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Preface

For some modern astronomers, the mathematical aspect of astronomy is an

anathema to be avoided wherever possible—because they find it dull and un-

interesting, or because it is too time-consuming, or because it is difficult to avoid

making mistakes or to trace and correct them when they have been made. But few,

if any, can manage to escape altogether from the need for computation of one kind

or another. To others, astronomy is mathematics, with comprehensive computer

facilities equal in importance to the observational instrumentation. For the majority,

somewhere between these two extremes, mathematical astronomy can be either a

delight and a pleasure which can be indulged on cloudy nights, or something of a

chore which must be accomplished in the minimum of time.

This book is intended for the working astronomer, and is shaped to meet his

needs. It assumes, therefore, that the observer is fully aware of the nature of the

problem in hand but seeks guidance in the application of a relatively new tool

which he can employ to obtain an accurate solution to the problem, either at the

eyepiece or in the preparation (or completion) of an observing programme.

It is clearly not the purpose of this book to supplant such recognized works as

Chauvenet’s A Manual of Spherical and Practical Astronomy, Newcomb’s A Com-

pendium of Spherical Astronomy and Smart’s Spherical Astronomy, or (more

recently) Woolard and Clemence’s Spherical Astronomy and McNally’s Positional

Astronomy. Neither will it take the place of the Astronomical Ephemeris (American

Ephemeris and Nautical Almanac in the USA) or its invaluable Explanatory Supple-

ment (although it may, under certain conditions, free the observer from total

dependence on such an ephemeris). For those who require more detailed treatments

and explanations there will always be a place on the bookshelf for these works.

The current aim is to set out, in readily accessible form, methods of calculating

such items as the Local Sidereal Time for any geographical location, allowance for

the effects of precession on star positions and proper motions, ephemerides for

visual binary stars and comets, and so on. Fully worked examples are given.

Normally, each example is worked twice: first, there is a method to suit those who

have the use of a straightforward scientific-type pocket electronic calculator, with

algebraic logic and limited memory facilities; this is followed by a method which

exploits to the full the facilities provided by more advanced types of pocket cal-

culator, using Reverse Polish Notation (RPN) and multiple user-addressable

memory stores.



The electronic-calculator styles used in this book are the basic algebraic and the

Hewlett-Packard RPN keyboard systems. It is obviously impossible to give detailed

instructions which will suit all the various keyboard layouts and memory facilities

offered by the many different manufacturers. The two systems selected will cover

the needs of the majority of readers, and others will be able to make occasional

modifications should it not be possible to execute an instruction as printed: for

instance, on the very cheapest of scientific calculators it might be found that

trigonometrical functions can be performed only on angles of the first quadrant;

with a little ingenuity the possessor of such a calculator will be able to devise a

system which will cover the case when a function of an angle in any of the other

three quadrants is required.

The RPN examples will suit the Hewlett-Packard (HP) family of calculators;

they are based on the HP-25 keyboard, being in the middle of the price range, and

operators of, say, the HP-67 will readily recognize the occasions when a different

shift key should be used for a listed operation; for example, h = for g =. The HP-25

also provides a 49-step programming facility for repetitive calculations, while the

HP-19C and HP-29C provide 98 steps and the HP-67 and HP-97 provide 224 steps.

The Appendix contains fully documented and tested programmes (based on some

of the chapter topics) written especially for these calculators. Users of the more

advanced HP-67 and HP-97 models will be able to record these programmes on

magnetic storage cards for immediate use. Users of Texas Instruments and other

comparable models will be able to adapt these programmes to match their own

keyboard facilities and logic.

Much time can be saved in this manner when a series of similar reductions has

to be processed, as the calculator will be working at its maximum speed for most

of the time, under the control of the programmed instructions, as a mini-computer

in its own right. In addition, such programmes greatly reduce the chances of

mistakes arising through operator fatigue or incorrect keying.

Although I have selected the programmable HP-25 and HP-67 for my own use,

and the RPN instructions in this book must obviously reflect that choice, I should

take this opportunity to stress the fact that this is an extremely competitive market

with advances constantly being made, and models from other manufacturers must

not be regarded as inferior simply because they have not been referred to specifically

in the text.

Remember, above all, that it is answers we require. And we want them quickly

and reliably. The calculator itself is only a tool which we can employ in order to

meet those objectives. It should go without saying, therefore, that we must guard

against getting sidetracked by questions of elegance of the method of solution, or

becoming champions of the irrelevant claims and counterclaims of one product or

logic system in preference to another.

I am indebted to M Jean Meeus of the Vereniging voor Sterrenkunde (Belgium)

and of the British Astronomical Association for reading the manuscript of this

book, and for his invaluable comments and helpful suggestions. With his kind

permission, several of his programmes for the HP-67 have been included in the

Appendix.

—A.J. Kent, 1978



Introduction

Each chapter of this book deals with a separate theme: time, position, and so on.

Some chapters cover more than one topic under the general theme; in these cases

the topics are numbered serially.

Worked examples are numbered to correspond with the topic number, followed

by a letter, A or B. The A method for each example relates to the working to be

employed with a simple type of scientific calculator, with single memory facility and

8-digit display, using algebraic logic. The B method shows the more sophisticated

keying which can be employed with a calculator equipped with up to 7 user-

addressable storage memories and 10-digit display, using Reverse Polish Notation

(RPN). The same problem is solved as in the A method.

In most cases it will be found that the B method gives the more accurate result,

or is shorter in execution. Accuracy limits, where relevant, are quoted in the topic

heading. The layout of the A and B examples follows the format:

 
Numbered step-by-step Keyboard Blank for Explanatory notes and

statement of the solution entries* user’s any manual computationt

to the problem modifications
 

Throughout the book, unless noted to the contrary, symbols and Greek letters

are used in exactly the same sense as in the Astronomical Ephemeris (AE) and as

defined therein or in its Explanatory Supplement.

Some of the topics covered often occur in practice as cases where a large number

of identical calculations have to be processed serially. For example, the reduction

for precession from one epoch to another may have to be computed for a number

of stars at the same time. The text indicates, where appropriate, that programmes

* Entries in this column enclosed in square brackets [ ] show figures which must be

keyed in to solve the worked example.

t Entries in this column enclosed in round brackets () are for check purposes only.

They show the displayed contents of the X-register at significant points during the working

of the example. Once the method of working has been proved with a particular type of

calculator these entries can be ignored.



especially written for this purpose are included in the Appendix at the back of the

book.

In a book of this nature it is clearly impossible to include programmes for every

single calculation the reader may wish to perform. For this reason, blank pages

have been left at the end of each chapter which the reader may use for his own

extension of that chapter—or for any other notes which he may wish to add.
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1 Time

Topic 1 Greenwich Mean Sidereal Time (with note about

Greenwich Apparent Sidereal Time)

Topic 2 Local Sidereal Time

Topic 3 Local Mean Time

1 To calculate Greenwich Mean Sidereal Time (GMST) at Oh Universal Time

(UT) on January 0 of any year after 1900, correct to +0s.1 with a simple 8-digit

algebraic calculator (Method 1A); correct to +0s.001 (for any day of the year) with

a 10-digit RPN calculator (Method 1B).

Introduction: This value is readily available from the Astronomical Ephemeris (AE)

for the current year, and appears as a constant (for that year) in many calculations

involving time. In normal circumstances it will not therefore need to be calculated.

However, on occasion it will be desirable to compute its value in advance of publi-

cation of the AE, or perhaps for a past year for which the appropriate AE is no

longer held.

The equation: 6" 38™ 455.836 + 8 640 1845.542 T + 0s.0929 T* (1.1)

where T is the number of Julian centuries of 36 525 days of UT elapsed since 12t

UT on 1900, January 0.

Note: For the Apparent Greenwich Sidereal Time a correction for the equation of

the equinoxes (AY cose) would have to be added to the result given by Eqn. 1.1.

Cose is easily evaluated, but there are 69 terms in A{, so it is not so readily deter-

mined. (But see Chapter 9 for a reliable approximation.) The daily value of the

equation of the equinoxes for current and past years is obtained, if required, from

Column 5 on pp 12-19 of the AE. For example, the value for 1978, January O is

+0s.226. Many observers choose to ignore this difference.

Further information: Explanatory Supplement to the AE, pp 43, 72,75, 84, 85 and 92.

Example 1: What is the Mean Sidereal Time at Greenwich at O® UT on 1978,

January 0?

12



Method 1A
 

1. Subtract 1900 from desired

year

2. Convert to days

3. Add number of leap days
during period
4. Deduct 04.5

5. Convert to Julian centuries

6. Note T for Step 16

7. Store display in memory
8. Compute second term

Compensate for cheat,
Step 5

Note decimal part of display
and carry forward to Step 15.

Deduct the decimal part

9. Reduce integer to days

10. Multiply integral number

of days by 86 400 and subtract

from the number of seconds

stored in the memory

11. Divide by 86 400 for the

fraction of a day

MC

[1978]

1900
X
365
+

[19]

0.5

3 652.5

M+
X

8 640 184

<>

XM
X

0.542

M+
MR

10

(0.3]

MC
M+

86 400

[77]

86 400

<>

XM

MR

86 400

13

Clear memory

(1900 was not a leap year)

Count starts from 122 1900,
January 0

We cheat in order to obtain

an extra decimal place
(0.779 972 62). We have
moved the decimal point
one place to the left to

compensate for the cheat in

Step 5

(7.799 726 2)

Transfer X display to
memory and vice versa

Add to figure already in
memory, and recall total

(6739 107.3)

0s.3

(774.998 923)

(04.998 923)



Method 1A continued

12. Convert to hours

13. Note hours; subtract

integral number of hours and

convert fraction to minutes

14. Note minutes; subtract

integral minutes and convert

fraction to seconds

15. Add fraction of seconds

from Step 8; note seconds

16. Square T from Step 6

and compute third term

Note third term

17. Sum constant and

evaluated second and third

terms

18. If necessary, deduct

24 hours

(232,974 166)

23h

(58m.,449 96)

58m

(265.997 6)

27s5.298

0s.057

h m s

6 38 45.836

23 58 27.298

0.057

30 37 13.191

-24 ]

6 37 132
 

Result 1A. GMST at O* on 1978, January O is 6" 37m 13s.2. The AE gives 6t 37m

13s.280. The computational error using the simple 8-digit algebraic-logic calculator

is, in this case, —05.08, within the claimed limit of accuracy.

 

Method 1B

1. Enter ¢ [1978]
4 ‘Enter’ (replicate in Y

register so that x can be

overwritten by a new x)
1900

2. Convert to days 365
X

3. Add number of leap days [19] (1900 was not a leap year)
_+_

4. Deduct 04.5 0.5 Count starts from 12h

- 1900, January O

5. Convert to centuries 36 525

= (0.779 972 622) T in Julian
centuries

6. Store for Step 18 STO 0 HP-25 addressable

memories are numbered

0 to 7 inclusive



Method 1B continued

7. Compute second term

8. Reduce integral seconds
to days

9. Multiply integral days by
86 400 and subtract from
number of seconds in R1

10. Divide by 86 400 for
fraction of day
11. Convert to hours

12. Note integral hours
23. Convert fraction to

minutes

14. Note minutes

15. Convert fraction to

seconds

16. Add fractional seconds
from Step 7; note seconds

18. Square T and compute
second term

19. Note third term

20. Sum constant with

evaluated second and third

terms

21. If necessary, deduct

24 hours

8 640 184.542
X

g FRAC
STO 2
f last x

fINT
STO1
86 400

f last x
X <>y

fINT
X

RCL1
X «——>y

86 400

g FRAC
60

RCL 2

RCL O

0.0929

Discard integral x
For Step 16

Truncate decimal fraction

i.e., 86 400

(09.998 923 611)

(23.974 166 67)
23h
Doing this the long way
as shown gives greater
accuracy than if f H.MS
(58.450 000 20)
58m

(27.387 012 00)
27s.387
Value of second term is:

23h 58m 27s387

‘Enter’

(0.056 5)
0s.057
h m s

6 38 45.836
23 58 27.387

0.057

30 37 13.280

2
6 37 13.280
 

Result 1B. Greenwich Mean Sidereal Time at O UT on 1978, January 0 is 6» 37

135.280. The AE gives exactly the same value, so the computational error in this

case is zero. By using a 10-digit multi-memory RPN-logic calculator, such as the

HP-25, the claimed accuracy is easily achieved.
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Additional notes on Method 1B: If the user is content with a slightly lower degree

of accuracy, say to +40s.01, then it is possible to reduce the number of steps in the

calculation, as follows:

 

1. Perform Steps 1-6
2. Then: 8 640 184.542

f

86 400

X

g FRAC

24

X

f HMS (23.582 738)

3. Note second term in

H.MS format h m S

23 58 27.38

4. Do Steps 18-21 0.06

6 38 4584

30 37 13.28

-24

6 37 13.28

The result now is 6" 37m 13s.28. The AE value, rounded to two places of decimals,

is 6" 37m 135,28, The erroris still nil.

Method 1B is not restricted to the calculation of GMST at O UT on January 0.

It can also be used to find GMST at O® UT on any day. The Explanatory Supple-

ment to the AE, p. 84, gives a solution for 0 UT on 1960, March 7: 10» 58™ 50s.971.

For practice, use Method 1B to solve the same example.

In this case, the number of leap days to add in Step 3 is 14. Between Steps 3 and

4, add 31 + 29 + 7 = 67 days for the period January O to March 7 (1960 was a

leap year). You should obtain 10h 58™m 50s.972. The computational error is +0s.001.

Finally, to construct an ephemeris to show GMST at 0" UT for any year after

1900, see the programmes especially written for the HP-25 in the Appendix at the

back of the book (Programmes 1 and 2). After keying in the programme, one is

able to progress day-by-day through the year by simply pressing the Start key for

each successive day’s calculation, thus saving an immense time in the compilation

and avoiding any danger of operator keying errors. A similar programme for the

HP-67, offering various options, is also included (Programme 5). This is valid from

the year 1582.

Programmes 3 and 4 will also be found useful for finding the sidereal time other

than at O» UT.

2 To calculate Local Sidereal Time (LST) at any observer’s position, at any time,

to an accuracy of +0s.1. For a series of similar calculations, see the programmes in

the Appendix (Programmes 3 to 5).

Introduction: LST is required for setting the hour circle of an equatorial mount. It

is unique to the observer’s meridian, and is therefore dependent upon the ST at

16



Greenwich plus an adjustment for the difference in longitude between the observer’s

position and 0°. Local Standard Time is the clock time shown in the observer’s

time zone. Time zones are 15° of longitude in width, centred on the meridians at

0°, 15°, 307, 45°, etc., the Earth thus being divided into 24 zones of one-hour time

differences.

The zone centred on 0°, the meridian at Greenwich, uses Greenwich Mean Time

(GMT), now known astronomically as Universal Time (UT), from which the time

in other zones is derived.

When calculating the LST we shall always proceed from the clock time in the

observer’s own time zone.

The equation: LST = 0.002 7379093 (24d + x) + x + x, + A (1.2)

where d = the number of days since January O of year

x = the equivalent UT oflocal-zone time (i.e., GMT + 0, CET -1, EST

+ 5, CST + 6, MST + 7, PST + 8, etc.)

x, = GMST at O UT on January O of current year, from Topic 1 or the

AE, expressed in decimal hours

» = longitude (degrees) — 15 (+ if E of Greenwich, — if W of Greenwich)

Further information: The AE, annually, on or about p 536; D. Menzel, A Field

Guide to the Stars and Planets, Chap. XIII, pp 322-326; Mayall & Mayall, Sky-

shooting—Photography for Amateur Astronomers, Chap. 13; D. McNally, Positional

Astronomy, Chap. V.

Example 2: What is the LST at 9.30 pm EST (2130 hrs) on 1978, May 15, at

Cambridge, Mass., where the observer’s longitude is 71° 07 30" W?

The standard time-zone difference is —5 hours, so to convert EST to UT, add 5

hours. In this example:

d= 135

x = 21.5 +5=26.5 (i.e., 0230 UT May 16)

x, = 6.620 355 556 (6 37m 135,280 for 1978), from the AE or Topic 1

» = —4.741 666 667

Method 2A

1. Enter x, clock time —+ [26.5]

integral hours to convert

to UT
2. Is local Daylight Saving
Time or BST in operation?

If so, deduct 1 hour

 

[no operation]

3. Store M+
4. Enter d and convert to [135]

hours X

24
5. Add x +

MR
6. Multiply by hourly rate X

of gain of ST over MT 2.7379093

1000

17



Method 2A continued

7. Add x

8. Add x; on January 0 of
year
9. Add. A in hours

10. If necessary, deduct

24 hours

11. Note integral hours
12. Subtract hours and

convert the fraction into

minutes

13. Note integral minutes
14. Deduct minutes and

convert to seconds

15. Note seconds

4

MR
+

(6.620 355 6]
+

[4.741 666 7]

(CS]

I
&

x

A is negative; the Step-9
entries will be constant for

a fixed observatory
(37.322 069)

(13.322 069)
13

19m

195.45
LST = 130 19™ 195.45
 

Result 2A. The Local Sidereal Time at Cambridge, Mass., at 9.30 pm EST on 1978,

May 15 is 13» 19m 19545, (To obtain the apparent LST, add the equation of the

equinoxes.)

Method 2B
 

1. Fix display and enter x

2. Is Daylight Saving Time

(BST in the UK) in operation?
If so, deduct 1 hour

3. Store

4. Enter d and convert to

hours

5. Add x

6. Complete first term

7. Add x

f FIX 6
[26.5]

;r

[no operation]

STO 0
[135]
f

24
X

RCL 0
+

0.027 379 093
X
10

RCL 0
+

18

For 6 places of decimals

‘Enter’

‘Enter’

(8.943 381)



Method 2B continued

8. Add x; [6.620 355 556]
+

9. Add A 4.741 666 66
[ CHS A is negative

+ (37.322 070)
10. If necessary, deduct 24
24 hours [— ]
11. Convert to hours,

minutes and seconds fHMS (13.19 19 45)
Read as: 131 19™ 195,45
 

Result 2B. The Local Sidereal Time at Cambridge, Mass., at 9.30 pm EST on 1978,

May 15 is 131 19™ 195,45, (To obtain the apparent LST, add the equation of the

equinoxes.)

For further practice, try the following:

(a) What was the LST at Cleveland, Ohio, 81° 45’ W, at 12k 30™ 21s EST on 1964,

May 29? In this case, d = 150, x = 17.505 833 33, x, = 6.580 318 889, » = -5.450.

(Checkfirst to see if you agree these values.)

(b) What was the Apparent Local Sidereal Time at 3» 44m 30s am CST on 1976,

July 7 for an observer located at 85° 15’ W, given x; = 6.586 474 722 and that the

equation of the equinoxes was +0s.71?

(c) What was the Apparent Local Sidereal Time at Rainham, Kent, 0° 35’ 54”4 E,

at 12.30 am BST on 1976, September 22, given x, = 6.586 474 722 and that the

equation of the equinoxes was +05.62?

(d) Imagine, as a visitor, you were granted permission temporarily to erect a small

telescope in the grounds of Siding Springs Observatory, New South Wales,

Australia. You did not have the current ephemeris, but wanted to know the LST

at 8 pm clock time on 1976, October 1. Fortunately, you knew the longitude of

Siding Springs is 149°04'.0 E; also, you had remembered to take this book and

your pocket calculator with you. What was the LST?

Your answers should be:

(a) 4h 32m 26s.0;

(b) 23h 05m 275.0;

(c) 23h36™ 14s.35;

(d) 20r 37m 18s.59.

If your solutions to (b) and (c) were incorrect, check that you remembered to add

the equation of the equinoxes at the end of the calculation, and that you used, in

(b), d = 189, x = 9.741 666 667, » = -5.683 333 333; and, in (¢), d = 266, x = 0.5,

»= 40.039 896 296; also in (c), that in Step 2 you keyed in -1 to correct for BST.

3 To calculate Local Mean Time, to an accuracy of +0s.01.

Introduction: Local Mean Time (LMT), like LST, is unique to the observer’s

position in longitude, and is the mean solar time at that place. Because of the

confusion which would otherwise arise from a multiplicity of local times it is more

19



convenient for civil time-keeping purposes to use the standard time zones. LMT

for an observer located east of his standard time meridian will be in advance of

clock time by 4™ in respect of each degree of longitude, 45 for each minute of

longitude, etc. An observer west of his standard time meridian will have LMT

running later than zone time by the same amounts.

The equation: LMT = x + (A, —2,) (1.3)

where x = clock time (standard time for the observer’s zone), expressed in

decimal hours

A = longitude of standard time meridian of x, expressed in hours, positive

if W of Greenwich, negative if E

2, = longitude of observer, expressed in hours, positive if W of Greenwich,

negative if E

A1 — A, Will be a constant for a fixed observing location. Once evaluated for a

particular observatory, it need not be calculated again.

Further Information: D. Menzel, A Field Guide to the Stars and Planets, Chap.

XIII, pp 322-324; G. D. Roth, Astronomy—A Handbook, 6.3.1.1., pp 171-172.

Example 3: An observeris located at 77° 10’ W. What is his LMT at 8.00 pm EST?

In this example, x = 20 (hours)

A = 5 (hours) (75° = 15)

Ay = 5.144 444 (hours) (77°.166 667 = 15)

 

Method 3A

1. Enter 2, [5] 2, and A, both positive
2. Subtract A, _

[5.144 444)
3. Add clock time, x +

[20]
4. If necessary, deduct [no operation]

24 hours

5. Note integral hours 19n

6. Subtract hours and convert -

remainder to minutes [19]
X
60

7. Note minutes = 5]m

8. Subtract minutes and -

convert remainder to seconds [51]

X
60

9. Note seconds = 20s.0

LMT = 198 51™ 20s.0
 

Result 34. LMT for an observer at 77° 10’ W at 8.00 pm EST is 19" 51™20s.

Note: if this location is a permanent one, observers would key in A, — 2,, previously

evaluated as —0.144 444, and start at Step 3.

20



Method 3B

In this method there is no need to evaluate A, and A, first, unless this is a permanent

location for the observer, in which case he would input (for this example) 0.144 444,
CHS, 4, and start at Step 5.
 

1. Fix 6 decimal places fFIX 6
2. Enter )\, [75] A; and 2, both positive

4 ‘Enter’
3. Longitude of observer in [77.10]
D.MS format; convert to g—>H
decimal degrees and subtract -

4. Convert to hours 15

5. Enter clock time (zone [20]
time) in H.MS format, g—~H

convert to decimal hours +
and add
6. Convert to hours, minutes f H.MS (19.51 20 00)

and seconds Read as: 190 51m 20s.00
 

Result 3B. LMT for an observer at 77° 10’ W at 8.00 pm EST is 192 51 ™ 20s.0.

For further practice, try the following:

(a) What is the LMT for an observer situated at 0° 35’ 54”4 E, at 8.10 pm (2010

UT)? (Note: x, will be negative.)

(b) An observer is located at 20° 30’ E. What is his LMT at 2215 CET? (Both 2,

and X, are negative.)

(c) What are the constants, expressed in minutes and seconds, to be applied to

clock time at observatories located at (i) 92°15'21”.2'W, (ii) 11°20'15”.8 E, in

order to determine LMT? (That is, A, — 2, expressed in minutes and seconds of

time.)

(d) An observer calculates that the transit time of a star is due at Greenwich at

22h 15m 10s.2 UT on a certain day. At his observatory he times the actual transit

at 22h41m 22s2 UT. What is his longitude, to the nearest minute?

Your answers should be:

(a) 20n 12m 23s,63;

(b) 22h 37m (O0s;

(©) (i) -9m01s.41, (ii) —-14m™ 385,94,

(d) 6°33' W.

21



NOTES

22



2 Precessional Constants for Selected
Epochs

Topic 1 Angles defining total precession from the equator and equinox of

epoch 7, to the equator and equinox of a later epoch ¢: &,, z, 8,

sinf, tan30.

Topic 2 Mean obliquity of the ecliptic, e.

Topic 3 Annual general precession, p; annual precession in RA, m; annual

precession in dec., n.

1 To calculate ¢y, z, 6, sind and tanid for any year in relation to any catalogue

epoch, or vice versa, with an accuracy of 11 in the last digit with a simple 8-digit

algebraic calculator (Method 1A); correct to 9 decimal places with a 10-digit RPN

calculator (Method 1B).

Introductions These values, which are required for the reduction of star positions

from one epoch to another, are obtainable from the AE for the current year; they

give the constants which apply to reductions from that particular epoch to the

equator and equinox of 1950.0. However, it will often be required to reduce star

positions to and from other epochs, and also to evaluate the constants in advance

of publication of the AE for a particular year. Users of the HP-67 programme in

the Appendix (Programme 11) for reductions for precession will find that ¢,, z and

0 are calculated automatically. If only the constants are required, see Programme 6.

The equations:

Lo= (23042".53 + 139”73+ + 07.06 =) T + (30”.23 -0".27 ») T"*
+ 187.00 T3 2.1

z= 10y +(79".27 + 0”66 7) T* + 0”.32 T? 2.2)
6 = (20 046”.85 - 85”.33 7 - 0".37 )T + (-42".67 - 0".37 7)T?

-41”7.80 T* 2.3)
to —1900.0

1000
t—t,

1000
to= epoch ofearlier equinox| beginning of Besselian

and 7 = epoch of later equinox [ solar year.

where r =

T= 

23



Equations 2.1 to 2.3 give the values for {,, z and 8 to be used in reductions from

an earlier epoch ¢, to a current or later epoch ¢, where the equatorial coordinates

for epoch ¢, are known and it is desired to find the positions for the equator and

equinox of epoch #. In other words, the reduction goes ¢, — ¢. If the reverse is

desired—that is, the position for the epoch ¢ is known and the reduction goes

t — t—then, after solving the equations in the normal way, for ¢, use -z, for z

use —{,, and change the sign for 6. An example of such a reduction is given in
Chapter 3, Topic 3.

Methods 1A and 1B give the values in decimal degrees.

Further information: Any current AE, on or near p 534, under the heading Preces-

sional Constants; also p 9; Explanatory Supplement to the AE, p 30; Introduction to

the SAO Star Catalogue, p xii; D. McNally, Positional Astronomy,7.2, pp 162-164;

H. K. Eichhorn, Astronomy of Star Positions; S. Newcomb, A Compendium of

Spherical Astronomy, Chap. IX; Woolard and Clemence, Spherical Astronomy,

Chap. 11.

Example 1: What are the values of {,, z, 8, sinf and tan6 to be employed in the

reduction of star positions from the epoch 1950.0 to the equator and equinox of

1978.0?

 

Method 1A

1. Evaluate = and 2 MC Clear memory
[1950] to

1900

1000
Note = 0.05) =~

X

Note 72 M+ (0.002 5) = =2
2. Evaluate T, T? and T [1978] ?

[1950] to

1000
Note T = 0.028) =T

Note T? (0.000784) = T1*
Note T3 (0.0000219) =T3

2T3. First term of Eqn. 2.1

Enter =

i
[

2,
82
2,

2.
%2

+
§
X
§
+
O
l
l
g
l
e
l
x
|

23 042.53

24



Method 1A continued

Enter T

4. Second term of Eqn. 2.1

Enter T?

Third term

Enter 73

5. Convert {, to degrees

Move decimal point one
place to left and note ¢, to
7 places

6. Evaluate z, Eqn. 2.2

Enter T2

Enter T3

Move decimal point one
place to left and note z to

7 places

7. 0, first term of Eqn 2.3

Enter 72

+

MR
X

[0.028]

MC
M-+
[0.05]
X

0.27
cS
._+_

30.23
X

[0.000 784]

M+
18
X

[0.000 021 9]

M+
MR

360

[0.05]
X

0.66
+

79.27
X

[0.000 784]

M-+
[0.000 021 9]

X

0.32

M-+
MR

360

0.37
CS
X

[0.0025]

25

(645.386 44) First term

Change sign

(0.023 689 7) Second term

(0.000 394 2) Third term

(1.792 806 9)

{o=10°179 2807
T

Add to ¢, in store

(1.792 979 6)

z=0°179298 0



Method 1A continued

Enter r

Enter T

8. Second term of Eqn. 2.3

Enter T

Enter T?

9. Third term of Eqn. 2.3

Enter T3

10. Convert 6 to degrees

Move decimal point one

place to left and note 6 to
7 places

11. Evaluate sinf and tanié

Note siné

Note tanif

MC
M+
85.33
cS
X

[0.05]
+

20 046.85
+

MR
X

[0.028]
= (561.192 35) First term
MC
M+
0.37
cS
X

[0.028]
+

42.67
Cs
X

[0.000 784]
= (-0.033 461 4) Second term
M+
41.80
CS
X

[0.000 021 9]
= (-0.000 915 4) Third term
M+
MR

360

= (1.558 772 1)

6 =0°1558772

f sin sinf = 0.002 720

f tan tanif = 0.001 360
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Result 1A. The values of the precessional constants required to reduce star positions

from epoch 1950.0 to the mean equator and equinox of 1978.0 are: {,= 0°.179 280 7,

z=0°179298 0, 9 = 0°.155877 2, sind = 0.002 720, tanifd = 0.001 360. The
values listed in the AE for 1978 are: {,= 10'45".41 (= 0°.179 280 709)*, z = 10’

45”47 (= 0°.179 297 981)*,0 = 9’ 21”.16 (= 0°.155 877 202)*, sinfd = 0.002 720 56,
tanid = 0.001 360 28.
The results from the simple calculator are correct to seven decimal places,

within the claimed limits. The values of sinf and tan}6 are correct to the six places

of decimals given by the calculator used.

Method 1B
 

fFIX9 Display 9 decimal places
1. Enter latest epoch, ¢ [1978]

4 ‘Enter’
2. Enter earlier epoch,¢, [1950]

3. Find constants

RCL 2
g x*
RCL3
0.27
X

CHS

30.23
+

X

STO + 0
RCL 3
g x?
0.06
X

RCL 3
139.73

X

+

23 042.53

* Decimal equivalents from Method 1B.
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Method 1B continued

RCL 0 (645.410 551 1) &, in seconds

79.27

STO + 0
RCL 0
3600

RCL 5

STO 6 (0.179 297 981) z in degrees
RCL 2

fy=

41.80

CHS
STO 0
RCL 2
g x?
RCL 3
0.37

CHS
42.67
CHS

STO + 0
RCL 3
g x*
0.37

CHS
RCL 3
85.33
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Method 1B continued

X

CHS
+

20 046.85
_+_

RCL 2

X

STO + 0

RCL O (561.157 926 8) @ in seconds

3600

STO 7

4(a). If reduction is from

to to 1 (e.g. 1950 — 1978),

Note ¢, RCL 5 {o= 0°.179 280 709

Note z RCL 6 z = 0°.179 297 981

Note 6 RCL 7 0 = 0°.155877 202

2

Note tanif f tan tan}fd = 0.001 360 286

RCL 7

Note sinf f sin sin@ = 0.002 720 567

4(b). If reduction is from

tto 1ty (e.g. 1978 — 1950),

RCL 6

Note ¢, CHS Lo = -0°.179 297 981

RCL S

Note z CHS z = -0".179 280 709

RCL 7

Note 6 CHS 0 = -0°.155 877 202

2

Note tanif f tan tani0 = -0.001 360 286

RCL 7

CHS

Note sinf f sin sinf = -0.002 720 567
 

Result 1B. The values of the precessional constants required to reduce star positions

from epoch 1950.0 to the mean equator and equinox of 1978.0 are: {,= 0°.179

280 709, z = 0°.179 297 981, 6 = 0°.155 877 202, sind = 0.002 720 567, tanif =

0.001 360 286. Compare with the values quoted in the AE for 1978: {,=10'45".41

(the value for ¢, in seconds noted in the remarks column above was 645.410 551 1 =

10 45”.41), z = 10’ 45” .47 (not obtainable from our remarks column), § = 9’ 21”.16

(noted in our remarks column, in seconds, 561.157 926 8 = 9’ 21”.158), sinf =

0.002 720 56, tan}6 = 0.001 360 28.

We can therefore modestly claim a slightly greater accuracy for our values over

those quoted in the AE. Method 1B demonstrates the power of the more advanced

type of calculator, exploiting memory storage facilities to the full. It is only neces-

sary to key in the two epochs in Steps 1 and 2, and the calculation proceeds without

pause until the final stage at Step 4. No intermediate values have to be written down,

and no manual computation has to be done. We also have an alternative ending to
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suit the case when the reduction for precession is to be made in the opposite

direction, from ¢ — ¢,.

Methods 1A and 1B are suitable for any two epochs: for example, from Auwers’

catalogue of Bradley stars for 1755.0 —> Argelander’s Bonner Durchmusterung (BD)

1855.0, or BD 1855.0 - Boss’ General Catalogue (GC) 1950.0, always provided

that reliable values for the proper motions can be calculated (this is covered in

Chapter 5).

For further practice, try the following:

(a) Evaluate ¢,, z and 6 in order to reduce observed positions of stars in 1980 (first

corrected from apparent place to mean place for 1980.0) for comparison with the

SAO Star Catalogue, epoch 1950.0. Give values in degrees.

(b) Reference to a reliably accurate position of a particular star at 1855.0 is made

in contemporary observatory records. It is desired to compare this with the modern

catalogue position listed in the GC (epoch 1950.0) in order to check the proper

motions listed for 1950.0. What values of {,, z and 6 must be employed for the

reduction ? Give answers in degrees.

(c) What values of ¢,, z and 6 should be employed to convert positions given in a

catalogue for 1950.0 to new catalogue positions for the epoch 2000.0? Give answers

in degrees.

Your answers should be:

(a) Method 1A {,= -0°.1921068 =z -0°.1920870 6 = -0°.167 010 6

1B {,=-0".192 106823 z -0°.192086995 6 = -0°.167 010 536

(b) Method 1A {,= 0°.607 980 9 z = 0°.608 179 6 6 = 0°.528 998 4

1B o= 0°.607980940 =z = 0°.608179 667 6 = 0°.528 998 522

(c) Method 1A ¢,= 0°.320 153 8 z = 0°320208 8 6 = 0°.278 338 1

1B (,=0°.320153784 =z = 0°.320208867 6 = 0°.278 338 106

2 To calculate the mean obliquity of the ecliptic, ¢, correct to +07.01 with an

8-digit algebraic calculator (Method 2A); correct to +07.001 with a 10-digit RPN

calculator (Method 2B).

Introduction: Sine and cose feature in several types of astronomical calculation,

including orbital position. As with the precessional constants covered in Topic 1

of this Chapter, the value for € at the current epoch is always available from the

AE for that year. But it will often be desirable to know its value for other years,

and before publication of the relevant AE, together with its functions.

The equation: « = 84 428”.26 - 46”.845 T-07.0059 T3 + 07.001 81 T 2.7
where T is measured in Julian centuries of 36 525 ephemeris days elapsed since

12" ET on 1900, January 0.

Further information: Explanatory Supplement to the AE, pp 98-99, p 170, p 180;

D. McNally, Positional Astronomy, pp 152-155.

Example 2: What was the mean obliquity of the ecliptic, in degrees, minutes and

seconds, for epoch 1978.0?
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Note: If, instead, mean obliquity of date is required for any particular day of the

current year this can be obtained by adding, between Steps 4 and 5 of Methods 2A
and 2B, the number of days elapsed since January 0.

 

Method 2A

1. MC Clear memory
Enter ¢ [1978]

1900
2. Convert to days X

365
3. Add leap days since 1900 +

[19]
4. Deduct 04.5 - Count starts from 12h

0.5 1900, January 0

5. Convert to Julian =+
centuries 36 525

6. Note T for Step 9 M+ 0.779 972 6 (T in Julian
centuries)

7. Second term X
MR

s
XM T? in memory
X

46.845
CS

—
8. Third term XM 2nd term in memory

X

0.0059
CS

M+
9. Fourth term, enter T [0.779 972 6] T from Step 6

yl

3
= (0.474 503) T3
X

0.001 81

M+
10. Sum terms 84 428.26

+

MR
= (84 391.720) € in arc secs

11. Convert to degrees, MC
minutes and seconds, M+

3600
Note integral degrees 23°



Method 2A continued

12. Enter degrees

X

60
Note minutes = 26’

13. Enter minutes -

[26]
X

60
Note seconds = 317.72

14. If result is required in <~—>

decimal degrees, for sine XM
COse Or tane MC

3600
Note decimal degrees = 23°.442 144

15. Evaluate sin, cos and tan +
f sin sine = 0.397 823
MR

f cos cose = 0.917 462

MR
f tan tane = 0.433 612
  

Result 24. The mean obliquity of the ecliptic at epoch 1978.0 was 23° 26’ 31”.72

(23°.442 144). The values given in the 1978 AE are 23° 26’ 317.719, 23°.442 144.

The functions of € compare as follows:

 

Calculated AE

sine 0.397 823 0.397 822 84

CoSe 0.917 462 0.917 462 25

tane 0.433 612 0.43361222

The results are within the claimed accuracy.

Method 2B

1. fFIX 7 Fix 7 places of decimals

Enter ¢ [1978]
A ‘Enter’

1900

2. Convert to days 365
X

3. Add leap days since [19]

1900 +
4. Deduct 04,5 0.5

5. Convert to Julian

centuries 36 525

= (0.779 972 6)
STO 0 T in Julian centuries

6. Second term 46.845

CHS
X

STO 1
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Method 2B continued

7. Third term

8. Fourth term

9. Sum terms

10. Convert to degrees,

minutes and seconds

11. Note integral degrees

Note minutes

Note seconds

12. If decimal degrees
required, for functions of

¢, then:

60

g FRAC
60
X

RCL 1

3600

STO 3

fFIX9

f sin

RCL 3

f cos

RCL 3

f tan

(84 3917.719 45)

Truncate decimal fraction

23°

26’

317.719 45
e = 23°26"31".719

23°.442 144 3

sine = 0.397 822 844

cose = 0.917 462 253

tane = 0.433 612 220
 

Result 2B. The mean obliquity of the ecliptic at epoch 1978.0 was:

Calculated AE

€ 23°26'317.719 23° 26" 317.719

or 23°.442 144 3 23°.442 144

sine 0.397 822 844 0.397 822 84

COS€ 0917 462 253 0917 462 25

tane 0.433 612 220 0.433 612 22
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The values agree. Those calculated have the advantage of the extra decimal

place. The results are thus well within the claimed accuracy limits.

3 To calculate p, m and n, being the annual general precession, annual precession

in RA and annual precession in dec.. respectively.

Introduction: These constants are employed in calculating precessional changes in

RA and dec. They are most useful for short-term variations, where z -1, < 10

years, and the star is not near the celestial pole. See Chapter 3, Topic 2.

Where great accuracy is not required—e.g., for finding purposes—m and » can

be employed to advantage over longer periods, providing the value is taken for the

t—1,.
midpoint of the interval: z, + - —29 This method is used later for updating the

approximate 1920 coordinates given in Webb’s Celestial Objects for Common

Telescopes to a current epoch, with accuracy sufficient to place the required object

within the field of a finder telescope. See Chapter 3, Topic 1.

The equations: p = 507.2564 + 07.0222 T 2.8)

m = 3507234 + 0s.001 86 T (2.9)

n=20".0468-0".0085T (2.10)

where T is measured in centuries from 1900, with no distinction between the Julian

and tropical century necessary. n is usually evaluated in both seconds of arc and

in seconds of time.

Further information: Any current AE, on or near p 534 under the heading ‘Preces-

sional Constants’; Explanatory Supplement to the AE, pp 3541, 169-170; S.

Newcomb, A4 Compendium of Spherical Astronomy, Chap. IX; D. McNally,

Positional Astronomy, Chap. VII; Woolard and Clemence, Spherical Astronomy,

Chap 11.

Note: These calculations are quite straightforward and there is no need to run the

risk of insulting the reader’s intelligence by giving step-by-step workings as in

previous topics.

Example: Evaluate m in seconds of time, » in both seconds of time and seconds of

arc, for use in the reduction of the coordinates of a star from epoch 1950.0 to

1958.0.

The midpoint of the interval is 1954, so in Eqns. 2.9 and 2.10, T = 0.54.

We find: m = 35.072 34 + 05.001 0 = 3s.073 34

n = 20".046 8 -07.004 6 = 20”.042 2

M 15336 15
15

For further practice,try:

(a) Evaluate p, m and » for 1977.0.

(b) Repeat for 1978.0.
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Your results should be:

(@ p=50"2735, m = 35073 77, n = 20”.040 3

(b) p= 5072737, m = 35.073 79, n = 20”.040 2

These results agree with the values given in the AE.

NOTES
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3 Reduction for Precession

Topic 1 Approximate reduction of the 1920 coordinates quoted in the

Dover paperback edition of Webb’s Celestial Objects for Common

Telescopes, for finding purposes.

Topic 2 Approximate reduction for precession and proper motion from the

equator and equinox of epoch ¢, to the equator and equinox of

epoch .

Topic 3 Rigorous reduction for the effects of precession and proper motion

from the equator and equinox of epoch ¢, to the equator and

equinox of epoch ¢ (or vice versa) when greater accuracy is

required, and in particular for stars near the celestial poles.

Topic 4 Note on rotational geometry and an alternative method of rigorous

reduction for precession, using the rectangular equatorial co-

ordinates x, y, z.

1 To update the 1920 coordinates quoted in the Dover paperback edition of Webb’s

Celestial Objects for Common Telescopes, with accuracy limited to that necessary to

place the desired object near the centre of the field of a finder telescope.

Introduction: This publication is still widely used by amateur astronomers. The

latest coordinates given in the text are for 1920, in hours and minutes of RA,

degrees and minutes of dec. In an appendix the approximate coordinates for

2000.0 are listed. Where faint objects are concerned, and setting circles are used on

a properly-adjusted equatorial mount, it is convenient to update the 1920 co-

ordinates to a current year.
Method 1A or 1B can be employed when new coordinates for a single star are

required. Usually, however, the coordinates for a number of stars will be wanted

for an observing session. In that event, users of Method 1B will prefer to save time

by programming the computation if the calculator in use has such a facility. To

this end a fully-documented programme for the HP-25 is included (page 160) in

Appendix II. It is recommended that this programme be used when a number of

approximate reductions from 1920 to a current epoch are required (Programme 7).

With a suitable readjustment of the programme constants, this programme may

also be used for updating coordinates from another epoch, say 1950.0.
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The equations: « = o, + 0.004 2 7 [3.07 + (1.3 sina, tand,)] 3.1

3 = 8y + 0.000 28  (20.04 cosa,) 3.2

where « and 8 = RA and dec., expressed in decimal degrees, at new epoch

ao and 8, = RA and dec., expressed in decimal degrees, at 1920

t = period in years from 1920 to new epoch

Within the brackets readers will recognize simplified values of m and n derived

from Chapter 2, Topic 3.

Example 1: The 1920 coordinates for Delta Andromedae are given in Webb’s

Celestial Objects as Oh 35m.,0, +30° 25, Ignoring the effect of proper motion, what

are the approximate coordinates for 1977, sufficient for finding purposes? In this

case t = 57.

 

Method 1A

1. Enter minutes of a, and [35.0]
convert to hours -

60
2. Add hours of e, and +
convert to degrees [0]

X

15

3. Store; evaluate cos and M+

sin; note for Steps 6 and 7 f cos (0.988 36) cosa,

MR
f sin (0.152 12) sina,

4. Enter minutes of 3, and [25]
convert to degrees =

60
5. Add degrees of 3, +

[30] CS if Southern dec.
Note 8, for Step 7 and = (30°.416 66)

evaluate tan f tan

6. Solve for a X

Enter sina, [0.152 12]
X
1.3
+

3.07
X

Enter ¢ [57]
X

0.004 2
+

MR

15
Note integral hours = On

Deduct hours and convert -

to minutes [0]
X

60
Note minutes 38m.] ¢ = 0k 38m,]
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Method 1A continued

7. Solve for &
Enter 8, from Step 5

Enter cosa, from Step 5

Enter ¢

Note integral degrees

Deduct degrees and

convert to minutes

Note minutes

MC
[30.416 666]
M+

[0.988 36]
X

20.04
X

(57]
X

0.000 28
+

MR

[30]
X

60

CS if Southern dec.

30°

43'.967
8 = +30° 44’
  

Result 14. The approximate coordinates for Delta Andromedae for 1977 are:

a=0038m1, § = +30°44'. The AE for 1977 gives a = 0h 38™ 055.6, 6 = +30°

44' 07”. The accuracy is quite good, and more than adequate for finding purposes;

it is, in fact, good enough to place the star in the field of the main telescope. Take

care, though, as the results for stars nearer the pole will not reach the same degree

of accuracy, although they will still be good enough for the finder telescope.

Method 1B
 

1. Enter a, in H.MS
format

2. Enter §, in D.MS

format

3. Enter ¢

4, Evaluate o

fFIX 4

[0.35 00]
g—>H

15
X

STO 0

[30.25]
g—>H

STO 1

(57]
STO 2

RCL1

f tan

RCL O

f sin

1.3
X

3.07
+

RCL 2

Fix ip]aces of decimals

The zeros are significant

only inasmuch as they

represent the number of
seconds; e.g., 12 36m.3

is 1h 36m 18s, each O™.1

being 6 seconds, and would
be entered here in H.MS
format as 1.36 18
CHS (change sign) if
Southern dec.



Method 1B continued

X
0.004 2

X
RCL 0
+

15

Note a fH.MS 0.38 08. Read as Oh 38m (8s

a = 0h 38m]

5. Evaluate é RCL O

f cos

20.04
X

RCL 2

X

0.000 28
X

RCL 1
+

Note & f HMS 30.43 58. Read as 30° 43’ 58”

& = 30°44'
 

Result 1B. The approximate coordinates for Delta Andromedae for 1977 are:

a=0n38m1, § = +30°44'. The AE for 1977 gives a = Oh 38m (55,6, 6 = +30°

44’ 07”. The accuracy is good, but see the word of caution with the result of Method

1A. Use the programme in Appendix II when several similar reductions have to be

processed (Programme 7).

For further practice, try the following:

(a) Celestial Objects gives, for Eta Centauri, 14" 30™.4, —41° 48’ (1920). What are

the approximate coordinates for 1977?

(b) M66, in Leo, has 1920 coordinates of 111 16™.1, +13°26’. Reduce these co-

ordinates to epoch 1950.0.

(c) What will be the approximate coordinates of Zeta Herculis, given for 1920 in

Celestial Objects as 16" 38™m.3, +31°42’, at epoch 2000.0?

Your answers should be:

(a) 141 32m6, -42°03’. The AE for 1977 gives 141 34m0, —42° 03’.

(b) 111 17m.8, +13° 16’. The Atlas Ceeli Catalogue gives 111 17m.6, +13°17'.

(c) 16140m™.8, +31° 33’, The Celestial Objects Appendix gives 16" 41m.3, +31°

35,

The longer the intervening period the greater is the likely discrepancy. This is

partly due to the effect of proper motion, which we have so far ignored, but is

mainly a reminder that simplified equations are intended for use only over a

relatively short period of time.



2 To calculate the effect of precession and proper motion on the mean equatorial

coordinates «,, 3,, of a star between epoch 7, (when the position and proper motion

are known accurately) and a later epoch 7, when 7 — 7, < 10 years, and the star is not

near either of the celestial poles, to an accuracy of +0s.01 in RA and 4-07.01 in dec.

Introduction: This is a fundamental problem which taxed the mathematical resources

of the earliest astronomers, and which culminated in the great work of Simon

Newcomb. A further development of the method of reduction used in this topic,

even when refined to take into account the secular variations, is not greatly used in

modern times. Because machine and electronic calculation has cut out practically

all the drudgery and increased the speed of computation, it is no more difficult to

machine process all reductions by the rigorous method discussed in the next topic,

which has the added advantage of accuracy near the poles. However, for the sake

of completeness, the approximate method is illustrated here.

da
The equations: g = Ha + m + ns sina, tand, (3.3)

dd
21; = py+ n” cosa, (34)

da db i .
where v dr s the annual rates of change of the coordinates a (seconds of time)

and & (seconds of arc) due to precession and proper motion

ke, ng= the annual proper motions in RA (seconds of time) and dec. (seconds of

arc) respectively

m = annual precession in RA, defined in Chapter 2, Topic 3, in seconds of time

ns and n” = annual precession in dec., defined in Chapter 2, Topic 3, in seconds of

time and seconds of arc respectively

ao and 3, = RA and dec., expressed in decimal degrees, at epoch #,

If t—t, is between 5 and 10 years, take m and » for the midpoint of the interval.

Note the similarity with the simplified version of the same equations used in

Topic 1 of this chapter, 3.1 and 3.2.

Further information: Among many possible references, the reader is specially

directed to W. M. Smart, Spherical Astronomy, Chap. X; S. Newcomb, 4 Com-

pendium of Spherical Astronomy, Chap. X; D. McNally, Positional Astronomy,

Chap. VII.

Example 2: The equatorial coordinates a,, 8y, and annual proper motions pg, g,

for the star SAO 062 191 at epoch 1950.0 are:

ao= 10" 37m 305,471 = 159°.376 963

po= —0%.032 2

do= +31°04'38".81 = 31°.077 447 22

ng= —0".087

The RA and dec. for 1958 are required.

In this case - ¢, > 5 years, so we evaluate m, n® and n” for the midpoint of the

interval—i.e., 1954—using Eqns. 2.9 and 2.10 for this purpose.
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Hence m = 35.073 34

n” = 207.042 2

ns = 18336 15

as calculated in Chapter 2, Example 3.

Method 2A
 

1. Enter 8, and evaluate tan

2. Enter a, and evaluate sin

3. tand, sina,

4. Multiply by n?*

and store

5. Add m

6. Add pq

7. Multiply by number of
years
8. Note total variation, a

9. Enter a, and evaluate cos

10. Multiply by »n”

11. Add g

12. Multiply by number of
years
13. Note total variation, 8

14. Add variations to a,, 8,

8o 31°04' 38”.81

[31.077 447]

f tan

M+

[159.376 96]

f sin
X

MR
X

[1.336 15]

MC
M+

[3.073 34]
M+

[0.0322]
[CS]
M+

MR

X

(8]

[159.376 96]

f cos

X

[20.042 2]
+

[0.087]

[CS]

dt

CS if Southern dec.

L is negative

da
i 3s.325

268.598

pg is negative

dd
— = -18".84

-150".76 = -2' 30".76
a, 101 37m 30s.47
+ 265.60

a = 100 37m 57s.07
so + 31° 04" 38”81

- 02’ 30”.76

 

Result 24. The mean coordinates for SA40 062 191 at 1958.0are « = 10h 37m 575,07,

d = +31°02'08”.05. By the rigorous method to be demonstrated later, the mean

position at 1958.0 was a = 10h 37m 575,062, § = +31°02’ 08”.00. Over this short

period of 8 years the error is therefore minimal, +0s.01 in RA, +0”.05 in dec.,

within the claimed limits.
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Method 2B
 

1. Enter: oy H.MS

Ha

8, D.MS

K3

2. Enter: m

nl

nll

Number of years

3. Total variation in RA

Note variation in RA

4. Total variation in dec.

Note variation in dec.

5. Add variations to a,, 3,

6. For new case go to Step 1,

omit Step 2, start again from
Step 3

[10.37 30 471]

[31.04 38 81]

STO 2

[0.087]

[CHS]

STO 3

[3.073 34]

STO 4

[1.336 15]

STO 5

[20.042 2]

STO 6

(8]
STO 7

RCL 2

g—>H
f tan

RCL O

g—>H

15
X

STO 0
f sin
X

RCL S5
X

RCL 4
+

RCL 1
+

RCL 7
X

RCL 0

f cos

RCL 6
X

RCL 3
.+.

RCL 7
X

In H.MS format

Ka 1S negative

CHS if Southern dec.

kg is negative

da
38.32) = -(+332) =

+265.60

ds-18”.84) = %°( ) dt

-1507.76 = -2’ 30”.76
a, 10h 37m 30s.47

+26560
a = 10h 37m 575,07

8, + 31°04’ 38”.81
- 02 30".76

= + 31°02' 08”.05
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Result 2B. The mean coordinates for SA0 062 191 at 1958.0 are: o = 102 37m 575,07’

d = +31°02'08”.05. By the rigorous method to be demonstrated later, the mean

position at 1958.0 was a = 10h 37m 575,062, & = +31°02’08”.00. Over the short
period of 8 years the error is therefore minimal, 4-0s.01 in RA, +0”.05 in dec. As

written, Method 2B is convenient for a number of similar reductions.

3 Rigorous reduction for the effects of precession and proper motion from the

equator and equinox of epoch 7, to the equator and equinox of a later epoch ¢ (or vice

versa), correct to +0.01s in RA, +0”.1 in dec., with a simple 8-digit algebraic cal-

culator (Method 3A); correct to +0s.001 in RA, +0”.01 in dec., with a 10-digit

RPN calculator (Method 3B).

Introduction: When several similar reductions are to be computed, a great deal of

time can be saved by transforming the steps of Method 3B into a standard pro-

gramme. Not only is time saved, but opportunities for mistakes are reduced to a

minimum. If such a facility is provided by the calculator in use, the reader is
recommended to use the programmes in Appendix II (Programmes 8 and 9 for the

HP-25, Programme 11 for the HP-67 and HP-97).

One should take care not to be misled by the high accuracy achieved over

relatively long periods of time when compared with previous methods. Because {,,

z and 0 are found by means of a series in powers of the time, it must be realized

that such a derivation can give reliable results only for a few centuries on either side

of the original epoch. Although this cautionary note is necessary, the reader will

find that, for reductions over sensible periods, a very high degree of accuracy is

obtainable.

The equations:

g = siné (tand, + cos(ey, + {,) tanid] 3.5)

g sin(ao+ &)
Aa—p)= —————— .6

tan( » 1 -g cos(ag+ o) (3.6

p= Lo+ z 3.7
a= ag+ Aa (3.8)

tan3(3d — 8,) = tanif[cos(ay+ o) — sin(ay+¢,) tan}(Aa — u)] (3.9

where {,, z and @ are defined in, and evaluated by the method shown in, Chapter 2,

Topic 1

ao and §, are the equatorial coordinates in RA and dec. at epoch ¢,, modified by the

effects of proper motion during the time ¢ - 7, (strictly, the equatorial coordinates

at epoch ¢, referred to the equator and equinox of epoch #,)

a and & are the equatorial coordinates in RA and dec. at epoch ¢

Further information: Among many references which could be cited, the reader’s

attention is especially directed to S. Newcomb, A Compendium of Spherical

Astronomy, Chap. X; Explanatory Supplement to the AE, pp 28-41; Woolard and

Clemence, Spherical Astronomy, Chap. 13.
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Example 3: The equatorial coordinates and annual proper motions of Alpha

Ursa Minoris (Polaris) at epoch 1950.0 are given in the SAO Star Catalogue as:

(SA0 000 308) a = 1h48m 485,786

poe= +0s.1811
3= +89°01'43".74
rs= -0".004

Reduce to the equator and equinox 1978.0.

Method 3A
 
1. Evaluate {,, z, sinf and
tan40 (see Chapter 2, Topic 1)

2. Enter pq

3. Multiply by ¢ -1,

4. Add seconds of « and

convert to minutes

5. Add minutes of a and

convert to hours

6. Add hours of a and

convert to degrees

Note a,

7. Add ¢, (Step 1)

Note cos(a, + &o)

Note sin(a, + &)

8. Enter pq

9. Multiply by #-1¢,

10. Add seconds of & and

convert to minutes

11. Add minutes of d and

convert to degrees

12. Add degrees of &

Note 3,

MC

[0.1811]
X

(28]
+

[48.786)

60
+

(48]

60
+

(1]
X

15

+

[0.179 280 7]

M+

f cos

MR

f sin

[0.004]

[CS]
X

(28]
+

[43.74]

60
+

[
60
+

[89]

f tan

MC

M+

44

{o =0.179 280 7
z=20.179298 0
sind = 0.002 720 6

tan40 = 0.001 360 3

CS if pq negative

CS if reduction is t > ¢,

@y = 27°.224 403

0.887 786

0.460 257

Kq is negative

CS if reduction is # = ¢

3, = 89°.028 785

CS if Southern dec.



Method 3A continued

13. Solve for q:
Enter cos(ay + o)

tanié

tand,

sinf

14. Solve for Aa:

sin(ay + &)

cos(ag + &o)

Note Aa—

&o

15. Add a, (Step 6)

Note hours of a

16. Deduct integral hours
and convert to minutes

Note minutes of a

17. Deduct minutes and

convert to seconds

Note seconds of a

[0.887 786]
X

[0.001 360 3]
+

MR
X

[0.002 720 6)

MC
M+
X

[0.460 257]

<>

XM
X

[0.887 786]

[0.179 280 7]
+

[0.179 298 0]
+

MR

+

[27.224 403]

15

I
x
S

45

From Step 7

From Step 1

From Step 1

(@ = 0.160 483 8)

From Step 7

From Step 7

Aa - p = 4.923 071

Aa = 5.281649 7

2h

10m

01s.452
Q1978 = 2“ loln 015.45



Method 3A continued

18. Solve for & - 3,: MR

2

f tan
X

sin(ay + o) [0.460 257] From Step 7
CS
+

cos(aqy + &o) [0.887 786 From Step 7
X

tan}é [0.001 360 3] From Step 1

ftan?!
X

2
= 3-8, =0°135286

19. Add 3, (Step 12) +
[89.028 785]

Note degrees = 89°

20. Deduct integral degrees -
and convert to minutes [89]

X

60
Note minutes of 8 = 09’

21. Deduct minutes and -
convert to seconds 9]

X

60
Note seconds = 50”.66

& = 89°09'50".7
 

Result 34. The mean equatorial coordinates for Polaris for epoch 1978.0 are

a= 20 10m 01545, 8 = +89°09’ 50”.7. The mean place given in the 1978 AE is

a= 20 10mO01s.2, 3 = +89° 09’ 51”. Although there is an apparent error of about

+0s.3 in RA, there is a reason for this. We took our 1950.0 position from the

SAO Star Catalogue; the AE uses the Boss General Catalogue for the base position

at 1950.0. Comparison between the GC and the SAO reveals a difference of 05.284

at 1950.0. (Entries for the SAO Star Catalogue, collected from several earlier

catalogues—including the GC—were first reduced to the system of the GC, then to

the FK3 system, and finally to the FK4 system.) Our apparent erroris thus explained

as the result of systematic corrections applied to the GC position before incorpor-

ation into the SAO Star Catalogue.

The example has been set in this manner deliberately, to bring out the point that

small differences can occur which stem from the selection of the frame of reference,

and not from error in the computation. Now, if you take for the 1950.0 base data,

from the GC, a = 1"48™485.502, u,= +0%.1807, 8 = +89°01'43".83, ug=

-07004, and rework the example, you will obtain, for 1978.0, « = 2h 10™ 01s.15,

d = +89° 09’ 50”.7, which, when rounded, agree with the 4E data.

The essential point is that, in astrometrical work of the highest accuracy, when-
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ever it would be helpful to other observers the reference system should be quoted.

The accuracy of these reductions for a very close polar star is therefore seen to be

excellent, and within the limits claimed.

Method 3B
 

1. Evaluate and store {,, z,
sinf and tani6f (see Chapter 2,

Topic 1)

2. Enter pq

3. Multiply by ¢ - ¢,
and convert to degrees

4. Enter a, H.MS format and

convert to degrees

5. Enter pj

6. Multiply by # - ¢, and

convert to degrees

7. Enter 3, D.MS

8. Solve for g:

9. Solve for Aa:

[0.181 1]
T

(28]
X

3600

[1.48 48 786]
g—~H
+

15
X

STO 0
RCL 4

_+_

STO 1
[0.004]
[CHS]

1;

(28]
X

3600

[89.01 43 74]

g—~H
+

STO 2

f tan

RCL 7

RCL 1

f cos
X

+

RCL 6
X

STO 3

RCL1

f sin
X

RCL 3

RCL1

f cos
X

CHS

1
+
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{o = 0°.179 280709 STO 4
z =0°.179297981 STO 5

sind = 0°.002 720 567 STO 6
tan3d = 0°.001 360 286 STO 7
CHS if negative
‘Enter’

CHS if reduction is t > ¢,

a, (including proper motion)

ay + Lo

pg is negative

‘Enter’

CHS if reduction is t — ¢,

CHS if Southern dec.

3, (including proper motion)

(g = 0.160 484 912)



Method 3B continued

10. Add for a

Note integral hours

Note minutes

Note seconds

11. Solve for &:

Note degrees

Note minutes

Note seconds

g tan™!

STO 3

RCL 4
RCLS

RCLO

15

g FRAC

g FRAC

60

RCL 3

f tan

RCL 1

f sin

CHS

RCL 1

f cos

RCL 7

g tan™!

X
RCL 2

g FRAC

60

g FRAC

60

(Aa —p = 4.923 118 628)
q is no longer required

(Aa = 5.281 697 318)

2h

10m

01s.464

89°

09’

507.713
a = 20 10™m 015.464
8 = 489709 50".71
 

Result 3B. The mean equatorial coordinates for Polaris for epoch 1978.0 are

a= 20 10m 015464, 5 = +89° 09’ 50”.71. The AE for 1978 gives a = 21 10™ 015.2,

8 = +89°09'51”. See the explanation with the result of Method 3A regarding the

systematic corrections applied to the GC coordinates before incorporation in the

SAO Star Catalogue.

The accuracy of the result obtained with the 10-digit RPN calculatoris excellent.
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For further practice, try the following:

(a) Reduce the equatorial coordinates «, 8 for the following stars from epoch

1950.0 to 1977.0, to the nearest 0s.1 in RA, to the nearest second in dec. Use

Topic 1 of Chapter 2 to derive the precessional constants.

a Ka 8 Ky

(i) 6 And 0" 14m 285,299 —0s.0044 +38°24'14"90 -0".015

(if) B Ret 30 43m 335,963 +0s.0495 -64°57'50".21 +07.078

(fii) o Cam 4h49m03s825 40s.0006 +66°15'38".64 +07.008

(iv) B UMi 14~ 50™ 495,645 —0s.008 6 +74°21'35”.58 +07.010

(v) B Oct 22h41m045412 —0s.0284 -81°38"417.05 +07.006

(b) Using the methods illustrated in Chapter 2, Topic 1, compute the precessional

constants necessary to reduce the mean equatorial coordinates of Polaris for 1978.0

to the equator and equinox of 1755.0 and then carry out the reduction, to the

nearest 0s.1 in RA, to 0”.1 in dec., given a;g;s= 20 10™ 015,46, p,= +0s.208 1,

d197s= +89°09’ 50”.71, pg= -0".008.

(c) Auwers’ catalogue of Bradley stars, epoch 1755.0, gives the position of Beta

Ursa Minoris as a = 14 51m 425,56, 8 = +75°09' 23”.2. Ignoring the effect of

proper motion (input 0 in the computation), reduce these coordinates to epoch

1875.0, an interval of 120 years.

(d) Avparent Places ofFundamental Stars, 1977, quotes the mean place for Epsilon

Cassiopeiae at 1977.0 as 1 52m 435,380, +63° 33’ 27”.54. Given, from the SAO

Star Catalogue, the 1950.0 coordinates and proper motions: a = 12 50™m 46s.378,

pe= +0s.0049, 8§ = +63°25"29”.89, pg= -0".015; and using Method 3B with

the precessional constants derived from Topic 1 of Chapter 2, how does your result

compare with the mean place for 1977.0 quoted above?

Your answers should be:

(@) () Ohr15m53s1 +38°33'14”

(ii) 3nr43m 5454  —64° 52' 45"

(iii) 4h51m45s2 +466°18'21”

(iv) 14h50m 453 +74° 14’ 58”

(v) 22h43m47s5 -81°30'11”

If you check by confirming with the 1977 AE, you will note that, although the

declinations agree with the ephemeris, there were some small deviations in the 1977

right ascensions. This is because the compilers of the AE used as base for 1950.0

the coordinates listed in the Boss General Catalogue, while in the question I used

those listed in the SAO Star Catalogue. See the note on this point appended to

Result 3A. If the GC coordinates and proper motions are used (or those in the

Atlas Celi Catalogue) the results agree exactly with the mean positions for 1977.0

shown in the AE.

(b) The 1755 coordinates are o = 0h43m4]1s9, § = +87°59'41”.4. If you did

not obtain this result, check that you remembered to use {,= -z, z = -{,, and that

you changed the sign of 6, tan}6 and sind. Also, when computing the total proper

motions over the period, that you changed the sign when entering the number of

years, to —223.
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(c¢) This example is worked in §144, A Compendium of Spherical Astronomy, where

the result is given as a = 14" 51m06s.35, 8§ = +74°39'58”.82. Your answer

should be within +0s.01 in RA, +0”.1 in dec.

(d) The result from Method 3B is a = 1" 52m 43s.381, § = +63° 33’ 27”.54 which,

compared with the coordinates given by Apparent Places, is in error by +0s.001

for «, and in exact agreement for 8. The claimed accuracy is achieved.

4 Rotational geometry and an alternative method of rigorous reduction for precession

and proper motion.

Introduction: Printed catalogues normally list stars in terms of the equatorial

coordinates «, & in ascending order of o (although sometimes divided into con-

venient bands or zones of declination, e.g., BD and SAQO). However, there are

alternative methods nowadays of storing and retrieving this information (punched

cards, magnetic tape, disc, etc.) where it might be just as convenient for data-

processing purposes to record the positions in terms of the rectangular equatorial

coordinates, x, y, z. By three successive rotations about the three rectangular axes,

Zo, ¥', 2%, through the angles ¢,, 8 and z respectively,it is possible to transform the

initial reference frame to the equator and equinox of another epoch.

Further information: The method is fully developed in D. McNally, Positional

Astronomy, 7.2, and the reader is encouraged to refer to this treatment for further

details. An even more complete treatment of matrix algebra and its application to

transformation of coordinates is found in I. I. Mueller, Spherical and Practical

Astronomy as applied to Geodesy, 3.34, 3.35, 4.333, 4.422 and 4.424.

Programme: Most Hewlett-Packard calculators have a powerful feature: polar

magnitude and angle conversion into rectangular x, y coordinates, and vice versa,

for vector work. This feature can be employed to perform the three rotations

referred to in the introductory paragraph. The method is really suitable only for

computer techniques or powerful programmable calculators such as those mentioned.

Readers having access to such a calculator will find it instructive to use the

specially-written programmes in the Appendix (Programmes 12 and 13), and to

re-work the ‘further practice’ problems of Topic 3, using the rotational-geometry

method as an alternative to the trigonometric methods illustrated there.

Accuracy is identical to that achieved by Method 3B and its equivalent pro-

gramme in the Appendix. The lengths of the alternative programmes are about

equal, so there is no saving of time in entering or in subsequent key-strokes which

might otherwise give one programme the edge over the other. It is simply a matter of

preference whether the reader elects to work in terms of a, 8 or x, y, z coordinates.

As written, the alternative programme incorporates initial conversion from

a, 8 to x, y, z coordinates, and vice versa at the end of the transformation, for

convenience in working from conventional printed star catalogues. If the base

material is already available in terms of x, y, z coordinates then these conversion

routines can be deleted or bypassed; this will shorten the programme entry time

(for the HP-25 and HP-55, which do not work from magnetic cards as do the other

two in the family) but it will be found that the running time will not be reduced

significantly.
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4 Reduction from Mean to Apparent
Place

Topic Reduction from mean place at the start of a Besselian solar year to

apparent place at any time during the year, with allowance for

precession, nutation, aberration and proper motion.

1 To reduce the equatorial coordinates of a star, a, 3, from the mean place to the

apparent place of date, correct to +0s.001 in RA, to +-0".01 in dec.

Introduction: The methods of computation demonstrated in Chapter 3 enable the

coordinates of a star, referred to the equator and equinox of a standard catalogue

epoch, to be reduced to the equator and equinox of any other epoch (the start of a

Besselian solar year), with allowance for the effects of precession and proper

motion. The mean coordinates are correct for that instant near the start of the

selected calendar year. (See Chapter 9, Topic 1 for the method of calculating the

beginning of the Besselian solar year.)

When revised coordinates are required for times after the epoch a further reduc-

tion is necessary, to give the apparent position of date. The corrections include

allowance for precession, nutation, aberration and proper motion. If a final

correction for parallax is also desired (and this will only rarely be necessary) this

may be computed separately.

The corrections are determined by the use of the Besselian Day Numbers, which

are tabulated daily in the AE. For the purposes of the computation it is assumed

the reader will have access to the AE for the required year. Where this is not

possible—e.g., before publication of the relevant 4AE—the computer will have to

calculate the values of the Day Numbers himself; the computation for 4, Band E

is straightforward, but that for C, D, J and J’ is more tedious. The subject is dealt

with in detail in Chapter 5D of the Explanatory Supplement to the AE. Topic 1 of

Chapter 9 of this book will enable reasonably accurate approximations to be

derived in the minimum of time.

An HP-67 programme for reduction to apparent place is included in the Appendix;

it will be found especially useful for occultation work (Programme 56).
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The equations:

a = ag+ Tpg+ Aa + Bb + Cc + Dd + E + J tan?, (4.1)
8 = 8g+mug+Aa’ + Bb' + Cc’ + Dd' + J' tanj, 4.2)

where zero subscripts denote the mean place at the start of the year

T = 3652423 where ¢ is the number of days from the nearest beginning of a

Besselian solar year

A,B,C, D, E,J,J' are the Besselian Day Numbers

a,b,c,d,a’,b’, c',dare Besselian Star Constants, where:

m .

a= n + sinay tand,

b = cosa, tand,

¢ = COSag Secd,

d = sina, secd,

a’' = cosa,

b' = —Sinao

¢’ = tane cosd, — sine, sind,

d' = cosa, sing,

and m, n and e are as defined in Chapter 2.

Further information: Explanatory Supplement to the AE, Chap. 5; any current AE,

on or near p 547; Woolard and Clemence, Spherical Astronomy, p 283 et seq;

D. McNally, Positional Astronomy, pp 175-179; W. M. Smart, Spherical Astronomy,

pp 242-246.

Example: Using the mean place for Epsilon Cassiopeiae at epoch 1978.0, (which

will be found by the method of Topic 3 of Chapter 3 to be a« = 1h 52m 475,729,

8 = +63°33'45”.19) and the proper motion (which by Chapter 5 will be found to

be unchanged from its value at 1950.0: p,= +05.0049, ps= —07.015), compute to

the second order the apparent place at Greenwich upper transit on 1977, November

11.937, given the following Besselian Day Numbers:

OrET T A B C D E

Nov 11 -0.1388 -1”.815 +9”7.125 +127.468 +15”.344 +0s.0004

Nov 12 -0.1361 -1".745 +9”.185 +127.218 +157.582 +0s.000 4

J J’

Nov 11 0 -07.001 6

Nov 12 +0s.000 01 -0”.001 6

and

m n €

1977.0 46”.106 6 207.0403 23°.442 274

1978.0 46”.106 9 2070402 23°.442 144
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Before the apparent place for upper transit can be computed, values for the Day

Numbers must be interpolated to November 11.937, and values for m, n and e

interpolated to 1977 November, assuming the change in rates to be linear over

these periods. Then, if x is the value of the required Day Number, y its value on

November 11 at O* ET and z its value on November 12, in this case: x = z- (1 -

0.937) (z-y).

Thus, we find for November 11.937:

r=-0.1363, A=-1"749, B= +9".181, C = +12".234, D = +15".567, E =

4050004, J = +0s.00001, J' = -0".001 6.

By similar interpolation technique we find:

m = 46".1069, n = 207.040 2, « = 23°.442 162.

The foregoing interpretation presupposes that the time of Greenwich upper

transit is known on the required date. But what if the transit time is not known

beforehand? An interpolation on a different basis can be made in these circum-

stances, as the AE lists (in the next following section) the Besselian Day Numbers,

A, B, C, D, for Or ST daily. Suppose, then, that the Greenwich upper transit time

for Epsilon Cassiopeiae on 1977, November 11 is unknown. In this case, take the

Day Numbers for O» ST on November 11 and 12, and interpolate to the right

ascension of the star:

0or ST A B C D

Nov 11 -17.756  +97.177 +12".254 +15".549
Nov 12 -17.672  +97.227 +127.000 +15".781
and take E, J and J' as before.

Interpolation is to 12 52m 475,729 = 11,879 9 and, putting x as the required Day

Number, y its value on Nov 11 at O* ST, z its value on Nov 12:

a(z-y)
24

Thus, we obtain for the Greenwich upper transit on 1977, November 11, 4 =

-17.749, B = +9”.181, C = +12”.234, D = +15”.567, which values are seen to be

identical to those previously obtained by interpolation when the transit time was

known.

xX=y+

 

Method A

1. Find Aa:
Enter a,, in degrees [28.198 871]

f sin

M+
Enter 3,, in degrees [63.562 553] CS if Southern dec.

f tan
X
MR

MC
M+

Enter m [46.106 9]

Enter n [20.040 2]
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Method A continued

Enter A

Note Aa

2. Find Bb:

Enter q,

Enter 6,

Enter B

Note Bb

3. Find Cec:

Enter o,

Enter §,

Enter C

Note Cc

4. Find Dd:

Enter a,

Enter 3,

Enter D

Note Dd

M+
[1.749]
[CS]
X

MR

15

[28.198 871]

f cos

MC

M+
[63.562 553]

f tan

X

MR

X

[9.181]

15

[28.198 871]

f cos

MC

M+
[63.562 553]

f cos

(L
X

X

MR
X

[12.234]

15

[28.198 871]
f sin

MC

M+
[63.562 553]

f cos

il
X

X

MR
X

[15.567]

15

55

A is negative

(Aa = -03.379 07)

CS if Southern dec.

(Bb = +15.084 88)

(Cc = +15.614 48)

CS if Southern dec.

(Dd = +15.101 46)



Method A continued

5. Find J tan23,:
Enter §,

Enter J in seconds
Note J tan2j,

6. Flnd Thq -

Enter pq in seconds

Enter

7. Find Aa in seconds:
Enter Aa, Step 1

Enter Bb, Step 2

Enter Cc, Step 3

Enter Dd, Step 4

Enter E in seconds

Enter J tan?3,, Step 5

Enter tuq, Step 6

Enter seconds of a,
Read Aa in seconds
If display is negative, add

60 seconds, note new seconds,

and reduce minutes of a, by 1
8. Find Aa’:

Enter a,

Enter A

Note Aa’

9. Find Bb':

Enter B

Note Bb’

10. Find C¢’:
Enter €

[63.562 553]

f tan
X

X
[0.000 01]

[0.004 9]
X

[0.136 3]
[CS]

[0.379 07]
[CS]
+

[1.084 88]
+

[1.614 48]
+

[1.101 46]
+

[0.000 4]
+

[0.000 04]
+

[0.000 67]
[CS]
-+

[47.729]

[28.198 871]

[1.749]

[CS]

MR

f sin

CS

X
[9.181]

[23.442 162]

f tan
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CS if Southern dec.

(J tan?3, = +-0s.000 04)

CS if pq is negative

T is negative

(tug = —0s.000 67)

Aa is negative

Tq IS negative

(51s.151)

a = 1h 52m §]s.151

A is negative
(Aa' = -1".541 4)

(Bb' = -4".338 3)



Method A continued

Enter §,

Note first term
Enter a,

Enter 3,

Enter first term

Enter C

Note Cc’

11. Find Dd’:

Enter a,

Enter §,

Enter D

Note Dd’

12. Find J' tand,:

Enter 3,

Enter J'

Note J' tand,
13. Find tug:

Enter ug

Enter ~

Note Tus
14. Find AS in arcsecs:

Aad’, Step 8

MC

M-+

[63.562 553]

f cos
X

MR

[28.198 871]

f sin

MC

M-+
[63.562 553]

f sin
X

MR

MC

M-+
[0.193 053 1]

MR
X

[12.234]

[28.198 871]

f cos

MC

M+
[63.562 553]

f sin
X

MR
X

[15.567]

[63.562 553]
f tan

X
[0.001 6]

[CS]

[0.015]
[CS]
X

[0.136 3]
[CS]

-+

[1.541 4]
[CS]
+
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CS if Southern dec.

(0.193053 1)

CS if Southern dec.

(Cc" = -2".814 6)

(DA’ = +12".284 6)

J' is negative
(J' tand, = —0”7.003 2)

ks is negative

T is negative

(tug = +07.002 0)

Aa' is negative



Method A continued

Bb', Step 9 [4.338 3]
[CS] Bb' is negative
+

Cc’, Step 10 [2.814 6]
[CS] Cc' is negative
+

Dd’, Step 11 [12.284 6]
+

J' tand,, Step 12 [0.003 2]
[CS] J' tand, is negative

_|._

Add seconds of §, [45.19]
Read AS in seconds = AS = 487.779
If display is negative, add

60 seconds and reduce

minutes of §, by 1 3 = 4+63°33"48".78
 

Result A. The coordinates of Epsilon Cassiopeiae at Greenwich upper transit on

1977, November 11 were « = 1h 52m 515,151, 8 = +63° 33’ 48”.78. This position

includes allowance for the short-period terms of nutation, but not for parallax.

(See the additional note with the result for Method B for comparison' with the

position given by Apparent Places of Fundamental Stars, 1977.)

Method B

1. Find Aa:

Enter o, in H.MS format [1.52 47 729]
g—>H

15

 

X
STO 0

Enter 8, in D.MS format [63.33 45 19] CHS if Southern dec.
g—>H

STO 1
Enter m in arcsecs [46.106 9]

4 ‘Enter’
Enter n” [20.040 2]

RCLO
f sin

RCL1
f tan
X
+

Enter A [1.749]
[CHS] A is negative
STO 2

X

15

STO 7
RCL O
f cos
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Method B continued

Enter B

Enter C

Enter D

Enter E

Enter J

Enter pq

Enter «

Enter seconds of a,

RCL1

f tan
X

[9.181]

STO 3
X

15

STO + 7

RCL 0

f cos

RCL1

f cos

15

STO + 7

[0.000 4]
STO + 7

[0.000 01]
RCL 1

f tan

g x?
X

STO + 7

[0.004 9]
4 ‘Enter’

[0.136 3]
[CHS] < is negative
STO 6

X

STO + 7

[47.729]
RCL 7
+
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Method B continued
Note new seconds of a;

if display is negative, add
60 seconds and reduce minutes
of ag by 1

2. Find AS:

Enter ¢

Enter J’

Enter pg

Enter seconds of §,

Note new seconds of §;

if display is negative, add

60 seconds and reduce minutes
of §, by 1

RCL 0

f cos

RCL 2
X

STO 7
RCL O
f sin

CHS
RCL3

X
STO + 7

[23.442 162]
f tan

RCL1

f cos

X

RCL O

f sin

RCL 1

f sin

X

RCL 4
X

STO + 7

RCL 0

f cos

RCL1

f sin
X

RCL 5

X

STO + 7

RCL 1

f tan

[0.001 6]

[CHS]
X

STO + 7

[0.015]

[CHS]

RCL 6
X

STO + 7

[45.19]

RCL 7
+

(51s.151)

a = ]h52m 5]s.151

J' is negative

kg is negative

(487.78)

8 = 463°33"48".78



Result B. The coordinates of Epsilon Cassiopeiae at Greenwich upper transit on

1977, November 11 were a = 17 52™ 515,151, 8§ = +63° 33’ 48”.78. This position

includes allowance for the short-period terms of nutation, but not parallax.

The position given by Apparent Places of Fundamental Stars, 1977, for this

transit is a = 11 52m 515,160, & = +63° 33’ 48”.86, but this excludes the short-

period terms because of interpolation difficulties.

As a check we can compute the short-period terms separately and add them to

the position given in Apparent Places.

The values for f’, g’ and G’ are given in the AE:
fl gl Gl

Nov 11 -0s.0130  0”.085 11h 49m
Nov 12 -0s.0103  0”.079 9h 52m

Interpolating, as before, to November 11.937 we obtain:

f'= -0s.0105, g’ = 07079 (0s.005 3), G' = 9n 59m,

Then, Aa = f' + g'sin(G’ + a,) tand,

Ad = g’ cos(G’ + ao)

Aa = —05.010

A% = —07.079

Adding these terms to the coordinates given by Apparent Places gives the required

position, including short-period terms: o = 1" 52m 515,150, 8 = +63° 33’ 48”.78,

which agrees to within +0s.001 in RA, and exactly in dec., with the result obtained

by Methods A and B. Thus the accuracy of the method is excellent and needs only

the additional corrections, if required, for parallax and refraction.

The worked examples in this Chapter show the complete method of reduction

to the second order. If the nature of the work (e.g., apparent places of stars for

occultation work) demands accuracy to the first order only, the terms in Eqns. 4.1

and 4.2 which include J and J’ can be dropped. In this event, HP-67 and HP-97

users should employ Programme 56 in the Appendix.
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S Proper Motion

Topic To calculate the effect of precession on proper motion.

1 To calculate the change in proper motion, ., ng, with precession.

Introduction: n,, 15, being the components of proper motion x, ¢ in RA and dec.

respectively, must clearly change with the times because ¢ is related to the North

point of a particular epoch. This secular change is most obvious near the poles.

With the exception of a few nearby stars which have exceptionally large proper

motion, so that a factor of acceleration has to be taken into account, w is a constant

over long periods of time. On the other hand, ¢ will be changing due to the moye-

ment of the North Celestial Pole (NCP).

In this topic, we shall consider various methods of reducing p,, ug from one

epoch to another.

Further information: The theoretical aspects are treated in detail in W. Chauvenet,

A Manual of Spherical and Practical Astronomy, Vol. 1, pp 621-623; S. Newcomb,

A Compendium ofSpherical Astronomy, pp 260-265; D. Smart, Spherical Astronomy,

Chap. XI; D. McNally, Positional Astronomy, pp 180-9.

Method 1.

The simplest method of determining ., 1y at any epoch, when the proper motion

is known (from a catalogue) for some particular epoch, can be employed when

reducing the mean position of the star from that of the catalogue to the same new

epoch. In Chapter 3, Example 3, the known equatorial coordinates of Alpha

Ursa Minoris (Polaris) were reduced from 1950.0 to the equator and equinox of

1978.0, using for p, and ug the values given in the SAO Star Catalogue for 1950.0:

pq = +0s.181 1, pg = -07.004. The 1978.0 coordinates thus reduced were: a =
2h 10™m 015464, 8 = +89° 09’ 50”.71.

Suppose, now, the reduction of position is carried out again, this time ignoring

the proper motions (i.e., input 0 at the appropriate steps). In this case, Method 3B

of Chapter 3 gives the 1978.0 coordinates: « = 22 (09m™ 555,638,8 = +89° 09’ 50”.94.

The difference between these two sets of coordinates is due to the proper motion

of the star during the interval between the epochs. If this difference is divided by the

number of years in the period, the result is the annual proper motion, in RA and

dec. respectively, at the new epoch of 1978.0:
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55,826 — 28 = +0s.208 1, -0”.230 — 28 = -0".008.

Thus, the proper motions at 1978.0 are p, = +0.208 1, ng = -0".008.

Method 2.

Alternatively, once the reduction for mean place from the known epoch to the

required new epoch has been carried out, the revised declination can be used in

Chauvenet’s equations:

siné sin(ay + &)
siny = ————— (5.1)

cosd

, , #80 .
COS 8" X pg' = pgoCOSd,COSy + s sinv (5.2)

ps' = —15pq0 cOS8y Siny + pgo COSY (5.3)

where 8 and ¢, are the same as used in the main reduction, r," and p,, are expressed

in seconds oftime, ng’ and g, are expressed in seconds ofarc, superscript * denotes

the new epoch and subscript , the old epoch.

Taking the same example as in Method 1, that is, the reduction of Polaris from

1950.0 to 1978.0, and solving Eqn. 5.1 for y:

) 0.002 720 567 sin(27°.203 275 01 + 0°.179 280 709)

Sy = c0s89°.164 086 11
0.001 251 269

~ 0.014588 933
= 0.085 768 370.

.. y= 4°920 210 345 and so

cosy = 0.996 315 104.

Then solve for p,’ by Eqn. 5.2:

0.014 588 9331," = (0.181 1 X 0.016 949 535 x 0.996 315 104)

 

-0.004
15 x 0.085 768 370

= 05.003 035 378.

,0.003 035 378

#a ™ 0.014 588 933
= +05.208 06.

Lastly, solve for pg’ by Eqn. 5.3:

ps' = (=15 x 0.181 1 x 0.016 949 535 x 0.085 768 370)

+ (-0.004 x 0.996 315 104)

= -0.003 949 + (-0.003 985)

= -0".007 9.

Thus, the proper motions of Polaris at 1978.0 are u,= +0%.208 1, pg= —-07008,

which result agrees with that of Method 1.

Method 3.
Woolard and Clemence, in Spherical Astronomy, give the rigorous equations:

1/15 ud, sind sin(a’ — z)
- 0 ind tand’ ' e 4Pg Pgo [COSO + sind tand’ cos(a’ 2)] + 0S5, COSb" (5.4)

cosd’

cosd,
 pd’ = =15 p,osinb sin(a’ — z) + pgo[cosd + sind tand’ cos(a’ — z)] X (5.5)
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This reduces the number of equations to two, but each is of great length. The use

of these equations leads to very accurate results, but to the four decimal places

normally used for p, and the three for pug they give the same results as those of

Chauvenet, even for close polar stars. Method 2 will therefore generally be found

to be more convenient from a practical point of view.

Method 4.

A short cut might possibly be employed. Note, in Step 14 of Method 3A and

Step 9 of Method 3B of Chapter 3, that Aa — x approximates the value of y in

Eqgn. 5.1. For example, if the value of Aa - x for Polaris given by Method 3B,

Chapter 3, (4 .923 118 628) is employed also for y, thus eliminating Eqn. 5.1, and

n,and ug’ are solved by Eqns. 5.2 and 5.3 using this approximation, the results are:

pe= +0s208 1, ng= —0".008,

agreeding with Methods 1 and 2.

Even over longer intervals—e.g., 1900 — 1978—the use of Aa — u from the reduc-

tion will give accurate results. Therefore, when carrying out reductions for mean

place from one epoch to another by the rigorous method of Topic 3, Chapter 3,

note the value of Aa — u for use as y in Eqns. 5.2 and 5.3 if it is desired to revise the

annual proper motions to the new epoch. If using Method 3B, there is no need

especially to note down Aa - p at Step 9—it can be retrieved at the end of the

computation by ‘RCL 3’. A sub-routine for the HP-25 programmes in the Appendix

has been devised for use when a number of such reductions is undertaken, giving
the proper motions at the new epoch automatically (Programme 10).

For further practice, try the following:

(a) The SAO Star Catalogue gives the equatorial coordinates and annual proper

motions for Epsilon Cassiopeiae at 1950.0 as:

a = 11 50m 465.378,

pe= +05.0049,

= +63°25'29".89,

ps= —07.015.

Using the method of Topic 3, Chapter 3, the mean coordinates for 1978.0 will be

found to be: a = 1" 52m 475729, 8 = +63°33'45”.19. Re-work the example to

find Aa - u and, by Method 4 above, find the annual proper motions for 1978.0,

(b) The mean place for Polaris at 1978.0 was found in Topic 3 of Chapter 3 to be:

a=2M10m 015464, § = +89°09' 50”.71 in the FK4 system. Methods 1 and 2 of

this chapter give the annual proper motions at 1978.0 as: p,= +0%208 1, pus =

-07.008. Find the mean position and proper motion for 1900.0. Use Topic 1 of

Chapter 2 to derive the precessional constants.

Your answers should be:

(a) Aa—pu = 0°.146 477 378; the proper motions are unchanged from 1950.0.

(b) The mean place of Polaris at 1900.0 was a = 1122m 335,645, 5 = +88° 46’

26".46, and the proper motion u,= +0s.144 0, 5= +0".001.

The value of the 1900.0 proper motion can be checked by reducing the 1950.0

coordinates to 1900.0, ignoring proper motion, deducting from the result the
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1900.0 coordinates previously derived, and dividing by 50. The precessional

constants for 1950 — 1900 are {,= -0.320 111 817, z = -0.320 056 757, tanid =

—0.002 429 480, sinf@ = -0.004 858 932. The proper motion thus found for 1900.0

is again given as p,= +05.144 0, pg= +0”.001.

Determination of n, ¢.

In the introduction it was noted that p is effectively constant over long intervals of
time, the only exceptions being a very few stars close to the Sun which have excep-

tionally large proper motions. (McNally comments on Barnard’s Star, and

Newcomb on 1830 Groombridge, for which the perspective accelerations are

407.001 2 annually and +0”.000 19 respectively.)

Because in practice it is more convenient for users of positional catalogues, the

compilers usually express  in terms of its components in RA and dec.; i.e., pq, §.

If 1 is not given, it can be derived from:

B = V(15 py)? cosd + pd? (5.6)
where p, is in seconds of time and ug in seconds of arc.

Consider p, and pg for Polaris at different epochs:

Ha ©3
1900.0 +0s.144 0 +07.001
1950.0 +0s.181 1 -0".004
1978.0 +0s.208 1 -0".008

Using these values in Eqn. 5.6, u is found, in all three cases, to be 07.046 2.

¢ can be determined from:

pg= mCose | 5.7
15p,= psecd sing|

From the first equation of Eqn. 5.7, substituting the value of ug for 1900.0, ¢

can be found from

i.e., P1900 — 88°.7597.

~0.004 d =94°.966 9. For 1978.0, ¢is found t0,046 22Nd P1ss0=04" . For .0, ¢ is found to

be 99°.971 6. Notice that ¢ is increasing; when it was exactly 90° the proper motion

Again, at 1950.0, cose =

O 360

90 90 270 270

180 180

Foc * Mo * Mo = Mo =
Hs * Hs ~ M - Hs +

Fig 1 Correct quadrant for ¢
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in dec. would have been zero, and when it passed the value of 90° the sign of ng

changed from positive to negative.

Care must be taken to establish the correct quadrant when employing Eqn. 5.7

if an electronic calculator is used. When 0° < ¢ <C 180° the calculator will give the

correct value for ¢ if the first equation of Eqn. 5.7 is used, because in the first

quadrant the sign of cos¢ is positive, in the second quadrant negative. But the

sign of sing is positive in both cases, and the calculator will display only the first

quadrant value if the second equation of Eqn. 5.7 is employed. To illustrate this,

take any angle between 90° and 180 '—say, 150°. Key this angle into the calculator

and take the sine (0.500 0); now,if the sin~! key is depressed, the display will show

30°. Now try with the cosine; key in 150°, take the cosine (-0.866 0) and press

cos™1. The display shows the correct angle, 150°. But when ¢ > 180° the calculator

will give incorrect solutions in both cases.

To overcome this difficulty, consult Fig. 1, which shows the correct quadrant of

¢ according to the signs of x, and pug.

Users of HP calculators with facilities for polar to rectangular conversion can

overcome this problem of quadrant in a simple manner. From Eqn. 5.7 we can

deduce:

15 cosdtang = 1>#a€083 (5.8)
n§

Evaluate 15 x, cosd, then enter p5. The numerator is now in the Y register of the
stack and the denominator is in the X register. Now, instead of pressing =, key

g > P, R {. This will give the angle ¢, and its value will lie between —180° and

+180°. If the display is negative, add 360°.

For further practice, try the following:

(c) Given pg,= -0%.0240, p5= +07.003 for a star of 8 = +32°15’, find x and .

(d) Given, for a star where 8 = +42° 30', u = 07.287 2, ¢ = 47°.356 6,find p,, ps.

Your answers should be:

(c) p=0"3045, e = 270°.564 5.

(d) po= 400191, ps = +0".195.
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6 Sun, Moon and Planets

The reader of this chapter must face up to two inescapable facts.

The first is that, although the mean period of any planet or satellite can be

established from a long series of observations, this information does not enable the

precise geocentric coordinates of any of the bodies to be found for any particuiar

time. This would only be possible if the Sun were accompanied by a single planet,

which in turn did not have any satellites. The reason is, of course, that the planets

interact gravitationally with one another as well as with the Sun as they move in

their individual orbits. The masses of the planets are unequal, their orbits are not

circular and, being at different distances from the Sun, they have different periods.

It follows that the perturbative forces mutually exerted vary greatly with the times

and, owing to the several factors involved, are very difficult to predict accurately.

Difficult, but not impossible.

The second unpalatable fact is that, although the accelerative effects of the

perturbations are not impossible to predict, it must be admitted that the task is

beyond the normal computational resources afforded by the types of calculator

with which this book is concerned, and the stated aim of accuracy with speed.

Why, then, include a chapter with this heading? The answer is simply that I do

not like glossing over unwelcome facts, and the readeris entitled to know why such

and such a type of computation is so time-consuming and intricate that it is best

left well alone for the experts to perform and tabulate in the AE.

However, there is a ray of hope. USNO Circular No. 155 (October 1976) is an

Almanac for Computers for the year 1977. By means of tables of Chebyshev co-

efficients it enables close approximations of the coordinates to be made quickly,

with a choice of level of accuracy, for any time during the year (e.g., the RA and

dec. of the Sun at 13" 31™ 00s UT on 1977, May 7).* Perhaps the compilers could

be persuaded to publish, in one volume, similar tables for Sun, Moon and planets

only, for a 10-year period, or even up to epoch 2000.0. There is some speculation

that with the rising cost of publication the AE as we know it may become prohibi-

tively expensive, and it may well be that astronomers might prefer to compute for

themselves the ephemerides in which they have a particular interest.

* A similar publication for 1978 has been issued in Paris by the Bureau des Longitudes

under the title Connaissance des Temps, Nouvelle Série, Ephémérides pour I’An 1978.
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The technique employed would undoubtedly make it much easier for observers

to compute, quickly and accurately, the equatorial coordinates for any desired

time and thus avoid the need for Besselian interpolation between tabulated

ephemerides. But until such a publication becomes more generally available to

computers the route to accuracy will remain through Newcomb’s tables (Astro-

nomical Papers of the American Ephemeris, Vol. VI, 1898) and the Improved Lunar

Ephemeris. There are drawbacks, too. Chebyshev coefficients by themselves tell you

nothing; but by looking at the tabulated coordinates in the AE one can see at a

glance when interesting events (such as conjunctions) are going to occur. All this

having been said,it is still possible to compute reasonably accurate coordinates for

the Sun and most of the planets throughout the year. The approximate methods are

demonstrated in Chapter 9.

Programmes for use with Chebyshev coefficients are included in Appendix II

(Programmes 51 to 53).
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7 Visual Binary Star Orbits

Topic 1 Elements of the orbit of a visual binary star.

Topic 2 Position angle and separation at any epoch.

1 To compute the elements of the orbit of a visual binary star, P, T, e, a, o, i, Q,

where

P=
T =

e

a=

w

the period of revolution in mean solar years

the time of periastron passage

the numerical eccentricity of the orbit

the major semi-axis, expressed in seconds of arc

the angle in the plane of the true orbit between the line of nodes and the

major axis, measured from the nodal point Q to the point of periastron

passage in the direction of the companion’s motion (the value can be

anywhere between 0° and 360°)

the position of the nodal point which lies between 0° and 180°, assumed

to be the ascending node (see note below) (the other nodal point does

not enter into the computation, so when the nodal point is referred to it

means Q)

the inclination of the orbit plane; the value lies between 0° and 180°

(see note below); direct motion of the companion (position angles

increasing) is indicated by 0° < i< 90°, retrograde motion (position

angles decreasing) by 90° < i << 180°.

Note: Measurements of the position angle and separation provide information

only about the apparent orbit, which lies in the plane perpendicular to the line of

sight. In these circumstances it is not possible to establish which of the nodes is

actually the ascending node. It is conventional to select a value for Q less than 180°,

unless radial-velocity measurements of the companion give an indication of the

true inclination of the orbit. The computed value for i is often shown as + until

the indeterminacy of / and Q is removed by such radial-velocity measures. When

these are available, 7 is taken to be positive if the orbital motion at the nodal point

is taking the companion away from the observer, or negative if the motion is

toward the observer at this point in the orbit.

Q is measured with respect to the pole at a specified epoch; it follows that,
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owing to precession, Q (and consequently ) will change slowly with time. This

aspect is covered in Topic 2.

The equations: There are several interdependent equations involved in the comput-

ation of an orbit. In this topic 1 have thought it more appropriate to introduce

these as required in the working of the example.

Further information: R. G. Aitken, The Binary Stars, Chap. 4; D. McNally,

Positional Astronomy, Chap. 12.3.

Method of calculation: The Thiele-Innes method is iilustrated here. The working

has been broken down into several logical steps; in each step, any equations to be

used are given, followed by the working. It will be found that the calculation at

each step is relatively short and straightforward; therefore, no distinction between

algebraic and RPN calculators has been made as it is unnecessary for the key-

strokes to be listed.

Example: The following measures of a very close visual binary, 24 Aquarii (4ADS

15 176), are given. They were made in the interval 1890-1932, and have been taken

from the table on p 103 (Dover paperback edition) of Aitken’s The Binary Stars.

Only those measures made with telescope apertures of 24 inches and over have

been selected as an illustrative example. There are, of course, many later measures

(sce the ‘further practice’ problems at the end of the chapter) which we would use

if we were attempting to compute a definitive orbit, but this will not be our objective;

the aim must be restricted to that of showing how it is done.

24 Aquarii provides a good example of a difficult case: the orbit is highly

eccentric, the pair always much less than a second of arc apart.

 

Date p.a. d n

1890.75 254.5 0.45 3
1.75 261.0 0.55 4
2.40 256.2 0.38 2
3.88 262.8 0.59 1
4.82 264.7 0.52 7
7.81 263.5 0.65 3
7.89 267.4 0.73 1
8.78 269.0 0.49 3 (incl. 127)
8.84 269.0 0.54 1

1901.54 269.4 0.49 10
1.79 274.0 0.55 2
4.67 278.6 0.49 1
8.72 279.6 0.68 2
8.72 284.8 0.56 2
8.73 286.4 0.72 2

1910.72 278.2 0.43 5
4.00 292.5 0.47 8
4.63 291.3 0.47 2
4.66* 293.5 0.51 1
6.42 296.5 0.53 3
7.74 294.7 0.42 1

1921.66 321.1 0.22 3
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4.55 55.0 0.12 1
4.71 6.9 0.22 1
4.82 350.0 0.16 1
6.64 190.7 0.20 1
6.69 204.2 0.19 1
7.74 211.0 0.21 3
7.74 218.7 0.23 1
8.73* 224.6 0.26 1
8.75 221.2 0.27 4
8.75 222.6 0.26 4
9.46* 228.8 0.28 4
9.63* 230.2 0.27 1
9.86* 227.8 0.26 3

1930.48* 2343 0.29 3
1.66* 236.0 0.37 2
2.79* 236.9 0.35 4
2.79* 238.3 0.30 1
 

By definition, the position angle of a double star is measured in degrees, with 0°

indicating the North point; that is, the direction of the North Celestial Pole. But,

as we have seen earlier, the NCP is subject to slow displacement due to precession.

It therefore follows that, over an extended period of time, position angle measure-

ments will relate to different North points.

When assembling material it is usual to consider the effect of precession on

measures of position angle spread over many years. Where the star is not near the

pole and its annual proper motion is small, then the effect of precession will be

negligible unless the period over which the measures are spread is lengthy.

As a guide, the correction applied to a position angie for a star of declination

between 30° and 40°, with little or no proper motion in RA, will be approximately

0°.2 over a period of some 20 years. No correction is necessary for the separation

measures. See the introduction to Topic 2 of this Chapter for details of the correction

to be applied. In this worked exampie we shall proceed on the assumption that any

such corrections have already been carried out, and that the position angles are

referred to a standard epoch, 1900.0, although in practice, because of its position

on the celestial equator, no correction for 24 Aquarii would be required.

1. First, we plot these measures on graph paper, with time along the x-axis, from

1890 to 1935, position angles and distances to convenient scales along the y-axis.

Position angles are marked with dots, graduated in size relative to the number of

nights observed, n; distances are marked with crosses, again relative in size to n.

The size of the plot marks therefore gives a direct indication of the weighting to be

favoured where measures are discordant.

Note that, in order to save space, the position-angle plot has been split into two

segments, the one on the left for the period 1890 to 1921.66, the one on the right

from 1926.64 to 1933; the section near periastron where the measured angles are

difficult and therefore discordant has been omitted.

* Asterisks indicate measures not available to W. S. Finsen in the calculation of the.

orbit as published in 1929, and therefore in the example used in Aitken’s book.
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Smooth arcs are then drawn through the plotted points, favouring the larger

marks where possible, and taking care to ensure that the completed graph properly

reflects Kepler’s second law, in particular that the rate of change in position angle

is greatest at periastron, and in synchronism with the dip in the distance curve.

Distance is shown with a solid line, position angle by the two broken lines.

Where measures of binary pairs wider than than 2” have been derived from

multi-exposure photographic plates made with long-focus instruments they should

be accorded greater weight than visual measures. (See P. van de Kamp, Principles

of Astrometry, Chap. 10.2, 10.3 and p 149.)

Note that the measures of position angle (dots) are reasonably consistent (except,

of course, at periastron, where they have been omitted) enabling a fairly reliable

smooth arc to be drawn through the plot, while the distance measures (crosses)

are often discordant. In principle, this shows that visual measures of position

angle are easier to make than measures of the separation of the two stars, and

especially so in the case of very close binaries such as 24 Aquarii. But notice, also,

at the very time when one would expect the distance measures to become easier,

at apastron, in this example they fluctuate widely, from about 07.45 to 0”.7, in

spite of the fact that only those measures made with large-aperture telescopes have

been used.

At periastron (by inspection seen to occur at about 1924.75), and thereafter up

to 1933, the measures of distance become much more reliable. There seems to be

no reasonable explanation why this improvement, after about 1915, should be so

dramatic; the possibility that the later measures, made in the knowledge of what

other observers were recording, and therefore the known trend of the orbital

motion, were coloured by what observers expected to see rather than what was

actually seen can, I think, fairly be discounted on the grounds of the professional

stature of these observers whose measures have been used, and the size and

efficiency of the telescopes and micrometers they employed. One hopes, too, that

such distortion will not occur in any computation based on those observations.

2. Next, each curve is marked with cross-ticks at 2-yearly intervals from 1890,

so that average measures can be taken at even increments of time for tabulation.

When the table is completed, the rates of change in p and d are compared with the

graph. The cross-ticks should show immediately that at apastron, when they are

grouped closer together, p and d change only slowly; at periastron the wider gaps

between adjacent ticks reflect the acceleration and subsequent deceleration of the

companion as it swings around the primary at closest approach. Note, too, that the

slope of p begins to increase synchronously with the marked dip in d; also, the

downward change of slope at the extreme left of the graph for p is in agreement

with the line for d. We are thus reassured that no fundamental laws of astro-

dynamics have inadvertently been transgressed, and that the prepared curves are

as accurate a graphical representation of the orbital changes as can be deduced

from the published measures.
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1 2 3 4 5 6 7 8 9

Year p Ap d d,d,Ap P Ap d d\d,Ap

1890 255.5 0.52 2558.5 0.53

+3.1 +0.85 +3.2 +0.92
92 258.6 0.53 258.7 0.54

2.9 0.85 3.0 0.89

94 261.5 0.55 261.7 0.55

3.0 0.92 29 0.89

96 264.5 0.56 264.6 0.56

3.0 0.96 2.8 0.89

98 267.5 0.57 267.4 0.57

2.2 0.71 2.7 0.88

1900 269.7 0.57 270.1 0.57

2.8 0.91 2.8 091

02 272.5 0.57 272.9 0.57

2.8 0.89 2.9 0.93

04 275.3 0.56 275.8 0.56

3.1 0.95 3.0 0.92

06 278.4 0.55 278.8 0.55

3.5 1.04 3.2 093

08 281.9 0.54 282.0 0.53

3.5 0.98 34 0.92

1910 285.4 0.52 285.4 0.51

3.7 0.96 3.6 0.90

12 289.1 0.50 289.0 0.49

4.3 1.01 4.0 0.90

14 293.4 0.47 293.0 0.46

4.3 0.87 4.6 0.89

16 297.7 0.43 297.6 0.42

5.8 0.92 517 0.89

18 303.5 0.37 303.3 0.37

1928 217.3 0.24 216.2 0.24

10.9 0.78 12.3 0.89

1930 228.2 0.30 228.5 0.30

7.5 0.83 8.0 0.89

32 235.7 0.37 236.5 0.37

Mean 0.9019 Mean 0.9025

mean (7.1)

€= 2% 57.29578
where ¢ is the double areal constant, 2 is the interval of time in years between
successive values, and 57.295 78 converts Ap into radians.

0.9025 . .c =114.59156 — +0.007 876. W. S. Finsen found -+0.007 81; Aitken found

+0.007 914.
 

Inspection of the columns of the table produced from these curves should

confirm that the motions they represent are in agreement with the curves and

orbital theory. Note that in this method the need for a complete graphical con-

struction of the ellipse is avoided.
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Columns 1, 2 and 4 to the left of the double line are completed from the graph.

Column 3 is then completed to show the 2-yearly differences in Column 2. Column

5 is completed by multiplying Ap by the values of 4 immediately above and below

it; the first entry is thus +3.1 X 0.52 x 0.53 = +0.85.

Examination of this left-hand section reveals the need for adjustment in order

to smooth out the rates of change. Over the short period of two years one may

safely consider the d,d,Ap figures in Column 5 as a fair representation of the

double areas of the sectors swept out, and they should therefore be reasonably

constant. In fact, the values in Column 5 span the range 0.71 to 1.04, and can be

improved by adjusting either or both p and 4 in Column 6 and 8. In general, it will

be found necessary to effect the bulk of the adjustments in d, and this will be

evident from the graph, where it is obvious that the position angle measures are

more reliable.

Great care is required in making these adjustments; in deciding where they are

desirable, and in the amount of adjustment applied. The end result to aim for is:

(i) close agreement of all the figures in Column 9, the mean of which should be

close to the mean of Column 5;

(ii) the top and bottom values in Columns 6 and 8 to be in close agreement with

those in 2 and 4 respectively;

(iii) the rates of change in Column 7 to be smooth and to agree with the expected

rate of acceleration or deceleration of the companion in its orbital path;

(iv) the values in Column 8 to reflect a smooth curve as the distance from the

primary changes due to orbital motion.

The initial process has been explained at length with the purpose of achieving the

greatest objectivity in carrying out any adjustments to the observer’s own records

and other published observations. The rest of the computation of the orbit may

then confidently be based on the firm foundation of observational material which

is in fair accord with gravitational theory, and yet which has not been doctored so

ruthlessly to fit the expected motion as to be no more than a figment of the imagin-

ation.

3. From the table we select three ‘normal’ places, spaced as widely apart on the

observed portion of the ellipse as is convenient, and avoiding any potential trouble-

spots such as the part of the orbit near periastron, where measures are likely to be

more discordant than elsewhere. Accordingly, we choose:

(1) 1890 255°.5 0”.53

(2) 1910 285°.4 0”.51

(3) 1930 228°.5 0”.30

These normal places are different from those used in Aitken’s example of the

Thiele-Innes method of computation. It will be instructive to compare the eventual

result with that of Finsen and also with that of Danjon in the Caralogue of Visual

Binary Orbits (Publications of the USNO, Vol. XVIII, Part III), based on later

measures.
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4. From x = dcosp, (7.2)

y = dsinp, (7.3)

Ajy2= XY2 — Xg)1, €tC. (7.4)

we find:

t,= 1890 x,= 01327 y,=-0.5131 A= +0.1347,

t,= 1910 x,= +0.1354 y,= -04917 A,s= -0.128 2,

t;= 1930 x;= -0.1988 y;,=-02247 A,,;= -0.0722.

(Note: with HP calculators, the x, y coordinates may be found quickly by:

D, +,d,f—R. x and y are then in the X and Y registers. x is displayed; to see y,

key x < —>y).
Then, using the double areal constant ¢ from Eqn. 7.1 (in this case, +0.007 876):

AUZ

— = +17.10
C

A,,TP = _16.28
c

A
o 917
c

192 1 .

From t,—-t,——= - (u-sinu) (7.5)
c p

and substituting

1910 - 1890 - 17.10 = 2.90

we find u - sinu = 2.90u;

1
from ty—t;——— = - (v-siny) (7.6)

c  u
and substituting

1930 - 1910 + 16.28 = 36.28
we find v — sinv = 36.28u;

Asss
and from fs-1¢,- = i[(u + v) —sin(u + v)] 7.7

and substituting

1930 - 1890 + 9.17 = 49.17

we find (u + v) -sin(u + v) = 49.17p.

5. We now have to construct a table of approximations for . With the aid of our

electronic calculators this task will be greatly speeded up. Inspection of the graph

will often enable a rough estimate of the period of the orbit to be made, and this

will be facilitated if both ends of the ellipse can be identified. Deduct the time of

approximate apastron from the following time of approximate periastron, and

multiply by 2, as an estimate of ..

2w
From: P = — (7.8)

W

px
we see b=p (7.9)
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6.283 185 3

"~ (1924.75 - 1900) x 2

 

 

 

 

= 0.127.

Thus, we can expect ¢ to lie somewhere in the range 0.12 to 0.13.

1. 2. 3.

po= 0.12 0.13
(i) u~-sinu = 2.90u 0.348 0 0.3770
(if) v-siny = 36.28u 4.353 6 4716 4

@iii) (u + v)—sin(u + v) =49.17u 5.900 4 6.392 1

@iv) u 1.3156r 1.3535r

=75°378 3 =77°.549 8

(v v 3.76765r 39757 r

=215°.8704 =227°.780 7

(vi) Sum (degrees) 291°.248 7 305°.330 6

vii) (u + v) 4.9224r 7.1622r
=282°.0327 =410°.363 8

(viii) Difference (degrees) +9°.216 0 -105°.033 2

4, 5. 6. 7.

0.122 0.124 0.123 0.123 3
0.3538 0.359 6 0.356 7 0.357 6

44262 4.498 7 4462 4 44733

5.998 7 6.097 1 6.0479 6.062 7

1.3234r 1.3310r 1.3272r 1.3284 r

=75°8252 =76°.260 7 =76°.043 0 =76°.1117

3.8080r 3.8489r 3.82835r 3.8345r

=218°.1823 =220°.52517 =219°.348 3 =219°.700 7

294°.007 5 296°.786 4 295°.391 3 295°.812 4

5.0577r 5.2262r 5.1365r 5.1622r

=289°.784 9 =299°.439 2 =294°.299 8 =295°7723

+4°.222 6 -2°.652 8 +1°.091 5 +0°.040 1
 

Start in column 2 of the table by taking the trial value of 0.12 for u. Lines (i), (i)

and (iii) are completed thus:

(7 012 x 29 =0.3480
(i) 0.12 x 36.28 = 4.353 6
(iii) 0.12 x 49.17 = 5.900 4

No more than four places of decimals are normally required. Line (iv) is computed,

in the absence of a table for x —sinx, by iteration, evaluating « first in radians,

then converting into degrees, thus:

Switch calculator to function in radian mode. Make trial # = 1 rad. Enter 1

in the memory, then f sin; exchange x-display and memory; deduct the figure

stored in the memory from that in the X-register.

Those with a programmable calculator can key in this set of instructions:*

Switch to Programme

g RAD

* As written, suitable for the HP-25. Slight modification will be necessary for other

models.



STOO0

f sin

f last x

X<——>)

GTO 00

Switch to Run

f PRGM

enter 57.295 78 in STO 1

enter trial x

R/S

Read result and re-iterate, until the display agrees with line (/). Note this

result, then RCL 1, x, to convert into degrees.

This programme will suffice for short computations, but those who would prefer

to employ a more sophisticated method which automatically reiterates until the

desired result is found, and then displays it, may like to try the iteration programme

for x —sinx in the Appendix. With slight amendments, this would be specially

suited to calculators with magnetic-card facilities. (See Programme 14.)

Now, back to the manual computation. The first trial for u = 1 rad gives u —sinu =

0.158 5. This is too low (in line (i), u — sinu = 0.348 0). Try « = 2 rad. The result

is 1.090 7. Too high! Reiterate between 1 and 2 rads until the result agrees with

line (7). The value for u is eventually found to be 1.315 6 rad = 75°.378 3. Enter

these values in Column 2 against line (iv). Line (v) is the result of a similar iterative

process, this time for v. The value for v which gives v — sinv in agreement with line

(ii) is 3.767 65 rad = 215°.870 4. Line (vi) is line (iv) + line (v), in degrees. Line

(vii) is yet another iteration, this time of line (vi), expressed in radians, to a value

which agrees with line (iii): i.e., 5.900 4. In line (vi) we found, for the sum of «# and

v from lines (iv) and (v), 291°.248 7 = 5.083 2 rad. Take this as a trial value for

(u + v) and iterate for (u + v)—sin(u + v) in exactly the same manner as the

previous iterations. The trial value gives 6.015 3. This is too high, as line (iii) has

been evaluated at 5.900 4. Try 4.9, which gives 5.882 5—too low. Reiterate between

4.9 and 5.0 rad, until agreement with line (iii) is reached. The value for (« + v) at

which agreement is achieved is 4.922 4 rad. Convert into degrees, 282°.032 7, and

complete the entry for line (vii) in Column 2. Line (viii) is simply line (vi) minus

line (vii), in degrees. We use line (viii) as a guide to the accuracy of the estimated

value for p at the head of the column, and aim to reduce this difference to zero, or

nearly so.

So, we repeat the whole process in Column 3, this time taking p = 0.13. The

final difference in line (viii) Column 3 is found to be —-105°.033 2. Thus we have

effectively bracketed the first two trial shots on either side of the true value, but

evidently not evenly. Therefore, in Column 4, after considering the two line—(viii)

entries, we set u = 0.122 and find that the difference in line (viii) has been reduced

to +4°.222 6.

Successive trials in adjoining columns gradually bring the calculation of u closer

to its true value until in Column 7 the difference has been reduced to +0°.040 1.
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There is no point in proceeding further, and so we establish the value of n as

0.123 3. Aitken found 0.122 4, and Finsen 0.122 41.

From Column 7 we extract:

p=10.1233 u=176°1117 v = 219°.700 7

(Those with programmable calculators will have found the whole iterative process

quite easy to carry out.)

6. The period of the orbit, P, is established from Eqgn. 7.8:

27 6.283 19
= L To0in3 T 50.96 years;

and the mean annual motion, n, from

n= 5729578 p = 7°.064 6.

7. The eccentric anomaly E for each of the three normal places, and e, the

numerical eccentricity of the orbit, are computed as follows.

F ) E (A293 Sinu) - (Al,z SinV)
rom e sin = — —_—

: A172+ Azya" Aua

(Agscosu) + (A, cosv) — Ay,
and ecosbj=m ———-v-on——— 7.11

: Auz + A2,3 - A1’8 ( )

we obtain (i) esinE, = —0.4880 and

(ii) e cosE, = —0.7905.

 (7.10)

ividing (i) by (if) have SC? 6174Dividing (i) by (ii) we ave—&—)?l;;2 = +0.6174;

that is, tanE,= +0.6174,

and therefore E,= 31°.691 9 or 211°.691 9.

As e is always positive, and both e sinE, and e cosE, are negative, it follows that

E, must be in the third quadrant.

s esinE, -0.4880 590
E.= 211°.6919, and e = SinE, 05254 0.9290;

Ei=F, —u=211°6919 - 76°.111 7 = 135°.5802;

E;= E,+ v=211°6919 + 219°.700 7 = 431°.392 6 — 360 = 71°.392 6.

(If your calculator features polar to rectangular conversion, see the note regarding

the determination of quadrant at the end of Chapter 5.)

8. From Kepler’s equation, the mean anomaly M can be derived from

M = E-esinE (7.12)

where E is expressed in radians.

M= 2.366 3 -0.929 (+0.699 9) = 1.716 1 rad = 98°.325 §;

M,= 3.694 7 -0.929 ( -0.5254) = 4.182 8 rad = 239°.655 2;

M;= 1.2460-0.929 (+0.947 7) = 0.365 6 rad = 20°.947 2.
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9. T, the time of next periastron passage, is obtained from:

Mr—i+(r-")
n

(7.13)

where ¢ is the epoch of M, M is expressed in degrees, and P and » are as previously

defined.

98.325 5 .
Then, 7T = 1890 + (50.96— 2064 6) = 1927.04;

239.6552
T = 1910 + (50.96— 7.5@) = 1927.04;

20.947 2

We take T as 1927.04.

10. From X = cosE-e¢

Y = cos¢ sinE

) = 1977.995 - 50.96 = 1927.035.

(7.14)
(7.15)

where ¢ = sin~le, and ¢ and E are expressed in degrees, find the X, Y pairs for

each of the three normal places:

X,= -1.6432 Y,= +0.259 0

X,= -1.7799 Y,= -0.1944

X3;= -0.609 9 Y= +0.3507.

11. Evaluate the Innes constants A, B, F, G, from the first and third normal

X, Y pairs, from

x=AX + FY

y=BX +GY

where x and y are as found in Step 4.

x,=-0.1327=-1.6432A4 + 02590F

x3= -0.1988 = -0.6099 4 + 03507 F

.. ) — 0
To eliminate F, multiply (b) by 03507 = -0.738 5.

+0.146 8 = +0.4504 4 -0.2590F

Add (a) —0.1327= -1.6432A4 +02590F

400141 = —-1.1928 A
0.014 1

T 111928

 

= -0".011 8

Now solve for B.

yi= -05131=-1.6432B +0.2590G

ys=-0.2247 = -0.6099 B +0.3507 G

To eliminate G, multiply (f) by the same factor as before, —0.738 5.

+0.1659 = 404504 B -0.2590G

Add (e) -0.5131 = -1.6432B +0.2590G

-0.3472=-1.1928B
-0.347 2 )
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(a)
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(o)
(a)

(d)

(e
f)

(&)
(e)

(h)



Solve for F:

 

Take (a) x,= -0.1327=-1.6432A4 +0.2590F (a)

and (b) x;= -0.1988 = -0.6099 4 + 0.3507 F. (b)

-1.643 3
This time, eliminate 4. Multiply (b) by - 06100 -2.694 2.

+0.5356 = +1.6432 A4 -09449 F (i)

Add (a) -0.1327= -1.6432A4 +0.2590F (a)

+0.4029 = -0.6859 F ()

0.402 9 ,

= 06859 V3874
Lastly, solve for G:

Take (¢) y,=-0.5131=-1.6432B + 0.2590G (e)

and (f) ys=-02247 = -0.6099B + 0.3507G )

This time, eliminate B. Multiply (f) by the same factor as in the solution for

F, -2.694 2.

 

1+0.6054 = +1.6432B -09449 G (k)
Add (e) -0.5131= -1.6432B +0.2590G (e)

40.0923 = ~0.6859G o
0.092 3 )

12. Check the values found for A4, B, F, G, against the second normal place:

Xo= AX,+ FY,

y.= BX,+ GY,

x,= ( —0.011 8) (-1.7799) + (-0.587 4) (-0.194 4) = +0.1352

yo= (+0.291 1) (-1.7799) + (-0.134 6) (-0.1944) = -0.4920
From Step 4, x,= +0.1354, y,= -0.491 7, a satisfactory check. The slight dis-

crepancy could have been avoided by working to an extra place of decimals in the

preceding calculations but this extra work is not really justified.

13. Tabulate:

A= -0.0118 B= +0.2911

G= -0.1346 F= -0.5874

A+ G= -0.1464 B-F= +08785

A -G= +0.1228 -B-F= +0.2963

Evaluate o, Q, and i, defined at the beginning of the topic, from

B - F
tan(w + Q) = ;‘i_—}——(;_ (7.18)

t o= 2-F 7.19an(w -0)=——= (7.19)
i -B-F sin(w + Q)

tan?- (e (7.20)27 B-F " sin(e-Q)
Before solving for » and Q we must first resolve the matter of quadrants. It is

not difficult to establish in which quadrants (o + Q) and (w — Q) lie. Consider the

Thiele-Innes equation:
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A+ G = 2acos(w + Q) cos? il (7.21)

We can say: A + G is negative; a is always positive; and it does not matter if

i

2

Therefore, to make 4 + G negative, cos(w + Q) must also be negative. (Re-

member: 1st quadrant all positive, 2nd quadrant only sine positive, 3rd quadrant

only tangent positive, 4th quadrant only cosine positive.)

Now consider:

cos — is negative or positive because, either way, its square will be positive.

) i (7.22)
B-F=2asin(e + Q) coszi

Following the same line of reasoning, we can conclude that, because B - F is

positive, sin(w + Q) must aiso be positive.

0 (7.23)
From A-G=2acos(w-Q) smL2

we can say cos(w — Q) is positive.

_ o (7.24)
From -B-F = 2asin(w-Q)sin?_

we can say sin(w — Q) is positive.

Assembling these conclusions:

cos(w + Q) is negative; sin(w + Q) is positive. It follows that (o + Q) lies in the

second quadrant.

cos(w — Q) is positive; sin(w — Q) is positive. It follows that (w — Q) lies in the

first quadrant.

Now proceed with Eqns. 7.18 and 7.19.

+0.878 5
tan(w + Q) = —“_6*174‘6‘“4“ = —6.000 7

+0.296 3
tan(w - Q) = _:}-—6*_-1*52‘—8 = +2.412 9

w+ Q= 99°461 3 (second quadrant)

w —-Q= 67°.4887 (first quadrant)

Add for 20 = 166°.9500
Subtract for 22 = 31°.9726

Thus w = 83°475; Q = 15°.986 (at 1900.0)

cos(w + Q) = -0.1644; sin(w + Q) = +0.986 4

cos(w — Q)= +0.3829; sin(w —-Q) = +0.923 8

Then, in Eqn. 7.20:

el 102963 09864
M T 108785 109238

. tan% — /03601 = +0.6001 1.So'2- — 130°.968 5,andi = -£61°.94 (Position

angles increasing with time—see note in the definition for i).

Note: if Q were to be found in the fourth quadrant, then 180° would have to be

added to (or subtracted from) both « and Q.
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14. Finally, a, the major semi-axis, is found from

B-F (7.25)

a= . i
2sin(w + Q) cos’z-

  
+0.878 5

2% 0.9864 x 0.7352
= 0”.605 7

= 0".61.

Alternatively,

(A + G)sec(w + Q) (7.26)

=TYcosi
When using pocket calculators, secants are obtained by taking the reciprocal of

1
the cosine, e.g., f cos, g)—c.

(-0.146 4) x (-6.083 4)

- 1 + 0.470 4
+0.890 6

T 414704
= 0”.6057

= 0”.61, agreeing with the value derived above.

15. Apply two checks, using the values found for », Q, i and a, to prove back to

the Thiele-Innes constants.

(i) A= a(coswcosQ - sinw sinQ cosi) (7.27)

= 0.605 7[(0.113 6 x 0.961 3) —(0.993 5 x 0.2754 x 0.470 4)]

= 0.605 7 (0.109 2 - 0.128 7)

= —0.011 8, which agrees with the value for 4 tabulated at the beginning

of Step 13.

(if) Use Eqn. 7.24 for the second check:

-B-F =2 x 0.6057 x 09238 x 0.264 8

= +0.296 3, which also agrees with the value tabulated in Step 13.

So the mathematical checks are satisfactory.

16. Assembling the elements of the orbit thus computed, we can then compare

them with those previously published. Do not show more than one or two decimal

places, as this would imply a degree of accuracy which is not justified.

Computed Finsen Danjon

P = 50.96 51.33 48.7
T= 1927.04 1925.68 1923.01
e= 0.93 0.9102 0.86
a= 0".61 07.525 0”.42
Q= 16°.0 1\ 1900.0 4°.95 139°.8
w = 83°5 [ 87°.35 295°.0
i= +£61°9 +56°.02 55°.2
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The epoch shown against our computed elements is a reminder only; it will be

essential to do this for non-equatorial stars. This concludes the calculation of the

orbit.

It should now be obvious that in the case of a very close and difficult binary such
as 24 Aquarii the slightest variation in the interpretation of discordant measures,

or in the weighting applied in respect of the proven reliability of the various

observers, or in any adjustments made to eliminate systematic or personal errors,

will have a great effect on the elements of the orbit subsequently computed, and

particularly in the values found for w, Q and 7.

It must also be stressed that this present calculation has been conducted only as

an exercise in visual-binary-orbit computing techniques, and must no? be interpreted

or used as a definitive orbit. Remember, we chose to ignore the measures of some

dedicated observers simply because the apertures of their telescopes were less than

24 inches; this is not a convincing scientific reason for discarding valuable research

data.

To keep a sense of proportion about the subject, I can do no better than to refer

the reader to W. D. Heintz in Astronomy—A Handbook, Ed. G. Roth, 20.4. He

rightly points out that wherever sufficient orbital motion of a binary pair has been

established, one or more orbits have already been calculated, and takes the view

that new computations should not be encouraged. He criticizes ‘“‘computer-happy

people” for publishing redundant duplications which fail to improve upon previous

orbits. Strong stuff, but justifiable in many cases. It is all a question of degree, of

course, and in the case of a binary with relatively short period, once a complete

revolution has been observed and measured fresh computation should be able to

improve on a preliminary orbit calculated from an arc.

There is clearly a moral obligation on the part of the computer unequivocally to

ensure that (a) the bulk of the information upon which the orbit computation is to

be founded is sufficient for the purpose, not available from other sources, and of a

quality high enough to justify a fresh computation; and that (b) the result based

on this material is so significantly different from previously published orbits as to

warrant publication in the interest of progress in the knowledge of double stars and

their behaviour.

Unless both are so, it would be wiser to await a later favourable opportunity.

2 Given the elements of the true orbit of a visual binary star, to compute the position

angle 0, and separation p, at any epoch. (See also Programmes 15 to 18 in the Appendix.)

Introduction: It is recommended, when drawing up a programme for double-star

observations, that a short selection of those stars which are closing up should be

included, so that efforts may be made to make measures close to and through

periastron. Also, when the elements of an orbit have been computed,it is advisable

whenever possible to continue to record current measures for comparison with

those computed from the elements. In this manner it is possible to derive differential

corrections for the elements from the C — O differences (computed minus observed

positions), and thus, over a period of time, to make it possible to improve the

computed orbit if the differences are significant.
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The computation includes an approximate correction for the effect of precession

on the position angle. No such correction is necessary for the distance. Unless the

polar distance of the binary is small, or the interval of time from the standard
epoch of the orbital elements is long, the correction to the position angle is very

small—to the extent that for approximate work (say to an accuracy of +0°.5) it

can safely be ignored. Should this be the case, the computer may choose to skip

Step 14 of Method 2A, or Step 6 of Method 2B.

In a case where the orbital elements are your own, naturally you will also know

the standard epoch of the original measures (if this reduction has been necessary)

and thus the epoch to which » and Q relate. As an extension of the computation

of the elements it is highly desirable that you should also publish an ephemeris for

at least 20 years into the future so that C - O residuals can easily be obtained by
other workers; Programmes 15 to 18 in Appendix II will make this task simple.

Whereas in the case of elliptical elements for comets the epoch for w, Q and i is

always stated, this is not the case for binary stars. Usually only the date of publi-

cation of the orbit is quoted in readily accessible secondary sources of reference

data such as the section of the Atlas Ceeli Catalogue which gives the elements of

double-star orbits. Observatory circulars sometimes give the epoch; many elements

are endorsed ‘precession ignored’, or ‘precession negligible’. In those cases where

an epoch is given it is often 1900.0, because a large proportion of the measures used

go back to 1850 or thereabouts; a few of the orbits published in the 1950s give the

epoch as 1950.0. Nowadays, Heintz almost always works to the epoch 2000.0.

Apart from the fact that it is the task of the IAU Double-Star Commission,it

is difficult to suggest a hard-and-fast rule for the guidance of computers of ephe-

merides where the elements are not their own, and where the epoch is unknown.

As a rule-of-thumb I would suggest that the effect of precession on position angle

should be ignored for all binaries within the declination range 25° N-25° S, and to

assume for the remainder that the epoch is 1950.0 in the absence of any information

to the contrary. As more orbits are revised in the light of later measures the position

will no doubt regularize itself.

In practice, it will be found that any error introduced by adopting this assumption

will be negligible, and one which is probably of the same order of magnitude as the

uncertainty in the measurement of a current position angle of a close double. For

example, in the ‘further-practice’ problems at the end of this topic, where 1950.0 is

the assumed epoch, (a) and (d) give the same results as those published by Muller

and Meyer in the Troisiéeme Catalogue d’Ephémérides d’Etoiles Doubles, but (b)

and (c) have an error of about 0°.3 in the position angle. However, if the epoch for

(b) and (c) is taken as 1900.0 (see the Appendix) the resuits then agree with Muller

and Meyer.

For the amateur, or the lone worker who is unable to research the required data

from the publications of the observatories or the IAU, this question of epoch must

remain something of a minor dilemma. It would certainly be a great help if, for

instance, the compilers of such secondary data as the double-star information in the

Atlas Celi Catalogue were to include the epoch for » and Q. Perhaps, if space does

not otherwise permit, this could be done by omitting the date of publication of the

orbit. But if the computer adopts the above recommendation and assumes the
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epoch to be 1950.0, he may be reassured that any resulting error will be minimal

for all practical purposes if the elements are, in fact, referred to epoch 1900.0 or

2000.0.

There is one comprehensive orbit catalogue which will be found to be invaluable.

This is Finsen and Worley’s Third Catalogue of Orbits of Visual Binary Stars, Rep.

Obs. Circular No. 129, Johannesburg, 1970, and the interested reader should make

every effort to consult this. An earlier catalogue was Worley’s Catalogue of Visual

Binary Orbits, Publications of the USNO, Second Series, Vol. XVIII, Part I11,1963.

The former is naturally more comprehensive and up-to-date. For the benefit of

those who do not have access to either of these catalogues, and whose only reference

is the Atlas Celi Catalogue, 1 include in Appendix I a list of pairs, by ADS number,

where the orbit is still current in Finsen and Worley’s 1970 catalogue, and giving

the epoch (if quoted) and the name of the computer.

The equations:

M=n(t-T)= E-e°’sinE (7.28)

r = a(l-ecoskE) (7.29)

1 +e
tan}v = A/i_:_z % tan}E (7.30)

tan(f — Q) = tan(v + ) cosi (7.31)

p = rcos(v + o) sec(d - Q) (7.32)

A6 = +40°.005 6 sina secd (¢ — o) (7.33)

where:

M = the mean anomaly, expressed in degrees
the mean annual motion, in degrees

the desired epoch of polar coordinates

the eccentric anomaly, in degrees

a, w, Q, and i are the orbital elements as defined in Topic 1
the radius vector

the true anomaly, in degrees

the position angle, in degrees

the separation, in seconds of arc

the standard epoch, where necessary

180 e

S
o

o
<
N
~

e

Q
o

m

Further information: R. G. Aitken, The Binary Stars, pp 79-80; for differential

corrections, pp 109-113; for effect of precession on position angle, p 73 and

Astronomy—A Handbook, Ed. G. D. Roth, pp 474 and 485. Bate, Mueller and

White, Fundamentals of Astrodynamics, Chap. 4; for effect of proper motion on

position angle, P. van de Kamp, Principles ofAstrometry, pp 25-26 and p 144.

Example 2. Find the position angle 6, and separation p, of €' Lyr (18" 42m 40s.87,

+39°37° 00”) for 1978.0, given the following orbital elements (Giintzel-Lingner,

1954, Atlas Celi Catalogue), assuming the epoch for » and € to be 1950.0:
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P = 1165.6 years

T = 2318

e =0.19

a=2"778

w = 165°.7

Q= 29°

i = 138°

--360—0°30885=5 =0

and e° = 10°.886 2

Note: Eqn. 7.28 includes the expression n (¢ — T'). In this example T is in the future,

so obtain the time of last periastron passage from 7'- P = 1 152.4. Before com-

mencing the calculation proper,iterate for E in Eqn. 7.28 where, after substituting,

we have:

0.308 85 x 825.6 = E-10.8862 (sinE)

254.99 = E-10.886 2 (sinE)

E = 245°11.

This is the value for E we shall use in the two calculator methods to be demon-

strated.

But first, those who dislike having to iterate for E might pose the question,

‘What about the Equation of the Centre? Thisis:

5 13
v=M + (2e - }e®) sinM + 2 e?sin2M + P e®sin3M, (7.34)

which enables v to be found directly in terms of e (not e°) and M (expressed in

radians), without iterating for E in Eqn. 7.28. Remember that the lefthand side of

Eqn. 7.28 will give M in radians if n is expressed in radians, so v will also be given

in radians by the Equation of the Centre. When v is converted into degrees, users

of Method 2B can proceed directly from Step 4.

Certainly time will be saved, but caution is advised—the Equation of the Centre

is derived from a series expansion, normally truncated after the term in e®, and it

is only suitable for low values of the eccentricity (e < 0.2). You will find, in fact,

that if this method is used, attractive though it seems, the small error due to

truncation will lead to an error of about 0°.1 in v and in the position angle (stored

in R, at the end of Step 4, Method 2B). In the worked example, 8 thus derived is

355°.82, compared with 355°.70 from the working demonstrated.

Having explored this diversion, let us proceed to work the example.

Method 2A.
 

1. Clear memory; enter E in MC

degrees [245.11]
f cos

2. Multiply by e X
[0.19]

3. Change sign; add 1 CS
+

1
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Method 2A continued

4. Multiply by a

5. Note r for Step 13
6. Enter e

6. Enter E

7. Examine displayed }v:

if negative, add 180°; if

positive, skip operation in

brackets

8. Multiply by 2 for v

Note v for Step 13

9. Add w

10. Enter i

11. Add Q

X

[2.78]
= r = 3.002

[0.19]

(-62.623 06)
+ ] Display negative: operation
180 included

v = 235°.553

STOP (-4.096)
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Method 2A continued

If displayed @ is negative,
add 360°; if positive, skip
operation in brackets

Note 6

12. Evaluate p

Store sec(8 - Q)

13. Enter v from Step 8
Add o

Enter r from Step 4
Note p: if display is

negative, change sign; also add
180° to 6. If 8 now > 360°,

deduct 360°
14. If required, correct 8 for
precession; if not,
computation is now complete

Enter a in decimal hours;
convert to degrees

Enter 3 in decimal degrees

Enter year for which
position required

0 negative: operation
[ + ] carried out

0 (uncorrected) =
355°.904

f cos

il
X

MC

M+

[235.553]
+

[165.7]

f cos
X

MR

X
[3.002]
= p=2".69

[18.711 361]
X
15

f sin
X

0.005 6

MC

M+

[39.617 5]

f cos

(L
X

X

MR

MC

M+

[1978]
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Method 2A continued

Enter assumed standard
epoch 1950 Unless the epoch is known

x to be 1900.0 or 2000.0

MR
+

Enter 0 from Step 11

(or adjusted 6 from Step 13) [355.904)
Note 0, corrected for

precession = 0 = 355°.70
 

Result 2A. Based on the orbital elements of Giintzel-Lingner (1954) from the Atlas

Celi Catalogue, the position angle and separation of ¢ Lyr for 1978.0 are 355°.7

and 2”.69 respectively. Muller and Meyer, Troisieme Catalogue d’Ephémeérides

d’Etoiles Doubles, quote the same values. Check of the USNO Caralogue of Visual

Binary Orbits shows that No. 405, €' Lyr, has 1950.0 for the standard epoch, so the

assumption of the epoch is justified in this case.

Method 2B.

1. }:ix 2 decimal places fFIX2 ”
Store: E [245.11]

 

¢ [0.19]

a [2.78]
4 ‘Enter’

2. Evaluate and store r 1

STO 0 (r in Ry)

3. Evaluate and store v 2

If displayed }v is negative, (-62.22)
add 180°; if not, skip operation 180] Display negative: operation
in brackets + carried out



Method 2B continued

4. Add w

Enter i

Enter Q

If displayed @ is negative,

add 360°; if not, skip operation
in brackets

5. Evaluate p

6.(a) If 6 is not to be corrected
for precession, the

computation is now complete;

if a corrected 8 is required,
skip Step 6(a)
Read 6

Read p
(If p display is negative,

carry out the operations in
brackets and read 6 in correct
quadrant)

(b) Correct 9 for precession

Enter a in H.MS format
and convert to degrees

Enter g in D.MS format

Enter ¢, year for which

position angle is required

[165.7]
+

STO 1

f tan

[138.0]

f cos
X

g tan™!

[29.0]
+

f last x

X <——>y

STOP

[360]
+

STO 2
X <>y

(v + win Ry)

Display negative: operation
carried out

(Uncorrected 6)

f cos

1

g X

RCL1

f cos
X

RCL 0
X

STO 0 (pin Ry)

Uncorrected 8§ = 355°.90

p=2".69
(p is positive, so operations
not carried out)

RCL 2
X <>y
CHS

X <>y
180
+

[18.42 40 9]
g—>H

15
X

f sin

[39.37 03]
g—>H

f cos

1
gx

CHS if Southern dec.

X
(1978]

f

93



Method 2B continued

Enter standard epoch ¢,

for the elements 1950 (Unless it is known to be
- 1900.0 or 2000.0)
X

0.005 6
X

RCL 2

Read corrected 6 + 0 = 355°.70

Read p (If p display is RCL 0 p=2".69

negative, carry out the CHS (p is positive, so operations

operations in brackets and X ——>y not carried out)

read 6 in correct quadrant. 180

If 8 now > 360°, deduct +

360°)
 

Result 2B. The RPN method gives the same result as Method 2A, § = 355°.7,

p = 2”.69. Muller and Meyer, Troisieme Catalogue d’Ephémérides d’Etoiles Doubles,

quote the same values. See the remarks with Result 2A regarding the assumption

of 1950.0 for epoch.

Proper motion: References in the literature about the effect of proper motion on

position angle may cause surprise that no mention has been made of it so far in

this Chapter. Only the proper motion in RA is relevant. Where this is unusually

large and the NPD is small, a further correction to the position angle is justified if

over the period ¢ - ¢, it would amount to as much as +0°.05. The equation is:

Af,= +0°.004 17 p, sind (¢ - t,),

where ., is expressed in seconds of time.
If necessary, this additional correction is applied at the end of the computation,

after the correction for the effect of precession. It will be found necessary only

very rarely.

Whatever the declination of the primary, A8, will be less than +0°.05 (and thus

can be ignored) for any period up to 25 years, if the annual proper motion in RA

is less than +0s.479 1. Of the nearest stars which are also binaries, « Cen has a

proper motion p, of -0%.4904, 61 Cyg has +0s.3523, Gr 34 has +0s.2650,

>2398 has —05.178 9. Ofthese, only a Cen approaches 0s.5 per annum. Even at

the pole, if n, is as much as +0s.5, A8, will only exceed +0°.05 if r—1¢, > 24

years. Where 8 < 50° and p,= 40s.5, A8, will only exceed +0°.05 if #-¢,> 31

years.

As an example, take the case of a Cen, using Heintz’s elements for 2000.0 and

compute 8, p for 1975.0, correcting for precession. The result is 8 = 207°.24,

p = 207.92, agreeing with Muller and Meyer in the Troisieme Catalogue. If 0 is

now corrected for the effect of proper motion, the amount of the correction is

only -0°.04. Thus 0 remains unchanged at 207°.2 when rounded to the single

decimal place.

So, it is obvious that it will be very rare for a correction for the effect of the

proper motion to be justified, over the time-scales we normally encounter.
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The correction will only need to be considered for

a Cen if t-1t,> 27.5 years

61 Cyg if t - t,> 54 years

Gr 34 if t - t,> 64 years

> 2398 if t - t,> 76 years

and still might not have a significant effect. Should ¢ be, say, 53°.33 and the

correction required be —0°.06, 6 will remained unchanged at 53°.3 when rounded

to one decimal place. Butif it is 53°.28 and the correction is applied, then 8 becomes

53°.2 when rounded.

For further practice, try the following:

(a) Find 6, p for e Lyr (ADS 11 635), 18"42m 43533, +39° 33’ 34", at 1975.0,

given the orbital elements (Giintzel-Lingner, 1954) from the Atlas Celi Catalogue:

P = 585 years, T = 2229.5,e = 0.49,a = 2”95, w = 92°.0, Q = 17°.4,i = 120°.5.

Correct 0 for precession, assuming the epoch for the elements to be 1950.0.

(b) Find the position angle and separation of « Gem (4DS 6 175), 7t 31 ™ 24s.65,

+31° 59’ 597, at 1978.0, given the orbital elements (Rabe, 1957): P = 420.07,

T = 1965.30, e = 0.33, a = 6".29, w = 261°4, Q = 40°.5, i = 115°.9. Correct 0

for precession, assuming the epoch for the elements to be 1950.0.

(c) Find 0, p for y Lup (h. 4 786), 15" 31™ 47599, —41° 00" 01”, at 1977.0, given

the orbital elements (Heintz, 1956): P = 147 years, T = 1887.0, e = 0.49, a =

07.59, w = 301°, Q = 92°.8, i = 95°.6. Correct 8 for precession, assuming the

epoch for the elements to be 1950.0.

(d) Find the position angle and separation of > 3062 (4DS 61), Oh 03™ 38s.19,

+58°09’ 297, for 1977.0, given the orbital elements (Baize, 1957): P = 106.83

years, T = 1943.05, e =045, a= 1743, o =98°8, Q= 39°1, i= -44°4,

Correct 6 for precession, assuming the epoch for the elements to be 1950.0.

(e) Using apertures of 40 and 82 inches, van Biesbroeck measured 24 Aqr from

1935 to 1943 (Pub. Yerkes Obs., VIII, Pt. VI).

After listing the separate measures, van Biesbroeck quotes these averages:

1937.01 250°.0 0”.38 3n

1941.16 261°.1 0”.41 4n

1943.72 263°.9 0”.48 S5n

Duruy, with a 40-cm reflector, made two measures of 24 Aquarii:

1965.80 275° 0’45 3n() 1n(p)

1967.68 306° 0”35 5n

Assuming these measures to be typically reliable, calculate the C - O differences,

using:

(i) the orbital elements calculated in Topic 1;

(i) Danjon’s orbital elements (listed for comparison at the end of the comput-

ation in Topic 1).

In view of the declination of 24 Aquarii, there is no need to correct 8 for precession.

Your results should be:

(a) 6 = 85°.8, p = 2”.32. Muller and Meyer quote the same values. If your result

differs from this, check that your value for E was computed to be 195°.76.

(b) 6 = 100°.9, p = 2”.10. Muller and Meyer quote § = 101°.2, p = 2”.10. If your
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result differs from the one given, check that your value for £ was computed to be

16°.15. This is a case where the assumption for epoch leads to a small error in the

computed position angle (-0°.3). Rabe’s epoch for » and Q is actually 1900.0, and

if this is employed in the correction for precession instead of the assumed 1250.0,

the result agrees exactly with Muller and Meyer.

(c) 6 = 277°8, p = 07.62 (after changing the sign for p and adding 180° to 9).

Muller and Meyer quote 0 = 277°.5, p = 07.62. If your result differs from the one

given, check that your value for E was computed to be 207°.46. Again, Heintz’s

epoch was 1900.0, and if this is used instead of the assumed epoch of 1950.0, the

result agrees with Muller and Meyer.

(d) 6 = 280°.8, p = 1”.42 (after changing the sign for p and adding 180° to 6).

Muller and Meyer quote the same values. If your result differs from this, check that

your value for E was computed to be 133°.20.

(e) The residuals are:

 

 

 

 

CcC-0

Observer Epoch Danjon Topic 1

0 P 0 P

van Biesbroeck 1937.01 +1°.32 +0”.03 -1°.16 +0”.11
" 1941.16 -1°.59 +0”.06 -5°.08 +0”.13
v 1943.72 -0°.19 +0”.01 -3°97 +0”.07

Duruy 1965.80 +22°.45 -0".07 +19°.63 +0”.01
’ 1967.68 -2°.79 -0”7.03 -6°.99 +0".08
 

Reference to many more reliable modern measures would be required before any

sensible conclusions could be drawn about the revisions necessary to improve the

orbital elements, but it is obvious that Danjon’s orbit is superior to the one we

calculated in Topic 1, on this small sample. Check, if necessary, your values for E

against:

for Danjon for Topic 1

1937.01 137°.06 117°.64
1941.16 155°.0 136°.46
1943.72 165°.46 146°.92
1965.80 267°.10 231°.89
1967.68 282°.01 240°.65
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8 Ephemerides of Comets

Topic 1 Finding the equatorial coordinates a, 8, at any date, for a newly-

discovered comet, given the preliminary parabolic elements.

Topic 2 Finding the equatorial coordinates a, 3, at any date, for a recovered

periodic comet, given the elliptical elements.

Preliminary remarks: In the previous Chapter we solved problems involving the

apparent motion of one body around another in an elliptical orbit. Having obtained

a set of elements defining the orbit, we can predict simply the position of the

companion body at any time, relative to the primary. However, this computation

of orbital position, based on Kepler’s laws of motion, is valid only for the case

where the two bodies are alone in space and not subject to the gravitational

influences of other bodies. Where more than one body is involved in orbital motion

about the primary, disturbances will sometimes occur which will alter the orbits.

The effect is a varying one, depending upon the distance between and the relative

masses of the orbiting bodies; consequently, the determination of the extent of such

gravitational perturbations can become an involved process, as it is very unlikely

that the two bodies will have similar periods or masses.

In many instances the effect of the perturbative forces will be so small that they

can be ignored; on the other hand a short-period comet, for example, may follow

a regular and undisturbed elliptical orbit around the Sun for several revolutions

and then (probably at aphelion) come into conjunction with Jupiter (Sun, comet

and Jupiter all lying on or very close to the same line), so that the close proximity

of the mass of the giant planet causes an acceleration in the heliocentric velocity of

the comet. The total velocity may be sufficient to change the orbit from an ellipse

to a hyperbola. In such an event the comet would be carried out of the Solar

System altogether, never to return. Another effect of the perturbative forces might

be to split a comet up into two or more parts; even, eventually, to spread such

debris out along the orbit and to give rise to a meteoroid stream.

Reports of discoveries of new comets sent to national or international coordin-

ating bodies are published immediately, so that a mass of observational data will

enable the orbital elements to be quickly derived. The observations will naturally

cover only a very small part of the trajectory, so that it may, initially at least, be

treated as a parabola. In this case, the preliminary orbit will usually be described
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in terms of parabolic elements (see Topic 1), unless it is reasonably certain that the

new comet is a previously unknown (or lost) one of short period, when elliptical

elements will probably be computed.

Predictions for the recovery of a periodic comet will, of course, be given in terms

of elliptical elements, and the calculated effects of perturbation by the planetary

masses of the Solar System will be incorporated in the predictions.

Although there are many similarities between the computation required and that

given in the last chapter for the two-body problem, it is my view that it is far

better to leave the computation of the orbital elements of comets, and of the

perturbative effects of the planets, in the hands of recognized experts. In this

Chapter, the topics are confined to computing positions in the orbit from previously

published elements, parabolic or elliptical, and converting those positions into

geocentric equatorial coordinates. Complete programmes for the HP-67 calculator

are included in Appendix II.

Further information: There is a wealth of literature devoted to the subject of comets,

their orbits, and perturbations. The subject demands, and gets, book-length

treatment. The reader seeking further information is recommended initially to

consult: Sky and Telescope, April 1977, p 306 et seq; J. B. Sidgwick, Observational

Astronomy for Amateurs, Section 16; Astronomy—A Handbook, ed. G. D. Roth,

Chap. 16, and Table 17 in the Appendix (orbital elements for periodic comets with

periods under 200 years); R. M. L. Baker and M. W. Makemson, An Introduction

to Astrodynamics, 1.7 (perturbations) and Chap. 3; R. M. L. Baker, Astrodynamics,

Chaps. 1-4 (advanced treatment of orbit determination, improvements and pertur-

bations); Smithsonian Catalogue of Cometary Orbits, 2nd edition; W. M. Smart,

Spherical Astronomy, Chap. 5 (planetary motions). The reader who wishes to

specialize in this field can find a definitive treatment, with fully-worked examples of

orbit computation for comets and minor planets, and perturbations, in A. D.

Dubyago, The Determination of Orbits.

1 To find the equatorial coordinates, a, 5, at any date, for a newly-discovered

comet, given the preliminary parabolic elements 7, w, Q, i, g

where T = the time of perihelion passage

o = the angle in the plane of the orbit between the node and the point of

perihelion passage

Q = the longitude of the ascending node, measured in the plane of the

ecliptic

i = the inclination of the orbit, that is, the angle between the plane

containing the orbit and that of the ecliptic. If the motion is direct

(anticlockwise as seen from the North pole of the ecliptic) i lies

between 0 and 90 ; if retrograde, between 90° and 180°

g = the perihelion distance, expressed in AU

The equations:

(8.1)v 1 .V t
tan2 + 3tan' 5= 0.012 163 7q a/2

If you are using a 10-digit calculator, the constant is 0.012 163 721.
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v
r:qseczi

(8.2)

x;= r(cosQ cos(v + w) -sinQsin(v + w)cosi)

 

y1= r(sinQ cos(v + w) + cosQ sin(v + w) cosi ) 8.3)

z,=rsin(v + o) sini

X=X,

Y = y,COSe — z, Sine (8.4

z = y, Sine + z, COSe

E=x+X

n=y+Y (8.5
{=z+Z

tana = ?—

¢

A cosd = ¢ = l (8.6)
cosa  sina

5 — g

tano = cosd

where

A = (A cosb) sec? |
y =

q =

r =

X1, yla 2y, =

‘x,y,z—:

the true anomaly, positive after perihelion, negative before

the time interval in days between the time for which « and 8

are required and 7, positive after perihelion, negative before

the perihelion distance, in AU

the radius vector from the centre of the Sun, at time 7, in AU

the heliocentric ecliptic rectangular coordinates of the comet

at time ¢

the heliocentric equatorial rectangular coordinates of the

comet at time ¢

the obliquity of the ecliptic at the same epoch as the mean

equator and equinox for w, Q and i (usually 1950.0)

the geocentric equatorial rectangular coordinates of the Sun

at time ¢, referred to the same mean equator and equinox

(usually 1950.0)

the geocentric equatorial rectangular coordinates of the comet

at time ¢, referred to the same epoch as X, Y, Z

the RA and dec. of the comet, referred to the same epoch as

X, Y, Z

the distance of the comet from the centre of the Earth, in

AU, at time ¢

It is clear that v, to be determined as a function of the time and perihelic distance,

being transcendental, is not so easy to compute as in the case of an elliptical orbit

where e and a are known and where r can be obtained after solution of Kepler’s

equation for the eccentric anomaly E (Eqns. 7.28 and 7.29). In the absence of a

1 v
reference table for v + §v3, where v = R an iterative solution for v must be
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found. Users of HP-25 calculators can make use of Programme 20 in the Appendix.
Users of other calculators will have no difficulty in producing a converging result

in a very few steps. (HP-67 users will prefer to use the complete programme in the

Appendix, Programme 21.)

Example 1. The following provisional parabolic elements for Comet Bradfield

1975p were published by the BAA on 1975, December 3. Compute ¢, 8, A and r for

Ot ET on 1976, February 2.

T = 1975, December 21.173 1 ET

g = 0.218 445 AU

w = 358°.1290

Q = 270°.625 7

i= 70°.6357

Epoch for w, Q and i = 1950.0.

Before proceeding to the computation proper, iterate for v in Eqn. 8.1 (after

evaluating the right-hand term as 5.102 337) and obtain v = 128°.737 8.

 

Method 1A.

1. Find r:

Enter v [128.737 8]

2

f cos

¢l
X

X

X

Enter ¢ [0.218 445]
Note r = r =1.167

2. Find remaining terms for
X, €tC.:

Enter Q [270.625 7]
M-+

Note A f cos cosQ =0.010921 = 4

MR
Note B f sin sinQ = -0.99994 = B

Enter v [128.737 8]
+

Add w [358.129 0]

MC
M-+

Note C f cos cos(v + w) = -0.599 956 = C
MR

Note D f sin sin(v + w) = 0.800033 = D
Enter i [70.635 7]

MC
M-+

Note E f cos cosi =0.331574 =E



Method 1A continued

Note F

3. Find x;:

Enter B

Enter D

Enter E

Enter A

Enter C

Enter r

Note x,

4. Find y,:

Enter B

Enter C

Enter A

Enter D

Enter FE

Enter r

Note y,

5. Find z;:

Enter D

Enter F

Enter r

Note z,

6. Note x (= x, from Step 3)

7. Enter €45, in degrees

Note G

Note H

f sin

[0.999 94]
[CS]
X

[0.800 033]
X

[0.331 574]

MC
M+

[0.010 921]
X

[0.599 956]
[CS]

MR
X

[1.167]

[0.999 94]
[CS]
X

[0.599 956]
[CS]

MC
M+

[0.010 921]
X

[0.800 033]
X

[0.331 574]
_+._

MR
X

[1.167]

[0.800 033]
X

[0.943 429]
X

[1.167]

[No operation]

23.445 788

MC

M+
f cos
«——>

XM

f sin
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sini = 0.943429 = F

B is negative

C is negative

x; = 0.301 905 2

B is negative

C is negative

y1 = 0.703 487 3

z; = 0.880 821 6
x = 0.301 905 2

cose = 0917437 =G

sine = 0.397 881 = H



Method 1A continued

8. Find y:

Enter y, (Step 4)

Enter z; (Step 5)

Enter H

Note y

9. Find z:

Enter y, (Step 4)

Enter H

Enter z, (Step 5)

Enter G

Note z
10. Find ¢:
Enter x (Step 6)

Enter Xig50

Note ¢

11. Find »:

Enter y (Step 8)

Enter Y50

Note 7

12. Find ¢:
Enter z (Step 9)

Enter Z,4;,

Note ¢

13. Find 4:

Enter 7

Enter ¢

[0.703 487 3]
X

MR

MC
M+

[0.880 821 6]
X

[0.397 881]

s
XM

MR

[0.703 487 3]
X

[0.397 881]

MC
M+

[0.880 821 6]
X

[0.917 437]
_{_

MR

[0.301 905 2]
_+_

[0.658 151 9]

[0.294 943 1]
_+_

[0.672 908 4]
[CS]

[1.088 002 5]
+

[0.291 786 3]
[CS]

[0.377 965 3]

[CS]

[0.960057 1]

f tan—?

15
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y =0.294943 1

z =1.088002 5

¢ =0.9600571

Y is negative
7 =-0.3779653

Z is negative

{=0.7962162

7 is negative



Method 1A continued

STOP (~1.432 606)
 

If »+, €+, o is between O® and 6*; if 7 -+, é-, o« is between 6" and 12%; if -,

¢—, a is between 12" and 18® if -, ¢+, o is between 18" and 24, If necessary
adjust the display at this stage by multiples of 6" until « appears in the correct

quadrant.
 

Note a in hours

Deduct integral hours;

convert to minutes

Note minutes

14. Find and store A cosd:
Enter ¢

Enter a in decimal hours

15. Find 8:

Enter {

Note 8 in degrees

Deduct integral degrees;

convert to minutes

Note minutes

16. Find A:

Enter 6 in degrees

Note A

&
(22)
X

60

[0.960 057 1]
MC
M+

[22.567 394]
X

15

f cos
“«——>

XM

MR

MC
M-+

[0.796 216 2]

MR

ftan™!

(37]
X

60

[37.657 1]

f cos

Adjustment made.
221567 394

34m.044
a = 220 34m04

& =37°6571

CS if Southern dec.

39'.426
8= +437°39'4

A =1.303
 

Result 1A. The equatorial coordinates for Comet Bradfield 1975p at O* ET on
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1976, February 2 were o = 22h34m04, § = +37° 39'.4, The radius vector from

the centre of the Sun, r, was 1.167 and the distance of the comet from the centre

of the Earth was 1.303 AU. As a check, the coordinates published in B4AA Circular

No. 570 were o = 221 34m07, § = +37°40'.1, r = 1.167, A = 1.304. There are

some small differences in the computation: in a, <0™.03; in 3, =0'.7; in r, nil; in A,

+0.001 AU. The accuracy is good enough to place the comet near the centre of the

field of the telescope, provided that the orbital elements were based on a sufficient

number of accurate early observations.

Method 1B.
 

1. Find r:

Enter v {128.737 8]
STO 7

2

f cos

1

g X

g x?
Enter ¢ [0.218 445]

X
Note r STO 6 r =1.167

2. Evaluate terms of Eqn. 8.3:
Enter Q [270.625 7]

f cos

STO 0
f last x

f sin

STO 1
Enter [358.129 0]

RCL7
+

f cos

STO 2
f last x

f sin

STO 3
Enter { [70.635 7]

f cos

STO 4
f last x

f sin

STO 5
Enter €950 23.445 788

STO 7
3. Find ¢ RCLO

RCL 2
X

RCL1
RCL 3

X
RCL 4

X
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Method 1B continued

RCL 6
X

RCL1
RCL 2

X
RCL 0
RCL3

X
RCL 4

X
+

RCL 6
X

STO 1

X <>y

STO 0

RCL 6

RCL 3

RCLS
X

X

STO 2

RCL1

RCL 7

f cos
X

RCL 2

RCL 7

f sin
X

STO 3

RCL 1

RCL 7
f sin
X

RCL 2

RCL 7

f cos
X

+

STO 4

RCL3

STO 1

RCL 4

STO 2
Enter X5, [0.658 1519

STO + 0
Enter Y500 [0.672 908 4]

[CHS] Y is negative

STO +1
Enter Z45, [0.291 786 3]

[CHS] Z is negative
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Method 1B continued

STOP (-1.432 116 978)
If display negative, add 24 [24 Adjustment made

Note a f HMS o = 220 34m (04s.37
4. Find &: RCL 0

Note 6 f HMS 8 = +437°40' 06”.44

5. Find A: RCL 5

Note A X A =13035
 

Result 1B. The equatorial coordinates of Comet Bradfield 1975p at O ET on 1976
February 2 were a = 22" 34m 04s.37, (22h34m,07), 8 = +37°40' 06”.44 (+37°

40°.1). The radius vector from the centre of the Sun, r, was 1.167 and the distance

of the comet from the centre of the Earth, A, was 1.304 AU. As a check, the co-

ordinates published in BAA Circular No. 570 were exactly the same. Thus the

accuracy is marginally better than that achieved by Method 1A with a simple

calculator.

Practice examples are included at the end of the Chapter.

2 To find the equatorial coordinates o, 3, at any date, for a newly-recovered periodic

comet, given the elliptical elements of the orbit T, P, ¢, a, n°, », Q, i and g

where T = the time of perihelion passage

P = the period of the comet, in years

e = the numerical eccentricity of the orbit

a = the semi-major axis, expressed in AU
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n°= the mean daily motion, in degrees

» = the angle in the plane of the orbit between the ascending node and
the point of perihelion passage

Q = the longitude of the ascending node, measured in the plane of the

ecliptic

the inclination of the orbit, that is, the angle between the plane

containing the orbit and that of the ecliptic. If the motion of the

comet is direct (anticlockwise as seen from the North pole of the

ecliptic) i lies between 0° and 90°; if retrograde, between 90° and 180°

the perihelion distance, expressed in AU

Il

Q Il

The equations:

M= n°t= E-e°sinE 8.7

. 180e (8.8)
=

plus Eqns. 7.29, 7.30 and 8.3 to 8.6,

where M = the mean anomaly

t = the time interval in days between T and the time for which the

position is required; 7 is negative before T, positive after

E = the eccentric anomaly, expressed in degrees

e

It will be apparent that in Eqn. 8.7 E is transcendental and can be found only by

iteration. The technique is discussed in Step 5 of Topic 1, Chapter 7. Users of

HP-25 calculators can, if they wish, use the iteration programme (Programme 19)

in the Appendix, but the iteration is reasonably short and it is not necessary to use

the programme. Users of other calculators will be able to produce a converging

result in a very few steps. (Users of the HP-67 will prefer to use the complete

programme in Appendix II, Programme 22.)

Example 2. Comet Smirnova-Chernykh 1975¢ is visible all around its orbit.

TAUC 2918 provides the following elliptical elements. Find «, 8, A and r for 1977,

January 17, at OET.

T = 1975, August 6.474 2 ET

w = 90°2195
Q= 77°.1024 1950.0
i = 6°.6413
= 0.145 446

a = 4.174 405 AU

n°= 0.115 561 2

P = 8.529 years

q = 3.567 253 AU

(¢ is not required for the computation.)

Before proceeding to the computation proper, evaluate M = rn°t and iterate for

E in Eqn. 8.7, finding M = 61°.192 637 and E = 68°.971 1.
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Method 2A.

 

1. Find r:
Enter E in degrees

Enter e

Enter a

Note r

2. Find v:

Enter E

Note v

3. Find remaining terms for
X, etc.:

Enter Q

Note 4

Note B

Enter v

Add w

[68.9711]

f cos
X

(0.145 446)
M+
cs
+

1
X

[4.174 405)
= r = 3.957
1

MR

<>

XM
+

1

MR

fvx

MC
M+

[68.971 1]

2

f tan

v = +76°988 62. (If 7 is
negative, v is also negative)

[77.102 4]

MC

f cos cosQ = 022321 = A4

f sin sinQ = 0974771 = B
[76.988 62]

+

[90.219 5)

MC
M+
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Method 2A continued

Note C

Note D

Enter i

Note E

Note F

4. Find x,:

Enter B

Enter D

Enter E

Enter A

Enter C

Enter r

Note x,

5. Find y,:

Enter B

Enter C

Enter A4

Enter D

Enter E

Enter r

Note y,

6. Find z,:

Enter D

Enter F

Note z,

[0.974 771]
X

[0.221 41]
X

[0.993 29]

MC
M+

[0.223 21]
X

[0.975 181]
[CS]

MR
X

[3.957)

[0.974 771]
X

[0.975 181]
(CS]

MC
M+

[0.223 21]
X

[0.221 41]
X

[0.993 29]
+
MR
X

[3.957]
MC
M+

[0.221 41]
X

[0.115 653]
X
MR

110

cos(v + w) = 0975181 = C

sin(v + w) = 0.22141 = D

cosi = 099329 = F

sini = 0.115653 = F

C is negative

x, = ~1.709 605 6

Cis negative

y, = -3.567 1915

z; = 0.101 3257



Method 2A continued

7. Note x (= x; from Step 4)
8. Enter €45, in degrees

Note G

Note H

9. Find y:

Enter y, (Step 5)

Enter z;, (Step 6)

Enter H

Note y

10. Find z:

Enter y, (Step 5)

Enter H

Enter z, (Step 6)

Enter G

Note z
11. Find ¢:
Enter x (Step 7)

Enter Xig5

Note ¢
12. Find 9:
Enter y (Step 9)

Enter Y950

Note 7

13. Find ¢:

Enter z

[no operation]

23.445 788

[3.567 191 5]
(CS]
X

MR

MC
M-+

[0.101 325 7]
X

[0.397 881]

<>
XM

MR

[3.567 191 5]
[CS]
X

[0.397 881]

MC
M+

[0.101 325 7]
X

[0.917 437]
+

MR

[1.709 605 6]
[CS]
+

[0.437 278 5]

[3.312 988 9]
[CS]
+

[0.808 554 9]
[CS]

[1.326 357 8]

111

x = =1.709 605 6

cose = 0917437 =G

sine = 0.397 881 = H

y, is negative

y =-3.3129889

¥, is negative

z=-1.3263578

x is negative

=-1.272327 1

y is negative

Y is negative
n = —4.121 543 8



Method 2A continued

Enter Z,4;,

Note ¢

14. Find a:

Enter 7

Enter ¢

[CS]
+

[0.350 602 0]
[CS]

[4.121 543 8]
(CS]

[1.272 327 1]
[CS]

f tan!

15

STOP

Z is negative

Z is negative

{ =-1.676959 8

7 is negative

¢ is negative

(4.856 291 3)
 

If n+, ¢+, a is between O and 6"; if n+, ¢é—, a is between 6" and 12%; if 7—,

é—, a is between 121 and 18"; if »—, £+, a is between 18" and 24". If necessary,

adjust display in multiples of 6" until a appears in the correct quadrant.

Adjust a

Note a in hours

Deduct integral hours;

convert to minutes

Note minutes

15. Find and store A coss:
Enter ¢

16. Find &:

Enter ¢

+

|
MC
M-+

(16]
X

60

[1.2723271]
[CS]
<«——>

XM
X

15

f cos
<>

XM

MR

MC
M-+

[1.6769598]
[CS]

MR

112

7 is negative; ¢ is negative.
a is between 12 and 181

a = 16".856 298

51m.378
a = 16" 51m38

¢ is negative

{ is negative



Method 2A continued

Note § in degrees f tan—?! 8 = -21°.24472
Deduct integral degrees; -

convert to minutes [21]
[CS] CS if Southern dec.
X
60

Note minutes = 14'.68
d=-21°14'7

17. Find A:
Enter & in degrees [21.244 72]

[CS] For Southern dec.

f cos

i1
X
X

R
Note A = A =4.6279
 

Result 2A. The equatorial coordinates of Comet Smirnova-Chernykh 1975e at

0h ET on 1977, January 17 were a = 16" 51m.38, § = -21° 14'.7. The radius vector

from the centre of the Sun, r, was 3.957 and the distance of the comet from the

centre of the Earth, A, was 4.628 AU. As a check, the coordinates published in the

1977 BAA Handbook were a = 16h51™m34, &6 = -21°14'.6, r = 3.958 and A =

4.628. The differences are slight: in a, +0™.04; in 8, +0°.1; in r, =0.001; in A, nil.

Method 2B.
 

1. Find r:

Enter E in degrees [68.9711]

STO 0

f cos

Enter e [0.145 446]
STO 1

X

CHS

1
_+_

Enter a

Note r

2. Find v:

[4.174 405)
X

STO 6 r = 3.957
RCL1

1
+

1
RCL1

fo

RCL O

2

f t'an
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Method 2B continued

X
g tan™!

2
X

Check sign of v STO 7 (v = +76°.988 689). If ¢ is

negative, v is also negative
3. Terms of Eqn. 8.3

Enter Q [77.102 4]

f cos

STO 0

f last x

f sin

STO 1

Enter w [90.219 5]

RCL 7
+

f cos

STO 2

f last x

f sin

STO 3

Enter i [6.641 3]

f cos

STO 4

f last x

f sin

STO 5

Enter €950 23.445 788

STO 7

4. Find a: RCL 0

RCL 2
X

RCL 1

RCL 3
X

RCL 4
X

RCL 6
X

RCL 1
RCL 2

X
RCL 0
RCL 3

X
RCL 4

X
+

RCL 6
X

STO 1
X <>y

STO 0
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Method 2B continued

RCL 6

RCL 3

RCLS5
X

X

STO 2

RCL 1

RCL 7

f cos

X

RCL 2

RCL 7

f sin
X

STO 3
RCL 1
RCL 7
f sin
X

RCL 2
RCL 7
f cos
X
+

STO 4
RCL 3
STO 1
RCL 4
STO 2

Enter Xq50 [0.437 278 5]
STO + 0

Enter Y50 [0.808 554 9]
[CHS] Yis negative

STO + 1
Enter Z,g50 [0.350 602 0]

[CHS] Z is negative
STO + 2
RCL 1
RCL O
g—>P

R
15

STOP (-7.143 693 293)
If display negative, add 24 [24] Adjustment made

+

STO 7

Note a f HMS a = 16" 51m 22593
5. Find &: RCL 0

RCL 7

15
X

f cos
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Method 2B continued

Note & f HMS 8 =-21°14"41".72
6. Find A: RCL 5

Note A X A =4.627513
 

Result 2B. The equatorial coordinates of Comet Smirnova-Chernykh 1975e at

Ot ET on 1977, January 17 were a = 160 51m 22593 (16" 51™.38), § = -21° 14’

417.7 (-21° 14'.7). The radius vector from the centre of the Sun, r, was 3.957, and

the distance of the comet from the centre of the Earth, A, was 4.628 AU. As a

check, the coordinates published in the 1977 BAA Handbook were a = 16? 51™.34,

8 =-21°14".6, r = 3.958 and A = 4.628. The differences are slight: in a, +0™m.04;

in §, +0'.1; in r, =0.001; in A, nil.

For further practice, try the following:

(a) From the following elements for Comet Arend-Rigaux 1950 VII compute a,

8, r and A for O™ ET on 1977, December 13:

T = 1978, February 2.416 4 ET

w = 328°986 7 )
Q= 121°.5246 » 1950.0
i=17°8559 |
e = 0.599 545
a= 3.600117 AU

n°= 0.144 287 6

P = 6.831 years

The geocentric equatorial rectangular coordinates of the Sun for the required date

(related to epoch 1950.0) are X = -0.162 8259,Y = -0.890 781 6,Z = -0.386 248 9.

(b) BAA Circular No. 570, issued 1975, December 3, gave the following parabolic

elements for the new Comet West 1975n:

T = 1976, February 25.199 0 ET

= 0.196 626 AU

w = 358°.419 8]

Q= 1182262 » 1950.0
i = 43.060 1

Compute a, 3, r and A for O ET on 1976, July 1. Use the following coordinates

of the Sun (1950.0), X = -0.157 601 3, Y = 0.921 5251, Z = 0.399 585 5.
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(c) The elements for the 1977/78 reappearance of Comet Tempel (1) 1867 II are:

T = 1978, January 11.017 6 ET

w = 179°.078 3

Q = 68°.3390 1 1950.0

i = 10°.5449 J

e = 0.519 499

a= 3.115209 AU

n°= 0.179 255 8

P = 5.498 years

Compute a, 8, r and A for O" ET on 1977, July 16. The geocentric equatorial

rectangular coordinates of the Sun for the required date: X = -0.396 701 7,

Y = 0.858 556 3, Z = 0.372 279 0.

Your results should be:

(@) a = 2nh08m40s.74 (2" 08m™.68), & = -20° 33’ 17”.64 (-20° 33".3), r = 1.548 AU,

A = 0.835 AU. The ephemeris for Comet Arend-Rigaux 1950 VII in the 1977 BAA

Handbook quotes the same values. If you did not obtain this result, check that you

used -51.416 4 for ¢t and -18°.078 885 for E.

(b) At OET on 1976, July 1, the coordinates for Comet West 19751 were: o = 172

52m 06s.35 (172 52m,11), 8 = +11°34'157.44 (+11°34'.3), r = 2.595 AU, A =

1.706 AU. BAA Circular No. 570 quotes the same values. If you did not obtain this

result, check that you used +126.8010 for ¢ (1976 was a leap year) and v =

148°.042 6.

(c) The coordinates for Comet Tempel (1) 1867 II at O ET on 1977, July 16 were:

a = 10"00™ 415,09 (10" 00™.68), 8 = +20°28'24”".4 (20°28'.4), = 2.236 AU,

A = 3.019 AU. The 1977 BAA Handbook gives the same values, with the exception

of o, which is quoted as 10» 00™.69, a difference of 0™.01.

Note: the values for X, Y, Z (1950.0) used in these examples were obtained from

the AE. See Chapter 9, Topics 3 and 4, for the method of computing approxi-

mations for X, Y, Z. In the Appendix there is a programme for the HP-67 which

gives more accurate values (Programme 23).
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9 Approximations

Topic 1 Besselian Day Numbers.

Topic 2 Equation of the Equinoxes.

Topic 3 Geocentric rectangular equatorial coordinates, X, Y, Z, of the Sun.

Topic 4 Reduction of X, Y, Z for the mean equator and equinox of year

(from Topic 3) to the mean equator and equinox for 1950.0.

Topic 5 Apparent geocentric equatorial coordinates a, & for Mercury,

Venus, Mars, Jupiter and Saturn.

Anyone who studies the Explanatory Supplement to the AE will soon realize that

the values of certain items cannot be computed both quickly and accurately.

Particular examples are the nutation in longitude (A¢) and the nutation in obliquity

(Ae): in the former there are 69 terms, 46 of which are of short period, while in the

latter there are 40 terms, all of which have a coefficient of 07.000 2 or greater. Thus

some sort of compromise is often desirable between the accuracy of the result and

the speed of computation. It is hoped the topics in this Chapter will provide an

acceptable compromise when circumstances are right, permitting reasonably

accurate approximations to be achieved in the minimum of time.

1 To compute approximations for the Besselian Day Numbers 4, B, C, D, E, J

and J', to an accuracy of +0".05 for 4 and B, +0".75 for C and D, and correct to 4

decimal places for E, J and J'.

Introduction: The Besselian Day Numbers are used in the reduction of the mean

place of a star from the start of a current Besselian solar year to the apparent place

at any time during the year (see Chapter 4, Topic 1). The values for each day at

Oh ET are tabulated in the 4E. There may be occasions when the Day Numbers

are required in advance of publication of the ephemeris, or when it would be more

appropriate to calculate the values for some other time than O ET rather than to

perform a series of interpolations. The examples will show how reasonably accurate

values can be obtained.

In working the examples, no distinction is made between the two logic systems,

algebraic and RPN, and so no keyboard entries are given. The reader must interpret

the correct key-strokes required to suit his own calculator. Also, in order to avoid

constant referring back, equations are not given at the start of the topic but are

introduced as required in the working.
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Further information: The Explanatory Supplement to the AE gives in-depth treat-

ment, in particular Sections 2C and 5D; W. M. Smart, Spherical Astronomy,

pp 242-247.

Example 1. Compute the Besselian Day Numbers A4, B, C, D, E, J and J' for 1977,

February 6 at O* ET. Assume the reduction is for a star with a = 2h00m,

Method

1. Compute .

Besselian solar years are counted from 1900, January 04.813 ET in tropical

years of 365.242 198 8 ephemeris days. To the start of the 1977 Besselian solar year

there are 77 x 365 + 19 (leap days) = 28 124 days. Divide by 365.2422 = 77.00096

tropical years. The excess over 77 tropical years is 0.00096 year, which, multiplied

bv 365, gives an excess of 0.350 days. Thus, the Besselian solar year 1977.0 com-

menced 0.350 days earlier than January 04.813, i.e., January 04.463, from which =

is reckoned.

r = the number of days from the nearest beginning of a Besselian solar year

=~ 365.242 2. (Note—from July 1 to the end of the year the count starts backwards

from the start of the following year, so = is negative in that case.)

31 + 6-0.463
= agiaana = +0.1000 (The AE quotes the same value.)

2. Compute Ay (approximate).

Ay = 177233 + 07.017 T) sinQ + 07.209 sin2Q - 1”7.273 sin2L

+ 07.126 sing — 0”.204 sin2( + 0”.068 sin/ 9.1

where AY = the nutation in longitude (containing 69 terms for the true value)

Q = the longitude of the mean ascending node of the lunar orbit on the

ecliptic

L = the geometric mean longitude of the Sun

g = the mean anomaly of the Earth (L -I")

( = the mean longitude of the Moon
| = the mean anomaly of the Moon (¢ - I'?)
T = the interval elapsed since 12" ET on 1900, January 0, expressed in

Julian centuries of 36 525 ephemeris days

d = T expressed in days.

First, find d and T

+77 x 365 + 19 (leap days) + 31 (January 1977) + 6 (February)-0.5

= 28160.5 (= d) = 36 525 = 0.770 992 5 Julian centuries (= T).

In turn, solve for Q, and take the sine and cosine

2Q, and take the sine and cosine

L, and take the sine and cosine

2L, and take the sine and cosine

2, and take the sine

2(, and take the sine and cosine
I, and take the sine.

In this topic we can use simplified terms of the mean orbital elements:

Q = 259°.1833 - 0°.052954d + 0°.002 078 T* 9.2)
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L = 279°.696 7 + 0°.985 647 d + 0°.000 303 T 9.3)

g = 358°.4758 + 0°985600d -0°.0001507? 9.4)
2¢ = 180°.868 3 + 26°.352793d -0°.002 267 T* 9.5)

I = 296°.104 6 + 13°.064 992 d + 0°.009 192 T (9.6)
The angles computed may sometimes exceed 360°. Consult your calculator hand-

book first; some of the very cheap scientific-type calculators cannot perform

functions on angles outside the range 0° to 90°, and extra care will have to be taken.

Users of HP calculators and other advanced models will not experience any

trouble in this respect. Where a record of the calculation does not need to be

written out stage by stage there is no need for any manipulation of angles exceeding

360°. The sub-totals can be carried in the calculator memory and, although in

excess of 360°, the correct sines and cosines will still be obtained.

To make this point clear, in Step 2 only of the computation the terms of the

orbital elements are set out here in two columns below; on the left are the values

as accumulated in the calculator memory, on the right are the same values as they

would be set out in a written record of the computation,i.e., positive values of the

total within the limits of0° and 360°,

Q= 259°.183 3 Q= 259°.1833
- 1491°2111 - 51°2111
+ 0°.001 2 +  0°.0012

Q= - 1232°.0266 Q= 207°9734
sinQ = -0.469 1 sinQ = -0.469 1
cosQ = -0.8832 cosQ = -0.8832

sin2Q = + 0.828 5

cos2Q = + 0.560 0

sin2Q = + 0.828 5

cos2Q = + 0.560 0

L= 279°.696 7 L= 279°.6967
+ 27756°312 3 + 36°.3123
+ 0°.000 2 +  0°.0002

= + 28 036°.009 2 = 316°.009 2
sinL = —0.6945 sinL = -0.694 5
cosL= +0.7195 cosL = +0.719 5

sin2L = —0.999 4 sin2L = -0.999 4
cos2L = + 0.0352 cos2L = + 0.0352

g= 358°.475 8 g= 358°4758
+ 27 754°.988 8 + 34°.988 8
- 0°.000 1 - 0°.0001

g= +28113°.4645 393°.464 5
- 360°

= 33°.464 5
sing = + 0.551 4 sing = + 0.551 4

2( = 180°.868 3 2( = 180°.868 3
+ 742 107°.827 3 + 147°.827 3
- 0°.001 3 - 0°.0013

2¢ = + 742288°.6943 20 = 328°.6943
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sin2( = -0.5196 sin2( = -0.5196
cos2( = + 0.854 4 cos2( = + 0.8544

[ = 296 .104 6 [= 296°.104 6
+ 367 916°.707 2 + 356°.707 2
+ 0°.005 5 +  0°0055

= +368212°.8173 652°.817 3
- 360°

= 292°8173
sinl= -0.9217 sinl= -09217

It will be seen that much time can be saved by following the method on the left,

allowing the terms to accumulate in the memory regardless of the number of

revolutions; the desired end results, the sines-and cosines, are identical. You will

first have to test your calculator to confirm that this is possible. Users of the HP

series will not need to make the test.

From Eqn. 9.1,

Ay = —[(177.233 + 07.013) x (-0.469 1)] + (0”.209 x 0.828 5)

-[17.273 x (-0.999 4)] + (0”.126 x 0.551 4)

-[07.204 x (-0.519 6)] + [07.068 x (-0.921 7)]

= + 9”.648.

The 1977 AE (p 20) gives +97.696; the error is thus —07.048. The computation

for Ay has been greatly reduced, from 69 terms to 6, but the accuracy of the

approximation is quite good.

3. Find B, from:

B = -Ae
where Ae is the nutation in the obliquity, and

Ae = (97.210 + 07.000 9 T') cosQ — 0”.090 cos2Q

+ 07.552 cos2L + 0”.088 cos2( 9.7
= [9".211 x (-0.883 2)] - (0”.090 x 0.560 0)
+ (07.552 x 0.0352) + (0”088 x 0.854 4)

= -8".091 (= -0°.002 247)

B = +8".091

4. Find e, from:

e = 23°452294-0°0130125T (9.8)
where ¢ is the mean obliquity of the ecliptic, plus Ae from Step 3, giving the mean

obliquity of date.

23°4523

- 0°.0100

- 0°.0022

e= 23°4401

sine = + 0.397 8 (for Step 5)

cose = + 0.917 5 (for Step 6)

5. Find A, from:

A=nr +sineA ¢ 9.9)
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where n is the annual precession in dec. in seconds of arc, (from Chapter 2, Topic 3)

= (207.040 3 x 0.1000) + (0.397 8 x 9”.648)
= + 5”.842.

6. Approximate for C, from:

C = —k cose cosL

where k is the constant of aberration (20”.496)
= -20".496 x 09175 x 0.719 5
= -13".530.

7. Approximate for D, from:

D = -ksinL

= -20".496 x (-0.694 5)

= +147.234.

8. Find E, from:
Al

E=» —
4}’

where 2’, the planetary precession, = 07.124 7-0".0188 T

¢’, the luni-solar precession, = 507.370 8 + 0”.0050 T

T, in both cases, being measured in tropical centuries from 1900.0.

 
] 9,648

E = 07.110 2 x 50”.‘377‘4—7

= +07.0211

= 15 =" +0s.001 4.

9. Find J and J' for the second-order corrections:

For Northern declinations:

P, = (A + D) sina + (B + C)cosa

P,= (A + D)cosa —(B + C) sina

J = 0.000 005 (P, P,)
, (Py)?

J' = -0.000 005 —~

For Southern declinations:

Q,= (A - D) sina + (B- C) cosa

Q,=(A-D)cosa —(B-C) sina

J 0.000 005 (Q, Q)

(Q,)?

l

J' = -0.000 005 

(9.10)

9.11)

(9.12)

(9.13)

(9.14)

It will be seen that J and J' vary according to the RA of the star. In this example,

for a star of RA = 2Pin Northern declination:

P, = 1070380 + (-4".710 3)

= + 573277

P,= 1773863 -(-2".7195)

+207.105 8
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= + 07.0005 = +0s.000 03
J'= -0".0001.

Result 1: The Besselian Day Numbers for 1977, February 6 at O" ET are:

Computed AE Error

(approximate)

A + 57.842 + 57.862 -07.020

B + 8”7.091 + 8”.085 +0”.006

C -137.530 -13".767 +0”.237

D +147.234 +137.943 +07.291

E +0s.001 4 +0s.001 4 Nil

J +0s.000 03 +0s5.000 03 Nil

J' - 07.000 1 - 070001 Nil

The approximate values computed for the Day Numbers are within the limits of

accuracy set, and the objective of obtaining reasonably accurate values in a

minimum of time is also achieved, without recourse to digital-computer facilities.

Note that although I have given the method for approximating values for all the

Besselian Day Numbers, in the light of the magnitude of the errors likely to arise

in C and D, it would be meaningless to attempt to employ these values for determin-

ing the apparent place of a star to the second order. Use of the approximate Day

Numbers should therefore be restricted to reductions to the first order only; Jand

J’, although they can both be evaluated without error, can be ignored and the

terms containing them in Eqns. 4.1 and 4.2 may be dropped.

Example 2.

In the previous example we saw how to calculate approximate values of the

Besselian Day Numbers for O® ET at any date. There are, however, many instances

when the Day Numbers are required, not for O, but (for instance) at the time of

upper transit of a particular star. In Topic 1 of Chapter 4, the Day Numbers for

1977, November 11.937 were found by interpolation between the values for O on

November 11 and 12. Now, if approximate values of the Day Numbers must be

calculated for other than O ET, they can be obtained directly without the need for

interpolation.

For example, suppose we decide to compare approximate values of the Day

Numbers for 1977, November 11.937 with the interpolated values actually em-

ployed in Chapter 4. There is no need to compute values for November 11 and 12

and then to interpolate to 11.937. The work can be considerably reduced by

computing the values for November 11.937 directly, but still using the method of

Example 1.

1. Compute 7.

As the date for which the information is required falls in the second half of the

year, 7 is counted backwards from the start of the next Besselian solar year, which

is found by the method of Example 1 to commence on 1978, January 04.705.

31 (Dec) + 19 (Nov) —0.937 + 0.705

- 365.2422
T = 

= -0.136 3
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2. Compute AY (approximate).

In this case, d = 77 x 365 + 19 (leap days) + 315.937 - 0.5 = 28 439.437.

d

36525
= 0.778 629 4.

From Eqns. 9.2 to 9.6:

Q= 259°.183 3

- 1505°.9819

+ 0°.001 3

= - 1246°.7973
sinQ = -0.228 4

cosQ = 09735

sin2Q = +0.444 7

cos2Q = +0.8957

T

= 279°.696 7
+ 28031°.245 8
+ 0°.000 2

= 28 310°.942 6

sinL = -0.776 5

cosL = -0.6301

sin2L = +0.978 6

cos2L = -0.2060

= 358°.475 8

+ 28029°.909 1

- 0°.000 1

g = + 28388°.3848

sing = -0.7839

 

2 = 180°.868 3
1749 458°.596 3
- 0°.001 4

2( = +749 639°.463 2
sin2( = +0.870 7
cos2( = -0.4919

[ = 296°.104 6
+371 561°.016 9
+ 0°.005 6

1= +371857°.127 1
sinl = -0.388 7

From Eqn. 9.1,

Ay = 4379390 + 07.0929 -1".245 8 + (-0".098 8) - 0".177 6
+ (-0".026 4)

= +27.483

(i.e., 193°.202 7)

(i.e., 230°.942 6)

(i.e., 308°.384 8)

(i.e., 119°.463 2)

(i.e., 337°.127 1)
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3. From Eqn. 9.7,

Ae = -87.966 6 —07.080 6 + (-0”.113 7) + (-07.043 3)

= -97.204 (= -0°.002 557)

B = -Ae¢

= +9”.204

4. From Eqn. 9.8,

e= 2374523

-0°.0101

- 0°.0026 (Aefrom Step 3)

e= 234396
sine = + 0.397 8

cose = + 09175

5. From Eqn. 9.9,

A =[207.040 2 x (-0.136 3)] + (0.397 8 x 2”.483)
= _1".744

6. From Eqn. 9.10,

C= -20".496 x 09175 x (-0.630 1)

= +11”.849

7. From Eqn. 9.11,

D = -20".496 x (-0.776 5)

= +15”915

8. From Eqgn. 9.12,

, 27.483
E= 071101 x 50"374 7

= 407.005 4

= 15 = +0s.000 4

9. From Eqgn. 9.13, for a northern star of RA = 2h:

P, = (147171 x 0.50) + (217.053 x 0.866 0) = +25".317 4

P, = (147171 x 0.8660) —(217.053 x 0.50) = + 17.7456

J = +07.000 22 = +0s.000 01

J' = -07.0016

Result 2: The approximate values of the Besselian Day Numbers for 1977, November

11.937, computed directly, compared with the interpolated AE values used in

Chapter 4, Topic 1, with the resulting errors, are:

[

Computed AE, Error

(approximate) interpolated

T -0.136 3 -0.136 3 Nil

A - 17,744 - 17,749 +07.005

B + 97.204 + 97.181 +07.023

C +117.849 +127.234 -07.385

D 415”7915 +157.567 +07.348
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E +0s.000 4 +0s.000 4 Nil
J +0s.000 01 +0s.000 01 Nil

J - 07.001 6 - 07.001 6 Nil

The largest errors occur, as expected, in C and D, where we employ only coarse

approximations. Anyone who feels that the errors in C and D are unacceptably

large is recommended to consult pp 46—49 and 158-160 of the Explanatory Supple-

ment to the AE. But for ordinary day-to-day working, to 0.1 second of time in RA

and to the nearest second of arc in dec., the approximations for the Day Numbers

are perfectly adequate. For example, if in the working of Method 1B of Chapter 4

the above approximate Day Numbers are employed in place of the interpolated

AE values that we actually used, the equatorial coordinates a, 8 for € Cas at upper

Greenwich transit on 1977, November 11.937 are found to be:

a= 1h52m5]s128 8 = +63°33"49".14

When compared with the result obtained in Chapter 4, the errors introduced by

using the approximations are in a —0s.023, and in 8 +0”.36.

The observer must decide for himself whether the time saved by calculating

approximate values for the Day Numbers in the absence of the relevant ephemeris

is justified or not in the light of the accuracy limits demanded by the type of job on

which he is working. In any event he should regard any reductions to apparent

place carried out by means of approximate Day Numbers as being to the first

order only. (See the note at the end of Example 1.)

For further practice:

(a) Compute approximations for the Besselian Day Numbers 4, B, C, D and E for

Oh ET on 1977, March 8.

(b) Given the interpolated Day Numbers A4 = -37.007, B= +8".546, C =

+177.627, D = 47154, E= +0s.005, J= +0s.00005, J'=-0".0016, =

—0.215 8 for 1977, October 13.9, and the upper Greenwich transit of y Cep (RA=

230 38m) compute approximations for the Day Numbers and tabulate the errors.

Your answers should be:

(a) A= +67988, B= +7"754, C = -18".213, D = +57.106, E = +0s.001 2.

Asacheck,the AEgives A = +6".982, B= +77.741,C = -18".339, D = +4".497,

E = +40s.001 2.

(b) The approximate Day Numbers, with the errors (in the sense ‘computed minus

AE’) in brackets, are:

A= -37.040 (-07.033)

B = +8".569 (+07.023)

C = +177.397 (-0”.230)

D = +7".784 (+07.630)

E = +40s.000 5 (Nil)

J = +0s.000 06 (+0s.000 01)

J'= -07.001 6 (Nil)

= -0.215 8 (Nil)
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2 To calculate an approximate value for the equation of the equinoxes for O0h UT

at any date, correct to within +0s.005.

Introduction: Reference to the correction for the equation of the equinoxes was

made in Chapter 1, Topic 1, being the addition required to convert Greenwich

Mean Sidereal Time into Apparent GST. Full evaluation of the correction entails

lengthy computation because one of the factors involved, the nutation in longitude

(AY), contains 69 terms. Consequently, unless the relevant AE is held (where the

value is listed daily) one has little inclination to compute the true value of the

equation of the equinoxes. However, when it is essential to know the value in

advance of publication of the AE it is possible quickly to compute an approximate

value for any date. The method is demonstrated in this Topic.

The Equation:

Erp= Ay cose (9.15)

where Ay = the nutation in longitude

e = the obliquity of the ecliptic of date (the true obliquity).

Further information: Explanatory Supplement to the AE, Section 3C; D. McNally,

Positional Astronomy, Chap. 5.1.

Example: Calculate the value of the equation of the equinoxes for 1978, January 0

at Oh UT.

Method: The necessary computation has already been outlined in Steps 2, 3 and 4

of the examples in Topic 1 of this Chapter.

1. Find d and T. Then, from Eqns. 9.2 to 9.6, find the values for Q, 2Q, 2L, g, 2(

and /, with their sines.

d= 28488.5 T=07799726

Q= 259°.183 3
- 1508°.5800
+ 0°.001 3

Q= - 1249°3954 (ie., 190°.604 4)
sinQ = -0.1840

sin2Q = +0.361 8

 

L= 279°.696 7
+ 28079°.604 6
+ 0°.000 2

L= 28359°.3015 (ie., 279°.301 5)
sin2L = -0.3190

g = 358°.475 8
+ 28078°.2656
- 0°.000 1

g=  28436°.7413 (.., 356°.741 3)
sing = -0.056 8
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2 = 180°.868 3
+750751°.543 4
- 0°.001 4

2= 750932°.4103 (i.e., 332°.410 3)
sin2( = -0.463 1

= 296°.104 6
+372202°.024 6
+ 0°.005 6

= 372498°.1348 (i.e., 258°.134 8)
sinl = -0.978 6

2. From Eqn. 9.1:

Ay = [+(17".233 4+ 07.013) x (-0.184 0)] + 07.209 (0.361 8)

-17.273 (-0.319 0) + 0”.126 (-0.056 8) —0”.204 (-0.463 1)

+07.068 (-0.978 6)

= +3".676

3. From Eqn. 9.8:

e= 23°4523

- 0°.0101

= 23°4422 (Note: there is no need here to evaluate Ae, because

cose to 4 decimal places would not be affected)

cose = + 09175

4. From Eqn. 9.15:

Eeg= +37.676 x 09175

= +3".373
+0s.225=15

Result: The approximate equation of the equinoxes for 1978, January O at O* UT

is +0s.225. The AE gives the value +0s.226. The error in this case is —05.001, and

the result is well within the accuracy limit set.

For further practice, compute the equation of the equinoxes for O* UT on

(a) 1977, March 8;

(b) 1977, February 6;

(c) 1977, July 3;

(d) 1977, September 6.

Your answers should be:

(a) +0s.513. (The AE gives +0s.512)

(b) +0s.598. (The AE gives +0s.593)

(c) +0s416. (The AE gives +0s.415)

(d) +0s.338. (The AE gives +05.343).
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3 To compute (a) to three decimal places, the approximate geocentric equatorial

rectangular coordinates X, Y, Z of the Sun, for the mean equator and equinox of

year, at any time on any date, and (b) the approximate equatorial coordinates a, &

of the Sun, the radius vector, horizontal parallax and semi-diameter at the same time

as (a).

Introduction: An outline of the difficulties to be overcome for high-precision work

is given in Chapter 6. Where close approximations will suffice, the basic approach

to the problem is to furnish reasonably accurate elements for the orbit of the

Earth, and then to apply, with slight amendments, the method used in Chapter 8

for comets. That is the method demonstrated here.

When x, y, z have been evaluated the signs are changed and the values become

those for X, Y, Z, related to the mean equator and equinox of year. If these are all

that is required the calculation stops at this stage.

If further data are needed for the same date, such as the apparent geocentric

coordinates a, 3 of the Sun, the radius vector, horizontal parallax or semi-diameter,

the computation continues as indicated.

The equations: Those which are employed have been given in Chapters 7 and 8.

Example 3. Data are required for the Sun at 12" ET on 1978, March 16 (1978.206 7).

Find X, Y, Z, apparent q, 8, R, HP and SD.

The elements of the Earth’s orbit are:

T = 0.008 8 of year (e.g., 1978.008 8)*

w=101°2208 + 1°.7192T

Q=0°

i=0°

e = 0.016751-0.00004T

e = 23°45229-0°0130T

a=10AU

n°= 0.985 61

q = 0.983326 AU

P = 36525d

where T is the interval in centuries from 1900, January 0, with no distinction

necessary between the Julian and tropical centuries.

First, evaluate », ¢ and e°, finding « = 102°.561 8, ¢ = 0.016 72 and e°= 0.958 0.

Then find the mean anomaly for the required time from M = n°f and iterate for E

in Eqn. 8.7. t = 365.26 (1978.206 7 - 1978.008 8) = 72.28. Thus find M = 71°.24

and E = 72°.15. Because the orbit is almost circular it will always be found, when

iterating for E, that E is close to M in value.

* This is not strictly true, as perihelion date alters slightly from year to year owing to a

combination of the length of the anomalistic year (3652.259 6) and perturbations from the

gravitational forces exerted by other planets, but it will be found in practice that the value

shown can be employed for approximation work with little error.
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Method 3A.
 

1. Find R: Enter E

Enter e

Note R

2. Find (v + w) and store

Enter E

Enter w

3. Find X:

Enter R

Note X

4. Find R sin(v + w) and
store

Enter R

[72.15]

f cos

X

[0.016 72]

R = 0.994 875

tm
tr
B
l
=
1

=
+
Q
%

[102.561 8]

= (v + o = 175°.626 02)

MC

M+
f cos

X
[0.994 875]

CS
= X = +0.9919779

(4+0.992, use of more than

3 decimal places is not
justified)

See Topic 4 for conversion
to 1950.0

MR
f sin
X

[0.994 875]
cs
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Method 3A continued

5. Find Y:

Enter e

Note Y

6. Find Z:

Enter €

Note Z

7. For further data for date:

Enter Y in full

Enter X in full

MC

M+

[23.442 2]

f cos

X

MR

= Y = -0.069 612 5 (-0.070)

[23.442 2]

f sin
X

MR

= Z = -0.030 184 9 (-0.030)

[0.069 612 5]
CS

[0.991 977 9]

ftan™!

15

STOP (-0.267 611 4)

 

If Y4+, X+, 0 < a <6if Y+, X-, 6 < a <128} if Y-, X— 12 < o < 18%;

ifY-, X+, 18 < a < 241,
If necessary, adjust display by multiples of 6" until « appears in the correct

quadrant.
 

8. Adjust

Note hours; deduct

integral hours

Note minutes: deduct

integral minutes

Note seconds

9. Find &

Enter « in hours

Adjustment made
231732389

e

R
+

(23]

I 43m

[43]

&
x

57s
a = 231 43m 57s

[23.732 389]
X

15

f cos

MC
M+
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Method 3A continued

Enter X in full [0.991 977 9]

MR

“«——>

XM
Enter Z in full [0.030 184 9]

CS Z is negative

MR

Note integral degrees; ftan—! -1°

if display is negative,
change sign [CS]
Deduct integral degrees -

(1]
X
60

Note minutes; deduct = 44’
minutes -

[44]
X
60

Note seconds = 19”7
d=-1°44'19"

10. Find HP: 8.794

Enter R (Step 1) [0.994 875]
MC
M+

Note HP = HP = 8”.84
11. Find SD: 961.18

MR
Note SD = SD = 966".13

=16'06".13
 

Result 3A. (a) The approximate rectangular coordinates for the Sun at 12" ET on

1978, March 16 are X = +0.992, Y = -0.070, Z = -0.030.
(b) The radius vector at that time is 0.994 9 AU, the horizontal parallax is 8”.84

and the semi-diameter of the Sun is 16’ 06”.13.

For comparison with the AE values refer to the note with Result 3B which

follows.

 

Method 3B.

1. Enter E [72.15]

STO 0
f cos

Enter e [0.016 72]
STO 1

X
CHS
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Method 3B continued

1
+

STO 6 (R = 0.994 875)
RCL1

1
+

1
RCL 1

f \/X

RCL O

2

f t.an

X

g tan™!

2

X (v = 73°.064 3)

2. Enter w [102.561 8]
+

f cos

STO 2

f last x

f sin

STO 3

3. Enter € [23.442 2]
STO 7

RCL 2

RCL 6
X

CHS

STO 0

RCL 3

RCL 6
X

STO 1

RCL 7

f cos

X

STO 3

RCL1

RCL 7

f sin

X

CHS

STO 2

RCL3

CHS

STO 1
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Method 3B continued

Xisnowin R, Yin R,, Z in R,.

For X, RCLO; X = +0.992 (Use of more than 3 decimal places is not

Y,RCL1; Y= -0.070 justified. See Topic 4 for conversion to 1950.0.)

Z,RCL2; Z= -0.030
 

4. For further data for date: RCL 1

5. If display negative, add 24 [24
+ Adjustment made

Note a f HMS a = 23h 43m §7s
Find &: RCL 0

Note & fHMS 8 =-1°44'19"
Note R RCL 6 R = 0.994 875
Find HP: 8.794

Note HP - HP = 8”.84
Find SD: 961.18

Note SD - SD = 966”.13

= 16'06".13
 

Result 3B. The approximate rectangular coordinates for the Sun at 12" ET on

1978, March 16 are X = +0.992, Y = -0.070, Z = —0.030. The AE lists, for

March 16, X = 409910, Y = -0.0788, Z = -0.0342 (atOh)
March 17, X = 409926, Y = -0.0630, Z = -0.0273 (atOh)

The computed terms fall within the tabulated values, but interpolation between

the AFE values for 12» would reveal slight errors.

The other data derived for the Sun at the same time compare as follows:

Computed, 12» March 16 AE, O® March 16 AE, O March 17

a = 230 43m 57s 23h 4] m 49s 23h 45m 28s
d=-1°44"'19" -1° 58’ 08~ -1° 34’ 26"
R = 0.994 875 0.994 747 0.995 015
HP = 8".84 8”.85 8".84
SD = 16’ 06".13 16’ 067.26 16’ 06”.00



Again, the computed values fall between those tabulated in the AE, but inter-

polation would reveal small errors of about 20s in RA and 2’ in dec. Although the
computed values relate to the mean equator and equinox of year, and the AE

values are for the true equator and equinox, this factor does not account for the

greater part of the errors.

The two methods 3A and 3B give identical results.

For further practice, try the following:

(a) Compute the approximate rectangular equatorial coordinates of the Sun for

Ot ET 1974, July 23 (1974.558 5).

(b) Compute the approximate equatorial coordinates a, 8, the radius vector,

horizontal parallax and semi-diameter of the Sun for O" ET on 1977, December 22.

Use the 1978 perihelion date. (¢, M and E will be negative.)

(c) Compute the approximate equatorial coordinates a, 8, of the Sun for 1976,

August 3 at O ET (1976.591 4).

Your results should be:

(@) X= -0.505 The AE gives X = -0.5047

Y = +0.809 Y= +0.8090
Z = +0.351 Z = +40.3508

(b) o= 18200™ 368 The AE gives a = 182 00m (Q7s
8 = -23°26' 32" & = -23°26'22"
R = 0.9837 R = 0.98367

HP = 87.94 HP = 8”.95

SD = 16°17".15 SD = 16"17".14
() a = 8h 55m 10s The AE gives a = 8h52m 57s

8= +17°22'52" 8= +17°31' 47"

The error in (¢) is not due to the fact that 1976 was a leap year, as = 212.80

includes the leap day. It is, in fact, due to the perihelion date being January 4.5.

Ourresult is nearer the AE value for August 4, a = 82 56m 48s, § = +17° 15’ 59”.

An error of this magnitude will be rare.

4 To convert the approximate equatorial rectangular coordinates of the Sun, X, Y,

Z, from the equator and equinox of year to the equator and equinox of 1950.0, for use

in the topics of Chapter 8.

Introduction: In the preceding topic a method was demonstrated of obtaining

approximate values for X, Y, Z to 3 decimal places. These values relate to the

equator and equinox of year (of calculation). In the comet computations of

Chapter 8, where the elements are referred to the equator and equinox of 1950.0,

the values of X, Y, Z must also be referred to that same epoch. An approximate

transformation, no more rigourous than the method used to derive X, Y, Z in

Topic 3, is given here. In Appendix II, an HP-67 programme is included (Programme

23), which gives highly accurate results.
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The equations:

Xiso= X +0.0078 Y +0.0034Z

Yieso= Y -0.0078 X (9.16)

Ziso= Z -0.0034 X

The values of the coefficients are correct for 1985.0. They may be used for approxi-

mations over the period 1970-2000, without significant error for our purposes

(mainly for the calculations of Chapter 8).

Further information: Explanatory Supplement to the AE, p 34 and Table 2.2.

Example 4. The equatorial rectangular coordinates of the Sun at O ET on 1978,

July 3 are, to 3 decimal places: X = -0.189, Y = +0916, Z = +0.397. These

relate to the true equator and equinox. Convert to relate to the equator and equinox

of epoch 1950.0.

The workings are so simple they do not need to be shown here. Using Eqn. 9.16,

we find:

Xisso= —0.181, Yig950= +0.917, Z,450= +0.398.
To 3 decimal places, the AE gives: X,950= —0.182, Y950= +0.918, Z,550= +0.398.

Try the following:

Convert the approximate result for further-practice problem (a) of the preceding

topic to coordinates referred to 1950.0.

Your results should be: X,g50= —0.497, Yy950= +0.812, Z1550= +0.352.

5 To compute the approximate apparent geocentric equatorial coordinates o, 5, of

Mercury, Venus, Mars, Jupiter and Saturn, at any desired ET on any date, plus the

horizontal parallax, semi-diameter in seconds of arc, and distance from the Earth in

astronomical units.

Introduction: See the introduction to Topic 3, and refer to Chapter 6 with regard to

the difficulties encountered in high-precision work. The accuracy attained here is

more than sufficient for finding purposes.

The orbit elements are given for epoch 1950.0, with annual variations in brackets.

T is given in terms of the perihelion passage nearest to 1975.0. The results give good

approximations over the period of 1950-2000, even for Mercury.

For greater accuracy, and over a range of about 3 000 years, see Programmes 25

to 27 and 38 in Appendix II. These programmes are for the HP-67 and HP-97.

The equations: The method employed is based on the equations of Chapter 8.

Further information: Explanatory Supplement to the AE, Section 4D.

Example 5(a): Mercury.

T = 1975.078 4 4+ multiples of P

P = 0.240 847 tropical year

w = 28°.938 89 (+0°.003 7)

Q = 47°.738 55 (+0°.011 9) 1950.0

i= 7°.003 81 (+0°.00002)

e = 0.205 624 (+0.000 000 2), 1950.0
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e° = 11°.782

a = 0387099 AU

n° = 4°.092 339 (per day)

 
87.794

P=—a
37.34

SD = -

Compute data for 1978, November 23, at Oh ET (1978.895 3). In this case, the

orbital period being about } year, the nearest time of perihelion passage will be 15

revolutions of the planet later than T as tabulated, i.e., T = 1975.078 4 + 15P

= 1978.691 1.

Update, where necessary, the elements to 1979.0 (the nearest epoch) and find, in

the order that they will be required for the calculation:

e = 0.205 63
Q = 48°.083 65
w = 29°.046 19
i= 7°.004 39
e=23°4420

Also, by the method of Topic 3 of this Chapter, find approximations for X, Y, Z

for the Sun at the required date, November 23 at Oh ET. (Note: we have updated

the elements to a current epoch, so we require X, Y, Z of date, not referred to

epoch 1950.0, so no conversion is necessary.)

X = -0487 Y = -0.788 Z = -0.342

We shall be using the same date for the other planets in the latter part of this

topic, so once X, Y, Z have been computed for this example the same values can

be used in the other examples.

To find the mean anomaly by Eqn. 8.7 we must first find 7 in days, which is

365.24 (1978.895 3) — 1978.691 1) = 74.58 days. Then M = 74.58 n° = 305°.21,

and, by substitution in Eqn. 8.7, E = 294°49.

The preparatory work has now been completed. For the purposes of the comput-

ation we treat Mercury in exactly the same way as a periodic comet.

Process the foregoing data by Method 2A or 2B of Chapter 8. The only minor

change required is to ignore the subscript 1950 when entering € and X, Y, Z.

We find that the position for Mercury at O® ET on 1978, November 23 is

a = 17h20m 3]s 3 = -25°16'10" A = 0.866 7 AU

Store the value for A in the calculator memory. Then, to find the horizontal

parallax, divide 8”.794 by A, and obtain HP = 10”.15. To find the semi-diameter

of Mercury at this date, divide 3”.34 by A, and obtain SD = 3”.85.

Now for the moment of truth! The values listed in the 1978 AE are: a = 171

20m 118, § = -25°15"11”, A = 0.868 031 3 AU, HP = 10”.14, SD = 3”.85. You

must judge for yourself whether the computed approximations are close enough to

the values tabulated in the AE to suit your purpose. You might, for example, be

concerned about the longer-term usefulness of the method. Then let us use it to

evaluate data for Mercury for 1950, July 25 at O* ET (1950.564 0). In this case the

nearest perihelion passage is 102 revolutions earlier, so T becomes 1975.078 4 -
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102 P = 1950.5120. ¢ = 365.24 (1950.564 0 — 1950.5120) = 18.99 days. Thus,
M = 77°.71, and E is found to be 89°.49. The orbit elements do not need updating—

they already refer to 1950.0. All we need now, from Topic 3, are values for X, Y, Z.

These are found to be X = -0.528, Y = +0.796, Z = +0.345. The computation

for position is performed as before, and the result is found to be « = 92 16™.1;

8 = +17°34'.0. The 1950 BAA Handbook gives: a = 92 16m.4; 8 = +17° 34’,
The method thus works for over 100 revolutions into the past and indicates that

for approximate results (which are all that we set out to achieve) reasonably close

values will be obtained during the period 1950 to 2000.

Example 5(b): Venus.

T = 1975.308 4 + multiples of P
P = 0.615 21 tropical year

w = 54°.637 92 (+0°.005 1)

 

Q = 76°.229 65 (+0°.009 0) 1950.0

i= 3°39413 (+0°.00001)

e = 0.006 797 (-0.000 000 2), 1950.0

e’ = 0°.3894

a = 0.723 332 AU

n° = 1°.602 130 (per day)

87.794
HP = A

8”.41
SD = A 

Compute data for 1978, November 23, at Oh ET (1978.895 3). The orbital period is

about £ year, so the nearest time of perihelion passage will be 6 revolutions of the

planet later than 7 as tabulated, i.e., T = 1975.3084 + 6 P = 1978.9997. t =

365.24 (1978.895 3 — 1978.999 7) = -38.12 days. Find M = -61°.07 and E =

—-61°.41. Now update, where necessary, the elements to the nearest epoch, 1979.0,

and find, in the order they will be required for the calculation: e = 0.006 791,

Q = 76°.490 65, o = 54°.785 82, i = 3°.39442. From the Mercury example, we

take e = 23°.4420, X = 0.487, Y = -0.788, Z = -0.342.

The preparatory work now complete, process the data by Method 2A or 2B of

Chapter 8, as in the case of example 5(a) for Mercury, again ignoring subscripts

1950 when entering ¢ and X, Y, Z.

We find that the position for Venus at O® ET on 1978, November 23 is a = 14t

21m 078, 8 = -15°10’ 15”7, A = 0.2982 AU.Store A. To find the horizontal parallax,

divide 8”.794 by A, and for the semi-diameter of the planet, divide 8”.41 by A,

finding: HP = 29”.49, SD = 28”.20. For comparison, the values tabulated in the

AE are: a = 14221m(Q3s, § = -15°07' 44", A = 0.2979709 AU, HP = 29”.53,

SD = 28”.22. Refer to the comment on accuracy with the results for Mercury.

Example 5(c): Mars.

T = 1975.449 0 4 multiples of P

P = 1.880 89 tropical years
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w = 285°.966 66 (+0°.010 7)
Q= 49°.17192 (+0°.007 7) 1950.0
i= 1°85000(+0)
e = 0.093 359 (+0.000 000 9), 1950.0
e’ = 5°349 1
= 1.523 69 AU

n° = 0°.524 033 (per day)

87.794
P= A

4”.68

Compute data for 1978, November 23, at O* ET (1978.895 3). Follow exactly the

same procedure used in the previous examples for Mercury and Venus. There is no

perihelion passage during 1978; the nearest is 1979.209 4. Update », Q and e to

1979.0; then find #, M and E. Process as before, using the same values for ¢, X, Y

and Z. We find that « = 162 56m 22s § = -23°18'46", A = 2.3956 AU, HP =

37.67, SD = 17.95. (Check, if required, ¢t = -115.23, M = -60°.38, E = —-65°.24.)

The values tabulated in the 1978 AE are: o = 16" 55m 38s, § = -23° 16’ 54",

A = 2.3961869 AU, HP = 3”.67, SD = 17.95.

The Outer Planets.

Readers are advised to consult the Explanatory Supplement to the AE regarding

the difference between mean elements and osculating elements, and the use of the

latter in the preparation of ephemerides. So far in this topic we have employed

mean elements and have seen that useful approximations can be derived for the

geocentric positions of the inner planets.

The four giant planets whose orbits lie outside the asteroid belt account for most

of the planetary mass of the Solar System. At the distances involved, the gravi-

tational effect of the Sun is correspondingly weaker, and the mutual effects that the

massive outer planets exert upon each other are greater than the perturbations they

cause to the orbits of the smaller inner planets. The use of mean orbital elements is

really no longer practicable in these circumstances.

Where a rough indication of position would be sufficient, that is to say, if errors

of up to half a degree are not of great consequence, I give mean elements for

Jupiter and Saturn so that the same method of computation may be employed, but

advise caution in their use. It will be seen, if the reader follows through from the

preceding examples, that computation of the position for Jupiter on the date we

have been using (1978, November 23) gives, fortuitously, a result very close to the

AE apparent position; it will not always be so. For Saturn, the computation gives a

position which the planet does not reach until some 18 days later, although it

remains within the limit of accuracy desirable for finding purposes. As the results

for Uranus, Neptune and Pluto would be even more unreliable, no elements are

given for these planets.

Example 5(d): Jupiter.

T = 1975.613 3 + multiples of P
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P = 11.862 23 tropical years

w = 273°.573 75 (4+0°.006 0)
Q = -99°943 33 (+0°.010 1) 1950.0

 

 

 

i= 1°30592( -0°.000 06)

e = 0.048 419 0 (+0.000 001 6), 1950.0

e°=2°7742

a = 5.202 803 AU

n° = 0°.083 091 (per day)

8”.794

P==3

. 98”.47
Equatorial SD = — A

91”791
Polar SD = A

Once again, compute data for 1978, November 23 at O ET (1978.895 3), using T

as above. We find that « = 8246m 30s, 8 = +18°25'49”, A =4.8155 AU,

HP = 17.83, Equatorial SD = 20”.45, Polar SD = 19”.09. (Check, if required,

t=1198472, M = 99°.60, E = 102°.31.)
The values tabulated in the 1978 AFE are: a = 8h46m 25s, § = +18°26' 117,

A = 48152723 AU, HP = 17.83, Polar SD = 19”.09.
The errors are, in this case, minimal: +5% in RA, +22” in dec., and for an

approximation might be considered to be a very good result. However, caution is

advised; do not be misled into thinking that the results for Jupiter will always be

so accurate, although they will be more than adequate for finding purposes.

Example 5(e): Saturn.

T = 1974.023 3

P = 29.457 72 tropical years

o = 338°.848 40 (+0°.010 86)

Q = 113°,220 17 (+0°.008 73) 1950.0

 

 

 

i= 2°490 35 ( —0°.000 044)

e = 0.055 716 5 (-0.000 003 47), 1950.0

e’ = 3°1866

= 9.538 843 AU

n° = 0°.033 459 9 (per day)

p— 87.794

A

. 83”.33
Equatorial SD = A

74".57
Polar SD = A

Following the same procedure as in the previous examples, we find, for 1978,

November 23 at O» ET (1978.8953): a = 11102m 508, § = +7°57'33", A =
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9.470 3 AU, HP = 07.93, Equatorial SD = 8”.80, Polar SD = 7”.87. (Check, if

required, t = 1 779445, M = 59°.54, E = 62°.36.)

The values tabulated in the 1978 AE are: « = 112 00m 00s, § = +8° 13" 38",

A = 9.467 005 7, HP = 07.93, Polar SD = 7”.88.

The planet does not, in fact, reach the computed apparent RA until December 10,

and the error in the approximation of RA is just over half a degree, really adequate

only for finding purposes. Caution is advised in using these elements, in view of the

perturbative forces exerted by the other giant planets.

NOTES
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APPENDIX I

Visual Binary Star Orbits

The following list is given for those who are unable to refer to Finsen and Worley,

Third Catalogue ofOrbits of Visual Binary Stars, Rep. Obs. Circ. No. 129, Johan-

nesburg, 1970, and whose only working reference is the Atlas Celi Catalogue

section which gives a selection of orbits. Many of the orbits listed in that section

have been reviewed in the light of more recent observations and the more up-to-date

orbits have been included in Finsen and Worley’s catalogue.

This list will enable users of the Atlas Celi Catalogue to identify those orbits

which are still currently in use. It gives, in addition, the epoch (if published) so that

corrections for the effect of precession on the position angle may be made if desired.

This does not mean that the earlier orbits are no longer of any use. They can still

be employed for computing an ephemeris, by the methods of Chapter 7, but the

results will not match those quoted, for example, in the BAA Handbook each year.

When such orbits are used, the computer should employ the suggested treatment

for the correction for precessional effects given in the introduction to Topic 2 of

Chapter 7.

ADS Epoch Computer ADS Epoch Computer

61 —  Baize 2799 1900 Wierzbinski

161 1900 Arend 2959 —  Couteau

221 —  Muller 2995 1900 Rabe

293 —  Muller 3041 —  Muller

520 — van den Bos 3082 1950 Muller

755 —  Muller 3159 1900 van den Bos

918 — Eggen 3182 — van Biesbroeck

1097 —  Muller 3230 —  Horeschi

1123 — van den Bos 3248 1950 van den Bos

1158 — van den Bos 3264 1925 Kuiper

(831) —  Wieth-Knudsen (h3683) 1900 Wierzbinski

1615 1900 Rabe 3588 — van den Bos

1630 —  Muller *3701 - Eggen

1709 — Heintz 3841 —  Merrill

2122 1900 Rabe 4229 — Baize

2200 — van den Bos 4617 — Alden

2402 1950 van den Bos (R65) - Eggen

2446 1900 Rabe (919) — Finsen

2524 —  Muller 5400 —  Brosche

* Insert 1910.60 for T in the Atlas Coeli Catalogue.
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1900

1950
1900

1900

1900
1900
1900

1950
1884
1910
1900

1900
1950

1950

Computer

Dommanget

Hopmann

Karmel

Rabe

Woolley-Symms
van den Bos

van Biesbroeck

Ekenberg

van den Bos

Arend

Muller

Baize

Wierzbinski

Rabe

Baize

Baize

van den Bos

Baize

van den Bos

Baize

Haffner

Russell

Baize

Heintz

Wierzbinski

Strand

Hopmann

van den Bos

Couteau

van den Bos

Giuntzel-Lingner
Wierzbinski

Finsen

Woolley-Mason

Heintz

Eggen
Baize

Danjon
Baize

Heintz

Baize

Giannuzzi

Baize

Wilson

Rabe

Baize

Rabe

Giannuzzi

Eggen

Brosche

van den Bos

ADS

(Brs 13)
(Mlb 4)
10598
11046

(h5014)
11060
11324
11468
11483
11484
11520
11579
11635a
11635b
11989
12096
12145
12214

(I 253)
12752
12880

(I 120)
12973
13125

(HdO 294)
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13723
13728
13850
13944
14073
14296
14499
14773
14775
14783
14787
15176
15281
16046
16057
16138
16173
16345
16393
16428
16497
16539
16538
16666
16708
17175

Epoch

2000

2000
1900

1900

1900

1900
1950
1950

1900

1950

1900
1900

Computer

Wieth-Knudsen

Hirst

Duncombe-Ashbrook
Strand

Wierzbinski

van Biesbroeck

Heintz

Wilson

Heintz

Florsch

van den Bos

Baize

Gintzel-Lingner

Gintzel-Lingner
Gottlieb

Voronov

Baize

van den Bos

van den Bos

Gintzel-Lingner
Rabe

Wierzbinski

Finsen

van Biesbroeck

van den Bos

Wierzbinski

Muller

Baize

Baize

Finsen

Rabe

van den Bos

Luyten-Ebbighausen

Baize

Baize

van Biesbroeck
Danjon

Luyten

Muller

Heintz

Harris

Baize

Baize

Muller

Giuntzel-Lingner
Hirst

Muller

van Biesbroeck

Wierzbinski

van den Bos

Hall



APPENDIX II

Programmes for Calculators Using RPN
Logic

The programmes in this Appendix were specially written to suit Hewlett-Packard

programmable calculators. That is to say, they were devised by users who had

already exercised their choice in favour of RPN logic. As I have indicated earlier in

the book, I do not wish to be drawn into any controversy over the respective merits

of RPN or algebraic logic and keyboard notation; you should find no difficulty in

transposing, if necessary, the Hewlett-Packard RPN instructions of the programmes

in this Appendix into a suitable format for your own programmable, whether

RPN or algebraic.

All the HP-25 programmes, and 5 of those for the HP-67, were devised or adapted

by the author. The majority of the HP-67 programmes were devised by M. Jean

Meeus, to whom I am extremely grateful for his many suggestions and kind per-

mission to reproduce them here. The HP-67 programmes are also, of course, fully

compatible with the HP-97 desk-top calculator, while with a little readjustment the

HP-25 programmes can be run on the HP-19C, HP-29C, HP-55, HP-67 and HP-97.

The programmes are arranged to cover applications in the same subject order as

the main text; this group is followed by a collection of useful programmes on

subjects which have not been covered elsewhere in the book.

Improvements to existing programmes, and new programmes, are continually

being devised. So far as is possible, the range of programmes in the Appendix is

up-to-date at the time of going to press. Further improvements, and any new

astronomical programmes which are likely to have a wide interest, will be incor-

porated in later editions.

D HP-25
To compute a daily ephemeris for Greenwich Mean Sidereal Time at Oh UT, through-

out the year, correct to +0s.01.
 

1. Compute GMST for O" UT on January O of year, from Topic 1 of Chapter 1.

Convert to decimal hours and store in R,
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2. Enter the programme:
o1 1 07 + 13 GTO 15
02 STO +1 08 2 14 -
03 RCL1 09 4 15 fH.MS
04 RCL2 10 fx<y 16 GTO 00
05 x 11 GTO 14
06 RCLO 12 R}

Register contents:

R, GMST at O» UT
January 0

R; Day number

R, Daily rate of gain,

ST over MT
 

3. Switch to RUN, f PRGM, f FIX 6.

Enter constant: 0.065 709 822 STO 2

R/S.
 

4. The display shows, in H.MS format, the GMST at O®* UT on January 1.

For the next day, press R/S. The display now shows GMST at O* UT on

January 2.

For each successive day, press R/S.
 

5. Test:

Given, for 1978, January 0, 6".620 355 556, compute GMST at O® UT daily, up

to and including January 5.

The results are: January 1 6" 41m (09s.83

2 6"45m065.39

3 6M49m (295

4 6M52m 59s5.50

5 6h56m 56505
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2 HP-25
To compute a 5-day ephemeris for Greenwich Mean Sidereal Time at 0h UT, correct

to 0m.1, and the Julian Date.
 

This type of ephemeris is published in handbooks such as that issued annually

by the BAA. Alongside the date and GMST at 0", these ephemerides usually add

the Julian Date.

When constructing a 5-day ephemeris, the second date to be listed is the midnight

following the integral Julian Date nearest to January 0 which is exactly divisible by

5. The first date to be listed is that which precedes the second date by S days, thus

placing this date near the end of the previous year (see the test example).

There are two preparatory calculations to be made before the programme can

be run:

(a) from Topic 1 of Chapter 1, compute GMST for O" UT on January 0 of year

and convert to decimal hours;

(b) from Programme 32 compute the Julian Date for the same instant (data input

at Step 4is YYYY.00).

1. Enter the programme:
 

o1 5§ 10 4 19 flastx Register contents:

02 STO +1 11 fx<y 20 g FRAC R, GMST at O UT
03 STO + 3 12 GTO 15 21 RCL4 January 0
04 RCL1 13 R 22 x R, Day number
05 RCL2 14 GTO 16 23 fFIX1 R, Daily rate of gain,

06 x 15 - 24 R/S ST over MT

07 RCLO 16 fFIXO0 25 RCL3 R;JD
08 -+ 17 fINT 26 GTO 00 R, 60
09 2 18 f pause
 

2. Switch to RUN, f PRGM.

Enter constants: GMST at O* UT on January 0, STO O

0.065 709 822 STO 2

JD at 0" UT on January 0, STO 3

60 STO 4

3. Prepare the registers for the first ephemeris date:

(For 1978) 8 STO -1, STO - 3 (see test, below).

4. *Press R/S.
At line 18 the programme pauses to flash the integral hours of GMST, then

continues to line 24 when it will stop to display the minutes, to one decimal place.

Press R/S. The programme ends by displaying the Julian Date.

For the next ephemeris date return to * and the programme will output data for

Oh UT five days later.

Repat for each successive 5-day interval.

5. Test:

Given GMST for O UT 1978, January 0 is 6".620 355 556, and the Julian Date

at that time is 2 443 508.5, compute the first five entries for a 5-day ephemeris for

1978. The integral JD at 121 UT on January 0 is thus 2 443 509. This is not exactly

divisible by 5. But the next following date is (2443510). The second date in the

ephemeris for 1978 is therefore the following midnight, i.e., O* UT January 2. It
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follows that the first date should be 1977, December 28, and this is shown in the

ephemeris as 1978, January -3. So, because lines 1 to 3 of the programme add 5

days to the values stored in R; and R3, the Step 3 entry becomes 8 STO - 1, STO - 3.

The programme results are:

1978, January -3 6" 25m4 JD = 2443 505.5

 

2 6h45m] 510.5
7  7Th04m8 515.5
12 7n24m5 520.5
17 7h44m2 525.5

A3) HP-25
To compute (for any locaticn) the local mean sidereal time at any time during the

year, from local clock time, correct to +0s.01.
 

1. Enter the programme:
0l g—>H 12 x 23 RCL7 Register contents:

02 RCL4 13 RCL3 24 fx<y R, Day of month

03 + 14 4+ 25 GTO 28 R, Days to end of

04 STO6 15 RCL6 26 R { previous month
05 RCL7 16 + 27 GTO 30 R, Daily rate of gain,

06 — 17 RCLS 28 - ST over MT

07 RCLO 18 g—>H 29 GTO23 R; GMST 0! UT January 0
08 RCL1 19 1 30 fH.MS R, Zone difference in hours

09 + 20 5 31 GTOO00 R; Longitude, D.MS
10 + 21 = R UT
11 RCL2 22 + R, 24
 

2. Switch to RUN, f PRGM,f FIX 6.

Store constants:

0.065 709 822 STO 2

GMST at 0" UT on January O of year, in decimal hours, from ephemeris or

Topic 1 of Chapter 1, STO 3

*Zone time difference, STO 4 (e.g., EET = -2, CET = -1, Greenwich zone

=0, EST = +5, CST = +6, MST = +7, PST = +8, etc.) Negative E,

positive W

Observer’s longitude, in D.MS format, positive if E of Greenwich, negative if

W, STO 5

24 STO 7

If British Summer Time (BST) or Daylight Timeis in force, key: 1, STO - 4.
 

3. Enter variables:

Day of month, STO 0

Number of days to end of previous month (see table), STO 1

Local clock time for which mean sidereal time is required, in H.MS format

(leave in X register)

R/S
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Number of days to end ofprevious month

Previous month Dec Jan Feb Mr Apr May Jun Jul Aug Sep Oct Nov

Ordinary year 0 31 59 9 120 151 181 212 243 273 304 334

Leap year 0 31 60 91 121 152 182 213 244 274 305 335
 

4. Display shows required local mean sidereal time, in H.MS format. For the

apparent LST, add the equation of the equinoxes for that date. Many observers

choose to ignore the difference between mean and apparent sidereal times.
 

5. For the LST at a different location return to * in Step 2. For a different date

at the same location, return to the beginning of Step 3.
 

6. Test:

What is the local mean sidereal time at Cambridge, Massachusetts, USA (71° 07’

30” W) at 21.30 EST on 1978, May 15?

At Step 2, enter as constants:

R;= 6.620 355 556

R.,=5

R;= 71.073 0 CHS

At Step 3, enter the variables:

R,= 15

R,= 120

21.30

R/S

The result is 132 19m 19545,
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C)) HP-25
To compute (for a fixed location) the local mean sidereal time at any time during the

year, from local clock time, correct to -+0s.01.

When all your LST calculations will be referred to the same geographical location,

the previous programme can be amended to simplify the operation so that fewer

data inputs are required.

In the programme as written, lines 02 to 04 show three g NOP instructions;

when entering the programme, use these lines to accommodate the zone time

difference in hours, positive if the site is W of the Greenwich time zone, negative

if E(e.g., EET = 2 CHS, CET = 1 CHS, Greenwich zone = 0, EST = 5, CST = 6,

MST = 7, PST = 8, etc.). Three spaces are given for this purpose to cater for the

case where the entry might be 10 CHS, or similar. If only one or two lines are

required, fill the gap with g NOP instructions, so that the entry for line 05 is +.

After line 31 there is more than sufficient programme memory space available to

accommodate the longitude of the observer’s position, in decimal hours format,

positive if E of Greenwich, negative if W (e.g., 80°22’'55”.8 W is entered as

5.358 811 CHS). The last line of the programme must be the instruction GTO 22.

The programme includes provision for the amendment necessary when British

Summer Time (BST) or Daylight Time (clocks set one hour in advance of mean

zone time) is in force. No changes to the day number are required for times near

midnight; the programme always works from the observer’s clock time and civil

date.

Personalize your programme by writing alongside lines 02 to 04, and from 31

onwards, the entries pertinent to your location. Then, when entering the pro-

gramme on a subsequent occasion, you will not need to stop to remember your

exact longitude.
 

1. Enter the programme:
01 g—>H 15 + Register contents:
02 gNOP 16 RCL2 29 GTO23 R, Day of month
03 g NOP 17 x 30 fH.MS R, Days to end of

04 gNOP 18 RCL3 31 GTO 00 previous month

05 + 19 + 32] R, Daily rate of gain,
06 RCL4 20 + 33 Longitude, ST over MT

07 + 21 GTO 32 34| see R; GMST 0* UT
08 ENT 4 22 + 35 (_note. January O
09 ENT 4 23 RCLS5 36 Last R4 0o0r -1
10 RCLS 24 fx<y 37| entry R; 24

11 = 25 GTO 28 38 must be
12 RCLO 26 R 4 39) GTO 22
13 RCL1 27 GTO 30
14 + 28 - 

2. Switch to RUN, f PRGM, f FIX 6.

Store constants: 0.065 709 822 STO 2

GMST at O" UT on January O of year, in decimal hours, from

ephemeris or Topic 1 of Chapter 1, STO 3

24 STO 5

If BST or Daylight Time is in force, key: 1, STO —4
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3. Enter variables: * Day of month STO O

Number of days to end of previous month (see table), STO 1

t Local clock time, in H.MS format (e.g., 9.35 pm is entered

as 21.35) for which LST is required; leave in X register.

R/S

Number ofdays to end ofprevious month

Previous month Dec Jan Feb Mr Apr May Jun Jul Aug Sep Oct Nov

Ordinary year 0 31 59 9 120 151 181 212 243 273 304 334

Leap year 0 31 60 91 121 152 182 213 244 274 305 335

4. Display shows the local mean sidereal time, in H.MS format. For the apparent

LST, add the equation of the equinoxes.

5. For a different clock time, on the same date, return to t in Step 3.

For a different date, return to * in Step 3.

6. Test:

Assume the observer’s longitude is 80° 22’ 55”.8 W, and the year is 1978. The

time zone difference is therefore +5 hours. Lines 02 to 04 are entered as 5, g NOP,

g NOP.

After line 31, the entries continue: 5.358 811, CHS, GTO 22. Find the local

apparent sidereal time at 42 44m™ 30s clock time (EST) on July 7, given GMST at

Ot UT on 1978, January 0 is 62,620 355 556 and the equation of the equinoxes is

+0s.06.

The variables stored at Step 3 are:

R,=7

R,= 181

4.44 30

R/S

The display gives the local mean sidereal time as 23» 22m 59598. Add the equation

of the equinoxes to obtain the local apparent sidereal time, which is 23 23™ 00s.04.

The example on p 537 of the 1978 AE gives 231 23m (00s.044.

Many workers choose to ignore the difference between mean and apparent

sidereal time, unless engaged in high-precision measurements.

In addition to personalizing your programme by writing the zone time difference

and longitude against the appropriate programme lines, it is also advisable to

calculate, once a year, the entry for R; and note this in the margin for easy reference.
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5) HP-67

To compute:

(a) the local mean sidereal time (and, if required, the Julian Date) at any instant

after Oh UT on 1582, October 15, for any geographical location;

(b) Greenwich Mean Sidereal Time (and Julian Date, if required) at Oh UT on

January 0 of any year from 1583;

(¢) a daily ephemeris for GMST (and Julian Date) at Oh UT, throughout the year;

all to an accuracy of +0s.001.

Section (¢) can be amended to produce an abridged ephemeris (e.g., a 5-day

ephemeris, giving hours and minutes of GMST, to one decimal place in the

minutes) such as that included in the BAA Handbook or similar yearbooks.

1. Load the programme from a magnetic card:

001 fLBL1 041 6 081 STO7 121 RCL1
002 ENT 4 042 0 082 STOS 122 fINT
003 fINT 043 0 083 RCL3 123 STO 1
004 STO 1 044 1 084 STO + 5 124 6
005 - 045 x 085 fINT 125 0
006 EEX 046 fINT 086 STO + 7 126 STO9
007 2 047 + 087 hlastx 127 gx?
008 x 048 1 088 gFRAC 128 RCLC
009 ENT 4 049 7 089 RCLD 129 x
010 fINT 050 2 090 -+ 130 STO6
011 STO2 051 0 091 RCL7 131 —=
012 - 052 9 092 RCLD 132 hlastx
013 EEX 053 9 093 —+ 133 hx <>y
014 2 054 5 094 + 134 fINT
015 x 055 + 095 fLBL6 135 x
016 STO + 3 056 RCL1 096 STO4 136 RCL1
017 RCL2 057 EEX 097 8 137 hx <=y
018 5 058 2 098 6 138 -
019 f+v/x 059 = 099 4 139 RCL 6
020 gx<vy 060 fINT 100 0 140 -
021 GTO2 061 STOO 101 1 141 RCLC
022 1 062 - 102 8 142 x

023 STO-1 063 2 103 4 143 6
024 1 064 + 104 . 144
025 2 065 RCLO 105 5 145 6
026 STO + 2 066 4 106 4 146 4
027 fLBL2 067 - 107 2 147 6
028 RCLD 068 fINT 108 x 148 0
029 EEX 069 + 109 STO1 1499 6
030 2 070 2 110 gFRAC 150 5
031 = 071 4 111 STO2 151 5
032 RCL1 072 1 112 . 152 6
033 x 073 5 113 0 153 +
034 fINT 074 0 114 9 154 h RTN
035 RCL2 075 2 115 2 155 fLBLA

036 1 076 0 116 9 156 R/S
037 + 077 . 117 RCL4 157 fH «
038 3 078 5 118 gx? 158 RCLB
039 0 079 STOE 119 x 159 -+
040 . 080 - 120 STO + 2 160 STO 8
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161 RCLC 177 GTO 4 193 g FRAC 209 hR ¢
162 - 178 hR ¢ 194 RCL9 210
163 STO3 179 GTO S 195 x 211 0
164 hR { 180 fLBL4 196 fINT 212 1
165 fGSB1 181 - 197 f-x- 213 +
166 RCL A 182 GTO3 198 hlast x 214 fGSB1
167 fH <« 183 fLBLS 199 g FRAC 215 GTO3
168 1 184 fx>0 200 RCL9 216 fLBLC
169 5 185 GTO7 201 x 217 1
170 = 186 RCLC 202 RCL2 218 STO + 7
171 + 187 + 203 + 219 STO + 5
172 RCL 8 188 fLBL7 204 DSP3 220 RCL7
173 + 189 DSPO 205 hRTN 221 RCLD
174 fLBL3 190 fINT 206 fLBLB 222 =
175 RCLC 191 f-x- 207 O 223 fGSB6
176 gx<y 192 hlast x 208 STO3 224 GTO3
 

2. Before running the programme, store the following data:

(i) longitude ofsite, in D.MS format, positive if E of Greenwich, negative if W,

STO A
(ii) zone time difference, in hours, negative if E of Greenwich, positive if W,

STO B
(e.g., EET = 2CHS, CET = 1CHS, Greenwich zone =0, EST =5,
CST = 6, MST = 7, PST = 8, etc.)

(iii) 24 STO C
(iv) 36 525 STO D
If British Summer Time (BST) or Daylight Time is in force, key: RCL B, 1, -,

STO B.
 

3.(a) For local mean sidereal time:

Enter date, in YYYY.MMDD format (e.g., 1978, March 2 is entered as
1978.03 02).
Press A.

Enter clock time for which LST is required, in H.MS format (e.g., 9.30 pm is
entered as 21.30).

Press R/S.

* The display will flash the integral hours of LST (line 191). Next, it will flash

the integral minutes (line 197). Finally the programme will end by displaying

the seconds of LST, to 3 decimal places.

For the apparent local sidereal time, add the equation of the equinoxes.

For the Julian Date: RCL 5, RCL E, fINT, +

(b) For GMST at Oh UT on January 0:

Enter the year (e.g., 1978).

Press B.

The programme will give the same sequence of data outputs as from * in (a)

above, but showing GMST instead of LST. For the Julian Date: RCL §,

RCLE, fINT, +

(¢) For a daily ephemeris for GMST at Oh UT:

First do Step 3(b) above.
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Note the result for January 0 of year plus, if required, the Julian Date.

Press C.

The programme outputs data for January 1.

For each successive day, press C.

(d) If an abridged ephemeris for GMST at O® UT must be constructed (e.g., at

5-day intervals, giving hours and minutes of GMST, to one decimal place in the

minutes) amend the programme as follows:

Switch to W/PRGM

GTO .197 (Display reads 197 31 84)

h DEL

h DEL

DSP 1

h RTN

SST (Display reads 198 35 82)

GTO .217 (Display reads 217 01)

h DEL (Display reads 216 31 25 13)

5 (Display reads 217 05)

GTO .224 (Check display reads 224 22 03)

Switch to RUN.

To put the programme back into its original form, simply re-load the magnetic

card into the programme memory. When constructing a 5-day ephemeris, take as

the second date the midnight following the integral Julian Date nearest to January 0

which is exactly divisible by 5. In the case of 1978, for example, the integral Julian

Date at 12" on January 0 is 2 443 509, which is not divisible by 5. But the JD, at

12h on January 1, is 2 443 510, which is divisible by 5. The second ephemeris date

should therefore be the following midnight, which is O UT January 2. The first

ephemeris date must precede this by 5 days, putting it at the end of the previous

year. In the case under consideration this will be 1977, December 28, which should

be shown in the ephemeris as 1978, January —3. The amended ephemeris will give

GMST at 0" on every fifth day. Follow the method as demonstrated in the test

example 4(d).
 

4. Test examples:

(a) What was the apparent local sidereal time for an observatory at Rainham,

Kent, 0°35' 54”4 E, at 12.30 am BST on 1976, September 22, given that the

equation of the equinoxes was +05.619?

Initialize according to Step 2:

0.35544 STO A

0STOB

24 STO C

36 525 STO D

RCL B, 1, -, STO B (BST was in operation)

Enter date: 1976.09 22 press A

Enter clock time: 0.30 press R/S

The mean sidereal time is given as 23h 36m 135,733, Add to this +0s.619 to
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obtain the apparent LST: 231 36™ 145,352, What was the Julian Date? (RCL 5,

RCLE, fINT, +) = 2443 043.479.

(b) Find GMST at 0 UT on 1978, January 0.

Initialize according to Step 2:
0STO A, STOB

24 STO C

36 525 STOD

Enter year: 1978 press B

The required GMST is 62 37m 135,280

(c) Compute a daily ephemeris for GMST at 0" UT for 1978, up to and including

January 5.

Carry out example (b) above.

GMST for January O (at O» UT) is 6" 37m 13s,.280.

Press C.

On January 1 it is 6" 41™ (09s.836. Continue to press C for each successive day.

The values obtained are:

January 2 67 45m (065.391

3  61h49m (025,946

4 67 52m 595,502

5 6h56m 565.057

What was the Julian Date on January 5? Press: RCL 5, RCL E, fINT, + . The

Julian Date is 2 443 513.5.

(d) Compute the first five entries for a 5-day ephemeris for GMST at Ot UT, for

1978, giving the data in hours and minutes (to one decimal place), plus the Julian

Dates.

We have already established at Step 3(d) that the ephemeris should start on

January -3.

Amend the programme according to Step 3(d).

Initialize according to Step 2:

0STO A, STOB

24 STOC

36 525 STO D

Enter year: 1978

Press B. This gives GMST for O® UT on January 0 (6" 37m.2). We do not need

this result, but the process has placed basic data in R; and R.;.

*Key: 8, STO -5, STO - 7. Press C.

The display gives GMST for O* UT on 1978, January -3, and the Julian Date can

be retrieved in the usual manner. Press C for each successive ephemeris entry,

obtaining the following data outputs:

*Why 8? Because the data in R; and R, relate to January 0. On pressing C the calculator
will add 5 (line 217) and give data for January 5, which we do not want. So, we deduct 8

from R; and R,, the calculator adds 5 at line 217, and the data output is for January 0

—8 +5 = January —3.

157



1978, January -3  6"25m4 JD - 2443 505.5

2 6M45m] 510.5
7 7T"04m.8 515.5
12 7h24mS5 520.5
17 7n44m2 525.5

The results agree exactly with the values given in the 1978 BAA Handbook.

 

Note: Because of lines 202 and 203, it is possible on very rare occasions for the

seconds display to exceed 60 at the end of a programme run (e.g., for O" UT at

Greenwich on 1900, January 31, when the programme will give the GST as

8h 38m 60s.775). If this should occur, simply deduct 60 from the seconds display

and add 1 to the integral minutes (e.g., in the example quoted, the GST is 8" 39™

00s.775).
 

6) HP-67
To compute values for {,, z, 0,sinf, and tan}0 at the beginning of any Besselian solar

year, for use in the reduction of the mean place of a star from a standard (catalogue)

epoch (¢,) to the desired year (), or vice versa.

Use this programme only when it is required to know the values of the preces-

sional constants, e.g., as data for inclusion in an ephemeris, or when the constants

are not for immediate use in specific calculations. When actual reductions of mean

places are to be performed, Programme 11 will be much more convenient to use,

because it combines the evaluation of the constants and the reduction, all in the

same programme.

The present programme includes secular changes in the coefficients in terms of

72 (after Professor Eichhorn) so the results may differ slightly from those published

in the AE.
 

1. Load the programme from a magnetic card:

001 fLBLA 017 3 033 2 049 x
002 DSP9 018 = 034 3 050 -+
003 R/S 019 STO2 035 0 051 .
004 STO4 020 gx? 036 4 052 0
005 - 021 STO3 037 2 053 6
006 EEX 022 RCL1 038 . 054 RCL3
007 3 023 gx?® 039 5 055 x
008 - 024 STO 4 040 3 056 -+
009 STO1 025 RCL1 041 ENT 4 057 RCL1
010 RCL4 026 x 042 1 058 x
o011 1 027 STOS 043 3 059 3
012 9 028 3 044 9 060 O
013 0 029 6 045 . 061 .
014 0 030 0 046 7 062 2
015 - 031 0 047 3 063 3
016 EEX 032 STO6 048 RCL2 064 ENT 4
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065 . 098 + 131 RCL1 164 R/S
066 2 099 . 132 x 165 RCL 1
067 7 100 3 133 4 166 R/S
068 RCL2 101 2 134 2 167 RCL2
069 x 102 RCLS 135 . 168 R/S
070 - 103 x 136 6 169 fsin
071 RCL 4 104 -+ 137 7 170 R/S
072 x 105 RCL6 138 CHS 171 RCL2
073 + 106 =+ 139 ENT 4 172 2
074 1 107 STO 7 140 . 173 =
075 8 108 2 141 3 174 ftan
076 RCLS 109 O 142 7 175 h RTN
077 x 110 0 143 RCL2 176 fLBLC
078 + 111 4 144 x 177 RCL 1
079 STO7 112 6 145 - 178 CHS
080 RCL 6 113 . 146 RCL 4 179 R/S
081 = 114 8 147 x 180 RCLO
082 STOO 115 5 148 + 181 CHS
083 RCL7 116 ENT 4 149 4 182 R/S
084 7 117 8 150 1 183 RCL2
085 9 118 5 151 . 184 CHS
086 . 119 . 152 8 185 R/S
087 2 120 3 153 RCLS 186 fsin
088 7 121 3 154 x 187 R/S
089 ENT 4 122 RCL2 155 - 188 RCL2
090 . 123 x 156 RCL6 189 CHS
091 6 124 - 157 = 190 2
092 6 125 . 158 STO2 191 —
093 RCL2 126 3 159 RCL7 192 ftan
094 x 127 7 160 STO 1 193 h RTN
095 + 128 RCL3 161 h RTN
096 RCL 4 129 x 162 fLBLB
097 x 130 - 163 RCLO
 

Enter ¢ (e.g., 1978.0), press A

Enter ¢, (e.g., 1950.0), press R/S
 

If reductions are to go ¢, — ¢, press B

Note {,; press R/S
Note z; press R/S

Note 8; press R/S

Note sinf; press R/S

Note tan46

For new case, return to Step 2
 

If reductions are to go ¢t — ¢,, press C

Note ,; press R/S

Note z; press R/S

Note 0; press R/S

Note sinf; press R/S

Note tanié

For new case, return to Step 2
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(7 HP-25
To update the coordinates for 1920.0 quoted in the Dover paperback edition of

Webb’s Celestial Objects for Common Telescopes with accuracy sufficient for finding

purposes.
 

1. Enter the programme:

0l g—>H 18 ftan 35 RCL4 Register contents:
02 STO2 19 x 36 x R, t (years)

03 R ¢ 20 RCLS 37 fFIX1 R, 3, (degrees)

04 fINT 21 X 38 R/S R, a, (degrees)

05 flastx 22 RCL6 39 RCL1 R; 15

06 gFRAC 23 + 40 fcos R, 60

07 EEX 24 RCLO 41 RCLS R; 0.005 5

08 2 25 x 42 x R 0.0129

09 x 26 RCL1 43 RCLO R,

10 RCL4 27 + 44 x

| 28 RCL3 45 RCL2

12 + 29 — 46 +
13 RCL3 30 fFIXO 47 fH.MS

14 x 31 fINT 48 fFIX2

15 STO1 32 fpause 49 GTO OO

16 fsin 33 flastx

17 RCL2 34 gFRAC
 

2. Switch to RUN, f PRGM.

Store constants: 15 STO 3

60 STO 4

0.0055STO 5

0.0129STO 6

3. Enter variables:

t = year — 1920, STO O (e.g., to update to 1950.0, store 30 in R,)

*ao (in H.M. format) ENT 4

3, (in D.M. format), CHS if Southern dec. and leave see test example

in X register

R/S

4. The display flashes the integral hours of « (line 32) and then stops (line 38) to

show the minutes to one decimal place. If oy &~ 23® 59™ and the display at line 32 is

24, interpret this as Oh.

Press R/S.

The programme stops to show degrees and minutes of &.

 

 

 
5. For the next star in the batch to be processed, return to * in Step 3.

6. Test:

In preparation for an observation session, a batch of stars has been selected and

their 1920.0 coordinates are to be updated to 1950.0. The first star on the observing

list is n Per. The 1920.0 coordinates are quoted as a = 2" 44m8§ = +55° 34,

Initialize according to Step 2.

At Step 3, enter the variables:

30STOO

2.448 ENT 4
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55.34

R/S
The display flashes 2h, then stops to display 47m™.0.

Press R/S.

The programme ends by displaying 55° 41°.

Note that when entering a there is a slight difference from the usual method of

entering a time in the H.MS format. The digit 8 is actually the first decimal place

of the minutes, not 80 or 8 seconds. We cannot employ a second decimal point in

the display to make this more evident, but the programme sorts it out between

lines 04 and 12.

Performing rigorous reductions for precession and proper motion with the HP-25

Method B of Topic 3, Chapter 3, is useful for single reductions, and gives very

accurate results. When a batch of similar reductions has to be processed, it is

better to automate the computation by means of the programme memory in order

to avoid operator keying errors.

The capacity of the HP-25 programme memory is 49 lines and this, unfortunately,

is not sufficient to be able to accommodate all the instructions in one pass. When

using this particular calculator, therefore, it is necessary to run two programmes,

one after the other, noting the intermediate results. If a proper system of working

is adopted, no difficulty will be encountered. The method is described here.

1. Prepare A4 batch sheets with the layout shown in the diagram. The best way is

to prepare a master copy and have the working blanks photocopied from this.

 

 

 

 

 

       

O SAO:

Sheet No; _

o o o o o e =
2,“-'.: =

38, =
4 =

o 0 o o o +8
Soco*PM =

6 §o+PM =

7 Aoc-u =

8 oc =

9§ =   
Fig 3 Layout of batch sheet
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Each sheet can thus accommodate ten reductions.

2. Take enough sheets to complete the batch and number them serially. On

Sheet 1, number the reductions from 1 to 10 in the circles, Sheet 2 from 11 to 20,

and so on.

Next, enter the SAO number (or the name) of each star, and complete items 1 to

4 from the star catalogue. a, is written in H.MS format, 3, in D.MS format, ready

for the calculator input. Proper motion in RA is entered in seconds of time per

annum, while proper motion in dec. is entered in seconds of arc per annum. Be

careful with the signs.

3. By Method B of Topic 1, Chapter 2, compute values for ¢,, z, 6, sinf and tan}9.

4. Enter Programme 8 into the programme memory, input items 1 to 4 from the

batch sheets as instructed, for each star in turn, and record the outputs against

items S to 7.

5. When all the stars have been processed by Programme 8, clear the programme

memory and enter Programme 9. Now, using items 5 to 7 as inputs, process each

star in turn once again. Record the outputs against items 8 and 9.

6. This completes the task. Note that item 7 (Aa - 1) can be used for updating

the proper motions if desired; see Method 4 of Chapter 5 and Programme 10.

 

() sa0:_000308

| o, = |-4848786

2 p, = O8Il

3 9 = 89-014374

4 us = -0-004

5 o+PM = 27:22440335

6 §,1PM = 89-02878556

7 Ax-p = 4-923]18628

2h IOm Ols ‘46

89°0950" 7

18

9 §  
 

Fig 4 Completed panel after reducing the 1950.0 coordinates for Polaris to 1978.0
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(8 HP-25
First of two programmes for the rigorous reduction of equatorial coordinates o, 8

from one epoch to another.
 
1. Read the guidance notes on the preceding pages.
 

2. Enter the programme:

01 RCLS 16 1 31 x Register contents:

02 x 17 5 32 STO1 R, oy (H.MS);
03 RCL3 18 x 33 RCLO later, ay + &,
04 = 19 R/S 34 fsin R, pa;
05 RCL2 20 RCL 4 35 x later, q.

06 g—~H 21 + 36 RCLO R, 8, (D.MS)
07 + 22 STOO 37 fcos R; 3 600
08 RCL1 23 fcos 38 RCL1 R4 &,
09 RCLS 24 RCL7 39 x R;t-1t,
10 x 25 x 40 CHS R sinf
11 RCL3 26 x <—>y 41 1 R, tan}0
12 = 27 R/S 42 +
13 RCLO 28 ftan 43 =
14 g—H 29 + 44 gtan!
15 + 30 RCL6 45 GTO OO 

3. Switch to RUN, f PRGM, f FIX 9.

Enter constants: 3 600 STO 3

o STO 4

t—1t, STO S (where ¢, is the epoch of the catalogue (or known)

coordinates and ¢ is the epoch for the required coordinates.

If the reduction goes backward in time, this value will be

negative)

sind STO 6

tan}d STO 7

4. Enter the variables from the batch sheet:

ay, in H.MS format, STO 0

ka, in seconds, STO 1

3o, in D.MS format (CHSif Southern dec.) STO 2

rs, In seconds, leave in X register

Caution: Take care to ensure that pn,, 8, and pg are entered with the correct sign.

S. Press R/S.

The programme stops at line 19 to display «,+ PM. Complete item 5 on the

batch sheet.

Press R/S.

The programme stops again at line 27 to display 3, + PM. Complete item 6 on

the batch sheet.

Press R/S.

The programme concludes by displaying A« — u. Complete item 7 on the batch

sheet.

6. For the next star, return to Step 4.

Repeat the process until all the stars in the batch have been processed, and all the

batch-sheet entries have been completed down to item 7.
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7. Do not switch off the calculator.

8. Switch to PRGM. Key f PRGM to clear Programme 8 from the programme

memory. Do not clear the registers, because we have data in R, R and R; which

must be maintained.

 

 

9. Proceed to Programme 9.
 

9 HP-25

Second of two programmes, to complete the rigorous reduction of equatorial co-

ordinates o, 4 from one epoch to another.
 

1. Following on from Step 9 of Programme 8, enter the programme:

01 STO2 16 R { 31 CHS Register contents:
02 RCL4 17 GTO 19 32 RCL3 R, ¢y + PM
03 RCLS 18 - 33 fcos R; 50 + PM
04 + 19 fFIX6 34 + RoAg— 1
05 -+ 20 R/S 35 RCL7 Rsap + &
06 RCLO 21 RCL4 36 x R4 &,
07 + 22 RCLO 37 gtan! R; z

08 1 23 + 38 2 R, sinf (not used)
09 5 24 STO3 39 x R, tan}f
10 — 25 fsin 40 RCL1
11 fH.MS 26 RCL2 41 +
12 2 27 2 42 fH.MS

13 4 28 — 43 fFIXS5
14 fx<y 29 ftan 4 GTO OO
15 GTO 18 30 x
 

2. Switch to RUN, f PRGM.

Enter constant: z, STO §.

3. Enter the variables from the batch sheet, for each star in turn:

ag+ PM, STO 0

3+ PM, STO 1

Aa - pu, leave in X register.

R/S.

4. The programme stops at line 20 to display a at the required epoch, in H.MS

format. Complete item 8 on the batch sheet. Press R/S. The programme ends by

displaying 8, in D.MS format. Complete item 9.

5. For the next star, return to Step 3.

Repeat until all the stars in the batch have been processed.

Take care when entering 8,+ PM and Aa — p to ensure that the signs are correct.

6. Ifrevised proper motions are required for the new epoch, proceed to Programme

10. Otherwise, the reductions are now complete.
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(10) HP-25
To compute values for the proper motions, »,' and ng’, at the new epoch, after

running Programmes 8 and 9.
 

1. Enter the programme:

01 g—H 14 fsin 27 fcos Register contents:
02 STO4 15 x 28 x Ry tao
03 RCLO 16 + 29 RCL3 R; 150
04 RCL2 17 RCL4 30 fsin R, 8, + PM
05 fcos 18 fcos 31 x R3;Ag—n
06 x 19 - 32 RCL1 R, &
07 RCL3 20 fFIX4 33 RCL3 R; 15
08 fcos 21 R/S 34 fcos

09 x 22 RCLO 35 x

10 RCL1 23 CHS 36 +
11 RCLS 24 RCLS5 37 fFIX3
12 = 25 x 38 GTO OO
13 RCL3 26 RCL2 

2. Switch to RUN, f PRGM.

Enter the constant: 15, STO 5.

3. Enter the variables from the batch sheet, for each star in turn:

Lao, STO O (item 2)

rsos STO 1 (item 4)

3o+ PM, STO 2 (item 6)

Aa—pu, STO 3 (item 7)

3’ in D.MS format (item 9), leave in X register.

Take care when entering the variables to ensure they bear the correct sign.

 

 
4. Press R/S. The programme stops at line 21 to display g,for the required epoch,

in seconds of time.

Press R/S. The programme ends by displaying ng’, in seconds of arc.
 
5. For the next star, return to Step 3.

6. Test:

Use as data inputs the values shown on the example panel from a batch sheet

(section 7 of the explanatory notes before Programme 8).

Run the programme. p,’ at 1978.0 is given as +05.208 1. ng' at 1978.0 is given as

-0".008.
If, now, the coordinates and proper motions for 1978.0 are reduced to 1950.0 by

Programmes 8 and 9, we should find them in agreement with the original catalogue

values. If you try this, remember to use —z for {,, -, for z, and to change the signs

for sin® and tan46 (see Chapter 2, Topic 1).
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(1) HP-67
Rigorous reduction for precession and proper motion from one epoch to another.
 

1. Load the programme from a magnetic card:

001 fLBLA 052 RCL3 103 x 154 —

002 fGSBO 053 x 104 STO9 155 1

003 GTO6G6 054 RCL?2 105 RCLB 156 9

004 fLBLB 055 + 106 fcos 157 -

005 fGSB2 056 RCLB 107 x 158 h RTN

006 fLBL6 057 x 108 RCL D 159 fLBL2

007 STO A 058 RCL A 109 fsin 160 RCLO

008 h RTN 059 RCL1 110 RCLB 161 gx >y

009 fLBLC 060 x 111 fsin 162 hSF2

010 fH « 061 RCLO 112 x 163 hx<«—>y

olr 1 062 -+ 113 - 164 ENT 4

012 5 063 -+ 114 RCLC 165 fINT

013 x 064 RCLB 115 RCLE 166 STO 8

014 STO 1 065 x 116 -+ 167 -

015 R/S 066 STOE 117 fsin 168 EEX

016 fH <« 067 RCLB 118 RCL D 169 2

017 STO?2 068 RCLY9 119 fcos 170 x

018 R/S 069 — 120 x 171 ENT 4

019 2 070 RCL 4 121 hx<«—>y 172 fINT

020 . 071 + 122 g—>P 173 STO9

021 4 072 RCLB 123 hR 174 -

022 —+ 073 g x? 124 RCL 8 175 EEX

023 STO3 074 x 125 + 176 2

024 R/S 075 -+ 126 fx >0 177 x

025 3 076 fP <«—>S 127 GTO S 178 STOC

026 6 077 STO 8 128 3 179 RCL9

027 —+ 078 fP<«~—>S 129 6 180 5

028 STO 4 079 RCLS 130 0 181 f+/x

029 hRTN 080 RCL6 131 + 182 gx<y

030 gLBLa 081 RCLA 132 fLBLS 183 GTO3

031 fGSBO 082 x 133 1 184 1

032 GTO7 083 - 134 5 185 STO -8

033 gLBLbDb 084 RCLB 135 — 186 1

034 fGSB2 085 RCL7 136 g—> H.MS 187 2

035 fLBL7 086 x 137 f—-x- 188 STO + 9

036 RCLA 087 - 138 RCL9 189 fLBL3

037 - 088 RCLB 139 RCLB 190 RCL S

038 STOB 089 gx? 140 fsin 191 RCL 8

039 RCL3 090 RCL38 141 x 192 x

040 x 091 x 142 RCLD 193 fINT

041 RCL1 092 - 143 fsin 194 RCL9

042 + 093 RCLB 144 RCLB 195 1

043 STOC 094 x 145 fcos 196 +

044 RCLB 095 STOB 146 x 197 RCL6

045 RCL4 096 fP<«—S 147 + 198 x

046 x 097 RCLC 148 gsin™! 199 fINT

047 RCL2 098 RCLE 149 g—> H.MS 200 -+

048 + 099 + 150 h RTN 201 RCLC

049 STOD 100 fcos 151 fLBLO 202 +

050 fP<«—>S 101 RCLD 152 EEX 203 hF?2

051 RCLB 102 fcos 153 2 204 GTO4
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205 RCL38 210 STOC 215 4 220 hRCI
206 EEX 211 - 216 = 221 -
207 2 212 2 217 fINT 222 RCL7
208 -+ 213 + 218 + 223 =
209 fINT 214 RCLC 219 fLBL4 224 h RTN
 

2. Load the registers from the magnetic card bearing the data. See Programme 11a,

Data input card for Programme 11.

3. Enter the initial (known) epoch:

either in years and decimals (e.g., 1950.0); press A

or as a calendar date (in YYYY.MMDD format); press B

4. Enter the variables:

a, in H.MS format, press C

3, in D.MS format, press R/S

kg, in seconds per year, press R/S

rs, in seconds of arc per year, press R/S

5. Enter the final (required) epoch:

either in years and decimals; press f a

or as a calendar date; press f b

 

 

 

 

6. The programme will pause at line 137 to flash a at the required epoch, in

H.MS format, and will continue by computing 8 at the required epoch, stopping at

line 150 to display this in D.MS format.

7. For revised coordinates for the same star, but at a different new epoch, return

to Step 4.

8. For a new star, return to Step 4 if the initial epoch is the same, otherwise to

Step 3.

Note: The coordinates given for the new epoch are for the mean place.

Two cards are needed to run this programme, one with the programme instruc-

tions and the other bearing data. They may be loaded in either order—the calculator

will recognize which is which.

If either of the epochs is entered as a calendar date in YYYY.MMDD format,

this date must be later than March 1 of the year 0.

Test: The equatorial coordinates for Polaris at 1950.0 are:

a = 1h 48m 485,786

§= +89°01'43".74

pe= +0s.1811

ps= —07.004

Find the coordinates for epoch 1978.0.

Run the programme and find:

a = 2h 10m 015.46 8= +89°09'50”.7

 

 

 

 

 

Display: When recording the magnetic card, set the display for 6 decimal places.
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(11a) HP-67

Data input card for Programme 11.
 

1. Clear all primary and secondary registers, and enter the following data into the

calculator:

1582.1015 STOO

365.25 STO 5

30.600 1 STO 6

36 524.2199 STO 7

694 025.813 STO I

f P <—— S (for secondary registers)

0.640 069 444 STO 0

0.000 387 778 STO 1

0.000 083 889 STO 2

0.000 005 STO 3

0.000 219 722 STO 4

0.556 856 111 STO 5

0.000 236 944 STO 6

0.000 118 333 STO 7

0.000 011 667 STO 8

3 600 000 STO 9

fP<«—>S

2. Press f W/DATA. The calculator displays ‘Crd’.

Pass a blank, unclipped magnetic card through the card reader to record data

for the primary registers. Pass the other side of the card through to record data

for the secondary registers.

 

 

3. Retain this card for use with Programme 11.
 

(12) HP-25

First of two programmes applying rotational geometry to reductions for precession.

See Chapter 3, Topic 4.

Three successive rotations are performed on the rectangular equatorial co-

ordinates, x, y, z:

(i) about the z, axis through angle ¢,

(ii) about the ' axis through angle 6

(iii) about the z* axis through angle -z

As written, this programme commences with data inputs in terms of « and 3,

followed by adjustment in respect of proper motion in the interval ¢ - ¢, after

which «, 8 are converted into x, y, z. Similarly, at the end of Programme 13, x, y, z

are converted back into a, 3.

Where the coordinates are already catalogued in terms of x, y, z, those parts of

the two programmes which perform the coordinate conversions can be edited out,

provided that satisfactory allowance for the effects of proper motion can be incor-

porated in the computation.

An orderly system of documentation is advised, perhaps based on that suggested

in the preliminary notes for Programmes 8 and 9.
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1. Enter the programme:

 

 

 

 

 

01 RCL1 17 RCL2 33 x

02 RCL7 18 + 34 STO3

03 x 19 fcos 35 RCLS Register contents:
04 RCL6 20 ENT 4 36 RCL1 R, a

05 - 21 ENT 4 37 f—>R later, ap + PM
06 RCLO 22 flast x 38 RCLS5 R: ka
07 + 23 fsin 39 RCL3 later, x,

08 1 24 STO 4 40 f—>R R, 3,
09 5 25 R ¥ 41 R ¥ Rs g
10 x 26 RCLO 42 - later, y,

11 STO O 27 fcos 43 R/S R, Z

12 RCL3 28 x 4 R | R; &o

13 RCL7 29 STO1 45 + Rg 3 600

14 x 30 R ¢ 46 R/S R;t-1t,

15 RCL6 31 x<—>y 47 RCL 4

16 32 fsin 48 GTO 00

2. watch to RUN, f PRGM,f FIX 9.

3. Enter constants:

Lo, STO 5

3 600, STO 6

t — ty, STO 7 (final epoch minus initial epoch)

4. Enter variables:

ay, in H.MS format, g - H, STO 0
e STO 1 (seconds of time per year)

8y, in D.MS format, g — H, STO 2
rs, STO 3 (seconds of arc per year)

5. Compute x’, press R/S.

Compute y’, press R/S.

Compute z’, press R/S.

6. Record these intermediate results as data inputs for Programme 13, and return

to Step 4 for the next star in the batch.
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(13) HP-25

Second of two programmes, to complete the rotational transformation of rectangular

equatorial coordinates from the equator and equinox of one epoch to another.

 

1. Enter the programme:

01 RCL 6

RCL 2

f—>R

RCL 6

RCL 0O

f—>R

R {
+

STO 2

R {
CHS
+

STO O

RCL 7

X <>y

16 f—>R

RCL 7

RCL 1

f—>R

R {
+

STO O

R ¥
CHS
+

STO 1

RCL O

g tan—!

ENT 4

31 ENT 4
32 RCL3

34 fH.MS

35 R/S

36 x<—>y

37 fsin

38 RCL2

39 x

40 RCL1

42 g tan—1

43 fH.MS
44 GTO 00

Register contents:
Ro x'

later, x* and x;

R,y =y*
later, y,

R, zZ

later, z* = z,

R;3 15
R, (not used)

R; o
Rs 0

R;-z

 

2. Switch to RUN, f PRGM, f FIX 6.
 

Enter constants:

15, STO 3
Lo, STO 5
8, STO 6

-z, STO 7

4. Enter first rotation coordinates from Programme 12:

x', STOO

vy, STO 1

z',STO 2
 

5. Compute o for required epoch. Press R/S. The programme stops at line 35 to

display a in H.MS format.

Compute 8 for required epoch. Press R/S. The programme ends by displaying &

in D.MS format.
  

6. Return to Step 4 for the next star in the batch.
 

7. Test:

Find the equatorial coordinates for Polaris at 1978.0, given the 1950.0 position

and proper motions:

a = ["48m 485,786

3= +89°01'43".74

pe= +05.1811

pg= —07.004

From Chapter 2, Topic 1:

Lo = 0.179 280 709

z = 0.179 297 981

6 = 0.155 877 202
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Run the two programmes, and find, for 1978.0:

a= 20 10m 015,46

8= +89°09’'50".7
 

(14 HP-25

To iterate for x — sinx.

This programme has been devised for use when calculating the elements of the

orbit of a visual binary star; see Chapter 7, Topic 1. It is employed to compute

by successive iterations for u — sinu, v —sinv, and (u + v) —sin(u + v).
 

1. Enter the programme:

01 gRAD 15 RCL4 29 fpause Register contents:
02 STOO 16 2 30 R ¢ R, x —sinx
03 1 17 =+ 31 GTOO0S5 R, Trial x
04 STO1 18 GTO 20 32 RCL1 R, p
05 ENT 4 19 RCL4 33 3 R; Temporary store
06 fsin 20 STO-1 34 6 R4 Trial x — sinx

07 - 21 g ABS 35 0 Multipliers for p:
08 RCLO 22 EEX 36 g R; for u - sinu
09 - 23 5 37 2 R, for v —siny

10 STO4 24 CHS 38 x R, for (u + v) -
11 2 25 fx>yp 39 = sin(u + v).

12 RCL1 26 GTO 32 40 X
13 fx<y 27 RCL1 41 GTOO00
14 GTO 19 28 RCL4
 

2. Switch to RUN, f PRGM,f FIX 4.

Store constants:

Multiplier for w for u — sinu, STO 5 (e.g., for the worked example in Chapter 7,

Topic 1, 2.90)

Multiplier for p for v —sinv, STO 6 (e.g., 36.28)

Multiplier for u for (u + v) —sin(u + v), STO 7 (e.g., 49.17)

*Trial u, STO 2 (e.g., 0.12)

3. To compute . Prepare a table as shown in the worked example of Chapter 7,

Topic 1.

(a) RCL 2, RCL 5, x. Note value of u-sinu on line (i) of table. Press R/S.

Display gives « in degrees. STO 3. Complete line (iv)

(b) RCL 2, RCL 6, x. Note value of v-sinv on line (if) of table. Press R/S.

Display gives v in degrees. Complete line (v). RCL 3, +, STO 3

(¢) Complete line (vi) for u + v

(d) RCL 2, RCL 7, x. Note value of (# + v) —sin(u + v) on line (iii). Press R/S.

Display gives (# + v) in degrees. Complete line (vii)

(e) RCL 3, x «<~—y, —. Complete line (viii)

(f) Assess new trial value for x and return to * in Step 2 for start of next column

(g) Continue the process until entry in line (viii) is as close to 0° as can be achieved

with no more than 4 decimal places in the value for u.
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Note: Some of the iterative runs are completed rapidly, while others take longer to

converge to zero. The converging process can be seen while the programme is

running by means of the pause instruction (line 29). When this value falls below

0.000 01 the programme branches to line 39 and converts the current value of x

in R, to degrees. Values of x — sinx in excess of 5.0 or less than 1.0 take longest to

converge to zero.

4. Test the programme by re-computing the table in Chapter 7, Topic 1. Values

computed by means of this programme will differ slightly from those shown in the

table; this is because the calculator is working to more decimal places in the

registers, although only four are displayed. To this extent, the results are more

accurate, but the final value for p will be the same.

 

Computing the position angle and separation of a number of

double stars with the HP-25

Method B of Topic 2, Chapter 7 is very accurate for use when only a single comput-

ation has to be made. When data for more than one binary are required, the work

can be simplified and speeded up if the computation can be programmed into the

calculator memory. The opportunity for mistakes is greatly reduced because

keyboard entries by the operator are kept to a minimum.

However, unlike the HP-67, the capacity of the HP-25 is not sufficient to accom-

modate all the instructions in one pass, so it becomes necessary to run three

programmes consecutively. Data outputs from the first programme have to be

noted down in readiness for use as inputs for the second programme, and so on.

Just as in the case for rigorous reductions for precession, a proper system of

working must be adopted, and a suitable method is described here.

1. Prepare A4 batch sheets, to be used in the horizontal (‘landscape’) format, with

the rulings and headings shown in the diagram. Again, the best way is to prepare a

master copy and have the working blanks photocopied from this.
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Name rames P T
| 2 3 4
 

0% 547 ADS48 362:3 1710-0 0-52 6179 |276-58 62-3 19-07
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Fig 5a Left side of batch sheet

      
 

 

 

 

 

  

       
Fig 5b Right side of batch sheet
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Columns 1 to 12 are 17 mm in width, columns 13 to 19 are each 13 mm in width.

A specimen entry shows the data for O547 and results for 1979.0.

2. Take enough sheets to complete the batch (you should get about 16 stars to the

sheet). Complete columns 1 to 12 from a catalogue of binary-star orbits (see the

Introduction to Topic 2 of Chapter 7 for details).

3. Enter and run Programme 15 for all the stars in turn, noting E° and r in columns

13 and 14.
4. Enter and run Programme 16, noting (0 - Q), (v + ») and uncorrected 0 in

columns 15 to 17.

5. Enter and run Programme 17. If an epoch has been given in the catalogue, the

programme will give 6 corrected for the effect of precession, and will end by

displaying the separation, p.
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(15) HP-25
Position and angle and separation of a visual binary star. To compute £° and r for

Programmes 16 and 17.

 

1. Prepare a batch sheet as described in the explanatory notes.

Enter the programme:

01 RCL4 18 RCL7 35 GTO 38 Register contents:

02 gm 19 STOO 36 RCL7 Ry P;n°;e°
03 2 20 R ¥ 37 GTO?23 R, T; M°
04 x 21 X 38 RCL7 R;e
05 = 22 STO 1 39 fcos Rs;a

06 RCL?2 23 STO®6 40 RCL2 R, 360
07 x 24 fsin 41 x R; 0.000 1
08 STO7 25 RCLO 42 CHS Rg Trial E
09 RCL4 26 x 43 1 R;e; E°
10 RCLO 27 RCL1 44  +
11 = 28 + 45 RCL3
12 STOO 29 STO7 46 x
13 R Y 30 RCL6 47 RCL7
14 R 31 - 48 R/S
15 RCL1 32 g ABS 49 x<—>y
16 - 33 RCLS
17 RCLO 34 fx>y
 

2. Switch to RUN, f PRGM, f FIX 3.

Store constants: 360, STO 4

0.0001, STO S

3. Enter variables: P, STO 0

T, STO 1

e, STO 2

a, STO3

t, (final epoch), leave in X register

4. Press R/S.

E is displayed (if negative, RCL 4, +). Complete column 13. Press R/S.

The programme finishes by displaying r. Complete column 14.

5. For a new year: P,STOO, T, STO 1, ¢ (leave in X register).

(P and T have been lost in the previous run.)

Press R/S for E and again for r.

6. For a new star, return to Step 3. Repeat for each star in turn until the batch

has been completed, then proceed to Programme 16.
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(16) HP-25

Second of three programmes for computing the position angle and separation of a

visual binary star at any required epoch. To compute (6 - Q), (v + ) and 6.
 

1. Enter the programme:

01 ENT 4 15 gx>0 29 RCL6 Register contents:

02 2 16 GTO 19 30 + Ry (v + w)
03 = 17 RCL3 31 gx>0 R, e
04 ftan 18 + 32 GTO 35 R, 0
05 1 19 2 33 RCL7 R; 180
06 RCL1 20 x 34 + R, w
07 + 21 RCL4 35 STO2 R;i
08 1 22 + 36 RCL6 Rg Q
09 RCL1 23 STOO 37 - R, 360
10 - 24 ftan 38 R/S
11 = 25 RCLS 39 RCLO
12 f+/x 26 fcos 40 R/S
13 x 27 x 41 RCL2
14 gtan—! 28 gtan™! 42 GTO 00
 

2. Switch to RUN, f PRGM,f FIX 3.

Store constants: 180, STO 3

 

 

360, STO 7

3. Enter variables: ¢, STO 1

w, STO 4

i, STOS

Q, STO 6

E°, (leave in X register)

4. Press R/S.

(60 - Q) is displayed. Complete column 15.

Press R/S.

(v + o) is now displayed. Complete column 16.

Press R/S.

The programme ends by displaying 6. If no epoch has been given for the elements

(column 10 blank), this is the final value for 6. Complete column 18 to one decimal

place. But if an epoch has been given, 6 is to be corrected for precession in the next

programme; in this case, complete column 17 to 3 decimal places.
 
5. For anew year: Put a new value of E° in the X register and return to Step 4.

6. For a new star, return to Step 3. Repeat for each star in turn until the batch

has been completed, then proceed to Programme 17.
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a17) HP-25

The last of three programmes for computing the position angle and separation of a

visual binary star at any epoch. To compute 0 (corrected for precession) and p.

 

1. Enter the programme:

01l g—H 17 RCLO 33 GTO 40 Register contents:
02 fcos 18 + 34 1 R, 0

03 gl/x 19 STOO 35 8 R, (6-9Q)
04 RCL7 20 RCL2 36 0 R, r
05 g—H 21 RCL3 37 + R; (v + w)
06 1 22 fcos 38 GTO 40 Ryt
07 5 23 X 39 RCLO R; epoch or 0

08 x 24 RCL1 40 fFIX1 R 0.005 6
09 fsin 25 fcos 41 gx =0 R; a H.MS or 0

10 x 26 gl/x 42 GTO 45
11 RCL4 27 X 43 f pause

12 RCLS 28 gx=>0 44 GTO 46
13 - 29 GTO 39 45 R/S
14 x 30 CHS 46 x «<—>y

15 RCL6 31 RCLO 47 fFIX?2
16 x 32 gx=0 48 GTO 00
 

2. Switch to RUN, f PRGM.

Store constant: 0.005 6, STO 6.

3. Enter variables:

(a) If no epoch for the orbit has been given,

(0-Q), STO 1

r, STO 2

(v + w), STO 3

t, STO 4 (final epoch)

0, STOO, STO 5, STO 7.

(b) If an epoch has been given,

0, STOO

(6-9Q), STO 1
r, STO 2

(v + w), STO 3

t, STO 4

epoch, STO 5

a (H.MS), STO 7

3 (D.MS), leave in X register

4. Press R/S.

(a) Programme flashes 0 (to signal we already have a final value for 9), and

continues automatically, ending by displaying p to two decimal places. Complete

the final column of the batch sheet.

or (b) Programme stops to display corrected 6 to one decimal place. Complete

column 18. Press R/S. The programme ends by displaying p to two decimal places.

Complete the final column of the batch sheet.

5. For a new year: Enter new values for 0, (8 - Q), r, (v + ) and ¢. Re-enter 8

(D.MS) in the X register, and return to Step 4.
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6. For a new star: Return to Step 3 and repeat until all the stars in the batch have

been completed.

This completes the computation.
 

" Test: Use as input data the elements given for O> 547 in the example of a batch-

sheet layout, in the introductory notes for this set of three programmes.

Run the programmes, and confirm the results for 1979.0.
 

(18) HP-67
To compute the position angle and separation of a visual binary star at any epoch.
 

1. Load the programme from a magnetic card:

f LBL A
h=

2
x
STO 8
hx<«<—>y

STO O

hn

fD <«

STO D

RCL 8

fD <«

STOE

5

6

EEX
4

CHS

hSTI

038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074

STO 6

R/S

STO 7

fP<«~—S

R/S

STO 8

R/S

STO 9

fP<«~—S

R/S

STO 8

f LBL 9

RCL 1

RCLO
X
RCL2
fP<«~—S

STO 5
hR {
STO 1
STO 6
h RAD
fLBL 1

hSF1
RCL 1

GTO 3
f LBL 2
STO 4
hCF1
RCL 1
RCL 1
EEX
5

STO 3
+

177

075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111

fLBL 3

ENT 4

sin

RCL 5

X

RCL 6

fx=0

GTO 4
hF?1
GTO 2
RCL 4

1

h1/x

RCL 3
X

STO -1

h ABS

RCL 2

gx<y
GTO 1

f LBL 4

RCL 1

fD <«

h DEG

fP<«—S

STO 9

RCL 3

1

RCL 2

RCL9

f cos
X

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

RCL9
hx<—>y

STO 9
hR ¢

f tan

RCL 2

RCL 2

EVx

gtan~?

fx>0

GTO S
RCLD

fLBLS

RCL 4

STO A

f tan

RCL 5

f cos

gtan™!

RCL 6

fx>0

GTO 6



149 RCLE 167 5 185 fcos 203 hR ¥

 

150 + 168 x 186 x 204 fLBLO

151 fLBL6 169 fsin 187 RCLC 205 DSP1

152 STOB 170 x 188 fcos 206 R/S

153 RCL6 171 fP «~—=S 189 hl/x 207 hx<—>y

154 - 172 RCL S8 190 x 208 DSP2

155 STOC 173 RCL7 191 fx>0 209 h RTN

156 RCL 7 174 - 192 GTO 8 210 fLBL 8

157 fx=0 175 x 193 CHS 211 RCLB

158 GTO 7 176 h RCI 194 RCLB 212 GTOO

159 fP <«—=S 177 x 195 RCLD 213 fLBLB

160 RCL9 178 f-x- 196 + 214 1

161 fH <« 179 RCLB 197 RCLE 215 STO +8

162 fcos 180 + 198 gx >y 216 RCL S8

163 hl/x 181 STOB 199 GTO9 217 GTO9

164 RCL 8 182 fLBL7 200 - 218 fLBLC

165 fH « 183 RCL9 201 GTOO 219 STO 8

166 1 184 RCL A 202 fLBL9 220 GTO9

2. Enter elements of elliptical orbit:

P Press A

T Press R/S

e Press R/S

a Press R/S

o Press R/S

i Press R/S

Q Press R/S
 

3. (a) If no epoch for the orbit is given, enter:

0, R/S, R/S, R/S

(b) If an epoch has been given, enter:

epoch (e.g., 1900), R/S

a in H.MS format, R/S

3 in D.MS format, R/S

4. Enter ¢ (epoch for which data is required), R/S
 

 

5. The programme automatically iterates for E, the eccentric anomaly. If an

epoch for the orbit elements has been input, the display will flash (line 178) to

show A6, which is the correction to 6 for the effect of precession during the period

t - t,. If no orbit is given, the programme will skip this section.

The programme stops to display 6 to one decimal place, corrected, if necessary

for precession (i.e., if the display flashes A8 at line 178 there is no need to note this

value down unless it is specifically required for another purpose).

Press R/S. The programme ends by displaying p to two decimal places.
 

6. If constructing an ephemeris for the same star, to find 6, » for the next following

year, press B.
 

7. To find 6, p for the same star at any other year, enter the required year and

press C.
 

8. For another star, return to Step 2.
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Test: The orbit elements for O 547 are P = 362.3, T = 1710.0, e = 0.52,

a= 6.179, o = 276.58, i = 62.3, Q = 19.07, the epoch is 1950, a = Qh 02m 48s,

8 = +45°32'. Find the position angle and separation for 1979.0 and 1980.0.

Results: 1979.0, 6 = 172°.8, p = 5”.91; 1980.0, 6 = 173°.3, p =.5".92.
 

19) HP-25

To iterate for E in Eqn. 8.7 (elliptical orbit).
 

1. Enter the programme:

01 STO6 11 = 21 CHS Register contents:

02 RCL4 12 x 22 fx>yp R, M°
03 x 13 RCLO 23 GTO 26 R, Trial E
04 STOO 14 4+ 24 RCLS R, e
05 STO1 15 STOS 25 GTO 05 R, 180
06 fsin 16 RCL 1 26 RCLS5 R, n°
07 RCL2 17 - 27 GTO 00 R; E
08 RCL3 18 g ABS 28 STO + 6 Rg ¢
09 x 19 EEX 29 RCL6
10 g= 20 8 30 GTOO02
 

2. Switch to RUN, f PRGM, f REG, f FIX 6

Store constants: e (not e°), STO 2 (the programme converts e into e° during

lines 05 to 08)

180, STO 3

n°, STO 4

3. Enter ¢ (interval in days before or after perihelion, T'; before perihelion, ¢ is

negative)

Press R/S. E is displayed to six decimal places.

 

 

4. For the next date, enter the interval in days into the X register, press GTO 28,

R/S. (For example, if a 5-day ephemeris is to be prepared, enter 5, GTO 28, R/S.)

Test: Using data from Example 2 of Chapter 8,

enter e = 0.145 446

n°= 0.115 561 2

t = 529.525 8 days (for 1977, January 17 at 0* ET).

Result: E = 68°.971 066

For the next day (January 18) enter 1, GTO 28, R/S, and obtain the result,

E = 69°.092 972.
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(20)
To iterate for v in Eqn. 8.1 (parabolic orbit).

HP-25

 

1. Enter the programme:

13

STO 4 14

RCL 3 15

X 16

STO O 17

1 18

STO 1 19

g x? 20

RCL 1 21

X 22

2 23

X 24

3 25

- 26

RCL O
+

RCL 1
g x*
1
+

STO 2
RCL 1

g ABS
EEX

8

CHS
fx>y

GTO 32
RCL 2
GTO 06
RCL 2
gtan~?

2
X
GTO 00
STO + 4
RCL 4
GTO 02

Register contents:

R, ¢t X constant

R, Trial v

R, v

R; Constant

 

2. Switch to RUN, f PRGM, f FIX 6.
Store constant: 0.012 163 721, ENT 4 , g, ENT 4 , 1.5, fy*, =, STO 3
 

3. Enter ¢ into X register (interval in days before or after perihelion, T; before

perihelion, 7 is negative)

Press R/S. v is displayed to six decimal places.
 

4. For the next date, enter the time interval in days, GTO 37, R/S. (For example,

if a 5-day ephemeris is being prepared, enter 5, GTO 37, R/S.)
 

Test: Using data from Example 1 of Chapter 8,

enter ¢ = 0.218 445

t = 42.826 9 days (for 1976, February 2 at O® ET)

Result: v = 128°.737 788

For the next day (February 3) enter 1, GTO 37, R/S and obtain the result,

v = 129°.207 663.
 

180



21)
To compute geocentric positions for comets with parabolic elements.

HP-67

 

1. Load the programme from a magnetic card. When recording the card; set the

display for four decimal places.

001 fLBL A

N
N
W
A
=
N
=
O
°

RCL 2

RCL 2
fvx

hSTI

RCL 5

f cos

RCLS

fsin

RCL 3

f cos

CHS

g—>P

STO 6

hR ¢

STO A

RCL §

f sin

RCL 1

f cos

RCL S

f cos

RCL 3

f cos
X

STO O

RCL 1

f cos

RCL 1

f sin

RCL 3

f sin

g—>P

STO D

051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081

hR

STOB

RCLS

f sin

RCL 1

f sin

X

RCL 1

f sin

RCLO

X

RCL 1

f cos

RCL 3

f sin

X
+

g—>P
STOE

hR ¢
STO C

h RTN

fLBL B

fP<«~—>S

STO 1

STO 4

g x®
STO 7

R/S

STO 2

STO S

g x*
STO + 7

R/S

STO 3

STO 6

g x°
STO + 7

fP<«<—>S

RCL 7

hRCI

X

STO O

1

f LBL 2

STO 1

hy®

2
X
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101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

3

RCL 0
_+_

RCL 1
g x?
1
+

STO 5
RCL 1

h ABS
EEX
8
CHS
gx >y
GTO 1
RCL 5
GTO 2
fLBL 1
RCL 5
g x®
1
.+.

RCL 2
X

STO O

RCL 5

gtan™!

2
X

RCL 4
.+.

STO 5

RCL A
+

f sin

RCL 6
X

RCLO
X

fP<«~—S

STO + 1

fP<«~—S

RCL 5

RCLB
+

f sin

RCLD

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

X

RCLO
X

fP<«~—S

STO + 2

fP<«~—S

RCL 5

RCL C
+

f sin

RCL E

X

RCLO

X

fP<«—>S

STO + 3

RCL 1

RCL 2
g—>P

gx’
RCL 3

g x*
+

fvx

STO 8

RCL 2

RCL 1

g—>P

hR

1

5

fx>0

GTO3

fLBL 3
g > HMS
R/S
RCL 3
RCL 8

gsin™!
g > HMS
R/S
fP<—S
RCL O
R/S



201 STO + 7 207 x 213 RCL6 219 f+/x
202 fP<«—>S 208 RCL2 214 X 220 =
203 RCL 8 209 RCLS5 215 + 221 gcos™!
204 R/S 210 x 216 RCLS8 222 fP<«—S
205 RCL1 211 + 217 = 223 hRTN
206 RCL4 212 RCL3 218 RCL7
 

2. Store elements of parabolic orbit:

e, STO 1 (referred to same epoch as elements—e,4;0= 23.445 788)

q, STO 2

i, STO3

w, STO 4

Q,STO 5

t, STO 7 (days before perihelion, as starting date for ephemeris; before

perihelion, 7 is negative)

 
Press A

3. Enter X, press B Geocentric equatorial rectangular coordinates of the

Y, press R/S Sun, referred to same epoch as elements. See

Z, press R/S Programme 23.
 
4. The programme first computes the Gaussian constants for the orbit and stores

them for future use in constructing an ephemeris. It then iterates for v. The pro-

gramme stops to display « in H.MS format.

Press R/S. The programme stops again to display 8 in D.MS format.

Press R/S. The display showsr, the radius vector from the centre of the Sun in AU.

Press R/S. The display shows A, the distance of the comet from the centre of the

Earth, in AU.

Press R/S. The programme ends by displaying the elongation of the comet from

the Sun, in degrees.

Caution: The whole of the calculation, including the elongation, must be completed

for each position, even if certain data are not required, to ensure that all the

P < — S instructions are carried out.

5. For the next ephemeris position, return to Step 3.

As written, the programme gives a 5-day ephemeris, starting from the selected ¢.

If a different interval is desired, amend line 200 accordingly.

Test: Use the programme to confirm the results for Example 1 of Chapter 8, and

obtain:

a = 22h 34m (4s 8 = +37° 40’ 06”

r=1.167 4 A=1.3035

elongation = 59°.407 2
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(22)
To compute geocentric positions for comets with elliptical elements.

HP-67

 

1. Load the programme from a magnetic card. When recording the card, set the

display for four decimal places.

001 fLBL A
1
RCL 3
+

1
RCL 3

fvx

STO O

RCL 6

f sin

RCL 4

f cos

X

CHS

STOC

RCL 6

f cos

RCL 4

f cos
X

STO 9

RCL 1

f cos
X

RCL 4

f sin

RCL 1

f sin
X

STOD

RCL 1

f sin

STO x 9

RCL 1

f cos

RCL 4

f sin
X

STO + 9

RCL 6

f cos

RCLC
g—>P

STO 7

hR ¢
STO A

RCL 6

051
052
053
054
055
056
057
058
059

f sin

RCL1

f cos

X

RCLD

g—>P

STO 8

hR

STOB

RCL 6

f sin

RCL1

f sin
X

RCL9

g—>P

STO 9

hR

STOC

h RTN

fLBL B

fP<«—>S

STO 1

STO 4

g x?
STO 7

R/S

STO 2

STO 5

g x?
STO + 7

R/S

STO 3

STO 6

g x*
STO + 7
RCLO

RCL9

X

fP<«~—>S

STO 1

fLBL 2

STO D

f sin

RCL 3

fD <«
X
RCL 1
.+_

STOE

183

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

RCL D

h ABS
EEX
8
CHS

gx >y
GTO 1
RCLE
GTO 2
fLBL1
RCLE
2

f tan
RCLO
X

gtan™?!
2
X

STO 1

1

RCLE

f cos

RCL 3

X

RCL 2
X
STOD
RCL §

STO + 1
RCL 1

RCL A
+

f sin
RCL 7

X
RCLD
X

fP<+~—>S

STO + 4

fP<«~—S

RCL 1

RCL B
+

f sin

RCL 8
X

RCL D

194
195
196
197
198

200

fP<«~—>S

STO + 5
fP<«~—>S

RCL 1
RCLC

f sin

RCL 9
X
RCLD
X

fP<«—>S

STO + 6

RCL 4

RCL S

g—>P

g x?
RCL 6

g x?

fv/x

STO 8

RCLS

RCL 4

g—>P

hR §

fx>0
GTO 3

fLBL 3
g > H.MS
R/S
RCL 6
RCL 8

gsin™?
g > HMS
R/S
RCLD
R/S
RCL 8
fP<«—>S
R/S
fP<«<—>S



201 5 207 RCLS 213 + 219 gcos™!
202 STO + 9 208 x 214 RCL38 220 fP<«—S
203 RCL1 209 + 215 =+ 221 hRTN
204 RCL4 210 RCL3 216 RCL7
205 X 211 RCL6 217 f+/x
206 RCL2 212 x 218 =+

 

2. Store elements of elliptical orbit:

e, STO 1 (referred to same epoch as elements—e;q50= 23.445 788)

a, STO 2

e, STO 3

i, STO 4

w, STO 5

Q, STO 6

fP<«—S

. L. 360
n, STO 0 (if not given in data, n = 5 )

t, STO 9 (days before, or after, perihelion; before perihelion, ¢ is negative)

fP —->—S (nand ¢ are stored in the secondary registers)

 

Press A

3. Enter X, press B Geocentric equatorial rectangular coordinates of the

Y, press R/S Sun, referred to same epoch as elements. See

Z, press R/S Programme 23.
 

4. The programme first computes the Gaussian constants for the orbit and stores

them for future use in constructing an ephemeris. It then calculates the mean

anomaly, M, and iterates for the eccentric anomaly E. The programme stops to

display « in H.MS format.

Press R/S. The programme stops again to display 8 in D.MS format.

Press R/S. The display showsr, the radius vector from the centre of the Sun, in AU.

Press R/S. The display shows A, the distance of the comet from the centre of the

Earth, in AU.

Press R/S. The programme ends by displaying the elongation of the comet from

the Sun, in degrees.

Note: Unlike Programme 21, this programme does not have to be run to the end.

If the elongation is not required, the run can be terminated after the computation

of A.

5. For the next ephemeris position, return to Step 3.

As written, the programme gives a 5-day ephemeris, starting from the selected .

If a different interval is required, amend line 201 accordingly.

Test: Use the programme to confirm the results for Example 2 of Chapter 8,

and obtain:

a= 160 51m23s 3= -21°14" 42"

r= 39565 A =4.6275

elongation = 42°.364 7.
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(23) HP-67
To compute the geocentric equatorial rectangular coordinates X, Y, Z, of the Sun,

referred to the equator and equinox of 1950.0, between the years 1800 and 2100.

Two cards must be read:

A, for data

B, for programme
 

1. Load the data from magnetic card A:

R, 279.696 68 B 36000.768 92
R;: 2415020 I 2234941
R, 1.5242
Ry 35999.04975 S, 2433282423
Ry 1.91946 S: 36524.2199
R; 0.01675104 S, 971690
Rs 23.452294 Ss —29696
R, 36525
 

2. Load the programme from magnetic card B. When recording the card, set the

display for 5 decimal places.

001 fLBL A 034 x 067 fcos 100 STOC

002 STO A 035 + 068 RCLD 101 fP «<—=S
003 RCL1 036 STO + 5 069 x 102 RCL A
004 - 037 RCLO 070 1 103 RCLO
005 RCLY9 038 + 071 + 104 -
006 — 039 RCL3 072 =+ 105 RCL1
007 STO3 040 RCLB 073 STOS 106 —
008 RCL 4 041 x 074 RCL38 107 STO A
009 x 042 + 075 RCL3 108 4
010 RCL2 043 RCL3 076 7 109 7
011 - 044 gx? 077 6 110 2
012 STOS 045 3 078 . 111 1
013 fsin 046 3 079 8 112 CHS
014 RCL 6 047 1 080 5 113 STO9
015 RCL3 048 1 081 -+ 114 RCL3
016 2 049 = 082 - 115 RCLA
017 0 050 -+ 083 STO3 116 1
018 9 051 STOC 084 RCLS 117 3
019 — 052 RCL7 085 RCLC 118 x
020 - 053 RCL3 086 fsin 119 -

021 x 054 2 087 x 120 STO 4
022 5 055 3 088 RCL 3 121 hRCI
023 0 056 9 089 fcos 122 RCL A
024 hl/x 057 2 090 x 123 6
025 RCL3 058 3 091 STOD 124 7
026 EEX 059 — 092 RCL3 125 9
027 4 060 - 093 ftan 126 x
028 - 061 STOD 094 x 127 +
029 - 062 g x? 095 STOE 128 RCL A
030 RCL 5 063 1 096 RCLC 129 g x?
031 2 064 hx<—y 097 fcos 130 2
032 x 065 - 098 RCLS 131 2
033 fsin 066 RCLS5 099 x 132 1
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133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

STO 5
RCL 2

RCL A

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

201

STO =5

STO = 6

STO = 7

STO = 8

STO -9

STO + 4
STO -7
STO + 9
RCLC
RCL 4

RCL D
RCL 5

RCLE
RCL 6

f-x-

RCL 8

RCLE

202
203
204
205
206
207
208
209

211
212

222
22
224

X
RCL D
RCL 7
X

RCLC
RCL 5
X

f—x-

RCLE
RCL9
X
RCL D
RCL 8
X
+

RCL C
RCL 6
X

fP<«~—S

h RTN
 

3. Enter the Julian Date.

Press A.

The programme flashes Xio5, at line 199, flashes Y,q;, at line 211, and ends by

displaying Z4s,.

The Sun’s radius vector is stored in R;.

If the rectangular coordinates of the Sun are also required to be referred to the

equinox of date, note that X, Y, Z, for this epoch are stored in C, D and E respec-

tively, and the desired values can be obtained by recalling these stores, in turn,

when the programme has finished.
 

4. For the coordinates at another time, return to the start of Step 3.

Note: The mean error of the values given by this programme, between the years

1800 and 2100, is approximately 0.000 03 AU.
 

Test: Find X, Y, Z for O® ET 1978, July 7 (JD 2 443 696.5), referred to 1950.0-

Result:

From the AE:

X1950= "0.248 51

—0.248 455
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Y1950= +0.904 50

+0.904 498

2195(): +0.392 20

+0.392 199



(24) HP-67

To compute the apparent longitude, or the geometric longitude, of the Sun, and the

radius vector, to +0°.005 for the longitude, to +-0.000 05 for the radius vector.
 

1. Load the data from magnetic card A:

R, 0.005 69
R, 1582.101 5
R; 365.25
R, 30.600 1
R, 259.183 275
R; 1 934.142 008
R, 1720 994.5

B 3306
I 231.19

So 2415020
S; 36 525
S; 36 000.768 92
S3 279.696 68
S.0.016 751 04
S; —0.000 041 8
Se 358.475 83
S7 35999.049 75
Ss 350.737 49
S, 445 267.114 2
 

Load the programme from magnetic card B:

001 fLBLA 037 STO + 2 073 R/S
038 fLBL2 074 GTOC
039 RCLS5 075 gLBLc
040 RCL1 076 hSFO
041 x 077 fLBLC
042 fINT 078 fP<«—S
043 RCL2 079 RCLO
044 1 080 -
045 4+ 081 RCL1
046 RCL6 082 -
047 x 083 STO A
048 fINT 084 RCLS5
049 + 085 x
050 RCL3 086 RCL 4
051 + 087 -+
052 hF?1 088 RCLA
053 GTO9 089 gx®
054 RCL1 090 8
055 EEX 091 EEX
056 2 092 6
057 -+ 093 -+
058 fINT 094 -
059 STO1 095 STOC
060 - 096 RCLA
061 2 097 RCL7
062 + 098 x
063 RCL1 099 RCL6
064 4 100 +
065 =+ 101 RCLA
066 fINT 102 g x?
067 + 103 6
068 fLBL9 104 6
069 hCF1 105 6
070 RCL9 106 7
071 + 107 -
072 hF?2 108 -
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145 6 165 =+ 185 hCFO 205 RCLS8
146 2 166 + 186 DSP 3 206 RCLA
147 167 RCL3 187 fx>0 207 x
148 + 168 + 188 GTO 4 208 -
149 RCLA 169 RCL A 189 3 209 RCLA
150 RCLY 170 RCL2 190 6 210 gx?
151 x 171 x 191 0 211 4
152 RCL38 172 + 192 + 212 8
153 -+ 173 RCL A 193 fLBL4 213 1
154 RCLA 174 g x? 194 R/S 214 =
155 gx* 175 RCLB 195 1 215 +
156 6 176 = 196 RCLE 216 fsin
157 9 177 + 197 fcos 217 2
158 5 178 fP «—>S 198 RCLC 218 0
159 = 179 hF?0 199 x 219 9
160 - 180 fGSB3 200 - 220 =+
161 fsin 181 1 201 DSPS5 221 -
162 5 182 fR « 202 hRTN 222 RCLO
163 5 183 g—>P 203 fLBL3 223 -
164 9 184 hR { 204 RCL7 224 h RTN
 

3. Enter the instant either as a calendar date (ET; the formatis YYYY.MMDDdd,

in which dd are decimals of a day) or as a Julian Date. According to the style of

date that has been entered, press:

(a) CALENDAR DATE For geometric A For apparent A

If JD is also required A fa

If JD is not required B fb

(b) JULIAN DATE C fc
 

4. The display gives (if asked by A or fa) the JD.

Press R/S. The display will then show the Sun’s longitude in decimal degrees (the

geometric longitude will be referred to the mean equinox of date).

If the radius vector is also required, press R/S.

Note: The programme does not work for calendar dates before March 1 of the

year zero, but it will for Julian Dates.

Test: Find the geometric and apparent longitudes of the Sun, and the radius

vector, at 0" ET on 1978, December 6. Run the programme and obtain AGeom=

253°.510, rapp= 253°.504, R = 0.985 32. The 1978 AE gives AGeom= 253°.511,

AApp= 253°.504, R = 0.985 35.
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Heliocentric and geocentric positions of the inner planets, Mercury, Venus and Mars

The following three programmes have been devised to give:

(a) for the heliocentric position—the heliocentric longitude, in degrees, to 2

decimal places; the heliocentric latitude, in degrees, also to 2 decimal places; and

the radius vector, in AU, to 5 decimal places;

(b) for the geocentric position—the difference between the geocentric longitudes

of the planet and the Sun, in degrees, to 2 decimal places (positive if the planet is

East of the Sun, negative if West); the geocentric longitude and latitude, in degrees,

to 2 decimal places; and the distance from the planet to the Earth in AU, to 5

decimal places.

Two magnetic cards are read for each planet, the A card bearing data and the B

card containing the programme. The three programmes are similar in format, but

differ in some of the coefficients employed. The information to be recorded on the

three A cards is given in full, as is the complete programme for Mercury; for

Venus and Mars the programme is not given in full, but the changes necessary to

amend the Mercury programme are listed in detail so that the three B cards can be

easily recorded.

The longitudes are referred to the mean equinox of date, to an accuracy of

approximately 0°.01. The accuracy is good over a range of about 3 000 years, and

will be useful for historical research purposes. It is not rigorous enough for the

construction of a modern ephemeris, but if by means of Programme 38 the

geocentric coordinates are converted into Right Ascension and Declination, the

values obtained are more accurate than the approximations of Chapter 9.

(25) HP-67
To compute the heliocentric or geocentric position of Mercury. The time argument is

the Julian Ephemeris Date.
 

1. Load the data from magnetic card A:

R, 0.776 935 222 Se 2415020
R, 100.002 1359 S, 36525

 

R, 358.47583 S: 0.494 941 889

R; 35999.049 75 Ss 415.2057522

R, 0.387 098 6 S, 102.279 38

R; 0.016 751 04 Ss 149472.5153

Se 47.145944

S, 1.185208

Ss 0.205 614 21

S, 7.002 881

2. Load the programme from magnetic card B:

001 fLBLA 004 fP<«~—S 007 - 010 STO A

002 hSF2 005 DSP2 008 RCL1 011 RCL7

003 fLBLE 006 RCLO 009 — 012 x
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RCL 6

STO D
RCL A

RCL 9

STOE
fGSB 1
RCL A

|
A
\
0
o
0

p
H

CL 38
+

fP<«<—>S

STO9
f GSB 2
STO O

RCL D

STO 1

f sin

RCLE

f tan

g x®

fD <«

STO-0

RCL 1

f sin

RCLE

f sin

gsin™!

STO 1

f GSB 4

RCL 7

STO 6
STO D
hF?2
GTO 5

066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082

084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108

110
111
112
113

115
116
117
118

STO 9

f GSB 2

STO A

STO-0

f GSB 4

STO 9

RCL 1

f cos

STO x 6

RCLO

fsin

RCL 6

RCL O

f cos

RCL 6

RCL 9

g—>P

hR ¥
f-x-
RCL A

fGSB 7

RCLO

f cos

RCL 6

RCL 9

RCLD
g x*

RCL 9
g x?

fvx

STOE

RCL 1

f sin

190

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

145
146

148
149
150
151
152
153
154
155
156
157
158
159

161
162
163
164

166
167
168
169

171

CLA

(
{
s
z
S
O
N
W

-
~ 13

42

b
w —] o w

RCL A
RCL 5

RCL 4
+

STOC
h RTN
fLBL2
9

hSTI

RCL C

fLBL 3

f sin

RCL 9

fD <«

RCL C

f DSZ
GTO3

f tan

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

214
215
216
217
218
219
220
221
222

224

fx<O

f GSB 6

f-x-

h RTN



 

3. Enter the Julian Date

For the heliocentric position, press A

For the geocentric position, press E
 

4. (a) Heliocentric: the programme pauses to flash the longitude in degrees, to 2

decimal places. At the next pause, the display flashes the latitude in degrees, also

to 2 decimal places. The programme ends by displaying the radius vector in AU,

to 5 decimal places.

(b) Geocentric: the programme pauses to flash the difference between the geo-

centric longitudes of Mercury and the Sun, in degrees (to 2 decimal places), positive

if Mercury is East of the Sun, negative if West of the Sun. At the next two pauses

the display flashes the longitude and latitude respectively, in degrees, to 2 decimal

places. The programme ends by displaying the distance of Mercury from the

Earth in AU, to 5 decimal places.
 

5. For the position at another date, return to Step 3.

Test: Find the heliocentric and geocentric positions of Mercury for 1978,

November 17 at Or ET (JD 2 443 829.5).

Results: Elongation lorx borB rorA

(a) Heliocentric: 334.02 -6.74 0.389 03

The AE gives: 334.01 -6.74 0.389 04

(b) Geocentric: +22.41 256.69 -2.62  0.999 90

The AE gives: 256.69 -2.62  0.999 91
 

Note: With regard to accuracy, the employment of more than 2 decimal places for

the longitude or latitude is meaningless. However, if it is intended to convert these

results by means of a later programme into RA and dec., it is in this case per-

missable to evaluate the geocentric longitude and latitude to 4 decimal places

provided that the results from the coordinate conversion programme are rounded.

In this way, the combination of the two programmes will give results for the inner

planets to the same accuracy as is found in the tabulated positions and elongations

listed annually in the Handbook ofthe British Astronomical Association.

Example: Make the necessary adjustments to the programme to obtain » and B

to 4 decimal places. Find the data for Mercury for 1978, November 23 at O ET,

then convert the geocentric longitude and latitude into RA and dec. by means of

Programme 38. Compare with the accurate values published in the AE, the rounded

values in the HBAA, and the approximate values found by the method of Chapter

9. (JD = 2443 835.5)

Programme 25 AE HBAA Chapter 9

Elongation +20°.662 4 21°

A 261°.004 2

B - 2°.1232

A 0.868 00 0.868 031 3 0.868 0.867

RA 172 20m™ 125 172 20™ 10s.93

= 17220m2 = 17h20™.2 172 20™.2 172 20m™.5

dec. -25°15'09” -25°15"10".5

= -25°15’ = -25°15' -25°15' -25° 16’
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(26) HP-67
To compute the heliocentric or geocentric position of Venus. The time argumentis the

Julian Ephemeris Date.
 

1. Load the data from magnetic card A:

R.
R,
R,
R;
R;
R

0.776 935 222

100.002 1359

358.475 83

35999.049 75

0.723 331 6

0.016 751 04

So
S
Se
Ss
Ss
Ss
S
S:
Ss
S,

2415020

36 525

0.952 130 694

162.553 366 4

212.603 22

58 517.803 87

75.779 647

0.899 850

0.006 820 69

3.393 631
 

2. Load the programme from magnetic card B:

This card is prepared as for Programme 25, with the following changes

incorporated:

Replace lines 17 to 19 with EEX

(Lines 20 to 25 now come in the position lines 19 to 24)

3

Replace lines 26 to 30 with CHS

Replace lines 141 to 144 with

Replace 9 by 4 in line 156.

A
N

W
A
A
R
L
O
O
N

The operation of the programme is identical to that of Programme 25.
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(27) HP-67
To compute the heliocentric or geocentric position of Mars. The time argument is the

Julian Ephemeris Date.
 

1. Load the data from magnetic card A:

R, 0.776 935 222 So 2415020

R, 100.002 1359 S: 36525

R, 358.47583 S, 0.815937 028

R; 35999.049 75 Ss 53.171 376 42

R, 1.523 6883 S, 319.51913

R 0.016 751 04 Ss 19 139.854 75
Ss 48.786 442

 

 

S, 0.770 992

Ss  0.093 31290

S, 1.850 333

2. Load the programme from magnetic card B:

This card is prepared as for Programme 25, with the following changes

incorporated:

Replace lines 16 to 30 with RCL 9

RCL A

1
4

8

1

STOE

fGSB 1

RCL A

1

0

8

6

2

(Lines 31 to 140 now come in the position lines 32 to 141)

Replace lines 141 to 144 with 1

fD <«

g x®
Replace 9 by 6 in line 156.

3. The operation of the programme is identical to that of Programme 25.
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(28) HP-25
Interpolation, from 3 ephemeris positions.
 

 

 

1. Enter the programme:

01 STO1 10 RCL2 19 RCL1 Register contents:

02 R/S 11 - 20 - Ron

03 STO2 12 STO4 21 RCLO R, x,

04 R/S 13 R/S 22 X R, x,

05 STO3 14 STOO 23 2 R; x5
06 RCL1 15 RCL4 24 - Ry x; + x3—2x,

07 + 16 x 25 RCL2

08 RCL2 17 RCL3 26 +

09 - 18 + 27 GTO 00

2. Switch to RUN, f PRGM.

3. Enter the tabulated ephemeris positions at #,, 7, and ¢;; the time for which the

value of the variable x is required must fall between 7, and 75

Enter x,, press R/S

Enter x,, press R/S

Enter xj, press R/S
 

 

 

4. Enter the interpolation period, n; press R/S.

5. The display gives the value of x at time ¢.

6. For new case return to Step 3.
 

Test: HBAA gives the following 10-day ephemeris for Saturn:

1977, January 7 a=90I2m8 §= +17°03’

17 9h 10™.0 17°17

27 9h 6™8 17° 32’

Find the position at O® ET on 1977, January 20.

Enter the 3 values for o (in H.MS format):

9.1248 g—-H R/S

9.1000 g—>H R/S

9.0648 g—>H R/S

The interval after 7, is 3 days exactly, so the interpolation period is 3 — 10.

Enter:

3ENT 4 10+ R/S

The display gives the value of a in decimal hours.

Press f H.MS.

The value of O® ET on January 20 is 92 09m™.1.

Now follow the same procedure for §:

1703 g—->H R/S

1717 g—->H R/S

1732 g—>H R/S

3ENT 4 10 - R/S

The display gives the value of 8 in decimal degrees.

Press f H.MS.

The value for O® ET on January 20 is +17° 21°.
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(29) HP-67

Interpolation, from 3 ephemeris positions.
 

1. Load the programme from a magnetic card. As this is a short programme, try

to incorporate it on a card bearing other short programmes, amending the Labels

if necessary.

001 fLBLA 009 RCL2 017 RCL4 025 2
002 STO1 010 - 018 x 026 =+
003 R/S 011 RCL2 019 RCL3 027 RCL2
004 STO2 012 - 020 + 028 +
005 R/S 013 STO4 021 RCL1 029 hRTN
006 STO3 014 hRTN 022 -
007 RCL1 015 fLBLB 023 RCLO
008 + 016 STOO 024 x
 

2. Enter the 3 consecutive tabular values:

A, press A (=1t)

B, press R/S (= t,) ]f t, must lie between 7, and ¢,

C,pressR/S (=1

3. For interpolation, enter the interpolation interval », and press B. The display

gives the required value of x.

 

 

4. For new case, return to Step 2.

Test: The 1978 AE gives the following values for the RA of the Sun at 0 ET:

June 23 6" 05m 10s.06

June 24 6" 09™ 19s.50

June 25 6" 13m 28s.88

Find the apparent RA of the Sun at 16 » 23m 1558 on 1978, June 24.

Enter: 6.051 006, f H <, press A

6.091 950, f H <, press R/S

6.132 888, f H <, press R/S

The ephemeris is a daily one, so n will be expressed as a fraction of 24h:

16.231 58, f H <, 24, —, press B

The display gives the required RA in decimal hours. Press g - H.MS.

The required RA of the Sun is 6" 12m 09s.79, which agrees exactly with the

interpolation example on p 521 of the 1978 AE. Note, however, that this programme

is not suitable for use with the Moon, where the rate of change in the value of x is

pronounced; in this case, the 5-point interpolation programme (31) should be

employed.
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(30) HP-25
Interpolation, from 5 ephemeris positions. To be used in preference to Programme 28

when the rate of change in the value of x is marked (e.g., for interpolation in a lunar

ephemeris).
 

1. Enter the programme:

01 STOO 14 RCLO 27 - Register contents:

02 RCL4 15 gx? 28 RCLO Ron
03 RCL2 16 - 29 x R, x;
04 - 17 6 30 + R, x,
05 ENT 4 18 — 31 RCLO R; x;3
06 ENT 4 19 x 32 x Ry x,

07 2 20 + 33 2 R; x5

08 x 21 RCL4 34 -
09 RCLS 22 RCL2 35 RCL3
10 - 23 + 36 +
11 RCL1 24 RCL3 37 fH.MS
12 + 25 2 38 GTO 00
13 1 26 x
 

2. Switch to RUN, f PRGM, f FIX 5.

3. Enter the tabulated ephemeris positions for ¢, to ¢5; the time ¢ for which the

value of the variable x is required must fall between ¢; and ¢,.

Enter x, (H.MS or D.MS), g > H, STO 1

x5, g > H, STO 2

x3, g > H, STO 3

x;, g > H, STO 4

x5, 8 > H, STO 5

4. Enter interpolation interval, n; press R/S

5. The display gives the required value of x at time 7, in H.MS or D.MS format.

6. For new case return to Step 3.

Test: Find the RA of the Moon at 6" ET on 1978, November 18, given the

following daily positions at Oh ET:

November 16 4h 24m (095,424

17 5h16™ 18s.187

18 6r07m™ 575.694

19 6h 58m 455,847

20 7h48m 27s.626

In this case the interpolation interval is } day (0.25).

The RA at the required time is found to be 6 20™ 45s.3.

As a check, the value listed in the AE is 61 20™ 455,296.
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31) HP-67

Interpolation, from S ephemeris positions. To be used in preference to Programme 29

when the rate of change in the value of x is marked (e.g., for interpolation in a lunar

ephemeris).
 

1. Load the programme from a magnetic card. As this is a short programme, try

to incorporate it on a card bearing other short programmes, amending the labels if

necessary.

001 fLBLA 015 hRTN 029 + 043 x
002 STO1 016 fLBLB 030 1 044 -
003 2 017 STOO 031 RCLO 045 RCLO
004 R/S 018 fLBL3 032 gx? 046 x
005 STO2 019 RCL4 033 - 047 +
006 3 020 RCL2 034 6 048 RCLO
007 R/S 021 - 035 = 049 x
008 STO3 022 ENT 4 036 x 050 2
009 4 023 ENT 4 037 + 051 -
010 R/S 024 2 038 RCL4 052 RCL3
011 STO 4 025 x 039 RCL2 053 +
012 5 026 RCLS 040 + 054 h RTN
013 R/S 027 - 041 RCL3
014 STOS 028 RCL1 042 2
 

2. Enter five consecutive tabular values from the ephemeris, selected so that ¢,

lies between 73 and ¢,:

A, press A

B, press R/S For entries 2 to 5 the calculator display provides a prompt

C, press R/S (lines 003, 006, 009 and 012).

D, press R/S

E, press R/S
 

3. For interpolation, enter the interpolation interval n, and press B. The display

gives the required value of x.

4. For new case, return to Step 2.

Test: To test the programme when first recorded, use the test example for

Programme 30.
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32) HP-25

To find the Julian Date for any time on any day between 0 AD, January 1 and 2399,

December 31. See separate instructions for dates before 0 AD.
 

1. Enter the programme:

01 ENT 4 14 2 27 R/S 40 2
02 STO4 15 x 28 RCLS5 41 -
03 RCLO 16 ENT 4 29 + 42 fINT
04 fx=>y 17 fINT 30 RCL7 43 1
05 GTO 09 18 STO6 31 RCL1 44 6
06 RCL3 19 - 32 x 45 fx>=vy
07 STOS 20 EEX 33 fINT 46 GTO 49
08 R ¢ 21 2 34 + 47 -
09 R ¢ 22 x 35 RCL2 48 STO-5
10 fINT 23 STO + 5 36 + 49 RCLS5
11 STO7 24 RCL6 37 STOS
12 - 25 1 38 RCL4
13 EEX 26 - 39 EEX
 

2. Switch to RUN, f PRGM. f FIX 1. Enter constants: 1582.1015 STO 0, 365.25

STO 1, 1721057.5 STO 2, 10 CHS5 STO 3.

3. Clear Register 5: 0, STO 5.

4. Enter date in YYYY.MMDD format (e.g., 1977, March 1 = 1977.03 01,

1978, January 0.5 = 1978.01 00 5, 1978, July 12.8 = 1978.07 12 8). Press R/S.

5. The programme stops at line 27 for data input. (The display shows the number

of odd months stored in R;.) According to the number displayed, enter the figure

alongside it in the table:

 

 

 

0.0 No input required 3.0 90 6.0 181 9.0 273

1.0 31 40 120 7.0 212 10.0 304

20 59 5.0 151 8.0 243 11.0 334
 

6. Press R/S. The programme ends by displaying the required Julian Date, which

might need amendment:

st Adjustment—If the required year is a leap year, and the date lies anywhere

in January or February, deduct 1.0 from the display to obtain the correct

Julian Date.

2nd Adjustment—Add 1.0 to the display for all dates on or after 2000,

January 1.
 

7. For next case, return to Step 3.

Test: Find the Julian Date for 1978, July 12.

Clear Register 5, enter 1978.07 12, and press R/S. The programme stops to

display 6.0. From the table, enter 181 and press R/S. The programme ends by

displaying the required Julian Date: 2 443 701.5.

The programme isstill valid for BC dates but the operating procedure is changed.

If the Julian Date for a day earlier than AD 0 is required, proceed as follows:

Enter the date in the usual format, followed by CHS.

At the first halt (line 27) the display will show a negative number. Key in 2, +;

ignore the sign, and enter the appropriate number from the table. Then key RCL 5,

CHS, STO 5, R ¥, R/S. If necessary, carry out 1st Adjustment.
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(33)
HP-67

To compute: (1) Julian Date, (2) day of week, (3) At (days) between two days,
(4) date of New Moon.
 

1. Load the programme from a magnetic card:

001 fLBL1 051 + 101 gFRAC 151 6
002 1 052 3 102 7 152 0
003 5 053 0 103 x 153 0
004 8 054 . 104 DSPO 154 2
005 2 055 6 105 hRTN 155 6
006 . 056 0 106 fLBLC 156 7
007 1 057 O 107 fGSB1 157 RCLS5
008 O 058 1 108 STO 4 158 x
009 1 059 x 109 R/S 159 7
010 5 060 fINT 110 fGSB1 160 3
011 gx>y 061 + 111 RCL4 161 .
012 hSF2 062 RCL3 112 - 162 6
013 hx<—>y 063 + 113 h ABS 163 3
014 ENT 4 064 1 114 h RTN 164 +
015 fINT 065 7 115 fLBLD 165 fsin
016 STO1 066 2 116 STO 4 166 .
017 - 067 O 117 fGSB1 167 1
018 EEX 068 9 118 STOS 168 7
019 2 069 9 119 . 169 4
020 x 070 5 120 0 170 3
021 ENT 4 071 + 121 3 171 x
022 fINT 072 hF?2 122 3 172 STO + 7
023 STO2 073 h RTN 123 8 173 1
024 - 074 RCL1 124 6 174 3
025 EEX 075 EEX 125 3 175 .
026 2 076 2 126 1 176 0
027 x 077 =+ 127 9 177 6
028 STO3 078 fINT 128 2 178 4
029 RCL2 079 STOO 129 2 179 9
030 5 080 - 130 STO 6 180 9
031 f+/x 081 2 131 x 181 2
032 gx<yvy 082 + 132 . 182 4
033 GTO2 083 RCLO 133 6 183 5
034 1 084 4 134 7 184 RCLS5
035 STO-1 085 =+ 135 0 185 x
036 1 086 fINT 136 9 186 2
037 2 087 + 137 4 187 7
038 STO + 2 088 hRTN 138 + 188 1
039 fLBL2 089 fLBLA 139 gFRAC 189 .
040 3 090 fGSB1 140 190 5
041 6 091 . 141 hx<—>y 191 +
042 5 092 5 142 - 192 STO 8
043 . 093 - 143 RCL 6 193 fsin
044 2 094 hRTN 144 — 194 .
045 5 095 fLBLB 145 STO7 195 4
046 RCL1 09 fGSB1 146 STO + 5 196 0
047 x 097 6 147 . 197 8
048 fINT 098 - 148 9 198 9
049 RCL2 099 7 149 8 199 x
050 1 100 = 150 5 200 STO-7
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201 RCL38 207 1 213 . 219 RCL4
202 2 208 6 214 5 220 +
203 x 209 1 215 - 221 DSP4
204 fsin 210 x 216 EEX 222 h RTN
205 . 211 STO + 7 217 4
206 O 212 RCL7 218 =
 

2. For the Julian Date:

Enter the date in YYYY.MMDDdd format

(e.g., 1978, July 12.35 = 1978.07 12 35)

Press A; the display shows the required Julian Date.

3. For the day of week:

Enter the date in YYYY.MMDD format. Press B; the display shows 0 for

Sunday, 1 for Monday, 2 for Tuesday, etc.

 

 

4. For the difference, in days, between two dates:

Enter the first date in YYYY.MMDD format, and press C.

Enter the second date in the same format, and press R/S.

The display gives the required At.

5. For the date of New Moon:

Enter the year and month in YYYY.MM format, and press D. The display
gives the date of New Moon for that month. In some cases O is displayed (e.g., for

1973, July the programme gives 1973, July 0, which is interpreted as 1973, June 30).

If, instead, a specific date is entered in YYYY.MMDD format, the display will

show the date of the next New Moon, but in that case the days may exceed 30 or 31.

For example, 1980, November 18 (1980.11 18) gives 1980, November 37, which

is interpreted as 1980, December 7.

Notes:

(a) None of the four sections of this programme works for dates before March 1

of the year 0.

(b) New Moon: In about 1 per cent of the cases, the date given is 1 day in error.

Also, for 1582, October, the Julian Calendar is used.

Test: After recording the programme, test it against tabulated data in any issue

of the AE.
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(34 HP-§7
To compute the Calendar Date from the Julian Date (inverse of Programme 33).
 

1. Load the programme from a magnetic card:

001 f LBL A

5
+

g FRAC
STO O
h last x

fINT
STO 1

[\
S
]

C
 
h
A
B
N
U
O
A
W
L
N

2

038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068

5

fINT
STO + 1
4

fINT
STO - 1
1
STO + 1
fLBL1
RCL 1

N
N

=
U
V
]
I
L
N
O
V
O
N
I
=

n
N
M
A
W

|
=
"

2
5

fINT
STO 3
RCL 2

075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105

2. Enter the Julian Date, and press A.

3. The display gives the Calendar Date in YYYY.MMDDdd format.

4. For next case return to Step 2.

Test: The Calendar Date for JD = 2 443 701.835 is 1978, July 12.335.
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RCL 3

w
n

O
\
W

O
O
’

fINT
STO 5
RCL 2
RCL 4

RCL 5

O
W

—
_
-
O
o
O
O

fINT

EEX

112
113
114
115
116

STO 6
1
3

5
RCL 5
gx<y
GTO?2

fLBL 2

STO 7
EEX

STO + 6

fv/x

RCL 7

gx >y
GTO 3

STO +3
fLBL 3
RCL3
RCL 6

RCL O
EEX

h RTN



(35) HP-25

To convert equatorial coordinates o, 3, to ecliptic coordinates 2, 8, where » = ecliptic

longitude, and B8 = ecliptic latitude.
 

1. Enter the programme:

01 g—H 18 RCL1 35 fsin Register contents:
02 1 19 fsin 36 x R, €
03 5 20 x 37 + R;a
04 x 21 - 38 RCL3 R, 3
05 STO1 22 gsin™?! 39 fcos R,(3
06 R/S 23 STO3 40 -+ R, 360
07 g—>H 24 RCLO 41 gsin™?!
08 STO2 25 fsin 42 RCL3
09 fsin 26 RCL?2 43 R/S
10 RCLO 27 fsin 44 x<—y
11 fcos 28 x 45 gx >0

12 x 29 RCLO 46 GTO 00
13 RCLO 30 fcos 47 RCL4
14 fsin 31 RCL2 48 +
15 RCL2 32 fcos 49 GTO 00
16 fcos 33 x
17 x 34 RCL1
 
2. Switch to RUN, f PRGM,f FIX 6.

Enter constants: €, STO 0; 360, STO 4 (e1950= 23.445 788).

3. Enter « (H.MS); press R/S.

Enter 8 (D.MS); press R/S.

4. The programme stops at line 43 to display B; press R/S. The programme ends

by displaying ». Both x and B are given in decimal degrees.

Check that cos* cosp = cosa cosd:

(fcos, RCL 3, fcos, x, RCL 1, fcos, RCL 2, fcos, x, -)

The display should be O (or, at least, less than 0.000 01).

Test: o = 220 35m 15524, § = +2°10’'25”.24; find B, A.

Result is 8 = 10°.281 817, » = 341°.252 535.

Both sets of coordinates are referred to 1950.0.
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(36) HP-25
To convert ecliptic coordinates 2, 8, to equatorial coordinates o, 3.
 

1. Enter the programme:

01 STO1 18 STO 3 35 fcos Register contents:
02 R/S 19 RCLO 36 — R, e
03 STO2 20 CHS 37 gsin™? R,
04 fsin 21 fsin 38 1 Ry A

05 RCL1 22 RCL1 39 5 R, 3
06 fcos 23 fsin 40 - R, 24

07 RCLO 24 x 4 gx>0 R;a
08 fsin 25 RCLO 42 GTO 46
09 x 26 fcos 43 RCL4
10 x 27 RCL1 44 +
11 RCL1 28 fcos 45 STOS
12 fsin 29 RCL2 46 fH.MS
13 RCLO 30 fsin 47 R/S
14 fcos 31 x 48 RCL3
15 x 32 x 49 fH.MS

16 + 33 +
17 gsin™? 34 RCL3
 

2. Switch to RUN, f PRGM, f FIX 6.

Enter constants: €, STO 0; 24, STO 4 (e;,95o= 23.445 788).

3. Enter B (in decimal degrees); press R/S

Enter X (in decimal degrees); press R/S

4. The programme stops at line 47 to display «; press R/S. The programme ends

by displaying 8. « is given in H.MS format, and § is given in D.MS format.

Check that cosd cosa = cosp cosi:

(RCL 3, fcos, RCL 5, 15, x, fcos, x, RCL 1, fcos, RCL 2, fcos, x,-). The

display should be 0 (or, at least, less than 0.000 01).

Test: Take the reverse of the test for Programme 35:

B = 10°.281 817, A = 341°.252 535. The programme gives: a = 22h 35m 155,23,

§ = +2°10'25".24.

The result differs from the input for the Programme 35 test only by 05.01 in a.

Both sets of coordinates are referred to 1950.0.
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37) HP-25

To compute the azimuth A, and altitude 2, cf a star at the observer’s latitude .
 

1. Enter the programme:

01 g—>H 18 RCLO 35 X Register contents:

02 RCL7 19 fcos 36 RCLO R, ¢
03 x 20 x 37 fsin R, H
04 R/S 21 RCL2 38 RCL3 R, d
05 g—H 22 fsin 39 x R; cosé cosH

06 RCL7 23 RCLO 40 - Ry z
07 x 24 fsin 41 RCLS R;sin z

08 - 25 x 42 = R¢ Not used

09 STO1 26 + 43 gcos™?! R, 15
10 R/S 27 gcos™? 44 R/S

11 g—>H 28 STO4 45 9
12 STO 2 29 fsin 46 0
13 fcos 30 STOS 47 RCL4
14 RCL1 31 RCLO 48 -
15 fcos 32 fcos 49 GTO00
16 x 33 RCL2
17 STO3 34 fsin
 

2. Switch to RUN, f PRGM.

Store constants: Observer’s latitude ¢ (in D.MS format), g > H, STOO0;

15,STO 7.

3. Enter LST (in H.MS format); press R/S.

Enter « (H.MS); press R/S.

Enter & (D.MS); press R/S.

4. The programme stops at line 44 to display the required azimuth, in decimal

degrees; E of the N point of horizon if star has not yet reached the meridian

(o > LST), or W of the N point of horizon if the star is past the meridian

(LST > ). The programme ends by displaying the altitude, also in decimal degrees.

(A negative result indicates that the star is below the horizon.)

If the zenith distance is required, RCL 4.

5. For a new case, return to Step 3.

Test: If the observer’s latitude is N 52° 03’ 26”.76, find the azimuth and altitude

of a star whose equatorial coordinates are: a = 2h23m 24584, § = -5° 18’ 13”.8 at

LST = 3h4]1m (Q0s.

Result: Azimuth = 157°.48 (W of N point of horizon), altitude = 30°.30. (Both

sets of coordinates are referred to 1950.0.)
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(38) HP-67

To convert equatorial coordinates a, 8, to ecliptic coordinates 2, 8, and vice versa.
 

1. Load the programme from a magnetic card:

001 fLBLD 018 fsin 035 3 052 x
002 hCFO 019 x 036 6 053 RCLB
003 GTO4 020 CHS 037 0 054 fcos
004 fLBLE 021 hF?0 038 + 055 x
005 hSFO 022 CHS 039 fLBL3 056 hF?0
006 fH <« 023 hRCI 040 hF?0 057 CHS
007 1 024 fcos 041 GTO4 058 hRCI
008 5 025 RCLA 042 1 059 fcos
009 x 026 fsin 043 5 060 RCLB
010 fLBL4 027 x 044 — 061 fsin
011 STOA 028 + 045 g—>H.MS 062 x
012 R/S 029 RCLA 046 fLBL4 063 -+
013 hF?0 030 fcos 047 R/S 064 gsin™!
014 fH <« 031 g—>P 048 RCLA 065 hF?0
015 STOB 032 hR ¢ 049 fsin 066 h RTN
016 ftan 033 fx>0 050 hRCI 067 g-—>H.MS
017 hRCI 034 GTO3 051 fsin 068 h RTN
 

2. Store € (decimal degrees) in 1. (e1950= 23.445 788). (Use value of € for current

epoch if this programme is used after Programmes 25 to 27.)

3. a,3,tox B.

Enter o« (H.MS format); press E.

Enter 8 (D.MS format); press R/S.

The programmestops to display X in decimal degrees. Press R/S; the programme

ends by displaying B in decimal degrees.

4. X, B,t0 a, d.

Enter A in decimal degrees; press D.

Enter B in decimal degrees; press R/S.

The programme stops to display « in H.MS format. Press R/S; the programme

ends by displaying & in D.MS format.

Test: Convert o = 22h 35m 15524, 6 = +2°10’'25”.24 into A, B. Then convert

A, B, back into a, 8.

Result: » = 341°.252 535, B = 10°.281 817.

a=22035m 15524, &= +2°10'25".24.

(Both sets of coordinates are referred to 1950.0.)
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Easter Day

There are various tables available from which the date of Easter can be estab-

lished according to ecclesiastical rules. The astronomer will find Tables 14.7

(Epact), 14.9 (Gregorian Dominical Letter) and 14.10 (Gregorian Paschal table),

in the Explanatory Supplement to the AE, most useful for this purpose. The date

of Easter Day for any year after AD 1582 can be found easily and quickly. Further,

if the year lies between AD 1961 and 2000, Table 14.11 gives the date directly.

Once the date of Easter has been established, other dates of religious significance

can be found:

Septuagesima —-63 days Rogation Sunday +35 days

Sexagesima -56 days Ascension Day +39 days

Quinquagesima —49 days Whit Sunday +49 days

Palm Sunday — 7 days Trinity Sunday +56 days

So far as the date of any current Easter is concerned, there is no real need to carry

out the rather involved computation oneself, because the tables give the inform-

ation quickly and reliably. That is why I have not included a method of manual

computation for the HP-25 or other programmable calculators. Once such a

programme has been recorded on a magnetic card, however, the situation becomes

different and astronomers engaged in historical research might find this most

useful. Jean Meeus has devised just such a programme, which will compute the

date of Easter in the absence of any tables (but not before AD 1583).

39) HP-67

To compute the date of Easter.

(The display will show ‘Error’ if a non-integral year, or one before AD 1583,is

entered.)
 

1. Load the programme from a magnetic card:

001 fLBLA 019 CHS 037 =+ 055 gFRAC
002 STOO 020 f+x 038 STOO 056 4
003 1 021 h RTN 039 fINT 057 x
004 5 022 fLBL2 040 STO2 058 fRND
005 8 023 DSPO 041 RCLO 059 STO 4
006 3 024 RCLO 042 g FRAC 060 RCL2
007 gx<y 025 1 043 EEX 061 38
008 GTO 1 026 9 044 2 062 +
009 2 027 - 045 x 063 2
010 CHS 028 gFRAC 046 fRND 064 5
o1t f+v/x 029 1 047 STOO 065 =
012 h RTN 030 9 048 RCL2 066 fINT
013 fLBL1 031 x 049 4 067 STOS
014 RCLO 032 fRND 050 - 068 RCL2
015 gFRAC 033 STO1 051 STO9 069 RCL 5
016 fx = 034 RCLO 052 fINT 070 -
017 GTO2 035 EEX 053 STO3 071 1
018 2 036 2 054 RCL9 072 +
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073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098

3

fINT
STO 6
RCL 1
1
9
X
RCL 2
+

RCL 3

= O = N

.
|
.
O
w
+
u
-
»
—
‘
l

FRAC

O
W

099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

°
5

—
—
Q
x

3
X w
2

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

 

2. Enter integral year for which the date of Easteris required; press A.

(Non-integral years, and years before 1583, will give an ‘Error’ indication.)
 

3. The display gives the date of Easter in DD.M format,e.g., 31.3 = 31st March.
 

4. For new case, return to Step 2.
 

Test: Enter 1978, press A, and find the date of Easter Day = 1978, March 26.
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(40) HP-25
To compute the approximate time ( + 5 min) of the rise, transit, or setting of the Sun,

a planet or a star. Not suitable for the Moon unless an error of --20 min is acceptable.
 

1. Enter the programme:

0l g—H 17 fH.MS 33 RCL1 Register contents:

02 STOO 18 GTO 00 34 + R, ST at O" UT
03 R/S 19 1 35 RCL4 R, a (hr) at O»
04 g—>H 20 CHS 36 RCL6 R, é (deg) at On

05 STO1 21 STOS 37 = R; o (deg) (lat.)
06 R/S 22 RCL3 38 + R, 2 (deg) (long.)
07 g—>H 23 ftan 39 RCLO R;-1or +1

08 STO?2 24 RCL2 40 - Rg 15
09 R/S 25 ftan 41 RCL7 R, 0.997 27
10 RCL1 26 X 42 X
11 RCL4 27 CHS 43 fH.MS
12 RCL6 28 gcos! 44 GTO 00
13 =+ 29 RCL6 45 1
14 4+ 30 = 46 STOS
15 RCLO 31 RCLS 47 GTO 22
16 - 32 x
 

2. Switch to RUN, f PRGM.

Store constants: Enter ¢ (D.MS), g — H, STO 3

» (D.MS), g - H, STO 4

15,STO 6

0.997 27, STO 7

3. Enter: ST at O UT of day; press R/S

a (H.MS) at O» ET; press R/S

8 (D.MS) at O" ET; press R/S

4. For time of rising: press GTO 19, R/S

transit: press GTO 10, R/S

setting: press GTO 45, R/S

5. The results are displayed in hours and minutes. If the display is negative, press

g - H, 24, +, f H.MS.

The transit times need no adjustment. Because of refraction at the horizon, the

times of rising and setting require the following approximate corrections:

Rising Setting

For a planet or star —2m +2m

For the Sun (or Moon) —3m +3m

6. For new case, return to Step 3.

 

 

Tests: (1) Find the approximate times of rising, transit and setting of Mercury

on 1978, January 7, at a location A = 0°, ¢ = N 52°. GST at O UT is 72 04™

495397, a = 17132m 19597, &= -21°00'33".0, and obtain: rise = 6"22™;

transit = 101 27m; set = 14h 29m,

(2) Find the approximate times of rising, transit and setting of Jupiter on 1978,

October 13, at a location » = 0°, ¢ = S 35°. GST at Oh UT is 1»24m 47980,

o= 80 34m 195073, 6§ = +19°04'04”.00, and obtain: rise = 2 03™; transit =

7r09m; set = 120 13m,
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(3) Find the approximate times of transit and sunset (upper limb) on 1978,

August 3, at a location » = 0°, ¢ = N 40°. GST at O UT is 20t 44m 525,750,

o = 8 51m(3s.62, 8= +17°39'20".6, and obtain Sun’s transit = 12h06™;

 

 

sunset = 19h [2m,

41) HP-67

To compute the time of rise, transit or set of a planet.

1. Load the programme from a magnetic card:

001 fLBLA 042 fLBLC 083 RCL4 124 RCL 4

002 fH <« 043 RCL2 084 2 125 fP <«~—>S

003 STOO 044 RCLA 085 4 126 STO 4

004 3 045 086 x 127 fGSB2

005 6 046 RCLO 087 g—> H.MS 128 fP<«—>S

006 O 047 - 088 h RTN 129 STO 6

007 . 048 3 089 fLBLB 130 RCLE

008 9 049 6 090 1 131 RCL4

009 8 050 0 091 CHS 132 x

010 5 051 -+ 092 hSTI 133 RCLS5

011 6 052 3 093 GTO4 134 -

012 4 053 + 094 fLBLD 135 RCLA

013 7 054 gFRAC 095 1 136 -

014 STOE 055 STO 4 096 hSTI 137 RCLO

015 R/S 056 fLBL1 097 fLBL4 138 +

016 fH <« 057 fGSB2 098 fP<«~—>S 139 STO 7

017 STO1 058 RCL A 099 RCL2 140 fcos
018 R/S 059 + 100 fP<«—>S 141 RCLB

019 fH <« 060 RCLO 101 ftan 142 fcos

020 STO2 061 - 102 RCLB 143  x

021 R/S 062 RCLE 103 ftan 144 RCL6

022 fH <« 063 RCL4 104 x 145 fcos

023 STO3 064 x 105 CHS 146 x

024 1 065 — 106 gcos™? 147 RCLB

025 5 066 fsin 107 hRCI 148 fsin

026 STO x 0 067 gsin™! 108 x 149 RCL6

027 STO x 1 068 STOS 109 RCL2 150 fsin
028 STO x 2 069 h ABS 110 + 151 x

029 STO x 3 070 EEX 111 RCL A 152 +
030 R/S 071 6 112 + 153 gsin™!

031 fH <« 072 CHS 113 RCLO 154 .

032 fP<«—S 073 gx >y 114 - 155 5§

033 STO1 074 GTO3 115 RCLE 156 6

034 R/S 075 RCLS 116 — 157 6

035 fH <« 076 3 117 3 158 7

036 STO?2 077 6 118 + 159 +

037 R/S 078 0 119 gFRAC 160 RCL 6

038 fH <« 079 — 120 STO 4 161 fcos

039 STO3 080 STO + 4 121 fLBLS 162 —

040 fP<«~—>S 081 GTO1 122 fGSB2 163 RCLB

041 h RTN 082 fLBL3 123 STO S 164 fcos
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165
166
167
168
169
170
171
172
173
174
175
176
177
178

RCL 7
f sin

RCLE

STO 8
h ABS
EEX
7

CHS

gx >y
GTO 6
RCL 8

179
180
181
182
183
184
185
186
187
188
189
190
191
192

STO + 4
GTO S
fLBL 6
RCL 4

g > H.MS
h RTN
fLBL 2
RCL C

193
194
195
196
197
198
199
200
201
202
203
204
205
206

0
0

RCL 4
+

STO 9
RCL 3
RCL 1
+

RCL 2

RCL 2

X

207
208
209
210
211
212
213
214
215
216
217

RCL3

RCL 1

RCL 9

RCL 2

h RTN

 
2. Store the constants:

A (longitude in decimal degrees, positive if W of Greenwich, negative if E),

¢ (latitude in decimal degrees, negative if S), STO B

STO A

AT (reduction from UT to ET, in seconds), STO C
 
3. Enter GST at 0» UT (in H.MS format) for required day; press A.

Enter o on day -1 at O* ET (in H.MS format); press R/S

a on required day; press R/S

aon day +1; press R/S

3 on day -1 at O ET (in D.MS format); press R/S

3 on required day; press R/S

d on day +1; press R/S
 
4. To obtain the time of rise (UT, in H.MS format), press B.

To obtain the time of transit, press C.

To obtain the time of set, press D.
 
Note: The declinations are not needed if only the time of transit is required.

The times of rise and set are based on the value 2 = —-0° 34’ (i.e., the zenith

distance, allowing for refraction at the horizon, is z = 90° 34").
 

Test: GST at O* UT on 1977, February 15 is 92 39m 325704, and AT = 47s.6.

Find the time at which Mercury rises, and the time of transit on that date for an

observer on the Greenwich meridian, » = 0°, at a latitude of +51°.5, given the

following positions for Mercury at O* ET:

1977, February 14

The programme gives:

Rise at 6" 39m 34s.5 (The chart in the HBAA gives 6" 40™ approximately.)

Transit at 102 55m 0559 (The AE gives 10" 55m 065).

a = 20 27m 325,44

a = 20h 33m 38s.55

a = 207 39m 47s.31

8 = -20°22"25".6

8 = -20°07"09".4

8 = -19°50" 35”9
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(42) HP-25
To compute the approximate time, in minutes, that Mercury or Venus rises before

the Sun, or sets after it, at the observer’s latitude.
 

1. Enter the programme:

01 RCL3 17 RCLO 33 RCLS Register contents:
02 fsin 18 x 34 gx=0 R, sing

03 RCLO 19 CHS 35 GTO 40 R, cose
04 x 20 RCL7 36 CLX R; a; a - a (planet)
05 CHS 21 - 37 STOS R;3;h
06 RCL6 22 RCL1 38 R ¢ R, 3 (planet)
07 - 23 = 39 GTO 42 R; Flag
08 RCL1 24 RCL4 40 R ¥ R 0.014 54 (sin50")
09 = 25 fcos 41 CHS R; 0.009 89 (sin34")

10 RCL3 26 - 42 6
11 fcos 27 gcos! 43 0

12 = 28 RCL3 44 x
13 gcos™! 29 - 45 +

14 STO?3 30 4 46 GTO 00
15 RCL4 31 x
16 fsin 32 RCL2
 

2. Switch to RUN, f PRGM, f FIX 0.

Enter constants:

¢ (observer’s latitude) in D.MS format, g - H,fsin, STO 0

f last x, f cos, STO 1

0.014 54 STO 6

0.009 89 STO 7

3. Is interval before sunrise required? If yes, key 1, STO S. (This flag will be

cleared automatically at lines 36 and 37.)

Or, is interval after sunset required? If yes, key 0, STO 5 (a safety measure to

ensure flag is clear).

4. Enter data, referred to O® ET on day required, in H.MS format:

a(®,g—>H,STO2

8®,g—>H,STO3

o (planet), g - H, STO -2

8 (planet), g —> H, STO 4

Take care when a &~ 24h; see Step 5.

5. Press R/S. The display will show the required interval, in minutes. If the result

is negative, add 1 440m™,

6. For new case return to Step 3.

Test 1: During May and June, 1977, Mercury was a ‘morning star’. Find the

time, in minutes, at which Mercury rises above the E horizon before the Sun, at

latitude N 51° 20’ 56”.3 on 1977, June 2, given the following data for O» ET:

a(® = 4h 39m 12535 3O = +22°08'28".7

a (Mercury) = 32 03m 06s.15 3 (Mercury) = +13°55'44".0

Result: +43m, i.e., Mercury rises 43™ before the Sun. (The chart in the BAA

Handbook shows approximately 40™, but this is for N 52°.)
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Test 2: Given the following data for O* ET on 1977, February 6, find the interval

in minutes between sunset and the setting of Venus, at latitude N 52°:

a(® = 2112 18m™ (8s.88 8§ ® = -15°42'54".0

a (Venus) = 0" 10™ 08s.30 3 (Venus) = + 2°53742".2

Result: -1 171™ (= -19" 31m), obviously impossible. Add 1440™ (see Step 5). The

correct result is now displayed, 269™ (= 429m), Alternatively, because o (Venus)

is near 24", it could be entered as 24" 10™ 08s.30, in which case the correct result

would be obtained directly. (The BAA Handbook chart gives approximately

4h 32m)
 

(43) HP-25
To compute the time (ET) of conjunction of two planets, and their angular separation.

The HP-67 programme (44) as devised by Jean Meeus is ideal for this purpose.

The same calculation can be carried out with the HP-25 but cannot be entirely

committed to the programme memory. Thus, some manual computation must be

performed.
 

1. Enter the programme:

01 RCL4 18 x 35 + Register contents:

02 RCL2 19 + 36 g NOP

03 - 20 RCL4 37 RCL6 R, 2(R3)/Re - Ry

04 ENT 4 21 RCL2 38 fx>y R, a; — a,, day -2

05 ENT 4 22 + 39 GTO43 R, ¢; — a,, day -1

06 2 23 RCL3 40 1 R; @, — ay, day O

07 x 24 2 41 STO + 7 R4 a; — a,, day +1

08 RCLS 25 x 42 GTO 49 R; a; — a,, day +2

09 - 26 - 43 RCLO R¢ 107°

10 RCL1 27 RCLO 44 2 R; 0

11 4+ 28 X 45 4

12 1 29 + 46 x

13 RCLO 30 RCLO 47 fH.MS

14 gx? 31 x 48 GTO 00

15 - 32 2 49 RCL7

16 6 33 =

17 = 34 RCL3
 

2. Switch to RUN, f PRGM, f FIX 4.

Clear R; and enter constant:

0, STO 7; 1, EEX, 9, CHS, STO 6.

3. Enter 5 data points for the RA of the first planet in R, to R;, e.g., enter RA

at O" ET for day -2 in H.MS format, g - H, STO 1, and so on.

4. Enter the 5 data points for the second planet, deducting each entry from the

relevant memory store R, to R;, €.g., enter RA at O* ET for day -2 in H.MS format,

g > H, STO -1, and so on.

5. Press: 0, STO O, RCL 3, *2, x, RCL 2, RCL4, -, —, STO + 0, R/S.

 

 

 

212



 

6. When the programme has run, the display will show either the integer 1.000 0

or the time of conjunction in H.MS format. If the former, proceed as follows:

R ¥, R ¥, R {, return to * in Step 5 and repeat the remainder of that

instruction.

After the second run, the display will show either the integer 2.0000 or the time

of conjunction (R, is keeping a count of the programme runs). If the former,

repeat the process as above (i.e., R ¥, R }, R {, and return to *). Continue in

the same fashion until either the time of conjunction is displayed or the integer

8.0000 (i.e., eight programme runs, which is unlikely). There is no point in perform-

ing more than 8 runs as the difference is by now so small as to be insignificant

(pressR ¥,R ¥,R | toseeit). In this extreme case, press: RCL 0, 24, x, f H.MS

to obtain the time of conjunction.

Do not switch off at this stage if the angular separation of the two planets is also

required.
 

7. Amend the programme. While still in the RUN mode, key GTO 35, switch

to PRGM,key GTO 00, switch to RUN, tf PRGM.
 

8. Return to Step 3 and repeat the data entry process for the dec. points of the

first planet, commencing with day -2.

9. Repeat Step 4 for the declinations of the second planet.

10. Do not repeat Step 5.

Press RCL 0, R/S.

The amended programme will run and display the angular separation of the

two planets at the time of conjunction, in decimal degrees. Press f H.MS for the

separation in degrees, minutes and seconds.

A positive result indicates that the first planet lies N of the second.

Test: Find the time of conjunction and angular separation of Venus and Mars

on 1977, May 13, given the same data for RA and dec. as listed in Programme 44

for the five days 11 to 15 May.

Resuit: The time of conjunction is 17? 55m 51s (on 1977, May 13) (given after the

7th programme run) and the angular separation is 1° 17’ 29” (Venus lying N of

Mars). The AE entry gives the time of conjunction as ‘18 hrs, Venus 1°.3 N of Mars’.

Note: You can, if you wish, now check these results and find the RA and dec. of

the two planets at the time of conjunction. Except for the last line (f H.MS) the

5-point interpolation programme for the HP-25 (Programme 30) is exactly the

same as lines 01 to 35 of the conjunction programme, which we have already

terminated at line 36 by changing the original NOP instruction to GTO 00 (in

Step 7 above).

In other words, the 5-point interpolation programme is already in the calculator

memory ready for use, except for the last line which we can enter manually.

First, enter the 5 RA points for Venus in R, to R;. The interpolation period is

already in R,. Press RCL 0 to bring it into the X-register, then R/S. The display

will show the RA of Venus at the time of conjunction, in decimal hours. Press

f H.MS and note the RA (0" 47m™ 18s),

Now enter the S RA points for Mars, again in R; to R;. RCL 0 for the interval,
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press R/S. At the end of the run press f H.MS and confirm that the RA of Mars is

the same as that for Venus, 0h 47m 18s, It is.

Enter the 5 declination points for Venus in R, to R;, RCL 0, R/S. At the end of

the run press STO 6.

Enter the 5 declination points for Mars in R, to R;, RCL 0, R/S. At the end of

the run press STO 7, RCL 6, x <~ —y, —, f H.MS, and confirm that the angular

separation at conjunction is the same as that already computed, +1° 17’ 29", Itis.

Thus we confirm that the conjunction takes place at 172 55m 51s on 1977, May 13,

when the RA of both Venus and Mars is O 47™ 18s, Venus lying N of Mars, and

the angular separation between the two planets is 1° 17 29”. For the dec. of Venus,

RCL 6, fH.MS. It is +5°05’'48”. For the dec. of Mars, RCL 7, f H.MS. It is

+3°48'19".
 

(44) HP-67
(a) To compute the time (ET) of conjunction of two planets, and their angular

separation.

(b) To compute the time, in minutes, that Mercury or Venus rises before the Sun, or

sets after it, based on the ephemeris positions for 0® ET.
 

1. Load the programme from a magnetic card:

001 fLBLA 029 STO2 057 fH <« 085 DSP 4
002 fH <« 030 3 058 STO-4 086 O
003 STO1 031 R/S 059 5 087 STQO
004 DSPO 032 fH <« 060 R/S 088 8
005 2 033 STO3 061 fH <« 089 hSTI
006 R/S 034 4 062 STO-5 090 RCL3
007 fH <« 035 R/S 063 fP<«—S 091 fLBL2
008 STO?2 036 fH <« 064 1 092 2
009 3 037 STO4 065 R/S 093 x
010 R/S 038 5 066 fH <« 094 RCL2
011 fH <« 039 R/S 067 STO-1 095 RCL 4
012 STO3 040 fH <« 068 2 096 -
013 4 041 STOS 069 R/S 097 =+
014 R/S 042 fP<«—S 070 fH « 098 STO + 0
015 fH « 043 1 071 STO-2 099 fGSB3
016 STO4 044 R/S 072 3 100 fx=0
017 5 045 fH <« 073 R/S 101 GTO1
018 R/S 046 STO-1 074 fH <« 102 fDSZ
019 fH <« 047 2 075 STO-3 103 GTO2
020 STOS 048 R/S 076 4 104 fLBL1
021 fP<«—S 049 fH <« 077 R/S 105 RCLO
022 1 050 STO-2 078 fH « 106 2
023 R/S 051 3 079 STO-4 107 4
024 fH <« 052 R/S 080 5 108 x
025 STO1 053 fH <« 081 R/S 109 g—> H.MS
026 2 054 STO-3 082 fH « 110 f-x-
027 R/S 055 4 083 STO-5 111 RCLO
028 fH <« 056 R/S 084 fP<«—S 112 STOA
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113 fP«—S 139 RCL4 165 RCLA 191 CHS
114 RCLA 140 RCL2 166 x 192 .
115 STOO 141 + 167 CHS 193 0
116 fGSB3 142 RCL3 168 . 194 0
117 g— H.MS 143 2 169 0 195 9
118 hRTN 144 x 170 1 196 8
119 fLBL3 145 - 171 4 197 9
120 RCL4 146 RCLO 172 5 198 -
121 RCL2 147 x 173 4 199 RCLB
122 - 148 -+ 174 - 200 —
123 ENT 4 149 RCLO 175 RCLB 201 RCL38
124 ENT 4 150 x 176 — 202 fcos
125 2 151 2 177 RCL7 203 -
126 x 152 = 178 fcos 204 gcos™!
127 RCLS 153 RCL3 179 — 205 RCL7
128 - 154 + 180 gcos™? 206 -

129 RCL1 155 hRTN 181 STO7 207 4
130 + 156 fLBLE 182 R/S 208 x
131 1 157 hSF2 183 fH « 209 RCL6
132 RCLO 158 fLBLD 184 STO-6 210 hF?2
133 gx?® 159 fH <« 185 R/S 211 CHS
134 - 160 STO6 186 fH « 212 6
135 6 161 R/S 187 STO 8 213 0
136 — 162 fH <« 188 fsin 214 x

137 x 163 STO7 189 RCL A 215 +
138 + 164 fsin 190 x 216 hRTN
 
2. (a) For the time of conjunction of two planets:

Enter 5 positions of both planets at O® ET in the following order:

First planet a day -2, press A

a day -1, press R/S

a day 0, R/S

aday +1, R/S

aday +2, R/S

dday -2, R/S

dday -1,R/S

dday O,R/S

3 day +1, R/S

d day +2, R/S

Second planet o« day -2, R/S

aday -1,R/S

aday O, R/S

aday +1, R/S

aday +2, R/S

dday -2,R/S

dday -1, R/S

dday O, R/S

3 day +1, R/S

8 day +2, R/S
 

Enter the coordinates in H.MS and D.MS format. At each data-entry point a cue

number, from 1 to 5, is displayed so that you know exactly where you are in the
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input stage. When the programme has run the display first shows the correction

to the central time, in H.MS format, to obtain the instant of conjunction in a,

flashed at line 110, and the programme then continues, finally displaying AS,

positive if the first planet lies N of the second one.

3. (b) For the time, in minutes, that Mercury or Venus rises before the Sun, or

sets after it:

First, store sing in A, cos¢ in B.

Enter « © (H.MS format), press D (for rise) or E (for set)

8 ® (D.MS format), press R/S

a (planet) (H.MS), R/S

8 (planet) (D.MS), R/S

The display will show the required time interval, in minutes. If negative, add 1440.

Test for (a): It is noted from the ephemeris that in mid-May 1977 Venus and

Mars were close together in RA, Mars ‘overtaking’” Venus some time between

02 ET on May 13 and May 14. Find the exact time of conjunction, and the angular

distance between the two planets at that time, given the following data:

Venus, O ET May 11, 0Oh 41m™ 395,61 +4° 58’ 36”.3

 

 

12, 0h43m 385,19 5°00"29".8
13, 0r 45m 415,94 5°03"13".8
14, 0h 47m 505.66 5°06"46”.8
15, 0h 50™ 04s.16 511" 06”.9

Mars, O ET May 11, 0h 39m 33593 +2°58"34".2
12, 0n42m 22s75 3°16"43"4
13, Oh45m 11s.55 3°34'49".8
14, 0 48m 00s.33 3°52'53".1
15, 0h 50™ 495,09 4°10"53".1

The correction to the central time is flashed first, and, as the central time is

0h ET on May 13, the time of the event will obviously be the same in ET, 172 55m 51s,

The distance between the two planets is given as +1°17’29”; the result being

positive, this indicates that at conjunction Venus lay to the N of Mars (in the N

hemisphere Venus was above Mars).

Test for (b): Apply Test 2 for Programme 42, the HP-25 version of this section

of the programme.

The result given is —1 171™. According to the instructions, add 1440 to find the

correct value, 269™ (= 4" 29m), Thus, on 1977, February 6, at a latitude of 52° N,

Venus set 4" 29m after sunset.
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(45) HP-25
To compute the Position Angle of the Bright Limb of the Moon. (Within a few hours

of Full Moon, accuracy diminishes to +0.5.)
 

1. Enter the programme:

01 g—>H 15 fcos 29 fcos Register contents:
02 R/S 16 RCLO 30 RCL1 Ry3 O
03 g—H 17 fsin 31 fsin Ria O -a(
04 STOO 18 X 32 x R, 4 (
05 x<~—y 19 RCLO 33 x<—y

06 R/S 20 fcos 34 -

07 g—H 21 RCL2 35 gtan!
08 - 22 fsin 36 gx>0
09 1 23 X 37 GTOO00
10 5 24 RCL1 38 3
11 X 25 fcos 39 6

12 STO 1 26 x 40 0
13 R/S 27 - 41 +
14 STO?2 28 RCLO 42 GTO 00
 

2. Switch to RUN, f PRGM,f FIX 1.

There are no constants to be entered.

3. Enter: o« ® in H.MS format for time when PABL required

R/S

8 ® in D.MSformat (CHS if southern dec.)

R/S

a(
R/S

8 (
R/S

4. The display shows the PABL to one decimal place at the required time.

For new case, return to Step 3.

Test: Find the PABL of the Moon at 0" ET on 1978, September 23, given:

a® = 111 58m 35520 8©® = + 0°09'10".7

a( = 5h01m™ 485,959 (= +17°32'39".85

The display gives the required PABL as 85°.5.

The AE gives the same value (with fraction illuminated = 0.62). But on 1978,

September 18, when the fraction illuminated is 0.98, the programme gives PABL =

71°.5, while the AE gives 71°.4.
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(46) HP-67

(a) To compute the angular distance between two stars;

(b) To compute the Position Angle of the Bright Limb of the Moon;

(c) Altitude of a star.

1. Load the programme from a magnetic card:

001 fLBLA 027 fsin 053 fcos 079 fLBL2

002 fH <« 028 x 054 RCL3 080 R/S

003 STO1 029 + 055 fsin 081 fH <«

004 R/S 030 gcos™? 056 x 082 STO1

005 fH <« 031 h RTN 057 RCL2 083 R/S

006 STO?2 032 fLBLB 058 fcos 084 fH <«

007 R/S 033 fH <« 059 x 085 1

008 fH <« 034 R/S 060 - 086 5

009 STO -1 035 fH <« 061 RCL1 087 x

010 R/S 036 STO 1 062 fcos 088 fcos

0ll fH <« 037 hx<«<—>y 063 RCL2 089 RCL1

012 STO3 038 R/S 064 fsin 090 fcos

013 RCL1 039 fH <« 065 x 091 x

014 1 040 - 066 hx<«<—>y 092 RCLO

oL1s 5 041 1 067 g—>P 093 fcos

016 x 042 5 068 hR ¢ 094 x

017 fcos 043 x 069 fx>0 095 RCL1

018 RCL3 044 STO?2 070 h RTN 096 fsin

019 fcos 045 R/S 071 3 097 RCLO

020 x 046 fH <« 072 6 098 fsin

021 RCL2 047 STO3 073 0 099 x

022 fcos 048 fcos 074 + 100 -+

023 x 049 RCL1 075 h RTN 101 gsin™?

024 RCL2 050 fsin 076 fLBLC 102 GTO2

025 fsin 051 x 077 fH <«

026 RCL3 052 RCL1 078 STOO
 

2. For the angular distance between two stars:

Enter a, (H.MS), press A

3, (D.MYS), press R/S

ay (H.MS), R/S

3, (D.MS), R/S

The distance is given in decimal degrees.
 

3. For the PABL of the Moon:

Enter a ® (H.MS), press B

8 ® (D.MS), press R/S

a( (H.MS), R/S

3 (D.MS), R/S

Angle P is given in decimal degrees.
 

4. For the altitude of a star:

Enter o (D.MS), press C (¢ = observer’s latitude)

8 (D.MS), press R/S

H (H.MS), R/S (H = hour angle)

Angle a, the altitude of the star at the observer’s latitude, is given in decimal

degrees.
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If ¢ remains the same for a second calculation, introduce only the new & and H,

and each time press R/S (not C).
 

Test for (a): Find the angular distance between two stars whose equatorial

coordinates are

a,= 2h 19m 8,= 18° 18’

ay= 2003m  §,= 21°18’
Result: the distance is 4°.81.

Test for (b): At 0 on 1978, September 23 the coordinates of the Sun and Moon

are

 

a(® = 11h58m 35520 §® = + 0°09'10".7

a( = 5001m48s959 (= +17°32"39".85

Run the programme and find the PABL of the Moon is 85°.5. (The AE gives the

same value.) The difference between UT and ET can be ignored.

Test tor (c): At the observer’s latitude of +52° 03’ 26”.76 find the altitude of a

star whose declination is —5° 18’ 13”.8 and whose hour angle is —1» 17™ 35s.16.

Result: a = 30°.30.

 

 

(47) HP-67

Calculation of the illuminated fraction of the Moon’s disc.
 

1. Load the programme from a magnetic card:

001 fLBLA 026 2 051 fINT 076 2
002 1 027 x 052 RCL?2 077 +
003 5 028 STO 3 053 1 078 RCLO
004 8 029 RCL2 054 -+ 079 4
005 2 030 5 055 3 080 -
006 . 031 f+/x 056 0 081 fINT
007 1 032 gx<y 057 . 082 +
008 0 033 GTO2 058 6 083 fLBL9
009 1 034 1 059 0 084 6
010 5 035 STO-1 060 0 085 9
011 gx>y 036 1 061 1 086 4
012 hSF2 037 2 062 x 087 0
013 hx<—>y 038 STO + 2 063 fINT 088 2
014 ENT 4 039 fLBL2 064 + 089 5
015 fINT 040 3 065 RCL 3 090 .
016 STO1 041 6 066 -+ 091 5
017 - 042 5 067 hF?2 092 -
018 EEX 043 2 068 GTO 9 093 RCLC
019 2 044 5 069 RCL 1 094 -
020 x 045 STOC 070 EEX 095 STO9
021 ENT 4 046 EEX 071 2 096 3
022 fINT 047 2 072 — 097 5
023 STO?2 048 - 073 fINT 098 9
024 - 049 RCL1 074 STOO 099 9
025 EEX 050 x 075 - 100 9
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2. Enter the time (ET) in YYYY.MMDDdd format. (dd is the decimal fraction

of a day, so 122 ET = 50.) Press A.
 

3. The display gives the illuminated fraction of the Moon’s disc, accurate to

+0.01.

The programme does not work for dates before March 1 of the year zero.
 

Test: Find the illuminated fraction on 1978, December 21 at O" ET. Run the

programme and obtain 0.67. (The AE gives 0.66 for 0" UT).
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(48) HP-67
Lunar eclipses.

1. Load the data from magnetic card A:

R, 2299 161 Sy 1867 216.25

R, 29.105 356 08 S, 36 524.25

R;25.816 918 06 S; 13.777 4

R, 30.670 506 46 Se 1720995

R; 216.637 8 S, 122.1

R, 138.94 Ss 365.25

R, 1.847 69 Se 30.6001

R; 2 415 036.025 A 29.530 588 68

B 12.368 267

I 0.717 28

2. Load the programme from magnetic card B:

001 fLBLA 039 4 077 — 115 RCLD

002 1 040 1 078 - 116 2

003 9 041 2 079 g10* 117 x

004 O 042 x 080 x 118 fsin

005 O 043 - 081 h ABS 119 6

006 - 044 RCLD 082 1 120 2

007 RCLB 045 2 083 . 121 —

008 x 046 x 084 8 122 +

009 2 047 fsin 085 2 123 RCLC

010 - 048 8 086 1 124 fsin

011 fINT 049 . 087 6 125 .

012 STO9 050 8 088 x 126 1

013 fLBLO 051 — 089 CHS 127 7

014 1 052 + 090 RCL7 128 4

015 STO + 9 053 RCLC 091 + 129 x

016 RCL?2 054 fsin 092 RCLD 130 +

017 RCLY9 055 2 093 fcos 131 RCLE

018 x 056 . 094 3 132 2

019 fP<«—S 057 2 095 0 133 x

020 RCLS 058 6 096 — 134 fsin

021 fP<«—S 059 5 097 + 135 9

022 + 060 x 098 fx<O 136 7

023 STOC 061 + 099 GTOO 137 —

024 RCL3 062 RCLE 100 DSP2 138 -

025 RCL9 063 2 101 f-x- 139 fINT

026 X 064 x 102 RCL 8 140 STO 1

027 RCL6 065 fsin 103 RCL9 141 RCLO

028 -+ 066 . 104 RCLA 142 gx >y

029 STOD 067 1 105 x 143 GTO 1

030 RCL4 068 3 106 -+ 144 hx<—>y

031 RCL9 069 x 107 RCLD 145 fP<«—S

032 x 070 + 108 fsin 146 RCLO

033 RCLS 071 fsin 109 . 147 -

034 + 072 hRCI 110 4 148 RCL1

035 STOE 073 RCLD 111 O 149 =

036 RCLD 074 fcos 112 6 150 fINT

037 fsin 075 3 113 X 151 fP<«—>S

038 . 076 6 114 - 152 STO + 1
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153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

4

fINT

STO -1

1

STO + 1

fLBL 1

RCL 1

fP<~—S

RCL 6

STO 2
RCL 7

RCL 8

fINT
STO 3

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

RCL 2 189

RCL 3 190

RCL 8 191

X 192

fINT 193

STO D 194

- 195

RCL9 196

- 197

fINT 198

STOE 199

RCL 2 200

RCL D 201

- 202

RCLE 203

RCIL9 204

X 205

fINT 206

EEX

STO 4
RCL 5
RCLE
gx<"y
GTO 2
1
2

fLBL 2
1

STOC
EEX
2

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

STO + 4

fvx

RCLC

gx >y
GTO 3

STO + 3
fLBL3
RCL 3
RCL 4

fP<«<—S

DSP 4

R/S

GTOO

 

3. Enter the year (YYYY). Press A.

The programme stops to flash (line 101) the magnitude of the first umbral eclipse,

and ends by displaying the date in YYYY.MMDD format.
 

4. For the next umbral eclipse, press R/S.
 

Test: Find the date and magnitude of the first umbral eclipse for 1978. Run the

programme and obtain:

Magnitude = 1.45

The AE gives the magnitude as 1.457.

Note: The first part of the programme may, on occasion, run for some time, as the

conditions at each successive Full Moon are tested. Penumbral eclipses are not

given.

Date = 1978, March 24 (1978.03 24).

 

(49)
Positions of the Galilean satellites (I-1V) of Jupiter.

HP-67

 

1. Load the data from magnetic card A:

R, 365.25

R, 30.600 1

R; 694 025.5

R; 0.083 085 3

R; 225.328

R 0.902 517 9

R, 5.5372

E 221.647

S, 203.405 863

S: 101.291 6323

S, 50.234 516 87

S321.487 980 21

S, 84.550 61

S; 41.501 55

Ss 109.977 02

S; 176.358 64

S5 0.985 600 3

Sy 358.476
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2. Load the programme from magnetic card B:

001
002
003
004

fLBL A 056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110

hSTI
fP<«—S

RCLO
X
RCL 4
__+_

STO A
hRCI
RCL 1
X
RCL 5
+

STOB
hRCI
RCL 2
X

RCL 6
+

STO C

hRCI

RCL 3

X

RCL 7
+

STOD

hRCI

RCL 8

X

RCL 9

fP<«—>S
_+_

STO 1

hRCI

RCL 6

X

RCL 7
+

hx «<—>1

RCL 8
X

RCLE
+

STO 2

RCL 1

2
X

f sin

5

0

RCL 1
fsin

5
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111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

186
187
188
189
190
191
192
193
194
195
196
197
198
199

201
202
203
204
205
206
207
208
209
210
211

213
214
215
216

218
219

\
O

0
0

\
O

*

f—x-

RCL D
f GSB 4
RCL 3

f GSB 6

A
N

A
W

h RTN
f LBL 4
hRCI

RCL 3

RCL 1

fP<«—>S

h RTN

fLBL 6

fP<«—S

sin

h RTN



 

3.Enterthedate in YYYY.MMDDdd format. (dd is the decimal fraction of a

day, so 12" UT = 50.) Press A.

4. WTlfiéird'iisf;;fi;figsl1es, in turh, the X coordinate of Satellites I-111, and ends by

displaying the X coordinate of IV. The coordinates are given with respect to the

centre of the disc of Jupiter, and are in units of the planet’s equatorial radius (n2¢

the diameter). Positive values indicate that the satellite(s) are W of Jupiter, negative

values E.
 
Note: Valid only for dates in the Gregorian Calendar. The results are good, but

not rigorous. (See J. Br. Astron. Assoc. 72, 80 (1962).)

"Test:Find the positions of Sateliites -1V at 0" UT on 1978, September 13. Run

the programme and obtain:

[ =574r Il =-920r Il = 1473 r IV =23.51r

If the equatorial diameter is known from the ephemeris, these values can be

converted into seconds of arc by multiplying by id.

 

 

(50) HP-25

Transits and elongations of Polaris, to -2} minutes.

1. Enter the programme:

01 RCLO 13 GTO 16 25 2 Register contents:

02 RCL1 14 x<—y 26 4 R, Day Number; LTT (UT)

03 + 15 - 27 + R; Days to end oflast

04 RCL2 16 RCL6 28 ENT 4 month
05 x 17 + 29 ENT 4 R, ST gain over MT

06 RCL3 18 RCL4 30 RCLS R, ST O UT January 0

07 + 19 g—H 31 x R, a (Polaris) (H.MS)

08 2 20 x «<—y 32 - R; MT loss over ST

09 4 21 - 33 STOO R ¢ (hours)
10 x<—y 22 gx <0 34 fH.MS R; 1 sidereal day

11 fx>yp 23 GTO 25 35 GTO 00
12 GTO 14 24 GTO 28
 

2. Switch to RUN, f PRGM,f FIX 4.
 

3. Enter constants:

0.065 709 61, STO 2 (Daily rate of gain of ST over MT)

GST at O" UT on January 0 of year, STO 3 (Decimal hours)

Mean RA of Polaris on June 30 of year, STO 4 (H.MS format)

0.002 730 434, STO 5 (Hourly rate of MT loss over ST)

9, STO 6 (In decimal hours, + if E, — if W of Greenwich)

5.983 617 398, STO 7 (} sidereal day, in decimal hours of MT)

4. Enter day of month, STO 0.

Enter, from table, number of days to the end of last month, STO 1.

 

 

5. For time of local upper transit of Polaris on that day, press R/S.

The display gives the required UT of transit, in H.MS format.
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6. For next W elongation: RCL O, RCL 7, +, f H.MS

For last E elongation: RCLO, RCL7, -, fH.MS

For next lower transit: RCLO,RCL 7,2, x, +, f HMS

For last lower transit: RCLO,RCL 7,2, x, —, fH.MS

For next E elongation: RCLO, RCL 7, 3, x, +,f HMS

For last W elongation: RCLO, RCL7, 3, x, -, fH.MS

If, in Step 6 operation, the display shows a negative value, key: g - H, 24, +,

f H.MS. The resulting time refers to the previous day; if the display exceeds 24",

key: g — H, 24, —, f H.MS. The resulting time refers to the next following day.

Previous month Dec Jan Feb Mr Ap May Jun Jul Aug Sep Oct Nov

Ordinary year 0 31 59 9 120 151 181 212 243 273 304 334

Leap year 0 31 60 91 121 152 182 213 244 274 305 335

Note: The programme gives the UT at which the events occur on the observer’s

own meridian, but the results are not rigorous. However, for the purpose of setting

up or checking the alignment of an equatorial head of a telescope, according to the

recommended methods outlined in Sidgwick’s Amateur Astronomer’s Handbook,

Chap. 16, or Norton’s Star Atlas, 16th Edn., p 114, the adjustments may be safely

carried out within +10 minutes of transit and elongation, and the accuracy

achieved by the programme is good enough to put the displayed time near the

centre of this time span.

 

 

 

Test: Find the approximate local upper transit time of Polaris for 1976, October 23

at a location of 0° 35’ 54”.4 E of Greenwich, given ST at O* UT on January O for

that year was 6.586 474 722, and the mean place for Polaris at June 30 was

2h 08m 43s.2, The result is 0 00™ 12s UT. The next W elongation is at 5» S9m 13s;

the next lower transit is at 11" 58™ 14s; the next E elongation is at 172 57m 15s,

Now, if another } sidereal day is added, we obtain 232 56™ 165, i.e., there are two

upper transits on 1976, October 23 at this location. (In this example, the times given

by the programme are in error by —2™ 19s, within the claimed accuracy limit.)
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Chebyshev Coefficients

It was mentioned in Chapter 6 that interest is beginning to be shown by national

almanac offices in providing and using data in a form other than the traditional

tabulated ephemerides in large annual publications. Where users are able to

provide simple computing facilities, the new tables have the advantage that the

cost of publishing can be kept low; also, data in the form of Chebyshev coefficients

provide a means of computing accurate ephemerides for, say, the positions of the

satellites of the giant planets, which would take up a disproportionate amount of

space in a normal tabulated annual ephemeris. There are drawbacks, however, as

pointed out in Chapter 6.

In this early experimental period, the versions which have already been published

by the USNO and the Bureau des Longitudes are broadly similar in concept, but

the method of computation is different. In the one, the coefficients are used in the

order a, to an, while the other works in the reverse order, from an to a,, so it is

not possible to give a single programme which is compatible with both publi-

cations. What I have done, therefore, is to give two HP-25 programmes, one

suitable for each publication, and one HP-67, which is valid only for the French

publication.

(51) HP-25

A programme for use with the Connaissance des Temps, nouvelle série, employing

Chebyshev coefficients.
 

1. Enter the programme:

01 RCLO 18 R/S 35 RCLS Register contents:

02 - 19 x<—>y 36 x Ry ¢t

03 RCL6 20 R ¢ 37 2 R, DT
04 + 21 RCL4 38 x R, 1,2, 3, etc.
05 2 22 x 39 + Rg3) for cosf

06 x 23 + 40 STO4 R, cos26
07 RCL1 24 STO 6 41 RCL2 R,/ cos36, etc.
08 — 25 RCL7 42 R/S R 0; frac. ¢; f(x)

09 1 26 gx=0 43 x<—>y R; ., »— 1, etc.

10 STO3 27 GTO 48 44 R ¥
11 STO-7 28 1 45 x
12 - 29 STO + 2 46 STO + 6
13 STO4 30 STO-7 47 GTO 25
14 STOS 31 RCL3 48 RCL6
15 CLx 32 CHS 49 fFIX4
16 R/S 33 RCL4
17 RCL2 34 STO3
 

2. Switch to RUN, f PRGM.
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3. Enter constants for relevant time period from publication:

t,, STOO
DT, STO 1

4. fFIXO

0,STO 6

1,STO 2

n, STO 7 (highest number for a in left-hand column)

Enter integral part of ¢ (time for which f (x) is required)

ENT4

Enter decimal fraction of ¢ (if any), STO 6, R ¥, (if ¢ is an integer, ignore this

instruction; zero has already been stored in Ry).

 

 

5. Press R/S; the programme will halt to display 0.

Key in ay and press R/S; the programme will stop again to display 1.

Key in a, and press R/S.

Continue to key in the coefficients as indicated by the cue numbers displayed by

the X-register each time the programme stops.

When the last coefficient an has been entered, the programme will branch at the

conditional test (line 26) because the content of R, is now zero, and the programme

will end by displaying the required f (x) to 4 decimal places. If it should be required

again, f (x) is stored in Rg.
 

6. For f(x) at another time ¢ in the same time period covered by the table, return

to Step 4; otherwise, for new case, return to Step 3.
 

Note: When using some tables, the value of f (x) may be given in seconds of arc;

to convert to degrees, minutes and seconds, if required, key: 3600, -, f H.MS.

In other cases, the value displayed at the end of the programme run may be in

seconds of time; further, this may be a negative value. The user will have to consider

the nature of the quantities displayed and decide how he is to convert them into

the desired standard units (see Test 1).

Test 1: Required to find Apparent GST at O* UT on 1978, October 23. The

Connaissance des Temps, nouvelle série, gives the following table (page A2):

From 16 October to 3 November, O". DT = 18 days

0 7 926.600 9

1 779728.9752

2 -0.005 4

3 0.000 1

4 0.005 4

5

6

 

0.000 3

-0.000 6

7 -0.000 1

The figures on the left are the subscripts for a, to an; the main column lists the

Chebyshev coefficients. From page F2 note that 7,= 289 (16 October) and ¢t = 296

(23 October). From the table heading, DT = 18, while the highest value for n = 7;

a,= 7926.600 9, and so on.
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Enter the data and run the programme. The value of f(x) displayed is

—165 3465.496 6. For the most accurate conversion to hours, minutes and seconds,

proceed manually as follows:

Add the number of seconds in 1 day: 86 400, +

The display is still negative (=78 946.496 6)

So, in this example, add another day, in seconds: 86 400, +

The display is now positive (7 453.503 4)

Now convert: g FRAC, STO 7, flast x, f INT, 3 600, —, f H.MS.

Write down the hours, minutes, and integral seconds: 22 04™ 13s,

RCL 7, f FIX 3.

Write the fractional seconds: 0s.503.

Result: 21 04m 135,503 (The AFE gives the same value).
 

Test 2: The previous test example was worked for O® UT. In practice this would

be unusual, as this value is already tabulated in the normal ephemeris. One would

be more likely to require the GST at, for example, 212 35m 30s UT, and this is

where the programme really comes into its own.

t is entered according to the instructions; in this case it would be 296.899 652 778,

and we would find GST at 211 35m 30s on 1978, October 23 to be 232 43m 165,321,

which is exact.
 

(32) HP-25

A programme for use with the Almanac for Computers (USNQO), employing

Chebyshev coefficients.
 

1. Enter the programme:

01 RCLO 14 RCL2 27 RCL7 Register contents:

02 - 15 RCL3 28 gx=20 R, A4
03 RCL6 16 x 29 GTO 33 R, B
04 RCLO 17 RCL4 30 1 R, 2x
05 = 18 - 31 STO-7 R;
06 + 19 + 32 GTO 12 Ry b,z to by
07 RCL1 20 RCL4 33 RCL3 R,
08 + 21 STOS 34 RCLS Rg?
09 2 22 RCL3 35 - R.;n
10 x 23 STO 4 36 2
11 STO2 24 R { 37 =
12 RCL7 25 R ¥ 38 fFIX6
13 R/S 26 STO3 39 GTOO00
 

Switch to RUN, f PRGM.
 

Enter constants for relevant time period, from publication:

A,STOO

B, STO 1
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4. fFIXCQ.

Enter: 0, STO 3, STO 4, STO 5.

Enter: Highest value for n, STO 7 (highest number in left-hand column).

Integral part of ¢ (time for which f (x) is required), STO 6, f STK.

Fractional part of ¢ (if 7 is an integer, ignore this instruction).
 

5. Press R/S; at first halt, »n is displayed; enter an.

Press R/S; at second halt, n_, is displayed; entre a ,_,.

Press R/S; continue until a, is entered.

Press R/S. The programme will branch at the conditional test (line 28), and will

end by displaying f (x) to 6 decimal places.
 
6. For f(x) at another time in the same time period covered by the table, return

to Step 4; otherwise return to Step 3.
 
Note: f(x) might be displayed in hours, seconds of time, or seconds of arc, etc.

The user will have to refer to the table of coefficients to find out in what units

f (x) is given and if an alternative form is required this can either be keyed manually

after the programme run, or the necessary conversion steps may be incorporated

in the programme after line 38, ending with a GTO 00 instruction.

Test: Required to find apparent GST at O® UT on 1977, September 20, correct

to +0s.01.

Following the instructions in the USNO Circular (155), we find that it is only

necessary to employ coefficients a, to a,, for this degree of accuracy (i.e., the

absolute values of a,, to a3, when summed, are less than 0".000 002 78, so these

coefficients may be ignored). The table in the circular, up to and including ay,, is:

Days 182 to 276 1977, July 1 to October 3

A =475 B = -4.83157895

Apparent GST at O UT

43.433 548 11 7  0.000 000 21 14 -0.000 000 12

3.121 193 71 8 -0.00000022 15 -0.000001 07

-0.000 01 9 0.000 000091 16  0.000 000 06

0.00000008 10 0.00000032 17 -0.000000 21

0.000 000 81 11 0.000 000 91 18 0.000000 13

-0.00000053 12 -0.00000036 19 0.000 001 34

6 -0.00000015 13 0.000000 14 (20 to 33 ignored)

Enter the data according to the instructions at Steps 3 and 4, including » = 19

in R; and 7 = 263 (day 263 of 1977) in R,.

Run the programme; at each halt the cue number displayed indicates the sub-

script of a which is to be entered, e.g., at the first halt 19 is displayed so 0.000 001 34

is entered at this point. When a, has been entered the programme ends by dis-

playing the required apparent GST at 0", in decimal hours, 23.918 035. To convert

to hours, minutes and seconds, key f H.MS and obtain 23" 55m 045.92. The AE

gives the apparent GST for O® UT on 1977, September 20 as 231 55m 045.929. The

error is within the set limit of +0s.01.

The user is reminded that some of the tables of Chebyshev coefficients are

prepared by the USNO for evaluation at O UT or O" ET. Thus, unlike the co-

efficients tabled in the Connaissance des Temps, not all the USNO tables can be

 

wn
m
A

L
W
=

O

229



employed for evaluation of f (x) at a time other than 0", To this extent, therefore,

the American tables might be considered less flexible in use than the French

versions, and usually necessitate the use of a greater number of coefficients in order

to achieve the same degree of accuracy. But, on the other hand, the American

tables are valid over a longer period of time, and in certain applications this may

be a distinct advantage.

(53) HP-67
A programme for use with the Connaissance des Temps, nouvelle série, employing

Chebyshev coefficients. This programme is not suitable for use with the USNO

publication A/manac for Computers.
 

1. Load the programme from a magnetic card:

001 fLBLA 019 hRTN 037 x 055 hSTI
002 STO A 020 fLBLO 038 + 056 (i)
003 hCF3 021 h pause* 039 hRTN 057 fDSZ
004 fGSBO 022 hF?3 040 fLBLE 058 (i)
005 STOB 023 h RTN 041 RCLA 059 RCLE
006 fGSBO 024 GTOO 042 - 060 x
007 fP<«—S 025 fLBLS8 043 2 061
008 STO9 026 RCLD 044 x 062 fLBLS
009 fP<«—S 027 CHS 045 RCLB 063 fDSZ
010 nSTI 028 RCLE 046 = 064 GTO6
011 fLBLY 029 STOD 047 1 065 GTO7
012 fGSBO 030 RCLC 048 STOD 066 fLBL6
013 STO (i) 031 x 049 - 067 fGSB8
014 fDSZ 032 2 050 STOE 068 GTOS
015 GTO9 033 x 051 STOC 069 fLBL7
016 fGSBO 034 + 052 fP<«—=S 070 fGSB8
017 STOO 035 STOE 053 RCL9 *
018 h= 036 (i) 054 fP<«—S h RTN
 

2. Enter ¢,; press A.

Then, during the pauses, enter the following data; the information will be

automatically stored owing to Flag 3:

DT

The highest value for n (restricted to the range 2 to 18)

do

a,, and so on, until

an. After this last value has been entered, = will appear in the display.

3. For each computation in the same period covered by the table, enter ¢. Press E.

Note: If required, after line 070, enter any conversion instructions in the space

marked *, i.e., if the units given by the table are in seconds of arc, enter 3 600, —,

f H.MS, and end with the h RTN instruction; the result will then be obtained in

degrees, minutes and seconds.

 

 

* Or, if you prefer, R/S.
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Test: Find the radius vector of the Sun on 1978, July 2 at 17» 28m (0s.

The table in the Connaissance des Temps is:

From June 0 to 3 July O DT = 33 days

0 1.01557131

1 0.001 406 08

2 -0.000290 24

3 0.000014 38

4 -0.000 007 45

5 -0.000 004 62

6 0.000 000 69

7  0.000 000 81

8 0.00000013

In this case, ¢, = 151 (June 0, table on page F2)

DT = 33

n=2_§

t = 183.727 777 8 (July 2, table on page F2 = 183)

Run the programme and find the radius vector to be 1.016 687 4.
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Occultations

The appendix concludes with programmes for the rigorous calculation of the

occultation of a star by the Moon at any given place. The first, for a normal

occultation, gives the time of the immersion or emersion, the position angle, the

least distance, and the altitude of the star. The second, for a grazing occultation,

gives the northern and southern limits, the time (UT), altitude of the star, and

position angle.

Each of the two types of computation requires two programme cards, but the

data-entry programme is common to both and is entered first. The arrangement of

these three programmesis:

(54) (55)A—Common data input programme.

(54)B —CQccultations.

(55)B —Grazing occultations.

It is assumed that the user will be an experienced observer with a full understanding

of the principles of computation described in the Explanatory Supplement to the AE,

Section 10, and Chauvenet’s Manual ofSpherical andPractical Astronomy, Chap. 10.

Further, that the constants p sing’ and p cos¢’ will already have been determined

from

tane’= [0.993 3054 + (0.11 x 107%h)] tane

p = 0.998 327 07 + 0.001 676 44 cos2¢ — 1078 (352 cosdo — 15.7h)

+ 1078 cosbo

where ¢'= geocentric latitude

¢ = geographic latitude

p = geocentric distance in equatorial radii

h = height in metres above sea level

Thus, for Uccle, in Belgium, where ¢ = +50° 47’ 557.0, » = —4°21'29".2, and

h = 105m, then ¢'= 50°.609986, p = 0.9980098, psine’= 0.771306 and

p cose'=0.633 333.

Similarly, for the observatory at Rainham, Kent, where ¢ = +51°20’ 56”.3,

%= -0°35"54".4, and h = 84 m, then p sine’= 0.777 335 and p cose’'=0.625 863.

After the occultation programmes I have given, for the benefit of those who do

not have ready access to the Explanatory Supplement to the AE, a brief review of the

search technique for occultation predictions, followed by an example for one

morning in August 1978, plus a programme for the reduction of the mean place of

a star to its apparent place at any integral hour of ET. Finally, for those who

prefer to work from the Besselian elements for an occultation, I include, as the last

programme in this Appendix, a programme for computing these elements; they are

not used in the occultation programmes given here, which are rigorous.
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(54) (55)A HP-67

Data entry for occultation programmes 54B and 55B.

1. Load the programme from a magnetic card:

001 fLBLO 049 STO 1 097 STO -1 145 .

002 hCF3 050 fGSB3 098 2 146 9

003 h pause* 051 fP<«—>S 099 STO =1 147 9

004 hF?3 052 STOO 100 RCL D 148 6

005 h RTN 053 RCL8 101 STO3 149 6

006 GTOO 054 fGSB4 102 fP<«—>S 150 4

007 fLBLA 055 RCLS 103 RCL3 151 7

008 fH <« 056 STOE 104 STO + 1 152 1

009 STO A 057 RCL2 105 RCL2 153 8

010 fGSBO 058 fsin 106 STO -1 154 7

011 fH <« 059 hSTI 107 STO -1 155 STO9

012 STOB 060 fP<«~—S 108 2 156 ha«

013 fGSBO 061 fGSB2 109 STO =1 157 h RTN

014 fH <« 062 STO?2 110 RCLE 158 fLBL2

015 RCLA 063 fGSB3 111 STO3 159 RCLD

016 - 064 fP<«—S 112 . 160 fsin

017 1 065 STO2 113 2 161 RCLE

018 5 066 RCL7 114 6 162 fcos

019 x 067 fGSB4 115 2 163 x

020 STOC 068 RCL 4 116 5 164 hRCI

021 fGSBO 069 STOE 117 2 165 —

022 ENT 4 070 RCL 1 118 CHS 166 h RTN

023 fGSBO 071 fsin 119 STOO 167 fLBL3

024 3 072 hSTI 120 3 168 RCLE

025 6 073 RCLO 121 . 169 fsin

026 0 074 STO 1 122 6 170 RCLB

027 O 075 fP<«—=S 123 6 171 fcos

028 —+ 076 fGSB2 124 9 172 x

029 - 077 STO3 125 7 173 RCLE

030 STOO 078 fGSB3 126 9 174 fcos

031 9 079 fP<«—>S 127 STO 4 175 RCLB

032 hSTI 080 STO3 128 fP<«—>S 176 fsin

033 fP<«—>S 081 RCL1 129 1 177 X

034 fLBL1 082 - 130 5§ 178 RCL D

035 fGSBO 083 2 131 . 179 fcos

036 fH <« 084 — 132 0 180 x

037 STO (i) 085 STOE 133 4 181 -

038 fDSZ 086 fP<«—S 134 1 182 hRCI

039 GTO1 087 RCL3 135 0 183 —+

040 RCL9 088 RCL1 136 6 184 h RTN

041 fGSB4 089 - 137 8 185 fLBL4

042 RCL6 090 2 138 5 186 RCL A

043 STOE 091 = 139 STO 4 187 -

044 RCL3 092 STOD 140 RCLO 188 1

045 fsin 093 RCL3 141 x 189 5

046 hSTI 094 STO +1 142 RCLC 190 x

047 fP<«—S 095 RCL2 143  + 191 STOD

048 fGSB2 096 STO-1 144 STOC 192 h RTN

* Or, if you prefer, R/S.
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2. Enter apparent « (H.MS format) of star; press A. During the pauses, enter the

following data, which is read automatically:

Apparent 8 (D.MS format) of star

Apparent GST at 0 UT (H.MS)

The central hour 7, (ET), an integer

AT = ET - UT, in seconds of time

a, of the Moon at time 7, (H.MS)

Ay

ag

0
Sy
O3
T

T

T3

T,
T,
T, (D.MS)

T,
T,
T, (D.MS)

T,
T,

3. After the above entries, = = 3.14 is displayed. The necessary data are stored

in the appropriate registers. Now, for an ordinary occultation go to Programme

54B, or for a grazing occultation go to Programme 55B.
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(54)B
Occultation of a star by the Moon at a given place (rigorous calculation).

HP-67

1. Having first loaded Programme 54/55A, and the quantities o ( to =3 as

indicated now enter:

¢ (in decimal degrees), STO 5

A (decimal degrees, negative if E of Greenwich), STO 7

psine ,STO 8

pcose’, STO9

2. Load the following programme from a magnetic card:
001 fLBL B

hSFO

GTOO0
fLBL D

hCFO0
fLBL O

0

STO 6
4

hSTI
fLBL?2

f GSB 3
fP<«—>S

RCL 5
RCL 8
X
RCL 6
RCL 7
X

RCL 9

RCL 4

X

g x?
1
hx <=y

fvx

RCL 9

RCL 4

fP<«—>S

hF?0
CHS
STO + 6
f DSZ
GTO 2
RCL 6
RCLO
+

g >H.MS
DSP 4

f-x-

046
047
0438
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090

fP<«~—>S

RCL 5

RCL 6

g—>P

GTO 4

fLBL C

0

STO 6
4

hSTI

fLBL 1

fGSB3

f DSZ

GTO 1

RCL 6

RCLO
+

g >H.MS

DSP 4

f—x-

fP<«<—>S

RCL 5

RCL 6

g—>P

RCL 4

X

f-x-

fLBL 4

hR {

fP<«<—S

RCL A

f cos

RCL 5

f cos

RCL B

f cos

RCL 5
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091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

sin

RCL B

sin

X
+

gsin™?!
h RTN

fLBL 3

RCL 6

RCL 4

X
RCLC
_+._

RCL 7

STO A
RCL 1
RCL 6
X
RCL 3
_+_

RCL 6
X

RCL 2
+

RCL A

f sin

RCL9
X

fP<«—>S

STO 8

STO 5

RCL 1

fP<«—>S

RCL 6
X

fP<«~—>S

RCL 3
+

fP<«~—S
RCL 6

X

fP<«~—S

RCL 2

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

167
168
169
170
171
172
173
174
175

177
178

fP<«~—>S

RCL B

f cos

RCL 8

RCL9

fP<~—>S

RCL A

f cos

X
STO 7
RCL B
f sin

STO x 8

STO 6

RCLO

STO x 7

STO x 8

RCLD

STO + 7

RCLE

STO + 8

RCL 7

RCL 8

g—>P

STO 9

RCL S

RCL 7

X
RCL 6
RCL 8

RCL9
g x*

fP+"+S

STO -6
h RTN



 

3. For immersion: press B.

The display flashes the UT of immersion as predicted for the specified location

(H.MS format, to the nearest whole second), then the Position Angle (P, to the

nearest degree) and the programme ends by displaying the star’s altitude (4, to the

nearest whole degree; a negative value would indicate that the star is below the

horizon from the specified location).

For emersion: press D.

The display flashes UT and P, and ends by showing A.

For least distance: press C.

The programme gives UT of the nearest approach to the centre of the Moon, the

least distance expressed in terms of the Moon’s radius (less than 1.0 indicates an

occultation will take place as seen from the specified location, provided that 4 is

positive; more than 1.0 shows that the star is not, in fact, occulted at the given

location), then P, and finally, A.

4. To make a prediction for another location:

Enter, for the new station, o, STO 5

A STO 7

p sing’, STO 8

pcose’, STO 9

and return to Step 3.

Test: Use the data from the search-routine example for S40 094 027, « Tau, to

make a prediction for its occultation on 1978, August 26, at Greenwich.

Load Programme 54/55A

Enter:  4.344 147, press A (a of star)

16.275 60, press R/S (3 of star)

 

22.153 347 3, R/S (GST at 0" UT)

3, R/S (Central hour, ET)

49, R/S (AT in seconds)

4320718 6, R/S (a; at 2" ET) )
4.341 321 3, R/S (a, at 31 ET)

4.361 922 1, R/S (azat 4" ET)

16.515 458, R/S (5, at 2" ET)

16.553 311, R/S (8, at 3n ET) » Data from
16.590 664, R/S (85 at 42 ET) lunar ephemeris

0.545780, R/S (m at 2" ET)

0.545 646, R/S (myat 3" ET)

0.545 514, R/S (msat 4" ET)

When = appears:

Enter 51.5, STO S (¢ at Greenwich)

0, STO 7 ()

0.778 97, STO 8 (p sing’)

0.623 80, STO9 (p cose’)
Now load Programme 54B

Press B: Immersion = 1h56m 21s UT

P = 28°

h = 28°
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Press D: Emersion = 2h41m 15s UT

P = 306°

h = 35°

Press C: Least distance = 2h 18m 28s UT

= 0.7543 r

P = 347°

h = 31°

Now, find the situation at Edinburgh:

Enter: 55.925, STO 5 (9)

3.1825, STO7(»)

0.824 67, STO 8 (p sing”)

0.561 58, STO 9 (p cos%’)

Press B: Immersion = 20 13m (Q9s UT

P = 8°

h = 28°

Press D: Emersion = 2h 35m46s UT

P = 328°

h = 31°

Press C: Least distance = 21 24m 23s UT

=09410r

P = 348°

h = 29°

Note that at Edinburgh the least distance is 0.941 0 Moon radii, close to unity;

this indicates that Edinburgh is not far from the northern limit of the occultation

zone. We shall examine this point with Programme 55B.
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(55)B
Grazing occultations.

HP-67

1. Load Programme 54/55A and enter the quantities « ( to =3 as indicated. As

we are not predicting for a fixed point, the additional data entered at this stage

for Programme 54B are not required and must not be entered.

2. Load the following programme from a magnetic card:

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

fLBLO

RCL 1

RCL A
X

RCL 3
+

RCL A
X

RCL 2
+

h RTN

fLBL D

hCFO

GTO |

fLBLE

hSFO

fLBL 1

STO S

0

STC A

STO 6

9

hSTI

f LBL 2

RCL 6

f tan

RCL 9

X

gtan™?!

f cos

STO 8

h last x

fsin

RCL9
X

STO 7

RCL A

RCL 4
X

RCL C
+

RCL 5

STOE
fGSB O
RCL E

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

* Or, if you prefer, f — x —.

f sin

RCL 8
X

fP<«~—S

STO 8

STO S

fGSBO

RCL B

f cos

fP«~—S

RCL 7
X

RCL 8

f P<—S

RCL E

f cos
X

STO 7

RCL B

fsin

STO x 8

X

-

STO 6

RCLO

STO x 7
STO x 8

RCL 3

STO + 8

RCL D

STO + 7

RCL 7

RCL 8
g—>P

STO9

RCL A

RCL 5

RCL 7
X

RCL 6

RCL 8
X
+

RCL9

238

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

g x* 139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

168
169

171
172
173
174
175
176
177
178
179
180
181
182
183
184

—
_
—
—
w
W
A
N
D
"

STO -9

hF?0
CHS
RCL 5

RCL 9
X

STO + 6

DSP 5

*h pause

h ABS

EEX

CHS
gx >y
GTO 3

f DSZ
GTO 2

GTO 4
f LBL 3
RCL 6

R/S
RCL A

RCL 0

DSP 4
g >H.MS
R/S

RCL E

f cos

RCLB

f cos
X

RCL 6

f cos

RCL B



185 fsin 192 R/S 199 0 206 3
186 RCL 6 193 fP<«—S 200 hF?0 207 6
187 fsin 194 RCL7 201 CHS 208 0
188 x 195 RCL8 202 - 209 +
189 + 196 g—P 203 fP<«<—S 210 hRTN
190 gsin™! 197 hR 204 fx>0
191 DSP2 198 9 205 hRTN
 

3. Enter a longitude (usually an integer, but if not, then in decimal degrees;

negative if E of Greenwich).
 

4. For a northern limit, press D.

For a southern limit, press E.
 
5. The programme starts from ¢ = 0°. Successive corrections, A¢ (in degrees),

are briefly displayed during the pauses, until finally the limiting latitude is given,

in decimal degrees. (If, after 9 iterations, |A¢| is still > 1075, then ‘Error’ appears.)

Then press R/S to obtain the UT (H.MS format), press R/S again to obtain A

(in decimal degrees), and finally press R/S to obtain P (in decimal degrees).
 
6. Return to Step 3 and enter another longitude (usually separated by 2°, but

closer plets can be made if desired to enable an accurate limit line to be drawn on

a map). Repeat Steps 4 and S.

7. When enough limiting latitudes have been obtained, draw the limit line on a

map. The prediction is that places on this line will (subject to the accuracy of the

lunar ephemerides) observe a grazing occultation.

Test: In the prediction for the occultation of « Tau at Edinburgh on 1978.

August 26 it was noted from Programme 54B that the least distance was 0.941 0,

Thus, this station is near the northern limit of the occultation zone. Find and list

the northern limits for longitudes 8°, 6°, 4° and 2° W.

Load Programme 54/55A.

Enter: 4.344 147, press A (a of star)

16.275 60, press R/S (3 of star)

 

 

22.153 3473, R/S (GST at 0" UT)
3, R/S (Central hour, ET)

49, R/S (AT in seconds)

4.320718 6, R/S (a; at 20ET) )
4.3413213,R/S (ay at 30 ET)
43619221, R/S (asat 4" ET)

16.515458, R/S (8, at 22 ET)
16.553 311, R/S (3, at 3" ET) §» Data from
16.590 664, R/S (3;at 4"ET) | lunar ephemeris
0.545780, R/S (mat 20 ET)
0.545 646, R/S (myat 30 ET)
0.545514, R/S (75 at 42 ET)

When = appears, load Programme 55B.

* Enter 8, press D; note the northern limit in decimal degrees

Press R/S and note the UT

Press R/S for A

Press R/S for P
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Return to * and repeat for the other longitudes.

Tabulate the results:

Longitude 3"W 6" W 4°W 2°W

Latitude 55792993 56°.748 91 57°.552 51 58°.337 62

(55°55"47".7) (56”44 56".1) (57°33°097.0) (58°20'15".4)

uT 2h 22m 13s 2h 24m 29s 20 26m 48s 2h 29m ()9s

h 26°.33 27.57 28°.74 29°.84

P 348 .06 348°.12 348°.20 348°.29

Plotting the northern limit on a map of the British Isles gives the same indication

as that for Occultation No. 6 on the outline map on p 25 of the 1978 Handbook of

the BAA. The line passes just to the south of the Hebridean islands of Tiree and

Coll, cuts the mainland of Scotland just south of Ardnamurchan Point, crosses

northwest across Lochaber and Inverness districts of the Highland region to

Inverness itself, and finally cuts the east coast west of Nairn.

For a southern limit, enter 30, CHS (for 30°E) and press E. The latitude given is

25°.386 27 (25 23" 107.6). At 20 E, the southern limit is 21°.138 70 (21° 08 19”.3).

The southern limit of this occultation thus crosses Egypt, near Al-Kharijah (El

Kharga), with the star fairly high in the sky.

To make a search for possible occultations of stars by the Moon.

1. Extract from the ephemeris:

apparent a for the moon

apparent 8

= (horizontal parallax)

at the start of the period under review, and for the subsequent integral hours of

ET. The object of the exercise is to identify the stars with which the Moon is about

to come into conjunction, and to eliminate those which do not lie within the

declination limits where an occultation is possible.

2. From the appropriate declination band of the SAO Star Catalogue (in which

lies 3¢ at the commencement of the period) extract SA0O Number, magnitude,

1950.0 a*, p,, 8%, us, for those stars within the limits «¢ — 2™ (to allow for the effect

of precession on the 1950.0 coordinates) and «( - the number of hours to be

covered by the review (normally 2 to 3 hours), and +3° of 3¢ at the start of the period.

Exclude stars fainter than 8™.0.

3. Tabulate the preliminary data:

1 2 3 4 5 6 7 8
SAO Mag. Hour a* &% 83¢ A-38 B-8*

Number

For the first entry, complete Columns 3, 4 and 5 for the Moon at the integral

hour starting the period, then list the stars, completing Columns 1, 2, 4 and 5.

Intersperse, at the appropriate «, the data for the Moon at successive integral hours.

4. For each hourly section between consecutive entries for the Moon, let the ET

at the start of the period be T, and the next integral hour of ET be 7.

5. For each such period, deduct & at 7T, from 8 at T, and call this quantity 8&8.

Complete Column 6.
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6. Compute 4 and B for each hourly period, from:

A=38+8+(Z + m)
B =38 + (Z + 77)

where the values for & and = are those for the start of the hourly period, Z = 1° 40,

and the sign for (Z + =) agrees with the sign of 33 (i.e., if 83 is positive, add (Z + =)

for A, and subtract (Z + =) for B; if 83 is negative, reverse this procedure). Complete

Columns 7 and 8.

7. Mark with an obelisk (1) those stars for which the entries in Columns 7 and 8

bear the same sign. These stars are excluded from the subsequent calculations.The

remainder forms a crude list of stars which might be occulted by the Moon during

the review period. This preliminary selection must now be refined.

8. First, by Programme 11, reduce the 1950.0 coordinates of the retained stars to

their mean places at the nearest start of a Besselian solar year. Then find each

star’s apparent place to the first order, by Programme 56, for the integral hour of

ET immediately preceding the star’s position in the crude list. The programme will

interpolate the Besselian Day Numbers and compute the desired apparent place.

9. Repeat Steps 3 and 6, this time using Z = 21’ 24”, and re-tabulate. Again,

mark for exclusion any stars where the entries in Columns 7 and 8 bear the same

sign.

10. The final list now contains the stars which will probably be occulted during the

review period, and which can be observed with telescopes of moderate to large

aperture (say, 200 mm and larger). If a smaller instrument is to be used, apply the

same exclusion principles as outlined on pp 279-280 of the Explanatory Supplement

to the AE.

Even if an occultation occurs, it may not be visible at the observer’s location ; the

calculator programmes will confirm those which are, and the northern or southern

limits for any grazing occultations.

Example. Are any stars brighter than 8™.0 likely to be occulted by the Moon for

European observers from 1" ET onwards on the morning of 1978, August 26?

1. a( 3( 7(
1"ET 4 30™ 01s.141 +16°48' 11”.07 54’ 59”.15

2h 4h 32m (75,186 16° 51’ 54”.58 54' 577.80

3h 4h 34m 135213 16° 55" 33”.11 54’ 56”.46

4n 4n 36m™ 195,221 16° 59’ 06”.64 54’ 55”.14

2.

SAO Mag. 1950.0 o* Kg SEC 1950.0 &* ©y

093983 6.6 4h28m 16s.719 +0.003 1 +14° 59’ 56”.13  -0".045

93 6.0 4r29m00s.180 +0.007 0 15°44" 45”45 -07.026

98 7.8  4h30m(5s.364 +0.001 2 19°14'387.12 -0".032

094002 6.2  4h30m 395,055 +0.000 8 17°54'46”.03 -0".023

04 6.5 4h30m™46s.207 +0.001 1 16°13'09”.85 -07.023

07 47 4r31m00%.440 +0.006 9 14°44' 27745 -07.025

15 8.0 4h31m48s.401 +0.003 6 17° 3844”97 -07.045

18 7.4  4r32m(055.966 -0.000 2 16° 53" 357.65 -0".076

19 7.1  4r32m(9s458 -0.000 8 17° 05’ 56”.12 +0".014
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I

SAO

Moon

093 983

51

Moon

20

22

27

31

33

34

36

40

43

51

8.0 41 32m 425,049
6.6 4h 32m 463,532
1.1 41 33m(25.896

7.8  4n33m 385,674
6.7  4n33m 485998

7.6 4% 34m 04s.170

7.2 41 34m 205154

7.8 41 34m 415,048

5.8 4h35m [75.491

5.1  4r36m 175709

A, = 16° 48" 117.07 4 3" 43”51 + (1° 40" + 54’ 59”.15)

19° 26 537.73 (19°.448 259)

14° 13" 117.92 (14°.219 978)

16° 51" 547.58 + 3" 38”.53 -+ (1° 40" + 54’ 57”.80)

19° 30" 307.91 (19°.508 586)

16° 51" 547.58 —(1° 40" 4 54’ 577.80)

= 14° 16" 567.78 (14°.282 439)

A; =16°55" 33711 + 3/ 337.53 + (1° 40" + 54’ 56”.46)

=19° 34" 037.10 (19°.567 528)

B,= 16°55" 33711 —(1°40" + 54’ 56".46)

= 14° 20" 36”.65 (14°.343 514)

4. Crude list:

Mag. Time
h

I"ET 4

20 ET

3RET

A
R
A
A
R
A
D

D
B
R
A
L
R
A
A
R
A
D
N
R
D
A
R
A
A
R
R
R
A
S
D

4nET 4

a*

m S

+0.001 3
0

+0.004 5
-0.000 7

+0.006 8
+0.002 6
-0.001 2

+0.006 5
+0.006 4
+0.002 7

= 16°48" 117.07 —(1° 40" + 54’ 59”.15)

8* 85
o ’

30 01.141 +16 48

28 16.719
29 00.180
30 05.364
30 39.055
30 46.207
31 00.440
31 48.401
32 05.966

32 07.186

32 09.458
32 42.049
32 46.532
33 02.896
33 38.674
33 48.998
34 04.170

34 13.213

34 20.154
34 41.048
35 17.491
36 17.709

36 19.221

14 59
15 44
19 14
17 54
16 13
14 44
17 38
16 53

16 51

17 05
16 02
19 46
16 24
19 39
15 46
15 09

16 55

18 26
15 02
15 56
15 42

16 59

” ’ ”

11.07 +3 43.51

56.13
45.45
38.12
46.03
09.85
27.45
44.97
35.65

54.58 +3 38.53

56.12
35.72
48.80
37.51
33.13
08.22
40.35

33.11 +3 33.53

35.17
48.66
05.25
10.83

06.64

16° 02" 357.72

19° 46’ 48”.80

16° 24" 37".51

19° 39" 33".13

15° 46" 08”.22

15° 09" 40”.35

18° 26" 35”.17

15° 02 48”.66

15° 56" 05”.25

15°42" 10”83

+4 26
+3 42
+0 12
+1 32
+3 13
+4 42
+1 48
+2 33

+2 24
+3 27
-0 16
+3 05
-0 09
+3 44
+4 20

+1 07
+4 31
+3 37
+3 51

57.6
08.3
15.6
07.7
43.9
26.3
08.8
18.1

34.8
55.2
17.9
53.4
02.2
22.7
50.6

27.9
14.4
57.8
52.3

-0
-1
-5
-3
-1
-0
-3
-2

-2
-1
-5
-2
-5
-1
-0

4
0
-1
-1

-0".038
-07.016
-0”.189
-07.004
-07.028
-07.037
-07.005
-07.041
-07.022
-0".071

46 44.2
31 33.5
01 26.2
41 34.1
59 57.9
31 15.5
25 33.0
40 23.7

48 59.3
45 38.9
29 52.0
07 40.7
22 36.3
29 114
52 43.6

05 58.5

35 28.6
21 342

T SA0 094 022 and 031 are excluded (similarity of sign in Columns 7 and 8.)
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5. Mean places of retained stars at 1979.0;

SAO a* 5%

093983  4h29m 55554  4-15°03' 39”.3

93  4nh30m 395,63 15° 48 27".5

98  4h 31m 47507 19°18° 1774

094 002  4h 32m 19583 17° 58' 24”3

04  4h32m 25583 16° 16" 47".8

07 4r32m39s24 14° 48" 04”.8

15 4»33m29s10 17°42"19”.9

18 41 33m 465,04 16° 57 09”.0

19  4h33m 495,66 17°09" 317.9

20  4h 34m 215,60 16° 06" 08”.7

27  4nh34m 42579 16° 28" 05”.3

33  4h 35m 28s.54 15° 49" 38”.9

34 4h35m43s18 15°13"107.2

36 4h36m (01s.32 18°30°05”.3

40 4h36m20s.10 15°06' 16”.9

43  4h 36m 57516 15°5932".6

51 4hr37m 57513 15°45' 34”4

6. Besselian Day Numbers:

A B C

Aug26 -6"914 +97.023 416".669

Aug 27 -6".858 +497.022 416".815

m=46".1070 n = 2070401

of ET during the programme run.

Lq SEC

+0.003 1

+0.007 0

+0.001 2

+0.000 8

+0.001 1

+0.006 9

+0.003 6

—0.000 2

-0.000 8

+0.001 3

+0.004 5

+0.006 8

+0.002 6

-0.001 2

+0.006 5

+0.006 4

+0.002 7

D

-97.506

-97.199

E

e = 23°.442 059

These values are input for Programme 56 for interpolation to the integral hour

7. Apparent places of retained stars, 1978, August 26:

SAO
093 983

93
98

094 002
04
07
15
18
19
20
27
33
34
36
40
43
51

a

4h 29m 545,26
4h 30™ 38s.34
4h 31m 455,76
4h 32m 18s.52
4h 32m 24s53
4h 32m 37594
4h 33m 27579
4h 33m 44573
4h 33m 48s.35
4h 34m 20s.29
4h 34m 41547
4h 35m 27522
4h 35m 415,86
4h 35m 59399
4h 36™ 18s.78
4n 36™ 555.83
4h 37m 555,80

3

+15°03" 30".4
15°48"18".3
19° 18 07".0
17° 58" 14”.4
16° 16’ 38".5
14° 47" 56".0
17° 4210”1
16° 56" 59”.5
17° 09" 22".3
16° 05’ 59”.5
16° 27’ 56”.0
15° 4929”8
15°13'01”.3
18°29° 55”.2
15° 06" 08”.1
15° 59" 23”5
15°45'25".4

 

0Os

Os

> At 1" ET

At 2" ET

At 3» ET

©ws

-07.045*
-07.026

-07.032

-07.023

-07.023

-07.025

—07.045

-07.076

+07.014

—07.038

-07.189

-07.028

-07.037

—07.005

-07.041

-07.022

-07.071

T

-0.350 3
-0.347 6

* The proper options are found to be unchanged from the 1950.0 values.



8. Re-compute 4 and B as in Step 3, now with Z = 21’ 24”:

A,= 18°08"17".72

B,= 15°31"47".92

A,= 18° 11" 54”91

»= 15°35"32".77

A;= 18°15'27".10

B,= 15°39" 12".64

A,= 18° 18" 54".31

W= 15°42" 47".50

9. Refine the conjunctions:

SAO Mag. Time a* o* 88 A - 8* B - &%
h m S o ’ ” ’ ” o ’ ” o ’ ”

Moon I"ET 4 30 01.141 416 48 11.07 +3 43.51

093 9831 6.6 4 29 5426 15 03 30.4 43 04 47.3 40 28 17.5
93 6.0 4 30 38.34 15 48 18.3 +2 19 59.4 -0 16 30.4
98t 7.8 4 31 4576 19 18 07.0 -0 09 49.3 -3 46 19.1

Moon 2hET 4 32 07.186 16 51 54.58 43 38.53

094 002 6.2 4 32 1852 17 58 144 40 13 40.5 -2 22 41.6
04 6.5 4 32 2453 16 16 38.5 +1 55 16.4 -0 41 05.7
071 4.7 4 32 37.94 14 47 56.0 +3 23 58.9 40 47 36.8
15 8.0 4 33 27.79 17 42 10.1 +0 29 448 -2 06 37.3
18 7.4 4 33 4473 16 56 59.5 +1 14 55.4 -1 21 26.7
19 7.1 4 33 4835 17 09 223 +1 02 32.6 -1 33 49.5

Moon 3nET 4 34 13.213 16 55 33.11 43 33.53

20 8.0 4 34 20.29 16 05 59.5 +2 09 27.6 -0 26 46.8
27 11 4 34 4147 16 27 56.0 +1 47 31.1 -0 48 43.3
33 6.7 4 352722 15 49 29.8 +2 25 57.3 -0 10 17.1
341 7.6 4 354186 1513 01.3 +3 02 25.8 40 26 11.4
36t 7.2 4 35 5999 18 29 55.2 -0 14 28.1 -2 50 42.5
40t 7.8 4 36 18.78 15 06 08.1 +3 09 19.0 40 33 04.6

Moon 4" ET 4 36 19.221 16 59 06.64 +3 28.54

43 5.8 4 36 55.83 15 59 235 +2 19 30.8 -0 16 36.0
51 5.1 4 37 5580 15 45 2.54 +2 33 289 -0 02 379

T SAO 093 983, 098, 094 007, 034, 036 and 040 are excluded for similarity of sign in

Columns 7 and 8.

10. The final list of stars likely to be occulted for European observers on the

morning of 1978, August 26 is:

SAO Mag. a* 3%

093993 6.0 4h30m38s34 +15°48°18".3

094002 6.2 4n32m 18552 17° 58" 14”.4

04 6.5 4r32m 24553 16° 16’ 38”.5

15 8.0 4h33m27s79 17° 42" 10".1

18 7.4 41 33m 44573 16° 56" 59”.5

19 7.1 4h 33m 48s35 17°09° 22”.3

20 8.0 4h34m20s.29 16° 05" 59”.5

27 1.1 4h 34m 41547 16° 27 56”.0

33 6.7 4r35m 27522 15°49"29".8
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43 58 4h36™ 55s.83 15° 59" 23".5
51 5.1  4h37m.555.80 15°45 25”4

11. Now proceed to Programmes 54/55A, 54B and 55B. These programmes will

confirm whether occultations will occur at the selected location and, for any grazing

occultations, the northern (and/or southern) limits. As an example, we took the

case of the brightest star in the list, which is 4 Tau, and used the foregoing data in

both the rigorous programmes.

If, for practice, you try other stars in the list of ‘possibles’ you will find some

interesting results; for example, SAO 094 033 is not, in fact, occulted (the least

distance at Greenwich is 1.888 4 at 2P 23m 44s UT); neither is SA0 094 051, which

is 4’ farther south. But SA0 094 020, which lies a little farther north in declination,

is occulted at 17 30m 21s UT (at Greenwich). This star also has an interesting

southern track for a grazing occultation, which you can plot by running Programme

55B. The track crosses southern Spain and cuts the east coast a few miles north of

Castellén de la Plana. In southwest Spain the star will be at low altitude, but it will

be 25° above the horizon on the east coast.

Some of the other stars in the list are occulted, but not as seen from Europe.

SAO 094 043 is visible from Iceland, but the southern limit of this occultation

misses the most northly part of Norway and Sweden.
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(56) HP-67
Reduction of the mean place of a star at the nearest start of a Besselian solar year to

the apparent place at any integral hour, to the first order.

 

1. Load the programme from a magnetic card:

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050

fLBL A
1
9
hSTI
hR
STO (1)
f DSZ
DSP 0
f GSB 1
RCL 6
RCL 5

STO 4

RCL 7

f tan

STO 5

DSP 2

h

h RTN

f LBL B

051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100

RCL 8

h last x

hx «<—y

RCL 6
X
+

hSTI

h =

DSP 2

h RTN

f LBL C

fH <«

1

5
X

STO 0

DSP 3

R/S

STO 1

R/S

fH «
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101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

172
173
174
175
176
177
178
179
180
181

183
184
185
186

188
189
190
191
192
193

195
196

198
199
200



201 fLBL2 204 hx<—>y 207 fP<—S 210 hRTN
202 - 205 fP<«—>S 208 X
203 hlastx 206 RCL 6 209 +

For the start of the selected day, let the Besselian Day Numbers bear the suffix 1

(e.g., A, B, etc.). Let the numbers for the start of the next day bear the suffix 2.

Ignore J and J’ which are only required for reductions to the second order.

2. Enter A, and press A.

Then, at each succeeding halt, enter in turn:

A,, By, B,, Cy, C,, Dy, D,, E,, E,, 71, 75, € (in decimal degrees), m (seconds of

arc) and n (seconds of arc). € need only be taken for the start of the selected

day; m and n for the nearest beginning of a year.

After n is entered, = (3.14) will be displayed to signify completed data entry for

interpolation.

3. Enter the integral hour of ET for which the apparent places are required, and

press B.

The Day Numbers are interpolated for the required hour and stored ready for

further use. (The original two sets of Day Numbers are also retained, and can be

used for re-interpolation to any other integral hour of ET on the same day; this is

extremely useful for occultation work.)

= is again displayed to show that interpolation has been completed.

4. Enter the mean place of the star at the beginning of the nearest Besselian solar

year:

a (H.MS), press C

rq (seconds of time per annum), press R/S

3 (D.MS), press R/S

rs (seconds of arc), press R/S.

5. Reduction to the apparent place at the required time is now carried out. The

display pauses to flash the apparent RA (H.MS format) at the integral hour of ET

selected, and the programme concludes by displaying the apparent dec.

6. If the apparent place of the same star is required for a different integral hour of

ET on the same day, enter the integer for the hour, press B; when = appears,

press D.

7. For the next star, return to Step 4.

8. If Aais required, press RCL 7.

If Ais required, press RCL 6.

Test: Find the apparent place of SA0 094 051 at 3™ ET on 1978, August 26,

given the mean place at 1979.0 is:

a=4h37m 57513, 8 = +15°45'34"4, p,= +0%.0027, ug= -0".071

and the Besselian Day Numbers are:

A B C D E T

Aug26 -6"914 +97.023 +167.669 -97.506 O -0.3503

Aug 27  -6".858 +97.022 +16”.815 97199 0 -0.347 6

At the start of the day, ¢ = 23°.442 059; for 1979.0 m = 46”.107 1, n = 20".040 1.

These values may be used throughout the day.
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The result given by the programme is:

a = 4h37m 55580, 8§ = +15°45"25".4

These are the coordinates used in the example of an occultation search.
 

 

(57) HP-67

To compute the Besselian elements of an occultation.

1. Load the programme from a magnetic card:

001 fLBLA 043 RCLO 085 —+ 127 RCL1

002 DSP4 044 RCL6 086 x 128 fP <«—S

003 fH <« 045 - 087 fP<«—S 129 .

004 STOO 046 RCLE 088 STOO 130 O

005 R/S 047 x 089 fP<«—>S 131 O

006 fH <« 048 STOO 090 RCLC 132 0

007 STO 1 049 RCL2 091 RCL2 133 0

008 R/S 050 RCL6 092 RCLS 134 3

009 fH <« 051 - 093 —+ 135 6

010 STO 2 052 RCLE 094 x 136 x

011 R/S 053 x 095 fP<«—S 137 RCL2

012 fH <« 054 STO?2 096 STO1 138 x

013 STO3 055 RCL7 097 RCLO 139 RCLD
014 R/S 056 fsin 098 - 140 x

015 fH <« 057 STOD 099 STO?2 141 +

016 3 058 RCL 1 100 fP<«—S 142 fP+«—>S

017 6 059 fcos 101 RCL1 143 STO 4

018 0 060 1 102 RCL4 144 RCL3

019 O 061 5 103 — 145 -

020 STOE 062 x 104 fP<«—>S 146 STOS

021 x 063 STOB 105 RCLO 147 RCL3

022 STO4 064 RCL3 106 fP<«—S 148 RCLO

023 R/S 065 fcos 107 . 149 RCLS
024 fH <« 066 1 108 O 150 RCL2

025 RCLE 067 5 109 0 151 =

026 x 068 X 110 O 152 x

027 STOS 069 STOC 111 0 153 -

028 R/S 070 RCL1 112 3 154 STO6

029 fH <« 071 RCL7 113 6 155 fP<«~—S

030 STOG6 072 - 114 x 156 RCL 8

031 R/S 073 RCLE 115 RCLO 157 fP<«—S

032 fH <« 074 x 116 x 158 RCLO

033 STO7 075 STO1 117 RCLD 159 RCL2

034 R/S 076 RCL 3 118 x 160 =

035 STO 8 077 RCL7 119 + 161 -

036 R/S 078 - 120 fP<«—S 162 STO 7

037 RCLE 079 RCLE 121 STO3 163 fP<«~—S

038 —+ 080 x 122 fP<«—>S 164 RCLY9

039 STO9 081 STO3 123 RCL3 165 fP<«—S

040 R/S 082 RCLB 124 RCL S 166 -

041 fH <« 083 RCLO 125 —+ 167 STO 8

042 STO A 084 RCL4 126 fP <«—>S 168 RCL A
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169 1 179 + 189 f-x- 199 fP<-—>S
170 . 180 fP<—>$S 190 RCL9 200 RCL6
171 0 181 RCL6 191 g-—> H.MS 201 g-—>H.MS
172 0 182 - 192 f-x- 202 DSP6
173 2 183 RCL9 193 RCL6 203 f-x-
174 7 184 - 194 f-x- 204 RCL7
175 3 185 fP<—>S 195 RCL?2 205 DSP5
176 8 186 STO9 196 f-x- 206 g->H.MS
177 RCL7 187 RCL8 197 RCL5 207 hRTN
178  x 188 g— H.MS 198 f-x-
 

Enter the following data:

a at T, (H.MS format); press A (apparent RA of Moon at integral hour of ET

immediately preceding the conjunction with the star)

8 at T, (D.MS); press R/S (apparent dec. of Moon)

o at T, (H.MS); press R/S (apparent RA of Moon at integral hour of ET

immediately following the conjunction; T, and T, are consecutive hours)

8 atT,(D.MS); R/S

= at T, (D.MS); R/S (horizontal parallax)

= at T, (D.MS); R/S

o* (H.MS); R/S (apparent RA of star at T,)

* (D.MS); R/S (apparent dec. of star at T)

T, (an integer); R/S (hour of ET preceding conjunction)

AT (in seconds); R/S (ET -UT)

Apparent GST at O» UT (H.MS) (= EST at O ET)

Press R/S
 

The programme pauses to flash, in turn:

T, (H.MS) (UT of conjunction in RA)

H, (H.MS) (Greenwich hour angle of the star at T)

Y (yatT,)
’

X the hourly variations of x and y
’

Yy

o* (H.MS)

and ends by displaying &*.
 

Test: Find the Besselian elements of the occultation of « Tau on 1978, August 26,

given the following data:

a Ty=4h34m 135213 )
8 T,= +16°55"33".11

a T,= 4h 36m 19s.221 L from lunar ephemeris

8 T.= +16°59'06”.64

«Ty= 0° 54’ 56”.46

7 T,= 0° 54’ 55”.14

a¥= 4h 34m 41s.47

*= 1+16°27'56".0

= 3"ET

AT = 49s

Apparent GST at O» UT = 22h 15m 33s.473.
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The computed elements are: The NAO published:

To= 3n12m38s( 3h 12™m.6) 3n12m7

H,= 20" 54m 02s (20" 54™.0) 20M 54m.1

Y= +0.5174 +0.517 4

x'= +0.548 6 +0.548 6

'= +0.065 4 +0.065 4

a*= 4h 34m 4]s.47 4h 34m 41548

*= +16°27"56".0 +16° 27" 56”.0

There are very slight differences between the two sets of elements. This is due to

the fact that when computing the apparent place of the star the required time was

taken as 21 ET, but later in the refining process it became apparent that the con-

junction would actually occur between 3" and 4" ET, for which the Besselian

elements were computed. If, now, the apparent place of the star is computed for

3h ET, it is found to be 4" 34m 41548 (the declination remains unchanged), thus

agreeing with the NAO value. If the elements are re-computed withthis fresh value

for o«* all the new elements so found agree exactly with the NAO figures.
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Index

algebraic logic, 7-9, 147
Almanac for Computers, 69, 226, 228-30
altitude of star, 204, 218-19

angle, determination of quadrant, 67, 81,
83-4, 121-2

angular distance between two stars, 218,
219

angular separation at conjunction, 212-16
anomaly, eccentric, 81; mean, 81

appparent longitude of Sun, 187-8
apparent orbit, binary star, 71

apparent place, planets, 69-70, 137-42,
189-93;
stars, 52-61, 246-8;

reduction from mean place, 52-61,
246-8

approximations, Besselian Day Numbers,
119-27;
Equation of the Equinoxes, 128-9;
equatorial coordinates of planets,
137-42;
geocentric rectangular coordinates of
the Sun, 130-7

Ascension Day, 206

azimuth of star, 204

Besselian Day Numbers, 52-61;
approximations, 119-27

Besselian elements ofan occultation, 232,
248-50

Besselian solar year, 52-3, 119-20
Besselian star constants, 53

binary stars, apparent orbit, 71;
effect of precession on position angle,
71-2, 73, 87;
effect of proper motion on position
angle, 94-5;

251

ephemerides, 87, 92, 172-9;
epoch of orbit, 71, 86, 87-8, 92, 96,
145-6;
orbit catalogues, 87-8, 145;
orbit elements, 71-86;
position angle and separation, 86-96,
172-9

Bright Limb of Moon, position angle,
217-19

calculators, 7-9, 147

calendar date from Julian Date, 201
Celestial objects for Common Telescopes,

36-9, 160-1
Chebyshev coefficients, 69-70, 226-31

comets, elliptical elements, 99, 107-16,
183-4;
parabolic elements, 98, 99-107, 181-2;
perturbations, 98

conjunction, two planets, 212-16;
angular separation, 212-16

Connaissance des Temps, 69, 226-8, 230-1
conversion, ecliptic to equatorial

coordinates, 203, 205;
equatorial to ecliptic coordinates, 202,
205

coordinates, conversion, 202-3, 205;
equatorial, 36-50, 160-4, 166-8;
rectangular equatorial, 50, 168-71;

of Sun, 130-7, 185-6

date of Easter Day, 206-7
date of New Moon, 199-200
day of week, 199-200

double stars, see binary stars



E, iteration for, 108, 179

Easter Day, 206-7
eccentric anomaly, 81, 108, 179
eclipses, lunar, 221-2

ecliptic, conversion of coordinates, 202,
203, 205;

obliquity of, 30-4, 122
elements, binary star orbit, 71-86;

cometary orbits, 98-9
elongations, Polaris, 224-5

ephemerides, binary stars, 87, 92, 172-9;

GMST, 147-50, 154-7
Equation of the Centre, 89

Equation of the Equinoxes, 12, 18, 19,
128-9

equatorial coordinates,
166-8;

conversion to and from ecliptic, 202,
203, 205

36-50, 160-4,

frame of reference, 46

Galilean satellites of Jupiter, 222-4

geocentric equatorial coordinates,
Jupiter, 140-1;

Mars, 139-40, 189-93;
Mercury, 137-9, 189-91;

Saturn, 141-2;
Venus, 139, 189-92

geocentric equatorial rectangular co-
ordinates of the Sun, 130-7, 185-6

geometric longitude of Sun, 187-8
grazing occultations 232, 233-4, 238-40,

245

Greenwich Apparent Sidereal Time, 12
Greenwich Mean Sidereal Time, 12-16,

147-50, 154-7

horizontal parallax, of planet, 137-42;
of Sun, 130-6

illuminated fraction of Moon’s disc,
219-20

interpolation, Besselian Day Numbers,
54, 124-7;

from 3 ephemeris positions, 194-5;
from 5 emphemeris positions, 196-7;

Independent Day Numbers, 61
iteration for E, 108, 179;

for », 100-1, 180;
for x - sin x, 79-80, 171-2

Julian Date, 149-50, 154-7, 198, 199-200
Jupiter, approximate coordinates, 140-1;

positions of Galilean satellites, 222-4;
times of rising, transit and setting,

208-10

local mean time, 19-21
local sidereal time, 16-18, 150-7

longitude of Sun, 120, 121, 187-8
lunar eclipses, 221-2

Mars, approximate coordinates, 139-40;
geocentric coordinates, 189-93;
heliocentric coordinates, 189-93;

times of rising, transit and setting,

208-10
mean anomaly, 81
mean obliquity, 30-4, 122
mean place ofstar, 40-8;

reduction to apparent place, 52-61,

246-8
Mercury, approximate coordinates,

137-9;
geocentric coordinates, 189-91;

heliocentric coordinates, 189-91;
interval between rise and sunrise, or
between setting and sunset, 211-12,
214-16;
times of rising, transit and setting,

208-10
Moon, date ofNew Moon, 199-200;

eclipses, umbral, 221-2;
illuminated fraction of disc, 219-20;
occultations, 232-50;
position angle of bright limb, 217-19

Neptune, times of rising, transit and
setting, 208-10

New Moon, date of, 199-200
number of days between two dates,

199-200
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nutation, in longitude, 119, 120-2;

in obliquity, 119, 122;

short period terms, 58, 61, 119

obliquity of ecliptic, 30-4, 122
occultations, 232-50;

Besselian elements, 232, 248-50;
grazing, 232, 233-4, 238-40, 245;
search technique, 240-5

orbit, binary star, 71-86;
catalogues, 88, 99, 145;
comet, 98-116;

epoch for elements, 71, 86, 87-8, 92, 96,

145-6;
mean, of planet, 137-42

Palm Sunday, 206
perihelion, 130, 136

perspective acceleration, 63, 66
perturbations, 69, 98

planets, approximate coordinates, 137-42;
conjunctions, 212-16;

geocentric positions, 137-42, 189-93;
heliocentric positions, 189-93;
Jupiter, 98, 140-1, 222-4, 208-10;
Mars, 139-40, 189-93, 208-10;
Mercury, 137-9, 189-91,
211-12, 214-16;

osculating elements, 140;
perturbations, 69, 140;

times of rising, transit and setting,
208-10;

Saturn, 141-2; 208-10;

Venus, 139, 189-92, 208-10
Polaris, transits and elongations, 224-5
position angle, bright limb of Moon,

217-19;

binary star, 86-96, 172-9;
effect of precession, 71-2, 73, 87;
effect of proper motion, 94-5

precession, annual general, 34-5;
annual, in RA, 34-5;
annual, in Dec, 34-5;
approximate reduction for, 36-43,
160-1;
binary star orbit, 71-2, 73, 87;
rigorous reduction for, 43-50, 161-4,
166-71

precessional constants, 23-35, 158-9

208-10,

programmable calculators, 8, 9, 43, 50,
79-80, 147

programmes for RPN calculators, 147-
250

proper motion, 63-67, 165;

effect on position angle, 94-5

quadrant, determination of, 67, 81, 83-4,
121-2

Quinquagesima 206

radius vector, of comet, 100-17;
of planet, 137-42, 189-93;
of Sun, 130-6, 187-8

reduction for precession, approximate,
36-43, 160-1;
rigorous, 43-50, 161-4, 166-71

reduction from mean to apparent place,
52-61, 246-8

remote epochs, 43
Reverse Polish Notation, 7, 147

Rogation Sunday, 206
rotational geometry, 50, 168-71

Saturn, approximate coordinates, 141-2;
times of rising, transit and setting,
208-10

search technique for occultations, 240-5

semi-diameter, of planet, 137-42;
of Sun, 130-6

Septuagesima, 206
Sexagesima, 206
sidereal time, 12-19, 147-58
star catalogues, 46-7, 50
Sun, apparent longitude, 187-8;
approximate geocentric coordinates,
130-7;
equatorial
185-6;
geometric longitude, 120, 121, 187-8;
horizontal paralla, 130-6;
radius vector, 130-6, 187-8;
rise, transit and set, 208-9;
semi-diameter, 130-6

rectangular coordinates,

Thiele-Innes constants, 72, 82-5;
equations, 82-5



Time: Greenwich Apparent Sidereal

Time, 12;
Greenwich Mean Sidereal Time,
12-16, 147-50, 154-7;
local mean time, 19-21;
local sidereal time, 16-18, 150-7;

local standard time, 17;
rise, transit and set of Sun and planets,

208-10;
time zones, 17

transits, Polaris, 224-5;

Sun and planets, 208-10
Trinity Sunday, 206

umbral eclipses of Moon, 221-2

Uranus, times of rise, transit and set,
208-10

v, iteration for, 100-1, 180
Venus, approximate coordinates, 139;

geocentric coordinates, 189-92;
heliocentric coordinates, 189-92;
interval between rise and sunrise, or

between sunset and set, 211-12, 214-16;
times ofrise, transit and set, 208-10

Whit Sunday, 206

x - sin x, iteration for, 79-80, 171-2
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