIO;

var
0l1ldTime : integer:;

begin
0l1dTime := time(TimeOut) ;
if not Config(TimeOut) then

LoopError := 4
else

LoopError := 0;
end;

Clear procedure :

Clear will cause the Device clear message to be sent out to every
device on the loop. Device clear does not affect the way a device
communicates on the loop, it sends out a pre-defined reset signal.
This signal will reset printers, clear buffers, set devices to initial
states and things like that. The response that a device has to the
clear message is entirely up to the device's designer. This means that
it can vary widely from device to device. You should consult the
owners manuals for your loop devices to see what if any response your
devices will have to this command.

procedure Clear;

var
Error : boolean:;

begin
Error := SendFrame(1044,0);

end;

DevAddr, NextDevAddr functions :

DevAddr returns the address of a device on the loop given its
I.D. name "DevName". If the device is not found, an address of -1 or
"NullAddr" is returned. NextDevAddr will find the next device on the
loop corresponding to the Last "DevName". Device ID's are an optional
function of loop devices. This means that they might or might not
support this function. Device names are usually the device model
number or company name.

function DevAddr (DevName:String) : integer:;

var
Addr : integer;

begin
LastDevName := DevName; { Setup to find next Device on loop. }
LastDevNum := 2;
Addr := FindID(DevName,1l);
if Addr = 0 then

Addr := NullAddr;
DevAddr := Addr:

end;

function NextDevAddr : integer;

var
Addr : integer;

begin
Addr := NullAddr:
if (LastDevNum>1l)and(LastDevNum<=30) then begin

Addr := FindID(LastDevName,LastDevNum) ;
if Addr = 0 then

Addr := NullAddr
else

LastDevNum := LastDevNum + 1;
end;

NextDevAddr := Addr:;
end;

AccAddr, NextAccAddr functions :

AccAddr will search the loop for a class match of accessory ID
"AccNum" and return the address of the first occurrence of that
accessory. If no match is made, the address of -1 or "NullAddr" is
returned. This function is handy for use when writing code for
printers or video displays. This can tell you the address of your
printer and display so you can send output to them automatically.
NextAccAddr will give back the next device on the loop that
corresponds to the AccNum last used.

HP-IL accessory types as defined by Hewlett-Packard are...

0 - 15 Controller
l6 - 31 Mass storage device
32 = 47 Printer
48 - 63 Display
64 - 79 Interface Device
80 - 95 Electronic instrument
96 = 111 Graphics Device
112 - 127 Analytical instrument

If you want just a class match send the highest number then only
a class match will take place i.e. for the first occurrence of any
printer, send 47 and you will get the address of the first printer.

function AccAddr (AccNum:integer) : integer;

var
Addr : integer;

begin
Addr := Find(1l,AccNun) ;
if Addr = $1F then

Addr := NullAddr;
LastAccAddr := Addr; { Set up for finding next device. }
LastAccNum := AccNum;
AccAddr := Addr;

end;

function NextAccAddr : integer;

var
Addr : integer;

begin
Addr := NullAddr:;
if LastAccAddr<>NullAddr then begin

= Find(LastAccAddr+1l, LastAccNun) ;Addr :
if Addr = $1F then

Addr := NullAddr:
LastAccAddr := Addr;

end;

NextAccAddr := Addr:;
end;

DevID function :

DevID returns the device name at the address "Addr". An address
Any error will return a null string.value of "NullAddr" is ignored.

If a loop error occurs then "LoopError" of 2 will be set.

function DevID(Addr:integer) :String;

var
outStr : string;

begin
outStr := ''; (Assume failure.)}
if (Addr<>NullAddr) then begin

outstr[0] := chr(lo(input(Addr,OutsStr[1l],MaxData, $562))):;
if length(OutStr)=0 then

LoopError := 2;
end;
DevID := OutStr;

end;

outPut procedure

OutPut sends data to a device on the loop. "Addr" is the Device
address on the loop and "DatasStr" is the data to be sent to that
address. An address value of "NullAddr" is ignored. If a loop error
occurs the "LoopError" will be set to 1.

procedure Output (Addr:integer;DataStr:String):;

var
NumBytes byte;

begin
if (Addr<>NullAddr) then begin

DataStr := DatasStr + EndStr;
NumBytes := LoopOut (Addr,length(DataStr), DataStr[1l], true):;
if NumBytes<>Length(DataStr) then

LoopError := 1l; {data transmission error)
end;

end;

/1O

Enter function :

Enter returns data from a device on the loop. "Addr" is the
address of the device on the loop to receive data from. An address
value of "NullAddr" is ignored. Any error will return a null string.
If a loop error occurs then "LoopError" of 2 will be set.

function Enter (Addr:integer) :String;

var
outsStr : string;

begin
outStr := ''; { Assume failure.)}
if (Addr<>NullAddr) then begin

outsStr[0] := chr(lo(input(Addr,OutsStr[1l],MaxData, $560))):;
if length(OutStr)=0 then

LoopError := 2;
end;
Enter := OutStr;

end;

Sendstatus function :

SendStatus returns the Status of the device at address "Addr". An
address value of "NullAddr" is ignored. Any error will return a null
string. If a loop error occurs then "LoopError" of 2 will be set.

function SendStatus(Addr:integer) : String;

var
outstr : string;

begin
outstr := ''; {(Assume failure. }
if (Addr<>NullAddr) then begin

outsStr[0] := chr(lo(input(Addr,OutsStr[1l],MaxData,$561))):;
if length(OutsStr)=0 then

LoopError := 2;
end;
SendStatus := OutsStr;

end;

/i

Section (2) The Interloop IO port interface.

To use the Interloop IO port you should read and understand this
section. This section explains all of the procedures, constants, and
variables that can be used by your programs to control The Interloop
IO Port. If you have an Hewlett-Packard HP-IL adapter card instead of
the Interloop HP-IL adapter card you can safely skip this section.
This is because the Hewlett-Packard HP-IL adapter card has no IO Port.

/

Variables & Constants

Setting the port vector :

To use the Interloop IO port the address that Model# 150 HP-IL
interface card is installed at must be known and stored in hexadecimal
form in the variable "HPILCardAddr". Interloop defaults this address
at 300H. This address may be changed because of address conflicts when
the card was installed. If your system has a HP-IL card installed and
running you can find out the address by checking the CONFIG.SYS file
where 1ts HPIL.SYS file is installed. If the address is different than
the default address, it will be shown as a parameter /Axxx where xxx
is the address in hex. An example for setting the Interloop default
address of 300 would be the statement: HPILInc.HPILCardAddr := $300;

HPILCardAddr : LongInt;

Reading & Writing to the port.

Writing to the output port is accomplished by setting the
variables Out4, Out5, Outé to either true or false as you want then,
then by calling the WritePort procedure. Reading the input port is
accomplished by first calling the procedure ReadPort then reading the
values from Iné and In7.

Out4, Out5, Out6, In6, In7 : boolean;

Procedures & Functions :

ReadPort Procedure :

ReadPort uses HPILCardAddr to load the boolean variables Iné and
In7 with the corresponding values from Iné and In7 of the IO Port.

procedure ReadPort;

var
InNum : word:;

begin
if HPILCardAddr <> nullAddr then begin

InNum := Port[HPILCardAddr+7]:
if (128 and InNum)=0 then

In7 := true
else

In7 := false;

if (64 and InNum)=0 then
Iné := true

else
Iné := false;

end;
end;

/3

WritePort Procedure :

WritePort uses HPILCardAddr to set the IO port outputs to equal
the boolean variables Out4, Out5, Outs.

procedure WritePort;

var
OutNum : word;

begin
if (HPILCardAddr<>NullAddr) then begin

OutNum := 0;
if Outé then

OutNum := OutNum or 64;
if Out5 then

OutNum := OutNum or 32;
if Oout4 then

OutNum := OutNum or 16;
Port [HPILCardAddr+7] := OutNum;

end;
end;

/'

Section (3) Non accessible low level code.

This section is purely optional. All of the Type definitions,
constants, variables, procedures, and functions listed here are
"invisible" to programs using the HP-IL Tool Kit. This code is only
"visible" to the procedures and functions contained in the HP-IL Tool
Kit. This section can be most useful to programmers that need greater
control over HP-IL operation that the tool Kit offers. It is included
for those that would like to know more about the inner workings of the
HP-IL Developers Tool Kit so they can modify it.

)5

Variables, Constants & Type Definitions

Used for the input buffer size.

MaxData = 255;

Calling DOS interrupt procedures :

The HPIL.SYS drivers that come with the Hewlett-Packard and
Interloop HP-IL interface cards are invoked by DOS interrupt calls.
Interrupt procedures access data through the CPU registers. Turbo
Pascal's method for accessing the CPU registers is through a variable
of type DOS.registers. To invoke an interrupt procedure load a
variable of type DOS.registers with your input data then call the
necessary interrupt procedure. After the interrupt procedure has
finished the ending state of the processor's registers will be found
in the DOS.registers type variable. These registers hold the output of
the interrupt procedure. "Regs" is the variable used to pass data to
the CPU registers.

Regs : DOS.registers;

Variables used for multiple device searches :

Variables declared in a Turbo Pascal unit's implementation
section can only be accessed by the unit itself and are protected from
being overwritten by other code from the calling program. These
features make it possible to save the state of a unit from call to
call. That is what these variables below are for: saving the state of
the unit between calls to allow for multiple searches from one data
input.

LastDevNum, LastAccAddr, LastAccNum : LongInt;
LastDevName : string;

Initialization Code

Along with the power to store information from call to call is
the ability to initialize values before execution of the main program.
Here is the code use by the Lion Machine HP-IL Tool Kit for
initialization. This procedure sets up all of the default values for
the unit's variables.

begin
EndStr := Char(13) + Char(10):; <CR><LF> Sequence

LastDevNum := 1;
LastAccAddr := NullAddr;

Set up for multiple
device and accessory
searches.

LoopError := 0; Assume no errors yet.

—
~
—

—
~
—
—
—

—
~
—

—
~
~

e
e

—
~

HPILCardAddr := NullAddr:;
end.

Set up for using IO port.

/&

Procedures & Functions

Note that the comments sections end with a number such as 5-73
which refers to the appropriate page in the Technical Reference Manual
for the HP Portable Plus.

Time function :

kkkkhkhhhkhkhhkkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhkkhkhkhhkhkhhkhhkhhkhkhkhhkhhkhkhkhkhkhkhhkhhhkhhkhhkkihkik

This function sets the timeout to a new value and returns the old
value

Secs is an integer that is the number of seconds to wait before
declaring a time out error. The value returned is old time out if
loop ok or 0 if not.

Set Time out 5-76
khkkkhkkkhhkhkhkhkhkhkhkhkhhkhkkhkhkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkkkkhkhkhkhkhkhkhkkkkkkkkkkkkxk

function Time(secs : integer) : integer:;

begin
if secs <=0 then

secs:=1
else if secs > 4095 then

secs:=4095;
Regs.ax:=$0A00;
Regs.bx:=secs shl 4; { intr $54 uses time in 1/16ths of a sec. }
intr($54,Regs) ;
if (Regs.flags and 1) = 1 then

Time:=0
else

Time:=Regs.bx shr 4;
end;

ConFig function :

khkkhkkhkhkhhkhhkhkhkkhkhkhkhhhhhhkkhhhhkhkhkhkhkhkhkhkhkhhhkhkhkhkhhhkkhkkkhkhhkhkhkhkhkhkkkkhkhhhkkkkx

This function places the loop in a known state and assigns addresses.

Secs is an integer that is the number of seconds to wait before
declaring a time out error. Config will be set to true if the loop
is
ok, else false.

Configure Loop 5-69
khkkkkhkhkhkhkhkhhhhkhkhhhhhkhhhkhhkhkhhkkhkhkhhkhhkhkhkhkhkhkhhkhhkhkhkhkkkhkhkhkhkkkkhkhkhkhkhkkkkkhkhkkkk

function Config(secs : integer) : boolean;

begin
config:=false; { assuming failure)}
Regs.ax:=$00; { command to configure the loop }
intr($54,regs); { call hpil primitives)
if (Regs.flags and 1) = 0 then

if time(secs) <> 0 then
config:=true;

i7

end;
Find function :

khhkhkhkkhkhhkhkhhkhkhhkhhkhhkhhkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhhkhkhkhkkhkhkhkhkhkkhkhkhkkhkkhkhkhkkhkhkkkk

This function searches the loop starting at the address STARTADDR
looking for a device with an accessory id of ID. If the ID is $xF,
only a class match is performed (only the top four bits are compared
with the device accessory IDs). If a matching device is found, its
address is returned else 1lF is returned.

Find Device 5-70
AkhAhkhkhhkhkhkhkhkhhkhkhkkkhkhkkkhkhkkkkhkhkkhkhkhkkkhkkhkkhkhkkhkhkhhkhkhkkhkkhkhkkkkkkkkkkkkk

function Find(StartAddr, id : integer) : integer;

begin
Find := S$1F; { assume failure }
if id<>254 then begin
Regs.ax:=$0100; { command for find device }
Regs.bx:=(StartAddr shl 8) or id;
intr($54,Regs) ;
if (Regs.flags and 1)=0 then
Find:=lo(Regs.bx); { return address)}

end;
end;

GetID function :

kkhkkhhkhhkhhhhhkhhkhhhkhhhhkhhhhhkhkhkhkhhkhkhkhhkhhkhkhkhkhhhhkhkkhkhkhkhkhhkhhkhhkhhkhhkhkkkkkk

This function returns the accessory ID of the HP-IL device at the
address specified. Several conditions exist that will cause a value
of $SFE (254) to be returned:

1) Addressed device does not support accessory ID.
2) Addressed device does not exist.
3) Addressed device has an accessory ID of S$FE.

$FE is the id for an extended class, general device. A program that
needs to control a device with this ID will require some other means
to determine if the device is on the loop. valid address is (00
through 30). If id not found $FE returned.

Get Accessory ID 5-71
khkkhkhkhkhkhhkhhkhhhhdhhhhkhkhkkhhhhkhhhhkhhhhhhhkhkhkhkhhhhhhhhkhkhkhkhkhkhkhhkkkhkhkhkhkkkkkkk*k

function GetID(addr : integer) : integer;

begin
GetID:=$SFE; { assume failure)}
if addr in [0..30] then

begin
Regs.ax:=$0200;
Regs.bx:=addr;
intr($54,Regs) ;
if (Regs.flags and 1)=0 then

GetID:=lo(Regs.bx) ;
end;

end;

/8

Input function :

Rhhkhkhhkhkkhkhkhkhkhkhkhhkkhkkhhkhkhkhkhhkhkhhkhkhkhkhkhkhkkhhkhkhkhkhkhkhkhkhkhkkhkhhkhkhhkhkhkkkkkkkkkkkkkk

This function receives characters from a device on the loop.

Addr is the address of the device to receive data from. Buff is a
buffer area to put the data. MaxBytes is the maximum number of bytes
to receive. Option can have the following values:

$560 -- send data
S561 -- send status
$562 -- send device id.
$563 -- Send accessory id.
0 -- No SOT frame is sent.

The functional return is the actual number of bytes transferred, or 0
if an error.

Note that MaxBytes is an integer that is from 0-255.

Note that "buff" can be any type variable (integer, string, etc. and
that the bytes received will start at the first byte of buff. If you
have the data going into a string variable, it will start at position
0, not 1 unless you define the variable to be the first position. For
example, if "line" is a string, data could fill line by specifying
"line[1l]" as the variable "buff". Note that in this case you should
set 1line[0] as the return from this function.

Example - line[0]:=chr(lo(input(addr,line[1l],MaxBytes,option)));

This takes care of the string and the length.

Address 5=72
Input Data Block 5-74
khkkhkhkkhkhhkdhkhkhkhkhkhhhkhkhhkhkkhhkhkhkhkkhhkhkhkhkhhhkhkhkhkhkhkhhkhhkkkhhhkhkhkhkhhkhkkkdkhkdddkkkkkk

function Input(addr:integer;var buff;MaxBytes,option:integer):integer;

begin
Input:=0; { assume failure)
Regs.ax:=$0300;
Regs.bx:=(addr shl 8) or 31;{ talk addr and my listen addr(31l) }
intr($54,Regs) ;
if (Regs.flags and 1)=0 then

begin
Regs.cx:=MaxBytes;
if (option>=$560) and (option<=$563) then

Regs.bx:=option
else

Regs.bx:=0;
Regs.es:=seqg(buff) ; { segment that buff is in }
Regs.di:=ofs(buff) ; { offset into segment of buff)
Regs.ax:=$0500;
intr($54,Regs) ;
if (Regs.flags and 1)=0 then

Input:=Regs.cx; { bytes received }
end;

end;

/9

LoopOut function :

khkkhkkhkhkhkddhkhkhkhkhhhhkhkhkhkhkhhkhkhhkhkhkhhkhkhkhkhkhkhhkhkkhkhhhkhkhkkhkkkhkhkhkhhkhkhkkkkkhkhkhkkhkkkkk

This function sends characters to a device on the loop.

Addr is the address of the device to send data to. Buff is a buffer
area that has the data. 1len is the number of bytes to send (see note
in function above. The functional return is the actual number of bytes
transferred, or 0 if an error.

See notes for "buff" above in "input" function

Address 5-72
Output Data Block 5-73
kkkkhkdkhhkhkdhhhkhhkhhkhhkhkhrkhrkhhkrkhhkhkkhkhhkhhkhhhhkhhhhhkhkhhkhhhhhkhhkk

function LoopOut (addr,len:integer;var buff;EndOpt:boolean): integer;

begin
LoopOut:=0; { assume failure }
Regs.ax:=$0300;
Regs.bx:=(31 shl 8) or addr;{ my talk addr (31) and addr listen}
intr($54,Regs) ;
if (Regs.flags and 1)=0 then

begin { no error)
Regs.cx:=len;
Regs.dx:=ord (EndOpt); { finish with END frame if desired)
Regs.es:=seqg(buff); { segment that buff is in)
Regs.di:=ofs (buff) ; { offset into segment of buff)
Regs.ax:=$0400;
intr($54,Regs) ;
if (Regs.flags and 1)=0 then

LoopOut:=Regs.cx; { bytes sent }
end;

end;

GetFrame function :

Je Je Je de Jo K K e ke de de ke Kk de Ko de de e ke ke ke de K de de de e de ke ke ke e de ke K de e ke de ke e K ke de de K K de de d de K de de de de de e de de Ko K de ke K Kk ke ok ok ok

This function waits for a frame to be received. If no frame is
available from the HP-IL interface then 00 is returned. If an error
occurs -1 is returned.

Get Frame 5-75
khkhkhkhkhkrkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkkhkhkhkhkhkkhkkkkhkhkkhkhkkkhkhkkkhkhkhkkkhkhkhkkkkhkhkkkkkhkkkkkkkk

function Getframe : integer;

begin
Regs.ax:=$0700;
intr($54,Regs) ;
if (Regs.flags and 1)=0 then

GetFrame:=Regs.bx and 2047
else

GetFrame:=-1;
end;

AL

SendFrame function :

% e J e J e de e de ke Je ke Kk e d Je de Je de de de de ke de ke de ke de ke de de ke de ke de ke Kk ke de ke de g de K de g de ke Je g de ke kK de ok de ke koK d ok kokkkkkk

This function will send the specified frame over the loop and an error
code is returned. Frame is the frame value (0..2047) to be sent. The
values and their usage are defined in the HP-IL interface
specification manual. the options supported are:

0 : wait for loop ready before transmit.
1 : No wait before transmit.

Send Frame 5-75
khkkkkkkhkkhkhkkhkhkhkhkhkhhkhkhkhkkhkkkhkhkhkhkhkhkhkhhkhkhkhkhkkkhkhkkhkdkkhkkkkhkkhkhkhkhkkkhkkhkkkkkkkxk

function SendFrame(Frame,Option:integer) : boolean;

begin
Regs.ax:=$0600;
Regs.bx:=frame and 2047;
Regs.dx:=option and 1;
intr($54,Regs) ;
SendFrame:=((Regs.flags and 1)=0);

end;

Status function :

khkkkhkhkhhhhkhhhhkhhhhhkhkhkhkhkhkhkhhkhkhhhkhhhhkhhhhhhhhkkhkkhkkhkhkhhhkhkhkhkhkhkhhhkkkkkkkk

This function returns the current loop status. If the loop is ready
for a frame to be sent, bit 0 will be set. If a frame is available,
then bit 1 will be set. Note that any operation that sends a frame
will effectively erase the frame available bit. The time out is also
tested if the loop is not ready for a frame, and a time out error is
returned if necessary.

status bit 15-7 : not used.
bit 6 : controller active.
bit 5 : talker active.
bit 4 ¢ listener active.
bit 3 : service request received.
bit 2 : (not used).
bit 1 : frame available.
bit 0 : Loop ready for frame.

if an error occurs a -1 is returned.

Status 5-76
khkkhkhkhkhkhkkhkkhkkkhkhkhkhkkhkhkkhkhhkkhkhkhkkkhkhkkkhkhhkkkhkhhkkkhkhkkhkkhkhkkhkkhkhkhkkhkhkkkkkkkkkkkk

function Status : integer;

begin
Regs.ax:=$0800;
intr($54,Regs) ;
if (Regs.flags and 1)=1 then

Status:=-1
else

Status:=Regs.bx;
end;

2/

FindID function :

khkkhkhkhhkhhkhhhhkhhkhhhkhkhkhkhkhkhkhkhkhkhkhhhhkhhkhkhkhkhkhhhhhkhhkhhkhkhkhkkhhkhkhkhkkhkhkhkkkkkkkk

FindID will find a non-HP-IB device on the loop if it exists by it's
device ID (i.e. Name) rather than by it's accessory ID. The parameter
"LoopNum" is the number of the device in the loop. For example, if

you wanted to find the second one of a given device in the loop, then
LoopNum=2. If the device is not found, 0 is returned.
Rhkhkhkhkhkhdhkhhhhhkhkhkhhkhhhkhkhkhkhkhhkhkhkhkhhkhhkhhhkhkhkhkhkhhkhhkhkhkhkkkhkhkhkhkhkhkkkkhkhkhkhkkkkk*k

function FindID(Name:String;LoopNum:integer) : integer;

var
Addr, Num : byte;
Line : string;

begin
FindID:=0; {assume failure)
Num:=0;
if ((LoopNum<l)and(LoopNum>22)) then

LoopNum:=1; {check limit)
for Addr:=8 to 30 do begin

line[0]:=chr(lo(input (Addr,line[1],9,$562))):
if (Regs.flags and 1)<>0 then

exit;
if copy(line,1l,length(name))=Name then begin

Num:=succ (Num) ;
if num=LoopNum then begin

FindID:=Addr;
exit;

end;
end;

end;
end;

2 R

Appendix

Where do I find out more about HP-IL ?

A good introduction to HP-IL can be found in the book:

THE HP-IL SYSTEM:
An Introductory Guide to the Hewlett-Packard Interface Loop

by
Gerry Kane, Steve Harper & David Ushijima

Another source of information is the Hewlett-Packard HP-IL
technical reference manual available from Hewlett-Packard.

Where can I buy HP-IL devices ?

Hewlett-Packard supplies a complete line of scientific and
engineering devices that communicate with HP-IL. To order
Hewlett-Packard and other computer equipment you can contact:

Educalc
27953 Cabot Road
Laguna Niguel, Ca. 92677
(714) 582-2637

Lewis & Lewis
1600 Callens Road
Ventura, Ca. 93003
(800) 324-3607

or
Hewlett-Packard sails in your area.

Interloop carries an entire line of Step motor drivers, I/O
interfaces, HP-IL repeaters, and other HP-IL products.

Interloop
706 Charcot Avenue,
San Jose Ca. 95131
(408) 922-0520

Semifusion Co. Carries a line of high performance robotic servo
motors that communicate with HP-IL.

Semifusion Co.
2352 Walsh Avenue,
Santa Clara Ca. 95051

(408) 748-8416

Lion Machine Software
7956 Rio Vista Dr. Goleta, California 93117

THE

LION MACHINE

HP-IL DEVELOPERS TOOL KIT

WHAT Is IT?

HP-IL DEVELOPER'S TOOL KIT

What is it ?

The HP-IL Tool Kit is a software tool for developing
Pascal programs to control HP-IL devices with an IBM
PC/XT/AT or close compatible. The Tool Kit consists of
several input/output and searching functions that can be
added dlrectly into Turbo Pascal 4.0 programs to control
HP-IL devices. These functions and procedures should be
sufficient for building most HP-IL systems. The source
code and complete documentation is supplied for users that
would like a greater knowledge of HP-IL or need greater
control of HP-IL.

What is its purpose ?

The Tool Kit was designed as a software tool to
relieve the system developer from the intricacy of HP-IL
protocol. The Tool Kit used as is gives the programmer the
power to auto configure the HP-IL communication loop, find
devices on the loop by I.D. or device type, input and
output data, input device status and reset devices. This
allows the programmer to quickly build systems using HP-IL
devices.

How does it work ?

The Tool Kit is a set of Pascal routines that control
the HPIL.SYS system supplied with the HP-IL interface card
from Hewlett Packard. The Tool Kit is written in the form
of a pre-compiled Turbo Pascal 4.0 unit library file. To
use the Tool Kit you must first have an HP-IL interface
card and its HPIL.SYS system properly installed. To create
programs that operate HP-IL all that is done is to include
HPILInc in your "uses" statement. This is done by
typing..

uses
HPILInc;

at the top of any Pascal code file that needs to use the
HP-IL routines. This is all explained in your Turbo Pascal
4.0 owners manual.

The Tool kit offers these pre-compiled HP-IL routines..

* RestorelO Auto configures HP-IL.
* Clear Resets loop devices.
* DevAddr & NextDevAddr Locates devices by name.
* AccAddr & NextAccAddr Locates devices by type.
* DeviceID Reads device names.
* Output Sends Data to devices.
* Enter Reads Data from Devices.
* SendStatus Reads status from devices.

Also included are the driver procedures for the
Interloop model # 150 IL interface IO port.

* WritePort Toggles IO port bits.
* ReadPort Reads IO port bits.

All source code and documentation is included for easy
modifications and changes.

Lion Machine Software
7956 Rio Vista Dr. Goleta, California 93117

THE

LION MACHINE

HP-IL DEVELOPER TOOL KIT

WHY BUY IT ?

A lot of talk goes around about robotics, computer
automated machine control, etc. Talk like this is
exciting. It's fun to dream of all of the wild things that
can be made by hooking computers up to machines. But when
the talk turns to how these things are going to be
accomplished, you will only see a lot of arm waving and
hear generalizations like, "Well.. we'll just hook a
computer to it". The fact of the matter is that for the
most part, unless you had a large expense account, or you
loved assembly language and were an electronic wizard,
these wonderful ideas just weren't possible.

This is no longer the case. The Lion Machine HP-IL
Developers Tool Kit allows programmers to control any
HP-IL device from Borland Turbo Pascal 4.0. programs.
Using the Tool Kit you can develop programs that will...

* Auto configure HP-IL loop systen.

* Reset peripheral loop devices.

* Find devices on loop according to their type, printer,
display, electronic instrument, etc.

* Find devices by their individual I.D. names.

* Enter data from sensing devices.

* Enter status from devices.

* Output data to devices.

* Output instructions to machine control devices.

* Tie into other software and Turbo Pascal tool kits for
calculations and data formatting.

Other features of the Lion Machine HP-IL Tool Kit...

* Compatible with both the Hewlett Packard and the
Interloop HP-IL interface adapter cards.

* Runs on all of the IBM PC/XT/AT and close compatible
computers.

* Complete source code. Perfect for users that would like
a greater knowledge of HP-IL or need greater control over
HP-IL systems.

* No royalties charged for programs developed with the
Lion Machine HP-IL Tool Kit.

SCIENTIFIC APPLICATIONS :

HP-IL was designed with the scientist in mind. Hewlett
Packard supports a entire range of scientific test
equipment that communicates with HP-IL. Using Turbo Pascal
4.0's powerful DOS calling routines linked with the
control of peripheral equipment, not only can you control
scientific test equipment, you can tie into other programs
to output and format your data. This type of computing
power will give you professional results previously
unavailable with calculators and hand held computers.

* Control existing scientific test equipment easily
through Turbo Pascal 4.0.

* Quickly construct custom scientific test systems by
using off-the-shelf equipment and Turbo Pascal 4.0.

* Link "in the field" data gathering equipment to the more
powerful IBM PC computer for data interpretation.

* Link scientific data with existing IBM PC graphics and
numerical analysis software for better presentations and
reports.

COMPUTER AUTOMATED MACHINE CONTROL :

Until now most computer automated machine control was
tied down to assembly language and hard wiring. This is no
longer the case. There is a wide variety of machine
control devices presently on the market that communicate
with HP-IL. Machines built around devices like these can
have their function changed quickly and easily by altering
Pascal programs instead of re-coding in assembly language
or electrical redesign.

* Fast and inexpensive development of ¢omplex mechanical
systems through use of off-the-shelf components.

* Simplified machine function modifications and additions
through alterations in high level Turbo Pascal 4.0.

* Simplified mechanical design and longer life through use
of computer logic instead of mechanical linkages.

* Tie into existing software packages for extended machine
applications, e.g. Statistical analysis during operation.

* Tight machine control with 2K+ bits per sec. information
flow.

FOR THE HOME :

The home user benefits because HP-IL was designed for
low cost systems. For example : A system could be built
that would control the temperature of your home as well as
log and graph energy usage. After the initial system is up
and running, hooking it up to control your pool's heating
system would consist of a little more Pascal code. Getting
it to water the plants would cost the price of some
electric valves. Using HP-IL and off-the-shelf electronic
devices, one could control everything in the home at a
very reasonable cost. If you are the type of hobbyist that
likes to tinker with electronics and computers, this is
the product for you. With this product, you can let your
imagination run wild.

* Easy to operate. Devices just plug onto the loop, no
configuration to deal with.

* Low cost. Complex systems can be easily built up on a
household budget.

* Flexibility. With some electronic know hbw, anything you
can dream up can be built from off-the-shelf equipment and
a little software.

RETN T .
st Lion Machine Software

A
7956 Rio Vista Dr. Goleta, California 93117

WHAT IS HP-IL ?

Hewlett Packard supports a wide array of computer
peripherals from printers and displays to electronic and
scientific test equipment. They needed an inexpensive way
to control all of these devices from their hand held
computers and calculators. This is why HP-IL was
developed. HP-IL is a system for interfacing electronic
devices to a controlling computer by a 2 conductor wire up
to 100 meters. The communication line sources at the
controlling computer and goes to device #1 then to device
#2 and so on until it returns to the controlling computer.
This links all of the peripheral devices together in a
loop.

BENIFITS OF HP-IL :

* Only one protocol. Unlike RS-232 that has many different
ways to communicate, HP-IL only has one protocol. This
means that if a device is HP-IL then all you have to do is
plug it in. There is no configuration to deal with.

* Multiple devices. Also unlike RS=-232 that only allows
one device per communication line, HP-IL will allow
multiple devices on one communication loop.

* Fast data flow. HP-IL can easily handle 2,000 baud data
rate. This is a device dependent value. Theoretical baud
rate is 20,000.

* Low cost. HP-IL was designed for low cost computer
systems. Multi function digital/analog IO devices cost in
the neighborhood of $500-$600, high performance robotic
servo controllers price at less than $1,000 per axis.

* Availability of peripheral devices. Any scientific,
mechanical or home system can be either bought or easily
created from off-the-shelf items.

* Electrical isolation. Devices communicating with HP-IL
are electrically isolated from each other to eliminate the
risk of power surges from one device harming other
devices.

